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Introduction  
 

 

 

Problems and motivation  

Combinatorial optimization problems allow to model and solve a variety of real life 

situations. For example, finding a route minimizing the distance can be modeled by a problem 

of this class. Nevertheless, considering only one objective to optimize may not be sufficient to 

represent the complexity of real life situations. Indeed, if a company is interested in 

maximizing its profit, it may also be interested in minimizing its ecological impact. Then 

several objectives have to be considered. If no preference is given a priori, all solutions such 

that it is not possible to improve an objective without degrading another one should be 

returned to the decision maker. After the solving process, the decision maker chooses among 

the returned solutions. 

Many practical situations can be modeled as combinatorial optimization problems. 

Among these problems, we can find some problems belonging to the knapsack family. The 0-

1 Knapsack Problem (KP) is one of the paradigmatic problems in combinatorial optimization 

where a set of items with given profits and weights is available and the aim is to select a 

subset of the items in order to maximize the total profit without exceeding a known knapsack 

capacity. Martello and Toth [77] provide extensive reviews of the major classes of KPs. The 

0-1 Knapsack Problem with Setups (KPS) originally introduced in [20] can be seen as a 

generalization of KP where items belong to disjoint classes and can be selected only if the 

corresponding class is activated. The selection of a class involves setup costs and resource 

consumptions thus affecting both the objective function and the capacity constraint. KPS has 

many applications of interest such as make-to-order production contexts, cargo loading and 

product category management among others and more generally for allocation resources 
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problems involving classes of elements [21]. Another application of KPS is originated within 

the smart-home paradigm where the goal of an efficient management of the buildings energy 

consumptions is a strong component (see Project FLEXMETER from: 

http://exmeter.polito.it). 

The Multiple Knapsack Problem with Setup (MKPS) can be considered as a set of 

knapsack problems with different capacities in which a set of disjoint classes of items with 

knapsack-dependent profits and given weights are available. An item can be selected only if 

the corresponding class is activated and a class can only be set up in one knapsack. A key 

feature is that the activation of a class incurs a knapsack-dependent setup cost that should be 

considered both in the objective function and constraints. The setup cost varies with the 

knapsack. A solution to the MKPS consists in selecting appropriate items, from different 

disjoint classes, to enter a knapsack while maximizing its value and respecting its capacity. 

Like most knapsack problems, the MKPS finds its application in several concrete 

industrial problems, e.g., production planning [104], aviation security system [79], etc. For 

instance, consider a supplier of hollow glass in the agro-alimentary glass packing industry, 

producing several types of products, including bottles, flacons, and pots [21]. The most 

important phase in the manufacturing process is the shaping. Indeed, to change the production 

from one product class to another, the production machinery must be set up and moulds must 

be changed in the moulding machine. There is no setup between products in the same class. 

These changes in the manufacturing process require significant setup time and costs. 

Accordingly, the company needs to decide on how to choose orders so as to maximize the 

total profit. This represents a typical case involving a Knapsack Problem with Setup (KPS). 

However, if orders can be served in different periods, but a product class can only be 

produced in a single period, the cost would depend on the completion time of the order. There 

would be an initial cost for an order delivered on the client desired date and penalties for 

delay or precociousness for postponed delivery dates. These costs would depend on the 

modification of the desired date. Because of the cost variability dependent on the production 

planning, this problem is more complex than the KPS. Indeed, before denying a production 

schedule, and in order to maximize its total profit, the company should take into consideration 

the production capacity, the profit of different products, and the cost of each class at each 

period. In this case, the problem can be modeled as an MKPS. The KPS is a reduction of the 
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MKPS when only one production period is considered. Another application of the MKPS 

arises in the cloud computing industry that faces several decision-making issues that need to 

be optimized. Hence, the extension of MKPS when a product class can be produced in a 

multiple periods is a real case study of GMKPS. Prices varies according to the customers 

expectation of products delivery date i.e. some customers are willing to pay a higher price for 

a short lead-time while others are willing to wait for their products in exchange for lower 

prices. Thus, price, delivery period and total profit have very complex connections that are of 

extreme interest to businesses today. Thus, we consider that orders could be realized in 

multiple periods, and the products’ price depends on the orders’ completion time i.e. penalties 

are added to the initial price in case where products are not delivered at customers’ desired 

due date. In addition, the products (items) could be classified into classes regarding specially 

their setups i.e. setup is null between products from the same class. The profit for order j of 

class i processed in period t is and varies for different periods, but the processing time stays 

the same. To find the assignment of orders that maximizes the total profit, we have to 

consider the marginal profit of each job, the current production capacity per period, and the 

setup cost and time from orders. This realistic production scheduling problem is typically our 

GMKPS case study. 

The motivation of this thesis is to introduce a new variant of the knapsack problem 

with setup (KPS). We refer to it as the generalized multiple knapsack problem with setup 

(GMKPS) and develop new matheuristics methods combining variable neighborhood search 

with integer programming to solve the linear problem GMKPS and its variants such as: linear 

problems MKPS and MCKS and quadratic variant GQMKP. Because of the difficulty of these 

problems, we are searching for approximate solution techniques with fast solution times for 

its large scale instances. A promising way to solve the GMKPS, MKPS, MCKS and GQMKP 

is to consider some techniques based upon the principle of cooperative approach can be 

viewed as matheuristic that combining neighborhood search techniques with integer 

programming (IP). Although such techniques produce approximate solution methods, they 

allow us to present fast algorithms that yield interesting solutions within a short average 

running time, that is, to generate approximations of good quality to the efficient set. We will 

see in an overview about the methods for solving knapsack problems family that many 

metaheuristics have already been adapted to tackle MKPS problems. But most of the methods 
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include many parameters and are sometimes so complex that it is difficult to deeply 

understand the behavior of these methods. It makes the application of these methods to MKPS 

problems hard and not necessary efficient. For the new methods developed in this thesis, two 

features are expected: simplicity and effectiveness. The methods should be as simple as 

possible to easily adapt them to different MKPS problems and to give better results as state-

of-the-art results on different MKPS problems. We also intend to give through this work a 

better knowledge concerning the efficient solutions of MKPS problems, as well as introducing 

new techniques to solve new MKPS problems. Another motivation is to apply the methods 

developed to real MKPS problems. 

Solution overview and contributions  

Many solution methods have been designed for the KP and its variants: (i) solving the 

given problem using exact methods and/or (ii) searching near optimal solutions using 

metaheuristic methods. An exact algorithm tries to find an optimal or a set of optimal 

solutions for a given problem. For the problems belonging to the knapsack family, an optimal 

solution can be found using branch and bound, branch and cut, and/or dynamic programming 

methods. Nevertheless, for large-scale problems, an exact method might need exponential 

computation time. This often leads to a solution time that is too high for the practical 

situation. Thus, the development of metaheuristic methods has received more attention in the 

last decades, however, comes at the price of having no guarantee about their quality. For that 

reason, we define new approaches that combine exact and metaheuristic methods. These 

methods, noted as cooperative approaches, represent a powerful tool for solving combinatorial 

optimization problems. The GMKPS, MKPS, MCKS and GQMKP are NP-hard 

combinatorial problems since it is a generalization of the standard 0-1 KP, which is known to 

be an NP-hard problem [68, 77] exact methods would be rather inefficient in solving large-

size instances of the four problems cited above. An alternative to exact methods would be to 

combine exact and metaheuristic algorithms. This cooperative approach, referred to as 

matheuristics, seems to be a very promising path towards the solution of rich combinatorial 

optimization problems. Matheuristics take advantage from synergy between approximate and 

exact solution approaches and often lead to considerably higher performance with respect to 
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solution quality and running time. However, adapting those mechanisms to different problems 

can be challenging. In this thesis, we will propose to design and implement a matheuristic 

framework to solve GMKPS, MKPS and MCKS, and show how it can be improved to solve 

related rich quadratic variant GQMKP.  

The main objective of this thesis is to provide a solving approaches for the GMKPS 

and its variants. We introduce a mixed Integer programming (MIP) formulation that, due to 

the complexity of the GMKPS, cannot solve even small test instances. In fact, it is usually 

difficult to assign items to the whole sets of knapsacks. In addition, the consideration of the 

knapsack-dependent cost related to each class of products and the knapsack-dependent profit 

associated to each item increases the complexity of the problem. Therefore, the design of a 

new approach providing high quality solutions in a reasonable computing time is quite 

challenging. An alternative to exact methods would be to develop a first cooperative 

approach, can be viewed as matheuristic that combine a variable neighborhood descent 

(VND) with an exact solving technique: local search techniques to include classes to 

knapsacks and integer programming (IP) to include items in each knapsack. Experimental 

results show the efficiency and the performance of the proposed approach on randomly 

generated instances of GMKPS. Furthermore, we enhance our solution approach combining 

local search techniques with integer programming. We carry out a computational study to 

assess the performance of the proposed cooperative approach on a new set of instances from 

MKPS. The challenge of the second cooperative approach is to propose an efficient 

cooperative framework between variable neighborhood search VNS and Integer programming 

to solve the linear problem MCKS. Finally, the third cooperative approach addressed to solve  

the quadratic variant GQMKP. The attempt of the third cooperative is to combine new 

efficient Matheuristic VNS and integer programming. The computational results shows that 

the proposed cooperative approaches (or matheuristics) are competitive compared with the 

state-of-the-art methods. The different contributions are listed below: 

1) We introduce a new variant of the knapsack problem with setup (KPS). We refer to it 

as the generalized multiple knapsack problems with setup (GMKPS). GMKPS 

originates from industrial production problems where the items are divided into 

classes and processed in multiple periods. We refer to the particular case, where items 

from the same class cannot be processed in more than one period, as the multiple 
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knapsack problems with setup (MKPS). First, we provide mathematical formulations 

of GMKPS and MKPS and provide an upper bound expression for the knapsack 

problem. We then propose a cooperative approach (matheuristic) that combines 

variable neighborhood descent (VND) with integer programming (IP). We consider 

local search techniques to assign classes to knapsacks and apply the IP to select the 

items in each knapsack. Computational experiments on randomly generated instances 

show the efficiency of our matheuristic in comparison to the direct use of a 

commercial solver. 

2) The challenge of the second cooperative approach is to develop an algorithm 

combining VNS with IP to solve MCKS. The idea consists in partitioning a MCKS 

solution into two levels. The first level contains the classes (or setup variables) to be 

fixed by the VNS, where the second level contains the remainder of variables ( items) 

that will be optimally optimized by the Integer programming. For the numerical 

experiment, we generated different instances for MCKS. In the experimental setting, 

we compared our cooperative approach to the Mixed Integer Programming provided in 

literature. Experimental results clearly showed the efficiency and effectiveness of our 

approach. 

3) We use a linearization technique of the existing mathematical model and we propose a 

new cooperative approach combining matheuristic variable neighborhood search 

(MVNS) with integer programing (IP) to solve the generalized quadratic multiple 

knapsack problem (GQMKP). The matheuristic considers a local search technique 

with an adaptive perturbation mechanism based on a mathematical programming to 

assign the classes to different knapsacks, and then once the assignment is identified, 

applies the IP to select the items to allocate to each knapsack. Experimental results 

obtained on a wide set of benchmark instances clearly show the competitiveness of the 

proposed approach compared to the best state-of-the-art solving techniques. 
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Thesis structure 

The thesis contains four main parts. The first part presents an overview of the main 

cooperative approaches. The second part is dedicated to the development of a new 

cooperative approach between variable neighborhood descent (VND) and Integer 

programming (IP), to solve the (G)MKPS. The third provides a new efficient cooperative 

approach between variable neighborhood search (VNS) and IP to solve MCKS. The fourth 

part discusses a new hybrid approach in which mathematical programming is an embedded 

component into a variable neighborhood search (MVNS) that has the ability to solve the 

quadratic variant of GMKPS, denoted by GQMKP. 

More specifically, the thesis is organized as follows. A bibliographic study which aims 

to present an overview of the exact methods, metaheuristic and cooperative approaches and 

explain their adaptation for evolving programs is provided in first part (Chapter I). Section I.2 

discusses the exact methods, while section I.3 presents the (meta-)heuristics approaches used 

to solve the knapsack problems family. Finally, section I.4 and I.5 provide an overview of the 

cooperative and matheuristic approaches. We give a general presentation of the integer 

programming and local search techniques forming the core of our solutions approaches, with 

section I.6 concluding. The remaining chapters describe the methodological contributions of 

this thesis. Chapter II is about the GMKPS. We formally introduce the problem. Then, we 

propose a mixed integer linear programming formulation and an integer model based on the 

Dantzig-Wolfe decomposition. In Section II.2, the related literature of the problem is 

presented. Section II.3 contains the mathematical formulations of GMKPS and their particular 

case MKPS. In Section II.4, we propose a cooperative approach can be seen as  matheuristic 

that combine variable neighborhood descent (VND) and integer programming (IP) for the 

(G)MKPS. The experimental results and their interpretations are reported in Section II.5. In 

Section II. 6, we conclude the chapter and give possible and future research ideas. In Chapter 

III we move from the MCKS problem and apply matheuristic (or cooperative) approach 

combining VNS with IP to solve this problem. In Section III.1, the presentation and related 

literature of the problem are presented. Section III.2 contains the mathematical formulations 

of MCKS. In Section III.3, we propose a matheuristic approach combining VNS and integer 

programming for MCKS. The experimental results and their interpretations are reported in 

Section III.4. In Section III.5, we conclude the chapter and give possible and future research 
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ideas. Chapter IV is devoted to the description of cooperative solution approach to solve the 

GQMKP. We analyze the challenges encountered while developing the cooperative 

approaches between some Local Search techniques and Integer programming and provide a 

simple and effective data structure which may be easily generalized for quadratic variant of 

GMKPS problem. Later, we improved the efficiency of the proposed approaches: VND&IP 

and VNS&IP on a set of new generated instances for (G)MKPS and MCKPS. We provide a 

sensitivity analysis distinguishing the main components for increasing the performance of our 

cooperative approaches. In Section VI.1, the presentation and related literature of the problem 

are presented.  Section IV.2 contains the mathematical formulation of the GQMKP. Section 

IV.3 contains our cooperative approach combining MVNS with IP. The experimental results 

and their interpretations are reported in Section IV.4 and, finally, the conclusions are outlined 

in Section IV.5. Finally, overall conclusions and perspectives are drawn in the last chapter of 

the thesis. In Appendix A, we report detailed computational experiments carried out in this 

thesis.
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Chapter I 

 

Cooperative approaches  

 

I.1 Introduction 

 

This chapter provides an overview of different methods for solving combinatorial 

optimization problems [30]. It is not so easy to classify the existing optimization methods. 

Beyond the classical separation between exact methods and (meta-) heuristic methods, several 

papers are devoted to the taxonomy of cooperative approach. Cooperative (or Hybrid) 

methods are not new in the operational research community. This class of cooperative 

approaches includes several sub classes among which techniques combining (meta-) 

heuristics and exact algorithms have a dominating place.  

In the remainder of this chapter, we elaborate further on exacts method and (meta-) 

heuristics approaches and explain some differences among different techniques and 

paradigms. We then focus on the context of cooperative approach, the paradigm, general 

framework, steps, and different components. 

I.2 Exact methods 

 

Many exact methods have been proposed for finding an optimal or a set of optimal 

solutions for a given problem. Among these methods, we can find branch and bound, branch 

and cut, and dynamic programming. Due to the inherent combinatorial explosion with respect 

to the size of the search space for hard COPs in general, this approach is only viable for very 

small instances. Therefore all practical exact solution approaches try to consider as much of 

the search space as possible only implicitly, hence ruling out regions where it is guaranteed 
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that no better feasible solution can be found than a previously found one. Often these methods 

are based on a tree search, where the search space is recursively partitioned in a divide-and-

conquer manner into mutually disjoint subspaces by fixing certain variables or imposing 

additional constraints. Ruling out regions then amounts to (substantially) pruning the search 

tree. The scalability of a tree search thus depends essentially on the efficiency of this pruning 

mechanism. In branch-and-bound (B&B), upper and lower bounds are determined for the 

objective values of solutions, and subspaces for which the lower bounds exceed the upper 

bounds are discarded. 

I.2.1 Integer programming 

This section introduces some basic notations and gives a short introduction into 

prominent linear programming (LP) and integer programming (IP) techniques. Linear 

programming is a technique for the optimization of a linear program. More formally, a linear 

program is an optimization problem in which the objective function and constraints are linear 

functions of variables. Linear programs which have a feasible solution and are not unbounded 

always have an optimal solution. For an in-depth coverage of the subject we refer to books on 

linear optimization [13, 28] as well as on combinatorial and integer optimization [82, 14].  

A linear program (LP) is an optimization problem with a linear objective function 

subject to a set of constraints expressed as linear (in)equalities. A linear program where all the 

variables are required to be integers is an integer (linear) program (IP). We consider IP 

problems of the form         *               + , where         are vectors 

and   is a matrix, where all entries are integers. Further some important classical articles as 

well as works on current topics regarding IP are given in [60]. We also recommend a more 

informal paper about linear programming by Dantzig [29]. To process a linear program in 

continuous variables, the most popular method is the simplex algorithm, which was proposed 

by Dantzig  in 1947, MIP-solvers such as CPLEX [41], etc. One of the most important 

concepts in integer programming are relaxations, where some or all constraints of a problem 

are loosened or omitted. Relaxations are mostly used to obtain related, simpler problems that 

can be solved efficiently yielding bounds and approximate (not necessarily feasible) solutions 

for the original problem. Embedded within a B&B framework, these techniques may lead to 

effective exact solution techniques. 
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       *               + 

At last, it is said to be a mixed integer program (MIP) if only some variables are 

restricted to be integer. A mixed integer program (MIP) would involve a combination of 

integer and real-valued variables and can be written similarly as:         *         

              +. Maximization problems can be transformed into minimization 

problems by simply changing the sign of c. In such cases, the linear program is called an 

integer linear program. Further, if the variables can only take the values 0 or 1, then the 

corresponding integer linear program is called a binary linear program. Large instances of 

such LPs can be efficiently solved using simplex-based [27], MIP- solver, etc. Although there 

exist scenarios where the simplex algorithm, MIP-solvers, etc. show an exponential runtime 

[65] its average runtime is rather polynomial and it is known to be highly effective in practice.  

I.2.2 Dynamic programming  

The dynamic programming approach is a useful tool for solving some combinatorial 

optimization problems. The basic idea was first introduced by Bellman and presented in [12]. This 

approach consists of:  

(1) Breaking a problem up into simpler sub-problems, 

(2) Solving these sub-problems, 

(3) Combining the sub-solutions to reach the overall solution.  

DP is typically applied to optimization problems and following conditions must hold 

to successfully apply it: (parts of) the sub problems are overlapping, and recursively solving 

the overall problem in a bottom-up fashion amounts to choosing the right sub problem 

solutions (i.e. the problem exhibits an optimal substructure). Perhaps the most crucial part is 

that the sub problems are not disjoint or independent anymore. This fact is exploited via 

storing their solution’s values in some sort of table (or another systematic way) to efficiently 

retrieve them at the re-occurrence of the sub problems. Hence memory is traded for 

computational effort. Often the actual solution needs to be reconstructed afterwards, albeit it 

is usually possible to already derive the required information during the solution process. 
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I.2.3 Branch and bound method  

Branch and bound (B&B) methods are based on the principle of enumerating the 

solution space of a given problem and then choosing the best solution [72, 77]. B&B is one of 

the most popular methods to solve optimization problems in an exact manner. The 

enumeration has a tree structure. Each node of the tree separates the search space into two 

sub-spaces, until the complete exploration of the solution space [30]. However, there are three 

aspects in a branch and bound method. They are: (i) Branching strategy, (ii) Bounding 

strategy and (iii) Node selection strategy. The first branch and bound algorithm for the 0-1 KP 

was proposed by Kolesar [67]. Several developments have been proposed later [56, 75].  

I.2.4 Cutting plane  

Gomory [45] proposed the cutting plane algorithm. The principle is to iteratively 

refine the objective function by adding cuts. A cut can be defined as a constraint that excludes 

a portion of the search space from consideration. This can reduce the computational efforts in 

the search process of finding a global optimum solution. In practice it is crucial to have an 

efficient method for separating cuts as usually a significant number of valid inequalities must 

be derived until the cutting plane algorithm terminates. 

I.2.5 Branch and cut method  

The combination of B&B with cutting plane methods yields the highly effective class 

of branch-and-cut algorithms which are widely used. Specialized branch-and-cut approaches 

have been described for many applications and are known for their effectiveness. Cut 

separation is usually applied at each node of the B&B tree to tighten the bounds of the LP 

relaxation and to exclude infeasible solutions as far as possible. Branch and cut is a method of 

great interest for solving various combinatorial optimization problems. This method is a result 

of the integration between two methods: 

(1) Cutting plane method,  

(2) Branch-and-bound method .  
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The cutting planes lead to a great reduction in the size of the search tree of a pure branch and 

bound approach. Therefore, a pure branch and bound approach can be accelerated by the 

employment of a cutting plane scheme [25, 10, 70]. 

For small or moderately sized instances exact methods obtain optimal solutions and 

guarantee their optimality. However, exact methods are unable to solve optimality large 

instances. This has led researchers to discard exact methods in favour of (meta-)heuristic 

methods. In fact, (meta-)heuristic methods generate high quality solutions in a reasonable 

time but there is no guarantee of finding a global optimal solution. 

I.3 Metaheuristics approaches 

(Meta-)heuristics are a wide class of methods designed to solve approximately many 

optimization problems. They are approximate algorithms that combine basic heuristic 

methods into higher level frameworks to efficiently and effectively explore the search space 

[83]. (Meta-)heuristics are designed to solve complex optimization problems; in fact, the 

classical heuristics were not always effective and efficient, as they were time consuming or 

there were some limitation to help them escape from a local optima. of them converge to the 

optimal solution of some problems with an expected runtime. Several (meta-)heuristic 

algorithms are studied in the literature such as variable neighborhood search (VNS) [81, 57], 

tabu search (TS) [46], simulated annealing (SA) [64], genetic algorithm (GA) [47], particle 

swarm optimization (PSO) [62], among others. 

(Meta-)heuristic algorithms based a two strategies [92, 59] : (i) Diversification: that 

explores the search space to avoid getting stuck in the same or similar areas of feasible space, 

and (ii) Intensification: that emphasizes on concentrating search in the promising regions 

previously found, in order to exploiting the potentials. 

I.3.1 Simulated annealing  

Simulated Annealing is probably one of the first metaheuristics with an explicit 

strategy to escape from local optima [64]. The basic idea is to allow under some conditions 

some movements resulting in solutions of worse quality in order to escape from local optima 

and so to delay the convergence. In fact, at each iteration a random neighbor    of   is 
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generated and it is accepted as new current solution if its cost function   value is lower than 

that of the current solution. Otherwise it is accepted with a given probability  , this 

probability of accepting worse solutions decreased during the search process. In fact, the 

probability of accepting worse solutions is controlled by two factors: the difference of the cost 

functions and the temperature  . In general, the probability is calculated following the 

Boltzmann distribution: 

 (   (  )  ( ))     ( 
 (  )  ( )

 
 ) 

I.3.2 Variable neighborhood descent  

Variable neighborhood descent (VND) is a metaheuristic method proposed in [81] 

within the framework of variable neighborhood search methods, see [52]. The VND works 

with      neighborhood structures   ,                , designed for a specific problem. It 

starts with a given feasible solution as incumbent and sets      . If an improvement is 

obtained within neighborhood   , the method updates the new incumbent and sets      . 

Otherwise, it increases the value of   and the next neighborhood is considered. The method 

stops when a local optimum for        is found. 

I.3.3 Iterated local  search 

Iterated Local Search (ILS) framework was defined by Stutzle [97]. An ILS review, its 

variants, and its applications are detailed in [73]. The idea of iterated local search is very 

simple. The ILS apply local search to a current solution until a local optimum is reached. In 

order to overcome this local optimum a perturbation is realized to engender a new starting 

solution for local search algorithm. The principle of perturbation has a big influence on the 

process of the ILS method. In fact, if the perturbation is too weak, possibly, the algorithm 

may not avoid the convergence to the same local optimum. Furthermore, a strong perturbation 

would change the algorithm to a local search with multi starting solutions.  

I.3.4 Variable neighborhood search   

Variable neighborhood search (VNS) introduced by Mladenovic and Hansen [81]. 

VNS is based on the systematic the systemic change within neighborhood structures. In the 
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beginning of each problem resolution, a set of neighborhood structures *           + of 

cardinality k must be defined, where   ( ) the set of solutions in the     neighborhood of  . 

Then, from a starting solution   the algorithm increasingly uses complex moves to reach local 

optima on all selected neighborhood structures. The main steps in VNS algorithm are: 

shaking, local search and neighborhood move. In the shaking step, a solution     is randomly 

selected in the     neighborhood of  . The set of neighborhood structures for shaking phase 

can be different from the neighborhood structures used in local search. The two well-known 

search strategies employed as local searches are called first improvement and best 

improvement. First improvement local search selects the first detected solution    in   ( ) 

where    is better than the current solution  . The best improvement method consists in 

selecting all improving solutions in   ( ). Many variants are derived from the basic VNS 

schemes [52]. The well-known are fixed neighborhood search, basic VNS, general VNS, 

skewed VNS, cyclic VNS, nested VNS, and two-level VNS. These variants indicate that VNS 

heuristics can be successfully applied to various types of NP-hard optimization problems. 

I.4 Cooperatives  approaches    

 The interests about cooperative approaches have grown for the last few years where 

they have proved their efficiency in solving optimization problems. Since (meta-)heuristics 

cannot always find the global optimal solution, more and more cooperation schemes between 

exact methods and (meta-)heuristics are realized. These hybridizations can provide high 

quality results because they are able to exploit at the same time the advantages of both types 

of methods.  

In the following, we give a brief overview of the three main classifications of 

cooperative approaches between exact and (meta-)heuristic methods that have been suggested 

in the literature. 

I.4.1 First classification 

The Cooperative approaches between exact and (meta-) heuristics were firstly classified 

in [36, 39] who summarized them into five classes: 
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(i) Using exact algorithms to explore large neighborhoods within local search 

algorithms. 

(ii) Using information of high quality solutions found in several runs of local search to 

define smaller problems that are amenable for solution with exact algorithms. 

(iii) Exploiting lower bounds in constructive heuristics. 

(iv) Using information from integer programming relaxations to guide local search or 

constructive algorithms. 

(v) Using exact algorithms for specific procedures within hybrid (meta)heuristics 

I.4.2 Second classification 

Puchinger and Raidl [91] have developed the second classification which is divided 

into two main classes: (i) Collaborative combination and (ii) Integration combination.  

(1) Collaborative combination: this class includes hybrid algorithms in which exact 

algorithm and (meta-) heuristic exchange information, but no algorithm is contained in 

any other. In this case, both algorithms can be executed in two following cases 

i. Sequential execution: in which one of the algorithms is completely executed 

before the other. In other words, the (meta-) heuristic algorithm is executed as a 

preprocessing before the exact method or the (meta-) heuristic algorithm is 

executed as a post processing after the exact method.  

ii. Parallel or Intertwined execution, where both (meta-) heuristic and exact   

methods are executed in the same time, either in parallel or in an intertwined 

manner by alternating between both algorithms. 

(2) Integration combination: it is termed integrative because when one technique is 

embedded inside other techniques, in which the first act as a master and the second is 

seen as a functional component of the first. Obviously, two cases may be considered.  

i.  The first consists of incorporating an exact algorithm into a (meta-) 

heuristic. A well-known strategy of this subclass is to solve relaxed 

problems and to explore large neighborhoods in local search based (meta-

)heuristics by means of exact algorithms. Another common strategy is to use 

an exact algorithm as an operator integrated in evolutionary (meta-

)heuristic.  
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ii. While the second case consists of embedding a (meta-)heuristic within an 

exact algorithm specially in order to employ (meta-)heuristics to determine 

incumbent solutions and bounds in branch and bound algorithm. 

