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Abstract

Replicating the human visual system that the brain uses to process the
information is an area of substantial scientific interest. This field of research,
known as Computer Vision, is notoriously difficult. Almost no Computer
Vision problem has been satisfactorily solved. The main reason for this dif-
ficulty is that the human visual system is simply too good, and Computer
Vision systems suffer by comparison. A fundamental requirement of these
systems is to detect, track and re-identify a person or an object in a region
of interest.

This thesis is situated in the context of a fully automated system capable
of analyzing facial features when the target is near the cameras, and track-
ing his identity when his facial features are no more traceable. Out of plane
rotation of face has long been one of the bottlenecks in the face recognition
area, in the sense that these systems are very sensitive to pose variations.
The first part of this thesis is devoted to face pose estimation procedures to
be used in face recognition scenarios. We proposed a new label-sensitive em-
bedding based on a sparse representation. The resulting technique is called
Sparse Label sensitive Locality Preserving Projections. For enhancing the
discrimination between poses, the projected data obtained by the Sparse
Label Sensitive Locality Preserving Projections are fed to a Discriminant
Embedding that exploits the continuous labels. The obtained results show
that the sparse representation with label similarity is an efficient method for
data embedding, in the sense that it is easy to adapt to different datasets
and that it only needs two parameters to tune.

In a crowded and uncontrolled environment observed by cameras from an
un-known distance, person re-identification relying upon conventional bio-
metrics such as face recognition is neither feasible nor reliable. Instead, visual
features based on the appearance of people determined by their clothing, can
be exploited more reliably for re-identification. This problem can be divided
into two categories: single-shot and multi-shot approaches. Single-shot ap-
proaches are applied when tracking information is absent. In this context,
we propose a new embedding scheme for single-shot person re-identification
under non overlapping target cameras. First, a new representation is given
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for each feature vector by projecting to a new linear subspace. Then, a col-
lection of prototype is utilized to provide a measure to recognize an unseen
object. The robustness of the algorithm against results that are counterintu-
itive to a human operator is improved by proposing the Color Categorization
procedure. On the contrary, when tracking information is available, the ex-
istence of multiple images for each person makes it easier to train machine
learning algorithms in general, and deep neural networks in particular. In
the last part of this thesis, we propose a “Siamese” architecture of two Con-
volutional Neural Networks (CNN), with each CNN reduced to only eleven
layers. This architecture allows a machine to be fed directly with raw data
and to automatically discover the representations needed for classification. A
comparison between learned features and hand crafted is provided, showing
the superiority of the first one.
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Chapter 1

General Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context Of Study . . . . . . . . . . . . . . . . . . 3

1.3 Face Pose Estimation . . . . . . . . . . . . . . . . 6

1.4 Person Re-Identification . . . . . . . . . . . . . . 8

1.5 Contributions . . . . . . . . . . . . . . . . . . . . . 10

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Motivation

The human visual system effortlessly detects and classifies objects from
among tens of thousands of possibilities. It is very effective at transforming
the vast quantities of complex data into useful information, allowing us to
perceive and model the environment. From an evolutionary perspective, our
recognition abilities are not surprising, we draw on many years of implicit
training and experience at processing the world around us. Our survival,
depends on our precise and quick extraction of object features from the pat-
terns of photons on our retina. A huge amount of effort has been put into the
development of systems that replicate some of our visual recognition abilities
using visual sensors and machine learning skills.

1
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Computer vision is a rapidly growing field due to ceaseless advances in
both camera technology and the computational power of modern computers.
Due to the recent global security context, computer vision is gaining more
popularity and installations of camera networks nowadays are widespread.
The number of cases investigated by law enforcement, which have left some
image related traces, is sharply increasing. The recent attack in Boston 1

(2013) demonstrated the effectiveness of video surveillance, where the crim-
inals were identified by officials looking through camera footage. Nowadays,
video surveillance systems have become ubiquitious in all domains ranging
from the protection of small home in private areas, to securing administrative
buildings, airports, public transportations and so on.

Searching for a given person of interest in thousands hours of footage across
multiple cameras, requires to assign a large number of human operators to
this task. Besides, humans are poorly equipped to perform repetitive tasks
and find difficulties analyzing the massive amount of data generated by the
system. For example, a 100 camera installation at 6 images/second gener-
ates 50 million images per day and 1 billion images in the database within 3
weeks. On the other hand, the video data provided as live streams require
high awareness from operators. Normally, there is a huge disparity between
the number of cameras and the number of operators. Operators are normally
watching several displays at once, which increases the chance of missing im-
portant events. In fact, part of the problem is that sometimes one screen
is dedicated to more than one camera and it displays the viewed scene of
each of them periodically. Moreover, operator’s attention often drops below
desirable levels after a while of monitoring normal scenes where no impor-
tant events occur. This is because of lapses in vigilance due to fatigue and
distraction of attention.

A recent 2008 article investigated the relationship between the number of
displays monitored by the operators and the precision of target detection
[3]. It found that the operators missed 60% of the target events when they
were monitoring 9 displays. In addition, when targets were detected, the
probability of detecting another target within the same time frame was de-
creased. Furthermore, the miss rates were reduced to 20% when monitoring

1. Images from the real scenario can be found at: http://www.fbi.gov/news/ updates-
on-investigation-into-multiple-explosions-in-boston/photos
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only 4 displays. Another interesting study shows that after 20 minutes of
focusing on surveillance screens, an operator will miss up to 95 percent of
all activity [4]. And we are assuming that this is a motivated person be-
ing paid to do the job. In brief, in live surveillance mode the more scenes
the person has to monitor, the more activity they are likely to miss because
there are real limitations in people’s ability to monitor several signals at once.

To overcome all these problems, efficient automated surveillance systems are
required in order to filter out irrelevant information and highlight item of
interest. Ideally, these systems should provide alert to the operators and
point them toward suspicious events to give them the chance to investigate
and take action. This research domain covers many tasks like tracking, ob-
ject recognition, gesture recognition, behavior analysis and understanding.
These are prominent and challenging tasks for several applications of Com-
puter Vision, especially in surveillance systems.

1.2 Context Of Study

Figure 1.1: Object Recognition paradigm

Most image processing approaches used to recognize an object go through
three main stages namely, feature extraction, feature selection and classifi-
cation (see Figure 1.1). Prior to recognizing the object, one needs to detect
the object. However prior to detecting the object one has to extract features
of the object that can be compared against the features of a set of reference
images stored in the database. In the hierarchy of object recognition, object
detection typically precedes object recognition. Most approaches consider
object detection step independently from the re-identification step and use
different algorithms to achieve both tasks. In this thesis, we assume that
objects have already been detected in all cameras and we do not tackle the
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detection problem.

Images are a collection of pixels arranged in columns and rows. Each pixel
has an intensity value representing the measured physical quantity such as
solar radiance in a given wavelength band. These representations do not
lend themselves well to semantic interpretation. Instead of using raw images
intensities, one often extracts efficient and effective visual features and build
models from them. The hand-crafted descriptors involved in extracting these
features call for extensive trial-and-error experiments and substantial human
expertise. In the context of visual person recognition, features extracted can
be either based on biometrics (face, iris) or on non-biometric features (ap-
pearance).

Biometric features comprise an individual’s unique characteristics and
are therefore highly discriminative. They can be traced to 14th century
in China, where Chinese merchants were stamping children’s palm prints
and foot prints on paper with ink to distinguish the young children from
one another. Of course even biometric characteristics can change over time
(the face changes with age for example). In practice however, especially in
surveillance scenarios, we can rely on biometric features since they remain
sufficiently invariant within the period of surveillance. Facial recognition can
be considered within the scope of biometrics as it contains enough details
to permit an individual to be distinctively identified. Lately, there has been
notable improvements on automatic face recognition in controlled conditions.
However, the efficiency in unconstrained conditions is still unsatisfactory.

Nowadays, there is an increasing need in real-world applications of visual
person identification. It however comes with high demands on capability and
robustness in realistic scenarios. Most of the approaches that simply count on
biometric features cannot cope with challenges such as non-frontal faces and
low quality images. There is always a trade-off amongst image quality and
sensors price. The choice between a standard or higher resolution cameras
depends on the necessity to capture more detailed images. Of course, high
resolution images are fundamental to improve the performances of computer
vision algorithms like face recognition and person re-identification. But most
of the surveillance cameras are incapable of capturing high-resolution images
due to the low resolution of low-cost cameras and the large distance between
camera and human subjects.
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Figure 1.2: Recognizing people is not trivial even for a human unless faces
are shown in context with their clothing (images from [1])

Besides biometric cues, with the assumption that usually a person does
not change his clothes with short time frames, a person’s overall appearance
is an alternative cue that can be used for person re-identification. This is
an acceptable assumption for many scenarios such as tracking a person in a
surveillance camera network. The use of that attribute in such conditions is
referred to as appearance-based person re-identification. A person’s overall
appearance is a viable source of information, it is exploited by humans in a
manner vastly superior to anything we are currently able to do with comput-
ers. Figure 1.2 shows the difficulty of using only the face to recognize people.
Consider the upper row of the figure where six cropped faces from an image
collection are shown. These images belong to only three different persons.
Even for a human it is difficult to determine how many distinct persons are
present. If however the faces are shown in context with their clothing, the
task becomes almost trivial.

Person tracking/re-identification and face recognition systems should ide-
ally integrate information to minimize identity switches across a network of
cameras. A fully automated system should be capable of analyzing the face
information when the target is near the cameras and tracking his identity in
a video when his facial features are no more traceable. Two key issues make
this challenging:
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1. First, faces are often not captured frontally but from the side so that
standard frontal face recognition cannot be applied directly.

2. Second, the appearance of an individual can vary extremely across a
network of cameras and may cause the failure of the tracker. Mainly it
is due to viewpoint and illumination changes, occlusions and cluttered
background.

To address the first issue we intend to solve the face pose estimation prob-
lem using machine learning techniques. Based on the related work in the
literature, a real-time system will be proposed. For the second issue, under
the assumption that people do not change their clothes between different
sighting in a network, we intend to design stronger human signatures which
are then matched between individual camera views.

1.3 Face Pose Estimation

Figure 1.3: Face Pose angles
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Face pose estimation is a problem related to the fields of computer vision,
artificial intelligence and machine learning. The general application of these
fields is to build machines which can perform intelligent behavior and solve
problems for us. Head pose estimation has been a focus of research in com-
puter vision both implicitly in tasks that use full body pose estimation, and
explicitly in tasks that perform face tracking and face recognition. One of
the major problems encountered by current face recognition techniques lies
in the difficulties of handling varying poses. Hence, in order to make the face
recognition more robust and to allow further face analysis, extensive efforts
have been put to estimate the pose of the head. Figure 1.3 shows the three
degrees of freedom of a human face which can be represented by the three
rotation angles: alpha (yaw), beta (pitch) and gamma (roll). In this thesis
we focus on the out-of-plane rotation problem, since in-plane rotation is a
pure 2D problem and can be solved much more easily.

Face image based human recognition is now a relatively mature technol-
ogy, especially in some controlled indoor situations. It is not surprising that
face recognition systems are very sensitive to pose variation and their accu-
racies drop when the training and testing faces are not in the same pose.
This problem was reported in the FERET and FRVT test reports [5, 6],
and was stated as a principal research complication. Beside its critical role
in face recognition, head pose estimation have lots of applications in the
human-machine interaction domain. It is considered as an important cue of
non-verbal communication since it gives information about the action and
intent of a person. Indeed, humans can easily discover and understand other
people’s intentions by interpreting their head pose.

In video surveillance applications, the process of automatic head pose
estimation is often just the first layer. It can be used as input to the final
task which is typically Facial Recognition or other human-machine interac-
tion tasks. However, in order to make a machine capable of interacting with
the human’s head movements, huge effort has to be done to estimate the
pose from the pixel representation of facial images. In fact, the estimation
of the position with respect to an observer attached to the camera, depends
on the ability of the system to extract and track facial features reliably. It
requires a series of processing steps to transform a pixel-based representa-
tion of a face into a high-level concept of direction. Moreover, the 2-D image
measurements of facial images are usually altered by notable noise due to
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diverse variations in the images like occlusion, facial variation (facial expres-
sions, mustache, beard etc.), and other sources of variation in the image
formation such as illumination. These variations make the feature extrac-
tion step very challenging and may cause large pose estimation uncertainties.

The first part of this thesis focuses on improvements to existing face pose
estimation (specifically the Yaw angle) in terms of precision, computational
expense, and invariance to different constraints (e.g. bad illumination, dif-
ferent skin colors, facial hairs, presence of glasses, etc). We try to estimate
the yaw angle only due to the non-availability of databases that vary the
pitch and roll angles, but the same techniques proposed in this work can also
be applied to estimate the other angles. The terms “face pose estimation”,
“head pose estimation” and “pose estimation” have been used interchange-
ably in this thesis.

1.4 Person Re-Identification

Person tracking has been traditionally studied for surveillance purposes,
where moving objects are detected and assigned to consistent labels as they
move around a scene. To simplify the problem, researchers imposed con-
straints on the appearance and/or the motion. For example, almost all the
tracking algorithms require a spatiotemporal continuity of objects so that
they satisfy the following constraints: continuity (object’s movement must
be continuous) and exclusivity (an object cannot be in more than one place
at the same time). A time delay may interrupt the continuity of an ob-
ject’s position over time, causing the failure of the tracker. Hence, when
distinct images of objects are captured without enough temporal or spatial
continuity, the re-identification process becomes the convenient approach to
maintain the tracking. Another need for re-identification is the case of global
tracking, where the object has to be identified after re-entering the field of
view. Local tracking aims to track the object at a frame-to-frame level as
long as it belongs to its field of view. Global tracking aims to find the corre-
sponding label of some object in its earlier appearances.
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Figure 1.4: Person re-identification problem

Most tracking approaches encountered in the domain of computer vision
are targeted at single-view applications and work on a frame to frame ba-
sis, which means that they are capable to maintain the label of a person
only within the field of view of one camera. While a single camera might be
enough to cover very small areas of interest, additional cameras quickly be-
come inescapable as larger sites have to be monitored. If the architecture of
the site allow establishing a camera network with enough overlapping fields
of view, inter-camera tracking can be accomplished by spatio-temporal anal-
ysis. Nevertheless, in most realistic contexts, the needed number of cameras
and related costs would be too high, so that the coverage is fairly sparse,
causing “blind gaps”.

Person re-identification, a central task in many surveillance scenarios, is
the capability of associating a new observation of a person to others made
in the past. It can be defined as recognizing a person in different locations
over a network of non-overlapping cameras, enabling person tracking within
the full monitored area. State-of-the-art person re-identification methods
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are mostly based on global clothing and body appearance. Face recognition,
that is potentially more effective, is often unpractical in video surveillance
due to low resolutions of pictures, the presence of occlusions with objects and
strong variations of illumination. Re-identifying persons that are in a region
of interest is a high level capability that is critical in many fields beside video
surveillance, like service robotics and smart environments.

In this thesis, we emphasis on person re-identification across blind gaps.
Especially, we tackle the problem of choosing a target in one camera view
and then recognizing the same target in another camera view without simpli-
fying the problem by spatio-temporal analysis based on the prior knowledge
of the scene. Moreover, we suppose that persons have been detected in all
images as we have already mentioned. Figure 1.4 illustrates an example,
where a person is selected from the images of the first camera, and the task
is to automatically re-identify the same person across all the images in the
other camera view. Generally, most approaches generate a ranked vector of
all the persons in a gallery set (images of labeled persons) based on their re-
semblance with the probe image (unlabeled person). The highest similarity
score in the ranked vector will assign a specific label for the probe image.
Depending on the setup, we also have to differentiate between the two cat-
egories of person re-identification. The first category known as ‘single-shot
approach’ [7], focuses on connecting pairs of images, each containing one
instance of an individual. The second category uses multiple images of the
same person as training data and considers short sequences for testing. It is
known as ‘multiple-shot approach’ [8]. It is evident that the latter category
offers richer information because each person is captured in several different
poses. But on the other hand, such systems necessitate more sophisticated
algorithms to be able to utilize the supplementary information, so that the
runtime is noticeably higher than the single-shot case.

1.5 Contributions

The main contributions of this thesis are mainly related to improve some
major components of a vision-based security system, namely, re-identification
of a tracked suspect through a network of non-overlapping video cameras and
uncontrolled face recognition. Both problems are difficult as the target is not
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cooperating in a high-challenging uncontrolled environment. For instance, a
varying face pose could deteriorate even high performance face recognition
algorithms. In the following, we briefly sketch our main contributions con-
cerning face pose estimation (as input to face-recognition algorithms) and
appearance-based person re-identification through a set of non-overlapping
cameras.

1.5.1 Face Pose Estimation

In Chapter 2, we propose a new embedding scheme for image-based con-
tinuous 3D face pose estimation. An adaptation and an extension to the
existing state-of-the art approach for face pose estimation are presented.

First, we show that the concept of label sensitive Locality Preserving Pro-
jections, proposed for age estimation, can be used for modeless face pose
estimation. An adapted version is proposed by building an affinity matrix
taking advantage of two relationships. The first one is a spatial relationship
consisting of the euclidean distance between the data points in the high di-
mensional feature space. The second one is a label relationship consisting of
the euclidean distance between the poses of the data points.

Second, we provide a linear embedding by exploiting the connections be-
tween facial features and pose labels via a sparse coding scheme. In fact,
we constructed a graph similarity matrix via a weighted sparse coding that
integrates label sensitivity. The resulting technique is called Sparse Label
Sensitive Locality Preserving Projections (Sp-LsLPP). Our method has less
parameters compared to related works, making the adaptation process on
different dataset easier and more practical.

Third, inspired by the framework of Linear Discriminant Embedding, the
projections obtained by the Sparse Label sensitive Locality Preserving Pro-
jections are fed to a Discriminant Embedding that exploit the continuous
labels. This latter enhance the discrimination between poses by simulta-
neously maximizing the local margin between heterogeneous samples and
pushing the homogeneous samples closer to each other.

Finally, we demonstrated the benefits of our proposed approach on a num-
ber of publicly available datasets. It was conveniently compared with other
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linear and non-linear techniques, confirming that out proposed frameworks
can outperform, in general, the existing ones. This work has been published
in [9] and [10].

