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Résumé

La cohomologie de de Rham dérivée a été introduite par Luc Illusie en 1972 [26, Ch.
VIII], suite à ses travaux sur le complexe cotangent. Cette théorie semble avoir été
oubliée jusqu’aux travaux récents de Bhatt [10],[9] et Beilinson [6], qui ont donné
diverses applications, notamment en théorie de Hodge p-adique. D’autre part, cet
objet s’est rélévé trés versatile. Il donne soit une généralisation de la theorie de
de Rham pour les variétés singulières (voir par exemple [9]), soit une nouvelle con-
struction de l’anneau des périodes de Fontaine ([6]), soit des invariants numériques
pour les valeurs spéciales des fonctions zêta des schémas sur corps finis ([35],[36]).
En particulier, Bhatt a étudié le complexe de de Rham dérivé complété pour la
filtration de Hodge en caractéristique zéro [9] et sa complétion p-adique (dérivée)
en caractéristique p. Récemment, les travaux d’Antieau, de Mathew, de Morrow et
de Nikolaus [2] se sont concentrés sur la cohomologie de de rham dérivée complétée
p-adiquement pour des schémas quasi-compacts quasi-séparés avec une p-torsion lim-
itée (sur Spec(Z)), en l’utilisant pour donner une description de Zp(i) pour i < p−1
et pour étudier des classes d’obstruction naturelles. Enfin, Bhatt, Mathew et Lurie
[11] ont montré comment le complexe de Rham dérivé est étroitement lié au complexe
de Rham-Witt. Le fait qu’un tel lien puisse exister a été une des premières moti-
vations pour cette thèse qui, cependant, a progressivement pris une forme différente.

Dans cette thèse, on se propose d’étudier et de calculer le complexe de de Rham
dérivé Hodge complété (sans complétion p-adique) en caractéristique positive et
mixte, relativement à Spec(Z). Un autre aspect original de ce travail consiste à
considérer le complexe de Rham derivé Hodge-completé comme une pro-algèbre dif-
férentielle graduée commutative. Beilinson [6, 1.2] et Illusie [26, Ch.VIII (2.1.3.3)]
ont déjà utilisé la nature du système projectif de ce complexe. Dans ce travail, en
particulier dans les deux derniers chapitres, nous plongeons la structure de système
projectif d’algèbres différentielles graduées dans la catégorie des pro-algèbres dif-
férentielles graduées.

La première étape de notre travail consiste à calculer le complexe de de Rham dérivé
Hodge-completé du morphism Z −→ k, où k est un anneau. Rappelons qu’un anneau
de caractéristique p est dit parfait si le Frobenius est un automorphisme. On obtient
le résultat suivant.

Theorem 1. Soit k un anneau parfait de caractéristique p et W (k) son anneau de
vecteurs Witt. Il existe alors un quasi-isomorphisme de pro-algèbres différentielles

ix



commutatives
LΩ̂∗k/Z

∼=
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
N∈N

où le complexe de droite est cohomologiquement concentré en degré zéro.

Bhatt a calculé le complexe de Rham dérivé (non Hodge-complété) p-adiquement
complété dans le même cas (voir [10, Corollaire 8.6]). Nos calculs se basent sur le
lemme de changement de base appliqué au cas simple (mais crucial) où k = Fp.
Des résultats similaires peuvent être obtenus au moyen de calculs de cohomologie
cristalline, voir [26, Ch.VIII Proposition 2.2.8]. Dans cette thèse, nous donnons
une preuve plus directe et élémentaire, qui prend en compte les algèbres graduées
à structure différentielle multiplicative (disons aussi E∞-algèbres). Comme nous
l’avons dit, il est crucial de calculer le complexe de Rham dérivé pour le morphisme
Zp −→ Fp, qui est un cas particulier d’anneau parfait et de ses vecteurs Witt as-
sociés. Il est ensuite facile d’obtenir le cas général par changement de base. Ainsi,
la plupart de nos efforts sont consacrés au cas crucial, sur lequel porte le para-
graphe suivant. La stratégie consiste à considérer le morphisme Zp[x] −→ Zp et à
effectuer des calculs pour ce morphisme. Certains d’entre eux ont déjà été repris
dans d’autres travaux dans des contextes similaires (voir [10, Corollaire 3.40], [41,
preuve de la proposition 3.17], [2, Exemple 6.2]). Nous présentons ici une preuve
vraiment détaillée. L’idée est d’exploiter la filtration de Hodge et le fait qu’il est
facile de calculer les modules gradués associés. Nous utilisons ces modules gradués
comme briques pour reconstruire les quotients LΩ∗Zp/Zp[x]/F

N . Le cas de Fp/Z est
compliqué à cause de la p-torsion, alors que dans les cas Zp/Zp[x] il n’y a pas de
p-torsion, ce qui simplifie grandement les calculs. Enfin, nous pouvons calculer le
cas crucial par changement de base.

On a essayé à de nombreuses reprises de calculer le conoyau du complexe de droite
dans le théorème précédent, mais la filtration de Hodge semble perdre sa régularité
en caractéristique positive. En évitant ce type de problème on a montré le suivant.

Lemma 1. Pour N < p il y a un isomorphisme d’anneaux

H0

(
LΩ∗k/Zp

FN

)
∼= WN(k).

Afin d’appliquer le résultat précédent à une plus grande classe d’objets, nous général-
isons la bien connue formule de Künneth pour le complexe dérivé de Rham Hodge-
complété vu dans la catégorie des pro-cdga. En particulier, nous prouvons le résultat
suivant.

Theorem 2. Étant donné deux morphismes d’anneaux A −→ B et A −→ C, il
existe un quasi-isomorphisme de pro-algèbres graduées commutatives

“ lim←−
L∈N

”

(
LΩ∗B⊗AC/A

FL

)
∼= “ lim←−

N∈N
”

(
LΩ∗B/A
FN

)
⊗A “ lim←−

M∈N
”

(
Ω∗C/A
FM

)
.
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Bien que ce résultat se réfère à des résultats très connus de géométrie algébrique,
il semble qu’une formule Künneth pour le complexe de de Rham dérivé Hodge-
complété considéré comme pro-complexe ne soit pas dans la littérature. Bhatt donne
une brève description de la preuve dans [10, Proposition 2.7 ] pour le complexe
de Rham dérivé (non complété) ainsi que pour le complexe dérivé de Rham p-
adiquement complété dans [10, Proposition 8.3 (3)]. Une version complétée par
Hodge semble être généralement connue des experts (voir Introduction de [9] ou [2,
Proposition 6.8]), bien que nous n’ayons pas trouvé de référence pour la preuve.
On a juste dit que ce qu’on prouve est que le complexe de Rham derivé Hodge-
completé du produit tensoriel des algèbres est isomorphe au produit tensoriel des
complexes des algèbres simples comme pro-objets. En fait, nous prouvons un résultat
plus précis : il existe un isomorphisme des pro-foncteurs(

Ω∗−⊗A−/A

FL

)
L∈N
−→

(
Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)∈N2

.

Nous appliquons ensuite ce résultat à des résolutions standards d’algèbres, consid-
érées comme des foncteurs ∆op −→ FAlg

A
.

Nous appliquons ensuite ce résultat à des schémas sur des corps parfaits X −→ k
afin d’exploiter nos calculs précédents. Considérons un diagramme cartésien de la
forme

X Y

Spec(k) Spec(Z),

,

où le morphisme de schémas Y −→ Spec(Z) est lisse (et alors le complexe de Rham
dérivé est naturellement quasi-isomorphe à celui non dérivé, Ω∗X/Y ). Grace à la
formule de Künneth, nous pouvons ensuite étudier le complexe LΩ̂∗X/Z à partir de
ceux associés aux morphismes Z −→ k et Y −→ Spec(Z), pour lesquels les calculs
sont plus faciles.

Ces résultats peuvent être le point de départ d’autres études. On peut par ex-
emple considérer des variétés projectives lisses sur un corps fini. Soit X/Fq une telle
variété. Nous pouvons étudier le complexe de de Rham dérivé complété par Hodge
du morphisme X −→ Spec(Z). Il semble qu’il y ait une relation étroite entre un tel
complexe et le complexe de Rham-Witt ([27]).
On a cherché à exploiter ce que nous avons développé jusqu’ici pour étudier la
cohomologie de Rham derivée Hodge-completée de certaines variétés, éventuellement
singulières, en caractéristique positive. En ce sens, des résultats plus importants et
significatifs ont récemment été obtenus par Antieau, Bhatt, Lurie, Mathew, Morrow,
Scholze et autres (voir par exemple [2], [11], [12]). Dans cette thèse, notre stratégie
générale utilisera la formule de Künneth afin de diviser les calculs liés à une variété
en caractéristique positive en deux parties, l’une sans p-torsion et l’autre rappelant
nos résultats précédents sur le complexe de Rham derivé pour des anneaux parfaits
(dans ce sens voir aussi [2, Construction 7.12 et démonstration du Théorème 7.13]).
On obtient notamment les résultats suivants
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Theorem 3. Soit X un schéma lisse sur Spec(W ), où W = W (k) pour un corps
parfait k. On considère le carré cartésien suivant

X X

Spec(k) Spec(W (k)),

p
,

où X := Spec(k) ×Spec(W (k)) X. Il y a ensuite un quasi-isomorphisme des pro-
complexes

LΩ̂∗X/Z '
(

Ω∗X/W ⊗
W 〈x〉
(x)[N ]

·(x−p)−→ Ω∗X/W ⊗W
W 〈x〉
(x)[N ]

)
N

.

Il serait intéressant de remplacer X par un schéma général séparé de type fini sur
un corps fini.

En présentant ces résultats, on a cherché à les introduire d’une manière suffisam-
ment claire et exhaustive. On a donc consacré une prèmiere partie de cette thèse
à présenter brièvement les principaux outils utilisés tout au long de ce travail. On
fait des rappels homotopiques sans utiliser la théorie des catégories de modèles, en
espérant que le lecteur qui n’est pas familier avec ce type de théorie pourra être
à l’aise avec notre exposition. Nous rappelons ensuite brièvement quelques résul-
tats de base sur les pro-catégories. Avec cette théorie, récemment développée pour
tenter de découvrir ses liens avec l’algèbre homotopique [29],[30], on a cherché à af-
faiblir légèrement les structures rigides des complexes filtrés, sans en perdre la trace,
comme cela se produirait si l’on considérait la complétion par la filtration de Hodge.
Nous pensons qu’une telle approche pourrait révéler d’autres résultats intéressants
dans ce domaine et pourrait constituer un autre point de départ pour des travaux
futurs. Ensuite nous présentons le complexe cotangent d’Illusie, le complexe de de
Rham dérivé et nous montrons quelques propriétés classiques. Enfin, on commence
la partie originale de la thèse avec les preuves des résultat énoncés ci-dessus.

xii



Introduction

The derived de Rham complex has been introduced by Illusie [26, Ch. VIII] and
follows from the notion of the cotangent complex. This theory seems to have been
forgotten until the recents works by Beilinson [6] and Bhatt [10],[9]. They gave
several applications in particular in p-adic Hodge Theory, but such object turns out
to be very versatile. It provides a fruitful generalization of the de Rham theory for
singular varieties (see for example [9]) as well as a new construction of Fontaine’s
period rings ([6]) or numerical invariants for special values of zeta functions of vari-
eties over finite fields ([35],[36]). In particular Bhatt studied the Hodge completion
in characteristic zero [9] and the (derived) p-adic completion in characteristic p.
The aim of this thesis is to study and compute the Hodge completed derived de
Rham complex in positive and mixed characteristic, as well as the derived de Rham
complex relative to Spec(Z), inspired by some results of Morin [36].
At first our work focus on computing the Hodge completed derived de Rham complex
of the map Z −→ k, where k is a perfect ring of characteristic p (i.e. the Frobenius
map is an automorphism). It turns out that, being W = W (k) the ring of Witt
vectors, there is the following equivalence

Theorem 4. Let k be a perfect ring of characteristic p andW (k) its ring of Witt vec-
tors. Then there exist a quasi-isomorphism of pro- commutative differential graded
algebras

LΩ̂∗k/Z
∼=
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
N∈N

where the complex on the right has cohomology concentrated in degree zero.

Bhatt computed the (not Hodge completed) derived de Rham complex p-adically
completed in the same case (see [10, Corollary 8.6]). Our computations rely on the
base change lemma applied to the (crucial) simple case where k = Fp. Similar re-
sults may be obtained by means of crystalline theory computations, see [26, Ch.VIII
Proposition 2.2.8]. In the present work we give a more direct and elementary proof,
which takes into account the multiplicative structure differential graded algebras
(say also E∞−algebras).

In order to apply the previous result to a larger class of objects, we generalize the
well known Künneth formula for the Hodge completed derived de Rham complex
when it is seen in the category of pro-cdga. In particular we prove the following

Theorem 5. Given two rings maps A −→ B and A −→ C there is a quasi-
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isomorphism of pro-commutative differential graded algebras

“ lim←−
L∈N

”

(
LΩ∗B⊗AC/A

FL

)
∼= “ lim←−

N∈N
”

(
LΩ∗B/A
FN

)
⊗A “ lim←−

M∈N
”

(
Ω∗C/A
FM

)
.

We then apply such result to schemes over perfect fields X −→ k in order to exploit
our previous computations. Consider cartesian diagrams of the form

X Y

Spec(k) Spec(Z),

,

where the morphism of scheme Y −→ Spec(Z) is smooth (and then the derived de
Rham complex is naturally quasi-isomorphic to the non-derived one, Ω∗X/Y ). By
means of the Künneth formula, we can then study the complex LΩ̂∗X/Z from those
relative to the maps Z −→ k and Y −→ Spec(Z), for which computations are easier.

These results can be the starting point of further studies. We can for example
consider smooth projective varieties over a finite field. Let X/Fq be such variety, we
may investigate the Hodge completed derived de Rham complex of the morphism
X −→ Spec(Z). It seems to be a close relation between such complex and the de
Rham-Witt complex ([27]). We get in particular the following results

Theorem 6. Let X be a smooth scheme over Spec(W ), where W = W (k) for a
perfect field k. Consider the following cartesian square

X X

Spec(k) Spec(W (k)),

p
,

where X := Spec(k) ×Spec(W (k)) X. Then there is an quasi-isomorphism of pro-
complexes

LΩ̂∗X/Z '
(

Ω∗X/W ⊗
W 〈x〉
(x)[N ]

·(x−p)−→ Ω∗X/W ⊗W
W 〈x〉
(x)[N ]

)
N

.

It would be interesting to replace X with a general separated schemes of finite type
over a finite field.

Outline. Chapter 1 is devoted to briefly presents the main tools used along the
thesis. Homotopical backgrounds are presented in §1.1 and §1.2. We chose to take
on the setting without using model category theory, hoping that the reader who
is not into such theory may still be at easy with the exposition. We then briefly
recollect some basic results about pro-categories in §1.3. In Chapter 2 we introduce
Illusie’s cotangent complex (§2.1) and derived de Rham complex (§2.2) and we prove
some properties. In §2.3 the original part of the thesis starts. We prove Theorem

xiv



4, which will be the cornerstone of the Chapter 4. Chapter 3 is entirely devoted to
prove Theorem 5, which is a generalization of a classical cohomology result in the
context introduced in §1.3. Finally Chapter 4 aims to apply all the previous results
in the context of algebraic varieties over perfect fields and to draw some direction
for future investigations.
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Chapter 1

Homotopical Algebra Recollection

In order to give a reasonably complete introduction to Illusie’s theory of the cotan-
gent complex and the derived de Rham complex ([25],[26]), in the first part of this
chapter we give a brief presentation of some simplicial methods, on which the def-
inition of such objects relies. Such methods can be read as formal constructions
and accepted without any motivations. For this reason, when presenting some def-
initions and results, we have chosen to not mention the theory of model category,
which underpins all the chapter. As a matter of facts we may say that the strat-
egy leading our exposition aims to extend homological constructions to non-abelian
categories. Consider a covariant left exact functor between two abelian categories
F : A −→ B, supposing A with enough projectives. Its associated derived functor is
defined passing throught the categories of (non negatively graded) chain complexes
Ch(A),Ch(B) and the concept of projective resolution. Take for example A to be
the category of R-modules for some commutative unitary ring R. A projective res-
olution of a R-module M , is a chain complex P ∗ in Ch(A), so that each P n is a
projective module and

(1) Hn(P ∗) = 0 for n > 0 and

(2) there is a morphism P 0 −→M which induces an isomorphim H0(P ∗) ∼= M .

Equivalently, if we regard M as a chain complex concentrated in degree zero we
can say that there is a morphism of chain complexes P ∗ −→ M which induces an
isomorphism on homology. Chain complexes of projectives have in particular a “lift-
ing property” which is used to prove the uniqueness of projective resolutions up to
chain homotopy. The idea is to extend such machinery to a non-abelian context.
A fundamental result we are going to present (Theorem 1.1.31) is the Dold-Kan
correspondence which shows that Ch(A) is equivalent to the category of simplicial
objects of A. The idea is then to replace Ch(A) and all the homological machinery
with the category of simplicial objects and the corresponding tools, which can be
defined without the condition of abelianity.

The second section is devoted to understand a new structure which arises when
applying the Dold-Kan correspondence to the category of simplicial rings or in gen-
eral simplicial R-algebras, for a unitary commutative ring R. The corresponding
complex is endowed with a graded product and the new object is called differential
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graded algebra. As a particular case of this phenomena, the derived de Rham com-
plex has then a double nature: on one side is a (co)homological object, a complex
whose homology frames topological invariants, on the other side is more an alge-
braic/arithmetic object, a (graded) commutative algebra. In general it is not easy
to keep stable this double nature. This is due to the fact that a useful way to con-
sider complexes is up to quasi-isomorphism, that is those morphisms which induce
an isomorphism on homology groups. In this way we can consider complexes which
share the same homology as equals, in order to chose the representative of some
class for our purposes (e.g. projective complexes). This point of view is natural to
handle in the category of complexes, since they form a model category, but it is not
always possible to fit the arithmetic nature in such structure. In the second section
we investigate how to deal with this inconveniences, detecting those cases which
don’t present problems in this sense and providing a general framework where all
these nuisances are overcome.

A further structure characterizing the derived de Rham complex is given by the
Hodge filtration on it. It induces a projective system of differential graded algebras,
which is going to be our main object of investigation. To achieve better flexibil-
ity, rather than the category of projective systems, it is convenient to consider the
category of pro-dga, where objects are "formal cofiltered limit" of objects of cdga.
Section 1.3 gives a brief introduction on pro-categories and the translation of some
properties of a category C to the associated pro-category pro−C.

1.1 Simplicial homotopy theory
The origin of simplicial homotopy theory coincides with the beginning of algebraic
topology almost a century ago. The thread of ideas started with the work of Poincaré
and continued to the middle part of the 20th century in the form of combinatorial
topology. The modern period began with the introduction of the notion of simplicial
set, by Eilenberg-Zilber in 1950, and evolved into a complete homotopy theory in
the work of Kan, beginning in the 1950s, and later Quillen in the 1960s. The
theory has always considered simplices with some incidence relations, along with
methods for constructing maps and homotopies of maps within these constraints.
As such, the methods and ideas are algebraic and combinatorial and, despite the deep
connection with the homotopy theory of topological spaces, exist completely outside
any topological context. This point of view was effectively introduced by Kan,
and later encoded by Quillen in the notion of a closed model category. Simplicial
homotopy theory, and more generally the homotopy theories associated to closed
model categories, can then be interpreted in a purely algebraic way, which has
had substantial applications throughout homological algebra, algebraic geometry,
number theory and algebraic K-theory. The point is that homotopy is more than
the standard variational principle from topology and analysis: homotopy theories
are everywhere, along with functorial methods of relating them.
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1.1.1 Definitions and examples

Definition 1.1.1. We denote by ∆ the category of non empty finite ordered set with
order preserving morphisms, it is usually called the Simplex category. A standard
way to describe ∆ is to consider the objects as [n] := {0 < 1 < ... < n}, for n ≥ 0,
with non decreasing functions.

Example 1.1.2 (Face and Degeneracy maps). Among the non decreasing functions
there are two important families. The face maps δin : [n− 1] −→ [n], for any n > 0
and i = 0, ..., n. δin is the unique injective map whose image misses i, i.e. for
j = 0, ..., n− 1

δin(j) =

{
j if j < i

j + 1 if j ≥ i
.

Degeneracy maps ηin : [n + 1] −→ [n], for n ≥ 0 and 0 ≤ i ≤ n + 1. The map ηin is
the unique surjective map with two elements mapped to i, i.e. for j = 0, ..., n+ 1

ηin(j) =

{
j if j ≤ i

j − 1 if j > i
.

When the setting is clear or not really important indices are omitted.

Definition 1.1.3. Given a category C, a simplicial object of C is a functor X :
∆op −→ C. A natural transformation of functors of such form is considered as
a morphism of simplicial objects. Simplicial objects and their morphisms form a
category that in general we denote by juxtaposing an “s” to the relative category,
sC := Fun(∆op, C).

Such definition of simplicial object is very neat and easy to manage in the setting
of category theory, as it actually denote simplicial objets as a particular class of
pre-sheaves. However it will be very useful to handle such tool in a more “concrete”
and combinatorial way, within some specific categories. Next lemma will help us in
this sense.

Lemma 1.1.4. Giving a simplicial object X : ∆op −→ C is equivalent to the data
of a family of objects {Xn}n≥0 in C and two families of arrows in C for each n ≥ 0

{∂in : Xn −→ Xn−1}0≤i≤n, {σin : Xn −→ Xn+1}0≤i≤n

satisfying the following identities for any n ≥ 0

∂in∂
j
n+1 =∂j−1

n ∂in+1 i < j

σin+1σ
j
n =σj+1

n+1σ
i
n i ≤ j

∂in+1σ
j
n =


σj−1
n−1∂

i
n i < j

id i = j or i = j + 1

σjn−1∂
i−1
n i > j + 1

(1.1)
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Proof. (Sketch) The identification is made by the following equalities: Xn := X([n]),
∂in := X(δin) and σin := X(ηin). Then the proof relies on the fact that any map
[m]

f−→ [n] in ∆ can be factorized as a composition of an injective and a surjective
map f = δ ◦ η, where δ is the composition of face maps and η is the composition of
degeneracy maps. Then it remains to prove that degeneracy maps and face maps
satisfies the contravariant version of (1.1)

Given the above results, we will use both notations for simplicial objects, X or X•,
X([n]) or Xn and face and degeneracy maps ∂, σ.

Example 1.1.5 (Constant simplex). Given an object A in any category C. There
is always a unique constant functor from the category {∗} with one object and only
the identity morphism, sending ∗ to A. The constant simplex A• associated to A is
the unique functor ∆op −→ C factoring through the constant functor (sometimes we
denote A• directly as A). More concretely An = A for any n ≥ 0 and all the maps
[m] −→ [n] are sent to the identity morphism.

Example 1.1.6 (Standard q-simplex). For q ≥ 0 we define the simplicial set
∆[q] := Hom∆(−, [q]) : ∆op −→ Set, i.e. the simplicial set defined by ∆[q]n :=
Hom∆([n], [q]), with maps induced by the contravariance of the functor Hom. Such
simplicial set is called q-simplex and is a crucial example, with the following universal
property. Given any simplicial set X, by the Yoneda lemma

HomsSet(∆[q], X) = Xq,

i.e. there is a 1-1 correspondence between any element x ∈ Xq and simplicial
morphisms f : ∆[q] −→ X. In particular f is the unique morphism sending id[q] to
x, i.e. any α ∈ ∆[q]n = Hom([n], [q]) is sent to X(α)(x).
Now we compute some basic cases which will be useful in the future.

