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Abstract

Abstract

English

In this PhD thesis, self-heating phenomena are studied for guiding the design of next-generation 3D
Integrated Circuits (ICs). By means of experimental and numerical investigations, associated heat
dissipation in 3D Hybrid Bonding imagers is analyzed and the impact of the resulting temperature rise
is evaluated. First, in order to develop accurate models, the thermal properties of materials used in ICs
are to be determined. Different dielectric thin films involving oxides, nitrides, and low-k compounds
are investigated. To do so, Scanning Thermal Microscopy (SThM) and the 3w electrothermal method,
sensitive to low and large effective thermal conductivity, are implemented. In a second step, finite-
element models of 3D ICs are developed. A numerical method involving homogenization and a
multiscale approach is proposed to overcome the large aspect ratios inherent in microelectronics. The
numerical procedure is validated by comparing calculations and experimental measurements
performed with SThM, resistive thermometry and infrared microscopy on a simplified Hybrid Bonding
test chip. It is shown that heat dissipation is mainly limited by the heat sink conductance and the losses
through air. Finally, numerical and experimental studies are performed on fully-functional 3D Hybrid
Bonding imagers. The temperature field is measured with SThM and compared with finite-element
computations at the die surface. The numerical results show that the temperature of the pixel surface
is equal to that of the imager Front-End-Of-Line. The influence of the temperature rise on the optical
performance of the imager is deduced from the analysis. The study also allows assessing the various
numerical and experimental methods for characterizing heat dissipation in microelectronics.

French

Dans cette these, les phénomenes d’auto-échauffement ont été étudié pour guider la conception de
circuits intégrés 3D de nouvelle génération. Grace a des études expérimentales et numériques, la
dissipation thermique dans des imageurs 3D par collage hybride a été analysée et I'impact de
I'augmentation de température résultante a été évalué. Premierement, afin de développer des
modeles précis, les propriétés thermiques des matériaux utilisés dans les circuits intégrés ont di étre
déterminées. Différents films minces diélectriques impliquant des oxydes, des nitrures et des
composés low-k ont été étudiés. Pour ce faire, la microscopie thermique a sonde locale (SThM) et la
méthode électrothermique 3w, sensibles a la conductivité thermique effective faible et élevée, ont été
mises en ceuvre. Dans un deuxieme temps, des modeles éléments finis de circuits intégrés 3D ont été
développés. Une méthode numérique nécessitant homogénéisations et approches multi-échelles a été
proposée pour surmonter des grands rapports de forme inhérents a la microélectronique. La
procédure numérique a été validée en comparant les calculs et les mesures expérimentales effectuées
par SThM, la thermométrie résistive et la microscopie infrarouge sur une puce de test par collage
hybride simplifiée. Il a été montré que la dissipation de chaleur est principalement limitée par la
conductance du puit thermique ainsi que les pertes par l'air. Enfin, des études numériques et
expérimentales ont été réalisées sur des imageurs 3D par collage hybride fonctionnels. Le champ de
température a été mesuré par SThM et comparé aux calculs par éléments finis a la surface de la
matrice. Les résultats numériques ont montré que la température de la surface des pixels est égale a
celle du Front-End-Of-Line de I'imageur. L'influence de I'échauffement sur les performances optiques
de lI'imageur a été déduite de cette analyse. Cette étude a permis également d'évaluer les différentes
méthodes numériques et expérimentales pour la caractérisation de la dissipation de chaleur en
microélectronique.
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Introduction

Introduction

In this PhD thesis, self-heating phenomena are studied in 3D Integrated Circuit (IC) architectures. Here,
we are interested more particularly in the 3D Hybrid Bonding (HB) technology for imagers in the
context of their emergence in commercial devices. Indeed, in such architectures, the imager part (top
chip) is located just above the control part (bottom chip), and the temperature of pixels is therefore
expected to increase due to closeness with the heat sources. The pixel performance being strongly
dependent on the temperature, the thermal behavior of 3D HB object needs to be perfectly
understood and controlled to avoid performance drifts. In addition, the thermal stress associated to
thermal gradients and local thermal expansion can also be detrimental to operation of the device. This
is why it is important today to be able to determine a priori the thermal behavior of the associated ICs.
Due to the specificity of a 3D object (versus a 2D one), the study focus on dedicated test chips and
close-to-commercial devices of the current generation. Note that in contrast to many thermal studies,
we are not investigating the hot spot (heat source) itself, but its impact on the temperature distribution
and on the performance of components located further away.

In order to provide an accurate description of this problem, the thermal characteristics of the materials
involved need first to be determined. At the submicron scale, numerous issues arise such as thermal
properties characterization or thin film effects (interfacial resistance). This task, and those specificities
intrinsically related to the microelectronic domain, will be also addressed in this work.

This report is made of four chapters and a conclusion section. Chapters 2-4 are the original
contributions involving both entangled experimental and numerical tasks, while the first chapter
provides an overview of key elements required for the understanding of the document. The contents
of the chapters are detailed below.

In the first chapter, a state of the art of the influence of temperature on ICs is established in order to
provide an overview of the specific issues in microelectronics. After having detailed the specificities of
the recent imaging technologies, the thermal impact on various phenomenon such as
electromigration, thermomechanical stress or dark current variation are presented. Hence, the
performance of the chip, whether in terms of reliability or quality, is significantly impacted by the
temperature. In the case of 3D HB imagers, this is all the more true for the optical performance of the
pixel array.

Before investigating the thermal behavior of a 3D object, materials need first to be characterized. This
work is described in the second chapter. Various dielectric thin films involving oxides, nitrides, and
low-k compounds are evaluated. These materials and samples are chosen because they are the main
components of the structure of an electronic chip for both the Front-End-Of-Line (FEOL) and the Back-
End-Of-Line (BEOL). In order to characterize the thermal properties of our materials, two different
electrothermal methods are implemented: Scanning Thermal Microscopy (SThM) and the 3w method.
SThM is a contact probe technique that allows to obtain a thermal signal at sub-micrometric scale. It
allows to measure thermal variables/parameters such as temperatures, thermal conductivities or
phase transition temperature for example. In SThM, the interpretation of the experimental data
remains challenging. In order to allow quantitative data analysis, the heat transfer mechanisms
between the probe and the sample are modelled by means of FE method involving heuristic
parameters determined on physical basis. SThM measurements are performed with two types of
probes: the palladium nano-probe and the Wollaston micro-probe. Concerning the 3w method, itis a
four-probe electrothermal method designed to measure the thermal conductivity of bulk materials
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and thin films. 3w devices are patterned by a photolithography process in clean room on top of the
samples and heated with an alternating current. The effective thermal conductivity of the sample is
deduced from the temperature rise of the wire. All the dielectric materials are investigated with these
two techniques. The pros and cons of each method will be compared and discussed.

Chapter 3 aims to develop and validate a relevant approach of numerical modelling by FE for the
prediction of the thermal behavior of 3D HB chips. A specific test chip used for the investigation of
thermal issues, called M3EM, is detailed. The M3EM chip has been co-developed by ST
Microelectronics and CEA LETI in order to quantify the efficiency of the HB fabrication process in terms
of heat management. Embedded heaters and sensors (copper serpentines) located in the BEOL
generate heat by Joule effect across the stack in order to represent the power generation of the
functional blocks (i.e. power supply, memory signal treatment ...) in real chips. In order to apply the FE
method to the M3EM chip, a numerical method involving homogenization and a multiscale approach
is proposed to overcome the issue raised by the large aspect ratios inherent to microelectronics. This
procedure is validated by comparing calculations and experimental measurements performed with
SThM, resistive thermometry and infrared microscopy on the M3EM test chip. The advantages and
drawbacks of each method are described.

In chapter 4, the focus is on the thermal behavior of the 3D HB imager technology. To do so, methods
and approaches, validated in the previous chapter, are applied on two different electronic chips. The
first one, called FLAMINGO, is an analog test chip with an inactive pixel matrix and embedded
electrothermal test structures. This chip was designed to validate the whole process and assembly flow
in terms of mechanical reliability. The second chip, called 93D, is a demonstrator with an active pixel
matrix. Both chips were therefore designed for different objectives and, thus, have different added
value in the frame of this work. In a first step, the FEOL and BEOL structures of these two chips are
detailed. In a second step, the FLAMINGO chip is used to study the thermal behavior of the pixel. SThM
measurements are implemented to validate the numerical analysis at the pixel array level. In a third
step, the optical performances with regard to the temperature field are evaluated thanks to the 93D
demonstrator by means of PTAT sensors and pixel dark current performance. This allows experimental
guantification of self-heating phenomena in true devices in terms of optical performances for different
use cases, both in the static and dynamic regimes.

Finally, the main conclusions of this work are summarized in the last section. Some observations useful
for the next generation of devices and the future method development are highlighted.
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1. 3D Hybrid Bonding imagers: context and challenges

Chapter 1. 3D Hybrid Bonding imagers: context and
challenges

This chapter aims to provide the main ideas regarding 3D Hybrid Bonding (HB) imagers (IMG) and the
thermal challenges related to this new technology. It therefore provides key ingredients for the
following of the manuscript, however it does not address in depth all aspects, which can be found
elsewhere with an improved level of detail (references are given). More precisely, here the technology
is first detailed from a functional and manufacturing point of view. The 3D integration, the hybrid
bonding and the pinned photodiode principle are explained in short. In a second step, an inventory of
some key thermal constraints induced by the new technology is drawn, involving in particular
thermomechanical stress, dark current generation and electromigration. Finally, different numerical
and experimental methods for the characterization of heating and its impact on devices are briefly
presented. Among all the methods available in the literature, some will be retained for use in this PhD
work and applied in the following chapters.

I. 3D hybrid bonding technologies

In this section, the 3D HB IMG technology is detailed in three parts. First, a general description of the
integrated circuit technology is provided. Then, the principle of 3D integration and the hybrid bonding
technology are explained. Finally, the imaging technology architecture, embedded in the 3D stack, is
detailed.

1.1. Integrated circuits

Here, some very fundamentals about integrated circuits (IC) structure are recalled. Considering only
the chip, an IC can be divided in two parts: the Front-End-Of-Line (FEOL) and the Back-End-Of-Line
(BEOL).

I.1.A. General trends in microelectronics

500
400

300 ‘

200 e
i Next node:

100 e ——

...... «* 450 mm wafer

Diameter (mm)

1960 1970 1980 1950 2000 2010 2020 2030
Year
Figure 1.1: Wafer diameter increase during the last decades [7].

In electronics, the substrate (called also “wafer”) [1] is a thin slice of semiconductor, e.g. silicon,
germanium or gallium arsenide, depending on the technology. The bulk silicon wafer is the oldest
technology but remains a staple of the microelectronic industry: it is used in many microelectronic
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1. 3D Hybrid Bonding imagers: context and challenges

technologies. Its thickness is typically about 0.7 mm. Si wafers are usually made of single-crystal silicon
fabricated with the Czochralski process [2]. During the last few years, the development of
microelectronics has seen the emergence of a new type of wafer: the Silicon-On-Insulator (SOI)
substrate [3]. The SOI technology refers to the use of a layered silicon-insulator-silicon substrate in
place of conventional silicon substrate. This allows among other advantages to reduce parasitic
capacitance in transistors and therefore increase electrical performance [4]. The choice of the insulator
depends on the application. In the majority of cases, sapphire and silicon dioxide are used for high-
performance radio frequency (RF) and microelectronics devices, respectively [5]. More generally
speaking, the constant evolution of the Metal-Oxide-Semiconductor (MOS) technology has been
driven during the last four decades by Moore and More than Moore’s law which assess that the density
of components roughly double every two years [6]. In addition to improving substrate technologies,
the microelectronic industry has continually sought to increase the diameter of wafers, which allows
them to consistently reduce the manufacturing cost per transistor. A schematic of the wafer size
increases in the last decades is shown in Figure 1.1 [7].

.1.B.  Front-End-Of-Line

In this section, the principle of the Front-End-Of-Line (FEOL) is explained at both MOS Field-Effect
Transistor (FET) and die levels.

1.1.B.a.  MOSFET principle
NMOS transistor PMOS transistor

Figure 1.2: Schematic of the PMOS and NMOS of the CM 0S40 technology.

The Front-End-Of-Line (FEOL) is the first portion of IC fabrication where the individual transistors are
patterned in the semiconductor. The technologies used in this thesis are based on MOSFET (Metal-
Oxide-Semiconductor Field-Effect Transistor). The MOSFET technology is used in both digital logic and
analog circuits such as microcontrollers, memory and CMOS sensors for example [8]. The principle of
the MOSFET is detailed in Figure 1.2. The electrical current flowing from the source to the drain is
controlled electrically by the voltage applied on the gate. In the case of the n-doped CMOS transistor
(NMOS), powering the gate generates an electron channel in the substrate. Conversely, without
powering the gate, the transistor is like an open circuit. In the case of the PMOS transistor, the principle
is the same with a channel of holes. Note that a technology name (i.e. CMOS40 in this thesis) refers to
the gate length in nanometers.

1.1.B.b.  FEOL processing

FEOL processing refers to the formation of the transistors directly in the silicon substrate. The FEOL
surface engineering consists in different consecutive steps:

(i) growing the gate dielectric (usually silicon dioxide) with dry oxidation. The dry oxidation is
usually used to form thin oxides in a device structure because of its good Si-SiO; interface
characteristics [9];
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(ii) patterning the sources and drain regions with the photolithography process. This
procedure combines several steps in sequence: cleaning, preparation, photoresist
application, exposure and developing, etching and photoresist removal [10];

(iii) ionic implantation [11] and diffusion [12] of the dopants to obtain the desired electrical
field in the MOSFET channel.

Considering that the length of the gate is directly related to the transistor density in the substrate,
manufacturing techniques have been constantly improved to reduce the dimension of the gate.
Lithography has been one of the key drivers for the semiconductor industry. Roughly half of the density
improvements have been derived from improvement in lithography [13]. Indeed, the minimum feature
size (critical dimension) CD is equal to:

cp="a 2t (1.1)
n NA

where A is the wavelength of light used, NA (~1) is the numerical aperture of the lens, n is the index
of refraction and k4 (~0.4) is a coefficient that encapsulates process-related factors. Modern processes
use UV light (A = 193 nm from an Argon-Fluoride laser), which makes it possible to pattern details of
the order of 80 nm [14, 15]. To get down to 50 nm, the last lens and silicon are immersed in ultra-pure
water. Water having a refractive index equal to 1.44, the wavelength of the light that propagates there
is divided by all, which improves the resolution by 30 to 40%. The next generation of lithography will
use extreme ultraviolet (EUV), at around 13 nm leading ideally to critical dimensions of the order of a
few nanometers. However, the limit of lithography seems to be reached because the use of X-rays is
not possible due to physical constraints [16]. Nowadays, the latest technologies released in the market
are below 22 nm (Intel, TSMC...).

1.1.C. Back-End-Of-Line

The Back-End-Of-Line (BEOL) is the second level of an ICs fabrication where the transistors are
interconnected together via metal wires on several levels. A schematic of the BEOL is detailed in
Figure 1.3. The BEOL structure includes:

(i) tungsten contacts (on transistor source, drain and gate). Tungsten is chosen because it is
less sensitive to electromigration. This is in particular very important for the finest lines
where the current density can be as high as 106 A.cm? [17, 18];

(i) insulating layers (dielectrics). These layers need low-k dielectric constant in order to avoid
parasitic RC coupling between the metal layers [19, 20];

(iii) barriers (silicon nitride, silicon carbo-nitride...) which avoid the diffusion of the copper
atoms of the metallic levels in the layers of oxide [21];

(iv) metal levels and vias. In the case of recent technologies, copper is used for the metal levels
of the BEOL due to its low electrical resistivity [22];

(v) a capping layer made of silicon nitride preventing contamination and humidity to enter
into the BEOL [23];

(vi) bonding sites for chip-to-package connections (wire bonding, bumps...) with aluminum
contacts [24].

In BEOL part of fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are
formed (see Figure 1.3). For modern IC process, up to 10 metal layers can be stacked in the BEOL.

31
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés


https://en.wikipedia.org/wiki/Fabrication_(semiconductor)
https://en.wikipedia.org/wiki/Interconnects_(integrated_circuits)

1. 3D Hybrid Bonding imagers: context and challenges

Aluminum contact

Cappin
pp g rF E
=3
E
!
Dielectric €
3
o
. —
Barrier 2
-
@]
(NN
VIA «@
Metal ———
Tungsten contact '

Figure 1.3: Cross section schematic of the BEOL structure (not to scale).

1.2. 3D integration for ICs

In this section, the 3D Hybrid Bonding technology is detailed. First, the principle of 3D integration is
explained. Then, two different 3D integration technologies are detailed: Through Silicon Via (TSV) and
Hybrid Bonding (HB).

I.2.A. 3D integration principle

CPU RAM Power Sensor

Figure 1.4: 3D stacking principle for heterogeneous integration.

Technological limitations induced by transistors size reduction having been reached, the development
of 3D integration has therefore emerged. The principle of 3D integration is explained in Figure 1.4.
Different functional devices (sensor, MEMS, power management, memory...) are stacked together in
the vertical direction. 3D integration is also called “heterogeneous integration” [25, 26].

3D integration is particularly interesting for imaging applications. Indeed, in the conventional
approach, the logic elements are located at the periphery of the pixel matrix (2D floorplan). Large die
size, poor time constant and similar technology for both imager and digital components are the main
drawbacks of such integration. All these limitations are resolved by means of the 3D integration: digital
blocks are located below the pixel matrix, the signal treatment is improved and advanced digital
technology can be used.
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I.2.B. 3D integration technologies

The two most common technologies for 3D integration are presented here: the Through Silicon Via
(TSV) and the Hybrid Bonding (HB) technologies. The advantages and drawbacks of these two
technologies are compared.

1.2.B.a.  Through Silicon Via

Bridge Via

c) Plug Via

Barrier Barrier Barrier

Dielectric " Dielectric Dielectric

Wafer Via-first Via-middle Via-last
TSV TSV TSV

Figure 1.5: Schematic of TSV structure with a) via-first, b) via-middle and c) via-last.

A Through Silicon Via (TSV) is a vertical electrical connection that crosses completely a silicon die [27].
A schematic of TSV structures is shown in Figure 1.5. TSVs have some advantages for the
semiconductor industry dealing with 3D integration: power, area and time are better compared with
conventional interconnects such as wire bonding, ball bonding... [28]. Such integration uses similar
process steps to the BEOL stack. Three different types of TSVs exist:

(i) via-first TSVs fabricated before FEOL manufacturing;
(i) via-middle TSVs fabricated between FEOL and BEOL manufacturing;

(iii) via-last TSVs fabricated after BEOL manufacturing.

1.2.B.b.  Hybrid Bonding

Top chip

Top die

<«— HB interface

HEEN M /]
HEEN HAlEEE

BEOL
FEOL

Bottom chip
Bottom die

Bottom die

Figure 1.6: Cross section schematic of the 3D Hybrid Bonding integration.

In the context of heterogeneous integration, another technology has become unavoidable in recent
years: Hybrid Bonding (HB) [29]. The principle of HB is detailed in Figure 1.6. It is a permanent bond
performed at the wafer scale that combines a dielectric bond with embedded metal to form
interconnections. It has become known in the industry as Direct Bond Interconnect (DBI). HB can offer
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high via density, good alignment and high bonding strength with stress-free hermetic-sealed bonding
structure [30]. In addition, various low-temperature HB techniques allow saving thermal budget as
much as possible [31]. Contrary to TSV integration, this one requires the development of new steps in
the process flow as shown in Figure 1.7. Further details and challenges related to this specific process
can be found in [32] for example.

1. Wafer alignment Top wafer

Bottom wafer
2. Bonding initiation E

3. Bonding propagation

e

4, Thermal annealing

[ |
L 1

Figure 1.7: Schematic of the Hybrid Bonding process flow [32].

1.2.B.c. Comparison between TSV and HB

Some advantages and drawbacks of the TSV and HB technologies are summarized in Table 1.1. Hybrid
bonding giving many advantages [33-37], this technology has quickly expanded.

TSV HB
Low thermal budget
High bonding energies
Wafer/die-wafer bonding
Thin pitch (< 15 um)
Low RC delay

Process reliability

A
dvantages Cost fabrication

Electromigration
Drawbacks Thermomechanical stress
High thermal budget
Table 1.1: Advantages and drawbacks of the TSV and HB technologies [33-37].

Surface preparation
Thermomechanical stress

1.3. Imaging technology

The current PhD thesis is especially concerned with devices for imaging. The two most common
technologies for imaging are presented below: the Complementary Metal Oxide Semiconductor
(CMOS) and the Charge Coupled Device (CCD) technologies. The advantages and drawbacks of these
two technologies are compared.

I.3.A. CMOS image sensor

The principle of the photodiode, which is the fundamental brick of CMOS image sensors, is described
first. Then, the architecture of the CMOS image sensor technology is detailed.

1.3.A.a.  Pinned photodiode

A pinned photodiode (PPD) is a PN junction or PIN structure. When a photon of sufficient energy hits
the diode, an electron-hole pair is created. This mechanism is also called photoelectric effect (see
simplified schematic in Figure 1.8).
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Low-energy High-energy

light light °

Figure 1.8: Principle of the photoelectric effect [38].

If the photon is absorbed in the junction’s depletion region, or up to one diffusion length away from
it, the electron-hole pair is separated by the electric field of the depletion region. The hole moves
toward the anode and the electron moves toward the cathode. A photocurrent is produced. The
principle of the PN junction of the photodiode is explained in Figure 1.9. To first order, for a given
spectral distribution, the photocurrent is proportional to the irradiance [39]. The photodiode can be
used in two different modes:

(i) the photovoltaic mode is defined under zero bias. The photocurrent flows out of the anode
through a short circuit to the cathode. This mode exploits the photovoltaic effect, which is
the basis for solar cells;

(ii) the photoconductive mode when used in reversed bias. The response time is reduced
because the additional reverse bias increases the width of the depletion layer, which
increases the region with an electric field that will collect electrons quickly.

P-doped Electric field N-doped
| D — |

(

00 O 00 06
0000 0000
000 0000

\ )

Depletion region
Figure 1.9: Depletion region at the PN junction of the photodiode following [40].

1.3.A.b.  Pinned photodiode embedded in CMOS image sensor

A schematic of the PPD pixel is shown in Figure 1.10. The PPD is associated with a Transfer Gate (TG),
which isolates the PPD from the Floating Diffusion (FD) during light integration (V- off) and enables
electron transfer from the PPD to the FD for the readout of the output charge (Vs on). The Shallow
Trenches for Isolation (STIs) are used to isolate the CMOS transistors from each other.
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VTG

Transfer Gate (TG) Vip

P-type implant Floating Diffusion (FD)

Figure 1.10: Structure of a PPD CMOS pixel for p-doped silicon [41].

I1.3.B. CCD image sensor
Vgate

Oxide layer Metal electrode

Depletion zone

GND

Figure 1.11: Structure of a CCD pixel for p-doped silicon [42].

The CCD image sensor technology is based on the Metal Oxide Semiconductor (MOS) capacitor as
shown in Figure 1.11. If a photon, with a sufficient energy, is absorbed in the depletion zone, an
electron-hole pair is created. The electron remains in the depletion zone while the hole moves toward
the substrate. The amount of negative charge (electrons) that can be collected is proportional to the
applied voltage, the oxide thickness and the surface area of the gate. The total number of electrons
that can be stored is called “well capacity”. When the wavelength increases, photons are absorbed at
increasing depths. This notably limits the response to high wavelengths. Currently, available sensors
can function from far infrared to X-rays.

I1.3.C. Comparison between CCD and CMOS imagers

Key advantages and drawbacks of the CCD and CMOS image sensors are summarized in Table 1.2.
Another design has been developed: the hybrid CCD/CMOS architecture consisting of CMOS readout
integrated circuits that are bump bonded to a CCD imaging substrate has emerged. This technology
has been adapted to silicon-based detector technology to mix the benefits of both CCD and CMOS
imagers [44].
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ccD CMOS
Low power consumption
Advantages Low-noise images Cost fabrication

Fast readout

High power consumption
Drawbacks Cost fabrication Light sensitivity
Electrostatic discharge vulnerable
Table 1.2: Advantages and drawbacks of the CCD and CMOS technologies [43].

1.4. Conclusions on 3D HB imager technology

This brief analysis of the architectures used for imagers shows us that the 3D hybrid bonding
integration will allow a high increase in integration density in next-generation ICs. A schematic of the
global 3D Hybrid Bonding imager architecture is shown in Figure 1.12. This is especially due to the very
low pitch (< 15 um) of interconnections that can be reach with the DBI. However, for imager
applications, the logic is located just below the matrix pixel. The power dissipated by the digital
components and the volume reduction raise many challenges regarding thermal dissipation. An
analysis is made in the next section.

RGB filter

Pinned photodiode
Top chip
BEOL
||

Hybrid Bonding

Bottom chip

Bulk silicon

Figure 1.12: Structure of the 3D Back-Side-lllumination Hybrid Bonding imager.

Il. Thermalissues in ICs related to 3D hybrid bonding imagers

Miniaturization in the field of electronics packaging, coupled with faster circuits dissipating higher
power, have increased the heat fluxes in microelectronic devices. One of the key problems is to
dissipate the heat generated by the device to meet the thermal requirements for an optimal
performance and reliability. Thus, power to be dissipated ranges from 5W to 300W for mobile or
desktop processors, respectively [45, 46]. This section aims to present various impacts related to the
effect of temperature in the 3D Hybrid Bonding imagers. Many detrimental phenomena related to
thermal parameters are possible, but the focus is here on three temperature-related issues:
thermomechanical stress, electromigration and optical noise.

II.1. Thermomechanical stress

At the BEOL level, the stress is detrimental, acting on yield loss, mostly during manufacturing but also
during operation. In this section, the cause of thermomechanical stress is explained and different stress
failure mechanisms are reviewed.
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Il.L1.A. Principle of thermomechanical stress

Mechanical stress can be driven by a wide range of distinct causes like temperature gradients for
example. In thermomechanics, the deformation of the material is calculated as follows:

Ecn = @nAT, (1.2)

where &, is the thermal strain, a;; is the Thermal Expansion Coefficient (TEC) and AT is the
temperature rise. &5, and a;,, are tensors but can be considered as scalars for isotropic media. As an
example, the TEC of bulk silicon is equal to 2.56 puK? [47]. This effect is even more important in
microelectronics since, as depicted previously, numerous materials with their own TEC are used, which
can lead to different expansions in materials in contact. Thus, a thermal hot spot, thermal gradient or
even high temperature may induce additional thermo-mechanical stress within the die and increase
the risk of failure.

I.1.B. Failure mechanisms

Package Crack Die Crack
Excessive Die Lift
Warpage
Delamination Passivation Crack
/ Metal Shift

Figure 1.13: Examples of thermomechanical failure in ICs [48].

In microelectronics, many kinds of thermomechanical failure can appear. Figure 1.13 shows pictures
and examples of typical ones at several locations inside the chip [48]. Stress-related failures,
particularly delamination and cracking in dielectrics, are nowadays determined as one of the key
limitation for integration. Such failures are liable to occur at several process steps and in distinct chip
regions.

1.2.  Optical constraints in imagers

In this section, two optical constraints in imagers are underlined: dark current generation and the reset
noise. They participate in the reduction of the signal-to-noise ratio (SNR) and must be decreased as
much as possible.

I.2.A. Dark current offset in pinned photodiode

Dark current is the electric current that flows through photosensitive devices such as photodiodes in
absence of illumination. It consists of the charges generated in the detector when no external radiation
is entering the detector [49]. The dark current generates an offset of the PPD output which reduces
the pixel SNR. It is referred to as reverse bias leakage current in non-optical devices and is present in
all diodes. Physically, the dark current is due to the random generation of electron-hole pairs in the
depletion region of the PPD. The charge generation rate is related to the specific properties and

38
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



1. 3D Hybrid Bonding imagers: context and challenges

temperature of the depletion region. Indeed, the higher the thermal energy of the medium, the more
likely the photoelectric phenomenon is. The thermal energy in the medium is

E =k,T, (1.3)

where kj, is the Boltzmann constant and T the temperature of the depletion region. Dark current is
one of the main sources for noise in image sensors such as CCD or CMOS. An example of the
temperature influence on the dark current intensity is shown in Figure 1.14 [50]. The dark current must
be accounted for by calibration if a photodiode is expected to provide an accurate optical power
measurement. In particular, if temperature gradients are present, knowing the dark current value at
any point of the pixel matrix is not always an easy task.

Figure 1.14: Dark current intensity (arbitrary unit) as a function of the temperature rise in an IC [50].

I.2.B. Reset thermal noise

Another type of thermal noise, called the reset noise, has become a limiting factor in pixel performance
[51, 52]. It is even more important as the CMOS image sensor size decreases. The reset operation aims
to provide a reference to compare to the number of electron-hole pairs generated by the photoelectric
effect. The reset noise is generated by the thermal noise that causes voltage variations in the reset
level of the pixel. The reset noise affects the pixel SNR especially in low-illumination conditions. The
thermal reset noise is

y = (1.4)
2C

where I/ is the mean value of the output noise voltage and C is the junction capacity of the PPD. Other

thermal noises such as readout noise, integration noise and shot noise are present in CCD and CMOS

imagers. These thermal noises are detailed for instance by Tian and Boukhayma [53, 54]. It is all the

more important as the temperature of the photodiode is large.

I.3.  Electromigration

In this section, the principle of the electromigration is explained. Then, the induced failures generated
in ICs are detailed and illustrated.

Il.3.A. Principle of electromigration

Electromigration is the transport of material caused by the gradual movement of the ions in a
conductor due to the collisions between conducting electrons and metal ions. The principle of
electromigration is explained in Figure 1.15. In an ideal conductor, the electrons moving through it
would not collide ions and electromigration would not occur. In a real conductors, electromigration
occurs due to the interactions between the electrons and the lattice structure.
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Figure 1.15: Electromigration due to momentum transfer from the electrons to the atoms.

I.3.B. Electromigration failure mechanisms

Copper wire

Dielectric

Figure 1.16: SEM image of a failure caused by electromigration.

Usually, the amount of momentum imparted by the conducting electrons (low mass) is not enough to
displace the ions. However, in high-power situations, many electrons hit the ions with a force that
becomes significant. This accelerates the process of electromigration by moving the ions far from their
initial lattice position. High current density increases the number of electron-ion collisions and hence
the electromigration phenomenon. At the end of the 1960s, J.R. Black developed an empirical model
to estimate the Mean Time To Failure (MTTF) of a wire, taking electromigration into consideration
[55, 56]. The empirical formula of MTTF is

_4 La
MTTF = -exp (ka), (1.5)

where A is a constant based on the cross-sectional area of the interconnect, J is the current density
normal to the electron flux direction, E, is the activation energy and n is a scaling factor (usually set
to 2 according to Black). The temperature of the conductor affects strongly the MTTF of the
interconnections. The Black model has become very popular in the industry of microelectronics.
However, as interconnect technology advances at the nanometer scale, Black’s equation is no longer
valid. In ICs, electromigration occurs in the metal interconnects of the BEOL level. Electromigration is
enhanced by high-current densities (J > 10° A.cm?) in the interconnections, and can lead to eventual
failures. As the structure size in electronics such as ICs decreases, the practical significance of this effect
increases. A Scanning Electron Microscopy (SEM) image of a failure caused by electromigration in a
copper interconnection is shown in Figure 1.16.
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I1.4. Conclusions on thermal issues

This short review of the thermal issues in ICs and especially in 3D HB imagers has shown that
temperature may has a significant impact on the quality and reliability of microelectronic devices.
Optical performance and/or device integrity may be impacted by such phenomena. It is therefore
important to characterize the device temperature in order to reduce the temperature-related
constraints applied on it. An analysis of the way to perform such characterizations is made in the next
section.

lll. Thermal management for integrated circuits

In this section, different techniques used for heat dissipation in microelectronics are first detailed.
Then, temperature characterization techniques in ICs, with both embedded sensors and with
microscopy techniques, are addressed. Finally, a brief overview is dedicated to available numerical
methods used to get access to thermal parameters that are key for heat dissipation in microelectronic
devices.

lll.L1. Passive dissipation techniques for electronics

The need of novel heat dissipation techniques is driven by the increase of high power-generation ICs.
In the next section, the traditional heatsink architecture is detailed. Then, innovation requirements for
Thermal Interface Materials (TIMs) are mentioned. Finally, recent developments for thermal
characterization in electronics are addressed.

lIl.L1.A. Traditional approach: the heat sink

Sdie Sfan

Figure 1.17: Principle of air-cooling and geometry of the fans.

