. Another application of KPS is originated within the smart-home paradigm where the goal of an efficient management of the buildings energy consumptions is a strong component (see Project FLEXMETER from: http://exmeter.polito.it).

The Multiple Knapsack Problem with Setup (MKPS) can be considered as a set of knapsack problems with different capacities in which a set of disjoint classes of items with knapsack-dependent profits and given weights are available. An item can be selected only if the corresponding class is activated and a class can only be set up in one knapsack. A key feature is that the activation of a class incurs a knapsack-dependent setup cost that should be considered both in the objective function and constraints. The setup cost varies with the knapsack. A solution to the MKPS consists in selecting appropriate items, from different disjoint classes, to enter a knapsack while maximizing its value and respecting its capacity.

. The most important phase in the manufacturing process is the shaping. Indeed, to change the production from one product class to another, the production machinery must be set up and moulds must be changed in the moulding machine. There is no setup between products in the same class.

These changes in the manufacturing process require significant setup time and costs.

Accordingly, the company needs to decide on how to choose orders so as to maximize the total profit. This represents a typical case involving a Knapsack Problem with Setup (KPS).

However, if orders can be served in different periods, but a product class can only be produced in a single period, the cost would depend on the completion time of the order. There would be an initial cost for an order delivered on the client desired date and penalties for delay or precociousness for postponed delivery dates. These costs would depend on the modification of the desired date. Because of the cost variability dependent on the production planning, this problem is more complex than the KPS. Indeed, before denying a production schedule, and in order to maximize its total profit, the company should take into consideration the production capacity, the profit of different products, and the cost of each class at each period. In this case, the problem can be modeled as an MKPS. The KPS is a reduction of the Chapter III: Cooperative approach between VNS and IP for solving MCKS 50 Chapter III Cooperative approach for the Multiple-Choice Knapsack Problem with Setup III.1

Acknowledgement

It is with great pleasure that i reserve this page as a sign of deep gratitude to all those who have kindly provided the necessary support for the smooth running of this thesis.

I present my thanks to Prof. Nejib hachicha for the honor he had accorded me for agreeing to be the committee chair of my thesis. I also thank Prof. Abdelaziz dammak for the valuable service to examine my thesis and to be a member of the committee. My distinguished thanks go also to Prof. Abdelkarim Elloumi and Prof. Souhail Dhouib for taking their time to review my dissertation and for their relevant comments.

I would like to express my deep gratitude to my supervisor Prof. Bassem Jarboui for his outstanding commitment to this thesis. I am also grateful for the support he gave me. His professionalism, friendliness and pedagogical and scientific qualities have been invaluable.

I have the favor to thank my supervisor Prof. Malek Masmoudi for his interesting advices which are very useful to me and his collaboration to well accomplish this work. I am thankful to all my colleagues at MODILS Laboratory (Sfax-Tunisia).

My success would not have been possible without the love, patience, prayers and support of my parents Messaoud and Mabrouka. I would like also to thank my sister Malika, my brothers Soufien, Nebil, Khaled and Tarek.

Finally, I would like to express my deepest and heartfelt thanks to my beloved wife, Sana Hamdi, and my son, Nader.

Introduction

Problems and motivation

Combinatorial optimization problems allow to model and solve a variety of real life situations. For example, finding a route minimizing the distance can be modeled by a problem of this class. Nevertheless, considering only one objective to optimize may not be sufficient to represent the complexity of real life situations. Indeed, if a company is interested in maximizing its profit, it may also be interested in minimizing its ecological impact. Then several objectives have to be considered. If no preference is given a priori, all solutions such that it is not possible to improve an objective without degrading another one should be returned to the decision maker. After the solving process, the decision maker chooses among the returned solutions.

Many practical situations can be modeled as combinatorial optimization problems.

Among these problems, we can find some problems belonging to the knapsack family. The 0-1 Knapsack Problem (KP) is one of the paradigmatic problems in combinatorial optimization where a set of items with given profits and weights is available and the aim is to select a subset of the items in order to maximize the total profit without exceeding a known knapsack capacity. Martello and Toth [START_REF] Martello | Knapsack problems: Algorithms and computer implementations[END_REF] provide extensive reviews of the major classes of KPs. The 0-1 Knapsack Problem with Setups (KPS) originally introduced in [START_REF] Chajakis | Exact algorithms for the setup knapsack problem[END_REF] can be seen as a generalization of KP where items belong to disjoint classes and can be selected only if the corresponding class is activated. The selection of a class involves setup costs and resource consumptions thus affecting both the objective function and the capacity constraint. KPS has many applications of interest such as make-to-order production contexts, cargo loading and product category management among others and more generally for allocation resources MKPS when only one production period is considered. Another application of the MKPS arises in the cloud computing industry that faces several decision-making issues that need to be optimized. Hence, the extension of MKPS when a product class can be produced in a multiple periods is a real case study of GMKPS. Prices varies according to the customers expectation of products delivery date i.e. some customers are willing to pay a higher price for a short lead-time while others are willing to wait for their products in exchange for lower prices. Thus, price, delivery period and total profit have very complex connections that are of extreme interest to businesses today. Thus, we consider that orders could be realized in multiple periods, and the products' price depends on the orders' completion time i.e. penalties are added to the initial price in case where products are not delivered at customers' desired due date. In addition, the products (items) could be classified into classes regarding specially their setups i.e. setup is null between products from the same class. The profit for order j of class i processed in period t is and varies for different periods, but the processing time stays the same. To find the assignment of orders that maximizes the total profit, we have to consider the marginal profit of each job, the current production capacity per period, and the setup cost and time from orders. This realistic production scheduling problem is typically our GMKPS case study.

The motivation of this thesis is to introduce a new variant of the knapsack problem with setup (KPS). We refer to it as the generalized multiple knapsack problem with setup (GMKPS) and develop new matheuristics methods combining variable neighborhood search with integer programming to solve the linear problem GMKPS and its variants such as: linear problems MKPS and MCKS and quadratic variant GQMKP. Because of the difficulty of these problems, we are searching for approximate solution techniques with fast solution times for its large scale instances. A promising way to solve the GMKPS, MKPS, MCKS and GQMKP is to consider some techniques based upon the principle of cooperative approach can be viewed as matheuristic that combining neighborhood search techniques with integer programming (IP). Although such techniques produce approximate solution methods, they allow us to present fast algorithms that yield interesting solutions within a short average running time, that is, to generate approximations of good quality to the efficient set. We will see in an overview about the methods for solving knapsack problems family that many metaheuristics have already been adapted to tackle MKPS problems. But most of the methods include many parameters and are sometimes so complex that it is difficult to deeply understand the behavior of these methods. It makes the application of these methods to MKPS problems hard and not necessary efficient. For the new methods developed in this thesis, two features are expected: simplicity and effectiveness. The methods should be as simple as possible to easily adapt them to different MKPS problems and to give better results as stateof-the-art results on different MKPS problems. We also intend to give through this work a better knowledge concerning the efficient solutions of MKPS problems, as well as introducing new techniques to solve new MKPS problems. Another motivation is to apply the methods developed to real MKPS problems.

Solution overview and contributions

Many solution methods have been designed for the KP and its variants: (i) solving the given problem using exact methods and/or (ii) searching near optimal solutions using metaheuristic methods. An exact algorithm tries to find an optimal or a set of optimal solutions for a given problem. For the problems belonging to the knapsack family, an optimal solution can be found using branch and bound, branch and cut, and/or dynamic programming methods. Nevertheless, for large-scale problems, an exact method might need exponential computation time. This often leads to a solution time that is too high for the practical situation. Thus, the development of metaheuristic methods has received more attention in the last decades, however, comes at the price of having no guarantee about their quality. For that reason, we define new approaches that combine exact and metaheuristic methods. These methods, noted as cooperative approaches, represent a powerful tool for solving combinatorial optimization problems. The GMKPS, MKPS, MCKS and GQMKP are NP-hard combinatorial problems since it is a generalization of the standard 0-1 KP, which is known to be an NP-hard problem [START_REF] Kong | A simplifed binary harmony search algorithm for large scale 0-1 knapsack problems[END_REF][START_REF] Martello | Knapsack problems: Algorithms and computer implementations[END_REF] exact methods would be rather inefficient in solving largesize instances of the four problems cited above. An alternative to exact methods would be to combine exact and metaheuristic algorithms. This cooperative approach, referred to as matheuristics, seems to be a very promising path towards the solution of rich combinatorial optimization problems. Matheuristics take advantage from synergy between approximate and exact solution approaches and often lead to considerably higher performance with respect to solution quality and running time. However, adapting those mechanisms to different problems can be challenging. In this thesis, we will propose to design and implement a matheuristic framework to solve GMKPS, MKPS and MCKS, and show how it can be improved to solve related rich quadratic variant GQMKP.

The main objective of this thesis is to provide a solving approaches for the GMKPS and its variants. We introduce a mixed Integer programming (MIP) formulation that, due to the complexity of the GMKPS, cannot solve even small test instances. In fact, it is usually difficult to assign items to the whole sets of knapsacks. In addition, the consideration of the knapsack-dependent cost related to each class of products and the knapsack-dependent profit associated to each item increases the complexity of the problem. Therefore, the design of a new approach providing high quality solutions in a reasonable computing time is quite challenging. An alternative to exact methods would be to develop a first cooperative approach, can be viewed as matheuristic that combine a variable neighborhood descent (VND) with an exact solving technique: local search techniques to include classes to knapsacks and integer programming (IP) to include items in each knapsack. Experimental results show the efficiency and the performance of the proposed approach on randomly generated instances of GMKPS. Furthermore, we enhance our solution approach combining local search techniques with integer programming. We carry out a computational study to assess the performance of the proposed cooperative approach on a new set of instances from MKPS. The challenge of the second cooperative approach is to propose an efficient cooperative framework between variable neighborhood search VNS and Integer programming to solve the linear problem MCKS. Finally, the third cooperative approach addressed to solve the quadratic variant GQMKP. The attempt of the third cooperative is to combine new efficient Matheuristic VNS and integer programming. The computational results shows that the proposed cooperative approaches (or matheuristics) are competitive compared with the state-of-the-art methods. The different contributions are listed below:

1) We introduce a new variant of the knapsack problem with setup (KPS). We refer to it as the generalized multiple knapsack problems with setup (GMKPS). GMKPS originates from industrial production problems where the items are divided into classes and processed in multiple periods. We refer to the particular case, where items from the same class cannot be processed in more than one period, as the multiple knapsack problems with setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and provide an upper bound expression for the knapsack problem. We then propose a cooperative approach (matheuristic) that combines variable neighborhood descent (VND) with integer programming (IP). We consider local search techniques to assign classes to knapsacks and apply the IP to select the items in each knapsack. Computational experiments on randomly generated instances show the efficiency of our matheuristic in comparison to the direct use of a commercial solver.

2) The challenge of the second cooperative approach is to develop an algorithm combining VNS with IP to solve MCKS. The idea consists in partitioning a MCKS solution into two levels. The first level contains the classes (or setup variables) to be fixed by the VNS, where the second level contains the remainder of variables (items) that will be optimally optimized by the Integer programming. For the numerical experiment, we generated different instances for MCKS. In the experimental setting, we compared our cooperative approach to the Mixed Integer Programming provided in literature. Experimental results clearly showed the efficiency and effectiveness of our approach.

3) We use a linearization technique of the existing mathematical model and we propose a new cooperative approach combining matheuristic variable neighborhood search (MVNS) with integer programing (IP) to solve the generalized quadratic multiple knapsack problem (GQMKP). The matheuristic considers a local search technique with an adaptive perturbation mechanism based on a mathematical programming to assign the classes to different knapsacks, and then once the assignment is identified, applies the IP to select the items to allocate to each knapsack. Experimental results obtained on a wide set of benchmark instances clearly show the competitiveness of the proposed approach compared to the best state-of-the-art solving techniques.

Thesis structure

The thesis contains four main parts. The first part presents an overview of the main cooperative approaches. The second part is dedicated to the development of a new cooperative approach between variable neighborhood descent (VND) and Integer programming (IP), to solve the (G)MKPS. The third provides a new efficient cooperative approach between variable neighborhood search (VNS) and IP to solve MCKS. The fourth part discusses a new hybrid approach in which mathematical programming is an embedded component into a variable neighborhood search (MVNS) that has the ability to solve the quadratic variant of GMKPS, denoted by GQMKP.

More specifically, the thesis is organized as follows. A bibliographic study which aims to present an overview of the exact methods, metaheuristic and cooperative approaches and explain their adaptation for evolving programs is provided in first part (Chapter I). Section I.2 discusses the exact methods, while section I.3 presents the (meta-)heuristics approaches used to solve the knapsack problems family. Finally, section I.4 and I.5 provide an overview of the cooperative and matheuristic approaches. We give a general presentation of the integer programming and local search techniques forming the core of our solutions approaches, with section I.6 concluding. The remaining chapters describe the methodological contributions of this thesis. Chapter II is about the GMKPS. We formally introduce the problem. Then, we propose a mixed integer linear programming formulation and an integer model based on the Dantzig-Wolfe decomposition. In Section II.2, the related literature of the problem is presented. Section II.3 contains the mathematical formulations of GMKPS and their particular case MKPS. In Section II.4, we propose a cooperative approach can be seen as matheuristic that combine variable neighborhood descent (VND) and integer programming (IP) for the (G)MKPS. The experimental results and their interpretations are reported in Section II.5. In Section II. 6, we conclude the chapter and give possible and future research ideas. In Chapter III we move from the MCKS problem and apply matheuristic (or cooperative) approach combining VNS with IP to solve this problem. In Section III.1, the presentation and related literature of the problem are presented. Section III.2 contains the mathematical formulations of MCKS. In Section III.3, we propose a matheuristic approach combining VNS and integer programming for MCKS. The experimental results and their interpretations are reported in Section III. [START_REF] Adouani | A efficient matheuristic for the Generalized Multiple Knapsack Problem with setup[END_REF]. In Section III.5, we conclude the chapter and give possible and future research ideas. Chapter IV is devoted to the description of cooperative solution approach to solve the GQMKP. We analyze the challenges encountered while developing the cooperative approaches between some Local Search techniques and Integer programming and provide a simple and effective data structure which may be easily generalized for quadratic variant of GMKPS problem. Later, we improved the efficiency of the proposed approaches: VND&IP and VNS&IP on a set of new generated instances for (G)MKPS and MCKPS. We provide a sensitivity analysis distinguishing the main components for increasing the performance of our cooperative approaches. In Section VI.1, the presentation and related literature of the problem are presented. Section IV.2 contains the mathematical formulation of the GQMKP. Section IV.3 contains our cooperative approach combining MVNS with IP. The experimental results and their interpretations are reported in Section IV.4 and, finally, the conclusions are outlined in Section IV.5. Finally, overall conclusions and perspectives are drawn in the last chapter of the thesis. In Appendix A, we report detailed computational experiments carried out in this thesis.

Chapter I

Cooperative approaches I.1 Introduction

This chapter provides an overview of different methods for solving combinatorial optimization problems [START_REF] Dasgupta | Algorithms[END_REF]. It is not so easy to classify the existing optimization methods.

Beyond the classical separation between exact methods and (meta-) heuristic methods, several papers are devoted to the taxonomy of cooperative approach. Cooperative (or Hybrid) methods are not new in the operational research community. This class of cooperative approaches includes several sub classes among which techniques combining (meta-) heuristics and exact algorithms have a dominating place.

In the remainder of this chapter, we elaborate further on exacts method and (meta-) heuristics approaches and explain some differences among different techniques and paradigms. We then focus on the context of cooperative approach, the paradigm, general framework, steps, and different components.

I.2 Exact methods

Many exact methods have been proposed for finding an optimal or a set of optimal solutions for a given problem. Among these methods, we can find branch and bound, branch and cut, and dynamic programming. Due to the inherent combinatorial explosion with respect to the size of the search space for hard COPs in general, this approach is only viable for very small instances. Therefore all practical exact solution approaches try to consider as much of the search space as possible only implicitly, hence ruling out regions where it is guaranteed that no better feasible solution can be found than a previously found one. Often these methods are based on a tree search, where the search space is recursively partitioned in a divide-andconquer manner into mutually disjoint subspaces by fixing certain variables or imposing additional constraints. Ruling out regions then amounts to (substantially) pruning the search tree. The scalability of a tree search thus depends essentially on the efficiency of this pruning mechanism. In branch-and-bound (B&B), upper and lower bounds are determined for the objective values of solutions, and subspaces for which the lower bounds exceed the upper bounds are discarded.

I.2.1 Integer programming

This section introduces some basic notations and gives a short introduction into prominent linear programming (LP) and integer programming (IP) techniques. Linear programming is a technique for the optimization of a linear program. More formally, a linear program is an optimization problem in which the objective function and constraints are linear functions of variables. Linear programs which have a feasible solution and are not unbounded always have an optimal solution. For an in-depth coverage of the subject we refer to books on linear optimization [START_REF] Bertsimas | Introduction to Linear Optimization[END_REF][START_REF] Dantzig | Linear Programming 2: Theory and Extensions[END_REF] as well as on combinatorial and integer optimization [START_REF] Nemhauser | Integer and Combinatorial Optimization[END_REF][START_REF] Bertsimas | Optimization Over Integers[END_REF].

