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Introduction

Mesoscopic physics aim at the description of solids which length scales are between those of

the macroscopic world governed by classical physics and those of the microscopic world which

requires quantum physics for its description. Looking at a solid at a macroscopic scale well

defined by classical physics and progressively zooming on, the mesoscopic threshold is reached

as soon as quantum fluctuations are required to correctly describe it (for example, concerning

electronic transport, one can propose a definition of the mesoscopic scale by the failure of ohmic

predictions [1]). Of course, there is no sharp transition nor fixed value. It depends on both the

quantity which is considered and the accuracy which is expected. However, a common feature of

mesoscopic systems can be proposed as follows: contrary to microscopic ones, they still contain

a large number of particles so that the tools of statistical (quantum) physics can be used but

contrary to macroscopic systems, they manifest quantum effects. In such systems either the

quantum state randomization is not complete or the sample size probes the spatial extent of the

constituent particles.

As quantum objects, the constituent particles of a mesoscopic system have a wave-like be-

havior encoded in their De Broglie wavelength. At low temperature, conduction is ensured by

electrons near the Fermi level and a first key length scale is the Fermi wavelength λF . Indeed

a constriction created by depletion of a two dimensional electron gas (formed in GaAs-AlGaAs

heterostructures) can be pinched down to this length scale and the quantization of the conduc-

tance [2] which is observed requires the Landauer formalism [3] to be explained. Another key

quantity is the phase-relaxation length Lϕ, the distance along which a certain degree of coher-

ence is maintained. If we imagine that we can interfere the wave with itself at two different

times, the degree of coherence will be the visibility of the fringes which we would obtain. This is

not just a thougth experiment: in a doubly connected wire designed in a loop geometry with a

magnetic flux threading the area in between the two paths, the relative phase between the two
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arms of this electronic interferometer acquire a flux dependence and, as a result, Aharonov-Bohm

(AB) oscillations of electrical quantities are observed. The situation can be somewhat different

from the early version of the AB experiment [4] which involves free particles (ballistic regime).

The oscillations have been observed in samples with a size much larger than the mean free path

Lm [5] so that the electrons undergo a random walk inside the arms of the AB interferometer

(diffusive regime) but still interfere coherently. Different kinds of scattering occuring in a real

crystal lead to different influences on momentum or phase randomization and depend on external

parameters such as temperature or magnetic field. To summarize, different length scales have to

be considered in a mesoscopic system:

• the Fermi wavelength λF , which gives the spatial extension of the conducting species,

• the mean free path Lm along which the momentum memory is lost,

• the phase-relaxation length Lϕ along which the phase memory is lost,

• the typical size L of the sample.

Physics could be strongly affected by the effective dimensionality of the system. Considering

a d-dimensional sample, if the typical size Li along the dimension i is much smaller than λF , the

system has to be considered as (d− 1)-dimensional. This is the geometric way to reduce the di-

mensionality but mesoscopic physics could provide other possible realizations of low-dimensional

systems, e.g. boundary helical 1D edge states which appears in a 2DEG in the Quantum Hall

Effect [6] or the metallic surface states of a 3D topological insulator [7].

Concerning electronic transport, ohmic predictions fail as soon as λF , Lm or Lϕ exceeds the

sample size L. Quasi-classical theories of electronic transport, such as Drude model or Boltzmann

transport equation can be considered as long as the sample size is large compared to the phase-

relaxation length L >> Lϕ but the importance of disorder encoded in the mean free path Lm

can be illustrated in localization phenomena (not quasi-classically explained) extendingly studied

since the pioneering work of Anderson [8] in 1958.

Throughout this thesis which propose transport-based diagnoses, we will investigate devices

that exhibit phase coherence: the sample size will always be of the order or smaller than the

phase-relaxation length L ∼ Lϕ or L < Lϕ. Disorder problematics will not be investigated:

the mean free path will satisfy Lm >> L,Lϕ (ballistic regime). We will also adress reduced

dimensionality systems.
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One of the hallmark of solid-state systems is the emergence of new states of matter. Among

them, superconductivity is particularly fascinating since it displays remarkable features such as

vanishing resistivity and perfect diamagnetism [9]. Microscopically, superconductivity relies on

the possibility to pair electrons with opposite spins and momenta in so-called Cooper pairs [10].

A new length scale is then involved, namely the correlation length ξ which is the typical size

of the Cooper pairs. This is the most relevant length scale in the hybrid devices that will be

investigated in the first part of this thesis and typically, some dimensions of the order of ξ will

be required for the observation of the nonlocal transport processes under study.

Entanglement is a specific feature of quantum mechanics [11] which has been experimentally

proved in photonic systems [12] through the violation of Bell’s inequalities [13]. Entanglement

between electrons in solid-state systems remains a challenging task due to the interactions with

the neighboring Fermi sea but superconductivity and its instrinsical entanglement between elec-

trons can be conveniently involved in the design of an electron entangler. In Chapter 1, we

briefly present the microscopic theory of superconductivity which describes a ground state made

of an arbitrary number of Cooper pairs and quasiparticle excitations which are gapped. We

also introduce the underlying process of these electron entangler proposals, namely the Andreev

reflection [14] which takes place at the interface between a normal metal and a superconductor

(N-S junction): a subgap current flows I(e|V | < ∆) ̸= 0 because an electron can be reflected as

a hole provided the emission of a Cooper pair inside the superconductor (Fig. 1a). The trans-

mission of a Cooper pair inside a normal metal can be viewed as an Andreev reflection process

(a hole is reflected as an electron). Suppose that we can spatially separate the two particles,

creating a nonlocal entangled state, then one deals with the so-called Cross Andreev Reflection

(CAR) process that can be observed in a Cooper pair beam splitter which consists of a N-S

junction with the N material designed in a fork geometry (Fig. 2a). Other processes rely on the

Andreev reflection. In a Josephson junction between two superconductors bridged with a weak

link such as a narrow metallic region (S-N-S junction) at equilibrium (no voltage drop), if Cooper

pairs have different phases in the two reservoirs then a DC supercurrent (a current of Cooper

pairs) flows [15] and it can be understood as the result of Andreev reflections at the two N-S

interfaces (Fig. 1b). It is related to the existence of Andreev bound states inside the gap region.

Then, if a voltage bias is applied accross a Josephson junction then an AC current arises at the

Josephson frequency ωJ = eV /ℏ [15] and the Cooper pairs are oscillating from one reservoir to

the other with no permanent transport. At first sight, one expects that no DC current flows

until quasiparticles can tunnel which occurs for e|V | > 2∆ . However, even at zero temperature,
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(a) Andreev reflection.

2Δ

e-

h+

SR

2Δ

SL
N

(b) Josephson current as a result of two Andreev

reflections.

SR

SL
N

(c) Multiple Andreev Reflection (MAR) where a quasiparticle is transmitted

together with the emission of two Cooper pairs.

SL (VL=+V)
S0 (V0=0)

SR (VR=-V)
(d) Quartets process in a bijunction with V0 = 0 and VL+VR = 0 where two Cooper pairs

are split from the central superconductor and where recombinations in the lateral gates

require an exchange of the constituent electrons.

Figure 1: Hybrid device phenomena relying on Andreev reflection processes. N stands for Normal

metal and S for Superconductor.
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↑ ↓

(a) Crossed Andreev Reflection at a N-S in-

terface in a fork geometry.

α
↑

VU

VD

↓

SL SR

(b) Josephson junction with

nanowire/nanotube quantum dots (setup

studied in Chapter 2).

Figure 2: Schematics of Cooper pair splitter devices.

a subgap structure can be noticed and explained in terms of Multiple Andreev Reflection (MAR)

processes [16], i.e successions of Andreev reflections that result in the promotion of a quasiparticle

from the valence band of one superconductor to the conduction band of the other, accompanied

by Cooper pair transfers (Fig. 1c). Even more interesting, under specific voltage conditions, one

can imagine nonlocal interferences between Andreev reflection processes at different interfaces of

a multi-terminal all-superconducting junction. In a three-terminal junction, these interferences

could lead to multipair productions [17] where an even number of Cooper pairs are split from

the central electrode and recombined in the lateral leads (Fig. 1d).

In Chapter 2, we consider a Josephson junction with two quantum dots between the su-

perconducting leads as an (equilibrium) alternative Cooper pair splitter [18]. It can meet a

practical realization through the use of nanowires that bridge the two superconductors (Fig. 2b).

The dots materialize two conduction channels for the electrons ejected from one superconductor

and recombined (as Cooper pairs) on the other one. Among all processes that can occur in such

a junction, the delocalization of the two electrons of a Cooper pair on the two quantum dots

requires a CAR process (for Cooper pair splitting) at the boundary of the source superconductor

followed by a reverse CAR process (for Cooper pair recombination) at the boundary of the drain

superconductor. This Cooper pair splitting can be enhanced by varying the parameters of the

quantum dots (experimentally the Coulomb repulsion is fixed but the energy levels can be moni-

tored by gate voltages applied to the nanowires) such that realizing two parallel π junctions, i.e.

singly occupied quantum dots [19]. The diagnosis relies on the Aharonov-Bohm oscillations of

the critical current when a magnetic flux threads the area between the quantum dot nanowires.
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Figure 3: Josephson bijunction (setup studied in Chapter 3). Adapted from [17].

In Chapter 3, we consider an all-superconducting bijunction (Fig. 3): a central electrode

(labeled 0) is connected to two lateral leads (labeled a and b) via quantum dots. If the central

electrode is grounded (V0 = 0), commensurate voltages applied to the lateral electrodes lead to

multipair DC Josephson resonances: if nVa+mVb = 0 then n pairs are transfered from S0 to Sa
and m pairs from S0 to Sb. Of particular interest is the case n = m = 1 called quartet resonance

(Fig. 1d) which is a realization of an entanglement with four particles originated from a double

CAR process. Their signature in the current-phase relations have already been investigated [17]

but less is known about noise correlations. Here we investigate two regimes which bear strong

differences. While in the metallic junction limit, noise correlations are vanishing for sufficiently

low voltages, the resonant dots regime provide huge phase sensitive Fano factors. Moreover,

positive noise crossed correlations are predicted in the latter regime.

Another hallmark of solid-state systems is the emergence of quasiparticles which are collec-

tive excitations of the quantum many-body state describing the interacting fermionic system.

Among the exotic states which can be synthesized, particles which are their own antiparticles, the

so-called Majorana quasiparticles have attracted a lot of attention, mostly because non-Abelian

statistics could be achieved [20] providing new perspectives in quantum computation such as

topological protection and hardware protection against decoherence [21]. Chapter 4 is dedi-

cated to the revival of this particle physics idea in the context of condensed matter physics and

to the clever proposals [22–24] for the design of topological phases hosting Majorana modes using

materials and technics which are commonly used in nanofabrication. Then Chapter 5 partici-
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pates in the recent search for convincing signatures of Majorana zero energy modes in condensed

matter platforms. Current and noise in a junction between two topological superconductors are

adressed and the calculations are performed within a framework which conveniently covers the

case of a junction between two conventional superconductors. This unified treatment allows a

systematic study of the two systems and some differences are ascribed to the eventual presence

of Majorana modes.
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Chapter 1

Conventional superconductors

Since superconductors will regularly be involved in the mesoscopic devices that will be presented

throughout this thesis, this chapter is dedicated to the presentation of the microscopic theory of

conventional superconductivity (Section 1.1) and to the presentation of the Andreev reflection

(Section 1.2), this new conduction channel that emerges in the vicinity of a superconductor

boundary and that is responsible for the formation of Andreev bound states in a normal region

surrounded by superconductors as well as for the Josephson effects (Section 1.3) and the subgap

MAR structure (Section 1.5). The occurence of negative Josephson critical current in the so-

called π junctions is also discussed (Section 1.4). This chapter presents the minimal theoretical

background essential for the comprehension of further discussions, especially emphasizing the

microscopic processes underlying some non-local phenomena investigated in this thesis, including

Cooper pair splitting in a junction between a grounded superconductor and two voltage biased

normal leads or in the equilibrium setup with two superconductors bridged by two quantum

dot nanowires (Chapter 2) and multipair production in an all-superconducting three-terminal

junction (Chapter 3). In this chapter, we consider units in which Planck constant is unity ℏ = 1.

1.1 Microscopic description of s-wave superconductivity

Standard superconductivity textbooks [9, 25] have been used.

9



CHAPTER 1. CONVENTIONAL SUPERCONDUCTORS

-k

k

q

k+q

-k-q

Figure 1.1: Illustration of the attractive interaction between two opposite spin and opposite momentum

electrons that occurs inside a superconductor. A phonon (momentum q) is exchanged, resulting in the

scattering from state (k,−k) to state (k′,−k′) with k′ = k + q.

1.1.1 BCS variational method

The BCS (for Bardeen Cooper Schrieffer) theory [10] followed the discovery by Cooper [26] that an

arbitrarily small attractive interaction can bind two electrons with opposite spins and momenta

above the Fermi sea. These are the so-called Cooper pairs and such an attractive interaction

was ascribed to phonons because of the isotope effect (transition temperature dependence with

isotopic constitution of the superconducting crystal). The exchange of phonons, illustrated in

Fig 1.1, is responsible for an attractive interaction who wins compared to the (screened) repulsive

interaction between electrons. An intuitive picture could be that an electron propagating in a

solid deforms the lattice by displacing the constituent ions so that another electron can experience

this distorsion with some delay due to the larger inertia of ions. Despite the fact that this

interaction is weak, the number of states available for a Cooper pair can be important so that

the energy of a sea of Cooper pairs can be considerably lowered compared to a classical Fermi sea

of unpaired electrons. Cooper pairs are entangled systems in both momentum and spin space.

Such a state is a tensorial product |Ψ⟩k = |ϕ⟩k⊗|χ⟩ of an antisymmetric spin state (spin singlet)

|χ⟩ = |↑↓⟩ − |↓↑⟩√
2

(1.1.1)

and a symmetric orbital state which associated spatial wavefunction is the following symmetric

superposition of products of single electron wavefunctions

⟨r1, r2 |ϕ⟩k = ϕk(r1)ϕ−k(r2) + ϕk(r2)ϕ−k(r1) . (1.1.2)

10



1.1. MICROSCOPIC DESCRIPTION OF S-WAVE SUPERCONDUCTIVITY

The ground state of the system was proposed as constituted by such Cooper pairs

|ΨBCS⟩ =
∏

k

(
uk + vkc

†
k↑c

†
−k↓

)
|0⟩ . (1.1.3)

To impose normalization ⟨ΨBCS |ΨBCS⟩ = 1, one must require that |uk|2 + |vk|2 = 1 for all k, so

that angles can be introduced according to (for the sake of simplicity, uk and vk are supposed

to be real)

uk = cos θk and vk = sin θk . (1.1.4)

Then the variational principle of quantum mechanics was employed to minimize the energy of

the system described by the Hamiltonian

H =
∑
kσ

k2

2m
c†kσckσ +Hint , (1.1.5)

featuring the attractive interaction which connects two Cooper pair states according to

Hint =
∑
k,k′

Vkk′ c†k′↑c
†
−k′↓c−k↓ck↑ . (1.1.6)

The minimization has to be performed under the constraint that the mean number of particles

should be fixed as the number operator is not a conserved quantity in the ground state given

by Eq. (1.1.3). Introducing the chemical potential µ (which is the Lagrange multiplier of the

minimization under constraint), the variational method leads to the equations

∂

∂θk
⟨ΨBCS|

∑
kσ

ξkc
†
kσckσ +Hint |ΨBCS⟩ = 0 where ξk =

k2

2m
− µ . (1.1.7)

An energy parameter called the gap function ∆k = −
∑

k′ Vkk′uk′vk′ appears during calculations

and verifies a self-consistency condition which is crudely evaluated in the Cooper model where

the attractive potential is assumed to be constant under a cut-off determined by single-particle

energies reaching the Debye energy ωD, that is

Vkk′ =

 − V if |ξk|, |ξk′ | < ωD ,

0 otherwise .
(1.1.8)

Introducing the normal density of states at the Fermi level ν(0) and under the assumption

V ν(0) << 1, the gap function is given by the non-analytical expression (in terms of potential

magnitude)

∆ = 2ωD e−
1

V ν(0) . (1.1.9)

11



CHAPTER 1. CONVENTIONAL SUPERCONDUCTORS

Note that the dependence of ∆ as a function of V prohibits a perturbative treatment of (1.1.6)

to find superconductivity at low V . This constitutes an “essential singularity” (at V = 0 all

derivatives of ∆ vanish so a Taylor expansion in V does not yield any information). Then, one

can easily obtain

u2k =
Ek + ξk
2Ek

and v2k =
Ek − ξk
2Ek

(1.1.10)

where the energies are gapped according to

E2
k = ξ2k +∆2 . (1.1.11)

1.1.2 Bogoliubov mean-field method

The mean-field treatment consists in neglecting terms which appear in the interaction term (1.1.6)

and which are quadratic in the operators

c−k↓ck↑ − ⟨c−k↓ck↑⟩ and c†k′↑c
†
−k′↓ −

⟨
c†k′↑c

†
−k′↓

⟩
. (1.1.12)

The resulting mean field Hamiltonian which involves the gap function ∆k = −
∑

k′ Vkk′ ⟨c−k′↓ck′↑⟩

is then diagonalized by the following transformation which was proposed by Bogoliubov [27] and

Valatin [28]

γkσ = ukckσ − σvkc
†
−k−σ . (1.1.13)

The quantities uk, vk are then given by (1.1.10) and one can easily verify that the BCS ground

state (1.1.3) is the vaccum for the operator γkσ, meaning that γkσ |ΨBCS⟩ = 0. The excitations

γ†kσ |ΨBCS⟩ raise the energy of the system by an amount Ek given in (1.1.11). The occupation

of the state k prevents the pairing state (k,−k) to be available for Cooper pairs so that their

delocalization energy is lowered (in absolute value) and the energy is raised.

Excitation picture

A one-dimensional free gas of electrons has a dispersion relation given by ϵ(k) = k2

2m and, at zero

temperature, these energy levels are filled up to the chemical potential µ =
k2F
2m : this is the so-

called Fermi sea constituted by electrons with momenta k in the interval [−kF , kF ]. An excited

state is a promotion of an electron in state 0 < q < kF such that ϵ(q) < µ to the state p > kF

such that ϵ(p) > µ. The difference in energy reads ϵ(p) − ϵ(q) and, defining the quasiparticle

excitation energy E0(k) = |ϵ(k) − µ| = |ξk|, can be written as E0(p) + E0(−q). The difference

in momentum reads p − q = p + (−q). Consequently, an excitation in a free gas of electrons

12
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k
q p

ϵ(q)

ϵ(p)

ϵ(k)

µ

k
−q p

E0(q)

E0(p)

E0(k) = |ϵ(k)− µ|

E(k) =
√

[E0(k)]2 +∆2

Figure 1.2: Excitation picture in a gas of free electrons: the promotion of an electron from the Fermi

sea to an energy above the chemical potential (left) can be viewed as the creation of a pair of electron-like

and hole-like quasiparticles (right). In a superconductor, the quasiparticles have gapped energies and

the cusps at Fermi momenta ±kF are rounded.

results in the creation of a pair of electron-like (momentum p and energy E0(p)) and hole-like

(momentum −q and energy E0(−q)) quasiparticles. A superconductor is a material where the

excitations are gapped according to E(k) =
√
[E0(k)]2 +∆2. The excitation spectrum is given

in Fig 1.2. The semiconductor model [29] consists in duplicating this spectrum by introducing

the negative branches which are symmetric with respect to the horizontal axis E = 0. This

proves to be convenient for the study of single-charge transfer processes.

Bogoliubov - de Gennes equations

The Bogoliubov procedure can be conveniently applied to non-uniform superconductors where

the momentum k is no longer a good quantum number [30]. The effective mean field Hamiltonian

is written as

HMF =

∫
dr
{∑

σ

Ψ†
σ(r)H0(r, ∂r)Ψσ(r) + ∆(r)Ψ†

↑(r)Ψ
†
↓(r) + ∆∗(r)Ψ↓(r)Ψ↑(r)

}
, (1.1.14)

13
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where the single-particle Hamiltonian reads

H0(r, ∂r) =
[−i∂r − eA(r)]2

2m
+ U(r)− µ . (1.1.15)

It can be diagonalized as

HMF =
∑
nσ

Enγ
†
nσγnσ , (1.1.16)

using the generalized Bogoliubov-Valatin transformation

Ψσ(r) =
∑
n

(
un(r)γnσ − σv∗n(r)γ

†
n−σ

)
(1.1.17)

yielding the so-called Bogoliubov - de Gennes (BdG) equations [31]H0un(r) + ∆(r)vn(r) = Enun(r) ,

∆∗(r)un(r)−H∗
0vn(r) = Envn(r) .

(1.1.18)

Note that H∗
0 denotes the complex conjugate (not the hermitian conjugate H†

0 = H0) and could

be different from H0 in presence of an electromagnetic field. Going back to the one-dimensional

homogeneous case, the two-vector Φ(x) = (u(x), v(x))T , which collects electron and hole ampli-

tudes, verifies the following BdG problem

{HBdG(∂x)− E}Φ(x) = 0 with HBdG(∂x) =

− ∂2
x

2m − µ ∆

∆∗ ∂2
x

2m + µ

 . (1.1.19)

Solutions can be searched as eikxΦ0 with dispersion relation

k2± = 2m
(
µ±

√
E2 − |∆|2

)
. (1.1.20)

The sign± corresponds to electron-like (+) or hole-like (−) excitations. For |∆| < |E| <
√
µ2 +∆2,

we recover the plane wave states with gapped energies (1.1.11) and otherwise (e.g for for |E| < |∆|),

interestingly, we get evanescent waves.

1.2 A new conduction channel: Andreev Reflection

In the last section, we have exposed the key features of superconductivity: a ground state formed

by a condensate of Cooper pairs and quasiparticles as coherent superpositions of electron-like and

hole-like excitations. As a result a new conduction channel is available for an electron originated

from a normal metal and meeting an interface with a superconductor: it can be reflected as a hole.

This process is known as Andreev reflection and is illustrated in Fig. 1.3 in the semiconductor

14
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(a)

2Δ

(+E)e-

(b)

2Δ

(+E)e-

(-E)e-

(c)

Figure 1.3: (a) Semiconductor model for a N-S interface. Closed (open) circles denote electron-like

(hole-like) particles and arrows indicate the group velocity. The electron 5 is produced through normal

reflection while the hole 6 is produced through Andreev reflection. Adapted from [29]. (b) A subgap

electron (0 < E < ∆) from the normal metal cannot enter the superconductor. (c) If it is accompanied by

a partner at energy −E then the tunneling is possible and this pair of electrons enter the superconductor

as a Cooper pair.
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Figure 1.4: Quasi-classical explanation of Andreev reflection in the excitation picture (cf. Fig. 1.2):

E(k, z) =
√

[E0(k)]2 +∆2(z) where ∆(z) (red profile) undergoes a smooth transition at a N-S interface,

from 0 in the normal lead to ∆0 > 0 deep inside the superconductor. In the top panels (from left to right),

a subgap electron-like quasiparticle (E < ∆0) propagates towards the N-S interface. The arrow from the

quasiparticle indicates the group velocity v = ∂E
∂k

. During this forward propagation, the quasiparticle

climbs down the electron-like branch of the excitation spectrum to finally reaches its minimum where its

group velocity vanishes (classical turning point). Then its velocity is reversed, it propagates backward

(bottom panels from right to left) as a hole-like quasiparticle climbing up the hole-like branch of the

excitation spectrum.

model proposed in [29]. Remark that the difference of charge can be absorbed through the

formation of a Cooper pair inside the superconductor. The reverse process of the reflection of a

hole into an electron involves the destruction of a Cooper pair. For an experimental detection

of Andreev reflection, see for example Ref. [32] which is an interferometric experiment where a

normal metal wire contacts a superconducting fork electrode.

The problem was first tackled by Andreev in the seminal paper [14] in the quasi-classical

limit of ∆/µ << 1 where the BdG problem (1.1.18), with U(r) = 0 and A(r) = 0 in (1.1.15), can

be rewritten in terms of slow varying amplitudes

u(r) = eikFn.rη(r) and v(r) = eikFn.rχ(r) , (1.2.1)
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according to − [ivFn.∂r + E] η(r) + ∆(r)χ(r) = 0 ,

∆∗(r)η(r) + [ivFn.∂r − E]χ(r) = 0 ,
(1.2.2)

where the Fermi velocity is defined as vF = kF /m. Andreev considered the limiting cases

corresponding to normal bulk where ∆(r) = 0 and superconducting bulk where ∆(r) = ∆0 is

constant. Rather considering a slow-varying gap on the Fermi wavelength scale λF = 2π/kF , a

Schrödinger equation can be obtained for χ (and also for η) [33]{
−v2F (n.∂r)

2 −
(
E2 − |∆(r)|2

)}
χ(r) = 0 . (1.2.3)

Choosing the z axis along the direction of space variation of the gap function ∆(r) = ∆(z) and

considering a unit vector n orthogonal to the transverse momentum, we get a one-dimensional

equation and a WKB (for Wentzel-Kramers-Brillouin) quasi-classical approximation [34] yields

the general solution as χ ∝ (χ+ + rχ−), which is a superposition of electron-like (χ+) and

hole-like (χ−) wave packets

χ±(z) ∝
1√
|k(z)|

e±i
∫ z dz′ k(z′) where k(z) =

1

vFnz

√
E2 − |∆(z)|2 . (1.2.4)

Consider now a Normal metal - Superconductor (N-S) interface. The pairing potential ∆(z) will

be a smooth and increasing function that vanishes inside the normal metal ∆(−∞) = 0 and

takes a finite value inside the superconductor ∆(+∞) = ∆0 which is supposed to be real. For

E < ∆0, an electron-like wave packet propagating from left to right will reach a classical turning

point z0 such that ∆(z0) = E (where the quasi-classical approximation breaks down) and will be

reflected as a hole-like wave packet. The energy can be considered as a function of k and z [33]

E(k, z) =
√

(vFnzk)2 +∆2(z) (1.2.5)

and semi-classical (Hamilton) equations read
dz
dt =

∂E

∂k
=

(vFnz)
2

E
k(t) ,

dk
dt = −∂E

∂z
= −∆(z)

E

∂∆

∂z
.

(1.2.6)

The particle has a momentum k(t) that decreases with time then vanishes at time t0 when

reaching the turning point such that z(t0) = z0 (and ∆(z0) = E). For t > t0, the momentum

still decreases becoming negative such that the group velocity ∂E
∂k = dz

dt becomes negative. Such

a quasi-classical picture of Andreev reflection can be adopted when looking at the excitation
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2Δ

e-

h+

S

2Δ

S N

Figure 1.5: Andreev bound state as a result of constructive interferences between Andreev reflections on

both N-S and S-N interfaces of a short S-N-S junction. At the N-S interface, the electron is reflected into

a hole and charge conservation requires a Cooper pair to be created inside the right superconductor while

at the S-N interface, the hole is reflected back as an electron and a Cooper pair must be removed from

the ground state of the left superconductor. As a result, Cooper pairs are transfered from left to right.

The other Andreev bound state would involve reverse propagations for the quasiparticles (electron going

from right to left) so that Cooper pairs would be transfered from right to left. Consequently Andreev

bound states carry opposite current.

spectrum along the propagation of an electron-like excitation [35] as illustrated in Fig. 1.4. In

the forward motion (from left to right) the quasiparticle progressively climbs down the electron

branch with a decreasing velocity ∂E
∂k and reaches the turning point where the velocity vanishes.

Then, it goes backward (negative velocity) and climbs up the hole branch.

In a S-N-S junction designed by adding a superconductor on the left of the N-S junction, there

are two turning points for carriers with energies smaller than both gaps, leading to a succession of

Andreev reflections that can interfere coherently requiring a quantization of the phase acquired

along a round trip (Bohr-Sommerfeld quantization [34]) so that bound states can exist. A little

more detailed description of the emergence of these so-called Andreev bound states is presented

in the following section.

1.3 Andreev bound states and Josephson current

Considering the simple one-dimensional problem [36] with a step gap function ∆(x) = ∆0eiφΘ(x),

an incident electron with subgap energy E < ∆0 and wavevector k(0)+ =
√

2m(µ+ E) can be

reflected into a hole with wavevector k(0)− =
√

2m(µ− E). This Andreev reflection process

goes with some penetration inside the superconductor as an evanescent wave with wavevector
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Figure 1.6: Andreev energy and Josephson current in a short superconducting constriction for different

transmissions T (key given in the right panel).

k
(1)
+ =

√
2m
(
µ+ i

√
∆2

0 − E2
)

according to

Ψ(x) = Θ(−x)

eik
(0)
+ x

1

0

+ reik
(0)
− x

0

1

+Θ(x) teik
(1)
+ x

1

γ

 where γ = e−iacos E
∆0

−iφ .

(1.3.1)

The continuity around z = 0 gives r = γ. Remark that, in the limit E/µ << 1, the change in

momentum is k(0)+ − k(0)− ∼ 2E
vF

so that dephasing occurs over distances ∼ vF /E (the coherence

length ξ ∝ vF /∆ gives a lower bound). To maintain coherence in a ballistic S-N-S junction, the

length L of the normal region should not exceed the characteristic length of dephasing L < vF /E

or alternatively the energy should remain lower than the Thouless energy E < ETh = vF /L. In

a diffusive S-N-S junction (coefficient D), the mean free path substitutes to the coherence length

and the Thouless energy, not to exceed in order to maintain coherence, reads ETh = D/L2.

Then in a short enough S-N-S junction, an electron can be reflected into a hole which can be

reflected back into an electron, as schematized in Fig 1.5, leading to a bound state, providing

constructive interferences (leading to discrete levels). In the short junction limit L∆/vF << 1,
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one can neglect propagation in the normal region and obtain a pair of Andreev bounds states

|γ|2e±iδφ = 1 ⇒ E0
±(δφ) = ±∆ cos δφ

2
, (1.3.2)

which oscillates as a function of the phase difference δφ = φR − φL between right and left

superconductors. In the general case, a transcendental equation has to be solved [36] and a

set of pairs of bound states is obtained with a low-energy level spacing ∝ vF /d between these

pairs, where d is the length of the normal region. In Eq. (1.3.1), backscattering due to normal

reflection has been neglected in the limit ∆/µ << 1. A full treatment which takes into account

finite transmission T < 1 would lead to a coupling of the two perfect transmission states with

energies E0
± and to an avoided crossing at δφ = π, according to

E±(δφ) = ±EA(δφ) with EA(δφ) = ∆

√
1− T sin2 δφ

2
. (1.3.3)

It is displayed in Fig. 1.6. In Chapter 5, we will calculate the Andreev bound states around a

Dirac delta scatterer in a superconducting wire. We will recover the last result.

As mentioned earlier, due to charge conservation, an Andreev reflection should be accom-

panied with the creation or a destruction of a Cooper pair from the BCS ground state of the

superconducting material. As a result, a bound state is formed providing Cooper pairs are

transmitted from one superconductor to the other as illustrated in Fig. 1.5. This equilibrium

(phase-driven) DC supercurrent was predicted within the BCS framework by Josephson in his

seminal work [15]. In Chapter 5, we will also provide an expression for the Josephson current:

bound states carry opposite currents I±(δφ) ∝ ∂E±
∂(δφ) so that the average current at zero temper-

ature reads (in such a limit only the lowest Andreev state is occupied, for finite temperature the

difference of Fermi factors is involved as a prefactor)

⟨I(δφ)⟩ = −e ∂EA
∂(δφ/2)

=
T

2

sin δφ√
1− T sin2 δφ

2

e∆ . (1.3.4)

It is also displayed in Fig. 1.6. Remark that in the limit of low transmission T << 1 (tunnel

regime), we recover the phenomenological prediction ⟨I(δφ)⟩ = Ic sin δφ [37], established using

the pseudowavefunction Ψj =
√
nj eiφj (where nj is the number of Cooper pairs in the super-

conductor Sj and φj is their phase) introduced as an order parameter in the Ginzburg-Landau

formalism [9]. Josephson current is indeed a phenomenon which occurs in a great variety of weak

links between superconductors. It is a macroscopic manifestation of quantum coherence which

has been observed soon after its prediction [38]. The study of these different kinds of junction

supporting a supercurrent include the computation of the critical current Ic following the work

by Ambegaokar and Baratoff [39,40].
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Figure 1.7: First order phase transition in a S-QD-S junction (the key is given in the bottom left

panel). The energy level ε = −2∆ is negative so that the π phase is achievable. Other parameters are

γ = 0, Γ = ∆, β−1 = 0.01∆.

