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Chapitre 1

Introduction

Dans cette introduction, on commence par évoquer le contexte et des résultats classiques dans
l’étude des espaces métriques aléatoires, dont beaucoup concernent des modèles d’arbres. On
présentera ensuite les différents travaux de cette thèse, dont le thème central est l’étude d’espaces
métriques aléatoires qui ne sont pas des arbres mais dont la structure y est fortement apparentée.
Dans la Section 1.2, on présente une façon aléatoire de recoller une suite d’espaces métriques
itérativement, en attachant à chaque étape de la procédure un nouveau bloc sur la structure
construite jusque là. Sous certaines conditions sur les blocs que l’on agglomère, on calcule la
dimension de Hausdorff de la structure obtenue et son expression est surprenante !

Ensuite en Section 1.3 on étudie certaines propriétés asymptotiques (degrés, hauteur, profil)
de deux modèles d’arbres discrets construits récursivement, les arbres récursifs pondérés et les
arbres à attachement préférentiel affine à poids initiaux. Les premiers encodent la structure
discrète sous-jacente aux recollements des blocs dans la construction précédente, et les seconds
ont un rôle similaire pour des modèles de graphes discrets construits de façon analogue. Cette
connexion est exploitée dans les preuves des résultats exposés en Section 1.4, qui concernent
des limites d’échelle de certains modèles de graphes discrets vers des espaces métriques continus
construits par recollement itératif.

On finira en Section 1.5 par décrire des résultats obtenus avec Christina Goldschmidt et
Bénédicte Haas à propos de la composante α-stable à surplus fixé. Cet espace métrique aléatoire
apparaît comme la limite d’échelle des grandes composantes connexes de modèles de configuration
critique à queue lourde. Cet objet est presque un arbre à l’exception d’un nombre fini de cycles
dont nous étudions la structure.

Les contributions originales de cette thèse sont les résultats encadrés.

Sommaire
1.1 Graphes et géométrie aléatoire . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Recollements itératifs d’espaces métriques . . . . . . . . . . . . . . . 14

1.3 Arbres récursifs pondérés et à attachement préférentiel . . . . . . . 18

1.4 Graphes discrets construits par recollements itératifs . . . . . . . . . 23

1.5 La composante α-stable . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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1.1 Graphes et géométrie aléatoire

1.1.1 Des graphes partout

Des graphes, pour quoi faire ?

De façon classique, un graphe G est une structure définie à partir d’un ensemble de sommets,
qui peuvent deux à deux être reliés ou non par une arête. La notion de graphe est extrêmement
utile dans des domaines variés car elle peut émerger dès qu’on étudie un ensemble fini d’objets
(les sommets) et une relation symétrique entre ces objets (deux sommets sont reliés si les objets
sont en relation). Dans les mathématiques de la modélisation, les sommets et arêtes peuvent
représenter une réalité concrète : un réseau physique (serveurs reliés par des câbles), un réseau
social (individus reliés par des relations d’amitiés), une généalogie (individus reliés par filiation),
un modèle génétique (allèles d’un même gène reliés s’ils ne diffèrent que d’une mutation)... Ce
type de structures réelles a motivé l’introduction de nombreux modèles de graphes aléatoires,
dont on compare les propriétés avec celles des réseaux réels observés.

Ils peuvent aussi servir à discrétiser un problème en servant d’espace ambiant : pour des
raisons techniques, on peut avoir envie de travailler sur le graphe Z3 (où deux sommets sont
reliés s’ils sont à distance 1) comme approximation de l’espace R3. Ils peuvent ainsi servir comme
réseau sous-jacent pour étudier des phénomènes physiques : on peut citer la marche aléatoire pour
modéliser le mouvement d’une particule, la percolation pour modéliser des trous dans un milieu
poreux ou le modèle d’Ising pour l’aimantation d’un matériau ferromagnétique.

Tous les graphes sont géométriques

En fait, tous les graphes (connexes) peuvent être vus comme des espaces géométriques sans
avoir besoin d’être plongés dans un espace euclidien : pour tout couple de points x et y dans
un graphe G, on peut définir une distance (dite distance de graphe) entre ces deux points par
la longueur du plus court chemin dans le graphe qui permet de joindre x à y. Ce point de vue
fait de l’ensemble des sommets d’un graphe un espace métrique. Grâce à cela, il est possible
de considérer des processus initialement étudiés dans l’espace euclidien Zd comme la marche
aléatoire, la percolation ou le modèle d’Ising, sur des graphes avec une géométrie bien différente
(par exemple un arbre binaire infini) et de se poser des questions similaires sur, respectivement,
l’éloignement du marcheur aléatoire à son point de départ, la taille des composantes connexes
ou la distance typique des corrélations.

Il est naturel de généraliser ce point de vue en étudiant ce type de processus dans une
géométrie aléatoire, c’est-à-dire sur des graphes sous-jacents définis de façon aléatoire. Cela peut
provenir de considérations concrètes comme la résilience d’un réseau sous des pannes aléatoires
de transmission (percolation par arêtes sur un graphe aléatoire représentant le réseau), ou d’un
intérêt plus « mathématique », celui de comparer et de classifier les comportements que peut
avoir un même processus défini dans différents cadres.

Cela motive l’étude approfondie des propriétés géométriques de tels graphes aléatoires. La
plupart de ces modèles dépendent d’un paramètre n qui mesure la taille du graphe obtenu (n
sera typiquement le nombre de sommets) et on s’intéresse à la géométrie des objets obtenus
quand n est très grand. Cette étude est en partie comparative : sur les nombreux modèles décrits
dans toutes la littérature il arrive souvent que certains modèles aient des propriétés locales
différentes mais que leur géométrie à grande échelle soit similaire. Les physiciens parlent souvent
d’universalité pour décrire ce type de phénomène et une grande partie du travail dans ce domaine
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est de classifier les modèles en différentes classes d’universalité, dont on étudie et compare les
propriétés.

1.1.2 Propriétés à grande échelle et topologie de Gromov–Hausdorff

De même qu’il paraît raisonnable de dire que l’espace δ ·Zd approxime bien l’espace euclidien Rd

lorsque δ est petit, on aimerait bien exprimer le fait que nos graphes aléatoires convenablement
renormalisés approximent un certain espace limite, lui-même potentiellement aléatoire. Pour cela
nous allons introduire la topologie de Gromov–Hausdorff, qui donne une signification rigoureuse
à la notion de convergence d’espaces métriques compacts.

Ce point de vue a été introduit en 1975 par David Edwards [57], puis développé par Mikhail
Gromov [65] dans les années 1980 pour démontrer un théorème sur les groupes à croissance
polynomiale. À partir des années 2000, ce formalisme a été repris par les probabilistes afin
d’exprimer des convergences de graphes. Depuis, définir et étudier des variables aléatoires à
valeurs « espaces métriques » représente un domaine très actif des probabilités, et c’est dans ce
contexte que s’inscrit cette thèse.

Tout graphe fini muni de sa distance de graphe est un espace métrique compact, décrivons
donc une façon de comparer de tels objets.

Distance de Hausdorff entre compacts d’un même espace. Lorsque deux compacts sont
deux sous-ensembles d’un même espace, on peut les comparer en utilisant la distance suivante,
introduite par Félix Haudorff [73] : la distance de Hausdorff entre deux parties compactes non-
vides A et B d’un espace métrique (E, d) est définie par

dEH(A,B) = inf
{
ε > 0

∣∣∣ A ⊂ B(ε) et B ⊂ A(ε)
}
,

où A(ε) := {x ∈ E | d(x,A) < ε} et B(ε) défini de la même manière sont les ε-grossissements des
ensembles correspondants. Pour cette distance, deux compacts d’un même espace sont proches
s’ils sont presque « superposés ». L’idée ensuite pour comparer deux compacts « abstraits » sera
de plonger tous les deux isométriquement dans le même espace et de comparer leurs images. De
cette façon, deux compacts seront proches s’ils sont presque « superposables ».

Distance de Gromov–Hausdorff entre compacts abstraits. Afin de formaliser cette idée,
on utilisera l’espace d’Urysohn (U , δ) qui l’unique espace métrique complet séparable à vérifier
une certaine propriétés d’extension des isométries (voir [78] pour une construction) et qui est
une espace assez « gros » pour que tout espace métrique compact soit isométrique à un de ses
sous-ensembles. On peut maintenant introduire la distance de Gromov–Hausdorff : si (X, d) et
(X ′, d′) sont deux espaces métriques compacts non-vides, leur distance de Gromov–Hausdorff est
donnée par

dGH((X, d), (X ′, d′)) = inf
φ:X→U ,φ′:X′→U

{
dUH(φ(X), φ′(X ′))

}
,

où la borne inférieure est prise sur l’ensemble des plongements isométriques φ et φ′ de X et X ′

dans l’espace d’Urysohn U .
On peut définir d’autres distances plus fines à l’aide de la même idée afin de prendre éga-

lement en compte de la structure supplémentaire et ainsi comparer des compacts munis d’une
mesure finie et/ou d’un (ou plusieurs) point distingué. Cela donne lieu à la distance de Gromov–
Hausdorff–Prokhorov dans le cas mesuré, et on peut rajouter la mention pointée (resp. k-pointée)
pour signifier qu’on tient compte d’un (resp. k) point distingué.
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Espace de Gromov–Hausdorff. La « distance » de Gromov–Hausdorff présentée au-dessus
n’en est pas tout à fait une, puisque deux espaces différents peuvent avoir une distance nulle
entre eux s’ils sont isométriques. D’autre part, on pourrait aussi s’inquiéter du fait que les
espaces métriques compacts ne forment pas un ensemble à proprement parler. Pour contourner
ces problèmes, nous ne considérons que l’ensemble des parties compactes (munies de la distance
induite) de l’espace d’Urysohn et quotientons cet espace par la relation d’équivalence « être
isométrique ». On appelle l’espace obtenu l’espace de Gromov–Hausdorff et dans ce manuscrit, on
le noteraM. Pour cette définition, les éléments deM sont techniquement des classes d’isométrie de
compacts de U , mais grâce aux propriétés de l’espace d’Urysohn, n’importe que espace métrique
compact est isométrique à sous-ensemble de U ; tout espace métrique compact non-vide est donc
bien représenté par un élément de M. On fera souvent l’abus de ne pas faire la différence entre
un compact et sa classe d’isométrie. L’espace (M, dGH) est lui-même un espace métrique dont on
peut montrer qu’il est séparable et complet (voir par exemple [1]). On a donc un cadre agréable
pour étudier des variables aléatoires à valeurs dans cet espace.

Limite d’échelle de modèles discrets. De façon générale, on dit ici qu’un modèle discret
aléatoire admet une limite d’échelle si ce modèle convenablement renormalisé tend vers un modèle
continu, lorsque la taille du modèle discret tend vers l’infini. Dans notre cadre ce sont les distances
qu’on renormalise : un modèle discret de graphes vus comme des espaces métriques (Gn, dn)

admet une limite d’échelle quand n → ∞ s’il existe une suite (λn) telle que la limite en loi
suivante ait lieu dans l’espace M,

(Gn, λn · dn)
(d)−→
n→∞

(G, d), (1.1)

pour une variable aléatoire (G, d) à valeurs dans M.

1.1.3 Que sait-on faire ?

Maintenant que ce cadre est défini, c’est un domaine à part entière que d’étudier des convergences
du type (1.1) pour une grande variété de modèles. Pour prouver une telle convergence, il faut
en général montrer la tension des lois de (Gn, λn · dn) ainsi qu’identifier la limite (G,d). Cela
suppose en particulier de pouvoir donner une description explicite de la limite, ce qui est parfois
complexe. Une grande partie des objets étudiés jusqu’à maintenant sont codés par des processus
(par exemple continus à valeurs réelles). En particulier, si

(G,d) = f(X) (1.2)

avec f : (C([0 ,∞],R), ‖·‖∞) → M une fonction continue et X un processus réel, une des mé-
thodes pour prouver la limite d’échelle (1.1) est de montrer que

(Gn, λn · dn)
(d)
= f(Xn)

pour une suite de processus Xn qui tend en loi vers X.
On est également intéressé par l’étude des propriétés de l’espace aléatoire obtenu à la limite.

Ces propriétés peuvent être obtenues en utilisant l’approximation discrète donnée justement
par la convergence (1.1), mais à l’inverse il arrive également que des propriétés puissent être
directement étudiées grâce à la description qu’on a de l’objet dans le continu et que cela puisse
renseigner sur le comportement asymptotique du modèle discret.
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Les espaces que l’on comprend sont presque tous des arbres

Les graphes aléatoires les mieux compris sont les arbres, dont on pourrait dire que leur structure
est essentiellement unidimensionnelle. Citons des exemples liés aux travaux de cette thèse.

Arbres de Bienaymé-Galton-Watson. Les arbres de Bienaymé-Galton-Watson sont un des
modèles les plus étudiés d’arbres aléatoires discrets. Ils correspondent à la généalogie d’un pro-
cessus de branchement très simple qui a été introduit par Irénée-Jules Bienaymé en 1845, puis
étudié à nouveau en 1875 par Francis Galton et Henri William Watson, dans le but de modéliser
l’extinction de noms de familles nobles. Si on se donne µ une mesure de probabilité sur N, un
arbre de Bienaymé-Galton-Watson τ de loi de reproduction µ code la généalogie du processus
suivant : à l’instant 0, un individu est présent et à chaque étape n ≥ 1, tous les individus présents
au temps précédent meurent et chacun laisse place à un nombre de descendants tiré selon la loi
µ, indépendamment les uns des autres.

Convergence. Lorsque la loi de reproduction µ est de moyenne 1 et de variance finie 0 <

σ2 <∞, les arbres de Bienaymé-Galton-Watson de loi de reproduction µ conditionnés à avoir un
nombre n de sommets, renormalisés par n−1/2, convergent en loi lorsque n→∞ vers un multiple
du même objet universel limite : l’arbre brownien d’Aldous.

Théorème 1 (Aldous, [10]). Soit µ une loi sur N d’espérance 1 et de variance 0 < σ2 < ∞.
On note T un arbre de Bienaymé-Galton-Watson de loi de reproduction µ. Pour tout n ≥ 1 pour
lequel P (|T | = n) > 0, on définit Tn comme une version de T conditionnée à avoir exactement
n sommets, que l’on munit de sa distance de graphe dgr. Alors(

Tn, n
−1/2 · dgr

)
−→
n→∞

(T , σ−1 · d),

où la convergence a lieu pour la topologie de Gromov–Hausdorff, le long des n pour lesquels Tn
est bien défini.

Arbre brownien d’Aldous. L’arbre brownien d’Aldous (T , d) qui apparaît à la limite a une
description de la forme (1.2), c’est-à-dire qu’il est codé par un processus aléatoire réel. En effet,
on peut le construire à partir de e = (e(t))t∈[0,1] l’excursion brownienne normalisée de la façon
suivante : on définit d’abord une pseudo-distance d sur [0 , 1] par

d(s, t) := 2 ·
(
e(s) + e(t)− 2 · min

u∈[s∧t,s∨t]
e(u)

)
.

On définit ensuite la relation d’équivalence∼ sur [0 , 1] telle que s ∼ t si et seulement si d(s, t) = 0.
En identifiant ensemble les points qui sont en relation, c’est-à-dire en considérant l’ensemble
T = [0 , 1]/ ∼, muni de la distance induite sur le quotient que l’on note encore d, on obtient
l’arbre brownien d’Aldous (T , d).

Construction line-breaking. En fait, cette construction n’est pas la première donnée
par David Aldous, qui a au départ [9] défini cet objet comme un sous-ensemble de `1 :={

(xn)n≥1 ∈ RN∗
∣∣ ∑∞

n=1 |xn| <∞
}
, à partir d’une construction qu’il nomme « line-breaking »

et qu’il exprime comme suit : soit C1, C2, . . . les points d’un processus de Poisson sur R+ d’in-
tensité t 7→ tdt, rangés dans l’ordre croissant. Ces points « découpent » la demi-droite R+ en
intervalles de la forme [Ci , Ci+1). En commençant avec le segment [0 , C1), on construit un arbre
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récursivement en attachant à la i-ième étape le segment [Ci , Ci+1) à un point Bi choisi unifor-
mément sur l’arbre construit jusque là. À chaque fois qu’une branche est ainsi accrochée, on la
construit le long d’une coordonnée de `1 non encore utilisée, de telle façon à ce que la distance
`1 entre deux points de l’arbre soit toujours égale à la longueur qu’il faut parcourir dans l’arbre
pour aller de l’un à l’autre. L’arbre brownien est obtenu comme l’adhérence de la partie ainsi
construite après une infinité d’étapes. Le fait que ces deux constructions coïncident est aussi
un résultat d’Aldous, voir [10]. Plus tard dans la Section 1.2, nous allons nous intéresser plus
particulièrement à cette construction et ses généralisations.

Arbres stables. Lorsque la loi de reproduction µ n’a admet pas de variance mais admet une
queue de distribution de la forme µ([k ,∞)) ∼ k−α pour α ∈ (1 , 2), le Théorème 1 n’est plus
valide mais un résultat similaire [52] de Thomas Duquesne assure que les arbres Tn renormalisés
cette fois par n−

α−1
α convergent vers un multiple d’un autre arbre continu : l’arbre α-stable.

Celui-ci a été introduit par Thomas Duquesne et Jean-François Le Gall [53] en s’appuyant sur
des résultats antérieurs de Jean-François Le Gall et Yves Le Jan [89]. Sa définition est similaire à
celle de l’arbre brownien, sauf que l’excursion brownienne normalisée est remplacée par un certain
processus de hauteur associé à une excursion d’un processus de Lévy α-stable spectralement
positif par une construction que nous ne détaillerons pas ici.

Arbres de fragmentation. D’autres arbres définis dans le continus ne le sont pas forcément
à partir d’une excursion d’un processus naturel : c’est le cas des arbres de fragmentations, intro-
duits par Bénédicte Haas et Grégory Miermont [68], qui codent la généalogie de fragments qui
se disloquent aléatoirement selon un processus de fragmentation auto-similaire, à valeurs dans
S↓ = {(s1, s2, . . . ) | s1 ≥ s2 ≥ · · · ≥ 0,

∑∞
i=1 si ≤ 1}. Les deux modèles décrits ci-dessus peuvent

également être décrits comme des arbres de fragmentation.

Arbre couvrant minimal. Citons également l’arbre M obtenu par Louigi Addario-Berry,
Nicolas Broutin, Christina Goldschmidt et Grégory Miermont [6] comme limite d’échelle de
l’arbre couvrant minimal du graphe complet à n sommets. Celui-ci n’a pas de codage par une
fonction explicite mais peut être compris à travers un continuum d’approximations par des arbres
continus dont la loi est relativement explicite. Cette absence de représentation par un processus
en fait tout de même un objet assez mal compris.

Autres exemples bien compris qui ne sont pas des arbres

Citons quelques exemples d’autres graphes et espaces métriques aléatoires qui sont aussi bien
compris et qui ne sont pas pour autant des arbres.

Graphe d’Erdős-Rényi. Le graphe d’Erdős-Rényi G(n, p) est un des modèles les plus simples
de graphes aléatoire. Il s’agit d’un graphe à n sommets entre lesquels chacune des

(
n
2

)
arêtes

possibles est présente avec une probabilité p, indépendamment des autres. Un des premiers
résultats sur la géométrie de ce modèle fait intervenir la taille de ses composantes connexes et
est dû à Paul Erdős et Alfréd Rényi [58] : si on choisit p = c

n pour une certaine constante c > 0,
alors on observe un transition de phase (un changement qualitatif de comportement) pour la
valeur c = 1. Si c < 1 alors les plus grandes composantes sont de tailles logarithmiques en n,
alors que pour c > 1, la plus grande composante est de taille proportionnelle à n.
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Limite d’échelle d’un graphe d’Erdős-Rényi critique. Lorsque le modèle est étudié au
point critique c = 1, on peut observer des comportements intéressants. David Aldous [8] a montré
que si p est dans « la fenêtre critique » i.e. p = 1

n + λ
n4/3 pour une constante λ ∈ R, alors les tailles

des composantes prises dans l’ordre décroissant convergent en loi après normalisation par n−2/3

vers une suite aléatoire de réels positifs qui correspondent à des longueurs d’excursions d’un
certain processus brownien. Louigi Addario-Berry, Nicolas Broutin et Christina Goldschmidt ont
montré [5] qu’en considérant les composantes connexes comme des espaces métriques, on obtient
une convergence dans la limite d’échelle en normalisant les distances par n−1/3 vers une suite
d’espaces métriques aléatoires. Ceux-ci sont presque des arbres, à un nombre fini de cycles près, et
peuvent être décrits comme des arbres browniens biaisés munis d’un nombre fini d’identification
de points, mais aussi à partir d’une construction du type « line-breaking » en partant d’une
structure cyclique [4].

Un modèle bidimensionnel : les cartes planaires. Les cartes planaires sont des graphes
planaires munis d’un plongement sur la sphère, à déformation près. Leurs propriétés ont no-
tamment été étudiées par Tutte dans les années 1960 pour prouver le fameux théorème des
quatre couleurs. Depuis les années 1980, ces objets ont éveillé un intérêt chez les physiciens qui,
dans le cadre d’une théorie de la gravitation en deux dimensions, s’intéressent à des résultats
asymptotiques sur de grandes cartes aléatoires.

Les modèles les plus simples de cartes aléatoires consistent à prendre une carte uniformément
parmi un ensemble de cartes dont le nombre d’arêtes est fixé (cartes générales, triangulations,
quadrangulations etc.). Pour ces modèles bidimensionnels, des résultats de limites d’échelle sont
aussi prouvés et un objet universel apparaît à la limite : la carte brownienne, qui est homéomorphe
presque sûrement à une sphère. Le domaine de l’étude des cartes aléatoires est actuellement très
actif et c’est à peu près le seul exemple d’espace métrique aléatoire qui ne soit pas essentiellement
un arbre et pour lequel on a accès à des propriétés fines de la limite : volume et « périmètre »
des boules, structure des géodésiques etc...

1.1.4 Des arbres augmentés

En dehors des cartes et des arbres, peu d’autres modèles continus sont compris et un des objectifs
des travaux de cette thèse est d’étudier des constructions qui sortent légèrement de ce cadre, tout
en étant reliées à une structure d’arbre.

Une première façon de réaliser un tel modèle est d’imiter la construction line-breaking d’Al-
dous en collant des espaces métriques plus généraux que de simples segments ; c’est sur les pro-
priétés de cette construction que portent les résultats énoncés en Section 1.2. Plus précisément,
si (X, d) et (X ′, d′) sont deux espaces métriques compacts munis chacun d’un point distingué x
(resp. x′), leur recollement ponctuel est obtenu en identifiant leurs points distingués respectifs :
on considère l’ensemble

X tX ′/(x ∼ x′), (1.3)

qu’on munit d’une distance δ qui respecte les distances dansX etX ′, i.e. δ|X×X = d et δ|X′×X′ = d′

et telle que pour deux points a ∈ X et b ∈ X ′ on ait δ(a, b) = d(a, x) + d′(x′, b). On effectue
ce type de recollement de façon itérative en collant ponctuellement à chaque étape un nouveau
« bloc » sur un point choisi aléatoirement sur la structure déjà construite. Le théorème principal
concerne le calcul de la dimension de Hausdorff des structures ainsi obtenues après une infinité
d’étapes.
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Dans la Section 1.3, on énonce des résultats sur la structure d’arbre discret qui apparaît dans
le processus précédent comme le plan selon lequel nos blocs ont été recollés ensemble et qu’on
appelle un arbre récursif pondéré. On s’intéresse en particulier à la hauteur, au profil et aux
degrés des sommets dans cet arbre. On verra qu’un autre modèle, celui d’arbre à attachement
préférentiel peut être identifié comme un exemple d’arbre récursif pondéré et cela est crucial
pour les travaux présentés dans le Section 1.4.

En effet, en Section 1.4, on s’intéresse à des processus de croissance de graphes discrets qu’on
peut interpréter comme des graphes (qui évoluent au cours du temps) collés le long d’un arbre à
attachement préférentiel. Grâce aux résultats de la Section 1.3, on prouve qu’ils admettent une
limite d’échelle qui se construit par des recollements itératifs comme étudiés dans la Section 1.2.

Enfin en Section 1.5, on énonce des résultats sur la structure de la composante α-stable. C’est
un espace métrique aléatoire qui peut être défini à partir d’un arbre α-stable biaisé dans lequel
on identifie aléatoirement un nombre fini de paires de points, créant ainsi des cycles. C’est la
contrepartie α-stable des limites d’échelle browniennes des composantes d’un graphe d’Erdős–
Rényi critique ; elle apparaît comme la limite d’échelle des composantes connexes d’un modèle
de graphe discret à degrés i.i.d. dont la loi est critique et à queue lourde. Un des résultats de la
Section 1.5 donne une construction de cet objet à partir, encore une fois, d’une construction par
recollements itératifs comme décrite en Section 1.2.

1.1.5 Recoller des espaces le long de l’arbre d’Ulam

En fait, tous nos recollements d’espaces métriques le long d’un arbre, que ce soit un arbre
récursif pondéré ou un arbre à attachement préférentiel, peuvent être interprétés dans un forma-
lisme commun, celui de décoration aléatoire sur l’arbre d’Ulam, développé dans le Chapitre 4.
Présentons-en ici un bref aperçu.

Décorations sur l’arbre d’Ulam. On considère l’arbre d’Ulam, défini de façon usuelle comme
l’ensemble des mots finis sur l’alphabet N∗,

U =
⋃
n≥0

(N∗)n. (1.4)

On dit que D = (D(u))u∈U est une décoration sur l’arbre d’Ulam si pour tout u ∈ U,

D(u) = (Du,du, ρu, (xui)i≥1),

est un espace métrique compact enraciné, d’ensemble sous-jacent Du, distance du, racine ρu et
muni d’une suite de points distingués (xui)i≥1 ∈ Du. On utilise ici la convention que pour tout
i ∈ N∗ l’écriture ui désigne l’élément de U construit en ajoutant la lettre i à la fin du mot u.

Recollement des décorations. Dans ce cadre, pour toute décoration D, on définit l’espace
métrique G (D), qu’on obtient informellement en considérant(⊔

u∈U
Du

)
/ ∼

où la relation ∼ est définie par (ρui ∼ xui) pour tout u ∈ U et tout i ∈ N, puis en prenant
la complétion de l’espace obtenu. Les distances se calculent de manière similaire au cas du
recollement ponctuel de deux espaces, décrit en (1.3), et correspondent à celles du « quotient
métrique » par la relation ∼ au sens de [32].
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Cette construction permet donc de donner un sens clair à ce qu’on appelle un recollement
d’espaces métriques le long d’un arbre discret. Tous nos modèles aléatoires de recollements d’es-
paces métriques, itératifs ou non, pourront en fait s’obtenir comme le recollement G (D) d’une
décoration aléatoire D. Le diagramme suivant résume les liens entre les objets étudiés dans les
différents chapitre de la thèse.

D décoration sur U

G

G (D)

opération de recollement

Arbres récursifs aléatoires

1

2 3

4

5 ⊂ U

Arbres

Composante

par recollements Graphes discrets

récursifs

pondérés

Construction

itératifs

α-stable

Arbres à

attachement

préférentiel

construits récursivement
� à la Rémy �limite d’échelle

marginales
discrètes

Recollements le long de l’arbre d’Ulam

Chapitre 3

Chapitre 4

Chapitre 5

Chapitre 2

Théorème de

représentation

arbre sous-jacent
arbre sous-jacent

loi des

Figure 1.1 – Diagramme récapitulatif des objets étudiés dans la thèse
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1.2 Recollements itératifs d’espaces métriques

Cette section expose les résultats prouvés dans le Chapitre 2, dans lequel on étudie une construc-
tion d’espaces métriques par recollements successifs de blocs.

1.2.1 Une construction par recollement successifs

Donnons nous une suite ((bn,dn,ρn,νn))n≥1 d’espaces métriques pointés et mesurés, que nous
appellerons les blocs de notre construction. Ici pour tout n ≥ 1, bn est un ensemble non-vide,
que l’on munit de la distance dn pour laquelle il est compact, d’un point distingué ρn que l’on
appelle sa racine, et de νn une mesure Borélienne finie (non-nulle si n = 1).

Décrivons une façon de recoller aléatoirement ces espaces les uns sur les autres de manière
itérative. On construit ainsi une suite (Tn)n≥1 d’espaces métriques compacts qui représentent
l’objet obtenu à chaque étape du processus. On commence avec T1 := b1. Ensuite à chaque
étape n ≥ 1, on obtient Tn+1 en collant ponctuellement la racine du bloc bn+1 sur un point Xn

de Tn choisi aléatoirement. Ce point est choisi sous (une version normalisée de) la mesure finie
µn = ν1 + · · · + νn obtenue comme la somme des mesures portées par les blocs b1, . . . ,bn vus
comme des sous-parties Tn. Comme la suite (Tn)n≥1 ainsi définie est croissante pour l’inclusion,
on peut introduire

T ∗ :=
⋃
n≥1

Tn,

l’union croissante de ces objets, qui est d’une certaine façon l’objet obtenu une fois qu’on a fini
de recoller tous les blocs ensemble. Afin d’étudier un espace dont les propriétés ne sont pas trop
pathologiques, on considère en fait la complétion T := T ∗. Dans le cas où T est compact, cela
est en fait assez naturel, vu notre cadre de travail, puisque dans ce cas T est simplement la limite
de la suite (Tn)n≥1 au sens de Gromov–Hausdorff.

Comportement de T : le cas des segments

Tout l’enjeu du travail concernant cette construction est de décrire les propriétés géométriques
de T en fonction des propriétés des blocs. On s’intéressera principalement à la compacité et
à la dimension de Hausdorff. En fait, cette construction a déjà été étudiée par Nicolas Curien
et Bénédicte Haas [41] dans le cas d’un recollement de segments, créant ainsi un arbre. Dans
notre formalisme, leur construction correspond à prendre des blocs ((bn,dn,ρn,νn))n≥1 où pour
chaque n ≥ 1, le n-ième bloc est un segment d’une certaine longueur an muni de sa distance
euclidienne, enraciné en une de ses extrémités et munis de la mesure de Lebesgue. Dans leur cas,
ils ont supposé que la suite (an)n≥1 des longueurs des différents segments avait un comportement
en puissance décroissante an ≈ n−α, pour un réel α > 0, et sous ces hypothèses ils ont prouvé que
l’arbre T obtenu est presque sûrement compact et on calculé sa dimension de Hausdorff. Lorsque
α ≤ 1 la dimension de T est presque sûrement α−1 alors que pour α > 1 cette dimension
est toujours 1. L’ensemble intéressant à étudier en terme de dimension est en fait l’ensemble
L = (T \T ∗), puisque la dimension de T ∗ est toujours celle d’une union dénombrable de segments,
c’est-à-dire 1. Pour cet ensemble-là, ils prouvent qu’on a bien dimH(L) := 1

α presque sûrement
pour tout α > 0.

Hypothèses sur les blocs que l’on considère

On veut donc adapter nos hypothèses pour qu’elles généralisent celles utilisées dans le cas des
segments. Afin de rester dans un cadre similaire, on peut supposer que tous les blocs sont de

16



forme semblable, à un facteur de dilatation près, de façon à ce que la taille des blocs décroisse
encore en une puissance décroissante de leur indice. On pourrait par exemple considérer des
sphères d’une certaine dimension d et imposer que la suite de leurs rayons se comporte en n−α

pour un α > 0. Dans ce cas précis, il serait naturel de considérer que la mesure totale portée
par chacune des sphères soit encore la mesure de Lebesgue et décroisse donc aussi comme une
puissance n−αd de l’indice n.

Afin de se placer dans un contexte plus général, on va « découpler » la dilatation des distances
et de la mesure, de telle façon à ce que la masse totale du n-ième bloc soit d’un ordre n−β pour
un paramètre β choisi de façon indépendante du paramètre α. S’il est indispensable d’utiliser des
tailles de blocs qui tendent vers 0 si on veut espérer une limite compacte, rien n’oblige à ce qu’il
en soit de même pour leur masse et on autorise donc le paramètre β à être un réel quelconque
(et donc possiblement négatif). On va aussi autoriser les blocs à avoir des formes aléatoires, en
supposant tout de même que ces formes sont les mêmes « en loi ».

Plus précisément, nos blocs seront réalisés à partir de copies indépendantes et identiquement
distribuées d’un espace métrique compact pointé muni d’une mesure de probabilité (B,D, ρ, ν),
que l’on appellera le bloc sous-jacent. On considère une suite ((Bn,Dn, ρn, νn))n≥1 de variables
aléatoires i.i.d. avec la distribution de (B,D, ρ, ν) et on considère les blocs

∀n ≥ 1, (bn,dn,ρn,νn) := (Bn, λn · Dn, ρn, wn · νn), (1.5)

pour une suite (λn)n≥1 de facteurs de dilatation et une suite (wn)n≥1 de poids.
On fait l’hypothèse que les suites (λn)n≥1 et (wn)n≥1 sont choisies de telle façon à ce que

pour des réels α > 0 et β ∈ R, on ait

λn ≈ n−α and wn ≈ n−β quand n→∞,

dans un sens faible. Essentiellement, on demande d’avoir des majorations du type λn ≤ n−α+o(1)

et wn ≤ n−β+o(1) pour n grand et veut quand même s’assurer que la proportion asymptotique
des n pour lesquels on a simultanément λn ≥ n−α−ε et wn ≥ n−β−ε soit strictement positive,
pour tout ε > 0 fixé. Pour des raisons techniques, le cas β < 1, le cas β > 1 et le cas β = 1 sont
étudiés sous des hypothèses différentes, que nous ne détaillons pas ici.

On supposera que le bloc sous-jacent (B,D, ρ, ν) avec lequel on travaille se comporte de façon
d-dimensionnelle (au sens de la dimension fractale), pour un certain d ∈ [0 ,∞). Cela est formalisé
par l’Hypothèse (Hd), pour l’énoncé de laquelle nous renvoyons au chapitre correspondant. Cette
hypothèse a été choisie de telle façon à être satisfaite pour beaucoup d’objets aléatoires connus.
Par exemple l’arbre brownien d’Aldous satisfait cette hypothèse pour d = 2 et la carte brownienne
pour d = 4.

Comme dans le cas des segments, l’ensemble intéressant à étudier en terme de dimension est
L := (T \ T ∗) qu’on appelle l’ensemble des feuilles de la structure. Notre théorème principal
donne la valeur presque sûre de la dimension de L en fonction des paramètres α, β et d.

Théorème 1. Sous les hypothèses précédentes, la structure T qui résulte de la construction
décrite est p.s. compacte et la dimension de Hausdorff de L est donnée p.s. par

dimH(L) =
2β − 1− 2

√
(β − 1)(β − αd)

α
, si β > 1 et α <

1

d
,

=
1

α
sinon.
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dimH(L)

α

β

Figure 1.2 – Le graphe représente la dimension de Hausdorff de L donnée par le Théorème 1
en fonction de α et β, pour d = 1.

Avant de passer aux idées des preuves, faisons quelques remarques sur le théorème et sur l’éton-
nante formule donnée pour la dimension de Hausdorff. D’abord, pour d fixé, l’expression donnée
pour β > 1 et α < 1

d peut être réécrite en

d+
(
√
β − αd−√β − 1)2

α
.

Sous cette forme, on voit immédiatement que cette expression est toujours plus grande que d et
un calcul rapide montre aussi qu’elle est aussi plus petite 1

α . Elle est également décroissante en
α et en β sur le domaine considéré et tend vers 1

α quand β → 1 pour α > 0 fixé. Finalement
la fonction (α, β) 7→ dimH(L) est continue sur tout le domaine R∗+ × R. Elle est représentée en
Figure 1.2.

Ensuite, on peut remarquer le changement qualitatif de comportement pour autour de la
valeur β = 1 : pour β > 1 la dimension de L dépend de la géométrie du bloc sous-jacent à
travers la valeur de d, sa dimension, alors qu’elle n’en dépend pas du tout quand β < 1. Une
des raisons de cette transition est la sommabilité (ou non) de la suite des poids (wn). Lorsque
β < 1 celle-ci définit une série divergente et il s’en suit que chaque bloc bn n’attire qu’un
nombre asymptotiquement négligeable d’autres blocs et sa géométrie n’a donc pas d’effet sur
celle de L. Au contraire lorsque β > 1 et que cette suite est donc sommable, une proportion
asymptotiquement positive des blocs s’attache directement sur n’importe quel bloc bn donné.
Dans ce cas la forme de L « épouse » beaucoup plus celle des blocs et la géométrie de ceux-ci a
donc une réelle influence sur celle de L.

1.2.2 Idées de la preuve

La preuve de ce théorème se décline en plusieurs parties. Tout d’abord, comme il est standard
pour le calcul de dimensions de Hausdorff, on prouve séparément des majorants et des minorants
pour la dimension, en exhibant des recouvrement explicites (pour la majoration) ou bien en
construisant une mesure de probabilité à laquelle on peut appliquer le principe de distribution
de masse, pour la minoration. Ensuite, la plupart des preuves que nous proposons ne sont pas
valides pour tous les paramètres α et β à la fois, ce qui multiplie les techniques utilisées. Décrivons
rapidement les points-clés de chacune des preuves.

Majoration en 1
α valide pour tous paramètres. Tout d’abord, un premier argument per-

met de montrer que sous les hypothèses du théorème (et même sous des hypothèses bien plus
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bn

T (bk1)

T (bk2)

(a) La sous-structure T (bn)

bn

T (bk1)

T (bk2)

(b) Un recouvrement de bn avec des petites
boules

Figure 1.3 – Explication de la procédure de raffinement d’un recouvrement, les blocs sont
représentés ici par des segments

générales), la dimension de Hausdorff de L est presque sûrement plus petite que 1
α , quels que

soient les paramètres α et β. Cela est prouvé en fournissant des recouvrements explicites de L.
Pour tout n ≥ 1, on note T (bn) la sous-structure issue du bloc bn dans T , c’est-à-dire

l’adhérence de l’ensemble des blocs qui ont été greffés au-dessus de bn. Ces sous-ensembles vont
nous permettre de fournir des recouvrements de L puisqu’il est assez immédiat de remarquer qu’ils
recouvrent L. La majoration de la dimension provient de l’asymptotique suivante diam(T (bn)) ≤
n−α+o(1) qui assure que sous nos conditions la taille de la sous-structure issue d’un bloc est encore
d’une taille comparable à celle du bloc, c’est-à-dire qu’elle décroit en n−α.

Majoration plus subtile quand β > 1 et α > 1/d. Lorsque β > 1 la majoration précédente
n’est pas optimale, alors qu’elle l’est lorsque β < 1. Une des raisons pour ce changement qualitatif
de comportement en β = 1 provient de la remarque suivante : lorsque β < 1 on a wn ≈ n−β

et donc le poids cumulé Wn :=
∑n

i=1wi est tel que Wn ≈ n1−β , donc le poids relatif du bloc
bn à l’instant où il vient d’être greffé est de l’ordre de wn

Wn
≈ n−1. Cela indique que l’indice du

premier bloc collé sur bn sera de l’ordre de n et donc le diamètre de celui-ci sera du même ordre
de grandeur n−α que celui de bn. Au contraire, dans le cas où β > 1, la suite des poids est
sommable, et donc ce poids relatif est de l’ordre de n−β . Le premier bloc à s’attacher à bn a
donc un indice de l’ordre de nβ et donc un diamètre de l’ordre de n−αβ ce qui est négligeable
devant celui de bn. Cela laisse donc penser qu’il pourrait être plus efficace de recouvrir T (bn)

avec beaucoup de sous-ensembles d’un ordre de grandeur plus petit, plutôt que de prendre T (bn)

tout entier.

On applique cette stratégie pour obtenir des recouvrements de T (bn) de plus en plus fins.
Supposons que l’on ait à disposition un recouvrement de chacun des T (bn) pour n ≥ 1. Alors
on peut en définir un nouveau de la façon suivante : pour chaque n ≥ 1, on recouvre d’abord
le bloc bn avec des boules d’un rayon très petit par rapport à la taille de bn, puis on utilise
le recouvrement précédent pour recouvrir les parties (en nombre fini) de T (bn) qui ne sont pas
contenues dans ces boules. Cela conduit à un nouveau recouvrement de T (bn). La majoration
finale est obtenue en itérant cette construction à l’infini à partir du recouvrement naïf décrit au
paragraphe précédant. La difficulté consiste à choisir à chaque itération le bon ordre de grandeur
pour le rayon des boules, de façon à obtenir la meilleure borne possible sur la dimension de
Hausdorff.
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Minorations. Afin de produire de minorations sur la dimension d’un espace, une des méthodes
est d’exhiber une mesure de probabilité ν sur cet espace de telle façon à ce que pour ν-presque
tout x la masse de la boule centrée en x satisfasse ν(B(x, r)) ≤ rs+o(1). Dans ce cas, s est un
minorant pour la dimension de Hausdorff de l’espace, on appelle cela le principe de distribution
de masse. On utilise des mesures différentes selon la valeur du paramètre β.

Minoration quand β < 1. Dans le cas où β < 1, une mesure arrive de façon naturelle. On
note µ̄n la mesure portée par les n premiers blocs, renormalisée de façon à en faire une mesure de
probabilité. On peut montrer sous les hypothèses du théorème que cette mesure de probabilité
converge étroitement vers une mesure µ̄ et que cette mesure est portée par L lorsque β < 1.
Un argument de couplage permet de construire en même temps que la structure T un point Y
de L qui a la distribution µ, conditionnellement à T . La description que l’on a de la loi de Y
nous permet de contrôler des quantités de la forme µ̄(B(Y, r)) pour r → 0. Finalement, grâce au
principe de distribution de masse, on obtient la majoration dimH(L) ≥ 1

α .

Minoration quand β > 1. Lorsque β > 1, la mesure µ̄ est portée par T ∗ et donc ne peut
pas servir à produire de minoration pour la dimension de L. On construit donc une famille de
mesures sur les feuilles de manière ad hoc, en espérant que l’une d’entre elles ait le comportement
adapté. La construction de ces mesures dépend d’un paramètre γ > 1. On construit en fait
d’abord une suite de mesures (πk)k≥0 de telle façon à ce que pour chaque k ≥ 0, la mesure πk
soit portée par les blocs d’indices entre nγk et 2nγ

k , où n est un grand entier fixé. Comme toutes
ces mesures sont portées par le compact T , cette suite admet au moins un sous-suite qui converge
étroitement vers une mesure π, et on peut vérifier que celle-ci est portée par (un sous-ensemble
de) L. Cette mesure a un comportement « multi-échelle » et pour π-presque tout x, on arrive
à contrôler la masse π(B(x, r)) qu’elle donne aux boules de rayon r lorsque r tend vers 0 en
l’approximant à chaque échelle r ∈ [n−αγ

k+1
, n−αγ

k
] par la mesure πk(B(x, r)). En utilisant le

principe de distribution de masse, cela donne une minoration sur la dimension de Hausdorff. La
minoration du théorème est obtenue en optimisant sur le paramètre γ.

1.3 Arbres récursifs pondérés et à attachement préférentiel

Dans cette section, on présente les contributions du Chapitre 3 à l’étude de propriétés asympto-
tiques de deux familles d’arbres discrets construits par un processus itératif d’ajout de sommets.
Ces modèles sont reliés à des limites d’échelle pour des graphes discrets construits par une pro-
cédure que l’on présentera en Section 1.4.

1.3.1 Deux modèles reliés

Arbres récursifs pondérés

Pour toute suite de réels positifs (wn)n≥1 avec w1 > 0, on définit la loi WRT((wn)n≥1) sur les
suites croissantes d’arbres enracinés, dont l’objet aléatoire associé est appelé l’arbre récursif pon-
déré de suite de poids (wn)n≥1. Une suite d’arbres (Tn)n≥1 sous cette loi est définie récursivement
partir de l’arbre T1 qui ne contient que le sommet racine u1 : pour n ≥ 1 l’arbre Tn+1 est obtenu
à partir de Tn en ajoutant le sommet un+1 étiqueté n+1. Le parent de ce nouveau sommet est le
sommet d’étiquette Kn+1, où Kn+1 est pris aléatoirement parmi {1, . . . , n} proportionnellement
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aux poids w1, . . . , wn

∀k ∈ {1, . . . , n}, P (Kn+1 = k | Tn) ∝ wk.

On permettra aussi d’utiliser des suites de poids aléatoires (wn)n≥1 et dans ce cas la loi
WRT((wn)n≥1) est la distribution de la suite aléatoire d’arbre obtenue par le mécanisme dé-
crit ci-dessus, conditionnellement à la suite de poids (wn)n≥1.

Les WRT sont une généralisation de l’arbre récursif uniforme (URT), que l’on obtient si la
suite des poids est constante. Beaucoup de résultats ont été prouvés depuis les années 1970 pour
l’URT ainsi que pour d’autres modèles similaires, voir [50] pour un survol. En ce qui concerne
les WRT, peu de travaux [91, 74] concernent leur étude générale depuis son introduction par
Konstantin Borovkhov et Vladimir Vatutin [30].

Les WRT apparaissent en fait de façon implicite dans les constructions par recollements
itératifs : la structure Tn construite par recollement dans la section précédente avec une suite de
poids (wn) peut être interprétée comme un recollement des blocs b1, . . .bn le long d’un arbre
récursif pondéré utilisant la même suite de poids.

Arbres à attachement préférentiel à poids initiaux

Pour toute suite (an)n≥1 de réels, avec a1 > −1 et an ≥ 0 pour n ≥ 2, on définit un autre modèle
de croissance d’arbre. La construction s’obtient comme au-dessus : P1 ne contient qu’un sommet
u1 et Pn+1 s’obtient à partir de Pn en ajoutant un sommet un+1 étiqueté n + 1 et le parent du
nouveau venu est le sommet d’étiquette Jn+1, où Jn+1 est pris aléatoirement parmi {1, . . . , n}
de telle façon à ce que

∀k ∈ {1, . . . , n}, P (Jn+1 = k | Pn) ∝ deg+
Pn

(uk) + ak,

où deg+
Pn

(·) désigne le nombre d’enfants dans l’arbre Pn. Quand n = 1, par convention, le deuxième
sommet u2 est toujours un enfant de u1, même dans le cas −1 < a1 ≤ 0 pour lequel notre
définition de J2 n’a pas de sens. La suite (Pn)n≥1 ainsi définie est appelée arbre à attachement
préférentiel affine à poids initiaux (an)n≥1 et on note sa loi PA((an)n≥1).

Cette loi sur les arbres est une variation des multiples modèles d’attachement préférentiel,
qui ont été extensivement étudiés depuis que Albert-Lázló Barabási et Réka Albert [15] ont
proposé que ce type de dynamique explique le comportement de réseaux complexes comme celui
d’Internet, en particulier en terme de répartition des degrés dans le graphe. Citons le livre de
Remco van der Hofstad [75] comme référence pour un modèle proche de celui de [15].

Dans notre cas, la motivation pour étudier ce modèle provient plutôt de l’analyse de certaines
constructions de graphes aléatoires discrets, que l’on détaillera dans la Section 1.4. Les arbres
Pn ainsi construits auront la même interprétation en tant que « plan de recollement » pour ces
graphes discrets que Tn pour la structure continue Tn.

Les PA sont des WRT !

Le résultat suivant est central dans notre étude des arbres à attachement préférentiel. C’est en
fait l’observation qui a initié tout le travail exposé dans cette section et la suivante.

Théorème 2 (WRT-représentation des PA). À toute suite a = (an)n≥1 de fitnesses initiales,
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on associe la suite aléatoire (wa
n)n≥1 = (Wa

n −Wa
n−1)n≥1 construite de façon à ce que

Wa
0 = 0, Wa

1 = 1, ∀n ≥ 2, Wa
n =

n−1∏
k=1

β−1
k , (1.6)

où les (βk)k≥1 sont indépendants et ont pour lois respectives Beta(Ak + k, ak+1), k ≥ 1.
Alors, les lois PA((an)n≥1) et WRT((wa

n)n≥1) coïncident.

Cette connexion entre les deux modèles provient de l’évolution des degrés dans la construction de
(Pn), qui peut être couplée avec des processus d’urnes de Pólya. En fait, l’ensemble du processus
(Pn) peut être codé dans l’évolution d’une infinité d’urnes de Pólya indépendantes. Le résultat
du théorème est ensuite déduit du théorème de de Finetti appliqué à ces urnes.

Quel comportement asymptotique pour (wa
n)n≥1 ?

À partir de la description explicite de la loi de (wa
n)n≥1 donnée par le Théorème 2, il est facile

d’obtenir des informations sur son comportement par des simples calculs de moments. On intro-
duira la condition (Hc) qui dépend d’un paramètre c > 0 qui est satisfaite par une suite de poids
(an) si

n∑
i=1

ai ./
n→∞

c · n (Hc)

où le signe ./ est une comparaison asymptotique légèrement plus précise que ∼, que nous ne
détaillons pas ici.

Lorsqu’une suite (an) satisfait (Hc) la suite aléatoire associée (Wa
n) satisfait presque sûrement

Wa
n ./
n→∞

Z · nγ , (1.7)

avec γ = c
c+1 et où Z est une variable aléatoire.

Pour cette raison, toutes les propriétés asymptotiques que nous allons montrer pour les WRT
dont la suite de poids satisfait ce type de comportement asymptotique vont automatiquement
s’appliquer aux arbres à attachement préférentiel dont la suite de poids initiaux satisfait (Hc).

1.3.2 Propriétés des WRT

Présentons les résultats obtenus sur les WRT, pour des suites déterministes (wn)n≥1 qui vérifient

Wn :=

n∑
i=1

wi ./
n→∞

C · nγ , (1.8)

pour un réel strictement positif γ et une constante C > 0. On utilisera parfois les hypothèses plus
fortes (�p

γ) définies pour p ∈ (1 , 2], pour les définitions desquelles nous renvoyons au chapitre
correspondant.

Degrés

Les degrés des sommets sont très simples à étudier dans un WRT puisque le degré d’un sommet
fixé uk évolue comme une somme de variables de Bernoulli indépendantes

(
deg+

Tn
(uk)

)
n≥1

(d)
=

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)
n≥1

,
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où les (Ui)i≥1 sont une suite i.i.d. de variables uniformes sur (0 , 1). De cette écriture, si γ < 1,
on obtient immédiatement la convergence

n−(1−γ) · (deg+
Tn

(u1), deg+
Tn

(u2), . . . ) −→
n→∞

1

C(1− γ)
· (w1, w2, . . . ),

au sens de la topologie produit. En fait si les wn sont au plus de l’ordre de nγ−1 quand n→∞
alors la convergence a aussi lieu dans un espace de suite `p approprié.

D’après le Théorème 2 et le comportement (1.7) on peut utiliser cette convergence dans le
cas d’un arbre à attachement préférentiel PA(a) pour une suite a = (an)n≥1 qui satisfait (Hc).
La convergence s’exprime alors comme

n−
1
c+1 · (deg+

Pn
(u1), deg+

Pn
(u2), . . . ) −→

n→∞
(ma

1 ,m
a
2 , . . . ), (1.9)

où la suite (ma
1 ,m

a
2 , . . . ) := c+1

Z · (wa
1 ,w

a
2 , . . . ) est proportionnelle à la suite de poids mais où

la constante de proportionnalité est aléatoire. La suite limite (ma
n) a une description naturelle

comme les incréments d’une chaîne de Markov inhomogène, dont la loi est explicite pour certaines
suites (an) particulières.

Cette convergence fait écho à des résultats similaires exprimés soit dans le cadre de l’atta-
chement préférentiel soit dans le cadre d’urnes inhomogènes : on peut citer la série d’articles [99,
100, 101] par Erol Peköz, Adrian Röllin et Nathan Ross, ou celui de Philippe Marchal et Cyril
Banderier [14] qui utilise des méthodes combinatoires.

Hauteur et profil

On s’intéresse également à la hauteur des sommets dans l’arbre Tn. Pour tout k ≥ 0, on pose

Ln(k) := # {u ∈ Tn | ht(u) = k} = # {i ≤ n | ht(ui) = k} ,

le nombre de sommets de Tn à hauteur k. La fonction (k 7→ Ln(k)) est appelée le profil de l’arbre
Tn et a été étudiée par de nombreux auteurs pour l’arbre récursif uniforme [98, 93, 49, 51, 61,
77] et aussi pour les arbres à attachement préférentiel pour des suites (an) constantes par Zsolt
Katona dans [85].

On peut aussi se demander quelle est la hauteur maximale atteinte de l’arbre. Dans le cas de
l’URT et l’arbre à attachement préférentiel à poids initiaux constants, cela été étudié par Boris
Pittel dans [105], qui montre que cette hauteur est presque sûrement équivalente à une constante
fois log n, lorsque n→∞, où la constante est déterminée par une certaine équation. Dans le cas
de l’URT, elle s’avère être égale à e, la constante de Néper, et cela apparaissait déjà dans un
travail de Luc Devroye [45].

Le théorème suivant exprime un comportement similaire dans le cas des WRT dont la suite des
poids cumulée croit polynomialement. Pour ce résultat on aura besoin de supposer que les poids
satisfont la condition (�p

γ) pour un certain p ∈ (1 , 2], que nous avons mentionnée au-dessus.

Théorème 3. Supposons qu’il existe γ > 0 et p ∈ (1 , 2] tels que la suite (wn)n≥1 satisfasse
(�p

γ). Alors, pour une suite (Tn)n≥1 de loi WRT((wn)n≥1), on a

Ln(k) =
n→∞

n√
2πγ log n

exp

{
−1

2
·
(
k − γ log n√

γ log n

)2
}

+O

(
n

log n

)
, (1.10)

où le terme d’erreur est uniforme en k ≥ 0. De plus, il existe un intervalle (z− , z+) contenant
0, où z+ := sup {z ∈ R | 1 + γ(ez − 1− zez) = 0}, tel qu’on ait presque sûrement pour tout
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z ∈ (z− , z+)

Ln (bγez log nc) = n1+γ(ez−1−zez)+o(1). (1.11)

On a également la convergence presque sûre suivante

ht(Tn)

log n
−→
n→∞

γ · ez+ . (1.12)

La première convergence (1.10) est une forme de théorème local limite pour le profil : elle indique
que le profil de l’arbre est asymptotiquement gaussien d’espérance et de variance γ log n. La
normalisation indique en particulier que chacun des niveaux à hauteur k de l’ordre γ log n±√log n

comprend de l’ordre de n√
logn

sommets. La deuxième expression (1.11) permet de connaître l’ordre
de grandeur du nombre de sommets présents à d’autres niveaux : pour un niveau de l’ordre de
γez log n on trouve un nombre de sommets d’ordre n1+γ(ez−1−zez)+o(1) tant que z reste dans le
domaine z ∈ (z− , z+). Lorsque z → z+, l’exposant 1 + γ(ez − 1− zez) du nombre de sommets à
hauteur γez log n tend vers 0. La dernière convergence (1.12) indique que cette hauteur γez+ log n

est bien la hauteur maximale atteinte par l’arbre.
Ce résultat est obtenu en suivant une méthode classique dans l’étude d’arbre à croissance lo-

garithmique (voir [35, 36, 85]) : on étudie la transformée de Laplace du profil z 7→∑n
k=0 e

zkLn(k)

sur un ouvert du plan complexe et on prouve que, correctement renormalisée, celle-ci converge
presque sûrement vers une fonction analytique. On applique ensuite un théorème de Zakhar Ka-
bluchko, Alexander Marynych et Henning Sulzbach [84, Théorème 2.1], qui à l’aide d’arguments
précis d’inversion de Fourier permet d’obtenir une convergence très précise pour Ln. À noter que
le comportement obtenu en (1.11) assure en particulier l’existence de sommets de l’arbre à toute
hauteur de l’ordre γe(z+−ε) log n. La convergence (1.12) est ensuite obtenue en montrant une
majoration correspondante en utilisant des méthodes plus rudimentaires, à partir de l’espérance
de la transformée de Laplace z 7→ E

[∑n
k=0 e

zkLn(k)
]
et de l’inégalité de Chernoff.

Mesures

Enfin, on étudie également la convergence de certaines mesures portées par les arbres (Tn)n≥1.
Une façon d’exprimer ces résultats est de considérer que les arbres que nous construisons sont
en fait des arbres plans et sont donc des sous-ensembles croissants de U, l’arbre d’Ulam (dont la
définition est donnée plus haut en (1.4)). On peut définir plusieurs mesures de probabilités sur
Tn. Une première, µn est celle qu’on appelle la mesure de poids, qui charge chacun des sommets
{u1, . . . , un} proportionnellement à son poids µn(uk) ∝ wk. Une seconde est la mesure uniforme
sur les sommets {u1, . . . , un} de Tn. Une troisième, dans le cadre des PA, est la mesure d’atta-
chement préférentiel qui charge chaque sommet uk de Tn proportionnellement à ak + deg+

Tn
(uk).

Théorème 4. Sous l’hypothèse
∑∞

i=1

(
wn
Wn

)2
, toutes ces mesures convergent vers une même

mesure limite µ portée par ∂U l’ensemble des rayons infinis dans U.

La preuve de ce théorème utilise des résultats [103] de Robin Pemantle sur les urnes de Pólya
généralisées inhomogènes en temps ainsi que de la théorie élémentaire des martingales discrètes.
Ce résultat permettra dans le cadre développé dans la section suivante d’intégrer « gratuitement »
des convergences de mesures à nos limites d’échelle au sens de Gromov–Hausdorff.
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G1 G2 G3 G4 G5

Figure 1.4 – Exemple de suite de graphes utilisée pour l’algorithme de Rémy

(a) Une réalisation de H5, colorée selon la
règle décrite

1

2
3 5

4

(b) L’arbre
P5

(c) Le graphe H5 vu comme un recolle-
ment de morceaux le long de P5

Figure 1.5 – Décomposition de H5 le long de l’arbre à attachement préférentiel P5

1.4 Graphes discrets construits par recollements itératifs

Dans cette section, on présente les résultats du Chapitre 4. On s’intéresse à une classe de graphes
aléatoires qui sont construits itérativement à la manière de l’algorithme de Rémy [107]. On montre
que les modèles de cette classe admettent des limites d’échelle qui peuvent être décrites par un
processus de recollements itératifs comme décrits dans la Section 1.2.

1.4.1 Des graphes construits par recollements discrets

Algorithme de Rémy généralisé

Considérons (Gn)n≥1 une suite de graphes finis, connexes et enracinés. On construit une suite
de graphes (Hn)n≥1 récursivement comme suit. En partant de H1 = G1, on choisit à chaque
étape une arête de Hn uniformément au hasard, on la divise en deux par l’addition d’un nouveau
sommet en son milieu et on colle une copie de Gn+1 au graphe obtenu en identifiant le sommet
nouvellement créé au sommet racine de Gn+1 pour ainsi obtenir Hn+1. C’est une généralisation
de l’algorithme de Rémy [107] utilisé pour générer des arbres binaires uniformes en collant récur-
sivement des graphes composés d’une seule arête. Dans la version originale, la suite (n−1/2 ·Hn)

converge vers un multiple de l’arbre brownien d’Aldous, en loi d’après les travaux d’Aldous, mais
aussi presque sûrement [42]. Des versions de cette construction ont déjà été étudiées pour des
suites périodiques particulières (Gn)n≥1, par Bénédicte Haas et Robin Stephenson dans [71] et
par Nathan Ross et Yutin Wen [109].
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Décomposition le long d’un arbre à attachement préférentiel

Le point de départ de ce travail est la remarque suivante, illustrée par la Figure 1.5. En partant
d’une suite arbitraire (Gn)n≥1, par exemple celle représentée en Figure 1.4, on peut coupler la
construction des graphes (Hn)n ≥1 avec celle d’une suite d’arbres (Pn)n≥1. Pour cela on peut
considérer que chacun des Gn a des arêtes d’une certaine couleur, différente pour tous les n, et
on impose la règle que lors de la duplication d’une arête, les arêtes produites sont de la même
couleur que l’arête originale. De cette façon, l’arbre Pn représente les relations d’adjacence entre
les couleurs (voir Figure 1.5) et il évolue comme un arbre à attachement préférentiel affine à
poids initiaux donnés par les nombres d’arêtes des graphes (Gn). Ainsi les nombres d’arêtes dans
chacune des parties colorées correspondent (à constante additive près) aux degrés des sommets
dans un arbre à attachement préférentiel !

Limite d’échelle

Notons a = (an)n≥1 les nombres d’arêtes respectifs des (Gn)n≥1. Grâce à la relation entre Hn

et les degrés dans l’arbre à attachement préférentiel associé, on obtient le résultat suivant. On
rappelle que l’hypothèse (Hc) qui dépend d’une constante c > 0 est définie dans la section
précédente.

Théorème 5. Supposons qu’il existe c > 0 et c′ < 1
c+1 tels que (an)n≥1 satisfasse la condition

(Hc) et que an ≤ (n+ 1)−c
′+o(1), alors la convergence suivante a lieu presque sûrement pour

la topologie de Gromov–Hausdorff–Prokhorov

(Hn, n
−1
c+1 dgr, µunif) −→

n→∞
(H, d, µ).

L’espace limite (H, d, µ), qui dépend de toute la suite (Gn)n≥1, est naturellement décrit comme
le résultat d’une construction par recollements itératifs comme décrit en Section 1.2. Les blocs
(bn)n≥1 utilisés pour cette construction sont des versions continues (Gn)n≥1 des graphes (Gn)n≥1

normalisées de façon à ce que la longueur totale contenue dans chacun (somme des longueurs des
arêtes) soit donnée par la suite (ma

n) obtenue en (1.9) comme la limite des degrés des sommets
des arbres (Pn)n≥1 dans leur ordre d’apparition.

Preuve et méthode générale

La preuve du Théorème 5 se base sur la décomposition décrite au-dessus en terme de sous-
graphes recollés le long d’un arbre à attachement préférentiel. Cette description nous permet de
considérer séparément les processus (indépendants) d’évolution de chacune des parties colorées,
tout en contrôlant l’échelle de temps (donné par les degrés dans l’arbre Pn) dans lesquelles elles
évoluent. Le Théorème 6 énoncé dans la suite nous permet ensuite de conclure en vérifiant que
chacune des parties colorées converge en un certain sens, et une propriété de relative compacité
pour l’ensemble de la structure.

En fait, ce schéma de preuve peut s’adapter à d’autres suites de graphes aléatoires qui par-
tagent cette structure de « graphes recollés le long d’un arbre à attachement préférentiel ». On ne
détaillera pas ici leur construction mais les arbres construits par l’algorithme de Marchal [92], par
l’α-modèle de Ford [60], par leur généralisation l’α− γ-croissance [37] ainsi que les arbraboucles
d’arbres à attachement préférentiel affine [40] peuvent être décomposés et étudiés de manière
similaire.
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Interprétation comme une recollement de décorations. Comme illustré en Figure 1.5,
le graphe Hn peut être interprété comme le résultat G (D(n)) du recollement d’une certaine
décoration D(n), dans le formalisme décrit en Section 1.1.5. L’arbre P5 peut être vu comme un
sous-ensemble de l’arbre d’Ulam U donc la définition de D(n)(u) pour u ∈ Pn est intuitivement
claire d’après la figure (quitte à compléter la suite de points distingués de manière arbitraire).
Afin de définir D(n) sur U tout entier, on déclare simplement que D(n)(u) est réduite à un point
si u /∈ Pn. Grâce à cette représentation on peut utiliser les résultats suivants afin d’obtenir le
résultat de limite d’échelle énoncé dans le Théorème 5.

Convergence. Pour prouver la convergence d’une suite d’espaces métriques construits comme
(G (Dn))n≥1 pour une suite (Dn)n≥1 de décorations, il suffira de vérifier une propriété de « conver-
gence fini-dimensionnelle » associée à la propriété de relative compacité suivante

inf
θ⊂U

θ arbre plan

sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v))

 = 0. (1.13)

Pour résumer cela on a le théorème suivant, issu du Chapitre 4

Théorème 6. Si une suite de famille de décorations (Dn)n≥1 est telle que pour tout u ∈ U
on a la convergence suivante au sens de la topologie « Gromov–Hausdorff infiniment pointé »

Dn(u) −→
n→∞

D∞(u),

pour une décoration limite D∞ et qu’elle vérifie la condition de relative compacité (1.13),
alors on a la convergence

G (Dn) −→
n→∞

G (D∞) quand n→∞,

au sens de Gromov–Hausdorff.

Il est aussi possible de prendre en compte des mesures de probabilités sur les décorations, des-
quelles on peut prouver la convergence sous des hypothèses adaptées, améliorant ainsi cette
convergence en une convergence au sens de Gromov–Hausdorff–Prokhorov.

1.5 La composante α-stable

Dans cette section, on présente des résultats issus du Chapitre 5 obtenus en collaboration avec
Christina Goldschmidt et Bénédicte Haas, sur la géométrie d’un objet aléatoire appelé la com-
posante α-stable.

1.5.1 Limite d’échelle de graphes à degrés i.i.d.

Décrivons d’abord un modèle de graphe aléatoire. Soient D1, D2, . . . , Dn des variables aléa-
toires à valeurs dans N∗ indépendantes et identiquement distribuées telles que E

[
D2

1

]
< ∞.

On construit un graphe aléatoire sur l’ensemble de sommets {1, 2, . . . , n}. On travaille sur l’évé-
nement {∑n

i=1Di est paire} et on définit Gn comme un graphe choisit uniformément au hasard
parmi les graphes pour lesquels le sommet i a degré Di pour tout i ∈ J1 , nK. S’il n’en existe pas,
on peut décider arbitrairement que Gn n’a aucune arête, mais cela arrive avec une probabilité
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qui tend vers 0 lorsque n→∞, donc cela ne sera pas important pour les convergences qui vont
suivre.

Michael Molloy et Bruce Reed [97] ont montré une transition de phase pour la taille des
composantes connexes de ce graphe : si le paramètre ν := E [D1(D1 − 1)] /E [D1] est strictement
plus grand que 1, alors il existe une unique composante géante de taille proportionnelle à n, alors
que si ν est plus petit que 1, il n’y a pas de composante géante. Dans le cas que l’on étudie, on
choisit une distribution pour D1 de telle façon à ce que l’on soit exactement au point critique de
cette transition ν = 1.

Loi des degrés. Pour les questions traitées dans ce travail, le cas E
[
D3

1

]
< ∞ a déjà été

étudié [18] et tombe dans la même classe d’universalité que le graphe d’Erdős-Renyi critique
G(n, p) avec p = 1/n traité par Louigi Addario-Berry, Nicolas Broutin et Christina Goldschmidt
[5]. On s’intéresse donc au cas où ce moment troisième est infini et où la loi de D1 a une queue
polynomiale. Pour cela, on fixe 1 < α < 2 et on suppose que

ν = 1 et P (D1 = k) ∼ ck−2−α quand k →∞, (1.14)

où c > 0 est une constante. Dans ce cadre, Adrien Joseph [83] a montré que les tailles des plus
grandes composantes connexes (nombre de sommets) sont d’ordre n

α
α+1 .

Convergence des composantes connexes. On note Cn1 , Cn2 , . . . les composantes connexes
de Gn, listées dans l’ordre décroissant de nombre de sommets, les égalités étant départagées de
façon arbitraire. Les composantes sont vues comme des espaces métriques, chacune munie de la
distance de graphe dni . On munit aussi chacune des composantes de la mesure de comptage sur
les sommets

µni =
∑
v∈Cni

δv.

On note s(Cni ) le surplus de la composante Cni , c’est-à-dire le nombre d’arêtes qu’il faudrait
enlever pour en faire un arbre. Le théorème suivant est (une version faible de celui) prouvé par
Guillaume Conchon–Kerjan et Christina Goldschmidt dans [38].

Théorème 2. Quand n → ∞, on a la convergence en loi suivante pour la topologie Gromov–
Hausdorff–Prokhorov produit(

Cni , (aD · n−
α−1
α+1 ) · dni , (bD · n−

α
α+1 ) · µni

)
i≥1

(d)−→
n→∞

((Ci, dCi , µCi))i≥1 ,

pour une suite aléatoire ((Ci, dCi , µCi))i≥1 que l’on appelle le graphe α-stable et des constante
aD et bD qui dépendent que de la loi des degrés.

Ce résultat est un analogue α-stable du comportement brownien observé pour le graphe
d’Erdős-Renyi critique dans [5].

Description de la limite. Le graphe α-stable est construit à partir d’une version biaisée d’un
processus de Lévy α-stable spectralement positif. Il est constitué d’une suite d’espaces métriques
mesurés qui sont des R-graphes au sens de [6] i.e. ce sont localement des R-arbres, mais ils
peuvent aussi contenir des cycles. Il est possible de donner un sens au surplus d’une composante
connexe limite, que l’on note s(Ci), i ≥ 1. Le Théorème 2 implique en particulier que

bD · n−
α
α+1 · (|Cn1 |, |Cn2 |, . . .)

(d)−→
n→∞

(µC1(C1), µC2(C2), . . .),
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de façon jointe avec la convergence

(s(Cn1 ), s(Cn2 ), . . .)
(d)−→
n→∞

(s(C1), s(C2), . . .).

Les suites (µC1(C1), µC2(C2), . . .) et (s(C1), s(C2), . . .) s’expriment comme des fonctions explicites
du sous-jacent. De plus, les composantes limites (C1, C2, . . .) sont conditionnellement indépen-
dantes sachant (µC1(C1), µC2(C2), . . .) et (s(C1), s(C2), . . .).

La composante α-stable à surplus s. Il existe une famille de lois, indexée par s ≥ 0,
d’espaces métriques mesurés (Gs, ds, µs), où µs est une mesure de probabilité, telle que pour tout
i ≥ 1, conditionnellement à ce que µCi(Ci) = x et s(Ci) = s, on ait(

Ci, dCi , µCi
) (d)

=
(
Gs, x1−1/α · ds, x · µs

)
. (1.15)

Cette famille de loi ne dépend de la loi des degrés plus que par l’exposant α ∈ (1 , 2] qui in-
tervient dans sa queue de distribution. Pour s = 0, le graphe (Gs, ds, µs) est l’arbre α-stable.
Informellement, pour s ≥ 1, l’espace (Gs, ds, µs), est obtenu en choisissant s feuilles aléatoirement
dans une version s-biaisée de l’arbre α-stable, construite par un changement de mesure adapté
pour l’excursion du processus de Lévy α-stable codant l’arbre, puis en les recollant aléatoirement
chacune sur un des points de branchement se trouvant le long de leur chemin les reliant à la
racine, choisi de façon proportionnelle à leur « temps local à droite » qui se lit dans l’excursion.