A linear program (LP) is an optimization problem with a linear objective function subject to a set of constraints expressed as linear (in)equalities. A linear program where all the variables are required to be integers is an integer (linear) program (IP). We consider IP problems of the form * + , where are vectors and is a matrix, where all entries are integers. Further some important classical articles as well as works on current topics regarding IP are given in [START_REF] Jünger | 50 Years of Integer Programming 1958-2008[END_REF]. We also recommend a more informal paper about linear programming by Dantzig [START_REF] Dantzig | Linear programming[END_REF]. [START_REF] Dantzig | Linear Programming 1: Introduction[END_REF], MIP-solver, etc. Although there exist scenarios where the simplex algorithm, MIP-solvers, etc. show an exponential runtime [START_REF] Minty | How good is the simplex algorithm[END_REF] its average runtime is rather polynomial and it is known to be highly effective in practice.

I.2.2 Dynamic programming

The dynamic programming approach is a useful tool for solving some combinatorial optimization problems. The basic idea was first introduced by Bellman and presented in [START_REF] Bellman | Dynamic Programming[END_REF]. This approach consists of:

(1) Breaking a problem up into simpler sub-problems,

(2) Solving these sub-problems,

(3) Combining the sub-solutions to reach the overall solution.

DP is typically applied to optimization problems and following conditions must hold to successfully apply it: (parts of) the sub problems are overlapping, and recursively solving the overall problem in a bottom-up fashion amounts to choosing the right sub problem solutions (i.e. the problem exhibits an optimal substructure). Perhaps the most crucial part is that the sub problems are not disjoint or independent anymore. This fact is exploited via storing their solution's values in some sort of table (or another systematic way) to efficiently retrieve them at the re-occurrence of the sub problems. Hence memory is traded for computational effort. Often the actual solution needs to be reconstructed afterwards, albeit it is usually possible to already derive the required information during the solution process.

I.2.3 Branch and bound method

Branch and bound (B&B) methods are based on the principle of enumerating the solution space of a given problem and then choosing the best solution [START_REF] Land | An automatic method of solving discrete programming problems[END_REF][START_REF] Martello | Knapsack problems: Algorithms and computer implementations[END_REF]. B&B is one of the most popular methods to solve optimization problems in an exact manner. The enumeration has a tree structure. Each node of the tree separates the search space into two sub-spaces, until the complete exploration of the solution space [START_REF] Dasgupta | Algorithms[END_REF]. However, there are three aspects in a branch and bound method. They are: (i) Branching strategy, (ii) Bounding strategy and (iii) Node selection strategy. The first branch and bound algorithm for the 0-1 KP was proposed by Kolesar [START_REF] Kolesar | A branch and bound algorithm for the knapsack problem[END_REF]. Several developments have been proposed later [START_REF] Horowitz | Computing partitions with applications to the knapsack problem[END_REF][START_REF] Martello | An upper bound for the zero-one knapsack problem and a branch and bound algorithm[END_REF].

I.2.4 Cutting plane

Gomory [START_REF] Gomory | Outline of an algorithm for integer solutions to linear programs[END_REF] proposed the cutting plane algorithm. The principle is to iteratively refine the objective function by adding cuts. A cut can be defined as a constraint that excludes a portion of the search space from consideration. This can reduce the computational efforts in the search process of finding a global optimum solution. In practice it is crucial to have an efficient method for separating cuts as usually a significant number of valid inequalities must be derived until the cutting plane algorithm terminates.

I.2.5 Branch and cut method

The combination of B&B with cutting plane methods yields the highly effective class of branch-and-cut algorithms which are widely used. Specialized branch-and-cut approaches have been described for many applications and are known for their effectiveness. Cut separation is usually applied at each node of the B&B tree to tighten the bounds of the LP relaxation and to exclude infeasible solutions as far as possible. Branch and cut is a method of great interest for solving various combinatorial optimization problems. This method is a result of the integration between two methods:

(1) Cutting plane method,

(2) Branch-and-bound method .

The cutting planes lead to a great reduction in the size of the search tree of a pure branch and bound approach. Therefore, a pure branch and bound approach can be accelerated by the employment of a cutting plane scheme [START_REF] Crowder | Solving large-scale zero-one linear programming problems[END_REF][START_REF] Balas | Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring[END_REF][START_REF] Lahyani | A multicompartment vehicle routing problem arising in the collection of olive oil in Tunisia[END_REF].

For small or moderately sized instances exact methods obtain optimal solutions and guarantee their optimality. However, exact methods are unable to solve optimality large instances. This has led researchers to discard exact methods in favour of (meta-)heuristic methods. In fact, (meta-)heuristic methods generate high quality solutions in a reasonable time but there is no guarantee of finding a global optimal solution.

I.3 Metaheuristics approaches

(Meta-)heuristics are a wide class of methods designed to solve approximately many optimization problems. They are approximate algorithms that combine basic heuristic methods into higher level frameworks to efficiently and effectively explore the search space [START_REF] Osman | Metaheuristics: A bibliography[END_REF]. (Meta-)heuristics are designed to solve complex optimization problems; in fact, the classical heuristics were not always effective and efficient, as they were time consuming or there were some limitation to help them escape from a local optima. of them converge to the optimal solution of some problems with an expected runtime. Several (meta-)heuristic algorithms are studied in the literature such as variable neighborhood search (VNS) [START_REF] Mladenović | Variable neighborhood search[END_REF][START_REF] Jarboui | Variable neighborhood search for location routing[END_REF],

tabu search (TS) [START_REF] Glover | Tabu search-part I[END_REF], simulated annealing (SA) [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF], genetic algorithm (GA) [START_REF] Goldberg | Genetic algorithms in search, optimization, and machine learning[END_REF], particle swarm optimization (PSO) [START_REF] Kennedy | Particle Swarm Optimization[END_REF], among others.

(Meta-)heuristic algorithms based a two strategies [START_REF] Qin | Hybridization of tabu search with feasible and infeasible local searches for the quadratic multiple knapsack problem[END_REF][START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF] : (i) Diversification: that explores the search space to avoid getting stuck in the same or similar areas of feasible space, and (ii) Intensification: that emphasizes on concentrating search in the promising regions previously found, in order to exploiting the potentials.

I.3.1 Simulated annealing

Simulated Annealing is probably one of the first metaheuristics with an explicit strategy to escape from local optima [START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF]. The basic idea is to allow under some conditions some movements resulting in solutions of worse quality in order to escape from local optima and so to delay the convergence. In fact, at each iteration a random neighbor of is generated and it is accepted as new current solution if its cost function value is lower than that of the current solution. Otherwise it is accepted with a given probability , this probability of accepting worse solutions decreased during the search process. In fact, the probability of accepting worse solutions is controlled by two factors: the difference of the cost functions and the temperature . In general, the probability is calculated following the Boltzmann distribution:

(() ()) (() ())

I.3.2 Variable neighborhood descent

Variable neighborhood descent (VND) is a metaheuristic method proposed in [START_REF] Mladenović | Variable neighborhood search[END_REF] within the framework of variable neighborhood search methods, see [START_REF] Hansen | Variable neighborhood search: basics and variants[END_REF]. The VND works with neighborhood structures , , designed for a specific problem. It starts with a given feasible solution as incumbent and sets . If an improvement is obtained within neighborhood , the method updates the new incumbent and sets .

Otherwise, it increases the value of and the next neighborhood is considered. The method stops when a local optimum for is found.

I.3.3 Iterated local search

Iterated Local Search (ILS) framework was defined by Stutzle [START_REF] Stützle | Local search algorithms for combinatorial problems: analysis, improvements, and new applications[END_REF]. An ILS review, its variants, and its applications are detailed in [START_REF] Lourenço | Iterated Local Search: Framework and Applications[END_REF]. The idea of iterated local search is very simple. The ILS apply local search to a current solution until a local optimum is reached. In order to overcome this local optimum a perturbation is realized to engender a new starting solution for local search algorithm. The principle of perturbation has a big influence on the process of the ILS method. In fact, if the perturbation is too weak, possibly, the algorithm may not avoid the convergence to the same local optimum. Furthermore, a strong perturbation would change the algorithm to a local search with multi starting solutions.

I.3.4 Variable neighborhood search

Variable neighborhood search (VNS) introduced by Mladenovic and Hansen [START_REF] Mladenović | Variable neighborhood search[END_REF].

VNS is based on the systematic the systemic change within neighborhood structures. In the beginning of each problem resolution, a set of neighborhood structures * + of cardinality k must be defined, where () the set of solutions in the neighborhood of .

Then, from a starting solution the algorithm increasingly uses complex moves to reach local optima on all selected neighborhood structures.

I.4 Cooperatives approaches

The interests about cooperative approaches have grown for the last few years where they have proved their efficiency in solving optimization problems. Since (meta-)heuristics cannot always find the global optimal solution, more and more cooperation schemes between exact methods and (meta-)heuristics are realized. These hybridizations can provide high quality results because they are able to exploit at the same time the advantages of both types of methods.

In the following, we give a brief overview of the three main classifications of cooperative approaches between exact and (meta-)heuristic methods that have been suggested in the literature.

I.4.1 First classification

The Cooperative approaches between exact and (meta-) heuristics were firstly classified in [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF][START_REF] Fernandes | Hybrid combining local search heuristics with exact algorithms[END_REF] who summarized them into five classes:

(i) Using exact algorithms to explore large neighborhoods within local search algorithms.

(ii) Using information of high quality solutions found in several runs of local search to define smaller problems that are amenable for solution with exact algorithms.

(iii) Exploiting lower bounds in constructive heuristics.

(iv) Using information from integer programming relaxations to guide local search or constructive algorithms.

(v) Using exact algorithms for specific procedures within hybrid (meta)heuristics

I.4.2 Second classification

Puchinger and Raidl [START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF] have developed the second classification which is divided into two main classes: (i) Collaborative combination and (ii) Integration combination.

(1) Collaborative combination: this class includes hybrid algorithms in which exact algorithm and (meta-) heuristic exchange information, but no algorithm is contained in any other. In this case, both algorithms can be executed in two following cases i. Sequential execution: in which one of the algorithms is completely executed before the other. In other words, the (meta-) heuristic algorithm is executed as a preprocessing before the exact method or the (meta-) heuristic algorithm is executed as a post processing after the exact method.

ii. Parallel or Intertwined execution, where both (meta-) heuristic and exact methods are executed in the same time, either in parallel or in an intertwined manner by alternating between both algorithms.

(2) Integration combination: it is termed integrative because when one technique is embedded inside other techniques, in which the first act as a master and the second is seen as a functional component of the first. Obviously, two cases may be considered.

i. The first consists of incorporating an exact algorithm into a (meta-) heuristic. A well-known strategy of this subclass is to solve relaxed problems and to explore large neighborhoods in local search based (meta-)heuristics by means of exact algorithms. Another common strategy is to use an exact algorithm as an operator integrated in evolutionary (meta-)heuristic.

ii. While the second case consists of embedding a (meta-)heuristic within an exact algorithm specially in order to employ (meta-)heuristics to determine incumbent solutions and bounds in branch and bound algorithm.

I.4.3 Third classification

Jourdan et al. [START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF] are proposed the third classification which can be used to categorize any cooperative algorithm. There are two criteria selected for this classification of cooperation between exact and (meta-) heuristic methods: (i) Low-level / high-level, (ii) Relay /teamwork.

(i) Low-level / high-level: in this criterion, the hybridization occurs when a given function of an optimization algorithm is replaced by another algorithm. While, in the high level different algorithms are self-contained.

(ii) Relay/ teamwork: when a set of (meta-) heuristics is applied one after another, each one using the solution of the previous one as its inputs, functioning in a pipeline fashion. In the other hand, team hybridization represents a whole cooperation between several optimization models, in which many algorithms, referred as agents, evolve in parallel and each algorithm carries out a search in a solution space. There are four categories that can be derived from this hierarchical classification Low Level Relay Hybrid (LRH). that corresponds to the cooperative approach wherein a given exact method is embedded into (meta-) heuristic method, or vice-versa. The embedded method is executed sequentially. More precisely, the general method depends on the results obtained by the embedded method. This class of cooperation is frequently used when a (meta) heuristic is used to improve another exact method. For example, to provide a local upper bound associated with each node of the search tree of a branch and bound algorithm, this method can be used to complete the partial solution.

Few examples from literature belong to this category. Low Level Teamwork Hybrid (LTH). contrarily to LRH cooperation, the embedded method is executed in parallel with the general method; with this the performance of the metaheuristics is improved a lot. This hybrid is very popular and has been applied successfully to many optimization problems. Kostikas and Fragakis [START_REF] Kostikas | Genetic programming applied to mixed integer Programming[END_REF] proposed a cooperative approach to embed a branch and bound algorithm (B&B) into genetic programming (GP). Conventionally, genetic algorithm used recombination operators to generate offspring. An original idea is to incorporate exact method, such as branch and bound algorithm, into recombination operators to find the best offspring from a large set of possibilities.

High Level Relay Hybrid (HRH).

In HRH hybrid, numerous self-contained (meta-) heuristics are executed in a sequence. The first case consists in starting (meta-)heuristic approach before an exact algorithm. The (meta-)heuristic approach helps the exact method to speed up the search. The idea consists to use good quality solution found by a (meta-)heuristic as an initial upper bound for B&B method. For example, Klepeis et al. [START_REF] Klepeis | Hybrid global optimization algorithms for protein structure prediction: Alternating hybrids[END_REF] proposed cooperation between B&B algorithm and a conformational space annealing (CSA) to solve the protein structure prediction. HRH cooperation helps to quickly found the active nodes whose lower bound is greater than the upper bound. The second case consists in launching exact algorithm before a (meta-)heuristic approach. Another method consists in using exact algorithm to resolve optimally a relaxed version of the problem under consideration. Then, the obtained solution is exploited to produce initial solution for a (meta)heuristic approach.

High Level Teamwork Hybrid (HTH). As already mentioned, HTH hybrid scheme involves various self-contained metaheuristics performing a search in parallel and cooperating to find an optimum. These various approaches cooperate by exchanging information between them during the search process [START_REF] Cotta | Hybridizing genetic algorithms with branch and bound techniques for the resolution of the tsp[END_REF][START_REF] Chabrier | Coopération entre génération de colonnes sans cycle et recherche locale appliquée au routage de véhicules[END_REF]. In this context, if we consider the cooperation between a branch and bound algorithm and a (meta) heuristic approach the following information may be exchanged:

(i) From a (meta-)heuristic approach to a branch and bound algorithm; the best solution found by the (meta-) heuristic approach is transmitted to branch and bound algorithm in order to help this latter to prune the search tree efficiency. This information is exchanged each time the best solution found is improved.

(ii) From a branch and bound algorithm to a (meta-) heuristic approach;

Nodes of the search tree of branch and bound algorithm with least-cost lower bound represent good partial solutions. The lower bound is used to predict potential interesting search regions. Indeed, these partial solutions are completed and used by heuristic method as initial solutions.

I.5 Matheuristic approach

The cooperative framework between (meta-)heuristics and exact approaches have been performed by many researchers during the last few decades. For instance, Puchinger and

Raidl, [START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF])heuristics for solving a smaller sub problem [START_REF] Maniezzo | Matheuristics: Hybridizing Metaheuristics and Mathematical Programming[END_REF]. This technique provides interesting results as they take advantages of both types of methods [START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF]. A classification of algorithms combining local search techniques and exact methods is given in [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF][START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF]. The focus is particularly on the so called cooperative approaches using exact methods to strengthen local search techniques. They can be viewed as matheuristics that combine (meta-)heuristics and mathematical programming [START_REF] Hanafi | New hybrid matheuristics for solving the multidimensional knapsack problem[END_REF][START_REF] Maniezzo | Matheuristics: Hybridizing Metaheuristics and Mathematical Programming[END_REF]. Prandtstetter and Raidl [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF] applied a matheuristic that combines an integer linear programming with variable neighborhood search for the car sequencing problem.

I.6 Conclusion

Hard combinatorial problem cannot be solved in an exact way within a reasonable amount of time. Using (meta-)heuristic methods is the most important alternative to solve this class of problems. (Meta-)heuristics approaches are efficient in the search space exploration in a short computation time, but no guarantee about the high-quality solutions. Outlining the advantages and disadvantages of different search techniques we terminate by pointing out the importance of cooperative approaches that can benefit from their advantages while minimizing their drawbacks.

In this thesis, we will be particularly interested in cooperative approaches can be viewed as matheuristic that combine neighborhood search techniques and mathematical programming.