(1) For any n ≥ 0, ∆[0]n = Hom([n], [0]) = {∗}, since there is only one trivial map.

(2) For any n ≥ 0 we can describe ∆[1]n as the finite collection of maps αin : [n] −→
[1], 0 ≤ i ≤ n + 1, such that (αin)(j) = 0 for j < i, (αin)(j) = 1 otherwise. In
particular αn+1

n sends everything to 0 and α0
n sends everything to 1. The maps

∂jn = − ◦ δjn act as

∂jn(αin) = αin ◦ δjn =

{
αin−1 j > i

αi−1
n−1 j ≤ i.

(3) We can define two maps e0, e1 : ∆[0] −→ ∆[1], (e0)n(∗) = αn+1
n , (e1)n(∗) = α0

n.
With respect to the universal property above e0, e1 are the morphism corre-
sponding to the elements (0 7−→ 0), (0 7−→ 1) ∈ ∆[1]0.

Example 1.1.7 (Standard boundary q-simplex). Another important example, re-
lated to the previous one, is given by the simplicial subset ∆◦[q] ↪→ ∆[q] (sometimes
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denoted ∂∆[q] and called boundary of ∆[q]) defined as the union of the images of
the maps

∂i : ∆[q − 1] −→ ∆[q]

([n]→ [q − 1]) 7−→ ([n]→ [q − 1]
δiq→ [q])

It is a simplicial object inheriting the maps from those of ∆[q] which are defined by
pre-composition for any [m]→ [n], so that

∆◦[q]n 3
(

[n]→ [q − 1]
δiq→ [q]

)
7→
(

[m]→ [n]→ [q − 1]
δiq→ [q]

)
∈ ∆◦[q]m.

We define lastly ∆◦[0] as the constant simplex defined by the empty set ∅. It is
the initial object of sSet. The simplicial set ∆◦[1] is made for each n ≥ 0 of maps
[n] −→ [1] factoring through the maps δ0

1, δ
1
1 : [0] −→ [1], so that ∆◦[1]n is always

made of two elements.

Example 1.1.8 (Geometric Realization). In order to justify most of the choices of
notation I would like to present briefly the relationship between simplicial sets and
topological spaces (see for example [18, Ch. I]).
There is a functor from ∆ to the category Top of topological spaces. Given [n], we
send it to the standard topological n-simplex ∆n := {(t0, ..., tn) ∈ Rn+1 : t0 + ... +
tn = 1, ti ≥ 0 ∀i}. Given a morphism φ : [m] −→ [n] of ordered sets, we define
∆m −→ ∆n by sending

(t0, ..., tm) 7−→ (uj), uj =
∑
φ(i)=j

ti.

The empty sum is to be regarded as zero. For instance, the face map δin will embed
∆n−1 as the ith face of ∆n. Recall that a simplicial set is a pre-sheaf ∆op −→ Set
and that any pre-sheaf is a colimit of representable functors. Moreover the category
Top is cocomplete, so it follows that there is induced a unique colimit-preserving
functor

| − | : s Set −→ Top

that sends the standard n-simplex ∆[n] (i.e., the simplicial set corresponding to
[n] under the Yoneda embedding) to ∆n, with the maps ∆n −→ ∆m associated to
[n] −→ [m] as before. Such association is then extended by presenting a simplicial
set as a colimit of the objects ∆[n] and taking that colimit in Top. This functor is
called geometric realization.
This functor has a right adjoint. In fact, this adjoint is none another than the
singular simplicial set Sing T for a topological space T . Given a topological space T
consider the set of continuous maps Singn T = HomTop(∆n, T ) for every nonnegative
integer n. We note that Sing T = {Singn T}n≥0 has the structure of a simplicial set.
For example ∂i : Singn T −→ Singn−1 T carries an n-simplex of T to its ith face.
The simplicial set Sing T is sometimes called the singular complex of the topological
space T . This object is quite familiar: if we apply the free abelian group functor
levelwise to Sing(T ), we form a simplicial abelian group Z[Sing(T )]. If we take
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the alternating sum of the face maps we can extract from this a chain complex
C∗(Z[Sing(T )]) (see also Definition 1.1.25), and by definition

Hi(C
∗(Z[Sing(T )])) ∼= Hsing

i (T,Z),

i.e. we obtain the singular homology of first-year algebraic topology.

There is an “equivalence” between s Set and the category of topological spaces, at the
level of homotopy categories. This means we specify a notion of “weak equivalence”
on each side (in topological spaces it is the usual notion, where in maps inducing
isomorphisms of π∗ are weak equivalences), and the “localization” of each side with
respect to these are equivalent. We then pull back the notion of weak equivalence
along this functor, as well as other classical algebraic topology constructions. This
equivalence clarifies in some sense why most of the notation of this section is “copied”
from algebraic topology.

Example 1.1.9 (Nerve of a category). The following example is really important
for for higher category theory (see for example [17, §2.1]). For every category C and
every integer n ≥ 0, let Cn denote the set of all composable chains of morphisms

C0 −→ C1 −→ ... −→ Cn

of length n. The collection of sets {Cn}n≥0 has the structure of a simplicial set,
which is called the nerve of the category C, and it determines C up to isomorphism.
For example, the objects of C are simply the elements of C0, and the morphisms in
C are the elements of C1.

1.1.2 Kan complexes and Homotopy groups

One of the most celebrated invariants in algebraic topology is the fundamental group:
given a topological space X with a base point x, the fundamental group π1(X, x) is
defined to be the set of paths in X from x to itself, taken modulo homotopy. The
language of category theory allows us to package this information together in a very
convenient form. In fact, it is possible to develop the theory of algebraic topology
in entirely combinatorial terms, using simplicial sets as surrogates for topological
spaces. However, not every simplicial set behaves like the singular complex of a
space; it is therefore necessary to single out a class of “good” simplicial sets to work
with.

Definition 1.1.10. A morphism of simplicial sets f : X −→ Y has the right lifting
property (RLP) with respect to the inclusion ∆◦[n] ↪→ ∆[n] if given a commutative
square

∆◦[n] X

∆[n] Y,

f

then there exist a unique map ∆[n] −→ X such that the triangles commute,
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∆◦[n] X

∆[n] Y.

f

If f satisfies the RLP with respect to ∆◦[n] ↪→ ∆[n] for any n ≥ 0 we call it a trivial
(Kan) fibration (see [38, §2, Definition 1]). In particular if X −→ ∗ is a trivial
fibration we say that X is a Kan complex.

Remark 1.1.11. Being a Kan complex is equivalent to having the following prop-
erty: for any y0, ..., yn ∈ Xn−1 such that ∂in−1(yj) = ∂j−1

n−1(yi) if i < j, there exists
y∈Xn such that ∂in(y) = yi. The condition on y0, ..., yn corresponds to the fact that
the map

∆◦[n]n−1 −→ Xn−1

δin 7−→ yi

actually defines a map of simplicial sets ∆◦[n] −→ X. Under this correspondence,
the RLP is equivalent to the existence of y ∈ Xn as there exists a 1-1 correspondence
between maps ∆[n] −→ X and elements y ∈ Xn as shown in example 1.1.6.

Proposition 1.1.12. Any simplicial group is a Kan complex as simplicial set

Proof. LetG be a simplicial group and consider x0, ..., xn ∈ Gn−1 such that ∂in−1(xj) =

∂j−1
n−1(xi) for i < j. We want to construct by induction an element gr ∈ Xn such that
∂in(gr) = xi for i = 0, ..., r, thus y = gn will complete the proof. Let g−1 := 1Gn . Put
u := x−1

r (∂rgr−1), then for i < r

∂i(u) = ∂i(xr)
−1∂i∂r(gr−1)

= ∂i(xr)
−1∂r−1∂i(gr−1)

= ∂i(xr)
−1∂r−1(xi)

= ∂i(xr)
−1∂i(xr) = 1.

Thus 1 = σr−1∂i(u) = ∂iσr(u). The element gr := gr−1σ
r(u)−1 is such that for i ≤ r

∂igr = ∂i(gr−1σ
r(u)−1)

= ∂i(gr−1)∂i(σr(u)−1)

=

{
∂i(gr−1), i < r

∂r(gr−1)u−1, i = r

=

{
xi, i < r

(∂rgr−1)xr(∂
rgr−1)−1, i = r

= xi.

Hence gr satisfies the inductive hypothesis and we are done.
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The definition of homotopy groups for a Kan complex can be made in several ways.
One possibility is to recover it directly from the topology homotopy groups by means
of the correspondence of topological spaces and simplicial sets (recall example 1.1.8).
Another way starts from the simplicial alter-ego of the topological tools (e.g. maps
from ∆[0] and from ∆[1] for points and paths, simplicial homotopy etc.) as in [24,
Definition 3.4.4] of [18, §I.7]. Moving further away from the topological world is the
definition given in [16, §VI.3] and used by Illusie [25, (I.2.1.1)]. Finally there is a
totally combinatorial definition, firstly enlightened by Kan [31]. We are going to
use the latter, then we provide an equivalence with the second one in Proposition
1.1.21.

Construction 1.1.13. Let X be a Kan complex. Let ∗ ∈ X0, we write by abuse of
notation ∗ = σ0

n(∗) ∈ Xn for any n ≥ 0. Set

Zn := {x ∈ Xn : ∂in(x) = ∗ for all i = 0, ..., n}.

Moreover we say that x, x′ ∈ Zn are homotopic if there exists y ∈ Xn+1 such that

∂i(y) =


∗ if i < n

x if i = n

x′ if i = n+ 1

.

The element y is called homotopy and we write x ∼ x′.

Lemma 1.1.14. In the setting above, ∼ is an equivalence relation.

Proof. See [44][Lemma 8.3.1] or [31].

Definition 1.1.15. The set πn(X) := Zn/ ∼ is called n-th simplicial homotopy
group.

Remark 1.1.16. As the definition of homotopy group for a general simplicial set
relies on the choice of the base point ∗ ∈ X0, for simplicial abelian group such
any choice is equivalent up to isomorphism and we canonically consider the unit
of the group as base point. More precisely if x ∈ X0 is the base point, then the
right-translation given by yx−1 induces an isomorphism of groups.

1.1.3 Simplicial Homotopies

Definition 1.1.17. Given a simplicial object X• of a category C with coproducts,
together with a simplicial object U• of the category of non empty simplicial finite
sets. We define the simplicial object (X × U)• of C as

(X × U)n :=
∐
u∈Un

Xn

and given γ : [n] −→ [m] we get

(X × U)(γ) : (X × U)m −→ (X × U)n

X(u)
m

X(γ)−→ X(U(γ)(u))
n
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Definition 1.1.18 (Simplicial Homotopy). Assume C to be a category with finite
coproducts, let f, g : X• −→ Y• be morphisms in sC. A simplicial homotopy between
f and g is a morphism

h : X• ×∆[1]• −→ Y•

such that f = h ◦ e0 and g = h ◦ e1, where e0, e1 : X• ∼= X• ×∆[0]• −→ X• ×∆[1]•
are simplicial maps induced by the ones of example 1.1.6.

We say that f, g are homotopic if there exists a simplicial homotopy between them,
we write f ' g.

Remark 1.1.19. Fix n ≥ 0, we have that hn : (X × ∆[1])n =
∐

αi
n
Xn −→ Yn

corresponds to a family of n + 2 maps indexed over the αin ∈ ∆[1]n (recall remark
1.1.6)

{hin : X(αi
n)

n −→ Yn}i=0,...,n+1.

The conditions f = h◦e0 and g = h◦e1 corresponds to the fact that fn = hn◦e0 = h0
n

and gn = hn ◦ e1 = hn+1
n . Moreover, with respect to the previous definition, for

δin : [n− 1] −→ [n], we have face maps of this form

(X × U)(δin) = ∂iX×U,n : X(u)
n

∂iX,n−→ X
(∂iU,n(u))

n−1

and, in the case of simplicial homotopy with U = ∆[1], ∂jA×∆[1],n : A
(αi

n)
n −→ A

(αi
nδ

j
n)

n−1 .
If we compute the corresponding map in ∆[1]n−1 we get

αinδ
j
n =

{
αin−1, i ≤ j

αi−1
n−1, i > j

.

This means that at a closer look the rule for maps of simplicial objects hn+1∂
j
n = ∂jnhn

acts on the components as

∂jn+1h
i
n+1 =

{
hin∂

j
n+1, i ≤ j

hi−1
n ∂jn+1, i > j

.

As a matter of fact, it can be proved ([44, proof of Theorem 8.3.12]) that a simplicial
homotopy map h is equivalent to the data of m+ 2 maps, for any m ≥ 0,

{hjm : ∆[n]m −→ Xm}j=0,...,m+1

such that h0
m = f , hm+1

m = g, and

∂imh
j
m =

{
hj−1
m−1∂

i
m, i > j

hjm−1∂
i
m, i ≤ j

σimh
j
m =

{
hj+1
m+1∂

i
m, i > j

hjm+1∂
i
m, i ≤ j

Remark 1.1.20. Simplicial homotopy in general does not define an equivalence
relation, since it is not symmetric. However, it can be proved that for simplicial
objects of an abelian category this is the case (further is an additive equivalence
relation).
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The notation we used in this subsections recalls (and somehow confuses) the one
we used in the previous subsection, when dealing with simplicial homotopy groups.
Next proposition clarifies our choice.

Proposition 1.1.21. Let X be a trivial Kan complex in a category with finite co-
products. The simplicial homology group πn(X) corresponds to the set of morphisms
α : ∆[n] −→ X such that the following diagram commutes

∆[n] X

∆◦[n] ∗

α

modulo simplicial homotopies (constant on ∆◦[n]).

Proof. Recall (remark 1.1.6) that Hom(∆[n], X) = Xn, so that for any element
x ∈ Xn we can define a map αx : ∆[n] −→ X and viceversa. In particular

∆[n]m Xm

∆[n]m−1 Xm−1

αx,m

∂im=−◦δim ∂im

αx,m−1

i.e. αx,m(v◦δim) = ∂imαx,m−1(v) for v : [m] −→ [n]. Suppose ∂in(x) = ∗ for i = 0, ..., n
and take the previous diagram for the casem = n. Then ∗ = ∂in(x) = ∂inαx,n(id[n]) =
αx,n−1(δin). This means that δin ∈ ∆◦[n]n−1 ⊆ ∆[n]n−1 is sent to ∗, so that the
composition ∆◦[n] ↪→ ∆[n]

α−→ X factors through ∗.
It remains to show that if x ∼ x′, then αx '∆◦[n] αx′ and viceversa.
The first condition is equivalent to the existence of y ∈ Xn+1 such that ∂in+1y = ∗
i = 0, ..., n − 1, ∂nn+1(y) = x and ∂n+1

n+1(y) = x′. It corresponds to a map β :
∆[n+ 1] −→ X such that β(δin+1) = ∂in+1(y) for i = 0, ..., n+ 1. On the other hand,
a simplicial homotopy between αx, αx′ is a map h : ∆[n] × ∆[1] −→ X, such that
αx = h ◦ e0 and αx′ = h ◦ e1. The condition of being constant of ∆◦[n] corresponds
to the fact that the following diagram commutes

∆[n]×∆[1] X

∆◦[n]×∆[1] ∆◦[n]

h

i×id
pr∆◦[n]

αx|∆◦[n]=αx′ |∆◦[n]

Or equivalently, since αx|∆◦[n] = αx′ |∆◦[n] factors through ∗,

∆[n]×∆[1] X

∆◦[n]×∆[1] ∗

h

i×id
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Consider the map h : ∆[1]×∆[n] −→ ∆[n+ 1] defined by

∆[1]n ×∆[n]n −→ ∆[n+ 1]n

(αjn, id[n]) 7−→ δjn+1 = hjn(id[n]).

Recalling remark 1.1.19, it turns out that β ◦ h defines a homotopy map. In fact,
the maps δi ◦ β : ∆[n] −→ X are maps of simplicial sets such that δn+1

n+1β = αx and
δnn+1β = αx′ .
Now fix q ≥ 0, we have

(αjq, f)
∂iq7→ (αjq ◦ δiq, f ◦ δiq)

=

{
(αjq−1, f ◦ δiq) i ≥ j,

(αj−1
q−1, f ◦ δiq) i < j

h7→

{
δjn+1 ◦ f ◦ δiq i ≥ j,

δj−1
n+1 ◦ f ◦ δiq i < j

(αjq, f)
h7→ (δjn+1 ◦ f)

∂iq7→ δjn+1 ◦ f ◦ δiq

and the same holds for the degeneracy maps.

Given a map on Kan complexes f : X −→ Y such that f(∗X) = ∗Y , there is an
induced map π∗(f) : π∗(X) −→ π∗(Y ).

Proposition 1.1.22. Simplicial homotopic maps f, g : X −→ Y induces the same
map on simplicial homology group π∗(f) = π∗(g) : π∗(X) −→ π∗(Y ).

Proof. The results comes from the new definition of simplicial homotopy groups
and the fact that homotopy relation is compatible with function composition in
the following sense: if f1, g1 : X −→ Y are homotopic, and f2, g2 : Y −→ Z are
homotopic, then their compositions f2 ◦f1, g2 ◦g1 : X −→ Z are also homotopic.

1.1.4 Simplices and Complexes

Last part of this section recollects all the previous results in order to define and
structure a bridge between the world of simplices and the world of complexes. Such
correspondence is fundamental from several points of view which will be emphasized
in the following section.
Recall that given an abelian category A (e.g. abelian group or R-modules for a
commutative ring R), a chain complex in A is a (possibly finite) sequence of objects
and morphisms (called differentials) indexed by consecutive integers

... −→ An
dn−→ An−1 −→ ...

such that the composition of two consecutive maps is the zero map, i.e. dn ◦ dn−1 or
briefly d ◦ d = 0.
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There are in particular two ways to construct a complex from a simplicial object in
an abelian category A.

Definition 1.1.23 (Normalized complex). Let A be an abelian category, sA the
category of simplicial objects of A and Ch≥0(A) the category of non-negatively
graded cochain complexes of A. We may define the following functor

N : sA −→ Ch(A)

such that, given a simplicial object A• in A, the associated normalized complex is
the complex

...
dn+2

−→ NAn+1
dn+1

−→ NAn
dn−→ NAn−1

dn−1

−→ ...
d1

−→ NA0
d0

−→ 0

where NXn :=
⋂n−1
i=0 ker(∂in : An −→ An−1) and dn := (−1)n∂nn .

Remark 1.1.24. The complex is well defined as for x ∈ An such that ∂in(x) = 0
for i = 0, ..., n− 1 we have that dn(x) = (−1)n∂nn ∈ An−1. Suppose j = 0, ..., n− 2,
then by (1.1) we have ∂jn−1∂

n
n(x) = ∂n−1

n−1∂
j
n(x) = 0, so that dn(x) ∈ ker ∂jn−1 for

j = 0, ..., n− 2, i.e. dn(x) ∈ NAn−1.
Furthermore, again by (1.1), ∂nn∂

n+1
n+1 = ∂nn∂

n
n+1; thus for x ∈ NAn+1 the composition

of two consecutive differentials gives (−1)n∂nn◦(−1)n+1∂n+1
n+1(x) = (−1)∂nn∂

n
n+1(x) = 0

as x ∈ ker ∂in+1 for i = 0, ..., n.

Definition 1.1.25 (Unnormalized complex). Let A be an abelian category, we may
define the following functor ∫

: sA −→ Ch≥0(A)

such that, given a simplicial object A• in A, the associated (unnormalized) complex
is the complex

...
dn+2

−→ An+1
dn+1

−→ An
dn−→ An−1

dn−1

−→ ...
d1

−→ A0
d0

−→ 0

where dn :=
∑n

i=0(−1)i∂in. Sometimes is called Moore complex.

Remark 1.1.26. The differential of the associated complex is well defined, in par-
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ticular

dn ◦ dn+1 =

(
n∑
i=0

(−1)i∂in

)
◦

(
n+1∑
j=0

(−1)j∂jn+1

)

=

(
n∑
i=0

(−1)i∂in

)
◦

(
n+1∑
j=i+1

(−1)j∂jn+1 +
i∑

j=0

(−1)j∂jn+1

)

=
n∑
i=0

n+1∑
j=i+1

(−1)i+j∂in ◦ ∂
j
n+1 +

n∑
i=0

i∑
j=0

(−1)i+j∂in ◦ ∂
j
n+1

=
n∑
i=0

n+1∑
j=i+1

(−1)i+j∂j−1
n ◦ ∂in+1 +

n∑
i=0

i∑
j=0

(−1)i+j∂in ◦ ∂
j
n+1

=
n∑
i=0

n∑
j=i

(−1)i+j+1∂jn ◦ ∂in+1 +
n∑
i=0

i∑
j=0

(−1)i+j∂in ◦ ∂
j
n+1

= −
n∑
j=0

j∑
i=0

(−1)i+j∂jn ◦ ∂in+1 +
n∑
i=0

i∑
j=0

(−1)i+j∂in ◦ ∂
j
n+1 = 0.

Remark 1.1.27. Note that by definition there’s a natural inclusion of complexes
NA∗ ↪→

∫
A∗. In particular it yields a map of functors N −→

∫
.

Remark 1.1.28. Recall Definition 1.1.15 of simplicial homotopy groups and remark
1.1.16 for simplicial abelian groups. Let A be a simplicial abelian group and let
0 ∈ A0 be the base point; it’s easy to see that Zn = ker(dn : NAn −→ NAn−1). On
the other hand

ker(Zn −→ πn(A)) = {x ∈ Zn : x ∼ 0}
= {x ∈ Zn : ∃y ∈ An+1, ∂

n+1
n+1(y) = x, ∂nn+1(y) = 0, ∂in+1(y) = 0 i < n}

= {x ∈ Zn : ∃y ∈ Zn+1 ∂
n+1
n+1(y) = x}.

Last set corresponds to the image of dn : NAn+1 −→ NAn. To sum up, we proved
that simplicial homotopy of a simplicial abelian group corresponds to (co)homology
of the associated normalized complex

πn(A) = Hn(NA∗).

These results can be generalized to the case of any group, by-passing the lost of
abelian category structure (see [44] pages 264-265).

Last remark is the meeting point of non-abelian homological algebra, which can
be performed in terms of simplicial homology groups (see REF) and homology for
general abelian category, without underlying set structure.

Remark 1.1.29. It is possible to prove that π is a (non abelian) homological δ-
functor, see [44, exercise 8.3.3 and remark 8.3.5].
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Next lemma may look similar to Proposition 1.1.22, but here we are dealing within
abelian categories, while previously the setting was more general. On the other
hand, if the previous Proposition gives a quasi-isomorphism of Kan complex, the
following Lemma gives chain homotopic maps.

Lemma 1.1.30. Let A be an abelian category and f, g : A −→ B two maps in
sA. Suppose f, g are simplicially homotopic, then Nf,Ng : NA −→ NB are chain
homotopic maps in Ch(A).

Proof. Since being simplicially homotopic is an additive equivalence relation (remark
[44, Exercise 8.3.6]), we may replace g by g − f and assume f = 0 without loss of
generality. Recall remark 1.1.19 about the simplicial homotopy map, then define
the map sn : An −→ Bn+1 as sn :=

∑n
i=0(−1)i+1hi+1

n+1σ
i
n. We want to prove that the

{sn}n≥0 defines a chain homotopy between Ng and the 0-map. Let x ∈ NAn, we
compute for j = 0, ..., n

∂jn+1sn(x) =
n∑
i=0

(−1)i+1∂jn+1h
i+1
n+1σ

i
n(x)

=
∑
i<j

(−1)i+1hi+1
n ∂jn+1σ

i
n(x) +

∑
i≥j

(−1)i+1hin∂
j
n+1σ

i
n(x)

=
∑
i+1<j

(−1)ihi+1
n σin−1∂

j−1
n (x) + (−1)jhjn(x) + (−1)j+1hjn(x) +

∑
i>j

(−1)ihinσ
i
n−1∂

j−1
n (x).

