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Reconnaissance de surfaces de protéines avec des foldamères à base d’urées : Application au design 
de ligands ciblant une protéine chaperon d’histone 

Avec 8,8 millions de décès dénombrés en 2015, le cancer est l’une des plus grandes causes de mortalité dans 
le monde. De nouvelles stratégies thérapeutiques ont émergé et l’identification de nouvelles cibles biologiques 
comme notamment la protéine Asf1, un chaperon d’histone H3-H4 surexprimée dans les cellules cancéreuses et en 
particulier le cancer du sein. Cette protéine possède différentes fonctions dans la cellule et agit à plusieurs endroits 
par des interactions protéine-protéines. Au cours de cette thèse de doctorat, nous avons développé une stratégie 
originale de design d’inhibiteurs d’interactions protéine-protéine avec des foldamères peptidomimes à base d’urées. 
Ces foldamères ont 1) la capacité de se replier en hélice 2,5, rappelant les hélices α des peptides et 2) d’être 
hautement tolérés et initiateurs d’hélicité lorsqu’ils sont conjugués à des fragments peptidiques. Nous avons 
développé des oligomères mixtes comprenant une alternance de segment(s) peptidique(s) et multi-urée, appelées 
chimères, ayant l’avantage de combiner la reconnaissance naturelle de peptides et la forte propension des oligourées 
à former des hélices stables. Après une étude structurale montrant qu’avec l’insertion d’un court segment à base 

d’urées dans un peptide hydrosoluble adoptant une conformation en hélice  la conformation hélicoïdale pour une 
majorité des chimères est conservée, des composés mimant la partie hélicoïdale C-terminale de l’histone H3 ont été 
élaborés. Une interaction de l’ordre du micromolaire avec Asf1 a été observée en solution puis validée à l’état solide 
par cristallographie aux rayons X. En vue d’optimiser la reconnaissance de ces chimères avec la surface d’Asf1 et leur 
sélectivité, un panel de modifications a été réalisée (i.e. séquence primaire, longueur du segment urée). Nous avons 
ainsi conçu des chimères α/urée possédant des affinités de liaison pour Asf1 comprises entre le nano- et 
micromolaire. Le composé le plus prometteur a été internalisé avec succès dans des cellules cancéreuses après 
conjugaison bioreductible avec un peptide vecteur et pourrait conduire à la mort cellulaire de la lignée tumorale 
étudiée.  

Mots clés : Oligourées; Foldamères ; Inhibition d’Interaction Protéine-Protéine ; Hélices, Cancer 

Protein Surface Recognition with Urea-based foldamers: Application to the design of ligands targeting 
histone chaperone proteins 

In 2015, 8.8 million of death were due to cancer making it an important cause of death in the world. The necessity to 
develop new anticancer treatments led to the search and discovery of new biological targets, such as Asf1, a histone 
chaperone protein of H3-H4 which is overexpressed in cancer cells, in particular in breast cancer. This protein plays 
a role in different biological processes in cells through protein-protein interactions (PPIs). During this thesis, we 
developed an original strategy to design inhibitors of PPIs with urea-based peptidomimetics. These foldamers are 
able to fold into stable 2.5-helix reminiscent to the natural α-helix. Designed urea-based foldamers have been 
synthesized as hybrid oligomers consisting of α-peptide and oligourea segments. With a combination of the two 
backbones, these compounds named “chimeras” presents advantages of both species with the natural recognition 
of α-peptides and the innate helical stability of oligourea. First, a model study was performed to evaluate the impact 
of the introduction of short urea segments into a long water-soluble peptide. Circular dichroism experiments 
confirmed that the helical conformation was conserved. New series of compounds that mimic a helical part of H3 
were synthesized and their interaction with Asf1 was studied in solution and in solid state using a range of biophysical 
methods. Several modifications into the sequence were performed (side chain substitution, size of the urea segment 
or compound) in order to improve the recognition of Asf1 surface as well as their selectivity. We conceived oligourea-
peptide chimeras with affinity for Asf1 in the micromolar range. Our best compound linked to a cell penetrating 
peptide was shown to enter into cells and to induce cell death.  
 
Keywords : Oligourea, foldamers ; protein-protein interaction ; inhibition ; Helix, Cancer 
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Reconnaissance de surfaces de protéines avec des foldamères à base d’urées : 
Application au design de ligands ciblant une protéine chaperon d’histone 

 

Résumé détaillé : 

La compréhension toujours plus fine des mécanismes d’interactions dans la cellule conduit les 

scientifiques à innover et proposer de nouveaux traitements thérapeutiques. Il a ainsi été établi 

que le dysfonctionnement d’interactions protéine-protéine (PPIs) était à l’origine de certaines 

maladies, dont le cancer. La possibilité d’inhiber ces complexes supramoléculaires offre ainsi de 

nouvelles perspectives de développement de traitement anticancéreux. Cependant, les 

interfaces mises en jeux dans ces interactions sont larges et les cibler représente toujours un défi. 

De nouvelles cibles biologiques ont récemment émergé dont Asf1, une protéine chaperon 

d’histone surexprimée dans les cellules cancéreuses notamment dans le cancer du sein. L’équipe 

de Françoise Ochsenbein (CEA Saclay) a identifié les mécanismes d’interactions entre Asf1 et les 

histones H3-H4. Il a ainsi été mis en évidence que l’interaction se fait en particulier avec la partie 

C-terminale de l’histone H3 qui adopte une conformation en hélice α. Lors de ces travaux de 

thèse, nous souhaitions concevoir des oligomères à base d’urée mimant la structure en hélice α 

qui interagit avec Asf1 en conservant les chaines latérales clés pour l’interaction. Ces 

peptidomimes sont composés d’unité éthylène diamine pouvant être facilement équipées avec 

les chaines latérales des acides aminés naturels. Grace à un réseau de liaisons hydrogène à trois 

centres, les oligourées ont la capacité de se replier en hélice stable comportant 2,5 résidus par 

tour. Ils appartiennent à la famille des foldamères définit comme l’ensemble des oligomères non 

naturels capables de s’auto-organiser pour adopter des repliements bien définis, rappelant ceux 

des biomolécules incluant les peptides. Avec leur propriété de résistance à la protéolyse, les 

oligourées sont de bons candidats pour développer de nouveaux traitements thérapeutiques. 

Durant cette thèse, nous avons conçu des composés hybrides peptide/oligourée hydrosolubles 

(important pour des applications biologiques et analyses biophysiques), appelés chimères. La 

conception de ces composés avec un squelette mixte pourrait permettre de combiner les 

avantages des deux types de composés : les propriétés de reconnaissance des peptides naturels 

et, la stabilité intrinsèque des oligourées aux protéases ‒ et pourrait être d’autant plus modulable 

pour mimer au mieux les peptides. 

