Operational support is one of the most important aspects for aircraft maintenance, which concentrates on delivering a portfolio of services to have maintenance implemented with high levels of efficiency, reliability and affordability. Operational support of civil aircraft has the characteristics of multi-point, wide range, a miscellaneous set of things, long period, and large investment.

One of the major difficulties of operational support is that there is no platform integrating all maintenance-related processes of aircraft maintenance together in order to reduce maintenance costs and improve service level with the continuing airworthiness.

It is therefore necessary to build an autonomous system for aircraft maintenance where all of the maintenance information can be collected, organised, analysed and managed to support decision-making. To do so, an innovative methodology has been proposed, which involves modelling, simulation, formal verification, performance analysis with regard to the autonomous system mentioned. Three issues have been addressed in this doctoral thesis.

Issue one: The design and simulation of an autonomous system for aircraft maintenance Operational support is a key issue for aircraft maintenance, which aims to improve operational efficiency and reduce operating costs under the premise of ensuring flight safety. Although many works have emerged to achieve this aim, they mostly address the concept of maintenance systems, the relationship between stakeholders and the loop of maintenance information separately. Hence, the cooperation between stakeholders could be impeded especially when urgent decisions should be made, relying on historical data and real-time data. In Chapters 3 and 4, we propose an innovative design of an autonomous system supporting the automatic decision-making for maintenance scheduling. The design starts from concept formulation of the system, to information transitional level interface, and ends with an instance of system module interactions. The underlying architecture illustrates the high-level fusion of technical and business drives; optimizes strategies and plans with regard to maintenance costs, service level and reliability. An agent-based simulation system is developed as a proof to illustrate the feasibility of the system principle and algorithms.

Besides, the simulation experiment analyzing the impact of maintenance sequence strategies on

maintenance costs and service level has demonstrated the algorithm functionality and the feasibility of the proposed approach.

Issue two: Model checking on simulation systems Model checking is an effective way to verify the behaviours of an agent-based simulation system. Three behaviours are analysed: operational, control, and global behaviours. Global behaviours of a system emerge from operational behaviours of local components regulated by control behaviours of the system. Previous work principally focuses on verifying the system from the operational point of view (operational behaviour). The satisfactory of the global behaviour of the system has not been investigated regarding control behaviours. Thus, in Chapter 5, we propose a more complete approach to verifying both global behaviours and operational behaviours of systems. To do so, firstly these three behaviours are formalized by automata-based techniques. The meta-transformation between automata theories and Kripke structure is then provided, in order to illustrate the feasibility of the model transformation between the agent-based simulation model and the Kripke structurebased model. In the following, a mapping between the models is proposed. Subsequently, the global behaviour of the system is verified by the properties extracted from the control behaviour and the operational behaviour is checked by general system performance properties (e.g. safety, deadlock freedom). Finally, a case study on the simulation system for aircraft maintenance has been carried out. A counter-example of signals sending between Flight agent and Plane agent has been proposed by NuSMV model checker. Modifications for the NuSMV model and the agent-based simulation model have been performed. The experiment results show that 47.37% of cancelled flights have been changed to be serviceable.

Issue three: The performance analysis of simulation systems

The performance of the simulation system proposed is analysed via investigating its capability of fault classification and prediction on aircraft maintenance. Effective Fault Classification and Prediction (FCP) for aircraft maintenance helps improve the efficiency of maintenance. The traditional ways of the FCP mainly rely on the analysis of mechanical characteristics of components and the reliability-related data. Obtaining the fault-related data is usually prior to performing the analysis of fault diagnoses. However, acquiring the data especially the sensitive data in terms of security and confidentiality is extremely difficult. Therefore, in Chapter 6, we propose an approach of combining Agent-Based Simulation System (ABSS) with the Fuzzy-Rough Nearest Neighbour (FRNN) approach, in order to implement the FCP for aircraft maintenance without the sufficient data. Towards this end, a framework for integrating the FRNN approach into ABSS is proposed.

The concept and architecture models of FRNN-ABSS are used to describe the FRNN-ABSS system.

In the following, random and sequence strategies are designed for the FCP of the engine and an algorithm is developed to accomplish the integration of the FRNN approach and ABSS, aiming at automatically performing fault diagnoses. Finally, the experiments analysing the impact of different strategies on maintenance costs and service level have been conducted. The results show that the approach proposed achieved success for random and sequence strategies: 9.3% and 2.5% of maintenance costs have been saved; 4.17% and 12.5% of delayed flights have been changed into on-time flights.

Résumé

Le soutien opérationnel est l'un des aspects les plus importants pour la maintenance aéronautique. Il vise essentiellement à fournir un portefeuille de services permettant de mettre en oeuvre la maintenance avec un niveau élevé d'efficacité, de fiabilité et d'accessibilité. Le soutien opérationnel pour les avions civils se caractérise par, par exemple: de nombreux points de vue avec un spectre large, une grande quantité d'objets différents, une longue période et un besoin important en investissements. L'une des principales difficultés du support opérationnel est qu'il n'existe pas de plate-forme intégrant tous les processus de maintenance des avions afin de réduire les coûts et d'améliorer le niveau de service avec le maintien de la navigabilité.

Il est donc nécessaire de mettre en place un système autonome de maintenance des avions dans lequel toutes les informations de maintenance peuvent être collectées, organisées, analysées et gérées de manière à faciliter la prise de décision. Pour ce faire, une méthodologie innovante a été proposée, qui concerne la modélisation, simulation, vérification formelle et analyse des performances du système autonome mentionné. Trois axes ont été abordés dans cette thèse.

Premier axe: conception et simulation d'un système autonome pour la maintenance aéronautique Le soutien opérationnel est un élément clé de la maintenance des avions, qui vise à améliorer l'efficacité opérationnelle et à réduire les coûts d'exploitation tout en garantissant la sécurité des vols. Bien que de nombreux travaux aient été réalisés pour atteindre cet objectif, ils abordent majoritairement les concepts de systèmes de maintenance, les relations entre les parties prenantes et les boucles des informations de maintenance séparément. Par conséquent, la coopération entre les parties prenantes pourrait être entravée surtout lorsque des décisions urgentes doivent être prises, en s'appuyant sur des données historiques et des données en temps réel. Aux Chapitres 3 et 4, nous proposons une conception innovante d'un système autonome prenant en charge la prise de décision automatique pour la planification de la maintenance. Cette conception commence par la formulation du concept de système, l'interfaçage des niveaux de transition des informations, et se termine par une instanciation des interactions des modules du système. L'architecture sous-jacente illustre la fusion à haut niveau de motivations techniques et commerciales; optimise les stratégies et les plans en matière de coût de maintenance, de niveau de service et de fiabilité. Un Système de Simulation à Base d'Agents (SSBA) est développé comme preuve pour illustrer la faisabilité du principe du système et des algorithmes. En outre, l'expérience de simulation analysant l'impact des stratégies de séquence de maintenance sur les coûts de maintenance et le niveau de service a démontré la fonctionnalité de l'algorithme et la faisabilité de l'approche proposée.

Deuxième axe: vérification de modèles sur des systèmes de simulation La vérification de modèle est un moyen efficace de vérifier les comportements d'un SSBA. Trois comportements sont analysés: les comportements opérationnels, de contrôle et globaux. Les comportements globaux d'un système émergent des comportements opérationnels de composants locaux régulés par des comportements de contrôle du système. Les travaux précédents portent principalement sur la vérification du système du point de vue opérationnel (comportement opérationnel). Le comportement global satisfaisant du système n'a pas été étudié en ce qui concerne le comportement du contrôle. Ainsi, au Chapitre 5, nous proposons une approche plus complète de la vérification des comportements globaux et des comportements opérationnels des systèmes.

Pour ce faire, ces trois comportements sont tout d'abord formalisés par des techniques basées sur des automates. La méta-transformation entre les théories des automates et la structure de Kripke est ensuite fournie, afin d'illustrer la faisabilité de la transformation de modèle entre le modèle de simulation à base d'agent et le modèle basé sur la structure Kripke. Dans ce qui suit, une correspondance entre les modèles est proposée. Ensuite, le comportement global du système est vérifié par les propriétés extraites du comportement de contrôle et le comportement opérationnel par les propriétés de performances générales du système (par exemple, sécurité, liberté de blocage). Enfin, une étude de cas sur le système de simulation pour la maintenance des avions a été réalisée. Suite à de premiers tests, des contre-exemples fournis par le vérificateur de modèle NuSMV ont été utilisés pour améliorer les performances du modèle SSBA, notamment au niveau de l'envoi de signaux entre l'agent de vol et l'agent Plane. Les résultats de nouvelles simulations suite à ces modifications montrent une réduction de 47,37% des vols annulés par rapport au modèle précédent.

Troisième axe: l'analyse de la performance des systèmes de simulation Les performances du système de simulation proposé sont analysées en examinant sa capacité de classification et de prévision des défaillances lors de la maintenance des avions.

La classification et prévision efficaces des pannes (CPP) pour la maintenance des avions contribue à améliorer l'efficacité de la maintenance. Les méthodes traditionnelles de CPP reposent principalement sur l'analyse des caractéristiques mécaniques des composants et des données relatives à la fiabilité. L'obtention des données relatives aux pannes est généralement préalable à l'analyse des diagnostics de pannes. Cependant, acquérir les données, en particulier les données sensibles en termes de sécurité et de confidentialité est extrêmement difficile. Par conséquent, au Chapitre 6, nous proposons une approche consistant à combiner un SSBA avec une approche «Fuzzy Rough Nearest Neighbor »(FRNN), afin de mettre en oeuvre le CPP pour la maintenance des avions avec des données manquantes. Pour ce faire, un cadre pour l'intégration de l'approche FRNN dans SSBA est tout d'abord proposé. Des modèles de concept et d'architecture de FRNN-SSBA sont utilisés pour décrire le système FRNN-SSBA. Dans ce qui suit, des stratégies aléatoires et séquentielles sont conçues pour le CPP du moteur et un algorithme est développé pour réaliser l'intégration de l'approche FRNN et du SSBA, visant à réaliser automatiquement des diagnostics de défaillance. Enfin, des expériences analysant l'impact de différentes stratégies sur les coûts de maintenance et le niveau de service ont été menées. Les résultats montrent que l'approche proposée a porté ses fruits pour les stratégies aléatoires et séquentielles: respectivement 9,3% et 2,5% des coûts de maintenance ont été économisés, et 4,17% et 12,5% des vols retardés ont été transformés en vols à l'heure.
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Introduction

This chapter intends to provide a general overview of our research project. The indispensable elements for explaining this project will be introduced. First of all, the background on operational support for aircraft maintenance will be discussed. A detailed description of the problem will then be presented. The scope of the research will also be defined. In the following, research objectives will be illustrated, in order to achieve the research goal. In the end, major contributions derived from research objectives will be explored.

1.1 Background

Aircraft Maintenance Perspective

The term "aircraft maintenance" seems to be very large and abstract. It is because this term presumably reminds us of a broad set of activities performed by technicians and the extremely complex structure of aircraft. Since the aircraft is considered to be strictly confidential, less of its definition is provided in the academic domain. Here, we take the definition of this term from Wikipedia.

Aircraft maintenance is the performance of tasks required to ensure the continuing airworthiness of an aircraft or aircraft part, including overhaul, inspection, replacement, defect rectification, and the embodiment of modifications, compliance with airworthiness directives and repair.

From this definition, we observe that the principal aim of aircraft maintenance is to restore or maintain faulty parts of an aircraft so that the aircraft will remain at the same airworthy level. As for stakeholders, keeping aircraft serviceable and reliable can directly increase profits. Establishing an airworthy maintenance or inspection program also makes it possible to let aviation authorities issue an airworthiness certificate. Maintenance generally consists of PM (Preventive Maintenance)

and CM (Corrective Maintenance). CM implies maintenance activities are unscheduled, normally caused by the occurrence of faults on the component. PM was originally provided by aircraft manufacturers. As the improvement on the performance of parts and testing techniques, PM is primarily designed by a synthesis analysis of the maintenance period proposed by manufacturers and the real-time states of parts. Maintenance has different levels, including line maintenance, light maintenance and heavy maintenance (TAT Group 2010), which can be illustrated as follows:

• Line maintenance includes pre-flight inspections, transit checks, daily checks (visual inspection, fluid levels, general security and cleanliness of the flight deck, emergency equipment), weekly checks, and on-call assistance.

• Light maintenance refers to A-checks (check certain service items requiring special tools, once every 65 flights hours), cabin maintenance, and engine changes.

• Heavy maintenance involves activities such as C-checks (the whole aircraft is inspected, takes 1-2 weeks, once a year), D-checks (most demanding and comprehensive check, takes 3 weeks -2 months, once every four years), stripping and painting, and cabin refurbishment.

The aircraft is one kind of safety-critical systems whose parts are strictly qualified. But it cannot avoid inherently degrading. Even though interventions like PM or CM are effective to reduce the failures of aircraft components, they are costly and cause lateness, damage and hazards. For example, pursuant to the TSB (Transport Safety Board of Canada) mandatory incident reporting requirements (TSBC 2019), 833 incidents were reported in 2016, with the top contributors: declared emergency (37%), risk of collision or loss of separation (17%), and engine failure (13%).

Maintaining complex systems often exceeds the expected cost [START_REF] Randall | Evolving a theory of performancebased logistics using insights from service dominant logic[END_REF].

Therefore, more efficient maintenance for aircraft is highly demanded.

Operational Support for Aircraft Maintenance

Maintaining aircraft is considered as a potentially fast-growing market. Operational support is one of the most important aspects for aircraft maintenance, which concentrates on delivering a portfolio of services to have maintenance implemented with high levels of efficiency, reliability and affordability. Operational support of civil aircraft has the characteristics of multi-point, wide range, a miscellaneous set of things, long period, and large investment. For example, the operational support from Boeing is shown in Fig. 1.1. The business processes are very complex and the data is collected from multi-aspects in the life cycle of civil aircraft. Different information systems on aircraft maintenance should be integrated to support robust services. A well structured collaborative work environment should be provided, in order to achieve the high efficiency of aircraft maintenance. Since the system Boeing uses is a purely commercial system, little information for the details about maintenance systems can be accessed; on the other hand, it can prove that our research is highly concentrated in industry.

Complexity in Operational Support

Maintenance businesses for aircraft involve flight scheduling, maintenance strategies and planning, repair, part supply and a number of stakeholders including: OEM (Original Equipment Manufacturing) , suppliers, airlines, the MRO (Maintenance, Repair and Overhaul) , and airworthiness authority, etc. Due to the nature of operations, the collaboration between stakeholders is ephemeral, meaning that the network of actors is unique and their collaboration takes places at the very specific and limited time of the product life-cycle. The collaboration is also distributed, i.e. is rhymed by a set of inter-related decisions that are distributed in the partner network. Such collaboration is synchronised as well because some of the events happen, conforming to a strict sequence. For example, suppliers are independently solicited for relevant parts when the parts are out of stock. When necessary parts and auxiliary equipment for repairing some faulty components are ready, MRO operations will be scheduled. Maintenance managers will define strategies as soon as the maintenance is requested. The major difference between general plant and machinery maintenance, and aircraft maintenance is that aircraft maintenance is mandated and monitored by regulatory authorities like FAA (Federal Aviation Administration), CAA (Civil Aeronautics Authority), etc. Thus, they are the individuality of stakeholders, the complex maintenance regulations, and distributed, synchronized and ephemeral cooperation between stakeholders that clearly make the system on operational support for aircraft maintenance complex [START_REF] Liu | The design and simulation of an autonomous system for aircraft maintenance scheduling[END_REF].

Since the number of commercial aircraft rapidly grows, maintenance costs are requested to be decreased, and service level (the rate of on-time flights) is expected to be further ameliorated, the complexity in maintenance strategy and maintenance task scheduling will probably escalate; and inevitably, a more refined, autonomous and global decision-making capability will be demanded.

Recently, despite some advanced technologies like AR (Augmented Reality), Robot or AI (Artificial Intelligent), aircraft maintenance still largely depends on the economical time-based preventive maintenance practice and manual analysis. The deterioration of components and unplanned maintenance activities make maintenance further complex. PM is programmed to prevent failures aircraft from taking place, in order to minimize air transport service disruption. Less effective corrective maintenance is easier to cause "chain reaction" in the network of air transport service. Clearly, aircraft maintenance is becoming a data-rich maintenance issue with a considerable number of data streams and operating databases [START_REF] Dinis | Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks[END_REF].

Additionally, delayed flights, delayed incidents, broken components, costs, requested parts and safety recommendations, etc., are generated every day. One of the important things for maintenance is to capture relevant information for analysis [START_REF] Viles | Improving the corrective maintenance of an electronic system for trains[END_REF]. Therefore, the principal challenge is about how to provide efficient operational support for aircraft maintenance under this complex environment, in order to reduce maintenance costs and improve service level with the continuing airworthiness.

Problem Description

An innovative approach is highly demanded to build an autonomous system of aircraft maintenance where maintenance information is well managed to support automatic decision-makings, in order to effectively decrease maintenance costs and improve maintenance efficiency. Many works have emerged in this area. They mostly address the concept of maintenance systems [START_REF] Duffuaa | A generic conceptual simulation model for maintenance systems[END_REF][START_REF] Durazo-Cardenas | An autonomous system for maintenance scheduling data-rich complex infrastructure: Fusing the railways' condition, planning and cost[END_REF], the relationship between stakeholders [START_REF] Ward | A performance improvement case study in aircraft maintenance and its implications for hazard identification[END_REF] and the loop of maintenance information [START_REF] Zhang | A cloud-based framework for lean maintenance, repair, and overhaul of complex equipment[END_REF][START_REF] Mackenzie | Application of agent based modelling to aircraft maintenance manning and sortie generation[END_REF]. However, to the best of our knowledge, no one combines these three aspects together, in order to build a new autonomous maintenance system. This may give rise to some deficiencies in the system. Developing a system without its architecture design makes it difficult to truly understand its essence and key properties, which in turn affects concerns such as the feasibility, utility, completeness, and maintainability of the system [START_REF] Iso | Systems and software engineering-architecture description[END_REF]. Designing an architecture model of systems without an executable system (or simulation system) makes it hard to demonstrate the feasibility of the architecture design. The problem is categorised into three issues illustrating as follows:

• The first issue addresses how to build such an autonomous system starting from the requirement analysis, to the architecture design, to the analysis of system modules involving stakeholders, and ending with a concrete simulation system.

• The second issue focuses on verifying the satisfactory of behaviours of the simulation system in terms of requirements, in order to improve the trustability of the results from the system.

• The last issue emphasizes how to further improve the efficiency of maintenance with the AI.

This system is then capable of more efficiently transforming the historic and real-time data into global decisions for maintenance scheduling, which finally effectively decreases maintenance costs and improves maintenance efficiency.

Research Scope

Maintenance is generally studied in the context of production, maintenance of products or the PSS (Product-Service System) (Alrabghi and Tiwari 2015). As for the PSS, products and corresponding services are developed simultaneously. Since the current research does not involve the development of products, we study the maintenance in the context of maintenance of products.

The maintenance processes for aircraft in this research include flight scheduling, maintenance strategies defining, maintenance planning and scheduling, costs and service estimation, and safety and reliability analyzing.

Flight Schedule

Scheduling flights is the first step to make aircraft serviceable. This step significantly influences other maintenance processes. More flights scheduled may cause maintenance demands increased, which subsequently gives rise to the problem of resource assignment. However, proposing an approach enabling a more efficient flight scheduling is beyond the scope of this research. Thus, we will not study the prevailing approaches for scheduling like heuristic algorithms and mixedinteger linear programming. We consider this step by providing flight schedules close to reality.

Maintenance Strategy

Maintenance strategies are basically divided into scheduled and unscheduled maintenance. The maintenance for aircraft necessitates these two strategies. Scheduled maintenance is predefined while unscheduled maintenance happens when faults on components occur. In addition, the impact on different strategies for the same component is considered. For example, the timer of the scheduled maintenance for component A will be reset as soon as the unscheduled maintenance on this component is just finished. While we do not take further researches on maintenance strategies into consideration. It is beyond the scope of this research to apply more precise maintenance strategies like detective maintenance, condition-based maintenance, opportunistic maintenance, etc., into the maintenance for aircraft.

Maintenance Planning and Scheduling

This process primarily involves the planning and scheduling for the workforce and parts. Individual skills and scheduling the workforce in shifts play an important role in maintenance planning and scheduling [START_REF] Bruecker | A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance[END_REF]. Workers with different skills take different time to finish the same task. Shift plans involving the starting and ending time, shift succession, team size, etc., significantly influence the process of maintenance. Thus, individual skills and shifts in the workforce are considered. However, as for shifts, we just propose a relatively appropriate one instead of focusing on the optimal shift. Maintenance scheduling is principally based on the urgency of tasks and resource availability.

Cost and Service Estimation

Maintenance costs and service level are the major indicators to evaluate the efficiency of maintenance. In this research, the maintenance cost is involved with DMC (Direct Maintenance Cost) and IMC (Indirect Maintenance Cost). In terms of the IMC, we just consider the downtime cost. Costs like passenger service cost, aircraft servicing cost, advertising, reservation, etc., are out of scope.

On the other hand, the service level is evaluated by the degree of delay.

Safety and Reliability Analysis

We derive the analysis of safety and reliability from the data generated from the simulation. True data (simulation data) and target data will be compared, in order to improve maintenance efficiency intentionally. For example, comparison can be performed on data like cycle time, MTBF (Mean Time Between Failure), MTTF (Mean Time To Failure), repair times, etc. Therefore, recommendations can be put forward to analyse safety and reliability, regarding the results of comparison.

Research Objectives

The scientific goal is to design a reliable autonomous system that can provide efficient operational support for aircraft maintenance. The main research objectives are derived from the three issues highlighted in Section 1.2, which are shown as follows:

• Issue one: System building -To propose a framework for accomplishing the design of the autonomous system;

-To identify the requirements in the field of aircraft maintenance;

-To propose an architecture model for describing the system's essence and key properties;

-To implement a simulation system based on the architecture model, in order to demonstrate the feasibility of the architecture design.

• Issue two: System verification -To develop a framework for verifying the autonomous system;

-To formalize the behaviours of the system;

-To accomplish the model transformation between the autonomous system model and the formal verification model;

-To design formal verification specifications, aiming at verifying the satisfactory of the formal model regarding specifications.