A heat sink transfers thermal energy from a higher temperature device to a lower temperature fluid
medium. The usual fluid medium is air. The heat sink is included in the design stage to disperse heat.
It is generally acknowledged that traditional air-cooling techniques are about to reach their limits for
heat dissipation of high-power applications. With standard heat sink constituted of fins (as shown in
Figure 1.17) a maximum effective heat transfer coefficient of approximately 150 W.m?2.K? can be
reached [57]. The idea is to increase the surface of exchange between the metallic fins and the fluid
(Sran) to dissipate more energy compared to the surface of the chip (S4;.). Heat transfer between the
fins and air takes usually place by natural convection, however fans can be used to enforce higher heat
convection coefficients.

I11.1.B. Thermal interface material

In all applications, thermal dissipation from the device heat sources occurs first by means of energy
travelling via thermal conduction to the surfaces exposed to the cooling fluid before being evacuated.
For example, as shown in Figure 1.18, heat must be conducted from the chip to the heat sink before it
can be rejected to air. TIMs are used to enhance thermal conduction from the chip to the heat sink.

41
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



1. 3D Hybrid Bonding imagers: context and challenges

TIM is the main cause of increased junction temperature in many electronics devices. A study has
shown that in high-end microelectronics that uses a TIM to mount a heats ink to an electronic device,
up to 60% of the total thermal resistance is due to the TIM [59]. TIMs are one of the key areas that
require research and development to decrease the junction temperature [60, 61]. Figure 1.19,
although a bit dated, shows the historical gap between the power dissipated by the chips and the
thermal conductivity of the TIMs. The development of new, highly conductive TIM is complicated due
to multiple properties required. The TIM must provide:

(i) a high thermal conductivity;
(i) be mechanically stable in high moisture environments;
(iii) provide mechanical stress relief for inherent device to heat sink CTE differences;
(iv) provide electrical insulation of the device and the heat sink.
1
Heat Sink -~
External
External
Interface - }{
_~__ Substrate .
Lid or Cap N

" Chi
Internal Interface (TIM1) P

Figure 1.18: Chip/package with thermal conduction path to heat sink via TIMs [58].

A thinner TIM would reduce thermal resistance but would decrease CTE-induced stress relief as well.
Metal particles would offer higher conductivity than silica particles, often used in TIMS, but would
cause electrical short-circuits and failures. Because of all these material restrictions, moderate
progress has been made in the past ten years to improve effective thermal conductivity of TIMs. This
is one reason why electronic companies and assemblers aim at inovative materials and structures for
heat sinks.
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Figure 1.19: Gap between chip power generation and TIM thermal conductivity [59],
from a historical perspective.

42
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



1. 3D Hybrid Bonding imagers: context and challenges

lll.L1.C. Recent developments

Non-standard fans and dedicated heat sinks for CPU cooling are expected to increase the power
dissipation in comparison to standard heat sinks. Some new initiatives have emerged to extend the
capabilities of air-cooling, for example piezoelectric fans [62], which are actively excited in order to
increase the air motion by means of forced convection, and microchannels [63-65]. Microchannels,
patterned into the heat sink metal, are heat pipes that increase strongly effective conduction.
However, they may require space and cannot be included in all applications. Note that all these
innovative cooling techniques can only be effective if the heat transfer through the TIM is efficient, i.e.
the TIM has a low thermal resistance.

Illl.2. Experimental thermal characterization

In order to propose thermal optimization of ICs, the temperature field of a chip is first to be measured
with good accuracy. In this section, various methods for experimental characterization of temperature
in ICs are briefly presented. First, embedded sensors used in test chips are detailed. Then, different
microscopy techniques are mentioned.

11.2.A. Embedded sensors in ICs

In this section, embedded sensors that are typically used in microelectronic test chips and in this work
are briefly described, in particular thermoresistive measurements performed with an electrical
resistance. Then, the diode temperature sensor and the ring oscillator are tackled. Additional
information will be given in the next chapters. Note that this list is not exhaustive and other thermal
sensors could be used in appropriate situations [66].

I1.2.A.a. Electrical resistance

In resistive thermometry, an electrical resistance is used to probe the temperature. The electrical
resistance of the probe (often metals) varies as a function of temperature as follows:

R(T) = R(Ty)(1 + aAT), (1.6)

where R is the electrical resistance of the metal and T is its temperature. R is the electrical resistance
at a temperature of reference T,. a is the temperature coefficient of resistance (TCR) and is
characteristic of each material. The value of the TCR is usually of the order of a few 103 K. In our
microelectronic test samples, metal serpentines are integrated into the BEOL to allow temperature
measurements at different locations of the die. The thermoresistive measurements and a test chip
using copper serpentine are detailed in Chapter 3.

111.2.A.b. Diode

A diode, which is a PN junction, obeys the Shockley equation:

_ ﬂ) _ )

Ip = Is (exp (ka 1), (1.7)
where V is the applied voltage, q is the electron charge, and I is the reverse saturation current of the
diode. As the temperature T increases, the exponential factor decreases. However, an increase in T
causes Ig to increase since I o« n? where

E
n? = N.Ny exp (— ﬁ), (1.8)
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is the intrinsic carrier concentration of the material. N; and Ny, are the densities of states for the p and
n dopants [67]. The net result is that, for the same applied voltage, the diode current is higher at a
higher temperature. An example of I-V curve is shown in Figure 1.20.
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Figure 1.20: I-V curve of a silicon diode under forward bias as a function of temperature [67].

Ill.2.A.c. Ring-oscillator based thermal sensor

2

Figure 1.21: Schematic of a simple 3-inverter ring-oscillator [69].

Essentially, a thermal sensor based on ring oscillators is a closed loop with an odd number of inverters.
A schematic of a simple 3-inverter ring oscillator is shown in Figure 1.21. A time base counter activates
the circuit during a short period of time, capturing the oscillation frequency. Practical rings require
between 5 and 25 inverters [68]. Each sensor implementation must be calibrated using a temperature-
controlled furnace. The frequency of oscillation f;,4 is calculated as follows [70]:

1
2nty’

fring = (1.9)

where n is the number of inverter and 7 is the time delay of the inverter. The time delay 7, is a
function of the temperature and the voltage as shown in Figure 1.22. The analytical expression of the
time delay 7, is given by M.M. Mansour in [71].
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Figure 1.22: Relationship between time delay, temperature and voltage for an inverter [70].
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1l.2.B. Microscopy techniques for spatial resolution

In this section, microscopy techniques that can be used for thermal characterization in
microelectronics are detailed according to their spatial resolution, with first infrared (IR)
thermography, which is a widespread technique (resolution of ~10 micrometers). Then, the
established Thermoreflectance Thermal Imaging (TTI) technique, with a spatial resolution of the order
of half a micron, is addressed. It is an example of technique where visible light is used. Other optical
microscopy techniques, like Raman thermography, exist [72, 73] and are limited in the same way in
spatial resolution. Addressing them in an exhaustive list is beyond the scope of the present work.
Finally, Scanning Thermal Microscopy (SThM), which can reach a spatial resolution of few tens of
nanometers in principle, and is not an optical technique, is introduced.

IIl.2.B.a. Infrared thermography

Figure 1.23: IR microscopy image of a hotspot in a SoC system [75].

Infrared (IR) thermography, also called IR microscopy, allows to measure the temperature of a medium
with a spatial resolution of the order of the wavelength, i.e. down to a few microns [74]. An image
realized with IR microscopy is shown in Figure 1.23 [75]. The quantity of IR photons emitted by the
medium is related with its temperature. However, the emissivity of the sample has to be calibrated
first as a function of temperature. With the IR microscopy, it is possible to see through a silicon wafer
(silicon is transparent to IR photons) to analyze if patterns line up on the front and back sides of a
wafer. It allows wafer bonds to be checked and determine if alignment has shifted during the bonding
process. While silicon is transparent, oxide is more absorptive thereby appearing darker, and metal
block the IR. IR microscopy has been applied to some samples in this work and is explained in more
detail in Chapter 3.

II.2.B.b. Thermoreflectance thermal imaging

R,

Ry,

o Iy
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Figure 1.24: Change of the intensity (reflectivity) due to the temperature [77].
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Thermoreflectance Thermal Imaging (TTI) is another optical microscopy technique that provides
temperature contrast (gradients), by analyzing the optical reflectance of the inspected surfaces.
Among others TTl is employed for:

(i) non-contact 2D temperature mapping with a submicrometric spatial resolution;
(ii) failure analyses and testing of microelectronic devices;
(iii) the visualisation of high-speed thermal transients with a temporal resolution equal to

100 ps approximately;
(iv) temperature resolution under 0.1 K [76].

The principle of TTl is illustrated in Figure 1.24. When the sample is illuminated the intensity of the
reflected beam depends on the local temperature of the irradiated zone [77-78]. The linear effect of
temperature on the surface reflectivity of a sample is equal to [79]:

AR (1 dR
R

EE) AT = RAT, (1.10)

where R is the reflectivity, AT is the temperature elevation and X is the thermoreflectance constant.
Thus, hotpots, as the red square parts in Figure 1.25, increase the intensity of the reflected beam.
Therefore, the accurate analysis of the reflected beam at the selected areas provides a thermal map
of the device surface. The spatial resolution is related to the optical wavelength that is used and is
therefore close to few hundreds of nanometers at best. A major drawback of TTI, in a similar way as
other optical techniques, is related to the transparency of some materials. The examples listed
previously show that TTl is a key technique for inspection in microelectronics and novel techniques will
certainly have to be benchmarked against it.
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Figure 1.25: a) Optical and b) thermoreflectance image of heating resistor [77].

IIl.2.B.c.  Scanning thermal microscopy

Scanning Thermal Microscopy (SThM) is a hon-destructive contact probe technique based on Atomic
Force Microscopy (AFM) that allows obtaining a thermal signal at sub-micrometric scale [80]. It allows
to measure thermal variables such as temperature for example. Most of the time, the experimental
data have to be interpreted by means of a numerical modelling of the thermal system, because the
thermal probe do not have simple geometry which can be modeled easily (for instance analytically).
The SThM setup and associated electrical circuit are used during this PhD thesis. An image acquired by
SThM is shown in Figure 126 [81]. The probe used in SThM allows the determination of the
temperature at the tip apex by measuring the probe electrical resistance. This measurement is based
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on resistive thermometry. The spatial resolution is expected to reach the sub-100 nm regime in the
best conditions and the technique is possible also for transparent materials. The principle of SThM is
further explained in Chapter 2.

a)

Ry

Figure 26: a) SEM image of SiN pattern. b) SThM thermal map of SiN pattern [81].

l.2.C. Summary of available techniques and selection

Various techniques can be used for thermal characterization. In this work, two functions are targeted:

(i) Simulate a dissipation source: To do so, embedded metallic serpentines are selected due
to their simplicity and their ability to simulate also heat sources in the volume of the IC
stack. Chapter 3 and 4 will especially deal with such dual heaters/sensors;

(ii) Thermal mapping: In order to map the temperature fields at the millimeter scale, IR
microscopy will be used (see Chapter 3). However, it does not allow for surface
temperature measurements when the surface is made of silicon and SThM will therefore
be selected for surface temperature measurements. Comparison between the two
techniques will be analyzed.

Note that similar functionalities will be used to characterize the thermal materials properties. Hence,
the 3w method, an electro-thermal method in the AC regime also based on resistive thermometry (see
Section 111.2.A.), and SThM will be applied in Chapter 2 for measurements of thermal conductivities and
thermal boundary resistances. In addition, thermal images will be obtained both by IR thermography
and SThM in Chapter 3.

The present work constitutes therefore a benchmark of SThM with respects to other more-established
characterization techniques. Finally, let us note that diode characteristics depending on temperature
will also be measured, when possible.

I1I.3. Numerical analysis of heat transfer

Developing virtual performance and reliability predictive techniques has become essential for the
development of microelectronic systems. This is especially true for high-power devices. An overview
of current predictive numerical methodologies is drawn. In addition, we note that it is not possible to
get access experimentally to the whole temperature distribution as only temperature at surfaces or on
averages over some volumes can be experimentally measured. Reconstructing the whole temperature
distribution requires mixing experimental data and some numerical or analytical procedures. We first
review briefly simulation techniques for heat transport at small scale.
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lll.3.A. Computation of thermal conductivity
Ill.3.A.a. Thin films and bulk material scale

Figure 1.27.a) shows experimental data where one can observe the reduction of thermal conductivity
as a function of the film thickness. The temperature dependence of thermal conductivity weakens
when the film thickness is decreased, as shown in Figure 1.27.b) [82]. Analytical expressions for the
computation of thermal conductivity are often considered [83], based on the dispersion curves and
the knowledge of the relaxation times. In confined materials, the size-limited relaxation times can be
included, allowing for the determination of size-dependent thermal conductivity. A review of such
approach is explained by G. Chen in [84] or M. Massoud in his PhD thesis [85].

Often, the Boltzmann Transport Equation (BTE) for phonons is used for determining the size-
dependent effective thermal conductivity. Indeed, it governs the motion of electrons and phonons at
mesoscopic scale. Among others, the Monte-Carlo (MC) method can be used to solve the BTE. The
main idea behind the MC method is that the results are computed based on repeated random sampling
and statistical analysis. MC simulations are typically characterized by a large number of unknown
parameters, many of which are difficult to obtain experimentally. MC simulation is often used to
characterize the phonon transport [82], for instance in composite materials [86, 87]. However, these
approaches are possible only for materials with thickness larger than 5-10 nm.

g
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Figure 1.27: a) Effective thermal conductivity of a silicon thin film as a function of its thickness.
b) Thermal conductivity of a silicon thin film as a function of temperature [85].

III.3.A.b. Atomic scale computations

Si Ge

Circular Nanowire Circular Core-Shell System

Figure 1.28: 3D MD for determination Si/Ge wire thermal conductivity [88].
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In order to determine the trends in thermal conductivity of material and/or heterogeneous structures
as a function of size or temperature, Molecular Dynamics (MD) is possible for non-metallic crystals.
MD is a computer simulation method for studying the physical movements of atoms and molecules,
which are allowed to interact for a fixed period of time, giving a view of the dynamic evolution of the
system. In the most common version, the trajectories of atoms and molecules are determined by
solving Newton's equations of motion for a system of interacting particles, where forces between the
particles and their potential energies are often calculated using interatomic potentials or molecular
mechanics force fields. The thermal conductivity of heterogeneous structures like silicon nanowires
can be calculated with MD. A MD model of a Si/Ge nanowire is shown in Figure 1.28 [88]. For example,
the simulated thermal conductivities of nanowires with square cross sections are found to be about
two orders of magnitude smaller than those of bulk silicon crystals in a wide range of temperatures
(200-500 K) for both rigid and free boundary conditions [89]. The MD method is very time consuming
and requires significant computational power. Currently the sizes that can be simulated stay small,
probably at best (100 nm)3. In addition, the coupling with electron-related phenomena is often
difficult. While MD is promising, it will not be considered in the present work.

ll.3.B. Thermal boundary resistance calculation

a) Specular b) Diffuse
InE'rQ(\ant In\dd‘ent
b Reflécted .
\f \\ Reflected
Smooth N Rough \\
interface interface
. Transmitted
nsmitted
‘_/Bt

Figure 1.29: Principle of the a) Acoustic and b) Diffuse Mismatch Models.

The thermal boundary resistance (TBR) between two materials, which is the resistance associated to
temperature jumps at boundaries, can be computed by Molecular Dynamics, where it is often
powerful. In this PhD thesis, TBRs are calculated using the semi-analytical Acoustic Mismatch Model
(AMM) and Diffuse Mismatch Model (DMM). AMM and DMM are specifically dedicated to the
calculation of TBRs between two media. The principles of AMM and DMM are explained in Figure 1.29.
The phonon transmission at the interface can be specular or diffuse. The transmission coefficient is
given by Cheeke et al. and Swartz and Pohl in [90, 91] for AMM and DMM, respectively. Here, the
dispersion relation of each material is considered, which is an improvement over the usual AMM and
DMM (often used at low temperature in the past). Amorphous materials are considered in the frame
of the Debye model.

l.3.C. Full temperature fields

In the context of the resolution of partial differential equations, especially in microelectronics about
3D integration technologies, the Finite Difference Model (FDM) and the Finite Element Model (FEM)
are often used to solve problems of heat dissipation [92-96]. Finite Element Analysis (FEA) is one of the
key tools used by engineers to solve numerically physical and mathematical problems and is chosen in
this PhD thesis. As many numerical methods, it is characterized by a variational formulation (Galerkin
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methods), a discretization strategy, one or more solution algorithms and post-processing procedures.
To solve the problem, the large system domain is meshed, here into smaller domains called finite
elements. The FEM models are used in microelectronics to calculate heat transfer, mechanical stress
and electrothermal effects in chips architectures.

0.1K
DIE BGA
‘—
Hot spot
T ——
0K

Figure 1.30: FEM calculations of the temperature rise at the package level [92].

A FEM model of the temperature field at the BEOL and die levels is shown in Figure 1.30 [92]. For FEM
consisting of geometries with large aspect ratios (i.e. large number of finite elements), a multiscale
modelling strategy is required to reduce the computational time. The principle of the FEM multiscale
modelling strategy is explained in Chapter 3. This allows, among other things, to calculate temperature
gradients and thermomechanical stress in a TSV. An example is illustrated in Figure 1.31 [93].

Figure 1.31: FEM model for the calculation of mechanical stress in a TSV [93].

111.3.D. Conclusion on the simulation methods and selection

FEM with the simulation package COMSOL is selected in this thesis, due to the possibility of
multiphysics coupling (numerous libraries of data are included) and the previous works both at ST and
at CETHIL. However, only macroscopic parameters can be included, so particular caution will be paid
to the selection of the parameters such as thermal conductivity and thermal boundary resistance (TBR)
in the following work. In particular, TBR will be computed directly at the phonon level (see Chapter 2)
before being included in the FEM simulations.

IV. Summary

In this chapter, the main trends of microelectronics and some process flows have been reviewed
briefly. The 3D integration scheme provides new capabilities in terms of integration and
miniaturization. The imager technology is a good candidate for this kind of integration. The pixel matrix
and digital components can thus be stacked to reduce the die footprint and improve performance.
However, thermal phenomena in such object are of primary importance. Indeed, the decrease in

50
Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



1. 3D Hybrid Bonding imagers: context and challenges

volume coupled with a constantly increasing power induces many challenges to limiting the
temperature rise. On top of these issues, optical performance is highly sensitive to temperature
variations. In that context, some general solutions for heat dissipation at the package level have been
introduced.

This PhD work falls in that context. The thermal behavior of 3D IMG ICs, being a sensitive item, needs
to be perfectly understood and controlled to be optimized. Note that the scale of the current study is
limited to that of the BEOL, i.e. over a micrometer. Thus, the transistor scale will not be discussed but
only considered as a power source.

The first step of this work is to properly evaluate the thermal properties of our materials. This task is
developed in the next chapter. Experimental methods will be described and the main materials
embedded in the BEOL will be characterized. In a second step, the numerical methods will be
investigated in Chapter 3. Their accuracies and relevancies will be discussed and validated by means
of comparisons with experimental observations performed on dedicated test chips. Finally, the
methods and the know-how developed in Chapter 2 and Chapter 3 will be applied to investigate two
specific 3D IMG ICs. Among others, the thermal gradient and the possibility of hot spot on the surface,
will be investigated to analyze the impact on the pixel thermal behavior.
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Chapter 2. Thermal characterization of materials
typically used in microelectronics

In this chapter, the aim is to determine the thermal properties of different materials used in three-
dimensional imagers (IMG3D). To do so, two different techniques will be used and compared: Scanning
Thermal Microscopy (SThM) and 3w method. The materials will be described first, then the SThM
technique will be applied with both nano and micro probes and finally, the 3w method will be used for
some samples.

I.  Materials and associated samples

In this thesis, different materials, all used and developed at STMicroelectronics clean rooms, have been
selected. These materials are used at different steps during the process of fabrication of the chip. First,
the samples used in the Front-End-Of-Line (FEOL) will be introduced and then, the Back-End-Of-Line
(BEOL) samples will be detailed.

1.1. Front-End-Of-Line
I.1.A. Bulk silicon sample

The bulk silicon substrate, used for a lot of microelectronics technologies is also called a wafer. All the
wafers used in STMicroelectronics have the same following characteristics: their thickness is about
750 um and they are all single-crystal silicon with p-doping (approximately 10*> atom.cm) fabricated
with the Czochralski process [1]. Considering these properties, the thermal conductivity of the silicon
bulk is estimated to be 148 W.m.K* [2].

I.1.B. Silicon-on-Insulator sample

Si bulk wafer 750 pm

Figure 2.1: Schematics of the cross section of the SOI technology deposited on a silicon wafer.

Besides 3D technologies, Silicon-On-Insulator (SOI) technologies have seen considerable progress in
the development of high-performance devices [3]. However, some questions remain regarding their
thermal performance. The SOI film is a layer of single-crystal silicon which is grown above a silicon
dioxide layer. It allows significant advantages in terms of performance and consumption of
semiconductor circuits without increasing the process flow much (compared to other technologies
such as FinFET for example). Silicon transistors with nanometer channel length can also be realized by
means of the SOI technology (<14 nm) [4]. The SOl samples used in this work are presented in
Figure 2.1 and Table 2.1. MEMC and SOITEC samples have identical sizes but they are produced by
different suppliers.
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2. Thermal characterization of materials typically used in microelectronics

Sample SOI thickness (nm) | SiO; thickness (nm)
PIC25 310 720

MEMC 160 400

SOITEC 160 400
FDSOI 12 25

Table 2.1: Characteristics of the different SOl samples used in this work.

1.2. Back-End-Of-Line

The materials used in the interconnection levels have to face thermomechanical [5] and electrical
issues [6]. The BEOL samples are detailed in Figure 2.2 and Table 2.2. The thicknesses are chosen to be
representative of the layers which are present in the real electronic devices. Two thicknesses are used
for each material in order to interpret the thermal property of the layer in terms of both interface and
volume characteristics of the sample.

Si bulk wafer

750 pum

Figure 2.2: Schematics of the cross section of a thin-layer material deposited on a silicon wafer.

Sample Material Thickness (nm)
USG 2900 Si0, 290
USG 5400 Si0; 540

SiN 300 SiN 30

SiN 600 SiN 60
SiCN 350 SiCN 35
SiCN 600 SiCN 60
BD1 3300 SiCOH 330
BD1 5600 SiCOH 560
ULK 1250 Porous SiO; 125
ULK 2400 Porous SiO; 240

Table 2.2: Characteristics of the different samples used in this work.

Il. Characterization by Scanning Thermal Microscopy

For the characterization of the thermal conductivity of thin films, different techniques are available,
for example thermoresistive or thermo-optical methods [7-9]. Indeed, according to the sample
dimension or the expected range of thermal conductivity, the best technique will differ. We decided
first to focus on SThM technique. First, the principle of the SThM technique will be explained and then
the results obtained with two different probes will be analyzed.

Il.L1.  Scanning Thermal Microscopy technique

SThM is a contact probe technique that allows to obtain a thermal signal at sub-micrometric scale. It
allows measurement of thermal variables/parameters such as temperature, thermal conductivity or
phase transition temperature for example. In SThM, qualitative analyses are performed quickly but the

58
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



2. Thermal characterization of materials typically used in microelectronics

interpretation of the experimental data remains challenging. Indeed, in order to allow quantitative
data analysis, the understanding of the heat transfer mechanisms between the probe and the sample
still needs deep investigations. Most of the time, the experimental data are interpreted by means of a
numerical model of the thermal system. The SThM setup and its electrical circuit used during the thesis
are presented below.

Il.L1.A. Setup for SThM

SThM is a technique based on Atomic Force Microscopy (AFM). It is a non-destructive technique that
allows the characterization of sample materials with high spatial resolution. A schematic of SThM is
presented in Figure 2.3. The probe used in SThM allows determining the temperature at the tip apex
by measuring the probe electrical resistance. This measurement is based on the material
thermoresistive property:

AR = RyaAT, (2.1)
AT =T —T,, (2.2)
AR =R —R,, (2.3)

where R and R, are the electrical resistances of the probe respectively at ambient temperature T and
1dR . - . e
reference one Ty, and a = Rar s the probe temperature coefficient of electrical resistivity (TCR). The

value of the electrical resistance Ty and its TCR a are determined experimentally to determine the
probe temperature with good accuracy. The technique can be used in two different modes. In the
temperature contrast mode (TCM), low current in the probe is used to map the temperature at the
surface of samples, which varies due to additional heat sources in the sample. In the conductivity
contrast mode (CCM), a high current is supplied to the probe to inject a heat flux into the sample. The
probe is therefore the heater and also the sensor. The CCM will be used here to determine effective
thermal conductivities of our samples. The experiments are performed with different probes set on a
NT-MDT AFM.

Force feedback loop

Detector

Piezo-electric
displacement _
system z

v Mirror

Thermal control unit

Figure 2.3: Principle of a scanning thermal microscope.

I.L1.B. Measurement method

To characterize the thermal conductivity of the sample, a large current is supplied in the electrical
resistance and generates heat by Joule effect. Heat dissipates into the sample when the probe is in
contact with the sample surface as shown in Figure 2.4. First, the electrical resistance is measured far
from the sample, so heat dissipation occurs only due to heat conduction in the cantilever and losses
through air. In a second step, the electrical resistance is measured with the tip apex in contact with
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2. Thermal characterization of materials typically used in microelectronics

the sample. In this second case, part of the Joule-heated generated power is dissipated into the sample
and losses in the air are suppressed (no air convection between the tip and the sample). The variation
of the electrical resistance at the probe apex ARgumpie is characteristic of the effective thermal
conductivity of the sample:

ARsample = Rfar - Rsamplel (2.4)

where Ryq, is the resistance of the probe out of contact in air or in vacuum and Rggmpie is the
resistance of the probe in contact with the sample. The variation of resistance measured on each
sample is normalized by the same measurement done on a reference sample. The thermal signal f is
therefore:

f(sample) = LRsample (2.5)

7’
ARsiticon

where AR;;i-0n 1S the variation of the electrical resistance at the probe apex for a bulk silicon wafer.

Figure 2.4: Method of measurement in SThM

I1.L1.C. Electrical circuit

Figure 2.5: Electrical circuit of the Wheatstone bridge.

Considering that the typical values of TCRs for thermoresistive materials are comprised between a few
10* and a few 1073 K%, a high precision is mandatory for the measurement of the ratio between AR
and R,. The measurements of probe electrical resistances are operated using a balanced Wheatstone
bridge under ambient conditions (T}pom = 27 °C and relative humidity RH = 40%). The electrical
setup is presented in Figure 2.5. In our setup, R, is equal to 100 Q and allows to measure the current,
Rq and Ry, are as large as possible (usually a few thousands of ohms), R, the resistance of the electrical
resistance of the probe and R,, a variable resistance chosen to equilibrate the bridge, i.e. to have the
voltage V,;, equal to 0 V at room temperature. In this work, an additional amplifier with gain Gampiifier
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2. Thermal characterization of materials typically used in microelectronics

equal to 500 is added on the voltage V,;, to improve the sensitivity of the measurement of the
resistance of the probe R,,.

I.2.  Characterization with the palladium nano-probe

Details on the palladium nano-probe will be provided, then the experimental data and their numerical
interpretation by Finite Element Modelling (FEM) will be described. Finally, the performances of the
SThM technique with palladium nano-probe will be summarized.

I.2.A. Palladium nano-probe

The experiments are performed with the palladium nano-probe, which involves an AFM probe with a
SisN4 cantilever. The metallic wires are made of palladium and the apex radius of curvature is smaller
than 100 nm. This very small probe allows measurement with a high spatial resolution. A Scanning
Electron Microscopy (SEM) image of the probe is shown in Figure 2.6.

Au lines
500 Pd resistor

140 nm 1000 -
40 nm

t"g» 60 pm

150 um

NiCr series resistor
~200Q

= > ; 33 nm 4
Series resistors — 7 10um

Figure 2.6: a) SEM image [D. Renahy, 2016] and b) geometry of the palladium nano-probe.

1.2.B. Experimental measurement

1.10
1.05
“ 100
11T i 1
e}‘" P i\q’bo;b@ ,,§>° @Q ,,J@ 05(5 %@Q

’lz

Figure 2.7: Thermal signal f with the palladium nano-probe for different samples.

During these measurements, a current I = 1 mA is feeding the probe. Considering a resistance of
palladium equal to 100 Q approximately, the Joule power generated is equal to 10 mW. With these
experimental conditions, the decrease of electrical resistance of the probe can be easily measured
between far-from-contact and contact modes. The experimental data are shown in Figure 2.7. One can
notice that the thermal signal is measured higher than 1 for some samples, which is not expected since
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2. Thermal characterization of materials typically used in microelectronics

the silicon reference is supposed to provide the largest signal of all these samples. This is due to a
thermal drift not measured experimentally in this study. In the future, the reference signal will be
measured just before and right after each sample. However, all the measurements of thermal signal f
are characteristic of the sample in contact with the probe. In order to interpret these measurements,
a model needs to be developed. In our case, a Finite Element Method is chosen. This model will be
developed in order to determine the effective thermal conductivity of each sample.

1.2.C. Numerical modelling by FEM

In this part, the modelling of the probe-sample system will be detailed. First, the thermoresistive
properties of the palladium probe and its environment will be characterized, then the probe-sample
contact interactions will be studied. Finally, the physics of the heat flow at the tip-sample contact will
be explained, studied and integrated in the global FEM model.

I.2.C.a. Determination of metal thermoresistive properties
360
356
352
348

Rpmbe (Q)

344
340

336
30 45 60 75 20

T(°C)

y=0.2720XT + 331.8

Figure 2.8: Measurement and determination of the probe resistance and TCR respectively.

Figure 2.6 shows that three different metals are involved: palladium (Pd), gold (Au) and nichrome
(NiCr). In order to quantify the electrical resistance and TCR of each metal, we observe that the
resistances are in series:

ROprobe = YiRoi, (2.6)
ROprobe X aprobe = ZiROi X aj, (2-7)
i = Pd,Au, NiCr

where R is resistance at room temperature and a is the TCR of the probe and each metal, respectively.
The resistance of the probe Ry is measured at different temperatures in a thermal furnace in
Figure 2.8. Roprope is measured equal to 340 Q and R4, and Rypqy are taken from the manufacturer
data. apyepe is also measured, while apg and ay;c, are given by E. Puyoo [10]. Considering Eq. (2.6)
and Eq. (2.7), we are able to get the data summarized in Table 2.3.