The following chapter will be devoted to introduce and solve a new variant and extension of the knapsack problem with setup (KPS) that we call generalized multiple knapsack problem with setup (GMKPS). In fact, in the empirical part of this thesis we will attempt to develop original matheuristics approach to solve GMKPS and its variant MKPS

Chapter II

Cooperative approach for the generalized multiple knapsack problem with setup

II.1 Introduction

In this chapter, we introduce and solve a new variant of knapsack problem with setup (KPS) that we call general multiple knapsack problem with setup (GMKPS). Practical applications of the GMKPS may be seen in production scheduling problems involving setups and machine preferences. A real-life case study of KPS is considered in [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF]. It is about a leading manufacturer and supplier of hollow glass in the agro-alimentary glass packing industry, that produces several types of products, including bottles, flacons, and pots with different shapes. To change the production from one product class to another, the production machinery must be setup and molds must be changed in the molding machine. There is no setup between products in the same class. These changes in the manufacturing process require significant setup time and costs. The company operates with a batch delivery policy; products that are manufactured in the same period have the same shipping date. Accordingly, the company needs to decide when to make orders so as to maximize the total profit. Hence, the extension of KPS to multiple periods is a real case study of GMKPS. Prices vary according to the customers' expectation of products delivery date; i.e. some customers are willing to pay a higher price for a short lead-time while others are willing to wait for their products in exchange for lower prices. Thus, price, delivery period and total profit have very complex connections that are of extreme interest to businesses today. Thus, we consider that orders could be realized in multiple periods, and the products' price depends on the orders' completion time; i.e. penalties are added to the initial price in case products are not delivered on-time. In addition, the products (items) could be classified into classes regarding their setups; setup is null between products from the same class. The profit for order j of class i processed in period t is , and varies for different periods, but the processing time stays the same. To find the assignment of orders that maximizes the total profit, we have to consider the marginal profit of each job, the current production capacity per period, and the setup cost and time from orders. This realistic production scheduling problem is typically our GMKPS case study. Particularly, we deal with multiple knapsack problem with setup (MKPS)

if only one setup for each class is allowed during the planning horizon i.e. orders in the same class must be processed in the same period. We note that MKPS is provided in [START_REF] Yang | Knapsack problems with setup[END_REF], but there is no available benchmark set in the literature.

The GMKPS can be seen as a generalization of classical knapsack problem (KP) [START_REF] Martello | Knapsack problems: Algorithms and computer implementations[END_REF] where items belong to disjoint classes and can be processed in multiple knapsacks. The selection of a class involves setup costs and resource consumptions (setup time), thus affects both the objective function and the capacity constraint. Note that GMKPS has similarities with several other existing problems in the literature:

-GMKPS is similar to KPS when considering one knapsack [103, 21; 63].

-The MKPS is a special case of GMKPS [START_REF] Yang | Knapsack problems with setup[END_REF] when items from the same class cannot be assigned to more than a knapsack.

-The multi-item capacitated lot-sizing problem with setup times and shortage costs (MCLSSP) [START_REF] Absi | The multi-item capacitated lot-sizing problem with setup times and shortage costs[END_REF] is similar to GMKPS when considering one class of items and the objective is to minimize the total cost induced by the production plan (unit production costs, inventory costs, shortage costs and setup costs).

-The multi-item capacitated lot-sizing problem with times windows and setup times (MCLSP-TW-ST) [START_REF] Erromdhani | variable neighborhood formulation search approach for the multi-item capacitated lot-sizing problem with time windows and setup times[END_REF] is similar to GMKPS when considering one class of items and the objective is to minimize the total cost (setup cost, production cost and holding cost).

-The generalized quadratic multiple knapsack problem (GQMKP) [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF][START_REF] Adouani | A matheuristic for the 0-1 Generalized Quadratic Multiple Knapsack Problem[END_REF] is similar to GMKPS, when additional profit is obtained if items j and j' are selected for the same knapsack, and ignoring the setup cost. The maximum number of knapsacks to which the items from the same class can be assigned is a fixed parameter from 1

to the total number of knapsacks.

Other problems exist in literature and seem to have similarities with GMKPS, but they present more differences than similarities:

-The multiple-choice multidimensional knapsack problem (MMKP) [START_REF] Hifi | A reactive local search-based algorithm for the multiple-choice multidimensional knapsack problem[END_REF] is different from the GMKPS. It ignores the setup variables (without y variables), and consists of filling all knapsacks with exactly one item from each class.

-The multiple knapsack problem (MKP) is a special case of MMKP, when considering one class [START_REF] Pisinger | An exact algorithm for large multiple knapsack problems[END_REF].

-The multi-commodity, multi-plant, capacitated facility location problem (denoted, PLANWAR) [START_REF] Wen | Facility location-allocation problem in random fuzzy environment: Using (α, β)-cost minimization model under the Hurewicz criterion[END_REF] is required to select the optimum set of plants and warehouses from a potential set and plan production capacities, warehouse capacities and quantities shipped. This problem is different from the GMKPS. It ignores the setup capacity consumption (setup time) and adds the operating cost, where the objective is to minimizing the total operating costs of the distribution network.

-The facility location-allocation problem (FLA) is a particular case of PLANWAR.

It ignores the operating costs and consists of defining the best allocation using (α, β)-cost while minimizing the transportation cost [START_REF] Wen | Facility location-allocation problem in random fuzzy environment: Using (α, β)-cost minimization model under the Hurewicz criterion[END_REF].

For small and medium sized instances (with less than 10000 variables and 10000 constraints)

for similar problems than GMKPS, exact methods such as Branch and bound [START_REF] Yang | Knapsack problems with setup[END_REF]) and Dynamic programming [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF] converge to optimality. However, those exact methods are unable to solve large instances in a reasonable time. This has led to discard exact methods in favour of approximated methods such as Multi-start Iterated local search [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] and heuristics based tree search [START_REF] Khemakhem | A tree search based combination heuristic for the knapsack problem with setup[END_REF].

Nevertheless, metaheuristic methods generate solutions in a reasonable time, but with no guarantee of performance. The purpose of this work is to provide an efficient solving approach for the GMKPS. We introduce a mixed Integer programming (MIP) formulation that, due to the complexity of the GMKPS (more than 60000 variables and 60000 constraints), cannot solve even small test instances (see section 5.3). In fact, it is usually difficult to assign items to the whole sets of knapsacks. In addition, the consideration of the knapsack-dependent cost related to each class of products and the knapsackdependent profit associated to each item increases the complexity of the problem. Therefore, the design of a new approach providing high quality solutions in a reasonable computing time is quite challenging. An alternative to exact methods would be to develop a matheuristic by combining a metaheuristic with an exact solving technique: local search techniques to include classes to knapsacks and integer programming (IP) to include items in each knapsack. Our matheuristic approach differs from existing techniques by the use of the connection between metaheuristic and exact method relying on an effective exploration of the solution space. Experimental results show the performance of the proposed matheuristic on randomly generated instances of GMKPS and its particular case MKPS in comparison to IP: higher quality solution (-0.37% for GMKPS and -0.04% for MKPS) and shorter computation time (20 s vs 3522 s for GMKPS and 11s vs 2965s for MKPS).

The remainder of this chapter is organized as following: In Section II.2, the related literature is presented. Section II.3 contains the mathematical formulations of GMKPS and MKPS. In Section II.4, we propose a matheuristic combining variable neighborhood descent (VND) and integer programming (IP) for GMKPS and MKPS. The experimental results and their interpretations are reported in Section II.5. In Section II.6, we conclude the chapter and give possible and future research ideas.

II.2 Literature review

To deal with the different variants of KP, exact techniques are introduced in the literature. Martello and Toth [START_REF] Martello | Solution of the zero-one multiple knapsack problem[END_REF] discussed an upper bound using lagrangian relaxation for MKP. Pisinger [START_REF] Pisinger | An exact algorithm for large multiple knapsack problems[END_REF] presented an exact algorithm using a surrogate relaxation to get an upper bound, and dynamic programming to get the optimal solution. Sinha and Zoltners [START_REF] Sinha | The multiple-choice knapsack problem[END_REF] used two dominance rules for the linear multiple-choice KP to provide an upper bound for the multiple-choice knapsack problem. Chebil and Khemakhem [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF] provided an exact method for KPS based on a dynamic program that outperforms the ILP on instances with up to 10,000 items. The time complexity of the dynamic programming grows exponentially with the increasing size of problem. Michel et al. [START_REF] Michel | Knapsack problems with setups[END_REF] developed an exact method based on a branch and bound algorithm to optimally solve several KPS instances. Yang and Bulfin [START_REF] Yang | An exact algorithm for the knapsack problem with setup[END_REF] proposed also exact methods based on a branch-and-bound for KPS, but turns out to solve large instances. Thus, Della et al. [START_REF] Della | An exact approach for the 0-1 knapsack problem with setups[END_REF] suggested an exact approach to optimally solve the 0-1 knapsack problem with setups. The approach relies on an effective exploration of the solution space by exploiting the presence of two levels of variables. It manages to optimality solve all instances with limited computational time. Pferschy and Rosario [START_REF] Pferschy | Improved dynamic programming and approximation results for the knapsack problem with setups[END_REF] proposed an exact method based on a dynamic programming motivated by the connection of KPS to a KP with precedence constraints. This pseudo-polynomial algorithm can be stated with fewer variables and constraints and turns out to outperform the recent dynamic programming approach provided by Chebil and Khemakhem [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF]. Moreover, it outperforms the exact approach proposed in Della Croce et al. [START_REF] Della | An exact approach for the 0-1 knapsack problem with setups[END_REF]. The dynamic programming and the Branch and Bound are not practical for solving large problem instances of GMKPS, which is more complex than KPS. Khemakhem and Chebil [START_REF] Khemakhem | A tree search based combination heuristic for the knapsack problem with setup[END_REF] provided a tree search based combination heuristic for large instances of KPS, but provided less performance results in comparison to dynamic programming. Freville and Plateau [START_REF] Freville | Heuristics and reduction methods for multiple constraints 0-l linear programming problems[END_REF] provided greedy algorithm and reduction methods for multiple constraints 0-l linear programming problems. Dogan et al. [START_REF] Dogan | Quadratic multiple knapsack problem with setups and a solution approach[END_REF] proposed a genetic algorithm solution based approach and Tlili et al. [START_REF] Tlili | An iterated variable neighborhood descent hyperheuristic for the quadratic multiple knapsack problem[END_REF] proposed an iterated variable neighborhood descent hyper heuristic for the quadratic multiple knapsack problems (QMKP).

Both exact algorithms and metaheuritics present advantages and drawbacks, when dealing with complex problems, in particular different variants of KPS. The hybridization technique between metaheuristics and exact approaches have been performed by many researchers during the last few decades [START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF]. This technique provides interesting results as they take advantages of both types of methods [START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF]. A classification of algorithms combining local search techniques and exact methods is given in [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF][START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF]. The focus is particularly on the so called hybrid methods using exact methods to strengthen local search techniques. They can be viewed as matheuristics that combine metaheuristics and mathematical programming [START_REF] Hanafi | New hybrid matheuristics for solving the multidimensional knapsack problem[END_REF][START_REF] Cotta | Hybridizing genetic algorithms with branch and bound techniques for the resolution of the tsp[END_REF]. Prandtstetter and Raidl [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF] applied a matheuristic that combines an integer linear program with variable neighborhood search for the car sequencing problem. Burke et al. [START_REF] Burke | A hybrid model of integer programming and variable neighborhood search for highly-constrained nurse rostering problems[END_REF] studied a hybrid model of Integer Programming and Variable Neighborhood Search for Highly-Constrained Nurse Rostering Problems. Fernandes and Lourenco [START_REF] Fernandes | Hybrid combining local search heuristics with exact algorithms[END_REF] applied hybrid local search heuristics with exact algorithms to approximately solve different combinatorial optimization problems. Vasquez and Hao [START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF] proposed a new hybrid approach combining linear programming and tabu search to approximately solve the MKP problem. They considered a two-phased algorithm that first uses Simplex to solve exactly a relaxation of the problem and explores efficiently the solution neighborhood by applying a tabu search approach. Lamghari et al. [START_REF] Lamghari | A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines[END_REF] proposed a hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines. Adouani et al. [START_REF] Adouani | A Variable Neighborhood Search with Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with Setup[END_REF] applied a matheuristic combining VNS with IP to solve the multiple choice knapsack problem with setup (MCKS) and showed its efficiency for large instances (more than 60000 variables and 60000 constraints) in comparison to IP with -0.11% as gap of objective value and 13 s vs.

2868 s as difference in computation time.

Local search techniques have proven their efficiency in several combinatorial problems and have been used within hybrid methods for several problems [START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF][START_REF] Dumitrescu | Usage of Exact Algorithms to Enhance Stochastic Local Search Algorithms[END_REF][START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF].

Particularly, the Variable Neighborhood Descent (VND) is a method based on a systematic change of the neighborhood structures. It is introduced by Mladenović and Hansen [START_REF] Mladenović | Variable neighborhood search[END_REF] and has proven its efficiency on different scheduling problems: unrelated parallel machines with setup times [START_REF] Fleszar | A variable neighborhood descent heuristic for the problem of make span minimization on unrelated parallel machines with setup times[END_REF], capacitated vehicle routing problem [START_REF] Chen | Iterated variable neighborhood descent algorithm for the capacitated vehicle routing problem[END_REF], etc.

In this chapter, we propose a new matheuristic approach combining VND and IP (VND&IP) to solve the (G)MKPS. The provided approach relies on an effective exploration of the solution space by exploiting the partitioning of the variables set into two levels. The proposed approach solves approximately, all the instances of (G)MKPS (more than 60000 variables and 60000 constraints) in a limited time in comparison to IP (20 s vs 3522 s for GMKPS and 11s vs 2965s for MKPS). It provides good quality solutions with a negative gap in comparison to IP (-0.37% for GMKPS and -0.04% for MKPS) (see Tables II. [START_REF] Adouani | A efficient matheuristic for the Generalized Multiple Knapsack Problem with setup[END_REF] and II.5 in Section II.5).

II.3 Problem description

We 1) represents the objective function that is to maximize the profit of selected items minus the fixed setup costs of selected classes. Constraint (2) guarantees that, for each knapsack * +, the sum of the total weight of selected items and the class setup capacity consumption do not exceed the knapsack capacity . Constraint (3) requires that each item is selected only if it belongs to a class that has been setup. Constraint (4) guarantees that each item is selected and assigned to one knapsack at most. Constraint [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF] ensures that the decision variables are binary.

The MKPS is a particular case of GMKPS. To get the mathematical formulation for the MKPS, we keep the objective function given in (1), constraints (2), (3) and (5), and replace constraint (4) by constraint (6) because items from the same class cannot be processed in more than one knapsack.

∑ * + ()
We note that this mathematical formulation of MKPS contains T+T*S+N constraints and T*N+T*S variables.

Our mathematical modeling of GMKPS can be seen as a generalization to T knapsacks of existing mathematical model for KPS [START_REF] Yang | An exact algorithm for the knapsack problem with setup[END_REF][START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF][START_REF] Khemakhem | A tree search based combination heuristic for the knapsack problem with setup[END_REF][START_REF] Pferschy | Improved dynamic programming and approximation results for the knapsack problem with setups[END_REF], with additional constraint (4). We note that the mathematical formulation of KPS problem contains 1+S constraints and N+S variables.

Using IP to solve GMKPS and MKPS shows its limitation due to the complexity of the problems (for big instances with up to 60000 variables and 60000 constraints). We show later in the experimental results (Section II.5) that by using IP, only 38 instances (among 360) of MKPS and 7 instances (among 360) of GMKPS are solved to optimality in less than one hour CPU time. For the rest, the computation terminates with an out of memory or is stopped in one hour. Thus, we decided to invest in the development of a matheuristic approach combining VND and IP. We explain our new approach in the next section.

II.4 Matheuristic VND&IP

II.4.1 Initial feasible solution

To generate the initial solution, we use RBH, which is composed of three successive phases:

-First phase: We reduce the size of an instance of GMKPS so that all the Here, the objective function [START_REF] Almaliky | Sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights[END_REF] maximizes the sum of profits related to the selected jumbo items minus the costs induced by the selected classes. The capacity constraint [START_REF] Augerat | Separating capacity constraints in the CVRP using tabu search[END_REF] guarantees that the sum of weights for the selected items and classes does not exceed the capacity value . Constraint [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] requires that each item is selected only if it belongs to a class that has been setup. Constraint [START_REF] Balas | Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring[END_REF] guarantees that each jumbo item is selected and assigned to one knapsack at most. Constraint [START_REF] Bansal | A modified binary particle swarm optimization for knapsack problems[END_REF] ensures that the decision variables are binary.

-Second phase: It is based on the fixing technique recently proposed by Della et al. [START_REF] Della | An exact approach for the 0-1 knapsack problem with setups[END_REF]. We relax constraint [START_REF] Bansal | A modified binary particle swarm optimization for knapsack problems[END_REF] 7) -(9), (11) and (15):

∑ * + (15)
In addition to RBH, we consider two other heuristics: Linear Programming based Heuristic (LPH) [START_REF] Zhang | Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic[END_REF] and Greedy Heuristic (GH) [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF]. In our problem, the LPH heuristic is composed of two main phases. We use a CPLEX solver along the procedure of our LPH: In the first phase, we consider again the model GMKPS and remove the integrality constraints on variables . We limit CPLEX computation time to 500 seconds to obtain an initial solution . The obtained combination is denoted by 0-1 vector ̅ . In the second phase, the binary GMKPS [̅is solved to obtain a feasible solution . The GH heuristic is to build iteratively a feasible solution. In our problem this heuristic is composed of two main phases. In the first phase, the variables are fixed randomly. In the second phase, the partial feasible solution obtained in the previous phase is completed by inserting the items one by one to each knapsack from the set of items that are listed in the decreasing order of their ratio = / . If the current knapsack is saturated, then we go to the next knapsack and reapply the two phases on the rest of items, and so on until the saturation of all the knapsacks.