• Issue three: System with data mining -To develop a framework for combining the simulation system with data mining;

-To build data mining simulation models. in order to integrate data mining techniques into simulation models.

This project aims at building a system to tackle the operational issues of aircraft maintenance.

It focuses on not only the design of the system but the verification and practical use of the system.

It also gives us with a more complete process of developing an autonomous system, which provides engineers with an alternative approach to building systems.

Manufacturing companies or airlines may be interested in this research. Because one of the ambitions of this research is to integrate all the information systems related to operational support of aircraft maintenance, in order to facilitate information flows of maintenance and improve maintenance efficiency. In fact, the autonomous system proposed can be regarded as a prototype of future real systems. The information used in the system can be understood as the information integrated from several real information systems for aircraft maintenance. The environment and scenarios of the system could give companies a blueprint about what operational support for aircraft will be like in the future.

Major Contributions

In this thesis, major contributions are concluded into five parts. The first part involves the analysis and application of standards in the process of the MRO. The proposed MRO process with stakeholders helps us understand the complexity of the maintenance process of aircraft. The analysis of maintenance-related standards allows us to comprehend the difference between standards and make the standards be more reachable to others.

Part two includes the design of the autonomous system for operational support of aircraft maintenance. The architecture model proposed clearly shows the essence and key properties of the system. The UML use case diagram links the stakeholders with actions, which provides an example about how different stakeholders cooperate with each other. This may mitigate the conflict between stakeholders caused by the ambiguity of responsibility. More precisely, the contributions of the second part are illustrated as follows:

• Proposing a new framework that fully supports the building of an autonomous system for operational support of aircraft maintenance;

• Proposing an architecture model for the autonomous system based on which the detailed development of components is achieved and a UML use case diagram involving stakeholders is provided.

The contributions of the third part are associated with the implementation of the ABSS (Agent-Based Simulation System) . The concrete ABSS enables us to have a more detailed description of maintenance strategies and schedules, a more in-depth analysis of service level and costs, and a loop of more complete maintenance information. Based on the simulation system, maintenance engineers can run different maintenance scenarios to investigate the impact of the key factors on maintenance costs and service level. For example, the impact of the number and the distribution of maintenance technicians on the maintenance efficiency can be analyzed. Predicting maintenance issues is also possible based on part of real data and the data generated from simulation experiments. Finally, the virtualization of the maintenance process allows us to gain an insight into any maintenance details.

In the following, the contributions are related with the formal verification for the behaviours of the ABSS. The model checking approach proposed helps check the logics of the ABSS in a formal fashion, which significantly demonstrates the satisfactory of the logics of the ABSS. Thus, experiment results based on the ABSS are more convincing. The detailed contributions are explained as follows:

• proposing an improved model checking approach for verifying the ABSS from both the abstract and detailed points of view;

• providing a complete model transformation process from the ABSS to the formal model for verification;

• giving a concrete case study of formal methods in practice and demonstrating the power of formal methods in improving designs and in providing new insights.

The contributions of the last part emphasize the combination of simulation with data mining. The approach proposed is an attempt for the automatic self-improvement for maintenance decision-making and enables us to perform the data analysis without sufficient real data. More specifically, the contributions are shown as follows:

• proposing a conceptual model and a simulation model of FRNN-ABSS (Fuzzy-Rough Nearest Neighbour -Agent-Based Simulation System) have been proposed;

• accomplishing the FRNN approach as Java class;

• giving an algorithm for automatically performing the fault classification and prediction.

Thesis Structure

The thesis structure is shown in Fig. 1.2, where "C i" is an acronym for "Chapter i". The feedback arrows imply the improvement of systems design can be performed either by formal verification (C5 -→ C3) or by system performance analysis (C6 -→ C3). The major content of each chapter is discussed as follows: Chapter 2

Introduction

Literature Review on Aircraft

Maintenance

This chapter gives an overview of maintenance issues on aircraft. First of all, the maintenance process for aircraft including the maintenance program development and the maintenance task executing process is introduced. Secondly, businesses involving with maintenance processes are discussed. Subsequently, the existing maintenance systems are reviewed, in order to gain an insight into the advantages and disadvantages of systems and motivate us to propose an alternative approach to build an autonomous system of aircraft maintenance. The next section analyses the approaches for verifying systems. Finally, a framework of the approach proposed is provided, which explains the conventions, principles and practices for this approach.

Maintenance Process

The maintenance process is the meeting point of several stakeholders with the aim of maintaining the aircraft in a more efficient way. It is primarily derived from the analysis of related reports, papers and tool Maintenance Pro1 (Ackert 2010), which is shown in Fig. 2 [START_REF] Yan | An airline scheduling model and solution algorithms under stochastic demands[END_REF][START_REF] Shenneld | Optimisation of maintenance scheduling strategies on the grid[END_REF][START_REF] Kozanidis | Heuristics for flight and maintenance planning of mission aircraft[END_REF][START_REF] Doi | Two-level decomposition-based matheuristic for airline crew rostering problems with fair working time[END_REF]. These factors play an important role in maintaining aircraft.

For example, the factor of residual maintenance time affects decision-makings of repairing strategies.

As a result, the whole maintenance process should include flight schedules.

Maintenance Strategy

Effective maintenance strategies can significantly help define maintenance planning and scheduling [START_REF] Samaranayake | Aircraft maintenance planning and scheduling: an integrated framework[END_REF]. Maintenance strategies are generally categorized into two types: CM and PM [START_REF] Wang | A survey of maintenance policies of deteriorating systems[END_REF]. [START_REF] Tinga | Application of physical failure models to enable usage and load based maintenance[END_REF] distinguished these two maintenance strategies.

For corrective strategies, parts are only replaced or repaired when they fail to function correctly.

Maintenance activities are planned to prevent systems from failing by replacing or repairing parts, regarding preventive strategies. The corrective strategy helps fully utilize the lifetime of assets, but it vastly threatens the safety and availability of systems [START_REF] Mobley | An introduction to predictive maintenance[END_REF].

Aircraft must be maintained with high safety and airworthiness. Air transportation is also full of competition [START_REF] Kilpi | Cooperative strategies for the availability service of repairable aircraft components[END_REF]. Over time, a systematic approach has been developed by MSG (Maintenance Steering Group) to define appropriate maintenance strategies for systems, subsystems, and parts, which is based on the logic of "consequence of failure" for a specific 

Maintenance Planning and Scheduling

Maintenance planning and scheduling is another issue for aircraft maintenance, which usually involves the planning and scheduling of workforce and parts. As for the workforce, researchers tend to complete factors that affect the scheduling of the workforce and take the uncertainty into consideration. For example, [START_REF] Beliën | Improving workforce scheduling of aircraft line maintenance at Sabena Technics[END_REF] Scheduling the workforce in shifts is usually much harder than without shifts. On top of the usual coverage constraints, shift planning adds extra constraints about the start time and duration of shifts, shift successions, team sizes, etc. Therefore, the collection of real-time data about the workforce and equipment is helpful for maintenance planning and scheduling.

Cost Model for Maintenance

Maintenance costs for aircraft can be divided into two parts: DMC and IMC. In terms of DMC, [START_REF] Dupuy | Airline fleet maintenance: Tradeoff analysis of alternate aircraft maintenance approaches[END_REF] stated that it consisted of the cost of maintenance crews, materials, and parts repair and replacement. [START_REF] Kumar | Reliability, maintenance and logistic support:-A life cycle approach[END_REF] Additionally, EuroControl provided a model describing a methodology for evaluating true cost flight delays [START_REF] Cook | Evaluating the true cost to airlines of one minute of airborne or ground delay[END_REF]. Based on this model, [START_REF] Ferguson | Estimating domestic US airline cost of delay based on European model[END_REF] proposed a new model to allow costs to be updated whenever the basic costs change.

In our cost model, we take only DMC into consideration, because the invisible fees are out of scope in this thesis.

Standard Analysis

The standard is a very useful guideline for work, which is a synthesis of wisdom from experienced engineers, experts and researchers, etc. However, standards are often rather abstract and not keeping on specific issues. So, it is not easy for engineers to make full use of them. Standards are also supposed to be just piles of papers if they cannot be put into use. Thus, it raises the issue about how to use relevant standards to improve the maintenance efficiency for aircraft.

According to ILS (Integrated Logistic Support) specification in the aerospace and defence industry, the standards can be classified into two categories: S-series Suite of Specifications and ATA (Air Transport Association of American) specifications.

From the view of ATA development, a number of standards, including ATA 100, ATA 2100, iSpec 2200, iSpec 2300, iSpec42, Spec 200 and Spec 2000, have been involved. These standards are all originated from ATA 100 and Spec 200, which focus on the technical data standard and material data standard respectively [START_REF] Lafonsee | ATA iSpec 2200: The Lifecycle of the Spec[END_REF][START_REF] Conn | ATA e-Business Specification Overview[END_REF][START_REF] Conroy | Technical Data Interoperability (TDI) Pathfinder Via Emerging Standards[END_REF].

Even though ATA specifications have made efforts to improve the efficiency of the life cycle of the aircraft, the limitations of ATA specifications become apparent because requirements for more flexible technical information management distribution continue to increase. Since there is no common source database available and no definition of the link with other standards, we just focus on the s-serials suites of specifications.

Multiple ILS specifications are currently available or in the process of development, including:

• S1000D 2 , IS (International Specification) for technical publications using a common source database;

• S2000M 3 , IS for material management -Integrated data processing for military equipment;

2 http://s1000d.org (accessed in March 2019) 3 http://s2000m.org (accessed in March 2019)

• S3000L4 , IS for LSA (Logistic Support Analysis) ;

• S4000P5 , IS for developing and continuously improving preventive maintenance;

• S5000F6 , IS for in-service data feedback;

• S6000T7 -IS for training analysis and design.

It should be noted that S6000T is still in draft at that date. Without the specification, it is rather difficult to give detailed illustrations. Thus, in the following, we choose to avoid involving it.

In order to analyse s-series suites of specification, a number of factors, including producer, issued time, scope, data model, inter-operability, strength and weakness, have to be taken into consideration. The producer, issued time, scope, strength and weakness will provide a general idea of each standard. The data model and inter-operability mainly address the problem of how these standards arrange their works and cooperate well with each other. Table 2.2.5 gives a detailed comparison among these standards [START_REF] Liu | Towards Standards Analysis and Application in Process of Aircraft Maintenance Repair Overhaul[END_REF]. 

Existing Maintenance Systems

Complex systems have been recognized as the systems with numerous components, interactions and interdependencies that are hard to understand, predict, manage, design or change [START_REF] Magee | Complex system classification[END_REF]. [START_REF] Durazo-Cardenas | An autonomous system for maintenance scheduling data-rich complex infrastructure: Fusing the railways' condition, planning and cost[END_REF] applies this definition to railways maintenance systems, in order to provide the concept of the complex data-rich autonomous maintenance system for railways, which is illustrated as follows:

• Asset degradation triggers the system response;

• A system supported by information sources and expert systems;

• Integrated optimal task sequence;

• Cost factored automatic response;

• Automatic decision making;

• Extremely large data output that is curated fused to produce autonomous actionable information.

As for the maintenance system for aircraft, this definition is rather helpful. However, since the components of aircraft and the characteristics of aircraft maintenance (discussed in Section 1.1.3) are much more complicated than those of trains, some key features are still missing. For example, the maintenance for aircraft is highly regulated by aviation authorities. Maintenance goals and repair schemes are strictly supervised and managed. Maintenance strategies for different components should be defined in detail and be optimized.

This section provides a comprehensive literature review on modelling maintenance systems.

Since this paper focuses on the design of the autonomous maintenance system to improve operational support for aircraft maintenance, it excludes the papers without a system's perspective. For example, the topics like utilizing mathematical approaches [START_REF] Keysan | Tactical and operational planning of scheduled maintenance for per-seat, on-demand air transportation[END_REF][START_REF] Bruecker | A three-stage mixed integer programming approach for optimizing the skill mix and training schedules for aircraft maintenance[END_REF] or only introducing algorithms [START_REF] Diaz | Aircraft maintenance, routing, and crew scheduling planning for airlines with a single fleet and a single maintenance and crew base[END_REF][START_REF] Abdelghany | Airline flight schedule planning under competition[END_REF] to improve maintenance scheduling and planning are out of our scope. The synthesis analysis of reviewed papers is concluded in Table 2.2. The papers are analyzed from six aspects: proposes conceptual models, proposes simulation models, involved stakeholders, maintenance-related information, model purposes and the relevance to our research.

Furthermore, the relevance is evaluated with different levels: low, medium and high.

According to this table, researchers rarely propose both conceptual models and simulation models at the same time. Fortunately, [START_REF] Chang | Maintenance staffing management[END_REF] gathered these two models together.

However, they only concentrated on the issue of maintenance labours. The maintenance process was rather simple. As for involved stakeholders, researchers have almost neglected this aspect.

Although [START_REF] Durazo-Cardenas | An autonomous system for maintenance scheduling data-rich complex infrastructure: Fusing the railways' condition, planning and cost[END_REF] have involved stakeholders, they do not provide a simulation model. The majority of maintenance information has been involved by researchers. Most of the reviewed papers consider parts states, resource availability, planning and scheduling information and labours, etc. However, the planning and scheduling of information are just associated with maintenance activities. The scheduling information for the system of interest is still missing.

In this thesis, it is the information about the scheduling of aircraft. The lack of this information will lead to the consequence that the impact of the delay for one aircraft on other aircraft can not be investigated. In addition, the papers with low relevance mainly suffer from limited mainte- [START_REF] Mackenzie | Application of agent based modelling to aircraft maintenance manning and sortie generation[END_REF] provided us with a proper "prototype" of our model. Since no conceptual models and cooperation between stakeholders are analyzed, the simulation model is hardly involved with important insights into the maintenance process for aircraft. On the other hand, [START_REF] Duffuaa | A generic conceptual simulation model for maintenance systems[END_REF] gave us a detailed analysis of maintenance concepts and maintenance flows, however, it can only serve as the theoretic support for the autonomous system design because of no simulation models.

To conclude, the existing simulation models are prone to tackling maintenance issues without a comprehensive understanding of maintenance concepts. They are not able to offer an insight into the maintenance process, which results in simple maintenance strategies [START_REF] Mackenzie | Application of agent based modelling to aircraft maintenance manning and sortie generation[END_REF], overly simple algorithms [START_REF] Sahnoun | Modelling and simulation of operation and maintenance strategy for offshore wind farms based on multi-agent system[END_REF], only an aggregated level analysis [START_REF] Gary | Towards strategic development of maintenance and its effects on production performance by using system dynamics in the automotive industry[END_REF], etc. While the papers of conceptual models tend to lack a concrete simulation demonstrator to illustrate the feasibility of systems design. Thus, we are motivated to build an autonomous system starting from the requirement analysis and ending with a simulation system.

Our simulation system can fully support the analysis of the complete maintenance process, enable a more in-depth analysis of maintenance issues and automatically optimize the maintenance scheduling and the part repairing. [START_REF] Yang | Maintenance scheduling in manufacturing systems based on predicted machine degradation[END_REF] no partly no machine degradation level, maint. cost, spare parts, maint. resources proposes an approach for maint. scheduling based on the predicted equipment degradation medium, similar model purposes, abstract description of the simulation model, hard to reuse. 9. [START_REF] Chang | Maintenance staffing management[END_REF] yes yes no total cost, labours, machine failures investigates the trade-off between maintenance personal staffing level and the throughput of a production line low, similar in scope, very limited maintenance processes, little applicable details to support model building.

10. [START_REF] Duffuaa | A generic conceptual simulation model for maintenance systems[END_REF] yes no no input info., maint. type, planning and scheduling info., spares and equipment info., labours, quality and performance info. delivers a generic conceptual model for developing a realistic simulation model high, similar in scope, explicit model, shares the concepts of the model, partly reuses the flow charts, however, no real simulation system is built.

The Framework of the Proposed Approach

The framework for building the autonomous system is divided into five parts: requirement analysis, autonomous system design, simulation system implementation, formal logic verification and performance analysis, which is shown in Fig. 2.2. Software Engineering and system simulation are involved in this framework. The approach proposed is illustrated in the following.

The first step is to analyze requirements from operational support for aircraft maintenance.

Based on these requirements, an architecture schema is designed, which derives component models and a system interactive model. This system has been equipped with the very basic elements allowing operators of aircraft maintenance to globally automatically support maintenance decisions. The next step is to implement an ABSS as a system demonstrator based on which an important insight into the future system can be accomplished. Formal logic verification in terms of the ABSS is then studied, aiming at checking the logics of the system. Finally, we integrate data mining techniques into the ABSS to perform fault location prediction. Therefore, this framework tries to provide a complete methodology to build an autonomous system.

Our framework for developing the autonomous system on aircraft maintenance clarifies the practical value of the work. To begin with, it provides an alternative way to implement the "real system" based on systems design by building simulation systems, which enables us to gain important insights into future systems in an inexpensive way. Secondly, it offers a general approach to build an autonomous system that supports reuse and sharing. System designers in other fields are likely to provide a rigorous architecture design of the system and deliver a powerful demonstrator of the future system, which illustrates the feasibility of the design. At last, this framework proposes a methodology for building digital twins. It not only proposes a prototype system-of-interest but allows us to manipulate the prototype system with part of real data, in order to examine the reaction of the system.

Summary

The purpose of this chapter is to review the state-of-the-art research in the field of operational support for aircraft maintenance, in order to classify the existing works, highlight research gaps and guide future research. Different aspects, including maintenance process, maintenance business, and maintenance systems, have been addressed in the literature review. The research gap is that maintenance theory model and application model are often treated separately, which leads to less efficiency of application models. Therefore, an innovative framework is proposed, in order to provide an innovative methodology for combining these two models. The detailed description of the approach is discussed in the next chapters.
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Design of An Autonomous System of Aircraft Maintenance

In the last chapter, how to combine design models and application models was identified as the major issue in this thesis. The framework proposed specified the models: the system architecture model and simulation model. In this chapter, we will focus on how to design the architecture model on the autonomous system for aircraft maintenance. To do this, the approach chosen to design the model will be first discussed. The requirement analysis will then be performed, in order to recognise the key features of the autonomous system. In the following, an architecture model for the autonomous system will be presented, showing the major components and connections. The lower development of the architecture model will also be illustrated. At last, the responsibility of stakeholders will be emphasised as well, aiming at avoiding the occurrence of "dead-lock service" (no one really wants to intervene due to the vagueness of responsibility).

Introduction

The characteristics of systems require systems capable of being broken down into manageable fragments. In line with these principles, a systematic engineering method is introduced. SE (Systems Engineering) is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles [START_REF] Blanchard | System engineering management[END_REF]). The waterfall approach is a common approach to develop complex systems, which uses a sequence of design, implementation, and test and evaluation phases or steps managed by formal reviews and the delivery of documentation [START_REF] Royce | Managing the development of large software systems: concepts and techniques[END_REF]. The advantages of this approach are illustrated as follows [START_REF] Waltz | Requirements derivation for data fusion systems[END_REF]):

• The ability to systematically build large systems by decomposing them into small, manageable, testable units;

• The ability to work with multiple designers, builders, vendors, users, and sponsoring organizations;

• The capability to perform the development over an extended period of time with resilience to changes in development personnel;

• The ability to define and manage risks by identifying the source of potential problems;

• Formal control and monitoring of the system development process with well-documented standards and procedures.

Therefore, SE is a good choice for building the system, in order to have a holistic point of view on the system at the design phase.

Based on SE, the analysis of system requirements is firstly conducted. An architecture model for building the system is then proposed and the lower-level of the system is developed. Finally, the interactions between components with stakeholders are illustrated by the UML (Unified Modeling Language) diagrams.

Requirement Analysis

A system architecture is a structure of components, relationships, and principles governing the design and evolution of the system over its life cycle [START_REF] Iso | Systems and software engineering-architecture description[END_REF]. This definition addresses components and relationships. Understanding the aim of the system is the first step to identify components and relationships. For example, which decisions will be made? What are the characteristics of the system? Effective engagement with the stakeholders is vitally important to capture the new system requirements. The interview was conducted with a few experienced aircraft maintenance engineers in Chengdu, China. Because of confidential issues, several general questions were just discussed, which are illustrated as follows:

• Q1: what are the major issues about aircraft maintenance?

• Q2: what is the level of autonomy required?

• Q3: what are the general information needed for maintenance?

• Q4: what are the ways of accessing information? The real-time progress of aircraft maintenance is highly demanded; AMOs are often not meeting the planned release dates of aircraft maintenance checks. 2

The high level of autonomy required spans several areas: maintenance strategy planning and updating, workers scheduling, resource response, cost and service efficiency. 3

The general maintenance information refers to parts, equipment, preventive scheduling, worker scheduling, inventory, task card, etc. 4

Information systems, telephones, emails are the major ways of communication.

The answers about Q1 to Q4 are summarised in Table 3.1, which is based on a 3-hour interview.

According to the answers, we can identify several problems, including "the data fusion of different IT systems is not sufficient", "an autonomous maintenance system for aircraft maintenance is missing" and "A lack of an effective approach to make maintenance strategies and scheduling plans".

In terms of autonomous systems, our system is supposed to be capable of choosing to obey a rule or not and making complex decisions. However, implementing the human understanding into the system is not our focus. In addition, the strategy for maintenance enables the maintenance system to be adapted to real-time decision-making. Decision-making should be optimized with the consideration of service level and maintenance costs.

Architecture Development

Architecture Model

In order to express the data fusion processes in aircraft maintenance, a formal architecture is proposed based on the previous requirement analysis and Llinas and Hall's data fusion architecture model [START_REF] Llinas | An introduction to multi-sensor data fusion[END_REF]. [START_REF] Llinas | An introduction to multi-sensor data fusion[END_REF] 1. Maintenance requirement. This component triggers the whole of maintenance activities. The maintenance requirements can be derived from scheduled maintenance, unscheduled maintenance or third-party requests. Thus, the raw data involves the scheduled maintenance data, the sensor data, the alarm, and the third-party maintenance requirement report.

2. Maintenance strategy. This component is used to analyze the real-time state of parts in order to determine their corresponding maintenance strategies. The process for data fusion involves the synthesis analysis of the data from real-time inspection reports, sensors and troubleshooting databases.

