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Abstract

In most developed countries, the transport for people with disabilities is subsidized with
public funds. In France, the number of transported people increased by 18% from 2006 to

2008 (Laurent et al., 2012). In 2017, the cost of this transport was around 500 M€ representing
10% of the total medical transportation cost (Gonzalez et al., 2018). Between 2006 and 2014,
this cost has increased by 40% (Wahl et al., 2016).

For Medico-Social Institutions (MSI), transport costs often represent the second-largest
expense after that of the staff. Despite this, few MSIs have the means to effectively manage
the transport to provide high-quality service and keep the costs down. With little expertise,
MSIs are often led to adopt sub-optimal practices that impact costs, quality of service or the
environment.

In the medico-social sector, transport is no longer considered merely a painful or non-value-
added activity. It is generally integrated into the life project of People With Disabilities (PWD).
Transportation allows the inclusion of the PWD to school or work life. It can be a lever for the
autonomy of PWD. Transport demands in the medico-social sector are mostly regular and very
often known in advance. This anticipated knowledge of needs can be used to jointly improve:
the quality of service for users, and the efficiency of the resources used.

This thesis is part of the project “Numérique et Optimisation pour une Mobilité Adaptée”
(NOMAd). This project aims to improve the daily transport service for people with disabilities
between their homes and the MSIs. To this end, we suggest the transport pooling between
several MSIs on one side and a global optimization strategy for building the annual transport
planning on the other side. The construction of the annual transport planning is a complex
problem that has not been completely solved in the scientific literature. Following the current
practice, we can assume that the annual transport plan is composed of a pattern of identical
weekly schedules.

To solve the weekly problem, we first work on the planning of the half-day transport problem.
This problem is modeled as a mixed-integer program called the fleet size and mix dial-a-ride
problem with multiple passenger types and with a heterogeneous fleet of reconfigurable vehicles.
In this new variant of the dial-a-ride problem, en-route modifications of the vehicle’s inner
configuration are allowed. The main consequence is that the vehicle capacity is defined by a
set of configurations and the choice of vehicle configuration is associated with binary decision
variables. Vehicle reconfiguration is a lever to efficiently reduce transport costs, but the number
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of passengers and vehicle fleet setting make this problem intractable for exact solution methods.
A large neighborhood search matheuristic combined with a set covering component and a
reactive mechanism to automatically adjust its parameters is therefore proposed.

Once we solve the half-day transport problem, we conduct a weekly integration of solutions.
However, the simple juxtaposition of half-day transport schedules give cost-efficient transport
planning but a very inconsistent service time for each passenger. This situation is uncomfortable
for PWD, or even unacceptable for some people with mental disabilities. These service time
requirements together with traditional route planning define a new variant of the multi-period
dial-a-ride problem that we denote the time consistent DARP. This problem is modeled as
a route based mathematical modeling considering two objectives: the transport cost and the
service time consistency.

A perfectly consistent schedule, defined for each passenger a single service time during
the planning horizon. However, this transport solution is very expensive for MSIs. With a
lexicographic definition of the solution time-consistency, we are able to produce a large variety
of less consistent but affordable solutions that fits better to the needs of MSIs. The problem is
solved with a matheuristic framework based on a master set partitioning problem and routes
generated from a large neighborhood search procedure.

Currently, the pooling of transport between MSIs is not a common practice. Instead, each
MSI manages its transport independently. This way of working has technical and administrative
advantages in terms of optimization, contracting and negotiation. On the contrary, dealing with
multiple MSIs at a time supposes a simultaneous negotiation process, and requires a specialized
mechanism for pricing users individually. Despite the advantages of the current policy, there is
a major economic drawback that must be weighed against its benefits. An assessment against
two other policies is presented in the context of both economic and service aspects. Alternative
policies consider transport pooling between several MSIs. The service quality indicator for this
study is the user ride time.

The transport pooling between MSIs is both a research and managerial challenge. Currently,
transport management is mainly carried out independently in each MSI. The pooling of transport
increases the size of the problem and therefore its complexity. It also implies having, on the one
hand, economic interest and, on the other hand, a common mechanism of effective management
and communication between the two parties. The objective of this study is to evaluate the
impact of transport pooling on the costs and the ride time of the users. From an optimization
point of view, this solving approach is known as “clustering first route second” for large scale
routing problems. A comparison is made between a scenario without transport pooling and
other scenarios allowing transport pooling shows that up to 30% of transport costs can be
saved.
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Résumé

D ans la plupart des pays développés, le transport des personnes en situation de handicap
est subventionné avec des fonds publics. En 2017, le coût de ce transport en France

était d’environ 500 M€ soit 10% du coût total du transport médical (Gonzalez et al., 2018).
Entre 2006 et 2014, ce coût a augmenté de 40% (Wahl et al., 2016) et le nombre de personnes
transportées de 18% de 2006 à 2008 (Laurent et al., 2012). Pour les Établissements Sociaux
et Médico-Sociaux (ESMS), les coûts de transport représentent souvent la deuxième dépense
en importance après celle du personnel. Malgré cela, peu d’ESMS ont les moyens de gérer
efficacement le transport afin de fournir un service de haute qualité et de réduire les coûts. Avec
peu d’expertise, les ESMS sont souvent amenés à adopter des pratiques peu performants ayant
un impact sur les coûts, la qualité de service ou l’environnement.

Dans le secteur médico-social, le transport n’est plus considéré comme une simple activité
pénible ou sans valeur ajoutée. Il est généralement intégré au projet de vie des Personnes en
Situation de Handicap (PSH). Le transport permet l’inclusion des PSH à l’école ou au travail,
ce qui favorise leur autonomie. La demande de transport dans le secteur médico-social est
généralement régulière et très souvent connue à l’avance. Cette connaissance anticipée des
besoins peut être utilisée pour améliorer conjointement la qualité de service pour les utilisateurs
et l’efficacité des ressources utilisées.

Dans ce contexte, cette thèse réalisée dans le cadre du projet «Numérique et Optimisation
pour une Mobilité Adaptée» (NOMAd) vise à améliorer le service de transport quotidien
des personnes en situation de handicap entre leur domicile et les ESMS. À cette fin, nous
proposons la mutualisation du transport entre plusieurs ESMS et nous proposons une stratégie
d’optimisation globale de la planification annuelle du transport.

La construction de la planification annuelle des transports est un problème complexe qui
n’a pas été complètement résolu dans la littérature scientifique. Conformément à la pratique
actuelle, nous pouvons supposer que le plan de transport annuel est composé d’un ensemble
d’horaires hebdomadaires identiques.

Pour résoudre le problème hebdomadaire, nous travaillons d’abord à la planification d’un
problème de transport d’une demi-journée. Ce problème est modélisé comme un programme à
nombres entiers mixtes appelé “the fleet size and mix dial-a-ride problem”, Dans ce problème,
nous prenons en compte plusieurs types de passagers et un parc hétérogène de véhicules
reconfigurables. Dans cette nouvelle variante du problème dial-a-ride, les modifications de la
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configuration interne du véhicule sont durant le trajet sont autorisées. La conséquence principale
est que la capacité du véhicule est définie par un ensemble de configurations dont le choix
est associé à des variables de décision binaires. La reconfiguration des véhicules est un levier
pour réduire efficacement les coûts de transport, mais le nombre de passagers et l’hétérogénéité
du parc de véhicules rendent ce problème insoluble pour des méthodes de résolution exactes.
Nous proposons donc une matheuristique de recherche de grand voisinage combinée à un set
partitioning problem doté d’un mécanisme réactif pour ajuster automatiquement ses paramètres.

Une fois que nous avons résolu le problème de transport d’une demi-journée, nous procédons
à une intégration hebdomadaire des solutions. Cependant, la simple juxtaposition d’horaires de
transport d’une demi-journée peut permettre une planification très efficace du transport en
terme de coûts, mais peut conduire à un service horaire très irrégulier pour chaque passager.
Cette situation est inconfortable pour les PSH, voire inacceptable pour certaines personnes
souffrant de certains handicaps mentaux. Ces exigences de régularité de service, combinées à la
planification traditionnelle, définissent une nouvelle variante du problème multi-period DARP.
Ce problème, nommé le time-consistent DARP prend en compte deux objectifs: le coût de
transport et la régularité du temps de service.

Une planification parfaitement cohérente définit pour chaque passager une seule heure
de service pendant l’horizon de planification. Cependant, cette solution de transport est très
coûteuse pour les ESMS. Avec une définition lexicographique de la régularité des horaires,
nous sommes en mesure de produire une grande variété de solutions moins régulières mais
plus économiques et mieux adaptées aux besoins des ESMS. Le problème est résolu avec une
matheuristique basée sur un master set partitioning problem et des routes générées à partir
d’une procédure de recherche de grand voisinage.

La mutualisation du transport est à la fois un défi de recherche et un défi managérial.
Actuellement, la gestion du transport est principalement réalisée intra-établissement c’est-à-dire
sans mutualisation. La mutualisation du transport augmente la taille du problème et donc
sa complexité. Elle suppose également d’avoir d’une part, un intérêt économique et d’autre
part, un mécanisme commun de gestion et de communication efficace. L’objectif de cette étude
est d’évaluer l’impact de la mutualisation sur les coûts de transport et le temps de trajet des
usagers. En termes mathématiques, ce problème correspond à l’approche clustering first route
second pour la résolution des problèmes de transport de grande taille. Sur un jeu de données
issue du terrain, une comparaison est réalisée entre le transport sans mutualisation et deux
scénarios avec différents niveaux de mutualisation.
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Lo dedico a mi familia y mis seres queridos
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“et au loin, un écho,
Comme une braise sous la cendre

Un murmure à mis-mots,
Que mon coeur veut comprendre”

(extrait d’Anastasia)
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Introduction

From 2010, healthcare transportation in France has become one of the top ten pri-
orities of the risk management plan due to the increasing cost of these transports.

For social and Medico-Social Institutions (MSI), this cost represents the second biggest
expense after that of the wages. In this context, this thesis as part of the NOMAd
project aims to improve the daily transport service for people with disabilities between
their home to MSIs. To this end, we suggest the transport pooling between several MSIs
on one side and a global optimization strategy on the other side. This strategy makes
possible to group and optimize routes on a given geographical area. The challenge is
then to improve economic performance while maintaining social and environmental
goals. A decision aiding tool for transport optimization is proposed for this purpose.

Keywords: decision support systems, transport pooling, passenger transport,
optimization, healthcare

Part of this chapter have been published in a conference paper and an extended version
submitted to a journal:

Tellez, O., Daguet, L., Lehuédé, F., Monteiro, T., Montoya, G. O., Péton, O., Vercraene,
S., 2019. A stakeholder oriented approach to the optimization of transports of people with
disabilities. Supply Chain Forum: An International Journal (Submitted)

Tellez, O., Daguet, L., Lehuédé, F., Monteiro, T., Montoya, G. O., Péton, O., Vercraene,
S., 27-29 August 2018a. Étude pour l’analyse et l’optimisation du transport des personnes
en situation de handicap. In: Conférence Francophone en Gestion et Ingénierie des Systèmes
Hospitaliers (GISEH). Geneva, Switzerland
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Chapter 1. Introduction

1.1 Context

The medico-social sector

In 2010, medical transportation became one of the top ten priorities of the risk management
plan of the French insurance scheme due to the increasing cost of these transports ANAP
(2013). In France, the «transport sanitaire» includes both the medical transportation and
the medico-social transportation. This sector serves both elderly and people with disabilities.
The report “Establishments and services for disabled people - Offers and needs, financing
modalities”, published by the General Inspectorate of Social Affairs & General Inspection
of Finance estimates the transportation cost for all medico-social institutions at 10% of the
total cost of medical tansportation (Laurent et al., 2012).Thus, in 2017, the medico-social
transportation cost represents 500 million euros, at the national level, for all medico-social
institutions (Gonzalez et al., 2018). There are few details on the evolution of this cost. Between
2006 and 2014, this cost has increased by 40% (Wahl et al., 2016). There are few statistics on
the evolution of this cost.

Medico-Social Institutions

For Medico-Social Institutions (MSI), transport costs often represent the second largest ex-
penditure after that of the staff (ANAP, 2016b). Despite this, few MSIs have the skills and
means to effectively manage the transport, provide high quality service and keep the costs down
(ANAP, 2016b). With little expertise, MSIs are often led to adopt sub-optimal practices that
impact costs, quality of service or the environment. Unlike medical transportation, medico-social
transportation is generally integrated into the life project of People With Disabilities (PWD)
(ANAP, 2016c). Transportation is no longer considered merely a painful or non-value-added
activity. It allows, the inclusion of PWD to the school or work life. It can be a lever for the
autonomy these people (ANAP, 2016b).

Transportation demands in the medico-social sector are mostly regular and very often known
in advance. This anticipated knowledge of needs can be used to jointly improve: the punctuality,
quality of service for users, and the efficiency of the resources mobilized. The success of such a
project requires the mobilization of all stakeholders in order to consider the different concerns
of the parties involved. We must indeed meet the needs of people with disabilities and family
carers, accompanying persons and mobility centers, MSIs and professional carers.

The following sections are organized as follows: Section 1.2 presents the NOMAd project.
Then, Section 1.3 describes the field study in three parts: the stakeholders, a needs analysis
drawn from a survey conducted in the fall of 2017 and a summary of the special features of the
transport for PWD. Section 1.4 illustrates where this thesis is positioned within the general
transportation process. Section 1.5 presents the road map and contributions of this thesis.
Finally, the conclusions of this chapter are presented in Section 1.6.
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1.2. The NOMAd project

1.2 The NOMAd project

The project called “Numérique et Optimisation pour une Mobilité Adaptée1” (NOMAd) is a
3-year project supported by the European Union through FEDER Founds. Deployed in the
Auvergne Rhône-Alpes region, NOMAd aims to develop a web service to facilitate exchanges
among all the stakeholders of adapted transport: transporters, families of PWD and MSIs. The
aim is to build the transport solution by jointly integrating the points of view of the different
actors (see https://nomad.disp-lab.fr/). Three objectives are targeted:

• Optimization of the transportation costs by reducing the number of kilometers traveled
and the number of vehicles needed.

• Improvement of the quality of service for passengers and establishments by reducing travel
times and provide time-consistent schedules.

• Reduce the environmental impact by reducing CO2 emissions linked to the number of
kilometers traveled.

These objectives are interlinked and have been considered conjointly. As proposed in Zhu
et al. (2018), to be sustainable, the environmental impact reduction has to be associated with a
cost improvement.

This project is carried out by a group of researchers from the DISP2 laboratory in collabo-
ration with researchers from LS2N3 laboratory and two strategic partners of the medico-social
sector:

Ressourcial: a cooperative structure specialized in information systems for the medico-social
sector. Created as an association, it is intended to share management practices and IT tools to
non-profit MSIs.

GIHP Service Adapté: a transportation company specialized in the management and
realization of paratransit services. GIHP intervenes particularly in the agglomeration of Lyon.
To give an order of magnitude, this structure carries up to 1500 people per day. One of the
benefits of GIHP is that its stakeholders are the MSIs, which implies that making profit is not
the only objective nor priority.

1.3 Field study

During the interaction with different stakeholders involved in the transportation for PWD we
could understand the needs of the sector. In this section we present first the role of stakeholders,
then a needs analysis study drawn from a survey conducted in the fall of 2017 and finally a
summary of the special features found in the transportation for PWD.

1In english “Digital and Optimization for Adapted Mobility”
2https://disp-lab.fr/
3https://www.ls2n.fr/
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Chapter 1. Introduction

Health authorities

MSI

Transporters Users

Figure 1.1: The four stakeholders in the transportation for PWD

1.3.1 Stakeholders

In the process of transport for PWD there are multiple interdependent stakeholders assuring
the reliability, quality and efficiency of the transportation service. As shown by Chakraborty
(2018), a well-design interdependence can bring positive impact on the level of commitment
between stakeholders.

Stakeholders can be classified into 4 categories: Health authorities, MSIs, Transporters and
Users as shown in Figure 1.1. Arrows represent the direct interaction between stakeholders.
Each category can include the coordination of multiple stakeholders.

Health authorities

Health authorities play the role of regulators and very often finance the transport itself. In
France, most of MSIs are financed with public funds. This founds come from different sources,
named: the National Solidarity Fund for Autonomy (CNSA) and health insurance (Assurance
Maladie), and in a smaller proportions the State and Department councils.

Medico Social Institutions (MSIs)

MSIs accompany PWD daily in the construction of a life project that will allow PWD develop
their autonomy. Some PWDs may stay in boarding house the whole week, but the majority
come back home daily. Each MSI receive a global budget to finance all its expenses, including
transportation. Thus, there is an incentive to optimize costs without compromising the service
quality. The transportation activity can be so cumbersome for MSIs that outsourcing is often
seen as a promising solution. However, with an external transporter the coordination can be
difficult and the quality of service may be compromised.

Transporters

The transportation activity can be internally organized by the MSI themselves or outsource to
a specialized provider. In both cases, the transporter must follow strict regulations regarding
safety measures, driving competences and vehicle specifications. The two main tasks for a
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1.3. Field study

transporter are: the construction of the annual transport planning and the daily operation of
the transportation itself taking into account unforeseen events.

The transportation planning is a complex task that requires decision support tools. However,
the available solutions in the market are scarce and do not completely adapt to the needs of the
medico-social sector. Currently, complex tasks like route optimization are performed manually,
as in GIHP, based on field experience only. The project NOMAd is meant to fill these needs on
in comprehensive manner.

Users

Users are PWD and their families who are very often the spokesperson. Families facilitate the
transport of their relatives and stay in direct contact with MSI and the driver. In a certain way,
families verify that the transportation is done with the expected quality.

1.3.2 Survey: needs analysis

In 2017, we conducted a survey with 30 managers of MSI (12 urban, 10 suburban and 8 rural)
and 35 users (33 parents and 2 PSW) from the Auvergne Rhône-Alpes Region in France. This
survey provides us an overview of the current situation of the adapted transportation from two
different angles, from the users perspective and from the service provider’s perspective. The
service providers are MSIs that can outsource the transportation activity. Nearly half of the
MSIs surveyed outsource the transport.

Service provider’s perspective

Figure 1.2 shows how MSIs perceive the quality of their transport and the resources they deploy
in the transportation management. On one side, 77% of MSIs think they provide a good quality
transport (yes + rather yes). This perception shows the importance given to the transportation
activity. On the other side, this attention is confirmed with the resources deployed in the
transportation management: 68% of MSIs put a great effort in the management of transport
(significant + high levels) as shown in the graph on the right.

For MSIs, the transportation activity is not just a logistics service, but it is integral part
of the life project of PWD. The main resource required by the transportation activity is the
staff necessary to the reception and departure; the realization of the transport itself, if it is
not outsourced; and the staff for transportation management, gathering needs, planning routes
and managing interactions with family caregivers on a daily basis. The last activities are often
perceived as highly time-consuming and without real added value.

MSIs were also asked about the approximate distance of users to MSIs. Table 1.1 summarizes
this distance in kilometers and minutes. Half of users live more than 30 km away from their MSIs
and make more than 1 hour of ride time. Moreover, there is high dispersion of demands reflected
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29%
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25%
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Significant level

Low level
Moderate level

High level

Figure 1.2: Transportation from the MSI perspective

in a standard deviation of 46 km and 43 minutes. Note that these values are approximately
estimated and sometimes overestimated by some administrators. This condition reinforces
the interest to consider the transport pooling among several MSIs. This strategy is barely
implemented in current practices. According to Rouquet and Vauché (2015), this type of pooling
is known as District pooling, and leads to a more collective and stronger supply chain.

Distance (km) Time (min)

Median 30 60
Mean 48 74
Standard deviation 46 43

Table 1.1: Geographical dispersion of users

Users’ perspective

Figure 1.3 shows the users view point regarding service quality on the left side and how users
perceive their current ride time on the right side. Note however, that most of the responses
come from parents as a spokesperson of PWDs. The perception of the service quality is very
good 94% ("yes" + "rather yes"). However, there is a 6% of users completely unsatisfied. This
situation is reflected in the graph of the ride side with 15% of users unsatisfied with their
current ride time ("no" + "rather no"). This result shows us that one way to improve the quality
of service is by reducing long ride times.

Users were asked to give a level of importance to different improvement directions. Figure 1.4
presents the results sorted from the most to the least important aspect. The most important
aspect for users (parents) is to stay informed about modifications such as driver or scheduling
changes (69% very important). Users give more importance to the service punctuality than to
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are you satisfied with the service quality?

Yes
Rather yes
No 51%

34%

6%
9%
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Rather yes
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Figure 1.3: Transportation from the user’s perspective

have prior information about the vehicle arrival. Time-consistency, which is having the same
service time every day, seems to be a bit more important than driver consistency which is
having the same driver every day.

Very important Important Moderate importance Low importance
Stay informed about unexpected events 69% 29% 3% 0%
Service punctuality 43% 49% 9% 0%
Time consistency 34% 40% 17% 9%
Driver consistency 31% 31% 23% 14%
Information about vehicle arrival 14% 29% 46% 11%

11% 71% 11% 6%Make suggestions

Figure 1.4: User’s preferences

Open questions

In the survey to MSIs, we also address open questions regarding difficulties and possible
actions to improve the transportation system. Regarding the main difficulties found in the
transportation activity, managers of MSI point out the elements already seen above, ride times
and transportation costs. They mention several other topics of concern:

• First, the need to take into account the specificity of this type of transport by adapting it
to the PWD’s needs. The necessity to manage behavioral problems in PWD like potential
crises during transport.

• Secondly, the subject of communication and coordination especially for the management
of unforeseen events, changes and delays. The coordination among 3 or more stakeholders
and the need of real-time information about the transportation is a real concern for
managers.
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• Finally, managers evoke the human dimension of this transport. The need of a considerable
number of staff in order to ensure the service quality and the safety. The specific driver
training with respect to the qualifications and stability.

In regard of the actions to improve transportation, we found that 16% of the MSIs had
integrated transport-related objectives into their long-term contract with the heath authorities
(in France known as CPOM). MSI leaders mention the following objectives:

• To transform the transportation into a lever of autonomy for PWDs.

• To reduce operating costs, particularly those related to vehicle maintenance.

• To reduce ride times by the transport pooling among multiple MSIs.

• To adequately treat all the transport demands in the territory.

• To transform the transportation activity into an enabler of the PWD life project rather
than a hurdle to his/her personal life project.

This field survey allowed us to define the three main objectives of the NOMAd project. It is
about controlling costs, the quality of service and the ability to communicate and coordinate
actions among multiple MSIs.

1.3.3 A multidimensional problem

The management and optimization of the transportation for PWD is a complex task. It
requires taking into account a set of variables and features related to people, vehicles and the
organizational scheme.

Beneficiaries

Beneficiaries are the PWD transported. They can be in a wheelchair or in a seat. PWD have a
certain degree of autonomy but some have to be accompanied by a third party. From a quality
of service perspective, the time dimension is very important. Users have availability constraints
that must be respected. These constraints are expressed in the form of time windows with an
earliest and latest arrival time. A maximum ride time of transport for each person is taken
into account. Furthermore, in the design of routes a consistent schedule must be taken into
consideration. Indeed, despite the variability of demand during the week, it is better to give a
single time of service in the morning (afternoon) when they are present several days during the
week.
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Vehicles

Vehicles used in the transport for PWD are specifically designed. Each vehicle can receive a
limited capacity for people in wheelchair and/or seated. Additionally, one vehicle may have
different layouts that can be configured before the departure or during the routing. These
configurations are made with retractable seats, for example, to swap a wheelchair space with
a conventional seat. Figure 1.5 shows four different layouts of a reconfigurable vehicle. This
vehicle can have spaces for seats, wheelchairs and electric wheelchairs(in black).

Figure 1.5: Example of a reconfigurable vehicle (https://www.handynamic.fr/)

Co-organization

Stakeholders are characterized for having different, even antagonistic, objectives. A transport
management based solely on a financial criterion will tend to reduce the number of vehicles
mobilized and to offer rather long routes, which is a sub-optimal policy from quality point of
view. Conversely, an organization of a transport seeking only to offer the best quality of service
will tend to increase the number of vehicles and to offer direct-route transport for each person.
Thus, it seems necessary to find a compromise solution. A multi-criteria approach is therefore
required to take into account together cost reduction, environmental impact and quality of
service criteria.

1.4 Transportation management processes

There are multiple processes involved in the management of transport for PWD. Figure 1.6
shows the Business Process Modeling (BPM) of the main transportation activities. In it, we
model the interaction among the MSI, the transporter and users in order to perform 3 main
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Chapter 1. Introduction

processes. (i) The transport mutualization to determine the opportunities of transport pooling
between MSIs;

(ii) the long-term planning processes defining the annual transportation plan of each user
and logistics need like the fleet; (iii) the short-term planning processes to manage the day-to-day
modifications of the transportation plan; and, (iv) the transport execution process covering the
daily iterations between stakeholders and the follow up of routes. The scientific results of the
following section respond to the need of decision support tool for the long-term planning. It is
bounded with a dotted square in the Figure 1.6.
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1.5 Road map and contributions

This thesis is structured in 5 chapters. The first four chapters are focused on the construction
of the long-term transportation planning while the last one is dedicated to the assessment of
transport pooling policies.

1.5.1 Construction of the long-term transportation planning

The construction of the long-term transportation planning is a complex problem that has not
been completely solved in scientific literature. A literature review about the transportation
problems in the health sector is presented in Chapter 2. The long-term planning is defined
for one academic year. In accordance with practice, we assume that this transport plan is
constructed from a pattern of identical weekly transportation plans.

Defining a weekly schedule is a complex task that needs to decomposed into several sub-
problems. First, we work in the planning of each sub-problem called the half-day transport
problem. Secondly, we focus on building the weekly schedule from the sub-problems that
compose it. Figure 1.7 illustrates the process. The rectangle M1 corresponds to one sub-problem
related to the half-day problem. The dotted rectangle specifies the perimeter of the weekly
morning or afternoon schedule. We therefore assume the problem of the morning and the
afternoon can be solved independently.

Monday Thuesday Wednesday Thursday Friday

Morning

Afternoon A1 A2 A3 A4 A5

M1 M2 M3 M4 M5

Figure 1.7: Structuring a typical week

The half-day transport problem

Defining the half-day schedule consists in solving an extension of the so called Dial-a-Ride
transportation Problem (DARP). In the DARP each transported person is characterized by
having a different pickup and delivery location, two time windows and a maximum ride time.
Vehicle capacity constraints are also integrated. The problem of on-demand transport for PWDs
is already covered in the scientific literature (Toth and Vigo, 1997; Parragh, 2011; Lehuédé
et al., 2014). However, our problem considers specific transport elements such as the typology
of transported people (wheelchairs or seated) and the typology of adapted vehicles that can be
reconfigured en-route.
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The transport optimization of the half-day problem is based on a cost objective that
incorporates vehicle depreciation, hourly costs (eg driver wages), and mileage costs. The respect
of pickup and delivery time windows and maximum ride time is expressed as timing constraints.
Figure 1.8 illustrates two morning routes for transporting PWS to MSIs. Both routes have
benefited of the transport pooling between the two MSIs. This problem is known as the fleet
size and mix dial a ride problem with reconfigurable vehicle capacity (FSM-DARP-RC) which
is a contribution of this thesis and that will be presented in Chapter 3.

Figure 1.8: Illustration of vehicle routes

To solve this problem we proposed the matheuristic LNS-RSCP. This matheuristic combines
a Large Neighbourhood Search (LNS) procedure with a Set Covering component to find high-
quality solutions at a reasonable time. This matheuristic integrates innovative components
related to the vehicle selection and the capacity check procedures able to determine if a given
reconfigurable vehicle can perform a given route with a maximum number of reconfigurations.

Weekly transport problem

Once we solved the half-day transport problem, we conduct a weekly solving. Indeed, not
PWD need to be transported every day. The simple juxtaposition of half-day transportation
schedules can give a very cost-efficient transport planning. However, in this plan, users may
have a different service time every day. This situation is uncomfortable for PWD, or even
unacceptable for some people with mental disabilities. Thus, from a global approach this weekly
schedule aims to optimize both transport costs and time-consistency throughout the week.

The problem of time-consistency has already been treated in the scientific literature for
a transportation problem close to ours but simpler called “Time-consistent Vehicle Routing
Problem”. It is characterized by a fleet of homogeneous vehicles, a common destination place,
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and no service time constraints (Feillet et al., 2014). The time-consistency for one user is defined
by the number of different time slots during the week. In this approach, one time slot can hold
several service times within 10 minutes to each other. If one user has a different time slot each
day, he has therefore 5 time-classes. A perfectly consistent transportation plan is characterized
by a single time-class for each PWD. This condition is very convenient for the user but very
expensive for MSIs. Considering a consistency objective in addition to the cost objective to
build the weekly schedule is another contribution of this thesis that is presented in Chapter 4.
This problem is denoted the time-consistent DARP.

Figure 1.9 illustrates the proposed solving approach for the time-consistent DARP. We
begin by solving the sub-problem of each half-day described in Section 1.5.1. The union of these
solutions is the starting point for the construction of the weekly transportation plan. This first
plan is economically efficient, but highly inconsistent. During this first step, we collect the routes
obtained in the different iterations to constitute a pool of routes useful for the improvement of
time-consistency. Then, using an optimization MILP solver, a time-consistent DARP is solved
using a different subset of routes from the pool at each iteration. This process is repeated
until the desired pattern is achieved. A Pareto front is constructed using an epsilon-constraint
approach. Each new solution of the front is found by relaxing the cost of the previous solution
by an epsilon quantity to gradually improve the time-consistency.
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Figure 1.9: Global approach to improve time-consistency

1.5.2 Assessment of transport pooling policies

The transport pooling between MSIs is both a research and a managerial challenge. Currently,
the transport operation is managed independently for each MSI. In contrast, the management
of multiple MSI at a time in addition to increasing the size of the problem (complexity),
presupposes among other things: to have an economic interest to be shared and to have a
common mechanism of management and communication between partners.
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1.6. Conclusion

At the strategic level, the study of Chapter 5 aims to evaluate the marginal gain of inter-
institutional transport pooling. Alternative policies with different pooling levels are proposed.
The management objective of this study is to provide the elements to open up a serious
discussion between managers of MSIs in order to go further in the development of this strategy.

At the operational level, this problem corresponds to a clustering approach for solving
large scale routing problems. One of the challenges in the clustering step is to define a relevant
measure to determine the proximity between user demands. Different metrics from the literature
will be tested in order to identify which one works better in each way of clustering.

1.6 Conclusion

The transportation management and optimization for PWD is a complex task. It requires taking
into account a set of variables and particularities related to people, vehicles and organizational
schemes. For MSIs, transportation management is a highly demanding task and very often
requires a lot of human resources to ensure the expected quality and safety. Knowing that
this transport is characterized by a strong geographical dispersion of users, there is a real
economic interest in optimizing and pooling this service. This must be done without degrading
the quality of service. To this end, we propose a comprehensive approach for developing a
transport planning that is both cost-effective and time-consistent for each PWD.

There are five chapters in this thesis corresponding to five major contributions. In this
chapter, we have presented a characterization of the transport sector for PWD, the needs in
transportation and the global approach for optimizing the long-term transportation planning.
Chapter 2 presents a literature review of the non-emergency transport of patients and PWD
in the context of healthcare transport. Chapter 3 focused the modeling and solving approach
of the half-day transport problem. Chapter 4 presents the modeling and solving approach of
the weekly transport problem. Finally, Chapter 5 addresses the question of transport pooling
between several MSIs. A comparison between different pooling policies is presented in regard to
transport costs and service quality.
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Literature review

The transport for people with disabilities is commonly studied outside of a medical
transport context. However, in practice, it is usually part of the public medical

transport or home care services. Healthcare transport is usually related to emergency
medical transport. However, a large percentage of patient transport is of non-urgent
nature (Hains et al., 2011). In this chapter, we present a demand-based classification
for healthcare transport services. A literature review about the optimization problems
in the context of non-emergency transport of patients & passengers is carried out
with a focus on the decision problems found at the strategic, tactical, operational and
real-time levels.

Keywords: healthcare, non-emergency transport, patients transport, opti-
mization, dial-a-ride problem

2.1 Healthcare transport

In France, the transport for People With Disabilities (PWD) is part of the so called «transport
sanitaire». According to French healthcare care system, it concerns “any transport of a sick
person, injured or parturient, for reasons of care or diagnosis on prescription or in case of
medical emergency, carried out by means of terrestrial, aerial or maritime transport” (ANAP,
2013). More generally, health transport includes the transport of patients, passengers with
disabilities, medical-related supplies and professionals in the case of home care services. In this
chapter, patients and passengers with special transport needs will be referred to as P&P.

Healthcare transport can be divided into emergency and non-emergency transport. The first
case is when the life of a person is in danger and the second one is, for example, the transport
of patients between hospitals, the daily transport of PWD and home care. Non-emergency cases
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manage both short term patients with temporal illness (occasional) and long term patients with
chronic illness or disability (regular). Figure 2.1 presents a global classification of healthcare
transport based on the nature of the demand. The following sections present the characteristics
of each category. The daily transport of PWD studied in this thesis is part of the non-emergency
regular transport of patients as shown in gray.

Figure 2.1: Healthcare transport classification

2.1.1 Transport of staff, supplies, and patients & passengers

Healthcare transport continuously moves staff, medical supplies, and P&P all along the supply
chain. Although the different type of flows is interrelated, each type of flow is so different that
needs to be studied independently.