1.4 π junction

Interestingly, the critical current could be negative [41, 42] in the so-called π junctions where

the Josephson current reads Ic sinφ = |Ic| sin (φ+ π). A derivation for such a negative cou-

pling was proposed for a magnetic impurity localized between two superconducting grains [43].

This argument used perturbation theory in the coupling between the impurity and the grains.

Nevertheless it was confirmed by a non-perturbative treatment of a single dot embedded in a

Josephson junction (S-QD-S junction) followed by a numerical investigation of the phase tran-

sition which occurs in such a system [44]. We do not enter into the details because it will be

further done in Chapter 3 when modelizing a SQUID experiment where two S-QD-S junctions

will enclose a magnetic flux as a probe for Cooper pair splitting [19]. A path integral formulation

of the partition function Z is used and a free energy is defined as F = β−1lnZ where β−1 is the

temperature (if Boltzmann constant is taken as unity kB = 1). To include Coulomb interaction,

a Hubbard-Stratonovich transformation is employed and a auxiliary parameter X∗ is then in-
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Figure 1.8: Mean occupation number diagram of the quantum dot in a S-QD-S junction for symmetric

couplings (γ = 0) and for Γ = ∆, β−1 = 0.02∆.

troduced. Two parameters characterize the isolated level of the quantum dot, namely its energy

ε and the on-site Coulomb interaction U . Coupling parameters between the superconducting

leads and the quantum dot also enter the description of the S-QD-S junction and can be recast

into two quantities which are the decay rate Γ of the quantum dot and the asymmetry γ of the

junction.

The phase in which standard positive critical current (positive Josephson current for φ ∈ [0, π])

is recovered is denoted as the 0 phase. It can be further separated between a 0(0) phase where

the dot is almost empty and a 0(2) phase where the mean occupation number of the dot is almost

2. The π phase is associated with an anomalous negative critical current (negative Josephson

current for φ ∈ [0, π]) and corresponds to a singly occupied dot.

Both the Josephson current and the mean occupation number can be written as first order

derivatives of the free energy, ⟨I⟩ = 2e∂F∂φ and ⟨n⟩ = ∂F
∂ε̃ where ε̃ = ε+U/2, so that both quantities

undergo a discontinuity at the (first order) phase transition. This is illustrated in Fig 1.7 where

the Coulomb interaction U is tuned across the critical point Uc (all other parameters are fixed)

so that the system originally in the 0(2) phase evolves into a π phase: in the intermediate regime,
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Figure 1.9: Three lowest order MAR. Adapated from [46]

the discontinuities are visible. In the same figure, we also provide the evolution of the free energy

and of the magnetization X∗/U . While the free energy displays a single local minimum in the 0

phase (located in φ = 0) and in the π phase (located in φ = π), two local minima are encountered

in the intermediate regime. The magnetization takes no vanishing values as soon as the 0 phase

is exited. Computing the mean occupation number on the quantum dot in the (−ε, U) plane

reveals the presence of all three phases, as shown in Fig. 1.8, where the π phase, which lies

around the line ε̃ = 0, separates the 0(0) and 0(2) phases. These predictions have been verified

experimentally a decade ago [45].

1.5 MAR processes

When a voltage is applied between the two superconductors of a Josephson junction, the phase

difference becomes time-dependent as described by the Josephson relation

dδφ
dt = 2eV , (1.5.1)

so that a constant voltage drop leads to the Josephson AC effect ⟨I(φ)⟩ = Ic sin (φ0 + 2eV t) as

predicted by Josephson [15]. Consequently, as soon as the voltage does not exceed the sum of the

gaps, above which quasiparticle tunneling dissipative current is expected, the (time-averaged)

current should vanish as no Cooper pairs are (permanently) transported from one superconductor
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(a) (b)

Figure 1.10: (a) Al quantum point contact realized with the break-junction technique which consists

in bending the substrate in a controlled way [47]. (b) I−V curves (the labels a-d correspond to different

channel transmissions) obtained in Ref. [47] displaying the MAR onsets in agreement with the tunnel

Hamiltonian approach of Ref. [48].

to the other. However, first evidences for subgap transport in a Sa−N−Sb junction beyond single

particle tunneling emerge in experimental I-V characteristics [49]: onsets in the excess current at

voltages ∆a and ∆b can be explained by taking into account double particle tunneling [50] possible

by involving Cooper pair transfer. This idea was precised in the so-called BTK (for Blonder,

Tinkham and Klapwijk) mechanism [16] by involving the process at the origin of Cooper pair

generation/destruction at N-S interfaces, namely Andreev reflection [14]. This approach relies on

the generalized semiconductor scheme for superconducting leads, that is a trajectory technique

considering that the only relevant factor is the density of states as a function of the energy.

A Multiple Andreev Reflection (MAR) is responsible for the promotion of a quasiparticle

just below the gap of lead a into the conduction band of lead b if Va > Vb. Let us suppose

∆a = ∆b ≡ ∆ for simplicity. If Va − Vb > 2∆/n, the incident quasiparticle can undergo

2 × floor(n/2) Andreev reflections involving the transfer of floor(n/2) Cooper pairs. The three

lowest order MAR processes are illustrated in Fig. 1.9. MAR processes explain the Subhamonic

Gap Structure (SGS) of I-V curves where onsets are visible at voltages 2∆/n.

Normal scattering was neglected in [16] and was later included in another approach, based

on the resolution of Boltzmann equations [51] that simply reduces to the KBT model in the

limit of no normal scattering. This last model (extended to include heating effects) was used to
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successfully describe I-V experimental curves [52].

The original idea [50] of Multiple Particle Tunneling (MPT) relies on a tunneling Hamiltonian

approach and faces some technical issues (divergences due to finite order perturbation theory). A

nonequilibrium Green’s function formalism was used to circumvent these difficulties [46]. In this

last work, the AC components of the Josephson current are also investigated and they exhibit

structures at the MAR thresholds. A scattering matrix approach recovering these results [53]

further investigates the low voltage regime in connection with the quasistationary Josephson

current carried by the subgap Andreev levels. Another scattering approach [54] in single channel

tunnel junctions was motivated by experimental results on break junctions [55]. Let us also

mention the study of low voltages in Ref. [56].

The Hamiltonian approach (and the original MPT idea) finally proved to be efficient when

treated in a non-perturbative way [48] and these single conduction channel results were used in

order to fit experimental data [47]. In the last Al quantum point contact experiment with several

conduction channels, the fit allows to extract the set of channel transmissions (Fig. 1.10). Shot

noise is also calculated in [57] and Fano factor effectively gives the effective transported charge

in a MAR.
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Chapter 2

Cooper pair splitting in a

Josephson junction geometry

In this chapter, we are interested in the enhancement of Cooper Pair (CP) splitting in a double

Josephson junction where two superconducting leads are bridged by two Quantum Dot (QD)

nanotubes/nanowires, as illustrated in Fig. 2.1. When used as a Superconducting QUantum

Interference Device (SQUID), a magnetic flux is inserted inside the area enclosed by the two

nanotubes/nanowires and the measurement of the Aharonov-Bohm (AB) oscillations of the criti-

cal current can give quantitative information about the nonlocal conduction processes which can

occur in this so-called nanoSQUID CP splitter [19].

The proposed diagnosis is a convenient alternative to the early proposals of CP splitters

which require out-of-equilibrium measurements which are difficult to achieve experimentally

(Section 2.1). The improvement in contacting QD nanotubes/nanowires to superconductors

together with the achievement of large QD charging energies [58, 59] motivated a theoretical

approach going beyond previous descriptions of the double Josephson junction [18, 60, 61] and

early qualitative evidences for CP splitting [59] motivated the search for a quantitative measure-

ment of the efficiency of this setup when used in a SQUID operation (Section 2.2). The path

integral formulation of the partition function (Section 2.3) allows to treat non-pertubatively the

couplings between superconductors and QDs, and a Hubbard-Stratonovich transformation fol-

lowed by a saddle-point approximation is used to deal with Coulomb on-site repulsion terms [44]

(Section 2.4). A systematic study of all possible phase associations for the QDs (0 or π junctions)

reveals that monitoring the energy levels of the QDs through gate voltages to impose single oc-

27



CHAPTER 2. COOPER PAIR SPLITTING IN A JOSEPHSON JUNCTION GEOMETRY
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Figure 2.1: NanoSQUID CP splitter practical realization: nanotube/nanowire QDs which energies can

be varied with gate voltages bridge two superconducting contacts.

cupancy (π phase) enhances the CP splitting (Section 2.5). Several limitations of the theoretical

approach developped here are mentioned and some ways to overcome them are envisaged as

possible extensions of this work (Section 2.6).

2.1 First proposals of Cooper pair splitters

The process of Andreev Reflection (AR) has already been introduced in Section 1.2 of Chapter 1.

When a superconductor is connected to a normal metal, the constituent electrons of a CP can be

transmitted through AR: a hole from the normal metal incident on the superconductor is reflected

as an electron in this same metal. If now two metallic contacts are connected to a superconductor,

the reflection can occur accross the two contacts if they are separated by a distance smaller than

the superconducting coherence length (Fig. 2.2a). This process called Crossed AR (CAR) is

responsible for CP splitting: the pair exits the superconductor and its two constituent electrons

propagate in two different metallic leads forming a nonlocal state with spin and orbital degrees

of freedom which are entangled. Evidently the local AR refered as Direct AR (DAR) can still

occur inside each metallic lead (Fig. 2.2b) and spoils the efficiency of the device operating as

a CP splitter. Another competing nonlocal process will occur in such a three-terminal device:

Electron Cotunneling (EC) [62] refers to the transmission of an electron from one metallic lead to

the other through the superconductor (Fig. 2.2c). EC is not based on AR and therefore no real

CP production/destruction is involved in this tunnel effect but it requires a virtual excited quasi-

particle state in the superconductor. EC is reminiscent of the normal behavior of the injecting
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Figure 2.2: Elementary processes which can happen when two metallic leads are contacted to a su-

perconductor. Two processes are based on AR: DAR occurs inside a single contact (local) while CAR

occurs across the two contacts (nonlocal). EC is a tunneling process across the two contacts (nonlocal)

which involves a virtual excited quasi-particle state in the superconductor.

material (when superconductivity is quenched by temperature or magnetic field) and spoils the

efficiency of the device operating as an electron entangler. Let us emphasize that the transmission

of the electrons originated from CPs inside the superconductor to the normal material, through

AR processes, is driven here by voltage biases (non-equilibrium setup) and CAR signatures are

expected in nonlocal/cross-junction (linear or differential) conductance measurements as well as

in the cross correlations of the currents flowing in the two outgoing leads.

An early theoretical proposal [63] for the manifestation of CAR relies on the measurement

of nonlocal current in a nanoscale two-contact tunneling device (Fig. 2.3a). Ferromagnets with

opposite polarizations (spin filtering for CAR enhancement to the detriment of EC) as contacts

were proposed [64] and a first experimental CP splitting signature was obtained in an aluminium

sample [65] (Fig. 2.3b). Nonlocal linear conductance Gσcross is different between parallel (σ =

+) and antiparallel (σ = −) alignement configurations of the spin valve. Below the critical
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(a) The cross-junction differential conduc-

tance ∂I1
∂V2

(V2, |x1 − x2|) measurement of a

superconducting sample should reveal CAR

process [63].

(b) SEM image of a sample used in [65]. The

Aluminium sample is connected to ferromag-

netic iron contacts. Nonlocal linear conduc-

tance Gcross = IA/UB is different between

parallel and antiparallel alignement configu-

rations of the spin valve and this difference in

the superconducting state is explained by EC

and CAR nonlocal processes.

Figure 2.3: Nonlocal conductance as a probe of CP splitting [63,65].

temperature, the spatial dependance of this difference ∆Gcross = G+
cross −G−

cross is in agreement

with a theory describing both CAR and EC processes in a dirty superconductor [62, 66, 67].

The first CAR evidence in a device with normal leads was claimed later on [68]. In this N-S-N

multilayer setup, a current is injected inside one of the N-S junctions and the voltage response

across the second one is measured has a function of the energy of the injected electrons. The

sign change in samples with a sufficiently thin superconducting layer proves that CAR and

EC processes (responsible for opposite sign contributions) have energy dependences that can be

exploited in order to build an efficient electron entangler (where CP splitting is favored). Multiple

parallel normal leads were coupled across a superconducting lead and allow spatial dependence

analysis [69] in agreement with theoretical predictions in the extended contact limit [66]. The

experimental works [65, 69] agree with the theoretical exponential supressions of EC and CAR

effects on a length scale given by coherence requirements (BCS coherence length ξ0 in a clean

superconductor or dirty coherence length ξ̃ =
√
lξ0 in a diffusive superconductor with mean free

path l) with eventual algebraic prefactors (1/r2 in the clean limit and 1/r in the dirty limit

and none for extended contacts which width is much larger than coherence length) [66]. The

oscillating behavior on the Fermi wavelength scale obtained for ponctual contacts, reminiscent
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of the surprising result that the entanglement length in the BCS ground state is given by Fermi

wavelength and not coherence length [70], is averaged by integration over the finite size of the

injection regions [62,66].

The study of the noise in mesoscopic devices is a powerful tool to probe the statistics of the

charge carriers [71]. In a “Y”-shaped structure, the nature of the injecting branch is important

for the prediction of the cross correlations ⟨∆I1∆I2⟩ between the currents I1 and I2 flowing in

the two outgoing normal branches. An all-normal fork will lead to negative correlations as a

consequence of Fermi statistics: this is the fermionic version of the Hanbury Brown and Twiss

(HBT) experiment [72] that displays antibunching effect. However, if the injecting material is

superconducting then the question of the sign of these correlations remains open [73]. Assum-

ing the spin singlet nature reminiscent of Cooper pairing in the injector to be preserved in the

vicinity of the N-S interface, one expects bunching effect [74] and eventually positive correla-

tions. This bunching effect originates in the injection of the constituent electrons of CPs from

the superconductor to the normal metal or alternatively in the CAR of a hole into an electron

in the normal metal. In the generalization of the Landauer-Buttiker scattering theory of trans-

port for multiterminal mesoscopic normal devices [75] to include a superconducting region, one

prescription was to add an index representing the conducting species (e for electron and h for

hole) to every contact in order to take into account the AR processes responsible for electron to

hole (and vice versa) conversions [76]. In the calculation of the noise cross correlations between

contacts i and j of an hybrid device, i.e. including superconducting material, the anomalous

positive components ⟨∆Iie∆Ijh⟩ + ⟨∆Iih∆Ije⟩ add to the standard normal scattering negative

components ⟨∆Iie∆Ije⟩+ ⟨∆Iih∆Ijh⟩ and while the resulting sign is generally undetermined, an

Andreev interferometer setup was proposed to obtain positive correlations (Fig. 2.4). The possi-

bility to achieve positive correlations in a HBT experiment in the vicinity of a N-S interface has

been confirmed in a theoretical work based on the same scattering approach [77]. Considering

the original proposal for CAR manifestation [63], that is two normal biased leads weakly coupled

to a grounded superconducting sample, the lowest order of perturbation theory in the subgap

regime (voltages and temperature much smaller than the gap energy) involves nonlocal CAR and

EC as well as DAR on each lead [78]. Current cross correlations in this regime are only due to

nonlocal processes which contribute with opposite signs: CAR leads to a positive contribution

contrary to EC.

In order to characterize the entanglement in the vicinity of a N-S junction, a fork geom-

etry for the normal lead associated to spin-selective or energy-selective filters inside the leads

31



CHAPTER 2. COOPER PAIR SPLITTING IN A JOSEPHSON JUNCTION GEOMETRY

(a) Andreev interferometer. (b) The noise cross correlations N12 can ei-

ther be positive or negative depending on the

phase difference ϕ2 − ϕ1.

Figure 2.4: Bunching effect between electrons in hybrid mesoscopic devices can be evidenced in noise

measurements [76].

were considered [79] in order to enhance the CAR process and quantify the efficiency of the

entanglement in the selected degree of freedom by measuring (positive) noise cross correlations.

Energy filtering is commonly retained and as a result spin is the degree of freedom which en-

tanglement is measured. Bell Inequality (BI) tests involve the measurement of particle number

correlators but in the limit of a large counting time BI can be reformulated in terms of cur-

rent cross correlators and potentially violated in a “Y”-shaped N-S tunnel junction with energy

filters (spin entanglement) and ferromagnets as spin polarizers [80]. In order to supress DAR

processes and therefore favor nonlocal processes, electron-electron interactions can be used. QDs

in the Coulomb blockade regime between the injecting superconductor and the normal metal

leads were proposed in order to enhance the CP splitting [81] (see Fig. 2.5a for the proposed QD

CP splitter setup). T matrix calculations were performed to compute separately the currents

due to lowest order perturbation processes that lead to the transport of a CP in such a device.

The parasitic tunneling processes through a single QD which involve either direct AR on the QD

with a resulting double occupancy or sequential tunneling are suppressed (with respect to the

CAR process) respectively by large Coulomb on-site repulsion and large superconducting gap

energy. Interestingly the CAR process features a resonance for opposite QD energies and it was

stressed that the electron constituents of the spin singlet delocalized on the two QDs can achieve

a degeneracy of orbital energies crucial for bunching effect. The working regime of this entangler

(when CAR is enhanced) has been further studied by the use of a density matrix formalism that

describes the mixing of theses processes (through EC) and the derivation of quantum master
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(a) Theoretical proposal [81]. (b) Colored SEM image of the device

used in [86,87].

Figure 2.5: Theoretical proposal [81] and first experimental implementation [86] of the QD CP splitter.

equations [82]. The same formalism was used in order to compute spin current (Ispin
i = I↑i − I

↓
i )

noise and the associated Fano factor which was proposed as an alternative tool to probe the

efficiency of the entangler, the ultimate characterization remaining the BI tests [83]. The same

setup was studied later on and the current correlations were expressed in terms of two-particle

Green’s functions of the QD electrons [84]. It was confirmed that opposite QD energy levels

favors the CAR process and that the associated positive noise cross correlations are enhanced by

on-site Coulomb repulsion [85]. This setup has raised a lot of interest since its practical realiza-

tion has been achieved using an InAs semiconducting nanowire realizing a double QD connecting

an Aluminium superconducting source to two metallic drain contacts [86, 87]. Fig. 2.5b is a

Scanning Electron Microscopy (SEM) image of the device. Evidence for CP splitting in linear

conductance measurements was claimed [86] (Fig. 2.6a) and further investigations, albeit in a

different measuring scheme, adress the competition between CAR and EC processes while tuning

through a QD resonance [87]. CAR manifestations were also reported in [88] where differential

conductances were measured through anticrossings of the “honeycomb” stability diagram of a

double QD engineered in a Single Wall Carbon NanoTube (SWCNT). The efficiency of CP split-

ting was estimated in a similar experiment [89] to a value close to BI violation requirement. A

further step towards a quantitative measure of the entanglement in such a geometry has been

achieved by the measurement of positive noise cross correlations [90]. In this InAs nanowire QD
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(a) Nonlocal conductance signature of CP

splitting [86]. When the source is super-

conducting (T < Tc) ∆G1(Vg2) (red dots)

strongly differs from the classical expectation

(grey curve) and is positive at Coulomb peaks

(maxima of the green curve G2(Vg2)).

(b) Noise cross correlations are maximally

positive at a resonance for both QDs and are

suppressed when a magnetic flux quenches

superconductivity [90]. This bunching effect

originates in the CP splitting operating in the

device.

Figure 2.6: CAR manifestations in a QD CP splitter [86,90].

CP splitter, below the critical temperature of the Aluminium injector, positive correlations are

obtained around a resonance for both QDs and they vanish as soon as a magnetic flux quenches

superconductivity (Fig. 2.6b). Let us mention that a less convincing claim (a simpler geometry

without filtering for CAR enhancement is used) was communicated earlier [91]. An alternative

to QDs was proposed in the use of Luttinger liquid nanowires [92, 93] but to our knowledge it

has not met experimental implementations yet.

Let us emphasize that CAR processes are intimately related to entanglement, which consti-

tutes yet another motivation for perfecting our understanding of such processes. Indeed, when

the two electrons of a CP are separated in two different normal metal electrodes, one expects

that the entanglement of the spin degrees of freedom is preserved because the tunneling processes

are spin-preserving. CAR processes thus create pairs of spatially separated entangled electrons.

We have already mentioned that tests of quantum entanglement, based on BI violation, could

be implemented via noise cross correlation measurements [80, 83]. Moreover, these ideas can be

extended to quantum information and computation problematics. They have been applied for
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↑↓ ↑↓

↑↓ ↑↓

↑↓ ↑↓

Figure 2.7: The three different processes involved in the transmission of a CP in the nanoSQUID CP

splitter: the two electrons can either be both transmitted through the upper QD (top left), through the

lower QD (top right), or the CP can be split with one electron transmitted through each QD (bottom).

example to the paradigm of quantum teleportation [94,95].

2.2 Cooper pair splitting in an equilibrium setup

All the experimental works highlighted in Section 2.1 rely on non-equilibrium measurements.

Noise cross correlation measurements achieved in [90] represent a considerable ordeal due to the

poor signal to noise ratio, and no attempt has been made so far to reproduce them. In order to

circumvent these difficulties a Josephson (equilibrium) geometry was proposed [18]: two QDs are

placed between two superconductors and materialize two spatially separated conduction channels

for the constituent electrons of a CP which can tunnel from one superconductor to the other

driven by an applied phase difference. Fig. 2.7 illustrates the different possible processes: the

two electrons can either pass both through a given QD or they can transit through different

QDs and realize CP splitting through a CAR process at the boundary of the superconducting

source (the recombination on the superconducting drain involves a second CAR process). This

double Josephson junction with embedded QDs realizes an AB interferometer and we will refer

to this setup as the nanoSQUID CP splitter [19]. In the presence of a magnetic flux Φ = α
2πΦ0

(Φ0 = h/e is the flux quantum), electrons experience a path dependent phase shift. When a

CP tunnels as a whole through a single QD, it accumulates a phase shift ±α (± depending on

which QD) in addition to the phase difference ϕ between the two superconductors. However,

when the Cooper pair is delocalized on the two QDs, one electron gets a phase shift +α
2 while
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the other one gets a phase shift −α2 , the pair accumulating as a result no additional phase shift.

The Josephson current at the lowest order in the transmission probabilities (where only the three

processes illustrated in Fig. 2.7 are relevant) can be written as

J(ϕ, α) = I1 sin (ϕ+ α) + I2 sin (ϕ− α) + ICAR sinϕ . (2.2.1)

The associated critical current then reads

Jc(α) = maxϕ |J(ϕ, α)| = I0
√
1 + a cosα+ b cos 2α (2.2.2)

where we define

I0 =
√
I21 + I22 + I2CAR , I20 a = 2ICAR (I1 + I2) and I20 b = 2I1I2 . (2.2.3)

The critical current as a function of the AB flux should be π periodic if electrons are not split

between the two QDs (if ICAR = 0 ⇒ a = 0) and 2π periodic if CP splitting is effective (as

soon as ICAR ̸= 0) [60]. Each of the three processes illustrated in Fig. 2.7 can be uncovered

with different successions of elementary tunneling processes. The original proposal [18] which

focuses on a configuration with singly occupied QDs (negative QD energy levels and infinite

on-site repulsion) identifies these successions (see Fig. 2.8) in their perturbative calculations.

Some of them can be suppressed if they involve intermediate virtual states with large energy

deviation from the ground state energy. Diagnoses to probe the spin state (singlet or triplet)

of the electrons on the QDs were proposed [18, 60] in the limit ϵ/∆ << 1 where all processes

involving multiple quasi-particle excitations in the superconductors are suppressed (processes

(a) and (b) in Fig. 2.8 for instance), in particular AB flux-dependent processes. The effective

Hamiltonian can be expressed in terms of the spin operators Sa (a = 1, 2) of the dots

Heff ∝ S1.S2 −
1

4
=

 − 1 for a singlet state,

0 for a triplet state.
(2.2.4)

The process (c) in Fig. 2.8 will contribute to the current if the QD electrons initially in a singlet

state could be combined as a CP in one superconductor and could be regenerated by CP splitting

from the other superconductor. Remark that these diagnoses rely on the single occupancy of

the QDs. In a configuration with empty QDs (positive QD energy levels) for instance, the

AB flux-dependent processes do not necessary involve multiple quasi-particle excitation virtual

states. Let us mention the complementary perturbative calculations [60] of the currents in such

a configuration with finite on-site Coulomb repulsion. Proposing a more general diagnosis, in
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Figure 2.8: Some of the fourth order (in the tunneling amplitudes) processes which can occur in

the nanoSQUID CP splitter in a configuration with singly occupied QDs [18]. In process (a) the two

constituent electrons of a CP tunnel through a single QD and it involves a virtual state with two quasi-

particle excitations. Processes (b), (c) and (d) involve CP splitting. Process (b) involves a virtual state

with two quasi-particle excitations contrary to processes (c) and (d) with at most one quasi-particle

excitation. Remark that process (d) does not lead to effective charge transport and therefore does not

contribute to the current.

particular independent of the occupancy of the QDs in the ground state of the system, is a

first motivation for the present work. Analysing the AB flux dependence of the critical current

could give quantitative information about CP splitting based nonlocal phenomena in the whole

parameter space.

First we have to define a CP splitting efficiency in terms of AB oscillation measurements. We

need a way to quantify contributions to the Josephson current which involve CP splitting. For

that, we start by discussing the case of low electron transmission, where intuition can be gained

from simple perturbation theory. We have already introduce the three lowest order processes

(illustrated in Fig. 2.7) that contribute to the transmission of a CP, which is the elementary

supercurrent charge. If we are able to extract the three associated amplitudes I1, I2 and ICAR

that enter the expression (2.2.1) of the Josephson current, e.g. from a fit of the AB critical

current (2.2.2), we can calculate the quantity

rt =
I2CAR

I21 + I22 + I2CAR
(2.2.5)

which encodes the splitting efficiency of the double Josephson junction. It varies between 0

and 1 and rt = 1 (⇔ I1, I2 << ICAR) is obtained when the spatial delocalization of the two

electrons of the transmitted CP (CAR process or CP splitting) is much more favored than

the tunneling processes of the whole CP through a single QD, contrary to the case rt = 0

37



CHAPTER 2. COOPER PAIR SPLITTING IN A JOSEPHSON JUNCTION GEOMETRY

(⇔ ICAR << I1, I2). The CAR process is suppressed by a large separation of the injection

points in the superconductors, compared to the superconducting coherence length, and such a

configuration can be used as a benchmark for an estimation of local processes. On the contrary, it

is maximally favored when the contacts are brought together within a distance much smaller than

the superconducting coherence length. A parameter η ∈ [0, 1] will be introduced in Section 2.4

to tune the prominence of CAR processes in a phenomenological way. Its extremal values encode

the two cases we have just mentioned:

• η = 0 for infinitely distant injection points, i.e. much more separated than the supercon-

ducting coherence length,

• η = 1 for coinciding injection points, i.e. much closer than the superconducting coherence

length.

An alternative way to obtain the quantity (2.2.5) involves the mean powers of the critical current

obtained in these two cases η = 0 and η = 1:

r =
|Pη=1 −Pη=0|
Pη=1

with Pη =

∫ 2π

0

dα [Jηc (α)]
2
. (2.2.6)

This quantity which can be computed regardless of the strength of the coupling between the su-

perconductors and the QDs, generalizes the concept of splitting efficiency to the case of arbitrary

transmission, and coincides with the definition (2.2.5) of rt in the tunneling regime.

Let us discuss now the feasibility of such an experiment. For CP splitting to be efficient,

the distance between the injection points to the QDs on both superconductors must not exceed

the superconducting coherence length (ξAl = 1.6µm, ξNb = 38 nm [96]), which constrains the

area threaded by the AB flux. If the applied magnetic field required to apply a few flux quanta

becomes larger than the critical field of the superconductors (Hc
Al = 10−2 Teslas, Hc

Nb = 0.2

Teslas [97, 98]), the whole diagnosis breaks down. Working with SWCNT [99] or nanowire QDs

could be a good option. Indeed their large aspect ratio (∼ micrometer length for ∼ nanometer

diameter [99]) can optimize the area: one can imagine to bend the wires so that the connections

on each superconductor are separated by a distance smaller than the superconducting coherence

length (Fig. 2.1) and expect an area of the order of the µm2. Imposing two magnetic flux

quanta within such an area requires a magnetic field of 8 × 10−3 Tesla, which is still smaller

than the critical fields of Aluminium and Niobium. A charging energy Ec = 2.6 meV has been

measured in SWCNTs [99] and it has to be compared with typical gap energies (2∆Nb = 3.05

meV, 2∆Al = 0.34 meV [96]). Despite the fact that Aluminum has a lower critical temperature
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(a) Atomic Force Microscope image of the

CNT SQUID device.

(b) AB flux dependence of the switching current.

One of the two Josephson junctions is in a π phase

while the other one is tuned (via a gate voltage

monitoring the QD energy level) through a transi-

tion from 0 (black curve) to a π (blue curve) phase.

Figure 2.9: CNT SQUID experiment [58].

and lower critical field than Niobium, this material is probably more suitable for the realization of

the nanoSQUID CP splitter due to its small enough gap energy (so that large enough charging

energies are available ∆Al << Ec) and its long coherence length (so that CP splitting can be

optimized).

Previous descriptions [18,60] using lowest order perturbation theory in the tunneling Hamil-

tonian turn out to be insufficient considering progress in the improvement of the contact of

SWCNTs to superconducting electrodes and consequently, the achivement of large transmis-

sion between the resulting QDs and the leads. In the first experimental realization of a CNT

SQUID [58], the superconducting material (Pd/Al bilayer) of the SQUID loop was deposited by

electron-beam lithography on the SWCNT (see Fig. 2.9a) and a tunnel rate hΓ = 1 meV was

measured which is not negligible compared to gap energy 2∆ = 0.12 meV and Coulomb energy

Ec = 6 meV. In parallel InAs QD Josephson junctions [59] (see Fig. 2.10a), high charging energies

(U ∼ 2 − 5 meV) and QD-lead tunnel couplings Γ ∼ 0.1 − 1.5 meV (to be compared with the

gap energy ∆ ∼ 130µm) have been reported.

Let us precise that CP splitting is not efficient in the CNT SQUID experiment [58]: only
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(a) SEM image of the device.

(b) Differential conductance as a function of gate

voltages dI
dVSD

(Vsg1, Vsg2) displaying a Coulomb

blockade diamond diagram. Traces A and C give

respectively the ON and OFF resonance signals for

QD 2 in Fig. 2.10c.

(c) Switching current signals. Points 3 and 4 cor-

respond respectively to even (e) and odd (o) parity

for the occupation number of QD 1 (see Fig. 2.10b).

Point 3 is taken as a reference level and the 35% dif-

ference at point 4 between traces A and C gives an

estimate for the contribution of nonlocal transport

processes.

Figure 2.10: Parallel InAs QD Josephson junctions [59].
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the normal SQUID Φ0/2 = h/(2e) periodicity of the switching current (which can be considered

as equivalent of the critical current in the present discussion) as a function of the AB flux was

observed (no doubling of periodicity as a result of CP splitting). The two parallel Josephson

junctions are independent and CPs tunnel from one superconductor to the other through a single

QD as CAR processes responsible for CP splitting are prohibited by a too large separation of the

CNT contacts. This is the case η = 0 which is used as a benchmark to estimate local transport

phenomena in the diagnosis of CP splitting we propose. An interesting result concerns the

influence of the parity of the number of electrons on each CNT arm of the SQUID device. While

the parity of one of the arms is fixed, the parity of the other one is changed and consequently

the switching current undergoes a Φ0/4 phase-shift which is attributed to the reversal of the

sign of the Josephson current through the junction which is tuned accross a 0−π transition (see

Fig. 2.9b).