We give in next section an illustration about how the initial solution is obtained using our RBH on a small instance :

Illustration example.

Let consider an example of GMKPS defined by: , , - We apply the reduction process to get the :

, - ,, -, -- , - , - ,, -, -]
We solve the MIP (only the variables are binary) of the and get the following result:

* ⏞ ⏞ } * ⏞ ⏞ ⏞ ⏞ ⏞ ⏞ ⏞ ⏞ ⏞ ⏞ +
We can see that the knapsack 1 is set up to accept only items from class 1, and the knapsack 2 is set up to accept only items from class 2. We apply separately:

-GMKPS[] i.e. IP(1), with a capacity , -, -, , -, - 2), with a capacity , -, -, , -, -

-GMKPS[] i.e. IP(
We obtain the solution X 1 for the GMKPS[], and the solution X 2 for the

GMKPS[]:

-

* ⏞ ⏞ ⏞ ⏞ ⏞ }, with . - * ⏞ ⏞ ⏞ ⏞ ⏞ +
Thus the initial solution generated by the RBH is:

- * +.
-.

II.4.2 Upper bound for , -

Dantzig [START_REF] Dantzig | Discrete variable extremum problems[END_REF]

End for End for End while

The SWAP&IP, INSERT&IP, and DROP/ADD&IP procedures are the same for the two problems GMKPS and MKPS.

II.5 Computational experiments

Our approach is implemented and run using C language and CPLEX 12.7 solver on a 2.4 GHZ intel B960 computer with 4 GB of memory.

Due to the unavailability of benchmark instances in the literature, we test our matheuristic VND&IP on a set of randomly generated instances of GMKPS and MKPS with a total number of knapsacks T in * +, all knapsacks are considered small (below the formula of b t), total number of classes N in { +, and total number of items for each class i in , -, and , -(the instances of GMKPS and MKPS are available at the following link: https://goo.gl/zK6yZn).We generate 360 instances in total: 10 instances for each combination (). We consider the correlation between coefficients by using a random generation scheme that resembles to the ones provided in [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF] and [START_REF] Adouani | A Variable Neighborhood Search with Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with Setup[END_REF] which makes use of the following rules:

 The setup cost and capacity consumption are:

∑ ∑ W  is selected with a uniform distribution in , -.
 is selected with a uniform distribution in , -



, where is selected with a uniform distribution in , -.

. ∑ / where is selected with a uniform distribution in , ∑ -.

Before the experimentation (Section II.5.3), we provide in section II.5.1 a performance analysis of the matheuristic components considering the set of 360 GMKPS instances that are presented in this section II.5. In section II.5.2, we provide a sensitivity analysis regarding the correlations between several coefficients and regarding the knapsacks tightness by applying our approach on a new set of 13 GMKPS instances that are presented in the same section 5.2.

II.5.1 Performance analysis of the VND&IP components

We study here the performance of the main components of our matheuristics, mainly the construction Heuristic RBH and the combination of the three local search techniques

SWAP&IP, INSERT&IP and DROP/ADD&IP.

In order to evaluate the performance of RBH, we compare it to GH and LPH heuristics explained in section II.3.1. The RBH, GH and LPH heuristics are tested on all the instances of GMKPS. Table II.1 shows the numerical results on average. The first column contains the name of the heuristic. The second column contains the average of computational time. We note that LPH is stopped at a limit of computation time equal to 500 s. The third column contains the gap between the heuristic solution and the IP solution: () . / for all the set of instances, compared to using only SWAP&IP. However, by adding DROP/ADD&IP, we observe a higher improvement with a gap that increases when the number of knapsacks increases.

II.5.2 Sensitivity analysis of GMKPS parameters

We study here the impact of several parameters values on the complexity of the GMKPS: tightness of knapsacks and correlation between several coefficients.

For the sensitivity analysis regarding the correlation between coefficients, we consider different possibilities:

(1) No correlation between coefficients: ; ; ;

; where ; ; and are uniformly generated in [START_REF] Balas | Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring[END_REF]10000].

(2) Correlation between and coefficients: ; where r is uniformly generated in [0,10] and the other parameters are uncorrelated.

(3) Correlation between coefficients of the same class:

() ;
where r is uniformly generated in [0,10] and the other parameters are uncorrelated. 5)) is reported in the second column. The notations (and) and report the solution found and the computational time, respectively. We note that IP is stopped at a limit of computation time equal to one hour. The columns () reports the solution gap between IP and VND&IP, calculated as follows:

() . /.

Table II.2. Comparison between IP and VND&P for different levels of correlated instances

Best solution in bold, * for optimal solution, and -when IP exceeds the capacity of RAM memory or exceeds the CPU time limit

Table II.2 shows that IP solves to optimality small and large uncorrelated instances i.e.

correlation type [START_REF] Absi | The multi-item capacitated lot-sizing problem with setup times and shortage costs[END_REF]. The VND &IP approach provides good quality solutions for uncorrelated instances in a very short computation time: 43 sec for the small instance (vs 597 sec with IP) and 101sec for the large instance (vs 1438 sec with IP). The IP slightly outperforms the VND&IP when dealing with uncorrelated instances: the gap is equal to 0.002% for the small instance and 0.006% for the large instance. The same phenomenon is observed with correlation type [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF].

Table II.2 shows that the IP cannot solve to optimality small and large correlated instances with correlation types (2), (3) and (4); i.e. exceeds the capacity of RAM memory or exceeds the CPU time limit (one hour). Our approach VND& IP solves the instances in very reasonable computational time with an average gap equal to -for correlated instances type (2), -0 for correlated instances type (3) and -for correlated instances type (4). We note that the negative gap indicates that VND&IP outperforms IP. The VNS&IP average computation time is 43 sec for small instances and 120 sec for large instances (vs 3600 sec with IP).

We conclude that the correlation of the profits with other parameters such as weight, setup time, and setup cost, etc. makes the GMKPS more complex to solve i.e. for small and large correlated instances with correlation type (2), (3) and (4), the provided matheuristic VND&IP is more efficient and effective in comparison to IP. For the sensitivity analysis regarding the tightness of knapsacks, we consider three instances with T = 10, N = 20, in [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF]110] and different sizes of knapsacks (tightness:

small, medium and large capacities):

-Small knapsack capacity: . ∑ / -Medium knapsack capacity: . ∑ / -Large knapsack capacity: . ∑ /

where is selected with a uniform distribution in , ∑ -.

In Table II.3, the first column presents the knapsack tightness of the three instances:

small, medium and large knapsacks. The next two columns show the results provided by the IP and VND&IP. (s) The detailed results about the GMKPS and MKPS are available in Appendix A and the following link: https://goo.gl/Knz6Bo.

() (s) () 5 10

II.6 Conclusion

This chapter introduces a new variant of the knapsack problem with setup (KPS). We refer to it as the generalized multiple knapsack problem with setup (GMKPS). GMKPS originates from industrial production problems where the items are divided into classes and processed in multiple periods. We refer to the particular case, where items from the same class cannot be processed in more than one period, as the multiple knapsack problem with setup (MKPS). First, we provide mathematical formulations of GMKPS and MKPS and provide an upper bound expression for the knapsack problem. We then propose a matheuristic that combines variable neighborhood descent (VND) with integer programming (IP). We consider local search techniques to assign classes to knapsacks and apply the IP to select the items in each knapsack. Computational experiments on randomly generated instances show the efficiency of our matheuristic in comparison to the direct use of a commercial solver.

For future work, we expect to improve and generalize our matheuristic to deal with other variants of Knapsack problems such as Generalized Quadratic Multiple Knapsack Problem.

GMKPS MKPS Introduction

The 0-1 Multiple-choice Knapsack Problem with Setup (MCKS) is described as a knapsack problem with additional setup variables discounted both in the objective function and the constraint. Practical applications of the MCKS may be seen in production scheduling problems involving setups and machine preferences. A case study of knapsack problem with setup (KPS) is provided in [START_REF] Della | An exact approach for the 0-1 knapsack problem with setups[END_REF]. To extend the KPS to MCKS, we consider that items from the same family (or class) could be processed in multiple periods.

The MCKS is NP-hard problem, since it is a generalization of the standard knapsack problem (KP) [START_REF] Martello | Knapsack problems: Algorithms and computer implementations[END_REF]. MCKS reduces to a KP when considering one class, and no setup variables. The KPS is a particular case of MCKS, when the number of period is equal to one (T=1) [START_REF] Almaliky | Sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights[END_REF][START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF][START_REF] Khemakhem | A tree search based combination heuristic for the knapsack problem with setup[END_REF], etc. To the best of our knowledge, Yang [START_REF] Yang | Knapsack problems with setup[END_REF] is the unique author who dealt with MCKS. He provided an exact method based on a branch and bound for the MCKS, but it has no availability of benchmark instances in the literature. To deal with the different variants of KP, exact techniques are introduced in the literature such as branch and bound algorithm [START_REF] Dudziński | Exact methods for the knapsack problem and its generalizations[END_REF][START_REF] Kolesar | A branch and bound algorithm for the knapsack problem[END_REF], lagrangian decomposition [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF], and dynamic programming [START_REF] Pferschy | Improved dynamic programming and approximation results for the knapsack problem with setups[END_REF]. Chebil and Khemakhem [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF] provided an improved dynamic programming algorithm for KPS. Akinc [START_REF] Akinc | Approximate and exact algorithms for the fixed-charge knapsack problem[END_REF] studied approximated and exact algorithms to solve fixed charge knapsack problem.

Michel et al. [START_REF] Michel | Knapsack problems with setups[END_REF] developed an exact method based on a branch and bound algorithm to solve KPS. Della et al. [START_REF] Della | An exact approach for the 0-1 knapsack problem with setups[END_REF] provided an exact approach for the 0-1 knapsack problem with setups.

Al-Maliky et al. [START_REF] Almaliky | Sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights[END_REF] studied a sensitivity analysis of the setup knapsack problem to perturbation of arbitrary profits or weights. Dudzinski and Walukiewicz [START_REF] Dudziński | Exact methods for the knapsack problem and its generalizations[END_REF] studied exact methods such as branch-and-bound and dynamic programming for KP and its generalizations.

Martello and Toth [START_REF] Martello | Solution of the zero-one multiple knapsack problem[END_REF] discussed an upper bound using Lagrangian relaxation for multiple knapsack problem (MKP). Pisinger [START_REF] Pisinger | An exact algorithm for large multiple knapsack problems[END_REF] presented an exact algorithm using a surrogate relaxation to get an upper bound, and dynamic programming to get the optimal solution.

Sinha and Zoltners [START_REF] Sinha | The multiple-choice knapsack problem[END_REF] used two dominance rules for the linear multiple-choice KP to provide an upper bound for the multiple-choice knapsack problem.

(Meta-)heuristics approaches have been also developed such as reactive local search techniques [START_REF] Hifi | A reactive local search-based algorithm for the multiple-choice multidimensional knapsack problem[END_REF], tabu search [START_REF] Hanafi | An efficient tabu search approach for the 0-1 multidimensional knapsack problem[END_REF], particle swarm optimization [START_REF] Bansal | A modified binary particle swarm optimization for knapsack problems[END_REF], genetic algorithm [START_REF] Chu | A Genetic Algorithm for the Multidimensional Knapsack Problem[END_REF], iterated local search [START_REF] Crowder | Solving large-scale zero-one linear programming problems[END_REF], etc. Khemakhem and Chebil [START_REF] Khemakhem | A tree search based combination heuristic for the knapsack problem with setup[END_REF] provided a tree search based combination heuristic for KPS. Freville and Plateau [START_REF] Freville | Heuristics and reduction methods for multiple constraints 0-l linear programming problems[END_REF] provided a greedy algorithm and reduction methods for multiple constraints 0-l linear programming problem. Tlili et al. [START_REF] Tlili | An iterated variable neighborhood descent hyperheuristic for the quadratic multiple knapsack problem[END_REF] proposed an iterated variable neighborhood descent hyper heuristic for the quadratic multiple knapsack problems.

The cooperation technique between exact and (meta-)heuristics approaches have been performed by many researchers during the last few decades. This technique provides interesting results as it takes advantages of both types of approaches [START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF]. A classifications of algorithms combining local search techniques and exact methods are provided in [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF][START_REF] Puchinger | Combining meta-heuristics and exact algorithms in combinatorial optimization[END_REF]. The focus in these chapter is particularly on the so called matheuristic approach combining local search techniques with integer programming (IP). Fernandes and Lourenco [START_REF] Fernandes | Hybrid combining local search heuristics with exact algorithms[END_REF] applied cooperative approach to solve different combinatorial optimization problems. Using CPLEX 12.7 to solve MCKS shows its limitation due to the complexity of the problems. We show later in the experimental results (Section II.4) that by using CPLEX, only 27 instances of MCKS among 120 are solved to the optimality in less than 1 h CPU time. For the rest, the computation terminates with an out of memory or is stopped at 1 h. Thus we decided to invest in the development of a cooperative approach can be seen as a matheuristic combining variable neighborhood search and integer programming (VNS&IP). We explain our new approach in the next section.

III.3 Matheuristic approach for MCKS

Local search techniques have proven their efficiency in several combinatorial problems and have been used within cooperative approaches for several problems [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF][START_REF] Dogan | Quadratic multiple knapsack problem with setups and a solution approach[END_REF].

Particularly, the Variable Neighborhood Search (VNS) is a method based on a systematic change of the neighborhood structures. It is introduced by Maldenovic and Hansen [START_REF] Mladenović | Variable neighborhood search[END_REF] and has proven its efficiency on different scheduling problems: location routing [START_REF] Jarboui | Variable neighborhood search for location routing[END_REF] car sequencing problem [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF], for the recent surveys on VNS see [START_REF] Hansen | Variable neighborhood search: methods and applications[END_REF][START_REF] Hansen | Variable neighborhood search: basics and variants[END_REF].

This chapter contains a new matheuristc approach combining VNS with IP. The main idea of our cooperative approach is to decompose the original problem in to two sub-problems (two levels). The first problem (first level) is to assign classes to the divisions of knapsack (determine the setup variables) using a VNS approach allowing the transformation of MCKS into classical KP. Two movements have been considered within the VNS approach:

local search procedure (LS) and a perturbation mechanism which represents the core idea of VNS, is applied to variables. The perturbation phase aims to change the neighborhoods structure,), when the algorithm is trapped at a local optimum. The second problem (second level) is to solve the classical KP by considering the IP that determines the values of with a very short computation time. For efficiency issue, we apply the IP only if the search space is identified to be promising by comparing its result to an upper bound that we provided later.

Note the found values of and yield a feasible solution to MCKS.

The approach starts with a construction heuristic called reduction-based heuristic

End while return S ;

In the sequel, we detail the construction heuristic RBH, the calculation of the upper bound for IP that condition the application of IP after each local search move.

III.3.1 Initial feasible solution

To generate the initial solution, we adapt and extend a construction heuristic is based on a reduction based heuristic (RBH) recently proposed in chapter II. For illustration, we considered the MCKS problem and explain below the three successive phases of our RBH:

-First phase: We reduced the MCKS so that every class contains a single object (* +). This object is characterized by a weight and a profit with In addition to RBH, we considered two other heuristics: Linear Programming based Heuristic (LPH) [START_REF] Haddar | A quantum particle swarm optimization for the 0-1 generalized knapsack sharing problem[END_REF][START_REF] Zhang | Solving the biobjective zero-one knapsack problem by an efficient LP-based heuristic[END_REF] and Greedy Heuristic (GH) [START_REF] Richard | New Greedy-like Heuristics for the Multidimensional 0-1 Knapsack Problem[END_REF][START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF]. In our problem the LPH heuristic is composed of two main phases: In the first phase, the relaxation of the MCKS (binary and continues variables) is solved to determine the variables . In the second phase, the reduced MCKS is solved by using CPLEX solver to determine the variables .

∑
The GH heuristic is to build iteratively a feasible solution. In our problem this heuristic is composed of two main phases. In the first phase, the variables are fixed randomly. In the second phase, the partial feasible solution obtained in the previous phase is completed by inserting the items one by one until saturation of the knapsack from the set of items that are listed in the decreasing order of their ratio = / .

III.3.2 Upper bound for IP

Dantzig [START_REF] Dantzig | Discrete variable extremum problems[END_REF] provided an upper bound for KP. We adapted this upper bound to our problem and provided a new upper bound for each division t of MCKS. This upper bound was used to decide whether to apply IP or not after the local search in order to explore only fruit full search spaces. We applied the following successive steps to obtain this upper bound:

-Step1: Let I denote the set of items of classes sorted in descending order of their efficiency ratio * + -Step2: Assign items from I one by one until saturation of the knapsack, i.e., Stop at item i'j' that cannot be inserted due to capacity saturation of , -.