Staff: the transport of professionals to the patient’s residence place for support services
is known as home care. This service is provided for patients (i.e. elderly, disabled) needing
assistance for daily living or managing health issues. There are three types of home care services:
(i) non-medical care to support everyday activities such as bathing, dressing, household, shopping,
etc.; (ii) long term nursing care to support patients with chronic illness, injury or disability.
(iii) short term care or home health care which is physician-directed care designed to help a
patient prevent or recover from an illness, injury, or hospital stay. In-home care services, a
caregiver takes care of multiple patients during the day. The sequence of patient visits can be
optimized to reduce transport costs. Moreover, home care routing should consider the patient’s
preferences and the nurse working shift. Recent developments in the optimization of home care
routing and scheduling are presented in Fikar and Hirsch (2017).
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Supplies: Hospitals manage a complex distribution network of supplies such as food for
patients, sterilization, patient’s specimens, pharmaceuticals, and medical records. On a daily
basis, vehicles, supply carts, personnel move between storage areas and points of care to
continuously supply the demand of healthcare facilities (Landry and Philippe, 2004). From
a logistics point of view, supplies need being transported with the right quality at the right
time and place. Medicine shortages and improper use of pharmaceuticals can not only lead
to financial losses but also have a significant impact on patients (Uthayakumar and Priyan,
2013). The coordination of stakeholders around inventory management is a key component for
attaining these objectives effectively (Kelle et al., 2012).

Patients & Passengers (P&P): the transport of patients in hospitals, commonly known
as intrahospital transport, include medical transfers between healthcare facilities specialized in
diagnostics or medical treatment. Patients have fixed appointments, such as x-ray, ultrasonic,
blood testing or surgery. For medical reasons some patients are not able to go on their own,
and need to be escorted by trained staff (Turan et al., 2011). Hence, the transport for going
and return needs to be scheduled for these patients. In campus-based hospitals, intrahospital
transport is provided by appropriate vehicles, generally, ambulances, which several patients
often share (Hanne et al., 2009). Some PWD living at home or in boarding schools need
specialized transport for moving to different places such as school centers or workplaces. They
usually go every day from home to Medico Social Institutions (MSI) in the morning and go
back home in the afternoon (Qu and Bard, 2013).

The following section defines the types of transport for P&P in a general context before
detailing in the non-emergency transport of P&P which is the focus of this chapter.

2.1.2 Emergency and non-emergency transport for patients & passengers

Healthcare transport of P&P differentiates from both emergency and non-emergency cases.
The first case is when the life of a person is in danger and the second one is, for example, the
transport of patients between hospitals, the daily transport of PWD or home care. Over the past
years, much attention has focused on the emergency transport of acute and critical-care patients
(Hains et al., 2011). However, a large percentage of patient transport are of a non-urgent nature
(Robinson et al., 2009; Hains et al., 2011).

Emergency transport in the healthcare context is commonly known as emergency medical
transport. Emergency transport is usually referred to the transport of patients whose conditions
are life-threatening or time-critical (Huggins and Shugg, 2015). It is mainly performed by
ambulances after emergency calls due to an accident or a malfunction of the body. Emergencies
are highly unpredictable in magnitude or location. The response time must be as short as
possible because the person’s life is in danger. There are two emergency management systems,
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the Franco-German and the Anglo-American systems. In the Franco-German system, most
patients are treated on the scene because care providers are medical doctors supported by
paramedics (Dick, 2003). In the Anglo-American system, however, very few patients are treated
on-scene as care providers are paramedics with medical oversight. The Anglo-American model,
ambulances should be located in strategic places to be able to arrive quickly to the incident
site. This model is known as “scoop and run” because the aim is to rapidly bring patients to
the hospital with less pre-hospital interventions (Al-Shaqsi, 2010). In both cases, the expected
level of service is very high and therefore very expensive. Thus, the transport cost is more of a
budget constraint than a goal by itself. A review of the recent developments in the optimization
of emergency medical services can be found in Saghafian et al. (2015); Bélanger et al. (2019).

Non-emergency transport However, a wider view of non-urgent transport concerns also
the daily transport for PWD and seniors to and from specialized centers. Reports from several
countries show that non-urgent transport is continuously growing at significant levels (ANAP,
2016b; Hains et al., 2011). Unlike emergency transport, non-emergency cases can be scheduled
at a later time depending on the needs and resources’ availability. In some contexts, demands
are known in advance. This anticipated knowledge can be used to optimize transport costs by
pooling demands and increasing vehicle utilization. This is at the cost of a longer response and
ride times. In other context, demands arrive in an on-going fashion and dispatchers should
propose quickly a schedule or reject the request if there is not available schedules with the
current status of the system.

Table 2.1 summarizes the differences between emergency and non-emergency transport
services.

Characteristics Emergency Non-demand

Transport Immediate On-availability
Demand Unknown Unknown or known in advance
Transportation cost High Medium-low

Fleet utilization Low Medium-high
Operating cost High Medium-low

Service quality High Medium-low
Response time Short Short-long

Ride times Short Medium-long

Table 2.1: Emergency vs non-emergency transport

The non-emergency transport for P&P covers a wide variety of applications from the
leisure transport for PWD to the long term transport of chronically ill patients. Non-emergency
transport can be divided into subcategories according to the frequency of demand. The following
section presents the characteristics of non-emergency occasional and regular transport.
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2.1.3 Occasional and regular transport for patients & passengers

Non-emergency services can differ depending on the frequency of demands. The transport of a
patient with temporal illness is called “occasional” while the transport for patients with long
term care is called “regular”. Occasional transport concerns non-recurrent P&P while regular
transport concerns P&P with frequent and periodic demands.

Occasional transport refers to the transport of non-recurring patients. It is usually the
case of punctual medical appointments for patients or the transport of extra-curricular activities
for PWD. On a wider scope, this transport type is known as Transport On Demand (TOD).
Demands are called “static” if they are known before the scheduling phase or “dynamic” if
demands are scheduled as they arrive (Pillac et al., 2013). Static cases allow higher cost
optimizations but usually take longer solving time. Dynamic solutions rather look for quick
and cheap feasible schedules based on the current status of the system. However, real-life TOD
systems manage both static and dynamic cases at a time.

TOD systems are characterized by having three often conflicting objectives: maximizing
the number of requests served, minimizing operating costs and minimizing user inconvenience
(Cordeau et al., 2007). In the context of patient transport, these objectives have different names.
In healthcare transport, three common objectives are the number of patients served, transport
costs and individual/collective preferences. Sometimes one objective can prevail over the others
depending on the application. Rasmussen et al. (2012) for example, in an application to the
Danish home care service for seniors and disabled citizens, consider as a primary objective the
number of served patients, the visit preferences as secondary and lastly the operating costs. For
PWD, preferences are usually expressed in terms of the desired pickup and delivery time (Jaw
et al., 1986).

Regular transport concerns recurrent demands of patients during a planning horizon. Most
of PWD are transported daily to medico-social institutions or twice a week for those in boarding
houses. Patients with a long-term illness such as dialysis, tracheotomy or ventilator care that is
treated on a regular basis at home or in the hospital. The planning horizon for regular transport
is long, the school year for PWD. With demand information well in advance, transporters
can optimize costs by pooling resources. However, regular transport often assumes additional
objectives such as staff-consistency and time-consistency.

Staff-consistency in a medical context refers to the fact that patients expect to be followed
up by the same caregiver (Allaoua, 2014). In the transport of PWD it is known as driver-
consistency (Braekers and Kovacs, 2016). PWD with autism, for example, hardly supports the
change of driver. At most, they tolerate a reduced pool of drivers acknowledged beforehand.
Time-consistency refers to having a similar service time every time. For regular patients is
highly desirable to have consistent visit schedules. For children with disabilities, families are
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not ready to accept highly inconsistent schedules during the week (Feillet et al., 2014). Some
PWD cannot tolerate irregular time schedules.

Table 2.2 summarizes the main characteristics of occasional and regular transport services.
Note, however, in practice we can find hybrid transport systems that combine aspects from both
regular and occasional transport. In the following section, we present optimization problems
from the scientific literature in the context of non-emergency transport of P&P. Transport
problems were classified according to the decision level.

Occasional transport Regular transport

Frequent Number of served patients Transportation costs
objectives Transportation costs Time-consistency

Individual/collective preferences Staff-consistency

Planning horizon Short and medium term (i.e.
hours, days) Long-term (i.e. months, year)

Operating cost Medium-high Low-medium

Examples Punctual medical appointments Patients with long-term treat-
ments

Extra-curricular activities PWD Daily transport for PWD

Table 2.2: Non-emergency transport

2.2 Optimization problems in the non-emergency transport of
patients & passengers with disabilities

Different types of problems are found in the optimization of non-urgent transport of P&P.
Some problems deal with the whole transport system while other problems only a part of it.
For example, the selection of the vehicle fleet can greatly influence the transport costs in the
long-term. However, the re-scheduling of transport routes concern a small group of patients
during a short time period. Healthcare systems differ from production systems in having
constraints and objectives related to the service quality of patients. There are four decision
problems in the transport optimization of patients: strategic problems concerning long-term
decisions usually at the scale of years; tactical problems for medium-term decisions at the scale
of months; operational problems for short-term decisions at the scale of days; and real-time
problems concerning dynamic decisions. Table 2.3 shows the main characteristics found in
applications for the literature review of non-emergency transport of P&P. The following parts
describe the research problems found at each decision level.
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2.2.1 Strategic problems

Strategic problems concern long-term decisions such as depot location, fleet size or opening
hours for MSI. Healthcare institutions locate depots next to facilities in order to reduce response
times that are critical in urgent cases. Depots are then located at the same time as health
care facilities. Facility location problems in a non-emergency context are very often solved
independently of the routing design (Ahmadi-Javid et al., 2017). However, some applications
consider simultaneously location and routing to improve the service access in applications for
developing countries (Doerner et al., 2007; ur Rahman and Smith, 2000).

The vehicle fleet for P&P is highly varied due to a large number of possibilities of combining
wheelchair, seats or stretchers. Hence, the choice of vehicles and the fleet dimensioning is a
real concern for transporters. Fu and Ishkhanov (2004) proposed a method to estimate the
fleet size and mix for a given application. A case study for the weekday paratransit service
in Canada is presented considering low-demand of 460 trips and high-demand of 682 trips
scenarios. This study confirms the intuition that the larger the vehicles, the higher the average
vehicle productivity and the smaller the required fleet size. Moreover, under high-demand
applications is more advantageous to use larger vehicles. Clearly, there exists a critical point
beyond which additional capacity would not improve the system performance.

In the paratransit context, the opening hours of MSIs impact the possibilities of transport
pooling among multiple MSIs. Defining opening hours is out of reach of transporters. However,
it is to the interest of both MSIs and transporters to propose alternative hours that can bring
new opportunities to facilitate transport pooling and reduce costs. To the best of our knowledge,
this transport problem is not yet treated in the research literature. Demand characteristics,
regular or occasional, are not explicitly addressed in the strategic issues. However, for occasional
transport, we tend to prefer flexible vehicles to fixed capacity buses to adapt to changing
demands.

2.2.2 Tactical problems

Tactical decisions consider medium-term choices about the routes design and service-oriented
considerations such as time-consistency and driver-consistency for regular P&P. In scientific
literature, the routing problem that better adapts to the characteristics of paratransit is the
Dial-A-Ride Problem (DARP). Unlike classic routing problems, DARPs include constraints and
objectives related to the services offered to passengers (Parragh et al., 2012). Tactical decisions
mostly concern multi-period transport problems (i.e multiple days for a week).

The concepts of time-consistency and driver-consistency have been presented in the previous
section. The relationship between time-consistency and transport costs is studied in a vehicle
routing problem (VRP) context which is a DARP without time constraints and with a single
delivery point (MSI). The majority of contributions on this field are developed for the transport
of goods (Groër et al., 2009; Kovacs et al., 2015a). However, Feillet et al. (2014) proposed a new
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consistency measure adapted to the transport of people. This measure is defined for each user
and is based on time slots of fixed width (i.e. 10 minutes). Thus, service times within 10 minutes
to each other will be considered in the same class. The user time-consistency is therefore equal
to the number of different time-classes. This problem is called the time-consistent VRP. To
the best of our knowledge, the time-consistency aspect has not been investigated in a DARP
context.

The impact of driver-consistency on transport costs is examined in Braekers et al. (2014) for
the transport of PWDs in Belgium. The simultaneous relationship between driver-consistency,
time-consistency, and transport costs has only been studied for the transport of goods in
Kovacs et al. (2015b). There is a research gap about the relationship between time-consistency
and transportation costs in the transport of patients. This thesis aims to fulfill this gap with
a new problem denoted the time-consistent DARP. The problem is detailed in Chapter 4.
Tactical problems are almost exclusive to regular transport systems. Occasional transport has
considerations at the operation or strategic level.

2.2.3 Operational problems

Operational problems concern the design of vehicle routes for a single time period (i.e one day).
In the occasional transport of patients, new requests are generally collected during the day, so
that the next day’s itineraries are scheduled at the end of the day. The majority of applications
in the literature concern operational routing problems considering different transport features.

Toth and Vigo (1997) solved a DARP with heterogeneous users (seat and wheelchair) for
the paratransit service in the city of Bologna. This problem was later extended to include
heterogeneous vehicles (Borndörfer et al., 1999; Parragh, 2011) and multiple depots (Braekers
et al., 2014; Detti et al., 2017). Borndörfer et al. (1999) and Braekers et al. (2014) studied
a paratransit service in Germany and Belgium respectively while Parragh (2011) a broader
transport service including the transport of patients in stretchers for the Austrian Red Crox.
The DARP with heterogeneous users and vehicles is called Heterogeneous DARP (H-DARP).

It is quite common in paratransit vehicles to have different inner configurations of seats and
wheelchair spaces to be able to adapt to the different needs of demand. Configurations may be
done at depots (Rekiek et al., 2006; Qu and Bard, 2013) or en-route (Tellez et al., 2018b).
En-route reconfigurations are only possible for easy layout modifications like (un)folding seats
without significant changeover time. Higher flexibility of vehicles favors greater utilization of the
vehicles and transportation pooling. The DARP with en-route reconfigurations is a contribution
of this thesis and will be presented in Chapter 3 (Tellez et al., 2018b).

The DARP assumes a full driver availability. However, in practice, drivers are subject to
regulatory rules. The DARP with driver-related constraints is studied in Xiang et al. (2006a);
Parragh et al. (2012); Zhang et al. (2015). Zhang et al. (2015) studied the patient transportation
service of the Hong Kong Hospital Authority providing ambulance transport services for disabled
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and elderly patients from one healthcare location to another. This problem is modeled as a
multi-trip dial-a-ride problem which requires designing several routes for each ambulance
in order to maximize driver availability. Some patients present preferences about drivers or
incompatibilities with other patients for reasons of health or behavior (Detti et al., 2017).

Some healthcare applications consider service quality not as a constraint but as an objective
in itself. Paquette et al. (2012) proposed some quality measures for evaluating the service of
dial-a-ride systems. And, for a case study in the paratransit transport of a Canadian city the
authors combine objectives related to costs, waiting time and user ride time using dynamic
weights for generating non-dominant solutions (Paquette et al., 2013). Lehuédé et al. (2014)
proposed a multi-criteria approach for combining cost and patient-oriented objectives within a
preference model based on the choquet integral. For an application in the transport of patients
in Belgium, Molenbruch et al. (2017) proposed a bi-objective modeling to evaluate the trade-off
between the operational efficiency and the service quality measured by total ride time.

The Aeromedical Airlift Wing of the United States Air Force is responsible for transporting
personnel in need of specialized medical treatment to and from military hospitals. Non-emergency
patients may be transferred before the actual consultation date for increasing vehicle utilization
and reduce transport costs. This problem is modeled as a route based pickup and delivery
problem with the objective of minimizing the number of nights at the hospital before consultation
(Ruland, 1999). Other applications consider service oriented criteria into a single weighted
objective function using suitable coefficients (Fu, 1999, 2002; Ruland, 1999; Aldaihani and
Dessouky, 2003; Detti et al., 2017).

Door-to-door transport systems may be combined with other application-related problems.
Aldaihani and Dessouky (2003) studied the integration of the transport on-demand with fixed
bus lines in the transport for disabled or elderly individuals at Lancaster, California. The
aim of the integration is to reduce the vehicle miles of the transport on-demand which is
more expensive. Dikas and Minis (2014), on the contrary, considered the case in which buses
operating in public transport routes may diverge from its nominal path to pick-up passengers
and drop them off at their destination. This service is particularly relevant for people with
limited mobility that can not easily reach bus stops. Two objectives in a lexicographic order
were considered: first the maximization of requests served; and then the total ride time in
order to select the solutions with lower ride times for the rest of passengers. Coppi et al. (2013)
modeled the healthcare timetable of non-urgent patients for a hospital in the city of Tuscany
(Italy), in such a way that the transportation costs for patients going to hospitals is minimized.

Most routing problems applications assume deterministic and time-unvarying travel times.
However, traffic congestion in an urban environment can significantly modify these times Fu
and Teply (1999). Fu (1999) studied the disabled adult transportation system in the city of
Edmonton (Canada) under dynamic and stochastic travel times. Travel times may differ at
different hours of the day (dynamic) and can be altered by external events like traffic (stochastic).
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His study showed that there are several negatives consequences from ignoring the dynamic and
stochastic variation of travel times such as a high percentage of trips that may not be served
during their desired time windows and a decline in vehicle productivity due to the dynamic
aspect(Fu, 1999).

The previous problems conceive solutions for occasional transport services. Regular transport
problems are modeled with additional patient requirements into a DARP system. Fleischmann
et al. (2009) for example consider a desired pick-up and drop-off service times beside the
DARP time windows. The objective of this problem is to minimize the transport cost as
well as deviations to the desired service time. Some patients may be absented one day for
different reasons. In those cases, transport planners should adjust vehicle routes so that the
inconvenience to the rest of passengers is minimized. To our knowledge, this problem has not
been studied in the literature. A closer problem in the transport of goods seeks to minimize
planning discrepancies with the original schedule in relation to service times. This problem is
known as the vehicle re-scheduling problem (Spliet et al., 2014).

2.2.4 Real-time problems

Real-time problems treat decisions mainly about accepting new transport requests, canceling
or reprogramming existing ones. Very often, new transport requests arrive with the desired
service for the same day time, while vehicles are already in service with operational schedules.
The dispatcher usually has to give an immediate answer providing a pickup and drop-off times
if the transport is feasible. Routing problems with on-line decisions are usually known as
dynamic problems. In these problems, real-time technological support is needed to inform
vehicles en-route about schedule modifications (Pillac et al., 2013).

Most of the paratransit applications combine a dynamic version of the DARP (Dyn-DARP)
dealing with on-line requests with classic planning dealing with off-line requests from the day
before (Madsen et al., 1995; Fu, 1999; Xiang et al., 2006b; Schilde et al., 2011). However, patient
transfers between hospitals are mainly dynamic as on-line requests account for around 90% of
cases (Hanne et al., 2009; Beaudry et al., 2010). Dyn-DARPs are based on fast heuristics to
quickly find a suitable schedule of the incoming request. Mo et al. (2018) studied the option of
providing a 20% discount for passengers who accept a 15-min earlier pick-up time or a later
drop-off time. An application in Hong Kong paratransit service shows that this policy increases
around 15% the number of people served.

Unlike operational problems, Dyn-DARPs include, in almost any application, objectives
combining cost and quality criteria. Indeed, dispatchers look for affordable solutions satisfying
patient’s preferences. Madsen et al. (1995) proposed an insertion heuristic that permits a flexible
way of weighting different goals for the paratransit service in the city of Copenhagen. Depending
on the given weights, the solution reflects the user’s preferences. In a German hospital, Hanne
et al. (2009) considered a weighted objective function measuring criteria in a single time scale:
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patient inconvenience measured as the deviations to the latest desired time (total lateness);
fleet operating cost (total earliness); fleet utilization (driving time); and patient satisfaction
(total ride time of patients).

Scheduling in paratransit services might be influenced by traveling time fluctuation or
external events such as traffic congestion. This problem, known as the dynamic dial-a-ride
problem under time-dependent and stochastic events, is studied in Fu and Teply (1999) for
the paratransit service in the city of Edmonton (Canada). Then, it was extended to include
other stochastic events, such as new requests, absences, vehicle breakdowns, and cancellations
(Schilde et al., 2011). Results showed that dynamic problems under stochastic events provide
more reliable and realistic transport schedules to customers.

Transport requests can sometimes be anticipated with the help of historic data. A patient
regularly transported from home to a hospital for dialysis, consumes a predictable amount
of time before going back home. An application of the daily operations in the Austrian Red
Cross studied the impact of adding prior information about inbound requests. With a certain
probability, each outbound request causes a corresponding inbound request on the same day. The
result is a Dynamic and Stochastic DARP (Dyn-S-DARP) showing that models with stochastic
information can outperform myopic dynamic models under certain circumstances (Schilde et al.,
2011). Real-time problems are mainly occasional. Similarly, to operational problems, regular
applications would imply on-line planning modifications that minimize deviations to the original
schedule.
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Strategic
Depot location Doerner et al. (2007) Facility location problems X X x x X X
Fleet dimensioning Fu and Ishkhanov (2004) Fleet size and mix DARP X X X X X X X X X X
Tactical

Braekers and Kovacs (2016) DARP driver consistent X X X X X X X X X
Consistency Feillet et al. (2014) VRP time consistent X X X X X

Chapter 4 DARP time-consistent X X X X X X X X X
Operational
Vehicle routing Aldaihani and Dessouky (2003) PDP with bus lines X X X X X X X

Borndörfer et al. (1999) H-DARP X X X - X X X X X
Braekers et al. (2014) H-DARP X X X X X X X X
Coppi et al. (2013) H-DARP with scheduling X X X X X X X X
Detti et al. (2017) H-DARP with compatibility c. X X X X X X X X X
Dikas and Minis (2014) Flexible bus lines X X X X X X X
Fleischmann et al. (2009) DARP patient preferences X X X X X X X X
Fu (1999) H-DARP time-dependent-S X X X X X X X X X X
Fu (2002) DARP time-dependent-S X X X X X X X X
Lehuédé et al. (2014) DARP Multi-criteria X X X X X X X
Molenbruch et al. (2017) DARP Bi-objective X X X X X X X
Paquette et al. (2013) H-DARP Multi-criteria X X X X X X X X X
Parragh (2011) H-DARP X X X X X X X X
Parragh et al. (2012) H-DARP with driver c. X X X X X X X X
Qu and Bard (2015, 2013) H-DARP-C X X X X X X X X X
Rekiek et al. (2006) H-DARP-C X X X X X X X X X
Ruland (1999) PDP patient preferences x X X X X X X X
Toth and Vigo (1997); DARP with user types X X X X X X X
Xiang et al. (2006a) DARP with driver c. x X X X X X X
Zhang et al. (2015) VRP multi-trips X X X X X X X
Chapter 3 (Tellez et al., 2018b) FSM-DARP-RC X X X X X X X X X X X

Real time
Online vehicle routing Beaudry et al. (2010) Dyn-DARP X X X - X X X X X X

Fu and Teply (1999) Dyn-DARP time-dependent-S X X X X X X X X X X X
Hanne et al. (2009) Dyn-DARP X X X - X X X X X X
Madsen et al. (1995) Dyn-DARP X X X X X X X X X
Mo et al. (2018) DARP with discounts X X X X X X
Schilde et al. (2011) Dyn-S-DARP X X X X X X X X X
Xiang et al. (2008) Dyn-DARP time-dependent-S X X X X X X X X X

Table 2.3: Scientific contributions in the domain of non-emergency transport of patients & passengers.
DARP: Dial-a-Ride Problem, PDP: Pickup-And-Delivery Problem, VRP: Vehicle Routing Problem, H-DARP: Heterogeneous DARP,
Dyn-DARP: Dynamic DARP, Dyn-S-DARP: Dynamic and Stochastic DARP, c: constraints, FSM: Fleet size and mix.
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2.3. Conclusions

2.3 Conclusions

In healthcare transport, there are different operating modes according to the nature of the
demand. The two main transport types are emergency and non-emergency transport. A lot of
attention has been focused on the evolution of emergency medical systems. However, a large
percentage of patient transport is non-urgent. Non-emergency transport concerns a wide range
of applications in-home care, transport for PWD and intra-hospital transport.

Depending on the frequency of demands of recurrent P&P, non-emergency transport can
be occasional or regular. Both transport types differ to each other in their objectives and
characteristics. This thesis examines long-term transport planning for people with disabilities
that, according to this classification, falls into the category of non-emergency regular transport.

Contributions in the non-emergency transport of patients can impact the system’s perfor-
mance at a strategic, tactical, operational or real-time level. There are numerous contributions
in this area, especially at the operational and real-time levels.

Reviewed applications at the strategic level are very few and do not distinguish regular and
occasional P&P. Regular transport problems are mostly studied at the tactic level. However,
the needs of time-consistency in a DARP context, which is a characteristic of regular transport
systems, has not been studied in the literature. The definition and solution of this problem is a
contribution of this thesis that will be studied in Chapter 4.

At the operational level, en-route reconfiguration of vehicles is a novelty contribution of
this thesis which will be presented in Chapter 3.

Finally, we point out that although the decisions about the opening hours of MSIs are out
of reach of transporters. It is to the interest of both MSIs and transporters to negotiate these
hours that can lead to a possible transport pooling among MSIs. Transport pooling is not a
common practice in the medico-social sector. However, there is an economic intensive to share
resources. The impact of transport pooling in the daily transport of PWD will be studied in
Chapter 5.

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



C
h

a
p

t
e

r 3
Half-day transport problem:

The fleet size and mix dial-a-ride problem with reconfigurable
vehicle capacity

This chapter introduces a fleet size and mix dial-a-ride problem with multiple
passenger types and a heterogeneous fleet of reconfigurable vehicles. In this

new variant of the dial-a-ride problem, en-route modifications of the vehicle’s inner
configuration are allowed. The main consequence is that the vehicle capacity is defined
by a set of configurations and the choice of vehicle configuration is associated with
binary decision variables. The problem is modeled as a mixed-integer program derived
from the model of the heterogeneous dial-a-ride problem. Vehicle reconfiguration is
a lever to efficiently reduce transportation costs, but the number of passengers and
vehicle fleet setting make this problem intractable for exact solution methods. A large
neighborhood search metaheuristic combined with a set covering component with
a reactive mechanism to automatically adjust its parameters is therefore proposed.
The resulting framework is evaluated against benchmarks from the literature, used
for similar routing problems. It is also applied to a real case, in the context of the
transportation of disabled children from their home to medical centers in the city of
Lyon, France.

Keywords: Dial-A-Ride Problem, Fleet Size and Mix Problem, reconfigurable
vehicles, heterogeneous fleet, large neighborhood search, set-covering, feasibility

check.
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Chapter 3. Half-day transport problem

Emerging Technologies 91, 99 – 123

3.1 Introduction

Solving the Dial-A-Ride Problem (DARP) consists in designing vehicle routes in order to
fulfill transportation requests scattered throughout a geographic area. The objective is to
minimize costs while satisfying transportation requests. The DARP is a special case of the
Pickup and Delivery Problem (PDP) in which constraints and objectives related to the quality
of services offered to passengers are integrated (the reader may refer to Parragh et al. (2008)
for a recent survey on PDP). The main applications concern door-to-door transportation of
people, particularly elderly or disabled people.

In this chapter, we propose a generalization of the heterogeneous PDP with configurable
vehicle capacity introduced by Qu and Bard (2013). This problem includes both heterogeneous
fleets of vehicles and heterogeneous users. We consider several types of users who do not occupy
the same space in the vehicle (e.g. passengers using seats or wheelchairs). The vehicle capacity
depends on the chosen configuration. A configuration is characterized by a multidimensional
capacity vector indicating the maximum number of users of each type allowed in the vehicle.
Figure 3.1 presents three configurations of a vehicle with two types of users (passengers using
seats or wheelchairs). The configuration has a capacity of 1 wheelchair and 7 seats, including
5 folding seats (the driver’s seat is not available for passengers). In the second configuration,
one folding seat has been lifted and replaced by a wheelchair space. This configuration has
a capacity of 2 wheelchairs and 6 seats. Adding one more wheelchair requires two additional
seats to be folded. This is represented by the third configuration, which has a capacity of 3
wheelchairs and 4 seats.

Vehicle reconfiguration is as simple as folding or unfolding a foldable seat. This operation is
performed manually by the driver, when the vehicle is parked. It takes only a few seconds, while
service times take several minutes (including the time necessary to park the vehicle, install the
car ramp, help passengers get in/off the vehicle, etc.). Although reconfigurable vehicles lead
to higher vehicle investments, neither extra time nor cost is associated with the operation of
en-route reconfiguration.

Note that there is no linear correspondence between the number of seats and wheelchairs.
Moreover, the total number of passengers can be either 7 or 8, depending on the chosen
configuration.

Qu and Bard (2013) integrate the choice of the initial vehicle configurations as a decision
variable in a PDP dedicated to the transport of people with reduced mobility. In such services,
it is actually possible to switch en-route from one configuration to another to serve additional
transportation requests. As a result, we propose a generalization to the problem presented by
Qu and Bard (2013), by assuming the possibility of en-route reconfiguration. This extension
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=8 =8 =7

Figure 3.1: Vehicle with three configurations (http://handynamic.fr)

is called the DARP with Re-Configurable vehicle capacity (DARP-RC). The present study
considers an arbitrarily large fleet of heterogeneous vehicles that has to be set: the problem
addressed here falls within the category of fleet size and mix problems. We therefore call it the
Fleet Size and Mix DARP with reconfigurable vehicle capacity (FSM-DARP-RC).

This work is motivated by the daily transport of people with disabilities in the city of Lyon
operated by the GIHP Company1. Every day, GIHP transports around 500 children from and
to Medico-Social Institutions (MSI). GIHP works for 60 MSIs with about 180 adapted vehicles.
From Mondays to Fridays, users are picked up at home in the morning and driven to their MSI.
In the afternoon, they are transported back home. For MSIs, transportation is often considered
the second-biggest expense after wages. Optimizing transport is therefore a priority. In this
chapter, without loss of generality, we present the case of morning trips. Every year, the company
defines the fleet mix as well as the vehicles’ itineraries. In addition, routing planners re-assess
decisions daily, if required. All decisions are currently made without vehicle routing software.
In order to design routes, route planners have to use simplifying assumptions, e.g. considering
each MSI separately and ignoring the possibility of en-route vehicle reconfiguration. These
assumptions lead to an over-constrained problem and consequently, to sub-optimal solutions.
One aim of this chapter is to solve the problem of having to stop at several MSIs on the same
route. Using reconfigurable vehicles furthermore increases the possibility to pool routes between
MSIs. Another aim of this chapter is to assess the impact of en-route reconfiguration.

The chapter is organized as follows: Section 3.2 reviews related problems. Section 3.3 presents
the problem settings and the mathematical formulation for the FSM-DARP-RC. Section 3.4

1www.gihp-sa.com
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Chapter 3. Half-day transport problem

is dedicated to the solution method. In particular, we detail the Large Neighborhood Search
(LNS) operators and the set covering component. The capacity check and the minimization of
the number of reconfigurations are detailed in Section 3.5. We report extensive computational
results and management insights in Section 3.6. Finally, Section 3.7 gives the conclusions and
prospects.

3.2 Literature review

In this section, we first review some related work on DARP. We then present papers regarding
the design and the routing of a fleet of heterogeneous vehicles with a special focus on DARP
applications. Finally, we discuss how configuration and reconfiguration have been considered in
the Vehicle Routing Problem (VRP) literature.

3.2.1 The dial-a-ride problem

The DARP is related to the optimization of a multi-occupancy, door-to-door transport service
for people (Doerner and Salazar-Gonzàlez, 2014). Most commonly, this problem consists in
designing the routes of a homogeneous fleet of vehicles to satisfy a set of transportation requests.
The objective is to minimize the sum of route costs, satisfying constraints on vehicle capacity,
time windows at origins and destinations of requests, and limits on the ride time of each
passenger. Due to the combinatorial nature of the problem, exact methods (see for instance
Ropke et al. (2007); Ropke and Cordeau (2009); Braekers et al. (2014)) are still limited in their
ability to solve large size instances. Accordingly, several metaheuristics have been proposed
to solve the DARP and its variants. In particular, Cordeau and Laporte (2003) developed a
Tabu Search algorithm and proposed a set of instances that are still used to benchmark new
algorithms. The most successful heuristics that have been applied to these instances in the last
ten years are the Variable Neighborhood Search (VNS) of Parragh et al. (2010), the Hybrid
LNS (HLNS) of Parragh and Schmid (2013), the Adaptive LNS (ALNS) of Masson et al. (2014),
the deterministic annealing algorithm of Braekers et al. (2014), the evolutionary local search of
Chassaing et al. (2016) and the ALNS of Gschwind and Drexl (2016).

One of the most challenging parts of DARP heuristics is the scheduling algorithm. It
determines the feasibility of routes with respect to temporal constraints and, in some case, parts
of the objective function such as the routes’ duration. Several efficient algorithms have thus
been designed to satisfy the most common DARP constraints with the best possible complexity
(see e.g. Hunsaker and Savelsbergh (2002); Tang et al. (2010); Firat and Woeginger (2011);
Gschwind, Timo (2015)). The latest contribution in this area is Gschwind and Drexl (2016),
which proposes an incremental algorithm to evaluate, in constant time, the feasibility of request
insertions in routes. The minimization of route duration is considered in Cordeau and Laporte

34

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



3.2. Literature review

(2003). This algorithm has been used and extended in many papers such as Parragh et al. (2010)
and Braekers et al. (2014).

3.2.2 Routing a heterogeneous fleet of vehicles

In the FSM-DARP-RC, a heterogeneous fleet of vehicles has to be constituted to transport
several types of users. In the VRP context, the routing of a heterogeneous fleet of vehicles was
recently surveyed in Koç et al. (2016). Problems of this class fall into two main variants: (i) the
Fleet Size and Mix VRP (FSM-VRP) introduced by Golden et al. (1984), which considers an
unlimited fleet of various vehicle types and costs for using vehicles. Solving the problem amounts
to determining the fleet of vehicles and designing routes simultaneously; (ii) the Heterogeneous
VRP (HVRP) introduced by Taillard (1999), which considers a given fleet of various types
of vehicles. In such problems, vehicle types can induce differences both in constraints (e.g.
capacity) or objectives (e.g. distance related or fixed related costs).