Probe Pd NiCr Au

Ry (Q) 340 100 190 50
AR, (Q) 0 10 20 10
(103 KYa 0.82 1.20 0.24 2.2
(103 KYHAa 0 0.01 0.01 0.3

Table 2.3: Summary of material thermoresistive properties.

62
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



2. Thermal characterization of materials typically used in microelectronics

I.2.C.b.  Characterization of the thermal environment of the probe

v

Vacuum — 60K

Boundary condition

Yo t/:{ T = Troom

0K

Figure 2.9: FEM modelling of the probe temperature rise far from contact in vacuum.

Initially, the cantilever thermal conductivity kg;y is unknown. To solve this issue, the FEM model of the
cantilever including kg;y is fitted to match the experimental apex temperature as shown in Figure 2.9.
The thermal resistances between materials are neglected and will be taken into account in kg;. The
experiment is performed under vacuum conditions (P < 0.2 mbar) to avoid heat transfer through air.
ksin is found equal to 2.93 W.m™.K* which is in good agreement with [11].

Second, by fitting the previous model under ambient conditions, heat losses through air can be
determined. The heat loss coefficient (hg;,) is found to be equal to 4500 W.m™2.K, which is in good
agreement with the values obtained by A. M. Massoud [12]. In addition, an analytical study is
performed to determine potential losses by radiation. Indeed, at the first order, the emittance can be
approximated like a heat flux boundary condition h,44:

hyqa = 40&g Trgoomr (2.8)

where T;-pom i the room temperature equal to 300 K, & is the emissivity between 0 and 1 and o is the
Stefan-Boltzmann constant equal to 56.7 nW.m™2.K™. In this condition, h,, is below 5.7 W.m2.K™* and
can be neglected in comparison with the heat losses through air. One can note that this analysis is
neglecting sub-wavelength effects and near-field contributions. Some more accurate analysis will be
performed later.

30K

Probe . .
Air

g
i \
\ \“
S \\\\
N

z Lpox e 0K
Yo L'x Boundary condition

T =Troom

Figure 2.10: Temperature rise in the probe with the air domain and surface boundary condition.
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2. Thermal characterization of materials typically used in microelectronics

Finally, we underline that the heat flux lost in the environment due to air convection at the tip surface
can be represented as a diffusive air domain surrounding the tip [12]. The air convection, which is very
difficult to simulate numerically, is replaced by an equivalent conduction mechanism into a domain of
width Ly, equal to 4 mm. The domain is centered on the tip apex and boundary condition on its faces
is a fixed temperature set at Ty, (see Figure 2.10). With this procedure, the thermal balance is kept
conserved. Considering the right properties of the metals and silicon nitride cantilever, and the
description of the heat losses through air by an equivalent air domain, the environment of the probe
far from contact is totally described. We will now take into account the influence of the contact
between the probe and the sample on the heat path and its associated ballistic effects.

I.2.C.c.  Probe-sample contact characterization

Palladium

Figure 2.11: Probe-sample thermal interactions in contact mode [14]

Various heat transfer mechanisms coexist at the palladium nano-probe contact [8, 9, 12-14] and have
to be taken into account. The contact conductance at the tip apex in Figure 2.11 is estimated
analytically. The conductance of the contact G.pntact 1S therefore:

1
Geontact = Gsotia +— 1 1 (2.9)

Gp/wTGwaterTGw/s

where G54, Gpjw and G, /s are the palladium/sample, palladium/water and water/sample interface

conductances, respectively. G,,q4¢er is the conductance of the water meniscus. All these conductances
are estimated below.

Water meniscus conductance

On the one hand, the conductance of the water G, 4¢¢ can be estimated analytically following Assy et
al. [8, 14]. In order to perform all the calculations, the contact angle of water on each material is
needed. Two different setups have been used at STMicroelectronics and at CETHIL and show similar
results. Figure 2.12 shows the test bench for the measurement of the water drop contact angle 8. The
measured values of 8. and G4t for each surface material are summarized in Table 2.4.

Material 0c(°) | £A6:(°) | Guater (NW.KY) | +AGyqrer (%o)
Silicon 25 5 41.0 3.8
BD1 33 4 31.8 24
SiCN 60 3 120 14
SiN 18 6 87.4 5.5
ULK 53 3 57.4 14
USG 24 5 75.1 3.8

Table 2.4: Contact angle measurements and calculated water conductance per surface material.
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2. Thermal characterization of materials typically used in microelectronics

Camera

M

Figure 2.12: a) Test bench for the measurement of the contact angle. b) Optical image of the drop on
the sample. c) Optical image of the water drop and its associated contact angle.

Thermal boundary conductances (TBC)

The different TBC G54, Gp)w and G, /s are estimated with both the Acoustic and Diffuse Mismatch
Models (AMM and DMM) [15, 16]. The Debye model is used for amorphous materials, while transverse
modes are suppressed for liquids. The principle of the AMM and DMM theories is explained in
Chapter 1 Section I11.3.B.

An estimation for Gy, Gy /s and Gseyiq is available for each sample surface. In this study, the radius
of curvature of the probe is estimated to 100 nm. In addition, the tip-sample contact area has a radius
estimated to 10 nm following [8]. AMM and DMM models allow to calculate respectively the minimum
and maximum interface conductance (see Table 2.5).

Material Gyw (nW.K?) Gy/s (nW.K?) Gsolia (NW.K?)
AMM DMM AMM DMM AMM DMM
Silicon 26.5 110 0.669 1.16 82.4 173
BD1 - - - - - -
SiCN - - - - - -
SiN 40.3 168 0.266 1.29 60.5 124
ULK - - - - - -
USG 37.8 154 1.94 3.13 114 231

Table 2.5: Values of interface conductance calculated with AMM and DMM theories.

Unfortunately, due to a lack of information in the literature, the dispersion diagram of the BD1, ULK
and SiCN materials are not available. Their interface conductances cannot be calculated but their
values will be considered to be of the same order as that the values calculated for the other materials
(USG, SiN and Silicon). It could be interesting to verify this assumption in the future. The global tip-
sample contact conductances are summarized in Table 2.6. In summary, all the contact conductance
Gontact €an be reasonably considered between 60 and 300 nW.K™ for all our samples.
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2. Thermal characterization of materials typically used in microelectronics

G (nW.K?)
M . I contact
ateria Minimum Maximum
Silicon 83.1 174
BD1 - -
SiCN - -
SiN 60.7 125
ULK - -
UsG 116 234

Table 2.6: TBC calculated with [8] and with AMM/DMM theories.

I.2.C.d.  Probe-sample contact modelling

The probe-sample thermal interaction consists of two contributions: the contact and the ballistic air
transfer conductances associated to the tip-sample contact. These two contributions are taken into
account and implemented in the FEM model.

Modelling of the contact conductance in FEM

Pd
Heat sink

Si;N,

Figure 2.13: a) Geometry of the palladium nano-probe apex. b) Heat sink geometry.
¢) AT gpex With Pginy equal to 0 W. d) AT gpex With Pginy equal to -1 uW.

Geontact 1S modelled numerically by adding a heat sink at the probe apex as shown in Figure 2.13.a)
and Figure 2.13.b). In contact mode, the heat sink allows the generation of a temperature drop at the
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tip apex equivalent to the one which is actually created by the contact conductance between the tip
and the sample. The relation is:

Psink = —Geontact X ATapexr (2.10)

ATapex = Tapex - Tsurfacer (2.11)

where Pg;p is the power into the sink set as a boundary condition, Ty, is the temperature at the
probe apex and Tgy,fqce is the temperature at the sample surface just below the tip. As Geoneqct 1S
characteristic of each surface material, Py is fitted for each surface material. An ideal insulator
(kinsutator = 0 W.m™2.K?) is surrounding five faces of the cubic sink to force the flux coming from the
probe to be dissipated in the sink, and not that from the sample (see Figure 2.13.b)). Figure 2.13 shows
the impact of the sink on the tip temperature field: a variation of 0.5 K is observed for the maximal
temperature in this example. It was verified that the sink size does not influence this temperature
drop.

Ballistic heat conduction in FEM

Air /_

d =240 nm Air

Figure 2.14: Modelling of the thermal ballistic resistance in FEM.

Following Shi and Majumdar [13], ballistic heat conduction takes place for reduced sizes, therefore
especially at the tip-sample contact with the palladium probe. A layer of air between the tip and the
sample surface can replace the thermal resistance associated to the ballistic limitation of heat
transport [12] (see Figure 2.14). The thickness of this layer is calculated with:

d =44y, (2.12)

where d is the thickness of the air layer and A;,- is the mean free path of air equal to 60 nm [13]. The
thickness of the layer of air is equal to 240 nm in ambient air. While this assumption is reasonable for
the locally-flat Wollaston probe, it might be questionable for the palladium probe. In [13], the authors
had to consider an additional geometrical factor y to include the fact that the tip and the substrate are
not two parallel plates. In the present study with the palladium probe, y is taken equal to 1 considering
the tip apex to be locally-flat like the Wollaston probe. This assumption is evaluated in the thesis of
E. Guen with the help of A. Alkurdi.

In summary, the palladium probe has been first characterized with its environment. Then, the tip-
sample contact has been evaluated with the contact conductance and the ballistic effect. Finally, all
these constraints are implemented in the FEM modelling. Now that all properties and interactions have
been quantified, the experimental data can be interpreted in terms of thermal conductivities.
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2. Thermal characterization of materials typically used in microelectronics

1I1.2.D. Results and discussion

— 21K

Probe -

Y\L,x Boundary condition
T = Troom

Figure 2.15: Temperature rise of the probe contacting a sample.

Before determining the thermal conductivities of the samples, the sensitivity of the probe needs to be
evaluated. The probe is put in contact with the sample numerically to represent the real physical
system as shown in Figure 2.15.

I.2.D.a. Sensitivity of thermal signal measurements on bulk sample

1.2

1.0

0.8

0.6 s
Geontace = 60 NWK™

—  Geontace = 30 NWK?
=== Gontact = 0 NW.K™

0.4
0.2

0.0
0.02 0.2 2 20 200

kg (Wom LK)

Figure 2.16: Impact of the effective thermal conductivity ks and the contact conductance Geontqct
on the thermal signal f measured in SThM with the palladium nano-probe.

In this section, the sensitivity of the palladium probe in thermal signal f is investigated. To simplify the
study, the probe is set in contact with a simple bulk sample of thickness 750 um. Figure 2.16 shows the
variations of f as a function of contact conductance G¢ontacr and sample thermal conductivity Ky
Three different regimes can be observed. The first one takes place where the effective thermal
conductivity ks is lower than 1 W.m K™ In this region, the variations of f are mainly due to kef-
The second region is defined where k. is larger than 10 W.m™.K* and where the variations of f are
mainly due to G¢onrqce- Finally, the third region, where k. is between 1 and 10 W.m™.K?, is sensitive
to both ks and Geontace- This study shows that for samples with large effective thermal conductivity,
the contact between the probe and the sample can be characterized while the effective thermal
conductivity cannot be determined. Conversely, for very low effective thermal conductivity samples,
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2. Thermal characterization of materials typically used in microelectronics

the characterization of the contact is not mandatory. Considering the constraints on the accuracy of
Gcontact, the values of f measured by SThM on USG and SiN will be analyzed.

1.2.D.b.  Determination of the thermal conductivity of thin films

0.95
o-0 9000 ~- -0 SN~ 0 -0-0 000N -9
0.92 B T ——
'/""_:-II'..— [ & & § | { O & 1 L |
0.89 g ...c
" 086 ’/:n B Gliaee = 116 NWKL & Gppe = 997 MW.m2.K2
l’ S T GC ntact — 116 nW.K_l & GTBC = 2785 MWm_z.K_l
083 @ ®  Gobnraer = 234nWKL & Grpe = 997 MW.m2.K1
0.80 5 === Gebntact = 234 NWK?! & Grpe = 2785 MW.m2.K1
0.02 0.2 2 20 200

kyse (W.m™.K™)

Figure 2.17: Thermal signal f as a function of the contact conductance G yntact, the TBC Grgc and
the thermal conductivity of the USG layer ki for USG 5400 sample.

For samples with stacked films deposited on bulk silicon, the TBC between the layers are taken into
account. Following Cheeke et al. [15] and Swartz and Pohl [16] the TBC of all surfaces are calculated
with the AMM and DMM similarly to Section 11.2.C.c. For each interface, the value of Grpc is set as a
boundary condition on the interface between the layers. The TBC are summarized in Table 2.7.

GTBC (MW.m'z.K'l)
| f
nterface AMM DMM
SiN/Si 1673 631
USG/Si 2785 997

Table 2.7: Values of TBC calculated with AMM and DMM.

Figure 2.17 shows the variation of f as a function of three parameters for the sample USG 5400: the
thermal conductivity of the silicon dioxide layer kyg;, the contact conductance of the probe on the
silicon dioxide G ontact @nd the conductance of the interface USG/Si Grpc. It is shown that the
uncertainty on Gy has no effect because a variation of Grg¢ from 997 to 2785 MW.m2.K* generates
only a very small variation of kg (not observable). The effect of TBC is then neglected at the USG/Si
interface in USG 5400. Most importantly, Figure 2.18 shows an important impact of G.ontqct ON the
value of f. For silicon dioxide, G.ontact is calculated to be 116 and 234 nW.K* respectively with AMM
and DMM, which are considered to provide lower and upper boundaries. A variation of f equal to
0.0188 is induced by the inaccuracy on G pntace- With this uncertainty on G.pniace, it is not possible to
determine an exact value of the thermal conductivity of the silicon dioxide layer. It is found that k¢
is larger than 0.25 W.m™.K?, which is expected.

The same study is performed with the SiN 300 sample. The contact conductance G o, ¢qcr Of the probe
on the SiN surface is calculated to be located between 61 and 124 nW.K?, which leads to similar
conclusion: the contact conductance drives the probe temperature. Furthermore, the uncertainty on
the value of G has no effect on the determination of kg;y because a variation of Gy from 631 to
1673 MW.m2K?! do not generate a measurable variation of f. As a consequence, the thermal
conductivity of the silicon nitride cannot be determined by the FEM model without knowing the exact
value of G.ontact- It is only possible to state that kg;y is larger than 0.3 W.m™.K™,
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I.2.D.c.  Conclusion on nano-probe SThM technique

The palladium nano-probe characteristics allow us to observe three different regimes. The first one is
where the effective thermal conductivity k.sf is lower than 1 W.m™LK?2 In this region, the probe
response is sensitive to k.rr. The second region is where ks is larger than 10 W.m™L.K?!and where
the probe is sensitive to Goniqce- Finally the third region, where k¢ is between 1 and 10 W.m™.K",
is that where the probe is sensitive to both k¢ and Goneqce- Currently, the palladium probe seems
adapted only for the characterization of very low ks samples.

In order to improve the accuracy of the measurements, the contact has to be characterized in details,
or the probe dimensions should be larger to reduce the dependency on the tip-sample thermal
conductance at the contact. In the current analysis, the surface roughness of the sample was
neglected, because the materials are supposed to be very flat. For other types of materials, roughness
could have an impact. It could then be measured by the AFM technique, but a theory including the
effect should also be developed in addition. Moreover, for very thin films like USG 5400 or SiN 300, all
TBC need to be determined with lower uncertainties to allow for an accurate determination of the
thermal conductivities of the thin layers. This should be done by taking into account the electron-
phonon coupling in addition to the calculation of the TBC with AMM and DMM theories.

II.3. Characterization with PtRh micro-probe

Based on previous results, another probe will be presented here: the platinum-rhodium (PtRh) micro-
probe, also called Wollaston probe. Such a probe is expected to be more relevant for our materials.
The experimental data including a comparison with calibration samples will be analyzed. Finally, the
performance of the SThM technique with the Wollaston probe will be summarized.

II.3.A. The Wollaston micro-probe

The experiments are now performed with the Wollaston probe, which involves a PtRh (PtgRh1 alloy)
filament at the end of a silver wire. This probe allows measurement with a submicrometric resolution.
A SEM image of the probe is shown in Figure 2.18.

Cantilever Mirror

Silver wire )
2 »

5.
N

PtRh filament
(Pt9oRh10)

Figure 2.18: SEM image of the Wollaston probe [17].

I.3.B. Experimental measurement

During these measurements, a current equal to 50 mA is supplied into the probe. Considering an
electrical resistance of PtRh equal to 2 Q, the joule power generated in the filament is equal to 5 mW.
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2. Thermal characterization of materials typically used in microelectronics

With these experimental conditions, the decrease of electrical resistance ARgg,pie Of the probe can
be easily measured between far-from-contact and contact modes. Figure 2.19 shows the experimental
data. The uncertainty on the measurement of the thermal signal is due to that of the measurement of
the probe resistance. This electronic noise can be calculated as follows:

Af = 2AV ( 1 + 1 >’ (2.13)

Gamplifierlprobe ARsam;ale' ARsilicon

where AV is the uncertainty on the measurement of the voltage and L, is the current in the probe.
In our study case, AV is equal to 1 pV. ARg;jic0on is the decrease of electrical resistance of the probe on
a reference sample of bulk silicon. All these measurements of the thermal signal f are characteristic
of the sample in contact with the probe. In order to be interpreted, these measurements need to be
compared to experimental data performed on calibrated samples. This will allow to determine the
effective thermal conductivity of the samples.

0.95

0.92

0.89
b

0.86

0.83

0.80

ULK 1250 ULK 2400 BD1 3300 BD1 5600

Figure 2.19: Thermal signal as a function of the sample measured with Wollaston probe.

1.3.C. Analysis of the experimental results and numerical reproduction

In this section, the thermal signal measured on ULK and BD1 samples will be compared to reference
samples. The effective thermal conductivity of our samples will be deduced and finally, the effective
thermal conductivity of the layers of ULK and BD1 will be determined with the help of FEM. The
methodology here is different from the one used with the palladium probe (Section 11.2.) because the
reference samples were not available at that time.

I.3.C.a. Calibration of the Wollaston thermal signal

Sample kesr f
PMMA 0.187 0.5162
POM-C 0.329 0.6162
Glass 1.11 0.8434
Si0 1.28 0.8390
Zr0, 1.95 0.9137
TiO2 9.15 0.9742
Silicon 148 1.0000

Table 2.8: Measurement of the thermal signal with the Wollaston probe on calibration samples.

In order to be interpreted with reliability, the previous measurements done on ULK and BD1 samples
are compared to an entire set of reference samples. The reference samples have the same surface
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2. Thermal characterization of materials typically used in microelectronics

roughness (out-of-plane RMS < 5 nm) and their thermal conductivities are already characterized. The
measurements with the Wollaston probe on the reference samples are used as calibration points.
Table 2.8 summarizes the measurements on the reference samples. In order to be used on the entire
range of effective thermal conductivities, the calibration points are fitted analytically following
E. Guen:

f(kes) = ﬁ +C. (2.14)

kerr

A, B and C are found equal to 0.8026, 0.2957 W.m*.K* and -0.2011 respectively. Figure 2.20 shows
the fit of the calibration points over the whole range of effective thermal conductivities. The standard
deviation 041ipration PEtWeeEN the fitted line and the thermal signal of the reference samples is found
equal to 8.77%o.

1.1
1.0 mmmmmmmmmmmmes -
0.9 »»*
o
-, 038 /f
0.7 s @  Calibration points
0.6 ,.” ---- Analytical fit
) /s’ ] Measurement points
0.5 y 4
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Figure 2.20: Thermal signal as a function of the sample effective thermal conductivity.

I.3.C.b. Determination of sample effective thermal conductivity

4

0 I I I I

ULK 1250 ULK 2400 BD1 3300 BD1 5600

ke (Wom LK)
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[y

Figure 2.21: Determined equivalent thermal conductivity for ULK and BD1 samples.

The calibration curve allows to determine the effective thermal conductivities of our ULK and BD1
samples, as shown in Figure 2.21. The uncertainty on k. is noted Ak.y. It is due to the uncertainty
of the fitted curve o.41ipration- IN this case:

2
_ C"calibration(keff+3)
Bkesy = A(koff+B)—Akesp (2.15)
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2. Thermal characterization of materials typically used in microelectronics

We have now to focus on the numerical modelling of the probe-sample system in order to deduce the
effective conductivity of each layer at the sample surface from the effective thermal conductivity of
the film/substrate system.

11.3.C.c.  Wollaston-sample system modelling by FEM

Wollaston probe

kerellayer]
Kefr[bulk] ﬁ Si bulk (k = 148) er7

FEM modelling

Wollaston probe

Figure 2.22: Principle of the FEM modelling objective with Wollaston probe

A FEM simulation is used to deduce the ks of the layer from the equivalent ks measured with the
calibration curve. The principle of the FEM modelling is explain in Figure 2.22. The effective thermal
conductivity of the layer is adjusted numerically to fit the temperature rise generated in the PtRh
filament for a bulk sample which has the effective thermal conductivity calculated in Figure 2.21. First,
the probe is modelled in its thermal environment, then the tip-sample contact is implemented
numerically and finally, the contact effect is characterized experimentally. This is detailed in the
following.

Modelling of the Wollaston probe environment

Figure 2.23: Optical microscopy images of the Wollaston probe. a) Measurement of the tilt angle of
the filament. b) Measurement of the filament diameter. c) Measurement of the filament length.
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2. Thermal characterization of materials typically used in microelectronics

In order to interpret the experimental data f measured with the Wollaston probe, the same method
as that with the palladium probe is chosen. An FEM model of the probe-sample system is developed
to reproduce the variation of temperature of the probe between far-from-contact and contact modes.
The model of the probe has been developed by A. M. Massoud [12] and improved by A. Alkurdi. A
characterization of the geometry of the probe is needed to be taken into account in the FEM model.
Figure 2.23 shows images of the Wollaston probe. The probe chosen has a platinum wire with a length
Lfijament €qual to 200120 um, a diameter Dfjjgmen: €qual to 5.520.5 pm and a tilt angle 0¢qment
equal to 50+5° (see Figure 2.24). Actually, in the FEM model, the tilt angle is chosen equal to 65° due
to 15° of tilt between the sample and the probe holder. Considering the filament, its resistance and
the Joule power are calculated as follows:

4ppeLfitament
Re: = fprjtament ) 2.16
filament 7-”-D)‘Z"ilament ( )
— 2
Pheat - Rfilamentlprober (2-17)

where p,,; is the resistivity of the platinum equal to 19.3 pQ.cm at room temperature, Rfjjgmene is the
resistance of the wire and Py, is the power generated by Joule effect.

Finally, like the analysis made on the palladium probe, the losses in the air are estimated. The heat loss
coefficient h,;, is equal to 3000 W.m™.K* for the Wollaston probe [19, 20] (see section 11.2.C.b.). In
order to model the heat loss through air in FEM, the Wollaston probe is set at the center of an air
domain of 2000 pm width as shown in Figure 2.24. The conductance to the cantilever G qntitever 1S
fitted with the experimental temperature in air. The applied current is 50 mA. The temperature rise of
the wire has to be modelled now at the sample contact.

a) b)
m 1
[ Boundary condition

Gcantilever

Lfilament /
2 ||
| |

x | Dfilament

‘\T/' v \L' X Boundary condition

T = Troom

Figure 2.24: a) Modelling of the Wollaston filament with diameter Dy;jqgment and length Lejjgment-
b) Convective losses implement in FEM by an air domain Ly, of 2000 um width

Modelling of the tip-sample contact

In the simulations, G ontact is modelled numerically by a heat sink at the probe apex as shown in
Figure 2.25. In contact mode, the heat sink generates a temperature drop at the tip apex equivalent to
the one which is actually created by the contact conductance between the tip and the sample. Py, is
the power into the sink set as a boundary condition. An ideal insulator (k;,syiqtor = 0) is surrounding
the heat sink to force the flux coming from the probe to be dissipated in the sink, and not that from
the sample. This sink needs further calibration.
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a) "‘.‘ “ b)
Boundary condition
~Lsink
Dfilament
\T:/' \f/ Insulator

Figure 2.25: Modelling of the contact conductance in FEM. a) Shape of the platinum filament.
b) Shape of the heat sink at the probe apex surrounded by thermal insulator

Calibration of the contact heat path effect
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Figure 2.26: Comparison of the temperature rise between calibration curve and numerical modelling
without the tip-sample contact effect in terms of ks ¢ [12].

Figure 2.26 shows the variation of temperature ATsqmpie = Tair — Tsampie Calculated numerically
without taking into account the contact effect (red line). Only the air heat transfer is calculated with
Pgink = 0. In addition, the temperature rise measured experimentally with the calibration samples is
shown and fitted (black dashed line).

The power of the heat sink Py;,, is fitted at each effective thermal conductivity to match the numerical
elevation of temperature with the experimental curve. Figure 2.27 shows the fit of Ps;,,;, which is only
needed between 1 and 4 W.m.K? because it is the range of equivalent thermal conductivities for our
ULK and BD1 samples (as can be reminded from Figure 2.21). The probe and its interactions with the
environment and the sample are fully described. The effective properties of each layer is now to be
determined as a function of the experimental measurements.
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90
0 e

70 e
60

Ps.l'nk (HW)

50
40
30

Ky (W.mK)

Figure 2.27: Power Py, representing the tip-sample contact conductance for effective thermal
conductivities k¢ s between 1 and 4 W.m™.K".

1I1.3.D. Results and discussion

In this section, the effective thermal conductivity of the top thin films of ULK and BD1 samples are to
be deduced. Finally, a conclusion will be drawn on the capabilities of the SThM technique with the
Wollaston probe.

I.3.D.a. Determination of the thermal conductivities of the thin films

‘y

Probe

Layer
E layer i

750 um I

klayer

Silicon
k =148 W.m1.K?

\\L' 8

Figure 2.28: FEM modelling of the Wollaston probe in contact with a layer-on-substrate sample.

In order to interpret the thermal signal f measured experimentally as a function of the effective
thermal conductivity of the layer, the probe is set in contact with the real sample in the FEM
modelling [21]. Figure 2.28 shows the elevation of temperature modelled with the additional surface
layer. The model of the Wollaston probe developed by A. Assy and A. Alkurdi has been broadened for
the layers. One or two additional layers can be added at the bulk surface.

For each sample, the values of effective thermal conductivities are fitted. The results are shown in
Figure 2.29. In addition, the heat transport in the film can be considered as 1D. Indeed, an equal
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2. Thermal characterization of materials typically used in microelectronics

temperature rise is reached with a boundary layer at the bulk surface with the boundary resistance
calculated as follows:

_ Elayer

Rin (2.18)

7’
klayer

where Ejgyer and kiqyer are respectively the thickness and the effective thermal conductivity of the
layer on top of the silicon substrate.
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Figure 2.29: SThM measurements of the effective thermal conductivity for ULK and BD1 samples

11.3.D.b.  Conclusion on Wollaston probe SThM technique

To conclude, the effective thermal conductivities of ULK and BD1 samples have been measured with
SThM technique with the Wollaston probe. First, the experimental setup needs calibration. To do so,
an entire set of calibration samples are needed. Second, the equivalent thermal conductivity of each

sample is calculated analytically. Finally, the property of each surface layer is fitted with the FEM model
from the experimental data.

In SThM with Wollaston probe, the accuracy of the measurement is limited by the precision of the fit
of the reference sample. In order to improve the calibration curve, two methods could be used:

(i) calibrate the experimental setup with more reference samples in the range of interest;

(ii) use calibration samples of same surface material and roughness to avoid their influence
on the thermal signal is even better [22].

I.4. Conclusion on SThM technique

Palladium nano-probe | Wollaston micro-probe
v v
Model Contact calibration with | Contact calibration with
calibration AMM/DMM theories reference samples
J. D. N. Cheeke [16] A. M. Massoud [13]
Spatial vV v
resolution Submicrometric Micrometric
Sample X v
Characterization Bulk materials with Bulk & thin films with
keff &« 1W.mtk? keff &« 1W.mtk?

Table 2.9: Comparison between palladium nano-probe and Wollaston capabilities.
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Table 2.9 summarizes the advantages and drawbacks of the SThM technique with both palladium
nano-probe and Wollaston micro-probe. Measurement are to be done later with the 3w method to
estimate the accuracy of the SThM technique.

Ill. Thermal characterization with the 3w method

The 3w method, designed for the measurement of the thermal conductivity of bulk materials and thin
films, is also a thermoresistive technique. In this section, the principle of the 3w method will be
explained and the experimental results will be described.

Il.1. Principle of the 3w method

In this section, the principle of the 3w method is explained. First, the mechanism of heating for the 3w
setup will be described analytically. Then, the interpretation of heat temperature elevation will be
presented.

lII.1.A. Signal and heater temperature elevation

The 3w method is a four-probe electrothermal method designed to measure the thermal conductivity
of bulk materials and thin films [23-27]. The resistance of the metallic line is

R = Ry(1 + aAT), (2.19)

where R, is the heater resistance and a is the TCR of the resistance in K. Figure 2.30 shows a
schematics of the 3w method. b is the half-width of the wire. An AC current of frequency f is injected
though the 3w setup between the I and I~ branches. This AC current is

1(t) = Iycos(wt), (2.20)

where w is the angular frequency w = 2nf and I, is the amplitude of the current passing into the
metallic line. The metallic wire generates heat due to Joule effect. This power is

P(t) = RI?(t). (2.21)

The power P can be written as follows:
P= %13120(1 + cos(2wt)). (2.22)

The power generated by the heater has two components: the AC component P4 that depends on 2w
and the constant component Py which is independent of frequency.

