
HAL Id: tel-02962094
https://theses.hal.science/tel-02962094v2

Submitted on 21 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Approaches between some Metaheuristics
and Integer programming for solving Generalized

Multiple Knapsack Problem with Setup and its variants
Yassine Adouani

To cite this version:
Yassine Adouani. Cooperative Approaches between some Metaheuristics and Integer programming
for solving Generalized Multiple Knapsack Problem with Setup and its variants. Operations Research
[math.OC]. Université de Sfax (Tunisie), 2020. English. �NNT : �. �tel-02962094v2�

https://theses.hal.science/tel-02962094v2
https://hal.archives-ouvertes.fr

 Republic of Tunisia

Ministry of Higher Education

and Scientific Research

 University of Sfax

 Faculty of Economics and

Management of Sfax

PhD THESIS

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR IN

Management sciences

Specialty: Operational research and decision making

 Cooperative Approaches between some Metaheuristics and

Integer programming for solving Generalized Multiple Knapsack

Problem with Setup and its variants

 Presented and publicly defended on 29 July 2020 by:

Yassine ADOUANI

Jury Member

Mr. Nejib HACHICHA Full Professor, FSEG-Sfax Chair

Mr. Bassem JARBOUI Full Professor, IHEC-Sfax Supervisor

Mr. Abdelkarim EllOUMI Associate Professor, FSEG-Sfax Reviewer

Mr. Souhail DHOUIB Full Professor, ISGI-Sfax Reviewer

Mr. Abdelaziz DAMMEK Full Professor, FSEG-Sfax Member

Mr. Malek MASMOUDI Associate Professor JMSE-France Invited Member

 Academic year: 2019-2020

 Acknowledgement

It is with great pleasure that i reserve this page as a sign of deep gratitude to all those who

have kindly provided the necessary support for the smooth running of this thesis.

I present my thanks to Prof. Nejib hachicha for the honor he had accorded me for

agreeing to be the committee chair of my thesis. I also thank Prof. Abdelaziz dammak for the

valuable service to examine my thesis and to be a member of the committee. My

distinguished thanks go also to Prof. Abdelkarim Elloumi and Prof. Souhail Dhouib for taking

their time to review my dissertation and for their relevant comments.

I would like to express my deep gratitude to my supervisor Prof. Bassem Jarboui for

his outstanding commitment to this thesis. I am also grateful for the support he gave me. His

professionalism, friendliness and pedagogical and scientific qualities have been invaluable.

I have the favor to thank my supervisor Prof. Malek Masmoudi for his interesting

advices which are very useful to me and his collaboration to well accomplish this work. I am

thankful to all my colleagues at MODILS Laboratory (Sfax-Tunisia).

My success would not have been possible without the love, patience, prayers and

support of my parents Messaoud and Mabrouka. I would like also to thank my sister Malika,

my brothers Soufien, Nebil, Khaled and Tarek.

 Finally, I would like to express my deepest and heartfelt thanks to my beloved wife,

Sana Hamdi, and my son, Nader.

AUTHOR’S PUBLICATIONS

The contributions proposed in this thesis have been presented in scientific communications

and articles.

Publications in international peer-reviewed journals

- Adouani Y., Jarboui B., Masmoudi M. (2019). An efficient new matheuristic to solve the

generalized multiple Knapsack Problem with Setup. European journal of industrial

Engineering.Vol , pp. 1-27. (IF, 1.26).

- Adouani Y., Jarboui B., Masmoudi M. (2019). A matheuristic to solve the 0-1

generalized quadratic multiple Knapsack Problem with Setup. Optim Lett. Vol, pp.1-22.

(IF, 1.5).

- Adouani Y., Jarboui B., Masmoudi M. Iterated local search-based matheuristic for the

Multiple choice knapsack problem with setup. Submitted in International Transactions in

Operational Research.

- Adouani Y., Jarboui B., Masmoudi M. Estimation Distribution Algorithm-based

Matheuristic for the Multiple Knapsack Problem with Setup. Submitted in European

journal operation research.

Book Chapter

- Adouani Y., Jarboui B., Masmoudi M. (2019) A Variable Neighborhood Search with

Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with Setup.

In: Sifaleras A., Salhi S., Brimberg J. (eds) Variable Neighborhood Search. ICVNS 2018.

Lecture Notes in Computer Science. Vol. 11328, pp. 152-164. Springer, Cham. (SJR,

0.28).

Publications in international peer-reviewed conferences

- Y. Adouani, B. Jarboui, M. Masmoudi, A Variable neighborhood search with integer

programming for the zero-one Multiple-Choice Knapsack Problem with Setup, in the

conference 6th International Conference on Variable Neighborhood Search (ICVNS

2018), Sithonia, Halkidiki, Greece, October 4-7, 2018.

- Y. Adouani, M. Masmoudi, I. Alghoul and B. Jardoui, A hybrid approach for zero-one

Multiple -Choice Knapsack Problem with Setup, the International Conference of the

African Federation of Operational Research Societies, 2-4 july 2018, Tunis.

i

TABLE OF CONTENTS

Introduction .. 1

Chapter I: Cooperative approaches 10

I.1 Introduction ... 10

I.2 Exact methods .. 10

I.2.1 Integer programming .. 11

I.2.2 Dynamic programming ... 12

I.2.3 Branch and bound method ... 13

I.2.4 Cutting plane .. 13

I.2.5 Branch and cut method ... 13

I.3 Metaheuristics approaches ... 14

I.3.1 Simulated annealing .. 14

I.3.2 Variable neighborhood descent .. 15

I.3.3 Iterated local search ... 15

I.3.4 Variable neighborhood search ... 15

I.4 Cooperatives approaches ... 16

I.4.1 First classification .. 16

I.4.2 Second classification .. 17

I.4.3 Third classification .. 18

I.5 Matheuristic approach .. 20

I.6 Conclusion .. 21

Chapter II : Cooperative approach between VND and IP for solving (G)MKPS 22

II.1 Introduction ... 22

II.2 Literature review ... 25

II.3 Problem description .. 27

II.4 Matheuristic VND&IP .. 29

II.4.1 Initial feasible solution ... 30

II.4.2 Upper bound for , -………………………………………………………………………34

II.4.3 SWAP&IP local search .. 35

II.4.4 INSERT&IP local search .. 36

II.4.5 DROP/ADD&IP local search .. 37

II.5 Computational experiments ... 38

ii

II.5.1 Performance analysis of the VND&IP components .. 39

II.5.2 Sensitivity analysis of GMKPS parameters ... 41

II.5.3 Experimentation ... 44

II.6 Conclusion .. 49

Chapter III: Cooperative approach between VNS and IP for solving MCKS 50

III.1 Introduction ... 50

III.2 Problem description .. 52

III.3 Matheuristic approach for MCKS ... 53

III.3.1 Initial feasible solution ... 55

III.3.2 Upper bound for IP .. 56

III.3.3 Local search with IP .. 57

III.4 Computational results ... 60

III.4.1 Parameter setting ... 61

III.4.2 Computational results ... 61

III.5 Conclusion .. 64

Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP 66

IV.1 Introduction ... 66

IV.2 Mathematical model .. 68

IV.3 Matheuristic VNS for GQMKP ... 71

IV.3.1 Construction heuristic ... 73

IV.3.2 SWAP&IP ... 74

IV.3.3 INSERT&IP ... 76

IV.3.4 PERTURB&IP ... 77

IV.4 Computational results ... 79

IV.4.1 Performance analysis of the MVNS components .. 79

IV.4.2 Experimentation ... 80

IV.5 Conclusion .. 91

Conclusions ... 92

BIBLIOGRAPHY ... 95

Appendix A ... 104

iii

 Introduction

1

Introduction

Problems and motivation

Combinatorial optimization problems allow to model and solve a variety of real life

situations. For example, finding a route minimizing the distance can be modeled by a problem

of this class. Nevertheless, considering only one objective to optimize may not be sufficient to

represent the complexity of real life situations. Indeed, if a company is interested in

maximizing its profit, it may also be interested in minimizing its ecological impact. Then

several objectives have to be considered. If no preference is given a priori, all solutions such

that it is not possible to improve an objective without degrading another one should be

returned to the decision maker. After the solving process, the decision maker chooses among

the returned solutions.

Many practical situations can be modeled as combinatorial optimization problems.

Among these problems, we can find some problems belonging to the knapsack family. The 0-

1 Knapsack Problem (KP) is one of the paradigmatic problems in combinatorial optimization

where a set of items with given profits and weights is available and the aim is to select a

subset of the items in order to maximize the total profit without exceeding a known knapsack

capacity. Martello and Toth [77] provide extensive reviews of the major classes of KPs. The

0-1 Knapsack Problem with Setups (KPS) originally introduced in [20] can be seen as a

generalization of KP where items belong to disjoint classes and can be selected only if the

corresponding class is activated. The selection of a class involves setup costs and resource

consumptions thus affecting both the objective function and the capacity constraint. KPS has

many applications of interest such as make-to-order production contexts, cargo loading and

product category management among others and more generally for allocation resources

 Introduction

3

problems involving classes of elements [21]. Another application of KPS is originated within

the smart-home paradigm where the goal of an efficient management of the buildings energy

consumptions is a strong component (see Project FLEXMETER from:

http://exmeter.polito.it).

The Multiple Knapsack Problem with Setup (MKPS) can be considered as a set of

knapsack problems with different capacities in which a set of disjoint classes of items with

knapsack-dependent profits and given weights are available. An item can be selected only if

the corresponding class is activated and a class can only be set up in one knapsack. A key

feature is that the activation of a class incurs a knapsack-dependent setup cost that should be

considered both in the objective function and constraints. The setup cost varies with the

knapsack. A solution to the MKPS consists in selecting appropriate items, from different

disjoint classes, to enter a knapsack while maximizing its value and respecting its capacity.

Like most knapsack problems, the MKPS finds its application in several concrete

industrial problems, e.g., production planning [104], aviation security system [79], etc. For

instance, consider a supplier of hollow glass in the agro-alimentary glass packing industry,

producing several types of products, including bottles, flacons, and pots [21]. The most

important phase in the manufacturing process is the shaping. Indeed, to change the production

from one product class to another, the production machinery must be set up and moulds must

be changed in the moulding machine. There is no setup between products in the same class.

These changes in the manufacturing process require significant setup time and costs.

Accordingly, the company needs to decide on how to choose orders so as to maximize the

total profit. This represents a typical case involving a Knapsack Problem with Setup (KPS).

However, if orders can be served in different periods, but a product class can only be

produced in a single period, the cost would depend on the completion time of the order. There

would be an initial cost for an order delivered on the client desired date and penalties for

delay or precociousness for postponed delivery dates. These costs would depend on the

modification of the desired date. Because of the cost variability dependent on the production

planning, this problem is more complex than the KPS. Indeed, before denying a production

schedule, and in order to maximize its total profit, the company should take into consideration

the production capacity, the profit of different products, and the cost of each class at each

period. In this case, the problem can be modeled as an MKPS. The KPS is a reduction of the

 Introduction

4

MKPS when only one production period is considered. Another application of the MKPS

arises in the cloud computing industry that faces several decision-making issues that need to

be optimized. Hence, the extension of MKPS when a product class can be produced in a

multiple periods is a real case study of GMKPS. Prices varies according to the customers

expectation of products delivery date i.e. some customers are willing to pay a higher price for

a short lead-time while others are willing to wait for their products in exchange for lower

prices. Thus, price, delivery period and total profit have very complex connections that are of

extreme interest to businesses today. Thus, we consider that orders could be realized in

multiple periods, and the products’ price depends on the orders’ completion time i.e. penalties

are added to the initial price in case where products are not delivered at customers’ desired

due date. In addition, the products (items) could be classified into classes regarding specially

their setups i.e. setup is null between products from the same class. The profit for order j of

class i processed in period t is and varies for different periods, but the processing time stays

the same. To find the assignment of orders that maximizes the total profit, we have to

consider the marginal profit of each job, the current production capacity per period, and the

setup cost and time from orders. This realistic production scheduling problem is typically our

GMKPS case study.

The motivation of this thesis is to introduce a new variant of the knapsack problem

with setup (KPS). We refer to it as the generalized multiple knapsack problem with setup

(GMKPS) and develop new matheuristics methods combining variable neighborhood search

with integer programming to solve the linear problem GMKPS and its variants such as: linear

problems MKPS and MCKS and quadratic variant GQMKP. Because of the difficulty of these

problems, we are searching for approximate solution techniques with fast solution times for

its large scale instances. A promising way to solve the GMKPS, MKPS, MCKS and GQMKP

is to consider some techniques based upon the principle of cooperative approach can be

viewed as matheuristic that combining neighborhood search techniques with integer

programming (IP). Although such techniques produce approximate solution methods, they

allow us to present fast algorithms that yield interesting solutions within a short average

running time, that is, to generate approximations of good quality to the efficient set. We will

see in an overview about the methods for solving knapsack problems family that many

metaheuristics have already been adapted to tackle MKPS problems. But most of the methods

 Introduction

5

include many parameters and are sometimes so complex that it is difficult to deeply

understand the behavior of these methods. It makes the application of these methods to MKPS

problems hard and not necessary efficient. For the new methods developed in this thesis, two

features are expected: simplicity and effectiveness. The methods should be as simple as

possible to easily adapt them to different MKPS problems and to give better results as state-

of-the-art results on different MKPS problems. We also intend to give through this work a

better knowledge concerning the efficient solutions of MKPS problems, as well as introducing

new techniques to solve new MKPS problems. Another motivation is to apply the methods

developed to real MKPS problems.

Solution overview and contributions

Many solution methods have been designed for the KP and its variants: (i) solving the

given problem using exact methods and/or (ii) searching near optimal solutions using

metaheuristic methods. An exact algorithm tries to find an optimal or a set of optimal

solutions for a given problem. For the problems belonging to the knapsack family, an optimal

solution can be found using branch and bound, branch and cut, and/or dynamic programming

methods. Nevertheless, for large-scale problems, an exact method might need exponential

computation time. This often leads to a solution time that is too high for the practical

situation. Thus, the development of metaheuristic methods has received more attention in the

last decades, however, comes at the price of having no guarantee about their quality. For that

reason, we define new approaches that combine exact and metaheuristic methods. These

methods, noted as cooperative approaches, represent a powerful tool for solving combinatorial

optimization problems. The GMKPS, MKPS, MCKS and GQMKP are NP-hard

combinatorial problems since it is a generalization of the standard 0-1 KP, which is known to

be an NP-hard problem [68, 77] exact methods would be rather inefficient in solving large-

size instances of the four problems cited above. An alternative to exact methods would be to

combine exact and metaheuristic algorithms. This cooperative approach, referred to as

matheuristics, seems to be a very promising path towards the solution of rich combinatorial

optimization problems. Matheuristics take advantage from synergy between approximate and

exact solution approaches and often lead to considerably higher performance with respect to

 Introduction

6

solution quality and running time. However, adapting those mechanisms to different problems

can be challenging. In this thesis, we will propose to design and implement a matheuristic

framework to solve GMKPS, MKPS and MCKS, and show how it can be improved to solve

related rich quadratic variant GQMKP.

The main objective of this thesis is to provide a solving approaches for the GMKPS

and its variants. We introduce a mixed Integer programming (MIP) formulation that, due to

the complexity of the GMKPS, cannot solve even small test instances. In fact, it is usually

difficult to assign items to the whole sets of knapsacks. In addition, the consideration of the

knapsack-dependent cost related to each class of products and the knapsack-dependent profit

associated to each item increases the complexity of the problem. Therefore, the design of a

new approach providing high quality solutions in a reasonable computing time is quite

challenging. An alternative to exact methods would be to develop a first cooperative

approach, can be viewed as matheuristic that combine a variable neighborhood descent

(VND) with an exact solving technique: local search techniques to include classes to

knapsacks and integer programming (IP) to include items in each knapsack. Experimental

results show the efficiency and the performance of the proposed approach on randomly

generated instances of GMKPS. Furthermore, we enhance our solution approach combining

local search techniques with integer programming. We carry out a computational study to

assess the performance of the proposed cooperative approach on a new set of instances from

MKPS. The challenge of the second cooperative approach is to propose an efficient

cooperative framework between variable neighborhood search VNS and Integer programming

to solve the linear problem MCKS. Finally, the third cooperative approach addressed to solve

the quadratic variant GQMKP. The attempt of the third cooperative is to combine new

efficient Matheuristic VNS and integer programming. The computational results shows that

the proposed cooperative approaches (or matheuristics) are competitive compared with the

state-of-the-art methods. The different contributions are listed below:

1) We introduce a new variant of the knapsack problem with setup (KPS). We refer to it

as the generalized multiple knapsack problems with setup (GMKPS). GMKPS

originates from industrial production problems where the items are divided into

classes and processed in multiple periods. We refer to the particular case, where items

from the same class cannot be processed in more than one period, as the multiple

 Introduction

7

knapsack problems with setup (MKPS). First, we provide mathematical formulations

of GMKPS and MKPS and provide an upper bound expression for the knapsack

problem. We then propose a cooperative approach (matheuristic) that combines

variable neighborhood descent (VND) with integer programming (IP). We consider

local search techniques to assign classes to knapsacks and apply the IP to select the

items in each knapsack. Computational experiments on randomly generated instances

show the efficiency of our matheuristic in comparison to the direct use of a

commercial solver.

2) The challenge of the second cooperative approach is to develop an algorithm

combining VNS with IP to solve MCKS. The idea consists in partitioning a MCKS

solution into two levels. The first level contains the classes (or setup variables) to be

fixed by the VNS, where the second level contains the remainder of variables (items)

that will be optimally optimized by the Integer programming. For the numerical

experiment, we generated different instances for MCKS. In the experimental setting,

we compared our cooperative approach to the Mixed Integer Programming provided in

literature. Experimental results clearly showed the efficiency and effectiveness of our

approach.

3) We use a linearization technique of the existing mathematical model and we propose a

new cooperative approach combining matheuristic variable neighborhood search

(MVNS) with integer programing (IP) to solve the generalized quadratic multiple

knapsack problem (GQMKP). The matheuristic considers a local search technique

with an adaptive perturbation mechanism based on a mathematical programming to

assign the classes to different knapsacks, and then once the assignment is identified,

applies the IP to select the items to allocate to each knapsack. Experimental results

obtained on a wide set of benchmark instances clearly show the competitiveness of the

proposed approach compared to the best state-of-the-art solving techniques.

 Introduction

8

Thesis structure

The thesis contains four main parts. The first part presents an overview of the main

cooperative approaches. The second part is dedicated to the development of a new

cooperative approach between variable neighborhood descent (VND) and Integer

programming (IP), to solve the (G)MKPS. The third provides a new efficient cooperative

approach between variable neighborhood search (VNS) and IP to solve MCKS. The fourth

part discusses a new hybrid approach in which mathematical programming is an embedded

component into a variable neighborhood search (MVNS) that has the ability to solve the

quadratic variant of GMKPS, denoted by GQMKP.

More specifically, the thesis is organized as follows. A bibliographic study which aims

to present an overview of the exact methods, metaheuristic and cooperative approaches and

explain their adaptation for evolving programs is provided in first part (Chapter I). Section I.2

discusses the exact methods, while section I.3 presents the (meta-)heuristics approaches used

to solve the knapsack problems family. Finally, section I.4 and I.5 provide an overview of the

cooperative and matheuristic approaches. We give a general presentation of the integer

programming and local search techniques forming the core of our solutions approaches, with

section I.6 concluding. The remaining chapters describe the methodological contributions of

this thesis. Chapter II is about the GMKPS. We formally introduce the problem. Then, we

propose a mixed integer linear programming formulation and an integer model based on the

Dantzig-Wolfe decomposition. In Section II.2, the related literature of the problem is

presented. Section II.3 contains the mathematical formulations of GMKPS and their particular

case MKPS. In Section II.4, we propose a cooperative approach can be seen as matheuristic

that combine variable neighborhood descent (VND) and integer programming (IP) for the

(G)MKPS. The experimental results and their interpretations are reported in Section II.5. In

Section II. 6, we conclude the chapter and give possible and future research ideas. In Chapter

III we move from the MCKS problem and apply matheuristic (or cooperative) approach

combining VNS with IP to solve this problem. In Section III.1, the presentation and related

literature of the problem are presented. Section III.2 contains the mathematical formulations

of MCKS. In Section III.3, we propose a matheuristic approach combining VNS and integer

programming for MCKS. The experimental results and their interpretations are reported in

Section III.4. In Section III.5, we conclude the chapter and give possible and future research

 Introduction

9

ideas. Chapter IV is devoted to the description of cooperative solution approach to solve the

GQMKP. We analyze the challenges encountered while developing the cooperative

approaches between some Local Search techniques and Integer programming and provide a

simple and effective data structure which may be easily generalized for quadratic variant of

GMKPS problem. Later, we improved the efficiency of the proposed approaches: VND&IP

and VNS&IP on a set of new generated instances for (G)MKPS and MCKPS. We provide a

sensitivity analysis distinguishing the main components for increasing the performance of our

cooperative approaches. In Section VI.1, the presentation and related literature of the problem

are presented. Section IV.2 contains the mathematical formulation of the GQMKP. Section

IV.3 contains our cooperative approach combining MVNS with IP. The experimental results

and their interpretations are reported in Section IV.4 and, finally, the conclusions are outlined

in Section IV.5. Finally, overall conclusions and perspectives are drawn in the last chapter of

the thesis. In Appendix A, we report detailed computational experiments carried out in this

thesis.

 Chapter I: Cooperative approaches

10

Chapter I

Cooperative approaches

I.1 Introduction

This chapter provides an overview of different methods for solving combinatorial

optimization problems [30]. It is not so easy to classify the existing optimization methods.

Beyond the classical separation between exact methods and (meta-) heuristic methods, several

papers are devoted to the taxonomy of cooperative approach. Cooperative (or Hybrid)

methods are not new in the operational research community. This class of cooperative

approaches includes several sub classes among which techniques combining (meta-)

heuristics and exact algorithms have a dominating place.

In the remainder of this chapter, we elaborate further on exacts method and (meta-)

heuristics approaches and explain some differences among different techniques and

paradigms. We then focus on the context of cooperative approach, the paradigm, general

framework, steps, and different components.

I.2 Exact methods

Many exact methods have been proposed for finding an optimal or a set of optimal

solutions for a given problem. Among these methods, we can find branch and bound, branch

and cut, and dynamic programming. Due to the inherent combinatorial explosion with respect

to the size of the search space for hard COPs in general, this approach is only viable for very

small instances. Therefore all practical exact solution approaches try to consider as much of

the search space as possible only implicitly, hence ruling out regions where it is guaranteed

 Chapter I: Cooperative approaches

11

that no better feasible solution can be found than a previously found one. Often these methods

are based on a tree search, where the search space is recursively partitioned in a divide-and-

conquer manner into mutually disjoint subspaces by fixing certain variables or imposing

additional constraints. Ruling out regions then amounts to (substantially) pruning the search

tree. The scalability of a tree search thus depends essentially on the efficiency of this pruning

mechanism. In branch-and-bound (B&B), upper and lower bounds are determined for the

objective values of solutions, and subspaces for which the lower bounds exceed the upper

bounds are discarded.

I.2.1 Integer programming

This section introduces some basic notations and gives a short introduction into

prominent linear programming (LP) and integer programming (IP) techniques. Linear

programming is a technique for the optimization of a linear program. More formally, a linear

program is an optimization problem in which the objective function and constraints are linear

functions of variables. Linear programs which have a feasible solution and are not unbounded

always have an optimal solution. For an in-depth coverage of the subject we refer to books on

linear optimization [13, 28] as well as on combinatorial and integer optimization [82, 14].

A linear program (LP) is an optimization problem with a linear objective function

subject to a set of constraints expressed as linear (in)equalities. A linear program where all the

variables are required to be integers is an integer (linear) program (IP). We consider IP

problems of the form * + , where are vectors

and is a matrix, where all entries are integers. Further some important classical articles as

well as works on current topics regarding IP are given in [60]. We also recommend a more

informal paper about linear programming by Dantzig [29]. To process a linear program in

continuous variables, the most popular method is the simplex algorithm, which was proposed

by Dantzig in 1947, MIP-solvers such as CPLEX [41], etc. One of the most important

concepts in integer programming are relaxations, where some or all constraints of a problem

are loosened or omitted. Relaxations are mostly used to obtain related, simpler problems that

can be solved efficiently yielding bounds and approximate (not necessarily feasible) solutions

for the original problem. Embedded within a B&B framework, these techniques may lead to

effective exact solution techniques.

 Chapter I: Cooperative approaches

12

 * +

At last, it is said to be a mixed integer program (MIP) if only some variables are

restricted to be integer. A mixed integer program (MIP) would involve a combination of

integer and real-valued variables and can be written similarly as: *

 +. Maximization problems can be transformed into minimization

problems by simply changing the sign of c. In such cases, the linear program is called an

integer linear program. Further, if the variables can only take the values 0 or 1, then the

corresponding integer linear program is called a binary linear program. Large instances of

such LPs can be efficiently solved using simplex-based [27], MIP- solver, etc. Although there

exist scenarios where the simplex algorithm, MIP-solvers, etc. show an exponential runtime

[65] its average runtime is rather polynomial and it is known to be highly effective in practice.

I.2.2 Dynamic programming

The dynamic programming approach is a useful tool for solving some combinatorial

optimization problems. The basic idea was first introduced by Bellman and presented in [12]. This

approach consists of:

(1) Breaking a problem up into simpler sub-problems,

(2) Solving these sub-problems,

(3) Combining the sub-solutions to reach the overall solution.

DP is typically applied to optimization problems and following conditions must hold

to successfully apply it: (parts of) the sub problems are overlapping, and recursively solving

the overall problem in a bottom-up fashion amounts to choosing the right sub problem

solutions (i.e. the problem exhibits an optimal substructure). Perhaps the most crucial part is

that the sub problems are not disjoint or independent anymore. This fact is exploited via

storing their solution’s values in some sort of table (or another systematic way) to efficiently

retrieve them at the re-occurrence of the sub problems. Hence memory is traded for

computational effort. Often the actual solution needs to be reconstructed afterwards, albeit it

is usually possible to already derive the required information during the solution process.

 Chapter I: Cooperative approaches

13

I.2.3 Branch and bound method

Branch and bound (B&B) methods are based on the principle of enumerating the

solution space of a given problem and then choosing the best solution [72, 77]. B&B is one of

the most popular methods to solve optimization problems in an exact manner. The

enumeration has a tree structure. Each node of the tree separates the search space into two

sub-spaces, until the complete exploration of the solution space [30]. However, there are three

aspects in a branch and bound method. They are: (i) Branching strategy, (ii) Bounding

strategy and (iii) Node selection strategy. The first branch and bound algorithm for the 0-1 KP

was proposed by Kolesar [67]. Several developments have been proposed later [56, 75].

I.2.4 Cutting plane

Gomory [45] proposed the cutting plane algorithm. The principle is to iteratively

refine the objective function by adding cuts. A cut can be defined as a constraint that excludes

a portion of the search space from consideration. This can reduce the computational efforts in

the search process of finding a global optimum solution. In practice it is crucial to have an

efficient method for separating cuts as usually a significant number of valid inequalities must

be derived until the cutting plane algorithm terminates.

I.2.5 Branch and cut method

The combination of B&B with cutting plane methods yields the highly effective class

of branch-and-cut algorithms which are widely used. Specialized branch-and-cut approaches

have been described for many applications and are known for their effectiveness. Cut

separation is usually applied at each node of the B&B tree to tighten the bounds of the LP

relaxation and to exclude infeasible solutions as far as possible. Branch and cut is a method of

great interest for solving various combinatorial optimization problems. This method is a result

of the integration between two methods:

(1) Cutting plane method,

(2) Branch-and-bound method .

 Chapter I: Cooperative approaches

14

The cutting planes lead to a great reduction in the size of the search tree of a pure branch and

bound approach. Therefore, a pure branch and bound approach can be accelerated by the

employment of a cutting plane scheme [25, 10, 70].

For small or moderately sized instances exact methods obtain optimal solutions and

guarantee their optimality. However, exact methods are unable to solve optimality large

instances. This has led researchers to discard exact methods in favour of (meta-)heuristic

methods. In fact, (meta-)heuristic methods generate high quality solutions in a reasonable

time but there is no guarantee of finding a global optimal solution.

I.3 Metaheuristics approaches

(Meta-)heuristics are a wide class of methods designed to solve approximately many

optimization problems. They are approximate algorithms that combine basic heuristic

methods into higher level frameworks to efficiently and effectively explore the search space

[83]. (Meta-)heuristics are designed to solve complex optimization problems; in fact, the

classical heuristics were not always effective and efficient, as they were time consuming or

there were some limitation to help them escape from a local optima. of them converge to the

optimal solution of some problems with an expected runtime. Several (meta-)heuristic

algorithms are studied in the literature such as variable neighborhood search (VNS) [81, 57],

tabu search (TS) [46], simulated annealing (SA) [64], genetic algorithm (GA) [47], particle

swarm optimization (PSO) [62], among others.

(Meta-)heuristic algorithms based a two strategies [92, 59] : (i) Diversification: that

explores the search space to avoid getting stuck in the same or similar areas of feasible space,

and (ii) Intensification: that emphasizes on concentrating search in the promising regions

previously found, in order to exploiting the potentials.