Tout d’abord, nous avons réalisé une étude modèle dans le but d’étudier l’impact de l’insertion 

d’un segment court d’oligourée dans un peptide hélicoïdal long (>30 résidus). Cette insertion de 

segment avec modification du squelette est assez innovante car dans la littérature, la 

modification du squelette dans un peptide est généralement ponctuelle limitée à un résidu. Pour 

cette étude, nous avons sélectionné une séquence mutante de GCN4-p1, un domaine leucine 

zipper d’un facteur de transcription dont la séquence présente une répétition en heptade abcdefg 

avec les résidus hydrophobes aux positions a et d caractéristique de peptides formant des 

faisceaux d’hélices. Ce peptide a été choisi pour son hydrosolubilité et pour sa capacité à 
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cristalliser. La structure RX de GCN4-p1 indique qu’il dimérise en une double hélice parallèle, 

appelée coiled-coil(Figure 1). 

 

Figure 1: Séquence de GCN4-p1 et du mutant II.9 et structure du dimère GCN4-p1. A Séquence primaire et 
projection sur roue hélicoïdale du coiled-coil. B Structure cristallographique de GCN4-p1 (pdb=4dmd) à 2.0Å avec 
les résidus hydrophobes en stick. 

Après avoir optimisé la synthèse sur support solide assisté aux micro-ondes du peptide mutant 

de référence, II.9, plusieurs chimères peptide/oligourée ont été synthétisés avec des segments 

de deux ou trois résidus urée. La partie peptidique était introduite avec un synthétiseur 

automatique Liberty Blue, alors que la partie urée était introduite manuellement avec le système 

de synthèse micro-ondes Discover Bio. Après purification par HPLC en phase inverse et 

caractérisation par spectrométrie de masse, des expériences de Dichroïsme Circulaire (CD) ont 

été réalisées. Une première série de chimères consistait à remplacer trois résidus α-aminés par 

deux résidus urée. Pour cela, après une simple étude de modélisation moléculaire, nous avons 

inséré deux résidus urée pour remplacer le segment peptidique central Leu13-Ser14-Lys15 afin 

de ne pas toucher de résidu impliqué dans le cœur hydrophobe. La longueur des chaines latérales 

mimant celle de la Leu a été variée ainsi que la position de la chaine latérale du résidu Lys sur le 

Cα ou Cβ. Les spectres CD de 200-260 nm ont permis de confirmer que la conformation en hélice 

était conservée. Cependant, le repliement en hélice est perturbé car le taux d’hélicité diminue en 

présence du segment urée. Le segment urée a été déplacé en C-terminal de la séquence et des 

résultats légèrement moins bons ont été observés par CD, indiquant une perturbation plus 

importante de l’hélice. Les propriétés d’autoassemblage de ces composés ont également été 
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étudiés par CD avec des expériences de variations de la température de 4 à 100°C et la 

détermination de la température de transition (Tm). Les Tm obtenus pour les chimères avec deux 

résidus urée étaient inférieurs à ceux du peptide II.9 (Tm=71°C) indiquant que l’assemblage du 

dimère est déstabilisé. Une autre série de composés où quatre acides aminés ont été remplacés 

par trois résidus urée ont également été synthétisés. Cette substitution impliquant un résidu 

hydrophobe, les expériences de CD ont montrés que la déstabilisation de l’hélice était encore plus 

importante. De nombreux efforts ont été réalisés afin de cristalliser ces chimères et malgré 

l’obtention de cristaux et de données cristallographiques de bonne qualité, des problèmes de 

phase nous ont empêché de résoudre les structures pour le moment. Ces premiers résultats sont 

encourageants mais de nouveaux efforts pour des essais cristallographiques seront encore 

nécessaires afin de comprendre l’impact de l’introduction des urées sur l’assemblage et proposer 

ainsi de nouvelles séquences. 

Dans une seconde partie, nous présentons notre première tentative de design de chimère mimant 

une hélice α pour l’inhibition d’interactions protéine-protéine (PPIs). Dans un premier temps, 

nous nous sommes basés sur le peptide p3 développé par l’équipe de F. Ochsenbein (CEA Saclay) 

comportant une partie hélicoïdale mimant la partie C-terminal de H3, une partie en brin β mimant 

la partie C-terminale de H4, les deux parties étant reliées grâce à une s séquence adoptant une 

conformation étendue. Une structure cristallographique du complexe p3-Asf1 a été obtenu par 

l’équipe de Frannçoise Ochsenbein à 1.8Å (Figure 2B). Nous avons choisi dans un premier temps 

de nous concentrer sur la partie hélicoïdale de p3, que l’on nommera p3h, afin de concevoir nos 

composés hybrides. Par simple superposition de p3h avec une structure d’oligourée, nous avons 

déterminé la nature des chaines latérales d’une première série de chimères en conservant en 

priorité les hotspots présents dans p3h : Leu9, Arg12 et Ile13. La séquence de p3h contenant un 

cap permettant de verrouiller l’hélice, nous avons développé un analogue de p3h, le peptide p5 

où le cap a été supprimé afin de déterminer l’effet de l’introduction du segment urée. Une série 

avec un segment composé de trois urées à différentes positions dans la séquence de p5 a d’abord 

été synthétisé et testé par titration isothermale calorimétrique (ITC). Ces composés ont montré 

une amélioration de la contribution entropique de l’interaction grâce à l’introduction du segment 

urée (-TΔS=-2.8 kCal.mol-1 pour ch3 au lieu de -1,4 pour p5) compensée par une perte d’enthalpie 

(ΔH=-4,5 kCal.mol-1 pour ch3 au lieu de -7,6 pour p5). La position centrale était la plus favorable 

avec une chimère ch3 présentant un Kd=3,6 µM. Des expériences de de RMN hétéronucléaires de 

type 1H-15N HSQC (Heteronuclear Single-Quantum Correlation) ont permis de mettre en évidence 

que les résidus d’Asf1 impacté par la présence de ch3 sont les même que ceux impactés par la 

présence de p3h ou de la partie C-terminale de H3. Ces résultats indiquent donc que la chimère 

ch3 agit dans la même région que la partie C-terminale de H3 dans le complexe naturel ce qui est 

très encourageant.  
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Figure 2: Structure cristallographique du complexe naturel Asf1/H3-H4  (A) et structure de p3 interagissant avec 
Asf1 (B) à 1.8Å déterminées par l’équipe de Françoise Ochsenbein au CEA Saclay. A la protéine Asf1 est représenté 
en gris en surface, H3 en bleu et H4 en rouge (pdb 2io5). B La partie en hélice de p3 est représenté en bleu, le linker 
en vert et la partie mimant le brin β de H4 en rouge. Les hotspots sont représentés en rose.  