Let us mention that the experiment [59] with parallel InAs QD Josephson junctions was not

studied in a SQUID operation because of a too small enclosed area. Nevertheless, CP splitting

demonstration was claimed in measurements of switching currents Isw. Gate voltages Vsg1 and

Vsg2 allow to monitor the energy levels of the QDs 1 and 2 and displace in the Coulomb blockade

diamond diagram (see Fig. 2.10b). A reference signal IQD2=OFF
sw (Vsg1) is taken when QD2 is

OFF resonance so that it mostly originates from local transport through QD1 and then an ON

resonance signal IQD2=ON
sw (Vsg1) is recorded (see Fig. 2.10c). The difference ∆Isw = IQD2=ON

sw −

IQD2=OFF
sw is studied as a function of Vsg1 on a range which extends over two different parity

states of QD 1 on each side of a resonance. When QD1 is OFF resonance, ∆Isw = ∆I
(2)
sw +∆I

(12)
sw

has a contribution ∆I
(2)
sw from local processes through QD2 and a contribution ∆I

(12)
sw from

nonlocal processes. The first contribution does not depend on the parity of QD1 (the interdot

coupling is proved to be negligible), so that taking the difference of the signals for two different

parity states of QD1 gives an estimate of the (parity-dependent) nonlocal contribution.

A formalism based on nonequilibrium Green’s functions was used in [61] to deal with arbitrary

coupling strengths between the superconducting leads and the QDs but CP splitting is clearly not

a motivation of this study since Coulomb repulsion on the QDs is neglected. Motivated by the

experimental realizations [58, 59], the present work aims at adressing arbitrary transmissions at

the contacts of the nanotube/nanowire QDs on the superconductors and at taking into account

the QD Coulomb charging energies. For that, we use a path integral formulation of the partition

function of the system. A Hubbard-Stratonovich transformation is performed in order to deal

with the Coulomb interaction (non quadratic) term that enters the Euclidean action and a saddle-

41



CHAPTER 2. COOPER PAIR SPLITTING IN A JOSEPHSON JUNCTION GEOMETRY

point approximation is used to obtain numerical results. This is a generalization to two QDs of

the formalism developed in [44] which was sufficient to study the 0-π transition of a single QD

embedded in a Josephson junction. It has already been introduced in Section 1.4 of Chapter 1,

that depending on its energy level position, on its on-site Coulomb repulsion and on its decay

rate to the leads, three phases can be distinguished:

• the π phase where the QD is singly occupied,

• the 0(0) phase where the QD is empty,

• the 0(2) phase where the QD is doubly occupied.

A goal of the present work is to propose a comparative study specifying which combination of

the QD phases may enhance the CP splitting signature in the AB signal.

2.3 Path integral formulation of the partition function

In the following ℏ = kB = e = 1. The device is illustrated in Fig. 2.1. For simplicity, the two

leads (labeled j = L,R) consist of the same superconducting material with chemical potential

µ and gap energy ∆. ψ̂†
jkσ denotes the creation operator for an electron with momentum k and

spin σ =↑, ↓ in the superconductor j. We introduce the Nambu spinors

ψ̂jk =

 ψ̂jk,↑

ψ̂†
j(−k),↓

 (2.3.1)

and the Pauli matrices σi (i = x, y, z) that act in Nambu space, useful to write the BCS Hamil-

tonian of the lead j as

Ĥj =
∑
k

ψ̂†
jk

{(
k2

2m
− µ

)
σz +∆σx

}
ψ̂jk . (2.3.2)

The two nanotube/nanowire QDs (labeled a = U,D) are placed in the nanogap between the two

electrodes. The energies εa of the QDs can be monitored via gate voltages. Non zero charging

energies of these QDs originate in Coulomb on-site repulsions Ua. d̂†aσ denotes the creation

operator for an electron with spin σ =↑, ↓ on the QD a. It is convenient to conserve the Nambu

structure and we introduce then

d̂a =

d̂a↑
d̂†a↓

 (2.3.3)
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so that the Hamiltonian of the QD a (Anderson-type impurity model) reads

Ĥa = εa
∑
σ=↑,↓

d̂†aσd̂aσ + Uan̂a↑n̂a↓ where n̂aσ = d̂†aσd̂aσ . (2.3.4)

By adjusting the QD energy levels εa and the Coulomb interaction parameters Ua, we expect

to filter the constituent electrons of CPs orginating from the superconducting source. Indeed,

negative energies favor occupation of the QDs while on-site Coulomb repulsion prohibits their

saturation (double occupation). The regime Ua >> ∆ > −εa > 0 is expected to favor CP

splitting. Another crucial requiremement for CP splitting observation resides in the separation

between injection points. It must not be much larger than the superconducting coherence length

so that the two electrons of a CP can travel through opposite QDs, realizing a CAR process on

the superconducting source, followed by an “inverse” CAR process on the superconducting drain:

this is the process of CP splitting and recombination with effective charge transport we want to

favor. The diagnosis presented in Section. 2.2 will involve two extreme cases. In the first one, the

injection points are infinitely distant, nonlocal CAR process is completely suppressed and only

local DAR processes occur: the constituent electrons of a CP both pass by a given single QD as

in the work [58]. In the second one, the injection points are considered as coinciding, CP splitting

is maximally favored (for given QD parameters) and DARs on a single QD are processes that

spoil the CP splitting efficiency. The main goal of the present study is to find QD parameters

which minimize these spoiling processes.

For given tunneling amplitudes tja between lead j and QD a, by adjusting the QD free

parameters, energy levels εa and Coulomb repulsions Ua (in practice only the energy levels

can be conveniently varied by additional gates), one can monitor the phases of the two single

parallel junctions: 0 phase with even occupancy and positive critical current or π phase with

odd occupancy and negative critical current [44]. For that a controllable phase difference ϕ

must be imposed accross the junction and it can be achieved by embedding the device in a

macroscopic SQUID [18]. This phase difference can be gauged out so that we can conserve the

Hamiltonian (2.3.2) (with ∆ real). Nevertheless, it will result in the appearance of Peierls factors

in the tunneling Hamiltonian. The diagnosis proposed in Section. 2.2 relies on the measurement

of the AB oscillations of the system: a magnetic flux Φ = α
2πΦ0 (Φ0 = h/e is the flux quantum),

which is in principle independent from the one imposed to trigger a DC Josephson signal between

the electrodes, threads the area enclosed by the nanotubes/nanowires. Another change of gauge

allows to conserve the Hamiltonian (2.3.2) and leads to additional phase shifts which are different

between the two paths that an electron can follow to reach the drain electrode (AB effect). The
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Figure 2.11: Path dependent phase shifts.

resulting tunneling amplitudes are given in Fig. 2.11. If we denote by rja the location of the

injection point from lead j to QD a, the tunneling Hamiltonian Ht reads

Ĥt =
∑
jka

eik.rja ψ̂†
jk Tja d̂a + h.c. (2.3.5)

where the tunneling matrices Tja are given by

TLU = tL σz e+i
ϕ−α

4 σz , TRU = tR σz e−i
ϕ−α

4 σz , (2.3.6a)

TLD = tL σz e+i
ϕ+α

4 σz , TRD = tR σz e−i
ϕ+α

4 σz . (2.3.6b)

The Hamiltonian of the nanoSQUID CP splitter reads

Ĥ =
∑
a=U,D

Ĥa +
∑
j=L,R

Ĥj + Ĥt . (2.3.7)

In the path integral formulation of statistical mechanics, the partition function is expressed as

a coherent state functional integral [100]. A coherent state |ξα⟩ is the eigenstate of an annihilation

operator âα. The associated eigenvalue aα (âα |ξα⟩ = aα |ξα⟩) is a Grassmann variable in the

case of a fermionic sytem, i.e.

[aα, aα′ ]+ = 0 . (2.3.8)

Conjugated variables aα are also defined and the generators {aα, aα}α form a Grassmann algebra.

The handling of Grassmann variables is explained with details in [101]. The collections of the

Grassmann variables daσ, ψjkσ and their conjugates in Nambu spinors da and ψjk are defined in

the same way as (2.3.1) and (2.3.3). The partition function is given by a functional integration

over paths that are β (β−1 is the temperature) antiperiodic [100]

Z =

∫
da(β)=−da(0)
ψjk(β)=−ψjk(0)

D
[
d, d, ψ, ψ

]
exp

[
−SE

(
d, d, ψ, ψ

)]
. (2.3.9)
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The Euclidean action SE reads

SE
(
d, d, ψ, ψ

)
=

β∫
0

dτ
{
H
(
d, d, ψ, ψ

)
+
∑
a

da∂τda +
∑
jk

ψjk ∂τψjk

}
(2.3.10)

and the matrix elements of the Hamiltonian can be written as

H
(
d, d, ψ, ψ

)
=
∑
a

Ha

(
da, da

)
+
∑
jk

Hjk

(
ψjk, ψjk

)
+
∑
jka

Ht,jka

(
da, da, ψjk, ψjk

)
. (2.3.11)

The expressions of Hjk and Ht,jka are readily obtained from (2.3.2) and (2.3.5) respectively by

substituting the annihilation operators â by their eigenvalues a and the corresponding creation

operators a† by the conjugate Grassmann variables a. For the QDs, we can also find an expression

in terms of Nambu spinors as follows

Ha

(
da, da

)
= ε̃a + ε̃a da σz da −

Ua
2

(
dada

)2 with ε̃a = εa +
Ua
2
. (2.3.12)

2.4 Free energy and Josephson current

As the lead degrees of freedom are quadratic in the Hamiltonian, they can be easily integrated

out [100] and after this partial trace, the partition function is expressed as a functional integral

only over the QD Grassmann variables:

Z = c1

∫
da(β)=−da(0)

∏
a

D
[
da, da

]
exp

[
−Seff

(
d, d
)]

(2.4.1)

where c1 is a quantity independent of ϕ and α. The effective action

Seff
(
d, d
)
=
∑
a

β∫
0

dτ
{
ε̃a + da(τ) [∂τ + ε̃a σz] da(τ)−

Ua
2

(
da(τ) da(τ)

)2}
−
∑
a,b

β∫
0

dτ
β∫

0

dτ ′ da(τ)Σab(τ − τ ′) db(τ ′)

(2.4.2)

contains a non trivial term called self-energy (originated from the tunnel Hamiltonian (2.3.5)

which couples QD and lead degrees of freedom)

Σab(τ) =
∑
jk

eik.(rjb−rja)T †
jaGk(τ)Tjb . (2.4.3)

It involves the Green function of the leads Gk(τ) solution of{
∂τ +

(
k2

2m
− µ

)
σz +∆σx

}
Gk(τ) = δ(τ) . (2.4.4)
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Rather than keeping track of a cumbersome device-specific position dependence of the self-energy,

we choose to introduce a phenomenological parameter η. It extrapolates between two relevant

cases for which the calculations can be performed in a non-device-specific way ([δr]j ≡ |rjU−rjD|

is the distance between injection points in lead j and ξ is the superconducting coherence length):

• η = 0 for infinitely distant injection points ([δr]j >> ξ),

• η = 1 for coinciding injection points ([δr]j << ξ).

The quartic terms (dada)2 in (2.4.2) prohibit an exact computation of the partition function. We

use a Hubbard-Stratonovich transformation to treat these terms and we neglect the temporal

fluctuations of the auxiliary fields Xa which are introduced [44]

e
Ua
2

β∫
0

dτ(dada)
2

≈
√

β

2πUa

∫ +∞

−∞
dXa e

− β
2Ua

X2
a+Xa

β∫
0

dτ dada
. (2.4.5)

Because both the Green functions Gk and the Nambu spinor components daσ are β antiperiodic,

we use Matsubara series expansions
Gk(τ) =

∑
p∈Z

e−iωpτGk(ωp)

daσ(τ) =
∑
p∈Z

e−iωpτdaσ(ωp)
with ωp =

(
p+

1

2

)
2π

β
. (2.4.6)

The QD degrees of freedom are now integrated out and the partition function becomes

Zη(ϕ, α) = c1c2

∫ +∞

−∞
dXU

∫ +∞

−∞
dXD exp

[
−SHS,η

eff (XU , XD, ϕ, α)
]
. (2.4.7)

c2 is also a quantity independent of ϕ and α. The effective action

SHS,η
eff (XU , XD, ϕ, α) =

∑
a

(
β ε̃a +

β

2Ua
X2
a

)
− 2

∑
p∈N

ln
(
β4
∣∣∣det

[
Mη

p (XU , XD, ϕ, α)
]∣∣∣) (2.4.8)

contains a Matsubara series expansion which terms involve determinants of (4x4) matrices written

in QD space (each entry is a 2x2 matrix in Nambu space) as

Mη
p (XU , XD, ϕ, α) =

− (iωp +XU ) + ε̃U σz −Ap(ϕ− α) −Bηp(ϕ,+α)

−Bηp(ϕ,−α) − (iωp +XD) + ε̃D σz −Ap(ϕ+ α)

 .

(2.4.9)

The Nambu matrices Ap and Bηp originate from the self-energy term (2.4.3). We define the decay

rate (of the two QDs)

Γ = π ν(0)(t2L + t2R) (2.4.10)
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where ν(0) is the density of states of the leads at the Fermi level as well as the contact asymmetry

γ =
t2L − t2R
t2L + t2R

. (2.4.11)

The matrix involved in block diagonal terms reads

Ap(ϕ) =
Γ√

∆2 + ω2
p

[
iωp −∆

(
cos ϕ

2
σx + γ sin ϕ

2
σy

)]
(2.4.12)

while the block off-diagonal terms read

Bηp(ϕ, α) = η
Γ√

∆2 + ω2
p

[
iωp

(
cos α

2
+ iγ sin α

2
σz

)
−∆

(
cos ϕ

2
σx + γ sin ϕ

2
σy

)]
. (2.4.13)

The CAR process is due to these last terms. We have done separately the calculations for

inifinitely distant injection points (for which they vanish) and for coinciding injection points (for

which they are given by Bη=1
p ) and then introduce the multiplicative phenomenological parameter

η to extrapolate between the first case η = 0 and the second one η = 1 in a non-device-specific

way. In practice, there is an explicit dependence on the separation between injection points

δr. An exponential decay on the scale of the superconducting coherence length is expected

requiring contacts within a smaller distance. Fast oscillations on the Fermi wavelength scale and

power low decay originate from the microscopic tunneling Hamiltonian formulation used here:

η(δr) = (sin kF δr)/(kF δr) for 3D clean superconductors [18, 102] (consistent with our limits

η = 0 for δr → 0 and η = 1 for δr →∞) and no power law decay for quasi-one-dimensional clean

superconductors [103]. To justify abnormally strong nonlocal signal compared to the prediction of

a dirty 3D superconductor contacted with nanowire QDs to two metallic leads, geometry-specific

arguments were proposed [86]. The issue is indeed quite complex and a lot of device-specific

effects must be taken into account, e.g. proximity effect from the bulk superconductors on

the nanowires used in three-terminal CP splitters [86–90]. Note that the spatial dependence of

CAR process was also studied in [65,69] (as a diagnosis of CAR manifestation): the oscillations

were not observed due to finite size contacting regions [66] but exponential decay together with

eventual power law decay were proved to be consistent with the device geometry. In the present

work, we use η ∈ [0, 1] as a phenomenological parameter (with two meaningful limits) used to

turn nonlocal effects on in a non-device-specific way. We also avoid the pathologic limit δr → 0+

of the cotunneling process that occurs at finite 0 < δr <∞ [102].

To evaluate the partition function (2.4.7), we use a saddle-point method [44]. The effective

action (2.4.8) is computed numerically by summing over Matsubara frequencies (up to a cut-off
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much larger than the superconducting gap). Its minimum, located in [X∗
U (ϕ, α), X

∗
D(ϕ, α)], is

obtained with a gradient descent method for fixed ϕ and α. The less symmetric this function is

the more starting points are required. The free energy is then defined from this minimum value

as

F η(ϕ, α) = β−1SHS,η
eff [X∗

U (ϕ, α), X
∗
D(ϕ, α), ϕ, α] . (2.4.14)

The current is finally obtained by differentiating the free energy with respect to the phase dif-

ference ϕ

Jη(ϕ, α) = 2 ∂ϕF
η(ϕ, α) . (2.4.15)

The critical current, function of the AB flux α, is defined as

Jηc (α) = maxϕ |Jη(ϕ, α)| . (2.4.16)

It is quite easy to show that, as expected, the critical current is π periodic in the case η = 0, con-

trary to the case η = 1 where off-diagonal terms in (2.4.9) are responsible for 2π periodicity [19].

This is a signature for the emergence of CAR process. Our proposition (2.2.6) to evaluate the

efficiency of CP splitting requires the calculation of the critical current in these two cases. By

adjusting the parameters of the QDs, different possible phase associations are achievable and

the present work is a proposition to predict which one is the more favorable for CP splitting

observation.

2.5 Numerical results

The results were obtained for symmetric couplings γ = 0, at low temperature β−1 << ∆. Two

regimes of transparency are investigated (tunneling regime with Γ << ∆ and high transparency

regime with Γ ∼ ∆) and QD energy levels are chosen to place them in definite phases according

to

Γ/∆ ε[π]/∆ ε[0(0)]/∆ ε[0(2)]/∆

tunneling 0.01 −0.3 0.3 −0.9

high transparency 2 −4 4 −12

Table 2.1

The critical current curves for the different QD phase associations, in the two transparency

regimes and for several values of the Coulomb on-site repulsion strength U , chosen to be the same
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for the two QDs (and varied within a specific range such as staying in the considered phases),

are given in Figs. 2.12 and 2.13. The associated splitting efficiencies calculated with (2.2.6) are

displayed in Fig. 2.14. The particle-hole symmetry ensures that the current is invariant under

the change (ε̃U , ε̃D)→ (−ε̃U ,−ε̃D) responsible for some redundancy in the results [19].

Let us first mention, considering the left panels of Figs 2.12 and 2.13, i.e the case of inde-

pendent Josephson junction η = 0, that a π/2 phase shift occurs as soon as the parity of one of

the QDs is changed. Indeed, the maximum of these π periodic curves is located in α = 0 when

the QDs have the same parity (0 − 0 or π − π) while it is displaced in α = π/2 when the QDs

have different parity (0− π). It can be easily explained in the tunneling regime [19] considering

lowest order perturbative expectations. Let us emphasize that it is still noticeable in the high

transparency regime we have considered, in agreement with the experimental observation [58].

Comparing the left panels of Figs 2.12 and 2.13 to the right ones, i.e. the case η = 0 to η = 1,

we immediately obtain evidence of the cross-talk between the two single Josephson junctions:

as expected, the period of the critical current doubles as a result of the emergence of the CAR

process. Some of the phase associations are very sensitive to the switching from η = 0 to η = 1.

A phenomenological approach consisting in progressively turning on the parameter η can be

found in [19].

In the tunneling regime we can fit the critical current curves with the theoretical expecta-

tion (2.2.2). For identical parameters for the two QDs, we must add the constraint I1 = I2 ≡ I/2

to the fit procedure, so that the critical current reads

Jc(α)

|I|
=

∣∣∣∣ICAR
I

+ cosα
∣∣∣∣ . (2.5.1)

From the top right panel of Fig. 2.13, i.e considering the π − π association for η = 1, it is then

clear that a decay rate Γ ∼ ∆ leads to transport properties beyond tunneling expectations.

The sensitivity to the switching from η = 0 to η = 1 somehow manifests itself in the splitting

efficiency value. The symmetric associations of 0 phases (middle and bottom panels of Figs. 2.12a

and 2.13a) are quite sensitive: the maximum at α = π for η = 0 becomes a zero for η = 1. It is

expected in the tunneling regime with high Coulomb on-site repulsion. Indeed, the splitting of

a CP is expected to be twice more likely than the cotunneling of the two constituent electrons

through a single QD so that the critical current is simply given by Jc(α) ∝ | cosα/2|. Remark that

this expectation leads to a theoretical splitting efficiency r = 2/3 which is effectively obtained

in the tunneling regime (cf Fig. 2.14a). In the high transparency regime, the splitting efficiency

is lowered but still significant (cf Fig. 2.14b). The π − π association (top panels of Figs. 2.12a

49



CHAPTER 2. COOPER PAIR SPLITTING IN A JOSEPHSON JUNCTION GEOMETRY

0.1
0.2
0.3
0.4
0.5

0.5
1

1.5
2

0.3
0.6
0.9
1.2

0.5
1

1.5
2

2.5

0.5

1

1.5

0 0.5 1 1.5 2
α/π

η = 0

1

2

3

0 0.5 1 1.5 2
α/π

η = 1

U = 0.5∆
U = 0.6∆

U = 0.7∆
U = 0.8∆

U = 0.9∆
U = 1.0∆
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Figure 2.12: Critical current (in units of 104e∆/ℏ) curves in the tunneling regime (parameters given

in Table 2.1).
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Figure 2.13: Critical current (in units of e∆/ℏ) curves in the high transparency regime (parameters

given in Table 2.1).
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Figure 2.14: Splitting efficiency r given by (2.2.6) (parameters given in Table 2.1).

and 2.13a) is also very sensitive to the switching of η and the splitting efficiency is indeed high,

in fact the largest value which we have obtained in our comparison of QD phase associations:

as expected, ensuring a single mean occupancy on each QD favors the CAR process. Beyond

0.9 in the tunneling regime (cf Fig. 2.14a), it is lowered in the high transparency regime around

0.8 (cf Fig. 2.14b). Concerning the asymmetric associations (Figs. 2.12b and 2.13b), the critical

current curves for η = 1 somehow look like those obtained for η = 0: the positions of the maxima

and minima are mostly preserved for all phase associations, only their local or global character

changes when tuning η. However, for the 0(0) − 0(2) association in the high transparency regime

(bottom panel of Fig. 2.13b), the maximum in α = 0 is considerably lowered from η = 0 to η = 1

leading to a high value of the splitting efficiency, in fact similar to other associations of 0 phases

(cf Fig. 2.14b). The other asymmetric phase associations lead to low splitting efficiency values.

Increasing U results in a more pronounced filtering as the processes where the QDs are doubly

occupied are less favored. This explains the observed decrease in critical current for the 0(0)−0(0),

π − π (top and middle panels of Figs. 2.12a and 2.13a) and 0(0) − π (top panels of Figs. 2.12b

and 2.13b) phase associations. The opposite behavior is observed for the 0(2) − 0(2) phase

association. There, increasing U favors processes where the occupation of the QDs is lowered,

since approaching the π transition results in the decrease of the mean occupation number on the

QD. The opposite U -dependences while tuning U for 0(0)−0(0) and 0(2)−0(2) phase associations

can be seen as a consequence of particle-hole symmetry. The U -dependence in the case of the

0(2) − π phase association is more subtle [19]. Interestingly, the interaction has no noticeable
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Figure 2.15: Evolution of the splitting efficiency as a function of the effective transparency D(ε) given

by (2.5.2), for fixed Γ = 2∆ and U = 8∆. Top: The energy levels of both QDs are taken to be identical

and varied simultaneously (εU = εD ≡ ε). Middle: the U QD is taken in the π phase (εU = −4∆) while

the energy of the D QD is varied (εD ≡ ε). Bottom: the D QD is taken in the 0(0) phase (εD = 4∆)

while the energy of the U QD is varied (εU ≡ ε).

effect in the case of the 0(0)−0(2) phase association. In the studied domain for Coulomb repulsion

parameter U , we do not observe noticeable evolutions of the splitting efficiency r except for the

0(0) − π association in the tunneling regime for which we see a clear decrease (cf Fig. 2.14a). At

high transparency, the nanotubes consitute “open QDs” and the quantization of the charge is

ineffective due to large fluctuations of their populations: the interation U has little influence on

the competition between electronic transport processes as soon as a phase transition for one of

the QDs is not crossed (cf Fig. 2.14b).

While the coupling strengths between the superconductors and the nanotube QDs, and the

Coulomb charging energies of the latters are in practice fixed by nanofabrication, their energy

levels are free parameters which can be easily varied experimentally using electrostatic gates. At

fixed decay rate Γ and Coulomb on-site interaction U , changing the energy ε of a QD allows

to monitor its mean occupation number (placing it in a given phase) while tuning its effective
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transparency defined as

D(ε) =
Γ2

Γ2 +
(
ε+ U

2

)2 . (2.5.2)

By varying the energy levels of the two QDs, we can optimize the splitting efficiency by reaching

the π − π phase at high effective transparency. Fig. 2.15 displays splitting efficiency crossovers

when the energy level, and consequently the effective transparency, of one QD or both QDs is

varied.

2.6 Conclusion and perspectives

We have studied a double Josephson junction consisting of two nanowire/nanotube QDs bridging

two superconductors as a tool to probe CP splitting. When the two single Josephson junctions

which constitute the device are coupled to each other via CAR processes, the doubling of the pe-

riod of AB oscillations of the critical current measured in a nanoSQUID experiment [18] provides

a proof that CP splitting and recombination operates. One of the key results of the work [19]

resides in defining the degree of efficiency of CP splitting, the prominence of nonlocal phenomena

among all processes contributed to the equilibrium electronic transport in this double Josephson

junction. We insist on the fact that CP splitting is uncovered using a current measurement at

equilibrium unlike early propositions for CP splitters which involve a superconducting source

of electrons, two normal drain leads and QDs in the Coulomb blockade regime as filters [81]

and which require the measurement of either nonlocal conductance signal [86] or noise cross-

correlations [90]. The measurement of positive noise cross correlations which are undeniable

evidences for CP splitting in these three-terminal junctions are difficult to achieve but constitute

a preliminary for the measurement of the degree of entanglement of the emitted electrons via

BIs [80]. The AB diagnosis for CP splitting efficiency in a double Josephson junction may prove

more convenient. Nevertheless, recombination is crucial in such a setup so that it cannot be used

as a source of entangled electrons nor provide a measurement of the degree of entanglement of

the QD electrons.

Some existing double Josephson junction experiments have been presented. In the SQUID

experiment [58], the two SWCNT QDs were too spaced out to allow some cross-talk contrary

to the CP splitting experiment [59] where the two InAs nanowire QDs were too close to each

other to allow the recording of AB oscillations (an alternative CP splitting diagnosis is proposed

therein) but we have discussed the practical feasibility of such an experiment taking into account

recent progress achieved in nanofabrication techniques.
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A theoretical approach going beyond existing studies led in the context of perturbation the-

ory in the tunneling Hamiltonian [18, 60] may prove essential, considering the experimental

improvement in contacting nanotube/nanowire QDs to superconductors [58,59]. The treatment

of Coulomb interaction is also crucial since high charging energies can be achieved on the QDs.

Coupling strength to the leads, Coulomb on-site repulsion and energy level (which can be moni-

tored thanks to an electrostatic gate) monitors the mean occupation number on the QD, placing

it in one of the three phases 0(0) (empty QD), π (singly occupied QD), 0(2) (doubly occupied QD),

which have been numerically investigated in [44]. The path integral approach with a Hubbard-

Stratonovich treatment of the Coulomb interaction followed by a saddle point approximation

developped in this latter work is adapted to our device and meet the requirements to treat ar-

bitrary transmissions and Coulomb interactions. We thus studied the prominence of nonlocal

phenomena depending on the phases of the QDs and found that the π− π association optimizes

the splitting of the CPs that are emitted from one superconductor and recombined on the other

one. Yet, our analysis shows that the 0(0)− 0(0) and 0(2)− 0(2) combinations also provide robust

CP splitting signals. Within each of these combinations of phases, we see for the most part that

variations of the Coulomb repulsion parameter has little influence on the CP splitting efficiency.

Some restrictions of our treatment together with hints to overcome them are listed below:

• A phenomenological CAR coupling parameter η has been introduced to avoid device-specific

dependence on the geometry of the contacting regions in the superconductors. Nevertheless,

additional information on the contacts (separation, extent, dimensionality...) could be

incorporated in our theoretical model in order to explain experimental data.

• The present project relies on a Hubbard-Stratonovich treatment of the Coulomb interac-

tions on the QDs, involving auxiliary fields, which is exact if the path integral over the

latter is performed. Within the mean field approximation used here following [44], we can-

not access the Kondo regime occuring for TK > ∆. For a Josephson junction containing

a single QD, with energy ε0, on-site Coulomb interaction parameter U and decay rate Γ,

the Kondo temperature [104] is given by TK =
√
ΓU
2 eπε0(ε0+U)/(ΓU) and evaluated at most

at TK = 0.13∆ in our numerical study. The Kondo regime in a single Josephson junction

has been studied either with a Hubbard-Stratonovich transformation approach followed by

a Monte Carlo numerical treatment of the auxiliary field [105] or by an exact numerical

renormalization group approach [106]. Extensions of our treatment of the double Joseph-

son junction could be envisioned by following one of the latter approaches. At any rate,
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even if TK > ∆, the Kondo regime could be avoided altogether by working with QD gate

voltages such that only the 0(0) − 0(0) combination of phases occurs for which a sizable

splitting efficiency has been found.

• Direct interdot tunneling and interdot Coulomb interaction are absent of our treatment but

they could be incorporated. The issue of interdot tunneling was adressed in the double-

dot CP splitter [84, 85]: the positive noise cross correlations, due to CP splitting, are

spoiled when interdot coupling becomes large compared to the other couplings. In the

nanoSQUID CP splitter, we also expect a decrease of the splitting efficiency with increasing

coupling between the QDs, but as long as it is small compared to the other couplings, the

results we have presented should remain valid. Nonetheless, this interdot tunneling will

be responsible for the formation of two AB subrings in the nanoSQUID setup and we

could add our treatment of Coulomb interaction to generalize the existing study [61]. A

Coulomb interaction term between the QDs might render the operation of our device in

the π-π phase, which is our optimal candidate for large splitting efficiency, less efficient.
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Chapter 3

Current and noise characteristics

of multiple Cooper pair

resonances

In this chapter, we consider a hybrid Quantum Dots (QDs) / superconductors three-terminal

device, as illustrated in Fig. 3.1. The system consists of a (grounded) superconducting finger

which distributes the constituent electrons of Cooper Pairs (CPs) on either QD, before such

electrons are absorbed, by recombination as CPs, in the two (biased) remaining leads. When

Crossed Andreev Reflection (CAR) processes are operating on the central superconductor and

when the voltages of the lateral leads are commensurate, the partial currents are known to depend

on the bare superconducting phases differences, leading to a Josephson-like signature, albeit in

off-equilibrium conditions [17, 107] which has been confirmed by experimental signatures [108].

Such a phenomenon is refered as a Multiple Cooper Pair Resonance (MCPR) as the underlying

explanation involves the correlated motion of several CPs between the three superconducting

reservoirs (Section 3.1). Within the out-of-equilibrium Keldysh formalism we use a path integral

technique to produce a Dyson equation for the dressed QD Green’s function which accounts for

the coupling to superconductors in a nonperturbative way (Section 3.2) and counting fields are

introduced in order to compute the current statistics (Section 3.3). Numerical results for Joseph-

son current and noise correlations are given (Section 3.4) and some perspectives are presented

(Section 3.5).
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Figure 3.1: Three superconductors designed in a Josephson bijunction. The central electrode S0 is

grounded while the lateral ones Sa and Sb are biased with voltages Va and Vb. Two quantum dot

nanowires Da and Db, with energies εa and εb which can be monitored by gates (in grey), bridge the

central superconductor to the two lateral ones. The distance between the two dots is comparable to the

coherence length. Adapted from [17].

3.1 Multipair production in superconducting bijunctions

We have already introduced transport phenomena in a Josephson junction (Chapter 1) including

• the DC Josephson supercurrent which depends on the CP phase difference between the two

superconducting reservoirs, which is an equilibrium (no voltage is applied) dissipationless

phenomenon,

• the AC Josephson effect which depends on the voltage applied across the junction,

• the pair-assisted quasiparticle transport for subgap voltages, which is a phase insensitive

nonequilibrium dissipative phenomenon.

We have highlighted the underlying process for such phenomena, namely the Andreev Reflec-

tion (AR). The last enumerated phenomenon is often refered as a Multiple Andreev Reflection

(MAR) process, which clarifies its microscopic origin. In a superconducting bijunction, two phase

differences and two voltages are involved, providing richer physics, as explained in the following.

Early works [109–111] attempting to describe transport in three-terminal all-superconducting

junctions have focused on the incoherent regime [112], where quasiparticles experience MAR
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(a) The differential conductance presents

SGS features at voltages V21, V31 satisfying

pV21 + qV31 = 0 or pV21 + qV31 = 2∆/e with

p, q integers. Adapted from [110].

(b) Noise cross correlations negative in the

normal state (T = Tc) are driven positive in

the superconducting state (T < Tc). Adapted

from [109].