The two single addendums in the last list cancel out each other. Then, as x ∈ NAn,
∂jn(x) = 0 for j = 0, ..., n − 1, the two sums equal 0. Thus sn(x) ∈ ker δjn+1 for
j = 0, ..., n, i.e. sn(x) ∈ NBn+1. So we have that the induced map

sn : NAn −→ NBn+1

is well defined for all n. It remains to prove dn+1sn − sn−1d
n = (−1)n+1g, so that

{(−1)n+1sn}n is a chain homotopy between 0-map and g.

∂n+1
n+1sn =

n∑
i=0

(−1)i+1∂n+1
n+1h

i+1
n+1σ

i
n

=
n∑
i=0

(−1)i+1hi+1
n ∂n+1

n+1σ
i
n

=
n−1∑
i=0

(−1)i+1hi+1
n σin−1∂

n
n + (−1)n+1hn+1

n .

Then
∂n+1
n+1sn − sn−1∂

n
n = (−1)n+1hn+1

n = (−1)n+1g.

So we get

(−1)n+1dn+1sn + (−1)nsn−1d
n = (−1)n+1(dn+1sn − sn−1d

n) = (−1)2n+2g = g

And we are done.
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All these results somehow let us foreshadow a strong connection between the sim-
plices and the complexes world. The most explanatory result in such sense is the
following theorem.

Theorem 1.1.31 (Dold-Kan Correpondence). Fon any abelian category A, the nor-
malized chain complex functor N : sA −→ Ch≥0(A) is an equivalence of categories.
Under this correspondence, simplicial homotopy corresponds to (co)homology and
simplicially homotopic morphisms correspond to chain homotopic maps.

Proof. A reference may be [14, Theorem 3.6]. Note that the second part of the
statement has been already proved in the previous Lemma.

Corollary 1.1.32. The functor N and its quasi-inverse K are exacts, i.e. a se-
quence S = (0 −→ X −→ X ′ −→ X ′′ −→ 0) in sA (resp. Ch≥0(A)) is exact if and
only if NS (resp. KS) is an exact sequence.

Corollary 1.1.33. Given an object A in an abelian category A. The inclusion
NA∗ ↪→

∫
A∗ induces an isomorphism in cohomology H∗(NA) = H∗(

∫
A).

Remark 1.1.34. Why, since functor N needs not the degeneracy maps, we need
them to define a simplicial object? From the proof of the Dold-Kan correspondence
turns out that simplicial objects with the same face maps belong to the same homo-
topy class.

In (co)homology theory projective resolutions are a fundamental tool for computing
(co)homology. They are complexes of projective modules with trivial (co)homology
but in degree zero, where they corresponds to the object “resolved”. Projectivity is
particularly useful, since its lifting property guarantees the unicity of the resolution
up to chain homotopy. We want to translate such setting in the simplicial world.

Definition 1.1.35 (Augmentation). Given an object B and a simplicial objectX• in
a category C, we define an augmentation ε : X• −→ B to be a morphism X• −→ B•
in sC, where B• is the constant simplex.

Lemma 1.1.36. An augmentation ε• : X• −→ B is equivalent to the data of a
morphism ε0 : X0 −→ B satisfying the identity ε0∂1

1 = ε0∂
0
1 .

Proof. Given a map ε : X• −→ B• of simplicial objects, the degree zero component
ε0 satisfies this identity by definition. Conversely, given ε0 as in the statement, we
may choose an arbitrary morphism α : [0] −→ [n] and set εn := ε0 ◦ X(α). This
does not depend on the choice of α, because for a different choice β : [0] −→ [n] we
may find a morphism γ : [1] −→ [n] such that both α and β factor through γ, from
which the identity ε0∂1

1 = ε0∂
0
1 implies that the resulting maps εn are the same. The

sequence εn indeed defines an augmentation.

Definition 1.1.37 (Simplicial Resolution). An augmented object X• −→ B is a
simplicial resolution if πn(X•) = 0 for n > 0 and π0(X•) = B.

Remark 1.1.38. In an abelian category this is equivalent to the assertion that the
associated complex NX and

∫
X are resolution of B.
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Proposition 1.1.39. If the underlying structure in sSet of an augmentation has
simplicial homotopic inverse, then it is a resolution.

Proof. Given a simplicial homotopic inverse as simplicial set, then by Proposition
1.1.22 the simplicial homology groups are isomorphic, which gives the definition of
simplicial resolution above.

1.2 Simplicial Rings, Differential graded Algebras
and E∞-algebras

Consider a (commutative unitary) ring A, some complexes of A-modules have an
additional algebraic structure, which yields a richer category.

Definition 1.2.1. A differential graded algebra (dga) over some commutative uni-
tary ring A is given by a complex of A-modules C∗ and a map of cochain complexes

C∗ ⊗A C∗ −→ C∗,

unital and associative in the obvious sense. Further a dga is called (graded) com-
mutative if it is endowed with a map of cochain complexes

C∗ ⊗A C∗ −→ C∗ ⊗A C∗

x⊗ y 7−→ (−1)deg xdeg yy ⊗ x,

with deg x = n if and only if x ∈ Cn, such that if we compose it with the previous
map it gives a commutative triangle. From now on we consider commutative differ-
ential graded algebras, so we may omit to specify it when it is clear by the context.
We denote as cdga the corresponding category.

We can give a more “concrete” definition of differential graded algebra. As a complex
of A-modules endowed with an operation such that, given x ∈ Cn and y ∈ Cm, the
product x · y ∈ Cn+m. This corresponds to the above mentioned map of complexes
and the relationship with the differentials gives us the Liebnitz rule

d(x · y) = dx · y + (−1)nx · dy.

Being unital and associative means that ⊕i≥0C
i is a graded A-algebra.

Proposition 1.2.2. Given a differential graded algebra C∗, its operation induces a
structure of graded algebra on cohomology groups H∗(C∗) := ⊕iH i(C∗).

Proof. (Sketch). Being a differential graded algebra implies:

1) If u, v are cocycles, then so is u · v.

2) If u, v are cocycles that differ by a coboundary, and w is a cocycle, then uw and
vw differ by a coboundary, and similarly for wu and wv.
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It follows that multiplication is well-defined on H∗(C) by the formula [u][v] = [u ·v]:
uv is indeed a cocycle by 1), and by 2) changing the representatives for [u], [v] doesn’t
change the class [u · v]. Another proof may pass through the following remark: the
chain map C ⊗C induces a graded map H∗(C ⊗C) −→ H∗(C), and then you have
a canonical map H∗(C)⊗H∗(C) −→ H∗(C⊗C): it sends [u]⊗ [v] to [u⊗ v]: it can
be checked that it is well-defined with a similar argument as above.

Commutative differential graded algebras are a wonderful arithmetic-geometry ob-
ject, but difficult to handle in homotopy theory. A first attempt to control its
structure is to formalize it.

1.2.1 Tensor products

It will be useful the notion of monoidal structure on a category C. It is a way to
formalize the existence of a “tensor product” and a “unit object” satisfying some
natural “algebraic operation” axioms.

Definition 1.2.3. A (symmetric) monoidal category is a category C endowed with
an object 1, a functor C × C −→ C, and the unital, associative, (commutative)
constraints, which are natural equivalences satisfying certain coherence axioms.

Example 1.2.4. The category of sets has a monoidal structure induced by the
Cartesian product and a fixed singleton as units.

Example 1.2.5. The ordinary tensor product makes vector spaces, abelian groups,
R-modules, or R-algebras into monoidal categories (the unit object would be the
initial object of each category).

Example 1.2.6. Given a monoidal category (C,−⊗−,1), the associated category
of simplicial objects sC inherits a monoidal structure given by (X ⊗ Y )n = Xn⊗ Yn
and 1n = 1.

Example 1.2.7. Let R be a ring, the category of chain complexes of R-modules
has a monoidal structure given by Koszul product, where given X∗, Y ∗

(X ⊗ Y )n := ⊕i+j=nX i ⊗R Y j

and 1∗ is the trivial complex with the ring R concentrated in degree zero.

Associated to the notion of monoidal structure is the one of monoid object.

Definition 1.2.8. A monoid object (or monoid) (M,µ, η) in a monoidal category
(C,⊗,1) is an objectM together with a multiplication morphism µ : M⊗M −→M
and a unit morphism η : 1 −→M , such that the following diagrams commutes

(M ⊗M)⊗M M ⊗ (M ⊗M)

M ⊗M M ⊗M

M

α

µ⊗1

1⊗µ

µ

µ
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1⊗M M ⊗M M ⊗ 1

M

η⊗1

µ

1⊗η

M is a symmetric monoid object if multiplication map is compatible with some
symmetry axioms induced by a twist map, which is a natural map such that for any
couple of objects A,B defines an isomorphism τA,B : A⊗B −→ B ⊗ A.

As you see, a monoid object is a generalization of the concept of (algebraic) monoid,
i.e. an object where is defined an operation with unit.

Example 1.2.9. A monoid object in the monoidal category of sets is a set with an
additional structure which makes it an algebraic monoid in the usual sense. As a
matter of facts it is a setM with a special element e ∈M determined by a map of sets
{∗} −→ M and a multiplication map M ×M −→ M defined as (x, y) 7−→ y =: xy
satisfying the identities xe = x = xe and (xy)z = x(yz) for all x, y, z ∈M .

Example 1.2.10. A monoid in the category of abelian groups is a ring. For R-
modules is an R-algebra.

Example 1.2.11. Given a monoidal category (C,−⊗−,1), monoids in the associ-
ated category of simplicial objects sC are the simplicial version of the corresponding
monoid.

Example 1.2.12. Monoid object in the category of chain complexes of R-modules
are differential graded algebras. Symmetric monoid are commutative differential
graded algebras.

Example 1.2.13 (Derived Tensor Product). Let R be a commutative ring. Let
D(R) be the category of unbounded chain complex of R-modules (which is a sym-
metric monoidal category) where the quasi-isomorphisms are formally inverted. The
category D(R) is called the derived category of R-modules. We can define a ten-
sor product in such category as follows. Two objects A,B of D(R) can be seen as
classes of complexes of R-modules up to quasi-isomorphism. Let A′, B′ be two rep-
resentatives of such classes that are projective complexes (recall that the category of
complexes of R-modules has enough projectives, that is for any complex A we can al-
ways find a projective resolution A′, which is a projective complex quasi-isomorphic
to A). We define the derived tensor product A⊗LR B := A′ ⊗R B′. It can be proved
that the definition does not depend on the choice of the projective representative.
With such definition the category D(R) is a symmetric monoidal category (unit
object given by the class of the unit object of C(R)). The details can be found in
Chapter 4 of [24]. From the construction it is clear that H i(A⊗LR B) = Tori(A,B),
in particular H0(A⊗LR B) = A⊗R B.
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1.2.2 Simplicial Rings to differential graded algebras.

Let A be an abelian category with a symmetric monoidal structure. We know that
both sA and Ch≥0(A) have a symmetric monoidal structure induced by that of A.
Since they are equivalent as categories by the Dold-Kan correspondence, we may
be interested in understanding how their monoidal structures and monoids relate
under such correspondence.

The unit objects are preserved under the normalization functor and its inverse.
However, the two tensor products for chain complexes and simplicial abelian groups
are different in an essential way, i.e., the equivalence of categories given by normal-
ization does not take one tensor product to the other. Another way of saying this
is that if we use the normalization functor and its inverse to transport the tensor
product of simplicial abelian groups to the category of connective chain complexes,
we obtain a second monoidal product (sometimes called the shuffle product of com-
plexes) which is non-isomorphic, and significantly bigger than, the tensor product.

All these considerations follow from the Eilenberg-Zilber theorem, which we are
going to present briefly after some setting definition.

Definition 1.2.14. A bisimplicial object in a category C is a functor ∆op×∆op −→ C,
or equivalently a simplicial object in the category of simplicial objects of C, i.e. an
object of ssC = Fun(∆op, Fun(∆op, C)).

Alternatively a bisimplicial object A is a bigraded sequence of objects Ap,q (p, q ≥ 0),
together with horizontal and vertical face and degeneracy maps h∂i : Ap,q −→
Ap−1,q, hσi : Ap,q −→ Ap+1,q, v∂i : Ap,q −→ Ap,q−1, vσi : Ap,q −→ Ap,q+1. This maps
must satisfy simplicial identities (1.1) horizontally and vertically. Finally every
horizontal map must commute with every vertical map.
Given a bisimplicial object A in an abelian category A, we can extend the functor∫

and get a first quadrant double complex
∫
A = {Ap,q}(p,q) with horizontal maps

dh =
∑

i(−1)i h∂i and vertical maps dv = (−1)p
∑

i(−1)i v∂i : Ap,q −→ Ap,q−1.
Another interesting functor defined on ssA is the diagonal functor diag(−), which
associates to a bisimplicial object A : (∆×∆)op −→ A the simplicial object obtained
by precomposition with the diagonal functor ∆ −→ ∆×∆. Hence diag(A)n := An,n
and face maps are ∂i = h∂i v∂i and degeneracy maps σi = hσi vσi. With these
functors we can state the Eilenberg-Zilber theorem.

Theorem 1.2.15 (Eilenberg-Zilber Theorem). Let A be a bisimplicial object in an
abelian category A. Then there is a natural isomorphism1

π∗ diag(A) ∼= H∗Tot(

∫
A).

An enlightening application of such theorem is when we consider as bisimplicial
object (Am ⊗R Bn)(m,n), where A•, B• are simplcial R-modules. In this specific

1Recall that given a double complex {Ap,q}, the total complex is given by Tot(A)n :=
⊕p+q=nAp,q.
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case we get a classical result of cohomology theory. Note that the associated total
complex Tot(

∫
(A•⊗RB•)) is the tensor product of complexes

∫
A•⊗R

∫
B•. On the

other hand, the diagonal of the bisimplicial object we defined is the tensor product
of simplicial R-modules. In this situation the Eilenberg–Zilber theorem gives:

Corollary 1.2.16 (Kunneth Formula).

π∗ diag(A• ⊗R B•) ∼= H∗Tot(

∫
A• ⊗R

∫
B•).

From the corollary we see that the Dold-Kan correspondence (remember that the
functors N and

∫
gives quasi-isomorphic complexes) does not take one tensor prod-

uct to the other in general, but they share the same (co)homology.

Eilenberg-Zilber isomorphism is built on two specific maps: the shuffle map and
the Alexander-Whitney map.

Definition 1.2.17 (Shuffle Map). For simplicial object A,B we define the shuffle
map

∇ :

∫
A⊗

∫
B −→

∫
(A⊗B)

as follows; for a ∈ Ai and b ∈ Bj

∇(a⊗ b) =
∑
(µ,ν)

sgn(µ, ν)(σν(a)⊗ σµ(b)) ∈ Ai+j ⊗Bi+j.

where the sum runs over all the (i, j)-shuffles2: given such a shuffle (µ, ν) = (µ1 ... µi ν1 ... νj),
we put σµ = σµi−1σµi−1−1...σµ1−1 and σν = σνj−1σνj−1−1...σν1−1 in order to shift a, b
from Ai, Bj to Ai+j, Bi+j via a path of degeneracy maps σn.

Definition 1.2.18 (Alexander-Whitney map). The Alexander-Whitney map

AW :

∫
(A⊗B) −→

∫
A⊗

∫
B

goes in the direction opposite to the shuffle map; it is defined for a ∈ An and b ∈ Bn

by
AW (a⊗ b) =

⊕
i+j=n

dia⊗ djb

where the front face map di : Ai+j −→ Ai and the back face map dj : Bi+j −→ Bj

are induced by the injective monotone maps δi : [i] −→ [i+ j] and δj : [j] −→ [i+ j]
defined by δi(k) = k and δj(k) = i+ k.

Remark 1.2.19. Both maps factor over normalized chain complexes.
Moreover on the level of normalized complexes, the composite AW ◦∇ is the identity
transformation. The composite of shuffle and Alexander-Whitney maps in the other
order are naturally chain homotopic to the identity transformation. In particular,

2Recall that a (i, j)-shuffle consists of a permutation (µ, ν) := (µ1...µiν1...νj) ∈ Si+j , such that
µ1 < ... < µi and ν1 < ... < νj .
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the shuffle map the Alexander-Whitney map and their normalized versions are all
quasi-isomorphisms of chain complexes.
The shuffle map (normalized and not) respects also the symmetric monoidal structure
of sA and Ch≥0(A). That is not the case for the Alexander-Whitney map.

From the previous setting we can deduce the following result (for a proof see [25,
§I.3.1.3])

Proposition 1.2.20. The functor N and its quasi-inverse K induce the functors
N : sCRing −→ s(cdga) and K : s(dga) −→ sRing.

More than simplicial rings and differential graded algebras, we are interested in
the categories of commutative simplicial rings and commutative differential graded
rings. The normalization functor is symmetric monoidal with respect to the shuffle
map. Hence it takes commutative simplicial rings to commutative (in the graded
sense) differential graded rings. But the Alexander-Whitney map is not symmet-
ric, and so K does not induce a functor backwards. Without a characteristic zero
assumption, not every commutative differential graded ring is quasi-isomorphic to
the normalization of a commutative simplicial ring: if A is a commutative simplicial
ring, then every element x of odd degree in the homology algebra H∗(NA) satis-
fies x2 = 0; but in a general commutative differential graded algebra we can only
expect the relation 2x2 = 0. More generally, the homology algebra H∗(NA), for
A a commutative simplicial ring, has divided power ([13]) which need not be sup-
ported by a general commutative differential graded algebra. Moreover, in general
the forgetful functor from differential graded algebras to chain complexes does not
create a model structure and there is no homotopically meaningful way to go from
differential graded to simplicial algebras in a way that preserves commutativity. In
arbitrary characteristic, one should consider the categories of E∞-algebras instead
of the commutative algebras.

We can extend the previous Proposition 1.2.20 to simplicial differential graded al-
gebras

Lemma 1.2.21. There exists a functor∫
: Fun(∆op, cdga) −→ cdga,

where we note as dga the category of commutative differential graded A-algebras.

Proof. Let us consider (B∗• , d•,∧•) a simplicial differential graded algebra, which
can be seen as an object of Fun(∆op, dga). We associate to B∗• , or better to its
associated bicomplex (we are going to use the same notation whether it is clear
what we mean by the context), the cochain complex defined as follows(∫

B∗•

)
n

:=
⊕
p−i=n

Bp
i , (1.2)
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with the associated differentials Dn :=
⊕

p−i=n
(∂i ⊕ dpi ). Further we can again follow

"Illusie’s method" and define the following map of complexes

CB∗• ⊗A CB∗• C(B∗ ⊗B∗)• CB∗•
shuffle ∧•

·
, (1.3)

which corresponds on each degree to the map of A-modules⊕
p+q−i−j=n

Bp
i ⊗A B

q
j −→

⊕
r−k=n

Br
k

obtained by the direct sums of the following morphisms of A-modules

· : Bp
i ⊗A B

q
j −→ Bp+q

i+j

ω ⊗ η 7−→ ω · η = (−1)pj
∑
(µ,ν)

sgn(µ, ν)σνω ∧i+j σµη,

where ∧i+j is the multiplication defined on the complex B∗i+j.

Remark 1.2.22. I would like to thank T. Szamuely and G. Zábrádi for the funda-
mental suggestion of changing the leading sign in the definition of the product, for
which every computation works. However it is still not clear to me, which is the
"naturality" of such choice.

We want to prove that the following diagram commutes⊕
p−i=n

Bp
i ⊗A

⊕
q−j=m

Bq
j

⊕
r−k=n+m

Br
k

⊕
p−i=n+1

Bp
i ⊗A

⊕
q−j=m

Bq
j

⊕
⊕

p−i=n
Bp
i ⊗A

⊕
q−j=m+1

Bq
j

⊕
r−k=n+m+1

Br
k

·

Dn ⊗ 1 + (−1)n1⊗Dm

·

Dn+m

.

We may prove it by just proving the commutativity of the following square

Bp
i ⊗A B

q
j Bp+q

i+j

Bp
i−1 ⊗B

q
j ⊕B

p+1
i ⊗Bq

j

⊕Bp
i ⊗B

q
j−1 ⊕B

p
i ⊗B

p+1
j Bp+q

i+j−1 ⊕B
p+q+1
i+j

·

·

∂i + (−1)idpi + (−1)p−i∂j + (−1)p−i−jdqj

∂i+j + (−1)i+jdp+q
i+j

,

which corresponds to prove the following equalities, for ω ∈ Bp
i , η ∈ B

q
j ,

(−1)pj
∑
(µ,ν)

sgn(µ, ν)∂i+j(σνω ∧i+j σµη) =(−1)pj
∑

(µ′,ν′)

sgn(µ′, ν ′)σν′∂iω ∧i+j−1 σµ′η+

(1.4)

+ (−1)p(j−1)(−1)p−i
∑

(µ′′,ν′′)

sgn(µ′′, ν ′′)σν′′ω ∧i+j−1 σµ′′∂jη

(1.5)
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(−1)pj(−1)i+jdp+qi+j (σνω∧i+jσµη) = (−1)(p+1)j(−1)iσνd
p
iω∧i+jσµη+(−1)pj(−1)p−i−jσνω∧i+jσµdqjη.

(1.6)
They result to be correct, since the following squares are all commutative

Bp
i−1 ⊗A B

q
j ⊕B

p
i ⊗A B

q
j−1 Bp

i+j−1 ⊗A B
q
i+j−1 Bp+q

i+j−1

Bp
i ⊗A B

q
j Bp

i+j ⊗A B
q
i+j Bp+q

i+j

Bp+1
i ⊗A Bq

j ⊕B
p
i ⊗A B

p+1
j Bp+1

i+j ⊗A B
q
i+j ⊕B

p
i+j ⊗A B

p+1
i+j Bp+q+1

i+j

shuffle

shuffle

shuffle

∧i+j−1

∧i+j

∧i+j

∂i ⊗ 1 + (−1)i1⊗ ∂j ∂i+j ⊗ ∂i+j ∂i+j ⊗ ∂i+j

dpi ⊗ 1 + (−1)p1⊗ dqj dpi+j ⊗ 1 + (−1)p1⊗ dqi+j dp+q
i+j

,

respectively by the fact that we have dga structure induced by the shuffle map, each
∂ is a graded morphism of algebras, shuffle map is a map of complexes (in this case
from B∗i ⊗A B∗j to B∗i+j ⊗A B∗i+j), we have a dga structure on B∗i+j.

So we have that
∫
B∗• is a commutative dg algebra. We now want to prove that

such construction is functorial.

Let us consider a morphism in Fun(∆op, dga)

f : B∗• −→ C∗• ,

which gives a collection of commutative cubes of A-modules

Bp+1
i Cp+1

i

Bp
i Cp

i

Bp+1
i−1 Cp+1

i−1

Bp
i−1 Cp

i−1

dpi

dpi−1

dpi

dpi−1

fp+1
i

fp+1
i−1

fpi−1

∂i

∂i ∂i

fpi

∂i

,

so that the map induced by the direct sum of fpi∫
f :=

⊕
p−i=n

fpi :
⊕
p−i=n

Bp
i −→

⊕
p−i=n

Cp
i
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is a map of cochain complexes, which induces a graded morphism of algebra⊕
n≥0

⊕
p−i=n

Bp
i −→

⊕
n≥0

⊕
p−i=n

Cp
i

indeed

fp+qi+j (ω · η) = (−1)pj
∑
(µ,ν)

sgn(µ, ν)fp+qi+j (σνω ∧i+j σµη)

= (−1)pj
∑
(µ,ν)

sgn(µ, ν)fpi+j (σνω) ∧i+j f qi+j (σµη)

= (−1)pj
∑
(µ,ν)

sgn(µ, ν)σν(f
p
i ω) ∧i+j σµ(f qj η)

= fpi (ω) · f qj (η),

where firstly we use the fact that f ∗i+j is a graded morphism of algebra (with respect
to the product ∧i+j), then the fact that f is a functor from ∆op, so it commutes
with morphisms of such category. And we are done.

