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Résumé

Contexte et motivations

De nos jours, nous constatons une évolution du cadre économique des entreprises de
l’économie linéaire vers l’économie circulaire. L’économie linéaire est ainsi appelée à cause
du caractère linéaire du cycle de vie du produit : les matières premières sont transformées
en produits finaux qui sont vendus et acheminés aux clients et enfin sont jetés en fin de
vie. Le rapport du forum économique mondial (Forum, 2014) a exposé l’obsolescence de
cette économie. De ce fait, la mise en œuvre de l’économie circulaire est encouragée et
soutenue par des gouvernements, à cause de ses avantages en terme financiers, sociaux et
environnementaux sous le nom de triple performance (angl. Triple-bottom-lines). Cette
mise en œuvre est effectuée en intégrant les activités des châınes logistiques inverses telles
que la réutilisation, la réparation, le réemploi et le recyclage, aux châınes logistiques
directes existantes. À cause de la complexité posée par les chaines logistiques inverses,
généralement les entreprises collaborent avec des entreprises spécialisées dans la gestion
des châınes logistiques inverses comme la société ENVIE en France.

Dans cette thèse, nous nous intéressons aux processus de collecte des produits en fin de
vie ainsi qu’à leur désassemblage dans les chaines logistiques inverses, car ils possèdent des
rôles pivots. Cependant, les deux processus sont actuellement optimisés séparemment.
Ceci peut mener à des décisions sous-optimales pour les chaines logistiques. Au contraire,
l’intégration des décisions d’au moins deux processus dans les châınes logistiques directes
a été prouvée comme menant à une meilleure gestion de stock, une meilleure agilité à
répondre aux demandes des clients et une augmentation de l’efficacité des chaines. Dans
cette thèse, nous souhaitons montrer l’intérêt d’une approche intégrée des deux processus
(collecte et désassemblage) par rapport à une approche non-intégrée.

Cette thèse soutient non seulement la mise en œuvre de l’économie circulaire mais
propose aussi une meilleure façon de gérer des châınes logistiques inverses. Le manuscrit
s’articule de la manière suivante :

• Le chapitre 1 présente l’introduction générale et l’état de l’art.

• Le chapitre 2 présente une comparaison entre deux formulations déterministes sous
forme programmation linéaire en nombre entièr : la première intégrant les deux
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processus (collecte et désassemblage) et la seconde ne les intégrant pas. Un solveur
commercial CPLEX est utilisé pour résoudre les problèmes correspondants.

• Le chapitre 3 présente plusieurs méthodes approchées développées pour traiter les
instances de grande taille du problème intégré, puisque le solveur CPLEX n’est pas
capable de fournir les solutions optimales en un temps de calcul raisonable.

• Le chapitre 4 décrit une formulation basée sur la programmation stochastique
du problème. Elle vise à considérer des paramètres sous incertitude qui existent
fréquemment dans les châınes logistiques inverses. Deux méthodes de résolution
sont développées.

• Le chapitre 5 propose un problème qui se focalise sur les décisions de la collecte des
produits en fin de vie et l’équilibrage de ligne de désassemblage. Une formulation
déterministe du problème est proposée.

• Nous présentons également les conclusions et les perspectives de cette thèse dans le
chapitre 6.

Les détails de ces chapitres sont présentés dans les prochaines sections.

Le problème de collecte et désassemblage

Ce chapitre est consacré à prouver que l’intégration des décisions des processus de collecte
de produits en fin de vie et de leur désassemblage dans les chaines logistiques inverses
mène à une amélioration des décisions prises. Dans le problème présenté dans la section
2.2, nous considérons un seul type de produits en fin de vie, ramassés dans les centres de
collecte dans une quantité determinée, un seul vehicule disponible pour leur rammassage
et il y a un dépôt pour les produits collectés où les processus de désassemblage sont
effectués (un centre / site de désassemblage). Les variables de décision considérées sont
(i) la quantité de produits en fin de vie à désassembler pour chaque période, (ii) les
périodes quand le véhicule visite les centres de collecte, (iii) la quantité de produits en fin
de vie à collecter depuis les centres de collecte, (iv) la tournée du véhicule pour chaque
période et (v) le niveau de stockage des produits en fin de vie au dépôt.

Une formulation du problème qui intègre des décisions concernant les deux processus
est développée dans la sous-section 2.3.1. Sa fonction objectif vise à minimiser le coût
total tenant compte du coût de collecte, du coût de stock, du coût de désassemblage et de
la pénalité des demandes de composant non-satisfaites. Le coût de collecte est constitué
des coûts de setup et de voyage de véhicule. Le coût de stock concerne le niveau de
stockage de produits en fin de vie. Le coût de désassemblage est en rapport à la quantité
de produits en fin de vie à désassembler et à la pénalité dûe aux demandes de composant
non-satisfaites.

Les contraintes dans cette formulation sont (i) les contraintes imposant que chaque
centre de collecte soit visité au maximum une fois pour chaque période, (ii) les contraintes
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de la conservation des flux de véhicule à chaque sommet, (iii) les contraintes d’élimination
de sous-tours, (iv) les constraintes de la conservation des flux de produits en fin de vie dans
le stock, (v) les constraints déterminant les demandes non-satisfaites et (vi) l’ensemble
des contraintes fixant les domaines des variables de décision à travers l’horizon.

La sous-section 2.3.2 présente une autre formulation du problème dans le cas non-
intégré. Ne disposant pas d’instances appropriées pour tester les deux formulations, la
section 2.4 présente la procédure de génération d’instances pour les tests. Les deux formu-
lations sont comparées grâce au solveur commercial CPLEX. Selon l’analyse numérique
présentée dans la section 2.5, les résultats obtenus vérifient notre hypothèse qu’une telle
intégration mène à de meilleures décisions par rapport au cas non-intégré.

Ces travaux ont aboutis aux articles suivants :

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Collection-Disassembly Prob-
lem in Reverse Supply Chain, International Journal of Production Economics, vol.
183, 2017, p. 334-344. doi:10.1016/j.ijpe.2016.06.025

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Coordination of Collection
and Disassembly Planning for End-of-Life Product. IFAC-PapersOnLine, vol. 48,
no. 3, 2015, p. 76–80, doi:10.1016/j.ifacol.2015.06.061

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Dealing with the collection
and the disassembly planning for simple end-of-life product, Actes des Journées
Nationales/ Doctorales MACS, Du 16 au 19 Juin 2015, Bourges, France, 5 pages
(USB)

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Combining Procurement and
Disassembly Decisions for End-of-Life Product. Le 16ème congrès de la société
française de recherche opérationnelle et aide à la décision (ROADEF). Du 25 au 26
Fevrier 2015, Marseille, France

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. La coordination de la collecte
des produits en fin de vie et de leur désassemblage dans les châınes logistiques
inversées. La 20ème journée du pôle Sciences et Techniques de la Production (STP)
du GdR MaCS, Le 5 Fevrier 2015, Troyes, France.

Le solveur commercial CPLEX nous permet de valider notre modèle ainsi que prouver
notre hypothèse. Cependant, il n’est pas capable de fournir les solutions optimales en
un temps raisonnable, notamment pour les instances de grande taille. Afin de trouver
des solutions de bonne qualité en un temps de calcul raisonnable, nous avons développé
plusieurs méthodes approchées, présentées dans le chapitre suivant.

Méthodes approchées pour le problème de collect et désasemblage

Six méthodes sont développées dans ce chapitre : la Two-Phase Iterative Heuristic (sous-
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section 3.2.1), sa version avec des améliorations (sous-section 3.2.1), une heuristique basée
sur la recherche locale (sous-section 3.2.2), une méthode d’optimisation par essaims (sous-
section 3.2.3), une méthode d’optimisation par essaims particulaires avec recherche locale
(sous-setion 3.2.3) et un Imperialist Competitive Algorithm (sous-section 3.2.4). Elles sont
en fait basées sur une procédure itérative et des métaheuristiques.

La première méthode approchée décompose le problème en deux sous-problèmes: le
problème de dimensionnement de lot de produits en fin de vie avec les coûts approximat-
ifs de transport et le problème de voyageur de commerce. Les coûts approximatifs de
transport sont obtenus en résolvant le problème de transport et appliquant l’héuristique
de LKH de Lin and Kernighan (1973).

La deuxième méthode approchée est une amélioration de la première en ajoutant une
étape supplémaintaire. Elle vise à réduire le nombre de périodes servies et s’imposer une
procédure adaptative afin d’améliorer les solutions et de réduire le temps de calcul sans
sacrifier la qualité des solutions obtenues.

Dans la troisième méthode approchée, des opérateurs de recherche locale sont ajoutés
pour améliorer la solution initiale.

Afin d’améliorer la solution initiale, la quatrième méthode approchée imite le com-
portement social des organismes sociaux. Dans cette méthode, le comportement relation-
nel d’un organisme avec les autres organismes est influencé par son propre comportement
et celui des autres organismes du groupe auquel il appartient.

Nous avons également proposé une méthode basée sur la quatrième méthode en
ajoutant les opérateurs de recherche locale utilisés dans la troisème méthode.

La sixième méthode approchée imite l’impérialisme, c’est-à-dire la situation où un
pays souhaite étendre son pouvoir et son influence sur les autres. Chaque pays répresent
une solution, appelé une colonie, et celui qui a la valeur minimale devient un impérialiste.

Les résultats des méthodes proposées sont comparés à ceux obtenus par le solveur
CPLEX en fonction de leurs gaps (bornes inférieures si leurs solutions optimales ne sont
pas obtenues) et leurs temps de calcul en sous-section 3.3.2. Les résultats montrent
que la meilleure méthode est l’Two-Phase Iterative Heuristic avec ses améliorations en
proposant un gap moyen inférieure de 1,68 % et un temps de calcul moyen très vite.

Une partie de ce chapitre est l’objet de l’article suivant :

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. An Efficient Two-Phase
Iterative Heuristic for Collection-Disassembly Problem, Computers & Industrial
Engineering, vol. 110, 2017, p. 505-514.

Dans la réalité, les chaines logistiques inverses font souvent à des incertitudes tels
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que la quantité et la qualité de produits en fin de vie, ainsi que les demandes de leurs
composantes. Pour cela, une formulation consacrée à ces incertitudes basée sur la pro-
grammation stochastique est necessaire. En outre, plusieurs véhicules pourraient être
disponibles pour collecter les produits en fin de vie depuis les centres de collecte. Dans
le chapitre suivant, une formulation considérant ces incertitudes et le cas multi-véhicule
est présentée.

Méthodes de résolutions pour le problème stochastique de collecte et
désassemblage dans le cas multi-véhicule

Ce chapitre introduit le problème de collecte et désassemblage dans le cas multi-véhicule
et mono-produit sous incertitude. Les paramètres incértains concernent (i) la quantité
de produits en fin de vie dans centres de collecte, (ii) la quantité de leurs composants
représentant la qualité de produits en fin de vie et (iii) les demandes des composants
pour chaque période. La section 4.3 présente une formulation basée sur la programma-
tion stochastique en bi-niveau où nous admettons que :

• les paramètres sous incertitude suivent des lois de distribution connues,

• leurs valeurs sont connues après la période de plannification,

• plusieurs véhicules sont disponibles pour collecter les produits en fin de vie à chaque
période.

Dans cette formulation, la fonction objectif a pour but de minimiser le coût concernant
les décisions du premier niveau et l’espérance du coût des décisions du deuxième niveau.
Le premier niveau correpond aux coûts de setup et de voyage de véhicules utilisés. Le
deuxième niveau correspond aux décisions du niveau de stockage de produits en fin de
vie, de la quantité produits en fin de vie à désassembler et de la pénalité des demandes
de composant non-satifaites.

Les contraintes sont (i) les contrantes imposant que chaque centre de collecte soit
visité au maximum une fois dans chaque période, (ii) les contraintes de la conservation
de flux de véhicule dans chaque période, (iii) les constraintes d’élimination de sous-tours
dans chaque période selon un scénario, (iv) les conservations de flux de produits en fin de
vie dans le stock dans chaque période selon un scénario, (v) les contraintes déterminant
les demandes de composant non-satisfaites dans chaque période selon un scénarii et (vi)
les contraintes de définition des variables de décision.

Deux méthodes de résolution sont développées pour fournir les solutions du problème
traité : la Two-Phase Iterative Heuristic et sa version avec des améliorations, décrites
en sous-section 4.4.1. Nous avons choisi de ré-adapter ces méthodes pour le problème
stochastique car elles ont montré une flexibilité et de très bonnes performances pour
le problème déterministe. Pour fournir une solution avec bonne qualité pour chaque

Mines de St-Étienne vii M. K. Khakim Habibi



instance testée, les deux méthodes sont mises en œuvre avec la procédure d’approximation
moyenne par échantillonnage (angl. Sample Average Approximation). Cette procédure
se base sur l’échantillonage de la méthode de simulation Monte Carlo afin de résoudre un
problème avec un très grand nombre de scénarios, qui est intraitable, en le divisant en
de plus petits scénarios qui sont résolvables (Adulyasak et al., 2015a; Ghilas et al., 2016;
Kleywegt et al., 2002).

D’après les résultats obtenus dans la sous-section 4.5.2, la Two-Phase Iterative Heuris-
tic avec des améliorations montre une meilleure performance que l’autre méthode pro-
posée pour deux ensembles de données. Cette conclusion est faite en analysant les bornes
inférieures et supérieures pour chaque méthode.

Un article basé sur ce chapitre est actuellement en préparation comme suivant :

• Habibi, M. K. K., Battäıa, O., Cung, V.-D., Dolgui, A., Tiwari, M. K. Sample
Average Approximation for Multi-Vehicle Collection-Disassembly Problem under
Uncertainty (soumis à la revue de International Journal of Productions Research).

Il présent un travail qui a été fait en partenariat avec l’institut indien de téchnologie
de Kharagpur.

Le problème intégré d’approvissionnement et désassemblage

Un autre problème appelé le problème intégré d’approvissionnement et désassemblage
est présenté dans le chapitre 5. Contrairement aux problèmes traités dans les chapitres
précédents, ce problème met l’accent sur les décisions conjointes de la collecte de produits
en fin de vie et planification de la ligne de désassemblage. Nous admettons que la
ligne de désassemblage peut s’adapter aux changements de décisions sur le processus
de collecte. Cette hypothèse se base sur le fait que les processus de désassemblage sont
toujours effectués manuellement.

Une formulation est développée pour formaliser le problème. La fonction objectif
vise à minimiser les coûts totaux d’approvisionnement et de setup à travers l’horizon
de planning. Les contraintes associées sont (i) les contraintes de la conservation de flux
de stockage, (ii) les contraintes imposant que chaque centre de collecte soit visité au
maximum une fois dans chaque période, (iii) les contraintes d’élimination de sous-tours,
(iv) les contraintes des relations de précedence entre les tâches de désassemblage, (v)
les contraintes de l’affectation d’une tâche sur un poste de travail et (vi) l’ensemble des
contraintes qui définissent les variables de décision.

Ce chapitre a abouti à l’article suivant:

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Integrated procure-
ment–disassembly problem, En: Advances in Production Management Systems:

M. K. Khakim Habibi viii Mines de St-Étienne



Innovative and Knowledge-Based Production Management in a Global-Local World,
Part II, B. Grabot, B. Vallespir, S. Gomes, A. Bouras, D. Kiritsis (Eds.), Series:
IFIP Advances in Information and Communication Technology, Springer, vol. 439,
2014, ISSN: 1868-4238, p. 382–390. (IFIP WG 5.7 International Conference, APMS
2014, Ajaccio, France, Du 20 au 24 Septembre 2014).

Conclusions générales

L’intégration des décisions des processus de collecte de produits en fin de vie et de leur
désassemblage mène à une meilleure performance des châınes logistiques. Afin de traiter
les instances de grande taille, pour lesquelles le solveur CPLEX n’est pas capable de
fournir les solutions optimales en un temps raisonnable, nous avons développé des meta-
heuristiques. La Two-Phase Iterative Heuristic avec des améliorations est la méthode la
plus performance parmi les autres méthodes développées, selon le gap moyen et le temps
de calcul. Nous avons également développé une formulation basée sur la programmation
stochastique en bi-niveau pour traiter l’incertitude concernant la quantité de produits en
fin de vie dans centres de collecte, la quantité de leurs composants et les demandes des
composants pour chaque période. La Two-Phase Iterative Heuristic et ses améliorations
avec la procédure d’approximation moyenne par échantillonnage est capable de proposer
de meilleures solutions que l’autre méthode. Un autre problème se focalisant sur la
collecte de produits en fin de vie et la planification de leur ligne de désassemblage est
également introduit.

Des persectives de notre recherche sont présentées. Concernant le problème
déterministe, le cas multi-véhicule et multi-produit en fin de vie pourraient être étudié
conjointement. Pour traiter ces deux facteurs, deux indices supplémentaires seraient
nécessaires dans la formulation présentée dans le chapitre 2. Un autre type des méthodes
de résolution de Absi et al. (2014) appelée l’Iterative Method-Vehicle Routing Problem
(IM-VRP) pourrait être implémentée et comparée avec la meilleure méthode proposée
pour ce problème déterministe. Cette méthode de décomposition IM-VRP propose que
l’affectation des centres de collecte à visiter par les véhicules soit déterminée pendant la
construction de leurs tournées et exclue du problème de dimensionnement de lot avec les
coûts approximatifs de transport.

Dans le problème stochastique de collecte et désassemblage dans le cas multi-véhicule
en section 4.3, nous admettons que toutes les valeurs des paramètres incertains soient
réalisées juste après la période de planification (la période zéro). Leurs valeurs pourraient
en plus être réalisées dans chaque période tout au long de l’horizon de planification. Dans
ce cas, la programmation stochastique en multi-niveau pourrait être utilisée dans ce
problème en ajoutant les contraintes qui assurent la consistance des variables de décision
telles que le niveau de stockage, la quantité de produits en fin de vie à désassembler et
les demandes non-satisfaites.
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Dans les châınes logistiques inverses, il y a souvent plusieurs types de produits. Cela
signifie qu’une formulation dans le cas multi-produit basée sur la programmation stochas-
tique soit également necessaire. Par conséquent, un indice supplementaire associé aux
produits doit être intégré dans la formulation. La méthode approchée Two-Phase Iter-
ative Heuristic pourrait être adaptée et combinée avec le rollout algorithm de Bertsekas
et al. (1997) avec la procédure d’approximation moyenne par échantillonnage afin de
résoudre ce problème.
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Summary

Due to the drawbacks of the linear economy, the implementation of the circular econ-
omy is more and more encouraged by several governments due to its advantages in terms
of financial, social and environmental aspects. It is performed by incorporating reverse
supply chains into existing forward supply chains. However, many companies collabo-
rate with third-party reverse logistics providers that own competencies to manage the
complexity of reverse supply chains. Furthermore, managing supply chain by integrating
two or more functions leads to better inventory management, better response to market
challenges and higher efficiency.

This dissertation supports not only the implementation of the circular economy but
also proposes better management by integrating functions in reverse supply chains. The
hypothesis of this dissertation is that integrating functions in reverse supply chain leads
to propose better decisions. The functions concerned are the collection process of End-
of-Life products and their disassembly process since both processes hold important roles
in reverse supply chains.

First, a deterministic problem integrating both two processes is introduced and called
Collection-Disassembly Problem. A corresponding formulation of the problem is devel-
oped and some instances are generated accordingly due to lack of available instance in
the literature. Another non-integrated formulations are also developed and solved for
the generated instances using a commercial solver namely CPLEX. The obtained results
show that the integrated formulation proposes better decisions than the non-integrated
formulations in terms of the optimal cost.

However, the commercial solver CPLEX are unable to provide optimal solutions under
acceptable CPU times notably for large size instances. Therefore, some approximate
methods are developed to propose (near) optimal solutions under shorter CPU times.
According to the obtained results, the Two-Phase Iterative Heuristic with Enhancements
offers the best performance compared to the other proposed methods.

Second, reverse supply chains frequently deal with the uncertainty of some parameters
such as the quantity and the quality of End-of-Life products as well as the demands of
their components. An extended version of the Collection-Disassembly Problem under un-
certainty of the concerning parameters is introduced. Furthermore, there are often more
than one vehicle available to collect the products. Thus, the problem called Stochas-
tic Multi-Vehicle Collection-Disassembly Problem and its formulation are also developed.
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The problem is formalised as a two-stage stochastic programming where the parameters
under uncertainty follow some known probability distribution and their realisation comes
after the planning stage. The first-stage variables correspond to the routing of vehi-
cles dispatched and the second-stage variables correspond to the decisions of disassembly
lot-sizing of End-of-Life products, their inventory and the unmet demands of component.

Accordingly, two methods combined with an algorithmic framework of Sample Av-
erage Approximation are developed to provide high quality solutions of the stochastic
problem. The obtained results show that Two-Phase Iterative Heuristic with Enhance-
ments combined with the framework outperforms the other developed method in the
tested instances.

Third, another problem called Integrated Procurement-Disassembly Problem is also
studied. Unlike the previous problem, this problem emphasises on the decisions of disas-
sembly line balancing problem.

Finally, some prospects of future work are also provided.
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Chapter 1

Decisions in Forward and Reverse
Supply Chains

1.1 Circular Economy

The linear economy has been commonly employed as traditional ”take-make-dispose”
pattern to fulfil consumers’ needs. Companies extract raw materials from the nature,
transforms them into final product, distribute and sell them to consumers. If the prod-
uct reaches its end-use phase, commonly called End-of-Life (EOL) product, it is often
discarded as disposal.

According to the report of World Economic Forum (Forum, 2014), the linear economy
is reaching its limits by looking on the following facts:

• higher resource prices and supply disruptions,

• price volatility of metals, foods and non-agriculture outputs achieves higher points
since the start of 21th century,

• opportunity to increase efficiency exists but it is not possible to create sufficient
competitive advantage or differentiation,

• unpredicted consequences of the improvement of energy and resource efficiency
drives the increase of amount of materials and energy used,

• growth of agriculture productivity is slower followed by the decline of the soil fertility
and the nutrition of agricultural product,

• risk of global supply chain’s supply security and safety increases,

• number of production sites faces problem to get virgin resources (water, land and
atmosphere).

Furthermore, the linear economy also leads to the burden of waste, notably waste of
electrical and electronic equipment (WEEE). However, WEEE often contains hazardous
materials (e.g. mercury, etc.) and also precious metals (e.g. gold, silver, etc). United
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1.1. CIRCULAR ECONOMY

Nations Environment Programme reported that 20 to 50 millions tonnes of WEEE are
generated worldwide annually. In particular, the annual waste of European Union (EU)
member states is around 4 million tonnes.

To tackle these issues, transforming the linear economy into the circular one (Figure
1) is more and more encouraged by various governments through directives such as EU
Directive 2002/96/EC and 2011/65/EU, and inter-governmental agreements such as Paris
Agreement (Accord de Paris sur le Climat) of the 21st session of the Conference of the
Parties (COP 21) in 2015.

Figure 1 – Circular Economy (Forum, 2014)

This transformation is important since the circular economy is proven to yield ben-
efits not only for business stakeholders but also consumers and the whole society both
operationally and strategically. In detail, it yields net annual material cost savings in
manufacturing sector up to US$ 630 billion. It is also likely to mitigate price volatility
and supply risks. The demand of creating reverse logistics network will evoke innova-
tion and potentially create new jobs. It improves land productivity and soil health since
it emphasizes on the anaerobic digestion or composting process and back into soil. It
permits to reduce the replenishment of additional nutrients. It leads to reduce of the
dependency on resource markets and, thus, supports more resilient economy (Forum,
2014). Thus, the circular economy complies the Triple-Bottom-Lines since it comes up
with positive impacts on economic, social and environmental aspects. Renault, Phillips,
Xerox, Hewlett-Packard and Caterpillar are among success stories regarding the imple-
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CHAPTER 1. DECISIONS IN FORWARD AND REVERSE SUPPLY CHAINS

Figure 2 – Basic Activities and Flows in Closed-Loop Supply Chain (Gupta, 2013)

mentation of circular economy (Alumur et al., 2012; Forum, 2014; Kumar and Putnam,
2008; Pishvaee et al., 2010).

In order to comply with the circular economy, the business stakeholder needs to re-
design their forward supply chains (CLSC) for resource efficiency and circularity by in-
corporating reverse supply chains to form so called closed-loop supply chains as depicted
in Figure 2. The reverse supply chains principally deal with the activities of reusing,
repairing, refurbishing and recycling existing materials and products.

However, reverse supply chains differs from forward one in various aspects (Gupta,
2013; Tibben-Lembke and Rogers, 2002). The following section details the differences
between the forward and reverse supply chains.

1.2 Forward and Reverse Supply Chains

This part presents the differences between forward and reverse supply chains (RSC)
in terms of various aspects as well as duration-based decisions. Existing works related to
RSC are also reviewed. We also suggest the reader to see Dolgui and Proth (2010) for
deeper insights regarding forward supply chains.

For aspects distinguishing both supply chains as provided in Table 1.1, we divide them
into for set of aspects; planning, production, distribution and revenue.

Mines de St-Étienne 3 M. K. Khakim Habibi



1.2. FORWARD AND REVERSE SUPPLY CHAINS

Planning Aspects
In forward supply chains, the objective is traditionally to optimise the profit and/or
cost. Apart from profit/cost optimisation, RSC is mainly triggered by environmentally
conscious principles and laws of governments. Unlike forward supply chains, the common
forecasting techniques may need to be adjusted in RSC due to high level of uncertainty
related to product returns.

Production Aspects
The new product quality manufactured in forward supply chains is highly controlled to
meet the quality standard. In constrast, the quality of returned products in RSC vary.
They may be highly degraded due to consumer usage or even have higher quality due
to modification during the usage. The processing times and steps for a new product
are well defined. However, the returned product often has various conditions led to
various processing times and steps. The packaging of new products is highly available
for the reason of protection, handling and identification. In RSC, returned products
are rarely well packaged. New products have fixed nomenclature to pass the quality
inspection and standard before being delivered. Returned products, particularly EOL
products, have many missing, modified or damaged parts due to the usage. Therefore,
the nomenclature of returned products is not fixed. Since product returns often have
a high level of uncertainty, the inventory models in forward supply chains cannot be
properly applied in RSC. The reader is suggested to see Dolgui and Proth (2006) for
further interests in production systems.

Distribution Aspects
The new products are transported from the production site to many other locations e.g.
distribution centres, retailers, customers, etc. Whilst, the returned products are collected
from many locations (e.g. collection centres, customers) to one processing facility. It
indicates that the flow from collection centres to the processing facility is complex and
depends on the number of collection centres as well as the quantity and the quality of
returned products. The speed of delivery holds critical role since the customer can refuse
to buy undelivered or delayed new products from the firm. In RSC, the returned products
are received by the firm itself. Hence, there is no urgency to receive them in fast delivery
mode.

Revenue Aspects
In forward supply chains, the final objective is the sale of the product to customers. In
RSC, it is not clear since it depends on the product type and condition of returned prod-
uct. For manufacturing companies, their primary importance is forward supply chains
since their revenue is generated from new products that are distributed through forward
supply chains. For remanufacturing or recycling companies, the primary importance is
RSC since they recover parts of materials from EOL products.

Thus, the condition of returned EOL products has big impact on how to manage
RSC. Particularly, the disassembly process as a mandatory step for RSC activities is
costly and labour intensive and has high level of uncertainty due to the condition of
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returned products.
As shown in Table 1.2, the decision of integrating forward and reverse flows in supply

chains is categorised as strategic decision because of its long-term impacts as well as high
cost. In current reality, manufacturers have opted to collaborate with other specialised
companies to manage this reverse flow such as ENVIE (France) since RSC requires new
facilities and its activities are typically costly and manual labour intensive. This fact has
motivated this dissertation to propose decision support tools to decision makers in such
companies. Furthermore, this dissertation has been put in place in the particular interest
of the management of EOL products from the points of collection until re-manufacturers
and/or recyclers. In the following part, some researches related to the aim of this disser-
tation are presented.