Dans le but d’augmenter l’affinité de nos composés, une nouvelle série a été synthétisée avec un 

segment de quatre résidus urée où la nature de la chaine latérale du résidu urée aromatique a 

été changée. La meilleure affinité a été obtenue pour le composé comprenant un résidu naphtyl 

(Nal), ch5= Ac-EK-Nalu-Argu-Leuu-Glnu-RIA qui présente un Kd de 2.8 µM. Les expériences RMN 

HSQC ont confirmé que les résidus affectés par l’addition de ch5 correspondent à la région 

d’interaction de la partie C-terminale de H3 que l’on souhaitait mimer. Fait remarquable, la 

chimère ch5 a pu être cristallisée en présence de la protéine Asf1. La structure cristallographique 

du complexe ch5-Asf1 a ainsi été obtenue à 2Å, apportant des informations structurales 

précieuses (Figure 3). Cette structure permet de montrer que ch5 interagit avec Asf1 par le biais 

de liaisons hydrogène et d’interactions impliquant des résidus hydrophobes et confirme que les 

deux résidus hotspots Leuu5 et Ile8 sont bien positionnés dans les poches hydrophobes. 

Cependant, ces interactions déstabilisent la conformation en hélice de la chimère qui apparait 

légèrement tordue. De plus, certains résidus de la surface de Asf1, tels que la Tyr112, ont dévié 

de leur position initiale pour « s’adapter » à la présence de l’oligomère et faire de nouvelles 

interactions avec le squelette de l’oligomère. Ces données à l’état solide complètent les 

informations obtenues en solution (RMN et ITC) et seront très utiles pour de futures optimisations 

visant des ligands avec des affinités de l’ordre du nano molaire. Cette structure est la première 

concernant un oligomère à base d’urée à la surface d’une protéine et reste à ce jour, l’un des 

rares exemples de structure montrant un foldamère interagissant avec sa protéine cible.  
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Figure 3: Crystal structure de ch5 en complexe avec la protéine Asf1. Les résidus α-aminés de ch5 sont en bleu et 
les résidus urée sont en orange. Asf1 est représenté en gris. En haut à gauche, vue globale de la chimère ch5 en 
interactions avec la surface de Asf1. En encadré, zoom sur les interactions entre résidus. 

Cette séquence ch5 a également été conjuguée avec un peptide vecteur pénétrant les cellules 

afin d’évaluer l’activité in cellulo. Ces études réalisées dans l’équipe de F. Ochsenbein, ont montré 

que ch5 couplé au peptide vecteur présente un effet antiprolifératif et conduit à la mort des 

cellules cancéreuses. Ces résultats très encourageants doivent cependant être approfondis, 

notamment avec un control négatif, afin de nous assurer que la mort cellulaire est bien due à ch5. 

D’autres séries de composés ont été synthétisés avec des modifications de chaines latérales 

(modifications de résidus basiques, aromatiques, de chaines alkyles pour remplacer Leuu5 dans 

ch5) mais les meilleurs résultats restaient ceux obtenus pour ch5. 

Finalement, nous avons cherché à atteindre un second point d’ancrage situé sur une autre face 

de la protéine Asf1 dans le but d’augmenter la spécificité et l’affinité de nos composés. Dans la 

structure cristallographique du complexe Asf1/H3-H4, la partie C-terminale de l’histone H4 

adopte une conformation en brin β et interagit avec cette autre face de la protéine (Figure 2A). 

Un hotspot supplémentaire, Phe100 est situé dans une poche hydrophobe de Asf1 et contribue 

de manière importante à l’interaction. L’équipe de F. Ochsenbein a développé un lien permettant 

de lier de manière covalente la partie hélicoïdale mimant la partie C-terminal de H3 avec la partie 

mimant la partie C-terminale de H4, menant au peptide p3 qui possède une affinité 100 fois 
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meilleure par rapport à p3h. Ce lien est composé de quatre résidus α-aminés (GAGG) qui forment 

un coude épousant la surface de la protéine et permettent de bien positionner la chaine latérale 

de la Phe dans la poche hydrophobe d’Asf1 (Figure 2B). 

La synthèse de ce peptide p3 a été optimisée au laboratoire avec l’introduction d’une pseudo-

proline permettant d’éviter l’agrégation du peptide. De plus, pour palier à une réaction de 

formation d’aspartimide observée durant la synthèse et conduisant à une chute importante du 

rendement, un dipeptide contenant le 2,4-dimethoxybenzyle (Dmb) comme groupement 

protecteur de l’amide, a été introduit dans la séquence afin d’éviter cette réaction secondaire. La 

structure à haute résolution de ce peptide p3 à la surface de Asf1 montre que des liaisons 

hydrogène ainsi que des ponts salins stabilisent le complexe. Afin d’optimiser les contacts avec la 

surface et simplifier la boucle formée par le linker, nous avons développé des séquences 

alternatives dont une avec des résidus aliphatiques mimant les résidus GAGG. Une autre stratégie 

consistait à raccourcir la taille du composé en réalisant un « pont » plus court entre les deux 

segments permettant une connexion plus directe à la surface de la protéine. Des peptides 

analogues de p3 contenant ces nouveaux linkers ont donc été synthétisés et ont montré une 

affinité du même ordre que p3 (Kd=0.01µM).  

Fort de ce résultat, nous avons souhaité rallonger la partie C-terminale de ch5 afin d’atteindre le 

nouveau point d’ancrage avec le résidu Phe. Tout d’abord, la partie C-terminal de p3 (contenant 

le linker GAGG) a été ajoutée à notre meilleure chimère (ch20 : Ac-EK-Nalu-Argu-Leuu-Glnu-

RIAGAGGVTLDGFG). Puis, ch5 a été prolongé en C-terminal avec les linkers « raccourcis » où le 

nombre de groupes méthylène variait (Figure 4). Les expériences ITC de ces nouvelles séquences 

ont montré une amélioration du Kd pour ch20 (1,2 µM) et ch22 (2,2 µM) alors que ch21 n’a pas 

montré d’amélioration (6,2 µM alors que pour ch5, Kd=2.8 µM).  

 

Figure 4: Structure chimique de ch5 allongé en C-terminal aves les linker de type "court-circuit". La partie urée est 
représentée en orange, le linker en vert et la partie peptidique en noir. 
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Comparé aux résultats obtenus avec le peptide p3, ces résultats restent décevants d’un point de 

vue du gain d’affinité. Cependant, comparé à ch5, on observe un gain considérable d’enthalpie 

indiquant que de nouveaux contacts ont bien lieu avec la protéine (ΔH varie entre -11 et -13 

kCal∙M-1 pour ch20-ch22 alors qu’il est de -2.2 pour ch5) La perte d’entropie dû à l’augmentation 

de la taille du composé compense ce gain d’enthalpie entrainant une perte d’affinité. Ces 

résultats semblent indiquer que le linker n’est pas optimal et ne permet pas de positionner au 

mieux le résidu Phe qui doit être décalé. Afin de comprendre mieux l’effet de ces linkers, des 

essais de cristallogenèse sont actuellement en cours dans l’équipe de F. Ochsenbein, mais n’ont 

pas donné de résultats pour le moment. Une structure cristallographique nous permettrait en 

effet de comprendre la position du linker et de la Phe afin de pouvoir créer de nouveaux designs.  

