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Résumé en français 

 

Amélioration de la prédiction de la toxicité urinaire après radiothérapie du 
cancer de la prostate à partir de modèles spatiaux multi-échelle de la dose: 

depuis les organes à risque aux sous-régions 
 

Le cancer de la prostate est le deuxième cancer le plus fréquente chez l’homme et la cinquième cause de 

décès par cancer dans le monde. En 2018, cela représentait 1,3 million de nouveaux cas et 359 000 décès 

dans le monde. En France, le cancer de la prostate est le plus fréquent chez l’hommes. Le nombre de cas 

estimé pour 2018 est de 65 000 et le nombre de décès estimé à 9 000. 

 

De nombreuses options thérapeutiques existent pour traiter cette maladie. Parmi elles, la radiothérapie 

externe (EBRT) est préconisée pour plus de deux tiers des patients, en l’associant ou non à une chirurgie 

et/ou à une chimiothérapie. Le but de ce traitement est de délivrer, sur plusieurs séances de traitement, 

une forte dose de rayonnement ionisant au volume cible, à savoir la prostate et les vésicules séminales. 

Le bénéfice d’une augmentation de la dose à la prostate, en termes de contrôle local et de survie globale, 

est atténué par la présence des organes à risque (OAR), tels que la vessie et le rectum, qui entourent le 

volume cible. Les effets secondaires dus à l’irradiation aux tissus sains peuvent entraîner des 

événements indésirables importants de nature urinaire, rectale ou sexuelle. 

 

Les développements technologiques récents (systèmes de traitement, d’imagerie et de calcul) ont 

permis d’améliorer le rapport bénéfices/risques lié à la thérapie. L’introduction de techniques de 

traitement modernes, telles que la radiothérapie avec modulation d’intensité (IMRT) et la radiothérapie 

guidée par l'image (IGRT), ont permis une escalade de la dose. La radiothérapie avec modulation 

d’intensité constitue une avancée importante pour la délivrance d’une distribution de dose de haute 

précision. Elle permet notamment d’améliorer la conformation de l’irradiation à des formes tumorales 

complexes et concaves. La balistique de traitement est quant à elle calculée au moyen d’algorithmes 

permettant de simuler et d’optimiser la distribution de dose via une approche de planification inverse. 

L’objectif est d’optimiser le plan de traitement de façon à obtenir une dose de rayonnement élevée dans 

le volume tumoral mais aussi limitée que possible dans les organes à risque voisins.   

 
Malgré les améliorations récentes dans la planification et la délivrance du plan du traitement, il n’est pas 

encore possible d’épargner totalement les organes à risques environnant la tumeur. Des effets 

secondaires liés à la toxicité du traitement sont toujours observés, en particulier dans les contextes 

d’escalade de dose. On distingue les effets secondaires qui se produisent pendant le traitement et les 

quelques semaines qui suivent, dits «aigus». Et les effets secondaires qui peuvent apparaître plusieurs 

mois/années après la fin du traitement, appelés effets « tardifs ». Cette différence d’apparition dans le 

temps est liée à la vitesse variable de prolifération des tissus. Les effets secondaires diffèrent largement 

d’une personne à l’autre selon la localisation et le volume irradié, la dose délivrée, la radiosensibilité 
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individuelle du patient et son état général. Les effets secondaires tardifs de la radiothérapie externe 

peuvent apparaître après la fin du traitement, au niveau urinaire, digestif ou sexuel. Au niveau digestif, il 

est possible que des saignements apparaissent dans les selles (on parle de rectorragies).  Bien que la 

toxicité gastro-intestinale (GI) soit relativement réduite par l'introduction de techniques fortement 

conformationelles, les taux de toxicité génito-urinaire (GU) restent relativement stables. Comme 

l'indique le projet «Quantitative Analysis of Normal Tissue Effects in the Clinic (QUANTEC) « une-réponse 

similaire à celle de la toxicité gastro-intestinale est loin d'être établie pour la toxicité GU.  

 

La compréhension de la relation dose-volume avec la toxicité urinaire et le développement de modèles 

prédictifs fiables est d'une importance primordiale. La prédiction de toxicité peut être utile pour 

informer les patients sur les complications possibles liées au traitement et pour aider les cliniciens à 

mieux adapter le traitement aux caractéristiques du patient avec l'objectif de diminuer le risque d'effets 

secondaires. Cependant, la modélisation de la toxicité urinaire est un problème difficile, non seulement 

en raison de la variété des symptômes associés, mais aussi en raison des limites des descripteurs de dose 

et des difficultés à identifier les régions potentiellement responsables de ces symptômes. La vessie, par 

exemple, présente d'importantes variations inter fraction de forme, causant des incertitudes 

géométriques et de dose qui limitent la possibilité de modéliser avec précision la réponse dose-volume. 

Une autre structure potentiellement impliquée est l'urètre intra-prostatique qui reste, cependant, 

largement inexplorée dans la littérature en raison de la difficulté inhérente à être identifiée sur l’examen 

de planification (tomodensitométrie 3D ou scanner CT). Bien qu'il y ait des évidences d’implication de 

l’urètre dans la curiethérapie de cancer de la prostate ceci n'a pas encore été montré dans la 

radiothérapie externe. La quantification de la dose délivrée à l'urètre peut donc améliorer notre 

compréhension de la toxicité urinaire ou au moins certains des symptômes, mais nécessite 

l'identification de cet organe dans les images de planification. 

 

Afin d’expliquer la toxicité urinaire, plusieurs études utilisent l'histogramme dose-volume (HDV) de la 

vessie entière sans un consensus clair. Les modèles prédictifs de toxicité généralement basés sur HDV, 

réduisent la distribution de dose 3D dans l'organe à une représentation unidimensionnelle de la relation 

dose-volume. L'information spatiale est donc perdue, ignorant la variabilité locale de la distribution de la 

dose 3D, ce qui peut limiter les capacités de prédiction. Les modèles HDV supposent que l'organe est 

homogène en termes de radiosensibilité et de statut fonctionnel. En fait, certaines manifestations 

individuelles de dysfonctionnement urinaire peuvent être liées à l'irradiation de régions spécifiques des 

voies urinaires inférieures, à savoir l'urètre et le col de la vessie, non expliquées par les méthodes 

traditionnelles HDV.  

 

Cette hypothèse de radiosensibilité hétérogène intra-organe, a déclenché aujourd’hui une évolution 

méthodologique des approches de prédiction qui ne considèrent plus l'organe en entier, mais qui 

nécessitent l’analyse des sous-organes avec des modèles prédictifs plus sophistiqués qui intègrent des 

descripteurs des distributions de dose 3D. En ce qui concerne la toxicité urinaire, l'analyse de la 

distribution locale de la dose à des échelles spatiales plus fines, peut améliorer notre compréhension de 

la symptomatologie urinaire après RT. Jusqu'à présent, seulement un petit nombre d'études ont cherché 

à étudier l'effet local de dose-volume dans la vessie fournissant quelques évidences de radiosensibilité 
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intra-organe, quasi-hétérogène, tandis que le rôle de l'urètre reste à démontrer. Démêler la relation 

entre la dose locale à la vessie et l'urètre et la toxicité urinaire, peut être traduit en recommandations 

pour la planification du traitement dans la pratique clinique. 

 

En partant des modèles globaux qui utilisent la dose aux organes entiers et en allant vers des méthodes 

plus locales, qui considèrent des sous-organes, cette thèse vise à améliorer notre compréhension de la 

toxicité urinaire après irradiation prostatique. Plus précisément, les objectifs de cette thèse sont les 

suivants : 

1. Évaluer l’implication de l'urètre  dans la toxicité urinaire.  

2. Évaluer l’implication de sous-parties spécifiques de la vessie et de l'urètre dans la toxicité 

urinaire. 

3. Étudier le potentiel d'une amélioration complémentaire de la prédiction en exploitant de 

nouvelles méthodes d'apprentissage automatique.  

 

Afin d'évaluer la contribution de l’urètre à la toxicité urinaire, il a été nécessaire d'identifier cette 

structure sur la planification CT-images des patients traités par radiothérapie externe. Pour ce faire, nous 

avons proposé une approche de segmentation multi-atlas permettant d’identifier et segmenter avec 

précision l'urètre sur les images CT. L'atlas se compose d'un ensemble d'images CT de patients traités par 

curiethérapie, où l'urètre est visible grâce à l'utilisation d'une sonde urinaire. Pour un nouveau patient, 

les caractéristiques géométriques sont extraites de l'image à segmenter et comparées aux individus de la 

base de données. L'urètre pour ce nouveau patient est, alors, défini en combinant les urètres des atlas 

les plus semblables dans un processus de fusion pondérée. 

 

Différentes approches peuvent être utilisées pour évaluer les relations dose-toxicité à des échelles 

spatiales plus fines. Tout d'abord, une analyse de la dose-sur la surface (DSM) de la vessie a été effectuée 

pour différents symptômes urinaires. Les résultats ont été comparés aux études précédentes qui 

utilisent les DSM afin d'évaluer l'impact des différentes cohortes dans l'identification des sous-régions 

radiosensibles. Cette analyse, limitée à la surface de l'organe, a été suivie par l'exploitation de l'ensemble 

de la distribution de la dose de planification 3D dans la vessie et l'urètre sans des hypothèses préalables 

quant à l'emplacement des régions à risque. Une nouvelle approche basée sur l'analyse de la carte 3D 

dose-volume (DVM) a ainsi été proposée permettant l'exploration de la relation dose locale-effet, au 

niveau du voxel. Cette méthode, validée rigoureusement, requiert plusieurs étapes : i) une normalisation 

spatiale des anatomies vers un référentiel commun, ii) la production d’une cartographie des doses à 

analyser et, iii) une méthodologie fiable pour effectuer l'analyse statistique locale. 

 

La prédiction de la toxicité urinaire peut être améliorée non seulement en identifiant les descripteurs 

locaux de la dose qui seraient plus prédictifs que les descripteurs globaux (organe entier), mais aussi en 

analysant de façon fiable des données complémentaires disponibles, y compris dosimétriques, cliniques 

et biologiques. La majorité d’études existantes s’appuient sur des approches traditionnelles de 

régression (p. ex. régression logistique ou régression de Cox). Ces procédures, bien qu'elles soient 

couramment utilisées en raison de leur interprétablilté (valeurs p et intervalles de confiance), peuvent 

ne pas prendre en compte les interactions entre les variables, ce qui diminue leur capacité prédictive. 
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Des études récentes suggèrent que d’autres stratégies plus modernes peuvent donner des meilleurs 

résultats que les méthodes conventionnelles de modélisation prédictive. Les techniques d'apprentissage 

automatique, par exemple, peuvent potentiellement augmenter la prédiction de la toxicité car elles 

s'appuient sur des exemples informatifs antérieurs. Néanmoins, parmi la multitude de méthodes 

existantes il n’y a pas une évidence claire sur des méthodes plus performantes que d’autres, n’y a pas 

par ailleurs d’orientation claire sur leur utilisation dans ce contexte car leur application n'est pas simple  

Une étude comparative entre différentes techniques d’apprentissage automatique a été effectuée afin 

de fournir des éléments sur les avantages et inconvénients de différents classifieurs dans le cadre de  la 

prédiction de la toxicité urinaire. 

 

Cette thèse est structurée autour de plusieurs publications dans des revues et conférences 

internationales, des travaux soumis et des travaux en préparation, à savoir : 

 

 Le chapitre 1 présente le contexte clinique et la modélisation de la prédiction de la toxicité 

urinaire après irradiation prostatique. Nous commençons par une description du cancer de la 

prostate et des options de traitement disponibles. Nous présenterons plus précisément les 

différentes techniques de radiothérapie et leurs limitations ainsi que les effets secondaires les 

plus fréquents en identifiant en particulier les symptômes urinaires. Ensuite, nous présentons les 

modèles traditionnels 1D DVH et identifiant leurs avantages et limites. Cette partie est suivie 

d'une description de deux nouvelles méthodologies qui permettent d’analyser les distributions 

de doses à des échelles spatiales plus fines, d’une part, basées sur la construction de 

cartographies 2D de la dose-(DSM) et, d’autre part, en exploitant la distribution de dose 3D pour 

une cartographie tridimensionnelle (DVM). Enfin, les objectifs de la thèse sont expliqués. 

 Le chapitre 2 présente une méthodologie pour segmenter automatiquement l'urètre intra-

prostatique sur l'image de planification CT. Tout d'abord, la méthodologie de segmentation 

multi-atlas est détaillée, y compris la construction des atlas et la segmentation finale de l'urètre. 

Ensuite, une évaluation de la méthode est réalisée en comparant à des méthodes existantes 

pour estimer la position de l'urètre. La dose à l'urètre est également calculée et comparé à la 

dose à la prostate. 

 Le chapitre 3 décrit une méthodologie permettant de caractériser spatialement la distribution de 

la dose à la surface de la vessie à l'aide de DSM. Le premier objectif de ce chapitre est 

d'améliorer les approches existantes pour l'analyse des DSM et de proposer une méthodologie 

qui permettrait l'exploration de toute la surface de la vessie. Le deuxième objectif est d'identifier 

les sous-surfaces liées aux symptômes de la vessie qui sont potentiellement plus prédictives que 

l'ensemble de la vessie. Le troisième objectif est de comparer les résultats avec les études 

précédentes basées sur les DSM de la vessie et d'estimer le niveau d'accord avec nos 

observations. 

 Le chapitre 4 propose une méthodologie basée sur les cartographies 3D de la dose (DVM) et qui 

permet une analyse statistique par voxel. Cette méthodologie appliquée à la région pelvienne a 

permis d'étudier la relation entre la dose locale et la toxicité dans la vessie et l'urètre. Tout 

d'abord, nous présentons la méthodologie de recalage rigide multi-organes qui permet la mise 

en correspondance anatomique de toute la population dans un seul espace commun de 
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référence. Ensuite les distributions des doses son déformées élastiquement, en suivant la 

transformation préalablement calculée, pour ensuite les comparer voxel par voxel permettant 

l'identification des sous-régions où des différences statistiquement significatives de la dose 

existent. Les sous-régions sont propagées à l'espace original de chaque patient et les respectifs 

DVH des sous-régions sont analysés et comparés aux DVH de la vessie. Enfin, la généralisation et 

la capacité prédictive de ces modèles ont été évaluées sur une population externe et 

indépendante. 

 Le chapitre 5 évalue plusieurs algorithmes d'apprentissage automatique pour la prédiction de la 

toxicité urinaire en utilisant des données dosimétriques (DVH) et cliniques. Dans cette étude 

exploratoire, la performance de ces classifieurs a été évaluée sur la vessie en totalité afin de les 

comparer aux modèles traditionnels.  Les problèmes de déséquilibre de la base de données ont 

été abordés à l'aide de quatre techniques de sur-échantillonnage synthétique différentes.  

 Le chapitre 6 présente une discussion générale sur les principaux résultats et les contributions de 

cette thèse suivie des perspectives et des propositions sur l'orientation des études futures dans 

la prédiction de la toxicité urinaire après irradiation prostatique. 

 

Les principales contributions de cette thèse sont donc :  

 le développement d'une méthode de segmentation multi-atlas pour identifier l'urètre 

prostatique sur les images CT de planification 

 une méthodologie pour cartographier avec précision les distributions de doses 3D à travers 

une population d'individus permettant d'effectuer des comparaisons par voxel des 

distributions de dose 3D 

 l'identification et la validation de sous-régions spécifiques liées aux symptômes dans la 

perspective de réduire le risque de toxicité lors d’une planification spécifique-patient. 

 l’ouverture  méthodologique vers une amélioration de la prédiction de la toxicité urinaire à 

l'aide de méthodes d'apprentissage automatique et  d’augmentation de données. 
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Introduction 

 
Prostate cancer is the second most frequent malignancy among men and the fifth leading cause of 

cancer death worldwide. In 2018, this amounted to 1.3 million new cases and 359,000 deaths around the 

world from this disease. In France, prostate cancer is the most frequent type of cancer in men. The 

estimated number of cases for 2018 is 65,000 and the estimated number of deaths is 9,000. 

 

A curative treatment modality for prostate cancer, which has emerged as a clinical standard, is external 

beam radiotherapy (EBRT). The aim of this technique is to deliver, over several treatment sessions, a high 

dose of ionizing radiation to the target volume, namely the prostate and the seminal vesicles. The proven 

benefit of increasing the dose to the prostate, in terms of local control and overall survival, is confined by 

the presence of healthy organs-at-risk (OAR), such as the bladder and the rectum. Radiation-induced 

damage to healthy tissues may result to significant adverse events of urinary, rectal or sexual nature.  

 

Advances in technology and imaging, over the past decades, together with the introduction of modern 

treatment techniques, such as intensity-modulated radiotherapy (IMRT) and image-guided radiotherapy 

(IGRT), enabled dose escalation by geometrically shaping the dose beams around the target, whilst 

reducing the volume of normal tissues exposed to high radiation doses. While gastrointestinal (GI) 

toxicity has been relatively reduced by the introduction of highly conformal image-guided radiotherapy 

techniques, genitourinary (GU) toxicity rates remain relatively stable. As stated by the Quantitative 

Analysis of Normal Tissue Effects in the Clinic (QUANTEC) project, a similar dose-response to that of GI 

toxicity is far from being established for GU toxicity.  

 

Understanding the dose-volume relationship with urinary toxicity and developing reliable predictive 

models is of paramount importance. Predicting toxicity probability may be useful for informing the 

patients about possible treatment complications and helping clinicians to better tailor the treatment to 

patient’s characteristics with the objective to decrease the risk of side effects. However, urinary toxicity 

modeling is a challenging issue, not only due to the variety of associated irritating or obstructive 

symptoms, but also owing to the limitations of dose descriptors and difficulties identifying the regions 

potentially responsible for those symptoms. The bladder, for example, presents important inter-fraction 

shape variations, causing geometric and dose uncertainties that limit the possibility of accurately 

modeling the dose-volume response concerning urinary toxicity. Another potentially critical structure is 

the intra-prostatic urethra which remains, however, largely unexplored in the literature due to inherent 

difficulty to be identified on the planning computed tomography (CT) scan. Although there is evidence in 

prostate cancer brachytherapy that some urinary symptoms are related to urethra damage this has not 

yet been shown in EBRT. Quantifying the delivered dose to the urethra may therefore improve our 

understanding of urinary toxicity or at least some of the related symptoms, , but requires the 

identification of this organ in the planning CT images. 
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Several studies used the whole bladder’s dose-volume histogram (DVH) in an attempt to explain 

radiation-induced toxicities resulting in multiple DVH recommendations without any clear consensus. 

Predictive models of toxicity commonly based on DVH, reduce the 3D dose distribution within the organ 

to a unidimensional representation of the dose-volume relationship. The spatial information is, therefore, 

lost, ignoring the local variability of the 3D dose distribution, which may limit the prediction capabilities. 

DVH models assume that the organ is homogeneous in terms of radiosensitivity and functional status. In 

fact, some individual manifestations of urinary dysfunction may be linked to the irradiation of specific 

regions of the lower urinary tract, namely the urethra and the bladder neck, in which case DVH analysis 

of the entire bladder may not be sufficient to explain urinary toxicity.  

 

This hypothesis of heterogeneous intra-organ radiosensitivity, in various anatomical sites, has induced a 

methodological evolution from the global, whole-organ-based philosophy towards more sophisticated 

predictive models that integrate local spatial descriptors of the dose distributions. With respect to 

urinary toxicity, analysis of the local dose distribution at lower spatial scales, may improve our 

understanding of urinary symptomatology after RT. To date only a small number of studies have sought 

to investigate the local dose-volume-effect in the bladder providing some evidence of quasi-

heterogeneous intra-organ radiosensitivity while the role of urethra remains in obscurity. Unraveling the 

relationship between the local dose to the bladder and the urethra and urinary toxicity, may be 

translated into recommendations for treatment planning in clinical practice. 

 

Going beyond the global, whole-organ-based models towards more local, sub-organ approaches, this 

thesis aims to improve our understanding of radiation-induced urinary side-effects and ameliorate the 

prediction of urinary toxicity following prostate cancer radiotherapy. More specifically, the objectives of 

this thesis are: 

1. To assess the contribution of urethra damage to urinary toxicity.  

2. To evaluate the involvement of specific bladder and urethra sub-parts in urinary toxicity. 

3. To investigate the potential of further increasing prediction by exploiting data through new 

machine learning methods.  

 

In order to assess the contribution of urethra damage to urinary toxicity, it was necessary to identify this 

structure on the planning CT-images of patients treated with EBRT. In this regard, we devised a multi-

atlas segmentation approach to accurately identify and segment the otherwise undetectable urethra, on 

CT images. The atlas consists of a set of CT images of patients treated by brachytherapy, where the 

urethra is visible thanks to the use of an urinary probe. For a new patient, geometric features are 

extracted from the image to be segmented and compared to the features from the atlas database. The 

urethra for this new patient is, then, defined by combining the urethras of the most similar atlases in a 

weighed-fusion process. 

 

Different approaches can be used to evaluate the dose-toxicity relationships in lower spatial scales with 

the objective of identifying anatomical regions correlated with urinary toxicity that are potentially more 

predictive than the dose to the whole bladder. First, a dose-surface map (DSM) analysis of the dose to 
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the surface of the bladder was performed to explore the local dose-response relationship for different 

urinary symptoms. The results were compared with previous DSM studies in order to evaluate the 

impact of different cohorts in the identification of radiosensitive subregions. This analysis, limited to the 

organ surface, was followed by the exploration of the entire 3D planning dose distribution in the bladder 

and the urethra without making any prior assumptions regarding the location of regions at risk. A novel 

approach based on 3D dose-volume map (DVM) analysis was thus proposed, allowing the investigation 

of the local dose-effect relationship at voxel level. The different pre-processing, including: i) an accurate 

spatial normalization to a single coordinate system, ii) the mapping of the doses to be analyzed and, iii) a 

reliable methodology to perform local statistical analysis, were thoroughly validated.  

 

Urinary toxicity prediction may be improved not only by identifying local dose descriptors that are more 

predictive than global (whole-organ) dose descriptors but also by reliably analyzing the plethora of 

complex available data, including dosimetric, clinical and biological data. The vast majority of existing 

studies are based upon traditional regression approaches (e.g. logistic or Cox regression). These 

procedures, although commonly used due to their interpretability (P-values and confidence intervals), 

they may overlook the interactions among variables, resulting in modest prediction performance. Studies 

suggest that more contemporary strategies show promising results and perform better compared to 

conventional predictive modelling methods. Machine learning techniques can potentially increase 

toxicity prediction as they rely on previous informative examples. Nevertheless, a multitude of methods 

are emerging without a clear advantage of their use in this context as they application is not 

straightforward. A comparative study between different techniques was performed to provide some 

insights on the advantages and disadvantages of different classifiers in particular for urinary toxicity 

prediction.  

 

This thesis is structured based on works published in international journals and conferences, works 

submitted and works in preparation for publication, which have all been co-authored. The thesis is 

divided in four parts and contains six chapters organised as follows: 

 

Part I (Chapter 1) 

 Chapter 1 presents the clinical context and the state-of-the-art predictive modeling for 

urinary toxicity following prostate radiotherapy. We start with a brief description of prostate 

cancer and the available treatment options. We will present more precisely the different 

techniques for radiotherapy and their limitations as well as the common side-effects 

emphasizing on the urinary symptoms. Then, we present the traditional 1D DVH-based 

models and we discuss their limitations. This is followed by a description of two emerging 

methodologies for analyzing the dose distributions at lower spatial scales, based on the 

construction of 2D dose-surface maps (DSM) and 3D dose-volume maps (DVM). Finally, the 

objectives of the thesis are explained. 

Part II (Chapter 2)  

 Chapter 2 presents a methodology for automatically segmenting the intra-prostatic urethra 

on the planning CT image of EBRT-treated patients. First, the entire framework of the multi-

atlas-based segmentation method is detailed, from the atlas construction to the final urethra 
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segmentation. Then, the method’s accuracy is evaluated with respect to the ground truth 

urethra and compared with existing surrogate models for estimating urethra’s position. The 

dose to the urethra is also computed and compared to the dose delivered to the prostate. 

Part III (Chapter 3 and Chapter 4) 

 Chapter 3 describes a methodology for spatially characterizing the dose distribution on the 

bladder surface using DSMs. The first goal of this chapter is to improve the existent 

approaches for analyzing DSMs and propose a methodology that would allow the 

exploration of the entire bladder surface. The second goal is to identify symptom-related 

sub-surfaces of the bladder that are potentially more predictive than the whole bladder DVH. 

The third goal is to compare the results with previous bladder DSM studies and estimate the 

level of agreement between these studies and our observations. 

 Chapter 4 presents a methodology for analyzing DVMs via voxel-wise comparisons, in order 

to investigate the local dose-effect relationship in the bladder and the urethra. First we 

present a robust multi-organ non-rigid registration strategy for anatomically aligning the 

population and propagating the dose distributions to a common space. Then, the DVMs of 

patients with and without toxicities were compared voxel-by-voxel allowing the 

identification of symptom-related subregions where statistically significant dose differences 

exist. The subregions are propagated to the native space of each patient where sub-region 

DVHs where computed and their discriminative power with respect to the DVH of the whole 

bladder was evaluated. Finally, the generalizability and the predictive capabilities of these 

models were assessed through external validation on a large, independent population. 

Part IV (Chapter 5) 

 Chapter 5 evaluates several machine learning algorithms for prediction of urinary toxicity 

using dosimetric and clinical data. The performance of these classifiers was evaluated on the 

original unbalanced dataset and also using four different synthetic oversampling techniques.  

 

 Chapter 6 includes a general discussion on the main results and the contributions of this 

thesis, followed by the perspectives and suggestions on the direction of future studies in the 

prediction of urinary toxicity after prostate cancer radiotherapy. 

 

The main contributions of this thesis are therefore:  

 the development of a multi-atlas segmentation method for identifying the prostatic urethra 

on the planning CT images 

 a methodology for accurately mapping the 3D dose distributions across a population of 

individuals allowing to perform voxel-by-voxel comparisons of the 3D dose distributions 

 the identification and validation of specific symptom-related subregions with the  

perspective of reducing the risk of  toxicity though patient-specific treatment planning. 

 paving the way for further increasing the prediction of urinary toxicity using machine 

learning methods and data augmentation techniques. 
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Part I 

Clinical context, state-of-the-art models 

and objectives  
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1 Clinical and scientific context and problem definition 

 
 
 

This chapter presents the clinical and scientific context of this work. We will first discuss some 

general points about prostate cancer and the available therapeutic options and more specifically 

the external beam radiotherapy. We discuss its principle and limitations. We continue with a 

description of the possible side-effects emphasizing on the urinary symptoms. In the second part 

we describe the state-of-the-art predictive modeling for urinary toxicity following prostate 

radiotherapy. We first present the traditional whole organ DVH-based models and we discuss 

their limitations. Next, we describe two emerging methodologies for analyzing the dose 

distributions at lower spatial scales allowing to overcome some of the limitations of DVH-based 

models. These approaches are based on the construction of 2D dose-surface maps (DSM) 

coupled with pixel-wise comparisons and 3D dose-volume maps (DVMs) combined with voxel-

wise comparisons. Their methodological challenges are also discussed. Finally, the motivation 

and objectives of this thesis are explained. 
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1.1 Prostate cancer 

1.1.1 Prostate and prostate cancer 

The prostate is a gland formed of both muscular and glandular tissues, surrounded by a 3-4 mm thick 

capsule. As part of the male reproductive system, prostate’s most important function is the production 

of a fluid, containing several enzymes such as prostate specific antigen (PSA) that, together with sperm 

cells from the testicles and fluids from other glands, makes up semen. Prostate is located in the pelvic 

cavity, anterior to the rectum and at the base of the bladder, surrounding the prostatic urethra (the 

portion of the urethra that runs within the prostate), as shown in Figure 1.1. The seminal vesicles, two 

irregularly-shaped glands, are connected to the base of the prostate. Various nerves located around the 

prostate are implicated in the erection mechanism.  