-Step3: The upper bound of division t is

∑ ∑ where ∑ (∑ ∑) with I'
the set of assigned items, and (b -C) the residual capacity for division t .

III.3.3 Local search with IP

III.4 Computational results

For computation, our approach was implemented and run using C language and CPLEX 12.7 solver on a 2.4 GHZ intel B960 computer with 4 GB of memory. Due to the unavailability of benchmark instances in the literature, we tested our cooperative approach VNS&IP on a set of randomly generated instances of MCKS with a total number of periods T in * +, total number of classes N in { +, and total number of items for each class i in , -(Available at https://goo.gl/4fz6fg). We generated 120 instances in total: 10 instances for each combination (). We designed a random generation scheme, as presented in [START_REF] Chebil | A dynamic programming algorithm for the knapsack problem with setup[END_REF], where:

 is selected with a uniform distribution in , - , is selected with a uniform distribution in, -.

 ∑ ∑ .  ∑ .
 ∑ , is selected with a uniform distribution in, -

The report the standard deviation between IP and VNS&IP that is calculated as follows:

() . /.

III.4.1 Parameter setting

Generally, when using approximate algorithms to solve optimization problems, it is well known that different parameter settings for the approach lead to different quality results.

The parameters for VNS&IP are as follows:

, the maximal time measured in seconds and its fixed to T, where T is the number of periods (divisions). , the maximum number of consecutive failed iterations is fixed to N, where N is the number of classes. The perturbation length is fixed to T. that is constant value between 0 and 1 to relax the acceptance condition is fixed to 0.8. It is worth pointing out that a different adjustment of method's parameters would give important findings. But this better adjustment would sometimes lead to heavier execution time requirements. The set of values chosen in our experiment represents a satisfactory trade-off between quality solution and running time.

III.4.2 Computational results

Before the experimentation, the effect on performance of the main components of our algorithm is assessed, mainly the construction Heuristic RBH and the combination of the two local search techniques LS&IP and PERTURB&IP.

In order to evaluate the performance of RBH, we compared it to HG and LPH heuristics explained in section III.3.1. The RBH, HG and LPH heuristics are tested on all the instances of MCKS. Table III.1 shows the numerical results on average. The first column contains the name of the heuristic. The second column contains the average of computational time. We noted that LPH is stopped at a limit of computation time equal to 500 s. The third column contains the gap between the heuristic solution and the IP solution: () . / It is important to give information about the impact of the LS&IP and PERTURB&IP on the performance of VNS&IP. We consider the application of our cooperative approach with RBH, RBH+LS&IP and RBH+LS&IP+PERTURB&IP (VNS&IP). Table III.

III.5 Conclusion

In this chapter, we consider the multiple choice knapsack problem with setup (MCKS). This problem can be used to model a wide range of concrete industrial problems, including order acceptance and production scheduling. We proposed a new cooperative approach that combines VNS and IP for the MCKS. Our matheuristic approach denoted VNS&IP is tested on a wide set of instances that are generated for MCKS. The results showed that CPLEX was able to optimally solve only 22.5% of these problems; the rest had unknown optimal values.

The experimental results showed that VNS &IP produced good quality (optimal and nearoptimal solutions) solutions in a short amount of time and allowed for the enhancement of the Several variants of KP have been tackled in the literature [START_REF] Pisinger | The quadratic knapsack problem-a survey[END_REF]. Visée et al. [START_REF] Visee | Two-phases Method and Branch and Bound Procedures to Solve the Biobjective Knapsack Problem[END_REF] proposed a two-phased approach and branch and bound procedure to solve the bi-objective KP. Dudzinski and Walukiewicz [START_REF] Dudziński | Exact methods for the knapsack problem and its generalizations[END_REF] studied exact methods such as branch-and-bound and dynamic programming for several variants of KP. Johnson et al. [START_REF] Johnson | Min-cut clustering[END_REF] studied the graph version of the QKP and solved the linearized model with a branch-and-cut technique.

Chaillou et al. [START_REF] Chaillou | Best network ow bounds for the quadratic knapsack problem[END_REF] provided a branch and bound algorithm to solve the QKP. Billionet and Soutif [START_REF] Billionnet | An exact method based on Lagrangian decomposition for the 0-1 quadratic knapsack problem[END_REF] proposed a combination of a linear reformulation of the problem and a standard mixed integer programming tool to solve the QKP. Martello and Toth [START_REF] Martello | Solution of the zero-one multiple knapsack problem[END_REF] discussed an upper bound using Lagrangian relaxation for multiple knapsack problem (MKP). Hiley and Julstrom [START_REF] Hiley | The quadratic multiple knapsack problem and three heuristic approaches to it[END_REF] provided a greedy heuristic, a stochastic hill-climbing and a genetic algorithm to solve the QMKP. For the same problem, Sundar and Singh [START_REF] Sundar | A swarm intelligence approach to the quadratic multiple knapsack problem[END_REF] developed an artificial bee colony algorithm, Garcia-Martinez et al. [START_REF] Garcia-Martinez | Tabu-enhanced iterated greedy algorithm: A case study in the quadratic multiple knapsack problem[END_REF] provided an iterated greedy heuristic algorithm and Peng et al. [START_REF] Peng | An Ejection Chain Approach for the Quadratic Multiple Knapsack Problem[END_REF] proposed an ejection chain method with an adaptive perturbation mechanism.

The GQMKP is a generalization of the QMKP when considering three additional constraints: setup constraint, assignment conditions and knapsack preferences of the items. It has been presented by Sarac and Sipahioglu [START_REF] Sara | Generalized quadratic multiple knapsack problem and two solution approaches[END_REF] who proposed a mathematical model, a genetic algorithm and a hybrid algorithm that combines genetic algorithm with a feasible value based modified sub gradient algorithm to solve the GQMKP. To solve the same problem, Chen and

Hao [START_REF] Chen | Memetic search for the generalized quadratic multiple knapsack problem[END_REF] provided a memetic algorithm, where a backbone based crossover operator is integrated with a simulated annealing, and recently, Avci and Topaloglu [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] provided a multistart iterated local search (MS-ILS) and made experiments on wide set of instances.

The hybridization technique between exact and metaheuristics approaches have been performed by many researchers during the last few decades. It provides interesting results as it takes advantages of both types of approaches [START_REF] Jourdan | Hybridizing exact methods and metaheuristics[END_REF]. A classification of algorithms combining local search techniques and exact methods is provided in [START_REF] Dumitrescu | Combinations of local search and exact algorithms[END_REF]. The focus here is on the so called cooperative approaches using exact methods to strengthen local search techniques, and particularly on the matheuristics that combine metaheuristics and mathematical programming [START_REF] Hana | New hybrid matheuristics for solving the multidimensional knapsack problem[END_REF][START_REF] Maniezzo | Matheuristics: Hybridizing Metaheuristics and Mathematical Programming[END_REF]. Fernandes and Lourenco [START_REF] Fernandes | Hybrid combining local search heuristics with exact algorithms[END_REF] applied a hybrid approach to solve different combinatorial optimization problems. Burke et al. [START_REF] Burke | A hybrid model of integer programming and variable neighborhood search for highly-constrained nurse rostering problems[END_REF] and Prandtstetter and Raidl [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF] provided a combination of Integer Programming (IP) with Variable Neighborhood Search (VNS) for Highly-Constrained Nurse Roistering Problem, and car sequencing problem, respectively. Lamghari et al. [START_REF] Lamghari | A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines[END_REF] proposed a combination of linear programming with variable neighborhood descent for scheduling production in open-pit mines. Vasquez and Hao [START_REF] Vasquez | A hybrid approach for the 0-1 multidimensional knapsack problem[END_REF] proposed a combination of linear programming with tabu search to solve the MKP problem. In this study, we combine IP with VNS to deal with GQMKP problem and make experimentation on the benchmark of Avci and Topaloglu [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] and Chen at al. [START_REF] Chen | Memetic search for the generalized quadratic multiple knapsack problem[END_REF].

The purpose of this work is to provide a solving approach for the GQMKP. We use a linearization technique of the existing mathematical model that, due to the complexity of the

LGQMKP, cannot solve large test instances (see section IV.4). In fact, it is usually difficult to assign items to the whole sets of knapsacks. The GQMKP is a generalization of the knapsack problems when considering three additional constraints: setup constraint, assignment conditions and knapsack preferences of the items. In addition, the consideration of the knapsack-dependent cost related to each class of products and the knapsack-dependent profit associated to each item increases the complexity of the problem. Therefore, the design of a new approach providing high quality solutions in a reasonable computing time is quite challenging. This paper contains a matheuristic called matheuristic variable neighborhood search (MVNS) combining a VNS with an exact solving technique: local search techniques with an adaptive perturbation mechanism to include classes to knapsacks and integer programming (IP) to include items in each knapsack. Experimental results show the efficiency and the performance of the proposed matheuristic on a wide set of benchmark instances.

Experimental results clearly show the competitiveness of the proposed approach compared to the best state-of-the-art solving techniques

The remainder of this paper is organized as following: Section IV.2 contains the mathematical formulation of the GQMKP. Section IV.3 contains our matheuristic approach combining VNS with IP. The experimental results and their interpretations are reported in Section IV.4 and, finally, the conclusions are outlined in Section IV.5.

IV.2 Mathematical model

We consider a set of knapsacks each knapsack with a capacity , * + and a set of J items * + which are classified into a set of classes, * +. The main assumptions of the GQMKP are as follows:

-An item cannot be allocated to more than one knapsack.

-Items from the same class can be allocated to different knapsacks.

-For each class, the set of related items are allowed to be allocated to only predefined set of knapsacks.

-An item can be allocated to a knapsack only if its corresponding class is activated.

-A profit is considered while allocating item i to knapsack k -A profit is considered if items i and j are allocated to the same knapsack.

-The activation of a class incurs a knapsack-independent setup time -If items belonging to the same class are allocated to the same knapsack, only one setup is needed for all.

The GQMKP problem consists of activating a set of classes in each knapsack, and determining the subset of items to be allocated from each class to each knapsack while maximizing the objective function without exceeding the capacity of each knapsack. Saraç and Sipahioglu [START_REF] Sara | Generalized quadratic multiple knapsack problem and two solution approaches[END_REF] provided the following model for the GQMKP:

Sets:

: set of classes that can be activated in knapsack k : set of items that can be allocated to knapsack k : set of knapsacks in which class r can be activated.

: set of knapsacks to which item can be allocated

Parameters:

: Profit obtained if item j is selected for knapsack k : Profit obtained if items i and j are selected for the same knapsack

* + ()

The linear expression 7 replaces the objective function 1. In addition to constraints 2-6, we provide the constraints 8-11 about the dummy binary variables .

Using IP formulation (CPLEX 12.7) shows its limitation to solve LGQMKP due to the complexity of the problem. In fact, we show later in the experimental results (Section IV.4)

that by using CPLEX 12.7, only 47 instances among 96 benchmark instances [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] are solved to optimality in less than 1 hour CPU time. For the rest of instances, the computation terminates with an out of memory or is stopped in 1 hour. Thus, we decided to invest in the development of a new cooperative approach can be seen as a matheuristic VNS combining VNS and IP.

The keys of better performance for our approach instead aims to exploit the structure of

LGQMKP, where the set of variables is partitioned into two levels, variables (first level variables) and variables (second level variables). Thus, we decided to invest in the development of a matheuristic VNS combining VNS and IP. The practical hardness of the problem comes from these two sets of variables that must be properly combined to reach an optimal solution. At the same time, once the classes are chosen, LGQMKP boils down to a several classical KP. Even if KP is known to be weakly NP-Hard, in practice it is well handled by nowadays ILP solvers [START_REF] Michel | Knapsack problems with setups[END_REF]. We explain our new approach in the next section.

IV.3 Matheuristic VNS for GQMKP

From the VNS scheme, several other VNS approaches have been derived in [START_REF] Hansen | Variable neighborhood search: basics and variants[END_REF]. In this paper we propose a new method combining VNS with integer programming for solving GQMKP. Within the approach, different mathematical programming formulations of sub problems are proposed and solved with exact solver. According to Hansen et al. [START_REF] Hansen | Variable neighborhood search: basics and variants[END_REF] we call our variant of VNS as Matheuristic variable neighborhood search (MVNS). The main idea here is to partition the problem variables set into two levels: variables to be approximately defined using VNS and variables to be optimally defined using an ILP solved with CPLEX 12.7. In fact, once all variables are defined using VNS, the could be seen as independent into K dependent knapsack problems , -.

At a given knapsack k, ,is a KP with a capacity , where represents the

∑ ∑ ()

-Second phase: we use the linear programming based heuristic provided in [START_REF] Soyster | Zero-one programming with many variables and few constraints[END_REF] -Third phase : the first feasible solution of GQMKP is = +

∑ ∑ ∑ ()
.

An illustration of the construction heuristic is provided by Algorithm IV.2.

Algorithm IV.2: Construction heuristic

IV.3.2 SWAP&IP

A Swap-based local search requires the definition of a neighborhood structure using simple moves so as to produce a set of neighbor solutions which permits to explore more search spaces and thus provides high quality solutions. The considered swap process consists of:

- -Phase 1. Let N the number of activated classes leading to an optimal solution of LGQMKP (or GQMKP). N is bounded straight forwardly by solving two linear continuous problems: minimize and maximize ∑ ∑ subject to constraints (2-5) , [START_REF] Augerat | Separating capacity constraints in the CVRP using tabu search[END_REF][START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF][START_REF] Balas | Weighted and unweighted maximum clique algorithms with upper bounds from fractional coloring[END_REF][START_REF] Bansal | A modified binary particle swarm optimization for knapsack problems[END_REF] and to an additional constraint ensuring that the total profit must be strictly greater than the best solution value LB [START_REF] Chaillou | Best network ow bounds for the quadratic knapsack problem[END_REF] and the non-integrality of variables and (20):

∑ ∑ ∑ ∑ ∑ () () (20)
By solving the corresponding ILP formulations, denoted and , we obtain the minimum and maximum numbers of classes and . The first step is to randomly select N classes N , and randomly assign activate the selected N classes in different knapsacks i.e. randomly fixing variables.

-Phase 2. The second phase consists of optimally solve the ,using i.e. fixing variables. The resulting solution S is accepted if (f(S) > f(LB)), where that is a constant value between 0 and 1. PERTURB&IP terminates when the total number of applied moves (perturbations) reaches .

-

IV.4 Computational results

For computation, our approach is implemented and run using C language and CPLEX 12.7 solver on a personal computer with 2.4 GHZ intel core 2 duo B960 processor and 4 GB of memory. In order to test the performance of the MVNS for the GQMKP, two sets of benchmark instances [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF][START_REF] Chen | Memetic search for the generalized quadratic multiple knapsack problem[END_REF] are considered:

-First Set: This set is composed of 48 small-sized instances which are characterized by their number of items J =30, number of knapsacks k {1, 3}, number of classes r {3, 15}, density (the percentage of those values for the and profit parameters different from zero) d {0.25, 1.00}.

-Second Set: Includes 48 large-sized instances with the number of items J = 300, number of knapsacks k {10, 30}, number of classes r {30, 150}, density d {0.

All data sets are available at https://goo.gl/dv3tfA. Based on these data sets, we made a comparison between our LGQMKP model (solved with CPLEX 12.7), our MVNS, the MA [START_REF] Chen | Memetic search for the generalized quadratic multiple knapsack problem[END_REF] and the MS-ILS [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] that are, to the best of our knowledge, the best algorithms provided in literature to deal with GQMKP. We note that tests in [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF] were carried on an Intel core 2 duo T7500 CPU @ 2.2 GHZ, and tests in [START_REF] Chen | Memetic search for the generalized quadratic multiple knapsack problem[END_REF] were carried on an AMD Opteron 4184 processor 2.8GHz and 2GB RAM.

The parameters of our approach MVNS are set so as to get a satisfactory trade-off between quality solution and running time: the maximum number of consecutive failed iterations is fixed to R. The perturbation length is fixed to K. The parameter is fixed to 0.8 to relax the acceptance condition.

Before the experimentation (Section IV.4.2), we provide a performance analysis of the MVNS components (Section IV.4.1).

IV.4.1 Performance analysis of the MVNS components

We study here the performance of the main components of our matheuristics, mainly However, by adding Insert&IP, we observe a slight advantage. The perturbation mechanism Perturb &IP enables MVNS to produce better solutions. More precisely, for the five large instances (300 items), the gap on average is 4,22% when applying only the SWAP&IP, 2.63% when applying SWAP&IP and INSERT&IP and -0.3% by adding the perturbation mechanism PERTURB&IP.