1.5.2 Person Re-Identification

The key contribution here is a new method to perform person re-identification
in a visual surveillance context. Under reasonable assumptions holding in
many real contexts, two approaches are proposed to re-identify people under
non-overlapping target cameras. The first approach is based on hand-crafted
feature extraction and a second approach based on a data-driven deep-learned
representations. Both approaches have been compared and suggestions have
been given according to the application context.

Hand-crafted feature based approach

First, we explore the adaptation of the Prototype Formation in the person
re-identification problem. It was proposed in psychology and cognition field
[11], and tested on Face Recognition problem [12]. It suggests that human
being categorizes the objects based on hierarchical prototypes, and people
differentiate the world using this critical skill for category learning. Psycho-
logical experiments revealed that human brain recognizes and differentiates
objects using prototypes. It means that prototypes provide a measure to
recognize or classify an unseen object. Based on that, we propose an ap-
proach for person re-identification where each person is described as a vector
of kernel similarities to a collection of prototype person images.

Second, we propose an additional Color Categorization step to overcome
one common weak point in previous approaches: mistakenly positioning two
persons who wear different colors of clothes above the true match. In fact,
lighting or background changes have a huge influence on a person’s appear-
ance. These changes can make different persons appear more alike than the
same person across different camera views. Experimental results demon-
strated the benefits of this method by achieving results that are closer to
what humans consider intuitive.

Third, to ensure that features extracted have favorable discriminative ca-
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pability, we propose a novel discriminant method and we show the discrim-
ination that can be provided using the Quaternionic Local Binary Pattern
(QLBP) as a feature vector rather than traditional Local Binary Pattern
(LBP) which neglects the relation between color channels. After extracting
a feature vector representing each image, a linear subspace is learned, promot-
ing the separability between different persons and minimizing the distances
between two representations belonging to the same person. This work has
been published in [13] and [14]

Deep Learning based approach

Finally, the concept of end-to-end learning or learning from pixel level to
person re-identification has been presented in Chapter 4. A siamese Convolu-
tional Neural Network has been trained from scratch generating a similarity
metric. A loss function is defined based on the similarity of the learned fea-
tures. Unlike hand crafted features, this deep architecture is more practical
since all sophisticated features are learned at once without the need of multi-
ple methods combination to achieve the task. A comparison between learning
based features with the handcrafted ones is made in a single shot scenario.
The study shows the superiority in terms of performance for the learned fea-
tures. However, approaches based on handcrafted representation can still be
important in scenarios where the learning database is not sufficient to train
deep networks.

1.6 Outline

This PhD manuscript is organized into 5 chapters as follows:
• Chapter 2 starts by reviewing existing works in the field of face pose es-

timation, organizing them according to the strategy they use to tackle
the task. A review of the label sensitive Locality Preserving Projec-
tions is given before presenting the proposed framework. The final part
of this chapter is dedicated for experimental results and discussions.

• Chapter 3 introduces our proposed approach for appearance based Per-
son re-identification based on hand-crafted features. A general overview
of the whole framework as a complete processing chain is given, provid-
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ing theoretical and conceptual background on color, feature selection
and classification techniques. It outlines the potential benefit of proto-
type formation and color categorization by providing the corresponding
experimental results.

• Chapter 4 outlines a practical implementation of a re-identification sys-
tem based on a Deep Learning architecture. It starts by presenting the
basic operational principles of these architectures. Then, it explains
how the similarity metric has been learned by training a siamese Con-
volutional Neural Network. At the end, a comparison between learned
and hand-crafted features is presented.

• Chapter 5 summarizes the thesis and make some concluding remarks
and limitations. We also discuss about the short-term and long-term
perspectives of this study.

1.7 Publications

The following journal and conference papers have been produced as parts
of outcomes of this research:

1.7.1 Journal

• ”C. Chahla, H. Snoussi, F. Abdallah, F. Dornaika, Discriminant quater-
nion local binary pattern embedding for person re-identification through
prototype formation and color categorization, Engineering Applications
of Artificial Intelligence, Volume 58, February 2017, Pages 27-33, ISSN
0952-1976”
• ”F. Dornaika, C. Chahla, F. Khattar, F. Abdallah, H. Snoussi, Discrim-

inant sparse label-sensitive embedding: Application to image-based
face pose estimation, Engineering Applications of Artificial Intelligence,
Volume 50, April 2016, Pages 168- 176, ISSN 0952-1976.”

1.7.2 Conference

• ”C. Chahla, H. Snoussi, F. Abdallah,F. Dornaika, Exploiting Color
Strength to Improve Person Re-identification, 7th IET International
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Conference on Imaging for Crime Detection and Prevention, ISBN 978-
1-78561-400-2 ”
• ”C. Chahla,F. Dornaika, F. Abdallah, H. Snoussi, Sparse feature ex-

traction for model-less robust face pose estimation, International Con-
ference on Sensors, networks, smart and emerging technologies (SENSET2017),”
(Accepted)



Chapter 2

Face Pose Estimation

Abstract

In this chapter, we describe our proposed framework to estimate the pose
of the head. We start by giving a review on the common solutions of this
problem. Then we describe our algorithm relying on a sparse representation.
Finally, we compare its performance with other linear and non-linear tech-
niques.

Contents
2.1 Face Pose estimation from images: A review . . 16

2.2 Manifold learning: related work . . . . . . . . . . 31

2.3 Proposed framework . . . . . . . . . . . . . . . . 34

2.4 Performance evaluation . . . . . . . . . . . . . . . 39

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 48

2.1 Face Pose estimation from images: A re-

view

2.1.1 Introduction

Face image analysis has attracted increasing attention in the computer
vision community. It is required for developing artificial systems able to per-

16
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form intelligent behavior such as face recognition and annotation [15, 16, 17,
18, 19], facial landmark annotation [20], age estimation [21], or face pose
estimation[22]. The pose estimation process requires a series of processing
steps to transform a pixel-based representation of a face into a high-level
concept of direction. 3D face pose can play an important role in many ap-
plications [23]. For instance, it can be used in the domain of face recognition
either by using hierarchical models or by generating a frontal face image.
The head pose estimation refers to the specific task consisting of determin-
ing the position and/or the orientation of the head in an image (e.g. a facial
one). This task is a challenging problem because there are many degrees of
freedom that should be estimated.

During the past years many techniques and algorithms have been pro-
posed to estimate the pose of faces from images. Murphy-Chutorian and
Trivedi have conducted a very good survey of the proposed techniques in
[22]. The majority of work in 3D face pose estimation deals with tracking
full rigid body motion. This requires the estimation of 6 degrees of freedom
of the face/head in every video frame. This can be successful for a limited
range of motion (typically ±45

◦
out-of-plane) and only for relatively high res-

olution images [24]. Such systems typically rely on a 3D model that should
be fitted to the person specific shape [25, 26]. There is a tradeoff between
the complexity of the initialization process, the speed of the algorithm and
the robustness and accuracy of pose estimation. Although the model-based
systems can run in real-time, they rely on frame-to-frame estimation and
hence are sensitive to drift and require relatively slow and non-jerky motion.
These systems require initialization and failure recovery. For situations in
which the subject and camera are separated by more than a few feet, full
rigid body motion tracking of fine head pose is no longer practical. In this
case, model-less pose estimation can be used [27, 28]. This approach can
be performed on a single image at any time without any model given that
some pose-classified ground truth data are previously learned [29, 30]. In the
following, we will give an overview over the main categories that have been
used to etimate the face pose.
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2.1.2 Geometric Methods

Figure 2.1: Geometric Methods

Geometric methods [31, 32] rely heavily on the estimation of facial fea-
tures, such as eyes, mouth corners, nose tip, etc. and use their relative
position to estimate the pose using projective geometry. For example, if the
eyes and the mouth form an isosceles triangle, then the image corresponds to
a frontal view. Schematic representation of geometric methods is illustrated
in Figure 2.1. The major disadvantage of these methods is the requirement
of detecting the face features in a very precise and accurate way. They also
need to handle missing facial features in some poses. In contrast, these meth-
ods are considered simple and computationally inexpensive.

Different geometric approaches use the precise configuration of local features
and the head shape in different ways to estimate face pose. In [33], authors
used five feature points (the outside corners of eyes, outside corners of mouth
and tip of nose) to estimate pose. These features and other elements, such
as the position of the face in relation to the contour of the head, greatly
affect the human perception of head pose. A symmetry line is usually drawn
by joining the middle of two segments: one drawn between two eyes corners
and the other drawn between mouth corners. Considering a constant ratio
between these facial points and a predefined length of the nose, the facial
angle is estimated from 3D angle of the nose. In [34], they used different five
feature points (the inner corners of the eyes instead of the outside corners of
the mouth). In order to estimate the head pose, they considered that all the
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feature points are co-planner so that the yaw angle is calculated from the
difference in length of the two eyes. Roll and pitch angles are calculated by
comparing the distance between the line joining the two eyes and the nose
tip to an anthropometric model.

Another geometric method was presented in [35]. This method uses six fea-
ture points instead of four (the inner and outer corners of each eye and the
corners of the mouth). The scheme is based on the observation that three
lines between the outer eye corners, the inner eye corners, and the mouth are
parallel. Any observed deviation from parallel in the image plane is a result
of perspective distortion and can be used to estimate the face pose. The
vanishing point (i.e., where these lines would intersect in the image plane)
are computed using least squares to minimize the overdetermined solution for
three lines. This point can be used to predict the 3D orientation of the par-
allel lines if the ratio of their lengths is known and it can be used to calculate
the position of each feature point if the actual line length is known. The EM
algorithm with a Gaussian mixture model can adapt the facial parameters
for each identity to minimize the back-projection error. The downside to this
approach is that they assume the three lines to be visible which makes this
method applicable only when the pose is near enough to a frontal view to
see all of the facial lines.

Another estimate of pose can be obtained based on the position of pupils
and nostrils. Infrared LEDs capture dark and bright pupil images. Subtract-
ing the dark image from the bright image localize the pupils. Two normal
vectors are then calculated, the first one from two eyes and right nostril plane,
and the other one from two eye and left nostril plane. These vectors are used
as an indication to calculate the face pose [36]. Recently, researchers investi-
gated the 3D sensing technologies for face pose estimation [37, 38]. Although
this technology promises a lot in overcoming some of the problems of meth-
ods based on 2D data by using the additional depth information, it suffers
of serious computational problems. It cannot handle large pose variations, it
cannot run in real time and it need manual initialization. Furthermore, they
are not as scalable as the 2D sensors providing 2D images. Other approaches
incorporate both 2-D and 3-D information using a face normal vector. They
derive face features (eyes, nose, lips) from 2-D from which the face normal
vector in obtained in 3-D space. The process of estimating the face pose from
this normal vector is iterated until a given accuracy is satisfied [39].
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It is worth mentioning here that even very simple cues can be effective to
the face pose estimation problem. Fitting an ellipse to the gradient contour
of a face can give a coarse prediction of pose for one DOF [40]. With many
cameras surrounding the head, yaw can be reliably estimated as the orien-
tation with the most skin color [41] or with a skin color template [42]. For
virtual reality use, various markers are positioned on the frame of the eye
glasses [43]. To prevent the distraction of the user, IR illumination are used
in conjunction with IR reflective. The orientation of these markers can be
used to estimate the face pose. One main disadvantage of this method is
that it is only applicable to their specific virtual reality environment.

Most of these geometric methods have the advantage of being fast and sim-
ple. With only a few facial features, a decent estimate of head pose can be
obtained. However, one main disadvantage remains in detecting the features
with high precision. Hence, the lack of accuracy or errors in localization can
greatly degrade the performance of these approaches. Low resolution images,
in this context, are problematic since it is impossible to accurately localize
the features. Similarly, situations where facial landmarks are occluded, such
as when a person wears glasses, are not practical for this kind of methods.

2.1.3 Appearance Methods

Appearance template methods use similarity algorithms and compare a
given image to a set of exemplars in order to discover the most similar im-
age [44, 45]. Figure 2.2 shows an illustration of appearance methods. In
the simplest implementation, the input image is given the same pose of the
template that is associated to the most similar of these templates. The use
of normalized cross-correlation at multiple image resolution [46] and mean
square error (MSE) over a sliding window [47] are some basic examples of
appearance methods.

One of the main advantages of these methods is that they are suitable for
both low and high-resolution images. Moreover, it is not hard to adapt these
methods to changing conditions. This can be achieved by simply adding
more templates and expanding the dataset. Unlike face detection problem,
appearance methods do not need negative training examples. Training data
are created by cropping head images and providing the corresponding pose
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Figure 2.2: Appearance Methods

labels.

Nevertheless, even if these methods have the advantage of not requiring a
feature extraction step, they may suffer from noise caused by illumination
and expression changes in addition to the need of high computational power
since the matching process they use is based on pair-wise similarities. Fur-
thermore, these methods are applicable only to discrete poses and they can-
not be used to the continuous pose estimation problem without the need of
some interpolation method. Also, they generally consider that the head has
already been localized, which means that any localization error can decrease
the precision of these methods. To deal with the latter problem, the authors
of [48] and [49] proposed to train a set of Support Vector Machines (SVMs)
to detect and localize the face before using the support vector as appearance
templates for pose estimation.

Apart from those weak points, the most significant disadvantage of ap-
pearance template methods is that they assume that pair-wise similarity in
image space can be equated to similarity in pose. Suppose we have two im-
ages of distinct persons but with the same pose in one case, and two images
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of the same person but with different poses in another case. In this context,
the identity effect can cause more dissimilarity in the image than from a
change in pose which can lead to erroneous pose estimation. To overcome
the effect of pair-wise similarity problem, [50] suggested to convolve images
with a Laplacian-of-Gaussian filter to emphasize some of the more common
facial contours while removing some of the identity specific texture varia-
tion. In the same way, [51] suggested to convolve images with a complex
Gabor-wavelet to emphasize directed features like the horizontal line of the
mouth. The magnitude of this convolution is invariant to shift which can
greatly reduce the error produced due to variance in facial feature locations
between different persons.

2.1.4 Regression Based Method

Figure 2.3: Regression Methods
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Regression-based methods [52] allow to obtain continuous pose estimates.
An illustration is provided in Figure 2.3. Indeed, they use regression tech-
niques [53, 54] in order to find the relationship between the face image and
its corresponding pose and to earn continuous mapping functions between
the face image and the pose space. The weak point of these methods is that
it is difficult to obtain an ideal mapping using regression.

The high dimensionality of the data represents an important challenge
in this kind of methods because of the well-known ”curse of dimensionality”
problem [55]. Many solution have been proposed to reduce the dimensional-
ity using the Principal Component Analysis (PCA) for example before using
Support Vector Regressors (SVRs) [56]. Others used localized gradient orien-
tation histograms to reduce the dimensionality [57] which gave more precision
in the estimation process. On the other hand, if the location of facial fea-
tures are predefined, the regression methods can be applied on relatively low
dimensional feature data extracted at these points [58, 59].

One of the most popular nonlinear regression procedures used in the lit-
erature of face pose estimation are neural networks. Commonly, a multi
layer perceptron (MLP) is trained with backpropagation which is a super-
vised training method that propagates the error through each layer to update
each of the weights and biases of these layers. The latter model can be used
as a feature extractor and a classifier to any new face image by giving it
a discrete pose label. To take in consideration the similarity in the train-
ing images corresponding to similar poses, a Gaussian kernel can be applied
[60, 61].

To obtain continuous pose estimates, a MLP is trained with one output
for each DOF [62, 63]. The output’s value is proportional to the assigned
face pose angle. Other methods trained several MLP networks each with a
single output corresponding to each DOF. The head region is detected by
a color filter or a background substraction and a Bayisan filter is used to
smooth each individual camera [64, 65]. Local-linear map (LLM) is another
common neural network widely used for head pose estimation [66]. The input
image is compared with the centroid of each of the linear maps constituting
the LLM network in order to build a weight matrix. Finally, a regression
technique succeeds the search of the nearest neighbors to estimate the poses.
In [67], the authors proposed to boost the latter work by Gabor wavelets
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decomposition.

The main advantage of these methods is that they are very fast and
only need images of cropped faces with the corresponding poses. These ap-
proaches are very practical since they give high precision in estimation for
both near and far field images. Just like the appearance template methods,
these methods are very vulnerable to the head localization errors. To over-
come this problem, the work of [68] proposed a convolution network that
artificially model some shift and scale that can reduce this source of error.

2.1.5 Manifold Learning

Figure 2.4: Manifold Methods

The manifold embedding methods [69] consider face images as samples
of a low-dimensional manifold embedded in the high-dimensional observa-
tion space (the space of all possible images) (Figure 2.4). They try to find
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a low dimensional representation that is linked to the pose. After properly
modeling the manifold, an embedding technique is used to embed the test
sample on this manifold. After that, classification or regression techniques
are applied to discover the pose. All the dimensionality reduction methods
can be considered as manifold embedding but the challenge is to design an
approach that can ignore all erroneous sources in the image in order to pre-
cisely determine the pose.

The well known principal component analysis (PCA) technique has been
widely used for pose estimation problems. In [70], the authors reduced the di-
mensionality of the face image by projecting it to a subspace using PCA, then
they compared this representation with a set of reference samples to estimate
the pose. The work of [71] showed that the similarity in the PCA subspace
correlate more with pose similarity than appearance template matching with
Gabor wavelet. The unsupervised nature of PCA and its nonlinear version
Kernel PCA does not guarantee that the primary component is correlated to
pose estimation rather than to appearance variation. As a solution for this
problem, the work of [72] proposed to split the training data into different
groups where each group shares the same pose. As a result, the appearance
information is decoupled from the pose and PCA can be used to create dif-
ferent projection matrices for each group. Thus, the head pose is determined
after projecting the image using each of the projection matrices and selecting
the pose with the highest projection energy. Another method is proposed in
[73], where the projected sample is used as input to Support Vector Machines
(SVMs). The work of [74] showed that a better performance can be achieved
by using Gabor binary patterns with a set of multi-class SVMs. Since the
estimation is based on discrete measurments, pose-eigen spaces cannot be
used for continuous pose estimation.