1.2.3 Truncations of differential graded algebras

Let C∗ be a commutative differential graded algebra (cdga). Recall that for any
complex C∗ we can define the associated canonical truncation complexes

(a) t[nC∗ defined as (0 −→ Cn/dn−1(Cn−1) −→ Cn+1 −→ ...);

(b) tn]C
∗ defined as (... −→ Cn−1 −→ ker dn −→ 0).

Canonically we have the complex morphisms C∗ −→ t[nC
∗ and tn]C

∗ −→ C∗.

Remark 1.2.23. The “naturality” of such definitions has to be found in the fact that
the previous morphisms induces an isomorphism in cohomology for degree greater
than n (case (a)) or lower than n (case (b)). In particular, suppose C∗ has trivial
cohomology group in degree lower (resp. greater) than n, then the morphism C∗ −→
t[nC

∗ (resp. tn]C
∗ −→ C∗) is a quasi-isomorphism.

We wonder if t[nC∗ and tn]C
∗ are still cdga and if the canonical maps preserve such

structure.

Remark 1.2.24. Recall that for a graded algebra ⊕Cn the module of elements of
degree zero C0 is actually a ring. In particular Z ⊆ C0 in a differential graded
algebra. The same must happen for the truncation, so that n ≤ 0 for case (a),
viceversa for case (b) n ≥ 0.

Remark 1.2.25. In case (a), consider a, b ∈ t[nC
∗, deg(a) = n, so that we may

write a+ d(a′) for some a′ ∈ t[nCn−1 = Cn−1. Then (a+ d(a′)) · b = a · b+ d(a′) · b
is not well defined as an element of Cn+deg b. This force us to consider only the case
in which the complex is concentrated only in degree 0.
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Remark 1.2.26. In case (b), if n > 0 it may happen that, given a, b ∈ tn]C
∗,

deg(a) + deg(b) = n and one of them is of degree different from n. In such case
d(a · b) = d(a) · b + (−1)deg(a)a · d(b) 6= 0, so that a · b /∈ ker dn = tn]C

n. This force
us to consider only the case n = 0.

It turns out that the only cases which preserve the structure of cdga are actually
the following

t0]C
∗ −→ C∗, (1.7)

t0]C
∗ −→ t[0t0]C

∗. (1.8)

Proposition 1.2.27. Given a commutative differential graded algebra C∗, the com-
plexes t0]C

∗ and t[0t0]C
∗ are differential graded algebras.

Proof. Define on t0]C
∗ the multiplication as

a · b =

{
ab, if deg(a), deg(b) ≤ 0,

0 otherwise
;

where ab is given by the multiplication on the cgda C∗. Since deg(a), deg(b) ≤ 0
implies deg(a) + deg(b) ≤ 0 and it equals 0 if and only if deg(a) = deg(b) = 0, the
operation is trivially well defined for each degree but the latter case. Let a, b ∈ ker d0,
then d0(ab) = d0(a)b + ad0(b) = 0, so that a · b ∈ ker d0. Such operation inherits
the properties of associativity and (graded) commutativity from the multiplication
defined on C∗. We now want to prove that it satisfy Liebnitz condition. The only
non-trivial case are when at least one of the elements is of degree 0. Let us call δ
the differential on t0]C

∗, then

• for deg a = 0 and deg b < 0, δ(a · b) = d(ab) = d(a)b+ ad(b) = ad(b) = a · δ(b),
δ(a) · b = d(a)b = 0, a · δ(b) = ad(b);

• for deg a < 0 and deg b = 0, δ(a · b) = d(ab) = d(a)b+(−1)deg aad(b) = d(a)b =
δ(a) · b, δ(a) · b = d(a)b, a · δ(b) = ad(b) = 0;

• if both has degree 0, everything equals 0.

And in each case Liebnitz condition

δ(a · b) = δ(a) · b+ (−1)deg aa · δ(b)

is satisfied. In conclusion, t0]C
∗ is a commutative differential graded algebra.

Now consider the map of complexes (in fact it is a monomorphism)

t0]C
∗ −→ C∗.

We want to show that it is a map of cdga actually. In particular we have to show
that the following diagram commutes but this is trivial to verify.
On t[0t0]C

∗ we define the following operation

a ? b =

{
a · b, if deg(a) = deg(b) = 0,

0 otherwise
;
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where a · b is the multiplication in t0]C
∗ modulo d−1C−1. To show that the multipli-

cation in well defined we write two elements on ker d0/d−1C−1 as a+d(a′), b+d(b′),
then (a+ d(a′)) ? (b+ d(b′)) = ab+ d(a′)b+ ad(b′) + d(a′)d(b′). In particular

• d(a′)b = d(a′b) + a′d(b) = d(a′b) since b ∈ ker d0,

• ad(b′) = d(ab′)− d(a)b′ = d(ab′) since a ∈ ker d0,

• d(a′)d(b′) = d(a′d(b′)).

So that the product is well defined. In this case Liebnitz condition is trivial, moreover
associativity and commutativity work trivially.
Consider the map (epimorphism) of complexes

t0]C
∗ −→ t[0t0]C

∗.

It induces the diagram for which, supposing deg(a) 6= 0, a · b = 0 = a ? b, and, for
deg(a) = deg(b) = 0, a · b = a ? b. Hence the diagram commutes, so we have a map
of commutative differential algebras.

Corollary 1.2.28. Suppose that C∗ is a commutative differential graded algebra
acyclic but in degree zero. Then the maps (1.7) and (1.8) are quasi-isomorphisms.

Remark 1.2.29. In the setting of last Corollary, we see that C∗ is quasi-isomorphic
to a ring H0(C∗) seen as a commutative differential graded algebra concentrated in
degree zero. This is the key point of most of next chapter computations. The idea is
that in this case we can manage a commutative ring as a cdga and viceversa, whether
the cohomology is concentrated in degree zero. Actually several problems arise in this
case, which get the formalization of this phenomena very complicated. For example
the maps (1.7) and (1.8) don’t give a quasi-isomorphism C∗ −→ H0(C∗) as they
are oriented in different directions. It is possible to define a category where all
quasi-isomorphism of cdga are invertible, but such category will somehow lose the
relationship with the corresponding category for complexes (the forgetful functor is no
longer well defined). This problems are related to those we pointed out when talking
about the Dold-Kan correspondence for the monoidal structure of the category sA
and Ch(A) and they are solved both in the context of E∞-algebras. We are going to
give just a hint in the next paragraph for completeness, however what is important
is that there is a “black box” through which we are allowed to consider rings and
differential graded algebras as quite the same thing.

1.2.4 E∞-algebras

An E∞-algebra over a ring R is an analogue of commutative differential graded
algebras with strict commutativity of the diagrams replaced by homotopies, them-
selves subject to higher homotopies, and so on. There are several ways to define
E∞-algebras and all definitions are quite technical and, since for these work we just
need to keep this idea in mind, they do not add anything that would help the com-
prehension of the topic.
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We may give some hints about the “non commutative” version of E∞-algebras: the
A∞-algebras. They may give a further insight of this tools, even if we are not going
to use it.

An A∞-algebra presents an explicit formulation thanks to Steenrod operations. Re-
call that an associative differential graded algebra over A is a Z-graded R-module
A endowed with graded R-linear maps d = m1 : A −→ A of degree 1 and m = m2 :
A⊗R A −→ A of degree 0 satisfying the following conditions

• m1m1 = 0 (i.e. m1 is a differential),

• m1m2 = m2(m1 ⊗ idA + idA ⊗m1) (i.e. m1 is a derivation with respect to the
multiplication m2),

• m1(idA ⊗m2 −m2 ⊗ idA) = 0 (associativity of m2).

In the definition of A∞-algebras, we replace the zero in the associativity of m2

by the boundary of a homotopy m3. More precisely, we include a graded map
m3 : A⊗A⊗A −→ A of degree −1 as part of the data and we impose the condition

m1(idA⊗m2−m2⊗idA) = m1m3+m3(m1⊗idA⊗idA+idA⊗m1⊗idA+idA⊗idA⊗m1).

The coherence of m3 is further governed by a map m4 : A ⊗ A ⊗ A ⊗ A −→ A of
degree −2. It is not difficult to write down all the homotopies: mn : A⊗n −→ A
R-linear map of degree 2− n such that∑

r+s+t=n

(−1)r+stmr+1+t(id
⊗r
A ⊗ms ⊗ id⊗tA ) = 0.

Now that we have some more insights about E∞-algebras we can consider the fol-
lowing list of facts (see [40]):

Facts 1.2.30. U

1. Any commutative differential graded algebra defines an E∞-algebra.

2. A morphism of commutative differential graded algebras defines a “morphism”
of E∞-algebras.

3. A quasi-isomorphism of commutative differential graded algebras corresponds
to an equivalence of E∞-algebras. In particular the corresponding “morphism”
from one E∞-algebra to the other has a “morphism” in the opposite direction.

1.3 Pro-categories
We recall some results on pro-categories.

Definition 1.3.1. We say that a category I is cofiltered if the following conditions
are satisfied:
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(1) I is non-empty.

(2) For every pair of objects i, j ∈ I, there exists an object k ∈ I, together with
morphisms k −→ i and k −→ j.

(3) For every pair of morphisms f, g : i −→ j in I, there exists a morphism h :
k −→ i in I, such that f ◦ h = g ◦ h.

Example 1.3.2 (Directed Sets). A directed set is a nonempty set A together with
a reflexive and transitive binary relation ≤ (that is, a preorder), with the additional
property that every pair of elements has an upper bound. In other words, for any
a and b in A there exists c in A with a ≤ c and b ≤ c. Therefore a directed set
defines a cofiltered category, where objects are elements of A and a→ b if and only if
b ≤ a. We may use both set theoretic and categorical language to discuss cofiltered
categories; hence “a ≥ b” and “a → b” mean the same thing when the indexing
category is actually a directed set.

Definition 1.3.3. A functor J −→ I is cofinal if J is a cofiltering full subcategory
I and for every i in I, there exists some j in J and an arrow j → i in I.

Example 1.3.4. Consider the ordered set of natural numbers N (which is a directed
set). A subset A ⊆ N is cofinal if for every n ∈ N there existm ∈ A such that n ≤ m.

Recall that a category is said to be small if its objects and its arrows are sets.

Definition 1.3.5. Given a category C, the corresponding pro-category (usually
noted as pro(C)) is the category which has small cofiltered3 systems X : I −→ C as
objects (called pro-objects). Given two pro-objects X, Y for a category C, we define

Hom(X, Y ) = lim←−
j∈J

lim−→
i∈I

HomC(Xi, Yj).

Equivalently X is a pro-system on a small filtered category.

Note that the index categories are not assumed equal. We may use other less
compact notations. In particular X = (Xi)i∈I if we want to specify the objects of
the projective system and their relationship with the index category. On the other
hand X = “ lim←− ”

i∈I Xi if we want to underline the formal cofiltered limit nature of
the pro-object X(see remark 1.3.11). Each element X(i) = Xi for i ∈ I is called
component element, while images of the maps i −→ j in I are called transition
morphisms.

Remark 1.3.6 (On the morphism of pro-objects). In order to easily “see” a mor-
phism f : X −→ Y in pro(C) we first consider Y as a constant projective system,
so that we have just to consider f ∈ lim−→

i∈I
HomC(Xi, Y ). Recall that HomC(−, Y ) is

contravariant, so we have a direct system
3A functor I −→ C is a small cofiltered system if the category I, usually called index category,

is small cofiltered.
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i Xi HomC(Xi, Y )

i′ Xi′ HomC(Xi′ , Y )

≥ pi
i′ − ◦ pi

i′

and the direct limit is given by all families (fi : Xi −→ Y )i∈I modulo the equivalence
relation

fi ∼ fi′ ⇐⇒ ∃i′′ ≥ i, i′ such that fi ◦ pi
′′

i = fi′ ◦ pi
′′

i′ .

So f is given by one of such equivalence classes.

Now consider f : X −→ Y in the general case. We have an inverse system

j Yj lim−→
I

HomC(Xi, Yj)

j′ Yj′ lim−→
I

HomC(Xi, Yj′)

≥ qj
j′ qj

j′◦-

and the limit on all over j ∈ J gives us a set whose elements are given by sequences
of fj : X −→ Yj such that fj = qij′ ◦fj′ for j ≤ j′. In particular we can always define
a map of indices i : J −→ I, such that for every j ∈ J , we can find a corresponding
representing map for the morphism fj, that is fi(j) : Xi −→ Yj such that [fi(j)]∼ = fj.

We now presents in such form two fundamental aspects of the morphisms in a cat-
egory: the identity morphism and the composition.
The identity morphism 1X : X −→ X is given by the family {pi : X −→ Xi}i∈I ,
where each class pi is represented by the identity morphism 1Xi

. In particular each
pi corresponds to the canonical projections of the direct limit.
Let us consider two morphisms f : X −→ Y , g : Y −→ Z, where f = {fj}j∈J and
g = {gk}k∈K. Then g ◦ f is given by the family {gj(k) ◦ fj(k) : X −→ Zk}k∈K. More
precisely gj(k) ◦ fj(k) = [gj(k) ◦ fi(j(k))]∼.

Example 1.3.7. For any object A ∈ C, the constant projective system, indexed
by the category {∗} with one object and one map (the identity), defines a constant
pro-object.

Remark 1.3.8. The previous example induces a natural inclusion ι : C ↪→ pro(C),
which makes C a full subcategory of pro(C). If C has small filtered projective limits,
the functor lim : pro(C) −→ C which sends (Xi)i∈I to lim←−i∈I Xi is the right adjoint
of ι, see [32, Proposition 6.3.1].

Lemma 1.3.9. Let X = (Xj)j∈J be a pro-object of a category C and let φ : I −→ J
be a cofinal functor. Then the pro-object Xφ = (Xφ(i))i∈I is isomorphic to X.

Proof. See [5, Appendix Corollary 2.5] or [43, Proposition 1].
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Remark 1.3.10. Last results reflects in the pro-category world the well known fact
that, in the same setting, supposing C provided with cofiltered limits, the canonical
map

lim←−
i∈I

Xφ(i) −→ lim←−
j∈J

Xj

is an isomorphism [5, Appendix Proposition 1.8].

It is easy to see that a morphism of inverse systems (a morphism of functor from an
index category I to the category C) satisfies the whole previous setting of morphisms
of pro-objects, provided they are defined over the same index category I. As a matter
of fact, we frequently consider maps between two pro-objects with the same index
categories. In this setting, a level map X −→ Y between pro-objects indexed by I
is given by maps Xs −→ Ys for all s in I. Up to isomorphism, every map is a level
map [5, Appendix 3.2].

Remark 1.3.11. The category pro(C) is the universal category with cofiltered limits
receiving the functor ι : C ↪→ pro(C): if D is any other category with cofiltered limits,
let Fun′(pro(C),D) be the collection of functors pro(C),D which preserve cofiltered
limit, then there is a 1:1 correspondence

Fun′(pro(C),D)
−◦ι−→ Fun(C,D).

In this sense one may consider pro(C) as the category obtained by freely adding
cofiltered limits to C (see Proposition 1.3.12).

Proposition 1.3.12. For any category C, the category pro(C) is complete.

Proof. See [37, §1 pag. 12], or [?].

Another, equivalent, definition is to consider pro(C) to be the full subcategory of the
opposite category of presheaves4, i.e. PSh(C)op, determined by those functors which
are cofiltered limits of representables (see [37], [22], [32, Definition 6.1.1]). This is
reasonable since PSh(C) is the free completion of C, so pro(C) is the “free completion
of C under cofiltered limits” (see [32]).

Given a category C, the category of ind-objects Ind(C) can be identified with a
subcategory PSh(C) of presheaves over C preserving small filtered colimits ([32,
Theorem 6.1.8]). On the other hand PSh(C) is the completion of C under colim-
its (by the Yoneda embedding and the fact that presheaves of sets are a cocom-
plete category, see remark 2.2.2 in Daniel Dugger, Sheaves and Homotopy Theory,
https://ncatlab.org/nlab/files/cech.pdf for example). This means that for
any presheaf F , we have an isomorphism

F ∼= lim−→
X∈C/F

yX,

where y : C ↪→ PSh(C) is the Yoneda embedding, and C/F denotes the category of
couples (X, s), where X is an object of C and s : yX −→ F in PSh(C) (N.B. by

4Recall that a presheaf on a category C is simply the category of functors Cop −→ Set
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Yoneda embedding this is equivalent to have an elements s ∈ F (X)).

As a consequence we have that pro(C) can be seen as the opposite category of
ind-objects over the opposite category of C, i.e. pro(C) = (Ind(Cop))op (see [32,
Chapter 6]). Last remark may be used to prove the following result (see also [15,
§11])

Proposition 1.3.13. Let C be a symmetric monoidal category, then we get a sym-
metric monoidal structure on pro(C), where tensor products are defined as

(Xi)i∈I ⊗ (Yj)j∈J = (Xi ⊗ Yj)(i,j)∈I⊗J

and the unit element is the constant pro-object of the unit element of C, we get a
symmetric monoidal structure on pro(C).

Sketch. We recall the characterization of pro(C) as the opposite category of ind-
objects over the opposite category of C, i.e. pro(C) = (Ind(Cop))op. The category of
ind-objects has a symmetric monoidal structure if taken over a symmetric monoidal
category. Given two presheaves F,G, we may define in a unique way a tensor product
in PSh(C), by posing yX ⊗ yY := y(X ⊗ Y ) for two objects X, Y in C. Recall that
in this setting colimits and tensor products commutes, so that

F ⊗G ∼= lim−→
X∈C/F

yX ⊗ lim−→
Y ∈C/G

yY

∼= lim−→
X∈C/F

(
yX ⊗ lim−→

Y ∈C/G
yY

)
∼= lim−→

X∈C/F
lim−→

Y ∈C/G
yX ⊗ yY

is uniquely defined. Such definition (together with the unity object yI, with I unity
object of C) gives to Ind(C) the structure of symmetric monoidal category.

Passing to pro(C), we have that “ lim←− ”
i
Xi ⊗ “ lim←− ”

j
Yj in pro(C) = (Ind(Cop))op

corresponds to “ lim−→i
”Xi ⊗ “ lim−→j

”Yj in Ind(Cop). As we saw before “ lim−→i
”Xi ⊗

“ lim−→j
”Yj ∼= “ lim−→i,j

”Xi ⊗ Yj. But the latter corresponds to “ lim←− ”
i,j
Xi ⊗ Yj in

(Ind(Cop))op = pro(C).
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Chapter 2

Derived de Rham complex

2.1 The Cotangent Complex
The cotangent complex is the result of combined works of several authors, around
questions related to deformation theory of rings and schemes. The key problem is
the following: let A −→ B be a map of commutative ring or, in a more geometric
form, a map of ring sheaves over a topological space X (or a topos). The aim is to
classify the extension of A−algebras, i.e. the exact sequences of the form

0 −→ I −→ B′ −→ B −→ 0,

where I ⊆ B′ is an ideal such that I2 = 0. The geometric side of the problem is,
given a map of scheme X −→ Y , the classification of Y−schemes X ′ with an im-
mersion of order 1 i : X ↪→ X ′. On the algebraic side, André and Quillen introduced
a homology theory for commutative rings, now called André-Quillen homology ([1],
[39]). On the algebraic geometry side, Grothendieck ([19]) and later Illusie ([25],[26])
globalized the definition of André and Quillen and introduced the cotangent com-
plex of a morphism between schemes.

The leading principle is that affine smooth schemes have a very simple deformation
theory. The deformation theory of a general scheme should then be understood by
performing an approximation by smooth affine schemes. Algebraically, this approx-
imation can be realized by simplicial resolving of commutative algebras by smooth
algebras. As we saw in Chapter 1 this is in some sense a multiplicative analogue
of resolving a module by projective modules. Fix a field k (we are going actually
to work in a more general setting), for a commutative k−algebra A, we can choose
a smooth algebra A0 and a surjective morphism A0 → A, for instance by choosing
A0 to be a polynomial algebra. We can furthermore find another smooth algebra
A1 and two algebra maps A1 ⇒ A0 in a way that A becomes the coequalizer of
the above diagram of commutative k−algebras. This process can be continued fur-
ther and provides a simplicial object A•, made out of smooth and commutative
k−algebras An, together with an augmentation A• −→ A. This augmentation map
is a resolution as we saw previously in Chapter 1. The deformation theory of A is
then understood by considering the deformation theory of the simplicial diagram of
smooth algebras A•, for which we know that each individual algebra An possesses
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a very simple deformation theory. For this, the key construction is the complex
associated with the simplicial modules of Kähler differentials

LA :=

∫
(n 7−→ Ω1

An
).

Up to a quasi-isomorphism this complex can be realized as a complex of A−modules
and is shown to be independent of the choice of the simplicial resolution A• of A. The
object LA is the cotangent complex of A, and is shown to control the deformation
theory of A: there is a bijective correspondence between infinitesimal deformations
of A as a commutative algebra and Ext1

A(LA, A). Moreover, the obstruction to ex-
tend an infinitesimal deformation of A to an order three deformation (i.e. to pass
from a family over k[x]/x2 to a family over k[x]/x3) lies in Ext2(LA, A). The alge-
braic construction of the cotangent complex has been globalised for general schemes
by Grothendieck ([19]) and Illusie ([25]).

The above construction involving simplicial resolutions can be applied to the struc-
ture sheaf OX of a scheme X. To put things differently: a general scheme is ap-
proximated in two steps, first by covering it by affine schemes and then by resolving
the commutative algebras corresponding to these affine schemes. The important
issue of how these local constructions are glued together is dealt with by the use of
standard simplicial resolutions involving infinite dimensional polynomial algebras.
For a scheme X (say over the base field k), the result of the standard resolution is
a sheaf of simplicial commutative k−algebras A•, together with an augmentation
A• −→ OX having the property that over any open affine U = SpecA ⊂ X, the cor-
responding simplicial algebra A•(U) is a resolution of A by polynomial k−algebras
(possibly with an infinite number of generators). Taking the total complex of Kähler
differentials yields a complex of OX−modules LX , called the cotangent complex of
the scheme X. As in the case of commutative algebras, it is shown that LX controls
deformations of the scheme X. For instance, first order deformations of X are in
bijective correspondence with Ext1(LX ,OX), which is a far reaching generalization
of the Kodaira-Spencer identification of the first order deformations of a smooth
projective complex manifolds with H1(X,TX) (see [33]). In a similar fashion the
second extension group Ext2(LX ,OX) receives obstructions to extend first order
deformations of X to higher order formal deformations.
In this context we deal with the affine definition.

2.1.1 Definitions

We recall definition and some basic fact about Kähler differentials. Let A −→ B
be a homomorphism of rings. Define the of relative differentials (or Kälher differen-
tials) Ω1

B/A as the B−module generated by elements of the form db for each b ∈ B,
subject to the relations d(a1b1 + a2b2)− a1db1− a2db2 and d(b1b2)− b1db2− b2db1 for
ai ∈ A and bi ∈ B.