1.5.2 Propriétés de la composante α-stable de surplus s

Grâce à (1.15), l’étude des composantes du graphe α-stable se ramène simplement à celle de la
famille des composantes à surplus fixé (Gs, ds, µs), s ≥ 0. L’objectif de notre travail du Chapitre 5
a donc été de décrire et donner différentes constructions de ces composantes. Le cas brownien
a déjà été étudié [4], et bien que nos résultats α-stables soient énoncés de manière similaire,
nos preuves n’utilisent pas les mêmes outils. Dans le cas brownien, les auteurs s’appuient sur des
résultats combinatoires pour comprendre la structure de la composante. Dans notre cas, on utilise
la construction continue donnée par [38] à partir d’arbre stable biaisé. À partir de maintenant
et pour le reste de la section, on considère une valeur de s fixée plus grande que 1.

Structure cyclique et marginales discrètes

Noyau et marginales discrètes. Comme pour un graphe connexe discret, on peut décrire
le graphe continu Gs comme une structure cyclique sur laquelle sont collés des sous-arbres. On
appelle Ks le sous-ensemble des points qui constituent ces cycles non-triviaux auquel on ajoute
le chemin qui relie cette structure à la racine1. On peut voir Ks comme un multigraphe (présence
possible de boucles et arêtes multiples) enraciné muni de longueurs sur ses arêtes et on note
Ks le multigraphe discret obtenu en oubliant les longueurs des arêtes, qu’on appelle le noyau
discret. Une première information d’intérêt sur Gs serait la loi de son noyau discret. En fait,
on calcule une information un peu plus précise ; pour n ≥ 0, on peut tirer conditionnellement
à (Gs, ds, µs) une suite de n feuilles (Ui)1≤i≤n i.i.d. sous la mesure µs. On considère alors Gsn
l’ensemble constitué du noyau Ks ainsi que des chemins le reliant à chacune des n feuilles. De
même, on note Gsn le multigraphe obtenu en ne retenant que la forme combinatoire de Gsn et les
feuilles de Gsn peuvent naturellement être numérotées de 1 à n dans leur ordre d’échantillonnage,
voir Figure 1.6.

1Les arbres stables étant naturellement définis comme enracinés, la composante Gs hérite de ce point distingué
et on l’appelle encore la racine
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(a) L’ensemble G24 construit
comme sous-ensemble de G2

1

2
4

3

ρ

(b) Le multigraphe discret as-
socié G2

4

Figure 1.6 – Définition de la marginale discrète G2
4 de G2 à partir de feuilles uniformes

U1, U2, U3, U4.

Distribution à n fixé. Afin de pouvoir exprimer la loi des marginales discrètes, on doit
introduire quelques notations. Un multigraphe G = (V,E) est ici vu comme un ensemble de
sommets muni d’un multi-ensemble d’arêtes, correspondant au fait que chaque arête e = {u, v}
entre deux sommets u et v peut être présente avec une multiplicité, que l’on note mult(e). On
note supp(E) l’ensemble des arêtes présentes avec une multiplicité supérieure à 1. Pour tout
multigraphe G = (V,E), on note sl(G) son nombre de boucles (arêtes qui joignent un sommet à
lui-même), et I(G) ⊂ V son ensemble de sommets internes.

Pour n ≥ 0, soit Ms,n l’ensemble des multigraphes connexes avec n + 1 feuilles numérotées
de 0 à n, surplus s et aucun sommet de degré 2 (les sommets internes ne sont pas étiquetés). On
définit une suite de poids

w0 := 1, w1 := 0, w2 := α− 1, wk := (k − 1− α) . . . (2− α)(α− 1), for k ≥ 3. (1.16)

En voyant la racine comme une feuille d’étiquette 0, on peut voir Gsn comme une variable
aléatoire à valeurs dans Ms,n. Le théorème suivant décrit sa loi.

Théorème 7. Soit n ≥ 0. Pour tout multigraphe connexe G = (V,E) ∈Ms,n,

P (Gsn = G) ∝
∏
v∈I(G)wdeg(v)−1

|Sym(G)|2sl(G)
∏
e∈supp(E) mult(e)!

.

En particulier cela donne la loi du noyau Ks quand n = 0.

Le facteur |Sym(G)| au dénominateur compte le nombre de symétries de l’ensemble des sommets
du graphe, et apparaît parce qu’on a considéré des sommets internes non-étiquetés. On renvoie
le lecteur au chapitre correspondant pour plus de détails.

Distribution en tant que processus. En fait, on peut considérer la suite des marginales
discrètes (Gsn)n≥0 obtenue en échantillonnant un nombre croissant de feuilles dans la composante.
Son évolution en tant que processus a une forme qui nous sera utile dans la suite : elle suit une
version généralisée d’un algorithme proposé par Philippe Marchal [92] pour décrire l’évolution
des marginales discrètes de l’arbre α-stable.
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Une étape de cet algorithme aléatoire d’exprime de la façon suivant. Soit G = (V,E) ∈Ms,n

un multigraphe. On déclare que toutes les arêtes ont poids α − 1, tous les sommets internes
u ∈ I(G) ont poids degG(u)−1−α et les feuilles ont poids 0. On choisit une arête ou un sommet
proportionnellement à son poids. Alors

• si c’est un sommet, on attache une arête qui lie ce sommet à une nouvelle feuille d’étiquette
n+ 1,

• si c’est une arête, on attache une arête qui lie une nouvelle feuille d’étiquette n + 1 à un
sommet nouvellement créé qui divise cette arête en deux.

On dit qu’une suite de graphes évolue selon l’algorithme de Marchal si c’est un processus de
Markov dont les transitions sont données par l’étape décrite au dessus. L’expression des lois des
Gsn permet de prouver le théorème suivant.

Théorème 8. La suite (Gsn)n≥0 évolue selon l’algorithme de Marchal.

Description globale de la composante

La description de l’évolution de la suite (Gsn)n≥0 dans le Théorème 8, en plus de la loi du
noyau, nous permet en fait de récupérer toute la géométrie de la composante Gs grâce à la
proposition suivante qui dérive par absolue continuité d’un résultat similaire pour l’arbre α-
stable. On considère ici les graphes (Gsn)n≥0 comme des espaces métriques, munis de la mesure
uniforme sur leurs feuilles.

Proposition 9. On a la convergence suivante

Gsn
n1−1/α

p.s.−→
n→∞

α · Gs (1.17)

pour la topologie de Gromov–Hausdorff–Prokhorov.

L’obtention de résultats sur Gs peut donc passer uniquement par l’étude des approximations
discrètes (Gsn)n≥0, pour laquelle on dispose d’outils qui incluent en particulier des couplages
avec des modèles d’urnes. (C’est en fait un modèle de croissance qui tombe dans le cadre de la
Section 1.2.) Cela permet de décrire deux constructions pour décrire la loi de Gs, analogues à
celles données dans le cas brownien [4].

Recollement le long du noyau. Une première façon de décrire Gs à partir du noyau discret
Ks est la suivante : on considère une suite i.i.d. d’arbres α-stables aléatoirement normalisés selon
une certaine loi, de telle façon à ce qu’on associe un arbre à chaque arête et une infinité à
chaque sommet interne. La loi des normalisations est explicite en termes de lois de Dirichlet et
de Poisson-Dirichlet, voir le Théorème 5.6 pour une expression explicite.

Tous ces arbres sont enracinés, mais dans les cas des arbres indexés par des arêtes, on tire
en plus une seconde feuille distinguée selon la mesure naturelle portée par l’arbre. Ces arbres
sont ensuite recollés selon le patron donné par le noyau : chaque arête est remplacée par l’arbre
correspondant en identifiant sa racine et sa feuille distinguée à l’une et l’autre des extrémités
de l’arête ; les arbres indexés par des sommets sont ensuite tous recollés sur cette structure
en identifiant leur racine au sommet interne en question. Cette construction est illustrée en
Figure 1.7.
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(a) Une réalisation du
noyau K2

(b) Recollement
d’arbres le long du
noyau

(c) La composante ob-
tenue G2

Figure 1.7 – Construction de G2 en recollant des arbres le long de son noyau

Construction itérative par recollements. Une seconde façon de décrire Gs est de partir
du noyau continu Ks et d’y recoller itérativement des segments de longueurs aléatoires. Cette
construction est une instance de processus de recollement itératif décrit dans la Section 1.2. Elle
généralise celle donnée par Christina Goldschmidt et Bénédicte Haas [63] pour construire l’arbre
α-stable.

De façon analogue à ce cas-là, une suite aléatoire (mn)n≥1 associée à cette construction est
définie comme les incréments d’une chaîne de Markov (Mn)n≥1 de type MLMC (Mittag-Leffler
Markov chain) et joue le rôle des poids et des facteurs de normalisation dans le cadre énoncé dans
la Section 1.2. Le premier bloc est une version de Ks munie d’une mesure qui charge toute sa
longueur mais qui possède aussi des atomes de poids aléatoire sur ses sommets internes. Les blocs
suivants sont constitué d’un segment muni d’une mesure qui charge sa longueur mais possède
aussi un atome de masse aléatoire en l’extrémité en laquelle il est enraciné. Une version explicite
cette construction est énoncée dans le Théorème 5.8 du Chapitre 5.
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Chapter 2

Random gluing of metric spaces

This chapter is adapted from [112], accepted for publication in The Annals of Probability.
We construct random metric spaces by gluing together an infinite sequence of pointed metric

spaces that we call blocks. At each step, we glue the next block to the structure constructed so
far by randomly choosing a point on the structure and then identifying it with the distinguished
point of the block. The random object that we study is the completion of the structure that we
obtain after an infinite number of steps. In [41], Curien and Haas study the case of segments,
where the sequence of lengths is deterministic and typically behaves like n−α. They proved that
for α > 0, the resulting tree is compact and that the Hausdorff dimension of its set of leaves is
α−1. The aim of this paper is to handle a much more general case in which the blocks are i.i.d.
copies of the same random metric space, scaled by deterministic factors that we call (λn)n≥1.
We work under some conditions on the distribution of the blocks ensuring that their Hausdorff
dimension is almost surely d, for some d ≥ 0. We also introduce a sequence (wn)n≥1 that we
call the weights of the blocks. At each step, the probability that the next block is glued onto
any of the preceding blocks is proportional to its weight. The main contribution of this paper
is the computation of the Hausdorff dimension of the set L of points which appear during the
completion procedure when the sequences (λn)n≥1 and (wn)n≥1 typically behave like a power
of n, say n−α for the scaling factors and n−β for the weights, with α > 0 and β ∈ R. For a
large domain of α and β we have the same behaviour as the one observed in [41], which is that
dimH(L) = α−1. However for β > 1 and α < 1/d, our results reveal an interesting phenomenon:
the dimension has a non-trivial dependence in α, β and d, namely

dimH(L) =
2β − 1− 2

√
(β − 1)(β − αd)

α
.

The computation of the dimension in the latter case involves new tools, which are specific to
our model.
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Figure 2.1 – Gluing of circles of radii λn = n−3/5, with weights wn = n−3/2. The Hausdorff
dimension of the resulting metric space is (10

3 −
√

5).

2.1 Introduction

Let us recall Aldous’ famous line-breaking construction of the Brownian CRT (Continuum Ran-
dom Tree) in [9]. On the half-line [0 ,∞), consider C1, C2, . . . , Cn the points of a Poisson
process with intensity tdt. Cut the half-line in closed intervals [Ci , Ci+1], which we call branches
(of length Ci+1 − Ci). Starting from [0 , C1], construct a tree by recursively gluing the branch
[Ci , Ci+1] to a random point chosen uniformly on the tree already constructed (i.e. under the
normalised length measure). Aldous’ Brownian CRT is the completion of the tree constructed
after an infinite number of steps. This process can be generalised by using any arbitrary sequence
(λn) for the length of the successive branches. This model was introduced and studied by Curien
and Haas in [41], who proved that when λn = n−α+o(1) for some α > 0, the tree obtained is
a.s. compact and has Hausdorff dimension (1 ∨ α−1). In [12], Amini et. al. obtained a necessary
and sufficient condition on the sequence (λn) for the almost sure compactness of the resulting
tree, under the assumption that this sequence is non-increasing. In [66], Haas describes how the
height of the tree explodes when n→∞ under the assumption that λn ≈ nα, with α ≥ 0.

Our goal is to define a more general version of this model, in which the branches are replaced
by arbitrary (and possibly random) measured metric spaces, and to investigate the compactness
and the Hausdorff dimension of the resulting metric space. As we will see, in this broader context,
a striking phenomenon (absent from [41]) pops up. In all this chapter we will work with

(λn)n≥1 and (wn)n≥1,

two sequences of non-negative real numbers that will be the scaling factors and weights of the
metric spaces that we glue. All the scaling factors (λn)n≥1 are considered strictly positive, but
the weights, except for the first one w1, can possibly be null.

Definition of the model and main results Let us first present a simpler version of our
construction, in which we construct a tree through an aggregation of segments. For now the
branches, which we denote by (bn)n≥1, are segments of length (λn)n≥1, rooted at one end and
endowed with the Lebesgue measure normalised so that their respective total measure is (wn)n≥1

(or endowed with the null measure for branches with vanishing weight). We then define a sequence
(Tn)n≥1 of increasing trees by gluing those branches as follows. First, T1 = b1. Then, if Tn is
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constructed, we build Tn+1 by first sampling a point Xn chosen proportionally to the measure µn
obtained by aggregating the measures concentrated on the branches b1, . . . ,bn and then gluing
bn+1 onto Tn by identifying its root with Xn. Let T ∗ be the increasing union of the trees Tn for
n ≥ 1 and T be the completion of T ∗. Note that if (wn) = (λn), this model coincides with the
one studied in [41].

We can compute the Hausdorff dimension of the resulting tree in the case where (λn) and
(wn) behave like powers of n, say λn = n−α and wn = n−β . We define L := (T \T ∗) to which we
refer as the set of leaves of T . In this particular case it coincides, up to a countable set, with the
set of points x such that T \ {x} remains connected. In the above context a trivial consequence
of our main theorem is that T is a.s. compact and

dimH(L) =
2β − 1− 2

√
(β − 1)(β − α)

α
if β > 1 and α < 1,

=
1

α
otherwise,

where dimH(X) stands for the Hausdorff dimension of the metric space X, see Section 2.A.2.
Note that, since we can check that the dimension of the skeleton T ∗ is always 1, we can

recover the dimension of T as dimH(T ) = max(1,dimH(L)). We see that dimH(L) = 1
α as in

[41] for most values of β, however, a new phenomenon, absent from [41], happens in the case
β > 1 (the sum of the weights is finite) and α < 1 (the total length is infinite). In this case, the
Hausdorff dimension of T depends in a non-trivial manner on α and β.

Now we want to generalise it to sequences (bn) of more general metric spaces that we call
blocks, which can be random and possibly more elaborate than just segments. Specifically,
our blocks are based on the distribution of a random pointed measured compact metric space,
(B,D, ρ, ν), with underlying set B, distance D, distinguished point ρ and endowed with a proba-
bility measure ν. We sometimes denote it B by abuse of notation when no confusion is possible
and we refer to it as the underlying random block. We consider a sequence ((Bn,Dn, ρn, νn))n≥1

of i.i.d. random variables with the distribution of (B,D, ρ, ν) and define our blocks by setting

∀n ≥ 1, (bn,dn,ρn,νn) := (Bn, λn · Dn, ρn, wn · νn), (2.1)

meaning that we dilate all the distances in the space Bn by the factor λn and scale the measure
by wn. We suppose that, λn ≈ n−α for some α > 0, and wn ≈ n−β for some β ∈ R, in some loose
sense which we make precise in the sequel. For technical reasons, we have to separate the case
β < 1, the case β > 1 and β = 1. This gives rise to the three hypotheses Hyp. ©α,β , Hyp. �α,β
and Hyp. �α,1. For any d ∈ [0 ,∞), we will introduce the Hypothesis Hd and suppose that the
distribution of our underlying random block (B,D, ρ, ν) satisfies this hypothesis for some d ≥ 0.
This hypothesis ensures that our random block exhibits a d-dimensional behaviour. We set out
all these hypotheses just below the statement of our theorem.

Except in Section 2.2.1, we will always assume that the blocks are of the form
(2.1). This is implicit in all our results.

In this extended setting, we can perform the same gluing algorithm and build a sequence
(Tn)n≥1 of random compact metric spaces by iteratively gluing the root of bn+1 onto a point
chosen in Tn according to the measure µn obtained as the sum of the measures of the blocks
b1, . . . ,bn. Again T ∗ =

⋃
n≥1 Tn is called the skeleton of the construction and its completion is

still denoted T . See Figure 2.1 for a non-isometric, non-proper representation in the plane of a
simulation of this model, with B chosen to be almost surely a circle of unit length. As for the
case of segments, we refer to L = (T \ T ∗) as the set of leaves of the construction. We can now
state our main theorem.
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dimH(L)

α

β

Figure 2.2 – The plot represents the Hausdorff dimension of the leaves as a function of α and β,
the dimension d being fixed to 1. The expression obtained for β > 1 and α < 1

d can be rewritten

as d+
(
√
β − αd−√β − 1)2

α
This expression is always larger than d and smaller than 1

α , and it
is decreasing in α and β on the domain on which we consider it. When β → 1, it converges to
the value 1

α so that the function (α, β) 7→ dimH(L) is continuous on the domain R∗+ × R.

Theorem 2.1. Suppose that there exists d ≥ 0, such that (B,D, ρ, ν) satisfies Hypothe-
sis Hd, and α > 0 and β ∈ R such that the sequences (wn) and (λn) satisfy either Hyp. �α,β
or Hyp. ©α,β, or Hyp. �α,1. Then, almost surely, the structure T resulting from the con-
struction is compact, and

dimH(L) =
2β − 1− 2

√
(β − 1)(β − αd)

α
, if β > 1 and α <

1

d
,

=
1

α
otherwise.

Remark that for β > 1 the dimension of the set L depends on the geometry of the underlying
random block through d, its dimension. For β ≤ 1, it is not the case, and actually the theorem
remains true under much weaker hypotheses for the distribution of (B,D, ρ, ν), namely that ν
is not almost surely concentrated on {ρ}, and that ∀k ≥ 0,E

[
(diam(B))k

]
< ∞, where diam(·)

denotes the diameter of a metric space. We could even replace the assumption that the blocks
((Bn,Dn, ρn, νn))n≥1 are i.i.d. by some weaker assumption but we do not do it for the sake of
clarity. The proofs when β ≤ 1 are quite short and the interested reader can easily generalise
them to a more general setting.

Hypotheses of the theore. Let us define and discuss the precise hypotheses of our theorem.
First, let us describe the assumptions that we make on the sequences (λn) and (wn). We define

Wn =

n∑
k=1

wk,

and for all ε > 0, we set

Gε :=
{
k ≥ 1

∣∣∣ wk ≥ k−β−ε, λk ≥ k−α−ε} , (2.2)

and also
Gεn :=

{
k ∈ Jn , 2nK

∣∣∣ wk ≥ n−β−ε, λk ≥ n−α−ε} . (2.3)

As said earlier, we separate the case β < 1, the case β > 1 and the case β = 1.
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Hypothesis ©α,β. We have α > 0 and β < 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤
n−β+o(1). Furthermore Wn = n1−β+o(1) and for all ε > 0,

lim inf
n→∞

∑n
k=1wk1{k∈Gε}∑n

k=1wk
> 0.

The last display ensures that for all ε > 0, the set Gε contains an asymptotically positive
proportion of the total weight.

Hypothesis �α,β. We have α > 0 and β > 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤
n−β+o(1). Furthermore, for all ε > 0,

#Gεn =
n→∞

n1+o(1).

Under the stronger assumption λn = n−α+o(1) and wn = n−β+o(1), Hypothesis �α,β holds if
β > 1 (resp. Hypothesis ©α,β , if β < 1). The case β = 1 is slightly different and in this case we
set

Hypothesis �α,1. We have α > 0 and β = 1 and for all n ≥ 1, λn ≤ n−α+o(1) and wn ≤
n−1+o(1). Furthermore, for all ε > 0,

1

log log logN

N1+ε∑
k=N

wk
Wk

1{k∈Gε} −→
N→∞

+∞.

Note that this last hypothesis requires in particular that Wn → ∞ as n → ∞. Now let us
define Hypothesis Hd, for any d ≥ 0, which will ensure that our random underlying block has
the appropriate d-dimensional behaviour.

Hypothesis Hd. The law of the block (B,D, ρ, ν) satisfies the following conditions:

(i) •If d = 0, the block B is a finite metric space which is not a.s. reduced to a single point and
such that the measure ν satisfies ν({x}) > 0, for all points x ∈ B.

•If d > 0, there exists an increasing function ϕ : [0 , 1]→ [0 , d/2], satisfying lim
r→0

ϕ(r) = 0,

such that almost surely, there exists a (random) r0 ∈ (0 , 1) such that

∀r ∈ [0 , r0), ∀x ∈ B, rd+ϕ(r) ≤ ν (B(x, r)) ≤ rd−ϕ(r). (?r0)

(ii) Let Nr(B) be the minimal number of balls of radius r needed to cover B. Then

E [Nr(B)] ≤ r−d+o(1) as r → 0.

(iii) For all k ≥ 0, we have E
[
diam(B)k

]
<∞.

Here B(x, r) is the open ball centred at x with radius r and the notation diam(B) denotes
the diameter of B, defined as the maximal distance between two points of B. The conditions
(i) and (ii) ensure that the blocks that we glue together have dimension d. The condition (iii)
ensures that the blocks cannot be too big. In this chapter, some results are stated under some
weaker assumptions on the distribution of random block (B,D, ρ, ν) and they are hence all still
valid under Hypothesis Hd.
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Motivations. The assumptions of Theorem 2.1 are rather general and various known models
fall into our setting. First, let us cite two constructions that were already covered by the work
presented in [41]. Of course we have Aldous’ line-breaking construction of the CRT but let us
also cite the work of Ross and Wen in [109], in which the authors study a discrete model of
growing trees and prove that its scaling limit can be described as a line-breaking procedure à la
Aldous using a Poisson process of intensity tldt, with l an integer. The Hausdorff dimension of
the resulting tree is then (l+1)/l. Our extended setting now also includes the Brownian looptree,
defined in [40], which appears as the scaling limit of the so-called discrete looptree associated with
the Barabási-Albert model. This random metric space also has a natural construction through
an aggregation of circles, and our theorem proves that this object has almost surely Hausdorff
dimension 2. These examples do not really use our theorem in its full generality since their
underlying block is deterministic. In fact, Hypothesis Hd is very general and is satisfied (for the
appropriate d ≥ 0) by many distributions of blocks, including the Brownian CRT (d = 2), see
[54], the Brownian map (d = 4), see [113, 88], the θ-stable trees (d = θ+1

θ ), see [55]. Hence, our
results can apply to a whole variety of such constructions, with a very general distribution of
the blocks, and we are currently working on some examples in which this construction naturally
arises as the limit of discrete models.

Indications on the proofs The computations of the dimension in Theorem 2.1 differ, de-
pending on the assumptions we make on α and β, and always consist of an upper bound, that
we derive by providing explicit coverings, and a lower bound that arises from the construction of
a probability measure satisfying the assumptions of Frostman’s lemma, see Lemma 2.20 in the
Appendix for a statement.

If we just assume that the scaling factors are smaller than n−α+o(1), we can prove that the
dimension is bounded above by 1

α for rather general behaviours of the weights. To do so, we
adapt arguments from [41] to our new setting. The essential idea behind the proof is that the
sub-structure descending from a block bn has size n−α+o(1), and so one only needs to cover every
block bn with a ball of radius n−α+o(1) to cover the whole structure.

When α < 1
d and β > 1, although the sub-structure descending from a block bn may have

diameter of order n−α+o(1), we can also check that the index of the first block glued on block
n has index roughly nβ , which is large compared to n. Hence the diameter of the substructure
descending from bn is essentially due to bn itself. This gives us a hint that we can cover the
whole substructure descending from the block bn, using a covering of bn with balls that are
really small compared to the size of bn, and that it would lead to a more optimal covering. In
fact we use these two observations to recursively construct a sequence of finer and finer coverings,
which lead to the optimal upper-bound. The idea of the proof is presented in more details in
Section 2.4.2.

Concerning the lower bounds, for all values of α and β, we can define a natural probability
measure µ̄ on T as the limit of (a normalised version of) the measure µn defined on Tn for every
n ≥ 1, see Section 2.3. In the case β ≤ 1, this probability measure only charges the leaves of T ,
and an application of Lemma 2.20 gives the lower bound 1

α .
For β > 1, the measure µ̄ does not charge the leaves and so the preceding argument does

not work. We construct another measure as the sub-sequential limit of a sequence of measures
(πk) which are concentrated on sets of the form (T2nk \ Tnk) with (nk) chosen appropriately, see
Section 2.5.2 for a presentation of the idea of the proof. The limiting measure is then concentrated
on a strict subset of leaves and again, using Lemma 2.20 yields the appropriate lower bound.
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Related constructions Let us also cite some other models that have been studied in the
literature and which share some features with ours. First, the line-breaking construction of the
scaling limit of critical random graphs in [4] by Addario-Berry, Broutin and Goldschmidt, that
of the stable trees in [63] by Goldschmidt and Haas, and that of the stable graphs in [64] by
Goldschmidt, Haas and Sénizergues, use a gluing procedure that is identical to ours. Their
constructions are not directly handled by Theorem 2.1 but they fall in a slightly more general
setting, for which our proofs still hold. In [30], Borovkov and Vatutin study a discrete tree
constructed recursively, which corresponds to the "genealogical tree" of the blocks in our model.
Last, in [106], Rembart and Winkel study the distribution of random trees that satisfy a self-
similarity condition (in law). They provide an iterative construction of those trees in which
infinitely many branches are glued at each step.

Plan of the chapter In Section 2.2, we give a rigorous definition of our model, set up some
useful notation, and discuss some general properties. In the second section, we study the (nor-
malised) natural measure µ̄n on Tn and prove that it converges to a measure µ̄ on T under suitable
assumptions. In Section 2.4.1, we prove the almost sure compactness of T and some upper-bounds
on its Hausdorff dimension under some relatively weak hypotheses. In Section 2.4.2, we develop
a new (more involved) approach that allows us to obtain a better upper-bound for some param-
eters for which the former fails to be optimal. In Section 2.5, we prove the lower bounds that
match the upper-bounds obtained in Section 2.4. It is again divided in two subsections, each
providing a proof that is only valid for some choices of parameters α and β. The Appendix 2.A.2
contains a short reminder of basic properties concerning Hausdorff dimension. The Appendices
2.A.1, 2.A.3 and 2.A.4 contain some technical proofs that can be skipped at first reading.

Acknowledgements The author would like to thank the anonymous referees for their valuable
comments which helped to improve the presentation of the manuscript.

2.2 General framework

In this section, we start by providing a precise definition of our model and then we investigate
some of its general properties.

2.2.1 Construction

Consider ((bn,dn,ρn,νn))n≥1 a sequence of compact pointed metric spaces endowed with a finite
Borel measure. Recall from the introduction the heuristics of our recursive construction. We
define T1 as the first block b1 endowed with its measure ν1. Then at each step, we construct Tn+1

from Tn by gluing the root of the block bn+1 to a random point Xn ∈ Tn, which has distribution
(a normalised version of) µn. The measure µn+1 is defined as the sum of the measures µn and
νn+1, the measure supported by bn+1. We define T ∗ as the increasing union of all the Tn for
n ≥ 1, and its completion is denoted T . In the next paragraph, we describe formally how to
construct such growing metric spaces as subsets of a larger ambient space. The definitions here
are rather technical and the proofs in the paper do not use the details of the construction, so the
reader can skip this part at first reading.

Embedded construction We consider (U, δ) the Urysohn space, and fix a point u0 ∈ U . The
space U is defined as the only Polish metric space (up to isometry) which has the following
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Figure 2.3 – Substructure descending from a set, and projection on a substructure, illustrating
some notation introduced in the paper in the case of the gluing of segments.

extension property (see [78] for constructions and basic properties of U): given any finite metric
space X, and any point x ∈ X, any isometry from X \ {x} to U can be extended to an isometry
from X to U . In the rest of the construction, we assume that the measured metric spaces
((bn,dn,ρn,νn))n≥1 are all embedded in the space U and that their root is identified to u0.
From the properties of the Urysohn space, this is always possible (see Appendix 2.A.1 for a
construction in the case of random blocks).

We introduce

`1(U, u0) :=

{
(xn)n≥1 ∈ UN

∗

∣∣∣∣∣
∞∑
n=1

δ(xn, u0) < +∞
}
.

If we endow `1(U, u0) with the distance d((xn)n≥1, (yn)n≥1) =
∑∞

n=1 δ(xn, yn), it is an easy
exercise to see that it makes this space Polish. We can now construct the Tn recursively, by
T1 = {(x, u0, u0, . . . ) | x ∈ b1}, and identifying T1 to the block b1, we set µ1 = ν1. For n ≥ 1,
the point Xn is sampled according to µ̄n a normalised version of µn with total mass 1. The point
Xn is of the form

(
x

(n)
1 , x

(n)
2 , . . . , x

(n)
n , u0, . . .

)
and we set

Tn+1 := Tn ∪
{(
x

(n)
1 , x

(n)
2 , . . . x(n)

n , x, u0 . . .
) ∣∣∣ x ∈ bn+1

}
.

We set µn+1 := µn + νn, where as in the preceding section, we see bn+1 as the corresponding
subset of Tn+1. Then T ∗ =

⋃
n≥1 Tn and T = (T ∗) is its closure in the space (`1(U, u0),d). At

the end T is a random closed subset of a Polish space.
In the rest of the chapter, we will not refer to this formal construction of T and we will

identify bn with the corresponding subset in T . We recall the notation Wn =
∑n

k=1wn for the
total mass of the measure µn.

2.2.2 Some notation

Let us introduce some notation that will be useful in the sequel, some of which is illustrated in
Figure 2.3. Recall that from now on, we always assume that the blocks are of the form (2.1).
• If (E,d, ρ) is a pointed metric space, and x ∈ E, we define ht(x), the height of x, as its

distance to the root d(ρ, x). We also denote ht(E) = supx∈E ht(x), the height of E. Let us
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consider (B,D, ρ, ν), a random block of our model before scaling, and X a point of B which
conditionally on (B,D, ρ, ν), has distribution ν. We denote

H := ht(X) = D(ρ,X), (2.4)

the height of a uniform random point in the block. Remark that Hypothesis Hd implies that
E
[
H2
]
< ∞, and that P (H > 0) > 0. Some of our results are stated under these weaker

assumptions.
•Whenever we sample the point Xn under µ̄n, we do it in the following way: first we sample

Kn such that for all 1 ≤ k ≤ n, P (Kn = k) = wk
Wn

and then, conditionally on Kn = k, the
point Xn is chosen on the block bk using the normalised version of the measure νk. Whenever
Kn = k, we say that bn+1 is grafted onto bk and write bn+1 → bk. Remark that this entails
that Xn ∈ bk, but this condition is not sufficient in the case where Xn belongs to several blocks
(which only happens if the measures carried by the blocks have atoms). We denote

µ̄∗n := law of (Kn, Xn), (2.5)

seen as a measure on
⊔n
k=1{k} × bk. In this way, the random variables ((Kn, Xn))n≥1 are inde-

pendent with respective distributions (µ̄∗n)n≥1. We remain loose on the fact that we sometimes
consider the blocks as abstract metric spaces and at other times we see them as subsets of T . It
is implicit in the preceding discussion that everything is expressed conditionally on the sequence
of blocks (bn)n≥1.
•We simultaneously construct a sequence of increasing discrete trees (Tn)n≥1 by saying that

for n ≥ 1, the tree Tn has n nodes labelled 1 to n and i is a child of j if and only if bi → bj .
Also define T their increasing union. We denote ≺ the genealogical order on N∗ induced by this
tree. We denote dT(i, j) for the graph distance between the nodes with label i and j in this tree
and htT(·) for their height.
• For x ∈ T , we define [x]n, the projection of x on Tn, as the unique point y of Tn that

minimizes the distance d(x, y).
• Similarly, for k ≥ 1, we define [k]n, the projection of k on Tn, as the unique node i ≤ n

that minimizes the distance dT(i, k).
• If S is a subset of a block bn for some n ≥ 1 then we define T (S), the substructure

descending from S as

T (S) := S ∪
⋃
i�n

[Xi−1]n∈S

bi.

If S = bn, this reduces to

T (bn) =
⋃
i�n

bi,

and we consider (T (bn),d,ρn) as a rooted metric space.
• Remark that if x ∈ T (bk) for some k ≥ 1 then we have [x]k ∈ bk and more generally, for

any n ≤ k, we have [x]n ∈ b[k]n .
• We often use the little-o notation and denote o(1) a deterministic function that tends to 0

when some parameter tends to 0 or ∞, depending on the context. For such functions that are
random, we write instead oω(1).
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2.2.3 Zero-One law for compactness, boundedness and Hausdorff dimension

The main properties of T and L that we study are compactness and Hausdorff dimension.
One can check that some of these properties are constants almost surely by an argument using
Kolmogorov’s zero-one law.

Indeed, take the whole construction T and contract the compact subspace Tn into a single
point. We can easily check that the resulting space is compact (resp. bounded) iff the former is
compact (resp. bounded). Also, the subset L and its image after the contraction of Tn have the
same Hausdorff dimension. Now remark that the space that we just described only depends on
the randomness of the blocks and the gluings after n steps. Indeed, if we start at time n with a
unique point with weightWn and then follow the procedure by gluing recursively bn+1, bn+2, . . . ,
we get exactly the same space.

Hence, as this is true for all n, these properties only depend on the tail σ-algebra generated
by the blocks and the gluings, and are therefore satisfied with probability 0 or 1.

Remark 2.2. In the setting of [41], where the blocks are segments and the weights correspond to
the lengths of those segments, the authors proved that the event of boundedness and compactness
for T coincide almost surely. This is not the case in our more general setting: consider the case
of branches with weights and lengths defined as

wn = 2n, λn = 2−n for n /∈
{

2k
∣∣∣ k ∈ N},

w2k = 1, λ2k = 1, for k ∈ N.

In this case, an application of Borel-Cantelli lemma shows that a.s. for n large enough, no
branch bn is ever grafted onto a branch b2k for any k. It is then clear that the resulting tree is
a.s. bounded since the sum of the lengths of the branches bn for n /∈ {2k | k ∈ N} is finite, but it
cannot be compact since there exists an infinite number of branches with length 1.

2.2.4 Monotonicity of Hausdorff dimension

Let us present an argument of monotonicity of the Hausdorff dimension of L with respect to
the sequence (λn), on the event on which T is compact. Let (wn) be a sequence of weights and
(λn) and (λ′n) be two sequences of scaling factors such that for all n ≥ 1, we have λn ≥ λ′n.
Suppose that ((Bn,Dn, ρn, νn))n≥1 is a sequence of random compact metric spaces endowed
with a probability measure. Then, let T (resp. T ′) be the structure constructed using the blocks
(bn,dn,ρn,νn) = (Bn, λn ·Dn, ρn, wn ·νn), for n ≥ 1, (resp. (b′n,d

′
n,ρ

′
n,ν

′
n) = (Bn, λ

′
n ·Dn, ρn, wn ·

νn)). Note that since we use the same sequence of weights we can couple the two corresponding
gluing procedures.

Let f be the application that maps each of the block bn to the corresponding b′n. Recall
here that we see the blocks as subsets of the structure. We can verify that f : T ∗ −→ (T ′)∗, is
1-Lipschitz. We can then extend uniquely f to a function f̂ : T −→ T ′, which is also 1-Lipschitz.
Suppose T is compact. Then its image f̂(T ) is compact, hence closed in T ′. Since (T ′)∗ ⊂ f̂(T )

and (T ′)∗ is dense in T ′, we have f̂(T ) = T ′ and so f̂ is surjective. Now since (T ′)∗ = f̂(T ∗),
we also have L′ = f̂(L), and since f̂ is Lipschitz,

dimH(L′) ≤ dimH(L). (2.6)
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2.3 Study of a typical point

In this section we study the height of a typical point of Tn, i.e. the distance from the root to
a point sampled according to µ̄n. The proofs in this section are really close to those of [41,
Section 1], to which we refer for details.

2.3.1 Coupling with a marked point

We construct a sequence of points (Yn)n≥1 coupled with the sequence (Tn)n≥1 in such a way that
for all n ≥ 1, the point Yn has distribution µ̄n conditionally on Tn and such that the distance
from Yn to the root is non-decreasing in n. For technical reasons, we in fact define a sequence
((Jn, Yn))n≥1 such that for any n ≥ 1, (Jn, Yn) has distribution µ̄∗n conditionally on (Tn, Tn), see
(2.5). The properties of this construction are stated in the following lemma.

Lemma 2.3. We can couple the construction of ((Tn, Tn))n≥1 with a sequence ((Jn, Yn))n≥1 such
that for all n ≥ 1,

(i) we have Jn ∈ {1, . . . , n} and Yn ∈ bJn,

(ii) conditionally on (Tn, Tn), the couple (Jn, Yn) has distribution µ̄∗n,

(iii) for all 1 ≤ k ≤ n, ([Jn]k, [Yn]k) = (Jk, Yk).

Furthermore, under the assumption Hd(iii), the sequence (Yn)n≥1 almost surely converges in T
iff

∞∑
n=1

λnwn
Wn

1{λn≤1} <∞ and
∞∑
n=1

wn
Wn

1{λn>1} <∞. (2.7)

Note that if either

W∞ :=

∞∑
n=1

wn <∞ or
∞∑
n=1

wnλn
Wn

<∞,

then (2.7) is satisfied, and this is the case under the assumptions of Theorem 2.1. In this case
we let

Y := lim
n→∞

Yn.

Proof. Let n ≥ 2. Conditionally on Tn and Tn, sample a couple (Jn, Yn) under the measure µ̄∗n.
Then two cases may happen:

• with probability 1 − wn/Wn : we have Jn < n, so the point Yn belongs to Tn−1, that is
[Yn]n−1 = Yn , and conditionally on this event ([Jn]n−1, [Yn]n−1) has the same distribution
as (Jn−1, Yn−1),

• with probability wn/Wn : we have Jn = n. In this case the point Yn is located on the last
block bn grafted on Tn−1. Conditionally on this event (if wn > 0), Yn is distributed on
this block under the measure νn and the couple ([Jn]n−1, [Yn]n−1) is independent of the
location of Yn on the n-th block and has the same distribution as (Jn−1, Yn−1).

From this observation we deduce that

(Tn−1,Tn−1, [Jn]n−1, [Yn]n−1) = (Tn−1,Tn−1, Jn−1, Yn−1)

in distribution and more generally, (Tk,Tk, [Jn]k, [Yn]k) = (Tk,Tk, Jk, Yk) in distribution for all
1 ≤ k ≤ n.
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Reversing this observation, we can construct a sequence (Jn, Yn)n≥1 (coupled to the Kn and
Xn involved in the construction of T ∗) such that conditionally on Tn and Tn, the couple (Jn, Yn)

has distribution µ̄∗n and that for all 1 ≤ k ≤ n, we have ([Jn]k, [Yn]k) = (Jk, Yk). To do so, we
consider:

• a sequence (Un)n≥1 of uniform random variables on (0 , 1),

• a sequence (Zn)n≥1 of points respectively sampled on (bn)n≥1 with respective distribution
(a normalised version of) the measure (νn)n≥1 whenever it is non-zero, (set Zn = ρn a.s.
whenever νn is trivial),

• a sequence (In, Pn)n≥1, sampled with respective distributions (µ̄∗n)n≥1,

independently for all these random variables. Then we construct (Kn, Xn) and (Jn, Yn) as follows.
We set (J1, Y1) = (1, Z1). Then recursively for n ≥ 1, we assume that Xn−1 (if n 6= 1) and Yn
have been constructed:

• if Un+1 ≤ wn+1

Wn+1
, then we set (Kn, Xn) := (Jn, Yn), Jn+1 := n+ 1 and Yn+1 := Zn+1,

• if Un+1 >
wn+1

Wn+1
, then we set (Kn, Xn) := (In, Pn), Jn+1 := Jn and Yn+1 := Yn.

We can check that with this construction, for all 1 ≤ k ≤ n, we have ([Jn]k, [Yn]k) = (Jk, Yk),
the (Kn, Xn)n≥1 are independent with the appropriate distribution and for all n ≥ 1 conditionally
on Tn and Tn the couple (Jn, Yn) has distribution µ̄∗n. Notice that the distance from Yn to the
root ρ is non-decreasing. Denoting T0 = {ρ} and Y0 = ρ, for all 0 ≤ m ≤ n we have

d(Yn, Ym) = d(Yn, Tm) =

n∑
k=m+1

d(Zk, ρk)1{Uk≤ wk
Wk

}, (2.8)

which is equal in distribution to

n∑
k=m+1

λkHk1{Uk≤ wk
Wk

},

where the (Hk)k≥1 are i.i.d., independent of the (Uk)k≥1 and have the law of H, see (2.4). Under
Hd(iii) the random variable H has a finite second moment, and an application of Kolmogorov’s
three series theorem tells us that the almost sure convergence of

∑
k≥1 λkHk1{Uk≤ wk

Wk

} is equiv-

alent to (2.7). In this case, (Yn)n≥1 is a Cauchy sequence in the complete space T and hence it
converges.

Also notice that with this construction, the discrete counterpart of (2.8) is

dT(Jn, Jm) =

n∑
k=m+1

1{
Uk≤

wk
Wk

} and so htT(Jn) =

n∑
k=2

1{
Uk≤

wk
Wk

}. (2.9)
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Remark that for any θ ∈ R,

E [exp (θ htT(Jn))] = E

[
exp

(
θ

n∑
k=2

1{
Uk≤

wk
Wk

}
)]

=

n∏
k=2

(
Wk − wk
Wk

· 1 +
wk
Wk

eθ
)

= exp

(
n∑
k=2

log

(
1 + (eθ − 1)

wk
Wk

))

≤ exp

(
(eθ − 1)

n∑
k=2

wk
Wk

)
, (2.10)

where in the last line we use the inequality log(1 + x) ≤ x, valid for all x > −1.

2.3.2 Convergence of the measure µ̄n

Recall the definition of the random variable H in (2.4).

Proposition 2.4. Assume that E
[
H2
]
<∞ and P (H > 0) > 0 and that (2.7) holds. Then

almost surely there exists a probability measure µ̄ on T such that

µ̄n −→
n→∞

µ̄ weakly.

Furthermore, conditionally on (T , µ̄), the point Y is distributed according to µ̄ almost surely.
If W∞ < ∞, then µ̄ = 1

W∞
µ∞, and µ̄ is concentrated on T ∗. If W∞ = ∞, then µ̄ is

concentrated on L.

The proof of the last proposition is very similar to the proof of [41, Theorem 4], and is left to
the reader. We can easily check that the assumptions of Proposition 2.4 are satisfied under the
hypotheses of Theorem 2.1. We now state an additional lemma that will be useful later in this
chapter.

Lemma 2.5. Suppose that the assumptions of Proposition 2.4 hold, that µ̄ is concentrated on
the set L and that the sequence of weights satisfies wn

Wn
≤ n−1+o(1). Then almost surely

µ̄(T (bn)) ≤ n−1+oω(1),

where the random function oω(1) is considered as n→∞.

Proof. Let us introduce some notation. If i ≥ n, we set M (n)
i := µ̄i(T (bn)) the relative mass

of the tree descending from bn in Ti. As i varies, this sequence of random variables evolves
like one of Pemantle’s time-dependent Pólya urns (see [103]) and is therefore a martingale. The
topological boundary of T (bn) for the topology of T is either the empty set or the singleton
{ρn}, thus it has zero µ̄-measure1. It follows from Portmanteau theorem that the quantity of
interest µ̄(T (bn)) corresponds toM (n)

∞ , the almost sure limit of this positive martingale. We can
write

M
(n)
i+1 =

(
Wi

Wi+1

)
M

(n)
i +

wi+1

Wi+1
1{

Ui+1≤M
(n)
i

},
1Indeed, under the assumptions of the lemma, µ̄ is carried on the leaves.
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with (Ui)i≥1 a sequence of i.i.d. random variables, uniform on (0 , 1). We are going to show by
induction on k ≥ 1 that there exists a function o(1) as n→∞ such that for all i ≥ n, we have

E
[
(M

(n)
i )k

]
≤ n−k+o(1).

Note that we use the notation o(1) for all such functions, but that in this proof, the corresponding
functions can depend on k but not on i.
• For k = 1, the result follows from the fact that (M

(n)
i )i≥n is a martingale and that almost

surely M (n)
n ≤ wn

Wn
≤ n−1+o(1).

• Let k ≥ 2. Suppose that the result is true for all 1 ≤ l ≤ k − 1. Then

E
[(
M

(n)
i+1

)k ∣∣∣∣M (n)
i

]
= E

[((
Wi

Wi+1

)
M

(n)
i +

wi+1

Wi+1
1{

Ui+1≤M
(n)
i

})k ∣∣∣∣∣M (n)
i

]

=

(
Wi

Wi+1

)k (
M

(n)
i

)k
+ E

[
k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l (
M

(n)
i

)l ( wi+1

Wi+1
1{

Ui+1≤M
(n)
i

})k−l ∣∣∣∣∣M (n)
i

]

=

(
Wi

Wi+1

)k (
M

(n)
i

)k
+
k−1∑
l=0

(
k

l

)(
Wi

Wi+1

)l (
M

(n)
i

)l+1
(
wi+1

Wi+1

)k−l

≤
(
M

(n)
i

)k(( Wi

Wi+1

)k
+ k · wi+1

Wi+1

(
Wi

Wi+1

)k−1
)

+

k−2∑
l=0

(
k

l

)(
M

(n)
i

)l+1
(
wi+1

Wi+1

)k−l
.

Now taking the expectation and using the fact that ∀x ∈ [0 , 1], (1− x)k + k(1− x)k−1x ≤ 1, we
get, using the induction hypothesis,

E
[
(M

(n)
i+1)k

]
≤ E

[
(M

(n)
i )k

]
+
k−2∑
l=0

(
k

l

)
E
[(
M

(n)
i

)l+1
](

wi+1

Wi+1

)k−l

≤ E
[
(M

(n)
i )k

]
+
k−2∑
l=0

(
k

l

)
n−(l+1)+o(1)(i−1+o(1))k−l.

Using the last display in cascade we get that for all i ≥ n:

E
[
(M

(n)
i )k

]
≤ E

[
(M (n)

n )k
]

+
∞∑
j=n

k−2∑
l=0

(
k

l

)
n−l−1+o(1)j−k+l+o(1)

≤ E
[
(M (n)

n )k
]

+

k−2∑
l=0

(
k

l

)
(n−l−1+o(1))

∞∑
j=n

j−k+l+o(1)

≤ n−k+o(1) +
k−2∑
l=0

(
k

l

)
n−l−1+o(1)n−k+l+1+o(1)

≤ n−k+o(1).

This finishes the proof by induction. This property passes to the limit in i by dominated con-
vergence so, for all n ≥ 1, we have E

[
(M

(n)
∞ )k

]
≤ n−k+o(1). For N an integer and ε > 0,

P
(
M (n)
∞ ≥ n−1+ε

)
≤ nN−NεE

[
(M (n)
∞ )N

]
≤ n−Nε+o(1).
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If we take N large enough, those quantities are summable and so, using the Borel-Cantelli
lemma we get that with probability one, M (n)

∞ ≤ n−1+ε for all n large enough. This completes
the proof.

2.4 Upper-bounds and compactness for the (α, β)-model

In this section, we compute upper-bounds on the Hausdorff dimension of the set L. We first
prove Proposition 2.6, which tells us that, under the condition that λn ≤ n−α+o(1) for some
α > 0 and in a very general setting for the behaviour of the weights (wn), the dimension is
bounded above by 1/α. The techniques used in the proof are very robust, and do not depend on
the geometry of the blocks nor on the sequence of weights. In a second step, in Proposition 2.7,
we handle the more specific case where the underlying block satisfies Hypotheses Hd and that
λn ≤ n−α+o(1) for some 0 < α < 1/d and wn ≤ n−β+o(1) for some β > 1. In the proof of this
proposition, a careful analysis allows us to refine some of the arguments of the previous proof
and prove upper-bounds on the Hausdorff dimension of L that are below the "generic" value
1/α, given by Proposition 2.6. The techniques used for the proof are new and really take into
account the behaviour of the weights and the geometry of the blocks.

2.4.1 Upper-bound independent of the weights and compactness

Notice that under Hd(iii), the underlying block (B,D, ρ, ν) satisfies, for any N > 0,

P (diam(B) ≥ nε) ≤ E
[
diam(B)N

]
n−Nε

,

which is summable if N is large enough. Hence if (Bn) is an i.i.d. sequence with the same law as
B, then using the Borel-Cantelli lemma we have almost surely,

diam(Bn) ≤ noω(1). (2.11)

Proposition 2.6. Suppose that λn ≤ n−α+o(1), with α > 0, and that Wn ≤ nγ for some
γ > 0 for all n. Suppose also that (2.11) holds. Then the tree-like structure T is almost
surely compact and

(i) dH(Tn, T ) ≤ n−α+oω(1),

(ii) dimH(L) ≤ 1
α .

Since our model is invariant by multiplying all the weights by the same constant, we can always
assume that w1 ≤ 1. Hence, the assumption on the weights in Proposition 2.6 is always satisfied
if Wn grows at most polynomially in n, which is the case if Hyp. �α,β , Hyp. �α,1 or Hyp. ©α,β

is fulfilled, for any choice of α > 0 and β ∈ R.

Proof of Proposition 2.6. We start with point (i). First,

dH(T2i , T2i+1) ≤ sup
2i+1≤k≤2i+1

λk diam(Bk) + sup
2i+1≤k≤2i+1

d(ρk, T2i).

For any 2i ≤ k ≤ 2i+1−1, the point ρk+1 in the tree is identified with the point Xk, taken under
the measure µ̄k on the tree Tk. From our construction in Section 2.2.2, the point Xk belongs to

47



some bKk , and the couple (Kk, Xk) is sampled with measure µ̄∗k. Bounding the contribution of
every block along the ancestral line with their maximum, we get

d(ρk+1, T2i) = d(Xk, T2i) ≤
(

sup
2i+1≤k≤2i

λk diam(Bk)

)
htT(Kk). (2.12)

Now using Lemma 2.24 in Appendix 2.A.4, we know that there exists a constant C > 0 such
that

∑n
i=1

wi
Wi
≤ C log n. Combining this with (2.10) (which holds for Kk because it has the

same distribution as Jk) and the Markov inequality, we get for any u > 0,

P (htT(Kn) ≥ u log n) ≤ exp ((C(e− 1)− u) log n) = nC(e−1)−u.

The last display is summable in n if we choose u large enough. Hence using the Borel-Cantelli
lemma, we almost surely have htT(Kn) ≤ u log n for n large enough. Hence, in (2.12) we have
htT(Kk) ≤ (2i)o

ω(1), where the symbol oω(1) denotes a random function of i that tends to 0

when i→∞. Combining this with (2.11) and the upper-bound on λn we get,

dH(T2i , T2i+1) ≤ (2i)−α+oω(1).

Replacing i by k and summing the last display over k ≥ i,
∞∑
k=i

dH(T2k , T2k+1) ≤ (2i)−α+oω(1),

hence the sequence of compact sets (T2i) is a.s. a Cauchy sequence for Hausdorff distance between
compacts of the complete space T . So the sequence (Tn)n≥1 is also Cauchy because of the
increasing property of the construction, and T is then almost surely compact. Moreover we
have, a.s.

dH(T2i , T ) ≤ (2i)−α+oω(1),

and this entails (i). Remark that since ht(T (bn)) ≤ dH(Tn−1, T ), this implies that a.s. we have

ht (T (bn)) ≤ n−α+oω(1). (2.13)

We now prove point (ii). Let ε > 0. From (2.13), the collection of balls B(ρn, n
−α+ε), for

n ≥ N , where N is an arbitrary number, is a covering of L whose maximal diameter tends to 0

as N →∞. Besides, if we fix δ, for N large enough, and s > 1
α−ε , we have:

Hδs(L) ≤
∞∑
n=N

diam(B(ρn, n
−α+ε))s ≤

∞∑
n=N

2sn(−α+ε)s −→
N→∞

0.

Hence for all such s, we have Hs(L) = 0 and so dimH(L) ≤ 1
α−ε . Letting ε → 0 finishes the

proof.

2.4.2 Upper-bound for α < 1/d and β > 1

Now let us study the specific case where the blocks satisfy Hypothesis Hd and that λn ≤ n−α+o(1)

for some 0 < α < 1/d and wn ≤ n−β+o(1) for some β > 1. The preceding Proposition 2.6 still
holds but it is not optimal in this specific case. As in the previous proof we construct explicit
coverings of the set L in order to bound its Hausdorff dimension. We construct them using an
iterative procedure, which strongly depends on the dimension d and the exponent β. Starting
from the covering given in the proof of Proposition 2.6, the procedure provides at each step a
covering that is "better" in some sense than the preceding. In the limit, we prove the bound
given in Proposition 2.7, which explicitly depends on β and d.
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Proposition 2.7. Suppose 0 < α < 1
d and β > 1 and that for all n ≥ 1, λn ≤ n−α+o(1)

and wn ≤ n−β+o(1). Suppose also that Hd(iii) and Hd(ii) hold for some d ≥ 0. Then the
Hausdorff dimension of L almost surely satisfies:

dimH(L) ≤ 2β − 1− 2
√

(β − 1)(β − αd)

α
.

For our purposes, we will work with countable sets of balls of T , i.e. sets of the form

R = {B (xi, ri) | ∀i ≥ 1, xi ∈ T , ri > 0} ,

where B(x, r) denotes the open ball centred at x with radius r. Let us introduce some notation.
If R is such a set of balls of T , we say that R is a covering of the subset X ⊂ T if X ⊂ ⋃B∈RB.
We can also define the s-volume of R as

Vols(R) :=
∑
B∈R

diam(B)s.

In this way if the diameters of the balls that belong to R are bounded above by some δ > 0,
and R is a covering of X, then Hδs(X) ≤ Vols(R), see Section 2.A.2 in the Appendix for the
definition of Hδs(X). Also, if R and R′ are collections of balls and R covers X and R′ covers X ′,
then obviously R ∪R′ is a countable set of balls that covers X ∪X ′ and for any s, we have

Vols(R ∪R′) ≤ Vols(R) + Vols(R
′). (2.14)

In what follows, we construct random sets of balls and we prove that they are coverings of our
set L, which allows us to prove upper-bounds on the Hausdorff dimension of L.

An idea of the proof

We briefly explain the idea of the proof before going into technicalities. The goal will be to
provide a covering of each T (bn), for all n large enough. Since from the definition of L, for any
N ≥ 1,

L ⊂
⋃
n≥N
T (bn), (2.15)

then the union over all n large enough of coverings of the T (bn) is indeed a covering of L.
We recall how we derived the upper-bound 1

α for the Hausdorff dimension of L in the proof of
Proposition 2.6 (ii). The idea is to consider for every n ≥ 1, a ball of radius n−α+ε, say centred
at ρn. For n large enough, this ball covers T (bn) by (2.13). Thanks to (2.15), the set of balls
{B(ρn, n

−α+ε) | n ≥ N}, for any N ≥ 1, is a covering of L.
For β ≤ 1, this covering is good because, as a block of index n has relative weight wn/Wn

which can be of order up to n−1+o(1) when it appears, the indices of the first blocks that are
glued on bn can have also an index of the order of n, and so a height of order up to n−α. On the
contrary, if β > 1, we will see that the first block to be grafted on bn has index roughly of order
nβ , and so a height at most of order n−αβ , which is very small compared to n−α. This gives us
a hint that we can provide a "better" covering using a big number of smaller balls to cover bn
instead of just a "big" one, see Figure 2.4. We will use this rough idea to provide an algorithm
that will construct finer and finer (random) coverings. Let us fix β > 1 from now on and take
s > d, and explain informally how the algorithm works.
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bn

T (bk1)

T (bk2)

(a) The substructure T (bn)

bn

T (bk1)

T (bk2)

n−αγ

(b) A covering of bn with small balls

bn

T (bk1)

T (bk2)

(c) The remaining substructures are covered
using the preceding step

Figure 2.4 – Explanation of Step 2 of the algorithm

Goal: At each step i of the algorithm, we want to construct for all n ≥ 1 a set of balls Rsn,i
such that, for n large enough, this set of balls is a covering of T (bn). Such a set of balls Rsn,i
will have an s-volume of roughly nfi(s), say. From step to step, we try to lower the s-volume of
the set of balls constructed by the algorithm, which corresponds to lowering this exponent fi(s).
Whenever we manage to get an exponent below −1, we stop the algorithm. We will see that it
implies that the Hausdorff dimension of L is lower than or equal to s.

Step 1: The first step of the algorithm is deterministic and corresponds to what we did
in the proof of Proposition 2.6. For each n we take a ball centred at ρn of radius roughly n−α

(in fact n−α+ε but let us not consider these technicalities for the moment). As seen before, for
n large enough, it is a covering of T (bn). The s-volume of this covering is then of order n−αs.
Denote f1(s) = −αs. If f1(s) < −1, stop. Otherwise, proceed to step 2.

Step 2: As represented in Figure 2.4a, decompose T (bn) as

T (bn) = bn ∪
⋃

bk→bn

T (bk).

Since the first block grafted on the block bn typically has an index that is very large compared
to n, we design a covering using smaller balls. We fix γ > 1 and decide to cover bn with balls
of size n−αγ , so that the blocks (and their descending substructure) of index > nγ are included
in these balls, see Figure 2.4b. Since the blocks have dimension d, this covering uses roughly(
n−α

n−αγ

)d
balls, each with s-volume n−αγs. So the total volume used is around n−αd+αγd−αγs.

But doing so, we forgot to cover the blocks bk such that bk → bn and k ≤ nγ . To take
care of them, we use the preceding step of the algorithm and cover each of them with a ball of

50



radius k−α, see Figure 2.4c. Recalling that s ≤ 1/α, we get that in expectation, these balls have
a s-volume of order

nγ∑
k=n+1

P (bk → bn) k−αs ≈ n−β
nγ∑

k=n+1

k−αs ≈ n−β+γ(1−αs).

Hence, the total s-volume used to cover T (bn) has order nmax(−β+γ(1−αs),−αd+αγd−αγs). Since we
want to construct a covering having the smallest possible volume, we can optimize on γ the last
exponent. Under our assumptions, one can check that it is minimal if we take γ := β−αd

1−αd > 1.
We then get

max(−β + γ(1− αs),−αd+ αγd− αγs) =
−αd+ αβd− αβs+ α2ds

1− αd := f2(s).

We can check that the new exponent f2(s) is smaller than f1(s) = −αs. Hence we can cover
T (bn) with balls using a total s-volume of a lower order than the preceding step. If f2(s) < −1,
stop. Otherwise, proceed to step 3.

Step i: Now we recursively repeat the preceding step. Thanks to step i− 1, we know that
we can provide a covering of T (bn) for any n, using an s-volume of approximately nfi−1(s). Now
we fix a number γ > 1 and we cover the block bn with balls of radius n−αγ . As in step 2, this
covering has a s-volume of order n−αd+αγd−αγs. Then we take care of the bk such that bk → bn
and k < nγ . To cover them we use step i− 1, which ensures that we can do that for each k with
an s-volume of roughly kfi−1(s). Hence the expectation on the s-volume for all these balls is, if
s is such that fi−1(s) ≥ −1,

nγ∑
k=n+1

P (bk → bn) kfi−1(s) ≈ n−β
nγ∑

k=n+1

kfi−1(s) ≈ n−β+γ(1+fi−1(s)).

We then choose the optimal γ > 1 that minimizes the maximum of the exponents

max(−αd+ αγd− αγs,−β + γ(1 + fi−1(s))).

We denote the value for which the minimum is obtained by γi(s), which depends on the parameter
s. The first exponent is linearly decreasing with γ, the other one is linearly increasing, and their
value for γ tending to 1, satisfy −αs > −β+1+fi−1(s). Hence, the value of γi(s) is the value for
which the two of them are equal, and this value is strictly greater than 1. We call this minimal
exponent fi(s). If fi(s) < −1, stop. Otherwise, proceed to step i+ 1.

Upper-bound on Hausdorff dimension Now, suppose s is such that fi(s) is well-defined
and fi(s) < −1, for some i ≥ 1. If we cover every T (bn) using the covering provided by step
i of the algorithm, then the union of all those coverings covers L. Furthermore, we only need
to cover all the T (bn) for n sufficiently large to cover L, so we can have a covering of L using
arbitrarily small balls. Hence we get that for all δ > 0, we have Hδs(L) <

∑∞
n=1 n

fi(s) <∞ and
so Hs(L) <∞, which proves that

dimH(L) ≤ s.

This rough analysis is turned into a rigorous proof in what follows. We begin with elementary
definitions and calculations that arise from what precedes.
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Study of a sequence of functions

We begin by recursively defining the sequence of functions (fi)i≥1, together with a sequence
(si)i≥1 of real numbers.

Definition-Proposition 2.8. We set s0 := ∞. We define a sequence (fi)i≥1 of functions as
follows. We set

∀s ∈ [d ,∞), f1(s) := −αs,

and set s1 := 1
α . Then for all i ≥ 1, we recursively define

∀s ∈ [d , si], fi+1(s) :=
α(−d+ βd− βs− fi(s)d)

1 + fi(s) + αs− αd .

Define si+1 as the unique solution to the equation fi+1(s) = −1.

Before proving the validity of this definition, let us state some properties of this sequence of
functions:

Proposition 2.9. The following properties are satisfied:

(i) For all i ≥ 1, the function fi is continuous, strictly decreasing, and fi(d) = −αd.

(ii) For all i ≥ 1, for all s ∈ (d , si], we have fi+1(s) < fi(s).

(iii) Let s∞ :=
2β−1−2

√
(β−1)(β−αd)

α . Then we have for all s ∈ [d , s∞),

fi(s) −→
i→∞

f∞(s),

where

f∞(s) =
−(1 + αs) +

√
1 + 2αs+ α2s2 − 4αd+ 4αβd− 4αβs

2
.

(iv) For all s ∈ [d , s∞), we have f∞(s) > −1.

(v) The sequence (si)i≥1 is strictly decreasing and

si −→
i→∞

s∞.

(vi) For all i ≥ 1, we have fi+1(si) < −1.

Proof. We define the function F on the set
{

(s, x) ∈ R2
∣∣ d ≤ s ≤ 1

α , x > αd− αs− 1
}
by

F (s, x) =
α(−d+ βd− βs− dx)

1 + x+ αs− αd .

We have for all s > d and all x > αd− αs− 1,

∂xF (s, x) =
α(β − αd)(s− d)

(1 + x+ αs− αd)2
> 0.

This shows that for all s > d, the function F (s, ·) is strictly increasing, and also strictly concave
since the derivative is strictly decreasing.
From these facts we can show by induction on i the points (i) and (ii) of Proposition 2.9, together
with the validity of the definition of fi and si, in Definition-Proposition 2.8.
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• For i = 1, the function f1 is well-defined, s1 is indeed the unique solution to f1(s) = −1

and the point (i) is satisfied. Moreover, f2(s) is well-defined for s ∈ [d , s1] by f2(s) = F (s,−αs)
and for all s ∈ (d , s1), we have

F (s,−αs) + αs =
α(β − 1)(d− s)

1− αd < 0,

which proves that (ii) holds for i = 1.
• By induction, if fi and si are defined up to some i ≥ 1 and satisfy (i), then one can verify

that for all s ∈ [d , si], the function fi+1 is well-defined by the formula:

fi+1(s) = F (s, fi(s)).

From the monotonicity of F (s, ·) and fi, this function is continuous and strictly decreasing. One
can check that F (d, x) = −αd for any x > −1 so fi+1 satisfies (i). Then, if i = 1, the initialisation
already gives us that (ii) holds. Otherwise, if i ≥ 2, then using the induction hypothesis, for all
s ∈ (d , si−1] we have fi(s) < fi−1(s). Using that F (s, ·) is strictly increasing for s > d we get
that for all s ∈ (d , si], fi+1(s) < fi(s), and so (ii) holds. Since fi+1 is continuous and strictly
decreasing and that fi+1(d) > −1 and fi+1(si) < fi(si) = −1, then si+1 is well-defined. This
finishes our proof by induction.

Let us study at fixed s > d the equation F (s, x) = x. We get the following second order
equation:

x2 + x(1 + αs) + (αd− αβd+ αβs) = 0,

for which the discriminant is ∆s = 1 + 2αs+ α2s2 − 4αd+ 4αβd− 4αβs. We can evaluate this
quantity at d and at 1

α . We get

∆d = (αd− 1)2 > 0 and ∆1/α = 4(β − 1)(αd− 1) < 0.

We can check that it vanishes exactly at s = s∞ so that in the end, ∆s is strictly positive on
[d , s∞), null at s∞ and strictly negative on (s∞ ,

1
α ]. Hence, the function F (s, ·) has 2 (resp. 1,

resp. 0) fixed points on the corresponding intervals.
The convergence (iii) is a consequence of the fact that for s ∈ [d , s∞), the function F (s, ·) is

strictly increasing and concave, has exactly two fixed points and that the initial value f1(s) is
greater than the smallest fixed point. This proves the convergence of the sequence fi(s) towards
the greatest fixed point of F (s, ·), the value of which can be computed using the equation above.
The property of the limit (iv) can be checked by proving that for all s ∈ [d , s∞], we have
f∞(s) ≥ f∞(s∞) =

√
(β − 1)(β − αd)− β > −1.

Let us prove the point (v). According to property (ii), we have fi(si+1) > fi+1(si+1) = −1,
and since fi is decreasing, we get si+1 < si. Hence the sequence (si)i≥1 is strictly decreasing,
bounded below by d, so it converges. Now let s > s∞. If the sequence (fi(s))i≥1 was well-defined
for all i ≥ 1, then for all i ≥ 1 we would have fi(s) > −1, so it would be decreasing, bounded
below, hence it would have a limit, which would be a fixed point of F (s, ·). It is impossible since
F (s, ·) has no fixed point, so the sequence is not well-defined for all i ≥ 1 and so for i large
enough, s > si. We conclude that limi→∞ si ≤ s∞. If we had limi→∞ si < s∞, then it would
contradict the property (iv). We conclude that indeed limi→∞ si = s∞.

The last property (vi) follows from property (ii). Indeed, we have fi+1(si) < fi(si) = −1.

Construction of the coverings

Let us provide a rigorous proof of our upper-bound, which follows the heuristics that we derived
in the beginning of the section. Here, we distinguish two types of negligible functions, on(1) and
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oε(1). A function denoted on(1) (resp. oε(1)) is negligible as n → ∞ (resp. as ε → 0) and does
not depend on ε (resp. on n).

Proposition 2.10. Fix i ≥ 1 and s ≤ si−1. For all ε > 0, we can construct a set of balls
Rs,εn,i simultaneously for all n ≥ 1, such that the following holds.

(i) Almost surely, for n large enough, Rs,εn,i covers T (bn).

(ii) We have
E
[
Vols(R

s,ε
n,i)
]
≤ nfi(s)+on(1)+oε(1).

(iii) The diameter of the balls used are such that max
B∈Rs,εn,i

diam(B) −→
n→∞

0.

We will define the set of balls Rs,εn,i over the block bn and its descendants in an algorithmic way,
and each step of the algorithm only depends on the gluings that happen after time n. The proof
of the upper-bound will directly follow from Proposition 2.10. Let us first state an elementary
result, the proof of which is left to the reader. Note that we allow the function oε(1) to be infinite
for large values of ε.

Lemma 2.11. Let ξ ≥ −1. Then for all γ > 1,

E

[
nγ∑

k=n+1

1{bk→bn}k
ξ+on(1)+oε(1)

]
≤ n−β+γ(ξ+1)+on(1)+oε(1).

Proof of Proposition 2.10. Let s > 0 and ε > 0. We prove the proposition by induction on i.
The first set of balls that we build is the following: for each block bn, we cover the block with a
ball of radius n−α+ε, centred on the point ρn. We write:

Rs,εn,1 = {B(ρn, n
−α+ε)}.

According to (2.13), there exists a random N such that for all n ≥ N , the set Rs,εn,1 covers T (bn).
The diameter of the ball of Rs,εn,1 tends to 0 as n→∞. Besides we have,

E
[
Vols(R

s,ε
n,1)
]
≤ (2n)−αs+εs = nf1(s)+on(1)+oε(1).

The property is thus proved for i = 1.
Let i ≥ 1 and s < si. Let us construct

(
Rs,εn,i+1

)
n≥1

, using the previous step i. We set

γi+1(s) > 1 a positive real number that we will choose later, and ε > 0. We define Rs,εn,i+1 as
follows: it is the union over all the blocks bk for k < nγi(s) that are grafted on the block bn, of
their covering Rs,εk,i of the preceding step, together with the union of a deterministic set of balls
that we define hereafter.

We want to cover bn with balls of radius n−αγi+1(s), which is equivalent to covering Bn with
balls of radius λ−1

n n−αγi+1(s). Under Hypothesis Hd, for any d ≥ 0, using Lemma 2.21 and
Lemma 2.23 in Appendix 2.A.3, we can a.s. find a random collection (xm)1≤m≤Mr(Bn) of points
of Bn such that the balls centred on those points with radius r := λ−1

n n−αγi+1(s) cover Bn, and
such that Mr(Bn) ≤ Nr/4(Bn), where Nr(B) is the minimal number of balls of radius r needed
to cover B.

From the assumption on the sequence (λn), we have r ≥ n−αγi+1(s)+α+on(1). Since Nr(Bn) is
decreasing in r, using Hypothesis Hd(ii) we get that

E
[
Nr/4(Bn)

]
≤ n−αd+αγi+1(s)d+on(1).
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In the end,

Rs,εn,i+1 :=

 ⋃
k≤nγi+1(s):bk→bn

Rs,εk,i

 ∪ {B
(
xm, n

−αγi+1(s)+ε
) ∣∣∣ 1 ≤ m ≤Mr(Bn)

}
.

Remark that for any n ≥ 1, the set of balls Rs,εn,i+1 is independent of the event {bn → bk} for
any k < n. Now we compute the expectation of the s-volume of these sets of balls as follows,
and use the preceding remark in the third line,

E
[
Vols(R

s,ε
n,i+1)

]
= E

nγi+1(s)∑
k=n+1

1{bk→bn}Vols(R
s,ε
k,i)

+ E [Mr(Bn)]
(

2n(−αγi+1(s)+ε)
)s

≤ E

nγi+1(s)∑
k=n+1

1{bk→bn}E
[
Vols(R

s,ε
k,i)
]+ E

[
Nr/4(Bn)

] (
2n(−αγi+1(s)+ε)

)s

≤ E

nγi+1(s)∑
k=n+1

1{bk→bn}k
fi(s)+on(1)+oε(1)

+ n−αd+αdγi+1(s)+(−αγi+1(s)+ε)s+on(1)+oε(1)

≤ n−β+γi+1(s)(fi(s)+1)+on(1)+oε(1) + n−αd+αdγi+1(s)−αγi+1(s)s+on(1)+oε(1),

where in the last line we used Lemma 2.11 which applies because s ≤ si, hence fi(s) ≥ −1. We
then take γi+1(s) := β−αd

fi(s)+1−αd+αs > 1, which yields

−β + γi+1(s)(fi(s) + 1) = −αd+ αγi+1(s)d− αγi+1(s)s = fi+1(s).