The heterogeneity of the samples is considered as one of the main chal-
lenges in real-world scenarios. Many persons are needed to train a manifold,
but it is difficult to get a regular sampling poses for each person. To overcome
this problem, individual submanifolds are created and used to reconstruct
missing poses for each subject. This work was introduced in the Synchronized
Submanifold Embedding (SSE) in [75]. This proposed algorithm is dually
supervised by both identity and pose information. The submanifold of each
subject is approximated as a set of simplexes constructed using neighboring
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samples, and the pose label is further propagated within all the simplexes by
using the generalized barycentric coordinates. Then these submanifolds are
synchronized by seeking the counterpart point of each sample within the sim-
plexes of a different subject, and consequently the synchronized submanifold
embedding is formulated to minimize the distances between these aligned
point pairs and at the same time maximize the intra-submanifold variance.
Finally, for a new datum, a simplex is constructed using its nearest neighbors
measured in the dimensionality reduced feature space, and then its pose is
estimated as the propagated pose of the nearest point within the simplex.

2.1.6 Detector Arrays

Figure 2.5: Detector Array Methods

After the notable success of face detection using frontal face images
[76, 77], many methods have been suggested to extend these detectors to
non frontal faces. Detector arrays method train many face detectors, one for
each discrete pose. Figure 2.5 illustrates these methods. The probe image
will be the input for all these detectors, and the image will be assigned to the



CHAPTER 2. FACE POSE ESTIMATION 27

pose of the detector that has the maximum success. In other words, instead
of comparing the input image to a set of large templates like in appearance
methods, detector methods train a detector on many images with different
poses. For example, the work of [78] used three support vector machines for
estimating three discrete yaw angles. Since each detector can differentiate
head and non-head regions, detector array methods do not require a head
detection step. Unlike appearance templates, these methods can be trained
to ignore the appearance changes corresponding to the identity effect and
not the pose. Another advantage of these methods is that they are suited for
low and high resolution images.

The main disadvantage of these methods is that they are computationally
expensive since they train a large number of detectors. It is also challenging
to train a detector to be used as a face detector and pose estimator in the
same time since it requires negative non-face training examples, which means
a larger training set. Moreover, increase in the number of detectors may
lead to systematic problems. For example, when two different detectors are
trained for two similar poses. The positive example for one must be negative
example for the other which can cause a failure in the model. This is why in
practice the detector array methods do not use more than twelve detectors.
In addition, these methods are limited to discrete pose classification and
are not efficient for continuous estimation because the face detectors have
usually binary outputs. Finally, the computational expenses grow linearly
with the number of detectors, making it impossible to design a real-time
system. [79] suggested a solution for this problem by using a router classifier
which choose one detector to estimate the pose. In this case, the router
effectively determines the pose and the subsequent detector verifies it. It
should be noted that this method has not been demonstrated for yaw or
pitch changes but rather only for rotation in the camera plane, first using
neural networks in [79] and later with cascaded AdaBoost [80].

2.1.7 Deformable Methods

These methods try to design a flexible model for the image in a way
that it fits to the structure of the face. The deformation of the model is
used as an information to estimate the pose. They are very often used in
tracking the face pose and some facial actions. Unlike appearance methods,
these approaches rely on tuning the model such that it conforms to the facial
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Figure 2.6: Flexible Methods

features of each person. In case of appearance based models, the chance of
getting a perfect overlap of two images belonging to different persons is very
low. Flexible methods do not suffer from this problem since they do not rely
on matching a rectangular region of the image. In these methods, even if
the facial features do not match perfectly due to inter-subject variation, the
shape of the deformed model is more similar for different individuals. The
schematic illustration of flexible methods is presented in Figure 2.6.

Flexible methods require training data with annotated facial features and
not only the corresponding face poses. In the training phase, facial features of
each image are labeled and local features are extracted at each location. To
improve the robustness and invariance to inter-subject variations, the train-
ing is done using a large set of data and features are extracted from different
views. The latter model is called Elastic Bunch Graph [81]. In order to com-
pare a new test image to an elastic bunch graph, the graph is placed over the
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image and is deformed so that each node overlaps with its relevant feature
point location. This process is called Elastic Graph Matching (EGM). In the
case of face pose estimation, for each discrete pose an elastic bunch graph
is created and the test image is compared to each one of them. The image
is assigned to the pose corresponding to the graph which gives maximum
similarity [82, 83].

Active Appearance Model (AAM) [84] is another well known flexible
method which learns primary modes of variation in facial shape and tex-
ture from 2D perspective. Consider N facial points such as eyes corners,
ear tips, mouth etc. These points can be arranged in a vector of length 2N
based on the coordinate of each point. These vectors can be used for face
pose estimation by comparing variation in facial shape after calculating the
features form many different faces. The application of PCA on this data
will result in an Active Shape Model (ASM) [85] which can represent shape
variation. A joint shape and texture AAM can be presented by generating
an ASM model first before adapting the images such that the feature points
match those of the mean shape. The images are normalized and then used
to build a shape-free texture model. Finally, the correlation between shape
and texture is learned and used to generate a combined appearance model
[86]. To find the pose of a test image, the combined model is fitted to the
image by iteratively comparing the model to the observed image and tuning
the parameters to minimize the distance between the two images.

Since AAMs adapt a statistical deformable model to the images by local-
izing the exact feature points, these approaches are more robust and invariant
to face localization error. The main limitation of AAMs is that facial features
localization is required in the training stage and they fail if the outer corners
of the eyes are not visible.

2.1.8 Hybrid Methods

Hybrid techniques mix two or more of the previous methods to estimate
pose, as illustrated in Figure 2.7. They combine many techniques trying to
overcome the limitation of each of individual techniques. A common Hybrid
approach is to use a static face pose estimation technique for the first frame
of a video combined with a tracking algorithm to track the pose over time.
When the tracker lose the pose, the static method can reinitialize the system.
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Figure 2.7: Hybrid Methods

Many researchers have presented successful hybrid methods like combin-
ing Geometric methods with point tracking [87, 88, 89], combining PCA with
optical flow [90] or with a Markov model [91]. The work of [92] presented
a combination of manifold embedding and flexible methods where they used
Elastic graph matching to refine the pose calculated by manifold embedding.
Hybrid approaches can also use many methods independently and then com-
bine the result to enhance the precision of the estimation [93, 92].

The main advantage of these techniques is that they overcome the limi-
tation of each of the previously discussed methods allowing to enhance the
precision of the face pose estimation. Nevertheless, the combination of sev-
eral methods increase the computational expenses and are not suitable in
real-time applications.
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2.2 Manifold learning: related work

While a face image is considered as data with a high dimensionality, only
few dimensions are affected by the pose variation. Hence, we can suppose
that each high dimensional image lies on a low dimensional manifold which
can be used to estimate the pose. Manifold learning methods are used to
reduce the dimensionality of the space and thus enhancing the performance
of subsequent image-based tasks.

The classic linear embedding methods such as Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA) [94], Maximum Margin Cri-
terion (MMC)[95]) are proved to be computationally efficient and suitable for
practical applications, such as pattern classification and visual recognition.
PCA projects the samples along the directions of maximal variances and aims
to preserve the Euclidean distances between the samples. Unlike PCA which
is unsupervised, LDA [94] is a supervised technique. One limitation of PCA
and LDA is that they only see the linear global Euclidean structure. In ad-
dition to the Linear Discriminant Analysis (LDA) technique and its variants
[96, 94], there is recently a lot of interest in graph-based linear dimensionality
reduction. Many dimensionality reduction techniques can be derived from a
graph whose nodes represent the data samples and whose edges quantify the
similarity among pairs of samples [97, 98]. Recent proposed methods attempt
to linearize some non-linear embedding techniques. This linearization is ob-
tained by forcing the mapping to be explicit, i.e., performing the mapping
by a projection matrix. For example, Locality Preserving Projection (LPP)
[99] and Neighborhood Preserving Embedding (NPE) [100] can be seen as
linearized versions of Laplacian Eigenmaps (LE) and Local Linear Embed-
ding (LLE), respectively. The main advantage of the linearized embedding
techniques is that the mapping is defined everywhere in the original space.

2.2.1 LsLPP adapted to face pose estimation

In this section, we review the LsLPP (Label-sensitive Locality Preserving
Projections) method described in [21]. This method is a graph-based linear
embedding technique. It can be considered as a supervised version of LPP
(Locality Preserving Projections) method when the sample label is given by a
real score. More precisely, the authors of [21] introduce a new framework for
LPP and uses the resulting embedding for age estimation from facial images.
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They divided a new affinity graph in which the edges weights explore the
connections between facial features and age labels. This work introduces the
label-sensitive concept that makes the affinity matrix dependent on both face
image similarities and label similarities (age order). LsLPP method adopts
the LPP framework [99, 101] in which the affinity matrix is built upon the use
of both feature and label similarities. The proposed embedding is expected
to better exploit the ordinal relationship among age labels. A label-sensitive
concept is introduced, which regards the label similarity during the training
phase of LPP.

LsLPP is a dimensionality reduction algorithm that aims to reduce the
dimensionality of the data while preserving the relationship that relates the
data in the high dimensional space. The relationship preserved by the LsLPP
algorithm can be divided into two types:

– A spatial relationship which consists of the Euclidean distance between
the data points in the high dimensional feature space.

– A label relationship which consists of the Euclidean distance between
the labels (age) of the data points. In image-based age estimation,
there exist the ordinal relationship and correlations among ages; for
example, an age of 30 is closer to age 25 than to age 10.

Since face pose is a continuous variable, the LsLPP framework of [21] can
be also used for face pose estimation. Similar labels (poses) are defined by
the threshold ε, and the weights of the edges are computed in a way that
takes into account the pose similarity. The LsLPP algorithm for face pose
estimation is summarized in Figure 2.8.

Once the linear transform is known, any datum x can be projected onto
the new subspace of dimension p using z = WT x ∈ Rp. One can notice
that all steps of the above algorithm are similar to those of a classic LPP
algorithm. The main difference is in the computation of the similarity matrix
B which incorporates both the features and labels. The LsLPP algorithm
has four parameters (k1, σ, t, ε) that need to be tuned in order to obtain the
most accurate estimation possible.



CHAPTER 2. FACE POSE ESTIMATION 33

Algorithm 1: Ls-LPP

Input: Training set represented by the data matrix X = {xi ∈ Rd}Ni=1,
labels y = {yi}Ni=1 representing the real-valued pose (angle) of each
sample, number of neighboring samples k1, label-sensitive threshold ε,
that defines the range of similar labels, parameters t and σ.
Output: A linear transform matrix W

Presetting:
– Define the similar-label set N+(i) for each sample x(i) as: N+(i) = {xj , ‖yi−
yj‖ ≤ ε and j 6= i} where ε is the label-sensitive threshold that defines the
range of similar labels.

– Set the N ×N sample similarity matrix B to zero, i.e., {bij = 0}(1≤i, j≤N)

Algorithm:
– For each sample xi find its k1-nearest samples inN+(i) based on the Euclidian

distance. Denote this sample set by as KNN+(i). Thus, the set KNN+(i)
contains all samples that satisfy both feature similarity and label similarity
with respect to the current sample xi.

– For each sample pair {xi,xj}, if xj ∈ KNN+(i) or xi ∈ KNN+(j) set:

Bij = exp(−‖xi−xj‖2
t ) exp(− (yi−yj)2

σ )
– Compute the Laplacian matrix associated with graph B as L = D−B, where

D is a diagonal matrix whose elements Dii are computed by: Dii = Σj Bij
– Solve the generalized eigen decomposition problem:

(XLXT )vi = λi(XDXT )vi −→ (XLXT )V = (XDXT )VΛ where Λ is a
diagonal matrix formed by the eigenvalues λi arranged in the ascending or-
der and V is a matrix whose columns are the eigenvectors ordered in the
ascending order of the corresponding eigenvalues.

– Output: Linear transform W = [v1,v2, . . . ,vp] ∈ Rd×p

Figure 2.8: Algorithm LsLPP.
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2.3 Proposed framework

2.3.1 Overview of the proposed approach

The machine learning pipeline used in the proposed work is summarized in
Figure 2.9. The remaining of the section will describe each module. The first
module is a classic image preprocessing which involves a feature extraction
technique. Thus, the input data can be any descriptor extracted from the
raw images (e.g., Local Binary Patterns (LBP), Gabor images, etc.). The
second module is a simple dimensionality reduction that can be achieved by
PCA. It is a pure unsupervised technique. The third module is given by the
new method Sp-LsLPP that is based on a new method for affinity matrix
estimation. The latter estimation relies on `1 coding (sparse representation)
that naturally incorporates the pose labels. The fourth module enforces
the discrimination among the classes (poses). The final module provides a
regression on the projected data in order to predict the pose.

2.3.2 Preprocessing

In this step, image processing techniques are used to prepare the images.
During this step, face alignment and cropping might be performed in order to
eliminate from the input image, as much as possible, the information that is
irrelevant to the pose problem (background). This operation aims at making
the pose estimation more robust. The obtained image is then normalized
and eventually reshaped as a vector that contains its pixels or the elements
of its descriptor. A typical normalization scheme is given by the zero-mean
unit-variance scheme. Thus, at the end of the preprocessing step, face images
are represented by high dimensional normalized vectors. A typical pipeline of
sub-processes can be as follows: I −→ z −→ x. Here, I denotes the cropped
2D face image, z is the vectorized form of I, and x = z−mz

σz
is the normalized

z where mz is the mean of the z elements and σz is their standard deviation.

2.3.3 Dimensionality reduction

When the feature vector (image or descriptor) has high dimensions and
is suspected to contain notoriously redundant data, it must be converted
into another representation (possibly with lower dimension) that eliminates
the redundancy and helps making the estimation more robust to noise. In
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Figure 2.9: The proposed machine learning pipeline. The contributions are
the modules: Sparse LsLPP and Discriminant Embedding (DE).

the pose estimation problem, it is likely that the largest variance that exists
in the data is due to pose variation. Based on this, PCA [102] is used in
the proposed work to find the appropriate space that keeps the information
related to the pose and eliminates the redundant information. Following the
above notations and assuming that the PCA transform is given by the matrix
WPCA and that the data mean is x, then the PCA projection is given by
xPCA = WT

PCA(x− x).
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2.3.4 Sparse Label sensitive Locality Preserving Pro-
jections (Sp-LsLPP)

While the LsLPP method can integrate the concepts of locality and label
sensitivity, it has four parameters. Two parameters are related to feature
similarity (i.e., k1 and t). These are very often hard to fix in advance. In
order to release the use of these parameters, and therefore to reduce the total
number of parameters that need to be tuned in the LsLPP algorithm and to
model the relationship between the samples in a better way, we propose a
new method for building the affinity matrix which utilizes sparse coding. The
main difference of the proposed approach with the LsLPP method of [21] is
that the construction of the graph similarity matrix B will be carried out via a
weighted sparse coding that integrates label sensitivity. Sparse representation
is, in general, a representation of images that is the most compact in terms
of linear combination of atoms taken form an over-complete dictionary [103].
A dictionary is formed by many images. Sparse representation means that
only some images will participate in the reconstruction process while the rest
of the images will have zero contribution. This coding of images is done by
minimizing the following objective function:

minb(‖y−X b‖22 + λ‖b‖1) (2.1)

where y is the image to be decomposed, X is the matrix of bases forming
the dictionary (in the addressed case it will be the data samples themselves
as it will be seen in Algorithm 2.10) and b = (b1, b2, . . . , bN) is a column
vector formed by the reconstruction coefficients. ‖b‖1 denotes the `1-norm of
b. λ is a scalar regularization parameter that balances the tradeoff between
reconstruction error and sparsity. Sparse coding is a well-known tool that
provides coefficients that respect feature similarities and closeness.

The proposed Sp-LsLPP algorithm is summarized in Algorithm 2.10. Un-
like the formulation in (2.1) which does not integrate label sensitivity, a
weighted sparse coding (See Eq. (2.2)) is used to construct the affinity ma-
trix graph where weights are depending on the labels. Each training sample
is constructed from the remaining training samples using Eq. (2.2). Thus,
the optimization problem is invoked N times. The optimization problem in
(2.2) can be solved by many existing algorithms. In the current work, the
off-the-shelf code from SLEP package [104] is used.

The absolute values of the reconstruction coefficients present the weights
on the edges of the graph since they give an indication of the relationship that
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exists between the samples. It should be noticed that the sparse coding is
achieved in a way that respects the label-sensitive concept of poses. Indeed,
in Eq. (2.2), the label sensitivity concept is enforced by the individual weights
represented by the diagonal matrix P. Each weight P (j, j) is a function of
the distance between the label (pose) yj and the label (pose) yi (where i is
the index of the image to be coded). As the distance between label yj and
label yi increases, the coefficient bj is forced to be as small as possible (hence
no real connection between the image to be coded and the image j).

Sp-LsLPP

Input: Training set represented by the data matrix X = {xi ∈ Rd}Ni=1,
labels y = {yi}Ni=1 representing the real-valued pose (angle) of each
sample, parameters σ, and λ.
Output: A linear transform matrix W

– For each sample xi:
– Compute the diagonal matrix P such that P (j, j) = 1 −
exp(−(y(i)−y(j)

σ
)2), j = 1, ..., N .

– Estimate the coding vector b using the following weighted sparse
optimization problem:

min
b

(‖X′ b− xi‖2 + λ ‖P b‖1) (2.2)

where X′ is a matrix formed by the remaining N−1 training samples.
By introducing the auxiliary vector a = P b, (2.2) becomes a classic
sparse coding problem mina(‖X′P−1 a− xi‖2 + λ ‖a‖1)

– The ith row of B is given by B(i, :) = (bi)
T = (P−1a)T

– Make the affinity matrix symmetric, i.e., B← |B|+ |B|T
– Compute the Laplacian L = D−B where D is a diagonal matrix with
Dii =

∑
j Bij

– Solve the following generalized eigenvector problem: (XLXT )vi =
λi(XDXT )vi −→ (XLXT )V = (XDXT )VΛ

– Output: Linear transform W = [v1,v2, . . . ,vp] ∈ Rd×p

Figure 2.10: The proposed Sp-LsLPP.

The generalized eigenvector problem is due, like in the case of LPP, to
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the minimization of the criterion:
∑

i,j ‖zi − zj‖2Bij where zi and zj are

the projections of the ith and jth images. Bij is the weight of the edge that
connects the two images. It is obvious that the proposed method has the
benefit that it needs only two parameters that are very easy to tune, λ and
σ. λ is the sparsity parameter and must be chosen small to prevent the B
matrix to contain lots of zeros which does not describe well the relationship
between the samples. Thus, the proposed Sp-LsLPP has released the use of
the neighborhood size parameter k1, the threshold ε, and the scale parameter
t.