I.3.1 Simulated annealing

Simulated Annealing is probably one of the first metaheuristics with an explicit

strategy to escape from local optima [64]. The basic idea is to allow under some conditions

some movements resulting in solutions of worse quality in order to escape from local optima

and so to delay the convergence. In fact, at each iteration a random neighbor of is

 Chapter I: Cooperative approaches

15

generated and it is accepted as new current solution if its cost function value is lower than

that of the current solution. Otherwise it is accepted with a given probability , this

probability of accepting worse solutions decreased during the search process. In fact, the

probability of accepting worse solutions is controlled by two factors: the difference of the cost

functions and the temperature . In general, the probability is calculated following the

Boltzmann distribution:

 (() ()) (
 () ()

)

I.3.2 Variable neighborhood descent

Variable neighborhood descent (VND) is a metaheuristic method proposed in [81]

within the framework of variable neighborhood search methods, see [52]. The VND works

with neighborhood structures , , designed for a specific problem. It

starts with a given feasible solution as incumbent and sets . If an improvement is

obtained within neighborhood , the method updates the new incumbent and sets .

Otherwise, it increases the value of and the next neighborhood is considered. The method

stops when a local optimum for is found.

I.3.3 Iterated local search

Iterated Local Search (ILS) framework was defined by Stutzle [97]. An ILS review, its

variants, and its applications are detailed in [73]. The idea of iterated local search is very

simple. The ILS apply local search to a current solution until a local optimum is reached. In

order to overcome this local optimum a perturbation is realized to engender a new starting

solution for local search algorithm. The principle of perturbation has a big influence on the

process of the ILS method. In fact, if the perturbation is too weak, possibly, the algorithm

may not avoid the convergence to the same local optimum. Furthermore, a strong perturbation

would change the algorithm to a local search with multi starting solutions.

I.3.4 Variable neighborhood search

Variable neighborhood search (VNS) introduced by Mladenovic and Hansen [81].

VNS is based on the systematic the systemic change within neighborhood structures. In the

 Chapter I: Cooperative approaches

16

beginning of each problem resolution, a set of neighborhood structures * + of

cardinality k must be defined, where () the set of solutions in the neighborhood of .

Then, from a starting solution the algorithm increasingly uses complex moves to reach local

optima on all selected neighborhood structures. The main steps in VNS algorithm are:

shaking, local search and neighborhood move. In the shaking step, a solution is randomly

selected in the neighborhood of . The set of neighborhood structures for shaking phase

can be different from the neighborhood structures used in local search. The two well-known

search strategies employed as local searches are called first improvement and best

improvement. First improvement local search selects the first detected solution in ()

where is better than the current solution . The best improvement method consists in

selecting all improving solutions in (). Many variants are derived from the basic VNS

schemes [52]. The well-known are fixed neighborhood search, basic VNS, general VNS,

skewed VNS, cyclic VNS, nested VNS, and two-level VNS. These variants indicate that VNS

heuristics can be successfully applied to various types of NP-hard optimization problems.

I.4 Cooperatives approaches

 The interests about cooperative approaches have grown for the last few years where

they have proved their efficiency in solving optimization problems. Since (meta-)heuristics

cannot always find the global optimal solution, more and more cooperation schemes between

exact methods and (meta-)heuristics are realized. These hybridizations can provide high

quality results because they are able to exploit at the same time the advantages of both types

of methods.

In the following, we give a brief overview of the three main classifications of

cooperative approaches between exact and (meta-)heuristic methods that have been suggested

in the literature.

I.4.1 First classification

The Cooperative approaches between exact and (meta-) heuristics were firstly classified

in [36, 39] who summarized them into five classes:

 Chapter I: Cooperative approaches

17

(i) Using exact algorithms to explore large neighborhoods within local search

algorithms.

(ii) Using information of high quality solutions found in several runs of local search to

define smaller problems that are amenable for solution with exact algorithms.

(iii) Exploiting lower bounds in constructive heuristics.

(iv) Using information from integer programming relaxations to guide local search or

constructive algorithms.

(v) Using exact algorithms for specific procedures within hybrid (meta)heuristics

I.4.2 Second classification

Puchinger and Raidl [91] have developed the second classification which is divided

into two main classes: (i) Collaborative combination and (ii) Integration combination.

(1) Collaborative combination: this class includes hybrid algorithms in which exact

algorithm and (meta-) heuristic exchange information, but no algorithm is contained in

any other. In this case, both algorithms can be executed in two following cases

i. Sequential execution: in which one of the algorithms is completely executed

before the other. In other words, the (meta-) heuristic algorithm is executed as a

preprocessing before the exact method or the (meta-) heuristic algorithm is

executed as a post processing after the exact method.

ii. Parallel or Intertwined execution, where both (meta-) heuristic and exact

methods are executed in the same time, either in parallel or in an intertwined

manner by alternating between both algorithms.

(2) Integration combination: it is termed integrative because when one technique is

embedded inside other techniques, in which the first act as a master and the second is

seen as a functional component of the first. Obviously, two cases may be considered.

i. The first consists of incorporating an exact algorithm into a (meta-)

heuristic. A well-known strategy of this subclass is to solve relaxed

problems and to explore large neighborhoods in local search based (meta-

)heuristics by means of exact algorithms. Another common strategy is to use

an exact algorithm as an operator integrated in evolutionary (meta-

)heuristic.

 Chapter I: Cooperative approaches

18

ii. While the second case consists of embedding a (meta-)heuristic within an

exact algorithm specially in order to employ (meta-)heuristics to determine

incumbent solutions and bounds in branch and bound algorithm.

I.4.3 Third classification

Jourdan et al. [59] are proposed the third classification which can be used to categorize

any cooperative algorithm. There are two criteria selected for this classification of cooperation

between exact and (meta-) heuristic methods: (i) Low-level / high-level, (ii) Relay /teamwork.

(i) Low-level / high-level: in this criterion, the hybridization occurs when a given function of

an optimization algorithm is replaced by another algorithm. While, in the high level different

algorithms are self-contained.

 (ii) Relay/ teamwork: when a set of (meta-) heuristics is applied one after another, each one

using the solution of the previous one as its inputs, functioning in a pipeline fashion. In the

other hand, team hybridization represents a whole cooperation between several optimization

models, in which many algorithms, referred as agents, evolve in parallel and each algorithm

carries out a search in a solution space. There are four categories that can be derived from

this hierarchical classification

Low Level Relay Hybrid (LRH). that corresponds to the cooperative approach

wherein a given exact method is embedded into (meta-) heuristic method, or vice-versa. The

embedded method is executed sequentially. More precisely, the general method depends on

the results obtained by the embedded method. This class of cooperation is frequently used

when a (meta) heuristic is used to improve another exact method. For example, to provide a

local upper bound associated with each node of the search tree of a branch and bound algorithm, this

method can be used to complete the partial solution.

Few examples from literature belong to this category. Augerat et al. [8] developed a

LRH cooperation which is based on a branch and cut algorithm (B&C) to solve a capacitated

vehicle routing problem (CVRP). The efficiency of the BCA is significantly determinated by

the cutting plane generation which is very important issue. They introduce different

metaheuristic approaches to extract a set of violated capacity constraints of the relaxed

problem.

 Chapter I: Cooperative approaches

19

Low Level Teamwork Hybrid (LTH). contrarily to LRH cooperation, the embedded

method is executed in parallel with the general method; with this the performance of the

metaheuristics is improved a lot. This hybrid is very popular and has been applied

successfully to many optimization problems. Kostikas and Fragakis [69] proposed a

cooperative approach to embed a branch and bound algorithm (B&B) into genetic

programming (GP). Conventionally, genetic algorithm used recombination operators to

generate offspring. An original idea is to incorporate exact method, such as branch and bound

algorithm, into recombination operators to find the best offspring from a large set of

possibilities.

High Level Relay Hybrid (HRH). In HRH hybrid, numerous self-contained (meta-)

heuristics are executed in a sequence. The first case consists in starting (meta-)heuristic

approach before an exact algorithm. The (meta-)heuristic approach helps the exact method to

speed up the search. The idea consists to use good quality solution found by a (meta-)heuristic

as an initial upper bound for B&B method. For example, Klepeis et al. [66] proposed

cooperation between B&B algorithm and a conformational space annealing (CSA) to solve

the protein structure prediction. HRH cooperation helps to quickly found the active nodes

whose lower bound is greater than the upper bound. The second case consists in launching

exact algorithm before a (meta-)heuristic approach. Another method consists in using exact

algorithm to resolve optimally a relaxed version of the problem under consideration. Then, the

obtained solution is exploited to produce initial solution for a (meta)heuristic approach.

High Level Teamwork Hybrid (HTH). As already mentioned, HTH hybrid scheme

involves various self-contained metaheuristics performing a search in parallel and cooperating

to find an optimum. These various approaches cooperate by exchanging information between

them during the search process [24, 18]. In this context, if we consider the cooperation

between a branch and bound algorithm and a (meta) heuristic approach the following

information may be exchanged:

(i) From a (meta-)heuristic approach to a branch and bound algorithm; the best

solution found by the (meta-) heuristic approach is transmitted to branch and

bound algorithm in order to help this latter to prune the search tree efficiency.

This information is exchanged each time the best solution found is improved.

(ii) From a branch and bound algorithm to a (meta-) heuristic approach;

 Chapter I: Cooperative approaches

20

Nodes of the search tree of branch and bound algorithm with least-cost lower

bound represent good partial solutions. The lower bound is used to predict

potential interesting search regions. Indeed, these partial solutions are

completed and used by heuristic method as initial solutions.

I.5 Matheuristic approach

The cooperative framework between (meta-)heuristics and exact approaches have been

performed by many researchers during the last few decades. For instance, Puchinger and

Raidl, [91] studied collaborative combinations in which the algorithms exchange information

but are not part of each other, and integrative combinations in which one technique is a

subordinate embedded component of another technique. For instance, neighborhood search

techniques, such as Variable neighborhood descent (VND), Variable Neighborhood Search

(VNS) and its variants are proved to be very effective when combined with optimization

techniques based on the mathematical programming problem formulations [50]. More

precisely, (meta-)heuristic approaches and mathematical programming techniques are two

highly successful streams, so it is not surprising that the community tries to exploit and

combine the advantages of both. A new subclass of cooperative approaches appeared recently

within the term Matheuristics. Matheuristics combine (meta-)heuristics and approaches

relying on mathematical programming problem formulations. So a number of methods for

solving optimization problems which can be considered as matheuristics have emerged over

the last decades. Often, exact optimization method is used as the subroutine of the (meta-

)heuristics for solving a smaller sub problem [74]. This technique provides interesting results

as they take advantages of both types of methods [59]. A classification of algorithms

combining local search techniques and exact methods is given in [36, 91]. The focus is

particularly on the so called cooperative approaches using exact methods to strengthen local

search techniques. They can be viewed as matheuristics that combine (meta-)heuristics and

mathematical programming [50, 74]. Prandtstetter and Raidl [90] applied a matheuristic that

combines an integer linear programming with variable neighborhood search for the car

sequencing problem.

 Chapter I: Cooperative approaches

21

I.6 Conclusion

Hard combinatorial problem cannot be solved in an exact way within a reasonable

amount of time. Using (meta-)heuristic methods is the most important alternative to solve this

class of problems. (Meta-)heuristics approaches are efficient in the search space exploration in

a short computation time, but no guarantee about the high-quality solutions. Outlining the

advantages and disadvantages of different search techniques we terminate by pointing out the

importance of cooperative approaches that can benefit from their advantages while

minimizing their drawbacks.

In this thesis, we will be particularly interested in cooperative approaches can be viewed as

matheuristic that combine neighborhood search techniques and mathematical programming.

The following chapter will be devoted to introduce and solve a new variant and

extension of the knapsack problem with setup (KPS) that we call generalized multiple

knapsack problem with setup (GMKPS). In fact, in the empirical part of this thesis we will

attempt to develop original matheuristics approach to solve GMKPS and its variant MKPS

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

22

Chapter II

Cooperative approach for the generalized multiple

knapsack problem with setup

II.1 Introduction

In this chapter, we introduce and solve a new variant of knapsack problem with setup

(KPS) that we call general multiple knapsack problem with setup (GMKPS). Practical

applications of the GMKPS may be seen in production scheduling problems involving setups

and machine preferences. A real-life case study of KPS is considered in [21]. It is about a

leading manufacturer and supplier of hollow glass in the agro-alimentary glass packing

industry, that produces several types of products, including bottles, flacons, and pots with

different shapes. To change the production from one product class to another, the production

machinery must be setup and molds must be changed in the molding machine. There is no

setup between products in the same class. These changes in the manufacturing process require

significant setup time and costs. The company operates with a batch delivery policy; products

that are manufactured in the same period have the same shipping date. Accordingly, the

company needs to decide when to make orders so as to maximize the total profit. Hence, the

extension of KPS to multiple periods is a real case study of GMKPS. Prices vary according to

the customers’ expectation of products delivery date; i.e. some customers are willing to pay a

higher price for a short lead-time while others are willing to wait for their products in

exchange for lower prices. Thus, price, delivery period and total profit have very complex

connections that are of extreme interest to businesses today. Thus, we consider that orders

could be realized in multiple periods, and the products’ price depends on the orders’

completion time; i.e. penalties are added to the initial price in case products are not delivered

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

23

on-time. In addition, the products (items) could be classified into classes regarding their

setups; setup is null between products from the same class. The profit for order j of class i

processed in period t is , and varies for different periods, but the processing time stays

the same. To find the assignment of orders that maximizes the total profit, we have to

consider the marginal profit of each job, the current production capacity per period, and the

setup cost and time from orders. This realistic production scheduling problem is typically our

GMKPS case study. Particularly, we deal with multiple knapsack problem with setup (MKPS)

if only one setup for each class is allowed during the planning horizon i.e. orders in the same

class must be processed in the same period. We note that MKPS is provided in [104], but

there is no available benchmark set in the literature.

 The GMKPS can be seen as a generalization of classical knapsack problem (KP) [77]

where items belong to disjoint classes and can be processed in multiple knapsacks. The

selection of a class involves setup costs and resource consumptions (setup time), thus affects

both the objective function and the capacity constraint. Note that GMKPS has similarities

with several other existing problems in the literature:

- GMKPS is similar to KPS when considering one knapsack [103, 21; 63].

- The MKPS is a special case of GMKPS [104] when items from the same class

cannot be assigned to more than a knapsack.

- The multi-item capacitated lot-sizing problem with setup times and shortage costs

(MCLSSP) [1] is similar to GMKPS when considering one class of items and the

objective is to minimize the total cost induced by the production plan (unit

production costs, inventory costs, shortage costs and setup costs).

- The multi-item capacitated lot-sizing problem with times windows and setup times

(MCLSP-TW-ST) [38] is similar to GMKPS when considering one class of items

and the objective is to minimize the total cost (setup cost, production cost and

holding cost).

- The generalized quadratic multiple knapsack problem (GQMKP) [9, 3] is similar

to GMKPS, when additional profit is obtained if items j and j’ are selected for the

same knapsack, and ignoring the setup cost. The maximum number of knapsacks

to which the items from the same class can be assigned is a fixed parameter from 1

to the total number of knapsacks.

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

24

Other problems exist in literature and seem to have similarities with GMKPS, but they present

more differences than similarities:

- The multiple-choice multidimensional knapsack problem (MMKP) [54] is

different from the GMKPS. It ignores the setup variables (without y variables), and

consists of filling all knapsacks with exactly one item from each class.

- The multiple knapsack problem (MKP) is a special case of MMKP, when

considering one class [88].

- The multi-commodity, multi-plant, capacitated facility location problem (denoted,

PLANWAR) [102] is required to select the optimum set of plants and warehouses

from a potential set and plan production capacities, warehouse capacities and

quantities shipped. This problem is different from the GMKPS. It ignores the setup

capacity consumption (setup time) and adds the operating cost, where the objective

is to minimizing the total operating costs of the distribution network.

- The facility location-allocation problem (FLA) is a particular case of PLANWAR.

It ignores the operating costs and consists of defining the best allocation using (α,

β)-cost while minimizing the transportation cost [102].

For small and medium sized instances (with less than 10000 variables and 10000 constraints)

for similar problems than GMKPS, exact methods such as Branch and bound (Yang, 2006) and

Dynamic programming [21] converge to optimality. However, those exact methods are unable to solve

large instances in a reasonable time. This has led to discard exact methods in favour of approximated

methods such as Multi-start Iterated local search [9] and heuristics based tree search [63].

Nevertheless, metaheuristic methods generate solutions in a reasonable time, but with no guarantee of

performance. The purpose of this work is to provide an efficient solving approach for the GMKPS. We

introduce a mixed Integer programming (MIP) formulation that, due to the complexity of the GMKPS

(more than 60000 variables and 60000 constraints), cannot solve even small test instances (see section

5.3). In fact, it is usually difficult to assign items to the whole sets of knapsacks. In addition, the

consideration of the knapsack-dependent cost related to each class of products and the knapsack-

dependent profit associated to each item increases the complexity of the problem. Therefore, the

design of a new approach providing high quality solutions in a reasonable computing time is quite

challenging. An alternative to exact methods would be to develop a matheuristic by combining a meta-

heuristic with an exact solving technique: local search techniques to include classes to knapsacks and

integer programming (IP) to include items in each knapsack. Our matheuristic approach differs from

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

25

existing techniques by the use of the connection between metaheuristic and exact method relying on

an effective exploration of the solution space. Experimental results show the performance of the

proposed matheuristic on randomly generated instances of GMKPS and its particular case MKPS in

comparison to IP: higher quality solution (-0.37% for GMKPS and -0.04% for MKPS) and shorter

computation time (20 s vs 3522 s for GMKPS and 11s vs 2965s for MKPS).

The remainder of this chapter is organized as following: In Section II.2, the related

literature is presented. Section II.3 contains the mathematical formulations of GMKPS and

MKPS. In Section II.4, we propose a matheuristic combining variable neighborhood descent

(VND) and integer programming (IP) for GMKPS and MKPS. The experimental results and

their interpretations are reported in Section II.5. In Section II.6, we conclude the chapter and

give possible and future research ideas.

II.2 Literature review

To deal with the different variants of KP, exact techniques are introduced in the

literature. Martello and Toth [76] discussed an upper bound using lagrangian relaxation for

MKP. Pisinger [88] presented an exact algorithm using a surrogate relaxation to get an upper

bound, and dynamic programming to get the optimal solution. Sinha and Zoltners [95] used

two dominance rules for the linear multiple-choice KP to provide an upper bound for the

multiple-choice knapsack problem. Chebil and Khemakhem [21] provided an exact method

for KPS based on a dynamic program that outperforms the ILP on instances with up to 10,000

items. The time complexity of the dynamic programming grows exponentially with the

increasing size of problem. Michel et al. [80] developed an exact method based on a branch

and bound algorithm to optimally solve several KPS instances. Yang and Bulfin [103]

proposed also exact methods based on a branch-and-bound for KPS, but turns out to solve

large instances. Thus, Della et al. [32] suggested an exact approach to optimally solve the 0-1

knapsack problem with setups. The approach relies on an effective exploration of the solution

space by exploiting the presence of two levels of variables. It manages to optimality solve all

instances with limited computational time. Pferschy and Rosario [87] proposed an exact

method based on a dynamic programming motivated by the connection of KPS to a KP with

precedence constraints. This pseudo-polynomial algorithm can be stated with fewer variables

and constraints and turns out to outperform the recent dynamic programming approach

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

26

provided by Chebil and Khemakhem [21]. Moreover, it outperforms the exact approach

proposed in Della Croce et al. [32]. The dynamic programming and the Branch and Bound are

not practical for solving large problem instances of GMKPS, which is more complex than

KPS. Khemakhem and Chebil [63] provided a tree search based combination heuristic for

large instances of KPS, but provided less performance results in comparison to dynamic

programming. Freville and Plateau [42] provided greedy algorithm and reduction methods for

multiple constraints 0-l linear programming problems. Dogan et al. [33] proposed a genetic

algorithm solution based approach and Tlili et al. [99] proposed an iterated variable

neighborhood descent hyper heuristic for the quadratic multiple knapsack problems (QMKP).

Both exact algorithms and metaheuritics present advantages and drawbacks, when

dealing with complex problems, in particular different variants of KPS. The hybridization

technique between metaheuristics and exact approaches have been performed by many

researchers during the last few decades [91]. This technique provides interesting results as

they take advantages of both types of methods [59]. A classification of algorithms combining

local search techniques and exact methods is given in [36, 91]. The focus is particularly on the

so called hybrid methods using exact methods to strengthen local search techniques. They can

be viewed as matheuristics that combine metaheuristics and mathematical programming [50,

24]. Prandtstetter and Raidl [90] applied a matheuristic that combines an integer linear

program with variable neighborhood search for the car sequencing problem. Burke et al. [17]

studied a hybrid model of Integer Programming and Variable Neighborhood Search for

Highly-Constrained Nurse Rostering Problems. Fernandes and Lourenco [39] applied hybrid

local search heuristics with exact algorithms to approximately solve different combinatorial

optimization problems. Vasquez and Hao [100] proposed a new hybrid approach combining

linear programming and tabu search to approximately solve the MKP problem. They

considered a two-phased algorithm that first uses Simplex to solve exactly a relaxation of the

problem and explores efficiently the solution neighborhood by applying a tabu search

approach. Lamghari et al. [71] proposed a hybrid method based on linear programming and

variable neighborhood descent for scheduling production in open-pit mines. Adouani et al. [2]

applied a matheuristic combining VNS with IP to solve the multiple choice knapsack problem

with setup (MCKS) and showed its efficiency for large instances (more than 60000 variables

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

27

and 60000 constraints) in comparison to IP with -0.11% as gap of objective value and 13 s vs.

2868 s as difference in computation time.

Local search techniques have proven their efficiency in several combinatorial

problems and have been used within hybrid methods for several problems [100, 37, 91].

Particularly, the Variable Neighborhood Descent (VND) is a method based on a systematic

change of the neighborhood structures. It is introduced by Mladenović and Hansen [81] and

has proven its efficiency on different scheduling problems: unrelated parallel machines with

setup times [40], capacitated vehicle routing problem [22], etc.

 In this chapter, we propose a new matheuristic approach combining VND and IP

(VND&IP) to solve the (G)MKPS. The provided approach relies on an effective exploration

of the solution space by exploiting the partitioning of the variables set into two levels. The

proposed approach solves approximately, all the instances of (G)MKPS (more than 60000

variables and 60000 constraints) in a limited time in comparison to IP (20 s vs 3522 s for

GMKPS and 11s vs 2965s for MKPS). It provides good quality solutions with a negative gap

in comparison to IP (-0.37% for GMKPS and -0.04% for MKPS) (see Tables II.4 and II.5 in

Section II.5).

II.3 Problem description

We consider a set of knapsacks each with a capacity , * + and a set of

 classes of items. Each class * + consists of items. Let , negative integer

number (< 0), denote the setup cost of class in knapsack , and , a positive integer

number (), denote the setup capacity consumption of class Each item * + of

a class has a profit (i * N+ j * }, t * T+) and a capacity consumption

 (i * N+ j * }). For classes and items assignment to knapsacks, we consider

two sets of binary decision variables and , respectively. The variable is equal to 1 if

knapsack includes items belonging to class and 0 otherwise. The variable is equal to 1

if item of class is included in knapsack and 0 otherwise. We propose the following

formulation of the MKPS problem contains T+T*S+S constraints and T*N+T*S variables,

where S=∑

 :

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

28

 ∑∑(∑

) ()

s.t.

∑(∑)

 * + ()

 * + * + * + ()

∑

 * + * + ()

 * + * + * + * + ()

Equation (1) represents the objective function that is to maximize the profit of selected

items minus the fixed setup costs of selected classes. Constraint (2) guarantees that, for each

knapsack * +, the sum of the total weight of selected items and the class setup

capacity consumption do not exceed the knapsack capacity . Constraint (3) requires that

each item is selected only if it belongs to a class that has been setup. Constraint (4) guarantees

that each item is selected and assigned to one knapsack at most. Constraint (5) ensures that the

decision variables are binary.

The MKPS is a particular case of GMKPS. To get the mathematical formulation for

the MKPS, we keep the objective function given in (1), constraints (2), (3) and (5), and

replace constraint (4) by constraint (6) because items from the same class cannot be processed

in more than one knapsack.

∑

 * + ()

We note that this mathematical formulation of MKPS contains T+T*S+N constraints

and T*N+T*S variables.

Our mathematical modeling of GMKPS can be seen as a generalization to T knapsacks

of existing mathematical model for KPS [103, 21, 63, 87], with additional constraint (4). We

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

29

note that the mathematical formulation of KPS problem contains 1+S constraints and N+S

variables.

Using IP to solve GMKPS and MKPS shows its limitation due to the complexity of the

problems (for big instances with up to 60000 variables and 60000 constraints). We show later

in the experimental results (Section II.5) that by using IP, only 38 instances (among 360) of

MKPS and 7 instances (among 360) of GMKPS are solved to optimality in less than one hour

CPU time. For the rest, the computation terminates with an out of memory or is stopped in

one hour. Thus, we decided to invest in the development of a matheuristic approach

combining VND and IP. We explain our new approach in the next section.

II.4 Matheuristic VND&IP

This chapter contains a new matheuristic combining VND with IP. The main idea of

our matheuristic is to decompose the original problem into two problems. The first problem

assigns classes to knapsacks (determine the setup variables) using a VND that transforms

GMKPS (or MKPS) into several independent KPs. Three types of moves have been

considered within the VND: SWAP, INSERT and DROP/ADD. The second problem solves

each KP using IP (use CPLEX 12.7) that determines the values of within a very short

computation time. For efficiency issue, we apply the IP only if the search space is promising

by comparing its result to an upper bound that we provided later. The found values of

and yield a feasible solution to GMKPS.

The approach starts with a construction heuristic called reduction-based heuristic

(RBH) that provides a good initial solution. Then, three local search procedures (k

* }) are considered within a loop until no further improvement is registered. These local

search procedures are obtained by combining each of the movements SWAP, INSERT and

DROP/ADD with IP, respectively i.e. : SWAP&IP, : INSERT&IP and

 DROP/ADD&IP. Algorithm II.1 shows the whole framework of our matheuristic.

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

30

Algorithm II.1: VND&IP

 : Instance data.

 : A feasible solution.

Apply the RBH heuristic to get the initial solution ;
set
Do

 ();
 If (() > f ())

 Else

 EndIf

 While ()

In the sequel, we detail the construction heuristic RBH, the calculation of the upper

bound for , - that conditions the application of IP after each local search, and the

local search techniques SWAP&IP, INSERT&IP, and DROP/ADD&IP.

II.4.1 Initial feasible solution

To generate the initial solution, we use RBH, which is composed of three successive

phases:

- First phase: We reduce the size of an instance of GMKPS so that all the

elements of each class * + are being replaced by a jumbo item (group of

items). This item is characterized by a weight
 and a profit

 with

∑

 and ∑

 * + * + In addition to variable

 we consider variable is equal to if the jumbo item (whole group) of class

 is placed in the knapsack t and 0 otherwise. In fact, as the total volume of the

item i can exceed the total capacity of a knapsack t, the variables are relaxed

i.e. (see second phase) and variables remain binary to identify the

potential classes to be assigned to knapsacks.

Consequently, the reduced GMKPS (denoted by) can be expressed

mathematically as follows:

 ∑∑(
) ()

s.t.

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

31

∑(

) * + ()

 * + * + (9)

∑

 * + ()

 * + * + * + ()

Here, the objective function (7) maximizes the sum of profits related to the selected

jumbo items minus the costs induced by the selected classes. The capacity constraint (8)

guarantees that the sum of weights for the selected items and classes does not exceed the

capacity value . Constraint (9) requires that each item is selected only if it belongs to a

class that has been setup. Constraint (10) guarantees that each jumbo item is selected and

assigned to one knapsack at most. Constraint (11) ensures that the decision variables are

binary.

- Second phase: It is based on the fixing technique recently proposed by Della et al.

[32]. We relax constraint (11) so that * + (only the

 variables are binary). The mixed integer programming for the is

optimally solved with CPLEX solver, which provides a feasible combination

of denoted by 0-1 vector (t {1,…,T}). We construct the set of classes

 ith
 * * + + and

 * * +

 + . is not guaranteed to be optimal for GMKPS.

- Third phase: once the classes are chosen, GMKPS boils down to several

independent standard KPs (denoted , -). Even if KP is known to be

weakly NP-Hard, in practice it is well handled by nowadays ILP solvers [61, 78,

77]. Thus, we get the following model for the , - as a sub problem of

GMKPS and equivalent to a classical binary KP problem:

 , -:

 ∑ ∑

 ()

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

32

 s.t.

∑ ∑

 ()

 * +
 * + ()

 where the constants: ∑

 , ∑ * +

 and

Equation (12) represents the objective function for , -. The capacity

constraint (13) guarantees that the sum of weights for the selected items does not exceed the

capacity value . Constraint (14) ensures that the decision variables are binary.

We solve each of the , - problems using CPLEX solver. We note the

solution of , - and its profit. We deduce the initial solution for GMKPS

 ⋃

 and its corresponding profit ∑

 . The GMKPS solution is

represented by set of variables Y= { , }, and a set of

variables * ; +. RBH is applied in the same

way when dealing with the MKPS, where the reduction of MKPS () is expressed

mathematically by equations (7) – (9), (11) and (15):

∑
 * + (15)

In addition to RBH, we consider two other heuristics: Linear Programming based

Heuristic (LPH) [105] and Greedy Heuristic (GH) [5]. In our problem, the LPH heuristic

is composed of two main phases. We use a CPLEX solver along the procedure of our

LPH: In the first phase, we consider again the model GMKPS and remove the integrality

constraints on variables . We limit CPLEX computation time to 500 seconds to obtain

an initial solution . The obtained combination is denoted by 0-1 vector ̅. In the

second phase, the binary GMKPS [̅- is solved to obtain a feasible solution . The GH

heuristic is to build iteratively a feasible solution. In our problem this heuristic is

composed of two main phases. In the first phase, the variables are fixed randomly. In

the second phase, the partial feasible solution obtained in the previous phase is completed

by inserting the items one by one to each knapsack from the set of items that are listed in

the decreasing order of their ratio = / . If the current knapsack is saturated, then

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

33

we go to the next knapsack and reapply the two phases on the rest of items, and so on until

the saturation of all the knapsacks.