Par ailleurs, nous avons développé un composé comprenant uniquement des résidus urée 

mimant l’hélice de la partie C-terminale de H3 afin de tester sa capacité à reconnaitre la surface 

de Asf1. Après des études de modélisation avec Rosetta, une oligourée ol1 a été synthétisée sur 

support solide et a montré une affinité très intéressante (Kd= 4.5±0.7 µM). Ces résultats sont très 

encourageants pour le développement de futures oligourée capables d’inhiber des interactions 

protéines-protéines. 

Cette thèse a donc permis de concevoir des composés à base d’urée capable de mimer la 

structure en hélice α des protéines. Les chimères hydrosolubles conservent la structure 

hélicoïdale des peptides et présentent une meilleure stabilité aux protéases. Les composés 

mimant la partie C-terminale de H3 ont montré qu’ils interagissaient dans la même zone que le 

peptide natif et après conjugaison avec un peptide pénétrant les cellules, conduisent à la mort 

cellulaire. Après des études de modélisation, notre première tentative de concevoir un « pur » 

oligourée capable d’inhiber l’interaction Asf1/H3-H4 semble prometteuse. Finalement, des 

efforts restent nécessaire pour atteindre de meilleures affinités de l’ordre du nano molaire, 

notamment en travaillant sur le linker permettant d’atteindre une autre face de la protéine Asf1 

en positionnant bien un résidu clé additionnel : la Phe.  
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Abbreviations and formulas  

 

δ  chemical shift (ppm) 

λ  wavelength 

%  percent 

°  degree 

Å  Angström 

Abs  Absorbance 

ACN   Acetonitrile  

Boc  tert-butoxycarbonyl 

BOP  (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate 

Bu  Butyl 

C   Celsius  

Cbz=Z  Benzyloxycarbonyl 

CD  Circular dichroism 

CDCl3   Deuterochloroform  

DCM  Dichloromethane 

DIC  Diisopropylcarbodiimide 

DIAD  Diisopropylazodicarboxylate 

DIEA   N, N’-Diisopropylethylamine 

DSC  N,N′-Disuccinimidyl carbonate 

DMF  Dimethylformamide  

DMSO  Dimethyl sulfoxyde 

DNA  Deoxyribonucleic acid 

EDT  1,2-Ethanedithiol 

Et2O   Diethylether  

eq.  equivalent 

ESI-MS  Electrospray ionization mass spectrometry 

EtOAc  Ethyl Acetate 

Fmoc  Fluorenylmethyloxycarbonyl chloride 

g  gram  

h  hour 

H2O  water 

HBTU  2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexaurophosphate 

HCl  Chlorhydric acid 

HOBt  Hydoxybenzotriazol 

HPLC   High Perform Liquid Chromatography  
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I2   Diiode 

IBCF  Isobutylchloroformate 

iPr   isopropyl 

ITC  Isothermal Titration Calorimetry 

K2CO3   Potassium carbonate 

MeOH   Methanol  

min  minute 

mol   mole 

N2   Nitrogen 

NaBH4  Sodium tetrahydroborate 

NaHCO3 Sodium bicarbonate 

NaI  Sodium iodide 

NaN3  Sodium azide 

NH2-NH2 Hydrazine 

NMM   4-methylmorpholine 

NMR   Nuclear Magnetic Resonance 

PBS  phosphate buffer saline 

Pbf  2,2,4,6,7-Pentamethyldihydrobenzofuran-5-sulfonyl 

pH   potential of hydrogen 

PMe3  Trimethylphosphine 

PPh3  Triphenylphosphine 

ppm   parts per million 

PPI  Protein protein interaction  

PS  polystyrene 

res  residue 

RP-HPLC reverse phase  High Perform Liquid Chromatography  

TFA  Trifluoroacetic acid 

THF   Tetrahydrofurane  

TIS  Triisopropylsilane 

tr  retention time 

Trt   tritylphenylmethyl 
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Nomenclature 

 

To mention α-amino acids, the three letters code will be used such as valine named Val. β-amino 

acids are preceded by β such as β3-Alanine named β3-Ala. γ-amino acids will be preceded by γ 

sign. For example, γ-Leucine= γ-Leu. 

 

Urea residues will be mentioned by using the three letters code followed by a “u” exponent. For 

example, the residue derived from the alanine will be named Alau. In table, the one letter code 

follow by a “u” exponent will also be used as well as for amino acids. The carbon atoms of the 

main chain will be named with greek letters α, β, γ, δ as shown on Figure 1. 

 
Figure 1: Example of notation for urea residue 

 

In chapter I, the compounds will be mentioned as I.X with X corresponding to the number of 

apparitions of the compound. In chapters II, III and IV, monomers will be named by MX (with X 

their number of apparitions into the manuscript). Synthesized peptides will be named pX whereas 

peptide-oligourea chimera will be named chX. Residues will be numbered starting from the N-

terminus toward the C-terminus. α-amino acids can be noted with the one letter code whereas 

urea residues are noted with the three letters code followed by the “u” exponent as shown on 

Figure 2. 
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Protein-protein interactions (PPIs) are involved in the majority of biological processes such as DNA 

replication, protein synthesis, apoptosis, transport, etc. PPIs occur between two or more 

structured proteins that interact together and trigger a biological function. Understanding how 

protein partners interact with each other is a structural prerequisite for understanding function 

that is associated. In most cases, the interface of PPIs is a relatively flat and large surface with an 

average area of 1200-2000 Å2 whereas the average surface between enzyme and substrate is only 

500 Å2 1–4. The physical contact between the two proteins should be specific and the assembly 

can be stable (macromolecular complexes such as ATP synthase) or more ephemeral (for transient 

actions)5,6. Few key residues, called hot-spots contribute significantly to the binding affinity7,8. 

Wells and coworkers performed mutagenesis experiments with alanine scanning substitution and 

measured the binding free energy difference (ΔΔG) between mutant and wild type to define hot-

spots as residues whose substitution leads to an important drop in free energy (ΔΔG > 2kcal·mol-

1)7.  