3. Planning and scheduling. This component tries to automatically generate maintenance plans and schedules, including the optimization of the maintenance task sequence with the consideration of fundamental operating maintenance data such as repair time, cost, and resource availability, etc.

4.

Safety & Reliability estimation. The objective of this component is to collect, analyse, and manage reliability-related data, in order to conduct safety and reliability estimation. The result of estimation will be the data for the integration.

5.

Cost & Service level estimation. The goal of this component is to perform the estimation of maintenance costs and service level. The analysis of cost is the data fusion process of all the costs related to maintenance processes such as the repair cost, part cost, downtime cost, etc.

The analysis of service level involves the estimation on the waiting time of flights.

6. Integration. The aim of this component is to converge the estimation of safety & airworthiness and cost & service level, aviation authority regulation, resource availability into a global fused system output. Fig. 3.1 shows the relationship between components. The data collected from sensors, information systems or the crew's observation, is transferred to the fusion centre (component), where fusion processes take place in an ordered way. The flow of information between maintenance strategy and planning and scheduling is bidirectional because these two components may need to cooperate with each other directly due to the needs of maintenance business such as the occurrence of uncertain events. The components inside the dotted rectangle are the core maintenance components.

The information from these components is transferred to the integration model where its output delivers a global estimation of impacts on the maintenance strategy, maintenance scheduling, resource, cost, service level and safety & airworthiness on maintenance efficiency. Its feedback also provides recommendations to support the better decision and iteratively refines the maintenance process. This model shows a certain level of variability. For instance, it is possible to be adapted to deal with predictive maintenance. To do so, some information should be prepared and analysed in advance such as real-time states of parts, the historic information of parts and parts degradation curves. Once the decision of maintenance is made, the rest of the issues of making maintenance done makes no big changes.

Concept Models of Components

Concept models of components are developed in this section, which illustrate the static structure of the system. These models are described by UML class diagrams because they are able to easily explain concepts and explicitly capture their relationships. 

Lower-level Integration Architecture Development

The lower-level of architecture model describes each component in detail. The components, including inputs and outputs, are synthesised in Table 3.2. or observation by crews. The scheduled maintenance for aircraft components is programmed by OEM at the design phase. It consists of not only the timing of maintenance, but maintenance activities, such as procedural instructions for maintenance tasks, procedures for recording the results of inspections, checks, tests, and other maintenance, etc. [START_REF] Allen | State of the art in simulation-based optimisation for maintenance systems[END_REF]. Severity level depicts the degree of impacts of maintenance requirements (such as component faults, scheduled maintenance, etc.) on safety and reliability. The outputs of this component will trigger Maintenance strategy component.

Planning and Scheduling

Resource

Component 2: Maintenance strategy

The major aims of Maintenance strategy component are to dynamically determine maintenance strategies for parts and deliver maintenance goals and repair schema. The inputs of this component are maintenance requests, maintenance regulations and maintenance timings. The data of maintenance requests implies the whole description of maintenance including maintenance type, location and priority. The maintenance regulation refers to maintenance activities which are mandated to be executed. For example, Operator Approved Maintenance Planning includes numerous 
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Cost indicator documents like AD (Airworthiness Directive). The AD provides maintenance management processes in order to ensure the airworthiness level for an aircraft. The data of the maintenance timing is applied to optimize maintenance strategies via analyzing which maintenance can be delayed and dynamically updating maintenance types of parts.

Component 3: Planning and scheduling

Once maintenance strategies for parts are determined, the maintenance planning and scheduling will be defined accordingly. Planning and scheduling component is able to automatically generate the maintenance task sequence and the scheduling of labours. The input information is used to define the task sequence by analysing the availability of labours, parts and equipment. The remaining useful lifetime and intervals (the difference between the times of the next departure and the current arrival) are the basis for delivering repairing strategies. The historic data of maintenance is utilized when some uncertain events happen during the process of repairing, in order to find solutions. The cost analysis affects ways of repairing. The final scheduling result of maintenance activities is presented by a Gantt chart.

Component 4: Safety & Reliability estimation

Safety & Reliability estimation component is dedicated to checking safety issues and analysing system reliability. Checking safety issues principally depends on AD and SB (Service Bulletin). These two documents describe the maintenance management process and repair management process. If one of the steps is not compliant with the standard process, it will cause a safety risk. The system reliability analysis is conducted by analyzing the performance of parts. This component should ensure the safety of aircraft and provide information for product design.

Component 5: Cost & Service level estimation

Cost & Service level estimation component concentrates on the estimation of maintenance costs and service level. The input information is concerned with the cost of labour, parts, equipment, downtime, etc. The analysis of service level focuses on the delayed time of flights, which refers to the total repair time and intervals. The efficiency of maintenance is evaluated by a synthesis analysis of maintenance costs and service level.

System Module Interaction

The system module interaction of the autonomous system of aircraft maintenance is presented by the UML UCD (Use Case Diagram), which is shown in Fig. 3.7. UML UCDs have been widely used in the system module interaction (Skersys, Danenas, and Butleris 2018). There are four basic types of elements in UML UCD [START_REF] Booch | The unified modeling language user guide[END_REF], including:

• A Subject is a system with the capability to own UseCases;

• A UseCase specifies a specific unit of functionality (behavior) that a subject can perform in collaboration with one or more actors;

• An Actor is type of role played by an entity that interacts with the associated use cases within boundaries of the specific subject;

• An Association is a kind of relationship used to describe the between actors and use cases.

In this figure, modules in the system are depicted by 5 actors: integrator, requirement manager, strategy manager, planning and scheduling manager, cost estimator and quality controller. The interactions between use cases are generally explained as follows:

• The requirement manager generates maintenance requirements by use case "identifies requirement types", which includes three use cases: "identifies component maintenance", "identifies scheduled maintenance" and "identifies customer services". The identified requirement will be used by the integrator to generate strategy requests; • The strategy manager employs "analyzes maintenance strategies" use case. This use case utilizes "generate strategy requests" use case, in order to evaluate resource and maintenance costs. It then involves use cases: "defines maintenance goals", "delivers repair schema" and "generates strategies". Additionally, use case "analyzes maintenance strategies" will be extended as "updates strategies" when original strategies are not suitable. Use case "generates strategies" will be used to generate planning and scheduling requests;

• The planning and scheduling manager is associated with two use cases: "plans maintenance and schedules tasks" and "estimates resources". Use case "plans maintenance and schedules tasks" uses that of "generates planning and schedules request" and it includes two use cases: "assigns workers" and "delivers parts and equipment". At the same time, use case "estimates resources" uses these two use cases as well, which will be used by use case "displays resources";

• The cost estimator concentrates on use case "estimate costs";

• The quality controller is linked with "inspection" and "estimates reliability" use cases. These two use cases analyze the reliability, safety-related data generated in use case "plans maintenance and schedules tasks". The results will be used to display maintenance efficiency;

• The integrator issues 5 use cases "identifies requirement types", "generates strategy requests", "displays maintenance efficiency", "displays resources" and "generates planning and scheduling request", aiming at connecting different modules and displaying the key maintenance information.

Discussion

As mentioned in Section 3.2, the key requirement is to build an autonomous system fusing different IT systems on operational support for aircraft maintenance, in order to improve maintenance efficiency and reduce maintenance costs. The architecture model proposed for the system provides a global view about components and their relationships in the system. It allows us to fuse different IT systems involved since different components are associated with one or multiple IT systems and their relationship implies the connections between IT systems. The UML class diagrams of each component detail the static structure of the system. The architecture model associating with class diagrams guides us to implement the lower development of components, which involves the inputs, outputs and functions of components. Hence, the maintenance-related data from IT systems can be installed at the corresponding components properly, which makes it possible to accomplish the transformation from real-time data to global maintenance decisions. On the other hand, different stakeholders are linked with different activities (Fig. 3.7). The responsibility of stakeholders is clarified to some extent. So, it can reduce the occurrence on the issues of passing the buck when problems come.

However, this model did not take the complexity and difficulty of fusing different IT systems into account. For example, different IT systems may have different naming rules. The semantic consistency of IT systems should be investigated in the future work. Some information may be stored in a paper-based way. Security information has not yet been analysed.

Summary

Aiming at improving operational support for aircraft maintenance, an integrated approach that fuses aircraft's condition, strategy, planning and cost has been proposed. First of all, an autonomous system analysis framework is provided to illustrate the approach from the global point of view. Then, a high-level architecture for the autonomous system is developed to put forward the fundamental components and the relationship between them. The black box approach is employed to derive the underlying inputs and outputs of each component with respect to the component functionality. The UML use case diagram is used to illustrate the system module interaction. This helps deal with the complexity of systems design and enables smoother code development.

In the following chapter, we will give a detailed illustration of implementing a simulation system demonstrator regarding the design of the system.

Chapter 4

The Implementation of the

Simulation System Demonstrator

The design of the autonomous system of aircraft maintenance has been discussed in the previous chapter. The architecture model, the concept model of components and the system interaction model have been proposed, which gain an important insight into the system. In this chapter, we will build a concrete simulation system as a demonstrator to illustrate the feasibility of the system design. A simulation model will be provided. The model details such as component inputs, algorithms, and component outputs, will be developed. Finally, all the details of the simulation model will be synthesised and implemented in the simulator. The realness will be highly addressed in the simulation system. Manipulations of difference scenarios on the system will also be available.

Introduction

Implementing a real autonomous system for aircraft maintenance is definitely difficult because a number of information systems are hardly accessible and the evidence for convincing the operators to follow system instructions is rather limited. However, simulation systems enable us to gain valuable insights into future systems in an inexpensive way, especially when the costs, risks or logistics of manipulating the real system of interest are prohibitive. ABMS (Agent-Based Modelling and Simulation) is a relatively new approach to modelling the dynamics of complex systems and complex adaptive systems [START_REF] Macal | Tutorial on agent-based modeling and simulation[END_REF]. It is generally employed when the complexity of the system being modelled is beyond what static models or other techniques can fully present [START_REF] Helbing | Agent-based modeling[END_REF]. The complexity of the autonomous system for aircraft maintenance mainly originates from system uncertainty and dynamics. The uncertainty is reflected not only by random mechanisms but by unknown behaviours resulting from agents' interactions. For example, the occurrence of faults on components of aircraft is conformed to a certain probability. The bounds on these uncertainty issues and the implications of potential outcomes should be understood and evaluated. Agent-based simulations provide a flexible and useful mechanism to capture these uncertainties [START_REF] Heppenstall | Agent-based models of geographical systems[END_REF][START_REF] Monostori | Agent-based systems for manufacturing[END_REF]. In terms of system dynamics, maintenance tasks change over time, including maintenance sequences for aircraft and maintenance resources scheduling. Different environments will lead to different system behaviours. Agent-based decentralization takes this into account by letting each agent continuously coordinate its actions with other agents, instead of making this agent apply a behaviour prescribed at design-time [START_REF] Moyaux | Supply chain management and multiagent systems: an overview[END_REF]. Additionally, ABMS allows us to model real-world systems of interest in ways that beyond the capabilities of traditional modelling techniques, such as discrete event system or system dynamics [START_REF] Siebers | Discrete-event simulation is dead, long live agent-based simulation![END_REF][START_REF] Ali | Developing an agent-based simulation model of software evolution[END_REF]. Hence, ABMS is a better fit for realizing the autonomous system design.

In this chapter, the model of the ABSS is derived from component models. In the following, the development of the ABSS is discussed in detail, where the inputs, functions and outputs of each agent are provided.

The Model of the Agent-based Simulation System

In order to derive agents from component models, the relationship between components and agents are presented in Table 4.1. Combining component models and maintenance-related issues (flight, plane, equipment, etc.), eight agents have been created, which can be divided into two groups: basic agents and maintenance agents. The basic agents refer to the Flight, Plane and Equipment.

The maintenance agents consist of the Main, CRA (Customer Requirement Agent), SSA (Service Strategy Agent), STA (Service Task Agent), SCA (Supply Chain Agent) and QCA (Quality Control Agent). Fig. 4.1 provides an architecture model of the agent-based simulation system. In this 

The Development of Agents

The development of agents has been implemented as the following steps: the inputs of agents, the processes of agents, and the outputs of agents. All the relevant data about agents is summarized in Table 4.2.

Main and Customer Requirement Agent

Main is designed as the integrator. It not only links with all the other agents but displays the key information of maintenance. This agent provides a graphical display of flight routes based on a The maintenance sequence optimization is another key issue for Main. In our simulation environment, it is possible for more than two planes to be maintained at the same airport. The FIFO (First In First Out) rule is often applied in flight control [START_REF] Atdelzater | QoS negotiation in real-time systems and its application to automated flight control[END_REF].

However, only using the FIFO rule to deal with waiting planes cannot be always a good strategy, especially when the high efficiency of maintenance is exceptionally demanded. In fact, this agent allows maintenance designers to investigate the performance of different strategies. For example, some other strategies like FIFO-Optimized strategy for waiting planes can be proposed. On the one hand, the least important PM for planes may be delayed to the next destination; on the other hand, the rest of maintenance will be scheduled with the FIFO-Optimized strategy. The FIFO rule is utilized to avoid the starvation of processes. Optimization operations are based on the FIFO rule.

Each time when the temp message list is empty, it will copy all the messages from the message list.

At the same time, the elements in the message list should be freed. It should be noted that the temp message list is used for optimizing the maintenance sequence for waiting planes and the message list is just employed to collect the messages.

The FIFO-Optimized strategy has been implemented in Algorithm 1. The time complexity of this algorithm is O(n 3 ). In this algorithm, synthesize is a function of setting the priority for aircraft. • Else delay the index of the aircraft with the minimum interval of the maximum Evalua-tionV alue and "MaintenanceT ype = preventive".

In this evaluation process, a few issues should be addressed. First of all, the design of the variable threshold aims to improve maintenance efficiency, i.e., the maintenance of less urgency can be delayed to the next airport. In terms of setting the key-values for variables, the objective is to more easily compare the severity of cases. For example, comparing with the cases of "severity = 1 and MaintenanceT ype = corrective" and "severity = 2 and MaintenanceT ype = preventive", the latter case will be given a higher priority. Because the value of EvaluationV alue for the latter case is bigger. Since the values of severity and MaintenanceT ype are very limited, it is possible for different flights to have the same evaluation value. In this case, one of the minimum intervals will be chosen.

Table 4.3: The key-values for severity and MaintenanceT ype (severity, value) (0, 0) (1, 1) (2, 10) (MaintenanceT ype, value) (preventive, 0) (corrective, 5) -On top of that, the estimation of severity and resource and the delay of the least important maintenance are conducted with respect to airports. Because different airports are equipped with different capacities of the resource. This may lead to changing maintenance sequences significantly.

Additionally, Algorithm 1 is different from Algorithm 3. The former focuses on scheduling faulty aircraft to repair (i.e. the sequence of "faulty" aircraft needed to be repaired); the latter concentrates on programming maintenance resources for maintenance tasks (i.e. the sequence of maintenance tasks needed to be performed).

CRA sends maintenance requests to relevant agents after receiving signals from Main. If it is a PM, checking information will be sent to SSA. If it is a CM, fault information will be delivered to STA. As this agent principally manages requests and triggers maintenance activities, the input and output are the same. 13 end // to be continued.

Flight

Flight is a controller of scheduling planes. It schedules both on-time and delayed flights. The information about flights is stored in the database.

The scheduling strategy is implemented by two events: scheduling and schedulingDynamical.

The scheduling event is a cyclic event where the first occurrence time is departureTime and the recurrence time is one day. The schedulingDynamical is a dynamic event. The occurrence of this event is totally determined by users by indicating the occurrence time. The scheduling strategy is described as the flowchart shown in Fig. 4.2. As a result, the final state of one flight will be scheduled, delayed or cancelled. Since the scheduled information is determined, the "chain reaction" can happen due to some delays of flights. This phenomenon can significantly increase the complexity of maintenance and clearly shows the high-level relevance of real-world maintenance issues of the simulation system. This agent will deliver the scheduling information and maintenance state information to Plane and Main respectively.

// Maintenance sequence optimization (part 2) // Then, based on the FIFO rule, prioritize maintenance sequences. 1 for j = 0 to airports.size() do 2 max =0; 

3 for k = 0 to tempMessagesList.

Plane and Equipment

Plane is the major carrier for maintenance. It is a composite agent, which contains a number of Equipment. When all the aircraft are loaded from the database, they will be ready at their corresponding airports. As soon as receiving the messages from Flight, they will fly to their destinations.

When they reach their corresponding destinations, the maintenance will take place with a certain probability. According to the report of air transportation organization of Canada from 2007 to 2016 (TSBC 2019), landing can be considered as the period when most of the incidents happen. Therefore, in our simulation, the maintenance is assumed to be started from the landing period.

Initialize

After the reparation, they are programmed to fly to next destinations. This cycle repeats every day. Fig. 4.3 shows equipment states regarding the location of equipment. Failure events transfer the equipment state from Use to Failure. The state transition from Use to Inspecting is triggered by PM. If maintenance actions can be done on the plane, the state will pass from Repairing to Use. On the other hand, the equipment will be repaired in the workshop. In addition, the stock will deliver any available equipment needed. It should be noted that Repairing and Repair states depict that maintenance activities take place on the spot and at workshops respectively.

During the life-cycle of equipment, recording the current use time of equipment is very important. This time will be the key factor to make a repairing decision. In this simulation environment, as soon as the equipment is loaded from the database, the current use time of this equipment starts.

Only when it is placed in the stock, the current use time stops. The definition of currentUseTime is 

CU T b = CT -ST i + LU T i-1 ; (4.2) LU T i-1 = ET i-1 -ST i-1 + LU T i-2 (4.3)
where, i >= 1; LU T 0 = 0; CU T b and CU T a mean parts have been stayed at the stock or not respectively; the indices of equations are shown as follows:

CT (Current Time) the current simulation running time;

CUT (Current Use Time) the current use time of equipment;

ST (Start Time) the time when equipment is leaving from stocks;

ET (End Time) the time when equipment is put into stocks;

LUT (Last Use Time) the last use time of equipment. The analysis of repairing strategies is realized in Algorithm 2. This algorithm deals with PM and CM. The repairing strategies include "replace", "replace& repair", "repair" and "inspect". The first three strategies are associated with CM. The "inspect" is used for PM. This algorithm is designed for comparing the currentUseTime and changeoverTime of equipment with respect to equipmentState, in order to find the optimal repairing strategy. In addition, the time complexity of this algorithm is O(1) because no loop is involved.

Service Strategy Agent

SSA is intended for dynamically determining maintenance strategies for equipment and delivering maintenance goals and repair schema. PM and CM are analyzed in this agent. If the maintenance type is PM, maintenance actions will be carried out on PM due parts. If the maintenance type is CM, this agent will automatically generate faulty part lists. The selection of parts takes place in a random way. On the other hand, we consider the influence of maintenance strategies on the same equipment. If PM occurs at equipment i, the probability of the fault occurrence at this equipment will be decreased. If CM happens at equipment i, the PM of this equipment should be rescheduled.

Based on this idea, the approach of maintenance strategy updating is provided in Fig. 4.5. 

Supply Chain Agent

SCA addresses how to supply enough parts or components for repairing aircraft. This agent will go through the inventory to check the availability of parts, once they are being requested. Parts in the inventory consist of new parts and returned parts (repaired parts). Therefore, these two kinds of parts are both possible to be used in repairing. As such, one part can serve for different aircraft.

Besides, the current use time of this part will continue, starting from the last time of being time, which is mentioned in Fig. 4.4. New parts will be purchased if they are out of stock.

The process for purchasing parts is simulated by dynamic events. Random time will be given 

MT BF = n (i=2) (T Failure i -T Failure i-1 )/n -1; (4.4) MT T R = n (i=2) (T EFailure i-1 -T Failure i-1 )/n -1; (4.5) MT T F = n (i=1) (T Failure i -T EFailure i-1 )/n -1; (4.6)
where, T EFailure i implies the time of the end of failure i. In Eq. 4.6, T EFailure 0 = 0. In addition, NFF (Not Fault Found) rate will be considered as well. It should be noted that NFF means that equipment sends the faulty signal, but after inspecting it, no fault is found. During the process of simulation, all the relevant information will be collected to conduct the reliability analysis. The results are compared with target repair time, target MTBF, and target MTTR respectively, in order to get the correspondent performance. In the following, the process of generation of recommendations is analyzed in details. The performance of MTBF means the performance of the component.

Therefore, combing the performance of MTBF and the real failure causes, some recommendations about changing handling procedures can be proposed. The performance of the NFF rate reflects the real situation of the component quality. When we compare the performance of the NFF rate with an arising pattern, some recommendations about developing a new component or update it can be proposed. For the performance of MTTR, it shows the efficiency of the reparation. Thus, associating the performance of the MTTR with maintainer's ID, some recommendations about strengthening the training can be proposed. At last, linking with the performance of maintenance frequency

with training sequence and content, some recommendations about changing the maintenance sequence can be proposed. Furthermore, once the feasibility of these recommendations is demonstrated, an improvement of the maintenance activities can be implemented.

Safety analysis is achieved by utilizing AD and SB. The maintenance management process and repair management process are supervised. Once these processes are violated, a warning will be sent.

Above all, the input data of this agent is the working period, the time of failure, and the repairing period for each equipment. The output data of this agent is the results of MTTR, MTBF, MTTR and safety.

Uncertain Analysis for Aircraft Maintenance

The uncertain analysis is a big and inevitable issue for aircraft maintenance. It is very common to see uncertain events occurring during the process of aircraft maintenance. Uncertain events make operational support for aircraft more complicated and difficult. In our simulation system, we take uncertain issues into consideration. [START_REF] Song | An agent-based simulation system for multi-project scheduling under uncertainty[END_REF] addressed uncertainty issues in resource-constrained multi-project scheduling for an ABSS. Here, "project", in this paper, means an ensemble of tasks. They suggest uncertain events often happen during the execution of projects.