We give in next section an illustration about how the initial solution is obtained

using our RBH on a small instance :

Illustration example.

Let consider an example of GMKPS defined by:

 , , -

 , -

 ,, - , --

 , -

 ,* + * + * + * +-

 ,,* + * + * + * +-

 ,* + * + * + * +--

We apply the reduction process to get the :

 , -

 ,, - , --

 , -

 , -

 ,, - , -]

We solve the MIP (only the variables are binary) of the and get the

following result:

 * ⏞

 ⏞

}

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

34

 * ⏞

 ⏞

 ⏞

 ⏞
 ⏞

 ⏞

 ⏞

 ⏞

 ⏞
 ⏞

+

We can see that the knapsack 1 is set up to accept only items from class 1, and the

knapsack 2 is set up to accept only items from class 2. We apply separately:

- GMKPS[] i.e. IP(1), with a capacity , - , - , , -, -

- GMKPS[] i.e. IP(2), with a capacity , - , - , , -, -

We obtain the solution X1 for the GMKPS[], and the solution X2 for the

GMKPS[]:

- * ⏞

 ⏞

 ⏞

 ⏞
 ⏞

}, with .

- * ⏞

 ⏞

 ⏞

 ⏞
 ⏞

+

Thus the initial solution generated by the RBH is:

- * +.

- .

II.4.2 Upper bound for , -

Dantzig [31] provided an upper bound for KP. We adapt this upper bound to our

problems and provide a new upper bound for the one dimensional knapsack

problems , - and , -. This upper bound is used to decide whether to apply IP

or not after the local search in order to explore only fruitful search spaces. It is the same for

 , - and , -. We apply the following successive steps to obtain this upper

bound:

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

35

- Step1: Let I denote the set of items of classes
 sorted in descending order of

their efficiency ratio

 * +

- Step2: Assign items from I one by one until saturation of the knapsack t, i.e., Stop

at the first item i’j’ that cannot be inserted due to capacity saturation of

 , - (or , -).

- Step3: The upper bound of , - (or , -) is

 ∑

 where ∑

 where I’ is the

set of assigned items and the constants: ∑

 ∑

 .

II.4.3 SWAP&IP local search

A Swap-based local search requires the definition of a neighborhood structure using

simple moves. The considered swap permutes two variables
 and

 (

* + * + * +. We change the value of fours setup variables

from 1 to 0 and vice versa. A new , - is obtained. In order to save computational

effort, before applying IP, we calculate the sum of upper bounds of the new classical

knapsacks , - and , - () and compare it with the total

profit of the two knapsacks before Swap move (=). In case > , we apply

IP to optimally solve the new classical knapsacks , - and , - respectively,

and the best solution is taken as a new initial solution for a next swap process. In case

 , the search space is not promising as no better solution can be obtained, thus IP is not

applied and we proceed to the next step. The procedure is terminated once no improvement is

obtained. Algorithm II.2 details the SWAP&IP procedure.

Algorithm II.2: ()

 ;

S’S;

 While do

 ;

 For t to do

 (
); // Number of classes in knapsack t.

 For to n do

 , -;

 For to do

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

36

 (
); // Number of classes in knapsack k.

 For to m do //Swap class i by classes j.

 , -;

 () then

 () () ; //apply IP to solve knapsacks t and k

 (
) then

 ;
 EndIf

 EndIf

 EndFor

 EndFor

 // New starting solution

 EndFor

 EndFor

 EndWhile

II.4.4 INSERT&IP local search

The Insert-based local search is based on a neighborhood search which generates a

new solution by removing the class from knapsack t (change the value of the setup

variable
 from 1 to 0) and then inserting it into another knapsack k (change the value

of the setup variable
 from 0 to 1). We apply IP if (>) by the same way as

in the SWAP&IP procedure. The best solution is taken as a new initial solution for the next

insert-based local search. The procedure is terminated once no improvement is obtained.

Algorithm II.3 details the INSERT&IP procedure.

Algorithm II.3: ()

 ;

S’S;

While do

 For to do

 * +;
 (); // Number of knapsacks that contain class i

 For to do

 , -
 For to do

 If () then

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

37

 // Insert i in k and delete it from t

 If () then

 () (); // apply IP to solve knapsacks t and k

 If () then

 S ;
 EndIf

 EndIf

 EndIf

 EndFor

 // New starting solution

 EndFor

 EndFor

EndWhile

II.4.5 DROP/ADD&IP local search

The Drop/Add - based local search is composed of two phases that are applied

iteratively: First, Drop and Add moves between setup variables ⋃

 and

⋂

 are applied. We consider a fictitious knapsack T+1 that contains the non-selected

classes. It consists in commuting the value of one variable from 1 to 0 (Drop move) then

trying to improve the solution using a repair operator (Add move) to change the value of one

variable from 0 to 1. Second, the IP is applied if (>) to solve the classical

knapsacks , -. The procedure is terminated once no improvement is obtained.

Algorithm II.4 contains the DROP/ADD&IP procedure.

Algorithm II.4: ()

S’S;

While (do

 For

 (
) // Number of classes in knapsack t

 For

 , -;

  ⋂

 // T+1 : Fictitious knapsack that contains the non-selected classes

 (
) // Number of classes in the Fictitious knapsack T+1

 For do // Swap class i by free classes j

 , - ;

 in knapsack ;

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

38

 in knapsack ;

 If () then

 ();
 If (

) then

 Store the best // Best solution found

 End if

 End if

 End for

 S // New starting solution

 End for

 End for

End while

The SWAP&IP, INSERT&IP, and DROP/ADD&IP procedures are the same for the

two problems GMKPS and MKPS.

II.5 Computational experiments

Our approach is implemented and run using C language and CPLEX 12.7 solver on a

2.4 GHZ intel B960 computer with 4 GB of memory.

 Due to the unavailability of benchmark instances in the literature, we test our matheuristic

VND&IP on a set of randomly generated instances of GMKPS and MKPS with a total number

of knapsacks T in * +, all knapsacks are considered small (below the formula of bt),

total number of classes N in { +, and total number of items for each class i

in , - , - and , - (the instances of GMKPS and MKPS are available at the

following link: https://goo.gl/zK6yZn).We generate 360 instances in total: 10 instances for

each combination (). We consider the correlation between coefficients by using a

random generation scheme that resembles to the ones provided in [21] and [2] which makes

use of the following rules:

 The setup cost and capacity consumption are:

 ∑

https://goo.gl/zK6yZn

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

39

 ∑

W

 is selected with a uniform distribution in , -.

 is selected with a uniform distribution in , -

 , where is selected with a uniform distribution in , - .

 . ∑

 / where is selected with a uniform distribution in

, ∑

 -.

Before the experimentation (Section II.5.3), we provide in section II.5.1 a performance

analysis of the matheuristic components considering the set of 360 GMKPS instances that are

presented in this section II.5. In section II.5.2, we provide a sensitivity analysis regarding the

correlations between several coefficients and regarding the knapsacks tightness by applying

our approach on a new set of 13 GMKPS instances that are presented in the same section 5.2.

II.5.1 Performance analysis of the VND&IP components

We study here the performance of the main components of our matheuristics, mainly

the construction Heuristic RBH and the combination of the three local search techniques

SWAP&IP, INSERT&IP and DROP/ADD&IP.

In order to evaluate the performance of RBH, we compare it to GH and LPH heuristics

explained in section II.3.1. The RBH, GH and LPH heuristics are tested on all the instances

of GMKPS. Table II.1 shows the numerical results on average. The first column contains the

name of the heuristic. The second column contains the average of computational time. We

note that LPH is stopped at a limit of computation time equal to 500 s. The third column

contains the gap between the heuristic solution and the IP solution: ()

.

/

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

40

Table II.1. Comparison between RBH, GH and LPH: Average of GMKPS instances.

Table II.1 shows that RBH outperforms the other construction heuristics in terms of

computation time and solution quality.

We consider the application of our matheuristic with one local search technique (SWAP&IP),

two local search techniques (SWAP&IP and INSERT&IP), and three local search techniques

(SWAP&IP, INSERT&IP and DROP/ADD&IP). Figure II.1 shows a comparison between

these three combinations in terms of average Gap (%) with the IP for the fours instances sets

regarding the number of knapsacks. By adding INSERT&IP, we observe a slight advantage,

for all the set of instances, compared to using only SWAP&IP. However, by adding

DROP/ADD&IP, we observe a higher improvement with a gap that increases when the

number of knapsacks increases.

Figure II.1. Effect of VND components

Table II.1 and figure II.1 show that the RBH plays an important role in the overall

performance of the provided VND&IP approach: The initial solutions are close to the

solutions provided by IP with a gap lower than 1.73%. Figure II.1 shows the efficiency of the

other components of VND&IP as they ensure the improvement of the initial solutions

provided by the RBH in a very short time. Figure II.1 shows the clear superiority of the

VND&IP in comparison to IP, with the contribution of the three local search techniques

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

5 10 15 20

G
ap

 IP
 (

%
)

 Number of knapsack for GMKPS instances

P1

P1+P2

P1+P2+P3 (VND)

Heuristic CPU (s) Gap (%)

RBH 0.53 1.73 %

LPH 373.69 3.63 %

GH 0.98 7.032 %

P1 : SWAP&IP

P2 : INSERT&IP

P3 : DROP/ADD&IP

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

41

SWAP&IP, INSERT&IP and DROP/ADD&IP components respectively equal to 0.19% ,

0.01% and -0.37% on average.

II.5.2 Sensitivity analysis of GMKPS parameters

We study here the impact of several parameters values on the complexity of the

GMKPS: tightness of knapsacks and correlation between several coefficients.

For the sensitivity analysis regarding the correlation between coefficients, we consider

different possibilities:

(1) No correlation between coefficients: ; ; ;

 ; where ; ; and are uniformly generated in [10, 10000].

(2) Correlation between and coefficients: ; where r is uniformly

generated in [0,10] and the other parameters are uncorrelated.

(3) Correlation between coefficients of the same class: () ;

where r is uniformly generated in [0,10] and the other parameters are uncorrelated.

(4) Correlation between and : () ; where r is uniformly

generated in [0,10] and the other parameters are uncorrelated.

(5) Correlation between the coefficients of the same class: () ;

where r is uniformly generated in [0,10] and the other parameters are uncorrelated.

 To analyze the impact of these different correlation types, we consider two basic

instances with no correlations (1): a small instance with 10 knapsacks and a large instance

with 20 knapsacks. Then, we change each instance by including one correlation type at each

time and thus generate four additional instances from each basic instance. Tables II.2 reports

the numerical results. The first column reports the instance size. The correlation type (from

(1) to (5)) is reported in the second column. The notations (

 and) and report the solution found and the computational time,

respectively. We note that IP is stopped at a limit of computation time equal to one hour. The

columns () reports the solution gap between IP and VND&IP, calculated as

follows: () .

/.

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

42

Table II.2. Comparison between IP and VND&P for different levels of correlated instances

Best solution in bold, * for optimal solution, and - when IP exceeds the capacity of RAM memory or exceeds the CPU time limit

Table II.2 shows that IP solves to optimality small and large uncorrelated instances i.e.

correlation type (1). The VND &IP approach provides good quality solutions for uncorrelated

instances in a very short computation time: 43 sec for the small instance (vs 597 sec with IP)

and 101sec for the large instance (vs 1438 sec with IP). The IP slightly outperforms the

VND&IP when dealing with uncorrelated instances: the gap is equal to 0.002% for the small

instance and 0.006% for the large instance. The same phenomenon is observed with

correlation type (5).

Table II.2 shows that the IP cannot solve to optimality small and large correlated

instances with correlation types (2), (3) and (4); i.e. exceeds the capacity of RAM memory or

exceeds the CPU time limit (one hour). Our approach VND& IP solves the instances in very

reasonable computational time with an average gap equal to - for correlated instances

type (2), -0 for correlated instances type (3) and - for correlated instances

type (4). We note that the negative gap indicates that VND&IP outperforms IP. The VNS&IP

average computation time is 43 sec for small instances and 120 sec for large instances (vs

3600 sec with IP).

We conclude that the correlation of the profits with other parameters such as

weight, setup time, and setup cost, etc. makes the GMKPS more complex to solve i.e. for

small and large correlated instances with correlation type (2), (3) and (4), the provided

matheuristic VND&IP is more efficient and effective in comparison to IP.

Instance size Correlation type
IP VND&IP

Gap (%)
 CPU CPU

Small

(1) 197234* 597 197231 43 0.002

(2) 1271563 - 3600 1271590 41 -0.002

(3) 2081984 - 3600 2081984 55 0.000

(4) 2321167 - 3051 2321180 34 -0.001

(5) 3830988* 546 3830988 57 0.000

Large

(1) 163129* 1438 163119 101 0.006

(2) 4405506 - 3600 4412796 139 -0.165

(3) 8696767- 3600 8696830 114 -0.001

(4) 3690520- 3600 3701007 105 -0.284
(5) 6732039* 2724 6732000 119 0.001

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

43

For the sensitivity analysis regarding the tightness of knapsacks, we consider three

instances with T = 10, N = 20, in [90, 110] and different sizes of knapsacks (tightness:

small, medium and large capacities):

- Small knapsack capacity: . ∑

 /

- Medium knapsack capacity: . ∑

 /

- Large knapsack capacity: . ∑

 /

where is selected with a uniform distribution in , ∑

 -.

In Table II.3, the first column presents the knapsack tightness of the three instances:

small, medium and large knapsacks. The next two columns show the results provided by the

IP and VND&IP.

Table II.3. Comparison between IP and VND&IP on three instances with different knapsack

tightness

Best solution in bold, * for optimal solution, and - when IP exceeds the capacity of RAM memory or exceeds the CPU time limit

 Table II.3 shows that IP cannot solve to optimality the instance with small knapsacks.

In addition, VND&IP outperforms IP i.e. the gap is negative for the small instance. IP solves

to optimality the instances with higher sizes (medium and large knapsacks). From the IP

computation time, we can conclude that by decreasing the knapsacks capacities, we increase

the GMKPS complexity. From the VND&IP computation time, we can remark that

matheuristic is stable with a computation time that does not variate regarding the knapsacks

sizes (128 sec on average).

The details of instances used for the sensitivity analysis are available in the following

link: https://goo.gl/zK6yZn

knapsack

tightness

IP VND&IP
Gap (%)

 CPU CPU

Small knapsacks 3315613- 3600 3315697 147 -0,002

Medium

knapsacks
9437042* 896 9436927 106 0,001

Large knapsacks 9437176* 84 9437051 123 0,001

https://goo.gl/zK6yZn

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

44

II.5.3 Experimentation

Table II.4 summarizes the results obtained by VND&IP and IP when solving the

GMKPS. Each line presents the average of 10 instances. The first three columns present the

number of knapsacks , the number

of . The next three columns show the

corresponding average of results provided by the IP, the average of results provided by the

matheuristic approach VND&IP and the average of the best upper bounds, of all the remaining

open nodes in the branch-and-cut tree, provided by CPLEX 12.7 (). The notations

 and report the solution found and the computational time, respectively. We note that

IP is stopped at a limit of computation time equal to one hour. Finally, the columns and

 report the gap between IP and VND&IP, calculated as follows: ()

.

/, and the gap between and VND&IP, calculated as

follows: () .

/, respectively.

Table II.4. Numerical results for GMKPS instances

 () () () ()

5

10

[40,60] 759992 3342 759994 0.000 5 760026

0.004

[60,90] 1166555 3600 1166558 0.000 6 1166572

0.001

[90,110] 1624997 3600 1625002 0.000 3 1625014

0.001

20

[40,60] 790962 3600 790961 0.000 4 790998

0.005

[60,90] 1228017 3259 1228019 0.000 4 1228039

0.002

[90,110] 1616006 3390 1616013 -0.001 5 1616025

0.001

30

[40,60] 913951 3244 913951 0.000 3 913985

0.004

[60,90] 114477 2942 1144937 -0.013 3 1144958

0.002

[90,110] 1703770 3242 1703833 -0.004 4 1703845

0.001

10

10

[40,60] 1445360 3600 1447096 -0.114 23 1447485

0.027

[60,90] 2364297 3600 2367911 -0.163 15 2368433

0.022

[90,110] 3083584 3600 3089097 -0.182 17 3089678

0.019

20

[40,60] 1591134 3600 1591549 -0.029 10 1592221

0.042

[60,90] 2467619 3600 2472900 -0.224 9 2473423

0.021

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

45

Table II.4 shows that VND&IP outperforms IP with a gap on average equal to -

 . In detail, the gap on average is - for , - for , -

 for , and - for . The CPU on average for VND&IP is about

s, which is very low in comparison to the average of CPU for IP that is equal to s. For

more detailed results, we note that VND&IP provides a solution equal to the one provided by

the IP for instances (7 optimal and 25 non-optimal) and provides better solutions than IP

for 319 instances (see Appendix A). Table II.4 shows that the gap between VND&IP and

 is 0.015% on average (0.002%, 0.025%, 0.018% and 0.014% for instances with 5,

10, 15 and 20 knapsacks, respectively).

[90,110] 3127235 3168 3131084 -0.123 11 3131550

0.015

30

[40,60] 1877750 3600 1878104 -0.02 6 1878724

0.033

[60,90] 2284554 3600 2286305 -0.078 8 2286893

0.026

[90,110] 3390820 3600 3394182 -0.101 10 3394729

0.016

15

10

[40,60] 2022211 3600 2038186 -0.787 44 2038778

0.029

[60,90] 3198410 3600 3232685 -1.087 43 3233324

0.020

[90,110] 4307956 3600 4356089 -1.129 65 4356513

0.010

20

[40,60] 2281419 3600 2287007 -0.259 26 2287586

0.025

[60,90] 3659753 3600 3673529 -0.375 23 3674123

0.016

[90,110] 4762369 3527 4778300 -0.347 23 4778814

0.011

30

[40,60] 2799889 3600 2801237 -0.048 22 2801916

0.024

[60,90] 3410638 3600 3419811 -0.283 27 3420318

0.015

[90,110] 5080972 3600 5089502 -0.174 18 5090030

0.010

220

10

[40,60] 2233779 3600 2257611 -1.068 19 2258214

0.027

[60,90] 3399647 3600 3424060 -0.723 28 3424686

0.018

[90,110] 4495295 3600 4538968 -0.973 22 4539506 0.012

20

[40,60] 2977524 3600 3003851 -0.906 47 3004414

0.019

[60,90] 4752263 3600 4794759 -0.897 45 4795246

0.010

[90,110] 6264952 3600 6331424 -1.063 43 6331902

0.008

30

[40,60] 3661944 3600 3678277 -0.437 16 3678795

0.014

[60,90] 4463184 3491 4502886 -0.903 41 4503397

0.011

[90,110] 6679246 3601 6726455 -0.717 36 6727034 0.009

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

46

Figure II.2. Computation time of VND&IP approach compared to IP for GMKPS

Among the 360 instances of GMKPS, IP finds the optimal solutions for 7 instances,

slightly outperforms the VND&IP for 9 instances, and for the remaining it terminates with

error: exceeds the capacity of RAM memory or exceeds the CPU time limit. Figure II.2 shows

the 7 instances solved at optimality are all with .

 Table II.5 summarizes the results obtained by VND&IP in comparison to those

obtained by IP when solving MKPS.

Table II.5. Numerical results for MKPS instances

0

600

1200

1800

2400

3000

3600

0 90 180 270 360

C
P

U
 (

s)

360 instances of GMKPS

IP exceeds the limit of time

IP exceeds the capacity of RAM

IP finds optimal solution

T=5 T=10 T=15 T=20

T=5: 82+ 00￭ 07▲

T=10: 88+ 02￭ 00▲

T=15: 89+ 01￭ 00▲

 T=20: 89+ 01￭ 00▲

 (s) () (s) ()

5

10

[40,60] 337066 2253 337066 0.000 1 337086

0.006

[60,90] 766837 2310 766842 -0.001 3 766872

0.004

[90,11

0]

550192 2479 550190 0.000 6 550203

0.002

20

[40,60] 258448 2965 258448 0.000 2 258469

0.008

[60,90] 871105 2051 871105 0.000 4 871121

0.002

[90,11

0]

493255 3241 493256 0.000 6 493267

0.002

30

[40,60] 421243 1731 421243 0.000 2 421270

0.006

[60,90] 808314 2104 808315 0.000 17 808331

0.002

[90,11

0]

559080 2746 559081 0.000 17 559091

0.002

10
10

[40,60] 562993 3204 563000 -0.001 3 563036

0.006

[60,90] 1480338 2497 1480398 - 0.004 15 1480439

0.003

[90,11

0]

1029024 3114 1029034 -0.001 5 1029052

0.002

__
 VND&IP

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

47

Table II.5 shows that VND&IP outperforms IP with a gap on average equal to -

 . In detail, the gap on average is about for , - for , -

 for , and - for . The CPU on average for VND&IP is about

11 s, which is very low in comparison to the average of CPU for IP that is equal to 2965 s. For

more detailed results, we note that VND&IP provides a solution equal to the one provided by

IP for 76 instances (38 optimal and 38 non optimal) and provides better solutions than IP for

279 instances (see Appendix A). Table II.5 shows that the gap between VND&IP and

20

[40,60] 457898 2902 457903 -0.001 5 457941

0.008

[60,90] 1713710 3170 1713720 -0.001 12 1713756

0.002

[90,11

0]

938588 2941 938596 -0.001 7 938617

0.002

30

[40,60] 715887 3600 715893 -0.001 3 715939

0.006

[60,90] 1551262 3471 1551706 -0.025 12 1551736

0.002

[90,11

0]

1086450 3510 1086842 -0.040 21 1087103

0.024

15

10

[40,60] 691178 2967 691189 -0.001 5 691248

0.009

[60,90] 1818377 1971 1818396 -0.001 12 1818426

0.002

[90,11

0]

1 370342 3083 1370359 -0.001 16 1370653

0.021

20

[40,60] 658534 3210 658548 -0.002 7 658611

0.010

[60,90] 2455626 3373 2456683 -0.044 12 2457080

0.016

[90,11

0]

1250502 3303 1251095 -0.042 16 1251402

0.025

30

[40,60] 1046226 3600 1047317 -0.107 8 1047381

0.006

[60,90] 2301745 3603 2302191 -0.019 20 2302725

0.023

[90,11

0]

1609 642 3444 1613672 -0.199 18 1613929

0.016

220

10

[40,60] 812934 2991 812955 -0.003 5 813014

0.007

[60,90] 1945837 2465 1945857 -0.001 8 1946348

0.025

[90,11

0]

1616332 2820 1616357 -0.002 15 1616643

0.018

20

[40,60] 774016 2380 774284 -0.034 6 774348

0.008

[60,90] 3051810 3442 3055666 -0.142 23 3056042

0.012

[90,11

0]

1681049 3339 1686948 -0.368 19 1687326

0.022

30

[40,60] 1 358070 3487 1359224 -0.084 7 1359279

0.004

[60,90] 2918388 3575 2922240 -0. 133 22 2922753

0.018

[90,11

0]

2138531 3602 2146704 -0.353 30 2146999

0.014

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

48

 is 0.010% on average. The gap increases when the number of knapsacks increases

(0.004%, 0.007%, 0.015% and 0.015% for instances with 5, 10, 15 and 20 knapsacks,

respectively).

Figure II.3. Solution time of VND&IP approach compared to IP for MKPS

Among the 360 instances of MKPS, IP finds the optimal solutions for 38 instances,

slightly outperforms the VND&IP for 5 instances, and for the remaining it terminates with

error: exceeds the capacity of RAM memory or exceeds the CPU time limit. Figure 3 shows

that the majority of instances solved at optimality are with (31 with , 4 with

 , 2 with and 1 with). In addition, we can see that MKPS becomes

more difficult when increasing the number of knapsacks T. In fact, the number of times that

IP terminates with exceeding the capacity of RAM or exceeding the time limit increases from

59 with to 89 with

Figure II.4 shows that the results provided by the VND&IP approach are better than

those provided by the IP for both GMKPS and MKPS. The Gap (%) increases when the

number of knapsacks increases. A slight improvement is obtained by our VND&IP for MKPS

instances (~ -0.04%), and a higher improvement is obtained for the GMKPS instances (~ -

0.36%).

0

600

1200

1800

2400

3000

3600

0 90 180 270 360

C
P

U
 (

s)

360 instances of MKPS

IP exeeds the limit of time

IP exceeds the limit of RAM

IP finds optimal solution

 T=5 T=10 T=15 T=20

T=5: 53+ 06￭ 31▲

T=20 : 64 + 25 ￭ 01▲

T=10 : 62+ 24￭ 04▲

T=15 : 59+ 29￭ 02▲

__ VND&IP

 Chapter II: Cooperative approach between VND and IP for solving (G)MKPS

49

Figure II.4. Quality solution of VND&IP for GMKPS and MKPS

The detailed results about the GMKPS and MKPS are available in Appendix A and the

following link: https://goo.gl/Knz6Bo.

II.6 Conclusion

This chapter introduces a new variant of the knapsack problem with setup (KPS). We

refer to it as the generalized multiple knapsack problem with setup (GMKPS). GMKPS

originates from industrial production problems where the items are divided into classes and

processed in multiple periods. We refer to the particular case, where items from the same

class cannot be processed in more than one period, as the multiple knapsack problem with

setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and

provide an upper bound expression for the knapsack problem. We then propose a matheuristic

that combines variable neighborhood descent (VND) with integer programming (IP). We

consider local search techniques to assign classes to knapsacks and apply the IP to select the

items in each knapsack. Computational experiments on randomly generated instances show

the efficiency of our matheuristic in comparison to the direct use of a commercial solver.

For future work, we expect to improve and generalize our matheuristic to deal with

other variants of Knapsack problems such as Generalized Quadratic Multiple Knapsack

Problem.

-1

-0,8

-0,6

-0,4

-0,2

0

5 10 15 20

G
ap

 IP
 (%

)

Number of knapsack for GMKPS and MKPS instances

GMKPS

MKPS

https://goo.gl/Knz6Bo

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

50

Chapter III

Cooperative approach for the Multiple-Choice

Knapsack Problem with Setup

III.1 Introduction

The 0-1 Multiple-choice Knapsack Problem with Setup (MCKS) is described as a

knapsack problem with additional setup variables discounted both in the objective function

and the constraint. Practical applications of the MCKS may be seen in production scheduling

problems involving setups and machine preferences. A case study of knapsack problem with

setup (KPS) is provided in [32]. To extend the KPS to MCKS, we consider that items from

the same family (or class) could be processed in multiple periods.

The MCKS is NP-hard problem, since it is a generalization of the standard knapsack

problem (KP) [77]. MCKS reduces to a KP when considering one class, and no setup

variables. The KPS is a particular case of MCKS, when the number of period is equal to one

(T=1) [7, 21, 63], etc. To the best of our knowledge, Yang [104] is the unique author who

dealt with MCKS. He provided an exact method based on a branch and bound for the MCKS,

but it has no availability of benchmark instances in the literature. To deal with the different

variants of KP, exact techniques are introduced in the literature such as branch and bound

algorithm [35, 67], lagrangian decomposition [15], and dynamic programming [87]. Chebil

and Khemakhem [21] provided an improved dynamic programming algorithm for KPS. Akinc

[6] studied approximated and exact algorithms to solve fixed charge knapsack problem.

Michel et al. [80] developed an exact method based on a branch and bound algorithm to solve

KPS. Della et al. [32] provided an exact approach for the 0-1 knapsack problem with setups.

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

51

Al‐Maliky et al. [7] studied a sensitivity analysis of the setup knapsack problem to

perturbation of arbitrary profits or weights. Dudzinski and Walukiewicz [35] studied exact

methods such as branch-and-bound and dynamic programming for KP and its generalizations.

Martello and Toth [76] discussed an upper bound using Lagrangian relaxation for multiple

knapsack problem (MKP). Pisinger [88] presented an exact algorithm using a surrogate

relaxation to get an upper bound, and dynamic programming to get the optimal solution.

Sinha and Zoltners [95] used two dominance rules for the linear multiple-choice KP to

provide an upper bound for the multiple-choice knapsack problem.

(Meta-)heuristics approaches have been also developed such as reactive local search

techniques [54], tabu search [49], particle swarm optimization [11], genetic algorithm [26],

iterated local search [25], etc. Khemakhem and Chebil [63] provided a tree search based

combination heuristic for KPS. Freville and Plateau [42] provided a greedy algorithm and

reduction methods for multiple constraints 0-l linear programming problem. Tlili et al. [99]

proposed an iterated variable neighborhood descent hyper heuristic for the quadratic multiple

knapsack problems.

 The cooperation technique between exact and (meta-)heuristics approaches have been

performed by many researchers during the last few decades. This technique provides

interesting results as it takes advantages of both types of approaches [59]. A classifications of

algorithms combining local search techniques and exact methods are provided in [36, 91]. The

focus in these chapter is particularly on the so called matheuristic approach combining local

search techniques with integer programming (IP). Fernandes and Lourenco [39] applied

cooperative approach to solve different combinatorial optimization problems. Vasquez and

Hao [100] proposed a new cooperative approach combining linear programming and tabu

search to solve the MKP problem. They considered a two-phased algorithm that first uses

Simplex to solve exactly a relaxation of the problem and then explore efficiently the solution

neighborhood by applying a tabu search approach. Several works of literature have

considered a combination of cooperative approach combining variable neighborhood search

with exact technique. Prandtstetter and Raidl [90] applied a cooperative approach that

combines an integer linear programming with variable neighborhood search for the car

sequencing problem. Burke et al. [17] studied a cooperative approach of Integer

Programming and Variable Neighborhood Search for Highly-Constrained Nurse Roistering

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

52

Problems. Lamghari et al. [71] proposed a cooperative method based on linear programming

and variable neighborhood descent for scheduling production in open-pit mines. To the best

of the our knowledge, the combination of VNS with exact technique has never been

considered for KPS problem.