Regarding people transportation problems, the combined transportation of seated and
wheelchair passengers by a heterogeneous fleet of vehicles has been studied in Toth and Vigo
(1997). This problem falls into the class of Heterogeneous Dial-A-Ride-Problems (HDARP)
introduced later by Parragh (2011). In the latter chapter, the authors propose a branch-and-cut
algorithm which optimally solves instances with up to 40 requests and a hybrid method which
combines branch-and-price and VNS. The HDARP was also thoroughly investigated in Braekers
et al. (2014). The authors propose a branch-and-cut algorithm and a deterministic annealing
metaheuristic to solve a multi-depot version of this problem. To our knowledge, variants of the
FSM-DARP have not yet been covered by the literature.

3.2.3 Configurable vehicle capacity

Finally, the FSM-DARP-RC extends the notion of vehicle configuration, which implies having
multiple capacity options for some vehicles. To our knowledge, this notion was first introduced
by Qu and Bard (2013) who define the heterogeneous PDP with configurable vehicle capacity.
The problem could actually be called a DARP since it integrates considerations related to
passenger transportation such as ride time minimization. These authors consider a limited and
heterogeneous fleet of configurable vehicles that serve transportation requests coming from a
heterogeneous set of passengers. In addition to routing decisions, one configuration must be
chosen for each vehicle. Hence, this problem differs from the FSM-DARP-RC since a vehicle is
assumed to keep the same configurations for its entire route. The authors propose a multi-start
ALNS. The assignment of configurations for a given set of routes is done in a feasibility check
either by a heuristic or by solving a general assignment problem when the heuristic fails. A
branch-and-price algorithm for this problem was also proposed in Qu and Bard (2015) for
instances with up to 30 requests.

35

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



Chapter 3. Half-day transport problem

Choosing a vehicle configuration can be compared to determining compartment sizes in the
flexible multi-compartment VRP described in Derigs et al. (2011). In this chapter, compartment
sizes are determined together with a set of routes for vehicles with flexible compartments. The
goal is to deliver various types of goods, given that some goods cannot be transported in the
same compartment. Compartments can be continuously flexible as presented in Koch et al.
(2016); Derigs et al. (2011), or discretely flexible if compartment options are defined beforehand
as in Henke et al. (2015). The difference with our problem is twofold: first, in the FSM-DARP-
RC, the total capacity changes from one configuration to another, in a non-linear way, whereas
in multi-compartment problems, the sum of compartment sizes is assumed to remain constant.
Second, we consider a PDP. Hence, a vehicle’s load can increase and decrease along its route
and en-route reconfiguration may be advantageous. In a VRP, a single configuration is needed
since all goods are delivered at once. To our knowledge, the PDP with flexible compartment
sizes has not been studied.

3.2.4 Contributions with respect to the literature

Regarding the literature, the main contributions of this chapter are the following. First, we
introduce the FSM-DARP-RC and propose a mathematical model for this problem. Second, we
propose a matheuristic framework that combines a LNS with a reactive set covering component
to solve this problem. This matheuristic is proven to be competitive on benchmark instances for
the DARP and the heterogeneous PDP with configurable vehicle capacity. This matheuristic
integrates innovative components related to the use of reconfigurable vehicles: (i) the vehicle
selection procedure, which efficiently determines the minimum cost of a reconfigurable vehicle that
is feasible for a given route, and (ii) the reconfigurable vehicle capacity test, which determines if
a given vehicle can perform a given route together with its minimum number of reconfigurations.
We also show that, when it is combined with a set covering component in a matheuristic, the
ALNS framework introduced in Pisinger and Ropke (2007) can be simplified. Finally, we present
some managerial insights based on our experiments on the real instances provided by the GIHP.
These instances will be made available to the community.

3.3 Problem settings and mathematical model

In this section, we start by providing an example of en-route reconfiguration. Then in Sec-
tion 3.3.2 the FSM-DARP-RC problem is formally described, and is modeled in Section 3.3.3.

3.3.1 Example

The example represented in Figure 3.2 illustrates the potential benefits of vehicle reconfiguration.
We consider a single vehicle which starts and terminates its routes at depot D. This vehicle
has two possible configurations, denoted as c1 and c2 respectively. Configuration c1 consists of
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p1 Depot(D)

Vehicle configurations

p2

p3 p4

p5

p6

without en-route 

reconfiguration
en-route reconfiguration

Configuration policies
MSI1 MSI2

Figure 3.2: Comparison of routes with and without vehicle capacity reconfiguration

2 seats and 1 wheelchair space. Configuration c2 consists of 4 seats only. In this example, six
users are transported to two MSIs. Users 1 and 3 are picked up at p1 and p3 respectively, and
get off at MSI1. Users 2, 4, 5 and 6 are picked up at p2, p4, p5 and p6 respectively, and get off
at MSI2. User 3 uses a wheelchair.

Without an en-route reconfiguration policy, the only solution is to leave the depot D with
configuration c1, which is the only one that includes a wheelchair space. The optimal solution
for this policy is represented with dashed lines in Figure 3.2.

However, with en-route reconfiguration policy, the vehicle can be configured with config-
uration c2 at the depot D and reconfigured with configuration c1 after visiting MSI1. This
solution is represented with solid lines in Figure 3.2. This strategy reduces the length of the
route by the value of the detour ∆p4,MSI2 + ∆MSI2,p5 −∆p4,p5 , where ∆i,j represents the value
of the shortest path from i to j.

3.3.2 Problem settings

The FSM-DARP-RC is modeled on a graph G = (V,A). The set V of nodes contains the set
O+ of starting depots, the set O− of arrival depots, the set P of pickup locations and the set
D of delivery locations. We consider a large (potentially infinite) heterogeneous fleet of vehicles.
We denote by K the set of vehicle types. Without loss of generality, we consider in this section
that there is a single vehicle of each type, so that K also represents the set of vehicles. Each
vehicle k ∈ K has a starting depot o+

k ∈ O+ and an ending depot o−k ∈ O−. In practice, o+
k

and o−k often correspond to the same physical location. The set A contains three categories of
arcs: Arcs (o+

k , i) where k ∈ K, i ∈ P. Arcs (i, j) where i, j ∈ P ∪ D, i 6= j. Arcs (i, o−k ) where
k ∈ K, i ∈ D. Every arc (i, j) represents the fastest path from nodes i to j. It is associated with
a travel time tij and a distance ∆ij .

The set of transport requests is denoted by R. These requests concern passengers who may
require various types of spaces in vehicles (e.g. seat, wheelchair). By extension, the type of
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space required by a passenger in a vehicle is called a user type and the set of user types is
denoted by U . Each request r ∈ R is characterized by a pickup node pr ∈ P, a delivery node
dr ∈ D, a maximum ride time Tr and a quantity qr,u of users of each type to be transported
from pr to dr. Note that even though each request is modeled by pair of pickup and delivery
vertices, in practice, different nodes can refer to the same geographical location. We define the
following notations to represent the load variation at the pickup node and the delivery node
of each request respectively: φpr,u = qr,u and φdr,u = −qr,u. This modeling implies that one
request can include many users at a time if they share the same transport requirements (pickup
and delivery locations, time windows and maximum ride time). For instance, if a passenger
with a wheelchair and another passenger traveling on a regular seat have the same transport
requirements,they can be considered in the same request r with load qr,0 = 1 and qr,1 = 1 thus
sharing the same vehicle.

Each node i ∈ V is associated with a service duration si and a time window [ai, bi]. At
depots o ∈ O+ ∪ O−, we assume that load variations are null for all user types, vehicles
are empty and the service time so is null. Each vehicle k ∈ K is associated with a fixed
cost fk, a cost per kilometer γk and a set Ck = {1, . . . , c̄k} of possible configuration indexes.
The set of configurations is defined by a set of capacity vectors Qk = {Qk1, . . . ,Qkc̄k} with
Qkc = (Qkc1 , . . . , Q

kc
|U|), where Q

kc
u represents the maximal number of users of type u ∈ U that

can be carried by vehicle k ∈ K in configuration c ∈ Ck.

Example 1. Let us consider the vehicle k ∈ K represented in Figure 3.1. We have Ck = {1, 2, 3}
and Qk = {Qk1,Qk2,Qk3} = {(4, 3), (6, 2), (7, 1)}.

The sequence of nodes visited by a vehicle forms a route. A route is characterized by a
vehicle k ∈ K (and its associated depots o+

k ∈ O+ and o−k ∈ O−) and a sequence of pickup and
delivery nodes. The maximal allowed route duration is denoted by T . The GIHP’s experience
shows that reconfigurable vehicles allow fast and easy reconfigurations. So, in this work, for
a given vehicle k ∈ K, switching from a configuration c ∈ Ck to another configuration c′ ∈ Ck

can be done at no cost and within negligible time. However, to limit the inconvenience for
the driver, related to this task, we introduce the parameter R, which denotes the maximum
number of reconfigurations allowed within a route. For each driving hour, there is a cost α
related to the driver wages.

The FSM-DARP-RC consists in selecting a set of vehicles, designing their pickup and
delivery routes, determining the time of service at each node and selecting the configuration
used on each arc of the solution. The problem solutions must satisfy the vehicle capacity for
all selected configurations, the maximum number of reconfigurations for each route, the time
window constraint for each node and the maximum ride time constraint of each request.

As a generalization of the vehicle routing problem, the FSM-DARP-RC is NP-hard.
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3.3.3 Mathematical model

Let us introduce the following variables:
xkcij is a binary variable which is equal to 1 if vehicle k ∈ K uses arc (i, j) ∈ A

with configuration c ∈ Ck, and 0 otherwise,
zki is a binary variable which is equal to 1 if vehicle k ∈ K is reconfigured at

node i ∈ P ∪ D, and 0 otherwise.
lki,u is an integer variable representing the number of users of type u ∈ U in

vehicle k ∈ K after visiting node i ∈ V,
wki is a continuous variable representing the time of service of vehicle k ∈ K

at node i ∈ V.
The FSM-DARP-RC can then be formulated with the following mixed integer program:

min
∑
k∈K

fk
∑
i∈P

∑
c∈Ck

xkc
o+

k
i
+ α

∑
k∈K

(wk
o−

k

− wk
o+

k

) +
∑
k∈K

∑
c∈Ck

∑
(i,j)∈A

γk ∆ij x
kc
ij (3.1)

s.t. ∑
c∈Ck

∑
(pr,j)∈A

xkcprj −
∑
c∈Ck

∑
(j,dr)∈A

xkcjdr
= 0 ∀r ∈ R, k ∈ K (3.2)

∑
c∈Ck

∑
k∈K

∑
(j,pr)∈A

xkcjpr
= 1 ∀r ∈ R (3.3)

∑
c∈Ck

∑
(j,i)∈A

xkcji −
∑
c∈Ck

∑
(i,j)∈A

xkcij = 0 ∀i ∈ P ∪ D, k ∈ K (3.4)

∑
c∈Ck

∑
i∈P

xkc
o+

k
i
−
∑
c∈Ck

∑
i∈D

xkc
io−

k

= 0 ∀k ∈ K (3.5)

wkj ≥ wki + tij + si −Mij(1−
∑
c∈Ck

xkcij ) ∀(i, j) ∈ A, k ∈ K (3.6)

ai ≤ wki ≤ bi ∀i ∈ V, k ∈ K (3.7)

wkpr
+ spr + tprdr ≤ wkdr

∀r ∈ R, k ∈ K (3.8)

lkj,u ≥ lki,u + φju − Q̄ku(1−
∑
c∈Ck

xkcij ) ∀(i, j) ∈ A, u ∈ U , k ∈ K (3.9)

lki,u ≤
∑
c∈Ck

∑
(i,j)∈A

Qkcu x
kc
ij ∀i ∈ P, u ∈ U , k ∈ K (3.10)

∑
c′∈Ck/{c}

∑
(j,i)∈A

xkc
′

ji +
∑

(i,j)∈A
xkcij ≤ 1 + zki ∀i ∈ P ∪ D, k ∈ K, c ∈ Ck (3.11)

∑
i∈P∪D

zki ≤ R ∀k ∈ K (3.12)

wkdr
− wkpr

− spr ≤ T r ∀r ∈ R, k ∈ K (3.13)

wk
o−

k

− wk
o+

k

≤ T ∀k ∈ K (3.14)

xkcij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (3.15)
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lki,u ∈ Z+ ∀i ∈ V, u ∈ U , k ∈ K (3.16)

wki ∈ R+ ∀i ∈ V, k ∈ K (3.17)

zki ∈ {0, 1} ∀i ∈ P ∪ D, k ∈ K. (3.18)

The objective function (3.1) to be minimized is the total transportation cost, including fixed
costs associated with each selected vehicle, time-related costs proportional to the total route
duration (which may include some waiting time), and distance-related costs proportional to the
total distance traveled. Constraints (3.2) and (3.3) ensure that every transportation requests is
satisfied and carried out by a single vehicle. Constraints (3.4) are flow conservation constraints
at pickup and delivery nodes. Constraints (3.5) state that any vehicle k ∈ K leaving the node
o+
k must end-up at the node o−k .

Constraints (3.6) set arrival time variables. If arc (i, j) ∈ A is used by a vehicle k, then the
arrival time at node j is greater than the arrival time at node i plus the service duration in i
and the transportation time from i to j. The big-M can be estimated as Mij = bi + si + tij .
Constraints (3.7) set time windows for variables wki . Constraints (3.8) assure that for each
request r ∈ R in each route the pickup node is visited before its corresponding delivery node.

Constraints (3.9) propagate the load along the route in each type of user each time the arc
(i, j) ∈ A is crossed by a vehicle k. The constraint linearization requires to define a big-M value
denoted as Q̄ku = maxc∈Ck{Qkcu }, the maximum capacity of type u ∈ U among all configurations.
Constraints (3.10) correspond to the vehicle capacity for each type of user. Note that, as the
quantity of users cannot increase during deliveries, those constraints can be defined for pickup
nodes only.

Constraints (3.11) and (3.12) concern the reconfiguration of vehicles. In constraints (3.11),
the variable zki is set at value 1 when the vehicle k ∈ K is reconfigured at node i. Constraints
(3.12) limit the number of reconfigurations to be less than R for each vehicle. Constraints (3.13)
limit the total ride time (including waiting and service times) of request r ∈ R to be less than
T r. Constraints (3.14) states that the duration of each route should be less than T . Finally, the
last constraints define the decision variables.

3.4 Solution method

In this section, we describe the solution method that we propose to solve the FSM-DARP-RC.
It relies on a combination of two components: a Large Neighborhood Search (LNS) and the
solution of a Set Covering Problem (SCP) using a layer with a Reactive adjustment of SCP
parameters (denoted RSCP). The framework is denoted LNS-RSCP. This section is structured
as follows: Section 3.4.1 presents the general framework of LNS-RSCP. LNS removal and repair
operators are detailed in Section 3.4.2 and the RSCP is presented in Section 3.4.3.
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3.4.1 Matheuristic framework (LNS-RSCP)

LNS was first proposed by Shaw (1998) in a constraint programming context and introduced
under the name ruin and recreate in Schrimpf et al. (2000). In LNS, the current solution is
improved by following an iterative process of destroying it (i.e. removing a part of it) and
repairing it. This process is repeated until a stopping criterion is reached. In our case, the
stopping criterion is either a maximum number of iterations or a maximum computational time.

The potential of LNS for solving a large variety of vehicle routing problems was revealed by
Ropke and Pisinger who proposed an Adaptive version of LNS, known as ALNS, consisting
of multiple search operators adaptively selected according to their past performance (see e.g.
Ropke and Pisinger (2006) and Pisinger and Ropke (2007)). LNS was successfully applied to
many variants of vehicle routing problems. In particular, it remains one of the best-known
approaches to solve PDPs.

The RSCP component acts as a long-term memory. Given that routes that appear together
in optimal or near-optimal solutions can be generated at distinct LNS iterations, it aims at
reassembling these routes. Let us consider two routes ω and ω′, with respective costs Π(ω) and
Π(ω′). Route ω is said to dominate ω′ if both routes visit the same nodes and Π(ω) ≤ Π(ω′).
All non-dominated routes collected through LNS iterations are stored in a set Ω = {1, . . . , |Ω|}
called the pool of routes. The RSCP component is based on a route-based formulation of the
FSM-DARP-RC built from this pool. An SCP is solved with an MILP solver at regular intervals.
The number of iterations between each SCP solution is adjusted in a reactive way, as described
below. The solver is given a time limit to solve this problem.

The LNS-RSCP framework is described in Algorithm 1.
The algorithm requires a set of repair and removal operators denoted as Σ+,Σ− respec-

tively.The initial solution is created using a repair operator, denoted as σ+
init ∈ Σ+, from a

totally destroyed solution. At every iteration, the proportion of requests to be removed, called Φ,
is randomly determined according to a continuous uniform distribution on the interval between
parameters Φ− and Φ+, where 0 < Φ− < Φ+ < 1 (line 7). A removal operator σ− ∈ Σ− and a
repair operator σ+ ∈ Σ+ are selected according to a discrete uniform distribution in line 8. The
operator σ− removes max{1, bΦ · |R|c} requests from the current solution s (line 9).

These requests are placed in a set of unsatisfied requests called Request Bank (B). From the
request bank B, they are reinserted into the partially destroyed solution using the repair operator
σ+ (line 10). If the solution cannot be completely repaired, its total cost is increased by the value
penalty for each unsatisfied request. Once the solution s′ is repaired, it can be either accepted or
rejected as the next current solution using an acceptance criterion (line 11). We use the record-
to-record acceptance criterion proposed by Dueck (1993): if objective(s′) ≤ (1+χ).objective(s∗),
then s′ is accepted as the new current solution where χ is a small positive value. We refer
to Santini et al. (2016) for an extensive comparison of the acceptance criteria that support
this choice. Similarly, the best solution s∗ is updated every time a new temporary solution s′
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Algorithm 1: The LNS-RSCP framework
Input: Σ−: set of destroy operators, Σ+: set of repair operators,
η: initial number of iterations between two solutions of a SCP,
tlimit: initial time limit for SCP.
Output: Best solution found s∗.

1 Build initial solution s using repair operator σ+
init ∈ Σ+

2 Pool of routes: Ω← ∅
3 Request bank: B ← ∅
4 iter ← 0
5 while Termination criterion not met do

/* LNS component */
6 s′ ← s
7 Destroy quantity: Randomly select a proportion Φ ∼ Uniform(Φ−,Φ+) of

requests to remove
8 Operator selection: Randomly select a destroy operator σ− ∈ Σ− and a repair

operator σ+ ∈ Σ+

9 Destroy: Apply σ− to remove max{1, bΦ · |R|c} requests from s′ and place them
into the request bank B

10 Repair: Apply σ+ to reinsert requests from B into s′
11 if Acceptance criterion is met then
12 s← s′

13 if Cost of s′ is better than the cost of s? then
14 s∗ ← s′

/* RSCP component */
15 Update Ω with the non-dominated routes of s′
16 if iter modulo η = 0 (every η iterations) then
17 s← Solve SCP(Ω, s∗, tlimit)
18 if the SCP is not solved to proven optimality then
19 Reinitialize Ω with the routes of s∗
20 Every two consecutive failures to optimally solve the SCP: update parameter

η

21 Remove duplicate requests in s
22 s∗ ← s

23 iter ← iter + 1
24 return s∗
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cheaper than s∗ is found (lines 13-14). Finally, lines 15 to 22 describe the RSCP component of
the algorithm. Every η iteration (line 16), SCP is solved with a MILP solver to find the best
combination of routes generated during the previous iterations (line 15). A parameter tlimit is
used to limit the time allocated to the solver. When the SCP cannot be solved to optimality
within the time limit, the pool of routes Ω is cleared and reinitialized with the routes of the
best-known solution s∗ (line 19). The reactive layer of the RSCP readjusts parameter η every
time the solver fails to optimally solve the SCP twice consecutively (line 20).

3.4.2 LNS operators

The sets of removal and repair operators are major components of the LNS method. Hence,
many LNS operators have been developed. Pisinger and Ropke (2007) proposed a list of 7
destroy and 2 repair operators to solve a large variety of vehicle routing problems efficiently. In
practice, LNS operators should enable both intensification and diversification, but the exact
list of implemented operators varies substantially from one implementation to another. Several
papers (see e.g., Christiaens and Vanden Berghe (2016)) have shown that implementing only
a few good operators is enough to get very good solutions. Additional operators may slightly
improve the quality of the solutions. Following this principle, our implementation of LNS uses
only a few operators in order to keep the framework as simple as possible, without sacrificing
the solution quality.

Removal operators

These operators determine the set of requests to be removed from the current solution according
to a given criterion. The following operators have been used:

• Random removal: This operator removes a proportion Φ of randomly selected requests
from the current solution.

• Historical node-pair removal: This operator consists in removing a proportion Φ of
requests from the current solution that were “better placed” in previous solutions. The
LNS algorithm calculates a score for each arc (i, j) ∈ A. The initial score of each arc is
set to infinity. It is then updated at each iteration with the value of the best solution
found so far that includes arc (i, j). The removal heuristic calculates the cost of a request
r ∈ R from pickup node i to delivery node j by summing the score of the arcs that
are incident to i and j in the current solution. It then removes requests according to
a probabilistic rule used in Ropke and Pisinger (2006): Consider the list R of requests
sorted by non-increasing costs. The operator iteratively removes the request at position
ξp × |R|, where 0 ≤ ξ < 1 is a random number and p ∈ Z is a deterministic parameter.
This probabilistic choice gives higher probability to the requests with the highest cost to
be removed.
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Chapter 3. Half-day transport problem

We also implemented the following operators, that were not kept in the final version of
the LNS: worst removal, which removes the request responsible for the longest detour in the
solution; distance-related removal which removes the nearest nodes, based on a distance-related
indicator; and time-related removal, which removes requests that are similar from a time point
of view. For a full description of these operators, we refer to Pisinger and Ropke (2007).

Repair operators

Removed requests are stored in the request bank B. Repair operators are intended to take them
out of the request bank and to re-insert them into the current partial solution. We implemented
the two most common repair operators: best insertion and k-regret insertion.

• Best insertion: At each iteration, the best insertion position is calculated for each request
r ∈ B, in each route of the current solution. The request with the minimal insertion cost
is then inserted at its best position. This process is repeated until the request bank is
empty or no more feasible insertion exists.

• K-regret: This operator generalizes Best insertion with more looking-ahead information.
At each iteration, the best insertion position of each request r ∈ B is calculated for each
route of the current solution. Let ∆f jr designate the insertion cost of a request r ∈ R
in its jth best route at its best position. ∆f1

r denotes the insertion cost (min additional
cost) of inserting request r ∈ R in its best route, ∆f2

r is the insertion cost for the same
request in its 2nd best route, etc. The request r? selected for insertion at its best position

is: r? = arg max
r∈B

(
k∑
j=2

∆f jr −∆f1
r

)
. The heuristic stops when the request bank is empty

or when no more requests can be inserted. In this chapter, we consider K-regret heuristics
with values of K between 2 and 4 and regard them as 3 independent operators.

3.4.3 Set covering problem (SCP)

The use of heuristic approaches for generating routes to solve a set covering or set partitioning
formulations of the VRP was first proposed by Foster and Ryan (1976): several routes, called
petals are first generated and a set partitioning problem is then solved to build a VRP solution.
This approach was then extended to multiple applications. In particular, it has been combined
with local search methods in Rochat and Taillard (1995) and Subramanian et al. (2013) for
the VRP, and has been combined with LNS-based heuristics in Parragh and Schmid (2013)
and Gschwind and Drexl (2016) for the DARP. Note that, whereas Gschwind and Drexl (2016)
solve a single SCP at the very end of their algorithm, the matheuristic of Parragh and Schmid
(2013) uses reduced costs from the SCP solution to guide a variable neighborhood search that
can possibly generate new routes. In the survey of Archetti and Speranza (2014) for VRP
matheuristics, this approach is classified under the name of column generation based heuristics.
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3.4. Solution method

The name is naturally chosen because of the similarity with set partitioning formulations in
branch-and-price algorithms. More precisely, this method falls into the class of restricted master
heuristics according to the same survey.

The proposed approach is based on the framework of Grangier et al. (2017) for a VRP with
cross-docking. According to this framework, a solver is called every η iterations to solve the
SCP on a pool Ω containing all non-dominated routes found by LNS in the previous iterations.
When the number of routes in Ω makes the SCP intractable for the solver within a given time
limit tlimit, Ω is cleared and reinitialized with the routes of the best solution found so far.

In the following sections, we detail the mathematical formulation of the SCP and the pool
management process. We also develop a reactive version denoted RSCP where parameter η is
automatically adjusted from one SCP solving to another.

Formulation of the SCP

Note that Ω = {1, . . . , |Ω|} is the set of routes collected through LNS iterations, and πω ∈ R+

denotes the cost of route ω ∈ Ω. Let ρrω be a parameter equal to 1 if request r ∈ R is served
by route ω ∈ Ω, and 0 otherwise.

The SCP aims at building a new solution by selecting a subset of independent routes in Ω.
The SCP model uses binary variables yω, that are set at value 1 if route ω ∈ Ω is part of the
solution and 0 otherwise. The SCP can be defined by the following integer linear program.

min
∑
ω∈Ω

πω yω (3.19)

s.t.∑
ω∈Ω

ρrωyω ≥ 1 ∀r ∈ R (3.20)

yt ∈ {0, 1} ∀ω ∈ Ω. (3.21)

SCP solving

As introduced before, the SCP is solved by a MILP solver with a run time limited to tlimit. To
improve the solver performance and guarantee that a feasible solution is returned, the solver is
initialized with the current routes of s∗ using a so-called warm-start function.

Given that constraints (3.20) of the SCP model allow request duplication, a request may
appear in more than one route in the optimal solution of the SCP. In this case the request is
left only in the route that yields the best cost (line 21, Algorithm 1).
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Chapter 3. Half-day transport problem

Management of the pool of routes Ω

At each iteration of the LNS-SCP, the non-dominated routes in the current solution are added
to the pool of routes Ω (line 15, Algorithm 1), possibly dominating some routes in the pool.
Hence, the size of the pool generally increases after each iteration. Eventually, the pool becomes
so large that the MILP solver cannot optimally solve the SCP within the time tlimit. When
this happens, the pool Ω is cleared and reinitialized with the routes of s∗. This strategy used
in Grangier et al. (2017) allows for the route pool to be maintained at a reasonable size. Of
course, this strategy heavily depends on the solving time left to the MILP solver.

Reactive adjustment of SCP parameters (RSCP)

The combination of the run time tlimit and the frequency η determine the overall computational
effort spent in solving the SCP. Thus, one issue in tuning the SCP component is to define a
common policy to set the values of parameters tlimit and η in all instances.

In our numerical experiments we observe that, for a given value of η, the run time necessary
to optimally solve the SCP is considerably longer on larger instances. Moreover, this time is
longer at the beginning of the LNS execution than at the end. This has already been observed
by Subramanian et al. (2013) in a VRP context. The authors developed a reactive strategy to
limit the number of routes in the SCP. Their approach requires setting 5 parameters. Moreover,
a threshold mechanism eliminates bad solutions even if they contain good routes. Thus, we
propose a reactive layer RSCP that allows a simpler and automatic adjustment of parameter η,
reducing its value geometrically such that η ← η/ψ (Algorithm 1, line 20). This mechanism
uses a single real parameter ψ > 1 and assures that every dominant route will be considered
at least once in a SCP solving. Unlike the re-initialization of Ω which is done when the solver
cannot solve the SCP optimally, the automatic adjustment of η is performed only when the
solver cannot solve the SCP optimally twice consecutively.

3.5 Evaluation of the insertion of requests

In each iteration of the framework LNS-SCP (Algorithm 1), the repair operator checks the
potential insertions of all unplanned requests in all routes at all positions. This represents a
large number of insertion attempts. In practice, for every unplanned request, only the best
insertion is performed. Repair operators therefore evaluate the feasibility and the performance
of a very large number of unnecessary insertions, which has a major impact on the performance
of the SCP-LNS algorithm. This section describes the core algorithms involved in the insertion
of unplanned requests.

Let ω denote a feasible route with N nodes. Without loss of generality, let us denote by
1, ..., N the set of nodes visited by this route, where nodes 1 and N are the initial and the
final depot of this route. Inserting request r ∈ R consists in inserting pickup node pr ∈ P
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3.5. Evaluation of the insertion of requests

between nodes i ∈ ω and i+ 1 ∈ ω and inserting delivery node dr ∈ D between nodes j ∈ ω and
j+ 1 ∈ ω. We call ω′ the route resulting from this request insertion, as represented in Figure 3.3

1 i i+ 1 j j + 1 N

1 i pr i+ 1 j dr j + 1 N

ω

ω′

Figure 3.3: Insertion of request r into route ω

The feasibility evaluation of ω′ has two parts: The Capacity evaluation checks that at least
one vehicle type can serve all requests in ω′ with at most R̄ reconfigurations. The Schedule
evaluation computes the minimal route duration and checks if there is a departure time for
route ω′ that complies with all users time windows and maximum ride times.

Let us denote by time(ω′) the minimal duration of route ω′, K(ω′) the set of vehicle types
compatible with route ω′, k(ω′) ∈ K(ω′) the cheapest vehicle type compatible with route ω′,
and dist(ω′) the total length of route ω′. Note that dist(ω′) can be computed in constant time
with an incremental approach:

dist(ω′) = dist(ω) +

∆i,pr + ∆pr,i+1 −∆i,i+1 + ∆j,dr + ∆dr,j+1 −∆j,j+1 if i < j,

∆i,pr + ∆pr,dr + ∆dr,i+1 −∆i,i+1 if i = j.

Remember that α and γk represent the unitary costs related to the route duration and
length respectively. Then, if route ω′ is feasible regarding the Capacity evaluation and the
Schedule evaluation, the minimal cost Π(ω′) of route ω′ is determined by

Π(ω′) = α time(ω′) + min
k∈K(ω′)

(
fk + γkdist(ω′)

)
,

= α time(ω′) + fk(ω′) + γk(ω′)dist(ω′).
(3.22)

Note that in our application, all vehicles travel at the same speed. Hence, the time feasibility
and the duration of a route can be evaluated without knowing the vehicle that travels that
route.

Algorithm 2 shows how the Schedule evaluation and the Capacity evaluation algorithms are
organized. Since these algorithms are mutually independent, they can be executed in any order.
Although this order may impact computational times, there is no general rule to define which
one should be placed first because the performance always depends on the considered data.
Schedule evaluation (line 11) is performed first because our instances are mostly constrained by
time windows and ride times. Accordingly, the Capacity evaluation (line 4) is run only on the
resulting feasible routes. The algorithm returns the cost of an insertion, and the value −1 if the
insertion is not possible.

Sections 3.5.1 and 3.5.2 detail the Schedule evaluation and the Capacity evaluation respec-
tively.
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Chapter 3. Half-day transport problem

Algorithm 2: Evaluation of a route ω′

Input: Routes ω and ω′
Output: Total insertion cost (-1 if infeasible)

1 time(ω′)← ScheduleEvaluation(ω′) /* Algorithm 11 */ ;
2 if time(ω′) > −1 then
3 k(ω′)← CapacityEvaluation(ω, ω′) /* Algorithm 4 */ ;
4 if k(ω′) > −1 then
5 Π(ω′) = α time(ω′) + fk(ω′) + γk(ω′)dist(ω′);
6 return Π(ω′)

7 return −1

3.5.1 Schedule evaluation

The scheduling of a route first consists in determining if the user time windows and maximum
ride time are respected on the route. Second, it determines a minimal duration schedule. The
Schedule evaluation is the most time-consuming operation in the algorithm due to the large
number of evaluations performed each time a request insertion is evaluated.

The route scheduling for our problem is performed by Algorithm 11. It is based on Tang
et al. (2010) as presented in Gschwind, Timo (2015). We add forward time slack calculations
from Cordeau and Laporte (2003) in order to determine the minimum route duration. Note
that some simple classical and necessary conditions are checked before running this algorithm.
These are well summarized in Braekers et al. (2014).

Let us consider a route ω = {1, ..., N}. For each node i ∈ ω, Algorithm 11 determines the
beginning of service wi in such a way that route duration is minimized. This algorithm has
three phases. In the first phase, the earliest possible schedule is computed for every visited node
(lines 5 to 9). At the same time, we calculate the forward time slack of node 1, denoted by F1,
and the total waiting time H on the route. The second phase minimizes the route duration by
shifting the first node w1 by F1 units. Consequently, the beginning of service in all other nodes
i = 2, . . . , N is updated (lines 11 to 13). Once the route duration is minimized, the maximum
route duration constraint is verified in line 14.

The third phase checks ride-time constraints for every request (lines 16 to 27), starting
from the end of the route. For any pickup node i, we denote as r ∈ R the request to which it
belongs. Consequently, dr is the corresponding delivery node and i is equal to pr. The ride-time
associated with this request is then wdr −wpr + sr. If the value (wdr −wpr + sr)−T i is positive,
then the max ride-time constraint associated with pickup pr is violated. In this case, the
beginning of service wpr is shifted by the value of this violation (line 25). This may lead to
infeasibility on time windows, which is checked in lines 26 to 29. Finally, since the beginning of
service wpr may have been changed, the ride-time constraint for request r is checked again in
line 30. If no infeasibility is detected, the minimal route duration wN −w1 is returned (line 29).