Two types of uncertainty are involved, including workability uncertainty and sub-task failure. Our consideration of uncertainty is derived from Song's categorisation because the above-mentioned aspects are involved in our case. Besides, the uncertainty on the ability to tackle fault events in terms of maintenance organisations is considered as well, since the knowledge of maintenance organisations can improve maintenance efficiency. Different types of uncertainty have been achieved in our simulation system, which are shown in the following:

Workability uncertainty How to choose the "faulty" aircraft (scheduled maintenance is due) to be maintained relies on the real situations of aircraft itself and the corresponding airport. The "faulty" aircraft can be delayed, if its severity is not high enough. The availability of resource at the airport also affects the final decision. Thus, the order on whether the maintenance for aircraft should be delayed to the next airport or not is uncertain. This principle can be also adapted to determining the sequence for scheduling aircraft to be maintained. Problem-solving capability Technicians can encounter all kinds of uncertain events. For example, some tools are missing. Or some situations never happened before. These uncertain events have an adverse influence not only on maintenance efficiency but on feelings of technicians [START_REF] Tsagkas | A pragmatic mapping of factors behind deviating acts in aircraft maintenance[END_REF]. This is because technicians will run into difficult situations: The tasks cannot be finished on time if they seek ideas from managers;

The tasks may not be delayed if they make their own decisions but it will burden technicians with additional worries. Maintenance tasks can be severely impeded due to the inefficiency of the management of maintenance organisation, which motivates us to propose the process for dealing with uncertain events (Fig. 4.7). The major idea is to precisely define maintenance activities for stakeholders and make full use of information systems. It should be noted that "P solution" in this figure means possible solutions.

Cost and Service Level Analysis

In The definition of service level is shown as follow:

ServiceLevel = totalRepairT ime -interval. (4.12)
Service level reflects the degree of the delay time of passengers. It is another way to evaluate maintenance efficiency. Obviously, decreasing the maintenance cost all the time is not definitely a good idea. Because it may lead to numerous delays or even unnecessary cancels of flights. In this paper, when the difference between totalRepairTime and interval is more than 4 hours for one flight, it is supposed that this flight will be cancelled.

Discussion

The simulation system is the demonstrator to simulate the whole process for aircraft maintenance.

Many factors, including strategies, scheduling plans, the cost analysis and the service level analysis, have been addressed in this system.

The analysis of strategies consists of the maintenance sequence optimization strategy (Algorithm 1), the repairing strategy (Algorithm 2), and the maintenance task sequence optimization strategy (Algorithm 3). These strategies ameliorate the efficiency of aircraft maintenance. The maintenance sequence optimization strategy states that the requests from aircraft should be answered in an optimized way. From the experiment results (Section 5.6.3), we can see that the judge of the best strategy relies on the chosen priority and the synthesis of real-time conditions.

The strategies of repairing and maintenance task sequence have considered the real-time conditions as well. As for the updating of maintenance strategy, the system dynamically updates the maintenance strategy based on the real-time condition. [START_REF] Alrabghi | A novel approach for modelling complex maintenance systems using discrete event simulation[END_REF] provided the interactions among maintenance strategies (shown in Table 4.5), which illustrates how the actions of a given maintenance strategy might affect components in the system in different ways assuming the probability of occurrence of all failure modes does not change. This table enables us to model the complex maintenance strategies for the autonomous system. The planning and scheduling task scheduler uses Algorithm 3 to enable the allocation of maintenance jobs to groups of MRO workers, providing cost-effective plans for dealing with maintenance issues in a simple and timely way.

The cost analysis uses a simple cost-breakdown structure (Eqs. (4.7) to (4.11)) to estimate the maintenance cost; but because of the complexity of the effect of repair time (Table 4.4), multiple values are possible for any given task.

The analysis of service level is another way to evaluate maintenance efficiency. Even though the definition of service level is quite simple, it could make the analysis of maintenance much more complicated. The concept of service level allows aircraft to be delayed or cancelled. Since flying routes of aircraft have already planned, it may cause the "chain reaction". For instance, as the resource of one airport is not well evaluated, it may lead to the resource competition between CM and loose PM. In other words, the loose PM could be delayed to some other airports (details see Algorithm 1). Consequently, more aircraft will have to wait for resources. It will then cause the delay of flights. Hence, the "chain reaction" will happen between Flight and Plane. So, a delay of an aircraft may cause multiple delays of other aircraft. The real-time condition varies from time to time. The planned scheduling could be useless. As a result, quick responses to real-time conditions become vitally important to improve maintenance efficiency.

As above, our simulation system is a successful proof of demonstrating the design of the autonomous system for aircraft maintenance.

Summary

In order to illustrate the feasibility of the design of the autonomous system, a solid simulation system demonstrator has been accomplished by using Anylogic. The autonomous system is implemented in the way of the agent-based simulation system where components are instantiated as agents. The strategies, the planning and scheduling, the cost analysis and service level analysis have also been achieved in the simulation system.

Chapter 5

The Formal Verification of the Autonomous System

The autonomous system has been accomplished in previous chapters. The analysis of the system could be carried on, in order to investigate the performance of the system. However, a system without the logic checking can neither convince users nor assure its correctness in the long run, especially a system applying in the security-critical domain. As a result, we will conduct the research on the formal verification of the autonomous system.

Model checking is an effective way to verify the behaviours of an agent-based simulation system.

Three behaviours are analysed: operational, control, and global behaviours. Global behaviours of a system emerge from operational behaviours of local components regulated by control behaviours of the system. The previous works principally focus on verifying the system from the operational point of view (operational behaviour). The satisfactory of the global behaviour of the system has not been investigated regarding the control behaviour. Thus, in this chapter, we propose a more complete approach for verifying both global behaviours and operational behaviours of systems.

To do so, firstly these three behaviours are formalized by automata-based techniques. The metatransformation between automata theories and Kripke structure is then provided, in order to illustrate the feasibility for the model transformation between the agent-based simulation model and Kripke structure-based model. In the following, a mapping between the models is proposed.

Subsequently, the global behaviour of the system is verified by the properties extracted from the control behaviour and the operational behaviour is checked by general system performance properties (e.g. safety, deadlock freedom). Finally, two case studies on the simulation system for aircraft maintenance have been carried out. 
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show that 47.37% of cancelled flights have been changed to be serviceable. In terms of the second one, the simulation experiment analyzing the impact of maintenance sequence strategies on maintenance costs and service level has demonstrated the feasibility of the simulation system.

Introduction

The autonomous system is built based on SE and ABMS, which is finally implemented as an ABSS.

Since the basic elements of the ABSS consist of agents, agent relationships, and agents' environment, the modelling of the ABSS is not rather difficult if requirements are well investigated. The modelling process involves the building of individual agents, the definition of the interactions between agents, and the design of the agents' environment. Agents are built individually, the interactions with neighbouring agents are usually clear. However, the behaviours of the ABSS rely not only on the programs inside the agents but also on the agent interactions, which makes it difficult to explore the impacts of the individual agent behaviour on the ABSS especially when the number of agents increases.

Formal verification is a powerful tool to demonstrate the correctness of system behaviours. In this thesis, system behaviours are divided into global behaviours and operational behaviours. Many efforts have been made to this area. However, most of the researches focus on how to extend the formal logic to support the description of the more complex system [START_REF] Al-Saqqar | Model checking temporal knowledge and commitments in multi-agent systems using reduction[END_REF][START_REF] Raimondi | Model checking multi-agent systems[END_REF]. Some other works contribute to the subject of model transformation (El [START_REF] Menshawy | Model checking real-time conditional commitment logic using transformation[END_REF][START_REF] Keshanchi | An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing[END_REF]. Few studies have given attention to the system itself. Control behaviours are often involved when we analyze a system. They are applicationindependent, which limit operational behaviours (application-dependent) from the abstract level.

Understanding the conformity of global behaviours to control behaviours is another effective way to verify whether the system design is satisfactory [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF]). Thus, this chapter focuses on how to better verify the behaviours of the ABSS with only the existing formal logics.

Different behaviours are checked in different ways. The global behaviour is extracted from the ABSS, which describes the behaviour of the object of interest (like aircraft) instead of concerning any details. The operational behaviour of the ABSS is based on the real ABSS, where any reachable details (like cooperation between agents) will not be ignored. The differentiation of these two behaviours allows us to verify the behaviour of the ABSS from the abstract and detailed levels.

The behaviour of the detailed level is verified by the general system performance properties like safety, liveness, etc. On the other hand, the verification for the behaviour of the abstract level is performed with a control behaviour. In Bentahar's work, the control behaviour was proposed to verify the conformity of the operational behaviour of the composite web services Bentahar et al. specifications. The primary purpose of NuSMV input language is to describe the transition relation of the FSM, which is quite suitable for describing the state transition of statecharts in agents.

Therefore, we choose NuSMV as the model checker.

The approach proposed is employed to verify the behaviours of the ABSS proposed in Chapter 4. As shown in Fig. 4.1, a number of agents such as Flight, Plane, etc., are involved and the general information between agents is provided as well. As a result, the symbolic model checking is the appropriate technique to verify the design of the ABSS.

To conclude, the symbolic model checking technique is used to check the satisfaction of the global behaviour and the operational behaviour of the ABSS. The main contributions of this research work are illustrated as follows:

• proposing an improved model checking approach for verifying the ABSS from both the abstract and detailed points of view;

• providing a complete model transformation process from the ABSS to the formal model for verification;

• giving a concrete case study of formal methods in practice and demonstrating the power of formal methods in improving designs and in providing new insights.

Based on the verification results, the problem of signals transferring between Flight agent and Plane agent has been discovered, which influences the system operation for a relatively long period of the simulation execution. The simulation results show that the efficiency of the aircraft maintenance has been improved after having modified the behaviour of Flight agent.

Literature Review

This chapter refers to "global" and "operational" behaviours with the intention to refer to different levels of abstractions of a system model. These terms may cause readers confused because they are not quite often used in model checking in this way. Researchers in model checking often use terms like software architecture ("global") and programs ("operational") [START_REF] Khurshid | Generalized symbolic execution for model checking and testing[END_REF][START_REF] Visser | Model checking programs[END_REF][START_REF] Zhang | A classification and comparison of model checking software architecture techniques[END_REF]. We choose not to use them because we restrain our research scope to model checking for the ABSS. Agent is the key concept for the ABSS. The behaviour of agents is often described by statechart diagrams. However, these diagrams express the behaviour of agents in a relatively abstract manner, which are neither codes nor the architecture description. Furthermore, different levels of behaviours have been proposed in model checking [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF][START_REF] Souri | Behavioral modeling and formal verification of a resource discovery approach in Grid computing[END_REF], in order to describe different levels of abstractions of a system model. Therefore, we argue that our terms are appropriate.

Büchi Automata

Automaton theory consists of four kinds of automata, including combinational logic (used in the digital circuit), finite-state machine (a mathematical model of computation), pushdown automaton (employs stack) and Turing Machine (a mathematical model of computation) [START_REF] Automata | Automata Theory[END_REF].

The classes of automata can be seen in Fig. 5.1. Büchi automaton is derived from the finite-state machine, which extends the machine to infinite inputs. Generally, Büchi automaton is divided into deterministic Büchi automaton and non-deterministic Büchi automaton. A generalised definition of deterministic Büchi automata is illustrated in the following.

Definition 5.2.1. (Deterministic Büchi Automata) It is a 5-tuple A =< Σ, Q, q 0 , F, δ >, where:

• Σ is a finite set of messages sending between agents;

• Q is a finite set of states of agents;

• q 0 ⊆ Q is the initial state of A;

• F ⊆ Q is a set of final states; • δ ⊆ Q Σ → Q is a transition function.
Transitions and initial states are the major difference between deterministic and non-deterministic Büchi automata. Non-deterministic Büchi automaton uses a transition relation and a set of initial states instead of the transition function δ and the single initial state q 0 respectively.

Alternating Büchi automaton is another non-deterministic Büchi automaton whose transitions are categorised into existential and universal transitions. Existential transitions mean the next state of automata is just one of the possible states, reading a signal. Universal transitions imply an automaton simultaneously moves to all the next states from its current state.

Computational Temporal Logic

The CTL is a branchingtime logic which enables us to define properties considering the nondeterministic and branching evolution of a finite-state machine [START_REF] Cavada | NuSMV 2.5 Tutorial[END_REF]). An infinite tree can be employed to interpret the evolution of a finite-state machine. The sub infinite tree can describe the non-determinism and branching if the nodes of the tree are treated as states of the finite-state machine. The non-determinism of the transition relation leads to the tree stretching out with branches. The paths from one node to its leaves of the tree are the possible alternative evolution of the finite-state machine from the corresponding state. The idea of the tree allows the CTL to express properties holding for all the paths or some of the paths of the finite-state machine from a given state. The syntax of the CTL is illustrated as follows:

φ ::= | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ ⇒ φ) | (φ ⇔ φ) | AXφ | EXφ | AFφ | EFφ | AGφ | EGφ | EGφ | A [φ U φ] | E[φ U φ],
where

• p ranges over AP (Atomic Proposition);

• AX, EX, AF, etc., are operators.

The operators for the CTL combines temporal operators and quantification operators, which are shown in the following:

• Quantification operators:

-A p: condition p must hold for all the paths starting from a state;

-E p: at least one path exists starting from a state where condition p holds.

• Temporal operators:

-X p: condition p must hold in the next state;

-G p: condition p must hold in all future time instants;

-F p: condition p must hold in one of future instants;

p U q: condition p must holds at least until condition q holds.

Linear Temporal Logic

Amir Pnueli first proposed LTL to verify the logic of computer programs in 1977 [START_REF] Pnueli | The temporal logic of programs[END_REF].

The LTL is based on a finite set of atomic propositions. The LTL verifies programs by considering each linear path rather than the whole sub-tree. So, it does not have quantification operators, i.e., it is incapable of expressing specifications that hold for some of the paths. Thus, LTL formulas just include logic operators and temporal operators. The two logics have in general different expressive power, but share a significant intersection [START_REF] Cavada | NuSMV 2.5 Tutorial[END_REF]). The LTL fully supports the temporal logic discussed in CTL. Moreover, some LTL specifications can not be expressed by the CTL. For example, F ( G p ) means every path will eventually reach a point after which condition p always holds. It should be noted that the syntax and operators of the LTL are similar to those of CTL so we just explained the difference between them.

Model Checking for Multi-agent Systems

Operational and control behaviours have been studied in Web services [START_REF] Sheng | Separating operational and control behaviors: A new approach to Web services modeling[END_REF][START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF][START_REF] Souri | Behavioral modeling and formal verification of a resource discovery approach in Grid computing[END_REF][START_REF] Navimipour | Behavioral modeling and automated verification of a Cloud-based framework to share the knowledge and skills of human resources[END_REF]. The control behaviour was proposed by [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF] to verify the operational behaviour of composite web services.

In their work, the control behaviour defines a general design of web services and guides and monitors the execution progress of the operational behaviour. The operational behaviour implies the business logic of a web service operation. The detailed formal definition of behaviours and the transformation process were provided. However, their verification approach is limited. The major problem may be that it can not check the operational behaviour where states transitions are defined with conditions. For example, the operation like P laneP repared "invoke"

-------→ P laneScheduled can not be checked. Because the LTL or CTL [START_REF] Pnueli | The temporal logic of programs[END_REF] specification representing this kind of execution sequences can not pass in NuSMV model checker. Thus, we think that their approach is suitable to verify the global behaviour where fewer details are involved and no condition exists. 2013) used a ticket reservation system to illustrate their approach. This system just described the operation behaviour of the ticket reservation from a global point of view. No details about reservation processes were involved. [START_REF] Keshanchi | An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing[END_REF] adopted the genetic algorithm to explain the feasibility of model checking.

Only a single module was referred to. [START_REF] Al-Saqqar | Model checking temporal knowledge and commitments in multi-agent systems using reduction[END_REF] modelled NetBill protocol to demonstrate the efficiency of their method. A real case was analyzed by El [START_REF] Menshawy | Model checking real-time conditional commitment logic using transformation[END_REF]. They chose the landing gear system in [START_REF] Boniol | The landing gear system case study[END_REF] as their case study, which was a real and industrial case. They corrected their NuSMV model after having found a counter-example by specifications. However, they did not discuss the reason why the original model was not correct and the comparison experiments were not provided regarding the original model and the corrected model.

As a conclusion, we are motivated to propose a more complete approach of model checking and our method is explained based on a real simulation system of aircraft maintenance. So, the improvement of the simulation system and comparison experiments are performed, which provides an example of an application of formal methods.

The Formalization of the Autonomous System

In this section, the specification of the ABSS is formalized as the global behaviour, operational behaviour and control behaviour. Control behaviours express the general behaviour of any process related to aircraft maintenance. However, global operational behaviours are dependent on applications. These behaviours have been investigated for isolated or composite web services [START_REF] Maamar | A new approach to model web services' behaviors based on synchronization[END_REF][START_REF] Yahyaoui | A framework to coordinate web services in composition scenarios[END_REF][START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF]. Different methods like Büchi automaton and labelled transition system, were used to formalize the behaviours. Büchi automaton extends a finite automaton to infinite inputs, which meets the requirements for the continuous invocation of plane's service. Thus, we use Büchi automaton to describe the behaviours of the ABSS.

Global Behaviour and Operational Behaviour

The global behaviour (Fig. 5.2) is expressed as the behaviour happening in the life cycle of planes from the global point of view. The operational behaviour (Fig. 5.3) is employed to describe the inner behaviour of the component. The definitions of behaviours are illustrated as follows.

Definition 5.3.1. (Global Behaviour) The global behaviour of an agent-based system is a 5-tuple

GB =< Σ gb , Q gb , Q 0 , F gb , ∆ gb >
, where:

• Σ gb is a finite set of messages sending between agents;

• Q gb is a finite set of states of agents;

• Q 0 ⊆ Q gb is a set of initial states;

• F gb ⊆ Q gb is a set of final states;

• ∆ gb ⊆ Q gb Σ gb Q gb is a transition relation.

Definition 5.3.2. (Agent Operational Behaviour) The operational behaviour of an agent is a 7-tuple

AOB =< Σ aob , Σ in , Σ out , Q aob , Q 0 , F aob , ∆ aob >
, where:

• Σ aob is a finite set of messages of the agent, including the empty message ∅;

• Σ in ⊆ Σ aob is a set of messages inside the agent;

• Σ out is a set of messages outside the agent;

• Q aob is a finite set of states of the agent; 

• Q 0 ⊆ Q aob is a set of initial states; • F aob ⊆ Q aob is a set of final states; • ∆ aob ⊆ Q aob Σ aob Σ out Q aob is a transition relation.
0 , Σ 1 , ..., Σ n from Σ aob is a sequence Q 0 Σ 0 --→ Q 1 Σ 1 --→ Q 2 ...Q n-1 Σ n-1 ----→ Q n such that ∀i ≥ 0, Q i , Q i+1 ∈ Q aob , (Q i , Σ i , Q i+1 ) ∈ ∆ aob , Q 0 ∈ Q 0 , Q n ∈ F aob .
The conversation is said to be valid iff it visits infinitely an element of F aob .

As the forms of global and operational behaviours are similar, we just provide an example of the operational behaviour. Fig. 5.3 represents the operational behaviour of Flight agent. The elements of AOB over Flight agent are explained as follows:

• Σ aob = {STA.delay, Plane.ready, Plane.receive, "null", ("schedule", plane)};

• Σ in = {STA.delay, Plane.ready, Plane.receive};

• Σ out ={("schedule",plane)};

• ∆ aob = {(Init, STA.delay, Checking), (Checking, Plane.ready, Ready), (Ready , ("schedule", plane), Scheduling), (Init, ("schedule", plane), Scheduling), (Scheduling, Plane.receive, End), (End,"null", Init)}.

One conversation in the AOB of Flight agent can be:

Init ("schedule",plane) ----------------→ Scheduling P lane.receive -----------→ End.
It should be noted that dashed, dotted and solid arrows imply the messages of receiving from other agents, sending to other agents, and sending to the interior respectively. The messages of sending or receiving are always associated with destination agents. For the message of receiving from other agents like "STA.delay", it is composed of the name of agent (e.g. STA) and the signal

Ready a3

Checking a2

Init a0 Flight STA.delay ("schedule", plane)

"null"

Plane.receive

Scheduling a1

End a4

("schedule", plane) Plane.ready ). In terms of the message of sending to other agents like "("schedule", plane)", it consists of the signal ("schedule") and the agent (Plane).

Control Behaviour

Control behaviours constrain the operation sequence of system behaviours. The conformity to the control behaviour reflects the correctness of the system behaviours. Since the control behaviour is formalized by Büchi automaton as well, we do not repeat its definition. Here we just introduce the content of the control behaviour. (2013). They provided a control behaviour of composite web services. Since the control behaviour is the application-independent specification of business logic, it is possible to adapt control behaviours of one domain to another. In terms of web services, the concept of "compensate" implies the original execution prices will be refunded when the service provider can not provide the committed service or deliver the ordered commodity [START_REF] Liu | QoS computation and policing in dynamic web service selection[END_REF]. However, as for aircraft maintenance, we have not involved this issue. Thus, we delete this behaviour. In addition, "Aborted" refers to one flight has to be cancelled because of a long delay.

To illustrate the efficient design of the global behaviour of the system, we check the conformity of the global behaviour of the system to the control behaviour. The conformity is defined as the relationship between the conversations of the global behaviour and the control behaviour executions. According to [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF], the type of the conformity can be: weak or strong. The -------→ P laneInvoked "invoke"

-------→ P laneChecking

"T imeIsDue" ------------→ ScheduledMaintenance "invoke" -------→ Analyze "invoke" -------→ Repairing "invoke" -------→ P laneChecking "invoke" -------→ P laneP repared "delay" ------→ P laneCanceled) * . Execution1 = (N otActivated "start" ------→ Received "invoke" -------→ Activated "f ailure" --------→ Suspended "repaired" ---------→ Activated "delay" ------→ Aborted "invoke" -------→ Done) * .
The mappings between state-to-state (S-S) and transition-to-transition (T-T) are explained in Table 5.1. Verifying this conformity one by one manually is quite tedious even if a small number of states are involved. The number of possible conversations grows dramatically with the increase in the number of states. So, an automatic verification approach is proposed in the next section. 

The Adaptability of Büchi Automaton

A typical agent-based model has three elements (Macal and North 2010):

• A set of agents, their attributes and behaviours;

• A set of agent relationship and methods of interaction: an underlying topology of connectedness defines how and with whom agents interact;

• The agents' environment: agents interact with their environment in addition to other agents.