Figure 3.2: MAR manifestations in a device which consists of a metallic island connected to three

superconducting electrodes in the incoherent regime.

processes which do not interfere. The Subharmonic Gap Structure (SGS) becomes richer due to

mechanisms which couple altogether the three superconductors as emphasized in Ref. [110]. In

the latter work, the nonlocal currents inside a device consisted of three superconducting leads

contacted to a metallic island are computed in presence of two voltages V21, V31. Interestingly,

they predict SGS features for commensurate voltages pV21 + qV31 = 0 with p, q integers, as illus-

trated in Fig. 3.2a. Let us also mention the previous work of Ref. [109] which studies a similar

device but in a presence of a single voltage. As discussed in Chapter 2, the correlations between

currents flowing in two different leads (noise cross correlations) of a multiterminal mesoscopic

hybrid device can be measured in order to probe eventual entanglement. While negative correla-

tions are expected in a Y-shaped normal conductor, recall that positive noise cross correlations

have been proposed as a signature for the production of split Cooper pairs in N-S-N junctions.

In the three-terminal all-superconducting junction studied in Ref. [109], the noise cross corre-

lations between the two grounded superconducting leads are investigated and interestingly, it

is established that the MAR processes could possibly drive these correlations to be positive, as

illustrated in Fig. 3.2b. However, only negative cross correlations were reported in a S-N-S-N-S

junction [113].

In the coherent regime however, correlated motion of CPs originated from the three su-

perconductors can be envisioned [114] and interestingly, looking to subgap transport, some
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S0

↑ ↓
SbSa

(a)

S0

↑ ↓
Sa Sb

↑↓

(b)

S0

Sa Sb

(c)

Figure 3.3: Quartet production as double CP splitting (followed by recombinations). Through CAR

a first CP is split with spin up on the left and spin down on the right (a) and a second CP is split with

spin down on the left and spin up on the right (b). Then, recombination is possible in each lead and

two CPs exit (c).

nonequilibrium dissipationless current associated with MCPR together with some phase sensi-

tive dissipative transport (phase-sensitive MAR) are expected [17]. The lowest order MCPR

results in the entanglement of two CPs, a process refered as quartet and first envisioned (at

least in these terms) in the equilibrium calculations of Ref. [107]. In an other formulation, these

resonances were earlier predicted as voltage-induced (fractional) Shapiro steps [115]. The usual

Shapiro steps [116] in an irradiated Josephson junction are due to the synchronization between

the AC Josephson frequency and one of the harmonics of the radiation [9], which is responsible

for a DC current. Here, due to the presence of two voltages, there are two Josephson frequencies,

and one of them can be thought of as a “radiation source” for the other. The synchronization

requires commensurate voltages which is the condition for MCPR as explained further.
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We have already described a three-terminal device with a superconducting (S) source con-

nected to two normal (N) leads, refered as the N-S-N CP splitter (cf. Chapter 2). ARs at N-S

interfaces are responsible for new conduction channels including the CAR which is the underlying

process for CP splitting. Now imagine the two normal leads are replaced by superconducting

materials where the transport properties are given by CP and quasiparticle (with gapped energy)

tunnelings. CAR processes are still operating but for subgap voltages single-particle conduction

inside the outgoing leads is prohibited. Nevertheless, imagine the process is duplicated then

two electrons exit in each lead and possibly can recombine as CPs: this is the quartet process.

Remark that this correlated nonlocal four fermion state requires that the two split CPs exchange

their constituent electrons. This sequential picture is illustrated in Fig 3.3. Actually, an even

number of CAR processes is the key requirement for recombination of electrons, originating from

the splitting of CPs of the central electrode, as CPs in the two lateral superconductors, so that

higher order processes can be imagined. Note that these CP-splitting-based processes are not the

only supercurrent channels: CPs can cross one of the two junctions as a whole through a (double)

Direct Andreev Reflection (DAR) or CPs can be transfered through the central superconductor

via a (double) electron cotunneling (EC) process. Note also that CP splitting is efficient provided

a separation between lateral reservoirs smaller that the coherence length of the superconducting

material.

A simple argument which yields the MCPR condition for voltages has been proposed in

Ref. [17]. If one assumes that the superconductors S0, Sa and Sb have respective (time dependent)

phases ϕ0(t) = 0, ϕa(t) = ϕa +
2e
ℏ Vat, and ϕb(t) = ϕb +

2e
ℏ Vbt (Va and Vb are the bias voltages

on superconductors a and b), the phenomenological approach of Josephson type effects suggests

that the current in lead j = a, b has the form:

Ij(t) =
∑
n,m∈Z

Ij,nm sin [nϕa(t) +mϕb(t)] . (3.1.1)

• m = 1, n = 0 and m = 0, n = 1 correspond to the usual Josephson effects between S0 and

Sa, Sb.

• m > 1, n = 0 and m = 0, n > 1 describe higher harmonics of the Josephson current.

• nVa +mVb = 0 is the condition for MCPR.

Under the MCPR condition nVa + mVb = 0, the phase of the sine in Eq. (3.1.1) ceases to

have a time dependence, and the currents Ia and Ib have a pure DC component which depends

on the combination of the bare phases nϕa+mϕb. The lowest order MCPR is the quartet which
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Va=+V

Vb=-V
V0=0

(a) Quartet process Va = −Vb.

(b) Sextet process Va = −Vb/2. Adapted from [17].

(c) Lowest order phase-sensitive MAR process in

the quartet configuration Va = −Vb with threshold

2∆/3. Adapted from [17].

Figure 3.4: Energy diagrams of the two lowest order MCPR (quartet et sextet) and of the lowest order

phase-sensitive MAR process in the quartet configuration.
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(a) SEM image of the device: a T-shape copper con-

ductor is connected to three aluminium electrodes.

(b) Differential resistance displaying anomalies

along lines Va + Vb = 0, Vb − 2Va = 0 and

Va − 2Vb = 0 ascribed to quartet productions from

each superconductor.

Figure 3.5: An experimental claim for quartet signatures. Adapted from [108].

corresponds to n = m = 1 and a similar argument had been earlier proposed in this special

case [107]. An energy diagram for this current is given in Fig. 3.4a. Remark that it realizes an

energy-conserving channel. More generally, a couple (n,m) which satisfies the MCPR condition

nVa +mVb = 0 corresponds to the transfer of n+m CPs from S0 as n outgoing CPs in Sa and

m outgoing CPs in Sb. A second-order process (sextet) is given in Fig. 3.4b.

Anomalies in the electronic subgap transport of an all-superconducting bijunction [108] could

meet an interpretation in terms of quartet resonances. The differential resistance measured as a

function of both voltages Va and Vb is displayed in Fig. 3.5. The anomalies along the axes are

ascribed to usual (single junction) Josephson effects between S0 and one of the lateral electrodes

Sa or Sb. More interestingly, the anomaly which is noticeable along the diagonal line Va+Vb = 0

can be attributed to quartets originating from S0. Note that this resonance for the emission of

quartets from S0 (which is grounded V0 = 0) reads (Va − V0) + (Vb − V0) = 0. Similar processes

occur for (Vb−Va)+(V0−Va) = 0 (emission of quartets from Sa) and for (Va−Vb)+(V0−Vb) = 0

(emission of quartets from Sb) which explain the anomalies along the lines Vb − 2Va = 0 and

Va − 2Vb = 0 respectively.

Still in Ref. [17], the phenomenological description presented above is confirmed by a mi-

croscopic calculation (which is reported in the next sections) performed on a system consisting

of two QDs placed in between the three superconductors Sa, S0, Sb (cf Fig. 3.1). Most of the
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numerical investigations presented in this work concern the quartet configuration Va+Vb = 0. It

was shown that at low voltages the current phase relation Ia(ϕb) is that of a π junction and it de-

viates from that form when the voltage is increased. For sufficiently low voltages, the currents in

the two leads coincide Ia(ϕb) ≃ Ib(ϕb), and then, increasing the voltage, the two currents deviate

strongly from each other as the novel phase-sensitive MAR processes (which involve continuum

states and which depend on the bare phases of the superconductors) enter the game. The energy

diagram of the lowest order of these processes is given in Fig. 3.4c.

The study of out-of-equilibrium noise in such devices is particularly interesting. Indeed, if the

subgap low bias behavior of electronic transport between these superconductors involves uniquely

the exchange of CPs rather than dissipative processes (such as MAR or quasiparticle tunneling)

which involve the continuum spectrum of the superconductors, it bears strong similarities with

Josephson physics, which in the limit of zero temperature and zero frequency yields vanishing

current noise. Furthermore, there is also a need to quantify noise crossed correlations between

different terminals, as a function of voltage bias, as these could have a positive or negative sign

depending on which process, CAR or EC, operates on the central superconductor. In a setup

where a single lead is biased, low voltage positive noise crossed correlations in the coherent

regime were predicted and ascribed to MARs [117]. In a setup (closer to what we are interested

in) consisted of a single quantum dot connected to three terminals noise crossed correlations were

also investigated [118] and our results agree with the main message of this work, namely that

quartets are noiseless for a non-resonant dot contrary to the resonant case where a phase-sensitive

noise is predicted. These issues need to be tackled in view of potential experiments which could

follow the early realizations of Cooper pair splitters (cf. Chapter 2).

3.2 Model

We introduce the Hamiltonian of an all superconducting three-terminal junction with two QDs

that bridge a central electrode to two lateral ones (Section 3.2.1). Then we define the bare

Green’s function of the QDs as well as the Green’s function dressed by the coupling with the leads

(Section 3.2.2) and derive the expression for the tunneling self-energy of the QDs (Section 3.2.3).

Finally, using a double Fourier representation under the MCPR condition, we give the Dyson

equation in a matrix form (Section 3.2.4). In the following ℏ = kB = e = 1.
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3.2.1 Hamiltonian formulation

We consider a central superconducting electrode S0 coupled to two lateral superconducting leads

Sa and Sb via two QDs Da and Db as illustrated in Fig. 3.1. All superconductors labelled j =

0, a, b are described by BCS theory with a gap energy ∆j . Each QD labelled α = a, b characterized

by an energy level εα is coupled to the central lead and to (only) one lateral superconductor: the

tunneling amplitude between lead j and QD α is denoted as tjα and tab = tba = 0. An interdot

coupling td is also considered.

The two lateral leads are biased with a voltage Vj measured with respect to the chemical

potential of the central superconducting electrode which is grounded V0 = 0. The width of

S0 is assumed to be smaller than the superconducting coherence length, so that CAR and EC

processes can operate: CAR is responsible for CP splitting from S0 which distributes electrons

on both QDs, EC can transfer an electron from one QD to another through S0.

The Hamiltonian of the total system is the sum of the Hamiltonian of superconducting leads,

of the Hamiltonian of the double QD (including interdot tunneling) and of the tunneling Hamil-

tonian between leads and QDs:

H =
∑
j

Hj +HD +HT (t) . (3.2.1)

• ψ†
jkσ is the creation operator for an electron with momentum k and spin σ =↑, ↓ in lead j.

It is useful to introduce Nambu spinors

Ψjk =

 ψjk,↑

ψ†
j(−k),↓

 (3.2.2)

in order to conveniently write the BCS Hamiltonian of the lead j as

Hj =
∑
k

Ψ†
jk

{(
k2

2m
− µ

)
σz +∆jσx

}
Ψjk , (3.2.3)

where the Pauli matrices σz and σx act in Nambu space.

• If d†ασ is the creation operator for an electron with spin σ =↑, ↓ on QD α, then the Hamil-

tonian HDα of the QD α reads

HDα = εα
∑
σ

d†ασdασ (3.2.4)

and the tunneling between the QDs reads

HDaDb = td
∑
σ

d†aσdbσ + h.c. (3.2.5)
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Introducing Nambu spinors

dα =

dα↑
d†α↓

 (3.2.6)

and collecting them for α = a, b into a Nambu-Dot space spinor as

d̃ =

da
db

 , (3.2.7)

the Hamiltonian of the double QD can be conveniently written as

HD =
∑
α

HDα +HDaDb = d̃† hDσz d̃ (3.2.8)

where the Pauli matrix σz acts in Nambu space and the matrix

hD =

εa td

td εb

 (3.2.9)

acts in dot space.

• The tunneling Hamiltonian between leads and QDs is written in terms of Nambu spinors

according to

HT (t) =
∑
jkα

Ψ†
jk Tjα(t) dα + h.c. with Tjα(t) = tjα σz eiσz

∫
Vjdt (3.2.10)

where the Pauli matrix σz acts in Nambu space. As already mentioned, in our system

tab = tba = 0.

3.2.2 Green’s functions in the Keldysh formalism

In order to calculate average values of operators in an out-of-equilibrium system, the Keldysh

time contour C has been introduced [119]: it goes from −∞ to +∞ (+ forward branch) and goes

back to −∞ (− backward branch). The time ordering operator along this contour is denoted

as TC . We introduce the Nambu-Dot-Keldysh spinors collecting Nambu-Dot spinors (3.2.7)

evaluated on the two different branches of the Keldysh time contour

ď =

d̃+
d̃−

 . (3.2.11)

The bare Green’s functions of the QDs (in the absence of tunneling between QDs and supercon-

ducting leads) reads

Ǧ0(t, t
′) = −i

⟨
TC
{
ď(t)ď†(t′)

}⟩
0
. (3.2.12)
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The quantum mechanical averaging is performed with respect to the Hamiltonian without tun-

neling

⟨. . . ⟩0 =
Tr
{
e−βH0 . . .

}
Tr {e−βH0}

where H0 =
∑
j

Hj +HD . (3.2.13)

QD and superconducting degrees of freedom are coupled with the time-dependent tunneling

Hamiltonian HT (t) and the Green’s function dressed by this tunneling reads

Ǧ(t, t′) = −i
⟨
TC
{
S(∞) ď(t)ď†(t′)

}⟩
0
, (3.2.14)

where S(∞) is the evolution operator along the Keldysh contour

S(∞) = TC exp
{
−i
∫
C

dtHT (t)

}
. (3.2.15)

3.2.3 Self energy of the quantum dots

The evolution operator when averaged over the lead degrees of freedom

⟨S(∞)⟩leads = TC exp
[
−i
∫ +∞

−∞
dt1
∫ +∞

−∞
dt2 ď†(t1)Σ̌T (t1, t2)ď(t2)

]
, (3.2.16)

involves a total self-energy

Σ̌T =
∑
j

Σ̌j (3.2.17)

which has a structure in Nambu-Dot-Keldysh space. The Dot space matrix element of the lead

self energy Σ̌j is given by a Nambu-Keldysh matrix according to[
Σ̌j
]
αβ

(t1, t2) = T †
jα(t1)τz ĝj(t1 − t2)τzTjβ(t2) (3.2.18)

where the Pauli matrix τz acts in the Keldysh space and where

ĝj(t− t′) = −i
∑
k

⟨
TC

{
Ψ̂jk(t)Ψ̂

†
jk(t

′)
}⟩

(3.2.19)

is the Green’s function of the superconducting lead j. It involves the Nambu-Keldysh spinors

which collect the Nambu spinors (3.2.2) evaluated on the two different branches of the Keldysh

time contour

Ψ̂jk =

Ψ+
jk

Ψ−
jk

 . (3.2.20)

It is useful to perform a rotation in Keldysh space (Pauli matrix τz and matrix L act in Keldysh

space) according to gRj gKj

0 gAj

 = Lτz ĝjL
−1 with L =

1√
2

1 −1

1 1

 (3.2.21)
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to work with retarded (R), advanced (A) and Keldysh (K) Green functions. These components

are given by 
gR,Aj (ω) = πν(0)

ω +∆jσx

iζR,Aj (ω)
,

gKj (ω) = [1− 2f(ω)]
[
gRj (ω)− gAj (ω)

]
,

(3.2.22)

where ν(0) is the density of states of the lead in the normal metal regime at the Fermi level,

f(ω) is the Fermi distribution and where

ζR,Aj (ω) = ±sign(ω)
√
ω2 −∆2

j Θ(|ω| −∆j) + i
√
∆2
j − ω2 Θ(∆j − |ω|) . (3.2.23)

3.2.4 Double Fourier representation and Dyson equation

When arbitrary voltages Va and Vb are applied to the lateral superconducting leads while the

central superconducting electrode is grounded, two Josephson frequencies 2|Va| and 2|Vb| gov-

ern the system. In general, they are independent and there is no periodicity, the QD Green’s

function is a function of two times t1 and t2 or alternatively of τ = t1 − t2 and t = (t1 + t2)/2.

However, under the MCPR condition (comensurate voltages) nVa+mVb = 0 with n,m integers,

a periodicity T = π|m/Va| = π|n/Vb| ≡ 2π/V in the variable t is recovered. It is then convenient

to introduce the double Fourier transformation of the bare and dressed QD Green’s functions,

Ǧ0 and Ǧ respectively, and of the self energy terms Σ̌j . Now, when the frequency variable ω

is specified, the concerned matrices have an additional frequency structure. For example, the

(n,m) frequency elements of Ǧ(ω) defined via

Ǧ (t1, t2) =
∑
n,m∈Z

∫ V

0

dω
2π

e−i(ω+nV )t1 ei(ω+mV )t2Ǧnm (ω) (3.2.24)

⇔ Ǧnm (ω) =
V

2π

∫ +∞

−∞
dt1
∫ +∞

−∞
dt2 ei(ω+nV )t1 e−i(ω+mV )t2Ǧ (t1, t2) (3.2.25)

have a Nambu-Dot-Keldysh structure. The Dyson equation takes the simple form of a matrix

inversion

Ǧ(ω)−1 = Ǧ0(ω)
−1 − Σ̌T (ω) , (3.2.26)

which is translated for RAK components into

G̃R/A(ω)−1 = G̃
R/A
0 (ω)−1 − Σ̃

R/A
T (ω) , (3.2.27)

G̃K(ω) = G̃K0 (ω) + G̃R(ω)Σ̃KT (ω)G̃A(ω) . (3.2.28)

The bare Green’s function is diagonal in the RAK basis

G̃K0 = 0 (3.2.29)
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and in frequency domain. These diagonal elements can be written in a Dot matrix form (where

each entry is a Nambu matrix) as

[
G̃
R/A
0 (ω)−1

]
nm

= δnm

ω + nV − εaσz −tdσz
−tdσz ω + nV − εbσz

 . (3.2.30)

The frequency matrix elements of the lead self-energy are given by [120]:

[
Σ̌j(ω)

]
nm

= Γj

 δn,m X̂j(ω + nV − Vj) δn−2Vj/V,m Ŷj(ω + nV − Vj)

δn+2Vj/V,m Ŷj(ω + nV + Vj) δn,m X̂j(ω + nV + Vj)

 with Ŷj(ω) = −∆j
X̂j(ω)

ω
,

(3.2.31)

where Γj is a matrix in Dot space with matrix elements

Γjαβ = πν(0)t∗jαtjβ , (3.2.32)

and where the Keldysh matrix X̂j which is involved in the entries of the Nambu matrix in (3.2.31)

have RAK components given by
X
R/A
j (ω) = −Θ(∆j − |ω|)ω√

∆2
j − ω2

∓ i Θ(|ω| −∆j) |ω|√
ω2 −∆2

j

,

XK
j (ω) = −2i Θ(|ω| −∆j) |ω|√

ω2 −∆2
j

tanh βω
2

.

(3.2.33)

The dressed Green’s function is obtained numerically through the handling of finite size matrices

including inversions (3.2.27) which can be potentially time-consuming. The Fourier transfor-

mations are limited to a cut-off energy Ec, which has to be large compared to all the relevant

energies of the problem. It defines a finite number N of useful frequency domains with width

V so that N ∼ Ec/V . At small voltages, one needs to sum on a very large number of Andreev

reflections.

3.3 Current correlations

The Josephson current in this device has been derived in a previous work [17]. We recall this result

(Section 3.3.1) since the current will be useful as a normalization for noise (Fano factors). The

time dependent current correlations (correlations in each lead and crossed correlations between

different leads) are computed using counting fields (Section 3.3.2) and these results are expressed

in frequency domain under the MCPR condition (Section 3.3.3).
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3.3.1 Current operator and its average value

The current operator from QD α into the lead j reads

Ijα(t) = i
∑
k

Ψ†
jk σzTjα(t) dα + h.c. (3.3.1)

As the average current does not depent on the branch of the Keldysh contour, it is convenient

to introduce counting fields ηjα(t) in the tunneling amplitudes according to

Tjα(t)→ Tjα(t) eiσzτzηjα(t)/2 , (3.3.2)

so that the evolution operator becomes S(∞) → S(∞, η) and that the average current can be

computed through the functional differentiation

⟨Ijα⟩ (t) = i
1

Z[0]

δZ [η]

δηjα(t)

∣∣∣∣
η=0

where Z[η] = ⟨S(∞, η)⟩0 . (3.3.3)

After performing the differentiation we obtain the average current as the following αα diagonal

element in Dot space

⟨Ijα⟩ (t) =
1

2
Tr(NK)

{
σzτz

∫ +∞

−∞
dt′
[
Ǧ(t, t′)Σ̌j(t

′, t)− Σ̌j(t, t
′)Ǧ(t′, t)

]αα}
, (3.3.4)

where Tr(NK) denotes the trace in Nambu-Keldysh space.

3.3.2 Current correlations

In full generality, we need to compute the unsymmetrized current-current correlator. A conve-

nient way consists, as in the work [84], in introducing new counting fields ηjαs(t) where s = ±

specifies the branch of the Keldysh contour. We define the following matrices in Keldysh space

π+ =
τz + 1

2
=

1 0

0 0

 , π− =
τz − 1

2
=

0 0

0 −1

 . (3.3.5)

The tunneling amplitudes are then redefined as

Tjα(t)→ Tjα(t) e
iσz

∑
s
πsηjαs(t)

, (3.3.6)

so that the evolution operator becomes S(∞) → S(∞, η) and that the current correlations can

be computed through the second order functional differentiation⟨
I−iα(t) I

+
jβ(t

′)
⟩
= − 1

Z[0]

δ2Z[η]

δηiα−(t) δηjβ+(t′)

∣∣∣∣
η=0

where Z[η] = ⟨S(∞, η)⟩0 . (3.3.7)
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Performing this differentiation, we obtain⟨
I−iα(t)I

+
jβ(t

′)
⟩
=

∫
dt1
∫

dt2
∑
γδ

∑
ss′

∑
σσ′σ1σ2

σσ′

×

([
Σ̌i
]−s
αγ
σσ1

(t, t1)
[
Σ̌j
]+s′
βδ
σ′σ2

(t′, t2) Ǩ
ss′−+
γδαβ
σ1σ2σσ

′
(t1, t2, t, t

′)−
[
Σ̌i
]−s
αγ
σσ1

(t, t1)
[
Σ̌j
]s′+
δβ
σ2σ

′
(t2, t

′) Ǩs+−s′
γβαδ
σ1σ

′σσ2

(t1, t
′, t, t2)

−
[
Σ̌i
]s−
γα
σ1σ

(t1, t)
[
Σ̌j
]+s′
βδ
σ′σ2

(t′, t2) Ǩ
−s′s+
αδγβ
σσ2σ1σ

′
(t, t2, t1, t

′) +
[
Σ̌i
]s−
γα
σ1σ

(t1, t)
[
Σ̌j
]s′+
δβ
σ2σ

′
(t2, t

′) Ǩ−+ss′

αβγδ
σσ′σ1σ2

(t, t′, t1, t2)

)
(3.3.8)

where the matrix/tensor elements have indices listed in three lines, corresponding from top to

bottom to Keldysh, Dot and Nambu spaces. The 4-indices tensor

Ǩs1s2s3s4
α1α2α3α4
σ1σ2σ3σ4

(t1, t2, t3, t4) = −
⟨
TC
{
ďs1α1σ1

(t1)ď
s2
α2σ2

(t2)ď
†s3
α3σ3

(t3)ď
†s4
α4σ4

(t4)
}⟩

(3.3.9)

is the two particle Green’s function of the dot electrons. As the Hamiltonian is quadratic in

both lead and QD degrees of freedom, it can be expressed in terms of products of single particle

Green’s functions, according to Wick’s theorem:

Ǩs1s2s3s4
α1α2α3α4
σ1σ2σ3σ4

(t1, t2, t3, t4) = Ǧs1s4α1α4
σ1σ4

(t1, t4)Ǧ
s2s3
α2α3
σ2σ3

(t2, t3)− Ǧs1s3α1α3
σ1σ3

(t1, t3)Ǧ
s2s4
α2α4
σ2σ4

(t2, t4) . (3.3.10)

Substituting this last result into (3.3.8), we obtain the irreducible part of the current-current

correlator

Siα,jβ(t, t
′) = ⟨Iiα(t)Ijβ(t′)⟩ − ⟨Iiα(t)⟩ ⟨Ijβ(t′)⟩

= −
∫ +∞

−∞
dt1
∫ +∞

−∞
dt2 Tr(NK)

{
π−σz

(
[Σ̌i(t, t1)Ǧ(t1, t

′)]αβ π+σz [Σ̌j(t
′, t2)Ǧ(t2, t)]

βα

+ [Ǧ(t, t1)Σ̌j(t1, t
′)]αβ π+σz [Ǧ(t

′, t2)Σ̌i(t2, t)]
βα

− [Σ̌i(t, t1)Ǧ(t1, t2)Σ̌j(t2, t
′)]αβ π+σz Ǧ

βα(t′, t)

− Ǧαβ(t, t′)π+σz [Σ̌j(t′, t1)Ǧ(t1, t2)Σ̌i(t2, t)]βα
)}

.

(3.3.11)

Performing the partial trace over Keldysh space, it can be expressed in terms of RAK components

Siα,jβ(t, t
′) = −1

2
Re
∫ +∞

−∞
dt1
∫ +∞

−∞
dt2

× Tr(N)

{
σz

(
Σ̃Ki G̃

A + Σ̃Ri G̃
K − Σ̃Ai G̃

A + Σ̃Ri G̃
R
)αβ
(t,t1)◦(t1,t′)

σz

(
Σ̃Kj G̃

A + Σ̃Rj G̃
K + Σ̃Aj G̃

A − Σ̃Rj G̃
R
)βα
(t′,t2)◦(t2,t)

−σz
(
Σ̃Ri G̃

RΣ̃Kj + Σ̃Ki G̃
AΣ̃Aj + Σ̃Ri G̃

KΣ̃Aj − Σ̃Ai G̃
AΣ̃Aj + Σ̃Ri G̃

RΣ̃Rj

)αβ
(t,t1)◦(t1,t2)◦(t2,t′)

σz

(
G̃K + G̃A − G̃R

)βα
(t′,t)

}
.

(3.3.12)

71



CHAPTER 3. CURRENT AND NOISE CHARACTERISTICS OF MULTIPLE COOPER
PAIR RESONANCES

3.3.3 Josephson current and noise at a MCPR

As already explained in Section 3.2.4, the MCPR condition is responsible for commensurate

voltages and the recovery of a single Josephson frequency (instead of two). As a result, a

periodicity T = 2π/V is restored, where V is the lowest common multiple of lateral gate voltages.

The current admits a Fourier series expansion according to

⟨Ijα⟩ (t) =
∑
p∈Z

e−ipV t Ipjα (3.3.13)

with Fourier coefficients given by

Ipjα =
1

2
Tr(NK)

{
σzτz

∫ V

0

dω
2π

∑
n

[
Ĝ(ω)Σ̂j(ω)− Σ̂j(ω)Ĝ(ω)

]αα
n,n−p

}
. (3.3.14)

Performing the partial trace over Keldysh space, it can be expressed in terms of RAK components

Ipjα =
1

2
Tr(N)

{
σz

∫ V

0

dω
2π

∑
n

[
G̃R(ω)Σ̃Kj (ω) + G̃K(ω)Σ̃Aj (ω)− Σ̃Rj (ω)G̃

K(ω)− Σ̃Kj (ω)G̃A(ω)
]αα
n,n−p

}
.

(3.3.15)

Concerning the noise, typically one introduces a measuring frequency by calculating the Fourier

transforms of the correlators:

Siα,jβ(ω, t) ≡
∫ +∞

−∞
dt′ eiωt

′
Siα,jβ(t+ t′, t) , (3.3.16)

S′
iα,jβ(ω, t) ≡

∫ +∞

−∞
dt′ eiωt

′
Siα,jβ(t, t+ t′) . (3.3.17)

Under the MCPR condition these Fourier-transformed correlators, like the currents, contain all

harmonics of the Josephson frequency, which motivates the computation of the averages:

S̄iα,jβ(ω) ≡
V

2π

∫ 2π/V

0

dt Siα,jβ(ω, t) , (3.3.18a)

S̄′
iα,jβ(ω) ≡

V

2π

∫ 2π/V

0

dt S′
iα,jβ(ω, t) . (3.3.18b)

In Eq.(3.3.12), we can express the self energy and the Green’s function elements using the double

Fourier transform with summation over finite domains of energy. At zero frequency, performing

all 4 time integrations, this gives the result:

S̄iα,jβ(ω = 0) = − (2π)3

2
Re

+∞∑
mnpq=−∞

∫ V

0

dω′

× tr
{
σz

(
Σ̃KimnG̃

A
np + Σ̃RimnG̃

K
np − Σ̃AimnG̃

A
np + Σ̃RimnG̃

R
np

)αβ
ω′
σz

(
Σ̃KjpqG̃

A
qm + Σ̃RjpqG̃

K
qm + Σ̃AjpqG̃

A
qm − Σ̃RjpqG̃

R
qm

)βα
ω′

−σz
(
Σ̃RimnG̃

R
npΣ̃

K
jpq + Σ̃KimnG̃

A
npΣ̃

A
jpq + Σ̃RimnG̃

K
npΣ̃

A
jpq − Σ̃AimnG̃

A
npΣ̃

A
jpq + Σ̃RimnG̃

R
npΣ̃

R
jpq

)αβ
ω′
σz

(
G̃Kqm + G̃Aqm − G̃Rqm

)βα
ω′

}
.

(3.3.19)
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We obtain the same expression when calculating S̄′
iα,jβ(ω = 0). It is also possible to obtain

compact expressions when the noise is evaluated at harmonics lV (l integer) of the Josephson

frequency :

S̄iα,jβ(lV ) = − (2π)3

2
Re

+∞∑
mnpq=−∞

∫ V

0

dω′

× tr
{
σz

(
Σ̃KimnG̃

A
np+l + Σ̃RimnG̃

K
np+l − Σ̃AimnG̃

A
np+l + Σ̃RimnG̃

R
np+l

)αβ
ω′
σz

(
Σ̃KjpqG̃

A
qm−l + Σ̃RjpqG̃

K
qm−l + Σ̃AjpqG̃

A
qm−l − Σ̃RjpqG̃

R
qm−l

)βα
ω′

− σz
(
Σ̃RimnG̃

R
npΣ̃

K
jpq+l + Σ̃KimnG̃

A
npΣ̃

A
jpq+l + Σ̃RimnG̃

K
npΣ̃

A
jpq+l − Σ̃AimnG̃

A
npΣ̃

A
jpq+l + Σ̃RimnG̃

R
npΣ̃

R
jpq+l

)αβ
ω′
σz

(
G̃Kqm−l + G̃Aqm−l − G̃Rqm−l

)βα
ω′

}
.

(3.3.20)

The other non symmetrized correlator reads

S̄′
iα,jβ(lV ) = − (2π)3

2
Re

+∞∑
mnpq=−∞

∫ V

0

dω′

× tr
{
σz

(
Σ̃KimnG̃

A
np−l + Σ̃RimnG̃

K
np−l − Σ̃AimnG̃

A
np−l + Σ̃RimnG̃

R
np−l

)αβ
ω′
σz

(
Σ̃KjpqG̃

A
qm+l + Σ̃RjpqG̃

K
qm+l + Σ̃AjpqG̃

A
qm+l − Σ̃RjpqG̃

R
qm+l

)βα
ω′

− σz
(
Σ̃RimnG̃

R
npΣ̃

K
jpq−l + Σ̃KimnG̃

A
npΣ̃

A
jpq−l + Σ̃RimnG̃

K
npΣ̃

A
jpq−l − Σ̃AimnG̃

A
npΣ̃

A
jpq−l + Σ̃RimnG̃

R
npΣ̃

R
jpq−l

)αβ
ω′
σz

(
G̃Kqm+l + G̃Aqm+l − G̃Rqm+l

)βα
ω′

}
.