I.4.3 Third classification 

Jourdan et al. [59] are proposed the third classification which can be used to categorize 

any cooperative algorithm. There are two criteria selected for this classification of cooperation 

between exact and (meta-) heuristic methods: (i) Low-level / high-level, (ii) Relay /teamwork. 

(i) Low-level / high-level: in this criterion, the hybridization occurs when a given function of 

an optimization algorithm is replaced by another algorithm. While, in the high level different 

algorithms are self-contained. 

 (ii) Relay/ teamwork: when a set of (meta-) heuristics is applied one after another, each one 

using the solution of the previous one as its inputs, functioning in a pipeline fashion. In the 

other hand, team hybridization represents a whole cooperation between several optimization 

models, in which many algorithms, referred as agents, evolve in parallel and each algorithm 

carries out a search in a solution space.  There are four categories that can be derived from 

this hierarchical classification 

Low Level Relay Hybrid (LRH). that corresponds to the cooperative approach 

wherein a given exact method is embedded into (meta-) heuristic method, or vice-versa. The 

embedded method is executed sequentially. More precisely, the general method depends on 

the results obtained by the embedded method. This class of cooperation is frequently used 

when a (meta) heuristic is used to improve another exact method. For example, to provide a 

local upper bound associated with each node of the search tree of a branch and bound algorithm, this 

method can be used to complete the partial solution. 

Few examples from literature belong to this category. Augerat et al. [8] developed a 

LRH cooperation which is based on a branch and cut algorithm (B&C) to solve a capacitated 

vehicle routing problem (CVRP).   The efficiency of the BCA is significantly determinated by 

the cutting plane generation which is very important issue. They introduce different 

metaheuristic approaches to extract a set of violated capacity constraints of the relaxed 

problem. 
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Low Level Teamwork Hybrid (LTH). contrarily to LRH cooperation, the embedded 

method is executed in parallel with the general method; with this the performance of the 

metaheuristics is improved a lot. This hybrid is very popular and has been applied 

successfully to many optimization problems. Kostikas and Fragakis [69] proposed a 

cooperative approach to embed a branch and bound algorithm (B&B) into genetic 

programming (GP). Conventionally, genetic algorithm used recombination operators to 

generate offspring. An original idea is to incorporate exact method, such as branch and bound 

algorithm, into recombination operators to find the best offspring from a large set of 

possibilities. 

High Level Relay Hybrid (HRH). In HRH hybrid, numerous self-contained (meta-) 

heuristics are executed in a sequence. The first case consists in starting (meta-)heuristic 

approach before an exact algorithm. The (meta-)heuristic approach helps the exact method to 

speed up the search. The idea consists to use good quality solution found by a (meta-)heuristic 

as an initial upper bound for B&B method. For example, Klepeis et al. [66] proposed 

cooperation between B&B algorithm and a conformational space annealing (CSA) to solve 

the protein structure prediction. HRH cooperation helps to quickly found the active nodes 

whose lower bound is greater than the upper bound. The second case consists in launching 

exact algorithm before a (meta-)heuristic approach. Another method consists in using exact 

algorithm to resolve optimally a relaxed version of the problem under consideration. Then, the 

obtained solution is exploited to produce initial solution for a (meta)heuristic approach. 

High Level Teamwork Hybrid (HTH). As already mentioned, HTH hybrid scheme 

involves various self-contained metaheuristics performing a search in parallel and cooperating 

to find an optimum. These various approaches cooperate by exchanging information between 

them during the search process [24, 18]. In this context, if we consider the cooperation 

between a branch and bound algorithm and a (meta) heuristic approach the following 

information may be exchanged: 

(i) From a (meta-)heuristic approach to a branch and bound algorithm; the best 

solution found by the (meta-) heuristic approach is transmitted to branch and 

bound algorithm in order to help this latter to prune the search tree efficiency. 

This information is exchanged each time the best solution found is improved. 

(ii) From a branch and bound algorithm to a (meta-) heuristic approach; 
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Nodes of the search tree of branch and bound algorithm with least-cost lower 

bound represent good partial solutions. The lower bound is used to predict 

potential interesting search regions. Indeed, these partial solutions are 

completed and used by heuristic method as initial solutions. 

I.5 Matheuristic approach  

 

The cooperative framework between (meta-)heuristics and exact approaches have been 

performed by many researchers during the last few decades. For instance, Puchinger and 

Raidl, [91] studied collaborative combinations in which the algorithms exchange information 

but are not part of each other, and integrative combinations in which one technique is a 

subordinate embedded component of another technique. For instance, neighborhood search 

techniques, such as Variable neighborhood descent (VND), Variable Neighborhood Search 

(VNS) and its variants are proved to be very effective when combined with optimization 

techniques based on the mathematical programming problem formulations [50]. More 

precisely, (meta-)heuristic approaches and mathematical programming techniques are two 

highly successful streams, so it is not surprising that the community tries to exploit and 

combine the advantages of both. A new subclass of cooperative approaches appeared recently 

within the term Matheuristics. Matheuristics combine (meta-)heuristics and approaches 

relying on mathematical programming problem formulations. So a number of methods for 

solving optimization problems which can be considered as matheuristics have emerged over 

the last decades. Often, exact optimization method is used as the subroutine of the (meta-

)heuristics for solving a smaller sub problem [74]. This technique provides interesting results 

as they take advantages of both types of methods [59]. A classification of algorithms 

combining local search techniques and exact methods is given in [36, 91]. The focus is 

particularly on the so called cooperative approaches using exact methods to strengthen local 

search techniques. They can be viewed as matheuristics that combine (meta-)heuristics and 

mathematical programming [50, 74]. Prandtstetter and Raidl [90] applied a matheuristic that 

combines an integer linear programming with variable neighborhood search for the car 

sequencing problem. 
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I.6 Conclusion   

Hard combinatorial problem cannot be solved in an exact way within a reasonable 

amount of time. Using (meta-)heuristic methods is the most important alternative to solve this 

class of problems. (Meta-)heuristics approaches are efficient in the search space exploration in 

a short computation time, but no guarantee about the high-quality solutions.  Outlining the 

advantages and disadvantages of different search techniques we terminate by pointing out the 

importance of cooperative approaches that can benefit from their advantages while 

minimizing their drawbacks. 

In this thesis, we will be particularly interested in cooperative approaches can be viewed as 

matheuristic that combine neighborhood search techniques and mathematical programming. 

The following chapter will be devoted to introduce and solve a new variant and 

extension of the knapsack problem with setup (KPS) that we call generalized multiple 

knapsack problem with setup (GMKPS). In fact, in the empirical part of this thesis we will 

attempt to develop original matheuristics approach to solve GMKPS and its variant MKPS
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Chapter II 

Cooperative approach for the generalized multiple 

knapsack problem with setup 

 

 

II.1   Introduction   

In this chapter, we introduce and solve a new variant of knapsack problem with setup 

(KPS) that we call general multiple knapsack problem with setup (GMKPS). Practical 

applications of the GMKPS may be seen in production scheduling problems involving setups 

and machine preferences. A real-life case study of KPS is considered in [21]. It is about a 

leading manufacturer and supplier of hollow glass in the agro-alimentary glass packing 

industry, that produces several types of products, including bottles, flacons, and pots with 

different shapes. To change the production from one product class to another, the production 

machinery must be setup and molds must be changed in the molding machine. There is no 

setup between products in the same class. These changes in the manufacturing process require 

significant setup time and costs. The company operates with a batch delivery policy; products 

that are manufactured in the same period have the same shipping date. Accordingly, the 

company needs to decide when to make orders so as to maximize the total profit. Hence, the 

extension of KPS to multiple periods is a real case study of GMKPS. Prices vary according to 

the customers’ expectation of products delivery date; i.e. some customers are willing to pay a 

higher price for a short lead-time while others are willing to wait for their products in 

exchange for lower prices. Thus, price, delivery period and total profit have very complex 

connections that are of extreme interest to businesses today. Thus, we consider that orders 

could be realized in multiple periods, and the products’ price depends on the orders’ 

completion time; i.e. penalties are added to the initial price in case products are not delivered 
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on-time. In addition, the products (items) could be classified into classes regarding their 

setups; setup is null between products from the same class. The profit for order j of class i 

processed in period t is     , and varies for different periods, but the processing time     stays 

the same. To find the assignment of orders that maximizes the total profit, we have to 

consider the marginal profit of each job, the current production capacity per period, and the 

setup cost and time from orders. This realistic production scheduling problem is typically our 

GMKPS case study. Particularly, we deal with multiple knapsack problem with setup (MKPS) 

if only one setup for each class is allowed during the planning horizon i.e. orders in the same 

class must be processed in the same period. We note that MKPS is provided in [104], but 

there is no available benchmark set in the literature. 

 The GMKPS can be seen as a generalization of classical knapsack problem (KP) [77] 

where items belong to disjoint classes and can be processed in multiple knapsacks. The 

selection of a class involves setup costs and resource consumptions (setup time), thus affects 

both the objective function and the capacity constraint. Note that GMKPS has similarities 

with several other existing problems in the literature:  

- GMKPS is similar to KPS when considering one knapsack [103, 21; 63]. 

- The MKPS is a special case of GMKPS [104] when items from the same class 

cannot be assigned to more than a knapsack. 

- The multi-item capacitated lot-sizing problem with setup times and shortage costs 

(MCLSSP) [1] is similar to GMKPS when considering one class of items and the 

objective is to minimize the total cost induced by the production plan (unit 

production costs, inventory costs, shortage costs and setup costs).  

- The multi-item capacitated lot-sizing problem with times windows and setup times 

(MCLSP-TW-ST) [38] is similar to GMKPS when considering one class of items 

and the objective is to minimize the total cost (setup cost, production cost and 

holding cost). 

- The generalized quadratic multiple knapsack problem (GQMKP) [9, 3] is similar 

to GMKPS, when additional profit is obtained if items j and j’ are selected for the 

same knapsack, and ignoring the setup cost. The maximum number of knapsacks 

to which the items from the same class can be assigned is a fixed parameter from 1 

to the total number of knapsacks. 
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Other problems exist in literature and seem to have similarities with GMKPS, but they present 

more differences than similarities:  

- The multiple-choice multidimensional knapsack problem (MMKP) [54] is 

different from the GMKPS. It ignores the setup variables (without y variables), and 

consists of filling all knapsacks with exactly one item from each class. 

- The multiple knapsack problem (MKP) is a special case of MMKP, when 

considering one class [88]. 

- The multi-commodity, multi-plant, capacitated facility location problem (denoted, 

PLANWAR) [102] is required to select the optimum set of plants and warehouses 

from a potential set and plan production capacities, warehouse capacities and 

quantities shipped. This problem is different from the GMKPS. It ignores the setup 

capacity consumption (setup time) and adds the operating cost, where the objective 

is to minimizing the total operating costs of the distribution network.    

- The facility location-allocation problem (FLA) is a particular case of  PLANWAR. 

It ignores the operating costs and consists of defining the best allocation using (α, 

β)-cost while minimizing the transportation cost [102]. 

 

For small and medium sized instances (with less than 10000 variables and 10000 constraints) 

for similar problems than GMKPS, exact methods such as Branch and bound (Yang, 2006) and 

Dynamic programming [21] converge to optimality. However, those exact methods are unable to solve 

large instances in a reasonable time. This has led to discard exact methods in favour of approximated 

methods such as Multi-start Iterated local search [9] and heuristics based tree search [63]. 

Nevertheless, metaheuristic methods generate solutions in a reasonable time, but with no guarantee of 

performance. The purpose of this work is to provide an efficient solving approach for the GMKPS. We 

introduce a mixed Integer programming (MIP) formulation that, due to the complexity of the GMKPS 

(more than 60000 variables and 60000 constraints), cannot solve even small test instances (see section 

5.3). In fact, it is usually difficult to assign items to the whole sets of knapsacks. In addition, the 

consideration of the knapsack-dependent cost related to each class of products and the knapsack-

dependent profit associated to each item increases the complexity of the problem. Therefore, the 

design of a new approach providing high quality solutions in a reasonable computing time is quite 

challenging. An alternative to exact methods would be to develop a matheuristic by combining a meta-

heuristic with an exact solving technique: local search techniques to include classes to knapsacks and 

integer programming (IP) to include items in each knapsack. Our matheuristic approach differs from 
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existing techniques by the use of the connection between metaheuristic and exact method relying on 

an effective exploration of the solution space. Experimental results show the performance of the 

proposed matheuristic on randomly generated instances of GMKPS and its particular case MKPS in 

comparison to IP: higher quality solution (-0.37% for GMKPS and -0.04% for MKPS) and shorter 

computation time (20 s vs 3522 s for GMKPS and 11s vs 2965s for MKPS).  

The remainder of this chapter is organized as following: In Section II.2, the related 

literature is presented. Section II.3 contains the mathematical formulations of GMKPS and 

MKPS. In Section II.4, we propose a matheuristic combining variable neighborhood descent 

(VND) and integer programming (IP) for GMKPS and MKPS. The experimental results and 

their interpretations are reported in Section II.5. In Section II.6, we conclude the chapter and 

give possible and future research ideas.  

II.2   Literature review  

To deal with the different variants of KP, exact techniques are introduced in the 

literature. Martello and Toth [76] discussed an upper bound using lagrangian relaxation for 

MKP. Pisinger [88] presented an exact algorithm using a surrogate relaxation to get an upper 

bound, and dynamic programming to get the optimal solution. Sinha and Zoltners [95] used 

two dominance rules for the linear multiple-choice KP to provide an upper bound for the 

multiple-choice knapsack problem. Chebil and Khemakhem [21] provided an exact method 

for KPS based on a dynamic program that outperforms the ILP on instances with up to 10,000 

items. The time complexity of the dynamic programming grows exponentially with the 

increasing size of problem. Michel et al. [80] developed an exact method based on a branch 

and bound algorithm to optimally solve several KPS instances. Yang and Bulfin [103] 

proposed also exact methods based on a branch-and-bound for KPS, but turns out to solve 

large instances. Thus, Della et al. [32] suggested an exact approach to optimally solve the 0-1 

knapsack problem with setups. The approach relies on an effective exploration of the solution 

space by exploiting the presence of two levels of variables. It manages to optimality solve all 

instances with limited computational time. Pferschy and Rosario [87] proposed an exact 

method based on a dynamic programming motivated by the connection of KPS to a KP with 

precedence constraints. This pseudo-polynomial algorithm can be stated with fewer variables 

and constraints and turns out to outperform the recent dynamic programming approach 
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provided by Chebil and Khemakhem [21]. Moreover, it outperforms the exact approach 

proposed in Della Croce et al. [32]. The dynamic programming and the Branch and Bound are 

not practical for solving large problem instances of GMKPS, which is more complex than 

KPS. Khemakhem and Chebil [63] provided a tree search based combination heuristic for 

large instances of KPS, but provided less performance results in comparison to dynamic 

programming. Freville and Plateau [42] provided greedy algorithm and reduction methods for 

multiple constraints 0-l linear programming problems. Dogan et al. [33] proposed a genetic 

algorithm solution based approach and Tlili et al. [99] proposed an iterated variable 

neighborhood descent hyper heuristic for the quadratic multiple knapsack problems (QMKP).  

Both exact algorithms and metaheuritics present advantages and drawbacks, when 

dealing with complex problems, in particular different variants of KPS. The hybridization 

technique between metaheuristics and exact approaches have been performed by many 

researchers during the last few decades [91]. This technique provides interesting results as 

they take advantages of both types of methods [59]. A classification of algorithms combining 

local search techniques and exact methods is given in [36, 91]. The focus is particularly on the 

so called hybrid methods using exact methods to strengthen local search techniques. They can 

be viewed as matheuristics that combine metaheuristics and mathematical programming [50, 

24]. Prandtstetter and Raidl [90] applied a matheuristic that combines an integer linear 

program with variable neighborhood search for the car sequencing problem. Burke et al. [17] 

studied a hybrid model of Integer Programming and Variable Neighborhood Search for 

Highly-Constrained Nurse Rostering Problems. Fernandes and Lourenco [39] applied  hybrid 

local search heuristics with exact algorithms to approximately solve different combinatorial 

optimization problems. Vasquez and Hao [100] proposed a new hybrid approach combining 

linear programming and tabu search to approximately solve the MKP problem. They 

considered a two-phased algorithm that first uses Simplex to solve exactly a relaxation of the 

problem and explores efficiently the solution neighborhood by applying a tabu search 

approach. Lamghari et al. [71] proposed a hybrid method based on linear programming and 

variable neighborhood descent for scheduling production in open-pit mines. Adouani et al. [2] 

applied a matheuristic combining VNS with IP to solve the multiple choice knapsack problem 

with setup (MCKS) and showed its efficiency for large instances (more than 60000 variables 
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and 60000 constraints) in comparison to IP with -0.11% as gap of objective value and 13 s vs. 

2868 s as difference in computation time. 

Local search techniques have proven their efficiency in several combinatorial 

problems and have been used within hybrid methods for several problems [100, 37, 91]. 

Particularly, the Variable Neighborhood Descent (VND) is a method based on a systematic 

change of the neighborhood structures. It is introduced by Mladenović and Hansen [81] and 

has proven its efficiency on different scheduling problems: unrelated parallel machines with 

setup times [40], capacitated vehicle routing problem [22], etc.  

 

             In this chapter, we propose a new matheuristic approach combining VND and IP 

(VND&IP) to solve the (G)MKPS. The provided approach relies on an effective exploration 

of the solution space by exploiting the partitioning of the variables set into two levels. The 

proposed approach solves approximately, all the instances of (G)MKPS (more than 60000 

variables and 60000 constraints) in a limited time in comparison to IP (20 s vs 3522 s for 

GMKPS and 11s vs 2965s for MKPS). It provides good quality solutions with a negative gap 

in comparison to IP (-0.37% for GMKPS and -0.04% for MKPS) (see Tables II.4 and II.5 in 

Section II.5). 

II.3   Problem description  

We consider a set of    knapsacks each with a capacity   ,   *     +  and a set of 

  classes of items. Each class     *     + consists of    items. Let    , negative integer 

number (   < 0 ), denote the setup cost of class   in knapsack  , and   , a positive integer 

number (    ), denote the setup capacity consumption of class    Each item     *      + of 

a class   has a profit       ( i   *    N+  j   *        }, t   *    T+) and a capacity consumption 

    (i   *    N+  j   *       }). For classes and items assignment to knapsacks, we consider 

two sets of binary decision variables     and     , respectively. The variable     is equal to 1 if 

knapsack   includes items belonging to class   and 0 otherwise. The variable       is equal to 1 

if item   of class   is included in knapsack   and 0 otherwise. We propose the following 

formulation of the MKPS problem contains T+T*S+S constraints and T*N+T*S variables, 

where S=∑   
 
    :  
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       ∑∑(        ∑        

  

   

 

   

 

   

)                                          ( ) 

 

s.t. 

∑(      ∑        )    

  

   

 

   

    *     +                               ( ) 

 

                    *     +    *      +    *     +     ( ) 

∑    

 

   

         *     +    *      +                                   ( )      

         *   +      *     +    *      +    *     +    ( ) 

Equation (1) represents the objective function that is to maximize the profit of selected 

items minus the fixed setup costs of selected classes. Constraint (2) guarantees that, for each 

knapsack   *     +, the sum of the total weight of selected items and the class setup 

capacity consumption do not exceed the knapsack capacity   . Constraint (3) requires that 

each item is selected only if it belongs to a class that has been setup. Constraint (4) guarantees 

that each item is selected and assigned to one knapsack at most. Constraint (5) ensures that the 

decision variables are binary. 

The MKPS is a particular case of GMKPS. To get the mathematical formulation for 

the MKPS, we keep the objective function given in (1), constraints (2), (3) and (5), and 

replace constraint (4) by constraint (6) because items from the same class cannot be processed 

in more than one knapsack. 

∑   

 

   

          *     +                                                       ( )      

We note that this mathematical formulation of MKPS contains T+T*S+N constraints 

and T*N+T*S variables.  

Our mathematical modeling of GMKPS can be seen as a generalization to T knapsacks 

of existing mathematical model for KPS [103, 21, 63, 87], with additional constraint (4). We 
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note  that the mathematical formulation of KPS problem contains 1+S constraints and N+S 

variables. 

Using IP to solve GMKPS and MKPS shows its limitation due to the complexity of the 

problems (for big instances with up to 60000 variables and 60000 constraints). We show later 

in the experimental results (Section II.5) that by using IP, only 38 instances (among 360) of 

MKPS and 7 instances (among 360) of GMKPS are solved to optimality  in less than one hour 

CPU time. For the rest, the computation terminates with an out of memory or is stopped in 

one hour. Thus, we decided to invest in the development of a matheuristic approach 

combining VND and IP. We explain our new approach in the next section.  

II.4   Matheuristic VND&IP 

This chapter contains a new matheuristic combining VND with IP. The main idea of 

our matheuristic is to decompose the original problem into two problems. The first problem 

assigns classes to knapsacks (determine the setup variables    ) using a VND that transforms 

GMKPS (or MKPS) into several independent KPs. Three types of moves have been 

considered within the VND: SWAP, INSERT and DROP/ADD. The second problem solves 

each KP using IP (use CPLEX 12.7) that determines the values of       within a very short 

computation time. For efficiency issue, we apply the IP only if the search space is promising 

by comparing its result to an upper bound that we provided later. The found values of     

and       yield a feasible solution to GMKPS. 

The approach starts with a construction heuristic called reduction-based heuristic 

(RBH) that provides a good initial solution. Then, three local search procedures (     k  

*     }) are considered within a loop until no further improvement is registered. These local 

search procedures are obtained by combining each of the movements SWAP, INSERT and 

DROP/ADD with IP, respectively i.e.    : SWAP&IP,    : INSERT&IP and 

     DROP/ADD&IP. Algorithm II.1 shows the whole framework of our matheuristic. 

 

 

 

 

 



   Chapter II: Cooperative approach between VND and IP for solving (G)MKPS 

 

30 

 

Algorithm II.1: VND&IP 

     : Instance data. 

      : A feasible solution. 

Apply the RBH heuristic to get the initial solution      ; 
set      
Do 

        (       ); 
 If ( ( ) > f (     ) ) 
                
 Else  

         
 EndIf 

     While (   ) 

 

In the sequel, we detail the construction heuristic RBH, the calculation of the upper 

bound for      ,  - that conditions the application of IP after each local search, and the 

local search techniques SWAP&IP, INSERT&IP, and DROP/ADD&IP. 

II.4.1   Initial feasible solution  

To generate the initial solution, we use RBH, which is composed of three successive 

phases: 

- First phase: We reduce the size of an instance of GMKPS so that all the 

elements of each class    *     + are being replaced by a jumbo item (group of 

items). This item is characterized by a weight   
  and a profit    

   with     

∑    
  
    and      ∑     

  
      *     +   *     +  In addition to variable 

     we consider variable       is equal to   if the jumbo item (whole group) of class 

  is placed in the knapsack t and 0 otherwise. In fact, as the total volume of the 

item i can exceed the total capacity of a knapsack t, the variables      are relaxed 

i.e.          (see second phase) and variables     remain binary to identify the 

potential classes to be assigned to knapsacks. 

Consequently, the reduced GMKPS (denoted by         ) can be expressed 

mathematically as follows: 

                       ∑∑(         
      )                                             ( )       

 

   

 

   

 

s.t. 
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∑(           

 

   

   )                  *     +                                  ( )    

        
          *     +   *     +                                      (9) 

∑      

  

   

    *     +                                                                     (  ) 

          *   +    *     +   *     +                                     (  ) 

Here, the objective function (7) maximizes the sum of profits related to the selected 

jumbo items minus the costs induced by the selected classes. The capacity constraint (8) 

guarantees that the sum of weights for the selected items and classes does not exceed the 

capacity value    . Constraint (9) requires that each item is selected only if it belongs to a 

class that has been setup. Constraint (10) guarantees that each jumbo item is selected and 

assigned to one knapsack at most. Constraint (11) ensures that the decision variables     are 

binary.  

- Second phase: It is based on the fixing technique recently proposed by Della et al. 

[32]. We relax constraint (11) so that                   *   + (only the 

    variables are binary). The mixed integer programming for the           is 

optimally solved with CPLEX solver, which provides a feasible combination 

of      denoted by 0-1 vector    (t   {1,…,T}). We construct the set of classes 

     
    

   ith   
  *  *     +      + and   

  *  *     +     

 + .    is not guaranteed to be optimal for GMKPS. 

-  Third phase: once the classes are chosen, GMKPS boils down to several 

independent standard KPs (denoted      ,  -). Even if KP is known to be 

weakly NP-Hard, in practice it is well handled by nowadays ILP solvers [61, 78, 

77]. Thus, we get the following model for the      ,  - as a sub problem of 

GMKPS and equivalent to a classical binary KP problem:  

     ,  -: 

            ∑ ∑        

  

   

 

    
 

                                            (  )   
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                         s.t. 

∑ ∑       

  

   

 

    
 

                                                                (  ) 

     *   +       
     *      +                                    (  )   

 

       where the constants:     ∑    
 
    

 ,     ∑        *     + 
    

  and              

Equation (12) represents the objective function for      ,  -. The capacity 

constraint (13) guarantees that the sum of weights for the selected items does not exceed the 

capacity value    . Constraint (14) ensures that the decision variables are binary. 

We solve each of the       ,  - problems using CPLEX solver. We note     the 

solution of       ,  - and    its profit. We deduce the initial solution for GMKPS 

      ⋃   
 
    and its corresponding profit     ∑   

 
   . The GMKPS solution is 

represented by set of variables Y= {   ,                }, and a set of 

variables   *                       ;        +. RBH is applied in the same 

way when dealing with the MKPS, where the reduction of MKPS (       ) is expressed 

mathematically by equations (7) – (9), (11) and (15): 

∑        
       *     +                               (15) 

In addition to RBH, we consider two other heuristics:  Linear Programming based 

Heuristic (LPH) [105] and Greedy Heuristic (GH) [5]. In our problem, the LPH heuristic 

is composed of two main phases. We use a CPLEX solver along the procedure of our 

LPH: In the first phase, we consider again the model GMKPS and remove the integrality 

constraints on variables       . We limit CPLEX computation time to 500 seconds to obtain 

an initial solution    . The obtained combination      is denoted by 0-1 vector  ̅. In the 

second phase, the binary GMKPS [ ̅- is solved to obtain a feasible solution   . The GH 

heuristic is to build iteratively a feasible solution. In our problem this heuristic is 

composed of two main phases. In the first phase, the variables     are fixed randomly.  In 

the second phase, the partial feasible solution obtained in the previous phase is completed 

by inserting the items one by one to each knapsack   from the set of items that are listed in 

the decreasing order of their ratio      =     /   . If the current knapsack is saturated, then 
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we go to the next knapsack and reapply the two phases on the rest of items, and so on until 

the saturation of all the knapsacks.  

We give in next section an illustration about how the initial solution is obtained 

using our RBH on a small instance :  

 

Illustration example.  

