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Resumé

Dans cette thèse, nous étudions différentes variations des inégalités d’échantillonnage.
Tout d’abord, en reflétant un résultat dans [56], nous donnons des conditions pour
l’échantillonnage des fonctions de Besov définies sur des variétés Riemanniennes
compactes et des espaces de type homogène. Les techniques utilisées pour prou-
ver ces résultats sont basées sur la décomposition des fonctions lisses en ondelettes
disponibles dans ces deux contextes. De plus, comme dans le cas de l’euclidien, cette
caractérisation par une expansion en ondelettes permet d’approfondir l’étude des es-
paces de Besov, obtenant ansi un théorème de trace et des résultats sur leur régularité
locale (inspirés des stratégies développées dans [21, 54]). Enfin, nous passons à tra-
vailler dans le cadre classique de la théorie de l’échantillonnage, mais en changeant
la façon dont les échantillons sont pris: au lieu de prendre un ensemble de points dis-
crets, nous considérons un certain type de courbes. En particulier, nous déterminons
la fréquence de Nyquist pour les spirales lorsque nous échantillonnons des fonctions
à bande limitée. Nous montrons ensuite qu’en dessous de cette fréquence, la quan-
tité de sous-échantillonnage que les signaux compressibles admettent lorsqu’ils sont
échantillonnés en spirale est limitée.

Mots clés: Théorie d’Échantillonnage, espaces de Besov, espaces de type homogène.

Abstract

In this thesis we study different variations of sampling inequalities. First, mirroring a
result in [56], we give the conditions for sampling-like inequalities for Besov functions
on compact Riemannian manifolds and spaces of homogeneous type. The techniques
used to prove these results are based on the decomposition of smooth functions
into wavelets available in both of these settings. Further, as in the euclidean case,
this characterization through a wavelet expansion allows us to deepen the study
of Besov spaces, obtaining a trace theorem and results about their local regularity
(inspired in the strategies developed in [21, 54]). Finally we shift to work within the
classic setting of sampling theory but changing the way samples are taken: instead
of taking a discrete set of points we consider certain type of curves. In particular
we determine the Nyquist rate for spirals when sampling bandlimited functions. We
then show that, below this rate, the amount of undersampling that compressible
signals admit when sampled along spirals is limited.

Key words: Sampling Theory, Besov spaces, spaces of homogeneous type.
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Chapter 1

Introduction

1.1 Version française

Le concept unificateur des différents problèmes traités dans cette thèse est l’étude
des inégalités d’échantillonnage sur une variété de cadres. De manière générale,
un problème d’échantillonnage consiste à reconstruire une fonction à partir de ses
valeurs sur un ensemble de points suffisamment bien répartis. Ce problème a été
bien étudié dans le cadre euclidien, où le résultat le plus connu est probablement le
théorème de Shannon-Whittaker-Kotelnikov qui affirme qu’une fonction à bande
limitée sur R peut être reconstruite à partir de ses échantillons réguliers: si f ∈
L2(R) est telle que supp(f̂) ⊂ [−W,W ] pour un certain W > 0, alors

f(t) =
∑
n∈Z

f(n/2W )
sinπ(2Wt− n)

π(2Wt− n)
. (1.1)

De plus, on a l’identité

‖f‖2
2 =

∑
n∈Z

|f(n/2W )|2. (1.2)

Ce résultat peut naturellement être étendu à des dimensions plus élevées, à différents
espaces de fonctions sur Rd, à des échantillons non uniformes et à d’autres varia-
tions (voir par exemple [87] et les références qui y figurent). En outre, la recherche
d’une théorie équivalente sur des cadres autres que le cas euclidien est devenue un
domaine de recherche très actif au cours de la dernière décennie. Parmi les cas
traités ces dernières années, se trouvent le cas des variétés Riemanniennes [76],
des groupes localement compacts [27], des spaces de Dirichlet [20] (pour une liste
plus complète, voir [26] et les références qui y figurent). Dans cette thèse, nous
travaillerons d’abord avec des variétés Riemanniennes compactes et des espaces de
type homogène (espaces quasi-métriques avec une mesure borélienne doublante).
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Le problème auquel on est confronté lorsqu’on traite des cas autre que le eucli-
dien est que les techniques de l’analyse de Fourier - sur lesquelles la théorie clas-
sique de l’échantillonnage repose fortement - peuvent ne pas être disponibles. Une
façon de contourner ce problème est de développer une généralisation de l’analyse
de Littlewood-Paley et des formules de reproduction de Calderón, et à partir de
là, de construire un système d’ondelettes. En effet, ces outils se sont avérés être
un puissant substitut à la transformée de Fourier lorsqu’on essaie de décrire le
comportement global et local des fonctions. Expliquons brièvement comment cela
se fait dans le cas de référence de Rd. Nous considérons la famille des opérateurs
de convolution Sj(f) = f ∗ φj où φj(x) := 2jdφ(2jx) et φ est une fonction de la
classe Schwartz avec

´
φ(x) dx = 1. Ensuite, pour toute f ∈ L2(Rd), l’inégalité de

Minskowski donne
Sjf → f, j → +∞.

Puis, en posant ϕ0(x) := φ(x) et ϕj(x) := 2jdφ(2jdx) − 2(j−1)dφ(2(j−1)dx) pour
j > 1, les opérateurs Dj(f) = f ∗ ϕj forment une approximation de l’unité:

I =
∑
j∈N

Dj.

Si on demande en plus que
∑

j∈N |ϕ̂j(ζ)|2 = 1 pour ζ 6= 0 alors il est posible de
montrer que

‖f‖2
2 =

∑
j∈N

‖Djf‖2
2, ∀f ∈ L2(Rd). (1.3)

Ensuite, la partition de Rd en cubes dyadiques (2−jk, 2−j(k + 1)]d permet de
discrétiser chaque opérateurDj et d’obtenir ce que l’on appelle un système d’ondelettes.
C’est-à-dire une expansion dyadique en fonctions localisées et lisses. Dans ce cas,
si nous définissons ϕj,k(x) := 2−jd/2ϕj(x − 2−jk), et que la fonction φ a quelques
propriétés supplémentaires souhaitables, alors (1.3) entrâıne

f =
∑
j∈N

∑
k∈Z

〈f, ϕj,k〉ϕj,k, ∀f ∈ L2(Rd). (1.4)

Une caractéristique clé des variétés Riemanniennes et des espaces de type ho-
mogène est que, effectivement, des partitions similaires à (1.3) et la discrétisation
dyadique par ondelettes qui s’ensuit (1.4) peuvent être obtenues. En ce qui con-
cerne l’expansion des ondelettes, il est toutefois important de noter que les con-
structions que nous allons utiliser ne constituent pas nécessairement une base or-
thonormée mais plutôt une frame: au lieu de (1.4), on obtient un système {ϕj,k}j,k
tel que

A‖f‖2
2 6

∑
j,k

|〈f, ϕj,k〉|2 6 B‖f‖2
2, ∀f ∈ L2,
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où A,B sont des constantes fixes positives. Ensuite, la théorie des frames nous
assure de l’existence d’une famille duale {ϕ̃j,k}j,k telle que

f =
∑
j,k

〈f, ϕ̃j,k〉ϕj,k =
∑
j,k

〈f, ϕj,k〉ϕ̃j,k, ∀f ∈ L2.

Les reconstructions directement à partir de ce type de représentations pour-
raient cependant être difficiles à réaliser dans la pratique, car le calcul des coeffi-
cients 〈f, ϕj,k〉 (ou 〈f, ϕ̃j,k〉) est généralement une opération coûteuse. On espère
plutôt récupérer f à partir de ses valeurs dans un ensemble donné de points, ce
qui est précisément le but de la théorie de l’échantillonnage. L’idée générale est
que si une fonction a une oscillation modérée, alors elle peut être bien approximée
dans le voisinage d’un point par sa valeur en ce point. Si ces voisinages couvrent
suffisamment bien l’espace, l’échantillon devrait permettre de décrire la fonction
globalement. Vu de cette façon, un théorème d’échantillonnage est, en gros, car-
actérisé par deux paramètres : la distribution (ou la fréquence) des échantillons et
l’oscillation de la fonction.

Nous allons voir quet, cette distribution d’échantillonnage est en quelque sorte
conditionnée par la géométrie de l’espace ambiant, alors qu’on dispose de plusieurs
moyens de mesurer l’oscillation. L’hypothèse standard serait, comme dans le
théorème de Shannon-Whittaker-Kotelnikov, de travailler avec des fonctions à
bande limitée. Mais, comme nous l’avons laissé entendre précédemment, il n’est
pas toujours évident de savoir si et comment ce concept peut être reproduit sans
la pleine puissance de l’analyse de Fourier. Nous cherchons plutôt à travailler avec
les espaces qui peuvent être décrits à l’aide d’ondelettes.

Inspirés par un résultat de Strichartz [81] pour les espaces Sobolev, Jaming et
Malinnikova [56] ont donné une inégalité d’échantillonnage en Rd pour les fonctions
dans les espaces Besov. Leur point de départ est le suivant:

Théorème ([56]). Soit 1 6 p 6 ∞. Alors il existe des constantes c1, c2, c3 > 0
telles que pour tout r > 0 et toute suite {an}n∈Z avec r/2 6 an+1 − an 6 r

c1r
−1/p‖f‖p 6

(∑
n∈Z

|f(an)|p
)1/p

6 c2r
−1/p‖f‖p

tient pour toute f ∈ B1/p
p,1 (R) avec ‖f‖

B
1/p
p,1

6 c3r
−1/p‖f‖Lp.

Ecrit de cette façon, ce résultat ressemble plus à (1.2) qu’à (1.1). Cependant, et
toujours grâce à la théorie des frames, il est possible d’obtenir une reconstruction
comme (1.1) à partir de cette inégalité lorsque nous nous limitons à travailler avec
les espaces Paley-Wiener (qui sont toujours injectés dans n’importe quel espace
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de Besov). Dans ce sens, on peut considérer ce type de résultats comme une
généralisation aux théorèmes d’échantillonnage classiques.

La preuve de ce théorème utilise extensivement la décomposition en ondelettes
en R et est basée sur la caractérisation des espaces de Besov en termes de coef-
ficients d’ondelettes comme l’a fait Meyer [68]. En effet, en prenant un système
d’ondelettes en R comme avant, les propriétés de la classe de Schwartz permettent
alors de caractériser plusieurs espaces de fonctions couramment utilisés tels que les
espaces de Sobolev, Hölder, Hardy, BMO et -d’un intérêt particulier pour nous-
les espaces de Besov. Plus précisément, il peut être démontré que la norme d’une
fonction f ∈ Bs

p,q(R) est équivalente à∑
j∈N

2jq(s+1/2−1/p)

(∑
k∈N

|〈f, ϕj,k〉|p
)q/p

1/q

,

où s ∈ R, 1 6 p, q 6 ∞ et ϕj,k est un système comme dans (1.4) avec assez de
régularité (au moins s moments nuls).

D’un point de vue abstrait, puisque cette caractérisation ne concerne qu’un
système d’ondelettes, on peut l’utiliser pour définir des espaces de Besov sur des
variétés Riemanniennes compactes et des espaces de type homogène. En outre,
comme dans le cas réel, on peut montrer que, si les ondelettes ont des propriétés
de régularité et de localisation suffisamment bonnes (en substitution de la classe
de Schwartz), cette définition est également équivalente aux autres extensions na-
turelles des espaces de Besov dans ces cadres [20, 21, 36, 38, 37, 47, 69, 70, 84].
Il est toutefois important de noter que pour les types plus généraux d’espaces de
type homogène, l’indice de régularité s peut être limité par le fait que dans certains
cas, il n’existe pas de fonctions non triviales dont la régularité dépasse un certain
niveau [39].

Ainsi, structurellement, nous disposons des mêmes outils que ceux utilisés par
Jaming et Malinnikova. Cela nous permet d’adapter leur résultat à nos cadres.
Pour les variétés de Riemann compactes, l’inégalité d’échantillonnage se lit comme
suit:

Théorème. Soit M une variétés de Riemann compacte de dimension d, et soit
1 6 p 6∞. Alors, il existe c1, c2, c3 > 0 telles que pour tout r > 0 et tout ensemble
{ζ1, . . . , ζNr} de points r-distrubué sur M

c1r
−d/p‖f‖p 6

(
Nr∑
n=1

|f(ζn)|p
)1/p

6 c2r
−d/p‖f‖p

tient pour toute f ∈ Bd/p
p,1 (M) avec ‖f‖

B
d/p
p,1

6 c3‖f‖Lp.
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Ici, r-distribué fait référence à une condition très similaire à celle de [56] dans
R: un recouvrement de boules à rayon r qui deviennent disjointes si on réduit
légèrement r (disons, à r/2).

La principale raison pour laquelle nous pouvons adapter le résultat de Jam-
ing et Malinnikova aux variétés est l’existence d’une décomposition en ondelettes.
L’autre facteur sous-jacent, est que la preuve dans [56] n’exige aucune propriété
particulière de Rd autre que le fait que la mesure de Lebesgue d’une boule de rayon
r est proportionnelle à rd. Ce qui permet d’aller plus loin et d’étendre le résultat à
des espaces de type homogène. En effet, nous savons grâce aux travaux de Maćıas
et Segovia [64] que, en changeant éventuellement la pseudo métrique pour une
métrique équivalente, la mesure dans un espace de type homogène peut être sup-
posée avoir la même propriété. En fait, l’exposant correspondant d s’appelle la
dimension homogène. On obtient ainsi:

Théorème. Soit X un espace de type homogène de dimension d, et soit 1 6 p 6
∞. Alors, il existe des constantes c1, c2, c3 > 0 telles que pour tous les r > 0 et
toutes les familles {yn}n de points r-distrubué sur X

c1r
−d/p‖f‖p 6

(
Nr∑
n=1

|f(ζn)|p
)1/p

6 c2r
−d/p‖f‖p

tient pour toute f ∈ Bd/p
p,1 (X) avec ‖f‖

B
d/p
p,1

6 c3r
−d/p‖f‖Lp.

Les résultats exacts sont un peu plus précis, voir Théorèmes 2.4 et 3.6 respec-
tivement.

Le côté droit de ces inégalités d’échantillonnage peut également être interprété
comme des théorèmes de trace pour les fonctions de Besov (sur un ensemble discret
de points). Plus largement, la régularité des fonctions lorsqu’elles sont limitées à
un sous-ensemble particulier (discret ou non) est un problème qui a ses propres
intérêts, notamment en ce qui concerne les EDP et, plus précisément, les problèmes
de valeurs au bord [66]. C’est pourquoi plusieurs théorèmes de trace ont été donnés
pour les fonctions de Besov (et de Sobolev) définies dans des espaces métriques
sous différents types d’hypothèses [38, 65, 67, 77]. Ici, en utilisant des techniques
similaires à celles de la preuve du Théorème 3.6, nous proposons une nouvelle
preuve d’un résultat de trace pour les fonctions de Besov sous des hypothèses
relativement générales. Plus précisément, nous prouvons ce qui suit:

Théorème. Soit X un espace de type homogène et Y ⊂ X un sous-espace. Soitent
dX ,dY la dimension de X et Y respectivement.

Soit 1 6 p < ∞, 1 6 q 6 ∞, s ∈ R et fixons s′ := s − dX−dY
p

. Si 0 < s′ < θ
alors l’opérateur de trace

Tr : Bs
p,q(X)→ Bs′

p,q(Y ), Trf = f |Y
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est bien définie et continue.

Par sous-espace nous voulons dire que Y est un espace de type homogène avec la
métrique résultant de la restriction de celui-ci sur X. C’est l’hypothèse également
considérée dans [67]. La contribution que nous apportons à la littérature existante
est que, ici, nous considérons une classe d’indices s plus large. Une autre nouveauté
est la preuve elle-même, qui repose essentiellement sur le système des ondelettes,
suivant de près les stratégies développées par exemple dans [21]. En bref, l’idée
est d’écrire f ∈ Bs

p,q(X) dans son développement en ondelettes afin de pouvoir
exprimer les coefficients d’ondelettes de f |Y en termes de ceux de X; les bonnes
propriétés de localisation et de régularité des ondelettes permettent alors d’obtenir
un résultat de comparaison, souvent appelé une propriété de quasi-orthogonalité,
dont découle le théorème de trace.

De plus, ce n’est pas seulement la régularité des fonctions (Besov ou autre)
qui peut être étudiée avec des ondelettes, mais aussi leurs variations locales. Dans
Rd, en prenant les ondelettes comme décrit précédemment, il a été montré pour
la première fois par Meyer [68] qu’une fonction f appartient à l’espace de Hölder
d’ordre s si et seulement si

|〈f, ϕj,k〉| 6 Cf2
−j(d/2+s) ∀j, k (1.5)

où Cf > 0 est une constante dépendant uniquement de f . De même pour la
régularité locale, Jaffard [53] a donné une condition presque équivalente: si f est
Hölder d’ordre s en x, alors

|〈f, ϕj,k〉| 6 Cf2
−jd/2(2−j +

∣∣x− 2−jk
∣∣)s ∀j, k, (1.6)

et inversement si on a (1.13) pour tous les j, k et que f a au moins une certaine
régularité globale de Hölder alors f est un Hölder d’ordre s′ en x pour tout 0 <
s′ < s.

Pour les espaces de type homogène, puisque nous avons toujours une (pseudo)métrique,
nous pouvons définir la continuité de Hölder (locale et globale) de la même manière
que nous le faisons dans Rd. Et comme les preuves euclidiennes pour (1.5) et (1.6)
reposent essentiellement sur des arguments métriques (en utilisant les propriétés
de Schwartz des ondelettes), les mêmes résultats peuvent être reproduits dans
des espaces de type homogène (à condition, là encore, que les ondelettes soient
soigneusement construites). En effet, l’équivalent de (1.5) a déjà été prouvé par
exemple dans [21], et nous montrons ici que (1.6) peut également être reproduit.

En particulier, la caractérisation des propriétés de régularité locale, au moins
d’un point de vue abstrait, ouvre la porte au développement et à l’étude de
l’analyse multifractale équivalente à celle de Rd comme fait par Jaffard [54, 55].
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C’est-à-dire, une étude sur la façon dont les ordres locaux de régularité d’une fonc-
tion varient tout au long de notre espace ambiant. Plus précisément, on définit
l’exposant de Hölder d’une fonction f sur un point x comme

hf (x) := sup{s : f ∈ Cs(x)},

et on essaie ensuite de comprendre la distribution géométrique des points ayant le
même exposant à l’aide de la dimension de Hausdorff de ces ensembles: c’est ce
qu’on appelle le spectre des singularités

df (s) := dimH{x : hf (x) = s}.

L’un des arguments pour choisir cette quantité est dû au type de fonctions habituelle-
ment étudiées dans cette théorie. Notamment, les espaces de Besov se sont avérés
être un modèle pour lequel plusieurs résultats peuvent être obtenus. Et la raison
principale en est, encore une fois, leur caractérisation par des ondelettes. Ainsi,
en effet, on pourrait espérer reproduire de tels résultats dans le cadre d’espaces de
type homogène. En particulier, nous obtenons la limite supérieure suivante pour
le spectre des singularités:

Théorème. Let 1 6 p <∞, 1 6 q 6∞ et d/p < s < d/p+ θ. Puis pour tous les
f ∈ Bs

p,q(X) et tous les s− d/p 6 α < θ

df (α) 6 min(d,d + (α− s)p).

Et df (α) = −∞ si α < s− d/p.

Ce résultat reflète celui de [54] dans Rd. En outre, dans le cas de euclidien,
il a été montré que cette limite est atteinte pour “presque toute” function dans
Bs
p,q(Rd) au sens de la prévalence [29] (un concept pour les espaces vectoriels de

dimension infinie qui se substitue à la notion “presque partout” au sens de Lebsegue
[49]). Les arguments utilisés pour montrer ce résultat reposent sur des estimations
précises des dimensions de Hausdorff qui ne peuvent être obtenues que grâce à
une description fine de la géométrie euclidienne [25]. Dans les espaces de type
homogène, ces résultats pourraient être plus difficiles à adapter car on n’a a priori
qu’une idée approximative de la forme et de la taille de l’espace. Cette question
est laissée pour des travaux futurs.

Dans la dernière partie de cette thèse, nous revenons à l’étude des inégali-
tés d’échantillonnage mais cette fois, au lieu de changer le domaine des fonc-
tions du cadre euclidien au non-euclidien, nous gardons le cadre euclidien mais
nous modifions la façon dont les échantillons sont distribués. En particulier, nous
nous intéresserons aux inégalités d’échantillonnage dans R2 où les échantillons sont
placés -pas nécessairement de manière uniforme- sur certains types de courbes.
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Ceci est naturellement lié au problème de l’échantillonnage continu: au lieu de
prendre un ensemble de points discrets, nous considérons une courbe Γ (ou une
famille de courbes) et essayons d’obtenir des inégalités du type suivant:

A‖f‖p 6
(ˆ

Γ

|f(x)|p dµΓ

)1/p

6 B‖f‖p, (1.7)

pour toute f dans l’espace d’échantillonnage correspondant, µΓ := H1|Γ indique
la mesure unidimensionnelle de Hausdorff (longueur d’arc) et A,B sont des con-
stantes positives. L’un des principaux résultats que nous montrons est que, sous
des hypothèses de régularité modérée, le problème continu et le problème discret
sont les mêmes: (1.7) est équivalent à l’existence d’un ensemble discret Λ ⊂ Γ tel
que

A‖f‖p 6

(∑
λ∈Λ

|f(λ)|p
)1/p

6 B‖f‖p.

Le résultat exact est plus précis, voir le théorème D ci-dessous.
En fait, dans le même article, Jaming et Malinnikova [56] donnent égale-ment

une contrepartie continue à leur inégalité d’échantillonnage discrete –avec des
preuves très similaires. Ils montrent que si une courbe régulière Γ couvre suff-
isamment bien l’espace, alors (1.7) est valable pour les fonctions de Besov.

Un cas illustratif est celui des lignes parallèles équidistantes, disons avec direc-
tion ~v ∈ S1 et séparation r:

Γ = {t~v + rk~v⊥ : t ∈ R, k ∈ Z},

où ~v⊥ désigne le vecteur unité perpendiculaire à ~v dans le sens antihoraire. Dans
ce cas précis, le résultat de Jaming et Malinnikova implique qu’il existe une con-
stante C > 0 telle que (1.7) est vérifié pour toute f ∈ B

1/p
p,1 (R2) avec ‖f‖p 6

Cr−1/p‖f‖
B

1/p
p,1

.

Cela peut être amélioré quand on travaille dans le cadre d’un théorème d’échantillonnage
classique avec des espaces de Paley-Wiener. En effet, si Ω est un corps symétrique
convexe et qu’on échantillonne des fonctions sur PW (Ω) alors (1.7) tient si H1(Ω∩
{t~v⊥ : t ∈ R}) < r−1/2 mais échoue pour quelques f ∈ PW (Ω) si H1(Ω ∩ {t~v⊥ :
t ∈ R}) > r−1/2 (voir [85, 86]). Ainsi, r−1/2 fonctionne effectivement comme une
valeur de transition, souvent appelée la fréquence de Nyquist.

Cette fréquence peut également être déterminée pour des familles arbitraires
de lignes parallèles [42] –pas seulement les équidistantes. Et il est certain que les
résultats de [56] s’appliquent à une plus grande famille de courbes. Cependant,
déterminer la fréquence exacte de Nyquist d’une courbe arbitraire est une tâche
beaucoup plus subtile et il est moins évident de savoir ce que l’on peut dire en
toute généralité.
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La contribution que nous apportons ici est de donner des conditions nécessaires
et suffisantes pour que (1.7) tient sur une certaine famille paramé-trique de courbes,
que nous appelons spirale. Les principaux exemples de ces courbes sont la spirale
d’Archimède

Aη := {(ηθ cos 2πθ, ηθ sin 2πθ) : θ > 0}

et la collection de cercles concentriques

Oη := {(x, y) : x2 + y2 = η2k2, k ∈ N}.

Du point de vue des applications, la reconstruction à partir d’échantillons dans
ce type de courbes est un problème qui apparâıt, par example, dans l’imagerie
par résonance magnétique (IRM), où des capteurs mobiles capturent l’anatomie
et la physiologie d’un patient. Du point de vue théorique, la raison principale
pour laquelle nous pouvons obtenir des résultats pour des courbes en spirale est
qu’elles se comportent qualitativement comme des unions de lignes parallèles.
Ainsi, comme pour les lignes parallèles, nous sommes en mesure de déterminer
leur fréquence de Nyquist exact:

Théorème. Soit Ω ⊂ R2 un corps symétrique centré et convexe.

(i) Si diam(Ω)η < 1, alors la spirale d’Archimède Aη et la collection de cercles
concentriques Oη sont des trajectoires d’échantillonnage pour PW 2(Ω).

(ii) Si diam(Ω)η > 1, alors ni la spirale d’Archimède Aη ni la collection de cercles
concentriques Oη sont des trajectoires d’échantillonnage pour PW 2(Ω).

La preuve fait largement appel à la théorie de l’échantillonnage de Beurling
[8, 9]. Le point (i) découle d’un théorème de Beurling [8], tel qu’il est appliqué
dans [7]. Le point (ii) s’appuie sur la caractérisation de l’échantil-lonnage de
Beurling en termes de limites faibles [8, 9], en montrant qu’une suite adéquate de
translations d’une spirale converge vers une union de lignes parallèles, localement
dans la métrique de Hausdorff.

Ayant identifié la fréquence de Nyquist des courbes en spirale, nous nous at-
taquons au problème de sous-échantillonnage. C’est-à-dire, nous considérons des
spirales légèrement moins denses, mais nous limitons l’espace échantillonnage à des
fonctions qui sont représentées de manière compacte dans certains dictionnaires
(motivé par le fait que, dans la pratique, beaucoup de signaux que l’on essaie
de récupérer sont hautement compressibles et que l’on peut donc se permettre
d’échantillonner en dessous de la fréquence de Nyquist). L’une de ces restrictions
est une limite de variation:

F(W ) := {f ∈ PW (Ω) : var(f̂) 6 W}.
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On peut ensuite estimer le nombre de coefficients d’ondelettes actifs qui représentent
f [18, 23]. La stabilité de l’échantillonnage de ces signaux est exprimée par le con-
ditionnement inverse

inf
{
‖f − g‖L2(µΓ) : f, g ∈ F(W ),

∥∥∥f̂ − ĝ∥∥∥
2

= ε
}
,

qui mesure jusqu’à où la distance entre deux signaux est représentée par leurs
échantillons. Puisque, ε−1F(W ) = F(ε−1W ), et F(W ) ⊂ F(W ) − F(W ) ⊂
F(2W ), l’analyse du conditionnement pour les petits ε se réduit à l’asymptotique
en W grand de la marge de stabilité:

A(Γ,F(W )) := inf
{
‖f‖L2(µΓ) :

∥∥∥f̂∥∥∥
2

= 1 f ∈ F(W )
}
.

Le résultat d’échantillonnage que nous obtenons pour Aη et Oη nous indique
que la valeur critique dans le cas de référence du carrée unitaire Ω = [−1/2, 1/2]2

est η =
√

2
2

. Nous considérons alors les spirales dont la densité est légèrement
inférieure à ce valeur critique et prouvons ce qui suit.

Théorème. Soit η = (1 + ε)
√

2/2 avec ε ∈ (0, 1), et Γ = Aη ou Γ = Oη. Puis
pour W > 0,

A(Γ,F(W )) 6 C(εW )−1/2(ln2(εW ) + 1),

où C > 0 est une constante universelle.

En effet, cela fixe une limite à la capacité des spirales à acquérir tous les signaux
compressibles en dessous de la fréquence de Nyquist. Heuristiquement, cela veut
dire qu’en cas de sous-échantillonnage par un petit facteur (1 − ε), on ne peut
récupérer les fonctions jusqu’à la résolution W ≈ ε−1de façon stable.

Comme indiqué précédemment, il existe une relation entre la variation d’une
fonction et le nombre de coefficients d’ondelettes large [18] (ce nombre est essen-
tiellement contrôlé par la variation W ). En exploitant cette relation, nous pouvons
formuler le résultat précédent en termes de coefficients d’ondelettes (de Haar). Plus
précisément, si nous désignons par ΣN,J la classe de fonctions sur [−1/2, 1/2]2 avec
N coefficients de Haar non nuls, tous pris avec une échelle au plus égale à J , nous
obtenons alors l’estimation suivante:

Théorème. Soit W > 1, η = (1 + ε)
√

2/2 avec ε ∈ (0, 1) et Γ = Aη ou Γ = Oη.
Puis pour N > 1,

A(Γ,ΣN,J) 6 CN−1/6ε−1 ln4(CN),

où J = C ln(ε−1N) et C > 0 est une constante universelle.