(3.3.21)

We note the symmetry property S̄′
iα,jβ(lV ) = S̄iα,jβ(−lV ).

3.4 Numerical results

The code which has been developped to investigate MCPR configurations allows the computation

of the harmonics (3.3.15) of the Josephson current as well as the computation of the frequency

unsymmetrized noise (3.3.20)-(3.3.21) for the harmonics of the Josephson frequency. It is versatile

in the sense that various configurations (and phenomena) can be adressed and as benchmark tests,

we have first recovered some well established results including

• the MAR onsets in a single voltage biased Josephson junction [121], obtained by desacti-

vating the tunnel coupling between S0 and Sb,

• the noise cross correlations in a N-S-N junction [84], obtained in the limit of vanishing

lateral superconducting gaps.

73



CHAPTER 3. CURRENT AND NOISE CHARACTERISTICS OF MULTIPLE COOPER
PAIR RESONANCES

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

I
[e

∆ h̄
]

eV = 0.75∆

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

eV = 0.65∆

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

eV = 0.55∆

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

eV = 0.45∆

-1

0

1

2

3

4

5

6

0 π 2π

S
[e

2
∆ h̄
]

φ

0

2

4

6

8

10

12

14

16

0 π 2π

φ

0

5

10

15

20

25

30

35

0 π 2π

φ

0

10

20

30

40

50

60

0 π 2π

φ

Ia
Ib

Saa

Sbb

Sab

Figure 3.6: Current and noise correlations for a high (subgap) voltage in the resonant dots regime.

We will focus on the quartet resonance Va = −Vb = V > 0. Moreover we will adopt an

antisymmetric position for the dots εa = −εb = ε > 0 to optimize CP splitting [84]. We assume

symmetric couplings between superconductors and dots Γjαβ = Γ. The quartet phase φQ =

φa + φb − 2φ0 is monitored through φb = φ, the two others being set to zero φ0 = φa = 0. We

will present results for the DC currents in the leads Ia ≡ I0aa and Ib ≡ I0bb (cf. Eq. (3.3.15)) as well

as for the zero-frequency correlations of these currents Saa ≡ S̄aa,aa(ω = 0), Sbb ≡ S̄bb,bb(ω = 0)

and Sab ≡ S̄aa,bb(ω = 0) (cf. Eq. (3.3.19)). Saa and Sbb will be refered as noise autocorrelations

whereas Sab are the noise crossed correlations. Usual Fano factors in the leads are also given:

Fj =
Sjj
2Ij

for j = a, b . (3.4.1)

Another Fano factor is defined from the sum of the currents and gives information about noise

crossed correlations

F0 =
Saa + Sbb + 2Sab

2(Ia + Ib)
. (3.4.2)

Concerning the Josephson currents, investigated in Ref. [17], a remark is worthy: defining the

vectors Ī = (Ia, Ib), φ̄ = (φa, φb), V̄ = (Va, Vb) and ε̄ = (εa, εb) which collect average currents,
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phases, voltages and dot energies, particle-hole symmetry is responsible for

Ī(−φ̄,−V̄ ,−ε̄) = −Ī(φ̄, V̄ , ε̄) . (3.4.3)

In close connection to Josephson’s original work [15], the authors of Ref. [17] postulate the

following form for the current

Ī(φ̄, V̄ , ε̄) = ĪMP(φ̄, V̄ , ε̄) + ĪphMAR(φ̄, V̄ , ε̄) + Īqp(V̄ , ε̄) (3.4.4)

as a sum of an usual phase insentive (odd in voltages) quasiparticle current Īqp and a phase

sensitive current which is further decomposed as a component ĪMP odd in phases and even in

voltages ascribed to multipair production and a component ĪphMAR even in phases and odd in

voltages due to nonlocal MAR processes. Within the symmetries that result from the choice of

parameters we have done, we should recover Ib(−φ) = −Ia(φ). For clarity and despite some

redundancy, we will sometimes give the two currents to show eventual discrepancies or to make

clear that both are equal and then odd in phases which is ascribed to quartets production as

emphasized in Ref. [17]. Following the latter work, two different regimes will be investigated:

• the resonant dots regime is obtained for QD energy levels within the gap ε < ∆ and not

so large couplings Γ < ∆,

• the metallic junction regime is obtained for energy levels out of resonance ε > ∆ and large

couplings Γ > ∆.

3.4.1 Resonant dots regime

A common feature which emerges from all the investigations led in this regime is the presence of

(very) phase sensitive and voltage sensitive giant Fano factors even when the Josephson current

is fully ascribed to quartets production. Numerical issues in the computation of current correla-

tions prevent to reach reliably the adiabatic regime where a sinusoidal (π-shifted) current-phase

relation is recovered. Here we present results for ε = 0.6∆ and Γ = 0.3∆.

In Figs. 3.6, the phase dependences of the currents Ia and Ib as well as those of noise cor-

relations Saa, Sbb and Sab are given for different voltages. While at voltages below 2∆/3, the

two currents in the lateral electrodes are identical, they become to move away from each other

for higher voltages (we still have the symmetry Ib(−φ) = −Ia(φ) which has been clarified in

the beginning of this section). It has been ascribed to the emergence of phase-sensitive MAR

processes (the lowest order process illustrated in Fig. 3.4c has a threshold 2∆/3). Remark that
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Figure 3.7: Current, noise crossed correlations and Fano factors for a low (subgap) voltage in the

resonant dots regime. Note the logarithmic scale for noise crossed correlations and Fano factors.
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Figure 3.8: Current, noise correlations and Fano factors as a function of the voltage in the resonant dots

regime, for φ = 4. Note the logarithmic scale for Fano factors. Note also that this quantity displayed in

the bottom right panel is considered in the low voltage regime (the voltage range is different from other

panels).

both autocorrelations in the two leads and the crossed correlations collapse on the same curve

even if the two currents are well separated and an important consequence is that positive noise

crossed correlations are obtained. This noise increases as the voltage is lowered in contradiction

with the expectation one should have from the disappearance of a low order and possibly noisy

phase sensitive MAR process.

Decreasing further the voltage leads to nontrivial evolutions for the current as shown in

Fig. 3.7. Nevertheless, it tends to adopt a π-junction behavior which has been verified for lower

voltages (the numerical issues are less stringent for current computation than for noise compu-

tations) in agreement with Ref. [17]. A very simple argument has been provided in the latter

work in relation to the spin singlet nature of CP pairing. Indeed a nonlocal singlet delocalized on
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Figure 3.9: Current and noise correlations for a high (subgap) voltage in the metallic junction regime.

the QDs (CP splitting) is obtained by the operator cab = (d†a↑d
†
b↓ − d

†
a↓d

†
b↑)/
√
2 so that splitting

two CPs on the QDs results in the state c2ab |0⟩a |0⟩b = − |↑↓⟩a |↑↓⟩b and the minus sign which

is obtained explains the anomalous sign of the Josephson supercurrent. The noise still presents

high values compared to the current as the Fano factors reveal. The phase sensitivity of the

noise is so huge (values ranging over 10 decades) that we have adopted a logarithmic scale. The

Fano factors are represented for φ ∈ [π, 2π] where the current is supposed to be positive for the

expected π-junction behavior (remark that there are some voltages and phases for which the

logarithm of the Fano factor is not defined as the current takes negative values). There are some

voltages for which the phase sensitivity of the noise is attenuated (eV /∆ = 0.35, 0.32, 0.23, 0.2

in Fig. 3.7) but Fano factors are still ranging between unity and some hundreds. Note that the

voltages given are the lowest for which we have some confidence in the numerical convergences.

In Fig.3.8, we propose to investigate the dependence of currents and correlations on voltage

V for a given phase (φ = 4). We notice a strong sensitivity with the presence of some resonances,

the strongest corresponding to V = ε for which the Fermi energies of both leads are at the level

of QD energies. As already mentioned, the currents in both leads collapse on a single curve
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Figure 3.10: Current and noise correlations for a low (subgap) voltage in the metallic junction regime.

as soon as V < 2∆/3 while their associated autocorrelations coincide both with the crossed

correlations for all subgap voltages investigated. As already stressed, Fano factors take high

values (once again it is given using a logarithmic scale and there are some voltages for which it

is not defined).

3.4.2 Metallic junction regime

Here we take ε = 6∆ and Γ = 4∆. In Figs. 3.9 and 3.10, the phase dependences of the currents

Ia and Ib as well as those of noise correlations Saa, Sbb and Sab are given. We remark very

different features as compared to the case of resonant QDs. First, considering the currents in the

two leads, the coinciding of their average values is obtained for lower voltages and those of their

autocorrelations for even lower voltages. Due to the large coupling, higher order phase sensitive

MAR processes (higher than the lowest order process given in Fig. 3.4c) contribute to maintain

this discrepancy. Second, noise crossed correlations strongly differ from autocorrelations in the

leads and positive crossed correlations are obtained only in the neighboring of the quartet phase

φ = 0 or π.

Very importantly, as shown in Fig. 3.11, as the voltage is lowered, the noise correlations de-
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Figure 3.11: Current, noise crossed correlations and Fano factors for a low (subgap) voltage in the

metallic junction regime. Note the logarithmic scale for Fano factors at low voltages (right column).
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Figure 3.12: Current, noise correlations and Fano factors as a function of the voltage in the metallic

junction regime, for φ = 4. Note the logarithmic scale for Fano factors.

crease whereas the Josephson current converges towards a given π-junction current-phase relation

(which has already been explained in the last section). Note that the nontrivial oscillations of

the noise crossed correlations lead to the appearance of positive values around fine-tuned quartet

phases. Nevertheless, considering the amplitudes of noise correlations, they are considerably low-

ered and consequently, as the current converges, so do the Fano factors (note that a logarithmic

scale has been adopted for the Fano factors at low voltages).

In Fig.3.12, the dependence of currents and correlations on voltage V for a given phase (φ = 4)

is investigated. The currents in both leads both converge towards a finite value (the adiabatic

limit) when the voltage is lowered. Autocorrelations and crossed correlations are different but

both vanish in the limit of small voltages so do the Fano factors. Note that positive crossed

correlations can be achieved as illustrated in the inset of the first panel.
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3.5 Conclusion and perspectives

We have studied the noise correlations in a three-terminal all-superconducting device designed

in a Josephson bijunction with a grounded electrode contacted via two QD nanowires to two

lateral leads. When commensurate voltages are applied to these lateral electrodes, Josephson-

like signatures are recovered and associated with MCPR.

Within the Keldysh framework, a path integral approach leads to a Dyson equation which

relates bare and dressed (by interactions) QD Green’s functions, introducing a self-energy term.

The statistics of the current operator have been derived using counting fields. The commensu-

rability of the voltages allows a (double) Fourier representation which is convenient for further

numerical computations.

Two regimes have been numerically investigated. For resonant QDs, high values for the noise

have been obtained together with a strong sensitivity on both phase and voltage. This regime

supports (high) positive noise crossed correlations. In the metallic junction limit, we have found

that the noise correlations decrease with voltage so that, when the adiabatic limit is reached,

the Fano factors take very low values. Positive noise crossed correlations at a given voltage are

obtained only for fine-tuned quartet phases.

Possible extensions of this work could follow several directions including

• the investigations of lower voltages in the resonant dots regime which would require more

efficient integration tools,

• the influence of interdot tunneling,

• the influence of the QD Coulomb on-site energy which would require a Hubbard-Stratonovich

treatment (cf. Chapter 2),

• the investigation of finite frequency noise at multiples of the Josephson frequency,

• the investigation of higher order multipair production processes.

The measurements of noise crossed correlations in three-terminal all-superconducting devices

could follow from the progress achieved in N-S-N CP splitters, as presented in Chapter 2. A

recent study [122] has reported such measurements. They have investigated the correlations

between the two lateral electrodes labeled L,R accross the quartet line: VR is fixed while VL is

monitored around VR. The crossed correlations present a peak which coincide with the peak of
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(a) SEM image of the three-terminal Joseph-

son junction.

(b) Differential conductance displaying anomalies

associated with MCPR.

(c) Differential conductance (top) and cross corre-

lations (bottom) along the line of (b).

(d) Crossed correlations in the square of (b).

Figure 3.13: Measurements of crossed correlations in a three-terminal Josephson junction. Adapted

from [122].
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Figure 3.14: biSQUID proposal where a nanotube QD contact three different superconductors (S0, Sa

and Sb) such that two magnetic fluxes ΦA and ΦB can be enclosed. In such a device the measurement

of the critical current as a function of these fluxes can probe nonlocal multipair production.

the differential conductance anomaly (Fig. 3.13). Measurements along the quartet line were also

performed and present positive crossed correlations.

Remember that the SQUID-based CP splitter, studied in Chapter 2, was proposed as an equi-

librium alternative to the (out-of-equilibrium) noise crossed correlation measurements required

in earlier CP splitter proposals. In a very similar way, an equilibrium setup refered as biSQUID,

and displayed in Fig. 3.14, has been proposed for nonlocal multipair production [103].

84



Chapter 4

Topological superconductors

In this chapter, we propose a brief introduction to Majorana quasiparticles in solid-state physics.

The postulate for the existence of Majorana fermions originates in the context of high energy

physics. The concept of an antiparticle emerged as an interpretation of negative energy solutions

of the Dirac equation. Majorana proposed that some fermions could be indistinguishable from

their antiparticle. While this possibility is actively pursued in some weak interaction mediated

decays, the idea reappears in the context of condensed matter physics where collective excitations

could exhibit the Majorana property (Section 4.1). Intuition can be gained by the study of the Ki-

taev toy model which describes spinless p-wave superconductivity in one-dimension (Section 4.2).

Numerous are the proposals for practical realizations of topologically nontrivial phases hosting

Majorana fermions which cleverly circumvent the problem of knowing whether the elusive p-wave

superconductivity does exist or not in Nature. One-dimensional semiconducting wires on top of

an s-wave supercondutor, the so-called Majorana wires, have received a lot of attention because

strong Rashba spin-orbit coupling together with a Zeeman splitting for time-reversal symmetry

breaking could be wisely used to create an isolated spin band inside which superconductivity

can be proximity-induced (Section 4.3). The search for convincing signatures of Majorana zero-

energy modes has been fueled by the promises of topologically protected fault-tolerant quantum

computing schemes relying on the non-Abelian statistics that Majorana excitations exhibit in

two-dimensional systems (Section 4.4). At the view of the growing interest rising in the con-

densed matter community about Majorana quasiparticles, some dedicated reviews have been

published [123–128].
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4.1 From particle physics to condensed matter physics

The Dirac equation is described with full details in standard particle physics textbooks, e.g.

Ref [129]. One can also consult the early review [130] about relativistic field theories, including

spin 1/2 Dirac theory and the Majorana viewpoint. The Dirac wave equation [131], which governs

the dynamics of relativistic spin 1/2 particles, is the following first order partial differential

equation

{iγµ∂µ −m}Ψ(r, t) = 0 . (4.1.1)

Dirac proposed this wave equation in 1928 in an attempt to conciliate quantum mechanics and

special relativity, as an extension of Schrödinger equation [132]. The index µ covers time and

space coordinates, µ = 0 corresponding to time. The quantities γµ must verify the (Clifford

algebra) defining relation γµγν + γνγµ = 2ηµν where ηµν is the Minkowski metric so that a

plane-wave state Ψ(r, t) ∝ exp [i(p.r− Et)] solution of the Dirac equation provides the energy-

momentum relation E2 = p2 + m2 as a result of squaring γµpµ = m which gives the squared

norm of the four-momentum pµ = (E,p) (alternatively, squaring the differential operator γµ∂µ
yields the d’Alembert operator ∂µ∂µ and then a wavefunction Ψ(r, t) which satisfies the Dirac

equation also obeys the Klein Gordon equation). Hence the γµ must be matrices and one can

show that representations are at least 4-dimensional. A spin 1/2 particle is then described by

a wavefunction Ψ(r, t) which is a bispinor (4-vector). Dirac proposed a set of gamma matrices

which fulfills the requirement mentioned above and show that his wave equation is invariant under

Lorentz tranformations. When solving this equation for stationary states and within his gamma

matrix representation, negative energies emerged and were not ignored. These solutions were

interpretated as antiparticles [133] and the discovery of the positron in 1932 was a considerable

support for this theory. For a charged particle (with charge q), the coupling to an electromagnetic

field (electromagnetic four-potential Aµ) is achieved via the so-called minimal coupling which

consists in the substitution of the partial derivative ∂µ by the covariant derivativeDµ = ∂µ−iqAµ.

If Ψ (describing a Dirac fermion f) satisfies the Dirac equation with charge q, its charge conjugate

ΨC (describing the antiparticle f̄) verifies the same equation with reversed charge −q so that

it can be related to the complex conjugate of Ψ through ΨC = CΨ∗ where the matrix C is

determined by solving Cγ∗µC
−1 = −γµ. Then to the stationary state ΨE(r, t) = eiEtΦE(r) at

energy E corresponds another stationary state CΨ∗
E(r, t) = e−iEtCΦ∗

E(r) at energy −E.

Majorana in his seminal last work [134] proposed a representation in terms of imaginary
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(a) ββ(2ν) process. (b) ββ(0ν) process.

Figure 4.1: Weak interaction mediated (W is the weak vector boson) double beta decay of two neutrons

(n) into two protons (p) with emission of two electrons (e). The ordinary ββ(2ν) process involves the

emission of two antineutrinos (ν̄) and the neutrinoless ββ(0ν) process can occur only if neutrinos are

Majorana fermions. Extracted from [135].

gamma matrices, which allows for a real bispinor description

Ψ(r, t) = Ψ∗(r, t) . (4.1.2)

This last equality is known as reality condition. Majorana provides a potential physical meaning

for this purely formal mathematical operation, namely the existence of particles which are their

own antiparticles, the so-called Majorana fermions. When expressed in other gamma matrix

representation, this statement of identifying a field (describing the particle) with its charge

conjugate (describing the antiparticle) results in the so-called pseudo-reality condition

Ψ(r, t) = CΨ∗(r, t) . (4.1.3)

An important point is that both conditions (4.1.2) and (4.1.3) involve the time-dependent field

Ψ∗(r, t). Looking into energy domain, an energy eigenstate could not describe a Majorana fermion

except at zero energy. Indeed, for E ̸= 0, the charge conjugate CΦE ∝ Φ−E is orthogonal to ΦE .

The neutrinos which had been postulated to explain the continuous spectrum of beta decay

were proposed as candidates and the double beta decay as a benchmark test since a neutrinoless

disintegration could be envisioned if neutrinos are indeed Majorana fermions [136]. While the

ordinary double beta decay with emission of two neutrinos ββ(2ν) has been observed [137], the

neutrinoless analogous ββ(0ν) is yet to be detected and has motivated an international program
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research [135]. The Feynman diagrams of these two processes are given in Fig. 4.1. If the

neutrinoless decay is identified, it would not only contribute to the understanding of neutrino

physics reinforcing the seesaw mechanism as an explanation for the lightness of neutrinos but

also potentially give insight in possible mechanisms for the matter-antimatter asymmetry, since

it would be the first example of a lepton number violating process. To a certain extent, it would

also give some support for the supersymmetry theory which was proposed as an extension of the

standard model and which postulates the existence of particles with Majorana properties.

A formal operation consists in writing a Dirac fermionic operator c as the linear combination

of two Majorana fermionic operators γA and γB according to

c =
γA + iγB

2
and c† =

γA − iγB
2

, (4.1.4)

so that inverting

γA = c+ c† and γB = −i
(
c− c†

)
. (4.1.5)

From the fermionic anticommutation relation satisfied by c ({c, c†} = 1), we deduce the relations

for Majorana fermions

{γX , γY } = 2δXY for X,Y ∈ {A,B} . (4.1.6)

In particular, γ2X = 1. In a metal, electron and hole excitations created respectively with Dirac

fermion operators c†σ and cσ (σ is the spin projection) are distinct quasiparticles because they

carry opposite charge. Superconductivity (cf. Chapter 1) could provide the fertile ground for the

emergence of Majorana quasiparticles since Bogoliubov quasiparticles γkσ = ukckσ − σvkc†−k−σ
involve superpositions of electron and hole excitations owing to the intrinsic charge non-conserving

BCS ground state. But, although one can expect adress zero momentum (k = 0) excitations

with equal weight superpositions (u0 = v0), the spin issue prevents such quasiparticles to have

Majorana properties. However, while BCS superconductivity describes s-wave spin singlet pair-

ing, other pairing symmetries can be envisioned. Parallel spins can be paired if the two electrons

form a triplet spin state. Note that the spatial wavefunction must then be antisymmetric and

one talks about p-wave pairing [138, 139]. Freezing one of the two projections, the system is

effectively spinless and one can expect midgap excitations with Majorana properties.

Actually, the Majorana nature of Bogoliubov quasiparticles is more general when looking

into time domain (following original Majorana proposal) and it was realized first for p-wave

superconductors [20, 140] then surprisingly, for standard s-wave superconductors [141]. The

Bogoliubov - de Gennes (BdG) wave equation, which governs the dynamics of quasiparticle

excitations, written as Nambu bispinors (the analogues of Dirac bispinors), presents a lot of
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Figure 4.2: Different possible pairings of Majorana fermions which diagonalize Kitaev chain problem:

the trivial phase contains the set of parameters such that the fermionic operators cj =
γA,j+iγB,j

2
(top:

on-site Majorana operators are paired) diagonalize the problem while the topological phase contains the

set of parameters such that the fermionic operators c̃j =
γB,j+iγA,j+1

2
(bottom: adjacent site Majorana

operators are paired) diagonalize the problem. Remark that for the second set of parameters (in the

topological phase), two Majorana fermions remain unpaired and do no enter the Hamiltonian meaning

that it forms a highly nonlocal fermionic state c̃ =
γA,1+iγB,N

2
leading to a ground state degeneracy

(corresponding to the different occupation numbers 0 or 1 of this state). Adapated from [123].

similarities with Dirac equation and by an unitary transformation the Hamiltonian can be put

into a real form so that the total time-dependent field can be a Majorana fermion. Moreover, it

can be tested in a very similar way to what is done in high energy physics, i.e. by collision and

subsequent annihilation of a Majorana pair [142]. This interferometric proposal could benefit

from the recent achievements in electronic quantum optics experiments [143, 144]. Nevertheless

theoretical proposals for Majorana realizations have mainly focused on zero-energy (stationary)

states.

A toy model was proposed by Kitaev to modelize a 1D p-wave superconductor [145]. It is a

lattice model of spinless fermions with hopping amplitude and p-wave superconducting pairing

between nearest neighbor sites. Depending on the parameters of the system, the formal expansion

of the Dirac fermions into their Majorana components (4.1.4) can get some physical meaning

and an alternative pairing of these Majorana fermions could lead to the emergence of unpaired

Majorana end states which form an highly nonlocal fermion with zero-energy leading to a two-

fold degenerate ground state, as illustrated in Fig 4.2 and further explained in Section 4.2. The
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emergence of such unpaired Majorana fermions has a topological origin which will be discussed.

Their presence is then robust as long as the topologically nontrivial phase is not escaped and

one talks about topological protection. The phase transition is monitored by a single parameter

which is the ratio of the chemical potential and the hopping amplitude.

The question of knowing whether materials can support p-wave pairing as a ground state

is still under debate, the most serious candidate being Sr2RuO4 [146]. Another platform which

could support Majorana quasiparticles is the 5/2 fractional quantum Hall state which has been re-

lated (through topological classes) to p-wave superconductivity [20] suggesting that non-Abelian

statistics first proposed in the Moore-Read Pfaffian state [147] could be a robust property for

Majorana quasiparticles bound to vortices in a 2D p + ip superconductor [148]. The idea of

fault-tolerant quantum computation originates in the discovery for the possibility of such exotic

statistics [21, 149] which are briefly discussed in Section 4.4. Let us also mention the A phase

of superfluid He3 where zero modes supported by vortices were first calculated by Kopnin and

Saloma [150] and which topological nature was elucidated by Volovik [151].

The proposal by Fu and Kane [22] constitutes a considerable breakthrough in the pursuit

of Majorana emergent collective excitations in condensed matter as the idea was to mimick

p-wave pairing by proximity-inducing conventional (s-wave) superconductivity on the helical

edge states at the boundary of a 3D topological insulator [7]. It was understood that spin-orbit

coupling is the key ingredient and alternative semiconductor-superconductor hybrid systems were

proposed [153, 154] and a further simplification in the design results in the proposal of the so-

called Majorana wires [23, 24]. In these 1D semiconducting wires with strong Rashba spin-orbit

coupling, a Zeeman field is applied for time-reversal symmetry breaking and for the creation of an

isolated spin band inside which superconductivity can be proximity-induced using a conventional

s-wave superconductor. Such a proposal, further presented in Section 4.3, has received a lot

of attention because of its feasibility since the materials and technics which are involved are

commonly used in nanofabrication and because it allows for a control of the topological phase

which can be conveniently monitored with the chemical potential set by gate voltages along

the wire. Possibly remaining scepticism raised by the apparent triviality of 1D systems has been

erased by a seminal work by Alicea [152] in which braiding of non-Abelian anyons has been proved

to be achievable in an effective 2D network of Majorana wires as illustrated in Fig 4.3. Then

such setups can be considered as solid candidates for future topological quantum computation

schemes.

Other potential platforms for the emergence of Majorana quasiparticles that will not be fur-
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(a) A keyboard of gate voltages can be used

to control the chemical potential along the

wire and move a Majorana state which is

bound to the interface of a topological (dark

blue) and a trivial phase (light blue).

(c) The exchange of many Majorana fermions

can be achieved in such a geometry. Indeed,

any Majorana pair can be moved to the lower

wire to be exchanged using a T-junction ex-

periment.

(b) In a T-junction, the exchange of Majorana fermions can be achieved.

Two cases can be distinguished: end states of a topological phase (left) or a

trivial phase (right) can be exchanged.

Figure 4.3: The braiding of Majorana fermions can be achieved using 1D p-wave superconducting

wires. Adapted from [152].
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(a) SEM image of an InSb wire covered by nor-

mal and superconducting contacts. A Zeeman

magnetic field is applied parallel to the wire.

(b) Differential conductance shows the developement of

a zero-bias peak with increasing magnetic field. Green

arrows show the proximity-induced gap.

Figure 4.4: One of the first experimental claim for a zero-bias conductance peak compatible with the

presence of a Majorana fermion [155].

ther discussed in this thesis include the edge of a 2D topological insulator [156], 3D topological

insulator nanowires [157], helical spin chains [158] and electrostatic line defects in a 2D semicon-

ductor [159].

Several experiments have implemented Majorana wire proposals and have quite rapidly re-

ported a zero-bias conductance peak [155, 160–163] compatible with the presence of Majorana

zero-energy modes (see Fig. 4.4). Fractional 4π periodic Josephson current [22,145,156] has also

been observed [164] but does not give decisive evidence for Majorana fermions neither. Potential

non-topological origins for such signatures have to be ruled out. In particular, discriminating

features in conductance measurements have motivated a lot of works. For example, recent theo-

retical predictions [165,166] have followed the experimental study in Ref. [167] which has reported

exponential suppression of energy splitting with wire length compatible with the hybridization

of Majorana end states in a Coulomb blockaded nanowire. At the cutting edge of experimental

progress in the search for Majorana fermions, a proper quantization of zero-bias conductance

has recently been reported [168, 169]. Non-Abelian exchange statistics would be the ultimate

compelling proof for the observation of Majorana fermions but before the implementation of

T-junctions [152] for braiding experiments, quantum transport in systems supporting Majorana

states can be investigated in the aim to propose other kinds of signature for the presence of Ma-

92



4.2. KITAEV MODELIZATION OF P -WAVE SUPERCONDUCTIVITY
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−π 0 π
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q
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∆/t = 0
∆/t = 0.5
∆/t = 1

∆/t = 1.5

Figure 4.5: Spectrum in the Kitaev model. Depending on the ratio |µ|/t, we have different bulk

properties.

jorana fermions. The study of a junction between two p-wave superconductors in a topologically

nontrivial phase (TS-TS junction) reported in Chapter 5 contributes to this program.

4.2 Kitaev modelization of p-wave superconductivity

Bulk properties are investigated in Section 4.2.1 and topologically different phases are identified

in Section 4.2.2. We perform the formal expansion of Dirac fermions into Majorana fermions

(cf. Eq (4.1.4)) in Section 4.2.3 and by focusing on two special sets of parameters lying on each

side of the topological phase transition, we show that (topologically protected) bound states are

supported in one of these phases. The emergence of Majorana zero-energy fermions is ascribed

to the gap closure at a domain wall between two topologically distinct phases as argued in

Section 4.2.4.
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4.2.1 Bulk properties of the Kitaev model

To describe spinless fermions which can hop between nearest-neighbor sites of a 1D chain and

which exhibit superconducting pairing, one can write the following toy model [145] in terms of

position fermionic operators cj (c†j creates a fermion on site j)

H = −µ
N∑
j=1

c†jcj +
N−1∑
j=1

{
− t
2

(
c†jcj+1 + c†j+1cj

)
+

1

2

(
∆ cjcj+1 +∆∗c†j+1c

†
j

)}
, (4.2.1)

where µ is the chemical potential, t is the (real) hopping amplitude and ∆ is the (complex) super-

conducting gap. By coupling cN with c1 and imposing periodic boundary conditions cN+1 = c1,

one can change the chain into a loop and adress bulk properties

Hloop =

N∑
j=1

{
−µ c†jcj −

t

2

(
c†jcj+1 + c†j+1cj

)
+

1

2

(
∆ cjcj+1 +∆∗c†j+1c

†
j

)}
. (4.2.2)

We introduce fermionic momentum space operators cν according to the discrete Fourier transform

cj =

N∑
ν=1

e2iπ νjN√
N

cν . (4.2.3)

The Hamiltonian can be rewritten in momentum space as

Hloop =
N∑
ν=1

ε

(
2πν

N

)
c†νcν −

N−1∑
ν=1

{
∆̃
(
2πν
N

)
2

cνcN−ν +
∆̃∗ ( 2πν

N

)
2

c†N−νc
†
ν

}
, (4.2.4)

where ε(q) = −t cos q − µ and ∆̃(q) = i∆ sin q. If a denotes the lattice spacing, we can have an

expression in terms of momenta k in the Brillouin zone BZ = [−π/a, π/a]

Hloop =
∑
k∈BZ

{
ε (ka) c†kck −

∆̃ (ka)

2
ckc−k −

∆̃∗ (ka)

2
c†−kc

†
k

}
. (4.2.5)

The pairing at k = 0 (or ν = N) is forbidden (Pauli exclusion principle) because of the odd form

of the pairing ∆̃. It can be easily rewritten as (constant terms originated from anticommutation

relations can be ignored)

Hloop =
1

2

∑
k∈BZ

C†kH(ka) Ck where Ck =

 ck

c†−k

 and H =

 ε ∆̃∗

∆̃ −ε

 . (4.2.6)

We can decompose the H matrix thanks to Pauli matrices σ⃗ = (σx, σy, σz)
T according to

H = h.σ⃗ where


hx = R(∆̃) ,

hy = I(∆̃) ,

hz = ε .

(4.2.7)
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This matrix can be easily diagonalized. Its eigenvalues are given by

E±(q) = ±E(q) with E(q) = ∥h(q)∥ =
√
ε2(q) + |∆̃(q)|2 =

√
(µ+ t cos q)2 + (|∆| sin q)2 .

(4.2.8)

It is displayed in Fig 4.5. Depending on the value of |µ|/t (the sign of µ does not matter since

E±(q)|µ→−µ = E±(π − q)), we have different bulk properties: for |µ|/t > 1, we have no gapless

points, for |µ|/t < 1, gapless points for ∆ = 0 are opened as soon as ∆ ̸= 0. A fine tuning to

|µ|/t = 1 leads to gapless points (for ka = 0 or π) whatever the value of ∆. We will consider two

limiting cases to further investigate these different bulk properties:

• case 1: |µ|/t = +∞ with µ < 0 , t = 0 and |∆| << |µ| ,

• case 2: |µ|/t = 0 with µ = 0 , t = |∆| ̸= 0 .