1.2.1 Network Design

As strategic level decision, this issue deals with high cost decisions due to its long
duration impact. Once the decision makers decide to conduct the recovery process of
used products, the recovery system requires some facilities such as the sites of collec-
tion/sorting, remanufacturing, refurbishing, recycling or disposal in order to reprocess
the returned products. This decision requires facilities incurring enormous cost. The
latter cause is the main reason for categorizing this research area into strategic issues.
Pishvaee et al. (2009b) argue that the considered decisions are to determine the numbers,
locations and capacities of facilities and the material flows between them. Since some
researches disregard the uncertainty factors of the problems, the following description are
divided into deterministic and stochastic models.

Deterministic Models. In this part, some researches assuming that the necessary
data are available and have no uncertainty. They consider the materials flow from users
until recovery centres.

Lee et al. (2009) focus on minimisation the total cost of transportation and fixed open-
ing facilities and took into consideration of multi-stage, multi-product and some specific
conditions for disassembly as well as processing centres. Respecting the parts types, the
returned products are delivered to either the processing center or the disassembly center.

A model determining the number, the location and allocation of facilities as well as
the flow of used products for its market is proposed in Mutha and Pokharel (2009). The
products are modular with different disposal and recycling fraction so that the returned
modules are resold in the spare-part market. The warehouses, remanufacturing centre
and manufacturer have a portion for processing the returned products.

A multi-period and multi-product reverse logistics network design problem is proposed
in Alumur et al. (2012). The model takes into account modular capacities, capacity
expansion of the facilities, reverse bill of materials, minimum throughput at the facilities,
variable operational costs and finite demands in the secondary market. The decision
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Table 1.1 – Differences between Forward and Reverse Supply Chains (Gupta, 2013)

Aspects Forward Reverse

Objective Based on profit and cost op-
timisation (traditionally)

Based on environmentally
conscious principles and
laws as well as profit and
cost optimisation

Forecasting Relatively easier and
straightforward for product
demand

More difficult for product
returns

Product Quality Less variation Highly stochastic
Marketing Traditional marketing tech-

niques can be applied
There are factors complicat-
ing marketing

Processing Times and
Steps

Well defined Depend on the condition of
the returned product

Transportation Goods are transported from
one location to many other
locations

Returned products collected
from many locations arrive
in one processing facility

Speed Competitive advantage Not a critical factor
Packaging Standard Highly variable
Product Structure Standard Modified
Cost Estimation Easier due to accounting

systems
Determination and visuali-
sation is complicated

Disposition Options Clear Depend on the condition of
returned product

Inventory Manage-
ment

Consistent Inconsistent

Financial Implications Clear Not clear
Process Visibility Highly visible due to real-

time product tracking
Less visible due to lack of
information system capabil-
ities for product tracking

Product Life Cycle
Management

Relatively easier More difficult

Deterministic /
Stochastic

Relatively more determinis-
tic

Relatively more stochastic

Primary Importance To manufacturers To EOL processors (i.e. re-
manufacturers, recyclers)
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Table 1.2 – Major Reverse Supply Chains Decisions (Gupta, 2013; Lambert et al., 2011)

Strategic Tactical Operational

Whether or not to inte-
grate reverse flow with
the forward flow in sup-
ply chains

Decide transportation
means and establish
transportation routes

Logistics and operations
scheduling

Allocate adequate finan-
cial resources

Establish operational
policies (production and
inventory)

Emphasise cost control

Categorise and define re-
turn policies

Define return policies for
each item

Return acquisition activ-
ities

Determine reasons,
stakeholders and issues
related to reverse supply
chains (RSC)

Define technical support
to offer (in-store, subcon-
tractors, etc.)

Consider time value of re-
turns

Evaluate internal exper-
tise in RSC and decide
about outsourcing a few
/ all RSC activities

Do the RSC activi-
ties (transportation,
warehousing, remanufac-
turing, etc., in-house or
subcontract)

Train personnel on RSC
concepts and practices

Implement environmen-
tal management systems
and acquire knowledge of
directives, laws and envi-
ronmental rules

Develop a planning
system for various RSC
activities and establish
quality standards for
them

Manage information

Choose activities (repair
/ rework, reuse, etc.)
and identify potential lo-
cations

Decide the location and
allocation of capacities
for RSC facilities

Determine level of disas-
sembly

Risk assessment (value of
information and uncer-
tainties)

Define performance mea-
sures; optimise policies

Analyse returns in order
to improve disposition
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variables correspond to the location and the capacity of inspection and remanufacturing
facilities, the capacity expansion of the existing facilities, the materials flow through the
network, the amount of holding materials and purchased product from the suppliers for
the remanufacturing plants.

A model minimising the total processing costs of WEEEs as well as the costs of
collection, treatment and transportation is proposed in Dat et al. (2012). The sales
income of returned products is taken into account. The model has four stages processing
facility i.e. collection, disassembly, treatment (recycling facility and repairing facility)
and final sites (disposal, primary market and secondary market).

The presence of second market hold significant role since it differs to the main
market i.e. the price sensitive and the form of offered products (refurbished product,
component/sub-assemblies or raw material). Taking into account multi-product factor
affects the problem’s complexity while gives more applicable solutions. Furthermore,
most of reviewed researches employ a dedicated collection centre for the network whereas
there is an opportunity to consider a hybrid site as both the collection centre of the used
products and distribution center, simultaneously.

A location problem where the objectives are to determine the number and the location
of collection centres as well as the incentive offered by the firms to consumers is studied
in Aras and Aksen (2008). The number and location objective is important because the
willingness of consumers to return the EOL product is based on the offered incentive
beside their distance with the collection centres. Using the same objectives, a model
investigated in Aras et al. (2008) takes into account the pick-up strategy that deals with
capacitated vehicles picking up used products from consumers to collection centres. The
distance between collection centres and customer zones incurs transportation cost.

Hanafi et al. (2008) investigate a case study of mobile phones in Australia. This work
proposes an effective collection strategy by considering the economic and environmental
impacts.

Grunow and Gobbi (2009) investigate new network of reverse logistics due to the
altered environment of WEEE collection in Denmark. It determines the location points
for collection centres. The model proposed takes into account the problem of collection
point assignment precisely.

A decision support system (DSS) is studied in Achillas et al. (2010). It permits private
sectors in Greece as well as public regulators to examine and determine the optimal
locations of recycling facilities in Greece. The DSS takes into account both economical
criteria (local population, population served, distance from existing recycle facilities, land
value, land condition, distance from the capital of the region, distance from nearest port)
and social criteria (unemployed population, financial status of local population). These
criteria are combined by employing the multi-criteria methodology.

An evaluation of the existing facilities for processing EOL products is conducted
in Pochampally and Gupta (2009). It aims to maximise the demand satisfaction for
customers, the fulfilment of local government requirement concerning environmental con-
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sciousness and the profit of supply chain actors.

The next issues is about structure of reverse channel for collecting the used products.
A good reverse logistics structure allows to gain the efficiency of material flow.

A model proposed in Lee et al. (2011) incorporates pricing, production, and inventory
decisions in reverse production system with retailer collection using continuous time and
differential game framework. This study identifies the profitability of the entire supply
chain under time-varying situation of post-consumer products.

Based on the case study of a manufacturer of EEEs in France, a framework is prvoided
in El korchi and Millet (2011) to generate and assess different reverse logistics channel
structures. This framework allows to analyse current structure and propose alternative
structures in terms of its environmental and economic impacts by using a number of
generic structures of reverse logistics through varying the location of treatment centres.

Stochastic Models. The data often contain uncertainty. The following part presents
some researches in CLSC that deal with uncertainty by employing robust optimization,
stochastic programming and fuzzy logic.

A robust optimisation model in Pishvaee et al. (2011) takes into consideration the
uncertainty of several parameters i.e. the supply of return products, the demand from
second markets and transport costs between facilities in CLSC.

A stochastic model in Chouinard et al. (2008) determines the location of service and
processing centres and warehouses of valorised products as well as materials flow. The
uncertain parameters encompass the recovery, processing and demand volumes.

A stochastic model dealing with single-period single-product multi-stage closed-loop
supply chain is proposed in Pishvaee et al. (2009a). The uncertainty parameters deal
with the quantity and quality of returned products, demands and variable costs.

A study of two-stage multi-period stochastic reverse logistics network design is inves-
tigated in Lee and Dong (2009) to deal with the option of close or open for every facility
at the beginning of every period of time horizon. The demands of new products and
supply of returned products at consumers are considered uncertain.

A multi-period multi-echelon network design of CLSC is proposed in El–Sayed et al.
(2010) for a single type product. The objective is to maximise the expected profit. The
studied types of markets are first market with stochastic demand and second market with
deterministic demand.

A multi-objective possibilistic optimization model for CLSC is studied in Pishvaee and
Torabi (2010). It concerns about the uncertainties of demands, returns, delivery times,
costs and capacities as well as the presence of second market of EOL products. The
objective functions minimise the total cost and the total tardiness of delivered products.

Three optimisation models of network design in RSC is studied in Qin and Ji (2010)
namely expected value model, chance constrained programming and dependent-chance
programming. The models attempt to determine the location of collection centres and
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returned products flow. The uncertainty of the models correspond to the quantity of
products collected. They consider single-period and single-product.

A multi-objective CLSC model is proposed in Zarandi et al. (2011). Three models are
presented for comparing the forward flow, the reverse flow and the integration of both
flows considering the imprecision in decision makers’ aspiration levels of the goals. The
aspiration level corresponds to the degree of importance of the models’ objectives.

1.2.2 Routing Transportation

It is well-known that transportation cost in distribution or collection contributes sig-
nificantly in total cost of supply chains particularly in tactical-strategical decisions such as
vehicle routes. Henceforth, this part provide several recent articles about vehicle routing
problem (VRP) for collection process and in reverse supply chain.

A study of the American Red Cross’ blood collection is performed in Alshamrani
et al. (2007). It focuses on dynamic logistics planning problem with multi-period based
on insulation-line distribution. It is formalised as VRP with pickup and delivery using
single-vehicle. The objectives are to minimise the travelling cost and total expected
penalty cost by designing an efficient routes in planned time horizon. The penalty cost
is due to customer dissatisfaction associated with delay in the return of blood boxes.

Moreover, the capacity, speed and cost of vehicles often vary that impose challeng-
ing problem. Effort has been performed to deal with the problem so called VRP with
heterogeneous fleet (VRP-HF).

A VRP-HF with multi-depot as collection center is studied in Brandão (2009). Work-
ing on the same VRP variant, the parameter of time windows for each pickup node is
considered in Xu et al. (2012). The limit of vehicle journey is taken into account in Salhi
et al. (2013). The minimisation of the number of vehicles dispatched is investigated in
Rafiei et al. (2013). A VRP-HF taking into account splitted delivery with single-depot is
investigated in Belfiore and Yoshizaki (2013).

Often, the depot functions as starting point instead of collection centre. Therefore,
intermediate facilities as collection centres between customer nodes and depots are re-
quired. Herein, the collection area is divided into several zone with one depot. Such
case where a VRP-HF with the limitation of available vehicles as well as time windows
is studied in Jiang et al. (2014).

Zhao and Zhu (2015) investigate a multi depot VRP for the collection of explosive
waste. This work is to minimise the transportation cost of explosive waste and the risk
for explosive waste recycling during the transportation.

In the literature, different actors of supply chain are often considered separately. How-
ever, managing supply chain by integrating two or more functions leads to better inven-
tory management, better response to market challenges and higher efficiency (Chandra,
1993). By extension, integrating two or more functions in RSC may also lead to gain
efficiency. In contrast with the rising interest in the studies of decision integrations in
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forward supply chains, only few works has targeted such integration in RSC.

1.3 Disassembly in Supply Chains

As aforementioned, disassembly process has important role in material and compo-
nent recovery as well as is mandatory step in remanufacturing and recycling activities of
RSC. According to McGovern and Gupta (2011), disassembly process is defined as a set
of systematic activities which aim to extract the components, subassemblies and/or other
grouping of recovered products. It interacts with all phases namely before life (the phase
of design and life cycle analysis), useful period(the phase between the beginning of man-
ufacturing and the end of in use) and end-of-life(the phase in which product completes
is useful period and is ready for further processing such recovery and/or disposal).

Based on our knowledge, the majority of researches in disassembly process focuses on
single problem such as sequencing (Adenso-Dı́az et al., 2008; ElSayed et al., 2012; Gupta
and Imtanavanich, 2009; Tripathi et al., 2009; Yeh, 2012), scheduling (Barba-Gutiérrez
et al., 2008), line balancing (Altekin et al., 2008; Bentaha et al., 2014a,b,c,d, 2015; Duta
et al., 2008; Gungor and Gupta, 1999; Kalayci and Gupta, 2011, 2013a,b; Koc et al.,
2009), etc.

Only few works have been conducted to deal with integration considering the disas-
sembly process notably for decisions in strategic and tactical level. Özceylan and Paksoy
(2013) investigate a network design optimisation of RSC by considering disassembly for
EOL products. The objective is to minimise the transportation cost and the fixed cost
of workstations of the disassembly line, simultaneously. The work of Özceylan et al.
(2014) aims to determine the materials flow in forward and reverse flows of closed-loop
supply chain as well as to balance the disassembly lines in the reverse chain in order to
minimise the costs of transportation, purchasing, refurbishing and operations in the con-
dition of multi-period and subassemblies. The decision variables encompass the number
of disassembly workstations, the cycle time and the quantity of purchased subassemblies
from supplier. To deal with the uncertainty of cost coefficients, capacity levels, market
demands and reverse rates of the problem, an interactive fuzzy programming approach is
proposed in Özceylan and Paksoy (2014). In these studies, disassembly process is taken
into consideration as disassembly line balancing problem.

Since the integration of cross-function decisions in forward supply chains leads to
gain more efficiency, our hypothesis is that such integration may also lead to better
management and efficiency in RSC. Particularly, we interest on the decisions of collection
process of EOL products and the choice to their components disassembled due to following
motivations:

• The collection of EOL products in RSC triggers high transportation cost,

• The disassembly process is mandatory step in RSC,
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• Integrating the decisions of these two processes may lead to better proposition to
the decision makers.

In the next part, some related studies of integration in forward supply chains are
presented to support our hypothesis.

1.4 Production-Distribution Problem

After some industrial practices of Vendor-Managed Inventory / Distribution e.g. Kel-
logg Company (Brown et al., 2001) and Frito-Lay’s North America (Çetinkaya et al.,
2009), the integrated logistical planning is favourable for proposing a supply chain with
better performance. Particularly, the coordinated management of production and distri-
bution processes leads to the reduction of the total cost. It may take various configura-
tions such as (i) integrated lot-sizing with direct shipment, (ii) inventory routing problem
and (iii) production-distribution problem (PDP). The first configuration minimises the
total cost of setup, production, inventory and direct shipment while disregarding the
routing aspect. The second configuration exposes the decisions on routing aspect but
ignores on production detail. Whereas, the third configuration focuses on both produc-
tion and distribution aspects by incorporating the production decision and routing part
in operational level decision as depicted in Figure 3.

Figure 3 – Network Representations of Production-Distribution Problem (Adulyasak
et al., 2015b)

Based on the existing literature of PDP that mostly deals with continuous products, it
aims to minimise the total cost of production, inventory and routing, simultaneously, by
respecting the demands of retailers, their inventory capacities, the production facility’s
capacity and its inventory limit. In general, PDP is a combination of two well-known
and hard combinatorial problems : lot-sizing problem and VRP.
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The decisions of PDP throughout the planning horizon consist of:

• when and how much products to produce (continuous products),

• when to visit,

• how much to deliver to retailers,

• routing for each vehicle,

• inventory level of each retailer (Armentano et al., 2011; Bard and Nananukul, 2009,
2010; Boudia et al., 2007).

With respect to the inventory level due to its lot-sizing problem, there are two types
of inventory policy considered namely order-up-to level (OU) and maximum level (ML).
The OU policy imposes that a visited customer receives the amount of products equal to
their predefined inventory level. The ML policy expresses that the quantity of products
delivered is positive at most as the capacity of inventory (Archetti et al., 2011).

1.4.1 Formulations

This part provides four existing models of Production-Distribution Problem with
Multi-Vehicle under ML policy where they are the main references for other researches
in PDP. We put them because some ideas are reused to construct the formulations of our
problems in the next chapters.

First, the formulation of Boudia et al. (2007) is completed with vehicle index. Second,
the formulation proposed by Bard and Nananukul (2009, 2010) has no index regarding
the vehicle. Third, the formulation of Armentano et al. (2011) deals with Multi-Product
where the available vehicles are indexed. Finally, the formulation of Adulyasak et al.
(2015a) deals with PDP under the uncertainty of demands of retailers.

The parameters and decision variables in these formulations are as follows:

Parameters :
N set of nodes: i, j ∈ {0, 1, · · · , |N |}
Nc set of customers : i, j ∈ {1, 2, · · · , |N |}
T set of time periods: t ∈ {1, 2, · · · , |T |}
K set of identical vehicles: m ∈ {1, · · · , |K|}
u unit production cost
f fixed production setup cost
hi unit inventory holding cost at node i
cij transportation cost from node i to node j

dit demand at customer i in period t
C production capacity
Q vehicle capacity
Li maximum or target inventory level at node i
Ii0 initial inventory available at node i.
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Let Mt = min{C,
∑l

j=t

∑
t∈Nc dij} as a large number corresponding to the de-

cision variables of the production quantity and the production setup. Let M̄it =
min{Li, Q,

∑l
j=t dij} as a large number corresponding to the decision variables of the

quantity delivered to customers and the vehicle routing.

Decision variables :

pt production quantity in period t
Iit inventory at node i at the end of period t

yt

{
1 iff production takes place in period t
0 otherwise.

z0t number of vehicles leaving the plant in period t

zit

{
1 iff node i is visited in period t
0 otherwise.

xijt

{
1 iff a vehicle travels directly from node i to node j is visited in period t
0 otherwise.

qit quantity delivered to customer i in period t
wit load of vehicle before making a delivery to customer i in period t.

Formulation of PDP Bard and Nananukul (2009, 2010)

This formulation considers the multi-vehicle case in which the available vehicles are
unindexed.

min
∑
t∈T

(upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cijxijt) (1.1)

Subject to:
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I0,t−1 + pt =
∑
i∈Nc

qit + I0t, ∀t ∈ T (1.2)

Ii,t−1 + qit = dit + Iit,∀i ∈ Nc,∀t ∈ T (1.3)

pt ≤Mtyt,∀t ∈ T (1.4)

I0t ≤ L0,∀t ∈ T (1.5)

Ii,t−1 + qit ≤ Li, ∀i ∈ Nc, ∀t ∈ T (1.6)

qit ≤ M̄itzit,∀i ∈ Nc,∀t ∈ T (1.7)∑
j∈N

xijt = zit, ∀i ∈ Nc,∀t ∈ T (1.8)∑
j∈N

xjit +
∑
j∈N

xijt = 2zit,∀i ∈ N,∀t ∈ T (1.9)

z0t ≤ m,∀t ∈ T (1.10)

wit − wjt ≥ qit − M̄it(1− xijt),∀(i, j) ∈ A,∀t ∈ T (1.11)

0 ≤ wit ≤ Qzit,∀i ∈ Nc,∀t ∈ T (1.12)

pt, Iit, qit ≥ 0,∀i ∈ N,∀t ∈ T (1.13)

yt, xijt ∈ {0, 1},∀i, j ∈ N,∀t ∈ T (1.14)

zit ∈ {0, 1},∀i ∈ Nc,∀t ∈ T (1.15)

z0t ∈ Z+,∀t ∈ T (1.16)

The objective function (1.1) minimises the total cost of production, setup, inventory
and travelling cost. Constraints (1.2) and (1.3) balance inventory levels in the depot and
customers, respectively. Constraints (1.4) force the setup and the capacity limitation of
production level. Inventory levels are assured by constraints (1.5) and (1.6). Respecting
the ML Policy, the number of delivered products is limited by constraints (1.7). Con-
straints (1.8) state that a node has to be visited once it is travelled. Constraints (1.9)
keep the flow entering and leaving a node. Constraints (1.10) ensure the number of vehi-
cles used cannot exceed the number of vehicles available. Constraints (1.11) are subtour
elimination constraints based on Desrochers and Laporte (1991). Although these con-
traints provide weak lower bound, they are easily adapted to new problem. Constraints
(1.12) impose the capacity of vehicle after visiting a node.

Formulation of PDP Boudia et al. (2007)

This formulation differs from the previous one due to the vehicle index.
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min
∑
t∈T

(upt + fyt +
∑
i∈N

hiIit +
∑

(i,j)∈A

cij
∑
k∈K

xijkt) (1.17)

Subject to:

I0,t−1 + pt =
∑
i∈N

∑
k∈K

qikt + I0t, ∀t ∈ T (1.18)

Ii,t−1 +
∑
k∈K

qikt = dit + Iit,∀i ∈ Nc,∀t ∈ T (1.19)

pt ≤Mtyt,∀t ∈ T (1.20)

I0t ≤ L0,∀t ∈ T (1.21)

Ii,t−1 +
∑
k∈K

qkit ≤ Li,∀i ∈ Nc,∀t ∈ T (1.22)

qikt ≤ M̄itzikt,∀k ∈ K, ∀i ∈ Nc, ∀t ∈ T (1.23)

∑
k∈K

zikt ≤ 1,∀i ∈ Nc,∀t ∈ T (1.24)∑
j∈N

xjikt +
∑
j∈N

xijkt = 2zikt,∀k ∈ K, ∀i ∈ N,∀t ∈ T (1.25)∑
i∈S

∑
j∈S

xijkt ≤ |S| − 1,∀S ⊂ Nc : |S| ≥ 2,∀k ∈ K, ∀t ∈ T (1.26)∑
i∈Nc

qikt ≤ Qz0kt,∀k ∈ K, ∀t ∈ T (1.27)

pt, Iit, qikt ≥ 0,∀i ∈ N, ∀k ∈ K, ∀t ∈ T (1.28)

yt, zikt, xijkt ∈ {0, 1},∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T (1.29)

The objective function (1.17) and constraints (1.18) - (1.25) are equivalent to (1.1) and
(1.2) - (1.9). Subtour elimination constraints in (1.26) consider the vehicle index k ∈ K.
These constraints provide better lower bounds than contraints (1.11). Constraints (1.27)
are the capacity constraints corresponding to the load of vehicle after visiting a node.

According to Archetti et al. (2011) and Adulyasak et al. (2014b), the following con-
straints are proved being more efficient rather than constraints (1.26):

∑
i∈S

∑
j∈S

xijkt ≤
∑
i∈S

zikt − zekt,∀S ⊂ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T (1.30)
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CHAPTER 1. DECISIONS IN FORWARD AND REVERSE SUPPLY CHAINS

Formulation of PDP Armentano et al. (2011)

This formulation uses vehicle index and deals with multi-products. The objective
function considers also fix vehicle cost. Apart from aforementioned parameters, it also
requires some following parameters:

Parameters :

P set of products : p ∈ {1, 2, · · · |P |}
dpit demand of product p at node i during period t
bp time required to produce one unit of product p
up unitary manufacturing cost of product p
fp setup cost of product p
hpi holding cost of product p at node i
fv fixed cost per used vehicle

C production capacity at the manufacturing plant (in time units)
Lmaxpi inventory capacity for product p at node i
Lminpi minimum inventory level for product p at node i
L maximum length of each route
M large number =

∑
p∈P

∑
i∈N
∑

t∈T dpit

Decision variables :

ppt quantity of p produced at period t
Ipit inventory level of p at node i at the end of period t
qpikt quantity of p delivered to i with vehicle k at period t
wpijkt quantity of p transported from i to j with vehicle k at period t

yipt

{
1 iff a setup is performed for p at period t
0 otherwise.

xijkt

{
1 iff vehicle k travels from i to j at period t
0 otherwise.

min
∑
t∈T

(∑
p∈P

(
upppt + fpypt +

∑
i∈N

hpiIpit
)

+
∑
i∈N

∑
j∈N

∑
k∈K

cijxijkt +
∑
k∈K

∑
j∈N

fvx0jkt

)
(1.31)

Subject to:
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Ip0t = Ip0,t−1 + ppt −
∑
i∈Nc

∑
k∈K

qpikt, ∀p ∈ P, ∀t ∈ T (1.32)

Ipit = Ipi,t−1 +
∑
k∈K

qpikt − dpit,∀p ∈ P, ∀i ∈ Nc (1.33)∑
p∈P

bpppt ≤ C, ∀t ∈ T (1.34)

ppt ≤Mypt,∀p ∈ P, ∀t ∈ T (1.35)∑
i∈N,i6=k

wpijkt −
∑

m∈N,m6=k

wpjmkt = qpikt,∀p ∈ P, ∀j ∈ N,∀k ∈ K, ∀t ∈ T (1.36)∑
i∈N

∑
k∈K

wpi0kt −
∑
m∈N

∑
k∈K

wp0mkt = −
∑
i∈N

∑
k∈K

qpikt, ∀p ∈ P, ∀t ∈ T (1.37)∑
p∈P

wpijkt ≤ Qxijkt,∀i, j ∈ N,∀k ∈ K, ∀t ∈ T (1.38)∑
i∈N

∑
j∈J

cijxijkt ≤ L,∀k ∈ K, ∀t ∈ T (1.39)∑
i∈N

x0jkt ≤ 1,∀k ∈ K, ∀t ∈ T (1.40)∑
i∈N,i 6=k

xijkt −
∑

m∈N,m6=k

xjmkt = 0, ∀j ∈ N,∀k ∈ K, ∀t ∈ T (1.41)∑
i∈N

∑
k∈K

xijkt ≤ 1, ∀j ∈ N,∀t ∈ T (1.42)

Lminpi ≤ Ipit ≤ Lmaxpi ,∀p ∈ P, ∀i ∈ N,∀t ∈ T (1.43)

ppt, Ipit, qpikt, wpijkt ≥ 0,∀p ∈ P, ∀i, j ∈ N,∀k ∈ K, ∀t ∈ T (1.44)

ypt, xijkt ∈ {0, 1},∀p ∈ P, ∀i, j ∈ N,∀k ∈ K, ∀t ∈ T (1.45)

The objective function (1.31) minimises the total cost of production, setup, inven-
tory, fix vehicle and mileage. Constraints (1.32) and (1.33) balance the inventory level at
depot and customers, respectively. The production capacity for each product is assured
in constraints (1.34). Constraints (1.35) force that setup iff production is conducted.
Constraints (1.36) and (1.37) conserve the production flow at customers and depot, re-
spectively. Constraints (1.38) and (1.39) express the maximum capacity and the maxi-
mum length of vehicle, respectively. Constraints (1.42) ensure that each vehicle passes
only single route. The flow conservation is guaranteed by constraints (1.41). Constraints
(1.42) state that each node is visited at most once by at most one vehicle. The bound
of inventory is declared by constraints (1.43). Constraints (1.44) define the lower bound
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and the integrality of production, inventory, delivery and transport. Constraints (1.45)
declare the nature of binary variables.

Formulation of Stochastic PDP Adulyasak et al. (2015a)

This formulation assumes that the demands follow some known probability distribu-
tions. Note that this formulation is equivalent with those in Adulyasak et al. (2014b);
Archetti et al. (2011) except the decision variables related to production are associated
with the scenario index. Also, this work proposes two-stage and multi-stage stochastic
formulations.

Parameters :
Ω finite set of scenario: ω = {1, 2, · · · , |Ω|}
ρω probability of scenario ω
N set of nodes
Nc set of customers
E(S) set of edges (i, j) ∈ E
S given set of nodes, S ⊂ N
δ(S) set of edges incident of a node set S
T set of time periods: t = {1, · · · , T}
ditω demand of customer i in period t under scenario ω
σ unit penalty cost of customer i if some demand is unmet at the end of period

Li inventory level of node i

Mtω min{C,
∑l

j=t

∑
i∈Nc}

M ′
itω min{Li, Q,

∑l
j=t dijω}

Decision variables :

yt

{
1 iff production takes place in period t
0 otherwise.

zikt

{
1 iff node i is visited by vehicle k in period t
0 otherwise.

xijkt number of times vehicle k travels directly between node i and node j in period t
yit vehicle load after visiting i at period t
ptω production quantity in period t under scenario ω ∈ Ω
Itω inventory at node i at the end of period t under scenario ω
qiktω quantity delivered to customer i with vehicle k in period t under scenario ω
eitω unmet demand at customer i in period t associated with scenario ω.