From this definition, the agent-based system not only concentrates on the behaviour of individual agents but addresses the interactive behaviour between agents.

The agent-based system is usually formalized by IS (Interpreted System) to reason about knowledge and temporal properties [START_REF] Fagin | Reasoning about knowledge[END_REF]). The formalism is illustrated as follows (Al-Saqqar et al. 2015) :

• A set of n agents A = {1, 2, ..., n} such that each agent i is described by:

-A non-empty set of local states L i . The local state of agent i is represented by l i ∈ L i .

Each local state of an agent represents the complete information about the system that the agent has at a given moment;

-A set of local actions Act i to account for the temporal evolution of the system; -A local protocol function P i : L i → 2 Act i to identify the set of enabled actions that could be performed in a given local state;

-A local evolution function τ i that determines the transitions for an individual agent i between its local states and it is defined as follows:

τ i : L i Act i → L i .
• The set of all global states in the system G ⊆ L 1 ... L n : a subset of the Cartesian product of all local states of n agents.

-A global state g ∈ G is a tuple g = (l 1 ...l n ) that represents a "snapshot" of the system;

-The local state of agent i in the global state g is represented by the notation l i (g).

• I ⊆ G: the set of initial global states for the system;

• The global evolution (transition) function: it can be defined as follows:

τ : G ACT → G,
where ACT = Act 1 ... Act n and each component a ∈ ACT is a joint action, which is a tuple of actions (one for each agent);

• A set Φ of atomic propositions and a valuation function V for those propositions

V : G → 2 Φ p .
This definition implies that the consideration of the agent level (detailed level) and the global level (abstract level) is necessary for the description of the agent-based system. The formalization of states and transitions from both levels are required. As for our definitions, Definitions 5.3.1 and 5.3.2 are corresponding to the global level and the agent level respectively. The core idea of the agent-based system from these two definitions is captured by our definitions. As a result, our definitions are appropriate for the description of the ABSS as well. In addition, the idea of providing a new definition based on automaton theory is to take advantage of Büchi automaton. For example, infinite runs can be captured by finite structures, which is compatible with the continuous invocation of aircraft maintenance.

Model Checking for the Autonomous System

In this section, we first present our framework for model checking. The meta-model transformation from Büchi automaton to Kripke structure is then proposed. In the following, the model transformation from the ABSS to the NuSMV model is provided. Finally, the specifications of the LTL and CTL are designed. agents. The operational behaviour counterexample is able to correct the agent behaviour directly.

Model Checking Framework

Control behaviour Global behaviour SMV program LTL & CTL properties

NuSMV model

Results

General system performance properties

Agent-based simulation system The transformation between them has been provided by [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF]. They discussed the transformation of states and transitions in detail. However, the messages of Büchi automaton has not been involved. The information of messages should be transformed into the labels of Kripke structure.

Definition 5.4.1. (Kripke Structure) A Kripke structure is a 4-tuple K =< S, I, δ, L >, where:

• S is a finite set of states;

• I ⊆ S is the subset of initial states;

• δ ⊆ S S is the transition relation;

• L : S → 2 AP (elements of 2 AP are called labels) is a labelling function. AP is a finite set of atomic propositions.

A Büchi automaton is a 5-tuple A =< Σ, Q, Q 0 , F, ∆ >, which is generalized by Definition 5.3.1.

The transformation process from Büchi automaton to Kripke structure is illustrated as follows:

• S = Q: the states of Kripke structure are the same as those of Büchi automaton;

• I = Q 0 : the initial states of Kripke structure are the same as those of Büchi automaton;

• ∀s, s ∈ S, (s, s ) ∈ δ and L(s ) = a, iff ∃s, s ∈ Q, a ∈ Σ and (s, a, s ) ∈ ∆. 

S S'

S' S

Model Transformation

The model transformation involves global and operational behaviours of the system. The first behaviour is verified by the control behaviour. So, the properties to be checked are extracted from the control behaviour. In order to make the verification clearer, all the states in the state chart of global behaviour are associated with the state names of the control behaviour. As a result, the final state chart of the global behaviour is illustrated in Fig. 5.7 where the names of states are simplified as NA (Not Activated), Re (Received), Ac (Activated), Su (Suspended), Ab (Aborted), Pr (Processed) and Do (Done). The mapping of action names between two behaviours can be seen in Table 5.1. In addition, states of P laneScheduled, P lanceServiced, P laneArrived of the global behaviour correspond to control behaviour P rocessed. The transformation process will be analyzed in the following. will never be satisfied. In general, transition processes are described as TRANS constraints. The constraints do not support that one state has more than one following state without labels. While the global behaviour of the system does not have any labels and one state may have more than one following state. Thus, TRANS constraints are not appropriate. We have chosen another semantically equivalent ASSIGN constraints. The transformation process of the global behaviour of the system is rather easy. The NuSMV code (Fig. 5.8) is given just by capturing the transitions in Fig. The other transformation is dedicated to verifying the general system properties of the ABSS.

5.7.

MODULE

This system has been implemented by simulation tool Anylogic. The process principally includes structure and agent transformations. The mapping between the ABSS and the NuSMV model is illustrated in Table 5.2. The agent-based system structure (Fig. 4.1) is transformed into the NuSMV code shown in Fig. 5.9. Here, we distinguish module main in the NuSMV code with the instance of Main agent. The latter is named as mainn.

In terms of the agent operational behaviour, since Anylogic is used to create the simulation system, the transition conditions of Anylogic should be transformed. The triggering type of a transition includes messages, timeout, rate, and condition. The condition of the ABSS is implied as either the logic combination of agent messages or agent states. MODULE main VAR flight : process Flight(flight, plane, sta); plane : process Plane(plane, flight, sta, ssa, mainn); cra : process CRA(cra, plane); sta : process STA(sta, cra, ssa, sca); ssa : process SSA(ssa, cra, sta); sca : process SCA(sca, sta); mainn : process Main(mainn, plane); Figure 5.9: The transformation for the system architecture

• C7 -ϕ = AG(state = Su -> AX state = Ac); • C8 -ϕ = AG(state = N A -> AF state = Ac);
The formulas of C1, C2 and C7 follow the same form ϕ = AG(state = A -> AX state = B). This form addresses that the next states of state A are always B. For example, property C1 illustrates that state N otActivated is followed by Received. Property C3 implies that the next state of state Activated is existentially Aborted. The properties of C5 and C6 share form ϕ = AG(state = A -> EF state = B), which highlights that state B is reachable from state A. The formula of C4 means that the process can reach Aborted state from N otActivated. The last formula specifies that the process will eventually in the future reach state Activated from N otActivated. Thus, property C8

shows that starting from state N otActivated, the process will eventually reach state Activated.

LTL specifications:

• L1 -ϕ = G(state = N A -> X state = Re); • L2 -ϕ = G(state = Ac -> X F(state = Su | state = P r | state = Ab)); • L3 -ϕ = G((state = P r | state = Ab)-> X F state = Do).
Property L1 represents the form ϕ = G(state = A -> state = B). This form implies in all possible computations, state A is followed by state B. Thus, this property explains that the next state of state A is always B. The last two properties share the same form ϕ = G(state = A -> X F state = B). It denotes that one of the future next states of state A will be state B. So, property L2 shows that the future next states of Activated will be Suspended or P rocessed or Aborted. Property L3 denotes that the system is at either P rocessed or Aborted state, it will eventually reach Done state.

Similar forms of LTL and CTL formulas have been proposed to verify the behaviour of the composite web services [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF]). However, after testing all the possibilities, some properties defined in their work such as properties L1, C1 and C2 are recognized as incorrect properties. Because p & q in the formulas means conditions p and q hold at the same time and it can not express the sequence of states. However, the operator of X, EX, AX implies the satisfactory of the next state. Thus, there is no point in combining & and X, EX, AX. For example, L1ϕ = G(!(Su & X Do)) always passes. On the other hand, L1'ϕ = G(Su & X Do) is impossible to be satisfied. It is because X Do is equal to False with no declaration of the current state. Su is treated as T rue because it is only a simple state declaration. Thus, the counter-example is as simple as this: "State :1.1: state = NA". Properties from general system properties (Al-Saqqar et al. 2015) like safety, reachability, deadlock freedom, etc. are employed to check the operational behaviour of the system. We will define each property in the following.

Safety Property

Safety property is often expressed by formula AG ! ϕ (CTL property), where ϕ implies something bad. This formula means that the property ϕ is never satisfied in all possible computations. In the ABSS, bad situations like scheduling signal have been sent to the corresponding plane by Flight agent, whereas the plane has not received it. This situation can be expressed as follows:

CTL -S1 -ϕ = AG(!(f light.state = Scheduled & plane.state = ReadyT oFly)).

Liveness Property

Liveness property means something good will be always possible to happen. The formulas of liveness property are shown as follow. For example, the plane is always possible to fly (CT L -S2). 

CTL -S2 -

Reachability Property

Reachability property represents that some particular situation can be reached. The corresponding formulas are shown as follows. For example, in SSA agent, state End can be existentially reached from StatesCheck.

CTL -S6ϕ = SP EC EF(ssa.state = StatesCheck -> ssa.state = End); CTL -S7ϕ = SP EC EF(sca.state = Buying).

Deadlock Property

Dead-lock property can be checked by using the commands under the interactive mode. The commands are shown as follows:

1. NuSMV -int ass.smv;

go;

3. check_f sm.

The first two commands allow the NuSVM to enter the interactive mode. Command 3 checks the dead-lock situation for all the transition relations.

Verification Analysis and Model Modification

In this section, we first illustrate the verification results from NuSMV model checker. The modification of the agent-based simulation model is then accomplished, conforming to the counterexample of the verification results. Finally, a detailed discussion about our method is provided.

Verification Result

After combining the LTL, CTL specifications and the transformed NuSMV model, a verifiable NuSMV program is obtained. The verification results are separated into two types: global behaviour (Fig. 5.11) and operational behaviour (Figs. 5.12 and 5.14). A counterexample of property CT L -S1 is proposed by NuSMV model checker, which is shown in Fig. 5.12. In this figure, the state transitions for Flight agent and Plane agent are concluded in Table 5.3. The meaning of codes like b0 can be seen in Fig. 5.10. In order to make it easier to follow the action in a system with a large number of variables, only the values of variables that have changed in the last step are printed in the states of the trace [START_REF] Cavada | NuSMV 2.5 Tutorial[END_REF]). Thus, there is no value of state 1.3 for Flight agent. The transition between states 1.5 and 1.6 implies that Plane agent missed the signal from Flight agent because Plane agent was at state b4. However, state b4 is not the appropriate state to receive the signal from Flight agent. Thus, some constraints should be imposed on signals sending between these two agents. 

Simulation Model Modification

Flight agent has been modified with respect to the correction of the NuSMV model. The original process and modified process are shown in Figs. 5.15 and 5.16 respectively. The difference between these two processes is highlighted by red lines. Some basic concepts are introduced, which aims to better understand the process. For example, downtime is the difference between totalRepairTime and scheduledInterval. scheduledInterval implies the interval between the time of the arrival and departure for a plane. totalRepairTime is only involved all the time used to repair faulty parts, excluding the time of waiting for the existing resources and scheduling. Additionally, pollingTime means the time used to check the state of a plane. In terms of service level, onTimeFlights, de-layFlights and canceledFlights are defined. One flight is supposed to be cancelled if the delayed time from the departure of a plane is more than 4 hours [START_REF] Liu | Information Systems Simulation for Performance Evaluation-Application in Aircraft Maintenance[END_REF]. Fig. 5.17 shows the general process of aircraft maintenance for the simulation. At each airport, maintenance sequences and maintenance tasks sequence will be analyzed. In this figure, an example is given for P aris, where the maintenance sequence optimisation and maintenance task sequence optimisation are illustrated. Message containers for the maintenance sequence and maintenance tasks sequence are used to collect signals from aircraft for requesting maintenance and for requesting resources respectively. Optimization processes are explained in Sections 4.3.1 and 4.3.5.

Start

Each aircraft performs routes given by flight plans. Different types of aircraft own different equipment. The deterioration of each equipment conforms to its own degradation curve. Each airport is capable of undertaking all kinds of maintenance tasks. Not all resources at airports are the same. The data of flight plans, the available person-power for airports, and the maintenancerelated time is provided in Section 5.6.1.2. The major experiment hypotheses consist of:

• fault events can be triggered only when the aircraft enters "Landing" state;

• each faulty part only occupies one technician who is randomly distributed and has matched skills;

• maintenance business processes are included in the combination of PM/CM and with/without uncertain events;

• for departure event, if the downtime for departure is over 4 hours, this flight will be cancelled;

• the degradation of components is not considered when they are stored in a warehouse;

• the items of total repair time (shown in Table 4.4) are assigned with random values or are determined by the database.

As for the last hypothesis, the industrial relevance of values is discussed. Assigning these data with values helps the simulation system understand the relevant degree of time-consuming for parameters. We try our best to provide the values with high industrial relevance. For example, the values for the data inventoryPrepare (1-3 h) (when the relevant part is out of stock), repairing-Time (20-120 min) (the faulty parts that can be repaired on the spot) and repairTime (5-30 h) (the faulty parts that have to be repaired at the workshop) are of a certain level of industrial relevance.

However, in terms of the data informationDelivery and maintenancePlanning, the values for them are assumed as 2-5 s, which are less of industrial relevance. The data of faultIdentification, ex-ceptionalEventSSA and exceptionalEventSTA are determined, based on the knowledge stored in the database. If the solution has been stored in the database, they will take zero minutes. If not, they will take either 30 min or one hour. Also, the unit prices (Eqs. 4.8 and 4.10) are preassigned as well. The unit price of downtime cost per second is set to be 2.8 dollars [START_REF] Pohl | Cost per hour of downtime per aircraft is 10,000 USD more[END_REF]. The unit price of stock costs is generally supposed to be 10 dollars per day, which is less of industrial relevance.

Maintenance-related Data

The maintenance-related data principally involves flight plans, the available person-power for airports and the maintenance-related time. Table 5.4 depicts the flight plan of aircraft 10001 and 10004, where the unit of flight time is minutes. As the total number of flights is 168, we just show the flight plan of aircraft 10001 and 10004.

In terms of person-power, the available of it is shown in Table 5.5, where 24 hours are divided into P1 , P2 , P3, P4 , P5 and P6. Since airport Paris is the pivot, more person-power is distributed to this airport. Table 5.5: The distribution of labors, where P1 = (00:00 -05:00), P2 = (05:00 -07:00), P3 = (07:00 -14:00), P4 = (14:00 -17:00), P5 = (17:00 -20:00) and P6 = (20:00 -00:00

) airport P1 P2 P3 P4 P5 P6 Paris 8 1 8 8 10 5 Lyon 2 1 3 3 3 2 London 2 1 3 3 3 2 Berlin 2 1 3 3 3 2 Madrid 2 1 3 3 3 2 Amsterdam 2 1 4 4 3 1 Boston 2 1 5 5 5 2 Marseille 1 1 3 3 3 2 Barcelona 1 1 3 3 3 1 Prague 1 1 3 3 3 1 Manchester 1 1 3 3 3 2 Munich 2 1 3 3 3 1
The equipment information is one of the most important information for aircraft maintenance, which is shown in Table 5.6. Each attribute of equipment has an influence on the repair decision.

The detailed explanation about repairing strategy was illustrated in Algorithm 2. It should be noted that the difference between repair time and repairing time was explained in Section 4.3.3. Comparison experiments have been conducted in order to investigate the impacts of the modified process for Flight agent (Fig. 5.16) on service level. The run length is set to twelve months, which takes around five hours. Fig. 5.18 shows the simulation results. The data about service level is the average of 10 repetitions' data. The warm-up period is set to five days to avoid initialization bias since the simulation system starts with new planes.

Figure 5.18: The simulation results on the original and modified models of the ABSS From Fig. 5.18, we can observe that the modified process outperforms the original process on the number of cancelled flights. However, the modified process has failed to surpass the original process on the numbers of delayed and on-time flights. More precisely, the number of delayed flights has increased from 12% to 34% and the number of on-time flights has decreased from 69% to 56%. The disadvantages of the modified process on delayed and on-time flights cannot illustrate the inefficiency of the modification. In fact, it is quite reasonable to obtain this result. As fewer flights are cancelled in the modified model, it leads to more delayed flights. Delayed flights may result in producing more flights of delay. Therefore, the number of delayed flights has grown.

On-time flights could be less for the modified model as well, because delayed flights may cause the "chain reaction" (i.e. one delayed flight maybe causes the next flight delayed). However, if one flight has to be cancelled, it just leads to an increase in the number of cancelled flights but it will start to serve on time in the next time. Thus, less number of on-time flights is appropriate.

Additionally, the efficiency of the modified process can be explained more clearly if the opposite of cancelled flights is considered. 47.37% of cancelled flights have turned to be serviceable flights. Since more flights are serviceable, the resource will become more limited. Therefore, it will definitely influence the numbers of on-time and delayed flights.

To conclude, the modification of Flight agent has assured that Plane agent will not miss signals from Flight agent. It has successfully improved the performance of the ABSS in terms of cancelled flights, which illustrates the feasibility of the correction for the NuSMV model of the simulation system.

Case Study on Maintenance Strategy: FIFO, Optimised and FIFO+Optimized

Simulation experiments are carried out to evaluate the impacts of maintenance strategies of FIFO, Optimized, and FIFO+Optimized (supported by Algorithm 1) on maintenance costs and service level. The run length is set to be three months, which takes around three hours. PM and CM, involving changing parts, purchasing parts, inspecting parts, shifting workers, delayed flights, cancelled flights, etc., will happen within this run length.

Moving average analysis is carried out to set the required number of replications. According to the result (shown in Fig. 5.19), after the 8th replication, the moving average lines tend to be more stable. Since the moving average lines fluctuate with a minimum amplitude around the 10th replication, the number of replications will be set to be ten to ensure we obtain a better estimate From our results, we can conclude that the best maintenance sequence strategy will vary in the priority of minimizing maintenance costs or maximizing the number of on-time flights. If minimizing maintenance costs is the priority then FIFO+Optimized strategy would be the best.

This strategy aims to always handle the most urgent maintenance issues in a way. No "starvation Figure 5.21: The impacts of maintenance sequence strategies on service level phenomenon" will happen. It always keeps the priority and sequence of maintenance requests balanced, so this strategy will save the maintenance cost most. If maximizing the number of ontime flights is the priority then FIFO strategy would be the best. This strategy handles the requests from aircraft depending on the order of the request arriving time. Therefore, the phenomenon of "the least urgent request cannot obtain resources" can be avoided. The number of on-time flights will be increased. So, this strategy results in the largest number of on-time flights. As a result, the efficiency of maintenance strategies should be investigated from different aspects. Different strategies should be adapted to different aims.

Discussion

The results of the simulation experiments demonstrate the efficiency of our method. The approach allows us to not only verify global behaviours but check operational behaviours. It focuses on how to verify the system behaviour from different points of view rather than extend the formal logic, which aims to improve the efficiency of model checking.

The original design of Flight agent (Fig. 5.3) seems to be rational. next regarding the scheduling. We can not ensure that one plane will depart on time even if it does not need repairing. Therefore, the original design of Flight agent should be improved. Checking the state of Plane agent is definitely necessary before sending scheduling signals.

Our way of verifying the global behaviour is quite similar to the work of [START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF].

However, we have identified the limits of their work. Firstly, their approach is not suitable to verify the system behaviour where transitions are associated with conditions. The detailed discussion can be seen in the first paragraph of Section 5.2.4. Subsequently, alternating Büchi automaton was chosen to express the control behaviour, since it considered both universal choices and existential choices. The core concept of alternating Büchi automaton is the partial transition function [START_REF] Vardi | Alternating automata and program verification[END_REF]. The partial function implies that one state can be transited to two states concurrently with one message in the system. However, the verified system has not been involved with messages. If their system is modified into the system of transitions with conditions. The property of verifying the sequence discussed above will never pass. So, in our opinion, there is no point in choosing alternating Büchi automaton. Finally, the model transformation was provided in their work, but the messages-related transformation was not discussed. Two fundamental differences between our work and their work are identified. One is that we clarify the limit of the way we verify the global behaviour where the transitions with messages are not considered, the other is that we propose the approach on the verification for the operational behaviour of the system as a complement.

Additionally, we provide a complete process for transforming Büchi automaton into Kripke model.

Another advantage of our approach is that it enables us to check the satisfactory of the global behaviour of the ABSS with respect to standards. ABSSs of different domains address different key properties. The difference in properties can be represented by different control behaviours. Thus, a global sense of the satisfactory of the ABSS can be analyzed.

As a result, we propose an approach to verify the behaviours of the ABSS from the system itself point of view. It permits system designers who know systems well but are not experts in analyzing formal logics to better verify the systems of interest.

Summary

In this chapter, we discussed how to verify the behaviours of the ABSS from the system itself point of view. System behaviours are composed of global and operational behaviours. The division of system behaviours allows us to investigate the satisfactory of systems from both the abstract and the detailed point of view.

The Büchi automaton described system behaviours and the control behaviour, which satisfied the continuous invocation of the plane's service. The meta-transformation between Büchi automaton and Kripke structure (the theory of NuSMV model) was provided, aiming at giving the theoretic support between system behaviours and the corresponding NuSMV model. A mapping between the ABSS and the NuSMV model was then created. The LTL and CTL were used to formulate the specifications, in order to verify the conformity of system behaviours. Simulation experiments were carried out to compare the performances of the original and modified processes, which illustrates the efficiency of the modified process. Besides, the experiments analysing the impact of scheduling strategies on operational support for aircraft maintenance were performed as well. It aids in choosing the best scheduling strategy under specific circumstance.

The proposed approach has attempted to check the global behaviour of the ABSS, which lays the foundation for verifying the system behaviour from the abstract level without concerning any details. It can be recognized as a general way of verifying behaviours of the ABSS implemented by

Anylogic. This chapter gave also a concrete case study of formal methods in practice and demonstrated the efficiency of formal methods in improving systems design.