We introduce the angle θ defined as

sin [θ(q)] =
|∆| sin q
E(q)

and cos [θ(q)] = ε(q)

E(q)
. (4.2.9)

We denote φ the phase of the superconducting gap, i.e

∆ = |∆|eiφ and ψ =
π

2
+ φ . (4.2.10)

Then introducing the coefficients

u(q) = ei
ψ
2 cos θ(q)

2
, (4.2.11)

v(q) = −e−i
ψ
2 sin θ(q)

2
, (4.2.12)

we can easily diagonalize the problem thanks to the definition of the following fermionic operators

through the Bogoliubov - Valatin transformation (cf Chapter 1)

ak = u(ka) ck − v(ka) c†−k . (4.2.13)

Indeed, the diagonalization reads

H = P

E 0

0 −E

P † with P =

 u∗ v

−v∗ u

 . (4.2.14)

Then we have

P †(ka) Ck =

 ak

σ(ka) a†−k

 where σ(q) = sign
[
cos θ(q)

2
cos θ(−q)

2

]
(4.2.15)
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so that

Hloop =
∑
k∈BZ

E(ka) a†kak , (4.2.16)

where E(q) is given in Eq. (4.2.8). The following (BCS-like) wavefunction (cf Chapter 1)

|g.s.⟩ ∝ exp

 ∑
0<k<π

a

g(ka) c†kc
†
−k

 |0⟩ with g(q) =
v(q)

u(q)
= e−iΨ tan θ(q)

2
=
E(q)− ε(q)

∆̃(q)

(4.2.17)

satisfies ak |g.s.⟩ = 0. Normalizing it (adapt the calculation in Appendix B of [25]), we find the

ground state

|g.s.⟩ =
∏

0<k<π
a

[
u(ka) + v(ka) c†kc

†
−k

]
|0⟩ . (4.2.18)

We can rewrite the argument of the exponential (4.2.17) in terms of position operators as follows

∑
0<k<π

a

g(ka) c†kc
†
−k =

1

2

N−1∑
ν=1

g

(
2πν

N

)
c†νc

†
N−ν =

1

2

N−1∑
j,j′=1

γjj′ c
†
jc

†
j′ , (4.2.19)

where we introduce the Fourier transform of the g function according to

γjj′ =
1

N

N−1∑
ν=1

g

(
2πν

N

)
e2iπ

j−j′
N ν = −γj′j . (4.2.20)

We compute this quantity in the two cases.

• case 1: we have θ(q) = 0 and we get (at first order in |∆/µ|) a nearest-neighbor pairing

term

eiφγjj′ =
1

4

∣∣∣∣∆µ
∣∣∣∣ (δj,j′−1 − δj,j′+1) . (4.2.21)

• case 2: we have θ(q) = π − q and if we define

ην = e 2iπν
N and SN (m) =

N−1∑
ν=1

ηmν
ην − 1

=
N + 1

2
−m for 1 ⩽ m ⩽ N , (4.2.22)

we get a long range pairing term [170]

eiφγjj′ = −
SN (j − j′) + SN (j − j′ + 1)

N
= −

(
1− 2

j − j′

N

)
for j > j′ . (4.2.23)

It constitutes a hint (but not a decisive evidence) that |µ|/t > 1 and |µ|/t < 1 would correspond

to different phases.
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(a) Trivial phase: h(0) = h(π)
is on the same pole of the Bloch

sphere and a close loop is drawn in

the half Brillouin zone.

(b) Topological phase: h(0) =

−h(π) and the path in the half

Brillouin zone joins the two poles

of the Bloch sphere.

(c) Trivial phase: the two close loops

(drawn in the two half Brillouin zones)

subtend opposite fluxes resulting in a triv-

ial Berry phase: γ− = 0.

(d) Topological phase: in the second half

of the Brillouin zone, the path is closed

and the resulting flux is half the total solid

angle so that the Berry phase is γ− = π.

(e) Particular case of Kitaev Hamilto-

nian in the trivial phase. The curve fol-

lows a portion along a great circle.

(f) Particular case of Kitaev Hamiltonian

in the topological phase. The curve fol-

lows entirely a great circle.

Figure 4.6: Adapted from [123] for subfigures (a)-(b) and [171] for subfigures (c)-(e) (R = ∥h∥).
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4.2.2 Topological phase transition

When k goes from −π/a to π/a, the unit vector ĥ(ka) = h(ka)/∥h(ka)∥ rotates on the Bloch

sphere along a closed loop. This vector is parametrized thanks to spherical coordinates as

ĥ =


sin θ1 cosΨ1

sin θ1 sinΨ1

cos θ1

 with θ1 ∈ [0, π] , Ψ1 ∈ [0, 2π] . (4.2.24)

In the Kitaev model case (cf Eqs. (4.2.7), (4.2.9) and (4.2.10)), θ1 is defined as cos θ1 = cos θ and

sin θ1 = | sin θ|, and Ψ1(q) = Ψ if q ⩾ 0 or Ψ1(q) = Ψ± π otherwise. The path is then included

on a great circle: we can indeed reduce the problem to 2 dimensions thanks to a rotation about

the z-axis

ei
Ψ1
2 σz [hKitaev.σ⃗]e−i

Ψ1
2 σz = εσz + |∆̃|σx . (4.2.25)

More generally, if we consider the class of Hamiltonians that can be written as

HBdG =
1

2

∑
k∈BZ

C†k [h(ka).σ⃗] Ck , (4.2.26)

we could have more complex paths on the Bloch sphere. But if we require particle-hole symmetry

(as in the Kitaev model case) that is

σx

[
C†k
]T

= C−k ⇒ σx h
T (ka)σx = −h(−ka) , (4.2.27)

then we have the symmetries 
hx(q) = −hx(−q) ,

hy(q) = −hy(−q) ,

hz(q) = hz(−q) .

(4.2.28)

Because of that, the vectors ĥ(0) and ĥ(±π) are along the z-axis, and the path followed on one

half part of the Brillouin zone can be deduced from the other half part. We can calculate the

Berry phase [172]

γ− = i

∫ π
a

−π
a

dk ⟨−,h(ka)| d
dk |−,h(ka)⟩ =

∮
C

A−(h).dh =

∫
S

B−(h).dS (4.2.29)

where the Berry connexion A−(h) = i ⟨−,h|∇h |−,h⟩ is integrated along the closed C path

followed by the vector h (on the sphere of radius |h|) and where the Berry curvature B−(h) =

∇h ×A−(h) is integrated on a surface S which boundary is C. Using the result

B−(h) = −
I [⟨−,h| σ⃗ |+,h⟩ × ⟨+,h| σ⃗ |−,h⟩]

4|h|2 =
h

2|h|3 , (4.2.30)
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we conclude that the Berry phase is simply half the solid angle subtented by the curve C. Then

depending on the respective positions of h(0) and h(π), we have 0 or π Berry phase. To dis-

tinguish between the two cases (h(0) and h(π) on the same pole, or h(0) and h(π) on different

poles) the Majorana number (or Z2 topological invariant) first formulated by Kitaev [145] can

be used and, for the class of Hamiltonians studied here, it reduces to [173]

ν = sign [hz(0)] sign [hz(π)] (4.2.31)

and we have

ν = 1 ⇔ γ− = 0 , (4.2.32)

ν = −1 ⇔ γ− = π . (4.2.33)

The two topologically distinct phases are illustrated in Fig. 4.6. A phase transition can occur

only if the gap closes meaning h(k) = 0. In the Kitaev model case, ν = sign
[
µ2 − t2

]
as foreseen,

and the trivial phase obtained for |µ| > t is connected to vacuum µ→ −∞.

4.2.3 Majorana mode expansion in the Kitaev model

Let us investigate the consequences of the boundaries meaning let us go back to the finite size

chain Hamiltonian (4.2.1). We introduce the following Majorana operators

γA,j = ei
φ
2 cj + e−i

φ
2 c†j = γ†A,j , (4.2.34)

γB,j = −iei
φ
2 cj + ie−i

φ
2 c†j = γ†B,j . (4.2.35)

They can be viewed as half fermions in the sense that

cj =
e−iφ2
2

(γA,j + iγB,j) . (4.2.36)

They obey Majorana fermion commutation relations

{γα,j , γα′,j′} = 2δαα′δjj′ . (4.2.37)

The Hamiltonian (4.2.1) can then be written as

H = −i µ
2

N∑
j=1

γA,jγB,j +
i

4

N−1∑
j=1

{
(|∆|+ t) γB,jγA,j+1 + (|∆| − t) γA,jγB,j+1

}
. (4.2.38)

This can be easily diagonalized in the two cases defined in Section 4.2.1.
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• case 1: we have interaction between the Majorana fermions of the same site (short-range

pairing)

H = −µ
N∑
j=1

c†jcj = −i
µ

2

N∑
j=1

γA,jγB,j . (4.2.39)

• case 2: the interactions occur between Majorana fermions of different sites (long-range

pairing)

H = i
t

2

N−1∑
j=1

γB,jγA,j+1 = t
N−1∑
j=1

c̃†j c̃j , (4.2.40)

where we define the fermionic operators

c̃j =
γB,j + iγA,j+1

2
(4.2.41)

which are built with Majorana fermions localized on adjacent sites.

These different pairings are illustrated in Fig. 4.2. Despite the similarity of (4.2.39) and (4.2.40),

the fact that the Majorana end states γA,1 and γB,N do not enter explicitely the expression of

the Hamiltonian (4.2.40) leads to a two-fold degeneracy of the ground state. Indeed, let us define

the fermion

f =
1

2
(γA,1 + iγB,N ) (4.2.42)

which can be populated without any energy cost. |0⟩ and |1⟩ = f† |0⟩ form degenerate ground

states. Moreover from the highly non-local nature of the fermion f , one can expect a protection

of this occupancy against decoherence.

The emergence of Majorana fermions is by no means a singular feature of this particular set

of parameters, meaning that it does not require a fine tuning. Indeed one can see these boundary

states as a consequence of a domain wall between the chain (in a topological phase) and vacuum

(in a trivial phase) where the gap closes and reopens. This argument is developped in the next

section.

4.2.4 Topological protection of Majorana end states

In the following, µ < 0. Let us develop a low energy continuum theory of the Kitaev model

analogous to what was done by Jackiw and Rebbi for the SSH model [174,175] and focus around

the gap closure point µ = −t. The Hamiltonian (4.2.25) at first order in ka reads

H(ka) = mσz + vF k σx (4.2.43)
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0

0
x

TRIVIAL

TOPOLOGICAL

m(x)[
Ψ0†Ψ0

]
(x)

Figure 4.7: Domain wall materialized by a sign change of the Dirac mass m(x) and Majorana state Ψ0

associated.

with m = −t−µ and vF = |∆|a. In real space, the low energy problem is described by the Dirac

Hamiltonian

Hlow energy (∂x) = mσz − ivF ∂x σx . (4.2.44)

Let us consider a domain wall between two topologically distinct regions, i.e. a change in the

sign of the Dirac mass m as a function of x, separating a trivial region with m > 0⇔ −µ/t > 1

and a topological region with m < 0 ⇔ −µ/t < 1, and let us search for a zero-energy solution

Ψ0(x) which is written in the basis of zero momentum operators (c, c†) where c ≡ ck=0 and which

verifies

{vF ∂x +m(x)σy}Ψ0(x) = 0 . (4.2.45)

We introduce the eigenvectors of the σy Pauli matrix

|y±⟩ = e∓iπ4

 1

±i

 , σy |y±⟩ = ± |y±⟩ . (4.2.46)

Expressed in the basis (c, c†) they define majorana operators

Ψy,± = e∓iπ4
(
c± ic†

)
= Ψ†

y,± . (4.2.47)
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Let us suppose that the topologically non-trivial phase lies on the right: the Dirac mass is positive

for x < 0, vanishes for x = 0 and is negative for x > 0. We can easily write a zero energy solution

as

Ψ0
trivial→topo(x) ∝ exp

[
1

vF

∫ x

0

dx′m(x′)

]
Ψy,− . (4.2.48)

The antikink in the mass m obtained by inverting the two phases will require the other Majorana

operator

Ψ0
topo→trivial(x) ∝ exp

[
− 1

vF

∫ x

0

dx′m(x′)

]
Ψy,+ . (4.2.49)

If we take the simple example (m0 > 0 for the kink trivial → topo and m0 < 0 for the antikink

topo → trivial)

m(x) = −m0 tanh x
ξ

with ξ > 0 , (4.2.50)

we find [
Ψ0†Ψ0

]
(x) ∝ 1[

cosh x
ξ

] 2|m0|ξ
vF

. (4.2.51)

This is illustrated in Fig. 4.7. This emergence of a Majorana zero mode at the gap closure point

is quite general and one talks about topological protection.

4.3 Practical realization of p-wave superconductivity

Inspired by the seminal work by Fu and Kane [22], a lot of condensed matter platforms for

the engineering of p-wave superconductivity were proposed. Among them, those based on 1D

semiconducting wires [23, 24] are the most promising (emphasizing the relevance of the Kitaev

model). Here we show that the gap in the energy spectrum can be closed as a consequence of

the competition of Rashba spin-orbit interaction (with strength α) and Zeeman splitting (Vx).

These are indeed the key ingredients that enter the Hamiltonian

H0 =

∫
dxΨ†(x)

{
− ∂2x
2m
− µ+ iα∂xσy + Vxσx

}
Ψ(x) . (4.3.1)

In momentum space Ψ(x) =
∑
k

e−ikx√
L

Ψ(k), it becomes

H0 =
∑
k

Ψ†(k) {ξ(k) + αkσy + Vxσx}Ψ(k) with ξ(k) =
k2

2m
− µ . (4.3.2)

The eigenvalues are given by

ε±(k) = ξ(k)±
√
V 2
x + α2k2 (4.3.3)
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0

ε ±
(k
)

k

Vx = 0

kSO

ESO

0
k

α ̸= 0

2Vxα = 0
α ̸= 0

Vx = 0
Vx ̸= 0

Figure 4.8: Spectrum of a semiconducting wire with Rashba spin-orbit (α) and in presence of a Zeeman

field (Vx).

and the eigenvectors by

Ψ±(k) =
ei
θ(k)
2 Ψ↑(k)± e−i

θ(k)
2 Ψ↓(k)√

2
where eiθ(k) = Vx − iαk√

V 2
x + α2k2

. (4.3.4)

The spectrum is given in Fig. 4.8. Considering Vx = 0, the spin-orbit interaction is responsible

for a splitting of the spin bands as two parabolas centered at ±kSO = ±mα and a decreasing of

the minimal energy by ESO = mα2/2. Then turning on the Zeeman coupling, a gap is opened

at k = 0. Interestingly, inside this gap a single Fermi point is available and this is crucial for

the generation of spinless superconductivity. The proximity-induced superconductivity pairing

reads

H∆ = ∆

∫
dxΨ†

↑(x)Ψ
†
↓(x) + h.c. = ∆

∑
k

Ψ†
↑(k)Ψ

†
↓(−k) + h.c. (4.3.5)

and it is instructive to write it in the basis of vectors Ψk± according to

H∆ = ∆
∑
k

{
cos [θ(k)]Ψ†

−(k)Ψ
†
+(−k) + sin [θ(k)]

(
Ψ†

+(k)Ψ
†
+(−k)−Ψ†

−(k)Ψ
†
−(−k)

)
+ h.c.

}
.

(4.3.6)
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Figure 4.9: Spectrum of a semiconducting wire with Rashba spin-orbit (α), in presence of a Zeeman field

(Vx) and where superconductivity (∆) is induced by proximity effect. The gap closes for Vx =
√

∆2 + µ2.

We denote interband and intraband pairing as ∆s(k) = ∆ cos [θ(k)] and ∆p(k) = ∆ sin [θ(k)]

respectively. We consider the Nambu spinors

C(k) =

 Ψ+(k)

Ψ†
−(−k)

 (4.3.7)

and the associated constrained bispinors

C(k) =

 C(k)

[iσyC(−k)]∗

 . (4.3.8)

One can rewrite the total Hamiltonian in BdG form

H = H0 +H∆ =
1

2

∑
k

C(k)†H(k)C(k) (4.3.9)
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Figure 4.10: The exchange of two Majorana fermions results if the change of sign for one of them. Re-

mark that the reading of the exchange supposes a measurement by fusion with other Majorana fermions.

Exchanging the vortices then measuring (up) is equivalent to directly performing the proper measure-

ments (bottom). Adapted from [124].

where

H =


ε+ ∆s 0 −∆p

∆s −ε− ∆p 0

0 −∆p ε− ∆s

∆p 0 ∆s −ε+

 (4.3.10)

which yields the following BdG spectrum

E2
±(k) = ξ2(k) + V 2

x + α2k2 +∆2 ± 2
√
V 2
x∆

2 + ξ2(k)(V 2
x + α2k2) . (4.3.11)

This is displayed in Fig. 4.9. The gap closes for a Zeeman splitting verifying Vx =
√
∆2 + µ2.

For large Vx, a connection with a low-energy limit of Kitaev model can be made [152] so that

the topological phase lies above

Vx >
√
∆2 + α2 . (4.3.12)

Majorana zero-energy modes are expected to be bound to the ends of a topological region in

such a 1D wire. The early claims for signatures compatible with the presence of Majorana

quasiparticles have already been discussed in Section 4.1.
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4.4 Non-Abelian statistics

The exchange of Majorana fermions bound to topological defects in a 2D system results in non-

Abelian statistics [20,148] so that Majorana qubits can be used as a fault-tolerant building block

for a universal quantum computer [21,149]. The nonlocal storage of the quantum information in

such qubits adresses the issue of decoherence at the hardware level (contrary to error correction

codes which act at the software level).

Closer to our presentation which emphasizes on the study of 1D p-wave superconductors, the

non-Abelian braiding of Majorana fermions supported by semiconducting wires has been proved

in Ref [152]. We would rather present here the original version of Majorana fermions bound to

vortices in a p+ip superconductor [148]. Considering vortices in a plane, one must define a branch

cut which originates from each vortex. When crossing this branch cut the superconducting phase

jumps by 2π but electron-like and hole-like components of a Majorana fermion acquires π and

−π phases so that the wavefunction changes sign. Then exchanging two neighboring Majorana

fermions γi and γi+1 results in the transformations

Ti(γi) = γi+1 , Ti(γi+1) = −γi and Ti(γj) = γj for j /∈ {i, i+ 1} . (4.4.1)

This is illustrated in Fig. 4.10. We easily check that braid group defining relations are verified

TiTj = TjTi for |i− j| > 1 , (4.4.2)

TiTjTi = TjTiTj for |i− j| = 1 . (4.4.3)

A projective representation is given by the action

Ti(γj) = τ(Ti)γj [τ(Ti)]
−1 where τ(Ti) = exp

[π
4
γi+1γi

]
=

1√
2
(1 + γi+1γi) . (4.4.4)

If one considers a given parity sector, e.g. the two-dimensional state spanned by |0⟩ and f†1f
†
2 |0⟩

where f1 = γ1+iγ2
2 and f2 = γ3+iγ4

2 , these matrices read

τ(T1) = exp
[
−iπ

4
σz

]
, τ(T2) = exp

[
−iπ

4
σx

]
and τ(T3) = exp

[
−iπ

4
σz

]
. (4.4.5)

The internal exchanges τ(T1) (exchange of γ1 and γ2) and τ(T3) (exchange of γ3 and γ4) produce

non-trivial phase factors for the states |0⟩ and f†1f
†
2 |0⟩. Even more interestingly, the exchange of

γ2 and γ3, which are half fermions of f1 and f2 respectively, leads to a mixing of the states. The

qubit rotations (4.4.5) are unitary tranformations which can be used for quantum computations

taking advantage of the protection against decoherence (fault-tolerant quantum computing).
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Chapter 5

Josephson current and thermal

noise in a junction between two

topological superconductors

The study of a junction between two p-wave superconductors in a topologically nontrivial phase

(TS-TS junction) is motivated by the inherent presence of Majorana states at the interface [145].

We have already introduced in Chapter 4 the promises of Majorana physics in condensed matter

platforms. Here is presented a calculation of Josephson current and thermal noise in a TS-TS

junction in the aim to propose transport-based signatures for the presence of Majorana modes.

Actually a unified approach to these transport quantities in BCS and topological superconducting

junctions is proposed. It relies on an expansion over Bogoliubov - de Gennes (BdG) scattering

states. This unified description of both types of junction is presented in Section 5.1 and the

scattering states are given in Section 5.2. The Andreev sector is studied in Section 5.3. Then,

the non-resonant noise which involves continuum states is computed in Section 5.4. Finally, we

give some concluding remarks and propose some perspectives in Section 5.5.

Short BCS superconducting constrictions (junctions in which the contact length is much

shorter than the superconducting coherence length) have extensively been studied in the litter-

ature, including computations of Josephson current [176–178] and thermal noise [179] and here

we recover some well established results. The Green’s function based theoretical framework of

Ref. [180] has been developped to analyze different kinds of hybrid quantum device including
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TS-TS junction and has reported results in agreement with the study presented here.

5.1 Unified scattering approach to quantum transport in

S-S and TS-TS junctions

Quasiclassical helical mode expansion and Dirac potential modelization for backscattering at

the contact point between wires [181] are well suited to describe a junction between two BCS

superconductors (S-S junction). This framework has been adopted to adress decoherence issues

of the so-called Andreev level qubit [182], including interactions with acoustic phonons [183]

and quasiparticle poisoning [184–186]. Here we recall this framework and extend it to include

the description of a topological wire. (Section 5.1.1). Then we diagonalize the Hamiltonian

by introducing the scattering eigenstates which would differ between the two types of junction

through the matching equation (Section 5.1.2). Finally, we express the current statistics in terms

of these scattering states (Section 5.1.3).

5.1.1 Unified Hamiltonian description of S-S and TS-TS junctions

We derive the BdG Hamiltonian written in terms of bispinors which collect the four kinds of

movers (right or left movers with spin up or down). We show how a chiral TS wire can be

described by the same Hamiltonian provided the use of constrained bispinors. Then, the mod-

elization of backscattering at the junction is presented.

BdG Hamiltonian for a BCS superconducting wire

Let us consider the second-quantized Hamiltonian of a one-dimensional BCS superconductor [25]

with Fermi energy EF , gap energy ∆, potential phase drop ϕ(x)

HBCS =

∫
dx

 ∑
σ=↑,↓

ψ†
σ(x)

[
− ℏ2

2m
∂2x − EF

]
ψσ(x) + ∆ eiϕ(x) ψ†

↑(x)ψ
†
↓(x) + h.c.

 , (5.1.1)

where the field ψ†
σ(x) denotes the fermionic creation operator for a particle with spin σ at

position x. It is useful to search solutions in the form of right and left movers at the Fermi

velocity vF = ℏkF
m by introducing envelope fermionic operators ψjσ for j = L,R and σ =↑, ↓

according to

ψσ(x) = eikF xψRσ(x) + e−ikF xψLσ(x) with kF =

√
2mEF
ℏ

. (5.1.2)
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The so-called “Slowly Varying Envelope Approximation” (SVEA) consists in neglecting second

order derivatives of the envelope operators. The Hamiltonian can be rewritten according to (the

fast oscillating terms with wavevectors ±2kF in the integrand are suppressed)

HBCS =

∫
dx

∑
σ=↑,↓

{
vF

(
ψ†
Rσ(x)

[
ℏ
i
∂x

]
ψRσ(x)− ψ†

Lσ(x)

[
ℏ
i
∂x

]
ψLσ(x)

)
+ σ∆ eiϕ(x) ψ†

Rσ(x)ψ
†
L−σ(x) + h.c.

}
.

(5.1.3)

In the following, we express energies in units of the gap energy and lengths in units of the

superconducting coherence length, which means doing the substitutions

H ← H

∆
and x← x

ξ0
, ξ0 =

ℏvF
∆

. (5.1.4)

It leads to the adimensionnalized Hamiltonian

HBCS =

∫
dx

∑
σ=↑,↓

{
−i
(
ψ†
Rσ(x)∂xψRσ(x)− ψ

†
Lσ(x)∂xψLσ(x)

)
+ σ eiϕ(x) ψ†

Rσ(x)ψ
†
L−σ(x) + h.c.

}
.

(5.1.5)

We introduce the following Nambu spinors

ψ+ =

ψR↑

ψ†
L↓

 and ψ− =

ψL↑
ψ†
R↓

 . (5.1.6)

The helicity is defined as the sign of the product of spin projection and momentum: a given spin

projection moving in a direction has the same helicity that the opposite spin projection moving

in the other direction. The two Nambu spinors defined in the last equation have given ± helicity.

We combine them into a bispinor according to

Ψ =

ψ+

ψ−

 . (5.1.7)

We define the Pauli matrices τi and σi (i = x, y, z) which act respectively in Nambu and right/left-

mover spaces so that the Hamiltonian can be written using this bispinor according to

HBCS =

∫
dxΨ†(x)

[
−i∂x σzτz + τx eiϕ(x)τz

]
Ψ(x) . (5.1.8)

If the phase is homogeneous accross the material, that is ϕ(x) = φ, we can gauge it out with the

substitution Ψ← eiφ2 τzΨ, so that we obtain

HBCS =

∫
dxΨ†(x)HBdG (∂x)Ψ(x) with HBdG (∂x) = −i∂x σzτz + τx . (5.1.9)

The BdG operator HBdG is diagonal in right/left-mover space:

HBdG (∂x) =

h(∂x) 0

0 τxh(∂x)τx

 with h(∂x) = −i∂x τz + τx . (5.1.10)
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BdG Hamiltonian for a topological superconducting wire

Setting µ = 0 in the Kitaev chain model leads to a topologically non-trivial phase (see Chapter 4

Section 4.2). Then linearizing (4.2.6) around Fermi points kF = π
2a [180], we get

HTS =
∑
q

Φ†
q

[
ℏvF q τz +∆eiφτzτx

]
Φq with Φq = CkF+q =

 ckF+q

c†−kF−q

 , (5.1.11)

where ℏvF = ta. Performing the change of units (5.1.4), we get

HTS =
∑
q

Φ†
q

[
q τz + eiφτzτx

]
Φq . (5.1.12)

We introduce right and left movers ψj (j = R,L) by the following Fourier transforms (l is the

wire length) 
ckF+q =

∫ dx√
l

e−i(kF+q)xψR(x) ,

c−kF−q =

∫ dx√
l

ei(kF+q)xψL(x) ,

(5.1.13)

and collect them into the Nambu spinor

ψ =

ψR
ψ†
L

 . (5.1.14)

After gauging out the homogeneous phase φ with the transformation ψ ← eiφ2 τzψ, the Hamilto-

nian can be written as

HTS =

∫
dxψ†(x)h(∂x)ψ(x) , (5.1.15)

where the operator h has been defined in (5.1.10). We introduce the Nambu spinor copy (the ∗

operation consists in the hermitian conjugation of the components of the spinor)

ψ = iτyψ
∗ =

 ψL

−ψ†
R

 (5.1.16)

which transforms in the same way under the phase gauging out ψ ← eiφ2 τzψ. It is useful to

consider such a spinor copy because we easily verify that

− ψ∗†τxψ
∗ = ψ†τxψ and

∫
dxψ∗†(x) ∂x τz ψ

∗(x) =

∫
dxψ†(x) ∂x τz ψ(x) . (5.1.17)

Consequently, we get∫
dxψ†

(x) τxh(∂x)τx ψ(x) =

∫
dxψ∗†(x) τzh(∂x)τz ψ

∗(x) = HTS . (5.1.18)
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Then, if we define the bispinor

Ψ =
1√
2

ψ
ψ

 , (5.1.19)

we can write the TS wire Hamiltonian in the same form than that of a BCS wire (5.1.9), that is

HTS =

∫
dxΨ†(x)HBdG (∂x)Ψ(x) . (5.1.20)

An important point is that the bispinors used in the description of a TS wire obey the pseudo-

reality constraint

[CΨ]
∗
= Ψ with C = σyτy . (5.1.21)

Remark: Guided by the previous result, we introduce the copies ψζ of the Nambu spinors ψζ
defined by (5.1.6) and the collecting constrained bispinors Ψζ according to

ψζ = iτyψ
∗
ζ and Ψζ =

1√
2

ψζ
ψζ

 for ζ = ± . (5.1.22)

We can then rewrite (5.1.9) as

HBCS =
∑
ζ=±

∫
dxΨ†

ζ(x)HBdG (ζ∂x)Ψζ(x) . (5.1.23)

A BCS 1D superconductor treated in the SVEA approximation can be seen as a superposition

of two TS wires with opposite velocities ±vF (and then opposite helicities).

Localized scatterer

We modelize a TS-TS junction by introducing a barrier at x = 0 that allows backscattering (right

mover into a left mover or vice versa) which necessarily required spin flip (as a consequence of

momentum-spin locking)

HTS-TS = HTS +
g

2

[
ψ†
L(0

−)ψR(0
−) + ψ†

R(0
+)ψL(0

+) + h.c.
]
. (5.1.24)

The interacting term can be written using a delta function1 so that

HTS-TS =

∫
dxΨ†(x) {HBdG(∂x) + gδ(x)σx}Ψ(x) (5.1.25)

1In fact we use the distribution which gives the mean value of right and left limits in 0 of a function∫
dx δ(x)f(x) =

f(0−)+f(0+)
2

.
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with the constrained bispinor Ψ defined in (5.1.14), (5.1.16) and (5.1.19). In a S-S junction, we

allow backscattering in a spin-preserving way

HS-S = HS +
g

2

∑
σ

[
ψ†
Lσ(0

−)ψRσ(0
−) + ψ†

Rσ(0
+)ψLσ(0

+) + h.c.
]

(5.1.26)

=

∫
dxΨ†(x) {HBdG(∂x) + gδ(x)σxτz}Ψ(x) (5.1.27)

with the unconstrained bispinor Ψ defined in (5.1.6) and (5.1.7). Such a modelization of backscat-

tering in a S-S junction is achieved in the litterature [181,183–185]. Both S-S and TS-TS junctions

can be described by a second quantized Hamiltonian H written as

H =

∫
dxΦ†(x)H(x, ∂x)Φ(x) with H(x, ∂x) = HBdG(∂x) + gδ(x)σxτzτ⋆ (5.1.28)

where Φ(x) is a constrained bispinor only in the topological case and where we define

τ⋆ =

 τz in a TS-TS junction,

1 in a S-S junction.
(5.1.29)

5.1.2 Hamiltonian diagonalization

The diagonalization of such the Hamiltonian (5.1.28) resides in the determination of the energies

Eν such that

H =
∑
ν

Eνc
†
νcν . (5.1.30)

c†ν is the fermionic creation operator for a particle in the energy state Eν . This diagonalization

can be performed using the ansatz

Φ(x) =
∑
ν

χν(x)cν , (5.1.31)

where the introduced 4-component wavefunctions satisfy∫
dxχ†

ν(x)H(x, ∂x)χν(x) = Eν ,∫
dx
{
χ†
µ(x)H(x, ∂x)χν(x)− χ†

ν(x)H(x, ∂x)χµ(x)
}
= 0 for µ ̸= ν .

(5.1.32)

Assuming χν to be normalized, i.e.
∫

dxχ†
ν(x)χν(x) = 1, we can rewrite the first equation

of (5.1.32) as ∫
dxχ†

ν(x) {H(x, ∂x)− Eν}χν(x) = 0 . (5.1.33)
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Solving the eigenvalue problem {H(x, ∂x)− E}χ(x) = 0 for the 4-component function χ(x) leads

to the determination of the set of eigenvalues Sp(H) = {Eν}ν and an orthonormalized basis of

eigenfunctions {χν}ν

{H(x, ∂x)− Eν}χν(x) = 0 and
∫

dxχ†
µ(x)χν(x) = δµν , (5.1.34)

which satisfy (5.1.32) so that used in the ansatz (5.1.31) that is injected in (5.1.28), the di-

agnonalization (5.1.30) is effective. The interacting problem {H(x, ∂x)− E}χ(x) = 0 reduces

to the free problem {HBdG(∂x)− E}χ(x) = 0 for x > 0 and x < 0 and to the matching of the

two solutions which is obtained by integrating the interacting eigenvalue problem around x = 0

(which will lead to a case-dependent matching condition). Remark that we have

cν =

∫
dxχ†

ν(x)Φ(x) and c†ν =

∫
dxχTν (x)Φ∗(x) . (5.1.35)

In the case of constrained bispinors Φ = Ψ with [CΨ]∗ = Ψ, we obtain

c†ν =

∫
dx [Cχν(x)]

T
Ψ(x) . (5.1.36)

Free problem

The free problem is the same in both S-S and TS-TS junctions and it reduces to the diagonaliza-

tion of the BdG Hamiltonian HBdG given in (5.1.10). Its square is the scalar differential operator

H2
BdG(∂x) = −∂2x +1. Then, we have continuum plane wave states ∝ eikEx with dispersion rela-

tion E2 = 1 + k2E and subgap (bound) states ∝ eκEx with dispersion relation E2 = 1− κ2E .