Informellement, ce théorème dit que lorsqu’on sous-échantillonne d’un petit
facteur (1 − ε), on peut récupérer au plus N ≈ ε−6 coefficients de Haar de façon
stable.
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1.2 English version

The unifying concept of the different problems treated in this thesis is the study of
sampling inequalities on a variety of settings. Broadly speaking, a sampling prob-
lem consist on reconstructing functions from its values on a well enough distributed
set of points. This problem has been well studied in the euclidean case, where the
most common result is the Shannon-Whittaker-Kotelnikov theorem which states
that a bandlimited function on R can be reconstructed from its regular samples:
if f ∈ L2(R) is such that supp(f̂) ⊂ [−W,W ] for some W > 0 then

f(t) =
∑
n∈Z

f(n/2W )
sinπ(2Wt− n)

π(2Wt− n)
. (1.8)

Moreover we have the identity

‖f‖2
2 =

∑
n∈Z

|f(n/2W )|2. (1.9)

This result can be naturally extended to higher dimensions, different function
spaces on Rd, non-uniform samples and further variations (see e.g. [87] and refer-
ences therein). In addition, the search for an equivalent theory on settings other
than the usual euclidean case has become a very active field of research over the
past decade. Among the cases treated in recent years there are different types of
Riemannian manifolds [76], locally compact groups [27], Dirichlet spaces [20] (for
a more complete list see [26] and the references there in). In this thesis we will
first work with compact Riemannian manifolds and spaces of homogeneous type
(quasi-metric spaces together with a Borelian doubling measure).

The problem one faces when dealing with cases other than the euclidean one is
that the techniques of Fourier analysis -on which classic Sampling Theory heavily
relies- might not be available. A way to circumvent this problem is to develop
a generalization of the Littlewood-Paley analysis and Calderón reproducing for-
mulas, and from there to construct a wavelet system. Indeed, these tools have
been proven to be a powerful substitute to the Fourier transform when trying to
describe global and local behavior of functions. Let us briefly explain how this is
done in the reference case of Rd. We consider the family of convolution operators
Sj(f) = f ∗ φj where φj(x) := 2jdφ(2jx) and φ is a function in the Schwartz class
with

´
φ(x) dx = 1. Then, for any f ∈ L2(Rd), Minskowski’s inequality yields

Sjf → f, j → +∞.

Thus, setting ϕ0(x) := φ(x) and ϕj(x) := 2jdφ(2jdx)−2(j−1)dφ(2(j−1)dx) for j > 1,
the operators Dj(f) = f ∗ ϕj constitute an approximation of the unity:

I =
∑
j∈N

Dj.
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If we further require
∑

j∈N |ϕ̂j(ζ)|2 = 1 for ζ 6= 0 then it can be proved that

‖f‖2
2 =

∑
j∈N

‖Djf‖2
2, ∀f ∈ L2(Rd). (1.10)

Next, the partition of Rd into the dyadic cubes (2−jk, 2−j(k + 1)]d allows to dis-
cretize each operator Dj and to obtain what is called a wavelet system. That
is, a dyadic expansion into smooth localized functions. In this case, if we set
ϕj,k(x) := 2−jd/2ϕj(x − 2−jk), and the function φ has some additional desirable
properties, (1.10) entails

f =
∑
j∈N

∑
k∈Z

〈f, ϕj,k〉ϕj,k, ∀f ∈ L2(Rd). (1.11)

A key feature for the cases of compact Riemannian manifolds and spaces of
homogeneous type is that, indeed, partitions similar to (1.10) and the subsequent
wavelet dyadic discretizaion (1.11) can be obtained. With respect to the wavelet
expansion however, it is important to remark that the constructions we are going to
use do not necessarily constitute an orthonormal basis but rather a frame: instead
of (1.11), one gets a system {ϕj,k}j,k such that

A‖f‖2
2 6

∑
j,k

|〈f, ϕj,k〉|2 6 B‖f‖2
2, ∀f ∈ L2,

where A,B are fixed positive constants. Then, Frame Theory ensures us of the
existence of dual family {ϕ̃j,k}j,k such that

f =
∑
j,k

〈f, ϕ̃j,k〉ϕj,k =
∑
j,k

〈f, ϕj,k〉ϕ̃j,k, ∀f ∈ L2.

Reconstructions directly from this type of representations, however, might be
hard to achieve in practice since computing the coefficients 〈f, ϕj,k〉 (or 〈f, ϕ̃j,k〉)
is usually a costly operation. Instead one hopes to recover f from its values in a
given set of points, which is precisely the goal of sampling theory. The general idea
is that if a function has moderate oscillation, then it can be well approximated
in the neighborhood of a point by its value at that point. If those neighborhoods
cover sufficiently well the space, the sample should allow to describe the function
globally. Viewed this way, a sampling theorem is roughly characterized by two
parameters: the distribution (or rate) of the samples and the oscillation of the
function.

While the sampling rate is somehow conditioned by the geometry of the ambient
space, oscillation can be measured by different means. The standard assumption
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would be, as in the Shannon-Whittaker-Kotelnikov theorem, to work with ban-
dlimited functions. But, as we implied before, it is not always clear if and how
this concept can be reproduced without the full power of Fourier analysis. Instead,
we look to work with those spaces that can be described with the help of wavelets.

Inspired by a result of Strichartz [81] for Sobolev spaces, Jaming and Malin-
nikova [56] gave a sampling inequality in Rd for functions in Besov spaces. Their
starting point is the following:

Theorem ([56]). Let 1 6 p 6 ∞. Then, there exist constants c1, c2, c3 > 0 such
that for all r > 0 and all sequence {an}n∈Z with r/2 6 an+1 − an 6 r

c1r
−1/p‖f‖p 6

(∑
n∈Z

|f(an)|p
)1/p

6 c2r
−1/p‖f‖p

holds for all f ∈ B1/p
p,1 (R) with ‖f‖

B
1/p
p,1

6 c3r
−1/p‖f‖Lp.

As stated, this result looks closer to (1.9) than (1.8). But, again thanks to
frame theory, it is possible obtain a reconstruction like (1.8) from this inequality
when we restrict ourselves to work with Paley-Wiener spaces (which are always
embedded into any Besov space). In this sense one could understand this type of
results as a generalization to classic sampling theorems.

The proof of this theorem makes extensive use of the wavelet decomposition
in R and is based on the characterization of Besov spaces in terms of wavelets
coefficients as done by Meyer [68]. Indeed, taking a wavelet system in R as before,
the Schwartz class properties then allow to characterize several commonly used
function spaces such as Sobolev, Hölder, Hardy, BMO and -of particular interest
to us- Besov spaces. Specifically, it can be proven that the norm of a function
f ∈ Bs

p,q(R) is equivalent to∑
j∈N

2jq(s+1/2−1/p)

(∑
k∈N

|〈f, ϕj,k〉|p
)q/p

1/q

,

where s ∈ R,1 6 p, q 6∞ and ϕj,k is a system as in (1.11) with enough regularity
(at least s vanishing moments).

From an abstract point of view, since this characterization only involves a
wavelet system, one can use it to define Besov spaces on compact Riemannian
manifolds and spaces of homogeneous type. Furthermore, as in the real case it
can be shown that, if wavelets have good enough smoothness and localization
properties (in substitution for the Schwartz class), this definition is also equivalent
to the other natural reproductions of Besov spaces in these settings [20, 21, 36, 38,
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37, 47, 69, 70, 84]. (It is important to remark, however, that for the more general
types of spaces of homogeneous type the regularity index s might be restricted by
the fact that in some cases there are no non-trivial functions with regularity above
a certain level [39]).

Hence, structurally, we have at our disposal the same tools used by Jaming and
Malinnikova. This allows us to adapt their result to our frameworks. In compact
Riemannian manifolds our sampling inequality reads as follows:

Theorem. Let M be a d-dimensional compact Riemannian manifold, and let 1 6
p 6∞. Then, there exists constants c1, c2, c3 > 0 such that for all r > 0 and every
set {ζ1, . . . , ζNr} of r-distributed on M

c1r
−d/p‖f‖p 6

(
Nr∑
n=1

|f(ζn)|p
)1/p

6 c2r
−d/p‖f‖p

holds for all f ∈ Bd/p
p,1 (M) with ‖f‖

B
d/p
p,1

6 c3‖f‖Lp.

Here r-distributed refers to a very similar condition to that of [56] in R: a cover
of balls with radius r which become disjoint if we reduce r slightly (say, to r/2).

The main reason we can adapt the result of Jaming and Malinnikova to man-
ifolds is indeed the existence of a wavelet decomposition in compact Riemannian
manifolds. The other underlying factor, is that the proof in [56] does not require
any particular property of Rd other than the fact that the Lebesgue measure of a
ball with radius r is proportional to rd. Which in turn, then allows us to go fur-
ther and extend the result to spaces of homogeneous type. Indeed, we know from
the work of Maćıas and Segovia [64] that, up to changing the pseudo metric for
an equivalent one, the measure in a space of homogeneous type can be assumed
to have the same property. In fact, the corresponding exponent d is called the
homogeneous dimension. We thus obtain:

Theorem. Let X be a space of homogeneous type of dimension d, and let 1 6 p 6
∞. Then, there exists constants c1, c2, c3 > 0 such that for all r > 0 and every
family {yn}n of r-distributed points on X

c1r
−d/p‖f‖p 6

(
Nr∑
n=1

|f(ζn)|p
)1/p

6 c2r
−d/p‖f‖p

holds for all f ∈ Bd/p
p,1 (X) with ‖f‖

B
d/p
p,1

6 c3r
−d/p‖f‖Lp.

The actual results are slightly more precise, they will take the form of Theorems
2.4 and 3.6 respectively.
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The right-hand-side of these sampling inequalities can also be interpreted as
trace theorems for Besov functions (onto a discrete set of points). More broadly,
the regularity of functions when restricted to a particular subset (discrete or not)
is a problem which has its own interests, most notably with respect to PDEs and,
specifically, boundary value problems [66]. Due to this, several trace theorems
have been given for Besov (and Sobolev) functions defined in metric spaces under
different types of assumptions [38, 65, 67, 77]. Here, using similar techniques
to those of the proof of Theorem 3.6, we offer a new proof of a trace result for
Besov functions under relatively general assumptions. Specifically, we prove the
following:

Theorem. Let X be an space of homogeneous type and Y ⊂ X a subspace. Denote
dX ,dY for the dimension of X and Y respectively.

Let 1 6 p <∞, 1 6 q 6∞, s ∈ R and set s′ := s− dX−dY
p

. If 0 < s′ < θ then
the trace operator

Tr : Bs
p,q(X)→ Bs′

p,q(Y ), Trf = f |Y
is well defined and continuous.

With subspace we mean that Y is a space of homogeneous type with the metric
resulting from the restriction of that on X. This is the assumption also considered
in [67]. The contribution we make to the existing literature is that, here, we
consider a larger class of indexes s. Another novelty is the proof itself, which
essentially relies on the wavelet system, closely following strategies developed in,
e.g. [21]. In short, the idea is to write f ∈ Bs

p,q(X) in its wavelet expansion
so that one can express the wavelet coefficients of f |Y in terms of those on X;
the good localization and smoothness properties of wavelets then allow to obtain
a comparison result, often called a quasi-orthogonality property, from which the
trace theorem follows.

Further, it is not only the global regularity of functions (Besov or otherwise)
that can be studied with wavelets but also their local variations. In Rd, taking
wavelets as described before, it was first shown by Meyer [68] that a function f
belongs to the Hölder space of order s if and only if

|〈f, ϕj,k〉| 6 Cf2
−j(d/2+s) ∀j, k (1.12)

where Cf > 0 is a constant only depending on f . Similarly for local regularity,
Jaffard [53] gave an almost equivalent condition: if f is Hölder of order s at x,
then

|〈f, ϕj,k〉| 6 Cf2
−jd/2(2−j +

∣∣x− 2−jk
∣∣)s ∀j, k, (1.13)

and conversely if (1.13) holds for all j, k and f has at least some global Hölder
regularity then f is Hölder of order s′ at x for any 0 < s′ < s.
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For spaces of homogeneous type, since we still have a (pseudo)metric, we can
define Hölder (local and global) continuity in the same way as we do in Rd. And
since the euclidean proofs for (1.12) and (1.13) essentially rely on metric arguments
(using the Schwartz properties of wavelets), the same results can be reproduced
in spaces of homogeneous type (provided again that wavelets are carefully con-
structed). Indeed, the equivalent to (1.12) has already been proven in e.g. [21],
and here we show that also (1.13) can be reproduced.

In particular the characterization of local regularity properties, at least from
an abstract point of view, opens the door to the development and study of the
equivalent multifractal analysis in Rd as done by Jaffard [54, 55]. This is: a study
of how the local orders of regularity of a function varies across our framework set.
Specifically, one defines the Hölder exponent of a function f at a point x as

hf (x) := sup{s : f ∈ Cs(x)},

and then one tries to understand the geometric distribution of points with the same
exponent by means of the Hausdorff dimension of such sets: this is, the spectrum
of singularities

df (s) := dimH{x : hf (x) = s}.

One of the arguments for choosing this quantity is because of the type of functions
usually studied in this theory. Notably, Besov spaces have been proven to be a
model for which several results can be obtained. And the main reason for this
is, again, its wavelet characterization. Thus, indeed, one could hope to reproduce
such results in the framework of spaces of homogeneous type. In particular we
obtain the following upper bound for the spectrum of singularities:

Theorem. Let 1 6 p < ∞, 1 6 q 6 ∞ and d/p < s < d/p + θ. Then for all
f ∈ Bs

p,q(X) and all s− d/p 6 α < θ

df (α) 6 min(d,d + (α− s)p).

And df (α) = −∞ if α < s− d/p.

This results mirrors that of [54] in Rd. Further, in the euclidean case, it has
been proven that this bound is attained for “almost every” function in Bs

p,q(Rd) in
the sense of prevalence [29] (a concept more effective for vector spaces of infinite
dimension than the Lebsegue “almost everywhere” [49]). The arguments used to
prove this result rely on sharp Hausdorff dimensions estimates that can only be
obtained thanks to a fine description of the euclidean geometry [25]. In spaces of
homogeneous type those results might be harder to adapt since a priori one only
has an approximate idea of how the shape and size of the space is. This is left for
future work.
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In the last part of this thesis we return to the study of sampling inequali-
ties but this time, instead of changing the domain of functions from euclidean to
non-euclidean we keep the euclidean setting but change the way the samples are
distributed. In particular, we will be interested on sampling inequalities in R2

where samples are placed -not necessarily in a uniform manner- on certain types
of curves.

This is naturally linked to the problem of continuous sampling: instead of
taking a discrete set of points we consider a curve Γ (or a family of curves) and
try to determine when the following type of inequalities hold:

A‖f‖p 6
(ˆ

Γ

|f(x)|p dµΓ

)1/p

6 B‖f‖p, (1.14)

for all f in the corresponding sampling space and where A,B are positive constants
and µΓ := H1|Γ denotes the one-dimensional Hausdorff (length) measure. One of
the key results we show is that, under mild regularity assumptions, the continuous
and discrete problem are the same: (1.14) is equivalent to the existence of a discrete
set Λ ⊂ Γ such that

A‖f‖p 6

(∑
λ∈Λ

|f(λ)|p
)1/p

6 B‖f‖p.

The actual result is more precise, see Theorem D below.
Actually, in the same article, Jaming and Malinnikova [56] also give a contin-

uous counterpart to their discrete sampling inequality –with very similar proofs.
They show that if a regular curve Γ covers the space sufficiently well then (1.14)
holds for Besov functions.

An illustrative case is that of equispaced parallel lines, say with direction ~v ∈ S1

and separation r:

Γ = {t~v + rk~v⊥ : t ∈ R, k ∈ Z},

where ~v⊥ denotes the counterclockwise perpendicular unit vector to ~v. Specifically
for this case Jaming and Malinnikova’s result implies that there exists a constant
C > 0 such that (1.14) holds for all f ∈ B1/p

p,1 (R2) with ‖f‖p 6 Cr−1/p‖f‖
B

1/p
p,1

.

This can be improved when we work in the classical setting of a sampling
theorem with Paley-Wiener spaces. Indeed, if Ω is a convex symmetric body and
we are sampling functions on PW (Ω) then (1.14) holds if H1(Ω∩{t~v⊥ : t ∈ R}) <
r−1/2 but fails for some f ∈ PW (Ω) if H1(Ω∩{t~v⊥ : t ∈ R}) > r−1/2 (see [85, 86]).
Thus, r−1/2 effectively works a transition value, often called the Nyquist rate.

This rate can also be determined for arbitrary families of parallel lines [42] –not
just equispaced ones. And certainly the results in [56] apply to a larger family of
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curves. However, determining the exact Nyquist rate of an arbitrary curve is a
much more subtle task and it is less clear what can be said in full generality.

The contribution we make here is to give sharp necessary and sufficient con-
ditions for (1.14) to hold on a certain parametric family of curves, that we call
spiraling. The main examples of these curves are the Archimedes spiral

Aη := {(ηθ cos 2πθ, ηθ sin 2πθ) : θ > 0}

and the collection of concentric circles

Oη := {(x, y) : x2 + y2 = η2k2, k ∈ N}.

From the point of view of applications, reconstruction from samples in these types
of curves is a problem relevant, for example, in magnetic resonance imaging (MRI),
where moving sensors capture the anatomy and physiology of a patient. On the
theoretical side, the key underlying reason why we can obtain sampling results
for spiraling curves is that they behave qualitatively like unions of parallel lines.
Thus, as with parallel lines, we are able to determine their exact Nyquist rate:

Theorem. Let Ω ⊂ R2 be a convex centered symmetric body.

(i) If diam(Ω)η < 1, then the Archimedes spiral Aη and the collection of con-
centric circles Oη are sampling trajectories for PW 2(Ω).

(ii) If diam(Ω)η > 1, then neither the Archimedes spiral Aη nor the collection of
concentric circles Oη are sampling trajectories for PW 2(Ω).

The proof makes extensive use of Beurling’s sampling theory [8, 9]. Point (i)
follows from Beurling’s gap covering theorem [8] as done in [7]. Point (ii) relies on
Beurling’s characterization of sampling in terms of weak limits [8, 9], by showing
that an adequate sequence of translates of a spiral converges to a union of parallel
lines, locally in the Hausdorff metric.

Having identified the Nyquist rate of spiraling curves, we look into undersam-
pling. This is, we consider slightly less dense spirals but restrict the reconstruction
problem to functions that are compactly represented in certain dictionaries (mo-
tivated from the fact that, in practice, many of the signals one tries to recover
are highly compressible and we can thus afford to sample below the Nyquist rate).
One of such restrictions is a variation bound:

F(W ) := {f ∈ PW (Ω) : var(f̂) 6 W}.

This can then be translated into the number of active wavelet coefficients that
represent f [18, 23]. The stability for sampling such signals is expressed by the
inverse condition number

inf
{
‖f − g‖L2(µΓ) : f, g ∈ F(W ),

∥∥∥f̂ − ĝ∥∥∥
2

= ε
}
,
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which measures the extent to which the distance between two signals is exhibited
by their samples. Since, ε−1F(W ) = F(ε−1W ), and F(W ) ⊂ F(W ) − F(W ) ⊂
F(2W ), the analysis of the condition number for small ε reduces to the large W
asymptotics of the stability margin:

A(Γ,F(W )) := inf
{
‖f‖L2(µΓ) :

∥∥∥f̂∥∥∥
2

= 1, f ∈ F(W )
}
.

The sampling result we obtain for Aη and Oη tells us that the critical value in
the reference case of the unit square Ω = [−1/2, 1/2]2 is η =

√
2

2
. We consider then

spirals with density slightly under the critical value and prove the following.

Theorem. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and Γ = Aη or Γ = Oη. Then for
W > 0,

A(Γ,F(W )) 6 C(εW )−1/2(ln2(εW ) + 1),

where C > 0 is a universal constant.

Effectively, this sets a limit to the capacity of spirals to acquire all compressible
signals below the Nyquist rate. Informally, it says that when undersampling by a
small factor (1− ε), one can only recover functions up to resolution W ≈ ε−1 with
a stable condition number.

As said before, there is a relation between the variation of a function and the
number of large wavelet coefficients [18] (this number is essentially controlled by
the variation W ). Exploiting that relation we can formulate the previous result
in terms of (Haar) wavelet coefficients. Precisely, if we denote ΣN,J as the class
of functions on [−1/2, 1/2]2 with N non-zero Haar coefficients, all of them taken
with scale at most J , we then get the following estimate:

Theorem. Let W > 1, η = (1 + ε)
√

2/2 with ε ∈ (0, 1) and Γ = Aη or Γ = Oη.
Then for N > 1,

A(Γ,ΣN,J) 6 CN−1/6ε−1 ln4(CN),

where J = C ln(ε−1N) and C > 0 is a universal constant.

Informally this theorem says that when undersampling by a small factor (1−ε),
one can recover at most N ≈ ε−6 Haar coefficients with a stable condition number.
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Chapter 2

Sampling on compact Riemannian
manifolds

In this chapter we show our sampling result for Besov functions on compact Rie-
mannian manifolds. We will use the same techniques, and indeed almost the same
proofs, as in [57] where we treated the spherical case.

Specifically, the main tool we will use is a wavelet-type system of highly lo-
calized functions and whose associated coefficients allow to characterize Besov
spaces. This type of systems has been constructed in various ways [20, 35, 76]. In
all cases the idea is essentially to discretize a partition of the unity provided by
the machinery of Spectral Theory applied to the Laplace-Beltrami operator.

2.1 Notation and preliminaries

Throughout this chapter M will denote a smooth, connected, compact Rieman-
nian manifold without boundary of dimension d. We will denote ρ as the Rie-
mannian metric and µ as the manifold (volume) measure. Next, consider ∆ the
Laplace–Beltrami operator, that can be written in local coordinates as

∆ = ∆g =
−1√
|det g|

d∑
j,i=1

∂j

(
gj,i
√
|det g|∂i

)
,

where g = (gj,i)j,i is the metric tensor, and gj,i are the coefficients of the inverse
matrix. It is a well known fact that this operator is self-adjoint and non-negative
(see e.g. [15]). We can then use the Spectral Theorem [11] to define another self-
adjoint operator, D :=

√
∆. Since M is compact and without boundary and D is

elliptic, the spectrum of D is a real sequence

0 = λ0 < λ1 < λ2 < . . .
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which converges to +∞. Furthermore, there exists an orthonormal basis in L2(M)
made of eigenfunctions of D (all this facts follow from standard Spectral Theory,
see e.g. [74]). For each eigenvalue λ we set uλ,1, uλ,2, . . . a basis for the eigenspace
associated to λ. Weyl’s asymptotic formula for the dimension of eigenspaces of ∆
(see e.g. [50]) implies that there is a finite number of such vectors. The represen-
tation given by the Spectral Theorem for a measurable function F can then be
written as

F (D)f =
∑
λ

∑
n

F (λ)〈f, uλ,n〉uλ,n, (2.1)

for all f where F (D) is defined. Naturally, for bounded F ’s this gives a bounded
operator in L2(M). Also, real valued functions are mapped into selfadjoint oper-
ators.

Finally let us recall the notion of bandlimitedness in M as done in [76]. Specif-
ically, given ω > 0 the Paley-Wiener space PWω(D) is defined as the vector space
spanned by all eigenfunctions with associated eigenvalues not greater than ω. By
(2.1), this space can also be identified as the image of 1[0,ω](D). Further, defining
the “Fourier transform” in this context as the unitary transformation of the spec-
tral theorem associated to D, one could reproduce the language of bandlimitedness
in the exact same way as in the euclidean case [75].

2.2 Paley-Wiener frames

2.2.1 Partition of the unity

The first step is to construct a partition of the unity from the operator D. Here
we follow the standard strategy mentioned at the beginning of this chapter, see
e.g. [20, 26].

Let us consider an auxiliary smooth function g with supp(g) ⊂ [0, 2] and such
that g(λ) = 1 for λ ∈ [0, 1], 0 6 g(λ) 6 1 for all λ ∈ R. Further we set h(λ) :=
g(λ)− g(2λ). Finally define

F0(λ) := g(λ),

Fj(λ) := h(2−jλ), j > 1.

As these functions are all bounded, the operators Fj(D) are defined on all L2(M).
Moreover, since supp(Fj) ⊂ [0, 2j+1], (2.1) and the definition of the Paley-Wiener
spaces then read

Fj(D)f ∈ PW2j+1(D), ∀f ∈ L2(M), (2.2)

which in turn makes the operator Fj(D) as a sort of projection onto the corre-
sponding Paley-Wiener space. But more importantly, they also decompose the
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identity. Indeed, first note that for all N ∈ N and λ ∈ R

N∑
j=0

Fj(λ) = g(2−Nλ),

so that ∑
j∈N

Fj(λ) = 1[0,+∞)(λ)

with uniform convergence on compact sets. Then, the Spectral Theorem applied
to D reads

f =
∑
j∈N

Fj(D)f, ∀f ∈ L2(M). (2.3)

Similarly we can obtain an L2-norm equivalence, since

1

2
6
∑
j∈N

F 2
j (λ) 6 1, ∀λ > 0, (2.4)

and the operators Fj(D) are always self-adjoint (since Fj is real-valued for all j).
Indeed, (2.4) and the Spectral Theorem then read

1

2
‖f‖2

2 6
∑
j∈N

‖Fj(D)f‖2
2 6 ‖f‖

2
2, ∀f ∈ L2(M). (2.5)

2.2.2 Lattices

The next step is to decompose each operator Fj(D) into smaller, localized func-
tions. To this end, we will need to partition our manifold M into cells of approxi-
mate size 2−jd.

Lemma 2.1 ([26, 76]). Let r > 0. There exists a disjoint partition {U1, . . . , UNr}
of M together with a set of points x1, . . . , xKr ∈M with the properties:

(i) for every k = 1, . . . , Nr,

B(xk, r/2) ⊂ Uk ⊂ B(xk, r),

(ii) the size of the partition is bounded by

Nr 6 max(1, T r−d),

where T = T (M) is a constant depending only on M.



28 Chapter 2. Sampling on compact Riemannian manifolds

Proof. If r > diam(M) the lemma is obvious; we therefore assume r 6 diam(M).
In this case, and since M is compact, there exists a constant A = A(M) such that
for all x ∈M

µ(B(x, r)) > Ard. (2.6)

Now, by Zorn’s lemma we can construct a maximal set of points x1, x2, . . . with
respect to

ρ(xk, xm) > r, k 6= m,

where ρ is the Riemannian distance on M. The triangle inequality then implies
that the balls B(xk, r/2) must be mutually disjoint. By using (2.6), the number of
such points is bounded by A−1µ(M)r−d. We denote those points as x1, . . . , xNr .

Finally, we define inductively

U1 = B(x1, r) \
⋃
m 6=1

B(xm, r/2),

Uk = B(xk, r) \

(⋃
m<k

Um
⋃
m′ 6=k

B(xm′ , r/2)

)
, 1 < k 6 Nr.

Clearly the Uk’s are mutually disjoint and Uk ⊂ B(xk, r) for all k. Further, from the
fact that the balls B(xk, r/2) are mutually disjoint, we obtain that B(xk, r/2) ⊂ Uk
for all k and ⋃

k

Uk =
⋃
k

B(xk, r) = M,

which completes the proof.

We call this grid of points x1, . . . , xNr an r-lattice of M and U1, . . . , UNr its
associated covering.

2.2.3 Sampling on Paley-Wiener spaces

We are now ready to show how a wavelet type system can be constructed from
the operators Fj(D). The idea is to obtain a sampling theorem for Paley-Wiener
spaces and then use (2.2) to apply it onto the image of each Fj(D). Here we
essentially follow [20].

First we need a technical lemma concerning heat-type kernels. Remember that
from (2.1), given a smooth compactly supported function F , we can write for any
t > 0

F (tD)f =
∑
λ

∑
n

F (tλ)〈f, uλ,n〉uλ,n, f ∈ L2(M). (2.7)
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And thus, if we define the kernel

KF,t(x, y) :=
∑
λ

∑
n

F (tλ)uλ,n(x)uλ,n(y),

we have, for all f ∈ L2(M),

F (tD)f(x) =

ˆ
M

KF,t(x, y)f(y) dµ(y). (2.8)

In this situation the following estimates can be proven.

Lemma 2.2 ([35]). For all 0 < t 6 1 and all N > 0 there exists a constant CN
such that for all x, y ∈M

|KF,t(x, y)| 6 CN t
−d
(

t

t+ ρ(x, y)

)N
, (2.9)

and for all x, x′, y ∈M with ρ(x, x′) 6 t

|KF,t(x, y)−KF,t(x
′, y)| 6 CN

ρ(x, x′)

t
· t−d

(
t

t+ ρ(x, y)

)N
. (2.10)

The proof relies on the Theory of Pseudo-differential Operators. Anyhow, this
paves the way to prove a sampling result for Paley-Wiener space.

Theorem 2.3 ([20]). Let ω > 1 and r 6 ω−1. There exist a constant C = C(M)
such that for any r-lattice x1, . . . , xNr the inequalities

Nr∑
k=1

ˆ
Uk

|f(x)− f(xk)|2 dµ(x) 6 C(ωr)2‖f‖2
2 (2.11)

holds for all f ∈ PWω, and where U1, . . . , UNr is the associated covering.