IV.4.2 Experimentation

Tables IV.1 and IV.2 summarize the results of the LGQMKP model (solved with CPLEX 12.7), MA, MS-ILS and MVNS on GQMKP instances. In each of these tables, the first two columns present the number of knapsacks K and the number of classes R. We note that the column reports the best value reported by any of the compared Table IV.2 shows that when dealing with the instances from the second set, using CPLEX for LGQMKP terminates with an out of memory or exceeds the time limit of 1 hour for all instances. The results show that our MVNS outperforms MS-ILS. In fact, MVNS finds the best solutions for all instances (48 instances) while MS-ILS finds the best solutions for 29 instances and MA finds the best solutions for 8 instances. More precisely, MVNS, MS-ILS and MA produce solutions with average dev of 0.001%, 0.1% and 0.51% respectively. In addition, for the instances where the average and the best results are not the same, the gaps between the best and the average results are 0.03% for MVNS, 1.36% for MS-ILS and 0.32% for MA, which proves the robustness of the MVNS. The proposed MVNS is more effective for large instances. The key of performance of MVNS is the iteratively decomposition of the LGQMKP into a series of less complex sub problems that may be solved in a reasonable time. This shows that combining mathematical models with metaheuristics is definitely a good option.

To better analyze the performance of the MVNS in comparison to MA and MS-ILS, we conduct an additional experiment and present the results of the paired-t test for the first and second set instances. Table IV. [START_REF] Adouani | A efficient matheuristic for the Generalized Multiple Knapsack Problem with setup[END_REF] shows that there is no statistically significant difference between MVNS and MA and MS-ILS on quality solution for the first set of instances.

Conclusions

In this conclusion, we present a brief summary and outline only the principle contributions of this work, since the detailed discussion of each contribution is presented as a final section of the corresponding chapter. In addition, we draw some perspectives on future work.

At first, in order to draw some conclusions from the work presented in this thesis, it is necessary to draw attention to the primary goal that was considered when this research started.

The primary goal was to develop cooperative approaches based upon the cooperation between neighborhood search techniques and integer programming tailored for optimizing large size instances of hard optimization problems belonging to knapsack family: linear generalized multiple knapsack problem with setup (GMKPS) and its variants such as linear MKPS, linear MCKS and quadratic variant GQMKP. In order to solve such a problem, we found two main categories:

(1) Exact methods, which try to find the best solution and prove its optimality. Indeed, due to the complexity of the considered problem, proving optimality requires a huge computational resource.

(2) (Meta-)heuristic approaches, which generate high quality solutions in a reasonable time but there is no guarantee of finding an optimal solution.

Cooperative framework, combination of exact and or (meta)heuristic methods, have emerged to solve hard optimization problems. These hybrid approaches generally provide good results since they are able to exploit simultaneously the advantages and alleviating the weaknesses of both types of methods. Thus, cooperation lead to even more powerful search models for difficult combinatorial optimization problems. In this thesis, we focused on cooperation between variable neighborhood techniques with integer programming for solving GMKPS and its variants. Within the cooperative approaches, different mathematical programming formulations of sub problems are proposed and solved with exact solver. We have proposed three cooperative approaches can be seen as a matheuristics to tackle (G)MKPS, MCKS and GQMKP. The keys of better performance for our cooperative approaches instead aims to exploit the structure of the GMKPS and its variants, where the set of variables is partitioned into two levels, variables (classes) and variables (items). Further, the generalized multiple knapsack problems with setup and its variants considered in this thesis might be too simplistic compared to the real world problems that have supplementary complicated constraints or objective functions such as multi-objective scheduling problems. It is extremely expected to adapt these cooperative approaches to tackle these kinds of problems. We think that the ideas illustrated in this thesis, at least a few of them, will be useful for later research.

Through this thesis, we attempted to answer the primary research question: " matheuristic: exact or approximate method?". Evidently, this thesis represents a step in this research avenue and works on the subject can be pursued by considering more KP variants. In

Figure II. 1 . 1 -

 11 Figure II.1. Effect of VND components

 uniformly generated in [0,10] and the other parameters are uncorrelated.To analyze the impact of these different correlation types, we consider two basic instances with no correlations (1): a small instance with 10 knapsacks and a large instance with 20 knapsacks. Then, we change each instance by including one correlation type at each time and thus generate four additional instances from each basic instance. TablesII.2 reports the numerical results. The first column reports the instance size. The correlation type (from (1) to (

Figure II. 3 .Figure II. 4 .

 34 Figure II.3. Solution time of VND&IP approach compared to IP for MKPS

 2 shows a comparison between these three combinations in terms of average Gap (%) with the IP for the four set instances regarding the number of periods (divisions). Each line presents the average of 10 instances. The first two columns present the number of divisions (or periods) and the number of . The next three columns show the corresponding average gap between RBH and IP, the average gap between RBH+LS&IP and IP, and the average gap between RBH+LS&IP+PERTURB&IP (VNS&IP) and IP.

:

 Working time capacity related to knapsack k, : Weight of item j (or processing time) : Setup time of the items that belong to class r : The maximum number of knapsacks to which the items in class can be assigned : A positive large number Decision variables: ;

 to solve the linear relaxation of GMKP, denoted , by relaxing the integrality constraints on variables (only the variables are binary). The fractional solution includes integer values and fractional and integer values . The reduced GMKP related to the fractional solution is referred to [] that consists of fixing to 0 or 1 the fractional variables . The exact solution of the reduced problem [] is a feasible solution and denoted = (, -) We limit CPLEX computation time to 10 seconds to obtain an initial solution .

 the construction heuristic and the combination of the two local search techniques SWAP&IP, INSERT&IP and the perturbation mechanism PERTURB&IP. The results graphically displayed in figure IV.1 illustrate a comparison in terms of quality solution, where the vertical axis shows the gap between the MVNS component solution and the MS-ILS solution:: () . / We consider fir this study, five large instances denoted Ins 1-1, Ins 2-2, Ins 11-3, Ins 12-2 and Ins 19-3 (a selection of instances from experimentation table IV.2).

Figure IV. 1 :

 1 Figure IV.1: Effect of MVNS components Figure IV.1 shows that the constructive heuristic plays an important role in the overall performance of the provided MVNS approach: The initial solutions are close to the solutions provided by MS-ILS with an average gap lower than 12%. We consider the application of our matheuristic with one local search technique (SWAP&IP), two local search techniques (SWAP&IP and INSERT&IP), and three local search techniques (SWAP&IP, INSERT&IP and PERTURB&IP).Figure IV.1 shows a comparison between these three combinations in terms

 Figure IV.1 shows a comparison between these three combinations in terms of average Gap (%) with the MS-ILS. By adding SWAP&IP, we observe a higher improvement, for all the five large instances, compared to using only Construction heuristic.

 , MS-ILS, MVNS

Figure IV. 3 .

 3 Figure IV.3. CPU time of MVNS vs MA and MS-ILS on second set of instance

 Thus, we decided to invest in the development of a matheuristic combining variable neighborhood techniques (VND or VNS or matheuristic VNS) and IP. The practical hardness of the problem comes from these two sets of variables that must be properly combined to reach an optimal solution. The matheuristic considers a local search technique with an adaptive perturbation mechanism to assign the classes to different knapsacks (At the same time, once the classes are chosen, the hard original problem boils down to a several classical KP) and then once the assignment is identified, applies the IP to select the items to allocate to each knapsack. Experimental results obtained on a wide set of benchmark instances clearly show the competitiveness of the proposed approach compared to CPLEX solvers and the best state-of-the-art solving techniques. This thesis opens up several avenues for future research. They can be summarized as follows. First, it would be interesting to test the other variants of knapsack family, such as Generalized Knapsack Sharing Problem (GKSP), and also to adapt the other solution-based cooperative approaches such as cooperation between genetic algorithm (or tabu serach) and integer programming. A second perspective is to test the proposed algorithms using the different encoding schema of a program.

 Maximization problems can be transformed into minimization problems by simply changing the sign of c. In such cases, the linear program is called an integer linear program. Further, if the variables can only take the values 0 or 1, then the corresponding integer linear program is called a binary linear program. Large instances of such LPs can be efficiently solved using simplex-based

To process a linear program in continuous variables, the most popular method is the simplex algorithm, which was proposed by Dantzig in 1947, MIP-solvers such as CPLEX

[START_REF] Fischetti | Local Branching[END_REF]

, etc. One of the most important concepts in integer programming are relaxations, where some or all constraints of a problem are loosened or omitted. Relaxations are mostly used to obtain related, simpler problems that can be solved efficiently yielding bounds and approximate (not necessarily feasible) solutions for the original problem. Embedded within a B&B framework, these techniques may lead to effective exact solution techniques.

* +

At last, it is said to be a mixed integer program (MIP) if only some variables are restricted to be integer. A mixed integer program (MIP) would involve a combination of integer and real-valued variables and can be written similarly as: * +.

 Algorithm II.1 shows the whole framework of our matheuristic.

	Algorithm II.1: VND&IP
	: Instance data.
	: A feasible solution.
	Apply the RBH heuristic to get the initial solution	;
	set	
	Do	
		();
	If (() > f ())
	Else	
	EndIf	
	While ()

This chapter contains a new matheuristic combining VND with IP. The main idea of our matheuristic is to decompose the original problem into two problems. The first problem assigns classes to knapsacks (determine the setup variables) using a VND that transforms GMKPS (or MKPS) into several independent KPs. Three types of moves have been considered within the VND: SWAP, INSERT and DROP/ADD. The second problem solves each KP using IP (use CPLEX 12.7) that determines the values of within a very short computation time. For efficiency issue, we apply the IP only if the search space is promising by comparing its result to an upper bound that we provided later. The found values of and yield a feasible solution to GMKPS. The approach starts with a construction heuristic called reduction-based heuristic (RBH) that provides a good initial solution. Then, three local search procedures (k * }) are considered within a loop until no further improvement is registered. These local search procedures are obtained by combining each of the movements SWAP, INSERT and DROP/ADD with IP, respectively i.e. : SWAP&IP, : INSERT&IP and DROP/ADD&IP. In the sequel, we detail the construction heuristic RBH, the calculation of the upper bound for ,that conditions the application of IP after each local search, and the local search techniques SWAP&IP, INSERT&IP, and DROP/ADD&IP.

.5 DROP/ADD&IP local search

 provided an upper bound for KP. We adapt this upper bound to our The Drop/Add -based local search is composed of two phases that are applied

	-Step1: Let I denote the set of items of classes (); // Number of classes in knapsack k. sorted in descending order of // Insert i in k and delete it from t in knapsack ;
	their efficiency ratio For If (to m do //Swap class i by classes j. *) then If () then -Step2: Assign items from I one by one until saturation of the knapsack t, i.e., Stop + () () ; //apply IP to solve knapsacks t and k EndIf at the first item i'j' that cannot be inserted due to capacity saturation of , -; () then () (); (); // apply IP to solve knapsacks t and k If (If () then) then S ; Store the best // Best solution found
	, -(or -Step3: The upper bound of , -). ∑ set of assigned items and the constants: , -(or where () then ; EndIf EndIf // New starting solution EndWhile EndFor EndFor EndFor EndIf End if EndIf End if EndFor End for // New starting solution EndFor S // New starting solution	∑	, -) is	∑	where I' is the ∑ .
	EndFor			
	knapsacks profit of the two knapsacks before Swap move (, -and , -(IP to optimally solve the new classical knapsacks EndFor EndWhile II.4.4 INSERT&IP local search II.4Algorithm II.4: ()	=) and compare it with the total). In case > , we apply , -and , -respectively,
	S'S;				
	Algorithm II.3: While (()	do		
	problems and provide a new upper bound for the one dimensional knapsack problems , -and , -. This upper bound is used to decide whether to apply IP or not after the local search in order to explore only fruitful search spaces. It is the same for , -and , -. We apply the following successive steps to obtain this upper bound: Algorithm II.2: () ; ; For S'S; While () // Number of classes in knapsack t do For S'S; While do ; For t to do (); // Number of classes in knapsack t. For to n do , -; For to do For , -; to do *  ⋂ +; // T+1 : Fictitious knapsack that contains the non-selected classes (); // Number of knapsacks that contain class i For () // Number of classes in the Fictitious knapsack T+1 to do For do // Swap class i by free classes j , -For , -; to do If () then in knapsack ;

II.4.3 SWAP&IP local search

A Swap-based local search requires the definition of a neighborhood structure using simple moves. The considered swap permutes two variables and (

* + * + * +.

We change the value of fours setup variables from 1 to 0 and vice versa. A new ,is obtained. In order to save computational effort, before applying IP, we calculate the sum of upper bounds of the new classical and the best solution is taken as a new initial solution for a next swap process. In case , the search space is not promising as no better solution can be obtained, thus IP is not applied and we proceed to the next step. The procedure is terminated once no improvement is obtained. Algorithm II.2 details the SWAP&IP procedure. The Insert-based local search is based on a neighborhood search which generates a new solution by removing the class from knapsack t (change the value of the setup variable from 1 to 0) and then inserting it into another knapsack k (change the value of the setup variable from 0 to 1). We apply IP if (>) by the same way as in the SWAP&IP procedure. The best solution is taken as a new initial solution for the next insert-based local search. The procedure is terminated once no improvement is obtained. Algorithm II.3 details the INSERT&IP procedure. iteratively: First, Drop and Add moves between setup variables ⋃ and ⋂ are applied. We consider a fictitious knapsack T+1 that contains the non-selected classes. It consists in commuting the value of one variable from 1 to 0 (Drop move) then trying to improve the solution using a repair operator (Add move) to change the value of one variable from 0 to 1. Second, the IP is applied if (>) to solve the classical knapsacks , -. The procedure is terminated once no improvement is obtained.

Algorithm II.4 contains the DROP/ADD&IP procedure.

Table II . 1 .

 II1 Comparison between RBH, GH and LPH: Average of GMKPS instances.

	Table II.1 shows that RBH outperforms the other construction heuristics in terms of
	computation time and solution quality.
	We consider the application of our matheuristic with one local search technique (SWAP&IP),
	two local search techniques (SWAP&IP and INSERT&IP), and three local search techniques

(SWAP&IP, INSERT&IP and DROP/ADD&IP). Figure II.1 shows a comparison between these three combinations in terms of average Gap (%) with the IP for the fours instances sets regarding the number of knapsacks. By adding INSERT&IP, we observe a slight advantage,

Table II . 3 .

 II3 Comparison between IP and VND&IP on three instances with different knapsack tightness Best solution in bold, * for optimal solution, and -when IP exceeds the capacity of RAM memory or exceeds the CPU time limit TableII.3 shows that IP cannot solve to optimality the instance with small knapsacks.In addition, VND&IP outperforms IP i.e. the gap is negative for the small instance. IP solves to optimality the instances with higher sizes (medium and large knapsacks). From the IP computation time, we can conclude that by decreasing the knapsacks capacities, we increase the GMKPS complexity. From the VND&IP computation time, we can remark that matheuristic is stable with a computation time that does not variate regarding the knapsacks sizes (128 sec on average).TableII.4 summarizes the results obtained by VND&IP and IP when solving the GMKPS. Each line presents the average of 10 instances. The first three columns present the results provided by the IP, the average of results provided by the matheuristic approach VND&IP and the average of the best upper bounds, of all the remaining open nodes in the branch-and-cut tree, provided by CPLEX 12.7 (). The notations and report the solution found and the computational time, respectively. We note that IP is stopped at a limit of computation time equal to one hour. Finally, the columns and report the gap between IP and VND&IP, calculated as follows:

	II.5.3 Experimentation [90,110] 3127235	3168	3131084		-0.123		11	0.015
			[40,60]	1877750	3600	1878104		-0.02		6	0.033
		30	[60,90]	2284554	3600	2286305		-0.078		8	0.026
			[90,110] 3390820	3600	3394182		-0.101		10	0.016
	number	[40,60]	of 2022211	3600	knapsacks , 2038186	-0.787		44	the	number 0.029
	of	10	[60,90]	3198410	3600	3232685		. The next three columns show the -1.087 43 0.020
	15 corresponding average of () [90,110] 4307956 3600 4356089 -1.129 65 0.010 20 [40,60] 2281419 3600 2287007 -0.259 26 0.025 [60,90] 3659753 3600 3673529 -0.375 23 0.016 [90,110] 4762369 3527 4778300 -0.347 23 0.011 [40,60] 2799889 3600 2801237 -0.048 22 0.024 30 [60,90] 3410638 3600 3419811 -0.283 27 0.015
			[90,110] 5080972	3600	5089502		-0.174		18	0.010
	.		[40,60]	/, and the gap between 2233779 3600 2257611		-1.068	and VND&IP, calculated as 19 0.027
	follows: 10	knapsack tightness () [60,90] 3399647 Small knapsacks 3315613-3600 IP CPU . 3600 3424060 [90,110] 4495295 3600 4538968	VND&IP -0.723 28 /, respectively. CPU 3315697 147 -0.973 22	Gap (%) -0,002	0.018 0.012
	220	20	Medium knapsacks [40,60] 2977524 [60,90] 4752263	9437042* 896 3600 3003851 3600 4794759	9436927 -0.906 -0.897		106 47 45	0,001	0.019 0.010
			Large knapsacks 9437176* 84 () [90,110] 6264952 3600 6331424	9437051 -1.063 ()	123 43	()	0,001	0.008	()
			[40,60]	759992	3342	759994		0.000		5	760026	0.004
		10 30	[40,60] [60,90] [60,90]	3661944 1166555 4463184	3600 3600 3491	3678277 1166558 4502886		-0.437 0.000 -0.903		16 6 41	0.014 1166572 0.001 0.011
			[90,110] 1624997	3600	1625002		0.000		3	1625014 0.001
			[90,110] 6679246	3601	6726455		-0.717		36	0.009
			[40,60]	790962	3600	790961		0.000		4	790998	0.005
	5	20	[60,90]	1228017	3259	1228019		0.000		4	1228039 0.002
		[90,110] 1616006 Table II.4 shows that VND&IP outperforms IP with a gap on average equal to -3390 1616013 -0.001 5 1616025 0.001
			[40,60] . In detail, the gap on average is -913951 3244 913951		0.000 for		3 , -	913985 for	0.004	, -
		30	[60,90] for	114477 , and -	2942 for	1144937 . The CPU on average for VND&IP is about -0.013 3 1144958 0.002
	[90,110] 1703770 s, which is very low in comparison to the average of CPU for IP that is equal to 3242 1703833 -0.004 4 1703845 0.001 s. For
	The details of instances used for the sensitivity analysis are available in the following link: https://goo.gl/zK6yZn [40,60] 1445360 3600 1447096 -0.114 23 1447485 0.027 more detailed results, we note that VND&IP provides a solution equal to the one provided by 10 [60,90] 2364297 3600 2367911 -0.163 15 2368433 0.022 the IP for instances (7 optimal and 25 non-optimal) and provides better solutions than IP
	10		[90,110] 3083584	3600	3089097		-0.182		17	3089678 0.019
	1591134 for 319 instances (see Appendix A). Table II.4 shows that the gap between VND&IP and 3600 1591549 -0.029 10 1592221 0.042 20 [40,60] [60,90] 2467619 3600 2472900 -0.224 9 2473423 0.021 is 0.015% on average (0.002%, 0.025%, 0.018% and 0.014% for instances with 5,
	10, 15 and 20 knapsacks, respectively).				