1

PAC(t) = EI(%RO COS(Zwt)

1 (2.23)

Ppc ==I¢R

pc = 5100

Because of the linearity between the temperature rise of the heater and its resistance, the

temperature of the sample can be divided in two components: the DC component which does not

depend on the frequency and the AC component which depends on 2w. The elevation of temperature
of the wire can be expressed as

AT (t) = Opc + |04 |cosRwt + @,,,), (2.24)

where @, is a phase due to the lag between the temperature and the flux, |8, is the amplitude of
the temperature rise generated by the AC power P, and 8p is the amplitude of the temperature rise

78
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



2. Thermal characterization of materials typically used in microelectronics

generated by the DC power Pp. Considering Eq. (2.19) and Eq. (2.24), the resistance of the metallic
line is

R(t) = RQ + RO(ZQDC + R0a|92wlc05(20)t + (pr), (225)

As a consequence, the resistance of the heater is modulated at 2w. Considering Ohm’s law, the voltage
drop measured between V™ and V' branches results from the multiplication of the heater resistance
(Eq. (2.25)) by the input current (Eg. (2.20)). The voltage is then:

V(t) = Rolo [(1 + afpc)cos(wt) + Hzelestei=t0) | 20|00sB0tes0)] (5 76)

In the above expression, the voltage at 1w is based on the DC resistance of the heater and the
components Op. and 8,,,. Measuring the voltage signal at 3w is challenging because it is smaller by
three order of magnitude of the first voltage signal 1w due to the low value of a (= 1073 K!). However,
the 3w voltage is directly proportional to the temperature oscillation at 2w. The voltage V3, of the
wire is measured with a lock-in amplifier (LIA) set-up, which can also be used as bridge to remove a
large V;, before measuring the third harmonic voltage. Consequently, the third harmonic component
leads us to the values of 6,,, and ¢, as

V3w = %aRolocos(Bwt + ¥20), (2.27)
1
Vao| =5 Voalbz4| and arg(Vs,) = @24, (2.28)

where Vy = Ryl is close to the amplitude of the voltage in the metallic wire at 1w. Both the third
harmonic voltage V3, and 6,, have an in-phase (real) and out-of-phase (imaginary) parts. The
temperature amplitude of the heater can then be measured as:

2|Vl 2|V3l
2] = ~ =29 2.29
| 2“" aRyly al|Vipl ( )

The measurement of the V5, voltage allows us to calculate the elevation of temperature 6,,,. We can
now focus on the interpretation of the temperature rise of the wire 8, as a function of the properties
of the sample below the heater.

b)

2b

O O

Figure 2.30: Principle of the 3w method. a) Top view of the four-probe electronic setup.
b) Cross section of the heater which is the metallic line.

lll.L1.B. Interpretation of heater temperature elevation

The heater temperature rise is due to thermal resistance to the heat flux in the sample. The influence
of the substrate and the surface layer will be estimated in the following.
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Ill.1.B.a. Thermal conductivity of the substrate

In order to relate the elevation of temperature 8,,, with the thermal properties of the sample, the
system is reduced to a 2D problem. To do so the following condition needs to be set [28, 29]:

L > 200b, (2.30)

where L is the length of the heater (between branches V™~ and V', see Figure 2.30.a)). Then, following
Borca-Tasciuc et al. [24], the temperature rise 8, is for bulk samples:

tm(% ) - zg] —i (2.31)

where Py = RyI2, D is the diffusivity of the substrate (equal to 88 pmZ2.s™ for silicon [29]), € is a
constant equal to 0.923 [31, 32] and k is the thermal conductivity of the substrate. In this case, the
real part of the temperature oscillation decays logarithmically with respect to the excitation frequency
2w and the imaginary part is constant. The thermal conductivity of the substrate can therefore be
determined from both real and imaginary part. Experimentally, it is more reliable to consider the real
part of the measured data [23]. To do so, Eq. (2.31) can be written in terms of measurable quantities:

920) =

2Lk

Vay = [ln(Zw) +2in (% ) - 28] - 'st (2.32)

471'LkR0

The linear relation between the third harmonic voltage and the logarithm of the excitation frequency
2w allows to calculate the slope, which is

d(R(V30)) _ Via

slope = d(in(2w)) ~ 4mLkR, (2.33)
The thermal conductivity of the substrate k can therefore be calculated with the equation:
3
= (2.34)
4mLRyslope

The measurement of the slope of the real part of the V5, as a function of the logarithm of the excitation
frequency allows to determine the thermal conductivity of the substrate. We can now focus on the
determination of the thermal conductivity of the layer at the sample surface.

IIl.1.B.b. Thermal conductivity of the surface layer

Y
2b
—
i=1
i1=2
1=3

Figure 2.31: Cross section of the 3w device on a real multilayer sample.

In the previous part, the 2w harmonic temperature rise of a heater deposited on an infinite isotropic
substrate has been determined. Now, a real multilayer system is considered. Its temperature
oscillation has to be determined. Figure 2.31 shows the real system and its geometry. A general
solution using integral Fourier transform [33, 34] has been developed by Borca-Tasciuc et al. to
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describe the 2D heat conduction across a multilayer system. In this model, the derivation is based on
a two-dimensional heat conduction model across the system and a uniform heat flux boundary
condition between the heater and the top film [23]. The temperature rise of the heater is then:

AT = AT + AT, (2.35)

where AT and ATy are the temperature rises due to the substrate and the thin film respectively [30].
This assumption is reasonable when the penetration depth of the thermal wave is larger than the
thickness of the thin film. Considering a thin film of thickness Er and effective thermal conductivity k.,
the temperature rise AT can be associated to a thermal resistance Ry as:

Ep Py Py Ep
= and ATy =—=——
F = obLkp F ™ Rp ~ 2bLkg

(2.36)

Figure 2.32 shows the comparison between the temperature rise calculated for a bulk substrate
sample and a monolayer sample of low thickness with the 3w method. In the Figure 2.32, the injected
power P, is equal to 200 mW, the half-width b of the wire is equal to 5 um and its length L is equal to
1.33 mm. In addition, the top layer has been chosen arbitrary with a thermal conductivity kr equal to
1.5 W.m™.K* and a thickness Er equal to 10 nm. For each sample in this work, the temperature rise
05, is measured by means of the 3w method. First, the slope of the curve allows to determine the
thermal conductivity of the substrate. Then, the variation of temperature AT allows to determine the
effective thermal conductivity of the thin film. The electronic test bench which allows the acquisition
of the experimental data will be detailed in the next section.

1.32
128 4 s
Py, Ep

z 124 ATp = ——
3 2bLkp  — si[bulk] +SiO,[10nm]
< 1.20 —  Si[bulk]

1.16

AT
1.12

7.0 7.5 8.0 8.5 9.0 9.5 10.0
In(2w)

Figure 2.32: Influence of the surface layer on a bulk silicon sample on the temperature rise
calculated following Borca-Tasciuc et al. [24].

Ill.2. Characterization of the 3w setup

The 3w method requires to fabricate the metallic devices on top of our samples. In this section, the
device and the electronic circuit used for the measurement are implemented.

I1I.2.A. Fabrication and characterization of the 3w heater

In order to perform accurate measurements in 3w method, every single device has to be fully
characterized. To do so, first, the fabrication process of the heater will be explained. Then, the
geometry of the heater will be characterized. Finally, its TCR will be measured.
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Ill.2.A.a. Fabrication process by photolithography

c) Expose to UV light
b) Align photomask

a) Apply photoresist
by spin coating

Resist Resist

Sample Sample

d) Develop and_ e) Gold deposition by
remove photoresist evaporation f) Remove remaining
exposed to UV light photoresist

Gold

Resist

Resist

Sample Sample

Figure 2.33: Fabrication steps for the deposition of the 3w device in clean room.

To fabricate our four-probe structures, the photolithography process is chosen. It is a process used in
microfabrication to pattern parts of a thin film or the bulk of a substrate. A single iteration of
photolithography combines several steps in sequence. Figure 2.33 shows lithography steps. The
photolithography process is realized in clean room to avoid contaminations on the surface of the
materials. In this study, one 3w device is deposited on each sample available. In our case, a negative
photoresist is used. The illuminated zone of the resist is removed before the deposition of gold by
evaporation as shown in Figure 2.33.

III.2.A.b. Characterization of the heater geometry

a) b)

2b
>

L 200 nm Au

h—— 20nm Ti
_ 0 H }

Figure 2.34: Geometry of the heater for 3w measurements.
a) Top view of the heater geometry. b) Cross section of the metallic line.

In photolithography, the pattern realized on the sample surface is determined by the pattern of the
chromium mask (see Figure 2.33.b)). In our case, a mask already used by W. Jaber in his PhD Thesis
[28, 29] has been reused. Figure 2.34 shows the geometry of the heater. In the case of the deposition
of gold on top of a substrate, a buffer layer of titanium is added at the gold/sample interface. This
20 nm thick layer of titanium promotes the adhesion of the gold on the sample surface.

The thermal conductivity of the substrate k and the layer ky are calculated with Eq. (2.34) and
Eq. (2.36). We can see that both k and kg are depending on the length and the half-width of the heater
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2. Thermal characterization of materials typically used in microelectronics

L and b respectively. It is therefore mandatory to measure the dimensions of the heater every time to
keep a good accuracy on the determination of k and kg. In this study:

L =1330+AL and b =5.5%Ab, (2.37)

where AL and Ab are the uncertainties on the measurement in optical microscopy of the wire length
an half-width respectively. The uncertainties can be estimated and are equal to 10 um and 0.1 um for
AL and Ab respectively.

Figure 2.35: Optical microscope images of the 3w heater. a) Measurement of the length L of the
heater equal to 1.33 mm. b) Measurement of the width 2b of the wire equal to 11 um

Figure 2.35 shows optical microscopy images of the metallic line. The sides of the wire are not perfectly
flat. This could be due to the use of a single layer of resist which does not have an undercut profile. In
our case, we decided to not repeat the fabrication process due to time constraints.

IlI.2.A.c. Measurement of the heater thermal coefficient of resistance

Figure 2.36: 3w setup with a) helium Dewar to allow low temperature measurements, b) cryostat for
measurements under vacuum and c) sample holder with wire bonding connections
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The geometric parameters L and b have been measured using optical microscopy. A parameter is still
to be determined: the TCR « of the heater. In order to measure the TCR of the wire, the 3w setup has
been set into a cryostat as shown in Figure 2.36. The cryostat is filled with liquid helium. It allows to
reach low temperatures and measure the resistance of the heater between 150 K and 300 K. Note that
helium was chosen for practical purposes in this work, but is not all required for those moderate
temperatures. In addition, the measurements are done under secondary vacuum to force the heat flux
to cross the sample (P < 10~* mbar). Figure 2.36.c) shows also that the 3w device is connected to the
electronic circuit with wire bonding.

Gold wire bonding with a diameter of 50 um is chosen here. The bonding was performed at CIME
Nanotech by I. Feng. The measurements of TCR are done only on SiCN 350, SiCN 600 and SiN 300
samples due to very long times of thermalization of the heater, the substrate and the holder. The
results are provided in Figure 2.37.

18
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Figure 2.37: Electrical resistance for SiCN 350, SiCN 600 and SiN 300 samples
as a function of the temperature inside the cryostat.

Considering these measurements, for each sample, the resistance R extrapolated at T = 300 K and
the TCR a are determined. The values are summarized in the Table 2.10. We find that the TCR a is

a=258x%x10"3+ Aq, (2.38)

where Aa is the uncertainty on the measurement of the wire TCR. Here, the uncertainty can be
estimated to be equal to 1.36% approximately.

Roa (102 Q.K?) R, (Q) a (103 K
SiCN 350 3.62 13.89 2.61
SiCN 600 4.09 15.74 2.60
SiN 300 4.30 16.90 2.54

Table 2.10: TCR a and resistance R, for SiCN 350, SiCN 600 and SiN 300 samples.

111.2.B. Presentation of the electronic circuit for 3w method

An electronic circuit is implemented in order to acquire the voltage V5, and therefore the temperature
oscillations 8. All the measurements are done under controlled environment. The pressure is
maintained below 10 mbar by a turbo pump and the temperature inside the cryostat is set to 300 K.
The electronic circuit is presented in Figure 2.38. The electrical signals V3,, and V, are measured by

lock-in amplifiers (7265 DSP) on the heater pads. Likewise, the same parameters V&St and V{5t are

84

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés
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measured on a reference resistance R;qq:. VSt being indeed a few orders of magnitude lower than
V3., the temperature rise measured in the circuit is corresponding only to the temperature rise of the
metallic line of the heater.

1(t) = Iycos(wt)

Figure 2.38: Schematics of the electronic circuit for the measurement of the heater temperature
oscillations 6, in the 3w method.

IIl.3. Sample characterization with the 3w method

In this section, the measurements realized on our samples are detailed. Then, these measurements
are interpreted in terms of the thermal conductivities of the substrate and the layer. Finally, the results
are discussed.

lll.3.A. Frequency-domain measurements of the temperature oscillation

Figure 2.39: Optical microscopy image of a 3w heater with fabrication process problems.
a) Inhomogeneity of metal density. b) Break of the metallic line.

We did not manage to obtain useable 3w heater device for silicon bulk, SOI, BD1 and ULK samples due
to fabrication issues. The fabrication was not repeated due to time constraints. Figure 2.39 shows
typical problems of fabrication that prevent using the 3w device. Note that solutions are known to
avoid such issues and this is not an intrinsic limitation of the method.
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For the remaining samples (SiCN, SiN and USG), the measurement results can be found in Figure 2.40.
Here the temperature rises 6,, are normalized by the injected Joule power. The dashed line
represents the modelling of the temperature rise 6,,,/P, for an ideal silicon substrate without surface
layer. It is calculated following Borca-Tasciuc et al. [24] for a heater of 1.33 mm length and 11 um
width.
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Figure 2.40: Temperature rise 6,,, /Py, measured by the 3w method for USG, SiCN and SiN samples.

11.3.B. Thermal conductivities determination

In this section, we will determine first the thermal conductivity of the substrate for each sample. Then,
the effective thermal conductivity of each layer will be deduced.

I1.3.B.a. Substrate thermal conductivities

slope (K.W?) k (W.m.K?)
Si bulk -0.802 148.0
USG 2900 -0.798 148.8
USG 5400 -0.812 146.2
SiCN 350 -0.800 148.4
SiCN 600 -0.800 148.3
SiN 300 -0.806 147.3
SiN 600 -0.798 148.8

Table 2.11: Substrate thermal conductivity determined with 3w method.

Eqg. (2.34) allows the experimental slopes to be related to the thermal conductivities of the substrate k.
Table 2.11 summarizes the slopes and k for each sample. The determined thermal conductivities k of
the substrates are close to 148 W.m™.K* for all samples. This is in good agreement with the expected
values of k because all the thin layers have been deposited on a bulk silicon wafer. This will allow us
to be confident in the following analyze of the temperature rises AT /P, for the determination of the
effective thermal conductivities of the thin layers k.

II1.3.B.b. Layer effective thermal conductivity

Eg. (2.36) allows us to deduce from the experimental temperature rises the effective thermal
conductivity of the layer k. Table 2.12 summarizes the values of ATz /P, and kg for each monolayer
sample used in this study and the associated uncertainty. Furthermore, it is possible to estimate the
accuracy of the determination of the effective thermal conductivity of a layer. We need to take into
account the uncertainty on the characterization of the length of the heater AL, the half-width of the
heater Ab and the temperature rise A(ATr/Py) as follows:
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Ab\2  (AL\Z | (A(ATE)\Z
\/ &) +G) (G5
The uncertainty on the determination of the effective thermal conductivity of the layer is found to be

lower than 2%. The 3w method appears to be very accurate in order to determine the effective thermal
conductivity of a thin layer on the top surface of a silicon substrate.

Akp
kg

_ (2.39)

ATp /Py A(ATE/Py) kr
K.wt %0 W.m1K?
USG 2900 15.6 1.1 1.24
USG 5400 28.1 1.3 1.31
SiCN 350 4.61 1.9 0.52
SiCN 600 5.36 1.2 0.76
SiN 300 3.12 3.3 0.66
SiN 600 4.82 2.9 0.85

Table 2.12: Layer effective thermal conductivity determined with 3w method.

I11.3.C. Results and discussion
In this section, the aim is to determine the influence of the medium and the interfaces in the global

thermal resistance of the thin layers. Then, a conclusion on the 3w method is drawn.

I1.3.C.a. Thermal resistance of the thin films

In the case of a thin layer on top of a silicon substrate, the thermal resistance of the thin film Ry, can
be defined as follows:

Ef

Rin =37 (2.40)
1 Ep
R, =
th GTBC kmEdium’ (241)

where Grpc is the TBC generated by the interfaces surrounding the layer and k,04ium is the intrinsic
thermal conductivity of the material of the layer. With two different thicknesses of a thin film material,
it is therefore possible to determine Grgc and Kyeqium- Provided ko eqium does not vary, which is the
case for amorphous and low-thermal conductivity materials. However, better results could be
achieved with even-more material thicknesses. Table 2.13 gives the results.

kmedium Akmedium Grec AGrpc
W.m™.K* W.m™.K* MW.m?2.K* MW.m?2.K*
uUsG 1.5 0.04 25 0.7
SiCN 2.3 0.3 19 2.5
SiN 1.3 0.1 50 3.8

Table 2.13: Intrinsic thermal conductivities and TBC for USG, SiCN and SiN materials.

111.3.C.b. Conclusion on the 3w method

For each sample studied with the 3w method, the values of intrinsic thermal conductivities and TBC
are determined, as shown in Figure 2.41. The values of intrinsic thermal conductivities are in good
agreement with the literature [32-36]. For very thin layers (SiCN and SiN), the thermal resistance is
mainly due to the TBCs whereas for the thicker layer (USG), it is mainly due to the effect of the medium.
It is also important to see that the TBC measured with the 3w method are one order of magnitude
lower than the values calculated in AMM and DMM [17]. It could be due to the TBC of the titanium
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layer and could be interesting to analyze in the future. Notably, it is not the first time that TBC
measurement are lower than predictions [37].
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25 — 50
o =
f 20 WE. 40
£ 2
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& g
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£
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0.0 0
UsG SIiCN SiN usG SiCN SiN

Figure 2.41: Measurement with the 3w method for USG, SiCN and SiN samples.
a) Intrinsic thermal conductivity. b) Thermal boundary conductance.

The 3w method is difficult to implement on a large number of samples. The manufacturing yield being
moderate, this method is time-consuming in terms of fabrication and device characterization.
However, the thermal conductivity characterization of thin films can be done with very good accuracy.
The advantages and drawbacks of the 3w method are summarized in Table 2.14.

3w method

X
Model calibration Heater geometry and TCR characterization

(D. G. Cahill [22])
X
No spatial resolution
vv

Bulk & thin films with low & high k
Table 2.14: Capabilities of the 3w method.

Spatial resolution

Sample Characterization

IV. Discussion

IV.1. Sample effective thermal conductivities

SThM Wollaston 3w method Literature
USG 2900 - 1.21-1.24 1.23-1.36 [32, 36]
USG 5400 - 1.32-1.35 1.33-1.42 [32, 36]
SiN 300 - 0.68-0.70 0.59-0.80 [32, 35]
SiN 600 - 0.89-0.91 0.66-1.10 [32, 35]
SiCN 350 - 0.50-0.52 -
SiCN 600 - 0.74-0.76 -
BD1 3300 0.44-0.59 - 0.35-0.61 [39, 40]
BD1 5600 0.33-0.42 - 0.35-0.61 [39, 40]
ULK 1250 0.06-0.08 - 0.07-0.13 [38]
ULK 2400 0.11-0.14 - 0.08-0.16 [38]

Table 2.15: Comparison between measurements (SThM with Wollaston probe and 3w method) and
literature for the effective thermal conductivity of USG, SiN, SiCN, BD1 and ULK thin films.
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Table 2.15 summarizes the thermal conductivities measured by SThM and 3w method. One can notice
that the thermal conductivities measured experimentally are in good agreement with the literature for
both SThM and 3w method. The small differences measured with the Wollaston probe could be due
to the calibration in the low-k range which is made by using polymers, and not bond materials.

IV.2. Advantages and drawbacks of the SThM and the 3w method

The characterization of various thin films materials has been possible with the SThM and the 3w
method. However, the characterization method was chosen according to the studied material. It is
therefore necessary to have an estimation of the thermal properties of the material in order to be able
to choose the appropriate method effectively. Table 2.16 summarizes the advantages and drawbacks
of the SThM and the 3w method for the measurement of the effective thermal conductivity.

3w method SThM technique
Palladium nano-probe | Wollaston micro-probe
Sample X vV vV
preparation Clean room process: No preparation No preparation
photolithography prep prep
X v v
Model Heater geometry and | Contact calibration with | Contact calibration with
calibration TCR characterization AMM/DMM theories reference samples
(D. G. Cahill [24]) J. D. N. Cheeke [16] A. M. Massoud [13]
Spatial X vv v
resolution No spatial resolution Submicrometric Micrometric
vv X v
Sample g . . . o .
o Bulk & thin films with Bulk materials with Bulk & thin films with
Characterization . o4 44
low & high k k<« 1W.m'tK k<« 1Wm'tK

Table 2.16: Summary of the advantages and drawbacks for each characterization technique.

V. Conclusion

In this chapter, two different thermoresistive techniques have been used for the thermal
characterization of thin layer materials: Scanning Thermal Microscopy and the 3w method. The SThM
technique has been implemented with two different probes:

(i) the palladium nano-probe;
(ii) the Wollaston micro-probe.

In the case of the palladium nano-probe, it has been shown that the SThM technique does not allow
the characterization of the samples with effective thermal conductivity higher than 1 W.m™.K2. This is
mainly due to the uncertainty on the characterization of the thermal contact between the probe and
the sample. Unfortunately, for the thin layers available in this work, their effective thermal
conductivity revealed to be too large to be characterized with good accuracy.

In the case of the Wollaston micro-probe, the thermal signal measured with the probe was fitted on
reference samples. The comparison between the thermal signal measured on thin layer samples and
the calibration fit allowed us to determine their effective thermal conductivity. Finally, the property of
each surface layer was determined by using an FEM model of the probe-sample system. In the case of
the measurements realized on ULK and BD1 samples, their effective thermal conductivities were found
close to typical values of the literature [38-40].
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Finally, the 3w method was implemented in terms of fabrication and experimental characterization.
This is a thermoresistive technique designed for the measurement of the thermal conductivity of bulk
materials and thin films. The measurements have been realized only on USG, SiN and SiCN thin films
samples due to fabrication issues and time constraints. The measurements of intrinsic thermal
conductivities were found to be in good agreement with the literature [32-36]. The advantages and
drawbacks of each technique have been determined. The thermal conductivities of the BD1 and ULK
samples could be subject to further investigations, especially with the 3w method in order to validate
the SThM experimental data acquired with the Wollaston micro-probe.
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Chapter 3. Heat transfer modelling for Integrated
Circuits and experimental validation

In this chapter, the aim is to develop a relevant approach of numerical modelling by Finite Element to
allow the prediction of the thermal behavior of 3D hybrid bonding chips [1, 4]. First, a specific test chip,
developed for the investigation of thermal issues, will be detailed. Then, a methodology of numerical
modelling will be developed. Finally, the numerical calculations will be compared to experimental data
acquired on M3EM test chip by means of SThM and Infrared (IR) thermometry.

I. 3D hybrid bonding test chip for thermal investigations

In this section, a strategy for the modelling of an electronic chip will be developed. To do so, a test chip
will be used as a reference for the development of a FEM model. A test chip called M3EM has been
designed to help understanding the heating phenomena in 3D integrated circuits (3D ICs). ST and CEA
LETI have co-developed this test chip in order to quantify the efficiency of the HB fabrication process
in terms of heat management.

1.1. Structure of the 3D hybrid bonding test chip M3EM

Top die Si 4 pm
Oxide Top
Si0, 850 nm
Cu 350 nm Metal Top
Barrier Top SiN 60 nm

Via Top

SiO; 1000 nm
Cu 500 nm

; HB level
Cu 500 nm HB Bottom
Via Bottom
Barrier Bottom o SiN 60 nm
Cu 860 nm Metal Bottom

SiO, 1000 nm

Si0, 1360 nm
Oxide Bottom

Bottom die Si 300 pm

Figure 3.1: Schematic of the cross section of the test chip M3EM.

As first step, M3EM was used to characterize the influence of the package and the heat spreader on
heat dissipation [5, 6]. Here, it will be used as a reference for the calibration and validation of the
future FE model. Figure 3.1 shows the cross section of M3EM. It is important to notice that M3EM is a
passive device without FEOL. As a consequence, in order to still generate a heat flux, copper serpentine
have been embedded in the Metal Bottom and Metal Top layers to act as Joule heaters. Metal Bottom
and Metal Top are therefore used to represent the equivalent FEOL power generation.

1.2. Design of the metal layers

In order to generate heat into the stack, only the Metal Bottom level is used. Copper serpentines have
been embedded in the Metal Bottom to generate heat by Joule effect. The small right heater is chosen
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because being small, it will generate larger thermal gradients. In addition, the size and power
generation of the small right heater are representative of heating structures in commercial chips [7].
Figure 3.2 shows the patterns of the copper lines. The metal serpentine in Figure 3.2.b) consists of a
fine wire highly resistive electrically and access lines whose section has been multiplied in order to
reduce the electrical resistance. The Joule power generation is therefore considered located in the
small right heater and not in the access lines.

a)

Peripheral heater

Small left Small right
heater heater

N Central /

heater

Figure 3.2: Design of the Metal Bottom level of M3EM. a) Heating elements with serpentine
resistance. b) Geometry of the small right heater with an insert on a copper line.

Copper dummies are added in the silicon dioxide matrix all around the copper lines. This structures are
added to avoid fabrication process issues, especially during Chemical and Mechanical Planarization
(CMP) and ensure sufficient copper density. Figure 3.3 shows the geometry of the dummies. The
dummies of the Metal Top layer are identical to the dummies of the Metal Bottom layer.

1.3 um

0.9 um

860 nm

Figure 3.3: Geometry of the copper dummies into the silicon dioxide matrix.
a) Top view of the dummies. b) Cross section of one dummy.

1.3. Description of the hybrid bonding structure

In the case of the HB layer, the copper pattern covers the entire surface of the layer. Figure 3.4 shows
the geometry of the HB pads. In our study, the misalignment between the bottom and the top part of
the HB layer will be neglected (see Figure 3.1).
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2um

Figure 3.4: Geometry of the hybrid bonding layer. a) Top view of the hybrid bonding pads.
b) Cross section of one hybrid bonding pad.

Il. Numerical modelling of multilayer electronic device

II.L1.  Numerical modelling issues for ICs

In this study, numerical modelling by FEM is chosen. The idea is to develop a model of the chip in its
thermal environment to estimate the elevation of temperature generated by the heating elements.
This simulation could be used in the future to analyze the effect of different parameters (thermal
properties, geometry, thermal boundary resistances...) on heat dissipation. Here, the heating element
is the small right heater located in the Metal Bottom level (see Figure 3.2). The issues we are facing
will be detailed first, and then, the strategy implemented in FEM will be explained.

I.L1.A. Meshing issues in FEM for multilayer devices

Test chip

I~10—7 m

Zz

* Holder

Figure 3.5: Aspect ratio between the layer thicknesses and the setup dimension.

In the field of computational sciences, and especially with FEM, the quality of the output data are
strongly related to the mesh quality. Basically, in first approximation, the maximum size of the finite
elements need to be smaller than the minimum characteristic length of the geometry of interest. The
large aspect ratio between the smallest dimensions (~few nanometers) and the centimetric size of the
setup Figure 3.5 leads to very high element number [8, 9]. For such geometries, the aspect ratio turns
to be higher than 10°. An accurate FEM model would need at least a hundred million elements. Being
too high to be computed in a decent time, the number of elements has to be reduced. To do so, the
structure of the BEOL will be homogenized.
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I.L1.B. Homogenization methods for heterogeneous media

In the case of a heterogeneous medium, the homogenization of the thermal conductivity can be
performed according different theories. Among them, three different homogenization methods are
considered: first, the Maxwell-Garnett and Maxwell-Bruggeman models, and finally the parallel and
series thermal conductance model.

1.1.B.a. Maxwell-Garnett model

kegr

Figure 3.6: Representation of EMA with Maxwell-Garnett model.

Several models have been developed to take into account the shape of the inclusions, their anisotropy,
their orientation as well as the interactions between them and with the matrix. The Maxwell-Garnett
model is one of them. It accounts for the shape of the inclusions, always in the case of an isotropic and
homogeneous dispersion. This model is valid for moderate volume fraction (up to 20%) because
inclusions are considered isolated from each other [10]. The effective medium approximation (EMA)
developed by Maxwell-Garnett is based on the concept shown in Figure 3.6. In 3D, the expression of
the effective thermal conductivity k. according to Maxwell-Garnett is

ke+2km+2x(ke—km)
M ket 2km—x(ke—kp)’

kesr =k (3.1)

where x and k. are the volume fraction and the thermal conductivity of the spheres. k,, is the thermal
conductivity of the matrix.

I.1.B.b.  Maxwell-Bruggeman model

/ ’ km\.

keff keff

Figure 3.7: Representation of EMA with Maxwell-Bruggeman model.

The effective medium approximation (EMA) developed by Bruggeman is based on the concept shown
in Figure 3.7. A volume fraction x of thermal conductivity k. is included in a medium of effective
thermal conductivity k.sr. Equivalently, a volume fraction (1 —x) of thermal conductivity k, is
included in the medium of effective thermal conductivity k. sf. The expression of the effective thermal
conductivity k. according to Bruggeman is
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_ Kekerr — x) | KmTKerr | _
X [kc+(d_1)keff] + (1 x) [km+(d_1)keff] - 0’ (3'2)

where d represents the dimensionality of the system. This approach is symmetrical so that the two
constituents have an equivalent contribution. If the ratio k./k,, > 1, this model provides a
percolation threshold for 30% of its conductive phase volume fraction. This model is particularly
suitable for disordered heterogeneous media consisting of conductive spheres in an insulating matrix
[11].

1.1.B.c.  Parallel and series thermal conductance

Figure 3.8: Representation of EMA with parallel and series thermal conductance.

The parallel and series thermal conductance modeling consist in representing the composite as a stack
of insulating and conductive layers. It is based on the concept shown in Figure 3.8. By establishing the
analogy with an electrical circuit, the structure is associated with resistances in series or in parallel
depending on the direction of the heat flux, perpendicular or parallel to the interfaces.

1
kserie - Z_)l:_i' (3_3)
kparallel =Y x;ik;, (3.4)

where x; the volume fraction and k; the thermal conductivity of each material, respectively. These
models are representative of the thermal conductivity of composites in the case of a strongly oriented
structure [12].

I.2.  Thermal conductivity homogenization for ICs

True geometry

Thermal conductivity:
k(x,v,2)

Layer
homogenization

Thermal conductivity:

kiy
ki -

Figure 3.9: Homogenization strategy for a multilayer structure like M3EM.

Stack

N Thermal conductivity:
homogenization

Ky, effective
K, effective

Homogeneous geometry
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3. Heat transfer modelling for Integrated Circuits and experimental validation

In the case of an electronic chip, a multiscale homogenization strategy is chosen. First of all, the
thermal conductivity of each layer will be homogenized. Then, considering that the number of layers
remains important (twelve layers for the simple test chip M3EM), the homogenization of the thermal
conductivity will be extended to the entire stack of the chip. Figure 3.9 shows the principle of the
homogenization steps used for M3EM. k(x, y, z) is the general spatial thermal conductivity of the real
stack. k,"cy and ké' are respectively the in-plane and out-of-plane effective thermal conductivities for
each layer. Ky, and K, are respectively the in-plane and out-of-plane effective thermal conductivities
of the entire stack.

II.2.A. Homogenization of thermal conductivity in the metallic layers

For the metal layers of M3EM (Metal Bottom, Metal Top and HB) with heterogeneous structures, an
effective thermal conductivity will be calculated in both in-plane and cross-plane directions.

I.2.A.a. In-plane thermal conductivity

A model of effective medium is used to homogenize the in-plane thermal conductivity of the metal
levels (Metal Bottom, Metal Top and HB). The FEM model presented in Figure 3.10 allows calculating
the value of thermal conductivity in the in-plane direction k.. This model suits perfectly this study
case because the structure of the metal layer is heterogeneous and fully periodic (see Figure 3.3 and
Figure 3.4). A temperature gradient is set over the sub-domain considered by imposing a fixed
temperature AT, and the flux ¢, is calculated numerically. The effective in-plane thermal conductivity
ky, is therefore calculated with:

— Ox

G = AT (3.5)
L

kyy = GE’ (3.6)

where L is the length of the cell (equal to the pitch of the dummies) and S the surface area normal to
the heat flux. The thermal conductivity of silicon dioxide (kg;0,) is set to 1.3 W.mL.K? (see Chapter Il
and [13]). The thermal conductivities of copper (k) and of the Ta-TaN layer (kyqnTq) are estimated
from their electrical resistivities (2 and 70 puQ.cm, respectively) by applying the Wiedemann-Franz
law [14]. k¢, and kqgnra are found equal to 330 and 9.5 W.m™.K?, respectively. Here, the thermal
boundary resistances between materials can be neglected because the layer is mainly constituted of
silicon dioxide, which is a thermal insulator.

g™ TaN-Ta
s
o™ ™ 20nm
o il
// -

¥y ,,T/'x
Copper
a) b)

Figure 3.10: Homogenization of the in-plane thermal conductivity in metal levels. a) Geometry of the
unit cell with the dummy. b) Calculation of the effective in-plane thermal conductivity.
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I.2.A.b.  Cross-plane thermal conductivity

o { E

Figure 3.11: a) Schematic of the BEOL cross section in ICs. b) Zoom on the periodic unit cell.