First, we presents the formulation of 2-Stage SPDP as follows:

min
∑
t∈T

(fyi +
∑

(i,j)∈E

∑
k∈K

cijxijkt +
∑
ω∈Ω

ρω(uptω +
∑
i∈N

hiIitω +
∑
i∈Nc

σieitω)) (1.46)
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Subject to:

I0,t−1,ω + ptω =
∑
i∈Nc

∑
k∈K

qiktω + I0tω,∀t ∈ T,∀ω ∈ Ω (1.47)

Ii,t−1,ω +
∑
k∈K

qiktω + eitω = ditω + Iitω,∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (1.48)

I0tω ≤ L0,∀t ∈ T,∀ω ∈ Ω (1.49)

Iitω + ditω ≤ Li,∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (1.50)

ptω ≤Mtωyt, ∀t ∈ T,∀ω ∈ Ω (1.51)∑
i∈Nc

qiktω ≤ Qz0kt,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (1.52)

qiktω ≤M ′
itωzikt, ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (1.53)∑

k∈K

zikt ≤ 1,∀i ∈ Nc,∀t ∈ T (1.54)∑
(jj′)∈δ(i)

xjj′kt = 2zikt;∀i ∈ N,∀k ∈ K, ∀t ∈ T (1.55)

∑
(i,j)∈E(S)

xijkt ≤
∑
i∈S

zikt − zekt,∀S ⊂ Nc : |S| ≥ 2,∀e ∈ S,∀k ∈ K, ∀t ∈ T (1.56)

eitω, ptω, Iitω, qiktω ≥ 0, ∀i ∈ N,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (1.57)

yt, zikt ∈ {0, 1},∀i ∈ N,∀k ∈ K, ∀t ∈ T (1.58)

xijkt ∈ {0, 1},∀(i, j) ∈ E : i 6= 0,∀k ∈ K, ∀t ∈ T (1.59)

xojkt ∈ {0, 1, 2},∀j ∈ Nc,∀k ∈ K, ∀t ∈ T (1.60)

The following valid inequalities are used to strengthen the model:

zikt ≤ z0kt,∀i ∈ Nc,∀k ∈ K, ∀t ∈ T (1.61)

xijkt ≤ zikt and xijkt ≤ zjkt, ∀(i, j) ∈ E(Nc),∀k ∈ K, ∀t ∈ T (1.62)

z0kt ≥ z0,k+1,t,∀1 ≤ k ≤ m− 1,∀t ∈ T (1.63)
j∑
i=1

2(j−i)zikt ≥
j∑
i=1

2(j−i)zi,k+1,t, ∀j ∈ Nc, ∀1 ≤ k ≤ m− 1,∀t ∈ T (1.64)

The following non-anticipativity constraints are used for formalising multi-stage
stochastic formulation:
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ptω = p′t,H′ω,∀t ∈ T,∀ω ∈ Ω (1.65)

Iitω = I ′it,H′ω,∀i ∈ N,∀t ∈ T,∀ω ∈ Ω (1.66)

eitω = e′it,H′ω,∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (1.67)

qiktω = q′ikt,H′ω,∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (1.68)

Constraints (1.65 - 1.68) ensure the consistency of the decisions throughout the sce-
nario tree.

Another recent formulation considering time windows and carbon emission is devel-
oped in Kumar et al. (2015). Extensive reviews on PDP are presented in Adulyasak et al.
(2015b) and Dı́az-Madroñero et al. (2015).

PDP is a challenging problem because it integrates two well-known and hard combi-
natorial problems: lot sizing and vehicle routing (Absi et al., 2014). Therefore, it requires
efficient solving methods to provide solutions.

1.5 Research Gaps

Based on the works on network design (subsection 1.2.1), routing (subsection 1.2.2,
disassembly process (section 1.3), few researches have investigated the integrated decisions
in RSC. In particular, no research focuses on PDP-liked problem for RSC as in Section 1.4.
To fulfil this gap, this dissertation has been conducted to contribute on the integration
of decisions in collection and disassembly processes in RSC as depicted in Figure 4.

Based on practical and scientific points of view, this dissertation mainly contributes to
support the implementation of the circular economy since it allows the decision makers
to optimise their RSC. It also contributes to fulfil the gaps in the domain of decision
integration in RSC. This dissertation also extends the existing researches in PDP into
the context of RSC.

To achieve these contributions, an integer linear programming formulation of inte-
grated decisions concerning both collection of single type EOL product and its disas-
sembly process with single capacitated vehicle is provided in Chapter 2. The advantage
of such an integration is pointed out through the comparison with the non-integrated
optimisation of both processes under deterministic condition. To deal with large size
instances of the problem that the commercial solver is commonly unable to provide the
optimal solutions, some approximate methods are developed and provided in Chapter 3.
A formulation based on stochastic integer linear programming as well as some solution
methods are presented in Chapter 4 as a further effort to extend the formulation presented
in Chapter 2 in order to propose better applicability. This stochastic formulation deals
with the uncertainty corresponding to the quantity and the quality of single type EOL
products, the demand of its components and multi-vehicle. Following the two formula-
tions, another formulation dealing with collection routing and disassembly line balancing
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Figure 4 – Network Representations of Our Problem

problems is proposed in Chapter 5. The general conclusions of this dissertation and some
prospects of future work are presented in Chapter 6.
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Chapter 2

Collection-Disassembly Problem
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2.1 Introduction

This chapter introduces the Collection-Disassembly Problem. This problem is to
integrate the decisions concerning the collection of End-of-Life (EOL) products and their
disassembly process. A formulation based on integer linear programming is proposed.
Another formulation treating both processes separately is also introduced. Since there is
no instance benchmark for this problem, few data sets are generated to test the problem.
A comparison between this integrated problem and those separately optimised is provided
to show the value of the integrated model.

2.2 Problem Description

The Collection-Disassembly Problem (CDP) is a version of Production-Distribution
Problem (PDP) in reverse supply chain context. It integrates decisions on collection
vehicle routing and disassembly lot-sizing. In this chapter, CDP under deterministic

23



2.2. PROBLEM DESCRIPTION

condition is provided. Since CDP is based on an integrated approach, a non-integrated
approach regarding the decisions concerned in CDP is also provided to prove the benefit
of such integration.

This chapter provides case I as depicted in Figure 4 (in Chapter 1) and case II as non-
integrated approach of collection routing and disassembly lot-sizing focusing on EOL
product.

Suppose that a single disassembly site is responsible for gathering a single type of
EOL product available at dispersed collection centres. A capacitated vehicle is available
for gathering the products. Once a collection centre visited, all items are picked up by
the vehicle.

It is assumed that the nomenclature is known. Each item has several components
a ∈ A where each component has a quantity na. The collected items will be disassembled
on the disassembly site in order to release the components requested for satisfying the
demands. The disassembly site has a fixed capacity DisCap corresponding to the cycle
time of the disassembly line. The items are disassembled in order to satisfy a given
demands of component. The unmet demand of components results a penalty cost for
each unit CPa. The problem is multi-period since it concerns with inventory having
capacity InvCap. There is no salvage value or disposal cost for any leftover components.
The parameters and the decision variables are provided as follows:

Parameters :
A set of components: a ∈ {1, 2, · · · , |A|}
N set of nodes: i, j ∈ {1, 2, · · · , |N |}
Nc set of collection centres: i, j ∈ {2, · · · , |N |}
T planning horizon: t ∈ {1, 2, · · · , |T |}
na quantity of component a in product
Sit quantity of items available at collection centre i at period t
qat demand of component a at period t
Q vehicle capacity

InvCap inventory capacity
DisCap disassembly capacity

CF fixed vehicle dispatch cost
cij mileage cost from node i to j
CD unit disassembly cost
CH unit holding cost
CPa unit penalty cost of component a.

Decision variables :
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xijt

{
1 if j is visited right after i at period t
0 otherwise.

yit vehicle load after visiting i at period t
It inventory level at period t
Pt quantity disassembled at period t
SOat unmet demand of component a at period t.

2.3 Formulations

2.3.1 Case I (with integration)

The following formulation refers to CDP. It deals with the decisions on routing, in-
ventory and disassembly.

Integer Linear Programming (ILP) model

Min
∑
t∈T

(
∑
j∈Nc

CF · x1jt +
∑
i∈N

∑
j∈N

cij · xijt + CH · It + CD · Pt +
∑
a∈A

CPa · SOat) (2.1)

Subject to:

∑
j∈N,i6=j

xijt ≤ 1 ∀i ∈ Nc,∀t ∈ T (2.2)∑
i∈N,i6=v

xivt =
∑

j∈N,j 6=v

xvjt ∀v ∈ N, ∀t ∈ T (2.3)

yit + (Q− Sit) · x1it ≤ Q ∀i ∈ Nc,∀t ∈ T (2.4)

yit − yjt +Q · xijt + (Q− Sjt − Sit) · xjit ≤ Q− Sjt i 6= j,∀i, j ∈ Nc,∀t ∈ T (2.5)

It = It−1 +
∑
i∈N

∑
j∈N,i6=j

Sit · xijt − Pt ∀t ∈ T ; (2.6)

na · Pt + SOat ≥ qat ∀a ∈ A,∀t ∈ T (2.7)∑
j∈N,i6=j

Sit · xijt ≤ yit ≤
∑

j∈N,i6=j

Q · xijt ∀i ∈ N, ∀t ∈ T (2.8)

It ≤ InvCap ∀t ∈ T (2.9)

Pt ≤ DisCap ∀t ∈ T (2.10)

xijt ∈ {0, 1} ∀i, j ∈ N,∀t ∈ T (2.11)

SOat, yit, It, Pt ∈ Z+ ∀a ∈ A,∀i ∈ N, ∀t ∈ T. (2.12)

The objective function (2.1) minimises the total cost summing the costs of collection
routing, holding, disassembly and penalty. The collection routing consists of the dispatch
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and mileage costs. The holding cost concerns about the quantity of products stored at
inventory. The disassembly cost depends on the number of products disassembled. The
penalty cost corresponds to the unmet component demands.

Constraints (2.2) state that each collection centre is visited at most once during a
period. The idea of these constrained is taken from PDP formulations presented in
Subsection 1.4.1. The flow balance of each collection centre is assured by constraints (2.3).
Constraints (2.4) determine the load of vehicle for the first node visited. The subtour
elimination (2.5) are based on lifting method proposed in Desrochers and Laporte (1991).
These constraints are also adapted in PDP formulations of Bard and Nananukul (2009,
2010) in constraints (1.11). Constraints (2.6) are the inventory balance of disassembly
site for all periods. Constraints (2.7) impose the demand fulfilment. Constraints (2.8
- 2.10) limit the decisions of vehicle load (adapted from constraints (1.12)), inventory
and disassembly, respectively. Constraints (2.11) and (2.12) define the nature of decision
variables.

As shown by its constraints, CDP also integrates two well-known and hard combina-
torial problem: VRP and lot-sizing.

Constraints (2.2 - 2.5), (2.8) and (2.11) correspond to the collection of EOL products.
Constraints (2.6) link between the collection and the disassembly process. Constraints
(2.6), (2.10) and (2.12) correspond to the disassembly process. In the next part, each
constraints are reassembled to the process they belong to.

2.3.2 Case II (without integration)

The formulations presented in this chapter is based on an approach assuming that
the decisions on collection and disassembly are optimised independently. The problem
is deployed into two subproblems: (i) disassembly lot-sizing and (ii) collection routing.
As depicted in Figure 5, the disassembly lot-sizing problem concerns with the decisions
on the quantity of EOL products disassembled for satisfying the component demands for
all periods. The disassembly lot-sizing problem does not consider the available quantity
of EOL products in collection centres. Based on this decision, the collection routing
attempts to fulfil by gathering the products available at collection centres. The penalty
cost is occurred when the demands of component are unmet. The variable Collectiont is
introduced to denote the quantity of products intended.

Figure 5 – Relation of Disassembly Lot-Sizing and Collection Routing
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ILP of disassembly lot-sizing

Min
∑
t∈T

{CD · Pt + CH · It +
∑
a∈A

CPa · SOat} (2.13)

Subject to:
It = It−1 + Collectiont − Pt,∀t ∈ T (2.14)

Constraints (2.7), (2.9), (2.10) and (2.12)

Collectiont ∈ Z+,∀t ∈ T (2.15)

The objective function (2.13) minimizes the total cost of disassembly, inventory and
penalty. The penalty cost incurs when the capacity of disassembly site is unable to
meet the demands of component. Constraints (2.14) balance the number of products in
inventory for all periods. Constraints (2.15) are the nature of variable Collectiont.

Using the value of Collectiont obtained from the previous problem, the collection
routing is dedicated to yield the route of vehicle as follows:

ILP model of collection routing

Min
∑
t∈T

{
∑
i∈N

∑
j∈N

Cij · xijt +
∑
j∈Nc

CF · x1jt +
∑
a∈A

CPa · SOat} (2.16)

Subject to:

Collectiont ≥
∑
j∈N

∑
i∈N,i6=j

Sit · xijt,∀t ∈ T (2.17)

na ·
∑

i∈N,i6=j

Sit · xijt + SOat ≥ qat,∀a ∈ A, ∀t ∈ T (2.18)

Constraints (2.2) - (2.5), (2.8) and (2.11)

The objective function (2.16) minimises the dispatch and mileage costs corresponding
to the vehicles used as well as the penalty cost emerged by the unmet component demands.
Note that the penalty cost occurs when the quantity of products intended Collectiont
is unmet. Constraints (2.17) assure that the number of products collected is lower than
Collectiont for preventing any excessive mileage cost. Constraints (2.18) impose the
satisfaction of component demands.
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2.4 Instance Generation

Due to lack of benchmark instances available for CDP, the instances were generated
in following fashion. The data sets diagram is given in Figure 6. The data set I varies
the location of collection centres, the set of components A, the set of nodes N , the set
of periods T , the demand of component qat and the disassembly capacity DisCap. The
data set II focuses on the quantity of EOL products available at collection centres Sit,
the vehicle capacity Q and the starting inventory level I0. The data set III is used to
evaluate the impact of the different costs between disassembly process and collection
routing involving the unit disassembly cost CD, the unit holding cost CH, the unit
penalty cost of component CPa, the fixed vehicle dispatch cost CF and the travelling
cost cij.

Figure 6 – Data Sets

In data set I, the collection centres’ location is generated into either at random or
by cluster. In the random category, the location is generated uniformly with U(0 : 100)
corresponding to ordinates and axis. In the cluster category, their location is uniformly
generated as shown in Table 2.1. Both categories are generated twice. Initially, the
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set of nodes N is generated as 25 including the depot (the disassembly site). After, we
generated instances with 10 nodes using the characteristics of instances with 25. Finally,
we generated instances with 5 nodes based on the characteristics of instances with 10
instances. This manner is adapted from Boudia et al. (2006). The set of components A is
set to 5 and 10. The set of periods T is fixed to 5, 10 and 25. The demand of component

qat is generated with U(40%; 60%) ·S and U(90%; 110%) ·S where S =
∑
i∈Nc

∑
t∈T Sit

Nc·T . The

disassembly site capacity DisCap is relative to
∑
a∈A

∑
t∈T qat

T
by 85%, 118%, 200% and

infinite in which we call them as under constrained, very constrained, constrained and
infinite, respectively. The other values are shown in Table 2.2.

In data set II, the quantity of EOL products Sit is generated as U(9 : 11) and

U(40 : 60). The vehicle capacity Q is generated with 2,3 and 4 times
∑
i∈Nc

∑
t∈T Sit

T
.

The remaining parameters are provided in Table 2.3
In data set III, the value of the fixed cost of vehicle CF is 5, 10 and 25. The value of

the unit disassembly cost CD is 50%, 100% and 200% times CF . The value of holding
cost CH is fixed to 10% · CD. The remaining parameters are shown in Table 2.4.

Table 2.1 – Location of Collection Centres in
Cluster Category

Collection Centres
Distribution Parameters
Ordinate Axis

2nd-7th U(0 : 25) U(0 : 25)
8th-14th U(75 : 100) U(30 : 50)
15th-19th U(75 : 100) U(75 : 100)
20th-25th U(0 : 25) U(75 : 100)

U(a : b) indicates that the corresponding parameter was generated fol-
lowing uniform distribution with parameter a and b.

2.5 Numerical Analysis

The formulations were implemented in java JDK 7 using ILOG CPLEX 12.6 on a
PC with processor Intel R©CoreTMi7 CPU 2.9 GHz and 4 GB of RAM under Windows
7 Professional. The first, second and third data sets contain 488, 18 and 9 instance,
respectively. The first data set contains 4 sub-data sets (122 instances per each sub-data
set) and were executed within 10 minutes. The second and third data sets containing 18
and 9 instances, respectively, were executed under 100 minutes of execution.

Our findings based on the comparison between the integrated formulation (case I) and
the independently solved problems (case II) are presented. The analysis on managerial
factor of each interpretation is also available. TC, TDC, TCC and TPC correspond
to the average difference of total cost, of total disassembly cost, of total collection cost
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Table 2.2 – Parameters of
Data Set I

Parameters Value

Sit, ∀i ∈ Nc, ∀t ∈ T U(9:11)
Q 2 · S
I0 0
InvCap ∞
CD 10
CH 1
CPa,∀a ∈ A 4
CF 10
U(a : b) indicates that the corresponding pa-

rameter was generated following uniform distri-
bution with parameter a and b.
S is the average of supply of EOL products for

all collection centres and all periods.

Table 2.3 – Parameters of Data Set II

Parameters Value

A 5
N 10
T 10
qat, ∀a ∈ A,∀t ∈ T U(90% : 110%) · S
I0 2 · q
DisCap ∞
CD 10
CH 1
CPa, ∀a ∈ A 4
CF 10
Collection Centres Location Random
U(a : b) indicates that the corresponding parameter was generated following

uniform distribution with parameter a and b.
S is the average of supply of EOL products for all collection centres and all

periods
q is the average of demand of component of EOL products for all component

centres and all periods.

and of total penalty cost, respectively, between case I and II. For clarity, the following
equation computes TC value with corresponding parameters:

TC =
average total costcase II − average total costcase I

average total costcase II

The other average cost differences (TDC, TCC and TPC) are calculated using similar
formulas based on related costs.
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Table 2.4 – Parameters of Data Set III

Parameters Value

A 5
N 10
T 10
Sit,∀i ∈ Nc,∀t ∈ T U(9 : 11)
qat U(40% : 60%) · S
InvCap ∞
DisCap ∞
I0 0
SOat 4
Collection Centres Location Random
U(a : b) indicates that the corresponding parameter was generated follow-

ing uniform distribution with parameter a and b.
S is the average of supply of EOL products for all collection centres and

all periods.

Data Set I According to Figure 7, the value of TC is always non zero indicating that
lower cost is always obtained for case I. In other words, the integrated approach permits
RSC to have better performance. Whilst the values of TDC are nearly zero showing that
the number of products disassembled is almost similar between the two cases.

While TCC alternates on the axis line, TPC is near 1. It indicates that the elevation
of collection cost affects the decrease on unmet demand. Henceforth, the satisfaction
of customers will be elevated along with the reduction of penalty cost as long as the
travelling cost is relatively cheaper.

Concerning to the collection process, we note that for higher values of number of nodes
N , number of periods T and number of components A, TCC is increased as depicted in
Figure 7(b), Figure 7(c) and Figure 7(d), respectively. It is natural since their elevation
requests a higher number of products to be collected for avoiding higher penalty cost.
Correspondingly, the value of component demand qat alternates TCC proportionally. In
other words, the increase of demand naturally requires a higher number of products to
be collected incurring higher collection cost.

Disassembly capacity DisCap has no significant influence except for instances with
under constrained disassembly capacity DisCap (the instances having disassembly ca-
pacity lower than the average demand of component). It can be concluded that DisCap
is not a sensitive parameter for influencing the result as long as its number is higher than
qat. Consequently, setting up disassembly system with slightly higher time cycle leads
to more efficient TCC since the collection process permits optimising more products
gathered.

Regarding the CPU times (in seconds) as shown in Figure 8, it is directly proportional
to either N or T and inversely proportional to A and qat. DisCap has a particular effect
since constrained instances require more CPU time due to the trade off between penalty
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(a) Parameter Location (b) Parameter N

(c) Parameter T (d) Parameter A

(e) Parameter qat (f) Parameter DisCap.

Figure 7 – Results of Data Set I

cost and collection cost.

Data Set II Corresponding to Figure 9(a) and Figure 9(b), parameter supply Sit affects
the costs slightly rather than vehicle capacity Q. Meanwhile parameter inventory level at
period zero I0 shows that providing higher inventory leads to the decrease of TPC since
the demand will be more satisfied. Consequently, it raises the efficiency on TC. Thus,
the inventory of components required at period zero reduces the total cost.

According to Figure 10, the associated CPU time is proportional to Sit and I0. Since
Sit is high, it naturally results to less collection centres visited. As a consequence, it
reduces the CPU time.

Data Set III Observing Figure 11(a), the value of unit disassembly cost CD is pro-
portional to all costs except TPC. When CD = 50%.CF as fixed vehicle dispatch cost,
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(a) Parameter Location (b) Parameter N

(c) Parameter T (d) Parameter A

(e) Parameter qat (f) Parameter DisCap.

Figure 8 – CPU Times of Data Set I (in seconds)

TPC is zero showing that no difference between case I and II. Whilst, TDC is lower
indicating that the disassembly process deals with less products.

Looking on Figure 11(b), a particular behaviour is revealed when CF = 25 since both
the values of TDC and TCC are zero. In this case, CF is six times of unit penalty cost
CPa. It marks clearly that paying penalty cost allows to avoid expensive collection cost.
In application, CF covers costs e.g. cost of maintenance, assurance, driver salary. Thus,
the ratio between fixed vehicle has to be considered compared to the unit penalty cost.

Figure 12 shows that the CPU time declines along with the increase of CD and CF .
Since CD reflects an expensive unit disassembly cost, the collection process gathers less
products. To this point, it reduces the permutation of routing vehicle yielding lower CPU
time. Whilst expensive fixed vehicle cost is reflected by CF . It yields less vehicles used
resulting less CPU time as well.
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(a) Parameter Sit (b) Parameter Q

(c) Parameter I0

Figure 9 – Results of Data Set II

2.6 Conclusions

In this chapter, a new problem, called Collection-Disassembly Problem, incorporating
collection of EOL products and their disassembly process is introduced. It is an integra-
tion of vehicle routing and lot-sizing problems in reverse supply chain. Particularly, this
chapter points out the advantage of integration of the two problems by comparing it with
the two problems being optimised independently.

Since there is no benchmark toward this problem, three data sets were generated. All
parameters associated with the data sets have been investigated by changing their values.
Accordingly, some parameters have significant impact on average total cost TC and CPU
time. They are set of nodes N , planning horizon T , set of component A, demand of
component qat, unit disassembly cost CD, inventory level at period zero I0 and unit fixed
vehicle cost CF . The disassembly capacity DisCap and fixed vehicle cost CF alter on
CPU time in some instances.

As mentioned, all instances were executed in very limited CPU times. However, some
were not solved optimally. Consequently, the instances of Data Set I were executed by
CPLEX without any limit of CPU times. We found that the solver CPLEX is unable
to obtain the optimal solutions for large size instances (those having size larger than 5
nodes, 25 periods and 5 components) under acceptable CPU times (less than 2 hours).
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(a) Parameter Sit (b) Parameter Q

(c) Parameter I0

Figure 10 – CPU Times of Data Set II (in seconds)

(a) Parameter CD (b) Parameter CF

Figure 11 – Results of Data Set III

We also found that this setting also induced memory issue. Therefore, some approximate
methods are proposed in the next chapter.

2.7 Publications

The results in this chapter are presented in the following articles:
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(a) Parameter CD (b) Parameter CF

Figure 12 – CPU Times of Data Set III (in seconds)
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Approximate Methods for
Collection-Disassembly Problem
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3.1 Introduction

In Chapter 2, it was mentioned that the commercial solver CPLEX was unable to
provide optimal solutions for large size instances of CDP under acceptable CPU times
(less than 2 hours). Hence, some approximate methods are required to provide (near)
optimal solutions within shorter CPU times.

3.2 Approximate Methods

A number of methods has been recently developed for PDP. Their efficiency are eval-
uated on available data sets provided in Archetti et al. (2011), Boudia et al. (2007)
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and Boudia and Prins (2009). Some methods were developed such as exact meth-
ods (Amorim et al., 2013), Branch & Price (Bard and Nananukul, 2010), Branch &
Cut (Adulyasak et al., 2014b; Archetti et al., 2011), Mathematical Programming-based
Heuristics (Archetti et al., 2011), Lagrangian Relaxation (Fumero and Vercellis, 1999;
Solyalı et al., 2009), Decomposition Heuristics (Bertazzi et al., 2005; Çetinkaya et al.,
2009; Chandra and Fisher, 1994; Chen et al., 2009) and L-Shaped (Benders) Decomposi-
tion (Adulyasak et al., 2015a). Some metaheuristics and heuristics were also developed
such as Tabu Search (Shiguemoto and Armentano, 2010), Genetic Algorithm (Buer et al.,
1999), Greedy Randomized Adaptive Search Procedure (Boudia et al., 2007), Memetic
Algorithm (Boudia and Prins, 2009), Ant Colony Optimization (Calvete et al., 2011),
Adaptive Large Neighbourhood Search (Adulyasak et al., 2014a), Two-Phase Iterative
Heuristics (Absi et al., 2014) and Self-Learning Particle Swarm Optimisation (Kumar
et al., 2015).

Based on a comparison provided in Absi et al. (2014), Two-Phase Iterative Heuristics
provides the best solutions for all available instances. There are two different heuristics
proposed in Absi et al. (2014): Iterative Method-Multi Travelling Salesman Problem (IM-
MultiTSP) and Iterative Method-Vehicle Routing Problem (IM-VRP). Due to its flexibil-
ity, IM-MultiTSP is adapted to deal with CDP in this chapter. Some other approximate
methods are also proposed here such as:

• Local Search-based Heuristic,

• Particle Swarm Optimisation,

• Imperialist Competitive Algorithm.

Furthermore, an enhanced version of Two-Phase Iterative Heuristic are proposed.
Also, an enhanced version of Particle Swarm Optimisation is proposed to provide better
solutions.

Particle Swarm Optimisation and Imperialist Competitive Algorithm were carried out
during our exchange programme at the Department of Industrial and Systems Engineering
of Indian Institute of Technology, Kharagpur, India.

3.2.1 Two-Phase Iterative Heuristic

As described in Chapter 1, PDP is an integrated problem of vehicle routing and lot-
sizing. This problem is formalised into mixed integer programming in which the decisions
consist of:

1. when and how much products to produce (continuous products),

2. when to visit,

3. how much to deliver to retailers,

4. routing for each vehicle,
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5. inventory level of each retailer.

The Two-Phase Iterative Heuristic is originally proposed in Absi et al. (2014) for
dealing with PDP with multi-vehicle and single type continuous product. The idea is to
decompose the problem into smaller problems and solved them iteratively. The PDP is
decomposed into so called lot-sizing problem with approximate visiting costs and routing
problem. Since we adapt IM-MultiTSP of this method, the routing problem corresponds
to travelling salesman problem.

The lot-sizing problem with approximate visiting costs, also called as the first phase,
is to deal with the first three decisions. Consequently, this phase provides the set of
retailers served in each period.

Accordingly, the second phase aims to determine the vehicle route for each period. In
the case of single vehicle, the second phase is a pure travelling salesman problem (TSP)
since the vehicle capacity is already taken into account in the first phase.

The approximate visiting cost of a retailer is initialised by multiplying the go-return
running costs and the distance between the retailer and the production facility. For the
retailer visited, the savings heuristic is used to update their corresponding approximate
visiting cost for all periods.