Proof. Fix an r-lattice x1, . . . , xNr and its associated covering U1, . . . , UNr . Take
f ∈ PWω. Let F be a non-negative smooth compactly supported function such
that F (λ) = 1 for λ ∈ [0, 1]. Then (2.7) and the definition of Paley-Wiener spaces
give F (ω−1D)f = f for all f ∈ PWω. Thus

Nr∑
k=1

ˆ
Uk

|f(x)− f(xk)|2 dµ(x)

6
Nr∑
k=1

ˆ
Uk

∣∣∣∣ˆ
M

(KF,ω−1(x, y)−KF,ω−1(xk, y))f(y) dµ(y)

∣∣∣∣2 dµ(x)

6
Nr∑
k=1

ˆ
Uk

(ˆ
M

|KF,ω−1(x, y)−KF,ω−1(xk, y))||f(y)|2 dµ(y)

×
ˆ
M

|KF,ω−1(x, y)−KF,ω−1(xk, y))| dµ(y)

)
dµ(x)
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by using Hölder’s inequality in M for the last line. Next, since Uk ⊂ B(xk, r) and
r 6 ω−1 we can apply (2.10) with N = d + 1 to obtain

Nr∑
k=1

ˆ
Uk

(ˆ
M

|KF,ω−1(x, y)−KF,ω−1(xk, y))||f(y)|2 dµ(y)

×
ˆ
M

|KF,ω−1(x, y)−KF,ω−1(xk, y))| dµ(y)

)
dµ(x)

.
Nr∑
k=1

ˆ
Uk

(ˆ
M

ωρ(x, xk) · ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

|f(y)|2 dµ(y)

×
ˆ
M

ωρ(x, xk) · ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

dµ(y)

)
dµ(x).

For any x ∈M, by dividing into annuli around x one can get the estimateˆ
M

(
ω−1

ω−1 + ρ(x, y)

)d+1

dµ(y) . ω−d (2.12)

(see for example the proof of Lemma 2.5 below). Thus,

Nr∑
k=1

ˆ
Uk

(ˆ
M

ωd+1ρ(x, xk)

(
ω−1

ω−1 + ρ(x, y)

)d+1

|f(y)|2 dµ(y)

×
ˆ
M

ωd+1ρ(x, xk)

(
ω−1

ω−1 + ρ(x, y)

)d+1

dµ(y)

)
dµ(x)

.
Nr∑
k=1

ˆ
Uk

ˆ
M

(ωρ(x, xk))
2 · ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

|f(y)|2 dµ(y) dµ(x)

Finally since the sets Uk partition M and Uk ⊂ B(xk, r), applying Tonelli’s theorem
and (2.12) for any fixed y gives us

Nr∑
k=1

ˆ
Uk

(ωρ(x, xk))
2

ˆ
M

ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

|f(y)|2 dµ(y) dµ(x)

6 (ωr)2

ˆ
M

(
Nr∑
k=1

ˆ
Uk

ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

dµ(x)

)
|f(y)|2 dµ(y)

6 (ωr)2

ˆ
M

(ˆ
M

ωd

(
ω−1

ω−1 + ρ(x, y)

)d+1

dµ(x)

)
|f(y)|2 dµ(y)

6 (ωr)2‖f‖2
2.

Altogether this yields (2.11).
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Note that this result derives a sampling inequality. Indeed, since (i) in Lemma
2.1 implies that the Uk’s have measure comparable to rd, then (2.11) derives the
following: there exist two constants c1, c2 depending only on M such that, if
r 6 (C/2)−1/2ω−1 where C is the constant in (2.11) then

c1‖f‖2
2 6 rd

Nr∑
k=1

|f(xk)|2 6 c2‖f‖2
2, ∀f ∈ PWω.

Now let j ∈ N, take ωj = 2j+1 and set rj := (C/2)−1/22−j−1. Let xj,1, . . . , xj,Nj be
an rj-lattice of M. Then, using (2.2) we have,

c1‖Fj(D)f‖2
2 6 rdj

Nj∑
k=1

|Fj(D)f(xj,k)|2 6 c2‖Fj(D)f‖2
2, ∀f ∈ L2(M).

Set ϕj,k(y) := r
d/2
j Kj(xj,k, y) for each k = 1, . . . , Nj and where Kj denotes the

kernel of Fj. Thus, we can rewrite the previous inequality as

c1‖Fj(D)f‖2
2 6

Nj∑
k=1

|〈f, ϕj,k〉|2 6 c2‖Fj(D)f‖2
2, ∀f ∈ L2(M).

Running the sum over all j, (2.5) reads

c1

2
‖f‖2

2 6
Nj∑
k=1

|〈f, ϕj,k〉|2 6 c2‖f‖2
2, ∀f ∈ L2(M).

In other words, the system {ϕj,k}j,k constitutes a frame. Moreover, from (2.9) and
(2.10) we can derive the following regularity properties: for all N > 0 there exists
a constant CN such that

— (Size condition) for all j ∈ N, k = 1, . . . , Nj and x ∈M

|ϕj,k(x)| 6 CN2jd/2
(

2−j

2−j + ρ(x, xj,k)

)N
, (2.13)

— (Smoothness condition) for all j ∈ N, k = 1, . . . , Nj and x, x′ ∈ M with
ρ(x, x′) 6 2−j

|ϕj,k(x)− ϕj,k(x′)| 6 CN2jd/22jρ(x, x′)

(
2−j

2−j + ρ(x, xj,k)

)N
. (2.14)
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Additionally, using a small perturbation of the identity in L2(M) Coulhon, Kerky-
acharian and Petrushev [20] show that one can construct a dual basis ϕ̃j,k that
enjoys the same regularity properties. From now on, we will consider such wavelet
system. This is,

f =
∑
j∈N

∑
k

〈f, ϕj,k〉ϕ̃j,k, ∀f ∈ L2(M), (2.15)

and where both ϕj,k, ϕ̃j,k satisfy (2.13) and (2.14).

2.3 Sampling inequality for Besov spaces

As in the euclidean case, the partition of unity given by the family {Fj(D)}j
allows to describe various functions spaces. Indeed, as the operators Fj(D) behave
as some sort of projection onto Paley-Wiener spaces (2.2), then (2.3) can be seen
as an equivalent to a Littlewood-Paley decomposition on Rd, and thus similar
characterizations of Sobolev, Hölder and Hardy spaces can be obtained.

Here we will work with Besov spaces. Given 1 6 p, q 6 ∞ and s ∈ R, the
Besov space Bs

p,q(M) is defined as the set of all distributions f such that the norm

‖f‖Bsp,q :=

(∑
j∈N

(
2js
∥∥F 2

j (D)f
∥∥
p

)q)1/q

is finite. This description is equivalent to all other definitions that can be done
for Besov spaces on manifolds [20, 36, 37, 70, 84]. In particular, one can obtain
a characterization in terms of the wavelet coefficients. Indeed one can substitute
‖f‖Bsp,q with the equivalent quantity∑

j∈N

2jq(s+d/2−d/p)

 Nj∑
k=1

|〈f, ϕj,k〉|p
q/p


1/q

.

We will use this last characterization. We are now ready to prove our sampling
inequality.

Theorem 2.4. Let 1 6 p 6∞, s > d/p and α = s−d/p
1+s−d/p . Fix 0 < ε 6 1 and let

y1, . . . , yNε be a ε-lattice. There exists constants C = C(p,M) and K = K(p,M)
such that if f ∈ Bs

p,1(M) with ‖f‖Bsp,1 6 (Kεα)−1‖f‖p then

1

2Cεd/p
‖f‖p 6

(
Nε∑
l=1

|f(yl)|p
)1/p

6
3

2Cεd/p
‖f‖p.
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Let us start with the following technical estimate.

Lemma 2.5. Let 1 6 p 6∞. There exists a constant C = C(p,M) such that

— for all j ∈ N and all x ∈M(∑
k

|ϕj,k(x)|p
)1/p

6 C2jd/2, (2.16)

— for all j ∈ N and all x, x′ ∈M with ρ(x, x′) 6 2−j(∑
k

|ϕj,k(x)− ϕj,k(x′)|p
)1/p

6 C2jd/22jρ(x, x′). (2.17)

And the same inequalities hold for the dual family {ϕ̃j,k}j,k.

Proof. Let x ∈ M. Using the size condition (2.13) for ϕj,k with N = d + 1 we
have that(∑

k

|ϕj,k(x)|p
)1/p

. 2jd/2

(∑
k

[
2−j

2−j + ρ(xj,k, x)

](d+1)p
)1/p

. (2.18)

Therefore, to prove (2.16) it is enough to prove that the sum on the right-hand-side
is bounded by a constant depending only on M and p. To that end, let us consider
Uj,1, . . . , Uj,Nj a partition associated to xj,1, . . . , xj,Nj . Using the triangle inequality
and the fact that for all j, k, Uj,k ⊂ B(xj,k, c2

−j) for some constant c > 0, we get
that

2−j + ρ(xj,k, x) >
1

1 + c
(2−j + ρ(y, x)), ∀y ∈ Uj,k.

Then, as Uj,1, . . . , Uj,Nj is a family of disjoint sets of measure ≈ 2−jd, summing
over all k gives us

∑
k

(
2−j

2−j + ρ(xj,k, x)

)(d+1)p

6
∑
k

(1 + c)(d+1)p

µ(Uj,k)

×
ˆ
Uj,k

(
2−j

2−j + ρ(y, x)

)(d+1)p

dµ(y)

. 2jd
ˆ
M

(
2−j

2−j + ρ(y, x)

)(d+1)p

dµ(y)
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Diving M into annuli gives

ˆ
M

(
2−j

2−j + ρ(y, x)

)(d+1)p

dµ(y)

6
ˆ
B(x,2−j)

dµ(y) +
∑
j′<j

ˆ
B(x,2−j′ )\B(x,2−j′−1)

2−j(d+1)pρ(y, x)−(d+1)p dµ(y)

. 2−jd + 2−j(d+1)p
∑
j′<j

2−j
′d2−(−j′−1)(d+1)p . 2−jd,

where the implicit constant depends only on p and M. Plugged into the previous
inequality, this completes the proof of (2.16). The estimate of (2.17) follows exactly
the same using (2.14) instead of (2.13) in (2.18).

Proof of Theorem 2.4. From (2.15) we may write f ∈ Bs
p,1(M) in its wavelet de-

composition as

f =
∑
j∈N

∑
k

〈f, ϕj,k〉ϕ̃j,k,

were the convergence is in L2. Moreover, using (2.16) and the fact that f ∈ Bs
p,1

with s > d/p we see that the sum on the right converges also with L∞ norm: for
any x ∈M

∑
j∈N

∑
k

|〈f, ϕj,k〉||ϕ̃j,k(x)| 6
∑
j∈N

(∑
k

|〈f, ϕj,k〉|p
)1/p(∑

k

|ϕ̃j,k(x)|p
′

)1/p′

.
∑
j∈N

2jd/2

(∑
k

|〈f, ϕj,k〉|p
)1/p

.
∑
j∈N

2j(s+d/2−d/p)

(∑
k

|〈f, ϕj,k〉|p
)1/p

= ‖f‖Bsp,1 .

Hence, as (2.14) implies the continuity of the wavelets ϕj,k, it follows that f is well
defined and continuous all over M.

Let now U1, . . . , UNε be a partition of M associated to y1, . . . , yNε , take an
arbitrary l ∈ {1, . . . , Nε} and consider x ∈ Ul. By Hölder’s inequality we have

|f(x)− f(yl)| 6
∑
j∈N

∑
k

|〈f, ϕj,k〉||ϕ̃j,k(x)− ϕ̃j,k(yl)|

6
∑
j∈N

(∑
k

|ϕ̃j,k(x)− ϕ̃j,k(yl)|p
′

)1/p′

Sj(f) (2.19)
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where for each j ∈ N

Sj(f) :=

(∑
k

|〈f, ϕj,k〉|p
)1/p

.

Now let j0 ∈ N with 2−j0 > ε. The precise value of j0 will be fixed later. Then,
we can divide the sum on the right-hand-side of (2.19) by applying (2.17) when
0 6 j 6 j0 and (2.16) when j > j0:

|f(x)− f(yl)| .
j0∑
j=0

2jd/22jρ(x, yl)Sj(f) + 2C
∑
j>j0

2jd/2Sj(f)

.
j0∑
j=0

2jd/22jρ(x, yl)Sj(f) + 2C2−j0(s−d/p)
∑
j>j0

2j(s+d/2−d/p)Sj(f),

where we have used again that s > d/p. Next, taking the Lp-norm over Ul and
using the triangle inequality in Lp(Ul), we get(ˆ

Ul

|f(x)− f(yl)|p dµ(x)

)1/p

.
j0∑
j=0

2jd/22j
(ˆ

Ul

ρ(x, yl)
p dµ(x)

)1/p

Sj(f)

+ 2−j0(s−d/p)µ(Ul)
1/p
∑
j>j0

2j(s+d/2−d/p)Sj(f)

.
j0∑
j=0

2jd/22jεd/p+1Sj(f)

+ 2−j0(s−d/p)εd/p
∑
j>j0

2j(s+d/2−d/p)Sj(f)

where we have used that Ul ⊂ B(yl, ε). We now take j0 such that both 2j0 > εα−1

and 2−j0 > ε are satisfied, e.g. j0 = b ln 1/ε
ln 2

(1− α/2)c + 1. So 2−j0(s−d/p) . εα and
thus(ˆ

Ul

|f(x)− f(yl)|p dµ(x)

)1/p

. 2j0εεd/p
j0∑
j=0

2j(s+d/2−d/p)Sj(f)

+ 2−j0(s−d/p)εd/p
∑
j>j0

2j(s+d/2−d/p)Sj(f)

. εαεd/p‖f‖Bsp,1
which combined with the triangle inequality (again in Lp(Ul)) gives us∣∣∣∣∣

(ˆ
Ul

|f(x)|p dµ(x)

)1/p

− |f(yl)|µ(Ul)
1/p

∣∣∣∣∣ . εαεd/p‖f‖Bsp,1 ,
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So, by taking `p-norms and using the triangle inequality in that norm, we get∣∣∣∣∣∣‖f‖p −
(

Nε∑
l=1

|f(yl)|pµ(Ul)

)1/p
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∥∥∥∥∥
(ˆ

Ul

|f(x)|p dµ(x)

)1/p
∥∥∥∥∥
`p(Nε)

−
∥∥|f(yl)|µ(Ul)

1/p
∥∥
`p(Nε)

∣∣∣∣∣∣
6

∥∥∥∥∥
(ˆ

Ul

|f(x)|p dµ(x)

)1/p

− |f(yl)|µ(Ul)
1/p

∥∥∥∥∥
`p(Nε)

. εαεd/p‖f‖Bsp,1N
1/p
ε

. εα‖f‖Bsp,1

where we have used (ii) of Lemma 2.1 in the last inequality. Then, for some
independent constant C > 0, we have(

Nε∑
l=1

|f(yl)|pµ(Ul)

)1/p

6 Cεα‖f‖Bsp,1 + ‖f‖p

and (
Nε∑
l=1

|f(yl)|pµ(Ul)

)1/p

> ‖f‖p − Cε
α‖f‖Bsp,1 .

Therefore, choosing K = 2C, we have that

1

2
‖f‖p 6

(
Nε∑
l=1

|f(yl)|pµ(Ul)

)1/p

6
3

2
‖f‖p

whenever ‖f‖Bsp,1 6 (Mεα)−1‖f‖p. Since by Lemma 2.1 we know that µ(Ul) ≈ εd,

this proves the theorem.



Chapter 3

Sampling on spaces of
homogeneous type

Compact Riemannian manifolds are part of a larger type of spaces, often used
in Harmonic Analysis. These are the spaces of homogeneous type introduced by
Coifman and Weiss [19]. This family also includes less smooth examples such as
Lipchitz domains and certain fractals sets.

The first goal of this chapter is to show how, with tools similar to those used
in the previous chapter, we can recover the same sampling inequality for Besov
functions. However, the potential lack of smoothness in the ambient space, leads
to a restriction on the smoothness index of the Besov spaces. This result is proved
in §3.2.1 and has appeared in [58].

Secondly, in the spirit of viewing the right-hand-side sampling inequality of
§3.2.1 as a trace theorem (onto a set discrete of points), we give a trace theorem
for Besov functions restricted to (another) subspace of homogeneous type. This
result is proved at the end of this chapter and its proof also relies heavily on
the wavelet decomposition and in particular the localization properties of these
systems which allow to obtain a quasi-orthogonality property between different
wavelets.

3.1 Preliminaries

3.1.1 General definitions

A quasi-metric ρ on a set X is a function ρ : X ×X → [0,∞) satisfying

— ρ(x, y) = 0 if and only if x = y,

— ρ(x, y) = ρ(y, x) for all x, y ∈ X,
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— there exists a constant A > 0 such that for all x, y, z ∈ X

ρ(x, y) 6 A(ρ(x, z) + ρ(z, y)). (3.1)

Any quasi-metric defines a topology on X for which the balls B(x, r) = {y ∈ X :
ρ(x, y) < r} form a base. Note that (3.1) forces A > 1. When A = 1 we have a
usual distance, but when A > 1 the balls need not be open.

Following the definition of Coifman and Weiss [19], a space of homogeneous type
(X, ρ, µ) is a set X endowed with a quasi-metric ρ and a non-negative Borelian
measure µ which is doubling

0 < µ(B(x, 2r)) 6 Cµ(B(x, r)) <∞, ∀x ∈ X, r > 0,

for some positive constant C.
Macias and Segovia [64] proved that it always exists an equivalent quasi-metric

ρ̃ -in the sense that Aρ(x, y) 6 ρ̃(x, y) 6 Bρ(x, y) for all x, y ∈ X- such that for
some constants d, θ,C > 0 the following are verified

C−1rd 6 µ(Bρ̃(x, r)) 6 Crd, ∀x ∈ X, 0 < r 6 diam(X), (3.2)

|ρ̃(x, y)− ρ̃(x′, y)| 6 Cρ̃(x, x′)θ(ρ̃(x, y) + ρ̃(x′, y))1−θ, ∀x, x′, y ∈ X. (3.3)

Actually, (3.3) follows from the fact that ρ̃1/θ is a distance. In particular with
this topology, balls are open sets. The constant d is often called the homogeneous
dimension, and we will refer to θ as the regularity of the space. Also, from now on
we will assume that ρ meets both (3.2) and (3.3).

Before continuing with the preliminaries, let us now provide some examples of
spaces of homogeneous type.

(i) X = Rd, ρ(x, y) =
(∑n

j=1 |xj − yj|2
)1/2

and µ equals the Lebesgue measure.

(ii) X = Rd, ρ(x, y) =
∑n

j=1 |xj − yj|αj where α1, . . . , αn are positive numbers
and µ equals the Lebesgue measure.

(iii) X is the boundary of a Lipschitz domain in Rd, ρ is the Euclidean distance
and µ is the harmonic measure.

(iv) Any C∞ compact Riemannian manifold with the Riemannian metric and
volume.

(v) Let n > 1 be an integer and d ∈ (0, n] a real number. Let E ⊂ Rn be a
closed subset such that its d-Hausdorff measure Hd(E) is finite and positive.
Suppose that Hd(E ∩ B(x, r)) ∼ rd holds for all x ∈ E. Then equipped
with the Euclidean metric and µ = Hd, E is a space of homogeneous type.
This includes several types of fractals such as Cantor sets and the Sierpiński
triangle.
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3.1.2 Wavelet expansion

As with the case of manifolds, the first step to construct a wavelet system on L2(X)
is to decompose the identity into localized operators. The difference in this case is
that, a priori, nothing ensures the existence of a self-adjoint elliptic operator and
thus we cannot rely machinery of Spectral Theory (though one could artificially
add such operators as an hypothesis [20]). Instead, the partition of unity here
is directly defined in such a way that most of the usual desirable properties are
preserved. For this part we essentially follow [21, §1.3].

Take h a smooth non-negative function with supp(h) ⊂ [0, 2b] and h(λ) = 1
for λ ∈ [c, b], where b and c are constants to be fixed later. Also, let δ ∈ (0, 1)
a constant to be fixed later. Next, for each j ∈ N we define Hj as the operator
with integral kernel δ−jdh(δ−jρ(x, y)). If 1 denotes the function that is constant
1, then (3.2) yields

Hj(1)(x) =

ˆ
X

δ−jdh(δ−jρ(x, y)) dµ(y) 6
ˆ
B(x,2bδj)

Cδ−jd dµ(y) 6 CC(2b)d,

and

Hj(1)(x) =

ˆ
X

δ−jdh(δ−jρ(x, y)) dµ(y)

>
ˆ
B(x,bδj)

δ−jd dµ(y)−
ˆ
B(x,cδj)

δ−jd dµ(y),

> C−1bd −Ccd > 1

by choosing b = min(diam(X)/δ,C1/d) and c =
1

2
min(diam(X)/δ,C−1/d). We

define then mj(x) := (Hj(1)(x))−1 for all x ∈ X. By the same reasoning we will
also have Hj(mj)(x) ≈ 1, so that wj(x) := (Hj(mj)(x))−1 is also well defined for
all x ∈ X. Let Mj and Wj the operators that consist in multiplying by mj and
wj respectively. Finally we set Sj := MjHjWjHjMj. The kernel of Sj can be then
written as

Sjf(x, y) = mj(x)mj(y)

ˆ
X

δ−jdh(δ−jρ(x, z))δ−jdh(δ−jρ(z, y))wj(z) dµ(z). (3.4)

These kernels then have the following properties.

Proposition 3.1. There exists a constant C > 0 such that the family {Sj}j verifies

— Sj(x, y) = 0 if ρ(x, y) > Cδj and |Sj(x, y)| 6 Cδ−jd for all x, y ∈ X,

— |Sj(x, y)− Sj(x′, y)| 6 Cδ−j(d+θ)ρ(x, x′)θ for all x, x′, y ∈ X,
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— Sj(x, y) = Sj(y, x) for all x, y ∈ X, and

ˆ
X

Sj(x, y) dµ(x) = 1, ∀y ∈ X.

Proof. From (3.4) and the hypothesis on the function h we have

Sjf(x, y) = mj(x)mj(y)

ˆ
B(x,2bδj)∩B(y,2bδj)

δ−jdh(δ−jρ(x, z))

× δ−jdh(δ−jρ(z, y))wj(z) dµ(z).

By the quasi-triangle inequality if z ∈ B(x, 2bδj) ∩B(y, 2bδj) then

ρ(x, y) 6 4Abδj.

Therefore, if ρ(x, y) > 4Abδj, Sj(x, y) = 0.

Since the functions h,mj, wj are uniformly bounded then (3.4) reads

|Sj(x, y)| 6 C

ˆ
B(x,2bδj)∩B(y,2bδj)

δ−2jd dµ(z) 6 C ′δ−jd,

for all x, y ∈ X.

For the second point note that, for what we have already proven, we only
need to show the inequality for ρ(x, x′) < δj. And this follows by applying the
smoothness of h and (3.3):

|Sj(x, y)− Sj(x′, y)| 6 mj(y)

ˆ
X

δ−jd
∣∣h(δ−jρ(x, z))− h(δ−jρ(x′, z))

∣∣
× δ−jdh(δ−jρ(z, y))wj(z) dµ(z)

.
ˆ
X

δ−2jdδ−j|ρ(x, z)− ρ(x′, z)| dµ(z)

.
ˆ
X

δ−2jdδ−jρ(x, x′)θ(ρ(x, z) + ρ(x′, z))1−θ dµ(z).

Finally, note that since Sj(x, y) and Sj(x
′, y) are zero when either ρ(x, y) > Cδj

or ρ(x′, y) > Cδj and we are assuming ρ(x, x′) < δj, then we may restrain the
domain of the integral above to z ∈ B(x,Cδj) ∩B(x′, Cδj). This then gives

|Sj(x, y)− Sj(x′, y)| .
ˆ
B(x,Cδj)

δ−j(2d+θ)ρ(x, x′)θ dµ(z) . δ−j(d+θ)ρ(x, x′)θ.
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Finally, for the third point, symmetry is obvious and the mean property follows
from the definition of the functions mj, wj:

ˆ
X

Sj(x, y) dµ(x) = mj(y)

ˆ
X

(ˆ
X

mj(x)δ−jdh(δ−jρ(x, z)) dµ(x)

)
× δ−jdh(δ−jρ(z, y))wj(z) dµ(z)

= mj(y)

ˆ
X

Hj(mj)(z)wj(z)δ−jdh(δ−jρ(z, y)) dµ(z)

= mj(y)

ˆ
X

δ−jdh(δ−jρ(z, y)) dµ(z) = mj(y)Hj(1)(y) = 1.

As a corollary we obtain that limj→+∞ Sj = I in the strong operator topology
on L2(X) (convergence with L2-norm for each f ∈ L2(X)). Thus, if we set D0 :=
S0 and Dj := Sj−Sj−1 for j > 1, we have that I =

∑
j∈NDj in the strong operator

topology. We can then write for any N > 0

I = I2 =
∑
j′

Dj′

∑
j

Dj =
∑

|j′−j|6N

Dj′Dj +
∑

|j−j′|>N

Dj′Dj := TN +RN .

Further we set for each j and N , DN
j :=

∑
|j′−j|6N Dj′ , so that TN =

∑
j D

N
j Dj.

The following Calderón’s identity formula has been proven in the context of more
general partitions of the unity in [43, 44].

Theorem 3.2. The operator TN converges to the identity in L2(X) as N → +∞.
In particular for N large, TN is invertible. Furthermore for such N ’s, if we set

D̃j := (TN)−1DN
j and

˜̃
Dj := DN

j (TN)−1, we then have

I =
∑
j∈N

D̃jDj =
∑
j∈N

Dj
˜̃
Dj,

in the strong operator topology on L2(X).

As before, the next step to create a wavelet frame is to decompose X in the
same way as we do with the dyadic cubes for Rd. This type of constructions on
spaces of homogeneous type have been first given by Christ [17] as a decomposition
up to sets of measure zero, and more recently in an exact from by Hytönen and
Kairema [48]. We present the later.

Theorem 3.3. Let δ > 0 be a constant such that δ 6 1
12A3 where A is the constant

of (3.1). For each j ∈ N let {xj,k}k∈Ij be a countable family of points in X maximal
with respect to the condition

ρ(xj,k, xj,k′) > δj, k 6= k′. (3.5)



42 Chapter 3. Sampling on spaces of homogeneous type

Then, there exists a countable family of measurable sets {Qj,k}k∈Ij with the prop-
erties

— for every j ∈ N
X =

⋃
k∈Ij

Qj,k,

— there are constants r0, r1 > 0 such that for all pairs (j, k)

B(xj,k, r0δ
j) ⊂ Qj,k ⊂ B(xj,k, r1δ

j), (3.6)

— if i > j then
either Qi,k′ ⊂ Qj,k or Qi,k′ ∩Qj,k = ∅. (3.7)

From now on we fix a value δ ∈ (0, 1
12A3 ] and call it the dyadic parameter of X.

Also, we set the same parameter for the construction of the operators Sj. The sets
Qj,k are called dyadic cubes and we will refer to the points xj,k as their centers. In
short, we might also refer to the set of points {xj,k}j∈N,k∈Ij as the dyadic partition.
We say that the partition is nested if {xj,k}k∈Ij ⊂ {xj+1,k}k∈Ij+1

for all j ∈ N (this
can be constructed inductively by using Zorn’s Lemma over (3.5)).

Now, from Theorem 3.2 we know that, taking N large enough, for any f ∈
L2(X)

f(x) =
∑
j∈N

ˆ
X

DN
j (x, y)Djf(y) dµ(y),

which, by doing a Riemann sum over a dyadic partition, gives the following discrete
version

f(x) ≈
∑
j∈N

∑
k∈Ij

µ(Qj,k)D
N
j (x, xj,k)Djf(xj,k). (3.8)

Actually, for the sum on the right to converge, a more refined partition is necessary:
this idea is what leads to the construction of a wavelet system on L2(X) [21, §3.5].