TaN-Ta
20 nm

Metal layer

In order to homogenize the cross-plane thermal conductivity of the metal levels (Metal Bottom, Metal
Top and HB) a model of effective medium has been used. In this case, the stack of the chip will be
considered as a heterogeneous periodic medium in the z direction. A schematic of the stack is
presented in Figure 3.11. For commercial chips, with more than ten metal levels, the periodic
assumption is therefore even more relevant. However, in the case of M3EM chip with only four metal
levels, this should be acceptable in first approximation and could be subject to further investigations.
The FEM model presented in Figure 3.12 allows calculating the value of thermal conductivity in the
cross-plane direction k, for each single metal level. A temperature gradient is set over the sub-domain
considered by imposing a fixed temperature AT,, and the flux ¢, is calculated numerically. The
effective cross-plane thermal conductivity k, is therefore calculated with:

_ ¢z

G =% (3.7)
L

k, =G5, (3.8)

where L is the length of the cell (equal to the layer thickness) and S the surface area normal to the
heat flux (pitch squared). Moreover, the effective thermal conductivities ky,, and k, do not depend on
the number of cells modelled in FEM.

Pitch |
TaN-Ta ) S ]
—_—
20 nm
Copper
Oxide —— L ¢, AT,

- Dummy length '

2 D

L., |

Figure 3.12: Homogenization of the cross-plane thermal conductivity in metal level. a) Geometry of
the unit cell with the dummy. b) Calculation of the effective cross-plane thermal conductivity.
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I.2.A.c.  Summary of homogenized-layer thermal conductivities

The homogenized properties of the different layers are summarized in Table 3.1. Note that the impact
of Thermal Boundary Resistances (TBR) is negligible here in the xy and z directions, since many oxide
layers already thermally-resistive are present in the structure. Here the thermal conductivity of the
barriers (silicon nitride) is taken equal to 0.85 W.m™.K! (see Chapter Il and [15]).

NUMERICAL ANALYTICAL
Layer Dummies Level kyy k, kyy k,
W.miK? | WomK? | WomK? | W.mtK?
Oxide Top X
Metal Top 2.76 2.03 2.49 2.20
Metal Top v
Barrier Top X Barrier Top 0.85 0.85 0.85 0.85
Via Top X
HB To
P v HB 2.23 1.72 2.00 2.56
HB Bottom v
Via Bottom X
Barrier Bottom X Barrier Bottom 0.85 0.85 0.85 0.85
Metal Bottom v
- Metal Bottom 3.16 3.23 3.12 3.50
Oxide Bottom X

Table 3.1: Homogenization of in-plane and cross-plane thermal conductivities for
the levels of M3EM with numerical and analytical procedures.

I.2.B. Homogenization of thermal conductivity in the BEOL layers
NUMERICAL ANALYTICAL

Ky (W.m™1.K?) 2.6 2.4

K, (W.m.K?) 2.0 2.6

Table 3.2: Homogenized in-plane and cross-plane thermal conductivities for
M3EM BEOL with numerical and analytical procedures.

In the case of the BEOL, the floorplans of the metal levels show very ordered structures (schematic in
Figure 3.11) with regular copper dummies. Maxwell-Garnett and Maxwell-Bruggeman models are
therefore not suitable for the EMA of the metal levels of M3EM. Consequently, in the next parts, the
EMA strategy will be based on the parallel and series thermal conductance model. The relevance of
this model will be validated later. Considering a model of parallel and series thermal conductance, it is
possible to evaluate the global effective thermal conductivities of the entire stack in the in-plane and
out-of-plane directions Ky,, and K, respectively as follows:

ny-ZEi = Zkﬁicy-Eir (3.9)
Ei _ XE;

Zk_é =% (3.10)
i ={1;n},

where E; is the thickness of each level. n is the number of level. The total in-plane and cross-plane
thermal conductivities Ky, and K, are summarized in Table 3.2 for both numerical and analytical
methods. These values are somewhat low, highlighting:

(i) the low copper density in the via layers;
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(ii) that the chip could not be kept at room temperature under operation and would undergo
clear heating;

(iii) the effective thermal conductivity of the BEOL is almost isotropic.

I.3. FEM modelling of the chip environment

In this section, the modelling of the chip and its environment will be specified. First, the geometry and
the boundary conditions will be detailed. Then, the influence of the wire bonding on the heat
dissipation will be modelled. Finally, the model will be calibrated with experimental thermoresistive
measurement.

II.3.A. Geometry and boundary conditions

Heater Air losses

P heater hair

Copper layer

Heat sink
Isink

Figure 3.13: Geometry and boundary conditions considered for M3EM FEM model.

Figure 3.13 shows the geometry and the boundary conditions in the case of the M3EM analysis. Ppegter
is the Joule power generated by the small heater right. The thermal conductance per unit area h;, is
set as boundary conditions to represent both the heat losses through air and through thermal
radiation. A single parameter is used. Finally, the thermal conductance per unit area gginx is
characteristic of the heat dissipation towards the substrate holder of the chip. In this study, the M3EM
chip is set on a PCB. The PCB is made with a 1.6 mm thick epoxy resin (FR4) layer covered by a 35 um
thick copper layer. The resin thermal conductivity is taken equal to 0.34 W.m™.K* following [16]. The
copper thermal conductivity is taken equal to the bulk thermal conductivity (390 W.m™.K* following
[17]) because the thickness of the layer is much larger than the mean free path of the heat carrier in
copper (equal to 39 nm following [17]). Here, the Joule power Pyogter is set to 500 mW in order to
represent realistic cases.

I.3.B. Numerical modelling of the wire bonding

For a better accuracy of thermal modelling one needs to account for the impact of the wire bonding
on the heat path. In our case, twelve wires of 25 um diameter D,,;, are bonded with a pitch of 130 um
on the top die surface. Figure 3.14 shows the positions of the wiring. Numerically, the bonding areas
are simulated as local discs of diameter 25 um with a heat transfer coefficient g,,;,. Considering the
wire as a long wire linking the top die surface at one end and the heat sink at its other extremity, g.,»
takes the following expressions:
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kap .
Iwp = L—Al in vacuum, (3.11)
wb
Iwp = % in air, (3.12)
wb

where kg, is the thermal conductivity of the aluminum wire bonding equal to 237 W.m™.K* [18], hg;,-
is the heat exchange coefficient (describing air losses and thermal radiation) and L,,;, is the length of
the wire equal to 7.5 mm. These expressions are obtained from heat diffusion and the fin equation,
respectively. h,;, is calculated to 454 W.m2.K? following [19]. For each bonding wire a boundary
condition g,,p, is set at 31.6 and 131 kW.m>2.K in vacuum and air, respectively. Considering these
values of g,,;, much higher than the thermal transfer through air, the wire bonding generates a heat
path which could be interesting to be used for thermal optimization.

a)

b)

Pitch= 130 pm

—>

ow

f

Small right > :
heater >
/ Boundary condition
Wire bonding Gwp (W.m2.K1]

Figure 3.14: a) Wire bonding positions on the top die surface.
b) Disc of heat transfer coefficient g,,;, set as boundary condition with a pitch of 130 um.

Y.Lx

Air/Vacuum

I1.3.C. Model calibration with thermoresistive measurement

In this section, the two last unknown parameters are determined to match the real thermal
environment of the chip. The heat sink conductance g, and the heat loss coefficient h,;,-. To do so,
thermoresistive measurements are used.

1.3.C.a.  Heat sink conductance

130
125 Rheater[30 °C] =10530Q "
— -1 e
120 slope = 0.345 Q.K
& a;, = 3.28 %.K e
= 115 e
g0 u R 95.0 + 0.345 X T
........ - =95.0+0. X
105 * heater
100
30 45 60 75 a0

T(K)
Figure 3.15: Measurement of the small right heater resistance as a function of temperature.

To evaluate the heat sink conductance gy, a resistive thermometry experiment with the serpentine
small right heater is done under vacuum conditions. Consequently, the effect of the air losses are
eliminated, and compared with the FEM simulations performed as a function of gg;,. The M3EM chip
is heated on a hot plate between 30 °C and 90 °C. The heater temperature is measured as follows:
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AR = RpeateranAT, (3.13)

where ay, is the TCR of the heater this time, AR the variation of resistance of the heater and AT the
variation of temperature of the heater due to Joule heating. a;, is measured equal to 0.328 %.K* (see
Figure 3.15) and AR is measured to be 31.1+1.2 Q, leading to an average temperature increase AT
equal to 90+3.5 K. The experiment is reproduced numerically, neglecting the impact of thermal
radiation in first approximation. Thermal radiation effects are estimated in Section IIl.2.B. As a
consequence, the value of the heat loss coefficient h,;,- is set to zero in the FEM model. Figure 3.16
indicates the sensitivity of the heater temperature to ggi,,. With the aforementioned assumptions,
Jsink is found close to 340 W.m2.K™. This value is quite low, indicating a loose thermal contact with
the substrate.

130
110
< YGsink = 340 W.m'Z.K'l
= 90 -
<
70
50
300 320 340 360 380 500

Gsink (W-m_z-K_l)
Figure 3.16: Heater average temperature as a function of the heat sink conductance.

I.3.C.b.  Heat loss coefficient
100

90

80
hﬂi?' = 14 W.m2.K1

AT (K)

70

60

50
0 4 8 12 16 20

hgir (W.m=2.K?1)
Figure 3.17: Heater average temperature as a function of the heat loss coefficient.

The same methodology is applied under ambient conditions, once the heat sink conductance has been
obtained. The measurement performed under air at atmospheric pressure allows determining the heat
loss coefficient hg,;,- as shown by Figure 3.17. The heater average temperature is this time equal to
60+2.3 K, leading to a value of h,;,- equal to 14 W.m2.K™. This value is in good agreement with the
previous results shown in [6].
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11.4. Numerical results and discussion

In this section, the temperature field in the chip will be calculated with the FEM homogenized model.
The consistency of the homogenization method will be assessed from these numerical data. A
multiscale approach will be used to evaluate the temperature close to the heating element. Finally, a
discussion will be made on the results obtained by FEM.

I.4.A. Temperature field calculated with homogenized BEOL

60 K

50 K

Figure 3.18: Chip surface temperature rise calculated with homogenized BEOL.

The temperature rise is calculated for an input Joule power Pjqter €qual to 500 mW. Figure 3.18
shows the temperature field calculated on the surface of the top die of M3EM chip. Here, the
maximum temperature elevation is calculated equal to 60 K at the center of the heater. The minimum
temperature elevation is calculated equal to 50 K. One can notice that for this typical case of use, the
thermal gradients are low.

We are not interested only in the top die surface temperature. The temperature depth profile,
especially at the FEOL and BEOL levels, is important. Figure 3.19 shows the temperature profile in the
z direction at the center of the small right heater. Figure 3.19.b) shows that the variation of
temperature into the BEOL is lower than 1 K. The BEOL can be considered thermalized in first
approximation in the z direction.

58.5 58.5

57.5 BEOL & Top die —, 575 [ Top Silicon

-—
< 565 « > = 565
S sss Bottom Silicon S s Metal Bottom layer
54.5 54.5 >
a) [ BEOL b)
53.5 535
0 100 200 300 300 302 304 306 308
Z(um) Z (um)

Figure 3.19: a) Temperature rise at the center of the heater as a function of the depth.
b) Insert on the temperature rise inside the BEOL and the top die.
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1.4.B. Consistency of the homogenization procedure

Figure 3.20 represents a schematic of the Joule power distribution in the cross section of M3EM. ¢,
and ¢potrom are the heat flux projection on the top and bottom side of the BEOL, respectively.
Here, ¢¢op is equal to 22.5 mW and ¢po¢rom is €qual to 470 mW. The sum of the fluxes ¢op + Ppottom
represents 97.5% of the total Joule power Py q¢er-- In the layers above and below the heater, the flux
can thus be easily considered vertical. The parallel and series thermal conductance model is therefore
well suited for the homogenization of the BEOL layers. This phenomenon is due to:

(i) the large aspect ratio of the small right heater (square of 600x600 um? in the xy plane for
a thickness equal to 860 nm in the z direction);

(ii) the large thermal conductivity of the silicon dies in comparison of the BEOL. The silicon
dies are acting as heat sinks, driving the heat fluxes vertically.

4umI
4.33 um BEOL
300 pm Bottom die T
Z

Figure 3.20: Schematic of the heat flux distribution surrounding the BEOL.

1.4.C. Temperature of the heating serpentine

With the homogenized BEOL, the temperature of the stack has been calculated. We emphasize that
such model is relevant far from the heating element and as long as the scale of study is large compared
to the size of homogenization. To access the temperature of the heater, which is the location of
interest, a multiscale FEM modelling is to be applied. First, the strategy of the multiscale modelling,
where the copper serpentine is the subdomain of geometry, will be explained. Then the field of
temperature close to the heat source will be determined.

I.4.C.a.  Multiscale modelling strategy

In order to acquire the temperature field close to the heat source, its explicit thermal environment
needs to be modelled. The geometry and the boundary conditions of the FEM model are shown in
Figure 3.21.a). Where G, and Ggown are the thermal conductance coefficients set as boundary
conditions on the upper and lower side of the Metal Bottom layer, respectively. Gy, and Ggoyn are
determined from the global homogenized FEM model (see Figure 3.14).
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a) G Pheater — 600 um 63 K
EBeVeVee——i— 2
Gaown s?ILi]ne Oxide 40 K

Figure 3.21: a) Explicit geometry of the Metal Bottom layer for multiscale FEM modelling.
b) Temperature rise of the small right heater in the Metal Bottom layer of M3EM.

11.4.C.b.  Heat source temperature field

a) Gup b) Gdown
26 MW.m2 K1
Heater — Heater —
Wire bonding Wire bonding
Y Y
40} 20
L.x 5 DO ¥ L-x oY ) -3 1T MWm2K!

Figure 3.22: Calculation of the up and down thermal conductance coefficients in FEM.

The conductances Gy, and Ggoyy, are calculated from the global homogenized model as follows:

)

Gup AT (3.14)
Gaown = ¢dA(;Wﬂ/ (3.15)

where ¢, is the vertical boundary heat flux going upward in the top die and ¢4,y is the vertical
boundary heat flux going downward in the bottom die. The calculations of G, and Gg,n are shown
in Figure 3.22. The temperature field close to the heat source, can therefore be determined with better

accuracy. The temperature field into the small right heater is shown in Figure 3.21.b). The heat flux
distribution is summarized in Table 3.3.

Power
Heat path W %
Total 500 100
Sink 483 96.6
Air 13.6 2.7
Wire bonding 3.4 0.7

Table 3.3: Summary of the heat flux distribution.
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1.4.C.c. Discussion

67
= 340 W.m2.K2 |
> gii:i = 360 Wm2.K? Aleopper AToxide
63
-4
~ 61 I 3K
<
59
57
55

0 100 200 300 400 500 600
Y (um)
Figure 3.23: Temperature profile along the Y axis, at the middle of the heater.

The temperature of the heat source is calculated with the multiscale FEM modelling. Figure 3.23 shows
the temperature rise of the heater over a straight line along the Y axis at the center of the small right
heater. AT opper and AT, xqe are the temperature rises of the copper line and the dioxide matrix inside
the heater, respectively. The temperature drops are due to the sharp variations of thermal conductivity
between the lines of copper and the silicon dioxide matrix. As a reminder, the calibration of the
homogenized FEM model was done assuming the heater temperature constant. The heater
temperature rise was fitted equal to 60+2.3 K based on thermoresistive measurements (Section 11.3.C.).
However, Figure 3.23 shows that the actual temperature rise of the copper AT;,,per is equal to 63 K.
An error on the calibration of g, Was induced previously because the heater temperature was
underestimated. The 3 K temperature difference has been corrected by increasing the value of ggink
from 340 to 360 W.m2.K ™,

lll. Experimental characterization of M3EM thermal behavior

In this section, the numerical modelling results will be compared to experimental data obtained on the
test chip M3EM. First, the experimental holder that allows the measurements will be described. Then,
the temperature measurements will be performed by means of two different techniques: Infrared (IR)
thermometry and Scanning Thermal Microscopy (SThM). The possibilities and constraints of each
method will be described.

Ill.L1. Description of the experimental holder

In order to perform measurements, the M3EM chip had to be connected and integrated to a
homemade electronic circuit inside the SThM and IR machines. First, the connection process of the
chip will be described and then the electronic circuit for the chip power supply will be detailed.

lll.L1.A. Electrical connection of the chip

The chip needs to be connected with the electrical circuit. To do so, a PCB has been designed to hold
the chip during power supply. The PCB and the wire bonding to the chip will be described in the
following section.
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Ill.1.A.a. Fabrication of a PCB holder

A PCB has been developed at CETHIL to allow for the electric power supply of the chip. A schematic of
the PCB is presented in Figure 3.24. The shape of the PCB is chosen by taking into account the
dimensions and weight constraints of the SThM (NT-MDT). The weight of the PCB needs to be lower
than 10 g to avoid damaging the piezo element and the current density in the copper lines needs to be
lower than 10° A.cm™ to avoid electromigration issues following [20-22]. In our case, the current
density in the copper lines can be calculated as follows:

I ea
] = % (3.16)

Iheat is the current, S is the section perpendicular to the electron flux and J is the current density.
Here, the lines have been designed with a thickness of 35 um and a width of 300 um. By considering a
maximum current I equal to 1 A, the current density J stays lower than 10* A.cm.

a)
Epoxy Chip location
Pad
Copper .
35 um thick 700 pm width
Line
300 pm width

Figure 3.24: Floorplan of the PCB for chip alimentation. a) PCB geometry. b) Pads characteristics.
III.1.A.b. Wire bonding connections

Aluminum wire bonding
bwp = 25 um
Q—I
[z

Figure 3.25: Schematic of the wire bonding between M3EM and the PCB.

Copper layer

35 pm ==
1.6 mm

The chip is connected to the PCB by means of wire bonding. Figure 3.25 shows a schematic of the
bonding between the chip and the PCB. The pads on the surface of M3EM have a pitch of 130 um.
Aluminum wire bonding with a diameter ¢,,;, equal to 25 um are chosen. The bonding were made by
I. Pheng in the CIME Nanotech laboratory (Grenoble). The wire wedge bonding process has been used.
It utilizes ultrasonic energy and pressure to create a bond between the wire and the bond pad. The
most predominant process for wedge bonding is an ambient temperature bonding, where aluminum
is used to make the interconnection between the die and the PCB. This “welding process” deforms the
wire into a flat elongated shape of a wedge. Unlike ball bonding, although more time consuming, the
wedge bonding process allows welding at low temperatures without risking damaging the chip. The
wire bonding realized on M3EM chip by wedge bonding process are shown in Figure 3.26.
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Figure 3.26: Optical microscopy image of the wedge wire bonding realized at CIME Nanotech with
a) aluminum pad on top die surface and b) copper pad on epoxy surface.

lll.1.B. Electrical circuit of power supply

Utest [V]

—

—{

Rtest = 100 Q
Iheat
(Al

Uheat
(V]

Figure 3.27: Power supply electrical circuit of the test chip M3EM.

Figure 3.27 is a schematic of the electronic circuit for the alimentation of the test chip. Ryeater, Raccess
and R, are the electrical resistances of the small right heater, the access lines to the heater (in the
Metal Bottom level of M3EM chip) and the electrical resistance of the wire bonding, respectively. The
electrical resistance of the wire bonding is equal to

4Lywp

7’
OwbTPwb

Rup = (3.17)

where L,,;, is the length of the wire bonding and o,,;, is the electrical conductivity of the wire. g,
being equal to 37.7 MS.m™* for the aluminum [23] and L,,;, being equal to 7.5 mm approximately, the
resistance of the wire bonding R,,;, is equal to 0.41 Q which is negligible in comparison with Rp.q¢er
(equal to 100 Q approximately). In addition, the electrical resistance of the access lines can also be
neglected in comparison with Ry q¢er. Indeed, the width of the access line is much wider than the
heater wire and the length of the access line is much shorter than the length of the heater wire (see
Figure 3.4). The electrical resistance R, cqss is therefore negligible in comparison with Ry q4¢er- The
M3EM chip is put in series with a test resistance R;.s;- The power generated by the heater element
Pyeqr can therefore be estimated as follows:
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Utest = Rtestlneats (3.18)

Pheater ~ Uheatlheat- (3-19)

lIl.2. Characterization by means of Infrared thermometry

In this section, the temperature of the M3EM chip will be determined with the Infrared (IR)
thermometry technique. First, the principle of IR thermometry will be explained. Then, the emissivity
of the M3EM structure will be calibrated experimentally. This calibration will be compared to analytical
calculations. Finally, the temperature measurements acquired on M3EM will be analyzed.

I1l.2.A. The IR thermometry technique

In order to describe to IR thermometry technique, the principle of the IR thermometry will be explained
and the experimental setup (THEMOS-1000) will be detailed.

lll.2.A.a. Principle of IR thermometry

Energy is emitted by all objects having a temperature greater than absolute zero. The intensity of the
energy emitted by the object depends on different parameters (see Figure 3.28):

Temperature: The energy radiated increases as the object becomes hotter, permitting measurement
of temperature by measurement of the emitted energy, particularly the radiation in the infrared
portion of the spectrum of emitted radiation.

Wavelength: The intensity of radiated energy depends on the wavelength, based on Planck’s law [24].

Emissivity: Emissivity is defined as the ratio of the energy radiated by an object at a given temperature
to the energy emitted by a perfect blackbody at the same temperature. The emissivity of a blackbody
is equal to 1. All values of emissivity are between 0 and 1 and are a function of the wavelength.

25
= 20
~
T
7 15
v
E 10
<
[
=~ 5
0
0 2 4 6 8 10
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Figure 3.28: Spectral radiance I calculated with Planck’s law for a blackbody emission as a function of
the temperature and the wavelength A.

I.2.A.b. THEMOS-1000 setup
Magnification Numerical aperture | Working distance
0.8 0.13 22 mm
4 0.52 25 mm
15 0.71 15 mm

Table 3.4: Specifications of the three different IR lenses.
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The THEMOS-1000 is an IR thermometry device developed by HAMAMATSU. Figure 3.29 details the
setup. The InSb detector allows measurements in the infrared spectral range with wavelengths from
3.7 to 5.2 um. The intensity of the radiated energy is measured by the InSb camera via dedicated
optics. Three different IR lenses are available. Their properties are summarized in Table 3.4. In order
to interpret correctly the measurement of the intensity of the emitted energy as a function of
temperature, the emissivity of the sample has to be determined over the entire spectral range of the
InSb camera.

InSb camera

IR lens

Chuck

Figure 3.29: Picture of the IR thermometer THEMOS-1000.

11.2.B. IR thermometry measurements

In this section, the emissivity of M3EM will be measured experimentally. This measurement, realized
on the THEMOS, will be used to determine the surface temperature of the chip.

111.2.B.a. Emissivity measurement

The emissivity measurement applied on M3EM chip is detailed. First, the calibration procedure of the
THEMOS-1000 device is explained.

Emissivity calibration:

The principle of the calibration is explained in Figure 3.30. Q, and @y, are the energies from the
environment and the black body, respectively. T; is the temperature of the sample which is controlled
by a hot plate under the sample holder. The energy collected by the InSb camera Q;,sp for a sample
heated at temperature T; is equal to

Qinsp [Ts] = &Qpp [Ts] + (1 - g)Qe- (3.20)

In order to characterize the emissivity of the chip, the energy collected by the InSb camera is measured
at two different temperatures T, and T,. The collected energy is equal to

QmsplTs1] = €Qpp[Ts1] + (1 — €)Qe, (3.21)
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QrmsplTs2] = €QpplTs2] + (1 — €)Qe. (3.22)
The emissivity of the sample ¢ is therefore calculated as follows:

_ QmnsplTs2]-Qmsp(Ts1l
€ Qub[Ts21-Qpp[Ts1] (3.23)

It is implicitly assumed that £ does not depends on temperature in the range [Ty, T, ].

(1-9)Q, eQpp|[Ts]

Figure 3.30: Principle of the emissivity calibration with IR thermometry.

Emissivity measurement:

The collected energy Qp,sp is measured experimentally at two different temperatures Tgq and Ts,,
30 °C and 80 °C respectively, with the 0.8 lens magnification. A thermocouple is used to probe the
sample temperature. The emissivity calibration is shown in Figure 3.31. One can see that the emissivity
of the M3EM chip gy35y is equal to 0.45 approximately over almost all surface of the chip. This allows
to consider that the emissivity is well determined by this calibration procedure. The silicon top die
being transparent to IR in the range 3.7-5.2 um, the Metal Top level is being imaged. However, in some
places where the metal density is not homogeneous (white lines in Figure 3.31), the emissivity changes
sharply. The EMA model used previously is no longer valid in this places. The temperature cannot be
determined accurately at these locations by the IR setup.

emzem = 0.45 0.7
0.6
0.5
0.4
0.3
0 1000 2000 3000 4000 5000
Thermocouple X(um) b)

Figure 3.31: a) Emissivity measured with InSb camera on M3EM surface. b) Profile along dashed line.

II.2.B.b.  Top die surface temperature

Figure 3.32 presents the IR thermometry measurement. The hotspot at the small right heater location
is well highlighted. The maximum temperature rise at the center of the heater is measured to be 63 K
approximately. Considering the imprecision of the measurement due to the metal density variation
(dark lines on Figure 3.31), these results will be compared to a temperature mapping performed with
Scanning Thermal Microscopy technique.
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Figure 3.32: Temperature rise measured with IR thermometry on M3EM surface.

ll.3. Thermometry by means of Scanning Thermal Microscopy

In order to measure the surface temperature of the chip with the SThM technique, the probe is used
in temperature contrast mode (TCM). A low current in the probe is used to map the temperature at
the surface of samples, which varies due to additional heat sources in the sample. The probe does not
heat the sample. The same experimental setup is used in Chapter 2. However, in SThM, the
temperature measured is the temperature of the probe and not the temperature of the surface. In
order to interpret the experimental data as a function of the surface temperature, a thermometry
coefficient relating the surface temperature and the probe temperature is calculated numerically for
both the palladium nano-probe and the Wollaston micro-probe. Once done, temperature can be
determined along a line on the surface of M3EM chip.

lll.3.A. FEM modelling of thermometry coefficient

a) \)5“ b) o
= 5500 T =Troom = ?‘000 -
Lbo’cr LpoX
N A

"\\L,x I— T = Tsurface

I'= Tsurface

Figure 3.33: Thermometry coefficient determination by FEM modelling for
a) palladium nano-probe and b) Wollaston micro-probe.

The thermometry coefficient C is defined as follows:

AT,
= —probe (3.24)

AT syr f ace'
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where ATy0pe and ATgyrrqce are the temperature rises of the probe electrical resistance and the
surface in contact with the probe, respectively. The FEM models developed in Chapter 2 for the
modelling of the tip-sample contact thermal transfer have been reused to determine numerically the
thermometry coefficient of the palladium nano-probe and the Wollaston micro-probe. Figure 3.33
shows the modelling of the probe and the associated boundary conditions. In the same way, the heat
losses though air and radiative transfer are represented by an air domain above the surface and
surrounding the probe. In these models, the temperature of the surface set as a boundary condition,
is considered constant. This assumption is particularly valid if the thermal gradient at the surface is
small. It is well verified in the case of M3EM where the size of the small right heater (600 um wide) is
much larger than the size of the probe apex (<100 nm for the palladium nano-probe and ~5 um for
the Wollaston micro-probe). Conversely, for large thermal gradients, this assumption could be subject
to further investigations. The thermometry coefficient C of the palladium nano-probe and the
Wollaston micro-probe are calculated to be equal to 50.2+1.3% and 29.7+0.7%, respectively.

ll.3.B. Temperature mapping with SThM

During the measurement of temperature with SThM, a low current is used to detect the variation of
temperature of the probe. First, the sensitivity of both probes will be determined as a function of the
injected current. Second, the procedure of measurement will be explained. Finally, the surface
temperature will be deduced.

Ill.3.B.a. Sensitivity of the probes to the injected current

4.00 3.800
395 3.795
3.790
. 390 —
=3 S 3785
* 3385 &= 3780
R =3.780 + 31.72P :
3.80 3.775
3.75 3.770
o 1 2 3 4 5 6 7 0 0.1 02 03 04 05
a) P(mW) b) P(mW)

Figure 3.34: Variation of electrical resistance as a function of the injected Joule power for the
Wollaston micro-probe for a) large electrical current and b) low electrical current.

In order to perform accurate temperature measurements, the probe needs to be supplied with an
electric current I large enough for the temperature variations to be measurable. Figure 3.34 shows the
sensitivity of the Wollaston probe electrical resistance R as a function of the injected Joule power P.
One can see that the electrical resistance depends significantly on the Joule power only for power
higher than 1 mW. In this case, the minimum current I,,,;;, can therefore be determined with:

Imin = /Pn;n, (3.25)

where P, i, is the minimum necessary Joule power and R is the electrical resistance of the probe. In
the following studies, the injected current I will be taken slightly larger than I,,,;;, to stay clearly out of
the noise. AT)y,pe is the temperature rise of the probe induced by the power supply. The data are
summarized in Table 3.5.
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Probe Prin (KW) | Ro (Q) | Iipin (mA) | I (mA) ATprobe (K)
Wollaston 1000 2 16 20 9.0
Palladium 10 100 0.18 0.2 1.6

Table 3.5: Sensitivity to the injected current for both palladium and Wollaston probes.

Il1.3.B.b.  Procedure of temperature measurements

The points of temperature measurements on the surface of the chip are shown in Figure 3.35. The
surface temperature rise measured at each point is therefore calculated as follows:

R-R,

CRy’ (3.26)

ATy face =

where Ry is the electrical resistance of the probe at room temperature, « is the TCR of the probe and
C is the thermometry coefficient of the probe (calculated by FEM in Section 111.3.A.). In the following
section, the resistance of reference R, will be measured far from the contact, where the probe is not
heated by the sample. The measurement of R, at the beginning and at the end of the experiment
allows to detect a possible slow thermal drift or an unwanted contamination of the tip.

5mm

Figure 3.35: Position of the points of measurements on the M3EM chip.
Ill.3.B.c. Impact of the probe on the temperature field

Heater element

ﬁ Resistance: R(T) = Ry (1 + aAT)

Far from contact In contact

Figure 3.36: Characterization of the probe impact on the temperature field of M3EM.
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In this condition of use of the SThM technique, it is very important to know if the probe modifies the
temperature field generated by the heater. In the case of a probe in contact with the chip, the probe
acts as a heat sink on the top die surface. The temperature drop generated by the probe has to be
qguantified. The principle of the measurement is shown in Figure 3.36. In the case of M3EM, the
resistance of the heater remains steady for both the palladium nano-probe and the Wollaston micro-
probe. It means that the temperature of the heater does not decrease when the tip approaches the
chip. The SThM technique is not invasive because the heat sink is negligible in comparison with the
thermal conductance toward the chip holder. It has been proven by W. Zhao that this is not always the
case, especially for very small active samples [25].