Chapter 6

Autonomous System based Fault 

Introduction

The advanced technology and complex system design have been broadly used in modern aircraft systems. Fault diagnoses become increasingly difficult because of the intractable faults and the complex connections between systems. Making use of an automatic classification scheme helps remove the need for the detailed analysis of the complex fault information [START_REF] Mechefske | Fault detection and diagnosis in low speed rolling element bearings Part II: The use of nearest neighbour classification[END_REF]. Early fault prediction is a proven technique in achieving high system reliability [START_REF] Khoshgoftaar | Fault prediction modeling for software quality estimation: Comparing commonly used techniques[END_REF]. Thus, effective FCP can significantly improve the efficiency of fault diagnoses, which finally helps achieve highly efficient maintenance for aircraft. The function demands of the FCP for aircraft maintenance include, but not limited to,

• building knowledge models on faults to store the fault information;

• automating the process of the FCP for providing a fast-response mechanism on aircraft maintenance under the big data environment;

• supporting the analysis of the FCP on the aircraft of new types, in order to prevent them from stopping working as far as possible.

The traditional rules of the FCP for aircraft maintenance are principally from airworthy standards. These rules are refined from thousands of real cases of accidents about aircraft and the design theory (ASD 2019). Many new techniques have been attempted to improve the efficiency about the FCP for aircraft maintenance [START_REF] Sahin | Fault diagnosis for airplane engines using Bayesian networks and distributed particle swarm optimization[END_REF][START_REF] Jiao | Research on fault diagnosis of airborne fuel pump based on EMD and probabilistic neural networks[END_REF][START_REF] Wan | A collaborative machine tool maintenance planning system based on content management technologies[END_REF], whereas few of researchers have considered the case that the historic data for fault diagnoses is either not sufficient to be analysed or only valid for specific circumstances. This may raise big issues. For example, if the aircraft of a new type comes out, aircraft manufacturers simply have some limited data generated before delivering them to clients. They may suffer a lack of appropriate ways of fault diagnoses. Indeed, most of the rules still work, but how to investigate the functionalities and interactions of the new components remains unsolved. In addition, acquiring sensitive data like data for aircraft maintenance is exceptionally difficult. Thus, the shortage of data is impeding researchers to study further operational support for aircraft maintenance. Therefore, our study focuses on how to improve the efficiency of the fault diagnosis for aircraft maintenance without sufficient data.

The ABSS for aircraft maintenance has been accomplished in Chapter 4, which allows us to build the relationship between equipment failures and reliability data. Thus, in this chapter, the ABSS on the fault diagnosis for aircraft maintenance will be adapted from the ABSS proposed.

Fuzzy-Rough Nearest Neighbour (FRNN) is a promising approach for classifying test objects and predicting their decision values. FRNN is principally based on fuzzy set theory, rough set theory and K Nearest Neighbour (KNN) algorithm. Fuzzy set theory [START_REF] Zadeh | Fuzzy sets[END_REF]) expressed vague information by utilising a class of objects with a continuum of grades of membership, which was used for the linguistic representation of patterns, leading to a fuzzy granulation of the feature space. Rough set theory [START_REF] Pawlak | Rough sets[END_REF] provided approximations of concepts for the incomplete information, obtaining dependency rules which model informative regions in the granulated feature space. KNN is a well-known technique for the data classification and is one of the simplest approaches for data analysis [START_REF] Peterson | K-nearest neighbor[END_REF]. In ABSS, the reliability information and the fault location information can be considered as the condition and decision attributes respectively. The information represents the vagueness and the incompleteness, because of the random process of generating fault location information. Hence, FRNN is a better fit to predict the relationship between reliability information and fault location information.

The simulation model is built of practices, rules and data in the real world, which can bring out the interactions between involved objects. Comprehensive knowledge can be learned from simulation data. The knowledge learned from simulation data is capable of defining the rules of the fault diagnoses. The rules of the fault diagnoses state the way how we are able to find the probably faulty part. The knowledge means the decision table obtained from simulation data.

The table gives the relationship between the reliability-related information and the fault location information. The former is obtained by analysing the simulation data. The latter is gained from the stochastic mechanism provided by simulators. In the ABSS, each fault happening on one part is always accompanied by its relevant reliability-related information. Hence, the reliability-related information is a quite useful clue in finding the probably faulty part. The FRNN approach can be dedicated to learning the knowledge, in order to provide the rules of the fault diagnoses. Therefore, knowledge enables us to define the rules of fault diagnoses.

Moreover, in order to integrate the FRNN approach into the ABSS for the FCP, the major idea of the approach proposed is illustrated in a framework. Subsequently, two models are proposed from different abstract levels, which lay the foundation for implementing the approach. The next step is to technologically accomplish the integration. Finally. simulation experiments are performed, in order to demonstrate the feasibility of the approach proposed.

To the best of our knowledge, it is the first attempt to combine the ABSS with the fuzzy-rough sets theory. The approach proposed provides an alternative to improve the fault diagnosis for the aircraft of new types and to accomplish the automatic self-improvement for aircraft maintenance (Liu et al. 2019a).

6.2 Literature Review

Fault Diagnosis of Aircraft Maintenance

This subsection provides a comprehensive literature review on fault diagnoses for aircraft maintenance. The scope of researches is limited to the domain of aircraft maintenance. A synthesis analysis of reviewed papers is summarised in Table 6.1. Several aspects are proposed to review the papers, which include proposes simulation models, provides an automated analysis approach, model purposes, and relevance to our research. Moreover, the relevance is evaluated with different levels: low, medium and high.

According to this table, researches seldom simultaneously consider simulation models and fault diagnosis approaches. Fortunately, papers 1 and 3 [START_REF] Sobie | Simulation-driven machine learning: Bearing fault classification[END_REF][START_REF] Wan | A collaborative machine tool maintenance planning system based on content management technologies[END_REF]) got these two approaches together. However, they do not provide an automated analysis method. On the other hand, papers 4 and 8 [START_REF] Naderi | Data-driven fault detection, isolation and estimation of aircraft gas turbine engine actuator and sensors[END_REF][START_REF] Bateman | Fault diagnosis and faulttolerant control strategy for the aerosonde UAV[END_REF] Ouladsine 2011) involve simulation models, their models are employed to evaluate the feasibility of approaches. Obviously, no one provides an automated analysis approach on fault diagnoses for aircraft maintenance. Researchers tend to analyse all kinds of fault reports before performing the analysis of fault diagnoses, which causes their approaches partially automated. This is because the reports of natural languages or information redundancy make it hard to easily extract useful information. A wide variety of approaches have been used for fault diagnoses. This also shows that this area is becoming more and more attracting. As for model purposes, most of the researches focus on the fault diagnosis for aircraft engines. This is not only because the engine is the most complex component for aircraft but it generates lots of information. The last aspect is associated with the relevance of our research. Few resources from the literature can be reused as no one combines the ABSS with the FRNN approach. This is the reason why no paper is given a relevance of a high level. Even so, the relevance analysis is still required because others aspects like scopes, advantages, disadvantages etc., can be analysed.

To summarise, the existing works are prone to separating the fault diagnosis from the operating of aircraft, which can cause the analysis for the fault diagnosis with insufficient historic data or the data only valid for specific circumstances delayed or impeded. Another difference is that few researchers are devoted to automating the process of the FCP so that fast responses are possible to be made, in order to deal with real-time issues on operational support for aircraft maintenance.

Therefore, we are motivated to build a simulation system with the FRNN approach enabling us to automatically support the fault diagnosis for aircraft maintenance without sufficient historical data. Let(X, Ω) be an information system, where X is a non-empty set of finite objects (the universe)

and Ω is a non-empty finite set of attributes such that a: X → V a for every a ∈ Ω. V a is the set of values that attribute a may take. With any B ⊆ Ω there is an associated equivalence relation R B : 

R B = {(x, y) ∈ X 2 |∀a ∈ B, a(x) = a(y)} (6.5) If (x, y) ∈ R B ,
R B ↓ A = {x ∈ X|[x] B ⊆ A} (6.6) R B ↑ A = {x ∈ X|[x] B ∩ A ∅} (6.7) Tuple R B ↓ A, R B ↑ A is called a rough set.

Fuzzy-rough Set Theory

Fuzzy-rough set theory benefits from the advantages of fuzzy and rough set theories, where both the membership of different degrees, and the lower and upper approximations are considered. A general definition [START_REF] Radzikowska | A comparative study of fuzzy rough sets[END_REF] is illustrated in the following:

(R ↓ A)(x) = inf y∈X L(R(x, y), A(y)) (6.8) (R ↑ A)(x) = sup y∈X T (R(x, y), A(y)) (6.9)
where, L and T are an implicator and a t-norm respectively. In this paper, T M is defined by 

Fault Classification and Prediction Framework

In this section, we propose a framework for fault classification and prediction analysis. Fig. 6.1 provides a global view about how to combine FRNN and the ABSS model, in order to improve the maintenance efficiency and decrease the maintenance cost. It consists of the ability to:

• specify the motivation about combining FRNN and the simulation;

• specify the approach of introducing FRNN into the ABSS model;

• specify FRNN-ABSS model with components and connections.

The FRNN is a novel approach that enables us to further improve the maintenance efficiency from the data point of view, especially when the data shows vagueness and incompleteness. The nance can be performed. Therefore, it is possible for engineers to better define rules of fault diagnoses with the help of the knowledge learned from simulation data.

FRNN-ABSS Model

In order to better describe FRNN-ABSS model, some important concepts and their relationships are explained first. 

Component Fault Classification and Prediction

In order to accomplish the FCP for aircraft maintenance, three major issues should be considered.

The first issue is to understand the relationship between the FRNN approach and the ABSS. The FRNN process is the reliability analysis module in the ABSS (mentioned in Section 3.1). The ABSS directly made a decision about maintenance issues when the FRNN approach was not considered. Now, the ABSS makes a decision after having investigated the prediction results from the FRNN process. Thus, combining the FRNN approach with the ABSS should make sure that the latter is able to provide effective input for the former and the former can deliver the effective output for the latter. The input for the FRNN approach is the decision table information and the real-time reliability information for parts. The input for the ABSS is the specific decision information (which part does not work) regarding parts. The key to combine the FRNN approach with the ABSS is the decision 

Fuzzy-Rough Nearest Neighbour Classification and Prediction

The objective of the FCP for aircraft maintenance is to find the probably faulty part. Five steps are involved, in order to achieve this aim. First of all, the reliability-related information (DIR, URR, MTBUR) about parts belonging to the dysfunctional component should be collected (Section 6.4.3.1). The information collected can be treated as the test data. The second step is to calculate the fuzzy tolerance relation between the test data and the training data (knowledge learned from simulation data) with respect to K nearest neighbours (Section 6.4.3.2). Neighbours are sorted out by calculating the similarities between the instance of the test data and all the instances of the training data. The next step is to calculate the lower and upper approximations of one instance of the test data regarding K nearest neighbours (Section 6.4.3.3). In the following, the averages on the lower and upper approximations of the instance regarding K nearest neighbours are calculated.

The decision attribute corresponding to the biggest average will be assigned to the instance (Section 6.4.3.4). The last step is to apply the results predicted by the FRNN approach into the process of the FCP for aircraft maintenance (Section 6.4.3.5). The detailed description of this approach is illustrated in the following.

Decision Table Generation

The decision table is the input of the FRNN approach, consisting of conditional attributes and decision attributes. It is the media connecting the ABSS and the FRNN approach. The conditional attributes are determined in Section 6.4.1. The decision attribute is the result of the part inspection, which means it tells whether the inspected part is broken or not.

In order to obtain the decision table, a general process is proposed in algorithm 4. The major idea is to gather the data of use time, flying hours, departure times, delayed flights and cancelled flights to calculate the values of DIR, URR and MTBUR for relevant parts. This process will also be used to generate test data because it is concerned with these indicators as well.

Similarity Calculation

The second step is to calculate the fuzzy tolerance relation R between training data and test data. [START_REF] Jensen | Fuzzy-rough nearest neighbour classification and prediction[END_REF] has concluded many options to construct R. Finally, they have chosen the way of calculating R as follows:

R(x, y) = min a∈Ω R a (x, y) (6.10) R a (x, y) = 1 - a(x) -a(y) a max -a min (6.11)
where, R a (x, y) is the degree to which objects x and y are similar for attribute a; a max and a min are the maximal and minimal occurring value of that attribute. of the FRNN approach for this option, we take this option as well. In our case, Ω includes the conditional attributes of the DIR, URR and MTBUR.

Approximation Calculation

The definitions of the lower and upper approximations of a fuzzy set A have been discussed in Section 6.2.2.3. Here, the definitions of approximations have been adapted from the former ones, where the condition is that the K nearest neighbours have been obtained. The definitions, shown as follows, are the major idea about how to calculate the approximation in this paper.

(R ↓ c)(x) = inf y∈X max(1 -R(x, y), A(y)) (6.12) (R ↑ c)(x) = sup y∈X min(R(x, y), A(y)) (6.13)
where c is the decision class; x is the unclassified object (test data); A(y) is to get the value of c corresponding to training data y.

Fuzzy-Rough Nearest Neighbour Prediction

The prediction of decision value of test data can be carried out when the lower and upper approximations have been calculated, The decision class of the maximum mean value of the lower and upper approximations will be chosen as the predictive decision class for test data.

c = max c∈C (R ↓ c)(x) + (R ↑ c)(x) 2 (6.14)

The Fault Prediction Process for Aircraft Maintenance

The FRNN prediction process takes real-time data for parts and generates testing sets, which is illustrated in Fig. 6.6. Training sets and testing sets are the inputs of the FRNN approach. The possible set of parts is delivered. The next step is to iterate this set. If the fault part has not been correctly predicted, the rest of the parts will continue to be checked until the right one is chosen.

It should be noted that the above five steps have been implemented as Java code, which allows us to perform the automatic analysis process on the FCP for aircraft maintenance.

Case Study

Simulation Scenario

The simulation starts from flight schedules. The simulation configuration remains the same as in Section 5.6.1. The engine is the critical component in the aircraft, which contains millions of parts. Even though sensors are used to control the major part of the engine, some of the components are still not under control. The fault location of engines can waste some of the precious time. Hence, we choose the engine as the target component where the repairing work will involve the FRNN approach, in order to improve the efficiency of the fault location of engines. In this simulation environment, the engine is made of 10 sub-modules containing 73 parts (NASA 2019) (relatively high level of description). Furthermore, this simulation system with the FRNN approach is still implemented by Anylogic PLE 8.2.3. The screenshot of this simulation system is shown in Fig. 6.7.

Randomly

Figure 6.7: The aircraft maintenance service simulation system integrating the FRNN approach

Experiment

Simulation experiments involve two steps. The first step is to explore the impact of K neighbours on the maintenance cost for different strategies. Optimal Ks will then be determined to start the second step which investigates the impact of different strategies on maintenance costs and service level based on the optimal Ks.

The impact of the number of neighbours on the maintenance efficiency is studied by a set of experiments. The simulation starts from 7:20, 1 th January, 2017 and stops at 7:20, 1 th December 2017, the first 9 months of which are used to generate training sets. The FRNN analysis is performed in the last two months. Here, 15 experiments (K = 1, 2, ..., 15) are conducted for each strategy. The experiment of each K replicates 5 times in order to avoid chanciness. In addition, the experiments without using the FRNN approach are carried out for comparing the performances of maintenance.

The warm-up period is set to five days to avoid initialisation bias since the simulation system starts with a new environment. The results of the impact of K neighbours on maintenance costs are shown in Figs. 6.8 and 6.9 where black broken and red lines mean the experiments are conducted with/without the FRNN approach respectively. The performance of the FRNN approach on Random strategy (Fig. 6.8) is much better than that of Sequential strategy (Fig. 6.9). Fig. 6.8

implies that the FRNN approach saves the maintenance cost most when the condition is K = 15.

Fig. 6.9 shows the choice of K is rather important because more than half of Ks lead to lower efficiency of the FRNN approach. The FRNN approach saves the maintenance cost most when K = 13.

Therefore, the following analysis on maintenance costs and service level is based on the conditions of K = 15 (Random strategy) and K = 13 (Sequential strategy). It should be noted that since our objective is to illustrate the efficiency of this approach and simulation experiments take time (every single simulation experiment takes around 4 hours), we decide to set the maximum of K as 15 instead of continuously increasing the value of K to find the stable performance of the approach. The impact of different strategies (mentioned in Section 6.4.2) on maintenance costs is illustrated in Fig. 6.10. The vertical line represents the maximum, average and minimum of 5 replications' data. "+" in the legend means the simulation experiment is executed without using the FRNN approach. This is also applied to Figs. 6.11 to 6.13. As illustrated in Fig. 6.10, the averages of Random and Sequential are lower than those of Random+ and Sequential+ respectively.

More specifically, 9.3% and 2.5% of the maintenance costs have been saved regarding Random and Sequential strategies respectively. Thus, the efficiency of the FRNN approach can be observed. The FRNN approach achieves a higher precision with Random strategy when comparing with the gaps of differences between averages. The margins of maintenance costs for each strategy suggest that the experiments of Random strategy remain stabler.

From Figs. 6.11 to 6.13, the result of service level is very coherent with that of maintenance costs regarding Random strategy. Nevertheless, the result of Sequential strategy represents variability. The FRNN approach performs well in terms of on-time flights and delayed flights. As for cancelled flights, the average of Sequential is slightly higher than that of Sequential+, which depicts the disadvantage of the approach. Even though it is not capable of saving more cancelled flights, its efficiency on Sequential strategy still can be observed due to its performance in saving maintenance costs. The downtime costs of maintenance costs imply the difference between total repair times.

If the difference of conditions between simulation experiments can be ignored by using averages, the lower maintenance costs mean the shorter total repair time. On the other hand, the impact of different strategies on service level in terms of averages is shown in Fig. 6.14. The result shows The number of delayed flights Figure 6.12: The impact of different strategies on delayed flights that 4.17% and 12.5% of delayed flights have been changed into on-time flights regarding random and sequence strategies respectively. Thus, the FRNN approach also achieves success in predicting faults with respect to Sequential strategy.

Service level is another way of examining the efficiency of the FRNN approach. From the above discussion, the analysis of service level helps further investigate the performance of the approach Random Random+ Sequential Sequential+

The number of canceled flights To do this, the degrading curves on components of new aircraft are needed in order to simulate the fault behaviours of components. The simulation system can simulate the life-cycle of aircraft.

Thus, a precious data set, including flying hours, inspecting time, repairing time, departure time, delayed flights, cancelled flight, etc., can be collected. In the following, the FRNN approach can be applied to predict the relationship between reliability information and fault location information.

Therefore, effective rules of the fault diagnosis can be generated with the virtual experience.

Discussion

In this chapter, we aim at fulfilling the FCP for aircraft maintenance without sufficient historical data. An idea of combining Data mining techniques and simulation approaches have been proposed. A methodology has been provided to theoretically and technologically realise the integration of the two above approaches. Simulation experiments illustrated the feasibility of the idea.

The approach proposed is capable of automatic carrying out the FCP for aircraft of new types.

However, several aspects of the approach still need further improvements. For example, the knowledge learned from simulation data is simple. Apart from that, the strategies we designed for analysing engines are simple as well. The real methods for the fault diagnosis of aircraft maintenance is able to provide answers to these issues but they are hardly accessible due to security and confidentiality. Fortunately, the approach we proposed allows us to make the engine model much more complicated. For instance, additional attributes can be easily included in the component model. Setting connections between components is also possible. Degradation curves can be added to describe the state of the component as well.

Summary

In this chapter, we discussed the topic about how to accomplish the fault diagnosis for aircraft maintenance without sufficient historical data. The ABSS and the FRNN approach were introduced. The ABSS simulated the maintenance process for aircraft and produced large amounts of reliability-related data. The FRNN approach performed the FCP based on the data collected. The simulator Anylogic was utilised to build the simulation system permitting us to not only simulate the maintenance process but also accomplish the function of the FCP because of the permission of programming in Java into simulation models. That is the reason why we are able to technologically achieve the aim of the automation of the whole maintenance process. The simulation experiments of choosing K nearest neighbours and of analysing random and sequence strategies were conducted to illustrate the feasibility of the approach proposed. Comparing with the existing approaches for aircraft maintenance, our approach is the very novel one, which typically holds the following advantages:

• enabling us to perform the data analysis without sufficient real data;

• supporting the automatic self-improvement on the decision-making process for aircraft maintenance;

• a new attempt for analysing the FCP by combing the information system and data mining.

Even though experiments illustrated the feasibility of the approach proposed, it still suffers from the lack of the completeness of information in terms of combining the ABSS and the FRNN approach. More details on fault diagnoses for aircraft maintenance should be investigated, in order to provide a decision table close to completion.

Chapter 7

Conclusions and Perspectives

This chapter winds up the thesis by summarising everything that has been said before. The significance of findings is highlighted, which is discussed in a more abstract manner. The limitations of the research are also identified. The perspectives are still provided in order to propose what direction will be taken now and what the potential advantages of future research will be like.

Conclusions

Operational support of aircraft maintenance is suffering from low levels of informatisation. People are accustomed to tackling faults on aircraft through experience. The very high levels of airworthiness and complexity of aircraft are the main reasons. The objective of this study is to provide solutions about efficient operational support of aircraft maintenance under the contemporary society.

Generally, the basic idea is to build an informatic platform where each relevant information system on operational support can communicate with each other and share information if necessary.

A methodology has been proposed in the way of the framework, in order to accomplish this platform. This methodology provides an alternative way of designing an autonomous system, which is combining systems design and simulation demonstrators instead of simply designing systems with the review of experts. This helps design systems a lot because it may bridge the gap between systems design and real systems. It can also support the evaluation of "the system" in terms of strategies, configurations, etc. when the same manipulation on the real system is definitely prohibited. Based on the simulation system, we still analyse the logic of the system and explore the performance of the system combing data mining techniques. In the following, the conclusions will be discussed in a more specific way.

The simulation system design has taken the real-world issues into consideration. Firstly, ABMS is an appropriate approach to modelling the simulation system. Agents are not only derived from object-oriented ideas but representing autonomy. The object-oriented idea allows the agents to be described in a natural way and be easily scaled up. The autonomy of agents makes it possible to let agents cooperate with each other in an autonomous way. Secondly, the design of aircraft represents realness. Aircraft are composed of components. The remaining useful lifetime for components is always calculated since the simulation experiment starts. Any changes on components are monitored and recorded. So, we calculate the "real indicators" of components such as MTBF, MTTF, MTTR, etc. Besides, the flight schedule information is obtained from websites.