Theorem 3.4. Let {xj,k}j,k be a dyadic partition. There exists two families of
functions {ϕj,k}j,k, {ϕ̃j,k}j,k and a constant Cϕ > 0 such that

— (Size condition) for all j ∈ N, k ∈ Ij

ϕj,k(x) = 0 if ρ(x, xj,k) > Cϕδ
j and ‖ϕj,k‖∞ 6 Cϕ, (3.9)

and for all j ∈ N, k ∈ Ij, 0 < θ′ < θ there exists Cθ′ such that

|ϕ̃j,k(x)| 6 CϕCθ′

(
δj

δj + ρ(x, xj,k)

)d+θ′

(3.10)
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— (Smoothness condition) for all j ∈ N, k ∈ Ij

|ϕj,k(x)− ϕj,k(x′)| 6 Cϕδ
−jθρ(x, x′)θ, ∀x, x′ ∈ X, (3.11)

and for all j ∈ N, k ∈ Ij and 0 < θ′ < θ there exists Cθ′ such that

|ϕ̃j,k(x)− ϕ̃j,k(x′)| 6 CϕCθ

(
ρ(x, x′)

δj + ρ(x, xj,k)

)θ′ (
δj

δj + ρ(x, xj,k)

)d+θ′

,

if ρ(x, x′) 6 1
2A

(δj + ρ(x, xj,k)),

— (Mean zero condition) there exists jϕ ∈ N such that

ˆ
X

ϕj,k(x) dµ(x) =

ˆ
X

ϕ̃j,k(x) dµ(x) = 0, ∀j > jϕ, k ∈ Ij, (3.12)

— the families are dual in the sense that

f =
∑
j∈N

∑
k∈Ij

δ−jd〈f, ϕ̃j,k〉ϕj,k =
∑
j∈N

∑
k∈Ij

δ−jd〈f, ϕj,k〉ϕ̃j,k

holds true for any f ∈ L2(X).

From now on, write the wavelet decomposition of f ∈ L2(X) as

f =
∑
j∈N

∑
k∈Ij

qj,k(f)ϕj,k (3.13)

where
qj,k(f) := δ−jd〈f, ϕ̃j,k〉. (3.14)

Note that here, in contrast to the previous chapter, we are “normalizing” wavelets
in the L∞-norm instead of the L2-norm. The reason for this rather cosmetic
change, is that certain regularity properties we will study in the next chapter are
better described by the coefficients set as in (3.14).

As (3.8) suggest the wavelets are defined by ϕj,k(x) := δjdDj(xj,k, x), and thus
its properties come from those of the kernels Dj(x, y) (cf. Proposition 3.1). But
since (3.8) is not exact, the dual functions ϕ̃j,k cannot be set as DN

j (x, xj,k) and
instead, we have to use the inverse of the approximation operator (which is a sum
of TN and the difference with the Riemann sum). This is the reason why the
compact support property cannot be retained for the functions ϕ̃j,k and instead
we get a rapid decay around the point xj,k.

Like the wavelet system we constructed for a compact manifold, here the family
{ϕj,k}j,k is not necessarily an orthogonal system nor a tight frame. In particular
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their supports are not necessarily disjoint. However, the size condition (3.9) to-
gether with (3.6) and (3.7) imply that there exist a constant T = T (ϕ) > 0 for
which given any j ∈ Z the supports of {ϕj,k}k∈Ij have finite multiplicity T .

Lastly, let us mention that the weaker size condition for the dual family func-
tions (3.10) here also gives a similar inequality to (2.16) for manifolds. Indeed, we
have the following:

Lemma 3.5. For each j ∈ N, k ∈ Ij let φj,k(x) := δj

δj+ρ(x,xj,k)
and take N > d.

The following properties are verified

— for any 1 6 p <∞ ∥∥(φj,k)
N
∥∥
p
. δjd/p,

— for all x ∈ X ∑
k∈Ij

φj,k(x)N . 1.

Proof. Take any 1 6 p <∞, and divide X for each j, k as

X = B(xj,k, δ
j) ∪

(⋃
j′<j

B(xj,k, δ
j′) \B(xj,k, δ

j′+1)

)
.

We then write

∥∥(φj,k)
N
∥∥p
p

=

ˆ
X

(
δj

δj + ρ(x, xj,k)

)Np
dµ(x)

6
ˆ
B(xj,k,δj)

dµ(x) +
∑
j′<j

ˆ
B(xj,k,δj

′ )\B(xj,k,δj
′+1)

δjNpρ(x, xj,k)
−Np dµ(x)

. δjd

by using (3.2) (here we use the hypothesis N > d, p > 1). This proves the first
inequality. Let us now prove the second one. Fix x ∈ X. By using (3.6) and the
quasi-triangle inequality we have that

δj + ρ(x, xj,k) & δj + ρ(x, y), ∀y ∈ B(xj,k, r0δ
j).
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Next, running the sum over k ∈ Ij and using (3.7) we get

∑
k∈Ij

φj,k(x)N =
∑
k∈Ij

(
δj

δj + ρ(x, xj,k)

)N

. δ−jd
∑
k∈Ij

ˆ
B(xj,k,r0δj)

(
δj

δj + ρ(x, y)

)N
dµ(y)

6 δ−jd
ˆ
X

(
δj

δj + ρ(x, y)

)N
dµ(y) . 1,

by using the first inequality we proved.

As a simple but useful corollary from we obtain, using (3.10) with any 0 < θ′ <
θ,

‖ϕ̃j,k‖p . δjd/p, (3.15)∑
k∈Ij

ϕ̃j,k(x) . 1, ∀x ∈ X. (3.16)

for all 1 6 p <∞ and where ϕ̃j,k is any function of a dual family like in Theorem
3.4.

3.2 Besov spaces

Let us now define Besov spaces in this context. Following [47], given 1 6 p, q 6∞
and s ∈ R we will say that a function f ∈ L1

loc(X) belongs to the Besov space
Bs
p,q(X) if the norm

‖f‖Bsp,q :=

∑
j∈N

δ−jq(s−d/p)

∑
k∈Ij

|qj,k(f)|p
q/p


1/q

is finite, with the usual adaptations when p, q = ∞ and where qj,k(f) are the
coefficients defined in (3.14) and δ is the dyadic parameter as before.

This definition of Besov spaces arises from the one that can be given in terms of
the partitions of the unity Dj, see e.g. [21, 47]. Here again, other characterizations
have been given, see e.g. [69] for a definition of Besov spaces based in modulus
of continuity or [38] for a version given by an interpolation space between Lp and
an adequate Sobolev-type space. Furthermore, when s ∈ (0, θ) all this definitions
are equivalent, and thus in particular the definition of Bs

p,q is independent from
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the chosen wavelet system (we can even replace the coefficients qj,k with those of
the dual basis representation). This restriction on the regularity index s is the
main difference with the previous chapter: while now we are working with a larger
family of underlying spaces, the results apply to a smaller class of Besov spaces.

Also, from this definition, we get the following embedding

Bs
p,q1

(X) ⊂ Bs
p,q2

(X), s ∈ R, 1 6 p 6∞, 1 6 q1 6 q2 6∞, (3.17)

which then yields

Bs+ε
p,q1

(X) ⊂ Bs
p,q2

(X), s ∈ R, ε > 0, 1 6 p 6∞, 1 6 q1, q2 6∞.

And further from Littlewood-Paley theory one can obtain B0
p,1(X) = Lp(X) for

any 1 6 p 6∞. Altogether this implies that

Bs
p,1(X) ⊂ Lp(X), ∀s > 0, 1 6 p 6∞. (3.18)

The proof for any of these results can be found in e.g. [46, 47].

3.2.1 Sampling result

We now present the sampling inequality in this context.

Theorem 3.6. Let 1 6 p < ∞, and set α = max(1, d
θp

), β = 1
ln(1/δ)

max
(
p
d
, 1
θ

)
.

For every l ∈ N, fix a collection of dyadic cubes {Ql,n}n∈Il with centers {al,n}n∈Il.
Then, given 0 < ε < 1 and K > 0, there exist a constant κ = κ(p,d, θ) such

that if l > β ln
(
κK
εα

)
(ˆ

X

∣∣∣∣∣f(x)−
∑
n∈Il

f(al,n)1Ql,n(x)

∣∣∣∣∣
p

dµ(x)

)1/p

6 ε‖f‖Lp

holds true for all f ∈ Bd/p
p,1 (X) with ‖f‖

B
d/p
p,1

6 K‖f‖Lp. In particular, this implies

that

(1− ε)‖f‖Lp 6

(∑
n∈Il

|f(al,n)µ(Ql,n)|p
)1/p

6 (1 + ε)‖f‖Lp

whenever l ≥ β ln
(
κK
εα

)
and f ∈ Bd/p

p,1 (X) is such that ‖f‖
B

d/p
p,1

6 K‖f‖Lp.
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Proof. Let us first note that(ˆ
X

∣∣∣∣∣f(x)−
∑
n∈Il

f(al,n)1Ql,n(x)

∣∣∣∣∣
p

dµ(x)

)1/p

=

∥∥∥∥∥∥
(ˆ

Ql,n

|f(x)− f(al,n)|p dµ(x)

)1/p
∥∥∥∥∥∥
`pIl

(3.19)

so the Lp-norm of f(x) −
∑
n∈Il

f(al,n)1Ql,n(x) can be computed as the `p-norm of

the sequence
{
‖f − f(al,n)‖Lp(Ql,n)

}
n∈Il

.

Now, take an arbitrary n ∈ Il and consider x ∈ Ql,n. From (3.13) we may write

f(x)− f(al,n) =
∑
j∈N

∑
k∈Ij

qj,k(f)(ϕj,k(x)− ϕj,k(an,l)) (3.20)

where {ϕj,k}j,k is a wavelet system like in Theorem 3.4 and qj,k(f) are the coeffi-
cients defined in (3.14). The convergence (in the L∞ norm) of the sum on (3.20)
is assured by the computations below.

Recall that by (3.9) if ϕj,k(x) 6= 0 then ρ(x, xj,k) 6 Cϕδ
j, where {xj,k}j,k is the

associated dyadic partition. We then introduce

Ij,x := {k ∈ Ij : ρ(x, xj,k) 6 Cϕδ
j}, Ij,n,x := Ij,al,n ∪ Ij,x, Ij,n :=

⋃
x∈Ql,n

Ij,x.

First note that if k ∈ Ij,x and z ∈ Qj,k, then from (3.1) and (3.6) we get

ρ(x, z) 6 A(ρ(z, xj,k) + ρ(x, xj,k)) 6 A(Cϕ + r1)δj.

Therefore Qj,k ⊂ B(x,Cδj) with C = A(Cϕ + r1). But since the cubes Qj,k’s are
disjoint of volume ≈ δjd a measure counting argument shows that #Ij,x · δjd .
δjd, and thus Ij,x is a finite set with #Ij,x . 1 where the implicit constant is
independent from j and x.

Further, let us introduceEj,n(f) :=
(∑

k∈Ij,n |qj,k(f)|p
)1/p

. By applying Hölder’s

inequality in (3.20) we obtain

|f(x)− f(al,n)| 6
∑
j∈N

sup
k∈Ij
|ϕj,k(x)− ϕj,k(al,n)|

∑
k∈Ij,n,x

|qj,k(f)|

.
∑
j∈N

sup
k∈Ij
|ϕj,k(x)− ϕj,k(al,n)|Ej,n(f). (3.21)
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From (3.9) and (3.11) we know that

|ϕj,k(x)− ϕj,k(al,n)| 6
{

2Cϕ,
Cϕδ

−jθρ(x, al,n)θ.

The second inequality improves over the first one when δ−jρ(x, al,n) . 1. Then we
can split the sum of (3.21) in two parts to obtain

|f(x)− f(al,n)| .
∑
j6l

δ−jθρ(x, al,n)θEj,n(f) +
∑
j>l

Ej,n(f).

Next, taking the Lp-norm over Ql,n and using the triangle inequality, we get(ˆ
Ql,n

|f(x)− f(al,n)|p dµ(x)

)1/p

.
∑
j6l

δ−jθ

(ˆ
Ql,n

ρ(x, al,n)θp dµ(x)

)1/p

Ej,n(f)

+
∑
j>l

µ(Ql,n)1/pEj,n(f)

.
∑
j6l

δ−jθδl(θ+d/p)Ej,n(f) +
∑
j>l

δld/pEj,n(f)

where we used that µ(Ql,n) ⊂ B(an,l, r1δ
ld) in the last inequality. So when we take

the `p-norm over Il we have that∥∥∥∥∥∥
(ˆ

Ql,n

|f(x)− f(al,n)|p dµ(x)

)1/p
∥∥∥∥∥∥
`pIl

.
∑
j6l

δ−jθδl(θ+d/p)‖Ej,n(f)‖`pIl

+
∑
j>l

δld/p‖Ej,n(f)‖`pIl
. (3.22)

To estimate the `p norm of Ej,n(f) we write for each k ∈ Ij, Λj,k,l := {n ∈ Il :
k ∈ Ij,n}, so that

‖Ej,n(f)‖`pIl
=

(∑
n∈Il

(Ej,n(f))p

)1/p

=

∑
n∈Il

∑
k∈Ij,n

|qj,k(f)|p
1/p

=

∑
k∈Ij

∑
n∈Λj,k,l

|qj,k(f)|p
1/p

. (3.23)

The same arguments to estimate the cardinal of Ij,n,x imply that

#(Λj,k,l) .

{
δ−(l−j)d if j 6 l,
1 if j > l.



3.2. Besov spaces 49

Plugging this into (3.23) gives us

‖Ej,n(f)‖`pIl
.

 δ−(l−j)d/p
(∑

k∈Ij |qj,k(f)|p
)1/p

if j 6 l,(∑
k∈Ij |qj,k(f)|p

)1/p

if j > l,

and going back to (3.22) we obtain that∥∥∥∥∥∥
(ˆ

Ql,n

|f(x)− f(al,n)|p dµ(x)

)1/p
∥∥∥∥∥∥
`pIl

.
∑
j6l

δ−j(θ−d/p)+lθ

∑
k∈Ij

|qj,k(f)|p
1/p

+
∑
j>l

δld/p

∑
k∈Ij

|qj,k(f)|p
1/p

=: I + II. (3.24)

The second term on the right-hand-side is simply bounded by

II . δld/p‖f‖
B

d/p
p,1
. (3.25)

As for the first term, we divide the sum over j 6 l into two: j < j0 and j0 6 j 6 l,
where j0 < l is to be fixed later. We then write

I =
∑
j<j0

δlθδ−j(θ−d/p)

∑
k∈Ij

|qj,k(f)|p
1/p

+
l∑

j=j0

δlθδ−j(θ−d/p)

∑
k∈Ij

|qj,k(f)|p
1/p

=: Ia + Ib.

For the sum Ia, expanding qj,k(f) and applying Hölder’s inequality reads

Ia =
∑
j<j0

δlθδ−j(θ+d−d/p)

∑
k∈Ij

|〈f, ϕ̃j,k〉|p
1/p

6
∑
j<j0

δlθδ−j(θ+d−d/p)

∑
k∈Ij

ˆ
X

|ϕ̃j,k(x)||f(x)|p dµ(x)

×
(ˆ

X

|ϕ̃j,k(x)| dµ(x)

)p/p′)1/p

.
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Using first (3.15) and then (3.16) we then obtain

Ia .
∑
j<j0

δlθδ−j(θ+d−d/p−d/p′)

ˆ
X

∑
k∈Ij

|ϕ̃j,k(x)||f(x)|p dµ(x)

1/p

.
∑
j<j0

δ−(j−l)θ‖f‖Lp .

Running the sum over j < j0 finally gives us Ia . δ−(j0−l)θ‖f‖Lp . And for Ib we
have

Ib . δlθ
(
δ−j0(θ−d/p) + δ−l(θ−d/p)

)
‖f‖

B
d/p
p,1

. δld/p
(
δ−(j0−l)(θ−d/p) + 1

)
‖f‖

B
d/p
p,1
.

Altogether we get

I . δ−(j0−l)θ‖f‖Lp + δld/p
(
δ−(j0−l)(θ−d/p) + 1

)
‖f‖

B
d/p
p,1
. (3.26)

Adding (3.25) and (3.26) in (3.24) yields∥∥∥∥∥∥
(ˆ

Ql,n

|f(x)− f(al,n)|p dµ(x)

)1/p
∥∥∥∥∥∥
`pIl

. δ−(j0−l)θ‖f‖Lp + δld/p
(
δ−(j0−l)(θ−d/p) + 2

)
‖f‖

B
d/p
p,1
.

But as we saw at the beginning in (3.19) this is the same to say that(ˆ
X

∣∣∣∣∣f(x)−
∑
n∈Il

f(al,n)1Ql,n(x)

∣∣∣∣∣
p

dµ(x)

)1/p

. δ−(j0−l)θ‖f‖Lp + δld/p
(
δ−(j0−l)(θ−d/p) + 2

)
‖f‖

B
d/p
p,1
. (3.27)

Denote R the implicit constant in (3.27) and choose j0 := l − ln(2R/ε)
θ ln δ

so that
Rδ−(j0−l)θ 6 ε

2
.

If p > d/θ we have that Rδld/p
(
δ−(j0−l)(θ−d/p) + 2

)
6 3Rδld/p, and thus taking

l > p
d ln(1/δ)

ln

(
6R‖f‖

B
d/p
p,1

ε‖f‖Lp

)
, (3.27) reduces to

(ˆ
X

∣∣∣∣∣f(x)−
∑
n∈Il

f(al,n)1Ql,n(x)

∣∣∣∣∣
p

dµ(x)

)1/p

6 ε‖f‖Lp (3.28)
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from where the theorem follows.

If p < d/θ, then

Rδld/p
(
δ−(j0−l)(θ−d/p) + 2

)
6 2Rδld/pδ−(j0−l)(θ−d/p)

6 2Rmax

(
δlθ,
( ε

2R

)1− d
θp
δld/p

)
6
κ

2
ε1− d

θp δlθ

with κ := 4Rmax
(

1, (2R)
d
θp
−1
)

. Thus, taking l > 1
θ ln(1/δ)

ln

(
κ‖f‖

B
d/p
p,1

ε
d
θp ‖f‖Lp

)
we again

obtain (3.28).

3.2.2 Trace theorem

Let us now consider a subset Y ⊂ X such that there exist a measure µY for which
(Y, ρ|Y×Y , µY )dY ,θ is a space of homogeneous type. Remark that we are keeping
the quasi-metric ρ and thus we can take the same θ in (3.3) and the same δ of
Theorem 3.3 for both X and Y (we could have also used in Y a quasi-metric ρ̃
equivalent to ρ|Y×Y ; we choose ρ|Y×Y for simplicity). In addition, and to avoid
any confusion, in this subsection we will denote µX to the measure on X. Further
we will use dX ,dY for the dimensions of X and Y respectively.

Lastly, we will assume the dyadic partitions arsing from Theorem 3.3 in X and
Y are constructed in the following way: first for each j ∈ N we take a countable
family of points {zj,k}k∈Ij(Y ) in Y maximal with respect to the condition (3.5) in
Y ; next we extend each of this families to a family of points {zj,k}k∈Ij(X) again
maximal with respect to (3.5) in X.

For the wavelet systems we will use the notation {ψX,j,k}j∈N,k∈Ij(X) and {ψY,j′,k′}j′∈N,k′∈Ij(Y ).

With this setting we can obtain what has been called an almost orthogonal
property: we compare wavelets on Y against those on X following the ideas of a
similar result in [21] when comparing wavelets defined on the same space.

Lemma 3.7. Let jψY be the index of the mean zero property (3.12) in Y . Then

(i) For all pairs j ∈ N, k ∈ Ij(X) and j′ > jψY , k
′ ∈ Ij′(Y )∣∣〈ψX,j,k, ψY,j′,k′〉Y ∣∣ . δ|j

′−j|θ+(j+j′−j∧j′)dY ,

where j ∧ j′ := min(j, j′). When j′ < jψY we have
∣∣〈ψX,j,k, ψY,j′,k′〉Y ∣∣ .

δ(j+j′−j∧j′)dY .
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(ii) For all j ∈ N, k ∈ Ij(X) and j′ ∈ N, k′ ∈ Ij′(Y ), the sets

Ij(X, j
′, k′) := {k̃ ∈ Ij(X) : 〈ψX,j,k̃, ψY,j′,k′〉Y 6= 0},

Ij′(Y, j, k) := {k̃ ∈ Ij′(Y ) : 〈ψX,j,k, ψY,j′,k̃〉Y 6= 0},

are finite with #Ij(X, j
′, k′) . δ(j∧j′−j)dY and #Ij′(Y, j, k) . δ(j∧j′−j′)dY .

Proof. Let us begin with (i) and assume first j′ > jψY so that ψY,j′,k′ has mean
zero on Y . When j′ > j we write

〈ψX,j,k, ψY,j′,k′〉Y =

ˆ
Y

ψX,j,k(y)ψY,j′,k′(y) dµY (y)

=

ˆ
Y

(ψX,j,k(y)− ψX,j,k(zj′,k′))ψY,j′,k′(y) dµY (y).

Next, using (3.9) for ψY,j′,k′ and (3.11) for ψX,j,k we obtain

∣∣〈ψX,j,k, ψY,j′,k′〉Y ∣∣ . ˆ
BY (zj′,k′ ,Cψδ

j′ )

δ−jθρ(y, zj′,k′)
θ dµY (y)

. δ−jθδj
′θδj

′dY = δ|j
′−j|θ+(j+j′−j∧j′)dY

since j′ > j. Now consider the case j > j′ (and j′ > jψY ). Since ψX,j,k is supported
on BX(zj,k, Cψδ

j), and ψY,j′,k′ has mean zero on Y we may write

〈ψX,j,k, ψY,j′,k′〉Y =

ˆ
BX(zj,k,Cψδj)∩Y

ψX,j,k(y)ψY,j′,k′(y) dµY (y)

=

ˆ
BX(zj,k,Cψδj)∩Y

(
ψX,j,k(y)−

 
BX(zj,k,Cψδj)∩Y

ψX,j,k(z) dµY (z)

)
× ψY,j′,k′(y) dµY (y),

where we are using the notation
ffl
Q
f(z) dµY (z) = 1

µY (Q)

´
Q
f(z) dµY (z). Then, we

can repeat the argument with the function in brackets (since it also has mean zero)
to obtain:

〈ψX,j,k, ψY,j′,k′〉Y =

ˆ
BX(zj,k,Cψδj)∩Y

ψX,j,k(y)ψY,j′,k′(y) dµY (y)

=

ˆ
BX(zj,k,Cψδj)∩Y

(
ψX,j,k(y)−

 
BX(zj,k,Cψδj)∩Y

ψX,j,k(z) dµY (z)

)
× (ψY,j′,k′(y)− ψY,j′,k′(zj,k)) dµY (y).
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Using (3.9) for ψX,j,k and (3.11) for ψY,j′,k′ we obtain∣∣〈ψX,j,k, ψY,j′,k′〉Y ∣∣ . ˆ
BX(zj,k,Cψδj)∩Y

δ−j
′θρ(y, zj,k)

θ dµY (y).

AssumingBX(zj,k, Cψδ
j)∩Y 6= ∅ we can then find yj,k ∈ Y such thatBX(zj,k, Cψδ

j)∩
Y is contained in BY (yj,k, 2ACψδ

j). Thus

∣∣〈ψX,j,k, ψY,j′,k′〉Y ∣∣ . ˆ
BY (yj,k,2ACψδj)

δ−j
′θρ(y, zj,k)

θ dµY (y)

. δ−j
′θδj(dY +θ) = δ|j

′−j|θ+(j+j′−j∧j′)dY

since j > j′. The case for j′ < jψY follows by the same techniques but only using
(3.9).

We move to (ii). To begin with, note that we clearly have

Ij(X, j
′, k′) ⊂ {k ∈ Ij(X) : supp(ψX,j,k) ∩ supp(ψY,j′,k′) 6= ∅} := Ĩj(X, j

′, k′),

Ij′(Y, j, k) ⊂ {k′ ∈ Ij′(Y ) : supp(ψX,j,k) ∩ supp(ψY,j′,k′) 6= ∅} := Ĩj(X, j
′, k′),

so it suffices to estimate the sizes of Ĩj(X, j
′, k′) and Ĩj(X, j

′, k′).

Let us begin by Ĩj(X, j
′, k′) for a fixed triple j′, j ∈ N and k′ ∈ Ij′(Y ). Suppose

first j > j′. Due to (3.9), if k ∈ Ĩj(X, j
′, k′), there exists a point yj,k ∈ Y such

that ρ(yj,k, zj′,k′) . δj
′

and ρ(yj,k, zj,k) . δj. Then, as we are supposing j > j′,
there exist a universal constant C > 0 such that BY (yj,k, δ

j) ⊂ BY (zj′,k′ , Cδ
j′) and

BX(yj,k, δ
j) ⊂ BX(zj,k, Cδ

j). Since the family of balls {BX(zj,k, Cδ
j)}k∈Ij(X) has fi-

nite multiplicity, cf. (3.6) and (3.7), then so must the family {BX(yj,k, δ
j)}k∈Ĩj(X,j′,k′)

and thus also {BY (yj,k, δ
j)}k∈Ĩj(X,j′,k′). Summing over k gives us

#Ĩj(X, j
′, k′) · δjdY .

∑
k∈Ĩj(X,j′,k′)

µY (BY (yj,k, δ
j))

6
∑

k∈Ij(X,j′,k′)

µY (BY (yj,k, δ
j))

. µY
(
∪k∈Ij(X,j′,k′)BY (yj,k, δ

j)
)

6 µY (BY (zj′,k′ , Cδ
j′))

. δj
′dY ,

and thus #Ĩj(X, j
′, k′) . δ(j′−j)dY .

If j′ > j, then there exists a constant C > 0 such that for all k ∈ Ĩj(X, j′, k′),
BX(zj′,k′ , δ

j′) ⊂ BX(zj,k, Cδ
j). Which, since BX(zj,k, Cδ

j) has finite multiplicity,

reads #Ĩj(X, j
′, k′) . 1.



54 Chapter 3. Sampling on spaces of homogeneous type

To estimate the size of Ĩj′(Y, j, k) we now fix j, j′ ∈ N and k ∈ Ij(X). We

assume Ĩj′(Y, j, k) 6= ∅. Suppose first j′ > j. Since we are assuming Ĩj′(Y, j, k) 6= ∅,
then in particular there exist a point yj,k ∈ Y such that ρ(yj,k, zj,k) . δj. By (3.9)

and using the quasi-triangle inequality (3.1), for any k′ ∈ Ĩj′(Y, j, k) we have that

ρ(yj,k, zj′,k′) . ρ(zj,k, zj′,k′) + ρ(yj,k, zj,k) . δj + δj . δj.

This means that for a large enough constant C, BY (zj′,k′ , δ
j′) ⊂ BY (yj,k, Cδ

j) holds

for all k′ ∈ Ĩj′(Y, j, k). The same argument as before then yields #Ĩj′(Y, j, k) .
δ(j−j′)dY .

Finally, when j > j′ we use again the finite multiplicity argument to claim
#Ĩj′(Y, j, k) . 1.

Using this comparison we obtain our trace theorem.

Theorem 3.8. Let 1 6 p < ∞, 1 6 q 6 ∞, s ∈ R and set s′ := s − dX−dY
p

. If
0 < s′ < θ then the trace operator

Tr : Bs
p,q(X)→ Bs′

p,q(Y ), Trf = f |Y
is well defined and continuous.

Proof. In order to apply Lemma 3.7 we will have to use the following characteri-
zations of Besov norm in X and Y : for f ∈ Bs

p,q(X) we will continue to use as a
norm ∑

j∈N

δ−jq(s−dX/p)

∑
k∈Ij

|qX,j,k(f)|p
q/p


1/q

where qX,j,k(f) = δ−jd〈f, ψ̃X,j,k〉X , and ψ̃X,j,k is the dual basis. But for a function
f ∈ Bs′

p,q(Y ) we will use instead the dual coefficients, i.e. setting q̃Y,j,k(f) :=
δ−jd〈f, ψY,j,k〉Y we can use∑

j∈N

δ−jq(s
′−dY /p)

∑
k∈Ij

|q̃Y,j,k(f)|p
q/p


1/q

as a norm in Bs′
p,q(Y ). Indeed, as we mentioned in the beginning of this section

when s′ ∈ (0, θ) it has been proven that this yields an equivalent norm [21].
Now, let f ∈ Bs

p,q(X) and write the wavelet decomposition from (3.13)

〈f, ψY,j′,k′〉Y =
∑
j∈N

∑
k∈Ij(X)

qX,j,k(f) · 〈ψX,j,k, ψY,j′,k′〉Y

=
∑
j∈N

∑
k∈Ij(X,j′,k′)

qX,j,k(f) · 〈ψX,j,k, ψY,j′,k′〉Y ,
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where Ij(X, j
′, k′) is the set defined in Lemma 3.7 (ii). Next, using (i) of Lemma

3.7 we get for all j′ ∈ N, k′ ∈ I ′j(Y )

δ−j
′(s′−dY /p)|q̃Y,j′,k′(f)| .