Il1.3.B.d.  Conclusion on SThM temperature mapping

The comparison between the measurements of surface temperature in SThM for both the palladium
probe and the Wollaston probe is shown in Figure 3.37. The uncertainty on the ATy, fqce
measurement is due to the uncertainty on the measurement of the electrical resistance R,. Here, the
value of Ry is taken equal to 2+0.3 and 100+10 Q for the palladium nano-probe and the Wollaston
micro-probe, respectively. Indeed, R, is associated to the active part of the probe which is smaller than
the electrical resistance of the probe. Ry is difficult to determine because:

(i) the exact length and diameter of the platinum wire for the Wollaston micro-probe is hard
to measure by optical microscopy;

(ii) the geometry of the palladium resistance at the tip apex of the palladium nano-probe
varies according to the probe.

However, one can see that the temperature variations measured in SThM are similar for both the
palladium nano-probe and the Wollaston micro-probe. In this condition of use, the SThM technique
can provide a temperature mapping over centimetric distances with a precision up to 3 K. It is
important to mention that in the case of SThM with the palladium nano-probe, measurements on large
temperature surfaces are time consuming (a few hours). The thermomechanical strain on the tip are
such that it bends. The tip-sample contact is then difficult to maintain during the all procedure.

65
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Figure 3.37: SThM surface temperature mapping with palladium and Wollaston probes.

IV. Discussion

Here, the experimental results and the numerical modelling of the chip heat dissipation is compared
first. Then, the relevance and the accuracy of the FEM model is interpreted. Finally, the influence of
different parameters is estimated numerically and experimentally.
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IV.1. Comparison between modelling and experimental data

67
® Wollaston micro-probe
62 [ | Palladium nano-probe
<
= 57
<
52
—— IR thermometry
47
0 1000 2000 3000 4000 5000
X (um)

Figure 3.38: Surface temperature rise for M3EM measured by SThM and IR thermometry.

The surface temperature rise ATgy,rqce Measured with the SThM and the IR techniques are compared
together in Figure 3.38. The data are acquired on the top die surface following the line in Figure 3.36.
Here, the value of the electrical resistance R is taken equal to 2 and 100 Q for the palladium nano-
probe and the Wollaston micro-probe, respectively. The IR measurement reveals additional peaks
which are artifacts due to the high metal density close to the copper lines of the metal levels. Although
the temperatures measured are different with each technique, the temperature profile seem to be
similar. In order to match the SThM and the IR measurements, the value of R, is fitted equal to 1.8
and 93 Q for the Wollaston and the palladium probe, respectively. In addition, the IR profile has been
filtered to remove the peaks. The SThM and IR measurements (filtered by moving average) are
compared to the FEM modelling in Figure 3.39. We can see that the FEM model and the experimental
measurement are in very good agreement together. This model will be used later to analyze the
influence of different physical parameter on heat dissipation in the case of the M3EM test chip.
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Figure 3.39: Temperature rise calculated in FEM and measured with SThM and IR thermometry.

IV.2. Influence of various experimental parameters

The influence of different physical parameters is determined numerically. First, the radiative heat
transfer is considered in the FEM model. Then, the impact of the thermal boundary conductances
(TBCs) between layers is quantified. Finally, different BEOL homogenization methods are compared.
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IV.2.A. Radiative heat transfer
64
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Figure 3.40: Effect of radiative heat transfer. Modelling by a TBC h,.,4 and a heat sink Py,.

It is noticeable that with this FEM model, the hotspot is well characterized numerically. However, the
radiative heat transfer has been neglected until now. In order to consider the radiative heat losses,
especially during the calibration of g¢;,,;, under vacuum, an additional thermal boundary conductance
h,qq is added all over the top surface of the chip. h,,4 is calculated as follows at the first order:

hyaa = 40€m3EmTibom. (3.27)

where T,,om is the room temperature taken equal to 300 K. &3y is the emissivity of the chip
between 0 and 1 and o is the Stefan-Boltzmann constant equal to 56.7 nW.m2.K™. In this condition,
hyqq is between 0 and 6 W.m™2.K%. Considering the radiative heat losses h,.,; equal to 6 W.m2.K?,
Isink 1S therefore determined to fit the temperature rises of the heater (in vacuum and air). gginx is
found equal to 354 W.m2.K? (instead of 360 W.m2.K?). The heat flux distribution is summarized in
Table 3.6 with and without taking into account the radiative heat transfer. It is important to notice that
the radiative heat losses have been modelled by a surface boundary condition even if the chip is
emitting energy on its entire volume. Figure 3.40 shows that radiative losses can be modelled in the
same way by a thermal boundary conductance h,,4 and a heat sink P,,4 in the BEOL with P44
calculated as follows:

Praq = _hradSchipATBEOLr (3.28)

where S¢p;p is the surface of the chip in the xy plane and ATgg,, is the average temperature rise of
the BEOL. P,.,q4 = —8 mW for an emissivity of the chip equal to 1. The radiative heat losses have
therefore no influence on the temperature field of the chip. In the future, the radiative heat losses
coefficient h,.q4 will be included in the fit parameter ggink-

hega =0 W.m2K* hga=6 W.m2K*
Heat path mW % W %
Total 500 100 500 100
Sink 483 96.6 475 95.0
Air 13.6 2.7 13.6 2.7
Wire bonding 3.4 0.7 3.4 0.7
Radiation 0 0 8.0 1.6

Table 3.6: Summary of the heat flux distribution.
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IV.2.B. Thermal boundary conductances

9R¢p

2R,

Figure 3.41: Schematic of M3EM cross section with a) location of the TBRs in the stack and
b) equivalent FEM modelling with boundary conditions.

In fact, the stack of layers of ICs consists of a multitude of interfaces. These interfaces, thermally
resistive, have been neglected previously in the calculation of the effective thermal conductivity of the
BEOL (see Section 11.2.A.). Here, the influence of the TBRs will be evaluated in the case of the M3EM
chip. The TBR R,y is usually of the order of 2.10® K.m2.W? between oxides and nitrides [14]. In order
to take into account the TBRs in the FEM modelling, additional thermal boundary conditions have been
added on the top and on the bottom surface of the BEOL. A schematic of the boundary conditions is
shown in Figure 3.41. It is important to notice that the TBRs can be represented by two different
boundary conditions because the heat flux has been proven to be mainly oriented in the z direction.
The influence of the TBR Ry, is shown in Figure 3.42. The parametric study performed on R;}, allows
to demonstrate that the temperature rise generated by the TBRs is equal to 70 mK in our study case
where Ry, is equal to 2.10® K.m2.W™. It is good to note that even for a higher value of R;; equal to
2.107 K.m2.W, the temperature rise due to the TBRs remains lower than 700 mK. In the next parts, it
will be coherent to neglect the effect of the TBRs on heat dissipation.
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Figure 3.42: Influence of the TBR Ry, on the temperature field calculated in FEM.

IV.2.C. BEOL homogenization method

In this section, the impact of the homogenization method will be quantified. Three different EMA
models are described in Section 11.1.B. In the case of M3EM, the volume fraction of copper x is equal
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to 19.6%, the thermal conductivity of the matrix k,,, and of the copper k. are equal to 1.3 and 330
W.m™.K"* [13, 14] , respectively. The effective thermal conductivity k¢, of the BEOL is determined
following Eq. (3.1) and Eq. (3.2). k. is found equal to 3.1 and 2.2 W.m™.K* with Maxwell-Garnett and
Maxwel-Bruggeman EMA models, respectively. The values of thermal conductivity k,, k, and k,
homogenized in the directions x, y and z are summarized in Table 3.7.

EMA model k, (W.m™.K?) ky (W.m*.K?) k, (W.m'.K?)
Parallel and series 2.6 2.6 2.0
Maxwell-Bruggeman 3.1 3.1 3.1
Maxwell-Garnett 2.2 2.2 2.2

Table 3.7: Homogenized thermal conductivity for different EMA models.

Figure 3.43 shows the influence of the EMA model. We can see that whatever the EMA method chosen,
the temperature rises are close, especially for the parallel and series conductances and the Maxwell-
Garnett models. Furthermore, the temperature difference between the Maxwell-Bruggeman and the
Maxwell-Garnett models is lower than 200 mK which can be easily neglected. In the following parts,
the parallel and series conductances model will be used because it is more convenient to apply in the
case of BEOL with a matrix composed of several different dielectric materials. It is important to
mention that the TBRs R;j, and the effective thermal conductivity k.s; of the BEOL have almost no
impact on heat dissipation which is mostly driven by the boundary conductances ggink, Arqq and hgjr-
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Figure 3.43: Influence of the EMA model on the temperature field calculated in FEM.

V. Conclusion

The aim was to develop a numerical model for the evaluation of the self-heating phenomena in 3D
hybrid bonding architectures. To do so, the test chip M3EM has been chosen. This chip and its structure
have been detailed. M3EM being a passive device, copper serpentine have been used to generate heat
and represent the equivalent FEOL power generation in a commercial chip.

The FEM modelling strategy has been chosen. In order to overcome the constraints of finite element
number, the thermal conductivity of the BEOL structure has been homogenized. To do so, different
EMA models have been considered:

(i) parallel and series;

(ii) Maxwell-Garnett;
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(iii) Maxwell-Bruggeman.

The parallel and series thermal conductance models proved to be consistent and convenient for the
modelling of the M3EM BEOL. In order to validate the FEM model, the numerical data have been
compared to experimental measurements directly operated on M3EM top surface. To do so, two
techniques were chosen: Scanning Thermal Microscopy and Infrared thermometry.

To measure the temperature of the chip activated in real time inside the measuring instruments,
M3EM has been connected to a homemade electronic test bench. A PCB holder was developed at
CETHIL to fit dimensional constraints. Using this setup, the temperature measurements were realized
with SThM (palladium and Wollaston probes) and with IR thermometry (THEMOS). The temperature
measurements performed with SThM and IR thermometry were in good agreement together. The
numerical FEM model of the M3EM 3D HB test chip has been developed and calibrated experimentally.
This model allowed to obtain the temperature field in the chip volume and over the chip surface. In
the case of M3EM, it has been shown that:

(i) Heat dissipation does not depend from the EMA method used for the homogenization of
the BEOL thermal conductivity.

(ii) Heat dissipation does not depend from the TBRs of the stack.

(iii) Heat dissipation is mainly driven by the surface boundary conditions (sink conductance
and air losses).

Furthermore, the influence of the radiative heat losses has been added to the previous FEM model. To
do so, a radiative heat transfer coefficient was calculated as a function of the chip emissivity. It has
been shown that the radiative heat transfer is small and can be included in the calibration of the heat
sink conductance.

In this chapter, a numerical model has been developed with FEM and calibrated with thermoresistive
measurements. In the case of M3EM, the temperature calculations were validated with both SThM
and IR thermometry measurements. In the future, this modelling method will be used for more
complex architectures.
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Chapter 4. Numerical and experimental
investigations on 3D Hybrid Bonding imagers

In this chapter, the objective is to study the thermal behavior of a new type of technology: the 3D
hybrid bonding imager (3D HB IMG). To do this, methods and approaches, validated in the previous
chapter, will be applied on two different electronic chips. The first one, called FLAMINGO, is an analog
test chip with an inactive pixel matrix. This chip was designed to validate the whole process and
assembly flow in terms of mechanical reliability. The second one, called 93D, is a demonstrator with
an active pixel matrix. Both chips were therefore designed for different objectives and thus, have
different added-value in the frame of this work. In a first step, the structure of these two chips will be
detailed. Then, the approach carried out on M3EM will be extended to FLAMINGO as well as to its
matrix of pixels. Finally, the behavior of the pixel and its performances during a thermal loading will be
investigated by means of the 93D device: the numerical and experimental results will then be
discussed.

I. 3D hybrid bonding imagers for commercial applications

In this section, the structure of the FLAMINGO chips and the 1140/1110 technologies are detailed in
two parts. First, the structure of the BEOL is addressed and secondly the structure of the pixel is
explained.

1.1. Structure of the interconnection levels

The entire stack of the 3D HB IMG consists of a total of three different parts as shown in Figure 4.1. In
this section, each element is described:

(iii) top chip: 1140/1110 technology;

(iv) hybrid bonding: copper/oxide interface;

(v) bottom chip: C40 technology.

1140/1110 top chip

Hybrid bonding

C40 bottom chip

Figure 4.1: Schematic of the BEOL structure in the 3D hybrid bonding imager.
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I.L1.A. C40 bottom chip

Since the FLAMINGO chip was designed to evaluate the robustness of the assembly, it is only composed
by test structures such as crack detectors, stress sensors [1] and thermal sensors. These devices being
quite small compared to the large die surface, up to 80%-90% of the surface has been filled with
dummy structures. Moreover, the design complexity raises drastically when the pixels need to be
electrically tested. Thus, due to the tight timeframe and objectives targeted, the pixel matrix was
chosen as inactive. The pixel matrix is only processed to track possible delamination or cracks after
thermal cycles and/or humidity storage. It allows also to monitor the thermal behavior, expected to
be close to the final object (such as 93D for example).

Note that in the next sections, only the order of magnitude of dimensions are provided for
confidentiality reasons. Figure 4.2 shows the geometry of the different metal levels: M1X, MiX and
MiZ. It is important to note that in the same way as in the M3EM chip (Chapter 3), all the metal layers
of the C40 chip have their copper fraction homogenized through copper dummies over the whole chip
surface. The dummies are made of regular squares of copper with a side length of 0.9 um and a pitch
of 1.3 um. Figure 4.3 shows the geometry of the shallow trench isolation (STI) level of the C40 bottom
chip. This level allows the electrical isolation of each FEOL transistor from the other ones.

Oxide (SiO,)
C40-MiZ
1.4 um
Oxide (Si0,) LEVAEL 4,
20 nm
Capping (SiO,)
C40-MiX
0.25 pum
Oxide (SiO,)
C40-M1X e
Barrier (SiCN)
0.26 um

Oxide (SiO,)

Figure 4.2: Characteristics of the different metal levels in the C40 bottom chip.
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- —
Pitch = 8 um

Oxide
C40-STI

300 nm Length = 4 pm

Bulk silicon Bulk silicon

Figure 4.3: Schematic of the STl level in the C40 bottom.
a) Cross section of the STl level in the z direction. b) Floorplan of the STl in the xy plane.

I.L1.B.  Hybrid bonding

Figure 4.4 shows the geometry of the hybrid bonding level. As in the M3EM chip, the whole surface of
the metal layer of the HB level consists of copper squares with a side length equal to 4.5 um and a
pitch equal to around 9 um. The C40 and the 1140/1110 chips are connected through copper vias but
those being few (copper density under 5%), the associated metal density will be considered equal to
zero. This assumption could be subject to discussion, especially close to the heating elements.

Oxide (SiO,)

HB

24 um Oxide (SiO,)

Oxide (Si0,)

Figure 4.4: Characteristics of the hybrid bonding level for the 3D BSI.
1.1.C.  1140/1110 top chip
Oxide (DTI)

1140-DTI

3 pm 1.75 pm

Bulk silicon Bulk silicon

Figure 4.5: Schematic of the DTl level in the 1140 top chip.
a) Cross section of the DTl level in the z direction. b) Floorplan of the DTl in the xy plane.
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Figure 4.5 shows the geometry of the deep trench isolation (DTI) level of the 1140/1110 top chips. This
level allows the electrical isolation of the photodiodes [2]. Figure 4.6 shows the geometry of the
different metal levels: M1 to M4. As before, all the metal layers of the 1140/1110 chips are filled with
dummies: copper squares of 0.9 um width and 1.3 um of pitch.

Oxide (SiO,)

1140/1110-M4

1.4 um

Oxide (Si0,) Ta/TaN 4,

1140/1110-Mi | Oxide (SiO,)

0.35 um Ta/TaN

Oxide (Si0,)

1140/1110-M1 Barrier (SiCN)

0.54 um

Oxide (Si0,)

Figure 4.6: Characteristics of the different metal levels in the 1140/1110 top chips.

1.2. Pixel characteristics

In this section, the multi-layer geometry of the pixel stack is detailed. Then the micro lenses on top of
the 1140 chip are characterized with both optical microscopy and atomic force microscopy (AFM).

.2.A. Layers geometry

The structure of the pixel is described in Figure 4.7. Here, three different parts are highlighted from
bottom to top:

(i) the multilayer structure where the photodiode (PPD) is patterned;
(ii) an optical filter RGB (red, green, blue);

(iii) the resin micro lens which concentrates the light on the PPD.
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Resin

Filter

Al,0,
Figure 4.7: Cross section of the pixel structure for 1140 top chip.

1.2.B. 1140 micro lenses AFM characterization

W

Filter

Pitch= 3.2 um

——————————>

Figure 4.8: Top view of the 1140 pixel geometry for a) tungsten layer and b) resin micro lenses.

Figure 4.8 shows the geometry of the tungsten layer and the micro lenses. This tungsten pattern avoids
the crosstalk of photons between the photodiodes below each lens. This information gives the
diameter of the lenses in the xy plane. However, the height of each micro lens remains to be
determined. Indeed, after the deposition and the annealing of the resin, the geometry is not perfectly
known. As a results, the surface topography of the imager is characterized experimentally by optical
microscope and AFM. The results are presented in Figure 4.9. Optical microscopy allows to distinguish
the big micro lenses with their associated color filters, contrarily to the small micro lenses which are
more tricky to identify. Hence, additional measurement is realized with AFM nano-probe and a
scanning resolution of 256x256 points over 20x20 um?. An AFM apex curvature radius of 10 nm is used
for this study. Figure 4.9.b) depicts the results obtained for the small micro lens. This allows to measure
the height of both small and big micro lenses which are equal to 0.6 and 1.2 um, respectively.

The thermal conductivity of Al,03, Ta;0s, SiO,, SiN and TiN are taken equal to 0.90, 0.45, 1.3, 0.75 and
19 W.mL.K ! respectively [3-8]. The thermal conductivity of W is equal to 174 W.m™..K [9]. The resin
thermal conductivity K, is taken equal to 0.34 W.m.K? [10]. The RGB filters [11] (as shown in
Figure 4.9.a)), which consist of copper nanoparticles in an organic resist, can be seen as a
homogeneous media with the Maxwell-Garnett EMA (Chapter 3 Section 11.1.B). The thermal
conductivity k., is evaluated to 390 W.m™*.K? [12]. It has been shown by internal study at MATEIS
laboratory (O. Merchiers) that the volumetric fraction of copper needs to be lower than 6% in order to
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filter the light at wavelengths of 460, 540 and 610 nm. The effective thermal conductivity of the filter
k¢iter is therefore estimated to be equal to 0.37£0.03 W.m™.K™*. From EMA it can be shown that k..
depends weakly on the TBC between the particles and the matrix because k¢ /Kyesin > 1.

-

i

Filter R ——w;
- Filter G52 ’\ :

+ Filter B

:

10 um

e

Figure 4.9: Surface characterization of the 1140 imager in the xy plane.
a) Optical microscopy image of the pixel array. b) AFM topography of the pixel micro lenses.

ll. Characterization at die and pixel levels: FLAMINGO test chip

In this section, the FLAMINGO 3D hybrid bonding test chip is studied. First, the dedicated embedded
thermal structures are described. Then, the chip is modelled with the FEM numerical procedure
developed on the M3EM test chip (Chapter 2). Additionally to the M3EM device, the thermal behavior
of the pixel of the 1140 chip is now studied. Finally, the numerical results are validated with the SThM
measurements on the pixel matrix.

I1.L1. Characteristics of the embedded thermal structures

In FLAMINGO, different thermal structures are embedded in the BEOL. The specifications and the
thermoresistive properties of these structures are now determined.

Il.L1.A. General specifications

Heater 2

Heater 1

Figure 4.10: Positions of the embedded thermal structures in the FLAMINGO test chip.

Here, two different thermal structures were patterned in the M1 metal levels of chips C40 and 1140,
respectively. The former acts as heater while the latter aims to sense the temperature locally. Indeed,
ICs (bottom die) are expected to heat up the stack (power management, image processing...). Thus the
heater has been located close to the FEOL layer of C40. Besides, the objective is to evaluate the thermal
impact on the pixel matrix. The sensor is hence located just beneath. The location of the metal
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serpentines is shown in Figure 4.10. The properties of the thermal structures are summarized in
Table 4.1 Here, R, is the electrical resistance of the serpentine at room temperature.

Structure Data Heater Sensor
w E (um) 4 0.09
S (um) 3.5 0.9
Y L L (um) 140 5
W (um) 200 5
il Ry (Q) 160 80

Table 4.1: Properties of the thermal structures of FLAMINGO.

I.L1.B. Serpentine TCR measurements

In order to allow future thermoresistive analysis with the equation
R(T) = Ry(1 + aAT), (4.1)

where R is the electrical resistance of the serpentine, the TCR a of each heater and sensor needs to
be characterized. To do so, the chip FLAMINGO is heated on a hot plate at different temperatures
(measured with a thermocouple). The results are shown in Figure 4.11. The TCR of the heaters (M1)
and the sensors (M1) are found to be equal to 0.321 and 0.316 %.K* respectively. Considering these
values of TCR, the Joule heating associated with each thermal structure can be estimated as a function
of the input power.

215
195

175
Sensor

155  Slope = 338 mQ.K?!
a = 0.316 %.K*
20 30 20 <0 o . .

R (Q)

135

T(°C)
Figure 4.11: TCR measurement for the M1 levels of C40 and 1140 chips respectively.

I.L1.C. Joule heating of the thermal structures

For the heaters and the sensors, the resistance R of the heating element is measured as a function of
the injected Joule power:

P = RI?, (4.2)

where [ is the input current. Joule heating induces an elevation of temperature of the element, and
consequently the power P and the resistance R are linearly dependent. Figure 4.12 shows the
experimental results. It can be seen that for the heater, unlike in the case of the sensor, the
temperature rise seems to be limited for injected Joule power larger than 200 mW. This is due to the
presence of protective diodes at the pads which limit the current intensity in the BEOL interconnection
levels of the C40 bottom chip (Electrostatic Discharge protection). Here, the maximum injected current
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is therefore limited to 45 mA. This induces constraints on the temperature rise that can be induced by
the heater element. As far as the sensor is concerned, the BEOL interconnection levels of the 1140 top
chip does not seem to have any current limitations.

180 145
Sensor -
138 e
170 -
_ 131
S 160 c L
& = 124 -~
150 . - .
Linear 17 Linear
140 110 -
0 200 400 600 0 3 6 9 12 15
P (mW) P (mW)

Figure 4.12: Resistance measured as a function of the injected Joule power for:
a) heater in the C40 bottom chip and b) sensor in the 1140 top chip.

I.2.  Numerical modelling of FLAMINGO test chip

In this section, the FLAMINGO test chip is modelled by FEM. First, the BEOL is homogenized. Then, the
pixel structure on top of the 1140 chip is modelled and taken into account in the global FEM model of
the chip and its environment. Finally, the numerical results are discussed.

II.2.A. Modelling of the BEOL for hybrid bonding ICs

The BEOL structure is homogenized with the parallel and series EMA as validated in Chapter 2. For this,
the procedure involves two steps: the homogenization of each metal level and the homogenization of
the global stack, successively performed.

I.2.A.a. Levels effective thermal conductivity

1K

0K

Figure 4.13: Temperature rise modeled by FEM for the homogenization of the M1X level with
a) in-plane thermal and b) cross-plane conductivity homogenization.

To homogenize the thermal conductivity of each metal level, an FEM model has been developed. This
model represents the unit cell of a metal level. This cell is made of one dummy and its surrounding
layers. This FEM model is detailed in Figure 4.13 for the M1X level. A temperature difference AT is set
as a boundary condition and the heat flux ¢ is calculated numerically. The effective thermal
conductivity k is therefore determined as follows:
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k=2L (4.3)

where S is the surface of the domain perpendicular to the heat flux and L is the length of the domain
parallel to the heat flux. Following [13-20], the thermal conductivities of the films of SiN, SiO,, SiCN,
Low-k and Ultra Low-k are taken equal to 0.85, 1.3, 0.6, 0.59 and 0.13 W.m.K?, respectively. The
uncertainties on these values are detailed in Chapter 2.

I.2.A.b.  Summary of effective thermal conductivities for the various levels

The homogenized properties of the different layers k, k, and k, are summarized in Table 4.2 for the
FLAMINGO chip in the three directions x, y and z. The impact of the thermal boundary conductance
(TBC) is neglected here, since many layers already thermally-resistive are present in the structure. The
volume fraction of copper v, is also calculated for each level.

Thickness k, k, k, Vcu

Level -1 -1 -1 -1 -1 -1
pm W.m™.K W.m™.K W.m™-.K %
DTI 3.000 9.89 15.4 105 0.00
M1 0.560 2.49 2.49 1.55 7.19
M2 0.270 3.29 3.29 1.75 7.19
M3 0.420 3.28 3.28 2.05 11.5
M4 1.420 2.82 2.82 2.42 42.2
HB 2.440 2.10 2.10 1.53 30.0
M2z7 1.405 2.80 2.80 2.33 41.2
M1z 1.405 2.80 2.80 2.33 41.2
M5X 0.250 0.83 0.83 0.31 6.23
M4X 0.250 0.83 0.83 0.31 6.23
M3X 0.250 0.83 0.83 0.31 6.23
M2X 0.250 0.83 0.83 0.31 6.23
M1X 0.260 1.90 1.90 2.67 7.19
STI 0.300 97.6 97.6 118 0.00

Table 4.2: Homogenized thermal conductivities for the levels of FLAMINGO test chip.

I.2.A.c.  BEOL effective thermal conductivity

In the case of the BEOL homogenization, the same ordered structures as in M3EM (copper dummies)
are present. Consequently, for the FLAMINGO test chip, the EMA strategy is based on the parallel and
series thermal conductance model as well. Considering this model, it is possible to evaluate the global
effective thermal conductivities of the entire stack K, Ky and K, in the three directions x, y and z
respectively as follows:

K.Y E =YkLE, (4.4)

K, Y E; =Y ki.E, (4.5)
Ei _ XEi

Zk_é =% (4.6)

where E; is the thickness of each level respectively. The thermal conductivities K, Ky, and K, are found
equal to 6.5, 7.8 and 1.7 W.m™.K™ respectively. Here, the total volume fraction of copper V, can be
calculated and is found to be equal to 17.0%. In the same way as for M3EM, the thermal conductivity
in the z direction is low. This is mainly due to the presence of Ultra Low-k dielectric materials in the
M2X to M5X metal levels of the C40 die. However, unlike M3EM, the FLAMINGO chip has higher

133
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés



4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

thermal conductivity in the x and y directions. The in-plane heat spreading should be improved in
comparison to M3EM.

1.2.B. Modelling of the pixel for 3D hybrid bonding imagers

Pixel
Stack

Figure 4.14: Principle of the simplification for the FEM modelling of the pixel imager.
a) Full layered geometry of the pixel. b) Homogenized equivalent level.

In this section, the influence of the imager on the chip thermal behavior is taken into account
numerically. To do this, the geometry of the pixel is divided in two parts: the thin layers stack and the
micro lenses. First, the structure of the stack is homogenized to represent an equivalent level above
the 1140 top chip. Second, the micro lenses are modelled numerically and represented as an equivalent
thermal boundary resistance. The principle of the numerical analysis is shown in Figure 4.14.

I.2.B.a. Homogenization of the pixel stack

Figure 4.15: Cross section of the pixel stack without the micro lenses.

A schematic of the pixel stack without the micro lenses is shown in Figure 4.15. The pattern of the
TiN/W layer can be found in Figure 4.8. The structure of the pixel being periodic in the xy directions
over the imager surface, the effective thermal conductivity of the stack can be determined with the
EMA method explained in Section II.2.A. for the BEOL. However, in the case of this stack, a wide range
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of thermal conductivities is used. The effective thermal conductivity must be estimated on a case-by-
case basis for each direction. The equivalent level has a pitch equal to 3.2 pm and a thickness Eg¢qck
equal to 1.64 um. A temperature difference AT = 1 K is set as a boundary condition on the opposite
faces of the domain in the three directions x, y and z. The heat flux density Q is then calculated
numerically perpendicularly to the heat flux direction.

x and y directions:

Qx/Qy [MW.m?]
24/65

W—016p.m W_OOOSum

3.2 um 3.2 um

1.64 um

Figure 4.16: Heat flux distribution in the pixel stack along the directions x and y.

The heat flux densities @, and Q,, are shown in Figure 4.16 for the two directions x and y. It is
noticeable that the heat flux is constrained in the tungsten lines (surface S,,) where the thermal
conductivity is the higher. The in-plane effective thermal conductivities k, and k, are therefore
calculated using the parallel EMA. k, and k,, are found equal to 5.7 and 2.1 W.m™.K", respectively.

z direction:
Q; [MW.m?]
[ 0.32
Y
Sw = 3.4 pum?
3.2pum Q,~0.31 MW.m- T_, X
0.30

Figure 4.17: Heat flux distribution in tungsten level along the direction z.

The flux density g, is shown in Figure 4.17 in the direction z. It is noticeable that the heat flux is almost
homogeneous in the xy plane (Q,~0.31£0.1 MW.m?2). The cross-plane effective thermal
conductivities k, is therefore calculated using the series EMA. k, is found equal to 0.51 W.m™.K?,

11.2.B.b.  Micro lenses array thermal resistance

In order to determine the thermal resistance associated to the micro lenses, an FEM model of the pixel
is developed considering the homogenized stack with the micro lens on top of it. The geometry of the
pixel is shown in Figure 4.18.a). A thermal difference AT is set over the opposite surfaces of the domain
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

in the in-plane and cross-plane directions. The flux distribution in the pixel is shown in Figure 4.18.b)
and in Figure 4.18.c) in the in-plane and cross-plane directions, respectively.

AT [K]
a) ! 1
Air 5
’
!
Lens 1
!
\
Stack 1.64 pm :
}
‘ 0
pitch = 3.2 pm AT

Figure 4.18: a) FEM model geometry of the pixel. Heat flux distribution in the pixel cross section with
b) in-plane and c) cross-plane temperature differences.

In-plane thermal resistance:

Figure 4.18.b) shows that the heat flux (white arrows) is constrained in the stack of the pixel. No flux
crosses the micro lens. The thermal resistance of the lens is considered equal to infinity in the in-plane
directions. The thermal resistance of the lens is therefore modelled by a 1D interface resistance above
the pixel stack in the z direction.

Cross-plane thermal resistance:

The thermal resistances of the stack and the micro lenses Rgiqcx and Rjeps in series. The resistance
Rjens is deduced from the thermal resistance of the pixel Rp;y; as follows:

Riens = Rpixel — Rstack (4.7)
E
Rstack = sltc—a;k' (4.8)

A thermal difference AT is set over the top and bottom surfaces as shown in Figure 4.18.c). The
resistance of the stack R4k is found equal to 3.22 uK.m2.W=. The heat flux density Q is calculated
numerically and gives the thermal resistance of the pixel Rpx; With:

Q
Rpixel =ar (4.9)

Rpixer is calculated equal to 78.6 uK.m2.W. The thermal resistance of the lens in the vertical direction
is therefore equal to 75.4 uK.m2.W-2. It is important to mention that the flux lines have to be vertical
in order to use Eq. (4.7). This is why an air domain is added above the pixel structure. Although R;,,,¢
takes into account of 2.5 um of air resistance, this represents only 1%o of the air boundary resistance
6/ kgir, Wwhere § is the thermal skin layer (~2.5 mm), and is negligible.