Table II.4. Numerical results for GMKPS instances Figure II.2. Computation time of VND&IP approach compared to IP for GMKPS Among the 360 instances of GMKPS, IP finds the optimal solutions for 7 instances, slightly outperforms the VND&IP for 9 instances, and for the remaining it terminates with error: exceeds the capacity of RAM memory or exceeds the CPU time limit. Figure II.2 shows the 7 instances solved at optimality are all with . Table II.5 summarizes the results obtained by VND&IP in comparison to those obtained by IP when solving MKPS. Table II.5. Numerical results for MKPS instances

Table II .

 II [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF] shows that VND&IP outperforms IP with a gap on average equal towhich is very low in comparison to the average of CPU for IP that is equal to 2965 s. For more detailed results, we note that VND&IP provides a solution equal to the one provided by IP for 76 instances (38 optimal and 38 non optimal) and provides better solutions than IP for 279 instances (see Appendix A). TableII.5 shows that the gap between VND&IP and

			[40,60] 457898 is 0.010% on average. The gap increases when the number of knapsacks increases 2902 457903 -0.001 5 0.008
	[40,60] 337066 [60,90] 766837 [90,11 0] 550192 [40,60] 258448 [60,90] 871105 [90,11 0] 493255 [40,60] 421243 [60,90] 808314 [90,11 559080 . In detail, the gap on average is about 2253 337066 2310 766842 2479 550190 2965 258448 2051 871105 3241 493256 1731 421243 2104 808315 2746 559081 for , and -for . The CPU on average for VND&IP is about 0.000 1 337086 0.006 -0.001 3 766872 0.004 0.000 6 550203 0.002 0.000 2 258469 0.008 0.000 4 871121 0.002 0.000 6 493267 0.002 0.000 2 421270 0.006 0.000 17 808331 0.002 0.000 17 559091 0.002 for , -for , -[60,90] 1713710 3170 1713720 -0.001 12 0.002 0] [40,60] 715887 3600 715893 -0.001 3 0.006 [60,90] 1551262 3471 1551706 -0.025 12 0.002 [90,11 0] 1086450 3510 1086842 -0.040 21 0.024 [40,60] 691178 2967 691189 -0.001 5 0.009 [60,90] 1818377 1971 1818396 -0.001 12 0.002 [90,11 0] 1 370342 3083 1370359 -0.001 16 0.021 [40,60] 658534 3210 658548 -0.002 7 0.010 [60,90] 2455626 3373 2456683 -0.044 12 0.016 [90,11 0] 1250502 3303 1251095 -0.042 16 0.025 [40,60] 1046226 3600 1047317 -0.107 8 0.006 [60,90] 2301745 3603 2302191 -0.019 20 0.023 [90,11 0] 1609 642 3444 1613672 -0.199 18 0.016 [40,60] 812934 2991 812955 -0.003 5 0.007 [60,90] 1945837 2465 1945857 -0.001 8 0.025 [90,11 0] 1616332 2820 1616357 -0.002 15 0.018 [40,60] 774016 2380 774284 -0.034 6 0.008 [60,90] 3051810 3442 3055666 -0.142 23 0.012 [90,11 0] 1681049 3339 1686948 -0.368 19 0.022 [40,60] 1 358070 3487 1359224 -0.084 7 0.004 [60,90] 2918388 3575 2922240 -0. 133 22 0.018 [90,11 0] 2138531 3602 2146704 -0.353 30 0.014 (0.004%, 0.007%, 0.015% and 0.015% for instances with 5, 10, 15 and 20 knapsacks, 20 30 30 15 10 20 30 220 10 20 30 11 s, 20 [90,11 938588 2941 938596 -0.001 7 0.002 respectively).
			0] [40,60] 562993	3204	563000	-0.001	3	563036	0.006
	10	10	[60,90] 1480338	2497	1480398	-0.004	15	1480439 0.003
			[90,11	1029024	3114	1029034	-0.001	5	1029052 0.002
			0]					

__ VND&IP

improve ==1) Return S PERTURB & IP. The

 In the local search phase, two neighborhood structures, SWAP&IP and INSERT&IP operators are employed with in the Algorithm III.2 . The procedure is terminated once no improvement is obtained. Algorithm III.4 details the INSERT&IP procedure. design of the perturbation mechanism is crucial for the performance of the algorithm. If the mechanism provides too small perturbation, local search may return to the previously visited local optimum points and no further improvement can be obtained. The mechanism consists of strongly perturbing a part of the current solution to jump the local optima and obtain a new starting solution. Two phases were applied iteratively in order to

	total profit of the two divisions before Swap move (method was terminated when the total number of applied moves (perturbation length) equals =). In case > . We
	applied IP to optimally solve the new classical knapsack to the . Algorithm III.5 provides a description of the new local search method. , -and the best solution was
	taken as a new initial solution for a next swap process. In case was not promising as no better solution could be obtained, thus IP(t, k) was not applied and , the search space we proceeded to the next step. The procedure is terminated once no improvement is obtained. Algorithm III.4: INSERT&IP(data, S) Algorithm III.5: (data, S) : Instance data & initial solution : Instance data & best solution found S : A feasible solution do : A randomly feasible solution
	Algorithm III.3 details the SWAP&IP procedure. Algorithm III.3 : SWAP&IP (data, S) : Instance data & initial solution : A feasible solution do For kNumber of selected classes in best solution S to do * Do +; Select a random set of k classes , from N (); /* Number of divisons that contain class i */ For Randomly assigned the variables to do Apply IP to fix the variables , -For to do If (() ()) then ; For t to do If () then Store the best S' /* best solution found */
			(); /* Number of classes in division t */ /* Insert i in k and delete it from t */
	Algorithm III.2: LS&IP (data, : Instance data & best solution found) For If (to n do , -; For to (); /* Number of classes in division k */) then do () Else (); If (pp+1;) then S ; End if
	while	: A feasible solution For	to m do /* Swap class i by each class j */ EndIf
	Do return S'	: best solution found by RBH (first iteration) or by perturb&IP , -; EndIf EndIf
	(EndFor () (S1)))) SWAP&IP. A Swap-based local search requires the definition of a neighborhood structure) then If (() > f (EndIf While (Return using simple moves so as to produce a set of neighbor solutions which permits to explore more search spaces and thus provide high quality solutions. The considered swap process consists of permuting two variables and (* + * + * /* New starting solution */ (); (EndFor) then EndFor ; EndIf EndIf EndFor EndFor /* New starting solution */ EndFor EndFor While (improve==1) Return S While (simulate this jumping principle: The first is a select of k randomly chosen items (setup INSERT&IP. The Insert-based local search is based on a neighborhood search which +. where T+1 is a fictive knapsack that contains all the non-selected classes. We changed the value of setup variables from 1 to 0 and vice versa. A new variables) and the second is the IP which is applied to solve the classical generates a new solution by removing the class from knapsack t (change the value of the , -was setup variable knapsacks , -. The resulting solution is accepted according to the following condition from 1 to 0) and then inserting it into another knapsack k, obtained. In order to save computational effort, before applying IP, we calculated the sum of if ((() ()), where that is constant value between 0 and 1. The perturbation
	upper bounds of the new divisions t and k () and compared it with the

* +, The IP(t, k) is applied if (>) by the same way than in the SWAP&IP procedure. The best solution is taken as a new initial solution for the next insert-based local search.

Table III . 1 .

 III1 Comparison between RBH, HG and LPH: Average of MCKS instances.

	Heuristic CPU (s) Gap (%)
	RBH	0.63	1.46 %
	LPH	304	5.34 %
	GH	0.51	8.13 %
	Table III.1 shows that RBH outperforms the other construction heuristics in terms of
	computation time and quality solution.		

Table III . 2 :

 III2 Effect of VNS&IP components improvement with a gap that increases when the number of knapsacks increases. For the experimentations below, we considered the best combination with RBH as construction heuristic, LS&IP as local search techniques and PERTURB&IP as perturbation mechanism. Table III.3 summarizes the results obtained by VNS&IP and IP when solving the MCKS. Each line presents the average of 10 instances. The first two columns present the number of divisions (or periods) and the number of . The next three columns show the corresponding average of results provided by CPLEX, the average of results provided by the cooperative approach VNS&IP and the average of the best upper bounds, of all the remaining open nodes in the branch-and-cut tree, provided by CPLEX 12.7 is very low in comparison to the average of CPU for CPLEX that is equal to 2868 s.For more detailed results, we note that VNS&IP provides a solution equal to the one provided by CPLEX for 51 instances and provides better solutions than CPLEX for 65 instances (see, Appendix A or https://goo.gl/w44aUs). TableIII.2 shows that the gap between VNS&IP and is 0.001% on average.

		Table III.3 shows that VNS&IP outperforms IP with a gap on average equal to -
		. In detail, the gap on average is about -		for	, -	for	,
			for	, and -	for	. The CPU on average for VNS&IP is about 13
	(respectively. We note that CPLEX is stopped at a limit of computation time equal to 1h.). The notations and report the solution found and the computational time, Finally, the columns and report the gap between CPLEX and VNS&IP, calculated as follows: () . /, and the gap between and VNS&IP, calculated as follows: () . /, s, which the majority of instances solved at optimality are with (12 with , 8 with ,
	2 with	and 5 with					
	respectively.							
	Table III.3. Numerical results for MCKS instances.			
		N				N			()		()
		10	1772249		1735	1773409	6		-0,066	1773431	0,001
	5	20	3571514		2863	3573719	6		-0,063	3573771	0,001
		30	5398429		2267	5401333	6		-0,054	5401369	0,001
	10	T 10 5 20	Instances 1795187 3602956	N	2587 3439	RBH 1795188 0,95 3603067	RBH + LS&IP 11 0,23 10	0,000 -0,003	RBH + LS&IP + PERTURB&IP 1795221 0,002 -0,054 3603090 0,001
		10 30	5445060	30	2937	1,23 5445715	11	0,39	-0,012	-0,012 5445752	0,001
	15	15 10 20 20	1793209 3605797		2819 3333	1,82 1,99 1795262 3617045	15 15	0,45 0,42	-0,118 -0,315	-0,125 -0,155 1795311 3617079	0,003 0,001
		30	5471310		3255	5478013	15		-0,125	5478052	0,001
	20 10	1793091		2745	1796768	20		-0,208	1796796	0,002

Table

III

.2 shows that by adding LS&IP, we observe an important advantage, for all the set of instances, compared to using only RBH. However, by adding PERTURB&IP, we observe a higher Among the 120 instances of MCKS, CPLEX finds the optimal solutions for 27 instances, slightly outperforms the VNS&IP for 4 instances, and for the remaining it terminates with error: exceeds the capacity of RAM memory or exceeds the CPU time limit.). In addition, we can see that MCKS becomes more difficult when increasing the number of divisions T. In fact, the number of times that CPLEX terminates with exceeding the capacity of RAM or exceeding the time limit increases from 18 with to 25 with

Table IV . 1 .

 IV1 We note that CPLEX is stopped at a limit of computation time equals to 1 hour. For the proposed MVNS matheuristic, we report the best and average solutions of 30 independent runs on each benchmark instance. Finally, the last column presents the best known. The time unit in this table for the CPU is in seconds. The detailed results are available on the following link: https://goo.gl/fbFBgV. TableIV.1 presents the computational results obtained for the first set of benchmark instances. The results show that CPLEX for LGQMKP is effective and finds the optimal solutions for 47 among 48 instances (all instances except 23-3 instance). Our approach MVNS provides a solution equal to CPLEX for these 47 instances and reaches the best known solution for instance 23-3. MVNS and MS-ILS provide the best know solutions for all first set instances while MA obtain 45 best known solutions among 48 instances with an insignificant average equal to 0,44%. When analyzing the average solutions, we observe that MVNS has produced the same results for all instances excepts 32-1 instance. Based on the comparison of the average results of MVNS and MS-ILS, we see that MVNS outperforms MS-ILS and MA on six instances and twelve instances, respectively. This result indicates the robustness of the matheuristic approach. Computational results obtained from the first set of benchmark instances (cont)

). The columns . corresponding results provided by CPLEX (objective value report the standard deviation from the best known: () /. The next four columns show the , computation time and deviation), MA, MS-ILS and MVNS (best value , average value average 925.59 1.73 0.00 925.59 925.59 0.01 0.00 925.59 925.59 2.81 20-3 931.33 0.63 0.00 931.33 931.33 0.01 0.00 931.33 931.33 2.83 22-1 3 3 1923.61 1.80 0.00 1904.86 1904.86 0.02 0.98 1923.61 1911.11 3.30 22-2 1314.09 0.16 0.00 1314.09 1314.09 0.01 0.00 1314.09 1314.09 1.33 22-3 1799.09 0.46 0.00 1799.09 1799.09 0.02 0.00 1799.09 1799.09 2.04 computation time CPU and deviation dev). 20-2 23-1 471.00 3600.16 0.00 471.00 471.00 0.02 0.00 471.00 471.00 2.53	0.00 0.00 0.00 1923.61 1923.61 2.03 925.59 925.59 1.55 931.33 931.33 1.42 0.00 1314.09 1314.09 2.15 0.00 1799.09 1799.09 1.13 0.00 471.00 471.00 2.05	0.00 0.00 0.00 1923.61 925.59 931.33 0.00 1314.09 0.00 1799.09 0.00 471.00
	23-2	3	3	959.70	292.99	0.00	959.70	959.70 0.06	0.00	959.70	959.70 1.02	0.00	959.70	959.70 2.99	0.00	959.70
	23-3			1233.00 1791.67	0.64 1241.00 1241.00 0.32	0.00 1241.00 1241.00 1.20	0.00 1241.00 1241.00 2.81	0.00 1241.00
	inst		R													
				Obj		dev			dev			dev			dev	
	25-1															
			3 15													

Table IV . 2 .

 IV2 Computational results obtained from the second set of benchmark instances

	Ins.	R										
			Obj		dev			dev		dev		dev
	1-1 10	30	* 3603.87	*	5093.06	5074.50 7419.16 0.29	5100.54	5016.82 3793.42 0.14	5107.80	5102.17 225.23 0.00	5107.80
	1-2		*	56.24	*	4848.58	4830.20 8101.91 0.84	4858.84	4784.07 4493.57 0.63	4889.58	4889.58 295.09 0.00	4889.58
	1-3		*	56.27	*	5896.01	5876.05 6823.41 0.12	5902.86	5823.73 4710.79 0.00	5902.86	5898.23 259.01 0.00	5902.86
	2-1 30 150	*	98.62	*	2607.84	2601.31 3530.13 0.01	2608.12	2557.22 5175.50 0.00	2608.12	2601.20 443.04 0.00	2608.12
	2-2		*	98.87	*	2285.32	2281.63 3570.48 0.00	2257.88	2249.62 3925.30 1.20	2285.32	2285.32 525.11 0.00	2285.32
	2-3		*	111.68	*	2578.14	2573.40 2946.75	0.1	2580.62	2574.96 3464.23 0.00	2580.62	2577.08 390.03 0.00	2580.62
	3-1 10 150 16760.30* 3610.46	* 32189.10 32147.30 2693.57 0.08 32210.80 32163.74 1734.37 0.02 32216.20 32210.32 307.98 0.00 32216.20
	3-2		4640.30* 3601.01	* 40302.40 40169.70 1437.15 0.13 40354.90 40239.63 2399.47 0.00 40354.90 40354.90 523.02 0.00 40354.90
	3-3		3196.10* 3628.88	* 32766.70 32749.40 3414.05 0.02 32768.20 32704.85 4220.01 0.01 32772.40 32772.40 309.15 0.00 32772.40
	4-1 10 150	*	58.26	*	9045.80	9027.86 4323.70 0.03	9048.40	9029.01 2720.37 0.00	9048.40	9048.40 223.06 0.00	9048.40
	4-2		*	60.70	*	8465.00	8448.00 4871.10 0.04	8468.50	8425.58 2207.61 0.00	8468.50	8459.36 255.03 0.00	8468.50
	4-3		*	60.66	*	8491.30	8475.10 4467.05 0.07	8494.20	8450.93 2058.68 0.04	8497.20	8490.23 189.45 0.00	8497.20
	7-1 10	30	*	61.74	* 68129.00 68029.40 3314.59 0.05 68165.50 68060.77 1669.41 0.00 68165.50 68160.81 301.09 0.00 68165.50
	7-2		*	59.71	* 65616.80 65546.20 2542.84 0.04 65643.50 65559.26 1943.83 0.00 65643.50 65643.50 208.01 0.00 65643.50
	7-3		*	68.10	* 69397.60 69279.30 3104.20 0.06 69440.90 69295.39 2304.84 0.00 69440.90 69440.90 205.21 0.00 69440.90
	9-1 30	30	*	94.75	*	9252.47	9242.60 1485.96 0.04	9256.47	9245.74 3262.62 0.00	9256.47	9256.47 558.82 0.00	9256.47

Table IV . 2 .