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



3.5. Evaluation of the insertion of requests

Algorithm 3: Schedule evaluation
Input: Route ω = {1, ..., N}.
Output: Minimal duration of route ω (-1 if infeasible)

1 w1 ← a1 /* Beginning of the service */
2 H ← 0 /* Total waiting time on the route */
3 F1 ← b1 − w1 /* Forward time slack at node 1 */
4

/* Phase 1: set up nodes at the earliest start */
5 for i = 2, . . . , N do
6 wi ← max{ai;wi−1 + si−1 + ti−1,i}
7 if wi > bi then return -1
8 H ← H + max{0; ai − (wi−1 + ti−1,i + si−1)}
9 F1 ← min{F1;H + max{0; bi − wi}}

10
/* Phase 2: optimize route duration */

11 w1 ← w1 + F1
12 for i = 2, . . . , N do
13 wi ← max{wi−1 + si−1 + ti−1,i; ai}

/* Check route duration constraint */
14 if (wN − w1) > T then return -1
15

/* Phase 3: check ride time constraints */
16 for i = N − 2, . . . , 1 do
17 if i ∈ P then
18 r ← request of pickup i /* Implies i = pr */
19 δ ← (wdr − wpr + sr)− T r
20 if (δ > 0) then
21 wpr ← wpr + δ
22 if wpr > bpr then return -1
23 for j = pr + 1, . . . , N do
24 wj ← max{aj ;wj−1 + sj−1 + tj−1,k}
25 if wj > bj then return -1
26 if T r − (wdr − wpr + sr) < 0 then
27 return -1

28
29 return wN − w1
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Chapter 3. Half-day transport problem

3.5.2 Capacity evaluation

The objective of this section is to complete the evaluation of a route by determining the cheapest
vehicle type that satisfies capacity constraints as well as the constraint on the maximal number
of reconfigurations. Section 3.5.2.1 presents the procedure that assigns a vehicle to a given route.
Section 3.5.2.2 details the subroutine that checks if a given reconfigurable vehicle is feasible for
a given route.

3.5.2.1 Vehicle type selection

We consider the resulting route ω′ after the insertion of a request r ∈ R in route ω. A first
observation is that the set of vehicle types that can perform route ω′ is included in the set of
vehicles that can perform route ω: K(ω′) ⊂ K(ω). Thus, the Capacity evaluation of ω′ can be
limited to the vehicle types in K(ω).

A second observation is that it is sufficient to check the capacity only over a smaller subset
of key nodes of the route. This leads to the following definitions:

Definition 1. We call the load profile of a route the list of vectors representing its load
at every node of this route. The load profile for route ω′ is {l1, . . . , lN}, where li = {li,u, i ∈
1, . . . , N ;u ∈ U}, and li,u represents the load of user type u ∈ U at node i ∈ ω′.

Load li,u results from the accumulation of load variations of the route from node 1 to node
i, i.e. li,u =

∑i
j=1 φj,u.

Definition 2. The set of pickup nodes of a route that are immediately followed by a delivery
node is called the kernel of this route. The restriction of the load profile {l1, . . . , lN} to the
nodes of its kernel is denoted by L.

Theorem 1. A vehicle type k ∈ K can be assigned to a route ω′ if, and only if

• each load l ∈ L is compatible with at least one configuration of vehicle type k,

• the number of reconfigurations required to carry every load l ∈ L is less than or equal to
the maximum number of allowed reconfigurations R.

Proof. If i is the delivery node of some request r ∈ R. Then, li,u ≤ li−1,u for all user types
u ∈ U . Thus, if the capacity is satisfied at node i − 1, it is also satisfied at node i. If i is a
pickup node followed by another pickup node, then li,u ≤ li+1,u and the capacity at i is satisfied
if it is satisfied at i+ 1.

Regarding the number of reconfigurations, it is trivial to note that reducing the number of
loads to test can not increase the number of reconfigurations. However, we shall prove that
reducing the number of test to the set of pickups followed by a delivery node do not reduce
the number of reconfigurations. First, note that it is not necessary to reconfigure before a
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diminution of load (i.e. delivery). Reconfigurations can therefore be done just before a pickup
node. Second, let consider a feasible route for a given vehicle. The route has two consecutive
pickups and the first one requires a new configuration among a set of feasible configurations S1.
Because the load is increasing, the second pickup requires a configuration from the subset S2

such that S2 ⊂ S1. Finally, given that the configuration for the first pickup should be chosen
from S2 to minimize the number of reconfigurations, we can therefore limit the test to the
second pickup and by extension to every pickup followed by a delivery. �

By definition, for each node i in a route, there exist a node j in the route kernel that has
a greater load (ie such that ∀u ∈ U : li,u ≤ lj,u). Let k be a vehicle type. If there exists a
configuration c ∈ Ck such that ∀u ∈ U : Qkcu ≥ lj,u, then the load li is also compatible with
configuration c. As a result, checking the vehicle capacity in every node of the route kernel is
equivalent to check the vehicle feasibility of the entire route. Then, in order to save computation
time, the capacity evaluation of route ω′ can be restricted to its kernel.

Figure 3.4 presents the successive loads of a vehicle on a route with two types of users
(seats and wheelchairs). In Figure 3.4, pickup operations are illustrated by arcs pointing to the
right or to the top and deliveries are represented by arcs pointing to the left or to the bottom.
Although the route has 7 nodes, a sufficient Capacity evaluation of the route requires only a
capacity check in the nodes of the kernel, this is nodes 3 and 5.

L =
{(

6
1

)
,

(
4
3

)}
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Figure 3.4: Graphical representation of a route load

Algorithm 4 describes the Capacity evaluation procedure. It first evaluates the fixed and
distance-related costs for all vehicle types (lines 2–3). The route load profile is computed in
lines 5–10. In line 10, a vertex are appended to the route kernel if it is a pickup, immediately
followed by a delivery vertex. Checking if a vehicle type k is feasible for L is done on line 13.
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Chapter 3. Half-day transport problem

Considering that k can be reconfigured and that several types of users are considered, this
evaluation is non-trivial and is detailed in Section 3.5.2.2.

Algorithm 4: Capacity evaluation
Input: Routes ω and ω′, list K(ω) of vehicle types compatible with ω, distance dist(ω′)
Output: Cheapest vehicle type for the route ω′ (−1 if infeasible)

1
/* Estimate partial route costs */

2 forall k ∈ K(ω) do
3 λk = fk + dist(ω′)vk

4
/* Compute the load profile for the kernel of the route */

5 L = ∅
6 l1 = 0
7 for i← 2, . . . , N do
8 li = li−1 + (φj,u)u∈U
9 if i belongs to the kernel of ω′ then

10 L ← L ∪ {li}

11
/* Find a feasible vehicle type */

12 for k ← K(ω) in non-decreasing order of costs λk do
13 if k can carry L then /* Algorithm 5 */
14 return k

15 return −1

Proposition 1. The Capacity evaluation algorithm returns k(ω′), the cheapest vehicle type for
the route ω′, or the value −1 if no vehicle can perform route ω′.

Proof. From equation (3.22),

Π(ω′) = α time(ω′) + min
k∈K(ω)

λk,

and
k(ω′) = arg min

k∈K(ω)
λk.

Given that vehicles type k ∈ K(ω) are tested one by one in non-decreasing order of values λk,
as soon as ω′ is feasible for a given k ∈ K(ω′), we have k = k(ω′). �

3.5.2.2 Vehicle type feasibility

In this section, we focus on solving the question: given a vehicle type k ∈ K and a load profile
L, can this vehicle carry this load? (see line 13, Algorithm 4)
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3.5. Evaluation of the insertion of requests

Recall that Qk is the set of all configuration vectors for a vehicle type k ∈ K, represented
by the |Ck| × |U | matrix:

Qk =


Qk1

. . .

Qk|Ck|

 =


Qk1

1 . . . Qk1
|U |

. . . . . . . . .

Q
k|Ck|
1 . . . Q

k|Ck|
|U |

 ,
where Qkc represents the cth configuration (c ∈ Ck) of vehicle k and Qkcu the capacity of

vehicle type k in configuration c for user u ∈ U .

Example 2. Let us consider the vehicle type k described in Figure 3.1. Figure 3.5 represents
Qk1, Qk2, Qk3.
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Qk3

Figure 3.5: Capacity of the vehicle presented in Figure 3.1.

According to these notations, we can state that a route ω is feasible for a given vehicle type
k if: (i) for each load l in the route kernel L, there is a capacity vector in Qk that is greater
than l; and (ii) if the minimum number of reconfigurations of k to operate L is less than R.

The efficiency of these two checks is increased by computing a priori the list of feasible
configurations for each possible load vector and for each vehicle type. The envelope set of
possible load vectors is defined by

T k = {0, . . . ,max
c∈Ck

Qkc1 } × · · · × {0, . . . ,max
c∈Ck

Qkc|U|}.

Mathematically, we define Sk(l) as the function that maps the set of feasible configurations
of vehicle type k for a given load l.

Sk : T k → P(Ck),

where P(.) is the power-set function of set Ck, i.e. the set of all subsets of Ck, including the
empty set and Ck itself.
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Chapter 3. Half-day transport problem

The function Sk(.) can be pre-processed and written as a matrix with |U| dimensions. Each
vector of feasible configuration in this matrix is encoded using a bitset. This guarantees a limited
size in memory and a O(1) access to the list of configurations able to carry any element of T k.

Table 3.1 details the value of function Sk(.) in the case described by Example 2 and
Figure 3.5. For each possible load value, this table returns the list of configurations that are
compatible with this load. For example, for a load of 4 seats and 2 wheelchairs, configurations 1
and 2 are feasible. For a load of 6 seats and 3 wheelchairs, there is no feasible configuration.

Seats

W
he
el
ch
ai
rs 3 {1} {1} {1} {1} {1} ∅ ∅ ∅

2 {1, 2} {1, 2} {1, 2} {1, 2} {1, 2} {2} {2} ∅
1 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3} {3}
0 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3} {3}

0 1 2 3 4 5 6 7

Table 3.1: Matrix representation of Sk for the vehicle presented in Figure 3.1.

Algorithm 5 presents the procedure for evaluating the feasibility of vehicle k in route ω′.
The algorithm initializes the number nr of necessary reconfigurations to 0 (line 1) and the set
ListConfig with all admissible configurations (line 2). It then iteratively goes through the nodes
of the entire route kernel L. If the current node is not compatible with any vehicle configuration
(line 4), vehicle k is infeasible and the value −1 is returned. Otherwise, the list ListConfig is
updated with the set of feasible configurations common to this node and ListConfig (line 6).
If the load of the current node l requires a configuration not previously stored in ListConfig, a
reconfiguration is needed. Thus, nr is increased by 1 and the ListConfig is initialized with the
set of feasible configurations of the current node (line 11). If nr exceeds the maximum value
allowed, R, vehicle k is infeasible and the value −1 is returned. Finally, if every load in the
nodes of the kernel are compatible with vehicle k the number of reconfigurations nr is returned.

Proposition 2. Algorithm 5 finds the minimal number of reconfigurations.

Proof. We define the graph G = (V,A) in which nodes v1, . . . , v|L| represent the ordered set of
elements of the kernel. We define an arc between any pair of nodes which can be connected
without reconfiguring the vehicle. So, if an arc (vi, vj) exists, then all arcs of the form (vi′ , vj′),
where i ≤ i′ < j′ ≤ j, also exist.

With all arcs weighted by 1, finding the minimum number of reconfigurations is equivalent
to finding a shortest path between v1 and v|L|.

Given a node vi ∈ V , we define the farthest neighbor of vi as the node vj , such that the arc
(vi, vj) exists and the arc (vi, vj+1) does not exist. Algorithm 5 starts from v1 and iteratively
looks for the farthest neighbor of the current node. Let v1, vopt(2), . . . , v|L| be an optimal path
from v1 to v|L|. We shall prove by contradiction that if some node vi is the farthest neighbor of
v1, then it belongs to an optimal path.
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Algorithm 5: Feasibility of vehicle type k and number of necessary reconfigurations
Input: route ω′, with the load profile L of its kernel
Input: vehicle k, with preprocessed values for Sk(.) and T k
Output: number nr of necessary reconfigurations

1 nr ← 0
2 ListConfig ← Ck
3 forall l ∈ L do

/* capacity test */
4 if l 6∈ T k or Sk(l) = ∅ then
5 return −1

/* number of reconfigurations test */
6 ListConfig ← ListConfig ∩ Sk(l)
7 if ListConfig = ∅ then
8 nr ← nr + 1
9 if nr > R then

10 return −1
11 ListConfig ← Sk(l)

12 return nr

Assume that (v1, vi) is not in the shortest path from v1 to v|L|. Because (v1, vj) 6∈ A, ∀j > i,
it is not possible to go from l1 to any successor of vi with a weight of 1. So, vopt(2) < i and
vopt(3) > i. By construction, if arc (vopt(2), vopt(3)) exists and has weight 1, then arc (vi, vopt(3))
also exists and has the same weight. Thus, the cost of path v1 → vi → vopt(3) is 2. Hence, (v1, vi)
is also an optimal solution.

�

3.6 Computational experiments

The matheuristic described in Section 3.4.1 was coded in C++ and run on a CPU Intel Xeon
E5-1620 v3 @3.5Ghz. The SCP was solved with CPLEX 12.6 running on a single thread.
The matheuristic was evaluated using real and benchmark data. The parameters shown in
Table 3.2 provide the best average performance for the optimization problems solved in this
chapter. After experimentation, we found that: K-regret operators with K > 4 did not improve
the solution quality and two removal operators (historical removal and random removal) are
sufficient when the SCP component is active. Note that values for parameters η, tlimit and ψ,
can be automatically modified in the reactive version RSCP for different instance sizes (see
Section 3.4.3).

Regarding the sequencing of feasibility evaluation, performing the Schedule evaluation
(Algorithm 11) before the Capacity evaluation (Algorithm 2) can reduce computation time
up to 50%. This reduction is mostly explained by the fact our data set (derived from real
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χ = 5% record-to-record acceptance percentage.
penalty = 10 000 penalty cost for incomplete solutions.
Φ− = 10% minimal proportion of removed request used by removal operators.
Φ+ = 45% maximal proportion of removed request used by removal operators.
p = 6 roulette wheel parameter for the historical node-pair operator.
σ+

init = 4-regret repair operator for building the initial solution
η = 1 000 launch frequency of the SCP.
tlimit = 3 sec imposed time limit for the SCP.
ψ = 1.25 RSCP coefficient to recompute the launch frequency of the SCP.

Table 3.2: Parameters (all defined in Section 3.4).

data) is constrained more in time than in capacity. In other words, long pickup legs are seldom
feasible because of time windows and maximum ride times. In addition, sorting vehicle types in
non-increasing order of costs, before testing the vehicles capacity, can reduce computation time
by up to 10% (Algorithm 4).

This section is structured as follows: First, we introduce the instances used to evaluate
the algorithms. In Section 3.6.2 we present the experiments that determine the choice and
calibration of the main components of the proposed matheuristic. The proposed algorithms are
compared to state-of-the-art algorithms on benchmarks from Cordeau and Laporte (2003) and
Qu and Bard (2013), which correspond to particular cases of our problem. Finally, we provide
managerial insights, mainly regarding vehicle fleet aspects.

3.6.1 Description of instances

The real data comes from the GIHP Company2. An instance set of 14 instances is made from
a bank of 576 requests decomposed into smaller subsets of three sizes. There are 8 small
instances containing from 60 to 80 requests, 4 medium-size instances containing from 120 to 160
requests, and 2 large instances containing from 280 to 295 requests. We consider 2 different user
types: users occupying seats and users with wheelchairs. Each type of user occupies dedicated
spaces in vehicles. Travel times and distances are obtained from the Open Source Routing
Machine3 (OSRM) by Luxen and Vetter (2011). Common characteristics for the instances
are: 1) maximum ride times are defined according to direct travel time (tpr,dr) by the formula
RT = 15 × d(tpr,dr + 15)/15e; 2) time windows at medico social institutions are 30 minutes
wide; and 3) the service time for users using seats is 2 minutes at the pickup location and 1
minute at the delivery location. For users in a wheelchair, it is 5 minutes at pickup locations
and 2 minutes at delivery locations.

The characteristics of vehicles considered in experiments are summarized in Table 3.4. There
are four vehicle types, including one that is not configurable (V0). Vehicles V1 and V2 have two

2These instances will be made available on www.vrp-rep.org on acceptation of this chapter.
3http://project-osrm.org/
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3.6. Computational experiments

possible configurations, while vehicles V3 have three configurations. Costs for each vehicle type
can be found in Table 3.4. Note that in terms of capacity, vehicle V0 is a restricted case of
vehicle V3. It is nevertheless an interesting choice as its fixed cost is considerably lower (€50
against €63). The fixed cost corresponds to the estimated vehicle ownership cost per day. The
time-related cost corresponds to the driver’s wages, and the distance-related cost corresponds
to the fuel consumption and vehicle use.

Vehicle Fixed Time-related Distance-related
type cost cost cost
V0 €50 €23.81 /h €0.17 /km
V1 €79 €23.81 /h €0.21 /km
V2 €36 €23.81 /h €0.12 /km
V3 €63 €23.81 /h €0.17 /km

Table 3.3: Vehicle types – costs

place Table 3.4 about here.

Configuration1 Configuration 2 Configuration 3
Type Seats Wheelchairs Seats Wheelchairs Seats Wheelchairs
V0 4 3 - - - -
V1 3 5 4 4 - -
V2 2 1 4 0 - -
V3 4 3 6 2 7 1

Table 3.4: Vehicle types – configurations

3.6.2 Evaluation of the metaheuristic components

Table 3.5 compares several LNS settings in order to evaluate the main components of the
proposed matheuristic. These experiments are performed on the presented real instances with
the four vehicles described in Table 3.4.

The first column specifies the different LNS variants considered in this experiment. 5 runs
of the full instance-set are computed for each variant. A time limit was set for each instance
according to its size. For small instances (60-80 request), this time is 16 minutes. For medium-
size instances (120-160 request) and large instances (280-295 request) the time is 40 and 100
minutes respectively. The following columns show average values over the full instance set.
Please refer to A.2 for detailed results. Columns “Avg” correspond to the average cost over 5
runs of the instance set. The “Best” column corresponds to the average cost of the best run of
each instance. The Gap for every instance is computed as (value−BKS)/BKS × 100. The
“Nb BKS” column is the number of best known solutions found by the heuristic (there are 14
instances in the instance set).
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The first variant is a classic implementation of LNS which implements operators k-regret, best
insertion, random removal, historical node-pair removal, worse removal, time-related removal and
distance related removal, as described in Pisinger and Ropke (2007). This variant is denoted by
LNS(5) because it implements 5 destroy operators. The second metaheuristics ALNS(5) adds-up
the adaptive layer of Ropke and Pisinger (2006) to the former LNS implementation. The third
metaheuristic ALNS(5)–SCP integrates the SCP component described in Section 3.4.3. The
fourth variant, denoted LNS(2)–SCP, considers 2 destroy operators only (historical node-pair
removal and random removal) and no adaptive layer. The fifth variant, denoted ALNS(5)–RSCP,
is an extension of ALNS(5)–SCP integrating the reactive layer described in Section 3.4.3. The
sixth variant, denoted LNS(5)–RSCP, does not include the adaptive layer. Finally, LNS(2)–
RSCP extends the LNS(2)–SCP by including the reactive layer of Section 3.4.3. General
parameters for all metaheuristics can be found in Table 4.5. Additional parameters for ALNS
can be found in Table A.1

The first observation is that the SCP component brings significant improvement in the
solution quality. In addition, it can be observed that the LNS can be considerably simplified
when the SCP component is used. Indeed, the matheuristic with two destroy operators performs
as well as the versions with five destroy operators. Comparing LNS(2)–SCP with LNS(2)–RSCP,
it can be seen that a second subsequent improvement is obtained when the SCP includes the
reactive layer to adapt its parameters during the search. According to this set of experiments,
LNS(2)–RSCP configuration seems to outperform the other variants, either in performance or
in simplicity.

Avg Cost Avg Gap Nb BKS
Variant Best Avg Best Avg (14)

LNS(5) 2,348.51 2,357.59 3.60% 3.94% 3
ALNS(5) 2,349.06 2,369.08 3.61% 4.46% 2
ALNS(5)-SCP 2,289.81 2,300.03 1.34% 1.64% 7
LNS(2)-SCP 2,289.74 2,297.23 1.27% 1.52% 9
ALNS(5)-RSCP 2,235.25 2,242.52 0.13% 0.38% 9
LNS(5)-RSCP 2,235.36 2,241.60 0.12% 0.31% 12
LNS(2)-RSCP 2,236.46 2,243.91 0.13% 0.39% 10

Table 3.5: Performance comparison of LNS-based heuristics for our instances (see A.2 for
detailed results)

Figure 3.6 shows the cost evolution considering the best run of four metaheuristics in
instance I01-80. The other 3 variants are not shown because their performance is almost
that of LNS(2)–RSP. Two separate groups of algorithms can be identified, corresponding to
metaheuristics with and without an SCP component. The SCP increases not only solution
quality, but also convergence speed.

Figure 3.7 shows the cost evolution on a large size instance I13-280. The variants without
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Figure 3.6: Impact SCP component (Instance I01-80)

the reactive layer fail to improve the solution significantly. This is because the SCP parameters
are not adapted to this instances and the SCP is probably never solved optimally. Variants
with the reactive layer perform better since the number of iterations between two calls to the
SCP is reduced. This approach proves efficient in large instance as shown in the figure.

3.6.3 Performance evaluation on benchmarks from the literature

To evaluate the performance of LNS(2)-RSCP, we apply it to two sub-problems of the FSM-
DARP-RC on benchmark instances. The first benchmark is made of the DARP instances of
Cordeau and Laporte (2003) for which many elaborate methods were designed. In a second
step, LNS(2)-RSCP is compared to the algorithm of Qu and Bard (2013) that was designed to
solve a heterogeneous DARP with configurable vehicle capacity. This benchmark considers a
limited fleet of vehicles that can be configured at the depot.

For the sake of conciseness, given our objective to solve large instances, we compare our
algorithm to state-of-the-art metaheuristics. All these metaheuristics can easily and efficiently
solve instances for which optimal solutions are known (refer to Gschwind and Drexl (2016) for
the DARP and Qu and Bard (2015) for the HDARP-C).
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Figure 3.7: Reactive SCP (Instance I13-280)

3.6.3.1 Performance evaluation on the DARP

The instances of Cordeau and Laporte (2003) are still a reference point to evaluate the efficiency
of algorithms on the DARP. Table 3.6 compares the results of the LNS(2)–RSCP, after 50,000
Iterations, to the latest heuristics of the literature that have been designed specifically to solve
instances of Cordeau and Laporte (2003). Detailed results of each instance can be found in A.3.
Gap values are computed in relation to the best known solutions (BKS) found in Gschwind and
Drexl (2016) and have been found either by the cited meta-heuristics, or during the parameter
tuning of Gschwind and Drexl (2016). Looking at the average gap (Avg Gap) we note that our
matheuristic competes with those three dedicated methods. LNS(2)–RSCP has the second-best
average gap of 0.72% with 8 solutions among the best known (Nb. BKS), just after the ALNS of
Gschwind and Drexl (2016) with 0.5% Avg Gap and 9 BKS. An interesting remark is that the
reactive layer of the SCP component was barely activate since the initial values of η = 1000 and
tlimit = 3 secs were sufficient for these instance sizes. The other two methods are the threshold
acceptance (TA) based local search of Braekers et al. (2014) which has the highest average gap
(1.16%) but also by far the lowest computation time, and the evolutionary local search (ELS)
proposed by Chassaing et al. (2016).

Note that LNS(2)–RSCP is executed without any parameter tunning other than the one of the
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FSM-DARP-RC instances. we do not scale computational times here as CPU information is not
available for all methods and our goal is not to compete with these three methods. Nevertheless,
these experiments show that the performance of LNS(2)–RSCP remain competitive on simpler
benchmark problems.

NbBKS Avg Avg Obj Avg Gap
Method (20) Time Best Avg Best Avg

Braekers et al. (2014) (TA) 3 83.2 512.06 514.31 0.81% 1.16%
Chassaing et al. (2016)(ELS) 6 592.4 511.14 513.67 0.64% 1.04%
Gschwind and Drexl (2016) (ALNS) 9 209.5 509.04 510.19 0.32% 0.50%
Ours (LNS2-RSCP) 8 727.1 509.53 511.62 0.38% 0.72%

Table 3.6: Benchmark classic DARP Cordeau and Laporte (2003) (Detailed results in Sec-
tion A.3)

3.6.3.2 Performance evaluation on the heterogeneous DARP with configurable
vehicle capacity

Another relevant benchmark was proposed by Qu and Bard (2013) for the heterogeneous
dial-a-ride with configurable vehicle capacity (HDARP-C). The three main differences between
this problem and the FSM-DARP-RC are: (i) a limited fleet of heterogeneous vehicles with
configurable capacity; (ii) the vehicle configuration is decided at the depot, not en-route; and
(iii) the presence of users with walkers in some instances, which means that two seats or one
seat and half a wheelchair space are occupied.

These differences were integrated into our algorithm to run Qu and Bard (2013) instances.
The SCP was adapted in a simple manner to consider a limited fleet of vehicles as follows: first,
every route was explicitly assigned the vehicle type for which it was generated, and second, a
constraint limiting the number of vehicles for each vehicle type was added to the SCP model.

In this benchmark, two instance sets of 100 requests each are proposed. A first set “A” is
characterized by integrating various proportions of appointment requests (between 5% to 25%
). The second instance set “B” instead differentiates the proportion of users with walkers.

According to Qu and Bard (2013), we denote by Ctotal, the total transport cost computed as
a sum of the vehicle ownership cost, the time cost related to driver wages, and the penalty cost
related to the passengers ride time. In Table 3.7 the LNS(2)-RSCP is compared to the multi-start
ALNS (MSALNS) of Qu and Bard (2013). Each row corresponds to a different scenario. In all
experiments LNS(2)–RSCP uses the same parameter tuning proposed in Table 4.5 with 3 runs
per instance and a stopping criteria of 1 hour.

The first scenario, corresponding to the first row, considers the instance-set “A”. In “Gap
Avg” column we observe an average total cost improvement of 1.02% over 3 runs. Column
Gap(*) refers to the best average total cost improvement of the best solution found among
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the 3 runs. In Gap(*), we obtain 1.34% improvement on average with respect to the MSALNS
best solution. 6 new best solutions are found out of the 10 instances of the benchmark. These
results demonstrate the good performance and stability of LNS(2)-RSCP from an experimental
point of view.

A second scenario, corresponding to the second row, is performed on instance-set “B”. The
main difference between set “B” and set “A” is the presence of very few time windows. Looking at
the average gap (Gap Avg), we find more clearly that LNS(2)-RSCP outperforms the MSALNS
with an 17.23% improvement in total cost. From detailed results presented in A.4, we find that
LNS(2)-RSCP is barely affected by the proportion of walkers. This result is confirmed by last
scenario, B-IWR, where walkers’ requirements are ignored. Without accounting for walkers, we
do not find differences in performance among all instances of the B set (see Table A.6 for more
details). Finally, looking at the average gap, we find that LNS(2)-RSCP improves the solution
quality by 12.71%.

MSALNS LNS(2)-RSCP
Scenario Nb Inst. Avg Ctotal Avg Ctotal Gap (*) Gap Avg NewBKS
A 10 49.23 48.19 -1.34% -1.02% 6
B 10 46.25 37.98 -17.82% -17.23% 10
B-IWR 10 42.69 37.22 -12.71% -12.71% 10

Table 3.7: Benchmark Qu and Bard (2013) (detailed results in A.4)

3.6.4 Managerial insights

Having shown the efficiency of our matheuristic, we performed simulations in order to provide
some general insights regarding, in particular, the relevance of en-route reconfiguration of
vehicles. First, we measured the impact of en-route reconfiguration for two variants of the
DARP. We then varied the fixed cost of reconfigurable vehicles to determine under which
conditions it is worth buying the vehicles.

3.6.4.1 Vehicle fleet insights

In this section we analyze the gain of enabling en-route reconfigurations. Two variants of the
DARP are compared with the real instance set, as shown in Table 3.8. Both variants employ
the vehicle fleet of Table 3.4. The first variant, denoted as FSM-DARP-C, consist in allowing
vehicles to be configured only once: at the depot, before starting their respective routes.

The second variant, denoted FSM-DARP-RC, allows vehicles to be reconfigured en-route.
Strictly speaking FSM-DARP-RC is a relaxed problem of FSM-DARP-C, which explains why
gains in the last column are always greater than 0. Cost reductions can go up to 2.45% of the
total cost, depending on the instance.
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FSM-DARP-C FSM-DARP-RC
Inst Time Avg Best Routes Avg Best Routes Rec RR Savings
I01-80 16 1,774.74 1,774.74 18 1,757.22 1,757.22 18 1 1 0.99%
I02-60 16 924.68 923.51 8 916.22 912.28 8 1 3 1.22%
I03-80 16 1,838.57 1,838.47 15 1,838.41 1,838.33 15 1 1 0.01%
I04-70 16 1,602.48 1,602.48 18 1,599.49 1,599.49 18 1 1 0.19%
I05-80 16 1,242.55 1,242.48 15 1,242.48 1,242.48 15 0 0 0.00%
I06-80 16 1,419.81 1,418.74 12 1,418.75 1,418.74 12 0 0 0.00%
I07-60 16 1,546.61 1,546.61 11 1,537.63 1,537.63 11 2 3 0.58%
I08-65 16 1,223.65 1,223.58 10 1,205.11 1,204.89 10 1 2 1.53%
I09-120 40 3,167.81 3,166.29 23 3,129.75 3,129.15 23 2 5 1.17%
I10-135 40 2,094.77 2,068.71 17 2,083.10 2,061.52 17 1 3 0.35%
I11-160 40 2,283.03 2,271.57 21 2,249.11 2,233.19 21 3 7 1.69%
I12-160 40 2,659.34 2,653.40 24 2,653.78 2,629.19 23 2 3 0.91%
I13-280 100 5,027.30 5,008.69 37 4,901.06 4,885.77 36 4 13 2.45%
I14-295 100 5,017.01 4,982.85 45 5,026.49 4,981.14 44 2 8 0.03%

Table 3.8: Savings due to en-route configuration

Regarding the structure of solutions, let us consider the best solution (Best) found among
the 5 runs for each instance. The next columns (Routes, Rec, RR) refer to some characteristics
of these Best solutions. Passing from FSM-DARP-C to FSM-DARP-RC, we observe that the
number of routes (Routes) is similar for most instances. However, in some instances, like I14-280,
cost savings are related to a reduction in the number of routes (from 37 to 36).

The maximum number of performed reconfigurations among the solution routes (Rec) shows
that en-route reconfiguration is usually performed once or twice inside a route. The number
of routes performing en-route reconfiguration (RR) indicates how many configurable vehicles
are actually reconfiguring en-route in the whole solution. For example, in instance I02-60, we
find that 3 out of 8 routes actually reconfigure en-route, this is 37.5% of the vehicle fleet. In
average this proportion is 10.28% for small instances, 21.43% for medium-size and 26% for
large instances.

3.6.4.2 Fixed cost analysis

So far, we have seen that reconfigurations can allow cost reductions; however, the resulting gain
is correlated to the cost of buying reconfigurable vehicles rather than standard ones. Figure 3.8
pictures how, for the instance in I13-280, the percentage of reconfigurable vehicles decreases
when their cost increases compared to the cost of standard vehicles. In this figure, the point
with coordinates (2%;12%) means that re-configurable vehicles are 2% more expensive than
standard vehicles, and in the cheapest solution found, 12% of the vehicles are reconfigurable. In
the same way, when reconfigurable vehicles are 20% more expensive than standard vehicles,
they are completely excluded from the solution.

The set of vehicle types considered in these experiments can be found in Table 3.9 and their
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respective costs in Table 3.10.
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Figure 3.8: Fixed cost impact of reconfigurable vehicles (Instance I13-280)

Configuration 1 Configuration 2 Configuration 3
Vehicle
type Seats Wheelchairs Seats Wheelchairs Seats Wheelchairs
V4 7 1 - - - -
V5 6 2 - - - -
V6 4 3 - - - -
V7 4 3 6 2 7 1

Table 3.9: Characteristics of vehicle types for fixed cost analysis

3.7 Conclusion

In this chapter, we investigated a new variant of the dial-a-ride problem characterized by en-
route reconfiguration of vehicle capacity. This feature was studied in the context of door-to-door
transportation of children with disabilities, considering heterogeneous users and vehicles. We
aimed to determine the size and composition of the fleet as a strategic decision. A matheuristic
based on Large Neighbourhood Search and a Reactive Set Covering Problem (LNS–RSCP) was
proposed to solve this problem for real instances of up to 295 user requests. Results on the real
data set showed significant performance compared with six other LNS-based metaheuristics
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3.7. Conclusion

Vehicle Fixed Time-related Distance-related
type cost cost cost
V4 €50 €23.81 /h €0.17 /km
V5 €50 €23.81 /h €0.17 /km
V6 €50 €23.81 /h €0.17 /km

(+2%) €51
(+6%) €53

V7 (+10%) €55 €23.81 /h €0.17 /km
(+20%) €60
(+30%) €65
(+40%) €70

Table 3.10: Costs of vehicle types for fixed cost analysis

variants. Experiments show that the SCP component increases not only solution quality but
also convergence speed. LNS–RSCP was also tested on literature instances that achieved
competitive results for the classic DARP and outstanding results in the heterogeneous DARP
with configurable vehicle capacity. Although en-route reconfiguration is not a usual practice
in companies, companies often own configurable vehicles, as in the case study. Yet route
designers do not plan routes considering this extra degree of flexibility. In this study we show
that companies can easily save up to 2.5% in the total cost just by allowing vehicles to use
en-route reconfiguration. Finally, we show that the utilization of reconfigurable vehicles is
strongly dependent on the vehicle ownership cost (fixed cost). For the evaluated instance,
supposing that all operations are the same on each day, we found that reconfigurable vehicles
are advantageous for companies when their cost are no more than 20% of the cost of standard
non-reconfigurable vehicles. Further research includes the extension of the problem studied in
this chapter with operational features. First, we plan to study passengers time consistency in a
multi-periodic transportation framework (see, e.g. Kovacs et al. (2014a); Feillet et al. (2014)).
Then, incorporating real-time information (traffic, variable demand) may require the use of
state-space-time networks with a fine time discretization (see, e.g. Mahmoudi and Zhou (2016))
and specific optimization algorithms such as the Dynamic Discretization Discovery (Boland
et al., 2017).
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Weekly transport problem:

The time-consistent dial-a-ride problem

In the context of door-to-door transportation of people with disabilities, service
quality considerations, such as maximum ride time and service time consistency, are
critical requirements. These requirements together with traditional route planning
define a new variant of the multi-period dial-a-ride problem called the time-consistent
DARP. A perfectly consistent planning defines for each passenger the same service time
all along the planning horizon. This planning can be too expensive for Medico-Social
Institutions that it is necessary to find a compromise solution between costs and time-
consistency objectives. The time-consistent DARP is solved using an epsilon-constraint
approach to illustrate the trade-off between these two objectives. In this chapter, the
time-consistency is defined by the number of different timetables for each user. Each
solution of the Pareto Front is computed using a matheuristic framework based on
a master set partitioning problem and a large neighborhood search procedure. This
approach is benchmarked in the context of time-consistent vehicle routing problem
with instances from the literature. The context of door-to-door transportation for
people with disabilities is also experimented by using real data provided by GIHP
Company. Those experiments allow us to propose some managerial insights regarding
the interaction between costs and service quality.