We then have,
E
[
Vols(R

s,ε
n,i+1)

]
≤ nfi+1(s)+on(1)+oε(1).

We can check that maxB∈Rs,εn,i+1
diam(B) −→

n→∞
0, and that almost surely, for n large enough, the

collections of balls Rs,εn,i+1 are indeed coverings of T (bn) thanks again to (2.13). This finishes the
proof.

We can now prove the main proposition of this section.

Proof of Proposition 2.7. Let i ≥ 1. For ε > 0 small enough, we use Proposition 2.10 to get a
set of balls (Rsi,εn,i+1)n≥1, which satisfies

E
[
Volsi(R

si,ε
n,i+1)

]
≤ nfi+1(si)+on(1)+oε(1).

From Proposition 2.9(vi), we have fi+1(si) < −1, so we can choose ε small enough such that
the exponent is eventually smaller than fi+1(si)−1

2 < −1 as n → ∞. Then, for N ≥ 1, we set
RN =

⋃
n≥N R

si,ε
n,i+1. According to Proposition 2.10, the set of balls Rsi,εn,i+1 is a covering of T (bn)

for n large enough and so RN is a covering of L, for all N . Since for any δ > 0, we may choose
N large enough so that maxB∈RN diam(B) < δ, we get

Hsi(L) = lim
δ→0
Hδsi(L) ≤ lim sup

N→∞
Volsi(RN ) ≤ Volsi(R1) < +∞, a.s.

since

E [Volsi(R1)] ≤
∞∑
n=1

n
fi+1(si)−1

2
+on(1) < +∞.
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This shows that the Hausdorff dimension of L satisfies dimH(L) ≤ si, almost surely. In the end,
since the sequence (si)i≥1 tends to s∞, we conclude that almost surely,

dimH(L) ≤ s∞ =
2β − 1− 2

√
(β − 1)(β − αd)

α
.

2.5 Lower-bounds for the (α, β)-model

In this section we compute lower-bounds on the Hausdorff dimension of the set L. We do that by
constructing Borel measures on L that satisfy the assumptions of Frostman’s lemma (Lemma 2.20
in Appendix 2.A.2). In the case where β ≤ 1 we use the natural measure µ̄ on T which arises as
the limit of the normalised weight measures on Tn (see Proposition 2.4). The case β > 1 is a bit
more technical because the natural measure µ̄ is not concentrated on L, so we have to construct
another measure π, that we define as the subsequential limit of some well-chosen sequence of
probability measures on T .

2.5.1 Case β ≤ 1 and use of the measure µ̄

In this subsection, we suppose that β ≤ 1. Under the assumptions of Proposition 2.4, the
sequences of measures µ̄n almost surely converges weakly to a measure µ̄, which is concentrated
on the set of leaves L. The existence of µ̄ will be useful for the proof of the next proposition.
Recall the definition of the random variable H from (2.4) and the fact that the assumptions on
H in the proposition are satisfied under Hypothesis Hd for any d ≥ 0.

Proposition 2.12. Suppose that Hypothesis ©α,β or Hypothesis �α,1 is satisfied. Suppose
also that E

[
H2
]
< ∞ and that P (H > 0) > 0. Then the Hausdorff dimension of L almost

surely satisfies:

dimH(L) ≥ 1

α
.

As we said earlier, the idea is to prove this lower bound on the dimension using Frostman’s
lemma: we will thus prove that almost surely, for µ̄-almost all leaves x ∈ L, we have an upper
bound of the type

µ̄(B(x, r)) ≤ r1/α−ε,

for r sufficiently small, and for all ε. An application of Lemma 2.20 will then finish our proof.
In order to prove this control on the masses of the balls, we will use two lemmas. The first

one allows us to compare µ̄(B(x, r)) with a quantity of the form µ̄(T (bn)) for an appropriate n.
The second one, Lemma 2.5, provides a good control of the quantities µ̄(T (bn)) for large n, such
that the combination of the two will provide the upper bound that we want. Let ε > 0. Recall
from (2.2) the definition of Gε.

Lemma 2.13. Set n0 = 2 and nk+1 = dn1+ε
k e. Under the hypotheses of Proposition 2.12, almost

surely for µ̄-almost every x ∈ L, for all k large enough2, there exists n ∈ Jnk , nk+1K ∩ Gε such
that

x ∈ T (bn) and d(x,ρn) ≥ n−α−2ε.

Proof. Note that in our setting, the hypothesis of Proposition 2.4 holds and so the random leaf
Y constructed in Section 2.3 is defined a.s. Also, according to Proposition 2.4, conditionally

2The threshold depends on the realisation and on x.
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on (T , µ̄), the point Y has distribution µ̄. So it suffices to prove that the lemma holds for the
random leaf Y . We recall

d(Yn, Ym)
law
=

n∑
k=m+1

λkHk1{Uk≤ wk
Wk

} and Y = lim
n→∞

Yn.

Let us introduce a constant c > 0 and set

p := P (H > c) .

For β < 1, thanks to our assumptions, we can fix c such that p is non-zero. We then have

P
(
∀i ∈ Jnk , nk+1K ∩Gε, Ui >

wi
Wi

or Hi < c

)
=

n1+ε
k∏

i=nk
i∈Gε

(
1− p wi

Wi

)

= exp

n1+ε
k∑

i=nk
i∈Gε

log

(
1− p wi

Wi

)

≤ exp

−pn
1+ε
k∑

i=nk
i∈Gε

wi
Wi


≤

Lem.2.25
exp (−pCε log(nk)) .

To write the last line we use Lemma 2.25 in the Appendix and we can see that the last display
is summable over k.

For the case β = 1, Hypothesis �α,1 allows us to write

P
(
∀i ∈ Jnk , nk+1K ∩Gε, Ui >

wi
Wi

or Hi < c

)
≤ exp (−pf(k) log log log(nk)) ,

with a function f(k) tending to infinity. Since nk ≥ 2(1+ε)k , then log log log(nk) ≥ (1+o(1)) log k

and the last display is also summable in k. In both cases, an application of the Borel-Cantelli
lemma shows that we have almost surely, for k large enough,

∃n ∈ Jnk , nk+1K ∩Gε, Un ≤
wn
Wn

and Hn ≥ c.

Since n ∈ Gε, we have λn ≥ n−α−ε. Combined with the fact that Hn ≥ c we get

d(ρn, Y ) ≥ λnHn ≥ cn−α−ε ≥ n−α−2ε, for n (or equivalenly k) large enough.

Proof of Proposition 2.12. Let ε > 0. Let us fix a realisation of T and a leaf x ∈ L such that
the conclusions of Lemma 2.13 and Lemma 2.5 hold. Note that thanks to Hypothesis ©α,β or
Hypothesis �α,1, the condition of application of Lemma 2.5 are fulfilled. From the definition of
nk+1 we have n1+ε

k < nk+1 ≤ n1+ε
k + 1 and so nk+1 =

k→∞
n

1+ε+o(1)
k . We know from Lemma 2.13

that for all k large enough, there exists n ∈ Jnk , nk+1K such that x ∈ T (bn) and

d(ρn, x) ≥ n−α−2ε ≥ n−α−2ε
k+1 ≥ n(1+ε+o(1))(−α−2ε)

k .
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So if we take k large enough and r ∈ [n−α−2ε
k+2 , n−α−2ε

k+1 ), then

µ̄(B(x, r)) ≤ µ̄(T (bn)) ≤
Lem. 2.5

n−1+ε ≤ n−1+ε
k = n

−1+ε

(1+ε)2
+o(1)

k+2

≤
(
r
−1
α+2ε

)−1+ε
1+ε

+o(1)

≤ r 1
α

+g(ε)+o(1),

with a function g tending to 0 as ε→ 0.
Since the last display is true almost surely for all r sufficiently small, we use Lemma 2.20

(Frostman’s lemma) to deduce that the Hausdorff dimension of L is a.s. larger than 1
α + g(ε).

Taking ε→ 0 we get that almost surely,

dimH(L) ≥ 1

α
.

2.5.2 Case β > 1 and construction of measures on the leaves

The following section is devoted to prove the following proposition.

Proposition 2.14. Suppose that Hypothesis �α,β is satisfied and that the block B satisfies
Hypothesis Hd for some d ≥ 0. Then the Hausdorff dimension of L almost surely satisfies

dimH(L) ≥ 2β − 1− 2
√

(β − 1)(β − αd)

α
, if α <

1

d
,

≥ 1

α
otherwise.

In the case β > 1, we cannot use the natural measure µ̄ to get a good lower bound on the
Hausdorff dimension of L since, as stated in Proposition 2.4, the measure µ̄ does not charge the
leaves. So the goal of this subsection is to artificially construct a probability measure concentrated
on the leaves that will give us, using Frostman’s lemma, the appropriate lower bound on the
Hausdorff dimension, that is, the one matching with the upper bound derived in Section 2.4.
The measure will be obtained as a sub-sequential limit of a sequence of measures concentrated
on the blocks, and will only charge a strict subset of L.

First, let us fix some notation. Recall the definition of Gεn in (2.3). It follows from Hypoth-
esis �α,β that there exists a function h(n) tending to 0 such that #G

h(n)
n = n1+o(1). We choose

such a function h and let
Gn := Gh(n)

n . (2.16)

We will also use an increasing sequence of positive integers (nk)k≥0, such that for all k ≥ 0, we
have nk+1 = dnγke, with a fixed γ > 1, that we will optimise later. Also we suppose n0 to be very
large, with conditions that we will make explicit in what follows. For all n ≥ 1, we set

bn :=

{
x ∈ bn

∣∣∣∣ dn(ρn, x) >
ht(bn)

2

}
,

the "upper-half" of block bn. For technical reasons, we will only keep the blocks that behave rea-
sonably well in our construction, see the forthcoming property (Pd), introduced in Section 2.5.2.
We recursively define some random sets of integers. Let

G̃n0 = {n ∈ Gn0 | Bn satisfies property (Pd)} , (2.17)
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and for k ≥ 0,

G̃nk+1
=
{
n ∈ Gnk+1

∣∣∣ Bn satisfies property (Pd); ∃i ∈ G̃nk , bn → bi, Xn−1 ∈ bi

}
. (2.18)

We then define for all k ≥ 0,
Bk =

⋃
n∈G̃nk

bn.

In other words, B0 is the union of all the upper-halves of the blocks bn, for n in Gn0 for which
Bn behaves well, and Bk+1 is defined to be the union of all the upper-halves of the blocks of
index n ∈ Gnk+1

that are grafted directly on Bk, and such that Bn behaves well. Note that for
the moment, Bk can be empty.

We define the measure
∑

n∈G̃nk
νn and refer to it as themass measure3 on the k-th generation.

To simplify notation we denote it by | · |. We do not index it by k since the index for which we
consider it is always clear from the context. We also define a sequence (πk)k≥0 of probability
measures on Bk by

πk :=
| · ∩ Bk|
|Bk|

,

the normalised mass measure on Bk. Note that the sequence (πk) is only well-defined on the
event where Bk has non-zero mass for all k. In what follows we will ensure that it is the case
for an event of strictly positive probability and only work conditionally on this event. Remark
that, still conditionally on this event and on the event that T is compact, which has probability
1, the sequence (πk)k≥0 is a sequence of probability measures on a compact space, hence it
admits at least one subsequential limit π for the Lévy-Prokhorov distance. We can check using
[41, Lemma 17], which is essentially an application of the Portmanteau theorem, that π is
concentrated on

⋂
k≥0 T (Bk) ⊂ L.

Idea of the proof

Let us briefly explain how the measure π that we just constructed enables us to derive the
appropriate lower bound for the Hausdorff dimension. We give the intuition for α < 1/d; the
idea for α > 1/d is very similar. We will be very rough for this sketch of proof and we keep the
notation introduced above. Let us here forget that some blocks may not satisfy (Pd), and that
we only deal with half-blocks.

Number of blocks in Bk Suppose that the number of blocks in Bk evolves like a power of nk,
say nak. Then the total weight of Bk is |Bk| ≈ nakn

−β
k , because all the blocks in Bk have weight

≈ n−βk . Since the probability that any block with index in Jnk+1 , 2nk+1K is grafted on Bk is
roughly |Bk|, and since the number of blocks in Bk+1 is roughly nak+1, we have

nγak ≈ nak+1 ≈ |Bk| · nk+1 ≈ nakn−βk nγk .

Hence we have a = γ−β
γ−1 , and so |Bk| ≈ n

γ(1−β)
γ−1

k .

3It may appear more natural to define the mass measure as simply
∑∞
n=1 νn which gives T a finite mass.

However, this definition would not have the property that for every set S ⊂ bn, we have |S| = νn(S). Indeed,
when blocks can have an atom at their root, which is possible in the case d = 0, the contribution of the mass
added by the roots of future blocks should be counted in |S|.
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Estimation on π For each k ≥ 0, the set Bk is made of blocks of size ≈ n−αk . Let us suppose
that the quantities of the form π(B(x, r)) are well-approximated by πk(B(x, r)), whenever r ∈
[n−αk+1 , n

−α
k ]. For x close to Bk, such a ball typically intersects only one block of Bk, with weight

roughly n−βk , and since the block is d-dimensional, the ball covers a proportion
(
r/n−αk

)d of this
block. So |B(x, r) ∩ Bk| ≈ n−βk

(
r/n−αk

)d, and
π(B(x, r)) ≈ πk(B(x, r)) =

|B(x, r) ∩ Bk|
|Bk|

≈ rdn−β+αd−γ β−1
γ−1

k

≈ rdn
1

γ−1
(γ(αd−1)+β−αd)

k .

Then, if α < 1/d, the last exponent is negative for γ large enough. For such γ, using r > n−αk+1 ≈
n−αγk yields

π(B(x, r)) ≤ rd−
1

αγ(γ−1)
(γ(αd−1)+β−αd)

. (2.19)

Optimisation We then choose γ such that the exponent d− γ(αd−1)−αd+β
αγ(γ−1) is maximal. We get

the value 2β−1−2
√

(β−1)(β−αd)

α which matches our upper-bound.

Plan of the proof Our goal is now to make these heuristics rigorous. First we will make
some precise estimation on how the mass of the blocks with indices in G̃nk is spread on subsets
of Tnk−1. Then we will decompose each block of each Bk into subsets that we call fragments
for which our preceding estimation holds. After that, we use this decomposition to control the
behaviour of (πk), and also how the measures πk can approximate the limiting measure π. At
the end we conclude by optimising over the parameters.

We will distinguish the two cases d = 0 and d > 0 and mostly work on the latter. We then
explain quickly how the proof can be adapted to d = 0, in which fewer technicalities are involved.

Mass estimations

Before proving our main proposition, we have to state some technical lemmas that will allow us
to control how regularly the mass of Bk+1 is spread on Bk. Let us now define the property (Pd),
in a different way depending whether d = 0 or d > 0. Let C > 0 be a positive number and recall
the definition of (?r0) in Hypothesis Hd(i). For d > 0 we say that a pointed compact metric
space endowed with a probability measure (b,d,ρ,ν) satisfies (Pd) iff

C−1 ≤ ht(b) ≤ C,

ν

({
x ∈ b

∣∣∣∣ d(ρ, x) ≥ ht(b)

2

})
≥ C−1,

(b,d,ρ,ν) satisfies (?r0) with r0 = C−1.

(Pd)

For d = 0 we say that (b,d,ρ,ν) satisfies (P0) iff b is finite and
C−1 ≤ ht(b) ≤ C,
#b ≤ C,
∀x ∈ b, ν ({x}) ≥ C−1.

(P0)

In any case, under Hypothesis Hd(i), for any d ≥ 0, we can choose C such that the underlying
block (B,D, ρ, ν) satisfies (Pd) with a positive probability p > 0, i.e.,

p = P (B satisfies (Pd)) > 0.
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From now on we fix such a constant C. We also set M := ν
({
x ∈ B

∣∣∣ D(ρ, x) ≥ ht(B)
2

})
, and

m := E [M | B satisfies (Pd)]. We also denote by M a random variable with the law of M condi-
tionally on the event {B satisfies (Pd)}.

Lemma 2.15. Let S be a subset of some bi with i ≤ nk − 1, measurable with respect to Fnk−1,
the σ-field generated by the blocks and the gluings up to time nk − 1. Let χ(S) be the total mass
of the union of the sets

{
bn
∣∣ n ∈ Gnk , bn → bi, Xn−1 ∈ S, Bn satifies (Pd)

}
, namely, the total

mass of the half-blocks that are grafted on S with index in Gnk , and such that the corresponding
blocks satisfy property (Pd). Then for all x ∈ [0 , 1],

P
(∣∣χ(S)− ak|S|

∣∣ > xak|S|
∣∣ Fnk−1

)
≤ 2 exp

(
−x2n

1+o(1)
k |S|

)
,

where ak := pm
∑
i∈Gnk

wi
Wi−1

is such that E [χ(S) | Fnk−1] = ak|S| and the function o(1) in the

right-hand side does not depend on x.

This lemma roughly states that, for every subset S ⊂ bi for i ∈ Gnk , if the subset has enough
mass to attract a substantial number of the blocks coming between time nk and 2nk then we
have a good control on how the mass of Bk grafted on S can deviate from its expected value.

Proof. First we write χ(S) as

χ(S) =
∑
i∈Gnk

1{
Ui≤ |S|

Wi−1

}1{Bi satisfies (Pd)}Miwi,

where the (Ui) are independent uniform variables on [0 , 1], independent of everything else. Then
we can compute

E [χ(S) | Fnk−1] =
∑
i∈Gnk

|S|
Wi−1

pwi · E [Mi | Bi satisfies (Pd)]

= |S| · pm

 ∑
i∈Gnk

wi
Wi−1

 = |S| · ak.

Let us bound the exponential moments of χ(S):

E [exp(θχ(S)) | Fnk−1] =
∏
i∈Gnk

(
p|S|
Wi−1

· E
[
eθwiMi

∣∣∣ Bi satisfies (Pd)]+ 1− p|S|
Wi−1

)

=
∏
i∈Gnk

(
1 +

p|S|
Wi−1

(E
[
eθwiM

]
− 1)

)

≤ exp

p|S| ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1)

 ,
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where we have used the inequality ez ≥ 1 + z, in the last line. Now,

E [exp(θ(χ(S)− ak|S|)) | Fnk−1]

≤ exp

p|S| ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1)− θ|S|

∑
i∈Gnk

pmwi
Wi−1


≤ exp

p|S|
 ∑
i∈Gnk

1

Wi−1
(E
[
eθwiM

]
− 1− θmwi)


≤ exp

p|S|
 ∑
i∈Gnk

1

Wi−1
c(θwi)

2

 .

Here we used the fact that for z ∈ [−1 , 1], we have ez ≤ 1 + z + 3z2 and so

E
[
ezM
]
− 1− zE [M] ≤ E

[
1 + zM + 3(zM)2

]
− 1− zE [M] ≤ 3E

[
M2
]
z2 ≤ cz2,

for c a constant. Since we ask that z ∈ [−1 , 1], the computation above is valid if we restrict
ourselves to |θ| ≤ (supi∈Gnk

wi)
−1 = n

β+o(1)
k . Note that we can use this inequality for negative

values of θ. Hence for x ∈ [0 , 1]

P (|χ(S)− ak|S|| > xak|S| | Fnk−1)

≤ P (χ(S)− ak|S| > xak|S| | Fnk−1) + P (−(χ(S)− ak|S|) > xak|S| | Fnk−1)

≤ P
(

exp (θ(χ(S)− ak|S|)) > eθxak|S|
∣∣∣ Fnk−1

)
+ P

(
exp (−θ (χ(S)− ak|S|)) > eθxak|S|

∣∣∣ Fnk−1

)
≤ 2 exp

p|S|
 ∑
i∈Gnk

1

Wi−1
c(θwi)

2

− θxak|S|


= 2 exp

p|S|
 ∑
i∈Gnk

1

Wi−1
(c(θwi)

2 − θxmwi)

 .

Taking θ = xnβ−εk in the last inequality, which is possible for nk large enough, this gives

P
(∣∣χ(S)− ak|S|

∣∣ > xak|S|
∣∣ Fnk−1

)
≤ 2 exp

p|S|x2

 ∑
i∈Gnk

1

Wi−1
(nβ−εk wi)(cn

β−ε
k wi −m)

 .

From our assumptions on the sequence (wn), we have nβ−εk (supi∈Gnk
wi) → 0 and hence

(cnβ−εk wi −m) is eventually smaller than −m
2 , uniformly for i ∈ Gnk . Also 1

Wn
is always greater

than 1
W∞

. Combining this with the last display we get, for nk large enough

P
(∣∣χ(S)− ak|S|

∣∣ > xak|S|
∣∣ Fnk−1

)
≤ 2 exp

(
−x2|S| · pm

2W∞
#Gnk( inf

i∈Gnk
wi)n

β−ε
k

)
≤ 2 exp

(
−x2|S|n1−ε+o(1)

k

)
.

Now for every ε > 0, this inequality is true for nk large enough, so this proves the lemma.

Let us also state another technical lemma, the proof of which is in the Appendix 2.A.4.
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Lemma 2.16. Suppose that Hypothesis �α,β is satisfied. For the sequence (ai) defined in
Lemma 2.15,

k∏
i=1

ai = n
γ(1−β)
(γ−1)

+o(1)

k ,

where the o(1) is considered when k →∞.

Construction of fragments, case d > 0

Fragments of a random block Let us discuss how we can decompose a metric space into a
partition of subsets that we call r-fragments, all of them having a diameter of order r. Suppose
that the random block (B,D, ρ, ν) comes with a sequence of random points (Xn)n≥1, which are
i.i.d. with law ν, conditionally on (B,D, ρ, ν), and that this block satisfies Hypothesis Hd(i), for
some d > 0. The following lemma ensures that in this setting, we can construct a partition
F (B, r) = (f

(r)
i )1≤i≤N of r-fragments of (B,D, ρ, ν), which have approximately equal diameter

and measure. Recall the function ϕ defined in Hypothesis Hd(i), and the notation Nr(B) for the
minimal number of balls of radius r needed to cover B.

Lemma 2.17. Suppose that (B,D, ρ, ν) satisfies Hypothesis Hd(i) for some d > 0. For any
r ∈ [0 , 1], we construct a finite partition of Borel subsets (f

(r)
i )1≤i≤N of the block (B,D, ρ, ν) in

a deterministic way from (B,D, ρ, ν) and the sequence of random points (Xn)n≥1. There exists
two functions ψ and φ defined on the interval [0 , 1], which tend to 0 at 0 such that the following
holds almost surely on the event {(B,D, ρ, ν) satisfies (?r0)}, for any r0 > 3r:

(i) For all 1 ≤ i ≤ N ,

diam(f
(r)
i ) ≤ 2r and

(r
4

)d+ϕ(r/4)
≤ ν(f

(r)
i ) ≤ rd−ϕ(r).

(ii) For all r′ < r0/3, we have

∀x ∈ B, #
{

1 ≤ i ≤ N
∣∣∣ B(x, r′) ∩ f (r)

i 6= ∅
}
≤ (r ∨ r′)d+ψ(r∨r′) · r−d+φ(r).

(iii) The (random) number N of fragments satisfies

N ≤ Nr/4 (B) and N ≤
(r

4

)−d−ϕ(r/4)
.

In this chapter, we use this construction on (Bn,Dn, ρn, νn), assuming that for all n ≥ 1,
a sequence (Xn,j)j≥1 is defined on the same probability space and that this sequence is i.i.d.
with law νn, conditionally on (Bn,Dn, ρn, νn). For any n ≥ 1 and r > 0, we denote F (Bn, r) ={
f

(r)
i

∣∣∣ 1 ≤ i ≤ N
}

the partition of Bn into (random) r-fragments which is given by the lemma.
The proof of Lemma 2.17 can be found in the Appendix.

Decomposition of bn into fragments Fix a parameter η ∈ (0 , 1
d). We want to decompose

every bn, for n ∈ G̃nk , in fragments of size approximately n−ηk+1. For that, it is sufficient to use
F (Bn, rn) the decomposition of Bn in rn-fragments with rn = (λ−1

n · n−ηk+1), which is given by
Lemma 2.17. Let us emphasise that these fragments are constructed as subsets of Bn, but we
consider them as subsets of bn in what follows, without changing notation. We define the set
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Fk is as the collection of all these fragments coming from every bn with n ∈ G̃nk . We have of
course ⋃

f∈Fk

f =
⋃

n∈G̃nk

bn. (2.20)

In our construction, we decided to keep only the blocks that were sufficiently well-behaved with
respect to some properties that will be useful now. Recall the definition of the random set G̃nk
in equations (2.17) and (2.18). Remark that, from the definition of Gnk , we have,

ck := min
n∈Gnk

(
λ−1
n · n−ηk+1

)
= n

α−γη+o(1)
k and Ck := max

n∈Gnk

(
λ−1
n · n−ηk+1

)
= n

α−γη+o(1)
k .

If γ and η are such that γ > α
η , then the last exponent is strictly negative, and so we can take n0

sufficiently large so that Ck < C−1/3, for all k ≥ 0. For n ∈ G̃nk , we know that Bn satisfies (?r0)
with r0 = C−1. Hence, for all n ∈ G̃nk , we have 3rn ≤ r0, and so the conclusions of Lemma 2.17
hold simultaneously for all the decompositions F (Bn, rn) for n ∈ G̃nk .

Control on the mass and number of fragments Recall the function h that we defined in
(2.16), which tends to 0 at infinity, and the function ϕ specified in Hypothesis Hd(i), which tends
to 0 at 0. Thanks to Lemma 2.17, we get, for all f ∈ Fk such that f ⊂ bn,

|f | = wn · νn(f) ≥
(2.16), Lem.2.17(i)

n
−β−h(nk)
k · (λ−1

n · n−ηk+1)d+ϕ(n
−αd+α+o(1)
k )

≥ n−β−h(nk)
k · cd+ϕ(Ck)

k .

Note that the last quantity is deterministic and only depends on nk, and so almost surely,

min
f∈Fk

|f | ≥ n−β−h(nk)
k · cd+ϕ(Ck)

k

≥ n−ηdγ+αd−β+o(1)
k = n

−ηd+ 1
γ

(αd−β)+o(1)

k+1 . (2.21)

Note that a similar computation using upper-bounds instead of lower-bounds also yields, almost
surely,

max
f∈Fk

|f | ≤ n−β+o(1)
k · Cd−ϕ(ck)

k ≤ n−ηdγ+αd−β+o(1)
k , (2.22)

where the right-hand side is deterministic. Also, from Lemma 2.17(iii), we get that the number of
fragments obtained from the block bn by that construction is bounded above by (rn/4)−d−ϕ(rn/4),
with rn = λ−1

n · n−ηk+1 = n
α−γη+o(1)
k , and so at the end, the total number of fragments in Fk is

bounded above by a deterministic quantity which grows at most polynomially in nk.

Construction of fragments, case d = 0

In this case, we will consider the finite number of points of each block as a decomposition into
fragments, hence we set Fk =

{
{x}

∣∣∣ x ∈ bn, n ∈ G̃nk
}
. Note that

∀f ∈ Fk, f ⊂ bn, |f | = wn · νn(f) ≥
(2.16), (P0)

n
−β−h(nk)
k · C−1,

and so the equations (2.21) and (2.22) are still valid when d = 0, and also the number of fragments
in Fk grows linearly, hence polynomially in nk.
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Using the mass estimates

Recall that we fixed a parameter η ∈ (0 , 1
d). We let 0 < ε < (1 − ηd). If γ and η are such that

γ > β−αd
1−ηd−ε , then −ηd + 1

γ (αd − β) > −1 + ε. And so we get from (2.21) that minf∈Fk |f | ≥
n
−1+ε+o(1)
k+1 . We can apply the result of Lemma 2.15 for every fragment f ∈ Fk, with x = n

−ε/4
k+1 ,

P
(∣∣χ(f)− ak+1|f |

∣∣ > n
−ε/4
k+1 ak+1|f |

∣∣∣ Fnk+1−1

)
≤ 2 exp

(
−
(
n
−ε/4
k+1

)2
n

1+o(1)
k+1 min

f∈Fk
|f |
)

≤ 2 exp
(
−n−ε/2k+1 n

1+o(1)
k+1 n

−1+ε+o(1)
k+1

)
≤ 2 exp

(
−nε/4k+1

)
for nk+1 large enough.

For that, again, we impose that n0 is large enough such that the last display is true for all k and
for all f . Now we can sum this over all fragments,

E

 ∞∑
k=0

∑
f∈Fk

P
(∣∣χ(f)− ak+1|f |

∣∣ > n
−ε/4
k+1 ak+1|f |

∣∣∣ Fnk+1−1

)
≤
∞∑
k=0

E [#Fk] · 2 exp
(
−nε/4k+1

)
−→
n0→∞

0,

since (#Fk) is almost surely bounded by a deterministic quantity which grows at most polyno-
mially in nk. The same is true for the Bk, i.e.,

E

[ ∞∑
k=0

P
(∣∣χ(Bk)− ak+1|Bk|

∣∣ > n
−ε/4
k+1 ak+1|Bk|

∣∣∣ Fnk+1−1

)]
−→
n0→∞

0.

In the rest of Section 2.5.2, we will fix n0 large enough and work on the event of large
probability E on which we have, for all k ≥ 0 and for all f ∈ Fk∣∣χ(Bk)− ak+1|Bk|

∣∣ ≤ n−ε/4k+1 ak+1|Bk| and
∣∣χ(f)− ak+1|f |

∣∣ ≤ n−ε/4k+1 ak+1|f |. (2.23)

Remark that thanks to Section 2.2.4, giving a lower bound of the Hausdorff dimension on a set
of positive probability is enough to prove that the bound holds almost surely. Note that this
construction depends on the parameters η and ε and γ. The parameters must satisfy

η ∈ (0 ,
1

d
), ε ∈ (0 , 1− ηd), γ > max

(
α

η
,
β − αd

1− ηd− ε

)
, (2.24)

and we can choose them in this particular order.

Control on the limiting measure

In this section, the values of η and ε and n0 are fixed in such a way that the construction of the
previous section holds. Note that everything in the section implicitly depends on those values.
On the event E , if we consider a fragment f ∈ Fk, we have a very good control on the values of
πi(T (f)) for i ≥ k. Indeed set

c1 =
∞∏
k=0

(1− n−
ε
4

k+1) and c2 =
∞∏
k=0

(1 + n
− ε

4
k+1).

65



Remark that both c1 and c2 are strictly positive real numbers. Using in cascade the estimations
(2.23) which hold on the event E , we get that for f ∈ Fk and i ≥ k,

|T (f) ∩ Bi| ≤ c2|f |

 i∏
j=k+1

aj

 . (2.25)

In fact we can use the same argument for Bk, which is not empty on the event E . For k large
enough we can write

|Bi| ∈ |Bk|

 i∏
j=k+1

aj

 · [c1 , c2]. (2.26)

Remark that (2.26) combined with Lemma 2.16 yields that almost surely on E ,

n
γ(1−β)
(γ−1)

+o(1)

k ≤ |Bk| ≤ n
γ(1−β)
(γ−1)

+o(1)

k , (2.27)

where the upper and lower-bound are both deterministic. For the normalized mass measure πi
on Bi, we have

πi(T (f)) =
|T (f) ∩ Bi|
|Bi|

≤
(2.25),(2.26)

c2

c1
· |f ||Bk|

.

If π is a sub-sequential limit of the (πk), using Portmanteau theorem (remark that π is concen-
trated on the leaves and the leaves of T (f) belong to the interior of T (f)), we get

π(T (f)) ≤ c2

c1
· |f ||Bk|

.

Then,

max
f∈Fk

π(T (f)) ≤ c2

c1

1

|Bk|
max
f∈Fk

|f |.

We can now write, for all r > 0, x ∈ T ,

π(B(x, r)) ≤
∑

f∈Fk, f∩B(x,r) 6=∅

π(T (f)) ≤ #{f ∈ Fk, f ∩ B(x, r) 6= ∅} ·max
f∈Fk

π(T (f)).

Putting everything together, we get

π(B(x, r)) ≤ #{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2

c1

1

|Bk|
max
f∈Fk

|f |. (2.28)

Control on the number of fragments intersecting a ball

From (2.28), we see that the last thing that we have to estimate is #{f ∈ Fk, f ∩ B(x, r) 6= ∅},
the number of fragments of Fk that have a non-empty intersection with a ball of radius r. Since
the measure π only charges

⋂
k≥1 T (Bk), we are only interested in balls centred around points

belonging to this set. Let us fix some notation again. For all k ≥ 0, we set

∆k := inf {d(x, y) | x ∈ Bk−1, y ∈ Bk} ,

the set distance between levels Bk−1 and Bk, for the integers k for which it is possible. On the
event E , this quantity is well-defined for all k ≥ 1 and the following upper and lower-bounds are
almost surely satisfied

n
−α+o(1)
k =

C−1

2
min
n∈Gnk

λn ≤ ∆k ≤ C max
n∈Gnk

λn = n
−α+o(1)
k . (2.29)

Now let us state a lemma.
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Lemma 2.18. Let x ∈ ⋂k≥1 T (Bk). For k ≥ 0, we denote xk := [x]2nk ∈ Bk. If bn is the block
of Bk such that xk ∈ bn, we have, ∀r ∈ [0 ,∆k],

{f ∈ Fk | f ∩ B(x, r) 6= ∅} ⊂ {f ∈ Fk | f ∩ B(xk, r) ∩ bn 6= ∅} . (2.30)

The proof of this lemma is simple and left to the reader. It tells us is that in fact, if r is small
enough, then all the fragments f ∈ Fk who intersect the ball of centre x and radius r belong to
the same block. This will allow us in the sequel, combined with Lemma 2.17(ii), to bound the
number of fragments involved, which is what we wanted.

Obtaining the lower-bound

In order to get the lower-bound on the Hausdorff dimension of L matching that of the theorem,
we have to distinguish between the case α < 1

d and the case α > 1
d . The case α = 1

d can
be recovered by a monotonicity argument, as seen in Section 2.2.4. Whenever d = 0, we have
1
d = +∞ and only the first case can happen.

Case β > 1 and α < 1/d We use the construction of Section 2.5.2 with η = α. Recall (2.24)
for the admissible parameters of the construction. In this case, if ε is fixed and small enough,
the only condition on γ implied by (2.24) is γ > β−αd

1−αd−ε since γ > α
η reduces to γ > 1, which is

already contained in the previous inequality because β−αd
1−αd−ε > 1. We define

Λk := ∆k ∧
(

minn∈Gnk λn

log nk

)
.

Using (2.29), we get n−α+o(1)
k ≤ Λk ≤ n−α+o(1)

k , almost surely on the event E , where the functions
denoted o(1) in the lower and upper-bound are deterministic functions of k. Here the choice of

1
lognk

is rather arbitrary and we could change it to any quantity that tends to 0 and is no(1)
k as

nk →∞. Now we claim the following:

Lemma 2.19. On the event E, for all k ≥ 0, for any d ≥ 0, almost surely,

∀r ∈ [Λk+1 ,Λk], # {f ∈ Fk | f ∩ B(x, r) 6= ∅} ≤ rd+o(1)n
αγd+o(1)
k . (2.31)

Note that the bounds Λk of the interval on which we consider r are random, but the upper
bound given by (2.31) is deterministic.

Proof. For r ∈ [Λk+1 ,Λk], we have r ≤ Λk ≤ ∆k so using Lemma 2.18, with xk = [x]2nk and n
such that xk ∈ bn, we know that (2.30) holds. In the case d > 0, the fragments of Fk that come
from bn were constructed as fragments of Bn of size rn := λ−1

n n−αk+1. Recall that we denote the set
of these fragments, seen as subsets of Bn, by F (Bn, rn) and denote the point of Bn corresponding
to xk ∈ bn by xk. The analogue of the ball B(xk, r) in Bn is then the ball of centre xk and radius
r′n := λ−1

n r. From our definition of Λk we have

r′n = λ−1
n r ≤ λ−1

n

minn∈Gnk λn

log nk
≤ 1

log nk
−→
k→∞

0,

as well as rn := λ−1
n n−αk+1 = n

α−γα+o(1)
k → 0 when k →∞. Applying Lemma 2.17(ii) yields

# {f ∈ F (Bn, rn) | f ∩ B(xk, rn) 6= ∅} ≤
Lem.2.17(ii)

(rn ∨ r′n)d+ψ(rn∨r′n) · r−d+φ(rn)
n

≤
(
(λ−1
n n−αk+1) ∨ (λ−1

n r)
)d+o(1) · (λ−1

n n−αk+1)−d+o(1)

≤ rd+o(1)n
αγd+o(1)
k ,
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and the last quantity is deterministic. Since any fragment in {f ∈ Fk | f ∩ B(x, r) 6= ∅}
corresponds to a fragment in {f ∈ F (Bn, rn) | f ∩ B(xk, rn) 6= ∅}, the cardinality of
{f ∈ Fk | f ∩ B(x, r) 6= ∅} is almost surely bounded above by the last display, which proves
that (2.31) holds whenever d > 0. In the case d = 0, from our definition of fragments and the
property (P0), we easily have

# {f ∈ Fk | f ∩ B(xk, r) ∩ bn 6= ∅} ≤ C ≤ rd+o(1)n
αγd+o(1)
k ,

and so (2.31) also holds whenever d = 0.

We can compute

π(B(x, r)) ≤
(2.28)

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2

c1
· 1

|Bk|
·max
f∈Fk

|f |

≤
(2.31),(2.27),(2.22)

(rd+o(1)n
αγd+o(1)
k ) · ro(1) · (n

γ(β−1)
(γ−1)

+o(1)

k ) · (n−αγd+αd−β+o(1)
k )

≤ rd+o(1) · n
1

(γ−1)
(γαd−αd+β−γ+o(1))

k

≤ rd−
1

αγ(γ−1)
(γαd−αd+β−γ)+o(1)

.

In the last line we have used that r > Λk+1 ≥ n
−α+o(1)
k+1 = n

−γα+o(1)
k and so nk > r

− 1
αγ

+o(1)

and the fact that γαd − αd + β − γ < 0 because γ > β−αd
1−αd . Let us now maximise the quantity

d− γαd−αd+β−γ
αγ(γ−1) for γ ∈ (β−αd1−αd ,+∞). It is an easy exercise to see that the maximum is attained

at γ̄ =
β−αd+

√
(β−1)(β−αd)

1−αd , with value

2β − 1− 2
√

(β − 1)(β − αd)

α
.

If we fix ε small enough then, the value of γ that maximises the last display satisfies γ > β−αd
1−αd−ε

and so, using this value to construct π, we get that on the event E , for all x ∈ ⋂k≥1 T (Bk),

π(B(x, r)) ≤ r
2β−1−2

√
(β−1)(β−αd)
α

+o(1),

which allows us to conclude using Lemma 2.20.

Case β > 1 and α > 1/d Here we suppose that d > 0. We fix η < 1
d which we suppose to be

very close to 1
d and a small ε > 0 and use the construction of Section 2.5.2 with these values,

which satisfy (2.24) if we take γ > max
(

β−αd
1−ηd−ε ,

α
η

)
.

• For r ∈ [Λk+1 , n
−η
k+1], we apply Lemma 2.19 to get

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} ≤ no(1)
k .

Now we can use the upper-bound (2.28), replacing term by term

π(B(x, r)) ≤
(2.28)

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} · c2

c1

1

|Bk|
max
f∈Fk

|f |

≤
(2.27),(2.22)

n
o(1)
k · c2

c1
n
γ(β−1)
(γ−1)

+o(1)

k n
−ηdγ+αd−β+o(1)
k

≤ n
γ(β−1)
(γ−1)

−γηd+αd−β+o(1)

k .
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Hence, using the fact that r > Λk+1 = n
−γα+o(1)
k and that the exponent in the last display is

negative, we get

π(B(x, r)) ≤ r−
1
γα
·( γ(β−1)

(γ−1)
−γηd+αd−β)+o(1)

≤ r
ηd
α
− 1
αγ

(
γ(β−1)
(γ−1)

+αd−β)+o(1)
.

• For r ∈ [n−ηk+1 ,Λk], we have once again using Lemma 2.19,

#{f ∈ Fk, f ∩ B(x, r) 6= ∅} ≤ rd+o(1)n
ηd+o(1)
k+1 .

Replacing in (2.28) yields

π(B(x, r)) ≤ rd+o(1)n
ηd+o(1)
k+1 · c2

c1

1

n
γ(1−β)
(γ−1)

+o(1)

k

n
−ηdγ+αd−β+o(1)
k

≤ rd+o(1) · nαd−1+β−1
γ−1

+o(1)

k .

Since r ≤ Λk ≤ n
−α+o(1)
k , we have nk ≤ r−

1
α

+o(1). Since the quantity αd − 1 + β−1
γ−1 is positive,

we can write

π(B(x, r)) ≤ rd+o(1) · r−
1
α

(αd−1+β−1
γ−1

)+o(1)

≤ rd−
αd−1
α
− β−1
α(γ−1)

+o(1)

≤ r
1
α
− β−1
α(γ−1)

+o(1)
.

Now the result is obtained by taking ε→ 0, η → 1
d and γ →∞.

To conclude the proof of Proposition 2.14, we have to prove that in the case α = 1/d, the
dimension of L is bounded below by d. To that end, we use the monotonicity of the Hausdorff
dimension of L, with respect to the scaling factors (λn), proved in Section 2.2.4. Suppose the
sequences (λn) and (wn) satisfy Hypothesis �α,β for α = 1/d. If for some ε > 0, we set λ′n = n−ελn
for all n ≥ 1, then the sequences (λ′n) and (wn) satisfy Hypothesis �α+ε,β . Now for n ≥ 1, we
have λn ≥ λ′n, and T is compact with probability 1 from Proposition 2.6. Hence (2.6) holds and
so we have, a.s.

dim(L) ≥ 1

α+ ε
.

In the end, dim(L) ≥ d.

Proof of Theorem 2.1. Use Proposition 2.6, Proposition 2.7 for the upper-bounds and Proposi-
tion 2.12 and Proposition 2.14 for the lower-bounds.

2.A Appendix

2.A.1 Lifting to the Urysohn space

In this section, we prove that it is always possible to work with random measured metric spaces
that are embedded in the Urysohn space. Let us first recall the definition of the Gromov-
Hausdorff-Prokhorov distance. If (X, d) is a metric space, and A ⊂ X then we denote A(ε) :=

{x ∈ X | d(x,A) < ε} , the ε-fattening of A. Then the Hausdorff distance dH on the set of non-
empty compact subsets of X, is defined as

dH(K,K ′) := inf
{
ε > 0

∣∣ K ⊂ (K ′)ε, K ′ ⊂ (K)ε
}
.
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Also we denote the so-called Lévy-Prokhorov distance on the Borel probability measures by

dLP(ν, ν ′) := inf
{
ε > 0

∣∣ ∀A ∈ B(X), ν(A) ≤ ν ′ ((A)ε) + ε and ν ′(A) ≤ ν ((A)ε) + ε
}
,

where B(X) is the set of Borel sets of X. Now let (X,d, ρ, ν) and (X ′, d′, ρ′, ν ′) be two compact,
rooted, metric spaces endowed with a probability measure. Their Gromov-Hausdorff-Prokhorov
distance is defined as

dGHP

(
(X,d, ρ, ν), (X ′, d′, ρ′, ν ′)

)
:= inf

E,φ,φ′
max(d(ρ, ρ′),dH(φ(X), φ(X ′)),dLP(φ∗ν, φ

′
∗ν
′)),

where the infimum is taken over all Polish spaces (E, δ) and all isometric embeddings φ : X → E

and φ′ : X ′ → E, of respectively X and X ′ into E. The notation φ∗ν denotes the push-forward
of the measure µ through the map φ. As it is, this is only a pseudo-distance and it becomes
a distance on the set K of GHP-isometry (root and measure preserving isometry) classes of
compact, rooted, metric spaces endowed with a probability measure, which from [1, Theorem 2.5],
is a Polish space. We consider all our blocks as (possibly random) elements of the set K.

We would like to see all the blocks as compact subsets of the same space. To that end, we
consider the Urysohn space (U, δ), and fix a point u0 ∈ U . The space U is defined as the only
Polish metric space (up to isometry) which has the following extension property (see [78] for
constructions and basic properties of U): given any finite metric space X, and any point x ∈ X,
any isometry from X \ {x} to U can be extended to an isometry from X to U . This property
ensures in particular that any separable metric space can be isometrically embedded into U . In
what follows we will use the fact that if (K,d, ρ) is a rooted compact metric space, there exists
an isometric embedding of K to U such that ρ is mapped to u0. We set

K(U) := {(K, ν) | K ⊂ U, K compact, u0 ∈ K, ν is a Borel measure and supp(ν) ⊂ K} ,

where supp(ν) denotes the topological support of ν. We endow K(U) with the "Hausdorff-
Prokhorov" distance

dHP((K, ν), (K ′, ν ′)) = max
(
dH(K,K ′), dLP(ν, ν ′)

)
.

It is easy to see that (K(U),dHP) is a Polish space. Now, we have a map f : K(U) → K,
which maps every (K, ν) to the isometry class of (K, δ|K , u0, ν) in K. This map is continuous
and hence measurable. The properties of U ensure that f is surjective. Using a theorem of
measure theory from [90], every probability distribution τ on K can be lifted to a probability
measure σ on K(U), such that f∗σ = τ . Hence, for all n ≥ 1, we can have a version of
(bn,dn,ρn,νn) = (Bn, λn · Dn, ρn, wn · νn) that is embedded in the space U .

2.A.2 Hausdorff dimension

We recall some notations and definitions that are in relation with Hausdorff dimension and that
we use throughout the paper. Let (X,d) be a metric space and δ > 0. We say that the family
(Oi)i∈I of subsets of X is a δ-cover of X if it is a covering of X, and the set I is at most countable
and for all i ∈ I, the set Oi is such that its diameter satisfies diam(Oi) < δ. We set

Hδs(X) := inf

{∑
i∈I

diam(Oi)
s

∣∣∣∣∣ (Oi)i∈I is a δ-cover of X

}
,

As this quantity increases when δ decreases to 0, we define its limit

Hs(X) := lim
δ→0
Hδs(X) ∈ [0 ,∞],
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the s-dimensional Hausdorff measure of X. Now the Hausdorff dimension of X is defined as

dimH(X) := inf {s > 0 | Hs(X) = 0} = sup {s > 0 | Hs(X) =∞} .

We refer to [59] for details. A useful tool for deriving lower-bounds on the Hausdorff dimension
of a metric space is the so-called Frostman’s lemma. In this chapter we use the following version.

Lemma 2.20 (Frostman’s lemma). Let (X,d) be a metric space. If there exists a non-zero finite
Borel measure µ on X and s > 0 such that for µ-almost every x ∈ X, we have

µ (B(x, r)) ≤
r→0

rs+o(1),

then
dimH(X) ≥ s.

2.A.3 Decomposition into fragments

In this section, we prove Lemma 2.17. We first construct our fragments in a deterministic setting
and then show how we can apply this to random blocks.

Decomposition of a deterministic block Let (b,d,ρ,ν) be a (deterministic) pointed com-
pact metric space endowed with a Borel probability measure. We are interested in how we can
decompose b into a partition of subsets that all have approximately the same diameter r. For
r > 0, we set

Pr(b) :=
{
{x1, x2, . . . , xn} ⊂ b

∣∣∣ n ≥ 1 and ∀i 6= j, d(xi, xj) ≥
r

2

}
.

It is easy to verify that we can find p = {x1, x2, . . . , xn} ∈ Pr(b) such that b ⊂ ⋃n
i=1 B(xi, r)

and the balls
(
B(xi,

r
4)
)

1≤i≤n are disjoint. Indeed, any r
2 -net of b belongs to Pr(b) (they are the

maximal elements of Pr(b) for the order relation of inclusion). We denote by P∗r (b) the set

P∗r (b) :=

{
{x1, x2, . . . , xn} ∈ Pr(b)

∣∣∣∣∣ b ⊂
n⋃
i=1

B(xi, r)

}
,

which is non-empty from what precedes. Considering the collection of balls of radius r with
centres in p ∈ P∗r (b) gives rise to a covering of b which is close to optimal in a sense specified by
the following lemma. We recall the notation Nr(b) which denotes the minimal number of balls
of radius r needed to cover b.

Lemma 2.21. For any p = {x1, x2, . . . , xn} ∈ P∗r (b), we have n ≤ Nr/4(b).

Proof. Let p = {x1, x2, . . . , xn} ∈ P∗r (b). Remark that, for any set S such that the union of the
balls

(
B(s, r4)

)
s∈S covers b, each of the balls B(xi, r/4), for 1 ≤ i ≤ n, contains at least a point

of S. Since those balls are disjoint, the cardinality of S is at least n.

From any element p = {x1, x2, . . . , xn} ∈ P∗r (b), we can then construct a partition of b, into
subsets (fi)1≤i≤n that we call fragments, and such that

∀i ∈ J1 , nK, B
(
xi,

r

4

)
⊂ fi ⊂ B(xi, r).
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We define the (fi) recursively as
f1 :=

{
x ∈ b

∣∣∣∣ d(x, x1) = min
1≤i≤n

d(x, xi)

}
fk+1 :=

{
x ∈

(
b \

k⋃
i=1

fi

) ∣∣∣∣∣ d(x, xk+1) = min
1≤i≤n

d(x, xi)

}
.

If we suppose that b satisfies the condition (?r0), and that r < r0 then, for p = {x1, x2, . . . , xn} ∈
P∗r (b), we get

n
(r

4

)d+ϕ(r)
≤

n∑
i=1

ν
(

B
(
xi,

r

4

))
≤ ν(b) = 1,

so that we have
n ≤

(r
4

)−d−ϕ(r/4)
, (2.32)

and also, for all i ∈ J1 , nK,

diam fi ≤ 2r and
(r

4

)d+ϕ(r/4)
≤ ν(fi) ≤ rd−ϕ(r). (2.33)

Let us state another lemma.

Lemma 2.22. Let r0 < 1. Under the condition (?r0), there exists two functions ψ and φ defined
on [0 , r0/3], which tend to 0 at 0 such that for all r ∈ (0 , r0/3), for all p = {x1, x2, . . . , xn} ∈
P∗r (b) and fragments (fi) constructed as above, we have

∀x ∈ b, ∀r′ ∈ (0 , r1), #
{

1 ≤ i ≤ n
∣∣ B(x, r′) ∩ fi 6= ∅

}
≤ (r ∨ r′)d+ψ(r∨r′) · r−d+φ(r).

Proof. Let x ∈ b. If for an i ∈ J1 , nK, we have y ∈ B(x, r′) ∩ fi 6= ∅, then d(x, y) < r′ and
d(xi, y) < r so d(x, xi) < r + r′, and so we get that B(xi, r) ⊂ B(x, r′ + 2r). Then, using that
fi ⊂ B(xi, r),  ⋃

i: fi∩B(x,r′)6=∅

B
(
xi,

r

4

) ⊂
 ⋃
i: fi∩B(x,r′)6=∅

fi

 ⊂ B(x, r′ + 2r).

We can use the condition (?r0) to get, for all r, r′ ∈ [0 , r0/3],

#
{

1 ≤ i ≤ n
∣∣ B(x, r′) ∩ fi 6= ∅

}
·
(r

4

)d+ϕ(r/4)
≤ (r′ + 2r)d−ϕ(r′+2r).

And so,

#
{

1 ≤ i ≤ n
∣∣ B(x, r′) ∩ fi 6= ∅

}
≤ 4d+ϕ(r/4) (r′ + 2r)d−ϕ(r′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4) (3(r ∨ r′))d−ϕ(r′+2r)

rd+ϕ(r/4)

≤ 4d+ϕ(r/4)3d−ϕ(r′+2r)(r ∨ r′)d−ϕ(r′+2r)r−d−ϕ(r/4)

≤ (r ∨ r′)d−ϕ(3(r∨r′))r
−d−ϕ(r/4)+

log(123d/2)
log r ,

which proves the lemma.

This lemma gives us an abstract result for the existence and the properties of these decompo-
sitions in fragments. The next paragraph explains a procedure to construct one using a sequence
of i.i.d. random points, on a possibly random block.
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Finding an element of P∗r (b) Suppose that the measure ν charges all open sets. Remark that
this is almost surely true for our random block (B,D, ρ, ν) because it satisfies Hypothesis Hd(i).
Let (Xn)n≥1 be a sequence of i.i.d. random variables with law ν. Let us construct a random
element of P∗r (b) for some fixed r > 0. Define the set En recursively as

E1 := {1} and


En+1 := En if Xn+1 ∈

⋃
i∈En

B
(
Xi,

r

2

)
,

En+1 := En ∪ {n+ 1} otherwise.

We set E∞ =
⋃
n≥1En. Note that from the construction, {Xi, i ∈ E∞} ∈ Pr(b).

Lemma 2.23. Almost surely, we have {Xi, i ∈ E∞} ∈ P∗r (b).

Proof. The fact that the balls
(
B(Xi,

r
4)
)
i∈E∞ are disjoint follows directly from the construction.

Now let x ∈ b. Since ν
(
B
(
x, r4

))
> 0, by the Borel-Cantelli lemma there exists at least one n

such that Xn ∈ B
(
x, r4

)
. If n ∈ E∞ then x ∈ B

(
Xn,

r
4

)
. Otherwise n /∈ E∞, in which case there

exists k ≤ n such that Xn ∈ B
(
Xk,

r
2

)
and so x ∈ B

(
Xk,

3
4r
)
. In both cases

B
(
x,
r

4

)
⊂
⋃
i∈E∞

B(Xi, r).

Since we can apply the same reasoning to every point of a dense sequence (yk)k≥1, the lemma is
proved.

Proof of Lemma 2.17. This is just a consequence of Lemma 2.21, Lemma 2.22 and Lemma 2.23
and equations (2.32) and (2.33), which almost surely apply to the random block (B,D, ρ, ν).

2.A.4 Computations

Lemma 2.24. Suppose that there exists γ ≥ 0 such that for all n ∈ N, Wn ≤ nγ. Then there
exists a constant C such that

n∑
k=1

wk
Wk
≤ C log n.

Proof. If the series
∑
wk converges then the result is trivial so let us suppose that it diverges.

For k ≥ 0, we define nk := inf
{
i ≥ 1

∣∣Wi ≥ 2k
}
and write

n∑
k=n0

wk
Wk
≤

⌈
logWn
log 2

⌉∑
i=0

ni+1−1∑
k=ni

wk
Wk
≤

⌈
logWn
log 2

⌉∑
i=0

1

2i

ni+1−1∑
k=ni

wk ≤

⌈
logWn
log 2

⌉∑
i=0

2i+1

2i

≤ 2

⌈
logWn

log 2

⌉
,

which grows at most logarithmically thanks to our assumption on the sequence (Wn).

Lemma 2.25. Let β < 1 and assume that wn ≤ n−β+o(1) and Wn = n1−β+o(1) and that, for
some ε > 0,

lim inf
n→∞

1

Wn

n∑
k=1
k∈Gε

wk > 0.

Then there exists a constant Cε such that for N large enough we have
N1+ε∑
k=N
k∈Gε

wk
Wk
≥ Cε logN.
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Proof. Let c be such that, for n large enough 1
Wn

∑n
k=1wk1{k∈Gε} > c. Let C := 3

c , note that
C > 1 because c ≤ 1. For all i ≥ 1, we set ki = inf

{
n
∣∣Wn ≥ Ci

}
. For all i ≥ 1, we have

Wki−1 ≤ Ci ≤Wki ≤ Ci + wki . We get,

ki+1∑
k=ki+1

wk1{k∈Gε} ≥ cWki+1
−Wki ≥ cCi+1 − Ci − wki ≥ Ci(cC − 1− wki

Ci
)

≥ Ci(1 + o(1)),

for i tending to infinity. Now for N a large integer, we set

IN := inf {i | ki ≥ N} =

⌈
logWN

logC

⌉
and JN := sup

{
i
∣∣ ki ≤ N1+ε

}
=

⌊
logWbN1+εc

logC

⌋
.

Then we compute

N1+ε∑
k=N

wk
Wk

1{k∈Gε} ≥
JN−1∑
i=IN

ki+1∑
k=ki+1

wk
Wk

1{k∈Gε}

≥
JN−1∑
i=IN

1

Wki+1

ki+1∑
k=ki+1

wk1{k∈Gε}

≥
JN−1∑
i=IN

1

Ci+1(1 + o(1))
Ci(1 + o(1))

≥ JN − IN − 1

C
(1 + o(1)).

We finish the proof by noting that, thanks to the hypothesis on the growth ofWn, the last display
grows logarithmically in N .

Proof of Lemma 2.16. From our assumptions, it is easy to see that we have ak = n
1−β+o(1)
k . For

all k, we write
log ak = (1− β + rk) log nk,

with rk → 0 as k →∞. We write
k∑
i=1

log ai =

k∑
i=1

(1− β + ri) log ni =

k−1∑
i=0

(1− β + rk−i) log nk−i. (2.34)

For any k ≥ 0, from the recursive definition of the sequence (nk), we have nk+1−1 < nγk ≤ nk+1,
which entails log nk = 1

γ log nk+1 + sk, with |sk| ≤ 1. Using this recursively yields∣∣∣∣log nk−i −
1

γi
log nk

∣∣∣∣ ≤ γ

1− γ .

Hence using (2.34) and the fact that log nk grows exponentially in k,

k∑
i=1

log ai = log nk

(1− β)

k−1∑
i=0

1

γi
+

k∑
i=0

rk−i
γi︸ ︷︷ ︸

→0

+
k−1∑
i=0

(1− β + rk−i)

(
log nk−i −

1

γi
log nk

)
︸ ︷︷ ︸

=O(k)

= log nk

(
(1− β)γ

γ − 1
+ o(1)

)
,

which proves the lemma.
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Chapter 3

Geometry of weighted recursive and
affine preferential attachment trees

This chapter is adapted from the work [110], in preparation.
We study two models of growing recursive trees. For both models, initially the tree only

contains one vertex u1 and at each time n ≥ 2 a new vertex un is added to the tree and its
parent is chosen randomly according to some rule. In the weighted recursive tree, we choose the
parent uk of un among {u1, u2, . . . , un−1} with probability proportional to wk, where (wn)n≥1 is
some deterministic sequence that we fix beforehand. In the affine preferential attachment tree
with initial fitnesses, the probability of choosing the same uk is proportional to ak + deg+(uk),
where deg+(uk) denotes its current number of children, and the sequence of initial fitnesses
(an)n≥1 is deterministic and chosen as a parameter of the model.

We show that for any sequence (an)n≥1, the corresponding preferential attachment tree has
the same distribution as some weighted recursive tree with a random sequence of weights (with
some explicit distribution). We prove almost sure convergences for some statistics associated
to weighted recursive trees as time goes to infinity, such as degree sequence, height, profile and
measures. Thanks to the connection between the two models, these results also apply to affine
preferential attachment trees.
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3.1 Introduction

The uniform recursive tree has been introduced in the 70’s as an example of random graphs
constructed by addition of vertices: starting from a tree with a single vertex, the vertices arrive
one by one and the n-th vertex picks its parent uniformly at random from the n − 1 already
present vertices. Many properties of this tree were then investigated due to its particularly simple
dynamics: number of leaves, profile, height, degrees, distribution of vertices into subtrees... We
refer to [50] for an overview. A generalisation of the uniform recursive, the weighted recursive
tree (WRT), was introduced in [30] in 2006. In this model, each vertex is assigned a non-
negative weight, constant in time. When a newcomer randomly picks its parents, it does so with
probability proportional to those weights. Although more general than the uniform recursive
tree, WRT have attracted far fewer contributions, see e.g. [91, 74].

We also study another model of trees which we call the affine preferential attachment tree
(PA) with initial fitnesses. In this tree every vertex has a fixed initial fitness, and the probability
of picking any vertex to be the parent of a newcomer is proportional to its initial fitness plus its
current number of children. This type of preferential attachment mechanism has been extensively
studied in the last two decades because it shares some quantitative properties with real networks,
see in particular the literature about Barabási-Albert model. Our motivation for studying such
trees arises from the analysis of some growing random graphs, see the companion paper [111].

We shall see that using a de Finetti-type argument, preferential attachment trees can be seen
as WRT with random weights. This will enable us to translate results obtained for WRT to
corresponding results for PA.

3.1.1 Two related models of growing trees

Definitions. For any sequence of non-negative real numbers (wn)n≥1 with w1 > 0, we define the
distribution WRT((wn)n≥1) on sequences of growing rooted trees1, which is called the weighted
recursive tree with weights (wn)n≥1. We construct a sequence of rooted trees (Tn)n≥1 starting
from T1 containing only one root-vertex u1 and let it evolve in the following manner: the tree
Tn+1 is obtained from Tn by adding a vertex un+1 with label n+1. The father of this new vertex
is chosen to be the vertex with label Kn+1, where

∀k ∈ {1, . . . , n}, P (Kn+1 = k | Tn) ∝ wk.

In this definition, we also allow sequences of weights (wn)n≥1 that are random and in this case
the distribution WRT((wn)n≥1) denotes the law of the random sequence of trees obtained by the
above process conditionally on (wn)n≥1, so that the obtained distribution is a mixture of WRT
with deterministic sequence.

Similarly, for any sequence (an)n≥1 of real numbers, with a1 > −1 and an ≥ 0 for n ≥ 2, we
define another model of growing trees. The construction goes on as before: P1 containing only
one root-vertex u1 and Pn+1 is obtained from Pn by adding a vertex un+1 with label n + 1 and
the father of the newcomer is chosen to be the vertex with label Jn+1, where now

∀k ∈ {1, . . . , n}, P (Jn+1 = k | Pn) ∝ deg+
Pn

(uk) + ak,

where deg+
Pn

(·) denotes the number of children in the tree Pn. In the particular case where n = 1,
the second vertex u2 is always defined as a child of u1, even in the case −1 < a1 ≤ 0 for which the

1In fact, in the rest of the chapter we will see them as plane trees, see Section 3.1.2.
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last display does not make sense. We call this sequence of trees an affine preferential attachment
tree with initial fitnesses (an)n≥1 and its law is denoted by PA((an)n≥1).

Here and in the rest of the paper, whenever we have any sequence of real numbers (xn)n≥1,
we write x = (xn)n≥1 in a bold font as a shorthand for the sequence itself, and (Xn)n≥1 with
a capital letter to denote the sequence of partial sums defined for all n ≥ 1 as Xn :=

∑n
i=1 xi.

In particular, we do so for sequences of initial fitnesses (an)n≥1, for deterministic sequences of
weights (wn)n≥1 and for random sequence of weights (wn)n≥1.

Representation result. The following result gives a connection between these two models of
growing trees. It is an analogue of the so-called "Pólya urn-representation" result described in
[17, Theorem 2.1] or [28, Section 1.2] for related models.

Theorem 3.1 (WRT-representation of PA trees). For any sequence a of initial fitnesses,
we define the associated random sequence wa = (wa

n)n≥1 as

wa
1 = Wa

1 = 1 and ∀n ≥ 2, Wa
n =

n−1∏
k=1

β−1
k , (3.1)

where the (βk)k≥1 are independent with respective distribution Beta(Ak + k, ak+1). Then,
the distributions PA(a) and WRT(wa) coincide.

Let us explain how this sequence wa can be read from the growth of the tree. For any sequence
of weights w that satisfies

Wn ∼
n→∞

C · nγ , (3.2)

for some γ ∈ (0 , 1) and a positive C > 0, it is easy to prove that the degree of vertices in a
sequence of random trees (Tn)n≥1 with distribution WRT(w) are such that almost surely for all
k ≥ 1

deg+
Tn

(uk) ∼
n→∞

wk
C(1− γ)

· n1−γ . (3.3)

From this observation, if the sequence wa has almost surely the behaviour (3.2), then we can
retrieve it from the behaviour of degrees in the tree by taking the limit for all k ≥ 1

wa
k =

wa
k

wa
1

= lim
n→∞

deg+
Pn

(uk)

deg+
Pn

(u1)
almost surely.

As suggested by the last display, the result of the theorem is obtained by studying the evolution
of the degrees in the preferential attachment model (Pn)n≥1. The key argument lies in the fact
that we can describe the whole process using a sequence of independent Pólya urns, related to
the degrees of the vertices. The theorem is then obtained by using de Finetti theorem for these
urns.

In fact, and this is the content of Proposition 3.2 below, if An grows linearly as some c · n
with some c > 0 then the sequence (Wa

n) indeed almost surely satisfies (3.2) for γ = c
c+1 . This is

done using moment computation under the explicit definition of (Wa
n)n≥1 given by the theorem.

In the rest of this chapter, we also investigate other properties of the WRT under this type of
assumptions for the sequence of weights, such as convergence of height, profile and measures
carried on the tree. Thanks to this connection, our results will then also hold for PA trees under
the assumption that An grows linearly.
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Assumptions on the sequences. For two sequences (xn) and (yn) we say that

xn ./
n→∞

yn if and only if ∃ε > 0, xn =
n→∞

yn · (1 +O
(
n−ε
)
). (3.4)

Our main assumption for sequences a = (an)n≥1 of initial fitnesses is the following (Hc), which
is parametrised by some positive c > 0 and ensures that the initial fitness of vertices is c on
average,i.e.,

An ./
n→∞

c · n. (Hc)

For sequences of weights w = (wn)n≥1, we introduce the following hypothesis, which depends on
a parameter γ > 0

Wn ./
n→∞

cst ·nγ . (�γ)

The following proposition ensures in particular that our assumptions on sequences of initial
fitnesses a translate to a power behaviour for the random sequence of cumulated weights (Wa

n)n≥1

defined in Theorem 3.1.

Proposition 3.2. Suppose that there exists c > 0 such that a satisfies (Hc), then the random
sequence (wa

n)n≥1 defined in Theorem 3.1 almost surely satisfies (�γ) with

γ =
c

c+ 1
.

If furthermore a is such that an ≤ (n+ 1)c
′+o(1) for some c′ ∈ [0 , 1), then almost surely

wa
n ≤ (n + 1)c

′− 1
c+1

+oω(1), where oω(1) is a random function of n which tends to 0 when
n→∞.

Convergence of degrees using the WRT representation In the WRT with a determin-
istic sequence of weights that satisfy (3.2), the degree of one fixed vertex evolves as a sum of
independent Bernoulli random variable and it is possible to handle it with elementary methods
and obtain (3.3). Further calculations allow us to improve this statement to a convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . )→ 1

C(1− γ)
(w1, w2, . . . ) (3.5)

in an `p sense, for sequences w that satisfy some additional control. This is proved in Proposi-
tion 3.5.

Suppose that a satisfies (Hc). Applying this convergence to sequence of random trees (Pn)n≥1

which has distribution PA(a), using its WRT-representation provided by Theorem 3.1, together
with Proposition 3.2, yields the following almost sure convergence to a random sequence, in the
product topology,

n−
1
c+1 · (deg+

Pn
(u1), deg+

Pn
(u2), . . . ) −→

n→∞
(ma

1 ,m
a
2 , . . . ),

which also takes place in the space `p for all p > c+1
1−(c+1)c′ as soon as an ≤ nc

′+o(1), for some
0 ≤ c′ < 1

c+1 . This improves some `p convergence proved in distribution in [100] for a related
model, which we treat in Proposition 3.31.

Of course, thanks to our discussion above concerning the convergence of degrees, it is imme-
diate that the sequence (ma

n)n≥1 is almost surely proportional to the sequence (wa
n)n≥1 i.e.

(ma
n)n≥1 =

c+ 1

Z
· (wa

n)n≥1 a.s.,
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where Z is the random variable such that Wa
n ∼ Z · n c

c+1 almost surely as n→∞, which exists
thanks to Proposition 3.2. Of course, even if (Wa

n)n≥1 was defined as a product of independent
random variables, it is not the case for the sequence (Ma

n)n≥1 (defined as the sequence of partial
sums of (ma

n)n≥1) since the random variable Z depends on the whole sequence (βn)n≥1 used in
the definition of (Wa

n)n≥1. Nevertheless, the sequence still has the nice property of being an
inhomogeneous Markov chain with a simple backward transition, characterised by the equality

Ma
n = βn ·Ma

n+1,

where βn is independent of Ma
n+1 and has a Beta(An +n, an+1) distribution. This is the content

of Proposition 3.27.

Distribution of the limiting chain. For some specific choices of sequences a, the distribution
of the chain (Ma

n)n≥1 is explicit. Whenever a is of the form

a = (a, b, b, b, . . . ) with a > −1 and b > 0,

we retrieve Goldschmidt and Haas’ Mittag-Leffler Markov chain family, introduced in [63] and
also studied by James [79]. The other case where the chain is explicit is when a is of the form

a = (a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ) with a > −1 and `,m ∈ N.

In this case, the process (Ma
n)n≥1 is constant on the interval of the form J1 + k` , (k + 1)`K and

we define Na
k := Ma

(k−1)`+1 for all k ≥ 1. Then the sequence `
`

m+`

m+` · (Na
k)k≥1 has the Product

Generalised Gamma distribution PGG (a, `,m), which we define in Section 3.5.1.

3.1.2 Other geometric properties of weighted random trees

Let us now state the convergence for other statistics of weighted random trees, namely profile,
height and probability measures. Here we let (Tn)n≥1 be a sequence of trees evolving according to
the distribution WRT(w) for some deterministic sequence w and state our results in this setting.
Our results will also apply to random sequences of weights w that satisfy the assumptions of the
theorems almost surely, they will hence apply to PA trees with appropriate sequences of initial
fitnesses, thanks to Theorem 3.1 and Proposition 3.2.

Height and profile of WRT

Let

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k}

be the number of vertices of Tn at height k. The function k 7→ Ln(k) is called the profile of the
tree Tn. The height of the tree is the maximal distance of a vertex to the root, which we can also
express as ht(Tn) := max {k ≥ 0 | Ln(k) > 0}. We are interested in the asymptotic behaviour of
Ln and ht(Tn) as n→∞.

In order to express our results, we need to introduce some quantities. For γ > 0, we define
the function fγ : R→ R as

fγ : z 7→ fγ(z) := 1 + γ (ez − 1− zez) .
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This function is increasing on (−∞ , 0] and decreasing on [0 ,∞) with fγ(−∞) = 1 − γ and
fγ(0) = 1 and fγ(∞) = −∞. We define z+ and z− as

z+ := sup {z ∈ R | fγ(z) > 0} and z− := inf {z ∈ R | 1 + γ(ez − 1) > 0} . (3.6)

We are going to assume that we work with a sequence w which satisfies the following assumption
(�p

γ) for some γ > 0 and p ∈ (1 , 2],

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpi ≤ n1+(γ−1)p+o(1). (�p
γ)

Thanks to Proposition 3.2, this property is almost surely satisfied for γ = c
c+1 by the random

sequence wa for any sequence a of initial fitnesses satisfying An ./
n→∞

c ·n and an ≤ (n+ 1)o(1).