 
Figure 5: Example of a PPI with its interaction area and hot spots.  The crystal structure of the complex between 
Ras (light blue) and the Ras binding domain of RalGDP (grey) (PDB: 1FLD). Residues involved in the interface are 
represented in orange and hot spots in red. Interacting residues are shown as sticks. (Adapted from Grossmann et 
al., 2015) 

Over the last two decades, knowledge of PPIs has considerably increased and helped for a better 

understanding of many biological processes including cellular functions and diseases. PPIs are 

essential for infection of host by pathogens and thus represent possible targets to combat 

infectious diseases. Alternatively, deregulation of PPIs may also be associated with the 

progression of some diseases, including cancer. For these reasons, in recent years, PPIs have 

become attracting targets for developing new therapeutics. Research on modulators of PPIs has 

been very active over the last two decades and such modulators are today considered as 

promising and innovative drug candidates9,10. Furthermore, computational tools and chemical 

technologies (structure-based approach, high throughput screening and diversity-oriented 
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synthesis (DOS)…)11 have been developed to increased chemical space and facilitate the design 

based on structure of  inhibitors of PPIs12. From a structural point of view, Arora et al. examined 

entries in PDB in 2009 and highlighted that the secondary structure most frequently found at 

protein-protein interfaces is the α-helix (62%)13. Because of the frequency of the α-helix 

conformation at PPI interfaces, there has been a strong focus on -helix stabilization and mimicry. 

In contrast to small molecules that may interact only with a limited number of protein pocket due 

to their small size, medium sized compounds such as peptides and related mimics by covering a 

larger surface should increase binding and the specificity of protein recognition11. However, the 

direct use of α-peptides as PPI modulators has major drawbacks: (1) a high sensitivity to enzyme 

degradation; (2) due to their short sequences, peptides are generally poorly folded in solution 

and (3) they lack good cell permeability14,15. 

In this context, being 

capable to mimic the 

secondary structure of -

helical peptides has 

become a major challenge 

for researchers working in 

the field of peptide-mimetic 

chemistry. In the literature, 

the exact definition of 

peptidomimetics remains 

unclear and the 

classification has been 

changing with recent 

advances. In 2015, 

Grosmann et al. defined 

peptidomimetics as 

designed molecules that 

mimic the binding properties of natural peptide precursors16. They introduced a new classification 

depending on the similarity of compounds with the natural peptide precursor (Figure 6). Class A 

mimetics regroup modified peptides quite similar to the parent ones exhibiting minor 

modifications (side-chain amino acids or backbones). Class B comprises modified class A mimetics 

with unnatural amino acids, major backbone alterations and in this class B are also included the 

field of foldamers research. The Class C belongs to small molecules that do not present anymore 

features of peptides and where the scaffold projects substituents with the aim to reproduce the 

spatial arrangement and angular projection of “hot-spot” residue side-chains. Finally, the class D 

regroups molecules that do not mimic the side chains functionalities but only mimic the mode of 

action of a bioactive parent peptide. They can be obtained with screening libraries or by affinity 

optimization of a molecule from class C. 

As briefly summarized above, nowadays the field of research on PPIs modulators is extremely 

large and diverse. However, in this chapter we will focus more on the subject of this PhD. thesis, 

Figure 6: Classification of peptidomimetics. For illustration, a α-helical 
peptide and corresponding helix mimetics are shown. Modifications are 
highlighted in red. (Adapted from Grosmann et al.16) 
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namely on the development of foldamers to target PPIs. The term foldamer, has been introduced 

for the first time in 1998 by Gellman and corresponds to any oligomers “with a strong tendency 

to adopt a specific compact conformation”17,18. These artificial backbones (from polymers to 

artificial protein sequences) should present well-defined folded conformations and can 

eventually achieve chemical functions similar to those found in nature19. In contrast to peptides, 

the non-natural backbone of foldamers allows their resistance to proteolysis. These properties 

make foldamers interesting candidates to develop new drugs targeting PPIs.  

In the following paragraphs, we are going to give a non-exhaustive state of the art regarding the 

design and development of foldamers as PPI modulators in the context of cancer research. 

Moreover, new strategies to promote foldamer cell penetration as well as new targeted PPIs for 

innovative anticancer therapies will be detailed in the following sections. 

 

A. Design of foldamers to inhibit PPIs involved in cancer diseases  

In recent years, knowledge in cancer biology has been considerably improved and direct links 

between cellular pathway perturbation and cancer have been established20. In cancer, PPIs form 

signaling hubs and nodes that allow the transmission of signals essential for cell transformation 

and tumor progression10. PPIs play essential roles in linking networks that relay oncogenic signals, 

enabling the hallmark features of cancers and have also a role in driving and maintaining cancer 

cell growth.10 For example, several PPIs such as p53/MDM2 and CDK4/pRB are known to 

neutralize tumor suppressive functions. Thus, the possibility to disrupt PPIs that are critical for 

cancer development became a challenging goal for scientists as way to develop innovative 

anticancer strategies.  

The development of PPI inhibitors has considerably progressed and various approaches such as 

small molecules, recombinant proteins or synthetic molecules have shown some promises4,10,21. 

Several anticancer compounds targeting PPIs have entered clinical trials illustrating the potential 

of the approach for anticancer therapy22. For example, a recently developed p53-derived stapled 

peptide23 is currently in Phase I trial (NCT02264613)24 encouraging the development of new 

compounds with helical stabilization for clinical lead25.  

However, the design of compounds able to specifically modulate such PPIs remains a huge 

challenge due to the high diversity of PPIs in term of shapes and sizes. With their medium size, α-

peptides could be a good compromise between small molecules and biologics, but as mentioned 

previously, due to their chemical constitution, peptides present major drawbacks for their use as 

therapeutics. Concurrently, some foldamers present a high propensity to mimic α-helices and 

there is growing evidence that they are good candidates to interact with extended protein 

surfaces, in a high specificity manner. Indeed, several foldamer backbones have been shown to 

reproduce the main features of protein secondary structures of proteins found at the interface of 

PPIs while expressing resistance to proteases, suggesting their potential development for future 

therapies. 
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1. -helix mimicry for PPIs inhibition… 

Intense research efforts have been conducted to disrupt PPIs that are related to apoptosis or 

programmed cell death. In particular, restoring apoptosis activation is an attractive strategy that 

could contribute to tumor regression in cancers where this function has been downregulated 26. 

Two distinct signaling pathways are known to control apoptosis activation: the extrinsic pathway 

with extracellular signals generated by cytotoxic cells and the intrinsic pathway with intracellular 

signals such as DNA damage (Figure 7). These two pathways are interwoven and both stimulate a 

family of cysteine proteases called pro-apoptotic caspases.  