Let consider an example of GMKPS defined by: 

        

  ,  ,    - 

  ,       - 

  ,,              - ,             -- 

  ,       - 

  ,*        + *          + *     + *        +- 

 

    ,,*         + *           + *     + *        +-  

          ,*        + *           + *     + *        +-- 

 

We apply the reduction process to get the         : 

        

  ,       - 

  ,,              - ,             -- 

  ,       - 

   ,            - 

   ,,           - ,           -] 

 

We solve the MIP (only the     variables are binary) of the          and get the 

following result:  

 

   *        ⏞    
          

       ⏞    
             

} 
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   *      ⏞
        

  ⏞
       

 ⏞
       

          ⏞  
       ⏞                

          

    ⏞
        

     ⏞
       

 ⏞
       

        ⏞
       ⏞                

             

+ 

 

      

We can see that the knapsack 1 is set up to accept only items from class 1, and the 

knapsack 2 is set up to accept only items from class 2. We apply separately: 

- GMKPS[   ] i.e. IP(1), with a capacity  , -   , -    ,  , -, -        

- GMKPS[   ] i.e. IP(2), with a capacity  , -   , -    ,  , -, -       

 

We obtain the solution X1 for the GMKPS[   ], and the solution X2 for the 

GMKPS[   ]: 

 

-     *      ⏞  
        

       ⏞    
       

   ⏞
       

      ⏞
       ⏞                

          

}, with      . 

-     *      ⏞  
        

       ⏞    
       

   ⏞
       

       ⏞  
       ⏞                

             

+             

 

Thus the initial solution generated by the RBH is:  

 

-   *                        +. 

-           .  

 

II.4.2  Upper bound for      ,  - 

Dantzig [31] provided an upper bound for KP. We adapt this upper bound to our 

problems and provide a new upper bound for the one dimensional knapsack 

problems      ,  - and     ,  -. This upper bound is used to decide whether to apply IP 

or not after the local search in order to explore only fruitful search spaces. It is the same for 

     ,  - and     ,  -. We apply the following successive steps to obtain this upper 

bound: 
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- Step1: Let I denote the set of items of classes     
  sorted in descending order of 

their efficiency ratio       
    

   
       

       *      +  

- Step2: Assign items from I one by one until saturation of the knapsack t, i.e., Stop 

at the first item i’j’ that cannot be inserted due to capacity saturation of 

     ,  - (or     ,  -).  

- Step3: The upper bound of      ,  - (or     ,  -) is  

         ∑      
 
       

     

     
      

 
   where         ∑     

 
      where I’ is the 

set of assigned items and the constants:      ∑    
 
    

           ∑    
 
    

 . 

II.4.3  SWAP&IP local search 

A Swap-based local search requires the definition of a neighborhood structure using 

simple moves. The considered swap permutes two variables       
  and       

  (    

*     +   *       +   *       +. We change the value of fours setup variables 

from 1 to 0 and vice versa. A new      ,  - is obtained. In order to save computational 

effort, before applying IP, we calculate the sum of upper bounds of the new classical 

knapsacks      ,  - and      ,  - (             ) and compare it with the total 

profit of the two knapsacks before Swap move (    =     ). In case      >     , we apply 

IP to optimally solve the new classical knapsacks      ,  - and      ,  -  respectively, 

and the best solution is taken as a new initial solution for a next swap process. In case       

    , the search space is not promising as no better solution can be obtained, thus IP is not 

applied and we proceed to the next step.  The procedure is terminated once no improvement is 

obtained. Algorithm II.2 details the SWAP&IP procedure. 

Algorithm II.2:    ( ) 

           ; 

S’S; 

 While         do 

                       ; 

            For t    to     do 

                          (  
 ); // Number of classes in knapsack t. 

                 For      to n do 

                                 
 , -; 

                        For        to   do 
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      (  
 ); // Number of classes in knapsack k. 

                                For      to m do //Swap class i by classes j. 

                                                  
 , -; 

                                                                     

                                                (          ) then 

                                                        ( )    ( ) ; //apply IP to  solve knapsacks t and k  

                                                    (  
        ) then 

                                   ;            
                                           EndIf 

                                      EndIf 

                                  EndFor 

                            EndFor 

                                  // New starting solution 

                     EndFor 

            EndFor 

  EndWhile 

 

II.4.4  INSERT&IP local search 

The Insert-based local search is based on a neighborhood search which generates a 

new solution by removing the class   from knapsack t (change the value of the setup 

variable       
  from 1 to 0) and then inserting it into another knapsack k (change the value 

of the setup variable       
  from 0 to 1). We apply IP if (      >     ) by the same way as 

in the SWAP&IP procedure. The best solution is taken as a new initial solution for the next 

insert-based local search. The procedure is terminated once no improvement is obtained. 

Algorithm II.3 details the INSERT&IP procedure. 

Algorithm II.3:    ( ) 

         ; 

S’S; 

While         do 

                    
        For     to   do 

                     *               +; 
                      (  ); // Number of knapsacks that contain class i 

               For     to   do 

                           , -  
                       For     to   do 

                              If (      ) then 
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                                                         // Insert  i in k and delete it from t          

                                   If (          ) then 

                                             ( )    ( ); // apply IP to  solve knapsacks t and k 

                                             If (          ) then 

                                                   S                ;            
                                            EndIf         

                                     EndIf   

                              EndIf 

                      EndFor 

                           // New starting solution 

               EndFor  

         EndFor 

EndWhile 

II.4.5  DROP/ADD&IP local search 

The Drop/Add - based local search is composed of two phases that are applied 

iteratively: First, Drop and Add moves between setup variables     ⋃   
      

   and     

⋂      
     

   are applied. We consider a fictitious knapsack T+1 that contains the non-selected 

classes. It consists in commuting the value of one variable     from 1 to 0 (Drop move) then 

trying to improve the solution using a repair operator (Add move) to change the value of one 

variable     from 0 to 1. Second, the IP is applied if (    >   )  to solve the classical 

knapsacks      ,  -. The procedure is terminated once no improvement is obtained. 

Algorithm II.4 contains the DROP/ADD&IP procedure. 

Algorithm II.4:    ( ) 

           

S’S; 

While (        do 

                  
      For              

                     (  
 ) // Number of classes in knapsack t 

             For              

                             
 , -; 

                         
   ⋂      

     
     

                     // T+1 : Fictitious knapsack that contains the non-selected classes 

                              (    
 )  // Number of classes in the Fictitious knapsack T+1 

                     For             do // Swap class i by free classes j 

                                    
 ,  - ; 

                                    in knapsack  ; 
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                                         in knapsack   ; 

                             If (        )  then 

                                               ( ); 
                                    If (      

 ) then 

                                          Store the best      // Best solution found  

                                                     

                                    End if 

                             End if 

                     End for  

                     S       // New starting solution  

              End for 

      End for 

End while 

 

The SWAP&IP, INSERT&IP, and DROP/ADD&IP procedures are the same for the 

two problems GMKPS and MKPS. 

II.5   Computational experiments   

Our approach is implemented and run using C language and CPLEX 12.7 solver on a 

2.4 GHZ intel B960 computer with 4 GB of memory. 

 Due to the unavailability of benchmark instances in the literature, we test our matheuristic 

VND&IP on a set of randomly generated instances of GMKPS and MKPS with a total number 

of knapsacks T in *          +, all knapsacks are considered small (below the formula of bt), 

total number of classes N in {        +, and total number of items    for each class i 

in ,     - ,     - and ,      - (the instances of GMKPS and MKPS are available at the 

following link: https://goo.gl/zK6yZn).We generate 360 instances in total: 10 instances for 

each combination (      ). We consider the correlation between coefficients by using a 

random generation scheme that resembles to the ones provided in [21] and [2] which makes 

use of the following rules: 

 

 The setup cost and capacity consumption are: 

     ∑        

  

   

 

https://goo.gl/zK6yZn
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    ∑       

  

   

 

W       

   is selected with a uniform distribution in ,         -. 

     is selected with a uniform distribution in ,        -  

            , where    is selected with a uniform distribution in ,    - .  

       .        ∑    
  
      /  where    is selected with a uniform distribution in 

,          ∑    
  
   -. 

Before the experimentation (Section II.5.3), we provide in section II.5.1 a performance 

analysis of the matheuristic components considering the set of 360 GMKPS instances that are 

presented in this section II.5. In section II.5.2, we provide a sensitivity analysis regarding the 

correlations between several coefficients and regarding the knapsacks tightness by applying 

our approach on a new set of 13 GMKPS instances that are presented in the same section 5.2.  

II.5.1 Performance analysis of the VND&IP components  

We study here the performance of the main components of our matheuristics, mainly 

the construction Heuristic RBH and the combination of the three local search techniques 

SWAP&IP, INSERT&IP and DROP/ADD&IP.  

In order to evaluate the performance of RBH, we compare it to GH and LPH heuristics 

explained in section II.3.1.  The RBH, GH and LPH heuristics are tested on all the instances 

of GMKPS. Table II.1 shows the numerical results on average. The first column contains the 

name of the heuristic. The second column contains the average of computational time. We 

note that LPH is stopped at a limit of computation time equal to 500 s. The third column 

contains the gap between the heuristic solution and the IP solution:    ( )      

.
                  

     
/  
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Table II.1. Comparison between RBH, GH and LPH: Average of GMKPS instances. 

 

 

Table II.1 shows that RBH outperforms the other construction heuristics in terms of 

computation time and solution quality.  

 

We consider the application of our matheuristic with one local search technique (SWAP&IP), 

two local search techniques (SWAP&IP and INSERT&IP), and three local search techniques 

(SWAP&IP, INSERT&IP and DROP/ADD&IP). Figure II.1 shows a comparison between 

these three combinations in terms of average Gap (%) with the IP for the fours instances sets 

regarding the number of knapsacks. By adding INSERT&IP, we observe a slight advantage, 

for all the set of instances, compared to using only SWAP&IP. However, by adding 

DROP/ADD&IP, we observe a higher improvement with a gap that increases when the 

number of knapsacks increases.  

 

Figure II.1. Effect of VND components 

Table II.1 and figure II.1 show that the RBH plays an important role in the overall 

performance of the provided VND&IP approach:  The initial solutions are close to the 

solutions provided by IP with a gap lower than 1.73%. Figure II.1 shows the efficiency of the 

other components of VND&IP as they ensure the improvement of the initial solutions 

provided by the RBH in a very short time. Figure II.1 shows the clear superiority of the 

VND&IP in comparison to IP, with the contribution of the three local search techniques 
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RBH 0.53 1.73 % 

LPH 373.69 3.63 % 
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SWAP&IP, INSERT&IP and DROP/ADD&IP components respectively equal to 0.19% , 

0.01% and -0.37% on average. 

II.5.2 Sensitivity analysis of GMKPS parameters   

We study here the impact of several parameters values on the complexity of the 

GMKPS: tightness of knapsacks and correlation between several coefficients.  

For the sensitivity analysis regarding the correlation between coefficients, we consider 

different possibilities:  

(1) No correlation between coefficients:        ;       ;            ; 

        ; where   ;   ;   and    are uniformly generated in [10, 10000]. 

(2) Correlation between      and     coefficients:           ; where r is uniformly 

generated in [0,10] and the other parameters are uncorrelated. 

(3) Correlation between      coefficients of the same class:      (    )    ; 

where r is uniformly generated in [0,10] and the other parameters are uncorrelated. 

(4) Correlation between      and    :      (      )     ; where r is uniformly 

generated in [0,10] and the other parameters are uncorrelated. 

(5) Correlation between the     coefficients of the same class:     (    )    ; 

where r is uniformly generated in [0,10] and the other parameters are uncorrelated. 

        To analyze the impact of these different correlation types, we consider two basic 

instances with no correlations (1): a small instance with 10 knapsacks and a large instance 

with 20 knapsacks. Then, we change each instance by including one correlation type at each 

time and thus generate four additional instances from each basic instance. Tables II.2 reports 

the numerical results. The first column reports the instance size. The correlation type (from 

(1) to (5)) is reported in the second column. The notations     ( 

      and           ) and     report the solution found and the computational time, 

respectively. We note that IP is stopped at a limit of computation time equal to one hour. The 

columns     ( ) reports the solution gap between IP and VND&IP, calculated as 

follows:     ( )      .
                 

     
/.  

 

 



   Chapter II: Cooperative approach between VND and IP for solving (G)MKPS 

 

42 

 

Table II.2. Comparison between IP and VND&P for different levels of correlated instances 

 

Best solution in bold, * for optimal solution, and - when IP exceeds the capacity of RAM memory or exceeds the CPU time limit 

 

Table II.2 shows that IP solves to optimality small and large uncorrelated instances i.e. 

correlation type (1). The VND &IP approach provides good quality solutions for uncorrelated 

instances in a very short computation time: 43 sec for the small instance (vs 597 sec with IP) 

and 101sec for the large instance (vs 1438 sec with IP). The IP slightly outperforms the 

VND&IP when dealing with uncorrelated instances: the gap is equal to 0.002% for the small 

instance and 0.006% for the large instance. The same phenomenon is observed with 

correlation type (5). 

Table II.2 shows that the IP cannot solve to optimality small and large correlated 

instances with correlation types (2), (3) and (4); i.e. exceeds the capacity of RAM memory or 

exceeds the CPU time limit (one hour).  Our approach VND& IP solves the instances in very 

reasonable computational time with an average gap equal to -       for correlated instances 

type (2), -0       for correlated instances type (3) and -       for correlated instances 

type (4). We note that the negative gap indicates that VND&IP outperforms IP. The VNS&IP 

average computation time is 43 sec for small instances and 120 sec for large instances (vs 

3600 sec with IP). 

We conclude that the correlation of the profits      with other parameters such as 

weight, setup time, and setup cost, etc. makes the GMKPS more complex to solve i.e. for 

small and large correlated instances with correlation type (2), (3) and (4), the provided 

matheuristic VND&IP is more efficient and effective in comparison to IP. 

Instance size Correlation type 
IP VND&IP 

Gap (%) 
      CPU           CPU 

Small  

(1) 197234* 597 197231 43 0.002 

(2) 1271563 - 3600 1271590 41 -0.002 

(3) 2081984 - 3600 2081984 55 0.000 

(4) 2321167 - 3051 2321180 34 -0.001 

(5) 3830988* 546 3830988 57 0.000 

Large  

(1) 163129* 1438 163119 101 0.006 

(2) 4405506 - 3600 4412796 139 -0.165 

(3) 8696767- 3600 8696830 114 -0.001 

(4) 3690520- 3600 3701007 105 -0.284 
(5) 6732039* 2724 6732000 119 0.001 
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For the sensitivity analysis regarding the tightness of knapsacks, we consider three 

instances with T = 10, N = 20,    in [90, 110] and different sizes of knapsacks (tightness: 

small, medium and large capacities):  

- Small knapsack capacity:        .        ∑    
  
      /  

- Medium knapsack capacity:      .        ∑    
  
      / 

- Large knapsack capacity:       .        ∑    
  
      / 

where    is selected with a uniform distribution in ,          ∑    
  
   -. 

In Table II.3, the first column presents the knapsack tightness of the three instances: 

small, medium and large knapsacks. The next two columns show the results provided by the 

IP and VND&IP.  

Table II.3. Comparison between IP and VND&IP on three instances with different knapsack 

tightness  

 

 

 

 

 

Best solution in bold, * for optimal solution, and - when IP exceeds the capacity of RAM memory or exceeds the CPU time limit 

 

             Table II.3 shows that IP cannot solve to optimality the instance with small knapsacks. 

In addition, VND&IP outperforms IP i.e. the gap is negative for the small instance. IP solves 

to optimality the instances with higher sizes (medium and large knapsacks). From the IP 

computation time, we can conclude that by decreasing the knapsacks capacities, we increase 

the GMKPS complexity.  From the VND&IP computation time, we can remark that 

matheuristic is stable with a computation time that does not variate regarding the knapsacks 

sizes (128 sec on average). 

The details of instances used for the sensitivity analysis are available in the following 

link: https://goo.gl/zK6yZn 

knapsack 

tightness 

IP VND&IP 
Gap (%) 

      CPU           CPU 

Small knapsacks 3315613- 3600 3315697 147 -0,002 

Medium 

knapsacks 
9437042* 896 9436927 106 0,001 

Large knapsacks 9437176* 84 9437051 123 0,001 

https://goo.gl/zK6yZn
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II.5.3 Experimentation  

Table II.4 summarizes the results obtained by VND&IP and IP when solving the 

GMKPS. Each line presents the average of 10 instances. The first three columns present the 

number of knapsacks  , the number 

of                                                      . The next three columns show the 

corresponding average of results provided by the IP, the average of results provided by the 

matheuristic approach VND&IP and the average of the best upper bounds, of all the remaining 

open nodes in the branch-and-cut tree, provided by CPLEX 12.7 (       ). The notations 

    and     report the solution found and the computational time, respectively. We note that 

IP is stopped at a limit of computation time equal to one hour. Finally, the columns       and 

      report the gap between IP and VND&IP, calculated as follows:      ( )      

.
                 

     
/, and the gap between         and VND&IP, calculated as 

follows:     ( )      .
                  

       
/, respectively. 

Table II.4. Numerical results for GMKPS instances 

       
               

         ( )                ( )     ( )              ( ) 

5 

10 

 

[40,60] 759992 3342 759994 0.000 5 760026 

 

0.004 

[60,90] 1166555 3600 1166558 0.000 6 1166572 

 

0.001 

[90,110] 1624997 3600 1625002 0.000 3 1625014 

 

0.001 

20 

[40,60] 790962 3600 790961 0.000 4 790998 

 

0.005 

[60,90] 1228017 3259 1228019 0.000 4 1228039 

 

0.002 

[90,110] 1616006 3390 1616013 -0.001 5 1616025 

 

0.001 

30 

[40,60] 913951 3244 913951 0.000 3 913985 

 

0.004 

[60,90] 114477 2942 1144937 -0.013 3 1144958 

 

0.002 

[90,110] 1703770 3242 1703833 -0.004 4 1703845 

 

0.001 

10 

10 

 

[40,60] 1445360 3600 1447096 -0.114 23 1447485 

 

0.027 

[60,90] 2364297 3600 2367911 -0.163 15 2368433 

 

0.022 

[90,110] 3083584 3600 3089097 -0.182 17 3089678 

 

0.019 

20 

 

[40,60] 1591134 3600 1591549 -0.029 10 1592221 

 

0.042 

[60,90] 2467619 3600 2472900 -0.224 9 2473423 

 

0.021 
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Table II.4 shows that VND&IP outperforms IP with a gap on average equal to -

       . In detail, the gap on average is -       for    , -        for      , -

       for      , and -       for     . The CPU on average for VND&IP is about    

s, which is very low in comparison to the average of CPU for IP that is equal to     s. For 

more detailed results, we note that VND&IP provides a solution equal to the one provided by 

the IP for    instances (7 optimal and 25 non-optimal) and provides better solutions than IP 

for 319 instances (see Appendix A).  Table II.4 shows that the gap between VND&IP and 

        is 0.015% on average (0.002%, 0.025%, 0.018% and 0.014% for instances with 5, 

10, 15 and 20 knapsacks, respectively). 

[90,110] 3127235 3168 3131084 -0.123 11 3131550 

 

0.015 

30 

[40,60] 1877750 3600 1878104 -0.02 6 1878724 

 

0.033 

[60,90] 2284554 3600 2286305 -0.078 8 2286893 

 

0.026 

[90,110] 3390820 3600 3394182 -0.101 10 3394729 

 

0.016 

15 

10 

 

[40,60] 2022211 3600 2038186 -0.787 44 2038778 

 

0.029 

[60,90] 3198410 3600 3232685 -1.087 43 3233324 

 

0.020 

[90,110] 4307956 3600 4356089 -1.129 65 4356513 

 

0.010 

20 

 

[40,60] 2281419 3600 2287007 -0.259 26 2287586 

 

0.025 

[60,90] 3659753 3600 3673529 -0.375 23 3674123 

 

0.016 

[90,110] 4762369 3527 4778300 -0.347 23 4778814 

 

0.011 

30 

[40,60] 2799889 3600 2801237 -0.048 22 2801916 

 

0.024 

[60,90] 3410638 3600 3419811 -0.283 27 3420318 

 

0.015 

[90,110] 5080972 3600 5089502 -0.174 18 5090030 

 

0.010 

220 

10 

[40,60] 2233779 3600 2257611 -1.068 19 2258214 

 

0.027 

[60,90] 3399647 3600 3424060 -0.723 28 3424686 

 

0.018 

[90,110] 4495295 3600 4538968 -0.973 22 4539506 0.012 

20 

 

[40,60] 2977524 3600 3003851 -0.906 47 3004414 

 

0.019 

[60,90] 4752263 3600 4794759 -0.897 45 4795246 

 

0.010 

[90,110] 6264952 3600 6331424 -1.063 43 6331902 

 

0.008 

30 

 

[40,60] 3661944 3600 3678277 -0.437 16 3678795 

 

0.014 

[60,90] 4463184 3491 4502886 -0.903 41 4503397 

 

0.011 

[90,110] 6679246 3601 6726455 -0.717 36 6727034 0.009 
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Figure II.2. Computation time of VND&IP approach compared to IP for GMKPS 

Among the 360 instances of GMKPS, IP finds the optimal solutions for 7 instances, 

slightly outperforms the VND&IP for 9 instances, and for the remaining it terminates with 

error: exceeds the capacity of RAM memory or exceeds the CPU time limit. Figure II.2 shows 

the 7 instances solved at optimality are all with     .  

            Table II.5 summarizes the results obtained by VND&IP in comparison to those 

obtained by IP when solving MKPS. 

Table II.5. Numerical results for MKPS instances 

0

600

1200

1800

2400

3000

3600

0 90 180 270 360

C
P

U
 (

s)
 

360  instances of GMKPS  

IP exceeds the limit of time

IP exceeds the capacity of RAM

IP finds optimal solution

T=5       T=10        T=15      T=20 

T=5:    82+      00￭     07▲  

 
T=10:   88+    02￭       00▲  

 
T=15:   89+    01￭       00▲  

 T=20:   89+    01￭       00▲  

 

       
               

         (s)                ( )    (s)              ( ) 

5 

10 

 

[40,60] 337066 2253 337066 0.000 1 337086 

 

0.006 

[60,90] 766837 2310 766842 -0.001 3 766872 

 

0.004 

[90,11

0] 

550192 2479 550190 0.000 6 550203 

 

0.002 

20 

[40,60] 258448 2965 258448 0.000 2 258469 

 

0.008 

[60,90] 871105 2051 871105 0.000 4 871121 

 

0.002 

[90,11

0] 

493255 3241 493256 0.000 6 493267 

 

0.002 

30 

[40,60] 421243 1731 421243 0.000 2 421270 

 

0.006 

[60,90] 808314 2104 808315 0.000 17 808331 

 

0.002 

[90,11

0] 

559080 2746 559081 0.000 17 559091 

 

0.002 

10 
10 

 

[40,60] 562993 3204 563000 -0.001 3 563036 

 

0.006 

[60,90] 1480338 2497 1480398 - 0.004 15 1480439 

 

0.003 

[90,11

0] 

1029024 3114 1029034 -0.001 5 1029052 

 

0.002 

__
 VND&IP 
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Table II.5 shows that VND&IP outperforms IP with a gap on average equal to -

      . In detail, the gap on average is about    for     , -        for      , -

        for       , and -         for     . The CPU on average for VND&IP is about 

11 s, which is very low in comparison to the average of CPU for IP that is equal to 2965 s. For 

more detailed results, we note that VND&IP provides a solution equal to the one provided by 

IP for 76 instances (38 optimal and 38 non optimal) and provides better solutions than IP for 

279 instances (see Appendix A). Table II.5 shows that the gap between VND&IP and 

20 

 

[40,60] 457898 2902 457903 -0.001 5 457941 

 

0.008 

[60,90] 1713710 3170 1713720 -0.001 12 1713756 

 

0.002 

[90,11

0] 

938588 2941 938596 -0.001 7 938617 

 

0.002 

30 

[40,60] 715887 3600 715893 -0.001 3 715939 

 

0.006 

[60,90] 1551262 3471 1551706 -0.025 12 1551736 

 

0.002 

[90,11

0] 

1086450 3510 1086842 -0.040 21 1087103 

 

0.024 

15 

10 

 

[40,60] 691178 2967 691189 -0.001 5 691248 

 

0.009 

[60,90] 1818377 1971 1818396 -0.001 12 1818426 

 

0.002 

[90,11

0] 

1 370342 3083 1370359 -0.001 16 1370653 

 

0.021 

20 

 

[40,60] 658534 3210 658548 -0.002 7 658611 

 

0.010 

[60,90] 2455626 3373 2456683 -0.044 12 2457080 

 

0.016 

[90,11

0] 

1250502 3303 1251095 -0.042 16 1251402 

 

0.025 

30 

[40,60] 1046226 3600 1047317 -0.107 8 1047381 

 

0.006 

[60,90] 2301745 3603 2302191 -0.019 20 2302725 

 

0.023 

[90,11

0] 

1609 642 3444 1613672 -0.199 18 1613929 

 

0.016 

220 

10 

[40,60] 812934 2991 812955 -0.003 5 813014 

 

0.007 

[60,90] 1945837 2465 1945857 -0.001 8 1946348 

 

0.025 

[90,11

0] 

1616332 2820 1616357 -0.002 15 1616643 

 

0.018 

20 

 

[40,60] 774016 2380 774284 -0.034 6 774348 

 

0.008 

[60,90] 3051810 3442 3055666 -0.142 23 3056042 

 

0.012 

[90,11

0] 

1681049 3339 1686948 -0.368 19 1687326 

 

0.022 

30 

 

[40,60] 1 358070 3487 1359224 -0.084 7 1359279 

 

0.004 

[60,90] 2918388 3575 2922240 -0. 133 22 2922753 

 

0.018 

[90,11

0] 

2138531 3602 2146704 -0.353 30 2146999 

 

0.014 
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        is 0.010% on average. The gap increases when the number of knapsacks increases 

(0.004%, 0.007%, 0.015% and 0.015% for instances with 5, 10, 15 and 20 knapsacks, 

respectively). 

 

Figure II.3. Solution time of VND&IP approach compared to IP for MKPS 

Among the 360 instances of MKPS, IP finds the optimal solutions for 38 instances, 

slightly outperforms the VND&IP for 5 instances, and for the remaining it terminates with 

error: exceeds the capacity of RAM memory or exceeds the CPU time limit. Figure 3 shows 

that the majority of instances solved at optimality are with     (31 with    , 4 with 

    , 2 with      and 1 with     ). In addition, we can see that MKPS becomes 

more difficult when increasing the number of knapsacks T. In fact, the number of times that 

IP terminates with exceeding the capacity of RAM or exceeding the time limit increases from 

59 with     to 89 with       

Figure II.4 shows that the results provided by the VND&IP approach are better than 

those provided by the IP for both GMKPS and MKPS. The Gap (%) increases when the 

number of knapsacks increases. A slight improvement is obtained by our VND&IP for MKPS 

instances (~ -0.04%), and a higher improvement is obtained for the GMKPS instances (~ -

0.36%).  
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Figure II.4.  Quality solution of VND&IP for GMKPS and MKPS 

 

The detailed results about the GMKPS and MKPS are available in Appendix A and the 

following link: https://goo.gl/Knz6Bo. 

II.6   Conclusion  

This chapter introduces a new variant of the knapsack problem with setup (KPS). We 

refer to it as the generalized multiple knapsack problem with setup (GMKPS). GMKPS 

originates from industrial production problems where the items are divided into classes and 

processed in multiple periods. We refer to the particular case, where items from the same 

class cannot be processed in more than one period, as the multiple knapsack problem with 

setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and 

provide an upper bound expression for the knapsack problem. We then propose a matheuristic 

that combines variable neighborhood descent (VND) with integer programming (IP). We 

consider local search techniques to assign classes to knapsacks and apply the IP to select the 

items in each knapsack. Computational experiments on randomly generated instances show 

the efficiency of our matheuristic in comparison to the direct use of a commercial solver. 