 

 

Figure 1.1 Illustration of the anatomy of the male reproductive system  

(source: www.bladderclinic.com.au) 

 

Prostate size changes through life, growing mostly during puberty, due to the rise of male hormones. For 

a healthy adult the average prostate dimensions are 4 cm in width and 3 cm in height and weight 20g. 

Around 80% of men over the age of 40 will undergo prostate hypertrophy, possibly compressing the 

urethra, leading to urinary dysfunctions. This hypertrophy, commonly called benign prostatic 

hyperplasia, is part of the natural evolution of prostate, but it can also be a sign of cancer. 

 

Prostate cancer is the second most frequent type of cancer among men and the fifth leading cause of 

cancer death worldwide [1,2].In France, it is the most frequent type of male cancer with estimated 
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number of cases for 2018 being 65,000 and the estimated number of death 9,000. About 42% of fifty-

year-old men have developed histological evidence of cancerous cells in the prostate; 9.5% of these will 

develop an aggressive form of cancer, and 2.9% will die from prostate cancer [3]. Medical treatments are 

therefore needed to prevent or delay the tumor from spreading outside the prostate. For a complete 

review on prostate cancer diagnosis, staging and treatments, see guidelines of the European Association 

of Urology (EAU) [4,5].  

 

1.1.1.1 Diagnosis and staging of prostate cancer 

Prostate cancer can be diagnosed through digital rectal examination (DRE) of the prostate and a blood 

test to measure the levels of PSA. An annual checkup is advised for men aged between 50 and 75 years. 

DRE is the standard way to define texture, shape, size and tenderness of the prostate gland. It is simple 

and complication-free, but subjective as it depends on the examiner [6]. PSA is a glycoprotein produced 

in the prostate and is used as marker for prostate cancer. Most healthy men have PSA levels below 4 

ng/ml, and it usually goes above 4 when prostate cancer develops. However, DRE and PSA test have 

relatively low sensitivity, and they do not differentiate between aggressive and indolent disease [7]. 

Although the limited prognostic value of PSA, measurements of free-to-total (f/t) PSA ratio has improved 

the identification of patients with aggressive disease [8].  

 

When a blood test shows high PSA levels or when an abnormal prostate or a lump is found through DRE 

examination, prostate biopsy might be performed. Definitive diagnosis is only confirmed after 

histopathological verification of adenocarcinoma in prostate biopsy specimens.  The Gleason score is 

used to evaluate the prognosis of men with prostate cancer using samples from a prostate biopsy. 

Gleason grade tells how aggressive the cancer is, in other words, how likely it is to grow and spread 

outside the prostate capsule.  

 

In the early stage, the cancer is located within the prostate but, with disease progression, it can expand 

to neighboring organs and tissues as well as more distant organs such as the lymph nodes and the bones. 

About 4% of prostate cancer patients already have metastases at the moment of diagnosis. Tumor 

extension is usually expressed as being at certain T stage using the tumor, nodes and metastasis (TNM) 

classification system according to the Union for International Cancer Control (UICC) [9]. There are four T 

stages with various subcategories indicating tumor size and location:  

 

 T1: tumor present, but not detectable with imaging or clinically: 

– T1a: Tumor found in less than 5% of prostate tissue resected (for other reasons); 

– T1b: Tumor found in more than 5% of prostate tissue resected; 

– T1c: Tumor found in a needle biopsy performed due to an elevated PSA level; 

 T2: tumor can be felt (palpated) on DRE examination, but it still appears to be confined to the 

prostate: 

– T2a: Tumor is in half or less than half of one of the prostate glands’ two lobes; 

– T2b: Tumor is in more than half of one lobe, but not both; 
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– T2c: Tumor is in both sides of the prostate lobes but still inside of the prostatic capsule. 

 T3: tumor has spread throughout the prostatic capsule (if it is only half-way through, it is still 

classed under T2): 

– T3a: Tumor has spread through the capsule but not to the seminal vesicles; 

– T3b: Tumor has invaded one or both seminal vesicles. 

 T4: the tumor has invaded other nearby structures. 

 

Among the most commonly used methods for risk stratification, the most commonly used is the 

grouping developed by D’Amico et al. [10] This score is based on Gleason score, T stage and PSA levels, 

to classify patients diagnosed with prostate cancer into low, intermediate and high risk categories as 

follows: 

 Low risk: T1 to T2a stages, Gleason score ≤ 6, PSA ≤ 10 ng/mm. 

 Intermediate risk: T2b stage or Gleason score = 7 or 10 ng/mm ≤ PSA ≤ 20 ng/mm. 

 High risk: T3 to T4 stages or Gleason score ≥ 8 or PSA > 20 ng/mm. 

 

Once the stage has been determined, different treatment options are considered. 

 

1.1.2 Treatment options for prostate cancer 

Different therapeutic options for localized prostate cancer exist that can be used in isolation or in 

combination. Depending on the age of the patient, his life expectancy, the aggressiveness of the cancer 

or the advantages /disadvantages of the therapies, the most appropriate treatment is chosen 

considering the therapeutic objective. This may include suppressing the tumor or metastases, reducing 

the risk of recurrence and slowing the tumor progression [11]. The main treatment modalities are active 

surveillance, surgery, radiotherapy (external or brachytherapy), and medication treatments such as 

hormonal therapy. More recent techniques like High Intensity Focused Ultrasound (HIFU) have also been 

developed. Hereinafter, the different therapeutic options are described according to their frequency of 

prescription. 

 Radical prostatectomy (RP) is a surgical treatment for prostate cancer which consists of a total 

removal of the prostate gland and seminal vesicles, and may be accompanied by lymph node 

dissection.  It is one of the standard treatments for localized prostate cancers with low and 

intermediate risk of recurrence. It can also be proposed in certain cases of localized high-risk, 

locally advanced cancers with lymph node involvement. Radiation therapy and / or hormonal 

therapy may supplement prostatectomy. The most common side effects of total prostatectomy 

are urinary incontinence, related to impaired functioning of the bladder and sphincter muscles, 

and erectile dysfunction. This treatment also implies a definite impossibility to ejaculate. 

 Radiotherapy consists of delivering high doses of radiation to the cancer cells in order to prevent 

them from multiplying. Radiation can be administrated in two ways:  

– The source of radiation is located outside of the body (external), delivered in the form of 

photons (X-rays from linear accelerator machines), electrons, and more rarely other particles 

such as protons. It is one of the reference treatments for localized cancers at low and 
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intermediate risk. Coupled with hormone therapy, it is the recommended treatment 

modality for localized high-risk cancers and locally advanced cancers. It can also complete a 

prostatectomy to reduce the risk of recurrence. Irradiation of healthy tissues adjacent to the 

prostate can cause a variety of side-effects. 

– The source of radiation is located inside the body (brachytherapy) via the implantation of 

radioactive seeds within the prostate gland. These radioactive sources emit radiation that 

destroys the surrounding malignant cells. Because the gradient of dose drops sharply away 

from radioactive sources, brachytherapy is indicated for localized cancers with a low risk of 

recurrence.  Side-effects are common due to prostate inflammation and urethra damage. 

 Hormonal therapy, also called androgen deprivation therapy (ADT) acts by suppressing the levels 

of male hormones (androgens) which stimulate prostate cancer cells to grow. The main 

androgens are testosterone and dihydrotestosterone. Lowering androgen levels or stopping 

them from getting into prostate cancer cells often makes prostate cancers shrink or delay its’ 

growth. However, hormonal therapy alone is not curative. Combined with radiation therapy, it is 

the gold standard for high-risk localized prostate cancers. It is also used in case of metastatic 

cancers. The most common side effects of hormonal therapy are hot flushes, erectile 

dysfunction, changes in physical appearance, and osteoporosis. 

 Deferred treatment (active surveillance/watchful waiting): In some cases, treatment of localized 

prostate cancer may be deferred to avoid toxicity due to other treatment. There are two distinct 

strategies for conservative management that aim to reduce overtreatment: active surveillance 

and watchful waiting. The aim of active surveillance is to reduce overtreatment in patients with 

clinically confined, very-low-risk cancer, without renouncing curative treatment, as happens with 

watchful waiting [12]. Active surveillance is only proposed for highly selected low-risk patients. 

The surveillance of cancer evolution is carried out through frequent DRE, blood tests to measure 

the PSA levels, biopsies and MRI. Watchful waiting is recommended when cancer progresses 

slowly, or for older men with a high incidence of comorbidities and other causes of mortality [13]. 

 High-intensity focused ultrasound of the prostate (HIFU) consists of focused ultrasound waves to 

the prostate allowing high sound pressures to be delivered to a focal point in order to kill tumor 

cells via heating and cavitation [14]. The main treatment device is the Ablatherm®, which 

combines an ultrasound transducer and an echography probe introduced to the rectum during 

the operation. The goal of HIFU is to heat malignant tissues above 65°C so that they are 

destroyed by coagulative necrosis, under general or spinal anesthesia. The procedure is time-

consuming, with about 10 g prostate tissue treated per hour. This technique is advised for 

patients aged over 70 years with low-risk cancers, but is mostly used in the case of local 

recurrence following radiotherapy [15]. 

In this thesis, we will focus on external beam radiotherapy for the treatment of prostate cancer. This 

modality is detailed in the following section.  
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1.2 External beam radiation therapy (EBRT) 

Over the past few decades, external beam radiotherapy (EBRT) has advanced by leaps and bounds and is 

considered today a standard definitive treatment option for localized prostate cancer. Improvements in 

imaging and computing have led to a number of technical advances in planning and delivery of the 

treatment (Figure 1.2). These advances have permitted more precise and conformal delivery of doses of 

radiation to the prostate, thereby improving the therapeutic ratio.  

 

 
Figure 1.2 The evolution of EBRT 

 
More than two thirds of the patients diagnosed with this prostate cancer are treated with EBRT, often 

combined with a concomitant treatment (e.g. surgery or hormonal therapy). During EBRT, ionizing rays 

charged with high energy photons are delivered to the tumor aiming to maximize local control whilst 

sparing neighboring organs (mainly the rectum and the bladder). An optimal irradiation dose is, 

therefore, the cornerstone of a successful treatment in terms of local control of the disease and the 

overall survival of the patient.  

 

The radiation dose is expressed in Grays (Gy), which indicates the amount of radiation energy absorbed 

by 1 kilogram of human tissue (1 Jule/Kg). The total prescribed dose is delivered in several sessions in 

order to allow healthy tissue to recover and increase tumor damage by reoxygenation [16]. For example, 

if 80 Gy are prescribed to the prostate in a convenient treatment schedule, treatment can be completed 

in 40 sessions in a period of eight weeks, with a fractionation scheme of two Gray per fraction (2 

Gy/fraction). 

 

Before the treatment, the radiotherapy team will carefully plan the optimal radiation scheme (dose, 

fractionation and angles of the beams). This process, known as treatment planning, starts by acquiring a 

computer tomography (CT) scan of the anatomical region to be treated, namely the pelvic region for 

prostate cancer irradiation. The different structures shown on the CT scan are then delineated by an 

expert (e.g. prostate, seminal vesicles, bladder and rectum). This information is imported to a treatment 
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planning system (TPS), which is a software used to generate the irradiation scheme. The prescribed dose 

is a three-dimensional map that relates every point within patient with a level of dose. The following 

step is then to set up the linear accelerator to deliver the planning dose using the selected fractionation 

scheme, whereby each treatment fraction lasts only a few minutes. During the treatment the patient is 

placed on a table that is below the linear particle accelerator (Figure 1.3). Fiducial markers can be 

implanted on the patient's skin or prostate to align him at each treatment session. 

 

1.2.1 Radiation techniques 

For intermediate and high risk disease, radical EBRT is standard practice. There are two main types of 

irradiation techniques: three-dimensional conformal radiotherapy (3D-CRT) and intensity modulated 

radiotherapy (IMRT). IMRT with image-guided radiotherapy (IGRT) is nowadays considered as the gold 

standard for external radiotherapy. 

 

 
Figure 1.3 Patient positioned on the linear accelerator  

(source:www.cancer.net) 

 
THREE-DIMENTIONAL CONFORMAL RADIOTHERAPY (3D-CRT) 

In the past, radiation treatment matched the size of the tumor in a “box”-shaped region, meaning that 

adjacent healthy tissue was unavoidably included in the radiation field. Advances in imaging technology 

have made it possible to locate and treat the tumor more precisely. In case of prostate cancer, 

irradiation treatment plan is usually defined by five to nine convergent beams, which conform the target 

volume via the modulation of a multileaf collimator (MLC) located at the linear accelerator output 

(Figure 1.4). This form of irradiation is known as 3D conformal radiotherapy (3D-CRT). 3D-CRT uses a 

planning CT to focus precisely on the tumor region, while trying to spare the healthy surrounding tissue. 

This exact targeting makes it possible to use higher levels of radiation in treatment, which are more 

effective in shrinking and killing tumors. 

 

 



28 
 

 
Figure 1.4 Schematic of multileaf collimator (source:[17]); Individually positioned leaflets shape the beam to the target 

 
INTENSITY MODULATED EXTERNAL-BEAM RADIOTHERAPY (IMRT)  

Intensity-modulated radiation therapy (IMRT) has been considered the most successful development in 

radiation oncology since the introduction of CT to treatment planning [18,19]. Over the past two 

decades, IMRT has supplanted 3D-CRT thanks to its high conformity which facilitates dose escalation and 

improves local control without significantly increasing the risk of morbidity [20,21].  These features make 

it particularly suitable for the treatment of diseases that involve high rates of local recurrence and 

complications [22]. A comparison of planning treatments using 3D-CRT and IMRT is shown in Figure 1.5.  

 

 

 
Figure 1.5 Treatment plan for prostate cancer: 3D-CRT (left side) and IMRT (right side)

 

 
During the irradiation process with IMRT, the fluence (photon amount per surface unit) is no longer 

homogeneous but is modulated using a MLC, by continuously adapting the beams to the shape of the 

target volume [23]. This allows for a more conformational dose distributions to be delivered within the 

On the top is illustrated an example of CT image and the design of the irradiation field surrounding target volume and on the bottom the 
resulting planning 3D dose distributions for the given irradiation field (source: www.mistir.info). 
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treatment field, which may fit complex structures. This technique is particularly useful to spare 

neighboring organs at risk. The dose is derived by an inverse-planning software that starts from the end-

product (i.e. desired dose) and ends with the input (i.e. fluence profile) [24]. The desired dose is 

represented as a mathematical cost function to be optimized with some constraints. The input 

parameters of this function include leaf positions, some weights, and the fluence matrix.  

 
IMAGE-GUIDED RADIOTHERAPY (IGRT) 

Different anatomical references, such as skin markers, can be used to allow for reproducible patient 

positioning through the treatment sessions with respect to the irradiation field.  However, as the patient 

might experience anatomical changes, such as weight loss, the effectiveness of these markers is limited 

and may lead to setup errors [25].  

 

Portal imaging systems have developed with the introduction of linear accelerators [26].  A digitally-

reconstructed radiograph (DRR) (based on the planning CT) is generated by simulating irradiation in a 

process that mimics the geometry of the treatment. This image allows for bone structure alignment and 

for patient repositioning, which is intended to decrease the amount and frequency of setup errors. 

However, repositioning the patient according to the bone structures does not completely solve the 

problem of geometric uncertainties. Indeed, from one irradiation session to another or even during a 

session in some cases, anatomical variations can occur even in a fixed bone reference system. These 

variations may correspond to displacements / deformations of the target or the organs at risk. In the first 

case, the risk is to under-irradiate the tumor and thus reduce local control. In the second, organs at risk 

can be over-irradiated, increasing the risk of complications [27].  

 

Because of these targeting uncertainties during treatment, the need to precisely locate the clinical target 

and / or OARs, has led to the appearance of new imaging devices integrated into the accelerator. In 

prostate cancer radiotherapy, the term IGRT generally implies the use of imaging that allows tumor 

localization, as opposed to the use of imaging that allows visualization of bone structures only. The 

localization of the tumor can be direct, via 3D imaging showing the soft tissues, or indirect when using 

markers implanted in the prostate [28]. The most common imaging modality used for this purpose is 

cone beam computed tomography (CBCT) and is present on all modern accelerators. This is based on an 

X-ray source of energy kV (more rarely MV) and a 2D detector mounted on the arm of the linear 

accelerator opposite the source. The system rotates around the patient, and the acquisition of a large 

number of 2D projections allows the reconstruction of a 3D image that can be compared to the CT. More 

recently, there has been a shift towards the yield of real-time motion data using non-ionizing radiation 

modalities such as electromagnetic transponders (EMT) and four-dimension (4D) transperineal 

ultrasound (TPUS) [29]. 

 

IGRT has played an important role in the evolution of radiotherapy by reducing the uncertainty of the 

exact position of tumor and OARs, and improving the precision of the delivered dose. IGRT has also 

enabled the development of adaptive radiotherapy based on the assessment of information obtained 

from daily images [25]. 
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EVOLVING TREATMENT TECHNIQUES 

Volumetric modulated arc therapy (VMAT), is a novel type of IMRT technique, which can achieve highly 

conformal dose distributions with improved target volume coverage and sparing of normal tissues, 

compared with conventional radiotherapy techniques [30]. In contrast to static field IMRT, with VMAT 

the radiotherapy machine rotates around the patient in an arc shape. The machine continuously 

reshapes and changes the intensity of the radiation beam as it moves around the body. Giving the 

radiotherapy in this way makes it more accurate and shortens the treatment time. 

 

Another technique, the CyberKnife Robotic Radiosurgery System is a form of targeted radiation therapy 

known as stereotactic body radiotherapy (SBRT). The CyberKnife machine has a robotic arm that moves 

around the treatment couch to deliver doses of radiation from different angles. It continuously identifies 

the exact location of the prostate and makes active corrections for any movement of the prostate 

throughout the course of the treatment by tracking fiducial markers into the organ [31]. The CyberKnife 

may work on a moving target - the prostate - without harming surrounding areas. As a result, the 

procedure may be more comfortable for the patient and radiation delivered may be more accurate. It 

also allows to treat multiple tumor sites at the same time, making it useful for areas of cancer spread. 

 

Magnetic resonance imaging (MRI) machines and linear accelerators have been used separately in the 

care of cancer patients for years. A new era in image-guided technology is rapidly evolving with the 

integration of an onboard MRI with a radiotherapy treatment system, with the emergence of magnetic 

resonance-guided radiation therapy (MRgRT). The integration of these two powerful technologies into 

one machine allows radiation oncologists to track and monitor the movement of tumors during radiation 

delivery, and potentially track radiation response in real-time, without any added radiation dose to the 

patient. We expect significantly decreased target margin and increased target dosage by using online 

adaptive MRI-based linac in the future [32]. 

 

Although most of the current practice of clinical radiotherapy utilizes photon beams, particle therapy 

and, in particular proton therapy, has recently gained interest for the treatment of prostate cancer.  

Given the physical properties of photons, normal tissues surrounding the target volume still receive a 

substantial amount of unwanted dose. The theoretical advantage of proton therapy in reducing radiation 

dose to normal tissue is based on its intrinsic radiation properties. A heavy, charged particle such as a 

proton deposits most of its dose at a prescribed depth in the body with a rapid dose fall-off beyond this 

point. This peak of energy delivery is commonly referred to as the Bragg peak. This means that proton 

therapy can reduce radiation dose delivered to tissues beyond the target compared to photon radiation. 

Although proton and photon particles are deemed to be similarly effective in prostate cancer treatment, 

the interest in proton treatment stems from its potential for lower toxicity and therefore further dose 

escalation [33]. Current evidence has not clearly demonstrated that this theoretical difference translates 

to improved patient outcomes compared to IMRT. However, as proton technology continues to evolve, 

this is an active area of research. 
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1.2.2 Dose-effect relationships in local control 

There is a clear relationship between prostate dose and tumor control [21,34–43]. Tumor control can be 

expressed in terms of two main types of recurrence, namely biochemical and clinical recurrence. As 

shown in Table 1.1 [44], six large randomized trials have demonstrated that increasing the dose to the 

prostate to 74-80 Gy with standard fractionation (1.8–2 Gy), may improve biochemical recurrence-free 

survival and disease-specific survival [21,34–36,42,43].  

 

Table 1.1 Randomized controlled trials evaluating the efficacy of radiation dose escalation for prostate cancer  

(source: [44]) 

Trial 
Number of 
patients 

Dose comparison 
(Gy) 

Outcome 

MD Aderson [36] 301 70 versus 78 
78% versus 59% freedom from biochemical 
or clinical failure 

PROG 95-09 [42] 393 70.2 versus 79.2 32% versus 17% 10-year biochemical failure 

MRC RT01 [21] 843 64 versus 74 
43% versus 55% 10-year biochemical 
recurrence-free survival 

Dutch [43] 664 68 versus 78 54% versus 64% freedom from failure 

GETUG 06 [34] 306 70 versus 80 39% versus 28% biochemical failure 

RTOG 0126 [35] 1532 70.2 versus 79.2 35% versus 20% 8-year biochemical failure 

 
According to the International Commission on Radiation Units and Measurements (ICRU), there are five 

target volumes defined in radiotherapy: gross tumor volume (GTV), clinical target volume (CTV), planning 

tumor volume (PTV), and treated and irradiated volume. CTV represents the main target volume to be 

irradiated in radiotherapy, receiving the prescribed dose. The CTV contains the primary tumor (called 

GTV) and/or sub-clinical malignant tissue that have to be eradicated in order to control the tumor. 3D 

safety margins around CTV define the planning target volume (PTV). This target volume is to ensure CTV 

dose coverage in case of inter- or intra-fraction geometric variations.  

 

Planned dose distributions are usually evaluated by means of dose-volume histograms (DVH). The DVH, 

as show in Figure 1.6, is a graph representing the volume of a structure receiving a dose equal to higher 

than a given value (cumulative DVH). It allows volumetric quantification of the dose distribution but it 

does not provide any information about the spatial distribution of the dose within the organ or interest.  

 

Regardless of the techniques and their degree of sophistication, side effects related to the healthy tissue 

irradiation during the treatment, are always observed, in particular in a context of dose escalation. 

Understanding the toxicity is therefore crucial to improve the reliability of the treatment. In order to 

achieve local control and spare organs at risk, various recommendations have been proposed by 

different cooperative groups [45]. The constraints recommended by the French group, Groupe d’étude 

des tumeurs urogénitales (GETUG), are summarized in Table 1.2. 
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Figure 1.6 Representation of a Dose-Volume Histogram (DVH) 

 

Table 1.2 GETUG dose-volume constraint recommendations for PTV and OARs in prostate cancer radiotherapy 

Volume Notation Definition 

Target volume (PTV) 
𝐷𝑚𝑖𝑛 > 90% Minimum dose to PTV must be higher than 90% of the prescribed dose 

𝑉95 > 95% 
The volume receiving at least 95% of the prescribed dose must be 
higher than 90% of the total volume 

Bladder wall (7 mm) 
𝐷𝑚𝑎𝑥 < 80 𝐺𝑦 The average dose to 1.8 cm3must be always lower than 80 Gy 

𝑉70 < 50% The volume receiving at least 70 Gy must be lower than 50% 

Rectal wall (7 mm) 
𝐷𝑚𝑎𝑥 < 76 𝐺𝑦 The average dose to 1.8 cm3 must always be lower than 76 Gy 

𝑉72 < 25% The volume receiving at least 72 Gy must be lower than 25% 

Femoral heads 𝑉55 < 5% 
For each femoral head, the volume receiving at least 55 Gy must be 
lower than 5% 

 

1.3 Radiation toxicity following prostate cancer radiotherapy 

Radiation triggers its therapeutic effect by damaging the DNA of actively dividing cells, causing division 

delay, reproductive failure and interphase arrest [46]. These consequences are more frequently 

encountered in rapidly dividing cells. However, it may not only affect malignant cells, but also adjacent 

normal tissue. Side-effects are usually secondary to fibrosis and progressive endarteritis that take place 

in poorly oxygenated submucosal and muscular tissues, which may lead to further tissue scarring [46].  

 

Prostate cancer has a remarkably high incidence-to-mortality ratio, meaning a large part of men 

diagnosed with prostate cancer will die of other, unrelated, causes. Radiation therapy does, however, 

cause a wide range of side effects, that can be severe and cause temporary or permanent damage to the 

patient. As most patients survive early-stage prostate cancer after treatment, quality-of-life (QoL) 

outcome has emerged as an important factor to consider in treatment decisions. QoL refers to the 
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impact of disease and treatment on patients’ well-being and physical, emotional and social functioning 

[47]. 

 

Radiation toxicity can manifest in a number of different ways, as summarized in Table 1.3, impairing the 

urinary, bowel and sexual functioning. The terms “side-effects” and “toxicity” are considered equal and 

exchangeable in this thesis. Side-effects from radiation therapy are classified as acute or late. Acute side-

effects occur during treatment or up to six months after its completion, and usually resolve within four 

to six weeks. Late side-effects are observed from six months up to several years after completion of 

treatment and may be permanent [48].  

 
Table 1.3 Side-effects of prostate cancer radiotherapy classified according to their frequency 

Very Likely Less likely but serious 

 Tanning or redness of skin in treatment area 

 Rash, itching or peeling of skin 

 Temporary hair loss in the treatment area 

 Temporary fatigue, nausea or diarrhea 

 Abdominal cramps 

 Bladder irritation with a stinging sensation 

 Injury to the bladder, urethra, bowel, or 

other tissues in the pelvis or abdomen 

 Intestinal or urinary obstruction 

 Erectile dysfunctions 

 Rarely, rectal bleeding that requires 

medication or burning/cutting of tissues 

to stop 

 

In prospective clinical trials, physicians record patient symptoms at each follow-up visit. Afterwards, the 

toxicity events are graded using standard grading scales. These scoring systems include late effects 

normal tissues (LENT) / subjective, objective management (SOMA) (LENT/SOMA); Radiation Therapy 

Oncology Group and the European Organization for Research and Treatment of Cancer (RTOG/EORTC); 

and the common terminology criteria for adverse events (CTCAE). An additional effort must be made 

when using retrospectively collected data to match records from physicians’ reports to a common 

terminology. For this reason, prospective studies are the basis of almost all clinical guidelines. Grade 

refers to the severity of the side-effect. The systems display Grades 1 to 5 with unique clinical 

descriptions of severity for each side-effect based on this general guideline:  

- Grade 1: Mild; asymptomatic or mild symptoms; clinical or diagnostic observations only; 

intervention not indicated;  

- Grade 2:  Moderate;  minimal, local or noninvasive intervention indicated; limiting age-

appropriate instrumental activities of daily living (*); 

- Grade 3:  Severe or medically significant but not immediately life-threatening; hospitalization or 

prolongation of hospitalization indicated; disabling; limiting self-care activities of daily living (**); 

- Grade 4:  Life-threatening consequences; urgent intervention indicated; 

- Grade 5: Death related to adverse event.  

(*) refers to preparing meals, shopping for groceries/clothes, using the telephone, managing money, etc; (**) refers to bathing, 

dressing and undressing, self-feeding, using the toilet, taking medications, and not bedridden.  
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Toxicity can also be rated by the patients, and is important because physicians often underestimate the 

impact of disease and treatment on patients’ life [49]. Side-effects and their severity are measured using 

standardized questionnaires, which provide a more objective assessment of general and disease-specific 

domains [50] including well-being, vitality, fatigue, pain, general health status, global QoL, and life 

satisfaction [51]. 

 

As mentioned, EBRT may cause urinary and gastro-intestinal toxicities, as well as, sexual dysfunction. 

Sexual function after RT for prostate cancer is an important topic with serious impact on patient QoL. 

Although the specific mechanism by which radiation therapy reduces erections is uncertain, it has been 

suggested that radiation therapy does not damage the corporal nerves, but rather it causes vascular 

damage [35]. Small bowel or rectal irritation can manifest as abdominal cramping, diarrhea, fecal 

incontinence, proctitis (urgency, tenesmus), or rectal bleeding. Urogenital complications include urinary 

frequency/urgency, dysuria, urinary obstruction/retention, hematuria, urinary tract infection, and 

incontinence. 