2.3.5 Discriminant Embedding

LsLPP or Sp-LsLPP have taken into account the order of the continuous
labels (poses), and introduced locality preserving projections that exploit
both pose orders and feature similarities. However, both methods do not use
any explicit discrimination for the images having different labels. In order
to tackle that, an additional manifold linear technique (cascaded with the
output of Sp-LsLPP) is applied. This technique is inspired by the framework
of Linear Discriminant Embedding (LDE) [105]. The objective of LDE is to
estimate a linear mapping that simultaneously maximizes the local margin
between heterogeneous samples and pushes the homogeneous samples closer
to each other. Obviously, a direct application of LDE framework is not
feasible since the concept of discrete classes does not exist for the problem of
continuous pose estimation. However, in a similar way that label sensitivity
is defined, the homogeneous images (w.r.t. a given image) can be defined by
all images having a pose close to that image, and the heterogeneous images
are the remaining images. In this way, the within-class and between class
graphs needed for the LDE technique are easily set.

2.3.6 Regression

The final step in the approach will be the estimation of the pose value
given the embedded face image. Regression techniques model the depen-
dency or the relationship between a scalar dependent variable (e.g., the yaw
angle) and one or more explanatory variables (in the proposed work, these
variables will be the generated projected data). In the proposed work, Par-
tial Least Square Regression (PLSR) [54] is used to perform regression. In
particular, the Kernel PLS [106] is used. This choice is motivated by the fact
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that non-linear PLS are well suited to the problem at hand. Two kinds of
regression were tested: the global regression and the local regression. The
global regression techniques are the commonly known regression algorithms
that take all the data available in the training set into account when train-
ing and calculating the parameters of the regression model. On the other
hand, local regression techniques look for the k-nearest neighbors and train
the regression model on these neighbors only (e.g., KNN-PLSR [107]). In the
sequel, only the results obtained with local regressions are presented, since
they gave better performances than the global ones.

2.4 Performance evaluation

In order to test the efficiency of the proposed framework, several exper-
iments are performed on three face datasets using different data embedding
techniques.

2.4.1 Experimental setup

The experiments are performed on three different benchmark datasets in
which only the yaw angle varies. The first dataset is the FacePix database 1.

An example of this set is shown in Figure 2.11. All the face images are 128
pixels wide and 128 pixels high. These images are normalized, such that the
eyes are on the 57th row of pixels from the top, and the mouth is centered on
the 87th row of pixels. FacePix is a face image database created at the Center
for Cognitive Ubiquitous Computing (CUbiC) at Arizona State University,
and made available free of charge to the worldwide research community. In
the FacePix database, called FacePix(30), there are 181 face images for each
of 30 people where each image corresponds to a rotational interval of 1 degree,
across a spectrum of 180 degrees. These images were captured with a moving
video camera, using two stationary diffuse light sources that simulate ambient
light. The face images in this set contain very little shadowing. Pose angle
variations vary across a range from +90 degrees to -90 degrees, where +90
degrees represents a left profile view, 0 degrees represents a frontal view, and
-90 degrees represents a right profile view.

The second dataset is the Taiwan dataset 2 which contains images of 90

1. https://cubic.asu.edu/content/facepix-database
2. http://bml.ym.edu.tw/bmlab/
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persons taken at a 5-degree step. Acquisition conditions are similar to those
of FacePix dataset. Figure 2.12 shows some samples from this database.
While the faces in FacePix dataset are already aligned, those of Taiwan
dataset are not. In order to align them, a similar procedure used for aligning
faces in FacePix dataset is adopted. That is achieved by detecting the eyes
in every image.

The third dataset is the Columbia dataset 3. It is a database made orig-
inally for evaluating the eye gaze estimation. This database also contains
images depicting face poses of different persons. This database contains
high-resolution images of 56 different people (32 male, 24 female) and each
image has a resolution of 5184 x 3456 pixels. 21 of the subjects were Asian,
19 were White, 8 were South Asian, 7 were Black, and 4 were Hispanic or
Latino. The subjects ranged from 18 to 36 years of age, and 21 of them wore
prescription glasses. For each subject, the database contains images for five
horizontal face poses (0◦, ±15◦, ±30◦), i.e, only five yaw angles. Since this
database does not have very much variation in the face pose like the previous
databases, the performance evaluation of the face pose will adopt classifica-
tion of the yaw angles. Figure 2.13 shows samples from this database.

Two kinds of image descriptors are tested: (i) raw images; and (ii) LBP
histograms (one block and multiblock) [108, 109].

For LBP descriptors, we use a radius of one pixel and eight neighboring
pixels. This choice of LBP parameters can be considered as a good trade-off
between detecting fine local features and the size of the feature vector. For the
multi-block LBP, 25 blocks are used (See Figure 2.14(b)). Each region/block
is represented by its LBP histogram and the whole image descriptor is the
concatenation of these 25 histograms.

2.4.2 Method comparison

The tested data embedding methods are defined and described in Ta-
ble 2.1. Note that all methods are linear except for the Supervised Lapla-
cian Eigenmaps (S-LE) which is non-linear. For instance, the combina-
tion Sp-LsLPP+DE (proposed method) means that the training phase uses
the training data samples in order to recover three linear transforms: the
PCA transform denoted by WPCA, the sparse Ls-LPP transform denoted
by WSP and, the DE transform denoted by WDE. Thus, the final embed-

3. www.cs.columbia.edu/CAVE/databases/columbia gaze/



CHAPTER 2. FACE POSE ESTIMATION 41

ding of an unseen face image x using the combination Sp-LsLPP+DE will
be f(x) = WT

DEWT
SPWT

PCA x. In this formula, x is a vector that contains
either the vectorized raw image or the LBP descriptor of the image. Finally,
the yaw angle is given by: Angle(x) = PLSR(f(x)). We also use the su-
pervised non-linear Laplacian Eigenmaps (S-LE) in [110]. Since this method
is non-linear, the test images are projected using the out-of-sample method
described in [111].

The parameters of each embedding technique are set to a subset of values
that are used and only the best performance will be reported. The LPP and
LsLPP methods have the Gaussian similarity scale, t, and the neighborhood
size k1. t is set to the average of squared distances among the samples in the
training set. The neighborhood size k1 ∈ {5, 10, 15, 20, 25, 30, 35, 40}. The
LsLPP technique has two additional parameters ε and σ. ε ∈ {4, 6, 8} and
σ is set to 100. The regularization parameter of the sparse LsLPP is set to
0.01. The threshold used by the DE technique considers a pair of images as
homogeneous if their label difference is below 10 degrees, and it considers the
pair as heterogeneous if this difference exceeds 20 degrees. The PCA method
retained 53 components for raw images of size 1024 and 540 components
for the block based LBP descriptor whose size is 6400. The dimension of
the final projected data is set to 45 features. The γ parameter of the S-LE
method is set to 0.1. The values of neighborhood used by PLS regressor are
{10, 20, 30, 40, 50}. The number of independent latent variables in the PLSR
technique was set to one and three.

Figure 2.11: A subset of images belonging to seven persons available in the
FacePix database. The images are chosen at a step of 10 degrees.
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Figure 2.12: Face images that belong to seven persons available in the Taiwan
database. The images are chosen at a step of 10 degrees.

Figure 2.13: Face images from Columbia face dataset.

For the evaluation, we have adopted the person-independent pose estima-
tion protocol. For each dataset and for each embedding method, the set of
images is split into a training part and a test part. Five training/test splits
are considered. In each split, 25 random persons (with all their images) are
used for training. The images of the remaining persons are used for testing.

The method comparisons for the FacePix dataset are reported in Table
2.2. In this table, the Mean Average Error (MAE) and its standard devia-
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Figure 2.14: Three different partitions of the same face image: 7 × 7 blocks;
(b) 5 × 5 blocks, (c) 3 × 3 blocks.

tion are depicted. The best performances are highlighted in bold. It can be
observed that LsLPP, Sp-LsLPP, and Sp-LsLPP+DE methods give the best
results. The superiority is held by the Sp-LsLPP+DE method despite the
small improvement. It can be seen that the LsLPP method and the proposed
method Sp-LsLPP give very close results and they both outperform the clas-
sic LPP. Since Sp-LsLPP method needs two parameters to be tuned while
Ls-LPP needs four, it is obvious that the proposed Sp-LsLPP is more flexible.
Indeed, by considering that the regularization parameters are always set to a
small positive number, it turns out that the proposed Sp-LsLPP method has
only one single parameter which is the Gaussian scale used in the weighted
`1 regularization. SSE method and the LsLPP+SSE method have given the
same performance. This is explained by the fact that the synchronization of
samples using simplexes in SSE give the same embedding whether the data
are projected onto LsLPP or not.

With regards to the descriptors used, it can be observed that the block-
based LBP descriptors have given better accuracy than the raw images. This
can be explained by the fact that the local LBP histograms can characterize
well the local textures of faces and thus give better relation to the real face
pose. One can notice that the average error has decreased from 4.41 degrees
(Sp-LsLPP) to 2.94 degrees (Sp-LsLPP + DE), suggesting that the DE stage
can be useful in some cases. The non-linear embedding method (S-LE) has
only outperformed the methods in only one split (split number 5). However,
on average, it could not outperform the linear methods.

The method comparisons for the Taiwan dataset are reported in Table
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2.3. For the Taiwan dataset, similar observations to those associated with
the FacePix dataset can be drawn. One can also observe that the non-linear
method was the second best after the proposed method Sp-LsLPP+DE. It
can be observed that the accuracy obtained with the Taiwan dataset is
slightly worse than that obtained with the FacePix dataset. This is due
to the fact that the training images in Taiwan dataset correspond to a step
of five degrees instead of one degree.

A method comparison for the Columbia datasets is illustrated in Table
2.4. In this table, the percentage of correct classification of the yaw angle
(among five classes) is shown. The classifier used is given by the Support
Vector Machines (SVM) with Radial Basis Function. The upper part corre-
sponds to a partition of 30% training and 70% testing. The lower part to a
partition of 90% training and 10% testing. As can be seen, for large training
sets the label sensitive methods can outperform the classic transform. The
proposed sparse method has the obvious advantage of having less parameters
than the other methods.

Table 2.1: Definition of the cascaded manifold learning techniques used in
the experiments.

Method Description

S-LE PCA followed by Supervised Laplacian Eigenmaps

LPP PCA followed by Locality Preserving Projections

LsLPP PCA followed by Label sensitive Locality Preserving Projections

Sp-LsLPP PCA followed by Sparse LsLPP

SSE PCA followed by Synchronized Submanifold Embedding

LsLPP+SSE PCA followed by LsLPP followed by Synchronized Submanifold Embedding

Sp-LsLPP+DE PCA followed by Sparse LsLPP followed by Discriminant Embedding

Figure 2.4.2 illustrates the obtained MAE as a function of the real yaw
angle associated with the FacePix dataset. The embedding method was the
25 block based LBP with the Sp-LsLPP embedding. As can be seen the
profile views ranging from 80◦ to 90◦ have a relatively large MAE.
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Table 2.2: Mean Average Error (MAE) in degrees and Standard deviation
obtained for FacePix dataset and for different embedding methods. There
are 5 training/test splits. In each splits, 25 random persons (with all their
images) are used for training. The images of the remaining 5 persons are
used for test. The regression method used is the local PLS.

Method (Raw images) Split1 Split2 Split3 Split4 Split5 Mean

S-LE 4.50±4.8 4.50±4.8 4.33±4.8 4.80±6.8 1.27±6.5 3.88±5.5

LPP 4.93±5.1 4.80±4.9 6.80±7.1 4.87±5.2 5.82±6.2 5.44±5.7

LsLPP 3.00±2.9 3.9±4.6 3.34±3.0 3.84±5.2 4.16±4.7 3.65±4.1

Sp-LsLPP 2.59±3.1 4.03±4.9 3.23±3.2 4.27±5.8 4.89±6.1 3.80±4.6

SSE 4.45±4.1 4.77±5.8 4.077±3.9 4.28±5.6 4.82±6.9 4.47±5.3

LsLPP+SSE 4.45±4.1 4.77±5.8 4.077±3.9 4.28±5.6 4.82±6.9 4.47±5.3

Sp-LsLPP + DE 2.84±2.9 4.09±5.0 3.16±2.9 3.4±5.00 3.85±4.6 3.48±4.1

Method (LBP descriptors) Split1 Split2 Split3 Split4 Split5 Mean

One block 4.93±7.7 9.00±16.4 5.40±8.2 5.81±9.3 6.01±9.0 6.23±10.1

25 blocks 4.17±5.5 4.53±5.9 4.77±6.4 4.42±6.1 5.08±7.2 4.59±6.2

25 b: Sp-LsLPP 3.48±4.3 3.94±4.8 6.09±8.6 4.58±6.5 3.96±5.2 4.41±5.9

25 b: Sp-LsLPP + DE 2.44±3.0 2.98±3.8 3.32±4.3 3.03±3.9 2.95±4.1 2.94±3.8
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Table 2.3: Mean Average Error (MAE) in degrees and Standard deviation
obtained for Taiwan dataset and for different embedding methods. There
are 5 training/test splits. In each split, 25 random persons (with all their
images) are used for training. The images of the remaining 5 persons are
used for test. The regression method used is the local PLS.

Method (Raw images) Split1 Split2 Split3 Split4 Split5 Mean

S-LE 7.34±9.7 4.65±4.8 4.55±4.8 5.11±7.0 4.57±4.9 5.24±6.2

LPP 6.14±4.8 5.82±4.7 5.50±4.7 5.43±4.6 5.40±4.6 5.65±5.7

LsLPP 5.66±4.8 5.38±4.3 5.07±4.3 5.05±4.2 4.84±4.1 5.20±4.3

Sp-LsLPP 5.72±7.4 5.07±6.6 5.93±7.5 6.01±7.8 5.37±6.9 5.62±7.2

SSE 5.63±7.2 5.35±6.7 5.50±6.9 5.39±6.8 5.47±7.0 5.46±6.9

LsLPP+SSE 5.63±7.2 5.35±6.7 5.50±6.9 5.39±6.8 5.47±7.0 5.46±6.9

Sp-LsLPP + DE 5.48±7.1 5.34±6.7 4.96±6.1 5.12±6.6 4.97±6.4 5.17±6.5

Method (LBP descriptors) Split1 Split2 Split3 Split4 Split5 Mean

One block 10.89±14.8 12.18±18.0 11.42±15.5 11.46±18.5 10.79±15.2 11.34±16.4

25 blocks 6.89±9.1 7.16±9.5 7.10±8.7 7.37±9.8 7.13±9.6 7.13±9.3

25 b: Sp-LsLPP 6.85±8.6 6.12±7.8 6.77±7.8 6.96±9.1 7.12±9.1 6.76±8.5

25 b: Sp-LsLPP + DE 5.46±7.2 4.73±6.3 4.74±5.8 4.93±6.5 4.96±6.5 4.96±6.5



CHAPTER 2. FACE POSE ESTIMATION 47

Figure 2.15: MAE as a function of the real yaw angle associated with the
FacePix dataset. The embedding method was the 25 block based LBP with
the Sp-LsLPP.
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Table 2.4: Percentage of correct classification of the yaw angle for Columbia
dataset and for different sets formed by 90% training and 10% testing. There
are 5 training/test splits. In each split, 50 random persons (with all their
images) are used for training. The images of the remaining 6 persons are
used for test. The classifier used after embedding is the SVM with Radial
Basis Kernel.

30% training and 70% testing
Method (Raw images) Split1 Split2 Split3 Split4 Split5 Mean

LPP 89.7 89.7 89.2 89.7 89.7 89.6
LsLPP 90.2 88.2 88.2 91.8 87.2 89.1
Sp-LsLPP 88.7 86.7 86.1 89.7 84.6 87.2

90% training and 10% testing
Method (Raw images) Split1 Split2 Split3 Split4 Split5 Mean

LPP 96.0 92.0 96.0 92.0 88.0 92.8
LsLPP 92.0 92.0 96.0 96.0 96.0 94.4
Sp-LsLPP 92.0 92.0 96.0 96.0 96.0 94.4

2.5 Conclusion

In this chapter, a new machine learning framework was used to estimate
the pose of human faces in images. More precisely, a new embedding algo-
rithm based on a sparse representation was proposed. The resulting tech-
nique is called Sparse Label sensitive Locality Preserving Projections. For
enhancing the discrimination between poses, the projected data obtained
by the Sparse Label Sensitive Locality Preserving Projections are fed to a
discriminant embedding that exploits the continuous labels. The obtained
results show that the sparse representation with label similarity is an efficient
method for data embedding that outperforms state-of-the-art embedding al-
gorithms used for such applications, in the sense that it is easy to adapt to
different datasets and that it only needs two parameters to tune.



Chapter 3

Person Re-identification
through hand-crafted features

Abstract

In this chapter, we describe our proposed framework for appearance based per-
son re-identification. We consider the single-shot scenario where each person
is associated with only one image in each of the two cameras. First, we re-
view some typical descriptors based on texture and color. Then we present
our Color Categorization method and the feature extraction technique adopted
to increase the discriminability. Finally, we describe our re-identification
process based on a prototype formation technique before presenting the exper-
imental results.
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3.1 Appearance-based Person Re-identification:

A review

Person re-identification is the process of identifying the same person from
images taken from different cameras. Most of the existing works generate a
ranked vector of all the persons in a gallery set (images of labeled persons)
based on their resemblance with the probe image (unlabeled person). The
highest similarity score in the ranked vector will lead us to a specific label
for the probe image. Existing techniques on person re-identification usually
fall into two categories. The first category known as ‘single-shot approach’
[7], focuses on connecting pairs of images, each containing one instance of an
individual. The second category uses multiple images of the same person as
training data and considers short sequences for testing (usually obtained via
tracking). It is known as ‘multiple-shot approach’ [8]. Most of the existing
approaches are based on appearance similarity where they aim to find a good
representation to establish correspondences between images.