Keywords: Dial-a-ride problem, consistency, set partitioning, large neighborhood
search, inconsistency

67

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



Chapter 4. Weekly transport problem

4.1 Introduction

The design of efficient para-transit systems relies both on minimizing operational costs and
providing users with an adequate quality of service. In the operations research literature,
the Dial-A-Ride Problem (DARP) is a well-known optimization problem that consists of
designing minimal cost vehicle routes to fulfill a set of transportation requests while satisfying
several quality service requirements. Common applications concern door-to-door transportation
of elderly people or people with disabilities. In Medico-Social Institutions (MSI) in France,
transportation is considered as the main expense after wages ANAP (2016a). Transportation
plans are defined every year and partially revised several times a year whenever necessary. Due
to the high pressure on expenses, minimizing costs is often the main objective function of MSIs.

The DARP formulation considers a single period, typically half a day. Passengers are
generally subject to ride time constraints: they must not travel longer than a predefined
duration. In this chapter, we address the case of para-transit systems for people who need to be
transported regularly, for example, handicapped workers or scholars. The DARP formulation is
extended over multiple periods and each period has a known set of transportation demands
coming from passengers. Most passengers emit the same transportation demand every day but
it is common to observe variations (attendance, pickup or destination modifications according
to medical appointments...). A passenger demand variation may impact the schedule of other
passengers in its route. As a result, a need for regularity (or consistency) of service times is
expressed from passengers and MSIs: for medical, cognitive or convenience reasons, it is desired
that a passenger who has the same demand on several week-days has the same pickup/drop off
time these days. This chapter aims at designing an algorithm to be integrated into a dial-a-ride
application for passengers with regularity requirements.

This work has been motivated by a real-life case study in the area of Lyon, France. The
transportation in the area is mainly operated by a single carrier1 who works for multiple MSIs
with a fleet of adapted vehicles. Every morning, from Monday to Friday, disabled children from
the region are transported from their home to one MSI. In the afternoon, they are driven back
home. Without loss of generality, this chapter presents the result of our research for morning
trips. Thus, we address a multi-period dial-a-ride problem and study the trade-off between
service time consistency and transportation costs. As this problem introduces time consistency
within a DARP setting, we call this new variant the Time-Consistent DARP (TC-DARP). This
research has been conducted in tight cooperation with SMIs and the passenger transportation
company.

The chapter is organized as follows: Section 4.2 presents how the TC-DARP is related
to the existing literature in operations research. In Section 4.3, we give a formal definition
of the TC-DARP and formulate it as a mixed-integer linear program (MILP). Sections 4.4
presents a general approach for solving the TC-DARP. Sections 4.5 detailed the algorithm used

1GIHP: www.gihp-sa.com

68

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés

www.gihp-sa.com


4.2. Literature review

for generating the routes. In Section 4.6, computational results and management insights are
reported.

4.2 Literature review

The mono-period DARP of our application has been presented in Tellez et al. (2018b). We
focus our literature review on the consistency aspects that appear in the multi-periodic version
of the problem.

The integration of time consistency has appeared recently in the vehicle routing problem
(VRP) literature. Applications were first identified in the context of fast parcel delivery (Groër
et al., 2009) and rapidly extended to passengers transportation Feillet et al. (2014). Readers
interested in an extensive review of vehicle routing with consistency considerations can refer
to Kovacs et al. (2014a). Consistency is very routing problems that can be divided into three
main categories: service time consistency, driver consistency or territory consistency. Service
time consistency refers to visiting regular customers at approximately the same hour during
the planning horizon. As the main focus of our chapter, the service time consistency will be
detailed in the next section.

Driver consistency consists in minimizing the of different drivers assigned to each passenger
during the planning horizon. This aims at reinforcing the relationship between drivers and
passengers to improve the quality of service. Braekers and Kovacs (2016) computed the average
cost of a solution where each passenger is served by one, two and three drivers, respectively,
showing that a solution with two drivers can be near-optimal whereas solutions with one driver
are 10% costlier on average. Other approaches using soft constraints result in similar conclusions
(see Smilowitz et al. (2013); Milburn and Spicer (2013)). In Feillet et al. (2014), drivers are
assigned to routes a posteriori, so that service time consistency and drivers consistency are
considered as independent problems in a lexicographical way.

Territory consistency aims at increasing drivers’ efficiency through their knowledge of the
geographical area where they operate. A common way of addressing territory consistency is to
design independent districts in advance where independent routing problems are solved every
day. This approach was studied in Lei et al. (2012); Zhong et al. (2007); Smilowitz et al. (2013);
Schneider et al. (2015).

This chapter focuses on service time consistency applied to a Dial-a-Ride Problem (DARP).
In contrast to the VRP, the DARP considers one origin and destination for each user and
maximum ride time. The main applications of the DARP concern door-to-door transportation
of people, particularly elderly or disabled people (Ho et al., 2018; Lehuédé et al., 2014).
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Chapter 4. Weekly transport problem

4.2.1 Service time consistency models

Service time consistency consists in serving regular needs at approximately the same hour
during the whole planning horizon. This is either modeled by hard constraints, that is, imposing
an acceptable level of service time variation, or by soft constraints, that is, penalizing service
time variations in the objective function.

Groër et al. (2009) defined the maximum arrival time variation as the difference between
the latest and earliest service times during the whole planning horizon for each customer. This
consistent VRP (conVRP) is an extension of the multi-period VRP where the maximal arrival
time variation is bounded above by a constant value Lmax. However, this measure, initially
proposed for the small package shipping industry, has some practical drawbacks in the context
of people transportation.

Feillet et al. (2014) defines a passenger-oriented time consistency model based on the concept
of time-classes. The authors assume that very small variations (for example 1 or 2 minutes)
in-service time are not significant for users, especially considering approximations and variations
due to traffic conditions or unexpected events. What accounts for passengers is the number
of significantly different service times proposed in a week. Similar times are regrouped in the
same time-class. Regularity is then improved by minimizing the maximum number Cmax of
time-classes overall users. The difference between this measure and Lmax is highlighted in
Figure 4.1-4.2.

Monday Tuesday Wednesday Thursday Friday
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Figure 4.1: Solution with Cmax = 2 time-classes
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Figure 4.2: Solution with Cmax = 5 time-classes

Figures 4.1 and 4.2 represent the service time of a passenger in two distinct solutions. Each
vertical line represents the service time from Monday to Friday. In Figure 4.1, these times can
be regrouped into two intervals of 10 minutes width: [7:00-7:10] and [7:50-8:00]. This passenger
is said to have 2 time-classes. In Figure 4.2, service times are evenly spread between 7:00 and
8:00, leading to 5 time-classes. While both solutions have the same value Lmax = 1 hour, they
do not offer the same consistency to passengers as far as service time is concerned. In our
application, a measure based on the number of time-classes offers a better quality of service
than a solution measure with Lmax.

Nevertheless, there is one limitation related to using objective Cmax. It is the larges number
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4.2. Literature review

of time-classes in the solution overall passengers. Hence, a solution with 99% of users having
Cmax time-classes is equivalent to another solution having only 1% of users in the same situation.
To overcome this limitation, we propose a lexicographic optimization. We first minimize the
number of passengers from the highest to the lowest number of time classes: first passengers
with Cmax time-classes, then Cmax − 1, Cmax − 2 and so forth.

To the best of our knowledge, this approach is a new refinement of the Feillet et al. (2014)
model. Still, according to the passenger transportation company, many good trade-off solutions
fit between the cost-optimal solution with Cmax = 2 and the cost-optimal solution with
Cmax =1. According to the fair optimization literature Ogryczak et al. (2014), the proposed
model corresponds to a lexicographic minimax refinement of the min-max model, using counting
functions. We show that this lexicographic objective adapts well to the context of passenger
transportation.

4.2.2 Solution approaches for time-consistent routing problems

In the conVRP model introduced by Groër et al. (2009), the objective is to optimize service time
consistency (Lmax) without compromising a perfect driver consistency (1 driver per customer).
The authors proposed a record-to-record travel algorithm and developed benchmark instances
for up to 100 customers.

The consistency measure Lmax has been used in several subsequent papers (i.e. Sungur et al.
(2010); Tarantilis et al. (2012); Kovacs et al. (2014b, 2015a); Luo et al. (2015); Xu and Cai
(2018)). The current best results on Groër et al. (2009) benchmark instance set is obtained by
Xu and Cai (2018), who proposed a Variable Neighborhood Search procedure using dedicated
local search methods for quickly solving local optima. This approach is based on improving
template solutions generated by 3 different shaking methods. A problem extension, denoted the
genConVRP, is proposed by Kovacs et al. (2015a) in which: routes do not necessarily start at the
same time, customers are associated with AM/PM time windows and a maximum number of
drivers per customer is defined. Subramanyam and Gounaris (2016) proposes a branch-and-cut
framework to solve the consistent traveling salesman problem which is a particular case of
the conVRP using a single-vehicle. They solve randomly generated instances with up to 51
customers.

The Time-Consistent VRP (TCVRP) of Feillet et al. (2014) is solved with a dedicated
Large Neighborhood Search (LNS) framework. At each iteration, the routes of all periods are
destroyed. A VRP with multiple time windows and no waiting time (VRPmTW-nw) is defined
to reduce the number of time-classes of one passenger. A heuristic a branch-and-price is used
to recreate the routes. The minimum cost solutions for Cmax = 1 to 5 are saved in the process.

Another related work is the Time Window Assignment Vehicle Routing Problem (TWAVRP)
introduced by Spliet and Gabor (2015). In the TWAVRP, a single time window of fixed width
has to be assigned to some regular customers before the effective daily demand is known.
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Chapter 4. Weekly transport problem

The assignment is based on a set of demand scenarios, each one being associated with a
given probability. The objective is to minimize the expected traveling cost. The TWAVRP
is a particular case of the genConVRP if scenarios are seen as periods and the number of
drivers per user is set to infinity. However, the objective differs: genConVRP optimizes the
total transportation cost and TWAVRP the average transportation cost. A branch-price-and-
cut algorithm is proposed to optimally solve instances with up to 25 customers. Spliet and
Desaulniers (2015) proposes a variant called the discrete-time window assignment vehicle routing
problem where the chosen time windows are selected from a discrete set.

Consistency issues are also often related to having stochastic customers in the VRP (Ritzinger
et al., 2016). For example, Sungur et al. (2010) uses a combination of robust optimization in a
first phase master problem and stochastic programming with recourse for daily schedules to
address the uncertainty in service times and customer occurrence. Erera et al. (2009) investigate
the opportunity to give a main fixed route as well as a backup one to frequent customers in a
stochastic context.

Finally, the question of service time consistency presents some similarities with some non-
periodic applications such as the synchronization of multiple vehicles at the same node. In
this case, the arrival time of multiple vehicles at a given location should be synchronized to
perform a collective operation. Then, vehicles continue their routes independently. A survey on
synchronization in VRP is given by Drexl (2012).

4.2.3 Contributions to the literature

The literature review shows that there is still some gap between what has been proposed in the
literature and practical implementation of time consistency for a DARP application.

In this chapter, we use the notion of time-classes introduced by Feillet et al. (2014) and
explore solutions where some users accept several time-classes. Compared to the TCVRP
proposed in Feillet et al. (2014), we propose a refinement of the Cmax minimization approach.

Regarding the VRP attributes, we investigate a more realistic setting than Feillet et al.
(2014). In particular, we consider time windows and maximum ride times in a problem with
multiple MSIs (e.g. multiple pickup and delivery locations). As a result, solutions might contain
routes that contain waiting times. We keep the assumption that improving consistency by
artificially introducing waiting times within routes is not realistic for drivers. Similarly to
Kovacs et al. (2015a), we consider that the departure time of routes can be changed to improve
consistency.

As we consider a paratransit user application, we will refer to passengers or patients as
users in the remaining of the chapter.
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4.3. Modeling the consistent dial-a-ride-problem (TC-DARP)

4.3 Modeling the consistent dial-a-ride-problem (TC-DARP)

We consider a set of users U to be transported during a planning horizon T . Users may
require a particular space v ∈ V in the vehicle such as seats or wheelchair spaces. There is a
homogeneous fleet of vehicles based at a single depot o. The vehicle capacity is defined by a
vector Q = {Q1, . . . , Q|V|} representing the availability of each space type v ∈ V.

Each user u ∈ U has a pickup node denoted by pu ∈ P , a delivery node du ∈ D, a maximum
ride time T u, and a demand indicator βtu ∈ {0, 1} for each period t ∈ T . βtu = 1 if user u
requires transportation at period t and 0 otherwise. Each user can be serviced at most once on
any period. Note that if two users have a common origin or destination, nodes are duplicated
so that each pickup node and each delivery node has exactly one user.

The TC-DARP is defined on a directed graph G = (V,A) with the vertex set V = {P∪D∪o}
and the arcs set A contains arcs of the following forms: (o, i) where i ∈ P; (i, j) where
i, j ∈ P ∪D, i 6= j; and (i, o) where i ∈ D. Each node i ∈ V is associated with a service duration
ζi and a time window [ai, bi]. Every arc (i, j) represents the fastest path from node i to node j
and is associated with a travel time tij and a distance dij .

We propose a route based MILP formulation of the TC-DARP. A route is any feasible
sequence of nodes visited by a vehicle. Each route ω starts and finishes at node o and is
characterized by a set of visited pickup and delivery nodes. Every pickup or delivery node
i ∈ P ∪D on a route ω is associated with a time Hi,ω. Hi,ω is the earliest possible service time of
node i in a schedule of ω that minimizes its duration and respect time windows and maximum
ride time constraints for each user in the route. In addition, for each route a maximum forward
time shift ∆+

ω which represents the maximal amount of time by which its departure time can be
postponed, without violating any time window or ride time constraints. The detailed scheduling
procedure with the calculation ∆+

ω values is presented in Appendix B.0.4.
Each route ω ∈ Ω is operated by one vehicle. Each vehicle is associated: weekly ownership

cost λ, a cost per kilometer τ related the fuel consumption, and a cost per hour α related to
driver cost. The TC-DARP can be seen as a bi-objective problem which consists of selecting
a subset of routes from Ω such that all transportation requests on the planning horizon are
satisfied within their time windows and maximum rime times. The first objective is to minimize
the sum of fixed and variable traveling costs. The second objective is to minimize service time
inconsistency.

Note that we do not consider explicitly users with more than one address. Actually, time
consistency is meaningful for a given address. A person with two distinct addresses is modeled
as two different people (one per address).

Tables 4.1, 4.2 and 4.3 synthesizes the mathematical notations for the sets, data and variables
used in the TC-DARP mathematical model.

To model the problem, we introduce the binary decision variable ytω which is equal to 1 if
route ω ∈ Ω is selected at period t ∈ T . The binary variable ztuc is equal to 1 if user u ∈ U is
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Chapter 4. Weekly transport problem

U set of users
T set of time periods
Tu set of time periods in which user u ∈ U needs to be transported.
Ω set of all routes
Ωu set of routes serving user u ∈ U
C set of time-classes

Table 4.1: Sets

βtu equal to 1 if user u ∈ U must be serviced on period t ∈ T , and 0 otherwise
Cω variable cost of route ω ∈ Ω
λ weekly vehicle cost ownership cost.
Huω earliest time service to user u ∈ U by route ω ∈ Ω
∆+
ω maximum forward time shift of route ω ∈ Ω

Λ time-class width

Table 4.2: Data

Binary Variables
ytω ∈ {0, 1} =1 if route ω ∈ Ω is selected at period t ∈ T , and 0 otherwise
ztuc ∈ {0, 1} =1 if user u ∈ U is assigned to time-class c ∈ C at period t ∈ T , and 0 otherwise
µuc ∈ {0, 1} =1 if user u ∈ U uses time-class c ∈ C, and 0 otherwise

Other variables
δtω ∈ [0,∆+

ω ] time shift (used margin) of route ω ∈ Ω at period t ∈ T
s−uc, s

+
uc ∈ R+ lower and upper bounds for the time-class c ∈ Cu for user u ∈ U

htu ∈ R+ beginning of service for user u ∈ U at period t ∈ T
v number of vehicles needed for the whole planning horizon
mu number of users having c ∈ C time-classes (post-processed variable)

Table 4.3: Variables

assigned to time-class c ∈ C at period t ∈ T . Binary variables µuc indicate which time-classes
from set C are actually used by user u. For example, if u has 3 time-classes, it is said to use
classes 1, 2 and 3. Hence, µu,1 = µu,2 = µu,3 = 1. The shift of route ω ∈ Ω departure time at
period t ∈ T is expressed by continuous variables δtω ∈ [0,∆+

ω ].

Objectives

Two objective functions are defined for the TC-DARP. The first one is the minimization of
transportation costs and the second one is the minimization of time inconsistency. Transportation
costs are defined by the sum of fixed and routing costs. Fixed costs are related to the cost of
owning the vehicles. Then, the cost Cω of a route ω ∈ Ω depends on its duration (which may
include some waiting time) and on its length.
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4.3. Modeling the consistent dial-a-ride-problem (TC-DARP)

min f = λv +
∑
ω∈Ω

∑
t∈T

Cωy
t
ω. (4.1)

The second objective minimizes time inconsistency, which is modeled with a lexicographical
refinement of the time-class model proposed by Feillet et al. (2014). The expression which is
used in the MILP model is the following:

lexmin ĝ =
(∑
u∈U

µu|C|, . . . ,
∑
u∈U

µu2

)
(4.2)

This expression lexicographically minimizes the number of people having more than c time-
classes, where c decreases from |C| to 2. The expression

∑
u∈U

µuc counts the number of users

with c or more time-classes.
This is equivalent to the lexicographical minimization of the number of users with exactly

|C| classes, |C| − 1 classes, down to 1 classes. In the remaining of the chapter, we denote by

lexmin g =
(
m|C|, . . . ,m1

)
(4.3)

the alternative formulation of this objective, where mc denotes the number of users having
c time-classes. It is post-processed from the values of the µuc variables using the following
expressions: 

m1 = |U| −
∑
u∈U

µu,2

mc =
∑
u∈U

µuc −
∑
u∈U

µu,c+1 ∀c ∈ {1, . . . , |C| − 1}

m|C| =
∑
u∈U

µu|C|

(4.4)

Constraints

The set of TC-DARP feasible solutions is defined by the following constraints:

∑
ω∈Ωu

ytω = βtu ∀u ∈ U , t ∈ T , (4.5)

∑
ω∈Ω

ytω ≤ v ∀t ∈ T , (4.6)

∑
c∈C

ztuc = 1 ∀u ∈ U , t ∈ Tu, (4.7)

htu =
∑
ω∈Ru

(Huω y
t
ω + δtω) ∀u ∈ U , t ∈ Tu, (4.8)

δtω ≤ ∆+
ω y

t
ω ∀ω ∈ Ω, t ∈ T , (4.9)

s−uc ≤ htu +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (4.10)

htu ≤ s+
uc +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (4.11)

(4.12)
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Chapter 4. Weekly transport problem

s+
uc − s−uc = Λ ∀c ∈ C, u ∈ U , (4.13)

s+
uc ≤ s−uc+1 ∀c ∈ C/{|C|}, u ∈ U , (4.14)∑

ω∈Ru

ytr =
∑
c∈C

ztuc ∀u ∈ U , t ∈ Tu, (4.15)

ztuc ≤ µuc ∀c ∈ C, u ∈ U , t ∈ Tu, (4.16)

µuc+1 ≤ µuc ∀c ∈ C,∀u ∈ U , ∀t ∈ T , (4.17)

ytω, z
t
uc, µuc ∈ {0, 1} ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω, (4.18)

δtω, h
t
us
−
uc, s

+
uc, v ∈ R+ ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω. (4.19)

Constraints (4.5) are partitioning constraints ensuring the satisfaction of the users de-
mand. Constraints (4.6) count the number of vehicles needed during the planning horizon.
Constraints (4.7) state that each user served in period t ∈ T should be given a single time-class.
Constraints (4.8) determines the service time for each user of route ω when its departure is
shifted by the value δtω. Constraints (4.10) and (4.11) linearize the following logical expression:

zcut = 1⇒ s−uc ≤ htu ≤ s+
uc ∀u ∈ U , t ∈ Tu, c ∈ C. (4.20)

They state that if a user u is assigned to the time-class c at period t, then its service time
should be within the bounds of this time-class c. Constraints (4.13) set the width of a time-class.
Constraints (4.14) avoid overlap between time-classes. Constraints (4.15) links the number of
routes that serve one given user and the number of time-class variables. Constraints (4.16) define
variables µuc necessary for counting the number of time-classes of each user. Constraints (4.17)
ensures that time-classes are defined in increase order. For example, time-class #2 is allocated
to a user only if time-class #1 already exists and is not compatible with a given service time.
Finally, variables definition is given by constraints (4.18) and (4.19).

4.4 Solution method

In this section, we present the solution method to solve the bi-objective TC-DARP. This
method consists of a Master Set Partitioning Problem (MSPP) that is fed with a set of routes
generated through a Large Neighborhood Search algorithm (LNS). This section is structured as
follows: Section 4.4.1 presents the general matheuristic framework named MSPP that traces
the Pareto front between the two objectives of the TC-DARP. This framework relies on two
main components. Section 4.4.2 presents the first component of the framework that is the
construction of the initial solution. The second component is the mono-objective optimization
procedure of the TC-DARP presented in Section 4.4.3. Then, Section 4.4.4 presents the rules
to select the routes that are used during the solving.
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4.4. Solution method

4.4.1 The matheuristic framework (MSPP)

In this section, we present a general framework (see Algorithm 6) based on a ε-constraint
procedure to trace the Pareto front between the two objectives, the transportation cost f and
the time inconsistency g (see Figure 4.3). In a nutshell, the algorithm starts from the best
solution found with cost reduction objective and gradually improving the inconsistency objective
by allowing an increase of the transportation cost by ε percent to find new non-dominated
solutions along the Pareto front. The procedure stops when every user has 1 time-class.

 (inconsistency)

Pareto front (set of non dominated solutions)

Non dominated solution with one time-class per user

Non dominated solution with minimal cost

(cost)

Figure 4.3: Pareto

Algorithm 6 presents the MSPP framework. In this algorithm, the pool of routes L is
generated at the same time as the initial solution. Two solutions are defined, a temporal solution
S (line 3) and a best found solution S∗, initialized with the procedure described in Section 4.4.2
(line 4). This last procedure consists in solving a multi-period DARP with cost objective only.
Note that this procedure generates the pool L during the solving of the multi-period DARP.
This solution is required to find the cost upper bound f̄ (line 5).

Lines 7 to 15 describe an iteration of the algorithm. In order to find a new temporal solution
S two procedures detailed in Section 4.4.3 have to be executed (see Figure 4.4). The first
procedure is the optimization of the inconsistency g subject to a maximal cost f̄ (line 7).
The value of the best inconsistency found after this first optimization is g(S). Given that,
the procedure starts with a feasible solution S∗, the result of the first procedure ensures that
g(S) ≤lex g(S∗). The ≤lex operator represents a lexicographic comparison between the two
vectors. This comparison can also be an strictly lower, in that case written as <lex.
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Chapter 4. Weekly transport problem

Algorithm 6: Matheuristic framework (MSPP)
Data: ε : initial value epsilon, φ : Increase factor of epsilon,
Result: Pareto front
/* Initialization */

1 ParetoFront← ∅: Empty Pareto front
2 L ← ∅: Pool of routes
3 S ← ∅: temporal solution initially empty
4 S∗,L ← initialSolution() /* See Section 4.4.2 */
5 Set the cost upper bound: f̄ ← f(S∗)

/* Iterations */
6 while stopping criterion is met do

/* Optimize inconsistency and cost objectives, see Section 4.4.3 */
7 S,L ← solveTCDARP (lexmin g, f ≤ f̄ , S∗,L)
8 S,L ← solveTCDARP (min f, g ≤lex g(S), S,L)

/* Update solution */
9 if g(S) <lex g(S∗) ∨ f(S) < f(S∗) then

10 S∗ ← S
11 Update ParetoFront with solution S∗
12 else
13 Increase epsilon step: ε← φ× ε
14 end

/* End of one iteration */
15 Update epsilon constraint: f̄ ← f(S∗)× (1 + ε)
16 Limit the size of L to Nmax

17 end
18 return ParetoFront

The second procedure is the optimization of cost f subject to a maximal inconsistency g(S)
found in the previous optimization step (line 8). During these two procedures, L can be fed
with new routes.

If the temporal solution S is strictly better than S∗ for at least one of the objectives (i.e.
if f(S) < f(S∗) or g(S) <lex g(S∗), line 9) then solution S∗ is updated with S (line 10) and
solution S∗ is added to the Pareto front (if S∗ is a non-dominated solution, line 11). Otherwise,
the step ε is increased geometrically by φ (line 13).

At the end of each iteration, the maximal cost f̄ is updated, for the next iteration, based
on the cost of S∗ (line 15). Pool L is filled with the new routes at each iteration. Because the
size of L can be too large for regular computer memory, the size is limited to Nmax. Routes in
L are first ordered by the consistency-first criteria described in Section 4.4.4 and only the first
Nmax routes are kept in L (line 16).

In our case, the fleet size is not constrained, so it is trivial to show that it exists a extreme
point in the Pareto front such that every user has only one time-class (i.e. g = (0, . . . , |U|)).
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4.4. Solution method

(cost)

 (inconsistency)

       (temporal)

1) Optimize      subject to 
a maximal cost 

2) Optimize    subject to
a maximal inconsistency 

Figure 4.4: Pareto with the two optimization procedures of one iteration (Algorithm 6 lines 7
and 8).

Therefore the stopping criteria (line 6) is met when g = (0, . . . , |U|).

4.4.2 Solving the multi-period DARP (MP-DARP)

The set of non-dominated solutions of the TC-DARP defines a Pareto front in which one of
the extreme points corresponds to a solution with minimum cost but with a high number of
time-classes. This extreme point is found by solving a simplified version of the TC-DARP, called
multi-period DARP (MP-DARP) that ignores the consistency requirements. The MP-DARP is
modeled as follows:

min f =λv +
∑
ω∈Ω

∑
t∈T

Cωy
t
ω (4.21)

s.t.∑
ω∈Ru

ytω ≥ 1 ∀u ∈ U , t ∈ Tu (4.22)

∑
r∈R

ytr ≤ v ∀t ∈ T (4.23)

ytω ∈ {0, 1} ∀ω ∈ Ω, t ∈ T (4.24)

v ∈ N (4.25)
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Chapter 4. Weekly transport problem

The objective function (4.21) which is the same as equation (4.1) represents the trans-
portation cost. Constraints (4.22) are set covering constraints for demand satisfaction. Con-
straints (4.24) accounts for the number of vehicles v required. As a set covering model, this
problem can be easily solved optimally provided the number of routes remains reasonable.
Moreover, solutions of the MP-DARP provide feasible routes for the TC-DARP. Hence, the
MP-DARP model can be used to build a good initial solution for the TC-DARP.

Algorithm 7 presents the MP-DARP algorithm. A key element of this algorithm is the pool
of routes L. This pool is a set of non-strongly dominated routes defined as follows:

Definition 4.1. Strong route dominance. With ω and ω′ two routes, and Cω and Cω′ the costs
of these routes respectively, route ω is said to strongly dominated ω′ if Cω ≤ Cω′ and both
routes visit the same set of users in the same sequence.

So by definition and with the same notation, route ω′ is said to be non-strongly dominated
by ω if, ether both routes visit the same set of users in the same sequence and Cω > Cω′ , or
neither route visits the same set of users in the same sequence.

In this algorithm, the pool of routes L is initialized with non-strongly dominated routes
found during the solution of independent Dial-A-Ride problems, one for each period t ∈ T
(line 3). Each independent problem minimizes the total transportation cost composed of the
distance-related cost and the time-related cost.

The DARP of each period t is solved using the LNS-SCP framework presented in Tellez
et al. (2018b). This framework is a large neighborhood search based matheuristic that quickly
yields cost-efficient routes. This LNS-SCP framework uses a record to record procedures with a
temporary, current and best solutions. All the routes that were part of the current solution are
added to L.

In the MP-DARP, the inconsistency objective is not considered. So, the visiting times of
passengers are not relevant. Thus, this problem can be solved by using a subset of the pool L
considering only non-weakly dominated routes following definition 4.2. This subset is called
D(L).

Definition 4.2. Weak route dominance. Let us consider two routes ω ∈ Ω and ω′ ∈ Ω, with
respective costs Cω and Cω′ . Route ω is said to weakly dominate ω′ if both routes visit the
same set of users (in any order) and Cω ≤ Cω′ .

Each iteration of Algorithm 7 consists in four steps: 1) select a subset of non-weakly
dominated routes; 2) solve the MP-DARP with the routes selected ; 3) pool management, and 4)
update the best solution. This process iterates until MaxIter∗ iterations with no improvement
of objective value has been performed.

In step 1) a set of routes is selected from L (line 10).This set is enriched with projection
and complementary routes (see Definition 4.3) and added to the restricted pool of routes L′

(line 12). The set of selected routes L′ is obtained by first restricting L to D(L) and then by
applying one of the selection rules that will be described in Section 4.4.4.

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



4.4. Solution method

Algorithm 7: initialSolution
Data: tmax: solver time limit, Nc: number of selected routes, B: list of selection rules,

MaxIter: maximal number of iteration without improvement
/* Initialization */

1 L ← ∅: Pool of routes
2 for each period t ∈ T do
3 Add to L all non-strongly dominated routes generated by solving one DARP for

period t with LNS-SCP framework ;
4 end
5 S ← ∅: current solution
6 S∗ ← ∅: best solution found
7 L′ ← ∅: restricted pool of routes
8 itNonImp← 0: number of iterations without improvement of S∗

9 while itNonImp < MaxIter∗ do
/* 1. Select routes */

10 Select a subset l ⊆ D(L) of Nc non weakly dominated routes using a selection rule
o ∈ B

11 Add projection and complementary routes in l
12 Add route selected routes l to L′

/* 2. Solve the MP-DARP */
13 Create S by solving a MP-DARP with time limit tmax, pool of routes L′ and

warmstart on S∗
14 if at least one user is visited more than once then
15 Repair S to get all user visited exactly once
16 Add to L all new routes created during the repair
17 end

/* 3. Pool management */
18 if MP-DARP is not solved to proven optimality then
19 L′ ← ∅;
20 end

/* 4. Update best solution and itNonImp */
21 if f(S) < f(S∗) then
22 S∗ ← S
23 itNonImp← 0
24 else
25 itNonImp← itNonImp+ 1
26 end
27 end
28 return S∗,L

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



Chapter 4. Weekly transport problem

Definition 4.3. Projection and complementarity A route ω′ is called a projection of a
route ω on a period t ∈ T if it contains only the users of ω who have a demand at period t, in
the same sequence as in ω. The route ω′′ = ω \ ω′ is called the complementary route of ω′.

Definition 4.3 is illustrated by Figure 4.5. At period t, Route ω starts from depot D, serves
user requests 1, 2 and 3 and returns to the depot. If users 1 and 2 have a transportation request
at period t′ and user 3 does not, the route ω′ serving user requests 1 and 2 is the projection of
ω and the route ω′′ serving request 3 is the complementary of ω.

complementary route for period t'

D

D

Dprojection route for period t'

route for period t  p1

p1

p3

p3

p2

p2

D

D

D

d1

d1

d3

d3

d2

d2

Figure 4.5: Example of projection and complementary routes

In step 2), the MP-DARP instance formed by the pool L′ and S∗ is solved by a MILP solver
with a time limit tmax (line 13). If the best solution S∗ is not empty, S∗ is used to initialize the
MILP solver from a feasible solution. This initialization is called warm-start.

Given the presented MP-DARP formulation of is a set covering problem and not a set
partitioning problem, solution S may contain some users served by more than two routes. In
this case, the solution can be easily repaired by solving the MP-DARP with a new pool of
routes Ltemp and a warm-start on S (line 15). The new pool of routes Ltemp is initialized with
the routes of the solution S and enriched as follows. For each user u visited more than once in
S and for each route r that visit user u, a new route r′ identical to route r but that does not
visit user u is added to Ltemp. Finally, routes in Ltemp are added to L (line 16).

Step 3) (lines 18-20) performs pool management. The current pool of routes is cleared if
the MP-DARP could not be solved optimally. This mechanism aims to keep a manageable pool
size and it is inspired by previous works (see e.g. Grangier et al. (2017); Tellez et al. (2018b))
to maintain a manageable pool size.

Finally, the current best solution S∗ and the counter of iterations without improvement are
updated on Step 4) (lines 21-26). The possibility to use the previous solutions as a warm-start
has one main consequence, the value of the objective function can not increase after each
iteration. Given this property, when the value of the objective function does not change after
several iterations, we suppose the procedure has reached a local optimum. This is why the value
of itNonImp is used as a stopping criterion indicator.
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4.4. Solution method

4.4.3 Mono-objective optimization procedure

This section presents the procedure to solve the TC-DARP for one objective constrained by
a maximum value on the other objective. This procedure, detailed in Algorithm 8, is used in
Algorithms 6 to solve either the optimization of inconsistency subject to a maximal cost or the
optimization of cost subject to a maximal inconsistency.

Algorithm 8 uses the same structure as Algorithm 7. However, here the TC-DARP is solved
instead of MP-DARP and a new source of routes denoted Lnew, is introduced.