For future work, we expect to improve and generalize our matheuristic to deal with 

other variants of Knapsack problems such as Generalized Quadratic Multiple Knapsack 

Problem. 
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Chapter III 

 

Cooperative approach for the Multiple-Choice 

Knapsack Problem with Setup 

 

 

 

III.1  Introduction 

The 0-1 Multiple-choice Knapsack Problem with Setup (MCKS) is described as a 

knapsack problem with additional setup variables discounted both in the objective function 

and the constraint. Practical applications of the MCKS may be seen in production scheduling 

problems involving setups and machine preferences. A case study of knapsack problem with 

setup (KPS) is provided in [32]. To extend the KPS to MCKS, we consider that items from 

the same family (or class) could be processed in multiple periods.  

The MCKS is NP-hard problem, since it is a generalization of the standard knapsack 

problem (KP) [77]. MCKS reduces to a KP when considering one class, and no setup 

variables. The KPS is a particular case of MCKS, when the number of period is equal to one 

(T=1) [7, 21, 63], etc. To the best of our knowledge, Yang [104]  is the unique author who 

dealt with MCKS. He provided an exact method based on a branch and bound for the MCKS, 

but it has no availability of benchmark instances in the literature. To deal with the different 

variants of KP, exact techniques are introduced in the literature such as branch and bound 

algorithm [35, 67], lagrangian decomposition [15], and dynamic programming [87]. Chebil 

and Khemakhem [21] provided an improved dynamic programming algorithm for KPS. Akinc 

[6] studied approximated and exact algorithms to solve fixed charge knapsack problem. 

Michel et al. [80] developed an exact method based on a branch and bound algorithm to solve 

KPS. Della et al. [32] provided an exact approach for the 0-1 knapsack problem with setups. 
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Al‐Maliky et al. [7] studied a sensitivity analysis of the setup knapsack problem to 

perturbation of arbitrary profits or weights. Dudzinski and Walukiewicz [35] studied exact 

methods such as branch-and-bound and dynamic programming for KP and its generalizations. 

Martello and Toth [76] discussed an upper bound using Lagrangian relaxation for multiple 

knapsack problem (MKP). Pisinger [88] presented an exact algorithm using a surrogate 

relaxation to get an upper bound, and dynamic programming to get the optimal solution. 

Sinha and Zoltners [95] used two dominance rules for the linear multiple-choice KP to 

provide an upper bound for the multiple-choice knapsack problem.  

(Meta-)heuristics approaches have been also developed such as reactive local search 

techniques [54], tabu search [49], particle swarm optimization [11], genetic algorithm [26], 

iterated local search [25], etc. Khemakhem and Chebil [63] provided a tree search based 

combination heuristic for KPS. Freville and Plateau [42] provided a greedy algorithm and 

reduction methods for multiple constraints 0-l linear programming problem. Tlili et al. [99] 

proposed an iterated variable neighborhood descent hyper heuristic for the quadratic multiple 

knapsack problems. 

 The cooperation technique between exact and (meta-)heuristics approaches have been 

performed by many researchers during the last few decades. This technique provides 

interesting results as it takes advantages of both types of approaches [59]. A classifications of 

algorithms combining local search techniques and exact methods are provided in [36, 91]. The 

focus in these chapter is particularly on the so called matheuristic approach combining local 

search techniques with integer programming (IP). Fernandes and Lourenco [39] applied 

cooperative approach to solve different combinatorial optimization problems. Vasquez and 

Hao [100] proposed a new cooperative approach combining linear programming and tabu 

search to solve the MKP problem. They considered a two-phased algorithm that first uses 

Simplex to solve exactly a relaxation of the problem and then explore efficiently the solution 

neighborhood by applying a tabu search approach. Several works of literature have 

considered a combination of cooperative approach combining variable neighborhood search 

with exact technique. Prandtstetter and Raidl [90] applied a cooperative approach that 

combines an integer linear programming with variable neighborhood search for the car 

sequencing problem. Burke et al. [17] studied a cooperative approach of Integer 

Programming and Variable Neighborhood Search for Highly-Constrained Nurse Roistering 
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Problems. Lamghari et al. [71] proposed a cooperative method based on linear programming 

and variable neighborhood descent for scheduling production in open-pit mines. To the best 

of the our knowledge, the combination of VNS with exact technique has never been 

considered for KPS problem.  

 The remainder of this chapter is organized as following: Section III.2 contains the 

mathematical formulations of MCKS. In Section III.3, we propose a cooperative approach can 

be seen as a matheuristic that combine Variable Neighborhood Search (VNS) and integer 

programming (IP) for MCKS. The experimental results and their interpretations are reported 

in Section III.4. In Section III.5, we conclude the chapter and give possible and future 

research ideas 

III.2 Problem description 

The Multiple Choice Knapsack Problem is defined by knapsack capacity b     with a 

set of T divisions (periods), where each division t  {1, …,T}, and a set of   classes of items. 

Each class     *     + consists of    items. Let    , negative number, de note the setup cost 

of class   in division  , and let   , a positive number, denote the setup capacity consumption 

of class     Each item     *      + of a class   has  a profit         
   and a capacity 

consumption        
  . For classes and items assignment to divisions of knapsack, we consider 

two sets of binary decision variables     and     , respectively. The variable     is equal to 1 if 

division   includes items belonging to class   and 0 otherwise. The variable       is equal to 1 if 

item   of class   is included in division   and 0 otherwise. We propose the following 

mathematical formulation for the MCKS: 

       ∑∑(        ∑        

  

   

 

   

 

   

)                                                ( ) 

∑∑(      ∑        )    

  

   

 

   

 

   

                                                           ( ) 

                *     +    *      +    *     +             ( ) 



   Chapter III: Cooperative approach between VNS and IP for solving MCKS 

 

53 

 

                  ∑    

 

   

         *     +    *      +                                          ( )      

         *   +      *     +    *      +    *     +     ( ) 

 

Equation (1) represents the objective function that is to maximize the profit of selected 

items minus the fixed setup costs of selected classes. Constraint (2) guarantees that the sum of 

the total weight of selected items and the class setup capacity consumption does not exceed 

the knapsack capacity   . Constraint (3) requires that each item is selected only if it belongs to 

a class that has been setup. Constraint (4) guarantees that each item is selected and assigned to 

one division at most. Constraint (5) ensures that the decision variables are binary. 

Using CPLEX 12.7 to solve MCKS shows its limitation due to the complexity of the 

problems. We show later in the experimental results (Section II.4) that by using CPLEX, only 

27 instances of MCKS among 120 are solved to the optimality  in less than 1 h CPU time. For 

the rest, the computation terminates with an out of memory or is stopped at 1 h. Thus we 

decided to invest in the development of a cooperative approach can be seen as a matheuristic 

combining variable neighborhood search and integer programming (VNS&IP). We explain 

our new approach in the next section.  

III.3 Matheuristic approach for MCKS 

Local search techniques have proven their efficiency in several combinatorial 

problems and have been used within cooperative approaches for several problems [36, 33]. 

Particularly, the Variable Neighborhood Search (VNS) is a method based on a systematic 

change of the neighborhood structures. It is introduced by Maldenovic and Hansen [81] and 

has proven its efficiency on different scheduling problems: location routing [57] car 

sequencing problem [90], for the recent surveys on VNS see [51, 52]. 

This chapter contains a new matheuristc approach combining VNS with IP. The main 

idea of our cooperative approach is to decompose the original problem in to two sub-problems 

(two levels). The first problem (first level) is to assign classes to the divisions of knapsack 

(determine the setup variables    ) using a VNS approach allowing the transformation of 
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MCKS into classical KP. Two movements have been considered within the VNS approach: 

local search procedure (LS) and a perturbation mechanism which represents the core idea of 

VNS, is applied to     variables. The perturbation phase aims to change the neighborhoods 

structure,   ), when the algorithm is trapped at a local optimum. The second problem (second 

level) is to solve the classical KP by considering the IP that determines the values of       with 

a very short computation time. For efficiency issue, we apply the IP only if the search space is 

identified to be promising by comparing its result to an upper bound that we provided later. 

Note the found values of     and       yield a feasible solution to MCKS. 

The approach starts with a construction heuristic called reduction-based heuristic 

(RBH). Then, the obtain solution    is improved by using a Local search technique with 

integer programming (LS&IP) procedure. At each iteration, Perturb&IP and LS&IP are 

successively applied to the best current solution  . More precisely, A set of neighborhoods 

  ,              is initialized. At each iteration the perturbation mechanism 

PERTURB&IP is applied based on neighborhood    to obtain new solution   , then the two 

local search SWAP&IP and INSERT&IP are applied to obtain a new solution   . If this new 

solution is better than S, then this latter is updated and the process continues with the first 

neighborhood    (S), otherwise the same steps are repeated with the next neighborhood     . 

The algorithm works until a termination condition is satisfied.  Algorithm III.1 shows the 

whole framework of our approach. 

 Algorithm III.1 : VNS&IP (          ,      ) 

    RBH(Data);  

  ,              /*neighborhood structure */ 

    LS&IP(  ); /*Local search*/ 

       

      (       ) 

         
         

                            (     )   /* Random neighbor*/ 

                    &IP(  )           
               If (     >    ) then S    ; k1;  

              else k k+1; 

           ( =    ) 
           ()  
End while  
 return S ; 
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In the sequel, we detail the construction heuristic RBH, the calculation of the upper 

bound for IP that condition the application of IP after each local search move. 

III.3.1 Initial feasible solution  

 

To generate the initial solution, we adapt and extend a construction heuristic is based 

on a reduction based heuristic (RBH) recently proposed in chapter II. For illustration, we 

considered the MCKS problem and explain below the three successive phases of our RBH: 

- First phase: We reduced the MCKS so that every class contains a single object (   

    *     +). This object is characterized by a weight     and a profit       with 

    ∑    
  
    and      ∑     

  
     *     +   *     +  Consequently, the 

reduced MCKS (       ) can be expressed mathematically as follows: 

         ∑∑(  
            )                                                         ( )

 

   

 

   

 

                  s.t. 

∑∑(          

 

   

  

   

   )          *     +    *     +              ( )    

                *     +    *      +    *     +     (8) 

∑     

  

   

    *     +    *     +                                             ( ) 

         *   +    *     +   *     +                                           (  ) 

 

- Second phase: we relaxed constraint (8) so that                 *   +. The relaxed 

model of           is solved using IP, which gives the values of     . We constructed the 

set of classes      
    

   ith   
  *  *     +      + and   

  *  

*     +      + . 

- Third phase: We considered the following IP for the     ,  - as a KP problem:  
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           ∑ ∑ ∑        

  

   

 

    
 

  

   

                                               (  )   

                         s.t. 

 ∑ ∑ ∑       

  

   

 

    
 

  

   

                                                                (  ) 

     *   +       
     *      +                                             (  )   

 

Where     ∑    
 
    

 , and     ∑          *     + 
    

 . 

We solved the      ,  - problems and noted also IP using CPLEX solver. The MCKS 

solution is represented by set of variables Y= {   ,                }, and a set of 

variables   *                       ;        +.  

In addition to RBH, we considered two other heuristics:  Linear Programming based 

Heuristic (LPH) [48, 105] and Greedy Heuristic (GH) [93, 5]. In our problem the LPH 

heuristic is composed of two main phases: In the first phase, the relaxation of the MCKS 

(binary      and continues variables     ) is solved to determine the variables    . In the second 

phase, the reduced MCKS is solved by using CPLEX solver to determine the variables     . 

The GH heuristic is to build iteratively a feasible solution. In our problem this heuristic is 

composed of two main phases. In the first phase, the variables     are fixed randomly.  In the 

second phase, the partial feasible solution obtained in the previous phase is completed by 

inserting the items one by one until saturation of the knapsack from the set of items that are 

listed in the decreasing order of their ratio      =     /   . 

III.3.2 Upper bound for IP 

 

Dantzig [31] provided an upper bound for KP. We adapted this upper bound to our problem 

and provided a new upper bound for each division t of MCKS. This upper bound was used to 

decide whether to apply IP or not after the local search in order to explore only fruit full 

search spaces.  We applied the following successive steps to obtain this upper bound: 
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- Step1: Let I denote the set of items of classes     
  sorted in descending order of their 

efficiency ratio       
    

   
       

       *      +  

- Step2: Assign items from I one by one until saturation of the knapsack, i.e., Stop at item 

i’j’ that cannot be inserted due to capacity saturation of     ,  - .  

- Step3: The upper bound of division t  is  

     ∑    
 
    

  ∑      
 
       

     

     
      

 
   where    ∑ (∑   

 
    

 
  
    ∑     

 
      ) with I’ 

the set of assigned items, and (b – C) the residual capacity for division t . 

III.3.3 Local search with IP 

In the local search phase, two neighborhood structures, SWAP&IP and INSERT&IP 

operators are employed with in the Algorithm III.2 . 

Algorithm III.2: LS&IP (data,      ) 
     : Instance data & best solution found 

      : A feasible solution      
       : best solution found by RBH (first iteration) or by perturb&IP    

Do   

                        
                         (     ) 
                          (S1) 

     If ( (  ) > f (     ) ) 
                           
 EndIf 

While (          ) 

Return       

 

SWAP&IP. A Swap-based local search requires the definition of a neighborhood structure 

using simple moves so as to produce a set of neighbor solutions which permits to explore 

more search spaces and thus provide high quality solutions. The considered swap process 

consists of permuting two variables       
  and       

  (    *     +   *     +   

*         +. where T+1 is a fictive knapsack that contains all the non-selected classes. 

We changed the value of setup variables from 1 to 0 and vice versa. A new     ,  - was 

obtained. In order to save computational effort, before applying IP, we calculated the sum of 

upper bounds of the new divisions t and k (             ) and compared it with the 
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total profit of the two divisions before Swap move (    =     ). In case      >    . We 

applied IP to optimally solve the new classical knapsack     ,  - and the best solution was 

taken as a new initial solution for a next swap process. In case           , the search space 

was not promising as no better solution could be obtained, thus IP(t, k) was not applied and 

we proceeded to the next step.  The procedure is terminated once no improvement is obtained. 

Algorithm III.3 details the SWAP&IP procedure. 

Algorithm III.3 : SWAP&IP (data, S ) 

     : Instance data & initial solution  

      : A feasible solution   

 do 

                       ; 

         For t    to   do 

                          (  
 ); /* Number of classes in division t */ 

                 For      to n do 

                                 
 , -; 

                        For        to     do 

                            (  
 );  /* Number of classes in division k */ 

                                For      to m do /* Swap class i by each class j */ 

                                                  
 , -; 

                                                                     

                                                (          ) then 

                                                        (   ); 

                                                    (  
        ) then 

                                  ;            
                                           EndIf 

                                      EndIf 

                                  EndFor 

                            EndFor 

                                  /* New starting solution */ 

                     EndFor 

            EndFor 

  While (improve==1) 

     Return S 

 

INSERT&IP. The Insert-based local search is based on a neighborhood search which 

generates a new solution by removing the class   from knapsack t (change the value of the 

setup variable       
  from 1 to 0) and then inserting it into another knapsack k,   

*       +, The IP(t, k) is applied if (      >     ) by the same way than in the SWAP&IP 

procedure. The best solution is taken as a new initial solution for the next insert-based local 
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search. The procedure is terminated once no improvement is obtained. Algorithm III.4 details 

the INSERT&IP procedure. 

Algorithm III.4: INSERT&IP(data, S)  

     : Instance data & initial solution  

      : A feasible solution  

do 

                    
        For     to   do 

                     *               +; 
                      (  ); /* Number of divisons that contain class i */ 

               For     to   do 

                           , -  
                       For     to     do 

                              If (      ) then 

                                                      /* Insert  i in k and delete it from t */ 

                                   If (          ) then 

                                                  ( )    ( ); 

                                             If (          ) then 

                                                   S                ;            
                                             EndIf         

                                     EndIf   

                                EndIf 

                           EndFor 

                           /* New starting solution */ 

               EndFor  

         EndFor 

While ( improve ==1) 

Return S 

 

PERTURB & IP. The design of the perturbation mechanism is crucial for the performance of 

the algorithm. If the mechanism provides too small perturbation, local search may return to 

the previously visited local optimum points and no further improvement can be obtained. The 

mechanism consists of strongly perturbing a part of the current solution to jump the local 

optima and obtain a new starting solution. Two phases were applied iteratively in order to 

simulate this jumping principle: The first is a select of k randomly chosen items (setup 

variables     ) and the second is the IP which is applied  to solve the classical 

knapsacks     ,  -. The resulting solution is accepted according to the following condition 

if ( ( (  )     ( )), where   that is constant value between 0 and 1.  The perturbation 
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method was terminated when the total number of applied moves (perturbation length) equals 

to the     . Algorithm III.5 provides a description of the new local search method.  

 

Algorithm III.5:            (data, S) 

     : Instance data & best solution found  S 

      : A randomly feasible solution  
      
kNumber of selected classes in best solution S 

Do 

          Select a random set of k classes , from N   

          Randomly assigned the    variables   

         Apply IP to fix the      variables  

         If ( (  )     ( )) then 

                 Store the best  S’  /* best solution found */ 

                      

       Else 

               pp+1; 
      End if   

while          

return S’ 

 

III.4 Computational results  

For computation, our approach was implemented and run using C language and 

CPLEX 12.7 solver on a 2.4 GHZ intel B960 computer with 4 GB of memory. Due to the 

unavailability of benchmark instances in the literature, we tested our cooperative approach 

VNS&IP on a set of randomly generated instances of MCKS with a total number of periods T 

in *          +, total number of classes N in {        +, and total number of items     for 

each class i in  ,      - (Available at https://goo.gl/4fz6fg). We generated 120 instances in 

total: 10 instances for each combination (   ). We designed a random generation scheme, as 

presented in [21], where: 

     is selected with a uniform distribution in ,        -  

            ,   is selected with a uniform distribution in,    -. 

https://goo.gl/4fz6fg
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       ∑ ∑    
  
   

 
   . 

    ∑       
  
   . 

       ∑         
  
   ,   is selected with a uniform distribution in,         -  

The     report the standard deviation between IP and VNS&IP that is calculated as 

follows:    ( )      .
                 

     
/. 

III.4.1 Parameter setting 

Generally, when using approximate algorithms to solve optimization problems, it is 

well known that different parameter settings for the approach lead to different quality results. 

The parameters for VNS&IP are as follows:        , the maximal time measured in seconds 

and its fixed to T, where T  is the number of periods (divisions).     , the maximum number 

of consecutive failed iterations is fixed to N, where N is the number of classes. The 

perturbation length      is fixed to T.   that is constant value between 0 and 1 to relax the 

acceptance condition is fixed to 0.8. It is worth pointing out that a different adjustment of 

method’s parameters would give important findings. But this better adjustment would 

sometimes lead to heavier execution time requirements. The set of values chosen in our 

experiment represents a satisfactory trade-off between quality solution and running time. 

III.4.2 Computational results 

 

Before the experimentation, the effect on performance of the main components of our 

algorithm is assessed, mainly the construction Heuristic RBH and the combination of the two 

local search techniques LS&IP and PERTURB&IP.  

In order to evaluate the performance of RBH, we compared it to HG and LPH 

heuristics explained in section III.3.1.  The RBH, HG and LPH heuristics are tested on all the 

instances of MCKS. Table III.1 shows the numerical results on average. The first column 

contains the name of the heuristic. The second column contains the average of computational 

time. We noted that LPH is stopped at a limit of computation time equal to 500 s. The third 
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column contains the gap between the heuristic solution and the IP solution:    ( )      

.
                     

        
/  

Table III.1. Comparison between RBH, HG and LPH: Average of MCKS instances. 

Heuristic CPU (s) Gap (%) 

RBH 0.63 1.46 % 

LPH 304 5.34 % 

GH 0.51 8.13 % 

 

Table III.1 shows that RBH outperforms the other construction heuristics in terms of 

computation time and quality solution. 

 It is important to give information about the impact of the LS&IP and PERTURB&IP 

on the performance of VNS&IP. We consider the application of our cooperative approach 

with RBH, RBH+LS&IP and RBH+LS&IP+PERTURB&IP (VNS&IP). Table III.2 shows a 

comparison between these three combinations in terms of average Gap (%) with the IP for the 

four set instances regarding the number of periods (divisions). Each line presents the average 

of 10 instances. The first two columns present the number of divisions (or periods)   and the 

number of           . The next three columns show the corresponding average gap between 

RBH and IP, the average gap between RBH+LS&IP and IP, and  the average gap between 

RBH+LS&IP+PERTURB&IP (VNS&IP) and IP.  

   ( )      (
                  

     
)  

Table III.2:  Effect of VNS&IP components 

Instances 
RBH 

RBH + 

LS&IP 

RBH + LS&IP + 

PERTURB&IP T N 

5 

30 

 

 

0,95 0,23 -0,054 

10 1,23 0,39 -0,012 

15 1,82 0,45 -0,125 

20 1,99 0,42 -0,155 

 

Table III.2 shows that by adding LS&IP, we observe an important advantage, for all 

the set of instances, compared to using only RBH. However, by adding PERTURB&IP, we 
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observe a higher improvement with a gap that increases when the number of knapsacks 

increases. For the experimentations below, we considered the best combination with RBH as 

construction heuristic,  LS&IP as local search techniques and PERTURB&IP as perturbation 

mechanism.  

Table III.3 summarizes the results obtained by VNS&IP and IP when solving the 

MCKS. Each line presents the average of 10 instances. The first two columns present the 

number of divisions (or periods)   and the number of           . The next three columns 

show the corresponding average of results provided by CPLEX, the average of results 

provided by the cooperative approach VNS&IP and the average of the best upper bounds, of 

all the remaining open nodes in the branch-and-cut tree, provided by CPLEX 12.7 

(       ). The notations     and     report the solution found and the computational time, 

respectively. We note that CPLEX is stopped at a limit of computation time equal to 1h. 

Finally, the columns       and       report the gap between CPLEX and VNS&IP, 

calculated as follows:      ( )      .
                    

        
/, and the gap between 

        and VNS&IP, calculated as follows:      ( )      .
                  

       
/, 

respectively. 

Table III.3. Numerical results for MCKS instances. 

  N 
                           

              N                   ( )               ( ) 

5 

10 1772249 1735 1773409 6 -0,066 1773431 0,001 

20 3571514 2863   3573719 6 -0,063 3573771 0,001 

30 5398429 2267 5401333 6 -0,054 5401369 0,001 

10 

10 1795187 2587 1795188 11 0,000 1795221 0,002 

20 3602956 3439 3603067 10 -0,003 3603090 0,001 

30 5445060 2937 5445715 11 -0,012 5445752 0,001 

15 

10 1793209 2819 1795262 15 -0,118 1795311 0,003 

20 3605797 3333 3617045 15 -0,315 3617079 0,001 

30 5471310 3255 5478013 15 -0,125 5478052 0,001 

20 10 1793091 2745 1796768 20 -0,208 1796796 0,002 
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Table III.3 shows that VNS&IP outperforms IP with a gap on average equal to -

     . In detail, the gap on average is about -      for     , -        for      , 

        for       , and -       for     . The CPU on average for VNS&IP is about 13 

s, which is very low in comparison to the average of CPU for CPLEX that is equal to 2868 s. 

For more detailed results, we note that VNS&IP provides a solution equal to the one provided 

by CPLEX for 51 instances  and provides better solutions than CPLEX for 65 instances (see, 

Appendix A or https://goo.gl/w44aUs). Table III.2 shows that the gap between VNS&IP and 

        is 0.001% on average.  

Among the 120 instances of MCKS, CPLEX finds the optimal solutions for 27 

instances, slightly outperforms the VNS&IP for 4 instances, and for the remaining it 

terminates with error: exceeds the capacity of RAM memory or exceeds the CPU time limit. 

the majority of instances solved at optimality are with     (12 with    , 8 with     , 

2 with      and 5 with     ). In addition, we can see that MCKS becomes more 

difficult when increasing the number of divisions T. In fact, the number of times that CPLEX 

terminates with exceeding the capacity of RAM or exceeding the time limit increases from 18 

with     to 25 with       

III.5 Conclusion 

In this chapter, we consider the multiple choice knapsack problem with setup (MCKS). This 

problem can be used to model a wide range of concrete industrial problems, including order 

acceptance and production scheduling. We proposed a new cooperative approach that 

combines VNS and IP for the MCKS. Our matheuristic approach denoted VNS&IP is tested 

on a wide set of instances that are generated for MCKS. The results showed that CPLEX was 

able to optimally solve only 22.5% of these problems; the rest had unknown optimal values. 

The experimental results showed that VNS &IP produced good quality (optimal and near-

optimal solutions) solutions in a short amount of time and allowed for the enhancement of the 

solution provided by CPLEX in 65 instances. Considering the promising performance of the 

20 3609105 3481 3615497 20 -0,180 3615547 0,001 

30 5454676 2961 5463066 20 -0,155 5463115 0,001 

https://goo.gl/w44aUs
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VNS&IP method presented in this work, further studies, some of which are currently 

underway in our laboratory, are needed to further extend the use of the space reduction 

technique to other general and critical problems.
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Chapter IV 

 

Cooperative approach for the Generalized 

Quadratic Multiple Knapsack Problem 

  

 

 

IV.1  Introduction  

 
In this Chapter, we address the 0-1 generalized quadratic multiple Knapsack problem 

(GQMKP). We use a linearization technique of the existing mathematical model and we 

propose a new cooperative approach that we called Matheuristic Variable Neighborhood 

Search (MVNS) combining variable neighborhood search with integer programing (IP) to 

solve the large sized instances. The matheuristic considers a local search technique with an 

adaptive perturbation mechanism to assign the classes to different knapsacks, and then once 

the assignment is identifed, applies the IP to select the items to allocate to each knapsack

 The 0-1 generalized quadratic multiple knapsack problem (GQMKP) is NP-hard 

problem, since it is a generalization of the standard knapsack problem (KP) [20]. The 

GQMKP is reduced to KP when considering one knapsack, one class, no setup variables and a 

linear objective function. The GQMKP is described as a quadratic multiple knapsack problem 

(QMKP) with additional setup variables and knapsack-items preferences. The quadratic 

knapsack problem (QKP) is a particular case of QMKP, when considering only one knapsack. 

Practical applications of the GQMKP may be seen in production scheduling problems with 

setups and machines-products preferences. Case studies of GQMKP are provided in [9, 94]. 
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Several variants of KP have been tackled in the literature [89]. Visée et al. [101] 

proposed a two-phased approach and branch and bound procedure to solve the bi-objective 

KP. Dudzinski and Walukiewicz [35] studied exact methods such as branch-and-bound and 

dynamic programming for several variants of KP. Johnson et al. [58] studied the graph 

version of the QKP and solved the linearized model with a branch-and-cut technique. 

Chaillou et al. [19] provided a branch and bound algorithm to solve the QKP. Billionet and 

Soutif [15] proposed a combination of a linear reformulation of the problem and a standard 

mixed integer programming tool to solve the QKP. Martello and Toth [76] discussed an upper 

bound using Lagrangian relaxation for multiple knapsack problem (MKP). Hiley and Julstrom 

[55] provided a greedy heuristic, a stochastic hill-climbing and a genetic algorithm to solve 

the QMKP. For the same problem, Sundar and Singh [98] developed an artificial bee colony 

algorithm, Garcia-Martinez et al. [43] provided an iterated greedy heuristic algorithm and 

Peng et al. [84] proposed an ejection chain method with an adaptive perturbation mechanism. 