Typical descriptors, like texture and color extracted from clothing, have
been widely used. Popular descriptors like SIFT (Scale Invariant Feature
Transform), which consists of computing a histogram of the gradient orien-
tation distribution in the region around a detected interest point have been
used in [112]. Other descriptors have been used like Texture filters [113],
color and shape features [114] and Principal axis [115]. The authors in [116]
seek the most distinctive representation of an individual, in which they col-
lect two images of each subject, one for the whole body and the other can
be a zoomed body part (head, torso or legs). We can find in [117] a review
of descriptors based on appearance.

Algorithms relying on Multiple Part Multiple Component (MPMC) were
used to design region based descriptors, by dividing the body into many
parts to take into consideration the non-rigid nature of the human body
[118]. In [119], the human body was subdivided into head, torso and legs.
Each part was represented by a Gaussian color histograms in addition to
pyramid of histograms of oriented gradients and texture description using
Haralick features. Authors in [120] proposed to use the Haar-like features
and DCD (Dominant Color Descriptor), where an MPEG7 descriptor is used
to characterize each part of the subdivided body. The same authors pro-
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posed to use HOG (Histogram of Oriented Gradient) descriptor to describe
an appearance model based on covariance regions extracted from the body
[121].

Color is one of the most important features for computer vision systems, it
has been found as the most important factor in many person re-identification
studies. In general, the color value can be transformed conveniently from
RGB to HSV [122]. The reason is that it provides an intuitive representation
and approximates the way in which human perceive color. Color histogram
has been successfully applied to the person re-identification problem like in
[123]. Color histograms in 3 color spaces (RGB, HSV and YCrCb) have
been used in [124]. In order to maintain vertical color shape in appear-
ances, the work of [125] integrated spatial data into color characteristics.
To handle changes in illumination, they used color normalization and color
rank features. In [126], color and texture were merged and PLS (Partial
Least Squares) is used to reduce the dimensionality. The authors in [127]
demonstrated that there is a trade-off between illumination invariance and
discriminative power. To counterbalance between illumination invariance and
the discriminative power, the authors in [128] made a fusion of color models
which enhanced the discrimination compared to standard weighting schemes.

After feature extraction, these methods normally choose a standard dis-
tance measurement to calculate the similarity between images, e.g, Bhat-
tacharyya distance [113], L1-Norm [129] or L2-Norm [115]. In [130], the
authors proposed to learn a metric from pairs of samples from different cam-
eras using discriminative Mahalanobis metric learning. In [131], Zheng et
al. formulated the person re-identification as a relative distance comparison
problem with a Mahalanobis distance metric. All these techniques suffer
from some difficulties to some extent because of the low resolution of images,
camera settings and lighting conditions.

3.2 Color Catgorization

The first stage of our re-identification process is the Color Categorization.
In this section, we first present the motivation for the Color Categorization
procedure. Then, we briefly review the Probabilistic Latent Semantic Anal-
ysis (PLSA) method. Finally, we introduce our proposed method.
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3.2.1 Motivation

Color is one of the most expressive and powerful clue for re-identification.
However, color description is still very complicated and it has been the sub-
ject of many studies. One of the most influential works in color description is
the study of Berlin and Kay [132] on basic color terms. Humans differentiate
between two persons wearing the same colors based on distinct shoes, hair
styles, bags. In computer vision, if large changes occur in lighting or in back-
ground, a person's appearance can change significantly between cameras.
These changes can make different persons appear more alike than the same
person across different camera views, which increases the difficulty of finding
correct association. Humans use color names to describe the colors of objects
such as ’black’, ’white’ and ’blue’. Though we use them routinely without
effort, this task is not trivial. For example, in the RGB color Space, [1 0 0]
will be identified as red, [1 0.1 0.1] will also be identified as red, which means
there are boundaries to each set of color. The fuzziness of these boundaries
makes this problem difficult. In Figure 3.1 the test person is wearing red. We
can see that many persons who are not wearing red are ranked higher than
the true person. A simple question may arise here: why for example the per-
son wearing black is ranked higher than 3 persons wearing red? To overcome
this weak point, our proposal (detailed in the sequel) is to put each image in
a category depending on its color. Thus, a test person will be compared first
to the persons from its color category, then to all the remaining.

3.2.2 A brief review of PLSA

The Probabilistic Latent Semantic Analysis (PLSA) investigates the rela-
tion between a set of documents and the terms they contain to achieve a set
of topics [133]. Weijer et al. adjusted PLSA in two ways [134] [135]: They
turned PLSA into a supervised multiclass learning approach by directly link-
ing the topics with the class labels. And they proposed a background class
shared across topics reflecting that images generally have a foreground object
on a background. In [134], A PLSA model is learned on the Google images,
in the form of 32 ∗ 32 ∗ 32 lookup table which allows to map pixel values to
color names. Eleven basic color terms of the English language are used in
the PLSA approach: black, blue, brown, grey, green, orange, pink, purple,
red, white, and yellow. After learning, given a pixel, the model provides a
probability value for each color category: P (ni|f(x)). Where ni is the ith



CHAPTER 3. PERSON RE-IDENTIFICATION THROUGHHAND-CRAFTED FEATURES53

Figure 3.1: Image (a) is the Test Image, (b) are the images of the gallery set
with sorted order. The feature vector used is the RGB channel values and
its gradients. For the similarity score we calculated the distance between the
covariance matrices.

color name and f(x) is the color value of the pixel x, and the name assigned
is the one with maximum probability.

3.2.3 Color Categorization

In this section we propose a new Color Categorization method, which
relies primarily on the PLSA method proposed in [134]. PLSA is efficient
if working under the same light conditions, but it fails when working with
two different cameras under two different light conditions like in our case.
In fact, changes in the illumination affect object colors far beyond the toler-
ance required for reasonable object recognition. Thus, to increase robustness
to illumination changes, we begin by adopting a new color palette. Some
colors are visually similar and can be merged to further reduce the number
of colors. In our work, grey is considered white. Orange, pink and purple
are considered Red. Brown is considered Black. We have tested on vari-
ous images, and found that adopting 6 colors (Black, White, Red, Green,
Blue and Yellow) instead of 11 would be suitable for most cases. One might
argue that having a finer quantization may better discern different images,
e.g., telling a grey shirt from a white shirt. Unfortunately, finer quantization
leads to less reliable color prediction, and can be counter-productive in im-
proving prediction accuracy (a white shirt in the shadow can appear to be
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Figure 3.2: Color Categorization procedure, both images are assigned to the
red category since the majority of the detected pixels are red. The first image
is from camera 1, the second is for the same person from camera 2

grey). After color name annotations based on PLSA, we propose a robust
color calibration procedure as follows: for each color name we build our own
binary lookup table. A given color can be found at the X,Y,Z coordinates
corresponding to the R,G,B normalized values. There are several different
public color databases available online, in our work we employ the database
defined in [136]. Each of the RGB channels is divided into 52 levels. Pixel
coordinates, are treated as the index of the look-up table. We assign the
value 0 for all the pixels that do not belong to the color category in question,
and 1 otherwise. To predict color membership of a new pixel we interpolate
the new triplet of a pixel (scaled to [0,1]) with the lookup table of each of the
colors. The results represent how much does it belong to each of the colors
(a value from 0 to 1). Differences in lighting conditions between the cameras
make the images generated from camera 1 brighter than the ones generated
by camera 2. Therefore, we tune our settings to be less sensitive to white
color in camera 1 (0.7) than in camera 2 (0.3). For example, in Figure 3.2
first line, the white color is considered to be only 2% from the image but in
reality it is much more. Having a probe image, every pixel can be assigned
to a color category. Finally, the image is assigned to the color category of
the majority of the detected pixels.
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3.3 Feature Descriptor

The second stage of our model generates the low-level feature descriptor
extracted from raw images. Most of the existing methods are based on ex-
tracting color channels individually (for example RGB or HSV) neglecting
the relation between each of these color channels. LBP (Local Binary Pat-
tern) has already proved its efficiency in describing image’s local information.
However, performing LBP on each color channel respectively ignore the re-
lations between the colors. QLBP (Quaternion Local Binary Pattern) takes
advantage of both LBP to extract features and quaternions to represent each
color pixel such that we can handle all color components at once.

3.3.1 Quaternions

Quaternions were introduced in 1843 by Sir William Rowan Hamilton
[137]. A quaternion number is composed of a real part and three-dimensional
imaginary part:

Q = a+ ib+ jc+ kd (3.1)

where a, b, c and d are real numbers, i, j and k are orthogonal imaginary
operators which define a hyper-complex space subject to the following re-
striction:

i2 = j2 = k2 = ijk = −1 (3.2)

A color pixel at location (n,m) in an RGB image is represented using the
imaginary part of the quaternion:

Q = R(n,m)i+G(n,m)j +B(n,m)k (3.3)

where R, G and B denote the red, green and blue components respectively.

3.3.2 Local Binary Pattern

The Local Binary Patterns (LBP) [138] was originally designed for tex-
ture description and it has been widely used in computer vision. It basically
assigns a label to every pixel of an image by thresholding a circular neighbor-
hood surrounding the reference pixel and representing the result as a binary
number, called the LBP code. The LBP code for a reference pixel c would
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be formally defined as follows:

LBP(M,R)(c) =
M−1∑
m=0

s(g(m)− g(c))2m (3.4)

M is the number of sampling values used within a circle neighborhood of
radius R, g(.) is the intensity value of a pixel and the function s(x) is expressed
as:

s(x) =

{
1 if x > 0
0 if x < 0

(3.5)

An LBP operator generates 2M binary patterns but some of them contain
more information than others when describing image textures. In conse-
quence, an extension to the original operator, called uniform patterns, can
be used to reduce the length of the feature vector and implement a simple
rotation invariant descriptor. A local binary pattern is called uniform if the
binary pattern contains at most two bitwise transitions from 0 to 1 or vice
versa when the bit pattern is considered circular. For example, 00010000(2
transitions) is a uniform pattern, 01010100(6 transitions) is not. In the com-
putation of the LBP histogram, the histogram has a separate bin for every
uniform pattern, and all non-uniform patterns are assigned to a single bin.
Using uniform patterns, the length of the feature vector for a single cell re-
duces from 256 to 59. In [139], it was observed that the uniform patterns
for the operator LBP (8, 1) account for about 90% of all possible patterns in
texture images.

3.3.3 Quaternion Local Binary Pattern

The Pseudo Rotation of Quaternion (PRQ) was first introduced in [140].
The right and left pseudo rotation of q by p are defined as:

PRQr(q, p) = qp , PRQl(q, p) = pq (3.6)

Let q = ir + jg + kb where r, g, and b denote the red, green, and blue
components of a pixel in a color image. Given p = ix + jy + kz as a unit
quaternion, the right pseudo rotation of q by p is:

PRQr(q, p) = −(rx+ gy + kb) + i(gz − by) + j(bx− rz) + k(ry− gx) (3.7)
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The phase difference in this case informs us about potential spatial shifts in
images. Since PRQ does not change the modulus, the phase of the PRQ is
used to rank the quaternions:

θ = arctan(−
√

(gz − by)2 + (bx− rz)2 + (ry − gx)2

rx+ gy + bz
) (3.8)

Given a reference quaternion p, we first apply the PRQ on both qi and
qj in order to obtain two pseudo rotated quaternions. Then the ranking
function R(qi, qj) compute the phase difference of the two pseudo rotated
quaternions:

R(qi, qj) = θPRQ(qj ,p1)
− θPRQ(qi,p1)

(3.9)

The QLBP description of a pixel xi centered in a 3 x 3 block Si is defined
as follows:

QLBPxi =

|Si|−1∑
j=0

s(R(qi, qj))2
j (3.10)

The QLBP feature descriptor is summarized in Algorithm 1.

3.4 Discriminant Projection

After representing each image by its feature descriptor, we aim to learn
a linear subspace to enhance the discriminative capabilities of our represen-
tation. This can be achieved by seeking a projection matrix W that finds a
new representation yi for each sample xi: yi = W Txi . Assuming we have two
cameras, the feature descriptors representing images from camera cj, where
j ∈ {1, 2}, can be denoted as:

Xcj = {xcj1 , x
cj
2 , x

cj
3 , ...., x

cj
n }

where x
cj
i is the ith feature vector representing the ith image of camera cj and

n is the number of persons. On the one hand, to promote the seperability
between different persons, the projection matrix W should maximize the
distances between different persons. Let Smax be:

Smax =
n∑
i=1

n∑
j=1

‖W Txc1i −W Txc2j ‖
2
I1 (3.11)
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Algorithm 1 Feature descriptor
Input: Image I

N: number of unit quaternions
A set of unit quaternions :[p1, p2, ...., pN ]

Output: Feature vector f
Procedure:

Find the quaternionic representation QI of image I using
Eq. (3.3)

For i = 1 to N, do:
Calculate the phases of the rotated quaternionic image
PRQr(QI , pi).

Extract the QLBP using Eqs. (3.9) and (3.10).
Divide the QLBP image into 8x16 subimages overlapped by

half.
Calculate the histogram of each subimage.
Concatenate all histograms to obtain the vector Fi.

end
f = [F1, F2, ...., FN ]

I1 =

{
1 if the person in image i and the person in image j are different
0 else

On the other hand, the projection matrix should minimize the distances
between two images belonging to the same person. Let Smin be:

Smin =
n∑
i=1

n∑
j=1

‖W Txc1i −W Txc2j ‖
2
I2 (3.12)

I2 =

{
1 if the person in image i and the person in image j are the same
0 else

To achieve this dual problem, we derive the projection matrix as:

Argmax
W

(
Smax
Smin

) = Argmax
W

(
Trace(W TS1W )

Trace(W TS2W )
) (3.13)

Where:

S1 =
n∑
i=1

n∑
j=1

(xc1i − xc2j )(xc1i − xc2j )T I1 (3.14)
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S2 =
n∑
i=1

n∑
j=1

(xc1i − xc2j )(xc1i − xc2j )T I2 (3.15)

Eq. (3.13) involves a search for a transformation matrix W that maxi-
mizes a term: Trace(W TS1 W ) and at the same time minimizes another:
Trace(W TS2W ). This is equivalent to maximizing the quotient Smax

Smin
. Gen-

erally, the trace ratio problem (Eq. 3.13) is often simplified into a more
tractable one called the ratio trace problem [141], because the trace ratio
problem does not have a closed-form solution:

Argmax
W

Trace(
W TS1W

W TS2W
) (3.16)

This problem can be solved using the generalized Eigen value decomposition
method as:

S1Wi = λi S2Wi (3.17)

where Wi is the eigenvector corresponding to the ith largest eigenvalue λi
and it is the ith column vector of the projection matrix W . At this stage, an
informative descriptor f(I) of the template I is obtained.

3.5 Re-Identification Process

We divide the database into 3 subsets: Prototype set, Gallery set and
Probe set. Given a probe image, we compare it to all the images in the gallery
set and then we sort them in similarity order. The division into the three
sets is performed as follows. First we randomly choose half of the images of
each of the two cameras to be our Prototype set. The remaining images are
used for the gallery set (from Camera1) and probe set (from Camera2). Note
that the prototype set is also used for estimating the discriminant projection
matrix presented in the previous section. The similarity between two images
is measured using a kernel function:

K : (f(I), f(J))→ SI,J ∈ R

where f(I) is the feature vector representing image I. Let U be a set of
the nt training images containing the prototypes of the Camera2 : U =
{T1, T2, ..., Tnt}.
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Figure 3.3: Prototype process: Kernel similarities are computed for each
image with each of the prototype images. φP (p) and φG(g) are the vectors of
similarities between prototype images with a probe image and with a gallery
image respectively.

We compute the Kernel similarity function between the prototypes with the
probe and between the prototypes with the gallery subjects.

K(f(I), f(Ti)) =
< f(I, f(Ti) >

||f(I)||.||f(Ti)||
(3.18)

The cosine kernel was chosen because it is devoid of parameters. Let g
represent a gallery image and p some unknown probe image (g, p /∈ U). The
function φP (p) gives a vector containing the similarity between each image
Ti in U and the probe image p. And for the gallery set, φG(g) gives a vector
containing the similarity between each image Ti in U and the gallery image
g (illustrated in Figure 3.3 ).

φP (p) = [K(f(p), f(T1)), ..., K(f(p), f(Tnt))]
T
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φG(g) = [K(f(g), f(T1)), ..., K(f(g), f(Tnt))]
T

We finally define S(p, g), the similarity between a probe image p and a
gallery image g:

S(p, g) =
< φP (p), φG(g) >

||φP (p)||.||φG(g)||
(3.19)

Algorithm 2 Person Re-identification

Input: Probe image I
Output: A vector of similarities
Procedure:

Assign a color category to each image.
Extract features using Algorithm 1. (p1 = (1, 0, 0), p2 = (0, 1, 0),
p3 = (0, 0, 1)).

Apply PCA reduction technique retaining 90% of the variance.
Compute S1 and S2. (Eq. 3.14 and 3.15 )
Find the Projection matrix W (Eq. 3.17). Project the feature vectors

onto the new feature subspace.
Compute the kernel similarity function (Eq. 3.18) between each

image and the prototypes to construct the vectors of similarities.
Calculate the similarity (Eq. 3.19 ) between the probe image and

each of the gallery images taking in consideration the color category
of each image.

3.6 Experimental Results

3.6.1 Dataset and evaluation protocol

In this section we present the evaluation of our method. The experiments
are performed on images from VIPeR 1 dataset, the most challenging dataset
for person re-identification. This dataset contains a significant amount of
viewpoint changes (0, 45, 90, 135 and 180 degree), illumination variations
and occlusions between persons. It is designed for a single-shot scenario and
it contains image pairs of 632 persons normalized to 48 x 128 pixels. Most

1. Available at http://soe.ucsc.edu/dgray/
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of the images contain a viewpoint change of 90 degrees or more in addition
to changes of the illumination, making this problem very challenging. The
images are randomly split into 2 sets, 316 pairs for each. We use one set for
training and the other for testing. The steps we followed in our method are
summarized in Algorithm 2.