A diversification mechanism of the approximate visiting costs are required to permit
the method exploring the unvisited solution space. It is simply done by multiplying the
current value of the costs by the number of retailers visited throughout the planning
horizon plus one. One is to avoid zero multiplication when no retailer is visited. The
method is provided in Algorithm 1. As aforementioned, this method is also adapted from
IM-MultiTSP.

Algorithm 1: Two-Phase Iterative Heuristic (IM-MultiTSP) for PDP

solution ← ∅
Initialise approximate visiting costs for all retailers and vehicles
while a stopping criterion is not met do

while a stopping criterion is not met do
Solve lot-sizing problem with approximate visiting costs and get the set of
retailers served

Construct the route of each vehicle to visit the served retailers
Update solution (if necessary) and approximate visiting costs

end
Diversify approximate visiting costs

end

Two-Phase Iterative Heuristic for CDP

In this part, the adaptation of IM-MultiTSP into CDP is provided. The first phase
consists of a lot-sizing problem considering the number of components in each product
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Figure 13 – Disassembly Lot-Sizing Problem with Approximate Visiting Costs

as well as the availability of EOL products in each collection centre at each period.
This problem is called as Disassembly Lot-Sizing Problem with Approximate Visiting
Costs (DLSPAVC) as depicted in Figure 13. This phase determines when and how many
products to disassemble Pt, how many products to stock in the warehouse It, how many
penalty to occur for each component SOat and when to collect EOL products by visiting
collection centres. The approximate visiting cost SCit are also considered. The second
phase constructs the route of vehicle used in each period. This phase is also TSP because
we take into account one vehicle only.

As illustrated in Algorithm 2, the first phase solves the lot-sizing problem containing
the quantity of EOL products disassembled Pt, the inventory level of EOL products at
disassembly site It, the penalty unit of unmet demand SOat and when to collect EOL
products by visiting collection centres. Regarding the decision of EOL products collection,
we introduce a binary variable γit and a non-negative variable rit , ∀i ∈ Nc, ∀t ∈ T ,
denoting whether a collection centre i is visited at period t and number of EOL products
collected from collection centre i at period t, respectively. A vector consisting of these
variables is denoted as solution.

Instead of using mileage cost cij and fixed vehicle dispatch cost CF , an approximate
visiting cost SCit, ∀i ∈ Nc, ∀t ∈ T is introduced. This cost has a prominent role to
connect between two phases since it contains an information regarding the cost occurred
of visiting a node in a period. This cost is updated at each step of the method. The
problem is formalised as follows:
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Disassembly Lot-Sizing Problem with Approximate Visiting Costs
(DLSPAVC)

Min
∑
t∈T

(CH · It + CD · Pt +
∑
a∈A

CPa · SOat +
∑
i∈Nc

SCit · γit) (3.1)

Subject to:

(2.7), (2.9), (2.10)

It = It−1 +
∑
i∈Nc

rit − Pt ∀t ∈ T ; (3.2)

rit = Sit · γit ∀i ∈ Nc,∀t ∈ T ; (3.3)

∑
i∈Nc

rit ≤ min

{
Q;maxa

{ T∑
t′=t

qat′

na

}}
∀t ∈ T ; (3.4)

γit ∈ {0, 1} ∀i ∈ Nc,∀t ∈ T ; (3.5)

SOat, It, Pt, rit ∈ Z≥0 ∀a ∈ A,∀i ∈ Nc,∀t ∈ T ; (3.6)

The objective function (3.1) minimises the total cost consisting holding cost, disas-
sembly cost, penalty cost and visiting cost. As previously, constraints (2.7) impose the
satisfaction of component demands. The capacity limitation regarding the inventory and
disassembly is denoted by constraint (2.9) and (2.10). Constraints (3.2) balance the in-
ventory between periods using variable rit. Constraints (3.3) enforce that if node i is
visited, the value of rit is equal to the number of EOL products available at collection
centre i. Constraints (3.4) state that the sum of rit at period t is limited by the mini-
mum value between the capacity of vehicle and the biggest remaining demands among
components. These constraints are adapted from constraints (1.4), (1.23) and (1.51) in
Subsection 1.4.1. Constraints (3.5) and (3.6) imposes the nature of the decision variables.

Initially, the value of SCit is fixed using c0i + ci0 to enforce the first phase to serve
nearby collection centres to the disassembly site since it imposes low transportation cost.
Accordingly, the first phase is solved and we get the value of decision variables consisting
Pt, It, SOat, γit and rit denoted as solution in Algorithm 2. Using the value of γit, the
set of collection centres visited in each period is obtained. Thus, the routing problem is
solved using the Lin-Kernighan Heuristic (LKH) proposed in Lin and Kernighan (1973).
After the route in each period constructed, the value of SCit is updated, consecutively.

To update SCit, the following procedure is used. Suppose that routet is the route of
period t constructed by solving Routing Problem in the second phase. For t ∈ T and
i ∈ routet, let denote i− and i+ as the predecessor and the successor of node i in routet.
For t ∈ T and i /∈ routet, let ∆it as the cheapest insertion of node i into routet. For each
step, SCit is updated using Algorithm 3.

Mines de St-Étienne 41 M. K. Khakim Habibi



3.2. APPROXIMATE METHODS

Algorithm 2: Two-Phase Iterative Heuristic for CDP
solution ← ∅
Initialise SCit, ∀i ∈ Nc, t ∈ T
while stopping criterion 3 is not met do

while stopping criterion 2 is not met do
while stopping criteria 1 are not met do

• 1stPhase: Solve DLSPAVC and get γit,∀i ∈ Nc, t ∈ T
• 2ndPhase: Solve Routing Problem

• Update sol (if necessary) and SCit

end
Diversify SCit

end
Multi-start procedure: SCit = ρit · (c0i + ci0),∀i ∈ Nc, t ∈ T

end

Algorithm 3: Update of Approximate Visiting Costs SCit
for ∀i ∈ Nc, ∀t ∈ T do

if i ∈ routet then
SCit ← ci−i + cii+ − ci−i+ ;

else
SCit ← ∆it;

end

end
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This method uses two types of diversification mechanism: the multi-start procedure
and the update diversification. The multi-start procedure initialises the value of SCit
through multiplication with a random value, ρit. Its value is drawn between [0.0, 1.5] as
used in Absi et al. (2014). Thus, the approximate visiting cost SCit is set to ρit ·(c0i+ci0).
The update diversification aims to reject a periods having high number of retailers visited.
It helps the method moving to the solution space that is not explored recently. For each
t, the approximate visiting cost SCit is multiplied by the number of retailers served plus
one. One is kept to avoid zero multiplication.

After testing this method to few instances, we found that it converges rapidly but
offers insufficient optimality gaps compared to CPLEX. Hence, some enhancements are
required to improve the performance of this method.

Two-Phase Iterative Heuristic with Enhancements for CDP

Based on our experience, reducing the number of periods served in the first phase
allows to end up with better optimality gaps particularly for the very first iterations.
However, we found that the associated formulation requires longer CPU time. Henceforth,
an adaptive steps is added to Algorithm 2 in order to accommodate these enhancements
as depicted in Algorithm 4.

DLSPAVC II attempts to find a solution reducing the number of periods served in
DLSPAVC. A period is ”served” when a vehicle is dispatched in that period. In this
formulation, a parameter Z is introduced to denote the number of periods served in the
first phase. The value of Z is based on the value of γit obtained by solving DLSPAVC.
Additionally, a binary variable zt is utilised in DLSPAVC II denoting whether period t is
served or not. DLSPAVC II is formalised as follows:

Disassembly Lot-Sizing Problem with Approximate Visiting Cost II
(DLSPAVC II)

Min (3.1)

Subject to:

(2.7), (2.9), (2.10), (3.2)–(3.6)∑
i∈Nc

γit ≤ Nc · zt ∀t ∈ T (3.7)∑
t∈T

zt ≤ Z − 1 (3.8)

zt ∈ {0, 1} ∀t ∈ T (3.9)

The values of SCit in this formulation are identical to those used in DLSPAVC. Con-
straints (3.7) imposes that zt is equal to one if at least one collection centre is visited at
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period t. The value of Z is fixed according to the value of γit obtained from DLSPAVC.
Correspondingly, constraints (3.8) force the number of periods served is lower than the
one obtained in DLSPAVC. Constraint (3.9) denotes the nature of zt.

Algorithm 4: Two-Phase Iterative Heuristic with Enhancements for CDP
solution ← ∅
Initialise SCit, ∀i ∈ Nc, t ∈ T
while stopping criterion 3 is not met do

while stopping criterion 2 is not met do
while stopping criterion 1 is not met do

FIRST STEP

• 1stPhase: Solve DLSPAVC and get γit,∀i ∈ Nc, ∀t ∈ T
• 2ndPhase: Solve Routing Problem

• Update sol (if necessary) and SCit

Generate a random value Rand from 0 to 1
if Rand <= Prob then

SECOND STEP

• 1stPhase: Solve DLSPAVC II and get γit, ∀i ∈ Nc,∀t ∈ T
• 2ndPhase: Solve Routing problem

• Update sol (if necessary) and SCit

else
Prob = Prob/2

end

end
Diversify SCit

end
Multi-start procedure: SCit = ρit · (c0i + ci0), ∀i ∈ Nc, t ∈ T

end

The first phase gives information regarding the set of collection centres to visit in
each period. Thus, the routing problem becomes TSP and solved using LKH (Lin and
Kernighan, 1973).

To prevent the CPU time issue caused by solving DLSPAVC II, a random value Rand
is generated and compared with a predetermined value Prob. Initially, the value of Prob
is set as 1.

The three stopping criteria in Algorithms 2 and 4 are as follows:

• Stopping criteria 1 : standard deviation of the last ten fitness values, maximum
number of iterations and CPU time are less than 5 %, 100 and 7200 seconds,
respectively,
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• Stopping criteria 2 : maximum number of iterations of diversification mechanism
is 5,

• Stopping criteria 3: maximum number of iterations of multi-start procedure is 5.

Following the second step showed in Algorithm 4, our contribution regarding the
Two-Phase Iterative Heuristic (Absi et al., 2014) is three folds: (i) the addition of the
second step into the method and (ii) the use of probability reduction corresponding to
the additional step. The first contribution lies on the reduction of the number of periods
in which the collection process occurs. The additional constraints are to prevent a certain
number of periods of collection based on the first phase. The second contribution is to
reduce the CPU times required by the added step.

3.2.2 Local Search-based Heuristic

This method is essentially to employ local search operators in order to improve the ini-
tial solution. The operators are applied to the routing solution. A random diversification
mechanism is added to help the method to exit from local optima solutions.

Routing Representation

Since our problem differs from classical routing problem in the sense of visiting the set
of nodes partially, a particular solution representation were utilised for the routing and
the decision to visit a node. A variable routet is introduced as a complete route in which
that all nodes are considered at period t. It is started and ended by the depot. Having
the same size as routet, a variable route− bint contains binary numbers representing the
choice of visiting corresponding node. Figure 14 depicts this solution representation.

(a) routet and route− bint (b) real route at period t

Figure 14 – Solution Representation at Period t

Local Search Mechanisms

The local search operators employed are 1-1 Exchange (Figure 15), 2-Opt (Figure 16)
and 1-0 Exchange (Figure 17). Through all iterations, those are applied in both routet
and route− bint with following mechanism:

- Change routet, Keep route− bint
As depicted in Figure 18, this fashion changes routet only by applying all the
operators consecutively.
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- Change route− bint, Keep route:
It applies all operators into route− bint as depicted in Figure 19.

- Keep routet and route− bint, Change their orders:
It attempts to change the order of routet and route− bint simultaneously as shown
in Figure 20.

Figure 15 – 1-1 Exchange Operator

Figure 16 – 2-Opt Operator

Figure 17 – 1-0 Exchange Operator

The color used in Figures 18 - 20 is to ease the reader observing the shift of each
element in routet and route− bint.

Figure 21 provides the random diversification mechanism which simply generates a
random routet and route− bint after using the local search operators.
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(a) routet and route− bint (b) route at period t

Figure 18 – Change routet, Keep route− bint

(a) routet and route− bint (b) route at period t

Figure 19 – Change route-bin, Keep route

(a) routet and route− bint (b) route at period t

Figure 20 – Keep route and route-bin, Change Orders
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(a) routet and route− bint (b) route at period t

Figure 21 – Diversification

Description

As depicted in Algorithm 5, the method starts by initialising the decision variables
(detail in 3.2.2). Based on this initial solution, all proposed local search operators are
applied to improve the solution. We intensify the diversification mechanism after several
iterations by creating large number of diversifications.

The stopping criteria are the maximum number of iterations and the standard devia-
tion of the last 1000 iterations’ fitness values. The fitness value is obtained by summing
the objective value of CDP value as well the penalty incurred by constraint violations.

Algorithm 5: Local Search-based Heuristics
Initialisation
while a stopping criterion of standard deviation is not met do

Change route and keep route− bin
Change route− bin and keep route
Keep both route and route− bin but change the order
Diversification mechanism
if the number of diversification is performed less than a predetermined value then

Intensify the diversification mechanism
end
Update decision variables if necessary

end

Initialisation

This initialisation is described in Algorithm 6. Since our problem concerns only a sin-
gle type of product having several unique components, we can easily found requirementt
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denoting how many products needed at period t as follows:

requirementt = Maxa∈A
qat
na

(3.10)

Subsequently, routet is constructed using nearest-neighbour heuristics. After, route−
bint is generated randomly to determine whether a node is visited or not. Correspond-
ingly, xijt and yit are updated.

Collectiont denotes how many products collected at period t. It is calculated as
follows:

Collectiont =
∑

i,j∈N,i6=j

Sit · xijt (3.11)

Pt, It and SOat are calculated as follows:

Pt = rand ·Min{requirementt;Collectiont + It−1;Q} (3.12)

It = It−1 +
∑
i∈N

∑
j∈N,i6=j

Sit · xijt − Pt (3.13)

SOat = qat − na · Pt ∀a ∈ A (3.14)

rand is a random value between 0 and 1.
All these steps are operated for all periods. Having the values of all decision variables,

the fitness and objective values are consecutively calculated.

Algorithm 6: Initialisation of Local Search-based Heuristic

for ∀t ∈ T do
Calculate requirementt
Construct routet using nearest neighbour heuristics
Determine route− bini randomly
Update xijt and yit
Calculate Collectiont
Update Pt, It and SOat

end
Calculate fitness and objective values

3.2.3 Particle Swarm Optimisation

First introduced in Kennedy (1995), Particle Swarm Optimisation mimics the be-
haviour of social organisms such as bird flock and fish school. It is found that a behaviour
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of an organism within the group is influenced by its own behaviour as well as the group
the organism belongs to.

In PSO, a solution of problem is represented as a multi-dimensional position of parti-
cles. Gathering with the other particles, they forms a swarm and ”collaborate” to find the
best solution. Each particle κ ∈MaxParticle, moves based on its previous position and
its velocity denoted as velocityκ. The velocity is influenced by the cognitive and social
information of the swarm. The cognitive information Pbestκ represents the best solution
of particle κ. The social information, Gbest, is the best solution among all Pbestκ for all
particles.

In this part, we adapt this method into CDP. A particle κ contains the value of all
decision variables: routing decision xκijt, load of vehicle yκit, quantity of EOL products
disassembled Pκt, inventory level of EOL products Iκt and quantity of unmet demand
SOκat. We use the routing solution representation as depicted in Figure 14 by adding the
particle index. Thus, we have routeκt and route− binκt.

Initialisation

The method in Algorithm 7 shows the initialisation step. For each particle κ and
period t, we construct routeκt randomly in which it starts and ends by the depot. Having
the same size, route− binκt is generated randomly using binary value indicating whether
the corresponding node is visited or not. Accordingly, the values of xκijt and yκit can be
calculated. We use the same procedure as described in 3.2.2 where we remove random
value in equation (3.12). This procedure is operated for all t ∈ T and for all κ ∈
MaxParticle.

Algorithm 7: Initialisation of Particle Swarm Optimisation

for ∀κ ∈MaxParticle do
for ∀t ∈ T do

Construct routeκt randomly
Determine route− binκt randomly
Update xκijt and yκit
Calculate requirementκt and Collectionκt
Update Pκt, Iκt and SOκat

end
Update Pbestκ

end
Update Gbest
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Description

The main procedure is provided in Algorithm 8. If the stopping criteria is unmet, the
method continues to iterate. Similar to the prior methods, this method has to stop if the
standard deviation of several last Gbests is less than a pre-determined value.

For each iteration in particle κ at period t, the variable random-numberκit has to
be initiated. It represents decimal values obtained from the division of each element of
routeκt by its cardinality as illustrated in Figure 22.

Figure 22 – Representation of Variable random-numberκt

Subsequently, the variables velocityκit and random-numberκit need to be updated using
equations (3.15) and (3.16). Note that, the symbol ′′ means the previous iteration and ′ is
the current iteration. For initialisation, velocityκit is generated randomly between 0 and
1. The variables c1 and c2 are the acceleration of a particle to move in a single iteration.
The random values rand1 and rand2 are between 0 and 1.

velocity′′κit = w · velocity′κit + c1 · rand1 · (Pbest′κ − random-number′κit)

+ c2 · rand2 · (Gbest− random-number′κit) (3.15)

random-number′′κit = random-number′κit + velocity′′κit (3.16)

The inertia PSO velocity update is used and denoted as w. It is calculated using
equation (3.17). The maximum and minimum inertia are denoted as wmax and wmin.

w = wmax −
wmax − wmin
MaxIter

· t (3.17)

Consecutively, random−numberκit is sorted into ascending order to construct routeκt.
Correspondingly, random− binκt is randomly generated and follows the same procedure
as in Algorithm 7.
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Algorithm 8: Particle Swarm Optimisation

Initialisation;
while a stopping criterion is not met do

for ∀κ ∈MaxParticle do
for ∀t ∈ T do

Generate random− numberκit, ∀i ∈ N
Update velocityκit and random− numberκit,∀i ∈ N
Sort random− numberκit, ∀i ∈ N into ascending order
Construct routeκt
Determine route− binκi randomly
Update xκijt, yκit, Pκt, Iκt and SOκat

end
Update Pbestκ and corresponding decision variables if necessary

end
Update Gbest and corresponding decision variables if necessary

end

If it is necessary, update Pbestκ as the best solution of particle κ until the current
iteration. Gbest is updated if the current iteration provides better solution than the
previous one.

We also use three local search operators depicted in Figures 15, 17 and 16 in order to
enhance the performance of this method. Henceforth, this enhancement is called Particle
Swarm Optimisation with Local Search Enhancement.

3.2.4 Imperialist Competitive Algorithm

Imperialism is an ideology to extend the power and influence of a country towards
the others. Initially, it aims to take control over another country in order to get access
on its resources. Otherwise, it is to prevent the opponent imperialists from taking the
possession.

Imperialist Competitive Algorithm is firstly introduced in Atashpaz-Gargari and Lu-
cas (2007). It mimics some ideas of the imperialism in which each country represents a
solution. Initially, a population having n countries is generated denoted as nPop. The
power of a country is determined by its fitness value compared to the others. As men-
tioned, the fitness value is obtained by summing the objective value of CDP value as well
the penalty incurred by constraint violations. In a minimisation problem, the imperialists
are chosen as the countries having the lowest fitness values denoted as f(imperialist).
After, the other non-imperialist countries (called colonies) are assigned to the imperialists
randomly and their fitness values are denoted as f(colony).

The assimilation process is operated by implementing some improvements to some
chosen colonies. The revolution process begins by comparing the power of each colony
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of an empire towards its imperialist. If the power of the imperialist f(imperialist) is
less than a colony f(colony), the corresponding colony becomes an imperialist. The
total power of an empire denoted as TCn is calculated by summing the countries’ fitness
values assoicated with the empire. The imperialistic competition is carried out by putting
the weakest colony (those with biggest f(colony) in the competing empire) into one of
stronger empires. If there is an empire having no colony, this empire and its imperialist
will be eliminated and assigned as a colony to another empire.

The global war begins by generating another population with n countries. The existing
population is combined with the new one and stored into a temporary archive. After all
countries in this archive sorted based on their power, a new population is created by
conserving only the first n countries. This method is presented in Algorithm 9. The
following parts are the detail implementation of this method into CDP.

Algorithm 9: Imperialist Competitive Algorithm
Initialisation

• Set Parameters

• Produce Initial Countries as popi with size nPop

• Evaluate fitness of each country

• Form the initial empires

while MaxDecades is not met do
Assimilation
Revolution
Imperialistic Competition
Global War

end

Initialisation

The number of countries nPop and the initial number of empires nEmpires are
initialised. It is also necessary to determine the number of decades NumDecades
indicating the maximum iterations, the revolution rate RevolutionRate, the as-
similation coefficient AssimilationCoefficient, the assimilation angle coefficient
AssimilationAngleCoefficient, the reaction factor related to the total cost of empire ζ,
the damp ratio DampRatio, the uniting threshold UnitingThreshold, the factor to pre-
vent the weakest empire to have a probability equal to zero zarib and a factor denoted as
α which represents an importance of a mean minimum compare to the global minimum.

A country, as a representation of a solution, is forged by initialising the routes at
period t. Accordingly, the quantity collected is calculated. The quantity disassembled Pt
is the minimum value of inventory level at previous period It−1, the quantity collected
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at period t, the disassembly capacity and the demand of all components
∑

a∈A qat. The
values of inventory level at period t and unmet demands are determined consecutively.

After generating the initial countries pop, the fitness value is evaluated by summing
the objective function and the penalties resulted from constraints violation, if any.

The initial empires are constructed by choosing nEmpires countries having the lowest
fitnesses as the initial imperialists. The others are assigned randomly to the imperialists.
The initialisation step follows Algorithm 10.

Algorithm 10: Initialisation of Countries

for ∀Pop ∈ nPop do
for ∀t ∈ T do

Construct a feasible route randomly, xijt, ∀i, j
Calculate

∑
i∈N

∑
j∈N,i6=j Sit · xijt

Calculate Pt = min(It−1 +
∑

i∈N
∑

j∈N,i6=j Sit · xijt;DisCap;
∑

a∈A qat)
Calculate It = It−1 + Pt +

∑
i∈N

∑
j∈N,i6=j Sit · xijt

Calculate SOat = n · Pt − qat,∀a ∈ A
end

end

Assimilation

Some colonies of an empire are chosen randomly to be assimilated. This step is carried
out by re-generating the values of xijt, ∀i, j, t. It mimics the concept of neighbourhood
search. Consecutively, the position of the imperialist is challenged by an assimilated
colony or not. If the fitness of any colony is less than the imperialist, the colony and the
imperialist exchange their position.

Revolution

A revolution is performed by generating some new countries in a selected empires.
These new countries are sorted with the old ones based on their fitness. Finally, only the
first nPop countries are considered for the next step.

Imperialistic Competition

The total power TCn of all empires, as sum of all fitness values of countries belong
to the empire, is calculated and compared against the others. the weakest colony of the
weakest empire (with highest TCn) is assigned into another empire. If this empire has
no colony, its imperialist is assigned as a new colony to another empire.
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Global War

The global war is performed by generating countries with size nPop. These new
countries are assigned randomly to each remaining empires. For each empires, the new
generated countries are sorted with the old ones also based on their fitness. After, the
empire contains only colonies with the same size.

3.3 Numerical Experiments

In this section, we assess the performance of CPLEX and our proposed methods. First,
we describe about the experimental setting of CPLEX execution and the gap calculation.
Second, the detail results are presented.

3.3.1 Experimental Setup

All formulations and algorithms (except Imperialist Competitive Algorithm) were
implemented in Java using Concert Technology and were solved with IBM CPLEX 12.6
on a PC with processor Intel R©CoreTMi7 CPU 2.9 GHz and 4 GB of RAM under Windows
7 Professional. The Imperialist Competitive Algorithm was implemented in MATLAB
R2014a using the same PC.

In these experiments, we regenerate the three data sets (I, II and III) by following the
procedure described in Section 2.4 which consist of 432, 18 and 9 instances, respectively.
All instances were solved with CPLEX. In order to avoid memory issues with CPLEX
and obtain its lower bounds, the following solution procedure was adopted. Initially, all
instances were solved under 2 hours of CPLEX execution. The instances with memory is-
sues were resolved under 30 minutes of CPLEX execution. Those with persistent memory
issues were resolved under 10 minutes of CPLEX execution.

Table 3.1 – Global Average Gaps (in %)

Data Set CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

I 7.8〈172〉 16.5 9.0‡ 33.5 40.6 40.5 33.4
II 0.0 3.4 1.5‡ 18.2 11.6 11.8 42.4

III 0.9〈1〉 8.8 1.9‡ 18.6 17.0 20.5 79.9

Average 2.9 9.5 4.2 23.5 23.1 24.2 51.9
〈−〉 indicates number of instances that were not solved optimally. Note that Data Set I, II and III consist

of 432, 18 and 9 instances, respectively
‡ indicates the corresponding method provides the best optimality gap among the other approximate

methods.

Some abbreviations are used to simplify the representation of the results:

• TPIH : Two-Phase Iterative Heuristic

• ETPIH : Two-Phase Iterative Heuristic with Enhancements
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Table 3.2 – Global Average CPU Times (in seconds)

Data Set CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

I 1712.8 5.5 14.4 101.1 182.1 186.8 165.8
II 427.6 5.0 9.8 33.6 54.9 53.5 77.8
III 1214.6 4.8 7.8 28.4 65.4 56.4 77.5

Average 1118.4 5.1 10.7 54.3 100.8 98.9 107.0

• LSH : Local Search-based Algorithm

• PSO : Particle Swarm Optimisation

• PSO-LS : Particle Swarm Optimisation with Local Search

• ICA : Imperialist Competitive Algorithm

The optimality gaps of CPLEX were obtained based on its best solutions and their
corresponding lower bounds LBs. Similarly, the gaps for approximate methods were also
obtained between their best found solutions and the LBs. One notes that the CPU times
of TPIH, ETPIH and ATPIH correspond to all time required by the multi-start procedure
described. Since the other heuristics were executed five times, their CPU times are also
derived from the sum of all five executions.

3.3.2 Results

According to Table 3.1, ETPIH outperforms the other approximate methods for the
data sets, as it provides the best average global gap and the second best average CPU
time. As the fastest algorithm, TPIH is only second best in terms of average gap since
its value is 5.3% worse than ETPIH.

Moreover, we argue that the formulation of CDP in (2.1) - (2.12) produces a weak
lower bound notably due to the presence of constraints (2.5), which are known to be
among the loosest ways to prevent subtours, and the big-M in constraints (2.8).

In order to support this assertion, we took the 287 instances that were solved to
optimality by CPLEX and computed a weighted average of the gap that CPLEX still
had to close when the optimal solution was first found, as depicted in Figure 23. The
yielded value, 7.86%, seems to suggest that in general, when CPLEX cannot converge
to optimality within a given time limit, most of the optimality gap is due to the poor
quality of the best LB.

Since the performances of all the methods are evaluated with respect to this latter,
and based on such a reasoning, it is not unrealistic to suppose that the solutions yielded
by ETPIH are much closer to the optimum than suggested by its average gap of 5.1%,
and ultimately of much higher quality.

Tables A.1 - A.6 provide the impact of each parameter used on average gaps and CPU
times of each method. One notes that the instances with cluster location of collection cen-
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Figure 23 – Gap When Optimal Solution Found at First Time and Its Lower Bound

tres tend to induce larger heuristics’ gaps. Parameter of Nodes, Periods and Components
increment the optimality gaps and the CPU times of all proposed approximate methods.
The instances with larger initial inventory level lead to decrease the gaps. Tables B.1 -
B.8 provide more detail results of Data Set I.

Following the obtained results, we were suggested to re-execute the two best methods
with longer CPU time in order to obtain better solutions. Accordingly, we had carried
out the suggestions by running both methods in 25, 50, 75 and 100 seconds. The results
are presented in Table 3.3.