Theorem 3.3. Suppose that there exists γ > 0 and p ∈ (1 , 2] such that the sequence w

satisfies (�p
γ). Then, for a sequence of random trees (Tn)n≥1 ∼ WRT(w), we have the

almost sure asymptotics for the profile

Ln(k) =
n→∞

n√
2πγ log n

exp

{
−1

2
·
(
k − γ log n√

γ log n

)2
}

+O

(
n

log n

)
, (3.7)

where the error term is uniform in k ≥ 0. Also for any compact K ⊂ (z− , z+) we have
almost surely for all z ∈ K

Ln (bγez log nc) = n
fγ(z)− 1

2
log logn
logn

+O
(

1
logn

)
, (3.8)

where the error term is uniform in z ∈ K. Moreover, we have the almost sure convergence

ht(Tn)

log n
−→
n→∞

γ · ez+ . (3.9)

The proof of this result follows the path used for many similar results for trees with logarithmic
growth (see [35, 36, 85]): we study the Laplace transform of the profile z 7→ ∑n

k=0 e
zkLn(k)

on an open domain of the complex plane and prove its convergence to some random analytic
function when appropriately rescaled. Then, we apply [84, Theorem 2.1], which consists in a
fine Fourier inversion argument and hence allows to obtain precise asymptotics for Ln. The
application of the theorem in its full generality proves a so-called Edgeworth expansion for Ln,
which we express here in a weaker form by equations (3.7) and (3.8). The convergence (3.7)
expresses that the profile is asymptotically close to a Gaussian shape centred around γ log n and
with variance γ log n, so that a majority of vertices have a height of order γ log n. The second
equation (3.8) provides the behaviour of the number of vertices at a given height, for heights that
are not necessarily close to γ log n (for which the preceding result ensures that there are of order
n√

logn
vertices per level). According to this result, at height bγez log nc for any z ∈ (z− , z+) there

are of order nfγ (z)√
logn

vertices. Remark that the exponent fγ(z) is continuous in z and tends to 0

when z → z+. Although this does not directly prove the convergence (3.9), it already provides a
lower-bound for ht(Tn) since it ensures that asymptotically there always exist vertices at height
bγe(z+−ε) log nc, for any small ε > 0. The convergence of the height (3.9) can then be obtained
by proving a corresponding upper-bound, which can be done using quite rough estimates.

This result includes the well-known asymptotics ht(Tn) ∼ e log n as n → ∞ for the uniform
random tree, proved for example in [45, 105]. Using the connection of preferential attachment
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trees to weighted recursive trees given by Theorem 3.1, it also includes the case of preferential
attachment trees with constant initial fitnesses, for which similar results were proved, in [105]
for the height and in [85] for the asymptotic behaviour of the profile (3.7).

As a complement to this result, let us mention that there is another case when we can compute
the asymptotic height of the tree, which corresponds to sequences w that grow fast to infinity.
For any sequence of weights w, a quantity of interest is

∑n
i=2

wi
Wi

, which is the expected height
of a "typical" point. When this quantity grows faster than logarithmically, we have the almost
sure convergence (see Proposition 3.25 in Section 3.3.3)

lim
n→∞

ht(Tn)∑n
i=2

wi
Wi

= 1,

which in some sense indicates that all the action takes place at the very tip of the tree.

Convergence of the weight measure

We also study the convergence of some natural probability measures defined on the trees (Tn)n≥1.
This will prove useful for the applications developed in Chapter 4.

For this result it will be easier to work with plane trees. We introduce the Ulam-Harris tree
U =

⋃∞
n=0Nn, where N := {1, 2, . . .}. Classically, a plane tree τ is defined as a non-empty subset

of U such that

(i) if v ∈ τ and v = ui for some i ∈ N, then u ∈ τ ,

(ii) for all u ∈ τ , there exists deg+
τ (u) ∈ N∪ {0} such that for all i ∈ N, ui ∈ τ iff i ≤ deg+

τ (u).

We choose to construct our sequence (Tn)n≥1 of weighted recursive trees as plane trees by con-
sidering that each time a vertex is added, it becomes the right-most child of its parent. In this
way the vertices (u1, u2 . . . ) of the trees (Tn)n≥1, listed in order of arrival, form a sequence of
elements of U. In fact, from now on, we will always assume that we use this particular embedded
construction, both for WRT and PA trees.

We also denote ∂U = NN, which can be interpreted as the set of infinite paths from the root
to infinity, and write U = U ∪ ∂U. We classically endow this set with the distance

d(u, v) = exp(−ht(u ∧ v))

where u ∧ v denotes the most recent common ancestor of u and v in U.
For every n ≥ 1, we define the measure µn on U, which only charges the set {u1, . . . , un} of

vertices of Tn, with for any 1 ≤ k ≤ n,

µn(uk) =
wk
Wn

. (3.10)

We refer to µn as the natural weight measure on Tn. The following theorem classifies the possible
behaviours of (µn) for any weight sequence.

Theorem 3.4. The sequence (µn)n≥1 converges almost surely weakly towards a limiting
probability measure µ on U. There are three possible behaviours for µ:

(i) If
∑∞

i=1wi <∞, then µ is carried on U.

(ii) If
∑∞

i=1wi =∞ and
∑∞

i=1

(
wi
Wi

)2
<∞, then µ is diffuse and supported on ∂U.
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(iii) If
∑∞

i=1

(
wi
Wi

)2
=∞ then µ is concentrated on one point of ∂U.

This convergence can be extended to other natural measures on the tree, such as the uniform
measure on Tn, or some "preferential attachment measure" which charges each vertex propor-
tionally to some affine function of its degree. This is the content of Proposition 3.8.

3.1.3 Organisation of the chapter

The paper is organised as follows.
We first investigate some properties of weighted random trees (Tn)n≥1 with deterministic

weight sequence w. In Section 3.2.1 we first prove Proposition 3.5 which states the convergence
of the degree sequence using elementary methods. Then in Section 3.2.2, we prove the weak
convergence of the weight measure µn to some limit µ and describe three regimes for its behaviour.
We also study other natural measures related to the sequence of trees (Tn) and prove that they
also converge towards µ. For all these measures, our main tool is introducing martingales related
to the mass of a subtree descending from a fixed vertex. This is the content of Theorem 3.4
and Proposition 3.8. In Section 3.3, we prove Theorem 3.3 about the convergence of the height
and the profile of WRT. This is achieved by first proving the uniform convergence of a rescaled
version of the Laplace transform of the profile on a complex domain, which is the content of
Proposition 3.9. This ensures that we can use [84, Theorem 2.1] for the convergence of the
profile. This convergence provides a lower-bound for the height of the tree; we then prove a
matching upper-bound to obtain asymptotics for the height.

Then we switch to studying some sequence (Pn)n≥1 of preferential attachment trees with
initial fitnesses a. In Section 3.4, we present a proof of Theorem 3.1 using a coupling of the
preferential attachment process with a sequence of Pólya urn processes and this establishes
that (Pn)n≥1 can also be described as having distribution WRT(wa) for a random sequence wa;
we then prove Proposition 3.2 which relates the properties of wa to the ones of a. We finish
the section by stating and proving Proposition 3.27 in which we prove that the sequence (Ma

n)

defined above as some random multiple of (Wa
n) is a Markov chain. In Section 3.5, we identify

in Proposition 3.28 the distribution of the chain (Ma
n) for particular sequences a using moment

identifications. We then present an application of this result to an other model of preferential
attachment graph in Proposition 3.31.

Some technical results can be found in Appendix 3.A.

3.2 Measures and degrees in weighted random trees

In this section, we work with a sequence of trees (Tn)n≥1 that has distribution WRT (w) for a
deterministic sequence w. We start with two statistics of the tree that are quite easy to analyse,
namely the sequence of degrees of the vertices of the tree and also some natural measures defined
on the tree.

3.2.1 Convergence of the degree sequence

We start the section by proving convergence for the sequence of degrees of the vertices in their
order of creation under the WRT model. We suppose here that the sequence of weights w is
such that there exist constants C > 0 and 0 < γ < 1 for which

Wk ∼
k→∞

C · kγ . (3.11)
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We write deg+
Tn

(uk) for the out-degree of the vertex uk in Tn. For a fixed k ≥ 1, we remark that,
as a sequence of random variables indexed by n ≥ 1, we have the equality in distribution

(
deg+

Tn
(uk)

)
n≥1

(d)
=

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)
n≥1

, (3.12)

with (Ui)i≥1 a sequence of independent uniform variables in (0 , 1). With this description of
the distribution of the degrees of fixed vertices, only using some law of large numbers for the
convergence and Chernoff bounds for the fluctuations we obtain the following result:

Proposition 3.5. For a sequence of weights w satisfying (3.11), the following holds.

(i) We have the almost sure pointwise convergence

n−(1−γ) · (deg+
Tn

(u1),deg+
Tn

(u2), . . . ) −→
n→∞

1

(1− γ)C
· (w1, w2, . . . ). (3.13)

(ii) If the sequence furthermore satisfies wk ≤ (k + 1)γ−1+c′+o(1) for some constant 0 ≤
c′ < 1 − γ, then there exists a function of k which goes to 0 as k → ∞, also denoted
o(1), such that all n large enough, we have for all k ≥ 1

deg+
Tn

(uk) ≤ n1−γ · (k + 1)γ−1+c′+o(1), (3.14)

and the convergence (3.13) holds almost surely in the space `p for all p > 1
1−γ−c′ .

Proof. To prove (i), just remark that for any k ≥ 1 such that wk 6= 0, thanks to (3.11), we have

n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

C(1− γ)
,

so thanks to the law of large numbers, we get that almost surely

deg+
Tn

(uk) =

n−1∑
i=k

1{
Ui≤

wk
Wi

} ∼
n→∞

n−1∑
i=k

wk
Wi

∼
n→∞

wk ·
n1−γ

(1− γ)C
,

and hence n−(1−γ) · deg+
Tn

(uk)→ wk
(1−γ)C . For the indices k for which wk = 0, we of course have

deg+
Tn

(uk) = 0 almost surely for all n ≥ 1, and so the convergence also holds. This finishes the
proof of (i).

For the second part of the statement, let us first compute

E
[
exp

(
deg+

Tn
(uk)

)]
= E

[
exp

(
n−1∑
i=k

1{
Ui≤

wk
Wi

}
)]

=

n−1∏
i=k

(
1 + (e− 1)

wk
Wi

)

≤ exp

(
(e− 1)wk

n−1∑
i=k

1

Wi

)
.

Now let C ′ be a constant such that for all n ≥ 1, we have
∑n−1

i=1
1
Wi
≤ C ′ · n1−γ (such a constant

exists because of the assumption (3.11)). For all k ≥ 1, we introduce

ξk := max
(
2C ′(e− 1)wk, k

γ−1 log2(k + a)
)
,
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where the real number a > 0 is chosen in such a way that the function x 7→ xγ−1 log(x+ a) is
decreasing on R∗+. Using Markov’s inequality, we get for any integers k and n such that n ≥ k

P
(
deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ exp

(
−ξk · n1−γ + (e− 1)wk

n−1∑
i=k

1

Wi

)

≤ exp

(
−1

2
· ξk · n1−γ

)
.

Using a union bound, the fact that deg+
Tn

(uk) = 0 for any k > n, and the definition of ξk, we get
that for all n ≥ 1

P
(
∃k ≥ 1, deg+

Tn
(uk) ≥ ξk · n1−γ) ≤ n∑

k=1

exp

(
−1

2
· ξk · n1−γ

)
≤ n · exp

(
−1

2
· log2(n+ a)

)
.

The last display is summable over all n ≥ 1 and hence using the Borel-Cantelli lemma, we almost
surely have for n large enough

∀k ≥ 1, deg+
Tn

(uk) ≤ n1−γ · ξk.

We can conclude by noting that under our assumptions we have ξk ≤ (k + 1)γ−1+c′+o(1). The
convergence in `p for p > 1

1−γ−c′ is just obtained by dominated convergence using the pointwise
convergence (3.13) and the `p domination (3.14).

3.2.2 Convergence of measures

The goal of this section is to prove Theorem 3.4, which concerns the convergence of the sequence
of weight measures (µn) seen as measures on U. One of the key arguments is the fact that the
weight of the subtree descending from a fixed vertex can be described using a generalised Pólya
urn scheme, as studied by Pemantle [103]. We also prove Proposition 3.8, which states the weak
convergence of other measures.

Convergence of the weight measure in U. Recall from the introduction the definition of
the Ulam-Harris tree U =

⋃∞
n=0Nn and its completed version U = U∪∂U, which is endowed with

the distance d(u, v) = exp (−ht(u ∧ v)). For any u ∈ U, we write T (u) :=
{
uv
∣∣ v ∈ U} the sub-

tree descending from u. In U there is an easy characterisation of the weak convergence of Borel
measures, which a direct consequence of the Portmanteau theorem (see e.g. [27, Theorem 2.1]):

Lemma 3.6. Let (πn)n≥1 be a sequence of Borel probability measures on U. Then (πn)n≥1

converges weakly to a probability measure π if and only if for any u ∈ U,

πn({u})→ π({u}) and πn(T (u))→ π(T (u)) as n→∞.

We are going to apply this criterion to our sequence (µn)n≥1, which, we recall, is defined in
such a way that for all n ≥ 1, the measure µn charges only the vertices {u1, u2, . . . , un} of the
tree Tn, and such that for any 1 ≤ k ≤ n,

µn({uk}) =
wk
Wn

. (3.15)
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We can already see that if (Wn)n≥1 converges to some W∞ we have µn({uk})→ wk
W∞

as n→∞,
and in this case it is easy to verify that µn weakly converges to some limit µ which is such that
µ({uk}) = wk

W∞
. In this case µ(U) = 1 and so µ is carried on U.

From now on, let us assume that Wn →∞ as n→∞. In this case we have µn({uk})→ 0 as
n→∞. Now denote for every integers n, k ≥ 1,

M (k)
n := µn(T (uk)),

the proportion of the total mass above vertex uk at time n. Remark that this quantity evolves
as the proportion of red balls in a time-dependent Pólya urn scheme with weights (wi)i≥k+1, see
[103], starting at time k with Wk−1 black balls and wk red balls2. In particular, for all n ≥ k,

E
[
M

(k)
n+1

∣∣∣ Tn] =
Wn

Wn+1
·M (k)

n +
wn+1

Wn+1
·M (k)

n

= M (k)
n .

Hence for all k ≥ 1, the sequence (M
(k)
n )n≥k is a martingale with value in [0 , 1] so it converges

almost surely to a limit M (k)
∞ . Also, for any u ∈ U that does not receive a label in the process,

the sequence (µn(T (u)))n≥1 (and also (µn({u}))n≥1) is identically equal to zero. Hence we have
convergence of (µn({u}))n≥1 and (µn(T (u)))n≥1 for all u ∈ U.

The last step in order to prove the weak convergence of (µn)n≥1 is to prove that the quantities
that we obtain in the limit indeed define a probability measure on U. If for all u ∈ U we have

lim
n→∞

µn(T (u)) =
∞∑
i=1

lim
n→∞

µn(T (ui)), (3.16)

then it entails that µn →
n→∞

µ, where µ is the unique probability measure on U such that for all
u ∈ U,

µ({u}) = 0 and µ(T (u)) = lim
n→∞

µn(T (u)).

For any u /∈ {u1, u2, . . .}, the equality (3.16) is immediate, so let us prove it for all uk for k ≥ 1.
For any n, k, i ≥ 1, let

M (k,i)
n :=

∞∑
j=i+1

µn(T (ukj)) = µn (T (uk))−
i∑

j=1

µn (T (ukj)) .

Using what we just proved, we know that for any k, i, the quantityM (k,i)
n almost surely converges

as n→∞ to some limit M (k,i)
∞ . Proving (3.16) reduces to proving that for any k ≥ 1, we almost

surely have M (k,i)
∞ →

i→∞
0. By construction, the sequence (M

(k,i)
∞ )i≥1 is non-negative and non-

increasing, hence it converges, so it suffices to prove that its limit is 0 almost surely.
We define τ (k,i) := inf {n ≥ 1 | un = uki}, the time when the vertex uk receives its i-th child

in the growth procedure. Remark that after this random time, the process (M
(k,i)
n )n≥τ (k,i) is a

martingale because again, it evolves as the proportion of red balls in a time-dependent Pólya
urn scheme, starting with wk red balls and Wτ (k,i) blacks balls. (If τ (k,i) is infinite, then the
sequence (M

(k,i)
n )n≥1 is identically 0.) Hence, using the crude bound τ (k,i) ≥ i, which entails

that Wτ (k,i) ≥Wi almost surely, we get

E
[
M (k,i)
∞

]
= E

[
M

(k,i)

τ (k,i)
1{τ (k,i)<∞}

]
≤ wk
Wi

→
i→∞

0,

2Those numbers of balls are not required to be integers.
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hence M (k,i)
∞ →

i→∞
0 in L1, so its almost sure limit is also 0. In the end, by Lemma 3.6, the

sequence of measures (µn) almost surely converges weakly to a limit µ, and this measure only
charges the set ∂U.

Lemma 3.7. Suppose that
∑∞

n=1wn = ∞ so that µ is carried on ∂U. Then either∑∞
n=1

(
wn
Wn

)2
< ∞ and then µ is almost surely diffuse or

∑∞
n=1

(
wn
Wn

)2
= ∞ and then µ is

carried on one point of ∂U.

Proof. For any k ≥ 1 the process (µn(T (uk))n≥k follows a so-called time-dependent Pólya urn

scheme with weights (wn)n≥k+1. By the work of Pemantle in [102], if we assume
∑∞

n=1

(
wn
Wn

)2
=

∞ then the limiting proportion µ(T (uk)) almost surely belongs to the set {0, 1}. This translates
into the fact that µ(T (u)) ∈ {0, 1} almost surely for any u ∈ U, which entails that µ is almost
surely carried on one leaf of ∂U.

On the contrary, let us suppose that
∑∞

n=1

(
wn
Wn

)2
<∞ and prove that this entails that the

limiting measure µ is diffuse almost surely. Consider the function (· ∧ ·) : U × U → U which
associates to each couple (u, v) their most recent common ancestor u ∧ v in the completed tree
U. This function is continuous with respect to the distance d. Then, since µn → µ almost surely,
we also have the almost sure weak convergence

(· ∧ ·)∗(µn ⊗ µn)→ (· ∧ ·)∗(µ⊗ µ). (3.17)

Let us fix n ≥ 1 and let Dn and D′n be two independent vertices taken under µn, conditionally
on the tree Tn. Then, the proof of [41, Lemma 3.8] ensures that

P
(
Dn ∧D′n = uk

)
=

(
wk
Wk

)2

·
n∏

i=k+1

(
1−

(
wi
Wi

)2
)
−→
k→∞

pk :=

(
wk
Wk

)2

·
∞∏

i=k+1

(
1−

(
wi
Wi

)2
)
.

Note that the obtained sequence (pk)k≥1 is a probability distribution, which thanks to the
weak convergence (3.17) corresponds to the (annealed) distribution pk = P (D∞ ∧D′∞ = uk),
where D∞ and D′∞ are two independent points taken under the measure µ, conditionally on µ.
Now we can write

P
(
d(D∞, D

′
∞) ≤ e−k

)
= P

(
ht(D∞ ∧D′∞) ≥ k

)
≤

∞∑
i=k+1

pi,

where the inequality is due to the fact that the vertices u1, u2, . . . , uk have a height smaller
than k. Hence P (d(D∞, D

′
∞) = 0) ≤ limk→∞ P

(
d(D∞, D

′
∞) ≤ e−k

)
= 0. So, almost surely, two

points taken independently under µ are different, and this ensures that µ is diffuse.

In the end, we just finished the proof of Theorem 3.4.

Other sequences of measures We also study two other sequences of measures (ηn) and
(νn) carried on the Ulam tree U. For every n ≥ 2, these measures only charge the vertices
{u1, u2, . . . , un} in such a way that for any 1 ≤ k ≤ n,

ηn(uk) =
bk + deg+

Tn
(uk)

Bn + n− 1
and νn(uk) =

1

n
,

where (bn)n≥1 is a sequence of real numbers such that b1 > −1 and bn ≥ 0 for all n ≥ 2. We write
Bn :=

∑n
k=1 bk. We suppose that Bn = O(n) and that there exists ε > 0 such that bn = O

(
n1−ε).

The assumptions on the sequence (bn)n≥1 are chosen such that they are satisfied by a sequence
(an)n≥1 of initial fitnesses that satisfies (Hc) for some c > 0.
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Proposition 3.8. Under the assumptions
∑∞

n=1wn = ∞ and
∑∞

n=1

(
wn
Wn

)2
< ∞, the

sequences (ηn)n≥1 and (νn)n≥1 converge almost surely weakly towards the limiting measure
µ on ∂U defined in Theorem 3.4.

For the proof of this proposition, we are going to use Lemma 3.6 again, using appropriate
martingales in order to handle the evolution of the measure of the subtree descending from every
vertex u ∈ U. We treat the two sequences of measures separately.

The degree measure. Consider the sequence (ηn)n≥1 on U. Since the sequence (Wn)n≥1

tends to infinity, we have ηn({u})→ 0 for every u ∈ U. Indeed, using the equality in distribution
(3.12) and Lemma 3.32 in the appendix, it is easy to see that either

∑∞
i=1W

−1
i <∞ and in this

case the degrees deg+
Tn

(uk) are eventually constant as n→∞; or
∑∞

i=1W
−1
i =∞, in which case

we have the almost sure asymptotic behaviour deg+
Tn

(uk) ∼ wk ·
∑n

i=kW
−1
i . In both cases, for

all k ≥ 1, we have n−1 deg+
Tn

(uk)→ 0 almost surely as n→∞.
As in the preceding case, for all k ≥ n we let

N (k)
n := ηn(T (uk)).

Conditionally on Tn, with probability M
(k)
n , the vertex un+1 is grafted onto T (uk) and with

complementary probability, it is not. So

N
(k)
n+1 =

1

Bn+1 + n
·
(

(Bn + n− 1) ·N (k)
n + bn+1 + 1

)
with probability M (k)

n ,

=
Bn + n− 1

Bn+1 + n
·N (k)

n with probability (1−M (k)
n ).

Now compute

E
[
N

(k)
n+1 −M

(k)
n+1

∣∣∣ Fn] =
Bn + n− 1

Bn+1 + n
·N (k)

n +
bn+1 + 1

Bn+1 + n
·M (k)

n −M (k)
n

=
Bn + n− 1

Bn+1 + n
·
(
N (k)
n −M (k)

n

)
.

Hence, if we denote X(k)
n := (Bn +n− 1) ·

(
N

(k)
n −M (k)

n

)
, then the last computation shows that(

X
(k)
n

)
n≥k

is a martingale for the filtration generated by (Tn)n≥1. More precisely we can write

X
(k)
n+1 −X(k)

n =

(
Wn

Wn+1
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)
︸ ︷︷ ︸

cn

·
(
1{un+1∈T (uk)} −M (k)

n

)
,

hence we have

E
[
X

(k)
n+1 −X(k)

n

∣∣∣ Tn] = 0 and E
[(
X

(k)
n+1 −X(k)

n

)2
]
≤ c2

n.

Then, using [39, Theorem 1], we get that if

∞∑
n=k

n−2c2
n <∞ (3.18)

87



then X
(k)
n
n → 0 a.s. as n → ∞, which would prove that N (k)

n −→ M
(k)
∞ as n → ∞. In our case,

we can verify that (3.18) holds. Indeed, using the fact that we have assumed that Bn = O(n)

and bn+1 = O
(
n1−ε), we have

n−2c2
n = n−2

(
Wn

Wn+1
(1 + bn+1)− wn+1

Wn+1
(Bn+1 + n)

)2

≤ n−2 · 3
(

1 + b2n+1 +

(
wn+1

Wn+1
(Bn+1 + n)

)2
)

≤ 3n−2 + 3b2n+1n
−2 + cst ·

(
wn+1

Wn+1

)2

,

which is summable under our assumptions. In the end, using Lemma 3.6, we have the almost
sure convergence

ηn −→ µ weakly.

The uniform measure on the vertices of Tn. Consider the sequence (νn) on U. Fix
k ≥ 1. For any n ≥ k we can write νn(T (uk)) = 1

n

∑n
i=k 1{ui∈T (uk)}. For any i ≥ k + 1, we have

pi := P (ui ∈ T (uk) | Fi−1) = µi−1(T (uk)), which tends a.s. to some limit µ(T (uk)) as i → ∞.
Using Lemma 3.32 in the appendix, we have∑n

i=k+1 1{ui∈T (uk)}∑n
i=k+1 pi

−→
n→∞

1 a.s. on the event

{ ∞∑
i=k+1

pi =∞
}

and also
n∑

i=k+1

1{ui∈T (uk)} converges a.s. on the event

{ ∞∑
i=k+1

pi <∞
}
.

In both cases we get νn(T (uk)) →
n→∞

limi→∞ pi = µ(T (uk)) almost surely. We also have for any
k ≥ 1,

νn({uk}) =
1

n
→

n→∞
0 and of course ∀u /∈ {u1, u2, . . .}, ∀n ≥ 1, νn({u}) = νn(T (u)) = 0,

so we can conclude using Lemma 3.6 that almost surely νn →
n→∞

µ weakly.

3.3 Height and profile of WRT

The main goal of this section is to prove Theorem 3.3 which gives asymptotics for the profile and
height of the tree. Recall that we denote

Ln(k) := # {1 ≤ i ≤ n | ht(ui) = k} ,

the number of vertices at height k in the tree Tn. In order to get information on the sequence of
functions (k 7→ Ln(k))n≥1 we study their Laplace transform

z 7→
∞∑
k=0

Ln(k)ekz =
n∑
i=1

ez ht(ui) = n ·
∫
U
ez ht(u)dνn(u), (3.19)

where the last expression is given using an integral against the probability measure νn defined
in Section 3.2.2 as the uniform measure on the vertices of Tn. The key result in our approach
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is to prove the convergence of this sequence of analytic functions when appropriately rescaled,
uniformly in z on an open neighbourhood of 0 in the complex plane. It then allows us to use
[84, Theorem 2.1] and hence derive a convergence result for the profile. We actually start in
Section 3.3.1 by studying the convergence of the similarly defined sequence of functions

z 7→
∫
U
ez ht(u)dµn(u) =

n∑
i=1

wi
Wn

ez ht(ui), (3.20)

where we integrate with respect to the weight measure µn instead of the uniform measure νn
as before. This one is easier to study because for every fixed z ∈ C, it defines a martingale
as n grows, up to some deterministic scaling. Then in Section 3.3.2, we make use of this first
convergence and show that up to some deterministic multiplicative constant, the two sequences
of integrals appearing in (3.19) and (3.20) are almost surely equivalent when n tends to infinity.

We work under some technical assumption for the sequence w. Let us fix γ > 0 and suppose
from now on that w satisfies the assumption (�p

γ) for some p ∈ (1 , 2], i.e.,

Wn ./
n→∞

cst ·nγ and
2n∑
i=n

wpn ≤ n1+(γ−1)p+o(1).

We let φ : z 7→ γ(ez − 1) be a function of a complex parameter z and let z 7→ Nn(z) be the
following rescaled version of the Laplace transform of the profile

Nn(z) := n−(1+φ(z))
∞∑
k=0

Ln(k)ezk.

The proposition below ensures that the sequence (z 7→ Nn(z))n≥1 converges uniformly on all
compact subsets of some open domain D ⊂ C to some limiting function z 7→ N∞(z) which does
not vanish anywhere on the set D ∩ R, along with some more technical statements.

Proposition 3.9. Suppose that the weight sequence w satisfies (�p
γ) for some γ > 0 and

some p ∈ (1 , 2]. Then there exists an open connected domain D ⊂ C such that D ∩ R =

(z− , z+) with z− < 0 and z+ is the largest real solution of the equation γ(zez−ez+1)−1 = 0

and such that the following properties are satisfied.

(i) With probability 1, the sequence of random analytic functions (z 7→ Nn(z))n≥1 con-
verges uniformly on all compact subsets of D , as n → ∞, to some random analytic
function z 7→ N∞(z) which satisfies P (N∞(z) 6= 0 for all z ∈ (z−, z+)) = 1.

(ii) For every compact set K ⊂ D and r ∈ N, we can find an a.s. finite random variable
CK,r such that for all n ∈ N,

sup
z∈K
|Nn(z)−N∞(z)| < CK,r(log n)−r.

(iii) For every compact set K ⊂ (z− , z+), every 0 < a < π and r ∈ N,

sup
z∈K

[
e−(1+φ(z)) logn

∫ π

a

∣∣∣∣∣
∞∑
k=0

Ln(k)ez+iu

∣∣∣∣∣du
]

= o
(
(log n)−r

)
a.s. as n→∞.

Under the results of Proposition 3.9 we can apply [84, Theorem 2.1] whose conclusions for the
sequence (k 7→ L(k))n≥1 are the following. For any k ≥ 0, n ≥ 1 and z ∈ (z− , z+), we denote

xn(k; z) =
k − γez log n√

γez log n
.
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Then, for every integer r ≥ 0 and every compact set K ⊂ (z− , z+), we have the convergence

(log n)
r+1
2 · sup

k∈N
sup
z∈K

∣∣∣∣∣∣ezk−(1+φ(z)) lognLn(k)− N∞(z)e−
1
2
xn(k;z)2

√
2πγez log n

r∑
j=0

Gj(xn(k); z)

(log n)j/2

∣∣∣∣∣∣ a.s.−→
n→∞

0, (3.21)

where for all j ≥ 0, the (random) functions Gj(x, z) are polynomials of degree at most 3 in x
and are entirely determined from φ and N∞, with G1 = 1, see [84] for their complete definition.
The asymptotics (3.7) and (3.8) stated in Theorem 3.3 follow from the last display. Indeed, (3.7)
is obtained by letting r = 0 and z = 0 and using the fact that N∞(0) = 1 almost surely. For
(3.8), we let r = 0, and use k = bγez log nc.

In Section 3.3.3, we complete the proof of Theorem 3.3 by computing the asymptotic be-
haviour of the height of the tree. Since the convergence of the profile already ensures that there
are almost surely vertices at height γe(z+−ε) log n for ε > 0 small enough and all n large enough,
it suffices to prove a corresponding upper-bound in order to finish proving the convergence (3.9)
in Theorem 3.3.

3.3.1 Study of the Laplace transform of the weighted profile

We study the sequence
(
z 7→∑n

i=1
wi
Wn

ez ht(ui)
)
n≥1

. The following lemma is the starting point

of our analysis:

Lemma 3.10. For all z ∈ C and all n ≥ 1, we have

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Tn
]

=

(
1 + (ez − 1)

wn+1

Wn+1

) n∑
i=1

wi
Wn

ez ht(ui).

Proof. Recall that conditionally on Tn, the (n+ 1)-st vertex un+1 of Tn+1 is a child of the vertex
uKn+1 , where P (Kn+1 = k | Tn) = wk

Wn
. We compute

n+1∑
i=1

wi
Wn+1

ez ht(ui) =
Wn

Wn+1

n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez · ez ht(uKn+1

).

Taking conditional expectation with respect to Tn yields

E

[
n+1∑
i=1

wi
Wn+1

ez ht(ui)

∣∣∣∣∣ Tn
]

=
Wn

Wn+1
·
n∑
i=1

wi
Wn

ez ht(ui) +
wn+1

Wn+1
· ez ·

n∑
i=1

wi
Wn

ez ht(ui)

=

(
1 + (ez − 1)

wn+1

Wn+1

) n∑
i=1

wi
Wn

ez ht(ui).

This concludes the proof.

Let J be an integer that we are going to fix later on. The last result ensures that if z ∈ C is
such that ∀i ≥ J, 1 + (ez − 1) wiWi

6= 0, then we can define for all n ≥ J

Cn(z) :=

n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
and Mn(z) :=

1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui),

and the sequence (Mn(z))n≥J is a martingale. We want to prove results about the asymptotic
behaviour of (z 7→Mn(z))n≥J , uniformly in z on an appropriate domain. If J is fixed, then there
exists parameters z with Im(z) = π mod 2π for which the sequence (Cn(z))n≥J takes the value

90



0. Due to our assumption (�γ) on the sequence w, we know that wn
Wn
→ 0 as n → ∞. If we

restrict ourselves to a domain of the form {z ∈ C | Re(z) < x} for some x > 0, then∣∣∣∣1 + (ez − 1)
wn
Wn

∣∣∣∣ ≥ 1− |ez − 1| · wn
Wn
≥ 1− (ex + 1) · wn

Wn
→

n→∞
1 > 0,

hence it suffices to take J large enough in order for the sequence (Cn(z))n≥J to only take non-zero
values for all z ∈ {ξ ∈ C | Re(ξ) < x} and all n ≥ J . In what follows we work on the domain

E = {z ∈ C | Re z < z+} ,

where z+ is as defined in Proposition 3.9. Using the preceding discussion, we fix J ≥ 1 such
that the sequence z 7→ (Cn(z))n≥J does not have any zero on E , so that z 7→ (Mn(z))n≥J is
well-defined for all z ∈ E .

We introduce the following notation. Let F (z, n) and G(z, n) be two functions of a complex
parameter z and an integer n ∈ N. For D ⊂ C a domain of the complex plane we write

F (n, z) = OD(G(n, z)) (resp. F (n, z) = oD(G(n, z))) (3.22)

to express the fact that F (n, z) is a big (resp. small) o of G(n, z) as n → ∞, uniformly on all
compact K ⊂ D.

Now, let us derive some information on the asymptotic behaviour of Cn(z).

Lemma 3.11. Suppose that w satisfies (�γ). Then there exists ε > 0 and an analytic function
z 7→ c(z) on E such that

Cn(z) = exp
(
φ(z) log n+ c(z) +OE

(
n−ε
))
.

Remark that the lemma implies that for any z ∈ E , we have

|Cn(z)| ∼ eRe(c(z)) · nReφ(z)

as n→∞. It is also immediate that E
[∑n

k=1
wk
Wn

ez ht(uk)
]

= E [MJ(z)] ·Cn(z) satisfies the same
asymptotics up to a constant, as soon as z is such that E [MJ(z)] 6= 0.

Before proving the lemma, we state the following result which follows from elementary cal-
culus. Its proof can be found in the appendix.

Lemma 3.12. Suppose that (wn) satisfies (�γ). Then there exists ε such that

+∞∑
i=n

(
wi
Wi

)2

= O
(
n−ε
)

and also
n∑
i=1

wi
Wi

= γ log n+ cst +O
(
n−ε
)
.

Proof of Lemma 3.11. For any z ∈ C\(−∞ ,−1] we write Log(1+z) for a complex determination
of the logarithm which coincides with

∑∞
i=1

(−1)n−1

n zn near 0. If we let

h(i, z) = Log

(
1 + (ez − 1)

wi
Wi

)
− (ez − 1)

wi
Wi

,

then |h(i, z)| = OE

((
wi
Wi

)2
)

is summable in i and the rest of the series is

∣∣∣∣∣
∞∑
i=n

h(i, z)

∣∣∣∣∣ ≤
∞∑
i=n

|h(i, z)| = OE

( ∞∑
i=n

(
wi
Wi

)2
)

= OE

(
n−ε
)
, (3.23)
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Figure 3.1 – The boundary of Vq for some values of q ∈ (1 , 2], plotted for γ = 2 and γ = 1
2 .

for some ε > 0, thanks to Lemma 3.12. Then we write

Cn(z) =
n∏
i=J

(
1 + (ez − 1)

wi
Wi

)
= exp

(
(ez − 1)

n∑
i=J

wi
Wi

+
n∑
i=J

h(i, z)

)

which yields using (3.23) and Lemma 3.12

Cn(z) = exp

(
(ez − 1)(γ log n+ cst +OE

(
n−ε
)
) +

∞∑
i=J

h(i, z)−
∞∑

i=n+1

h(i, z)

)

= exp

φ(z) log n+ (ez − 1) · cst +

∞∑
i=J

h(i, z)︸ ︷︷ ︸
c(z)

+OE

(
n−ε
)
,

and c(z) is an analytic function of z, which finishes the proof.

Convergence of the martingales (Mn(z))n≥1. When the parameter z is a positive real
number, the sequence (Mn(z))n≥1 is a positive martingale and so it converges almost surely
to some limit. We want to prove that these martingales converge almost surely and in L1 for
the largest possible range of parameters z. We recall that the weight sequence w satisfies (�p

γ)
for some fixed parameters γ > 0 and p ∈ (1 , 2]. We align our notation with that used in [36,
Theorem 2.2] which states something similar to our forthcoming Proposition 3.14 for another
model, the binary search tree.

For any z ∈ E and q ∈ (1 , p], we let

g(z, q) := φ(qRe z)− qRe(φ(z))− q + 1 = γ(eqRe z − 1− qRe(ez) + q)− q + 1. (3.24)

For any q ∈ (1 , p], let Vq = {z ∈ E | g(z, q) < 0}, and denote

V =
⋃

1<q≤p
Vq.

Lemma 3.13. The domain V is an open domain of the complex plane and contains the open
interval Iγ := {x ∈ R | γ(xex − ex + 1)− 1 < 0} which contains 0.
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Proof. Of course V is open as a union of open sets. For any real x we have g(x, 1) = 0. So, if
∂g
∂q (x, 1) < 0 then there exists q > 1 for which g(x, q) < 0. Since ∂g

∂q (x, 1) = γ(xex − ex + 1)− 1,
the set V contains the interval Iγ defined above. Since ∂g

∂q (0, 1) = −1 < 0, we have 0 ∈ Iγ .

Proposition 3.14. The sequence of functions (z 7→ Mn(z))n≥J converges uniformly al-
most surely and in L1 towards an analytic function z 7→ M∞(z) on every compact of V .
Furthermore, for any compact K ⊂ V , there exists a real ε(K) > 0 such that almost surely

|Mn(z)−M∞(z)| = OK

(
n−ε(K)

)
.

The proof of the proposition will follow from the next lemma, together with Lemma 3.34, stated
in the appendix.

Lemma 3.15. For any q ∈ (1 , p],

E [|Mn(z)|q] = OE

(
n0∨g(z,q)+oE (1)

)
, (3.25)

and also

E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
. (3.26)

Proof. For any q ∈ (1 , p] and n ≥ J , we write

Mn+1(z)−Mn(z) = Mn(z)

(
Cn(z)

Cn+1(z)
− 1

)
+

1

Cn+1(z)
· wn+1

Wn+1
· ez ht(un+1).

Taking the q-th power of the modulus on both sides and using the inequality |a+ b|q ≤ 2q|a|+
2q|b|, we get

E [|Mn+1(z)−Mn(z)|q]

≤ E [|Mn(z)|q] · 2q
∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q + 2q
1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
. (3.27)

Using Lemma 3.33 in the appendix, we have for any n ≥ J ,

E [|Mn+1(z)|q] ≤ E [|Mn(z)|q] + 2q · E [|Mn+1(z)−Mn(z)|q] .

Using the last display and equation (3.27), we get a recurrence inequality of the form

E [|Mn+1(z)|q] ≤ (1 + an(z)) · E [|Mn(z)|q] + bn(z), (3.28)

where

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q and bn(z) = 22q 1

|Cn+1(z)|q
(
wn+1

Wn+1

)q
· E
[
|ez|q ht(un+1)

]
.

Applying (3.28) in cascade we get

E [|Mn(z)|q] ≤ E [|MJ(z)|q] ·
n−1∏
i=J

(1 + ai(z)) ·
(
n−1∑
i=J

bi(z)

)
. (3.29)
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Now notice that from our assumption on the sequence (wn)n≥1 we have

an(z) = 22q

∣∣∣∣ Cn(z)

Cn+1(z)
− 1

∣∣∣∣q = 22q

∣∣∣∣∣ 1

1 + (ez − 1) wn+1

Wn+1

− 1

∣∣∣∣∣
q

= OE

((
wn+1

Wn+1

)q)
. (3.30)

On the other hand, thanks to Lemma 3.11 we have

bn(z) = cst ·
(
wn+1

Wn+1

)q
· |Cn+1(z)|−q · eqRe z · E

[
n∑
k=1

wk
Wn

e(qRe z) ht(uk)

]

=

(
wn+1

Wn+1

)q
·OE

(
n−qRe(φ(z))

)
·OE

(
nφ(qRe z)

)
=

(
wn+1

Wn+1

)q
·OE

(
ng(z,q)−1+q

)
. (3.31)

We conclude using the following lemma which is an application of Hölder inequality using the
assumption (�p

γ)

Lemma 3.16. For any q ∈ (1 , p] we have
2n∑
i=n

(
wi
Wi

)q
≤ n1−q+o(1).

Together with (3.30), this proves that (an(z))n≥1 is summable and so
∏∞
i=J(1 + ai(z)) =

OE (1). Also

2n∑
i=n

bi(z) = OE

(
ng(z,q)+oE (1)

)
,

and so
∑n

i=J bi(z) = OE

(
n0∨g(z,q)+oE (1)

)
. Replacing this in (3.29) finishes to prove (3.25). In

order to prove (3.26), we use Lemma 3.33 again and write

E [|M2n(z)−Mn(z)|q] ≤ 2q ·
2n−1∑
i=n

E [|Mi+1(z)−Mi(z)|q]

≤
(3.25),(3.27)

2n−1∑
i=n

(
ai(z) ·OE

(
n0∨g(z,q)+oE (1)

)
+ bi(z)

)
≤

(3.30),(3.31)

2n−1∑
i=n

(
wn+1

Wn+1

)q (
OE

(
n0∨g(z,q)+oE (1)

)
+OE

(
ng(z,q)−1+q

))
.

Using Lemma 3.16 we get E [|M2n(z)−Mn(z)|q] = OE

(
n(1−q)∨g(z,q)+oE (1)

)
which finishes the

proof of the lemma.

Proof of Proposition 3.14. Any compact K ⊂ Vq can be covered by a finite number of Vq. The
convergence result is then an application of Lemma 3.34, stated in the appendix, on the domain
Vq with α(z) = 0 and, say δ(z) = −1

2g(z, q) > 0. The limiting function is analytic as a uniform
limit of analytic functions.

Zeros of the limit. Now that we have proved that their exists a limiting function z 7→
M∞(z) defined on the domain V , we are interested in the possible location of the zeros of this
random function. In fact, the function z 7→ M∞(z) is related to the function z 7→ N∞(z) of
Proposition 3.9, for which we aim to prove that it has almost surely no zero on some real interval
(z− , z+) which contains 0. We will prove a similar result for z 7→ M∞(z) in Lemma 3.19, and
we start by proving the following weaker statement.
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Lemma 3.17. For all z ∈ V ∩ R, we have almost surely M∞(z) > 0. As a consequence, the
number of zeros on every compact of V is almost surely finite.

Proof. This follows from an application of Kolmogorov’s 0 − 1 law. Indeed, fix N ≥ J and
z ∈ V ∩ R and for all n ≥ N , let

M (N)
n (z) =

1

Cn(z)

n∑
i=1

wi
Wn

ez d(ui,TN ).

Now remark the following:

(i) (M
(N)
n (z))n≥N is a positive martingale which satisfies the same assumptions as Mn(z) so

it converges a.s. and in L1 towards a non-negative limit, M (N)
∞ (z).

(ii) We have (1 ∧ ez)NM (N)
n (z) ≤Mn(z) ≤ (1 ∨ ez)NM (N)

n (z).

(iii) The sequence (M
(N)
n (z))n≥N , hence its limit M (N)

∞ (z), is independent of the N first steps
of the construction, coded by the vector (K2, . . . ,KN ).

Using all these observations we deduce that for any N ≥ J we have the equality of events
{M∞(z) > 0} = {M (N)

∞ (z) > 0}. This proves that {M∞(z) > 0} is measurable with respect
to the tail σ-algebra generated by the sequence (K2,K3, . . . ), which are independent, and has
hence probability 0 or 1. By L1 convergence we have E [M∞(z)] = E [MJ(z)] > 0 and this proves
our claim. It follows immediately that the number of zeros of the limit z 7→ M∞(z) on any
compact K ⊂ V is almost surely finite, because otherwise the function would be identically 0

with positive probability.

Remark 3.18. In fact, Lemma 3.17 is already sufficient to prove the almost-sure lower bound
lim infn→∞

ht(Tn)
logn ≥ γez+ using arguments that are standard for branching random walks. Indeed,

under the probability measure Pz which has density M∞(z) with respect to P, there is a natural
description of the tree Tn together with a distinguished vertex uI chosen among {ui | 1 ≤ i ≤ n}
with probability proportional to wiez ht(ui) conditionally on Tn, and the height of uI has the de-
scription as a sum of independent Bernoulli variables and is concentrated around γez log n. Since
Pz and P are equivalent for any z ∈ V ∩R thanks to Lemma 3.17, this also proves the existence
in Tn of vertices of height γez log n with high probability under P.

Let us now prove the stronger statement:

Lemma 3.19. The function M∞(z) almost surely has no zero on V ∩ R.

In order to prove this lemma, we use an argument of self-similarity: essentially, if we take
two vertices ui and uj in the tree, then conditionally on the sequences of vertices that are grafted
above ui or above uj , the subtrees above ui and uj evolve as two independent weighted recursive
trees. Using Proposition 3.14 and Lemma 3.17, the normalized Laplace transform of the weighted
profile of each of those two subtrees should converge to some random analytic function which is
non-negative on V ∩ R and has at most countably many zeros. Since the two are independent,
their zeros should not overlap and hence the sum of their contribution should result in a function
that is positive on V ∩ R.

Proof. Let us formalise this line of reasoning. Using Theorem 3.4, we know that the measure µ
on ∂U is almost surely diffuse, hence we can define

I(1) := inf {i ≥ 1 | µ(T (ui)) ∈ (0 , 1)} and I(2) := inf {i ≥ I1 | uI1 � ui and µ(T (ui)) ∈ (0 , 1)} ,
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and they are almost surely finite. Let us consider the sequences
(
1{u

I(j)
�un}

)
n≥1

for j = 1, 2,

which record the times when a vertex is added to T (uI(1)) or T (uI(2)), and work conditionally
on them. Thanks to our definition of I(1) and I(2), we know that the number of vertices in each
of those subtrees will grow linearly in time (in particular, they go to infinity). We let

∀n ≥ 1, N (j)
n :=

n∑
i=1

1{u
I(j)
�ui} and ∀k ≥ 1, τ

(j)
k := inf

{
n ≥ 1

∣∣∣ N (j)
n ≥ k

}
,

which record respectively the number of vertices in T (uI(j)) at time n and conversely, the time
when the k-th vertex is added. We let w(j)

k := wτ (j)(k) and W (j)
k :=

∑k
i=1w

(j)
k , and also u

τ
(j)
k

=

u
(j)
k . We also define for j = 1, 2 and k ≥ 1

T
(j)
k :=

{
u ∈ U

∣∣∣ uI(j)u ∈ T
τ
(j)
k

}
,

the subtree hanging above uI(j) at the time where it contains exactly k vertices (translated to
the origin in order to be considered as a plane tree). Let us state the following intermediate
result, which we will prove at the end of the section.

Lemma 3.20. The following holds.

(i) For j = 1, 2, we have N (j)
n ∼

n→∞
µ(T (uI(j))) · n almost surely.

(ii) For j = 1, 2, the sequence (w
(j)
k )k≥1 satisfies (�p

γ) almost surely.

(iii) Conditionally on the two sequences
(
1{u

I(1)
�un}

)
n≥1

and
(
1{u

I(2)
�un}

)
n≥1

, the se-

quences of trees (T
(1)
k )k≥1 and (T

(2)
k )k≥1 are independent and have respective distributions

WRT((w
(1)
k )k≥1) and WRT((w

(2)
k )k≥1).

Recall the discussion before Lemma 3.10 and fix J ′ ≥ 1 such that for j = 1, 2, for all k ≥ J ′

and for all z ∈ E we have 1 + (ez − 1)
w

(j)
k

W
(j)
k

6= 0. Then we can define for j = 1, 2 and k ≥ J ′,

M
(j)
k (z) :=

1

C
(j)
k (z)

k∑
i=1

w
(j)
i

W
(j)
k

ezd(u
I(j)

,u
(j)
i ) with C

(j)
k (z) :=

k∏
i=J ′

(
1 + (ez − 1)

w
(j)
i

W
(j)
i

)
.

These processes are the martingales associated to the weighted profile of the trees (T
(j)
k )k≥1, to

which we can apply the result of Proposition 3.14 thanks to Lemma 3.20. This entails that these
two sequences of functions converge almost surely to analytic limits z 7→M

(j)
∞ (z) on the domain

V . Now we can write, for n sufficiently large

Mn(z) =
1

Cn(z)

n∑
i=1

wi
Wn

ez ht(ui)

≥
C

(1)

N
(1)
n

(z) ·W (1)

N
(1)
n

Cn(z) ·Wn
· ez ht(u

I(1)
) ·M (1)

N
(1)
n

(z) +
C

(2)

N
(2)
n

(z) ·W (2)

N
(2)
n

Cn(z) ·Wn
· ez ht(u

I(2)
) ·M (2)

N
(2)
n

(z).

(3.32)

Using Lemma 3.11, we have almost surely for j = 1, 2,

C
(j)
k (z) = exp

(
φ(z) log k + c(j)(z) + oE (1)

)
.
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Using the asymptotics N (j)
n =

n→∞
µ(T (uI(j))) · n · (1 + o(1)) from Lemma 3.20(i) we get

C
(j)

N
(j)
n

(z) = exp
(
φ(z) log n+ φ(z) log(µ(T (uI(j)))) + c(j)(z) + oE (1)

)
.

From the a.s. convergence of the sequence of measures (µn)n≥1, see Theorem 3.4, we also get
W

(j)

N
(j)
n

Wn
= µn(T (uI(j))) →n→∞ µ(T (uI(j))), which entails that for j = 1, 2, uniformly on all compacts

included in E , we have the a.s. convergence

W
(j)

N
(j)
n

Wn
·
C

(j)

N
(j)
n

(z)

Cn(z)
→

n→∞
Aj(z),

where the limiting function z 7→ Aj(z) is analytic (as the uniform limit of analytic functions)
and only takes positive values on E ∩R (as the exponential of some real-valued function). Then,
for any z ∈ V ∩ R, taking the limit n→∞ in (3.32) yields

M∞(z) ≥ ez ht(u
I(1)

) ·A1(z) ·M (1)
∞ (z) + ez ht(u

I(2)
) ·A2(z) ·M (2)

∞ (z).

Now, thanks to Lemma 3.17, the function z 7→ M
(1)
∞ (z) can only have at most countably many

zeros on V ∩ R and for all z ∈ V ∩ R, we have M (2)
∞ (z) > 0 almost surely. Then if we condition

on the location of the zeros z1, z2 . . . of M (1)
∞ on V ∩ R, since M (2)

∞ is independent of z1, z2 . . . ,
we have M (2)

∞ (zi) > 0 for all i ≥ 1 almost surely. Hence M∞ has almost surely no zeros on
V ∩ R.

Now let us prove Lemma 3.20 which we used in the preceding proof.

Proof of Lemma 3.20. Point (i) follows just from Theorem 3.4 and the fact that for j = 1, 2 we
have N (j)

n = nνn(T (uI(j))). Point (iii) is obvious from the attachment dynamics. We just need
to prove (ii). In order to do that we are going to prove that for j = 1, 2, we have

µn(T (uI(j))) ./
n→∞

µ(T (uI(j))) and τ (j)
n ./

n→∞
µ(T (uI(j)))

−1 · n. (3.33)

Let us conclude from here: using the fact that w satisfies (�γ), we get

W (j)
n = W

τ
(j)
n
· µ

τ
(j)
n

(T (uI(j))) ./
n→∞

cst ·(τ (j)
n )γ · µ(T (uI(j))) ./

n→∞
cst ·nγ ,

with a positive constant. Then we also have

2n∑
k=n

(w
(j)
k )p =

2n∑
k=n

(w
τ
(j)
k

)p ≤
τ
(j)
2n∑

i=τ
(j)
n

wpi ≤ n1+(γ−1)p+o(1),

where the last inequality is due to the linear growth of τ (j)
n and the fact that w satisfies (�p

γ).
So it remains only to prove (3.33). Recall the proof of Theorem 3.4. For all k ≥ 1 the process

(µn(T (uk)))n≥k is a martingale and almost surely we have |µn+1(T (uk))− µn(T (uk))| ≤ wn+1

Wn+1
,

hence using Lemma 3.33 in the appendix we get

E [|µ2n(T (uk))− µn(T (uk))|p] ≤ 2p ·
2n∑

i=n+1

(
wi
Wi

)p
= O

(
n1−p+o(1)

)
.

Using then Lemma 3.34 with q = p and α = 0 and δ = (p − 1)/2, we get that
|µn(T (uk))− µ(T (uk))| = O(n−ε) almost surely for some ε > 0. Since this is true almost surely
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for all k ≥ 1, we use it with k ∈ {I(1), I(2)}. As by definition for j = 1, 2 we have µ(T (uI(j))) > 0,
we conclude that µn(T (uI(j))) ./

n→∞
µ(T (uI(j))).

Then, for any k ≥ 1, consider the process
(
nνn(T (uk))−

∑n
i=k+1 µi(T (uk))

)
n≥k. It is

easy to verify that this process is a martingale in its own filtration and that its increments
are bounded by 1. Using again Lemma 3.34 with q = 2 and α = 1 and δ = 1, we get
n−1

∣∣nνn(T (uk))−
∑n

i=k+1 µi(T (uk))
∣∣ = O(n−ε). Using again that for j = 1, 2 the limit

µ(T (uI(j))) is almost surely positive, we can write N (j)
n = nνn(T (uI(j))) ./

n→∞
µ(T (uI(j))) · n.

Using the definition of τ (j)
n , we can check that this entails that τ (j)

n ./
n→∞

µ(T (uI(j)))
−1 ·n almost

surely. This concludes the proof of (3.33) and so the lemma is proved.

3.3.2 From the weighted to the unweighted sum.

Now we want to transfer these results of convergence to the Laplace transform of the real profile.
In this aim, we introduce the following quantity, for n ≥ J ,

Xn(z) := n1+φ(z) ·Nn(z)− ez
n−1∑
k=J

Ck(z)Mk(z)

=

n∑
i=1

ez ht(ui) − ez
n−1∑
k=J

(
k∑
i=1

wi
Wk

ez ht(ui)

)

The goal of this subsection is to show that the quantityXn(z) is negligible as n→∞ compared to
any of the two terms in the difference, for z contained in some domain. This way we will transfer
the asymptotics that we have proved for Mn(z) and Cn(z) in the last section to asymptotics for
Nn(z), which is the quantity that we want to study in the end.

Recall the definition of z+ and z− in (3.6). Let us define the domain D to which we refer in
the statement of Proposition 3.9 as

D := V ∩ {z ∈ C | 1 + Re(φ(z)) > 0} .

In this way D is a connected domain of C and D∩R = (z− , z+). Indeed, recall from Lemma 3.13
that V ∩ R = Iγ = {x ∈ R | 1 + γ(ex − 1− xex) > 0} is an open interval which contains 0 and
has z+ as its right bound. Now just check that {z ∈ R | 1 + Re(φ(z)) > 0} = (z− ,∞) and that
z− ∈ Iγ .

For technical reasons, we also introduce

D ′ = (z− , z+)× (0 , 2π),

on which the process (z 7→ Mn(z))n≥J , and hence also (z 7→ Xn(z))n≥J , is well-defined. Let us
further decompose D ′ into a union of open sets

D ′ =
⋃

1<q≤p
D ′q where D ′q =

{
z ∈ D ′

∣∣ g(Re z, q) < 0
}
,

and the function g : E × (1 , p]→ R is the one defined in (3.24).

Lemma 3.21. The process (Xn(z))n≥J is a martingale with respect to the filtration generated
by (Tn)n≥1. Furthermore, for all q ∈ (1 , p],

E [|X2n(z)−Xn(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
.
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Proof. This process is of course (σ(Tn))-adapted and integrable. For the martingale property we
compute

E [Xn+1(z) | Tn] = E
[
Xn(z)− ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣ Tn]
= Xn(z)− ezCn(z)Mn(z) + ez

n∑
i=1

wi
Wn

ez ht(ui) = Xn(z).

For z ∈ E and q ∈ (1 , p], we make the following computation, using Lemma 3.11 and Lemma 3.15,

E [|Xn+1(z)−Xn(z)|q] = E
[∣∣∣−ezCn(z)Mn(z) + ez ht(un+1)

∣∣∣q]
≤ 2q ·

(
eqz|Cn(z)|qE [|Mn(z)|q] + eqRe zE

[
n∑
i=1

wi
Wn

eht(ui)qRe z

])
,

= OE

(
nqReφ(z)+0∨g(z,q)+oE (1)

)
+OE

(
nφ(qRe z)

)
= OE

(
nqReφ(z)∨(qReφ(z)+g(z,q))∨φ(qRe z)+oE (1)

)
,

and the last exponent reduces to qReφ(z)∨φ(qRe z) because (qReφ(z) + g(z, q)) = φ(qRe z) +

1− q < φ(qRe z). Hence, using Lemma 3.33,

E [|X2n(z)−Xn(z)|q] ≤ 2q
2n∑
i=n

E [|Xi+1(z)−Xi(z)|q] = OE

(
n1+(qRe(φ(z))∨φ(qRe z))+oE (1)

)
,

which finishes the proof of the lemma.

Lemma 3.22. The following holds:

(i) For all compact K ⊂ D there exists ε(K) > 0 such that almost surely

n−(1+Reφ(z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

(ii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that

n−(1+φ(Re z)) ·
∣∣∣∣∣
n−1∑
i=J

Ci(z)Mi(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)
.

(iii) For all compact K ⊂ D ′, there exists ε(K) > 0 such that almost surely

n−(1+φ(Re z)) · |Xn(z)| = OK

(
n−ε(K)

)
.

Proof. For (i), for any q ∈ (1 , p] we can apply Lemma 3.34 on the domain Vq ∩
{z ∈ C | 1 + Re(φ(z)) > 0} with α(z) = 1 + Re(φ(z)) > 0 and δ(z) = min(q − 1,−g(z, q)) > 0,
thanks to Lemma 3.21. Then using the compactness property, (i) is true for every compact
K ⊂ D .

Let us prove point (ii). For any q ∈ (1 , p], on the domain D ′q we have E [|M2n(z)−Mn(z)|q] =

OD ′

(
n

(1−q)∨g(z,q)+oD′q
(1)
)
and

g(z, q) = q(φ(Re z)− Reφ(z))︸ ︷︷ ︸
>0

+ g(Re z, q)︸ ︷︷ ︸
<0

.
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Applying Lemma 3.34 for the martingale (z 7→ Mn(z))n≥J on any compact K ⊂ D ′q with
α(z) = φ(Re z)− Reφ(z) > 0 and δ(z) = min(−1 + q + q(φ(Re z)− Re(φ(z))),−g(Re z, q)) > 0

yields:

n−φ(Re z)+Reφ(z) ·Mn(z) = OK

(
n−ε(K)

)
.

Using the estimates of Lemma 3.11, we have |Cn(z)| = OK
(
nReφ(z)

)
, and so |Ci(z)Mi(z)| =

OK
(
iφ(Re z)−ε(K)

)
. Hence

∑n−1
i=J |Ci(z)Mi(z)| = OK

(
n0∨(1+φ(Re z)−ε(K))

)
.

For the last point, we use Lemma 3.34 on D ′q for the martingale (z 7→ Xn(z))n≥J with
α(z) = 1 + φ(Re z) > 0 and δ(z) = min(−1 + q + q(φ(Re z)− Re(φ(z))),−g(Re z, q)).

In order to conclude, we will also need the following lemma, which is a direct consequence of
Lemma 3.11.

Lemma 3.23. For any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, there exists ε(K) such
that ∣∣∣∣∣n−(1+φ(z)) ·

n−1∑
i=J

Ci(z)−
ec(z)

1 + φ(z)

∣∣∣∣∣ = OK

(
n−ε(K)

)
Proof. On any compact K ⊂ E ∩ {z ∈ C | 1 + Re(φ(z)) > 0}, using Lemma 3.11 we write

Cn(z) = ec(z) · nφ(z) · (1 +OK
(
n−ε
)
),

so that

n−1∑
i=1

Ci(z) = ec(z) ·
n−1∑
i=1

iφ(z) + ec(z) ·
n−1∑
i=1

iφ(z) ·OK
(
i−ε
)

=
ec(z)n1+φ(z)

1 + φ(z)
· (1 +OK

(
n−1

)
) +OK

(
n1+φ(z)−ε(K)

)
,

where in the second line, we use the fact that infz∈K(1 + Reφ(z)) > 0, and we define ε(K) :=

ε ∧ infz∈K(1 + Reφ(z)). This proves the lemma.

We can now prove Proposition 3.9.

Proof of Proposition 3.9. Let us start by proving simultaneously that N∞(z) = ez+c(z)

1+φ(z)M∞(z)

and both point (i) and (ii) of the proposition. For K ⊂ D compact and z ∈ K, we write∣∣∣∣∣Nn(z)− ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣∣
≤
∣∣∣n−(1+φ(z))Xn(z)

∣∣∣+

∣∣∣∣∣n−(1+φ(z))ez
n∑
i=J

Ci(z)Mi(z)−
ez+c(z)

1 + φ(z)
M∞(z)

∣∣∣∣∣.
The first term is OK

(
n−ε(K)

)
thanks to Lemma 3.22(i). We bound the second one by the following

quantity

|M∞(z)| · |ez| ·
∣∣∣∣∣n−(1+φ(z)) ·

n∑
i=J

Ci(z)−
ec(z)

(1 + φ(z))

∣∣∣∣∣︸ ︷︷ ︸
OK(n−ε(K))

+ n−(1+Reφ(z)) · |ez| ·
n−1∑
i=J

|Ci(z)| · |Mi(z)−M∞(z)|︸ ︷︷ ︸
OK(iReφ(z)−ε(K))

.

100



We then use Lemma 3.23 and Lemma 3.11 together with Proposition 3.14) to prove that the first
and second terms of the last display are OK

(
n−ε(K)

)
. The limiting function N∞(z) is analytic

as a uniform limit of analytic functions and has almost surely no zero on (z− , z+) because of
Lemma 3.19. For (iii), let us prove the stronger statement: for any compact set K ⊂ (z− , z+)

and 0 < a < π, there exists ε(K, a) > 0 such that almost surely,

sup
x∈K

sup
a≤η≤π

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ = O
(
n−ε(K,a)

)
.

For this, we write

n−(1+φ(x))

∣∣∣∣∣
n∑
i=1

e(x+iη) ht(ui)

∣∣∣∣∣ ≤ n−(1+φ(x))|Xn(x+ iη)|+ n−(1+φ(x))

∣∣∣∣∣
n−1∑
i=J

Ci(x+ iη)Mi(x+ iη)

∣∣∣∣∣.
We apply points (ii) and (iii) of Lemma 3.22 to the compact K × [a , π] and get the desired
bound.

3.3.3 Height of the tree

In this section, we study the behaviour of the height ht(Tn) of the tree Tn, which is defined as
the maximal height of the vertices of Tn, i.e.,

ht(Tn) = max
1≤k≤n

ht(uk).

We start by showing that under the assumption (�p
γ) we have the convergence (3.9). Then, for

the sake of completeness, we also study the simpler case where log n = o
(∑n

i=1
wi
Wi

)
.

One key argument in our proofs is the following equality for the annealed moment generating
function of the height of uk, for any fixed k ≥ 1, which can be seen as a corollary of Lemma 3.10,

E
[
ez ht(uk)

]
= ez ·

k−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
. (3.34)

Some elementary computations using the Chernoff bound and the last display yield the following
lemma:

Lemma 3.24. Suppose that the sequence of weights w satisfies

lim sup
n→∞

1

log n

n∑
i=2

wi
Wi
≤ u ∈ R∗+.

Then almost surely we have

lim sup
n→∞

ht(Tn)

log n
≤ uez+(u),

where z+(u) is the unique positive root of u(zez − ez + 1)− 1 = 0.

Proof. Using the expression (3.34) for the moment generating function of ht(un) we get, for any
z > 0,

E
[
ez ht(un)

]
= ez ·

n−1∏
j=2

(
1 + (ez − 1)

wj
Wj

)
≤ exp

1 + (ez − 1)

n−1∑
j=2

wj
Wj


≤ exp ((log n) · (u(ez − 1) + o(1))) ,
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where we use the inequality (1 + x) ≤ ex and the assumption on w. Then, for any z > 0 and
n ≥ 1,

P (ht(un) ≥ uez log n) ≤ e−uzez lognE
[
ez ht(un)

]
≤ exp (−u log n(zez − ez + 1 + o(1))) .

If we take z > 0 such that u(zez − ez + 1) > 1 then the right-hand-side is summable and hence
using the Borel-Cantelli lemma shows that for all n large enough, we have ht(un) ≤ uez log n.
Letting z ↘ z+(u), we get the result.

Let us prove the last claim of Theorem 3.3. Here we suppose that the weight sequence w

satisfies (�p
γ) for some γ > 0 and some p ∈ (1 , 2].

Proof of Theorem 3.3. Recall the asymptotics (3.8) in Theorem 3.3. It ensures that there almost
surely exist vertices at height γez log n, for any z ∈ (z− , z+). Hence the height of the tree Tn

satisfies

lim inf
n→∞

ht(Tn)

log n
≥ γez+ .

For the limsup, we use Lemma 3.25 with u = γ (this is justified by Lemma 3.12), which yields
lim supn→∞

ht(Tn)
logn ≥ γez+ .

To finish the section, we state a proposition.

Proposition 3.25. Let f(n) :=
∑n

i=2
wi
Wi

. If f(n) � log n as n → ∞ then we have the
almost sure convergence

lim
n→∞

ht(Tn)

f(n)
= 1.

Proof. For the upper-bound, we proceed as above. For any ε > 0 and z > 0:

P (ht(un) ≥ (1 + ε)f(n)) ≤ exp(−z(1 + ε)f(n))E
[
ez ht(un)

]
≤ exp ((ez − 1)f(n− 1)− (1 + ε)zf(n))

≤ exp (f(n) [ez − 1− (1 + ε)z + o(1)])

If we choose z > 0 close enough to 0 then the last display is summable, due to our assumption
on f . This implies using the Borel-Cantelli lemma that lim supn→∞

ht(Tn)
f(n) ≤ 1 + ε almost surely,

for any fixed ε > 0. Then we let ε↘ 0.
For the lower-bound, we use the fact that we can construct jointly with (Tn)n≥1 a sequence

(Dn)n≥1 such that ∀n ≥ 1, Dn ∈ Tn, increasing for the genealogical order and such that, as a
sequence, we have

(ht(Dn))n≥1
(d)
=

(
n∑
i=2

1{
Ui≤

wi
Wi

}
)
n≥1

with (Ui)i≥2 i.i.d. uniform random variables. See for example [41, Section 2.2] or in our setting [91,
Corollary 8]. Using the law of large numbers, we get that almost surely ht(Dn) ∼∑n

i=2
wi
Wi

= f(n)

as n→∞. Since ht(Tn) ≥ ht(Dn), this proves the lower-bound and finishes the proof.
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3.4 Preferential attachment trees are weighted recursive trees

In this section, we study preferential attachment trees with initial fitnesses a as defined in the
introduction. First, in Section 3.4.1, we prove Theorem 3.1 which allows us to see them as
weighted random trees WRT(wa) for some random weight sequence wa. Then in Section 3.4.2
we prove Proposition 3.2 which relates the asymptotic behaviour of wa to the behaviour of a.
Finally, in Section 3.4.3 we prove Proposition 3.27, which ensures that the sequence ma obtained
as the scaling limit of the degrees can be expressed as the increments of a Markov chain.

3.4.1 Coupling with a sequence of Pólya urns

Here we fix an arbitrary sequence a such that a1 > −1 and ∀n ≥ 2, an ≥ 0. Let us recall the
notation, for n ≥ 0,

An :=
n∑
i=1

ai,

with the convention that A0 = 0. We consider a sequence of trees (Pn)n≥1 evolving according
to the distribution PA(a) and we want to prove Theorem 3.1, namely that there exists a ran-
dom sequence of weights wa for which the sequence evolves as a WRT(wa). The proof uses a
decomposition of this process into an infinite number of Pólya urns. This is very close to what
is used in the proofs of [17, Theorem 2.1] or [28, Section 1.2] in similar settings. The novelty of
our approach is to express this result using weighted random trees, since it allows us to apply all
the results developed in the preceding section.

Pólya urns. For us, a Pólya urn process (Urn(n))n≥0 = (X(n),Total(n))n≥0 is a Markov chain
on E :=

{
(x, z) ∈ R+ × R∗+

∣∣ x ≤ z} with transition probabilities given by the matrix P where
for all (x, z) ∈ E,

P ((x, z), (x+ 1, z + 1)) =
x

z
and P ((x, z), (x, z + 1)) =

z − x
z

. (3.35)

The quantities X(n) and Total(n) represent respectively the number of red balls and the total
number of balls at time n in a urn containing red and blacks balls, in which we add a ball at
each time, the colour of which is chosen at random proportionally to the current proportion in
the urn. Starting at time 0 from the state (a, a + b), i.e. with a red balls and b black balls, it
is well-known that the sequence (∆X(n))n≥1 = (X(n) − X(n − 1))n≥1 of random variables is
exchangeable, and an application of de Finetti’s representation theorem ensures that it has the
same distribution as i.i.d. samples of Bernoulli random variables with a random parameter β,
which has distribution Beta(a, b), where we use the convention that Beta(a, b) = δ1 if b = 0.

Nested structure of urns in the tree. For all k ≥ 1 we define the following process in n ≥ k

Wk(n) := Ak +
k∑
i=1

deg+
Pn

(ui),

the "total fitness" of the vertices {u1, u2, . . . , uk}, for which we remark that for any k ≥ 1 we
have

Wk(k) = Ak + k − 1 and Wk(k + 1) = Ak + k. (3.36)

Imagine that Pn is constructed and we add a new vertex un+1 to the tree. We choose its parent
in a downward sequential way:
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• we first determine whether the parent is un, this happens with probability

an + deg+
Pn

(un)

Wn(n)
= 1− Wn−1(n)

Wn(n)
,

• then with the complementary probability Wn−1(n)
Wn(n) it is not, so conditionally on this we

determine whether it is un−1, this happens with (conditional) probability

an−1 + deg+
Pn

(un−1)

Wn−1(n)
= 1− Wn−2(n)

Wn−1(n)
.