Symbolic model checking on the ABSS gives a concrete case study of formal methods and demonstrates the power of formal methods in improving systems design and providing new insights into the system. Formal methods are becoming increasingly popular. Many researches have emerged in this area. However, they mostly concentrate on extending the expressive power of formal systems. In other words, they are more interested in improving the performance of formal methods instead of solving industrial issues by using formal methods. The less use of formal methods in the industry is usually because industrial cases are often too complicated to be solved by formal methods. Engineers are prone to tackling issues through practical engineering approaches. As a result, more case studies should be provided to illustrate the high efficiency of formal methods.

Engineers should be further encouraged to try to use formal methods. Thus, our study on model checking is able to help develop the application of formal methods.

Integrating the FRNN approach into the ABSS supports the data analysis without sufficient real data. Data mining techniques are available if and only if the training data is enough to some extent.

However, sometimes, the data analysis for products of new types is quite necessary as more needs are requested by customers such as how to define strategies for maintaining, how to use them in an appropriate way, etc. While the operational data of new products is limited and the delay of delivering new products can have a negative effect on the competitiveness of products. In this case, integrating data mining techniques into simulation systems could be an excellent way to deal with it.

The framework for developing the autonomous system of aircraft maintenance clarifies the practical value of the work. Firstly, it allows us to gain important insights about the future system in an inexpensive way, especially when the costs, risks or logistics of manipulating the real system of interest are prohibitive. Secondly, it offers a general approach to build an autonomous system that supports reuse and sharing. System designers in other fields are likely to provide a rigorous architecture design of the system and a powerful demonstration of the future system, which illustrates the feasibility of the system design. In the following, verifying the logic of the model and carrying out the performance analysis at the design phase lay the foundation for building the real system. Finally, this framework can also be understood as a methodology for building digital twins. It not only proposes a prototype system of interest but allows us to manipulate the prototype system with part of real data, in order to examine the reaction of the system.

The autonomous maintenance system proposed can be applied to more general fields for tackling maintenance scheduling problems. Three major reasons are contributed towards this attitude.

Firstly, the architecture model of the autonomous system is so general that it can be employed in other similar fields. Because it provides us with the fundamental concepts of scheduling, the relationship between concepts, the whole logic of solving maintenance scheduling problems. The concepts of the system are very basic and profound. The importance of concepts varies from field to field. For example, safety-critical domains concentrate more on safety and reliability analysis.

While general domains focus more on the cost and service level analysis. Then, the core of the design is information integration. Data is utilized as the input of components as well as the interaction between components. The approach of information integration could be reused to produce more consistent, accurate, and useful information than that provided by any individual data. Finally, to the best of our knowledge, it is the first time that a significant exploration of real-world maintenance data is performed. A solid example of data types is provided. Some efforts should be just made to make it adapted to other domains since most of data types are similar. Therefore, it is possible to apply our system design to other fields.

Perspectives

Some further improvements for the methodology proposed are still needed, even though the methodology enables us to build the autonomous system and it has its feasibility illustrated. The perspectives will be discussed in terms of systems design, model checking and performance analysis.

A large amount of work on systems design can be done, in order to provide a more precise, significant and useful design for building autonomous systems of aircraft maintenance. The verification of the maintenance process of aircraft maintenance could be first carried out. We tried to give a general process for aircraft maintenance. However, no truly efficient investigation has been done. Opinions on this issue vary from stakeholder to stakeholder. So, it could be a huge amount of work to be accomplished. How to apply the knowledge of standards to direct the maintenance process and decision-making is supposed to be the second one. Piles of information could be explored from standards. We did be inspired by standards and extracted some information from them. However, it is far from enough. In the following, a more complicated aircraft could be built, which makes the system much closer to reality. For example, the relationship between components of aircraft could be considered. Thus, multiple components could be influenced when faults occur.

Different strategies for maintaining components could also be proposed. In the end, we suggest that integrating optimisation into simulation would be a good idea since maintaining aircraft is a very complicated issue where different decision combinations are permissible.

In terms of model checking, global behaviours and operational behaviours on the autonomous system have been verified through the approach proposed. However, the verification for the global behaviour can not support transitions between states with messages. This is the limit of NuSMV model checker. Thus, in the future, other model checking techniques like SPIN, PRISM and UP-PAAL could be further investigated with the objective of providing a more flexible approach to verifying system behaviours.

Supply chain management on operational support of aircraft maintenance could be further addressed. The flow of goods and service on operations could be better designed, planned, controlled with the intention to create net value, build worldwide logistics and balance supply and demand.

For example, the distribution of labours regarding worldwide airports could have a significant influence on maintenance efficiency. How to better design, plan the distribution of labors with respect to worldwide airports could be an interesting issue. Exploring key factors influencing the impact of labour distribution on maintenance efficiency could also be performed. Furthermore, the idea of the research on the labour distribution can be applied to other aspects of supply-chain activities such as the supply of equipment.

Performance analysis is another issue that may need to be further studied. It is suggested that a further study of fault analysis on aircraft could be conducted so that more reliable and reliabilityrelated information could be collected from the operation of aircraft maintenance. Thus, more useful knowledge can be obtained from the simulation system. In addition, the FRNN approach could be applied to other processes of aircraft maintenance since it is a general approach to perform classification and prediction. Besides, other data mining techniques may be utilised for comparing the performance of techniques. Therefore, a more appropriate approach for data analysis can be chosen.

Besides, a comprehensive literature review of operational support of aircraft maintenance could be also an interesting topic, in order to reinforce our understanding of this domain and provide guidelines to relevant researchers. Chapter 2 has provided an overview of maintenance business involved in our research. Clearly, different aspects of maintenance businesses can be further extended and reviewed. The gaps in current research could be identified to provide propositions for further investigation. 
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 1 Figure 1.2: The structure of this thesis

  improved the workforce scheduling of aircraft line maintenance by incorporating the workforce capacity and nondeterminable demand. Van den Bergh et al. (2013) extended the work of Beliën by considering the uncertainty in flight arrivals. Keysan, Nemhauser, and Savelsbergh (2010) studied the tactical and operational planning of scheduled maintenance for per-seat, on-demand air transportation. Safaei, Banjevic, and Jardine (2011) worked for a real maintenance workforce-constrained scheduling problem in a steel manufacturing context considering skill workforce and equipment availability. Quan et al. (2007) proposed evolutionary algorithms for scheduling preventive maintenance tasks with the consideration of minimizing the completion time of maintenance jobs. De Bruecker et al. (2017) introduced a three-stage mixed-integer programming approach for optimizing the skill mix and training schedules via integrating shift construction, skill constraints and training.
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 3 Figure3.1: The architecture model of the autonomous system, adapted from[START_REF] Llinas | An introduction to multi-sensor data fusion[END_REF] 
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 36 Figure 3.4: Concept model of Planning and Scheduling
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 3 Figure 3.7: Illustrative UML UCD of the autonomous system of aircraft maintenance
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 4 Figure 4.1: The architecture model of the agent-based simulation system

Algorithm 1 :

 1 Maintenance sequence optimization (part 1) input : airportsList, messagesList, tempMessagesList output : index. // The index represents the number of the scheduled aircraft to be maintained. // Firstly, the FIFO rule is used to deal with messages. 1 int threshold, count,index1; double max, value, min, severity, resource, interval; 2 max = min = severity = resource = value= count = index1 = interval = 0; 3 String maintenanceType = null; // The threshold indicates the maximum number of aircraft to be maintained each time. 4 threshold=5; 5 if Main.receiveMessagesFromPlanes == true then 6 messagesList.add(msg); 7 end 8 if tempMessagesList.IsEmpty() and !messagesList.IsEmpty() then 9 for i = 0 to messagesList.size() do 10 tempMessagesList.add(messagesList.get(i));

  Figure 4.2: The flowchart of flight scheduling strategy

  Figure 4.3: The states transition of equipment

Figure 4 .Figure 4 . 4 :

 444 Figure 4.4 gives two examples about how to calculate the value of currentUseTime. In Fig. 4.4(a), CUT is equal to t, as repairing time does not influence currentUseTime of equipment. In Fig.4.4 (b), CU T equals t -STi + ET i-1 -ST i-1 + LU T i-2 .

Figure 4

 4 Figure 4.5: An approach of the maintenance strategy updating on the same equipment

Figure 4

 4 Figure 4.6: The relationship between MTBF, MTTR and MTTF

CHAPTER 4 .

 4 THE IMPLEMENTATION OF THE SIMULATION SYSTEM DEMONSTRATOR 55Resource uncertainty Resource uncertainty refers to technicians and the stock of aircraft components. The assignment of technicians varies from time to time in 24 hours. The decision on the operation of faulty components is dependent on their real situations. Different operations such as replacing, repairing, and waiting, etc., will cause the level of stock changed.

  terms of Maintenance Cost (MC), Downtime Cost (DC), Labor Cost (LC), Stock Cost (SC) and Parts Purchase Cost (PPC) are taken into consideration. The definitions of each cost (Eqs. 4.7 -4.11) are provided, where totalRepairTime (shown in Table 4.4) and interval are counted by seconds, and unitP rice DC means the unit price for downtime; salary(i) and time(i) represent the ith aircraft technician's salary counted by hours and the corresponding working time; number(i) implies the number of the ith kind of parts, unitP rice SC means the unit price for stock and days means the number of storing days; and cost(j) means the cost of the jth kind of parts. In addition, all the costs are counted by dollars. MC = DC + LC + SC + P P C; (4.7) DC = (totalRepairT imeinterval) * unitP rice DC ;

  A counter-example of signals sending between Flight agent and Plane agent has been proposed by NuSMV model checker in case one. Modifications for the NuSMV model and agent-based simulation model have been performed. The experiment results

(

  2013). We verify the global behaviour of the ABSS based on the idea of Bentahar's work. The control behaviour helps guarantee that the model of the ABSS considers design requirements and constraints. The satisfactory of the operational behaviour changed in case of issues can be checked by control behaviours. For instance, a new agent has to be integrated into the ABSS to complete its functionality. In this case, the control behaviour remains the same and it can be utilized to verify the conformity of the global behaviour of a new ABSS.The symbolic model checking technique is chosen to verify global behaviours and operational behaviours of the ABSS. The problem of model checking is formally expressed by M | = ϕ, where M represents the system model, ϕ is a property, and | = is the satisfaction symbol to check whether the model M satisfies the property ϕ. If the property is not satisfied by the system, a counterexample is produced. The efficiency of this technique has been proven to automatically verify the multiagent systems[START_REF] Al-Saqqar | Model checking temporal knowledge and commitments in multi-agent systems using reduction[END_REF], as it uses less memory than automata-based approaches and it alleviates the "state explosion" problem. Hence, the symbolic model checking is the appropriate technique to verify the design of the ABSS. NuSVM is a symbolic model checker designed to allow for the description of FSM (Finite State Machine) which ranges from completely synchronous to completely asynchronous, and from the detailed to the abstract[START_REF] Cavada | NuSMV 2.5 Tutorial[END_REF]. It supports the verification of the LTL (Linear Temporal Logic) and the CTL (Computational Tree Logic)

FiniteFigure 5

 5 Figure 5.1: Automaton theory, adapted from Automata (2019)

  Many efforts have been made to verify the logic of agents for multi-agent systems. Logic has been extended to support the model checking for complex systems.[START_REF] Al-Saqqar | Model checking temporal knowledge and commitments in multi-agent systems using reduction[END_REF] extended the CTL logic with knowledge and commitments to verify the multi-agent systems with respect to knowledge and social commitments.[START_REF] Meski | BDD-versus SAT-based bounded model checking for the existential fragment of linear temporal logic with knowledge: algorithms and their performance[END_REF] extended the LTL with the epistemic component for multi-agent systems.[START_REF] Raimondi | Model checking multi-agent systems[END_REF] extended the temporal logic to multimodal logics for time, knowledge, correct behaviour, and strategies, in order to develop techniques and tools for the formal verification of the multi-agent system. These approaches are principally contributed to improving the capability of model checking. Researchers tend to focus on the logic itself for model checking. However, few of them try to concentrate on better understanding the system, in order to improve the efficiency of model checking. In this chapter, we have not extended any logic, we have decided to check the ABSS by analyzing the global behaviour and operational behaviour of the system.Model transformation is usually employed in model checking. Model checking often automatically verifies systems by model checkers. Many powerful model checkers such as SPIN 1 , PRISM 2 , UPPAAL 3 and NuSMV 4 are widely used. The modelling languages supported by model checkers are not usually appropriate to model the systems that need to be checked. Thus, model transformation techniques are involved in model checking. For example,[START_REF] Bordini | Verifying multiagent programs by model checking[END_REF] automatically transformed multi-agent systems into Promela or Java, in order to use the associated Spin and JPF 5 model checker to verify system.[START_REF] Keshanchi | An improved genetic algorithm for task scheduling in the cloud environments using the priority queues: formal verification, simulation, and statistical testing[END_REF] transformed the labelled transition system into NuSMV code to verify the genetic algorithm for the task scheduling in the cloud environment. El[START_REF] Menshawy | Model checking real-time conditional commitment logic using transformation[END_REF] transformed RTCTL cc into RTCTL (real-time CTL) where RTCTL cc expresses qualitative and quantitative commitment requirements. Another example is provided by[START_REF] Bentahar | Symbolic model checking composite Web services using operational and control behaviors[END_REF], they presented the process of transforming a finite state machine into a Kripke model. Similar to our work, however, their transformation process was not involving the messages.Model checking is capable of verifying and demonstrating system behaviours. However, industrial applications of model checking are rare. Researchers have a tendency to use less concrete examples. For example,Bentahar et al. (

  Figure 5.2: The global behaviour of the ABSS for aircraft maintenance

Figure 5 . 3 :

 53 Figure 5.3: The operational behaviour of Flight agent

Fig. 5 .

 5 Fig. 5.4 illustrates the control behaviour of the ABSS, which is adapted from Bentahar et al.

Figure 5 . 4 :

 54 Figure 5.4: The control behaviour of the agent-based system

Fig. 5 .

 5 Fig. 5.5 illustrates a general framework for verifying the behaviour of the ABSS. This framework addresses the difference between global and operational behaviors, which implies the importance of the abstract and detailed design respectively. The idea of the verification is necessary for the design of the ABSS since the agents are built individually and the agent-based models are rather complex. The process involves the global and operational behaviour verification. The former should be verified by the control behaviour. The latter is checked by the general system performance properties. Finally, the verification result can improve systems design by means of generating counterexamples. The counterexample of global behavior can improve the design of the interactions between
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 55 Figure 5.5: The framework on model checking for the ABSS

Figure 5 . 6 :

 56 Figure 5.6: The meta-model transformation from Büchi automaton to Kripke structure

Figure 5

 5 Figure 5.7: The state chart of the global behaviour of the system

Figure 5

 5 Figure 5.8: The NuSMV model of the global behaviour of the system

Fig. 5 .

 5 10 shows a complete transformation of Plane agent into the corresponding NuSMV code. This code provides an example of the condition transformation. The condition of the transformation from ReadyT oFly to Scheduled in the statechart is that Plane agent receives Flight.Schedule. This condition is then transformed into (arg1.state = b7 & arg2.action = Schedule) : b8.

  ϕ = SP EC AG EF(plane.state = FlyingT oN ext); CTL -S3ϕ = SP EC AG EF(plane.state = W aiting -> plane.state = ReadyT oFly); CTL -S4ϕ = SP EC AG EF(sca.state = Buying); CTL -S5ϕ = SP EC AG EF(mainn.state = Delaying).

Figure 5 .

 5 Figure 5.11: The results on checking properties of global behaviour of the system

Figure 5 .

 5 Figure 5.13: The result on the corrected NuSMV model

Figure 5 .

 5 Figure 5.16: The modified process for Flight agent
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Figure

  Figure 5.17: The simulation experiment scenario

  Figure 5.19: The moving averages of three strategies

  There are two ways to send signals to Plane agent. One is to send signals when there is no delay, the other is to receive the delay signal from STA agent, then continuing checking the state of Plane agent until it is ready, finally sending the scheduling signals. We have not noticed that the delay of one flight may have an influence on the departure of next flights that have no maintenance requests. For example, the downtime of one plane has exceeded the time slot of its next flight. It means this plane will be demanded to serve for the flight after next even if it has not arrived at the airport of the next flight. In this case, the downtime of this plane for the next flight is equal to zero. If sending scheduling signals only depends on delay signals, this plane will miss the signal for the flight after

DiagnosesA

  more reliable and robust ABSS is obtained after checking the logics of the system by NuSMV. Evidently, simulation experiments on different scenarios can be performed. A wealth of information is produced in the course of simulating. While neglecting this "precious" maintenance-related information can not let us achieve the maintenance efficiency as it should be. Data mining techniques can be integrated into the simulation system to analyze and predict data. The outcome of predicting data could have a positive impact on correcting the behaviours of the ABSS. This motivates us to concentrate on the combination of simulation with data mining. Fault diagnosis for aircraft involves lots of information. So, this chapter emphasizes how to combine the ABSS and data mining to analyze the data, aiming at improving the efficiency of the fault diagnosis for aircraft.

  then x and y are indiscernible by attributes from B. The equivalence classes of the B-indiscernibility relation are denoted as [x] B . Let A ⊆ X. A can be approximated using the information contained within B by constructing the Blower and Bupper approximations of A:

T

  M (x, y) = min(x, y), where x, y ∈ [0, 1]. L M is defined by L M (x, y) = max(1x, y), where x, y ∈ [0, 1]. Given fuzzy tolerance relation R and fuzzy set A, tuple R ↓ A(x), R ↑ A(x) is called a fuzzyrough set.
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 61 Figure 6.1: The framework for fault classification and prediction
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 6 Figure 6.2: FRNN-ABSS conceptual model

Figure 6 . 5 :

 65 Figure 6.5: Two strategies for generating training sets

  Figure 6.6: The FRNN prediction process
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 6 Figure 6.8: The impact of K nearest neighbours on maintenance costs about Random strategy
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 66 Figure 6.9: The impact of K nearest neighbours on maintenance costs about Sequential strategy

  Figure 6.11: The impact of different strategies on on-time flights
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 6 Figure 6.13: The impact of different strategies on cancelled flights
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 6 Figure 6.14: The impact of different strategies on service level in terms of average

  Figure A.2: The statechart of Plane Agent
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  This market owned 135.1 billion dollars in 2015, which is projected to grow by 4.1% per year until 2025. The number of servicing aircraft is expected to be around 28,000 with 4% annual growth rate[START_REF] Michaels | MRO Industry Outlook[END_REF].
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		.1: The comparisons between the s-series of standards -A (Standard), B (Producers), C (Issued time), D (Scope) , E (Data
	model), and F (Inter-operability)				
	A	B	C	D			E	F	Strength	Weakness
	S1000D ASD,	1989-	exchange,	distri-	XML	S2000M,	Strong abilities for data	Lack of certification and
		AIA,	2012	bution and use of		S3000L,	exchange	details of handling pro-
		ATA		technical documents		S5000F	cess.
	S2000M ASD,	1992-	material management	UML class	S1000D,	Strong ability for lo-	Exist overlap business
		AIA	2015	activities		model and	S3000L	gistic material manage-	relationships of S2000M
							UoF		ment between contrac-	and S1000D. Lack of
									tors and the customers	explanation for some
									parts of the S2000M. Lack
									approved toolset.
	S3000L ASD,	2010-	all processes & re-	UML class	S1000D,	Strong ability for the se-	Lack the completeness of
		AIA	2014	quirements regarding	model and	S2000M,	lection of LSA candidate	its data model. Lack ap-
				LSA			UoF	S4000P	items	proved toolset.
	S4000P ASD,	2014 -	preventive manage-	no	S3000L	Strong ability for re-	The way of determining
		AIA		ment	development			viewing the complete-	ARC (Analysis Relevant
				and	continuous			ness and effectiveness of	Candidates) and non-ARC
				improvement				preventive maintenance	lacks accuracy. Lack ap-
									tasks	proved toolset.
	S5000F ASD,	2016 -	In-service data feed-	UML class	S1000D,	Strong ability for per-	Lack of approved toolset.
		AIA		back			model and	S2000M,	forming a thorough
							UoF	S3000L	analysis of operation
									and maintenance per-
									formance of a product

Table 2

 2 

	.2: An overview of related papers -A (proposes conceptual models), B (proposes simulation models), C (involved stakeholders)
	Article		A B	C Maintenance-related Info.	Model Purposes	Relevance to our research
	1.(Durazo-		yes no	yes parts degradation state,	autonomous	scheduling	medium, similar model purposes, similar as-
	Cardenas et al.		planning and scheduling	maintenance jobs	pects of architecture designs, no simulation sys-
	2018)			info., cost info.			tem is involved.
	2.(Gary et al.	no yes	no equip.	status, labours,	presents a system dynamics	medium, similar in scope, explicit model, only
	2018)			maint. type, planning and	model for the study on dy-	enables an aggregated level analysis.
				scheduling info.,	stock,	namic behaviours of main-
				maint. performance, maint.	tenance performance and
	3.(Sahnoun	no yes	cost no main.	duration, resource	costs develops a multi-agent sys-	medium, similar in scope, explicit model, sim-
	et al. 2015)			availability,	degradation	tem for selecting the opti-	ple maintenance strategy, an overly simple algo-
				level, weather condition,	mal maint. strategy for off-	rithm for maint. scheduling.
				manpower			shore wind turbines
	4.(Zhang et al.	yes no	no material, parts, knowledge,	supports the continuous	low, the proposed framework is too simple. The
	2015)			labours, equipment, failures,	improvement of productiv-	model description is quite abstract. No strate-
								ity and reduces the MRO	gies or scheduling is involved.
	5.(Samaranayake	yes no	no material,	activities,	re-	cost develops an integrated	low, similar objectives, a detailed discussion
	and Kiridena		sources, suppliers, labours	framework for the planning	about planning and scheduling of aircraft heavy
	2012)							and scheduling of aircraft	maint., only part of maint. process are involved.
								heavy maint.
	6.(MacKenzie,	no yes	no average sortie duration, the	designs an agent-based sim-	high, complete maintenance process, part of
	Miller,	and		number of aircraft, man-	ulation model for providing	planning and scheduling logic is shared. How-
	Hill 2012)			power, break rates, abort	directions about dynamic	ever, no dynamic strategies for repairing parts
				rates, fix rates, planning and	task priorities and resource	are provided. The model is less of reality and no
				scheduling			assignments	costs are involved.
	7.(Ward et al.	yes no	no location, direct outcome of	develops a comprehensive	low, similar model purpose, overly abstract
	2010)			maint., consequences, staff,	and ecological model of the	model, principally based on the manual analy-
				suggestion, actions		operating system	sis, hard to transfer to our research. (to be con-
								tinued)
	8.						