 The remainder of this chapter is organized as following: Section III.2 contains the

mathematical formulations of MCKS. In Section III.3, we propose a cooperative approach can

be seen as a matheuristic that combine Variable Neighborhood Search (VNS) and integer

programming (IP) for MCKS. The experimental results and their interpretations are reported

in Section III.4. In Section III.5, we conclude the chapter and give possible and future

research ideas

III.2 Problem description

The Multiple Choice Knapsack Problem is defined by knapsack capacity b with a

set of T divisions (periods), where each division t {1, …,T}, and a set of classes of items.

Each class * + consists of items. Let , negative number, de note the setup cost

of class in division , and let , a positive number, denote the setup capacity consumption

of class Each item * + of a class has a profit
 and a capacity

consumption
 . For classes and items assignment to divisions of knapsack, we consider

two sets of binary decision variables and , respectively. The variable is equal to 1 if

division includes items belonging to class and 0 otherwise. The variable is equal to 1 if

item of class is included in division and 0 otherwise. We propose the following

mathematical formulation for the MCKS:

 ∑∑(∑

) ()

∑∑(∑)

 ()

 * + * + * + ()

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

53

 ∑

 * + * + ()

 * + * + * + * + ()

Equation (1) represents the objective function that is to maximize the profit of selected

items minus the fixed setup costs of selected classes. Constraint (2) guarantees that the sum of

the total weight of selected items and the class setup capacity consumption does not exceed

the knapsack capacity . Constraint (3) requires that each item is selected only if it belongs to

a class that has been setup. Constraint (4) guarantees that each item is selected and assigned to

one division at most. Constraint (5) ensures that the decision variables are binary.

Using CPLEX 12.7 to solve MCKS shows its limitation due to the complexity of the

problems. We show later in the experimental results (Section II.4) that by using CPLEX, only

27 instances of MCKS among 120 are solved to the optimality in less than 1 h CPU time. For

the rest, the computation terminates with an out of memory or is stopped at 1 h. Thus we

decided to invest in the development of a cooperative approach can be seen as a matheuristic

combining variable neighborhood search and integer programming (VNS&IP). We explain

our new approach in the next section.

III.3 Matheuristic approach for MCKS

Local search techniques have proven their efficiency in several combinatorial

problems and have been used within cooperative approaches for several problems [36, 33].

Particularly, the Variable Neighborhood Search (VNS) is a method based on a systematic

change of the neighborhood structures. It is introduced by Maldenovic and Hansen [81] and

has proven its efficiency on different scheduling problems: location routing [57] car

sequencing problem [90], for the recent surveys on VNS see [51, 52].

This chapter contains a new matheuristc approach combining VNS with IP. The main

idea of our cooperative approach is to decompose the original problem in to two sub-problems

(two levels). The first problem (first level) is to assign classes to the divisions of knapsack

(determine the setup variables) using a VNS approach allowing the transformation of

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

54

MCKS into classical KP. Two movements have been considered within the VNS approach:

local search procedure (LS) and a perturbation mechanism which represents the core idea of

VNS, is applied to variables. The perturbation phase aims to change the neighborhoods

structure,), when the algorithm is trapped at a local optimum. The second problem (second

level) is to solve the classical KP by considering the IP that determines the values of with

a very short computation time. For efficiency issue, we apply the IP only if the search space is

identified to be promising by comparing its result to an upper bound that we provided later.

Note the found values of and yield a feasible solution to MCKS.

The approach starts with a construction heuristic called reduction-based heuristic

(RBH). Then, the obtain solution is improved by using a Local search technique with

integer programming (LS&IP) procedure. At each iteration, Perturb&IP and LS&IP are

successively applied to the best current solution . More precisely, A set of neighborhoods

 , is initialized. At each iteration the perturbation mechanism

PERTURB&IP is applied based on neighborhood to obtain new solution , then the two

local search SWAP&IP and INSERT&IP are applied to obtain a new solution . If this new

solution is better than S, then this latter is updated and the process continues with the first

neighborhood (S), otherwise the same steps are repeated with the next neighborhood .

The algorithm works until a termination condition is satisfied. Algorithm III.1 shows the

whole framework of our approach.

 Algorithm III.1 : VNS&IP (,)

 RBH(Data);

 , /*neighborhood structure */

 LS&IP(); /*Local search*/

 

 ()

 

  () /* Random neighbor*/

  &IP()
 If (>) then S ; k1;

 else k k+1;

 (=)
  ()
End while
 return S ;

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

55

In the sequel, we detail the construction heuristic RBH, the calculation of the upper

bound for IP that condition the application of IP after each local search move.

III.3.1 Initial feasible solution

To generate the initial solution, we adapt and extend a construction heuristic is based

on a reduction based heuristic (RBH) recently proposed in chapter II. For illustration, we

considered the MCKS problem and explain below the three successive phases of our RBH:

- First phase: We reduced the MCKS so that every class contains a single object (

 * +). This object is characterized by a weight and a profit with

 ∑

 and ∑

 * + * + Consequently, the

reduced MCKS () can be expressed mathematically as follows:

 ∑∑(
) ()

 s.t.

∑∑(

) * + * + ()

 * + * + * + (8)

∑

 * + * + ()

 * + * + * + ()

- Second phase: we relaxed constraint (8) so that * +. The relaxed

model of is solved using IP, which gives the values of . We constructed the

set of classes

 ith
 * * + + and

 *

* + + .

- Third phase: We considered the following IP for the , - as a KP problem:

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

56

 ∑ ∑ ∑

 ()

 s.t.

 ∑ ∑ ∑

 ()

 * +
 * + ()

Where ∑

 , and ∑ * +

 .

We solved the , - problems and noted also IP using CPLEX solver. The MCKS

solution is represented by set of variables Y= { , }, and a set of

variables * ; +.

In addition to RBH, we considered two other heuristics: Linear Programming based

Heuristic (LPH) [48, 105] and Greedy Heuristic (GH) [93, 5]. In our problem the LPH

heuristic is composed of two main phases: In the first phase, the relaxation of the MCKS

(binary and continues variables) is solved to determine the variables . In the second

phase, the reduced MCKS is solved by using CPLEX solver to determine the variables .

The GH heuristic is to build iteratively a feasible solution. In our problem this heuristic is

composed of two main phases. In the first phase, the variables are fixed randomly. In the

second phase, the partial feasible solution obtained in the previous phase is completed by

inserting the items one by one until saturation of the knapsack from the set of items that are

listed in the decreasing order of their ratio = / .

III.3.2 Upper bound for IP

Dantzig [31] provided an upper bound for KP. We adapted this upper bound to our problem

and provided a new upper bound for each division t of MCKS. This upper bound was used to

decide whether to apply IP or not after the local search in order to explore only fruit full

search spaces. We applied the following successive steps to obtain this upper bound:

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

57

- Step1: Let I denote the set of items of classes
 sorted in descending order of their

efficiency ratio

 * +

- Step2: Assign items from I one by one until saturation of the knapsack, i.e., Stop at item

i’j’ that cannot be inserted due to capacity saturation of , - .

- Step3: The upper bound of division t is

 ∑

 ∑

 where ∑ (∑

 ∑

) with I’

the set of assigned items, and (b – C) the residual capacity for division t .

III.3.3 Local search with IP

In the local search phase, two neighborhood structures, SWAP&IP and INSERT&IP

operators are employed with in the Algorithm III.2 .

Algorithm III.2: LS&IP (data,)
 : Instance data & best solution found

 : A feasible solution
 : best solution found by RBH (first iteration) or by perturb&IP

Do

 ()
 (S1)

 If (() > f ())

 EndIf

While ()

Return

SWAP&IP. A Swap-based local search requires the definition of a neighborhood structure

using simple moves so as to produce a set of neighbor solutions which permits to explore

more search spaces and thus provide high quality solutions. The considered swap process

consists of permuting two variables
 and

 (* + * +

* +. where T+1 is a fictive knapsack that contains all the non-selected classes.

We changed the value of setup variables from 1 to 0 and vice versa. A new , - was

obtained. In order to save computational effort, before applying IP, we calculated the sum of

upper bounds of the new divisions t and k () and compared it with the

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

58

total profit of the two divisions before Swap move (=). In case > . We

applied IP to optimally solve the new classical knapsack , - and the best solution was

taken as a new initial solution for a next swap process. In case , the search space

was not promising as no better solution could be obtained, thus IP(t, k) was not applied and

we proceeded to the next step. The procedure is terminated once no improvement is obtained.

Algorithm III.3 details the SWAP&IP procedure.

Algorithm III.3 : SWAP&IP (data, S)

 : Instance data & initial solution

 : A feasible solution

 do

 ;

 For t to do

 (
); /* Number of classes in division t */

 For to n do

 , -;

 For to do

 (
); /* Number of classes in division k */

 For to m do /* Swap class i by each class j */

 , -;

 () then

 ();

 (
) then

 ;
 EndIf

 EndIf

 EndFor

 EndFor

 /* New starting solution */

 EndFor

 EndFor

 While (improve==1)

 Return S

INSERT&IP. The Insert-based local search is based on a neighborhood search which

generates a new solution by removing the class from knapsack t (change the value of the

setup variable
 from 1 to 0) and then inserting it into another knapsack k,

* +, The IP(t, k) is applied if (>) by the same way than in the SWAP&IP

procedure. The best solution is taken as a new initial solution for the next insert-based local

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

59

search. The procedure is terminated once no improvement is obtained. Algorithm III.4 details

the INSERT&IP procedure.

Algorithm III.4: INSERT&IP(data, S)

 : Instance data & initial solution

 : A feasible solution

do

 For to do

 * +;
 (); /* Number of divisons that contain class i */

 For to do

 , -
 For to do

 If () then

 /* Insert i in k and delete it from t */

 If () then

 () ();

 If () then

 S ;
 EndIf

 EndIf

 EndIf

 EndFor

 /* New starting solution */

 EndFor

 EndFor

While (improve ==1)

Return S

PERTURB & IP. The design of the perturbation mechanism is crucial for the performance of

the algorithm. If the mechanism provides too small perturbation, local search may return to

the previously visited local optimum points and no further improvement can be obtained. The

mechanism consists of strongly perturbing a part of the current solution to jump the local

optima and obtain a new starting solution. Two phases were applied iteratively in order to

simulate this jumping principle: The first is a select of k randomly chosen items (setup

variables) and the second is the IP which is applied to solve the classical

knapsacks , -. The resulting solution is accepted according to the following condition

if ((() ()), where that is constant value between 0 and 1. The perturbation

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

60

method was terminated when the total number of applied moves (perturbation length) equals

to the . Algorithm III.5 provides a description of the new local search method.

Algorithm III.5: (data, S)

 : Instance data & best solution found S

 : A randomly feasible solution

kNumber of selected classes in best solution S

Do

 Select a random set of k classes , from N

 Randomly assigned the variables

 Apply IP to fix the variables

 If (() ()) then

 Store the best S’ /* best solution found */

 Else

 pp+1;
 End if

while

return S’

III.4 Computational results

For computation, our approach was implemented and run using C language and

CPLEX 12.7 solver on a 2.4 GHZ intel B960 computer with 4 GB of memory. Due to the

unavailability of benchmark instances in the literature, we tested our cooperative approach

VNS&IP on a set of randomly generated instances of MCKS with a total number of periods T

in * +, total number of classes N in { +, and total number of items for

each class i in , - (Available at https://goo.gl/4fz6fg). We generated 120 instances in

total: 10 instances for each combination (). We designed a random generation scheme, as

presented in [21], where:

 is selected with a uniform distribution in , -

 , is selected with a uniform distribution in, -.

https://goo.gl/4fz6fg

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

61

 ∑ ∑

 .

 ∑

 .

 ∑

 , is selected with a uniform distribution in, -

The report the standard deviation between IP and VNS&IP that is calculated as

follows: () .

/.

III.4.1 Parameter setting

Generally, when using approximate algorithms to solve optimization problems, it is

well known that different parameter settings for the approach lead to different quality results.

The parameters for VNS&IP are as follows: , the maximal time measured in seconds

and its fixed to T, where T is the number of periods (divisions). , the maximum number

of consecutive failed iterations is fixed to N, where N is the number of classes. The

perturbation length is fixed to T. that is constant value between 0 and 1 to relax the

acceptance condition is fixed to 0.8. It is worth pointing out that a different adjustment of

method’s parameters would give important findings. But this better adjustment would

sometimes lead to heavier execution time requirements. The set of values chosen in our

experiment represents a satisfactory trade-off between quality solution and running time.

III.4.2 Computational results

Before the experimentation, the effect on performance of the main components of our

algorithm is assessed, mainly the construction Heuristic RBH and the combination of the two

local search techniques LS&IP and PERTURB&IP.

In order to evaluate the performance of RBH, we compared it to HG and LPH

heuristics explained in section III.3.1. The RBH, HG and LPH heuristics are tested on all the

instances of MCKS. Table III.1 shows the numerical results on average. The first column

contains the name of the heuristic. The second column contains the average of computational

time. We noted that LPH is stopped at a limit of computation time equal to 500 s. The third

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

62

column contains the gap between the heuristic solution and the IP solution: ()

.

/

Table III.1. Comparison between RBH, HG and LPH: Average of MCKS instances.

Heuristic CPU (s) Gap (%)

RBH 0.63 1.46 %

LPH 304 5.34 %

GH 0.51 8.13 %

Table III.1 shows that RBH outperforms the other construction heuristics in terms of

computation time and quality solution.

 It is important to give information about the impact of the LS&IP and PERTURB&IP

on the performance of VNS&IP. We consider the application of our cooperative approach

with RBH, RBH+LS&IP and RBH+LS&IP+PERTURB&IP (VNS&IP). Table III.2 shows a

comparison between these three combinations in terms of average Gap (%) with the IP for the

four set instances regarding the number of periods (divisions). Each line presents the average

of 10 instances. The first two columns present the number of divisions (or periods) and the

number of . The next three columns show the corresponding average gap between

RBH and IP, the average gap between RBH+LS&IP and IP, and the average gap between

RBH+LS&IP+PERTURB&IP (VNS&IP) and IP.

 () (

)

Table III.2: Effect of VNS&IP components

Instances
RBH

RBH +

LS&IP

RBH + LS&IP +

PERTURB&IP T N

5

30

0,95 0,23 -0,054

10 1,23 0,39 -0,012

15 1,82 0,45 -0,125

20 1,99 0,42 -0,155

Table III.2 shows that by adding LS&IP, we observe an important advantage, for all

the set of instances, compared to using only RBH. However, by adding PERTURB&IP, we

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

63

observe a higher improvement with a gap that increases when the number of knapsacks

increases. For the experimentations below, we considered the best combination with RBH as

construction heuristic, LS&IP as local search techniques and PERTURB&IP as perturbation

mechanism.

Table III.3 summarizes the results obtained by VNS&IP and IP when solving the

MCKS. Each line presents the average of 10 instances. The first two columns present the

number of divisions (or periods) and the number of . The next three columns

show the corresponding average of results provided by CPLEX, the average of results

provided by the cooperative approach VNS&IP and the average of the best upper bounds, of

all the remaining open nodes in the branch-and-cut tree, provided by CPLEX 12.7

(). The notations and report the solution found and the computational time,

respectively. We note that CPLEX is stopped at a limit of computation time equal to 1h.

Finally, the columns and report the gap between CPLEX and VNS&IP,

calculated as follows: () .

/, and the gap between

 and VNS&IP, calculated as follows: () .

/,

respectively.

Table III.3. Numerical results for MCKS instances.

 N

 N () ()

5

10 1772249 1735 1773409 6 -0,066 1773431 0,001

20 3571514 2863 3573719 6 -0,063 3573771 0,001

30 5398429 2267 5401333 6 -0,054 5401369 0,001

10

10 1795187 2587 1795188 11 0,000 1795221 0,002

20 3602956 3439 3603067 10 -0,003 3603090 0,001

30 5445060 2937 5445715 11 -0,012 5445752 0,001

15

10 1793209 2819 1795262 15 -0,118 1795311 0,003

20 3605797 3333 3617045 15 -0,315 3617079 0,001

30 5471310 3255 5478013 15 -0,125 5478052 0,001

20 10 1793091 2745 1796768 20 -0,208 1796796 0,002

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

64

Table III.3 shows that VNS&IP outperforms IP with a gap on average equal to -

 . In detail, the gap on average is about - for , - for ,

 for , and - for . The CPU on average for VNS&IP is about 13

s, which is very low in comparison to the average of CPU for CPLEX that is equal to 2868 s.

For more detailed results, we note that VNS&IP provides a solution equal to the one provided

by CPLEX for 51 instances and provides better solutions than CPLEX for 65 instances (see,

Appendix A or https://goo.gl/w44aUs). Table III.2 shows that the gap between VNS&IP and

 is 0.001% on average.

Among the 120 instances of MCKS, CPLEX finds the optimal solutions for 27

instances, slightly outperforms the VNS&IP for 4 instances, and for the remaining it

terminates with error: exceeds the capacity of RAM memory or exceeds the CPU time limit.

the majority of instances solved at optimality are with (12 with , 8 with ,

2 with and 5 with). In addition, we can see that MCKS becomes more

difficult when increasing the number of divisions T. In fact, the number of times that CPLEX

terminates with exceeding the capacity of RAM or exceeding the time limit increases from 18

with to 25 with

III.5 Conclusion

In this chapter, we consider the multiple choice knapsack problem with setup (MCKS). This

problem can be used to model a wide range of concrete industrial problems, including order

acceptance and production scheduling. We proposed a new cooperative approach that

combines VNS and IP for the MCKS. Our matheuristic approach denoted VNS&IP is tested

on a wide set of instances that are generated for MCKS. The results showed that CPLEX was

able to optimally solve only 22.5% of these problems; the rest had unknown optimal values.

The experimental results showed that VNS &IP produced good quality (optimal and near-

optimal solutions) solutions in a short amount of time and allowed for the enhancement of the

solution provided by CPLEX in 65 instances. Considering the promising performance of the

20 3609105 3481 3615497 20 -0,180 3615547 0,001

30 5454676 2961 5463066 20 -0,155 5463115 0,001

https://goo.gl/w44aUs

 Chapter III: Cooperative approach between VNS and IP for solving MCKS

65

VNS&IP method presented in this work, further studies, some of which are currently

underway in our laboratory, are needed to further extend the use of the space reduction

technique to other general and critical problems.

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

66

Chapter IV

Cooperative approach for the Generalized

Quadratic Multiple Knapsack Problem

IV.1 Introduction

In this Chapter, we address the 0-1 generalized quadratic multiple Knapsack problem

(GQMKP). We use a linearization technique of the existing mathematical model and we

propose a new cooperative approach that we called Matheuristic Variable Neighborhood

Search (MVNS) combining variable neighborhood search with integer programing (IP) to

solve the large sized instances. The matheuristic considers a local search technique with an

adaptive perturbation mechanism to assign the classes to different knapsacks, and then once

the assignment is identifed, applies the IP to select the items to allocate to each knapsack

 The 0-1 generalized quadratic multiple knapsack problem (GQMKP) is NP-hard

problem, since it is a generalization of the standard knapsack problem (KP) [20]. The

GQMKP is reduced to KP when considering one knapsack, one class, no setup variables and a

linear objective function. The GQMKP is described as a quadratic multiple knapsack problem

(QMKP) with additional setup variables and knapsack-items preferences. The quadratic

knapsack problem (QKP) is a particular case of QMKP, when considering only one knapsack.

Practical applications of the GQMKP may be seen in production scheduling problems with

setups and machines-products preferences. Case studies of GQMKP are provided in [9, 94].

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

67

Several variants of KP have been tackled in the literature [89]. Visée et al. [101]

proposed a two-phased approach and branch and bound procedure to solve the bi-objective

KP. Dudzinski and Walukiewicz [35] studied exact methods such as branch-and-bound and

dynamic programming for several variants of KP. Johnson et al. [58] studied the graph

version of the QKP and solved the linearized model with a branch-and-cut technique.

Chaillou et al. [19] provided a branch and bound algorithm to solve the QKP. Billionet and

Soutif [15] proposed a combination of a linear reformulation of the problem and a standard

mixed integer programming tool to solve the QKP. Martello and Toth [76] discussed an upper

bound using Lagrangian relaxation for multiple knapsack problem (MKP). Hiley and Julstrom

[55] provided a greedy heuristic, a stochastic hill-climbing and a genetic algorithm to solve

the QMKP. For the same problem, Sundar and Singh [98] developed an artificial bee colony

algorithm, Garcia-Martinez et al. [43] provided an iterated greedy heuristic algorithm and

Peng et al. [84] proposed an ejection chain method with an adaptive perturbation mechanism.

The GQMKP is a generalization of the QMKP when considering three additional constraints:

setup constraint, assignment conditions and knapsack preferences of the items. It has been

presented by Sarac and Sipahioglu [94] who proposed a mathematical model, a genetic

algorithm and a hybrid algorithm that combines genetic algorithm with a feasible value based

modified sub gradient algorithm to solve the GQMKP. To solve the same problem, Chen and

Hao [23] provided a memetic algorithm, where a backbone based crossover operator is

integrated with a simulated annealing, and recently, Avci and Topaloglu [9] provided a multi-

start iterated local search (MS-ILS) and made experiments on wide set of instances.

The hybridization technique between exact and metaheuristics approaches have been

performed by many researchers during the last few decades. It provides interesting results as it

takes advantages of both types of approaches [59]. A classification of algorithms combining

local search techniques and exact methods is provided in [36]. The focus here is on the so

called cooperative approaches using exact methods to strengthen local search techniques, and

particularly on the matheuristics that combine metaheuristics and mathematical programming

[53, 74]. Fernandes and Lourenco [39] applied a hybrid approach to solve different

combinatorial optimization problems. Burke et al. [17] and Prandtstetter and Raidl [90]

provided a combination of Integer Programming (IP) with Variable Neighborhood Search

(VNS) for Highly-Constrained Nurse Roistering Problem, and car sequencing problem,

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

68

respectively. Lamghari et al. [71] proposed a combination of linear programming with

variable neighborhood descent for scheduling production in open-pit mines. Vasquez and Hao

[100] proposed a combination of linear programming with tabu search to solve the MKP

problem. In this study, we combine IP with VNS to deal with GQMKP problem and make

experimentation on the benchmark of Avci and Topaloglu [9] and Chen at al. [23].

The purpose of this work is to provide a solving approach for the GQMKP. We use a

linearization technique of the existing mathematical model that, due to the complexity of the

LGQMKP, cannot solve large test instances (see section IV.4). In fact, it is usually difficult to

assign items to the whole sets of knapsacks. The GQMKP is a generalization of the knapsack

problems when considering three additional constraints: setup constraint, assignment

conditions and knapsack preferences of the items. In addition, the consideration of the

knapsack-dependent cost related to each class of products and the knapsack-dependent profit

associated to each item increases the complexity of the problem. Therefore, the design of a

new approach providing high quality solutions in a reasonable computing time is quite

challenging. This paper contains a matheuristic called matheuristic variable neighborhood

search (MVNS) combining a VNS with an exact solving technique: local search techniques

with an adaptive perturbation mechanism to include classes to knapsacks and integer

programming (IP) to include items in each knapsack. Experimental results show the efficiency

and the performance of the proposed matheuristic on a wide set of benchmark instances.

Experimental results clearly show the competitiveness of the proposed approach compared to

the best state-of-the-art solving techniques

The remainder of this paper is organized as following: Section IV.2 contains the

mathematical formulation of the GQMKP. Section IV.3 contains our matheuristic approach

combining VNS with IP. The experimental results and their interpretations are reported in

Section IV.4 and, finally, the conclusions are outlined in Section IV.5.

IV.2 Mathematical model

We consider a set of knapsacks each knapsack with a capacity , * +

and a set of J items * + which are classified into a set of classes, * +. The

main assumptions of the GQMKP are as follows:

- An item cannot be allocated to more than one knapsack.

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23section_4

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

69

- Items from the same class can be allocated to different knapsacks.

- For each class, the set of related items are allowed to be allocated to only predefined set of

knapsacks.

- An item can be allocated to a knapsack only if its corresponding class is activated.

- A profit is considered while allocating item i to knapsack k

- A profit is considered if items i and j are allocated to the same knapsack.

- The activation of a class incurs a knapsack-independent setup time

- If items belonging to the same class are allocated to the same knapsack, only one setup is

needed for all.

The GQMKP problem consists of activating a set of classes in each knapsack, and

determining the subset of items to be allocated from each class to each knapsack while

maximizing the objective function without exceeding the capacity of each knapsack. Saraç

and Sipahioglu [94] provided the following model for the GQMKP:

Sets:

 : set of classes that can be activated in knapsack k

 : set of items that can be allocated to knapsack k

 : set of knapsacks in which class r can be activated.

 : set of knapsacks to which item can be allocated

Parameters:

 : Profit obtained if item j is selected for knapsack k

 : Profit obtained if items i and j are selected for the same knapsack

 : Working time capacity related to knapsack k,

 : Weight of item j (or processing time)

 : Setup time of the items that belong to class r

 : The maximum number of knapsacks to which the items in class can be assigned

 : A positive large number

Decision variables:

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

70

Mathematical formulation:

 ∑ ∑ ∑ ∑ ∑

 ()

 ()

Subject to

 ∑

 ∑

 ()

 ∑

 ()

 ∑

 ()

 ∑

 ()

 * + ()

Equation (1) represents the objective function that is to maximize the total profit.

Constraint (2) guarantees that the sum of the total weights of selected items and the class

setup times consumption does not exceed knapsack capacity. Constraint (3) requires that each

item can be allocated to only one knapsack. Constraint (4) guarantees that if any item in class

r is selected for knapsack k, then the decision variable must be equal to 1. Constraint (5)

ensures that the total number of knapsacks containing items belonging to class r cannot

exceed the maximum number of knapsacks . Finally, the constraint (6) ensures that the

decision variables are binary.

Being inspired by the linearization technique provided in [16] for QKP problem, we

provide the following linear model for the GQMKP, denoted LGQMKP:

 ∑ ∑ ∑ ∑ ∑

 ()

 ()

 Constraints (2) to (6),

 (8)

 (9)

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

71

 ; (10)

 * + ()

The linear expression 7 replaces the objective function 1. In addition to constraints 2-

6, we provide the constraints 8-11 about the dummy binary variables .

Using IP formulation (CPLEX 12.7) shows its limitation to solve LGQMKP due to the

complexity of the problem. In fact, we show later in the experimental results (Section IV.4)

that by using CPLEX 12.7, only 47 instances among 96 benchmark instances [9] are solved to

optimality in less than 1 hour CPU time. For the rest of instances, the computation terminates

with an out of memory or is stopped in 1 hour. Thus, we decided to invest in the development

of a new cooperative approach can be seen as a matheuristic VNS combining VNS and IP.

The keys of better performance for our approach instead aims to exploit the structure of

LGQMKP, where the set of variables is partitioned into two levels, variables (first level

variables) and variables (second level variables). Thus, we decided to invest in the

development of a matheuristic VNS combining VNS and IP. The practical hardness of the

problem comes from these two sets of variables that must be properly combined to reach an

optimal solution. At the same time, once the classes are chosen, LGQMKP boils down to a

several classical KP. Even if KP is known to be weakly NP-Hard, in practice it is well

handled by nowadays ILP solvers [80]. We explain our new approach in the next section.

IV.3 Matheuristic VNS for GQMKP

From the VNS scheme, several other VNS approaches have been derived in [52]. In

this paper we propose a new method combining VNS with integer programming for solving

GQMKP. Within the approach, different mathematical programming formulations of sub

problems are proposed and solved with exact solver. According to Hansen et al. [52] we call

our variant of VNS as Matheuristic variable neighborhood search (MVNS). The main idea

here is to partition the problem variables set into two levels: variables to be

approximately defined using VNS and variables to be optimally defined using an ILP

solved with CPLEX 12.7. In fact, once all variables are defined using VNS, the

 could be seen as independent into K dependent knapsack problems , -.

At a given knapsack k, , - is a KP with a capacity , where represents the

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23section_4

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

72

sum of capacity setup time of the classes activated in knapsack k and
 * \ =1, r

 } the set of items that can be allocated to knapsack k. The objective function is

to maximize the total profit. The , - can be formulated by a 0-1 KP linear

program, using the allocation variables :

 () ∑ ∑ ∑

()

 ()

s.t.

 ∑

 ()

 (14)

 (15)

 ;
 (16)

 * +
 ()

where = ∑

Each knapsack problem , - is optimally solved to determine the best values

of , which yield a feasible solution for (or GQMKP). Let be an optimal

solution for , - with the profit (). Thus, the proposed matheuristic MVNS

provides the best combination of vector ⋃ of a solution ⋃ with a profit

 ⋃ () . Algorithm IV.1 shows the whole framework of our matheuristic VNS.