 

Understanding the dose-toxicity relationship is a central question for improving treatment reliability of 

radiotherapy treatment. This thesis work is exclusively devoted to investigating urinary toxicity and it is 

described in the following paragraph.  

 

1.3.1 Genitourinary (GU) toxicity 

Bladder, urethra, and the urinary sphincter are sub-parts of the lower urinary track (Figure 1.7) and their 

injury can result to manifestation of urinary symptoms. Radiation-induced injury of the urinary tract is a 

complex and debilitating complication and can lead to significant morbidity for the patient. The 

symptoms may be mild or severe, self-limiting, or progressive and may develop gradually or suddenly. 

The pathophysiology of urinary radiation injury is still not completely understood. The lesions are diverse 

pathologically including fibrosis, necrosis, atrophy, and vascular damage. The consequences may include 

a contracted and defunctionalized bladder, radiation cystitis with hematuria due to breakdown of the 

mucosa secondary to loss of supporting submucosal blood supply, ureteral and urethral strictures, 

sphincteric deficiency, as well as urinary fistulae[46,52,53].  

 

In the literature, the rectum is an extensively studied OAR, and dose-volume predictors of late GI toxicity 

are established. These are commonly incorporated into radiotherapy protocols in clinical practice. 

However, for urinary toxicity, there is a significant paucity of knowledge [54]. On top of that, the 

incidence of moderate/severe urinary toxicities, which play a major role in QoL, increased, as a 

consequence of more aggressive treatments [45,55]. With the introduction of high-dose IGRT, the 

incidence of gastrointestinal toxicity has reduced to approximately 1% compared to the increase about 

10% for genitourinary toxicity [56]. This is speculated to be related to the fact that in almost all cases the 

bladder neck and prostatic urethra are inevitably included in the high-dose region [57–60].  
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Figure 1.7 Anatomy of urinary bladder  

(source: http://droualb.faculty.mjc.edu) 

 

Indeed, existing evidence support that regions of the bladder neck, in particular the trigone, are 

associated with urinary toxicity. Another critical structure is the urethra, as it passes through the 

prostate and it is unavoidably irradiated with the total prescribed dose. In the literature of prostate 

cancer brachytherapy, there is strong evidence that some urinary symptoms are related to urethra 

damage [61–63]. However, such an effect has never been investigated in external-beam radiotherapy 

since this structure is not visible on CT images. Indeed, as it is shown in Figure 1.8, the prostatic urethra 

and the surrounding prostatic tissue share similar physical characteristics and the low contrast of the 

image does not allow the distinction of the two structures. However, quantifying the delivered dose to 

the urethra is crucial as it may improve our understanding of urinary toxicity.  

 
 

 
Figure 1.8 CT scan in sagittal (left) and axial (right) view and organ deligneations 
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Overall, genitourinary toxicity is currently perceived as the most relevant long-term problem following 

prostate radiotherapy and a major factor determining post-treatment QoL [64]. Given its growing 

significance, urinary toxicity has been poorly investigated. Unraveling the underlying dose-volume effect 

relationship and identifying patients at higher risk of toxicity, appears as a cornerstone in further 

definitions of constraints for personalized treatment planning.  

 

In the next section we will present the different methodologies that allow the exploitation of dosimetric 

data and have been employed in this thesis for developing predictive models of urinary toxicity. 

 

1.4 Predictive models of toxicity: state of the art 

Research groups around the world have attempted to study the potential of treatment optimization and 

individualization through the use of knowledge of the associations of treatment, clinical and dose factors 

with specific side-effects. It is generally acknowledged in these studies that radiation-induced side-

effects are associated with a large number of factors that differ for each individual patient, with a great 

difficulty of inferring these complex models directly from current radiobiological knowledge.  

 

1.4.1 DVH-based models:  Global Organ Analysis of Dose-Effect Relationships 

The availability of individual, 3-dimensional, dosimetric information permits the quantitative assessment 

of dose-volume relations for specific endpoints by investigating the correlations between dose-volume 

data and toxicity data. Parameters extracted from DVHs at the treatment planning stage include dose 

that a tissue received and volume irradiated. As explained before, the DVH is represented as a non-

increasing function of the dose that matches any given dose value with the fraction of the organ volume 

receiving at least that dose. DVHs are essential decision-support tools for the evaluation of radiotherapy 

treatment plans (Figure 1.9).  

 

 
(a)                                                     (b)               (c)  

 

 

Normal tissue complication probability (NTCP) models attempt to condense the dose-volume 

information into a number that expresses the risk of a certain toxicity. Most NTCP models are 

phenomenological and have the advantage of being characterized by few parameters (typically 3). There 

exist many different approaches to model NTCP in the context of radiotherapy outcomes, with Lyman–

Kutcher–Burman (LKB) model [65,66] being the most commonly employed: 

Figure 1.9 Illustrations of DVH (c) calculated for PTV, bladder and rectum from manual organ delineations (a) and planning 
dose distribution (b) 
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where i is the bin of the DVH corresponding to relative volume 𝑣𝑖 that receives dose 𝐷𝑖. 𝐷50 is the value 

of dose corresponding to the 50% probability to induce normal tissue complication, the parameter 𝑚 is 

inversely proportional to the slope of the dose-response curve and the parameter n accounts for the 

magnitude of volume effects and takes values between 0 and 1. For serial organs, such as the spinal cord 

or the rectum, resulting in n≪1, means that toxicity is mainly linked to high doses or hot spots. For 

parallel organs, such as parotid, lung, liver and kidney, n∼1 means that toxicity is associated to the mean 

dose to the organ. 

 

Even if the NTCP-based models are common practice to evaluate the best plan, the values of the 

parameters used by the model are often questionable. For instance, the n value of the NTCP model, 

although relatively well identified for the rectal toxicity (range: 0.06–0.24), the n value for the bladder is 

still far from being established. Several studies suggest bladder as a serial organ [57,58,67–72], since 

side-effects, mainly urgency and obstruction, were related to the high dose delivered in specific bladder 

parts; primarily the trigone region. On the other hand, some studies found bladder as a mixed serial–

parallel organ because severe urinary toxicity was related to both low and high doses delivered to the 

whole bladder [73–75]. The QUANTEC (QUAntitative Normal TissuE models in the Clinic) investigation 

[76] concluded prudently that both maximum dose and a relatively large irradiated bladder volume 

(50%) may correlate with bladder toxicity (Grade≥ 3 late RTOG ). 

 

Given the inconsistency of available data concerning radiation-induced toxicity, it is crucial to develop 

robust models with superior predictive performance. Dimensionality reduction, feature extraction 

strategies together with machine-learning methodologies, aiming at exploiting more available 

multimodal data, have emerged to overcome some of these issues, exhibiting promising prediction 

capabilities. Among them, Principal Component Analysis (PCA) was proposed to reduce the 

dimensionality of the DVH data and quantify the variability of  DVH shapes [77]; functional data analysis 

[78] enabled the representation of the DVH as a curve rather than discrete measurements. Other 

machine-learning methods such as artificial neural networks [79,80], together with genetic algorithms 

and comparison with support vector machines [81] or random forest [82] have also been investigated, 

reporting  competitive predictive results. In the context of urinary toxicity prediction, a review and 

comparison of six different machine learning techniques was presented by Yahya et al. [83], nevertheless 

without any consensus on the best algorithms, as the predictive power of the models was modest and 

endpoint-dependent.  
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1.4.2 Beyond DVH: Local Analysis of Dose-Effect Relationships 

The DVH reduces the 3D dose distribution within an organ to a unidimensional and discrete 

representation of the dose-volume relationship. Several limitations arise when only scalar values or DVH 

are used within predictive models: i) A DVH is limited to a single organ, ii) 3D dose distributions may lead 

to the same DVH, iii) the information on the spatial distribution of dose is lost by merely considering the 

organ volume thus ignoring the local variations and the potentially heterogeneous intra-organ 

radiosensitivity, iv) correlation may exist between adjacent DVH bins. More broadly, urinary toxicity is a 

complex multiparametric phenomenon that may involve structures at different scales, from sub-organ 

parcels to large structures or regions whose response may additionally depend on individual 

radiosensitivity. These factors may explain the limited prediction capability of DVH-based models [84]. 

 

Although these models are continuously being improved and are bringing new insights into the 

understanding of dose volume effects from DVHs, the data collected through the whole radiotherapy 

treatment (clinical history, tumor stage, multimodal imaging, organ delineations, 3D dose distribution, 

intra-individuals changes, etc.) are very rich and on most occasions not thoroughly exploited. The 

planning dose distribution, for instance, can be considered as a 3D function presenting a large variability 

across the treated populations and is strongly linked to the individuals anatomy which in addition may 

change between-fractions sometimes at the expense of the prediction [85,86]. With the steadily 

increasing computational capabilities, exploiting information from more available data within integrative 

approaches becomes nowadays feasible. 

 

Going further beyond the concept of whole-organ DVH, recent approaches aim at investigating more 

localized dose-toxicity relationships by analyzing the dose at lower spatial scales. For example, by 

analyzing dosimetric parameters of the lower GI anatomy, it has been shown that dose on some sub-

regions correlated better with specific toxicities. This is the case of the works undertaken by Stenmark et 

al. [87] dividing the rectum in three different regions, or other authors by demonstrating anatomical 

dependence of specific GI toxicities [88–90]. Likewise, for urinary toxicity [58] by separately analyzing 

DVHs of the whole bladder, bladder wall, urethra, and bladder trigone. Other models have also sought to 

geometrically represent the 3D dose distribution in a single coordinate system via a spatial normalization 

for a joint analysis of dose at the lowest sampling scales (pixel and voxel levels). Different studies appear 

in the literature, either by building a parametric mapping via an intermediate spherical /cylindrical 

coordinate system such as the DSM in 2D  [91], in 3D [57,92] or via 3D anatomical non-rigid registration 

(DVM) [93,94]. 

 

One of the major advantages of the pixel- and voxel-wise analyses is that no prior assumptions are made 

regarding the location of regions correlating with toxicity. Although these methodologies are still 

emerging, low spatial scale analyses of the dose distribution in different organs, have allowed the 

unravelling of the local dose-effect relationship across a population at each single pixel / voxel. With this 

kind of analysis, the implication of multiple structures was identified, such as in the head and neck area 

[95], or in the heart in patients treated for lung cancer [96]. 
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These methods can potentially increase the prediction capabilities and improve the patient-specific 

treatment planning [94,97]. New planning systems are steadily moving from global DVH-based 

constraints, applied as suggested by international recommendations and available on the commercial 

TPS, towards the definition of spatially localized 3D patient-specific constraints as part of the TPS 

optimization. In the following sections we describe the methodological details for the construction of 

DSMs and DVMs and we discuss the challenges that these methods are facing. 

 

1.4.2.1 2D Dose-suface maps (DSM): a 2D to 3D mapping 

A DSM is a mapping of the 3D dose to a 2D representation of an organ wall and is constructed by 

virtually unfolding the organ in a slice wise manner.  Different algorithms exist for generating DSMs from 

the 3D dose distribution [91,98,99]. To build the map, a 2D image is constructed and a parametric 

mapping is established between the 3D coordinate system of the organ wall and the 2D image. Thus, 

each pixel in the 2D image corresponds to a portion of the organ wall with the local dose computed, for 

instance, by interpolation at that 3D point. By construction, these DSMs reflect the dose of the organ 

surface. A dedicated module of VODCA (MSS Medical Software Solutions, Hagendorn, Switzerland) 

allows the generation of DSMs from organ contours and the calculated dose distributions. A 

representative output of this software is shown in Figure 1.10Figure 1.10 

 

 
Figure 1.10 Bladder dose-surface map (DSM) extracted from VODCA software in 3D (a) and unfolded in a 2D plane (b) 

 

The DSMs have been exploited in several ways to show relationships between toxicity and 2D local dose 

distributions. Via extraction of geometric features from isodose curves [100–103] or through direct pixel-

wise comparisons [60,104–107], several studies have identified regions that better discriminate patients 

with and without toxicity. More recently, deep learning was also applied to study dosimetric effects, 

based on a convolutional neural network model to exploit rectal dose distribution on DSMs [107]. 

 

1.4.2.2 3D Dose-volume maps (DVM): a 3D to 3D mapping 

The 3D DVM stands upon the 3D inter-individual spatial alignment, allowing for the subsequent dose 

propagation to a common coordinate system. The spatial alignment may be obtained via a parametric 
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representation of the anatomy in a spherical or cylindrical coordinate system [57,92] or can be more 

precisely computed through non-rigid registration methods [93,108] or tailored to a particular anatomy 

[109]. After this inter-individual normalization, voxel-wise statistical tests are performed on the 3D dose 

maps resulting in the localization of regions where statistically meaningful differences between or within 

groups may exist. Hence, organ subregions are computed as the clusters of voxels within the organ, 

where significant dose differences have been found. An example of DVM is shown in Figure 1.11 with 

color scales representing the dose distribution ranging from the high dose (red) to low/zero dose (blue). 

 

Voxel-wise comparisons in a common frame of reference represent a reliable strategy to reveal local 

differences across individuals within a whole volume at low spatial scales. These methods are inspired by 

the voxel-based morphometry [110]. Applied to toxicity studies, the works undertaken in this field have 

allowed the identification of more predictive sub-regions within the organs in several locations, such as 

the rectum for gastrointestinal toxicity in prostate cancer [93,94], in the heart and lung for 

corresponding toxicities in thoracic cancer [96,111], and in the cricopharyngeus muscle and cervical 

esophagus for dysphagia in head and neck cancer [95]. A 3D voxel-based approach has never been 

applied to explore dosimetric patterns associated with urinary toxicity. 

 

 
Figure 1.11 A 3D dose-volume map (DVM) of the bladder and the urethra 

 
Table 1.4 summarizes some representative works in this field where both DSM and DVMs have been 

used in several clinical locations [112]. As mentioned before once the dose distribution is normalized to a 

single coordinate system, which is central to this methodology, a comparison of extracted features or a 

pixel or voxel wise analysis can be performed. 

 

1.4.3 2D DSM and 3D DVM Methodological Challenges 

Pixel/voxel-based methods share several methodological aspects as they require the dose to be mapped 

to a single coordinate system and thus different steps must be performed for the comparisons to be 

anatomically meaningful. These steps, as illustrated in Figure 1.12, include: (1) the spatial normalization 

of a population of individuals in terms of their anatomy to a common coordinate system; (2) the 

mapping of dose distributions according to the anatomical transformation obtained; (3) a reliable 

methodology to perform statistical analysis of the local dose-volume-effect relationship  [112].  
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Table 1.4 Summary of works using 2D Dose-surface maps (DSM) and 3D Dose-volume maps (DVM) for toxicity prediction 
H&N (Head and Neck ); NRR (Non-Rigid Registration); GI(Gastrointestinal Toxicity); GU (Genitourinary Toxicity); studies on GU toxicities are 

shown highlighted; adjusted from [112]. 

Reference Model Cancer 
location 

Organ/ 
toxicity 

Spatial Normalization / Dose  
mapping 

Pixel/voxel-wise analysis 

(Munbodh et al. 2008) 

2D 
DSM 

Prostate GI Conformal mapping Geometric features 

(Buettner et al. 2011, 
Buettner et al. 2012) 

Prostate GI Geometric  Dose surface map Geometric features 

(Buettner et al. 2009) Prostate GI Geometric  Dose Surface map 
Geometric features/ Neural 

networks 

(Palorini et al. 2014) Prostate GU Geometric  Dose Surface map Geometric features 

(Wortel et al. 2015) Prostate GI Geometric  Dose Surface map Dose surface features 

(Palorini et al. 2016) Prostate GU Geometric  Dose Surface map Pixel-wise comparison 

(Improta et al. 2016) Prostate GU Geometric  Dose Surface map 
Pixel-wise comparison/ 

spatial descriptors 

(Calyn et al. 2017) Prostate GI Geometric  Dose Surface map Spatial features 

(Yahya et al. 2017) Prostate GU Geometric  Dose Surface map 
Pixel-wise comparison/ 

spatial descriptors 

(Xin et al. 2017) Cervix GI Geometric  Dose Surface map Deep learning 

(Heemsbergen et al. 
2010) 

3D 
DVM 

Prostate GU Geometric 3D mapping Voxel-wise comparisons 

(Ziad et al. 2012, Rao et 
al. 2012) 

H&N Trismus NRR Voxel-wise comparisons 

(Coloigner et al. 2015) Prostate GI NRR ICA for classification 

(Chen et al. 2011) 
(Fargeas et al. 2013) 

Prostate GI NRR 
PCA for feature extraction 

and classification 

(Fargeas et al. 2015) Prostate GI NRR Tensor decompositions 

(Ospina et al. 2013) Prostate GI NRR 
Tensor value decomposition  
for subregion identification 

(Liu et al. 2015) Prostate GI NRR 
Non-negative matrix 

factorization for Classification 

(Acosta et al. 2013) Prostate GI NRR Voxel-wise Comparisons 

(Drean et al. 2016) Prostate GI NRR on different templates 
Voxel-wise comparisons, 

definition of a  generic 3D  
patient-specific region  

(McWilliam et al. 2016) 
(McWilliam et al. 2017) 

Lung Heart NRR Voxel-wise 

(Palma et al. 2016) Lung Lung NRR Voxel-wise differences 

(Monti et al. 2017) H&N 
Acute 

dysphagia 
NRR Voxel-wise comparisons 

(Avanzo et al. 2017) Lung 

Radiation 
induced 

lung 
injury 

NRR 
Voxel based longitudinal  

comparison of CT density & 
dose 
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Figure 1.12 Methodological aspects of voxel/pixel based models 

 

1.4.3.1 Spatial normalization and dose propagation to a common coordinate system 

Spatial normalization is the process of obtaining a transformation between the native individual’s 

coordinate system and the common coordinate system leading to meaningful correspondences across 

the population. This is a key step in pixel/voxel wise analysis since dose comparison results rely on 

anatomical alignment accuracy. In the case of DSMs, the mapping is generated by the direct relationship 

between a 3D coordinate system and the 2D map. After the 3D–2D relationships are obtained, the dose 

is propagated and interpolated, yielding a 2D image of dose on the unfolded organ.  

 

The geometric correspondences may be extended to 3D by simply including the third axis (i.e., R in 

cylindrical or spherical coordinates) to build a 3D dose map. This was done in Heemsbergen et al. and 

Witte et al. [57,92] where the dose mapping relies on a parametric representation of the anatomy in a 

spherical coordinate system and mapped back again to a single anatomy to perform voxel-wise analysis. 

Spatial normalization may also be performed by non-rigid registration between the population data and 

individual template. In that case several questions arise, such as the selection of the most representative 

template and the most reliable inter-individual registration method. This appears as particularly difficult 

given the high inter-individual anatomical variability (organ volume, artefacts, presence of gas, air, etc.) 

and the low contrast of soft tissues if CT scans are used for registration. 

(source:  [112]) 
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In the setting of population analysis, a mapping error may lead to invalid results in statistical analysis. In 

the presence of a high dose gradient, which is the case for most OARs, small shifts in registration may 

result in large differences in dose on the reference template. Evaluating the accuracy of inter-individual 

mapping is particularly complex because of the lack of ground truth. In the literature, different measures 

have been proposed to estimate intra-individual anatomical mapping accuracy and transformation 

validity [113,114]. Dice similarity coefficient and Hausdorff distance are among the most commonly used 

evaluation metrics. However, they only reflect overall geometric overlap between transformed 

structures and do not show local mapping errors within the structure. Given that a high overlap score 

does not necessarily imply good point-to-point mapping [115], Drean et al. [109] assessed the mapping 

accuracy not only from an anatomical view point but also from a dosimetric one, by introducing a new 

metric to estimate the organ overlap relative to dose distribution (dose-organ overlap, DOO). This metric 

measures the ratio between dose distributions on the intersection and union of the considered region. 

The DOO is a value between 0, when structures have no voxels in common, and 1, when the dose to the 

structures is identical. In practical terms, the score penalizes anatomical difference by taking into 

account the dose that would be mapped onto the reference structure. Dice score, Hausdorff distance, 

and DOO score have also been used to assess spatial normalization in recent voxel-based toxicity studies 

[95,111]. 

 

1.4.3.2 Pixel/Voxel-wise analysis in a common coordinate system 

After 3D doses are spatially normalized, several comparisons can be performed in the common 

coordinate system. Very often the incorporation of spatial descriptors improves discrimination of multi-

variable models including dosimetric and clinical parameters [94,101,105]. The descriptors may be 

computed after extracting isodose curves for instance [100]. Several studies found that toxicity is related 

to the shape of isodoses as well as dose coverage [103]. Comparisons of dose average at the intragroup 

level (with and without toxicity) are frequently investigated with additional tests seeking for statistically 

significant differences. Either parametric or non-parametric voxel-wise hypothesis tests can be 

performed, depending on the data. This is the most frequently found case, i.e., where pixel/voxel two-

sided t-tests and the resulting p-values map (p-value < threshold value) were used for delimiting the 

regions better discriminating between groups [60,93,94,116]. 

 

Caution must be taken however because of the multiple comparison problem, arising when performing 

thousands of simultaneous tests that may be correlated which is the case in voxel-wise methods. Those 

issues have been largely treated in voxel-based morphometry studies. Several correction techniques 

exist such as Bonferroni, false discovery rate [110,117], threshold-free cluster enhancement (TFCE) 

methods [118], or permutation tests [119], which have been implemented in several of the 

aforementioned toxicity studies [106,111,120]. Permutation tests allow inferences while taking into 

account the multiplicity of tests as described in [121]. The TFCE offers an interesting spatial characteristic 

as it takes advantage of neighborhood information to increase the belief in contiguous areas of the 

considered signal introducing spatial coherence to the findings. Permutation testing can also be coupled 
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to TFCE. In this thesis, the multiple comparison problem was addressed by implementing the method 

proposed by Chen et al. [119], as will be described in Chapter 4. 

 

In the next section we will present the motivation and objectives of the thesis.  

 

1.5 Motivation and thesis objectives 

 
As already explained, although the dose is planned and delivered to the target following 

recommendations aimed at maximizing control and diminishing toxicity, the surrounding healthy organs 

(rectum, bladder ...) are often impaired from irradiation and present adverse events. To date, urinary 

side-effects are not well understood, in particular how they relate to underlying dose-volume 

characteristics.  In a review by Fiorino et. al. [45], it was highlighted that 3D dose-volume-response data 

for the bladder are still lacking.   

 

In the past, the whole bladder’s DVH has been used in an attempt to explain radiation-induced toxicities. 

Although some studies found a relationship between urinary toxicity and bladder dose 

[57,58,72,73,122,123], others did not find any significant correlation [124,125]. No general consensus 

exists among the studies reporting positive findings. This lack of homogeneity in the reported 

relationship between urinary toxicity and bladder dose can be attributed to several factors [126], such 

as: 

 The high variability of bladder volume limits the capability to determine the actual dose received 

by the bladder during the treatment. Consequently, the planning dose may not be representative 

of the actual dose delivered because of the high interfraction bladder volume variations 

[127,128].  

 Urinary symptoms are multifactorial and depend on patient-specific clinical parameters [57,129–

134], individual biological patterns [129,135–137] and dosimetric parameters.  

 Urinary toxicity events may occur late after RT, in contrast to late gastro-intestinal toxicity which 

generally reaches a plateau after 3 years, suggesting that a longer follow-up is required to 

properly estimate late urinary toxicity [133]. 

 Specific sub-regions of the bladder may present different radiobiological behaviors/sensitivities, 

which may have different impacts on distinct side effects [57,58]. 

Above all these, it is important to stress that, currently, all the studies of urinary toxicity following EBRT 

have been focused on the dose to the whole bladder or parts of it, while the potential involvement of 

urethra damage due to radiation remains largely unexplored. The main reason for this is the lack of tools 

to identify this structure on the planning CT images. 

 

Going beyond the global, whole-organ-based models towards more local, sub-organ approaches, this 

thesis aims to improve our understanding of radiation-induced urinary side-effects and ameliorate the 

prediction of urinary toxicity following prostate cancer radiotherapy. More specifically, the objectives of 

this thesis are: 
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1. To assess the contribution of urethra damage to urinary toxicity.  

2. To evaluate the involvement of specific bladder and urethra sub-parts in urinary toxicity. 

3. To investigate the potential of further increasing prediction by exploiting data through new 

machine learning methods.  

 

An overview of the thesis structure is illustrated in Figure 1.13. 

 

 
Figure 1.13 Schematic overview of the thesis structure 
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Part II 

Quantifying the dose to the prostatic urethra 
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2 Segmentation of intra-prostatic urethra from planning CT 

images to quantify dose distribution in external 

radiotherapy 

 
 

In this chapter a methodology is proposed for automatically segmenting the intra-prostatic 
urethra on the planning CT images of EBRT-treated patients with the objective to assess the 
involvement of this structure in urinary toxicity. First, the entire framework of the multi-atlas-
based segmentation method is detailed, from the atlas construction to the final urethra 
segmentation. Then, the method’s accuracy is evaluated with respect to the ground truth 
urethra and compared with existing surrogate models for estimating urethra’s position. Finally, 
the DVH in the urethra is computed in a population dataset in order to quantify the dose 
received by this structure.  
 
 
The content of this chapter has been published in the journal Radiotherapy and Oncology.  
 
 
Acosta O, Mylona E, Le Dain M, Voisin C, Lizee T, Rigaud B, Lafond C, Gnep K, de Crevoisier R. Multi-atlas-based 
segmentation of prostatic urethra from planning CT imaging to quantify dose distribution in prostate cancer 
radiotherapy. Radiother. Oncol. 2017;125:492–499.   
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2.1 Introduction 

Although there is evidence in prostate cancer brachytherapy that some urinary symptoms are related to 

urethra damage [61–63] this has not yet been shown in external-beam radiotherapy. Quantifying the 

delivered dose to the urethra may therefore improve our understanding of urinary toxicity or at least 

some of the related symptoms if we can accurately identify the organ from the planning CT.  Thus, 

segmenting the urethra from the planning CT in order to assess the dose it receives, would pave the way 

for further studies on urinary toxicity prediction considering both the bladder and urethra.  

 

To our knowledge, a formal segmentation of the intra-prostatic urethra from CT images has not been 

addressed yet. However, indirect surrogate models for estimating the urethra position have been 

previously proposed [138,139]. They are nevertheless based on empirical considerations with respect to 

the prostate midplane. Segmenting the urethra from CT scans is fairly challenging.  Not only is there 

already poor contrast between soft tissues like the prostate, bladder, and rectum, thus rendering 

segmentation difficult for planning, but the intra-prostatic urethra itself is completely invisible. These 

issues restrict the use of classic intensity-based segmentation methods. Atlas-based approaches, widely 

discussed in the literature [140–146], are common methods for organ segmentation. In atlas-based 

methods, precomputed segmentation in a template space is propagated onto the image to be 

segmented via spatial normalization (registration) as depicted in Figure 2.1.  Several individuals from a 

population can be used to constitute the atlas (multi-atlas). This allows to overcome the inter-individual 

variability and registration issues. Previous works have shown the benefits of combining multiple atlases 

in improving segmentation accuracy [140,142,143,147–149].  

 

In this paper, we propose a weighted Multi-Atlas-Based Urethra Segmentation strategy, herein called 

MABUS, from planning CTs.  Our goal is to provide a method that could be applied to a different set of 

patients receiving external-beam radiotherapy in order to assess the dose to the urethra and relate with 

toxicity effects. 

 

2.2 Material and methods 

This study is divided into three main parts: i) a description of MABUS, the multi-atlas-based urethra 

segmentation method which illustrates the whole implemented framework, from the atlas construction 

to the final urethra segmentation, ii) the evaluation of the method’s accuracy with respect to the urethra 

ground truth in a leave one out cross validation framework, and comparison with the existing surrogates 

proposed by Bucci [138] and Waterman [139]  and  finally iii)  the computation of the dose received by 

the urethra in a different series of patients with prostate cancer IMRT which aims to introduce the way in 

which the method may be used in toxicity studies.  
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Figure 2.1 Atlas-based segmentation framework 

 

2.2.1 Multi-atlas based urethra segmentation (MABUS) method description 

In general, as depicted in Figure 2.1, atlas-based segmentation relies on the registration of a template iI
 

to the query image qI
, in order to obtain a transformation qi IIT  , which maps a set of generated labels 

i onto qI
. If the mapping is anatomically correct, the yielded segmentation is accurate and 

anatomically meaningful. Multi-Atlas based segmentation builds upon this idea by extending the number 

of atlases thereby reducing the interindividual variability issues. 