 IV2 Computational results obtained from the second set of benchmark instances (cont) CPU time of MVNS vs MA and MS-ILS on first set of instances.Figure IV.2 shows that both approaches solve all the instances from the first set in a very reasonable computational time. More precisely, the MVNS outperforms MS-ILS on CPU average: 1.77s with MVNS vs 1.92s with MS-ILS. Furthermore, MA outperforms MS-ILS and MVNS with a CPU average of 0.44s.

	9-2 14-2		* 3143.93*	98.61 76.06	* 13007.30 12988.90 3120.53 0.05 13009.08 12943.85 3215.71 0.03 13013.20 13013.20 398.86 0.00 13013.20 * 259 25720.0 304.66 0.18 25885.67 25743.61 1290.07 0.35 25976.20 287.06 0.00 25976.20
	9-3 14-3		* 1825.67* 3601.51 97.84	* 16372.00 16359.20 2822.24 0.09 16385.97 16364.29 3547.43 0.00 16385.97 16385.97 29.6 0 .27 * 314 31448.2 301.21 0.00 31448.20 31444.55 1353.25 0.00 31448.20	480.2 0.00 16385.97 266.52 0.00 31448.20
	10-1 30 16-1 30	30 30	* 7622.90*	41.04 600.21	* 13196.30 13125.80 3761.90 0.14 13214.66 11147.24 5078.34 0.00 13214.66 13214.66 508.11 0.00 13214.66 0 48.2 0 .2 * 141 14060.9 1932.42 0.27 14166.80 14086.34 1011.32 0.00 14166.80 198.03 0.00 14166.80
	10-2 16-2		* * 1017.00 511.88	* 13003.30 12779.20 3796.61 0.09 13015.08 11209.88 5482.66 0.00 13015.08 13015.08 0 29.1 0 .8 * 166 16577.6 1634.65 0.00 16612.40 16582.07 811.82 0.00 16612.40	514.2 0.00 13015.08 183.06 0.00 16612.40
	10-3 16-3		* 3604.61 * 840.83	* 13057.00 13008.60 4114.58 0.09 13068.47 11672.09 4046.23 0.00 13068.47 13068.47 397.03 0.00 13068.47 0 11.9 0 .4 * 142 14210.1 2391.58 0.07 14251.00 14230.64 940.71 0.00 14251.00 192.71 0.00 14251.00
	11-1 10 17-1 30	30 30	534.00* 3600.86 * 106.86	* *	7116.50 0 40.8 415 4147.09 1221.69 7103.55 711.63 0.08 0 0.00	7121.90 4157.20	7108.17 2536.74 0.00 4149.12 3242.94 0.00	7121.90 4157.20	7121.90 306.05 0.00 4157. 198.65 0.00	7121.90 4157.20
	11-2 17-2		339.20* 3602.37 * 101.97	* *	6771.50 0 7.20 390 3891.48 1500.73 6758.19 537.44 0.05 0.25	6774.70 3892.00	6760.15 2546.20 0.00 3881.10 3009.30 0.49	6774.70 3911.00	6774.70 414.89 0.00 2 3911 103.33 0.00	6774.70 3911.00
	11-3 17-3 19-1 10	539.60* 1975.36 * 93.66 930.47* 3600.99 Figure IV.2. 150	* * *	7745.10 1.30 376 3767.67 1444.65 7726.96 911.53 0.03 0.00 7.70 686 6866.33 843.08 0.05	7747.10 3756.80 6873.07	7705.36 2952.58 0.00 3744.68 3460.16 0.29 6853.02 1641.79 0.00	7747.10 3767.70 6873.07	7747.10 3767. 7 6865.	262.4 0.00 196.13 0.00 153.69 0.00	7747.10 3767.70 6873.07
	19-2		691.96* 3601.31	*	9.80 802	7831.85 1847.38	0.18	8042.79	7888.13 2137.21 0.00	8042.79	86 8042.	201.06 0.00	8042.79
	19-3		554.83* 3601.83	*	8.54 815	8154.87 1410.02	0.00	8142.84	8131.62 1724.09 0.15	8155.05	79 8155.	113.20 0.00	8155.05
	Ins. 21-1 10	R 150	*	59.09	*	5.05 222	22187.0	7570.7	0.04	22210.23	22121.54 3100.56 0.09	22230.23	05	167.23 0.00	22230.23
	21-2 12-1 21-3 24-1 30 12-2 24-2 12-3 13-1 24-3 13-2 13-3	150 150 150 AVG	Obj * * * * * * * * * * * * 1086.56 64.96 103.53 80.21 90.25 53.73 92.71 8.37 724.18 5.58 584.78 581.17	dev * * * * * * * * * * * *	21.9 252 592 34.1 0 0 54.5 245 614 0 74.1 526 89.7 0 608 0 52.7 577 99.3 0 421 0 71.6 526 0.10 413 9.90 473 2 0 99.3 0 42.7 218	0 25199.7 59137.7 0 0 24541.2 61181.7 0 52253.3 0 60749.7 0 57513.4 0 4194.59 1901.71 5544.17 6140.09 8984.81 4800.17 91.59 5156.66 2868.01 0 52361.6 77.34 4136.01 1318.51 4717.27 2123.22 7 0 21831.6 3025.75	dev 0.05 0.60 14.06 0.40 1.25 0.44 3.27 0.00 0.81 0.00 0.22 0.51	25266.50 28565.63 59592.00 61725.20 53318.76 61165.70 59712.09 4196.20 53073.72 4119.60 4722.10 22067.96	dev 25165.91 3867.18 0.00 59381.42 4665.91 0.00 27847.15 3914.01 0.1 61449.70 4163.09 0.02 53173.81 3103.33 0.00 60988.89 4541.59 0.00 59169.73 3190.82 0.02 4132.31 1176.32 0.33 52929.65 3456.26 0.00 4086.26 1181.03 0.49 4666.32 1160.96 0.49 21871.01 2896.87 0.10	.07 59592.00 59592 25266.50 .06 28593.40 61737.40 61730 .17 53320.50 .08 61165.70 61165 .35 59723.20 .7 4207.20 4198. .32 53073.72 4139.90 4139. 9 4745.10 4742. .90 .72 22075.09	200.03 0.00 dev 301.17 0.00 188.14 0.00 360.23 0.00 203.48 0.00 489.20 0.00 203.60 0.00 190.13 0.07 290.73 0.00 201.25 0.00 186.17 0.00 287.25 0.00	25266.50 59592.00 28593.40 61737.40 53320.50 61165.70 59723.20 4210.10 53073.72 4745.10 4139.90 22075.15
	14-1	30 26750.32* 3601.66	*	4.90 268	26868.6	4.61	0.00	26868.60	26868.60 1416.34 0.00	85 26868.60 26868	213.07 0.00	26868.60
						68.6	0						.6		
						0									

Table IV . 3 .

 IV3 Number of the Best Results of Test Instances with n=300 for Different Parameter

		6,00				
	(s) CPU	2,00 4,00					MS-ILS MA
		0,00	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47	MVNS
				First Set of benchmark instances
	Levels				
			Parameter Levels MA MS-ILS LGQMKP MVNS
			k	10 30	3 5	15 14	0 0	24 24
			r	30 150	4 4	18 11	0 0	24 24
			d	0.25 1	3 5	13 16	0 0	24 24

Table IV .

 IV 3 provides an analysis of the number of obtained best solutions by applying CPLEX for LGQMKP, MA, MS-ILS and MVNS for each class of instances regarding the levels of parameters k, r and d. Using CPLEX for LGQMKP cannot solve large instances. In fact, no best solution nor optimal is obtained with CPLEX. The MS-ILS procedure obtains 15 best solutions for instances with 10 knapsacks and obtains 14 best solutions for instances with 30 knapsacks. Similarly, it reaches 18 best solutions for instances with 30 classes and 11 best solutions for instances with 150 classes. The MS-ILS is more successful when dealing with small instances with a low number of knapsacks, a low number of classes and a low density.The MA obtains between 3 and 5 best solutions for each parameters class, with no statistically significant difference between the parameters classes. The proposed matheuristic MVNS outperforms the MA and MS-ILS and provides the best solutions for all instances (48 small and 48 large instances).

Table IV . 5 .

 IV5 However, it has been observed that MVNS is statistically significantly different from MA and MS-ILS with mean difference equal to 175.766 and 7.123 and p-values equal to 0.032 and 0.001 respectively. This result also confirms that MVNS outperforms MA and MS-ILS for large instance. TableIV.5 of Appendix A shows that average CPU of MVNS is significantly lower than average CPU of MA and average CPU of Multi-start ILS. Results of Tukey-test for second set of instances on computation time CPU

		IV.5 Conclusion		
		In this chapter, we considered the Generalized Quadratic Multiple Knapsack problem
	with setup (GQMKP). This problem can be used to model a wide range of concrete industrial
	problems, including order acceptance and production scheduling. We proposed a linear
	formulation of the GQMKP denoted LGQMKP and a new matheuristic approach that
	Table IV.4. Results of paired-t test for first and second set instances on solution quality combines VNS with IP denoted MVNS. We considered a wide set of benchmark instances to
	test our model LGQMKP and solving technique MVNS. The results show that only 48.9% of
	Pairs (MVNS vs algorithm) the instances are solved using CPLEX while considering the new model LGQMKP. The First set of instances Second Set of instances Mean difference p-value Mean difference P-value matheuristic MVNS outperforms the best algorithm in literature (MS-ILS) and provides the
	MVNS vs MA MVNS vs MS-ILS best solutions for all instances: the same result for 77 instances and better results for 19 8.853 0.128-175.766 0.032+ 0 * 7.123 0.001+
	instances, in a shorter computation time.		
	*: standard error difference equal to zero; +: statistically significantly different at α = 0.05; -: no statistically
	significant					
		10000					
	(s) CPU	5000						MS-ILS MA
		0	1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47	MVNS
	Comparison set	Obj. value	P-value	Second set of benchamrk instances Significance Tukey result	Tukey interpretation
						Factor	N Mean Grouping
	MA / MS-ILS / MVNS	CPU time	< 0,00	Significant difference	CPU (MA) 48 3026 CPU (Multi-start 48 2897 ILS)	B B	MVNS is better than MS-ILS and MA
						CPU (MVNS)	48 287.2	A
	Alpha = 0.01	Tukey Confidence = 0.99	
		In results of Tukey test with Alpha = 0.01 show that group B contains CPU (MA) and
	CPU (Multi-start ILS) and group A contains CPU (MVNS). Differences between means that
	share a letter are not statistically significant. CPU (MA) and CPU (Multi-start ILS) do not
	share a letter with CPU (MVNS), which indicates that CPU (MVNS) has a significantly lower
	mean than CPU (MA) and CPU (Multi-start ILS).	

Considering the promising performance of the MVNS, an extension is expected to deal with other variants of KP such as generalized knapsack sharing problem (GKSP) and other combinatorial optimization problems involving two sets of variables.

AUTHOR'S PUBLICATIONS

The contributions proposed in this thesis have been presented in scientific communications and articles.

Problems. Lamghari et al. [START_REF] Lamghari | A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines[END_REF] proposed a cooperative method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines. To the best of the our knowledge, the combination of VNS with exact technique has never been considered for KPS problem.

The remainder of this chapter is organized as following: Section III.2 contains the mathematical formulations of MCKS. In Section III.3, we propose a cooperative approach can be seen as a matheuristic that combine Variable Neighborhood Search (VNS) and integer programming (IP) for MCKS. The experimental results and their interpretations are reported in Section III. [START_REF] Adouani | A efficient matheuristic for the Generalized Multiple Knapsack Problem with setup[END_REF]. In Section III.5, we conclude the chapter and give possible and future research ideas

III.2 Problem description

The Multiple Choice Knapsack Problem is defined by knapsack capacity b with a set of T divisions (periods), where each division t {1, …,T}, and a set of classes of items.

Chapter IV

Cooperative approach for the Generalized Quadratic Multiple Knapsack Problem

IV.1 Introduction

In this Chapter, we address the 0-1 generalized quadratic multiple Knapsack problem (GQMKP). We use a linearization technique of the existing mathematical model and we

propose a new cooperative approach that we called Matheuristic Variable Neighborhood Search (MVNS) combining variable neighborhood search with integer programing (IP) to solve the large sized instances. The matheuristic considers a local search technique with an adaptive perturbation mechanism to assign the classes to different knapsacks, and then once the assignment is identifed, applies the IP to select the items to allocate to each knapsack

The 0-1 generalized quadratic multiple knapsack problem (GQMKP) is NP-hard problem, since it is a generalization of the standard knapsack problem (KP) [START_REF] Chajakis | Exact algorithms for the setup knapsack problem[END_REF]. The GQMKP is reduced to KP when considering one knapsack, one class, no setup variables and a linear objective function. The GQMKP is described as a quadratic multiple knapsack problem (QMKP) with additional setup variables and knapsack-items preferences. The quadratic knapsack problem (QKP) is a particular case of QMKP, when considering only one knapsack.

Practical applications of the GQMKP may be seen in production scheduling problems with setups and machines-products preferences. Case studies of GQMKP are provided in [START_REF] Avci | A multi-start iterated local search algorithm for the generalized quadratic multiple knapsack problem[END_REF][START_REF] Sara | Generalized quadratic multiple knapsack problem and two solution approaches[END_REF].

Mathematical formulation:

Equation (1) represents the objective function that is to maximize the total profit.

Constraint [START_REF] Adouani | A Variable Neighborhood Search with Integer Programming for the Zero-One Multiple-Choice Knapsack Problem with Setup[END_REF] guarantees that the sum of the total weights of selected items and the class setup times consumption does not exceed knapsack capacity. Constraint (3) requires that each item can be allocated to only one knapsack. Constraint (4) guarantees that if any item in class r is selected for knapsack k, then the decision variable must be equal to 1. Constraint [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF] ensures that the total number of knapsacks containing items belonging to class r cannot exceed the maximum number of knapsacks . Finally, the constraint (6) ensures that the decision variables are binary.

Being inspired by the linearization technique provided in [START_REF] Billionnet | Using a mixed integer programming tool for solving the 01 quadratic knapsack problem[END_REF] for QKP problem, we provide the following linear model for the GQMKP, denoted LGQMKP:

sum of capacity setup time of the classes activated in knapsack k and * \ =1, r } the set of items that can be allocated to knapsack k. The objective function is to maximize the total profit. The ,can be formulated by a 0-1 KP linear program, using the allocation variables :

; The VNS is a method based on a systematic change of the neighborhood structures. It is provided by Maldenovic and Hansen [START_REF] Mladenović | Variable neighborhood search[END_REF] and has proven its efficiency on different scheduling problems: location routing [START_REF] Jarboui | Variable neighborhood search for location routing[END_REF], car sequencing problem [START_REF] Prandtstetter | An integer linear programming approach and a hybrid variable neighborhood search for the car sequencing problem[END_REF], combinatorial optimization problems [START_REF] Duarte | Multi-objective variable neighborhoodsearch: an application to combinatorial optimization problems[END_REF]

IV.3.1 Construction heuristic

To generate the initial solution for GQMKP, we propose a construction heuristic based on three successive phases:

-First phase: We transform the original problem to an equivalent formulation without profit, i.e.

. The new problem is denoted and consists of maximizing the objective function [START_REF] Chabrier | Coopération entre génération de colonnes sans cycle et recherche locale appliquée au routage de véhicules[END_REF], with constraints (2), (3), (4), [START_REF] Akcay | Greedy algorithm for the general multidimensional knapsack problem[END_REF] and [START_REF] Akinc | Approximate and exact algorithms for the fixed-charge knapsack problem[END_REF].

If

Detailed computational results for GMKPS