Algorithm IV.1: MVNS

Input: the set of neighborhood (k=1,…,), and the maximum

number of iterations nb_iter

 Initialize: Build an initial solution based on construction

heuristic

 
stopfalse;

 ()

 
 stoptrue;

  () /* Shaking */

  () /* local search SWAP with IP */

  () /* local search INSERT with IP*/

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

73

 If (() > ()) then

 S ;

 k1;

 stopfalse;

 else k k+1;

 (=)

 EndWhile

 Return S ;

The VNS is a method based on a systematic change of the neighborhood structures. It

is provided by Maldenovic and Hansen [81] and has proven its efficiency on different

scheduling problems: location routing [57], car sequencing problem [90], combinatorial

optimization problems [34], etc. The VNS contains a shaking operator and local search

operators that are developed based on the set of neighborhood structures. In our matheuristic

MVNS, we consider shaking mechanism PERTURB&IP based on a perturbation move

coupled with IP, and two local search techniques SWAP&IP and INSERT&IP, based on

Swap and insert moves respectively, both coupled with IP. The MVNS matheuristic starts

with an initial solution S. A set of neighborhoods , … is initialized. At each

iteration the shaking mechanism PERTURB&IP is applied based on neighborhood , then

the two local search SWAP&IP and INSERT&IP are applied to obtain a new solution S2. If

this new solution is better than S, then this latter is updated and the process continues with the

first neighborhood () , otherwise the same steps are repeated with the next neighborhood

 .

The construction heuristic, the shaking mechanism PERTURB&IP, and the two local

search procedures SWAP&IP and INSERT&IP are detailed in the following subsections.

IV.3.1 Construction heuristic

To generate the initial solution for GQMKP, we propose a construction heuristic based

on three successive phases:

- First phase: We transform the original problem to an equivalent formulation

without profit, i.e. . The new problem is denoted and

consists of maximizing the objective function (18), with constraints (2), (3), (4), (5)

and (6).

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

74

 ∑ ∑

 ()

- Second phase: we use the linear programming based heuristic provided in [96] to solve

the linear relaxation of GMKP, denoted , by relaxing the integrality constraints

on variables (only the variables are binary). The fractional solution includes

integer values and fractional and integer values . The reduced GMKP related to

the fractional solution is referred to [
] that consists of fixing to 0 or 1 the

fractional variables . The exact solution of the reduced problem [
] is a

feasible solution and denoted = (, -) We limit CPLEX computation time to

10 seconds to obtain an initial solution .

- Third phase : the first feasible solution of GQMKP is = +

∑ ∑ ∑

 ()

 .

An illustration of the construction heuristic is provided by Algorithm IV.2.

Algorithm IV.2: Construction heuristic

Input : Instance of

Output :A feasible solution of

Step 1 :Transform the to where, = 0 for all i < j

Step 2 :  Solve ()

Step 3 :  Solve (GMKP[])

Step 4 :Return the resulting feasible solution of GQMKP

where = + ∑ ∑ ∑

 ()

IV.3.2 SWAP&IP

A Swap-based local search requires the definition of a neighborhood structure using

simple moves so as to produce a set of neighbor solutions which permits to explore more

search spaces and thus provides high quality solutions. The considered swap process consists

of:

- Permuting two classes and activated in different knapsacks and i.e.

and
. More precisely, we change the values of setup variables

 and

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

75

- Removing a class activated in knapsack and replacing it by a free class

 , where * , * + * ++. More precisely, we

change the value of setup variables from 1 to 0 and vice versa.

After SWAP movements, the new sub-problems: [
] and

 [
] are solved to optimally using IP. If the new solution is better than the best

feasible solution value i.e. (() ()) > (() + ()), then it is considered

as a new initial solution for a next SWAP process. We solve to optimality a [
]

and [
], but indeed ⋃

 is not guaranteed to be optimal for

 . The SWAP&IP procedure continues until no improvement is obtained.

Algorithm IV.3 details the SWAP&IP procedure.

Algorithm IV.3: SWAP&IP

 : Instance data & best solution found LB

 : A feasible solution S

 S LB

 do

 ;

 For to do

 (

); /* Number of classes in knapsack */

 For to n do

 , -; /* selected class in knapsack */

 For to do /* contain the free classes */

 (

); /* Number of classes in knapsack */

 For to nb do /*Swap class by each class */

 , - ; /* selected class in knapsack */

 () [
] /* using IP */

 () [
]

  (() + ()) + (() + ())

 () then

 EndIf

 EndFor

 EndFor

 EndFor

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

76

 EndFor

 While (improve==1)

 Return S

IV.3.3 INSERT&IP

The Insert-based local search is based on a neighborhood search which generates a

new solution by removing the class from knapsack (change the value of the setup

variable

 from 1 to 0) and then inserting it into another knapsack . (Change the

value of the setup variable
 from 0 to 1). So we search for another possible vector

within the sub-problem by inserting each setup variables in different knapsacks. The IP is

applied to optimally solve the [
] and [

], but indeed is not

guaranteed to be optimal for GQMKP. So we search for another possible combination of

by progressively inserting each class in different knapsacks and applying IP to

optimally fix variables, while keeping only a subset of potentially good nodes as

candidates for further exploration. The INSERT&IP algorithm starts with the best solution LB

returned by SWAP&IP, and then proceeds by choosing the best neighbor solutions to LB. The

procedure is terminated once no improvement is obtained. Algorithm IV.4 details the

INSERT&IP procedure.

Algorithm IV.4: INSERT&IP

 : Instance data & best solution LB found by SWAP&IP

 : A best feasible solution S

do

 For to do

 * +; /* set of knapsack contain class r*/

 (); /* Number of knapsack that contain class r */

 For to do

 , -
 For to do

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

77

 If (
) then

 /* Insert in and delete it from */

 () [
] /* using IP */

 () [
]

  (() + ()) + (() + ())

 If () then

 ;
 EndIf

 EndIf

 EndFor

 EndFor

 EndFor

While (improve ==1)

Return S

IV.3.4 PERTURB&IP

The design of the perturbation mechanism PERTURB&IP is crucial for the

performance of the MVNS algorithm. If the mechanism provides too small perturbation, local

search may return to the previously visited local optimum and no further improvement is

obtained i.e. quick convergence to a local optimum. PERTURB&IP consists of strongly

perturbing a part of the current solution to jump the local optima and obtain a new starting

solution. Algorithm IV.5 provides a description of PERTURB&IP procedure.

 : Instance data & best solution found

 : best solution S

SLB

 Solve

 Solve

 For all N in [⌈ ⌉ ⌊ ⌋] do

 Select a random set of classes , from

 Do

 YRandomly assigned the variables

 LBApply IP to optimally solve , -
 If (() ()) then

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

78

 SLB;

 Else

 pp+1;
 End if

 while

End for

return S

Two phases were applied iteratively in order to simulate this jumping principle:

- Phase 1. Let N the number of activated classes leading to an optimal solution of

LGQMKP (or GQMKP). N is bounded straight forwardly by solving two linear

continuous problems: minimize and maximize ∑ ∑ subject to constraints

(2-5) , (8-11) and to an additional constraint ensuring that the total profit must be

strictly greater than the best solution value LB (19) and the non-integrality of variables

 and (20):

∑ ∑ ∑ ∑ ∑

 ()

 ()

 (20)

By solving the corresponding ILP formulations, denoted and ,

we obtain the minimum and maximum numbers of classes and . The first step is to

randomly select N classes N , - and randomly assign activate the selected N

classes in different knapsacks i.e. randomly fixing variables.

- Phase 2. The second phase consists of optimally solve the , - using i.e.

fixing variables. The resulting solution S is accepted if (f(S) > f(LB)), where

that is a constant value between 0 and 1. PERTURB&IP terminates when the total

number of applied moves (perturbations) reaches .

-

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

79

IV.4 Computational results

For computation, our approach is implemented and run using C language and CPLEX

12.7 solver on a personal computer with 2.4 GHZ intel core 2 duo B960 processor and 4 GB

of memory. In order to test the performance of the MVNS for the GQMKP, two sets of

benchmark instances [9, 23] are considered:

- First Set: This set is composed of 48 small-sized instances which are characterized by

their number of items J =30, number of knapsacks k {1, 3}, number of classes r {3,

15}, density (the percentage of those values for the and profit parameters

different from zero) d {0.25, 1.00}.

- Second Set: Includes 48 large-sized instances with the number of items J = 300,

number of knapsacks k {10, 30}, number of classes r {30, 150}, density d {0.25,

1.00}.

All data sets are available at https://goo.gl/dv3tfA. Based on these data sets, we made

a comparison between our LGQMKP model (solved with CPLEX 12.7), our MVNS, the MA

[23] and the MS-ILS [9] that are, to the best of our knowledge, the best algorithms provided

in literature to deal with GQMKP. We note that tests in [9] were carried on an Intel core 2 duo

T7500 CPU @ 2.2 GHZ, and tests in [23] were carried on an AMD Opteron 4184 processor

2.8GHz and 2GB RAM.

The parameters of our approach MVNS are set so as to get a satisfactory trade-off

between quality solution and running time: the maximum number of consecutive failed

iterations is fixed to R. The perturbation length is fixed to K. The parameter is

fixed to 0.8 to relax the acceptance condition.

Before the experimentation (Section IV.4.2), we provide a performance analysis of the

MVNS components (Section IV.4.1).

IV.4.1 Performance analysis of the MVNS components

We study here the performance of the main components of our matheuristics, mainly

the construction heuristic and the combination of the two local search techniques SWAP&IP,

INSERT&IP and the perturbation mechanism PERTURB&IP. The results graphically

displayed in figure IV.1 illustrate a comparison in terms of quality solution, where the vertical

https://goo.gl/dv3tfA
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23S4_2
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23S4_1

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

80

axis shows the gap between the MVNS component solution and the MS-ILS solution::

 () .

/ We consider fir this study, five large

instances denoted Ins 1-1, Ins 2-2, Ins 11-3, Ins 12-2 and Ins 19-3 (a selection of instances

from experimentation table IV.2).

Figure IV.1: Effect of MVNS components

 Figure IV.1 shows that the constructive heuristic plays an important role in the overall

performance of the provided MVNS approach: The initial solutions are close to the solutions

provided by MS-ILS with an average gap lower than 12%. We consider the application of our

matheuristic with one local search technique (SWAP&IP), two local search techniques

(SWAP&IP and INSERT&IP), and three local search techniques (SWAP&IP, INSERT&IP and

PERTURB&IP). Figure IV.1 shows a comparison between these three combinations in terms

of average Gap (%) with the MS-ILS. By adding SWAP&IP, we observe a higher

improvement, for all the five large instances, compared to using only Construction heuristic.

However, by adding Insert&IP, we observe a slight advantage. The perturbation mechanism

Perturb &IP enables MVNS to produce better solutions. More precisely, for the five large

instances (300 items), the gap on average is 4,22% when applying only the SWAP&IP,

2.63% when applying SWAP&IP and INSERT&IP and -0.3% by adding the perturbation

mechanism PERTURB&IP.

IV.4.2 Experimentation

Tables IV.1 and IV.2 summarize the results of the LGQMKP model (solved with

CPLEX 12.7), MA, MS-ILS and MVNS on GQMKP instances. In each of these tables, the

first two columns present the number of knapsacks K and the number of classes R. We note

that the column reports the best value reported by any of the compared

-5

0

5

10

15

20

1-1 2-2 11-3 12-2 19-3

ga
p

 (
%

)

Instances

construction heuristic (CH)

CH+Swap&IP

CH+Swap&IP+Insert&IP

CH+Swap&IP+Insert&IP+Pertur
b&IP

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23figure_1
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_1
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_2

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

81

algorithms (MA, MS-ILS, MVNS). The columns report the standard deviation from the

best known: () .

/. The next four columns show the

corresponding results provided by CPLEX (objective value , computation time and

deviation), MA, MS-ILS and MVNS (best value , average value average

computation time CPU and deviation dev). We note that CPLEX is stopped at a limit of

computation time equals to 1 hour. For the proposed MVNS matheuristic, we report the best

and average solutions of 30 independent runs on each benchmark instance. Finally, the last

column presents the best known. The time unit in this table for the CPU is in seconds. The

detailed results are available on the following link: https://goo.gl/fbFBgV.

Table IV.1 presents the computational results obtained for the first set of benchmark

instances. The results show that CPLEX for LGQMKP is effective and finds the optimal

solutions for 47 among 48 instances (all instances except 23-3 instance). Our approach

MVNS provides a solution equal to CPLEX for these 47 instances and reaches the best known

solution for instance 23-3. MVNS and MS-ILS provide the best know solutions for all first set

instances while MA obtain 45 best known solutions among 48 instances with an insignificant

average equal to 0,44%. When analyzing the average solutions, we observe that MVNS

has produced the same results for all instances excepts 32-1 instance. Based on the

comparison of the average results of MVNS and MS-ILS, we see that MVNS outperforms

MS-ILS and MA on six instances and twelve instances, respectively. This result indicates the

robustness of the matheuristic approach.

https://goo.gl/fbFBgV
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_1

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

82

Table IV.1. Computational results obtained from the first set of benchmark instances

Ins. R

Obj Dev (%) Dev (%) Dev (%) Dev (%)

5-1

3 15

2835.30 7.12 0.00 2835.30 2828.22 1.23 0.00 2835.30 2835.30 3.24 0.00 2835.30 2835.30 2.23 0.00 2835.30

5-2 3304.80 153.92

0.00 3293.48 3293.90 0.83 0.34 3304.80 3293.48 1.65 0.00 3304.80 3304.80 2.04 0.00 3304.80

5-3 1678.00 5.08 0.00 1678.00 1678.00 0.01 0.00 1678.00 1678.00 3.17 0.00 1678.00 1678.00 1.86 0.00 1678.00

6-1

1 3

346.40 0.68 0.00 346.40 346.40 0.01 0.00 346.40 346.40 2.48 0.00 346.40 346.40 2.25 0.00 346.40

6-2 554.00 0.11 0.00 554.00 554.00 0.01 0.00 554.00 554.00 1.41 0.00 554.00 554.00 2.09 0.00 554.00

6-3 428.70

0.20 0.00 428.70 428.70 0.01 0.00 428.70

428.70 1.75 0.00 428.7 428.70 1.16 0.00 428.70

8-1

3 15

309.21

7.38 0.00 309.21 309.21 0.91 0.00 309.21

309.21 2.25 0.00 309.21 309.21 2.02 0.00 309.21

8-2 353.85

2.98 0.00 353.85 353.69 0.11 0.00 353.85

353.85 2.97 0.00 353.85 353.85 2.09 0.00 353.85

8-3 541.57

2.56 0.00 541.57 541.57 0.03 0.00 541.57

541.57 2.85 0.00 541.57 541.57 2.25 0.00 541.57

15-1

1 3

91.54

1.39 0.00 91.54 91.54 0.32 0.00 91.54

91.54

1.60 0.00 91.54

91.54

2.22 0.00 91.54

15-2 306.38

0.56 0.00 306.38 306.38 0.02 0.00 306.38

306.38

2.85 0.00 306.38

306.38

2.13 0.00 306.38

15-3 75.62

1.50 0.00 75.62

75.45 0.37 0.00 75.62

75.62

2.77 0.00 75.62

75.62

1.38 0.00 75.62

18-1

1 3

5387.70

4.09 0.00 5387.70 5387.70 0.01 0.00 5387.70

5387.70

2.11 0.00 5387.70

5387.70

2.03 0.00 5387.70

18-2 8551.08 0.33 0.00 8551.08 8551.08 0.00 0.00 8551.08 8551.08 3.03 0.00 8551.08 8551.08 1.29 0.00 8551.08

18-3 7760.51 0.70 0.00 7760.51 7760.51 0.00 0.00 7760.51 7760.51 1.43 0.00 7760.51 7760.51 1.05 0.00 7760.51

20-1 1 15 1599.85 0.44 0.00 1599.85 1599.85 0.01 0.00 1599.85 1599.85 1.99 0.00 1599.85 1599.85 1.02 0.00 1599.85

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

83

Table IV.1. Computational results obtained from the first set of benchmark instances (cont)

20-2 925.59 1.73 0.00 925.59 925.59 0.01 0.00 925.59 925.59 2.81 0.00 925.59 925.59 1.55 0.00 925.59

20-3 931.33 0.63 0.00 931.33 931.33 0.01 0.00 931.33 931.33 2.83 0.00 931.33 931.33 1.42 0.00 931.33

22-1

3 3

1923.61 1.80 0.00 1904.86 1904.86 0.02 0.98 1923.61 1911.11 3.30 0.00 1923.61 1923.61 2.03 0.00 1923.61

22-2 1314.09 0.16 0.00 1314.09 1314.09 0.01 0.00 1314.09 1314.09 1.33 0.00 1314.09 1314.09 2.15 0.00 1314.09

22-3 1799.09 0.46 0.00 1799.09 1799.09 0.02 0.00 1799.09 1799.09 2.04 0.00 1799.09 1799.09 1.13 0.00 1799.09

23-1

3 3

471.00 3600.16 0.00 471.00 471.00 0.02 0.00 471.00 471.00 2.53 0.00 471.00 471.00 2.05 0.00 471.00

23-2 959.70 292.99 0.00 959.70 959.70 0.06 0.00 959.70 959.70 1.02 0.00 959.70 959.70 2.99 0.00 959.70

23-3 1233.00 1791.67 0.64 1241.00 1241.00 0.32 0.00 1241.00 1241.00 1.20 0.00 1241.00 1241.00 2.81 0.00 1241.00

inst R

Obj dev dev dev dev

25-1

3 15

2118.33 5.79 0.00 2118.33 2118.33 1.52 0.00 2118.33 2118.33 1.34 0.00 2118.33 2118.33 1.05 0.00 2118.33

25-2 4262.64 6.38 0.00 4262.64 4195.05 1.66 0.00 4262.64 4193.01 1.12 0.00 4262.64 4262.64 0.98 0.00 4262.64

25-3 2962.06 7.43 0.00 2962.06 2962.06 1.03 0.00 2962.06 2962.06 1.02 0.00 2962.06 2962.06 1.25 0.00 2962.06

26-1

1 15

1747.60 10.18 0.00 1747.60 1747.60 0.01 0.00 1747.60 1747.60 2.66 0.00 1747.60 1747.60 0.93 0.00 1747.60

26-2 2433.60 2.76 0.00 2433.60 2433.60 0.01 0.00 2433.60 2433.60 1.20 0.00 2433.60 2433.60 1.17 0.00 2433.60

26-3 2293.20 1.14 0.00 2293.20 2293.20 0.01 0.00 2293.20 2293.20 1.32 0.00 2293.20 2293.20 2.07 0.00 2293.20

27-1 1 15 2247.95 0.51 0.00 2247.95 2247.95 0.01 0.00 2247.95 2247.95 2.76 0.00 2247.95 2247.95 1.99 0.00 2247.95

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

84

27-2 1966.52 0.11 0.00 1966.52 1966.52 0.01 0.00 1966.52 1966.52 1.05 0.00 1966.52 1966.52 2.14 0.00 1966.52

27-3 1383.49 0.13 0.00 1383.49 1383.49 0.01 0.00 1383.49 1383.49 1.09 0.00 1383.49 1383.49 1.86 0.00 1383.49

28-1

1 15

978.80 0.64 0.00 978.80 978.07 0.12 0.00 978.80 978.80 2.67 0.00 978.80 978.80 1.23 0.00 978.80

28-2 4036.00 0.19 0.00 4036.00 4035.62 0.04 0.00 4036.00 4036.00 1.12 0.00 4036.00 4036.00 1.11 0.00 4036.00

28-3 2634.00 0.18 0.00 2634.00 2634.00 0.01 0.00 2634.00 2634.00 1.14 0.00 2634.00 2634.00 1.19 0.00 2634.00

29-1

3 3

1935.80 9.89 0.00 1567.60 1520.33 0.19 19.02 1935.80 1935.80 2.46 0.00 1935.80 1935.80 2.01 0.00 1935.80

29-2 2820.00 24.52 0.00 2782.00 2782.00 0.10 1.35 2820.00 2820.00 1.08 0.00 2820.00 2820.00 1.64 0.00 2820.00

29-3 3285.60 11.81 0.00 3285.60 3285.60 0.05 0.00 3285.60 3285.60 1.03 0.00 3285.60 3285.60 1.45 0.00 3285.60

30-1

3 3

721.39 17.49 0.00 721.39 717.27 0.40 0.00 721.39 719.58 2.47 0.00 721.39 721.39 2.01 0.00 721.39

30-2 612.59 7.91 0.00 612.59 612.59 0.03 0.00 612.59 612.59 1.02 0.00 612.59 612.59 1.89 0.00 612.59

30-3 1032.35 3.17 0.00 1032.35 1032.35 0.04 0.00 1032.35 1031.94 1.88 0.00 1032.35 1032.35 1.55 0.00 1032.35

31-1

3 15

491.90 166.75 0.00 491.90 491.90 1.52 0.00 491.90 491.90 1.98 0.00 491.90 491.90 3.11 0.00 491.90

31-2 640.00 113.21 0.00 640.00 640.00 0.49 0.00 640.00 640.00 1.21 0.00 640.00 640.00 2.05 0.00 640.00

31-3 526.10 808.19 0.00 526.10 526.10 5.37 0.00 526.10 526.10 1.16 0.00 526.10 526.10 2.04 0.00 526.10

32-1

1 3

11425.20 1.63 0.00 11425.20 11271.90 0.02 0.00 11425.20 11283.21 2.61 0.00 11425.20 11393.75 2.53 0.00 11425.20

32-2 15914.20 0.47 0.00 15914.20 15914.20 0.00 0.00 15914.20 15914.20 1.03 0.00 15914.20 15914.20 1.13 0.00 15914.20

32-3 19273.50 0.02 0.00 19273.50 19273.50 0.00 0.00 19273.50 19273.50 1.09 0.00 19273.50 19273.50 1.25 0.00 19273.50

AVG 2 738.02 147.48 0.01 2 729.09 2 723.25 0.35 0.45 2 738.18 2 733.23 1.92 0.00 2 738.18 2 735.22 1.77 0.00 2 738.18

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

85

Table IV.2. Computational results obtained from the second set of benchmark instances

Ins. R

Obj dev dev dev dev

1-1 10 30 * 3603.87 * 5093.06 5074.50 7419.16 0.29 5100.54 5016.82 3793.42 0.14 5107.80 5102.17 225.23 0.00 5107.80

1-2 * 56.24 * 4848.58 4830.20 8101.91 0.84 4858.84 4784.07 4493.57 0.63 4889.58 4889.58 295.09 0.00 4889.58

1-3 * 56.27 * 5896.01 5876.05 6823.41 0.12 5902.86 5823.73 4710.79 0.00 5902.86 5898.23 259.01 0.00 5902.86

2-1 30 150 * 98.62 * 2607.84 2601.31 3530.13 0.01 2608.12 2557.22 5175.50 0.00 2608.12 2601.20 443.04 0.00 2608.12

2-2 * 98.87 * 2285.32 2281.63 3570.48 0.00 2257.88 2249.62 3925.30 1.20 2285.32 2285.32 525.11 0.00 2285.32

2-3 * 111.68 * 2578.14 2573.40 2946.75 0.1 2580.62 2574.96 3464.23 0.00 2580.62 2577.08 390.03 0.00 2580.62

3-1 10 150 16760.30* 3610.46 * 32189.10 32147.30 2693.57 0.08 32210.80 32163.74 1734.37 0.02 32216.20 32210.32 307.98 0.00 32216.20

3-2 4640.30* 3601.01 * 40302.40 40169.70 1437.15 0.13 40354.90 40239.63 2399.47 0.00 40354.90 40354.90 523.02 0.00 40354.90

3-3 3196.10* 3628.88 * 32766.70 32749.40 3414.05 0.02 32768.20 32704.85 4220.01 0.01 32772.40 32772.40 309.15 0.00 32772.40

4-1 10 150 * 58.26 * 9045.80 9027.86 4323.70 0.03 9048.40 9029.01 2720.37 0.00 9048.40 9048.40 223.06 0.00 9048.40

4-2 * 60.70 * 8465.00 8448.00 4871.10 0.04 8468.50 8425.58 2207.61 0.00 8468.50 8459.36 255.03 0.00 8468.50

4-3 * 60.66 * 8491.30 8475.10 4467.05 0.07 8494.20 8450.93 2058.68 0.04 8497.20 8490.23 189.45 0.00 8497.20

7-1 10 30 * 61.74 * 68129.00 68029.40 3314.59 0.05 68165.50 68060.77 1669.41 0.00 68165.50 68160.81 301.09 0.00 68165.50

7-2 * 59.71 * 65616.80 65546.20 2542.84 0.04 65643.50 65559.26 1943.83 0.00 65643.50 65643.50 208.01 0.00 65643.50

7-3 * 68.10 * 69397.60 69279.30 3104.20 0.06 69440.90 69295.39 2304.84 0.00 69440.90 69440.90 205.21 0.00 69440.90

9-1 30 30 * 94.75 * 9252.47 9242.60 1485.96 0.04 9256.47 9245.74 3262.62 0.00 9256.47 9256.47 558.82 0.00 9256.47

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

86

Table IV.2. Computational results obtained from the second set of benchmark instances (cont)

9-2 * 98.61 * 13007.30 12988.90 3120.53 0.05 13009.08 12943.85 3215.71 0.03 13013.20 13013.20 398.86 0.00 13013.20

9-3 * 97.84 * 16372.00 16359.20 2822.24 0.09 16385.97 16364.29 3547.43 0.00 16385.97 16385.97 480.2 0.00 16385.97

10-1 30 30 * 41.04 * 13196.30 13125.80 3761.90 0.14 13214.66 11147.24 5078.34 0.00 13214.66 13214.66 508.11 0.00 13214.66

10-2 * 511.88 * 13003.30 12779.20 3796.61 0.09 13015.08 11209.88 5482.66 0.00 13015.08 13015.08 514.2 0.00 13015.08

10-3 * 3604.61 * 13057.00 13008.60 4114.58 0.09 13068.47 11672.09 4046.23 0.00 13068.47 13068.47 397.03 0.00 13068.47

11-1 10 30 534.00* 3600.86 * 7116.50 7103.55 711.63 0.08 7121.90 7108.17 2536.74 0.00 7121.90 7121.90 306.05 0.00 7121.90

11-2 339.20* 3602.37 * 6771.50 6758.19 537.44 0.05 6774.70 6760.15 2546.20 0.00 6774.70 6774.70 414.89 0.00 6774.70

11-3 539.60*

1975.36 * 7745.10 7726.96 911.53 0.03 7747.10 7705.36 2952.58 0.00 7747.10 7747.10 262.4 0.00 7747.10

Ins. R

Obj dev dev dev dev

12-1 30 150 * 103.53 * 592

34.1

0

59137.7

0

6140.09
0.60

59592.00
59381.42 4665.91 0.00 59592.00 59592 301.17 0.00 59592.00

12-2 * 90.25 * 614

89.7

0

61181.7

0

4800.17 0.40 61725.20 61449.70 4163.09 0.02 61737.40 61730

.08

360.23 0.00 61737.40

12-3 * 92.71 * 608

99.3

0

60749.7

0

5156.66 0.44 61165.70 60988.89 4541.59 0.00 61165.70 61165

.7

489.20 0.00 61165.70

13-1 30 150 * 724.18 * 421

0.10

4194.59 1901.71 0.00 4196.20 4132.31 1176.32 0.33 4207.20 4198.

17

190.13 0.07 4210.10

13-2 * 584.78 * 413

9.90

4136.01 1318.51 0.00 4119.60 4086.26 1181.03 0.49 4139.90 4139.

9

201.25 0.00 4139.90

13-3 * 581.17 * 473

4.90

4717.27 2123.22 0.22 4722.10 4666.32 1160.96 0.49 4745.10 4742.

85

186.17 0.00 4745.10

14-1 10 30 26750.32* 3601.66 * 268

68.6

0

26868.6

0

4.61 0.00 26868.60 26868.60 1416.34 0.00 26868.60 26868

.6

213.07 0.00 26868.60

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

87

14-2 3143.93* 76.06 * 259

29.6

0

25720.0

0

304.66 0.18 25885.67 25743.61 1290.07 0.35 25976.20 25972

.27

287.06 0.00 25976.20

14-3 1825.67* 3601.51 * 314

48.2

0

31448.2

0

301.21 0.00 31448.20 31444.55 1353.25 0.00 31448.20 31448

.2

266.52 0.00 31448.20

16-1 30 30 7622.90* 600.21 * 141

29.1

0

14060.9

0

1932.42 0.27 14166.80 14086.34 1011.32 0.00 14166.80 14166

.8

198.03 0.00 14166.80

16-2 * 1017.00 * 166

11.9

0

16577.6

0

1634.65 0.00 16612.40 16582.07 811.82 0.00 16612.40 16612

.4

183.06 0.00 16612.40

16-3 * 840.83 * 142

40.8

0

14210.1

0

2391.58 0.07 14251.00 14230.64 940.71 0.00 14251.00 14251 192.71 0.00 14251.00

17-1 30 30 * 106.86 * 415

7.20

4147.09 1221.69 0.00 4157.20 4149.12 3242.94 0.00 4157.20 4157.

2

198.65 0.00 4157.20

17-2 * 101.97 * 390

1.30

3891.48 1500.73 0.25 3892.00 3881.10 3009.30 0.49 3911.00 3911 103.33 0.00 3911.00

17-3 * 93.66 * 376

7.70

3767.67 1444.65 0.00 3756.80 3744.68 3460.16 0.29 3767.70 3767.

7

196.13 0.00 3767.70

19-1 10 150 930.47* 3600.99 * 686

9.80

6866.33 843.08 0.05 6873.07 6853.02 1641.79 0.00 6873.07 6865.

86

153.69 0.00 6873.07

19-2 691.96* 3601.31 * 802

8.54

7831.85 1847.38 0.18 8042.79 7888.13 2137.21 0.00 8042.79 8042.