 

Following this multi-atlas idea, the proposed MABUS was devised and can be divided into seven steps as 

depicted in Figure 2.2. In summary, an atlas dataset was first built from manually-delineated CTs 

including the urethra, thanks to the presence of an urinary probe (Step 1). The query image to be 

segmented qI  was then rigidly aligned with the same template TI  as the atlas database (Step 2) and 

features were extracted  qqq ffF 51 ,.., (Step 3).  By comparing the features, the atlases were ranked 

according to their similarity to the query image (Step 4).  The labels }{urethrai   from the top n=10 

ranked atlases were then propagated to the query image using an accurate non-rigid registration 

method (Step 5) designed to match the prostate anatomies. Finally, the urethra segmentation was 

obtained by combining different labels in a weighted-fusion process (Step 6), followed by centerline 

detection (Step 7).  The image segmentation methods were developed in C++ using the Insight Toolkit 

libraries (ITK) [150] and python open source technologies. 
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ATLAS BUILDING FROM TRAINING DATA (STEP 1) 

For the atlas building, we used an initial series of CT scans (512×512 0.63×0.63mm axial pixels and 3mm 

slices) from 55 patients treated for localized prostate cancer with Iodine-125 brachytherapy. All the 

patients were fitted with urinary catheters, enabling urethra segmentation. The prostate, bladder, and 

urethra were delineated for each by the same radiation oncologist, constituting the set of atlases iI , 

with the label }{urethrai  . 

 

 
Figure 2.2 Overall proposed framework of multi-atlas based urethra segmentation (MABUS) method 

 

 

TEMPLATE SELECTION AND RIGID REGISTRATION (STEP 2) 

A first average patient TI was selected as a common coordinate system. This patient was the closest to 

all others in terms of prostate volume. The whole population was then rigidly registered to this patient 

by aligning the prostate centroids followed by a fine alignment of bony anatomy. This enabled 

geometrical descriptors to be generated and compared in the same common space. The central lines of 

the manually delineated catheters were computed by extracting their centroid at each slice.  
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FEATURE EXTRACTION (STEP 3) 

A simplified geometrical description of the anatomy (prostate/bladder) was generated to characterize 

each individual. Hence, the obtained vector  iiNi ffF 51],..,1[ ,..,  describes the individuals in terms of i) 

prostate volume ii) distance between prostate and bladder centroids, iii) the extension of the bladder in 

the anterior posterior direction, and iv) the orientation of the bladder with respect to the prostate 

centroid, regarding two angles (φ) and (θ), which respectively describe the anteroposterior and lateral 

directions.  The descriptors were then normalized across the population with a z-score.  

 

QUERY IMAGE AND ATLAS SELECTION (STEP 4) 

For an image qI  to be segmented, the two previously described steps (2 and 3) were applied as for the 

training database. Thus, rigid registration to the common template TI and characterization yield for qI  

the vector  qqq ffF 51 ,.., , exhibiting similar features as computed for the atlas dataset. Following z-

score normalization, the Euclidean distances qiqi FFd 


 between features enabled the individuals 

from the atlas iI to be ranked in terms of similarity to the query image qI . In a multi-atlas strategy, only 

the top (n=10) ranked atlases were selected as the closest to the query image qI , with all remaining 

atlases discarded. Since their configuration is similar to that of the query image, the urethra is expected 

to lie inside the prostate in a similar position. The number of atlases (n=10) was selected as a tradeoff 

between computational time and optimized results in a leave-one-out segmentation process in which 

the top 1,2,..,n atlases were tested.  

 

NON-RIGID REGISTRATION (STEP 5) 

In this step, the labels i  from the n most suitable previously-selected atlases were non-rigidly 

propagated to the prostate of the query image. To this end, the prostates from the best atlases were 

non-rigidly registered to the prostate of the query image qI . We applied a Laplacian-based registration 

method, based on a previous work [109], but here only considering the prostate. In our implementation, 

instead of using the central line, we selected the centroid 𝐶𝑝 of the prostate for computing a scalar field 

𝑢(𝑥, 𝑦, 𝑧) by applying Laplace's equation inside the prostate volume, demarcated by an external 

boundary 𝐹𝐸𝑥𝑡, here the prostate surface, and an internal boundary, here the prostate centroid 𝐶𝑝, as: 

 
∆𝑢(𝑥, 𝑦, 𝑧) =

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0 

(1) 

where 𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝐸𝑥𝑡, if (𝑥, 𝑦, 𝑧) ∈ 𝐹𝐸𝑥𝑡 and 𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝐶𝑝, if (𝑥, 𝑦, 𝑧) ∈ 𝐶𝑝, where {𝑢𝐸𝑥𝑡, 𝑢𝐶𝑝} ∈ ℝ.  

This scalar field u provides a structural and normalized descriptor to be exploited in a Demons-based 

non-rigid registration framework. This step yields a 3D deformation field (DF) as a set of 3D vectors 

describing the voxel-wise deformation of each of the atlas images to qI . The binary labels 

}{urethrai   from the selected atlases were then propagated to the query image space using the 

calculated transformation 𝑇 = 𝐷𝐹 ∘ 𝑇𝑅𝑖𝑔𝑖𝑑 and nearest-neighbor interpolation in order to preserve the 

binary nature of the propagated labels. 
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WEIGHTED-LABEL FUSION (STEP 6) 

Once the labels were propagated to the same coordinate system, namely the prostate of the query 

image qI , the raised question was how to fuse all the warped labels }{urethrai   to yield the best 

segmentation result. Different decision rules may be applied, such as a simple voting-rule [151], a 

weighted decision based on similarity [152] or a Bayesian approach, such as the simultaneous  truth and 

performance level estimation (STAPLE) [149].   We opted for the weighted-label fusion approach, 

resulting in the following probability map: 
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Thus, the contribution of each non-rigidly propagated label to this map heavily depended on the 

similarity between the atlas and the query image. 

 

CENTERLINE AND URETHRA DETECTION (STEP 7) 

A 50% threshold was applied to the probability map 
i

p , followed by a centerline computation as a 3D 

cubic spline curve of equidistant points. This resulted in a smooth path 𝛾𝑞  describing the urethra within 

the prostate. Considering the urethra to be a tubular-like structure, the final urethral region q  was 

obtained as a 5mm zone around 𝛾𝑞 . 

 

2.2.2 Evaluation of the accuracy of the segmentation method 

Leave-one-out cross validation was performed to evaluate the accuracy of the proposed method. Thus, 

each of the individuals from the atlas database was iteratively selected as query image qI and the 

resulting segmentations compared with the catheter positions. For our purposes, the central path 

described by the catheter was considered the ground truth.  

 

Two metrics were used to evaluate the method’s accuracy. A score based on the centerline distance 

(CLD) was devised to assess the differences between the obtained discretized urethra path 𝛾𝑞 and the 

catheter central line 𝜌𝐺𝑇 as follows: 

 𝐶𝐿𝐷(𝛾𝑞 , 𝜌𝐺𝑇) =
1

𝑁
∑ 𝑑𝑖𝑠𝑡(𝛾𝑞

𝑘 , 𝜌𝐺𝑇)𝑁
𝑘=1    (4) 

where 𝛾𝑞
𝑘  represents the 𝑘𝑡ℎ point of the urethra central line, dist (𝛾𝑞

𝑘 , 𝜌𝐺𝑇) is the Euclidean distance of 

this point to the catheter central line, and N is the number of points. Figure 2.3 illustrates the way in 
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which the CLD was computed from this distance map. This score  was computed for the whole 

segmented path 𝛾𝑐 , as well as for each region produced after splitting the central path ground truth into 

three equivalent segments (from the apex to base).  The percentage of the points from 𝛾𝑐  lying inside a 

region around the centerline ground truth (PWR) within 3.5 mm and 5mm radius were also quantified. 

For comparison with the existing surrogates, we implemented the methods proposed by Bucci [138] 

(deviated surrogate) and Waterman [139] (centered surrogate) which are based on the geometrical 

center of the axial midplane. 

 

2.2.3 Dosimetric study: assessment of the dose received by the urethra in prostate 
cancer IMRT  

A second series of 95 patients having received 78Gy IMRT for prostate cancer between July 2012 and 

June 2015 were analyzed. The target volume included the prostate, sparing the pelvic lymph nodes. 

Target volumes and organs at risks (bladder, prostate) were delineated on CT slices according to the 

French GETUG group recommendations [153]. IMRT combined with image-guided radiation therapy 

(IGRT) were used to deliver a total dose of 78 Gy for cone-beam CT or 80 Gy for fiducials to the prostate 

over eight weeks at 2Gy/fraction. The pelvic lymph nodes were not irradiated. Bladder dose-volume 

histograms (DVHs) complied with GETUG recommendations, namely V70 < 50%.  

 

The proposed segmentation method was applied to patients treated with IMRT. Manual delineations of 

the prostate and bladder were used to automatically segment the urethra within a 5mm diameter along 

the centerline. The dose within the urethra was assessed from the 3D planning dose distribution and 

compared to the dose to the prostate. A comparison between the prostate and urethra DVHs was 

performed using a Wilcoxon non parametric test. 

 

2.3 Results 

2.3.1 Atlas construction 

The inter-individual variability found in terms of feature descriptors  iiNi ffF 51],..,1[ ,..,  was very high. 

The features represented in average 62.6 ± 15 cc for the prostate volume, 43.1 ± 15 mm for the distance 

between prostate and bladder centroids, 19.3 ± 19 mm for the bladder extension in the horizontal/y- 

axis and  58.9 ± 19.5 (φ) and 120.5 ± 61.5 (θ) for the angles describing respectively the antero-posterior 

and lateral directions of the bladder with respect to the prostate centroid. Figure 2.3 displays the 

distribution of the interindividual normalized similarity across individuals in the z-score space.  



55 
 

 
Figure 2.3 Inter-individual distance  map 

 

2.3.2 Urethra segmentation accuracy 

Leave one out results and comparisons with Waterman’s and Bucci’s are shown in Figure 2.4. In average 

MABUS outperformed the other two surrogate models globally and by thirds. Global CLD was 3.25±1.2 

with MABUS, while 6.11±1.96 with Waterman and 3.91±1.46 with Bucci’s method (p<0.001). In addition 

by thirds with MABUS the computed CLD scores were 3.67 ±1.66 mm, 2.52 ±1.58 mm and 3.01 ±1.76 mm 

for the top middle and bottom thirds respectively. Likewise for the portion of the central line (PWR) 

within the 3.5mm and 5mm radius regions: 0.53±0.29 and 0.83±0.18 respectively for MABUS with a 

maximum of 1 in both cases. With Waterman we obtained 0.32±0.19 and 0.53±0.17 (p<0.001) and with 

Bucci 0.51±0.22 (p=0.5) and 0.74±0.21 (p < 0.01). Figure 2.5 depicts those results. There were some 

individuals for whom the segmentation was not as good as expected. Those outliers appear as dissimilar 

to the remaining individuals as shown in Figure 2.3. Only 3 segmentations out of 54 presented a score 

inferior to 0.5 in the 5mm region.  
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Figure 2.4 Centerline distance (CLD) definition and leave one out validation results of the proposed method compared with 

previously proposed surrogate models 

 
Figure 2.5 Percentage of segmented centerline (γq) lying within a radius (PWR) of 3.5 or 5mm around the ground truth 

centerline (γq ) 
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Figure 2.6 shows six examples of resulting segmentations overlaid on the manually delineated catheters. 

Top row illustrates a comparison of the proposed method with the surrogate models Figure 2.6 a) 

Waterman, b) Bucci and c) MABUS. Low row shows different results with MABUS on different individuals.  

It can be observed the complimentary information brought by the two different scores. For instance, in 

case of Figure 2.6 d) the CLD was 3.4mm and the whole centerline was within the first 5mm region 

(PWR). For c) CLD=2.8mm. Although only half of the points where within the first 3.5mm, the whole 

centerline was within the first 5mm. 

 

 
Figure 2.6 Examples of urethra segmentations (white) overlaid on the actual urinary catheter (red).  

Top row: Comparison of MABUS with two surrogate models.  Low row: .different results for individual configurations with the 

proposed methodology (MABUS) only 
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2.3.3 Dosimetric study 

Urethra and prostate DVHs were significantly different. The bin-wise DVH comparison show that the 

volume (%) receiving a dose between D74Gy to D79Gy by the urethra was significantly higher than in the 

prostate (p <0.01). Figure 2.7 highlights the prostate and urethra DVH bins, where statistically significant 

differences are represented by the red circles.  

 

 
Figure 2.7 DVH differences between urethra and prostate in case of IMRT delivering 80Gy to the prostate 

 

Figure 2.8 shows an example of 3D dose distribution within the manually segmented volumes for 

planning together with the automatically segmented urethra.  Considering the urethra, the prostate and 

the PTV, it can be seen that high doses appear in the urethra (isodose curves and DVH values > V70). 

During the 3D dose optimization, the constraints to the PTV and to the organs at risk, bladder and 

rectum, will introduce a high dose gradient close to the PTV. Although the PTV is well covered it will 

receive 90% of the dose, whereas the urethra being central to the prostate likely receives the higher 

doses. 

 

2.4 Discussion 

We proposed a weighted multi-atlas based method to segment the intra-prostatic urethra from planning 

CT and compared with two previously surrogate models based on the central axis of the prostate, 

Waterman et al. [139] (centered surrogate) and Bucci et al. [138] (deviated surrogate). The method does 

not need any catheter to estimate the position of the urethra as it is based on the combination of similar 

cases contained in a large data set of atlases, which are weighted to achieve an accurate segmentation  
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Figure 2.8 Example of urethra segmentation and dose distribution in IMRT planning delivering 80 Gy to the prostate 

 

The obtained accuracy of the urethra segmentation considering the CLD (in average 3.25 mm), computed 

in a leave one out cross-validation enabled to assess dose to the urethra in a different IMRT database. 

With our method, the measured dose received by the urethra appears slightly higher than the dose 

received by the whole prostate. This is likely due to the position of the urethra rather central within the 

prostate, relatively far from the rectum where a gradient of dose appears (Figure 2.8). Such findings 

support the use of our urethra segmentation method to potentially improve urinary toxicity prediction 

by considering both the dose received by the urethra and the prostate. 

 

To our knowledge there is no evidence in the literature of any method for explicitly segmenting the 

urethra in the planning CTs. An atlas based urethra segmentation method in MRI was proposed [154], 

within a SBRT perspective, but without a formal segmentation propagation towards the planning CT. The 

first method proposed by Waterman to estimate the dose to the urethra from CT scan appears in 

brachytherapy [139]. As mentioned before, in that study, the urethra was estimated as a geometric 

surrogate based upon the prostate centerline. They found a good correspondence of the urethral doses 
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(D10, D25 and D50) between this model and the urinary catheter. This model was latterly evaluated in 

brachytherapy patients with visible catheter [155]. They showed that a surrogate defined at the 

geometric center of the prostate may significantly overestimate the dose to the urethra.  A surrogate 

urethra model by considering a slight deviation of 30 degrees anteriorly with respect to the central axis 

was proposed by Bucci et al. [138]. This deviation provided a better dose estimate than Waterman [139]. 

Here, we evaluated these two urethral surrogates with the same dataset. Compared to them our 

method performed better in the same regions (overall CLD=3.25± 1.2mm with MABUS vs 3.91±1.46 with 

the deviated surrogate and 6.11±1.96 mm with the centered surrogate). The difference with the central 

axis is less pronounced in the bottom third, suggesting that a good approximation of the urethra in this 

region may be achieved. However in the upper part, although the slight deviation of 30 degrees offers a 

good approximation for some individuals, this is not the case for all the patients.  Our multi-atlas 

approach enabled to devise a strategy aimed at finding the n most suitable atlas within the dataset by 

defining a similarity metric based on simple prostate and bladder geometric features. The prostate and 

bladder segmentations were used as they are generated during the dose planning clinical protocol.  

 

Considering the proposed features, the large interindividual variability was captured as shown in the 

similarity map (Figure 2.3). Thus, with the exception of some outliers, one can find good candidates in 

the atlas selection procedure for each considered individual. The atlas selection step is indeed crucial to 

accurately segment the urethra as demonstrated in the leave one out experiments. With the proposed 

features, it has been shown that a trend arises when correlating similarity metric (distance) and 

segmentation outcome. Then, adding multiple atlases improves the accuracy in a voting strategy when 

fusing labels from the closest atlas [148]. Other global or local features based on CT intensity or shape 

descriptors may have been proposed (mutual information, cross correlation, SPHARM, etc.), but with a 

limitation concerning accuracy assessment due to the presence of the catheter.  The fusion step takes 

into account the interindividual similarity by weighting the contribution to the probability map via an 

exponential function, which has been shown to be more performant than simple averaging [152]. This 

strategy led us to limit to 10, the number of selected atlas, as by adding more their contribution is 

vanished in an exponential function. Highly contributive is the prostate non-rigid registration based on 

the Laplacian scalar field [109]. Indeed, the main feature brought by the Laplacian is the computation of 

a normalized structural description comparable across individuals, as opposed to classical distance maps.   

 

We used for evaluation the scores based on distance centerlines as proposed by [155] as the urethra is 

considered as a path within a tiny tube-like structure. Other scores based on volume overlap (Dice, 

Jaccard) are not suited here for assessing segmentation accuracy. The obtained scores enable the 

method to be used within a perspective of assessing dose to the urethra within an acceptable margin. 

However, improvements may be done within a perspective of IMRT planning and dose escalation. The 

atlas segmentation method may exhibit some limitations if we consider the hypothesis of that the 

urethra keeps a similar shape with and without a catheter. One way to demonstrate that hypothesis will 

be the MRI where the urethra might be visible. However, in brachytherapy studies the urethra position is 

only given by the catheter [61–63].  Further limitations concern the patient variability in IMRT-treated 

patients compared to the atlas database as prostate and bladder volumes may be higher because of the 

patient selection and the presence of a catheter. 
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2.5 Conclusion 

When applying the proposed method to an independent data set of patients treated with IMRT, a large 

difference was found in the dose to the urethra (high dose range) compared to the prostate. These 

findings suggest further studies to be performed on urinary toxicity by quantifying the dose to the 

urethra as reported in brachytherapy [15-17].  New multimodal models combining also dose to the 

bladder with clinical factors, biological parameters and other multimodal data within a radiomics 

framework could provide new insights into the urinary toxicity.  

 

 

 

In this chapter, we developed a methodology for segmenting the prostatic urethra on the planning CT 

images of patients treated with EBRT. Segmenting the urethra on the planning CT images paves the way 

for future studies for investigating the involvement of this structure on urinary side-effects and 

potentially improving our understanding of urinary toxicity after prostate cancer radiotherapy. 

Furthermore, by analyzing the dose at fine scales and integrating spatial descriptors of the dose to both 

the bladder and the urethra might provide new insights into the urinary toxicity and enable the 

development of more reliable predictive models.  

 

The next part of this thesis explores two methodologies for performing population analysis using 3D 

images. The purpose is to characterize spatial dose patterns at sub-organ level and anatomical regions 

implied in toxicity following prostate cancer radiotherapy. Going beyond the whole bladder DVH to 

image subunit scales, we attempt to identify local spatial dose descriptors and develop predictive models 

of urinary toxicity, using bladder DSMs (Chapter 3) and urethro-vesical DVMs (Chapter 4). 
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Part III 

Going beyond bladder dose- volume 

histograms: novel methods for spatially 

analyzing local dose distribution 
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3 Urinary toxicity prediction using dose-surface maps 

 
 

This third chapter describes a methodology for spatially characterizing the dose distribution on 
the bladder surface using DSMs. The first goal of this chapter was to improve the existent 
approaches for analyzing DSMs and propose a methodology that would allow the exploration of 
the entire bladder surface. The second goal, was to identify symptom-related sub-surfaces of the 
bladder that are potentially more predictive that the whole bladder DVH. The third goal was to 
compare the results with previous bladder DSM studies and assess the reproducibility of the 
results. 
 
 
Part of the work presented in this Chapter was conducted at the Istituto Tumori  di Milano, in 
Italy, in collaboration with Tiziana Rancati and Alessandro Chicchetti. This work was  presented 
at the ESTRO 38 conference in Milano as an oral communication and has been submitted for 
publication to the journal Radiotherapy and Oncology. For the shake of coherence of the thesis 
manuscript, the original paper has been divided in two parts: the one is presented in this chapter 
and the other part in the Chapter 6, section 6.1. 
 
Mylona E, Cicchetti A, Rancati T, Palorini F, Fiorino C, Supiot S, Magne N, Creange G, Valdagni R, Acosta O, de 
Crevoisier R. Local dose analysis to predict acute and late urinary toxicities after prostate cancer radiotherapy : 
assessment of cohort and method effects. Radiother. Oncol. (Submitted to Radiotherapy and Oncology) 
 
 
Mylona E, Cicchetti A, Rancati T, Palorini F, Supiot S, Magne N, Creange G, Acosta O, de Crevoisier R. Predicting 
urinary toxicity via 2D and 3D dose map analyses in prostate cancer radiotherapy. Radiother. Oncol. 2019;133:326. 
(Presented at the ESTRO 38 as an oral communication) 
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3.1 Introduction 

Dose-surface maps (DSM) of the bladder have recently been applied to urinary toxicity studies only by 

two research teams, providing evidence of spatially variable dose-response relationship with respect to 

acute [8,9] and late [10] urinary symptoms. These studies, however, were limited to the global  urinary 

toxicity [156], included a small number of patients [60], or the discriminative power of the models was 

disregarded [106]. More importantly, since spatial dosimetric patterns can be surrogates of underlying 

population characteristics, the generalization of these observations is not established. In addition, in all 

the studies, absolute DSMs were used which restricted their analysis to only a few centimeters form the 

bladder base because of the variable bladder extension across the population.  

 

In the following sections we will present a methodology for analyzing the whole bladder surface using 

normalized DSMs.  Then we compare the DSMs pixel-wise between patients with and without toxicities 

in order to identify sub-surfaces (Ssurf) of the bladder where significant dose differences exist. To answer 

the question whether the impact of dose to specific subregions is associated specific symptoms we 

compare our results with those from previous studies. 

 

3.2 Population data set, treatment, and urinary toxicity  

The study included a total of 272 patients with localized prostate cancer treated with intensity-

modulated radiation therapy/image-guided radiation therapy (IMRT/IGRT) between May 2008 and July 

2018 within two multicentric prospective phase III trials (STIC-IGRT) [157] and (PROFIT, 

normofractionated arm) [158]. The mean age of the patients was 70 years (range: 52-81). The target 

volume included the prostate and seminal vesicles (SV), avoiding the pelvic lymph nodes. Target volume 

and organs at risks (bladder, rectum, and femoral heads) were delineated on computed tomography (CT) 

slices according to the GETUG and PROFIT recommendations. IMRT combined with IGRT was used to 

deliver a total dose of 78 Gy (in case of cone-beam CT [CBCT]) or 80 Gy (in case of fiducials) to the 

prostate over 8 weeks and 46 Gy to the SV over 4.6 weeks, at 2 Gy/fraction. Bladder dose-volume 

histograms (DVHs) were compiled either with GETUG recommendations as maximum dose <80 Gy or 

with PROFIT recommendations as 50% and 70% of the bladder wall receiving less than 53 Gy and 71 Gy, 

respectively. Patient and treatment characteristics are described in Table 3.1. All the patients provided 

informed consent. The trials were approved by the French Institutional Review Board and are registered 

in ClinicalTrials.gov (NCT00433706 for the STIC-IGRT trial, NCT00304759 for the PROFIT trial).  

 

The median follow-up was 50 months (range: 6–102 months). Acute (≤3 months from RT start date) and 

late (> 3months) urinary toxicity was scored using the CTCAE v.3.0 (210 patients from the STIC-IGRT trial) 

or the RTOG (62 patients from the PROFIT trial) radiation morbidity-scoring schema. We considered 20 

endpoints: 5 symptoms (incontinence, retention, dysuria, hematuria, frequency), for both grade > 1 and 

grade > 2, and for acute and late urinary toxicity. The 5-year toxicity rates were estimated using Kaplan-

Meier (KM) analysis. Table 3.2 displays the number of events and rates of acute and 5-year late urinary 

toxicity (grade ≥1 and grade ≥2) by symptom as calculated by KM. Among the 20 endpoints, 4 symptoms 
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(acute grade>2 incontinence and hematuria, late grade>2 dysuria and hematuria) were excluded from 

the analysis due to the absence or very low number of events.  

 
Table 3.1 Patient and treatment characteristics of the population 

Characteristics Values  

Age (years, mean ±SD) 69 ± 6 

TURP 7 % 

Previous abdominal surgery 20 % 

Diabetes 12 % 

Anti-coagulant treatment 25 % 

Antihypertensive treatment 33 % 

Hypercholesterolemia treatment 19 % 

Baseline symptoms 

Hematuria 0% 

Dysuria <1% 

Retention 8% 

Incontinence <1% 

Frequency 14% 

ADT 28 % 

Prescribed dose  
80 Gy 32 % 

78 Gy 68 % 

Prostate volume* (cc, mean ± SD)  52.1 ± 21.3 

Bladder volume* (cc, mean ± SD)  227.6 ± 145.5 
SD: standard deviation; TURP: transurethral resection of the prostate; ADT: Androgen deprivation 
therapy.*: calculated from the planning CT 

 

Table 3.2 Rates of grade ≥ 1 and grade ≥ 2 acute and late urinary toxicity (by symptom) 

Endpoints 
Acute toxicity (No. of cases and rates) 

Grade > 1  Grade > 2  

Incontinence 17 (7%) 0 

Frequency  202 (80%) 67 (26%) 

Retention 106 (42%)  49 (19%) 

Dysuria / Pain 113 (45%) 19 (7%) 

Hematuria 7 (3%) 0 

Endpoints 

Late 5-year toxicity (No. of cases and rates) 

Grade > 1 Grade > 2 

No. of cases  Kaplan-Meier (95% CI) No.of cases Kaplan-Meier (95% CI) 

Incontinence 33  15% (10-20%) 8  4% (1-7%) 

Frequency  125  55% (48-62%) 27  11% (7-15%) 

Retention 40  34% (26-42%) 23  10% (5-15%) 

Dysuria / Pain 31  13% (8-18%) 2  1% (0-2%) 

Hematuria 23  10% (6-14%) 5  2% (0-4%) 
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3.3 Materials and methods 

3.3.1 DSM construction and pixel-wise analysis to identify sub-surfaces  

Absolute DSMs were generated from the planning CT delineations and dose distributions using a 

dedicated software (VODCA, MSS Medical Software Solutions GmbH, Hagendorn, Switzerland). The 

workflow is shown in Figure 3.1. For each patient, the bladder surface was cut anteriorly at the points of 

intersection with the sagittal plane passing through its center of mass and virtually unfolded in a 2D 

plane. The dose distribution was transposed accordingly (step 1) [60]. Each dose map was first 

normalized in the axial direction (step 2). After aligning all of the maps in the population to the most 

inferior-central point of the bladder base (step 3), they were normalized to the DSM template in the 

cranial-caudal direction (step 4). The smallest vertical bladder extension present in the cohort (29 mm 

above the bladder base) was selected as the reference plane (DSM template). As opposed to previous 

DSM analyses, this affine transformation allowed the representation of the entire bladder surface of 

each patient on the same 2D plane. Pixel-wise comparisons between patients with/ without toxicity 

were performed for each endpoint using the Mann-Whitney U test. Average dose maps for each group 

and the corresponding dose differences and p-value maps were generated. The p-value maps were 

threshold at p ≤0.01 to identify sub-surfaces (Ssurf) of the bladder with significant dose differences.  