Facts 2.1.1. The module of Kähler differentials satisfies the following basic prop-
erties:
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(1) (Base change) For an A−algebra A′ one has Ω1
B⊗AA′/A′

∼= Ω1
B/A ⊗A A′.

(2) (Localization) Given a multiplicative subset S of B, one has Ω1
BS−1/A

∼= Ω1
B/A⊗B

BS−1.

(3) (First exact sequence) A sequence of ring homomorphisms A −→ B −→ C gives
rise to an exact sequence of C−modules

C ⊗B Ω1
B/A −→ Ω1

C/A −→ Ω1
C/B −→ 0.

(4) (Second exact sequence) A surjective morphism B −→ C of A−algebras with
kernel I gives rise to an exact sequence of C−modules

I/I2 −→ C ⊗B Ω1
B/A −→ Ω1

C/A −→ 0,

where the map on the right sends a class x mod I2 to 1 ⊗ dx. (Note that the
B−module structure on I/I2 induces a C−module structure).

(5) (Künneth) For to ring maps A −→ B and A −→ C there is an isomorphism of
B ⊗A C−modules Ω1

B⊗AC
∼= Ω1

B/A ⊗A C ⊕B ⊗A Ω1
C/A.

(6) (Inductive limits) Given a direct system of ring maps {An −→ Bn}n∈N there is
a canonical isomorphism

lim−→
n

Ω1
Bn/An

∼= Ω1
lim−→n

Bn/ lim−→n
An
.

(7) (Functoriality) Suppose that

B B′

A A′.

is a commutative diagram of rings. In this case there is a natural map of modules
of differentials fitting into the commutative diagram

Ω1
B/A Ω1

B′/A′

B B′.

Equivalently there is a map of B′−modules Ω1
B/A ⊗B B′ −→ Ω1

B′/A′ .

(8) (Extension to scheme) Given a map of schemesX −→ Y , the sheaf ofOX−modules
Ω1
X/Y = Ω1

OX/f−1(OY ) is called sheaf of modules of Kähler differentials.
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For all these facts, and more about Ω1
B/A a standard reference nowadays is [34, §6.1],

but also Illusie provides a large recap in [25, §II.1.1]. Exact sequence (3) above can
be extended by 0 on the left under a smoothness assumption on the map B −→ C.
However, in general exactness on the left fails. One motivation for introducing the
cotangent complex is to remedy this defect.

Construction 2.1.2. We start constructing the so called standard simplicial resolu-
tion P• = P (B)• for an A-algebra B as follow. Let P0 := A[B] be the free A-algebra
whose generators xb are indexed by the elemets of B. Then we define recursively
the free A-algebras Pi+1 := A[Pi] for i ≥ 0. Face maps and degeneracy maps of
A−algebras are defined starting from

A[B] B

[b] b∑
ab,I [b1]i1 ...[bk]

ik
∑
ab,Ib

i1
1 ...b

ik
k

κB

τB

.

In particular for 0 ≤ j ≤ i, maps ∂ji : Pi −→ Pi−1 are induced by the A−algebra
homomorphisms κPj

. In the other direction σji : Pi −→ Pi+1 are induced by the
maps of sets τPj

.

Remark 2.1.3. Recall Definition 1.1.37 of a simplicial resolution and Proposition
1.1.39. A particular way to define a resolution of algebras is to consider their under-
lying structure of modules. As a matter of fact, since algebras over a ring A are not
an abelian category, we may defines being a resolution for an A−algebras as being
a resolution as A−module.

Proposition 2.1.4. The object P• in sAlg
A
is a simplicial resolution for the A−algebra

B.

Proof. We need to prove that a) P• is a simplicial object, b) P• −→ B is an aug-
mentation, c) the associated chain complex is acyclic, but in degree zero, where has
cohomology isomorphic to B.
First we focus a little on face maps and degeneracy maps. As an example we just
describe the first two algebras of the resolution (we use Einsten notation for the
sums and we avoid the notation for the product of free elements)
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A[A[A[B]]] A[A[B]] A[B]

ab,i1,i2 [ab,i1 [b]i1 ]i2 ab,i1,i2 [ab,i1b
i1 ]i2

ab,i1,i2 [ab,i1 [b]i1 ]i2 ab,i1,i2(ab,i1 [b]i1)i2

ab,i1,i2,i3 [ab,i1,i2 [ab,i1 [b]i1 ]i2 ]i3 ab,i1,i2,i3 [ab,i1,i2 [ab,i1b
i1 ]i2 ]i3

ab,i1,i2,i3 [ab,i1,i2 [ab,i1 [b]i1 ]i2 ]i3 ab,i1,i2,i3 [ab,i1,i2(ab,i1 [b]i1)i2 ]i3

ab,i1,i2,i3 [ab,i1,i2 [ab,i1 [b]i1 ]i2 ]i3 ab,i1,i2,i3(ab,i1,i2 [ab,i1 [b]i1 ]i2)i3

∂0
1

∂1
1

∂0
2

∂1
2

∂2
2

.

In general face maps remove one couple of square brackets (and replace it with round
brackets). On the other side, degeneracy maps double one couple of square brackets1

A[A[A[B]]] A[A[B]] A[B]

ab,i1 [[b]]i1 ab,i1 [b]i1

ab,i1,i2 [ab,i1 [[b]]i1 ]i2 ab,i1,i2 [ab,i1 [b]i1 ]i2

ab,i1,i2 [[ab,i1 [b]i1 ]]i2 ab,i1,i2 [ab,i1 [b]i1 ]i2

σ0
0

σ0
1

σ1
1

.

Now we can prove the points we stated at the beginning of the proof.
a) To prove that P• is a simplicial object, we just need to prove that face maps
and degeneracy maps satisfies the identities of (1.1). This is straightforward when
considering the description above for σin, ∂jm.
b) We use Lemma 1.1.36, so that we need to prove just that κB∂1

1 = κB∂
0
1 , but

again, it is straightforward from the notation above.
c) Consider the maps (of sets)

fn : B −→ Pn

b 7−→ [...[b]...]

gn : Pn −→ B

ab,I [...[b]
i1 ...]in 7−→ ab,I(...(b)

i1 ...)in .

If we consider f = (fn)n≥0 : B• −→ P• and g = (gn)n≥0 : P• −→ B•, it is easy to
see that they are simplicial maps, since fn = τPn−1 ◦ ... ◦ τP0 ◦ τB = τPn−1 ◦ fn−1 and
gn = κB ◦ κP0 ◦ ... ◦ κPn−1 = gn−1 ◦ κPn−1 .

A[Pn] Pn

B B

κPn

τPn ◦ fn fn

idB

τB
A[Pn] Pn

B B

κPn

gn ◦ κPn gn

idB

τB

.
1We do not consider maps like b 7→ [b], since they are just maps of sets.
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We want to show that they define a simplicial homotopy, i.e. that f ◦g and g ◦f are
homotopic to the simplicial maps idP• and idB• . First of all g ◦ f = idB• trivially,
so that we need to focus only on f ◦ g. Recall the description of ∆[1] in Example
1.1.6; we define for each αin a map

hn(αin,−) : Pn
κPn−i

◦...◦κPn−1−→ Pn−i
τPn−1

◦...◦τPn−i−→ Pn.

Recollecting all hn we get a map of simplicial sets h : ∆[1] × P• −→ P•. If we
compose it with e0 × idP• , we get, for each n ≥ 0, hn(αn+1

n , idP•) = fn ◦ gn. On
the other hand, composing with e1 × idP• , we get hn(α0

n, idP•) = idPn . This means
that h is a simplicial homotopy between f ◦ g and idP• . We proved that P• −→ B
induces an homotopy equivalence as simplicial sets.

An augmentation of A−algebras which induces an homotopy equivalence of sim-
plicial sets is equivalent to the fact that it is a quasi-isomorphism on the associated
complexes of A−modules (Proposition 1.1.39), i.e. it is a resolution of B over A.

Remark 2.1.5. Suppose B a polynomial algebra. Then the map h defined in the
previous proof, is actually a simplicial homotopy of simplicial A−algebras.

Remark 2.1.6. From its definition, it is easy to see that the construction of the
standard simplicial resolution is functorial and this is the main motivation for having
defined it, since any free resolution could be used (see Theorem 2.1.10). Moreover it
commutes with direct limits. See [25, Chapter II §(1.2.1.1) and §(1.2.1.3)].

We now can give the first fundamental definition.

Definition 2.1.7. Given an A-algebra B and its standard resolution P• −→ B
defined above. Consider the constant simplicial ring B• as a simplicial P•-algebra via
the augmentation map and the simplicial A-module Ω1

P•/A
. The cotangent complex

is the complex of B-modules associated to the simplicial object B• ⊗P• Ω1
P•/A

.

When it is clear from the context, we abuse the notation and we identify a simplicial
object A• with the associated complex

∫
A•.

Remark 2.1.8. Such definition depends functorially on A −→ B [25, §II.1.2.3.2],
thanks to remark 2.1.6, and commutes with inductive limits [25, §II.1.2.3.4].

First of all we want to allow other ways to compute the cotangent complex. The
standard simplicial resolution is useful for proving functoriality, however we can
replace the standard simplicial resolution of B with any free simplicial resolution
and get the same object up to quasi-isomorphism. Before proving this result we
need some technical lemmas.

Lemma 2.1.9. Given a simplicial ring A•, a morphism of A•-modules E• −→ F•
and a termwise flat A•-module L•. Suppose E• −→ F• induces a quasi-isomorphism
on the associated complexes, then the induced map E• ⊗A• L• −→ F• ⊗A• L• also
induces a quasi-isomorphism.

Proof. See [25, Lemma 3.3.2.1].
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In particular, given a free terms simplicial resolution Q• −→ B•, we can apply such
lemma to the case A• = E• = Q•, F• = B• and L• = Ω1

Q•/A
. The latter is indeed

a termwise flat Q•-module and, since Q• −→ B• yields a quasi-isomorphism on the
associated complex (by definition of resolution), we have that

Ω1
Q•/A

∼= Q• ⊗Q• Ω1
Q•/A

q.∼=B• ⊗Q• Ω1
Q•/A

as complexes (we indicate with
q.∼= a quasi-isomorphism).

Now we can prove the following.

Theorem 2.1.10. Let B be an A-algebra and let Q• −→ B be a simplicial resolution
of B, whose terms are free A-algebras. The B-modules complex associated to B•⊗Q•
Ω1
Q•/A

is quasi-isomorphic to LB/A.

Proof. Consider the simplicial resolution Q• −→ B and the bisimplicial A-algebra
P•(Q•) defined by the standard resolution P•(Qn) −→ Qn for each level n. Let
Tot(Ω1

P•(Q•)/A
) the total complex associated to the double complex arising from

applying the functor Ω1
−/A to P•(Q•). It can be proved (see Lemma 2.10 of [41])

that2

Tot(Ω1
P•(Q•)/A)

q.∼= Ω1
P•(B)/A,

which is quasi-isomorphic to B• ⊗P•(B) Ω1
P•(B)/A = LB/A, since P•(B) is a free terms

resolution.
On the other hand, since eachQn is a free algebra, the standard resolution P•(Qn) −→
(Qn)• is a homotopy equivalence (see Lemma 2.4 in [41]), so the same holds for
Ω1
P•(Qn)/A −→ (Ω1

Qn/A
)•, i.e. the associated complexes are quasi-isomorphic. In

particular Ω1
P•(Qn)/A is an acyclic resolution of Ω1

Qn/A
. Thus we have

Tot(Ω1
P•(Q•)/A)

q.∼= Ω1
Q•/A

and the term on the right is quasi-isomorphic to B• ⊗Q• Ω1
Q•/A

, since Q• is a free
terms resolution.

Now we presents some results which will be very useful in order to compute some
examples. Moreover they "prove" in some sense that the cotangent complex is a
genuine generalization of the module of Kähler differentials.

Proposition 2.1.11. We have a natural isomorphism of B-modules

H0(LB/A) ∼= Ω1
B/A.

Proof. Consider the augmentation ε• : P• −→ B•. It yields a canonical map of
complexes LB/A −→ Ω1

B/A. Moreover the fact that it induces a quasi-isomorphism
of complexes of A−modules means in particular that B is the cokernel of the double-
map ∂0

1 , ∂
1
1 : P1 −→ P0. Since Ω1

−/− commutes with inductive limits, we have

H0(LB/A) = coker
(
Ω1
P1/A
⇒ Ω1

P0/A

) ∼= Ω1
coker(P1⇒P0)/A = Ω1

B/A.

2Recall that the total complex of a bicomplex is given by the complex whose terms are computed
by the direct sums along the diagonals of the bicomplex.
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We saw (Facts 2.1.1(1)) that for any A-algebra A′, there exists a canonical isomor-
phism of A′ ⊗A B-modules Ω1

A′⊗AB/A′
∼= Ω1

B/A ⊗B (A′ ⊗A B). Let P• −→ B and
P ′• −→ A′ be the standard simplicial resolutions, then the map B −→ A′ ⊗A B
induces a simplicial map P• −→ P ′• ⊗A P•. In this setting we have a natural base
change morphism3

A′ ⊗LA LB/A −→ LA′⊗AB/A′

but a (quasi-)isomorphism holds only for a particular class of A-algebras. Recall
that the i-th torsion group TorAi (A′, B) is defined as the i-th cohomological group
for the tensor functor A′ ⊗A − (see example 2.1.13).

Definition 2.1.12. Two A-algebras A′ and B are Tor-independent if TorAi (A′, B) =
0 for i > 0.

In particular if A′ is flat over A, then it is Tor-independent with any A-algebras.
Now we can state the following

Lemma 2.1.13 (Base Change). If A′ and B are Tor-independent the base change
induces a quasi-isomorphism of complexes of A′ ⊗A B-modules

A′ ⊗LA LB/A
∼−→ LA′⊗AB/A′ .

Proof. [25, Proposition II.2.2.1 and §II.2.2.2]. This reduces to the case of polynomial
algebras by passage to resolutions. The Tor−independence hypothesis gets used in
concluding that if P• −→ B is a polynomial A−algebra resolution, then P•⊗AC −→
B ⊗A C is again a polynomial A−algebra resolution.

With a similar argument we can prove the following.

Lemma 2.1.14 (Künneth Formula). Let A −→ B, A −→ C be morphism of
rings Tor−independent. Then there is a quasi-isomorphism of complexes of B ⊗A
C−modules

LB⊗AC
∼−→ LB/A ⊗LA C ⊕ LC/A ⊗LA B.

Recall that a sequence of rings homomorphisms A −→ B −→ C induces an exact
sequence (again [34] Proposition 6.1.8)

C ⊗B Ω1
B/A −→ Ω1

C/A −→ Ω1
C/B −→ 0.

This results can be interpreted as a “right-exactness” of the functor Ω1
−/−, although

we are not in the right category to talk about “exactness”, and can be interesting to
complete the sequence on the left. Next theorem will provide a sort of generalization
of this fact.

3Recall example 2.1.13 for the definition of the derived tensor product. By the Dold-Kan
correspondence (Theorem 1.1.31) and the characterization of simplicial resolution for algebras and
modules (remark 2.1.3) the standard simplicial resolution provides a free complex resolution, in
particular projective, for any module.
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Theorem 2.1.15. A sequence of rings maps A −→ B −→ C induces an exact
triangle in the derived category of complexes of C-modules

C ⊗LB LB/A −→ LC/A −→ LC/B −→ C ⊗LB LB/A[1].

Proof. [25, §II.2.1].

This result, together with our information about the 0-th homology group of the
cotangent complex, leads to the following

Corollary 2.1.16. In the above setting, there is a long exact sequence

... −→ H1(C⊗LBLB/A) −→ H1(LC/A) −→ H1(LC/B) −→ C⊗BΩ1
B/A −→ Ω1

C/A −→ Ω1
C/B −→ 0;

which supports the previous idea of completing the right-exactness of the differential
functor and the its generalization (see also Proposition 2.1.28).

Now recall the definition of étale map of ring, [34, Definition 4.3.17], and the fact
that the module of Kähler differentials is trivial for this map [34, Corollary 6.2.3].

Proposition 2.1.17. (Étale maps) Let A −→ B be an étale map of rings. Then
LB/A is acyclic (i.e. with trivial cohomology).

Proof. It is a particular case of Proposition III.3.1.1 of [25].

The definition of cotangent complex of a ring morphism A −→ B is easily generalized
to a morphism of schemes f : X −→ Y as a sheaf of OX−modules LX/Y , such that
LX/Y (U) := LOX(U)/f−1OS(U) for any open affine subset U = Spec(B) ⊂ X. See the
chapter on [42] about cotangent complex (as well as obviously [25]) about this and
more general settings like ringed topos. All affine results have a global statement as
well.

Proposition 2.1.18. Let f : X −→ Y a scheme morphism. Homology sheaves of
LX/Y are quasi-coherent. Moreover they are coherent if Y is locally noetherian and
f locally of finite type.

Proof. See [25, Corollary II.2.3.7].

The first application of cotangent complex, which motivated the work of Grothendieck
and Illusie, is related to first-order thickenings of algebras. Given an A−algebra B,
a first-order thickening of B is given by an exact sequence of A−algebras

0 −→ I −→ Y −→ B −→ 0,

where I is an ideal satisfying I2 = 0. Note that the condition I2 = 0 implies
that the natural Y−module structure on I induces a B−module structure. Two
first-order thickenings Y1, Y2 of B by the same ideal I are equivalent if there is a
morphism Y1 −→ Y2 inducing the identity map on B and I. A Baer sum construction
defines an abelian group structure on equivalence classes, denoted by ExalA(B, I).
A fundamental theorem in [25] is the following.
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Theorem 2.1.19. Given a ring morphism A −→ B and a B−moduleM , then there
is a functorial isomorphism

ExalA(B,M) ∼= Ext1
B(LB/A,M)

.

Proof. See [25, §III.1.2], in particular Theorem 1.2.3.

2.1.2 Computations

In this section we provide some computational tools followed by some examples of
application.

Proposition 2.1.20 (Polynomial algebras). If B is a free A-algebra, then LB/A is
acyclic (i.e. with trivial cohomology) in nonzero degrees.

Proof. Recall remark 2.1.5, so we have a homotopy equivalence between the constant
simplicial algebra B• and its standard resolution P•. If we apply the functor Ω1

−/A
we get a homotopy equivalence between se simplicial B−modules Ω1

P•/A
−→ Ω1

B•/A
,

whence a quasi-isomorphism on associated chain complexes. But Ω1
B•/A

is a complex
of free modules that is acyclic in nonzero degrees.

Example 2.1.21. Now via Proposition 2.1.20 we can compute the cotangent com-
plex for a ring of polynomials A[T1, ..., Tn], which is

LA[T1,...,Tn]/A

q.∼= Ω1
A[T1,...,Tn]/A

∼=
n⊕
i=1

A[T1, ..., Tn]dTi,

considered as a trivial complex concentrated in degree 0.

Example 2.1.22 (Crucial). We want to apply Theorem 2.1.15 to the sequence
Z −→ Z[X1, ..., Xr] −→ Z and we get the exact triangle

LZ[X1,...,Xr]/Z⊗LZ[X1,...,Xr]Z −→ LZ/Z −→ LZ/Z[X1,...,Xr] −→ LZ[X1,...,Xr]/Z⊗LZ[X1,...,Xr]Z[1].
(2.1)

As a particular case of the previous example

LZ/Z
q.∼= Ω1

Z/Z
∼= 0 and LZ[X1,...,Xr]/Z

q.∼=
⊕

Z[X1, ..., Xr]dXi.

Thus, considering the long exact sequence associated to (2.1), we get

... 0 H1(LZ/Z[X1,...,Xr])

⊕
Z[X1, ..., Xr]dXi ⊗Z[X1,...,Xr] Z︸ ︷︷ ︸

∼=Zr

0 Ω1
Z/Z[X1,...,Xr] 0
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Hence we get that LZ/Z[X1,...,Xr] is acyclic outside degree 1. For the computation of
H1(LZ/Z[X1,...,Xr]) we can consider the exact sequence used in Facts 2.1.1(4) for the
map Z[X1, ..., Xr] −→ Z,

(X1, ..., Xr)/(X1, ..., Xr)
2 δ−→ Z⊗Z[X1,...,Xr] Ω1

Z[X1,...,Xr]/Z −→ Ω1
Z/Z︸︷︷︸
=0

−→ 0

and the map δ : Xi 7−→ 1 ⊗ dXi turns out to be injective, hence an isomor-
phism which, together with the previous long exact sequence, yields an isomor-
phism (X1, ..., Xr)/(X1, ..., Xr)

2 ∼= H1(LZ/Z[X1,...,Xr]). To some up, we have that

LZ/Z[X1,...,Xr]

q.∼=(X1, ..., Xr)/(X1, ..., Xr)
2[1], where the right hand side of the quasi-

isomorphism is a complex concentrated in degree 1.

Proposition 2.1.23. Given a surjective ring homomorphism A −→ B with kernel
I, generated by a nonzerodivisor f ∈ A, the cotangent complex is quasi-isomorphic
to the complex I/I2[1].

Proof. Consider the map Z[X] 3 X 7−→ f ∈ A, so that A is a Z[X]-module. In
particular given a free resolution of Z

0 −→ Z[X]
·x−→ Z[X] −→ Z −→ 0,

tensoring by ⊗Z[X]A gives

0 Z[X]⊗Z[X] A Z[X]⊗Z[X] A Z⊗Z[X] A 0

A A B

·x⊗ 1

x⊗ 1 7→ f · 1 x⊗ 1 7→ f · 1

,

which is exact since f is regular. Thus ToriZ[X](Z, A) = 0 per i > 0, i.e. A and Z are
Tor-independent. So we can apply Lemma 2.1.13 and we get

LZ/Z[X] ⊗LZ[X] A
q.∼=LZ⊗Z[X]A/A

∼= LB/A.

Recall that for a commutative ring A, the sequence of elements f1, ..., fr ∈ A is
called regular if fi is a non-zero divisor in A/(f1, ..., fi−1, fi+1, ..., fr).

Corollary 2.1.24. Suppose that, in the setting of the previous proposition, the ideal
I is generated by f1, ..., fr ∈ A regular elements. Then LB/A

q.∼= I/I2[1].

Proof. It can be proved that Tor
Z[X1,...,Xr]
i (Z, A) = 0 for i > 0 (recall that given two

ideals I, J ⊆ A TorA1 (A/I,A/J) = (I ∩ J)/IJ) and then apply Lemma 2.1.13 and
we get

LZ/Z[X1,...,Xr] ⊗LZ[X1,...,Xr] A
q.∼=LZ⊗Z[X1,...,Xr ]A/A

∼= LB/A.

42



Example 2.1.25. Let L|K be a finite extension of fields, then we want to show
that the cotangent complex LOL/OK

is acyclic in positive degrees.
We know4 that OL = OK [x]/(f) for some polynomial f ∈ OK [x]. Let us consider
the sequence of maps OK −→ OK [x] −→ OL, which yields

LOK [x]/OK
⊗LOK [x] OL −→ LOL/OK

−→ LOL/OK [x] −→ .

Here we have, by Proposition 2.1.20 LOK [x]/OK

q.∼= Ω1
OK [x]/OK

and, by Proposition

2.1.23, LOL/OK [x]

q.∼=(f)/(f 2)[1]. Thus LOL/OK
is necessarily acyclic for degrees greater

1 and we only need to study H1(LOL/OK
). The induced long exact sequence presents

the following piece

0 −→ H1(LOL/OK
) −→ H1(LOL/OK [x])︸ ︷︷ ︸

=(f)/(f2)

δ−→ Ω1
OK [x]/OK

⊗OK [x] OL︸ ︷︷ ︸
=OK [x]dx⊗OK [x]OL

,

where δ(f) = df ⊗ 1 is injective, thus 0 = ker δ = H1(LOL/OK
) as it injects into

H1(LOL/OK [x]).