1.2.C. FEM modelling of the FLAMINGO chip

In this section, the modelling of FLAMINGO is specified. First, the geometry and the boundary
conditions are detailed. Then, the model is calibrated with experimental thermoresistive
measurements. It has been chosen to calibrate the simulation with this approach rather than with the
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

SThM equipment. By doing so, the approach of the pixel modelling can be validated more easily. By
calibrating with the SThM tool (i.e. scan of pixel top surface), the sensitivity to the pixel properties
would be exerted and then, may be hidden by the calibration step.

I.2.C.a. Geometry and boundary conditions

Chip-on-PCB modelling:

i
P heater X~

Rlens

b)

Figure 4.19: Geometry and boundary conditions considered for FLAMINGO FEM model with
a) PCB and 3D HB chip and b) BEOL layers and pixel thicknesses.

Figure 4.19 shows the geometry and the boundary conditions in the case of FLAMINGO. P}, ;e is the
Joule power generated by heaters in the M1X level of the C40 chip. P, is the Joule power
generated by sensors in the M1 level of the 1140 chip. The thermal conductance per unit area hg;,- and
Isink Set as boundary conditions represent both the heat losses through air and towards the substrate
holder of the chip. The whole chip/holder is subject to the heat equation. In this study, the same holder
than for M3EM is used (see Chapter 2). Here, at first, only the central heater is supplied with current.
The injected current in the central heater is equal to 40 mA. Since the electrical resistance of the heater
is equal to 180 Q, the Joule power PL, .., generated by the central heater is equal to 280 mW.

Wire bonding:

Figure 4.20: Optical microscopy image of the wedge wire bonding realized at CIME Nanotech with
a) aluminum pad on top die surface and b) copper pad on epoxy surface.

The impact of the wire bonding on the heat path is taken into account in the same way as in Chapter 3.
Figure 4.20 shows optical images of the wire wedge bonding realized at CIME Nanotech by I. Feng.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

Wires of 18 um diameter are bonded with a pitch of 170 um on the 1140 top chip. Numerically, the
bonding areas are simulated as local discs of diameter 18 pm with a heat transfer coefficient g,.
Following [21, 22], the boundary condition g,,;, is calculated to be equal to 23.7 and 182 kW.m2.K? in
vacuum and air, respectively.

1.2.C.b.  Model calibration with thermoresistive measurement

To evaluate the heat sink conductance g, and the heat loss coefficient h,;,., the thermoresistive
method developed in Chapter 3 (Section 11.3.C.) will be used again. However, in addition to the use of
the serpentine central heater (in M1X level) as a thermometer, the central sensor (in M1 level) will
also be used at the same time.

Heat sink conductance:

Heater Sensor
BEOL level M1X M1
Ry (Q) 16015 8015
a (%.K1) 0.321 0.316
AR (Q) 17.90 8.98
AT (K) 34.9+1.1 35.5%£2.2
Isink (W.m™.K?) 10015 10049

Table 4.3: Thermoresistive measurement of AT under vacuum conditions.

The heat sink conductance g, is evaluated under vacuum. Consequently, the air losses h;;- are set
to 0 in the FEM model. Here, the radiative heat losses are included in the heat sink conductance. The
heater and sensor temperature elevations AT are measured with:

ARL' = ROiaiATi, (410)

where AR is the variation of electrical resistance of the central heater and central sensor, respectively
due to Joule heating. a is the TCR of the M1 levels. R is the resistance of the central heater and the
central sensor. The variation of resistance AR represents the temperature rise generated by the central
heater power supply with a current equal to 40 mA. The data are summarized in Table 4.3. For both
central heater and sensor, the temperature rise measurements are close. It is consistent because
under vacuum conditions, the entire heat flux goes down toward the sink. For the FLAMINGO chip,
Isink is fitted to 100 W.m2.K™. This is the 2-point measurement method that generates the uncertainty
on the fit of gg,x. However, this value being very different to the one found for M3EM (fitted to
360 W.m2.K?), it shows that the value of gg;,, must be calibrated for every study case. The value of
heat sink conductance could depend strongly on the chip holder.

Heat loss coefficient:

Heater Sensor
BEOL level M1X M1
Ry (Q) 1605 8015
a (%.K1) 0.321 0.316
AR (Q) 4.33 1.50
AT (K) 8.410.3 5.9+0.4
hgir (W.m™.K?) 12+2 9+2

Table 4.4: Thermoresistive measurement of AT under ambient conditions.

The same methodology is applied under ambient conditions, once the heat sink conductance has been
obtained. The measurement performed under air at atmospheric pressure allows determination of the
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heat loss coefficient h,;;- by iterating again on the heater temperature. The temperature variation from
vacuum to air measured for both central heater and central sensor leads to a value of h,;;- close to
10 W.m2.K%. Similarly, the uncertainty on the fit of hg;, is generated by the 2-point measurement
method. The data are summarized in Table 4.4.

1I1.2.D. Numerical results and discussion

Figure 4.21: Multi-scale FEM modelling of the pixel at the center of the die.

Here, the previous numerical model developed in FEM and calibrated experimentally is used to
estimate the temperature field in the FLAMINGO chip and the temperature rise in the pixel of the 1140
chip. To do this, a multi-scale FEM modeling approach is chosen. The principle of the multi-scale study
and the boundary conditions applied on the pixel is shown in Figure 4.21. Q, is the inward heat flux
density in W.m™ set as a boundary condition on the bottom side of the pixel domain. G, and G, are
the conductances outside the pixel in the x and y directions in W.m2.K?, respectively. G,, Gy and Q,
are determined numerically with the global FEM model of FLAMINGO as a function of the pixel location
in the xy plane. These numerical data are compared to experimental measurements, performed on
the FLAMINGO top surface by means of SThM thermometry.

I.2.D.a. Temperature field at the die level

27K

27.6

27.5
27.4
27.3

AT (K)

27.2
27.1

27.0

0K b) z (um)

Figure 4.22: Temperature rise calculated by FEM with the FLAMINGO chip.
a) Top surface in the xy plane. b) Along the z axis in the BEOL at the center of the heater.
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The central heater generates a Joule power equal to 280 mW. Figure 4.22 shows the temperature field
calculated with FEM at the surface of the FLAMINGO chip and along the z axis at the center of the
central heater. The temperature rises in the central heater (M1X) and central sensor (M1), values are
found to be equal to 27.3 and 27.1 K, respectively. It is interesting to note that 90.9% of the Joule
power flows down in the sink while 9.1% is lost in the air. To go further, it can be seen that although
the temperature is constant in the stack, the thermal gradient seems larger in the M1X level than in
the rest of the chip levels.

From the FEM model of the entire stack of FLAMINGO, a numerical description of the thermal behavior
of the pixel is provided in the next section.

11.2.D.b.  Thermal gradient at the pixel level

a)

296k |P) :

Air * X

Air

ulens

Resin

Filter

~W\\[- . Filter ,L,«‘,’/V,

295K [t v v\ \\ Oxide , , , /1

Figure 4.23: a) Temperature field and b) heat flux distribution in the xz plane calculated with
multi-scale FEM approach in the pixel located at the center of the die.

The heat transfer in one pixel is determined following the multi-scale FEM approach explained in
Figure 4.23. At the center of the die, G, and G,, are equal to 192 and 34.0 W.m=.K?, respectively. Q, is
found equal to 7.15 kW.m™. The numerical calculations are shown in Figure 4.23. One can see that the
pixel temperature is almost homogeneous in the stack with a low heat flux (under 0.1 K.um™) mainly
located in the tungsten layer where the cross-plane effective thermal conductivity is larger. The surface
temperature of the micro lenses is therefore equal to the 1140 chip temperature. The impact of

different heating scenarios on the pixel array can be therefore estimated easily with the FEM model of
the FLAMINGO chip at the die level.

I.2.D.c.  Optimization of heat dissipation
2r 2r
>

Equivalent u

750 pm “ 750 pm
" Bottom di ) Bottom die W
ottom die ke + k.-
z _ S air
ks; T Keq = 2
Heater next to an edge Heater at the center

Figure 4.24: Equivalence of heat dissipation ability between a heater on an edge
and at the center of the chip when k. is equal to kg; /2 approximatly.

140
Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés
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Since the corner heater was not functional in the test chip, in this section, a numerical study is
proposed to estimate the impact of the chip sides on the temperature dissipation. A parametric study
is developed as a function of the distance D,, between the chip edge and the center of the heater. The
principle and the results of the study are detailed in Figure 4.24. The temperature of the sensor (M1
level) is calculated numerically. The heater temperature is equal to 33.1 K when the serpentine is at
the center of the die and 27.1 K when the serpentine is next to the edge of the chip. This dissipation
phenomena is explained in Figure 4.25. The result is shown in Figure 4.24.b) where the red line and
the orange dashed line intercept with a temperature rise equal to 33.1 K. The more the heater is
centered with respect to the chip, the more the heat dissipation is improved. This statement would
need to be reanalyzed if wires are bonded close to the heat source.

34

3 \ AT with heater at the center for

Kaie = ""Silicon/2

<
= 30
<
28
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Figure 4.25: Heat dissipation as a function of the distance between the edge and the heater.
a) Variable of the parametric study and b) temperature rise calculated on FLAMINGO chip.

I.3. Experimental characterization by means of SThM

In this section, the FLAMINGO chip is used for the experimental characterization of complex 3D hybrid
bonded imagers. The SThM technique is used in temperature measurement mode in order to quantify
the temperature rise on top of the pixel matrix. First, the experimental setup is described. Then, the
surface temperature of the pixel matrix is measured by means of the Wollaston micro-probe under
several conditions of use of the chip.

I.3.A. Description of the experimental setup

I.3.A.a. Chip holder improvement

e

FLAMINGO
‘&v

LA LITT T
£ a

Figure 4.26: Experimental setup for the SThM thermometry on FLAMINGO chip.
a) Chip holder inside the MT-MDT SThM. b) Zoom on the chip holder geometry.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

In order to perform SThM measurements when the FLAMINGO chip is electrically supplied, the chip
has been connected and integrated into a homemade electronic circuit inside the NT-MDT device. The
new chip holder and the electronic circuit are detailed.

The chip holder developed in the CETHIL (Chapter 3 Section Ill.1.) has been improved to allow the
connection of more pads. The last version of the chip holder is shown in Figure 4.26. The wedge
bonding technique was used by I. Feng at CIME Nanotech for FLAMINGO. The wire bonding are made
of aluminum with a diameter equal to 18 um and a length equal to 1 mm approximately. A microscopy
image of the wire bonding is shown in Figure 4.20.

I.3.A.b.  Electrical connection of the chip

A schematic of the electronic circuit is shown in Figure 4.27. The heaters and sensors, in the M1 levels
respectively, are set in series with a current supply. A two-point measurement method is used to
determine the electrical resistance of the thermoresistive elements. The access resistance R .55 and
the wire bonding resistance R,,;, are considered negligible in comparison to the resistances Ryeqter
and Rg.ns0r €qual to 160 and 80 Q, respectively.

Utest [V]
Riese =100 Q :___F_L_A_hﬂ_lF\J_G_O_ _____
i Rheurer/Rscnsar
l (Q]
‘rheat :
1 U i
. : Raccess E‘\;]ﬂt

: Q]
wa
Q]

Figure 4.27: Power supply and electrical circuit of the 3D HB chip FLAMINGO.

I.3.B. Description of the heating study cases

Case 1: Heater supply Case 2: Sensor supply
Heating element Central heater Corner sensor
Ry (Q) 160 80
AR (Q) 13.6 7.5
Ineqr (MA) 40.0 10.0
Phear (MW) 278 8.75

Table 4.5: Summary of experimental conditions for the following study cases.

The experimental conditions of power supply are described in Table 4.5. The experiments are
performed under ambient conditions. In this study in SThM, the Wollaston micro-probe is used and
set in a Wheatstone bridge. The electrical setup is described in Figure 4.28. The resistances R4, R, and
R}, are taken equals to 100, 1000 and 1000 Q, respectively. The variable resistance R,, is equal to 1.4 Q.
The resistance R, of the Wollaston wire at room temperature is calculated as follows:

(4.11)

where pp; is the electrical resistivity of the platinum equal to 0.193 uQ.m, L is the length of the
Wollaston wire measured equal to 200+20 pum and D is the diameter of the Wollaston wire measured
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equal to 4.5£0.5 um. The resistance R, is therefore calculated to be equal to 2.620.8 Q. The
characterization of the Wollaston probe is detailed more widely in Chapter 2 Section II.3. The
Wheatstone bridge is supplied with an electric current I of 40 mA. The current in the probe is
therefore equal to 20 mA. The current is chosen higher than 10 mA to ensure that the tip is sensitive
to the temperature variations on the FLAMINGO surface. A gain G equal to 500 is applied to V;, to
allow accurate measurements of temperature variations. The probe temperature rise AT, is calculated
as follows:

I
Vap = G(Rp — Ry) 3, (4.12)
AR, = Rya,AT,, (4.13)

where AR,, is the variation of resistance of the Wollaston wire, a,, is the TCR of the Wollaston wire
equal to 0.166 %.K! and AT, is the temperature rise of the Wollaston wire. The temperature
uncertainty is then:

S[AT,] = 28V ap

GRpaply

(4.14)

The temperature uncertainty §[AT,] is equal to 55 mK with these experimental conditions.

GND

Figure 4.28: Wheatstone bridge setup for SThM measurements.

I.3.C. SThM thermometry with Wollaston micro-probe

In this section, two different analyses are performed with the SThM thermometry on the pixel matrix
of the FLAMINGO chip. First, with a large heating scenario, the heater structure (C40 side) is supplied
and then, with a hotspot heating scenario, the sensor serpentine (1140 side) is used as a heater
element. The latter scenario is not representative of a true user case of the current device but allows
additional correlations and thus, validating the robustness of the proposed approach.

I.3.C.a.  Heater supply in M1X level

In order to measure the surface temperature of the pixel matrix above the central heater, a method
of mapping is chosen. Each point is measured separately on an arbitrarily defined grid (array of
7x7 points) because the matrix surface is too large to be scanned by the piezo element. A schematic of
the grid is shown in Figure 4.29.a). The scanning direction of the surface is represented by the red
arrow. The grid of points has a surface area equal to 600x600 um? and a pitch equal to 100 um. During
the measurement with the heater supplied, a voltage of reference V,r: is measured at the same
location in the center of the grid. The voltage V,.r; is measured between each line (every 7 points)
and represents the thermal drift as a function of the time. The thermal drift V¢, is shown in
Figure 4.29.b). The variations of voltage AV, generated by the temperature rise of the Wollaston
filament AT, are related as follows:
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AVap = Vap = Varige (0, (4.15)
AVa,b = GIpRoapATp/ (4.16)

where [, is the current crossing the probe , AT, and AT are the temperature rise of the probe and the
surface, respectively. The experimental data acquired on the pixel surface with heater supply are
shown in Figure 4.30. The thermometry coefficient of the Wollaston probe is taken equal to 29.7% (see
Chapter 3). The hotspot is well highlighted on both V,;, and AT, images. In this case, the thermal drift,
lower than 10 mV, represents a variation of room temperature lower than 120 mK. The influence of
the thermal drift is therefore neglected in comparison with the temperature variations of a few kelvins
that are generated on the 600x600 um? surface area.

a) b)

o Varige(t)

Vab (mV)

0 3 6 9 12 15 18 21 24

Reference t (min)

Figure 4.29: a) Points array and scanning direction for mapping thermometry.
b) Drift characterization as a function of the measurement time.

AT,/AT; [K]
2.4/8.1

Figure 4.30: Thermometry mapping measurement. a) Raw data of voltage V.
b) Filament and surface temperature rise AT, and AT taking into account the thermal drift Vi ..

I1.3.C.b.  Sensor supply in M1 level

In order to measure the surface temperature of the pixel matrix above the corner sensor, a method of
imaging is chosen. The points are measured together on an arbitrarily defined grid: an array of 128x128
points. The scanning direction of the surface is detailed in Figure 4.31.a). The grid of all the points has
a surface area equal to 120x120 um? and a pixel size equal to 925 nm. The time to thermalize for the
Wollaston probe being equal to 4 ms [23], one point is taken every 20 ms. The voltage of reference
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Varife cannot be measured far from the sensor. As a consequence, the voltage V¢, is measured
between each line (every 128 points) at room temperature and represents the thermal drift
(contaminations at the tip apex) as a function of the scanning line. Vg5, is shown in Figure 4.31.b).
This assumption is possible if the temperature rise is supposed to be negligible at the image side. The
experimental data acquired on the pixel surface with sensor supply are shown in Figure 4.32. The V,
image in Figure 4.32.a) is noisy. In this case, the thermal drift, equal to 200 mV, represents temperature
variations equal to 600 mK which cannot be neglected in comparison to the temperature variations.
The influence of the thermal drift Vi, will be considered for the calculation of the filament
temperature rise AT, following Eq. (4.15) and Eq. (4.16). AT, is shown in Figure 4.32.b).

b)

250

a)

200

150

Vab (mV)

100

50

1 17 33 49 65 81 97 113 129

References Point

Figure 4.31: a) Points array and scanning direction for imaging thermometry.
b) Drift characterization as a function of the point of reference.

Vap [MV] AT,,/AT [K]
110 10.2/34.3

-230

Figure 4.32: Thermometry imaging measurement. a) Raw data of voltage V ,.
b) Filament and surface temperature rise AT, and AT taking into account the thermal drift Vi

1.3.D. Correlation between experimental and numerical results

In this section, the experimental temperature measurement is compared with the FEM modelling of
the FLAMINGO chip for both cases: heater and sensor supply. The thermometry coefficient of the
Wollaston probe is taken equal to 29.7% as demonstrated in Chapter 3. For the following SThM
measurements, the uncertainties are related to the uncertainty on the electrical resistance R, of the
Wollaston filament.
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Case 1: Heater supply
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Figure 4.33: FEM calculations as a function of h,.,4 and SThM mapping measurement performed with
the Wollaston probe for center heater supply at the pixel matrix surface.

The surface temperature AT calculated by FEM along the x direction at the center of the central
heater is compared to the SThM measurements. A numerical study is made as a function of the
radiative heat transfer with h,,4 from 0 to 6 W.m?2.K?, where h,..4 represents the emissivity of the
FLAMINGO chip at room temperature (between 0 and 1). The value of h,, is taken into account during
the calibration under vacuum and so varies the value of gg;nx. The study is shown in Figure 4.33. Here,
the electrical resistance of the Wollaston filament Ry, is fitted equal to 3 Q. It can be seen that the FEM
calculations and the SThM measurement are in good agreement whatever the value of the radiative
heat transfer coefficient h,44. In the following section, the radiative heat losses will be neglected and
hyqq Will be set to 0.

Case 2: Sensor supply
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Figure 4.34: Comparison between FEM calculations and SThM imaging performed with the Wollaston
probe for corner sensor supply in a) u direction and b) v direction.

The surface temperature AT calculated by FEM along the u and v directions above the corner sensor
is compared to the SThM measurements with the electrical resistance of the Wollaston filament R,
kept equal to 3 Q. The comparison is shown in Figure 4.34. A small difference of gradient is visible
between the SThM imaging and the FEM model. This must be due to the calculation of the drift Vjg,.;f;,
considering the temperature rise equal to 0 on the edges of the image, which is not exactly the case.
In addition, it has to be noticed that in SThM, the noise is higher when the profile is taken
perpendicularly to the scanning direction (see Figure 4.34.b)). However, the numerical calculation and
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the SThM measurements are in good agreement together. It validates that the numerical procedure
developed previously on M3EM is also relevant for the prediction of the self-heating phenomena in
complex 3D HB imagers.

II.3.E. Results and discussion

The FLAMINGO test chip has been used to characterize the heat transfer at both die and pixel levels.
Embedded elements, i.e. the heaters and sensors of the M1 levels of the C40 and 1140 chips, have been
used to generate heat. Before concluding on the FLAMINGO thermal behavior, it is necessary to remind
the fundamental effects of the boundary conditions on the thermal results in the steady state. The
device is thermally driven by the boundary conditions. In that frame, the results should be always
analyzed in light of the experimental conditions (setup detailed in Section 11.3.A.).

1.3.E.a. Characterization with embedded sensors

The temperature rises generated by the heating elements are summarized in Table 4.6. ATy, x and
ATy, are the thermoresistive measurement of temperature rise in the M1X and M1 levels,
respectively. One can notice that the temperature elevations are lower than 30 K for this current
technology. Indeed, pad protection diodes limit the current injection into the thermal structures.
Although measurable, thermal effects could be more easily demonstrated without this technological
limitation. It can nevertheless be noted that the thermal gradient in the BEOL is small (under 3 K) which
gives little margin for the reduction of the temperature with the optimization of the BEOL structure.

Case 1: Heater supply Case 2: Sensor supply
BEOL level M1X M1
Inear (MA) 40.0 10.0
Pheoar (MW) 280 8.8
ATy1x (K) 26.5£1.1 -
ATy (K) 29.612.2 29.7+2.2

Table 4.6: Thermoresistive temperature rises measurement with FLAMINGO test chip.

I.3.E.b.  Characterization with SThM technique

By using the FLAMINGO chip, the advantages and drawbacks of the SThM technique could be
highlighted. It has been shown in particular that SThM thermometry can be used to measure the
temperature rise of a surface and the thermal gradients. The temperature rises and gradients linked
to the heat source are summarized in Table 4.7. AT, is the temperature rise measurement at the
pixel array surface and aggrp)y is the width at half-height of the temperature profile. It is important to
note that the SThM method (mapping or imaging) must be chosen regarding the expected thermal

gradient in order to obtain an accurate temperature measurement.

Case 1: Heater supply Case 2: Sensor supply
BEOL level M1X M1
Ieat (MA) 40.0 10.0
Progr (MW) 280 8.8
Method Mapping Imaging
Surface (um?) 600x600 120x120
ATgrpm (K) 31+1 26+2
Ostnm (HM) 170420 4015

Table 4.7: SThM temperature rises measurement on 1140 pixel array surface.

In the next section, the study of thermal dissipation for 3D hybrid bonding imagers will be extended to
a commercial chip called 93D. This device will be used to estimate among other things:
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(i) the influence of the temperature on the optical performances of the pixel matrix;

4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

(ii) the transient effects and the dynamic response of the pixel of the 1110 imager.

lll. Transient effects: optical performances for 93D chip

In this section, a study is performed on the 93D demonstrator. First, the structure and the
characteristics of the 93D chip is described. Then, the self-heating phenomenon is quantified
experimentally in terms of optical performances in different cases (static and dynamic).

lll.L1. Description of the 93D demonstrator

The structure of the 93D demonstrator is now described. First, general specifications are indicated and
then the thermal structures embedded in the bottom and bottom chips are detailed.

lll.L1.A. General specifications
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Figure 4.35: Schematic of the 93D demonstrator. a) In-plane geometry of the chip with the wire
bonding location. b) Cross-section of the chip and the ceramic package.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LY SEI054/these.pdf
© [A. Pic], [2019], INSA Lyon, tous droits réservés

148



4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

The 93D chip is a 3D hybrid bonded back-side imager with the same structure as the FLAMINGO chip.
It is composed of two chips: the C40 bottom chip and the 1110 top chip. However, it differs from
FLAMINGO in the sense that the 93D chip is a demonstrator. It aims to demonstrate the know-how of
STMicroelectronics for 3D HB IMG obijects. It is a fully-functional chip. On our side, it introduces an
object which is much more complicated to test (complex test program and board test) and simulate
(complicated circuitry). Hence, and as described further, some of the methods described previously
could not be used for this chip (SThM approach, modelling....). However, its main advantage is to
provide some interesting information on the optical performances at the pixel side (active matrix) and
in a transient regime.

The 93D chip being active, the Joule power is generated at the FEOL level by functional blocks
consisting of transistors and not anymore resistive heaters. Moreover, unlike FLAMINGO, the 93D chip
is provided entirely packaged. A schematic of the 93D demonstrator and the package is shown in
Figure 4.35. It is important to mention that a ceramic package which has a good heat sink [24] was
chosen to limit the heating phenomena. The following study, carried out in a favorable case, could be
used as a reference for more constrained cases of use.

11.1.B. Embedded thermal structures

In this section, the thermal structures are detailed. In the 93D chip, all the heaters and sensors have
been embedded in the bottom chip of the 3D HB IMG: the C40 chip. First, the floorplan of the C40 FEOL
is described. Then, the working principles of the heater and sensor structures are analyzed.

IIl.1.B.a. Design of the C40 FEOL

CENTER

Figure 4.36: a) Location and b) geometry of the thermal structures in the C40 FEOL.

In the 93D demonstrator, 8 thermal structures have been embedded in the FEOL level of the C40
bottom chip. The location and the geometry of the thermal structures are shown in Figure 4.36. The
thermal structures embedded in the 93D demonstrator are all identical. These structures are made of
two parts: the heater and the sensor. The heater and the sensor have a surface area equal to
43x35 um? and 9x20 um?, respectively. Numerous additional functional active blocks are present in
the C40 FEOL (power management, data processing, memory...). These functional blocks are therefore
generating a heat of their own. The corresponding powers depends on the user case predefined by
designers (face recognition for instance). It is also difficult to identify precisely the origin of the power
dissipated since they are not limited to a rectangular source domain, in contrary to M3EM or
FLAMINGO chips.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

11l.1.B.b. Heater and sensor structures

Heater:

One heater contains 8 cells (each one is made with a grid of transistors) designed to drain 6.25mA each
approximately when working under 1V supply. The heat flux generated by the transistors depends on
temperature and supply voltage. The power generated according to the different experimental
parameters for this type of heater is given by the supplier (CEA LETI). The power generation is detailed
in Figure 4.37. In our case, the supply voltage is set to 1.08 V. The power generation of the heater is
therefore equal to 605 mW.

100
80
z P=60+5mW
E 60
< T =100 °C
40 T =50°C
20
0.9 0.96 1.02 1.08 1.14 1.2

ui(v)

Figure 4.37: Heater power generation as a function of the voltage supply and the temperature.
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Figure 4.38: Schematic of the PTAT sensor concept [25].

PTAT (Proportional Temperature Absolute Temperature) sensors [25] are used for the temperature
measurements. A schematic of PTAT sensor is shown in Figure 4.38. This technology is made of two
CMOS transistors and current sources. The output voltage Vpr 47 is given as follows [26]:

_mkp Ip1+Ip2 Wyma Ly
Verar =T p In(1 + w1 L WMz)' (4.17)

where T is the temperature, k,, is the Boltzmann constant equal to 1.38x10% J.K?, g is the electron
charge equal to 1.6x10™" C, W is the MOS channel width and L is the MOS channel length. I,;; and
I, are the currents flowing in the CM0S; and CMOS, transistors, respectively. On the basis of
Eqg. (4.17), it is clear that the output voltage is proportional to temperature. A PTAT sensor generates
a Joule power lower than 200 uW [26], much smaller than the power generation of the heater (equal
to 60 mW approximately). The self-heating of the sensors is therefore negligible.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

Ill.2. Experimental characterization of the 93D chip

In this section, the thermal behavior of the 93D chip is characterized experimentally. Note that due to
the complexity of the device, experiments have been done in collaboration with the test team located
at ST Grenoble. Thus, board test and program were done by this team. First, the heat dissipation of the
93D demonstrator is estimated with the PTAT sensors. Then, the optical performances of the 1110
imager are monitored to evaluate the impact of the temperature and the thermal gradient.

Il1I.2.A. Measurement of the heat dissipation with PTAT sensors

In this section, the PTAT sensors are used to quantify both the temperature elevation generated by
the heaters and the thermal time constants associated to the 93D demonstrator.

Ill.2.A.a. Heater generated temperature rise

PTAT sensor TL TR BR BL | CENTER | MIPI | PLL | MVSS
ATheater (K) 6+1 | 8+1 | 7¢1 | 71 8+1 6+1 | 6x1 | 6%1
Table 4.8: Heater temperature rise measured at steady state with PTAT sensor.

The temperature rise ATpr4r for each thermal structure is measured in the FEOL level of the C40
bottom chip. The temperature rise ATpr 41 can be expressed as follows:

ATprar = ATheater + ATrgoL) (4.18)

where ATpeqter 1S the temperature rise generated by the heater activation and ATgpgg. is the
temperature rise generated by the functional bocks of the FEOL (power supply, memory, signal
treatment...) close to the PTAT sensor. The study is done under ambient conditions with the FLAMINGO
chip power supply. The temperature rise ATy 40 IS determined at steady state by subtracting data
with and without the heaters being supplied. The experimental results are summarized in Table 4.8.
The precision of the PTAT sensor output is equal to +/-1 K. The temperature elevation generated by
the heater activation is found equal to 7+0.4 K.

111.2.A.b. 93D demonstrator thermal time constants

Heat gun

| Power supply,
memory, PTAT
signal
treatment...)

93D chip

Figure 4.39: Schematic of the PTAT sensor temperature rise generated by the functional blocks
(power supply, memory, signal treatment...), the heater elements and the heat gun.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

In order to observe the influence of the temperature at the chip/package level, an additional
temperature rise is to be generated. The 93D demonstrator being too large to be placed in a thermal
furnace, the full system is heated with a heat gun as shown in Figure 4.39. The total temperature rise
measured with a PTAT sensor is therefore equal to

ATprar = ATheater + ATrpor + ATgun, (4.19)

where ATy, is the temperature rise generated with the heat gun. The chip/package system is heated
with a heat gun above 130 °C. The 93D chip is activated without heater supply. The measurement is
triggered while the chip and package return to room temperature. The results are shown in
Figure 4.40. Two characteristic time constants are highlighted for the 93D demonstrator. The
temperature can be fitted as follows

—t -t

AT(t) = ATpgoL + edieeﬁ + Qpackageerpacmge, (4.20)

where T4, and Tpqcrqge are the time constants related to heat dissipation in the die and the package,
equal to 5.0 and 220 s, respectively. 84;. and 0,4ckage are the amplitudes of the temperature in the
die and package, equal to 6 and 78 K, respectively. The temperature rise generated by the functional
bocks of the FEOL at steady state ATrgq,, is found equal to 24 K.

The temperature is fitted with exponential functions. Although inexact, the results are close to the
theory of heat conduction that uses integral exponential functions (erf like functions) [27]. With L the
characteristic length and D the diffusivity, the time constants 7 of the system is equal to L?/D. For the
93D demonstrator, L is equal to 1 and 20 cm and D is equal to 10* and 10® m2.s* for the die and
package, respectively. The experimental results are found in good agreement with these theoretical
estimations.
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Figure 4.40: Thermalization of the 93D demonstrator. a) Fit of the PTAT sensor temperature with
exponential functions. Determination of the b) die and c) package time constants.
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1l.2.B. Optical performance: effect of temperature

In this section, we focus on a new way to characterize the surface temperature of the 93D chip. Indeed,
the chip 93D being encapsulated in a ceramic package, it is impossible to use a method of surface
microscopy such as the SThM technique for example. However, since the pixel array is active, it can be
used as a temperature sensor above the 1140 chip. First, the thermal response of the pixels will be
determined in the dark. Then, the pixel matrix will be used to measure the temperature rise generated
by the heaters of the C40 chip.