 

 
Figure 3.1 Workflow of dose-surface map (DSM) construction 

Ant=anterior; Post=posterior; R=right; L=left 
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3.3.2 Prediction capability of dosimetric and clinical parameters 

UNIVARIATE ANALYSIS   

Univariate analysis was performed independently for each Ssurf and the whole bladder to identify the 

most predictive dose bins of the DVH/ DSH. Logistic regression was used for acute toxicity, and the 

discriminative performance was assessed with the area under the ROC curve (AUC). Cox regression was 

used for late toxicity. The 5-year discriminative performance was measured with the area under the 

time-dependent ROC curve (tAUC) as described in [159], which accounts for censoring in survival 

analysis. The AUC/tAUC and 95% confidence intervals (CI) were computed using 1000 bootstrap 

replicates and the dose bins with the highest significant AUC (AUCmax) were selected for further 

analysis. 

 

MULTIVARIATE ANALYSIS   

Multivariate logistic/Cox models were constructed including clinical parameters and pre-selected 

dosimetric variables (dose bins) from the univariate analysis. Models were constructed using two 

methods: i) backward elimination and ii) the least absolute shrinkage and selection operator (LASSO) 

method [160,161], which enables the simultaneous analysis of the correlations between the features 

and also prevents overfitting [162,163], as described below. The AUC/ tAUC and 95% CIs from 1000 

bootstrap replicates were used to evaluate the models’ discriminative performance.  

 
Variable selection using LASSO 

Penalized regression methods, such as the Least Absolute Shrinkage Selection Operator (LASSO) [160], 

allow the generation of parsimonious models that balance accuracy and model complexity. 

Regularization by LASSO-type penalties usually leads to sparse solutions and performs both variable and 

model selection. LASSO can be applied to many types of regression, including logistic and Cox regression.  

 

LASSO parameters are estimated by maximizing a log-likelihood criterion in which an L1-norm penalizes 

large absolute values of the parameter estimates. Many regression coefficients are shrunk to zero and 

only a few others remain in the model. In this way, coefficient estimates of redundant features can be 

forced to be exactly zero, resulting in an optimal sparse model. The degree of shrinkage depends on the 

tuning parameter lambda (λ). The choice of the shrinkage parameter, thus, drives the model selection. 

Moreover, the shrinkage introduces bias in the parameter estimates, which reduces the variance of the 

parameter estimates. This phenomenon is known as the bias-variance trade-off, which could improve 

the model’s prediction performance.  

 

To avoid dealing with high dimensional data in the regression analysis, the set of dosimetric variables 

was reduced prior to LASSO by selecting a single dosimetric variable per DVH/DSH (the bin corresponding 

to AUCmax). As a result, no more than 16 variables were used as input for feature selection. 

Standardization of all of the variables was also performed prior the LASSO feature selection to guarantee 

that the penalty term would treat the variables in a comparable way. The number of selected features 
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and their coefficients were tuned with the parameter lambda (λ) optimized using 5-fold cross-validation 

(CV) [162]. This was performed using the cv.glmnet routine in the glmnet package in R. At each iteration, 

the data set was divided into 5 sub-sets (folds). Four were used to train the model and the fifth set was 

used for validation. The process was repeated 5 times so that each sub-set was used once as a validation 

set. For the logistic regression models, the minimum deviance was selected as the criterion for finding 

the tuning parameter λ, while for the Cox regression, the log partial-likelihood was used. The cross-

validated LASSO method was repeated 100 times, resulting in 500 models in total to identify different 

combination of features and coefficients yielding minimum deviance values. We then applied the “one 

standard error” rule [163] to select the most sparse model (the model with the fewest non-zero 

parameters) whose deviance is no more than one standard error greater than the deviance of the “best” 

model (the model among the 500 with minimum deviance). 

3.4 Results 

 
Three subregions were identified on the bladder surface (only for grade ≥1 toxicity endpoints) as 

predictive of specific urinary symptoms: acute and late retention and late dysuria. For acute and late 

retention, the two subregions where found on the posterior bladder surface corresponding to the 

intermediate dose region with dose differences 7.9±2.9 Gy and 10.9±1.9 Gy, respectively. For late 

dysuria a subregion was identified on the anterior-lateral and mostly inferior bladder surface 

corresponding to intermediate-high dose region with dose differences 8.3±2.7 Gy. 
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Figure 3.2 Symptom-related sub-surfaces (Ssurf) of statistically significant dose differences between patients with/without 

toxicity from DSM analysis 

  

Figure 3.2 shows the DSMs of the average dose distribution for patients with (left) and without (middle) 

urinary toxicities and the corresponding dose difference maps (right), for the three symptoms (grade ≥1). 

Contours show the regions with statistically significant dose differences corresponding to p-value≤0.01 
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(bold) and ≤0.05 (light) using the pixel-wise Mann-Whitney test. The mean dose (±SD) to the Ssurf for 

each group and the mean dose differences are given below each DSM (for the region corresponding to p-

value ≤0.01).  

 
UNIVARIATE ANALYSIS   

Table 3.3 displays the association between urinary endpoints and the DSHs of the Ssurf and the DVH of 

the whole bladder. For the three Ssurf, AUC was 0.64 for acute retention, 0.68 for late retention and 0.74 

for late dysuria. For the whole bladder the AUCs was 0.60 for acute retention, 0.67 for late retention, 

0.72 for late dysuria and 0.65 for late hematuria. 

 
Table 3.3 Univariate analysis of the DVH/DSH for the whole bladder and the sub-surfaces (Ssurf) 

A. Acute toxicity (Grade ≥1) 

Symptom Region 
Most predictive DVH/DSH bin 

(range of predictive bins)* 
p value OR (95% CI) AUC (95% CI) 

Retention 
Whole bladder V79 (V77-V79) 0.05 1.06 (1.01-1.13) 0.60 (0.51-0.67) 

Ssurf S42 (S15-S60) <0.01 1.01(1-1.02) 0.64 (0.56-0.72) 

B. Late toxicity (Grade ≥1) 

Symptom Region 
Most predictive DVH/DSH bin 

(range of predictive bins)* 
p value HR (95% CI) 

tAUC at 5 years 
(95% CI) 

Retention 
Whole bladder V19 (V4-V78) <0.01 1.02 (1-1.04) 0.67 (0.59-0.75) 

Ssurf S38 (S3-S79) <0.01 1.02 (1.01-1.03) 0.68 (0.60-0.75) 

Dysuria 
Whole bladder V67 (V5- V78) <0.01 1.03 (1.01-1.05) 0.72 (0.63-0.82) 

Ssurf S70 (S8-S80) <0.01 1.07 (1.03-1.1) 0.74 (0.64-0.83) 

Hematuria 
Whole bladder V7 (V6-V18) 0.04 1.04 (1-1.07) 0.65 (0.55-0.75) 

Ssurf NS - - - 

Ssurf: Sub-surface; OR: Odds ratio; HR: Hazard ratio; CI: Confidence interval; AUC: Area under the ROC curve; tAUC=time dependent AUC; 
NS: not significant (p > 0.05); *DVH bin with the highest AUC and range of bins with statistically significant p-value (≤ 0.05) 

 

Clinical parameters significantly associated with acute urinary symptoms were age, transurethral 

resection of the prostate (TURP), previous abdominal surgery, anti-coagulant treatment, anti-

hypertensive treatment, prostate volume, and baseline symptoms, as shown in Table 3.4. The impact of 

hematuria, dysuria and incontinence baseline symptoms on toxicity has not been assessed due to the 

very low occurrence of these symptoms (<1%). Clinical parameters significantly associated with late 

urinary symptoms were age, transurethral resection of the prostate (TURP) previous abdominal surgery, 

diabetes, anti-coagulant treatment, anti-hypertensive treatment, androgen-deprivation therapy (ADT), 

prostate volume, and baseline symptoms, as shown in  

Table 3.5. The impact of hematuria, dysuria and incontinence baseline symptoms on toxicity has not 

been assessed due to the very low occurrence of these symptoms (<1%). 



 
 

Table 3.4 Univariate analysis testing the impact of patient/ treatment characteristics on acute urinary toxicity 

Parameters 

Grade > 1 toxicity Grade > 2 toxicity 

Hematuria Dysuria Retention Frequency Incontinence Dysuria Retention Frequency 

p 
OR (95% 

CI) 
p 

OR (95% 
CI) 

p 
OR (95% 

CI) 
p 

OR (95% 
CI) 

p 
OR 

(95% 
CI) 

p 
OR (95% 

CI) 
p 

OR 
(95% 

CI) 
p 

OR 
(95% 

CI) 

Age 0.39 
 

0.01 
0.94 (0.9-

0.99) 
0.87 

 
0.44 

 
0.8  0.68 

 
0.31  0.72 

 

TURP 0.04 
6.9 (1.07-

4.8) 
0.41  0.04 

0.27 (0.07-
0.96) 

<0.01 
0.19 

(0.07-
0.54) 

1  0.47 
 

0.15  0.16 
 

Previous abdominal 
surgery 

0.04 
10.2 

(1.12-84) 
0.38  0.96 

 
0.67 

 
0.54  0.47 

 
0.58  0.43 

 

Diabetes 0.99 
 

0.63  0.5 
 

0.33 
 

0.1  0.99 
 

0.52  0.32 
 

Anti-coagulant treatment 0.01 
8.1 (1.6-

42.8) 
0.92  0.3 

 
0.8 

 
0.08  0.71 

 
0.17  0.43 

 

Antihypertensive 
treatment 

0.17 
 

0.41  0.56 
 

0.57 
 

1  0.04 
4.1 (1.09-

15.5) 
0.46  0.78 

 

Hypercholesterolemia 
treatment 

0.73 
 

0.76  0.93 
 

0.09 
 

0.47  0.33 
 

0.5  0.86 
 

ADT 0.44 
 

0.07  0.75 
 

0.7 
 

0.81  0.39 
 

0.44  0.08 
 

Prostate volume 0.21 
 

0.12  0.75 
 

0.07 
 

0.56  0.01 
1.03 (1.01-

1.05) 
0.42  0.27 

 

Bladder volume 0.97 
 

0.39  0.31 
 

0.06 
 

0.14  0.33 
 

0.59  0.19 
 

Baseline retention 0.99 
 

0.62  0.04 
3(1.03-
0.76) 

0.19 
 

1  0.99 
 

0.01 
3.53 (1.3-

9.6) 
<0.01 

4.4 (1.6-
12.3) 

Baseline frequency 0.38 
 

0.19  0.39 
 

0.04 
3.17 

(1.03-
9.76) 

1  0.6 
 

0.24  <0.01 
3.2 (1.4-

7.3) 

 



 

Table 3.5 Univariate analysis testing the impact of patient/ treatment characteristics on late urinary toxicity 

Parameters 

Grade > 1 toxicity Grade > 2 toxicity 

Hematuria Dysuria Retention Frequency Incontinence Retention Frequency Incontinence 

p 
HR 

(95% 
CI) 

p 
HR 

(95% 
CI) 

p 
HR (95% 

CI) 
p 

HR (95% 
CI) 

p 
HR (95% 

CI) 
p 

HR (95% 
CI) 

p 
HR (95% 

CI) 
p 

HR (95% 
CI) 

Age 0.22  0.81  0.01 
0.95 

(0.91-
0.99) 

0.05 
1.03 (1-

1.06) 
0.03 

1.07 (1-
1.13) 

0.02 
0.92 

(0.86-
0.98) 

0.28 
 

0.49 
 

TURP 0.86  0.24  0.44 
 

0.51 
 

<0.01 
5.72 

(2.02-
16.22) 

0.66 
 

0.13 
 

<0.01 
17.7 

(2.95-
76.26) 

Previous abdominal 
surgery 

0.12  0.06  <0.01 
2.17 

(1.25-
3.77) 

0.4 
 

0.45 
 

0.05 
2.62 (1-

6.78) 
0.3 

 
0.06 

 

Diabetes 0.74  0.98  0.29 
 

0.86 
 

0.03 
2.58 

(1.11-
5.97) 

1 
 

0.01 
3.08 
(1.3-
7.28) 

0.82 
 

Anti-coagulant 
treatment 

0.26  0.72  0.24 
 

0.24 
 

0.02 
2.32 

(1.16-
4.63) 

0.74 
 

0.68 
 

0.92 
 

Antihypertensive 
treatment 

0.91  0.71  0.63 
 

0.04 
1.58 

(1.01-
2.47) 

0.39 
 

0.05 
0.33 

(0.11-
1.02) 

0.74 
 

0.53 
 

Hypercholesterolemia 
treatment 

0.22  0.42  0.68 
 

0.69 
 

0.55 
 

0.68 
 

0.2 
 

0.68 
 

ADT 0.7  0.11  0.23 
 

<0.01 
1.91 
(1.3-
2.74) 

0.91 
 

0.1 
 

0.08 
 

0.69 
 

Prostate volume 0.76  0.67  0.61 
 

0.46 
 

0.43 
 

0.16 
 

0.75 
 

0.85 
 

Bladder volume 0.13  0.08  0.06 
 

0.06  0.08 
 

0.34 
 

0.37 
 

0.52 
 

Baseline retention 0.4  0.94  <0.01 
2.59 

(1.54-
4.35) 

0.08 
 

0.85 
 

<0.01 
3.64 

(1.66-
7.96) 

0.95 
 

1 
 

Baseline frequency 0.4  0.64  0.12 
 

<0.01 
3.78 
(2.4-
6.05) 

0.84 
 

0.19 
 

<0.01 
7.19 
(2.4-

21.62) 
0.53 

 

 



MULTIVARIATE ANALYSIS   

Table 3.6 displaces the results of the multivariate analysis with backward elimination. Table 3.7 shows 

the detailed results of the LASSO multivariable regression for the different symptoms. The two methods 

resulted in similar models.  
 

Table 3.6 Parameters affecting acute and late urinary toxicity in multivariate analysis using backward elimination 

A. Acute toxicity (logistic regression) 

Grade >1 

Endpoints Parameters p-value OR (95% CI) Model p-value AUC (95% CI) 

Retention 

Ssurf (S42) 0.02* 1.01 (1-1.02) 

<0.01 0.70 (0.63-0.78) TURP 0.06 0.27 (0.07-1.03) 

Baseline retention <0.01* 4.39 (1.48-13.0) 

Dysuria 
Age 0.01* 0.94 (0.9-0.99) 

<0.01 0.63 (0.54-0.71) 
ADT 0.07 0.52 (0.25-1.07) 

Frequency 

TURP <0.01* 0.07  (0.01-0.37) 

<0.01 0.77 (0.68-0.85) Hypercholesterolemia treatment 0.01* 0.3 (0.11-0.78) 

Baseline frequency 0.02* 5.75 (1.4-23.6) 

Grade >2 

Retention 

TURP 0.17 0.23 (0.03-1.85) 

<0.01 0.64 (0.55-0.72) Anticoagulant treatment 0.09 0.36(0.11-1.17) 

Baseline retention <0.01* 3.69 (1.43-9.5) 

Dysuria 
Antihypertensive treatment 0.04* 3.58 (1.39-15.65) 

<0.01 0.72 (0.55-0.88) 
Prostate volume 0.02* 1.03 (1.01-1.05) 

Frequency 
TURP 0.2 0.36 (0.08-1.71) 

<0.01 0.61 (0.54-0.68) 
Baseline frequency 0.01* 3.17 (1.31-7.64) 

B. Late toxicity (Cox regression) 

Grade >1 

Endpoints Parameters p-value HR (95% CI) Model p-value tAUC (95% CI) 

Retention 

Ssurf (S52) <0.01* 1.02 (1-1.03) 

<0.01 0.73 (0.68-0.78) 
Age 0.02* 0.95 (0.91-0.99) 

Previous abdominal surgery 0.07 1.69 (0.96-2.97) 

Baseline retention <0.01* 3.17 (1.66-5.05) 

Incontinence 

Age 0.06 1.09 (0.99-1.19) 

<0.01 0.81 (0.71-0.88) TURP <0.01* 5.06 (1.73-14.76) 

Diabetes <0.01* 5.59 (2.05-15.21) 

Hematuria - - - - - 

Dysuria 
Ssurf (S70) <0.01* 1.06 (1.03-1.10) 

<0.01 0.78 (0.69-0.85) 
ADT 0.1 2.27 (0.89-5.76) 

Frequency 

Bladder volume 0.08 1.02 (0.99-1.03) 

<0.01 0.8 (0.75-0.87) 
Antihypertensive treatment 0.02* 1.76 (1.1-2.83) 

ADT <0.01* 2.92 (1.72-4.95) 

Baseline frequency <0.01* 4.28 (2.55-7.17) 

Grade >2 

Retention 

Age 0.12 0.95 (0.89-1.03) 

<0.01 0.75 (0.63-0.84) 
Previous abdominal surgery 0.11 2.2 (0.8-6) 

Antihypertensive treatment 0.1 0.37 (0.12-1.21) 

Baseline retention <0.01* 4.49 (1.64-12.26) 

Frequency 
Hypercholesterolemia treatment 0.09 0.18 (0.02-1.38)) 

<0.01 0.77 (0.66-0.86) 
Baseline frequency <0.01* 5.29 (1.8-15.6) 

Incontinence TURP <0.01 17.7 (2.95-76.26) <0.01 0.74 (0.62-0.87) 

TURP: transurethral resection of the prostate; ADT: Androgen deprivation therapy; OR: Odds ratio; HR: Hazard ratio; CI: Confidence interval; AUC: 
Area under the ROC curve; tAUC: time-dependent area under the ROC curve; *significant variables (p≤0.05); Model p-value: Global statistical 
significance of the model as defined by the Likelihood ratio test. 
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Table 3.7 Parameters affecting acute and late urinary toxicity in multivariate analysis using LASSO 

A. Acute toxicity (logistic regression) 

Grade >1 

Endpoints Parameters beta OR (ebeta) AUC (95% CI) 

Retention 

Ssurf (S42) 0.0043 1.01 

0.70 (0.62-0.78) TURP -0.2190 0.80 

Baseline retention 0.7763 2.17 

Dysuria 
Age -0.0318 0.96 

0.63 (0.55-0.72) 
ADT -0.1531 0.85 

Frequency 

Bladder volume -0.0002 0.99 

0.79 (0.7-0.88) 
TURP -1.2162 0.30 

Hypercholesterolemia treatment -0.4177 0.66 

Baseline frequency 0.5518 1.73 

Grade >2 

Retention 

TURP -0.2528 0.78 

0.63 (0.54-0.72) Anticoagulant treatment -0.2320 0.79 

Baseline retention 0.774 2.17 

Dysuria 
Antihypertensive treatment 0.3210 1.38 

0.72 (0.55-0.88) 
Prostate volume 0.0127 1.01 

Frequency Baseline frequency 0.5908 1.81 0.59 (0.52-0.65) 
B. Late toxicity (Cox regression) 

Grade > 1 

Endpoints Parameters beta HR (e beta) tAUC (95% CI) 

Retention 

Ssurf (S52) 0.0089 1.01 

0.72 (0.67-0.77) 
Age -0.0285 0.97 

Previous abdominal surgery 0.3268 1.39 

Baseline Retention 0.8131 2.26 

Incontinence 

Age 0.0355 1.04 

0.81 (0.71-0.88) TURP 1.2058 3.34 

Diabetes 1.2925 3.64 

Dysuria Ssurf (S70) 0.0411 1.04 0.73 (0.63-0.81) 

Frequency 

Age 0.0072 1.01 0.81 (0.75-0.86) 
Bladder volume -0.00038 0.99 

 

Antihypertensive treatment 0.3003 1.35 

ADT 0.5538 1.74 

Baseline frequency 1.0396 2.82 

Grade > 2 

Retention 

Age -0.0414 0.96 

0.77 (0.67-0.85) 

Previous abdominal surgery 0.3828 1.47 

Diabetes -0.3501 0.70 

Antihypertensive treatment -0.4946 0.61 

ADT 0.2863 1.33 

Baseline retention 1.0885 2.96 

Frequency 

Diabetes 0.4673 1.60 

0.81 (0.72-0.90) Hypercholesterolemia treatment -0.4663 0.63 

Baseline frequency 1.1170 3.06 

Incontinence 
TURP 2.0501 7.77 

0.82 (0.65-0.97) 
Previous abdominal surgery 0.6994 2.01 

Ssurf: Sub-surface, TURP: transurethral resection of the prostate; ADT: Androgen deprivation therapy; OR: Odds ratio; HR: Hazard ratio; 
AUC: Area under the ROC curve; tAUC: time-dependent area under the ROC curve 
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3.5 Discussion 

 
An affine transformation of the DSMs was implemented to represent the entire population on a common 

reference frame while preserving the spatial information of the dose distribution to the entire surface of 

the bladder. Subsequent pixel-wise comparisons allowed us to investigate the local dose-effect 

relationship for acute and 5-years late urinary toxicity after prostate cancer RT. This fine-scale analysis of 

the dose distribution indicated the presence of a spatially variable dose-effect relationship on the 

surface of the bladder. The doses to three Ssurf located in the inferior hemisphere of the bladder were 

found to be good predictors for three grade ≥ 1 symptoms (acute retention, late retention and late 

dysuria).  

 

For late dysuria, a large surface of the bladder seems to be involved including the anterior-inferior and 

lateral region. For acute retention, one Ssurf was found on the posterior bladder region, while for late 

retention the Ssurf was located on the posterior-superior bladder. Although the relationship between 

bladder dose and obstructive symptoms has not been explored in previous DSM studies, our results are 

in line with other urinary toxicity studies [54,57,58], suggesting that high/intermediate dose might be 

impacting on the manifestation of obstructive effects.  

 

Concerning the discriminative power of the models in univariate analysis, the doses to the Ssurf were 

slightly more predictive than the dose to the whole bladder. For acute retention the Ssurf was 

moderately predictive (AUC=0.64) but outperformed the whole bladder model (AUC=0.60, p-

value=0.05). For late toxicities, the predictive capabilities of Ssurf and the whole bladder were marginally 

different. More specifically, the dose to the Ssurf for late retention resulted to AUC=0.68 while the dose 

to whole bladder resulted to AUC=0.67. Similarly, for late dysuria the Ssurf AUC was 0.74 while the 

bladder AUC was 0.72. 

  



77 
 

 

3.6 Comparison with previous studies to estimate the “cohort-effect” 

 
To date, bladder DSMs coupled with pixel-wise comparisons have been investigated by two research 
teams, providing evidence of spatially variable dose-response relationship with respect to acute [60,156] 
and late [106] urinary symptoms, as shown in  
Table 3.8. Concerning acute toxicity analyzed by DSMs, urinary frequency/urgency was significantly 

related to the dose at 5–12 mm posterior to the bladder base, corresponding to trigone [60]. Concerning 

late toxicity, another DSM analysis [106] found incontinence to be related to the region lateral to 

trigone. They also reported that the dose to the anterior-inferior and posterior-superior bladder surface 

was associated with worsening of symptoms as measured by IPSS, dysuria, and hematuria.  These 

studies, however, were limited to the global  urinary toxicity [156], included a small number of patients 

[60], or the discriminative power of the models was disregarded [106]. More importantly, since spatial 

dosimetric patterns can be surrogates of underlying population characteristics, the generalizability of 

these observations is not established. Confirmation in independent cohorts is essential to answer the 

question whether the impact of dose to specific subregions is associated specific symptoms.  

 

The reproducibility of the DSM results was assessed through comparison between the results obtained in 
our cohort and the results from the aforementioned cohorts.  
Table 3.8 summarizes the population and treatment characteristics of these three DSM studies used for 

comparison. The concordance between cohorts was assessed in terms of localization of identified Ssurf. 

The localization of the Ssurf was visually defined, first in our cohort and then retrospectively in the other 

cohorts, with respect to the cranio-caudal, antero-posterior, and lateral axes of the bladder. The inter-

cohort agreement of the Ssurf overlap was then categorized as good, moderate, or bad. 

 

Overall, five symptoms with similar inter-study definitions were considered for comparison (acute 

frequency and retention, late dysuria, incontinence, and hematuria). Among these five symptoms, four 

Ssurf were identified in other cohorts, and two in our cohort. Only for one symptom, late dysuria, was 

Ssurf was found in both our study and another study [106], with good spatial agreement (inferior-

anterior-lateral).  

 



 

Table 3.8 Overview of existing bladder DSM studies 

Acute toxicity 

Method Study N 

Treatm
ent 

techniq
ue 

PD 
(fraction

) 

Toxicity 
scoring 

Global toxicity Frequency Incontinence Retention* Dysuria Hematuria 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Locatio
n 

AUC AUC 
Locati

on 
AUC AUC 

Locatio
n 

AUC AUC 
Locatio

n 
AUC AUC 

Locatio
n 

AUC AUC 
Locatio

n 
AUC AUC 

DSM 

Palorini 
et al. 
2016 

72 
 

IMRT/ 
IGRT 

70-74 Gy 
(2.5-2.65 

Gy) 
IPSS 

Inf- lat 0.67 0.62 Post 0.71 0.61 Not studied 
Not 

found 
- - Not studied Not studied 

Improta 
et al. 
2016- 

375 
 

76 Gy 
(1.8-2 / 
2.2-2.7 

Gy) 

Inf- 
post 

0.70 0.66 Not studied Not studied Not studied Not studied Not studied 

Current 
study 

272 
IMRT/ 
IGRT 

78-80 Gy 
(2Gy) 

RTOG/ 
CTCAE v3 

Not studied 
Not 

found 
- NS 

Not 
found 

 NS Post 0.64 0.60 
Not 

found 
- NS 

Not studied  
(No events) 

Late toxicity 

Method Study N 

Treatm
ent 

techniq
ue 

PD 
(fraction

) 

Toxicity 
scoring 

Global toxicity Frequency Incontinence Retention Dysuria Hematuria 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Subregion 
Bladde

r 
Subregion 

Bladde
r 

Locatio
n 

AUC AUC 
Locati

on 
AUC AUC 

Locatio
n 

AUC AUC 
Locatio

n 
AUC AUC 

Locatio
n 

AUC AUC 
Locatio

n 
AUC AUC 

DSM 

Yahya et 
al. 2017 

754 
 

3D-CRT 
66-74 Gy 
(1.8-2.2 

Gy) 

IPSS 
(global) 
LENT-
SOMA 

(symptoms
) 

Inf-ant 
Not 
give

n 

Not 
given 

Not studied Inf-post 
Not 
give

n 

Not 
given 

Not studied 
Inf-ant 

& 
lat 

Not 
give

n 

Not 
given 

Sup-
post & 
Inf-ant 

Not 
give

n 

Not 
given 

Current 
study 

272 
IMRT/ 
IGRT 

78-80 Gy 
(2Gy) 

RTOG/ 
CTCAE v3 

Not studied 
Not 

found 
- NS 

Not 
found 

- NS 
Sup-
post 

0.68 0.67 
Inf-ant 

& 
lat 

0.74 0.72 
Not 

found 
- 0.65 

*”weak stream” as defined by IPSS was considered to be similar to retention 

Color shading represents the symptoms that are comparable across DSM studies 

  



The reproducibility of identified symptom related Ssurf between cohorts is weak in our study, potentially 
due to the heterogeneity of the compared populations The local dose-effect relationship was confirmed 
in our population for late dysuria but remains unclear for other symptoms, suggesting that DSM results 
are strongly dependent on cohort characteristics The cohort effect may be related to population and 
statistics (cohort size, toxicity rates, endpoint definition) and treatment-related factors (total dose, 
fractionation, and technique). Indeed,  
Table 3.8 shows large differences between cohorts. Statistical differences between the studied 

populations are expected to be strongly influential. For example, the first pilot study of bladder DSM 

analysis for acute urinary toxicity [60] included only 72 patients. Across the studies, prescribed doses 

ranged from 66Gy to 80Gy and both standard fractionation and hypo-fractionation were used. The 

treatment techniques were either IMRT or 3D-CRT. Toxicity rates were also different between cohorts, 

mostly concerning acute toxicities, namely 26% [60] versus 42% in our study, for acute retention. 

Nevertheless, there was one symptom (late dysuria) for which Ssurf was identified and confirmed in two 

independent cohorts (anterior-inferior-lateral bladder surface, receiving 40–60Gy). 