• then with the complementary probability Wn−2(n)
Wn−1(n) it is not, etc... We continue this process

until we stop at some ui.

Now let us fix k ≥ 1 and introduce the following time-change: for all N ≥ 0, we let

θk(N) := inf {n ≥ k + 1 |Wk+1(n) = Ak+1 + k +N} , (3.37)

be the N -th time that a vertex is attached to one of the vertices {u1, . . . , uk+1}. Remark that
it can be the case that θk(N) is not defined for large N , if there is only a finite number of
vertices attaching to {u1, . . . , uk+1}. Let us ignore this possible problem for the moment, and
only consider bounded sequences a, for which this will almost surely not happen. In this case
for all N ≥ 0 we set

Urnk(N) := (Wk(θk(N)),Wk+1(θk(N))) = (Wk(θk(N)), Ak+1 + k +N). (3.38)

Now, the two following facts are the key observations in order to prove Theorem 3.1:

(i) for all k ≥ 1, the process Urnk = (Urnk(N))N≥0 has the distribution of a Pólya urn starting
from the state (Ak + k,Ak+1 + k),

(ii) those process are jointly independent for k ≥ 1.

Point (i) already follows from the discussion above. A moment of thought shows that (ii) holds
as well: of course the processes (Wk(n),Wk+1(n))n≥k+1 for different k are not independent at all
but the point is that they only interact through the time-changes (θk(·), k ≥ 1).

Reversing the construction and using the exchangeability. Using de Finetti’s theorem
and points (i) and (ii), each of the processes Urnk can be produced by sampling βk ∼ Beta(Ak +

k, ak+1) and adding a red ball at each step independently with probability βk and a black ball
with probability 1− βk. This is of course done independently for different k ≥ 1.

In terms of our downward sequential procedure defined above for finding the parent of each
newcomer, it amounts to saying that each time that we have to choose between attaching to uk+1

or attach to a vertex among {u1, . . . , uk}, the former is chosen with probability 1 − βk and the
latter with probability βk. Let us verify that the law of (Pn)n≥1 conditionally on the sequence
(βk)k≥1 can indeed be expressed as WRT with the random sequence of weights wa defined in
Theorem 3.1, which is defined from the sequence (βk)k≥1 as

∀n ≥ 1, Wa
n =

n−1∏
i=1

β−1
i and wa

n = Wa
n −Wa

n−1,
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with the convention that Wa
1 = 1 and Wa

0 = 0. Let us reason conditionally on the sequence
(βk)k≥1 (or equivalently the sequence (wa

n)n≥1). When determining the parent of un+1, we
successively try to attach to un, un−1, . . . until we stop at some uk. Using the independence, we
get

P (Jn+1 = k | Pn, β1, β2, . . . ) = βn−1βn−2 . . . βk(1− βk−1) =
Wa
k −Wa

k−1

Wa
n

=
wa
k

Wa
n

.

Remark that the above construction is still valid without the assumption that the sequence a is
bounded, and hence Theorem 3.1 is proved.

3.4.2 Proof of Proposition 3.2

Let (Wa
n)n≥1 be the random sequence of cumulated weights defined in Theorem 3.1, whose

distribution depends on a sequence a of initial fitnesses, and is expressed using a sequence of
independent Beta-distributed random variables (βk)k≥1. We are going to prove Proposition 3.2,
which relates the growth of (Wa

n)n≥1 to that of (An)n≥1. In this proof, we omit the superscript
a for readability.

Proof of Proposition 3.2. As in [63], we introduce

Xn :=
n−1∏
i=1

βi
E [βi]

.

It is easy to see that Xn is a positive martingale, hence it almost surely converges to a limit X∞
as n→∞. Now, using the fact that the (βn)n≥1 are independent and that the expectation of a
random variable with Beta(a, b) distribution distribution has q-th moment, for q ≥ 0,

Γ(a+ q)Γ(a+ b)

Γ(a)Γ(a+ b+ q)
=

q−1∏
k=0

a+ k

a+ b+ k
, (3.39)

we can compute

n−1∏
i=1

E [βpi ] =
n−1∏
i=1

(
p−1∏
k=0

i+Ai + k

i+Ai+1 + k

)
=

p−1∏
k=0

(
1 +A1 + k

n+An + k − 1

n−1∏
i=2

i+Ai + k

i+Ai + k − 1

)

=

(
p−1∏
k=0

1 +A1 + k

n+An + k − 1

)
·
p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
Now from our hypotheses on the sequence (An), we have for all k ∈ J0 , p− 1K

n+An + k − 1 =
n→∞

(c+ 1)n+O
(
n1−ε) and so

1

n+An + k − 1
=

n→∞

1

(c+ 1)n
+O

(
n−1−ε) .

Hence
p−1∏
k=0

n−1∏
i=2

(
1 +

1

i+Ai + k − 1

)
=

p−1∏
k=0

n−1∏
i=2

(
1 +

1

(c+ 1)i
+O

(
i−1−ε))

= exp

(
p−1∑
k=0

n∑
i=2

(
1

(c+ 1)i
+O

(
i−1−ε)))

= exp

(
p

c+ 1
log n+ cst +O

(
n−ε
))

= cst ·n
p
c+1
(
1 +O

(
n−ε
))
.
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In the end, since
∏p−1
k=0

1+A1+k
n+An+k−1 = cst ·∏p−1

k=0
1

(c+1)n+O(n1−ε) = cst ·n−p · (1 +O(n−ε)), we get

n−1∏
i=1

E [βpi ] = Cp · n−p+p/(c+1) · (1 +O
(
n−ε
)
) (3.40)

where Cp is a positive constant which depends on the sequence a and p. This entails that, under
our assumptions, for any p ≥ 1, we have E [Xp

n] → Cp/C
p
1 as n → ∞, which shows that this

martingale is bounded in Lp for all p ≥ 1 and hence it is uniformly integrable. Consequently, it
converges a.s. and in Lp to a limit random variable X∞, with moments determined by

∀p ≥ 1, E [Xp
∞] =

Cp
Cp1

. (3.41)

Furthermore, we have

E
[
(Xn+1 −Xn)2

]
= E

[
X2
n

(
βn
E [βn]

− 1

)2
]
≤ C2 ·

V (βn)

E [βn]2
. (3.42)

Since βn ∼ Beta(n+An, an+1), we get

E [βn] =
n+An
n+An+1

→ 1 and V (βn) =
an+1(n+An)

(n+An+1)2(n+An+1 + 1)
= O

(
n−1−ε) . (3.43)

Using equation (3.42), equation (3.43), Lemma 3.33 and summing over n ≤ k ≤ 2n − 1 we get
that E

[
(X2n −Xn)2

]
= O(n−ε). Using Lemma 3.34, we get, for some ε > 0,

|Xn −X∞| = O
(
n−ε
)
.

Since βi > 0 almost surely for every i ≥ 1, the event {X∞ = 0} is a tail event for the
filtration generated by the βi and has probability 0 or 1. In the end, it has probability 0 because
E [X∞] = 1. We deduce that

W−1
n =

n−1∏
i=1

βi = Xn ·
n−1∏
i=1

E [βi]

= X∞ · (1 +O
(
n−ε
)
) · C1 · n−1+ 1

c+1 · (1 +O
(
n−ε
)
)

= C1 ·X∞ · n−1+ 1
c+1 · (1 +O

(
n−ε
)
).

Hence, we have,

Wn = Z · n
c

(c+1) · (1 +O
(
n−ε
)
) with Z :=

1

X∞ · C1
. (3.44)

Whenever an ≤ nc′+o(1) as n→∞, we can show the following (we postpone the proof to the end
of the section):

Lemma 3.26. For any δ > 0, we have

P
(

1− βk > k−1+c′+δ
)
≤ exp

(
−kδ+o(1)

)
.

Since the last quantity is summable in k we can use the Borel-Cantelli lemma (and a sequence
of δ going to 0) to show that almost surely 1 − βk ≤ k−1+c′+o(1) as k → ∞. This finishes to
prove the proposition, because we can write

wk = Wk −Wk−1 = Wk · (1− βk−1) ≤ kc′−1/(c+1)+o(1).
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We finish by giving a proof of Lemma 3.26.

Proof of Lemma 3.26. Let x > 0 and y > 1 and let β be a random variable with Beta(x, y)

distribution. Then for any z ∈ [0 , 1] we have, using the explicit expression of the density of β:

P (β > z) =
Γ (x+ y)

Γ (x) Γ (y)

∫ 1

z
ux−1(1− u)y−1 du

≤ Γ (x+ y)

Γ (x) Γ (y)
exp (−(y − 1)z)

∫ 1

z
ux−1 du

≤ Γ (x+ y)

Γ (x+ 1) Γ (y)
· exp (−(y − 1)z) .

For any two sequences (xn) and (yn) simultaneously going to infinity with xn = o(yn), we have
the following bound using Stirling’s approximation:

log

(
Γ (xn + yn)

Γ (xn + 1) Γ (yn)

)
∼

n→∞
xn log(yn).

Applying the above computations for (1−βn) ∼ Beta (an+1, An + n), and using the assumptions
on the sequence a, we get

logP
(

1− βn > n−1+c′+δ
)
≤ −nδ+o(1),

which is what we wanted.

3.4.3 The distribution of the limiting sequence

Recall the convergence of the degree sequence stated in Proposition 3.5. Thanks to what precedes,
we know that if some sequence a satisfies (Hc) then the associated random sequence (wa

n)n≥1

satisfies Wa
n ∼
n→∞

Z · nc/(c+1) and so in this setting the convergence of degrees can be stated as

n−
1
c+1 · (deg+

Pn
(u1), deg+

Pn
(u2), . . . ) −→

n→∞
(ma

1 ,m
a
2 , . . . )

where (ma
n)n≥1 = c+1

Z · (wa
n)n≥1. Remark that the random variable Z depends on the whole

sequence (βn)n≥1 used in the definition of (Wa
n)n≥1, so the sequence (Ma

n)n≥1 = c+1
Z · (Wa

n)n≥1

can not be seen as an iterated product of independent random variables, which was the case for
(Wa

n)n≥1. We will prove that this new process still has some nice properties.

Proposition 3.27. For any sequence a that satisfies the condition (Hc), the sequence
(Ma

k)k≥1 is a (possibly time-inhomogeneous) Markov chain such that for all k ≥ 1, Ma
k+1

is independent of β1, β2, . . . , βk. The fact that for all k ≥ 1 we have Ma
k = βk ·Ma

k+1 with
βk ∼ Beta(Ak + k, ak+1) independent of Ma

k+1 characterises the backward transitions of the
chain.

Proof. We follow the same steps as [63, Lemma 1.1]. Let us fix a sequence a that satisfies the
hypotheses of the proposition and make the dependence on it implicit to ease notation. Recall
from (3.40) the definition of C1 and from (3.44) the definition of Z from X∞. We have

M1 = (C1 · (c+ 1) ·X∞) and for k ≥ 2, Mk = M1 ·
(
k−1∏
i=1

βi

)−1

. (3.45)
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It then follows that we can write, for k ≥ 1,

Mk+1 = C1 · (c+ 1) ·X∞ ·
(

k∏
i=1

βi

)−1

= C1 · (c+ 1) · lim
n→∞

∏n−1
i=k+1 βi∏n−1
i=1 E [βi]

,

which ensures that Mk+1 is independent of β1, β2, ..., βk. The limit in the last equality exists
almost surely thanks to the results of the preceding section.

Now we prove the Markov property of the chain. Let k ≥ 1. Because of the definition of the
chain as a product, the distribution of Mk+1 conditional on the past trajectory M1,M2, . . . ,Mk is
the same as the distribution of Mk+1 conditional on Mk, β1, . . . , βk−1. Since Mk+1 = β−1

k ·Mk and
that βk and Mk are both independent of β1, . . . , βk−1, this conditional distribution corresponds
to the one of Mk+1 conditional on the present state of the chain Mk.

Computing the moments. In some cases where the sequence a is sufficiently regular, we
can compute explicitly every moment of the random variable Ma

k for every k ≥ 1. Indeed, using
(3.41) and (3.45) and the independence, we get

E
[
Mp
k

]
= E

[(
C1 · (c+ 1) · lim

n→∞

∏n−1
i=k βi∏n−1

i=1 E [βi]

)p]
= Cp1 · (c+ 1)p · lim

n→∞

∏n−1
i=k E [βpi ](∏n−1
i=1 E [βi]

)p
=

(c+ 1)p · Cp∏k−1
i=1 E [βpi ]

. (3.46)

In general, if the collection (µp)p≥1 of p-th moments of some positive random variable satisfies the
so-called Carleman’s condition:

∑∞
p=1 µ

−1/(2p)
p =∞, then its distribution is uniquely determined

from those moments.

3.5 Examples and applications

In this section, we compute the explicit distribution of (Ma
n) for some particular sequences a.

We apply this result to another model of preferential attachment.

3.5.1 The limit chain for particular sequences a

As stated in the preceding section, we can compute the distribution of Ma
k for some fixed k by

the expression of its moments (3.46), provided that they satisfy Carleman’s condition. Knowing
these distributions and the backward transitions given in Proposition 3.27 then characterises the
law of the whole process. For two particular examples, this law has a nice expression.

Proposition 3.28. In the two following cases, the distribution of the chain (Ma
n) is explicit.

(i) If a is of the form a = (a, b, b, b, . . . ) with a > −1 and b > 0, then the limiting sequence
(Ma

n)n≥1 is a Mittag-Leffler Markov chain MLMC
(

1
b+1 ,

a
b+1

)
.

(ii) If a is of the form a = (a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ) with a > −1 and `,m ∈ N,

then (Ma
n)n≥1 is constant on the interval of the form J1+k` , (k+1)`K and the sequence

`
`

m+`

m+ `
· (Na

k)k≥1 =
`

`
m+`

m+ `
· (Ma

(k−1)`+1)k≥1
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has the Product Generalised Gamma distribution PGG (a, `,m).

We will prove the two points of this proposition in separate subsections. The proper definitions
of the distributions to which we refer are given along the proof. For the rest of the section, we
drop the superscript a and write (Mn)n≥1.

Mittag-Leffler Markov chains

Let us study the case where the underlying preferential attachment tree has a sequence of initial
fitnesses a that are of the form (a, b, b, b, . . . ). We start by recalling the definitions of Mittag-
Leffler distributions and Mittag-Leffler Markov chains introduced in [63], and also studied in
[79].

Mittag-Leffler distributions. Let 0 < α < 1 and θ > −α. The generalized Mittag-Leffler
ML(α, θ) distribution has pth moment

Γ(θ)Γ(θ/α+ p)

Γ(θ/α)Γ(θ + pα)
=

Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
(3.47)

and the collection of p-th moments for p ∈ N uniquely characterizes this distribution.

Mittag-Leffler Markov Chains. For any 0 < α < 1 and θ > −α, we introduce the (a priori)
inhomogenous Markov chain (Mα,θ

n )n≥1, the distribution of which we call the Mittag-Leffler
Markov chain of parameters (α, θ), or MLMC(α, θ). This type of Markov chain was already
defined in [63], for some choice of parameters α and θ. It is a Markov chain such that for any
n ≥ 1,

Mα,θ
n ∼ ML (α, θ + n− 1) ,

and the transition probabilities are characterised by the following equality in law:(
Mα,θ
n ,Mα,θ

n+1

)
=
(
Bn ·Mα,θ

n+1,M
α,θ
n+1

)
,

with Bn ∼ Beta
(
θ+k−1
α + 1, 1

α − 1
)
, independent of Mα,θ

n+1. These chains are constructed (for a
some values of θ depending on α) in [63]. In fact, our proof of Proposition 3.28(i) ensures that
these chains exists for any choice of parameters 0 < α < 1 and θ > −α. Let us mention that the
proof of [63, Lemma 1.1] is still valid for the whole range of parameters 0 < α < 1 and θ > −α,
which proves that these Markov chains are in fact time-homogeneous.

The limiting Markov chain is a Mittag-Leffler. Recall the definition of the sequence
(βk)k≥1 and their respective distributions βk ∼ Beta(Ak + k, ak+1). From our assumptions on
the sequence a we have for all k ≥ 1,

(Ak + k, ak+1) = (1 + a+ (k − 1)b, b).

Proof of Proposition 3.28 (i). For p ≥ 1, we can make the following computation, using (3.39),
one change of indices and several times the property of the Gamma function that for any z > 0
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we have Γ (z + 1) = zΓ (z):
n−1∏
i=1

E [βpi ] =
n−1∏
i=1

Γ (1 + a+ p+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i)

Γ (1 + a+ (b+ 1)(i− 1)) Γ (a+ (b+ 1)i+ p)

=

n−2∏
i=0

Γ (1 + a+ p+ (b+ 1)i)

Γ (1 + a+ (b+ 1)i)
·
n−1∏
i=1

Γ (a+ (b+ 1)i)

Γ (a+ (b+ 1)i+ p)

=
Γ (1 + a+ p)

Γ (1 + a)
· Γ (a+ (b+ 1)(n− 1))

Γ (a+ (b+ 1)(n− 1) + p)
·
n−2∏
i=1

i(b+ 1) + a+ p

i(b+ 1) + a

=
Γ (1 + a+ p)

Γ (1 + a)
· Γ (a+ (b+ 1)(n− 1))

Γ (a+ (b+ 1)(n− 1) + p)
·

Γ
(
a+p
b+1 + n− 1

)
Γ
(

a
b+1 + n− 1

) · Γ
(

1 + a
b+1

)
Γ
(

1 + a+p
b+1

) . (3.48)

Using Stirling formula, we can then compute the numbers Cp introduced in (3.40),

Cp = (b+ 1)−p ·
Γ (1 + a+ p) Γ

(
1 + a

b+1

)
Γ (1 + a) Γ

(
1 + a+p

b+1

) . (3.49)

Using (3.46), the moments of Mk are given, for any p ∈ N by the formula

E
[
Mp
k

]
=

(b+ 1)p · Cp∏k−1
i=1 E [βpi ]

=
(3.49),(3.48)

Γ
(

a
b+1 + k − 1

)
Γ (a+ (b+ 1)(k − 1) + p)

Γ (a+ (b+ 1)(k − 1)) Γ
(
a+p
b+1 + k − 1

)
These moments identify using (3.47) the distribution of Mk for all k ≥ 1,

Mk ∼ ML

(
1

b+ 1
,

a

b+ 1
+ k − 1

)
.

From this, and the form of the backward transitions, we can identify (Mk)k≥1 as having a
MLMC

(
1
b+1 ,

a
b+1

)
distribution.

Products of generalised Gamma.

The following paragraphs aim at proving Proposition 3.28(ii). In the first paragraph we define
the family of distributions of PGG-process. In the second one we prove that the distribution
of (Mk)k≥1 belongs to this family whenever the sequence a is of the form assumed in Proposi-
tion 3.28(ii).

Construction of a PGG(a, `,m)-process. For a > −1 a real number and `,m ≥ 1 integers,
we define the following. Let

{
Z

(q)
i

∣∣∣ 0 ≤ q ≤ m− 1, i ≥ 1
}
be a family of independent variables

with the following distribution: for all 0 ≤ q ≤ m− 1,

Z
(q)
1 ∼ Gamma

(
`+ a+ q

`+m
, 1

)
and for i ≥ 2, Z

(q)
i ∼ Gamma(1, 1),

where, for any k, θ > 0, the distribution Gamma(k, θ) has density x 7→ xk−1e−
x
θ

θkΓ(k)
1{x>0}. Then for

all k ≥ 1 we define Gk as,

Gk :=

m−1∏
q=0

(
k∑
i=1

Z
(q)
i

) 1
m+`

. (3.50)

We say that the process (Gk)k≥1 has the distribution Product of Generalised Gamma with pa-
rameters (a, `,m) which we denote PGG(a, `,m).
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The limiting chain is a PGG. Fix ` ≥ 1 and m ≥ 1 some integers and suppose that the
sequence a has the form

a = a, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, 0, 0, . . . , 0︸ ︷︷ ︸
`−1

,m, . . . ,

meaning that for all j ≥ 0 we have a`·j+1 = m, and an = 0 whenever n− 1 is not a multiple of
`, and a1 = a > −1.

Proof of Proposition 3.28 (ii). For all j ≥ 1 we let β′j := β`·j in our preceding notation. Of
course βi = 1 whenever i is not a multiple of `, hence the sequence (Mn)n≥1 is constant on
intervals of the type Jk`+ 1 , (k+ 1)`K. Recall that for all k ≥ 1 we denote Nk = M`·(k−1)+1. For
any j ≥ 1, we have

β′j ∼ Beta (a+ `+ (j − 1) · (m+ `),m) .

For any j ≥ 1, p ≥ 1, we use the moments (3.39) of a Beta random variable and a telescoping
argument to write

E
[
(β′j)

p
]

=

p−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) +m+ q
=

m−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) + p+ q
.

Then we compute, using the properties of the Gamma function,

n−1∏
i=1

E [(βi)
p] =

bn−1
`
c∏

j=1

E
[(
β′j
)p]

=

bn−1
`
c∏

j=1

m−1∏
q=0

a+ `+ (j − 1)(m+ `) + q

a+ `+ (j − 1)(m+ `) + p+ q

=

m−1∏
q=0

Γ
(
bn−1

` c+ q+a+`
m+`

)
Γ
(
q+a+`+p
m+`

)
Γ
(
bn−1

` c+ q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .
Using Stirling’s approximation we get

n−1∏
i=1

E [(βi)
p] ∼
n→∞

n−
pm
m+` · `

pm
m+` ·

m−1∏
q=0

Γ
(
q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .

Hence, recalling the definition of Cp in (3.40), we get

Cp = `
pm
m+` ·

m−1∏
q=0

Γ
(
q+a+`+p
m+`

)
Γ
(
q+a+`
m+`

) .

Then using (3.46) with c = m/`,

E
[
Npk
]

= E
[
Mp

1+(k−1)`

]
=

(c+ 1)p · Cp∏(k−1)`
i=1 E [βpi ]

=

(
m+ `

`

)p
· `

pm
m+` ·

m−1∏
q=0

Γ
(
k − 1 + q+a+`+p

m+`

)
Γ
(
k − 1 + q+a+`

m+`

)
=
(

(m+ `) · (`
−`
m+` )

)p
·
m−1∏
q=0

Γ
(
k − 1 + q+a+`

m+` + p
m+`

)
Γ
(
k − 1 + q+a+`

m+`

) .

Using the last display and the fact that a random variable with distribution Gamma(x, 1) has

p-th moment equal to Γ(x+p)
Γ(p) , we can identify the distribution of the marginals `

`
m+`

m+` ·Nk for any
k ≥ 1 with the ones of the process described in (3.50). The identification of the distribution of

the whole process `
`

m+`

m+` · (Nk)k≥1 with a PGG(a, `,m) is then obtained by checking that their
backward transitions are the same.
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Remark 3.29. For m = a = 1, the process (Gk)k≥1 has exactly the distribution of the points of
a Poisson process on R+ with intensity (`+ 1)t`dt, listed in increasing order.

Remark 3.30. The distribution of G1 coincides with the one proved in [14] for the limiting
proportion of some periodic Pólya urn, which is not a surprise because the degree of the first
vertex in the tree follows exactly the urn dynamic that they study (with completely different
tools).

3.5.2 Applications to some other models of preferential attachment

Let us present here another model of preferential attachment which appears in the literature, for
example in [100]. This model does not produce a tree as ours does, but we can couple them in
such a way that some of their features coincide. We only focus on one particular model of graph
here but the method presented here can be adapted to other similar models.

A model of (m,α)-preferential attachment Let S be a non-empty graph, with vertex-set
{v(1)

1 , . . . , v
(k)
1 } which have degrees (d1, . . . dk), and m ≥ 2 an integer and α > −m a real number

such that α+ di > 0 for all 1 ≤ i ≤ k. The model is then the following: we let G1 = S. Then, at
any time n ≥ 1, the graph Gn+1 is constructed from the graph Gn by:

• adding a new vertex labelled vn+1 with m outgoing edges,

• choosing sequentially to which other vertex each of these edges are pointed, each vertex
being chosen with probability proportional to α plus its degree (the degree of the vertices
are updated after each edge-creation).

The degree of a vertex in a graph refers in this section to the number of edges incident to it.
Here the growth procedure in fact produces multigraphs, in which it is possible for two vertices
to be connected to each other by more than one edge. In this case, all those edges contribute to
the count of their degree.

We can couple this model to a preferential attachment tree with sequence of initial fitnesses
a defined as:

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0 . . . ),

where w(S) := d1 + d2 + · · ·+ dk + kα.
Indeed, we can construct (Tn) with distribution PA(a). Then, for any n ≥ 1, consider the

tree T1+m(n−1) and for all 2 ≤ i ≤ n, merge together each vertex with initial fitness m + α

together with the m− 1 vertices with fitness 0 that arrived just before it. If G1 only contains one
vertex, it is immediate that the obtained sequence of graphs has exactly the same distribution
as (Gn)n≥1. For general seed graphs S, we can still use the same construction and the obtained
sequence of graphs has the same evolution as some sequence (G̃n)n≥1 which would be obtained
from (Gn)n≥1 by merging all the vertices {v(1)

1 , . . . , v
(k)
1 } into a unique vertex v1.

Note that a similar construction would also be possible if the initial degrees of the vertices
v2, v3, . . . were given by a sequence of integers (m2,m3, . . . ) instead of all being equal to some
constant value m. This is for example the case in the model studied in [44], where the initial
degrees are random.

We have the following convergence for degrees of vertices in the graph, as n→∞:
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Proposition 3.31. The following convergence holds almost surely in any `p with p > 2+ α
m :

n
− 1

2+α/m (degGn(v
(1)
1 ), degGn(v

(k)
1 ), . . . ,degGn(v

(k)
1 ),degGn(v2),degGn(v3), . . . )

−→
n→∞

(N1 ·B(1),N1 ·B(2), . . .N1 ·B(k),N2 − N1,N3 − N2, . . . ),

where

(B(1), B(2), . . . B(k)) ∼ Dir(d1 + α, d2 + α, . . . , dk + α),

and the process (Nn)n≥1 is independent of (B(1), B(2), . . . B(k)).
Furthermore, whenever α ∈ Z or m = 1 then the distribution of (Nn)n≥1 is explicit and

given by:

• m
−2m
2m+α

2m+α · (Nn)n≥1 ∼ PGG(w(S),m,m+ α) if α ∈ Z,

• (Nn)n≥1 ∼ MLMC
(

1
2+α ,

w(S)
2+α

)
if m = 1.

This result strengthens the one of [100, Theorem 1, Theorem 2 and Proposition 1] which cor-
responds (up to some definition convention) to the case α = 1 − m. We emphasize that the
convergence here is almost sure in an `p space.

Proof of Proposition 3.31. Using the coupling argument, we know that the sequence

((degGn(v
(1)
1 )− d1) + (degGn(v

(2)
1 )− d2) + · · ·+ (degGn(v

(k)
1 )− dk),

(degGn(v2)−m), (degGn(v3)−m), . . . )

evolves as the out-degrees of the vertices in order of apparition in a preferential attachment tree
PA(a) with sequence

a = (w(S), 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, 0, 0, . . . , 0︸ ︷︷ ︸
m−1

,m+ α, . . . ).

Using Theorem 3.1, Proposition 3.2 and Proposition 3.5 we get

n
− 1

2+α/m (degGn(v1) + degGn(v2) · · ·+ degGn(vk),degGn(u2),degGn(u3), . . . )

−→
n→∞

(N1,N2 − N1,N3 − N2, . . . ),

almost surely in `p for all p > 2+ α
m , for some random sequence (Nk)k≥1. In the case α ∈ Z orm =

1, Proposition 3.28 identifies the distribution of the limiting sequence. Last, the convergence of
1

degGn (v
(1)
1 )+degGn (v

(2)
1 )+···+degGn (v

(k)
1 )

(degGn(v
(1)
1 ), degGn(v

(2)
1 ), . . . ,degGn(v

(k)
1 )) just follows from the

classical result of convergence for the proportion of balls in a Pólya urn.

3.A Technical proofs and results

This appendix contains the proofs of technical results that are used throughout this chapter. Let
start by stating a useful conditional version of the Borel-Cantelli lemma.
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Lemma 3.32. Let (Fn) be a filtration and let (Bn)n≥1 be a sequence of events adapted to this
filtration. For all n ≥ 1, let pn := P (Bn | Fn−1). We have∑n

i=1 1Bi∑n
i=1 pi

→
n→∞

1 a.s. on the event

{ ∞∑
i=1

pi =∞
}

and also

n∑
i=1

1Bi converges a.s. on the event

{ ∞∑
i=1

pi <∞
}
.

Proof. The first convergence is the content of Theorem 5.4.11 and the second one is an application
of Theorem 5.4.9, both taken from [56].

The following lemma is a rewriting of [26, Lemma 1]. We provide the proof for completeness.

Lemma 3.33 ("Biggins’ lemma"). Let (Mn)n≥1 be a complex-valued martingale with finite q-th
moment for some q ∈ [1 , 2]. Then for every n ≥ 1

E [|Mn+1|q] ≤ E [|Mn|q] + 2q · E [|Mn+1 −Mn|q] .

Proof. Let Xn+1 := Mn+1 −Mn and let X ′n+1 be a random variable such that conditionally on
(M1, . . . ,Mn) the random variable X ′n+1 is independent of, and has the same distribution as,
Xn+1. Then

E [|Mn+1|q] = E
[∣∣∣∣E [Mn+1 −X ′n+1

∣∣M1, . . .Mn+1

]∣∣∣∣q]
≤ E

[∣∣Mn+1 −X ′n+1

∣∣q]
= E

[∣∣Mn +Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + E

[∣∣Xn+1 −X ′n+1

∣∣q]
≤ E [|Mn|q] + 2q · E [|Xn+1|q] ,

where the first equality comes from the fact that E
[
X ′n+1

∣∣M1, . . .Mn+1

]
= 0. The first inequal-

ity is the one of Jensen for conditional expectation, applied to the convex function z 7→ |z|q.
The second inequality is due to Clarkson, see [13, Lemma 1], and can be applied because the
distribution of Xn+1−X ′n+1 conditional on Mn is symmetric and 1 ≤ q ≤ 2. The last inequality
comes from the triangle inequality for the Lq-norm.

Let us state another result about martingales, which we use numerous times throughout the
chapter. Recall our uniform big-O and small-o notation, introduced in (3.22).

Lemma 3.34. Suppose that (z 7→ Zn(z))n≥1 is a sequence of analytic functions on some open
domain O ⊂ C, adapted to some filtration (Gn). Suppose that for every z ∈ O, the sequence
(Zn(z))n≥1 is a martingale with respect to the filtration (Gn). If there exists a parameters q > 1

and continuous functions α : O → R and δ : O → R∗+ such that for all n ≥ 1 we have

E [|Z2n(z)− Zn(z)|q] = OO

(
nα(z)q−δ(z)

)
,

then for any compact K ⊂ O, there exists ε(K) > 0 such that

(i) if α > 0 on O we have n−α(z) · |Zn(z)| = OK
(
n−ε(K)

)
almost surely and also in expectation,
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(ii) if α ≤ 0 on O, the almost sure limit Z∞(z) exists for z ∈ O and we have n−α(z) ·
|Zn(z)− Z∞(z)| = OK

(
n−ε(K)

)
almost surely and also in expectation.

Proof of Lemma 3.34. By compactness, it is sufficient to prove the result for a small disk around
each x ∈ K. Since O is an open set, let ρ > 0 be such that D(x, 2ρ) ⊂ O, where D(x, 2ρ) is the
closed disk in the complex plane with centre x and radius 2ρ. We denote

α = inf
D(x,2ρ)

α, α = sup
D(x,2ρ)

α, δ = inf
D(x,2ρ)

δ,

and choose ρ small enough so that α − α + 1
q δ > 0. Then if we let ξ : [0 , 2π] → C such that

ξ(t) = x+ 2ρeit, we have for any n and m, using Cauchy formula

sup
z∈D(x,ρ)

|Zn(z)− Zm(z)| ≤ π−1

∫ 2π

0
|Zn(ξ(t))− Zm(ξ(t))|dt.

Now,

sup
2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)| ≤ π−1 sup
2s≤n≤2s+1

∫ 2π

0
|Zn(ξ(t))− Z2s(ξ(t))|dt

≤ π−1

∫ 2π

0
sup

2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|dt. (3.51)

Sequentially using Jensen’s inequality and Doob’s maximal inequality in Lq, gives us for every
z ∈ D(x, ρ):

E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|
]
≤ E

[
sup

2s≤n≤2s+1

|Zn(z)− Z2s(z)|q
] 1
q

≤ q

q − 1
· E [|Z2s+1(z)− Z2s(z)|q]

1
q

=
s→∞

OD(x,2ρ)

(
2

(
α− 1

q
·δ
)
s
)
. (3.52)

So using (3.51), Fubini’s theorem and (3.52), we get

E

[
sup

2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|
]
≤ π−1

∫ 2π

0
E

[
sup

2s≤n≤2s+1

|Zn(ξ(t))− Z2s(ξ(t))|
]

dt

=
s→∞

O

(
2

(
α− 1

q
·δ
)
s
)
.

Now let us treat the two cases α > 0 and α ≤ 0 separately. Remark that the quantity
(
α− 1

q · δ
)

is negative when α ≤ 0, but can be of any sign in the case α > 0.
• For α > 0 and n ≥ 1, let r ∈ N be such that 2r ≤ n ≤ 2r+1 and write

E

[
n−α(z) sup

1≤k≤n
sup

z∈D(x,ρ)
|Zn(z)− Z1(z)|

]
≤ 2−αr ·

r∑
s=0

E

[
sup

2s≤n≤2s+1

sup
z∈D(x,ρ)

|Zn(z)− Z2s(z)|
]

≤ cst ·2−αr ·
r∑
s=0

2

(
α− 1

q
·δ
)
s

≤ cst ·2−(α−0∨(α− 1
q
·δ))r

.
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The expectation of the right-hand side tends to 0 exponentially fast in r hence also almost surely,
which proves point (i).
• For α ≤ 0 and n ≥ 1, let r ∈ N be such that 2r ≤ n ≤ 2r+1 and write

E

[
n−α(z) sup

k≥n
sup

z∈D(x,ρ)
|Zk(z)− Zn(z)|

]
≤ cst ·2−αr ·

∞∑
s=r

E

[
sup

2s≤k≤2s+1

sup
z∈D(x,ρ)

|Zk(z)− Z2s(z)|
]

≤ cst ·2−αr ·
∞∑
s=r

2

(
α− 1

q
·δ
)
s

≤ cst ·2−(α−α+ 1
q
·δ)r

.

and the last display converges exponentially fast to 0. So the function z 7→ Zn(z) converges
almost surely to some z 7→ Z∞(z) uniformly on the disc, and point (ii) is satisfied.

Finally, let us give a proof of Lemma 3.12.

Proof of Lemma 3.12. Let ε > 0 and suppose that Wn = cst ·nγ + O(nγ−ε) as n → ∞. It is

immediate that wn = Wn+1 −Wn = O(nγ−ε). Then

2n∑
i=n

(
wi
Wi

)2

≤ 1

W 2
n

· max
n≤i≤2n

wi ·
2n∑
i=n

wi ≤
W2n

W 2
n

· max
n≤i≤2n

wi = O
(
n−ε
)
,

and the first point follows by summing over intervals of the type Jn2k , n2k+1K.
Now write

W1

Wn
=

n∏
i=2

Wi−1

Wi
=

n∏
i=2

(
1− wi

Wi

)
= exp

(
n∑
i=2

log

(
1− wi

Wi

))
.

Since wi
Wi
→ 0 as n→∞, we get

log

(
1− wi

Wi

)
= − wi

Wi
+O

((
wi
Wi

)2
)

Putting everything together, we get

n∑
i=2

wi
Wi

= −
n∑
i=2

log

(
1− wi

Wi

)
+

n∑
i=2

O

((
wi
Wi

)2
)

= logWn − logW1 +

∞∑
i=2

O

((
wi
Wi

)2
)
−O

( ∞∑
i=n+1

(
wi
Wi

)2
)

= logWn + cst +O
(
n−ε
)
.

Last, just remark that logWn = log(cst ·nγ · (1 +O(n−ε))) = γ log n + cst +O(n−ε) , which
finishes the proof.
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Chapter 4

Growing random graphs with a
preferential attachment structure

This chapter is adapted from the work in progress [111].
The aim of this chapter is to develop a method for proving almost sure convergence in

Gromov-Hausdorff-Prokhorov topology for models of growing random graphs that have some
hidden preferential attachment structure. We describe the obtained limits using some iterative
gluing construction that generalises the famous line-breaking construction of Aldous’ Brownian
tree. We develop a framework which allows us to handle metric spaces seen as the gluing of
metric spaces along a tree structure. We prove the convergences using an argument of "finite-
dimensional" convergence together with some relative compactness property. This approach
strongly relies on results for preferential attachment and weighted recursive trees obtained in
Chapter 3.
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G1 G2 G3 G4 G5

Figure 4.1 – An example of a sequence of graphs used to run the algorithm, the root of each
graph is represented by a square vertex

4.1 Introduction

Let us introduce a generalised version of Rémy’s algorithm [107], which should be considered as
a particular example of the models that are handled by our method. Other models are discussed
at the end of the introduction.

4.1.1 A generalised version of Rémy’s algorithm

Consider (Gn)n≥1 a sequence of finite connected rooted graphs and construct the sequence
(Hn)n≥1 recursively as follows. Let H1 = G1. Then, for any n ≥ 1, conditionally on the
structure Hn already constructed, take an edge in Hn uniformly at random, split it into two
edges by adding a vertex "in the middle" of this edge, and glue a copy of Gn+1 to the structure
by identifying the root vertex of Gn+1 with the newly created vertex. Call the obtained graph
Hn+1.

When all the graphs (Gn)n≥1 are equal to the single-edge graph, we obtain the so-called
Rémy’s algorithm, which produces for each n a uniform planted binary tree with n leaves (if
the leaves are labelled for example). Remark that this kind of generalisation of the algorithm
has already been studied for particular sequences (Gn)n≥1, namely for (Gn)n≥1 constant equal
to the star-graph with k − 1 branches in [71], where the authors show that the obtained trees
converge in the scaling limit to some fragmentation tree; and in [109], for Gn being equal to the
single-edge graph for every n ≡ 1 mod `, for some ` ≥ 2, and equal to the single-vertex graph
whenever n 6≡ 1 mod `.

We see the graphs (Hn)n≥1 as measured metric spaces, by considering their set of vertices
endowed with the usual graph distance and the uniform measure on vertices. It is well-known [42]
that the sequence of trees created through the standard Rémy’s algorithm with distances rescaled
by n−1/2 converges almost surely in the Gromov-Hausdorff-Prokhorov topology to a constant
multiple of Aldous’ Brownian tree. We give here an analogous result, under some conditions on
the sequence (Gn)n≥1, which ensures that the graphs (Hn)n≥1 appropriately rescaled converge
almost surely in the Gromov-Hausdorff-Prokhorov topology to a random compact metric space.

Proposition 4.1. Call (an)n≥1 the respective numbers of edges in the graphs (Gn)n≥1.
Suppose there exists c > 0 and 0 ≤ c′ < 1

c+1 and ε > 0 such that

n∑
i=1

ai = c · n ·
(
1 +O

(
n−ε
))
, and an ≤ nc

′+o(1),

then we have the following convergence, almost surely in the GHP topology

(Hn, n
−1
c+1 · dgr, µunif) −→

n→∞
(H, d, µ). (4.1)
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As for Aldous’ Brownian tree, the limiting random compact metric space (H, d, µ), which depends
on the whole sequence (Gn)n≥1, can be described as the result of an iterative gluing construction,
as defined in Chapter 2. It is a natural extension of the famous line-breaking construction invented
by Aldous [9], but with branches that are allowed to be more complex than just segments.

A line-breaking construction. The construction of (H,d, µ) is described as follows. We first
run some increasing time-inhomogeneous Markov chain (Ma

n)n≥1 which takes values in R+, and
whose law depends only on the sequence a = (an)n≥1.

Cut the semi-infinite line R+ at the values taken by the chain, this creates an ordered sequence
of segments with length Ma

1 , (M
a
2 −Ma

1), (Ma
3 −Ma

2), . . . . Now for any n ≥ 1, we do the following:

(i) Cut the n-th segment into an sub-segments by throwing an − 1 uniform points on it, and
call (Ln,1, Ln,2, . . . , Ln,an) the respective lengths of the obtained sub-segments.

(ii) Take the graph Gn and replace every edge ek ∈ {e1, . . . , ean}, where the edges of Gn are
labelled in an arbitrary order, with a segment of length Ln,k. Call the result Gn.

Now, start from H1 := G1 and recursively when Hn is already constructed, sample a point
according to the length measure on Hn and identify the root of Gn+1 to the chosen point. The
space H is obtained as the completion of the increasing union

H =
⋃
n≥1

Hn.

The measure µ is the weak limit of the normalised length measure carried by the Hn’s.

4.1.2 Metric spaces glued along a tree structure

We introduce a general framework that allows us to handle objects that are defined as the result
of gluing together metric spaces along a discrete tree structure. Consider the Ulam tree with its
usual representation as

U =
⋃
n≥0

Nn. (4.2)

We say that D = (D(u))u∈U is a decoration on the Ulam tree if for any u ∈ U,

D(u) = (Du, du, ρu, (xui)i≥1),

is a compact rooted metric space, with underlying set Du, distance du, rooted at a point ρu and
endowed with a sequence (xui)i≥1 ∈ Du. Then for any such decoration D, we make sense of
the following metric space G (D), which is informally what we get if we take the disjoint union⊔
u∈UDu and identify every root ρui ∈ Dui to the distinguished point xui ∈ Du for every u ∈ U

and every i ∈ N, and take the metric completion of the obtained metric space.
This setting also encompasses the case where we only glue a finite number of blocks along

a plane tree. If τ is a plane tree, it can be natural to consider a decoration D = (D(u))u∈τ
which is only defined on the vertices of τ and is such that for all u ∈ τ , the block D(u) =

(Du, du, ρu, (xui)1≤i≤deg+
τ (u)) is only endowed with a finite number of distinguished points that

corresponds to the number deg+
τ (u) of children of u in τ . In this case we automatically extend

D by letting D(u) be the one-point space (?, 0, ?, (?)i≥1) for all u /∈ U and by letting xui = ρi for
all u ∈ τ and i ≥ deg+

τ (u). Thanks to this identification, we always consider decorations that are
defined on the whole Ulam tree U and for which all the blocks have infinitely many distinguished
points.
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(a) A realisation of H5 (b) The tree
P5

x1

x2
x3

ρ∅

ρ1

x1 1

ρ1 1

ρ2 ρ3

(c) The graph H5 seen as the gluing of a
decoration

Figure 4.2 – Decomposition of H5 as the gluing of some decoration. The graphs (Gn)n≥1 used
for the construction are the one appearing in Figure 4.1.

Convergence of metric spaces glued along U. For a sequence (Dn)n≥1 of decorations,
we have a sufficient condition for the convergence of the sequence (G (Dn))n≥1 in the Gromov-
Hausdorff topology. Indeed, we will see in Theorem 4.2 that it suffices that for every u ∈ U, we
have the convergence Dn(u)→ D∞(u) for some decoration D∞ in the some appropriate infinitely
pointed Gromov-Hausdorff topology and that the sequence of decorations (Dn)n≥1 satisfies the
relative compactness property

inf
θ⊂U

θ plane tree

sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v))

 = 0,

to get G (Dn) → G (D∞) in the Gromov-Hausdorff topology as n → ∞. With some appropriate
assumptions, we can also endow these metric spaces with measures and get a similar statement
in Gromov-Hausdorff-Prokhorov topology. We recall the definition and some properties of those
topologies in Section 4.2.3.

Scaling limit for the generalised Rémy algorithm. This framework will allow us to prove
Proposition 4.1. The idea is to interpret (Hn)n≥1 in this framework by constructing a sequence
of decorations (Dn)n≥1, in such a way that for all n ≥ 1 the graph Hn seen as a metric space
coincides with G (Dn). That way, the problem of understanding the whole structure of Hn is
decomposed into the easier problem of understanding separately all the Dn(u) for all u ∈ U.

In fact, the construction of such a sequence (Dn)n≥1 is naturally coupled with the construction
of a sequence (Pn)n≥1 of preferential attachment trees with initial fitnesses (an)n≥1, the definition
of which is recalled in Section 4.3, which were studied in Chapter 3. The sequence (Pn)n≥1 is an
increasing sequence of plane trees, so in particular they can be seen as subsets of U.

With this particular construction, each process (Dn(u))n≥1 for a fixed u ∈ U only evolves at
times n when the degree of u evolves in the tree (Pn)n≥1 and stays constant otherwise. Also, at
times where the block Dn(u) evolves, it does so independently of all the other blocks and follows
some simple dynamics. This allows us to study the evolution of the processes (Dn(u))n≥1,
including their scaling limit, separately for every u ∈ U.
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The fact that the limiting metric space can be described using an iterative gluing construction
depends crucially on the fact that the distribution of the trees (Pn)n≥1 can also be expressed as
that of a weighted recursive tree (see Section 4.3 for a definition) using the random sequence
(Ma

n −Ma
n−1)n≥1 to which we referred above in definition of the line-breaking construction.

Two families of continuous distributions on decorations. Aside from iterative gluing
constructions, an example of which we already mentioned, we define the family of self-similar
decorations. Under some assumptions, the distribution of the gluing G (D) of some random self-
similar decoration D is the unique fixed point of some contraction in an appropriate space of
distribution on metric spaces, in the same spirit as the self-similar random trees of Rembart and
Winkel in [106]. Some distributions on decorations can belong to both of these families, which
is often the case for distributions arising as scaling limits of some natural discrete models.

4.1.3 Scope of our results and their relation to previous work

Let us discuss the results proved in this chapter and how they are related to the existing literature.

Subcases of the generalised Rémy’s algorithm. Proposition 4.1 already encompasses sev-
eral models that were already studied using other methods, when specifying particular sequences
of graphs (Gn)n≥1.

• Of course, we recover the convergence for the standard Rémy’s algorithm whenever (Gn)n≥1

is constant and taken to be a single-edge graph.

• When (Gn)n≥1 is the constant sequence equal to a vertex with a single loop, the model
is equivalent to the looptree of the linear preferential attachment tree, and we recover the
convergence proved in [40].

• In [71], Haas and Stephenson study the case where G1 is the single-edge graph and the
sequence (Gn)n≥2 is constant equal to the star-graph with k− 1 branches, for k ≥ 2. They
describe the scaling limit as a fragmentation tree, as introduced in [68]. In this case, we
improve their convergence which was only in probability and give another construction of
the limit.

• Let us also cite the work of Ross and Wen [109], whose model (depending on an integer-
valued parameter ` ≥ 2) is obtained by setting Gn to be a single-edge graph if n − 1 is a
multiple of `, and reduced to a single vertex otherwise. We recover their results.

• In an ongoing work of Haas and Stephenson [72] the authors also study the case where
(Gn)n≥1 is taken as an i.i.d. sequence of rooted trees taken from a finite set. They describe
the limit as a multi-type fragmentation tree as introduced in [114]. Again, our result
ensures that the convergence is almost sure in the Gromov-Hausdorff-Prokhorov topology
and gives another construction of the limit.

Other models of growing random graphs. Our general method can be applied to various
models of growth such as Ford’s α-model [60], Marchal’s algorithm [92] or their generalisation
the α − γ-growth [37], possibly started from an arbitrary graph. The same methods apply also
for discrete looptrees associated to those models (using an appropriate planar embedding) or to
planar preferential attachment trees. We note the following:
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• We improve the convergence [69, 67] of Ford trees and α-γ-trees, from convergence in
probability to almost sure convergence, and also prove the convergence of their respective
discrete looptrees to continuous limits which can be described as the result of iterative
gluing constructions.

• We provide a new iterative gluing construction for α-stable trees and α-stable components,
different from the ones appearing in [63, 64].

• We prove a conjecture of Curien et al. [40] for the scaling limits of looptrees of planar
preferential attachment trees with offset δ, and describe the limit as an iterative gluing
construction with circles.

4.1.4 Organisation of the paper

This chapter is organised as follows.
We start in Section 4.2 by developing a framework that allows us to define the gluing of

infinitely many metric spaces along the structure of the Ulam tree. We prove Theorem 4.2 which
ensures that this procedure is continuous in some sense with respect to the blocks that we glue
together, as soon as they satisfy some relative compactness property. Then in Section 4.3 we
recall some properties of affine preferential attachment trees and weighted recursive trees that
were proved in the companion paper [110], and on which our study of sequences of growing
graphs in Section 4.5 strongly relies. In Section 4.4 we present two families of distributions
on decorations, the iterative gluing constructions and the self-similar decorations, which can
appear as continuous limits of the discrete distributions that we study. We derive some of
their properties, in particular we give some sufficient condition for the associated metric space
obtained under the gluing map G to be compact almost surely. We also provide examples of
random decorations that belong to both families of distributions. Last, in Section 4.5, we apply
the preceding result to obtain scaling limits of some families of growing random graphs. We
first start by proving Theorem 4.10, which is the general case in which our scaling limit results
apply. The rest of the section is devoted to applying this theorem to examples of growing random
graphs.

Appendix 4.A contains some computations related to the application of our results to some
specific models.

4.2 Gluing metric spaces along the Ulam tree

In this section, we introduce what we call decorations on the Ulam tree, which are families
of infinitely pointed compact metric spaces, indexed by the vertices of the Ulam tree. This
structure should be thought of as a plan that specifies how to construct a metric space by gluing
together all those decorations onto one another, along the structure of the Ulam tree. We then
provide sufficient conditions that ensures that the resulting metric space is compact and depends
continuously on the decorations in a sense that we make precise.

4.2.1 The Ulam tree

The completed Ulam tree. Recall the definition of the Ulam tree U =
⋃
n≥0Nn. We also

introduce the set ∂U = NN to which we refer as the leaves of the Ulam tree, which we see as
the infinite rays joining the root to infinity and let U := U ∪ ∂U. On this set, we have a natural
genealogical order � defined such that u � v if and only if u is a prefix of v. From this order we
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can define for any u ∈ U the subtree descending from u as the set T (u) := {v ∈ U | u � v}. The
collection of sets {T (u), u ∈ U} and {{u}, u ∈ U} generate a topology on U, which can also be
generated using the appropriate ultrametric distance. Endowed with this distance the set U is
then a separable and complete metric space.

Plane trees as subsets of U. Classically, a plane tree τ is defined as a finite non-empty subset
of U such that

(i) if v ∈ τ and v = ui for some i ∈ N, then u ∈ τ ,

(ii) for all u ∈ τ , there exists deg+
τ (u) ∈ N∪ {0} such that for all i ∈ N, ui ∈ τ iff i ≤ deg+

τ (u).

We denote T the set of planes trees.

Elements of notation. Let us define some pieces of notation.

• Elements of U are defined as finite or infinite sequences of integers, which we handle as
words on the alphabet N, we usually use the symbols u or v to denote elements of this
space.

• Sometimes we also use a bold letter i to denote a finite or infinite word i = i1i2 . . . . In this
case, for any integer k smaller than the length of i we also write ik = i1 . . . ik for the word
truncated to its k first letters.

• For any two u, v ∈ U, we write u ∧ v for the most recent common ancestor of u and v.

• For any u ∈ U, the height of u is the unique number n such that u ∈ Nn. We denote it by
ht(u) or sometimes also |u|.

4.2.2 Decorations on the Ulam tree

In a general manner, we call any function f : U → E from the Ulam tree to a space E an
E-valued decoration on the Ulam tree.

Real-valued decorations. As a first example, a function ` : U→ R+ is a real-valued decora-
tion on the Ulam tree. We say that ` is non-explosive if

inf
θ∈T

sup
u∈U

∑
v�u
v/∈θ

`(v)

 = 0. (4.3)

Metric space-valued decorations. One of the main objects studied in this chapter are dec-
orations D : U → M∞•, where the set M∞• is the set of non-empty compact metric spaces
endowed with an infinite sequence of distinguished points, up to isometry (see below for a proper
definition). More precisely

D : u 7→ D(u) = (Du, du, ρu, (xui)i≥1) ,

where Du is a set, du is a distance function on Du, and ρu and the (xui)i≥1 are distinguished
points of Du. The point ρu is called the root of D(u), and we sometimes call D(u) a block of the
decoration.
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i ∧ j = ik = jk

i

j
ik+2

ik+1
jk+1

(a) The path between i and j in the
Ulam tree

Di

Dil+2

Dil+1

Di∧j

y

z

Djl+1

Dj

xi

xil+2

xil+1
xjl+1

xj

ρi

ρil+2

ρil+1

ρi∧j

ρjl+1

ρj

(b) The contribution from every decoration along the path

Figure 4.3 – The distance between two points is computed as the sum of the contributions denoted
in red, computed using the distance in the corresponding decoration.

Let us define a particular element of M∞•, which we call the trivial or one-point space
({?}, 0, ?, (?)i≥1). For any decoration D, the subset S ⊂ U of elements u for which D(u) is not
trivial is called the support of the decoration D. In the rest of this chapter we will often consider
decorations that are supported on finite plane trees.

For a > 0, we will use the notation a · D to denote the decoration created from D by
multiplying all the distances in all the blocks by a factor a.

The gluing operation. We define a gluing operation G on the set of metric-space-valued
decorations (M∞•)U. For any D = (D(u))u∈U we first define the metric space G ∗(D) as

G ∗(D) =

(⊔
u∈U

Du

)
/ ∼ (4.4)

where the equivalence relation ∼ is such that for every u ∈ U and i ∈ N the root ρui of Dui is in
relation with the distinguished point xui ∈ Du. This set G ∗(D) is endowed with a distance d.

This distance is such that for all i = i1i2 . . . in and j = j1j2 . . . jm and points y ∈ Di, z ∈ Dj,

d(y, z) = d(z, y) = di(y, z) if i = j,

= di(y, xjn+1) +

m−1∑
k=n+1

djk(ρjk , xjk+1
) + dj(ρj, z) if j ≺ i,
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and if i ∧ j = il = jl is different from i and j we let

d(y, z) = d(z, y) = dik(xik+1
, xjk+1

) +
n−1∑
k=l+1

dik(ρik , xik+1
) + di(ρi, z)

+
m−1∑
k=l+1

djk(ρjk , xjk+1
) + dj(ρj, z).

This last configuration is illustrated in Figure 4.3. We then set

G (D) = G ∗(D),

its metric completion. We also let L (D) = G (D) \ G ∗(D) be its set of leaves.
Whenever the associated function ` : U → R+ defined as u 7→ `(u) = diam(Du) is non-

explosive, it is easy to see that the defined object G (D) is compact, and it can be approximated
by gluing only finitely many blocks of the decoration.

Remark that if D is supported on a plane tree τ , then for any u ∈ τ the result of the gluing
operation does not depend on the distinguished points (xui)i≥deg+

τ (u)+1 of D(u) with index greater
than deg+

τ (u) + 1.

Identification of the leaves. Suppose that D is such that G (D) is compact. Then there
exists a natural map

ιD : ∂U→ G (D), (4.5)

that maps every leaf of the Ulam-Harris tree to a point of G (D). Indeed, for any i = i1i2 · · · ∈ ∂U,
we define

ιD(i) = lim
n→∞

xin ∈ G (D),

and the limit exists because of the compactness of the space. It is then straightforward to see
that this map is continuous.

Adding measures. Let D be a metric-space-valued decoration. Suppose that we have a family
ν : u 7→ (νu)u∈U such that for all u ∈ U, νu is a Borel measure on D(u). Then we can define a
corresponding measure ν on U, so that ν({u}) = νu(Du) for all u ∈ U. We define the support of
ν as the support of the corresponding measure ν on U.

In this setting, we can in a natural way define a measure on G (D) by seeing
∑

u∈U νu as a
measure on G (D), identifying every decoration as a subspace. In this case we write

G (D,ν) (4.6)

for the corresponding measured metric space. In the case where G (D) is compact, then the
function ιD : ∂U → G (D) is well-defined and continuous so that if µ denotes a measure on ∂U,
then we can consider the push-forward measure (ιD)∗µ on G (D). In this case we write

G (D, µ) = (G (D), (ιD)∗µ). (4.7)

We can now state the main result of Section 4.2.
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Theorem 4.2. Suppose that (Dn)n≥1 is a sequence of decorations such that there exists a
decoration D∞ such that for every u ∈ U,

Dn(u) −→
n→∞

D∞(u),

for the infinitely pointed Gromov-Hausdorff-Prokhorov topology and such that the associated
real-valued decoration (u 7→ supn≥1 diam(Dn(u))) is non-explosive.

(i) Then, we have the convergence

G (Dn) −→ G (D∞) as n→∞ for the Gromov-Hausdorff topology.

(ii) Furthermore, suppose that for all n ≥ 1, we have νn = (νu,n)u∈U, measures over
Dn such that the corresponding measures (νn)n≥1 are probabilities on U and converge
weakly in U as n→∞ to some probability measure ν∞ that charges only ∂U, then we
have the convergence

G (Dn,νn) −→ G (D∞, ν∞) as n→∞,

for the Gromov-Hausdorff-Prokhorov topology.

The first point of this theorem states that the convergence of a global structure defined as G (Dn),
for some sequence Dn of decorations, can be obtained by proving the convergence of every D(u),
for all u ∈ U (convergence of finite-dimensional marginals) with the additional assumption that
they satisfy some relative compactness property which is here expressed as the non-explosion
condition. The second point ensures that if we add measures on our decorations and if these
measures converge nicely then we can improve our convergence to Gromov-Hausdorff-Prokhorov
topology on measured metric spaces. We only treat the case where the measure gets "pushed to
the leaves" because only this case arises in our applications. A more general statement where ν
is not carried on ∂U could be proven under the appropriate assumptions.

4.2.3 Some formal topological arguments

The aim of this section is to justify and properly define the construction described in the preceding
section, in a way that can be adapted to random decorations without any measurability problem.
This section is rather technical and can be skipped at first reading. We begin by recalling
some topological facts about the Urysohn universal space, and the so-called Hausdorff/Gromov-
Hausdorff/Gromov-Hausdorff-Prokhorov topologies.

Urysohn space and Gromov-Hausdorff-Prokhorov topology

Urysohn universal space. Let us consider (U , δ) the Urysohn space, and fix a point ∗ ∈ U .
The space U is defined as the only Polish metric space (up to isometry) which has the following
extension property (see [78] for constructions and basic properties of U): given any finite metric
space X, and any point x ∈ X, any isometry from X \ {x} to U can be extended to an isometry
from X to U . This property ensures in particular that any separable metric space can be
isometrically embedded into U . In what follows we will use the fact that if (K,d, ρ) is a rooted
compact metric space, there exists an isometric embedding of K into U such that ρ is mapped to
∗. It has also a very useful property called compact homogeneity (see [94, Corollary 1.2]) which
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ensures that any isometry ϕ between two compact subsets K and L of U can be extended to the
whole space U , meaning that there exists a global isometry φ such that ϕ is just the restriction
ϕ = φ|K .

Hausdorff distance, Lévy-Prokhorov distance. For any two compact subsets A and B of
the same metric space (E, d), we can define their Hausdorff distance as

dEH(A,B) = inf
{
ε > 0

∣∣∣ A ⊂ B(ε), B ⊂ A(ε)
}
,

where A(ε) and B(ε) are the ε-fattening of the corresponding sets. We denote the set of Borel
probability measures on E by P(E). For any two µ, ν ∈ P(E), we can define their Lévy-
Prokhorov distance as

dELP(µ, ν) = inf
{
ε > 0

∣∣∣ ∀F ∈ B(E), µ(F ) ≤ ν(F (ε)) + ε and ν(F ) ≤ µ(F (ε)) + ε
}
.

Whenever the space E is the Urysohn space, we drop the index E in the notation for those
distances.

Infinitely pointed Gromov-Hausdorff topology. We write Mk• for the space of all equiv-
alence classes of (k + 1)-pointed measure metric spaces. We can define the Gromov-Hausdorff
distance on Mk• by

dGH
(k)((X, d, ρ0, (ρ1, . . . , ρk)), (X

′, d′, ρ0, (ρ
′
1, . . . , ρ

′
k)))

= inf
φ:X→U ,φ′:X′→U

{
dH(φ(X), φ′(X)) ∨ max

0≤i≤k
δ(φ(ρi), φ

′(ρ′i))
}
,

where, as previously, the infimum is over all isometric embeddings φ and φ′ of X and X ′ into the
Urysohn space U . We writeM∞• for the space of all (equivalence classes of)∞-pointed measured
metric spaces. We can define the infinitely pointed Gromov-Hausdorff distance on M∞• by

dGH
(∞)((X, d, ρ0, (ρi)i≥1), (X ′, d′, ρ0, (ρ

′
i)i≥1))

=
∞∑
k=1

1

2k
dGH

(k)((X, d, ρ0, (ρ1, . . . , ρk)), (X
′, d′, ρ0, (ρ

′
1, . . . , ρ

′
k)))

( ≤ (diamX + diamX ′) <∞)

By abuse of notation, we will also consider (equivalence classes of) finitely pointed compact
metric spaces (X,d, ρ, (xi)1≤i≤k) as elements ofM∞•, by completing the sequence (xi) by setting
xi = ρ for all i ≥ k + 1.

Infinitely pointed Gromov-Hausdorff-Prokhorov topology. In some of our applications,
we work on K∞•, which is the corresponding space for elements of M∞• endowed with a Borel
probability measure. In the same way as before, elements of K∞• are 5-tuples (X,d, ρ, (xi)i≥1, µ),
where (X,d, ρ, (xi)i≥1) ∈ K∞• and µ is a finite Borel measure on X. Again we set

dGHP
(k)((X, d, ρ0, (ρ1, . . . , ρk), µ), (X ′, d′, ρ0, (ρ

′
1, . . . , ρ

′
k), µ

′))

= inf
φ:X→U ,φ′:X′→U

{
dH(φ(X), φ′(X)) ∨ dLP((φ)∗µ, (φ

′)∗µ
′) ∨ max

0≤i≤k
d(φ(ρi), φ

′(ρ′i))
}
,

and

dGHP
(∞)((X, d, ρ0, (ρi)i≥1, µ), (X ′, d′, ρ0, (ρ

′
i)i≥1, µ

′))

=
∞∑
k=1

1

2k
dGHP

(k)((X, d, ρ0, (ρ1, . . . , ρk), µ), (X ′, d′, ρ0, (ρ
′
1, . . . , ρ

′
k), µ

′)).
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Construction in the appropriate ambient space

In order to ease the definition of our objects and avoid some measurability issues that arise when
working with abstract equivalence classes of metric spaces, we define a way of only dealing with
some particular representatives of those equivalence classes that are compact subsets of the set
U . For that matter we define K∞•(U) the counterpart of K∞•, as

K∞•(U) := {(K, δ|K , ∗, (ρi)i≥1, µ) | ∗ ∈ K ⊂ U , K compact,

∀i ≥ 1, ρi ∈ K, µ ∈ P(U), supp(µ) ⊂ K},
where δ|K is the distance on U restricted to the subset K. We set accordingly,

dHP
(k)((K, (ρ1, . . . , ρk), µ), (K ′, (ρ′1, . . . , ρ

′
k), µ

′)) = dH(K,K ′) ∨ dLP(µ, µ′) ∨ max
1≤i≤k

d(ρi, ρ
′
i),

and

dHP
(∞)(K, δ|K , ∗, (ρi)i≥1, µ), (K ′, δ|K′ , ∗, (ρ

′
i)i≥1, µ

′))

=
∞∑
k=1

1

2k
dHP

(k)((K, (ρ1, . . . , ρk), µ), (K ′, (ρ′1, . . . , ρ
′
k), µ

′)).

We define the projection map π : K∞•(U) −→ K∞•, such that

π((K, δ|K , ∗, (ρi)i≥1, µ)) =
[
(K, δ|K , ∗, (ρi)i≥1, µ)

]
,

the corresponding equivalence class in K∞•. This map is surjective by the properties of Urysohn
space and continuous because it is obviously 1-Lipschitz. Using the surjectivity, we know that
we can lift any deterministic element of K∞• to an element K∞•(U).

Actually, we are going to deal with random variables with values in the space K∞• and we
want to ensure that we can consider versions of those random variables with values in K∞•(U).
In fact, remarking that both sets are Polish spaces, we can use a theorem of measure theory from
[90] which ensures that every probability distribution τ on K∞• can be lifted to a probability
measure σ on K∞•(U), such that π∗σ = τ . Hence, whenever we consider a random variable with
values in K∞•, we can always work with a version of our random variable that is embedded in
the space U , and whose root coincides with ∗. The same line of reasoning can be made with
M∞•.

From now on, we work with decorations D ∈ (K∞•(U))U by taking a representative for every
one of the decorations.

Construction embedded in a space. We introduce the following space, in which we will be
able to define a representative of the space G (D) for any family of decoration D.

`1(U ,U, ∗) :=

{
(yu)u∈U ∈ UU

∣∣∣∣∣ ∑
u∈U

δ(yu, ∗) < +∞
}
.

We endow `1(U ,U, ∗) with the distance d((yu)u∈U, (zu)u∈U) =
∑

u∈U δ(yu, zu), which makes it a
Polish space.

Remark 4.3. If for each u ∈ U, we are given an isometry φu : U → U such that φu(∗) = ∗, then
we can introduce

φ :=
∏
u∈U

φu : `1(U ,U, ∗)→ `1(U ,U, ∗),

(yu)u∈U 7→ (φu(yu))u∈U ,

and φ is an isometry of the space `1(U ,U, ∗).
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For each u ∈ U, we consider a representative of the decoration (Du, du, ρu, (xui)i≥1) that
belongs to M∞•(U), meaning that we see Du as a subset of U and

(Du, du, ρu, (xui)i≥1) =
(
Du, δ|Du , ∗, (xui)i≥1

)
Then the gluing operation is defined this way. Let i = i1i2...in ∈ U. For any such i ∈ U, we
define

D̃i =
{

(yu)u∈U
∣∣ y∅ = xi1 , yi1 = xi2 , . . . , yin−1 = xin , yi ∈ Di, and ∀u � i, yu = ∗

}
.

Remark that each of the subsets D̃i is isometric to the corresponding decoration Di. Then we
consider

G ∗(D) =
⋃
i∈U

D̃i. (4.8)

The structure G (D) is then defined as the closure of G ∗(D) in the space `1(U ,U, ∗). Thanks to
Remark 4.3, the resulting space (up to isometry) does not depend on the choice of representative
for the different decorations.

For convenience, for any plane tree θ we also introduce the metric space obtained by only
gluing the decorations that are indexed by the vertices in θ, which we denote by G (θ,D), i.e.,

G (θ,D) :=
⋃
i∈θ

D̃i (4.9)

We do not need to complete it since it is already compact, as a union of a finite number of
compact metric spaces.

Identification of the leaves. Suppose that D is such that G (D) is compact. Then, in this
setting, the map ιD : ∂U → G (D) defined in (4.5) has the following form: for any i = i1i2 · · · ∈
∂U,

ιD(i) = (yu)u∈U with yin = xin+1 for all n ≥ 0,

yu = ∗ whenever u ⊀ i.

4.2.4 Proof of Theorem 4.2

Before proving the theorem, let us state a lemma that ensures that the gluing operation is
continuous when considering a finite number of decorations.

Lemma 4.4. For any θ finite plane tree, and D and D′ decorations, we have

dGH

(
G (θ,D) ,G

(
θ,D′

))
≤ 2 ·

∑
u∈θ

dGH
(deg+

θ (u))
(
D(u),D′(u)

)
.

Proof. For all u ∈ θ, and thanks to the compact homogeneity of U , we can find an isometry
φu : U → U such that φu(∗) = ∗ and

dH(φu
(
D′u)

)
, Du) ∨ max

1≤i≤deg+
θ (u)

δ(φu(x′ui), xui) ≤ 2dGH
(deg+

θ (u))
(
D(u),D′(u)

)
. (4.10)

Then let φu = idU , for every u /∈ θ, and let φ =
∏
u∈U φu be the corresponding isometry of

`1(U ,U, ∗). Then let us show that we control the Hausdorff distance between

G (θ,D) =
⋃
i∈θ

{
(yu)u∈U

∣∣ y∅ = xi1 , yi1 = xi2 , . . . , yin−2 = xin−1 , yin−1 = xi, and ∀u � i, yu = ∗
}
,

=
⋃
i∈θ

D̃i,
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and

φ(G (θ,D′)) =
⋃
i∈θ

{
(yu)u∈U

∣∣ y∅ = φ∅(x
′
i1), . . . , yin−1 = φin−1(x′i), yi ∈ φi(D′i), and ∀u ⊀ i, yu = ∗

}
=
⋃
i∈θ

φ
(
D̃′i

)
.

Now for any i = i1i2 . . . in ∈ θ, any y = (yu)u∈U ∈ D̃i and z = (zu)u∈U ∈ φ
(
D̃′i

)
, we can write

d(y, z) = δ(yi, zi) +

n∑
`=1

δ(xi` , φi`−1
(x′i`)),

with yi ∈ Di and zi ∈ φ(D′i). Now using equation (4.10), we get that

dH

(
D̃i, φ

(
D̃′i

))
≤ dH(Di, φi(D

′
i)) +

n∑
`=1

δ(xi` , φi`−1
(x′i`))

≤ 2 ·
∑
u∈θ

dGH
(deg+

θ (u))
(
D(u),D′(u)

)
. (4.11)

The last inequality is true for any i ∈ θ, hence taking a union yields

dH

(⋃
i∈θ

D̃i,
⋃
i∈θ

φ
(
D̃′i

))
= dH

(
G (θ,D), φ(G (θ,D′))

)
≤ 2 ·

∑
u∈θ

dGH
(deg+

θ (u))
(
D(u),D′(u)

)
,

which finishes the proof of the lemma.

Proof of Theorem 4.2. Let n ∈ N be an integer and θ a finite plane tree and y = (yu)u∈U ∈
G (Dn). From our construction of G (Dn), we know that the indices v for which yv 6= ∗ are all
contained in an infinite ray in U, meaning that there exists u ∈ ∂U such that yv = ∗ for all
v ⊀ u. Now we can check that

d(y,G (θ,Dn)) =
∑
v≺u
v/∈θ

δ(yv, ∗) ≤
∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v))

≤ sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v)).

Since it holds for any y ∈ G (Dn) and the bound on the right-hand side is uniform for all such y,
we have

dH (G (θ,Dn),G (Dn)) ≤ sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v)).