3.6.2 Results

The performance of person re-identification is usually measured with the
Cumulative Matching Characteristic (CMC) curve [142]. The CMC curves
represent the probability of finding the true match over the top k ranks.
Figure 3.4 shows the CMC curves of different combinations using VIPeR
dataset. The experiments are repeated 5 times using five random splits and
the results are reported using their average values. The methods without
Color Categorization means that the similarity score was calculated without
taking in consideration the color category of each person. The NN (Nearest
Neighbor) method means that for classification, a simple L2 norm distance
measure was calculated on the final features.
Table1 compares the result obtained using our proposed method PreidPFCC
(Person re-identification via Prototype Formation and Color Categorization)
and some of the existing approaches, including ELF (Ensemble of Localized
Features) [113], SDALF (Symmetry-Driven Accumulation of Local Features)
[119], PRDC (Probabilistic Relative Distance Comparison) [131], RankBoost
[143] and KISSME (Keep It Simple and Straightforward Metric ) [144]. The
performance is presented by rank1 and rank20 accuracy. All the methods
have used 316 persons for testing on the VIPeR dataset. The results show
that our method outperform all the other approaches, with the rank1 match-
ing rate of 28 % and rank20 matching rate of 87%. The rank1 matching rate
has increased 7% when using Color Categorization with the nearest neighbor
method (0.20 instead of 0.13) and 10% when using the Prototype Forma-
tion as a re-identification process (0.27 instead of 0.20). The experimental
results show that both the Prototype Formation and Color Categorization
contribute to the improvement of overall performance.
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Figure 3.4: CMC plots for different combinations are shown. It is shown
that both Prototype Formation and Color Categorization contribute to the
improvement of overall performance.

Table 3.1: Top ranked matching rate for different methods.

Method Rank1 (%) Rank20 (%)
PreidPFCC 28 87
ELF 12 61
SDALF 19.87 65.73
PRDC 15.66 70.09
RankBoost 23.92 68.73
KISSME 20 76

In order to highlight the impact of the number of prototypes on the per-
formance, only the Prototype Formation method has been used in Figure
3.5 without the Color Categorization step. It shows that with the increas-
ing number of prototypes, the CMC initially grows before reaching a nearly
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Figure 3.5: CMC plots with different number of prototypes (L).

constant value. That means, once we have a sufficient number of proto-
types so that the great part of the discriminative characteristics have been
collected, no additional information is embedded in the new prototypes. In
Table 2 we analyze the computation time of our method using a Matlab
implementation on a 2.8 GHz quad core CPU. Indeed, a key advantage of
our approach is its training time efficiency (7.2min) since it does not rely
on computationally complex optimization schemes. KISSME seems to have
better computational effciency than our approach, however, considering Ta-
ble1, which reports the matching rate of all the methods, our approach can
achieve better performance with acceptable computing complexity. On the
other hand, RankBoost with the second best matching rate, has a very long
training time and thus it is computationally very expensive.
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Table 3.2: Average training time on the VIPeR dataset.

Method PreidPFCC ELF SDALF PRDC RankBoost KISSME
Time 7.2 minutes 5 hours 1.4 hours 15 minutes 10 days 1.34 seconds

3.7 Conclusion

In this chapter, a new framework for single shot person re-identification
under two non overlapping cameras was proposed. Unlike previous ap-
proaches in which a simple distance metric is learned, a collection of pro-
totypes is utilized to provide a measure to recognize or classify an unseen
object. It has been shown that this is more effective than direct comparison
between the test image and the gallery. For enhancing the discrimination be-
tween different persons, a new representation is given for each feature vector
by projecting to a new linear subspace. By applying the Color Categoriza-
tion procedure, we obtain results that are closer to what humans consider
intuitive. The experiments on a challenging dataset show that our proposed
method greatly improved the performance of person re-identification. We
would like to point out that the proposed approach, due to its robustness to
variations in lighting conditions, can be used in many applications of image
and video processing.



Chapter 4

Person Re-identification
through Deep Learning

Abstract

In this chapter, we applied a deep learning approach on the problem of per-
son re-identification.We constructed a siamese Convolutional Neural Network
and trained it by minimizing a contrastive loss function. Experimental results
are presented and a comparison between handcrafted features and learned fea-
tures is given in the end.
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4.1 Introduction

In conventional machine learning, the performance of a model is usually
highly affected by the way the data is represented. Thus, these methods
were limited in their capacity to deal with raw images. As Chapters 2 and
3 demonstrate, it is evident that constructing a pattern recognition system
relying on careful hand-engineered features demands considerable domain ex-
pertise for data representation. These features transformed the raw images
into suitable representation that is robust to the high amount of variation
present in the raw data.

Comparing pairs of images and deciding if they correspond to each other
or not is quite challenging and is probably one of the most fundamental prob-
lems in computer vision. Feature based matching was for years the most
common form of machine learning. Usually, a feature descriptor is defined to
extract features and a compatible matching strategy is used for classification.
These two steps are independent and a wise combination of different descrip-
tors and matching strategies might adapt to some specific applications.

While hand-engineering is certainly one way of approaching this problem
of data representation, in many cases, these features are becoming more and
more complex resulting in a difficulty with coming up better, more complex
features. Meanwhile, some researchers have been focusing on developing al-
gorithms which incorporate automatic learning of features from raw images.
These models present an alternative way of representing the data relying
on multiple layers of non-linearity. Moreover, these models generate richer
and more sophisticated features than would be possible by hand-engineering
alone. This property was considered to be very important and this lead to
the development of the first deep learning models.

Despite being around since the 1990s, deep neural network blossomed in
the last few years leading to excellent performance on multiple tasks such as
natural language processing, speech recognition and visual recognition. At
first, it was difficult to train deep neural networks because the lack of the
training data. But with the fast progress in the amount of labeled train-
ing data and the recent advances in the computational power of GPUs, the
research on deep networks emerged quickly and achieved very good perfor-
mances on various applications. Among all the types of deep neural network,
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convolutional neural network was particularly studied for image analysis and
are considered state of the art for a number of tasks including image classi-
fication [145], face recognition [146] and object detection [147].

A convolutional neural network is a one particular type of deep, feedfor-
ward network that is easy to train and can be generalized much better than
other types of deep neural networks. In this chapter, we applied a siamese
convolutional neural network, initially proposed for signature verification, to
the problem of person re-identification. Moreover, in order to understand the
contribution of each body part alone, we constructed 3 siamese networks for
3 different body parts. Finally, a comparison between handcrafted features
and learned features is presented. In order to familiarize the reader with the
concept of convolutional neural networks, we will first represent the basic
operational principles of these networks as well as a small historical overview
of their development and motivation.

4.2 Biological Motivation

Figure 4.1: Biological neuron (left) and its mathematical model (right).
(Image from http://cs231n.github.io/neural-networks-1/)

Every mathematical model is developed based on some computational
item, for example, sets, numbers, and vectors. While in the world of math-
ematics the basic component can be invented from scratch, the case of the
brain is constrained by its biophysical structure. The neuronal cell is the
basic computational device of the brain. The average human brain has ap-
proximately 100 billion neurons. Each neuron may be connected to 10,000
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other neurons, passing signals to each other via as many as 1,000 trillion
synapses, equivalent to a computer with 1 trillion bit per second processor.
Neurons receive signals from its dendrites and send outputs via its axon. Fig-
ure 4.1 shows an illustration of a neuron (left) and a common mathematical
model (right).

In the mathematical model of a neuron, the pulse travels along the cell’s
axons (e.g. x0), and is transfered across a multiplicative synapse (e.g. w0x0)
to a neighboring neuron which receives it through its dendrites. A synapse
is a complex membrane junction characterized by its synaptic strength (e.g.
w0). In other words, the influence of neurons on each other is quantified
by the synaptic strengths called the weigths (w). The electro-chemical pulse
sent by a particular neuron may be such as to encourage the receiving cell
to also fire. The signal received at the cell body are all get summed, and
the neuron is encouraged to fire or prevented from firing depending on the
comparison between the result and a predefined threshold.

4.3 Artificial Neural Networks

A neural network is a biologically inspired mathematical model made of
artificial neurons and interconnections in a way that mimic a biological neural
network. In 1952, Alan Lloyd Hodgkin and Andrew Huxley won the Nobel
prize for characterizing a differential equation that describes the membrane
potential with a neurone. However, a practical model that only describe the
basic input output relationship was proposed by Warren S. McCulloch and
Walter Pitts in 1943. It is an adaptive model, in the sense that the intercon-
nections can be updated with a learning technique. Three main components
are used in different combinations in order to create a neural network:

– Weighted inputs, corresponding to the interconnecting synapses and
the dendrites of a neuron.

– Summation of the weighted inputs, corresponding to the membrane
and soma of the neuron.

– Activation function, which historically has been a threshold function
yielding a (binary) action potential, corresponding to the axon of the
neuron. However, in artificial neural networks, other activation func-
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tions are typically used.

The output of each neuron (illustrated in Figure 4.1 (right)) is the weighted
sum of the input values mapped by the activation function f:

φ = f(
∑
i

ωixi + b) (4.1)

In general, different activation function achieve similar results, unless specific
requirements exist on the activation for the given task. However, different ac-
tivation functions can lead to very different training speeds and computation
times. Instead of considering the activation function to be an operational
part of a neuron, it can be thought of as a special type of neuron that maps
one input to one output. For the sake of simplicity, the most common ones
are characterized below.

4.3.1 The Sigmoid activation function

Figure 4.2: Sigmoid activation function

The Sigmoid function (see Figure 4.2) is a continuous, saturating activa-
tion function described by a special case of the logistic function:

φ(h) =
1

1 + e−βh
(4.2)

where β = 1. The SIGMOID does not yield negative activation and is
therefore only antisymmetric w.r.t. the y-axis. A very unwanted property of
the sigmoid function is that when the neuron’s activation saturates at either



CHAPTER 4. PERSON RE-IDENTIFICATION THROUGHDEEP LEARNING71

tail of 0 or 1, the gradient at these points is close to null. Recall that during
backpropagation, this gradient will be multiplied to the gradient of this gate’s
output for the whole objective. Thus, in case the local gradient is close to
zero, it will vanish the gradient and almost no signal will flow through the
neuron to its weights and recursively to its data. Moreover, one must pay
attention when initializing the weights in this case to prevent saturation. For
example, if the initial weights are too large then most neurons would become
saturated and the network will hardly learn.

4.3.2 Rectified Linear Unit (ReLU)

Figure 4.3: The Rectified Linearity Unit (ReLU)

The Rectified Linear unit (see Figure 4.3) is a non-continuous, non-
saturating activation function described by φ(h) = max(h, 0) :

φ(h) =

{
h if h > 0
0 if not h < 0

(4.3)

The rectifier (ReLU) is, as of 2015, the most popular activation function
for deep neural networks. It accelerates the convergence of stochastic gradient
descent compared to the sigmoid functions. This is because of its linear
nature and non-saturating form. Compared to sigmoid neurons, the rectifier
can be implemented by simply thresholding a matrix of activations at zero.
Unfortunately, ReLU units can be expired during training. For example, a
large gradient can update the weights so that the neuron will never fire again.
In this case, the gradient will be zero from that point on.
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4.4 Deep Learning

Deep-learning methods are hierarchical learning methods based on mul-
tiple levels of features extracted by a set of algorithms. High level repre-
sentations are obtained by modeling non-linear modules that each convert
the representation at one level (from raw images) into a representation at a
higher level. The objective is to escape from handcrafted features through
end-to-end learning on raw data. In fact, raw data interacts with various
factors that can be learnt from one layer to another with the composition of
enough transformation. This learning procedure forms the credit assignment
path (CAP) that specify the possible connections between the input and the
output [148], known as Deep Learning.

The term deep comes from the fact that the depth in these networks is
more as compared to the classical shallow neural networks. By introducing
more hidden layers, Machine Learning moved onto an influential trend, which
can be proved by several successful applications. For example, Google has
declared that its own voice search had taken a new turn by adopting Deep
Neural Network as the core technology to model the sounds [149]. Deep
neural network replaced GMM (Gaussian Mixture Model) which has been
leading for many years. Google and Stanford also developed virtual drug de-
tection techniques with the use of deep learning architecture [150]. Another
successful application in Deep Learning is the self driving cars, which map
raw pixels from a single-front-facing camera directly to steering commands
[151].

4.4.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a one particular type of deep,
feedforward network inspired by the natural visual perception mechanism of
the living creatures. Compared with other deep neural networks, it is easier
to train and it has achieved very good performances during the time when
neural networks were out of favor. Convolution neural networks are designed
to process data in the form of multiple arrays (for example color images) and
have been used for many computer vision applications. These networks take
advantage of the properties of natural signals like local connections, shared
weights, pooling and the use of many layers. Starting from their roots in
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Figure 4.4: A convolutional neural network for classification, from LeCun
et al. [2]

digit classification [152], to more recent systems for object detection and
image classification [153, 154], CNNs have been widely used for many ap-
plications. A major recent success for convolutional neural network is face
recognition[155].

The success of these networks originate from their capacity to learn many
features and merge them all from raw data itself. Despite these successes,
they were largely abandoned by the computer vision communities until the
ImageNet competition in 2012. A million images containing one thousand
different labels were supplied to a CNN and they accomplished breathtaking
results, halving the error rates of the best competing approaches [153].

Recent Convolutional neural networks have ten to twenty layers of ReLUs,
hundreds of millions of weights, and billions of connections between units.
Take the famous convolutional network in Figure 4.4, it consists of 3 types
of layers namely convolutional, pooling (subsampling) and fully connected
layers. The convolutional layer aims to extract features of the input by
applying several convolution kernels which are used to compute different
feature maps. The activation function introduces the nonlinearities which
are critical to detect nonlinear features. In order to acquire shift-invariance,
pooling layers are used to reduce the resolution of the feature maps obtained.
A formulation of this architecture can be written as follows:

hl+1 = pooll(f(ωl ∗ hl + bl)), l = 0, ..., L (4.4)
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where h0 is the input image, hl is the hidden layer activations at layer l, ωl
and bl are the the convolution kernel and feature bias, f is the activation
function and pool is the pooling layer. Finally, after several convolutional
and pooling layers, fully connected layers take all neurons in the previous
layer and connect them to each neuron to generate global semantic informa-
tion. These models usually learn their weights using back propagation and
stochastic gradient descent [2]. First an objective function is defined, e.g
cross entropy classification loss, then the gradient of the error with respect
to all model parameters is calculated using the chain rule through the hidden
layers.

4.4.2 The Classic Backpropagation Algorithm

Figure 4.5: A schematic of a Multilayer Perceptron featuring three input
values, an, two neurons in the hidden layer and two neurons in the output
layer. The hidden layer has activation function f(·) and the output layer has
activation function g(·). In this example N = 3, M = 2 and K = 2.

Historically, multilayer perceptron (Figure 4.5) were trained by utilizing
the Backpropagation algorithm described below. In this example, the sigmoid
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function is used as activation function:

φ = f(h) =
1

1 + e−h
(4.5)

where h is the weighted sum computed by a neuron. The sigmoid function
has the derivative:

∂φ

∂h
= φ(1− φ) (4.6)

The algorithm works as follows:
1) Compute the activation of all neurons in the network, yielding an output
(the forward pass):

– Activation of neuron m in the hidden layer:

φm =
1

1 + e−hm
(4.7)

where hm =
∑M

n=1 anwnm
– Do this for all the hidden layers until you get the output layer, in this

example, we only have one layer with the following activation function:

φk =
1

1 + e−hk
(4.8)

where hk =
∑M

m=1 φmvmk
2) Compute error and correct weights layer-wise (the backward pass):
– Compute the error at the output: δok = (tk − φk)φk(1− φk)
– Compute the error at the hiddenlayer: δhm = φm(1− φm)

∑K
k=1 vmkδok

– Update the output layer weights: vmk = vmk + αδokφm
– Update the hidden layer weights: wnm = wnm + αδhman

where α is the learning rate.

This original backpropagation algorithm is performing a gradient descent
optimization. If we consider the input vector x and predicted output ŷ, we
define the loss function, l, as the cost of predicting ŷ when the target is y,
i.e. l(ŷ, y). We know that the predicted output ŷ can be thought of as a
transformation of the arbitrary input vector by a function, f, parametrized
by the weights inside the network, i.e. ŷ = fw(x). Now, the loss function can
be described as l(ŷ, y) = l(fw(x), y), or Q(z, w) = l(fw(x), y) where z is an
input and output data pair (x,y).
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In this framework, gradient descent optimization is performed by updat-
ing the weights according to:

vt+1 = µvt − α
1

n

N∑
i=1

∇wtQ(zt, wt) (4.9)

wt+1 = wt + vt+1 (4.10)

Tuning the learning rates is an expensive process, so much work has gone into
devising methods that can adaptively tune the learning rates, and even do so
per parameter. Many of these methods may still require other hyperparam-
eter settings, but the argument is that they are well-behaved for a broader
range of hyperparameter values than the raw learning rate. Gradient descent
with backpropagation is not guaranteed to find the global minimum of the er-
ror function, but only a local minimum; also, it has trouble crossing plateaux
in the error function landscape. This issue, caused by the non-convexity of
error functions in neural networks, was long thought to be a major drawback,
but in a 2015 review article, Yann LeCun et al. argue that in many prac-
tical problems, it is not. The efficiency of backpropagation depends partly
on the choice of the parameters. The choice of learning rate is important
for the method, since a high value can cause too strong a change, causing
the minimum to be missed, while a too low learning rate slows the training
unnecessarily. The success and speed of backpropagated learning are also de-
pendent on the initial values assigned to the weights. This is demonstrated
by considering the repeated training of a network in which the learning pa-
rameters are held constant but the initial weights are systematically adjusted
between trials.

4.5 Siamese Convolutional Neural Network

4.5.1 Introduction

In the following, we will describe the siamese architecture that we are
going to use for the problem of person re-identification. Figure 4.6 illustrates
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Figure 4.6: Classical CNN (image 1) and the siamese CNN (image 2)

two different approach to deal with the re-identification problem: The classi-
cal CNN (image 1) and the siamese CNN (image 2). The SCNN is a method
that can be used in cases where the number of samples per category is not
large. Traditional methods of classification are not suitable, in general, for
the cases where the number of labels is very large and in the same time the
number of samples per label is very small. These cases include for example
person re-identification where the number of persons can be in hundreds with
only few images for each person.