 
Figure 7: Key steps in apoptotic signaling 
pathways. Intrinsic pathways: cellular stress 
activates the p53 tumor-suppressor protein p53 
initiates the intrinsic pathway by upregulating 
Puma and Noxa, which in turn activate Bax and 
Bak. These two last permeabilize the outer 
mitochondrial membrane, resulting in efflux of 
cytochrome c, which binds to Apaf-1 and caspase9 
to form apoptosome. Extrinsic pathway: cytotoxic 
immune cells produce or express pro-apoptotic 
ligands such as Apo2L/Trail. It binds to the pro-
apoptotic receptors DR4 and DR5 on the surface of 
a target cell. Ligand binding induces receptor 
clustering and recruitment of the adaptor protein 
FADD and the initiator caspases 8 and 10 as pro-
caspases, forming DISC. This triggers activation of 
the apical caspases, driving their autocatalytic 
processing and release into the cytoplasm, where 
they activate the effector caspases 3, 6 and 7.26 
(adapted from Ashkenazi, Nature 2008) 

 
First, we will focus on the well-studied 

interaction between p53 and Mdm2.  

 

a) … of the complex P53/MDM2 

The protein p53 plays a key role in apoptosis, but also at different levels in the cell process such 

as DNA repair or angiogenesis. p53 has been discovered in 1979 by the team of Old and has been 

defined as a transcription factor and a tumor suppressor27–29. Its biological role consists in “ringing 

the bell” when DNA is damaged and p53 can be viewed as the guardian of the genome integrity. 

Failure of DNA repair mechanisms leads to p53-mediated induction of cell death programs. The 

loss of p53 tumor-suppressor activity favors the development of cancers. 
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The human protein double minute 2 (hDM2, MDM2 in mouse) is regulating p53 functions and is 

itself the product of a gene induced by p5330,31. An autoregulated negative feedback loop links 

the two proteins together in order to maintain a low p53 level in the cell in absence of stress31. 

During cellular stress (DNA damage, oncogene activation or hypoxia for example), p53 is activated 

to trigger cell death. As MDM2 overexpression blocks p53 pathway for cell arrest or apoptosis 

and the p53 loss in cancer contributes to the progression of cancer cells, many efforts toward 

p53-xDM2 interaction have been performed making it an important target for cancer therapies32. 

The p53-xDM2 interaction has indeed been 

extensively studied from both cellular and 

structural perspectives and can now be viewed 

as a model system for PPI inhibitor discovery. 

The first crystal structure of the complex 

p53/MDM2 was published in 1996 by Pavletich 

et al. at a 2.3 Å resolution (pdb: 1YCQ)33. 

Currently, 100 structures of MDM2 in complex 

with p53 peptide or analogues are available in 

the PDB. These structures allowed an 

understanding at the molecular level of how 

the binding occurs between the two partners 

and highlight that upon binding to MDM2, the 

p53 N-terminal transactivation domain adopts 

an α-helical conformation where three "hot 

spot" residues are located in the hydrophobic 

binding cleft of M(h)DM2: Phe19, Trp23 and 

Leu26 (Figure 2A)18. The knowledge of the 

mode of interaction between the two protein 

partners thanks to these numerous x-ray 

crystal structures have guided the design of 

potent M(h)DM2 antagonists that have 

emerged as potential anticancer therapeutics 

(from small molecules to peptides and peptidomimetics) to trigger the apoptosis cellular 

machinery32.  

β-peptides designed to mimic p53 and specifically interact with the surface of hDM2 have been 

investigated first34,35. In contrast to α-peptides, β-peptides consist of residues with an extra α-

methylene unit in their backbone and exhibit a high propensity to fold into stable helical 

secondary structure with as few as four β-amino acids36. These aliphatic foldamers adopt a stable 

314-helical conformation whereas α-peptides form a regular 3.613 helix37 (Figure 9A). The 14-helix 

presents a little longer rise per residue (1.56 Å) than the α-helix (1.5Å) and the radius is slightly 

wider (2.7Å and 2.2Å for β- and α-peptides respectively).  β-Peptides which are resistant to 

proteolysis have been used successfully to mimic α-helical peptide epitopes despite significant 

differences with α-helical peptides (the two helices have opposite polarities),38. Schepartz et al. 

Figure 8: X-ray crystal structure of hDM2 in complex 
with the p53 N-terminal transactivation domain. hDM2 
represented in grey and the p53 helix represented as 
cartoon in cyan (pdb: 4HFZ). The three key residues are 
represented in stick illustrating their interaction with 
the hydrophobic binding cleft of hDM2: F19, W23 and 
L26 
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have designed β-decapeptides to mimic the α-helix from the activation domain of p53 

(p53AD=QETF19SDLW23KLL26PEN) with the hypothesis that the function of p53 peptide would be 

recapitulated by keeping the side chains of the three hot spot residues, namely Phe19, Trp23 and 

Leu2633–35,39. Although β-peptides adopt a 14-helix conformation with different dimensions 

(residues per turn and radius) than α-helix, the authors assumed that the -Phe19, -Trp23 and 

-Leu26 -residues could position their side-chains in the same i/i+3 relationship than that 

observed for the reference peptide (Figure 9B)39. Experiments of direct and competition 

fluorescence polarization have been performed and highlighted one compound, referred here as 

I.1, capable to interact with the surface of hDM2 and to inhibit the interaction with p53 reference 

peptide (Figure 9B). Structural determination by high-resolution NMR spectroscopy allowed the 

determination of the structure of I.1 in solution and revealed a C-terminal part partially 

unwrapped. This result suggested to the authors to develop a library of analogues of I.1 with 

various substitutions on its non-recognition face, in order to obtain more active compounds35. 

More recently, they managed to increase the affinity of their β-peptides to the nanomolar range 

by introducing non-natural side chains on the binding face39. Indeed, they replaced the β-Trp23 

by a β-3-trifluoromethylphenylalanine (I.2, Kd=28±5 nM) or even β-6-chlorotryptophan (I.3 

Kd=30±5 nM). Moreover, these two compounds are able to bind hDM2 as well as hDMX, a hDM2 

related protein identified as another oncologic target. 
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In continuation of this work, a strategy involving peptide structure stabilization and aimed at 

increasing cell permeability was applied to these -peptide foldamers40. Bridged β-peptides, 

reminiscent of the stapled peptide strategy, were hence developed by Schepartz et al. The bridge 

was composed of diether or hydrocarbon linkages and was inserted between positions 4 and 7 or 

2 and 5 (Figure 9C). For the first position, fluorescence polarization (FP) assays of bridged 

analogues of I.2 (I.5-O and I.5C) have shown a better binding to hDM2 (Kd= 53.9 and 94.1 nM 

respectively) than the unbridged β-peptide analogues (Kd= 114 and 253 nM)40. Regarding the 

introduction of the bridge at the second position (between 2 and 5), the observed binding of I.4-

O and I.4-C was 4 and 8-fold lower than the unbridged analogues, illustrating the importance of 

the position of the bridge for protein surface recognition. Concurrently; confocal microscopy 

confirmed that fluorescently-labeled versions of bridged β-peptides (between positions 4 and 7) 

were distributed widely in Hela cells (endosomes as well as nuclear and cytosolic compartments) 

whereas analogues bridged between positions 2 and 5 were not. These results highlight a 

correlation between the affinity for hDM2 and cell uptake.  