Continuum states (|E| > 1)

In right/left-mover space, continuum states can be written as

χE(x) = eikEx

χ(1+)

E

0

+

 0

χ
(2+)
E

+ e−ikEx

χ(1−)

E

0

+

 0

χ
(2−)
E

 . (5.1.37)

If we define hk = h(∂x) eikx = kτz + τx, the BdG equation written for this wavefunction gives {hkE − E}χ
(αρ)
E = 0 for (α, ρ) = (1,+) or (2,−) ,

{h−kE − E}χ
(αρ)
E = 0 for (α, ρ) = (1,−) or (2,+) .

(5.1.38)

It is convenient to introduce the angle θE defined as cosh θE = |E| ,

sinh θE =
√
E2 − 1 .

(5.1.39)
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We have θ−E = θE and we link the signs of wavevector and energy as

signE = sign kE ≡ ηE . (5.1.40)

Then we simply have
{
τx − ηE e−θEτz

}
χ
(αρ)
E = 0 for (α, ρ) = (1,+) or (2,−) ,{

τx − ηE eθEτz
}
χ
(αρ)
E = 0 for (α, ρ) = (1,−) or (2,+) .

(5.1.41)

Now if we define

χ̃
(αρ)
E =

 e−
θE
2 τz χ

(αρ)
E for (α, ρ) = (1,+) or (2,−) ,

e
θE
2 τz χ

(αρ)
E for (α, ρ) = (1,−) or (2,+) ,

(5.1.42)

the equations (5.1.41) reduce to

{1− ηEτx} χ̃(αρ)
E = 0 ⇒ χ̃

(αρ)
E ∝

 1

ηE

 . (5.1.43)

Two types of solutions are possible (depending on the value of (α, ρ)) and correspond to the two

conducting species: electrons and holes. Then we define spinors describing electron (e) and hole

(h) at energy E by (this is arbitrary and the roles of electrons and holes can be interchanged)

[χe]E = χ(θE , ηE) and [χh]E = χ(−θE , ηE) , where χ(θ, η) =
e θ2 τz√
2 cosh θ

1

η

 . (5.1.44)

We have the following orthonormality conditions:

χ†(θ, η)χ(θ, η) = 1 ⇒ [χe]
†
E [χe]E = [χh]

†
E [χh]E = 1 ,

χ†(θ,−η)χ(−θ, η) = 0 ⇒ [χe]
†
−E [χh]E = 0 .

(5.1.45)

The incoming wave corresponding to an electron or a hole at energy E coming from the left

(x < 0) or from the right (x > 0) is a particular solution of the BdG equation (l is the wire

length)

χin
p=(E,s)(x) = Θ(−x) eikEx√

l

δs,1[χe]E
δs,2[χh]E

+Θ(x)
e−ikEx√

l

δs,4[χh]E
δs,3[χe]E

 . (5.1.46)

An additionnal index s = 1..4 has been defined to distinguish between the four cases of incoming

waves and p stands for the couple (E, s). This is not a solution of the interacting problem and

the matching condition will lead to the emergence of an outgoing wave, which form is intuitively

guessed to be

χout
p=(E,s)(x;φ) = Θ(−x) e−ikEx√

l

ap(φ)[χh]E
bp(φ)[χe]E

+Θ(x)
eikEx√

l

cp(φ)[χe]E
dp(φ)[χh]E

 , (5.1.47)
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so that a general solution could be written as

χp(x;φ) = χin
p (x) + χout

p (x;φ) . (5.1.48)

The coefficients ap, bp, cp, dp will depend on the phase difference φ between the two superconduc-

tors but also on the strength of the coupling g (through the transmission T to be defined later).

It will be necessary to prove that the four solutions s = 1..4 at a given energy E form a basis for

the solutions of the BdG equation.

Bound states (|E| ⩽ 1)

Physical solutions correspond to bound states with κE =
√
1− E2 ⩾ 0 written as

χE(x) = e−κExΘ(x)


χ(1+)

E

0

+

 0

χ
(2+)
E

+ eκExΘ(−x)


χ(1−)

E

0

+

 0

χ
(2−)
E

 . (5.1.49)

The BdG equation written for this wavefunction gives the same equations for the χαρ as in the

previous case provided we substitute iκE to kE {hiκE − E}χ
(αρ)
E = 0 for (α, ρ) = (1,+) or (2,−) ,

{h−iκE − E}χ
(αρ)
E = 0 for (α, ρ) = (1,−) or (2,+) .

(5.1.50)

The sign of the energy is denoted as σE = signE. The additional substitution θE → iγE yields

to the definition of the angle γE as  cos γE = |E| ,

sin γE = σEκE .
(5.1.51)

Without loss of generality we can choose γ−E = −γE . Proceeding as previously, we have to

define

[χ̃e]E = χ̃(γE , σE) and [χ̃h]E = χ̃(−γE , σE) , where χ̃(γ, σ) =
e iγ2 τz√

2

1

σ

 . (5.1.52)

We have the following orthonormality conditions:

χ̃†(γ, σ)χ̃(γ, σ) = 1 ⇒ [χ̃e]
†
E [χ̃e]E = [χ̃h]

†
E [χ̃h]E = 1 ,

χ̃†(γ,−σ)χ̃(γ, σ) = 0 ⇒ [χ̃h]
†
−E [χ̃e]E = 0 .

(5.1.53)

Then we can write the general form for a bound state wavefunction as

χE(x;φ) = e−κE |x|

Θ(−x)

aE(φ)[χ̃h]E
bE(φ)[χ̃e]E

+Θ(x)

cE(φ)[χ̃e]E
dE(φ)[χ̃h]E

 . (5.1.54)

As in the previous case, the coefficients aE , bE , cE , dE will depend on the phase difference φ

between the two superconductors but also on the strength of the coupling g.
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Matching condition

Integrating the interacting eigenvalue problem {HBdG(∂x) + gδ(x)σxτ⋆ − E}χ(x) = 0 around

x = 0 provides

− iσzτz
[
χ(0+)− χ(0−)

]
+ λσx

[
χ(0+) + χ(0−)

]
= 0 with λ =

g

2
. (5.1.55)

Defining transmission and reflection coefficients

t =
1− λ2

1 + λ2
=
√
T and r =

2λ

1 + λ2
=
√
1− T , (5.1.56)

we can write

χ(0−) =
1

t
(1− rσyτ⋆)χ(0+) . (5.1.57)

Remark that this equation matches solutions in the two half-spaces x < 0 and x > 0 which have

not necessarily the same phase potential. It is then established before the gauge transformation

χ(x)← e−i
φ
4 sign(x)τzχ(x) (5.1.58)

where φ is the phase drop accross the junction. We also perform the following rotation

χ(x)← e−iπ4 σzχ(x) , (5.1.59)

which transforms σy into −σx, for conventional reasons. We obtain

χ(0−) = Ť⋆χ(0
+) with Ť⋆ =

eiφ2 τz√
T

(
1 +
√
1− Tσxτ⋆

)
, (5.1.60)

where τ⋆ has been defined in (5.1.29).

Remarks:

• The transmission coefficient is independent of the energy so that the mode expansion (5.1.31)

also satisfies the matching equation Φ(0−) = Ť⋆Φ(0
+).

• Importantly, the matching equation is the same for S-S and TS-TS junctions in the limit

of perfect transparency T = 1 so that the BdG solutions must coincide.

5.1.3 Current operator and statistics

Moving to Heisenberg picture leads to time dependence for the operators. We express times in

units of ℏ/∆ = ξ0/vF (which leads to ℏ = 1 in our system of units). The transformation between

Schrödinger and Heisenberg pictures, for the field operators, reads

Φ(x, t) = eiHt Φ(x) e−iHt =
∑
k⩾0

(it)k

k!
AdkH [Φ(x)] with AdH [Φ(x)] = [H,Φ(x)] , (5.1.61)
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where we have used the Baker-Hausdorff lemma [187]. Since we have [H,Φ(x)] = −H(x, ∂x)Φ(x),

we get (using the decomposition (5.1.31) and the eigenvalue equation (5.1.34) verified by the

functions χν)

Φ(x, t) =
∑
ν

χν(x) e−iEνtcν . (5.1.62)

An alternative proof consists in using first the decomposition (5.1.31) in order to write

Φ(x, t) =
∑
ν

χν(x)cν(t) with cν(t) = eiHt cν e−iHt , (5.1.63)

then still using the Baker identity and remarking that [H, cν ] = −Eνcν , we recover the result.

Remarks:

• For continuum states, because of the sign choice (5.1.40), a plane wave eikEx effectively

propagates from left to right, whatever the sign of the energy E.

• The matching equation remains true in the Heisenberg picture

Φ(x = 0−, t) = Ť⋆Φ(x = 0+, t) . (5.1.64)

Taking the electron charge e as charge unit, the current flowing through the junction (from

left to right) is given by

I(t) = Φ†(x = 0+, t)σzΦ(x = 0+, t) = Φ†(x = 0−, t)σzΦ(x = 0−, t) . (5.1.65)

The current conservation is provided by T †
⋆σzT⋆ = σz . Then, using the mode expansion (5.1.62),

the current operator reads

I(t) =
∑
ν,ν′

Iνν′c†νcν′ei(Eν−Eν′ )t where Iνν′ = χ†
ν(0

+)σzχν′(0+) . (5.1.66)

We introduce the Fermi occupation number

n(E) =
(
1 + eβE

)−1
=

1

2

[
1− tanh βE

2

]
. (5.1.67)

The average value of the current operator (5.1.66) is given by

⟨I⟩ =
∑
ν

Iννn(Eν) , (5.1.68)

while its fluctuations read (use Wick’s theorem [188])

⟨δI(t)δI(t′)⟩ = ⟨I(t)I(t′)⟩ − ⟨I⟩2 =
∑
ν,ν′

|Iνν′ |2 n(Eν) [1− n(Eν′)] ei(Eν−Eν′ )(t−t
′) . (5.1.69)
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In the aim to provide a unified description of BCS and TS wires, we have artificially doubled the

number of degrees of freedom for a TS wire and this issue has to be carefully considered when

calculating expectation values. To avoid double counting (in the topological case), we introduce

the prefactor d⋆ = 2 in a TS-TS junction and d⋆ = 1 in a S-S junction, so that the equilibrium

Josephson current I and the unsymmetrized noise read

I =
1

d⋆
⟨I⟩ and S(t, t′) =

1

d⋆
⟨δI(t)δI(t′)⟩ . (5.1.70)

It is convenient to compute noise in frequency domain. After Fourier transform S(t, t′) =∫ dω
2π e−iω(t−t′)S(ω), we get

S(ω) = π
∑
ν,ν′

|Iνν′ |2 n(Eν) [1− n(Eν′)] δ [ω − (Eν′ − Eν)] . (5.1.71)

The finite frequency noise can be decomposed as the sum of contributions originated from tran-

sitions between Andreev levels (AA), between continuum states (CC) or between an Andreev

level and a continuum state (AC), as follows

S(ω ̸= 0) = SAA(ω) + SCC(ω) + SAC(ω) . (5.1.72)

5.2 Scattering states

Because the matching condition (5.1.60) just differs by the matrix τ⋆ between BCS and topo-

logical cases, a unified treatment of S-S and TS-TS junctions can be envisaged and the energy

dependent coefficients a, b, c, d which appear in both continuum (5.1.47) and bound state (5.1.54)

wavefunctions will depend on a few case-dependent functions. However, as already stressed, the

matching equation is the same for S-S and TS-TS junctions in the limit of perfect transparency

T = 1 so that the BdG solutions must coincide. Note that the complete description in terms of

scattering states has already been provided in Refs. [184, 185] in the S-S case. Still within our

unified approach, we provide some first consequences of the matching condition, namely sym-

metries between continuum eigenstates and the quantization of Andreev levels (Section 5.2.1).

Then, we give the expressions of wavefunctions (Sections 5.2.2 and 5.2.3). In the TS-TS case,

a proper linear combination of zero-energy Andreev levels leads to the appearance of Majorana

states (Section 5.2.4).
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5.2.1 First consequences of the matching condition

Continuum states

At a given energy E, four possible scattering states are possible and they have been labeled by

the index s = 1..4. p stands for the couple (E, s) and coeffcients ap, bp, cp, dp will acquire phase

dependence through the matching condition (5.1.60). This relation yields the symmetries given

in the following table

s = 1 s = 2 s = 3 s = 4

a(E,s)(φ) A(θE , φ) B(−θE , φ) −D(θE ,−φ) C(−θE ,−φ)

b(E,s)(φ) B(θE , φ) A(−θE , φ) C(θE ,−φ) −D(−θE ,−φ)

c(E,s)(φ) C(θE , φ) D(−θE , φ) −B(θE ,−φ) A(−θE ,−φ)

d(E,s)(φ) D(θE , φ) C(−θE , φ) A(θE ,−φ) −B(−θE ,−φ)

Table 5.1: a(E,s), b(E,s), c(E,s), d(E,s) coefficients for s = 1..4 expressed thanks to four functions

A,B,C,D.

Alternatively, if we define the wavefunction

χ(x; θ, η, φ) = Θ(−x)

eikx√
l

χ(θ, η)
0

+
e−ikx√

l

A(θ, φ)χ(−θ, η)
B(θ, φ)χ(θ, η)

+Θ(x)
eikx√
l

 C(θ, φ)χ(θ, η)

D(θ, φ)χ(−θ, η)

 ,

(5.2.1)

we have

χ(E,1)(x;φ) = χ(x; θE , ηE , φ) , (5.2.2a)

χ(E,2)(x;φ) = σx χ(x;−θE , ηE , φ) , (5.2.2b)

χ(E,3)(x;φ) = −iσy χ(−x; θE , ηE ,−φ) , (5.2.2c)

χ(E,4)(x;φ) = σzχ(−x;−θE , ηE ,−φ) . (5.2.2d)

We can then restrict the resolution to the case s = 1 and determine the functions A,B,C,D

which respect the condition

√
T [χ(θ, η) +A(θ, φ)χ(−θ, η)] = ei

φ
2 τz
[
C(θ, φ)χ(θ, η) +

√
1− T τ⋆D(θ, φ)χ(−θ, η)

]
, (5.2.3a)

√
TB(θ, φ)χ(θ, η) = ei

φ
2 τz
[
D(θ, φ)χ(−θ, η) +

√
1− T τ⋆C(θ, φ)χ(θ, η)

]
. (5.2.3b)

An easy way to solve this system is to use the conditions (5.1.45). We define the two following
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case-dependent quantities

cosh θ
[
χ†(θ,−η) τ⋆ ei

φ
2 τzχ(−θ, η)

]
= f(φ) =


cos φ

2
in the topological case,

i sin φ
2

in the BCS case.
(5.2.4)

cosh θ
[
χ†(θ,−η) τ⋆ χ(θ, η)

]
= g(θ) =

 cosh θ in the topological case,

sinh θ in the BCS case.
(5.2.5)

Then we have the matrix equation MV = W satisfied by the vectors

V(θ, φ) =


A(θ, φ)

B(θ, φ)

C(θ, φ)

D(θ, φ)

 , W(θ, φ) =
√
T


sinh θ

0

−i sin φ
2

0

 . (5.2.6)

The 4x4 matrix

M(θ, φ) =

 0 Mb(θ, φ)

Mc(θ, φ) Md(θ, φ)

 , (5.2.7)

involves the 2x2 matrices Mi (i = a, b, c, d) given by

Mb(θ, φ) =

sinh
(
θ + iφ2

) √
1− T f(φ)

√
1− T f(φ) − sinh

(
θ − iφ2

)
 , (5.2.8a)

Mc(θ, φ) =
√
T

sinh
(
θ + iφ2

)
0

0 − sinh
(
θ − iφ2

)
 , (5.2.8b)

Md(θ, φ) =
√
1− T

 0 g(−θ)

g(θ) 0

 . (5.2.8c)

We define

Q⋆(θ, φ) = sinh
(
θ − iφ

2

)
sinh

(
θ + i

φ

2

)
= sinh2 θ + sin2 φ

2
= cosh2 θ − cos2 φ

2
. (5.2.9)

This quantity can be expressed thanks to the case dependent functions g and f in a unified way

Q⋆(θ, φ) = g2(θ)− f2(φ) . (5.2.10)

We also define

Q(θ, φ) = Q⋆(θ, φ) + (1− T ) f2(φ) = g2(θ)− Tf2(φ) . (5.2.11)

We have detMb = −Q, detMc = −TQ⋆ and detM = detMb × detMc = TQQ⋆ > 0 since

Q⋆ > 0 and Q > 0 in the case |E| > 1 (θ > 0). The matrix M is then invertible.
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Andreev bound states

We can use the conditions (5.1.53) and proceed in the same way as done previously to obtain

the matrix equation respected by the vector

VE(φ) =


aE(φ)

bE(φ)

cE(φ)

dE(φ)

 . (5.2.12)

It is an homogeneous system M(iγE , φ)VE(φ) = 0 and to have non trivial solutions we must

have

detM(iγE , φ) = detMb(iγE , φ)× detMc(iγE , φ) = 0 . (5.2.13)

The matrix equation leads to

Mb [iγE , φ]

cE(φ)
dE(φ)

 = 0 , (5.2.14)

Mc [iγE , φ]

aE(φ)
bE(φ)

+Md [iγE , φ]

cE(φ)
dE(φ)

 = 0 . (5.2.15)

Let us search solutions that do not vanish in the right half space, i.e. cE ̸= 0 and dE ̸= 0. We

must have

− detMb(iγE , φ) = Q(iγE , φ) = Q⋆(iγE , φ) + (1− T )f2(φ) = 0 . (5.2.16)

Then we have quantization of the bound states since

Q⋆(iγE , φ) = E2 − cos2 φ
2
. (5.2.17)

These are the so-called Andreev states which energies are given by

Eσ(φ) = σEA(φ) with EA(φ) =

√
cos2 φ

2
− (1− T )f2(φ) and σ = ±1 . (5.2.18)

This two-level structure is crucial for interlevel transitions driven by an applied electromagnetic

field [181]. In the following, all quantities indexed byEσ (aEσ , bEσ , cEσ , dEσ , γEσ , [χ̃e]Eσ , [χ̃h]Eσ , χEσ )

are now just indexed by σ (aσ, bσ, cσ, dσ, γσ, [χ̃e]σ, [χ̃h]σ, χσ). κEσ does not depend on σ and is

just replaced by κ

κ(φ) =
√
1− E2

A(φ) =

√
sin2 φ

2
+ (1− T )f2(φ) . (5.2.19)
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The φ dependence of Andreev states appears not only in coefficients aσ, bσ, cσ, dσ but also in

the damping coefficient κ and in the definition of the spinors [χ̃e]σ and [χ̃h]σ through γσ. The

Andreev states σ = ± are written as

χσ(x;φ) = e−κ(φ)|x|
Θ(−x)

aσ(φ)[χ̃h]σ(φ)
bσ(φ)[χ̃e]σ(φ)

+Θ(x)

cσ(φ)[χ̃e]σ(φ)
dσ(φ)[χ̃h]σ(φ)

 . (5.2.20)

An important quantity will be the phase derivative of the Andreev energy

δA(φ) = −
∂EA
∂(φ/2)

. (5.2.21)

It can be expressed in a unified way, since − ∂
∂(φ/2) f

2(φ) = sinφ whatever the case considered,

according to

δA(φ) =
T sinφ
2EA(φ)

. (5.2.22)

In the table below, we give the expressions of this last quantity together with those of Andreev

energy and damping coefficient for both S-S and TS-TS junctions as well as the common limits

T → 1

topological BCS limit T → 1

EA(φ)
√
T
∣∣cos φ2

∣∣ √
1− T sin2 φ

2

∣∣cos φ2
∣∣

κ(φ)
√

1− T cos2 φ2
√
T
∣∣sin φ

2

∣∣ ∣∣sin φ
2

∣∣
δA(φ)

√
T sign

[
cos φ2

]
sin φ

2
T
2

sinφ√
1− T sin2 φ

2

sign
[
cos φ2

]
sin φ

2

Table 5.2: Expressions of EA, κ and δA.

These 2π-periodic quantities are displayed in Fig. 5.1. Several points are to be noticed:

• Andreev energy and damping length κ−1 are smaller in the topological case than in the

BCS one. Consequently, the Andreev levels in a TS-TS junction reside more deeply inside

the gap and their associated spatial wavefunctions are more strongly localized around the

junction.

• In both cases, φ = 0 is the maximum of the Andreev energy and, consequently, a zero of

the δA quantity and a maximum of the damping length. Zero phase difference is a peculiar

point in a S-S junction: Andreev levels are ejected at the boundary of the gap and the

damping length diverges.
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Figure 5.1: Andreev energy EA, its phase derivative δA and damping parameter κ in TS-TS (full red)

and S-S (dashed green) junctions, and for several transparencies.

• In the BCS case, the Andreev energy has a strictly positive minimum in φ = π and

consequenlty the δA quantity vanishes.

• In the topological case, the Andreev energy vanishes for φ = π which goes with a discon-

tinuity of the δA quantity.

The case (φ = 0, E = 1) for BCS superconductors and the case (φ = π,E = 0) for topological

superconductors are pathological cases since the matrix M vanishes. Of particular interest will

be the second case because of the emergence of Majorana fermions. To provide a good decoupling

of the Andreev pair from continuum states, large transparency T ∼ 1 and bias operating point

φ = π were envisioned in a S-S junction [182]. In a TS-TS junction, a good decoupling can always

be achieved (whatever the transparency) around the zero φ = π of the Andreev energy. Remark

that, within our convention, see Eq. (5.2.18), in a TS-TS junction, the evolution with conserved

fermion parity leads to a change from one Andreev level branch to the other (Eσ → E−σ) through
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the crossing φ = π, at the origin of fractional (4π periodic) Josephson effect [145].

5.2.2 Continuum wavefunctions

We can invert V =M−1W and access the functions A,B,C,D :

Ã(θ, φ) = Q(θ, φ)A(θ, φ) = − sinh
(
θ − iφ

2

)(
iT sin φ

2
+

(1− T ) g(−θ)
Q⋆(θ, φ)

[
sinh θ f(φ) + i sin φ

2
g(−θ)

])
,

B̃(θ, φ) = Q(θ, φ)B(θ, φ) =
√
(1− T ) sinh θ g(θ) ,

C̃(θ, φ) = Q(θ, φ)C(θ, φ) =
√
T sinh θ sinh

(
θ − iφ

2

)
,

D̃(θ, φ) = Q(θ, φ)D(θ, φ) =
√
T (1− T ) sinh θ f(φ) .

(5.2.23)

The C̃ function is the same in both cases. In order to write the B̃ and C̃ functions, the case-

dependent functions f and g are used in a simple way. The expression of the Ã function is more

complicated. Nevertheless, it can be written in a unified way as

Ã(θ, φ) = − cosh θ κ2(φ)− i sinh θ EA(φ)δA(φ) . (5.2.24)

Their expressions are given in the table below depending on the nature of the superconductors

as well as the limits T → 1.

topological BCS limit T → 1

Q(θ, φ) cosh2 θ − T cos2 φ2 sinh2 θ + T sin2 φ
2 Q⋆(θ, φ)

Ã(θ, φ) −iT sinh
(
θ − iφ2

)
sin φ

2 − (1− T ) cosh θ −iT sinh
(
θ − iφ2

)
sin φ

2 −i sin φ
2 sinh

(
θ − iφ2

)
B̃(θ, φ)

√
1− T sinh θ cosh θ

√
1− T sinh2 θ 0

C̃(θ, φ)
√
T sinh θ sinh

(
θ − iφ2

) √
T sinh θ sinh

(
θ − iφ2

)
sinh θ sinh

(
θ − iφ2

)
D̃(θ, φ)

√
T (1− T ) sinh θ cos φ2 i

√
T (1− T ) sinh θ sin φ

2 0

Table 5.3: A,B,C,D functions in the two cases of junctions and their common limits T → 1.

Their squared modulus are displayed in Figs. 5.2 and 5.3.

Single superconducting wire T = 1 and φ = 0

Only the C function remains so that

χ(E,s)(x) =
eikEx√

l

δs,1[χe]E
δs,2[χh]E

+
e−ikEx√

l

δs,4[χh]E
δs,3[χe]E

 . (5.2.25)
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Figure 5.2: Squared modulus of A and B functions, given in table 5.3, in both TS-TS and S-S junctions,

in the (φ,E) plane and for several transparencies T .
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Figure 5.3: Squared modulus of C and D functions, given in table 5.3, in both TS-TS and S-S junctions,

in the (φ,E) plane and for several transparencies T .
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The case s = 1 (s = 2) corresponds to the propagation of an electron (hole) from left to right.

The case s = 3 (s = 4) corresponds to the other propagation direction.

Broken junction T = 0

C and D functions vanish so that wavefunctions are localized in a single half space.

• In the BCS case, only the B function remains and we get reflection into the same channel.

For example, an electron coming from the left is reflected as an electron going to the left,

i.e.

χ(E,s=1)(x;φ) = Θ(−x)

eikEx√
l

[χe]E

0

+
e−ikEx√

l

 0

[χe]E

 . (5.2.26)

• In a topological superconductor, because both A and B functions remain, we have an

additional reflection channel. Taking the same example of an electron coming from the

left, the reflected wavefunction contains a mixture of electron and hole going to the left,

i.e

χ(E,s=1)(x;φ) = Θ(−x)

eikEx√
l

[χe]E

0

+
e−ikEx√

l
tanh θ

 1
sinh θ [χh]E

[χe]E

 . (5.2.27)

Because the A function is inversely proportional to the energy, at high energies this addi-

tional reflection channel is suppressed.

High energies |E| >> 1

In both BCS and topological cases

A(θ, φ)→ 0 , B(θ, φ)→
√
1− T , C(θ, φ)→

√
T e−i

φ
2 , D(θ, φ)→ 0 . (5.2.28)

An electron or a hole coming from the left (s = 1 or s = 2 respectively) is reflected with an

amplitude
√
1− T and transmitted with an amplitude

√
T e−iφ2 . An electron or a hole coming

from the right (s = 3 or s = 4 respectively) is reflected with an amplitude −
√
1− T and

transmitted with an amplitude
√
T eiφ2 .

Continuum wavefunction basis

One can show that A,B,C,D functions are such that there is orthogonality between the columns

of Table 5.1, i.e.

a∗(E,s)a(E,s′) + b∗(E,s)b(E,s′) + c∗(E,s)c(E,s′) + d∗(E,s)d(E,s′) = δss′ , (5.2.29)
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so that, also using (5.1.45), we get∫ +l/2

−l/2
dxχ†

p(x;φ)χp′(x;φ) = δpp′ . (5.2.30)

This proves the independence of the four solutions s = 1..4. The four wavefunctions χ(E,s)

(s = 1..4) form a basis for the solutions of the BdG equation written for the energy E. The

orthogonality between the lines of Table 5.1 can also be derived:∑
s

∣∣a(E,s)∣∣2 =
∑
s

∣∣b(E,s)∣∣2 =
∑
s

∣∣c(E,s)∣∣2 =
∑
s

∣∣d(E,s)∣∣2 = 1 , (5.2.31a)

∑
s

a∗(E,s)b(E,s) =
∑
s

a∗(E,s)c(E,s) =
∑
s

a∗(E,s)d(E,s) =
∑
s

b∗(E,s)c(E,s) =
∑
s

b∗(E,s)d(E,s) =
∑
s

c∗(E,s)d(E,s) = 0 .

(5.2.31b)

5.2.3 Andreev bound states

The expressions of the coefficients aσ, bσ, cσ, dσ involve the quantity

Rσ(φ) = κ(φ)− σ δA(φ) , (5.2.32)

and are given in the table below depending on the nature of the superconductors.

topological BCS

σ(φ) sign
[
cos φ2

]
sign

[
sin φ

2

]
aσ(φ) σ(φ)

√
Rσ(φ)

2 −σ σ(φ)
√

Rσ(φ)
2

bσ(φ) −iσ σ(φ)
√

R−σ(φ)
2 −σ σ(φ)

√
R−σ(φ)

2

cσ(φ)
√

Rσ(φ)
2

√
Rσ(φ)

2

dσ(φ) −iσ
√

R−σ(φ)
2 −

√
R−σ(φ)

2

Table 5.4: Coefficients aσ, bσ, cσ, dσ in the two cases of junctions.

All coefficients aσ, bσ, cσ, dσ have squared modulus equal to R±
2 . This last quantity is 2π-periodic.

Since κ(2π−φ) = κ(φ) and δA(2π−φ) = −δA(φ) (cf. Table 5.2), we have R−(φ) = R+(2π−φ).

R+ is displayed in Fig. 5.4.

Orthogonality between Andreev states

To prove the orthogonality of two different Andreev states, we will use the following result

[χ̃e]
†
σ[χ̃e]−σ = −[χ̃h]†σ[χ̃h]−σ = −iσκ , (5.2.33)
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Figure 5.4: R+/2 in TS-TS (full red) and S-S (dashed green) junctions, and for several transparencies.

which implies that∫ +∞

−∞
dxχ†

σ(x;φ)χ−σ(x;φ) ∝ a∗σ(φ)a−σ(φ)− c∗σ(φ)c−σ(φ)− b∗σ(φ)b−σ(φ) + d∗σ(φ)d−σ(φ) .

(5.2.34)

• In the topological case, we have

a∗σa−σ − c∗σc−σ = b∗σb−σ − d∗σd−σ = 0 . (5.2.35)

• In the BCS case, we have

dσ = −c−σ ∈ R and bσ = −a−σ ∈ R ⇒ a∗σa−σ − b∗σb−σ = c∗σc−σ − d∗σd−σ = 0 .

(5.2.36)

Finally, the two Andreev states form a basis for subgap states∫ +∞

−∞
dxχ†

σ(x;φ)χσ′(x;φ) = δσσ′ . (5.2.37)

An important relation in a TS-TS junction

For topological superconductors, we have the following relations

dσ = −iσ c−σ and bσ = −iσ a−σ , (5.2.38)
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Figure 5.5: Majorana probability density (φ = π) around the junction position x = 0 for several

transparencies.

that provide the important result

a∗σa−σ + b∗σb−σ = c∗σc−σ + d∗σd−σ = 0 . (5.2.39)

5.2.4 Majorana states in a TS-TS junction

The annihilation operator cσ for the quasiparticle with energy Eσ = σEA is obtained through

the projection

cσ =

∫
dxχ†

σ(x)Ψ(x) . (5.2.40)

Because we have [Cχσ]
∗
= −iχ−σ which originates from the relation (5.2.39), the pseudo-reality

constraint [CΨ]∗ = Ψ yields c†σ = ic−σ (see Eq. (5.1.36)). Majorana wavefunctions are obtained

as the following superpositions of zero-energy Andreev wavefunctions

µσ(x) = χ̂σ(x;φ = π) with χ̂σ =
χσ − i χ−σ

2
. (5.2.41)

They verify the pseudo-reality constraint [Cµσ]
∗
= µσ so that the associated operators are

Majorana fermions

γσ = 2

∫
dxµ†

σ(x)Ψ(x;φ = π) = (γσ)† , (γσ)2 = 1 . (5.2.42)
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These operators enter the definition of the Dirac fermion c+ according to

c+ =
γ+ − iγ−

2
. (5.2.43)

The Majorana wavefunctions read

µσ(x) =
e−|x|

4

(√
1− σ

√
T − σ sign(x)

√
1 + σ

√
T

)
eiσ sign(x)π4 τz


1

σ

σ

−1

 . (5.2.44)

The Majorana probability density functions are given by

µ†
σ(x)µσ(x) =

e−2|x|

2

[
1− σ

√
1− T sign(x)

]
. (5.2.45)

We display µ†
+µ+ in Fig. 5.5 (µ†

−µ− is symmetric with respect to the junction position). For

T = 0, each Majorana bound state localizes on a single side of the junction.