Example 2.1.26. A straightforward consequence of the previous example is related
to the cotangent complex of the ring of integers for the algebraic closure of a finite
extension K|F . First of all recall the fact that colimits commute the cotangent
complex, i.e. Ω1

lim−→i
(Ri−→Si)

= lim−→i
Ω1
Ri/Si

, for a system of ring maps over a directed

set (Ri −→ Si)
Llim−→i

(Ri−→Si) = lim−→
i

LRi/Si

Thus, since OK can be seen as the direct limits of the rings of integers for each
finite subextension K ⊂ L ⊂ K, we have the isomorphisms

LOK/OK = lim−→LOL/OK
q.∼= lim−→Ω1

OL/OK

∼= Ω1
OK/OK

.

Example 2.1.27. Another easy exercise is to compute LL/K for a finite separable
extension L|K of arbitrary fields. By the primitive element Theorem we have that
L = K(α) for some element α ∈ L, in particular if f ∈ K[X] is the minimal
polynomial of α, we have

L ∼=
K[X]

f
.

Now consider the sequence of ring maps K −→ K[X] −→ L, with the second arrow
the quotient map, which yields

LK[X]/K ⊗LK[X] L −→ LL/K −→ LL/K[X] −→ .

As before we have LK[X]/K

q.∼= ΩK[X]/K and LL/K[X]

q.∼=(f)/(f 2)[1]. And by the same
computation of the previous example we get LL/K is a complex concentrated only

in degree 0, i.e. LL/K
q.∼= Ω1

L/K . Further we know by classical commutative algebra
(see [34] Lemma 6.1.13) that, since the extension is separable, Ω1

L/K = 0.

4Reference
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Recall the definition of smooth morphism [20, 17.3.1].

Proposition 2.1.28 (Smooth morphism). Given a smooth map of rings A −→ B,
then the canonical augmentation map LB/A −→ Ω1

B/A is a quasi-isomorphism

Proof. See [25, Proposition III.3.1.2]. Since A −→ B is smooth, there is an étale map
B0 := A[x1, ..., xn] −→ B. We know that LB0/A

∼= Ω1
B0/A

(Proposition 2.1.20) and

LB/B0 = 0 by Proposition 2.1.17. By Theorem 2.1.15, it follows that LB/A
q.∼=LB0/A⊗B0

B
q.∼= Ω1

B/A[0].

Example 2.1.29. We now want to compute the cotangent complex for the mor-
phisms

1. Z −→ Fp;

2. Zp −→ Fp;

3. Z −→ Fq[T ], q = pn;

4. Z −→ B, where B is a smooth Fp-algebra.

For the case 1. and 2. we can apply again Proposition 2.1.23, since Fp ∼= Z/pZ ∼=
Zp/pZp and we get

LFp/Z
q.∼= pZ/p2Z[1] ∼= Fp[1] and LFp/Zp

q.∼= pZp/p2Zp[1] ∼= Fp[1].

For case 3. we first of all need to study the cotangent complex relative to Z −→ Fq.
Recalling that the extension Fq|Fp is separable, hence LFq/Fp is the trivial complex
as in example 2.1.27, we can consider the sequence Z −→ Fp −→ Fq, which gives us

LFp/Z ⊗LFp
Fq −→ LFq/Z −→ LFq/Fp︸ ︷︷ ︸

q.∼= 0

−→ .

So we can deduce that
LFq/Z

q.∼= pZ/p2Z⊗Fp Fq[1].

Now we consider the sequence Z −→ Fp −→ Fp[x] and the associated triangle

LFp/Z ⊗LFp
Fp[x] −→ LFp[x]/Z −→ LFp[x]/Fp −→ .

It corresponds to the following diagram

0 L2
Fp[x]/Z 0 p/p2 ⊗Fp Fp[x]

p/p2 ⊗Fp Fp[x] L1
Fp[x]/Z 0 0

0 L0
Fp[x]/Z Ω1

Fp[x]/Fp
0

.
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The bottom line tells us that L0
Fp[x]Z

∼= Ω1
Fp[x]/Fp

and, since H0(LFp[x]Z) ∼= Ω1
Fp[x]/Z

∼=
Ω1

Fp[x]/Fp
, the differential map L1

Fp[x]Z −→ L0
Fp[x]Z is the zero map. Further LFp[x]Z is

acyclic in degree greater than 1 and, since H1(LFp[x]Z) ∼= p/p2[x], we finally have
LFp[x]Z ∼= p/p2[x]. Case 4. goes in the same way, since LB/Fp ' Ω1

B/Fp
as it is a

smooth Fp−algebra.

Example 2.1.30. Assume A has characteristic p. Let A −→ B be a flat map that
is relatively perfect, i.e. the relative Frobenius FB/A : B(1) := B⊗A,FA

A −→ B is an
isomorphism. Then LB/A = 0.
As a matter of fact, for any A−algebra B, the relative Frobenius induces the zero
map LFB/A

: LB(1)/A −→ LB/A: this is clear when B is a polynomial A-algebra (as
d(xp) = 0), and thus follows in general by passage to the canonical resolutions. Now
if A −→ B is relatively perfect, then LFB/A

is also an isomorphism by functoriality.
Thus, the zero map LB(1)/A −→ LB/A is an isomorphism, so LB/A = 0.

2.2 Derived de Rham complex, definition and prop-
erties

Here we introduce the central object of our research. Before we start with main
definitions and results, we recall some about the classic (algebraic) de Rham com-
plex. It has been defined by Hartshorne [23] in order to extend the Poincaré Lemma
(actually Volterra Lemma, see [28]) to the case of algebraic varieties. Let A −→ B
a rings morphism, we put

Ωp
B/A :=

p∧
B

Ω1
B/A.

Further we define the differential map

d : Ωp
B/A −→ Ωp+1

B/A

as the unique map such that

(i) d ◦ d = 0,

(ii) d : B −→ Ω1
B/A is the morphism defined for the Kähler differentials module,

(iii) for ω ∈ Ωp
B/A, η ∈ Ωq

B/A, the following holds d(ω∧η) = d(ω)∧η+(−1)pω∧d(η).

By Theorem 16.6.2 in [20] such d exists and it is unique.
Furthermore, since d ◦ d = 0, it is well defined the following sequence

Ω:
B/A = B −→ Ω1

B/A −→ Ω2
B/A −→ ... −→ Ωi

B/A −→ Ωi+1
B/A −→ ...

called de Rham complex, Ω∗B/A. For a morphism of schemes X −→ Y we recall that
given a sheaf of modules F , we define

∧pF as the sheafification of the presheaf

U ⊆ X 7−→
p∧

OX(U)

F(U).
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Definition 2.2.1. Given an A-algebra B, as before we can consider the associated
standard simplicial resolution P• −→ B, by applying the functors Ωi

−/A and taking
the associated chain complex on the horizontal lines we get the double complex
Ω∗P•/A. The associated total complex (direct sum convention) LΩ∗B/A := Tot(Ω∗P•/A)

. . . ...
...

...

· · · Ω2
P2/A

Ω2
P1/A

Ω2
P0/A

· · · Ω1
P2/A

Ω1
P1/A

Ω1
P0/A

· · · P2 P1 P0 .

...−→LΩ−1
B/A−→LΩ0

B/A−→LΩ1
B/A−→...

Figure 2.1: The Derived de Rham complex

is the derived de Rham complex of B (see Figure 2.2.1).

Remark 2.2.2. Our construction can be represented as the sequence of functors

P•
Ω∗−/A7−→ Ω∗P•/A

∫
7−→

∫
Ω∗P•/A.

It is important to not confuse that with the inverse construction “Ω∗−/A ◦
∫ ′′, which

does not make sense: the functor Ω∗−/A only applies over A−algebras (complexes,
simplicials o simple), while the functor

∫
transforms maps of algebras of the simplex

P• into maps of modules (e.g. (∂0 − ∂1)1A = ∂01A − ∂11A = 0).

Associated to the derived de Rham complex there’s a canonical filtration. Let N ≥ 0
be an integer. The de Rham complex of any A−algebra P carries a natural filtration
called Hodge filtration

FNΩ∗P/A := Ω≥NP/A =
[
ΩN
P/A −→ ΩN+1

P/A −→ ...
]
,

which induces a filtration on the previous double complex.
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Definition 2.2.3. We define on LΩ∗B/A the Hodge filtration F iLΩ∗B/A (see Figure
2.2) as the filtration induced by

F iΩ∗P•/A =
⊕
q≥i

Ωq
P•/A

.

Definition 2.2.4. The associated derived de Rham complex modulo FN is defined
as

LΩ∗B/A
FN

:= Tot(Ω<N
P•/A

),

The Hodge-completed derived de Rham complex of B over A is the projective system
of complexes of A−modules defined by the derived de Rham complexes modulo the
Hodge filtration

LΩ̂∗B/A := (LΩ∗B/A/F
N)N∈N.

Remark 2.2.5. In this work we aim to consider the pro-object structure of LΩ̂B/A.
When we want to denote the projective limits of such pro-system, it will be specified.

Remark 2.2.6. The Hodge completed derived de Rham complex and the non-completed
version LΩ∗B/A are two very different objects. For example, while the second one is
useless in characteristic 0 (see [10] Corollary 2.5), the first one (in the projective
limit form) has been proved to provide the right cohomology for (singular) varieties
in characteristic 0 (see [9] in general, more precisely Corollary 4.27).

Usually we use the terminology of “de Rham algebra”, since LΩ∗B/A can be equipped
with a structure of a commutative differential graded algebra over A, compatible
with the Hodge filtration, so that LΩ̂∗B/A turns out to be a projective system of
differential graded algebras. It is a special case of Lemma 1.2.21. We define the
product as

Ωh
Pi/A
× Ωk

Pj/A
−→ Ωh+k

Pi+j/A

(fdxH , gdyK) 7−→ fdxH · gdyK = (−1)jp
∑
(µ,ν)

sgn(µ, ν)(σνf)(σµg) d(σνxH) ∧ d(σµyK).

Such map sends α⊗ β ∈ Pi ⊗ Pj to∑
(µ,ν)

sgn(µ, ν)(σν(α)⊗ σµ(β)) ∈ C(Pi+j ⊗A Pi+j)

where the sum runs over all the (i, j)−shuffles5: given such a shuffle (µ, ν) =
(µ1 ... µi ν1 ... νj), we put σµ = σµi−1σµi−1−1...σµ1−1 and σν = σνj−1σνj−1−1...σν1−1 in
order to shift α, β from Pi, Pj to Pi+j via a path of degeneracy maps σn. We extend
then the product we defined to the whole (LΩ∗B/A/F

N , D). With such definition
the whole machinery gives us a commutative unitary associative product, so that
(LΩ∗B/A/F

N , D) is a differential graded algebra over A. Moreover it is compatible
with projection maps of the associated projective system (LΩ∗B/A/F

N)N∈N, so that
also LΩ̂∗B/A is a pro-system of A−dga.

5Recall that a (i, j)−shuffle consists of a permutation (µ, ν) := (µ1...µiν1...νj) ∈ Si+j , such that
µ1 < ... < µi and ν1 < ... < νj .
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. . . ...
...

... .

· · · Ω2
P2/A

Ω2
P1/A

Ω2
P0/A

F 2Ω•P•/A

· · · Ω1
P2/A

Ω1
P1/A

Ω1
P0/A

F 1Ω•P•/A

· · · P2 P1 P0 F 0Ω•P•/A

F 2LΩB/A : ... −→
⊕

p+q=1
q≥2

Ωq
P−p/A

−→
⊕

p+q=0
q≥2

Ωq
P−p/A

−→
⊕

p+q=−1
q≥2

Ωq
P−p/A

−→ ...

F 1LΩB/A : ... −→
⊕

p+q=1
q≥1

Ωq
P−p/A

−→
⊕

p+q=0
q≥1

Ωq
P−p/A

−→
⊕

p+q=−1
q≥1

Ωq
P−p/A

−→ ...

F 0LΩB/A : ... −→
⊕

p+q=1
q≥0

Ωq
P−p/A

−→
⊕

p+q=0
q≥0

Ωq
P−p/A

−→
⊕

p+q=−1
q≥0

Ωq
P−p/A

−→ ....

Figure 2.2: Filtration on Derived de Rham complex
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Remark 2.2.7. As we defined it, LΩ̂∗B/A is a (pro-system of) differential graded
algebra over A. However it has been recently considered in a broader context as
an E∞-algebra (see [9, Remark 4.2] or [6, 1.1]). This is also due to the fact that
if we replace the simplicial standard resolution P• in the definition of LΩ̂∗B/A with
any simplicial A-algebra resolution P ′• −→ B whose terms are free, the output is
naturally quasi-isomorphic to the Hodge completed derived de Rham complex (see
Theorem 2.2.9). As we saw in Chapter 1 §1.3, any commutative differential graded
algebra may be seen as an E∞-algebra and a morphism of cdga defines a map between
the corresponding E∞-algebras. Further, a quasi-isomorphism of cdga induces an
equivalence of E∞-algebras. Through this pages we try to work as much as possible
in the context of classical category theory (as in [41]), considering maps of differential
graded algebras; however statements will be presented in the more elegant formalism
of E∞-algebra theory.

We continue this introduction to the derived de Rham complex and we provide some
theoretical results, before computing some examples. This result gives us a useful
tool to compute the derived de Rham algebra from the cotangent complex.

Proposition 2.2.8. There is a quasi-isomorphism of complexes of A-modules

griF LΩ∗B/A
q.∼=L ∧i LB/A[−i],

where L∧ is the derived exterior power (see [41, §A.5 and §A.6])

Proof. Looking at the previous diagrams we can deduce6 that

griF LΩ∗B/A =
F iLΩ∗B/A
F i+1LΩ∗B/A

∼= Ωi
P•/A =

(
... −→ Ωi

Pj/A
−→ ... −→ Ωi

P1/A
−→ Ωi

P0/A

)
.

Now we know that the resolution P• −→ B can be viewed as a map between P• and
the constant complex B•, which in particular is a quasi-isomorphism. Since Ωi

P•/A
is

a free-terms P•-module, we can apply Lemma 2.1.9 and we get that P•
q.∼=B• implies

P• ⊗P• Ωi
P•/A

q.∼=B• ⊗P• Ωi
P•/A

. Now recall the fact that Ωi
−/− :=

∧i Ω1
−/− ([23]) and

that, by universal property of exterior power,(
i∧

Ω1
P•/A

)
⊗P• B• ∼=

i∧(
Ω1
P•/A ⊗P• B•

)
6In particular

F iLΩ∗B/A

F i+1LΩ∗B/A

=


⊕

p+q=j
q≥i

Ωq
P−p/A⊕

p+q=j
q≥i+1

Ωq
P−p/A


j

=

 ⊕
p+q=j
q=i

Ωq
P−p/A


j

=
(

Ωi
Pi−j/A

)
j
.

49



as P•-modules. Now we simply recollect all these results

griF LΩ∗B/A = Ωi
P•/A[−i]

= P• ⊗P• Ωi
P•/A[−i]

q.∼=B• ⊗P• Ωi
P•/A[−i]

=

(
i∧

Ω1
P•/A

)
⊗P• B•[−i]

∼=
i∧(

Ω1
P•/A ⊗P• B•

)
[−i]

= L

i∧
LB/A[−i].

This shows that the relation between the derived de Rham complex and the cotan-
gent complex is analogous to the relation between the de Rham complex and the
sheaf of Kähler differentials. As a matter of fact we can say that the derived de
Rham complex is defined as

LΩ•X := Tot
(
OX −→ LX −→ ∧2LX −→ ...

)
,

while the non derived case is

Ω•X = (OX −→ Ω1
X −→ Ω2

X −→ ...),

where Ωn
X := ∧nΩ1

X . Next result gives the homotopical nature to the derived de
Rham complex, allowing it to be defined from any free simplicial resolution. See
[41, Theorem 2.25 and Remark 2.26] for an explicit proof.

Theorem 2.2.9. Let Q• −→ B be a simplicial resolution of the A−algebra B whose
terms are free A−algebras. Then we have a quasi-isomorphism of complexes

LΩ∗B/A
q.∼= Tot(Ω∗Q•/A)

compatible with the product structure and the Hodge filtration.

Remark 2.2.10. As in remark 2.2.2, we should be careful that the construction of
the derived de Rham complex is of simplicial nature. So if we have a free complex
resolution F ∗ of B, in order to compute LΩ∗B/A we have first to compute the associ-
ated simplicial object K•F ∗ (which is going to be a free simplicial resolution of B• by
Dold-Kan correspondence) and then, thanks to last theorem, take the total complex
of
∫

Ω∗K•F ∗/A.

2.3 Hodge completed derived de Rham complex for
perfect rings

Our main result is the following equivalence of pro-systems of E∞-Z-algebras

LΩ̂∗k/Z '
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
N∈N

,
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where k is a perfect ring of characteristic p > 2 and W = W (k) is the associated
ring of Witt vectors.

Such result implies in particular that the Hodge completed derived de Rham alge-
bra relative to Z −→ k “contains” the ring of Witt vectors W (k). Bhatt computed
the (not Hodge completed) derived de Rham complex p-adically completed in the
same case (see [10] Corollary 8.6). In particular he showed that when k is perfect,
the ring W (k) may be obtained as the largest separated torsion-free quotient of the
p-adically completed derived de Rham complex (ibidem Remark 8.7).

Outline of the proof. The theorem relies on the base change lemma applied to
the (crucial) simple case where k = Fp. Similar results may be obtained by means of
crystalline theory computations, see [26, Ch.VIII Proposition 2.2.8]. In the present
paper we give a more direct and elementary proof, which takes into account the
multiplicative structure differential graded algebras (say also E∞-algebras). As we
said, it is crucial to compute the Hodge-completed derived de Rham complex for
the map

Zp −→ Fp, (2.2)

which is a particular case of perfect ring and its associated Witt vectors. Once dealt
with this step (see Theorem 2.3.13) it is easy to afford the general case by base
change (Theorem 2.3.26). So most of the efforts are devoted to the crucial case,
which next paragraph is about. The strategy is to consider the map Zp[x] −→ Zp
and do computations for this morphism. Some of them have already been taken in
other works in similar contexts (see [10, Corollary 3.40], [41, proof of Proposition
3.17], [2, Example 6.2]), here we present a really detailed proof. The idea is to
exploit the Hodge filtration and the fact that it is easy to compute its graded parts
by means of Proposition 2.2.8 and Proposition 2.1.23. We use the graded pieces as
bricks to rebuild the quotients LΩ∗Zp/Zp[x]/F

N (Lemma 2.3.10). This is easy since
there is no p-torsion. The case of (2.2) is much challenging because of p-torsion.
Finally we can compute the crucial case again by base change (Lemma 2.3.12).

2.3.1 The complex LΩ̂Fp/Z

We start this part giving some basic lemmas.

Lemma 2.3.1. Let M −→ N be a morphism of filtered A−modules, such that the
filtration is decreasing and F 0M = M , F 0N = N . If the induced map on the graded
pieces is an isomorphism, then

M

F nM
∼=

N

F nN
, for all n ≥ 0.

Moreover, if the filtration is finite7, then M ∼= N .
7Recall that a filtration over an A-module M is finite if there exists m,n such that FmM = 0

and FnM = M .
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Proof. Using gr0M ∼= gr0N as step 0 we want to prove the statement by induction
on n. Considering the induced morphisms between the following two short exact
sequences

0
F n−1M

F nM

F 0M

F nM

F 0M

F n−1M
0

0
F n−1N

F nN

F 0N

F nN

F 0N

F n−1N
0

∼= ∼=

,

where the first and third vertical arrows are isomorphism by hypothesis on the
graded pieces and by induction hypothesis respectively. Thus by five lemma, the
vertical arrow in the middle is an iso as well and we are done. The second statement
is straightforward.

The following Lemma 2.3.2 and Lemma 2.3.4 are similar (but proofs are a little
different), they allow us to localize in some case the “ring of coefficients” along an
étale map.

Lemma 2.3.2. Let k be a perfect ring of characteristic p and W := W (k) its
Witt vectors ring. Given a ring homomorphism W −→ B, then the canonical map
LΩ̂∗B/Zp

−→ LΩ̂∗B/W is a quasi-isomorphism.

Proof. See [41, Lemma 3.28].

Remark 2.3.3. The result holds also for the non-completed case. Bhatt proved it by
means of the conjugate filtration, which yields a spectral sequence convergent to the
non completed derived de Rham complex in [10, Proposition 2.3 and Lemma 8.3(5)],
see also [2, Remark 4.15].

Lemma 2.3.4. Given a sequence of morphisms of rings Z −→ Zp −→ Fp −→
B, there exists a quasi-isomorphism between the Hodge completed derived de Rham
(differential graded) algebras

LΩ̂∗B/Z −→ LΩ̂∗B/Zp
.

Proof. We claim that there is a quasi-isomorphism

LB/Z −→ LB/Zp . (2.3)

For B = Fp, such result can be easily proved by direct computation. From the
sequence of morphisms in the statement we get the following diagram of exact tri-
angles
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LFp/Z ⊗LFp
B LB/Z LB/Fp LFp/Z ⊗LFp

B[1]

LFp/Zp ⊗LFp
B LB/Zp LB/Fp LFp/Zp ⊗LFp

B[1]

∼= = ∼=

and we obtain (2.3). The quasi-isomorphism on the level of the cotangent complex
is enough to conclude the statement.

Computing LΩ̂Zp/Zp[x].

As we explained previously, we consider, as step zero, the quotient map Zp[x] −→ Zp,
which has kernel generated by the element x, which is not a zero-divisor. We are
going to prove the following result.

Theorem 2.3.5. The derived de Rham algebra LΩ̂Zp/Zp[x] has cohomology concen-
trated in degree zero, in particular

H0

(
LΩ∗Zp/Zp[x]

FN

)
∼=

Zp〈x〉
(x)[N ]

,

with Hodge filtration on the left corresponding to the filtration induced by the divided
powers on the right8.

Before giving the proof we need some lemmas. As we anticipated, we are interested
in the graded parts of the derived de Rham complex LΩ∗Zp/Zp[x].

Lemma 2.3.6. For any N ≥ 0, graded parts of LΩ∗Zp/Zp[x]/F
N are quasi-isomorphic

to a complex acyclic but in degree zero, in particular there is an isomorphism of
Zp-modules for n < N

H0 grnF

(
LΩ∗Zp/Zp[x]/F

N
)
∼= Zp.

If n ≥ N the cohomology group is trivial.

Proof. The map Zp[x]
x 7→0−→ Zp is surjective. Its kernel equals pZ, i.e. it is generated

by a regular element. Thus cotangent complex LZp/Zp[x] is quasi-isomorphic to the

trivial complex
xZp[x]

x2Zp[x]
[1] concentrated in cohomological degree −1 (see for example

[41] Proposition 2.16).

8Recall that (x)[n] is the ideal of generators {x[i], i ≥ n} (see [7, §I.3.1]).It is easy to see that in
general x[n]Zp〈x〉 differs from (x)[n]. In particular x[n+1] = (1/n)x[1]x[n] may not be in x[n]Zp〈x〉
(for n not invertible), so that the first module does not define a filtration.
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Note that
xZp[x]

x2Z[x]
∼= Zpx is a free Zp-module of rank 1 whose generator is the

class of x.