 

Amongst proteomimetic scaffolds that mimic the side chain projections of targeted peptide 

sequences, aromatic oligoamide foldamers, initially developed by Hamilton et al. with terphenyl 

Figure 9: Design of potential β-peptide inhibitors of the interaction p53/MDM2. A) Chemical structures of 
α- and β-amino acids and structural representation of their corresponding helices: α-helix, 12-helix and 
10/12-helix (adapted from Cheng et al., Chemical reviews, 2001 B) Helical representation of β-peptides 
designed as p53 analogs with the replacement of the aromatic key residue X by unnatural hydrophobic side-
chain containing β3-amino acids. C) Helical representation of β3-peptides bridged between positions 2 and 5 
or 4 and 7, designed as p53 analogs. Z corresponds to 3-(S)-3-amino-4-(2-trifluoromethylphenyl)-butyric acid 
(adapted from Bautista et al., JACS, 2011). 
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derivatives, are good candidates for the inhibition of PPIs41–43. These compounds are of particular 

interest for several reasons: 1) they exhibit predictable conformations; 2) their side chains may 

be projected in a similar spatial orientation than key residues of α-helices; 3) they are potentially 

amenable to library synthesis by resorting to solid-phase strategies44,45. A. J. Wilson and 

coworkers have recently reported the inhibition of p53-hDM2 interaction with N-alkylated 

oligoamides46, and 3-O-alkylated oligoamides47,48. They have reported the synthesis of N-

alkylated oligoamides (with the development of solid phase synthesis based on Fmoc strategy46) 

and their ability to mimic the i, i+4 and i+7 side-chain projections of an α-helix49,50. Fluorescence 

anisotropy competition (FAC) assay (or fluorescence anisotropy competition titration) for 

inhibition of the p53/hDM2 interaction has been performed on a small library of N-alkylated 

oligoamides and unveiled that a minimal length of three aryl motif was required to ensure a 

correct inhibition (micromolar range)46. The most potent inhibitor of the interaction of p5315-

29/hDM2 protein in this series, I.6 (Figure 10), has a half-maximal inhibitory concentrating value 

(IC50) of 2.8 µM which is comparable with the native p5315-29 α-helix (IC50=1.2 µM). Structural 

studies have also been performed with 1H-15N HSQC experiments and the chemical shifts were 

mapped on the crystal structure of p53-hDM2 complex (pdb entry: 1YCR) (Figure 10B). The 

chemical shifts observed during the addition of compound I.7 illustrated similarities with the 

addition of the p53 peptide, but also that structural changes occurred upon formation of the 

hydrophobic cleft of hDM2. Indeed, shifts are observed at both end of the helix binding cleft of 

hDM2, suggesting that the helix mimetic I.7 s adopts an extended conformation to bind to the 

surface of hDM2.  

 

 
To complement this structural study in solution, cell experiments have been performed on a 

library of N-alkylated oligoamides to evaluate their cellular activity51. A high-content imaging 

screen was developed and among the 77 members of the oligoamide library, compounds such as 

I.8 and I.9 appeared to be effective at several endpoints (four endpoints were assessed: (1) cell 

number, (2) the use of an antibody against caspase 3 to identify cells which maybe apoptopic, (3) 

autophagy and (4) the arrangement of actin filaments)51. MTT cell toxicity assays have highlighted 

Figure 10: N-alkylated oligoamides 
for the inhibition of p53-hDM2. A) 

Chemical structure of N-alkylated 
oligoamides B)1H-15N HSQC 
chemical shift mapping with hDM2 
compared with the crystal structure 
of the hDM2-p53 structure (1YCR) is 
represented in a blue surface and 
N-alkylated oligoamide in grey stick 
has been manually docked 
(adapted from A. J. Wilson et al. , 
Org. Biomol. Chem, 2010). 
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that few compounds including I.8 and I.9 present a similar level of toxicity to Nutlin-3 (a small 

molecule inhibiting the interaction p53-MDM2, currently in preclinical study52). FAC assays 

confirmed that I.8 and I.9 inhibit p53-hDM2 in the low micromolar range of IC50. These two 

compounds were the most effective in dose-response experiments but they lack selectivity as 

they also showed some activity as inhibitors of another anticancer target (Mcl-1/NOXA-B). As this 

class of compounds enter the cells, they can reproduce their binding activity in a cellular context. 

Concurrently, O-alkylated oligoamides have been synthesized and also showed potential as α-

helix mimetics53. Indeed, with their benzamide rigid scaffold, their functional groups allow the 

mimicry of side chains found at positions i, i+4 and i+7 positions of α-helix similar to N-alkylated 

oligoamides54. Wilson et al. designed and synthesized a series of compounds as inhibitors of p53-

hDM2 and the best compound I.10, presented a promising IC50 = 1.0±0.11 µM as determined by 

FAC assays47. However, the aqueous solubility is an important parameter for structural and 

biological studies and I.10 presents a poor solubility in aqueous environment55. The chemical 

composition of this molecule with aliphatic and aromatic side chains does not help for water 

solubility. To circumvent this chemical limitation, Wilson et al. have integrated a “wet-edge” 

composed of a hydrophilic ethylene glycol chain that is incorporated along the solvent-exposed 

surface of I.10 and obtained the mimetic I.11 (Figure 11A)55. The synthesis route is first based on 

the preparation of a bifunctional O-alkylated aromatic monomer, followed by a succession of 

iterative coupling with Ghosez’s reagent and reduction of nitro-masked groups into an amine 

group. FAC assays demonstrated that the functionalized compound I.11 is similar to I.10 in 

mimicking the p53 peptide with IC50 in micromolar range for both compounds (Figure 11B). These 

results showed that this orthogonal functionalization has a low impact on the binding affinity but 

improved solubility in the assay buffer (sodium phosphate buffer pH 7.5). Indeed, qualitative 

solubility tests were performed on compounds I.10 and I.11 in buffer with 10 and 1% of DMSO 

and I.11 shows a higher solubility with 1% of DMSO than I.10.  
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Finally, hybrids α-helix mimetics with aromatic oligoamides (Figure 7 and Figure 12A), such as O-

alkoxybenzoic acid and a central α-amino acid have been synthesized and showed their ability to 

mimic α-helix as they could inhibit p53-hDM2 interaction with IC50 varying from 10 to 100 µM 

(IC50 = 0.5 µM for Nutlin-3)56. Quantitative structure-activity relationship (QSAR) analysis revealed 

that the hydrophobicity of the central α-amino acid side chain (the Trp23 mimic) is essential for 

the molecular recognition of hDM2.  