Table 3.3 – Global Average Gaps (in %) within 100 seconds

Data Set
CPLEX H H∗

CPU Time (s) ≤ 25s ≤ 50s ≤ 75s ≤ 100s ≤ 25s ≤ 50s ≤ 75s ≤ 100s

Random 1 1715.5〈46〉 5.5 4.77 4.45 4.22 1.68 1.08 0.83 0.74

Random 2 1168.5〈33〉 0.98 0.73 0.58 0.49 -0.17 -0.38 -0.48 -0.55

Cluster 1 1961.4〈46〉 10.29 8.82 8.04 7.56 1.02 0.74 0.57 0.46

Cluster 2 2005.9〈47〉 8.68 7.19 6.85 6.48 1.22 0.76 0.59 0.5

〈−〉 indicates number of instances that were not solved optimally. Note that each data set consists of 108
instances.
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Figure 24 – Results of Data Set - Random 1 using H (in blue) and H∗ (in red)

Figure 25 – Results of Data Set - Random 2 using H (in blue) and H∗ (in red)
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Figure 26 – Results of Data Set - Cluster 1 using H (in blue) and H∗ (in red)

Figure 27 – Results of Data Set - Cluster 2 using H (in blue) and H∗ (in red)

3.4 Conclusions

As shown in Chapter 2, the commercial solver CPLEX was unable to provide optimal
solutions under acceptable CPU times on the tested problem instances. To provide (near)
optimal solutions under faster CPU times, some approximate methods developed in the
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current chapter: Two-Phase Iterative Heuristic, Two-Phase Iterative Heuristic with En-
hancements, Local Search-based Heuristic, Particle Swarm Optimisation, Particle Swarm
Optimisation with Local Search Enhancement and Imperialist Competitive Algorithm.
All methods were evaluated using the generated data sets following the procedure de-
scribed in Chapter 2.

Based on the numerical experiments, the obtained results show that the Two-Phase It-
erative Heuristic with Enhancements outperforms the other approximate methods. Since
the formulation of CDP is estimated as a weak formulation due to its quality of lower
bounds, we argue that the gap between the optimal solutions of instances that were not
solved optimally and the solutions proposed by the best approximate method might be
smaller. One notes that the parameters of location, nodes, periods, components and
initial stock level have significant impact on gaps and CPU times of the proposed ap-
proximate methods.

However, the uncertainty corresponding to the quantity and the quality of EOL prod-
ucts as well as the demands of their components is often present in reverse supply chains.
Furthermore, companies processing EOL products frequently have more than one vehicle.
Therefore, the next chapter deals with these issues.

3.5 Publication

Some parts of this chapter are based on the following article:

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. An Efficient Two-Phase
Iterative Heuristic for Collection-Disassembly Problem, Computers & Industrial
Engineering, vol. 110, 2017, p. 505-514.
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Appendix A

Average Gaps and CPU Times

This appendix entails all tables containing the average gaps and CPU times based on
parameters of each data sets.

Table A.1 – Average Gaps (in %) based on Parameters of Data Set I

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

Location Random 1 5.7〈46〉 12.6 7.4 31.2 35.3 35.5 28.9

Random 2 4.3〈33〉 6.3 4.3 32.5 36.1 36.5 29.0

Cluster 1 10.7〈46〉 24.4 12.2 35.1 46.1 45.7 38.0

Cluster 2 10.6〈47〉 22.7 12.3 35.3 44.8 44.3 37.5

Nodes 5 0.3 〈14〉 7.5 2.5 14.6 21.1 21.0 27.9

10 5.3 〈53〉 15.6 7.5 30.9 40.4 40.1 35.1

25 17.9 〈105〉 26.4 17.2‡ 55.1 60.2 60.4 37.0

Periods 5 1.0 〈12〉 8.3 2.5 10.9 4.4 4.4 22.4

10 7.1 〈54〉 15.4 7.8 32.2 24.9 24.9 31.8

25 15.3 〈106〉 25.8 16.8 57.4 92.4 92.2 45.9

Components 5 7.4〈79〉 15.6 8.2 22.5 39.4 39.8 34.0

10 8.2〈93〉 17.4 9.9 44.6 41.7 41.3 32.7

Demands U(40% : 60%) · S 7.1〈66〉 14.6 8.5 31.2 51.7 51.1 47.1

U(90% : 100%) · S 8.5〈106〉 18.3 9.6 37.7 29.4 29.9 19.7

Disassembly Under Constrained 7.7〈61〉 16.1 8.9 33.0 40.5 41.3 33.1

Capacity Constrained 7.8〈61〉 16.5 8.9 32.7 40.6 39.5 33.7

Infinite 7.9〈50〉 16.9 9.3 34.1 40.6 40.7 33.3

U(a : b) indicates that the corresponding parameter was generated with uniform distribution with parameter
a and b
S is the average of supply of EOL product for all collection centres and all periods
〈−〉 indicates number of instances that were not solved optimally. Note that each line of parameter loca-
tion, nodes, periods components, demands, disassembly capacity consist of 108, 144, 144, 216, 216 and 144
instances, respectively
‡ indicates that the corresponding method provides better solutions than CPLEX.
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Table A.2 – Average CPU Times (in seconds) based on Parameters
of Data Set I

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
Location Random 1 1715.5 6.3 20.0 114.1 188.4 184.8 165.2

Random 2 1168.5 5.0 16.1 104.8 178.4 187.2 167.4
Cluster 1 1961.4 8.8 17.6 90.9 178.6 184.2 165.0
Cluster 2 2005.9 1.9 3.7 94.6 183.2 191.1 165.6

Nodes 5 863.1 4.0 9.9 17.1 26.6 30.8 59.0
10 2317.7 5.5 12.9 42.8 74.3 80.0 102.2
25 1957.7 7.2 20.2 243.3 445.5 449.6 336.0

Periods 5 607.3 2.5 4.1 39.5 64.5 67.6 65.2
10 1342.7 4.3 8.5 81.1 130.9 135.9 126.0
25 3188.4 9.8 30.4 182.6 351.0 357.0 306.1

Components 5 1580.4 4.7 12.2 88.6 181.1 182.3 165.2
10 1845.2 6.3 16.5 113.5 183.2 191.3 166.3

Demands U(40% : 60%) · S 1053.7 4.7 11.4 97.7 177.2 182.3 165.9
U(90% : 100%) · S 2371.9 6.4 17.4 104.4 187.1 191.4 165.6

Disassembly Under Constrained 1565,2 5,3 14,1 98,4 191,3 192,1 165,6
Capacity Constrained 1795,8 5,4 14,3 108,4 174,4 190,6 165,8

Infinite 1777,4 5,9 14,7 101,2 180,8 177,8 165,9

U(a : b) indicates that the corresponding parameter was generated with uniform distribution with parameter
a and b
S is the average of supply of EOL product for all collection centres and all periods.

Table A.3 – Average Gaps (in %) based on Parameters of
Data Set II

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
Supply U(9 : 11) 0.0 5.0 1.9 18.1 15.5 16.4 42.1

U(40 : 60) 0.0 1.7 1.1 18.3 7.7 7.1 42.7
Vehicle 2 · S 0.0 2.7 1.6 18.4 12.0 12.3 43.0
Capacity 3 · S 0.0 3.3 1.7 18.2 11.3 11.5 41.9

4 · S 0.0 4.1 1.2 18.1 11.4 11.5 42.2
Initial Zero 0.0 3.6 2.4 18.6 11.4 12.1 40.1
Stock Small 0.0 4.0 0.8 18.8 12.1 12.0 43.3

Large 0.0 2.6 1.4 17.3 11.2 11.2 43.7

U(a : b) indicates that the corresponding parameter was generated with uniform distribution
with parameter a and b
S is the average of supply of EOL product for all collection centres and all periods.

Table A.4 – Average CPU Times (in seconds) based on Pa-
rameters of Data Set II

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
Supply U(9 : 11) 721.5 6.3 10.5 33.8 56.3 52.8 77.6

U(40 : 60) 133.8 3.8 9.2 33.3 53.5 54.2 78.0
Vehicle 2 · S 365.0 5.4 10.0 31.2 51.0 51.6 78.0
Capacity 3 · S 566.2 4.8 10.2 34.6 55.6 55.0 77.6

4 · S 351.7 4.9 9.3 34.8 58.2 54.0 77.8
Initial Zero 1015.0 5.4 11.2 30.4 58.8 53.3 78.1
Stock Small 187.9 4.9 9.2 36.5 55.8 55.4 77.6

Large 80.0 4.7 9.1 33.8 50.1 51.8 77.7

U(a : b) indicates that the corresponding parameter was generated with uniform distribution
with parameter a and b
S is the average of supply of EOL product for all collection centres and all periods.

Table A.5 – Average Gaps (in %) based on Parameters of Data Set III

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

Fixed Vehicle 5 0.0 13.0 2.2 34.1 20.5 28.1 45.7
Cost (CF ) 10 0.0 8.7 1.1 15.6 14.4 17.8 51.3

25 2.7〈1〉 4.6 2.4 6.3 16.2 15.4 142.8

Disassembly 0.5 · CF 2.7〈1〉 15.4 3.1 31.6 22.7 29.6 48.0
Cost (CD) 1 · CF 0.0 7.9 1.3 18.6 14.9 16.8 62.8

2 · CF 0.0 3.0 1.4 5.8 13.4 15.0 129.0

〈−〉 indicates number of instances (out of 9) that were not solved optimally.
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Table A.6 – Average CPU Times (in seconds) based on Parameters of Data Set III

Parameter CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

Fixed Vehicle 5 621.7 6.9 10.7 30.7 66.9 55.7 77.5
Cost (CF ) 10 2417.3 4.3 8.0 34.5 71.5 60.0 77.5

25 605.0 3.1 4.7 19.9 58.0 53.6 77.6
Disassembly 0.5 · CF 3037.6 7.1 11.1 31.2 64.1 58.5 77.7
Cost (CD) 1 · CF 374.1 4.2 7.8 30.5 71.3 51.4 77.6

2 · CF 232.2 3.0 4.5 23.4 60.9 59.3 77.3

Mines de St-Étienne 63 M. K. Khakim Habibi



M. K. Khakim Habibi 64 Mines de St-Étienne



Appendix B

Detail Results of Data Set I

Table B.1 – Average Gaps (in %) of Data Set I - Random 1

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

5 5 5 0.0 2.7 0.0 1.3 1.7 1.7 2.3
10 0.0 3.1 1.0 6.5 1.9 1.7 5.2

10 5 0.0 2.9 0.7 9.6 8.0 9.1 30.0
10 0.0 7.1 1.9 20.3 10.8 11.6 24.2

25 5 1.4〈2〉 10.6 6.9 15.6 52.5 48.1 31.4

10 0.9〈4〉 8.7 6.3 40.0 46.3 45.5 30.3
10 5 5 0.0 3.9 0.2 4.2 3.2 2.2 25.7

10 0.0 9.8 2.7 13.9 2.8 2.7 21.5
10 5 0.0 9.3 1.3 15.5 15.0 12.8 31.5

10 2.6〈3〉 9.0 3.7 33.1 17.3 19.8 31.0

25 5 11.8〈6〉 19.5 15.6 39.3 90.1 100.3 46.6

10 13.4〈6〉 20.7 15.6 72.7 91.8 85.6 47.7

25 5 5 0.5〈1〉 7.9 1.4 13.2 4.7 6.0 29.4
10 0.0 6.8 1.8 20.2 5.5 5.4 26.0

10 5 10.3〈6〉 21.2 12.3 38.2 32.1 33.3 28.7

10 16.7〈6〉 24.2 17.5 62.4 39.5 39.7 30.4

25 5 20.9〈6〉 29.0 20.9 55.5 95.2 105.3 38.4

10 23.2〈6〉 30.6 23.0‡ 101.1 116.5 108.2 40.2

Average 5.7〈46〉 12.6 7.4 31.2 35.3 35.5 28.9

〈−〉 indicates number of instances (out of 6) that were not solved optimally
‡ indicates that the corresponding method provides better solutions than CPLEX.

Table B.2 – Average CPU Times (in seconds) of Data Set I - Random 1

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

5 5 5 0.1 2.2 4.6 6.8 8.6 12.1 20.3
10 0.1 2.0 5.4 7.5 8.8 11.8 20.9

10 5 1.2 2.6 9.0 13.4 22.3 25.3 45.7
10 3.5 3.9 9.2 14.5 22.3 25.6 44.9

25 5 3806.0 6.8 23.5 27.1 49.0 54.9 106.0
10 3856.1 10.8 23.0 38.2 55.6 58.4 107.9

10 5 5 3.3 3.2 4.9 17.7 26.6 29.9 40.6
10 3.1 3.2 5.6 18.3 30.0 34.4 41.1

10 5 1471.5 4.0 10.2 37.3 49.8 63.1 77.7
10 2752.8 6.0 12.6 41.1 62.0 66.1 79.0

25 5 3408.1 9.0 25.4 73.0 125.0 142.9 184.4
10 4506.8 12.8 42.5 99.1 149.5 149.0 185.2

25 5 5 391.4 3.2 5.5 95.8 153.7 153.3 132.0
10 851.4 3.3 7.2 99.7 149.5 153.6 131.6

10 5 4513.2 4.5 13.3 200.2 321.0 327.8 254.2
10 1825.0 7.6 18.2 223.6 308.7 321.6 254.7

25 5 1619.4 12.7 64.1 482.9 955.2 837.9 621.7
10 1865.4 16.4 76.1 557.4 893.0 857.9 624.9

Average 1715.5 6.3 20.0 114.1 188.4 184.8 165.2
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Table B.3 – Average Gaps (in %) of Data Set I - Random 2

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

5 5 5 0.0 3.1 1.3 1.6 1.9 2.1 19.5
10 0.0 1.6 0.4 7.9 2.6 2.9 21.4

10 5 0.0 3.9 0.6 9.0 10.5 9.8 30.1
10 0.0 2.0 1.1 23.2 14.2 14.7 25.2

25 5 0.4〈1〉 7.5 2.3 13.9 49.1 51.6 36.0

10 0.2〈2〉 3.9 2.1 42.5 50.7 48.2 31.7
10 5 5 0.0 3.4 0.2 6.1 3.2 3.4 24.8

10 0.0 4.4 1.8 14.7 1.8 2.6 21.9
10 5 0.0 1.6 0.2 21.1 16.0 15.9 24.7

10 0.2〈1〉 4.9 2.1 34.9 20.5 18.3 25.7

25 5 5.5〈3〉 9.6 6.4 36.3 81.4 90.9 46.2

10 6.9〈5〉 13.6 10.6 70.3 96.7 86.2 47.8
25 5 5 0.0 0.9 0.1 13.7 3.9 3.2 7.8

10 0.0 1.1 0.0 25.2 3.2 4.7 12.4

10 5 6.8〈3〉 7.2 6.1‡ 37.1 30.5 29.8 24.2

10 11.8〈6〉 10.6 10.4‡ 65.2 37.1 38.6 31.1

25 5 20.8〈6〉 16.4 16.1‡ 56.7 112.4 122.2 45.2

10 24.8〈6〉 16.8 16.1‡ 105.4 113.3 112.3 46.6

Average 4.3〈33〉 6.3 4.3 32.5 36.1 36.5 29.0

〈−〉 indicates number of instances (out of 6) that were not solved optimally
‡ indicates that the corresponding method provides better solutions than CPLEX.

Table B.4 – Average CPU Times (in seconds) of Data Set I - Random 2

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
5 5 5 0.1 2.0 3.7 7.2 7.9 9.4 24.2

10 0.1 2.3 4.2 7.7 8.7 11.8 24.6
10 5 0.7 3.0 7.0 12.6 21.1 22.4 46.0

10 1.3 3.5 8.5 15.1 22.2 23.3 46.4
25 5 2413.4 5.1 19.9 24.5 44.8 55.7 112.5

10 1555.3 8.5 32.8 37.3 50.7 61.4 114.6
10 5 5 1.2 2.1 4.5 19.1 25.5 29.4 41.2

10 2.0 2.7 5.5 20.0 29.9 27.0 41.2
10 5 11.0 3.2 8.2 39.4 60.8 61.7 78.8

10 1497.2 4.7 11.6 34.8 58.3 60.9 78.6
25 5 3038.5 7.2 24.6 61.6 115.2 150.1 191.5

10 5194.0 12.4 37.8 82.8 131.8 172.4 195.3
25 5 5 174.6 1.8 5.5 96.3 152.8 167.2 134.8

10 302.3 2.2 6.2 88.1 165.4 163.3 134.1
10 5 1350.1 3.0 8.7 196.4 323.2 339.5 255.1

10 1817.7 5.9 14.8 194.4 305.7 341.5 256.5
25 5 1833.1 9.2 37.1 364.0 899.8 816.2 614.4

10 1840.4 11.9 49.8 585.0 788.2 857.1 623.1
Average 1168.5 5.0 16.1 104.8 178.4 187.2 167.4
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APPENDIX B. DETAIL RESULTS OF DATA SET I

Table B.5 – Average Gaps (in %) of Data Set I - Cluster 1

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

5 5 5 0.0 10.2 2.3 1.3 2.8 2.6 34.6
10 0.0 10.6 2.0 7.7 2.7 1.8 29.8

10 5 0.0 10.4 2.7 4.7 7.6 7.3 33.1
10 0.0 8.9 2.1 16.7 11.8 11.1 27.7

25 5 0.5〈1〉 10.9 4.1 11.1 57.4 55.4 42.9

10 2.0〈1〉 18.6 6.6 41.2 55.8 48.9 33.1
10 5 5 0.0 10.7 0.1 3.3 3.8 3.1 31.3

10 0.0 15.9 4.9 12.7 2.2 3.7 24.9

10 5 1.3〈1〉 13.2 2.3 14.6 17.7 17.9 35.0

10 2.4〈2〉 18.3 4.6 36.6 25.0 25.7 28.8

25 5 21.1〈6〉 40.9 23.1 42.7 109.6 115.6 58.0

10 21.6〈6〉 45.6 26.5 82.0 109.5 112.7 55.3

25 5 5 3.0〈2〉 10.9 3.2 12.6 8.0 8.8 18.7

10 4.1〈3〉 14.3 6.5 24.9 9.5 9.1 19.1

10 5 30.5〈6〉 39.6 21.2‡ 43.3 43.0 41.1 40.4

10 30.9〈6〉 49.4 32.3 82.6 64.2 63.7 49.4

25 5 37.3〈6〉 57.5 36.3‡ 68.0 154.9 141.4 61.0

10 38.3〈6〉 52.7 38.0‡ 125.1 145.1 152.6 61.5

Average 10.7〈46〉 24.4 12.2 35.1 46.1 45.7 38.0

〈−〉 indicates number of instances (out of 6) that were not solved optimally
‡ indicates that the corresponding method provides better solutions than CPLEX.

Table B.6 – Average CPU Times (in seconds) of Data Set I - Cluster 1

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
5 5 5 0.1 2.7 3.5 6.4 7.2 8.6 23.5

10 0.2 3.4 4.9 7.8 8.8 10.5 23.6
10 5 8.0 4.2 6.5 11.3 20.3 24.4 44.5

10 11.9 5.8 8.6 14.7 21.3 26.9 45.0
25 5 158.6 7.8 20.3 24.9 50.9 54.8 106.0

10 1906.0 9.9 27.5 34.6 51.2 57.2 106.2
10 5 5 4.3 4.0 4.3 17.9 25.9 28.6 40.6

10 4.5 3.9 5.3 20.0 32.1 32.8 40.6
10 5 1853.7 6.2 8.4 31.9 57.6 55.6 77.6

10 2818.9 7.4 10.7 32.6 53.2 56.0 78.2
25 5 6306.9 12.2 28.3 50.0 147.0 149.3 184.0

10 7203.8 16.4 38.9 70.1 145.5 153.8 186.4
25 5 5 3615.9 4.7 5.0 87.0 149.2 165.7 130.5

10 3640.7 6.8 6.0 93.9 170.9 153.1 130.3
10 5 2313.5 7.9 12.0 170.9 322.0 309.3 253.0

10 1814.5 10.7 13.9 209.5 325.6 337.3 253.4
25 5 1822.0 18.8 43.5 297.0 781.3 790.1 622.1

10 1821.0 26.5 69.2 455.6 844.5 902.0 623.6
Average 1961.4 8.8 17.6 90.9 178.6 184.2 165.0
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Table B.7 – Average Gaps (in %) of Data Set I - Cluster 2

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA

5 5 5 0.0 8.4 1.4 0.7 3.3 3.3 30.2
10 0.0 6.7 0.8 5.8 1.9 1.9 27.0

10 5 0.0 7.0 1.9 6.4 10.1 9.4 30.8
10 0.0 7.9 1.4 16.3 10.8 12.2 27.7

25 5 0.0〈1〉 11.1 5.7 9.7 41.3 51.7 32.5

10 1.0〈2〉 13.0 4.5 36.4 51.6 52.3 33.5
10 5 5 0.0 6.3 2.0 3.5 3.4 3.2 26.1

10 0.0 14.4 5.2 11.5 3.1 3.3 25.5

10 5 0.0〈1〉 14.2 2.2 13.9 16.0 15.4 27.2

10 0.7〈1〉 9.5 2.1 34.6 22.7 24.3 24.0

25 5 19.4〈6〉 34.0 22.2 44.4 114.0 98.4 56.8

10 20.2〈6〉 40.3 23.8 79.8 101.9 99.5 55.5

25 5 5 9.9〈3〉 21.2 10.0 21.2 15.8 15.8 28.2

10 6.1〈3〉 19.8 10.2 29.0 13.5 10.7 23.2

10 5 27.8〈6〉 41.8 27.2‡ 52.8 52.9 54.6 51.6

10 29.2〈6〉 45.0 29.6 79.5 65.0 61.5 49.9

25 5 37.3〈6〉 52.8 35.5‡ 66.7 146.7 139.1 62.4

10 38.4〈6〉 54.7 36.0‡ 122.1 132.8 141.5 62.3

Average 10.6〈47〉 22.7 12.3 35.3 44.8 44.3 37.5

〈−〉 indicates number of instances (out of 6) that were not solved optimally
‡ indicates that the corresponding method provides better solutions than CPLEX.

Table B.8 – Average CPU Times (in seconds) of Data Set I - Cluster 2

Nodes Periods Components CPLEX TPIH ETPIH LSH PSO PSO-LS ICA
5 5 5 0.1 0.8 0.9 6.8 7.0 8.6 23.3

10 0.2 0.8 1.0 7.5 8.2 11.3 23.9
10 5 1.3 1.2 1.6 13.5 21.9 23.1 44.5

10 2.3 1.2 1.8 16.1 20.8 24.6 45.2
25 5 3086.1 2.0 4.8 22.2 49.0 60.0 107.4

10 3900.8 2.5 6.1 33.5 51.0 57.0 109.9
10 5 5 3.4 0.9 1.1 18.4 23.6 27.1 39.9

10 4.7 0.8 1.3 21.7 26.7 28.2 40.7
10 5 2015.2 1.2 2.1 33.6 52.2 58.0 77.8

10 1802.4 1.5 2.4 31.6 64.6 61.1 78.7
25 5 5411.3 3.4 5.9 49.7 141.1 141.7 185.9

10 6305.5 3.1 8.6 105.5 148.2 141.5 188.5
25 5 5 1912.2 1.1 1.0 91.2 153.9 167.7 130.4

10 3660.1 1.1 1.4 85.8 167.3 176.7 130.6
10 5 2514.7 1.7 2.4 173.2 314.4 288.9 253.7

10 1822.2 1.9 2.7 184.6 289.6 317.1 253.9
25 5 1829.3 4.9 9.1 310.1 831.3 902.7 622.3

10 1833.8 4.4 12.1 497.4 926.2 943.6 623.5
Average 2005.9 1.9 3.7 94.6 183.2 191.1 165.6
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Appendix C

Details Results of Data Set I within
100 seconds

Table C.1 – Average Gaps in Data Set - Random 1 (in %) within 100 seconds

Nodes Periods Components
CPLEX TPIH ETPIH

CPU Time (s) ≤ 25s ≤ 50s ≤ 75s ≤ 100s ≤ 25s ≤ 50s ≤ 75s ≤ 100s
5 5 5 0.1 2.14 2.14 1.52 1.52 0 0 0 0

10 0.1 1.65 1.6 1.6 1.6 0.97 0.97 0.97 0.94
10 5 1.2 2.12 1.49 1.46 1.41 0.84 0.57 0.19 0.07

10 3.5 6.25 4.89 4.89 4.69 0.71 0.4 0.38 0.38

25 5 3806〈2〉 8.23 7.85 6.97 6.97 3.99 3.74 2.9 2.85

10 3856.1〈4〉 7.24 6.85 6.39 6.25 5.28 3.03 2.75 2.51
10 5 5 3.3 2.75 1.54 1.07 1.07 0.06 0.06 0.02 0.02

10 3.1 3.19 3.03 3.03 2.05 2.18 1.21 1.21 1.21
10 5 1471.5 6.66 4.95 4.51 4.27 0.25 0.21 0.08 0.08

10 2752.8〈3〉 4.86 4.05 3.88 3.84 1.29 0.88 0.68 0.55

25 5 3408.1〈6〉 6.99 6.36 6.14 6.06 3.9 3.33 3.03 2.36

10 4506.8〈6〉 5.98 5.6 5.6 5.31 2.43 2.02 1.8 1.18
25 5 5 391.4 5.94 4.85 4.23 4.23 0.39 0.2 0.2 0.2

10 851.4 5.97 5.08 5.05 4.59 1.39 1.39 1.11 1.11

10 5 4513.2〈6〉 8.11 7.08 6.23 5.98 1.57 0.93 0.93 0.91

10 1825〈6〉 5.77 5.09 4.71 4.31 0.73 -0.16 -0.41 -0.41

25 5 1619.4〈6〉 7.98 7.22 7.03 6.7 3.86 1.65 0.14 0.14

10 1865.4〈6〉 7.08 6.17 5.8 5.05 0.3 -1.02 -1.02 -0.88
Max 8.23 7.85 7.03 6.97 5.28 3.74 3.03 2.85
Min 1.65 1.49 1.07 1.07 0 -1.02 -1.02 -0.88

Average 5.5 4.77 4.45 4.22 1.67 1.08 0.83 0.73

〈−〉 indicates number of instances that were not solved optimally. Note that each line consists of 6 instances.
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Table C.2 – Average Gaps in Data Set - Random 2 (in %) within 100 seconds

Nodes Periods Components
CPLEX TPIH ETPIH

CPU Time (s) ≤ 25s ≤ 50s ≤ 75s ≤ 100s ≤ 25s ≤ 50s ≤ 75s ≤ 100s
5 5 5 0.1 0.33 0.12 0.12 0.12 0 0 0 0

10 0.1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26
10 5 0.7 3.1 3.03 2.3 2.07 0.63 0.31 0.24 0.24

10 1.3 1.45 1.32 1.32 1.32 0.09 0.09 0.09 0.09

25 5 2413.4〈1〉 6.38 5.88 5.25 5.25 1.73 1.34 1.34 1.3

10 1555.3〈2〉 3.42 3.13 3.03 2.59 2.35 1.97 1.95 1.41
10 5 5 1.2 0.48 0.35 0.35 0.3 0 0 0 0

10 2 2.02 1.99 1.99 1.99 1.12 1.12 1.12 1.12
10 5 11 1.2 0.64 0.64 0.64 0.01 0.01 0.01 0.01

10 1497.2〈1〉 2.5 2.48 2.36 2.01 0.87 0.28 0.28 0.28

25 5 3038.5〈3〉 2.91 2.64 2.53 2.5 0.41 0.32 0.26 0.26

10 5194〈5〉 5.76 5.3 4.78 4.75 4.28 3.21 2.48 2.04
25 5 5 174.6 0.87 0.23 0.23 0.23 0.01 0.01 0.01 0.01

10 302.3 0.86 0.64 0.59 0.46 0 0 0 0

10 5 1350.1〈3〉 -0.19 -0.41 -0.41 -0.67 -0.78 -0.94 -0.96 -0.96

10 1817.7〈6〉 -1.05 -1.42 -1.53 -1.63 -1.59 -1.66 -1.81 -1.83

25 5 1833.1〈6〉 -4.44 -4.68 -4.8 -4.9 -4.44 -4.95 -5.27 -5.34

10 1840.4〈6〉 -8.27 -8.41 -8.5 -8.51 -8.01 -8.27 -8.65 -8.76
Max 6.38 5.88 5.25 5.25 4.28 3.21 2.48 2.04
Min -8.27 -8.41 -8.5 -8.51 -8.01 -8.27 -8.65 -8.76

Average 0.98 0.73 0.58 0.49 -0.17 -0.38 -0.48 -0.55

〈−〉 indicates number of instances that were not solved optimally. Note that each line consists of 6 instances.