Ill.2.B.a. Pinned photodiode dark current calibration

In order to use each pinned photodiode (PPD) [28, 29] as a thermal sensor, the dark current [30] of
each pixel is calibrated as a function of temperature. The dark current is the photodiode current
generated without illumination. The dark current depends strongly on temperature [31] and is
therefore a noise that must be as small as possible to obtain sufficient signal-to-noise ratio (SNR). In
order to calibrate the dark current, the 93D demonstrator is covered to avoid any illumination. The
average dark current of the pixel array is measured as a function of the PTAT sensors temperature. The
calibration curve is shown in Figure 4.41. The photodiode output (proportional to the photodiode
current) in the dark for each pixel, termed the code, represents the dark current intensity. It is related
to the technological characteristics of the pinned photodiode (size, doping...). In this case, in the
exponential regime (above 80 °C) the code doubles every 7.7 K (fitted numerically). Indeed, at high
temperatures, the electrons in the valence band become excited into the conduction band. This
phenomena is explained by Widenhorn in [32] with the following equation:

laark = laep + lairs, (4.21)

where [ ;4. is the dark current, 1.y, is the depletion current and 145 ¢ is the diffusion current. Indeed,
at high temperature, Iyqy is mainly driven by the diffusion with I;;rr depending strongly on
temperature. Conversely, at low temperature in the nonlinear regime (under 80 °C), the dark current
is driven by the depletion current and depends weakly on temperature.

3200
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Q "
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100 -
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Figure 4.41: Dark current as a function of the temperature measured by the PTAT sensors.

II.2.B.b. Temperature field measured with pixel matrix

In this study, the 93D demonstrator is maintained at 120 °C with the heat gun in order to allow
measurements by the pixel array in its temperature sensitivity range. The heaters TL, TR, BL, BR and
CENTER are activated together. The intensity of the dark current is acquired with the pixel array. The
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temperature of each pixel is determined with respect to the dark current value. The experimental
measurements are shown in Figure 4.42. The temperature rise above each heater is well highlighted
by the measurement with the pixel matrix. Itis measured equal to 7 K approximately, which is in good
agreement with the measurements performed with the PTAT sensors. The validity of the approach
with the pixel matrix is therefore proved in the case of steady-state heating which leads to a spatial
resolution of 1.75 um. The full width at half maximum of the temperature profile is determined equal
to 100+20 pum. For reminder, the heater dimensions are equal to 35x43 um?

2800

111°C

Figure 4.42: Measurement with the pixel matrix of the 93D chip of a) the dark current intensity
and b) the deduced surface temperature.

ll1.2.B.c.  Transient analysis of heat dissipation in the pixel matrix

Here, in the same way, the demonstrator 93D is maintained at 120 °C with a heat gun. The CENTER
heater, previously activated, is turned off between frame N and frame N+1. The thermal signal of the
pixels above the heater CENTER is monitored in real time with a frame rate equal to 30 Hz (maximum
value available). Figure 4.43 shows the temperature rise above the heater CENTER as a function of the
time. Note that the steady state is reached between 33 and 67 ms. Indeed, the signal measured in
frame N+2 represents only the thermal noise which is equal to 0.8 K. Unfortunately, the frame rate of
the pixels cannot be increased. It is only possible to state that the characteristic time constant of the
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

pixel is of the order of a few tens of milliseconds for the 93D demonstrator. Subsequently, the FEM
modelling will be used to see if it is possible to reproduce numerically the transient phenomena and
observe the time constant.

Frame N Frame N+1 Frame N+2
AT (K) t=0ms AT (K) t =33 ms AT (K) t =67 ms
7 — |4 — |1
300 um
| K
300 pum
\ 0 —
Y (um) Y (um) Y (um)

Figure 4.43: Transient behavior toward thermalization measured with the pixel matrix of the 93D chip
at a frame rate of 30 Hz.

IV. Transient effect: preliminary numerical investigations

In this section, the experimental characterizations of the transient self-heating effects of the 93D chip
is compared with dedicated modelling. The 93D demonstrator is modelled with FEM following the
procedure developed in Chapter 3. Then, a numerical study is performed to calculate transient
dissipation at both pixel and die levels.

IV.1. FEM modelling of the 93D demonstrator

In this section, the transient thermal behavior of the 93D demonstrator is modelled by means of FEM.
The previous numerical modelling strategy developed for the stationary studies is used as a basis for
the modelling of transient heat dissipation. First, the geometry and the boundary conditions are
detailed. Then, the FEM model is calibrated and validated at steady state.

IV.1.A. Geometry and boundary conditions

P
sensor

Isink

Figure 4.44: a) Geometry and boundary conditions applied on 93D chip FEM model.
b) Boundary heat source generated by the thermal structure in the FEOL.
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4. Numerical and experimental investigations on 3D Hybrid Bonding imagers

The FEM model of the 93D chip is developed on the same principle as that of the FLAMINGO chip
(Section I1.2.). The boundary conditions are summarized in Figure 4.44. The heat source Ppzq¢er, €qual
to 6015 mW, is set as a surface boundary condition between the STl level and the BEOL and located in
M1X level. In this FEM model, the diffusivity of the silicon, silicon dioxide and copper are taken equal
to 88, 0.83 and 117 um?2.s1 [33, 34], respectively. The BEOL is homogenized with the parallel and series
conductance as for the FLAMINGO chip. Considering gold wire bonding with a diameter of 45 um, the
conductance of the bonding g,,, is set to 113 kW.m2.K™ (Chapter 3 Section 11.3.B.).

IV.1.B. Calibration of the 93D chip FEM model
hair
a) ) [ L
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Figure 4.45: FEM modelling of the roughness effect on heat transfer through air. a) Geometry of the
roughness (micro lens) and boundary conditions. b) Heat flux distribution in the yz plane.

The heat sink gginx and the air losses h,;,- need to be determined experimentally as a function of the
PTAT sensor temperature (equal to 7+£0.4 K under ambient conditions). However, the 93D chip being
encapsulated, it is impossible to measure the PTAT sensor temperature under vacuum. The air losses
coefficient h,;- is then assumed constant with respect to FLAMINGO and M3EM chips. This
assumption, valid in the case where the heat transfer through air does not depend on roughness, is
demonstrated with the FEM model shown in Figure 4.45. The heat flux Q is found equal to 3.0728 and
3.0720 nW with and without the lens, respectively. Indeed, whatever the size of the roughness, the
heat flux going into air remains constant. h,;, is therefore taken equal to 102 W.m2.K™,

The heat sink coefficient g, fitted equal to 420+20 W.m™.K?, is larger than the values found for
M3EM and FLAMINGO chips. This large heat dissipation is explained by the ceramic package which is
highly thermally conductive. Indeed, 97.7% of the Joule power goes down in the sink while only 2.3%
dissipates though air. The boundary conditions are summarized in Table 4.9.

Heat path Boundary condition
Heater power Pyeater = 60 £ 5 mW

Heat sink Isink = 420 £ 20 W.m2 K

Air losses hgir =10 £ 2 W.m?2.K?
Wire bonding Iwp = 113 + 6 kW.m2.K?

Table 4.9: Boundary conditions for 93D chip FEM modelling.

The temperature profile along the y direction above the heater CENTER is calculated numerically and
compared with the measurements performed with the pixel matrix. The results are detailed in
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Figure 4.46. It can be seen that the temperature profile from the FEM modelling matches well the
experimental measurements at steady state. Subsequently, the 93D demonstrator will be used to carry
out a dynamic study of heat dissipation within the pixel matrix.
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Figure 4.46: Temperature profile from the measurements with the pixel matrix at steady state along
the y direction above the heater CENTER and comparison with the FEM modelling.

IV.2. Numerical analysis of transient heat dissipation

In this section, a numerical analysis of transient heat dissipation is carried out with FEM modelling. It
aims to determine the pixel relaxation time and the transient temperature field at the pixel array level.
This numerical study is performed under the same conditions as those used experimentally.

IV.2.A. Calculation of the pixel relaxation time
6 60
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Figure 4.47: Transient temperature evolution calculated with FEM on the pixel array surface as a
function of time after switching off the heater CENTER.

In order to represent the experimental conditions of the Section Ill.2.B.c., the power generated by the
heater element Pj, q¢er is Now a function of time. Pp, gt is Set to 60 mW whent < 0 and Prpgper = 0
when t > 0. Here, it is assumed that the heater is turned off instantly i.e. with a time constant equal
to 0. The temperature amplitude above the heater CENTER is calculated in Figure 4.47 as a function of
time. The time constant of the switching off of the heater CENTER 7 is found equal to 25 ms. In addition,
it can be seen that the temperature amplitude decays in 40 ms. Considering Lg;, the characteristic
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length of the bottom die (equal to 750 um) and Dy, the diffusivity of the bottom die (equal to
88 um2.s1), a time constant 7 of the system Lfﬁe/Ddie is found approximately equal to 60 ms. The FEM
model is therefore in fair agreement with the measurements of transient heat dissipation.
Furthermore, this analysis shows that the dynamics of the pixel is directly related to the thickness of
the bottom die. The thinner the bottom die, the faster the thermal response of the pixel.

IV.2.B. Transient temperature field at the pixel array level
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Figure 4.48: Transient temperature profile calculated with FEM on the pixel array surface along the y
direction after switching off the CENTER heater.

The transient FEM modelling of the 93D chip is used to calculate the heat dissipation at the level of the
pixel array. The temperature field is calculated between 0 and 50 ms along the y direction after having
switched off the heater. The temperature rise profile above the heater CENTER is shown in Figure 4.48
as a function of the time. For each time step, the temperature amplitude and the full width at half
maximum (FWHM) can in principle be calculated according to Green’s functions [27].

In addition, in the case of transient heat transfer modelling, the domain size is fixed by the temperature
accuracy constraints. For the 93D chip, the computed domain area S;;. (in the xy plan) can be
reasonably limited to a lower die surface. The difference of temperature calculated between
Sagie = 40 mm? and S;;, = 1 mm? is shown in Figure 4.48. With a reduced computed domain area
Saie, the temperature difference is found under 0.3 K which represent an error of under 5%.
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Figure 4.49: Temperature profiles calculated with FEM on the pixel array surface along the y direction
above the heater CENTER. Comparison between S;;, = 40 mm?and Sz, = 1 mm?att = 0.
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IV.3. Discussion

A quite fair agreement is found between experimental and numerical results. The order of magnitude
is well respected and trends are similar. Once again, this can be explained by the boundaries conditions
which drive the thermal behavior of the package. Moreover, the large difference in terms of material
diffusivity allows to evaluate more easily the main trends in a transient regime. These preliminary
results give thus good confidence for further investigations.

Generally speaking, the signal processing (face or object recognition...) is a highly transient
phenomenon and it may be interesting to evaluate the thermal field in such regime. By considering
only steady state, results may tend to be overestimated and consequently, limiting design capabilities.

Transient simulation may provide results more consistent with the reality.

V. Conclusion

FLAMINGO 93D
Pixel matrix Inactive Active
BEOL Top chip 1140 1110
Bottom chip C40 c40
Level C40-m1 C40-FEOL
Heater Technology Copper serpentine Grid of transistors
Power 280+10 mW 6015 mW
Surface 140x200 pm? 43x35 um?
Level 1140-M1 C40-FEOL
Sensor Technology Copper serpentine PTAT sensor
Power 9+0.3 mW <200 pW
Surface 5x9 um? 9x20 pm?
Sink 90.9% 97.7%
Heat path Air 9.1% 2.3%

Table 4.10: Properties of the FLAMINGO and 93D chips.

In this chapter, two complex 3D HB imagers have been studied: the FLAMINGO and the 93D chips. The
BEOL and the thermal structures of the chips have been described for both FLAMINGO and 93D chips
(see Table 4.10).

First, the FLAMINGO test chip has allowed characterizing the heat transfer at both die and pixel levels.
The heaters and sensors of the M1 levels of the C40 and 1140 chips are used to generate heat
dissipation across the stack. The FEM modelling of the FLAMINGO test chip has revealed that:

(i) temperature is mainly driven by the losses though air and the heat sink conductance at
steady state. Radiation seems negligible for heat dissipation;

(ii) the temperature of the pixel is equal to the temperature of the BEOL;

(iii) the temperature pattern generated on the pixel array is almost three times larger than the
heater width (located in the C40 FEOL) due to heat spreading in the BEOL;

(iv) the temperature measurements in the M1 and M1X levels being close, it shows that the
HB interfaces do not play a significant role on heat dissipation.

Finally, by means of the FLAMINGO chip, it has been shown that the SThM technique (with the
Wollaston micro-probe) can be used to perform thermometry measurement on an active sample at
both millimeter and micrometer scales with the mapping and imaging methods, respectively.
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A final study has been performed on the 93D chip. It has been chosen to characterize the optical
performances of the pixel according to the temperature variations. The pixel output signal in the dark
(dark current) has been calibrated as a function of temperature. The pixel matrix could be used as a
thermal sensor with a spatial resolution equal to 1.75 um. This has allowed to highlight that:

(i) the dissipation time constants associated to the die and the package of 93D are found
equal to 5 and 220 s, respectively;

(ii) the thermal dynamics of the pixel is mainly limited by the bottom die thickness. The
thinner the bottom die, the faster the pixel dynamic can be;

(iii) Fair agreement with simple numerical approach.
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Conclusions and prospects

We first recall the main points addressed in this manuscript and then indicate some directions for
future work.

In the first chapter, a brief state of the art in microelectronic fields related to the topics of this thesis,
i.e. hybrid bonding and imagers, has been sketched up. In a first step, the general structure of an
electronic chip, the physical principles of the transistor and the photodiode (PPD) have been
introduced. In addition, the methods and materials for the interconnection of transistors have been
also introduced. In particular, a focus has been made on the three-dimensional hybrid bonding imagers
(3D HB IMG). The principle of 3D integration involving 3D Back-Side-lllumination and the hybrid
bonding (HB) technology, where two chips are connected, have been underlined. Finally, two imaging
technologies based on Complementary Metal Oxide Semiconductors (CMOS) and Charge Coupled
Devices (CCD), embedded in 3D stacks of ICs, have been detailed. Today, the HB technology and CMOS
image sensors have become widespread and require in-depth thermal studies to optimize their
performances. In a second step, an inventory of the thermal constraints induced in these technologies
has been drawn. Different temperature-related issues such as thermomechanical stress, dark current
increase and electromigration have been detailed. Finally, various numerical and experimental
methods for the characterization of the thermal behavior of integrated circuits (ICs) have been
introduced. Among all these methods, a selection has been made for use in this PhD work.

In Chapter 2, two different thermoresistive techniques have been used for the thermal
characterization of thin-film based materials: Scanning Thermal Microscopy (SThM) and the 3w
method. The SThM technique has been implemented with two different probes: the palladium nano-
probe and the Wollaston micro-probe. It has been shown that the characterization of wafer-large
samples with thermal conductivity higher than 1 W.m™.K? is not possible with the SThM palladium
nano-probe. This is due to the uncertainty on the characterization of the thermal contact between the
probe and the sample. Unfortunately, for the thin layers available in this work, their effective thermal
conductivities has revealed to be too large to be characterized with acceptable accuracy. The
Wollaston micro-probe has been used in a second step, with a technique where the thermal signal
measured with the probe is first calibrated as a function of the thermal conductivity of reference
samples. The comparison between the thermal signal measured on thin-layer samples and the
calibration has allowed determination of their effective thermal conductivities which are found equal
to 0.6 and 0.1 W.m*.K! for the BD1 and ULK samples, respectively. Finally, the property of each layer
has been deduced by using a Finite Element Method (FEM) model of the probe-sample system. In the
case of the measurements realized on low-k samples, their effective thermal conductivities have been
found close to typical values of literature. In order to confirm certain values, the 3w method has been
implemented, which requires first fabrication (photolithography in clean room) of devices before
experimental characterization can be performed. Measurements have been realized on SiO,, SiN and
SiCN materials, and the intrinsic thermal conductivities have been found to be in excellent agreement
with the literature. The advantages and drawbacks of each technique could be evaluated as a result of
all the characterizations. The 3w method is very accurate but time consuming whereas the SThM
technique, although less accurate, is much faster to implement.

In the third chapter, a numerical approach has been developed to evaluate the self-heating
phenomena in 3D HB architectures. To do so, a test chip has been first considered. This chip is a passive
device with copper serpentines that generate heat to represent an equivalent to the power generation
in the Front-End-Of-Line (FEOL) of a commercial chip. FEM modelling has been chosen to obtain the
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whole temperature field in the chip. In order to overcome the FEM mesh constraints related to large
aspect ratios and maintaining computational demand at reasonable cost, the thermal conductivity of
the Back-End-Of-Line (BEOL) structure has been homogenized. Various EMA models have been
considered: parallel and series fluxes, Maxwell-Garnett and Maxwell-Bruggeman. Interestingly, it has
been found that thermal boundary resistances can be neglected in the BEOL materials since their
impact is small in front of the thermally-insulating layers. The parallel and series thermal conductance
models have proven to be consistent and convenient for the modelling of the BEOL. In order to validate
the FEM model, the numerical data have been compared to experimental measurements directly
operated on the chip top surface. To do so, two techniques, SThM and infrared (IR) thermometry, were
chosen. In order to measure the temperature of the chip activated in real time inside the measuring
instruments, a homemade electronic test bench involving a PCB holder has been developed. Using this
setup, temperature measurements have been realized with SThM (both palladium and Wollaston
probes) and with IR thermometry (THEMOS instrument). The temperature measurements performed
with SThM and IR thermometry have been found in agreement within an uncertainty of 2 K and the
SThM thermometry coefficient, the ratio of the measured tip temperature to the surface temperature,
has been found to be equal to 0.50 and 0.30 for the palladium and Wollaston probes, respectively. A
numerical FEM model of the 3D HB test chip has been developed and calibrated experimentally,
allowing the temperature field in the chip volume and over the chip surface to be obtained. This has
allowed showing that heat dissipation is limited due to the difficulty of dissipating heat though the
sink, with a weak thermal conductance of few hundreds of W.m2.K%, and the losses through air, limited
to about 10 W.m2.K™ The influence of the radiative heat losses have been considered also by
calculating them as a function of the chip emissivity, but the radiative heat transfer is moderate and
can be therefore included in the heat sink conductance. For this test chip, the temperature calculations
have been validated experimentally with both SThM and IR thermometry measurements at the die
level. Hence, the relevancy of such numerical strategy has been confirmed and gives confidence for
next studies.

In Chapter 4, two new 3D HB imagers (respectively FLAMINGO and 93D) have been studied, involving
successive cases where the pixels are inactive (test chip) or active (chip close to commercial device).
The level of complexity of the BEOL and the thermal structures of the chips is higher in these imagers,
which has required a detailed description. The FLAMINGO test chip has allowed characterizing heat
dissipation at both die and pixel levels. The test resistive elements acting as heaters and sensors have
been embedded in a metal level (M1) of the two chips connected by HB (C40 and 1140 chips) in order
to generate heat dissipation across the stack. The FEM modelling of the test chip has revealed that the
BEOL temperature is homogeneous in the z direction with a very weak thermal gradient, which leaves
little margin for the optimization of the temperature field within the BEOL materials. Again, it has been
found that the heater temperature is mainly due to the bottlenecks associated to the heat sink
conductance and the air losses at steady state. On the experimental side, it has been shown that the
SThM technique (with the Wollaston micro-probe) can be used to perform thermometry measurement
on an active sample at both millimeter and micrometer scales by means of tip motion with millimeter-
size motors (“mapping”) and usual piezoscanning (“imaging”), respectively. A final study has been
performed on the 93D chip to characterize the optical performances of the pixel, with an activated
pixel array (unlike FLAMINGO). The pixel output signal in the dark (dark current) has been calibrated
as a function of temperature. The pixel matrix has been used as a thermal sensor with a pixel-limited
spatial resolution equal to 1.75 um. This has allowed highlighting that for a BEOL temperature higher
than 80 °C, the temperature rises generated by the FEOL heating elements have a significant impact
on the image quality. In addition, it has been shown that the thermal dynamics of the pixel is mainly
limited by the bottom die thickness. The thinner the bottom die, the faster the pixel dynamic can be.
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The next generation of imagers, with potential reduced pixel size and even more compact heat sources
associated with logic and memory, will benefit from the current analysis. It is key to note that the
temperature field is not necessarily perfectly homogeneous due to the environment of the pixel
matrix: care should be paid to the design and positions of the surrounding elements. In favorable cases,
as when connecting pads are located close to the matrix, these can decrease temperature locally.

In the future, thanks to the experimental developments of this PhD thesis, the SThM and 3w method
could be used more efficiently in order to continue the characterization of specific materials. For
example, determining the static and transient properties of inhomogeneous materials involved in ICs
and electronic packages, such as Thermal Interface Materials (TIMs), would allow more accurate
steady-state and transient heat transfer modelling at the die and package levels. Indeed, since the heat
flux is mainly dissipated toward the sink, the thermal properties of TIMs will have to be considered
imperatively to calculate a reliable temperature field in the chip and in the package. This is all the more
important in the case of 3D hybrid bonding imagers where the heat flow must be evacuated toward
the sink to protect the performance and reliability of the pixel matrix.

An important challenge of microelectronics is to understand heat dissipation and hotspot effects at
the scale of the FEOL, especially at the scale of the transistor. A coupled analysis between the
experimental techniques and the numerical models developed in Chapter 3 could help in this direction.
In particular, the SThM technique could be used to probe the surface temperature of a test device with
optimized spatial resolution. Measurements with probes with a very small radius of curvature could
be performed under vacuum conditions, as already done by some colleagues at IBM. The Si-doped
nano-probe could be used for this purpose, and extended for measurements from the transistor level
to the package level as developed in this thesis. It is important to note that for measurements at the
nanometer scale, the tip-sample thermal contact must be characterized and the influence of the probe
(e.g. heat sink effect) needs to be quantified. Thermoreflectance Thermal Imaging (TTI) technique
could also be implemented, because of its better spatial resolution than infrared microscopy, in order
to benchmark the capability of SThM. These experimental results could be used as references for the
calibration of models at the transistor scale, where FEM is known to be limited. The FEM “macroscopic”
models already developed in this PhD thesis at the level of the die would allow determine the loadings
(boundary conditions: temperature and flux densities) which are necessary for the calculations of the
temperature field at the mean-free path scale in multiscale modelling. It would be possible to develop
innovative hybrid numerical models, mixing FE analysis and Boltzmann Transport Equation (BTE)
resolutions.

The present analysis is mostly devoted to 3D hybrid bonding imager applications but the methods can
be applied for many more applications, such as 3D TSV chips, 2D high-power technologies or Silicon-
on-Chip (SoC) devices.
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Appendix

Appendix: Acoustic and Diffuse Mismatch Models for
Thermal Boundary Conductances

The Acoustic Mismatch Model (AMM) and the Diffuse Mismatch Model (DMM) have been traditionally
used to calculate the Thermal Boundary Conductance (TBC) at interfaces [1]. In this Appendix, first, the
principle of a TBC is explained. Then, the key parameters playing a role in TBCs are highlighted, and it
is shown that they can be obtained from the phononic dispersion diagrams of the two media of the
interface. Finally, the calculation of the TBC is detailed considering both the acoustic and diffuse
phonon transmission at the interface. Conditions of applications of these theories are finally discussed.

Thermal boundary conductance

T
Q s
— Ty \ Medium 2
Medium 1 Medium 2 Medium 1 W\
T.
X 2 > X

Figure A.32: Pictorial explanation of a thermal boundary conductance.

At the boundary between two media in perfect contact, an additional thermal conductance, not linked
to a certain volume and called thermal boundary conductance (TBC), is often to be taken into account.
A schematic of a TBC is shown in Figure A.1. At interfaces, the flux is always conserved, but
temperature is not necessarily continuous despite the perfectness of the contact. A variation of
temperature AT between both sides of the boundary can therefore be observed, related to the flux Q
crossing the boundary, as follows

Q = GAT, (A.1)

where G, is the TBC. G, characterizes the capacity of the phonons of medium 1 to cross the boundary
and to enter into medium 2. The influence of the boundary conductance (also called Kapitza
conductance often, especially at interfaces between a liquid and solid) is all the greater as the bulk
conductances are large. This has been highlighted by Pollak and Frederking in [2, 3].

Ingredients: Vibrational density of states and group velocities

Considering the heat transport as a phonon transport across the boundary, G, is defined with
G, = lim (A.2)

G, can be calculated as follows:

Ge=3Y, foE do f02n sin 6 dg fow dw.Vyp(w,6,¢) cos .DS”(:):'@ .ho. afga;,r) Ty2p(w, @, 0), (A.3)

where 6 and ¢ are the angles of incidence of the phonon (6 is the angle with the normal to the
boundary) , w is the angular frequency and hw is therefore the energy of a phonon mode, V; is the
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group velocity and Dy is the density of states of the phonon in the medium 1. The sum is over the
polarizations p and f(w, T) is the Bose-Einstein equilibrium distribution function. A key ingredient in
this formula is 7,5, the transmission coefficient at the interface between the medium 1 and medium 2
that will be detailed in the last section with the AMM and DMM theories. In the following, we restrict
ourselves to isotropic media, where V; (w, 8, ¢) = V;(w) and Ds(w, 6, ¢) = Ds(w).
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Figure A.33: Phonon dispersion relation for bulk silicon [4].

In Eq. (A.3), V; and D; are required for calculating G.. These parameters are determined from the
dispersion relations of each material. The atomic phonon dispersion of silicon, which is not isotropic,
is shown in Figure A.2 [4]. As we have restricted ourselves to isotropic media, we consider the
dispersion along I'X and suppose it to be valid for all directions. It can be shown that the error
committed over the volume of the Brillouin zone is small. For each polarization, the group velocity 1,
is calculated from the dispersion relation by means of

(A.4)

where k is the wave vector. Often, the phonon dispersion relation is approximated by a linear
relationship (Debye approximation). This is accurate for wave vectors close to the center of the
Brillouin zone, but deviates from the true result for wave vectors near the zone edges. Here, the real
phonon dispersion is taken into account over the entire Brillouin zone (along the I'X axis). The density
of states Dy is then deduced as follows

k2

Dy(w) = 2V

3
Py (A.5)

These calculations can be carried out for all the phonon modes: TA (transverse acoustic) and LA
(longitudinal acoustic) ones, but also for the TO (transverse optic) and LO (longitudinal optic) ones. The
results for silicon are shown in Figure A.3 for the acoustic modes, which are those considered for heat
conduction (optical modes will be neglected in the following). Here the experimental dispersions have
been fitted to quadratic laws with the restriction that the group velocity cannot change sign (which is
the case for materials used in Chapter 2). This induces a van Hove singularity (which is integrable) for

the TA mode as seen in Figure A.3.b).

Considering V; and Dy calculated for the two media in contact, the transmission coefficient 7, at the
boundary is to be defined to determine the conductance G..
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Figure A.34: Calculation of a) group velocities and b) densities of states for both TA and LA phonon
modes of propagation in silicon as a function of the circular frequency.

Phonon transmission coefficient

The phonon transport through a boundary can take place in various ways, and so the transmission
coefficient 1, can be estimated with various models. In this work, 7, is computed from the two
following models:

(i) Acoustic Mismatch Model (AMM): the phonon wavelength is estimated much larger than
the microscopic details of the interface (including the atomic lattice size) and the interface
between the two materials is supposed perfectly flat. The transmission is “specular”.

(ii) Diffuse Mismatch Model (DMM): the phonon wavelength is of the same order as the
characteristic lengths of the interface, i.e. the out-of-plane root mean square deviation to
the average plane of the interface, the transverse correlation length of the microscopic
details of the interface, which are two parameters related to roughness, or simply the
atomic lattice size. This model assimilates the interface as so rough that one cannot
distinguishes phonons reflected by the interface and those transmitted. The transmission
is called “diffuse”.

The principle of the AMM and DMM theories is explained in Chapter 1 Section 1lI.3. The relevance of
using AMM and DMM for the calculation of TBC has been well highlighted by Cheeke et al. in [5] and
Swartz and Pohl in [6]. The computation of the transmission coefficient 1, in both AMM and DMM
theories is further detailed in the next section.

Acoustic Mismatch Model

All the phonons are specularly scattered or transmitted at the interface. The transmission coefficient
is calculated at each incident angle and for the three polarizations modes [ (longitudinal), t; (transverse
horizontal) and t, (transverse vertical). In isotropic solids, the polarizations t; and t, are degenerated.
The transmission coefficients in amplitude are calculated with acoustic Fresnel equations respecting
the two conditions of velocity and stress continuity at the interface. The equations are precisely
described by G. Chen and can be found in [7]. For example, the transmission coefficient between t,
modes 74, [t, = t,] is calculated as follows

2p Vg cos 6, 2 p2VE cos 6,

T12]t2 2 ta] = A.6
12[t 2] p1Vg cos B;+paVE cos6,| piVg cos6y’ (A-6)
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sinf; = pl—Vg:sin 6, =sing, (A7)
P2Vg

where p; is the density and 6; is the angle of incidence of the phonon for each medium. For all
polarizations, the transmission coefficient calculated in AMM are given in Figure A.4 for the
silicon/germanium interface. It is interesting to observe that there is strong angle dependence in this
model. Note that simplified versions of the AMM coefficients due to Khalatnikov [8] are usually applied
in literature (see e.g. [9-11]). Here, in order to maintain the angle, frequency and polarization
dependence, the coefficients have been calculated following Cheeke et al. [5] within the full theory. In
the Debye approximation, the TBC G. is found equal to 283 MW.m2.K* at 300 K.
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Figure A.35: Transmission coefficient between silicon and germanium calculated in AMM as a
function of the incident angle and the circular frequency for each polarization.
Diffuse Mismatch Model

All the phonons are diffusely scattered at the interface. The transmission coefficient is calculated at
each frequency and for the three polarizations [, t;, and t,. In isotropic solids, the polarization modes
t, and t, are degenerated. 14, is calculated as follows:

Ip Vg (@)D3(w) (A.8)
Ip Vg (@)Dg @)+ V5 (@)DF (@)’ '

T12(w) =

p = l; tl; tZI
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where V; and D! are respectively the group velocity and the density of states in the medium i. An
example of transmission coefficient calculated in DMM is given in Figure A.5 for the silicon/germanium
interface. The TBC G, is found equal to 346 MW.m2.K™,
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Figure A.36: Transmission coefficient between silicon and germanium calculated in
DMM as a function of the circular frequency.

Application to non-crystalline media

The velocities and densities of phonon states can be determined according to the previous paths only
if the dispersion diagrams are well defined. For amorphous or liquid materials, further assumptions
are required.

For amorphous solids, the dispersion is not well defined if the frequency becomes larger than that
associated to the loffe-Regel criterion (relaxation time faster than inverse frequency, i.e. oscillation
period, see [12]). While it is possible to determine a vibrational density of states (as was shown for
instance from molecular dynamics), it is not the case anymore for the group velocity. To avoid such
issue, a linear Debye dispersion for the materials is considered for amorphous solids, both for the
longitudinal and transverse modes (that have different velocities). This allows following the procedures
described below both for the AMM and DMM theories. An estimation of a TBC can be obtained as
result.

In order to determine a thermal boundary conductance between a solid and a liquid (called Kapitza
conductance), the AMM and DMM theories can be used. Liquids are assumed without transverse
polarization, having only one longitudinal polarization. The group velocity of the longitudinal
polarization in liquid is assumed to be the speed of sound, i.e. the dispersion is supposed linear. To
determine the Kapitza conductance, the principle is the same as the one explained for solids in contact
but the transverse group velocities of the liquid are set to zero in order to account only for the
longitudinal polarization.

Finally, let us mention that interfaces involving metals need in principle to be treated also in a different
way, where the electron-phonon coupling in both materials and across the boundary are taken into
account. This has not been the case in the present work, where only phonon/vibrational contributions
were handled.
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