 

3.7 Conclusion 

 
Dose-surface maps can unveil the heterogeneous intra-organ radiosensitivity by identifying symptom-

specific subregions of the bladder surface that might be more predictive than the dose to the whole 

bladder. This has already been proposed by others. However, this study demonstrated that spatial 

dosimetric patterns can be surrogates of underlying population characteristics since, compared to 

previous DSM studies, we were not able to confirm a local dose-toxicity relationship but for one 

symptom. Consequently the local dose-toxicity relationship is not necessarily translated into a causality 

relationship. Therefore, generalization of these observations is not a foregone conclusion. Careful 

assessment and external validation of such models is indispensable to establish clinically meaningful 

dosimetric constraints on the bladder surface. In addition, further investigation is needed to prove the 

improvement on prediction capabilities brought by these models compared to the whole bladder DVH.  

 

 
In this chapter, we tackled the problem of characterizing dose patterns on the bladder surface possibly 

correlated with toxicity, using DSMs. Indeed, DSM remains an attractive method for investigating the 

dose-response relationship at a pixel level. It is, nevertheless, limited by two main factors. First, the two 

dimensional nature of DSMs is unavoidably restricted to the surface of the organ, assuming that a dose-

response relationship exist only on the bladder surface which is not necessarily true. Second, DSMs are 

limited to a single organ, while in reality, more than one structures can be contributing to urinary 

toxicity. This is particularly true for urinary toxicity, as symptom manifestation might be associated not 

only with the dose to the bladder but also with the dose to the urethra or other sub-parts of these 

structures. To overcome these limitations with the premise to improve prediction of urinary toxicity, in 

the following chapter we propose a new methodology to perform population analysis of the entire 3D 
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dose distribution in the bladder and the urethra, using DVMs, which aims at identifying 3D anatomical 

sub-regions implied in urinary toxicity following prostate cancer radiotherapy.  
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4 Urinary toxicity prediction using dose-volume maps 

 

 
In this chapter we present a methodology for analyzing dose-volume maps via voxel-wise 
comparisons. The proposed framework allows to investigate the local dose-effect relationship in 
the bladder and the urethra with the objective to identify sub-regions that are potentially more 
predictive of urinary toxicity than the whole bladder DVH. First we describe an original and 
robust multi-organ non-rigid registration strategy for anatomically aligning the population and 
propagating the dose distributions to a common space. Then, the dose-volume maps of patients 
with and without toxicities were compared voxel-by-voxel allowing the identification of 
symptom-related subregions where statistically significant dose differences exist. The subregions 
where propagated to the native space of each patient where sub-region DVHs were computed 
and their discriminative power with respect to the DVH of the whole bladder was evaluated.  
Finally, the generalizability of these models was assessed through external validation on a large, 
independent population. 
 
 
The content of this chapter has been published to the International Journal of Radiation 
Oncology, Biology, Physics (with exception paragraph 4.4). The section 4.4 contains preliminary 
(unpublished) results of a work realized in Sir Charles Gairdner Hostital, Western Australia in 
collaboration with Martin Ebert and Angel Kennedy. 
 
 
Mylona E, Acosta O, Lizee T, Lafond C, Crehange G, Magné N, Chiavassa S, Supiot S, Ospina JD, Campillo-Gimenez B, 
Castelli J, de Crevoisier R. Voxel-Based Analysis for Identification of Urethrovesical Subregions Predicting Urinary 
Toxicity After Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys, 2019. 104 (2): 343-54.  
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Introduction 

 
Increasing evidence has recently arisen showing that localized anatomical subregions of the bladder are 

correlated with acute and late urinary toxicities [58,105,106] . Therefore, there is a clear need to exploit 

the rich information of the planning three-dimensional (3D) dose distribution, together with the 

individual’s anatomy, to accurately identify subregions of the bladder/urethra at high risk of damage for 

toxicity prediction and more accurate organ-dose constraint definition. To this end, voxel-based methods 

for dose distribution analysis via dose-volume maps (DVM) may help unravel the complexity of toxicity 

and local dose-volume relationships by identifying simultaneous involvement of different radiosensitive 

structures [84,93,94]. The DVM approach is based on non-rigid registration to align patient anatomies 

and map dose distributions to a single reference [109]. A subsequent voxel-wise statistical analysis is 

performed to test for local dose differences between patients with/without toxicity. Hence, organ 

subregions are computed as the clusters of voxels within the organ, where significant dose differences 

have been found. This methodology has been recently applied to identify regional dose differences in the 

rectum for gastrointestinal toxicity in prostate cancer [93,94], in the heart and lung for corresponding 

toxicities in thoracic cancer [96,111], and in the cricopharyngeus muscle and cervical esophagus for 

dysphagia in head and neck cancer [95]. To our knowledge, a 3D voxel-based approach has never been 

applied to explore dosimetric patterns associated with urinary toxicity. 

 

The objective of this study was to identify bladder and urethra sub-volumes (Svol) associated with 

urinary toxicity after prostate cancer RT. The proposed framework combines urethra segmentation, an 

accurate anatomical non-rigid registration approach for mapping the population 3D dose distributions to 

a single coordinate system, a voxel-wise analysis with respect to toxicity in the common space, and a 

further subregional analysis in the individual’s space.  

4.1 Materials and Methods 

 

The population dataset and treatment characteristics of the patients included in this study have been 

thoroughly described in the previous chapter. In brief, it consists of 272 patients with localized prostate 

cancer treated with IMRT/IGRT at 78/80Gy (2Gy/fr), in a multicenter setting (STIC-IGRT and PROFIT) 

[157,158]. The median follow-up was 50 months (range: 6-102 months). Acute (≤3 months from RT start) 

and late (>3 months) urinary toxicity was scored using the CTCAE v.3.0 or RTOG radiation morbidity-

scoring schema. In total, 20 endpoints were considered: 5 symptoms (incontinence, retention, dysuria, 

hematuria, and frequency), grade ≥1 and grade ≥ 2, and acute and late urinary toxicity.  

 

The workflow of the study is divided into 7 steps, as presented in Figure 4.1. 
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Figure 4.1 Workflow of the study in 7 steps 

 

4.1.1 Automatic urethra segmentation on planning CT images (step 1) 

The urethra was automatically segmented on the CT image of each individual using the MABUS approach 

described in Chapter 2 (Figure 4.1, step 1). 
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4.1.2 Template selection, registration of population to the template, and dose 
propagation (steps 2, 3, and 4) 

An average patient, close to the whole population in terms of prostate volume, bladder volume, and 

urethral length, was selected as a common coordinate system (CCS) for aligning the entire population 

(Figure 4.1, step 2). A customized algorithm was devised for non-rigidly registering the structural 

description of the organs (bladder, urethra, and prostate; Figure 4.1, step 3) [109]. Figure 4.2 depicts the 

overall workflow of the non-rigid registration method used for aligning the whole population to a single 

template yielding anatomical correspondences for dose comparisons. The method exploits organ 

delineations (prostate and bladder) as obtained during the treatment planning as well as the urethra 

segmentation [164] (Figure 4.2, step 1).  

 

A structural description of the organs is first obtained by combining different scalar maps into a single 3D 

image which represents the whole pelvis.   For the structural description of the bladder, a map with the 

Euclidean distance of each voxel inside the volume to the surface of the bladder was computed (Figure 

4.2, step 2). For the prostate a scalar field was computed by applying the Laplacian equation inside the 

prostate volume considering both limit conditions at the urethra (u=0) and the prostate surface (u=1000) 

as described in (12) (Figure 4.2, step 3).  The Laplacian field provides a normalized distance map centered 

on the urethra, which allows alignment of intra-prostatic structures together.  Finally the bladder 

Euclidean distance map and prostate Laplacian scalar field are combined to produce a global structural 

description of the organs to be registered (Figure 4.2, step 4).  By doing so, the structures are 

comparable across individuals and therefore may be aligned in 3D by devising a cost function based on 

the sum of squared differences of the scalar fields inside and outside the organs. The approach was 

embedded in a multi-resolution framework where the mean square metric of the scalar fields was 

adopted as cost function. 

 

Once the structural description of the organs is computed, the non-rigid registration workflow was 

implemented in three steps using the Elastix framework [165].  Firstly, a rigid registration of prostate was 

performed to roughly align the urethra and prostate volumes (Figure 4.2, step 5). Non-rigid registration 

was then applied to the bladder only (Figure 4.2, step 6) to cope with large interindividual deformations.  

This step was followed by a non-rigid registration of the whole set of structures (bladder, urethra and 

prostate), which together steer the registration towards a global alignment (Figure 4.2, step 7). This 

approach allowed to deal with the high inter-individual variability in terms of bladder volume and shape, 

while at the same time, achieving a precise registration of the urethra. Non-rigid transformations were 

optimized with the Adaptive Stochastic Gradient Descent. The obtained 3D deformation fields from each 

step are finally combined to propagate the planning dose distributions from the native space of each 

patient to the CCS, using trilinear interpolation. The final transformation computed as a composite of T1, 

T2 and T3, is used later to propagate back the identified Svol from the template coordinate system to the 

native space, as described in section 5.2.4.  
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Figure 4.2 Workflow of registration via structural description of the bladder, prostate and urethra 

 

Geometric and dosimetric scores were used to quantitatively assess the registration accuracy. Thus, the 

centerline distance (CLD) was used for the urethra alignment [164] and the Dice Similarity Coefficient 

(DSC) and the Modified Hausdorff Distance (MHD) [166] for the prostate and the bladder. In addition, 
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the dose-organ overlap (DOO) was computed to evaluate the dose-warping accuracy as in [94]. The DOO 

score measures the coincidence of both the organs and dose distribution in the common space by 

penalizing the overlap errors within the higher dose gradients. Finally, the 3D registration uncertainty 

was estimated by computing the standard deviation of the center of mass coordinates of rigidly 

registered bladder contours. Subsequently, dose distributions for each patient were smoothed 

accordingly with a Gaussian kernel with corresponding width, to overcome registration uncertainties.  

 

4.1.3 DVM construction and definition of sub-volumes on the template (step 5) 

Once the 3D dose distributions are propagated to the CCS, voxel-wise analysis allowed the identification 

of symptom-related Svol by generating for each symptom a DVM representing the dose differences 

between patients with and without toxicity. Only accurately registered patient data were included. 

Unilateral Mann-Whitney U tests were voxel-wise performed between the two populations for each 

endpoint. The alternative hypothesis was that patients with toxicity received a higher dose. This step 

resulted in 3D maps for both dose differences and P-values (threshold at P = 0.01; Figure 4.1, step 5), 

thereby characterizing each subregion in terms of average dose difference.  

 

To cope with the multiple comparisons problem, arising when performing multiple statistical tests 

(voxel-wise), a nonparametric permutation test [119] was performed, which allowed the description of 

the entire DVM with a single adjusted P-value. At each voxel, the average dose difference was 

normalized to the standard deviation computed over all random samples generated from 1000 

permutations on the urinary toxicity labels (yes vs. no). The normalized maximum dose difference was 

selected as test statistic summarizing the discrepancy between the two groups (with/without toxicity) 

and therefore avoiding a voxel-wise test and a consequent multiple comparison problem. After each 

permutation, we obtain a distribution of test statistic (Mann-Whitney U test), from which the adjusted p-

value can be computed as the probability of having a test statistic greater than the test statistic in the 

observed sample and compared with a significance level of 5%, 10%, 15%, and 20%. The corresponding 

percentile of the normalized maximum dose difference value possibly determines a voxel region with a 

statistically significant dose difference. 

 

The resulting subregions were compared with those generated by the voxel-wise Mann-Whitney U test 

(uncorrected). The overlapping regions (Mann Whitney U test region and permutation test region) were 

finally considered in order to define the Svol. The absolute volume (in cc) of each subregion in the CCS 

was also calculated. 

 

4.1.4 Inverse mapping of sub-volumes to the native patient space and toxicity 
prediction (steps 6 and 7) 

All segmented Svol were propagated from the CCS back to each individual native space by applying the 

inverse of the previously computed 3D deformation field (Figure 4.1, step 6). Subsequently, DVHs and 

mean doses were computed for the Svol and the bladder and compared across the patients with and 
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without toxicity. Unilateral Mann-Whitney U test was used to compare the mean dose and each DVH bin 

between the two groups of patients. The prediction capability of the dose (mean and bin-wise) in the 

identified Svol and the bladder was evaluated for the corresponding toxicity endpoints in the native 

space of the patients. Additionally, we tested, by symptom, whether the doses in the Svol identified for 

the grade≥1 toxicity endpoints were also predictive for the corresponding grade≥2 toxicities. For acute 

toxicities, the predictive performances of the Svol and the bladder were estimated and compared using 

the logistic regression. For late toxicities, the Cox proportional hazard model was used to compute risk 

estimates. The prediction capability of the Cox model at 5-years was evaluated with the area under the 

time-dependent ROC curve (t-AUC), based on the approach proposed by Chambless and Diao [159], 

which accounts for censoring in survival analysis (also defined as cumulative/dynamic AUC). The AUC and 

t-AUC and 95% confidence intervals (CI) were computed using 1000 bootstrap replicates. The impact of 

patient and treatment characteristics on each toxicity endpoint was also assessed in a univariate 

analysis.  

 

Multivariate logistic/Cox models were constructed including clinical parameters and pre-selected 

dosimetric variables (dose bins) from the univariate analysis. Models were constructed using two 

methods: i) backward elimination and ii) the least absolute shrinkage and selection operator (LASSO) 

method [160,161], as described in Chapter 3. The AUC and t-AUC and 95% CIs from 1000 bootstrap 

replicates were used to evaluate the models’ discriminative performance.  

Statistical analysis and graphics were performed in Python and R.  

 

4.2 Results 

4.2.1 Accuracy of spatial normalization 

In total, 18 patients out of 272 were excluded from the study because of either low prostate (≤0.88; n = 

6) or bladder (≤0.85; n = 12) Dice scores. The cut-off points where empirically chosen after visual 

inspection of the registered images, considering both organ overlap and urethra alignment. For the 

remaining 254 patients, the computed mean values and standard deviations of DSC, MHD, and DOO 

scores for the prostate and the bladder and the CLD score for the urethra are reported in Table 4.1. The 

standard deviations of center of mass coordinates after the non-rigid registration were 2.4 mm in the 

left-right, 5.3 mm in the anterior-posterior and 6.2 mm in the cranial-caudal direction.  

 
Table 4.1 Co-registration scores after non-rigid registration for the prostate and the bladder 

Organs DI MHD (mm) DOO CLD (mm) 

Prostate 0.92 ± 0.02 0.18 ± 0.17 0.87 ± 0.03 - 

Bladder 0.88 ± 0.07 0.68 ± 0.88 0.87 ± 0.08 - 

Urethra - - - 1.82 ± 0.80 

DI= Dice score Index, MHD= Modified Hausdorff Distance[166], DOO= Dose-Organ Overlap, CLD: Centerline Distance[164]. 
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4.2.2 Identification of the symptom-related Subvolumes with significant dose 
differences between patients with/without toxicity, in the template 

Figure 4.3 shows the Svol where statistically significant dose differences between patients with/without 

toxicity appear in the common coordinate system (CCS). On the left is shown the dose distribution to the 

bladder and the urethra for patients with/without toxicity. The dose displayed in each voxel corresponds 

to the mean dose of each population. The mean dose (± standard deviation) received by the whole Svol 

in each population is given in the figure. On the right is shown the mean dose difference to the bladder 

and the urethra (sagittal and coronal views). The black rectangle indicates the region of the template’s 

trigone. Svol were identified for a total of 5 grade ≥1 symptoms: in the prostatic urethra for acute 

incontinence, in the bladder trigone for acute retention, late retention and in the posterior part of the 

bladder for dysuria, and in the superior part of the bladder for late hematuria. These volumes ranged 

from 2.4 to 16.9 cc. Figure 4.4  shows a 3D representation of these Svol. 

 

The dose differences across the patients (with and without toxicity) in acute and late retention Svol were 

not statistically significant for grade ≥2 toxicity. For the remaining Svol, namely acute incontinence, late 

hematuria and late dysuria, the low number of grade ≥ 2 events did not allow to perform a statistical 

analysis. 
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Figure 4.3 Symptom-related subregions (SRS) of statistically significant dose differences between patients with/without 

toxicity in the common coordinate system (CCS) 
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Figure 4.4 Identified sub-volumes (Svol) in the in the common coordinate system 
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4.2.3 Dose differences in the sub-volumes and in the whole bladder between patients 
with/without toxicity in the native patient space 

The averaged dose differences between patients with/without toxicity in the whole bladder, the 

prostatic urethra and the five Svol after propagation of each Svol from the template to the native space 

are reported in Table 4.2. These differences, ranging from 1.2 to 9.3 Gy, were significant for the five Svol 

(p<0.01). For the whole bladder, the dose differences were significant for acute retention (4.4 Gy), late 

retention (4.4 Gy) and late dysuria (9.3 Gy).  

 

Figure 4.5 depicts the DVHs of the Svol and the whole bladder for the two groups of patients. The dose 

bins with significant differences among the two populations are identified. The red and green curves 

represent the average DVHs of the patient with/without toxicity, respectively, in the Svol (continuous 

lines) and in the whole bladder (dashed lines). The shadowed region indicates the dose bins where the 

dose for the group with toxicity is significantly higher than the group without toxicity (Man-Whitney U 

test; p ≤ 0.05). 

 
Table 4.2 Dose differences between patients with/without acute (A) and late (B) urinary toxicity in the whole bladder, the 

urethra and in the sub-volumes (Svol)  

A. Acute urinary toxicity 
Grade≥ 1 

Endpoints Regions 
Dose of pts with 

toxicity (mean + SD , 
Gy) 

Dose of pts without toxicity 
(mean + SD , Gy) 

Dose difference (mean  
+ SE , Gy) 

p value 

Hematuria 

Whole bladder 39.5 ± 15.8 35.3 ± 14.4 4.2 ± 6.05 NS 

Urethra 77.9 ± 0.4 78.5 ± 0.5 -0.6 ± 0.2 NS 

Svol - - - - 

Dysuria 

Whole bladder 37.5 ± 15.4 38.1 ± 14.9 -0.6 ± 2.3 NS 

Urethra 78.3 ± 0.5 78.5 ± 0.5 -0.3  ± 0.1 NS 

Svol - - - - 

Retention 

Whole bladder 40.4 ± 14.6 36 ± 15.3 4.4 ± 2.3 0.03 

Urethra 78.4 ± 0.3 78.4 ± 0.4 -0.05 ± 0.1 NS 

Svol 73.5 ± 6.4 70.9 ± 8.9 2.6 ± 1.2 <0.01 

Frequency 

Whole bladder 35.6 ± 14.8 34.7 ± 12.8 0.9 ± 2.1 NS 

Urethra 78.5 ± 0.7 78.5 ± 0.7 0 NS 

Svol - - - - 

Incontinence 

Whole bladder 31.3 ± 6.5 35.7 ± 14.7 -4.4 ± 1.9 NS 

Urethra 79.3 ± 1.2 78.5 ± 0.9 0.8 ± 0.5 0.06 

Svol 79.9 ± 1.4 78.7 ± 1.5 1.2 ± 0.3 <0.01 

Grade≥ 2 

Dysuria 

Whole bladder 35.5 ± 17.3 38 ± 15 -2.5 ± 4.9 NS 

Prostatic 
urethra 

78.5 ± 0.5 78.2 ± 0.4 0.3 ± 0.2 NS 

Svol - - - - 

Retention 

Whole bladder 38.8 ± 15.8 37.6 ± 15 1.2 ± 2.9 NS 

Urethra 78.2 ± 0.3 78.5 ± 0.4 -0.3 ± 0.1 NS 

Svol - - - - 

Frequency 

Whole bladder 36.6 ± 14.7 35 ± 14.3 1.6 ± 2 NS 

Urethra 78.6 ± 0.8 78.4 ± 0.7 0.2 ± 0.1 NS 

Svol - - - - 



93 
 

 

B. Late urinary toxicity (at 5 years)  
Grade≥ 1 

Endpoints Regions 
Dose of pts with toxicity 

(mean + SD , Gy) 
Dose of pts without toxicity 

(mean + SD , Gy) 
Dose difference 
(mean  + SE , Gy) 

p value 

Hematuria 

Whole bladder 38.7 ± 11.5 39.8 ± 13.4 -1.1 ± 2.8 NS 

Urethra 77.1 ± 1.1 78.1 ± 0.6 -0.4 ± 0.7 NS 

Svol 18.3 ± 11.8 13.7 ± 13.4 4.69 ± 2.9 0.04 

Dysuria 

Whole bladder 50.1 ± 10.1 40.8 ± 12.9 9.3 ± 2.8 <0.01 

Urethra 78.0 ±0.3 77.9 ± 0.5 0.1 ± 0.4 NS 

Svol 65.4 ± 7 56.8 ± 10.0 8.5 ± 2 <0.01 

Retention 

Whole bladder 46 ± 13.9 41.6 ± 12.5 4.4 ± 2.7 0.05 

Urethra 78.1 ± 0.4 78.0 ± 0.6 0.06 ± 0.1 NS 

Svol 36.3 ± 16.4 27.1 ± 13.1 9.3 ± 3 <0.01 

Frequency 

Whole bladder 38.9 ± 13.6 40.4 ± 13.7 -1.4 ± 2.4 NS 

Urethra 78.2 ± 0.7 78.2 ± 0.6 0.02 ± 0.1 NS 

Svol - - - - 

Incontinence 

Whole bladder 38 + 12.6 40.4 + 13.3 -2.4 ± 2.6 NS 

Urethra 78.2  ± 1 78.0  ± 0.5 - 0.2 ± 0.5 NS 

Svol - - - - 

Grade≥ 2 

Retention 

Whole bladder 42.2 ± 13.3 39.6 ± 13.1 2.6 ± 3.5 NS 

Urethra 77.9 ± 0.5 78.1 ± 0.6 -0.3 ± 0.3 NS 

Svol - - - - 

Frequency 

Whole bladder 38.6 ± 12 40.4 ± 13.51 -1.8 ± 2.8 NS 

Urethra 78.5 ± 0.6 78.0 ± 0.6 0.5 ± 0.2 NS 

Svol - - - - 

Incontinence 

Whole bladder 36.2 ± 13.4 40.3 ± 13.1 -4.1 ± 4.9 NS 

Urethra 78.8 ± 0.6 77.9 ± 0.6 0.9 ± 0.2 0.07 

Svol - - - - 
 

Svol:sub-volume; SD: Standard deviation, SE: Standard error; NS: not significant (p > 0.05) 
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Figure 4.5 DVHs of patients with and without urinary toxicity for the whole bladder and the Svol in the native space 

 

4.2.4 Predictive capabilities of the Svol and whole bladder DVHs in the native spaces 

UNIVARIATE ANALYSIS 

The predictive capabilities of the mean dose and the DVHs for the five Svol and the whole bladder are 

shown in Table 4.3A for acute toxicity and Table 4.3B for late toxicity. The dose bins with the highest 

significant AUC/ t-AUC are reported. The AUC calculated from the doses in the Svol ranged from 0.62 to 

0.81 for the five symptoms (grade ≥ 1 acute incontinence and retention, and late dysuria and retention), 

while the doses to the whole bladder were predictive only for late dysuria (highest AUC=0.75) and late 

retention (highest AUC=0.71). The doses delivered in the Svol were not predictive of grade≥2 toxicity. 
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Table 4.3 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladder and the identified 

symptom-related sub-volumes (Svol) in the native space of the patients 

A. Acute toxicity (grade≥1) 

Endpoints Regions 

Mean Dose DVH 

p value OR (95% CI) 
AUC (95% 

CI) 

Most predictive 
DVH bin (range of 

bins)* 
p value 

OR (95% 
CI) 

AUC (95% 
CI) 

Retention 

Whole 
bladder 

NS - - V79 (V77-V79) 0.052 
1.06 (1.01-

1.13) 
0.60 (0.51-

0.67) 

Svol 0.04 
1.06 (1.01-

1.2) 
0.62 (0.56-

0.68) 
V72 (V63-V79) 0.01 

1.02 (1.01-
1.04) 

0.62 (0.55-
0.68) 

Incontinence 

Whole 
bladder 

NS - - - NS - - 

Svol <0.01 
2.1 (1.27-

3.43) 
0.74 (0.66-

0.81) 
V80 (V80-V83) 0.04 

1.02 (1.01-
1.04) 

0.73 (0.67-
0.81) 

 
B. Late toxicity (grade≥1) 

 
Endpoints 

 
Regions 

Mean Dose DVH 

p value HR  (95% CI) 
t-AUC (95% 

CI) 

Most predictive 
DVH bin (range  

of bins)* 
 p value 

HR  (95% 
CI) 

t-AUC 
(95% CI) 

Dysuria 

Whole 
bladder 

<0.01 
1.05 (1.01-

1.09) 
0.75 (0.66-

0.84) 
V67 (V5- V78) <0.01 

1.03 (1.01-
1.05) 

0.72(0.63-
0.82) 

Svol <0.01 
1.1 (1.04-

1.17) 
0.8 (0.71-

0.88) 
V52 (V32 - V76) <0.01 

1.05 (1.02-
1.08) 

0.81(0.72-
0.90) 

Retention 

Whole 
bladder 

<0.01 
1.03 (1.01-

1.06) 
0.66 (0.58-

0.75) 
V19 (V4-V78) <0.01 

1.02 (1-
1.04) 

0.67(0.59-
0.75) 

Svol <0.01 
1.04 (1.02-

1.05) 
0.71 (0.63-

0.78) 
V35 (V7-V76) <0.01 

1.02 (1.01-
1.02) 

0.70(0.62-
0.77) 

Hematuria 

Whole 
bladder 

NS - - V7 (V6-V18) 0.04 
1.04 (1-

1.07) 
0.65(0.55-

0.75) 

Svol 0.04 
1.02 (1.01-

1.04) 
0.64 (0.55-

0.73) 
V17 (V5-V25) <0.01 

1.02 (1.01-
1.04) 

0.67(0.56-
0.77) 

 
 
MULTIVARIATE ANALYSIS 

Table 4.4 presents the significant dosimetric and/or clinical parameters impacting on acute (Table 4.4 A) 

and late (Table 4.4 B) urinary toxicity in multivariate analysis selected using backward elimination. The 

corresponding models resulted from LASSO multivariate analyses are reported in Table 4.5.  The 

dosimetric impact of the doses to the Svol is confirmed.  
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Table 4.4 Parameters impacting on acute and late urinary toxicity in multivariate analysis using backward elimination 

 
A. Acute toxicity (logistic regression) 

Grade >1 

Endpoints Parameters p-value OR (95% CI) 
Model p-

value 
AUC (95% CI) 

Retention 

Svol (V72) 0.01* 1.19 (1.04 – 1.4) 

0.01 0.70 (0.60-0.80) TURP 0.06 0.12 (0.01-1.05) 

Baseline retention 0.09 2.64 (0.86-8.1) 

Incontinence 
Svol (V80) 0.03* 1.8 (1.05-3.05) 

<0.01 0.74 (0.60-0.87) 
Prescribed dose 0.11 1.6(0.9-2.84) 

Hematuria 

TURP 0.08 6.9 (0.8-59) 

<0.01 
 

0.86 (0.75-0.97) 

Previous abdominal 
surgery 

0.07 8.5 (0.85-85.3) 

Anti-coagulant 
treatment 

0.04* 9.4 (1.2 – 71.2) 

Dysuria Age 0.01 0.94 (0.9-0.99) 0.01 0.6 (0.52-0.69) 

Frequency 
TURP <0.01* 0.1 (0.02-0.5) 

<0.01 0.7 (0.62-0.77) 
Baseline frequency 0.01* 6 (1.5 – 24.8) 

Grade >2 

Retention Baseline retention 0.01 3.53(1.29-9.63) 0.01 0.59 (0.5-0.68) 

Dysuria 

Antihypertensive 
treatment 

0.06 3.6 (0.94-13.8) 
<0.01 0.72 (0.56-0.88) 

Prostate volume 0.02* 1.03 (1.01-1.05) 