Table C.3 – Average Gaps in Data Set - Cluster 1 (in %) within 100 seconds

Nodes Periods Components
CPLEX TPIH ETPIH

CPU Time (s) ≤ 25s ≤ 50s ≤ 75s ≤ 100s ≤ 25s ≤ 50s ≤ 75s ≤ 100s
5 5 5 0.1 2.95 2.08 1.54 1.47 0.83 0.83 0.71 0.71

10 0.2 4.08 2.96 1.83 1.65 1.54 1.54 1.43 1.43
10 5 8 8.45 6.92 6.68 6.44 2.01 1.96 1.95 1.69

10 11.9 7.96 5.44 4.4 4.06 1.29 0.52 0.27 0.27

25 5 158.6〈1〉 8.69 8.69 8.53 8.53 3.9 3.5 3.33 2.66

10 1906〈1〉 15.19 14.13 13.45 13.4 4.76 4.47 3.76 3.75
10 5 5 4.3 5.32 4.84 3.67 3.67 0.12 0.12 0.12 0.12

10 4.5 7.39 7.32 7.32 7.2 3.38 3.38 3.38 3.38

10 5 1853.7〈1〉 5.75 4.2 4.2 4.2 0.59 0.52 0.39 0.39

10 2818.9〈2〉 10.61 9.71 8.53 8.17 1.55 0.99 0.64 0.64

25 5 6306.9〈6〉 19.1 18.46 16.56 15.31 2.56 1.62 1.06 1.06

10 7203.8〈6〉 20.3 19.86 19.16 19.16 3.66 2.55 2.26 2.19

25 5 5 3615.9〈2〉 4.96 1.91 1.68 1.68 0.06 0.04 0.03 0.03

10 3640.7〈3〉 10.57 8.42 7.51 5.74 2.43 2.43 2.43 2.43

10 5 2313.5〈6〉 1.59 -0.07 -1.85 -2.72 -9.6 -9.72 -9.72 -9.73

10 1814.5〈6〉 15.78 12.16 10.64 9.56 -0.3 -0.43 -0.59 -0.69

25 5 1822〈6〉 16.85 15.94 15.18 13.44 -0.84 -0.84 -0.9 -1.51

10 1821〈6〉 19.64 15.78 15.7 15.12 0.46 -0.1 -0.23 -0.53
Max 20.3 19.86 19.16 19.16 4.76 4.47 3.76 3.75
Min 1.59 -0.07 -1.85 -2.72 -9.6 -9.72 -9.72 -9.73

Average 10.29 8.82 8.04 7.56 1.02 0.74 0.57 0.46

〈−〉 indicates number of instances that were not solved optimally. Note that each line consists of 6 instances.
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APPENDIX C. DETAILS RESULTS OF DATA SET I WITHIN 100 SECONDS

Table C.4 – Average Gaps in Data Set - Cluster 2 (in %) within 100 seconds

Nodes Periods Components
CPLEX TPIH ETPIH

CPU Time (s) ≤ 25s ≤ 50s ≤ 75s ≤ 100s ≤ 25s ≤ 50s ≤ 75s ≤ 100s
5 5 5 0.1 2.55 2.02 2.02 1.68 0.25 0 0 0

10 0.2 4.68 2.19 2.19 1.23 0.82 0.82 0.82 0.82
10 5 1.3 4.59 4.44 3.33 3.33 1.05 0.82 0.82 0.82

10 2.3 5.14 4.67 4.39 4.35 0.78 0.6 0.59 0.59
25 5 3086.1 8.76 8.04 7.97 7.64 4.93 4.13 3.71 3.51

10 3900.8〈2〉 10.16 9.49 9.4 8.95 3.56 2.46 2.15 2.15
10 5 5 3.4 4.02 2.99 2.78 2.78 1.49 0.38 0.38 0.32

10 4.7 9.16 7.44 7.27 6.48 3.59 3.14 3.14 3.14

10 5 2015.2〈1〉 9.93 7.68 7.36 6.8 1.5 1.02 0.95 0.59

10 1802.4〈1〉 8.07 6.95 6.24 6.11 0.85 0.33 0.33 0.33

25 5 5411.3〈6〉 13.11 12.18 12.18 12.12 1.95 1.3 0.64 0.6

10 6305.5〈6〉 19.13 16.98 16.18 15.2 3.51 2.83 2.67 2.29

25 5 5 1912.2〈3〉 3.69 2.82 2.69 2.63 0 0 0 0

10 3660.1〈3〉 8.15 4.78 4.78 4.78 2.02 2.02 2.02 2.02

10 5 2514.7〈6〉 8.21 7.36 6.82 6.82 -1.03 -1.21 -1.51 -1.51

10 1822.2〈6〉 10.24 8.02 7.13 5.9 0.33 -0.67 -1.32 -1.32

25 5 1829.3〈6〉 14.74 11.74 11.07 10.83 -1.79 -2.17 -2.52 -2.72

10 1833.8〈6〉 11.92 9.68 9.55 8.99 -1.92 -2.07 -2.2 -2.55
Max 19.13 16.98 16.18 15.2 4.93 4.13 3.71 3.51
Min 2.55 2.02 2.02 1.23 -1.92 -2.17 -2.52 -2.72

Average 8.68 7.19 6.85 6.48 1.22 0.76 0.59 0.5

〈−〉 indicates number of instances that were not solved optimally. Note that each line consists of 6 instances.
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Chapter 4
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Collection-Disassembly Problem
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4.1 Introduction

The quantity and the quality of EOL products as well as the demands of its com-
ponents are often uncertain. To deal with these issues a formulation of CDP under
uncertainty is provided in this chapter and called Stochastic CDP (SCDP). An extension
dealing with the multi-vehicle case is also provided and called Stochastic Multi-Vehicle
CDP (SMCDP).

Two solution methods were developed to deal with SMCDP. First, Two-Phase Itera-
tive Heuristic is addressed. Second, Two-Phase Iterative Heuristic with Enhancements is
provided. The methods are selected due to their good performances on CDP as shown in
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4.2. PROBLEM DESCRIPTION

Chapter 3. An algorithmic framework of Sample Average Approximation is implemented
combined with the two methods to provide high quality solutions for SMCDP.

4.2 Problem Description

The formulation presented is a CDP dealing with the uncertainty of the quantity
and the quality of EOL products returned as well as of the demands of component. In
particular, the quality of EOL products is translated as the quantity of their components.
Referring to CDP formulation in 2.1 - 2.8, the uncertainty corresponds to Sit (quantity
of EOL products available at collection centre i at period t), na (quantity of component
a in a product) and qat (demand of component a at period t).

Those parameters are assumed following some known probability distributions. We
put all corresponding distributions into a finite scenario Ω indexed by ω. The probability
associated with scenario ω is ρω. For each scenario ω, we have:

Sωit quantity of EOL products available at collection centre i at period t
nωat quantity of component a in a product at period t
qωat demand of component a at period t

Figure 28 – Two-Stage Stochastic Problem

The problem is formalised as a two-stage stochastic problem as depicted in Figure
28 since we assume that the realisation of Sωit, n

ω
at and qωat come right after the planning

stage. Its implementation is illustrated in Figure 29.

In two-stage stochastic problem, there are two subsets of decision variables, namely,
the first-stage and the second-stage decisions. The first-stage decision variables have to
be determined before the actual realisation of the uncertain parameters. Once the un-
certain parameters have presented themselves, the second-stage (also known as recourse)
variables have to be taken subsequently. As aforementioned in Chapter 1, PDP is also
formalised as a two-stage stochastic problem in Adulyasak et al. (2015a).

For SCDP with a single vehicle, the first-stage decision variables correspond to the
planning of the routing for each period. Thus, the corresponding decision variables are
as follows:

zt 1 iff period t is served, 0 otherwise
xijt 1 iff node j visited after i directly at period t, 0 otherwise.
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Figure 29 – Two-Stage SMCDP

The variable zt, denotes the decision whether the period t is served. It also implies
that a period served incurs the dispatch cost of using the vehicle. A period is served when
there is at least one vehicle dispatched into one collection centre. Referring to Figure 28
and Figure 29, the variables zt and xijt have to be decided at period zero.

The second-stage decision variables correspond to the vehicle load and the disassembly
decisions. Those decisions will be taken after knowing the realisation of the uncertain
parameters. These decision variables are:

yωit vehicle load after visiting node i at period t in scenario ω
Iωt inventory level of EOL products at period t in scenario ω
P ω
t quantity of EOL products disassembled at period t in scenario ω
SOω

at unmet demand of component a at period t in scenario ω.
These second-stage decision variables are decided by also respecting the first-stage

variables.
In the next part, two formulations are presented corresponding to single-vehicle and

multi-vehicle.

4.3 Formulations

Stochastic Collection-Disassembly Problem

The following formulation employs the scenario ω ∈ Ω and introduces the variable zt
described in the CDP formulation (2.1) - (2.8). It is then so called SCDP.
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Min
∑
t∈T

(CF · zt +
∑
i,j∈N

cij · xijt +
∑
ω∈Ω

ρω(CH · Iωt + CD · P ω
t +

∑
a∈A

CPa · SOω
at)) (4.1)

Subject to:

∑
j∈N,i6=j

xijt ≤ 1 ∀i ∈ Nc,∀t ∈ T (4.2)

x1it ≤ zt ∀i ∈ Nc,∀t ∈ T (4.3)

zt ≤
∑
i∈Nc

x1it ∀t ∈ T (4.4)∑
i∈N,i6=v

xivt =
∑

j∈N,j 6=v

xvjt ∀v ∈ N,∀t ∈ T (4.5)

yωit + (Q− Sωit) · x1it ≤ Q ∀i ∈ Nc,∀t ∈ T,∀ω ∈ Ω (4.6)

yωit − yωjt +Q · xijt + (Q− Sωjt − Sωit) · xjit ≤ Q− Sωjt i 6= j,∀i, j ∈ Nc,∀t ∈ T,∀ω ∈ Ω

(4.7)

Iωt = Iωt−1 +
∑

i,j∈N,i6=j

Sωit · xijt − P ω
t ∀t ∈ T,∀ω ∈ Ω (4.8)

nωat · P ω
t + SOω

at ≥ qωat ∀a ∈ A,∀t ∈ T,∀ω ∈ Ω (4.9)∑
j∈N,i6=j

Sωit · xijt ≤ yωit ≤
∑

j∈N,i6=j

Q · xijt ∀i ∈ N, ∀t ∈ T,∀ω ∈ Ω (4.10)

Iωt ≤ InvCap ∀t ∈ T,∀ω ∈ Ω (4.11)

P ω
t ≤ DisCap ∀t ∈ T,∀ω ∈ Ω (4.12)

zt, xijt ∈ {0, 1} ∀i, j ∈ N,∀t ∈ T (4.13)

yωit, SO
ω
at, I

ω
t , P

ω
t ∈ Z≥0 ∀a ∈ A,∀i ∈ N, ∀t ∈ T,∀ω ∈ Ω. (4.14)

The objective function (4.1) minimises the cost of the first stage decision and the
expected cost of the second stage decisions. The first and second terms correspond to
the dispatch and mileage vehicle costs. The last terms consist of the expected costs of
inventory, disassembly and penalty.

Constraints (4.2) impose that each collection centre i is visited at most once during
period t. Constraints (4.3) assure that a vehicle is used when at least one collection i
served at period t. Constraints (4.4) state that there is no use to dispatch any vehicle if
no collection centre served at period t. Constraints (4.5) balance the flows entering and
leaving a node. The subtour elimination constraints (4.6) and (4.7) are based on lifting
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method proposed in Desrochers and Laporte (1991) as CDP in Chapter 2. Constraints
(4.8) are the inventory balance of the disassembly site. Constraints (4.9) impose the
demand fulfilment. Constraints (4.10), (4.11) and (4.12) are the limitation of load of
vehicle, inventory level and disassembly, respectively.

Stochastic Multi-Vehicle Collection-Disassembly Problem

The following formulation is called SMCDP as a version of SCDP with multi-vehicle
assumption. It is assumed that there are more than one vehicle available with homoge-
neous capacity. A vehicle is indexed as k, ∈ K. xkijt is 1 iff vehicle k visits node j right
after i at period t. This vehicle index is also used in Adulyasak et al. (2015a); Armentano
et al. (2011); Boudia et al. (2007) for PDP. The load of vehicle k after visiting node i at
period t in scenario ω is denoted as ykωit . The number of vehicles dispatched at period t
is denoted as zt.

Min
∑
t∈T

(CF · zt+
∑
k∈K

∑
i,j∈N

cij ·xkijt+
∑
ω∈Ω

ρω(CH · Iωt +CD ·P ω
t +

∑
a∈A

CPa ·SOω
at)) (4.15)

subject to:

(4.9), (4.11), (4.12), (4.14)∑
k∈K

∑
j∈N,i 6=j

xkijt ≤ 1 ∀i ∈ Nc,∀t ∈ T (4.16)∑
i∈Nc

xk1it ≤ 1 ∀k ∈ K, ∀t ∈ T (4.17)∑
k∈K

∑
i∈Nc

xk1it ≤ zt ∀t ∈ T (4.18)

zt ≤ K ∀t ∈ T (4.19)∑
i∈N,i 6=v

xkivt =
∑

j∈N,j 6=v

xkvjt ∀v ∈ N,∀k ∈ K, ∀t ∈ T (4.20)

ykωit + (Q− Sωit) · xk1it ≤ Q ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (4.21)

ykωit − ykωjt +Q · xkijt + (Q− Sωjt − Sωit) · xkjit ≤ Q− Sωjt i 6= j,∀i, j ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω

(4.22)
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Iωt = Iωt−1 +
∑
k∈K

∑
i,j∈N,i6=j

Sωit · xkijt − P ω
t ∀t ∈ T,∀ω ∈ Ω (4.23)∑

j∈N,i6=j

Sωit · xkijt ≤ ykωit ≤
∑

j∈N,i6=j

Q · xkijt ∀i ∈ N,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (4.24)

xkijt ∈ {0, 1} ∀i, j ∈ N,∀k ∈ K, ∀t ∈ T (4.25)

zt, y
kω
it ∈ Z+ ∀i ∈ N,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω. (4.26)

The objective function (4.15) is equivalent to (4.1) by adding the sum of vehicles at
the second term.

Constraints (4.16) ensure that each collection centre is visited at most once by at
most one vehicle in each period. Constraints (4.17) guarantee that each vehicle leaves
the depot at most once in each period. The number of vehicles leaving the depot is limited
by the number of available vehicles in constraints (4.18) and (4.19). Constraints (4.20),
(4.21), (4.22) and (4.24) are equivalent to (4.5), (4.6), (4.7) and (4.10), respectively, by
adding index k at x and y,∀k ∈ K.

4.4 Solution Methods

Due to the second-stage variables, some constraints of SMCDP are associated with
the scenario index ω. Once the number of scenarios Ω becomes very large, the problem
is difficult to solve. Sample Average Approximation (SAA), a Monte Carlo simulation-
based sampling method, is often used to deal with such problem. However, CPLEX is
unable to solve large size instances of CDP optimally within acceptable CPU times based
on Chapter 2. According to Chapter 3, Two-Phase Iterative Heuristic and Two-Phase
Iterative Heuristic with Enhancements outperform the other proposed methods. To deal
with the difficulties imposed by the number of scenarios and the size of instances, each
of the two methods combined with SAA were implemented.

4.4.1 Two-Phase Iterative Heuristic

Two-Phase Iterative Heuristic for SMCDP

As described in Chapter 3, this method decomposes the problem into Disassembly Lot-
Sizing Problem with Approximate Visiting Costs and routing problem. In this stochastic
and multi-vehicle case, we need to add stochastic and multi-vehicle factors into the sub-
problems. Henceforth, a problem called Stochastic Multi-Vehicle Disassembly Lot-Sizing
Problem with Approximate Visiting Costs (SMDLSPAVC) is introduced.

SMDLSPAVC determines how many vehicles to dispatche zt, which collection centre
to visit by each vehicle, how many EOL products to put in the inventory Iωt , how many
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EOL products to disassemble P ω
t and how much penalty occurred SOω

at. Instead of using
cij, it uses approximate visiting costs SCk

it. These costs are initialised using c0i + ci0 and
updated throughout the algorithm.

The decision variables of SMDLSPAVC are described as follows:

γkit

{
1 if node i is visited by vehicle k at period t, i ∈ Nc, k ∈ K, t ∈ T
0 otherwise.

βkt

{
1 if vehicle k visits any node Nc at period t, k ∈ K, t ∈ T
0 otherwise.

rkωit number of product collected from node i by vehicle k at period t under scenario ω
SMDLSPAVC is formalised as follows:

SMDLSPAVC

Min
∑
t∈T

(CF ·zt+
∑
k∈K

∑
i∈Nc

SCk
it ·γkit+

∑
ω∈Ω

ρω(CH ·Iωt +CD ·P ω
t +

∑
a∈A

CPa ·SOω
at)) (4.27)

Subject to:

(4.9), (4.11), (4.12)

Iωt = Iωt−1 +
∑
k∈K

∑
i∈Nc

rkωit − P ω
t ∀t ∈ T,∀ω ∈ Ω (4.28)

rkωit = Sωit · γkit ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (4.29)

∑
i∈Nc

rkωit ≤ min

{
Q;maxa

{ T∑
t′=t

qωat′

na

}}
∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω (4.30)∑

k∈K

γkit ≤ 1 ∀i ∈ Nc, ∀t ∈ T (4.31)∑
i∈Nc

γkit ≤ Nc · βkt ∀k ∈ K, ∀t ∈ T (4.32)

βkt ≤
∑
i∈Nc

γkit ∀k ∈ K, ∀t ∈ T (4.33)∑
k∈K

βkt = zt ∀t ∈ T (4.34)

zt ≤ K ∀t ∈ T (4.35)

γkit, β
k
t ∈ {0, 1} ∀i ∈ Nc, ∀k ∈ K, ∀t ∈ T (4.36)

SOω
at, I

ω
t , P

ω
t , r

kω
it , zt ∈ Z+ ∀a ∈ A, ∀i ∈ Nc,∀k ∈ K, ∀t ∈ T,∀ω ∈ Ω. (4.37)
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The objective function (4.27) aims to minimise the total cost consisting of fixed cost
of vehicles dispatched, approximate visiting cost and the expected cost of second-stage
decisions of inventory, product disassembled and unmet demand.

Constraints (4.28) impose the inventory balance of EOL products. Constraints (4.29)
state all EOL products belonging to collection centre i have to be picked up once it is
visited by any vehicle. Constraints (4.30) is the maximum limit of rkωit . Constraints
(4.31) guarantee that a collection centre is visited at most once by any vehicle for each
period. Constraints (4.32) state that βkt is equal to 1 if vehicle k visited at least one
collection centre in period t. Otherwise, βkt is equal to 0 as imposed by constraints
(4.33). Constraints (4.34) and (4.35) state that number of vehicles used in each period is
limited to the number of available vehicles. The nature of the decision variables on both
stages are imposed in constraints (4.36) and (4.37).

Based on the values of γkit obtained in SMDLSPAVC, the route of each vehicle is
constructed using LKH (Lin and Kernighan, 1973) as described in Algorithm 2 in Chapter
3. If necessary, the decision values and SCk

it are updated based on the objective value
obtained. Apart from its initial values, the diversification mechanism of SCk

it is employed
in order to move to the other solution space. The implementation of the method to the
problem is provided in algorithm 11.

Algorithm 11: Two-Phase Iterative Heuristic for SMCDP
solution ← ∅
Initialise SCkit,∀i ∈ Nc, k ∈ K, t ∈ T
while stopping criterion 3 is not met do

while stopping criterion 2 is not met do
while stopping criteria 1 are not met do

Solve SMDLSPAVC and get γkit,∀i ∈ Nc,∀k ∈ K,∀t ∈ T
Solve Routing Problem
Update solution (if necessary) and SCkit

end

Diversify SCkit
end

Multi-start procedure: SCkit = ρit · (c0i + ci0), ∀i ∈ Nc, k ∈ K, t ∈ T
end

As mentioned in Section 3.2.1, the approximate visiting costs SCk
it has a pivotal role to

connect between SMDLSPAVC and the routing decisions. In each iteration, it is updated
following Algorithm 12.

The diversification of SCk
it is implemented by multiplying SCk

it by the number of retail-
ers served at period t plus one for all retailers. One is added to avoid zero multiplication.
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Algorithm 12: Update of Approximate Visiting Costs SCk
it

for ∀t ∈ T , ∀k ∈ K, ∀i ∈ Nc do
if i ∈ routekt then

SCkit ← ci−i + cii+ − ci−i+
else

SCkit ← ∆it

end

end

Two-Phase Iterative Heuristic with Enhancements for SMCDP

In this part, the enhancement of Two-Phase Iterative Heuristic for SMCDP is pro-
posed. As described in Section 3.2.1, the enhancements are used to improve the method
to obtain better solutions.

In Algorithm 11, the problem is decomposed into SMDLSPAVC and the routing prob-
lem. The solutions and SCk

it are updated if the corresponding iteration provides better
solution. In this method, this step is denoted as the first step.

The enhancements used in this adaptive method expands the method presented in
Algorithm 11 by putting an additional step in order to propose a better solution. The
step introduces SMDLSPAVC II in order to provide the solution of SMDLSPAVC serving
less periods by introducing Z as a parameter indicating number of periods served in
SMDLSPAVC. The variable αt is equal to 1 if period t is served. Otherwise, it is 0. One
notes that the approximate visiting costs SCk

it of the second step are identical as at the
first step. SMDLSPAVC II is formalised as follows:

SMDLSPAVC II
Min (4.27)

Subject to:

(4.9), (4.11), (4.12), (4.28)− (4.37)

zt ≤ K · αt ∀t ∈ T (4.38)∑
t∈T

αt ≤ Z − 1 (4.39)

αt ∈ Z+ ∀t ∈ T. (4.40)

Based on our numerical experiments in Chapter 3, the additional step indeed pro-
vides better optimality gaps but longer CPU times than Two-Phase Iterative Heuristic.
Therefore, an adaptive procedure is used in this method to deal with this issue as follows.
The probability of using the step is denoted as prob. These values are halved once the
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step has no contribution to improve the solution by comparing these values with random
values rand. This method is depicted in Algorithm 13. This procedure is an extended
adaptation of this method for CDP described in Section 3.2.1.

The three stopping criteria entailed in Algorithm 11 and Algorithm 13 are as follows:

• stopping criteria 1 : standard deviation of the last ten fitness values, maximum
iterations and CPU times are less than 5 %, 100 and 7200 seconds, respectively

• stopping criterion 2 : maximum number of iterations of diversification mechanisms
is 5

• stopping criterion 3 : maximum number of iterations of multi-start procedure is 5.

Algorithm 13: Two-Phase Iterative Heuristic with Enhancements for SMCDP
solution ← ∅
Initialise SCkit,∀i ∈ Nc, k ∈ K, t ∈ T
while stopping criterion 3 is not met do

prob = 1
while stopping criterion 2 is not met do

while stopping criteria 1 is not met do
FIRST STEP

• Solve SMDLSPAVC and get γkit,∀i ∈ Nc, ∀k ∈ K, ∀t ∈ T
• Solve Routing Problem

• Update solution (if necessary) and SCkit

SECOND STEP
Generate rand
if rand ≤ prob then

• Solve SMDLSPAVC II and get γkit,∀i ∈ Nc,∀k ∈ K,∀t ∈ T
• Solve Routing Problem

• Update solution (if necessary) and SCkit

if solution is not updated then
prob = prob/2

end

end

end

Diversify SCkit
end

Multi-start procedure: SCkit = ρit · (c0i + ci0), ∀i ∈ Nc, k ∈ K, t ∈ T
end
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4.4.2 Sample Average Approximation

Since SMCDP is stochastic discrete optimization problem, an algorithmic framework
of Sample Average Approximation (SAA) is adapted to provide statistical lower and
upper bounds. It is Monte Carlo-based sampling in order to solve a problem having a
very large number of scenarios denoted as Ω′, which is intractable, by solving the problem
with smaller and tractable scenario Ω where |Ω| � |Ω′| (Adulyasak et al., 2015a; Ghilas
et al., 2016; Kleywegt et al., 2002).

The following procedure of SAA is applied to SMCDP:

1. Set replication M and generate a set of scenarios Ω as well as very large scenario
Ω′ independently (a replication M is a set of Ω). The probability of each scenario

ω associated with |Ω| is ρω =
1

Ω
.

2. For s = 1→M, do :

2.1. Solve SMCDP. Store the objective value Zs
Ω, the vectors of first-stage solutions

(zsΩ, xsΩ) and the vectors of second-stage solutions (IsΩ,Ps
Ω,SOs

Ω). The average
and the variance of the objective value (lower bound) after s-th replication
denoted as vsΩ and σsΩ

2 are obtained as follows:

vsΩ =
1

s

s∑
i=1

Zi
Ω

σsΩ
2 =

1

s · (s− 1)

s∑
i=1

(Zi
Ω − vsΩ)2

2.2. To obtain the second stage solutions IsΩ′ , Ps
Ω′ and SOs

Ω′ of a very large scenario
Ω′, use the best first stage solution after replication s denoted as ẑsΩ and x̂sΩ.
The corresponding objective value (upper bound) is denoted as vΩ′(Ẑ

s) and
its variance is obtained as follows:

σ2
Ω′ =

1

Ω′ · (Ω′ − 1)

Ω′∑
ω=1

(Gω − vΩ′(Ẑ
s))2

where,

Gω =
∑
t∈T

{
CF · ẑt +

∑
k∈K

∑
i,j∈N

cij · x̂kijt +CH · Ĩωt +CD · P̃ ω
t +

∑
a∈A

CPa · S̃O
ω

at

}
Note that Ĩωt , P̃ ω

t and S̃O
ω

at correspond to the second stage solution for scenario
ω ∈ Ω′.
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2.3. Calculate the SAA gap ε and its variance σ2
ε as follows:

ε = vΩ′(Ẑ
s)− vsΩ

σ2
ε = σ2

Ω′ + σsΩ
2

3. Return ẑsΩ and x̂sΩ as the best solution.

4.5 Numerical Experiments

In this part, the results of numerical experiments obtained are evaluated in order to
assess the performance of the methods.

4.5.1 Experimental Setup

All formulations and algorithms were implemented in Java using Concert Technology
and were solved by IBM CPLEX 12.6 on a PC with processor Intel R©CoreTMi7 CPU 2.9
GHz and 4 GB of RAM under Windows 7 Professional.

The Monte Carlo simulation was used for the scenario generation of the parameters
associated with uncertainty (Sωit, n

ω
at and qωat). Those parameters were generated indepen-

dently by multiplying the corresponding values of deterministic CDP with random value
following uniform distribution from 0 to 1.5. The number of vehicles were set as 1, 3 and
5 while the large scenario Ω′ were set as 1000.

To avoid memory issues, the maximum number of branch nodes of CPLEX for both
two SMRLSDCs and large scenario problem of SAA is limited to 75000. The methods
were tested using instances 49, 61, 73, 85 and 97 of Random 1, Random 2, Cluster 1 and
Cluster 2 of Data Set I (see 2.4). The characteristic of the instances is provided in Table
4.1.