∑
j∈N

∑
k∈Ij(X,j′,k′)

δγj,j′

×
(
δ−(j−j′)dY /pδ−j(s−dX/p)|qX,j,k(f)|

)
(3.29)

where γj,j′ := −(j′ − j)s′ + |j′ − j|θ1{j′>jψY } + (j − j ∧ j′)dY . We have also used

the identity s′ = s− dX−dY
p

. Using the estimate for the size of Ij(X, j
′, k′) we get

that∑
j∈N

∑
k∈Ij(X,j′,k′)

δγj,j′ .
∑
j∈N

δγj,j′δ(j∧j′−j)dY 6
∑
j∈N

δ
−(j′−j)s′+|j′−j|θ1{j′>jψY } . 1,

by using that s′ < θ when j′ > jψY , and s′ > 0 when j < jψY . Plugged into (3.29)
Hölder’s inequality then reads

∑
k′∈Ij′ (Y )

(
δ−j

′(s′−dY /p)|q̃Y,j′,k′(f)|
)p

.
∑

k′∈Ij′ (Y )

(∑
j∈N

∑
k∈Ij(X,j′,k′)

(δγj,j′ )1/p′

× (δγj,j′ )1/pδ−(j−j′)dY /pδ−j(s−d/p)|qX,j,k(f)|

)p

.
∑

k′∈Ij′ (Y )

∑
j∈N

δγj,j′δ−(j−j′)dY

×
∑

k∈Ij(X,j′,k′)

(
δ−j(s−dX/p)|qX,j,k(f)|

)p
Using the set Ij′(Y, j, k) defined in Lemma 3.7 (ii) together with its size estimate,
we can invert the order of summation to obtain∑

k′∈Ij′ (Y )

(
δ−j

′(s′−dY /p)|q̃Y,j′,k′(f)|
)p

.
∑
j∈N

δγj,j′pδ(j∧j′−j)dY

×
∑

k∈Ij(X)

(
δ−j(s−dX/p)|qX,j,k(f)|

)p
.

The final step to estimate the norm of f on Bs′
p,q(Y ) is to use again Hölder’s

inequality or the sub-additive property for q/p. But in order to do that we need
the following two upper bounds which we will prove after showing they imply the
result.
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Claim. For all j′ ∈ N ∑
j∈N

δγj,j′pδ(j∧j′−j)dY . 1,

and for all j ∈ N ∑
j′∈N

δγj,j′pδ(j∧j′−j)dY . 1.

Indeed, with this claim and applying Hölder’s inequality when q/p > 1 or the
sub-additive property (a+ b)q/p 6 aq/p + bq/p when q/p 6 1 we obtain

‖f‖Bs′p,q(Y ) =

∑
j′∈N

 ∑
k′∈Ij′ (Y )

(
δ−j

′(s′−dY /p)|〈f, ψY,j′,k′〉|
)pq/p


1/q

.

∑
j′∈N

∑
j∈N

δγj,j′pδ(j∧j′−j)dY
∑

k∈Ij(X)

(
δ−j(s−dX/p)|qX,j,k(f)|

)pq/p


1/q

.

∑
j′∈N

∑
j∈N

[
δγj,j′pδ(j∧j′−j)dY

](q/p∧1)

 ∑
k∈Ij(X)

(
δ−j(s−dX/p)|qX,j,k(f)|

)pq/p


1/q

.

∑
j′∈N

∑
k∈Ĩj

(
δ−j(s−dX/p)|qX,j,k(f)|

)pq/p


1/q

= ‖f‖Bsp,q(Y ),

which proves the theorem.
It remains to prove the estimates of the Claim. Let us begin with the first

sum running on j for a fixed j′. Suppose first j′ > jψY . Decomposing γj,′j and
separating the sum into cases yields∑

j∈N

δγj,j′pδ(j∧j′−j)dY =
∑
j∈N

δ[−(j′−j)s′+|j′−j|θ+(j−j∧j′)dY ]pδ(j∧j′−j)dY

=
∑
j6j′

δ(j′−j)(θ−s′)p +
∑
j>j′

δ(j−j′)(s′+θ)p < +∞

by using that s′ < θ when j 6 j′, and s′ > 0 when j > j′. When j′ < jψY , diving
the sum as before gives∑

j∈N

δγj,j′pδ(j∧j′−j)dY =
∑
j∈N

δ[−(j′−j)s′+(j−j∧j′)dY ]pδ(j∧j′−j)dY

=
∑
j6j′

δ(j−j′)s′p +
∑
j>j′

δ(j−j′)s′p.
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The second sum is the same as before. For the first one we use the bound jψY δ
−jψY s

′

which holds since s′ > 0. The estimate for the sum running on j′ for a fixed j
follows similarly.

To end this chapter let us note how, indeed, Theorem 3.8 can be viewed as a
generalization of the right-hand-side sampling inequality of Theorem 3.6. To see
this, using the notation of Theorem 3.6, take Y as the subspace of discrete points
Y := {al,n}n∈Il with the same quasi-metric ρ as in X and the weighted delta
measure µY :=

∑
n µ(Ql,n)δal,n . This does not constitute a space of homogeneous

type as we have defined them since µY does not verify (3.2) (it is, however, a
doubling measure), but we could force the definition B0

p,1(Y ) := `p(Y, µY ) so that
(3.27) in Theorem 3.6 would yield

‖f‖B0
p,1(Y ) 6 C

(
‖f‖Lp(X) + ‖f‖

B
d/p
p,1 (X)

)
for some constant C and all f ∈ Bd/p

p,1 (X). Then, from embedding results (3.18)

we know that B
d/p
p,1 (X) ⊂ Lp(X), and thus the previous inequality is equivalent to

‖f‖B0
p,1(Y ) 6 C ′‖f‖

B
d/p
p,1 (X)

,

which can be seen as a trace theorem to a subspace of dimension 0. In the notation
of Theorem 3.8 this would cover the case s = d

p
, s′ = s− d−0

p
= 0 (which cannot be

proven with the tools we used). It is thus, under this perspective, that one could
say Theorem 3.8 “extends” Theorem 3.6 to the cases of subspaces Y with positive
dimension.
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Chapter 4

Local regularity of Besov spaces

In some sense, the previous chapter showed the global regularity of traces for Besov
functions. Now we focus in their local regularity in the sense of Hölder. Specifically
we will look at the multifractal behavior of functions in the Besov space, i.e.: the
geometric distribution of their singularities.

Once again, from the pioneering work of Meyer [68] in the euclidean case,
this study can be carried out by the force of wavelets. Following the notion of
global Hölder regularity as understood in [21] one can naturally define the point-
wise Hölder exponent of regularity which then allows to develop the theory of
multifractal analysis in spaces of homogeneous type as it is done in Rd [54, 55].

4.1 Additional preliminaries

First let us stress that we will work on the same framework laid out in the first
section of the previous chapter. This is, our ambient space will be a space of
homogeneous type (X, ρ, µ) with dimension d, regularity θ and dyadic parameter
δ. Also we will use the wavelet system {ϕj,k}j,k of Theorem 3.4 and assume that
the associated dyadic partition is nested.

4.1.1 Hausdorff dimension

Before we begin the study of regularities for functions defined on X, let us intro-
duce a couple of concepts needed in multiresolution analysis. First, the Hausdorff
dimension of a subset in X. Given t > 0 the t-dimensional Hausdorff measure of
a set E ⊂ X is defined as

Ht(E) := lim
r↓0
Ht
r(E),
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where

Ht
r(E) := inf

{∑
i

diam(Ei)
t : E ⊂

⋃
i

Ei, diam(Ei) < r

}
.

Then, its Hausdorff dimension is defined as

dimHE := inf{t > 0 : Ht(E) = 0} = sup{t > 0 : Ht(E) = +∞}.

It is worth point out that, when defining Ht
r, one could consider instead smaller

families of coverings and still obtain the same dimension. Notably, one could ask
the sets Ei to be balls or dyadic cubes. Using the latter it is possible to show
that the Hausdorff dimension of a space of homogeneous type coincides with its
homogeneous dimension.

4.1.2 Hölder regularity

Let us now define Hölder regularity. Given 0 < s 6 θ we say that a function
f : X → C is s-regular, if the quantity

‖f‖Cs := sup
x 6=y

|f(x)− f(y)|
ρ(x, y)s

is finite. The set of such functions is denoted by Cs(X) and, modulo constant
functions, constitutes a Banach space with norm ‖·‖Cs . One can verify that Cs(X)
is non-trivial for any 0 < s 6 θ using the following type of constructions: let
f ∈ C1(R) with compact support, fix x0 ∈ X and set g(x) := f(ρ(x, x0)), then
(3.3) implies g ∈ Cs(X) for all 0 < s 6 θ.

Global regularity, however, can be too general and fail to describe the behavior
of a function as we move along X. Thus, we will be also interested in local
regularity. Let x ∈ X and 0 < s < θ. A function f : X → C is said to belong to
Cs(x) if there exists a constant C > 0 such that

|f(x)− f(y)| 6 Cρ(x, y)s

holds for all y in a neighborhood of x. The Hölder exponent of f at x is defined
as maximum order of regularity for x

hf (x) := sup{α : f ∈ Cα(x)}. (4.1)

This exponent may change erratically for one point to another. Thus if we want to
understand how the regularity of a function varies or which are its most significant
singularities it is more useful to look at what are called its iso-Hölder sets:

Ef (α) := {x : hf (x) = α}.
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The quantity that best captures the geometry of such sets is its Hausdorff dimen-
sion, which is called the spectrum of singularities

df (α) := dimHEf (α) = dimH{x : hf (x) = α}, (4.2)

adopting the convention dimH ∅ = −∞. The rationale of using Hausdorff measures
instead of the one provided by the ambient space (in this case µ), is that for many
of the functions f usually looked at in multifractal analysis one expects that there
is a value αf for which Ef (αf ) is a set of full measure in our space. Hence, one
tries to determine an approximate notion of a “fractal” dimension, and the best
way to do that is with Hausdorff dimension.

As we said at beginning of this chapter, the main tool we will use to study
regularity properties is the wavelet decomposition. Specifically, as it is the case
for Besov spaces, we will characterize Hölder-regularity through the wavelet coeffi-
cients qj,k(f) as defined in (3.14). Global regularity in particular can be completely
determined in this way:

Proposition 4.1 ([21]). Let f ∈ L2(X) and 0 < s < θ. If f ∈ Cs(X), there exists
a constant C = C(f, s) > 0 such that

|qj,k(f)| 6 Cδjs, ∀j, k. (4.3)

Conversely if (4.3) holds for all j, k then f ∈ Cs(X). Further, the constant C can
be written as ‖f‖Cs up to multiplication with another constant independent from
f .

Note that the condition (4.3) is equivalent to f ∈ Bs
∞,∞(X). Moreover, we

could reformulate this proposition as the equality (as Banach spaces) of Cs(X)
and Bs

∞,∞(X).

Proof. Suppose first that f ∈ Cs(X) and let j ∈ N, k ∈ Ij. When 0 6 j < jϕ,
where jϕ is as in (3.12), the right-hand-side of (4.3) is bounded from below by
Cδjϕs. Therefore, it is enough to show that qj,k(f) is uniformly bounded for 0 6
j < jϕ. And this follows from (3.15) and the Cauchy-Schwartz inequality:

|qj,k(f)| = δ−jd|〈ϕ̃j,k, f〉| 6 δ−jd‖ϕ̃j,k‖2‖f‖2 . δ−jϕd/2, ∀0 6 j < jψ.

We assume next that j > jϕ. Thus ϕ̃j,k has mean zero and we can write

〈f, ϕ̃j,k〉 =

ˆ
X

f(x)ϕ̃j,k(x) dµ(x) =

ˆ
X

(f(x)− f(xj,k))ϕ̃j,k(x) dµ(x).

Using s-Hölder regularity for f we then get

|〈f, ϕ̃j,k〉| 6 ‖f‖Cs
ˆ
X

ρ(x, xj,k)
s|ϕ̃j,k(x)| dµ(x). (4.4)
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The size condition (3.10) for ϕ̃j,k(x) with any θ′ ∈ (s, θ) reads

ρ(x, xj,k)
s|ϕ̃j,k(x)| . ρ(x, xj,k)

s

(
δj

δj + ρ(x, xj,k)

)d+θ′

. ρ(x, xj,k)
s

(
δj

δj + ρ(x, xj,k)

)s(
δj

δj + ρ(x, xj,k)

)d+θ′−s

.

(
δjρ(x, xj,k)

ρ(x, xj,k)

)s(
δj

δj + ρ(x, xj,k)

)d+θ′−s

. δjs
(

δj

δj + ρ(x, xj,k)

)d+θ′−s

.

This, plugged into (4.4) and applying the first estimation of Lemma 3.5 reads

|〈f, ϕ̃j,k〉| . ‖f‖Csδ
js

ˆ
X

(
δj

δj + ρ(x, xj,k)

)d+θ′−s

dµ(x) . ‖f‖Csδ
j(s+d)

and hence |qj,k(f)| =
∣∣δ−jd〈f, ϕ̃j,k〉∣∣ . ‖f‖Csδjs.

Suppose now that (4.3) holds for all j, k. For each j ∈ N define fj :=∑
k∈Ij qj,k(f)ϕj,k. Since the supports of the collection {ϕj,k}k∈Ij have finite multi-

plicity T , the size condition (3.9) gives for all x ∈ X

|fj(x)| 6
∑
k∈Ij

|qj,k(f)ϕj,k(x)| 6 CϕCδ
js
∑
k∈Ij

1supp(ϕj,k)(x) (4.5)

6 CϕCTδ
js.

Then using (4.3) we get that

∑
j∈N

|fj(x)| 6 TCϕC
∑
j∈N

δsj = TCϕC(1− δs)−1, for all x ∈ X.

This means that
∑

j fj converges in L∞. Further, as we know from (3.13) that

f =
∑

j fj in L2, then f =
∑

j fj also in L∞.

Now take x, y ∈ X different and set m ∈ Z such that δm+1 6 ρ(x, y) < δm. We
then divide the sum as f =

∑
j6m fj +

∑
j>m fj.

Let us start estimating the first sum. If m < 0, this sum is 0 so we assume
that m > 0 (that is ρ(x, y) 6 δ). For each j 6 m we apply (4.3) the smoothness
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condition (3.11) to get

|fj(x)− fj(y)| 6
∑
k∈Ij

|qj,k(f)||ϕj,k(x)− ϕj,k(y)|

6 CδjsCϕδ
−jθρ(x, y)θ

∑
k∈Ij

1supp(ϕj,k)(x) + 1supp(ϕj,k)(y)


6 2CϕCTρ(x, y)θδj(s−θ).

Running the sum over all j 6 m we then have∑
j6m

|fj(x)− fj(y)| 6 2CϕCTρ(x, y)θ
∑
j6m

δj(s−θ)

6 2CϕCTρ(x, y)θ
(
δ(m+1)(s−θ) − 1

δs−θ − 1

)
6 2CϕCT (δs−θ − 1)−1ρ(x, y)θδ(m+1)(s−θ)

6 2CϕCTδ
s−θ(δs−θ − 1)−1ρ(x, y)s (4.6)

since s < θ and ρ(x, y) < δm. Of course, the bound (4.6) is also valid when m < 0
as the left-hand-side is 0.

For j > m we just use again (4.5):∑
j>m

|fj(x)− fj(y)| 6 2CϕCT
∑
j>m

δjs

6 2CϕCT (1− δs)δ(m+1)s

6 2CϕCT (1− δs)ρ(x, y)s

since δm+1 6 ρ(x, y).
Altogether, this implies that there exist a constant K, independent from f ,

such that
|f(x)− f(y)|
ρ(x, y)s

6 K,

holds for all x 6= y.

For local regularity however, the situation is not so straightforward. Imitating a
result from Jaffard [53] in Rd, the equivalent to Proposition 4.1 for local regularity
would be as follows:

Proposition 4.2. Let 0 < s < s0 < θ and x0 ∈ X. Let f be a square summable
function in Cs(X) ∩ Cs0(x0). Then

|qj,k(f)| . (δj + ρ(x0, xj,k))
s0 , (4.7)
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where the implicit constant is independent from j and k. Reciprocally, if f ∈ Cs(X)
and (4.7) holds for all j, k then f ∈ Cs0ln (x0), i.e.

|f(x)− f(x0)| . ln ρ(x, x0)

ln δ
ρ(x, x0)s0 (4.8)

for all x in a neighborhood of x0; and in particular, f ∈ Cs′(x0) for any s′ < s0.

Before proceeding to the proof of the proposition, for technical reasons, it is
useful to find a reformulation of (4.7) that looks closer to (4.3). To that end, we
reproduce the notion of wavelet leaders introduced by Jaffard in the euclidean case
[55]. Let f ∈ L1

loc(X) and j ∈ N, k ∈ Ij. The wavelet coefficient leader of f at
(j, k) is defined as

Dj,kf := sup{|qj′,k′(f)| : Qj′,k′ ⊂MQj,k}

with M := 3A2(r1 + 1), using the notation MQj,k = {Mx : x ∈ Qj,k} and where
A is the constant from (3.1) and r1 the one from (3.6). Note that if Qj′,k′ ⊂MQj,k

then, by (3.6), there must exist a constant c > 0 (depending on M, r0, r1 and X)
such that j′ > j − c.

Given x ∈ X we denote Djf(x) for the coefficientDj,kf where k ∈ Ij is uniquely
determined by x ∈ Qj,k.

Proposition 4.3. For any square summable function f , x0 ∈ X and 0 < s0 < θ
the following are equivalent:

(i) |qj,k(f)| . (δj + ρ(x0, xj,k))
s0 holds for all j, k,

(ii) Djf(x0) . δjs0 holds for all j, with the implicit constant independent of j.

Proof. Let us begin by proving that (i) implies (ii). Let j ∈ N and take k ∈ Ij
such that x0 ∈ Qj,k. Further, let j0 and k0 with Qj0,k0 ⊂ MQj,k. Then (i) implies
that

|qj0,k0(f)| . (δj0s0 + ρ(x0, xj0,k0))s0 . (4.9)

Since Qj0,k0 ⊂MQj,k then, by using the quasi-triangle inequality (3.1), we get

ρ(x0, xj0,k0) . ρ(x0, xj,k) + ρ(xj0,k0 , xj,k) . δj,

which plugged into (4.9) yields |qj0,k0(f)| . (δj0 +δj)s0 . Finally, as noted, j0 > j−c
must hold whenever Qj0,k0 ⊂MQj,k, and thus |qj0,k0(f)| . δjs0 . Since the implicit
constants are independent from j0, k0 (or even j) we obtain Djf(x0) . δjs0 .

We now prove the converse implication. Consider a pair j, k. If x0 ∈ MQj,k

then by construction

|qj,k(f)| 6 Djf(x0) . δjs0 6 (δj + ρ(x0, xj,k))
s0 .
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If not, the inclusions of (3.6) imply that ρ(x0, xj,k) > Mr0δ
j > r0δ

j. In this case,
let j0 6 j be such that r0δ

j0+1 6 ρ(x0, xj,k) < r0δ
j0 and let k0 ∈ Ij0 be such

that x0 ∈ Qj0,k0 . The quasi-triangle inequality (3.1) and (3.6) again yield, for all
x ∈ Qj,k,

ρ(x, xj0,k0) 6 A(ρ(x0, xj0,k0) + ρ(x0, x))

6 A(r0δ
j0 + A(ρ(x0, xj,k) + ρ(x, xj,k)))

6 A(r0δ
j0 + A(r0δ

j0 + r1δ
j)) 6 3A2r1δ

j0

and thus Qj,k ⊂MQj0,k0 since M = 3A2(r1 + 1). Altogether

|qj,k(f)| 6 Dj0(x0) . δj0s0 . ρ(x0, xj,k)
s0 6 (δj + ρ(x0, xj,k))

s0 ,

which is what we wanted to show.

We are now ready to prove Proposition 4.2.

Proof of Proposition 4.2. Let us first assume that f ∈ Cs(X) ∩ Cs0(x0). For 0 6
j < jϕ we use the same argument as in the proof of Proposition 4.1: the right-hand-
side of (4.7) is bounded from below by δjϕs0 and the left-hand-side is uniformly
bounded by Cauchy-Schwartz.

For j > jϕ we use the fact that ϕ̃j,k has mean zero:

qj,k(f) = δ−jd〈ϕ̃j,k, f〉 = δ−jd
ˆ
X

ϕ̃j,k(x)f(x) dµ(x)

= δ−jd
ˆ
X

ϕ̃j,k(x)(f(x)− f(x0)) dµ(x).

Since f ∈ Cs(X) ∩ Cs0(x0) and s < s0, there exists a positive constant C = C(f)
such that |f(x)− f(x0)| 6 Cρ(x, x0)s0 for all x ∈ X. Combined with the quasi-
triangle inequality this gives us

|qj,k(f)| 6 δ−jd
ˆ
X

|ϕ̃j,k(x)||f(x)− f(x0)| dµ(x)

. δ−jd
ˆ
X

|ϕ̃j,k(x)|ρ(x, x0)s0 dµ(x)

. δ−jd
ˆ
X

(ρ(x, xj,k) + ρ(x0, xj,k))
s0|ϕ̃j,k(x)| dµ(x).
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As in the proof of Proposition 4.1, we may write

(ρ(x, xj,k) + ρ(x0, xj,k))
s0|ϕ̃j,k(x)|

.

(
[ρ(x, xj,k) + ρ(x0, xj,k)]δ

j

δj + ρ(x, xj,k)

)s0 ( δj

δj + ρ(x, xj,k)

)d+θ′−s0

.

(
δjρ(x, xj,k)

δj + ρ(x, xj,k)
+

δjρ(x0, xj,k)

δj + ρ(x, xj,k)

)s0 ( δj

δj + ρ(x, xj,k)

)d+θ′−s0

.

(
δjρ(x, xj,k)

ρ(x, xj,k)
+
δjρ(x0, xj,k)

δj

)s0 ( δj

δj + ρ(x, xj,k)

)d+θ′−s0

. (δj + ρ(x0, xj,k))
s0

(
δj

δj + ρ(x, xj,k)

)d+θ′−s0
.

The estimation (3.15) finally implies

δ−jd
ˆ
X

(ρ(x, xj,k) + ρ(x0, xj,k))
s0|ϕ̃j,k(x)| dµ(x) . (δj + ρ(x0, xj,k))

s0 ,

which then yields (4.7).
We assume now that f ∈ Cs(X) and that (4.7) holds for all j, k. Let x ∈

B(x0, 1), take j0 such that δj0+1 6 ρ(x, x0) < δj0 and set j1 := b j0s0
s
c. Next, as in

Proposition 4.1, we write f as f =
∑

j fj where fj :=
∑

k qj,k(f)ϕj,k. Further, we
divide the sum over j as

|f(x)− f(x0)| 6
∑
j6j0

|fj(x)− fj(x0)|+
∑

j0<j6j1

(|fj(x)|+ |fj(x0)|) + 2
∑
j>j1

‖fj‖∞

:= S1 + S2 + S3.

Let us begin with the estimation of S1. Using the smoothness condition (3.11)
for ϕj,k and the property (4.7) we get

|fj(x)− fj(x0)| 6
∑
k∈Ij

|qj,k(f)||ϕj,k(x)− ϕj,k(x0)|

.
∑
k∈Ij

(δj + ρ(x0, xj,k))
s0δ−jθρ(x, x0)s0

(
1supp(ϕj,k)(x) + 1supp(ϕj,k)(x0)

)
.

If x0 ∈ supp(ϕj,k) then ρ(x0, xj,k) . δj. If x ∈ supp(ϕj,k) then the quasi-triangle
inequality reads ρ(x0, xj,k) . δj+ρ(x, x0). Thus, in any case, as δj > δj0 > ρ(x, x0),
we obtain ρ(x0, xj,k) . δj. Plugged into the previous inequality this gives us

|fj(x)− fj(x0)| .
∑
k∈Ij

δj(s0−θ)ρ(x, x0)s0
(
1supp(ϕj,k)(x) + 1supp(ϕj,k)(x0)

)
. δj(s0−θ)ρ(x, x0)s0
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by the finite multiplicity property of the supports of {ϕj,k}k∈Ij . Finally, since
s0 < θ and δj0 6 1

δ
ρ(x, x0), we have

S1 =
∑
j6j0

|fj(x)− fj(x0)| . δj0(s0−θ)ρ(x, x0)θ . ρ(x, x0)s0 .

We now estimate S2. Using the size condition (3.9) we get, for all j0 < j 6 j1,

|fj(x)| .
∑
k∈Ij

(δj + ρ(x0, xj,k))
s0
(
1supp(ϕj,k)(x) + 1supp(ϕj,k)(x0)

)
.

Reasoning as for S1, but noticing that this time we are taking j > j0, we get
that δj + ρ(x0, xj,k) . δj0 whenever either x or x0 are in the support of ϕj,k.
Thus |fj(x)| . δj0s0 . ρ(x, x0)s0 for any j0 < j 6 j1. Counting terms we get

j1 − j0 6 (s0/s− 1)j0 .
ln ρ(x,x0)

ln δ
, so that S2 .

ln ρ(x,x0)
ln δ

ρ(x, x0)s0 .

Finally we estimate S3. Here we use the hypothesis f ∈ Cs(X) by applying
Proposition 4.1 which, together with the inequality (3.15), gives |fj(x)| . δjs and
then we get S3 .

∑
j>j1

δjs . δj1s . ρ(x, x0)s0 .

4.2 Regularity of Besov functions

We are now ready to prove the upper bound on the spectrum of singularities for
Besov functions in this context. This is the counterpart to the result proven in Rd

[54].

Theorem 4.4. Let 1 6 p <∞ and d/p < s < d/p+ θ. Then for all f ∈ Bs
p,∞(X)

and all s − d/p 6 α < θ, the spectrum of singularities df (α) as defined in (4.2)
satisfies

df (α) 6 min(d,d + (α− s)p).

And df (α) = −∞ if α < s− d/p.

Although we stated the theorem for Bs
p,q with q =∞, let us remark that from

(3.17) this can be extended to any 1 6 q <∞.

Since the proof relies heavily on Proposition 4.2, we will need to prove that
functions in our Besov space have at least some global regularity. In other words,
we are looking at a Sobolev-type embedding theorem in this context:

Lemma 4.5. Bs
p,∞(X) is embedded into Cs−d/p(X) whenever d/p < s < d/p + θ

with 0 < p 6∞.
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Proof. By definition if f ∈ Bs
p,∞(X) then∑

k∈Ij

|qj,k(f)|p
1/p

6 ‖f‖Bsp,∞δ
j(s−d/p)

holds for all j. In particular |qj,k(f)| 6 ‖f‖Bsp,∞δ
j(s−d/p) for all j, k, which by

Proposition 4.1 implies the result.

Proof of Theorem 4.4. First note that since d/p < s < d/p+ θ and f ∈ Bs
p,∞(X),

Lemma 4.5 effectively reads f ∈ Cs−d/p(X). Therefore df (α) = −∞ whenever
α < s− d/p. Secondly note that if α > s then min(d,d + (α − s)p) = d and the
theorem follows from the fact that the Haussdorff dimension of X is d.

Thus we can suppose that s− d/p 6 α < s. Let ε > 0 and define

Eα+ε := {x : f /∈ Cα+ε(x)}.

By definition (4.1), {x : hf (x) = α} ⊂ Eα+ε. Hence, from (4.2), we have

df (α) = dimH{x : hf (x) = α} 6 dimHE
α+ε. (4.10)

We will show that dimHE
α+ε 6 d + (α− s)p+ o(ε), and then the theorem follows

by making ε→ 0.
Now, let x ∈ Eα+ε. Since f has at least some global Hölder regularity, by using

the contrapositive statement of Proposition 4.2, we know that (4.7) cannot hold
with exponent α+2ε at x. Equivalently by Proposition 4.3 this means that for any
constant C > 0 there exists j such that Djf(x) > Cδj(α+2ε). Thus, in particular,
for any j0 there must exist j > j0 such that Djf(x) > δj(α+2ε). We define for each
j

Iα+2ε
j :=

{
k ∈ Ij : Dj,kf > δj(α+2ε)

}
,

and then set

Sα+2ε
j :=

⋃
k∈Iα+2ε

j

Qj,k,

Sα+2ε := lim sup
j

Sα+2ε
j =

⋂
j0

⋃
j>j0

Sα+2ε
j .

Therefore, with this notation, Eα+ε ⊂ Sα+2ε. In particular

dimHE
α+ε 6 dimH S

α+2ε. (4.11)

To estimate the Hausdorff dimension of Sα+2ε let us estimate the size of Iα+2ε
j . By

definition, for each wavelet leader Dj,k there exist j′, k′ such that Qj′,k′ ⊂ MQj,k
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and |qj′,k′(f)| > 1
2
Dj,k. Remember that in such case j′ > j − c for some constant

c > 0. Altogether this implies

#Iα+2ε
j 6

∑
j′>j−c

#

{
k′ ∈ Ij′ : |qj′,k′(f)| > 1

2
δj(α+2ε)

}
. (4.12)

Additionally, as f ∈ Bs
p,∞, for any j′ ∈ N we have that∑

k′∈Ij′

|qj′,k′(f)|p . δj
′(s−d/p)p,

which yields

#

{
k′ ∈ Ij′ : |qj′,k′(f)| > 1

2
δj(α+2ε)

}
. δj

′(sp−d)δ−j(αp+2εp).

Plugging this into the right-hand-side of (4.12) we get

#Iα+2ε
j .

∑
j′>j−c

δj
′(sp−d)δ−j(αp+2εp) . δj(sp−d−αp−2εp).