79

201.06 0.00 8042.79

19-3 554.83* 3601.83 * 815

5.05

8154.87 1410.02 0.00 8142.84 8131.62 1724.09 0.15 8155.05 8155.

05

113.20 0.00 8155.05

21-1 10 150 * 59.09 * 222

21.9

0

22187.0

0

7570.7 0.04 22210.23 22121.54 3100.56 0.09 22230.23 22225

.07

167.23 0.00 22230.23

21-2 * 64.96 * 252

54.5

0

25199.7

0

5544.17 0.05 25266.50 25165.91 3867.18 0.00 25266.50 25260

.06

200.03 0.00 25266.50

21-3 * 80.21 * 245

74.1

0

24541.2

0

8984.81 14.06 28565.63 27847.15 3914.01 0.1 28593.40 28589

.17

188.14 0.00 28593.40

24-1 30 150 * 53.73 * 526

52.7

0

52253.3

0

91.59 1.25 53318.76 53173.81 3103.33 0.00 53320.50 53312

.35

203.48 0.00 53320.50

24-2 * 8.37 * 577

71.6

0

57513.4

0

2868.01 3.27 59712.09 59169.73 3190.82 0.02 59723.20 59719

.32

203.60 0.00 59723.20

24-3 * 5.58 * 526

42.7

0

52361.6

0

77.34 0.81 53073.72 52929.65 3456.26 0.00 53073.72 53073

.72

290.73 0.00 53073.72

AVG * 1086.56 * 218
99.3

2

21831.6
7

3025.75 0.51 22067.96 21871.01 2896.87 0.10 22075.09 22072
.90

287.25 0.00 22075.15

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

88

 Figure IV.2. CPU time of MVNS vs MA and MS-ILS on first set of instances.

Figure IV.2 shows that both approaches solve all the instances from the first set in a

very reasonable computational time. More precisely, the MVNS outperforms MS-ILS on CPU

average: 1.77s with MVNS vs 1.92s with MS-ILS. Furthermore, MA outperforms MS-ILS

and MVNS with a CPU average of 0.44s.

Table IV.2 shows that when dealing with the instances from the second set, using

CPLEX for LGQMKP terminates with an out of memory or exceeds the time limit of 1 hour

for all instances. The results show that our MVNS outperforms MS-ILS. In fact, MVNS finds

the best solutions for all instances (48 instances) while MS-ILS finds the best solutions for 29

instances and MA finds the best solutions for 8 instances. More precisely, MVNS, MS-ILS

and MA produce solutions with average dev of 0.001%, 0.1% and 0.51% respectively. In

addition, for the instances where the average and the best results are not the same, the gaps

between the best and the average results are 0.03% for MVNS, 1.36% for MS-ILS and 0.32%

for MA, which proves the robustness of the MVNS.

Table IV.3. Number of the Best Results of Test Instances with n=300 for Different Parameter

Levels

Parameter Levels MA MS-ILS LGQMKP MVNS

k
10
30

3
5

15
14

0
0

24
24

r
30

150
4
4

18
11

0
0

24
24

d
0.25

1
3
5

13
16

0
0

24
24

0,00

2,00

4,00

6,00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

C
P

U
 (

s)

First Set of benchmark instances

MS-ILS

MA

MVNS

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23figure_2
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_2

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

89

Table IV.3 provides an analysis of the number of obtained best solutions by applying

CPLEX for LGQMKP, MA, MS-ILS and MVNS for each class of instances regarding the

levels of parameters k, r and d. Using CPLEX for LGQMKP cannot solve large instances. In

fact, no best solution nor optimal is obtained with CPLEX. The MS-ILS procedure obtains 15

best solutions for instances with 10 knapsacks and obtains 14 best solutions for instances with

30 knapsacks. Similarly, it reaches 18 best solutions for instances with 30 classes and 11 best

solutions for instances with 150 classes. The MS-ILS is more successful when dealing with

small instances with a low number of knapsacks, a low number of classes and a low density.

The MA obtains between 3 and 5 best solutions for each parameters class, with no statistically

significant difference between the parameters classes. The proposed matheuristic MVNS

outperforms the MA and MS-ILS and provides the best solutions for all instances (48 small

and 48 large instances).

Figure IV.3. CPU time of MVNS vs MA and MS-ILS on second set of instance

Figure IV.3 shows the performance of our approach on large instances (second set) in

terms of computation time. We notice that our approach is considerably faster on average than

MS-ILS: 287.25 seconds and MA: 3025.75 with MVNS vs 2896.87 seconds with MS-ILS.

The proposed MVNS is more effective for large instances. The key of performance of

MVNS is the iteratively decomposition of the LGQMKP into a series of less complex sub

problems that may be solved in a reasonable time. This shows that combining mathematical

models with metaheuristics is definitely a good option.

To better analyze the performance of the MVNS in comparison to MA and MS-ILS,

we conduct an additional experiment and present the results of the paired-t test for the first

and second set instances. Table IV.4 shows that there is no statistically significant difference

between MVNS and MA and MS-ILS on quality solution for the first set of instances.

0

5000

10000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

C
P

U
 (

s)

Second set of benchamrk instances

MS-ILS

MA

MVNS

file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23table_3
file:///C:/Users/dell/Google%20Drive/rapport%20thèse%202019/Chapter%2004.docx%23figure_3

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

90

However, it has been observed that MVNS is statistically significantly different from MA and

MS-ILS with mean difference equal to 175.766 and 7.123 and p-values equal to 0.032 and

0.001 respectively. This result also confirms that MVNS outperforms MA and MS-ILS for

large instance. Table IV.5 of Appendix A shows that average CPU of MVNS is significantly

lower than average CPU of MA and average CPU of Multi-start ILS.

Table IV.4. Results of paired-t test for first and second set instances on solution quality

*: standard error difference equal to zero; +: statistically significantly different at α = 0.05; - : no statistically

significant

Table IV.5. Results of Tukey-test for second set of instances on computation time CPU

Alpha = 0.01 Tukey Confidence = 0.99

In results of Tukey test with Alpha = 0.01 show that group B contains CPU (MA) and

CPU (Multi-start ILS) and group A contains CPU (MVNS). Differences between means that

share a letter are not statistically significant. CPU (MA) and CPU (Multi-start ILS) do not

share a letter with CPU (MVNS), which indicates that CPU (MVNS) has a significantly lower

mean than CPU (MA) and CPU (Multi-start ILS).

Pairs (MVNS vs

algorithm)

First set of instances Second Set of instances

Mean

difference
p-value

Mean

difference
P-value

MVNS vs MA 8.853 0.128- 175.766 0.032+

MVNS vs MS-ILS 0 * 7.123 0.001+

Comparison

set

Obj.

value

P-

value
Significance Tukey result

Tukey

interpretation

MA / MS-

ILS /

MVNS

CPU

time

 <

0,00

Significant

difference

Factor N Mean Grouping

CPU (MA) 48 3026 B

CPU

(Multi-start

ILS)

48 2897 B

CPU

(MVNS)
48 287.2 A

MVNS is

better than

MS- ILS and

MA

 Chapter IV: Cooperative approach between MVNS and IP for solving GQMKP

91

IV.5 Conclusion

In this chapter, we considered the Generalized Quadratic Multiple Knapsack problem

with setup (GQMKP). This problem can be used to model a wide range of concrete industrial

problems, including order acceptance and production scheduling. We proposed a linear

formulation of the GQMKP denoted LGQMKP and a new matheuristic approach that

combines VNS with IP denoted MVNS. We considered a wide set of benchmark instances to

test our model LGQMKP and solving technique MVNS. The results show that only 48.9% of

the instances are solved using CPLEX while considering the new model LGQMKP. The

matheuristic MVNS outperforms the best algorithm in literature (MS-ILS) and provides the

best solutions for all instances: the same result for 77 instances and better results for 19

instances, in a shorter computation time.

 Considering the promising performance of the MVNS, an extension is expected to

deal with other variants of KP such as generalized knapsack sharing problem (GKSP) and

other combinatorial optimization problems involving two sets of variables.

 Conclusions

92

Conclusions

In this conclusion, we present a brief summary and outline only the principle

contributions of this work, since the detailed discussion of each contribution is presented as a

final section of the corresponding chapter. In addition, we draw some perspectives on future

work.

At first, in order to draw some conclusions from the work presented in this thesis, it is

necessary to draw attention to the primary goal that was considered when this research started.

The primary goal was to develop cooperative approaches based upon the cooperation between

neighborhood search techniques and integer programming tailored for optimizing large size

instances of hard optimization problems belonging to knapsack family: linear generalized

multiple knapsack problem with setup (GMKPS) and its variants such as linear MKPS, linear

MCKS and quadratic variant GQMKP. In order to solve such a problem, we found two main

categories:

(1) Exact methods, which try to find the best solution and prove its optimality. Indeed,

due to the complexity of the considered problem, proving optimality requires a

huge computational resource.

(2) (Meta-)heuristic approaches, which generate high quality solutions in a reasonable

time but there is no guarantee of finding an optimal solution.

Cooperative framework, combination of exact and or (meta)heuristic methods, have

emerged to solve hard optimization problems. These hybrid approaches generally provide

good results since they are able to exploit simultaneously the advantages and alleviating the

weaknesses of both types of methods. Thus, cooperation lead to even more powerful search

models for difficult combinatorial optimization problems. In this thesis, we focused on

 Conclusions

93

cooperation between variable neighborhood techniques with integer programming for solving

GMKPS and its variants. Within the cooperative approaches, different mathematical

programming formulations of sub problems are proposed and solved with exact solver. We

have proposed three cooperative approaches can be seen as a matheuristics to tackle

(G)MKPS, MCKS and GQMKP. The keys of better performance for our cooperative

approaches instead aims to exploit the structure of the GMKPS and its variants, where the set

of variables is partitioned into two levels, variables (classes) and variables (items).

Thus, we decided to invest in the development of a matheuristic combining variable

neighborhood techniques (VND or VNS or matheuristic VNS) and IP. The practical

hardness of the problem comes from these two sets of variables that must be properly

combined to reach an optimal solution. The matheuristic considers a local search technique

with an adaptive perturbation mechanism to assign the classes to different knapsacks (At the

same time, once the classes are chosen, the hard original problem boils down to a several

classical KP) and then once the assignment is identified, applies the IP to select the items to

allocate to each knapsack. Experimental results obtained on a wide set of benchmark

instances clearly show the competitiveness of the proposed approach compared to CPLEX

solvers and the best state-of-the-art solving techniques.

This thesis opens up several avenues for future research. They can be summarized as

follows. First, it would be interesting to test the other variants of knapsack family, such as

Generalized Knapsack Sharing Problem (GKSP), and also to adapt the other solution-based

cooperative approaches such as cooperation between genetic algorithm (or tabu serach) and

integer programming. A second perspective is to test the proposed algorithms using the

different encoding schema of a program.

Further, the generalized multiple knapsack problems with setup and its variants

considered in this thesis might be too simplistic compared to the real world problems that

have supplementary complicated constraints or objective functions such as multi-objective

scheduling problems. It is extremely expected to adapt these cooperative approaches to tackle

these kinds of problems. We think that the ideas illustrated in this thesis, at least a few of

them, will be useful for later research.

 Conclusions

94

Through this thesis, we attempted to answer the primary research question: "

matheuristic: exact or approximate method?". Evidently, this thesis represents a step in this

research avenue and works on the subject can be pursued by considering more KP variants. In

addition, I started this trip with the aim of providing additional guidelines for cooperative

solution approaches for KPs. Combining matheuristics, which in some way exploit the

mathematical model of a problem, is very promising and may produce effective solution

approaches. I look forward to discover these future researches development, which I hope not

only to observe but in some way to participate in, too.

 Bibliography

95

BIBLIOGRAPHY

[1] Absi, N., and Sidhoum, S. (2008) ‘The multi-item capacitated lot-sizing problem with

setup times and shortage costs’, European Journal of Operational Research, Vol. 3,

pp.1351-1374.

[2] Adouani, Y., Jarboui, B., and Masmoudi M. (2018) ‘A Variable Neighborhood Search

with Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with

Setup’. In: Sifaleras A., Salhi S., Brimberg J. (eds), Variable Neighborhood Search.

ICVNS 2018, Lecture Notes in Computer Science, Vol. 11328, pp.152-166.

[3] Adouani, Y., Jarboui, B., and Masmoudi M. (2019) ‘A matheuristic for the 0-1

Generalized Quadratic Multiple Knapsack Problem’. Optim Lett, pp.1-22. (in press)

[4] Adouani, Y., Jarboui, B., and Masmoudi M. (2020) ‘A efficient matheuristic for the

Generalized Multiple Knapsack Problem with setup’. European J. Industrial

Engineering. (in press).

[5] Akcay, Y., Li, H. and Xu, S.H. (2007) ‘Greedy algorithm for the general multidimensional

knapsack problem’, Annals of Operations Research, Vol. 150, pp.17-29.

[6] Akinc, U. (2006) ‘Approximate and exact algorithms for the fixed-charge knapsack

problem’, European Journal of Operational Research, Vol. 170, pp.363-375.

[7] AlMaliky, F., Hifi, M. and Mhalla, H. (2018) ‘Sensitivity analysis of the setup knapsack

problem to perturbation of arbitrary profits or weights’, International Transactions in

Operational Research, Vol. 25, pp.637-666.

[8] Augerat, P., Belenguer, J. M., Benavent, E., Corbern, A. and Naddef D. (1998)

‘Separating capacity constraints in the CVRP using tabu search’, European Journal of

Operational Research, Vol. 106, pp.546-557.

[9] Avci, M. and Topaloglu, S. (2017) ‘A multi-start iterated local search algorithm for the

generalized quadratic multiple knapsack problem’, Computers & Operations

Research,Vol. 83, pp.54-65.

[10] Balas, E. and Xue, J. (1996) ‘Weighted and unweighted maximum clique algorithms with

upper bounds from fractional coloring’, Algorithmica, Vol. 15, pp.397-412.

 Bibliography

96

[11] Bansal, J.C. and Deep, K. (2012) ‘A modified binary particle swarm optimization for

knapsack problems’, Applied Mathematics and Computation, Vol. 218, pp.11042-

11061.

[12] Bellman, R. (1957) ‘Dynamic Programming’, Princeton University Press, Princeton,

New Jersey, USA.

[13] Bertsimas, D. and Tsitsiklis, J. N. (1997) ‘Introduction to Linear Optimization’, Athena

Scientific.

[14] Bertsimas, D. and Weismantel, R. (2005) ‘Optimization Over Integers’, Dynamic Ideas.

[15] Billionnet, A., and Soutif, E. (2004) ‘An exact method based on Lagrangian

decomposition for the 0-1 quadratic knapsack problem’, European Journal of

operational research, Vol. 157, pp.565-575.

[16] Billionnet, A. and Soutif, E. (2004) ‘Using a mixed integer programming tool for solving

the 01 quadratic knapsack problem’, INFORMS Journal on Computing, Vol. 16,

pp.188-197.

[17] Burke, E.K., Li, J. and Qu, R. (2010) ‘A hybrid model of integer programming and

variable neighborhood search for highly-constrained nurse rostering problems’,

European Journal of Operational Research, Vol. 2003, pp.484-493.

[18] Chabrier, A., Danna, E. and Le Pape, C. (2002) ‘Coopération entre génération de

colonnes sans cycle et recherche locale appliquée au routage de véhicules’, in: JNPC.

[19] Chaillou, P., Hansen, P. and Mahieu, Y. (1989) ‘Best network ow bounds for the

quadratic knapsack problem’, Combinatorial Optimization, Vol. 1403, pp.225-235.

[20] Chajakis, E.D. and Guignard, M. (1994) ‘Exact algorithms for the setup knapsack

problem’, INFOR, Vol. 32, pp.124-142.

[21] Chebil, K. and Khemakhem, M. (2015) ‘A dynamic programming algorithm for the

knapsack problem with setup’, Computers & Operations Research, Vol. 64, pp.40-50.

[22] Chen, P., Huang, H. and Dong, X.Y. (2010) ‘Iterated variable neighborhood descent

algorithm for the capacitated vehicle routing problem’, Expert Systems with

Applications, Vol. 37, pp.1620-1627.

[23] Chen, Y. and Hao, J. K. (2016) ‘Memetic search for the generalized quadratic multiple

knapsack problem’, IEEE Transactions on Evolutionary Computation, Vol. 20,

pp.908-923.

 Bibliography

97

[24] Cotta, C., Aldana, J. F., Nebro, A.J. and Troya, J. M. (1995) ‘Hybridizing genetic

algorithms with branch and bound techniques for the resolution of the tsp’, in: D.W.

Pearson, N.C. Steele, R.F. Albrecht (Eds.), Artificial Neural Nets and Genetic

Algorithms 2, Springer-Verlag, Vol. 1995, pp.277-280.

[25] Crowder, H., Johnson, E.L. and Padberg, M. (1983) ‘Solving large-scale zero-one linear

programming problems’, Operations Research, Vol. 31, pp. 803-834.

[26] Chu, P. and Beasley, J. (1998) ‘A Genetic Algorithm for the Multidimensional Knapsack

Problem’, Journal of Heuristics, Vol. 4, pp.63-86.

[27] Dantzig, G. B. and Thapa, M. N. (1997) ‘Linear Programming 1: Introduction’, Springer-

Verlag, New York.

[28] Dantzig, G. B. and Thapa, M. N. (2003) ‘Linear Programming 2: Theory and

Extensions’, Springer-Verlag, New York.

[29] Dantzig, G. B. (2002) ‘Linear programming’, Operations Research, Vol. 50, pp.42-47.

[30] Dasgupta, S., Papadimitriou, C.H. and Vazirani, U (2006) ‘Algorithms’, McGraw-Hill.

[31] Dantzig, G. B. (1957) ‘Discrete variable extremum problems’, Operation Research, Vol.

5, pp.266-277.

[32] Della, C.F., Salassa, F. and Scatamacchia, R. (2017) ’An exact approach for the 0-1

knapsack problem with setups’, Computers & Operations Research, Vol. 80, pp.61-

67.

[33] Dogan, N., Bilgiҫer, K and Saraҫ, T. (2012) ‘Quadratic multiple knapsack problem with

setups and a solution approach’, In Proceedings of the International Conference on

Industrial Engineering and Operations Management, Turkey, pp.3-6.

[34] Duarte, A., Pantrigo, J. J., Pardo, E.G. and Mladenovic, N. (2015) ‘Multi-objective

variable neighborhoodsearch: an application to combinatorial optimization problems’,

J. Glob. Optim, Vol. 63, pp.515-536.

[35] Dudziński, K. and S. Walukiewicz, S. (1987) ‘Exact methods for the knapsack problem

and its generalizations’, European Journal of Operational Research, Vol. 28, pp.3-21.

[36] Dumitrescu, I. and Stützel, T. (2003) ‘Combinations of local search and exact

algorithms’, Applications of evolutionary computation, Vol. 2611, pp.211-223.

[37] Dumitrescu, I. and Stützle, T. (2009) ‘Usage of Exact Algorithms to Enhance Stochastic

Local Search Algorithms’, In Maniezzo, V., Stützle, T., and Voß, S. editors,

 Bibliography

98

Matheuristics Hybridizing Metaheuristics and Mathematical Programming, of Annals

of Information Systems, Vol. 10, pp.103-134. Springer, New York, NY.

[38] Erromdhani, R., Jarboui, B., Eddaly, M., Rebai, A. and Mladenovic, N. (2017) ‘variable

neighborhood formulation search approach for the multi-item capacitated lot-sizing

problem with time windows and setup times’, Yugoslav Journal of Operations

Research, Vol. 27, pp. 301–322.

[39] Fernandes, S. and Lourenco, H. (2007) ‘Hybrid combining local search heuristics with

exact algorithms’, in: Almeida, F. et al. (Eds.), V Congreso Espanolsobre

Metaheursticas. Algoritmos Evolutivos y Bioinspirados, Spain, pp.269-274.

[40] Fleszar, K., Charalambous, C. and Hindi, K.S. (2012) ‘A variable neighborhood descent

heuristic for the problem of make span minimization on unrelated parallel machines

with setup times’, Journal of Intelligent, Vol. 23, pp.1949-1958.

[41] Fischetti, M. and Lodi, A. (2003) ‘Local Branching. Mathematical Programming Series

B’, Vol 98, pp.23-47.

[42] Freville, A. and Plateau, G. (1986) ‘Heuristics and reduction methods for multiple

constraints 0-l linear programming problems’, European Journal of Operational

Research, Vol. 24, pp.206-215.

[43] Garcia-Martinez, C., Rodriguez, F. J. and Lozano, M. (2014) ‘Tabu-enhanced iterated

greedy algorithm: A case study in the quadratic multiple knapsack problem’,

European Journal of Operational Research, Vol. 232, pp.454-463.

[44] Ghasemi, T. and Razzazi, M. (2011) ‘Development of core to solve the multidimensional

multiple-choice knapsack problem’, Computers and Industrial Engineering, Vol. 60,

pp.349-360.

[45] Gomory, R. (1958) ‘Outline of an algorithm for integer solutions to linear programs’,

Bulletin of the American Mathematical Society, Vol. 64, pp.275-278.

[46] Glover, F. (1989) ‘Tabu search-part I’, ORSA Journal on computing, Vol. 1, pp.190-206.

[47] Goldberg, D.E. (1989) ‘Genetic algorithms in search, optimization, and machine

learning’, Addison-WesleyLongman Publishing Co.

[48] Haddar, B., Khemakhem, M., Rhimi, H. and Chabchoub, H. (2016) ‘A quantum particle

swarm optimization for the 0-1 generalized knapsack sharing problem’, Natural

Computing, Vol 15, pp.153-164.

 Bibliography

99

[49] Hanafi, S. and Fréville, A. (1998) ‘An efficient tabu search approach for the 0-1

multidimensional knapsack problem, European Journal of Operational Research, Vol.

106, pp. 659-675.

[50] Hanafi, S., Lazić, J., Mladenović, N. and Wilbaut, C. (2010) ‘New hybrid matheuristics

for solving the multidimensional knapsack problem’, International Workshop on

Hybrid Metaheuristics, Springer, Vol. 6373, pp.118-132.

[51] Hansen, P., Mladenovic, N. and Moreno Perez, J. A. (2010) ‘Variable neighborhood

search: methods and applications’, Annals of Operations Research, Vol. 175, pp.367-

407.

[52] Hansen, P., Mladenovic, N., Todosijevic, R. and Hana, S. (2017) ‘Variable neighborhood

search: basics and variants’, EURO Journal on Computational Optimization, Vol. 5,

pp.423-454.

[53] Hana, S., Lazic, J., Mladenovic, N. and Wilbaut, C. (2010) ‘New hybrid matheuristics for

solving the multidimensional knapsack problem’, International Workshop on Hybrid

Metaheuristics. Springer. Vol. 6373, pp.118-132.

[54] Hifi, M., Michrafy, M. and Sbihi, A. (2006) ‘A reactive local search-based algorithm for

the multiple-choice multidimensional knapsack problem’, Computational

Optimization and Applications, Vol 33, pp.271-285.

[55] Hiley, A. and Julstrom, B. A. (2006) ‘The quadratic multiple knapsack problem and three

heuristic approaches to it’, In Proceedings of the 8th annual conference on Genetic and

evolutionary computation, pp.547-552.

[56] Horowitz, E. and Sahni, S. (1974) ‘Computing partitions with applications to the

knapsack problem’, Journal of the ACM (JACM), Vol. 21, pp.277-292.

[57] Jarboui, B., Derbel, H., Hanafi, S. and Maldenovic, N. (2013) ‘Variable neighborhood

search for location routing’, Computers & Operations Research, Vol. 40, pp.47-57.

[58] Johnson, E., Mehrotra, A. and Nemhauser, G. (1993) ‘Min-cut clustering’, Math.

Programming. Vol. 62, pp.133-152.

[59] Jourdan, L., Basseur, M. and Talbi, E.G. (2009) ‘Hybridizing exact methods and

metaheuristics’, European Journal of Operational Research, Vol. 199, pp.620-629.

https://link.springer.com/chapter/10.1007/978-3-642-16054-7_9
https://link.springer.com/chapter/10.1007/978-3-642-16054-7_9
https://link.springer.com/conference/hm
https://link.springer.com/conference/hm
https://www.sciencedirect.com/science/journal/03050548
http://www.sciencedirect.com/science/article/pii/S0377221708003597#!
http://www.sciencedirect.com/science/article/pii/S0377221708003597#!
http://www.sciencedirect.com/science/article/pii/S0377221708003597#!

 Bibliography

100

[60] Jünger, M., Liebling, T., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt, G.,

Rinaldi, G. and Wolsey, L. A., editors (2009) ‘50 Years of Integer Programming

1958–2008’, Springer.

[61] Kellerer, H., Pferschy, U., Pisinger, D. (2004) ‘Knapsack Problems’, Springer.

[62] Kennedy, J. and Eberhart, R. (1995) ‘Particle Swarm Optimization’, IEEE International

Conference on Neural Net- work, Vol. 4, pp.1942-1948.

[63] Khemakhem, M. and Chebil, K. (2016) ‘A tree search based combination heuristic for

the knapsack problem with setup’, Computers and Industrial Engineering, Vol. 99,

pp.280-286.

[64] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983). ‘Optimization by Simulated

Annealing’, Science.

[65] Klee, V. and Minty, G. J, (1972) ‘How good is the simplex algorithm’, In O. Shisha,

editor, Inequalities, Academic Press, New York, Vol. 3, pp.159-175.

[66] Klepeis, J. L., Pieja, M. J. and Floudas, C.A. (2003) ‘Hybrid global optimization

algorithms for protein structure prediction: Alternating hybrids’, Biophysical Journal,

Vol. 4, pp.869-882.

[67] Kolesar, P. J. (1967) ‘A branch and bound algorithm for the knapsack problem’,

Management Science, Vol. 13, pp.723-735.

[68] Kong, X., Gao, L., Ouyang, H. and Li, S. (2015) ‘A simplifed binary harmony search

algorithm for large scale 0-1 knapsack problems’, Expert Systems with Applications,

Vol. 42, pp.5337-5355.

[69] Kostikas, K. and Fragakis, C. (2004) ‘Genetic programming applied to mixed integer

Programming’, in: EuroGP 2004, Lecture Notes in Computer Science, Vol. 3003, pp.

113-124.

[70] Lahyani R., Coelho, L.C., Khemakhem, M., Laporte, G., Semet, F. (2015) ‘A multi-

compartment vehicle routing problem arising in the collection of olive oil in Tunisia’,

In: Omega, Vol. 51, pp.1-10.

[71] Lamghari, A., Dimitrakopoulos, R. and Ferland, J.A. (2015) ‘A hybrid method based on

linear programming and variable neighborhood descent for scheduling production in

open-pit mines’, Journal of Global Optimization, Vol. 63, pp.555-582.

 Bibliography

101

[72] Land, A. H. and Doig, A. G. (1960) ’An automatic method of solving discrete

programming problems’, Econometrica: Journal of the Econometric Society, Vol. 28,

pp.497-520.

[73] Lourenço, H. R., Martin, O. C. and Stützle, T. (2010) ‘Iterated Local Search: Framework

and Applications’, Springer US, Vol. 146, pp.363-397.

[74] Maniezzo, V., Stutzle, T. and Voss, S. (2009) ‘Matheuristics: Hybridizing Metaheuristics

and Mathematical Programming, Annals of Information Systems, Vol. 10, Springer,

Heidelberg.

[75] Martello, S. and Toth, P. (1977) ‘An upper bound for the zero-one knapsack problem and

a branch and bound algorithm’, European Journal of Operational Research, Vol. 1,

pp.169-175.

[76] Martello, S. and Toth, P. (1980) ‘Solution of the zero-one multiple knapsack problem’,

European Journal of Operational Research, Vol. 4, pp.276-283.

[77] Martello, S. and Toth, P. (1990) ‘Knapsack problems: Algorithms and computer

implementations’, 605 Third Avenue, New York, NY 10158-0012, USA: John Wiley

& Sons.

[78] Martello, S., Pisinger, D. and Toth, P. (2000) ‘New trends in exact algorithms for the 0-1

knapsack problems’, European Journal of Operational Research, Vol. 123, pp.325-

332.

[79] McLay, L. (2006) ‘Designing aviation security systems: Theory and practice’,

Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.

[80] Michel, S., Perrot, N. and Vanderbeck, F. (2009) ‘Knapsack problems with setups’,

European Journal of Operational, Vol. 196, pp.909-918.

[81] Mladenović, N. and Hansen, P. (1997) ‘Variable neighborhood search’. Computers &

Operation Research, Vol 24, pp.1097-1100.

[82] Nemhauser, G. L. and Wolsey, L. A. (1988) ‘Integer and Combinatorial Optimization’,

John Wiley & Sons, New York, NY, USA.

[83] Osman, I. H. and Laporte, G. (1996) ‘Metaheuristics: A bibliography’, Annals of

Operations research, Vol. 63, pp.511-623.

 Bibliography

102

[84] Peng, B., Liu, M., L, Z., Kochengber, G. and Wang, H. (2016) ‘An Ejection Chain

Approach for the Quadratic Multiple Knapsack Problem’, European Journal of

Operational Research.

[85] Penna, P. H., Subramanian, A. and Ochi, L.S . (2013) ‘An Iterated Local Search heuristic

for the Heterogeneous Fleet Vehicle Routing Problem’, Journal of heuristics, Vol. 19,

pp.201-232.

[86] Peter, J. K. (1967) ’A branch and bound algorithm for the knapsack problem’,

Management Science, Vol. 13, pp.723-735.

[87] Pferschy, U. and Rosario, S. (2018) ‘Improved dynamic programming and approximation

results for the knapsack problem with setups’, International Transactions in

Operational Research, Vol 25, pp.667-682.