Now we can write

dGH (G (Dn),G (D)) ≤ dGH (G (Dn),G (θ,Dn)) + dGH (G (θ,Dn),G (θ,D)) + dGH (G (θ,D),G (D))

≤ 2 sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v)) + dGH (G (θ,Dn),G (θ,D))

Using the non-explosion of the function (u 7→ supn≥1 diam(Dn(u))) we can make the first term
as small as we want by taking the appropriate θ, and when θ is fixed, the second term vanishes
as n→∞ thanks to Lemma 4.4. This finishes the proof of (i).
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Now let us prove point (ii). For simplicity, we write µn =
∑

u∈U νu,n and also µ∞ = (ιD∞)∗ν∞.
Let ε > 0. From the non-explosion condition we know that we can find a plane tree θ such that

sup
u∈U

∑
v≺u
v/∈θ

sup
n≥1

diam(Dn(v))

 < ε. (4.12)

Now, we construct another finite plane tree θ′, such that θ ⊂ θ′, by adding only children of
vertices of θ. We do so in such a way that∑

v∈θ′\θ

ν∞ (T (v)) ≥ 1− ε/2.

Remark that from (4.12), for any v ∈ θ′ \ θ and any n ≥ 1, we have diam (Dn(v)) < ε.
Introduce the projection pθ′ : `1(U ,U, ∗)→ `1(U ,U, ∗), such that for any (yu)u∈U, the image

(zu)u∈U = pθ′ ((yu)u∈U) is such that zu = yu for any u ∈ θ′ and zu = ∗ otherwise. Using (4.12),
we can check that for any n ≥ 1 and y ∈ G (Dn), we have

d (pθ′(y), y) < ε.

This observation suffices to show that for any n ∈ N ∪ {∞},
dGHP ((G (Dn), µn) , (pθ′ (G (Dn)) , (pθ′)∗µn)) < ε.

Then,

dGHP ((G (Dn), µn) , (G (D∞), µ∞)) ≤ dGHP ((G (Dn), µn) , (pθ′ (G (Dn)) , (pθ′)∗µn))

+ dGHP ((G (D∞), µ∞) , (pθ′ (G (D∞)) , (pθ′)∗µ∞))

+ dGHP ((pθ′ (G (Dn)) , (pθ′)∗µn) , (pθ′ (G (D∞)) , (pθ′)∗µ∞)) .

The first two terms on the right-hand side are smaller than ε from what precedes so that we only
have to prove that the last one is also small whenever n is large enough. Remark that for any
D, pθ′ (G (D)) = G (θ′,D). Let us fix n ≥ 1 large enough such that

2 ·
∑
u∈θ′

dGH
(degθ′ (u)) (Dn(u),D∞(u)) < ε,

and ∑
v∈θ′\θ

|νn(T (v))− ν∞(T (v))| < ε. (4.13)

From (4.11) in the proof of Lemma 4.4, we can find an isometry φ such that for all i ∈ θ′,

dH

(
D̃∞,i, φ

(
D̃n,i

))
< ε. (4.14)

Now because of (4.13), we know that we can find a coupling (Xn, X∞) of random variables with
values in U having distribution νn and ν∞, such that with probability > 1− ε, they both fall in
the same T (v) for v ∈ θ′ \ θ. From this coupling, we can construct another one between (Yn, Y∞)

of random variables on respectively G (θ′,Dn) and G (θ′,D∞) such that one has distribution
(pθ′)∗µn and the other (pθ′)∗µ∞ and such that the probability that there exists v ∈ θ′ \ θ such
that Yn ∈ D̃n,v and Y∞ ∈ D̃∞,v is greater than 1 − ε. Using this plus (4.14) shows that the
couple (Yn, φ(Y∞)) is at distance at most ε with probability at least 1− ε. This shows that the
Lévy-Prokhorov distance between (pθ′)∗µ∞ and φ∗((pθ′)∗µn) is smaller than ε. In this end, we
just showed that

dGHP ((pθ′ (G (Dn)) , (pθ′)∗µn) , (pθ′ (G (D∞)) , (pθ′)∗µ∞)) < ε,

which finishes the proof of the theorem.
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4.2.5 Sufficient condition for non-explosion

Let us finish this section by proving a useful result which ensures non-explosion for some type of
real-valued decorations. Let (xn)n≥1 be a sequence of non-negative real numbers. We define a
real-valued decoration on the Ulam tree ` : U→ R+ using this sequence and a sequence (un)n≥1

of distinct elements of U as

`(uk) = xk for all k ≥ 1,

`(u) = 0 for any u /∈ {uk | k ≥ 1}

The following lemma ensures the non-explosion of ` under some assumptions that are often met
in our cases of application.

Lemma 4.5. If there exists constant ε > 0 and K > 0 such that for all n ≥ 1

xn ≤ (n+ 1)−ε+o(1) and ht(un) ≤ K · log n,

then the function ` defined above is non-explosive.

Proof. Let i ∈ N. For any u ∈ U we have∑
v≺u

v∈{uk, 2i<k≤2i+1}

`(v) ≤ #
{
k ∈ J2i + 1 , 2i+1K

∣∣ uk ≺ u} · ( max
2i<k≤2i+1

`(uk)

)

≤ K · log 2 · (i+ 1) · (2i)−ε+o(1),

where the last display is independent of u. Now, if we consider any plane tree τi which contains
all the vertices {u1, u2, . . . , u2i} then we have, for any u ∈ U,

∑
v≺u
v/∈τi

`(v) ≤
∞∑
j=i

∑
v≺u

v∈{uk, 2i<k≤2i+1}

`(v) ≤
∞∑
j=i

K · log 2 · (j + 1) · (2j)−ε+o(1)

and the last display converges to 0 as i→∞, which proves the lemma.

4.3 Preferential attachment and weighted recursive trees

In this section we recall some results about preferential attachment trees with initial fitnesses
and weighted recursive trees that are proved in the previous chapter.

4.3.1 Definitions

Weighted recursive trees (WRT). For any sequence of non-negative real numbers (wn)n≥1

with w1 > 0, the distribution WRT((wn)n≥1) of the weighted recursive tree with weights (wn)n≥1

is defined on sequences of growing plane trees. A sequence (Tn)n≥1 having this distribution is
constructed iteratively starting from T1 containing only one vertex u1 = ∅ ∈ U, which has label
1, in the following manner: the tree Tn+1 is obtained from Tn by adding a vertex un+1 with label
n+ 1. The parent of this new vertex is chosen to be any of the vertices uk ∈ Tn with probability
proportional to wk, and un+1 is added to the tree so that it is the rightmost child of its parent.
Whenever we consider a random sequence of weight (wn)n≥1, the distribution WRT((wn)n≥1)

denotes the law of the random tree obtained by the above process conditionally on (wn)n≥1.
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Preferential attachment trees (PA). For any sequence a = (an)n≥1 of real numbers, with
a1 > −1 and an ≥ 0 for n ≥ 2, we define another distribution on growing sequences (Pn)n≥1

of plane trees called the affine preferential attachment tree with initial fitnesses (an)n≥1 which
is denoted by PA((an)n≥1). The construction goes on as before: P1 contains only one vertex u1

labelled 1 and Pn+1 is obtained from Pn by adding a vertex un+1 with label n+ 1, whose parent
is chosen to be any uk ∈ Tn with probability proportional to deg+

Pn
(uk) + ak, where deg+

Pn
(·)

denotes the number of children in the tree Pn. By convention if n = 1, the second vertex u2 is
always defined as a child of u1.

4.3.2 Properties of preferential attachment and weighed recursive trees

Let us state the properties proved in the previous chapter which will be needed in our analysis.
Let us suppose here that we consider a sequence a = (an) such that

An :=
n∑
i=1

ai = c · n+O
(
n1−ε) and an ≤ nc

′+o(1) (Hc,c′)

for some constants c > 0, some 0 ≤ c′ < 1
c+1 and some ε > 0.

Convergence of degrees and representation theorem. A first result concerns the scaling
limit of the degrees of the vertices in their order of creation and the distribution of the sequence
of trees conditionally on the limit sequence; it can be read from [110, Theorem 1, Proposition 2
and Proposition 5]. We have the following convergence in the product topology to a random
sequence

n−
1
c+1 · (deg+

Pn
(u1), deg+

Pn
(u2), . . . )

a.s.→
n→∞

(ma
1 ,m

a
2 , . . . ), (4.15)

and conditionally on the sequence (ma
k)k≥1 the sequence (Pn) has distribution WRT((ma

k)k≥1).
Also, the limiting sequence (ma

k)k≥1 has the following behaviour, which depends on the parame-
ters c and c′

Ma
k :=

k∑
i=1

ma
i ∼
k→∞

(c+ 1) · k c
c+1 and ma

k ≤ (k + 1)c
′− 1

c+1
+oω(1).

for a random function oω(1) which only depends on k and tends to 0 as k →∞. The convergence
(4.15) is such that for all n large enough

∀k ≥ 1, deg+
Pn

(uk) ≤ n
1
c+1 · (k + 1)c

′− 1
c+1

+oω(1), (4.16)

also for a random function oω(1) of k.

Distribution of (Ma
k)k≥1 In some very specific cases for the sequence a, the process (Ma

k)k≥1

has an explicit distribution. In particular if a = a, b, b, b . . . then the sequence (Ma
k)k≥1 has the

Mittag-Leffer Markov chain distribution MLMC( 1
b+1 ,

a
b+1), which we define below.

Let 0 < α < 1 and θ > −α. The generalized Mittag-Leffler ML(α, θ) distribution has pth
moment

Γ(θ)Γ(θ/α+ p)

Γ(θ/α)Γ(θ + pα)
=

Γ(θ + 1)Γ(θ/α+ p+ 1)

Γ(θ/α+ 1)Γ(θ + pα+ 1)
(4.17)
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and the collection of p-th moments for p ∈ N uniquely characterizes this distribution. Then, a
Markov chain (Mn)n≥1 has the distribution MLMC(α, θ) if for all n ≥ 1,

Mn ∼ ML (α, θ + n− 1) ,

and its transition probabilities are characterised by the following equality in law:

(Mn,Mn+1) = (Bn ·Mn+1,Mn+1) ,

where Bn ∼ Beta
(
θ+k−1
α + 1, 1

α − 1
)
is independent of Mα,θ

n+1.

Height. In this setting, we know that the height of the tree Pn grows logarithmically in n

using Theorem 3.3 of Chapter 3. We only need here the following weak version: there exists
some constant K such that

ht(Pn) ≤ K · log n, (4.18)

almost surely for all n large enough. This estimate is also true for any sequence (Tn)n≥1 of
weighted random trees with weights (wn)n≥1 as soon asWn :=

∑n
i=1wi has at most a polynomial

growth, which we always assume.

Measures. For a sequence of trees (Tn)n≥1 evolving under the distribution WRT((wn)n≥1)

for any weight sequence (wn), [110, Theorem 4] ensures that the probability measures (µn)n≥1,
defined in such a way that for all k ∈ {1, . . . n} we have µn(uk) = wk

Wn
, converge almost surely

weakly on U towards a limiting measure µ.

Under the conditions
∑∞

n=1wn =∞ and
∑∞

n=1

(
wn
Wn

)2
<∞, which are almost surely satisfied

by our sequence (ma
n)n≥1, the limiting measure µ is carried on ∂U, and other sequences of

probability measures (ηn)n≥1 and (νn)n≥1, which we define below, also converge almost surely
weakly towards µ.

For any n ≥ 1, the measure νn is just defined as the uniform measure on the set {u1, . . . , un}.
The second sequence of measures (ηn)n≥1 depends on a sequence (bn)n≥1 of real numbers which
satisfies b1 > −1 and bn ≥ 0 for all n ≥ 2. We suppose that bn = O

(
n1−ε) for some ε > 0 and

that Bn :=
∑n

i=1 bi = O(n). The measures are then defined in such a way that η1 only charges
the vertex u1, and for every n ≥ 2, the measure ηn charges only the vertices {u1, u2, . . . , un} in
such a way that for any 1 ≤ k ≤ n,

ηn(uk) =
bk + deg+

Tn
(uk)

Bn + n− 1
, (4.19)

Other description of the measure µ. Suppose now that a is constant from the second term,
say a1 = a > −1 and an = b > 0 for all n ≥ 2, so that it satisfies (Hc,c′) with c = b and c′ = 0.
For all u ∈ U, and all i ≥ 1, using the limiting measure µ define the quantities

pui =
µ(T (ui))

µ(T (u))
, (4.20)

which describe how the mass above every vertex u is split into the subtrees above its children.
In this case we can explicitly describe the law of the (pu)u∈U and hence also the law of µ.

Moreover, let ` : U→ R+ be defined as

`(un) = ma
n ∀n ≥ 1.
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Remark that almost surely this defines ` on all vertices of U and that, for u ∈ U,

`(u) := lim
n→∞

n−1/(b+1) deg+
Pn

(u),

In fact, thanks to [81], the values (`(u))u∈U can be expressed from the ones of (pu)u∈U. The
following proposition describes the joint distribution of those random variables, see e.g. [104] for
a definition of the two parameter GEM distributions that appear in the statement.

Proposition 4.6. In this setting we have

(pi)i≥1 ∼ GEM

(
1

b+ 1
,

a

b+ 1

)
and ∀u ∈ U \ {∅}, (pui)i≥1 ∼ GEM

(
1

b+ 1
,

b

b+ 1

)
,

and they are all independent. For all u ∈ U, denote

Su := Γ

(
b

b+ 1

)
· lim
i→∞

i · p
1
b+1

ui ,

the 1
b+1 -diversity of the sequence (pui)i≥1. Then for all u ∈ U,

`(u) =

∏
v�u

pv

 1
b+1

· Su.

Proof. This result almost follows from [81, Theorem 1.5] and the adaptation to our case is left
to the reader.

4.4 Distributions on decorations

In this section, we define two families of distributions on decorations on the Ulam tree that will
arise as limits of our discrete models.

4.4.1 The iterative gluing construction

Let (Bn,Dn, ρn, (Xn,i)i≥1)n≥1 be a sequence of independent random variables in M∞•, meaning
compact pointed metric spaces endowed with a sequence of points. Let also (wn)n≥1 and (λn)n≥1

be two sequences of non-negative real numbers, which we call the weights and scaling factors
respectively. The model is the following: first sample (Tn)n≥1 with distribution WRT((wn)n≥1).
Then we define, for all n ≥ 1, denoting un the vertex with label n in the trees (Tn)n≥1,

D(un) = (Dun , dun , ρun , (xuni)i∈N) := (Bn, λn · Dn, ρn, (Xn,i)i≥1), (4.21)

and for all u /∈ {un | n ≥ 1}, we set

D(u) = ({?}, 0, ?, (?)i≥1) ,

the one-point space. Let us assume that the cumulated sum Wn does not grow faster to infinity
than polynomially, so that the height of the tree grows at most logarithmically. We also assume
that there exists α > 0 and p > 1 with αp > 1 such that

λn ≤ n−α+o(1) and sup
n≥1

E [diam(Bn)p] <∞,
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then we have diam (D(un)) ≤ n−ε+oω(1) almost surely, with ε = α − 1
p > 0. Using Lemma 4.5,

the function (u 7→ diam(Dn(u))) is then almost surely non-explosive so G (D) is almost surely
compact.

Assuming that the sequence (wn) has an infinite sum, the limit µ of the weight measure
associated to the trees (Tn)n≥1 is carried on ∂U and the random metric space G (D) can a.s. be
endowed with a probability measure (ιD)∗µ and this yields a random measured metric space.

We call this procedure the iterative gluing construction with blocks (Bn,Dn, ρn, (Xn,i)i≥1)n≥1,
scaling factors (λn)n≥1 and weights (wn)n≥1. We allow the sequences (λn)n≥1 and (wn)n≥1

to be random and in this case we assume that they are independent of the blocks
(Bn,Dn, ρn, (Xn,i)i≥1)n≥1 and that we perform this procedure conditionally on those sequences.

The case of exchangeable distinguished points. A special case of the above construction
is given when (Bn,Dn, ρn, (Xn,i)i≥1, νn)n≥1 is a sequence in K∞• and that for all n ≥ 1, condi-
tionally on νn, the points (Xn,i)i≥1 are i.i.d. with law νn, independent of everything else. In this
case we still call this distribution the iterative gluing construction with blocks (Bn,Dn, ρn, νn)n≥1,
scaling factors (λn)n≥1 and weights (wn)n≥1. This is the setting studied in [112].

4.4.2 The self-similar case

In this section, we investigate particular cases of models such that the limiting space is self-
similar in distribution. This setting is adapted from the one studied by Rembart and Winkel
in [106], which deals with several models of self-similar random trees. Let us define a model
inspired from theirs. We fix β > 0 and the law of a couple ((B,D, ρ, (Xi)i≥1), (Pi)i≥1), where the
first coordinate is a random variable in M∞• and (Pi)i≥1 is a random variable in, say, [0 , 1]N. In
order to use mimic the notation of [106], we let Ξ = M•∞ × [0 , 1]N. We consider a family

(ξu)u∈U = ((Bu,Du, ρu, (Xui)i≥1), (Pui)i≥1)u∈U

of random variables in Ξ which are i.i.d, with the same law as ξ = ((B,D, ρ, (Xi)i≥1), (Pi)i≥1).
We set P∅ = 1 and

λu =

∏
v�u

Pv

β

.

We then define our random decorations as, for all u ∈ U,

D(u) := (Bu, λu · Du, ρu, (Xui)i≥1). (4.22)

We say that D is a self-similar decoration with exponent β and spine distribution given by ξ.
We want to show that, under suitable assumptions, the resulting G (D) is almost surely com-

pact. In our examples, the distribution of (Pi)i≥1 will always be GEM(α, θ) for some parameters
α ∈ (0 , 1) and θ > −α, but the arguments presented here are still valid in greater generality.

The function φβ. We first define, for any n ≥ 1 the function

φ
(n)
β : Ξ× (M•)N →M•,

as follows: φ(n)
β ((b, d, ρ, (xi)i≥1), (pi)i≥1, (bi, di, ρi)i≥1) is the metric space obtained after gluing

the n first bi with distance scaled by pβi by identifying their root ρi with the point xi ∈ b. For any
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x6

x1
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x3
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pβ1 · b1 pβ2 · b2 pβ3 · b3 pβ4 · b4 pβ5 · b5

Figure 4.4 – The function φβ

n ≥ 1 this operation is continuous with respect to the product topology on the starting space,
hence it is measurable.

Now we define φβ as limn→∞ φ
(n)
β on the set where this limit exists, and constant equal to

({?}, 0, ?) on the complementary set. Since M• is Polish, this function is measurable. Remark
that the condition for the limit to exists is

pi diam(bi) −→
i→∞

0.

The contraction Φβ. Consider the set of probability measures P(M•) on the space M• and
for p ≥ 1, the subset Pp ⊂ P(M•) given by

Pp := {η ∈ P(M•) | E [diam(τ)p] <∞ for τ ∼ η} . (4.23)

We equip Pp with the Wasserstein metric of order p ≥ 1, which is defined by

Wp

(
η, η′

)
:=
(
inf E

[∣∣dGH

(
τ, τ ′

)∣∣p])1/p , η, η′ ∈ Pp, (4.24)

where the infimum is taken over all joint distributions of (τ, τ ′) on (M•)2 with marginal distri-
butions τ ∼ η and τ ′ ∼ η′. The space (Pp,Wp) is complete since dGH is a complete metric on
M•. Convergence in (Pp,Wp) implies weak convergence on M• and convergence of pth diameter
moments.

Let Φβ : Pp → Pp be such that for any distribution η, the measure Φβ(η) is the distribution
of the space

φβ(ξ, (τi)i≥1),

where the (τi)i≥1 are i.i.d. random variables with law η, independent of ξ. Now let us state a
result that was stated in the context of trees but remains valid in our case.

Lemma 4.7 (Lemma 3.4 of [106]). Let β > 0, p ≥ 1 and ((B,D, ρ, (Xi)i≥1), (Pi)i≥1) with some
distribution ν such that E [diam(B)p] <∞ and E

[∑
j≥1 P

pβ
j

]
< 1. Then the map Φβ : Pp → Pp

associated with φβ is a strict contraction with respect to the Wasserstein metric of order p, i.e.

sup
η,η′∈Pp,η 6=η′

Wp (Φβ(η),Φβ(η′))

Wp(η, η′)
< 1. (4.25)

Now using Banach fixed-point theorem, we know that there exists in Pp a unique fixed-point
of the function Φβ .
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Compactness. Finally, the almost-sure compactness of our structure G (D) is ensured by [106,
Prop. 3.7], and actually the distribution of G (D) is exactly the fixed-point of Φβ , and this
fixed-point is attractive.

Measure on the leaves. If we restrict ourselves to the case where the sequence (Pi)i≥1 is
such that

∑∞
i=1 Pi = 1 almost surely, we can naturally define a measure µ on ∂U as follows:

∀u ∈ U, µ(T (u)) =
∏
v�u

Pv.

Then G (D) can be naturally endowed with the measure µ̃ = (ιD)∗µ, and under the condition
P (∃i ≥ 1, D(ρ,Xi) > 0 and Pi > 0) > 0, one can check that this measure is carried on the set
of leaves L (D).

Hausdorff dimension of the leaves. Under some mild hypotheses on the distribution of our
blocks, we can compute the Hausdorff dimension of L (D) almost surely:

Proposition 4.8. Let β > 0, p ≥ 1 and ((B,D, ρ, (Xi)i≥1), (Pi)i≥1) with some distribution
ν such that E [diam(B)p] < ∞ and E

[∑
j≥1 P

pβ
j

]
< 1. Suppose furthermore that almost

surely
∑

j≥1 Pj = 1 and that P (∃i ≥ 1, D(ρ,Xi) > 0 and Pi > 0) > 0. Then the Hausdorff
dimension of L (D) is almost surely

dimH(L (D)) =
1

β
.

Proof. We prove this by providing an upper-bound and a lower-bound for the dimension. The
upper-bound follows from the proof of [106, Lemma 4.6] which adapts to our new setting. For the
lower-bound, we provide a direct argument, which crucially uses the assumption that

∑
j≥1 Pj =

1 a.s. Indeed, in this case, the preceding paragraph ensures the existence of a measure µ̃ on
L (D). Let us show that for µ̃-almost every point x, we have

lim inf
r→0

log µ̃(B(x, r))

− log r
≤ − 1

β
, (4.26)

which will prove the proposition, using the mass distribution principle (see [59] for example).
Actually, it is easy to see that, for (4.26) to hold, it is enough to provide a sequence (rn)n≥1

tending to 0 such that log rn
log rn+1

→ 1 and

lim inf
n→∞

log µ̃(B(x, rn))

− log rn
≤ − 1

β
, (4.27)

Let us prove that (4.27) holds almost surely for a point L taken under the measure µ̃ and
a random sequence Rn. Using the product definition of µ, it is straightforward to see that if
I = I1I2, · · · ∈ ∂U is taken under the measure µ, then the sequence I1, I2, . . . is i.i.d. with
the same distribution as I given by P (I = i | (Pj)j≥1) = Pi, where the sequence (Pj)j≥1 has
the distribution of that in the theorem. We can compute E [logPI ] = E [E [logPI | (Pj)j≥1]] =

E [
∑∞

i=1 Pi logPi].
Let Rn := d(ρIn , ιD(I)) be the distance of the random leaf L := ιD(I) to the root ρIn of the

block D(In). Remark that the open ball B(L,Rn) of centre L and radius Rn only contains points
that come from decorations with indices u � In so that µ(B(L,Rn)) ≤ µ(T (In)).
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Now write

logµ(B(L,Rn)) ≤ logµ(T (In)) =
n∑
i=1

logPIi ∼n→∞ n · E
[ ∞∑
i=1

Pi logPi

]
,

almost surely, because of the law of large numbers. Now it suffices to prove that almost surely

logRn ∼
n→∞

nβ · E
[ ∞∑
i=1

Pi logPi

]
, (4.28)

and (4.27) would follow for the random leaf L thanks to the two last displays. In order to prove
(4.28) we write

Rn := d(ρIn , ιD(I)) =
∞∑
k=n

(
k∏
i=1

PIi

)β
DIk(ρ,XIk+1

),

using the definition of the distances in G (D). Then let us fix δ > 0 such that P (D(ρ,XI) > δ) > δ,
and let τn = inf

{
i ≥ n

∣∣ DIi(ρ,XIi+1) > δ
}
. Then we have

P
(
τn ≥ n+

√
n
)
≤ (1− δ)

√
n,

which is summable in n, so that using Borel-Cantelli lemma, we have n ≤ τn ≤ n +
√
n almost

surely. Then for all n large enough

Rn ≥

n+
√
n∏

i=1

PIi

β

· δ,

and this proves that logRn ≥ β
∑n+

√
n

i=1 logPIi + log δ. For an upper bound, remark that

Rn =

(
n∏
i=1

PIi

)β
·

DIn(ρ,XIn+1) + PIn+1

∞∑
k=n+1

(
k∏

i=n+1

PIi

)β
DIi(ρ,XIi+1)


︸ ︷︷ ︸

R′n

,

where R′n has the same law as R0, which admits a finite first moment. Using the Markov
inequality and the Borel-Cantelli lemma, we get that almost surely for any n large enough,
R′n ≤ np for some p > 1. Then for all n ≥ 1 large enough

logRn = log

(
n∏
i=1

PIi

)β
+ logR′n ≤ β

n∑
i=1

logPIi + p log n.

In the end, using the upper and lower bound on Rn and the law of large numbers we get (4.28),
which proves the proposition.

Almost-self-similar decorations. For our needs, we define a slight variation of this model
where we only suppose that the random variables (ξu)u∈U\{∅} have the same law as ξ, and
ξ∅ = ((B∅,D∅, ρ∅, (Xi)i≥1), (Pi)i≥1) is independent of the other (ξu)u∈U\{∅} but can possibly have
a different law.

In this case, we say that the obtained D is almost-self-similar with exponent β and spine
distributions ξ∅ and ξ. If ξ∅ satisfies the conditions of Lemma 4.7 as well as ξ, the above
arguments still hold and the law of the obtained metric space is the law of φβ(ξ∅, (τi)i≥1) where
the (τi)i≥1 are i.i.d. with distribution η which is the unique fixed point of Φβ .
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4.4.3 Structures constructed by iterative gluing can also be self-similar

Some random decorations that are described using an iterative gluing construction also belong
to the family of almost-self-similar decorations. The following proposition ensures that this is
the case for a particular family of iterative gluing constructions.

Proposition 4.9. Suppose that D is defined as an iterative gluing construction using

(i) a sequence of weights (mn)n≥1 defined as the increments of a Mittag-Leffler Markov
chain (Mn)n≥1 ∼ MLMC( 1

b+1 ,
a
b+1),

(ii) a sequence of scaling factors taken as (mγ
n)n≥1 for some γ > 0,

(iii) a sequence of independent blocks (Bn,Dn, ρn, (Xn,i)i≥1), with the same distribution
starting from n ≥ 2 such that their diameter admits a p-th moment with p > 1.

Then D is an almost-self-similar decoration with exponent γ
b+1 and spine distributions ξ∅

and ξ such that

• ξ∅
(d)
=
(
(B1, S

γ
∅ · D1, ρ1, (X1,i)i≥1), (Pi)i≥1

)
, with (Pi)i≥1 ∼ GEM

(
1
b+1 ,

a
b+1

)
indepen-

dent of B1 and S∅ its 1
b+1 -diversity,

• ξ (d)
=
(

(B2, S
γ · D2, ρ2, (X2,i)i≥1), (P̃i)i≥1

)
, with (P̃i)i≥1 ∼ GEM

(
1
b+1 ,

b
b+1

)
indepen-

dent of B2 and S its 1
b+1 -diversity.

Proof. Recall the definition of µ the probability measure on ∂U obtained as the weak limit of
the mass measure of the weighted recursive tree used for this iterative construction. If we denote
for all u ∈ U and i ∈ N

pui =
µ(T (ui))

µ(T (u))
,

then from Proposition 4.6 we have a complete description of the distribution of (pu)u∈U using
GEM distributions. For every u ∈ U, we let Su be the 1

b+1 -diversity of the sequence (pui)i≥1.
Hence, denoting

ξ∅ :=
(
(B1, S

γ
∅ · D1, ρ1, (X1,i)i≥1), (pi)i≥1

)
ξuk :=

(
(Bk, S

γ
uk
· Dk, ρk, (Xk,i)i≥1), (puki)i≥1

)
∀k ≥ 2.

it is immediate from the previous section that the (ξu)u∈U are independent and (ξu)u∈U\{∅} are
i.i.d. Hence the distribution of D coincides with that of an almost-self-similar decoration with
scaling exponent γ

b+1 with these spine distributions.

4.5 Application to models of growing random graphs

Let us use this framework of random decorations to prove scaling limits for random graph models.
We first present a general proof that will apply to all our different applications. Every example
that we treat is of the following form: we start with a model of objects (Hn)n≥1 defined iteratively,
that can be considered as measured metric spaces.

For every n ≥ 1, we construct simultaneously a decoration D(n) and measures ν(n), supported
on a tree Pn, such that the distribution of the sequence

(
G (D(n)),ν(n)

)
n≥1

coincides with that
of (Hn)n≥1, seen as measured metric spaces.
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4.5.1 An abstract result that handles all our applications

Assume that we study a sequence (D(n))n≥1 of decorations endowed with measures ν(n) which
are at each time supported on the trees (Pn)n≥1, constructed using processes (Ak(m),m ≥ 0)k≥1

with values in M∞• that are jointly independent and independent of (Pn)n≥1, in such a way that

(i) the sequence (Pn)n≥1 evolves as a preferential attachment tree with some sequence of
fitnesses a = (an)n≥1 which satisfies (Hc,c′) for some c > 0 and 0 ≤ c′ < 1

c+1 ;

(ii) for all n ≥ 1, the decoration D(n) is such that for all k ∈ {1, . . . , n},

D(n)(uk) = Ak(deg+
Pn

(uk)),

and for all u /∈ {u1, . . . , un}, the associated block is trivial i.e. D(n)(u) = (?, 0, ?, (?)i≥1);

(iii) there exists γ > 0 such that for all k ≥ 1,

m−γ · Ak(m)
a.s.−→

m→∞
(Bk,Dk, ρk, (Xk,i)i≥1) in M•∞;

(iv) there exists a sequence (xk)k≥1 such that for all p > 0 we have

sup
k≥1

E
[

sup
m≥1

(
diam(Ak(m))

(m+ xk)γ

)p]
<∞,

and the sequence (xk)k≥1 is such that xk ≤ ks+o(1) for some s < 1
c+1 ;

(v) the associated measures (ν(n))n≥1 are probability measures of the form (4.19) or are uniform
on {u1, . . . , un}.

Under all those assumptions we have a convergence result for our decorations.

Theorem 4.10. Suppose that the decorations D(n) are constructed as above. Then we have
the following almost sure convergence

G (n−
γ
c+1 · D(n),ν(n)) −→

n→∞
G (D, ν) in the GHP topology,

where the limit is described as an iterative construction with blocks (Bk,Dk, ρk, (Xk,i)i≥1)k≥1,
scaling factors ((ma

k)γ)k≥1 and weights (ma
k)k≥1.

Proof. First we check that for all k ≥ 1 and all n ≥ k we have, almost surely,

n−
γ
c+1 · D(n)(uk) = n−

γ
c+1 · Ak(deg+

Pn
(uk))

=
(
n−

1
c+1 deg+

Pn
(uk)

)γ
· (deg+

Pn
(uk))

−γ · Ak(deg+
Pn

(uk))

−→
n→∞

(ma
k)γ · (Bk,Dk, ρk, (Xk,i)i≥1),

in the topology of M∞•. By (iii), for any u /∈ {u1, u2, . . .} the block D(n)(u) is constant and
equal to the trivial block. So n−

γ
c+1 ·D(n) converges to some limiting decoration D in the product

topology.
Now, for any k ≥ 1 and n ≥ k we have

diam
(
n−

γ
c+1 · D(n)(uk)

)
=
(
n−

1
c+1
(
deg+

Pn
(uk) + xk

))γ
· diam(Ak(deg+

Pn
(uk)))

(deg+
Pn

(uk) + xk)−γ
.
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The first term can be shown to be smaller than some random bound (k+1)−ε+oω(1) using (4.16).
The second term is bounded above by some koω(1) thanks to (iv). In the end we almost surely
have

diam
(
n−

γ
c+1 · D(n)(uk)

)
≤ k−ε+oω(1). (4.29)

Using the logarithmic growth of the trees (Pn)n≥1 and Lemma 4.5, we get the almost sure non-
explosion of the function ` : u 7→ supn≥1 diam

(
n−

γ
c+1 · D(n)(u)

)
. Thanks to Theorem 4.2, this

ensures the almost sure Gromov-Hausdorff convergence of the spaces G (n−
γ
c+1 · D(n)) towards

G (D). Now, thanks to (v) and (4.15) we can add the measures and the convergence takes place
instead in the GHP topology, and hence the theorem is proved.

How to apply this theorem. This theorem may seem abstract at that point, but it encom-
passes all our specific examples of growing random graphs. Now for all our sequences of graphs,
the goal will be to provide a sequence (an)n≥1 satisfying (Hc,c′) for some parameters c and c′

and processes (Ak)k≥1 so that the decorations (D(n))n≥1 satisfying (i) and (ii) indeed evolve in
such a way that G (D(n)) coincides with our process. Then we check that the other assumptions
are also satisfied in order to get the scaling limit.

Particular form of processes A. In general, remark that for any k ≥ 1 and m ≥ 0, all the
distinguished points in Ak(m) that matter for the construction are the first m ones. All the
others can be set equal to the root vertex without changing the distribution of

(
G (D(n))

)
n≥1

, so
we can always suppose that at each step m ≥ 0, the metric space Ak(m) is endowed with only
m distinguished points in addition to the root and can hence be seen as an element of Mm•.

In all our examples, the different processes Ak for k ≥ 0 all evolve under the same Markovian
transitions, possibly starting from different states Ak(0) for different values of k ≥ 1. These
transitions are often more naturally defined on weighted graphs, in which each of the vertices
and edges are given some weight. The dynamics involves taking a vertex or edge at random
proportionally to its weight, do some local transformation of the graph at that point by possibly
adding one or several vertices and edges to the graph. The list of distinguished points is then
updated by appending some vertex to the end of the existing list.

Almost self-similar limits. Theorem 4.10 describes the limiting space as the result of an
iterative construction. In our examples, it will be often the case that Proposition 4.9 applies to
the limiting space and hence that it is almost-self-similar in the sense of Section 4.4.2. We will
not detail further this type of description, this is left to the reader.

4.5.2 Generalised Rémy algorithm

Recall the construction described in the introduction. Consider (Gn, on)n≥1 a sequence of finite
rooted graphs with respective number of edges a = (an)n≥1 which satisfies (Hc,c′) for some c > 0

and c′ < 1
c+1 . We construct the sequence (Hn)n≥1 recursively as follows. Let H1 = G1. Then, for

any n ≥ 1, conditionally on the structure Hn already constructed, take an edge in Hn uniformly
at random, split it into two edges by adding a vertex "in the middle" of this edge, and glue a
copy of Gn+1 to the structure by identifying on+1 the root vertex of Gn+1 with the newly created
vertex. Call the obtained graph Hn+1. See Figure 4.2 for a realisation of H5 using the sequence
(Gn)n≥1 of Figure 4.1.

142



Construction as a gluing of decorations. Let us provide a construction of some sequence
(D(n))n≥1 of decorations, endowed with measures (ν(n))n≥1, that satisfies the assumptions of
Theorem 4.10 and for which the process (G (D(n),ν(n)))n≥1 coincides with (Hn)n≥1 endowed
with its graph distance and the uniform measure on its vertices.

For this let (Pn)n≥1 be a preferential attachment tree with fitnesses (an)n≥1 and for all k ≥ 1,
define the process (Ak(m))m≥0 as follows: Ak(0) is just (the set of vertices of) the graph Gk
endowed with the corresponding graph distance, rooted at ok, with an empty list of distinguished
points. Then Ak(m + 1) is obtained from Ak(m) by duplicating an edge uniformly at random
by adding some point xm+1 in its centre. The vertex xm+1 is then appended at the end of the
list of distinguished points, now becoming of length m+ 1.

Now, consider the measures ν(n) such that for all u ∈ U, ν(n)
u charges every point of D(n)(u)

except its root if u 6= ∅, with the same mass, normalised in such a way that the associated
measure ν(n) on the Ulam tree is a probability measure.

It is now an exercise to check that the sequence of graphs (Hn)n≥1 seen as measured metric
spaces has the same distribution as (G (D(n),ν(n))n≥1.

Applying the theorem. Assumptions (i) and (ii) are satisfied by construction, so let us verify
that the other ones hold as well.

The convergence (iii) is quite easy to prove for γ = 1. The limiting block (Bk,Dk, ρk, (Xk,i)i≥1)

can be described as a continuous version of the graph Gk, where each edge e ∈ {e1, . . . , eak} has
been replaced by a segment of length L(e) where the lengths are such that

(L(e1), L(e2), . . . , L(eak)) ∼ Dir(1, 1, . . . , 1), (4.30)

so that the total length is 1. The (Xk,i)i≥1 are then obtained conditionally on this construction
as i.i.d. points taken under the length measure.

The control (iv) is immediate with (xk)k≥1 = (ak)k≥1 because we have the deterministic
upper-bound for all k ≥ 1 and m ≥ 0, diam(Ak(m)) ≤ ak +m.

The last point (v) is obtained by using (4.19). Indeed, if we let (bn)n≥1 be defined such
that b1 is the number of vertices of G1 and for n ≥ 2, bn is the number of vertices minus 1 of
the graph Gn. Then the measures ν(n) on the Ulam tree are probability measures of the form
ν(n)(uk) ∝ bn + deg+

Pn
(uk) for all k ≤ n and ν(n)(u) = 0 on other vertices u. It is easy to check

that the sequence (bn)n≥1 satisfies the appropriate condition so that it converges almost surely
weakly to a limiting measure ν on ∂U, which is also the limit of the weight measure.

In the end, this yields a proof of Proposition 4.1.

4.5.3 Generalised Rémy algorithm, version 2

Let us use a different decomposition of the preceding model, which will lead to another description
of the limit for a particular sequence of graphs (Gn)n≥1 with G1 equal to the single-edge graph
and constant starting from the second term, equal to a line with two edges, rooted at one end.
The limiting space has a particularly nice description as a gluing of rescaled i.i.d Brownian trees.

In this case we can take (an)n≥1 = (1
2 ,

1
2 , . . . ) and the processes (Ak)k≥1 all have the same

distribution as the standard Rémy algorithm started from a single edge, such that the distin-
guished points correspond to the added leaves in order of creation. We also add the measures
ν(n) in the same way as before.

Remark that the last paragraph would describe the limit as an iterative gluing construction
using blocks that are all equal to the [0 , 1] interval rooted at 0 endowed with i.i.d. random points.
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The associated sequence of scaling factors and weights would then be both equal to a sequence
(mn)n≥1 having the distribution of the increment of a MLMC(1

3 ,
1
3) Mittag-Leffler Markov chain.

Evolution of decorations. Using [42, Theorem 5], for any k ≥ 1,

m−
1
2 · Ak(m)→ (Bk,Dk, ρk, (Xk,i)i≥1) in M∞•, (4.31)

where the limiting metric space (Bk,Dk, ρk, (Xk,i)i≥1) has the distribution of (2 times) the Brow-
nian tree, endowed with an i.i.d. sequence of points taken under its mass measure.

The condition (iv) is satisfied thanks to Lemma 4.16, proved in the appendix. It is easy to
check that the measure have the form (4.19), so that (v) is satisfied and so Theorem 4.10 applies,
which proves the following:

Proposition 4.11. Under these conditions, the limiting space can be constructed by an
iterative gluing construction using scaling factors ((ma

n)
1
2 )n≥1 and weights (ma

n)n≥1, where
the sequence (ma

n)n≥1 has the distribution of the increments of a MLMC
(

2
3 ,

1
3

)
process, and

i.i.d. blocks with the distribution of 2 times the Brownian tree endowed with a sequence of
i.i.d. leaves taken under their mass measure.

This convergence proves in particular the non-trivial fact that the two iterative gluing con-
structions with segments or Brownian trees lead to the same object.

4.5.4 Marchal algorithm started from an arbitrary seed

Let us define Marchal’s algorithm started from a rooted connected multigraph G, as introduced
in [64], following the same idea as [92]. Fix α ∈ (1 , 2). We let Hα

1 = G and for each n ≥ 1 define
Hα
n+1 recursively. If Hα

n is defined then take a vertex or an edge with probability proportional
to their weight, where their weights are defined as

• α− 1 for any edge,

• deg(v)− 1− α for a vertex v with degree 3 or more,

• 0 for a vertex of degree 2 or less.

Then if it is an edge, split this edge into 2 edges with a common endpoint, add an edge linking
that newly created vertex to a new leaf. Otherwise, attach an edge linking the selected vertex
to a new leaf. The obtained graph is then Hα

n+1.
This construction is also defined and studied in Chapter 5, where Proposition 5.2, Theorem 5.5

and Theorem 5.8 already ensure that these graphs appropriately rescaled converge in the GHP
topology to some random object that is constructed using an iterative gluing construction. In this
case, there are two natural interpretations of this graph process in terms of decorations on the
Ulam tree, which give two different descriptions of the limiting object: one of them coincides with
the one given in Chapter 5, but the other one is different. We only describe this one. Note that if
we denote w(G) the sum of the weights of all vertices and edges of a graph G with surplus s, with
` vertices of degree 1 and m vertices of degree 2 then w(G) = (`− 1)α+m(α− 1) + s(α+ 1)− 1.
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Splitting the width

In this first decomposition, we take (an) = (w(G), α − 1, α − 1, . . . ) and (Pn)n≥1 taken as a
preferential attachment tree PA(a). The processes (Ak)k≥1 all follow the same Markov transitions
on weighted graphs, starting from the rooted graph G in the case of A1 and from the single-edge
graph for Ak for any k ≥ 2.

In this setting, the weight of an edge is always α− 1 but the weight of vertices evolves with
time. At time 0, for any seed graph G, every vertex with degree d ≥ 3 is given weight d− 1− α
and other vertices have weight 0. The process evolves then in the following way: to obtain
A(m+ 1) from A(m) we choose at random an edge or a vertex proportionally to their weights:

• if it is a vertex x then A(m+1) is obtained from A(m) by setting its (m+1)-st distinguished
point to be x, and incrementing the weight of x by one,

• if it is an edge, then A(m+ 1) is obtained from A(m) by splitting this edge in 2 by adding
a new vertex x, giving weight 2−α to this vertex, and setting its (m+ 1)-st distinguished
point to x.

With this dynamics, we have the following convergence almost surely in M∞•, for A starting
from any graph G with at least one edge,

m−(α−1) · A(m)→Mwid
α (G), (4.32)

as n→∞ in M∞•, where the distribution of the limiting object is described below.
This convergence is obtained using a coupling with a Chinese restaurant process with param-

eters (α − 1, |E| · (α − 1)), for which the number of tables is an upper bound on the diameter
of A(m). We do not detail the construction here, but the condition (iv) is obtained using
Lemma 4.15 stated in the Appendix of this chapter.

Limiting block. Let us describe the law of the random metric space Mwid
α (G) =

(G,d, ρ, (Xi)i≥1). It is a continuous version of G meaning that we define it by replacing ev-
ery edge of G by a segment of some length. We label its edges e1, e2, . . . e|E| in arbitrary order
and replace each edge e with a segment of length L(e), whose distribution is characterised by
what follows. We let I be the set of vertices of G that have degree greater than 3 and write
I = {v1, v2, ..., v|I|}. All the random variables used in the construction are supposed to be
independent.

• We let (
WE ,Wv1 , . . . ,Wv|I|

)
∼ Dir

(
|E| · (α− 1), dv1 − 1− α, . . . , dv|V | − 1− α

)
• We let

(Pi)i≥1 ∼ PD (α− 1, |E| · (α− 1)) , and S its (α− 1)-diversity,

• The length of the edges are defined as

(L(e1), L(e2), . . . , L(e|E|)) = Wα−1
e · S · (B1, B2, . . . , B|E|),

with (B1, B2, . . . , B|E|) ∼ Dir(1, 1, . . . 1).
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• Conditionally on the lengths, let (Zi)i≥1 be independent and uniformly distributed on the
total length of the graph.

• We set

µ =
∑
v∈I

Wvδv +
∞∑
i=1

PiδZi ,

and conditionally on all the rest, the points (Xi)i≥1 are obtained as i.i.d. samples under
the probability measure µ.

Convergence result. We get the following convergence:

Proposition 4.12. The graphs Hα
n endowed with the uniform measure on their vertices

converge almost surely in Gromov-Hausdorff-Prokhorov topology:

n1−1/α ·Hα
n −→n→∞ (Gα(G),d, µ).

The distribution of the limiting space (Gα(G),d, µ) is obtained as an iterative gluing con-
struction with blocks

(B1,D1, ρ1, ν1) ∼Mwid
α (G) and ∀n ≥ 2, (Bn,Dn, ρn, νn) ∼Mwid

α (−)

and sequence of scaling factors (m
(α−1)
k )k≥1 and weights (mk)k≥1, where (mk)k≥1 is obtained

as the increments of a MLMC( 1
α ,

w(G)
α ).

Another decomposition

Using another decomposition into decorations we retrieve the other description of the limiting
space that is given in Chapter 5. It is obtained as an iterative gluing construction with blocks
(the distribution of which we define below)

(B1,D1, ρ1, ν1) ∼Mlen
α (G) and ∀n ≥ 2, (Bn,Dn, ρn, νn) ∼Mlen

α (•−),

and sequence of weights and scaling factors (mk)k≥1, where (mk)k≥1 is obtained as the increments
of a MLMC(1− 1

α ,
w(G)
α ).

Let us describe the random metric space Mlen
α (G) = (G, d, ρ, (Xi)i≥1), for any rooted con-

nected multigraph G. As before, we let I be the set of vertices of G that have degree greater
than 3 and write I = {v1, v2, ..., v|I|} and we arbitrarily label its edges by e1, e2, . . . e|E|. Then

• we define(
L(e1), . . . , L(e|E|), L(v1), . . . , L(v|I|)

)
∼ Dir

(
1, . . . , 1,

dv1 − 1− α
α− 1

, . . . ,
dv|I| − 1− α

α− 1

)
,

• and set
ν =

∑
v∈I

L(v) · δv + µlen,

and conditionally on all the rest, the sequence (Xi)i≥1 is i.i.d. with distribution ν.

For the single-edge graph, this yields only a segment of unit length endowed with the uniform
measure, but we also introduce a variant of this one. We defineMlen

α (•−) = (G,d, ρ, ν) as follows:
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(a) A plane tree τ (b) Construction of the loops (c) The obtained Loop(τ)

Figure 4.5 – The construction of Loop(τ) from the plane tree τ .

• We set
(L(e), L(ρ)) ∼ Dir

(
1,

2− α
α− 1

)
,

• and also
ν = Lρδρ + µlen,

and conditionally on this, the sequence (Xi)i≥1 is i.i.d. with distribution ν.

4.5.5 Scaling limits for growing trees and/or their looptrees.

The looptree Loop(τ) of a plane tree τ is a multigraph constructed from τ as follows: we first
place a blue vertex in the middle of every edge of the tree τ . Then, we connect two blue vertices
if they correspond to two consecutive edges according to the cyclic ordering around vertices that
are not the root, as pictured in this is illustrated in Figure 4.5. Then Loop(τ) is obtained by
removing all the vertices and edges that belong to the tree τ .

Whenever we work with a model of trees that have degrees that grow to infinity, studying the
associated looptrees may allow to pass this information to the limit in terms of metric scaling
limits. Among the two models that we present here, one of them admits scaling limits for both
the tree itself and its associated looptree. For the other one, only the looptree behaves well in
this sense.

The α− γ−growth model

Fix α ∈ (0 , 1) and γ ∈ (0 , α]. The α − γ-growth model is defined as follows: Tα,γ1 is a tree
with a single edge. Then if Tα,γn is already constructed, take an edge or a vertex at random with
probability proportional to

• 1− α for edges that are adjacent to a leaf,

• γ for edges that are not adjacent to a leaf,

• (d− 1)α− γ for every vertex of degree d+ 1 ≥ 3.

Then as in Marchal’s algorithm, if an edge is chosen, it is split into two edges and a new edge
leading to a new leaf is grafted at the newly created vertex. If a vertex is chosen, add an edge
connecting it to a new leaf. We can also use a planar variation of this algorithm, where every
time that we attach a new leaf to a vertex we attach it in a uniform corner around this vertex.
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(a) The block Bα,γ constructed from a countable number of circles (Cn)n≥1

0 1Y5 Y9 Y3 Y7 Y8 Y1 Y2 Y10 Y11Y4 Y6

(b) The points (Yn)n≥1 along the segment [0 , 1]

Figure 4.6 – The block Bα,γ is constructed by agglomerating countably many circles (Cn)n≥1, in
the order given by the relative position of points (Yn)n≥1. Since they are dense in [0 , 1], no two
circles are ever adjacent.

Proposition 4.13. We have the following joint convergence almost surely in the Gromov–
Hausdorff–Prokhorov topology

(n−γ · Tα,γn , n−α · Loop(Tα,γn )) −→
n→∞

(T α,γ ,Lα,γ).

The limiting objects can be constructed using an iterative gluing construction with i.i.d. blocks
using a weight sequence (mn)n≥1 obtained as the increment of a Mittag-Leffler Markov chain
MLMC(α, 1− α). The scaling factors are taken as (m

γ/α
n )n≥1 for the first one and (mn)n≥1

for the second one, using block i.i.d. blocks with the same joint distribution as (Sα,γ ,Bα,γ)

which we define below.

Joint construction of the limiting blocks. Let us define a random sequence (Yn)n≥1 on
[0 , 1] as follows:

• Let Y1 ∼ Beta(1, 1−α
γ ).

• Recursively, if (Y1, . . . , Yn) are already defined then conditionally on them the point Yn+1

is distributed uniformly on [0 ,max1≤i≤n Yi] with probability (max1≤i≤n Yi) and as 1−Rn ·
(1 − max1≤i≤n Yi) with complementary probability, with Rn ∼ Beta(1, 1−α

γ ) independent
of everything else.

Then, if γ = α, the couple (Sα,γ ,Bα,γ) is such that Sα,γ = Bα,γ which are just defined as the
interval [0 , 1], rooted at 0 and endowed with the points (Yn)n≥1.

If γ 6= α, we define the following random variables, independently of the sequence (Yn)n≥1:
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• We let (Pi)i≥1 ∼ GEM( γα ,
1−α
α ) with γ

α -diversity S.

• Define recursively the sequence (Nk)k≥1 starting from N1 = 1. Conditionally on
(N1, . . . , Nk) we have

Nk+1 = i with probability Pi for any i ∈ {1, . . . , max
1≤i≤k

Ni},

= 1 + max
1≤i≤k

Ni with complementary probability.

• The sequence (Xk)k≥1 is then defined on the interval [0 , S] as (S · YNk)k≥1.

The block Sα,γ is then defined as the interval [0 , S] rooted at 0 endowed with the sequence
(Xk)k≥1. In order to construct Bα,γ , we introduce a sequence (Ci)i≥1 of circles such that for all
i ≥ 1, (Ci, di, ρi) is a circle with circumference Pi endowed with its path distance and rooted at
some point ρi. Conditionally on that, we take on each Ci a point Ui and a sequence (Vi,j)j≥1 of
i.i.d. uniform random points on Ci. Then we consider their disjoint union

∞⊔
i=1

Ci, (4.33)

which we endow with the distance d characterised by

d(x, y) = di(x, y) if x, y ∈ Ci,
= di(x, Ui) +

∑
k: Yi<Yk<Yj

dk(ρk, Uk) + dj(ρj , y) if x ∈ Ci, y ∈ Cj , Yi < Yj .

Then Bα,γ is defined as the completion of
⊔∞
i=1Ci equipped with this distance, with distinguished

points (VNk,k)k≥1. Its root ρ can be obtained as a limit ρ = limi→∞ ρσi for any sequence (σi)i≥1

for which Yσi → 0.

Several remarks on the limiting space. First, when γ = 1 − α then the limiting spaces
(T α,γ ,Lα,γ) are respectively (a constant multiple of) the 1

γ -stable trees and its associated 1
γ -stable

looptree, thanks to the convergence results in [43, 42].
Second, remark in the construction of the block Bα,γ for γ 6= α that we glued circles onto one

another along a line structure. This could not have been done in the framework of decorations
on the Ulam tree, because in this particular case no two distinct circles are adjacent, they are
always separated from each other by a countable number of other circles that accumulate in
between, see Figure 4.6.

Looptrees constructed using affine preferential attachment

This last model is very similar to the case of the generalised Rémy’s algorithm. We mention
it separately because it was the object of a conjecture by Curien, Duquesne, Kortchemski and
Manolescu [40], to which we provide a positive answer.

First, for any δ > −1, let us define the model LPAMδ which produces sequences (T δn)n≥1 of
plane trees. Start with T δ1 containing a unique vertex connected to a root by an edge (the root
is not considered as a real vertex here). Then, if T δn is already constructed, take a vertex in the
tree at random (the root does not count) with probability proportional to its degree plus δ, then
add an edge connected to a new vertex in a uniformly chosen corner around this vertex. This
yields T δn+1.
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Proposition 4.14. We have the almost sure convergence

n−
1

2+δ · Loop(T δn) −→
n→∞

Lδ

in the Gromov–Hausdorff–Prokhorov topology. The limiting object can be constructed using
an iterative gluing construction with deterministic blocks equal to a circle with unit circum-
ference, using a sequence of weights and scaling factors (mn)n≥1 obtained as the increments
of a Mittag-Leffler Markov chain MLMC

(
1

2+δ ,
1+δ
2+δ

)
.

The Hausdorff dimension of Lδ is 2 + δ almost surely using [112, Theorem 1]. The proof of this
is really close to the one used for the generalised Rémy algorithm, so we omit it.

4.A Computations

This section is devoted to proving some results that are used in some of our applications.

4.A.1 Number of tables in a Chinese Restaurant Process

Fix two parameters α ∈ (0, 1) and θ > −α. Let us introduce the so-called Chinese restaurant
process with parameters (α, θ). We refer to [104] for the definition and properties of this process.
Under Pα,θ, the process starts with one table occupied by one customer and then evolves in a
Markovian way as follows: given that at stage n there are k occupied tables with ni customers
at table i, a new customer is placed at table i with probability (ni − α)/(n + θ) and placed at
a new table with probability (θ + kα)/(n + θ). Let Nn(i), i ≥ 1 be the number of customers at
table i at stage n. Let also Kn denote the number of occupied tables at stage n. Then(

Nn(i), i ≥ 1

n

)
a.s. in `1−→
n−→∞

(Yi, i ≥ 1) and
Kn

nα
a.s.−→
n→∞

W,

where (Yi, i ≥ 1) follows a GEM(α, θ)-distribution and W a generalized ML (α, θ)-Mittag-Leffler
distribution. Let us prove the following

Lemma 4.15. For every p ≥ 1, we have

E
[
sup
n≥1

(
Kn

nα

)p]
<∞. (4.34)

Proof. Let fα,θ(k) := Γ(θ/α+k)
Γ(θ/α+1)Γ(k) , and Fn the σ-field generated by the n first steps of the process,

then (
dPα,θ
dPα,0

)
|Fn

=
fα,θ(Kn)

f1,θ(n)
= Mα,θ,n,

which is a martingale under Pα,0 and bounded in Lp, for all p > 0. Actually, there exists a
constant c > 1 such that for any k, n ≥ 1 :

1

c

(
k

nα

)θ
≤ fα,θ(k)

f1,θ(n)
≤ c

(
k

nα

)θ
.

Introduce M∗α,θ := supn≥1Mα,θ,n. Using Doob’s maximal inequality, we get

Eα,0
[(
M∗α,θ

)p] ≤ ( p

p− 1

)p
Eα,0

[
Mp
α,θ

]
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Hence

Eα,θ
[(

sup
n≥1

Kn

nα

)p]
≤ cEα,θ

[(
M∗α,1

)p]
= Eα,0

[(
M∗α,1

)p ·Mα,θ

]
≤
√
Eα,0

[(
M∗α,1

)2p
]
Eα,0

[
M2
α,θ

]
<∞.

which finishes the proof of the lemma.

4.A.2 The supremum of the normalised height in Rémy’s algorithm

Let (Tn)n≥1 be a sequence of trees evolving using Rémy’s algorithm. This sequence is a Markov
chain in a state space of binary planted trees. Let us denote H := supn≥1(n−1/2 ht(Tn)). We
prove the following:

Lemma 4.16. There exists constants C1 and C2 such that for all x > 0,

P (H > x) ≤ C1 exp
(
−C2x

2
)
.

In particular, H admits moments of all orders.

Proof. Let τx := inf
{
n ≥ 1

∣∣ ht(Tn) ≥ xn1/2
}
. We write

P (H > x) = P (τx < +∞)

≤ P
(

lim
n→∞

n−1/2 ht(Tn) ≥ x

2

)
+ P

(
τx < +∞, lim

n→∞
n−1/2 ht(Tn) ≥ x

2

)
We know thanks to [42] that the trees constructed using Rémy’s algorithm converge almost surely
in the Gromov-Hausdorff topology to Aldous’ Brownian tree, so n−1/2 · Tn → T as n→∞. By
continuity we have limn→∞ n

−1/2 ht(Tn) = ht(T ). Some estimates on the height of the Brownian
tree (expressed for the maximum of a Brownian excursion in [86]) show that the first term of the
above sum is smaller than C1 exp

(
−C2x

2
)
, for some choice of constants C1 and C2. Fix some

N0 ≥ 1 that we will choose later. Then, compute

P
(
τx < +∞, lim

n→∞
n−1/2 ht(Tn) ≥ x

2

)
=

+∞∑
N=1

P (τx = N)P
(

ht(T ) ≤ x

2

∣∣∣ τx = N
)

≤
N0∑
N=1

P (τx = N) + sup
N≥N0

P
(

ht(T ) ≤ x

2

∣∣∣ τx = N
)

≤ N0 · C1 exp
(
−C2x

2
)

+ sup
N≥N0

P
(

ht(T ) ≤ x

2

∣∣∣ τx = N
)
,

where in the last inequality we use the fact that for all N ,

P (τx = N) ≤ P
(

ht(TN ) ≥ xN1/2
)
≤ C1 exp

(
−C2x

2
)
,

using the results of Addario-Berry [2].
Now, let us reason conditionally on the event {τx = N}. On that event, in the tree TN

there exists at least one path of length bxN1/2c starting from the root ending at a vertex v.
The height Hn(v) of the vertex v at time n evolves under the same dynamics as the number

of balls in a triangular urn model with replacement matrix

(
1 1

0 2

)
, and starting proportion
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(bxN1/2c, 2N + 1− bxN1/2c), see [80] for definition and results for those urns. Using a theorem
of [80], as n→∞, we have the almost sure convergence

Hn(v)

n1/2
−→W x

N ,

where W x
N = βxN ·MN is the product of two independent variables, with

βxN ∼ Beta(bxN1/2c, 2N + 1− bxN1/2c) and MN ∼ ML

(
1

2
,
2N + 1

2

)
. (4.35)

Then we write

P
(
W x
N ≤

x

2

)
= P

(
βxN ·MN ≤

x

2

)
≤ P

(
βxN ·MN ≤

x

2
, MN ≥

3

2
N1/2

)
+ P

(
MN ≤

3

2
N1/2

)
≤ P

(
βxN ≤

1

3
· x ·N−1/2

)
+ P

(
MN ≤

3

2
N1/2

)
.

We bound the two terms in the last sum using the Chebychev inequality, using

E [βxN ] =
bxN1/2c
2N + 1

∼ x

2
N−1/2, V (βxN ) =

bxN1/2c(2N + 1− bxN1/2c)
(2N + 1)2(2N + 2)

∼ x

4
N−3/2.

We also have

E [MN ] =
Γ (N + 1/2) Γ (2N + 2)

Γ (2N + 1) Γ (N + 1)
∼ 2N1/2,

and

V (MN ) =
Γ (N + 1/2) Γ (2N + 3)

Γ (2N + 1) Γ (N + 3/2)
−
(

Γ (N + 1/2) Γ (2N + 2)

Γ (2N + 1) Γ (N + 1)

)2

≤ 1.

Hence,

P
(
βxN ≤

1

3
· x ·N−1/2

)
≤ P

(
|βxN − E [βxN ]| ≥ 1

8
· x ·N−1/2

)
≤ 8x2NV (βxN )

≤ Cx3N−1/2,

with C a constant that is independent of x and N . We also have

P
(
MN ≤

3

2
N1/2

)
≤ P

(
|MN − E [MN ]| ≥ 1

3
N1/2

)
≤ 3N−1V (MN )

≤ C ′N−1,

with C ′ another constant that does not depend on x orN . All this analysis was done conditionally
on the event {τx = N}, so in fact, we have for all N ≥ N0,

P
(

ht(T ) ≤ x

2

∣∣∣ τx = N
)
≤ Cx3N−1/2 + C ′N−1 ≤ Cx3N

−1/2
0 + C ′N−1

0 .

Now we just take N0 = exp
(
C2
2 x

2
)
and the result follows.
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Chapter 5

Stable graphs: distributions and
line-breaking construction

This chapter is adapted from the preprint [64], which is joint work with Christina Goldschmidt
and Bénédicte Haas.

For α ∈ (1, 2], the α-stable graph arises as the universal scaling limit of critical random graphs
with i.i.d. degrees having a given α-dependent power-law tail behavior. It consists of a sequence of
compact measured metric spaces (the limiting connected components), each of which is tree-like,
in the sense that it consists of an R-tree with finitely many vertex-identifications (which create
cycles). Indeed, given their masses and numbers of vertex-identifications, these components are
independent and may be constructed from a spanning R-tree, which is a biased version of the
α-stable tree, with a certain number of leaves glued along their paths to the root. In this chapter
we investigate the geometric properties of such a component with given mass and number of
vertex-identifications. We (1) obtain the distribution of its kernel and more generally of its
discrete finite-dimensional marginals; we will observe that these distributions are related to the
distributions of some configuration models (2) determine the distribution of the α-stable graph
as a collection of α-stable trees glued onto its kernel and (3) present a line-breaking construction,
in the same spirit as Aldous’ line-breaking construction of the Brownian continuum random tree.
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Figure 5.1 – A simulation of a connected component of the stable graph when α = 1.5 and the
surplus is 2. The cycle structure is shown in black.

5.1 Introduction and main results

5.1.1 Motivation

The purpose of this chapter is to understand the distributional properties of the scaling limit of a
critical random graph with independent and identically distributed degrees having certain power-
law tail behaviour. Let us first describe the random graph model precisely. Let D1, D2, . . . , Dn ∈
N be independent and identically distributed random variables such that ED2

1 <∞. We build a
graph with vertices labelled by 1, 2, . . . , n. For i = 1, . . . , n − 1, let vertex i have degree Di. If∑n

i=1Di is even, let vertex n have degree Dn; otherwise, let vertex n have degree Dn + 1. Now
pick a simple graph Gn uniformly at random from among those with these given vertex degrees
(at least one such graph exists with probability tending to 1 as n→∞).

Molloy and Reed [97] showed that there is a phase transition in the sizes of the connected
components: if the parameter ν := E[D1(D1 − 1)]/E[D1] is larger than 1 there exists a unique
giant component of size proportional to n, while if ν is smaller than or equal to 1 there is no
giant component. We will here tune the degree distribution so as to be exactly at the point of
the phase transition, i.e. ν = 1. The component-size behaviour is here at its most delicate: even
after performing the correct rescaling and taking a limit, there is residual randomness in the
sequence of component sizes. For the questions in which we are interested, the critical case with
ED3

1 < ∞ has already been thoroughly investigated in previous work, which we summarise in
Section 5.1.3. So we will rather assume that the degree distribution has infinite third moment
and a specific power-law behaviour. Henceforth, fix 1 < α < 2 and assume that

ν = 1 and P (D1 = k) ∼ ck−2−α as k →∞, (5.1)

where c > 0 is constant. (Note that ν = 1 is equivalent to ED2
1 = 2ED1.)

The analogous model of a random tree is a Galton-Watson tree with critical offspring distri-
bution in the domain of attraction of an α-stable law. In that case, there is a well-known scaling
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limit, the α-stable tree [52]. We will explore the relationship between these two models, at the
level of scaling limits, in the sequel.

It is now standard to formulate random graph scaling limits in terms of sequences of measured
metric spaces, namely metric spaces endowed with a measure. Throughout this chapter we let
(C ,dGHP) denote the set of measured isometry-equivalence classes of compact measured metric
spaces equipped with the Gromov-Hausdorff-Prokhorov topology (see, for example, Section 2.1
of [6] for the formulation we use here) and endow it with the associated Borel σ-algebra. (We will
often elide the difference between a measured metric space and its equivalence class but it should
be understood that we are really thinking about the equivalence class.) As we are dealing with
graphs which have many components, we need a topology on sequences of (equivalence classes of)
compact measured metric spaces. Let Z be an infinite sequence of “zero” measured metric spaces,
each consisting of a single point endowed with measure 0. Consider a pair M = (Mi, di, µi)i≥1

and M′ = (M ′i , d
′
i, µi)i≥1 of sequences of compact measured metric spaces. For p ≥ 1 define

distp(M,M′) =

( ∞∑
i=1

dGHP

(
(Mi, di, µi), (M

′
i , d
′
i, µ
′
i)
)p)1/p

,

and let
Lp =

{
M ∈ C N : distp(M,Z) <∞

}
.

Then (Lp,distp) is a Polish space [6].
Write Cn1 , Cn2 , . . . for the vertex-sets of the components of the graph Gn, listed in decreasing

order of size (with ties broken arbitrarily). Set

Aα =

(
cΓ(2− α)

α(α− 1)

)1/(α+1)

. (5.2)

We think of the components as metric spaces by endowing each one with a scaled version of the
usual graph distance, dgr: let

dni :=
A2
α

E[D1]n(α−1)/(α+1)
dgr

be the distance in Cni . We also endow each of them with the scaled counting measure

µni :=
Aα

E[D1]nα/(α+1)

∑
v∈Cni

δv.

Let Cn
i = (Cni , d

n
i , µ

n
i ) be the resulting measured metric space. We write s(Cn

i ) for the number
of surplus edges (i.e. edges more than a tree) possessed by the component Cn

i . Formally, for a
connected graph G = (V,E), the number of surplus edges or, more briefly, surplus, is defined to
be

s(G) = |E| − |V |+ 1.

The following theorem is proved in [38].

Theorem 5.1. As n→∞,

(Cn
1 ,C

n
2 , . . .)

d→ (C1,C2, . . .),

in (L2α/(α−1), dist2α/(α−1)), for some random sequence (C1,C2, . . .) which we call the α-
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stable graph.

(In Section 5.1.3 below we will describe the relationship of this theorem to earlier work.)
Theorem 5.1 also holds in the setting of a random multigraph (i.e. it may contain self-

loops and multiple edges) sampled from the configuration model with i.i.d. degrees. Formally, a
multigraph G is an ordered pair G = (V,E) where V is the set of vertices and E the multiset
of edges (i.e. elements of {{u, v}, u ∈ V, v ∈ V }). Let supp(E) denote the support of E,
i.e. the underlying set of distinct elements of E, and, for e ∈ supp(E), let mult(e) denote its
multiplicity. Let sl(G) denote the cardinality of the multiset of self-loops. For a vertex v ∈ V ,
we write deg(v) for its degree, or degG(v) if there is potential ambiguity over which graph we
are looking at. The surplus is still defined to be s(G) = |E| − |V | + 1, where we emphasise
that |E| =

∑
e∈supp(E) mult(e). Let us briefly explain the set-up of the configuration model for

deterministic degrees d1, d2, . . . , dn with even sum. (The configuration model was introduced in
varying degrees of generality in [16, 29, 115]. We refer to Chapter 7 of the recent book of van
der Hofstad [75] for the proofs of the claims made in this paragraph.) To vertex i we assign
di half-edges, for 1 ≤ i ≤ n. We give the half-edges an arbitrary labelling (so that we may
distinguish them) and then choose a matching of the half-edges uniformly at random. Two
matched half-edges form an edge of the resulting structure, which is a multigraph. Then for a
particular multigraph G with degrees d1, d2, . . . , dn, the probability that the configuration model
generates G is ∏n

i=1 di!

(
∑n

i=1 di − 1)!! 2sl(G)
∏
e∈supp(E) mult(e)!

, (5.3)

where a!! denotes the double factorial of a. From this expression, it is easy to see that if there
exists at least one simple graph with degrees d1, d2, . . . , dn then conditioning the multigraph to
be simple yields a uniform graph with the given degree sequence. We are interested in the setting
where the degrees are random variables D1, D2, . . . , Dn satisfying the conditions (5.1) (with the
small modification mentioned above to make the sum of the degrees even). In this case, there
exists a simple graph with these degrees with probability tending to 1 as n→∞, which enables
us to convert results for the configuration model into results for the uniform random graph with
given degree sequence; in the setting of Theorem 5.1 the conditioning turns out not to affect the
result.

The α-stable graph is constructed using a spectrally positive α-stable Lévy process; we give
the details, which are somewhat involved, in Section 5.2.2. For i ≥ 1, write Ci = (Ci, dCi , µCi),
i ≥ 1. These measured metric spaces are R-graphs in the sense of [6] i.e. they are locally R-
trees, but may also possess cycles. It is possible to make sense of the surpluses of the limiting
components, for which we write s(Ci), i ≥ 1. It is a consequence of Theorem 5.1 that

Aα

E[D1]nα/(α+1)
(|Cn1 |, |Cn2 |, . . .)

d→ (µC1(C1), µC2(C2), . . .) (5.4)

in `2α/(α−1), jointly with the convergence in the sense of the product topology

(s(Cn
1 ), s(Cn

2 ), . . .)
d→ (s(C1), s(C2), . . .) (5.5)

for the sequences of surplus edges. The joint law of (µC1(C1), µC2(C2), . . .) and (s(C1), s(C2), . . .)

is explicit in terms of the underlying α-stable Lévy process; see Section 5.2.2. Moreover the
limiting components (C1,C2, . . .) are conditionally independent given (µC1(C1), µC2(C2), . . .) and
(s(C1), s(C2), . . .), with distributions coming from a collection of fundamental building-blocks:
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there exist random measured metric spaces (Gs, ds, µs), s ≥ 0, where µs is a probability measure,
such that, for all i, given µCi(Ci) and s(Ci), we have(

Ci, dCi , µCi
) (d)

=
(
Gs(Ci), µCi(Ci)1−1/α · ds(Ci), µCi(Ci) · µs(Ci)

)
.

For s = 0, (Gs, ds, µs) is simply the standard rooted α-stable tree, the definition of which is
recalled in Section 5.2.1. Informally, for s ≥ 1, (Gs, ds, µs), is constructed by randomly choosing
s leaves in an s-biased version of this α-stable tree, and then gluing them to randomly-chosen
branch-points along their paths to the root, with probabilities proportional to the “local time to
the right" of the branch-points. (We will define these quantities in the sequel.) We will often
think of the resulting R-graph Gs as being rooted; in this case, the root is simply inherited
from that of the s-biased α-stable tree. The measure µs on Gs is then the probability measure
inherited from the s-biased α-stable tree. We will often abuse notation and simply write Gs in
place of (Gs, ds, µs). For a > 0, we will also write a · Gs to denote the same measured metric
space with all distances scaled by a, i.e. (Gs, ads, µs).