Finally we cover each Sα+2ε
j with the cubes Qj,k -which, by (3.6), have diameter

6 2r1δ
j. Thus, given an arbitrary t > 0, we have for all j ∈ N

Ht(Sα+2ε
j ) 6 Ht

2r1δj
(Sα+2ε

j ) 6
∑

k∈Iα+2ε
j

diam(Qj,k)
t . δjtδj(sp−d−αp−2εp). (4.13)

From Sα+2ε = lim supj S
α+2ε
j we know that, for any t > 0,Ht(Sα+2ε) 6

∑
j>j0
Ht(Sα+2ε

j ).
And thus, choosing t = tε := d− sp+ αp+ 3εp in (4.13) we get

Htε(Sα+2ε) .
∑
j>j0

δjtεδj(sp−d−αp−2εp) . δj0εp,

for any j0 ∈ N. Making j0 → +∞ then yieldsHtε(Sα+2ε) = 0. Which, by definition
of the Hausdorff dimension, reads dimH(Sα+2ε) 6 tε = d− sp+αp+ 3εp. Plugged
into (4.11), we obtain

dimHE
α+ε 6 d− sp+ αp+ 3εp.

As ε > 0 is arbitrary, the result then follows from (4.10).
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Chapter 5

Sampling on spiraling curves

The following chapter has appeared in [59].

5.1 Introduction

5.1.1 The mobile sampling problem

In this article, we consider the reconstruction of a compactly supported function
from samples of its Fourier transform taken along certain curves, that we call
spiraling. This problem is relevant, for example, in magnetic resonance imaging
(MRI), where the anatomy and physiology of a person are captured by moving
sensors.

The Fourier sampling problem is equivalent to the sampling problem for ban-
dlimited functions - that is, functions whose Fourier transform are supported on
a given compact set. The most classical setting concerns functions of one real
variable with Fourier transform supported on the unit interval [−1/2, 1/2], and
sampled on a grid ηZ, with η > 0. The sampling rate η determines whether every
bandlimited function can be reconstructed from its samples: reconstruction fails
if η > 1 and succeeds if η 6 1 [87]. The transition value η = 1 is known as the
Nyquist sampling rate, and it is the benchmark for all sampling schemes: modern
sampling strategies that exploit the particular structure of a certain class of signals
are praised because they achieve sub-Nyquist sampling rates.

The sampling theory for bandlimited functions extends to high dimension and
irregular sampling geometries [8, 24, 60], and it is instrumental in the analysis
of sampling schemes arising from continuous curves [7]. The key notion is the
Beurling density of a set, which measures the average number of samples per unit
volume.

Beurling’s density, however, does not properly reflect the acquisition cost when
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samples are taken along continuous trajectories. In this case, a more relevant
metric is the average length covered by a curve, as a proxy for scanning times
[13, 16, 79, 85, 86]. For example, when sampling a function bandlimited to a
compact set Ω ⊂ R2 along equispaced parallel lines with direction ~v ∈ S1,

L~v,η = {t~v + ηk~v⊥ : t ∈ R, k ∈ Z},

the critical sampling rate is dictated by the separation between lines η > 0, and
by the measure of the maximal cross section of Ω by hyperplanes perpendicular
to ~v [85, 86]. With the introduction of an adequate notion of path-density, similar
results hold also for arbitrary families of parallel lines [42].

The analysis of general sampling trajectories in terms of length and density is
very subtle and challenging, and little can be said in full generality [42]. Never-
theless, a solution to the mobile sampling problem is expected to be possible for
concrete parametric families of curves.

5.1.2 Necessary and sufficient recovery guarantees for spi-
raling curves

A first contribution of this article is to give sharp necessary and sufficient conditions
for Fourier sampling for a parametric family of curves, that we call spiraling. The
main examples of these curves are the Archimedes spiral

Aη := {(ηθ cos 2πθ, ηθ sin 2πθ) : θ > 0} (5.1)

and the collection of concentric circles

Oη := {(x, y) : x2 + y2 = η2k2, k ∈ N}, (5.2)

see Figure 5.1.
We identify the precise Nyquist rate of these curves in terms of the density

parameter η. To be specific, we say that Γ, the image of a curve, is a Fourier
sampling trajectory for Ω - or a sampling trajectory for the Paley-Wiener space
PW 2(Ω) - if the following continuous sampling inequality holds:

A‖f‖2
2 6

ˆ
Γ

∣∣∣f̂(ξ)
∣∣∣2 dH1(ξ) 6 B‖f‖2

2, f ∈ L2(Ω), (5.3)

where A,B > 0 are stability constants, and H1 is the one dimensional Hausdorff
(length) measure (see [56, 73]). Equivalently, Γ is a sampling trajectory if it
contains a discrete sampling set (see Section 5.1.4).

Our first result reads as follows.
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η η

Figure 5.1: Archimedes spiral (left) and concentric circles (right) with separation
η.

Theorem A. Let Ω ⊂ R2 be a convex centered symmetric body.

(i) If diam(Ω)η < 1, then the Archimedes spiral Aη and the collection of con-
centric circles Oη are sampling trajectories for PW 2(Ω).

(ii) If diam(Ω)η > 1, then neither the Archimedes spiral Aη nor the collection of
concentric circles Oη are sampling trajectories for PW 2(Ω).

Part (i) in Theorem A is due to Benedetto and Wu in the context of pointwise
sampling [7]. Our contribution is mainly in (ii).

5.1.3 Sampling compressible signals below the Nyquist rate

Having identified the Nyquist rate of spiraling curves, we look into undersampling.
Modern sampling schemes exploit the fact that many signals of interest are highly
compressible, and this information is leveraged to sample below the Nyquist rate.
For example, functions defined on the unit square, and obeying a variation bound

F(W ) := {f ∈ L2([−1/2, 1/2]2) : var(f) 6 W}

are compactly represented in a wavelet basis. Here, the resolution parameter W
essentially controls the number of active wavelet coefficients [18, 23].

The stability of sampling schemes restricted to such signals is expressed by the
inverse condition number

inf

{∥∥∥f̂ − ĝ∥∥∥
L2(µΓ)

: f, g ∈ F(W ), ‖f − g‖2 = ε

}
,

See (5.24) for the definition of var(f).
In standard terminology, the condition number of the sampling problem f |Γ 7→ f is related

to the reciprocal of this quantity.
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where µΓ := H1|Γ is the arc-measure, which measures the extent to which the dis-
tance between two signals is exhibited by their Fourier samples. Since, ε−1F(W ) =
F(ε−1W ), and F(W ) ⊂ F(W ) − F(W ) ⊂ F(2W ), the analysis of the condition
number for small ε reduces to the large W asymptotics of the stability margin:

A(Γ,F(W )) := inf

{∥∥∥f̂∥∥∥
L2(µΓ)

: ‖f‖2 = 1, f ∈ F(W )

}
.

According to Theorem A, the critical value for the reconstruction of functions
defined on the unit square with either Aη or Oη is η =

√
2/2. We consider spirals

with density slightly under the critical value and prove the following.

Theorem B. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and Γ = Aη or Γ = Oη. Then
for W > 0,

A(Γ,F(W )) 6 C(εW )−1/2(ln2(εW ) + 1),

where C > 0 is a universal constant.

Theorem B thus sets a limit to the capacity of spirals to acquire all compressible
signals below the Nyquist rate. Informally, it says that when undersampling by a
small factor (1− ε), one can only recover functions up to resolution W ≈ ε−1 with
a stable condition number.

A variant of Theorem B can be formulated in terms of the Haar wavelet. Let
ΣN,J be the class of functions on [−1/2, 1/2]2 with N non-zero Haar coefficients,
all of them taken with scale at most J . We have the following estimate.

Theorem C. Let W > 1, η = (1 + ε)
√

2/2 with ε ∈ (0, 1) and Γ = Aη or Γ = Oη.
Then for N > 1,

A(Γ,ΣN,J) 6 CN−1/6ε−1 ln4(CN),

where J = C ln(ε−1N) and C > 0 is a universal constant.

Informally, Theorem C says that when undersampling by a small factor (1−ε),
one can recover at most N ≈ ε−6 Haar coefficients with a stable condition number.

Theorem C complements related results that limit the wavelet-sparsity of dis-
crete signals that can be sampled on unions of parallel lines [10]. Let us mention
that the sparsity model ΣN,J is rather crude. Modern results in sparse recovery
exploit the fine multiscale structure of the wavelet coefficients of natural signals
[4].

The same fundamental stability restrictions expressed by Theorems C and D
also apply to any posssible discretization of the continuous sampling trajectories –
see Theorem D below.
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5.1.4 Overview

The problem of sampling the Fourier transform of a compactly supported function
is equivalent to the sampling problem for the Paley-Wiener space of bandlimited
functions. We make essential use of Beurling’s sampling theory. The sufficient
sampling condition in Theorem A follows from Beurling’s gap covering Theorem
[8], as done in [7]. The necessary condition in Theorem A is more challenging:
little of the ample literature on necessary conditions for sampling [6, 28, 30, 31,
51, 52, 60, 61, 71] is applicable to sampling on curves, because the new relevant
metric (length) is fundamentally different from the one corresponding to pointwise
sampling (cardinality) [42].

Our main results show that spirals behave qualitatively like unions of parallel
lines. While the analysis of sampling on parallel lines is based on periodization
arguments [85, 86] and cross sections of the Fourier spectrum [42], in order to treat
spirals, we develop approximate versions of those tools. The main observation
is that an adequate sequence of translates of a spiral converges to a union of
parallel lines, locally in the Hausdorff metric. This allows us to apply Beurling’s
characterization of sampling in terms of weak limits [8, 9, 78].

In order to apply weak-limit techniques to curves, we first need to connect
pointwise and continuous sampling. We provide a variation of a result from Ortega-
Cerdà on sampling measures [73], and show that, under mild regularity assump-
tions, the continuous sampling inequality (5.3) is equivalent to the existence of a
sampling set contained in the sampling trajectory Γ - see Section 5.3.1 for precise
definitions.

Theorem D. Let Γ ⊂ Rd be a regular trajectory, and Ω ⊂ Rd bounded with
positive measure. Then Γ is a sampling trajectory for PW 2(Ω) if and only if there
exists a discrete set Λ ⊂ Γ that is a sampling set for PW 2(Ω).

Theorem D shows that two common formulations of the mobile sampling prob-
lem are equivalent [85, 86]. As a further consequence of Theorem D, the sampling
relation (5.3) also expresses the stability of a vast collection of sampling schemes,
where functions are sampled on finite portions of the sampling trajectory Γ, and
are reconstructed within a precisely described numerical accuracy [1, 2, 82, 83],
and leads to well-understood truncation errors [51, 52] and implementation strate-
gies [32, 40, 33, 88]. Moreover, any sufficiently dense set Λ ⊂ Γ is an adequate
discretization - cf. Remark 5.17.

As a second step we show that spirals suffer from approximate aliasing. Alias-
ing is the name given in signal processing to the artifacts produced by sampling
on a lattice below the Nyquist rate. Aliasing is also the most obvious obstruction
to subsampling compressible signals, and, heuristically, the success of sub-Nyquist
sampling schemes relies on the fact that they avoid regular patterns [14, 62]. We
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quantify the rate of converge of spirals to parallel lines and derive approximate
aliasing for the curves Aη (5.1) and Oη (5.2). As a consequence we obtain an upper
bound on the stability margin for the reconstruction of functions of bounded vari-
ation (Theorem B) or of functions that have few active Haar coefficients (Theorem
C). These results underscore the need for a certain level of randomness in struc-
tured sampling [12] and for refined multiscale models [3, 4] that apply to generic
signals.

This article is organized as follows: in Section 2 we review standard notions
from sampling theory and provide preliminary results; in Section 3 we derive
the characterization of sampling trajectories (Theorem D) and introduce spiraling
curves; in Section 4 we give necessary and sufficient conditions for sampling on spi-
raling curves, and prove Theorem A; in Section 5 quantify the rate of convergence
of spirals to collections of parallel lines and explore consequences on approximate
aliasing; and in Section 6 we prove the results on sub-Nyquist sampling, Theorems
B and C.

5.2 Preliminaries on pointwise sampling

5.2.1 Notation

Throughout this paper, we will adopt the following notation: on Rd, |·| and 〈·, ·〉
are the usual Euclidean norm and scalar product. For sets we will use diamE =
supx,y∈E |x− y|, dist(E,F ) = infx∈E,y∈F |x− y|. The balls are denoted byBr(x) :=
{y ∈ Rd : |y − x| < r}. For points on R2 we will use the notation x = (x1, x2),

and additionally, vectors on S1 will be written as ~d, ~l, and if ~d = (x1, x2) we set
~d⊥ = (−x2, x1). Clockwise rotations in R2 will be denoted by R2πθ with θ ∈ [0, 1)
and where 2πθ is the angle of rotation. Unless otherwise stated, measures on Rd

are assumed to take values in [0,+∞].

Throughout the paper, for A,B ∈ R, A . B means that there exists a constant
C > 0 independent from A and B such that A 6 CB. For functions (or measures)
f, g, f . g means that f(x) 6 Cg(x) for all x where f and g are defined. Further,
A � B, means A . B . A (and the same for functions or measures). When
we want to particularly stress the dependence of the implicit constant C on other
factors we may write instead Cp, Cγ, CΩ,p, . . . .

5.2.2 Convex bodies

A set Ω ⊂ Rd is called a convex body if it is convex, compact and has non-empty
interior. A convex body is called centered if 0 ∈ Ω◦ and symmetric if Ω = −Ω. We
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will frequently use the fact that, for a convex centered symmetric body Ω,

Ω ⊂ (1 + ε)Ω◦ and (1− ε)Ω ⊂ Ω◦, ε ∈ (0, 1). (5.4)

5.2.3 Paley-Wiener spaces

Let us begin by recalling the definition of the standard function spaces involved in
sampling theorems. Here and thereafter we will consider the normalized version
of the Fourier transform:

f̂(ξ) =

ˆ
Rd

e−2πiξ·xf(x) dx

for f : Rd → R integrable. The Fourier transform is then extended to Schwartz
distributions in the usual way.

Definition 5.1. Let Ω ⊂ Rd be a compact set of positive measure and 1 6 p 6∞.
We define PW p(Ω) as the subset of Lp(Rd) consisting of Fourier transforms of
distributions supported in Ω.

The classical Paley-Wiener space corresponds to p = 2, while p = ∞ yields
the Bernstein space. This latter space models possibly non-decaying bandlimited
signals, although it has some disadvantages for signal processing, such as lack of
invariance under the Hilbert transform. (A remedy to some of these obstacles has
been proposed in [63].)

Functions in Bernstein spaces are entire functions of exponential type, as follows
from the direct side of Paley-Wiener’s Theorem [80, Theorem 4.9]:

Proposition 5.2. Given a convex centered symmetric body Ω ⊂ Rd and 1 6 p 6
∞, there exists a constant c > 0 depending only on Ω such that every f ∈ PW p(Ω)
can be extended to an entire function with

|f(x+ iy)| . ec|y|, x, y ∈ Rd.

Functions of exponential type enjoy the following norm control of their analytic
extensions on horizontal lines.

Proposition 5.3. Let f be an entire function in Cd with |f(x+ iy)| 6Mec|y| for
all x, y ∈ Rd and where M, c > 0 are constants. If f(x) ∈ Lp(Rd) with 1 6 p 6∞
then for all y ∈ Rd,(ˆ

Rd

|f(x+ iy)|p dx

)1/p

6 ec|y|
(ˆ

Rd

|f(x)|p dx

)1/p

with the usual modifications when p =∞.

For 1 6 p < ∞, Proposition 5.3 is referred as the Plancharel-Pólya inequality
and for p =∞ as the Phragmén–Lindelöf principle; see, e.g., [80, Lemma 4.3 and
4.11].
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5.2.4 Sampling sets and Beurling’s gap theorem

A set Λ ⊂ Rd is said to be sampling for PW p(Ω) if

‖f‖p � ‖f‖`p(Λ), f ∈ PW p(Ω),

where ‖f‖`p(Λ) =
(∑

λ∈Λ |f(λ)|p
)1/p

, if p <∞, and ‖f‖`∞(Λ) = supλ∈Λ |f(λ)|.
A set Λ ⊂ Rd is separated if its separation

inf
λ,λ′∈Λ,λ 6=λ′

|λ− λ′|

is positive, and it is relatively dense if its gap (or hole)

gap(Λ) := sup
x∈Rd

inf
λ∈Λ
|x− λ|

is finite.
The most effective sufficient condition for sampling bandlimited functions in

high dimension is formulated in terms of gaps, and is due to Beurling [8, 9] - see
also [7, 72].

Theorem 5.4. Let Λ ⊂ Rd and R > 0. If gap(Λ) < 1/(2R) then Λ is a sampling
set for PW∞(B̄R/2(0)).

The value 1/(2R) in Theorem 5.4 is critical in the sense that there exists a set
Λ with gap(Λ) = 1/(2R) that is not sampling for the spectrum B̄R/2(0). On the
other hand, as examples of Theorem 5.4 we note that

gap(Aη) = gap(Oη) = η/2, (5.5)

see e.g. [7, Example 2], and hence these sets are sampling for PW∞(B̄R/2(0))
whenever ηR < 1.

While Theorem 5.4 applies to arbitrary sets, sometimes it is convenient to work
with separated sets. We state without proof the following elementary lemma.

Lemma 5.5. Let Λ ⊂ Rd, and R > gap(Λ). Then there exists a separated set
Λ′ ⊂ Λ such that gap(Λ′) 6 R.

5.2.5 Sampling with different norms

The following classical result shows that the sampling problems associated with
PW 2 and PW∞ are almost equivalent. See [72, Theorem 2.1] for a simple proof.

Theorem 5.6. Let Λ ⊂ Rd be a separated set, Ω ⊂ Rd a compact set of positive
measure and ε > 0.
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(i) If Λ is sampling for PW 2(Ω + B̄ε(0)) then it is sampling for PW∞(Ω).

(ii) If Λ is sampling for PW∞(Ω + B̄ε(0)) then it is sampling for PW 2(Ω).

As an application, we obtain the following corollary for convex bodies.

Corollary 5.7. Let Λ ⊂ Rd be a separated set, Ω ⊂ Rd a convex centered sym-
metric body and ε ∈ (0, 1).

(i) If Λ is sampling for PW 2(Ω), then it is sampling for PW∞((1− ε)Ω).

(ii) If Λ is sampling for PW∞(Ω), then it is sampling for PW 2((1− ε)Ω).

Proof. By (5.4), (1− ε)Ω ⊂ Ω◦. Since Ω is compact, this implies that

dist((1− ε)Ω, (Ω◦)c) > ε′,

and, therefore, (1− ε)Ω + B̄ε′(0) ⊂ Ω. The conclusions now follow from Theorem
5.6.

5.2.6 Characterization of sampling with weak limits

Definition 5.8. A set Λ ⊂ Rd is called a set of uniqueness for PW p(Ω) if f ∈
PW p(Ω) with f |Λ = 0 implies f ≡ 0.

Sampling sets are sets of uniqueness. The converse is not true, but it is a re-
markable insight due to Beurling, that it is still possible to characterize a sampling
set through the uniqueness of what are called its weak limits.

Definition 5.9. Let Λ ⊂ Rd be a closed set and let {Λn}n>1 be a sequence of
closed sets. Then we say that {Λn}n>1 converges weakly to Λ if for all R, ε > 0
there exist nR,ε such that

Λn ∩ (−R,R)d ⊂ Λ +Bε(0),

Λ ∩ (−R,R)d ⊂ Λn +Bε(0),

hold for all n > nR,ε. In this case we write Λn
w−→ Λ.

Weak convergence can also be formulated in terms of the Hausdorff distance
between two sets X, Y ⊂ Rd:

dH(X, Y ) := inf {ε > 0 : X ⊂ Y +Bε(0), Y ⊂ X +Bε(0)} .

Indeed, Λn
w−→ Λ if and only if for all x ∈ Rd and R > 0

dH
(
(Λn ∩ B̄R(x)) ∪ ∂BR(x), (Λ ∩BR(x)) ∪ ∂BR(x)

)
.
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(To appreciate the role of the boundary of the ball in the last equation, consider
the following example in dimension d = 1: Λn := {1 + 1/n}, Λ := {1} and
BR(x) = (0, 1).)

The type of weak limits that are needed to characterize sampling sets are those
resulting from translates. We will denote the set of weak limits of translates of Λ
by W (Λ). Hence, Λ′ ∈ W (Λ) if and only if there exists a sequence {xn}n∈N ⊂ Rd

such that Λ + xn
w−→ Λ′.

Theorem 5.10 (Beurling, [9, Theorem 3, pg. 345]). Let Ω ⊂ Rd be a convex
centered symmetric body and let Λ ⊂ Rd. Then Λ is a sampling set for PW∞(Ω)
if and only if for all weak limits Λ′ ∈ W (Λ), Λ′ is a set of uniqueness for PW∞(Ω).

We will use the following compactness result. See, e.g., [41, Section 4] for
proofs.

Lemma 5.11. Let Λ ⊂ Rd be a separated set and {xn}n>1 ⊂ Rd. Then there exist
a subsequence {xnk}k>1 and a separated set Λ′ ⊂ Rd such that Λ + xnk

w−→ Λ′.

5.2.7 Sampling measures

A Borel measure µ on Rd is said to be sampling for PW p(Ω) if

‖f‖p � ‖f‖Lp(µ), f ∈ PW p(Ω),

where ‖f‖Lp(µ) = (
´
Rd |f(x)|p dµ)1/p if 1 6 p <∞, and ‖f‖L∞(µ) = ess supµ|f |.

Viewed in this way, a set Λ is sampling when the associated point measure
δΛ :=

∑
λ∈Λ δλ is a sampling measure. Let us first notice that sampling measures

are uniformly bounded:

Lemma 5.12. Let Ω ⊂ Rd be a convex centered symmetric body and 1 6 p <∞.
Let µ be a sampling measure for PW p(Ω). Then, for all R > 0, supx∈Rd µ(BR(x)) <
∞.

Proof. First note that it is enough to construct f0 ∈ PW p(Ω) such that |f0| &
χ(−R,R)d , where the implied constant may depend on R. Indeed, once f0 is given, we

define fx(t) := f0(t− x) and note that f̂x(ξ) = e−2πixξf̂0(ξ) so that fx ∈ PW p(Ω).
Moreover, since µ is sampling and 1 6 p <∞, we get

µ(BR(x)) 6 µ((x−R, x+R)d) . ‖fx‖pLp(µ) � ‖fx‖
p
p = ‖f0‖pp.

Next, to construct f0, we take ε > 0 such that (−ε, ε)d ⊂ Ω. If we find
ϕ ∈ PW p(−ε, ε) such that, for every R, |ϕ| & χ(−R,R) then f0(x1, . . . , xd) =
ϕ(x1)× · · · × ϕ(xd) will do.
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Now let ψ := χ(−ε/2,ε/2) ∗ χ(−ε/2,ε/2) so that
— ψ has support (−ε, ε);

— ψ = ϕ̂0 where ϕ0(t) =

(
sin(πεx)

πx

)2

; hence, in particular, ϕ0 ∈ PW p(−ε, ε);

— ϕ0 is continuous, nonnegative, and ϕ0(x) = 0 if and only if x = k/ε,
k ∈ Z \ {0}.

Finally, we set ϕ(x) := ϕ0(x)+ϕ0(x+1/2ε). Then ϕ is a continuous function in
PW p(−ε, ε) that never vanishes. This means that, for every R > 0, ϕ & χ(−R,R).
The proof is thus complete.

We now show that for any sampling measure we can extract a weighted sam-
pling set. The argument mirrors that of [73] for functions on the Bargmann-Fock
space.

Theorem 5.13. Let Ω ⊂ Rd be a convex centered symmetric body, 1 6 p < ∞
and µ a Borelian measure in Rd. Let r > 0 and {Qr

n}n a (measurable) covering
of Rd with finite multiplicity and supn diamQr

n 6 r, and set µ∗r :=
∑

n µ(Qr
n)δarn

where arn ∈ Qr
n are arbitrary points.

Then there exists a constant CΩ,p > 0 such that µ is sampling for PW p(Ω) if
and only if µ∗r is sampling for PW p(Ω) when r < CΩ,p.

Remark 5.14. Note that, in any case, supx∈Rd µ(BR(x)) <∞ holds for all R > 0.
Indeed, if µ is sampling for PW p(Ω), this is Lemma 5.12. On the other hand, if µ∗r
is sampling for PW p(Ω), Lemma 5.12 applied to µ∗r reads supx∈Rd µ∗r(BR(x)) <∞
for all R > 0, and thus

µ(Bρ(x)) 6
∑

Qrn∩Bρ(x) 6=∅

µ(Qr
n) 6 µ∗r(Bρ+r(x)) 6 Cρ,r, ∀ρ > 0, x ∈ Rd,

since {Qr
n}n is a covering with supn diamQr

n 6 r.

Proof of Theorem 5.13. Let f ∈ PW p(Ω). First note that since {Qr
n}n is a cover-

ing of Rd of finite multiplicity thenˆ
Rd

|f(x)|p dµ(x) �
∑
n

ˆ
Qrn

|f(x)|p dµ(x). (5.6)

It follows that, µ is sampling ifˆ
Rd

|f(x)|p dx �
∑
n

ˆ
Qrn

|f(x)|p dµ(x), (5.7)

and by definition µ∗r is sampling ifˆ
Rd

|f(x)|p dx �
∑
n

|f(arn)|pµ(Qr
n). (5.8)
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Next, using the inequality (a+ b)p 6 2p−1(ap + bp) in each Qr
n, we see that

∑
n

ˆ
Qrn

|f(x)|p dµ(x) 6 2p−1
∑
n

ˆ
Qrn

|f(x)− f(arn)|p + |f(arn)|p dµ(x)

. I(r) +
∑
n

|f(arn)|pµ(Qr
n)

where I(r) :=
∑

n

´
Qrn
|f(x)− f(arn)|p dµ(x). Similarly,

∑
n

|f(arn)|pµ(Qr
n) =

∑
n

ˆ
Qrn

|f(arn)|p dµ(x)

6 2p−1
∑
n

ˆ
Qrn

|f(x)− f(arn)|p + |f(x)|p dµ(x)

. I(r) +
∑
n

ˆ
Qrn

|f(x)|p dµ(x).

Hence, to prove that (5.7) and (5.8) are equivalent for some small value of r it
is enough to show that I(r) is also sufficiently small. Precisely, we will now show
that there exists a function φ(r) with φ(r) →

r→0
0 such that

I(r) 6 φ(r)

ˆ
Rd

|f(x)|p dx. (5.9)

We proceed to prove (5.9). Since f ∈ PW p(Ω) then, by Proposition 5.2, it has a
complex extension f(x+ iy) which is an entire function of exponential type (with
constants depending on Ω). Hence, in particular, f is harmonic on Cd and satisfies
the mean value theorem that we can write in the form of f = f ∗ 1

|B1(0)|χB1(0)

(convolution is in Cd). Further, iterating this formula, we get f = f ∗ ϕ with
ϕ = 1

|B1(0)|χB1(0) ∗ · · · ∗ 1
|B1(0)|χB1(0). Finally, notice that if we iterate sufficiently

many times, ϕ is a compactly supported function of class C1. Thus, for each n and
x ∈ Qr

n we may write

|f(x)− f(arn)|p = |(f ∗ ϕ)(x)− (f ∗ ϕ)(arn)|p

6

(ˆ
R2d

|f(y + iz)(ϕ(x− y − iz)− ϕ(arn − y − iz)| dy dz

)p
.

Let r0 > 0 be such that supp(ϕ) ⊂ Br0(0). Since |x− arn| 6 diamQr
n 6 r and both

x and arn are real, then the function ϕ(x − y − iz) − ϕ(arn − y − iz) is supported
in Ar(x) := {y + iz ∈ Cd : |y − x| < r + r0, |z| < r0}. Together with Hölder’s
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inequality, this gives us

|f(x)− f(arn)|p 6 ‖ϕ(x− · − i·)− ϕ(arn − · − i·)‖
p

Lp′ (Ar(x))

×
ˆ
Ar(x)

|f(y + iz)|p dy dz,

where 1/p′+ 1/p = 1. We bound ‖ϕ(x− · − i·)− ϕ(arn − · − i·)‖
p

Lp′ (Ar(x))
by using

the fact that ϕ ∈ C1
c and then applying the Mean Value Theorem

|ϕ(x− y − iz)− ϕ(arn − y − iz)| 6 r‖∇ϕ‖∞,

which holds for all y + iz ∈ Cd. Therefore

‖ϕ(x− ·, ·)− ϕ(arn − ·, ·)‖
p

Lp′ (Ar(x))
. rp|Ar(x)|p/p

′

. rp(r + r0)dp/p
′
r
dp/p′

0 =: φ(r).