Frequency 
Baseline retention <0.01* 4.9 (1.57-15.26) 

<0.01 0.7 (0.6-0.8) 
Baseline frequency 0.01* 3.2 (1.3-7.7) 

OR: Odds ratio; HR: Hazard ratio; CI: Confidence interval; AUC: Area under the ROC curve; t-AUC: time-dependent area under the 
ROC curve; * significant parameters (p≤0.05); Model p-value: Global statistical significance of the model as defined by the 
Likelihood ratio test 
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B.  Late toxicity (Cox regression) 

Grade >1 

Endpoints Parameters p-value HR (95% CI) 
Model p-

value 
t-AUC (95% CI) 

Retention 

Svol (V35) <0.01* 1.03 (1.01-1.05) 

<0.01 0.74 (0.66-0.84) 

Age 0.1 0.96 (0.92-1.01) 

Previous abdominal 
surgery 

0.06 1.65 (0.92-2.96) 

Baseline retention <0.01* 3.7 (1.9-7.1) 

Incontinence 

Age 0.07 1.09 (0.99-1.19) 

<0.01 0.77 (0.65-0.88) 

TURP <0.01* 4.9 (1.66-14.4) 

Diabetes <0.01* 5.1 (1.67-15.5) 

Anti-coagulant 
treatment 

0.7 1.2 (0.4-3.6) 

Hematuria 
Svol (V17) 0.03* 1.04 (1.01-1.07) 

0.01 0.67 (0.54-0.78) 
Baseline retention 0.2 2.6 (0.7-9.9) 

Dysuria Svol (V52) <0.01 1.1(1.04-1.17) <0.01 0.80 (0.71-0.88) 

Frequency 

Age 0.15 1.03 (0.99-1.07) 

<0.01 0.76 (0.68-0.84) 

Antihypertensive 
treatment 

0.06 1.58 (0.97-2.57) 

ADT <0.01* 2.44 (1.5-3.98) 

Baseline frequency <0.01* 3.79 (2.32-6.2) 

Grade >2 

Retention 

Age 0.2 0.95 (0.89-1.03) 

<0.01 0.74 (0.59-0.9) 

Previous abdominal 
surgery 

0.12 2.2 (0.8-6) 

Antihypertensive 
treatment 

0.14 0.4 (0.12-1.34) 

Baseline retention <0.01* 4.9 (1.76-13.6) 

Frequency 
Diabetes 0.09 3 (0.83-10.9) 

<0.01 0.74 (0.62-0.88) 
Baseline frequency 0.02* 5.29 (1.8-15.6) 

Incontinence TURP <0.01 17.7 (2.95-76.26) <0.01 0.74 (0.62-0.87) 

OR: Odds ratio; HR: Hazard ratio; CI: Confidence interval; AUC: Area under the ROC curve; t-AUC: time-dependent area under the 
ROC curve; * significant parameters (p≤0.05); Model p-value: Global statistical significance of the model as defined by the 
Likelihood ratio test 
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Table 4.5 Parameters impacting on acute and late urinary toxicity in multivariate analysis using LASSO 

A. Acute toxicity (logistic regression) 

Grade >1 

Endpoints Parameters beta OR (ebeta) AUC (95% CI) 

Retention 

Svol (V72) 0.0098 1.01 

0.71 (0.63-0.78) TURP -0.4981 0.62 

Baseline retention 1.0355 2.81 

Incontinence Svol (V80) 0.00891 1.01 0.73 (0.61-0.85) 

Dysuria 
Age -0.0318 0.96 

0.63 (0.55-0.72) 
ADT -0.1531 0.85 

Frequency 

Bladder volume -0.0002 0.99 

0.79 (0.7-0.88) 
TURP -1.2162 0.30 

Hypercholesterolemia treatment -0.4177 0.66 

Baseline frequency 0.5518 1.73 

Grade >2 

Retention 

TURP -0.2528 0.78 

0.63 (0.54-0.72) Anticoagulant treatment -0.2320 0.79 

Baseline retention 0.774 2.17 

Dysuria 
Antihypertensive treatment 0.3210 1.38 

0.72 (0.55-0.88) 
Prostate volume 0.0127 1.01 

Frequency Baseline frequency 0.5908 1.81 0.59 (0.52-0.65) 

OR: Odds ratio; CI: Confidence interval; AUC: Area under the ROC curve;  
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B. Late toxicity (Cox regression) 

Grade >1 

Endpoints Parameters beta HR (e beta) tAUC (95% CI) 

Retention 

Svol (V35) 0.0114 1.01 

0.79 (0.72-0.85) 
Age -0.0222 0.98 

Previous abdominal surgery 0.3486 1.41 

Baseline Retention 0.8857 2.34 

Incontinence 

Age 0.0355 1.04 

0.81 (0.71-0.88) TURP 1.2058 3.34 

Diabetes 1.2925 3.64 

Hematuria 
Svol (V17) 0.0105 1.02 

0.68 (0.57-0.78) 
Anticoagulant treatment 0.0841 1.93 

Dysuria 
Svol (V52) 0.0171 1.02 

0.82 (0.72-0.90) 
Previous abdominal surgery 0.1427 1.15 

Frequency 

Age 0.0072 1.01 

0.81 (0.75-0.86) 

Bladder volume -0.00038 0.99 

Antihypertensive treatment 0.3003 1.35 

ADT 0.5538 1.74 

Baseline frequency 1.0396 2.82 

Grade >2 

Retention 

Age -0.0414 0.96 

0.77 (0.67-0.85) 

Previous abdominal surgery 0.3828 1.47 

Diabetes -0.3501 0.70 

Antihypertensive treatment -0.4946 0.61 

ADT 0.2863 1.33 

Baseline retention 1.0885 2.96 

Frequency 

Diabetes 0.4673 1.60 

0.81 (0.72-0.90) Hypercholesterolemia treatment -0.4663 0.63 

Baseline frequency 1.1170 3.06 

Incontinence 
TURP 2.0501 7.77 

0.82 (0.65-0.97) 
Previous abdominal surgery 0.6994 2.01 

HR: Hazard ratio; CI: Confidence interval; t-AUC: time-dependent area under the ROC curve 
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4.3 Discussion 

 
A robust non-rigid registration strategy, coupled with voxel-wise comparisons, allowed us to investigate 

the local dose-effect relationship for acute and 5-years late urinary toxicity after prostate cancer RT. The 

doses on five Svol, located in the urethra and the bladder, were identified as good predictors for five 

grade ≥ 1 symptoms (acute incontinence and retention, late retention, dysuria and hematuria). The 

predictive capabilities of these Svol outperformed the predictive capabilities of the whole bladder. To 

our knowledge, this is the first study to explicitly correlate the dose to specific subregions of the bladder 

and the urethra with urinary toxicity, within a voxel-based framework.  

 

This study is the first to explicitly correlate the 3D dose to the urethra with urinary toxicity following 

external beam radiation therapy. Acute and late retention Svol were found in the trigone and posterior 

part of the bladder. Indeed, retention can attributed to reduced bladder contractility (detrusor muscle). 

Relationship between the dose to the bladder trigone or high bladder-dose and obstructive side effects, 

has also been reported in the literature [54,57,58]. Dysuria (painful urination or difficulty urinating) Svol 

is also mainly located in the posterior part of the bladder, partially in the trigone. Surprisingly, a Svol for 

hematuria was found superiorly, at the bladder dome (a region which receives a relatively low dose, < 20 

Gy), while bleeding classically related to high dose [54,129,167], and telangiectasia are mainly observed 

in the bladder neck/trigone at the cystoscopy.  Incontinence appears related to the dose delivered to the 

prostatic urethra. Indeed, incontinence may result from malfunctioning of the urethral sphincter [168]. A 

dosimetric association with urinary frequency could not be demonstrated in the present study, although 

this symptom was strongly predicted by the baseline frequency.  

 

One of the major advantages of the voxel-wise analysis is that the whole 3D volume can be explored and 

compared without any prior knowledge of regions correlating with toxicity. However, our approach relies 

on a multi-organ deformable image registration, which appears particularly challenging given the high 

interindividual variability. Conventional interindividual CT registration methods are not accurate enough 

for reliable anatomical mapping because of the low soft-tissue contrast. To cope with this issue, we 

combined a structural description of the pelvic region using the contours obtained within the clinical 

protocol. Each step was thoroughly validated, including the automatic segmentation of the urethra, thus 

increasing the reliability of dose mapping. We propagated the Svol found in the template back to each 

individual’s space and, as such RT planning may be modified to spare specific subregions. The feasibility 

of reducing the dose in the Svol, while preserving the dose to the PTV, still requires demonstration. This 

goal seems achievable when dealing with Svol distant from the PTV (such as hematuria Svol) but much 

more difficult when Svol are located inside or close to the PTV (such as incontinence Svol). 

 

Our study presents some limitations. The results must be carefully interpreted, as a correlation between 

local dose and toxicity does not necessarily mean causality, especially given the paucity of events for 

certain endpoints. Second, we failed to find a spatial dose-effect relationship for some symptoms, in 

particular for grade ≥2 toxicity. Although this may imply the absence of specific Svol for these symptoms, 

it can also be due to the limited follow-up or to the patient-specific parameters that affect toxicity and 
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were not taken into account or to the limited follow-up. Furthermore, the predictive performance of our 

model has been internally validated (via bootstrapping) on the same subjects used to construct the 

model. External cohorts are therefore required to validate the results. Finally, statistical analyses were 

performed on the planning dose distribution, which can differ from the actual delivered dose [127,128]. 

Daily 3D imaging, such as CBCT, could be used to compute cumulated doses, thereby confirming some of 

the Svols’ implication in toxicity [169]. 

 

4.4 External validation to estimate the “cohort-effect” 

4.4.1 Population dataset, treatment and toxicity 

For the external validation of the five previously identified Svol we used patients from the Randomised 

Androgen Deprivation and Radiotherapy (RADAR, Trans-Tasman Radiation Oncology Group 03.04) trial, 

which examined the influence of the duration of androgen deprivation therapy with or without 

bisphosphonate treatment, adjuvant with radiotherapy. Data were collected from 23 centres in Australia 

and New Zealand between 2003 and 2008. The RADAR trial is a phase 3 trial with a 2 × 2 factorial design 

in patients with non- metastatic adenocarcinoma of the prostate (stage T2b–4 or T2a, Gleason score ≥7, 

and baseline prostate-specific antigen concentration [PSA] ≥10 μg/L). This trial is registered with number 

NCT00193856 in ClinicalTrials.gov. 

 

Data collection, protocol requirements and QA have been summarized in multiple publications 

[134,167,170–179]. All participants received center-nominated radiotherapy, where 813 had EBRT 

(without a brachytherapy boost) to 66, 70 or 74 Gy of dose, delivered in up to 2 treatment phases. 

Delineation of the bladder was not mandatory for RADAR and no specific dose constraints were applied 

for the bladder. Centers were free to prescribe different bladder filling protocols; 701 patients were 

prescribed to full bladder, 34 empty and 19 with no or missing protocol [167]. Dose-surface histograms 

(DSH) of the bladder wall were calculated independently using a plan review software (SWAN) [174] to 

ensure consistency across datasets submitted from different centers [180]. More complete descriptions 

of the study protocol and treatment technique specifications can be found elsewhere [177]. 

 

In total, 476 were treated with conventional fractionation (1.8-2Gy/fraction) and had sufficient 

dosimetric, clinical and imaging data available for inclusion in the analysis. Rates by symptom of grade ≥ 

1 and grade ≥ 2 acute and late urinary toxicity are given in Table 4.6. 

 

 

HARMONISATION OF ENDPOINTS  

The urinary function of RADAR patients used as the validation cohort was assessed at baseline and at the 

end of radiotherapy using physician-assessed LENT-SOMA and the International Prostate Symptom Score 

(IPSS) questionnaire. Patients were routinely followed up every three months for 18 months, then six-

monthly up to five years and then annually where urinary symptoms were assessed using LENT-SOMA. 

Patients were asked to complete the International Prostate Symptom Score (IPSS) questionnaire at 12, 
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18, 24, 36 and 60-month follow-up post-randomization. The median follow-up was 72 months. Urinary 

symptom endpoint definitions were in concordance with the definitions used to develop the predictive 

models for dysuria, hematuria and incontinence (physician assessed; CTCAE v.3.0 or RTOG). The 

symptom of retention is not described by the LENT-SOMA scoring and, thus, for the validation of the 

corresponding models equivalent endpoints were derived from the IPSS. Retention was defined by 

aggregating the scoring of the questions describing an obstructive effect (q1, q3, q5,q6) and herein called 

IPSS-O.  

 
Table 4.6 Rates of grade ≥ 1 and grade ≥ 2 acute and late urinary toxicity (by symptom) 

Endpoints 
Acute toxicity 

Grade ≥ 1 (No. of cases and %) Grade ≥ 2 (No. of cases and %) 

Incontinence 67 (15% [12-19%]) 29 (7% [4-9%]) 

Dysuria / Pain 221 (51% [46-55%]) 81 (18% [15-22%]) 

Hematuria 12 (2% [1-4%]) 2 (0% [0-1%]) 

Retention 155 (40% [33-43%]) 65 (14% [10-16%]) 

 Late 5-year toxicity 

Endpoints 
Grade ≥ 1 Grade ≥ 2 

No. of cases Kaplan-Meier No. cases Kaplan-Meier 

Incontinence 128 (35%) 32% (27-37%) 49 (15%) 12% (9-16%) 

Dysuria / Pain 111 (31%) 28% (23-33%) 32 (10 %) 8% (5-11%) 

Hematuria 52 (15%) 13% (9-16%) 7 (2 %) 2% (0-3%) 

Retention 60 (16%) 13% (10-18%) 27 (9 %) 7% (5-10%) 

 
 

4.4.2 DVM construction and statistical analysis 

The same template patient that was previously selected for Svol identification (from the French cohort) 

was used to align the population in a common coordinate system. Non-rigid registration was performed 

as described in section 1.2.2 and a deformation field was generated. From the 476 patients, the 

registration accuracy, as evaluated in terms of Dice score, was considered as acceptable for 454 of them 

(≤0.88 for the prostate and ≤0.85 for the bladder) and they were included in the analysis.  

 

For each successfully registered individual, the five previously identified Svol were back-propagated from 

the template space to the native space of the patient by applying the inverse of the transformation 

obtained during the registration process.  Subsequently, DVHs and mean doses were computed for the 

Svol, the bladder and the urethra and compared across the patients with and without toxicity. Unilateral 

Mann-Whitney U test was used to compare the mean dose and each DVH bin between the two groups of 

patients. For acute toxicities, the predictive performances of the Svol, the bladder and the urethra were 
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estimated and compared using the logistic regression. For late toxicities, the Cox proportional hazard 

model was used to compute risk estimates. The prediction capability of the Cox model at 5-years was 

evaluated with the area under the time-dependent ROC curve (t-AUC) [159]. The AUC and t-AUC and 

95% confidence intervals (CI) were computed using 1000 bootstrap replicates.  

 

4.4.3 Results 

The predictive capabilities of the mean dose and the DVHs for the five Svol, the whole bladder and the 

urethra are shown in Table 4.7A for acute toxicity and Table 4.7B for late toxicity. The dose bins with the 

highest significant AUC/ t-AUC are reported. Subregions, confirmed in the RADAR cohort where acute 

incontinence, late retention and late dysuria. The AUC calculated from the doses in the Svol ranged from 

0.65 to 0.70 for the symptoms. The dose to the whole bladder was predictive only for acute incontinence 

(AUC=0.65).  The dose to the urethra was predictive only for acute incontinence (AUC=0.72).  

 
Table 4.7 Urinary toxicity prediction capability of the mean dose and the DVH for the whole bladder and the identified sub-

volumes (Svol) in the native space of the patients 

A. Acute toxicity (grade≥1) 

Symptom Region 

Mean Dose DVH 

p 
value 

OR (95% CI) AUC  
Most predictive DVH 

bin (range of bins) 
p 

value 
OR (95% CI) AUC  

Retention  

Whole bladder NS - - - 

 

NS - - 

 
Urethra NS - - - 

 

NS - - 

 
Svol NS - - - 

 

NS - - 

 

Incontinence 

Whole bladder NS - - V70 (V63-V73) <0.01 1.05 (1.01-1.09) 0.65 

Urethra <0.01 1.4 (1.11-1.74) 0.72 V71 (V71-V75) 0.01 1.03 (1.01-1.05) 0.71 

Svol 0.01 1.07 (1.01-1.13) 0.70 V71 (V71-V75) 0.01 1.03 (1.01-1.05) 0.70 

 
B. Late toxicity (grade≥1) 

 
Symptom 

 
Region 

Mean Dose DVH 

p 
value 

HR (95% CI) t-AUC  
Most predictive DVH 
bin (range  of bins) 

p value HR (95% CI) t-AUC 

Dysuria 

Whole bladder NS - - - NS - - 

Urethra NS - - - NS - - 

Svol 0.05 1.04 (1-1.07) 0.60 V67 (V55-V73) <0.01 1.02 (1-1.03) 0.66 

Retention  

Whole bladder NS - - - NS - - 

Urethra NS - - - NS - - 

Svol <0.01 1.03 (1.01-1.06) 0.65 V38 (V13-V64) <0.01 1.02 (1.01-1.04) 0.70 

Hematuria 

Whole bladder NS - - - NS - - 

Urethra NS - - - NS - - 

Svol NS - - - NS - - 
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The Svol for acute incontinence, which included the inferior and posterior part of the prostatic urethra 

was found to be predictive (AUC=0.70), although the mean dose to the whole prostatic urethra showed 

the best performance (AUC=0.72). For late dysuria, the dose to the Svol identified on the posterior 

bladder part, was confirmed with moderate performance (AUC=0.66). Late retention Svol, located at the 

posterior bladder, was confirmed with good predictive performance (AUC=0.70). The dose to the whole 

bladder was predictive only for one symptom, acute incontinence, with modest performance 

(AUC=0.65). Acute retention and late hematuria models were not confirmed on the RADAR population. 

4.5 Conclusion 

 
A voxel-wise analysis allowed the identification of urethro-vesical Svol, whose irradiation appears highly 

correlated to specific urinary side effects after prostate cancer RT. The dose received by these Svol was 

more predictive than the dose to the whole bladder. External validation on a large independent 

population confirms three out of the five subregions as predictive for specific symptoms, suggesting that 

the posterior part of the bladder and the prostatic urethra are particularly involved in urinary toxicity. 

The therapeutic benefit of adding dosimetric constraints to these sub-regions needs to be demonstrated. 

 

 

 

Using DVMs we were able to identify and validate specific sub-parts of the bladder as predictive of 

specific urinary side-effects. Although the prediction capabilities of current models exploiting available 

are improved compared to the whole bladder DVH models, they might be limited by cohort 

characteristics (size, toxicity rates, etc…) and other methodological issues. 

 

Along with traditional regression, more advanced machine learning strategies have been used and tested 

in the development of predictive models. A plethora of algorithms arise as promising tools for improving 

the prediction capabilities but their performance can significantly vary depending on the learning task 

and the specific data characteristics. In the next chapter we implement and compare some of the most 

popular machine learning techniques aiming to detect those that are better suited for radiotherapy 

outcome prediction using common dosimetric and clinical data. Further improvement of their 

performance was also attempted through data augmentation techniques. For simplicity, comparisons 

were performed for one symptom only and using the DVH of the whole ladder.  
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Part IV 

Future directions for improving urinary toxicity 

prediction: A machine learning approach 
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5 Comparison of machine learning algorithms and 

oversampling techniques for urinary toxicity prediction 

after prostate cancer radiotherapy 

 

In the present chapter we assess the robustness of several machine learning algorithms for 
prediction of urinary toxicity following prostate cancer radiotherapy using dosimetric and clinical 
data. For this explanatory study, the performance of the classifiers was evaluated using the 
whole bladder DVH, which is considered today the clinical standard. Moreover, to cope with the 
problem of low number of events on the unbalanced dataset the implemented machine learning 
strategies included four different synthetic minority class oversampling techniques.  
 
 
The work presented in this chapter has been accepted for publication at the peer-reviewed IEEE 
conference: International Conference on Bioinformatics and Bioengineering (IEEE BIBE 2019), in 
Athens Oct 28-30 2019.  
 
 
Mylona E, Lebreton C, Fontaine C, Crehange G, Magné N, Supiot S, de Crevoisier R, Acosta O. Comparison of 

machine learning algorithms and oversampling techniques for urinary toxicity prediction after prostate cancer 

radiotherapy. IEEE proceedings, Athens Oct 28-30 2019. 
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5.1 Introduction 

 
Given the inconsistency of available data concerning radiation-induced toxicity, it is crucial to develop 

robust models with superior predictive performance in order to perform tailored treatments. Machine 

Learning techniques emerge as appealing in this context, nevertheless without any consensus on the 

best algorithms to be used.  This work proposes a comparison of several machine-learning strategies 

together with different minority class oversampling techniques for prediction of urinary toxicity 

following prostate cancer radiotherapy using dosimetric and clinical data. The performance of these 

classifiers was evaluated on the original dataset and using four different synthetic oversampling 

techniques.  

 

Urinary toxicity modeling has been addressed in several studies without a clear consensus [126]. 

Although many important clinical factors have been identified, the relationship between urinary toxicity 

and bladder dose is far from reaching unanimity.  Indeed, the vast majority of existing studies are based 

upon traditional regression approaches (e.g. logistic or Cox regression) to identify the most important 

predictors. Although these approaches are often preferred over Machine Learning (ML) techniques due 

to their interpretability, the prediction power of such models is yet modest. Machine learning techniques 

can potentially increase toxicity prediction after RT as they rely on previous informative examples. 

Plethora of methods are emerging without a clear advantage of its use in this context as they application 

is not straightforward.  

 

One of the main issues that may arise when dealing with real-world data, is the class imbalance problem 

[181]. That is, in the simplest case when modeling a binary outcome, the majority of the individuals  

belong to a specific class (majority class) and far less number of individuals are assigned to the 

counterpart class (minority class). Commonly, the minority class is also the class of interest to model. 

Within the context of urinary toxicity this phenomenon is particularly evident due to the paucity of 

events for certain endpoints. Training a classifier on highly imbalanced data can be particularly 

misleading since the minority class has minimal effect on overall accuracy. Consequently, even if the 

algorithm classifies all the samples in the majority class, this may result in seemingly high performance. 

 

Within the context of urinary toxicity prediction after RT, we attempt to answer three research 

questions:  

 

 Is there a superior classifier in terms of discriminative performance?  

 When using machine learning techniques on an imbalanced dataset, can we increase classifier's 

performance by handling the class imbalance?  

 Which oversampling technique is more robust for coping with class imbalance issues? 
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5.2 Materials and Methods 

We analyzed 30 dosimetric parameters extracted from the whole bladder's DVH, together with 10 

clinical- and patient-related parameters, in a training/test pipeline using different classification methods 

and oversampling techniques. 

 

5.2.1 Population dataset 

The population dataset and treatment characteristics of the patients included in this study have been 

thoroughly described in the previous chapter. It consists of 254 patients with localized prostate cancer 

treated with IMRT/IGRT at 78/80Gy (2Gy/fr), in a multicenter setting (STIC-IGRT and PROFIT) [157,158]. 

Twenty urinary toxicity outcomes were available corresponding to different urinary symptoms, toxicity 

grades and time of symptom manifestation. Due to the loss-to-follow up, which can occur any time 

during the follow-up period, some datasets consist of subsamples with fewer/more patients and with 

lower/higher class imbalance.  For the purpose of this study, we chose to evaluate late urinary retention 

as the corresponding dataset was moderately imbalanced (1:2). The dataset for 5-years late retention 

consisted of 122 patients. 82 of them (66%) remained asymptomatic by that time (majority class) and 40 

of them (33%) developed urinary toxicity within the 5-years period (minority class). 

 

5.2.2 Classifiers 

Eight common classifiers were selected and implemented using the R package, caret. The selection 

includes classifiers frequently used in medical data analysis: 

 Least Absolute Shrinkage and Selection Operator (LASSO) [160] is a regularized form of logistic 

regression that effectively performs model selection. The added shrinkage regularization (i.e. 

feature selection) makes it is suitable for datasets with many features while maintaining the 

interpretability of a standard logistic regression. 

 Generalized Linear Models with likelihood based boosting (GLMboost) [182] is a machine 

learning method for optimizing prediction accuracy and for obtaining statistical model estimates 

via gradient descent techniques.  A key feature of the method is that it carries out variable 

selection during the fitting process without relying on stepwise variable selection.  

 Naive-Bayes is a probabilistic classifier based on Bayes’ theorem [183] with the assumption of 

independence between features. It detects the class type based on the maximum probability 

obtained for the given tuple to a particular class. 

 Decision Trees C5.0 [184]. A decision tree iteratively subdivides the training set by selecting 

feature cutoffs. Decision trees can model nonlinear effects and are easily interpretable. 

 Random Forests (RF) generate a large number of decision trees based on random subsamples of 

the training set while also randomly varying the features used in the trees. Random forests allow 

modeling nonlinear effects. A random forest model is an ensemble of many decision trees and is, 

therefore, more difficult to interpret. 
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 Support vector machines (SVM) is a non-probabilistic, linear, binary classifier used for classifying 

data by learning a hyperplane separating the data. Linear SVMs is defining the separating 

hyperplane in the original feature space and thus is more intuitive than the radical kernel SVM. 

 Partial Least Squares Discriminant Analysis (PLS-DA) [185] is a dimensionality reduction 

technique based on PLS regression that is used when the response variable is categorical. Instead 

of finding hyperplanes of maximum variance between the response and independent variables 

PLS finds a linear regression model by projecting the predicted variables and the observed 

variables into a new space. PLS-DA can provide good insight into the causes of discrimination via 

weights and loadings. 

 Regularized Discriminant Analysis (RDA) [186] builds a classification rule using regularized group 

covariance matrices that are supposed to be more robust in presence of multicollinear data. It 

lacks, however, interpretability and is impractical for high-dimensional datasets. 

More details about these classifiers can be found in Machine Learning textbooks [163]. 

 

5.2.3 Oversampling techniques 

Random oversampling often results in overfitting while undersampling may weaken the classifiers 

performance. Thus, the method of choice for handling the class imbalance problem was the Synthetic 

Minority Oversampling Technique (SMOTE) [187] and  some of its' variations.  We implemented four 

commonly used techniques for synthetically balancing the data by oversampling the minority class: 

 SMOTE produces new minority observations based on weighted average of the k-nearest 

neighbors of the same class. These synthetically generated minority class instances make the 

class distributions more balanced. 

 Borderline (BD) SMOTE [188] oversamples the minority examples only near the borderline with 

the majority class. Compared to regular SMOTE, borderline-SMOTE does not create synthetic 

examples for noise instances, but concentrates its effort near the borderline, which in turn helps 

the decision function to create better boundaries between classes. 

 SMOTE+ENN [189] copes with the issue of SMOTE where artificial minority class examples are 

produced too deeply in the majority class space. Inducing a classifier under such a situation can 

lead to overfitting. In this study Wilson’s Edited Nearest Neighbor Rule (ENN) [190] was used to 

remove noisy SMOTE examples while leaving the original data unchanged.  

 Adaptive Synthetic oversampling (ADASYN) [191] uses a weighted distribution for the minority 

class objects according to their level of difficulty of learning. In comparison to borderline-SMOTE, 

ADASYN creates different synthetic samples for the minority class depending on its distribution 

and not just for the borderline instances. The synthetic samples are created based on the 

majority nearest neighbors via the k-NN method. One drawback of this approach is that it does 

not identify noisy instances, and thus becomes susceptible to outliers. 
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5.2.4 Experimental Design 

The performance of the classifiers was initially computed on the original dataset (before oversampling), 

which served as the reference dataset for the analysis. Given the small number of available examples, 

splitting beforehand into training and testing sets was not attempted. Thus, a 5-fold cross-validation (CV) 

was performed, repeated 20 times, resulting in 100 models. The performance of each classifier was 

estimated according to the maximum AUC obtained through the 5-fold CV. This is a common strategy to 

build and validate a model internally when the amount of data is not large enough to split in 

training/test sets. The results were then used to evaluate the impact of the different oversampling 

techniques on classifiers' performance.  