In order to understand the geometric properties of the α-stable graph, it therefore suffices to
consider the measured metric spaces

Gs, s ≥ 0.

We will call Gs the connected α-stable graph with surplus s. Let us note immediately that Gs
naturally inherits the Hausdorff dimension of the α-stable tree and that, therefore,

dimH(Gs) =
α

α− 1
a.s.

Like a connected combinatorial graph, the R-graph Gs may be viewed as a cycle structure
to which pendant subtrees are attached. Let Ks be the image after the gluing procedure of the
subtree spanned by the s selected leaves and the root of the s-biased version of the α-stable tree.
(When s = 0, we use the convention that Ks is the empty set.) The space Ks encodes the rooted
cycle structure of Gs. We refer to it as the continuous kernel because it is a continuous analogue
of the usual graph-theoretic notion of a kernel (except that it is rooted at a vertex of degree 1).
We will think of it as a rooted multigraph which is endowed with real-valued edge-lengths, and
write Ks for the rooted multigraph without the edge-lengths, which we call the discrete kernel.

In order to better understand the structure of the R-graph Gs, we will approximate it by a
sequence (Gsn)n≥0 of multigraphs with edge-lengths, starting from the continuous kernel, Gs0 = Ks.
Consider an infinite sample of leaves from Gs, labelled 1, 2, . . .. For each n ∈ N, let Gsn be the
connected subgraph of Gs consisting of the union of the kernel Ks and the paths from the n
first leaves to the root. These are the R-graph analogues of Aldous’ random finite-dimensional
marginals for a continuum random tree. For brevity, we will call them the marginals of Gs. In
Lemma 5.24 below, we note that Gs can be recovered as the completion of ∪n≥0Gsn. We will also
make extensive use of the discrete counterparts of the Gsn. For n ≥ 0, let Gsn be the combinatorial
shape of Gsn (i.e. “forget the edge-lengths", so as to obtain a finite graph with surplus s and no
vertices of degree 2 – see (5.14) for a formal definition in the framework of trees that adapts
immediately to our graphs), so that Ks = Gs0. Note that the root vertex has degree 1 in all of
these graphs. When s ≥ 2, we can erase the root in the discrete kernel (formally, we remove
the root and the adjacent edge, and if this creates a vertex of degree 2 we erase it) to obtain a
multigraph that we denote by Gs−1.

5.1.2 Main results

Throughout this section, we fix the surplus s ∈ Z+.
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Our first main results characterise the joint distributions of the discrete marginals (Gsn)n≥0.
This family of random multigraphs has particularly attractive properties: for fixed n, the graph
Gsn has the distribution of a certain conditioned configuration model with i.i.d. random degrees,
with a particular canonical degree distribution. Moreover, as a process, (Gsn)n≥0 evolves in a
Markovian manner according to a simple recursive construction which is a version of Marchal’s
algorithm [92] for building the marginals of the stable tree, (G0

n)n≥0. Although Gs is constructed
from a biased version of the α-stable tree, we emphasise that it was not at all obvious to us a
priori that Marchal’s algorithm would generalise in this way.

An advantage of this recursive construction is that it has many urn models embedded in
it, which enable us to easily get at different aspects of Gs. We provide two different construc-
tions of Gs, which rely on relatively simple random building blocks. The distributions of these
building blocks (Beta, generalised Mittag-Leffler, Dirichlet and Poisson-Dirichlet) are defined in
Section 5.5, where we also recall various of their standard properties and discuss their relation-
ships to urns. Our two constructions are as follows:

(i) The first takes a collection of i.i.d. α-stable trees which are randomly scaled and then glued
onto Ks in such a way that each edge of Ks is replaced by a tree with two marked points,
and such that every vertex of Ks acquires a (countable) collection of pendant subtrees.

(ii) The second starts by replacing the edges of the kernel by line-segments of lengths with a
given joint distribution, and then proceeds by recursively gluing a countable sequence of
segments of random lengths onto the structure. We call this a line-breaking construction
and obtain the limit space in the end by completion.

These constructions generalise, in a natural way, the distributional properties and line-
breaking construction proved in [4] for the components of the Brownian graph, a term we coin
here to mean the common scaling limit of the critical Erdős-Rényi random graph [5] and the
critical random graph with i.i.d. degrees having a finite third moment [24] as well as various other
models (see Section 5.1.3). We emphasise, however, that the proofs in the stable setting are much
harder, essentially due to the added complication of dealing with Lévy processes rather than just
Brownian motion. Our line-breaking construction is the graph counterpart of the line-breaking
construction of the stable trees given in [63].

The discrete marginals of Gs

We can recover the measured metric space Gs from the discrete marginals Gsn by equipping them
with the graph distance and the uniform distribution on their leaves, as follows.

Proposition 5.2.
Gsn

n1−1/α

a.s.−→
n→∞

α · Gs

for the Gromov-Hausdorff-Prokhorov topology.

This generalises a result which says that the α-stable tree is the (almost sure) scaling limit of its
discrete marginals, see [92, 42]. See Section 5.4.1.

For any multigraph G = (V,E), recall that we let sl(G) denote its number of self-loops, and
for an element e ∈ supp(E), we let mult(e) denote its multiplicity. Let I(G) ⊂ V denote the set
of internal vertices of G. We say that a permutation τ of the set I(G) is a symmetry of G if,
after having extended τ to the identity function on the leaves, τ preserves the adjacency relations
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Figure 5.2 – The possible kernels for s = 2 with their probabilities for α = 5/4 (given in the penultimate
line). For comparison, the last line gives the distribution of the kernel of the connected Brownian graph
with surplus 2.

in the graph and for all u, v ∈ V , the edges {u, v} and {τ(u), τ(v)} have the same multiplicity.
We let Sym(G) denote the set of symmetries of G. For n ≥ 0, let Ms,n be the set of connected
multigraphs with n+ 1 labelled leaves, surplus s and no vertices of degree 2. (Observe that the
internal vertices are not labelled.) When s ≥ 2, let Ms,−1 be the set of unlabelled connected
multigraphs with surplus s and minimum degree at least 3. Finally, let us define a sequence of
weights by

w0 := 1, w1 := 0, w2 := α− 1, wk := (k − 1− α) . . . (2− α)(α− 1), for k ≥ 3. (5.6)

Viewing the root as a leaf with label 0, we note that Gsn is an element of Ms,n. We can now
describe the distributions of the random multigraphs Gsn.

Theorem 5.3. Let n ≥ 0. For every connected multigraph G = (V,E) ∈Ms,n,

P (Gsn = G) ∝
∏
v∈I(G)wdeg(v)−1

|Sym(G)|2sl(G)
∏
e∈supp(E) mult(e)!

.

This, in particular, gives the distribution of the kernel Ks when n = 0. When s ≥ 2, this
expression also gives the distribution of Gs−1 on Ms,−1.

This result is proved in Section 5.3. To illustrate it, in Figure 5.2 we give the distribution of
the kernel explicitly in the case s = 2 and α = 5

4 .
Comparing the form of the distribution of Gsn with (5.3) suggests a connection with a con-

ditioned configuration model. To make this precise, let D(α) be a random variable on N with
distribution

P(D(α) = k) =
2(1 + α)α

α2 + α+ 2
· wk−1

k!
, k ≥ 2, and P(D(α) = 1) =

2(1 + α)

α2 + α+ 2
. (5.7)
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Observe that P(D(α) = 2) = 0. We will verify in Section 5.3.6 that this indeed defines a
probability measure which, moreover, satisfies the conditions (5.1). Consider now the following
particular instance of the configuration model. We fix n ≥ 0 and m ≥ n + 1 (include the case
n = −1 if s ≥ 2), take vertices labelled 0, 1, . . . ,m−1 to have i.i.d. degrees distributed according
to D(α) and write Csn,m for the resulting configuration multigraph conditioned to be in Mn,s,
after having forgotten the labels n+ 1, n+ 2, . . . ,m− 1.

Corollary 5.4. The random multigraph Gsn conditioned to have m vertices has the same law as
Csn,m.

This again generalises the analogous result for the α-stable tree: the combinatorial shape of
the subtree obtained by sampling n ≥ 0 leaves and the root is distributed as a planted (i.e. with
a root of degree 1) non-ordered version of a Galton-Watson tree conditioned to have n leaves,
whose offspring distribution ηα has probability generating function z+α−1(1− z)α. There is, of
course, a connection between D(α) and ηα: if we let D̂(α) denote the size-biased version

P(D̂(α) = k) :=
kP(D(α) = k)

E
[
D(α)

] , k ≥ 1,

then D̂(α) − 1 is distributed as ηα. See Section 5.3.6.
In fact, we may think of the configuration multigraph with i.i.d. degrees distributed as D(α)

as, in some sense, the canonical model in the universality class of the stable graph. For this
model, the law of a component conditioned to have n + 1 leaves and surplus s is exactly the
same as the corresponding discrete marginal for its scaling limit, and there exists a coupling for
different n which is such that we get almost sure (rather than just distributional) convergence,
on rescaling, to the connected α-stable graph with surplus s.

We are also able to understand the joint distribution of the graphs Gsn, n ≥ 0 (again, include
the case n = −1 when s ≥ 2): they evolve according to a multigraph version of Marchal’s
algorithm [92] for the discrete marginals of a α-stable tree. Let us define a step in the algorithm.
Take a multigraph G = (V,E) ∈ Ms,n. Declare every edge to have weight α − 1, every internal
vertex u ∈ I(G) to have weight degG(u)− 1−α and every leaf to have weight 0. Then the total
weight of G is ∑

u∈I(G)

(degG(u)− 1− α) + (α− 1) · |E| = α(s+ n) + s− 1, (5.8)

which depends only on the surplus and the number of leaves of the graph. We use the term
edge-leaf to mean an edge with a leaf at one of its end-points. Choose an edge/vertex with
probability proportional to its weight. Then

• if it is a vertex, attach a new edge-leaf where the leaf has label n+ 1 to this vertex,

• if it is an edge, attach a new edge-leaf where the leaf has label n + 1 to a newly created
vertex which splits the edge into two.

We say that a sequence of graphs evolves according to Marchal’s algorithm if it is Markovian
and the transitions are given by one step of Marchal’s algorithm.

Theorem 5.5. For s ≥ 0, the sequence (Gsn)n≥0 evolves according to Marchal’s algorithm.
For s ≥ 2, more generally, the sequence (Gsn)n≥−1 evolves according to Marchal’s algorithm.
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See Section 5.3.4 for a proof. We now turn to our constructions of the limit object Gs.

Construction 1: from randomly scaled stable trees glued to the kernel

Given a connected multigraph G ∈Ms,0, with k edges and k− s internal vertices having degrees
d1, . . . , dk−s, consider independent random variables

(M1, . . . ,M2k−s) ∼ Dir

(
α− 1

α
, . . . ,

α− 1

α︸ ︷︷ ︸
k

,
d1 − 1− α

α
, . . . ,

dk−s − 1− α
α

)
(5.9)

and, for 1 ≤ i ≤ k − s,
(∆i,j , j ≥ 1) ∼ PD

(
1

α
,
di − 1− α

α

)
, (5.10)

where Dir(a1, . . . , an) denotes the Dirichlet distribution on the (n−1)-dimensional simplex, with
parameters a1 > 0, a2 > 0, . . . , an > 0, and PD(a, b) denotes the Poisson-Dirichlet distribution
on the set of positive decreasing sequences with sum 1, with parameters a > 0, b > 0.

Given all of these random variables, consider independent α-stable trees T`, Ti,j , where T`
has mass M` and Ti,j has mass Mi+k ·∆i,j , with 1 ≤ ` ≤ k, 1 ≤ i ≤ k− s, j ≥ 1. For each ` let ρ`
denote the root of T` and L` be a uniform leaf. Similarly, let ρi,j denote the root of the tree Ti,j
for each i, j. Then denote by e1, . . . , ek the edges of G in arbitrary order, with, say, ei = {xi, yi},
and by v1, . . . , vk−s the internal vertices of G, also in arbitrary order. Finally, let G(G) be the
R-graph obtained by:

• replacing the edge {x`, y`} with the tree T`, identifying ρ` with x` and L` with y`, for each
1 ≤ ` ≤ k,

• gluing to the vertex vi the collection of stable trees Ti,j , j ≥ 0, by identifying all the
roots ρi,j to vi (this gluing a.s. gives a compact metric space, see Section 5.4.2), for each
1 ≤ i ≤ k − s.

On an event of probability one the graph G(G) is therefore compact, and is naturally endowed
with the probability measure induced by the rescaled probability measures on the α-stable trees
T`, Ti,j , i, j, ` ∈ N. We view it as a random variable in (C , dGHP).

Theorem 5.6. Given the random kernel Ks, let G(Ks) be the graph constructed above by
gluing α-stable trees along the edges and vertices of Ks. Then

Gs d
= G(Ks),

as random variables in (C ,dGHP).

We prove Theorem 5.6 in Section 5.4.2 via the recursive construction of the discrete graphs
Gsn, n ≥ 0. As a byproduct of the proof, we obtain the distribution of the continuous marginals
Gsn, which may be viewed as Gsn with random edge-lengths. In particular, when n = 0, we obtain
the distribution of the continuous kernel Ks.

Proposition 5.7. For n ≥ 0, given Gsn = (V,E), let (L(e), e ∈ E) be the lengths of the
corresponding edges in Gsn, in arbitrary order. Then,

(α · L(e), e ∈ E)
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is distributed as the product of three independent random variables:

Beta

(
|E|, (n+ s)α+ s− 1

α− 1
− |E|

)
·ML

(
1− 1

α
,
(n+ s)α+ s− 1

α

)
·Dir(1, . . . , 1). (5.11)

Here, ML(β, θ) denotes the generalised Mittag-Leffler distribution with parameters 0 < β < 1

and θ > −β.

Construction 2: line-breaking

Various prominent examples of random metric spaces may be obtained as the limit of a so-called
line-breaking procedure that consists in gluing recursively segments of random lengths – or more
complex measured metric structures – to obtain a growing structure. The most famous is the
line-breaking construction of the Brownian continuum random tree discovered by Aldous in [9].
We refer to [4, 41, 63, 109, 112, 111] for other models studied since then.

The graph Gs may also be constructed in such a way, starting from its kernel. This construc-
tion makes use of an increasing R+-valued Markov chain (Rn)n≥1 which is characterized by the
following two properties for each n ≥ 1:

Rn ∼ ML

(
1− 1

α
,
nα+ (s− 1)

α

)
and Rn = Rn+1 ·Bn

where Bn ∼ Beta
(

(n+1)α+s−2
α−1 , 1

α−1

)
is a random variable independent of Rn+1. (An explicit

construction of this Markov chain is given e.g. in [63, Section 1.2]. Note that similar Markov
chains arise in the scaling limits of several stochastic models, see [79, 110].)

For the moment, assume that s ≥ 1. Suppose we are given Ks with, say, k edges and internal
vertices v1, . . . , vk−s having degrees d1, . . . , dk−s respectively (the order of labelling is unimpor-
tant). We first perform an initialisation step: independently of the Markov chain (Rn)n≥1,

• sample

(Θ1, . . . ,Θ2k−s) ∼ Dir
(

1, . . . , 1︸ ︷︷ ︸
k

,
d1 − 1− α
α− 1

, . . . ,
dk−s − 1− α

α− 1

)
;

• assign the lengths Rs ·Θ1, . . . , Rs ·Θk to the k edges of Ks (the order is again unimportant);
viewing the edges as closed line-segments, this gives a metric space that we denote Hs0, with
k − s branch-points (i.e. vertices of degree at least 3) labelled v1, . . . , vk−s;

• let η0 := λHs0 +
∑k−s

i=1 (Rs ·Θk+i)δvi , where λHs0 denotes the Lebesgue measure on Hs0.
We now build a growing sequence of measured metric spaces (Hsn, ηn)n≥0, starting from

(Hs0, η0). Recursively,

• select a point v in Hsn with probability proportional to ηn;

• attach to v a new closed line-segment σ of length (Rn+s+1 − Rn+s) · βn, where βn has a
Beta(1, (2 − α)/(α − 1))-distribution and is independent of everything constructed until
now; this gives Hsn+1;

• let ηn+1 := ηn+(Rn+s+1−Rn+s) · (1−βn)δv +λσ, where λσ denotes the Lebesgue measure
on σ.

When s = 0 the construction works similarly except that the initialization starts at n = 1 with
H0

1 taken to be a closed segment of length R1, equipped with the Lebesgue measure denoted by
η1. We have the following result, which is proved in Section 5.4.3.
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Theorem 5.8. The sequence (Hsn, n ≥ 0) is distributed as (Gsn, n ≥ 0). In consequence, the
graph Hsn, endowed with the uniform probability on its set of leaves, converges almost surely
for the Gromov-Hausdorff-Prokhorov topology to a random compact measured metric space
distributed as Gs. In particular, ∪n≥0Hsn is a version of Gs.

Remark 5.9. We adopt a “discrete” approach to proving Theorems 5.6 and 5.8; in other words,
we make use of Marchal’s algorithm and the fact that it gives us a sequence of approximations
which, on rescaling, converges almost surely to the connected α-stable graph with surplus s. An
alternative approach should be possible, whereby one would work directly in the continuum, but it
is far from clear to us that it would be any simpler to implement.

5.1.3 The finite third moment case, and other related work

The case where
ED2

1 = 2ED1 and ED3
1 <∞

has already been well-studied. In particular, when P(D1 = 2) < 1, if we let β =

ED1(D1 − 1)(D1 − 2) then Theorem 5.1 holds with α = 2 on rescaling the counting measure
on each component by β−1n−2/3ED1 and the graph distances by n−1/3. The limiting graphs are
constructed similarly to ours but using a standard Brownian motion instead of a spectrally pos-
itive α-stable Lévy process (with the small variation that β appears in the change of measure).
See [24, Theorem 2.4 and Construction 3.5] and also Section 3 of [62] for more details. This
Brownian graph first appeared as the scaling limit of the critical Erdős-Rényi random graph
[5] and is now known to be the universal scaling limit of various other critical random graph
models. Precise analogues of our main results were already known in this Brownian case (except
for Theorem 5.5).

It follows from the properties of Brownian motion that the branch-points in GsBr, the connected
Brownian graph with surplus s, are then all of degree 3. Its discrete kernel KsBr is therefore a
3-regular planted multigraph, whose distribution is given below.

Theorem 5.10 ([4, Figure (2)] and [82, Theorem 7]). For a connected 3-regular planted
multigraph G with surplus s,

P (KsBr = G) ∝ 1

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

.

(In the references given, the kernel is taken to be labelled and unrooted, but the labelling can
be removed simply at the cost of the factor of |Sym(G)|−1 appearing in the above expression,
and the root can be removed as detailed above.) See Figure 5.2 for numerical values when s = 2.
Note that the formula above corresponds to that of Theorem 5.3 when n = 0 and α = 2 since
then

w0 = w2 = 1 and wi = 0 for all other indices i.

In fact, our proofs in Section 5.3 can be adapted to recover this case and more generally to obtain
the joint distribution of the marginals Gsn,Br via a recursive construction which is particularly
simple in this case: starting from the kernel KsBr, at each step a new edge-leaf is attached to an
edge chosen uniformly at random from among the set of edges of the pre-existing structure. (For
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s = 0, this is Rémy’s algorithm [107] for generating a uniform binary leaf-labelled tree.) After n
steps, this gives a version of Gsn,Br, whose distribution is specified below.

Proposition 5.11. For every multigraph G ∈Ms,n with internal vertices all of degree 3,

P
(
Gsn,Br = G

)
∝ 1

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

.

As in the stable cases, these distributions are connected to configuration multigraphs. Indeed,
let D(Br) denote a random variable with distribution

P(D(Br) = 1) = 3/4 and P(D(Br) = 3) = 1/4.

Consider then the following particular instance of the configuration model. We fix n ≥ 0,
m ≥ n + 1 and take vertices labelled 0, 1, . . . ,m− 1 to have i.i.d. degrees distributed according
to D(Br). We then write Csn,m for the resulting configuration multigraph conditioned to be in
Ms,n, after having forgotten the labels n+ 1, n+ 2, . . . ,m− 1.

Corollary 5.12. The random multigraph Gsn,Br conditioned to have m vertices has the same law
as Csn,m.

The paper [4] is devoted to the study of the distribution of GsBr for s ≥ 0. In particular, it
is shown there that a version of GsBr can be recovered by gluing appropriately rescaled Brow-
nian continuum random trees along the edges of KsBr ([4, Procedure 1]) or via a line-breaking
construction ([4, Procedure 2 & Theorem 4]).

Let us turn now to other related work. The study of scaling limits for critical random graph
models was initiated by Aldous in [8], where he proved in particular the convergence of the sizes
and surpluses of the largest components of the Erdős-Rényi random graph in the critical window,
as well as a similar result for the sizes of the largest components in an inhomogeneous random
graph model. This was followed soon afterwards by Aldous and Limic [11], who explored the
possible scaling limits for the sizes of the components in a “rank-one” inhomogeneous random
graph, with the limiting sizes encoded as the lengths of excursions above past-minima of a so-
called thinned Lévy process.

In [5], it was shown that Aldous’ result for the sizes and surpluses of the largest components in
a critical Erdős-Rényi random graph could be extended to include also the metric structure of the
limiting components; the limiting object is what we refer to here as the Brownian graph. Since
that paper, progress has been made in several directions. One direction has been to demonstrate
the universality of the Brownian graph (first in terms of component sizes, and then in terms of the
full metric structure). This has been done for the critical rank-one inhomogeneous random graph
[22, 25], for critical Achlioptas processes with bounded size rules [19], for critical configuration
models with finite third moment degrees [83, 108, 46, 24] and in great generality in [18].

Another line of enquiry, into which the present paper fits, is the investigation of other uni-
versality classes, generally those with power-law degree distributions. This has been pursued in
the setting of rank-one inhomogeneous random graphs with power-law degrees in [76, 21, 23] and
with very general weights by [31]. The configuration model with power-law degrees has been
treated by [83, 47, 20]. The last three papers are the most directly related to the topic of the
present paper, and so we will discuss them in a little more detail.

In [83], Joseph considers the configuration model with i.i.d. degrees satisfying the same con-
ditions as us, and proves the convergence in distribution of the component sizes (5.4). (He leaves
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the equivalent convergence in the setting of the graph conditioned to be simple as a conjecture,
but this is not hard to prove; see [38] for the details.) The results of [38] in Theorem 5.1 thus
directly generalise those of Joseph. Dhara, van der Hofstad, van Leeuwaarden and Sen [47] and
Bhamidi, Dhara, van der Hofstad, and Sen [20] consider the component sizes and metric structure
respectively in configuration models with fixed degree sequences satisfying a certain power-law
condition. The paper [20] proves a metric space scaling limit, where the limit components are
derived from the thinned Lévy processes mentioned above. This scaling limit is proved in a
somewhat weaker topology than that of [38] but is much more general in scope; in particular,
it includes the case of i.i.d. degrees with the tail behaviour we assume. In principle, it should
be possible to view the stable graph as an appropriately annealed version of the scaling limit of
[20]. However, it is for the moment unclear how to prove independently that the two objects
obtained must be the same. The limit spaces obtained in [20] are a priori much less easy to
understand than ours; the advantage of our more restrictive setting is that we get very nice
absolute continuity relations with the stable trees which are already well understood. Obtaining
analogous results in the setting studied by [20] seems much more challenging.

5.1.4 Perspectives

As discussed above, the results of this paper provide heavy-tailed analogues of those in [4],
which have been applied in other contexts. Firstly, the decomposition into a continuous kernel
with explicit distribution plus pendant subtrees played a key role in the proof of the existence
of a scaling limit for the minimum spanning tree of the complete graph on n vertices in [6].
More specifically, assign the edges of the complete graph i.i.d. random edge-weights with Exp(1)

distribution. Now find the spanning treeMn of the graph with minimum total edge-weight. (The
law of Mn does not depend on the weight distribution as long as it is non-atomic.) Think of Mn

as a measured metric space in the usual way by endowing it with the graph distance dn and the
uniform probability measure µn on its vertices. The main result of [6] is that

(Mn, n
−1/3dn, µn)

d→ (M, d, µ)

as n → ∞, in the Gromov-Hausdorff-Prokhorov sense, where the limit space (M, d, µ) is a
random measured R-tree having Minkowski dimension 3 almost surely. This convergence has,
up to a constant factor, recently been shown by Addario-Berry and Sen [7] to hold also for the
MST of a uniform random 3-regular (simple) graph or for the MST of a 3-regular configuration
model.

Following the scheme of proof developed in [6], it should be possible to use the results of the
present paper together with those of [38] to prove an analogous scaling limit for the minimum
spanning tree of the following model. First, generate a uniform random graph (or configuration
model) with i.i.d. degrees D1, D2, . . . , Dn with the same power-law tail behaviour as discussed
above, but now in the supercritical setting ν > 1. For the purposes of this discussion, let us also
assume that P (D1 ≥ 3) = 1. Under this condition, the graph not only has a giant component,
but that component contains all of the vertices with probability tending to 1 [33, Lemma 1.2].
As before, assign the edges of this graph i.i.d. random weights with Exp(1) distribution and find
the minimum spanning tree Mn. Then we conjecture that in this setting we will have

(Mn, n
−(α−1)/(α+1)dn, µn)

d→ (M, d, µ),

for some measured R-tree (M, d, µ). This conjecture will be the topic of future work.
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Another application of the results of [4] has been in the context of random maps. The
Brownian versions of the graphs Gs, s ≥ 0 arise as scaling limits of unicellular random maps on
various compact surfaces. The results of [4] have, in particular, been used to study Voronoi cells
in these objects. More specifically, for a surface S, let (U(S), d, µ) be the continuum random
unicellular map on S [3], endowed with its mass measure µ, and letX1, X2, . . . , Xk be independent
random points sampled from µ. Let V1, V2, . . . , Vk be the Voronoi cells with centres X1, . . . , Xk.
Then in [3] it is shown that

(µ(V1), . . . , µ(Vk)) ∼ Dir(1, 1, . . . , 1).

In other words, the Voronoi cells of uniform points provide a way to split the mass of the space
up uniformly. In principle, there should exist “stable” analogues of this result (in which the
mass-split will no longer be uniform).

5.1.5 Organisation of the chapter

Section 5.2 is devoted to background on stable trees, and to the description of the distribution
of the limiting sequence of metric spaces arising in Theorem 5.1 in terms of a spectrally positive
α-stable Lévy process. In particular, we give a precise description of the elementary building-
blocks Gs, s ≥ 0. We then enter the core of the paper with Section 5.3 which is dedicated to
the proof of the joint distribution of the discrete marginals Gsn, n ≥ 0 (Theorems 5.3 and 5.5),
including the connection to a configuration model stated in Corollary 5.4. Section 5.4 is devoted
to the proofs of the construction of the R-graph Gs from randomly scaled trees glued to its
kernel and of its line-breaking construction (Theorem 5.6, Proposition 5.7 and Theorem 5.8, as
well as Proposition 5.2). Finally, in the appendix, Section 5.5, we recall the definitions and
some properties of various distributions (generalized Mittag-Leffler, Beta, Dirichlet and Poisson-
Dirichlet), as well as some classical urn model asymptotics, which are used at various points in
the paper.

5.2 The stable graphs

We begin in Section 5.2.1 with some necessary background on stable trees. In particular, we recall
Marchal’s algorithm for constructing the discrete ordered marginals, and use it to obtain the joint
distribution of various aspects (lengths, weights, local times) of the continuous marginals, which
we will need later on. In Section 5.2.2, we turn to the distribution of the limiting sequence of
metric spaces arising in Theorem 5.1 and in particular to the construction of the stable graphs.

Throughout this section, we fix α ∈ (1, 2).

5.2.1 Background on stable trees

Construction and properties

The α-stable tree was introduced by Duquesne and Le Gall [53], building on earlier work of
Le Gall and Le Jan [89]. Our presentation of this material owes much to that of Curien and
Kortchemski [43], which relies in turn on various key results from Miermont [95].

First, let ξ be a spectrally positive α-stable Lévy process with Laplace exponent

Eexp(−λξt) = exp(tλα), λ ≥ 0, t ≥ 0.
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Now consider a reflected version of this Lévy process, namely (ξt − inf0≤s≤t ξs, t ≥ 0). It is
standard that this process has an associated excursion theory, and that one can make sense
of an excursion conditioned to have length 1. We will write X for this excursion of length 1,
and observe that, thanks to the scaling property of ξ we may obtain the law of an excursion
conditioned to have length x > 0 via (x1/αX(t/x), 0 ≤ t ≤ x). See Chaumont [34] for more
details.

To a normalised excursion X we may associate an R-tree. In order to do this, we first derive
from X a height function H, defined as follows: for t ∈ [0, 1],

H(t) = lim
ε→0+

1

ε

∫ t

0
1{X(s)<infs≤r≤tX(r)+ε}ds.

The process H possesses a continuous modification such that H(0) = H(1) = 0 and H(t) > 0

for t ∈ (0, 1), which we consider in the sequel (see Duquesne and Le Gall [53] for more details).
We then obtain an R-tree in a standard way from H by first defining a pseudo-distance d on R+

via
d(s, t) = H(s) +H(t)− 2 inf

s∧t≤r≤s∨t
H(r).

Now define an equivalence relation ∼ by declaring s ∼ t if d(s, t) = 0. Then let T be the metric
space obtained by endowing [0, 1]/ ∼ with the image of d under the quotienting operation. Let
us write π : [0, 1]→ T for the projection map. We additionally endow T with the push-forward
of the Lebesgue measure on [0, 1] under π, which is denoted by µ. The point ρ := π(0) = π(1)

is naturally interpreted as a root for the tree. We will refer to the random variable (T , d, µ) as
the (standard) α-stable tree. In the usual notation, for points x, y ∈ T , we will write [[x, y]] for
the path between x and y in T , and ]]x, y[[ for [[x, y]] \ {x, y}. (These are isometric to closed and
open line-segments of length d(x, y), respectively.) We can use the root to endow the tree T with
a genealogical order : we say x � y if x ∈ [[ρ, y]]. We define the degree, deg(x), of a point x ∈ T
to be the number of connected components into which its removal splits the space. If there is
any potential ambiguity over which metric space we are working in, we will write degT (x). The
branchpoints are those with degree strictly greater than 2 and the leaves are those with degree
1; we write Br(T ) = {x ∈ T : deg(x) > 2} and Leaf(T ) = {x ∈ T : deg(x) = 1}. We observe
that the distance d induces a natural length measure on the tree T , for which we write λ.

We also define a partial order � on [0, 1] by declaring

s � t if s ≤ t and X(s−) ≤ inf
s≤r≤t

X(r). (5.12)

(We take as a convention that X(0−) = 0.) This partial order is compatible with the genealogical
order on T in the sense that for x, y ∈ T , x � y if and only if there exist s, t ∈ [0, 1] such that
x = π(s) and y = π(t) and s � t.

We will require various properties of T in the sequel. We will make use of the fact that the
root ρ acts as a uniform sample from the measure µ and so we will sometimes think of the tree
as unrooted and regenerate a root from µ when necessary. Another key feature of T is that
its branchpoints are all of infinite degree, almost surely. By Proposition 2 of Miermont [95],
x ∈ Br(T ) if and only if there exists a unique s ∈ [0, 1] such that x = π(s) and ∆X(s) =

X(s) − X(s−) > 0. For all other values r ∈ [0 , 1] such that π(r) = π(s) = x, we have
infs≤u≤rX(u) = X(r) ≥ X(s−). For such s associated to a branchpoint x = π(s), we will define
N(x) := ∆X(s). By Miermont’s equation [95, Eq. (1)], for all x ∈ Br(T ) this quantity may be
almost surely recovered as

N(x) = lim
ε→0+

1

ε
µ({y ∈ T : x ∈ [[ρ, y]] , d(x, y) < ε}),
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and so N(x) gives a renormalised notion of the degree of x. We will refer to this quantity as the
local time of x, since it plays that role with respect to H.

For any s, t ∈ [0, 1] such that π(s) ∈ Br(T ) and s � t, we also define the local time of π(s) to
the right of π(t) to be

N right(π(s), π(t)) = inf
s≤u≤t

X(u)−X(s−).

Then N right(π(s), π(t)) ∈ [0, N(π(s))] is a measure of how far through the descendants of π(s) we
are when we visit π(t). (Indeed, since π(s) ∈ Br(T ), if s � t and s � u with N right(π(s), π(t)) >

N right(π(s), π(u)) then necessarily t < u.) By Corollary 3.4 of [43], we can express X(t) as the
sum of the atoms of local time along the path from the root to π(t):

X(t) =
∑

0�s�t
N right(π(s), π(t)), (5.13)

almost surely for all t ∈ [0 , 1]. For any s � t, we define the local time along the path ]]π(s), π(t)[[

by

N( ]]π(s), π(t)[[ ) :=
∑

b∈Br(T )∩ ]]π(s),π(t)[[

N(b),

and the local time to the right along the path ]]π(s), π(t)[[ by

N right( ]]π(s), π(t)[[ ) :=
∑

b∈Br(T )∩ ]]π(s),π(t)[[

N right(b, π(t)) = X(t−)−X(s),

where we observe that all of these sums are over countable sets.

Marchal’s algorithm for ordered trees

Consider an infinite sample of leaves from (T , d, µ) obtained as the images of i.i.d. uniform random
variables U1, U2, . . . on [0, 1] under the quotienting. These leaves, which we label 1, 2, . . ., inherit
an order from [0, 1]. For n ∈ N, let T ord

n be an ordered leaf-labelled version of the subtree of T
spanned by the root and the first n leaves (the order being inherited from the leaves) and Tord

n

its combinatorial shape, also with leaf-labels. Formally,

Tord
n = shape(T ord

n )

where, for any compact rooted (say at ρ) real tree τ (possibly ordered), shape(τ) is the (possibly
ordered) rooted discrete tree (V,E) with no vertex of degree 2 except possibly the root, where

V = {ρ} ∪ {v ∈ τ\{ρ} : degτ (v) 6= 2} and E =
{
{u, v} : u, v ∈ V, degτ (w) = 2,

∀w ∈]]u, v[[ and ρ /∈]]u, v[[
}
. (5.14)

We define the shape of a discrete tree similarly. Note that all of the trees we shall consider have
a root of degree 1: they are planted.

For any n ≥ 1, we denote by An the set of planted ordered finite trees with n labelled leaves,
with labels from 1 to n, and no vertex of degree 2. The root is thought of as a leaf with label
0. In [53, Section 3], Duquesne and Le Gall show that for each tree T ∈ An with set of internal
vertices I(T ),

P
(
Tord
n = T

)
∝

∏
u∈I(T )

wdegT (u)−1

(degT (u)− 1)!
, (5.15)
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where the weights (wk, k ≥ 0) were defined in (5.6). In other words, Tord
n is distributed as a

planted version of a Galton-Watson tree with offspring distribution ηα as defined in Section 5.1.2
(below Corollary 5.4), conditioned on having n leaves uniformly labelled from 1 to n.

Building on this result, in [92] Marchal proposed a recursive construction of a sequence with
the same law as (Tord

n , n ≥ 1). (In fact, Marchal gave a construction of the non-ordered versions
of the trees Tord

n , n ≥ 1 but combined with [92, Section 2.3] we easily obtain an ordered version.)
For any n ≥ 1 and any T ∈ An, we construct randomly a tree in An+1 as follows.

(1) Assign to every edge of T a weight α−1 and every internal vertex u a weight degT (u)−1−α;
the other vertices have weight 0;

(2) Choose an edge/vertex with probability proportional to its weight and then

• if it is a vertex, choose a uniform corner around this vertex, attach a new edge-leaf in
this corner and give the leaf the label n+ 1,

• if it is an edge, create a new vertex which splits the edge into two edges, and attach
an edge-leaf with leaf labelled n+ 1 pointing to the left/right with probability 1/2.

If we start with the unique element of A1 and apply this procedure recursively, we obtain a
sequence of trees distributed as (Tord

n , n ≥ 1).

Asymptotic behaviour. Consider now the discrete trees as metric spaces, endowed with the
graph distance. Fix k and for each k ≤ n let Tord

k (n) be the subtree of Tord
n spanned by the k

first leaves and the root. Hence, Tord
k = shape(Tord

k (n)) but the distances in Tord
k (n) are inherited

from those in Tord
n . We may therefore view Tord

k (n) as a discrete tree having the same vertex-
and edge-sets as Tord

k , but where the edges now have lengths. Similarly for T ord
k . Again from

Marchal [92], we have
Tord
k (n)

n1−1/α

a.s.−→
n→∞

α · T ord
k , (5.16)

as n → ∞, where the convergence means that the rescaled lengths of the edges of Tord
k (n)

converge to the lengths, multiplied by α, of the corresponding edges in T ord
k . This convergence

of random finite-dimensional marginals can be improved when considering trees as metric spaces
(i.e. we forget the order) equipped with probability measures. Indeed, if Tn denotes the unordered
version of Tord

n , with leaves still labelled 0, 1, 2, . . . (0 is the root), µn the uniform probability
measure on these leaves, then we have that(

Tn
n1−1/α

, µn, 0, . . . , k

)
a.s.−→
n→∞

α · (T , µ, 0, . . . , k) (5.17)

for the (k + 1)-pointed Gromov-Hausdorff-Prokhorov topology on the set of measured (k + 1)-
pointed compact trees, for each integer k. (See e.g. [96, Section 6.4] for a definition of this
topology.) The convergence (5.17) was first proved in probability in [69, Corollary 24] and then
improved to an almost sure convergence in [42, Section 2.4].

Suppose now that Tord
k has edge-set E(Tord

k ), labelled arbitrarily as ei, 1 ≤ i ≤
∣∣E(Tord

k )
∣∣,

and internal vertices I(Tord
k ), labelled arbitrarily as vj , 1 ≤ j ≤

∣∣I(Tord
k )
∣∣. As discussed above,

for k ≤ n, the internal vertices I(Tord
k ) all have counterparts in Tord

k (n), which we will also call
vj , 1 ≤ j ≤

∣∣I(Tord
k )
∣∣. To each edge ei ∈ E(Tord

k ) there corresponds a path γi in Tord
k (n) whose

endpoints are elements of {vj , 1 ≤ j ≤ |I(Tord
k )|}∪{0, 1, . . . , k}. Write γ◦i for the same path with

its endpoints removed (γ◦i may be empty). Since Tord
k (n) ⊂ Tord

n , we refer to the corresponding
vertices and paths in Tord

n by the same names.
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Tord
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Tord
n (v1, 2)

Tord
n (v1, 3)

Figure 5.3 – Left: the tree Tord
n for n = 18 (leaf-labels 3, . . . , 18 are suppressed for purposes of

readability). Tord
2 (n) is emphasised in red and bold. The tree Tord

2 has a single internal vertex
called v1 and edges e1 = {v1, 1}, e2 = {v1, 2} and e3 = {v1, 0}. The corresponding paths in
Tord

2 (n) have lengths 4, 2 and 5 respectively. Middle: the subtrees Tord
n (e1), Tord

n (e2), Tord
n (e3)

and Tord
n (v1). Right: the subtrees Tord

n (v1, 1), Tord
n (v1, 2) and Tord

n (v1, 3).

We will now give names to certain important subtrees of Tord
n and refer the reader to Figure 5.3

for an illustration. For each vertex v ∈ V (Tord
n ), the unique directed path from v to 0 has a

first point int(v) of intersection with Tord
k (n). For 1 ≤ j ≤ |I(Tord

k )|, let Tord
n (vj) be the subtree

induced by the set of vertices {v : int(v) = vj} and rooted at vj . If int(v) /∈ {vj : 1 ≤ j ≤
|I(Tord

k )|} then int(v) belongs to γ◦i for some 1 ≤ i ≤ |E(Tord
k )|. Let Tord

n (ei) be the subtree of
Tord
n induced by the vertices {v ∈ V (Tord

n ) : int(v) ∈ γ◦i } ∪ γi and rooted at the endpoint of γi
closest to the root of Tord

n .
If degTord

k
(vj) = dj then Tord

n (vj) can be split up into separate subtrees descending from the
dj different corners of vj . We list these subtrees in clockwise order from the root as Tord

n (vj , `),
1 ≤ ` ≤ dj .

For each ei, 1 ≤ i ≤ |E(Tord
k )| then denote by

• Ln(ei) the length of γi in Tord
k (n),

• Mn(ei) the number of leaves in the subtree Tord
n (ei),

• Nn(ei) the number of edges of Tord
n (ei) adjacent to γi,

• N right
n (ei) the number of edges of Tord

n (ei) attached to the right of γi,

• Nn(ei, `) the degree −2 of the `th largest branchpoint along the path γi in Tord
n (ei), for

` ≥ 1, with ties broken arbitrarily,

• N right
n (ei, `) the degree to the right of the `th largest branchpoint along the path γi in

Tord
n (ei), for ` ≥ 1 (with the same labelling as in the previous point).

• Ln(ei, `) the distance from the `th largest branchpoint of γi to the root (endpoint nearest
0 in Tord

n ) of Tord
n (ei), ` ≥ 1, again with the same labelling.

Observe that Nn(ei) =
∑

`≥1Nn(ei, `) and N right
n (ei) =

∑
`≥1N

right
n (ei, `).

Similarly, for each vertex vj , 1 ≤ j ≤
∣∣I(Tord

n )
∣∣, denote by

• Nn(vj) the degree of vj in Tord
n (i.e. degTord

n
(vj)),
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• Nn(vj , `) the degree of vj in Tord
n in the `th corner counting clockwise from the root, for

1 ≤ ` ≤ degTord
k

(vj),

• Mn(vj) the number of leaves in Tord
n (vj),

• Mn(vj , `) the number of leaves in Tord
n (vj , `), for 1 ≤ ` ≤ degTord

k
(vj).

We use the same edge- and vertex-labels for the corresponding parts of T ord
k . Since T ord

k is
(an ordered version of) a subset of T , we have that ei corresponds to an open path ]]xi,1, xi,2[[

for some pair of points xi,1, xi,2 ∈ T such that xi,1 � xi,2. Let L(ei) = d(xi,1, xi,2) be the
length of this path. We will abuse notation somewhat by writing N(ei) and N right(ei) instead
of N( ]]xi,1, xi,2[[ ) and N right( ]]xi,1, xi,2[[ ) for the local time of the edge and the local time to the
right of the edge respectively. For ` ≥ 1, we will write N(ei, `) for the local time of the `th largest
branchpoint along ]]xi,1, xi,2[[ (with ties broken arbitrarily), N right(ei, `) for the local time to the
right at the same branchpoint, and L(ei, `) for the distance from that branchpoint to the lower
endpoint xi,1 of ei. Each vertex vj corresponds to some point of T , which by abuse of notation
we will also call vj . (Note that, of course, we must have {vj : 1 ≤ j ≤

∣∣I(Tord
k )
∣∣}∪{0, 1, . . . , k} =

{xi,p : 1 ≤ i ≤
∣∣E(Tord

k )
∣∣, p = 1, 2}.)

Let T (ei) be the subtree of T containing [[xi,1, xi,2]], formally defined by

T (ei) = {x ∈ T : [[ρ, x]] ∩ ]]xi,1, xi,2[[ 6= ∅, xi,2 /∈ [[ρ, x]]} ∪ {xi,1, xi,2}.

Let M(ei) = µ(T (ei)). Let T (vj) be the subtree of T attached to vj , namely

T (vj) = {x ∈ T : vj ∈ [[ρ, x]] , ]]vj , x[[ ∩ [[xi,1, xi,2]] = ∅ for all 1 ≤ i ≤
∣∣∣E(Tord

n )
∣∣∣}.

Let M(vj) = µ(T (vj)). As in the discrete case, we can split up T (vj) into subtrees sitting in the
degTord

k
(vj) corners of vj . We call these T (vj , `) for 1 ≤ ` ≤ degTord

k
(vj). Let

N(vj , `) = lim
ε→0+

1

ε
µ({y ∈ T (vj , `) : d(xj , y) < ε}).

Lemma 5.13. We have the almost sure joint convergence, for 1 ≤ i ≤
∣∣E(Tord

k )
∣∣ and ` ≥ 1,

Ln(ei)

n1−1/α
−→
n→∞

α · L(ei),
Mn(ei)

n
−→
n→∞

M(ei),

Nn(ei)

n1/α
−→
n→∞

N(ei),
N right
n (ei)

n1/α
−→
n→∞

N right(ei),

Nn(ei, `)

n1/α
−→
n→∞

N(ei, `),
N right
n (ei, `)

n1/α
−→
n→∞

N right(ei, `),

and for 1 ≤ j ≤
∣∣I(Tord

k )
∣∣, 1 ≤ ` ≤ degTord

k
(vj),

Mn(vj)

n
−→
n→∞

M(vj),

Nn(vj)

n1/α
−→
n→∞

N(vj),
Nn(vj , `)

n1/α
−→
n→∞

N(vj , `).

Proof. The convergence of the lengths is Marchal’s result (5.16). The convergence of the local
times is proved in Dieuleveut [48, Lemma 2.7 & Lemma 2.8]. Finally, the convergences of the
subtree masses are an immediate consequence of the strong law of large numbers. Note that
since we are dealing with a countable collection of random variables, these convergences indeed
hold simultaneously almost surely.
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Marginals of the stable tree

We now state explicitly the joint distributions of all of the limit quantities in Lemma 5.13.

Proposition 5.14. Conditionally on Tord
k with

∣∣E(Tord
k )
∣∣ = m and

∣∣I(Tord
k )
∣∣ = r, with

degTord
k

(vj) = dj for 1 ≤ j ≤ r, we have jointly

(M(e1), . . . ,M(em),M(v1), . . . ,M(vr))
(d)
= (D1, D2, . . . , Dm+r)

(N(e1), . . . , N(em), N(v1), . . . , N(vr))
(d)
= (D

1/α
1 R1, . . . , D

1/α
m+rRm+r)

α · (L(e1), . . . , L(em))
(d)
= (D

1−1/α
1 Rα−1

1 R̄1, D
1−1/α
2 Rα−1

2 R̄2, . . . , D
1−1/α
m Rα−1

m R̄m),

where the following elements are independent:

• (D1, . . . , Dm, Dm+1, . . . , Dm+r) ∼ Dir(1− 1/α, . . . , 1− 1/α, (d1 − 1− α)/α, . . . , (dr −
1− α)/α);

• R1, R2, . . . , Rm+r are mutually independent with R1, . . . , Rm ∼ ML(1/α, 1− 1/α) and
Rm+i ∼ ML(1/α, (di − 1− α)/α) for 1 ≤ i ≤ r;

• R̄1, R̄2, . . . , R̄m are i.i.d. ML(α− 1, α− 1).

Moreover, we have Rα−1
i R̄i ∼ ML(1− 1/α, 1− 1/α) for 1 ≤ i ≤ m.

The random variables N right(ei, `)/N(ei, `) and L(ei, `)/L(ei) for 1 ≤ i ≤ m, ` ≥ 1,
the random sequences (N(ei, `)/N(ei), ` ≥ 1) for 1 ≤ i ≤ m, and the random vectors
(N(vj , `)/N(vj), 1 ≤ ` ≤ dj) for 1 ≤ j ≤ r are mutually independent, and are also in-
dependent of N(ei), 1 ≤ i ≤ m and N(vj), 1 ≤ j ≤ r. Moreover, we have(

N(ei, `)

N(ei)
, ` ≥ 1

)
∼ PD(α− 1, α− 1), 1 ≤ i ≤ m,

N right(ei, `)

N(ei, `)
∼ U[0, 1], 1 ≤ i ≤ m, ` ≥ 1,

L(ei, `)

L(ei)
∼ U[0, 1], 1 ≤ i ≤ m, ` ≥ 1,

and (
N(vj , `)

N(vj)
, 1 ≤ ` ≤ dj

)
∼ Dir(1, 1, . . . , 1), 1 ≤ j ≤ r.

The distributional results for the masses, lengths and total local times may be read off
from [63], although the precise dependence between lengths and local times is left somewhat im-
plicit there. Related results appeared earlier in [70]. We give a complete proof of Proposition 5.14
via an urn model which we now introduce.

Suppose we have k colours such that each colour has three types: a, b and c. Let Xa
i (n),

Xb
i (n) and Xc

i (n) be the weights of the three types of colour i in the urn at step n, respectively,
for 1 ≤ i ≤ k. At each step we draw a colour with probability proportional to its weight in the
urn. If we pick the colour i type a, we add weight α − 1 to colour i type a, 2 − α to colour i
type b and α− 1 to colour i type c (recall that α ∈ (1, 2)). If we pick colour i type b, we add 1

to colour i type b and α− 1 to colour i type c. If we pick colour i type c, we simply add weight
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α to colour i type c. We start with

Xa
i (0) = γi, Xb

i (0) = 0, Xc
i (0) = 0, 1 ≤ i ≤ k.

Proposition 5.15. As n→∞, we have the following almost sure limits:

1

(α− 1)n1−1/α
(Xa

1 (n), . . . , Xa
k (n))→ (D

1−1/α
1 Rα−1

1 R̄1, . . . , D
1−1/α
k Rα−1

k R̄k)

1

n1/α
(Xb

1(n), . . . , Xb
k(n))→ (D

1/α
1 R1, . . . , D

1/α
k Rk)

1

αn
(Xc

1(n), . . . , Xc
k(n))→ (D1, D2, . . . , Dk),

where the sequences (D1, . . . , Dk), (R1, . . . , Rk) and (R̄1, . . . , R̄k) are independent; we have
(D1, . . . , Dk) ∼ Dir(γ1/α, . . . , γk/α); the random variables R1, . . . , Rk are mutually indepen-
dent with Ri ∼ ML(1/α, γi/α); and the random variables R̄1, . . . , R̄k are mutually indepen-
dent with R̄i ∼ ML(α− 1, γi).

The proof of Proposition 5.15 appears in Section 5.5.2.

Proof of Proposition 5.14. We make use of Marchal’s algorithm. Recall that we are given an
ordered tree Tord

k with k leaves labelled 1, 2, . . . , k, m edges and r internal vertices with degrees
d1, . . . , dr. Let us set

γ1 = · · · = γm = α− 1

and
γm+1 = d1 − 1− α, . . . , γm+r = dr − 1− α.

We then have
∑m+r

i=1 γi = αn− 1.
We now show that the the urn process from Proposition 5.15 naturally occurs within our tree

evolving according to Marchal’s algorithm. Colours 1, 2, . . . ,m represent the different edges of
Tord
k and colours m + 1, . . . ,m + r represent the different vertices. For edge ei of Tord

k , type a
corresponds to the weight of edges inserted along ei; type b corresponds to the weight at vertices
along ei and type c corresponds to the weight in vertices and edges in pendant subtrees hanging off
ei (excluding their roots along ei). SoXa

i (n) = (α−1)Ln(ei), Xb
i (n) = Nn(ei)+(1−α)(Ln(ei)−1)

and Xc(n) = αMn(ei)−Nn(ei). For vertex vj of Tord
k , types a and b together correspond to the

weight at vj and type c corresponds to the weight in edges and vertices in subtrees hanging from
vj . So Xa

m+j(n) + Xb
m+j(n) = Nn(vj) − 1 − α and Xc(n) = αMn(vj) −Nn(vj) + dj . Applying

Proposition 5.15 and Lemma 5.13 then yields the claimed distributions for the L(ei), N(ei),
M(ei), N(vj) and M(vj).

We now turn to Nn(ei, `), ` ≥ 1, the ordered numbers of edges attached to the branchpoints
along ei. Independently for 1 ≤ i ≤ m, let (Ci,`(n), ` ≥ 1) be a Chinese restaurant process with
β = θ = α − 1. This evolves in exactly the same way as Marchal’s algorithm adds new edges
along ei. In particular, we have

(Nn(ei, `), ` ≥ 1) = (C↓i,`(Nn(ei)), ` ≥ 1).

By again composing limits, it follows that(
N(ei, `)

N(ei)
, ` ≥ 1

)
∼ PD(α− 1, α− 1),
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independently for 1 ≤ i ≤ m and independently of everything else.
Let us now consider how the local time is distributed among the corners of the vertices vj .

This again follows from an urn argument: for the vertex vj which has degree dj , consider an
urn with dj colours, one corresponding to each corner, (Am+j,1(n), . . . Am+j,dj (n))n≥0. Start the
urn from a single ball of each colour. Then whenever we insert an edge into the corresponding
corner, we increase the number of positions into which we can insert new edges by 1. Hence, we
have precisely Pólya’s urn (see Section 5.5 for a definition) and so by Theorem 5.30,

1

n
(Am+j,1(n), . . . , Am+j,dj (n))→ (∆1, . . . ,∆dj )

almost surely, where (∆1, . . . ,∆d) ∼ Dir(1, 1, . . . , 1). We have

(Nn(vj , `), 1 ≤ ` ≤ dj) = (Am+j,`(Nn(vj))− 1, 1 ≤ ` ≤ dj)

and it follows that (
N(vj , `)

N(vj)
, 1 ≤ ` ≤ dj

)
∼ Dir(1, 1, . . . , 1),

independently for 1 ≤ j ≤ r and independently of everything else.
A similar argument works for the local time to the left and right of the `th largest vertex

along an edge ei: start a two-colour urn (Ai,`,1(n), Ai,`,2(n))n≥0 from one ball of each colour and
at each step add a single ball of the picked colour. Then, again by Theorem 5.30,

1

n
(Ai,1(n), Ai,2(n))→ (∆, 1−∆)

almost surely, where ∆ ∼ U[0, 1]. We get

N right
n (ei, `) = Ai,2(Nn(ei, `))− 1

and so it follows that
N right(ei, `)

N(ei, `)
∼ U[0, 1],

independently for 1 ≤ i ≤ m and ` ≥ 1.

Remark 5.16. Let N(T ) := N(e1) + · · · + N(em) + N(v1) + · · · + N(vr). Using Remark 5.33
below, we observe the following distributional relation: we have N(T ) ∼ ML(1/α, k − 1/α) and,
independently,(

N(e1)

N(T )
, . . . ,

N(em)

N(T )
,
N(v1)

N(T )
, . . . ,

N(vr)

N(T )

)
∼ Dir(α− 1, . . . , α− 1, d1 − 1− α, . . . , dr − 1− α).

5.2.2 Construction of the stable graphs

Construction from [38]. Returning now to the setting of our graphs, we wish to specify the
distribution of the limiting sequence Ci = (Ci, dCi , µCi), i ≥ 1 arising in Theorem 5.1. The
details of the following can be found in the paper [38]. Our graph notation was introduced in
Section 5.1.1 and the processes ξ,X,H were introduced in Section 5.2.1.

We define a real-valued process ξ̃ via a change of measure from the Lévy process ξ. To this
end, we observe first that

(
exp

(∫ t
0 sdξs − tα+1

(α+1)

)
, t ≥ 0

)
is a martingale. Now for each t ≥ 0

and any suitable test-function f : D([0, t],R)→ R, define ξ̃ by

Ef(ξ̃s, 0 ≤ s ≤ t) = Eexp

(∫ t

0
sdξs −

tα+1

α+ 1

)
f(ξs, 0 ≤ s ≤ t).
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Superimpose a Poisson point process of rate A−1
α (as defined in (5.2)) in the region {(t, y) ∈

R+ × R+ : y ≤ ξ̃t − inf0≤s≤t ξ̃s}. Then the limiting components Ci, i ≥ 1 are encoded by
the excursions of the reflected process (ξ̃t − inf0≤s≤t ξ̃s, t ≥ 0) above 0 and the Poisson points
falling under each such excursion. The total masses of the measures µC1(C1), µC2(C2), . . .

are given by the lengths of the excursions of ξ̃ above its running infimum. The surpluses
s(C1), s(C2), . . . are given by the the number of Poisson points falling under corresponding ex-
cursions. Then, the limiting components (C1,C2, . . .) are conditionally independent given the
sequences (µC1(C1), µC2(C2), . . .) and (s(C1), s(C2), . . .), with

(
Ci, dCi , µCi

) (d)
=
(
Gs(Ci), µCi(Ci)1−1/α · ds(Ci), µCi(Ci) · µs(Ci)

)
.

Construction of the connected α-stable graph with surplus s. For s ≥ 0, it remains
to describe the connected stable graph, Gs. First sample excursions Xs and Hs with joint law
specified by

Ef(Xs(t), Hs(t), 0 ≤ t ≤ 1) =
E
(∫ 1

0 X(u)du
)s
f(X(t), H(t), 0 ≤ t ≤ 1)

E
(∫ 1

0 X(u)du
)s .

Let T s be the R-tree encoded by Hs and let πs : [0, 1]→ T s be its canonical projection. If s = 0,

then Xs is a standard stable excursion and Hs is its corresponding height process i.e. T 0 (d)
= T .

In this case, we simply set G0 = T 0. If, on the other hand, s ≥ 1, conditionally on Xs and Hs,
sample conditionally independent points V s

1 , V
s

2 , . . . , V
s
s from [0, 1], each having density

Xs(u)∫ 1
0 X

s(t)dt
, u ∈ [0, 1].

Then, for 1 ≤ k ≤ s, let Y s
k be uniformly distributed on the interval [0 , Xs(V s

k )], independently
for all k, and let Bs

k = inf{t ≥ V s
k : Xs(t) = Y s

k }. We obtain Gs from T s by identifying the pairs
of points (πs(V s

k ), πs(Bs
k)) for 1 ≤ k ≤ s. (This is achieved formally by a further straightforward

quotienting operation which we do not detail here.)
In fact, using the notation of Section 5.2.1 for the tree T s which is absolutely continuous with

respect to T , this last operation corresponds to identifying the leaf πs(V s
k ) with a branchpoint on

its ancestral line ]]ρ, πs(V s
k )[[ , independently for 1 ≤ k ≤ s. As a consequence of the discussion

in Section 5.2.1, the point πs(Bk) is such that

πs(Bs
k) = πs(Ask), where Ask = sup

{
t ≤ V s

k : Xs(t) ≤ inf{Xs(u) : t ≤ u ≤ Y s
k }
}
.

Along with equation (5.13), this ensures that each branchpoint b ∈ ]]ρ, πs(V s
k )[[ is chosen with

probability equal to

N right(b, πs(V s
k ))

N right(
]]
ρ, πs(V s

k )
[[

)
=
N right(b, πs(V s

k ))

X(V s
k )

,

as claimed in the introduction. We view Gs as a measured metric space by endowing it with the
image of the Lebesgue measure on [0, 1] by the projection πs.

Continuous and discrete marginals. Recall the definition for any n ≥ 0 of the continuous
marginals Gsn from the introduction: Gsn is the union of the kernel Ks and the paths from n leaves
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to the root, where the leaves are taken i.i.d under the measure carried by Gs. Indeed, the kernel
is the image of the subtree of T s spanned by the s selected leaves after the gluing procedure.

Let (Ui)i≥1 be a sequence of i.i.d. U[0, 1] random variables independent of Xs, and let n ≥ 0.
In the construction described above, let T ss,n be the ordered subtree of T s spanned by the root
and the leaves corresponding to the real numbers V s

1 , . . . , V
s
s , U1, . . . , Un, and T s,ord

s,n its ordered
version. Since πs(U1), . . . , πs(Un) are (by definition) distributed according to the probability
measure carried by Gs, the image of T ss,n after the gluing procedure is a version of the continuous
marginal Gsn (and the discrete marginal Gsn is then the combinatorial shape of the continuous
marginal Gsn).

For future purposes, we also define Ts,ord
s,n the discrete counterpart of T s,ord

s,n . By convention,
we consider that the s first leaves are unlabelled and the n leaves corresponding to U1, . . . , Un
inherit the label of their uniform variable.

Unbiasing. Let (X;V1, V2, . . . , Vs, Y1, . . . , Ys) be the unbiased excursion endowed with

• V1, . . . , Vs i.i.d. U[0, 1] random variables

• Y1, . . . , Ys which are conditionally independent given (X;V1, V2, . . . Vs), with Yk ∼
U[0, X(Vk)].

We call (X;V1, V2, . . . Vs, Y1, . . . , Ys) the unbiased counterpart of (Xs;V s
1 , . . . , V

s
s , Y

s
1 , . . . Y

s
s ).

Any random object defined as a measurable function f(Xs; (V s
k )1≤k≤s, (Y

s
k )1≤k≤s, (Ui)i≥1) then

also has an unbiased counterpart, f(X; (Vk)1≤k≤s, (Yk)1≤k≤s, (Ui)i≥1) and vice versa. Using the
fact that, conditionally on (X;V1, V2, . . . Vs), the random variables Y1, . . . , Ys have the same
distribution as Y s

1 , . . . , Y
s
s conditionally on (Xs;V s

1 , V
s

2 , . . . V
s
s ), we observe that

Ef(Xs; (V s
k )1≤k≤s, (Y

s
k )1≤k≤s, (Ui)i≥1)

=
E
∫

[0,1]s dv1 . . . dvs
X(v1)...X(vs)

(
∫ 1
0 X(t)dt)

s

∫ X(v1)
0

dy1
X(v1) . . .

∫ X(vs)
0

dys
X(vs)

f(X; (vk), (yk), (Ui))
(∫ 1

0 X(t)dt
)s

E
(∫ 1

0 X(t)dt
)s

=
Ef(X; (Vk)1≤k≤s, (Yk)1≤k≤s, (Ui)i≥1)X(V1)X(V2) . . . X(Vs)

EX(V1)X(V2) . . . X(Vs)
. (5.18)

In particular, this allows us to compute quantities in the unbiased setting in order to understand
the biased one. We define Ĝs to be the unbiased counterpart of Gs and Ĝsn to be the unbiased
counterpart of Gsn and Ĝsn to be the unbiased counterpart of Gsn. Similarly, T̂ s,ord

s,n is the unbiased
counterpart of T s,ord

s,n which, modulo the labelling of the leaves, has the same distribution as
T ord
s+n.

5.3 Distribution of the marginals Gsn

Let s ≥ 0. The goal of this section is to identify the joint distribution of the marginals Gsn, for
n ≥ 0 (and for n ≥ −1 if s ≥ 2). By definition, for any n ≥ 0, the random graph Gsn is an
element of Ms,n, the set of connected multigraphs with surplus s, with n + 1 labelled leaves,
unlabelled internal vertices and no vertex of degree 2. To perform our calculations, it will be
convenient to consider versions of this multigraph with some additional structure, namely cyclic
orderings of the half-edges around each vertex. We denote by Mord

s,n the set of such graphs and
we emphasise here that the orderings around different vertices need not be compatible with one
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another: the elements of Mord
s,n are not necessarily planar. The advantage is that this additional

structure breaks the symmetries present in elements of Ms,n. (For n = −1 the cyclic ordering is
insufficient to break all the symmetries and we will rather label the internal vertices.)

We will begin in Section 5.3.1 by computing the number of possible cyclic orderings of the
half-edges around the different vertices of a graph G ∈ Ms,n. Then, in Section 5.3.2, we will
describe the elements of Mord

s,n as ordered trees with n labelled and s unlabelled leaves together
with a “gluing plan”, that specifies how to glue each unlabelled leaf “to the right" of the ancestral
path of that leaf. This description corresponds to the one we have for Gsn, and we compute in
Section 5.3.3 the distribution of the tree and the corresponding gluing plan, which then yields
the distribution of Gsn claimed in Theorem 5.3. In Section 5.3.4, we show that the sequence
(Gsn)n≥0 evolves according to Marchal’s algorithm (Theorem 5.5). In Section 5.3.5, we extend
this to (Gsn)n≥−1 for s ≥ 2. Finally, Section 5.3.6 is devoted to the proof of Corollary 5.4, which
identifies the distribution of Gsn with that of a specific configuration model with i.i.d. random
degrees.

We recall the following notation from the introduction. For each G = (V (G), E(G)) ∈Ms,n,
we denote I(G) ⊂ V (G) the set of internal vertices of G (vertices of degree 3 or more), deg(v) =

degG(v) the degree of a vertex v ∈ V (G), sl(G) the number of self-loops, mult(e) the multiplicity
of the element e ∈ supp(E) and Sym(G) the set of permutations of vertices of G that are the
identity on the leaves and that preserve the adjacency relations (with multiplicity).

5.3.1 Cyclic orderings of half-edges

Let n ≥ 0. In this section we compute the number of possible cyclic orderings of the half-edges
around each vertex of G, for each G ∈Ms,n (we emphasise that Lemma 5.17 is false when n = −1

and s ≥ 2). Let ψ : Mord
s,n →Ms,n be the map that forgets the cyclic ordering around the vertices.

Lemma 5.17. For each G ∈Ms,n,

∣∣ψ−1(G)
∣∣ =

∏
v∈I(G)(deg(v)− 1)!

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

.

Proof. It is convenient to consider versions of G with labelled internal vertices. The number of
possible labellings is

|I(G)|!
|Sym(G)| . (5.19)

Indeed, let G̃ denote an arbitrarily labelled version of G. The symmetric group S|I(G)| acts on
the set of multigraphs with |I(G)| internal labels by permuting those labels. The number of
labellings we seek is thus the number of elements of the orbit of G̃ under this action. This is just
|I(G)|! divided by the cardinality of the stabilizer of G̃. Any permutation σ ∈ S|I(G)| that fixes
G̃ corresponds to a permutation τ ∈ Sym(G), hence the result.

Now, to compute
∣∣ψ−1(G)

∣∣, we first label everything then forget the labels we do not need.

• Consider a version of G with labelled internal vertices: from the preceding paragraph, there
are |I(G)|!

|Sym(G)| possible labellings.

• For each e = {u, v} ∈ supp(E(G)), in order to distinguish between the mult(e) edges
joining u and v, number them from 1 to mult(e).

• Give every self-loop an orientation.
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• Endow the multigraph with a cyclic ordering around each vertex. For each v ∈ I(G)

we have (deg(v) − 1)! possibilities for an ordering of the half-edges adjacent to v. (The
half-edges are distinguishable because the self-loops are oriented.)

• Forget the orientation on the self-loops. This transformation is 2sl(G)-to-1 since with the
ordering around the vertices, every orientation is distinguishable.

• Forget the labelling of the edges. This transformation is
(∏

e∈supp(E(G)) mult(e)!
)
-to-1.

• Forget the labelling of the internal vertices. With the cyclic ordering around the vertices
every vertex is distinguishable, and so this map is |I(G)|!-to-1.

(We emphasise here the importance of the fact that our multigraphs are planted in distinguishing
edges and vertices.) We obtain a multigraph in Mord

s,n whose image by ψ is G. By the previous
considerations, the number of such multigraphs is indeed given by the claimed formula.

5.3.2 Ordered multigraphs and the depth-first tree

We still consider integers n ≥ 0.

Ordered trees with paired leaves. Let As,n be the set of planted ordered trees with no
vertices of degree 2 that have s unlabelled leaves and n labelled leaves, with labels from 1 to n.
Let Apair

s,n be the set of ordered trees with no vertices of degree 2 that have n labelled uncoloured
leaves, s red leaves labelled 1 to s in clockwise order from the root, and s blue leaves also labelled
from 1 to s. We think of the red and blue leaves labelled i as forming a pair, and impose the
condition that the blue leaf labelled i must lie to the right of the ancestral line of the red leaf
labelled i, for 1 ≤ i ≤ s.

We first describe how every ordered multigraph G ∈Mord
s,n is equivalent to an element of Apair

s,n .
We define two natural maps on Apair

s,n . Let

Glue : Apair
s,n →Mord

s,n

be the map that, for each red leaf i identifies i with its blue pair and then contracts the resulting
path containing a vertex of degree 2 into a single edge. Let

Erase : Apair
s,n → As,n

be the map that erases the blue leaves and their adjacent edges, then contracts any path of
degree 2 vertices into a single edge, and finally forgets the labelling and colour of the red leaves.

Reverse construction: the depth-first tree. Let G ∈ Mord
s,n . We imagine that each edge

of G is made up of two half-edges, one attached to each end-point. We say that two half-edges
are adjacent if they have a common end-point. We describe a procedure that explores all the
half-edges of the graph in a deterministic manner and disconnects exactly s edges in order to
transform G into a tree. At each step i of the algorithm, we will have an ordered stack of active
half-edges Ai and a current surplus si. We write h0 for the unique half-edge connected to the
leaf with label 0.

Initialization A0 = (h0), s0 = 0.
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Figure 5.4 – The operations Glue and Erase applied to a tree T ′. Here, T ′ is the depth-first
tree of G, and T is the base tree.

Step i (0 ≤ i ≤ |E(G)| − 1): Let hi be the half-edge at the top of the stack Ai. Let ĥi
be the half-edge to which it is attached. If ĥi /∈ Ai, remove hi from the stack
and put the half-edges adjacent to ĥi on the top of the stack, in clockwise order
top to bottom. If ĥi ∈ Ai, first increment si, then remove both hi and ĥi from
the stack, disconnect them, attach a red leaf labelled si to hi and attach a blue
leaf labelled si to ĥi.

It is straightforward to check that this algorithm produces a tree in Apair
s,n , which we call the

depth-first tree, and denote by Dep(G). (Note that this is a variant of the notion of depth-first
tree introduced in [5].) We have Dep(G) = G if and only if G is a tree i.e. s = 0. The following
lemma is then straightforward.

Lemma 5.18. The maps Glue : Apair
s,n →Mord

s,n and Dep : Mord
s,n → Apair

s,n are reciprocal bijections.

For a multigraph G, call Erase(Dep(G)) the base tree.

Gluing plans. Consider T ∈ As,n. We now aim to describe the set Erase−1 ({T}). This is the
set of possible depth-first trees T ′ obtainable from a fixed base tree T . As usual, we write I(T )

for the internal vertices of T and E(T ) for its edges. A vertex v ∈ I(T ) of degree d = degT (v)

possesses d corners, which we call cv,1, . . . , cv,d in clockwise order from the root. We write C(T )

for the set of corners of T . The ancestral path of a vertex is its unique path to the root. For
the kth unlabelled leaf of T in clockwise order, let A(k) be the set of edges and corners that lie
immediately to the right of its ancestral path, for 1 ≤ k ≤ s.

Now let T ′ ∈ Erase−1 ({T}). The internal vertices of T each have a counterpart in T ′, for
which we use the same name. The red leaves of T ′ correspond to the unlabelled leaves of T . A
blue leaf is attached by its incident edge either into one of the corners of an internal vertex of
T , or to an internal vertex of T ′ which disappears when the blue leaves are removed and paths
of internal vertices of degree 2 are contracted into a single edge. For each e ∈ E(T ) let ae be
the number of additional vertices along the path in T ′ which get contracted to yield the edge e
by Erase. If ae 6= 0, we will list these additional vertices as ve,1, . . . , ve,ae in decreasing order of
distance from the root.