5.3 Andreev sector

At a given energy E, electron-like and hole-like excitations propagating in the same direction

carry opposite currents so that the continuum contribution to the Josephson current vanishes(∑
s

I(E,s)(E,s)

)
n(E) = 0 . (5.3.1)

Then, the Josephson current is entirely carried by Andreev bound states, as expected in short

constrictions [176–178]. Restricting to the Andreev subspace, in the basis σ = (+,−), the current

matrix is given by

topological BCS

IA(φ)
δA(φ)

−1 0

0 1


 −1 −i

√
1− T tan φ

2

i
√
1− T tan φ

2 1


Table 5.5

The Josephson current originates in diagonal elements of this matrix and reads

I(φ) = δA(φ)

d⋆
tanh βEA(φ)

2
. (5.3.2)
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Figure 5.6: Josephson current in TS-TS and S-S junctions for several transparencies and two different

temperatures.

This result is displayed in Fig. 5.6 for two different temperatures. For low temperatures, d⋆I is

given by the function δA (given in Fig. 5.1) except around the vanishing point of the Andreev

energy in a TS-TS junction (for φ = π) where finite temperature effects are noticeable. In the

zero-temperature limit, the critical current scales as the “universal limit” e∆/ℏ [177, 178]. It

is multiplied by
√
T/2 in a TS-TS junction (the δA quantity is an increasing function on the

interval [0, π] reaching its maximum
√
T in π) and by

√
−T cosφ0 in a S-S junction, where

φ0 ∈ [π/2, π] is the position of the inflexion point of the BCS Andreev energy (maximum of

the δA quantity). Although the current in a TS-TS junction is 4π periodic as long as fermion

parity is conserved (fractional Josephson effect), the average (over all parity states) results in a

2π periodicity [156, 180]. Because current and Hamiltonian eigenstates are different in the BCS

case, the currents carried by Andreev levels ±δA(φ) do not coincide with the current operator

eigenvalues ±T∆ sin φ
2 [183]. Consequently, transitions between BCS Andreev levels give rise to

a noise consisting in Dirac delta peaks at frequency ω = ±2EA

SAA(ω, φ) =
2π

d⋆
|I+−(φ)|2

{(
1− n[EA(φ)]

)2
δ [ω − 2EA(φ)] +

(
n[EA(φ)]

)2
δ [ω + 2EA(φ)]

}
.

(5.3.3)
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Figure 5.7: Phase dependence of the noise at ω = ±2EA due to transitions between Andreev levels in

a S-S junction, for several transparencies.

The (non-vanishing) squared modulus of the out-of-diagonal element reads

|I+−(φ)|2
∣∣∣
S-S

=
T 2(1− T ) sin4 φ

2

1− T sin2 φ
2

. (5.3.4)

This result has been obtained in Ref. [179] and we display the phase dependence in Fig. 5.7.

Remark that it vanishes for φ = 0 as a consequence of the expulsion of Andreev levels to the

continuum and that it reaches a maximum T 2∆2 in φ = π. In the topological case, the current

matrix is diagonal in the basis of Andreev states so that there is no contribution to the noise at

ω = ±2EA:

SAA(ω, φ)|TS-TS = 0 . (5.3.5)

This is closely related to the emergence of zero-energy Majorana modes. More precisely, the

relation [Cχσ]
∗ ∝ χ−σ crucial in the construction of Majorana wavefunctions (cf. Section 5.2.4)

and the result I+− = 0 both originate in the relation (5.2.39). Physically, the absence of

direct transitions between Andreev levels in the topological case is related to fermion-parity

conservation [156]. Let us conclude our study of the Andreev sector by giving the zero frequency
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noise

SA(ω, φ) =
4πδ2A(φ)

d⋆
n[EA(φ)]

(
1− n[EA(φ)]

)
δ(ω) . (5.3.6)

This result has also been obtained in Ref. [179] for a S-S junction. In such a junction with

transparency T < 1, lowering temperature suppresses this noise resonance since the occupation

factor n(1 − n) vanishes. This holds also in a TS-TS junction for all φ except φ = πmod(2π).

At the points of Andreev level crossings the zero-frequency noise (5.3.6) may be present at

any low temperature provided that the junction is in a mixed parity state, with (temperature

independent) n(0) = 1/2.

5.4 Non-resonant frequency noise

Both Continuum-Continuum (CC) and Andreev-Continuum (AC) transitions contribute to the

non-resonant noise. We examine both noise contributions separately (Sections 5.4.1 and 5.4.2)

then we study their competition (Section 5.4.3). Note that in a TS-TS junction, the total non-

resonant noise is the total finite frequency noise since transitions inside the Andreev sector are

noiseless due to topological protection. In a S-S junction, two Dirac delta peaks at ω = ±ωAA,

with ωAA = 2EA, emerge on top of that as a consequence of transitions between Andreev states.

The sums over continuum indexes can be decomposed as
∑
p =

∑
E

∑
s and we use the disper-

sion relation to perform the substitution
∑
E →

l
2πvF

∫
dEΘ(|E| −∆) |E|√

E2−∆2
. Except when

mentioned (when investigating finite temperature effects at the end of this section), all figures

which are presented in this section have been obtained with a small temperature β−1 = 0.01 [∆].

5.4.1 Continuum-continuum transitions

Let us adopt the following notation

Ipp′(φ) = I(E,s)(E′,s′)(φ) ≡ Ĩss′(θE , θE′ , ηE , ηE′ , φ) . (5.4.1)

We define

Sss′(θ, θ′, η, η′, φ) = l2 cosh θ cosh θ′
∣∣∣Ĩss′(θ, θ′, η, η′, φ)∣∣∣2 (5.4.2)

and we introduce the transformations T1 et T2 according to

[T1Sss′ ] (θ, θ′, η, η′, φ) = Sss′(−θ,−θ′, η, η′, φ) , (5.4.3)

[T2Sss′ ] (θ, θ′, η, η′, φ) = Sss′(θ, θ′, η, η′,−φ) . (5.4.4)

134



5.4. NON-RESONANT FREQUENCY NOISE

In the calculation of the noise due to CC transitions, we will need to calculate∑
s,s′=1..4

Sss′ = {1 + T1 + T2 + T1T2}
∑

s′=1..4

S1s′ , (5.4.5)

where we have used the relations (5.2.2). Some algebraic manipulations yield

∑
s′=1..4

S1s′(θ, θ′, η, η′, φ) =
sinh2 θ sinh2 θ′

Q(θ, φ)Q(θ′, φ)
T
[
cosh θ cosh θ′ + ηη′ρ(φ)E2

A(φ)
]
, (5.4.6)

where the ρ function is defined as

ρ = 1− (1− ε)1− T
T

1− E2
A

E2
A

, (5.4.7)

and where ε = 1 in a TS-TS junction and ε = −1 in a S-S junction (it appears in calculations as

ε = f(−φ)/f(φ) = g(−θ)/g(θ)). Note that ρ is simply 1 in the topological case. The sum (5.4.6)

is invariant under T1 and T2 transformations so that∑
s,s′=1..4

Sss′ = 4
∑

s′=1..4

S1s′ . (5.4.8)

Then we can write the contribution to the noise due to CC transitions as follows

SCC(ω, φ) =
2

d⋆

T

π

∫
dE n(E) [1− n(ω + E)]

[
E(ω + E) + ρ(φ)E2

A(φ)
]
R [E,EA(φ)]R [ω + E,EA(φ)]

(5.4.9)

where we define

R(E1, E2) = Θ (|E1| − 1) sign(E1)

√
E2

1 − 1

E2
1 − E2

2

. (5.4.10)

In the zero temperature limit, the occupation factor n(E) [1− n(ω + E)] is either 0 or 1: it is

1 when E < 0 and ω + E > 0 so that∫
dE n(E) [1− n(ω + E)] →

β>>1

∫ 0

−ω
dE (5.4.11)

The quantity R(E,EA)R(ω+E,EA) which appears in the integrand (5.4.9) does not vanish only

if E < −1 and ω + E > 1 so that there is a cut-off SCC(ω < 2, φ) = 0 and

SCC(ω, φ) ∼
β>>1

Θ(ω−2) 2

d⋆

T

π

∫ −1

1−ω
dE

[
E(ω + E) + ρ(φ)E2

A(φ)
]
R [E,EA(φ)]R [ω + E,EA(φ)] ≡ S⋆CC(ω, φ) .

(5.4.12)

Fig. 5.8 displays the noise maps for different transparencies and in both TS-TS and S-S junctions.

There is little dependence on the phase φ, at least for sufficiently large ω, while the magnitude

seems to be affected by the transparency in a quasi linear way despite the non trivial dependences

on φ and T introduced by EA (and ρ in the BCS case) which appear in the integrand (5.4.12).
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Figure 5.8: Noise SCC(ω, φ) (due to continuum-continuum transitions) in both TS-TS and S-S junctions

and for three different transparencies.

In the six first panels of Fig. 5.9, constant φ cuts are displayed with different energy evolutions

depending on the phase difference. Nevertheless, in a TS-TS junction, lowering transparency

reduces Andreev energy variations (EA(φ) → 0) and the noise is therefore essentially phase

independent (constant φ cuts collapse on a single curve). The threshold ω = 2 [∆] is clearly

noticeable in Fig. 5.9.

Behavior near the threshold 0 < ω − 2 << 1

Just above this threshold, we can derive that the dependence is quadratic. Indeed, since

R(1 + ϵ, EA) ∼
ϵ→0+

√
2ϵ

κ2
, (5.4.13)

we can prove that

d⋆
2
S⋆CC(2 + δ, φ) ∼

δ→0+

T

π

2

κ2(φ)

[
1− ρ(φ)E2

A(φ)
] ∫ δ

0

dϵ
√
ϵ(δ − ϵ) . (5.4.14)

Then we use the antiderivative∫ u

dv
√
v(x− v) = 1

4

(
(2u− x)

√
u(x− u) + x2 tan−1

[√
u

x− u

])
(5.4.15)
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Figure 5.9: Constant φ cuts (the key is given in the first panel) of the noise SCC(ω, φ) (Fig. 5.8).

The six last panels are enlargements just above the threshold 2 [∆]. The black lines are the approxima-

tions (5.4.16) (in a S-S junction, this approximation is not valid for φ = 0).
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Figure 5.10: Constant ω cuts (the key is given in the first panel) of the noise SCC(ω, φ) (Fig. 5.8),

renormalized by the transparency T and for which the linear predominant term at large energies has

been substracted. The black lines are the high energy expectations according to (5.4.25) that is −κ(φ).

in order to establish the following approximation:

d⋆
2
S⋆CC(ω, φ) ∼

ω→2+

T

4

1− ρ(φ)E2
A(φ)

κ4(φ)
(ω − 2)

2
. (5.4.16)

In the topological case, formula (5.4.16) can be further simplified into

S⋆CC(ω, φ)|TS-TS ∼
ω→2+

T

4κ2(φ)
(ω − 2)

2
. (5.4.17)

This approximation is compared to the numerical results in the six last panels of Fig. 5.9. It

is very accurate in a TS-TS junction (except for parameters such that κ → 0, i.e. for T → 1

and φ→ 0). In the BCS case, this is not valid for φ = 0 whatever the transparency since the κ

function vanishes. For a given phase φ ̸= 0 in a S-S junction, the parabolic approximation (5.4.16)

has a more restricted domain of validity for small transparency since the κ function is proportional

to
√
T . Whatever the set of parameters such that the approximation (5.4.16) is valid, this is

responsible for a smooth cut-off (since there is zero slope at threshold).

Remark: For φ = 0 in a S-S junction, we have a linear behavior. Indeed, on can easily prove
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that

S⋆CC(2 + δ, φ = 0)|S-S ∼
δ→0+

T

π
δ

∫ δ

0

dϵ 1√
ϵ(δ − ϵ)

. (5.4.18)

Then, using the antiderivative∫ u

dv 1√
v(x− v)

= 2 tan−1

[√
u

x− u

]
, (5.4.19)

we get

S⋆CC(ω, φ = 0)|S-S ∼
ω/∆→2+

T (ω − 2) . (5.4.20)

Behavior at large energies ω >> 1

We can prove that (5.4.12) diverges at high energy and the dominant term is

d⋆
2
S⋆CC(ω, φ) ∼

ω>>1

T

π

∫ −1

1−ω
dE P [E,EA(φ)]P [ω + E,EA(φ)] , (5.4.21)

where we introduce

P (E1, E2) = E1R(E1, E2) . (5.4.22)

We can have an approximation of this integral by cutting the interval in two equal parts and

approximating P (E,EA) on the first subinterval and P (ω + E,EA) on the second one by their

limits 1∫ −1

1−ω
dE P (E,EA)P (ω + E,EA) =

∫ −ω
2

1−ω
dE P (ω + E,EA) +

∫ −1

−ω
2

dE P (E,EA) . (5.4.23)

Indeed, we know the antiderivative of P (x, y) considered as a function of x:

L(x, y) =

∫ x

dx1 P (x1, y) =
√
x2 − 1−

√
1− y2 tan−1

[√
x2 − 1

1− y2

]
for x ⩾ 0 . (5.4.24)

We obtain
d⋆
2
S⋆CC(ω, φ) ∼

ω>>1
T
[ω
π
− κ(φ)

]
+O

(
1

ω

)
. (5.4.25)

In Fig. 5.10, we verify the validity of this expansion by substracting the expected linear term and

checking that the result is compatible for sufficiently high energies with the κ(φ) profile, given

in Fig. 5.1. We see that the convergence is slower in the BCS case and for small transparency:

κ takes lower values (and even vanishes for φ = 0).
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5.4.2 Andreev-continuum transitions

In a very similar way with what has been done in the previous section, we adopt the following

notation

Ipσ(φ) = I(E,s)σ(φ) ≡ Ĩsσ(θE , γσ(φ), ηE , σ, φ) (5.4.26)

and we define

Ssσ(θ, γ, η, σ, φ) = l cosh θ
∣∣∣Ĩsσ(θ, γ, η, σ, φ)∣∣∣2 . (5.4.27)

Then, we get

∑
s

Ssσ(θ, γ(φ), η, σ, φ) =
κ(φ) sinh2 θ

Q(θ, φ)
T [cosh θ + ση ρ(φ)EA(φ)] , (5.4.28)

where the ρ function has already been encountered in the calculation of the noise due to CC

transitions and is defined in Eq. (5.4.7). Let us define

Mσ(E,φ) =
∑
s

Ssσ(θE , γ(φ), ηE , σ, φ) =
κ(φ)(E2 − 1)

E2 − E2
A(φ)

T [E + σ ρ(φ)EA(φ)] sign(E) . (5.4.29)

Then we obtain the contribution due to AC transitions as

SAC(ω, φ) =
1

d⋆

∑
σ=±

n [σEA(φ)]
(
1− n [ω + σEA(φ)]

)
Qσ [ω + σEA(φ), φ] . (5.4.30)

The function Qσ is given by

Qσ(ω, φ) =
Θ (|ω| − 1)√

ω2 − 1

∑
ϵ

Mϵσ(ϵω, φ) = 2T κ(φ) [ω + σρ(φ)EA(φ)]R [ω,EA(φ)] , (5.4.31)

where the R function has already been introduced in (5.4.10). In the topological case, we can

further simplify this expression according to

Qσ(ω, φ)|TS-TS = 2T κ(φ)Θ (|ω| − 1) signω
√
ω2 − 1

ω − σEA(φ)
. (5.4.32)

In a S-S junction with zero phase difference, this noise contribution vanishes as the Andreev

levels are expelled to the continuum. In the zero temperature limit, noise is obtained only for

positive frequencies, there is a cut-off S⋆AC [ω < 1− EA(φ), φ] = 0 and

SAC(ω, φ) ∼
β>>1

2

d⋆
T κ(φ)Θ(ω)

{
n [−EA(φ)]R [ω − EA(φ), EA(φ)]

(
ω − [1 + ρ(φ)]EA(φ)

)
+n [EA(φ)]R [ω + EA(φ), EA(φ)]

(
ω + [1 + ρ(φ)]EA(φ)

)}
≡ S⋆AC(ω, φ) .

(5.4.33)
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Figure 5.11: Noise SAC(ω, φ) (due to Andreev-continuum transitions) in both TS-TS and S-S junctions

and for three different transparencies.

In the topological case, we can further simplify the last expression according to

S⋆AC(ω, φ)|TS-TS =
T κ(φ)

ω

{
n [−EA(φ)]Θ (ω − [1 + EA(φ)])

√
[ω − EA(φ)]2 − 1

+n [EA(φ)]Θ (ω − [1− EA(φ)])
√
[ω + EA(φ)]

2 − 1

}
. (5.4.34)

As long as the Andreev energy remains large compared to the temperature β−1 the noise reduces

to the first term. In this approximation, there is a cut-off S⋆AC [ω < 1 + EA(φ), φ] = 0 and

S⋆AC(ω, φ) ∼
βEA(φ)>>1

2

d⋆
Θ(ω − [1 + EA(φ)])

T κ(φ)

ω

√
[ω − EA(φ)]2 − 1

ω − [1 + ρ(φ)]EA(φ)

ω − 2EA(φ)
≡ S⋆⋆AC(ω, φ) .

(5.4.35)

In the topological case, we can further simplify the last expression according to

S⋆⋆AC(ω, φ)|TS-TS = Θ(ω − [1 + EA(φ)])
T κ(φ)

ω

√
[ω − EA(φ)]2 − 1 . (5.4.36)

For a S-S junction with finite transparency T < 1 (more precisely if we do not have 1− T << 1),

the Andreev energy has a non vanishing minimum and we can do the last approximation. In the

topological case, the Andreev energy vanishes in φ = π and we get

S⋆AC(ω, φ = π)|TS-TS = T
Θ(ω − 1)

ω

√
ω2 − 1 . (5.4.37)
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Figure 5.12: Cuts of the noise SAC(ω, φ) given in Fig. 5.11. The six first panels give constant φ cuts

(the key is given in the first of these panels). The six last panels give constant ω cuts (the key is given

in the first of these panels). The black curve is the high energy limit (5.4.38).
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Around the value φ = π, more precisely as long as the Andreev energy EA(φ) is not large

compared to the temperature β−1, we have to conserve the full expression (5.4.34).

Fig. 5.11 displays the noise maps for different transparencies and in both TS-TS and S-S

junctions. Fig. 5.12 propose constant φ cuts (six first panels) and constant ω cuts (six last

panels).

• On Fig. 5.11, the thresholds clearly reproduce the Andreev energy profiles (given in Fig. 5.1).

This is especially noticeable because of the infinite slope due to the square root in (5.4.35)

and the constant φ cuts of Fig. 5.12 show these sharp thresholds. On the constant ω cuts

of Fig. 5.12, the influence of the threshold can be noticed for the value 1 < ω0 = 1.5 < 2:

the cut-off could be below (first panel) or above (fourth and fifth panels) ω0 whatever φ or

the cut-off can be crossed for a given φ0 according to ω0 = 1 + EA(φ0) (other panels).

• Constant ω cuts of Fig. 5.12 provide another signature for a TS-TS junction when looking

at finite energies ω ≳ ∆ and turning the phase difference across φ = π: there is a cusp

reminiscent of the Andreev energy singular vanishing (when considering EA(π ± δφ) = ε±

such that ε± << 1 and βε± >> 1, the local slopes on both sides involve the Andreev energy

in a linear way).

• For sufficiently large energies, the φ cuts reach a finite limit which depends on φ according

to
d⋆
2
S⋆AC(ω, φ) ∼

ω>>1
T κ(φ) +O

(
1

ω

)
. (5.4.38)

The constant ω cuts confirm this expectation as they converge to the κ(φ) profiles (given

in Fig. 5.1).

5.4.3 Total non-resonant noise

Let us consider the total non-resonant finite frequency noise (out of ω = ±ωAA with ωAA = 2EA)

Snr = SCC + SAC . (5.4.39)

In the zero temperature limit, there is a cut-off Snr(ω < 1−EA(φ), φ) = 0 and for energies lower

than ωCC = 2 [∆] only AC transitions contribute to the non-resonant noise, that is

Snr(ω, φ) ∼
β>>1

S⋆nr(ω, φ) = S⋆CC(ω, φ) + S⋆AC(ω, φ) (5.4.40)

= Θ(ω − 2)S⋆CC(ω, φ) + Θ (ω − [1− EA(φ)])S⋆AC(ω, φ) . (5.4.41)
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Figure 5.13: Noise Snr(ω, φ) in both TS-TS and S-S junctions and for three different transparencies.

The six first panels give a large energy overview while the six last panels give an enlargement around

the gap region.
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Figure 5.14: Constant φ cuts (the key is given in the first panel) of the noise Snr(ω, φ) given in

Fig. 5.13.

If moreover, the Andreev energy remains large compared to the temperature β−1, there is a new

cut-off Snr(ω < ωAC(φ), φ) = 0 with ωAC = 1 + EA and

S⋆nr(ω, φ) ∼
βEA(φ)>>1

S⋆⋆nr (ω, φ) = S⋆CC(ω, φ) + S⋆⋆AC(ω, φ) (5.4.42)

= Θ(ω − 2)S⋆CC(ω, φ) + Θ (ω − [1 + EA(φ)])S
⋆⋆
AC(ω, φ) . (5.4.43)

For sufficiently high energies, the contribution due to CC transitions predominates and as the

result of summing the equivalents (5.4.25) and (5.4.38), we find

S⋆nr(ω, φ) ∼
ω>>1

Tω

π
+O

(
1

ω

)
. (5.4.44)

In Fig. 5.13, the non-resonant noise is given as a map in the (φ, ω) plane for different trans-

parencies and in both TS-TS and S-S junctions. On a large scale of energies, as proposed by

the six first panels, there seems to be little dependence on the phase φ, while the transparency

seems to only affect the magnitude in agreement with (5.4.44). An enlargement around the gap

region is proposed in the six last panels where we see a stronger dependence on the φ parameter.

The (sharp) cut-off reproduces the Andreev energy profile (see Fig. 5.1). The transcient regime
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Figure 5.15: Partial derivative of the noise S⋆⋆
nr (ω, φ) with respect to the energy ω, for the three

different transparencies of Fig. 5.13. Because of numerical issues, the calculations have not been done

for φ values around 0.

between AC dominated regime (for 1 +EA(φ) < ω ≲ 2) and CC dominated regime (for ω >> 2)

is clearly noticeable on constant φ cuts of this map (Fig. 5.14), except in a S-S junction with

φ = 0 or T → 0 and in a TS-TS junction with φ = 0 and T → 1 for which the Andreev states

are expelled to the continuum (closing the transcient interval). Remark that in a S-S junction

with φ = 0, the three frequencies collapse ωAA = ωAC = ωCC = 2∆, both AA and AC noise

contributions vanish and rather than inheriting the smooth parabolic cut-off generally obtained

for CC transitions, a linear behavior is recovered above the threshold 2∆. Let us emphasize

on the increasing behavior of the noise as a function of the energy ω. This is not evident in

the BCS case because of the non-monotonic behavior of the contribution due to AC transitions.

Nevertheless, we have no evidence of parameters leading to decreasing behavior (see Fig. 5.15).

Remark: In the expression of the non-resonant noise Snr in a TS-TS junction, the trans-

parency appears as an overall factor and in the Andreev energy expression so that dependences

on φ and T for Snr/T can be recast in the Andreev energy dependence (contrary to the case of

a S-S junction where ρ(φ) given in Eq. (5.4.7) provides another dependence on T ). In Fig. 5.16,
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Figure 5.16: Non-resonant noise Snr/T in a TS-TS junction, as a function of EA and ω. The first

panel gives the map on a large scale of energies while the second panel is an enlargement around the gap

region.

the map in the (EA, ω) plane is displayed. Remark that, for a given transparency T , Andreev

energies range in [0,
√
T ].

Finite temperature effects

Now let us investigate finite temperature effects. We increase temperature (β−1 = 0.1 [∆]) and

display the noise maps around the gap region in the six first panels of Fig. 5.17. The main change

is the appearance of noise below the cut-off 1 + EA(φ). This is better illustrated in the six last

panels of Fig. 5.17 where the relative difference between the two maps is given: the region with

the most significant changes is between the curves 1−EA(φ) and 1+EA(φ). Let us also mention

the noticeable differences in a TS-TS junction just above the gap and around φ = π: it is the

zero of the Andreev energy and this is where the finite values of β cannot reproduce the zero

temperature limit.
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Figure 5.17: Six first panels: noise Snr(ω, φ) around the gap for a finite temperature β−1 = 0.1 [∆]. Six

last panels: relative error with the ”infinitely small” temperature β−1 = 0.01 [∆] reference (Fig. 5.13).
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5.5 Conclusion and perspectives

More and more convincing signatures compatible with the presence of Majorana fermions in 1D

semiconducting wires have been accumulated with recent observations of quantized zero-bias

conductance [168,169]. Despite the fact that the confining potential has to be carefully settled in

order to avoid spurious non-topological subgap states [189], 2D layouts of 1D p-wave supercon-

ductors [152] are still serious candidates to provide the exchange statistics decisive evidence for

Majorana fermions. Before the implementation of these networks, quantum transport in 1D sys-

tems supporting Majorana fermions, e.g. the junction between 1D topological superconducting

wires investigated in this article, deserves deeper study.

We have presented a unified description of S-S and TS-TS junctions in terms of scattering

eigenstates. We have shown how Majorana fermions emerge in a TS-TS junction with phase dif-

ference φ = π by explicitely writting the proper linear combinations of (degenerate) zero-energy

Andreev bound states. The Josephson current carried by Andreev states can be written in a

unified way as the derivative of the Andreev energy ⟨I⟩ ∝ dEA
dφ . Transitions inside the Andreev

sector are noiseless in the topological case since Andreev states are current eigenstates (a result

which is closely related to the emergence of Majorana fermions) in contrast with the BCS case

for which a noise resonance at energy ω = 2EA is expected for T < 1 (finite backscattering).

While resonant zero frequency noise is suppressed by lowering temperature in a S-S junction,

it is expected to persist in a TS-TS junction operating with φ = π. Transitions which involve

continuum states give rise to a non-resonant noise which has been computed. For low temper-

atures, it exhibits a ∆ + EA frequency threshold due to AC transitions. CC transitions which

occur for energies larger than 2∆ impose an asymptotic linear behavior. A detailed comparison

between the two types of junction has been carried out and characteristic features in a TS-TS

junction have been highlighted, some of them related to the existence of zero-energy modes in

this topologically nontrivial junction.

In the linear response framework, one can adress the issue of computing the current suscep-

tibility which is closely related to the noise S(ω) studied in this article. Indeed, the imaginary

part of the current susceptibility, which gives the linear absorption rate, is proportional to the

difference S(ω) − S(−ω). In a S-S junction our results coincide with those of Ref. [190]. More

interestingly, the noise calculations can be straightforwardly used for computing the current

susceptibility in a TS-TS junction. The characteritic features detailed in the main text of this

article for the noise will be recovered for the imaginary part of the susceptibility. Let us mention
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that dynamic current susceptibility has recently been proposed as a probing tool for the pres-

ence of Majorana bound states in a superconduting ring geometry [191]. One can also adress

the study of Andreev level qubit [182] population dynamics. In a conventional Andreev qubit,

long-lived quasiparticles can be trapped [192], a phenomenon known as quasiparticle poisoning.

Within our framework, using the calculations of current matrix elements, one can compare the

transition rates between quasiparticle states due to the coupling of the junction to its environ-

ment (external circuit, phonons) calculated in Ref. [184], with those calculated in a topological

Andreev qubit. When considered as a function of Andreev energy, the latter are simply given

by the T → 1 limiting case given in Ref. [184] renormalized by an overall multiplication with

T/2. Indeed since d⋆Snr in both S-S and TS-TS junctions coincide in the limit T = 1 and since

(Snr/T )|TS-TS considered as function of EA and ω does not depend anymore on T (as mentioned

in the previous section), we get

Snr(EA, ω)|TTS-TS = T Snr(EA, ω)|T=1
TS-TS

=
T

2
Snr(EA, ω)|T=1

S-S . (5.5.1)

The same argument holds for the squared current matrix elements involved in the transition rates

of Ref [184]. Stationary occupation probabilities can be computed by adapting the calculation

of Ref. [185].
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Conclusion

The first part of this thesis concerns the study of hybrid devices including superconducting

materials which are microscopically well described within the BCS framework. A key feature

of such materials is the possibility to pair electrons in so-called Cooper pairs which constitute

entangled states in both spin and momentum degrees of freedom. Cooper pairs are the charge

carriers of the (phase-driven) DC Josephson current which flows accross a junction between two

superconductors. Andreev reflection is the key mechanism for the subgap charge transfer at

the boundary of a superconductor. Within this scenario, the constituent electrons of a Cooper

pair can exit a superconducting material. This is at the origin of the concept of an electron

entangler since these electrons can be injected in two spatially separated normal conductors

through Crossed Andreev Reflection (CAR) resulting in Cooper pair splitting.

The first device studied in Chapter 2 consists of a Josephson junction between two super-

conductors with two nanowire/nanotube quantum dots in between. Such a system can provide

an equilibrium signature for Cooper pair splitting. Indeed, if a magnetic flux threads the area

enclosed by dots and superconductors, the Aharonov-Bohm oscillations of the critical current

give information about the nonlocal CAR processes which can occur at the two interfaces and

responsible for Cooper splitting and recombination. This setup constitutes an alternative to the

early non-equilibrium proposals relying on superconductor-normal junctions arranged in a fork

geometry where the splitting of a Cooper pair originated from the injecting superconducting

lead is probed by measuring crossed correlations between the currents in the outgoing normal

branches. Motivated by the experimental achievements of large couplings between superconduc-

tors and dots, the calculation has taken into account these couplings in a non-perturbative way

within the path integral formulation of statistical mechanics. The Coulomb on-site repulsion on

the quantum dots is treated using a Hubbard-Stratonovich transformation followed by a saddle-

point approximation. A splitting efficiency has been defined so that the experimental parameters
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optimizing Cooper pair splitting can be indicated to the experimentalist. More precisely, gate

voltages can be used to monitor each dot energy so that an even or odd mean occupancy is

recovered on the dot together with a 0 or π phase behavior for the associated single Josephson

junction, respectively. Among all phase associations, a double Josephson junction constituted

of two parallel π junctions provides the best platform for Cooper pair splitting whatever the

transparency regime.

The second device studied in Chapter 3 consists of a three-terminal Josephson junction

where a central superconductor is coupled to two lateral superconducting reservoirs via nanowire/

nanotube quantum dots. In a Josephson junction between two superconductors, if a voltage is

applied, Cooper pairs oscillate between the two reservoirs and consequently an alternative cur-

rent occurs with a Josephson frequency proportional to the voltage drop. In a three-terminal

Josephson junction, several voltage drops and consequently different Josephson frequencies co-

exist. However, if the central electrode is grounded while the lateral gates are biased with

commensurate voltages, then a DC Josephson current is recovered which translates the effec-

tive transport of Cooper pairs. The simplest case corresponds to opposite voltages and the

production of two entangled Cooper pairs split by double CAR, the so-called quartet state. A

path integral approach within the Keldysh formalism is adopted to compute non-perturbatively

out-of-equilibrium current and noise and a frequency expansion relying on the voltage commen-

surability is conveniently used. Numerical results for the quartet resonance are given within the

resonant dots regime and the metallic junction regime. The zero-frequency crossed correlations

of the currents flowing in the lateral leads are positive in the resonant dots regime while they

are negative in the metallic junction regime except for fine-tuned values of phase and voltage.

Correlations are suppressed (when compared to the current) at low voltage in the latter case

while giant phase-sensitive Fano factors persist in the former case.

The second part of this thesis comes within the scope of the recent enthusiasm for condensed

matter realizations of Majorana fermions moslty aroused by the promises of fault-tolerant topo-

logical quantum computation. More and more convincing signatures compatible with the pres-

ence of Majorana zero-energy modes have been accumulated in the early implementations of the

clever proposals based on semiconducting nanowires. Transport properties in systems supporting

such excitations can bring supplementary evidences.

In Chapter 5, Josephson current and thermal noise have been computed for a junction be-

tween conventional superconductors and a junction between topological superconductors (hosting

zero-energy quasiparticules with Majorana properties) within a unified framework based on the

152



5.5. CONCLUSION AND PERSPECTIVES

Bogoliubov - de Gennes scattering approach, the nature of the superconductors in contact being

encoded in the matching condition. This unified treatment allows a systematic study of the two

systems and characteristic signatures of a topological junction have been highlighted, some of

them being related to the emergence of Majorana zero-energy modes.
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