Input parameters for Algorithm 8 are the objective function z, the additional constraints k
which define the maximum accepted value for the second objective, the initial solution Sini, and
the pool of routes L. The main variables are the restricted pool of routes L′ (initially empty),
the current solution S, and the best found solution S∗ that is initialized to Sini (lines 2-6).

As for Algorithm 7, each iteration consists in four steps: 1) select routes; 2) solve an instance
the mono-objective TC-DARP; 3) pool management; and 4) update the best solution. This
process iterates until MaxIter iterations with no improvement of S∗ has reached (see line 7).

The set of selected routes is chosen by using the corresponding policy defined by one source
of routes s and one selection rule r. The source s provides a pool of routes from which the
selection rule r chooses a subset l. There are two distinct sources of routes, pool L and a new
pool called Lnew. If the source is pool L, we select a select a subset l of size N from L using the
selection rule r (line 10). Otherwise, the source is Lnew which is generated on the fly based on
solution S∗ (line 12). Lnew is particularly designed to be consistent with the current time-classes
of S∗. The procedure for generating Lnew is detailed in Section 4.5.

Similarly to source L, we select a select a subset l from Lnew using the selection rule r
(line 10). Then, Lnew is added to the pool L (line 14).

We define multiple selection rules. Each selection rule proposes a different way of choosing
routes from a source according to a given criterion. A detailed description of each rule is
presented in Section 4.4.4.

For diversification purposes, we define several policies combining the two sources and two
selection rules into an ordered list O. Policies are selected at each iteration sequentially, one
after the other, based on the following rule: the procedure jumps to the next policy in O if the
solution S∗ has not been improved in the last iteration. If the solution has been improved, the
same policy is kept for the next iteration. When the last policy in O is reached, the procedure
sets off again with the first policy.

As in Algorithm 7, the first step finishes when the selected routes and their projection and
complementary routes are added to the current pool L′ (lines 16 and 17).

In step 2, line 18, the TC-DARP is solved by optimizing the objective z subject to con-
straints ((4.5)-(4.19) and constraints k that limits the value on the other objective. When the
objective is the transportation cost, constraints (4.26) shall also be included to prevent µuc
variables to take arbitrary values and create empty time-classes.
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Chapter 4. Weekly transport problem

Algorithm 8: solveTCDARP( z, k, Sini, L )
1 Parameters: z: objective, k: additional constraints, Sini: initial solution, L: pool of

routes.
Data: tmax: solver time limit, N : number of routes to append each time in the pool,

MaxIter: maximum number of iteration without improvement, O: list of policies
Result: best solution found S∗

2 S ← ∅: current solution
3 S∗ ← Sini: best solution found
4 L′ ← ∅: restricted pool of routes
5 Initialize policies in O
6 itNonImp← 0: number of iterations without improvement of S∗

7 while itNonImp < MaxIter do
/* 1. Select routes */

8 Select the corresponding source of routes s and selection rule r from list O
9 if the source s is L then

10 Select a subset l ⊆ L of N routes using r /* see Section 4.4.4 */
11 else
12 Get new routes solving a DARP with multiple time windows:

Lnew ← solveDARPmTW (S∗) /* See Section 4.5 */
13 Select a subset l ⊆ Lnew of N routes using r /* see Section 4.4.4 */
14 Add new routes in Lnew to L
15 end
16 Add projection and complementary routes in l
17 Update pool L′ with routes from l

/* 2. Solve an instance of the mono-objective TC-DARP */
18 Create S by solving a TC-DARP with time limit tmax, objective z, additional

constraints k, restricted pool L′ and warmstart S∗

/* 3. Pool management */
19 if TC-DARP is not solved to proven optimality then
20 L = {}
21 end

/* 4. Update best solution and itNonImp */
22 if z(S) < z(S∗) then
23 S∗ ← S
24 itNonImp← 0
25 else
26 itNonImp← itNonImp+ 1
27 end
28 end
29 return S∗,L
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4.4. Solution method

∑
t∈Tu

ztuc ≥ µuc ∀c ∈ C, u ∈ U , (4.26)

The input routes are L′ and the constituent routes of S∗. The MILP solver is initialized
with the routes of S∗ to ensure to find a solution with at least the same performance as S∗ and
to increase convergence speed. The computation time for the solver is limited to tmax. When the
objective is lexmin g, the TC-DARP is solved multiple times following the hierarchical order
of the objectives {m|C|−1, . . . ,m1}. First we solve the problem minimizing m|C|. The result
obtained with this objective must then be considered in the model as a constraint. Then, we
have to solve the model minimizing m|C|−1, and the result obtained will not affect or reduce the
result obtained with the first objective. This process is done for all the objectives defined in g.

Finally steps 3 and 4 are identical and have the same function that steps 3 and 4 of
Algorithm 7 respectively. Step 3 performs pool management and Step 4 the best solution and
stopping criteria management.

4.4.4 Selection rules

When the restricted pool L′ becomes too large, the MILP solver cannot improve the given
initial solution. Hence, a key element is to select a subset of routes of reasonable size in L
(line 10) or Lnew (line 13). We present in this section three performance indicators used to
guide route selection and two route selection strategies called Sequential Selection and Random
Biased Selection.

Performance indicators used for route selection

To select routes efficiently, they have to be sorted by their expected performances in a weekly
solution. So we introduce several performance indicators that are used to evaluate each route
ω ∈ L:

• Fω: Solution cost. This is the best cost of the solution of which route ω has been part of.
Initially Fω is set to infinity. Each time a new solution S is found in Algorithm 6, Fω is
updated as follows: Fω = min{Fω, f(S)}.

• Gω: Solution inconsistency. This is the lowest inconsistency of the solution in which route
ω has been part of. Initially Gω is set to infinity. Each time a new solution S with route
ω is found, the performance is updated with the minimum value Gω = min{Gω, g(S)}.

Two sorting criterion are defined. The first sorting criteria is the cost-first criteria (Fω, C̄tω, Cω)
that lexicographically sort the routes in ascending order, first by the solution cost Fω, then
by the normalized sub-problem cost C̄tω and finally by the route variable cost Cω. The second
sorting criteria is the inconsistency-first criteria (Gω, Fω, C̄tω) that lexicographically sort the
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Chapter 4. Weekly transport problem

routes in ascending order, first by the solution inconsistency Gω, then by the solution cost Fω,
and finally by the normalized sub-problem cost C̄tω. This last criteria is used to limit the size
the L in Algorithm 6.

Sequential selection (SS)

The Sequential Selection (SS) rule is the first selection rule. The purpose of this rule is to
gradually cover the routes inside a pool of routes. This method sequentially chooses routes
differently according to a given objective. If the objective is to minimize costs, routes are sorted
with cost-fist criteria and if the objective is to minimize inconsistency, routes are sorted with
inconsistency first criteria. The SS rule starts by sorting routes of the pool.

From the sorted list, routes are processed one by one to finally select N routes. For each
route, we check whether it was selected in a previous call or not. If it was selected before, it can
be selected again with a probability of γ. Otherwise, it is always selected. The memorizing of
these selected routes is initialized at the beginning of Algorithm 8. Figure 4.6 shows an example
of SS with N = 6.

Selected route Available route Route selected in previous call

1st call

2nd call

3rd call

(...)

Figure 4.6: Example of 3 successive calls of the sequential selection rule with N = 6.

The mechanism used to select routes ensures that routers belonging to the same previous
solution (i.e. with the same overall performance, Fω or Gω), will be kept together. This
mechanism aims to increase the chances to find complete feasible solutions within the routes
selected. Nonetheless, this sorting step has to be performed each time the rule is called because
performance indicators such as Fω and Gω may change from one iteration to another.

Roulette wheel selection (RW)

The roulette wheel is the second selection rule. It is inspired by the roulette wheel mechanism
proposed in Pisinger and Ropke (2007). Similar to the SS rule, routes are first sorted according
to criteria (Fω, Ctω, Cω) if the objective is the cost minimization, and criteria (Gω, Ctω, Cω) if
the objective is the inconsistency minimization. Then N routes are chosen from the sorted
list l based on their position following the next rule: position=ξρ × |l|, where 0 ≤ ξ < 1 is a
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4.5. Route generation: DARP with multiple time windows

random number and ρ ∈ [1,+∞[. Because the list is sorted by decreasing performance, this
probabilistic choice assigns a higher probability to the routes with higher performance.

4.5 Route generation: DARP with multiple time windows

The MSPP framework is initialized with routes that have been generated by solving independent
DARPs. These routes are combined to form more consistent solutions. Nevertheless, time-
consistency can be improved by generating routes that are dominated in terms of cost (i.e.
routes which cost can be improved by modifying the sequence of visits).

These dominated routes, used in Algorithm 8 (line 12), may never be generated by the
LNS operators used to solve the DARP. This section describes the procedure used to generate
new routes that are likely to improve time-consistency. The proposed approach was inspired by
Feillet et al. (2014).

Section 4.5.1 presents the main process for the generation of a new set of routes denoted
Lnew. Section 4.5.2 presents how time windows are defined.

4.5.1 Main process for the generation of new routes

The process for generating new routes consistent with the current solution works as follows:

1. One user ū is selected randomly among the set of users that have the maximum number
of time-classes Cmax.

2. For each period t ∈ T , new routes are generated as follows:

(i) A set T Wt
u of multiple time windows are defined for each user u ∈ U according

to their service times: if u = ū, multiple times windows are defined to decrease its
current number of time-classes, while for the rest of users (u 6= ū) the number of
time-classes can be maintained (Section 4.5.2).

(ii) Routes are generated by solving an auxiliary Dial-A-Ride Problem with Multiple
Time Windows (DARPmTW) for the period t. The routes generated during this
process are gathered into a sub-pool of routes denoted Ltnew (Section 4.5.3).

3. The sub-pools Ltnew are gathered into a single pool denoted Lnew = ∪t∈T Ltnew and
returned to MSPP (line 12, Algorithm 8).

In Feillet et al. (2014), the TC-VRP does not have time windows. The auxiliary problem
solved is a vehicle routing problem with multiple time windows and no waiting time (VRPmTW-
nw). The multiple time windows help to define new routes that can decrease the number of
time-classes for user ū. Waiting times are forbidden since the insertion of unnecessary waiting
times could artificially improve consistency.
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Figure 4.7: Construction of W(H, u) = {TW1, TW2} for user u with pickup time windows
[apu , bpu ] and H = {h1
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u}.

In our case, the initial problem integrates time windows. The sub-problem is a Dial-A-Ride
Problem with Multiple Time Windows and minimal route duration (DARPmTW). Routes
may integrate waiting times due to time windows but waiting times that artificially improve
time-consistency are still forbidden.

4.5.2 Definition of time windows for the DARPmTW

Let T Wt
u be the set of multiple time windows to be defined for each user u ∈ U in the

DARPmTW solved to generates new routes for the period t. If u = ū, T Wt
u is defined in order

to decrease its current number of time-classes, while for the rest of users (u 6= ū) T Wt
u is

defined such that the number of time-classes can be maintained.
Let us recall some notation: we consider a user u ∈ U with pickup time window [apu , bpu ], the

subset of time periods with transportation demands Tu ⊆ T and variables htu representing the
pickup service time of user u at period t ∈ Tu. We denote by µ(H) the number of time-classes
for the set of service times H. So µ(Hu) is the number of time-classes of user u. The service
times are allocated to time-classes as in Feillet et al. (2014).

In the formal definition of T Wt
u, we use a function W(H, u). This function returns a set

of time windows within [apu , bpu ]. Any service time inserted in these time windows will not
create a new class. This is illustrated on Figure 4.7. The detailed construction process is given
in Appendix B.0.1.

For each user u ∈ U , the answers to the following two yes/no questions determine how the
multiple time windows T Wt

u are defined:

Q1 Is u the selected user ū?

Q2 Is the number of time-classes of user u decreased by 1 if the service time htu at period t is
removed? This question can be answered by checking if the inequality |µ(Hu \ {htu})| <
|µ(Hu)| holds.
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4.5. Route generation: DARP with multiple time windows

The answers to questions Q1 and Q2 yield four ways to define multiple time windows:

Yes/Yes Changing the service time htū to any service time in the time windows T Wt
ū has to

decrease the number of time-classes for this user. So T Wt
ū = T W(Hū \ {htū}, ū).

Yes/No Let [etū, ltū] ∈ T W(Hū, ū) be the time window satisfied by service time htū (etū ≤ htū ≤
ltū). Defining T Wt

ū = T W(Hū, ū) \ {[etū, ltū]} will enforce a decrease in the number of
time-classes for this user.

No/Yes In this case, the service time htu defines a time-class on its own, so T Wt
u = {[apu , bpu ]}.

As a result, any feasible service time at period t can be accepted.

No/No We distinguish two possibilities. In the first one, T Wt
u is defined similarly as in case

Yes/No. This possibility is selected with a probability ν = θ × (Cmax − µ(Hu)), where
Cmax is the maximum number of time-classes in the current solution, and θ is a fixed
parameter. In the second one (selected with probability 1− ν), time windows T Wt

u are
set as in Case No/Yes. This may generate routes that increase the number of time-classes
of this user. However, as in Feillet et al. (2014), we observe that this temporary relaxation
helps decrease the number of time-classes of user ū.

These four cases are summarized in Table 4.4.

Q2: µ(Hu \ {htu}) < µ(Hu)?
Yes No

Q
1:
u

=
ū
?

Y
es T Wt

ū = T W(Hū \ {htū}, ū) T Wt
ū = T W(Hū, ū) \ {[etū, ltū]}

N
o T Wt

u = {[apu , bpu ]} With probability ν: T Wt
u = T W(Hu, u) \ {[etu, ltu]}

Otherwise: T Wt
u = {[apu , bpu ]}

Table 4.4: Overview of cases for the definition of T Wt
u.

4.5.3 Solving the DARPmTW

The DARPmTW is solved by adapting the LNS-SCP algorithm proposed by Tellez et al.
(2018b). The LNS-SCP algorithm has been designed to solve a single period DARPs with a
single time window at each pickup or delivery point. We extended it to handle multiple time
windows. Additionally, routes should not include unnecessary waiting times that artificially
improve time consistency at the cost of increasing waiting times. To the best of our knowledge,
the DARPmTW has not been treated in the literature.
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Chapter 4. Weekly transport problem

The LNS-SCP algorithm is a Large Neighborhood Search (LNS) procedure in which a Set
Covering Problem (SCP) is periodically solved to improve the current solution. As the SCP
component cannot handle multiple time windows, we do not consider it here. Each iteration of
the LNS procedure consists in partially destroying and repairing the current solution through
dedicated heuristics. The repairing heuristic must build new feasible routes, and thus satisfy a
set of timing and capacity constraints. The introduction of multiple time windows led us to
modify the scheduling algorithm which embeds the time-feasibility check. We have developed an
extension to the classic scheduling algorithm proposed in Tang et al. (2010) that tests whether
the multiple time windows T Wt

u are satisfied once all other constraints are satisfied.

Solving the multiple time-windows scheduling problem

The scheduling procedure aims to determine if there is a schedule that satisfies timing constraints
at each node of a given route. Besides the set of multiple time windows T Wt

u, each user in the
route has the original constraints defined in Section 4.3. That is a maximum ride time T̄u, a
pickup time window [apu , bpu ] and a delivery time windows [adu , bdu ].

The scheduling algorithm consists of two sequential phases. In the first phase, it solves a
classing DARP scheduling problem considering only the original constrains. This problem has
been studied by Tang et al. (2010); Gschwind, Timo (2015) and Tellez et al. (2018b). We use
the scheduling algorithm presented in Tellez et al. (2018b). Given a route ω ∈ Ω, this algorithm
checks time feasibility and, if the route is feasible, computes service times following the next
lexicographic criterion: 1) minimize route duration, 2) schedule service times as early as possible.
At the same time, a maximum forward time shift ∆+

ω is computed. This value indicates how
much the route schedule can be shifted forward while preserving both its feasibility and the
route duration. The detailed procedure can be found in Appendix B.0.4.

Given the scheduling obtained in Phase I, Phase II checks the satisfaction of multiple time
windows without increasing the duration of the route. Phase II is described by Algorithm 9.
Note, the satisfaction is verified at pickup nodes because the time consistency is only defined at
pickups times.

Each iteration of Algorithm 9 corresponds to the feasibility check of the service time at the
current node. Nodes are considered sequentially following the route sequence. This algorithm
visits all nodes and chooses a feasible service in a time window for each pickup node or detects
infeasibility. The only lever to modify service times is the maximum time shift of the route:
service times can be delayed by at most ∆+

ω units without violating any timing constraint
nor increasing the route duration. Each time the schedule has to be shifted forward to ensure
feasibility, the value of ∆+

ω is decremented by the value of the corresponding time shift.
In lines 5-20, the algorithm checks time windows T Wt

u until finding a feasible one (line 5).
Three cases are considered: (i) If service time takes place before the opening of the time window
(wni < a), the route is shifted forward by the quantity wni − a, so that the new service time is
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4.5. Route generation: DARP with multiple time windows

Algorithm 9: Phase II: Scheduling extension for solving the DARPmTW
Input: ω: Route with minimal duration and nodes from n0, . . . , nN being the first and

last node the depot, T Wt
u : Set of multiple time windows sorted in ascending

order, wi : service time at node ni, ∆+
ω : maximum forward time shift of the

route.
Output: if route ω is feasible or unfeasible

1 i← 1
2 while i < N do
3 if ni ∈ P then
4 u← user with pickup ni /* Implies ni = pu */
5 for each time window of the form [a, b] in T Wt

u do /* time windows */
6 if wni < a then
7 δ = a− wni

8 if δ < ∆+
ω then /* feasible forward time shift */

9 for each node j in ω do
10 wj = wj + δ

11 ∆+
ω ← ∆+

ω − δ
12 i← 1
13 go to line 3 /* feasible pickup */

14 else
15 return unfeasible

16 else if wni ≤ b then
17 i← i+ 1
18 go to line 3 /* feasible pickup */

19 else
20 T Wt

u ← TWt
u \ {[a, b]}

21 return unfeasible
22 i← i+ 1
23 return feasible

exactly a. After shifting the route, the algorithm starts over the scheduling procedure with the
first node because this shift can provoke time windows violation at another node (line 9-12). If
the value wni − a is larger than ∆+

ω , then the route schedule is unfeasible (lines 14-15). (ii) If
the service time at current node takes place in time window [a, b], then the next node is checked
(lines 16-18).

(ii) If the service time takes place after the end of the time window (ni > b), the time
window [a, b] cannot be used. it is removed from the set T Wt

u (lines 19-20) and the next time
window is checked. If there is no more time window available in T Wt

u, infeasibility is detected.
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Chapter 4. Weekly transport problem

4.6 Computational experiments

The matheuristic described in Section 4.4.1 was coded in C++ and the mathematical models
were solved with CPLEX Concert Technology 12.6 running on a single thread on an Intel Xeon
E5-1620 v3 @3.5Ghz processor.

This section details computational experiments one these two families of instances. It is
structured as follows: Section 4.6.1 presents the value of parameters used by our algorithms.
Section 4.6.2 introduces the instances used to evaluate our approach. They are built from real
data provided by the GIHP Company. Section 4.6.3 evaluates the main components of the
matheuristic approach. In Section 4.6.4, the MSPP is assessed on benchmark instances (Groër
et al. (2009), Feillet et al. (2014)) for the time-consistent VRP. Finally, Section 4.6.5 presents
managerial insights regarding cost performances and time consistency.

4.6.1 Parameters settings

After preliminary tests on a representative subset of instances, parameters shown in Table 4.5
were found to provide the best average performance.

Global parameters
ε = 0.01 initial value of epsilon
φ = 1.5 epsilon increase factor
Itmax = 4 maximum number of iterations without improvement
N = 100× d|U|/100e number of routes to be appended to the pool at each call of the TC-DARP
Nc = N × |T | number of routes to be appended to the pool at each call of the MP-DARP
tmax = 60s MILP solver time limit
Nmax = 50000 size of the pool L
Nnew = 5000 maximum number of routes in Lnew

Parameters route policies
θ = 1% probability of relaxing non-target users in the DARPmTW
γ = 10% percentage of routes that can be re-selected in the sequential selection rule
ρ = 6 roulette wheel parameter

Table 4.5: Parameters MSPP (all defined in Sections 4.3-4.5).

The value of parameter ε has a strong impact on the computing time. A higher value of ε
enables to decrease the computation time, however, the quality of the Pareto front approximation
is considerably deteriorated. Thus, ε = 0.01 seems to be a good trade-off between computing
time and the quality of the solution. The MSPP is less sensitive to parameter φ but its value
needs to be greater than 1.5 to have a significant impact on the value of ε.

We found that a Itmax greater than 4 does not improve the quality of each point of the
Pareto front. Parameters N and tmax were determined to maximize the number of times the
MILP solver can solve the TC-DARPs to proven optimality. In the same way, the parameter
Nc was determined to solve the MP-DARP. Note that parameter Nc is much bigger than N
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4.6. Computational experiments

because the MP-DARP contains less binary variables (so is an easier problem to solve) than
the TC-DARP.

To keep the number of routes in memory under control, limits in the maximum size of the
pool L and of the Lnew were set to 50000 routes and 5000 routes, respectively.

The choice of selection rules for the MP-DARP and route policies for the TC-DARP are
the followings:

• Selection rules MP-DARP: B = {SS}

• Route policies TC-DARP: O = ({L, SS}, {Lnew, SS})

SS stands for the sequential selection rule and Lnew the pool generated through the DARP
with the multiple time windows (see Section 4.4.2).

4.6.2 Description of instances

The time-consistent DARP studied in this chapter arose in the context of transportation of
people with disabilities. We collected real data from the GIHP Company based in Lyon, France.
This data concerns the transportation of hundreds of persons (users) to MSIs. We decomposed
this data according to geographical areas and built 8 small instances with 60 to 80 users, 4
medium-size instances with 120 to 160 users, and 2 large instances with 280 to 295 users. We
assume an infinite homogeneous fleet; each vehicle has a capacity of 4 seats and 3 wheelchair
spaces. Vehicles cost are composed of an hourly cost α =23.8e and a cost per kilometer
τ =0.17e. Additionally, we artificially set an arbitrarily small vehicle fixed cost of λ = 1 to
favor solutions with the same variable cost but fewer vehicles.

Travel times and distances are obtained from the Open Source Routing Machine2 (OSRM)
proposed by Luxen and Vetter (2011). For each user u ∈ U , we defined maximum ride times
according to direct travel time tpu,du between the pickup location pu and the delivery location
du. The following formula generates maximum ride times (RT ) that are between 15 and 30
minutes larger than direct travel times: RT = 15× d(tpu,du + 15)/15e.

Time windows at MSIs are 15 minutes wide. The size of time-classes is 10 minutes wide.
Finally, time windows at pickup locations and service times strongly influence the actual design
of routes, but their impact is independent of the efficiency of our solution method. Thus, we
ignored them for the sake of simplicity.

4.6.3 Evaluation of the metaheuristic components

In this section, we present the tests that we used to evaluate the main components of the
proposed matheuristic MSPP. We compare several settings of the algorithm on a representative
sample of five instances of different sizes. Five runs are performed for each instance and setting.

2http://project-osrm.org/
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Chapter 4. Weekly transport problem

Comparison based on time-classes

In this test we compare transportation costs for the cheapest solution found time-class. Although
these instances have 5 time periods, users in non-dominated solutions present at most 3 time-
classes. Thus, for each run, we report the value of the cheapest solutions found with 3, 2 and 1
time-classes, respectively. Table 4.6 reports the corresponding computational results.

Instance Best MSPP-noDARPmTW MSPP-withRW MSPP

Cmax 3 2 1 3 2 1 3 2 1 3 2 1

C01_60 1291.03 1291.73 1345.41 0.11% 2.15% 19.20% 0.11% 0.58% 5.17% 0.11% 0.32% 2.52%
C02_80 2523.21 2528.83 2561.40 0.01% 0.20% 3.74% 0.01% 0.26% 1.09% 0.01% 0.40% 0.49%
C09_135 2857.18 2863.86 3107.12 0.34% 0.93% 15.46% 0.34% 0.99% 8.69% 0.34% 1.22% 3.74%
C10_160 2621.34 2621.34 2779.06 0.19% 1.04% 19.75% 0.14% 0.78% 10.07% 0.15% 0.70% 5.88%
C12_280 7712.22 7730.04 9487.86 0.26% 0.54% 10.25% 0.26% 0.82% 3.55% 0.27% 1.22% 3.67%

Avg 0.18% 0.97% 13.68% 0.17% 0.69% 5.72% 0.17% 0.77% 3.26%

Table 4.6: Avg Gaps of MSPP variants for solutions with a Cmax of 3, 2 and 1 time-classes.

The instance name is reported in Column 1. Columns 2-4 present the value of the objective
function of the best solutions found regardless of the run and the setting. The best results
are shown in boldface. In the next columns, we report the relative gap between the average
cost obtained with the corresponding selection rule and the best solution found (Best). It is
computed as (Avg Cost - Best) / Best×100. Row Avg is the average value of the corresponding
column.

Three variants are tested. The variant called MSPP-noDARPmTW that does not consider
the route generation solving a DARPmTW. The second variant MSPP-withRW with an
additional selection rule named Roulette Wheel. Finally, the MSPP considers the sequential
selection rule and the DARPmTW. Detailed routes policies of each variant can be found in
Appendix B.0.3.

The first observation of Table 4.6 is that average values (Avg) among variants differ
significantly only in solutions with one time-class Cmax = 1. Comparing MSPP-noDARPmTW
to MSSP, we observe that the DARPmTW brings significant improvement in the quality of
solutions with 1 time-class. Comparing the MSPP-withRW to MSPP, it can be seen that the
based on Roulette Wheel procedure does not drive to a significant improvement in solutions
with 3 and 2 time-classes and worsen the performance of single class solutions. According to
this experiment, MSPP configuration seems to outperform other variants.

Considering only the cheapest solution of each time-class is not enough to evaluate the
quality of Pareto fronts produced for each variant. Moreover, this study examines intermediate
solutions between these points. In the next section, we present a deeper study of solutions
with 2 time-classes computing the hypervolume of the curve which consider all non-dominant
solutions found.
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4.6. Computational experiments

Comparison based on the quality of the Pareto front

The hypervolume indicator was introduced by Zitzler et al. (2002) in order to compare different
Pareto fronts. In multi-objective problems, the hypervolume measures the volume between the
set of non-dominated solutions and a reference point. In this study, we use nadir point as a
reference point which is an artificial point compose by the best value found on each objective.
The larger the hypervolume indicator, the better is the front Pareto (Zitzler et al., 2002).

Table 4.7 reports hypervolume results for the instances and variants presented in the previous
section.

Avg Gap hypervolumes

Instance Best MSPP-noDARPmTW MSPP-withRW MSPP

C01_60 9979.72 28.93% 3.91% 1.88%
C02_80 2788.82 19.04% 5.61% 4.06%
C09_135 32847.86 20.34% 5.94% 5.36%
C10_160 32969.07 26.48% 4.68% 3.25%
C12_280 253897.10 13.42% 6.49% 6.82%

Avg 21.64% 5.33% 4.28%

Table 4.7: Avg Gap(%) with respect to the best hypervolume (5 runs)

The instance name is reported on Column 1. Column 2 presents the best hypervol-
ume found regardless the run and the setting. The best results are shown in bold face.
In the next columns, we report the relative gap between the average value hypervolumes
with the corresponding setting and the best hypervolume found (Best). It is computed as
(Avg hyperpervolume - Best) / Best × 100. Row Avg is the average value of the corresponding
column.

The first observation of Table 4.7 is that MSPP has the best results in 4 out 5 instances.
Surprisingly the MSPP-withRW provides slightly better results in the biggest instance. Com-
paring the average values (Avg) of MSPP-noDARPmTW against MSSP, we conclude that
DARPmTW generate routes that significantly improve the solution quality (21.6%).

Overall we can confirm with this experiment that MSPP configuration outperforms other
variants. As an example, Figure 4.8 shows graphically the difference of 3 Pareto Fronts of the
same instance I01_60 using the 3 MSPP variants.

4.6.4 Performance evaluation on benchmarks from the literature

Since the TC-DARP is a new problem, there is no benchmark in the literature. However, to
evaluate the performance of the MSPP, we solve reference instances for two other time-consistent
routing problems. The first benchmark is an adaptation of the conVRP instances from Groër
et al. (2009) called RconVRP. This adaptation, proposed by Feillet et al. (2014), transforms
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Figure 4.8: Comparison Pareto front instance C01_60

conVRP instances into TC-VRP compatible. RconVRP instances consider up to 12 users over 3
days. Due to the instance size, comparisons against the exact solutions found by a MILP solver
are presented. The second benchmark set is the TC-VRP from Feillet et al. (2014). Instances
for up to 65 users over 5 time periods are proposed.

Although TC-VRP is the closest problem to the TC-DARP, there are some differences
between both problems. The TC-VRP has the following limitations: (i) it has a single depot
and no time windows; (ii) it assumes a limited fleet of vehicles; (iii) the objective function is to
minimize Cmax; and (iv) routes must start at time 0 and no waiting time is allowed.

Nevertheless, every instance of the TC-VRP can be converted into an instance of the
TC-DARP by defining one copy of the depot for each request. Ride times and time windows
are relaxed by setting arbitrarily large values. Finally, since the VRP routes are no subject to
time windows nor ride times, routes can be traveled in either direction. Thus, each time a route
is appended to the pool, the reverse route is also appended.

RconVRP instances by Feillet et al. (2014)

This benchmark proposes 10 small instances of the TC-VRP. The first 5 instances with 10
users and the next 5 with 12 users. Due to the size of the instances, we solved the instances
optimally by using CPLEX for an exact comparison. Table 4.8 presents the comparison with
the MSPP over 10 runs.

In columns 2-4, optimal solutions (Opt Cost) for each time-class are presented. In the next
3 columns, we report the average performance of the MSPP for each time-class. Note that the
MSPP could not find most of the solutions with 3 time-classes and one with 2 time-classes.
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Instance Opt. Cost Ours (MSPP)

Cmax 3 2 1 ≤3 ≤2 1

RconVRP10-1 92.91 92.91 92.91 92.91 92.91 92.91
RconVRP10-2 80.42 80.42 80.96 80.42 80.42 82.83
RconVRP10-3 94.12 94.12 94.37 94.12 94.12 94.37
RconVRP10-4 93.71 93.71 94.09 93.71 93.71 94.09
RconVRP10-5 83.84 83.84 96.01 83.84 84.50 96.70
RconVRP10-1 103.65 103.65 104.40 103.65 103.65 109.19
RconVRP10-2 73.89 73.89 81.25 73.89 73.89 83.40
RconVRP10-3 82.77 82.77 83.12 82.77 82.77 83.12
RconVRP10-4 97.57 97.57 101.91 97.57 98.55 104.31
RconVRP10-5 83.63 83.63 89.25 83.63 83.63 91.38

Avg Gap (%) 0.0% 0.2% 1.5%

Table 4.8: Benchmark RconVRP instances from Feillet et al. (2014)

For each instance, the Gap is computed as ( Avg Cost - Best) / Best × 100. The last row is
the average gap (Avg Gap) overall instances which is the average value of the corresponding
column.

For single time-class solutions, the MSPP found 4 out of 10 instances are optimal solutions
in the 10 runs. The average gap is 1.5%. The performance is better with 2 time-classes as 7 out
of 10 solutions are optimal and an average gap is 0.2%.

Instances TC-VRP

This benchmark was built from real data collected in 14 distinct MSIs, with several users
ranging from 15 to 65, and 5 time periods (Monday to Friday). For each MSI, 5 profiles
of transportation requests were randomly generated, where the average percentage of users
requests varies between 50% to 90% every day. This leads to a total of 70 benchmark instances.

Transportation cost of solutions with 1 to 5 time-classes are provided for most instances.
Feillet et al. (2014) solved the TC-VRP with an LNS-based matheuristic with a time limit of 1
hour. However, the MSPP does not stop until all users reach a single class. For each value of
Cmax, our lexicographic optimization explores all non-dominated solutions. This approach is
more time consuming but returns a more complete Pareto Front that can help decision-makers
to select appropriate solutions.

Tables 4.9 and 4.10 shows the average gap of the MSPP with respect to the LNS method,
aggregated in two different ways. For each instance, we compute the gap as (Cost MSPP −
Cost LNS)/Cost LNS × 100. Thus, any negative gap represents an improvement.

Table 4.9 shows the numerical results aggregated by the percentage of presence during
the week. For example, data-5-Y aggregates instances where, on average, 50% of users are
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transported each day, while in the group data-9-Y the average percentage of users transported
rises to 90%.

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

data5-Y -1.10% -1.00% -1.02% -0.21% -0.37%
data6-Y -1.03% -1.03% -0.81% -0.26% 0.83%
data7-Y -1.09% -0.96% -0.86% 0.13% -0.13%
data8-Y -1.06% -1.00% -0.72% 0.00% -0.25%
data9-Y -0.61% -0.61% -0.49% -0.27% -1.76%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%
Nb Sols 70 70 70 70 70
Nb new BKS 63 59 53 35 35

Table 4.9: Results aggregated by percentage of users requests on Feillet et al. (2014) benchmark

The average relative gap (Avg Gap) overall instances between the results obtained with
the MSPP and the LNS was improved for all time-classes. However, slightly better results are
reported for solutions with 3, 4 and 5 time-classes. This result is confirmed with the number
of new best know solutions (Nb new BKW) which is more than 50 for solutions above 3
time-classes and 35 for solutions with 1 and 2 time-classes. A total number of 245 strictly new
best solutions were found, as shown on the last row of the table. Detailed results can be found
in Appendix B.1.

Table 4.10 shows the numerical results aggregated by MSI. The last two digits of the instance
name represent the number of users. This table shows that MSPP has better performance with
larger size instances. However, particularly dataX-59 instances are the most difficult to solve
for the MSPP with an over the cost of 3.41% for Cmax = 2 solutions and 2.39% for Cmax = 1
solutions.