For each v ∈ I(T ), let Sv,` be the set of labels of blue leaves attached to corner cv,`, for
1 ≤ ` ≤ degT (v). (Any or all of these sets may be empty; in particular, Sv,1 is always empty
because a blue leaf must lie to the right of the ancestral line of the corresponding red leaf.) If
Sv,` is non-empty, let σv,` be the permutation of its elements which gives the clockwise ordering
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(b) On an edge

Figure 5.5 – Definition of a gluing plan

of the blue leaves in corner cv,`; if it is empty, let σv,` be the unique permutation of the empty
set. For each e ∈ E(T ) such that ae 6= 0, we let Se,i be the set of labels of blue leaves attached
to vertex ve,i in T ′, for 1 ≤ i ≤ ae. These sets can not be empty. Let σe,i be the permutation of
the elements of Se,i giving the clockwise ordering of the blue leaves attached to ve,i (note that
these are necessarily attached to the right of e). Observe that the collection of sets

{Sv,` : v ∈ I(T ), 1 ≤ ` ≤ degT (v), Sv,` 6= ∅} ∪ {Se,i : e ∈ E(T ), 1 ≤ i ≤ ae}

partitions {1, 2, . . . , s}. This induces a gluing function g : {1, 2, . . . , s} → (I(T ) ∪ E(T ))× N as
follows. For 1 ≤ k ≤ s, if k ∈ Sv,` set g(k) = (v, `); if k ∈ Se,i set g(k) = (e, i).

See Figure 5.5 for an illustration. This leads us to the formal definition of a gluing plan.

Definition 5.19. We say that ∆ =
((

(Sv,`, σv,`)1≤`≤degT (v)

)
v∈I(T )

, ((Se,i, σe,i)1≤i≤ae)e∈E(T )

)
is

a gluing plan for T if the following properties are satisfied.

(i) For all v ∈ I(T ) and all 1 ≤ ` ≤ degT (v), we have Sv,` ⊆ {1, 2, . . . , s} and σv,` is a
permutation of Sv,`.

(ii) For all e ∈ E and all 1 ≤ i ≤ ae, the set Se,i ⊆ {1, 2, . . . , s} is non-empty and σe,i is a
permutation of Se,i.

(iii) The sets {Sv,` : v ∈ I(T ), 1 ≤ ` ≤ degT (v), Sv,i 6= ∅} and {Se,i : e ∈ E(T ), 1 ≤ i ≤ ae} par-
tition {1, 2, . . . , s}.

(iv) The induced gluing function g : {1, 2, . . . , s} → (I(T )∪E(T ))×N is such that if g(k) = (v, `)

then cv,` ∈ A(k) and if g(k) = (e, i) then e ∈ A(k), for all 1 ≤ k ≤ s.

It is straightforward to see that we can completely encode a tree T ′ ∈ Erase−1({T}) by its
gluing plan, and that conversely, every gluing plan for T encodes a tree T ′ ∈ Erase−1({T}).

Lemma 5.20.

Mord
s,n ' Apair

s,n ' {(T,∆) | T ∈ As,n and ∆ is a gluing plan for T} .

Suppose T ∈ As,n and that

∆ =
((

(Sv,`, σv,`)1≤`≤degT (v)

)
v∈I(T )

, ((Se,i, σe,i)1≤i≤ae)e∈E(T )

)
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is a gluing plan for the base tree T . We let kv,` = |Sv,`| be the number of blue leaves attached
into corner cv,` and kv =

∑degT (v)
`=1 kv,` be the total number of blue leaves attached to v. We

let ke,i = |Se,i| be the number of blue leaves attached to the ith vertex inserted along e and let
ke =

∑ae
i=1 ke,i be the total number of blue leaves attached to vertices along e. We call the family

of numbers (
(kv, (kv,`)1≤`≤degT (v))v∈I(T ), (ke, ae, (ke,i)1≤i≤ae)e∈E(T )

)
the type of the gluing plan ∆.

Remark 5.21. Suppose that G ∈ Mord
s,n corresponds to (T,∆). The degrees in G depend only

on T and the type of the gluing plan ∆. For an internal vertex v of G that was already present
in I(T ), its degree in G is degG(v) = degT (v) + kv. The internal vertices of G that do not
correspond to internal vertices of T are the ones that were created along the edges of T during
the gluing procedure. For each e ∈ E(T ), there are ae newly-created vertices along the edge e,
having degrees 2 + ke,1, 2 + ke,2, . . . , 2 + ke,ae.

5.3.3 The distribution of Gsn

The goal of this section is to prove Theorem 5.3 for n ≥ 0, which states that for every connected
multigraph G ∈Ms,n,

P (Gsn = G) ∝
∏
v∈I(G)wdeg(v)−1

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

,

where the weights (wk)k≥0 are defined in (5.6).
Recall the construction of the random graph Gs using a tilted excursion and biased chosen

points (Xs;V s
1 , . . . , V

s
s ) from Section 5.2.2. Recall also the definitions of T s,ord

s,n (and its discrete
version Ts,ord

s,n ) and Gss,n (and its discrete version Gsn), using an additional sequence of i.i.d. uniform
random variables (Ui)i≥1. In order to apply the results of the previous section, we want to work
with ordered versions of our graphs. In particular, we will get an ordered version Gs,ord

n of Gsn by
applying a gluing plan to the base tree Ts,ord

s,n . The change of measure (5.18) allows us to make
calculations using the unbiased excursion with uniform points (X;V1, . . . , Vs, U1, . . . , Un). So we
will define and work instead with an unbiased version Ĝs,ord

n , derived from the unbiased version
T̂s,ord
s,n of Ts,ord

s,n .

Construction of Ĝs,ord
n . We define Ĝs,ord

n via a random gluing plan ∆ for T̂s,ord
s,n . Conditionally

on T̂s,ord
s,n = T ∈ Ts,n, let

W (T ) := {(v, `) : v ∈ I(T ), 1 ≤ ` ≤ degT (v)} ∪ {(e, j) : e ∈ E(T ), j ≥ 1} ⊂ (I(T ) ∪ E(T ))× N.

This indexes all the atoms of local time in the corners (as usual, ordered clockwise around each
internal vertex) and along the edges (ordered by decreasing local time in this instance) of the
ordered tree T s,ord

s,n . We will often abuse notation and think of the elements ofW (T ) as the atoms
themselves. In fact, the tree T s,ord

s,n has, up to the labelling of the leaves, the same distribution as
T ord
s+n, so using the discussion just before Lemma 5.13, we can decompose the whole (unbiased)

stable tree as

T ord
s,n ∪

⋃
w∈W (T )

T (w).
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In order to define our gluing plan, we need to be a little careful about labelling. For 1 ≤ k ≤ s, let
lk ∈ {1, 2, . . . , s} be the position of Vk in the increasing ordering of V1, . . . , Vs i.e. lk = #{1 ≤ j ≤
s : Vj ≤ Vk}. This gives the relative planar position of the (unlabelled) leaf in T corresponding
to Vk. Almost surely, the value Bk = inf{t ≥ Vk : X(t) = Yk} is such that there exists an element
wk ∈W (T ) along the ancestral line of lk, such for ε small enough, the canonical projection of an
ε-neighbourhood around Bk lies completely within some subtree hanging off T ord

s,n i.e.

π ((Bk − ε , Bk + ε)) ⊂ T (wk).

For 1 ≤ k ≤ s, for the jth largest atom of local time along an edge e ∈ A(lk) and every
corner (v, `) ∈ A(lk) on the right of the ancestral path of the root to lk, conditionally on
(X;V1, V2, . . . Vs, U1, U2, . . . Un) we have

wk =

(v, `) with probability N(v,`)
X(Vk) , for v ∈ I(T ), 1 ≤ ` ≤ degT (v),

(e, j) with probability Nright(e,j)
X(Vk) , for e ∈ E(T ), j ≥ 1,

independently for all k. For each edge e ∈ E(T ), let ae be the number of distinct atoms of local
time which appear among w1, . . . , ws. If ae ≥ 1, we denote by j1, j2, . . . jae the values in the set
{j ≥ 1 : (e, j) ∈ {w1, . . . , ws}} (that is, the indices of the atoms along e that receive at least one
gluing) listed now in decreasing order of height i.e. such that L(e, j1) > L(e, j2) > · · · > L(e, jae).
The probability that for any fixed set {j1, . . . , jae} of distinct indices we have L(e, j1) > L(e, j2) >

· · · > L(e, jae) is 1/ae!, since the random variables L(e, j1), . . . , L(e, jae) are exchangeable and
distinct with probability 1, by Proposition 5.14. Moreover, again by Proposition 5.14, these
random variables are independent of the local times. For 1 ≤ k ≤ s, let

g(lk) =

{
(v, `) if wk = (v, `) for some v ∈ I(T ) and some 1 ≤ ` ≤ degT (v),

(e, i) if wk = (e, ji) for some e ∈ E(T ) and some 1 ≤ i ≤ ae.

This is the required gluing function for T . We now derive the full gluing plan. For e ∈ E(T )

such that ae ≥ 1 and 1 ≤ i ≤ ae, let Se,i = g−1({(e, i)}) be the set of leaves mapped to the ith
atom in decreasing order of height along the edge e. Define a permutation σe,i of Se,i by

σe,i(lk) = #{1 ≤ j ≤ s : lj ∈ Se,i, Yj ≥ Yk}.

Similarly, for any (v, `) ∈ C(T ), we define Sv,` = g−1({(v, `)}) and a permutation σv,` of Sv,` by

σv,`(lk) = #{1 ≤ j ≤ s : lj ∈ Sv,`, Yj ≥ Yk}.

Since Y1, . . . , Yk are conditionally independent given (X;V1, . . . , Vs, U1, . . . , Un), we see that the
permutations are conditionally independent. Conditionally on corresponding to the same atom
of local time, the relative ordering of the associated Yk’s is uniform, so that the permutations
are all uniform on their label-sets. By construction,

∆ =
((

(Sv,`, σv,`)1≤`≤degT (v)

)
v∈I(T )

, ((Se,i, σe,i)1≤i≤ae)e∈E(T )

)
is a gluing plan for T . We call Ĝs,ord

n the corresponding (random) multigraph in Mord
s,n , obtained

via the bijection of Lemma 5.20.
For n ≥ 1, let Nn, 6= = {(j1, . . . , jn) ∈ Nn : j1, j2, . . . , jn are distinct}.

182



Proposition 5.22. Fix T ∈ As,n and suppose that G ∈Mord
s,n is obtained from T by a gluing

plan ∆. Conditionally on (X;V1, . . . , Vs, U1, . . . , Un) such that T̂s,ord
s,n = T , the probability

that Ĝs,ord
n is equal to G depends only on the type of the gluing plan ∆. Indeed, for any gluing

plan of type ((
kv, (kv,`)1≤`≤degT (v)

)
v∈V (T )

, (ke, ae, (ke,i)1≤i≤ae)e∈E(T )

)
,

this conditional probability is

1

X(V1)X(V2) . . . X(Vs)

 ∏
v∈I(T )

degT (v)∏
`=1

N(v, `)kv,`

kv,`!


·

 ∏
e∈E(T )

∑
(j1,...,jae )∈Nae,6=

1

ae!

ae∏
i=1

N right(e, ji)
ke,i

ke,i!

 . (5.20)

Proof. We reason conditionally on (X;V1, . . . , Vs, U1, . . . , Un). Observe that the tree T̂s,ord
s,n and

random variables
(
N right(e, j) : e ∈ E(T ), j ≥ 1

)
and (N(v, `) : v ∈ I(T ), 1 ≤ ` ≤ degT (v)) are

measurable functions of these quantities, as are the relative orderings of the atoms of local time
along an edge. The remaining randomness lies in the random variables Y1, . . . , Ys. Consider first
a vertex v ∈ I(T ) and 1 ≤ ` ≤ degT (v). The probability that the leaves among l1, . . . , ls with
indices in Sv,` (where |Sv,`| = kv,`) are glued into corner cv,` is

N(v, `)kv,`∏
lj∈Sv,` X(Vj)

.

Now consider an edge e ∈ E(T ) and fixed ae ≥ 1. The probability that the leaves among l1, . . . , ls
with indices in the sets Se,1, . . . , Se,ae (with |Se,i| = ke,i) are grouped together in the gluing, in
that top-to-bottom order, is given by summing over (j1, . . . , jae) ∈ Nae, 6=, corresponding to
different ordered collections of atoms of local time along the edge e, and multiplying by the
probability 1/ae! that this vector is such that L(e, j1) > L(e, j2) > · · · > L(e, jae):∑

(j1,...,jae )∈Nae,6=

1

ae!

ae∏
i=1

N right(e, ji)
ke,i∏

lj∈Se,i X(Vj)
.

The corners and edges all behave independently, and so multiplying everything together, we ob-
tain that the probability of seeing the particular sets ((Sv,`)1≤`≤degT (v))v∈I(T ), ((Se,i)1≤i≤ae)e∈E(T )

in the random gluing plan is

1

X(V1)X(V2) . . . X(Vs)
·

 ∏
v∈I(T )

degT (v)∏
`=1

N(v, `)kv,`

·
 ∏
e∈E(T )

∑
(j1,...,jae )∈Nae,6=

1

ae!

ae∏
i=1

N right(e, ji)
ke,i

 .

(5.21)
Since the permutations (σv,`)v∈I(T ),1≤`≤degT (v) and (σe,i)e∈E(T ),1≤i≤ae are uniform and indepen-
dent given the sets ((Sv,`)1≤`≤degT (v))v∈I(T ) and ((Se,`)1≤`≤ae)e∈E(T ), we see that each particular
collection of permutations arises with conditional probability ∏

v∈I(T )

degT (v)∏
`=1

1

kv,`!

 ·
 ∏
e∈E(T )

1

ke,1! . . . ke,ae !

 .

Multiplying (5.21) by this quantity gives the desired result.
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Recall that Ĝs,ord
n is an ordered version of Ĝsn. We denote by Gs,ord

n the corresponding ordered
version in the s-biased case.

The distribution of Gs,ord
n . We will show that for all ordered multigraph G ∈Mord

s,n

P
(
Gs,ord
n = G

)
∝

∏
v∈I(G)

wdegG(v)−1

(degG(v)− 1)!
. (5.22)

Fix G ∈ Mord
s,n . As previously mentioned, the only way to obtain G by gluing the s unlabelled

leaves of a tree T ∈ As,n onto their ancestral paths is that the tree T is the base-tree of G, i.e.
that T = Erase(Dep(G)). Let Cs := E [X(V1) . . . X(Vs)]

−1. Then using the change of measure
formula (5.18), we have

P
(
Gs,ord
n = G

)
= Cs · E

[
1{

Ĝs,ordn =G
}X(V1)X(V2) . . . X(Vs)

]
= Cs · P

(
T̂s,ord
s,n = T

)
E
[
1{

Ĝs,ordn =G
}X(V1)X(V2) . . . X(Vs)

∣∣∣∣ T̂s,ord
s,n = T

]
.

(5.23)

Observe here again that, apart from the labels on the leaves, the tree T̂s,ord
s,n has exactly the same

distribution as Tord
s+n defined at the beginning of Section 5.2.1. So by (5.15), we have

P
(
T̂s,ord
s,n = T

)
∝

∏
v∈I(T )

wdegT (v)−1

(degT (v)− 1)!
. (5.24)

We then calculate
E
[
1{

Ĝs,ordn =G
}X(V1)X(V2) . . . X(Vs)

∣∣∣∣ T̂s,ord
s,n = T

]
by taking expectations in the formula of Proposition 5.22 conditionally on the event {T̂s,ord

s,n = T}.
Recall that we fixed T = Erase(Dep(G)). Using Proposition 5.14 and Remark 5.16, we know
explicitly the (conditional) distributions of each of the terms in (5.20). Using the independence
stated there, we get

E
[
1{

Ĝs,ordn =G
}X(V1)X(V2) . . . X(Vs)

∣∣∣∣ T̂s,ord
s,n = T

]

= E

 ∏
v∈I(T )

degT (v)∏
`=1

N(v, `)kv,`

kv,`!

 ·
 ∏
e∈E(T )

∑
(j1,...,jae )∈Nae,6=

1

ae!

ae∏
i=1

N right(e, ji)
ke,i

ke,i!


= EN(T )sE

∏
v∈I(T )

(
N(v)

N(T )

)kv ∏
e∈E(T )

(
N(e)

N(T )

)ke ∏
v∈I(T )

E
degT (v)∏
`=1

1

kv,`!

(
N(v, `)

N(v)

)kv,`

×
∏

e∈E(T )

E
∑

(j1,...,jae )∈Nae,6=

1

ae!

ae∏
i=1

(
N right(e, ji)

N(e)

)ke,i 1

ke,i!

We now compute the different terms in this product separately.
Using Remark 5.16, we have

N(T ) = N(e1) +N(e2) + . . . N(e|E(T )|) +N(v1) + . . . N(v|I(T )|) ∼ ML (1/α;n+ s− 1/α) ,

so we get

E [N(T )s] =
Γ(n+ s− 1/α)Γ((n+ s)α+ s− 1)

Γ((n+ s)α− 1)Γ(n+ s+ (s− 1)/α)
.
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Using Remark 5.16 again,(
N(e1)

N(T )
, . . . ,

N(e|E(T )|)

N(T )
,
N(v1)

N(T )
, . . . ,

N(v|I(T )|)

N(T )

)
∼ Dir(α−1, . . . , α−1, d1−1−α, . . . , dr−1−α).

Note that |I(T )| = |E(T )| − n− s and
∑

v∈I(T ) degT (v) = 2|E(T )| − n− s− 1, which yield that

(α− 1)|E(T )|+
∑

v∈I(T )

(degT (v)− 1− α) = (n+ s)α− 1.

So (5.35) gives

E

 ∏
v∈I(T )

(
N(v)

N(T )

)kv ∏
e∈E(T )

(
N(e)

N(T )

)ke
=

Γ((n+ s)α− 1)

Γ((n+ s)α+ s− 1)
·
∏

v∈I(T )

Γ(degT (v) + kv − 1− α)

Γ(degT (v)− 1− α)
·
∏

e∈E(T )

Γ(α− 1 + ke)

Γ(α− 1)
.

Let v ∈ I(T ). Proposition 5.14 gives(
N(v, 1)

N(v)
, . . . ,

N(v,degT (v))

N(v)

)
∼ Dir(1, . . . , 1),

and then (5.35) yields

E

degT (v)∏
`=1

1

kv,`!

(
N(v, `)

N(v)

)kv,` =
Γ(degT (v))

Γ(degT (v) + kv)
·

degT (v)∏
`=1

Γ(kv,` + 1)

Γ(1)

 ·
degT (v)∏

`=1

1

kv,`!


=

(degT (v)− 1)!

(degT (v) + kv − 1)!
.

Let e ∈ E(T ). Using Proposition 5.14, we have(
N(e, j)

N(e)

)
j≥1

∼ PD(α− 1, α− 1), and
(
N right(e, j)

N(e, j)

)
j≥1

are i.i.d. U[0, 1],

so using Lemma 5.29, and the fact that E [Up] = 1/(p+ 1) for U ∼ U[0 , 1], we get

E

 ∑
(j1,...,jae )∈Nae,6=

(
N right(e, j1)

N(e)

)ke,1
· · ·
(
N right(e, jae)

N(e)

)ke,ae =

(
ae∏
i=1

wke,i+1

ke,i + 1

)
· Γ(α− 1)

Γ(ke + α− 1)
·ae!.

Multiplying this by the combinatorial factor
1

ae!ke,1! . . . ke,ae !
, we get

ae∏
i=1

wke,i+1

(ke,i + 1)!
· Γ(α− 1)

Γ(ke + α− 1)
.

So, multiplying everything together, we get

E
[
1{

Ĝs,ordn =G
}X(V1)X(V2) . . . X(Vs)

∣∣∣∣ Tord
s,n = T

]

=
Γ(n+ s− 1/α)

Γ(n+ s+ (s− 1)/α)
·

 ∏
e∈E(T )

ae∏
i=1

wke,i+1

(ke,i + 1)!

 · ∏
v∈I(T )

Γ(degT (v) + kv − 1− α)

(degT (v) + kv − 1)!

(degT (v)− 1)!

Γ(degT (v)− 1− α)
.

(5.25)
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Now, if we fix an ordered multigraph G ∈Mord
s,n , from (5.23) and (5.24) we get

P
(
Gs,ord
n = G

)
∝

∏
v∈I(T )

wdegT (v)−1 Γ(degT (v) + kv − 1− α)

(degT (v) + kv − 1)! Γ(degT (v)− 1− α)
·

 ∏
e∈E(T )

ae∏
i=1

wke,i+1

(ke,i + 1)!

 .

Observe finally that every new internal vertex in G corresponds to some e ∈ E(T ) and some 1 ≤
i ≤ ae, and has degree ke,i + 2. For a vertex v ∈ I(T ), its degree in G is degG(v) = degT (v) +kv.
Moreover,

wdegG(v)−1 = wdegT (v)+kv−1 = wdegT (v)−1 ·
Γ(degT (v) + kv − 1− α)

Γ(degT (v)− 1− α)
.

Putting everything together, we indeed get (5.22).

We have now assembled all of the ingredients needed for the proof of Theorem 5.3.

Proof of Theorem 5.3. Take a multigraph G ∈ Ms,n with internal vertices I(G), edge multiset
E(G) and a number sl(G) of self-loops. From Lemma 5.17, the number of corresponding ordered
multigraphs is ∏

v∈I(G)(deg(v)− 1)!

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

.

Combining this with (5.22), we get that for any multigraph G ∈Ms,n,

P (Gsn = G) ∝
∏
v∈I(G)wdeg(v)−1

|Sym(G)|2sl(G)
∏
e∈supp(E(G)) mult(e)!

,

as claimed.

5.3.4 The distribution of (Gsn, n ≥ 0) as a process

We now turn to the proof of Theorem 5.5, which says that the sequence (Gsn, n ≥ 0) evolves
according to the multigraph version of Marchal’s algorithm given in Section 5.1.2. Again, it is
easier to work with multigraphs having cyclic orderings of the half-edges around each vertex in
order to break symmetries. Recall from Section 5.3.3 that Gs,ord

n denotes a version of Gsn with
cyclic orderings around the vertices built from the trees Ts,ord

s,n . We observe that there is a natural
coupling of Ts,ord

s,n for n ≥ 0 obtained by repeatedly sampling new uniform leaves. Let (Gsn, n ≥ 0)

and (Gs,ord
n , n ≥ 0) be built from this coupled version of the base trees. Note that, for all n,

Gs,ord
n is obtained from Gs,ord

n+1 by erasing the leaf labelled n+ 1 together with the edge to which
it is connected. Recall also from (5.22) that the distribution of Gs,ord

n is

P
(
Gs,ord
n = G

)
= cs,n ·

∏
v∈I(G)

wdegG(v)−1

(degG(v)− 1)!
, ∀G ∈Mord

s,n ,

where cs,n is the normalizing constant. We need an ordered counterpart of Marchal’s algorithm
for graphs with cyclic orderings around vertices. Starting from a graph G ∈Mord

s,n and assigning
to its edges and vertices the weights of Marchal’s algorithm, we decide that (1) if a vertex is
selected, then we glue the new edge-leaf in a corner chosen uniformly around this vertex, while
(2) if an edge is selected, then we place the new edge-leaf on the right or on the left of the selected
edge each with probability 1/2.

We will prove Theorem 5.5 together with the following result.
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Proposition 5.23. The sequence (Gs,ord
n , n ≥ 0) is Markovian, with transitions given by the

ordered version of Marchal’s algorithm.

Proof of Proposition 5.23 and Theorem 5.5. The Markov property of (Gsn, n ≥ 0) and
(Gs,ord

n , n ≥ 0) is immediate since the backward transitions are deterministic. Now fix n and
let Gord ∈Mord

s,n and Hord ∈Mord
s,n+1 be such that Gord is obtained from Hord by erasing the leaf

labelled n + 1 and the adjacent edge. Note that the internal vertices of our graphs are mutu-
ally distinguishable since the graphs are planted, with cyclic orderings around internal vertices.
Then,

P
(
Gs,ord
n+1 = Hord | Gs,ord

n = Gord
)

=
P
(
Gs,ord
n+1 = Hord

)
P
(
Gs,ord
n = Gord

) =
cs,n+1

cs,n
·

∏
v∈I(Hord)

wdeg
Hord (v)−1

(degHord(v)− 1)!∏
v∈I(Gord)

wdeg
Gord (v)−1

(degGord(v)− 1)!

.

Now there are two different cases, (a) and (b) below:

(a) The leaf n + 1 of Hord is attached to a vertex v of Hord that has a degree greater than
or equal to 4. In this case, v corresponds to a vertex of Gord, still denoted by v, and
I(Hord) = I(Gord), degGord(v) = degHord(v)−1 and the degree of any other internal vertex
is identical in Gord and Hord. Since

wdeg
Hord (v)−1 = wdeg

Gord (v) = (degGord(v)− 1− α)wdeg
Gord (v)−1,

together with the above expression for P
(
Gs,ord
n+1 = Hord | Gs,ord

n = Gord
)
this implies that

P
(
Gs,ord
n+1 = Hord | Gs,ord

n = Gord
)

=
cs,n+1

cs,n
· degGord(v)− 1− α

degGord(v)
. (5.26)

(b) The vertex v has degree 3 in Hord and is erased when erasing the leaf n+1 and the adjacent
edge. In this case I(Hord) = I(Gord) ∪ {v} and

P
(
Gs,ord
n+1 = Hord | Gs,ord

n = Gord
)

=
cs,n+1

cs,n
· α− 1

2
. (5.27)

Proposition 5.23 follows immediately.
This argument also gives the transition probabilities of the process (Gsn, n ≥ 0). Recall the

function ψ : Mord
s,n →Ms,n that forgets the cyclic ordering around vertices. We have that

P
(
Gsn+1 = H | Gsn = G

)
=

∑
Gord∈ψ−1(G)

P
(
Gsn+1 = H | Gs,ord

n = Gord
)
P
(
Gs,ord
n = Gord | Gsn = G

)
.

(5.28)
If H is obtained from G by attaching a leaf-edge to a vertex v of G, then, from (5.26), we get

P
(
Gsn+1 = H | Gs,ord

n = Gord
)

= degG(v) · cs,n+1

cs,n
· degG(v)− 1− α

degG(v)
for all Gord ∈ ψ−1(G).

With (5.28), this gives

P
(
Gsn+1 = H | Gsn = G

)
=
cs,n+1

cs,n
· (degG(v)− 1− α).
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Similarly, from (5.27) and (5.28), we get that when G′ is obtained from G by attaching a leaf-edge
to the middle of an edge of G, we have

P
(
Gsn+1 = H | Gsn = G

)
=
cs,n+1

cs,n
· (α− 1).

Theorem 5.5 follows.

5.3.5 The unrooted kernel Gs−1

In this section, we fix s ≥ 2. Our goal is to prove that the distribution of Gs−1 is that given in
Theorem 5.3, and that the conditional probability of Gs0 given Gs−1 is given by a step in Marchal’s
algorithm. We cannot proceed as before since the use of cyclic orderings around vertices is not
sufficient to break all the symmetries in the unrooted graph Gs−1. We instead label the internal
vertices: let Gs,lab

0 denote a version of Gs0 with internal vertices labelled uniformly from 1 to
|V (Gs0)|.

For any connected multigraph G (labelled or not) we write

w(G) :=

∏
v∈I(G)wdeg(v)−1

|I(G)|! 2sl(G)
∏
e∈supp(E(G)) mult(e)!

,

with the usual notation. From Theorem 5.3 and (5.19), we know that the distribution of the
labelled graph Gs,lab

0 is
P
(
Gs,lab

0 = G
)

= c̃s,0 · w(G), (5.29)

where c̃s,0 is the normalising constant.
Let H lab and Glab be labelled versions of multigraphs inMs,0 andMs,−1 respectively that are

compatible in the sense that removing the root and the adjacent edge (in the following, we will
use the word root-edge) in H lab gives a graph which, after an increasing mapping of the labelling
to {1, . . . , |V (Glab)|}, is Glab. We then distinguish 2 cases, precisely one of which occurs:

(a) The root-edge in H lab is attached to a vertex v of degree degHlab(v) ≥ 4, in which case

w(H lab) =
wdeg

Hlab (v)−1

wdeg
Glab (v)−1

· w(Glab) = (degGlab(v)− 1− α) · w(Glab).

Note that, given Glab and a vertex v of Glab, there is a unique graph H lab which has its
root-edge attached to v and is compatible with Glab.

(b) The root-edge is attached to a vertex v of degree degHlab(v) = 3. Its deletion either
“creates" an edge e of Glab (possibly a self-loop, erasing then at the same time an edge of
multiplicity 2 in H lab) or increases by 1 the multiplicity of an edge e ∈ supp(H lab) (possibly
a multiple self-loop, erasing, again, at the same time an edge of multiplicity 2 in H lab). In
all cases,

w(H lab) =
wdeg

Hlab (v)−1 ·mult(e)

|I(Glab)|+ 1
· w(Glab) =

(α− 1) ·mult(e)

|I(Glab)|+ 1
· w(Glab),

where mult(e) refers here to the multiplicity of e seen as an element of supp(Glab). Note
that given an edge e of Glab, there are exactly |I(Glab)|+ 1 graphs H lab with the root-edge
attached in the middle of (a copy of) e that are compatible with Glab.
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From this, (5.29) and the fact that the sum of the Marchal weights is (s− 1)(α+ 1) for any
graph in Ms,−1 (see (5.8)), we obtain the distribution of Gs,lab

−1 as

P
(
Gs,lab
−1 = Glab

)
=

∑
Hlab compatible

with Glab

P
(
Gs,lab

0 = H lab
)

= c̃s,0
∑

Hlab compatible
with Glab

w(H lab)

= c̃s,0 ·

 ∑
v∈I(Glab)

(degGlab(v)− 1− α) +
∑

e∈supp(E(Glab))

mult(e)(α− 1)

 · w(Glab)

= c̃s,−1 · w(Glab),

where c̃s,−1 = c̃s,0(s − 1)(α + 1). Together with (5.19), which holds for graphs of Ms,−1, this
implies that Gs−1 has the required distribution. Next, to get the conditional distribution of Gs0
given Gs−1 we write, for H ∈Ms,0 and G ∈Ms,−1,

P
(
Gs0 = H | Gs−1 = G

)
=

∑
Glab a labelled
version of G

P
(
Gs0 = H,Gs,lab

−1 = Glab
)

P
(
Gs,lab
−1 = Glab

) P
(
Gs,lab
−1 = Glab | Gs−1 = G

)
.

From the remarks above, we see that when H is obtained from G by gluing the root-edge to a
vertex v of G, we get

P
(
Gs0 = H,Gs,lab

−1 = Glab
)

P
(
Gs,lab
−1 = Glab

) =
c̃s,0
c̃s,−1

· w(H)

w(G)
=

c̃s,0
c̃s,−1

· (degG(v)− 1− α) ,

for all labelled versions Glab. If, on the other hand, H is obtained from G by gluing the root-edge
to (a copy of) an edge e ∈ supp(G), then

P
(
Gs0 = H,Gs,lab

−1 = Glab
)

P
(
Gs,lab
−1 = Glab

) = (|I(G)|+ 1) · c̃s,0
c̃s,−1

· w(H)

w(G)
=

c̃s,0
c̃s,−1

· (α− 1) ·mult(e).

Putting everything together, we see that we do indeed obtain the transition probabilities corre-
sponding to a step of Marchal’s algorithm.

5.3.6 The configuration model embedded in a limit component

The goal of this subsection is to prove Corollary 5.4 where we identify for each n ≥ 0 (and
n = −1 if s ≥ 2) the distribution of Gsn with that of a specific configuration model.

Two probability distributions. In Section 3 of Duquesne and Le Gall [53], it is shown that
the rooted subtree obtained by sampling n ≥ 0 leaves in the α-stable tree is distributed as a
planted (non-ordered version of a) Galton-Watson tree conditioned to have n leaves, with critical
offspring distribution ηα satisfying

ηα(k) =
wk
k!
, k ≥ 2, ηα(1) = 0, ηα(0) =

1

α
,
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or, equivalently, with probability generating function z + α−1(1 − z)α, z ∈ (0, 1], as already
mentioned in Section 5.1.2. Note that ηα(k) ∼k→∞ ck−1−α for some constant c > 0, by Stirling’s
approximation. Now consider the random variable D(α) with distribution introduced in (5.7),
and note that it is indeed a probability distribution since∑

k≥2

wk
k!

=
(α− 1)

2
+
∑
k≥3

(k − 1− α)wk−1

k!
=

(α− 1)

2
+
∑
k≥3

wk−1

(k − 1)!
− (1 + α)

∑
k≥3

wk−1

k!
,

which implies that ∑
k≥2

wk−1

k!
+

1

α
=

(α− 1)

2(1 + α)
+

1

α
=
α2 + α+ 2

2(1 + α)α
.

It is straightforward to see that E[D(α)] = 2. Moreover, if we consider the biased version

P(D̂(α) = k) :=
kP(D(α) = k)

E
[
D(α)

] , k ≥ 1

we immediately get that D̂(α) − 1 has the same distribution as ηα. This in particular implies
that D(α) satisfies the conditions (5.1).

The stable configuration model. Fix n ≥ 0 if s ∈ {0, 1} or n ≥ −1 if s ≥ 2. Then fix
m ≥ n + 1 and consider the multigraph Cm sampled from the configuration model with i.i.d.
degrees D(α)

0 , . . . , D
(α)
m−1 distributed as D(α). From Proposition 7.7 in [75], we have that

P
(
Cm = G

∣∣∣ D(α)
i = di, 0 ≤ i ≤ m− 1

)
=

1

(
∑

0≤i≤m−1 di − 1)!!
·

∏
0≤i≤m−1 di!

2sl(G)
∏
e∈supp(E) mult(e)!

,

for every multigraph G = (V,E) with m labelled vertices of respective degrees d0, . . . , dm−1 such
that

∑
0≤i≤m−1 di is even. Hence, the distribution of Cm is given for each such multigraph by

P(Cm = G) =

(
2(1 + α)α

α2 + α+ 2

)m
· 1

(
∑

0≤i≤m−1 di − 1)!!
·

∏
0≤i≤m−1 di!

2sl(G)
∏
e∈supp(E) mult(e)!

· 1

α#{i:di=1} ·
m−1∏
i=0

wdi−1

di!
.

On the event {Cm is connected, s(Cm) = s}, the sum
∑

0≤i≤m−1 di depends only on m and s.

Conditioning additionally on {D(α)
0 = · · · = D

(α)
n = 1, D

(α)
i 6= 1, n + 1 ≤ i ≤ m − 1}, we have

#{i : D
(α)
i = 1} = n+ 1. Forgetting the labels n+ 1, . . . ,m− 1 (which we now know belong to

internal vertices), we obtain a factor of (m−n−1)!/|Sym(G)|. (See (5.19) for further discussion.)
Together with Theorem 5.3 this implies Corollary 5.4.

5.4 Two simple constructions of the graph Gs

Let s ≥ 1. We start in Section 5.4.1 by proving that the (measured) R-graph Gs is the almost-
sure limit of rescaled versions of its combinatorial shapes Gsn, n ≥ 0 equipped with the uniform
distribution on their leaves. Together with the algorithmic construction of the graphs Gsn for
n ≥ 0 (Theorem 5.5) and some urn model asymptotics recalled in the Appendix, this will lead us
to the two alternative constructions of Gs presented in the introduction: in Section 5.4.2, we prove
Theorem 5.6 and Proposition 5.7, giving the distribution of Gs as a collection of rescaled α-stable
trees appropriately glued onto the kernel Ks; Section 5.4.3 is then devoted to the line-breaking
construction of Theorem 5.8.
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5.4.1 The graph as the scaling limit of its marginals

Recall from Section 5.2.2 that Gs is constructed from T s, a biased version of the α-stable tree, by
appropriately gluing s marked leaves onto randomly selected branch-points. Recall also that Xs

denotes the s-biased stable excursion from which T s is built, that πs(V s
1 ), . . . , πs(V s

s ) are the s
leaves to be glued and that πs(Ui), i ≥ 1 are i.i.d. uniform leaves. For all n ≥ 1, T ss,n then denotes
the subtree of T s spanned by the root and the leaves πs(V s

1 ), . . . , πs(V s
s ), πs(U1), . . . , πs(Un) and

we let Tss,n be its combinatorial shape. Finally, recall that Gsn is the connected subgraph of Gs
consisting of the union of the kernel and the paths from the leaves πs(U1), . . . , πs(Un) to the root,
for all n ≥ 0, and that the finite graph Gsn denotes the combinatorial shape of Gsn. We will use
the following observation: for all n larger than some finite random variable, Gsn is obtained from
T ss,n by an appropriate gluing of the s leaves πs(V s

1 ), . . . , πs(V s
s ) to some of its internal vertices

(for small n, it may be that we instead glue some leaves along edges of T ss,n).
The goal of this section is to prove Proposition 5.2: when the graph Gsn is equipped with the

uniform distribution on its leaves,
Gsn

n1−1/α

a.s.−→
n→∞

α · Gs (5.30)

for the Gromov-Hausdorff-Prokhorov topology. With this aim in mind, we first observe that Gs
can be recovered from the completion of the union of its continuous marginals.

Lemma 5.24. With probability one,

Gs = ∪n≥0Gsn,

and consequently Gs is the a.s. limit of Gsn in (C , dGHP), when the graph Gsn is endowed with the
uniform distribution on its leaves for n ≥ 1.

Indeed, it is well-known that the α-stable tree is almost surely the completion of the union
of its continuous marginals, which entails a similar result for the biased version T s and then for
the graph Gs, using its construction from T s. The measures can then be incorporated by using
the strong law of large numbers.

Proof of Proposition 5.2. We make use of the fact (5.17) that the α-stable tree is the almost-sure
scaling limit of its discrete marginals. We refer the reader to the book of Burago, Burago and
Ivanov [32] for background on the notions of a correspondence and its distortion, which are used
here for the proof.

By Lemma 5.24, it suffices to prove that almost surely

dGHP

(
Gsn

n1−1/α
, α · Gsn

)
−→
n→∞

0.

We observe first that almost surely

dGHP

(
n1/α−1Tss,n, α · T ss,n

)
−→
n→∞

0.

This is proved for s = 0 in [42, Section 2.4] and may be transferred to s ≥ 1 by absolute continuity.
The s = 0 case is proved in [42] by using a natural correspondence which we introduce here for
general s and call Rsn. It is a correspondence between n

1
α
−1Tss,n and α · T ss,n. The leaves with the

same labels correspond to one another, and the internal vertices of Tss,n are put in correspondence
with the branch-points of T ss,n in the obvious way. Finally, the edges of T ss,n (which have real-
valued lengths and which we think of as line-segments) are put in correspondence with the vertex
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or vertices of Tss,n corresponding to their end-points. From [42] we obtain that the distortion
dist(Rsn) of the correspondence Rsn tends to 0 almost surely as n→∞. To deal with the gluing,
we use the fact already observed above that for n sufficiently large, Gsn is obtained from T ss,n by
an appropriate gluing of the s leaves πs(V s

1 ), . . . , πs(V s
s ) to its internal vertices; similarly Gsn is

obtained by the gluing of the corresponding leaves of Tss,n to the corresponding internal vertices
of this tree. It then follows from Lemma 4.2 of [6] that

dGHP

(
Gsn

n1−1/α
, α · Gsn

)
≤ (s+ 1)

2
dist(Rsn)

and the claimed almost-sure convergence follows easily.

5.4.2 Construction from randomly scaled stable trees glued to the kernel

We now turn to the proof of Theorem 5.6: in (C ,dGHP), we have the identity in distribution of
the measured compact metric spaces

Gs d
= G(Ks) (5.31)

(with the notation used in Section 5.1.2). We will also prove Proposition 5.7 in this section.

Proof of Theorem 5.6. Using (5.30), we just need to prove that

Gsn
n1−1/α

d−→
n→∞

α · G(Ks)

for the Gromov-Hausdorff-Prokhorov topology, when the graph Gsn is equipped with the uniform
distribution on its leaves. (We will prove the compactness of the object on the right-hand side
below.) As discussed earlier, the graph Gsn may be viewed as a collection of trees glued to the
kernel Ks. We will show that each of these tree-blocks converges after rescaling to its continuous
counterpart used in the construction of G(Ks). Our argument and notation are similar to those
used in the proof of Proposition 5.14 concerning the stable tree.

We work conditionally on Ks. Let m denote the number of edges of Ks, which are arbitrarily
labelled as e1, . . . , em. Let v1, . . . , vm−s denote the internal vertices of Ks, again in arbitrary
order, and d1, . . . , dm−s their respective degrees. For each n ≥ 0, we interpret these edges (resp.
vertices) as edges of Gsn with edge-lengths (resp. vertices). For each k, we write Tn(ek) for the
subtree of Gsn induced by the vertices closer to ek than to any other edge ei, i 6= k, including
the two end-points of ek. These end-vertices are interpreted as leaves of Tn(ek) and count as
distinct leaves even if ek is a loop. (These formulation may seem arbitrary but it is the one
needed to initiate properly the urn model we will use below.) The number of leaves of Tn(ek)

is then denoted by Mn(ek). Similarly we let Tn(vi) denote the subtree of Gsn induced by the set
of all vertices closer to vi than to any edge ek, 1 ≤ k ≤ m, including vi which is considered as
its root. Then Mn(vi) denotes its number of leaves (here vi is not considered to be a leaf so
that, in particular, Mn(vi) = 0 if Tn(vi) has vertex-set {vi}). Next, for each 1 ≤ i ≤ m − s,
let Tn(vi, j), j ≥ 1 denote the connected components of Tn(vi)\{vi}. We think of these subtrees
as planted (and we again call the root of each vi), so that if we identify their roots we recover
Tn(vi). The number of such subtrees is finite (possibly zero) for each n but tends to infinity as
n → ∞. We label them Tn(vi, 1), Tn(vi, 2), . . . in order of appearance, with the convention that
Tn(vi, j) is the empty set if there are strictly fewer than j subtrees at step n. Let Mn(vi, j) be
the number of leaves of Tn(vi, j), j ≥ 1.
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• Scaling limits of the numbers of leaves. It is easy to see using the algorithmic construction
of the sequence (Gsn, n ≥ 0) from Theorem 5.5 that the process

(αMn(e1)− α− 1, . . . , αMn(em)− α− 1,

αMn(v1) + d1 − 1− α, . . . , αMn(vm−s) + dm−s − 1− α)n≥0 (5.32)

evolves according to Pólya’s urn (see Theorem 5.30) with 2m− s colours of initial weights

(α− 1, . . . , α− 1, d1 − 1− α, . . . , dm−s − 1− α) ,

respectively, and weight parameter α. Hence, there exists a random vector (M1, . . . ,M2m−s)

with the Dirichlet distribution of parameters specified in (5.9) such that(
Mn(e1)

n
, . . . ,

Mn(em)

n
,
Mn(v1)

n
, . . . ,

Mn(vm−s)

n

)
a.s.−→
n→∞

(M1, . . . ,M2m−s).

Next we observe that for all i the jumps of ((Mn(vi, j))j≥1, n ≥ 0) follow the same dynamics as a
Chinese restaurant process with parameters 1/α and (di−1−α)/α, independently of everything
else. Since the total number of jumps at step n is Mn(vi), Theorem 5.31 yields(

M↓n(vi, j)

Mn(vi)
, j ≥ 1

)
a.s.−→
n→∞

(∆i,j , j ≥ 1),

where (M↓n(vi, j), j ≥ 1) denotes the decreasing reordering of (Mn(vi, j), j ≥ 1) and the limit
(∆i,j , j ≥ 1) follows a Poisson-Dirichlet PD(1/α, (di − 1 − α)/α) distribution, independent of
the random variables (M1, . . . ,M2m−s). (The convergence holds in `1 equipped with its usual
metric.)

• Scaling limits of the trees Tn(ek), Tn(vi, j). Given the processes (Mn(ek), n ≥ 0),
(Mn(vi, j), n ≥ 0), for all k, i, j, the jump evolutions of the trees Tn(ek), Tn(vi, j), n ≥ 0 are
independent and all follow Marchal’s algorithm. Then writing ek = {xk, yk} for 1 ≤ k ≤ m, we
know by (5.17) that there exist rescaled (measured) α-stable trees Tk, Ti,j , k, i, j such that, given
(M1, . . . ,M2m−s) and (∆i,j , j ≥ 1), the trees are independent, Tk has total mass Mk, Ti,j total
mass Mi+m ·∆i,j and, furthermore,

(a) for all k,(
Tn(ek)

n1−1/α
, xk, yk

)
=

((
Mn(ek)

n

)1−1/α

· Tn(ek)

Mn(ek)1−1/α
, xk, yk

)
a.s.−→
n→∞

(α · Tk, ρk, Lk)

for the 2-pointed Gromov-Hausdorff-Prokhorov topology, the tree Tn(ek) being implicitly
endowed with the measure that assigns weight 1/n to each of its leaves (here, ρk denotes
the root of Tk and Lk a uniform leaf);

(b) for all i, j,(
Tn(vi, j)

n1−1/α
, vi

)
=

((
Mn(vi, j)

n

)1−1/α

· Tn(vi, j)

Mn(vi, j)1−1/α
, vi

)
a.s.−→
n→∞

(α · Ti,j , ρi,j)

for the pointed Gromov-Hausdorff-Prokhorov topology, where again Tn(vi, j) is endowed
with the measure that assigns weight 1/n to each of its leaves, and ρi,j is the root of Ti,j .
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• Scaling limits of the trees Tn(vi), and the compactness of the limit. Fix i ≥ 1 and recall
that Tn(vi) is obtained by identifying the roots of the trees Tn(vi, j), j ≥ 1. We now show that
n−(1−1/α)Tn(vi) converges in probability for the pointed GHP-topology to the measured R-tree
T(i) obtained by identifying the roots of the trees α · Ti,j .

Let us first show that T(i) is compact and is the almost sure GHP-limit as j0 → ∞ of the
R-tree T j0(i) obtained by gluing the first j0 trees Ti,j , j ≤ j0 together at their roots. (For different
values of j0 we think of the underlying spaces as being nested and all contained within T(i).) For
a rooted R-tree t, we write ht(t) for its height. Let T denote a standard α-stable tree (of total
mass 1). Then by the scaling property of the stable tree we have

E

(
sup
j>j0

ht(Ti,j)
)α/(α−1)

≤
∑
j>j0

E
[
ht(Ti,j)α/(α−1)

]
= E

[
ht(T )α/(α−1)

]
E
[
Mi+m

]∑
j>j0

E
[
∆i,j

]
.

Since ht(T ) has finite exponential moments (see, for example, equation (2) of [87] for a convenient
statement) the right-hand side is finite, and clearly tends to 0 as j0 →∞. Hence the decreasing
sequence supj>j0 ht(Ti,j) converges a.s. to 0 as j0 → ∞. This implies in particular that T(i) is
a.s. compact. Then, note that

dGHP

(
T(i), T j0(i)

)
≤ max

(
sup
j>j0

ht(Ti,j),Mi+m ·
∑
j>j0

∆i,j

)
,

sinceMi+m ·
∑

j>j0
∆i,j is the total mass of T(i)\T j0(i) . This total mass also converges to 0. Hence,

T j0(i) → T(i) almost surely as j0 →∞ with respect to the GHP-topology.
Next, note that for j0 ∈ N,

dGHP

(
Tn(vi)

n1−1/α
, α · T(i)

)
≤

j0∑
j=1

dGHP

(
Tn(vi, j)

n1−1/α
, α · Ti,j

)
+ α · dGHP

(
T j0(i) , T(i)

)
+ sup
j>j0

ht

(
Tn(vi, j)

n1−1/α

)
+
∑
j>j0

Mn(vi, j)

n
.

We already know that the first term on the right-hand side converges a.s. to 0 as n→∞ (for j0
fixed) and that the second term converges a.s. to 0 as j0 →∞. Moreover, since Mn(vi) ≤ n, by
dominated convergence we have

E

∑
j>j0

Mn(vi, j)

n

 = E

Mn(vi)

n
−
∑
j≤j0

Mn(vi, j)

n

 −→
n→∞

E

Mi+m

1−
∑
j≤j0

∆i,j

 ,
and then

lim
j0→∞

lim
n→∞

E

∑
j>j0

Mn(vi, j)

n

 = 0.

Now note that

lim sup
n→∞

∑
j>j0

E

[
(ht(Tn(vi, j))

α/(α−1)

n

]
≤ lim sup

n→∞

∑
j>j0

E

[
(ht(Tn,j(vi, j))

α/(α−1)

Mn(vi, j)
· Mn(vi, j)

n

]

≤ Cα lim sup
n→∞

∑
j>j0

E
[
Mn(vi, j)

n

]
,
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by [67, Lemma 33], where Cα is a finite constant depending only on α. So by Markov’s inequality,
we get

lim
j0→∞

lim sup
n→∞

P

(
sup
j>j0

ht

(
Tn(vi, j)

n1−1/α

)
> ε

)
= 0

for all ε > 0. Putting everything together, we obtain the convergence in probability

dGHP

(
Tn(vi)

n1−1/α
, α · T(i)

)
p→ 0.

• Final gluing. Finally, the graph Gsn is obtained by gluing appropriately the 2m − s trees
Tn(ek), Tn(vi), 1 ≤ k ≤ m, 1 ≤ i ≤ m − s along the kernel Ks. Using the results above, it
therefore converges in probability, after multiplication of distances by n−(1−1/α), to a version of
α · G(Ks).

From this we immediately obtain the joint distribution of the edge-lengths of the continuous
kernel Ks. Given that the number of edges of Ks is m and keeping the notation of the proofs,
we see that the lengths of the m edges are given by M1−1/α

i · Λi, 1 ≤ i ≤ m where the Λi are
i.i.d. ML(1 − 1/α, 1 − 1/α) random variables (this is the distribution of the distance between
a uniform leaf and the root in a standard α-stable tree) and independent of (M1, . . . ,M2m−s).
We may combine Remark 5.33 and Lemma 5.26 to check that the distribution of this m-tuple
of random variables coincides with the one of Proposition 5.7 when n = 0. More generally, we
could deduce from (5.31) the joint distribution of the edge-lengths of the continuous marginals
Gsn, n ≥ 0. However, it is simpler to prove this directly using urn arguments similar to those
above.

Proof Proposition 5.7. Fix n0 ≥ 0. We work conditionally on Gsn0
= (V,E). For each edge e ∈ E

and each n ≥ n0, let Ln(e) denote the length of e in Gsn and let Ltot
n :=

∑
e∈E Ln(e). From the

algorithmic construction of (Gsn, n ≥ n0) we get that

(a) the process

(Ltot
n , n ≥ n0)

is a triangular urn scheme as defined in Theorem 5.32 with initial weights

a = |E|, b =
(n0 + s)α+ s− 1

α− 1
− |E|

(b is the initial total weight of the vertices of Gsn0
, divided by α− 1) and additional weight

parameters γ = 1 and β = α/(α− 1);

(b) the jumps of the process ((Ln(e), e ∈ E), n ≥ n0) evolve according to Pólya’s urn with
initial weights ai = 1, 1 ≤ i ≤ |E|, and additional weight parameter β = 1, independently
of Ltot

n .

Theorem 5.32 and Theorem 5.30 therefore imply that
(
Ln(e)/n1−1/α, e ∈ E

)
converges almost

surely to a random vector with distribution (5.11). The conclusion then follows from the con-
vergence (5.30).
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5.4.3 The line-breaking construction

The proof of Theorem 5.8 for s ≥ 1 is inspired by the approach used in [63] to obtain a line-
breaking construction of the stable trees. As we have already mentioned, we rely again on the
algorithmic construction of the sequence (Gsn, n ≥ 0). The notation below coincides with that
of Section 5.1.2. Moreover, for each n, we let Hsn denote the combinatorial shape of Hsn. The
metric space Hsn is then interpreted as a finite graph (the graph Hsn) with edge-lengths. We let
Ln denote this sequence of edge-lengths, ordered arbitrarily, and let Wn denote the sequence of
weights at internal vertices of Hsn (i.e. the weights attributed by the measure ηn to each of these
vertices), also ordered arbitrarily. We start with a preliminary lemma.

Lemma 5.25. Given Hsk, 0 ≤ k ≤ n, and in particular that Hsn has m edges and m − (n + s)

internal vertices with degrees d1, . . . , dm−(n+s), we have

(
Ln,Wn

) (d)
= ML

(
1− 1

α
,
(n+ s)α+ (s− 1)

α

)
·Dir

(
1, . . . , 1︸ ︷︷ ︸

m

,
d1 − 1− α
α− 1

, . . . ,
dm−(n+s) − 1− α

α− 1

)
,

the random variables on the right-hand side being independent. In particular,

Ln
(d)
= ML

(
1− 1

α
,
(n+ s)α+ (s− 1)

α

)
· Beta

(
m,

(n+ s)α+ s− 1

α− 1
−m

)
·Dir (1, . . . , 1) .

Proof. For n = 0, the first identity in distribution holds by definition of (Hs0, η0) in the line-
breaking construction. The rest of the proof proceeds by induction on n, and is based essentially
on manipulations of Dirichlet distributions. The steps are exactly the same as those of Propo-
sition 3.2 in [63], to which we refer the interested reader. The only slight change to highlight is
that here the degrees d1, . . . , dm−(n+s) of the internal vertices of a graph in Ms,n with m edges
necessarily satisfy

m−(n+s)∑
i=1

di − 1− α
α− 1

=
(n+ s)α+ s− 1

α− 1
−m,

as already observed in (5.8). This fact is also used, together with Lemma 5.26, to deduce the
distribution of Ln from that of the pair (Ln,Wn).

Proof of Theorem 5.8. Note that the metric spaces Hsn, n ≥ 0 have implicit leaf-labels, given by
their order of appearance in the construction. The metric spaces Gsn, n ≥ 0 are also leaf-labelled
by construction. Both models are sampling consistent: the metric space indexed by n is obtained
from the metric space indexed by n + 1 by removing the leaf labelled n + 1 and the adjacent
line-segment (this description is a little informal but hopefully clear). Hence, we only need to
prove that, for all n ≥ 0,

Hsn
d
= Gsn, (5.33)

these compact metric spaces being implicitly endowed with the uniform distribution on their
leaves, and still leaf-labelled. Together with the sampling consistency, this will imply that the
processes of compact measured metric spaces (Hsn, n ≥ 0) and (Gsn, n ≥ 0) have the same distri-
bution. Since Gs is the almost sure GHP-scaling limit of Gsn (Lemma 5.24) and since (C ,dGHP)

is complete, this will in turn entail that Hsn converges a.s. to a random compact measured metric
space distributed as Gs.

To prove (5.33), we first check that the sequence of finite graphs (Hsn, n ≥ 0) evolves according
to Marchal’s algorithm, as does (Gsn, n ≥ 0). This relies on Lemmas 5.25 and 5.27 which imply
that for each n, given (Hsk, 0 ≤ k ≤ n), the probability that the new segment in the line-breaking
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construction is attached to a given edge of Hsn is proportional to 1, whereas the probability that
it is attached to a given vertex with degree di ≥ 3 is proportional to (di − 1 − α)/(α − 1).
Hence, the sequences of graphs (Hsn, n ≥ 0) and (Gsn, n ≥ 0) have the same distribution since
Gs0 = Hs0 = Ks, including leaf-labels. Then we get (5.33) by simply noticing that the distribution
of the edge-lengths of Hsn given (Hsk, 0 ≤ k ≤ n) is the same as that of the edge-lengths of Gsn
given (Gsk, 0 ≤ k ≤ n), by Lemma 5.25 and Proposition 5.7.

5.5 Appendix: distributions, urn models and applications

We detail in this appendix some classical asymptotic results on urn models that are needed
at various points in the paper. We first recall the definitions and some properties of several
distributions that are related to these asymptotics.

5.5.1 Some probability distributions

For more detail on the material in this section, we refer to Pitman [104].

Definitions and moments

Beta distributions. For parameters a, b > 0, the Beta(a, b) distribution has density

Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

with respect to the Lebesgue measure on (0, 1). If B ∼ Beta(a, b), then for p, q ∈ R+,

E [Bp(1−B)q] =
Γ(a+ b)

Γ(a+ b+ p+ q)

Γ(a+ p)

Γ(a)

Γ(b+ q)

Γ(b)
. (5.34)

Dirichlet distributions. For parameters a1, a2, . . . , an > 0, the Dirichlet distribution
Dir(a1, a2, . . . , an) has density

Γ(
∑n

i=1 ai)∏n
i=1 Γ(ai)

n∏
j=1

x
aj−1
i

with respect to the Lebesgue measure on the simplex {(x1, . . . , xn) ∈ [0, 1]n :
∑n

i=1 xi = 1}.
When (X1, . . . , Xn) ∼ Dir(a1, . . . , an), for k1, . . . , kn ∈ R+,

E
[
Xk1

1 Xk2
2 . . . Xkn

n

]
=

Γ (
∑n

i=1 ai)

Γ(
∑n

i=1(ai + ki))
·
n∏
i=1

Γ(ai + ki)

Γ(ai)
. (5.35)

Generalized Mittag-Leffler distributions. Let 0 < β < 1, θ > −β. An R+-valued ran-
dom variable M has the generalized Mittag-Leffler distribution ML(β, θ) if, for all suitable test
functions f , we have

E [f(M)] =
E
[
σ−θβ f

(
σ−ββ

)]
E
[
σ−θβ

] , (5.36)

where σβ is a stable random variable with Laplace transform E[e−λσβ ] = exp
(
−λβ

)
, λ ≥ 0. For

p ∈ R+,

E [Mp] =
Γ(θ)Γ(θ/β + p)

Γ(θ/β)Γ(θ + pβ)
=

Γ(θ + 1)Γ(θ/β + p+ 1)

Γ(θ/β + 1)Γ(θ + pβ + 1)
.
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Poisson-Dirichlet distributions. Let 0 < β < 1, θ > −β and for i ≥ 1, let Bi ∼
Beta(1 − β, θ + iβ) independently. Then the decreasing sequence (Pi)i≥1 = (Q↓i )i≥1 where
Qj = Bj

∏j−1
i=1 (1 − Bi) has the PD(β, θ) distribution. The almost sure limit W := Γ(1 −

β) limi→∞ i(P
↓
i )β has the ML(β, θ) distribution.

Distributional properties

Lemma 5.26. If (X1, . . . , Xn) ∼ Dir(a1, . . . , an) then for all 1 ≤ m ≤ n − 1, (X1, . . . , Xm) is
distributed as the product of two independent random variables:

Beta

(
m∑
i=1

ai,
n∑

i=m+1

ai

)
·Dir(a1, . . . , am).

Lemma 5.27. Suppose that (X1, X2, . . . , Xn) ∼ Dir(a1, a2, . . . , an). Let I be the index of a
size-biased pick from amongst the co-ordinates i.e. P (I = i|X1, X2, . . . , Xn) = Xi, for 1 ≤ i ≤ n.
Then

P (I = i) =
ai

a1 + a2 + . . .+ an

for 1 ≤ i ≤ n and, conditionally on I = i,

(X1, X2, . . . , Xn) ∼ Dir(a1, . . . , ai−1, ai + 1, ai+1, . . . , an).

Lemma 5.28. Let 0 < β < 1, θ > −β, and let (Pi)i≥1 have distribution PD(β, θ). Let J be the
index of a size-biased pick from this sequence, i.e. P (J = j | (Pi)i≥1) = Pj, for j ≥ 1. We let
(P ′i )i≥1 be the decreasing sequence (1− PJ)−1 · (Pi)i≥1,i 6=J , reindexed by N. Then

PJ ∼ Beta(1− β, θ + β) and (P ′i )i≥1 ∼ PD(β, θ + β),

and these two random variables are independent.

Let Nn,6= := {(i1, . . . , in) ∈ Nn | i1, . . . , in are distinct}.

Lemma 5.29. Let (Pi)i≥1 ∼ PD(β, θ) with 0 < β < 1 and θ > −β. Then for all k1, k2, . . . , kn ∈
[1 ,∞),

E

 ∑
(i1,...,in)∈Nn,6=

P k1i1 . . . P
kn
in

 =

(
n∏
i=1

β
Γ(ki − β)

Γ(1− β)

)
Γ(θ)

Γ(θ +
∑n

j=1 kj)

Γ(θ/β + n)

Γ(θ/β)
. (5.37)

In particular, for (Pi)i≥1 ∼ PD(α− 1, α− 1) with α ∈ (1 , 2), and k1, . . . kn ∈ N, we have

E

 ∑
(i1,...,in)∈Nn,6=

P k1i1 . . . P
kn
in

 =

(
n∏
i=1

(α− 1)
Γ(ki + 1− α)

Γ(2− α)

)
Γ(α− 1) n!

Γ(α− 1 +
∑n

j=1 kj)

=

(
n∏
i=1

wki+1

)
Γ(α− 1) n!

Γ(α− 1 +
∑n

j=1 kj)
,

where the weights w1, w2, . . . are defined in (5.6).
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Proof. We proceed by induction on n. For n = 0 we use the convention that the left-hand side
of (5.37) is 1 and so the identity is true. Let n ≥ 1 and suppose that the identity is true for
n− 1. Then letting J be such that P (J = j | (Pi)i≥1) = Pj , we have

E

 ∑
(i1,...,in)∈Nn,6=

P k1i1 . . . P
kn
in



= E

P kn−1
J (1− PJ)k1+···+kn−1

∑
(i1,...,in−1)

∈(N\{J})n−1,6=

(
Pi1

1− PJ

)k1
· · ·
(
Pin−1

1− PJ

)kn−1


= E

[
P kn−1
J (1− PJ)k1+···+kn−1

]
· E

 ∑
(i1,··· ,in−1)∈Nn−1,6=

(P ′i1)k1 · · · (P ′in−1
)kn−1

 ,
by Lemma 5.28, where (P ′i )i≥1 ∼ PD(β, β + θ) and PJ ∼ Beta(1 − β, θ + β). Using (5.34), we
have

E
[
P kn−1
J (1− PJ)k1+···+kn−1

]
=

Γ(1 + θ)Γ(1− β + kn − 1)Γ(θ + β +
∑n−1

i=1 ki)

Γ(θ + β)Γ(1− β)Γ(1 + θ +
∑n

i=1 ki − 1)

=

(
β

Γ(kn − β)

Γ(1− β)

)
Γ(θ)Γ(θ + β +

∑n−1
i=1 ki)

Γ(θ + β)Γ(θ +
∑n

j=1 kj)

θ

β
.

The induction hypothesis applied to the sequence (P ′i )i≥1, which has distribution PD(β, β + θ),
then yields

E

 ∑
(i1,...,in−1)∈Nn−1,6=

(P ′i1)k1 . . . (P ′in−1
)kn−1


=

(
n−1∏
i=1

β
Γ(ki − β)

Γ(1− β)

)
Γ(θ + β)

Γ(θ + β +
∑n−1

j=1 kj)

Γ((θ + β)/β + n− 1)

Γ((θ + β)/β)

=

(
n−1∏
i=1

β
Γ(ki − β)

Γ(1− β)

)
Γ(θ + β)

Γ(θ + β +
∑n−1

j=1 kj)

Γ(θ/β + n)

(θ/β)Γ(θ/β)
,

and the result for n follows by multiplying the last display with the preceding one.

5.5.2 Pólya’s urn, Chinese restaurant processes and triangular urn schemes

We gather here some classical results for urn models.

Theorem 5.30 (Pólya’s urn). Consider an urn model with k colours, with initial weights
a1, . . . , ak > 0 respectively. At each step, draw a colour with a probability proportional to its
weight and add an extra weight β > 0 to this colour. Let W (1)

n , . . . ,W
(k)
n denote the weights

of the k colours after n steps. Then(
W

(1)
n

βn
, . . . ,

W
(k)
n

βn

)
a.s.−→
n→∞

(W (1), . . . ,W (k))
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where (W (1), . . . ,W (k)) ∼ Dir(a1/β, . . . , ak/β).

Theorem 5.31 (The Chinese restaurant process). Fix two parameters β ∈ (0, 1) and θ >
−β. The process starts with one table occupied by a single customer and then evolves in a
Markovian way as follows: given that at step n there are k occupied tables with ni customers
at table i, a new customer is placed at table i with probability (ni− β)/(n+ θ) and placed at
a new table with probability (θ + kβ)/(n + θ). Let Ni(n), i ≥ 1 be the number of customers
at table i at step n and let (N↓i (n), i ≥ 1) be the decreasing rearrangement of these terms.
Let K(n) denote the number of occupied tables at step n. Then(

N↓i (n), i ≥ 1

n

)
a.s. in `1−→
n→∞

(Yi, i ≥ 1) and
K(n)

nβ
a.s.−→
n→∞

W

where (Yi, i ≥ 1) ∼ PD(β, θ) and W ∼ ML (β, θ).

We refer to Pitman’s book [104, Chapter 3] for more detail on these first two theorems.

Theorem 5.32 (Triangular urn schemes). Consider an urn model with two colours, red and
black. Suppose that initially red has weight a > 0 and black has weight b ≥ 0. At each
step, we sample a colour with probability proportional to its current weight in the urn. Let
β > γ > 0 and assume that when red is drawn then weight γ is added to red and weight β−γ
to black, whereas when black is drawn then weight β is added to black (and nothing to red).
Let Rn denote the red weight after n steps. Then,

Rn

nγ/β
a.s.−→
n→∞

R

where the random variable R is such that R ∼ γ ·Beta( aγ ,
b
γ )·ML

(
γ
β ,

(a+b)
β

)
with the Beta and

Mittag-Leffler random variables being independent, and the convention that Beta(a, 0) = 1

a.s.

(Note that, since the total weight in the urn at step n is a+b+nβ, we trivially deduce that the
black weight Bn = a+b+nβ−Rn satisfies Bn/n→ β almost surely.) There is a vast literature on
triangular urn schemes, which give rise to profoundly different asymptotic behaviour. We refer
to Janson [80] for an overview, and in particular to Theorems 1.3 and 1.7 therein which together
imply the convergence of Theorem 5.32 (but only in distribution). The almost sure convergence
can, in fact, be deduced from Theorems 5.30 and 5.31. Observe first that we may reduce to the
case γ = 1 by scaling. Now note that in the context of Theorem 5.32 when γ = 1 and b = 0, the
red weight evolves as a plus the number of occupied tables in a Chinese restaurant process with
parameters (1/β, a/β), and so the almost sure limit has ML(1/β, a/β) distribution. To treat the
case b > 0, consider a refinement of the urn model in which the red colour comes in two variants,
light and dark. Start with a light red weight, b dark red weight and 0 black weight. Sample
a colour with probability proportional to its current weight in the urn. When black is drawn,
add weight β to black. When red is drawn in either of its variants, add weight 1 to that variant
and weight β − 1 to black. Clearly, light red and dark red + black taken together follow the
β-triangular urn scheme with respective initial weights a and b. Moreover, (1) the proportion
of the total red weight which is light red converges almost surely to a random variable with
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Beta(a, b) distribution by Theorem 5.30, and (2) this evolution holds independently of that of
the total proportion of red weight in the urn, which converges to a ML(1/β, (a+b)/β)-distributed
random variable, by the Chinese restaurant process as noted above.

We finally turn to the proof of Proposition 5.15. The notation is introduced in the vicinity
of its statement in Section 5.2.1.

Proof of Proposition 5.15. Imagine first not distinguishing between the different types of a
colour, i.e. consider the evolution of

Xa,b,c
i (n) = Xa

i (n) +Xb
i (n) +Xc

i (n), 1 ≤ i ≤ k.

Then (Xa,b,c
1 (n), . . . , Xa,b,c

k (n))n≥0 performs a classical Pólya’s urn in which we always add weight
α of the colour picked, and which is started from

(Xa,b,c
1 (0), . . . , Xa,b,c

k (0)) = (γ1, . . . , γk).

So we have
1

αn
(Xa,b,c

1 (n), . . . , Xa,b,c
k (n))→ (D1, . . . , Dk) (5.38)

almost surely as n→∞, where (D1, . . . , Dk) ∼ Dir(γ1/α, . . . , γk/α). Observe that (Xa,b,c
i (n)−

γi)/α is the number of times by step n that colour i has been picked.
Now consider the triangular sub-urn which just watches the evolution of colour i, which

doesn’t distinguish between types a and b, but does distinguish type c. In particular, at each
step we pick either type {a, b} or type c with probability proportional to its current weight. If we
pick {a, b}, we add 1 to its weight and α−1 to the weight of c; if we pick c, we simply add weight
α to c. Write Y a,b

i (n) and Y c
i (n) for the weights after n steps within this urn, with Y a,b

i (0) = γi
and Y c

i (0) = 0. Then by Theorem 5.32, we have

1

n1/α
Y a,b
i (n)→ Ri,

1

αn
Y c
i (n)→ 1, (5.39)

almost surely as n→∞, where Ri ∼ ML(1/α, γi/α). Moreover, the number of times we add to
type a or b is Y a,b

i (n)− γi.
Now consider the sub-urn which just watches the evolution of types a and b of colour i. So

if we pick a, we add weight α− 1 to a and 2− α to b, whereas if we pick b we just add weight 1

to b. Write Zai (n) and Zbi (n) for the weights of types a and b after n steps of this sub-urn, with
Zai (0) = γi and Zbi (0) = 0. Then again by Theorem 5.32 we have

1

(α− 1)nα−1
Zai (n)→ R̄i,

1

n
Zbi (n)→ 1 (5.40)

almost surely, where R̄i ∼ ML(α − 1, γi). Finally, observe that the full urn process may be
decomposed as follows:

Xa
i (n) = Zai

(
Y a,b
i

(
Xa,b,c
i (n)− γi

α

)
− γi

)

Xb
i (n) = Zbi

(
Y a,b
i

(
Xa,b,c
i (n)− γi

α

)
− γi

)

Xc
i (n) = Y c

i

(
Xa,b,c
i (n)− γi

α

)
,
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where the processes (Xa,b,c
1 (n), . . . , Xa,b,c

k (n))n≥0, (Y a,b
i (n), Y c

i (n))n≥0 for 1 ≤ i ≤ k, and
(Zai (n), Zbi (n))n≥0 for 1 ≤ i ≤ k, are all independent. The claimed results then follow by
composing the limits (5.38), (5.39) and (5.40).

Remark 5.33. The following statements follow using similar arguments:

(D
1/α
1 R1, . . . , D

1/α
k Rk)

(d)
= R · (D̃1, . . . , D̃k),

where R ∼ ML(1/α, γ/α) is independent of (D̃1, . . . , D̃k) ∼ Dir(γ1, . . . , γk), and

Rα−1
i R̄i ∼ ML(1− 1/α, γi/α)

for 1 ≤ i ≤ k.
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