Running the sum over all n we get

I(r) =
∑
n

ˆ
Qrn

|f(x)− f(arn)|p dµ(x)

6 φ(r)
∑
n

ˆ
Qrn

ˆ
Ar(x)

|f(y + iz)|p dy dz dµ(x)

. φ(r)

ˆ
Rd

ˆ
Ar(x)

|f(y + iz)|p dy dz dµ(x)

= φ(r)

ˆ
Rd

ˆ
|z|<r0

ˆ
|x−y|<r+r0

|f(y + iz)|p dy dz dµ(x).

since {Qr
n}n has finite multiplicity. Tonelli’s theorem then implies

I(r) . φ(r)

ˆ
Rd

ˆ
|z|<r0

ˆ
|x−y|<r+r0

dµ(x)|f(y + iz)|p dz dy

. φ(r)

ˆ
Rd

ˆ
|z|<r0

|f(y + iz)|p dz dy

since supx∈Rd µ(Br+r0(x)) < ∞ (cf. Remark 5.14). Finally applying Proposition
5.3 we get

I(r) . φ(r)

ˆ
Rd

|f(x)|p dx.

Eventually multiplying φ(r) by constants, this gives (5.9).
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Remark 5.15. Note that the only impediment to extend Theorem 5.13 to the
case p = ∞ is Remark 5.14 (which does not apply for p = ∞). However, if we
suppose in addition that supx∈Rd µ(BR(x)) <∞ for some R > 0 (which is a weaker
condition to the conclusion of Remark 5.14) then we get back the result of Theorem
5.13.

5.3 Sampling trajectories and spiraling curves

5.3.1 Sampling trajectories

A curve is a measurable map γ : R → Rd (which we do not require to be contin-
uous). A trajectory Γ is the image of a curve: Γ := γ(R). The restriction of the
one-dimensional Hausdorff measure to Γ is denoted µΓ := H1

Γ. A trajectory Γ is
called regular if there exists r0 > 0 such that for all r 6 r0 there is a constant
cr > 0 for which

inf
x∈Γ

µΓ(Br(x)) > cr, (5.10)

and

sup
x∈Rd

µΓ(Br0(x)) < +∞. (5.11)

A trajectory Γ is called a sampling trajectory for PW p(Ω) if µΓ is a sampling
measure, i.e.,

‖f‖pp �
ˆ

Γ

|f(x)|p dH1(x), f ∈ PW p(Ω),

with the usual modification for p =∞.

5.3.2 Characterization of sampling trajectories

Using the general result we proved for sampling measures, Theorem 5.13, we can
show how to extract a sampling set from a sampling trajectory. This is Theorem
D presented in the Introduction and that we recall here for the convenience of the
reader:

Theorem D. Let Γ ⊂ Rd be a regular trajectory, Ω ⊂ Rd bounded with positive
measure. Then Γ is a sampling trajectory for PW 2(Ω) if and only if there exists
Λ ⊂ Γ that is a sampling set for PW 2(Ω). Moreover, Λ can always be chosen to
be separated.

Remark 5.16. Although the statement concerns PW 2, we remark that the follow-
ing proof is still valid for any PW p with 1 6 p 6∞.



5.3. Sampling trajectories and spiraling curves 85

Proof. Due to Theorem 5.13 it is enough to show that there exists a separated
set Λ ⊂ Γ such that its point measure δΛ =

∑
λ∈Λ δλ is equivalent to µ∗r =∑

n µΓ(Qr
n)δarn where arn ∈ Qr

n and {Qr
n}n is a covering of finite multiplicity of

Rd with supn diamQr
n < r, and r is small enough. Moreover, in this case we can

discard those Qn which do not meet Γ (since µΓ(Qn) = 0 when Qn ∩ Γ = ∅), and
just consider coverings of Γ.

Given r > 0, let {arn}n ⊂ Γ be maximal with respect to |arn − arm| > r, n 6= m.
Hence, the family {Br(a

r
n)}n is a covering of Γ with finite multiplicity (the covering

number being bounded by 4d). Next, set µ∗r :=
∑

n µΓ(Br(a
r
n))δarn and Λr := {arn}n.

Let r0 be the constant (related to Γ) in (5.10). Taking r < r0 reads µΓ(Br(a
r
n)) > cr

for all n, and therefore µ∗r &
∑

n δarn = δΛr . On the other hand, when r < r0 the
condition (5.11) reads supn µ(Br(a

r
n)) < ∞ so that also µ∗r . δΛr . In sum for all

r < r0 we can construct a finite multiplicity r-covering {Qr
n}n together with a

separated set Λr such that µ∗r =
∑

λ∈Λr
µΓ(Qr

n)δλ �
∑

λ∈Λr
δλ = δΛr .

Remark 5.17. The proof of Theorem D shows that if Γ is a sampling trajectory,
then any separated and sufficiently dense Λ ⊂ Γ is sampling for PW 2(Ω).

Theorem D shows the equivalence of two possible models for the mobile sam-
pling problem [42, 85, 86]. As a consequence, sampling trajectories lead to concrete
reconstruction strategies and numerical implementations, where a finite set of sam-
ples is used, and reconstruction is achieved within a precise numerical accuracy
[1, 2, 32, 82, 83, 88].

5.3.3 Spiraling curves

Let us now describe precisely what we mean by a spiraling trajectory. The prop-
erties we list below have been chosen so that several natural sampling strategies
are covered. Concentric circles and the Archimedes spiral will be shown to satisfy
these properties (see Proposition 5.19). Other examples are depicted in Figure 5.3.

A regular trajectory Γ is called spiraling if the following conditions hold:

(i) (Escape cone). There exist α ∈ (0, 1/4) and β ∈ (0, 1) such that the portion
of Γ contained in the cone

Sα,β := {(ρ cos 2πθ, ρ sin 2πθ) : ρ > 0, β − α 6 θ 6 β + α} (5.12)

can be parametrized in polar coordinates as

γ(θ) = (ρ(θ) cos 2πθ, ρ(θ) sin 2πθ) (5.13)

with θ ∈
⋃
k∈N[k+β−α, k+β+α] and where ρ(θ) is a non negative function

of class C2 in each interval. In particular, this means that, inside the escape
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cone, each piece of the trajectory {γ(θ) : θ ∈ [k + β − α, k + β + α]}, joins
one of the boundary lines of the cone to the other one.

We denote by ~l = (cos 2πβ, sin 2πβ) the bisector vector of the escape cone.

Every piece of the trajectory in the escape cone intersects the half-line R+
~l

once.

(ii) (Asymptotic radial monotonicity). There exists kρ such that for any θ ∈
[β − α, β + α] the sequence ρ(θ + k) is strictly increasing for k > kρ.

In particular, inside the escape cone, two different pieces of the trajectory,
{γ(θ) : θ ∈ [k+β−α, k+β+α]} and {γ(θ) : θ ∈ [l+β−α, l+β+α]} with
l 6= k and l, k > kρ, do not intersect.

(iii) (Asymptotic flatness). The curvature of γ(θ), denoted by κ(θ), tends to 0 as
θ → +∞, i.e. for all ε > 0 there exists kε ∈ N such that κ(θ) < ε whenever
θ ∈ [k + β − α, k + β + α] with k > kε.

(iv) (Asymptotic equispacing). There are two parameters η, ρ0 > 0 such that the
sequence ηk = ρ(k + β) has the property

lim
k
ηk − ηk = ρ0.

(v) (Asymptotic velocity). There exists a direction ~d ∈ S1 non-collinear with ~l
such that

lim
k→+∞

γ′(k + β)

|γ′(k + β)|
= ~d.

The number τ := η

√
1− 〈~l, ~d〉

2
is called the asymptotic separation of Γ. For

short, we say that Γ is a spiraling trajectory with asymptotic velocity ~d and asymp-
totic separation τ . Note that those parameters may not be unique.

Remark 5.18. The class of spiraling curves is invariant under rotations. Indeed,
if we rotate a spiraling curve by angle of 2πθ0 with θ0 ∈ [0, 1) then the resulting
curve is spiraling with parametrization in the escape cone with β̃ = β − θ0, α̃ = α,
and

γ̃(θ) = (ρ̃(θ) cos 2πθ, ρ̃(θ) sin 2πθ), θ ∈
⋃
k

[k + β̃ − α, k + β̃ + α],

where ρ̃(θ) = ρ(θ + θ0). The rotated curve has asymptotic velocity R2πθ0
~d, while

the parameters of asymptotic equispacing η, ρ0 and the asymptotic separation τ
remain unaltered.
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Sα,β

η2

η3

β

α

~d

Figure 5.2: Sketch of an spiraling curve.

Further, spiraling curves are also invariant under some reasonable smooth per-
turbations of the escape cone. More precisely, let us first assume that β = 0 so
that the escape cone is Sα,0 and let f : Sα,0 → Sα′,0 be a C2 one-to-one function.
Assume the following:

(i) f((ρ cos 2πα,±ρ sin 2πα)) = (ρ cos 2πα′,±ρ sin 2πα′), i.e. f sends the bound-
ary of Sα,0 to the boundary of Sα′,0.

(ii) f(x1, 0) = (ϕ(x1), 0) for an asymptotically affine function ϕ : R → R, that
is, ϕ(x1)− (ax1 + b)→ 0 when x1 → +∞ for some constants a > 0, b > 0.

(iii) If ρ : [−2πα, 2πα] → [0,+∞) then the curve f((ρ(θ) cos 2πθ, ρ(θ) sin θ)) ad-
mits a parametrization in polar coordinates (ρ̃(θ) cos 2πθ, ρ̃(θ) sin 2πθ) with
ρ̃ : [−2πα′, 2πα′]→ [0,+∞).

Note that, as f is one-to-one, sends the bisector on itself and it behaves
asymptotically like the increasing linear function ax1 + b in (x1, 0), f asymp-
totically preserves radial monotonicity.

(iv) The Jacobian of f is uniformly bounded from above and below, i.e. there
exist A,B > 0 such that A|y| 6 |Jxf(y)| 6 B|y| for all x ∈ Sα,0, y ∈ R2.

Moreover J(x1,0)f →M when x1 → +∞, and M~d 6= (1, 0).

(v) The Hessian of f goes to 0 when x→∞, i.e. Hxf → 0 when |x| → +∞.

Then, if Γ is a spiraling trajectory with asymptotic velocity ~d and asymptotic
equispacing η, f(Γ) is a spiraling trajectory with asymptotic equispacing aη and
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Figure 5.3: A spiraling curve based on a set of parallel lines in a sector (left) and
a spiraling curve made of concentric squares (right).

asymptotic velocity M~d

|M~d| . As a consequence, we have for example that, combining

these smooth perturbations with rotations, spiraling curves are invariant by any
linear invertible transformation in R2.

5.3.4 Examples of spiraling curves

Proposition 5.19. Let η > 0. Then, the Archimedes spiral Aη and the union
of circles Oη are spiraling trajectories with asymptotic separation η. Further, any
~d ∈ S1 can be taken as the asymptotic velocity.

Proof. Step 1 (Regularity). We show first that Aη and Oη are regular trajectories
in the sense of § 5.3.1. We define ρ1(θ) := ηθ, ρ2(θ) :=

∑
k∈N ηkχ[k,k+1)(θ) so that

Aη = {(ρ1(θ) cos 2πθ, ρ1(θ) sin 2πθ) : θ > 0},
Oη = {(ρ2(θ) cos 2πθ, ρ2(θ) sin 2πθ) : θ > 0}.

Let us begin by proving that (5.10) holds for Aη. Take r ∈ (0, 1) and x ∈ Aη
and assume initially that |x| 6 r/2. Then

µ(Br(x)) > µ(Br/2(0)) =

ˆ r/2η

0

√
ρ′1(θ)2 + (2πρ1(θ))2 dθ

>
ˆ r/2η

0

2πρ1(θ) dθ = πr2/4η2.

For |x| > r/2, we proceed as follows. Let y ∈ Br(x) ∩ Aη and write

x = (ρ1(θ0) cos 2πθ0, ρ1(θ0) sin 2πθ0), θ0 > 0,

y = (ρ1(θ) cos 2πθ, ρ1(θ) sin 2πθ), θ > 0.
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Therefore,

|x− y| 6 |ρ1(θ0) cos 2πθ0 − ρ1(θ) cos 2πθ|+ |ρ1(θ0) sin 2πθ0 − ρ1(θ) sin 2πθ|
6 |ρ1(θ0)|(|cos 2πθ0 − cos 2πθ|+ |sin 2πθ0 − sin 2πθ|)

+ |ρ1(θ0)− ρ1(θ)|(|cos 2πθ|+ |sin 2πθ|)
6 (η + 4πρ1(θ0))|θ0 − θ|

by the Mean Value Theorem. Let us set r0 := r
η+4πρ1(θ0)

, so that |θ0 − θ| 6 r0

implies |x− y| < r. This allows us to bound the arc-length of Br(x) ∩ Aη from
below by

µ(Br(x)) >
ˆ θ0+r0

θ0−r0

√
ρ′1(θ)2 + (2πρ1(θ))2 dθ

>
ˆ θ0+r0

θ0−r0
2πρ1(θ) dθ = 4ηπθ0r0

&
ρ1(θ0)

1 + ρ1(θ0)
r =

|x|
1 + |x|

r >
r2

2 + r
>
r2

3

since |x| > r/2, and r ∈ (0, 1). In conclusion, for every r < 1 and every x,
µ(Br(x)) & r2.

The argument for Oη is similar, this time replacing ρ1(θ) with ρ2(θ). We now
show (5.11), beginning again with case of Aη. Note first that it is enough to bound
µAη(Br(x)) uniformly for x ∈ Aη, and some r > 0. Indeed, since gap(Aη) = η/2,
for every y ∈ R2, there exists x ∈ Aη such that Br(y) ⊂ Br+η/2(x). In addition,
any ball of radius R > r can be covered with (2R/r + 2)2 balls of radius r (by
taking a covering {Br(an)}n maximal with respect to |an − am| > r as in the proof
of Theorem D).

Let x = (ρ1(θ0) cos 2πθ0, ρ1(θ0) sin 2πθ0) and let r := min{η/100, 1}. If |x| 6
100 we simply bound

µAη(Br(x)) 6 µAη(B101(0)).

Let us assume then |x| > 100. We claim that

Br(x) ∩ Aη ⊂ {(ρ1(θ) cos 2πθ, ρ1(θ) sin 2πθ) : θ ∈ (θ0 − 1/|x|, θ0 + 1/|x|)}. (5.14)

Indeed, if y = (ρ1(θ) cos 2πθ, ρ1(θ) sin 2πθ) ∈ Br(x) ∩ Aη,

η|θ0 − θ| = |ρ1(x)− ρ1(y)| = ||y| − |x|| 6 |x− y| < r 6 η/100,

and therefore |θ0 − θ| 6 1/100. Secondly, since |x− y| < r, a clockwise rotation
by the angle of y gives

|x− y| =
√
|ρ1(θ0) cos 2π(θ0 − θ)− ρ1(θ)|2 + |ρ1(θ0) sin 2π(θ0 − θ)|2 < r,
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and in particular |ρ1(θ0) sin 2π(θ0 − θ)| = |x||sin 2π(θ0 − θ)| < r 6 1. Using the
bound |sin 2π(θ − θ0)| > |θ − θ0| - valid for |θ − θ0| 6 1/100, we conclude that

|θ0 − θ| 6 |sin 2π(θ − θ0)| 6 |x|−1,

and (5.14) follows. Now we can estimate,

µAη(Br(x)) 6
ˆ θ0+1/|x|

θ0−1/|x|

√
ρ′1(θ)2 + (2πρ1(θ))2 dθ

6
ˆ θ0+1/|x|

θ0−1/|x|
ρ′1(θ) + 2πρ1(θ) dθ =

ˆ θ0+1/π|x|

θ0−1/π|x|
η + 2πηθ dθ

6
2η

|x|
+

4πηθ0

|x|
. 1.

Since |x| > 100 and ηθ0 = |x|. The proof for Oη follows similarly.

Step 2 (The other conditions). We choose ~d ∈ S1 and verify that Aη and Oη satisfy

the conditions of §5.3.3 with asymptotic velocity ~d. Write ~d = (− sin 2πθ0, cos 2πθ0)

with θ0 ∈ [0, 1), and β = 2πθ0. Thus ~l = ~d⊥ = (cos 2πθ0, sin 2πθ0).
We start with Aη. For the escape cone (5.12), we choose any α ∈ (0, 1/4), and

parametrize the portion of the curve inside the cone with γ = γAη as in (5.13),
and using the function ρ1(θ) = ηθ restricted to each [k+ θ0−α, k+ θ0 +α], k ∈ N.
Then ρ1(θ) is strictly increasing and in particular the monotonicity condition is
satisfied. Also, the curvature

κAη(θ) =
2 + (2πθ)2

η(1 + (2πθ)2)3/2

converges to 0 as θ →∞. Hence, the asymptotic flatness condition holds. For the
asymptotic equispacing condition, we let ρ0 := ηθ0 and simply note that

ρ1(k + β) = ρ1(k + θ0) = η(k + θ0) = ηk + ρ0,

for all k ∈ N, so there is nothing to prove. Finally, we check that ~d is the asymptotic
velocity:

lim
k

γ′Aη(k + β)

|γ′Aη(k + β)|
= lim

k

γ′Aη(k + θ0)

|γ′Aη(k + θ0)|

= lim
k

ρ′1(k + θ0)(cos 2πθ0, sin 2πθ0) + 2πρ1(k + θ0)(− sin 2πθ0, cos 2πθ0)√
ρ′1(k + θ0)2 + (2πρ1(k + θ0))2

= lim
k

(cos 2πθ0, sin 2πθ0) + 2π(k + θ0)(− sin 2πθ0, cos 2πθ0)√
1 + 2π(k + θ0)2

= (− sin 2πθ0, cos 2πθ0) = ~d.
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We now consider Oη. Since this curve is rotation invariant, we may assume that
~d = (0, 1) and ~l = (1, 0). The escape cone (5.12) is then parametrized with
β = 0 and any α ∈ (0, 1/4) by ρ2(θ) =

∑
k ηkχ[k−α,k+α](θ)χ[k,k+1)(θ). There-

fore, the function ρ2(θ + k) is increasing for any θ ∈ [−α, α] and κOη(θ) =∑
k

1
ηk
χ[k−α,k+α](θ)χ[k,k+1)(θ). This yields the monotonicity and asymptotic flat-

ness conditions. The asymptotic equispacing condition it is also verified with
ρ0 = 0 because ρ2(k) = ηk for all k ∈ Z. Lastly, we calculate the asymptotic
velocity:

lim
k

γ′Oη(k)

|γ′Oη(k)|
= lim

k

ρ′2(k)(1, 0) + 2πρ2(k)(0, 1)√
ρ′2(k)2 + (2πρ2(k))2

= lim
k

2πk(0, 1)

2πk
= (0, 1) = ~d.

In summation both the Archimedes spiral and the union of circles are spiraling
curves for any asymptotic velocity.

5.3.5 Bessel bounds

The following Bessel bounds follow from [56, Theorem 3.2].

Proposition 5.20. Let Γ be either the spiral Aη or the concentric circles Oη.
Then, there exists an independent constant C > 0 such that for all 1 6 p 6 ∞,
R > 0 and f ∈ PW p(B̄R(0))

‖f‖Lp(µΓ) 6 C(η−1/p +R1/p)‖f‖p
with the usual modifications when p = ∞. Moreover, the same conclusion holds
for the rotated Archimedes spirals R2πθ0A

η.

5.4 Necessary conditions for sampling on spiral-

ing curves

5.4.1 General results

In this section we derive necessary conditions for sampling on spiraling curves,
comparing the asymptotic equispacing of such a curve to the diameter of the
Fourier spectrum. The following key lemma shows that spiraling curves can be
locally approximated by unions of lines.

Lemma 5.21. Let Γ be a spiraling trajectory with asymptotic velocity ~d and asymp-
totic separation τ . Then the collection of equispaced parallel lines

L~d,τ := {t~d+ τk~d⊥ : t ∈ R, k ∈ Z} (5.15)

is a weak limit of translates of Γ, i.e. L~d,τ ∈ W (Γ).
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Proof. Throughout the proof we use the notation of §5.3.3.

Step 1. Reduction of the problem.

Let us first slightly simplify the setting. Since the notion of spiraling trajectory
is invariant under rotation, we may assume that the escape cone is Sα,0, thus, β = 0

and ~l =~i := (1, 0). We then write ~d = (d1, d2). As 1 =
∣∣∣~d∣∣∣2 = d2

1 + d2
2 and ~d is not

collinear with ~l, then d2 6= 0. Thus ~i = d1
~d− d2

~d⊥ and ~d⊥ = d1

d2

~d− 1
d2

~i. It follows
that, if η = τ/|d2|, then

L~d,τ = L̃~d,η := {s~d+ ηj~i : s ∈ R, j ∈ Z}.

Note that τ = η|d2| = η
√

1− d2
1 = η

√
1− 〈~d,~l〉

2
.

Step 2. Reparametrization of the trajectory.

We set Λk := Γ− (ηk, 0) and, from now on, we fix R, ε > 0. Our aim is to show
that there exists k0 (depending on R, ε) such that; for all k > k0,

Λk ∩ (−R,R)2 ⊂ L̃~d,η +Bε(0), (5.16)

L̃~d,η ∩ (−R,R)2 ⊂ Λk +Bε(0). (5.17)

First, a simple computation shows that

L̃~d,η ∩ (−R,R)2 ⊂ L0 := {t~d+ ηj~i : |t| 6 TR, j = −JR, . . . , JR}

with TR = R
|d2| and JR =

⌈
2R
η

(
1 +

∣∣∣d1

d2

∣∣∣)⌉. Instead of (5.17), we will thus prove

L0 ⊂ Λk +Bε(0). (5.18)

Next, as ηk → +∞ and L0 is a bounded set, there is a k1 such that, if k > k1,
the translate of the escape cone by ηk contains L0. Moreover, as ηk − kη → ρ0, we
can assume that, for k > k1, |ηk − kη − ρ0| < ε/2. From now on, we will assume
that k > k1.

For each n let ψn : In → R2 be a re-parametrization by arc-length of γ(θ) on
the interval [n − α, n + α] such that 0 ∈ In and ψn(0) = γ(n) = (ηn, 0). Write
I±n = In ∩ R±. As the restriction of ψn to I−n joins the line R(cosα,− sinα) to
the point (ηn, 0) and ηn → +∞, it follows that the length of I−n , |I−n | → +∞.
Similarly, |I+

n | → +∞. (See Figure 5.4).
Therefore, there exists n1 such that, for all n > n1,

[−2TR, 2TR] ⊂ In.



5.4. Necessary conditions for sampling on spiraling curves 93

ηn → +∞

Figure 5.4: The arc-length of ψn is at least as large as twice the distance of ηn to
Sα,0.

A Taylor expansion of ψn at 0 reads

|ψn(t)− (ηn, 0)− tψ′n(0)| 6 |t|
2

2
sup
s∈In
|ψ′′n(s)|.

This implies∣∣∣ψn(t)− (ηn, 0)− t~d
∣∣∣ 6 |t| · ∣∣∣ψ′n(0)− ~d

∣∣∣+
|t|2

2
sup
s∈In
|ψ′′n(s)|. (5.19)

On the other hand, by definition we know that

ψ′n(0) =
γ′(n)

|γ′(n)|
, sup

s∈In
|ψ′′n(s)| = sup

s∈[n−α,n+α]

κ(s).

As γ is a spiraling curve, limn

∣∣∣ψ′n(0)− ~d
∣∣∣ = limk sups∈In |ψ′′n(s)| = 0 and limn ηn−

ηn = ρ0. Therefore, there exists n2 > n1 such that, for n > n2

|ηn − ηn− ρ0| < ε/6,
∣∣∣ψ′n(0)− ~d

∣∣∣ < ε/(12TR), sup
s∈In
|ψ′′n(s)| < ε/(12T 2

R).

It then follows from (5.19) that, for all t ∈ [−2TR, 2TR], for n > n2∣∣∣ψn(t)− (ηn+ ρ0, 0)− t~d
∣∣∣ < ε/2. (5.20)

In other words, the trajectory stays at distance at most ε/2 from the segment
joining the lines {x2 = −R} to the line {x2 = R}, passing through the point

(ηn+ ρ0, 0) and directed by ~d. See Figure 5.5.
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~d
R

2R

0

−R

−2R

Figure 5.5: Illustration of (5.20).

Step 3. Proof of (5.18).

We are now in position to prove (5.18). Let j ∈ {−JR, . . . , JR} and n = k + j.
If k > k1 + JR then n > k1 so that (5.20) holds, that is∣∣∣ψk+j(t)− ((k + j)η + ρ0, 0)− t~d

∣∣∣ < ε/2

for t ∈ [−TR, TR]. Additionally, if k > n2 + JR, |ηk − kη − ρ0| < ε/2. Altogether,∣∣∣t~d+ jη~i− (ψk+j(t)− ηk~i)
∣∣∣ 6 ∣∣∣t~d+ ((k + j)η + ρ0, 0)− ψk+j(t)

∣∣∣+|kη + ρ0 − ηk| < ε

which is exactly (5.18).

Step 4. Proof of (5.16).

It is a bit more complicated to identify the pieces of the trajectory that go
through a given square. The first part of this step consists in identifying those
pieces.

We want to prove that, given R, ε > 0 for k sufficiently large

(Γ− (ηk, 0)) ∩ (−R,R)2 ⊂ L̃~d,η +Bε(0).

Defining Qk,R := (ηk −R, ηk +R)× (−R,R), this can be rewritten as

Γ ∩Qk,R ⊂ {t~d+ (ηj + ηk)~i : t ∈ R, j ∈ Z}+Bε(0). (5.21)

First, let n0 be the smallest n ∈ N for which {ψn(t) : t ∈ Im} ∩ Qk,R 6= ∅.
In particular (ηk, 0) is at distance at most R from the trajectory of ψn0(t). As
ηk → +∞ when k → ∞, this implies that n0 → ∞ when k → ∞. Then, we can
take k large enough so that n0 > kρ, where kρ is the constant of radial monotonicity.
This means that

Γ ∩Qk,R ⊂
⋃
n>kρ

{ψn(t) : t ∈ In} ∩Qk,R,
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and thus we can use the monotonicity property to order from left to right all
trajectories {ψn(t) : t ∈ In} which intersect Qk,R (see Figure 5.6).

R

ηk

Figure 5.6: Curves in Qk,R ordered from left to right.

From now on, we will assume that n > kρ for any piece of trajectory {ψn(t) :
t ∈ In} considered.

Now, let us reduce the picture. For this, we temporarily fix k and write z = ηk,
z± = z ± R, τ = z+/z−. As ηk → +∞, we can choose k so that τ is as near to 1
as we want.

Let D± = R+(z−,±R) ∪ {(0, 0)} for the half-lines starting at 0 and through
the left-corners of Qk,R and let S be the subcone delimited by these half-lines (and
containing the positive x1-axis).

Let a = z− − ε − 2R|d1/d2|. The choice of a has been made as follows: let `a
be the line through (a, 0) and directed by ~d, and set A := `a ∩ {|x2| 6 2R}. Then
A ⊂ {x1 6 z− − ε} and A ∩ {x1 = z− − ε} 6= ∅.

Similarly, let b = z+ +ε+2R|d1/d2| = z−+ε+2R (1 + |d1/d2|). Again, let `b be

the line directed by ~d through (b, 0) and set B := `b ∩ {|x2| 6 2R}. Additionally,
here we define C := `b ∩ S. Then

— B is at distance at least ε on the right of Qk,R, that is, B ⊂ {x1 > z+ +
ε}. Moreover B ∩ {x1 = z+ + ε} 6= ∅. Also B ⊂ {x1 6 b + 2R|d2/d1|} and
B ∩ {x1 = b + 2R|d2/d1|} 6= ∅. In particular, B joins the boundaries of the strip
{z+ + ε 6 x1 6 b+ 2R|d2/d1|}.

— C is included in the strip { bd2

z−d2+Rd1
R 6 x1 6 bd2

z−d2−Rd1
R}. Note that, when

k → +∞, b, z− → +∞ but b/z− → 1. It follows that, for k large enough, C ⊂ B.
Note also that, if k is large enough, then A,B,C are included in the larger

escape cone, see Figure 5.7.
Next, recall from (5.20) that, if n is large enough, then for |t| 6 2TR,∣∣∣ψn(t)− (ηn+ ρ0, 0)− t~d

∣∣∣ < ε/2.

In particular, as a, b → +∞ when k → +∞, if k is large enough, then this
holds for a/η < n < b/η. In other words, for those n’s, the part of the trajectory
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α

R

2R

ε

A1

A2

B1

B2

C1

C2

~d

zz− z+ ba

Figure 5.7: The segments are A = [A1, A2], B = [B1, B2], C = [C1, C2].

{ψn(t) : |t| 6 2TR} stays at distance less than ε/2 of the segments {(nη+ρ0, 0)+t~d :
|t| 6 2TR}. Those segments are all included in the rhombus delimited by A,B and
the lines {x2 = ±2R}. In particular, they all join the 2 boundaries of the cone S.
Further, the monotonicity property shows that the curves {ψn(t) : |t| 6 2TR} ∩ S
are ordered from the left to the right when n goes from a/η to b/η.