We get the following quasi-isomorphisms

grn
(
LΩ∗Zp/Zp[x]/F

N
) q.∼=

(
L ∧n

(
xZp[x]

x2Zp[x]
[1]

))
[−n] (2.4)

q.∼=
((

LΓn
(
xZp[x]

x2Zp[x]

))
[n]

)
[−n] (2.5)

q.∼= Γn(Zpx)[0] (2.6)

for n < N (otherwise it equals 0). Here (2.4) follows from (2.1.1.5) in [26], (2.5) is
an application of Quillen shift formula [25, Ch. I Proposition 4.3.2.1.] and for (2.6)
we simply note that a free Zp-module is Γn−acyclic. Thus the right hand side of
(2.6) is the trivial complex Zpγn(x) concentrated in degree zero.

The following lemma comes quite straightforward from the previous one, but it has
an important meaning, since it allows us to consider the complex LΩ̂∗Zp/Zp[x] as a
classic filtered algebra or ring.

Lemma 2.3.7. The derived de Rham algebra LΩ̂∗Zp/Zp[x] has cohomology concentrated
in degree zero.

Proof. Since every graded piece is concentrated in degree zero, the complex LΩ∗Zp/Zp[x]/F
N

is concentrated in degree zero as well.

Remark 2.3.8. Recall §1.2.3, the following maps of cdga, which arise from applying
the canonical truncations t[0,t0]

t0]LΩ∗Zp/Zp[x]/F
N −→ LΩ∗Zp/Zp[x]/F

N

t0]LΩ∗Zp/Zp[x]/F
N −→ t[0t0]

(
LΩ∗Zp/Zp[x]/F

N
)

= H0(LΩ∗Zp/Zp[x]/F
N)

are quasi-isomorphisms of commutative differential graded algebras. As E∞-algebras,
this means that we have an equivalence LΩZp/Zp[x]/F

N −→ H0(LΩ∗Zp/Zp[x]/F
N).

Remark 2.3.9. The ring H0(LΩ∗Zp/Zp[x]/F
N) inherits a filtration from the Hodge

filtration on the derived de Rham complex (modulo filtration), for i < N

FiliH0(LΩ∗Zp/Zp[x]/F
N) : =

F iZ0(LΩ∗Zp/Zp[x]/F
N)

F iB0(LΩ∗Zp/Zp[x]/F
N)

=
kerD0 ∩ F i

(
LΩ0

Zp/Zp[x]/F
N
)

D−1
(
LΩ−1

Zp/Zp[x]/F
N
)
∩ F i

(
LΩ0

Zp/Zp[x]/F
N
)
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and FilNH0(LΩ∗Zp/Zp[x]/F
N) = 0.

Consider the spectral sequence associated to the Hodge filtration

En,m
1 = Hn+m

(
grn
(
LΩ∗Zp/Zp[x]/F

N
))

=⇒ Hn+m
(
LΩ∗Zp/Zp[x]/F

N
)
.

We have En,m
1 = 0 for m+ n 6= 0, so the sequence degenerates and we have

H0
(

grnF

(
LΩ∗Zp/Zp[x]/F

N
))
∼= grnFilH

0
(
LΩ∗Zp/Zp[x]/F

N
)

(2.7)

for n < N and 0 otherwise.

Next two lemmas plays a central role in the proof of Theorem 2.3.5. We prove first
that there is a filtered map from Zp〈x〉/(x)[N ] and LΩ∗Zp/Zp[x]/F

N , then, once we
know that such map induces an isomorphism on the graded parts we can recover an
isomorphism on the graded rings by means of Lemma 2.3.1.

Lemma 2.3.10. For any N ≥ 0 there is a filtered ring morphism

ϕ̃ : Zp〈x〉/(x)[N ] −→ H0(LΩ∗Zp/Zp[x]/F
N),

where on the left we consider filtration induced by the Hodge filtration, while on the
right is given by the divided power ideals (x)[n] for n ≥ 0.

Proof. There exists a morphism of differential graded algebras (the polynomial ring
seen as a complex concentrated in degree zero) Zp[x] −→ LΩ∗Zp/Zp[x]/F

N , which
induces a graded morphism in cohomology H∗(Zp[x]) −→ H∗(LΩ∗Zp/Zp[x]/F

N) and
the corresponding ring morphism in degree zero gives us a ring morphism

ϕ : Zp[x] −→ H0(LΩ∗Zp/Zp[x]/F
N).

Thus we can consider H0(LΩ∗Zp/Zp[x]/F
N) as a Zp[x]-algebra.

There exists a lifting of ϕ to

ϕ̃ : Zp〈x〉 −→ H0(LΩ∗Zp/Zp[x]/F
N). (2.8)

such that ϕ̃(x[n]) = ϕ(x)n/n! (see within the [41, proof of Proposition 3.17], but it
can also be deduced by the previous remark about the shuffle product).

Finally we show that the ring morphism (2.8) induces a filtered ring morphism.
Let κ : LΩ∗Zp/Zp[x]/F

N −→ Zp = gr0
F (LΩ∗Zp/Zp[x]/F

N) be the augmentation map.
Then, since H0(LΩ∗Zp/Zp[x]/F

N) is a Zp[x]-algebra, there is a commutative diagram
of rings morphisms

H0(LΩ∗Zp/Zp[x]/F
N) Zp

Zp[x]

κ

ϕ ϕ0

.
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In particular ϕ(x) ∈ kerκ = Fil1. Further

• ϕ(x)n ∈ Filn, for n ≤ N , since the product on H0(LΩ∗Zp/Zp[x]/F
N) is gradu-

ated;

• ϕ(x)n = n!ϕ̃(x[n]) ∈ Filn, by definition;

• take i ≤ n to be the minimum integer such that ϕ̃(x[n]) ∈ Fili;

• suppose i < n,

• then the class of ϕ̃(x[n]) in griF il is non-zero;

• but n!ϕ̃(x[n]) ∈ Filn, thus its class in griF il is zero;

This is impossible, since each graded part is Zp-free, hence torsion free (Lemma
2.3.6). Then ϕ̃(x[n]) ∈ Filn. In particular the map ϕ̃ respects filtrations.

Again note that a crucial point of the proof is the fact that, since we are working
on the map Zp[x] −→ Zp, we are avoiding p-torsion problems.

Lemma 2.3.11. The map ϕ̃ induces an isomorphism on the graded parts.

Proof. We prove that the class of ϕ̃(x[n]) in grnFil is a generator for 0 ≤ n ≤ N .
Suppose this is not the case, i.e. there exists n ≥ 1 such that the map

grn ϕ̃ : (x)[n]/(x)[n+1] −→ grnFil(LΩ∗Zp/Zp[x]/F
N)) ∼= Zpγn(x)

sends the generator x[n] within pZpγn(x). If we tensorize by ⊗LZp
Fp we get the

0−map. But (grn ϕ̃) ⊗LZp
Fp = grn(ϕ̃ ⊗LZp

Fp) and it is easy to see that ϕ̃ ⊗LZp
Fp :

Fp〈x〉 −→ LΩ∗Fp/Fp[x] is the isomorphism of [10, Lemma 3.29]. So (grn ϕ̃) ⊗LZp
Fp

should be an isomorphism as well, which is absurd.

Proof. (Theorem 2.3.5) . We recollect all previous results. Each LΩ∗Zp/Zp[x]/F
N has

cohomology concentrated in degree zero as their graded parts have (Lemma 2.3.7 and
Lemma 2.3.6). This will provide an equivalence LΩ∗Zp/Zp[x]/F

N −→ H0(LΩ∗Zp/Zp[x]/F
N)

as E∞−algebras (remark 2.3.8). Then we compute H0(LΩ∗Zp/Zp[x]/F
N) as a filtered

ring and we get the isomorphism H0(LΩ∗Zp/Zp[x]/F
N) ∼= Zp〈x〉/(x)[N ] from its graded

parts (Lemma 2.3.1).

Computing LΩ̂Fp/Zp.

In the previous section we computed the Hodge completed derived de Rham algebra
LΩ̂∗Zp/Zp[x]. We want to exploit such result in order to compute the same object rel-
ative to the morphism Zp −→ Fp. The following lemma will show us the connection
between the two cases, it is just a base change result.

Lemma 2.3.12. Consider the rings maps ϕp : Zp[x]
x 7→p−→ Zp and ϕ0 : Zp[x]

x 7→0−→ Zp,
which give two different Zp[x]-algebra structure to Zp, then

LΩ∗Zp/Zp[x]/F
N ⊗LZp[x],ϕp

Zp ' LΩ∗Fp/Zp
/FN
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Proof. We call the different structures on Zp ϕp-structure and ϕ0-structure respec-
tively. See that the tensor product over the ring Zp[x] of the two algebras is iso-
morphic to Fp. Furthermore consider the following exact sequence (which is a free
Zp[x]-resolution of Zp as ϕ0-module)

0 −→ Zp[x]
x−→ Zp[x] −→ Zp −→ 0

and tensorize it with the ϕp-module Zp. We get the sequence

0 −→ Zp
p−→ Zp −→ Fp −→ 0,

which is again an exact sequence. This means that the two algebras are Tor-
independent. Therefore, by base change, LΩ̂∗Zp/Zp[x]⊗LZp[x]Zp ' LΩ̂∗Fp/Zp

as projective
systems of differential graded algebras. The same holds for each term of the system:
LΩ∗Zp/Zp[x]/F

N ⊗LZp[x] Zp ' LΩ∗Fp/Zp
/FN .

Finally we are able to compute the Hodge completed derived de Rham complex for
the map 2.2.

Theorem 2.3.13. For any N ≥ 0 there is a quasi-isomorphism of commutative
differential graded algebras

LΩ∗Fp/Zp
/FN ' Zp〈x〉

(x)[N ]

·(x−p)−→ Zp〈x〉
(x)[N ]

, (2.9)

where the right hand side is in degree -1 and 0. Moreover ·(x − p) is an injective
map and LΩ∗Fp/Zp

/FN has cohomology concentrated in degree zero.

Proof. As we saw before LΩ̂∗Fp/Zp
' LΩ̂∗Zp/Zp[x]⊗LZp[x]Zp. We replace Zp with a Zp[x]-

free resolution in order to compute ⊗LZp[x] (Recall example 1.2.13 and the fact that
a free resolution of an A-module B is a complex of free A-modules P ∗ acyclic but
in degree zero, where its cohomology is isomorphic to B). See that the cokernel of

the map ·(x − p) is exactly the (x 7→ p)-module Zp, thus Zp ' (Zp[x]
·(x−p)−→ Zp[x]).

Then, by Proposition 2.3.5,

LΩ∗Fp/Zp
/FN ' LΩ∗Zp/Zp[x]/F

N ⊗LZp[x] Zp

' Zp〈x〉/(x)[N ] ⊗Zp[x] (Zp[x]
·(x−p)−→ Zp[x])

' (Zp〈x〉/(x)[N ] ·(x−p)−→ Zp〈x〉/(x)[N ]).

We proved the first part of the statement. In order to prove that H0(LΩ∗Fp/Zp
/FN)

is the cokernel of the map (2.9), we need to prove that the latter is injective.
Let ω =

∑N−1
i=0 aix

[i] be an element of Zp〈x〉/(x)[N ] (it is easy to see that 1, x, x[2], ..., x[N−1]

provide a Zp-basis). Then

(x− p) · ω = NaN−1x
[N ]︸ ︷︷ ︸

=0

+
N−1∑
i=1

(iai−1 − pai)x[i] − pa0.
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Suppose (x − p) · ω = 0, then pa0 = 0 and iai−1 − pai = 0 for 1 ≤ i ≤ N − 1,
since they are a Zp-linear combination equals to zero. The first equality implies
a0 = 0, since Zp〈x〉/(x)[N ] has no Zp-torsion. By induction on i, we get 0 = pai for
1 ≤ i ≤ N − 1, so that ai = 0. To sum up, for all i = 0, ..., N − 1 we have ai = 0.
Thus (2.9) is injective.

We are going to extend such result to a wider class of maps, see Section 2.3.2 and
Chapter 4. In what follows we describe H0(LΩ̂Fp/Zp). The next lemma is due to

Bhatt ([10, Corollary 8.6]), who computed the cokernel of the map Zp〈x〉
·(x−p)−→ Zp〈x〉

as Zp-module, which is closed to our case.

Lemma 2.3.14 (Bhatt). There is a short exact sequence

0 −→ Zp〈x〉
·(x−p)−→ Zp〈x〉

f−→ Zp ⊕
⊕
i≥1

Zp/iZp −→ 0 (2.10)

where the map of Zp-modules f : Zp〈x〉 −→ Zp ⊕
⊕

i≥1 Zp/iZp is defined as
n∑
i=0

ai(x− p)[i] 7−→ (a0; (ai mod i)i≥1).

Proof. It is easy to see that the set {(x− p)[i]}i≥0 is a basis for the free Zp-module
Zp〈x〉.

The map ·(x− p) is injective. Take any element
∑n

i=0 ai(x− p)[i] ∈ Zp〈x〉, then

(x− p)
n∑
i=0

ai(x− p)[i] =
n∑
i=0

ai(i+ 1)(x− p)[i+1]

and if it equals zero, then ai(i+1) = 0 for i = 0, ..., n, since it is a Zp-linear combina-
tion of elements of the basis. But Zp is p-torsion free, so that ai = 0 for i = 0, ..., n.
Hence the map ·(x− p) is injective.

The map f is surjective. Take any a0 ∈ Zp and any finite sequence (a1, ..., an) ∈⊕
Zp/iZp. Chose any lifting ai of ai in Zp. Then

∑n
i=0 ai(x − p)[i] is sent to

(a0; a1, ..., an, 0, ...).

We have the inclusion Im ·(x− p) ⊆ ker f as

f

(
(x− p)

n∑
i=0

ai(x− p)[i]

)
= f

(
n∑
i=0

ai(i+ 1)(x− p)[i+1]

)
= (0; (ai(i+ 1) mod i+ 1)) = (0; (0)).

On the other hand ker f ⊆ Im ·(x − p). Suppose f
(∑n

i=0 ai(x− p)[i]
)

= (0; (0)).
Then a0 = 0 and ai ≡i 0 for i = 1, ..., n. Hence there exist b1, ..., bn ∈ Zp, such that

n∑
i=0

ai(x− p)[i] =
n∑
i=1

ibi(x− p)[i] = (x− p)
n−1∑
i=0

bi+1(x− p)[i].

58



All the things we said prove that Zp ⊕
⊕

i≥1 Zp/iZp is the cokernel of Zp〈x〉
·(x−p)−→

Zp〈x〉 via the map f .

Theorem 2.3.15. For any N ≥ 0 the complex LΩ∗Fp/Zp
/FN cohomologically con-

centrated in degree zero and H0(LΩ∗Fp/Zp
/FN) is isomorphic as Zp-module to the

quotient of the Zp-module Zp ⊕
⊕

i≥1 Zp/iZp by the sub-module I generated by ele-
ments of the form

f(x[n]) =
(
p[n]; (p[n−i] mod i)ni=1, 0, ...

)
(2.11)

for n ≥ N .

Proof. By Lemma 2.3.13 we need to compute the cokernel of the map (2.9). Consider
the diagram

0 (x)[N ] Zp〈x〉
Zp〈x〉
(x)[N ]

0

0 (x)[N ] Zp〈x〉
Zp〈x〉
(x)[N ]

0

·(x−p) ·(x−p) ·(x−p)

Recall remark 2.3.1, so that all vertical maps are injective. Apply snake Lemma and
we get the following diagram

0 0 0

0 (x)[N ] Zp〈x〉
Zp〈x〉
(x)[N ]

0

0 (x)[N ] Zp〈x〉
Zp〈x〉
(x)[N ]

0

coker 1 coker 2 coker 3 0

·(x− p) ·(x− p) ·(x− p)

f| f f

Recall that by Lemma 2.3.14 we know coker 2 of the middle sequence. The exact
sequence of cokernels shows that coker 3 is the quotient coker 2/ coker 1. Therefore
it remains to describe the sub-Zp-module coker 1, but this is generated by the image
via f of the ideal (x)[N ]. The generators of such ideal are of the form x[n] for n ≥ N .
Then x[n] =

∑n
i=0 p

[n−i](x− p)[i] and f(x[n]) is of the form (2.11).

Remark 2.3.16. The description of coker 1 in the last lemma is complex. The main
problem is that it seems impossible to arrange the generators in order to provide an
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equivalence relation on each Zp/iZp independently. For example, for any integer
k ≥ 1,

f(x[pk]) = (p[pk]; 0, ..., 0, 1 mod pk, 0, ...) .

Remark 2.3.17. Let us consider the projection

π : Zp ⊕
⊕
i≥1

Zp
iZp
−→ Zp

(pZp)[N ]
⊕

N⊕
i=1

Zp/iZp
(pZp)[N−i] .

If we recall the sequence of cokernels in Theorem 2.3.15, we have that I = coker
(

(x)[N ] ·(x−p)−→ (x)[N ]
)

is sent to zero by π. Thus there is a unique factorization of π through coker 3 =
H0(LΩ∗Fp/Zp

/FN), in particular we have the following diagram

I

Zp ⊕
⊕

i≥1 Zp/iZp
Zp

(pZp)[N ]
⊕
⊕N

i=1

Zp/iZp
(pZp)[N−i]

H0(LΩ∗Fp/Zp
/FN)

π

π

Note that the map π is a map of finite abelian groups.

Computations as pro-objects.

We have already seen that the Hodge completed derived de Rham complex has a
pro-complex structure, starting from diagram (2.3.17), we want to define some new
pro-objects and to confront them with LΩ̂Fp/Zp =

(
H0(LΩ∗Fp/Zp

/FN)
)
N∈N

.

Lemma 2.3.18. Let J be the set of all sub-Zp-modules J ⊆ Zp ⊕
⊕

i≥1 Zp/iZp
such that the quotient

(
Zp ⊕

⊕
i≥1 Zp/iZp

)
/J is a finite abelian group. Consider

the associated pre-order category such that J ′ → J if and only if J ′ ⊆ J . Then J is
cofiltered.

Proof. We want to show that given two ideals J, J ′ ∈ J , there exists an ideal
K ∈ J such that K → J and K → J ′, i.e. K ⊆ J, J ′. We would like to
chose K = J ∩ J ′, but we need to prove that it still belongs to J . Suppose it
is not, that is

(
Zp ⊕

⊕
i≥1 Zp/iZp

)
/J ∩ J ′ is non finite. This cannot be possi-

ble since, it should injects into the finite order module
((
Zp ⊕

⊕
i≥1 Zp/iZp

)
/J
)
⊕((

Zp ⊕
⊕

i≥1 Zp/iZp
)
/J ′
)
.

Remark 2.3.19. Note that the cofiltering J has no initial object, in particular
(0) /∈ J .
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Let ⊕̂Zp/i =
(
Zp ⊕

⊕
i≥1 Zp/iZp/J

)
J∈J be the pro-object associated to the cofilter-

ing of the previous lemma. Note that its completion is a profinite group. We want
the previous diagram (2.3.17) of projections to induce a triangle of pro-objects.

Proposition 2.3.20. There exists a commutative diagram of pro-Zp-modules

⊕̂Zp/i

(
H0(LΩ∗Fp/Zp

/FN)
)
N

(
Zp

(pZp)[N ]
⊕
⊕N

i=1

Zp/iZp
(pZp)[N−i]

)
N

.

Proof. Firstly, for any integer N ≥ 0, the maps

π : H0(LΩ∗Fp/Zp
/FN) −→ Zp

(pZp)[N ]
⊕

N⊕
i=1

Zp/iZp
(pZp)[N−i] (2.12)

are maps of projective systems, hence they induce a map of pro-objects. On the
other hand, the other two maps are some finite quotients of Zp⊕

⊕
i≥1 Zp/iZp, thus

there are two natural maps

Zp ⊕
⊕

i≥1 Zp/iZp

(
H0(LΩ∗Fp/Zp

/FN)
)
N

(
Zp

(pZp)[N ]
⊕
⊕N

i=1

Zp/iZp
(pZp)[N−i]

)
N

which induce, by the universal property of the pro-completion, two natural maps of
pro-finite groups

⊕̂Zp/i

(
H0(LΩ∗Fp/Zp

/FN)
)
N

(
Zp

(pZp)[N ]
⊕
⊕N

i=1

Zp/iZp
(pZp)[N−i]

)
N

.

Finally, this diagram commutes with the pro-morphism induced by (2.12).

61



Computations as finite group.

Lemma 2.3.21. For any N ≥ 0, graded parts of LΩ∗Fp/Zp
/FN are quasi-isomorphic

to a complex acyclic but in degree zero, in particular there is an isomorphism of
Fp-modules

H0 grnF

(
LΩ∗Fp/Zp

/FN
)
∼= Fp.

if n < N , and 0 else.

Proof. The argument is the same of Lemma 2.3.6, since Zp −→ Fp is a surjective
morphism with kernel equal to pZ, i.e. generated by a regular element. The cotan-
gent complex will be LFp/Z

∼= pZ/p2Z[1] ∼= Fp[1], i.e. a free Fp-module concentrated
in degree 1. Thus we get

H0
(

grn
(
LΩ∗Fp/Zp

/FN
))
∼= Fpγn(p) (2.13)

if n < N , and 0 else. In particular, since every graded pieces is concentrated in
degree zero, the derived de Rham complex is concentrated in degree (as we already
know).

Proposition 2.3.22. H0(LΩ∗Fp/Zp
/FN) is an abelian group of order pN for any

N > 0.

Proof. We prove this by induction. We have H0(LΩ∗Fp/Zp
/F 1) = H0(gr0 LΩ∗Fp/Zp

) ∼=
Fp, so we may assume that the statement holds for N > 1. Consider the following
short exact sequence induced in cohomology by the Hodge filtration

0 −→ H0

(
FNLΩ∗Fp/Zp

FN+1

)
−→ H0

(
LΩ∗Fp/Zp

FN+1

)
−→ H0

(
LΩ∗Fp/Zp

FN

)
−→ 0. (2.14)

By (2.3.21) the first group has order p. The third group is of order pN by assumption.
Thus the one in the middle must have order pN+1, which proves our claim.

Computation for N < p

We can attribute the computation problems arising in remark 2.3.16 to the fact
that the map vp(pN/N !) is not monotone. This is due to the fact that, considering
k ∈ Z, the p−adic valuation of pk grows linearly each step by +1, while the p−adic
valuation of k! is constant for k not dividing p and grows by +h when k = ph (see
Figure 2.3). As a matter of fact for N < p the map is still monotone, hence we can
make some easy computations.

Remark 2.3.23. Let us consider a generic element of Zp〈x〉/x[N ], ω =
∑N−1

i=0 aiγi(x),
with ai ∈ Zp, and we compute the formal division by x− p, we get

• quotient Q =
N−1∑
i=1

(
N−1∑
j=i

pj−i(i− 1)!

j!
aj

)
γi−1(x) and

• remainder R =
∑N−1

i=0

pi

i!
ai.
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Figure 2.3: Note that the growth is by +1 in general, it is 0 in correspondence of
exact multiples of p, −1 for exact multiples of p2 and so on.

The remainder is well defined as a p-adic integer (p > 2), the quotient on the other
hand may not be defined for i divided by a power of p, since the internal sum presents
the addendum ai/i.

Proposition 2.3.24. For N < p there is an isomorphism of rings

H0

(
LΩ∗Fp/Zp

FN

)
∼=

Zp
pNZp

.