4.6.5 Managerial insights about time-consistency and transportation costs

This section provides a set of managerial insights regarding the relationship between time-
consistency and transportation costs. Figures 4.9-4.11 show the Pareto Front obtained on GIHP
instances with 60, 160 and 280 users respectively. Transportation cost is presented as the cost
increase percentage with respect to the cheapest solution found on that instance (x-axis). The
time consistency of non-strongly dominated solutions is shown in a vector form on the vertical
axis. Each element of the vector represents the number of users having 3, 2 and 1 time-classes
on that solution, respectively. Note that solutions with 4 or 5 time-classes are not represented
in our tests because they have always been dominated by a solution with 3 time-classes.

These Pareto fronts provide decision-makers with a fine intuition of the cost of time-
consistency associated with each user. A first observation is that all Pareto Fronts start with
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4.6. Computational experiments

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

dataX–15 0.03% 0.03% 0.00% 0.47% 3.04%
dataX–21 -0.15% 0.07% 0.18% 0.24% 1.53%
dataX–25 -0.21% -0.06% 0.01% 0.19% 0.53%
dataX–26 -0.21% -0.21% -0.03% 0.04% 0.08%
dataX–27 -0.27% -0.12% -0.16% 0.03% -0.93%
dataX–32 -0.54% -0.54% -0.19% 0.10% 0.49%
dataX–41 -1.15% -1.15% -1.65% -1.19% -2.46%
dataX–44 -0.75% -0.75% -0.61% -0.72% -1.19%
dataX–46 -1.05% -1.05% -0.62% -0.18% -0.34%
dataX–48 -1.24% -0.98% -0.77% -0.20% -1.38%
dataX–55 -1.91% -1.91% -1.63% -0.92% -4.84%
dataX–59 -2.17% -2.12% -1.62% 3.41% 2.39%
dataX–64 -2.30% -2.30% -2.14% -1.66% -0.18%
dataX–65 -1.77% -1.79% -1.71% -1.33% -1.42%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%

Table 4.10: Results aggregated by instance size on Feillet et al. (2014) benchmark
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Figure 4.9: Pareto front C01_60
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Figure 4.10: Pareto front C10_160

the majority of users having a single time-class and very few users with 3 time-classes. With a
minor cost increase percentage, all users have at most 2 time-classes (until the dotted line). This
means that a useful consistent solution can be found with respect to the cost of the cheapest
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Figure 4.11: Pareto front C12_280

solution, and a small cost increase percentage can significantly improve the situation of highly
inconsistent users.

Depending on the instance size, the cost increase percentage for reaching single class solutions
can vary from 4% in C01_60 to 23% in the C12_280 instance. Note that values in the y-axis
are ordered but non-scaled as the distance between points is always constant. To draw a scaled
and readable Pareto Front, we reduce the scope of solutions and focus on a single time-class.
As an example, Figure 4.12 shows the instances scaled for solutions with a 2 time-classes. The
y-axis presents the percentage of users in that instance with having 2 time-classes.

4.6.6 Economic impact route time shift

In this section, we compute the impact of flexible departure time of routes on time-consistency.
This effect has been studied by Kovacs et al. (2014b) for the conVRP, showing that departure
time flexibility provides considerable improvement in the solution quality under tight consistency
requirements. As far as the TC-DARP is concerned, the departure flexibility is limited by
time-windows and maximum ride-time constraints. Routes departure can be scheduled at any
time between its earliest and its latest departure date. We define the maximum time shift as
the difference between these two schedules. The maximum time shift of route ω is denoted ∆+

ω .
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Figure 4.12: Scaled Pareto fronts

Table 4.11 measures the impact of the departure time shift on the complete set of GIHP
instances. Columns 2–4 present the best results on 5 runs of the MSPP when the route time
shift is allowed, for values of Cmax decreasing from 3 to 1 Missing values in column 2 mean that
all solutions found with Cmax = 3 were dominated by another solution with Cmax = 2. Column
5 (%R-Shift), shows the percentage of routes in which a departure time shift is implemented.
Columns 6–8 present the minimum gap on 5 runs with respect to the minimum cost found by
the MSPP when no time shift is allowed (∆+

ω = 0). The last row shows the average values.
The last row shows the minimum gap (Gap Min) on 5 runs with respect to the minimum cost

found for both variants. This row shows that flexible departure time reduces the transportation
costs for highly consistent solutions. The average gain is found on single-class solutions with
1.44% (= 1.68-0.24) saving and decreases with increment of Cmax. The managerial implication
is that shifting time departure can improve time-consistency without modifying transportation
costs in a DARP context.

4.7 Conclusions

This chapter introduced a new variant of the multi-period DARP denoted the time-consistent
DARP. This problem aims to find a balance between two objectives, the transportation cost
and the time consistency of users. Transportation costs include routing and vehicle ownership
costs. The time consistency objective is expressed as a lexicographic function of the number
of users having different time-classes. Regarding literature, this is a new way to express time
consistency. It is more time consuming than traditional min-max objectives but returns a more
detailed Pareto frontier that helps decision-makers selecting the appropriate solution.
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Instance MSPP MSPP(∆+
ω = 0)

Cmax 3 2 1 %R-Shift 3 2 1

C00_80 2045.54 2044.43 2061.89 49% -0.07% 0.25% 0.35%
C01_60 1291.03 1291.73 1345.41 40% 0.18% 0.48% 0.46%
C02_80 2523.21 2533.86 2561.40 31% 0.00% -0.01% 0.31%
C03_70 1735.07 1752.43 33% 0.00% 0.30%
C04_80 1207.72 1220.91 32% 0.00% 2.44%
C05_80 1871.25 1871.53 1923.21 40% 0.37% 0.06% 0.08%
C06_60 3304.41 3332.21 42% 0.00% 0.54%
C07_65 1865.46 1868.15 1920.95 50% 0.00% -0.07% 3.22%
C08_12 5500.45 5534.44 39% 0.02% 1.76%
C09_135 2857.18 2880.57 3107.12 38% 0.27% -0.18% 1.17%
C10_160 2621.35 2621.35 2779.06 42% 0.03% 0.00% 8.68%
C11_160 3222.10 3233.17 3549.53 42% 0.21% 0.00% 4.84%
C12_280 7712.44 7740.33 9487.86 33% 0.02% -0.22% 4.64%
C13_295 6294.89 6404.49 7664.17 47% -0.04% -1.05% 6.10%

Avg 40% 0.10% -0.05% 2.49%

Table 4.11: Economic implications of allowing a later departure of routes in solutions (Best
solutions on 5 runs)

Regarding the TC-VRP problems, TC-DARP extends it by considering time windows and
maximum ride times in a problem with multiple destinations. This problem was studied in the
context of door-to-door transportation of children with disabilities in the Auvergne-Rhône-Alpes,
a region of France.

To compute the Pareto Front, we developed a matheuristic framework based on an epsilon
constraint procedure and a master set partitioning problem (MSPP). Routes are generated
by solving a DARP with multiple time windows and minimal wait time. At each iteration, a
subset of routes is chosen to feed the MSPP procedure. Different selection rules are presented
to this end. Experiments show the high performance of the MSPP on real-life instances for up
to 295 users. MSPP was also tested on literature instances that achieved outstanding results
for the TC-VRP benchmark.

Some disabilities are very sensitive to inconsistent schedules. In this study, we show that
economic solutions are already fairly consistent with very few passengers having 3 time-classes.
Moreover, with a small increase in transportation costs (<1%), passengers’ schedules will be at
most 2 time-classes each. Finally, we show that allowing a flexible departure of routes improves
the transportation costs of highly consistent solutions. For future research, the model can
be extended with driver-related constraints such as working time shifts, breaks, and driver-
consistency. Regarding vehicles, it can be extended to handle a heterogeneous fleet and en-route
reconfigurations.
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Case study:

Assessment of transport pooling policies

The GIHP company is one of the biggest transport companies for people with
disabilities in the Auvergne-Rhône-Alpes region, France.f Everyday GIHP trans-

ports more than one thousand people with disabilities to specialized centers called
Medico Social Institutions (MSI). Currently, GIHP organizes the transport of each
MSI independently. This policy of grouping users has many management and technical
advantages, but a major drawback. It is sub-optimal from an economic point of view
and the extra cost must be weighed against its benefits. This study reveals the addi-
tional cost of the current policy at around 30% compared with the best scenario. Two
alternative policies allowing the pooling of transport between several MSIs in different
ways are proposed. Policies differ in the flexibility of management rules to construct
clusters. Both policies have comparable savings but the policy with higher flexibility
has fewer routes. Regarding service quality, we found that the characteristics of user
rides were not sensitive to the different policies in the presence of maximum ride time
constraints.

Keywords: transport pooling, clustering, proximity measures, dial-a-ride
problem, reconfigurable vehicles, heterogeneous fleet

5.1 Context

GIHP Company

The GIHP company is one of the biggest transport companies for people with disabilities in the
Auvergne-Rhône-Alpes region in France. Founded in 1998, GIHP is specialized in the transport
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Chapter 5. Assessment of transport pooling policies

for persons with reduced mobility, and on behalf of institutions in the transport of people
with physical or mental disabilities. GIHP has the particularity of having a fully associative
shareholding. The board of directors is made up of representatives from associations of the
medico-social sector, namely: ADAPEI of Rhône, ARIMC, APAJH, OVE Foundation, GIHP
Auvergne-Rhône-Alpes, and GIHP National. This particularity is a competitive advantage over
other transporters because there is a common interest in improving the quality of service and
optimizing costs.

GIHP has around 180 employees and 180 adapted vehicles. Part of the transportation
activity is outsourced to about 100 drivers and 175 vehicles. Yearly GIHP provides about 500
000 trips covering 3.5 million kilometers. GIHP is present in a variety of transport services in
the medico-social sector for different needs such as:

Transport for Medico-social Institutions (MSI): the transport management for MSIs is the
main economic activity of GIHP. This transport is mainly regular during the school year with
daily frequencies or twice a week for People With Disabilities (PWD) in boarding houses.
GIHP serves a wide range of social care facilities, such as rehabilitation centers for the elderly
and MSIs for people with motor, mental or sensory disabilities. In this chapter, we study this
transport type.

Public transport: local authorities (i.e. municipalities) set up particular public services for
people with reduced mobility to help them live independently. GIHP assures local transports
for activities such as work, shopping, and leisure.

Private transport: people with reduced mobility often demand individual transports for their
daily life activities. Unlike other types of transportation, this is not financed by the government.

Vehicle rentals: GIHP offers the possibility to rent a vehicle without a driver. There is a
wide variety of vehicles that can carry from 1 to 5 people in wheelchairs or up to 9 seats.

The problem

Currently, GIHP organizes the transport for each MSI (Client) independently. Routes, vehicles,
and drivers are usually dedicated to each client. There are various advantages of managing
MSIs in this way. For example, the optimization of routes for a single MSI is easier than for
multiple MSIs using conventional non-automated methods. From a management point of view,
contracting and negotiation with each MSI independently are less complex to manage and
with a high-bargaining power. However, this clustering policy is certainly sub-optimal from the
economic point of view and the additional costs must be weighed against its benefits.

On the contrary transport pooling with MSIs has probably economic advantages but it
supposes a simultaneous negotiation process and requires a specialized mechanism for pricing
share routes. Figure 5.1 pictures the CURRENT clustering policy for 16 users attending 3 MSIs.
Each line represents one user connecting one pickup (node) and one delivery (MSI) point. Each
polygon represents an independent cluster.

104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés
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MSI

MSI

MSI

Figure 5.1: CURRENT clustering policy

The scope of the study

There are multiple ways of dividing a big problem into smaller sub-problems. The objective
of this study is to evaluate alternative policies of grouping users and compare them with the
CURRENT policy from both an economic and a service quality point of view. Alternative
policies consider transport pooling among MSIs in different ways.

- The economic indicator is the total transport cost defined as follows:

TC = vehicle ownership costs + β × total traveled time + α× total distance covered (5.1)

With α the unitary time cost, β the unitary distance cost.
- The service quality unit is the user ride time which is the time expended in the vehicle

from the pickup moment to the delivery time of each at passenger at MSIs.

5.2 The clustering problem

Decomposing a problem into smaller sub-problems is a common approach for dealing with large
size routing problems. In the scientific community, this problem is known as the clustering
problem. It consists of creating groups (clusters) of users according to a clustering policy and to
a proximity-based criterion. Clustering policies reflect management practices regarding what is
possible or not to group while proximity criteria measures how far(near) are the users.

5.2.1 Proximity measures

The geographic distance is very often the proximity measure between two independent locations
(points) in a classic clustering problem. In a Dial-a-Ride system, however, each user i ∈ U has
one pickup p(i) ∈ P and one delivery d(i) ∈ D location. Thus, points need to be considered in
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Chapter 5. Assessment of transport pooling policies

couples rather than independently. Additionally, there is a temporal dimension between points
that should be considered. Figure 5.2 shows graphically the difference between the proximity of
points and users.

v

cuv

u

p(i)
p(i)

d(j)

p(j)d(i)

Cij

Figure 5.2: Proximity between points (left) and users (right)

Let tuv and duv be the distance and travel time between points u, v ∈ P ∪D. The proximity
between u and v is the transport cost cuv defined as follows:

cuv = αtuv + βduv (5.2)

Each user i ∈ U has a maximum ride time T̄i, and each point (pickup or delivery) has a
service duration s, and a time window with the earliest and the latest possible time for the
pickup [e, l]. There are indicators proposed in the literature to measure the proximity between
users in routing problems (Shaw, 1998; Prescott-Gagnon et al., 2009). In the following sections,
we present classic measures from the literature.

Pickup relatedness

The pickup relatedness Cpij between user i and user j is the cheapest transport cost between
pickup points.

Cpij = min{cp(i)p(j); cp(j)p(i)} (5.3)

With cp(i)p(j) the transport cost from pickup p(i) to pickup p(j) following equation 5.2.

Delivery relatedness

The delivery relatedness Cdij between user i and user j is the cheapest transport cost between
delivery points.

Cdij = min{cd(i)d(j); cd(j)p(i)} (5.4)

With cd(i)d(j) the transport cost from delivery d(i) to delivery d(j) following equation 5.2.

Relatedness of Shaw (1998)

The relatedness of Shaw (1998) Cp−dij between user i and user j take into account both pickup
and delivery locations. This measure is based on the Shaw (1998) distance-related operator
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which considers only the distance between points. Given that our objective function is cost-based
rather than distance-based, the relatedness is computed as follows:

Cp−dij =
cp(i)p(j) + cp(i)d(j) + cd(j)p(i) + cd(i)d(j)

4 (5.5)

With cuv the transport cost from u to v following equation 5.2.

Time relatedness

Prescott-Gagnon et al. (2009) proposes a spatial-temporal measure for the vehicle routing
problem with time windows. This measure was adopted by Lehuédé et al. (2014) for a DARP
context. The proposed adaptation considers only the temporal dimension conserving the
structure of the measure. The time relatedness Ctij between user i ∈ U and user j ∈ U is
computed as follows:

Ctij =
min{tp(i)p(j); tp(j)p(i)}

2Tmax + 1
Tij + Tji

(5.6)

With Tij the width of the interval of feasible visiting times defined as follows:

Tij = max{1; min{ld(j), ld(i) + td(i)d(j)} −max{ed(j), ed(i) + td(i)d(j)}} (5.7)

Tmax is a scaling factor set to the largest value of tuv with u, v ∈ P ∪ D.

5.2.2 Clustering policies

We define two new clustering policies. The MSI clustering policy (C-MSI) consisting of grouping
MSIs and the user clustering policy (C-USER) consisting of grouping users.

MSI clustering policy (C-MSI)

The MSI clustering policy (C-MSI) consists of grouping close related MSIs. The particularity of
this policy is that each MSI can belong to only one cluster and so there is a single contractualized
solution. Figure 5.3 shows a 2-cluster solution following this policy. The cluster on the right
side (blue) has 2 MSIs while the cluster on the left side (green) has only one MSI.

The MSI clustering policy can be modeled as a mixed-integer linear program. Let U be
the set of users. Cij is the relatedness between user i ∈ U and user j ∈ U computed with one
proximity measure of Section 5.2.1. K(m) is the set of users attending MSI m ∈M andM(i)
the MSI of user i ∈ U . N is the number of clusters. It is assumed in this modeling approach
that each cluster has one centroid which can be placed in the same position as any of the
users belonging to this cluster. Note that users’ positions do not have a physical representation
because it is associated with a pair of points.
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MSI

MSI

MSI

Figure 5.3: Clustering MSIs

Decision variables xij ∈ {0, 1} are 1 if user i is assigned to cluster whose centroid is j and 0
otherwise. Variable yi ∈ {0, 1} are 1 when the cluster with centroid in j is chosen. The objective
is to find the best assignment of users to clusters such that the sum of distances is minimized.

min f =

∑
i,j∈U

Cijxij

 (5.8)

s.t. ∑
j∈U

xij = 1 ∀ i ∈ U (5.9)

∑
j∈U

yj = N (5.10)

xij ≤ yj ∀ i, j ∈ U (5.11)

xrj ≤ xij ∀i, j ∈ U , r ∈ K(M(i)) (5.12)

xij , yi ∈ {0, 1} , ∀ i, j ∈ U (5.13)

Constraints 5.9 make sure that each user i ∈ U is assigned to only one cluster. Constraints 5.10
define the number of clusters needed. Constraints 5.11 force yj variables to take 1 when at
least one user is assigned to the cluster located in j. Constraints 5.12 make sure that users
from the same MSI are assigned to the same cluster. Finally, variables definitions are given by
constraints 5.13.

Intuitively, this policy is cheaper than the CURRENT policy because MSIs are now allowed
to pool transport routes. Thus, vehicles can pickup users for multiple MSIs. However, the
tendency of service quality is not predictable because longer routes not necessarily imply longer
ride times.
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5.3. Solving Approach

The user clustering policy (C-USER)

The second policy is the user clustering policy (C-USER). It consists of grouping users indepen-
dently of the notion of MSIs. From a management perspective, this policy supposes that MSIs
can share the transport management of a group of users with other MSIs. Additionally, as these
users can share the same route there should be a pricing mechanism to bill users individually.

Figure 5.4 shows the example of a 2-cluster solution following this policy. The cluster above
(orange) covers users from 2 MSIs and the cluster below (blue) from the 3 MSIs. Although this

MSI
MSI

MSI

Figure 5.4: Clustering of users (C-USER)

policy imposes some relevant management challenges to MSI, there is an economic advantage
that this study aims to quantify. This policy is a relaxation of the clustering problem in which
users can be assigned to any cluster without constraint. We expect transport routes to take
longer than other policies. However, the quality of service not necessarily worse.

5.3 Solving Approach

The general solving approach consists of 2 stages, clustering first and then, in solving each
cluster independently. Figure 5.5 shows the procedure graphically. In the first stage, clusters are
determined by solving optimally the mathematical model of Section 5.2. A standard MILP solver
is used to this end. In the routing stage, we solve as many DARPs as clusters. The algorithm
used to solve each sub-problem is the LNS-SCP of Tellez et al. (2018b) that was presented in
cite 3. The GIHP problem is a DARP variant known as the fleet size and mix DARP with
reconfigurable vehicle capacity. This problem considers an unlimited fleet of reconfigurable
vehicles. Finally, the solution of sub-problems is gathered into one global solution which is the
one that we used to compare clustering policies.
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MILP
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DARP(2)
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Assembly
Data Solution

...

Clustering Routing

R.Measure

Figure 5.5: Solving approach

5.4 Input data

We consider a sample data set of 562 users attending to 31 MSIs of the Auvergne-Rhône-Alpes
region. Transportation requests correspond to the period of Monday morning including users
some in boarding schools. As this is a single period problem, the terms of requests and users
are equivalent and can be used interchangeably. MSIs can be of 3 different sizes: 14 small with
between 1 and 9 users, 12 medium-size with between 10 and 40 users, and 5 big-size with
between 41 and 76 users as shown in Table 5.1. Travel times and distances are obtained from the
Open Source Routing Machine1 (OSRM) by Luxen and Vetter (2011). Common characteristics
for the instances are:

Data set Number

Users total 565
MSIs total 33
Small MSIs 16
Medium-size MSIs 12
Big MSIs 5

Table 5.1: Global characteristics of the test data set

Ride times

One of the main measures of service quality is the users’ riding time. To avoid long times
values a maximum ride time constraint is usually imposed on each user. This constraint
should be proportional to the travel time following a direct way. For GIHP there are several
constraints to limit the travel time, but their method can not be generalized for any transport
time. Thus, we propose the following step-wise function proposing acceptable limits for users:
maxRideT ime = 15× d(tpr,dr + 15)/15e This function adds up 15 minutes to the direct ride
time rounded to the next multiple of 15 as shown in Figure 5.6.

1http://project-osrm.org/
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Figure 5.6: Maximum ride time function

Time windows and service times

The most common time window is at MSIs. Vehicles should arrive between 15 minutes of the
MSI opening time.The service duration for users using seats is 2 minutes for pickup and 1
minute for delivery operations. For users in a wheelchair, it is 5 minutes at pickup locations
and 2 minutes at delivery locations.

Vehicles

GIHP has 22 vehicle types with different configurations for people in wheelchairs (W) and
seats (S). Each vehicle has fixed ownership cost (C.FIXED), and a variable distance cost (α).
There is a driving cost (β) which is dependent on the vehicle type. Big vehicles are more
expensive because drivers require a special license. Table 5.2 presents the list of vehicles and
their configurations. Vehicles are sorted for the lowest to the highest fixed cost.

5.5 Computational experiments

The experiments were run on a CPU Intel Xeon E5-1620 v3 @3.5Ghz. The clustering problem
was solved using CPLEX 12.6. The routing problem was solved using the LNS-SCP algorithm
with the parameters of Apendix C.0.1. As this algorithm is not an exact approach, each problem
instance is solved 5 times. However, in the evaluation of policies, only the cheapest solution is
considered in each case.

5.5.1 Comparison proximity measures

In Section 5.2.1 we present 4 proximity-based measures named: pickup-related, delivery-related,
relatedness of Shaw (1998) and time-related by Lehuédé et al. (2014). The objective of this
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Configurations Cost
Id vehicle S W S W S W C.Fixed α (km) β (hour)

V1 4 0 26.45 0.14 27.39
V2 4 0 26.67 0.15 27.39
V3 6 0 27.84 0.16 27.39
V4 4 0 28.09 0.17 27.39
V5 4 0 29.45 0.12 27.39
V6 6 0 30.18 0.17 27.39
V7 2 1 38.03 0.18 27.39
V8 4 0 38.31 0.08 27.39
V9 7 0 39.73 0.21 27.39
V10 4 2 5 1 6 0 42.11 0.24 27.39
V11 4 1 42.25 0.19 27.39
V12 3 3 5 1 42.47 0.23 27.39
V13 3 3 2 4 5 2 43.47 0.24 27.39
V14 3 3 43.9 0.24 27.39
V15 7 1 44.95 0.26 27.39
V16 4 3 5 2 45.25 0.25 27.39
V17 16 0 46.61 0.32 30.13
V18 8 0 47.43 0.22 27.39
V19 7 1 6 2 51.03 0.24 27.39
V20 2 1 53.66 0.11 27.39
V21 3 5 4 4 5 3 53.68 0.27 27.39
V22 22 0 75.13 0.40 30.13

Table 5.2: Vehicle list

section is to evaluate which measure is better for the GIHP problem. Note, the GIHP problem
is a DARP with relatively few delivery points.

The complete problem of 565 users is solved using the procedure of Section 5.3. In the first
stage, all the possibilities between proximity measures and clustering policies (MSI and USER)
are computed. For each possibility, four scenarios are evaluated. The problem is decomposed
in 2, 4, 8, and 16 clusters respectively. Figure 5.7 presents the best results for each measure
used in any of both clustering policy MSI and USER. The y-axis shows the relative cost with
respect to the best solution found in the corresponding scenario.

Overall the pickup-based measure outperforms other measures. The delivery-based does
not show good performance probably because of the small number of delivery points (MSI)
compared to pickup points. Surprisingly, the Shaw measure was dominated for both pickup
and delivery measures. Only in the solution with 16 clusters performs slightly better than the
delivery measure. It seems the distance between pickups and/or between deliveries is more
important than other distances (i.e. pickup to delivery or conversely). Finally, the time-related
measure has worse results overall. This measure considers both pickup and delivery locations
from a temporal standpoint.
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Figure 5.7: Comparison of proximity measures

5.5.2 Comparison of MSI clustering policies (C-MSI)

The C-MSI policy consists of clustering MSIs as presented in Section 5.2.2. Table 5.3 presents
the best solution of the C-MSI policy compared with the best solution found (BKS). The BKS
solution was computed solving the complete problem without the clustering phase during a
very long computation time until the solution is stacked in a local optimum. BKS is a reference
solution. Five different splits were tested for the C-MSI policy. Division in 2, 4, 8, 16 and 33
clusters as shown in parentheses. The last split in of 33 clusters corresponds to the CURRENT
policy which is one cluster per MSI.

MSI(33) MSI(16) MSI(8) MSI(4) MSI(2) MSI(1)

Relatedness - pickup pickup pickup delivery -
Total cost 11604.7 10323.9 9730.6 9337.3 8894.7 8620.1
Cost increase (%) 34.6% 19.8% 12.9% 8.3% 3.2% 0.0%
Nb. Routes 129 97 85 77 69 65
Routes pooling (%) 0% 40% 51% 68% 77% 85%
Routes reconfiguring (%) 0% 9% 7% 9% 13% 18%
Max Nb. Reconfigurations 0 1 1 2 2 3

Median. Ride time (min) 24.55 24.8 24.6 24.7 23.7 23.3
Avg. Ride time (min) 27.5 27.0 27.0 26.7 26.2 25.9
StdDev Ride time (min) 16.4 15.9 16.0 15.9 16.0 15.8
Coef. Variation (CV=StdDev/Mean) 0.6 0.6 0.6 0.6 0.6 0.6

Table 5.3: Comparison MSI clustering policy
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Chapter 5. Assessment of transport pooling policies

From an economic perspective, the results confirm the correlation between the number of
clusters and the transport costs. The smaller the number of clusters, the lower the costs. Note,
in this study the CURRENT policy increases by 34.6% the transport cost. With the C-MSI
policy, it can be saved between 14.8% (=34.6%-19.8%) and 31.4% (=34.6%-3.3%) depending
on the chosen scenario. Cost reductions are explained by a relevant decrease in the number of
routes from 129 (CURRENT) to 65 (C-MSI(2)). This reduction is reflected in longer routes
with a growing percentage of MSI pooling (up to 85%) and a growing percentage of en-route
reconfigurations (up to 18%).

From the service quality perspective, ride times are similar. There is a slight decrease in
the average ride time with the reduction of clusters. However, this difference is not significant
regarding the standard deviation. The variability of rides times is small and stable overall
scenarios (CV=0.6). These results show that despite a stronger restriction in the clustering
possibilities of this policy, there are significant economic advantages and the service time is not
affected by the number of clusters.

5.5.3 Comparison of user clustering policies (C-USER)

The C-USER policy is a more flexible scenario for clustering users. Table 5.4 presents the
best solutions for the C-USER policy and the CURRENT policy. The number in parentheses
represents the number of clusters of each scenario. The CURRENT policy has 33 clusters
because of the 33 MSIs of the case study.

CURRENTUSER(16) USER(8) USER(4) USER(2) BKS(1)

Relatedness - pickup pickup pickup pickup -
Total cost 11604.7 10364.0 9814.9 9253.6 8814.1 8620.1
Cost savings (%) 34.6% 20.2% 13.9% 7.3% 2.2% 0.0%
Nb. Routes 129 81 75 69 67 65
Routes pooling (%) 0% 77% 80% 83% 82% 85%
Routes reconfiguring (%) 0% 15% 19% 17% 16% 18%
Max Nb. Reconfigurations 0 2 2 2 2 3

Median. Ride time (min) 24.6 24.0 24.0 24.3 23.3 23.3
Avg. Ride time (min) 27.5 26.0 26.3 26.6 26.1 25.9
StdDev Ride time (min) 16.4 14.2 14.9 15.7 15.7 15.8
Coef. Variation (CV=StdDev/Mean) 0.6 0.5 0.6 0.6 0.6 0.6

Table 5.4: Comparison users clustering policy

From an economic perspective, these results show the same behavior about the relationship
between the number of clusters and the total cost. With the C-USER policy, it can be saved
between 14.4%(=34.6%-20.2%) and 32.4%(=34.6%-2.2%). However, savings decrease with the
number of clusters. Cost savings are explained by the reduction of routes from 127 (CURRENT)
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to 67 (C-USER(2)). Again, this cost decrease is accompanied by a significant reduction in the
number of routes, an increase in the number of routes visiting several MSIs (up to 85%) and an
increasing proportion of routes reconfiguring en-route (up to 18%). These results confirm the
economic potential of promoting transport pooling policy and the use of reconfigurable vehicles.
Overall, ride times do not vary considerably from one scenario to another. We can only observe
see a slight increase in the median of C-USER(4). However, this change it is not significant.

5.5.4 Global comparison

From a global perspective, we can compare all clustering policies at a time. Table 5.5 presents
the general characteristics of the best solutions found with each policy. BKS refers to the best
overall cost-based solution.

From an economic point of view, the CURRENT policy is the most expensive overall. The
C-USER strategy has a lower total cost that the C-MSI strategy, except in the 4-cluster scenario
where it is 1% more expensive (= 13.9-12.9). However, cost differences are so small that cost
can be considered equal. Regarding the number of routes, the C-USER policy is superior to
MSI policy. The difference in the number of routes growths with the number of clusters from 2
(=69-67) to 16 (=97-81). The number of routes in the C-USER policy is smaller because routes
are longer in distance and duration.

Figure 5.8 shows the behavior of routes for C-USER and C-MSI policies all along with the
number of clusters. The first two lines, from top to bottom, show graphically the number of
routes in the solution. The next two lines, the number of routes pooling transport between
different MSIs. C-USER has fewer routes that C-MSI, and when the difference gets bigger, the
difference in the number of routes pooling increases as well. For the C-MSI policy, the chances
of transport pooling decrease with the number of clusters (33 clusters gets 0 routes pooling).
The number of routes reconfiguring en-route is quite stable. The C-USER policy, however, is
less sensitive to the variation in the number of clusters. Regarding the quality of service, there
are no significant differences between C-MSI and C-USER policies. The low variability and
stability of ride times confirm the robustness of the maximum ride time function.

Figure 5.9 shows the number of requests in each cluster for a solution of each policy. The
number in parentheses represents the number of clusters of the solution. The CURRENT policy
shows the actual number of users at each MSI. The solution of the USER (16) policy increases
the number of users in medium and big size clusters. This behavior is accented with the MSI
(16) policy assigning a larger proportion of users to already big clusters. Thus, the C-USER
policy seems to create more equitable clusters than the MSI policy. If this balance is an objective
of the decision-maker, the C-USER policy would be preferred.
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Figure 5.8: Comparison clustering policies

Figure 5.9: Assignment of MSI to clusters
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CURRENT MSI USER BKS
Nb.Clusters 33 16 8 4 2 16 8 4 2 1
Relatedness - pickup pickup pickup delivery pickup pickup pickup pickup -
Total cost 11604.7 10323.9 9730.6 9337.3 8894.7 10364.0 9814.9 9253.6 8814.1 8620.1
Cost Increase (%) 34.6% 19.8% 12.9% 8.3% 3.2% 20.2% 13.9% 7.3% 2.2% 0.0%
Routes distance (km) 7998 7598 7315 7178 6943 8297 7802 7298 7056 6896
Routes duration (h) 190 187 182 178 172 202 192 181 175 171
Nb. Routes 129 97 85 77 69 81 75 69 67 65
Nb. Routes pooling 0 39 43 52 53 62 60 57 55 55
Nb. Routes reconfiguring 0 9 6 7 9 12 14 12 11 12
Max Nb. Reconfigurations 0 1 1 2 2 2 2 2 2 3
Median Ride time 24.6 24.8 24.6 24.7 23.7 24.0 24.0 24.3 23.3 23.3
Avg. Ride time 27.5 27.0 27.0 26.7 26.2 26.0 26.3 26.6 26.1 25.9
Std. Dev Ride time 16.4 15.9 16.0 15.9 16.0 14.2 14.9 15.7 15.7 15.8
Coef. Variation (CV) 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6 0.6 0.6

Table 5.5: Global comparison
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5.5.5 Fleet utilization

A relevant characteristic of solutions is the fleet of selected vehicles. Table 5.6 presents the
percentage of vehicle types selected for 3 representative scenarios: CURRENT, C-MSI(2) and
C-USER(2). The last two with 2 clusters each.

Configurations Cost
Id vehicle S W S W S W CURRENT C-MSI(2) C-USER(2)
VAN1 4 0 0 0 0 0 11% 7% 0%
VAN2 4 0 0 0 0 0 0% 0% 0%
VAN3 6 0 0 0 0 0 17% 19% 23%
VAN4 4 0 0 0 0 0 0% 0% 0%
VAN5 4 0 0 0 0 0 2% 3% 3%
VAN6 6 0 0 0 0 0 0% 0% 0%
VAN7 2 1 0 0 0 0 5% 7% 7%
VAN8 4 0 0 0 0 0 0% 0% 0%
VAN9 7 0 0 0 0 0 2% 0% 0%
VAN10 4 2 5 1 6 0 3% 4% 3%
VAN11 4 1 0 0 0 0 0% 0% 4%
VAN12 3 3 5 1 0 0 40% 42% 39%
VAN13 3 3 2 4 5 2 17% 15% 19%
VAN14 3 3 0 0 0 0 0% 0% 0%
VAN15 7 1 0 0 0 0 0% 0% 0%
VAN16 4 3 5 2 0 0 0% 0% 0%
VAN17 16 0 0 0 0 0 0% 0% 0%
VAN18 8 0 0 0 0 0 0% 0% 0%
VAN19 7 1 6 2 0 0 2% 0% 1%
VAN20 2 1 0 0 0 0 3% 1% 0%
VAN21 3 5 4 4 5 3 0% 0% 0%
VAN22 22 0 0 0 0 0 0% 0% 0%

Table 5.6: Vehicle’s utilization

Overall, we can note that selected vehicles are concentrated in very few models. This suggests
that the current fleet can be reduced to dominant models. Additionally, the percentage of
reconfigurable vehicles is higher in the policies allowing transport pooling (C-MSI and C-USER).