The GQMKP is a generalization of the QMKP when considering three additional constraints: 

setup constraint, assignment conditions and knapsack preferences of the items. It has been 

presented by Sarac and Sipahioglu [94] who proposed a mathematical model, a genetic 

algorithm and a hybrid algorithm that combines genetic algorithm with a feasible value based 

modified sub gradient algorithm to solve the GQMKP. To solve the same problem, Chen and 

Hao [23] provided a memetic algorithm, where a backbone based crossover operator is 

integrated with a simulated annealing, and recently, Avci and Topaloglu [9] provided a multi-

start iterated local search (MS-ILS) and made experiments on wide set of instances. 

The hybridization technique between exact and metaheuristics approaches have been 

performed by many researchers during the last few decades. It provides interesting results as it 

takes advantages of both types of approaches [59]. A classification of algorithms combining 

local search techniques and exact methods is provided in [36]. The focus here is on the so 

called cooperative approaches using exact methods to strengthen local search techniques, and 

particularly on the matheuristics that combine metaheuristics and mathematical programming 

[53, 74]. Fernandes and Lourenco [39] applied a hybrid approach to solve different 

combinatorial optimization problems. Burke et al. [17] and Prandtstetter and Raidl [90] 

provided a combination of Integer Programming (IP) with Variable Neighborhood Search 

(VNS) for Highly-Constrained Nurse Roistering Problem, and car sequencing problem, 
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respectively. Lamghari et al. [71] proposed a combination of linear programming with 

variable neighborhood descent for scheduling production in open-pit mines. Vasquez and Hao 

[100] proposed a combination of linear programming with tabu search to solve the MKP 

problem. In this study, we combine IP with VNS to deal with GQMKP problem and make 

experimentation on the benchmark of Avci and Topaloglu [9] and Chen at al. [23]. 

The purpose of this work is to provide a solving approach for the GQMKP. We use a 

linearization technique of the existing mathematical model that, due to the complexity of the 

LGQMKP, cannot solve large test instances (see section IV.4). In fact, it is usually difficult to 

assign items to the whole sets of knapsacks. The GQMKP is a generalization of the knapsack 

problems when considering three additional constraints: setup constraint, assignment 

conditions and knapsack preferences of the items. In addition, the consideration of the 

knapsack-dependent cost related to each class of products and the knapsack-dependent profit 

associated to each item increases the complexity of the problem. Therefore, the design of a 

new approach providing high quality solutions in a reasonable computing time is quite 

challenging. This paper contains a matheuristic called matheuristic variable neighborhood 

search (MVNS) combining a VNS with an exact solving technique: local search techniques 

with an adaptive perturbation mechanism to include classes to knapsacks and integer 

programming (IP) to include items in each knapsack. Experimental results show the efficiency 

and the performance of the proposed matheuristic on a wide set of benchmark instances. 

Experimental results clearly show the competitiveness of the proposed approach compared to 

the best state-of-the-art solving techniques 

The remainder of this paper is organized as following: Section IV.2 contains the 

mathematical formulation of the GQMKP. Section IV.3 contains our matheuristic approach 

combining VNS with IP. The experimental results and their interpretations are reported in 

Section IV.4 and, finally, the conclusions are outlined in Section IV.5. 

IV.2 Mathematical model 

We consider a set of    knapsacks each knapsack with a capacity   ,   *     +  

and a set of J items   *     + which are classified into a set of   classes,     *     +. The 

main assumptions of the GQMKP are as follows:  

- An item cannot be allocated to more than one knapsack.  

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23section_4
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- Items from the same class can be allocated to different knapsacks.  

- For each class, the set of related items are allowed to be allocated to only predefined set of 

knapsacks. 

- An item can be allocated to a knapsack only if its corresponding class is activated.  

- A profit     is considered while allocating item i to knapsack k 

- A profit     is considered if items i and j are allocated to the same knapsack.  

- The activation of a class incurs a knapsack-independent setup time     

- If items belonging to the same class are allocated to the same knapsack, only one setup is 

needed for all. 

The GQMKP problem consists of activating a set of classes in each knapsack, and 

determining the subset of items to be allocated from each class to each knapsack while 

maximizing the objective function without exceeding the capacity of each knapsack. Saraç 

and Sipahioglu [94] provided the following model for the GQMKP: 

Sets: 

    : set of classes that can be activated in knapsack k 

   : set of items that can be allocated to knapsack k 

    : set of knapsacks in which class r can be activated.  

   : set of knapsacks to which item   can be allocated 

Parameters: 

   : Profit obtained if item j is selected for knapsack k 

   : Profit obtained if items i and j are selected for the same knapsack  

  : Working time capacity related to knapsack k,  

  : Weight of item j (or processing time) 

  : Setup time of the items that belong to class r 

                                          

   : The maximum number of knapsacks to which the items in class   can be assigned 

  : A positive large number  

Decision variables: 
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Mathematical formulation: 

         ∑ ∑         ∑ ∑ ∑       

 

       (   )  

   

 

     

 

    

 

     

 

   

       ( ) 

 

Subject to  

 

                ∑       

 

     

 ∑          

 

     

                              ( ) 

                  ∑    

 

    

                                                                    ( )      

                  ∑       

 

     

                                           ( )      

 

                  ∑    

 

      

                                                               ( ) 

                    *   +                                             ( ) 

Equation (1) represents the objective function that is to maximize the total profit. 

Constraint (2) guarantees that the sum of the total weights of selected items and the class 

setup times consumption does not exceed knapsack capacity. Constraint (3) requires that each 

item can be allocated to only one knapsack. Constraint (4) guarantees that if any item in class 

r is selected for knapsack k, then the decision variable     must be equal to 1. Constraint (5) 

ensures that the total number of knapsacks containing items belonging to class r cannot 

exceed the maximum number of knapsacks   . Finally, the constraint (6) ensures that the 

decision variables are binary. 

Being inspired by the linearization technique provided in [16] for QKP problem, we 

provide the following linear model for the GQMKP, denoted LGQMKP: 

      ∑ ∑         ∑ ∑ ∑    

 

       (   )  

    

 

     

 

    

 

     

 

   

              ( ) 

               Constraints (2) to (6),  

                                                                         (8) 

                                                                       (9) 
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                                ;                            (10) 

                   *   +                                               (  ) 

The linear expression 7 replaces the objective function 1. In addition to constraints 2-

6, we provide the constraints 8-11 about the dummy binary variables     . 

Using IP formulation (CPLEX 12.7) shows its limitation to solve LGQMKP due to the 

complexity of the problem. In fact, we show later in the experimental results (Section IV.4) 

that by using CPLEX 12.7, only 47 instances among 96 benchmark instances [9] are solved to 

optimality in less than 1 hour CPU time. For the rest of instances, the computation terminates 

with an out of memory or is stopped in 1 hour. Thus, we decided to invest in the development 

of a new cooperative approach can be seen as a matheuristic VNS combining VNS and IP. 

The keys of better performance for our approach instead aims to exploit the structure of 

LGQMKP, where the set of variables is partitioned into two levels, variables     (first level 

variables) and variables     (second level variables). Thus, we decided to invest in the 

development of a matheuristic VNS combining VNS and IP. The practical hardness of the 

problem comes from these two sets of variables that must be properly combined to reach an 

optimal solution. At the same time, once the classes are chosen, LGQMKP boils down to a 

several classical KP. Even if KP is known to be weakly NP-Hard, in practice it is well 

handled by nowadays ILP solvers [80]. We explain our new approach in the next section. 

IV.3 Matheuristic VNS for GQMKP 

From the VNS scheme, several other VNS approaches have been derived in [52].  In 

this paper we propose a new method combining VNS with integer programming for solving 

GQMKP. Within the approach, different mathematical programming formulations of sub 

problems are proposed and solved with exact solver. According to Hansen et al. [52] we call 

our variant of VNS as Matheuristic variable neighborhood search (MVNS). The main idea 

here is to partition the problem variables set into two levels: variables      to be 

approximately defined using VNS and variables     to be optimally defined using an ILP 

solved with CPLEX 12.7. In fact, once all     variables are defined using VNS, the 

       could be seen as independent into K dependent knapsack problems       ,  -. 

At a given knapsack k,       ,  - is a KP with a capacity      , where    represents the 

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23section_4
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sum of capacity setup time of the classes activated in knapsack k and    
 *  \    =1,   r 

           } the set of items that can be allocated to knapsack k. The objective function is 

to maximize the total profit. The       ,  - can be formulated by a 0-1 KP linear 

program, using the allocation variables    : 

        ( )  ∑        ∑ ∑    

 

        
(   )

 

    

 

      

 

 

      

        (  ) 

s.t. 

                ∑       

  

     

                                                  (  ) 

 

                               
                                    (14) 

                               
                                  (15) 

                          ;            
                (16) 

                   *   +             
                         (  ) 

 

where   = ∑         
 
    

  

Each knapsack problem       ,  - is optimally solved to determine the best values 

of    , which yield a feasible solution for        (or GQMKP). Let    be an optimal 

solution for       ,  - with the profit     ( ). Thus, the proposed matheuristic MVNS 

provides the best combination of vector   ⋃        of a solution   ⋃       with a profit 

  ⋃      ( )   . Algorithm IV.1 shows the whole framework of our matheuristic VNS. 

Algorithm IV.1:  MVNS  

Input: the set of neighborhood    (k=1,…,     ), and the maximum 

number of iterations nb_iter 

 Initialize: Build an initial solution     based on construction 

heuristic 

    
stopfalse; 

      (           ) 

          
     stoptrue; 
         

                             (  )   /* Shaking */ 

                            (  )        /* local search SWAP with IP */ 

                              (  )   /* local search INSERT with IP*/     
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               If ( (  )   >   ( )) then 

                    S    ;  

                   k1;  

                 stopfalse; 

            else k k+1; 

           ( =     ) 

      EndWhile 

      Return S ; 

 

The VNS is a method based on a systematic change of the neighborhood structures. It 

is provided by Maldenovic and Hansen [81] and has proven its efficiency on different 

scheduling problems: location routing [57], car sequencing problem [90], combinatorial 

optimization problems [34], etc. The VNS contains a shaking operator and local search 

operators that are developed based on the set of neighborhood structures. In our matheuristic 

MVNS, we consider shaking mechanism PERTURB&IP based on a perturbation move 

coupled with IP, and two local search techniques SWAP&IP and INSERT&IP, based on 

Swap and insert moves respectively, both coupled with IP. The MVNS matheuristic starts 

with an initial solution S. A set of neighborhoods   ,       …      is initialized. At each 

iteration the shaking mechanism PERTURB&IP is applied based on neighborhood   , then 

the two local search SWAP&IP and INSERT&IP are applied to obtain a new solution S2. If 

this new solution is better than S, then this latter is updated and the process continues with the 

first neighborhood   ( ) , otherwise the same steps are repeated with the next neighborhood 

    .  

The construction heuristic, the shaking mechanism PERTURB&IP, and the two local 

search procedures SWAP&IP and INSERT&IP are detailed in the following subsections. 

IV.3.1 Construction heuristic 

To generate the initial solution for GQMKP, we propose a construction heuristic based 

on three successive phases: 

- First phase: We transform the original problem       to an equivalent formulation 

without      profit, i.e.                   . The new problem is denoted      and 

consists of maximizing  the objective function (18), with constraints (2), (3), (4), (5) 

and (6). 



   Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP 

 

74 

 

         ∑ ∑       

 

     

 

   

       (  ) 

- Second phase: we use the linear programming based heuristic provided in [96] to solve 

the linear relaxation of GMKP, denoted      , by relaxing the integrality constraints 

on variables     (only the     variables are binary). The fractional solution     includes 

integer values     and fractional and integer values    . The reduced GMKP related to 

the fractional solution     is referred to     [    
] that consists of fixing to 0 or 1 the 

fractional variables    . The exact solution of the reduced problem     [    
] is a 

feasible solution and denoted    =   (    ,   -)  We limit CPLEX computation time to 

10 seconds to obtain an initial solution . 

- Third phase : the first feasible solution of GQMKP is    =     + 

∑ ∑ ∑       
 
       (   )  

   
  
     

 
     .  

An illustration of the construction heuristic is provided by Algorithm IV.2. 

 

Algorithm IV.2: Construction heuristic   

Input : Instance of       

Output :A feasible solution    of       

Step 1 :Transform the       to       where,      = 0 for all i < j  

Step 2 :    Solve (     )   

Step 3 :    Solve (GMKP[   ])   

Step 4 :Return the resulting feasible solution      of GQMKP  

where     =    + ∑ ∑ ∑       
 
       (   )  

   
  
     

 
     

 

IV.3.2 SWAP&IP 

A Swap-based local search requires the definition of a neighborhood structure using 

simple moves so as to produce a set of neighbor solutions which permits to explore more 

search spaces and thus provides high quality solutions. The considered swap process consists 

of: 

- Permuting two classes     and    activated in different knapsacks    and    i.e.       
 

and       
. More precisely, we change the values of setup variables      

 and       
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- Removing a class    activated in knapsack    and replacing it by a free class       

     , where       *       ,    *     +     *     ++. More precisely, we 

change the value of setup variables     from 1 to 0 and vice versa. 

After SWAP movements, the new sub-problems:        [   
] and 

       [   
] are solved to optimally using IP.  If the new solution is better than the best 

feasible solution value i.e. (    (  )      (  ) ) > (  (  ) +   (  )), then it is considered 

as a new initial solution for a next SWAP process. We solve to optimality a       [   
] 

and        [   
], but indeed   ⋃        

 is not guaranteed to be optimal for 

      . The SWAP&IP procedure continues until no improvement is obtained. 

Algorithm IV.3 details the SWAP&IP procedure. 

Algorithm IV.3: SWAP&IP  

     : Instance data & best solution found LB  

      : A feasible solution S 

    S LB 

 do 

                       ; 

         For      to   do 

                          (   

 ); /* Number of classes in knapsack    */ 

                  For      to n do 

                                  

 , -; /*    selected class in knapsack    */ 

                       For           to     do /*     contain the free classes */ 

             (   

 );  /* Number of classes in knapsack   */ 

                                For       to nb do  /*Swap class    by each class    */ 

                                                     

 , - ; /*    selected class in knapsack    */ 

                                              
      

                                                 
     

                                                           
      

                                                           
     

                                              (  )                [   
]   /* using IP */ 

                                              (  )                 [   
]  

                                              (  (  ) +   (  )) + (    (  ) +     (  )) 

                                                (    ) then 

                                                               
                                                        

                                    EndIf         

                               EndFor 

                            EndFor            

                     EndFor 
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            EndFor 

  While (improve==1) 

    Return S 

 

IV.3.3 INSERT&IP 
 

The Insert-based local search is based on a neighborhood search which generates a 

new solution by removing the class    from knapsack    (change the value of the setup 

variable     
    

 from 1 to 0) and then inserting it into another knapsack   . (Change the 

value of the setup variable     
 from 0 to 1). So we search for another possible vector    

 

within the sub-problem by inserting each setup variables     in different knapsacks. The IP is 

applied to optimally solve the       [   
] and        [   

], but indeed    is not 

guaranteed to be optimal for GQMKP. So we search for another possible combination of     

by progressively inserting each class      in different knapsacks and applying IP to 

optimally fix     variables, while keeping only a subset of potentially good nodes as 

candidates for further exploration. The INSERT&IP algorithm starts with the best solution LB 

returned by SWAP&IP, and then proceeds by choosing the best neighbor solutions to LB. The 

procedure is terminated once no improvement is obtained. Algorithm IV.4 details the 

INSERT&IP procedure.            

              

Algorithm IV.4: INSERT&IP 

     : Instance data & best solution LB found by SWAP&IP 

      : A best feasible solution S 

do 

                    
        For       to   do 

                     *                   +; /* set of knapsack contain class r*/ 

                      (  ); /* Number of knapsack that contain class r */ 

               For     to   do 

                           , -  
                       For      to   do 
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                            If (      
  ) then 

                                                          
          

    /* Insert     in    and delete it from    */ 

                                                      (  )                [   
]  /* using IP */  

                                                     (  )                [   
]  

                                                    (  (  ) +   (  )) + (    (  ) +     (  )) 

                                  If (     ) then 

                                            ;            
                                  EndIf                              

                            EndIf 

                      EndFor 

                  EndFor  

         EndFor 

While ( improve ==1) 

Return S 

  

IV.3.4 PERTURB&IP 

The design of the perturbation mechanism PERTURB&IP is crucial for the 

performance of the MVNS algorithm. If the mechanism provides too small perturbation, local 

search may return to the previously visited local optimum and no further improvement is 

obtained i.e. quick convergence to a local optimum. PERTURB&IP consists of strongly 

perturbing a part of the current solution to jump the local optima and obtain a new starting 

solution. Algorithm IV.5 provides a description of PERTURB&IP procedure. 

                           

     : Instance data & best solution found     

      : best solution S 

SLB 
      
    Solve           

    Solve           

 For all N in [ ⌈    ⌉  ⌊    ⌋ ] do  

          Select a random set of   classes , from    

          Do  

              YRandomly assigned the    variables   

               LBApply IP to optimally solve       ,  - 
               If ( (  )     ( )) then 
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                     SLB; 

                          

              Else 

                  pp+1; 
             End if   

      while          

End for 

return S 

 

Two phases were applied iteratively in order to simulate this jumping principle:  

- Phase 1. Let N the number of activated classes leading to an optimal solution of 

LGQMKP (or GQMKP). N is bounded straight forwardly by solving two linear 

continuous problems: minimize and maximize ∑ ∑             subject to constraints 

(2-5) , (8-11) and to an additional constraint ensuring that the total profit must be 

strictly greater than the best solution value LB (19) and the non-integrality of variables 

    and     (20):  

∑ ∑         ∑ ∑ ∑    

 

       (   )  

    

 

     

 

    

 

     

 

   

           (  )                     

                                           (20) 

By solving the corresponding ILP formulations, denoted           and          , 

we obtain the minimum and maximum numbers of classes      and     . The first step is to 

randomly select N classes N   ,         -  and randomly assign activate the selected N 

classes in different knapsacks i.e. randomly fixing    variables. 

- Phase 2. The second phase consists of optimally solve the       ,  - using    i.e. 

fixing     variables. The resulting solution S is accepted if (f(S) >   f(LB)), where   

that is a constant value between 0 and 1. PERTURB&IP terminates when the total 

number of applied moves (perturbations) reaches     . 

-  
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IV.4  Computational results 

 

For computation, our approach is implemented and run using C language and CPLEX 

12.7 solver on a personal computer with 2.4 GHZ intel core 2 duo B960 processor and 4 GB 

of memory. In order to test the performance of the MVNS for the GQMKP, two sets of 

benchmark instances [9, 23] are considered: 

- First Set: This set is composed of 48 small-sized instances which are characterized by 

their number of items J =30, number of knapsacks k   {1, 3}, number of classes r   {3, 

15}, density (the percentage of those values for the    and     profit parameters 

different from zero) d   {0.25, 1.00}. 

- Second Set: Includes 48 large-sized instances with the number of items J = 300, 

number of knapsacks k   {10, 30}, number of classes r   {30, 150}, density d   {0.25, 

1.00}.  

All data sets are available at https://goo.gl/dv3tfA. Based on these data sets, we made 

a comparison between our LGQMKP model (solved with CPLEX 12.7), our MVNS, the MA 

[23] and the MS-ILS [9] that are, to the best of our knowledge, the best algorithms provided 

in literature to deal with GQMKP. We note that tests in [9] were carried on an Intel core 2 duo 

T7500 CPU @ 2.2 GHZ, and tests in [23] were carried on an AMD Opteron 4184 processor 

2.8GHz and 2GB RAM. 

The parameters of our approach MVNS are set so as to get a satisfactory trade-off 

between quality solution and running time: the maximum number of consecutive failed 

iterations      is fixed to R. The perturbation length      is fixed to K. The parameter   is 

fixed to 0.8 to relax the acceptance condition. 

Before the experimentation (Section IV.4.2), we provide a performance analysis of the 

MVNS components (Section IV.4.1).  

IV.4.1 Performance analysis of the MVNS components  

We study here the performance of the main components of our matheuristics, mainly 

the construction heuristic and the combination of the two local search techniques SWAP&IP, 

INSERT&IP and the perturbation mechanism PERTURB&IP. The results graphically 

displayed in figure IV.1 illustrate a comparison in terms of quality solution, where the vertical 

https://goo.gl/dv3tfA
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23S4_2
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23S4_1
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axis shows the gap between the MVNS component solution and the MS-ILS solution:: 

   ( )      .
                           

         
/  We consider fir this study, five large 

instances denoted Ins 1-1, Ins 2-2, Ins 11-3, Ins 12-2 and Ins 19-3 (a selection of instances 

from experimentation table IV.2). 

 

Figure IV.1: Effect of MVNS components  

 Figure IV.1 shows that the constructive heuristic plays an important role in the overall 

performance of the provided MVNS approach:  The initial solutions are close to the solutions 

provided by MS-ILS with an average gap lower than 12%. We consider the application of our 

matheuristic with one local search technique (SWAP&IP), two local search techniques 

(SWAP&IP and INSERT&IP), and three local search techniques (SWAP&IP, INSERT&IP and 

PERTURB&IP). Figure IV.1 shows a comparison between these three combinations in terms 

of average Gap (%) with the MS-ILS. By adding SWAP&IP, we observe a higher 

improvement, for all the five large instances, compared to using only Construction heuristic. 

However, by adding Insert&IP, we observe a slight advantage. The perturbation mechanism 

Perturb &IP enables MVNS to produce better solutions. More precisely, for the five large 

instances (300 items), the gap on average is 4,22% when applying only the SWAP&IP, 

2.63% when applying SWAP&IP and INSERT&IP and -0.3% by adding the perturbation 

mechanism PERTURB&IP.   

IV.4.2 Experimentation  

Tables IV.1 and IV.2 summarize the results of the LGQMKP model (solved with 

CPLEX 12.7), MA, MS-ILS and MVNS on GQMKP instances. In each of these tables, the 

first two columns present the number of knapsacks K and the number of classes R. We note 

that the column            reports the best value reported by any of the compared 

-5

0

5

10

15

20

1-1 2-2 11-3 12-2 19-3

ga
p
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file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23figure_1
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_1
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_2
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algorithms (MA, MS-ILS, MVNS).  The columns     report the standard deviation from the 

best known:    ( )      .
                        

          
/. The next four columns show the 

corresponding results provided by CPLEX (objective value    , computation time     and 

deviation      ), MA, MS-ILS and MVNS (best value     , average value         average 

computation time CPU and deviation dev). We note that CPLEX is stopped at a limit of 

computation time equals to 1 hour. For the proposed MVNS matheuristic, we report the best 

and average solutions of 30 independent runs on each benchmark instance. Finally, the last 

column presents the best known. The time unit in this table for the CPU is in seconds. The 

detailed results are available on the following link: https://goo.gl/fbFBgV. 

Table IV.1 presents the computational results obtained for the first set of benchmark 

instances. The results show that CPLEX for LGQMKP is effective and finds the optimal 

solutions for 47 among 48 instances (all instances except 23-3 instance). Our approach 

MVNS provides a solution equal to CPLEX for these 47 instances and reaches the best known 

solution for instance 23-3. MVNS and MS-ILS provide the best know solutions for all first set 

instances while MA obtain 45 best known solutions among 48 instances with an insignificant 

average     equal to 0,44%. When analyzing the average solutions, we observe that MVNS 

has produced the same results for all instances excepts 32-1 instance. Based on the 

comparison of the average results of MVNS and MS-ILS, we see that MVNS outperforms 

MS-ILS and MA on six instances and twelve instances, respectively. This result indicates the 

robustness of the matheuristic approach. 

 

https://goo.gl/fbFBgV
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_1
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Table IV.1. Computational results obtained from the first set of benchmark instances 

Ins.   R 
                      

     
      

Obj     Dev (%)                  Dev (%)                  Dev (%)                  Dev (%) 

5-1 

3 15 

2835.30 7.12 0.00 2835.30 2828.22 1.23 0.00 2835.30 2835.30 3.24 0.00 2835.30 2835.30 2.23 0.00 2835.30 

5-2 3304.80   153.92 
 

0.00 3293.48 3293.90 0.83 0.34 3304.80 3293.48 1.65 0.00 3304.80 3304.80 2.04 0.00 3304.80 

5-3 1678.00 5.08 0.00 1678.00 1678.00 0.01 0.00 1678.00 1678.00 3.17 0.00 1678.00 1678.00 1.86 0.00 1678.00 

6-1 

1 3 

346.40 0.68 0.00 346.40 346.40 0.01 0.00 346.40 346.40 2.48 0.00 346.40 346.40 2.25 0.00 346.40 

6-2 554.00 0.11 0.00 554.00 554.00 0.01 0.00 554.00 554.00 1.41 0.00 554.00 554.00 2.09 0.00 554.00 

6-3 428.70 
 

0.20 0.00 428.70 428.70 0.01 0.00 428.70 
 

428.70 1.75 0.00 428.7 428.70 1.16 0.00 428.70 

8-1 

3 15 

309.21 
 

7.38 0.00 309.21 309.21 0.91 0.00 309.21 
 

309.21 2.25 0.00 309.21 309.21 2.02 0.00 309.21 

8-2 353.85 
 

2.98 0.00 353.85 353.69 0.11 0.00 353.85 
 

353.85 2.97 0.00 353.85 353.85 2.09 0.00 353.85 

8-3 541.57 
 

2.56 0.00 541.57 541.57 0.03 0.00 541.57 
 

541.57 2.85 0.00 541.57 541.57 2.25 0.00 541.57 

15-1 

1 3 

91.54 
 

1.39 0.00 91.54 91.54 0.32 0.00 91.54 
 

91.54 
 

1.60 0.00 91.54 
 

91.54 
 

2.22 0.00 91.54 

15-2 306.38 
 

0.56 0.00 306.38 306.38 0.02 0.00 306.38 
 

306.38 
 

2.85 0.00 306.38 
 

306.38 
 

2.13 0.00 306.38 

15-3 75.62 
 

1.50 0.00 75.62 
 

75.45 0.37 0.00 75.62 
 

75.62 
 

2.77 0.00 75.62 
 

75.62 
 

1.38 0.00 75.62 
 

18-1 

1 3 

5387.70 
 

4.09 0.00 5387.70 5387.70 0.01 0.00 5387.70 
 

5387.70 
 

2.11 0.00 5387.70 
 

5387.70 
 

2.03 0.00 5387.70 

18-2 8551.08 0.33 0.00 8551.08 8551.08 0.00 0.00 8551.08 8551.08 3.03 0.00 8551.08 8551.08 1.29 0.00 8551.08 

18-3 7760.51 0.70 0.00 7760.51 7760.51 0.00 0.00 7760.51 7760.51 1.43 0.00 7760.51 7760.51 1.05 0.00 7760.51 

20-1 1 15 1599.85 0.44 0.00 1599.85 1599.85 0.01 0.00 1599.85 1599.85 1.99 0.00 1599.85 1599.85 1.02 0.00 1599.85 
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Table IV.1. Computational results obtained from the first set of benchmark instances (cont) 

20-2 925.59 1.73 0.00 925.59 925.59 0.01 0.00 925.59 925.59 2.81 0.00 925.59 925.59 1.55 0.00 925.59 

20-3 931.33 0.63 0.00 931.33 931.33 0.01 0.00 931.33 931.33 2.83 0.00 931.33 931.33 1.42 0.00 931.33 

22-1 

3 3 

1923.61 1.80 0.00 1904.86 1904.86 0.02 0.98 1923.61 1911.11 3.30 0.00 1923.61 1923.61 2.03 0.00 1923.61 

22-2 1314.09 0.16 0.00 1314.09 1314.09 0.01 0.00 1314.09 1314.09 1.33 0.00 1314.09 1314.09 2.15 0.00 1314.09 