Table 4.1 – Instances

Instance
Characteristics

Nodes Periods Components Demand
Disassembly

Capacity

49 10 10 10 U(40% : 60%) · S ∞
61 10 5 10 U(40% : 60%) · S ∞
73 5 25 10 U(40% : 60%) · S ∞
85 5 10 10 U(40% : 60%) · S ∞
97 5 10 5 U(40% : 60%) · S ∞

U(a : b) indicates that the corresponding parameter was generated with uniform distribution with parameter a and b
S is the average of supply of EOL product for all collection centres and all periods.
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Table 4.2 – Results of All Data Sets

Data Sets
H H∗

SAA
EVPI VSS

SAA
EVPI VSS

µ σ CPU Time µ σ CPU Time
Random 1 539.5 26.9 1782.0 2349.5 -158.7 541.0 27.8 2030.6 2352.2 -160.6
Random 2 539.7 27.5 2162.1 2372.1 -129.2 540.8 27.9 2369.3 2345.4 -135.0
Cluster 1 539.3 27.6 1485.3 2208.8 -327.8 539.7 26.9 1423.3 2279.1 -326.0
Cluster 2 539.2 27.7 1438.4 2259.8 -290.7 540.1 26.7 1465.4 2282.0 -284.2

µ is average
σ is standard deviation
CPU time is in seconds

Figure 30 – Average CPU Times (in seconds) for All M

4.5.2 Results

In order to simplify the representation of the results, H and H∗ refer to Two-Phase
Iterative Heuristic and Two-Phase Iterative Heuristic with Enhancements, respectively.

According to Table 4.2, both methods provide solutions with no significant difference
in terms of average, standard deviation, EVPI and VSS. In terms of CPU times, H∗
requires shorter time in solving the data set of Random 1 and Random 2 rather than H∗
as shown in Table 4.2.

Based on Figures 30 and 31, one notes that both methods are stable to solve the
instances although there is a variation of scenario M. However, the increase of the
number of available vehicle K causes longer CPU times for both methods
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Figure 31 – Average CPU Times (in seconds) for All K

4.6 Conclusions

In this chapter, the formulation of the integer linear programming described in Chap-
ter 2 is extended. The new formulation deals with the uncertainty of the quantity and
the quality of the single type EOL product as well as the demands of the associated
components. The uncertain parameters are the availability of EOL product at collection
centres, the number of components in each EOL product collected and their demands.

The problem is formalised as a two-stage stochastic problem in which the first-stage
decision variables have to be taken during the planning stage before any realisation of the
uncertain parameters. The second-stage decision variables are determined consecutively.

The first stage decisions correspond to the number of vehicles dispatched and their
routing decisions. Whilst, the second stage decisions correspond to the inventory level,
the number of disassembled and the unmet demands.

Accordingly, two methods are proposed to deal with: (i) Two-Phase Iterative Heuristic
(H) and (ii) Two-Phase Iterative Heuristic with Enhancements (H∗). H decomposes the
problem into two subproblems: the lot-sizing problem with approximate visiting costs
and the routing problem. Then, the two subproblems are solved iteratively. (H∗) is an
enhanced version of (H) through an additional step that improves the solution provided
by both subproblems . The algorithms are combined with the algorithmic framework of
Sample Average Approximation. This framework is based on the Monte Carlo simulation
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that allows to solve a problem having very large scenario, which is intractable, by solving
the problem with smaller and tractable scenario.

Based on the obtained results, both methods have no significant difference in terms
of solution and CPU time. However, H∗ requires longer average CPU time rather than
H in data sets of Random 1 and Random 2 and shorter CPU time in data sets of Cluster
1 and Cluster 2.

Chapter 2 - Chapter 4 deal with the decision integration between collection and dis-
assembly process in which the latter process is formalised as lot-sizing problem of EOL
product. The following chapter is to deal with similar integration but the disassembly
process is formalised as disassembly line balancing problem.

4.7 Publication

The following paper based on this chapter is currently under preparation:

• Habibi, M. K. K., Battäıa, O., Cung, V.-D., Dolgui, A., Tiwari, M. K. Sample
Average Approximation for Multi-Vehicle Collection-Disassembly Problem under
Uncertainty. Submitted to and currently under revision in International Journal of
Production Research.
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Table 4.3 – Results of Random 1

Instance |K| |Ω| |M|
H H∗

SAA
EVPI VSS

SAA
EVPI VSS

µ σ CPU Time µ σ CPU Time
49 1 5 200 497.6 20.8 1094.5 2158.8 -85.9 493.5 20.3 1150.9 1954.9 -88.1

10 100 487.4 20.2 847.7 2020.3 -88.8 500.8 19.6 1011.0 2126.6 -85.4
20 50 480.1 20.3 804.8 2196.4 -101.5 493.4 21.9 1087.9 2196.6 -90.7
50 20 486.3 24.2 753.3 2156.4 -91.3 500.3 20.6 818.4 2182.5 -82.2

3 5 200 494.9 21.3 2266.1 2369.0 -75.5 495.0 22.0 2189.7 2260.3 -80.8
50 20 496.2 28.2 1631.6 1966.3 -85.4 499.2 21.6 1915.6 2034.0 -87.2
10 100 494.4 20.7 2044.9 2360.4 -85.6 501.0 21.1 2033.4 2176.8 -82.4
20 50 496.8 20.8 1846.7 2183.5 -80.1 491.1 19.3 1863.5 2193.0 -89.2

5 5 200 496.1 21.2 3165.3 2349.5 -84.3 501.6 22.3 3020.1 2185.7 -83.9
10 100 491.4 21.0 2620.7 2250.8 -79.6 492.4 21.9 2740.7 2101.2 -87.8
20 50 495.0 21.8 2787.3 2080.0 -80.8 500.3 23.3 2762.9 2145.7 -92.4
50 20 501.0 19.9 3898.2 2417.7 -83.3 506.1 21.3 2741.1 2280.9 -85.7

61 1 5 200 239.4 10.3 505.1 1117.0 -81.9 246.1 10.0 435.2 873.1 -78.7
10 100 239.5 10.3 380.7 1071.3 -79.4 247.3 9.0 378.8 1033.3 -78.6
20 50 247.2 9.6 362.5 1128.7 -74.1 239.7 9.2 351.3 1095.8 -82.3
50 20 241.0 11.5 333.8 1019.8 -84.6 242.1 8.9 283.8 874.0 -78.9

3 5 200 242.1 9.8 722.7 870.5 -83.1 245.3 9.6 681.3 1018.1 -74.8
10 100 240.1 9.3 686.1 1091.1 -84.9 241.9 10.2 589.0 1080.8 -83.4
20 50 245.2 9.8 403.9 875.2 -74.0 235.8 9.8 568.0 867.8 -80.8
50 20 236.5 9.1 500.7 865.8 -81.2 245.5 13.0 485.2 1145.9 -76.8

5 5 200 241.8 10.5 869.3 872.8 -72.5 244.7 9.5 779.5 1132.3 -77.3
10 100 238.1 10.3 733.1 1058.5 -77.1 242.0 11.0 651.4 1144.4 -72.6
20 50 242.0 9.6 636.4 1058.2 -79.4 241.3 9.3 596.2 1101.2 -75.1
50 20 242.0 10.9 751.4 869.7 -80.9 239.4 9.6 565.1 868.5 -83.4

73 1 5 200 1223.9 50.6 1882.6 5439.7 -509.1 1222.8 51.1 1767.2 5133.7 -492.5
10 100 1233.4 48.1 1509.5 5261.3 -480.8 1210.2 55.0 1530.6 5401.5 -503.7
20 50 1220.6 47.2 1568.4 5177.1 -492.5 1232.0 48.0 1503.8 5275.7 -496.2
50 20 1217.4 49.1 1493.9 5496.0 -482.1 1234.2 40.7 1550.9 5060.4 -498.4

3 5 200 1227.0 51.4 3304.9 5144.6 -473.7 1225.2 49.3 3690.6 5562.9 -489.0
10 100 1224.4 50.5 3470.4 5319.6 -493.8 1216.3 55.0 3962.8 5706.9 -498.9
20 50 1219.4 42.3 3150.9 5377.4 -492.1 1218.8 57.5 4160.3 5222.9 -493.9
50 20 1216.9 54.2 3578.6 5000.5 -488.7 1236.1 47.0 4497.5 5199.7 -474.1

5 5 200 1225.7 47.2 4285.0 5047.9 -489.5 1243.6 54.4 6365.8 5546.4 -487.0
10 100 1225.3 50.2 4272.0 4938.6 -494.8 1221.9 48.9 6288.2 5391.1 -497.1
20 50 1221.5 46.2 5372.5 5376.4 -491.5 1230.5 48.4 7675.5 5296.1 -491.8
50 20 1226.3 41.6 5667.6 5264.1 -498.4 1224.5 67.5 9996.3 5533.2 -492.7

85 1 5 200 498.8 20.3 566.2 2289.2 -153.4 501.4 21.7 784.4 2225.0 -173.4
10 100 504.9 22.6 501.3 2020.0 -211.1 491.7 20.2 643.7 2240.7 -203.7
20 50 499.4 20.1 489.5 2282.9 -242.1 488.8 20.9 519.2 1970.9 -224.9
50 20 494.2 19.5 394.4 2268.2 -202.6 491.8 18.9 516.4 2230.1 -199.4

3 5 200 495.2 21.1 919.5 2263.2 -225.5 501.7 22.3 1468.9 2468.6 -200.5
10 100 498.8 20.7 898.2 2034.9 -246.6 497.0 23.5 1237.7 1987.0 -248.8
20 50 496.7 21.2 770.6 1959.9 -217.6 494.7 20.9 1038.0 2219.7 -224.4
50 20 494.2 18.3 728.1 2278.0 -249.9 500.1 27.9 931.1 2054.3 -175.3

5 5 200 490.6 22.9 1184.6 2263.1 -205.9 498.6 20.8 1678.3 1970.2 -191.0
10 100 492.9 21.0 1056.6 2049.2 -221.2 494.0 18.0 1413.2 2295.2 -197.8
20 50 499.2 19.9 1027.3 2194.7 -205.9 495.5 21.2 1284.2 2299.5 -168.0
50 20 497.0 21.3 886.6 2051.4 -213.9 495.2 20.1 1195.1 1974.8 -255.8

97 1 5 200 243.7 9.5 340.3 1179.1 -70.1 242.5 10.1 432.4 1073.0 -68.5
10 100 244.5 9.3 329.8 1119.7 -65.1 243.1 10.2 421.0 1120.0 -68.1
20 50 239.3 11.9 248.2 1017.9 -72.9 241.1 10.6 338.7 1083.9 -64.3
50 20 244.6 8.5 260.3 1070.8 -70.1 245.7 9.8 387.9 1074.3 -68.9

3 5 200 242.2 10.0 417.7 1019.5 -71.1 240.9 10.2 728.2 1088.2 -68.1
10 100 242.1 10.0 391.4 1109.8 -69.4 245.1 10.9 536.9 1181.7 -65.8
20 50 236.8 9.8 377.5 1051.5 -75.3 247.8 11.0 423.9 1071.9 -68.1
50 20 240.8 10.7 370.2 872.1 -65.3 243.4 10.4 440.4 1259.0 -62.6

5 5 200 242.2 9.6 598.1 1130.9 -68.8 241.6 9.6 763.5 1083.8 -70.4
10 100 238.0 10.3 409.2 870.6 -72.8 245.4 9.8 571.9 1043.8 -72.2
20 50 241.9 9.2 455.5 1084.3 -72.2 246.4 9.4 542.2 1034.6 -65.9
50 20 248.2 9.8 292.5 876.2 -65.2 243.9 9.0 524.1 1090.4 -70.1

µ is average
σ is standard deviation
CPU time is in seconds
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Table 4.4 – Results of Random 2

Instance |K| |Ω| |M|
H H∗

SAA
EVPI VSS

SAA
EVPI VSS

µ σ CPU Time µ σ CPU Time
49 1 5 200 493.5 21.0 1083.2 2314.9 -44.3 495.2 21.0 986.7 2275.8 -67.4

10 100 488.5 21.1 1146.2 2134.3 -58.7 496.2 21.8 976.8 2192.9 -63.1
20 50 491.2 23.8 1045.2 2143.8 -49.6 496.9 21.6 872.6 2224.9 -52.6
50 20 495.4 20.4 835.8 2207.2 -48.6 498.0 22.0 781.6 2315.9 -47.6

3 5 200 490.6 20.8 2187.7 2123.9 -50.8 498.9 21.2 2161.6 2099.4 -45.5
10 100 498.2 21.3 1806.3 2213.5 -42.2 492.7 19.5 1678.9 2168.7 -75.2
20 50 491.1 22.3 1647.2 2437.5 -43.3 505.4 19.9 1478.9 2108.6 -66.5
50 20 492.0 28.9 1929.7 2406.4 -49.3 496.3 23.4 1637.6 2199.1 -48.6

5 5 200 493.8 21.9 6001.0 2250.4 -46.7 493.1 21.2 2983.3 2021.6 -41.8
10 100 493.2 22.5 5976.1 2161.0 -48.7 502.4 21.5 2500.0 2125.0 -57.3
20 50 492.0 24.8 6545.2 2229.1 -58.4 505.4 20.0 2482.6 2007.7 -45.6
50 20 497.6 21.2 4535.5 2255.1 -53.0 499.2 19.5 2642.6 2309.6 -47.7

61 1 5 200 247.3 9.5 341.1 1060.4 -58.2 241.0 10.1 309.5 1082.9 -60.6
10 100 243.0 9.1 278.5 1160.8 -52.6 242.9 10.4 307.2 1071.3 -58.3
20 50 244.1 9.3 243.6 872.8 -58.8 243.4 10.6 288.8 1051.4 -58.5
50 20 240.2 8.9 245.6 1059.2 -53.9 246.6 9.0 246.6 1126.2 -53.4

3 5 200 243.7 10.5 535.5 874.0 -55.9 246.1 9.6 525.8 876.6 -50.4
10 100 243.6 10.7 474.8 1094.7 -55.7 239.5 10.7 591.8 1079.8 -59.7
20 50 237.8 10.8 484.2 1080.5 -58.5 241.8 9.6 532.2 1043.5 -59.3
50 20 237.8 9.5 376.4 867.7 -62.4 242.4 10.8 398.9 1079.6 -56.5

5 5 200 249.3 9.7 708.7 875.6 -52.5 244.2 9.2 779.5 1140.5 -59.4
10 100 242.9 10.3 644.0 1124.7 -53.5 237.5 9.3 675.3 1055.2 -65.5
20 50 244.9 9.2 502.1 874.3 -58.1 240.0 10.0 631.3 1035.2 -60.7
50 20 240.2 9.8 561.4 1087.3 -61.1 237.6 8.4 595.1 1118.5 -65.9

73 1 5 200 1209.4 53.1 2806.0 5303.1 -201.6 1231.8 54.8 3201.2 5247.3 -201.0
10 100 1225.5 47.7 2844.3 5475.2 -216.9 1223.4 50.2 2742.8 5605.5 -241.3
20 50 1231.0 58.2 2422.0 5415.1 -196.3 1237.0 52.3 2533.2 5293.4 -260.2
50 20 1218.7 48.6 2403.6 5394.4 -241.5 1221.4 55.2 3031.0 5531.3 -300.1

3 5 200 1224.3 47.1 5757.0 5298.7 -224.3 1214.0 50.6 7632.9 5509.1 -250.1
10 100 1232.8 51.0 5773.8 5366.5 -200.2 1233.6 47.0 7329.7 5647.0 -238.4
20 50 1220.2 47.7 6601.9 5529.3 -193.7 1228.6 57.1 8286.1 5204.4 -229.2
50 20 1218.7 46.0 6751.6 5235.9 -162.1 1221.4 54.5 10630.4 5531.6 -199.6

5 5 200 1226.1 50.3 8530.0 5464.0 -185.9 1221.7 53.2 11650.8 5107.9 -231.0
10 100 1227.7 49.9 8989.0 5470.0 -140.6 1238.6 50.2 11097.4 5608.8 -169.2
20 50 1223.1 57.4 8883.3 5289.0 -240.4 1217.1 53.7 14068.7 5466.4 -200.2
50 20 1219.4 56.8 11522.3 5310.2 -188.8 1217.1 53.8 15947.8 5339.4 -201.2

85 1 5 200 501.9 19.7 770.4 2343.3 -183.9 492.6 19.3 819.7 2102.0 -175.4
10 100 497.7 23.6 619.7 2315.7 -152.6 499.3 21.1 658.0 2189.9 -185.1
20 50 501.6 17.6 610.7 2345.8 -174.8 495.1 21.6 555.6 1932.8 -173.2
50 20 499.3 24.9 528.7 2215.9 -181.2 501.1 27.6 492.7 1943.5 -175.9

3 5 200 496.7 22.2 1199.6 2282.1 -185.9 497.7 20.9 1227.0 2226.7 -140.4
10 100 497.5 19.3 985.1 1957.7 -154.5 495.8 22.2 1271.1 1996.6 -181.7
20 50 497.5 21.5 1021.5 2248.9 -179.2 494.1 20.3 943.7 2269.2 -154.5
50 20 491.7 24.3 846.6 2058.4 -183.7 492.7 24.1 827.5 2147.9 -171.4

5 5 200 502.1 20.3 1378.0 2068.5 -151.9 495.0 20.2 1708.2 2041.3 -186.3
10 100 490.4 21.5 1313.0 2179.8 -187.6 501.4 20.2 1296.2 2199.3 -162.5
20 50 500.0 22.3 1173.1 2070.1 -184.5 496.9 18.2 1235.6 1980.2 -185.4
50 20 500.2 16.8 1159.8 2192.4 -184.8 489.5 20.4 1318.6 1987.8 -165.6

97 1 5 200 239.2 10.0 363.9 1117.8 -164.2 243.4 10.0 343.2 871.8 -165.8
10 100 236.6 10.4 292.9 1087.3 -155.8 236.6 9.6 349.6 867.2 -168.3
20 50 240.5 9.1 272.8 1118.3 -167.8 241.5 9.3 297.6 1144.5 -114.2
50 20 242.2 8.7 276.6 1082.2 -162.0 243.6 10.1 276.6 873.7 -146.5

3 5 200 236.3 9.3 444.5 1052.3 -165.6 242.5 10.0 510.7 1061.5 -148.0
10 100 248.0 9.9 399.3 1090.3 -157.4 239.8 10.2 448.1 1043.3 -186.1
20 50 240.9 9.5 270.8 871.4 -162.8 242.5 9.9 438.3 1074.5 -169.6
50 20 237.9 9.6 418.0 867.0 -169.8 243.6 9.3 364.8 874.4 -180.4

5 5 200 242.4 10.6 618.8 873.4 -181.7 253.5 9.5 452.4 1128.9 -154.9
10 100 241.6 9.8 561.9 1051.4 -166.7 237.9 9.4 335.4 869.3 -166.6
20 50 246.2 11.3 424.4 1070.8 -158.6 239.1 10.2 425.3 1036.6 -180.5
50 20 240.9 11.0 416.3 1125.7 -180.0 242.8 10.3 336.4 873.0 -166.9

µ is average
σ is standard deviation
CPU time is in seconds
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Table 4.5 – Results of Cluster 1

Instance |K| |Ω| |M|
H H∗

SAA
EVPI VSS

SAA
EVPI VSS

µ σ CPU Time µ σ CPU Time
49 1 5 200 489.7 19.8 1008.6 2315.9 -282.4 497.4 20.6 668.3 2096.4 -280.5

10 100 493.2 22.1 790.5 2040.8 -292.8 496.1 19.0 614.3 2053.7 -263.3
20 50 489.9 22.3 782.6 2082.5 -232.7 500.0 20.4 692.0 2155.1 -273.9
50 20 503.9 17.7 725.3 2057.8 -239.9 497.2 20.6 706.1 2271.9 -283.5

3 5 200 497.7 22.0 1528.8 2026.5 -279.7 499.5 20.2 1450.4 1791.6 -259.1
10 100 493.9 21.1 1288.5 2048.1 -187.1 487.7 20.4 1227.0 2064.5 -179.5
20 50 500.7 18.4 1314.7 2058.0 -268.3 492.9 23.3 1207.5 2101.5 -179.5
50 20 489.1 16.9 1383.0 2095.0 -276.9 505.3 25.9 1214.8 2327.2 -291.8

5 5 200 480.7 21.4 5917.0 2097.4 -286.7 484.7 21.3 2155.5 2078.7 -262.9
10 100 498.0 21.0 5431.5 2105.4 -194.4 496.7 19.7 1888.1 2034.1 -260.2
20 50 501.4 19.5 4459.2 1795.4 -268.1 480.5 20.7 2099.5 2121.1 -237.1
50 20 489.9 22.0 2969.9 2080.8 -272.3 495.5 20.1 2245.9 2326.8 -229.3

61 1 5 200 243.4 9.7 267.5 874.4 -126.5 246.6 10.5 333.6 873.8 -128.4
10 100 239.1 10.4 315.2 1113.5 -136.9 243.0 9.9 308.7 1133.9 -130.3
20 50 240.5 9.5 329.9 871.2 -131.4 239.4 10.7 256.3 870.7 -132.3
50 20 244.3 10.0 400.2 874.2 -123.9 247.0 10.2 309.3 1142.1 -124.4

3 5 200 242.8 10.4 495.4 874.9 -129.4 241.4 9.3 566.7 1141.2 -128.8
10 100 239.7 11.5 494.1 1122.6 -135.8 234.1 9.6 439.9 868.9 -129.8
20 50 241.2 11.0 463.4 1176.2 -135.1 243.6 9.2 410.7 875.5 -124.3
50 20 237.6 9.6 364.2 869.4 -137.9 241.3 11.5 440.7 1098.7 -133.2

5 5 200 241.7 10.1 895.1 868.5 -133.2 241.7 9.9 680.5 870.0 -130.9
10 100 241.0 10.0 803.8 1060.2 -132.9 236.4 10.7 701.1 1111.4 -136.6
20 50 237.5 9.0 701.2 868.1 -134.9 243.0 9.0 566.6 1092.8 -129.6
50 20 246.6 10.7 660.8 876.0 -127.4 236.6 10.5 507.1 872.8 -131.5

73 1 5 200 1220.1 51.6 1740.5 4947.6 -855.6 1230.2 52.3 1602.8 4974.8 -835.0
10 100 1214.1 57.6 1681.3 5338.2 -854.2 1224.6 55.9 1432.6 5103.3 -834.8
20 50 1207.3 47.7 1344.7 4409.1 -843.2 1229.2 50.4 1501.9 5565.9 -839.3
50 20 1236.6 61.0 1326.0 4993.6 -845.9 1220.0 43.8 1515.1 4940.6 -843.3

3 5 200 1223.1 50.8 3612.4 5054.1 -848.1 1222.0 49.0 3155.6 5092.7 -846.4
10 100 1229.2 55.3 3065.3 4945.5 -826.6 1224.2 47.7 3009.2 5180.0 -846.8
20 50 1224.8 48.6 3516.6 4966.4 -817.9 1217.7 45.0 4726.1 5044.6 -857.7
50 20 1225.6 55.3 3870.4 4697.2 -845.8 1211.9 51.8 4366.4 4857.9 -854.1

5 5 200 1217.3 51.3 5139.9 5343.3 -847.0 1239.1 53.0 5021.3 5063.7 -822.0
10 100 1225.0 49.1 4431.5 4987.7 -842.3 1228.4 48.9 5279.9 4934.7 -829.8
20 50 1224.1 53.0 5325.7 4939.7 -858.8 1222.2 51.5 7561.0 5093.6 -836.9
50 20 1231.1 49.5 5421.2 5073.2 -838.9 1217.4 52.4 9495.7 5238.9 -848.8

85 1 5 200 493.9 23.2 614.6 2033.6 -275.1 495.8 20.6 547.2 1794.5 -272.5
10 100 494.6 20.2 513.2 2063.4 -278.2 496.4 22.5 538.3 2283.7 -272.6
20 50 497.8 22.9 478.4 2099.7 -271.4 498.0 20.5 478.3 2308.7 -283.4
50 20 499.4 19.7 428.1 2108.0 -276.8 492.4 18.7 488.2 2143.8 -278.4

3 5 200 496.5 19.5 941.6 2052.7 -270.9 500.0 20.6 952.1 2039.1 -269.7
10 100 499.2 18.2 868.1 2157.1 -274.2 496.1 20.2 956.3 2161.4 -274.8
20 50 493.0 18.3 891.9 2066.7 -277.0 500.2 23.3 987.1 2341.5 -271.5
50 20 497.3 19.0 809.7 2321.1 -273.3 488.1 22.3 949.2 2206.7 -280.3

5 5 200 492.4 20.4 1305.7 2103.5 -284.8 497.9 22.8 1288.5 2284.4 -272.9
10 100 498.7 19.3 992.0 2055.9 -264.5 496.9 21.3 984.5 2103.7 -284.3
20 50 502.5 21.8 1086.4 1799.1 -266.0 491.9 18.9 1047.5 2107.6 -279.9
50 20 488.0 20.5 1074.4 2104.9 -274.8 500.6 23.1 1132.1 2062.6 -266.8

97 1 5 200 241.5 10.2 350.2 870.5 -131.2 243.6 9.2 355.2 1056.1 -131.0
10 100 237.7 10.5 310.3 1121.9 -135.8 242.4 10.4 334.0 1089.2 -135.0
20 50 243.3 11.5 295.6 1082.6 -130.1 244.1 10.8 272.3 1185.6 -134.8
50 20 239.8 8.6 312.3 1069.6 -132.4 242.8 11.4 296.4 1113.5 -134.2

3 5 200 240.1 10.5 441.3 1125.9 -134.6 240.5 10.1 458.6 1049.1 -135.4
10 100 242.2 9.4 379.7 873.6 -127.5 240.8 10.2 370.0 1081.4 -128.1
20 50 245.2 9.2 385.0 874.1 -134.9 243.1 10.7 413.7 1075.1 -128.4
50 20 243.6 8.9 399.2 875.2 -132.3 246.0 10.2 357.7 874.9 -134.2

5 5 200 244.9 10.1 525.7 873.4 -131.1 243.9 9.6 610.9 1089.7 -133.0
10 100 239.3 9.2 479.1 1101.2 -136.8 241.5 10.1 414.1 871.5 -130.0
20 50 243.6 9.4 499.8 871.1 -129.7 242.0 10.6 326.3 869.6 -134.5
50 20 239.8 12.1 468.1 872.8 -133.8 242.0 8.5 479.3 1086.6 -137.4

µ is average
σ is standard deviation
CPU time is in seconds
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Table 4.6 – Results of Cluster 2

Instance |K| |Ω| |M|
H H∗

SAA
EVPI VSS

SAA
EVPI VSS

µ σ CPU Time µ σ CPU Time
49 1 5 200 503.2 21.0 903.6 2087.0 -262.0 497.2 21.2 723.8 2080.8 -286.7

10 100 486.2 19.9 704.4 2058.3 -250.9 503.6 19.8 595.0 2088.5 -223.8
20 50 497.8 20.3 747.3 2261.4 -282.4 490.5 22.6 613.4 2290.8 -288.6
50 20 502.0 23.5 705.0 2403.0 -284.5 492.4 20.1 637.3 2058.4 -238.1

3 5 200 488.3 20.8 1730.4 2039.5 -285.3 496.2 21.0 1829.5 1792.2 -286.2
10 100 500.2 20.4 1532.2 2131.4 -280.8 498.1 21.5 1512.9 2055.2 -284.2
20 50 491.4 22.9 1273.8 2091.8 -228.7 497.6 18.9 1428.7 2019.5 -234.0
50 20 490.4 21.0 1360.1 2070.9 -286.9 491.7 20.3 1615.0 2383.7 -181.7

5 5 200 501.0 22.8 6611.2 2032.7 -280.9 497.5 21.4 2387.4 2127.0 -284.1
10 100 499.0 19.5 6153.6 2041.8 -201.1 497.9 23.1 2115.3 2143.0 -220.6
20 50 497.8 22.1 4860.0 2073.2 -279.5 496.5 18.7 2017.9 2056.4 -286.8
50 20 502.0 26.9 3893.3 2088.4 -282.6 496.4 17.3 2377.4 2061.3 -283.6

61 1 5 200 241.8 10.8 485.6 1135.4 -100.4 238.2 10.1 414.6 1107.3 -101.1
10 100 239.8 10.1 362.1 872.2 -103.0 247.2 9.5 375.1 1061.0 -98.6
20 50 240.5 9.4 365.2 872.5 -105.3 239.6 12.1 381.7 1047.8 -104.1
50 20 243.5 8.8 338.1 873.4 -105.7 242.3 9.4 336.6 1113.6 -103.0