[88] Pisinger, D. (1999) ‘An exact algorithm for large multiple knapsack problems’,

European Journal of Operational Research, Vol. 114, pp.528-541.

[89] Pisinger, D. (2007) ‘The quadratic knapsack problem-a survey’, Discrete Applied

Mathematics. Vol. 155, pp.623-48.

[90] Prandtstetter, M. and Raidl, G.R. (2008) ‘An integer linear programming approach and a

hybrid variable neighborhood search for the car sequencing problem’, European

Journal of Operational Research, Vol. 191, pp.1004-1022.

[91] Puchinger, J. and Raidl, G.R. (2005) ‘Combining meta-heuristics and exact algorithms in

combinatorial optimization’, in: Mira, J. and Alvarez, J.R. (Eds.), Artificial

Intelligence and Knowledge Engineering Applications. Berlin Heidelberg, Vol. 3562,

pp.41-53.

[92] Qin, J., Xu, X., Wu, Q. and Cheng, T. C. E. (2016) ‘Hybridization of tabu search with

feasible and infeasible local searches for the quadratic multiple knapsack problem’,

Computers & Operations Research, Vol. 66, pp.199-214.

[93] Richard, L. and Eleftherios, M. (1979) ‘New Greedy-like Heuristics for the

Multidimensional 0-1 Knapsack Problem’, Operations Research, Vol. 27, pp.1101-

1114.

[94] Sara, T. and Sipahioglu, A. (2014) ‘Generalized quadratic multiple knapsack problem

and two solution approaches’, Computers & Operations Research, Vol. 43, pp.78-89.

 Bibliography

103

[95] Sinha, A. and Zoltners, A. A. (1979) ‘The multiple-choice knapsack problem’,

Operations Research, Vol. 27, pp.503-515.

[96] Soyster, A. L., Lev, B. and Slivka, W. (1978) ‘Zero-one programming with many

variables and few constraints’, European Journal of Operational Research, Vol. 2,

pp.195-201.

[97] Stützle, T.G. (1998) ‘Local search algorithms for combinatorial problems: analysis,

improvements, and new applications, Infix.

[98] Sundar, S. and Singh, A. (2010) ‘A swarm intelligence approach to the quadratic

multiple knapsack problem’, Neural Information Processing, Theory and Algorithms,

pp.626-633.

[99] Tlili, T., Yahyaoui, H. and Krichen, S. (2016) ‘An iterated variable neighborhood

descent hyperheuristic for the quadratic multiple knapsack problem’, Software

Engineering, Artificial Intelligence, Vol. 612, pp.245-251.

[100] Vasquez, M. and Hao, J. K. (2001) ‘A hybrid approach for the 0-1 multidimensional

knapsack problem’, in: Proceedings of the International Joint Conference on Artificial

Intelligence, Washington, pp.328-333.

[101] Visee, M., Teghem, J., Pirlot, M. and Ulungu, E.L. (1998) ‘Two-phases Method and

Branch and Bound Procedures to Solve the Biobjective Knapsack Problem’, J. Glob.

Optim, Vol. 12, pp.139-155.

[102] Wen, M., Iwamura, K. (2008) ‘Facility location–allocation problem in random fuzzy

environment: Using (α, β)-cost minimization model under the Hurewicz criterion’,

Computers & Mathematics with Applications, Vol. 55, pp. 704-713

[103] Yang, Y. and Bulfin, R.L. (2009) ‘An exact algorithm for the knapsack problem with

setup’, Int. J. Operational Research, Vol. 5, pp.280-291.

[104] Yang, Y. (2006) ‘Knapsack problems with setup’, Dissertation, Auburn university.

[105] Zhang, C.W. and Ong, H.L. (2004) ‘Solving the biobjective zero-one knapsack problem

by an efficient LP-based heuristic’, European Journal of Operational Research, Vol.

159,pp.545-557.

https://www.sciencedirect.com/science/article/pii/S0898122107005032#!
https://www.sciencedirect.com/science/article/pii/S0898122107005032#!

 Appendix A

104

Appendix A

In this appendix. We provide the detailed results of our computational experiments for

GMKPS, MKPS and MCKS. The following notations are considered in the all tables:

 : Number of the instance



 : Optimal solution found.

 : Time limit exceeded.

 : Out of memory.

Detailed computational results for GMKPS

Table A.1: Detailed computational results for GMKPS with , -

 ()

5

10

1 812913 3600.086 107 812913 3.178 0.0000

2 958546 3600.055 107 958547 10.306 -0.0001

3 960121 3600.263 107 960121 3.27 0.0000

4 676465 3600.147 107 676466 2.875 -0.0001

5 955234 3600.103 107 955234 2.919 0.0000

6 669278 3600.013 107 669285 3.341 -0.0010

7 668532 3600.039 107 668538 13.622 -0.0009

8 612232 3600.032 107 612235 1.529 -0.0005

9 685762 3600.077 107 685764 4.756 -0.0003

10 600841 1015.669 101 600841 3.054 0.0000

20

1 1001475 3600.186 107 1001475 1.446 0.0000

2 628864 3600.123 107 628864 1.655 0.0000

3 674355 3600.199 107 674343 12.27 0.0018

4 918838 3600.052 107 918840 5.614 -0.0002

5 936002 3600.063 107 936002 4.405 0.0000

6 779864 3600.116 107 779867 6.604 -0.0004

 Appendix A

105

7 920233 3600.089 107 920233 3.247 0.0000

8 682760 3600.106 107 682760 1.092 0.0000

9 591179 3600.109 107 591179 2.098 0.0000

10 776047 3600.158 107 776050 5.933 -0.0004

30

1 816917 3600.129 107 816917 1.842 0.0000

2 1009108 3600.143 107 1009108 2.027 0.0000

3 1028611 3600.339 107 1028614 6.09 -0.0003

4 1098279 3600.387 107 1098280 1.866 -0.0001

5 829696 3600.166 107 829685 2.996 0.0013

6 1013232 3600.194 107 1013233 2.322 -0.0001

7 760349 38.049 101 760349 2.438 0.0000

8 905098 3600.321 107 905104 1.938 -0.0007

9 753433 3600.231 107 753433 1.703 0.0000

10 924785 3600.122 107 924787 2.021 -0.0002

10

10

1 1603852 3600.223 107 1603954 12.533 -0.0064

2 1751367 3600.03 107 1755536 3.815 -0.2380

3 1630714 3600.13 107 1636663 17.728 -0.3648

4 1399234 3600.065 107 1401813 30.325 -0.1843

5 1892218 3600.043 107 1892365 5.82 -0.0078

6 1371290 3600.061 107 1373297 15.32 -0.1464

7 1211435 3600.281 107 1211432 40.47 0.0002

8 1216160 3600.088 107 1216286 30.495 -0.0104

9 1244960 3600.025 107 1247261 31.87 -0.1848

10 1132371 3600.053 107 1132349 40.299 0.0019

20

1 1871189 3600.223 107 1871292 1.606 -0.0055

2 1292390 3600.27 107 1293785 16.059 -0.1079

3 1477595 3600.062 107 1479116 6.489 -0.1029

4 1682582 3601.194 107 1682672 6.168 -0.0053

5 1974522 3600.063 107 1974552 4.173 -0.0015

6 1694731 3600.043 107 1694830 5.568 -0.0058

7 1891201 3600.264 107 1891514 7.913 -0.0166

8 1402244 3600.188 107 1402275 3.853 -0.0022

9 1175772 3600.036 107 1175840 30.568 -0.0058

10 1449121 3600.229 107 1449615 18.501 -0.0341

30

1 1612291 3600.297 107 1613746 5.056 -0.0902

2 2031808 3600.243 107 2031831 6.206 -0.0011

3 1958030 3600.327 107 1958088 7.968 -0.0030

4 2165244 3600.298 107 2165333 3.074 -0.0041

5 1669904 3600.23 107 1669857 5.269 0.0028

 Appendix A

106

6 2125487 3600.193 107 2125488 4.746 0.0000

7 1681264 3600.235 107 1681310 10.97 -0.0027

8 1960791 3600.208 107 1962504 8.096 -0.0874

9 1750652 3600.28 107 1750834 7.827 -0.0104

10 1822033 3600.314 107 1822047 5.646 -0.0008

15

10

1 2288605 3601.193 107 2319142 14.203 -1.3343

2 2265070 3600.068 107 2290209 11.028 -1.1099

3 2258467 3600.123 107 2280258 70.563 -0.9649

4 2032309 3600.054 107 2049983 66.671 -0.8697

5 2312884 3600.955 107 2312884 3.875 0.0000

6 2036890 3600.06 107 2046672 60.437 -0.4802

7 1803636 3600.068 107 1807162 65.092 -0.1955

8 1797939 3600.776 107 1817259 67.769 -1.0746

9 1747982 3600.026 107 1774638 40.749 -1.5250

10 1678324 3600.09 107 1683655 43.905 -0.3176

20

1 2706056 3600.325 107 2706826 6.681 -0.0285

2 1794053 3600.238 107 1798826 51.203 -0.2660

3 2187871 3600.2 107 2195401 19.477 -0.3442

4 2469025 3600.078 107 2476018 18.337 -0.2832

5 2908199 3600.218 107 2910999 7.59 -0.0963

6 2372053 3600.065 107 2380982 8.745 -0.3764

7 2698645 3600.155 107 2701151 9.817 -0.0929

8 1901903 3600.242 107 1916093 31.402 -0.7461

9 1653612 3600.047 107 1653975 69.014 -0.0220

10 2122781 3600.35 107 2129807 34.641 -0.3310

30

1 2684661 3600.404 107 2689634 12.826 -0.1852

2 2858448 3600.307 107 2845417 53.431 0.4559

3 2725434 3600.103 107 2725778 6.382 -0.0126

4 3003857 3600.409 107 3006413 7.491 -0.0851

5 2473755 3602.791 107 2475063 98.043 -0.0529

6 3142366 3601.627 107 3149552 11.535 -0.2287

7 2636996 3600.52 107 2637392 10.57 -0.0150

8 3035371 3600.638 107 3035613 4.362 -0.0080

9 2718106 3600.536 107 2719783 6.126 -0.0617

10 2719897 3600.638 107 2727728 7.769 -0.2879

20 10

1 2324170 3607.381 107 2337831 8.174 -0.5878

2 2309245 3600.027 107 2331711 13.281 -0.9729

3 2351799 3600.03 107 2381083 9.554 -1.2452

4 2261308 3600.348 107 2297629 7.533 -1.6062

 Appendix A

107

5 2283262 3600.059 107 2297309 4.16 -0.6152

6 2252182 3600.025 107 2267316 9.184 -0.6720

7 2150880 3600.361 107 2184523 15.435 -1.5642

8 2046575 3602.922 107 2062592 32.017 -0.7826

9 2261341 3600.095 107 2296965 40.602 -1.5753

10 2097028 3601.874 107 2119150 45.593 -1.0549

20

1 3781192 3600.119 107 3795371 60.352 -0.3750

2 2288307 3600.1 107 2314756 60.982 -1.1558

3 2825909 3600.092 107 2850146 60.916 -0.8577

4 3265962 3600.102 107 3302637 50.649 -1.1229

5 3714754 3600.068 107 3730447 17.406 -0.4225

6 3238651 3600.162 107 3264119 30.465 -0.7864

7 3467812 3600.041 107 3525277 35.235 -1.6571

8 2384775 3600.416 107 2405080 50.82 -0.8514

9 2126565 3600.165 107 2151009 44.046 -1.1495

10 2681315 3600.567 107 2699665 55.606 -0.6844

30

1 3549246 3600.166 107 3562054 16.199 -0.3609

2 3657501 3600.123 107 3659987 34.552 -0.0680

3 3622280 3600.36 107 3639456 18.721 -0.4742

4 3861616 3600.147 107 3886415 9.24 -0.6422

5 3501286 3600.453 107 3519183 16.146 -0.5112

6 4024439 3600.07 107 4065645 8.873 -1.0239

7 3342156 3600.121 107 3347683 23.877 -0.1654

8 3844833 3601.082 107 3861978 12.41 -0.4459

9 3720185 3600.165 107 3728062 12.421 -0.2117

10 3495901 3600.798 107 3512312 12.613 -0.4694

Table A.2:Detailed computational results for GMKPS with , -

 ()

5 10

1 1135990 3600.374 107 1135990 1.874 0.0000

2 1309346 3600.031 107 1309351 2.574 -0.0004

3 838462 3600.167 107 838484 5.747 -0.0026

4 1338915 3600.045 107 1338922 7.22 -0.0005

5 1047773 3600.266 107 1047782 8.833 -0.0009

6 1089294 3600.105 107 1089295 9.293 -0.0001

7 1353672 3600.058 107 1353659 10.97 0.0010

8 1153287 3600.068 107 1153287 4.812 0.0000

 Appendix A

108

9 869128 3600.121 107 869128 3.736 0.0000

10 1529682 3600.173 107 1529682 2.005 0.0000

20

1 1099777 190.883 101 1099777 3.115 0.0000

2 1323126 3600.126 107 1323130 2.233 -0.0003

3 1329746 3600.093 107 1329746 3.902 0.0000

4 997809 3600.073 107 997810 8.285 -0.0001

5 1293494 3600.515 107 1293496 6.468 -0.0002

6 1422106 3600.028 107 1422107 3.602 -0.0001

7 866454 3600.172 107 866460 6.847 -0.0007

8 1575520 3600.124 107 1575520 1.601 0.0000

9 1252189 3600.059 107 1252189 1.148 0.0000

10 1119950 3600.168 107 1119956 3.701 -0.0005

30

1 973907 3600.188 107 973907 2.542 0.0000

2 1154917 3600.091 107 1154933 2.628 -0.0014

3 1179293 3600.098 107 1179300 2.776 -0.0006

4 1044345 3600.007 107 1044345 3.965 0.0000

5 1178724 3600.147 107 1178724 2.148 0.0000

6 1284699 332.299 101 1284699 4.272 0.0000

7 1259316 3600.345 107 1260925 4.028 -0.1278

8 1136234 3600.279 107 1136247 3.255 -0.0011

9 915931 3600.038 107 915938 1.522 -0.0008

10 1320349 287.946 101 1320349 1.097 0.0000

10

10

1 2203048 3600.007 107 2204837 8.977 -0.0812

2 2641149 3601.009 107 2644369 6.032 -0.1219

3 1783667 3600.145 107 1783114 40.723 0.0310

4 2778356 3600.036 107 2778490 5.28 -0.0048

5 2295233 3600.215 107 2295319 11.439 -0.0037

6 1956384 3600.047 107 1969663 30.877 -0.6788

7 2736305 3600.363 107 2740557 5.188 -0.1554

8 2431150 3600.118 107 2441336 3.955 -0.4190

9 1894367 3600.542 107 1897986 30.702 -0.1910

10 2923308 3600.044 107 2923434 4.275 -0.0043

20

1 2088653 3600.106 107 2091981 13.178 -0.1593

2 2528469 3600.336 107 2532270 3.461 -0.1503

3 2836970 3600.25 107 2836991 3.872 -0.0007

4 1956109 3600.195 107 1960748 13.905 -0.2372

5 2595511 3600.271 107 2600713 4.548 -0.2004

6 2530249 3600.646 107 2551291 3.356 -0.8316

7 1989904 3600.255 107 2000177 31.382 -0.5163

 Appendix A

109

8 3223699 3600.172 107 3228096 3.437 -0.1364

9 2615473 3600.69 107 2615544 2.907 -0.0027

10 2311150 3600.058 107 2311189 5.131 -0.0017

30

1 2350838 3600.406 107 2352883 3.639 -0.0870

2 2327171 3600.236 107 2327204 4.433 -0.0014

3 2260463 3600.336 107 2262071 4.175 -0.0711

4 2165817 3600.28 107 2172867 5.626 -0.3255

5 2269674 3600.328 107 2275439 7.344 -0.2540

6 2513193 3600.345 107 2513215 9.595 -0.0009

7 2280289 3600.312 107 2280865 12.213 -0.0253

8 2278849 3600.259 107 2278915 9.181 -0.0029

9 1906991 3600.27 107 1907004 15.408 -0.0007

10 2492253 3600.675 107 2492587 8.239 -0.0134

15

10

1 3255164 3600.348 107 3304096 90.63 -1.5032

2 3473823 3600.032 107 3518744 10.681 -1.2931

3 2654033 3600.662 107 2691244 61.415 -1.4021

4 3487442 3603.284 107 3502706 7.297 -0.4377

5 3244253 3601.19 107 3292369 70.576 -1.4831

6 3064391 3600.047 107 3108121 64.767 -1.4270

7 3360001 3600.093 107 3387869 6.991 -0.8294

8 3128586 3600.24 107 3159139 9.691 -0.9766

9 2757744 3600.036 107 2784983 67.011 -0.9877

10 3558666 3600.028 107 3577577 41.379 -0.5314

20

1 3006366 3600.956 107 3014696 43.424 -0.2771

2 3865636 3600.309 107 3865508 12.672 0.0033

3 4124886 3600.12 107 4137427 7.557 -0.3040

4 2881730 3600.3 107 2903412 51.953 -0.7524

5 3747503 3600.079 107 3768181 21.949 -0.5518

6 3735810 3600.063 107 3740469 18.468 -0.1247

7 3140047 3600.341 107 3141879 32.078 -0.0583

8 4693676 3600.301 107 4721239 10.162 -0.5872

9 3926113 3600.451 107 3948143 14.057 -0.5611

10 3475762 3600.327 107 3494340 17.407 -0.5345

30

1 3279295 3600.405 107 3282773 32.283 -0.1061

2 3563092 3600.883 107 3569378 19.79 -0.1764

3 3446242 3601.476 107 3448317 13.086 -0.0602

4 3459757 3600.68 107 3477683 29.574 -0.5181

5 3376620 3600.306 107 3393784 21.716 -0.5083

6 3757424 3600.858 107 3763712 12.005 -0.1673

 Appendix A

110

7 3341049 3600.534 107 3341309 12.518 -0.0078

8 3429455 3601.332 107 3435875 16.399 -0.1872

9 2719748 3600.781 107 2744656 93.617 -0.9158

10 3733701 3600.646 107 3740622 15.888 -0.1854

20

10

1 3370542 3600.156 107 3380053 26.79 -0.2822

2 3516741 3600.055 107 3531702 18.601 -0.4254

3 3377210 3600.095 107 3429730 112.481 -1.5551

4 3503338 3600.062 107 3518703 10.255 -0.4386

5 3473398 3600.081 107 3532934 25.196 -1.7141

6 3349932 3600.053 107 3372946 26.573 -0.6870

7 3411103 3600.076 107 3418334 14.85 -0.2120

8 3198627 3600.022 107 3202779 7.903 -0.1298

9 3194611 3600.077 107 3244499 24.031 -1.5616

10 3600971 3600.037 107 3608919 10.182 -0.2207

20

1 3840225 3600.451 107 3887847 72.028 -1.2401

2 5119179 3600.097 107 5128914 30.924 -0.1902

3 4983417 3600.101 107 5044642 35.952 -1.2286

4 3917960 3600.097 107 3949932 61.478 -0.8160

5 4972891 3600.335 107 5021380 39.482 -0.9751

6 4997562 3600.25 107 5068629 44.855 -1.4220

7 4120857 3600.092 107 4150699 59.168 -0.7242

8 6059568 3600.077 107 6114417 9.797 -0.9052

9 5012324 3600.579 107 5053860 38.894 -0.8287

10 4498643 3600.05 107 4527271 60.816 -0.6364

30

1 4402634 3600.194 107 4444768 44.05 -0.9570

2 4748304 3601.264 107 4756582 31.391 -0.1743

3 4341344 3601.488 107 4374171 31.573 -0.7561

4 4554378 3600.128 107 4602355 41.018 -1.0534

5 4471200 3600.694 107 4535788 51.538 -1.4445

6 5000692 3600.051 107 5046797 23.562 -0.9220

7 4314826 2506.813 109 4355036 44.634 -0.9319

8 4374905 3600.052 107 4408044 54.692 -0.7575

9 3701426 3600.242 107 3753223 65.544 -1.3994

10 4722127 3600.228 107 4752095 25.673 -0.6346

Table A.3:Detailed computational results for GMKPS with , -

T N ()

5 10 1 1867438 3600.077 107 1867448 7.014 -0.0005

 Appendix A

111

2 1674725 3600.42 107 1674727 2.198 -0.0001

3 1759784 3600.188 107 1759784 1.986 0.0000

4 1515969 3600.183 107 1515973 3.986 -0.0003

5 1730973 3600.019 107 1730990 4.488 -0.0010

6 1408926 3600.276 107 1408929 3.95 -0.0002

7 1692385 3600.266 107 1692386 2.366 -0.0001

8 1528499 3600.158 107 1528500 2.058 -0.0001

9 1530607 3600.053 107 1530612 3.535 -0.0003

10 1540665 3600.057 107 1540670 2.427 -0.0003

20

1 1604647 3600.468 107 1604648 5.591 -0.0001

2 1737908 3600.102 107 1737941 6.432 -0.0019

3 1657099 3600.297 107 1657101 6.228 -0.0001

4 1551046 3600.132 107 1551052 3.842 -0.0004

5 1378593 3600.111 107 1378600 3.452 -0.0005

6 1657266 3600.301 107 1657270 3.268 -0.0002

7 2142847 1502.733 101 2142847 5.913 0.0000

8 1388770 3600.127 107 1388781 4.047 -0.0008

9 1385251 3600.095 107 1385258 4.954 -0.0005

10 1656632 3600.133 107 1656634 4.047 -0.0001

30

1 1531023 3600.055 107 1531024 6.069 -0.0001

2 1499973 3600.307 107 1499985 3.591 -0.0008

3 1526817 3600.413 107 1527417 1.394 -0.0393

4 1712118 3600.176 107 1712120 5.536 -0.0001

5 1703228 3600.107 107 1703232 4.054 -0.0002

6 1621348 21.249 101 1621348 5.554 0.0000

7 1950132 3600.153 107 1950132 2.54 0.0000

8 1956198 3600.285 107 1956204 1.284 -0.0003

9 1846935 3600.055 107 1846940 3.681 -0.0003

10 1689929 3600.62 107 1689932 6.068 -0.0002

10 10

1 3224526 3600.063 107 3230187 13.885 -0.1756

2 3094088 3600.02 107 3106717 16.861 -0.4082

3 3540100 3600.049 107 3545610 9.479 -0.1556

4 2994702 3600.061 107 2994730 30.617 -0.0009

5 3347214 3600.029 107 3347290 9.281 -0.0023

6 2917362 3600.052 107 2928397 7.34 -0.3783

7 2848914 3600.03 107 2850447 25.964 -0.0538

8 3138287 3596.102 107 3138789 21.639 -0.0160

9 2898892 3600.059 107 2912622 18.713 -0.4736

10 2831758 3600.204 107 2836184 21.207 -0.1563

 Appendix A

112

20

1 3315613 1931.936 109 3325963 11.293 -0.3122

2 3197797 3600.402 107 3206388 7.491 -0.2687

3 3047695 3600.056 107 3047775 11.265 -0.0026

4 3013601 3600.108 107 3013678 9.099 -0.0026

5 2734356 3600.219 107 2738251 15.292 -0.1424

6 3225209 3601.399 107 3225259 8.67 -0.0016

7 3612783 3600.251 107 3618654 6.323 -0.1625

8 2980250 3600.358 107 2980334 16.858 -0.0028

9 2809433 946.518 109 2818858 16.157 -0.3355

10 3335616 3600.108 107 3335679 7.679 -0.0019

30

1 3109027 3600.437 107 3117735 11.224 -0.2801

2 2981640 3600.686 107 2981670 15.31 -0.0010

3 3209625 3600.396 107 3214072 7.669 -0.1386

4 3399695 3600.673 107 3399720 7.154 -0.0007

5 3142202 3600.374 107 3147562 10.908 -0.1706

6 3657362 3600.153 107 3659671 6.272 -0.0631

7 3390498 3600.66 107 3395345 8.276 -0.1430

8 3508036 3600.19 107 3512831 10.581 -0.1367

9 3998077 3602.077 107 4001165 11.243 -0.0772

10 3512039 3600.102 107 3512050 10.802 -0.0003

15

10

1 4378642 3602.338 107 4435579 36.83 -1.3003

2 4385814 3600.029 107 4422996 25.391 -0.8478

3 4601152 3600.758 107 4628569 10.634 -0.5959

4 4370563 3600.071 107 4411006 80.763 -0.9253

5 4529265 3600.041 107 4562612 90.743 -0.7363

6 4268914 3603.951 107 4321129 90.73 -1.2231

7 4058466 3600.113 107 4125871 90.749 -1.6608

8 4315210 3600.117 107 4369817 73.362 -1.2655

9 4142610 3600.06 107 4197352 80.9 -1.3214

10 4028925 3600.065 107 4085959 70.631 -1.4156

20

1 5221012 3601.945 107 5221403 11.827 -0.0075

2 5098258 3600.363 107 5114107 16.981 -0.3109

3 4467573 3600.097 107 4477901 20.941 -0.2312

4 4372377 3600.102 107 4411756 32.646 -0.9006

5 4450816 3600.152 107 4490047 29.735 -0.8814

6 5135328 3600.362 107 5140943 11.556 -0.1093

7 5344191 3600.51 107 5352137 16.739 -0.1487

8 4340220 3600.54 107 4358015 20.441 -0.4100

9 4243058 3600.08 107 4244785 42.662 -0.0407

 Appendix A

113

10 4950853 2861.469 109 4971909 27.983 -0.4253

30

1 4607692 3600.119 107 4612962 11.289 -0.1144

2 4217139 3600.067 107 4231845 32.626 -0.3487

3 4801997 3600.361 107 4811305 18.862 -0.1938

4 5344445 3600.098 107 5350587 12.201 -0.1149

5 4979308 3600.087 107 4985615 22.358 -0.1267

6 5543007 3602.225 107 5551034 13.461 -0.1448

7 5035976 3600.153 107 5050284 14.581 -0.2841

8 5016436 3600.258 107 5026460 20.526 -0.1998

9 6162688 3601.272 107 6165733 12.876 -0.0494

10 5101036 3600.14 107 5109194 21.942 -0.1599

20

10

1 4416449 3600.151 107 4456197 60.944 -0.9000

2 4585953 3600.066 107 4628011 12.511 -0.9171

3 4577207 3600.027 107 4628083 17.935 -1.1115

4 4529096 3600.252 107 4571407 17.773 -0.9342

5 4559336 3600.054 107 4598196 16.853 -0.8523

6 4542628 3600.173 107 4572502 31.584 -0.6576

7 4373480 3600.071 107 4421131 19.326 -1.0895

8 4389049 3600.098 107 4421462 8.865 -0.7385

9 4528171 3601.84 107 4554606 15.744 -0.5838

10 4451577 3600.094 107 4538080 17.622 -1.9432

20

1 6507212 3600.089 107 6607329 30.869 -1.5386

2 6452135 3600.114 107 6540068 46.621 -1.3629

3 5931490 3600.093 107 5990005 35.077 -0.9865

4 5966321 3600.137 107 6060176 71.624 -1.5731

5 5973965 3600.11 107 6012405 43.708 -0.6435

6 7030884 3600.088 107 7127351 22.735 -1.3720

7 6928840 3600.093 107 6967739 36.532 -0.5614

8 5802242 3600.201 107 5816364 39.807 -0.2434

9 5414062 3600.147 107 5500260 61.451 -1.5921

10 6642370 3600.115 107 6692544 41.245 -0.7554

30

1 6154801 3605.345 107 6198551 15.679 -0.7108

2 5904740 3600.109 107 5968860 45.683 -1.0859

3 6358436 3600.109 107 6425674 135.609 -1.0575

4 7213758 3600.119 107 7282004 16.292 -0.9461

5 6470038 3600.182 107 6499874 24.672 -0.4611

6 7263879 3600.152 107 7283296 24.654 -0.2673

7 6404305 3600.116 107 6466879 34.249 -0.9771

8 6653243 3604.087 107 6687620 28.699 -0.5167

 Appendix A

114

9 7805114 3600.236 107 7850004 11.936 -0.5751

10 6564150 3600.136 107 6601791 24.911 -0.5734

 Detailed computational results for MKPS

Table A.4: Detailed computational results for MKPS with , -

T N N N ()