22-3 1799.09 0.46 0.00 1799.09 1799.09 0.02 0.00 1799.09 1799.09 2.04 0.00 1799.09 1799.09 1.13 0.00 1799.09 

23-1 

3 3 

471.00 3600.16 0.00 471.00 471.00 0.02 0.00 471.00 471.00 2.53 0.00 471.00 471.00 2.05 0.00 471.00 

23-2 959.70 292.99 0.00 959.70 959.70 0.06 0.00 959.70 959.70 1.02 0.00 959.70 959.70 2.99 0.00 959.70 

23-3 1233.00 1791.67 0.64 1241.00 1241.00 0.32 0.00 1241.00 1241.00 1.20 0.00 1241.00 1241.00 2.81 0.00 1241.00 

inst   R 
                        

     
      

Obj     dev                  dev                  dev                  dev 

25-1 

3 15 

2118.33 5.79 0.00 2118.33 2118.33 1.52 0.00 2118.33 2118.33 1.34 0.00 2118.33 2118.33 1.05 0.00 2118.33 

25-2 4262.64 6.38 0.00 4262.64 4195.05 1.66 0.00 4262.64 4193.01 1.12 0.00 4262.64 4262.64 0.98 0.00 4262.64 

25-3 2962.06 7.43 0.00 2962.06 2962.06 1.03 0.00 2962.06 2962.06 1.02 0.00 2962.06 2962.06 1.25 0.00 2962.06 

26-1 

1 15 

1747.60 10.18 0.00 1747.60 1747.60 0.01 0.00 1747.60 1747.60 2.66 0.00 1747.60 1747.60 0.93 0.00 1747.60 

26-2 2433.60 2.76 0.00 2433.60 2433.60 0.01 0.00 2433.60 2433.60 1.20 0.00 2433.60 2433.60 1.17 0.00 2433.60 

26-3 2293.20 1.14 0.00 2293.20 2293.20 0.01 0.00 2293.20 2293.20 1.32 0.00 2293.20 2293.20 2.07 0.00 2293.20 

27-1 1 15 2247.95 0.51 0.00 2247.95 2247.95 0.01 0.00 2247.95 2247.95 2.76 0.00 2247.95 2247.95 1.99 0.00 2247.95 
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27-2 1966.52 0.11 0.00 1966.52 1966.52 0.01 0.00 1966.52 1966.52 1.05 0.00 1966.52 1966.52 2.14 0.00 1966.52 

27-3 1383.49 0.13 0.00 1383.49 1383.49 0.01 0.00 1383.49 1383.49 1.09 0.00 1383.49 1383.49 1.86 0.00 1383.49 

28-1 

1 15 

978.80 0.64 0.00 978.80 978.07 0.12 0.00 978.80 978.80 2.67 0.00 978.80 978.80 1.23 0.00 978.80 

28-2 4036.00 0.19 0.00 4036.00 4035.62 0.04 0.00 4036.00 4036.00 1.12 0.00 4036.00 4036.00 1.11 0.00 4036.00 

28-3 2634.00 0.18 0.00 2634.00 2634.00 0.01 0.00 2634.00 2634.00 1.14 0.00 2634.00 2634.00 1.19 0.00 2634.00 

29-1 

3 3 

1935.80 9.89 0.00 1567.60 1520.33 0.19 19.02 1935.80 1935.80 2.46 0.00 1935.80 1935.80 2.01 0.00 1935.80 

29-2 2820.00 24.52 0.00 2782.00 2782.00 0.10 1.35 2820.00 2820.00 1.08 0.00 2820.00 2820.00 1.64 0.00 2820.00 

29-3 3285.60 11.81 0.00 3285.60 3285.60 0.05 0.00 3285.60 3285.60 1.03 0.00 3285.60 3285.60 1.45 0.00 3285.60 

30-1 

3 3 

721.39 17.49 0.00 721.39 717.27 0.40 0.00 721.39 719.58 2.47 0.00 721.39 721.39 2.01 0.00 721.39 

30-2 612.59 7.91 0.00 612.59 612.59 0.03 0.00 612.59 612.59 1.02 0.00 612.59 612.59 1.89 0.00 612.59 

30-3 1032.35 3.17 0.00 1032.35 1032.35 0.04 0.00 1032.35 1031.94 1.88 0.00 1032.35 1032.35 1.55 0.00 1032.35 

31-1 

3 15 

491.90 166.75 0.00 491.90 491.90 1.52 0.00 491.90 491.90 1.98 0.00 491.90 491.90 3.11 0.00 491.90 

31-2 640.00 113.21 0.00 640.00 640.00 0.49 0.00 640.00 640.00 1.21 0.00 640.00 640.00 2.05 0.00 640.00 

31-3 526.10 808.19 0.00 526.10 526.10 5.37 0.00 526.10 526.10 1.16 0.00 526.10 526.10 2.04 0.00 526.10 

32-1 

1 3 

11425.20 1.63 0.00 11425.20 11271.90 0.02 0.00 11425.20 11283.21 2.61 0.00 11425.20 11393.75 2.53 0.00 11425.20 

32-2 15914.20 0.47 0.00 15914.20 15914.20 0.00 0.00 15914.20 15914.20 1.03 0.00 15914.20 15914.20 1.13 0.00 15914.20 

32-3 19273.50 0.02 0.00 19273.50 19273.50 0.00 0.00 19273.50 19273.50 1.09 0.00 19273.50 19273.50 1.25 0.00 19273.50 

AVG 2 738.02 147.48 0.01 2 729.09 2 723.25 0.35 0.45 2 738.18 2 733.23 1.92 0.00 2 738.18 2 735.22 1.77 0.00 2 738.18 
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Table IV.2. Computational results obtained from the second set of benchmark instances  

Ins.   R                            
      

Obj     dev                  dev                  dev                  dev 

1-1 10 30 * 3603.87 * 5093.06 5074.50 7419.16 0.29 5100.54 5016.82 3793.42 0.14 5107.80 5102.17 225.23 0.00 5107.80 

1-2 * 56.24 * 4848.58 4830.20 8101.91 0.84 4858.84 4784.07 4493.57 0.63 4889.58 4889.58 295.09 0.00 4889.58 

1-3 * 56.27 * 5896.01 5876.05 6823.41 0.12 5902.86 5823.73 4710.79 0.00 5902.86 5898.23 259.01 0.00 5902.86 

2-1 30 150 * 98.62 * 2607.84 2601.31 3530.13 0.01 2608.12 2557.22 5175.50 0.00 2608.12 2601.20 443.04 0.00 2608.12 

2-2 * 98.87 * 2285.32 2281.63 3570.48 0.00 2257.88 2249.62 3925.30 1.20 2285.32 2285.32 525.11 0.00 2285.32 

2-3 * 111.68 * 2578.14 2573.40 2946.75 0.1 2580.62 2574.96 3464.23 0.00 2580.62 2577.08 390.03 0.00 2580.62 

3-1 10 150 16760.30* 3610.46 * 32189.10 32147.30 2693.57 0.08 32210.80 32163.74 1734.37 0.02 32216.20 32210.32 307.98 0.00 32216.20 

3-2 4640.30* 3601.01 * 40302.40 40169.70 1437.15 0.13 40354.90 40239.63 2399.47 0.00 40354.90 40354.90 523.02 0.00 40354.90 

3-3 3196.10* 3628.88 * 32766.70 32749.40 3414.05 0.02 32768.20 32704.85 4220.01 0.01 32772.40 32772.40 309.15 0.00 32772.40 

4-1 10 150 * 58.26 * 9045.80 9027.86 4323.70 0.03 9048.40 9029.01 2720.37 0.00 9048.40 9048.40 223.06 0.00 9048.40 

4-2 * 60.70 * 8465.00 8448.00 4871.10 0.04 8468.50 8425.58 2207.61 0.00 8468.50 8459.36 255.03 0.00 8468.50 

4-3 * 60.66 * 8491.30 8475.10 4467.05 0.07 8494.20 8450.93 2058.68 0.04 8497.20 8490.23 189.45 0.00 8497.20 

7-1 10 30 * 61.74 * 68129.00 68029.40 3314.59 0.05 68165.50 68060.77 1669.41 0.00 68165.50 68160.81 301.09 0.00 68165.50 

7-2 * 59.71 * 65616.80 65546.20 2542.84 0.04 65643.50 65559.26 1943.83 0.00 65643.50 65643.50 208.01 0.00 65643.50 

7-3 * 68.10 * 69397.60 69279.30 3104.20 0.06 69440.90 69295.39 2304.84 0.00 69440.90 69440.90 205.21 0.00 69440.90 

9-1 30 30 * 94.75 * 9252.47 9242.60 1485.96 0.04 9256.47 9245.74 3262.62 0.00 9256.47 9256.47 558.82 0.00 9256.47 
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Table IV.2. Computational results obtained from the second set of benchmark instances (cont) 

9-2 * 98.61 * 13007.30 12988.90 3120.53 0.05 13009.08 12943.85 3215.71 0.03 13013.20 13013.20 398.86 0.00 13013.20 

9-3 * 97.84 * 16372.00 16359.20 2822.24 0.09 16385.97 16364.29 3547.43 0.00 16385.97 16385.97 480.2 0.00 16385.97 

10-1 30 30 * 41.04 * 13196.30 13125.80 3761.90 0.14 13214.66 11147.24 5078.34 0.00 13214.66 13214.66 508.11 0.00 13214.66 

10-2 * 511.88 * 13003.30 12779.20 3796.61 0.09 13015.08 11209.88 5482.66 0.00 13015.08 13015.08 514.2 0.00 13015.08 

10-3 * 3604.61 * 13057.00 13008.60 4114.58 0.09 13068.47 11672.09 4046.23 0.00 13068.47 13068.47 397.03 0.00 13068.47 

11-1 10 30 534.00* 3600.86 * 7116.50 7103.55 711.63 0.08 7121.90 7108.17 2536.74 0.00 7121.90 7121.90 306.05 0.00 7121.90 

11-2 339.20* 3602.37 * 6771.50 6758.19 537.44 0.05 6774.70 6760.15 2546.20 0.00 6774.70 6774.70 414.89 0.00 6774.70 

11-3 539.60* 
 

1975.36 * 7745.10 7726.96 911.53 0.03 7747.10 7705.36 2952.58 0.00 7747.10 7747.10 262.4 0.00 7747.10 

Ins.   R                            

      
Obj     dev                  dev                  dev                  dev 

12-1 30 150 * 103.53 * 592

34.1

0 

59137.7

0 

6140.09 
0.60 

59592.00 
59381.42 4665.91 0.00 59592.00 59592 301.17 0.00 59592.00 

12-2 * 90.25 * 614

89.7

0 

61181.7

0 

4800.17 0.40 61725.20 61449.70 4163.09 0.02 61737.40 61730

.08 

360.23 0.00 61737.40 

12-3 * 92.71 * 608

99.3

0 

60749.7

0 

5156.66 0.44 61165.70 60988.89 4541.59 0.00 61165.70 61165

.7 

489.20 0.00 61165.70 

13-1 30 150 * 724.18 * 421

0.10 

4194.59 1901.71 0.00 4196.20 4132.31 1176.32 0.33 4207.20 4198.

17 

190.13 0.07 4210.10 

13-2 * 584.78 * 413

9.90 

4136.01 1318.51 0.00 4119.60 4086.26 1181.03 0.49 4139.90 4139.

9 

201.25 0.00 4139.90 

13-3 * 581.17 * 473

4.90 

4717.27 2123.22 0.22 4722.10 4666.32 1160.96 0.49 4745.10 4742.

85 

186.17 0.00 4745.10 

14-1 10 30 26750.32* 3601.66 * 268

68.6

0 

26868.6

0 

4.61 0.00 26868.60 26868.60 1416.34 0.00 26868.60 26868

.6 

213.07 0.00 26868.60 
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14-2 3143.93* 76.06 * 259

29.6

0 

25720.0

0 

304.66 0.18 25885.67 25743.61 1290.07 0.35 25976.20 25972

.27 

287.06 0.00 25976.20 

14-3 1825.67* 3601.51 * 314

48.2

0 

31448.2

0 

301.21 0.00 31448.20 31444.55 1353.25 0.00 31448.20 31448

.2 

266.52 0.00 31448.20 

16-1 30 30 7622.90* 600.21 * 141

29.1

0 

14060.9

0 

1932.42 0.27 14166.80 14086.34 1011.32 0.00 14166.80 14166

.8 

198.03 0.00 14166.80 

16-2 * 1017.00 * 166

11.9

0 

16577.6

0 

1634.65 0.00 16612.40 16582.07 811.82 0.00 16612.40 16612

.4 

183.06 0.00 16612.40 

16-3 * 840.83 * 142

40.8

0 

14210.1

0 

2391.58 0.07 14251.00 14230.64 940.71 0.00 14251.00 14251 192.71 0.00 14251.00 

17-1 30 30 * 106.86 * 415

7.20 

4147.09 1221.69 0.00 4157.20 4149.12 3242.94 0.00 4157.20 4157.

2 

198.65 0.00 4157.20 

17-2 * 101.97 * 390

1.30 

3891.48 1500.73 0.25 3892.00 3881.10 3009.30 0.49 3911.00 3911 103.33 0.00 3911.00 

17-3 * 93.66 * 376

7.70 

3767.67 1444.65 0.00 3756.80 3744.68 3460.16 0.29 3767.70 3767.

7 

196.13 0.00 3767.70 

19-1 10 150 930.47* 3600.99 * 686

9.80 

6866.33 843.08 0.05 6873.07 6853.02 1641.79 0.00 6873.07 6865.

86 

153.69 0.00 6873.07 

19-2 691.96* 3601.31 * 802

8.54 

7831.85 1847.38 0.18 8042.79 7888.13 2137.21 0.00 8042.79 8042.

79 

201.06 0.00 8042.79 

19-3 554.83* 3601.83 * 815

5.05 

8154.87 1410.02 0.00 8142.84 8131.62 1724.09 0.15 8155.05 8155.

05 

113.20 0.00 8155.05 

21-1 10 150 * 59.09 * 222

21.9

0 

22187.0

0 

7570.7 0.04 22210.23 22121.54 3100.56 0.09 22230.23 22225

.07 

167.23 0.00 22230.23 

21-2 * 64.96 * 252

54.5

0 

25199.7

0 

5544.17 0.05 25266.50 25165.91 3867.18 0.00 25266.50 25260

.06 

200.03 0.00 25266.50 

21-3 * 80.21 * 245

74.1

0 

24541.2

0 

8984.81 14.06 28565.63 27847.15 3914.01 0.1 28593.40 28589

.17 

188.14 0.00 28593.40 

24-1 30 150 * 53.73 * 526

52.7

0 

52253.3

0 

91.59 1.25 53318.76 53173.81 3103.33 0.00 53320.50 53312

.35 

203.48 0.00 53320.50 

24-2 * 8.37 * 577

71.6

0 

57513.4

0 

2868.01 3.27 59712.09 59169.73 3190.82 0.02 59723.20 59719

.32 

203.60 0.00 59723.20 

24-3 * 5.58 * 526

42.7

0 

52361.6

0 

77.34 0.81 53073.72 52929.65 3456.26 0.00 53073.72 53073

.72 

290.73 0.00 53073.72 

AVG * 1086.56 * 218
99.3

2 

21831.6
7 

3025.75 0.51 22067.96 21871.01 2896.87 0.10 22075.09 22072
.90 

287.25 0.00 22075.15 
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                  Figure IV.2. CPU time of MVNS vs MA and MS-ILS on first set of instances. 

Figure IV.2 shows that both approaches solve all the instances from the first set in a 

very reasonable computational time. More precisely, the MVNS outperforms MS-ILS on CPU 

average: 1.77s with MVNS vs 1.92s with MS-ILS. Furthermore, MA outperforms MS-ILS 

and MVNS with a CPU average of 0.44s.                                                        

Table IV.2 shows that when dealing with the instances from the second set, using 

CPLEX for LGQMKP terminates with an out of memory or exceeds the time limit of 1 hour 

for all instances. The results show that our MVNS outperforms MS-ILS. In fact, MVNS finds 

the best solutions for all instances (48 instances) while MS-ILS finds the best solutions for 29 

instances and MA finds the best solutions for 8 instances. More precisely, MVNS, MS-ILS 

and MA produce solutions with average dev of 0.001%, 0.1% and 0.51% respectively. In 

addition, for the instances where the average and the best results are not the same, the gaps 

between the best and the average results are 0.03% for MVNS, 1.36% for MS-ILS and 0.32% 

for MA, which proves the robustness of the MVNS. 

Table IV.3. Number of the Best Results of Test Instances with n=300 for Different Parameter 

Levels 

Parameter Levels MA  MS-ILS  LGQMKP MVNS 

k 
10 
30 

3 
5 

15 
14 

0 
0 

24 
24 

r 
30 

150 
4 
4 

18 
11 

0 
0 

24 
24 

d 
0.25 

1 
3 
5 

13 
16 

0 
0 

24 
24 
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Table IV.3 provides an analysis of the number of obtained best solutions by applying 

CPLEX for LGQMKP, MA, MS-ILS and MVNS for each class of instances regarding the 

levels of parameters k, r and d. Using CPLEX for LGQMKP cannot solve large instances. In 

fact, no best solution nor optimal is obtained with CPLEX. The MS-ILS procedure obtains 15 

best solutions for instances with 10 knapsacks and obtains 14 best solutions for instances with 

30 knapsacks. Similarly, it reaches 18 best solutions for instances with 30 classes and 11 best 

solutions for instances with 150 classes. The MS-ILS is more successful when dealing with 

small instances with a low number of knapsacks, a low number of classes and a low density.  

The MA obtains between 3 and 5 best solutions for each parameters class, with no statistically 

significant difference between the parameters classes. The proposed matheuristic MVNS 

outperforms the MA and MS-ILS and provides the best solutions for all instances (48 small 

and 48 large instances). 

 

Figure IV.3. CPU time of MVNS vs MA and MS-ILS on second set of instance 

Figure IV.3 shows the performance of our approach on large instances (second set) in 

terms of computation time. We notice that our approach is considerably faster on average than 

MS-ILS: 287.25 seconds and MA: 3025.75 with MVNS vs 2896.87 seconds with MS-ILS. 

The proposed MVNS is more effective for large instances. The key of performance of 

MVNS is the iteratively decomposition of the LGQMKP into a series of less complex sub 

problems that may be solved in a reasonable time. This shows that combining mathematical 

models with metaheuristics is definitely a good option. 

To better analyze the performance of the MVNS in comparison to MA and MS-ILS, 

we conduct an additional experiment and present the results of the paired-t test for the first 

and second set instances. Table IV.4 shows that there is no statistically significant difference 

between MVNS and MA and MS-ILS on quality solution for the first set of instances. 

0
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However, it has been observed that MVNS is statistically significantly different from MA and 

MS-ILS with mean difference equal to 175.766 and 7.123 and p-values equal to 0.032 and 

0.001 respectively. This result also confirms that MVNS outperforms MA and MS-ILS for 

large instance. Table IV.5 of Appendix A shows that average CPU of MVNS is significantly 

lower than average CPU of MA and average CPU of Multi-start ILS. 

  

Table IV.4. Results of paired-t test for first and second set instances on solution quality   

 

*: standard error difference equal to zero; +: statistically significantly different at α = 0.05; - :  no statistically 

significant 

 

Table IV.5. Results of Tukey-test for second set of instances on computation time CPU   

 

Alpha = 0.01         Tukey Confidence = 0.99 

In results of Tukey test with Alpha = 0.01 show that group B contains CPU (MA) and 

CPU (Multi-start ILS) and group A contains CPU (MVNS). Differences between means that 

share a letter are not statistically significant. CPU (MA) and CPU (Multi-start ILS) do not 

share a letter with CPU (MVNS), which indicates that CPU (MVNS) has a significantly lower 

mean than CPU (MA) and CPU (Multi-start ILS). 

Pairs (MVNS  vs 

algorithm) 

First set of instances Second Set of instances 

Mean 

difference 
p-value 

Mean 

difference 
P-value 

MVNS vs MA 8.853 0.128- 175.766         0.032+ 

MVNS vs MS-ILS 0 * 7.123    0.001+ 

Comparison 

set 

Obj. 

value 

P-

value 
Significance Tukey result 

Tukey 

interpretation 

MA  / MS- 

ILS / 

MVNS  

CPU 

time 

 < 

0,00 

Significant 

difference 

Factor N Mean Grouping 

CPU (MA) 48 3026 B 

CPU 

(Multi-start 

ILS ) 

48 2897 B 

CPU 

(MVNS) 
48 287.2 A 

 

MVNS is 

better than 

MS- ILS and 

MA 
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IV.5 Conclusion 

In this chapter, we considered the Generalized Quadratic Multiple Knapsack problem 

with setup (GQMKP). This problem can be used to model a wide range of concrete industrial 

problems, including order acceptance and production scheduling. We proposed a linear 

formulation of the GQMKP denoted LGQMKP and a new matheuristic approach that 

combines VNS with IP denoted MVNS. We considered a wide set of benchmark instances to 

test our model LGQMKP and solving technique MVNS. The results show that only 48.9% of 

the instances are solved using CPLEX while considering the new model LGQMKP. The 

matheuristic MVNS outperforms the best algorithm in literature (MS-ILS) and provides the 

best solutions for all instances: the same result for 77 instances and better results for 19 

instances, in a shorter computation time. 

 Considering the promising performance of the MVNS, an extension is expected to 

deal with other variants of KP such as generalized knapsack sharing problem (GKSP) and 

other combinatorial optimization problems involving two sets of variables.
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Conclusions  
 

 

 
In this conclusion, we present a brief summary and outline only the principle 

contributions of this work, since the detailed discussion of each contribution is presented as a 

final section of the corresponding chapter. In addition, we draw some perspectives on future 

work. 

At first, in order to draw some conclusions from the work presented in this thesis, it is 

necessary to draw attention to the primary goal that was considered when this research started. 

The primary goal was to develop cooperative approaches based upon the cooperation between 

neighborhood search techniques and integer programming tailored for optimizing large size 

instances of hard optimization problems belonging to knapsack family: linear generalized 

multiple knapsack problem with setup (GMKPS) and its variants such as linear MKPS, linear 

MCKS and quadratic variant GQMKP.  In order to solve such a problem, we found two main 

categories: 

(1) Exact methods, which try to find the best solution and prove its optimality. Indeed, 

due to the complexity of the considered problem, proving optimality requires a 

huge computational resource. 

(2) (Meta-)heuristic approaches, which generate high quality solutions in a reasonable 

time but there is no guarantee of finding an optimal solution. 

Cooperative framework, combination of exact and or (meta)heuristic methods, have 

emerged to solve hard optimization problems. These hybrid approaches generally provide 

good results since they are able to exploit simultaneously the advantages and alleviating the 

weaknesses of both types of methods. Thus, cooperation lead to even more powerful search 

models for difficult combinatorial optimization problems. In this thesis, we focused on 
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cooperation between variable neighborhood techniques with integer programming for solving 

GMKPS and its variants. Within the cooperative approaches, different mathematical 

programming formulations of sub problems are proposed and solved with exact solver. We 

have proposed three cooperative approaches can be seen as a matheuristics to tackle 

(G)MKPS, MCKS and GQMKP. The keys of better performance for our cooperative  

approaches instead aims to exploit the structure of the GMKPS and its variants, where the set 

of variables is partitioned into two levels, variables     (classes) and variables     (items). 

Thus, we decided to invest in the development of a matheuristic combining variable 

neighborhood techniques (VND or VNS or  matheuristic VNS)  and IP. The practical 

hardness of the problem comes from these two sets of variables that must be properly 

combined to reach an optimal solution. The matheuristic considers a local search technique 

with an adaptive perturbation mechanism to assign the classes to different knapsacks (At the 

same time, once the classes are chosen, the hard original problem boils down to a several 

classical KP) and then once the assignment is identified, applies the IP to select the items to 

allocate to each knapsack. Experimental results obtained on a wide set of benchmark 

instances clearly show the competitiveness of the proposed approach compared to CPLEX 

solvers and the best state-of-the-art solving techniques.  

This thesis opens up several avenues for future research. They can be summarized as 

follows. First, it would be interesting to test the other variants of  knapsack family, such as 

Generalized Knapsack Sharing Problem (GKSP), and also to adapt the other solution-based 

cooperative approaches such as cooperation between genetic algorithm (or tabu serach) and 

integer programming. A second perspective is to test the proposed algorithms using the 

different encoding schema of a program. 

Further, the generalized multiple knapsack problems with setup and its variants 

considered in this thesis might be too simplistic compared to the real world problems that 

have supplementary complicated constraints or objective functions such as multi-objective 

scheduling problems. It is extremely expected to adapt these cooperative approaches to tackle 

these kinds of problems. We think that the ideas illustrated in this thesis, at least a few of 

them, will be useful for later research. 
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Through this thesis, we attempted to answer the primary research question: " 

matheuristic: exact or approximate method?". Evidently, this thesis represents a step in this 

research avenue and works on the subject can be pursued by considering more KP variants. In 

addition, I started this trip with the aim of providing additional guidelines for cooperative 

solution approaches for KPs. Combining matheuristics, which in some way exploit the 

mathematical model of a problem, is very promising and may produce effective solution 

approaches. I look forward to discover these future researches development, which I hope not 

only to observe but in some way to participate in, too. 
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Appendix A 

 

In this appendix. We provide the detailed results of our computational experiments for 

GMKPS, MKPS and MCKS. The following notations are considered in the all tables:  

         : Number of the instance   

          

    : Optimal solution found. 

    : Time limit exceeded. 

    : Out of memory. 