 

When the oversampling was performed, a nested CV was implemented whereby the number of both 

inner and outer folds was set to 5. The experimental design for the nested CV is depicted in Figure 5.1.  

 

 
Figure 5.1 Workflow of the nested cross-validation 

 

Each dataset was split into five random subsamples stratified for outcome classes. Hence, each 

subsample was used as a test-set (test-out) and the remaining observations as training set (train-out). 

The oversampling was then performed on the minority class of the train-out to balance the two classes. 



112 
 

Features were first centered and then re-scaled and the same transformation was applied to the 

corresponding test-out. The models were trained on the train-out and applied on the test-out to 

compute the performance metrics resulting in five estimates per performance metric (1 per test-out). 

 In the inner CV, the train-out was split again into five subsamples, where each subsample served once as 

a test set (test-in) and the remaining observations as testing set (train-in). This inner 5-fold CV was 

repeated 20 times and the models with different tuning parameters were compared. The best tuning 

parameters were selected according to the maximum AUC of an inner 5-fold CV (test-in). For each 

repetition different randomization seeds were used to make the process reproducible and ensure that 

exactly the same splits would be performed across the different oversampling techniques. 

 

To provide meaningful comparisons of the performance of each classifier on the reference dataset 

(without oversampling) and the datasets after oversampling, the test-in results of the CV were used. For 

this purpose the area under the ROC curve (AUC) was used to compare the models. The actual 

performance of the classifiers was then evaluated based on their scores on the test-out sets. The AUC 

and the F-measure were computed.  

 

 The analysis was implemented using various open-source R packages interfaced with the R package 

caret. 

 

5.3 Results 

Table 5.1 shows the best discriminative performance of each classifier on the original dataset (without 

oversampling) and on the oversampled datasets, after repeated 5-fold CV. Before oversampling, the 

performance of the classifiers ranged from 0.41 (RF) to 0.65 (PLS-DA). After oversampling the best 

performance was achieved on the SMOTE+ENN dataset with the RDA classifier (AUC=0.89) and the 

lowest performance on the SMOTE dataset using the Naive-Bayes classifier (AUC=0.57). 

 
Table 5.1 The AUC for each classifier after repeated 5-fold CV 

 

Figure 5.2 shows the results of the pairwise comparisons between the datasets averaged over all the 

classifiers (one-sided Wilcoxon signed-rank test). The alternative hypothesis was that the oversampling 

techniques 1 performed better than the oversampling techniques 2. The numbers in the plot indicate the 

p-values. The color indicates whether the increased AUCs by oversampling technique 1 are statistically 
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significant, or close to significant (p-value <0.1), than the oversampling technique 2. Consistently higher 

was the performance on the SMOTE+ENN dataset. However, all the oversampling techniques showed 

improved classification performance compared to the original dataset. 

 

 
Figure 5.2 Pairwise comparisons between classifiers 

 

Figure 5.3 shows the results of the pairwise comparisons between the classifiers averaged over all the 

datasets (one-sided Wilcoxon signed-rank test). The alternative hypothesis was that the Classifiers 1 

performed better than the Classifiers 2. The numbers in the plot indicate the p-values. The color 

indicates whether the increased AUCs by the classifiers 1 are statistically significant, or close to 

significant (p-value <0.1), than the classifiers 2. The best performing classifier was the RDA followed by 

the PLS-DA. The least performing classifier was Naive-Bayes. Overall, RDA, PLS-DA, SVM and Decision 

Trees outperformed RF, LASSO, GLMboost and Naive-Bayes. 
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Figure 5.3 Pairwise comparisons between oversampling techniques 

 

Table 5.2 shows the actual performance of each classifier and for each dataset on the "never-seen" test-

sets (test-out). The highest performing classifier across all the datasets was again the RDA with average 

AUC=0.69. Second scored the PLS-DA with AUC=0.65. Similar were the results for the F-measure as 

shown in the Table 3. The highest F-measure=0.70 was obtain with RDA followed by the PLS-DA 

algorithm (F-measure=0.66). 

 
Table 5.2 The average AUC of the test-out for each classifier and resampling technique 
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Concerning the different oversampling techniques, there were no significant differences between 

SMOTE, Borderline SMOTE and ADASYN while SMOTE+ENN performed slightly higher. Overall the 

highest performance was obtained with RDA on the SMOTE+ENN dataset (AUC=0.71, F-measure=0.72). 

 
Table 3 The average F-measure of the test-out for each classifier and resampling technique 

 

5.4 Discussion 

 
The purpose of this study was to compare the discriminative performance of eight binary classifiers in 

predicting urinary toxicity after prostate cancer radiotherapy. In order to deal with the class imbalance 

problem, the performance of these classifiers was evaluated using four different synthetic oversampling 

techniques. Both dosimetric and clinical features were included.  

 

Our results suggest that there is indeed an overall ranking of classifiers, with the two types of 

discriminant analysis, RDA and PLS-DA, performing the best. We also observed that all the oversampling 

techniques significantly increased the performance of the models, with the SMOTE+ENN providing the 

best results. Interestingly, there was no strong dependence of the classifier performance on the 

oversampling technique as the RDA scored the highest AUC across all the datasets, including the original 

non-resampled one.  

 

Although it is expected that reducing the number of features in the model, might increase performance, 

we intentionally performed the analysis without applying any previous feature selection procedure, 

given that in real world situations, RT data usually include a large number of highly correlated features. 

This can possibly explain the reason why certain ML algorithms performed better than others in our 

dataset. A common limitation of many ML algorithms is their poor ability to properly handle strongly 

dependent variables. Conversely both RDA and PLS-DA have been reported on the literature as robust 

techniques under such situations. For instance, Dumancas and Bello [192] compared the predictive 

performance of 12 machine learning algorithms on a dataset with the presence of high multi-colinearity. 

The objective was to use lipid profile data to predict 5-year mortality. They showed that the highest 

scoring classifier among the 12, as measured by the AUC, was the PLS-DA. 



116 
 

 

With respect to synthetically oversampling methods, SMOTE [187] was the first technique which 

introduced new samples by using the feature space rather than the data space and is today, a well-

established tool for oversampling. Although SMOTE seems to work well with low dimensional data, it is 

less effective when applied on high-dimensional data. This is due to the fact that SMOTE is not able to 

manage the bias in the majority class for the classifier where the data is high dimensional. Another 

drawback of the SMOTE algorithm is over generalization of the minority class space. Thus, a plethora of 

algorithms based on this concept have been proposed in order to overcome the limitations of SMOTE. 

 

Over the past decades, several studies have investigated the potential of SMOTE and SMOTE-variations 

to overcome the class imbalance problem. Batista et al. [189] performed a study on 13 datasets with 

different imbalance levels and showed oversampling methods to perform well on datasets with few 

positive examples. They proposed two methods, SMOTE+ENN and SMOTE+Tomek, and analyzed their 

behavior against other resampling techniques for dealing with class imbalance. Lopez et al. [193] 

compared SMOTE, Borderline-SMOTE, ADASYN and some other methods using Decision Trees, Support 

Vector Machines and k Nearest Neighbors classifiers and evaluated their performance in terms of AUC 

on 66 datasets. They reported SMOTE and SMOTE+ENN as the top methods with Borderline-SMOTE and 

ADASYN being also competitive. More et al. [194] performed a survey of different resampling techniques 

including Random Oversampling, SMOTE, Borderline-SMOTE etc. and concluded SMOTE+ENN to be the 

best approach in terms of Precision for the majority class and Recall for the minority class. Our results 

also suggest that SMOTE+ENN is the most efficient approach for dealing with the class imbalance 

problem. However, we were not able to confirm any significant improvement on the classifiers' 

performance when using the ADASYN or Borderline-SMOTE over the traditional SMOTE technique. 

Nevertheless, all the oversampling techniques significantly improved the average classification 

performance of the ML algorithms compared to the original dataset (without oversampling). These 

findings demonstrate the importance of handling class imbalance and highlight their efficacy on RT 

datasets. We have to stress out that complexity of data, level of imbalance, evaluation criteria and 

choice of classifier, all play crucial role in the evaluation process.  

 

Another common approach to perform class imbalance is undersampling which consists in down-sizing 

the majority class by randomly removing observations until the dataset is balanced. Despite the 

popularity of undersampling, this technique was intentionally disregarding in the present study because 

of the risk of removing relevant observations  from  the  dataset,  since  the  process  is  performed in  an  

unsupervised  manner. Consequently, the more imbalanced the dataset, the more samples will be 

discarded when undersampling. A study from Pozzolo et al. [195] showed that the beneficial impact of 

undersampling is strongly dependent on the nature of the classification task (degree of unbalancedness 

and nonseparability) and on the variance of the classifier and, as a consequence, it is extremely 

dependent on the specific test point. Although our study is "optimistic" in terms of class imbalance 

(minority-majority ratio was 1:2), it is particularly common in toxicity prediction studies that the minority 

class consist of only of a few dozens of patients, in which case undersampling would result to a balanced 

dataset with only a few observations.  
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One of the most critical points in performance evaluation is the choice of the correct metric. A metric 

may correspond to some expected loss over different operating conditions. In the taxonomy proposed 

by Ferri et al. [196] three families of metrics were recognized: performance metrics which account for 

the quality of classification (such as accuracy), performance metrics which account for a ranking quality 

(such as AUC), and performance metrics which evaluate the quality of scores or how well the model does 

in terms of probability estimation(such as the Brier score or log-loss). The most widespread, but also 

controversial, measure to evaluate a classifier's performance is accuracy (or error rate which is defined 

as 1 minus accuracy). As it simply measures the number of correctly predicted samples over the total 

number of samples, this metric should be used only if the assumptions of balanced class distribution and 

equal cost of misclassification errors hold true, which is not usually the case for real-world applications.  

 

In this study we used the F-measure and the AUC to evaluate models' performance. The F-measure (also 

called F1 score) conveys the balance between the precision and the recall and is recommended for 

imbalanced datasets. It is assumed, however, that precision and recall are equally important. The use of 

AUC is well-accepted for evaluating classifiers performance, especially for medical applications. The ROC 

compares the classifiers' performance across the entire range of class distribution and error costs and, in 

contrast to accuracy, does not require the choice of a single threshold value. Ling et al. [197] were the 

first to establish that AUC is statistically consistent, more discriminating and an overall better measure 

than accuracy in evaluating and comparing classification learning algorithms. Nevertheless, AUC also 

suffers from some limitations. For example, when comparing two classifiers, if ROC curves cross, then it 

is possible that one curve has a higher AUC (and so is apparently better) even though the alternative may 

show superior performance over almost the entire range of values of the classification threshold for 

which the curve will be used [198]. 

 

Finally, for the classifiers to be clinically useful, model interpretability is arguably a major requirement. 

Although all the implemented classifiers yield a variable importance, which allows the identification of 

the most pertinent features in the model, they are not all as easily interpretable. Unfortunately, our 

study shows that the most intuitive classifiers (such as LASSO and GLMboost) were among the least 

performing. 

 

Future work may include the combination of the best classifier in a majority voting scheme in order to 

take advantage of the best of their individual performance. This can be done by weighting the 

importance (or credibility) of each classifier based on the training outcomes. Survival machine learning 

techniques should also be investigated as they take into account right-censoring.  

 

5.5 Conclusion 

 
Oversampling of imbalanced datasets coupled with machine learning models in the present work, offers 

a benchmark for predicting radiation-induced side-effects following prostate radiotherapy. The results 

suggest that properly handling class imbalance can significantly improve classifiers' performance, paving 
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the way for the development of more accurate predictive models for toxicity prediction after RT. Overall, 

RDA performed better than other methods. However, more research is needed to understand the 

advantages and limitations of machine learning methods for the prediction of different urinary 

symptoms.  

 
 
 

The next and final chapter contains a general discussion of the main results, the contributions and the 

limitations of this thesis. Recommendations are also made for future work in prediction of urinary 

toxicity following prostate cancer radiotherapy. 
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6 General discussion, conclusions and perspectives 

 

The work presented in this thesis aimed at investigating spatial correlations between dose and side 

effects by taking into consideration the spatial dose distribution, with the objective to improve urinary 

toxicity prediction following prostate cancer radiotherapy. This problem was addressed in a population 

analysis framework where the dose distribution was explored in different spatial scales, from the 

traditional whole-organ-based models towards sub-organ models. 

 

Historical observations have suggested that there is no clear dose-volume relationship for the bladder. 

Only recently, extensive studies of the impact of dose distributions across the bladder have been 

undertaken. These studies, including our own works in this thesis, suggest that there is a significant 

association between dose distribution and urinary symptom manifestation, with this outcome 

potentially supplanting previous hypotheses of homogeneous bladder radiosensitivity.  

 

Beyond bladder dose, the assessment of urethra involvement in urinary toxicity was of major 

importance. Because the urethra is not visible on a CT scan, contouring and assigning constraints to this 

structure during planning, is not feasible using conventional approaches. To cope with this, we 

developed a multi-atlas-based methodology for segmenting the prostatic urethra on CT images, as 

detailed in Chapter 2. This approach for segmenting the urethra is clinically relevant and paves the way 

for assessing urethral toxicity potentially improving the overall urinary toxicity prediction by considering 

both the dose received by the bladder and the urethra. Indeed, our work allowed for the first time to 

correlate urethra dose with urinary toxicity after EBRT.  

 

In the context of local dose analysis, two different methods were implemented and thoroughly described 

in Chapters 3 and 4. On the one hand, DSMs were generated by unfolding bladder surfaces and 

normalizing not only to lateral direction, as had been done in previous studies, but also to the cranio-

caudal direction allowing to evaluate the dose on the entire bladder surface. On the other hand, for the 

DVMs, a robust multi-organ registration strategy was devised in order to accurately align the organs 

(bladder, prostate, and urethra) to a common coordinate system while copying with the high inter-

individual anatomical variations. As explained, the proposed DVM models strongly depend on the 

validity of dose mapping and, hence, on the reliability of the alignment of the whole population to a 

single coordinate system (template). Taking into consideration this important source of error, we applied 

a relatively strict threshold for excluding patients from the analysis depending on the organ alignment 

obtained after non-rigid registration (in terms of Dice score). On top of that, we smoothed the 

propagated dose distributions based on the registration accuracy.   

 

The generalizability and reproducibility of our observations was established for specific symptoms, 

through inter-cohort comparisons (DSM models) and external validation (DVM models). This is a crucial 

step for developing reliable predictive models as an apparent correlation between dose and toxicity does 

not necessarily mean causality. The identification of subregions may also depend on specific cohort 

characteristics such as the total number of patients, the toxicity rates, the treatment modality, the total 
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delivered dose and the dose per fraction. Indeed, the comparison between a DSM analysis on our cohort 

and other DSM studies in Chapter 3, suggests that the results are strongly dependent on cohort 

characteristics as only one subregion was confirmed in our cohort (late dysuria). The external validation 

of our DVM models in Chapter 4, was successful for three out of five subregions highlighting the role of 

urethra and posterior bladder region in urinary toxicity.  

 

Given the recent shift from classical statistical analysis methods, towards machine learning algorithmic 

and data mining techniques, as powerful tools to extract information from existing recorded data, this 

thesis may also lay the foundations for predicting radiation-induced side-effects using machine learning 

strategies. Our observations suggest that discriminant analysis algorithms, such as RDA and PLS-DA, may 

be suitable for analyzing highly correlated, structured data, like DVH bins. In the case of class imbalance, 

as commonly observed in real-world data, we recommend to synthetically create new patient data with 

the objective to balance the ratio between patients with and without toxicities, which we showed to 

effectively improve outcome prediction capabilities of machine learning algorithms. In the clinical 

perspective, such approaches could be used concomitantly to create computer-based decision support 

tools for treatment optimization. 

 

6.1 Comparison of 2D DSM and 3D DVM methods 

 
Two local dose-analysis methods (DSM and DVM) were used to identify predictive symptom-related sub-

regions (Ssurf and Svol). Both 2D DSMs and 3D DVMs analyses allowed the identification of sub-regions 

predictive of distinct acute and late urinary symptoms. Given that DSM and DVM analyses were applied 

to the same population dataset, a direct comparison of the two methods, in terms of sub-region 

identification and predictive performance, is meaningful.  

 

Using DVMs five Svol in the bladder and urethra were identified, in contrast to the DSM analysis which 

allowed the identification of only three Ssurf in the bladder. This difference may be related to the fact 

that DVMs enable the simultaneous exploration of multiple 3D anatomical structures (e.g. the bladder 

and the urethra), whereas DSMs are limited to a single organ surface. For example, for acute 

incontinence, one Svol was found in the prostatic urethra with no evidence of dose-volume-effect in the 

bladder, strengthening the assumption of urethra involvement to urinary toxicity [168,199]. 

Nevertheless, for two symptoms (acute and late retention), both methods identified a quite similar sub-

region in the bladder (posterior part of the bladder including the bladder trigone) corresponding to 

intermediate-high doses. Figure 6.1 summarizes the number and the localization of the identified 

subregions with the two methods and depicts the spatial overlap between Ssurf and Svol.  
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Figure 6.1 Spatial overlap between sub-surfaces (Ssurf) and sub-volumes (Svol) 
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The predictive capabilities of the dose to the identified sub-volumes were evaluated with respect to the 

current clinical standard, which is the dose received by the whole bladder. Indeed, the dose to the whole 

bladder was found to be informative to some extent. Nevertheless, the subregions identified by any of 

the two methods, were consistently more predictive than the dose to the whole bladder. This trend is in 

line with previous DSM studies. In our dataset, the AUCs ranged from 0.60 to 0.72 for the whole bladder, 

from 0.64 to 0.74 for the Ssurf and from 0.62 to 0.81 for the Svol, in univariate analysis.  

 

Each of the two methods presents advantages and disadvantages with respect to the data they require, 

the information they provide, and the flexibility of implementation. DVM construction requires a multi-

organ non-rigid registration with large number of degrees of freedom and uncertainties, although 

reduced with a regularized deformation field and a dose smoothing process, they are not eradicated. 

DSM registration uncertainties are less pronounced since it is based upon an affine parametric 

transformation which implies less degrees of freedom. DVM methods have, however, the advantage that 

they can be used to explore the entire pelvic region without any prior information while DSM methods 

assume that a subregion is located exclusively on the bladder surface. Considering the planning dose 

distribution only on the bladder surface is subject to high dosimetric uncertainties due to the high inter-

fraction bladder variations. A 3D Svol close to the bladder surface might better represent the actual dose 

delivered to the surface, although bladder is a hollow organ, because it implicitly accounts for inter-

fraction bladder-surface motion within this region.  

 

More generally speaking, DSM methods are intrinsically restricted to the surface of the organ, and 

hence, exclusively applicable to hallow organs. However, most organs are solid, in which case DVM 

analyses, taking into considerations the entire 3D dose distribution within the organ, are undeniably 

more appropriate.  

 

6.2 Limitations of the work 

 
One limitation to develop and apply statistical methodologies is the data availability and in our studies 

we considered a relatively small number of patients (n = 254). Also, the limited number of patients who 

experience grade≥2 toxicities hindered our ability to model these clinically relevant endpoints. Although, 

clinician-only reporting can result in under-reporting of lower grade morbidity and the downgrading of 

symptom severity [200–203], predictive models developed based on solely grade≥1 urinary toxicity may 

be suboptimal. 

 

Another limitation of our work is the exploitation of information from the planning step. Because of the 

anatomical variations that may occur during the treatment, the dose actually received by the bladder 

may be different [86,127,204,205], although IGRT was used for our population. Any discrepancy between 

planning and actual delivered dose may be the origin of uncertainties in toxicity prediction. In fact 

bladder base remains relatively stable with minor or no day-to-day variations. The bladder dome, on the 
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other hand, presents the highest extensibility raising the question of whether the planning dose 

distribution at this region can be considered as the actual delivered dose.   

 

In general the prediction capabilities of the proposed models, including clinical and dosimetric variables, 

were not remarkable. This may be due to the fact that for some patients the relationship between dose 

and side effect is not directly established. Indeed, there may exist individual specificities related with the 

occurrence of side-effects such as individual radio-sensitivity or other factors determined by genetic 

and/or epigenetic mechanisms [129,206,207], that were not investigated in this thesis.  

 

A potential source of error is the choice of template for aligning the whole population. In our analyses, 

we assumed that the selected template is representative of the given population. However, the 

remarkably high inter-individual bladder volume variations raise questions concerning the validity of this 

assumption. Since the impact of different anatomical references for spatially aligning the population was 

not evaluated, the possibility of identifying different subregions on different templates cannot be 

excluded. 

 

Concerning the performance of different machine learning strategies, side-by-side comparisons were 

performed using only one endpoint. Concluding the superiority of a strategy based on only one endpoint 

may not be optimal for deriving a solid conclusion. Findings have less chance of being fortuitous if they 

are repeated across endpoints and datasets. 

 

6.3 Perspectives 

 
From methodological point of view, the work presented in this thesis paves the way for in-depth studies, 

or new ones, aiming to improve our understanding of urinary symptom manifestation and increase 

urinary toxicity prediction following prostate cancer radiotherapy. From clinical point of view, a potential 

benefit of using DVMs is the possibility of performing personalized treatment planning by back-

propagating the identified sub-regions from the template to the patient’s native space and adding 

specific dosimetric constraints. Sparing sub-regions in the treatment planning system, as previously done 

for the rectum [97], may prevent specific side effects. 

 

More precisely, among numerous perspectives we can mention: 

1. The possibility to decrease the dose in specific sub-volumes by defining 3D patient-specific 

constraints as part of the TPS optimization, while preserving the dose in the prostate, needs to 

be demonstrated. As such, a randomized clinical study on the therapeutic benefit of adding 

dosimetric constraints to the sub-regions during treatment planning could be considered. 

2. The availability of strong features is key in the construction of robust predictive models. Indeed, 

we found that including spatial descriptors of the dose distributions can increase model 

performance but these models still require new features. By including individual biological 

parameters is expected to achieve better predictive capabilities.  
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3. By combining DSM and DVM analyses, the impact of dosimetric and geometric uncertainties can 

be potentially eliminated, thereby allowing the development of more reliable models. Thus it 

might be useful to evaluate the complementarity of the two methods.  

4. Future studies should also focus on studying the impact of dosimetric uncertainties produced by 

inter-fraction variations of the bladder on the prediction of urinary toxicity in prostate cancer 

radiotherapy by considering the cumulative dose distribution during treatment. Some works in 

this direction have been previously performed in order to use machine learning strategies to 

predict inter-fraction organ deformations [208,209]. 

5. In the same context, in order to account for bladder motion, DVM studies should be also 

extended to areas outside of the bladder and even to the whole pelvic region if accurate 

alignment of the population is feasible.  

6. Apart from prostate cancer radiotherapy, our proposed DVM approach can be extended to other 

organs for investigating toxicities following radiotherapy at different anatomical sites. Through 

multi-organ non-rigid registration the simultaneous exploration of the dose to multiple organs is 

also feasible. 

7. Our 3D DVM approach can still be improved. In particular different registration pipelines and 

correction techniques should be tested in order to maximize registration accuracy and minimize 

potential bias of subregion identification due to misalignments.  

8. Selection of the optimal template to be representative of a given population need to be further 

investigated. Considering the high interindividual variability, a study of the influence of the 

template selection on the identification of risk regions should also be considered.  

9. Future research studies should focus on grade ≥2 urinary toxicity rather than grade ≥1, as it is a 

more clinically relevant endpoints with significant impact on the QoL for the patient. Given the 

lack of events for these types of toxicities in our dataset, a potential solution would be to apply 

oversampling techniques such as SMOTE in order to allow the exploration of these endpoints.  

10. The best performing machine learning algorithms can also be ensembled, using the majority 

voting technique, in order to increase the classification and prediction accuracy. Such elaborate 

models will offer new perspectives in predicting and preventing radiation-induced urinary 

complications. 

11. New Machine Learning strategies, such as Deep Learning can be also considered. These 

emerging techniques would be able to train neural networks, fully exploiting the 3D dose 

distributions, and potentially increase the prediction without requiring previous registrations. 

 

The overview of the thesis structure, as well as the contributions and the perspectives are illustrated 

in Figure 6.2. 
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Figure 6.2 Schematic overview of the thesis structure, contributions and perspectives 
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Titre: Amélioration de la prédiction de la toxicité urinaire après radiothérapie du cancer de la prostate à partir 
de modèles spatiaux multi-échelle de la dose: depuis les organes à risque aux sous-régions 

Mots clés : radiothérapie; toxicité urinaire; modèles prédictifs; planification; 

Résumé : La radiothérapie externe est un traitement 
locorégional du cancer.  L’objectif de la radiothérapie 
impose un compromis entre la délivrance d’une dose 
maximale dans la tumeur afin d’augmenter le contrôle 
local et la curabilité, et d’une dose minimale aux 
organes sains afin de limiter la toxicité. Les 
symptômes urinaires peuvent être liés à l’irradiation 
de régions spécifiques de la vessie ou de l'urètre. 
Dans ce cas, la dose reçue par l'ensemble de la 
vessie peut ne pas suffire à expliquer la toxicité 
urinaire. 
Dans le contexte du traitement du cancer de la 
prostate par radiothérapie, ce travail de thèse vise à 
analyser les corrélations spatiales entre la dose et les 
effets secondaires, cette problématique étant 
abordée dans un cadre d'analyse de population. 

Pour évaluer la contribution de l'urètre à la toxicité 
urinaire, nous proposons une méthode de 
segmentation basée sur plusieurs atlas pour 
identifier avec précision cette structure sur les 
images CT. Nous utilisons ensuite deux méthodes 
pour analyser la distribution de dose spatiale. L'une 
basée sur la construction de cartes 2D dose-surface 
(DSM) couplée à des comparaisons pixel par pixel 
et l'autre basée sur des cartes 3D dose-volume 
(DVM) combinées à des comparaisons par voxel. 
Les sous-régions identifiées ont été validées dans 
des populations externes, ouvrant la perspective 
d'une planification de traitement spécifique du 
patient.  Nous étudions également le potentiel  d'une 
amélioration complémentaire de la prédiction en 
exploitant de méthodes d'apprentissage 
automatique.

 

Title: From global to local spatial models for improving prediction of  urinary toxicity following prostate cancer 
radiotherapy 

Keywords: radiotherapy; urinary toxicity; predictive models; treatment planning; dose calculation; 

Abstract:  External beam radiotherapy (EBRT) is a 
clinical standard for treating prostate cancer. The 
objective of EBRT is to deliver a high radiation dose 
to the tumor to maximize the probability of local 
control while sparing the neighboring organs (mainly 
the rectum and the bladder) in order to minimize the 
risk of complications. Developing reliable predictive 
models of genitourinary (GU) toxicity is of paramount 
importance to prevent radiation-induced side-effects, 
and improve treatment reliability. Urinary symptoms 
may be linked to the irradiation of specific regions of 
the bladder or the urethra, in which case the dose 
received by the entire bladder may not be sufficient 
to explain GU toxicity.  
Going beyond the global, whole-organ-based models 
towards more local, sub-organ approaches, this 
thesis aimed to improve our understanding of 
radiation-induced urinary side-effects and ameliorate 
the prediction of urinary toxicity following prostate 
cancer radiotherapy. 
 

With the objective to assess the contribution of 
urethra damage to urinary toxicity, we proposed a 
multi-atlas-based segmentation method to accurately 
identify this structure on CT images.  The second 
objective was to identify specific symptom-related 
subregions in the bladder and the urethra predictive 
of different urinary symptoms. For this purpose, we 
proposed two methodologies for analyzing the spatial 
dose distribution; one based on the construction of 
2D dose-surface maps (DSM) coupled with pixel-
wise comparisons and another based on 3D dose-
volume maps (DVMs) combined with voxel-wise 
comparisons. Identified subregions were validated in 
external populations, opening the perspective for 
patient specific treatment planning. We also 
implemented and compared different machine 
learning strategies and data augmentation 
techniques, paving the way to further improve urinary 
toxicity prediction.  

 