Reconfigurable vehicles VAN12 and VAN13 are predominantly used in all scenarios. These
vehicles have interesting configurations (i.e. 3 seats + 3 wheelchairs) and low ownership costs
compared to other reconfigurable vehicles. Vehicle VAN10 which is cheaper was very little use
probably because of its limited capacity for wheelchairs (up to 2). Vehicle VAN21 with a big
capacity was not selected due to the high ownership cost. Even though the CURRENT scenario
does not reconfigure en-route, there is significant utilization of these vehicles probably because
of the (3-3) configuration.

Non-reconfigurable vehicles are also used but mostly in the CURRENT scenario. Vehicle

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



5.6. Conclusions

1, for example, is significantly used in the CURRENT scenario. Vehicle VAN3 is used in all 3
scenarios. This knowledge of vehicles can guide transporters like the GIHP in the process of
designing or buying new vehicles.

5.6 Conclusions

GIHP manages the transport independently for each MSIs. This policy has many advantages
in the processes of planning, negotiation, pricing, and contracting with each MSI. However,
this policy is sub-optimal from the economic point of view and the additional cost must be
compared with the benefits. In this study, the cost of the CURRENT policy is estimated to
around 30% when it is compared with the best possible scenario.

Two alternative policies, allowing the pooling of transport between several MSIs, are
proposed. The C-MSI policy grouping MSIs and the C-USER policy grouping users. The most
flexible policy (C-USER) assumes that users from one MSI can be split into different clusters.
These policies can save between 15% (16 clusters) and 30% (2 clusters) of transport costs
compared to the CURRENT policy depending on the number of clusters. Both policies have
comparable savings, but C-MSI policy has fewer routes which from a management point of
view makes C-USER policy better. This reduction is correlated to an increase in the number of
routes pooling users from several MSIs. Selected vehicles are concentrated in very few dominant
models (mostly reconfigurable). These vehicles have interesting configurations (like 3 seats + 3
wheelchairs) and low fixed ownership costs.

Regarding service quality, we found that user ride times are very stable regardless of the
policy in the presence of maximum ride time constraints. Moreover, the proposed maximum
ride time function currently used by GIHP company assures a good service level and low ride
time variability.

As a perspective, we identified that balancing the number of users in each cluster could be
desirable. This criterion could be integrated with the clustering model, as a constraint or an
objective, to offer further insights.
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Conclusions and perspectives

6.1 Conclusions

In this dissertation, we study the daily transport for people with disabilities (PWD). More
precisely, the optimization of the long-term transport of PWD going to Medico Social Institutions
(MSI).

In 2010, healthcare transport in France became one of the top ten priorities of the risk
management plan due to the increasing cost of these transports. For Medico-Social Institutions
(MSI), transport costs often represent the second largest expenditure after that of the staff
ANAP (2016b). Despite this, few MSIs have the skills and means to effectively manage the
transport, provide high-quality service and keep the costs down ANAP (2016b). In this context,
this thesis as part of the NOMAd project proposed on one side a global optimization strategy
and a transport pooling strategy for between MSIs on the other side. Both strategies with the
objective are to improve economic performance while maintaining social and environmental
goals.

The global optimization strategy consists of optimizing the long-term transport planning of
PWD using operations research tools. A decision aiding tool for transport optimization was
proposed for this purpose. The long-term planning considers one academic year. Following
the current practice, we assumed that this transport plan is constructed from a pattern of
identical weekly transportation plans. Defining a weekly schedule is a complex task that needs
to be split into sub-problems. First, we worked on the planning of each sub-problem called
the half-day transportation problem in Chapter 3. Then in Chapter 4 we solved the weekly
transport problem considering both cost and service quality objectives into account.

The construction of long-term transportation planning is a complex problem that has not
been completely solved in the scientific literature. A literature review about the transportation
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problems in the health sector was carried out in Chapter 2. This review helps us to characterize
this transport type and to confirm that both the half-day and weekly transport problems are
relevant contributions to the healthcare transport of people.

In Chapter 3, we solved the half-day transport problem consisting of designing the routes
and determining the vehicles needed to serve the demand at a lower cost respecting service time
constrains. This problem was modeled as a new variant of the Dial-A-Ride Problem (DARP)
called the “Fleet size and mix DARP with configurable vehicle capacity” (FSM-DARP-RC).
This problem considers real-life features such as heterogeneous users (i.e. seat, wheelchair) and
vehicles that can be configured en-route. Companies very often own configurable vehicles. Yet
route designers do not plan routes considering this extra degree of flexibility. However, this
study showed that companies can easily save up to 2.5% of the total cost just by allowing
vehicles to use en-route reconfiguration. The utilization of reconfigurable vehicles is strongly
dependent on vehicle ownership costs. For the evaluated instance, reconfigurable vehicles are
advantageous for companies when vehicle ownership costs are less than 20% the cost of standard
non-reconfigurable vehicles. More generally, this is the second contribution to a pickup and
delivery problem with configurable vehicle capacity. The proposed approach presents original
and efficient handling of reconfigurable capacities in an LNS heuristic. Experiments showed
that it outperforms the previously proposed algorithm on this topic.

In Chapter 4, we solved the weekly transport problem to make half-day transport plans
time-consistent for each user. This objective is proposed because some disabilities are very
sensitive to inconsistent schedules. This problem is modeled as a new variant of the multi-period
DARP denoted the “time consistent DARP”. Unlike the half-day problem, this problem defines
two objectives, the transport cost, and the user time-consistency. The time consistency objective
is expressed as a lexicographic function of the number of users with different time-classes. This
approach takes more time than traditional min-max objectives but returns a Pareto frontier
that helps decision-makers selecting the appropriate solution. In this study, we showed that
economic solutions are already fairly consistent with very few passengers having 3 time-classes.
Moreover, with a small increase in transportation cost (<1%) passengers’ schedules will be at
most 2 time-classes each. Additionally, we showed that allowing a flexible departure of routes
improves the transportation costs of highly consistent solutions.

Finally, in Chapter 5 we evaluated both the economic and service quality impact of pooling
the transport between different several MSIs. Currently, each MSI manages its planning
(fleet, drivers and routes) independently because of the advantages planning, contracting and
negotiating. However, this policy is sub-optimal from an economic point of view. The cost of the
current policy is estimated at around 30% when it is compared with the best possible scenario.
Two alternative policies allowing the pooling of transport between several MSIs are proposed
with different degrees of management rules to construct clusters. We found that both policies
have comparable savings but the policy with higher flexibility has fewer routes. Regarding
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service quality, we found that the characteristics of user rides were not sensitive to the different
policies in the presence of maximum ride time constraints.

6.2 Perspectives

Generally, the methods and algorithms developed in this thesis can be applied to domains
other than the transport of patients and passengers. The relaxation of ride time constrains for
example results in another routing problem called pickup and delivery problem. This problem is
commonly applied in the transport of goods in currier companies. In particular, future research
for the different topics treated trough the chapters are:

In Chapter 1, the global methodology assumes that morning and afternoon routes are
independent of each other. However, PWD willing to accept long ride times in the morning
would expect short ride times in the afternoon and conversely. Thus, a model extension would
be to consider other objectives or constrains to balance the ride times of users in vehicles.

In Chapter 3, the FSM-DARP-RC model can be extended with additional operational
features such as the choice of different departure and arrival depots with limited capacity. For
example, at GIHP some vehicles can choose between departing from the driver home, an MSI
or the central depot. Incorporating real-time information (traffic, variable demand) may require
the use of state-space-time networks with a fine time discretization (see, e.g. Mahmoudi and
Zhou (2016)) and specific optimization algorithms such as the Dynamic Discretization Discovery
(Boland et al., 2017). Another research area is the extension of the proposed algorithm to other
types of pickup and delivery problems where reconfigurations are sometimes needed (e.g. trucks
with adjustable compartments).

In Chapter 4, the TC-DARP was solved for a fleet of homogeneous vehicles. Extending
the problem to consider a fleet of reconfigurable vehicles would require additional assignment
constraints in the weekly problem. The question of driver-consistency is very sensitive for some
disabilities. Braekers and Kovacs (2016) studied the economic impact of driver-consistency
on a DARP context. However, further research should include real-life features such as driver
breaks, work balance, and contracting. Moreover, a multi-objective approach between transport
cost, time-consistency, and driver-consistency in a DARP setting will be an interesting tool for
decision-makers.

In Chapter 5, the proximity measures studied between requests (users) partially take into
account different aspects of DARP. However, an indicator that considers together pickup and
delivery locations, time windows, ride times and load are needed. Proximity measures are
not only used in the clustering problems but the selection of requests in neighborhood-based
heuristics (Pisinger and Ropke, 2007; Prescott-Gagnon et al., 2009). The solved clustering
problem minimizes the sum of transport costs between users and the cluster’s centroid. However,
other objective functions such as TSP tours or spanning trees between the users of the same
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cluster can provide a better estimation of the real transport costs.
A more general perspective would be to handle planning modifications in the context of

regular transport services. Planning modifications are not too many but can be frequent in
large scale applications. In those cases, transport planners should adjust vehicle routes to adapt
them to this new context. Transport planners have to minimize two antagonistic objectives:
transport costs and the scheduling modifications for passengers already scheduled in the former
routes. To our knowledge, this problem has not been studied in the literature.
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Chapter 3

A.1 Parameters used for ALNS-based metaheuristics

reinitialize incumbent solution with the best solution every 2000 iters.
score for new best solutions σ1= 33
score for new improving solutions σ2 = 20
score for new accepted solutions σ3 = 15
reaction factor r = 0.1
recompute operator weights = 100 iters
minimum weight operators = 0.1
maximum weight operators = 5

Table A.1: Parameters for the ALNS as in Masson et al. (2014)

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI059/these.pdf 
© [O.A. Tellez Sanchez], [2019], INSA Lyon, tous droits réservés



A.2 Detailed results comparison of LNS-based algorithms

LNS(5) ALNS(5) ALNS(5)-SCP LNS(2)-SCP ALNS(5)-RSCP LNS(5)-RSCP LNS(2)-RSCP
Inst Time Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg
I01-80 16 1,791.69 1,798.30 1,803.42 1,811.81 1,757.22 1,757.70 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22 1,757.22
I02-60 16 911.79 913.64 911.88 926.49 925.09 926.38 911.79 913.21 915.02 922.48 911.79 914.45 915.34 922.63
I03-80 16 1,869.42 1,882.15 1,881.31 1,893.74 1,838.33 1,838.60 1,838.47 1,838.47 1,811.86 1,811.86 1,811.86 1,811.86 1,811.86 1,811.90
I04-70 16 1,600.54 1,603.65 1,599.53 1,602.58 1,599.49 1,599.52 1,599.49 1,599.50 1,599.49 1,599.51 1,599.49 1,599.49 1,599.49 1,599.49
I05-80 16 1,251.24 1,253.37 1,244.86 1,251.00 1,242.48 1,242.62 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48 1,242.48
I06-80 16 1,451.57 1,452.69 1,460.48 1,464.95 1,418.74 1,421.09 1,418.74 1,422.19 1,418.74 1,421.31 1,418.74 1,420.88 1,418.74 1,418.75
I07-60 16 1,537.63 1,537.63 1,537.63 1,537.79 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63 1,537.63
I08-65 16 1,204.89 1,205.68 1,204.89 1,218.95 1,204.89 1,205.11 1,204.89 1,205.11 1,204.89 1,205.54 1,204.89 1,204.89 1,204.89 1,205.11
I09-120 40 3,165.79 3,186.43 3,178.83 3,189.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00 3,128.00
I10-135 40 2,196.36 2,208.65 2,169.89 2,219.19 2,059.99 2,069.46 2,059.91 2,070.72 2,071.42 2,087.16 2,081.24 2,088.84 2,059.91 2,079.79
I11-160 40 2,343.57 2,347.28 2,310.38 2,331.33 2,224.06 2,238.53 2,226.56 2,243.24 2,225.54 2,229.27 2,222.14 2,225.37 2,222.14 2,228.43
I12-160 40 2,851.89 2,864.54 2,880.07 2,911.25 2,615.00 2,627.80 2,620.93 2,638.95 2,623.44 2,628.19 2,614.47 2,631.98 2,623.24 2,634.22
I13-280 100 5,227.05 5,255.18 5,227.45 5,275.53 5,153.87 5,196.40 5,123.11 5,132.67 4,864.49 4,896.87 4,843.39 4,870.33 4,885.02 4,917.22
I14-295 100 5,475.69 5,497.11 5,476.19 5,533.58 5,352.61 5,411.52 5,387.16 5,431.81 4,893.30 4,927.77 4,921.74 4,948.96 4,904.47 4,931.81

Avg 2,348.51 2,357.59 2,349.06 2,369.08 2,289.81 2,300.03 2,289.74 2,297.23 2,235.25 2,242.52 2,235.36 2,241.60 2,236.46 2,243.91
Avg Gap 3.60% 3.94% 3.61% 4.46% 1.34% 1.64% 1.27% 1.52% 0.13% 0.38% 0.12% 0.31% 0.13% 0.39%
NbBKS 3 2 7 9 9 12 10

Table A.2: Performance comparison of LNS-based heuristics. Time limits in column 2 are expressed in minutes. Average costs (Avg)
are computed over 5 runs. Nb BKS refers to the number of best-known solutions (BKS). The Gap for every instance is computed as
(value−BKS)/BKS × 100. General parameters for all metaheuristics can be found in Table A.1. Additional parameters for ALNS
can be found in Table A.1.
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A.3. Detailed results benchmark Cordeau and Laporte (2003)

A.3 Detailed results benchmark Cordeau and Laporte (2003)

TA ELS ALNS1 LNS(2)-RSCP2

Braekers et al. (2014) Chassaing et al. (2016) Gschwind and Drexl (2016)
Inst BKS Best Avg Time Best Avg Time Best Avg Time Best Avg Time

pr01 190.02 190.02 190.02 16.6 190.02 190.02 15.0 190.02 190.02 15.1 190.02 190.02 24.0
pr02 301.34 301.34 301.34 42.0 301.34 301.34 75.0 301.34 301.34 41.1 301.34 301.34 145.9
pr03 532.00 532.10 533.54 48.8 532.43 533.86 138.0 532.00 532.01 62.1 532.00 532.00 256.6
pr04 570.25 577.16 580.52 74.6 570.54 574.47 442.2 570.25 570.61 138.7 571.25 572.23 493.9
pr05 625.64 629.80 632.06 89.2 630.82 637.59 724.2 628.59 630.99 267.4 631.38 633.20 735.7
pr06 783.78 797.78 800.68 107.0 792.80 796.10 1,315.2 789.36 790.44 397.5 789.51 790.23 1,216.6
pr07 291.71 292.23 292.23 22.6 291.71 292.96 28.2 291.71 291.71 19.7 291.71 291.71 55.3
pr08 487.84 490.94 491.00 48.6 491.60 493.16 160.8 489.83 491.13 74.1 489.33 492.49 329.4
pr09 653.94 662.64 666.65 72.2 672.86 681.35 675.0 659.69 660.13 151.7 659.10 663.00 668.8
pr10 845.47 853.98 860.83 114.4 857.36 860.68 1,279.8 853.07 857.18 389.2 856.95 860.91 1,236.6
pr11 164.46 164.46 164.46 23.8 164.46 164.46 16.8 164.46 164.46 17.7 164.46 164.46 43.6
pr12 295.66 295.69 296.06 51.4 295.66 295.72 82.2 295.66 296.22 48.1 295.67 296.83 227.6
pr13 484.83 488.61 490.03 76.2 489.00 490.70 222.0 484.83 484.83 101.3 488.30 488.70 478.4
pr14 529.33 534.99 540.99 117.0 531.08 531.98 612.0 531.19 531.92 204.2 529.33 532.13 966.2
pr15 573.56 581.46 584.33 155.2 578.44 580.23 1,195.8 576.70 578.17 491.6 577.00 579.47 1,584.0
pr16 725.22 743.56 747.19 180.6 731.25 736.59 1,939.2 731.50 736.08 692.6 732.60 737.12 2,331.9
pr17 248.21 249.33 249.33 34.0 248.21 248.21 34.8 248.21 248.21 22.8 248.21 248.21 104.8
pr18 458.73 461.77 462.38 81.0 461.21 462.40 259.2 461.48 461.67 103.0 458.73 461.42 520.8
pr19 592.23 598.23 600.63 146.4 595.39 597.53 745.8 593.83 596.77 361.4 594.22 597.65 1,225.3
pr20 783.81 795.08 801.89 162.8 796.60 803.99 1,887.0 787.14 789.83 591.6 789.49 799.38 1,895.8

Avg Gap 0.81% 1.16% 83.2 0.64% 1.04% 592.4 0.32% 0.50% 209.5 0.38% 0.72% 727.1
Nb BKS 3 6 9 8

Table A.3: Results on the DARP instances of Cordeau and Laporte (2003). Average cost
(Avg) is computed over 5 runs. Time is the average computation time in seconds. Nb BKS
refers to the number of best known solutions. The Gap for an instance is computed as
(value−BKS)/BKS × 100
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Appendix A. Appendix Chapter 3

A.4 Detailed results benchmark Qu and Bard (2013)

According to Qu and Bard (2013), we denote by Ct the cost related to travel time. It is
computed as the total time (traveled distance divided by speed), times the cost per unit of
time ctime = $0.377/min. Cp denotes the total passenger ride time cost with the unitary cost
τc = $0.0001 per minute. The vehicle ownership cost is Cv = $0.01/van. Finally, the total cost
is computed as Ctotal = Ct + Cp + Cv. 3 runs were performed of the LNS(2)-RSCP with an
stopping criteria of 1 hour. For each instance Ctotal corresponds to the best total cost found
over 3 runs. The Gap is computed as in regarding to the best cost of Qu and Bard (2013).

MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal Gap (*) Gap Avg
A051 43.00 0.20 0.04 43.24 42.29 0.22 0.09 42.60 -1.47% -1.71%
A151 49.82 0.23 0.06 50.11 50.18 0.27 0.06 50.51 0.80% 0.18%
A101 43.99 0.22 0.05 44.26 44.75 0.25 0.08 45.07 1.84% 1.17%
A251 62.42 0.29 0.06 62.77 55.18 0.28 0.08 55.54 -11.52% -10.95%
A201 53.57 0.23 0.06 53.86 52.81 0.27 0.06 53.14 -1.33% -2.28%
A052 36.86 0.20 0.05 37.11 42.25 0.23 0.09 42.58 14.73% 13.99%
A102 45.19 0.19 0.05 45.43 45.34 0.30 0.07 45.71 0.61% 2.92%
A152 49.64 0.21 0.05 49.90 44.37 0.29 0.09 44.75 -10.32% -8.17%
A202 49.79 0.24 0.06 50.09 48.56 0.30 0.09 48.94 -2.29% -0.76%
A252 55.21 0.28 0.06 55.55 52.73 0.28 0.09 53.10 -4.42% -4.62%
Avg 48.95 0.23 0.05 49.23 47.85 0.27 0.08 48.19 -1.34% -1.02%

Table A.4: Benchmark Qu and Bard (2013) instance “A” scenario (iii) without groups

MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal Gap Avg Gap
B201 43.99 0.22 0.05 44.25 37.01 0.37 0.06 37.44 -15.39% -15.09%
B301 44.84 0.25 0.05 45.15 37.19 0.30 0.06 37.54 -16.85% -16.07%
B401 47.65 0.21 0.05 47.91 38.82 0.26 0.05 39.13 -18.33% -18.28%
B501 47.87 0.20 0.05 48.12 38.07 0.30 0.05 38.43 -20.15% -19.69%
B601 45.83 0.22 0.05 46.10 40.10 0.20 0.05 40.36 -12.46% -12.12%
B202 45.19 0.19 0.05 45.43 36.34 0.31 0.05 36.70 -19.21% -18.66%
B302 44.42 0.19 0.05 44.66 37.73 0.21 0.05 37.98 -14.95% -14.83%
B402 47.90 0.19 0.05 48.14 36.63 0.24 0.05 36.92 -23.30% -23.10%
B502 46.50 0.18 0.05 46.73 36.93 0.24 0.05 37.21 -20.36% -17.73%
B602 45.72 0.20 0.05 45.97 37.73 0.30 0.05 38.08 -17.16% -16.75%
Avg 45.99 0.21 0.05 46.25 37.66 0.27 0.05 37.98 -17.82% -17.23%

Table A.5: Benchmark Qu and Bard (2013) instance “B” scenario (iii) without groups
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MSALNS LNS(2)-RSCP
Inst Ct Cp Cv Ctotal Ct Cp Cv Ctotal Gap Avg Gap
B201 43.44 0.22 0.05 43.72 36.34 0.35 0.05 36.74 -15.97%
B301 43.90 0.27 0.05 44.21 36.47 0.35 0.05 36.86 -16.62%
B401 43.99 0.29 0.05 44.32 37.20 0.25 0.04 37.50 -15.39% -15.59%
B501 42.94 0.22 0.05 43.21 36.43 0.32 0.05 36.81 -14.82%
B601 43.22 0.21 0.05 43.48 36.47 0.37 0.05 36.90 -15.14%
B202 42.13 0.27 0.05 42.45 36.87 0.28 0.05 37.19 -12.38%
B302 42.13 0.27 0.05 42.45 36.87 0.28 0.05 37.19 -12.38%
B402 42.13 0.27 0.05 42.45 37.99 0.25 0.04 38.28 -9.82% -9.82%
B502 40.38 0.23 0.04 40.65 37.69 0.26 0.04 37.99 -6.54%
B602 39.70 0.23 0.05 39.98 36.49 0.25 0.05 36.79 -7.99%
Avg 42.40 0.25 0.05 42.69 36.88 0.30 0.05 37.22 -12.71% -12.71%

Table A.6: Benchmark Qu and Bard (2013) instances “B” ignoring walker requirements.
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Chapter 4

B.0.1 Construction of T W(H, u)

Algorithm 10: Construction of T W(H, u)
Parameters: u: user considered. H = {h1, . . . , hM}: set of the M service times of user
u sorted in non-decreasing order.
Data: Λ: width of time-classes.
Output: The set of multiple time windows T W(H, u)

1 mtw = ∅ /* initialize an empty set of multiple time windows */
2 h = h1
3 h = h1
4 for i = 2, . . . ,M do
5 if hi > h+ Λ then
6 mtw← mtw ∪ {[max{apu ;h− Λ},min{bpu ;h+ Λ}]}
7 h = hi

8 h̄ = hi

9 mtw← mtw ∪ {[max{apu ;h− Λ},min{bpu ;h+ Λ}]}
10 return mtw
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Appendix B. Appendix Chapter 4

B.0.2 Parameters LSN-SCP

Parameters to generate pool L

χ = 5% record-to-record acceptance criterion.
penalty = 10000 penalty cost for incomplete solutions.
Φ− = 10% minimal proportion of removed request used by removal operators.
Φ+ = 45% maximal proportion of removed request used by removal operators.
p = 6 roulette wheel parameter for the historical node-pair operator.
σ+

init = 4-regret repair operator for building the initial solution
η = 1000 launch frequency of the SCP.
Iters = 10000 max number of iterations.
ψ = 1.25 RSCP coefficient to recompute the launch frequency of the SCP.

New parameters to generate pool Lnew

Iters = 250 max number of iterations.
η =∞ the SCP is deactivated.

Table B.1: Parameters LNS-SCP (Tellez et al., 2018b).

B.0.3 Parameters MSPP tests

• MSPP : algorithm as presented in this chapter.

· B = {(D(L), SS),

· O = {(L, SS); (Lnew, SS)}.

• MSPP-withRW : MSPP with the roulette wheel selection rule

· B = {(D(L), SS)}

· O = {(L, SS); (L, RW ); (Lnew, SS)}.

• MSPP-noDARPmTW : MSPP without using DARPmTW.

· B = {(D(L), SS)}

· O = {(L, SS)}
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B.0.4 Scheduling algorithm DARP

Algorithm 11: Schedule evaluation
Input: Route ω = {1, ...,M}.
Output: The set of service times hi ∀i ∈ ω and the maximal route time shift ∆+

ω , or -1
if infeasible

1 h1 ← a1 /* beginning of the service */
2 H ← 0 /* total waiting time on the route */
3 F ← b1 − h1 /* FTS latest start at node 1 */
4 F ′ ← b1 − h1 /* FTS earliest start at node 1 */

/* Phase 1: set up nodes at the earliest start */
5 for i = 2, . . . ,M do
6 hi ← max{ai;hi−1 + ζi−1 + ti−1,i}
7 if hi > bi then return -1
8 H ← H + max{0; ai − (hi−1 + ti−1,i + ζi−1)}
9 F ′ = F

10 F ← min{F ;H + max{0; li − hi}}
11 if i = M then
12 F ′ ← min{F ′;H}

13
/* Phase 2: optimize route duration */

14 ∆+
ω = F − F ′ /* route time shift */

15 h1 ← h1 + F ′

16 for i = 2, . . . ,M do
17 hi ← max{hi−1 + ζi−1 + ti−1,i; ai}

/* Check route duration constraint */
18 if (hM − h1) > T then return -1
19

/* Phase 3: check ride time constraints */
20 for i = M − 2, . . . , 1 do
21 if i ∈ P then
22 u← user of pickup i /* implies i = pu */
23 δ ← (hdu − hpu + ζi)− T u
24 if (δ > 0) then
25 hpu ← hpu + δ
26 if hpu > bi then return -1
27 for j = pu + 1, . . . ,M do
28 wj ← max{aj ;hj−1 + ζj−1 + tj−1,k}
29 if hj > bj then return -1
30 if T u − (hdu − hpu + ζi) < 0 then
31 return -1

32
33 return {hi|i ∈ ω},∆+

ω
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Appendix B. Appendix Chapter 4

B.1 TC-VRP

Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data5–15 663.2 663.2 663.2 674.1 782.3 11.6
data5–21 773.7 779.1 779.1 779.1 817.3 21.9
data5–25 617.4 617.4 617.4 622.2 669.0 29.1
data5–26 767.6 767.6 771.9 778.8 815.9 45.8
data5–27 934.6 934.6 934.6 942.0 1026.1 61.2
data5–32 984.9 984.9 984.9 989.9 1034.5 22.1
data5–41 1420.7 1420.7 1422.6 1461.6 1615.9 126.9
data5–44 1142.9 1142.9 1142.9 1149.4 1220.3 74.3
data5–46 1458.9 1458.9 1465.4 1492.9 1607.2 114.4
data5–48 1440.8 1449.4 1452.4 1459.8 1597.8 154.9
data5–55 1569.1 1569.1 1571.1 1581.0 1696.9 139.4
data5–59 2714.8 2721.5 2721.5 2883.6 3115.9 281.3
data5–64 2082.0 2082.0 2100.8 2112.4 2304.2 118.9
data5–65 1759.4 1759.4 1766.2 1777.1 1923.9 128.6
data6–15 689.4 689.4 689.4 695.6 741.3 2.2
data6–21 792.0 792.0 796.2 798.1 831.7 40.9
data6–25 680.9 680.9 683.5 683.5 728.7 32.9
data6–26 838.7 838.7 838.7 843.2 905.0 56.0
data6–27 949.8 949.8 949.8 954.0 1060.3 57.9
data6–32 991.1 991.1 991.1 996.2 1013.5 10.4
data6–41 1500.3 1500.3 1504.2 1506.7 1735.5 92.8
data6–44 1239.1 1239.1 1243.9 1244.6 1405.9 76.7
data6–46 1485.1 1485.1 1496.6 1526.0 1597.0 93.0
data6–48 1507.4 1507.4 1519.4 1531.6 1702.8 158.5
data6–55 1816.8 1816.8 1826.3 1854.4 1987.7 121.0
data6–59 2931.3 2931.3 2933.0 3037.4 3389.6 204.1
data6–64 2264.3 2264.3 2271.0 2305.6 2527.0 100.6
data6–65 1981.9 1981.9 1990.6 1998.3 2219.5 163.6

Table B.2: Benchmark Feillet et al. (2014)
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Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data7–15 746.9 746.9 746.9 752.6 790.3 11.9
data7–21 830.1 833.7 833.7 833.7 899.3 39.8
data7–25 719.5 724.7 724.7 728.8 767.9 34.9
data7–26 880.3 880.3 883.5 887.4 920.7 37.9
data7–27 1053.4 1053.4 1053.4 1056.5 1108.5 39.7
data7–32 1079.7 1079.7 1079.7 1097.3 1154.3 57.2
data7–41 1644.8 1644.8 1648.5 1661.0 1730.4 63.2
data7–44 1295.9 1295.9 1300.3 1307.0 1311.7 20.5
data7–46 1648.6 1648.6 1650.1 1664.6 1715.9 72.4
data7–48 1687.1 1698.9 1698.9 1712.0 1774.3 116.6
data7–55 1889.0 1889.0 1896.3 1918.0 2036.0 136.5
data7–59 3262.4 3262.4 3307.4 3596.6 3892.4 725.2
data7–64 2552.9 2552.9 2552.9 2583.6 2823.4 136.9
data7–65 2196.0 2196.0 2196.0 2224.2 2347.3 159.8
data8–15 773.9 773.9 773.9 780.2 808.5 10.8
data8–21 898.4 898.4 898.4 905.0 956.3 37.8
data8–25 853.3 853.3 853.3 853.3 857.0 0.2
data8–26 962.5 962.5 962.5 970.8 998.2 35.2
data8–27 1184.8 1193.9 1193.9 1193.9 1220.6 17.6
data8–32 1144.0 1144.0 1152.8 1152.8 1181.7 35.8
data8–41 1886.8 1886.8 1888.5 1898.0 1954.3 63.9
data8–44 1409.0 1409.0 1409.0 1414.9 1441.2 28.8
data8–46 1758.5 1758.5 1772.9 1774.8 1817.2 33.8
data8–48 1815.7 1815.7 1820.9 1824.4 1898.1 125.7
data8–55 2007.7 2007.7 2015.4 2037.2 2104.0 120.0
data8–59 3545.7 3545.7 3580.5 3874.4 4020.5 427.4
data8–64 2723.3 2723.3 2723.3 2743.0 2978.2 126.8
data8–65 2404.2 2404.2 2422.9 2433.5 2524.4 159.5
data9–15 797.5 797.5 797.5 804.3 816.1 3.6
data9–21 998.6 998.6 998.6 1003.0 1008.9 5.7
data9–25 894.6 894.6 894.6 894.6 908.1 1.6
data9–26 1024.6 1024.6 1024.6 1024.6 1028.0 0.4
data9–27 1210.6 1210.6 1210.6 1219.5 1241.9 12.3
data9–32 1187.7 1187.7 1199.4 1199.4 1204.9 6.4
data9–41 2022.8 2022.8 2022.8 2022.8 2032.1 6.3
data9–44 1532.5 1532.5 1532.5 1532.5 1595.1 54.1
data9–46 1827.0 1827.0 1827.0 1841.6 1871.0 30.7
data9–48 1973.5 1973.5 1973.5 1992.8 2007.7 28.6
data9–55 2176.0 2176.0 2176.0 2188.1 2275.9 70.3
data9–59 3913.0 3913.0 3916.3 3946.6 4025.3 96.3
data9–64 2942.6 2942.6 2964.9 2964.9 2999.6 28.8
data9–65 2586.5 2586.5 2586.5 2604.7 2624.2 68.0

Table B.3: Benchmark Feillet et al. (2014)
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C.0.1 Parameters LNS-SCP

χ = 5% record-to-record acceptance percentage.
penalty = 10 000 penalty cost for incomplete solutions.
Φ− = 10% minimal proportion of removed request used by removal operators.
Φ+ = 40% maximal proportion of removed request used by removal operators.
p = 6 roulette wheel parameter for the historical node-pair operator.
σ+

init = 4-regret repair operator for building the initial solution
η = 1 000 launch frequency of the SCP.
tlimit = 60 sec imposed time limit for the SCP.
ψ = 1.25 RSCP coefficient to recompute the launch frequency of the SCP.

Table C.1: Parameters LNS-SCP algorithm
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RESUME :
En France, le coût du transport médico-social a été estimé à 400 millions d'euros en 2012 et augmente à un taux annuel de 8%
depuis. Pour un établissement médico-social (ESMS), ce coût représente souvent la deuxième dépense en importance après 
celle du personnel.
Dans ce contexte, cette thèse appartenant au projet «Numérique et Optimisation pour une Mobilité Adaptée» (NOMAd) vise à 
améliorer le transport quotidien des personnes handicapées entre leur domicile et les ESMS. Pour cela, nous proposons la 
mutualisation du transport entre plusieurs ESMS ainsi qu’une stratégie d'optimisation globale de la planification annuelle de 
transport.
La construction de la planification annuelle des transports est un problème complexe encore non complètement résolu dans la 
littérature scientifique. Conformément à la pratique actuelle, nous supposons que le plan de transport annuel est composé 
d’horaires hebdomadaires identiques divisés en demi-journées.
Le problème d’optimisation sur une demi-journée, appelé “fleet size and mix dial-a-ride problem” considère plusieurs types de 
passagers et un parc hétérogène de véhicules reconfigurables qui peuvent être modifiés en route. La matheuristique LNS-
RSCP est développée pour ce problème.
L’optimisation du problème hebdomadaire, nommé time-consistent DARP, comprend simultanément des exigences de 
régularité de service et des objectifs de coût de transport. La matheuristique MSPP est développée pour ce problème.
Actuellement, la gestion du transport est principalement réalisée intra-établissements, sans mutualisation. La mutualisation du 
transport, en plus de l’augmentation de la complexité du problème, suppose d’avoir un intérêt économique et un mécanisme 
commun de gestion et communication efficace entre les parties. Au niveau stratégique cette étude vise à évaluer l’impact de la 
mutualisation sur les coûts et temps de trajet. Opérationnellement, ce problème correspond au problème de clustering pour la 
résolution des problèmes de grande taille.
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