Detailed computational results for GMKPS 

Table A.1: Detailed computational results for GMKPS with    ,     - 
 

                                                        ( ) 

5 

10 

1 812913 3600.086 107 812913 3.178 0.0000 

2 958546 3600.055 107 958547 10.306 -0.0001 

3 960121 3600.263 107 960121 3.27 0.0000 

4 676465 3600.147 107 676466 2.875 -0.0001 

5 955234 3600.103 107 955234 2.919 0.0000 

6 669278 3600.013 107 669285 3.341 -0.0010 

7 668532 3600.039 107 668538 13.622 -0.0009 

8 612232 3600.032 107 612235 1.529 -0.0005 

9 685762 3600.077 107 685764 4.756 -0.0003 

10 600841 1015.669 101 600841 3.054 0.0000 

20 

1 1001475 3600.186 107 1001475 1.446 0.0000 

2 628864 3600.123 107 628864 1.655 0.0000 

3 674355 3600.199 107 674343 12.27 0.0018 

4 918838 3600.052 107 918840 5.614 -0.0002 

5 936002 3600.063 107 936002 4.405 0.0000 

6 779864 3600.116 107 779867 6.604 -0.0004 



   Appendix A   

 

105 

 

7 920233 3600.089 107 920233 3.247 0.0000 

8 682760 3600.106 107 682760 1.092 0.0000 

9 591179 3600.109 107 591179 2.098 0.0000 

10 776047 3600.158 107 776050 5.933 -0.0004 

30 

1 816917 3600.129 107 816917 1.842 0.0000 

2 1009108 3600.143 107 1009108 2.027 0.0000 

3 1028611 3600.339 107 1028614 6.09 -0.0003 

4 1098279 3600.387 107 1098280 1.866 -0.0001 

5 829696 3600.166 107 829685 2.996 0.0013 

6 1013232 3600.194 107 1013233 2.322 -0.0001 

7 760349 38.049 101 760349 2.438 0.0000 

8 905098 3600.321 107 905104 1.938 -0.0007 

9 753433 3600.231 107 753433 1.703 0.0000 

10 924785 3600.122 107 924787 2.021 -0.0002 

10 

10 

1 1603852 3600.223 107 1603954 12.533 -0.0064 

2 1751367 3600.03 107 1755536 3.815 -0.2380 

3 1630714 3600.13 107 1636663 17.728 -0.3648 

4 1399234 3600.065 107 1401813 30.325 -0.1843 

5 1892218 3600.043 107 1892365 5.82 -0.0078 

6 1371290 3600.061 107 1373297 15.32 -0.1464 

7 1211435 3600.281 107 1211432 40.47 0.0002 

8 1216160 3600.088 107 1216286 30.495 -0.0104 

9 1244960 3600.025 107 1247261 31.87 -0.1848 

10 1132371 3600.053 107 1132349 40.299 0.0019 

20 

1 1871189 3600.223 107 1871292 1.606 -0.0055 

2 1292390 3600.27 107 1293785 16.059 -0.1079 

3 1477595 3600.062 107 1479116 6.489 -0.1029 

4 1682582 3601.194 107 1682672 6.168 -0.0053 

5 1974522 3600.063 107 1974552 4.173 -0.0015 

6 1694731 3600.043 107 1694830 5.568 -0.0058 

7 1891201 3600.264 107 1891514 7.913 -0.0166 

8 1402244 3600.188 107 1402275 3.853 -0.0022 

9 1175772 3600.036 107 1175840 30.568 -0.0058 

10 1449121 3600.229 107 1449615 18.501 -0.0341 

30 

1 1612291 3600.297 107 1613746 5.056 -0.0902 

2 2031808 3600.243 107 2031831 6.206 -0.0011 

3 1958030 3600.327 107 1958088 7.968 -0.0030 

4 2165244 3600.298 107 2165333 3.074 -0.0041 

5 1669904 3600.23 107 1669857 5.269 0.0028 



   Appendix A   

 

106 

 

6 2125487 3600.193 107 2125488 4.746 0.0000 

7 1681264 3600.235 107 1681310 10.97 -0.0027 

8 1960791 3600.208 107 1962504 8.096 -0.0874 

9 1750652 3600.28 107 1750834 7.827 -0.0104 

10 1822033 3600.314 107 1822047 5.646 -0.0008 

15 

10 

1 2288605 3601.193 107 2319142 14.203 -1.3343 

2 2265070 3600.068 107 2290209 11.028 -1.1099 

3 2258467 3600.123 107 2280258 70.563 -0.9649 

4 2032309 3600.054 107 2049983 66.671 -0.8697 

5 2312884 3600.955 107 2312884 3.875 0.0000 

6 2036890 3600.06 107 2046672 60.437 -0.4802 

7 1803636 3600.068 107 1807162 65.092 -0.1955 

8 1797939 3600.776 107 1817259 67.769 -1.0746 

9 1747982 3600.026 107 1774638 40.749 -1.5250 

10 1678324 3600.09 107 1683655 43.905 -0.3176 

20 

1 2706056 3600.325 107 2706826 6.681 -0.0285 

2 1794053 3600.238 107 1798826 51.203 -0.2660 

3 2187871 3600.2 107 2195401 19.477 -0.3442 

4 2469025 3600.078 107 2476018 18.337 -0.2832 

5 2908199 3600.218 107 2910999 7.59 -0.0963 

6 2372053 3600.065 107 2380982 8.745 -0.3764 

7 2698645 3600.155 107 2701151 9.817 -0.0929 

8 1901903 3600.242 107 1916093 31.402 -0.7461 

9 1653612 3600.047 107 1653975 69.014 -0.0220 

10 2122781 3600.35 107 2129807 34.641 -0.3310 

30 

1 2684661 3600.404 107 2689634 12.826 -0.1852 

2 2858448 3600.307 107 2845417 53.431 0.4559 

3 2725434 3600.103 107 2725778 6.382 -0.0126 

4 3003857 3600.409 107 3006413 7.491 -0.0851 

5 2473755 3602.791 107 2475063 98.043 -0.0529 

6 3142366 3601.627 107 3149552 11.535 -0.2287 

7 2636996 3600.52 107 2637392 10.57 -0.0150 

8 3035371 3600.638 107 3035613 4.362 -0.0080 

9 2718106 3600.536 107 2719783 6.126 -0.0617 

10 2719897 3600.638 107 2727728 7.769 -0.2879 

20 10 

1 2324170 3607.381 107 2337831 8.174 -0.5878 

2 2309245 3600.027 107 2331711 13.281 -0.9729 

3 2351799 3600.03 107 2381083 9.554 -1.2452 

4 2261308 3600.348 107 2297629 7.533 -1.6062 
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5 2283262 3600.059 107 2297309 4.16 -0.6152 

6 2252182 3600.025 107 2267316 9.184 -0.6720 

7 2150880 3600.361 107 2184523 15.435 -1.5642 

8 2046575 3602.922 107 2062592 32.017 -0.7826 

9 2261341 3600.095 107 2296965 40.602 -1.5753 

10 2097028 3601.874 107 2119150 45.593 -1.0549 

20 

1 3781192 3600.119 107 3795371 60.352 -0.3750 

2 2288307 3600.1 107 2314756 60.982 -1.1558 

3 2825909 3600.092 107 2850146 60.916 -0.8577 

4 3265962 3600.102 107 3302637 50.649 -1.1229 

5 3714754 3600.068 107 3730447 17.406 -0.4225 

6 3238651 3600.162 107 3264119 30.465 -0.7864 

7 3467812 3600.041 107 3525277 35.235 -1.6571 

8 2384775 3600.416 107 2405080 50.82 -0.8514 

9 2126565 3600.165 107 2151009 44.046 -1.1495 

10 2681315 3600.567 107 2699665 55.606 -0.6844 

30 

1 3549246 3600.166 107 3562054 16.199 -0.3609 

2 3657501 3600.123 107 3659987 34.552 -0.0680 

3 3622280 3600.36 107 3639456 18.721 -0.4742 

4 3861616 3600.147 107 3886415 9.24 -0.6422 

5 3501286 3600.453 107 3519183 16.146 -0.5112 

6 4024439 3600.07 107 4065645 8.873 -1.0239 

7 3342156 3600.121 107 3347683 23.877 -0.1654 

8 3844833 3601.082 107 3861978 12.41 -0.4459 

9 3720185 3600.165 107 3728062 12.421 -0.2117 

10 3495901 3600.798 107 3512312 12.613 -0.4694 

 

 

Table A.2:Detailed computational results for GMKPS with    ,     - 
 

                                                        ( ) 

5 10 

1 1135990 3600.374 107 1135990 1.874 0.0000 

2 1309346 3600.031 107 1309351 2.574 -0.0004 

3 838462 3600.167 107 838484 5.747 -0.0026 

4 1338915 3600.045 107 1338922 7.22 -0.0005 

5 1047773 3600.266 107 1047782 8.833 -0.0009 

6 1089294 3600.105 107 1089295 9.293 -0.0001 

7 1353672 3600.058 107 1353659 10.97 0.0010 

8 1153287 3600.068 107 1153287 4.812 0.0000 
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9 869128 3600.121 107 869128 3.736 0.0000 

10 1529682 3600.173 107 1529682 2.005 0.0000 

20 

1 1099777 190.883 101 1099777 3.115 0.0000 

2 1323126 3600.126 107 1323130 2.233 -0.0003 

3 1329746 3600.093 107 1329746 3.902 0.0000 

4 997809 3600.073 107 997810 8.285 -0.0001 

5 1293494 3600.515 107 1293496 6.468 -0.0002 

6 1422106 3600.028 107 1422107 3.602 -0.0001 

7 866454 3600.172 107 866460 6.847 -0.0007 

8 1575520 3600.124 107 1575520 1.601 0.0000 

9 1252189 3600.059 107 1252189 1.148 0.0000 

10 1119950 3600.168 107 1119956 3.701 -0.0005 

30 

1 973907 3600.188 107 973907 2.542 0.0000 

2 1154917 3600.091 107 1154933 2.628 -0.0014 

3 1179293 3600.098 107 1179300 2.776 -0.0006 

4 1044345 3600.007 107 1044345 3.965 0.0000 

5 1178724 3600.147 107 1178724 2.148 0.0000 

6 1284699 332.299 101 1284699 4.272 0.0000 

7 1259316 3600.345 107 1260925 4.028 -0.1278 

8 1136234 3600.279 107 1136247 3.255 -0.0011 

9 915931 3600.038 107 915938 1.522 -0.0008 

10 1320349 287.946 101 1320349 1.097 0.0000 

10 

10 

1 2203048 3600.007 107 2204837 8.977 -0.0812 

2 2641149 3601.009 107 2644369 6.032 -0.1219 

3 1783667 3600.145 107 1783114 40.723 0.0310 

4 2778356 3600.036 107 2778490 5.28 -0.0048 

5 2295233 3600.215 107 2295319 11.439 -0.0037 

6 1956384 3600.047 107 1969663 30.877 -0.6788 

7 2736305 3600.363 107 2740557 5.188 -0.1554 

8 2431150 3600.118 107 2441336 3.955 -0.4190 

9 1894367 3600.542 107 1897986 30.702 -0.1910 

10 2923308 3600.044 107 2923434 4.275 -0.0043 

20 

1 2088653 3600.106 107 2091981 13.178 -0.1593 

2 2528469 3600.336 107 2532270 3.461 -0.1503 

3 2836970 3600.25 107 2836991 3.872 -0.0007 

4 1956109 3600.195 107 1960748 13.905 -0.2372 

5 2595511 3600.271 107 2600713 4.548 -0.2004 

6 2530249 3600.646 107 2551291 3.356 -0.8316 

7 1989904 3600.255 107 2000177 31.382 -0.5163 
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8 3223699 3600.172 107 3228096 3.437 -0.1364 

9 2615473 3600.69 107 2615544 2.907 -0.0027 

10 2311150 3600.058 107 2311189 5.131 -0.0017 

30 

1 2350838 3600.406 107 2352883 3.639 -0.0870 

2 2327171 3600.236 107 2327204 4.433 -0.0014 

3 2260463 3600.336 107 2262071 4.175 -0.0711 

4 2165817 3600.28 107 2172867 5.626 -0.3255 

5 2269674 3600.328 107 2275439 7.344 -0.2540 

6 2513193 3600.345 107 2513215 9.595 -0.0009 

7 2280289 3600.312 107 2280865 12.213 -0.0253 

8 2278849 3600.259 107 2278915 9.181 -0.0029 

9 1906991 3600.27 107 1907004 15.408 -0.0007 

10 2492253 3600.675 107 2492587 8.239 -0.0134 

15 

10 

1 3255164 3600.348 107 3304096 90.63 -1.5032 

2 3473823 3600.032 107 3518744 10.681 -1.2931 

3 2654033 3600.662 107 2691244 61.415 -1.4021 

4 3487442 3603.284 107 3502706 7.297 -0.4377 

5 3244253 3601.19 107 3292369 70.576 -1.4831 

6 3064391 3600.047 107 3108121 64.767 -1.4270 

7 3360001 3600.093 107 3387869 6.991 -0.8294 

8 3128586 3600.24 107 3159139 9.691 -0.9766 

9 2757744 3600.036 107 2784983 67.011 -0.9877 

10 3558666 3600.028 107 3577577 41.379 -0.5314 

20 

1 3006366 3600.956 107 3014696 43.424 -0.2771 

2 3865636 3600.309 107 3865508 12.672 0.0033 

3 4124886 3600.12 107 4137427 7.557 -0.3040 

4 2881730 3600.3 107 2903412 51.953 -0.7524 

5 3747503 3600.079 107 3768181 21.949 -0.5518 

6 3735810 3600.063 107 3740469 18.468 -0.1247 

7 3140047 3600.341 107 3141879 32.078 -0.0583 

8 4693676 3600.301 107 4721239 10.162 -0.5872 

9 3926113 3600.451 107 3948143 14.057 -0.5611 

10 3475762 3600.327 107 3494340 17.407 -0.5345 

30 

1 3279295 3600.405 107 3282773 32.283 -0.1061 

2 3563092 3600.883 107 3569378 19.79 -0.1764 

3 3446242 3601.476 107 3448317 13.086 -0.0602 

4 3459757 3600.68 107 3477683 29.574 -0.5181 

5 3376620 3600.306 107 3393784 21.716 -0.5083 

6 3757424 3600.858 107 3763712 12.005 -0.1673 
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7 3341049 3600.534 107 3341309 12.518 -0.0078 

8 3429455 3601.332 107 3435875 16.399 -0.1872 

9 2719748 3600.781 107 2744656 93.617 -0.9158 

10 3733701 3600.646 107 3740622 15.888 -0.1854 

20 

10 

1 3370542 3600.156 107 3380053 26.79 -0.2822 

2 3516741 3600.055 107 3531702 18.601 -0.4254 

3 3377210 3600.095 107 3429730 112.481 -1.5551 

4 3503338 3600.062 107 3518703 10.255 -0.4386 

5 3473398 3600.081 107 3532934 25.196 -1.7141 

6 3349932 3600.053 107 3372946 26.573 -0.6870 

7 3411103 3600.076 107 3418334 14.85 -0.2120 

8 3198627 3600.022 107 3202779 7.903 -0.1298 

9 3194611 3600.077 107 3244499 24.031 -1.5616 

10 3600971 3600.037 107 3608919 10.182 -0.2207 

20 

1 3840225 3600.451 107 3887847 72.028 -1.2401 

2 5119179 3600.097 107 5128914 30.924 -0.1902 

3 4983417 3600.101 107 5044642 35.952 -1.2286 

4 3917960 3600.097 107 3949932 61.478 -0.8160 

5 4972891 3600.335 107 5021380 39.482 -0.9751 

6 4997562 3600.25 107 5068629 44.855 -1.4220 

7 4120857 3600.092 107 4150699 59.168 -0.7242 

8 6059568 3600.077 107 6114417 9.797 -0.9052 

9 5012324 3600.579 107 5053860 38.894 -0.8287 

10 4498643 3600.05 107 4527271 60.816 -0.6364 

30 

1 4402634 3600.194 107 4444768 44.05 -0.9570 

2 4748304 3601.264 107 4756582 31.391 -0.1743 

3 4341344 3601.488 107 4374171 31.573 -0.7561 

4 4554378 3600.128 107 4602355 41.018 -1.0534 

5 4471200 3600.694 107 4535788 51.538 -1.4445 

6 5000692 3600.051 107 5046797 23.562 -0.9220 

7 4314826 2506.813 109 4355036 44.634 -0.9319 

8 4374905 3600.052 107 4408044 54.692 -0.7575 

9 3701426 3600.242 107 3753223 65.544 -1.3994 

10 4722127 3600.228 107 4752095 25.673 -0.6346 

 

Table A.3:Detailed computational results for GMKPS with    ,      - 
 

T N                                                     ( ) 

5 10 1 1867438 3600.077 107 1867448 7.014 -0.0005 
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2 1674725 3600.42 107 1674727 2.198 -0.0001 

3 1759784 3600.188 107 1759784 1.986 0.0000 

4 1515969 3600.183 107 1515973 3.986 -0.0003 

5 1730973 3600.019 107 1730990 4.488 -0.0010 

6 1408926 3600.276 107 1408929 3.95 -0.0002 

7 1692385 3600.266 107 1692386 2.366 -0.0001 

8 1528499 3600.158 107 1528500 2.058 -0.0001 

9 1530607 3600.053 107 1530612 3.535 -0.0003 

10 1540665 3600.057 107 1540670 2.427 -0.0003 

20 

1 1604647 3600.468 107 1604648 5.591 -0.0001 

2 1737908 3600.102 107 1737941 6.432 -0.0019 

3 1657099 3600.297 107 1657101 6.228 -0.0001 

4 1551046 3600.132 107 1551052 3.842 -0.0004 

5 1378593 3600.111 107 1378600 3.452 -0.0005 

6 1657266 3600.301 107 1657270 3.268 -0.0002 

7 2142847 1502.733 101 2142847 5.913 0.0000 

8 1388770 3600.127 107 1388781 4.047 -0.0008 

9 1385251 3600.095 107 1385258 4.954 -0.0005 

10 1656632 3600.133 107 1656634 4.047 -0.0001 

30 

1 1531023 3600.055 107 1531024 6.069 -0.0001 

2 1499973 3600.307 107 1499985 3.591 -0.0008 

3 1526817 3600.413 107 1527417 1.394 -0.0393 

4 1712118 3600.176 107 1712120 5.536 -0.0001 

5 1703228 3600.107 107 1703232 4.054 -0.0002 

6 1621348 21.249 101 1621348 5.554 0.0000 

7 1950132 3600.153 107 1950132 2.54 0.0000 

8 1956198 3600.285 107 1956204 1.284 -0.0003 

9 1846935 3600.055 107 1846940 3.681 -0.0003 

10 1689929 3600.62 107 1689932 6.068 -0.0002 

10 10 

1 3224526 3600.063 107 3230187 13.885 -0.1756 

2 3094088 3600.02 107 3106717 16.861 -0.4082 

3 3540100 3600.049 107 3545610 9.479 -0.1556 

4 2994702 3600.061 107 2994730 30.617 -0.0009 

5 3347214 3600.029 107 3347290 9.281 -0.0023 

6 2917362 3600.052 107 2928397 7.34 -0.3783 

7 2848914 3600.03 107 2850447 25.964 -0.0538 

8 3138287 3596.102 107 3138789 21.639 -0.0160 

9 2898892 3600.059 107 2912622 18.713 -0.4736 

10 2831758 3600.204 107 2836184 21.207 -0.1563 
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20 

1 3315613 1931.936 109 3325963 11.293 -0.3122 

2 3197797 3600.402 107 3206388 7.491 -0.2687 

3 3047695 3600.056 107 3047775 11.265 -0.0026 

4 3013601 3600.108 107 3013678 9.099 -0.0026 

5 2734356 3600.219 107 2738251 15.292 -0.1424 

6 3225209 3601.399 107 3225259 8.67 -0.0016 

7 3612783 3600.251 107 3618654 6.323 -0.1625 

8 2980250 3600.358 107 2980334 16.858 -0.0028 

9 2809433 946.518 109 2818858 16.157 -0.3355 

10 3335616 3600.108 107 3335679 7.679 -0.0019 

30 

1 3109027 3600.437 107 3117735 11.224 -0.2801 

2 2981640 3600.686 107 2981670 15.31 -0.0010 

3 3209625 3600.396 107 3214072 7.669 -0.1386 

4 3399695 3600.673 107 3399720 7.154 -0.0007 

5 3142202 3600.374 107 3147562 10.908 -0.1706 

6 3657362 3600.153 107 3659671 6.272 -0.0631 

7 3390498 3600.66 107 3395345 8.276 -0.1430 

8 3508036 3600.19 107 3512831 10.581 -0.1367 

9 3998077 3602.077 107 4001165 11.243 -0.0772 

10 3512039 3600.102 107 3512050 10.802 -0.0003 

15 

10 

1 4378642 3602.338 107 4435579 36.83 -1.3003 

2 4385814 3600.029 107 4422996 25.391 -0.8478 

3 4601152 3600.758 107 4628569 10.634 -0.5959 

4 4370563 3600.071 107 4411006 80.763 -0.9253 

5 4529265 3600.041 107 4562612 90.743 -0.7363 

6 4268914 3603.951 107 4321129 90.73 -1.2231 

7 4058466 3600.113 107 4125871 90.749 -1.6608 

8 4315210 3600.117 107 4369817 73.362 -1.2655 

9 4142610 3600.06 107 4197352 80.9 -1.3214 

10 4028925 3600.065 107 4085959 70.631 -1.4156 

20 

1 5221012 3601.945 107 5221403 11.827 -0.0075 

2 5098258 3600.363 107 5114107 16.981 -0.3109 

3 4467573 3600.097 107 4477901 20.941 -0.2312 

4 4372377 3600.102 107 4411756 32.646 -0.9006 

5 4450816 3600.152 107 4490047 29.735 -0.8814 

6 5135328 3600.362 107 5140943 11.556 -0.1093 

7 5344191 3600.51 107 5352137 16.739 -0.1487 

8 4340220 3600.54 107 4358015 20.441 -0.4100 

9 4243058 3600.08 107 4244785 42.662 -0.0407 
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10 4950853 2861.469 109 4971909 27.983 -0.4253 

30 

1 4607692 3600.119 107 4612962 11.289 -0.1144 

2 4217139 3600.067 107 4231845 32.626 -0.3487 

3 4801997 3600.361 107 4811305 18.862 -0.1938 

4 5344445 3600.098 107 5350587 12.201 -0.1149 

5 4979308 3600.087 107 4985615 22.358 -0.1267 

6 5543007 3602.225 107 5551034 13.461 -0.1448 

7 5035976 3600.153 107 5050284 14.581 -0.2841 

8 5016436 3600.258 107 5026460 20.526 -0.1998 

9 6162688 3601.272 107 6165733 12.876 -0.0494 

10 5101036 3600.14 107 5109194 21.942 -0.1599 

20 

10 

1 4416449 3600.151 107 4456197 60.944 -0.9000 

2 4585953 3600.066 107 4628011 12.511 -0.9171 

3 4577207 3600.027 107 4628083 17.935 -1.1115 

4 4529096 3600.252 107 4571407 17.773 -0.9342 

5 4559336 3600.054 107 4598196 16.853 -0.8523 

6 4542628 3600.173 107 4572502 31.584 -0.6576 

7 4373480 3600.071 107 4421131 19.326 -1.0895 

8 4389049 3600.098 107 4421462 8.865 -0.7385 

9 4528171 3601.84 107 4554606 15.744 -0.5838 

10 4451577 3600.094 107 4538080 17.622 -1.9432 

20 

1 6507212 3600.089 107 6607329 30.869 -1.5386 

2 6452135 3600.114 107 6540068 46.621 -1.3629 

3 5931490 3600.093 107 5990005 35.077 -0.9865 

4 5966321 3600.137 107 6060176 71.624 -1.5731 

5 5973965 3600.11 107 6012405 43.708 -0.6435 

6 7030884 3600.088 107 7127351 22.735 -1.3720 

7 6928840 3600.093 107 6967739 36.532 -0.5614 

8 5802242 3600.201 107 5816364 39.807 -0.2434 

9 5414062 3600.147 107 5500260 61.451 -1.5921 

10 6642370 3600.115 107 6692544 41.245 -0.7554 

30 

1 6154801 3605.345 107 6198551 15.679 -0.7108 

2 5904740 3600.109 107 5968860 45.683 -1.0859 

3 6358436 3600.109 107 6425674 135.609 -1.0575 

4 7213758 3600.119 107 7282004 16.292 -0.9461 

5 6470038 3600.182 107 6499874 24.672 -0.4611 

6 7263879 3600.152 107 7283296 24.654 -0.2673 

7 6404305 3600.116 107 6466879 34.249 -0.9771 

8 6653243 3604.087 107 6687620 28.699 -0.5167 
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9 7805114 3600.236 107 7850004 11.936 -0.5751 

10 6564150 3600.136 107 6601791 24.911 -0.5734 

 

 

 

 

 

 

 

 

 

             Detailed computational results for MKPS 

Table A.4:  Detailed computational results for MKPS with    ,     - 
 

T N                              N         N            ( ) 

5 

10 

1 480360 5,266 101 480360 1,327 0,0000 

2 361474 858,505 101 361474 0,899 0,0000 

3 388363 3600,106 107 388367 2,384 -0,0010 

4 117887 3600,057 107 117889 0,513 -0,0017 

5 356586 21,148 101 356586 0,964 0,0000 

6 148026 3600,032 107 148027 1,803 -0,0007 

7 500642 3600,044 107 500642 1,956 0,0000 

8 325009 3600,084 107 325010 0,776 -0,0003 

9 253131 3600,034 107 253131 1,464 0,0000 

10 439178 44,065 101 439178 2,109 0,0000 

20 

1 207364 808,592 101 207364 2,499 0,0000 

2 349637 45,142 101 349637 2,143 0,0000 

3 193073 3600,002 107 193073 1,182 0,0000 

4 127765 3600,012 107 127765 1,287 0,0000 

5 529374 3600,048 107 529374 0,585 0,0000 

6 315280 3600,023 107 315280 2,064 0,0000 

7 207154 3600,011 107 207154 1,039 0,0000 

8 268123 3600,041 107 268123 2,009 0,0000 

9 257988 3600,071 107 257988 2,242 0,0000 

10 128720 3600,053 107 128720 0,63 0,0000 

30 

1 509866 12,939 101 509866 2,009 0,0000 

2 274124 3600,128 107 274126 0,567 -0,0007 

3 568422 3600,075 107 568425 1,703 -0,0005 
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4 396059 3600,038 107 396059 0,907 0,0000 

5 335804 1877,045 101 335804 3,193 0,0000 

6 374708 876,93 101 374708 1,964 0,0000 

7 307477 3600,096 107 307477 0,511 0,0000 

8 593428 96,971 101 593428 1,929 0,0000 

9 379861 22,729 101 379861 1,361 0,0000 

10 472679 23,819 101 472679 1,235 0,0000 

10 

10 

1 610093 3600,031 107 610117 2,25 -0,0039 

2 496792 1691,307 101 496792 2,207 0,0000 

3 875876 1682,999 101 875876 3,575 0,0000 

4 221027 3600,035 107 221030 3,58 -0,0014 

5 796061 3600,087 107 796078 4,305 -0,0021 

6 291026 3600,021 107 291027 1,724 -0,0003 

7 917444 3600,051 107 917454 3,424 -0,0011 

8 494466 3600,063 107 494471 3,954 -0,0010 

9 363556 3600,04 107 363562 0,787 -0,0017 

10 563584 3462,333 109 563597 2,785 -0,0023 

20 

1 339599 3600,104 107 339608 3,34 -0,0027 

2 598401 3600,047 107 598403 2,521 -0,0003 

3 351513 57,041 101 351513 3,995 0,0000 

4 321589 3600,11 107 321599 1,036 -0,0031 

5 715842 159,28 101 715842 8,737 0,0000 

6 512131 3600,089 107 512148 9,019 -0,0033 

7 537706 3600,028 107 537712 8,136 -0,0011 

8 499095 3600,05 107 499101 4,489 -0,0012 

9 423118 3600,035 107 423119 2,322 -0,0002 

10 279981 3600,008 107 279985 2,672 -0,0014 

30 

1 814424 3600,142 107 814428 2,431 -0,0005 

2 588078 3600,052 107 588095 2,654 -0,0029 

3 897381 3600,017 107 897384 4,992 -0,0003 

4 603216 3600,146 107 603221 2,469 -0,0008 

5 681399 3600,013 107 681405 3,758 -0,0009 

6 670817 3600,052 107 670827 3,462 -0,0015 

7 594029 3600,167 107 594031 4,61 -0,0003 

8 896409 3600,17 107 896416 2,803 -0,0008 

9 792974 3600,053 107 792979 2,748 -0,0006 

10 620144 3600,095 107 620145 2,828 -0,0002 

15 10 
1 819641 2730,506 109 819659 2,481 -0,0022 

2 577960 3599,999 107 577963 3,617 -0,0005 
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3 884048 3600,098 107 884050 4,171 -0,0002 