The Siamese Convolutional Neural Network was initially presented in
[156] for signature verification. The word siamese is used to highlight the
fact that identical CNN parameters and architecture are applied to two dif-
ferent input images. In [157], the authors used the siamese architecture for
digit recognition. Instead of designing a feature descriptor capable of han-
dling the considerable changes in the shape of each digit written by different
persons, the siamese CNN is used to achieve a representation that can map
the input image into a space where the same digits are located close to each
other. This space is determined by the last layer of the CNN (a fully con-
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nected layer in general). A CNN’s ability to generate robust representations
lies in its deep architecture (multiple layers). This characteristic gives the
model the ability to generate descriptors that are invariant against trans-
formations. Therefore, a CNN can be used to train descriptors for patch
comparison.

4.5.2 Siamese descriptor’s architecture

In conventional neural networks, the loss function is calculated using the
sum over all samples. In the siamese case, the loss function runs over pairs
of samples. During the training, the network is fed by pairs of images of
which we know whether they belong to the same label or not. Within the
framework of these criteria, it is crucial that the homologous training images
include the transformations needed to be learned and that the network should
be tolerant to. The architecture of the siamese network is given in Figure
4.7. The main idea is to apply the same CNN using the same parameters to
each of the images that should be tested for correspondence . In the training
phase, an objective function is optimized after calculating the L2 norm of the
differences of the resultant descriptors. The parameters are updated so that
the L2 distance is as discriminative as possible in differentiating homologous
from different matches. As a result, the descriptor obtained is more tolerant
to the kind of geometric distortions present within homologous training ex-
amples.

Let X1,X2 be a pair of input vectors given to the network. Let Y be a
binary label assigned to this pair. Y = 0 if X1 and X2 belong to the same
identity, and Y = 1 if X1 and X2 belong to two different labels. Let GW
represents the CNN and GW(X1) is the output of the CNN when feeded by
X1. The euclidean distance DW between X1 and X2 can be defined as the
following:

DW(X1,X2) = ||GW(X1)−GW(X2)||2 (4.11)

The loss function to be optimized can be written in the following form:

L(W,Y,X1,X2) = (1−Y)
1

2
(DW)2 + (Y)

1

2
max(0,m−DW)2 (4.12)
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Figure 4.7: Siamese Convolutional Neural Network.

As can bee seen in Equation 4.12, heterogeneous pairs contribute to the
loss function only if their distance is within the acceptable margin m, which
is a positive constant defining a radius around GW(X). One can clearly
see that minimizing the above loss function would pull the descriptors of
homologous pairs closer to each other, while pushing the descriptors of het-
erogeneous pairs away from each other. Figure 4.8 shows an illustration of
this idea. Before training, the feature descriptors are randomly localized in
the feature space, while after training the feature descriptors from images
corresponding to matching pairs are closer to each other.

The remaining challenge is computing L and ∂L/∂W . Authors of [157]
showed that an efficient method of computing and minimizing L is to con-
struct a siamese network which is two copies of the CNN that share the
same parameters W . An indicator variable Y selects whether each input
pair X1, X2 is a positive (Y = 0) or negative (Y = 1) example. This entire
structure can now be viewed as a new bigger network that consumes inputs
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Figure 4.8: In the top part, each colored circle symbolize an image. Identical
colors indicate matched pairs from different camera views. In the lower part,
an illustration of the images projected into the feature space before and after
training is presented.

X1, X2, Y,W and outputs L. With this view, it is now straightforward to
apply the backpropagation algorithm and efficiently compute the gradient
∂L/∂W .

4.6 Experiments

4.6.1 Training startegy

Training the CNN is grounded on gradient descent to optimize the objec-
tive function. The back propagation algorithm presented in [158] is among
the most widely used techniques to determine gradients of the objective func-
tion with respect to the parameters. Classical approaches take in consider-
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ation all the training set (batch training) to calculate the gradients using
only one training sample at a time. This methodology suffers from instabil-
ity because of training errors when calculating gradient for only one sample.
To overcome this, researchers normally update the parameters using mini-
batches, computing the gradient descent for small groups of training samples
in each iteration. Each mini-batch generally include several hundreds of
training examples. In this work, the mini batch size was set to 300 with an
equal learning rate for all layers (0.0001).

The network weights are initialized from a gaussian distribution with a
mean equal to zero and a standard deviation equal to 1/fan-in where fan-in
is defined as the number of incoming weights to each neurone in a particular
layer of the network. During the training, pairs of camera A and camera
B are randomly chosen and fed each to the corresponding sub-network in
the SCNN. Pairs of images corresponding to the same label are labeled as
positive (Y = 1), and those corresponding to different label are labeled as
negative (Y = 0). In the testing stage, one image from the first camera view
of the subject is used as gallery image, and the image corresponding to the
other camera view is used as probe.

4.6.2 CNN architecture

This section describes the proposed CNN architecture. As can be seen in
Table 4.1 the CNN is composed of 6 convolution layers, 3 pooling layers, and
two fully connected layers. The output of the CNN has 100 dimensions. The
pair of images are filtered by the stack of convolution layers with a very small
receptive field: 3x3. The stride of the convolution is set to one pixel and the
pooling is carried out through max-pooling layers performed over a 2x2 pixel
window with a stride equal to two. After a stack of convolution layers, we
have two fully connected layers where the first one has 1024 dimension and
the second has 100 dimension. ReLU neuron is used as activation function
for each layer.
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Table 4.1: Convolutional Neural Network Architecture.

Name Type Number Filter size Stride Activation function

Conv0 Convolution 16 3x3 1 Rectify
Conv1 Convolution 32 3x3 1 Rectify
Pool0 Max pooling 2x2 2
Conv2 Convolution 32 3x3 1 Rectify
Conv3 Convolution 64 3x3 1 Rectify
Pool1 Max pooling 2x2 2
Conv4 Convolution 64 3x3 1 Rectify
Conv5 Convolution 128 3x3 1 Rectify
Pool2 Max pooling 2x2 2
FC1 Fully connected 1024 Rectify
FC2 Fully connected 100 Rectify

4.6.3 Implementation details

For pair generation, the simplest way is to organize the training images
randomly into pairs. According to the identity of the person, we randomly
generate for each identity positive and negative pairs. It is evident that the
negative pairs are far more than positive pairs. This can cause over-fitting
in our system. In practice, in order to reduce over-fitting, we first apply
data augmentation to our dataset as in most approaches in deep learning. In
fact, the availability of large supervised datasets is indispensable for machine
learning to achieve good results. With this in mind, data augmentation has
been used to increase the number of training examples by applying simple
image transformations that does not alter the semantic level image label. In
this work we applied horizontal mirroring to double our training set. There-
fore, instead of having only two images for each person in the training, we
now have four.



CHAPTER 4. PERSON RE-IDENTIFICATION THROUGHDEEP LEARNING83

4.6.4 Dataset and evaluation protocol

The dataset used in this work is the CHUK01 released in [159]. In this
dataset, there are 971 identities and each identity only has two images in
each camera. One hundred persons are used for testing and the 871 remain-
ing persons are used for training, in accordance with FPNN [160]. The CMC
curve was used to evaluate the performance (Figure 4.9). Table 4.2 com-
pares the results of our model against ITML [161], LMNN [162], SDALF
[119], FPNN [160] and directly using Euclidean distance when using dense
color histograms and dense SIFT [163]. The results show that our method
outperform all the other approaches, with the rank1 matching rate of 31%
and rank25 matching rate of 90%.

Table 4.2: Rank1, Rank5, and Rank10 recognition rate of various methods.

Method Rank1 Rank5 Rank25

Our method 35% 71% 92%
ITML 17.10% 42% 76%
LMNN 21.17% 49% 83%
SDALF 9.9% 42% 70%
FPNN 27.87% 60% 90%
Euclid 10.52% 28% 60%

Experiments were run on NVIDIA-GTX 1070 GPU and it took around
85-86 seconds per epoch on the CUHK01 dataset. Network training con-
verges in roughly 9-10 hours. The gradients with respect to the feature
vectors at the last layer are computed from the contrastive loss function and
back-propagated to the lower layers of the network. Once all the gradients
are computed at all the layers, we use mini batch stochastic gradient de-
scent (SGD) to update the parameters of the network. The Lasagne-Theano
framework was employed to run our experiments.



CHAPTER 4. PERSON RE-IDENTIFICATION THROUGHDEEP LEARNING84

Figure 4.9: CMC curve for the SCNN

4.6.5 Analysis of different body parts

In order to understand the contribution of each body part alone, we con-
structed 4 different networks on different body parts. One for the head alone,
one for the torso, one for the legs and one for the hole body. Figure 4.10
shows the rank curve for the three parts alone and for the person as a hole.
The part that perform the best on rank1 is the torse, though at rank25 it
becomes clearly that the most discriminative part is the head. This analysis
is revealing a direction for future experiments in which several networks are
trained and the final decision depends on the accumulation scores of all the
networks. This can be very beneficial in controlling situations where severe
occlusions occur. The performance differences are more obvious starting from
rank12. We can notice that the order of performance after that rank goes
to the head then to the leg or torso with very close performances. At rank
one, the torso gives the best results, which is consistent with our intuition.
Generally, the body is the most stable part in the person images and taking
the risk to reidentify a person from the first attempt would be reasonable if
based on the clothes of the upper body.



CHAPTER 4. PERSON RE-IDENTIFICATION THROUGHDEEP LEARNING85

Figure 4.10: CMC curves for different body parts

4.6.6 Visualization

In Figure 4.11, we visualize the feature responses at each layer of the
network. After several convolution and subsampling, we can find out which
type of features the network has learned. Starting layer 4, it become obvious
that stronger responses are given to the body as a whole, while the first layers
focused on the upper body. The evidence from this study points toward the
fact that the network generally give more attention to the center part of the
human (usually torso), which confirm our hypothesis that the color of the
clothes is the most important factor for the person re-identification problem.
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Figure 4.11: Feature visualization for each layer. Warmer colors indicate
higher responses. This can be better visualized in color printing.

4.6.7 Learned vs. hand-crafted features

As reported earlier, feature extraction methods can be practically di-
vided into two groups: the hand-crafted features and the learned ones. By
hand-crafted features we mean those which are extracted following some care-
ful hand engineered pre-designed algorithms as the ones used in Chapter 3.
Unlike the hand-crafted features, the learned ones are obtained through a
learning procedure by training a network with a labeled dataset.

In order to compare the performance of both approaches, we applied the
same algorithm presented in Chapter 3 on the CHUK01 database using the
single-shot settings. The comparative results are presented in Figure 4.12. It
can be seen that the learned features obtain the best results achieving 31%
on rank1 while the hand crafted features achieved 22%. These outcomes
perfectly make sense since learned features have the ability to adapt to the
exclusivity of the application whereas handcrafted features are not trained
and, therefore, less flexible.
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Figure 4.12: Learned vs. hand-crafted features

4.7 Conclusion

In this chapter, a similarity metric has been learned from image pixels
directly. Unlike hand crafted features, this deep architecture can learn the
texture information and reduce the dimensionality in the same time. This
is more practical than the combination method used in Chapter 3. Our
experimental results justify the importance of each part of the body in the
person re-identification problem. To increase the performance, we suggests
to perform more data augmentation. In this sense, a pose estimation of the
full body will be needed in order to generate more virtual images of the
same person. We would also like to explore end-to-end fine-tuning given the
unsupervised learned networks, which is less expensive than training from
scratch.



Chapter 5

Conclusion

Abstract

In this chapter, we summarize and conclude the developped work and discuss
the advantages of the proposed methods as well as their limitations. Finally
we show some directions for future work.

5.1 Concluding Remarks

In this thesis, we presented different approaches to be used in a video
surveillance context such as re-identifying a person in different locations us-
ing both a high level layer as body appearance and a low level layer as face
biometric information. For the low level layer which is focused on faces, we
only tackled the face pose estimation problem, which is a major complica-
tion in the context of face recognition. For the high level appearance based
approaches, the analysis is split in two different techniques. The first one is
relying on careful hand-engineered features, and the other one is based on
learned features through a deep learning technique.

5.2 Summary of contributions

This thesis makes several contribution to the field of video surveillance.
Our work focused on constructing new approaches to the problem of re-
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identification. Though we did not tackle in our work the implementation of
this kind of techniques, from a theoretical point of view, this thesis provides
new methods in the field of computer vision and machine learning. We can
summarize these contributions in the following:

– A new technique for model-less face pose estimation was proposed.
Starting from a model proposed for age-estimation, we propose a new
linear embedding by exploiting the connections between facial features
and pose labels via sparse coding scheme. The resulting technique
is called Sparse Label sensitive Locality Preserving Projections (Sp-
LsLPP). It has less parameters compared to related works and can also
outperform them in terms of accuracy.

– In Chapter 3, we proposed to use the Prototype Formation in the per-
son re-identification problem. It was proposed in psychology and cog-
nition field suggesting that human brain recognizes and differentiates
the world using prototypes. Moreover, a Color Categorisation tech-
nique was proposed in order to increase the robustness of the algorithm
against results that are counterintuitive to a human operator. The dis-
crimination between different persons is also improved by learning a lin-
ear subspace in a training phase during which person correspondences
are assumed to be known.

– Contrary to the hand crafted image features presented in Chapter 3,
features in Chapter 4 are learned from an image dataset by training
a siamese Convolutional Neural Network. This model generates richer
and more sophisticated features as long as it is provided by enough
training data. Unlike hand crafted features, this architecture can learn
the texture information, project to a subspace for more discrimination
and apply a dimensionality reduction at once. This is more practical
than the combination methods used in Chapter 3.

– A contribution that covers all the Chapters is to show different strate-
gies that can assist to automatic analysis of images either on face pose
estimation part either on person re-identification algorithms. We also
compared learning based features algorithms with the handcrafted ones,
showing the superiority of the first one. Though this superiority in
terms of performance, these methods are easy to overfit on single shot
databases as the case of Chapter 3. This outcome constitute a reminder
that the handcrafted features may still have favorable characteristics
and benefits specially in cases where the learning database is not suffi-
cient to train a deep network.
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5.3 Future work

In this thesis, we have developed algorithms and techniques to achieve a
successful person re-identification application. There is much more to be done
to achieve this goal, however we believe the models proposed in this work are
valuable contributions towards realizing this objective. Several interesting
problems are left open for future research:

– In the face pose estimation problem, future work may investigate the
use of hybrid descriptors as well as the extension of the framework to
two degrees of freedom associated with the out-of-plane rotation.

– In the classification experiments, it is obvious that low accuracy is
due to data imbalance. In other words negative pairs are much more
than positive pairs. A promising advancement would be to perform
more data augmentation and generate more virtual images of the same
person. This may necessitate a pose estimation of the full body to be
able to generate out-of-plane image rotations.

– Since features learned from convolutional neural network rely heavily
on the training dataset, it is crucial to feed the network with training
images that include the transformations needed to be learned and the
ones the network should be tolerant to. In our experiments, we used
all the images present in the training dataset for simplicity. We think
that it is very important for the future of deep learning and machine
learning to develop an image selection step to improve the quality of
the learned features.

– Our experiments revealed that the model learned can treat different
body parts independently. This analysis is revealing a direction for
future experiments in which several networks are trained and the final
decision depends on the accumulation scores of all the networks. This
can be very beneficial in controlling situations where severe occlusions
occur.
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Introduction : 

 

La réplication du système visuel humain utilisé par le cerveau pour traiter 

l'information est un domaine de grand intérêt scientifique. Ce domaine de 

recherche, connu sous le nom de vision par ordinateur, est notoirement 

difficile. Cette thèse se situe dans le cadre d'un système entièrement automatisé 

capable d'analyser les traits du visage lorsqu’une personne est proche des 

caméras et suivre son identité lorsque ses traits ne sont plus traçables. La 

première partie de cette thèse est consacrée aux procédures d'estimation de 

pose du visage pour les utiliser dans les scénarios de reconnaissance faciale. 

Nous avons proposé une nouvelle méthode basée sur une représentation 

sparse. La technique résultante s'appelle Sparse Label sensible Local 

Preserving Projections.  

 

Dans un environnement encombré et incontrôlé observé par des caméras à 

distance inconnue, la ré-identification de personne reposant sur des données 

biométriques conventionnelles telles que la reconnaissance faciale n'est ni 

réalisable ni fiable. Par contre, les caractéristiques visuelles basées sur 

l'apparence des personnes déterminées par leurs vêtements, peuvent être 

exploitées plus efficacement pour la ré-identification. Dans ce contexte, nous 

proposons une nouvelle approche pour la ré-identification dans un réseau de 

caméras non chevauchantes. Tout d'abord, une nouvelle représentation est 

donnée pour chaque vecteur de caractéristiques en les projetant sur un nouveau 

sous-espace linéaire. Ensuite, une collection de prototypes est utilisée pour 

fournir une mesure afin de reconnaître un nouvel objet. La robustesse de 

l'algorithme contre les résultats qui sont contre-intuitifs pour un opérateur 

humain est améliorée en proposant la procédure Color Categorisation.  

 

Dans la dernière partie de cette thèse, nous proposons une architecture Siamese 

de deux réseaux neuronaux convolutionnels (CNN), chaque CNN étant réduit 

à seulement onze couches. Cette architecture permet à une machine d'être 

alimentée directement avec des données brutes et de découvrir 

automatiquement les représentations nécessaires à la classification. 
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Chapitre2 :  

 

L’analyse des mouvements du visage effectué par l’être humain, joue un rôle 

important dans la communication non verbale. Par exemple, le visage peut se 

substituer au doigt pour montrer une direction spécifique. Ce problème, aussi 

aisé pour l’être humain, demande beaucoup d’effort  pour rendre une machine 

capable d’interpréter les mouvements d’une façon automatique. L’estimation 

de la pose peut également améliorer d'autres tâches de vision par ordinateur 

comme la reconnaissance du visage. 

 

 
                                   Figure 1: Les 3 angles pour l'éstimation de la pose du visage 
 

Un des problèmes majeurs rencontrés par les techniques actuelles de 

reconnaissance faciale réside dans la difficulté de traiter les images faciale  

avec des poses non frontale. Par conséquent, afin d’améliorer la robustesse de 

la reconnaissance faciale  et pour permettre une analyse du visage plus 

approfondie, beaucoup d’efforts ont été mis pour estimer la pose du visage. La 

figure 1 montre les trois degrés de liberté d'un visage humain qui peuvent être 

représentés par les trois angles de rotation: alpha (lacet), bêta (tangage) et 

gamma (roulis). 