Now let {ψm(t) : t ∈ Im} be a piece of the trajectory that intersects QR. It
therefore also intersects S. From the monotonicity property {ψm(t) : t ∈ Im} is
either

— on the left of {ψda/ηe(t) : t ∈ Ida/ηe} ∩ S
— or on the right of {ψbb/ηc(t) : t ∈ Ibb/ηc} ∩ S
— or is one of {ψn(t) : t ∈ In} ∩ S, a/η < n < b/η.
But, in the first two cases, {ψm(t) : t ∈ Im} would not intersect QR so that the

only trajectories that may intersect QR are {ψn(t) : t ∈ In} ∩ S, a/η < n < b/η.
Further note that, when |t| = 2TR, (5.20) implies that |ψn(t)| ∈ {|x2| > 2R −

ε/2} ⊂ {|x2| > R} provided we choose ε < 2R. It follows that

Γ ∩Qk,R ⊂
⋃

a/η<n<b/η

{ψn(t) : |t| 6 2TR}.

In summary

Γ ∩Qk,R ⊂
⋃

a/η<n<b/η

{(ηn+ ρ0, 0) + t~d : |t| 6 2TR}+Bε/2(0).

To finish, note that since limk
ηn+ηk

η(n+k)+ρ0
= 1 uniformly for any n ∈ (a/η, b/η) then,

for k large enough,

Γ ∩Qk,R ⊂
⋃

a/η<n<b/η

{(η(n+ k) + ηk, 0) + t~d : |t| 6 2TR}+Bε(0),
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which is (5.21). Then (5.18) follows.

Proposition 5.22. Let Γ be a spiraling trajectory with asymptotic velocity ~d ∈ S1

and asymptotic separation τ > 0. Let Ω be a convex centered symmetric body such
that

{t~d⊥ : t ∈ [−1/2τ, 1/2τ ]} ⊂ Ω◦.

Then Γ is not a sampling trajectory for PW 2(Ω).

Proof. Suppose on the contrary that Γ is a sampling trajectory for PW 2(Ω). By
Theorem D, there exists a separated set Λ ⊂ Γ that is a sampling set for PW 2(Ω).
By Lemma 5.21, L~d,τ ∈ W (Γ). Therefore, there exists a sequence {xk : k > 1} ⊂
R2 such that Γ + xk

w−→ L~d,τ . By Lemma 5.11, we may pass to a subsequence, and

assume that Λ + xk
w−→ Λ′, for some set Λ′ ⊂ R2. Since Λ ⊂ Γ, it follows that

Λ′ ⊂ L~d,τ .

Since {t~d⊥ : t ∈ [−1/2τ, 1/2τ ]} ⊂ Ω◦, there exists r > 1/2τ such that {t~d⊥ :
t ∈ [−r, r]} ⊂ Ω, and we can take 0 < ε < 1 such that

{t~d⊥ : t ∈ [−1/2τ, 1/2τ ]} ⊂ {t~d⊥ : t ∈ [−(1− ε)r, (1− ε)r]} ⊂ (1− ε)Ω.

As Λ is a sampling set for PW 2(Ω), by Corollary 5.7, it is also a sampling set for
PW∞((1−ε)Ω). Therefore, by Theorem 5.10, Λ′ is a uniqueness set for PW∞((1−
ε)Ω). However, the non-zero function

f(x) := sin
(π
τ
〈x, ~d⊥〉

)
satisfies f ≡ 0 on L~d,τ – cf. (5.15)– and therefore on Λ′, and supp(f̂) ⊂ {t~d⊥ : t ∈
[−1/2τ, 1/2τ ]} ⊂ (1− ε)Ω. This contradiction shows that Γ cannot be a sampling
trajectory for PW 2(Ω).

5.4.2 Application to concrete curves

We now have all the elements to prove our sampling result, Theorem A, for the
Archimedes spiral and the concentric circles. Let us recall the statement and then
prove it.

Theorem A. Let Ω ⊂ R2 be a convex centered symmetric body.

(i) If diam(Ω)η < 1, then the Archimedes spiral Aη and the collection of con-
centric circles Oη are sampling trajectories for PW 2(Ω).

(ii) If diam(Ω)η > 1, then neither the Archimedes spiral Aη nor the collection of
concentric circles Oη are sampling trajectories for PW 2(Ω).
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Proof. Let Γ be either Aη or Oη. Note first that

Ω ⊂ B̄diam(Ω)/2(0). (5.22)

Indeed, if x ∈ Ω then by symmetry −x ∈ Ω and thus, 2‖x‖ = ‖x− (−x)‖ 6
diam(Ω).

For (i), assume that diam(Ω)η < 1, and let ε > 0 and η′ > η be such that
η′(1 + ε)diam(Ω) < 1. We know from (5.5) that gap(Γ) = η/2. By Lemma 5.5,
there exists a separated set Λ ⊂ Γ with gap(Λ) 6 η′/2. Since

gap(Λ)diam(B̄(1+ε)diam(Ω)/2(0)) 6
η′

2
(1 + ε)diam(Ω) <

1

2
.

Theorem 5.4 implies that Λ is a sampling set of PW∞(B̄(1+ε)diam(Ω)/2(0)). Fi-
nally, applying Theorem 5.6, we have that Λ is a sampling set for the space
PW 2(B̄diam(Ω)/2(0)) and thus for PW 2(Ω). We invoke Theorem D to conclude
that Γ is a sampling trajectory for PW 2(Ω).

For (ii), we first note that exists ~d ∈ S1 such that

{t~d⊥ : t ∈ [−diam(Ω)/2, diam(Ω)/2]}

is contained in Ω. Indeed, by compactness, we can select x ∈ Ω with maximal
norm. Then Ω ⊂ B̄‖x‖(0), and hence diam(Ω) 6 2‖x‖ = ‖x− (−x)‖ 6 diam(Ω).

Thus, ‖x‖ = diam(Ω)/2. Letting ~d⊥ := x/‖x‖, convexity reads

{t~d⊥ : t ∈ [−diam(Ω)/2, diam(Ω)/2]} ⊂ Ω.

Now suppose that diam(Ω)η > 1 and take ε ∈ (0, 1) such that

(1− ε)−11/(2η) = diam(Ω)/2.

Therefore,
{t~d⊥ : t ∈ [−1/(2η), 1/(2η)]} ⊂ (1− ε)Ω ⊂ Ω◦

where we used (5.4). By Proposition 5.19, Γ is spiraling with asymptotic velocity
~d and asymptotic separation τ = η. We invoke Proposition 5.22 and conclude that
Γ is not a sampling trajectory for PW 2(Ω).

5.5 Approximate aliasing

5.5.1 Rates of convergence for weak limits

We introduce the following class of curves.
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Definition 5.23. Let η > 0, λ > 0 and Ω ⊂ R2 a convex centered symmetric body.
We say that a regular trajectory Γ belongs to the class C(η, λ,Ω) if there exists a
constant CΓ for which, given ε, R > 0 there exists y ∈ R2 such that

(i) (Γ− y) ∩ (−R,R)2 ⊂ (ηZ× R) +Bηε(0),

(ii) |y| 6 CΓ
R2

ε
,

(iii) λ−1/p‖f‖Lp(µΓ) 6 ‖f‖p for all f ∈ PW p(Ω) with 1 6 p 6∞.

We now prove that the curves Aη and Oη belong to this type of classes. For
technical reasons we extend this result to any rotation R2πθ0A

η. As a first step,
we show the following lemma, which quantifies the convergence in Lemma 5.21.

Lemma 5.24. Let η >
√

2/2 and θ0 ∈ [0, 1). Then there exists a constant C
independent from η and θ0 such that given R > 1 and 0 < ε < 1/2 the inclusion

(R2πθ0A
η − (η(n+ θ0), 0)) ∩ (−R,R)2 ⊂ ηZ× R +Bε(0)

holds for all n > Cε−1R2. The same inclusion holds for Oη, translating instead by
(ηn, 0) and eventually taking a larger constant.

Proof. Let x = (ηθ cos 2π(θ−θ0), ηθ sin 2π(θ−θ0)) ∈ R2πθ0A
η∩(R×(−R,R)) with

x1 > η(θ0 + 1/4). Then, there exists k ∈ N such that k − 1/4 < θ − θ0 < k + 1/4.
We will prove

|x1 − η(k + θ0)| 6 33R2

k
. (5.23)

Assuming this for a moment, let us show how the lemma would then follow. Let
n > 2R and take y ∈ (R2πθ0A

η − (η(n+ θ0), 0))∩ (−R,R)2. Write y = x− (η(n+
θ0), 0)) with x ∈ R2πθ0A

η. Then x1 > η(n+ θ0)−R, and since n > 2R, R > 1 and
2η > 1, we have x1 > η(θ0 + 1/4). Further, taking the same k as before,

η(n+θ0)−R < x1 = ηθ cos 2π(θ−θ0) 6 ηθ|cos 2π(θ − θ0)| 6 ηθ 6 η(k+1/4+θ0).

This yields
k > n− 1/4−R/η > n/2−R2/ε

since n > 1 and η > 1/2 > ε. Hence, taking n > 68R2

ε
> 2R we get k > 33R2

ε

and then (5.23) reads |y1 − η(n− k)| = |x1 − η(k + θ0)| < ε. Therefore, y ∈
ηZ× R +Bε(0), as claimed.

Let us now prove (5.23). Using the same notation as before for x ∈ R2πθ0A
η ∩

(R× (−R,R)) with x1 > η(θ0 + 1/4), we have

k − 1/4 < θ − θ0 < k + 1/4,

−R < ηθ sin 2π(θ − θ0) < R.
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In particular, since arcsin(θ) is a strictly increasing function and |arcsin(θ)| 6 2|θ|
for θ ∈ [−1, 1],

|θ − (k + θ0)| < 1

2π
· 2R

ηθ
<

R

ηπ(k − 1/4 + θ0)
<

2R

ηπk

since θ0 > 0, k > 1. Next, using the triangle inequality and the fact that
|cos θ − 1| 6 |θ|2/2 we get

|x1 − η(k + θ0)| = |ηθ cos 2π(θ − θ0)− η(k + θ0)|
6 |ηθ cos 2π(θ − θ0)− η(k + θ0) cos 2π(θ − θ0)|

+ |η(k + θ0) cos 2π(θ − θ0)− η(k + θ0)|
6 η|θ − (k + θ0)|+ η(k + θ0)|cos 2π(θ − k − θ0)− 1|
6 η|θ − (k + θ0)|+ 2π2η(k + θ0)|θ − (k + θ0)|2

6
2R

πk
+ 4π2ηk

4R2

(ηπk)2
6
R

k
+

16R2

ηk
6

33R2

k
,

since 2η,R, k > 1 > θ0. The proof for Oη is similar.

Proposition 5.25. Let η >
√

2/2, θ0 ∈ [0, 1), and R0 > 0. Then, there exists a
constant C > 0 independent of η and θ0 such that the curves R2πθ0A

η and Oη belong
to the class C(η, C(R0 + 1), B̄R0(0)). Moreover, the constant Cγ = CR2πθ0

Aη , COη
in Definition 5.23 is also independent of η, θ0.

Remark 5.26. The proof below also works for 0 < η 6
√

2/2 but then the con-
stants CR2πθ0

Aη and COη depend on η. The reader may check that they satisfy a

bound of the form Cη−1.

Proof of Proposition 5.25. We treat only R2πθ0A
η, the case of Oη being similar.

Condition (iii) of Definition 5.23 follows from Proposition 5.20: since η >
√

2/2,
for all f ∈ PW p(B̄R0(0))

‖f‖Lp(µΓ) . (η−1/p +R
1/p
0 )‖f‖p . (R0 + 1)1/p‖f‖p.

Conditions (i) and (ii) follow from the Lemma 5.24. Indeed, let ε, R > 0 be given
and set ε′ := ηε. Without loss of generality, we can assume that ε′ ∈ (0, 1/2) and
R > 1. Taking y = (η(n+ θ0), 0) with n = dC(ηε′)−1R2e, Lemma 5.24 gives

(R2πθ0A
η − y) ∩ (−R,R)2 ⊂ ηZ× R +Bηε(0),

|y| 6 2Cε−1R2,

as desired.
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5.5.2 Quantitative aliasing

Having quantified the convergence in Lemma 5.21, we turn into the quantification
of aliasing. While a union of lines with sub-Nyquist density leads to aliasing, we
show that spirals suffer from approximate aliasing.

Let us recall the definition of variation of a function f ∈ L1(Ω):

varΩ(f) := sup

{∣∣∣∣ˆ
Ω

fdivh

∣∣∣∣ : h ∈ C1
c (Ω,C2), ‖h‖∞ 6 1

}
. (5.24)

When f belongs to the Sobolev space W 1,1(Ω) integration by parts shows that
varΩ(f) = ‖∇f‖L1(Ω).

Lemma 5.27. Let η >
√

2/2, λ > 0 and consider Γ ∈ C(η, ηλ, B̄2(0)). Let Q be
the square of vertices (0, 0), (

√
2/4,
√

2/4), (
√

2/2, 0) and (
√

2/4,−
√

2/4). Then
given ζ > 0, there exists g ∈ PW 2(Q ∪ −Q) such that

(i) ‖g‖2 = 1,

(ii) η−1/2‖g‖L2(µΓ) 6 ζ,

(iii) var(ĝ) 6 C
(

max((η −
√

2/2)−1, η) λ
ζ2 ln4

(
C λ
ζ2

)
+ 1
)

,

(iv) ‖ĝ‖∞ 6 C max((η −
√

2/2)−1, η),

where C > 0 is a universal constant.

Proof. Let Q0 be the square of vertices (−1, 0), (0, 1), (1, 0) and (0,−1). Take
φ ∈ PW 2(Q0) such that ‖φ‖2 =

√
2/2 and

|φ(x)| 6 C1e
−|x|1/2 (5.25)

for some constant C1 > 0. Note that, integrating in polar coordinates

‖φ‖1 6 2πC1

ˆ ∞
0

e−r
1/2

r dr = 4π

ˆ ∞
0

e−ss3 ds = 24πC1.

Also, as φ ∈ PW 2(Q0) and the area of Q0 is 2 and
∥∥∥φ̂∥∥∥

2
= ‖φ‖2 =

√
2/2, then

Cauchy-Schwartz inequality gives
∥∥∥φ̂∥∥∥

1
6 |Q0|1/2

∥∥∥φ̂∥∥∥
2

= 1.

Define g0(x) := β sin
(
π
η
x1

)
φ(βx) with β = min(1/(2η),

√
2/2− 1/(2η)). Note

that, as η >
√

2/2, β > 0. For ε, R > 0 to be fixed later take y = y(ε, R) as in
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Definition 5.23 and set g(x) := g0(x− y). Then

ĝ(ξ) =
e−2πiyξ

2βi

[
φ̂(β−1(ξ1 − 1/(2η)), β−1ξ2)− φ̂(β−1(ξ1 + 1/(2η)), β−1ξ2)

]
=: φ1(ξ)− φ2(ξ). (5.26)

As φ ∈ PW 2(Q0), the support of φ1 is included in Qη := βQ0 +(1/(2η), 0) and the
support of φ2 in −Qη. We claim that Qη ⊂ Q. To show this, we argue by cases
on 1/(2η). If 1/(2η) 6

√
2/4 this means that β = 1/(2η) and hence the points

(1/(2η), β) and (1/(2η),−β) belong to the square Q. Also since 1/(2η) − β = 0
and 1/(2η) + β 6

√
2/2, both (1/(2η)− β, 0) and (1/(2η) + β, 0) belong to Q. By

convexity this yields Qη ⊂ Q. If 1/(2η) >
√

2/4 this means that β =
√

2/2−1/(2η)
and hence the points (1/(2η), β) and (1/(2η),−β) belong to Q. Also in this case
1/(2η) − β > 0 and 1/(2η) + β =

√
2/2, so that, again, (1/(2η) − β, 0) and

(1/(2η) + β, 0) belong to Q. Thus Qη ⊂ Q also in this case. Thus, in any case,
supp(φ1) ⊂ Q and supp(φ2) ⊂ −Q, where Q is the cube defined in the hypothesis.
Altogether, g ∈ PW 2(Q ∪ −Q).

1/(2η)

β

Qη

Q

1/(2η)

β

Qη

Q

Figure 5.8: Sketch of both cases: 1/(2η) 6
√

2/4 (left), 1/(2η) >
√

2/4 (right).

Since Q and −Q only intersect at 0, then φ1 and φ2 have disjoint support up
to a set of measure zero. Hence, using Plancharel we obtain

‖g‖2
2 = ‖ĝ‖2

2 = ‖φ1‖2
2 + ‖φ2‖2

2 = 2‖φ‖2
2 = 1,

which proves (i).
We now show that η−1‖g‖L2(µΓ) is small enough for an appropriate choice of

ε and R. First note that supx∈ηZ×R+B̄ηε(0) |g0(x)| 6 βε‖φ‖L∞(R2) 6 βεC1. Then,
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combining this with condition (i) of Definition 5.23 and (5.25) we have

sup
x∈Γ
|g(x)| = sup

x∈Γ−y
|g0(x)| 6 sup

x∈(Γ−y)∩(−R,R)2

|g0(x)|+ sup
x/∈BR(0)

|g0(x)|

6 sup
x∈ηZ×R+B̄ηε(0)

|g0(x)|+ βC1e
−β1/2R1/2

6 βC1(ε+ e−β
1/2R1/2

).

Since Q ∪ −Q ⊂ B̄2(0), we can use the condition (iii) of Definition 5.23 together
with interpolation to get

η−1‖g‖2
L2(µΓ) 6 η−1‖g‖L1(µ) sup

x∈Γ
|g(x)|

6 λ‖g‖1 sup
x∈Γ
|g(x)| = λ‖g0‖1 sup

x∈Γ
|g(x)|

6
λ‖φ‖1

β
sup
x∈Γ
|g(x)| 6 24πλC2

1(ε+ e−β
1/2R1/2

).

And finally taking

ε =
ζ2

48πλC2
1

, R = β−1 ln2(48πλC2
1/ζ

2),

we conclude that η−1/2‖g‖L2(µΓ) 6 ζ, which is point (ii).
Note that

R2

ε
= C2

λ

ζ2β2
ln4(C2λ/ζ

2)

with C2 = 48πC2
1 .

To estimate the variation of ĝ we use again (5.26) and the fact that φ̂ is smooth
and rapidly decreasing combined with Leibniz’s rule:

var(ĝ) = ‖∇ĝ‖1 6 π|y|β
∥∥∥φ̂∥∥∥

1
+
∥∥∥∇φ̂∥∥∥

1
6 C3

λ

ζ2β
ln4(C2λ/ζ

2) + C4

where C3 = πC2CΓ and C4 =
∥∥∥∇φ̂∥∥∥

1
. Also, (5.26) implies

‖ĝ‖∞ 6 β−1
∥∥∥φ̂∥∥∥

∞
.

Finally we see that β−1 6 2 max((η −
√

2/2)−1, η) and thus parts (iii) and (iv)

follow by taking C = max(C2, 2C3, C4, 2
∥∥∥φ̂∥∥∥

∞
).

Proposition 5.28. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and Γ = Aη or Γ = Oη.
Then given ζ > 0, there exists f ∈ L2([−1/2, 1/2]2) such that
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(i) ‖f‖2 = 1,

(ii) η−1/2
∥∥∥f̂∥∥∥

L2(µΓ)
6 ζ,

(iii) var(f) 6 C(ε−1ζ−2 ln4(Cζ−2) + 1),

(iv) ‖f‖∞ 6 Cε−1,

where C > 0 is a universal constant.

Proof. By Proposition 5.25, Rπ/4A
η ∈ C(η, C, B̄2(0)) for some constant C > 0.

Set λ := Cη−1 so that Rπ/4A
η ∈ C(η, ηλ, B̄2(0)). Then using Lemma 5.27, we can

construct g ∈ L2(R2) associated with Rπ/4A
η and a given constant ζ > 0. Define

f := ĝ ◦ R−π/4. We will prove that f satisfies the conditions (i) − (iv) of the
Proposition.

As in Lemma 5.27, letQ be the cube defined by the vertices (0, 0), (
√

2/4,
√

2/4),
(
√

2/2, 0) and (
√

2/4,−
√

2/4). Since supp(ĝ) ⊂ Q ∪ −Q and

R−1
−π/4(Q) = Rπ/4(Q) = [0, 1/2]× [0,−1/2], R−1

−π/4(−Q) = [−1/2, 0]× [0, 1/2],

we have

supp(f) ⊂ [0, 1/2]× [0,−1/2] ∪ [−1/2, 0]× [0, 1/2] ⊂ [−1/2, 1/2]2.

Point (i) follows from the fact that rotations are norm-invariant transformations

and ‖ĝ‖2 = 1. To see (ii) note that f̂ = g ◦ RT
−π/4 and RT

−π/4(Aη) = R−1
−π/4(Aη) =

Rπ/4A
η.

The variation of f can be estimated by the chain rule and (iii) of Lemma 5.27:

var(f) = ‖∇f‖1 =
∥∥∇(ĝ ◦ R−π/4)

∥∥
1
6
∥∥(∇ĝ) ◦ R−π/4

∥∥
1

∥∥∇R−π/4∥∥∞
. ‖∇ĝ‖1 = var(ĝ) . max((η −

√
2/2)−1, η)

λ

ζ2
ln4

(
C
λ

ζ2

)
+ 1.

Then (iii) follows by using the identities η = (1 + ε)
√

2/2 and λ = Cη−1 so
that max((η −

√
2/2)−1, η) = (η −

√
2/2)−1 = ε−1 and λ � η−1 � η � 1. Since

‖f‖∞ = ‖ĝ‖∞, this argument also yields (iv).

5.6 Compressibility and sub-Nyquist sampling

5.6.1 Analog compressibility

We will now work on the cube [−1/2, 1/2]2. We recall the class F(W ) defined in
the introduction:

F(W ) := {f ∈ L2([−1/2, 1/2]2) : var(f) 6 W}.
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The relevant stability margin is

A(Γ,F(W )) := inf{
∥∥∥f̂∥∥∥

L2(µΓ)
: ‖f‖2 = 1, f ∈ F(W )}.

Let us now restate and prove Theorem B.

Theorem B. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and Γ = Aη or Γ = Oη. Then
for W > 0,

A(Γ,F(W )) 6 K(εW )−1/2(ln2(εW ) + 1), (5.27)

where K > 0 is a universal constant.

Proof. Let T > 0, set ζ := ε−1/2T−1/2 and take f given by Proposition 5.28
associated to ζ. Then there exists a constant C > 0 such that

var(f) 6 Φ(T ),

where
Φ(T ) := C(T ln4(CεT ) + 1).

Since ‖f‖2 = 1, η−1/2
∥∥∥f̂∥∥∥

L2(µΓ)
6 ζ and η � 1, we have that

A(Γ,F(Φ(T ))) 6
∥∥∥f̂∥∥∥

L2(µΓ)
6 η1/2ζ . ε−1/2T−1/2. (5.28)

We claim that

T &
Φ(T )

ln4(εΦ(T )) + 1
, if T > C−1ε−1e. (5.29)

Indeed, if CεT > e, then, since ε ∈ (0, 1),

CT 6 Φ(T ) and T > e/C.

Consequently,
Φ(T ) . T ln4(CεT ) + 1 . T ln4(εΦ(T )) + T

from which (5.29) follows. Combining (5.28) and (5.29), we conclude that

A(Γ,F(Φ(T ))) . ε−1/2Φ(T )−1/2(ln2(εΦ(T )) + 1), (5.30)

provided that T > C−1ε−1e.
Note that limT→+∞Φ(T ) = +∞, while Φ(C−1ε−1e) = ε−1e + C. This means

that any number W > ε−1e + C can be represented as W = Φ(T ), for some
T > C−1ε−1e. Therefore, (5.30) reads (5.27) for all W > ε−1e+ C.

Finally, if W 6 ε−1e + C, then εW . 1, and the right-hand side of (5.27) is
& 1. On the other hand, the Bessel bound in Proposition 5.20 implies that

A(Γ,F(W )) 6
∥∥∥f̂∥∥∥

L2(µΓ)
. (η−1/2 + (1/2)1/2)

∥∥∥f̂∥∥∥
2
. ‖f‖2 . 1,

since η � 1. This completes the proof.
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5.6.2 Sampling wavelet-sparse signals

We work with the Haar basis in L2([−1/2, 1/2]2) constructed from the one in
L2([0, 1]) by translation and tensorization: from h0 = χ[0,1) and h1 = χ[0,1/2) −
χ[1/2,1) one defines

hej,k(x) = 2j/2he1(2j(x1 + 1/2)− k1)2j/2he2(2j(x2 + 1/2)− k2)

with j > 0, (k1, k2) ∈ Z2 ∩ 2j[0, 1)2, e ∈ {0, 1}2 \ {(0, 0)}. We denote I the set of
all such triples, and then define the sparsity classes as

ΣN,J :=

 ∑
(j,k,e)∈I

cej,kh
e
j,k : cej,k ∈ C,#I 6 N , 0 6 j 6 J


and the corresponding stability margin

AN,J(Γ) := inf

{∥∥∥f̂∥∥∥
L2(µΓ)

: ‖f‖2 = 1, f ∈ ΣN,J

}
.

Let us now restate and prove Theorem C.

Theorem C. Let η = (1 + ε)
√

2/2 with ε ∈ (0, 1), and Γ = Aη or Γ = Oη. Then
for N > 1,

AN,J(Γ) 6 KN−1/6ε−1 ln4(KN1/3), (5.31)

where J = K ln(ε−1N), and K > 0 is a universal constant.

Proof. Fix N and let ζ = N−1/6 and take f ∈ L2([−1/2, 1/2]2) as in Proposition
5.28. Then

‖f‖2 = 1 and
∥∥∥f̂∥∥∥

L2(µΓ)
. N−1/6, (5.32)

var(f) . L := ε−1N1/3 ln4(CN1/3) + 1 and ‖f‖∞ . ε−1. (5.33)

Step 1. Let us consider the class

ΣN :=

 ∑
(j,k,e)∈I

cej,kh
e
j,k : cej,k ∈ C,#I 6 N


of functions with at most N active Haar coefficients without restrictions on the
scale. Let fN the best approximation of f in ΣN . Since the variation of f is
bounded, we can use the following inequality from [18, Theorem 8.2]:

‖f − fN‖2 6 KN−1/2var(f) . N−1/2L, (5.34)
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where K > 0 is some universal constant. Let PJ be the orthogonal projection
onto the span of wavelets with 0 6 j 6 J . Then ‖f − PJf‖1 6 2−Jvar(f) -
see for example [18, Eq. 2.10] and the references therein, or [22]. In addition,
‖f − PJf‖∞ . ‖f‖∞, and therefore interpolation yields

‖f − PJf‖2 . 2−J/2var(f)1/2‖f‖1/2
∞ .

Plugging (5.33) we get

‖f − PJf‖2 . 2−J/2ε−1L1/2 6 2−J/2ε−1L (5.35)

where we have also used the fact that L > 1 > ε. Now set fN,J := PJfN ∈ ΣN,J ,
and combine (5.35) and (5.34) to obtain

‖f − fN,J‖2 6 ‖f − PJf‖2 + ‖PJf − PJfN‖2

6 ‖f − PJf‖2 + ‖f − fN‖2 . (2−J/2ε−1/2 +N−1/2)L.

Hence, choosing J � ln(ε−1N),

‖f − fN,J‖2 . N−1/2L. (5.36)

Step 2. Write AN,J = AN,J(Γ). Then, using (5.32) and the definition of AN,J ,

AN,J = AN,J‖f‖2 6 AN,J‖fN,J‖2 + AN,J‖fN,J − f‖2

6
∥∥∥f̂N,J∥∥∥

L2(µΓ)
+ AN,J‖fN,J − f‖2

6
∥∥∥f̂∥∥∥

L2(µΓ)
+
∥∥∥f̂N,J − f̂∥∥∥

L2(µΓ)
+ AN,J‖fN,J − f‖2

6 K0N
−1/6 +K0‖fN,J − f‖2 + AN,J‖fN,J − f‖2, (5.37)

for some constant K0 > 0 and where we have also applied Proposition 5.20 to

estimate
∥∥∥f̂N,J − f̂∥∥∥

L2(µΓ)
. Now from (5.36), if

N & L2,

and the implicit constant is large enough, then ‖f − fN,J‖2 < 1/2. Going back to
(5.37) and re-applying (5.36) we get

AN,J . N−1/6 +N−1/2L . N−1/6ε−1 ln4(CN1/3).

Note that since L = ε−1N1/3 ln4(CN1/3)+1, then, for N & L2 to hold it is sufficient
to have N & ε−2N2/3 ln8(CN1/3), or, equivalently,

N & ε−6 ln24(CN1/3).

Hence, there is a constant C ′ > 0 for which (5.31) holds whenever we have N >
C ′ε−6 ln24(C ′N1/3). On the other hand, if N 6 C ′ε−6 ln24(C ′N1/3) then to prove
(5.31) is enough to show AN,J . 1, which, as in the proof of Theorem B, follows
from the Bessel bounds in Proposition 5.20.
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