4 344198 3600,017 107 344198 1,035 0,0000 

5 1026123 806,8 109 1026154 4,015 -0,0030 

6 461658 3600,049 107 461661 11,822 -0,0006 

7 997702 964,571 109 997759 2,945 -0,0057 

8 620290 3572,608 101 620290 8,998 0,0000 

9 502535 3600,056 107 502538 2,23 -0,0006 

10 677626 3600,039 107 677633 4,537 -0,0010 

20 

1 553830 1974,576 109 553840 3,309 -0,0018 

2 760429 3600,056 107 760447 8,88 -0,0024 

3 588806 3600,047 107 588818 3,441 -0,0020 

4 519449 3600,021 107 519449 4,294 0,0000 

5 851364 2342,401 109 851400 3,703 -0,0042 

6 675207 3600,062 107 675184 4,46 0,0034 

7 737089 2578,603 109 737113 3,087 -0,0033 

8 701381 3600,146 107 701419 17,694 -0,0054 

9 645277 3600,102 107 645284 11,039 -0,0011 

10 552512 3600,058 107 552529 6,673 -0,0031 

30 

1 1260569 3600,377 107 1260604 6,464 -0,0028 

2 885019 3600,063 107 885047 7,354 -0,0032 

3 1261351 3600,078 107 1261374 6,005 -0,0018 

4 673490 3600,065 107 673491 3,82 -0,0001 

5 1106865 3600,399 109 1106890 5,289 -0,0023 

6 1030768 3600,114 107 1030782 14,371 -0,0014 

7 879557 3600,251 107 884538 14,779 -0,5663 

8 1191814 3601,261 107 1197606 7,502 -0,4860 

9 1226523 3600,061 107 1226524 4,722 -0,0001 

10 946300 3601,481 107 946316 5,56 -0,0017 

20 
10 

1 923998 2588,191 109 924021 4,492 -0,0025 

2 675340 3600,022 107 675357 4,172 -0,0025 

3 918402 1554,004 109 918414 5,378 -0,0013 

4 393822 3600,098 107 393872 4,763 -0,0127 

5 1204986 3600,096 107 1204983 3,897 0,0002 

6 566384 3600,107 107 566400 6,208 -0,0028 

7 1119915 2506,488 109 1119926 3,905 -0,0010 

8 725767 3600,018 107 725825 4,408 -0,0080 

9 608267 3600,115 107 608272 2,606 -0,0008 

10 992463 1661,649 109 992482 7,233 -0,0019 

20 1 553665 2500,815 109 553690 8,55 -0,0045 
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2 956338 3600,052 107 956392 4,656 -0,0056 

3 637619 1146,198 109 637633 2,484 -0,0022 

4 588845 1879,276 109 588855 4,46 -0,0017 

5 975610 3600,101 107 975644 4,212 -0,0035 

6 930799 201,652 101 930799 5,881 0,0000 

7 935814 2250,553 109 935839 3,81 -0,0027 

8 795586 3600,173 107 798064 8,513 -0,3115 

9 740334 1419,068 109 740355 5,909 -0,0028 

10 625550 3600,08 107 625567 7,089 -0,0027 

30 

1 1786488 2469,467 109 1788539 8,107 -0,1148 

2 1081535 3600,055 107 1081552 4,717 -0,0016 

3 1755270 3600,087 107 1755275 6,075 -0,0003 

4 992951 3600,208 107 993010 5,454 -0,0059 

5 1279696 3600,174 107 1279719 5,174 -0,0018 

6 1498240 3600,154 107 1498250 5,91 -0,0007 

7 998275 3600,277 107 998370 4,648 -0,0095 

8 1375688 3600,326 107 1382694 6,837 -0,5093 

9 1668465 3600,588 107 1668526 6,027 -0,0037 

10 1144094 3600,355 107 1146313 19,649 -0,1940 

 

Table A.5:  Detailed computational results for MKPS with    ,     - 
 

                                 N         N            ( ) 

5 

10 

1 749278 3600,01 107 749278 4,321 0,0000 

2 893899 3600,106 107 893899 1,006 0,0000 

3 467063 3600,057 107 467067 5,277 -0,0009 

4 918335 19,598 101 918335 2,961 0,0000 

5 568503 2605,309 109 568523 4,294 -0,0035 

6 714083 178,41 101 714083 1,972 0,0000 

7 948393 3600,136 107 948406 1,382 -0,0014 

8 772142 2382,193 109 772153 2,646 -0,0014 

9 470959 3501,893 109 470960 2,771 -0,0002 

10 1165714 8,527 101 1165714 2,435 0,0000 

20 

1 777924 3504,906 109 777924 2,687 0,0000 

2 972858 2512,766 109 972864 2,324 -0,0006 

3 1007536 3600,036 107 1007536 2,615 0,0000 

4 596031 3600,054 107 596031 4,554 0,0000 

5 917573 7,636 101 917573 2,076 0,0000 

6 1064355 3600,073 107 1064355 3,225 0,0000 
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7 494558 23,163 101 494558 3,907 0,0000 

8 1249429 3600,077 107 1249428 1,517 0,0001 

9 887281 39,399 101 887281 8,604 0,0000 

10 743501 20,757 101 743501 5,384 0,0000 

30 

1 638862 3600,017 107 638862 8,974 0,0000 

2 811968 70,597 101 811968 24,233 0,0000 

3 863958 394,231 101 863958 27,572 0,0000 

4 673064 3600,075 107 673064 28,113 0,0000 

5 836236 3600,139 107 836237 20,74 -0,0001 

6 933965 3600,047 107 933975 15,886 -0,0011 

7 950905 1373,417 109 950906 10,061 -0,0001 

8 789200 111,493 101 789200 18,053 0,0000 

9 599929 3600,212 107 599930 9,116 -0,0002 

10 985048 1086,568 101 985048 6,904 0,0000 

10 

10 

1 1297180 3600,147 107 1297203 19,383 -0,0018 

2 1748379 1653,586 109 1748403 7,81 -0,0014 

3 819951 3600,071 107 819979 14,529 -0,0034 

4 1898854 2722,645 109 1899055 19,494 -0,0106 

5 1355062 1832,642 109 1355075 17,231 -0,0010 

6 1090736 3171,121 109 1090759 12,462 -0,0021 

7 1854791 2210,89 109 1854817 17,483 -0,0014 

8 1668233 3014,158 109 1668238 20,91 -0,0003 

9 1079277 1642,028 109 1079300 10,908 -0,0021 

10 1990918 1521,293 109 1991190 10,718 -0,0137 

20 

1 1339693 3600,231 107 1339708 7,245 -0,0011 

2 1796794 2792,738 109 1796800 6,975 -0,0003 

3 2101876 2422,095 109 2101888 9,17 -0,0006 

4 1190683 2520,438 109 1190705 23,956 -0,0018 

5 1806710 3600,05 107 1806717 14,593 -0,0004 

6 1763092 3600,036 107 1763098 12,122 -0,0003 

7 1216524 2363,98 109 1216538 11,627 -0,0012 

8 2516774 3600,04 107 2516778 9,656 -0,0002 

9 1937644 3600,158 107 1937650 15,721 -0,0003 

10 1467312 3600,093 107 1467320 13,829 -0,0005 

30 

1 1589088 2303,228 109 1589119 18,758 -0,0020 

2 1589561 3600,118 107 1589577 9,326 -0,0010 

3 1576024 3600,102 107 1576024 10,931 0,0000 

4 1401505 3601,053 107 1401567 7,329 -0,0044 

5 1549640 3600,294 107 1549652 9,185 -0,0008 
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6 1788069 3600,165 107 1788074 12,329 -0,0003 

7 1562270 3600,118 107 1562284 9,403 -0,0009 

8 1506371 3600,279 107 1506388 14,015 -0,0011 

9 1194680 3600,345 107 1194692 14,466 -0,0010 

10 1755413 3600,281 107 1759679 11,281 -0,2430 

15 

10 

1 1739689 2142,132 109 1739769 22,211 -0,0046 

2 1970440 1748,074 109 1970442 9,563 -0,0001 

3 1106748 3600,06 107 1106752 10,87 -0,0004 

4 2191918 1125,101 109 2191926 9,135 -0,0004 

5 1581821 1838,908 109 1581844 33,013 -0,0015 

6 1560054 77,669 101 1560054 6,199 0,0000 

7 2333380 3600,104 107 2333382 6,775 -0,0001 

8 2023994 963,411 109 2024007 9,765 -0,0006 

9 1253974 3112,038 109 1254002 6,833 -0,0022 

10 2421756 1505,461 109 2421781 5,824 -0,0010 

20 

1 1881235 3600,503 107 1881258 13,003 -0,0012 

2 2674926 3600,291 107 2674973 13,19 -0,0018 

3 3021558 2539,329 109 3021582 16,454 -0,0008 

4 1627038 3600,304 107 1627329 8,242 -0,0179 

5 2497873 2998,675 109 2497922 11,059 -0,0020 

6 2476359 2985,436 109 2476414 10,294 -0,0022 

7 1928438 3600,25 107 1928454 9,068 -0,0008 

8 3562412 3600,433 107 3562434 11,172 -0,0006 

9 2694051 3600,303 107 2699463 9,793 -0,2009 

10 2192372 3600,246 107 2196997 18,965 -0,2110 

30 

1 2154158 3604,183 107 2154204 12,868 -0,0021 

2 2482826 3600,237 107 2482862 16,546 -0,0014 

3 2381005 3608,127 107 2381037 13,667 -0,0013 

4 2336182 3600,729 107 2340333 43,878 -0,1777 

5 2198978 3602,512 107 2199001 16,146 -0,0010 

6 2607729 3603,155 107 2607751 20,436 -0,0008 

7 2266615 3601,136 107 2266647 19,477 -0,0014 

8 2326888 3601,31 107 2326934 18,665 -0,0020 

9 1666442 3602,47 107 1666455 17,883 -0,0008 

10 2596631 3601,64 107 2596684 21,938 -0,0020 

20 10 

1 1892823 1328,582 109 1892865 12,149 -0,0022 

2 2095319 3600,378 107 2095325 6,345 -0,0003 

3 1324191 3600,119 107 1324206 8,444 -0,0011 

4 2287623 2077,323 109 2287639 8,636 -0,0007 
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5 1730296 1891,115 109 1730323 10,313 -0,0016 

6 1649880 3600,107 107 1649894 7,371 -0,0008 

7 2313764 1623,323 109 2313807 8,224 -0,0019 

8 2195281 1097,596 109 2195296 9,481 -0,0007 

9 1356874 2165,755 109 1356889 7,512 -0,0011 

10 2612314 3662,126 107 2612325 4,34 -0,0004 

20 

1 2054664 3600,253 107 2059531 12,284 -0,2369 

2 3414528 3600,349 107 3415761 22,812 -0,0361 

3 3346392 3600,207 107 3346427 21,893 -0,0010 

4 2181427 3600,343 107 2181569 19,396 -0,0065 

5 3175307 3600,321 107 3182993 22,222 -0,2421 

6 3357872 2029,553 109 3358128 26,696 -0,0076 

7 2508798 3600,29 107 2514565 45,745 -0,2299 

8 4504937 3600,478 107 4507022 18,158 -0,0463 

9 3293329 3600,133 107 3293609 18,641 -0,0085 

10 2680841 3600,35 107 2697052 20,349 -0,6047 

30 

1 2878317 3601,075 107 2887193 39,929 -0,3084 

2 3191596 3600,855 107 3198538 31,801 -0,2175 

3 2888584 3337,014 109 2888636 18,224 -0,0018 

4 2983602 3600,919 107 2994244 21,968 -0,3567 

5 2898612 3600,833 107 2901696 15,055 -0,1064 

6 3492396 3601,721 107 3492511 14,856 -0,0033 

7 2742243 3600,762 107 2742348 17,872 -0,0038 

8 2862295 3601,287 107 2863988 21,09 -0,0591 

9 2137698 3601,234 107 2140943 18,427 -0,1518 

10 3108535 3600,587 107 3112329 22,761 -0,1221 

 

 

Table A.6:  Detailed computational results for MKPS with    ,      - 
  

                                                       ( ) 

5 10 

1 656534 915,108 101 656534 8,131 0,0000 

2 423931 3600,023 107 423931 4,495 0,0000 

3 494401 297,705 101 494401 10,513 0,0000 

4 365790 3600,119 107 365790 6,129 0,0000 

5 874728 3600,061 107 874728 6,529 0,0000 

6 654887 3600,017 107 654889 10,18 -0,0003 

7 761701 3600,056 107 761702 4,161 -0,0001 

8 695677 3600,067 107 695677 2,957 0,0000 
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9 197419 243,39 101 197419 4,956 0,0000 

10 376848 1732,863 101 376848 1,509 0,0000 

20 

1 293214 3600,304 107 293214 5,701 0,0000 

2 510146 3600,104 107 510149 2,729 -0,0006 

3 529011 3600,023 107 529014 7,53 -0,0006 

4 373967 3600,047 107 373967 4,686 0,0000 

5 733780 3600,128 107 733780 3,876 0,0000 

6 582963 3600,067 107 582963 6,328 0,0000 

7 593663 3600,135 107 593663 1,73 0,0000 

8 412685 3600,07 107 412686 6,017 -0,0002 

9 401871 3600,083 107 401871 5,292 0,0000 

10 501253 13,489 101 501253 14,463 0,0000 

30 

1 354479 3589,983 107 354479 14,613 0,0000 

2 402799 3600,093 107 402799 14,682 0,0000 

3 575269 3600,088 107 575269 12,866 0,0000 

4 244253 3600,254 107 244253 18,19 0,0000 

5 722704 52,977 101 722704 11,762 0,0000 

6 812867 3600,076 107 812868 17,463 -0,0001 

7 546043 404,245 101 546043 14,032 0,0000 

8 398888 3600,029 107 398890 13,585 -0,0005 

9 908159 1811,026 101 908159 25,871 0,0000 

10 625340 3600,247 107 625341 22,318 -0,0002 

10 

10 

1 980287 3447,886 109 980296 9,245 -0,0009 

2 950203 3125,25 109 950210 2,737 -0,0007 

3 1324721 3600,117 107 1324742 4,769 -0,0016 

4 565865 2437,203 109 565883 6,576 -0,0032 

5 1536421 1193,358 109 1536428 9,462 -0,0005 

6 1186472 3600,031 107 1186475 8,032 -0,0003 

7 1147656 3600,098 107 1147679 7,255 -0,0020 

8 1043693 3600,071 107 1043696 6,459 -0,0003 

9 512428 1208,431 109 512433 2,862 -0,0010 

10 1042498 3600,101 107 1042498 8,133 0,0000 

20 

1 566741 1405,945 109 566746 1,689 -0,0009 

2 751168 2447,704 109 751174 4,156 -0,0008 

3 1138940 3600,027 107 1138952 5,804 -0,0011 

4 687320 3600,143 107 687321 3,374 -0,0001 

5 1055685 3600,188 107 1055692 6,2 -0,0007 

6 1014574 2362,184 109 1014583 5,869 -0,0009 

7 1263824 3600,171 107 1263827 6,065 -0,0002 
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8 977119 3600,236 107 977121 4,351 -0,0002 

9 759552 3600,154 107 759585 5,657 -0,0043 

10 1170952 3322,323 109 1170960 4,324 -0,0007 

30 

1 924062 3600,345 107 926132 14,805 -0,2240 

2 795307 3600,189 107 795308 24,456 -0,0001 

3 1151123 3600,369 107 1151135 15,736 -0,0010 

4 1054426 3600,36 107 1055163 13,303 -0,0699 

5 1001320 3600,297 107 1001631 17,017 -0,0311 

6 1528497 3600,368 107 1528523 13,969 -0,0017 

7 892826 3600,444 107 892830 21,839 -0,0004 

8 863045 3600,282 107 863321 28,975 -0,0320 

9 1601469 2700,861 109 1601491 42,246 -0,0014 

10 1052427 3600,245 107 1052889 19,927 -0,0439 

15 

10 

1 1299020 3029,444 109 1299026 12,989 -0,0005 

2 1370884 3600,094 107 1370892 16,941 -0,0006 

3 1753986 3600,135 107 1753995 11,213 -0,0005 

4 658266 3203,556 109 658276 11,423 -0,0015 

5 1864064 3357,008 109 1864083 12,938 -0,0010 

6 1480934 3600,098 107 1481002 17,347 -0,0046 

7 1590736 1451,957 109 1590718 12,279 0,0011 

8 1625117 2395,634 109 1625154 13,372 -0,0023 

9 821419 2711,682 109 821434 26,963 -0,0018 

10 1238994 1877,664 109 1239007 27,571 -0,0010 

20 

1 751496 3600,146 107 751503 8,784 -0,0009 

2 1236409 3600,345 107 1236434 11,094 -0,0020 

3 1346215 2412,845 109 1346230 28,768 -0,0011 

4 1111093 3600,275 107 1111108 11,478 -0,0014 

5 1444617 3600,221 107 1444629 12,854 -0,0008 

6 1521224 3600,096 107 1521649 14,308 -0,0279 

7 1483334 3600,065 107 1483343 15,772 -0,0006 

8 1010548 2213,352 109 1010559 29,272 -0,0011 

9 1184838 3200,088 109 1184844 11,112 -0,0005 

10 1415246 3600,283 107 1420656 14,563 -0,3823 

30 

1 1143214 3600,508 107 1143248 12,275 -0,0030 

2 1203139 2869,664 109 1203156 10,509 -0,0014 

3 1538637 3601,674 107 1540040 33,465 -0,0912 

4 1556610 3601,249 107 1556658 11,946 -0,0031 

5 1675140 3603,108 107 1677523 11,135 -0,1423 

6 2324162 3606,788 107 2324174 22,627 -0,0005 
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7 1508000 3600,983 107 1513957 16,22 -0,3950 

8 1155112 3601,642 107 1155148 30,225 -0,0031 

9 2544976 3601,508 107 2570083 11,048 -0,9865 

10 1447433 2748,247 109 1452778 15,932 -0,3693 

20 

10 

1 1529304 3600,195 107 1529329 12,156 -0,0016 

2 1604158 1299,673 109 1604175 10,366 -0,0011 

3 1851066 3600,026 107 1851068 13,443 -0,0001 

4 868624 2645,082 109 868623 28,927 0,0001 

5 2197968 1553,864 109 2197982 13,697 -0,0006 

6 1760881 3600,083 107 1760895 14,157 -0,0008 

7 1852092 3600,444 107 1852101 12,145 -0,0005 

8 2030304 3600,115 107 2030308 18,675 -0,0002 

9 1000100 1892,344 109 1000245 18,07 -0,0145 

10 1468818 2811,26 109 1468848 12,267 -0,0020 

20 

1 1054158 3600,614 107 1070162 19,861 -1,5182 

2 1597433 2541,067 109 1597454 10,794 -0,0013 

3 1941353 3607,082 107 1941365 18,487 -0,0006 

4 1363260 3600,452 107 1363284 13,046 -0,0018 

5 1559026 3600,597 107 1564472 13,741 -0,3493 

6 1820157 2038,711 109 1820179 48,714 -0,0012 

7 2225146 3600,552 107 2245598 15,039 -0,9191 

8 1517157 3600,482 107 1519930 17,561 -0,1828 

9 1722099 3600,769 107 1722162 15,164 -0,0037 

10 2010704 3600,414 107 2024897 18,286 -0,7059 

30 

1 1617864 3600,181 107 1617890 28,243 -0,0016 

2 1616378 3600,833 107 1616459 46,824 -0,0050 

3 1999500 3600,767 107 2018955 39,578 -0,9730 

4 2215157 3600,859 107 2225528 35,995 -0,4682 

5 2159001 3603,322 107 2159032 29,901 -0,0014 

6 2955832 3600,201 107 2955977 35,069 -0,0049 

7 1791356 3600,843 107 1810016 20,996 -1,0417 

8 1748618 3601,199 107 1750200 20,857 -0,0905 

9 3341939 3601,423 107 3373311 13,412 -0,9387 

10 1939662 3611,679 107 1939708 29,37 -0,0024 
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Detailed computational results for MCKS 

 

Table A.7:  Detailed computational results for MCKS  

 

                                                       ( ) 

5 

10 

1 1752164 11,089 101 1752164 0,609 0,0000 

2 1840553 7,29 101 1840553 0,562 0,0000 

3 1781144 3578,437 109 1781144 0,577 0,0000 

4 1791770 3600,054 107 1791778 1,56 -0,0004 

5 1777694 789,434 101 1777694 1,435 0,0000 

6 1766853 2112,405 109 1778441 1,139 -0,6559 

7 1736342 3600,034 107 1736345 1,342 -0,0002 

8 1708739 3600,005 107 1708739 1,17 0,0000 

9 1798198 42,86 101 1798198 0,67 0,0000 

10 1769033 6,04 101 1769033 0,452 0,0000 

20 

1 3529051 3600,195 107 3529051 6,739 0,0000 

2 3574108 498,482 101 3574108 4,088 0,0000 

3 3609997 2681,087 109 3610006 8,892 -0,0002 

4 3572567 2790,697 109 3572580 14,878 -0,0004 

5 3560930 2965,372 109 3574932 13,447 -0,3932 

6 3628358 2952,339 109 3628358 14,789 0,0000 

7 3610827 3600,135 107 3610835 15,726 -0,0002 

8 3444725 2981,399 109 3452736 14,198 -0,2326 

9 3497325 3094,946 109 3497327 15,054 -0,0001 

10 3687252 3466,024 101 3687252 5,148 0,0000 

30 

1 5420618 369,414 101 5420618 20,015 0,0000 

2 5341566 907,866 101 5341566 29,656 0,0000 

3 5415437 3600,05 107 5415434 24,352 0,0001 

4 5504079 861,525 101 5504079 21,103 0,0000 

5 5407728 3600,23 107 5407725 25,479 0,0001 

6 5389200 3600,201 107 5400757 30,496 -0,2144 

7 5379790 3600,109 107 5381312 29,135 -0,0283 

8 5304058 2049,279 101 5301471 20,076 0,0488 

9 5305506 3600,286 107 5321473 27,66 -0,3010 

10 5516312 478,553 101 5509704 19,968 0,1198 

10 10 

1 1774956 3600,181 107 1774956 1,037 0,0000 

2 1793067 3600,112 107 1793067 0,986 0,0000 

3 1833041 24,571 101 1833041 1,522 0,0000 
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4 1813713 3600,029 107 1813714 2,481 -0,0001 

5 1795947 2176,963 109 1795947 1,281 0,0000 

6 1812125 2551,292 109 1812125 1,801 0,0000 

7 1741272 2550,081 109 1741272 1,328 0,0000 

8 1735084 2993,187 109 1735085 1,985 -0,0001 

9 1833775 3248,65 101 1833775 1,87 0,0000 

10 1818894 1520,797 101 1818894 0,799 0,0000 

20 

1 3579731 3600,219 107 3579733 16,341 -0,0001 

2 3581346 3600,214 107 3583358 15,796 -0,0562 

3 3597838 2842,868 109 3597872 16,459 -0,0009 

4 3577677 3600,791 107 3577745 16,329 -0,0019 

5 3667813 3600,133 107 3667814 11,373 0,0000 

6 3645837 3600,228 107 3645837 16,382 0,0000 

7 3682509 2741,637 101 3678369 7,631 0,1124 

8 3486724 3600,211 107 3486742 15,56 -0,0005 

9 3583027 3600,203 107 3579285 16,794 0,1044 

10 3627056 3600,218 107 3629775 16,77 -0,0750 

30 

1 5404545 3600,394 107 5404545 32,701 0,0000 

2 5410704 2913,27 101 5410704 28,537 0,0000 

3 5397028 2509,967 101 5397028 30,136 0,0000 

4 5586034 3600,347 107 5586034 33,533 0,0000 

5 5471288 2300,482 101 5471288 35,676 0,0000 

6 5514079 3600,163 107 5514079 33,388 0,0000 

7 5469693 43,879 101 5469693 26,183 0,0000 

8 5345750 3600,254 107 5345751 27,89 0,0000 

9 5347158 3600,572 107 5353704 38,26 -0,1224 

10 5504324 3600,148 107 5504324 34,714 0,0000 

15 

10 

1 1744422 3600,188 107 1759526 11,51 -0,8658 

2 1816781 52,36 101 1816781 2,67 0,0000 

3 1833898 3600,048 107 1833899 2,17 -0,0001 

4 1817425 3600,22 107 1817425 2,379 0,0000 

5 1801379 3181,59 109 1801379 3,456 0,0000 

6 1814556 3600,501 107 1814558 9,818 -0,0001 

7 1780651 3565,163 109 1780651 1,95 0,0000 

8 1743182 2440,431 109 1746953 2,817 -0,2163 

9 1812751 3600,251 107 1812751 6,814 0,0000 

10 1767045 945,889 109 1768693 2,731 -0,0933 

20 
1 3556794 3600,404 107 3556844 17,911 -0,0014 

2 3603525 3600,284 107 3630413 18,224 -0,7462 
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3 3605302 3600,21 107 3630366 17,245 -0,6952 

4 3637303 3600,445 107 3637340 20,453 -0,0010 

5 3594851 3600,117 107 3603616 20,839 -0,2438 

6 3684172 3600,638 107 3684179 18,902 -0,0002 

7 3619591 3600,699 107 3628287 17,92 -0,2402 

8 3448577 3596,866 107 3472721 17,116 -0,7001 

9 3598426 925,246 109 3612918 19,805 -0,4027 

10 3709433 3600,486 107 3713767 18,216 -0,1168 

30 

1 5470811 3600,407 107 5470808 41,629 0,0001 

2 5392454 3600,376 107 5392484 40,022 -0,0006 

3 5453503 3600,293 107 5455858 36,365 -0,0432 

4 5597147 144,643 101 5597147 30,06 0,0000 

5 5502609 3600,292 107 5502609 36,784 0,0000 

6 5517831 3600,665 107 5519366 33,292 -0,0278 

7 5471749 3600,656 107 5483645 37,098 -0,2174 

8 5291390 3600,092 107 5336834 36,637 -0,8588 

9 5451912 3600,064 107 5451912 34,044 0,0000 

10 5563697 3600,474 107 5569464 41,036 -0,1037 

20 

10 

1 1767421 3375,366 109 1767421 3,005 0,0000 

2 1842297 3600,076 107 1842310 3,599 -0,0007 

3 1779168 3600,251 107 1779168 2,104 0,0000 

4 1841122 31,027 101 1841122 1,74 0,0000 

5 1763882 3600,829 107 1797818 11,319 -1,9239 

6 1807989 3384,961 109 1807989 12,22 0,0000 

7 1766339 3600,251 107 1766345 9,95 -0,0003 

8 1755457 45,957 101 1755457 2,451 0,0000 

9 1807689 3230,208 109 1810502 2,844 -0,1556 

10 1799548 2978,951 109 1799552 5,372 -0,0002 

20 

1 3611595 2405,53 101 3611595 15,374 0,0000 

2 3576350 3600,087 107 3601021 20,847 -0,6898 

3 3553751 3600,18 107 3556291 21,951 -0,0715 

4 3691772 3600,402 107 3692358 21,454 -0,0159 

5 3670597 3600,088 107 3670765 20,557 -0,0046 

6 3692909 3600,063 107 3692920 21,605 -0,0003 

7 3603229 3600,12 107 3615152 21,808 -0,3309 

8 3466735 3600,135 107 3487047 18,833 -0,5859 

9 3515371 3600,13 107 3519061 19,616 -0,1050 

10 3708739 3600,117 107 3708758 19,66 -0,0005 

30 1 5460699 3600,445 107 5463814 44,567 -0,0570 
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2 5466949 3600,512 107 5469767 43,854 -0,0515 

3 5398644 3600,194 107 5418735 47,719 -0,3721 

4 5554985 80,056 101 5554985 42,032 0,0000 

5 5475670 3600,256 107 5476227 41,721 -0,0102 

6 5466058 3600,082 107 5486334 41,596 -0,3709 

7 5471791 3600,105 107 5483799 42,6 -0,2195 

8 5320146 3600,101 107 5345186 41,576 -0,4707 

9 5392943 3600,414 107 5392943 44,002 0,0000 

10 5538874 723,181 101 5538874 42,515 0,0000 

 

 

 

 

 

 

 

 

 

 

 

 