5

10

1 480360 5,266 101 480360 1,327 0,0000

2 361474 858,505 101 361474 0,899 0,0000

3 388363 3600,106 107 388367 2,384 -0,0010

4 117887 3600,057 107 117889 0,513 -0,0017

5 356586 21,148 101 356586 0,964 0,0000

6 148026 3600,032 107 148027 1,803 -0,0007

7 500642 3600,044 107 500642 1,956 0,0000

8 325009 3600,084 107 325010 0,776 -0,0003

9 253131 3600,034 107 253131 1,464 0,0000

10 439178 44,065 101 439178 2,109 0,0000

20

1 207364 808,592 101 207364 2,499 0,0000

2 349637 45,142 101 349637 2,143 0,0000

3 193073 3600,002 107 193073 1,182 0,0000

4 127765 3600,012 107 127765 1,287 0,0000

5 529374 3600,048 107 529374 0,585 0,0000

6 315280 3600,023 107 315280 2,064 0,0000

7 207154 3600,011 107 207154 1,039 0,0000

8 268123 3600,041 107 268123 2,009 0,0000

9 257988 3600,071 107 257988 2,242 0,0000

10 128720 3600,053 107 128720 0,63 0,0000

30

1 509866 12,939 101 509866 2,009 0,0000

2 274124 3600,128 107 274126 0,567 -0,0007

3 568422 3600,075 107 568425 1,703 -0,0005

 Appendix A

115

4 396059 3600,038 107 396059 0,907 0,0000

5 335804 1877,045 101 335804 3,193 0,0000

6 374708 876,93 101 374708 1,964 0,0000

7 307477 3600,096 107 307477 0,511 0,0000

8 593428 96,971 101 593428 1,929 0,0000

9 379861 22,729 101 379861 1,361 0,0000

10 472679 23,819 101 472679 1,235 0,0000

10

10

1 610093 3600,031 107 610117 2,25 -0,0039

2 496792 1691,307 101 496792 2,207 0,0000

3 875876 1682,999 101 875876 3,575 0,0000

4 221027 3600,035 107 221030 3,58 -0,0014

5 796061 3600,087 107 796078 4,305 -0,0021

6 291026 3600,021 107 291027 1,724 -0,0003

7 917444 3600,051 107 917454 3,424 -0,0011

8 494466 3600,063 107 494471 3,954 -0,0010

9 363556 3600,04 107 363562 0,787 -0,0017

10 563584 3462,333 109 563597 2,785 -0,0023

20

1 339599 3600,104 107 339608 3,34 -0,0027

2 598401 3600,047 107 598403 2,521 -0,0003

3 351513 57,041 101 351513 3,995 0,0000

4 321589 3600,11 107 321599 1,036 -0,0031

5 715842 159,28 101 715842 8,737 0,0000

6 512131 3600,089 107 512148 9,019 -0,0033

7 537706 3600,028 107 537712 8,136 -0,0011

8 499095 3600,05 107 499101 4,489 -0,0012

9 423118 3600,035 107 423119 2,322 -0,0002

10 279981 3600,008 107 279985 2,672 -0,0014

30

1 814424 3600,142 107 814428 2,431 -0,0005

2 588078 3600,052 107 588095 2,654 -0,0029

3 897381 3600,017 107 897384 4,992 -0,0003

4 603216 3600,146 107 603221 2,469 -0,0008

5 681399 3600,013 107 681405 3,758 -0,0009

6 670817 3600,052 107 670827 3,462 -0,0015

7 594029 3600,167 107 594031 4,61 -0,0003

8 896409 3600,17 107 896416 2,803 -0,0008

9 792974 3600,053 107 792979 2,748 -0,0006

10 620144 3600,095 107 620145 2,828 -0,0002

15 10
1 819641 2730,506 109 819659 2,481 -0,0022

2 577960 3599,999 107 577963 3,617 -0,0005

 Appendix A

116

3 884048 3600,098 107 884050 4,171 -0,0002

4 344198 3600,017 107 344198 1,035 0,0000

5 1026123 806,8 109 1026154 4,015 -0,0030

6 461658 3600,049 107 461661 11,822 -0,0006

7 997702 964,571 109 997759 2,945 -0,0057

8 620290 3572,608 101 620290 8,998 0,0000

9 502535 3600,056 107 502538 2,23 -0,0006

10 677626 3600,039 107 677633 4,537 -0,0010

20

1 553830 1974,576 109 553840 3,309 -0,0018

2 760429 3600,056 107 760447 8,88 -0,0024

3 588806 3600,047 107 588818 3,441 -0,0020

4 519449 3600,021 107 519449 4,294 0,0000

5 851364 2342,401 109 851400 3,703 -0,0042

6 675207 3600,062 107 675184 4,46 0,0034

7 737089 2578,603 109 737113 3,087 -0,0033

8 701381 3600,146 107 701419 17,694 -0,0054

9 645277 3600,102 107 645284 11,039 -0,0011

10 552512 3600,058 107 552529 6,673 -0,0031

30

1 1260569 3600,377 107 1260604 6,464 -0,0028

2 885019 3600,063 107 885047 7,354 -0,0032

3 1261351 3600,078 107 1261374 6,005 -0,0018

4 673490 3600,065 107 673491 3,82 -0,0001

5 1106865 3600,399 109 1106890 5,289 -0,0023

6 1030768 3600,114 107 1030782 14,371 -0,0014

7 879557 3600,251 107 884538 14,779 -0,5663

8 1191814 3601,261 107 1197606 7,502 -0,4860

9 1226523 3600,061 107 1226524 4,722 -0,0001

10 946300 3601,481 107 946316 5,56 -0,0017

20
10

1 923998 2588,191 109 924021 4,492 -0,0025

2 675340 3600,022 107 675357 4,172 -0,0025

3 918402 1554,004 109 918414 5,378 -0,0013

4 393822 3600,098 107 393872 4,763 -0,0127

5 1204986 3600,096 107 1204983 3,897 0,0002

6 566384 3600,107 107 566400 6,208 -0,0028

7 1119915 2506,488 109 1119926 3,905 -0,0010

8 725767 3600,018 107 725825 4,408 -0,0080

9 608267 3600,115 107 608272 2,606 -0,0008

10 992463 1661,649 109 992482 7,233 -0,0019

20 1 553665 2500,815 109 553690 8,55 -0,0045

 Appendix A

117

2 956338 3600,052 107 956392 4,656 -0,0056

3 637619 1146,198 109 637633 2,484 -0,0022

4 588845 1879,276 109 588855 4,46 -0,0017

5 975610 3600,101 107 975644 4,212 -0,0035

6 930799 201,652 101 930799 5,881 0,0000

7 935814 2250,553 109 935839 3,81 -0,0027

8 795586 3600,173 107 798064 8,513 -0,3115

9 740334 1419,068 109 740355 5,909 -0,0028

10 625550 3600,08 107 625567 7,089 -0,0027

30

1 1786488 2469,467 109 1788539 8,107 -0,1148

2 1081535 3600,055 107 1081552 4,717 -0,0016

3 1755270 3600,087 107 1755275 6,075 -0,0003

4 992951 3600,208 107 993010 5,454 -0,0059

5 1279696 3600,174 107 1279719 5,174 -0,0018

6 1498240 3600,154 107 1498250 5,91 -0,0007

7 998275 3600,277 107 998370 4,648 -0,0095

8 1375688 3600,326 107 1382694 6,837 -0,5093

9 1668465 3600,588 107 1668526 6,027 -0,0037

10 1144094 3600,355 107 1146313 19,649 -0,1940

Table A.5: Detailed computational results for MKPS with , -

 N N ()

5

10

1 749278 3600,01 107 749278 4,321 0,0000

2 893899 3600,106 107 893899 1,006 0,0000

3 467063 3600,057 107 467067 5,277 -0,0009

4 918335 19,598 101 918335 2,961 0,0000

5 568503 2605,309 109 568523 4,294 -0,0035

6 714083 178,41 101 714083 1,972 0,0000

7 948393 3600,136 107 948406 1,382 -0,0014

8 772142 2382,193 109 772153 2,646 -0,0014

9 470959 3501,893 109 470960 2,771 -0,0002

10 1165714 8,527 101 1165714 2,435 0,0000

20

1 777924 3504,906 109 777924 2,687 0,0000

2 972858 2512,766 109 972864 2,324 -0,0006

3 1007536 3600,036 107 1007536 2,615 0,0000

4 596031 3600,054 107 596031 4,554 0,0000

5 917573 7,636 101 917573 2,076 0,0000

6 1064355 3600,073 107 1064355 3,225 0,0000

 Appendix A

118

7 494558 23,163 101 494558 3,907 0,0000

8 1249429 3600,077 107 1249428 1,517 0,0001

9 887281 39,399 101 887281 8,604 0,0000

10 743501 20,757 101 743501 5,384 0,0000

30

1 638862 3600,017 107 638862 8,974 0,0000

2 811968 70,597 101 811968 24,233 0,0000

3 863958 394,231 101 863958 27,572 0,0000

4 673064 3600,075 107 673064 28,113 0,0000

5 836236 3600,139 107 836237 20,74 -0,0001

6 933965 3600,047 107 933975 15,886 -0,0011

7 950905 1373,417 109 950906 10,061 -0,0001

8 789200 111,493 101 789200 18,053 0,0000

9 599929 3600,212 107 599930 9,116 -0,0002

10 985048 1086,568 101 985048 6,904 0,0000

10

10

1 1297180 3600,147 107 1297203 19,383 -0,0018

2 1748379 1653,586 109 1748403 7,81 -0,0014

3 819951 3600,071 107 819979 14,529 -0,0034

4 1898854 2722,645 109 1899055 19,494 -0,0106

5 1355062 1832,642 109 1355075 17,231 -0,0010

6 1090736 3171,121 109 1090759 12,462 -0,0021

7 1854791 2210,89 109 1854817 17,483 -0,0014

8 1668233 3014,158 109 1668238 20,91 -0,0003

9 1079277 1642,028 109 1079300 10,908 -0,0021

10 1990918 1521,293 109 1991190 10,718 -0,0137

20

1 1339693 3600,231 107 1339708 7,245 -0,0011

2 1796794 2792,738 109 1796800 6,975 -0,0003

3 2101876 2422,095 109 2101888 9,17 -0,0006

4 1190683 2520,438 109 1190705 23,956 -0,0018

5 1806710 3600,05 107 1806717 14,593 -0,0004

6 1763092 3600,036 107 1763098 12,122 -0,0003

7 1216524 2363,98 109 1216538 11,627 -0,0012

8 2516774 3600,04 107 2516778 9,656 -0,0002

9 1937644 3600,158 107 1937650 15,721 -0,0003

10 1467312 3600,093 107 1467320 13,829 -0,0005

30

1 1589088 2303,228 109 1589119 18,758 -0,0020

2 1589561 3600,118 107 1589577 9,326 -0,0010

3 1576024 3600,102 107 1576024 10,931 0,0000

4 1401505 3601,053 107 1401567 7,329 -0,0044

5 1549640 3600,294 107 1549652 9,185 -0,0008

 Appendix A

119

6 1788069 3600,165 107 1788074 12,329 -0,0003

7 1562270 3600,118 107 1562284 9,403 -0,0009

8 1506371 3600,279 107 1506388 14,015 -0,0011

9 1194680 3600,345 107 1194692 14,466 -0,0010

10 1755413 3600,281 107 1759679 11,281 -0,2430

15

10

1 1739689 2142,132 109 1739769 22,211 -0,0046

2 1970440 1748,074 109 1970442 9,563 -0,0001

3 1106748 3600,06 107 1106752 10,87 -0,0004

4 2191918 1125,101 109 2191926 9,135 -0,0004

5 1581821 1838,908 109 1581844 33,013 -0,0015

6 1560054 77,669 101 1560054 6,199 0,0000

7 2333380 3600,104 107 2333382 6,775 -0,0001

8 2023994 963,411 109 2024007 9,765 -0,0006

9 1253974 3112,038 109 1254002 6,833 -0,0022

10 2421756 1505,461 109 2421781 5,824 -0,0010

20

1 1881235 3600,503 107 1881258 13,003 -0,0012

2 2674926 3600,291 107 2674973 13,19 -0,0018

3 3021558 2539,329 109 3021582 16,454 -0,0008

4 1627038 3600,304 107 1627329 8,242 -0,0179

5 2497873 2998,675 109 2497922 11,059 -0,0020

6 2476359 2985,436 109 2476414 10,294 -0,0022

7 1928438 3600,25 107 1928454 9,068 -0,0008

8 3562412 3600,433 107 3562434 11,172 -0,0006

9 2694051 3600,303 107 2699463 9,793 -0,2009

10 2192372 3600,246 107 2196997 18,965 -0,2110

30

1 2154158 3604,183 107 2154204 12,868 -0,0021

2 2482826 3600,237 107 2482862 16,546 -0,0014

3 2381005 3608,127 107 2381037 13,667 -0,0013

4 2336182 3600,729 107 2340333 43,878 -0,1777

5 2198978 3602,512 107 2199001 16,146 -0,0010

6 2607729 3603,155 107 2607751 20,436 -0,0008

7 2266615 3601,136 107 2266647 19,477 -0,0014

8 2326888 3601,31 107 2326934 18,665 -0,0020

9 1666442 3602,47 107 1666455 17,883 -0,0008

10 2596631 3601,64 107 2596684 21,938 -0,0020

20 10

1 1892823 1328,582 109 1892865 12,149 -0,0022

2 2095319 3600,378 107 2095325 6,345 -0,0003

3 1324191 3600,119 107 1324206 8,444 -0,0011

4 2287623 2077,323 109 2287639 8,636 -0,0007

 Appendix A

120

5 1730296 1891,115 109 1730323 10,313 -0,0016

6 1649880 3600,107 107 1649894 7,371 -0,0008

7 2313764 1623,323 109 2313807 8,224 -0,0019

8 2195281 1097,596 109 2195296 9,481 -0,0007

9 1356874 2165,755 109 1356889 7,512 -0,0011

10 2612314 3662,126 107 2612325 4,34 -0,0004

20

1 2054664 3600,253 107 2059531 12,284 -0,2369

2 3414528 3600,349 107 3415761 22,812 -0,0361

3 3346392 3600,207 107 3346427 21,893 -0,0010

4 2181427 3600,343 107 2181569 19,396 -0,0065

5 3175307 3600,321 107 3182993 22,222 -0,2421

6 3357872 2029,553 109 3358128 26,696 -0,0076

7 2508798 3600,29 107 2514565 45,745 -0,2299

8 4504937 3600,478 107 4507022 18,158 -0,0463

9 3293329 3600,133 107 3293609 18,641 -0,0085

10 2680841 3600,35 107 2697052 20,349 -0,6047

30

1 2878317 3601,075 107 2887193 39,929 -0,3084

2 3191596 3600,855 107 3198538 31,801 -0,2175

3 2888584 3337,014 109 2888636 18,224 -0,0018

4 2983602 3600,919 107 2994244 21,968 -0,3567

5 2898612 3600,833 107 2901696 15,055 -0,1064

6 3492396 3601,721 107 3492511 14,856 -0,0033

7 2742243 3600,762 107 2742348 17,872 -0,0038

8 2862295 3601,287 107 2863988 21,09 -0,0591

9 2137698 3601,234 107 2140943 18,427 -0,1518

10 3108535 3600,587 107 3112329 22,761 -0,1221

Table A.6: Detailed computational results for MKPS with , -

 ()

5 10

1 656534 915,108 101 656534 8,131 0,0000

2 423931 3600,023 107 423931 4,495 0,0000

3 494401 297,705 101 494401 10,513 0,0000

4 365790 3600,119 107 365790 6,129 0,0000

5 874728 3600,061 107 874728 6,529 0,0000

6 654887 3600,017 107 654889 10,18 -0,0003

7 761701 3600,056 107 761702 4,161 -0,0001

8 695677 3600,067 107 695677 2,957 0,0000

 Appendix A

121

9 197419 243,39 101 197419 4,956 0,0000

10 376848 1732,863 101 376848 1,509 0,0000

20

1 293214 3600,304 107 293214 5,701 0,0000

2 510146 3600,104 107 510149 2,729 -0,0006

3 529011 3600,023 107 529014 7,53 -0,0006

4 373967 3600,047 107 373967 4,686 0,0000

5 733780 3600,128 107 733780 3,876 0,0000

6 582963 3600,067 107 582963 6,328 0,0000

7 593663 3600,135 107 593663 1,73 0,0000

8 412685 3600,07 107 412686 6,017 -0,0002

9 401871 3600,083 107 401871 5,292 0,0000

10 501253 13,489 101 501253 14,463 0,0000

30

1 354479 3589,983 107 354479 14,613 0,0000

2 402799 3600,093 107 402799 14,682 0,0000

3 575269 3600,088 107 575269 12,866 0,0000

4 244253 3600,254 107 244253 18,19 0,0000

5 722704 52,977 101 722704 11,762 0,0000

6 812867 3600,076 107 812868 17,463 -0,0001

7 546043 404,245 101 546043 14,032 0,0000

8 398888 3600,029 107 398890 13,585 -0,0005

9 908159 1811,026 101 908159 25,871 0,0000

10 625340 3600,247 107 625341 22,318 -0,0002

10

10

1 980287 3447,886 109 980296 9,245 -0,0009

2 950203 3125,25 109 950210 2,737 -0,0007

3 1324721 3600,117 107 1324742 4,769 -0,0016

4 565865 2437,203 109 565883 6,576 -0,0032

5 1536421 1193,358 109 1536428 9,462 -0,0005

6 1186472 3600,031 107 1186475 8,032 -0,0003

7 1147656 3600,098 107 1147679 7,255 -0,0020

8 1043693 3600,071 107 1043696 6,459 -0,0003

9 512428 1208,431 109 512433 2,862 -0,0010

10 1042498 3600,101 107 1042498 8,133 0,0000

20

1 566741 1405,945 109 566746 1,689 -0,0009

2 751168 2447,704 109 751174 4,156 -0,0008

3 1138940 3600,027 107 1138952 5,804 -0,0011

4 687320 3600,143 107 687321 3,374 -0,0001

5 1055685 3600,188 107 1055692 6,2 -0,0007

6 1014574 2362,184 109 1014583 5,869 -0,0009

7 1263824 3600,171 107 1263827 6,065 -0,0002

 Appendix A

122

8 977119 3600,236 107 977121 4,351 -0,0002

9 759552 3600,154 107 759585 5,657 -0,0043

10 1170952 3322,323 109 1170960 4,324 -0,0007

30

1 924062 3600,345 107 926132 14,805 -0,2240

2 795307 3600,189 107 795308 24,456 -0,0001

3 1151123 3600,369 107 1151135 15,736 -0,0010

4 1054426 3600,36 107 1055163 13,303 -0,0699

5 1001320 3600,297 107 1001631 17,017 -0,0311

6 1528497 3600,368 107 1528523 13,969 -0,0017

7 892826 3600,444 107 892830 21,839 -0,0004

8 863045 3600,282 107 863321 28,975 -0,0320

9 1601469 2700,861 109 1601491 42,246 -0,0014

10 1052427 3600,245 107 1052889 19,927 -0,0439

15

10

1 1299020 3029,444 109 1299026 12,989 -0,0005

2 1370884 3600,094 107 1370892 16,941 -0,0006

3 1753986 3600,135 107 1753995 11,213 -0,0005

4 658266 3203,556 109 658276 11,423 -0,0015

5 1864064 3357,008 109 1864083 12,938 -0,0010

6 1480934 3600,098 107 1481002 17,347 -0,0046

7 1590736 1451,957 109 1590718 12,279 0,0011

8 1625117 2395,634 109 1625154 13,372 -0,0023

9 821419 2711,682 109 821434 26,963 -0,0018

10 1238994 1877,664 109 1239007 27,571 -0,0010

20

1 751496 3600,146 107 751503 8,784 -0,0009

2 1236409 3600,345 107 1236434 11,094 -0,0020

3 1346215 2412,845 109 1346230 28,768 -0,0011

4 1111093 3600,275 107 1111108 11,478 -0,0014

5 1444617 3600,221 107 1444629 12,854 -0,0008

6 1521224 3600,096 107 1521649 14,308 -0,0279

7 1483334 3600,065 107 1483343 15,772 -0,0006

8 1010548 2213,352 109 1010559 29,272 -0,0011

9 1184838 3200,088 109 1184844 11,112 -0,0005

10 1415246 3600,283 107 1420656 14,563 -0,3823

30

1 1143214 3600,508 107 1143248 12,275 -0,0030

2 1203139 2869,664 109 1203156 10,509 -0,0014

3 1538637 3601,674 107 1540040 33,465 -0,0912

4 1556610 3601,249 107 1556658 11,946 -0,0031

5 1675140 3603,108 107 1677523 11,135 -0,1423

6 2324162 3606,788 107 2324174 22,627 -0,0005

 Appendix A

123

7 1508000 3600,983 107 1513957 16,22 -0,3950

8 1155112 3601,642 107 1155148 30,225 -0,0031

9 2544976 3601,508 107 2570083 11,048 -0,9865

10 1447433 2748,247 109 1452778 15,932 -0,3693

20

10

1 1529304 3600,195 107 1529329 12,156 -0,0016

2 1604158 1299,673 109 1604175 10,366 -0,0011

3 1851066 3600,026 107 1851068 13,443 -0,0001

4 868624 2645,082 109 868623 28,927 0,0001

5 2197968 1553,864 109 2197982 13,697 -0,0006

6 1760881 3600,083 107 1760895 14,157 -0,0008

7 1852092 3600,444 107 1852101 12,145 -0,0005

8 2030304 3600,115 107 2030308 18,675 -0,0002

9 1000100 1892,344 109 1000245 18,07 -0,0145

10 1468818 2811,26 109 1468848 12,267 -0,0020

20

1 1054158 3600,614 107 1070162 19,861 -1,5182

2 1597433 2541,067 109 1597454 10,794 -0,0013

3 1941353 3607,082 107 1941365 18,487 -0,0006

4 1363260 3600,452 107 1363284 13,046 -0,0018

5 1559026 3600,597 107 1564472 13,741 -0,3493

6 1820157 2038,711 109 1820179 48,714 -0,0012

7 2225146 3600,552 107 2245598 15,039 -0,9191

8 1517157 3600,482 107 1519930 17,561 -0,1828

9 1722099 3600,769 107 1722162 15,164 -0,0037

10 2010704 3600,414 107 2024897 18,286 -0,7059

30

1 1617864 3600,181 107 1617890 28,243 -0,0016

2 1616378 3600,833 107 1616459 46,824 -0,0050

3 1999500 3600,767 107 2018955 39,578 -0,9730

4 2215157 3600,859 107 2225528 35,995 -0,4682

5 2159001 3603,322 107 2159032 29,901 -0,0014

6 2955832 3600,201 107 2955977 35,069 -0,0049

7 1791356 3600,843 107 1810016 20,996 -1,0417

8 1748618 3601,199 107 1750200 20,857 -0,0905

9 3341939 3601,423 107 3373311 13,412 -0,9387

10 1939662 3611,679 107 1939708 29,37 -0,0024

 Appendix A

124

Detailed computational results for MCKS

Table A.7: Detailed computational results for MCKS

 ()

5

10

1 1752164 11,089 101 1752164 0,609 0,0000

2 1840553 7,29 101 1840553 0,562 0,0000

3 1781144 3578,437 109 1781144 0,577 0,0000

4 1791770 3600,054 107 1791778 1,56 -0,0004

5 1777694 789,434 101 1777694 1,435 0,0000

6 1766853 2112,405 109 1778441 1,139 -0,6559

7 1736342 3600,034 107 1736345 1,342 -0,0002

8 1708739 3600,005 107 1708739 1,17 0,0000

9 1798198 42,86 101 1798198 0,67 0,0000

10 1769033 6,04 101 1769033 0,452 0,0000

20

1 3529051 3600,195 107 3529051 6,739 0,0000

2 3574108 498,482 101 3574108 4,088 0,0000

3 3609997 2681,087 109 3610006 8,892 -0,0002

4 3572567 2790,697 109 3572580 14,878 -0,0004

5 3560930 2965,372 109 3574932 13,447 -0,3932

6 3628358 2952,339 109 3628358 14,789 0,0000

7 3610827 3600,135 107 3610835 15,726 -0,0002

8 3444725 2981,399 109 3452736 14,198 -0,2326

9 3497325 3094,946 109 3497327 15,054 -0,0001

10 3687252 3466,024 101 3687252 5,148 0,0000

30

1 5420618 369,414 101 5420618 20,015 0,0000

2 5341566 907,866 101 5341566 29,656 0,0000

3 5415437 3600,05 107 5415434 24,352 0,0001

4 5504079 861,525 101 5504079 21,103 0,0000

5 5407728 3600,23 107 5407725 25,479 0,0001

6 5389200 3600,201 107 5400757 30,496 -0,2144

7 5379790 3600,109 107 5381312 29,135 -0,0283

8 5304058 2049,279 101 5301471 20,076 0,0488

9 5305506 3600,286 107 5321473 27,66 -0,3010

10 5516312 478,553 101 5509704 19,968 0,1198

10 10

1 1774956 3600,181 107 1774956 1,037 0,0000

2 1793067 3600,112 107 1793067 0,986 0,0000

3 1833041 24,571 101 1833041 1,522 0,0000

 Appendix A

125

4 1813713 3600,029 107 1813714 2,481 -0,0001

5 1795947 2176,963 109 1795947 1,281 0,0000

6 1812125 2551,292 109 1812125 1,801 0,0000

7 1741272 2550,081 109 1741272 1,328 0,0000

8 1735084 2993,187 109 1735085 1,985 -0,0001

9 1833775 3248,65 101 1833775 1,87 0,0000

10 1818894 1520,797 101 1818894 0,799 0,0000

20

1 3579731 3600,219 107 3579733 16,341 -0,0001

2 3581346 3600,214 107 3583358 15,796 -0,0562

3 3597838 2842,868 109 3597872 16,459 -0,0009

4 3577677 3600,791 107 3577745 16,329 -0,0019

5 3667813 3600,133 107 3667814 11,373 0,0000

6 3645837 3600,228 107 3645837 16,382 0,0000

7 3682509 2741,637 101 3678369 7,631 0,1124

8 3486724 3600,211 107 3486742 15,56 -0,0005

9 3583027 3600,203 107 3579285 16,794 0,1044

10 3627056 3600,218 107 3629775 16,77 -0,0750

30

1 5404545 3600,394 107 5404545 32,701 0,0000

2 5410704 2913,27 101 5410704 28,537 0,0000

3 5397028 2509,967 101 5397028 30,136 0,0000

4 5586034 3600,347 107 5586034 33,533 0,0000

5 5471288 2300,482 101 5471288 35,676 0,0000

6 5514079 3600,163 107 5514079 33,388 0,0000

7 5469693 43,879 101 5469693 26,183 0,0000

8 5345750 3600,254 107 5345751 27,89 0,0000

9 5347158 3600,572 107 5353704 38,26 -0,1224

10 5504324 3600,148 107 5504324 34,714 0,0000

15

10

1 1744422 3600,188 107 1759526 11,51 -0,8658

2 1816781 52,36 101 1816781 2,67 0,0000

3 1833898 3600,048 107 1833899 2,17 -0,0001

4 1817425 3600,22 107 1817425 2,379 0,0000

5 1801379 3181,59 109 1801379 3,456 0,0000

6 1814556 3600,501 107 1814558 9,818 -0,0001

7 1780651 3565,163 109 1780651 1,95 0,0000

8 1743182 2440,431 109 1746953 2,817 -0,2163

9 1812751 3600,251 107 1812751 6,814 0,0000

10 1767045 945,889 109 1768693 2,731 -0,0933

20
1 3556794 3600,404 107 3556844 17,911 -0,0014

2 3603525 3600,284 107 3630413 18,224 -0,7462

 Appendix A

126

3 3605302 3600,21 107 3630366 17,245 -0,6952

4 3637303 3600,445 107 3637340 20,453 -0,0010

5 3594851 3600,117 107 3603616 20,839 -0,2438

6 3684172 3600,638 107 3684179 18,902 -0,0002

7 3619591 3600,699 107 3628287 17,92 -0,2402

8 3448577 3596,866 107 3472721 17,116 -0,7001

9 3598426 925,246 109 3612918 19,805 -0,4027

10 3709433 3600,486 107 3713767 18,216 -0,1168

30

1 5470811 3600,407 107 5470808 41,629 0,0001

2 5392454 3600,376 107 5392484 40,022 -0,0006

3 5453503 3600,293 107 5455858 36,365 -0,0432

4 5597147 144,643 101 5597147 30,06 0,0000

5 5502609 3600,292 107 5502609 36,784 0,0000

6 5517831 3600,665 107 5519366 33,292 -0,0278

7 5471749 3600,656 107 5483645 37,098 -0,2174

8 5291390 3600,092 107 5336834 36,637 -0,8588

9 5451912 3600,064 107 5451912 34,044 0,0000

10 5563697 3600,474 107 5569464 41,036 -0,1037

20

10

1 1767421 3375,366 109 1767421 3,005 0,0000

2 1842297 3600,076 107 1842310 3,599 -0,0007

3 1779168 3600,251 107 1779168 2,104 0,0000

4 1841122 31,027 101 1841122 1,74 0,0000

5 1763882 3600,829 107 1797818 11,319 -1,9239

6 1807989 3384,961 109 1807989 12,22 0,0000

7 1766339 3600,251 107 1766345 9,95 -0,0003

8 1755457 45,957 101 1755457 2,451 0,0000

9 1807689 3230,208 109 1810502 2,844 -0,1556

10 1799548 2978,951 109 1799552 5,372 -0,0002

20

1 3611595 2405,53 101 3611595 15,374 0,0000

2 3576350 3600,087 107 3601021 20,847 -0,6898

3 3553751 3600,18 107 3556291 21,951 -0,0715

4 3691772 3600,402 107 3692358 21,454 -0,0159

5 3670597 3600,088 107 3670765 20,557 -0,0046

6 3692909 3600,063 107 3692920 21,605 -0,0003

7 3603229 3600,12 107 3615152 21,808 -0,3309

8 3466735 3600,135 107 3487047 18,833 -0,5859

9 3515371 3600,13 107 3519061 19,616 -0,1050

10 3708739 3600,117 107 3708758 19,66 -0,0005

30 1 5460699 3600,445 107 5463814 44,567 -0,0570

 Appendix A

127

2 5466949 3600,512 107 5469767 43,854 -0,0515

3 5398644 3600,194 107 5418735 47,719 -0,3721

4 5554985 80,056 101 5554985 42,032 0,0000

5 5475670 3600,256 107 5476227 41,721 -0,0102

6 5466058 3600,082 107 5486334 41,596 -0,3709

7 5471791 3600,105 107 5483799 42,6 -0,2195

8 5320146 3600,101 107 5345186 41,576 -0,4707

9 5392943 3600,414 107 5392943 44,002 0,0000

10 5538874 723,181 101 5538874 42,515 0,0000