 

La méthode d'apprentissage par machine utilisée dans notre travail est 

présentée dans Figure 2. Le premier module est un prétraitement d'image 

classique qui précède une technique d’extraction de caractéristiques. Ainsi, les 

données d'entrée peuvent être n'importe quel descripteur d’images brutes (par 

exemple, Local Binary Pattern (LBP), Gabor images, etc.). 

Le deuxième module est une réduction de dimensionnalité simple qui peut être 

réalisée par PCA (Principal Component Analysis). C’est une technique 
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purement non surpervisée. Le troisième module est donné par la nouvelle 

méthode Sp-LsLPP qui est basée sur une méthode pour l’estimation d’ une  

matrice d’affinité. Cette dernière estimation s'appuie sur la distance l1 

(représentation sparse) qui incorpore naturellement les poses correspondantes  

à chaque image. Le quatrième module applique la  discrimination entre les 

classes (poses). Cette technique est inspirée par LDE (Linear Discriminant 

embedding), qui a comme but de rapprocher la représentation des visages 

ayant des poses identiques tout en éloignant la représentation des visages avec 

des poses différents. Le module final fournit une régression sur les données 

projetées afin de prédire la pose. 

 

 
 

 
Figure 2: Méthode d'apprentissage proposée 

 
 

 

 

 

 

Sparse Ls-LPP: 

 

Bien que la méthode LsLPP (Label sensitive Locality Preserving Projection) 

[1] puisse intégrer les concepts de localité et de  

la sensibilité à l’étiquette, elle comporte quatre paramètres. Deux paramètres 

sont liés à la similarité entre les caractéristiques extraites et ils sont très souvent 

difficiles à fixer par avance. Afin de réduire le  

nombre total de paramètres qui doivent être réglés dans l'algorithme LsLPP et 
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pour modéliser mieux le rapport entre les échantillons, nous proposons une 

nouvelle méthode pour construire la matrice d’affinité qui utilise un codage 

sparse. La différence principale de l'approche proposée avec la méthode 

LsLPP est que la construction de la matrice de similarité de graphe sera  

effectuée par un codage sparse pondéré qui intègre la sensibilité de l'étiquette. 

La représentation sparse est, en général, une représentation d'images qui est la  

plus compacte en termes de la combinaison linéaire d'atomes pris en forme 

d'un dictionnaire trop complet [2]. Un dictionnaire est formé par de 

 nombreuses images. Une représentation sparse signifie que seules quelques 

images participeront au processus de reconstruction alors que le reste des  

images n'aura aucune contribution. Cette méthode est résumée dans 

l’algorithme suivant. 
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Résultats et Conclusion: 

 

Les expériences sont effectuées sur trois bases de données dont uniquement 

l'angle de lacet varie. La première base de données est FacePix. Elle contient 

181 images faciales pour chacune des 30 personnes où chaque image 

correspond à un intervalle de rotation de 1 degré sur un spectre de 180 degrés. 

La deuxième base de données est celle de Taiwan qui contient des images de 

90 personnes à un intervalle de 5 degré. La troisième base de données est celle 

de Columbia. Il s'agit d'une base de données à l'origine pour évaluer 

l'estimation de l'œil. Cette base de données contient également des images 

représentant des poses de visage de personnes différentes. Elle contient des 

images haute résolution de 56 personnes différentes avec 5 poses pour chacun 
(0, -15,+15, -30, +30). 
 

Les résultats présentés dans le tableau ci-dessous montrent que notre méthode 

surpasse en générale les méthodes de l’état de l’art existantes. 

L'approche proposée présente encore l’avantage d’avoir un nombre réduit de  

paramètres. Notre travail dans le futur va explorer l’efficacité de l’utilisation 

de descripteurs d’images hybrides. 

 
Tableau 1: Résultats expérimentales (Mean Average Error (MAE) en degré et le Standard deviation) sur  

la base de données Facepix 
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Tableau 2: Résultats expérimentales (Mean Average Error (MAE) en degré et le Standard deviation) sur 

la base de données Taiwan 

 
 

 

 

 

 

 
Tableau 3: Résultats expérimentales (Mean Average Error (MAE) en degré et le Standard deviation) sur 

la base de données Columbia 
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Chapitre3 :  

 

 
 

La ré-identification d'une personne, une tâche centrale dans de nombreux 

scénarios de surveillance, est la capacité d'associer une nouvelle observation 

d'une personne à d'autres personnes ailleurs. En d’autres termes, c’est la re-

identification d’une personne dans des lieux différents dans un réseau de 

caméras non chevauchantes, permettant de traquer une personne en le suivant 

dans toute la zone surveillée. Les méthodes de ré-identification des personnes 

dans l’état de l’art sont principalement basées sur l'apparence globale du 

vêtement et du corps. La reconnaissance faciale, qui est potentiellement plus 

efficace, n'est souvent pas pratique dans ce contexte en raison des faibles 

résolutions des images, de la présence d'occlusions avec des objets et des fortes 

variations d'éclairage. Ré-identifier les personnes qui se trouvent dans une 

région d'intérêt est une capacité de haut niveau qui est critique dans de 

nombreux domaines autre que la vidéo surveillance, comme la robotique et les 

environnements intelligents. 
 
 

Dans cette thèse, nous proposons une nouvelle méthode de catégorisation des 

couleurs (Figure 3), qui se base principalement sur la méthode PLSA proposée 

dans [3]. PLSA est efficace si on travaille dans les mêmes conditions de 

lumière, mais il échoue lorsqu’on travaille avec deux caméras différentes dans 

deux conditions de lumière différentes, comme notre cas. Ainsi, pour 

augmenter la robustesse contre le changement d'éclairage, nous commençons 

par adopter une nouvelle palette de couleurs. Quelques couleurs sont 
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visuellement similaires et peuvent être fusionnés pour réduire davantage le 

nombre de couleurs. Dans notre travail, le gris est considéré comme blanc. 

L'orange, le rose et le violet sont considéré comme rouge. Le marron est 

considéré comme noir. Nous avons testé sur diverses images, et on a constaté 

que l'adoption de 6 couleurs (noir, blanc, rouge, vert, bleu et Jaune) au lieu de 

11 serait approprié pour la plupart des cas.  

 

 
Figure 3: Color Categorisation 

   

 

 Chaque couleur peut être lié aux coordonnées X, Y, Z correspondant aux 

valeurs normalisées R, G, B. Il existe plusieurs bases de données de couleurs 

open source disponible en ligne. Dans notre travail, nous employons la base 

de données définie en [4]. Chacun des canaux R, G et B est divisé en 52 

niveaux. Les coordonnées de chaque pixel sont traitées comme l'indice de la 

table de recherche. Nous attribuons la valeur 0 pour tous les pixels qui 

n'appartiennent pas à la catégorie de couleurs en question, et 1 autrement. 

Pour prédire l'appartenance à la couleur d'un nouveau pixel, nous interpolons 

le nouveau triplet du pixel avec la table de recherche de chacune des couleurs. 

 

La deuxième étape dans notre approche est l’extraction du descripteur des 

images brutes. La plupart des méthodes existantes sont basées sur l'extraction 

des canaux de couleurs individuellement (par exemple RGB ou HSV) 

négligeant la relation entre chacun de ces canaux de couleur. LBP a déjà 

prouvé son efficacité dans la description de l'information locale de l'image. 

Cependant, effectuer LBP sur chaque canal de couleur à part ignorent la 

correlation entre les couleurs. QLBP [5] profite à la fois de LBP pour extraire 
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les caractéristiques et des quaternions pour représenter chaque pixel de couleur 

afin que nous puissions gérer tous les composants de couleur une seule foie. 

L’extraction de caractéristiques basée sur QLBP est présentée par l’algorithme 

suivant : 

 

 
 

 

En plus, nous explorons l'adaptation du concept formation prototype dans le 

problème de ré-identification de la personne. Il a été proposé en psychologie 

et en cognition [6] et testé sur le problème de la reconnaissance faciale [7]. Il 

suggère que les humains classent les objets en fonction des prototypes 

hiérarchiques et les personnes différentient le monde en utilisant cette 

compétence critique pour l'apprentissage par catégorie.  

Des expériences psychologiques ont révélé que le cerveau humain reconnaît et 

différentie les objets en utilisant des prototypes. Cela signifie que les 

prototypes fournissent une mesure pour reconnaître ou classer un nouvel objet. 

En se basant sur ça, nous proposons une approche 

pour la ré-identification de personne dans laquelle chaque personne est décrite 

comme un vecteur de similarité à une collection de prototypes d'images. Ce 

concept est illustré dans la Figure 4.  
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Figure 4: Chaque image sera représenté par un vecteur de similarité entre lui meme et une collection d'images prototypes 

 

Résultats expérimentaux : 

 

Les expériences sont effectuées sur les images de la base de données VIPeR, 

l'une des plus difficiles bases de données pour la ré-identification de personne. 

Cet ensemble de données contient une quantité significative de changements 

de point de vue (0, 45, 90, 135 et 180 degrés), variations d'éclairage et des 

occlusions entre les personnes. Il est conçu pour un scénario single-shot et il 

contient des paires d'images de 632 personnes normalisées à 48 x 128 pixels. 

Beaucoup d’images contiennent un changement de point de vue de 90 degrés 

et un changement d'illumination fort, ce qui rend ce problème très difficile. 

 

La figure 5 montre les courbes CMC de différentes combinaisons utilisant la 

base de données VIPeR. Les expériences sont répétées 5 fois utilisant 5 split 

aléatoires et les résultats sont rapportés en utilisant leurs valeurs moyennes. 

Les méthodes sans catégorisation des couleurs signifie que le score de 

similitude a été calculé sans tenant compte de la catégorie de couleurs de 

chaque personne. Le NN (le plus proche voisin) signifie que pour la 

classification, une simple distance de la norme L2 a été calculée. 

 

 

119



 
Figure 5: CMC pour différentes combinaisons 

 
Figure 6: CMC pour différents nombres de prototypes 
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Tableau 2: Matching rate pour differents méthodes 

 
 

Le tableau 2 compare les résultats obtenus en utilisant notre méthode proposée 

PreidPFCC (Réidentification de personne par formation de prototype et 

catégorisation des couleurs) et certaines des approches existantes, y compris 

ELF (Ensemble of Localized 

Caractéristiques) [8], SDALF (accumulation par symétrie des fonctionnalités 

locales) [9], PRDC (Comparaison de distance relative probabiliste) [10], 

RankBoost [11] et KISSME (Keep It Simple and Straightforward Metric) [12].  

La performance est présentée par la précision rank1 et rank20. Toutes les 

méthodes ont utilisé 316 personnes pour les tests sur l'ensemble de données 

VIPeR. Les résultats montrent que notre méthode surpasse toutes les autres 

approches, avec le rang 1 correspondant à un taux de 28% et rang 20 de 87%. 

Le rang 1 a augmenté de 7% lors de l'utilisation de la catégorisation des 

couleurs avec la méthode du plus proche 

 voisin (0,20 au lieu de 0,13) et 10% lors de l'utilisation de la formation de 

prototype en tant que processus de ré-identification (0,27 au lieu de 0,20).  

Les résultats montrent que la formation de prototype et la catégorisation des 

couleurs contribuent à l'amélioration de la performance globale. 
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Chapitre4 :  

 

 

Dans l'apprentissage par machine conventionnel, la performance d'un modèle 

est normalement très affectée par la manière dont les données sont 

représentées. Ainsi, ces méthodes étaient limitées dans leur capacité de traiter 

des images brutes. Comme les chapitres 2 et 

3 le démontrent, il est évident que la construction d'un système de 

reconnaissance  en s'appuyant sur des caractéristiques artisanales exige une 

expertise considérable dans le domaine pour la représentation des données. Ces 

caractéristiques essayent de transformer les images brutes en une 

représentation appropriée qui est suffisamment robuste. 

 

Alors que les caractéristiques artisanales (Handcrafted) sont certainement une 

façon d'aborder ce problème pour la représentation des données, dans de 

nombreux cas, ces caractéristiques deviennent de plus en plus complexes, ce 

qui se traduit par une difficulté à améliorer de plus les fonctionnalités. Pendant 

ce temps, certains chercheurs se sont concentrés sur le développement 

d'algorithmes qui intègrent l'apprentissage automatique des caractéristiques à 

partir d'images brutes. Ces modèles introduisent une autre façon pour 

représenter les données en utilisant plusieurs couches de non-linéarité. En 

outre, ces modèles génèrent des fonctionnalités plus sophistiquées que ce qui 

serait possible grâce à l'ingénierie à la main. Cette propriété a été considérée 

comme très importante et cela a conduit au développement des premiers 

modèles d'apprentissage profond. 
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Figure 7: CNN classique  vs Siamese CNN 

 

 

 

La figure 7 illustre 2 approches différentes pour traiter le problème de ré-

identification: le CNN classique (image 1) et le CNN siamois (image 2). le 

SCNN (Siamese Convolutional Neural Network) est une méthode qui peut être 

utilisée dans les cas où le nombre d'échantillons par catégorie n'est pas grand. 

Les méthodes traditionnelles de classification ne conviennent pas, en général, 

pour les cas où le nombre d'étiquettes est très grand et en même temps, le 

nombre d'échantillons par étiquette est très faible. C’est le cas par exemple de 

la  ré-identification de personne où le nombre de personnes peut être des 

centaines avec seulement quelques images pour chaque personne. 

 

L'architecture du réseau siamois est détaillée dans la figure 

8. L'idée principale est d'appliquer le même CNN en utilisant les mêmes 

paramètres pour chacune des images qui doivent être testées pour la 

correspondance. Dans la phase d’apprentissage, une fonction objective est 

optimisée après  le calcul de la norme L2 des différences entre les descripteurs 

résultants. Les paramètres sont mis à jour afin que la distance L2 soit aussi 

discriminante que possible pour différentier entre couples homologues 

et couples différents. En conséquence, le descripteur obtenu est plus tolérant 

au genre de distorsions géométriques présentes dans des exemples de couple 

homologue. 
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Figure 8: Architecture du Siamese CNN 

 

 

 
     Tableau 3: Architecture du CNN utilisé 
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Comme on peut le voir dans le tableau 3, notre CNN se compose de 6 couches 

de convolution, 3 couches de pooling et deux couches complètement 

connectées (Fully connected). La sortie du CNN comporte 500 dimensions. 

Une paire d'images est filtrée par la pile de couches de convolution avec un 

très petit champ réceptif: 3x3. Le stride de la convolution est réglé sur un pixel 

et le pooling s'effectue à travers des couches de maxpool réalisées sur une 

fenêtre  de 2x2 pixel avec un stride égal à deux. Après une pile de couches de 

convolution, on met deux couches totalement connectées où le premier a une 

dimension 1024 et le second a une dimension de 500. Le neurone ReLU est 

utilisé comme fonction d'activation pour chaque couche. 

 

 

 

Résultats et conclusion : 

 

L'ensemble de base de données utilisé dans ce travail est le CHUK01 publié 

dans [13]. Dans cette base, il y a 971 identités et chaque identité n'a que deux 

images dans chaque caméra. Une centaine de personnes sont utilisées pour les 

tests et les 871 restants sont utilisées pour l’apprentissage, conformément au 

travail fait en FPNN [14]. 

La courbe CMC a été utilisée pour évaluer la performance (Figure 9). Le 

tableau 4 compare les résultats de notre modèle avec certains des modèles 

d’état de l’art. Les résultats montrent que notre méthode est supérieure à toutes 

les autres approches, avec le rang1 de 31% et taux d'appariement rang25 de 

90%. 
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Figure 9: CMC pour differentes stratégies 

 

 

 

 
Tableau 4: Rank1, Rank5 and Rank10 de différentes méthodes 

 
 

 

 

Afin de comprendre la contribution de chaque partie du corps seule, nous 

avons construit 4 réseaux différents sur différentes parties du corps. Un pour 

la tête seule, un pour le torse, un pour les jambes et un pour tous le corps. La 

figure 10 montre les courbes CMC pour les trois différentes parties et pour la 

personne complète. La partie qui performe le mieux sur rang1 est la torse, bien 

qu'au rang25, il devient claire que la partie la plus discriminative est la tête. 
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 Cette analyse révèle une direction pour des expériences dans le futur dans 

lesquelles plusieurs réseaux sont formés et la décision finale dépend des scores 

d'accumulation de tous les réseaux. Cela peut être très avantageux dans le 

contrôle des situations où des occlusions sévères 

se produisent. La différence de performance commence à être claire à partir du 

rang 12. On peut remarquer que l'ordre de performance après ce rang va à la 

tête puis aux jambes ou au torse avec des performances très proches. Au 

premier rang, le torse donne les meilleurs résultats, ce qui est conforme à notre 

intuition. Généralement, le corps est la partie la plus stable de l'image de la 

personne et prendre le risque de ré-identifier une personne de la première 

tentative serait raisonnable si elle était basée sur les vêtements du haut du 

corps. 
 

 

Comme indiqué précédemment, les méthodes d'extraction des caractéristiques 

peuvent être pratiquement divisées en deux groupes: les caractéristiques 

artisanales (Handcrafted features) et les caractéristiques apprises (Learned 

features). Par les caractéristiques artisanales on veut dire celles qui sont 

extraites suite à une attention particulière  à travers des algorithmes conçus  à 

la main comme ceux utilisés dans le chapitre 3. Contrairement aux 

caractéristiques artisanales, les caractéristiques apprises sont obtenus grâce à 

des procédures d'apprentissage en entrainent un réseau avec une base de 

données bien définie. Afin de comparer les performances de ces deux 

approches, nous avons appliqué le même algorithme présenté au chapitre 3 sur 

la base de données CHUK01 en utilisant le scenario single-shot. Les résultats 

comparatifs sont présentés dans la figure 10. On constate que les 

caractéristiques apprises obtiennent les meilleurs résultats atteignant 31% 

sur rank1, tandis que les caractéristiques artisanales ont atteint 22%. Ces 

résultats sont parfaitement logique, car les caractéristiques apprises ont la 

capacité de s'adapter à la l'exclusivité de l'application alors que les 

caractéristiques artisanales ne sont pas entrainés et, par conséquent,  

elles sont moins flexibles. 
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Figure 10: Résultats sur différentes parties du corps 

 

 
Figure 11: Handcrafted vs Learned features 
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