Table 3 .

 3 1: The answers on Q1, 2, 3 et 4 No. Answer 1 AMOs (Aircraft Maintenance Organizations) have multiple IT systems which are not located in the neighbourhood of engineers and aircraft;
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		.2: The table of components		
	Component	Inputs	Outputs	
	Maintenance	Monitoring sensor: fault info., location, etc.	Maintenance	request:
	requirement		type, location.	
		PM: time.	Severity level	
		Third-party request: maintenance require-		
		ment report.		
	Maintenance	Maintenance request: type, location.	Maintenance goals and re-
	strategy		pair schema	
		Maintenance regulation: operator approved	Maintenance strategies for
		maintenance planning.	relevant parts	
		Maintenance timing: remaining useful life-		
		time, interval, resource.		
	Maintenance	Information: remaining useful lifetime, in-	Information: job comple-
	scheduling and	tervals, strategies, labours, parts, equipment.	tion, repair time, delay, in-
	planning		terval.	
		Maintenance historic data: trouble-shooting	Tasks scheduling: parts,
		data. Maintenance cost	labors.	
	Safety & Reliabil-	Airworthiness directives and service bul-		
	ity estimation	letins.		

Table 4
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	.1: The relationship between components and agents
	Component	Agent
	Integration	Main
	Maintenance requirement component	CRA
	Maintenance strategy component	SSA
	Maintenance scheduling planning component STA, SCA
	Cost and service level estimation component	
	Safety and reliability estimation	QCA

Table 4 .

 4 2: The data of agents -DT (Data Type), I (Input data), and O (Output data) Geographic Information System) map, where cities are really located and the flying time can be easily managed in this map. The information on real-time flights scheduling table is stored in the database. In addition, maintenance states of each plane can be observed from this agent, which enables managers to control maintenance actions from the global point of view. Since this agent is the basis for the other agents, there is no input and output for it.

	Agent	DT Functionality	Data	
	Flight	I	scheduling	flightNumber:String	aircraftNumber:int
				flightTime:double	arrivalTime:Date
				destination:String	departureTime:Date
				airport:String	interval:double
		O scheduling	scheduling table	cancelledFlights:int
				delayedFlights:int	ontimeFlights:int
			states	CRA:int;SSA:int;STA:int	SCA:int;QC:int;type:String
	Plane	I	planes	aircraftNumber:int	airport:String
				aircraftType:AirPlaneType	
			flights	flightNumber:String	flightTime:double
				destination:String	
		O maintenance	maintenanceType:String	severity:int
				parts:ArrayList<Equipment>	
	Equipment	I	equipment	type:EquipmentType	changeoverTime:double
				serialNumber:int	repairTime:double
				repairingTime:double	PMFrequency:int
				maintenanceStrategy:String	
				equipmentState:EquipmentState	
		O maintenance	repairType:String	countRepair:int
				timeForFirstRepair:double	currentUseTime:double
				repairingTime:double	
	CustomerRequ.	I/O parts	parts:ArrayList<Equipment>	
			fault info.	faultDescription:String	faultLocation: String
	ServiceStrategy	I	planes	aircraftNumber:int	airport:String
				aircraftType:AirPlaneType	interval:double
				parts:ArrayList<Equipment>	
		O parts	partCheckingList:ArrayList<Equipment>
			time	faultAnalysisTime:double	
				exceptionalEventSSATime:double	
			strategy	maintenanceStrategy:String	
	ServiceTask	I	planes	aircraftNumber:int	airport:String
				aircraftType:AirplaneType	interval:double
				partCheckingList:ArrayList<Equipment>
			technicians	aircraftTechnicians:ArrayList<Person>
		O cost	laborCost:double	partCost:double
				equipmentCost:double	downtimeCost:double
			time	planningTime:double	executionTime:double
				downtime:double	faultIdentificationTime:double
				exceptionalEventSTATime:double	
	SupplyChain	I	planes	aircraftNumber:int	
			parts	partBuying:ArrayList<Equipment>
		O time	partPreparingTime:double	
			parts	partBought:ArrayList<Equipment>
	QualityControl	I	repairing	timeForFirstRepair:double	countRepair:int
				repairingTime:double	currentUseTime:double
				partCheckingList:ArrayList<Equipment>
		O reliability	MTTR:double	MTTF:double
				MTBF:double	Recommendation:String

  Get the index of the aircraft with the minimum interval of the maximum EvaluationV alue; 6. If labor equals T rue, schedule the aircraft of the index; 7. Else wait until labor equals T rue; 8. If the number of aircraft is more than threshold, • If minimum of EvaluationV alue equals 15 (the maximum of the sum of severity and MaintenanceT ype) or no MaintenanceT ype equals to preventive , no aircraft will be delayed;

	as follows:
	1. Define the maximum numbers of waiting aircraft for airport, threshold;
	2. Get the real-time value of severity, MaintenanceT ype, labor and interval for each related
	aircraft;
	3. Transform the real time of variables to evaluation values by Table 4.3;

severity denotes the delayed times of PM of aircraft. The value of severity belongs to

[0,2]

. In other words, the maximum delayed time (the maintenance should be delayed to the next airport) is two. resource refers to the availability of the labours at related airports. The type of resource is a Class, which contains attributes such as amount, availability, time, owner, etc. The variable of MaintenanceT ype is added to synthesize the two aspects mentioned, which is classified into two types: preventive and corrective. Some key-values are provided in Table

4

.3. The priority is defined by a synthesis of severity, MaintenanceT ype, interval. The evaluation process is illustrated 4. Calculating the EvaluationV alue for each related aircraft by getting the sum of severity and MaintenanceT ype; 5.

  The least important PM may be delayed to the next destination. // min(messagesList,airport) means getting the minimum value of aircraft number from messages list at airport j

			size() do
	4	if tempMessagesList.get(k).equals(airports.get(j)) then
	5	severity =tempMessagesList.get(k).severity;
	6	interval =tempMessagesList.get(k).interval;
	7	maintenanceType = tempMessagesList.get(k).maintenanceType;
	8	resource = resourceEstimate(airports.get(j));
	9	value = synthesize(severity, resource, interval, maintenanceType);
	10	if max < value then
	11	max = value; index = k;
	12	end
	13	count++;
	14	end
	// 18	break;
	19	end
	20	index1=min(tempMessagesList,airport.get(j));
	21	tempMessagesList.get(index1).severity++;
	22	tempMessagesList.remove(tempMessagesList.get(index1));
	23	end
	24	end
	25	count=0;
	28	end
	29 end

15 while (count --) > threshold do 16 for l = 0; tempMessagesList.get(l)==airports.get(j) to tempMessagesList.size() do 17 if tempMessagesList.get(l).maintenanceType=="Corrective" or tempMessagesList.get(l).severity==2 then 26 send("Scheduling",tempMessagesList.get(index)); 27 tempMessagesList.remove(tempMessagesList.get(index));

  if this.endTime == 0 then // this condition means this equipment has never been in stock. The time function gets the real time of simulation environment.

	Algorithm 2: Repairing strategy analysis
		input	: lastUseTime, changeoverTime
		output	: repairType
	2	currentUseTime = time(MINUTE);
	3 end
	4 else
	5	currentUseTime = lastUseTime + time(MINUTE) -StartTime;
	6 end
	7 if currentUseTime > changeoverTime then
	8	repairType = "replace";
	9 end
	10 else
	11	if equipmentState is Broken and repairingTime > interval then
	12	if Inventory is enough then
	13		repairType = "replace& repair";

1

  Algorithm 3: Maintenance tasks sequence optimization input : messagesList, tempMessagesList, aircraftTechniciansList, constraint[], interval. // The index represents the number of scheduled aircraft to be maintained. output : index.// The FIFO rule in Algorithm 1 is reused to deal with messages from SSA. The details can be seen at lines 4 -13, part 1 of Algorithm 1. // Under the FIFO rule, prioritize the maintenance task sequence. // XXEstimate(partsList) means synthesis estimation of parts, according to the service level, risk, delay, etc., based on historic data and real-time data. 1 double max, value, risk, delay, resource, serviceLevel; 2 max = value = serviceLevel = risk = delay = resource =0;// The city means the airport of current aircraft.

	3 String city;
	4 for i = 0 to tempMessagesList.size() do
	5	partsList=tempMessagesList.get(i).partsCheckingList;

6

risk = riskEstimate(partsList);

Table 4
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	.4: The compositions of total repair time on maintenance scenarios -UE (Uncertain Events)
	Scenario Total repair time	
	PM	informationDelivery, maintenancePlanning	inventoryPrepare, repairing
	PM+UE	exceptionalEventSTA(eSTA)	exceptionalEventSSA(eSSA),
	CM	faultAnalysis, scheduledTime	scheduledTime faultIdentification
	CM+UE	eSTA, eSSA, scheduledTime	faultIdentification, faultAnalysis

Table 4
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	.5: The interactions amongst maintenance strategies
		Might affect other maintenance	Might affect other maintenance
		strategies on the same asset?	strategies on other assets?
	Corrective Maintenance	No	Yes
	Preventive Maintenance	Yes	No
	Opportunity Maintenance	No	No
	Condition-Based Maintenance	Yes	No

Table 5 .

 5 1: The mapping between Conversation 1 and Execution 1

		Conversation 1	Execution 1
	S-S	Init	N otActivated
		P laneInvoked	Received
		P laneChecking, P laneP repared	Activated
		ScheduledMaintenance, Analyze, Repairing	Suspended
		P laneCanceled	Aborted, Done
	T-T	Init → P laneInvoked	N otActivated → Received
		P laneInvoked → P laneChecking	Received → Activated
		P laneChecking → ... → P repared	Activated →Suspended → Activated
		P laneP repared → P laneCanceled	Activate →Aborted → Done

Table 5
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		.2: The mapping between the ABSS and NuSMV model
		ABSS	NuSMV model
	system structure	agents	processes
		connections	parameters
	operational behaviour	initial states	initial states
		transitions	transitions
		messages	actions
		timeout/ rate	Null (action)
		agent arrival	Reach (action)
		condition	condition

Table 5 .
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	Flight	a0	a1		a4	a0	a1
	Plane	b0	b1	b2	b3	b4	b7

3: The states transitions between Flight and Plane state 1.1 state 1.2 state 1.3 state 1.4 state 1.5 state 1.6

Table 5
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			.4: Flight plan of aircraft 10001 and 10004	
	flight no.	aircraft no. airport	destination flying time	departure	arrival
					/minutes	time	time
	BA0304	10001	Lyon	Paris	70	2018-1-1	2018-1-1
	BF0321	10001	Paris	Lyon	70	07:20 2018-1-1	08:30 2018-1-1
	BF0333	10001	Lyon	Paris	70	09:30 2018-1-1	10:40 2018-1-1
	BF0334	10001	Paris	Lyon	70	11:40 2018-1-1	12:50 2018-1-1
	BF0335	10001	Lyon	Paris	70	15:30 2018-1-1	16:40 2018-1-1
	BF0336	10001	Paris	Lyon	70	19:00 2018-1-1	20:10 2018-1-1
	BA0800	10004	Lyon	Paris	70	21:30 2018-1-1	22:40 2018-1-1
	BA0213	10004	Paris	Boston	475	08:20 2018-1-1	09:30 2018-1-1
	BA0143	10004	Boston	Paris	475	12:25 2018-1-1	20:20 2018-1-2
	BA0632	10004	Paris	Lyon	70	21:30 2018-1-2	05:25 2018-1-2
						06:00	07:10

Table 5
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			.6: Equipment information	
	equipment type changeover	repair	repairing	PM frequency	price/dollar
		time/h	time/h	time/min	/week
	motive_generator 5000	20	80	5
	AP U _generator	5000	20	80	5
	f uel_tanks	1000	15	60	5
	f uel_pumps	1000	15	60	5
	chassis	800	20	80	6
	IRU	5000	5	20	6
	SG	5000	5	20	5
	FCC	3000	5	20	7
	MCP	3000	5	20	7
	FMC	3000	5	20	9
	T CAS	5000	5	20	9
	radar	6000	5	20	5
	CDU	3000	10	40	5
	AP U	44000	20	80	5
	engine	6500	20	80	12
	nose_cone	69000	70	80	10

5.6.2 Case Study on System Performance: Original model VS. Modified model

Table 6

 6 Fuzzy set theory uses given degrees to define the relationships between objects and their memberships. The definitions of fuzzy sets are manifold. In this paper, we introduce the definition of Richard Jensen's[START_REF] Jensen | Fuzzy-rough nearest neighbour classification and prediction[END_REF], which is shown as follows:A fuzzy set in X is an X → [0,1] mapping, while a fuzzy relation in X is a fuzzy set in X × X. For all y in X, R-forest of y is fuzzy set Ry defined by

	.1: An overview of related papers -A (proposes simulation models) and B (provides an automated analysis approach)
	Article		A	B	Applied Methods	Model Purposes	Relevance to our research
	1.(Sobie,	Fre-	yes no nearest-neighbour dy-	bearing fault classifica-	medium, similar ideas, no fault prediction,
	itas, and Nicolai			namics time wrapping	tion	partial automated analysis processes.
	2018)					
	2.(Jia et al.	no no complex	empirical	fault diagnosis for large	low, similar in scope, accurate fault informa-
	2018)				mode decomposition	wind turbines	tion extraction.
					and random forest
					theory	
	3.(Wan et al.	yes no particle swarm optimi-	fault diagnosis for aero-	medium, similar ideas, similar forms of repre-
	2018)				sation and back propa-	engine fuel regulators	senting fault information (fault characteristic
					gation neural network	table), partial automated analysis processes.
	4.(Naderi and	yes no data-driven fault de-	fault detection, isola-	medium, similar in scope, well-suited for real
	Khorasani				tection, isolation and	tion, and estimation for	applications, similar ways of evaluation, less
	2018)				estimation method us-	aircraft gas turbine en-	restrictive assumption, different ideas, partial
					ing Markov parameters	gine actuators and sen-	automated analysis processes.
	5.(Jiao et al.	no no empirical decomposi-	sors fault diagnosis for air-	low, similar topics, fast convergence, high effi-
	2017)				tion and probabilistic	borne fuel pumps	ciency and high performance and recognition
					neural networks	for diagnosing typical faults, different ideas,
							no automated analysis process.
	6.(Korvesis	no no neural networks and	developing data-driven	medium, similar ins scope, focusing on fault
	2017)				a regression-based ap-	model on predictive	prediction and investigating data from oper-
					proach		maintenance for aircraft	ational support for aircraft maintenance, dif-
							ferent ideas, partially automated analysis pro-
	7.(Tayarani-	no no dynamic neural net-	fault diagnosis for gas	cesses. low, similar in scope, concrete measurable
	Bathaie, Vanini,			works		turbine engines	variables for studying fault diagnosis schema,
	and Khorasani					different ideas.
	2014)					
	8.(Bateman,	yes no building Fault Detec-	fault diagnosis and	medium, similar in scope, concrete fault detec-
	Noura,	and			tion Diagnosis (FDD)	Fault-Tolerant Control	tion diagnosis system, a joint FDD-FTC strat-
	Ouladsine				system based a nonlin-	(FTC) for an unmanned	egy, different ideas.
	2011)				ear model of the air-	aerial vehicle
	9.(Kim,	Choi,	craft no no fuzzy-tuning interact-	fault diagnosis for air-	low, similar in scope, smoothing the fault de-
	and Kim 2008)			ing multiple model	craft actuators	tection process, low probability of false fault
							detection, different ideas.

holds for all x and y in X, then R is called a fuzzy tolerance relation.

If X is finite, the cardinality of A is calculated by

  table. The basic elements in this table are proposed in Section 6.4.1. The strategies on

			Start
			Initializing
		Randomly generating
		fault part no. j, 0<j<n+1
	Random		Sequential
	Randomly generating	Sequentially generating
	fault part no. i,	fault part no. i (starts
	0<i<n+1		from 1) , 0<i<n+1
	generating training data	No	j == i?
			yes
			generating
		training data
			End

  Since they have illustrated the feasibility Algorithm 4: Decision table generation input : table urr(key, useTime, flyingHours), table dir(key, depatureTimes) // The key implies the string of the aircraft type, aircraft no., sub module no. and fault part no.

		output	: decision table.
		// Collecting raw data for building attributes.
		// faultComponent.IsTarget() means the component in which the FRNN approach
		will be used.
	1 if faultComponent.IsTarget() then
	2	for i = 0 to faultComponent.subComponents.size() do
	3	String key = getKey();
	4	String useTime = getCurrentUseTime(part(i));
	5	String flyingHours = getFlyingHours(part(i));
	6	writeToExcel(key, useTime, flyingHours);
	7	end
	8 end
	9 if flight.IsDelayed()|| flight.IsCanceled() then
	10	if faultComponent.IsTarge() then
	11	String key = getKey();
	12	String departureTimes = getTotalDepartureTimes(aircraft(i));
	13	writeToExcel(key, departureTimes);
	14	end
	15 end
		// Generating the decision table: calculating DIR, URR and MTBUR.
	16 DIR part(i) = count_tableDir(key)/max_departureT imes(key);
		// compoentsNumber(key) indicates the number of components corresponding to
		aircraft types
	17 U RR part(i) = count_tableU rr(key)/max_f lyingHours(key) * compoentsN umber(key);
	18 MT BU R part(i) = max_useT ime(key)/count_tableU rr(key);
		// DA means the value of decision attributes
	19 writeToExcel(dir, urr, mtbur, DA);
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The process for dealing with uncertainty events The complexity of MC depends on maintenance scenarios. As shown in Table 4.4, fault events and uncertain events are considered in maintenance scenarios. The analysis of fault events aims to deliver the causes of faults on components. The uncertain event analysis tries to simulate the process of the trouble-shooting during the process of repairing when exceptional issues happen. Fault and uncertain events take place with a user-defined probability. The elements of totalRepairTime will be discussed in detail at the last paragraph of Section 5.6.1.1. Additionally, scheduledTime in Table 4.4 means the total repair time of PM. 

The definition of Plane agent (plane, flight, sta, ssa, mainn) --b0: Init; b1: Ready; b2: InitScheduled; b3: FlyingTo; b4: Waiting; b5: Landing; b6: Checking; b7: ReadyToFly; b8: Scheduled; b9 FlyingToNext. MODULE Plane(arg1,arg2,arg3,arg4,arg5) VAR state : {b0,b1,b2,b3,b4,b5,b6,b7,b8,b9} Figure 5.10: The transformation for Plane agent

Properties to Check

NuSMV allows verifying both CTL and LTL formulas [START_REF] Cavada | NuSMV 2.5 Tutorial[END_REF]. CTL formulas specify properties over the computation tree of the FSM (branching-time approach). LTL formulas verify each linear path induced by the FSM (linear-time approach). Here, we employ the logics of the CTL and LTL to express properties. Global and operational behaviour properties are discussed in the following.

The global behaviour properties are extracted from the control behaviour of the ABSS, which are illustrated as follows.

CTL specifications: 

Reliability-related Indicators

The reliability report for aircraft is a collection of historic information about fault diagnoses, which is employed to analyse faults by associating these experiences with the real-time condition of equipment states. It is issued by aircraft manufacturers and airlines at regular time [START_REF] Bombardier | CSP A2113 CRJ 100 P200[END_REF]), which includes the number of faults on parts, the number of removal parts (scheduled removing and unscheduled removing) on equipment, the flying time and the dispatch times, etc.

China Civil Aviation stated that the performance of aircraft can be evaluated by the crew report, the delay of flights, the rate of removing parts, the use time of parts, etc (China Civil Aviation The structure of aircraft is shown in Fig. 6.4, where the engine component is highlighted.

We assume that the warning of the faulty sub-components for the engine can be issued by the controller system of the aircraft. So, the FRNN approach is utilised to predict the fault location in 

--SPEC AG ( plane . s t a t e = b5 -> AX plane . s t a t e != b2 ) ; --! ! ! ! ! ! ! ! ! ! ! ! ! I n t u i t i v e ! --SPEC AG ( ! ( ( f l i g h t . s t a t e = a0 ) & ( plane . s t a t e = b2 ) ) ) ;

SPEC AG ( ! ( f l i g h t . s t a t e = a1 & plane . s t a t e = b7 ) ) ;

--SPEC AG ( ! ( f l i g h t . s t a t e = a0 & plane . s t a t e = b8 ) ) ;

--SPEC AG ( ! ( f l i g h t . s t a t e = a3 & plane . s t a t e = b8 ) ) ;

--SPEC AG ( ! ( f l i g h t . s t a t e = a0 & plane . s t a t e = b8 ) | ! ( f l i g h t . s t a t e = a3 & plane . s t a t e = b8 ) ) ;

--SPEC AG ! ( ( f l i g h t . s t a t e = a0 & plane . s t a t e = b8 ) & ( f l i g h t . s t a t e = a3 & plane . s t a t e = b8 ) ) ;

The d e f i n i t i o n o f F l i g h t Agent ( f l i g h t , plane , stm )

--a0 : I n i t ; a1 : Scheduling ; a2 : Checking ; a3 : Ready ; a4 : End .

------------------------------------------------- 

The d e f i n i t i o n o f Plane Agent ( plane , f l i g h t , stm , ssm , mainn )

--b0 : I n i t ; b1 : Ready ; b2 : I n i t S c h e d u l e d ; b3 : FlyingTo ; b4 : Waiting ; b5 : Landing ;

--b6 : Checking ; b7 : ReadyToFly ; b8 : Scheduled ; b9 FlyingToNext .

-------------------------------------------------MODULE Plane ( arg1 , arg2 , arg3 , arg4 , arg5 ) VAR s t a t e : { b0 , b1 , b2 , b3 , b4 , b5 , b6 , b7 , b8 , b9 } ;