3 5 200 239.2 10.5 619.9 867.9 -106.4 243.0 9.4 771.4 1147.5 -97.2
10 100 239.8 9.9 593.7 1117.1 -108.2 242.7 9.2 645.1 1113.0 -102.0
20 50 233.7 9.5 576.5 1105.4 -109.1 241.9 9.3 482.1 873.8 -101.4
50 20 240.4 8.5 531.9 1086.8 -104.8 245.8 10.2 621.5 1131.1 -101.0

5 5 200 241.1 11.0 915.1 1098.3 -97.0 242.5 9.9 924.2 873.1 -101.3
10 100 244.5 10.0 741.8 873.9 -99.9 242.6 10.3 738.5 873.6 -96.2
20 50 232.3 10.3 717.4 1166.9 -108.9 239.6 8.7 691.3 1052.6 -100.8
50 20 239.1 9.5 598.3 870.6 -102.6 239.2 8.5 762.1 1154.8 -102.5

73 1 5 200 1218.5 50.7 1916.9 5325.8 -750.5 1222.5 50.1 2118.9 5597.6 -657.6
10 100 1215.6 53.2 1675.4 5474.6 -674.6 1223.9 53.2 1807.7 5323.1 -766.9
20 50 1217.4 47.6 1422.6 5005.3 -764.1 1229.1 48.0 1590.1 5264.0 -603.5
50 20 1216.8 48.5 1665.1 5241.3 -692.1 1225.1 51.4 1652.7 5306.2 -611.0

3 5 200 1224.7 50.3 3494.5 4928.7 -601.3 1222.2 51.1 3673.4 4646.0 -761.1
10 100 1217.9 54.0 2626.0 4697.1 -593.5 1232.7 47.7 3798.4 5025.8 -748.2
20 50 1223.7 52.2 3017.7 4937.5 -753.6 1224.2 51.8 3873.3 5311.4 -753.6
50 20 1230.7 57.8 3009.5 4421.4 -743.2 1226.1 41.6 4485.9 5418.4 -580.2

5 5 200 1227.7 53.1 3927.8 5529.3 -701.0 1219.2 50.1 5221.7 5079.4 -673.3
10 100 1230.6 48.0 3550.0 5260.1 -689.0 1214.7 50.9 5099.8 5228.4 -690.6
20 50 1230.0 54.0 4700.4 5227.5 -750.2 1225.2 54.4 7049.2 4893.5 -757.3
50 20 1217.3 52.1 5893.3 5285.3 -749.6 1213.6 56.9 8144.8 4908.1 -681.3

85 1 5 200 495.4 21.3 494.8 2104.7 -234.9 494.0 19.8 628.3 2061.8 -241.4
10 100 490.0 23.0 531.8 2379.4 -211.4 494.7 21.8 550.9 2035.6 -240.9
20 50 490.0 21.4 493.4 2289.1 -242.5 500.6 18.2 478.8 2030.0 -230.7
50 20 494.6 20.4 398.1 1791.3 -246.2 495.5 21.2 468.9 2118.6 -240.2

3 5 200 498.4 19.5 766.4 1794.4 -267.3 501.6 19.7 1035.1 2112.9 -235.9
10 100 501.4 22.2 760.4 2065.5 -240.3 494.1 20.0 996.7 1789.6 -223.7
20 50 493.1 22.8 665.2 2289.1 -245.0 496.1 17.6 782.9 2039.4 -240.8
50 20 492.1 20.3 679.9 2311.4 -225.5 498.3 19.0 751.7 2109.4 -225.5

5 5 200 489.9 21.3 1186.9 2301.0 -240.3 497.1 20.3 1337.8 2129.0 -240.3
10 100 493.6 21.7 1047.8 2258.6 -234.1 492.4 18.8 1291.7 2326.4 -231.2
20 50 491.1 20.8 948.3 2346.6 -240.5 493.9 20.9 1023.7 2044.0 -240.0
50 20 495.1 21.8 965.2 2047.6 -232.4 493.3 18.8 1044.3 2112.2 -242.2

97 1 5 200 245.8 11.7 234.8 1125.0 -140.5 241.4 9.7 360.1 872.7 -138.5
10 100 246.4 9.9 177.5 874.0 -138.9 239.0 10.7 319.7 869.7 -143.9
20 50 243.1 11.7 206.8 869.9 -141.9 247.2 9.5 291.9 876.2 -133.2
50 20 240.0 9.0 164.4 871.2 -138.7 241.0 9.5 289.4 1064.2 -103.6

3 5 200 244.4 9.1 311.5 873.8 -124.6 241.7 9.3 347.6 1140.1 -135.9
10 100 242.5 10.6 268.2 871.3 -139.2 244.8 9.7 325.3 1165.4 -138.3
20 50 243.6 9.0 261.5 874.1 -138.6 244.0 9.8 273.4 872.6 -138.3
50 20 236.0 12.3 271.5 1097.1 -160.7 239.2 9.6 286.9 1161.7 -143.1

5 5 200 242.8 10.5 324.1 873.1 -135.3 246.7 10.3 418.5 1116.5 -139.0
10 100 244.5 9.6 322.8 874.7 -137.3 242.2 9.5 392.5 1119.0 -135.4
20 50 242.6 11.1 318.5 875.9 -130.4 241.5 9.1 352.7 1170.4 -138.2
50 20 246.9 9.4 286.7 875.5 -137.3 248.1 8.4 361.4 872.6 -142.5

µ is average
σ is standard deviation
CPU time is in seconds
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Chapter 5

Integrated
Procurement-Disassembly Problem

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Instance Generation . . . . . . . . . . . . . . . . . . . . . . . . 97

5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Introduction

This chapter provides another problem integrating collection and disassembly pro-
cesses. Particularly, the collection decisions concern about the routing problem while the
disassembly decisions focus on the disassembly line balancing. This problem is so called
Integrated Procurement-Disassembly Problem.

The assumption is that the disassembly line is flexible enough to adapt the routing
decisions. It is supported by the fact the disassembly process is often performed manually.

This chapter is intended to deal with the collection and the disassembly process of
EOL products. It proposes an integrated model for Vehicle Routing Problem based
EOL product collection (VRP) and Disassembly Line Balancing Problem (DLBP) called
integrated procurement-disassembly problem. The model minimises the total cost cor-
responding to the collection of EOL products and their disassembly process related to
VRP and DLBP, respectively. During products collection process, we assume only one
vehicle available and several suppliers who have EOL product to be collected. The model
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admits partial disassembly since it aims to release the demanded parts only. To the best
of our knowledge, it is the first work proposes the integration between collection process
and disassembly balancing problem.

5.2 Problem Definition

Before being disassembled, the EOL products are collected from suppliers to disassem-
bly plant. Subsequently, the products are stored at the inventory and will be disassembled
in order to release the demanded parts. A single vehicle and a product type are consid-
ered. The data concerning product collection and disassembly process are known and
deterministic.

In this section, an linear programming model of integrated procurement-disassembly
problem is presented. The problem is defined on weighted and undirected graph network
G = (N,E,D). N is the set of node denoting the considered suppliers and the inventory
of facility plant. This inventory is denoted as node 1. E is the set of edges and Dab is
the distance between node a and node b where Dab = Dba, a ∈ N , b ∈ N . The plant
disassemblies a single product type during planning horizon T . A single vehicle with
capacity C and unit running cost RC is used for collecting EOL products from suppliers.
A supplier a has certain amount of EOL products at period t denoted as Sat. A single
vehicle visits each supplier at most once for each period. The collected products are
stored at the inventory with unlimited capacity where the inventory level at the end of
period t is denoted as It, t ∈ T .

At the beginning of period t, the disassembly process begins based on the required
demand of part l denoted by dlt, l ∈ L, t ∈ T . Our model requires binary variable dblt,
l ∈ L, t ∈ T which is equal to 1 if dlt is greater than 0. Since it is assumed that each
product consists of exactly one part of type l, the minimum amount of products stored at
inventory dmaxt , t ∈ T , before performing disassembly process at the beginning of period
is the biggest amount for all required part at period t.

Our model adopts the AND/OR graph (AOG) in Koc et al. (2009) where auxiliary
node Ak, k ∈ K represents subassembly and basic node Bi, i ∈ I denotes disassembly
task. The relations between subassemblies and disassembly tasks are presented in AOG.
The dummy task s is introduced to indicate that disassembly process at period t is finished
due to the consideration of partial disassembly. Pk is the set of tasks which preceedes
subassembly Ak, k ∈ K. Sk, k ∈ K, denotes the set of tasks which succeeds Ak, k ∈ K.
Our model requires the set of tasks which permits to release part l, l ∈ L, denoted as Pl.

Disassembly task times timei are known where the time of dummy task s, times is 0.
At period t, each required disassembly is assigned to a workstation. Workstation time is
less than the given cycle time CT . FC denotes the fixed cost of opening a workstation.
In our model, the decision variables are:

• It inventory level at the end of period t
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CHAPTER 5. INTEGRATED PROCUREMENT-DISASSEMBLY PROBLEM

• Yat cumulative load of vehicle after visiting node a at period t

• Xabt

{
1 if the vehicle visits node a just before node b at period t
0 otherwise.

• xijt
{

1 if disassembly task i is assigned to workstation j at period t
0 otherwise.

• zjt
{

CT if xsjt = 1
0 otherwise.

5.3 Formulation

Min Z = RC
∑
t∈T

∑
b∈N

∑
a∈N

Dab ·Xabt + FC
∑
t∈T

∑
j∈J

j · zjt (5.1)

Subject to:

It = It−1 +
∑
b∈N

∑
a∈N\{1}

Xabt · Sat − dmaxt ∀t ∈ T, a 6= b (5.2)

∑
a∈N

Xabt ≤ 1 ∀b ∈ N \ {1} ,∀t ∈ T, a 6= b (5.3)∑
a∈N

Xact =
∑
b∈N

Xcbt ∀c ∈ N,∀t ∈ T, c 6= a, c 6= b (5.4)∑
a∈S

∑
b∈S

Xabt ≤ |S| − 1 ∀t ∈ T,∀S ⊆ N \ {1} : |S| ≥ 2 (5.5)

Ybt − Sbt − Yat ≥ −

(∑
l∈L

dlt

)
· (1−Xabt) ∀a ∈ N,∀b ∈ N \ {1} ,∀t ∈ T, a 6= b (5.6)

Ybt − Sbt − Yat ≤

(∑
l∈L

dlt

)
· (1−Xabt) ∀a ∈ N,∀b ∈ N \ {1} ,∀t ∈ T, a 6= b (5.7)

Yat ≤ C ∀a ∈ N,∀t ∈ T (5.8)

Y1t = 0 ∀t ∈ T (5.9)∑
j∈J

∑
i∈Pl

xijt ≥ dblt ∀l ∈ L,∀t ∈ T (5.10)∑
j∈J

∑
i∈S0

xijt = 1 ∀t ∈ T (5.11)
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∑
j∈J

xijt ≤ 1 ∀i ∈ I,∀t ∈ T (5.12)

∑
i∈Sk

xivt ≤
∑
i∈Pk

v∑
j=1

xijt ∀k ∈ K \ {0} , ∀v ∈ J,∀t ∈ T (5.13)∑
i∈Sk

∑
j∈J

xijt ≤
∑
i∈Pk

∑
j∈J

xijt ∀k ∈ K \ {0} , ∀t ∈ T (5.14)∑
j∈J

xsjt = 1 ∀t ∈ T (5.15)∑
j∈J

j · xijt ≤
∑
j∈J

j · xsjt ∀i ∈ I,∀t ∈ T (5.16)

zjt = CT · xsjt ∀j ∈ J,∀t ∈ T (5.17)∑
i∈I

xijt · timei ≤ CT ∀j ∈ J,∀t ∈ T (5.18)

It ≥ 0 ∀t ∈ T (5.19)

Xabt ∈ {0, 1} ∀a ∈ N,∀b ∈ N,∀t ∈ T, a 6= b (5.20)

Yat ≥ 0 ∀a ∈ N,∀t ∈ T (5.21)

xsjt, xijt,∈ {0, 1} ∀i ∈ I,∀j ∈ J,∀t ∈ T (5.22)

zjt ∈ {0, CT} ∀j ∈ J,∀t ∈ T (5.23)

The objective function (5.1) aims to minimize the total cost consisting total procure-
ment cost and total cost of opening workstations for entire planning horizon. Constraint
set (5.2) balances the plant inventory at each period. At each period, constraint set (5.3)
imposes that each supplier is visited at most once. Constraint set (5.4) guarantees that
the vehicle leaves a node after visiting it. Constraint set (5.5) eliminates the subtour
occurrence. Constraint sets (5.6 - 5.7) update the vehicle load after visiting a node at
each period. Constraint set (5.8) limits the vehicle load during its trips. After leaving the
plant as depot of the trip, constraint set (5.9) resets the vehicle load as zero. Constraints
sets (5.10) describe the relation between part demand and its predecessors. Constraint
sets (5.11 - 5.18) are simplification of the model in Bentaha et al. (2013b). Constraint set
(5.11) selects the first tasks succeeding EOL product. Constraint set (5.12) assigns the
disassembly task into at most a workstation. The precedence relations between disassem-
bly tasks and subassemblies are described by contraint set (5.13). Constraint set (5.14)
selects only one OR successor. Constraint set (5.15) assigns sink node into a workstation.
Constraint set (5.16) guarantees that each disassembly task is assigned into a workstation
with lower or equal index of sink node’s workstation. The value of zjt is determined by
constraints set (5.17). Constraint set (5.18) denotes the limitation of workstation time.
Contraint sets (5.19 - 5.23) describe the nature of decision variables.
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5.4 Instance Generation

Since no benchmark instance exists for this problem, we considered the following
example based on Bentaha et al. (2013a). A compass consisting seven parts is studied.
Ten tasks permits to release one or some parts. At first period, the plant has 20 products
available in the inventory. The cycle time is 0.61 second. The setup cost of workstation
is e7 / second. A vehicle with 5000 capacity is used with running cost as e5 / km. Table
5.1 and Table 5.2 present the data of demand, part and supplier.

Table 5.1 – Part and Demand Data

Part Predecessor
Demand(*1000)

t = 1 t = 2 t = 3 t = 4
1 3,5,7,9 2 6 2 2
2 7,9 0 3 6 0
3 3,9,10 4 0 5 2
4 2,4,8 1 4 0 1
5 2,4,8 2 7 3 7
6 1,6,10 0 1 0 0
7 1,6,10 4 2 6 2

Table 5.2 – Supplier Data

Node
Coordinate Supply(*1000)
X Y t = 1 t = 2 t = 3 t = 4

Depot 30 40 - - - -
Supplier 1 37 52 1 1 4 4
Supplier 2 49 49 5 3 1 1
Supplier 3 52 64 4 1 2 2
Supplier 4 20 26 1 1 3 3

5.5 Numerical Experiments

The model of Integrated Procurement-Disassembly Problem was implemented in Java
7 using GNU Linear Programming Kit (GLPK) 4.9 on a PC with processor Intel R© CoreTM

i7 CPU 2.9 GHz and 4 GB of RAM under Windows 7 Professional.
The optimal solution is obtained in 85.25 seconds with the total cost of e1232.83.

Only 2 workstations are opened during four periods considered. The vehicle’s trips and
disassembly tasks assignment are presented in Table 5.3 and Table 5.4, respectively.
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Table 5.3 – Vehicle Trip

Vehicle Trip
Period

1 2 3 4
First trip 1, 4, 2, 1 1, 3, 1 1, 2, 1 1, 2, 1

Second trip 1, 3, 1 - 1, 4, 1 -

Table 5.4 – Task Assignment

Workstation
Period

1 2 3 4
1 2,6 1 1 2,6
2 9 4,9 4,9 9

5.6 Conclusions

This work addresses integrated procurement-disassembly problem. It combines VRP
and DLBP for collecting and disassembling the EOL product. A capacitated vehicle
collects EOL product from suppliers. The vehicle begins its trip with zero load. Its
capacity forces the vehicle to return back into the inventory for disposing its load. If
the invetory level of EOL products is sufficient, the disassembly process begins releasing
the demanded parts. The proposed model considers partial DLBP under deterministic
condition with single product type.

The objective function minimises the total cost of product colletion and disassembly
process through vehicle routing determination and disassembly task assignment. The
model takes into account the constraints of DLBP, VRP and the balancing constraints
coordinating these problems.

It is the first attempt to integrate the collection of EOL products and its disassembly
line balancing. The results show the feasibility of such integration. For future work, more
complex products and disassembly tasks may be considered.

5.7 Publication
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Chapter 6

General Conclusions

This dissertation aims to propose decision support tools to better manage the imple-
mentation of circular economy due to the drawbacks of the linear economy. In detail, this
dissertation focuses on the reverse supply chains (RSC) particularly on the collection of
End-of-Life (EOL) products. We notably interest on the integration of both the collection
of EOL products and their disassembly. Our hypothesis is that integrating decisions of
two or more functions in RSC simultaneously leads to better decisions.

The integration of decisions associated with the two processes (collection and dis-
assembly) in RSC is studied in this dissertation. It addresses new problems called
Collection-Disassembly Problem (CDP) and Integrated Collection-Procurement Problem.
The first problem incorporates the collection routing of EOL products and its disassembly
lot-sizing decisions. A stochastic version CDP is also provided to deal with the uncer-
tainty of some parameters as a two-stage stochastic problem. The second problem is an
integration between decisions related to the collection routing problem and disassembly
line balancing problem.

For CDP, we initially address two different formulations in which the first one uses
integrated approach for both problems and the second one is to optimise them separately.
Some instances were generated to facilitate this comparison by conforming some setted
rules. Using the instances, both problems (integrated and non-integrated) were solved
with the commercial solver CPLEX. Based on the obtained results, we found that the
integrated approach proposes efficiency in terms of total cost.

However, the solver CPLEX is unable to provide optimal solutions for CDP under
acceptable CPU times for large size instances. To deal with the issue, six approximate
methods are proposed: Two-Phase Iterative Heuristic, Two-Phase Iterative Heuristic
with Enhancements, Local Search-based Algorithm, Particle Swarm Optimisation, Par-
ticle Swarm Optimisation with Local Search Enhancements and Imperialist Competitive
Algorithm. Based on the obtained results, Two-Phase Iterative Heuristic with Enhance-
ments provides the best performance in terms of global average gaps and CPU times.
Parameters of location, nodes, periods, components and initial stock level have signifi-
cant impact on gaps and CPU times of the proposed methods.
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An extension of the deterministic formulation of CDP is proposed consecutively in
order to enhance its applicability. It deals with the uncertainty of the quantity and the
quality of EOL products, the demands of their components in the case of multi-vehicle.
The quality of EOL products is translated as the quantity of their components. The
corresponding problem is called Stochastic Multi-Vehicle Collection-Disassembly Problem
(SMCDP). This problem is formalised as a two-stage stochastic problem in which the
realisation of the uncertain parameters of supply, number of components and demands
of components comes after the planning stage. It also means that the first-stage decision
variables are taken before we know the value of these parameters.

To solve the SMCDP, two solution algorithms are proposed: Two-Phase Iterative
Heuristic and Two-Phase Iterative Heuristic with Enhancements, due to their flexibili-
ties and performances in solving CDP. The methods are combined with an algorithmic
framework of Sample Average Approximation (SAA) to provide high quality solutions.
According to the results obtained, the Two-Phase Iterative Heuristic with Enhancements
has no significant performance than the other one. However, it requires longer average
CPU time than Two-Phase Iterative Heuristic for some data sets and shorter CPU time
for the remaining data sets.

Apart from Collection-Disassembly Problem, we also studied another integrated prob-
lem of collection and disassembly process. For disassembly process, we solve as disassem-
bly line balancing problem. The feasibility of this integration is shown.

Some prospects are addressed to further extend this work. For deterministic CDP, the
other type of subtour elimination constrains apart from constraints (2.5) and some valid
inequalities may be integrated to propose better lower bounds. It is highly likely that
such a problem deals with multi-vehicle and multi-EOL product. Therefore, additional
indexes regarding those factors are required to be adapted in the model described in
Chapter 2. Apart from IM-MultiTSP adapted in Chapter 3, the version of IM-VRP can
be implemented and compared to the Two-Phase Iterative Heuristic and the one with
enhancements. Unlike IM-MultiTSP, the method of IM-VRP would proposes that the
assignment of collection centres visited by available vehicles has to be taken into account
during routing construction and excluded from the lot-sizing problem with approximate
visiting costs.

As mentioned, the realisation of parameters of the quantity of EOL products available
at collection centres, the quantity of components on each EOL product and the demands
of component in SMCDP comes after the planning stage. We strongly believe that
such realisation of second-stage decisions may also occur in each period as depicted in
Figure 32. Its implementation is illustrated in Figure 33. To formalise the problem,
the formulation of SMCDP can be extended with additional constraints ensuring the
consistency of the inventory level, products disassembled and unmet demands between
scenarios.

Furthermore, companies commonly deals with more than one product. It indicates
that extending SMCDP by dealing with multi-products is highly possible. Consequently,
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CHAPTER 6. GENERAL CONCLUSIONS

Figure 32 – Multi-Stage Stochastic Problem

Figure 33 – Multi-Stage SMCDP with Two Scenarios

additional index of products needs to be incorporated in terms of formulation. Due to
its flexibility and performance, Two-Phase Iterative Heuristic and its enhanced version
combined with the rollout algorithm (Bertsekas et al., 1997) may also be implemented to
tackle such problem.

Some extended instances are required to investigate the formulation of the Integrated
Procurement-Disassembly Problem in Chapter 5. If the commercial solver is not able to
provide optimal solutions under acceptable CPU times, approximate methods may also
be considered.

All these prospects are feasible but require more time to adapt the mathematical for-
mulations and the solving methods. However, this dissertation provides some foundations
to start.
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Appendix A

Publications

Our scientific productions based on this dissertation have been published and submit-
ted into international journals, conferences and seminars as follows:
Peer-Reviewed Journals

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Collection-Disassembly Prob-
lem in Reverse Supply Chain, International Journal of Production Economics, vol.
183, 2017, p. 334-344

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. An Efficient Two-Phase
Iterative Heuristic for Collection-Disassembly Problem, Computers & Industrial
Engineering, vol. 110, 2017, p. 505-514

• Habibi, M. K. K., Battäıa, O., Cung, V.-D., Dolgui, A., Tiwari, M. K. Sample
Average Approximation for Multi-Vehicle Collection-Disassembly Problem under
Uncertainty. Submitted to and currently under revision in International Journal of
Production Research.

Post-Conference Publication

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Coordination of Collection
and Disassembly Planning for End-of-Life Product. IFAC-PapersOnLine, vol. 48,
no. 3, 2015, p. 76–80, doi:10.1016/j.ifacol.2015.06.061.

Book Chapter

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Integrated procure-
ment–disassembly problem, In: Advances in Production Management Systems: In-
novative and Knowledge-Based Production Management in a Global-Local World,
Part II, B. Grabot, B. Vallespir, S. Gomes, A. Bouras, D. Kiritsis (Eds.), Series:
IFIP Advances in Information and Communication Technology, Springer, vol. 439,
2014, ISSN: 1868-4238, p. 382–390. (IFIP WG 5.7 International Conference, APMS
2014, Ajaccio, Corsica, France, September 20-24, 2014).

Conference, Seminar and Workshop without Publication
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• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Dealing with the collection
and the disassembly planning for simple end-of-life product, Actes des Journées Na-
tionales/ Doctorales MACS, June 18th-19th, 2015, Bourges, France, 5 pages (USB)

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. La coordination de la collecte
des produits en fin de vie et de leur désassemblage dans les châınes logistiques
inversées. La 20ème journée du pôle Sciences et Techniques de la Production (STP)
du GdR MaCS, February 5th, 2015, Troyes, France

• Habibi, M.K.K., Battäıa, O., Cung, V.-D., Dolgui, A. Combining Procurement
and Disassembly Decisions for End-of-Life Product. Le 16ème congrès de la société
française de recherche opérationnelle et aide à la décision (ROADEF). February
25th – 26th, 2015, Marseille, France.

International Doctoral Exchange
We also had performed an international exchange at the Department of Industrial

and Systems engineering of Indian Institute of Technology, Kharagpur, India under the
supervision of Professor Manoj Kumar TIWARI. During this period, we had participated
in the following workshop as an invited speaker:

• International Workshop on European Union-India Research & Innovation Partner-
ship for Efficient and Sustainable Freight Transportation (REINVEST). January
8th – 9th, 2016. Indian Institute of Technology, Mumbai, India.
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Abstract :
This dissertation supports and proposes better management in the implementation of the cir-
cular economy by integrating activities of reverse supply chains. The hypothesis states that
integrating decisions of at least two activities in reverse supply chain leads to better decisions
notably the collection of End-of-Life products and their disassembly.

A deterministic problem, called Collection-Disassembly Problem, integrating both collection
and disassembly processes as well as its formulation are introduced and developed. Due to lack
of available instances in the literature, some instances are generated. Another non-integrated
formulation is developed and solved using the commercial solver CPLEX. The obtained results
show that the integrated model proposes better decisions in terms of total cost. Some ap-
proximate methods are developed because the commercial solver CPLEX is unable to provide
optimal solutions under acceptable CPU times notably for large size instances.

An extended version of the problem is introduced due to the fact that reverse supply chains
frequently deal with the uncertainty of certain parameters such as the quality and the quantity
of End-of-Life products as well as the demands of components. Also, there is often more than
one vehicle available to collect the products. Thus, this second problem suggested which is called
Stochastic Multi-Vehicle Collection-Disassembly Problem and its formulation is developed. The
problem is formalised as two-stage stochastic programming by assuming that the parameters
under uncertainty follow some known probability distributions and their realisation comes after
the planning stage. To provide the solutions, two methods combined with an algorithmic
framework of Sample Average Approximation are developed.

Another problem called Integrated Procurement-Disassembly Problem is also studied. Along
with the decisions on collection process, this problem emphasises on the decisions of disassembly
line balancing problem.
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Résumé :
Il est connu que l’intégration des décisions dans les châınes logistiques directes permet de pro-
poser de meilleurs décisions. Dans cette thèse, une approche similaire est proposée pour une
châıne logistique inverse. Nous supposons que l’intégration de décisions concernant la collecte
des produits en fin de vie avec celles de leur désassemblage permet d‘optimiser la châıne logis-
tique inverse.

D’abord, un problème déterministe, appelé le problème de collecte et désassemblage,
intégrant les décisions de collecte de produits en fin de vie et la planification de leur
désassemblage a été proposé et étudié. Etant donné qu’il n’y a pas d’instance de ce problème
dans la literature, les instances sont générées pour pouvoir effectuer les tests des modèles
développés. Une comparaison de la formulation intégrée avec celle non-intégrée est effectuée.
Selon les résultats obtenus, il s’avère que l’intégration permet d’optimiser les coûts totaux.
Des méthodes approchées sont également proposées car le solveur CPLEX n’est pas capable de
fournir les solutions optimales des instances de grand taille avec les temps de calcul acceptables.

Ensuite, le problème est étendu en considérant l’incertitude sur les paramètres associés à la
qualité et la quantité des produits en fin de vie et les demandes en composants. En considérant
également la possibilité d’avoir plusieurs véhicules pour la collecte de produits en fin de vie, le
problème stochastique de collecte et désassemblage dans sa version multi-véhicule est introduit.
Sa formulation est développée sous forme d’une programmation stochastique en bi-niveau. Nous
supposons qu’au moment de la planification, les paramètres incertains sont considérés comme
des variables aléatoires avec des lois de distribution connues. Les réalisations de ces variables ne
sont connues qu’au moment d’exécution du plan. Deux mèthodes de résolution en utilisant une
procédure d’approximation par échantillonnage sont implémentées afin de fournir les solutions.

Finalement, un autre problème est également posé et étudié où les décisions concernant
la collecte de produits en fin de vie sont associées au problème de l’équilibrage de ligne de
dèsassemblage.
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