Proof. Recall Theorem 2.3.13, so that we just need to compute the cokernel of the
map

Zp〈x〉
(x)[N ]

·(x−p)−→ Zp〈x〉
(x)[N ]

.
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We want to prove that the evaluation map

ev :
Zp〈x〉
(x)[N ]

−→ Zp
pNZp

x 7−→ p

γi(x) 7−→ pi/i!

defines the cokernel map we are looking for. The map is clearly surjective, so we
need to show that its kernel equals the image of the multiplication by (x− p)-map.
Clearly any element of the form (x− p)ω is sent to zero by ev. Note that, given an

element ω =
∑N−1

i=0 aiγi(x) in Zp〈x〉/x[N ], ev(ω) =
∑N−1

i=0

pi

i!
ai, so that any ω in the

kernel of ev, must have
∑N−1

i=0

pi

i!
ai = 0. By the previous remark, we can write it as

ω = R + (x − p)Q (pj−i(i − 1)!/j! is a p-adic integer for 1 ≤ i ≤ j ≤ N − 1 < p).
and, if ω ∈ ker ev, R = 0, hence ω = (x− p)Q is in the image of the multiplication
map.

2.3.2 The case of perfect rings

Given a perfect Fp-algebra k, there is the following diagram of rings

W k = W ⊗Zp Fp

Zp Fp
,

where W = W (k). Thus we can apply the base change property (see lemma 2.3.5)
once we proved the Tor-independence.

Lemma 2.3.25. The Zp-algebras Fp and W are Tor-independent.

Proof. Consider the following exact sequence, coming from the free resolution of Fp,
as Zp-module,

0 −→ Zp
·p−→ Zp −→ Fp −→ 0.

If we tensorize by ⊗ZpW , we get

0 −→ W
·p−→ W −→ k −→ 0. (∗)

It is again an exact sequence, so that 0 = H i(∗)= ToriW (k,Fp), for any i > 0, which
proves the Tor-independence.

Theorem 2.3.26. Let k a perfect ring and W = W (k) its ring of Witt vectors. For
any N ≥ 0 there is an equivalence

LΩ∗k/Z/F
N ' LΩ∗k/W/F

N ' W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

, (2.15)

where the right hand side is in degree -1 and 0. In particular LΩ∗k/Z/F
N has coho-

mology concentrated in degree zero.
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Proof. The first equivalence is due to Lemma 2.3.4 and Lemma 2.3.2. The canonical
base-change map is induced by the fact that, since k is perfect, k = Fp ⊗Zp W ,
furthermore ToriZp

(Fp,W ) = 0 for i > 0 by Lemma 2.3.25. Hence we can apply the
base change lemma and we get the following equivalences

LΩ̂∗k/W = LΩ̂∗W⊗ZpFp/W⊗ZpZp

' LΩ̂∗Fp/Zp
⊗LZp

W (2.16)

'
(
Zp〈x〉
(x)[N ]

·(x−p)−→ Zp〈x〉
(x)[N ]

)
⊗LZp

W (2.17)

'
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
.

See that in (2.16) we applied Theorem 2.3.13. Moreover the derived tensor product
in (2.17) is a standard tensor product, since LΩ̂∗Fp/Zp

is replaced by a complex of
Zp-free modules.
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Chapter 3

Künneth Formula for pro-complexes

Künneth formula is a classical result which relates the (co)homology of two objects
to the (co)homology of their product. In particular, in the de Rham context, we
have that the cohomology of the product of two smooth varieties is isomorphic to
the tensor product of the cohomology of the single ones (see for example [42, Section
0FM9]). In the same spirit there are Künneth formulas holding in the derived case.
Bhatt gives a sketch of the proof in [10, Proposition 2.7] for the (non completed)
derived de Rham complex as well as for the p-adic completed derived de Rham
complex in [10, Proposition 8.3(3)]. Further a Hodge-completed version seems to
be generally known to the experts (see Introduction of [9] or [2, Proposition 6.8]),
although we haven’t found a specific reference for the proof. What is seems to miss
is a Künnet formula for the Hodge completed derived de Rham complex seen as
pro-complex. In this chapter we give a detailed proof of this result, which could be
very useful for many computations.

3.1 Künneth Formula
We want to prove the Künneth formula for the Hodge completed derived de Rham
complex seen as pro-complex, which is an improvement of [10, Proposition 2.7]. As
we said, we want to prove that the Hodge completed derived de Rham complex of
the tensor product of algebras is isomorphic to the tensor product of the complexes
of the single algebras as pro-objects. Such isomorphism is compatible with the
structure of commutative differential graded algebras. As a matter of fact we prove
a more specific result: there is an isomorphism of pro-functors(

Ω∗−⊗A−/A

FL

)
L∈N
−→

(
Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)∈N2

.

We then apply this result to standard resolutions of algebras, seen as functors
∆op −→ FAlg

A
.

Remark 3.1.1. It is important to notice the fact that the statement does not hold
if we remain in the category of projective systems of complexes, in particular there
is no isomorphism of the form

Ω∗B⊗AC/A

FL
−→

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

.
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As a matter of fact the isomorphism is realized once you take the completion over the
Hodge filtration. In the context of the pro-categories we are then able to compromise
between this two facts.

Proposition 3.1.2. Given two rings morphisms A −→ B, A −→ C, consider the
(standard) resolutions P• −→ B, Q• −→ C. There is an isomorphism of pro-
bisimplicial commutative differential graded A-algebras(

Ω∗P•⊗AQ•/A

FL

)
L∈N

∼=
(

Ω∗P•/A
FN

)
N∈N
⊗A
(

Ω∗Q•/A
FM

)
M∈N

.

We start working in a non-derived context, in the case of polynomials rings. Then
we construct two maps of projective objects and we show that they are one inverse
of the other (in the pro-category). Finally we apply such results to prove the main
one. We choose to display the proof by splitting it in some lemmas.

Lemma 3.1.3 (Polynomials). Given two free A-algebras B and C, there is a natural
isomorphism of commutative differential graded algebras

Ω∗B⊗AC/A
−→ Ω∗B/A ⊗A Ω∗C/A.

Proof. We first consider the case where B and C are finite free A-algebras, B =
A[T1, ..., TN ] and C = A[TN+1, ..., TN+M ]. We now define a morphism of B ⊗A C-
modules ⊕

p+q=n

Ωp
B/A ⊗A Ωq

C/A −→ Ωn
B⊗AC/A

as follows ∑
I=(i1,...,ip)

1≤i1<...<ip≤N

bI dTI ⊗
∑

J=(j1,...,jq)
1≤j1<...<jq≤N+M

cJ dTJ 7−→
∑
I,J

(bI ⊗ cJ)dTJ ∧ dTJ

where
∑

I=(i1,...,ip)
1≤i1<...<ip≤n

aI dTI :=
∑

I=(i1,...,ip)
1≤i1<...<ip≤n

aI dTi1 ∧ ... ∧ dTip .

Such map is functorial (it is induced by the universal property of the tensor product)
and it is an isomorphism of B ⊗A C-modules (it is clearly surjective and injective,
since we are considering polynomial algebras)1, thus of A-modules. In particular,
since it is compatible with the differential, it yields an isomorphism of complex of
A-modules (recall that the differential is an A-linear map)

Ω∗B⊗AC/A
−→ Ω∗B/A ⊗A Ω∗C/A. (3.1)

1We can also provide an inverse which works as

Ωn
B⊗AC/A −→

⊕
p+q=n

Ωp
B/A ⊗A Ωq

C/A

dTi1 ∧ ... ∧ dTin 7−→ dTi1 ∧ ... ∧ dTip ⊗ dTip+1
∧ ... ∧ dTin ,

with 1 ≤ ip ≤ N and N + 1 ≤ ip+1 ≤ N +M .
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Moreover, since we are just playing with wedge products, it is easy to see that such
isomorphism is compatible with the differential graded structures on both sides2.

Remark 3.1.4. The previous statement holds also for arbitrary free A-algebras, by
using the fact that differentials commute with direct limits.

Remark 3.1.5. The functoriality of (3.1) allows us to view it as an isomorphism of
functors from FAlg

A
×FAlg

A
to the category of complex of A-modules (in particular

A-cdga),
Ω∗−⊗A−/A −→ Ω∗−/A ⊗A Ω∗−/A. (3.2)

Lemma 3.1.6 (Construction of pro-objects morphisms). There are two families of
natural maps of commutative differential graded algebras, for any positive integers
M,N

Ω∗B⊗AC/A

FN+M
−→

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

−→
Ω∗B⊗AC/A

Fmin(N,M)

which induce two maps of projective systems of cdga.

Proof. Consider the following diagram

Ω∗B⊗AC/A
Ω∗B/A ⊗A Ω∗C/A

Ω∗B⊗AC/A

FN+M

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

∼

,

where the horizontal arrow is (3.1) and the vertical ones are the canonical projec-
tion on the Hodge-graded pieces, with N,M ≥ 0. These are morphisms between
complexes and, if we look at the n-th level, by (3.1) we have the following corre-
spondence

Ωn
B⊗AC/A

−→ Ωp
B/A ⊗A Ωn−p

C/A

dTi1 ∧ ... ∧ dTin 7−→ dTi1 ∧ ... ∧ dTip ⊗ dTip+1 ∧ ... ∧ dTin .

Now, if we suppose n ≥ N + M (i.e. we consider when the inclusion of the filtered
part is 0) we have that either p ≥ N or q ≥M (otherwise their sum is n = p+ q <
N + M). Thus by the universal property of the cokernel there exists a canonical
arrow (compatible with differential graded algebra structures) such that

2Recall that on the tensor product of two cochain complexes the associated product is defined
as

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a
′) deg(b)aa′ ⊗ bb′
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Ω∗B⊗AC/A
Ω∗B/A ⊗A Ω∗C/A

Ω∗B⊗AC/A

FN+M

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

∼

commutes. Now consider the inverse situation,

Ω∗B/A ⊗A Ω∗C/A Ω∗B⊗AC/A

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

Ω∗B⊗AC/A

Fmin(N,M)

∼

.

Again, if we look at the n-th level, we have the following correspondence

Ωp
B/A ⊗A Ωn−p

C/A −→ Ωn
B⊗AC/A

dTi1 ∧ ... ∧ dTip ⊗ dTip+1 ∧ ... ∧ dTin 7−→ dTi1 ∧ ... ∧ dTip ∧ dTip+1 ∧ ... ∧ dTin .

Suppose n ≥ N or n ≥ M , then n < min(N,M). Thus, again, by the universal
property of the cokernel there exists a canonical arrow (compatible with differential
graded algebra structures) such that

Ω∗B/A ⊗A Ω∗C/A Ω∗B⊗AC/A

Ω∗B/A
FN

⊗A
Ω∗C/A
FM

Ω∗B⊗AC/A

Fmin(N,M)

∼

.

Remark 3.1.7. In the same spirit of remark 3.1.5 we can see that, since our con-
struction is functorial, the previous commutative diagrams can be translated as mor-
phism of functors. Then, if we consider each side (left and right) as a whole, with
N,M running on the naturals, we have two pro-functor and a map of inverse systems
between them (

Ω∗−⊗A−/A

FN+M

)
(M,N)

−→
(

Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)

. (3.3)

and in the opposite direction(
Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)

−→
(

Ω∗−⊗A−/A

Fmin(N,M)

)
(M,N)

. (3.4)
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Lemma 3.1.8 (Isomorphisms of pro-objects.). The pro-functors(
Ω∗−⊗A−/A

FL

)
L∈N

: FAlg
A
×FAlg

A
−→ pro-A-cdga

(
Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)∈N2

: FAlg
A
×FAlg

A
−→ pro-A-cdga

are isomorphic.

Proof. We want to prove that pro-natural morphisms in remark (3.1.7) are one the
inverse of the other in the category of pro-functors. Let us call (3.3) f and (3.4)
g. They are clearly morphisms in pro(Fun(FAlg

A
×FAlg

A
, cdga)), since they are

morphisms of inverse systems. They are represented by the maps{
fN,M :

Ω∗−⊗A−/A

FN+M
−→

Ω∗−/A
FN

⊗A
Ω∗−/A
FM

}
(N,M)∈N×N

and {
gL :

Ω∗−/A
FL

⊗A
Ω∗−/A
FL

−→
Ω∗−⊗A−/A

FL

}
L∈N

and if we compose them, we get

g ◦ f =

{
Ω∗−⊗A−/A

FL+L
−→

Ω∗−/A
FL

⊗A
Ω∗−/A
FL

−→
Ω∗−⊗A−/A

FL

}
L∈N

and

f ◦ g =

{
Ω∗−/A
FN+M

⊗A
Ω∗−/A
FN+M

−→
Ω∗−⊗A−/A

FN+M
−→

Ω∗−/A
FN

⊗A
Ω∗−/A
FM

}
(N,M)∈N×N

,

which are both represented by the canonical projection. This means that the two
compositions are both the identity morphisms, which proves our claim.

Proof Proposition 3.1.2. We compose the (pro-)functors(
Ω∗−⊗A−/A

FL

)
L∈N

and
(

Ω∗−/A
FN

⊗A
Ω∗−/A
FM

)
(M,N)∈N2

with the product of two simplicial free A-modules

P,Q : ∆op −→ FAlg
A

we obtain
∆op ×∆op (P,Q)−→ FAlg

A
×FAlg

A

(3.3)∼=(3.4)−→ cdga

which can be seen in the pro-category pro(Fun(∆op × ∆op, cdga)). They corre-
spond to two isomorphic bisimplicial pro-complexes of A-modules (or bisimplicial
pro−A−cdga) (

Ω∗P•⊗AQ•/A

FL

)
L

∼=
(

Ω∗P•/A
FN

⊗A
Ω∗Q•/A
FM

)
N,M

. (3.5)

This proves the statement.
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Theorem 3.1.9. Let A −→ B and A −→ C be ring maps. Then we have the
Künneth Formula given by the following equivalence of Hodge completed derived de
Rham algebras

LΩ̂B⊗L
AC/A

' LΩ̂B/A ⊗LA LΩ̂C/A.

Proof. If we suppose P,Q to be the standard resolution of B,C we have that (P⊗Q)•
is a free resolution3 of B⊗AC, thus it can be used to compute the derived de Rham
complex. Now we consider the functor (see Lemma 1.2.21)∫

: Fun(∆op, cdga) −→ cdga

and, since Fun(∆op × ∆op, cdga) = Fun(∆op, Fun(∆op, cdga)), we can construct
the following functor

Fun(∆op, Fun(∆op, cdga))
∫
◦−−→ Fun(∆op, cdga)

∫
−→ cdga, (3.6)

which sends4
Ω∗P•⊗AQ•/A

FL
7−→

⊕
n−i−j=∗

Ωn
Pi⊗AQj/A

FL

q.∼=
LΩ∗

B⊗L
AC/A

FL

and

Ω∗P•/A
FN

⊗A
Ω∗Q•/A
FM

7−→
⊕

n−i−j=∗

⊕
p+q=n

(
Ωp
Pi/A

FN
⊗A

Ωq
Qj/A

FM

)
=

⊕
p+q−i−j=∗

(
Ωp
Pi/A

FN
⊗A

Ωq
Qj/A

FM

)

=
⊕
h+k=∗

⊕
p−i=h

⊕
q−j=k

(
Ωp
Pi/A

FN
⊗A

Ωq
Qj/A

FM

)

=
⊕
h+k=∗

(⊕
p−i=h

Ωp
Pi/A

FN
⊗A

⊕
q−j=k

Ωq
Qj/A

FM

)
q.∼=
⊕
h+k=∗

LΩh
B/A

FN
⊗LA

LΩk
C/A

FM

=
LΩ∗B/A
FN

⊗LA
LΩ∗C/A
FM

.

In particular the choice of the order for the “integration” of the simplicial index
does not change the outcome, modulo isomorphism of cdga. Taking the pro-object

3It may be seen as a consequence of the Eilember-Zilber Theorem 1.2.15 applied to the bisimpli-
cial object P•⊗AQ•. It implies that the map

∫
(P ⊗AQ)• −→

∫
P•⊗

∫
Q• is a quasi-isomorphism.

The latter is a free resolution of B ⊗A C, since it is the total complex associated to a bicomplex
whose columns are free resolution of

∫
P• ⊗A C and whose rows are free resolution of B ⊗A

∫
Q•.

4Note that⊕
n−i−j=∗

Ωn
Pi⊗AQj/A

FL
=
⊕

n−j=∗

⊕
m−i=n

Ωn
Pi⊗AQj/A

FL
=
⊕

n−j=∗

LΩn
B⊗AQj/A

FL

q.∼=
LΩ∗

B⊗L
AC/A

FL
.

since B ⊗A Q• is a free resolution of B ⊗A C.
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associated, we get an equivalence of E∞- algebra in the derived (∞-)category of
pro-A-modules

“ lim←−
L

”
LΩ∗

B⊗L
AC/A

FL
∼= “ lim←−

N,M

”

(
LΩ∗B/A
FN

⊗LA
LΩ∗C/A
FM

)
, (3.7)

which corresponds to the final statement of the lemma, since tensor product of
pro-objects is defined as the pro-object of tensor products.
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Chapter 4

Application to varieties

4.1 Smooth varieties
We saw in Proposition 2.1.28 that the cotangent complex of a smooth morphism
X −→ S is quasi-isomorphic to the Kähler differentials module, seen as a complex
concentrated in degree zero. Such result allows us to consider LX/S as a sort of
generalization of the sheaf Ω1

X/S to the case of non necessarily smooth morphisms.
Such point of view gets stronger when considering what happens with de derived de
Rham complex. First of all an analogous of Proposition 2.1.28 holds in this case.

Proposition 4.1.1. Given a smooth map of rings A −→ B, then the canonical
augmentation map LΩ∗B/A −→ Ω∗B/A is a quasi-isomorphism. The same holds for
the Hodge-completed version of the previous map LΩ̂∗B/A −→ Ω̂∗B/A.

Proof. See for example [26, Corollary VIII.2.2.8]. For the second part of the state-
ment we can also apply the previous Proposition 2.2.8. As a matter of fact the
canonical map LΩ∗B/A −→ Ω∗B/A induces on graded pieces the quasi-isomorphism

griF LΩ∗B/A
q.∼=L ∧i LB/A[−i]

q.∼=L ∧i ω1
B/A[−i]

q.∼= Ωi
B/A (recall Proposition 2.1.28). This

graded (quasi-)isomorphism induces a quasi-isomorphism on the quotients by the
Hodge filtration

LΩ∗B/A/F
N −→ Ω∗B/A/F

N ,

which yields the quasi isomorphism on the completed complexes.

As a matter of fact Ω1
X/S and Ω∗X/S are still computable in a non-smooth case, but

the geometrical non-regularity gets “translated” in a non-regularity of the associated
algebraic objects (in particular Ω1

X/S is no longer locally free), which again gets
translated in cohomology, losing a topological meaning. The sense of being topo-
logically meaningful is given by the existence of a comparison isomorphism with a
cohomology theory, like the Betti cohomology, of exclusively topological nature.

Theorem (Grothendieck [21]). Given a smooth variety X, there is an isomorphism
in cohomology

H∗(X,Ω•X) ∼= H∗(Xan,C) =: H∗Betti(X).
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We lose such result when considering non-smooth morphisms (see [3, Example 4.4]
for example). There are several ways to recover this comparison isomorphism, one of
them is through (Hodge completed) derived de Rham cohomology, thanks to Bhatt
[9], who extended a results of Illusie [26, Corollary VIII.2.2.8] for varieties defined
over Q.

We want to exploit what has been developed in the previous chapters to investi-
gate what may say (Hodge completed) derived de Rham cohomology relative to,
eventually singular, varieties over fields of positive characteristic. In this sense, re-
cently more important and meaningful results have been reached by Antieau, Bhatt,
Lurie, Mathew, Morrow, Scholze and others (see for example [2], [11], [12]). In this
chapter our general strategy will be using Künneth formula of last chapter in order
to split computations relative to a variety in positive characteristic in two parts,
one without p-torsion and the other recalling our previous results on the derived
de Rham complex for perfect rings (in this sense see also [2, Construction 7.12 and
proof of Theorem 7.13]).

4.2 Lifting of varieties over perfect fields
Consider Theorem 1.1.1 and Theorem 1.1.2 of [11], we want to provide a similar
result replacing the Hodge completed derived de Rham complex ([26] VIII 2.1.3.3)
to the de Rham-Witt complex ([27] and [11]). As far as the proofs of the origi-
nal theorems is concerned, the authors indicate [27] as reference, Theorem 1.1.1 in
Chapter I, Corollary 3.16 and Theorem 1.1.2 within the proof of Theorem 1.4 in
Chapter II.

Remark 4.2.1. Recall Lemma 2.3.2, LΩ̂∗B/Zp
' LΩ̂∗B/W . In particular take the

sequence of schemes X −→ Spec(k) −→ Spec(Z), by Lemma 2.3.2 and Lemma
2.3.4, the natural maps W −→ LΩ̂∗k/Z −→ LΩ̂∗X/Z give to the Hodge completed de
Rham complex of X a structure of E∞−algebra over W .

Remark 4.2.2. Recall that given a smooth variety X over a ring A, the (Hodge
completed) derived de Rham complex LΩ̂∗X/A =

(
LΩ∗X/A/F

N
)
N

is quasi-isomorphic

to the standard de Rham (pro) complex Ω̂∗X/A =
(

Ω∗X/A/F
N
)
N
(see 4.1.1). Moreover

the Hodge filtration over such complex is finite, that is there exists N0 > 0, such that
FNΩ∗X/A = 0 for N > N0. This means that for N > N0 Ω∗X/A/F

N = Ω∗X/A. The
subset {N0 + 1, N0 + 2, ...} ⊆ N induces a cofinal functor, so that the pro-complex(

Ω∗X/A/F
N
)
N

is isomorphic (as pro-object) to the constant pro-complex Ω∗X/A.

Here we present the proof for Proposition Proposition 4.2.3. The main point is the
fact that, thanks to the pro-version of the Künneth Formula, we can sometimes split
the computation of the derived de Rham complex of a variety over a perfect field in
two simpler computations: one relative to a smooth variety and the other relative
to the base field.
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Theorem 4.2.3. Let X be a smooth scheme over Spec(W ), where W = W (k) for a
perfect field k. Consider the following cartesian square

X X

Spec(k) Spec(W (k)),

p
,

where X := Spec(k) ×Spec(W (k)) X. Then there is an quasi-isomorphism of pro-
complexes

LΩ̂∗X/Z '
(

Ω∗X/W ⊗
W 〈x〉
(x)[N ]

·(x−p)−→ Ω∗X/W ⊗W
W 〈x〉
(x)[N ]

)
N

.

Proof. Consider the theorem locally, so that we are dealing with a setting like the
following

Spec(A0) Spec(A)

Spec(k) Spf(W (k)),

p ,

where A0 = A/I and I = pA is the admissible ideal of A. Then we have the following
equivalences of projective systems of complexes

LΩ̂∗A0/Z ' LΩ̂∗A0/Zp
' LΩ̂∗A0/W

(4.1)

' LΩ̂∗A⊗W k/W

' LΩ̂∗A/W ⊗LW LΩ̂∗k/W (4.2)

' LΩ̂∗A/W ⊗LW
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
N

(4.3)

' Ω∗A/W ⊗W
(
W 〈x〉
(x)[N ]

·(x−p)−→ W 〈x〉
(x)[N ]

)
N

(4.4)

'
(

Ω∗A/W ⊗
W 〈x〉
(x)[N ]

·(x−p)−→ Ω∗A/W ⊗W
W 〈x〉
(x)[N ]

)
N

(4.5)

where the first line (4.1) is due to Lemmas (2.3.2) and (2.3.4),(4.2) is Künneth
formula, (4.3) is Theorem 2.3.26, (4.4) is due to remark 4.2.2. Once we proved the
statement locally, it is easy to get it global (one way is to prove that all the maps that
we considered locally before are canonical so that they glue on the intersections).
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