 

Figure 11: Structure and fluorescence anisotropy assays of O-alkylated oligoamides A) Chemical 
structure of oligoamides I.10 and its "wet-edged" version I.11 mimicking the side chain projection of the 
3 key hydrophobic residues of p53 transactivation domain. B) Fluorescence anisotropy competition 
titration data (40mM sodium phosphate buffer pH 7.5). Displacement by native peptide (black squares), 
trimer I.10, (dark grey circles) and PEGylated trimer I.11 (light-grey triangles) (taken from Prabhakaran, 
2013, Euro JOC) 
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Figure 12: Chemical structure of hybrids α-mimetics of p53. A) Chemical structure of hybrids containing a 
central amino acid and aromatic oligoamide B) Alignment of key side chains with the p53 segment on the top 
and the structure of two α/β/γ-peptides helix mimetics.  
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In collaboration with the group of A. J. Wilson, Aitken et al. have recently reported hybrid α/β/γ-

foldamers as inhibitors of the interaction between p53 and hDM257. Previous structural studies 

of Gellman and Balaram have revealed that the local introduction of β and γ-amino acids within 

peptide sequence maintain the α-helix58,59. Grison et al. have recently showed that the alternation 

of trans-2-aminocyclobutane carboxylic acid and γ-amino acids was well-tolerated in peptides 

sequences adopting of 9/8 ribbon or 13-helix structure60,61. In this context, α/β/γ-hexapeptides 

were designed to mimic the projection of the three hot-spot residues of p5319-26 peptide (Phe19, 

Trp23 and Leu26) at i, i+4 and i+7 positions respectively (Figure 12B). NMR, IR and CD experiments 

data illustrated that compounds fold into 12,13-heliccal conformation in solution57.Furthermore, 

the proteolytic stability of α/β/γ-peptides was investigated with chymotrypsin and showed that 

the compounds were still stable after 80 min, whereas p5319-26 is fully degraded after 22minutes. 

Their ability to mimic the N-terminal helical domain of p53 (residues 19-26) was confirmed by FAC 

assays with the best compounds (I.12 and I.13) showing a half-maximal inhibitory concentration 

value (IC50) 10-fold higher than the native p53. However, design optimization would be necessary 

to further improve the affinity of these compounds. 

All these foldamers have shown a good potential to inhibit the interaction between p53 and 

hDM2 but improvement of affinity, solubility and cell penetration remain necessary. 

 

b) … of the Bcl-2 superfamily 

As mentioned before, apoptosis is regulated by a complex network of cell-signaling mechanisms 

involving key regulatory molecules. Apoptosis can be activated by several pathways, including the 

mitochondrial activation with the release of cytochrome C upon the stimulation by a variety of 

cell-death signals. Another pathway is the ligation of death receptors leading to the activation of 

capsase-8 and -3 (Figure 13)62. Several PPIs are involved in these pathways and have been defined 

as being important targets to develop modulators.  
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Figure 13: Protein-protein 
interactions involved in 
programmed cell death 
process. A network of 
PPIs along the two 
apoptotic pathways 
involving the 
mitochondria and death 
receptor (taken from 
Huang, Chemistry and 
Biology, Vol. 9, 200262).  

 

 

 

 

 

The Bcl-2 (B-cell 

lymphoma 2) family 

gathers evolutionarily conserved proteins with Bcl-2 homology (BH) domains that control the 

mitochondrial activation pathway. This family is involved in the regulation of the apoptotic signal 

and can either promote or inhibit apoptosis63. These proteins are structurally different but share 

four conserved BH domains and they can be defined into three categories: anti-apoptotic 

members, pro-apoptotic members and BH3-only pro-apoptotic members (Table 1). 

 
Table 1 : The Bcl-2 protein family 

 Members Domains shared 

Anti-apoptotic members Bcl-2, Bcl-xL, Bcl-W, A1, Mcl-
1, BOO 

BH1, BH2, BH3 and BH4 

Pro-apoptotic members Bax, Bok, Bcl-xS, Bak, 
Bcl-GL, Bfk, 

BH1, BH2 and BH3 
BH2 and BH3 

BH3-only pro-apoptotic 
members 

Bad, Bik, Bid, Hrk, Bim, Noxa, 
Puma, Bmf 

BH3 

 

In order to understand the pertinence of foldamers as PPI modulators in this context but without 

going into too much into details, it is important here to remind that the anti-apoptotic members 

of the Bcl-2 family are preventing mitochondrial outer-membrane permeabilization. They 

sequester the BH3-only members that normally activate the cell permeabilization, or they inhibit 

PPIs involving pro-apoptotic members, such as Bax/Bak63. Consequently, scientists have made 

considerable efforts to mimic BH3-only proteins in order to counteract the activity of anti-

apoptotic members. The BH3 domain is indeed omnipresent in the Bcl-2 family and adopts a 

helical conformation which could be mimicked by foldamers. Various designs that led to inhibitors 
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of anti-apoptotic members have been reported by several groups in the context of new anti-

cancer drugs.  

 

 

 

 

 

 
Figure 14: X-ray crystal structure of Bim BH3 peptide (yellow) 
in complex with Bcl-XL (pdb entry = 3FDL). Bcl-XL is 
represented as a surface. The structure shows that the 23-
residue α-peptide Bim BH3 adopts a helical conformation. 

 

Solution and X-ray crystal structures indicate that 

Bcl-2 and its homologs are characterized by a long 

hydrophobic cleft allowing the binding of the α-

helix from the BH3-domain of pro-apoptotic 

members. The Bim BH3 domain sequence (DMRPEIWIAQELRRIGDEFNAYYARR) which is depicted 

in Figure 14, adopts an α-helix conformation and presents four key hydrophobic residues in i, i+4, 

i+7 and i+11 positions64. These residues correspond to Ile58 Leu62, Ile65, and Phe69 and are all 

localized on one face of the helix that is in contact with the protein partner surface. 

Peptidomimetics, including the foldamers, have been developed to mimic this BH3 domain with 

the goal to antagonize Bcl-2 family members. 

First, terphenyl scaffolds have been developed by Hamilton and coworkers to mimic the BH3 

domain of Bak and Bad-proteins that associate with the anti-apoptotic protein Bcl-xL
42. A 

structure-based design was used to determine the best molecular scaffolds that would mainly 

mimic the side chain projection along one face of the α-helix. Terphenyl scaffolds have the ability 

to mimic the projection of key recognition motifs on the surface of an α-helix41,65. The solution 

and crystal structures of Bak/Bcl-xL showed that four hydrophobic residues of Bak peptide are 

involved in the binding: Val74, Leu78, Ile81 and Ile8566,67. They terphenyl-based compounds have 

substituents appended on the ortho-positions to imitate the side-chains of these key hydrophobic 

residues. The binding affinity of these series of terphenyl -helix mimics was determined by using 

a fluorescence polarization assay. The best compound, I.14, exhibits a good binding affinity with 

a Kd = 114 nM42. Less hydrophobic compounds showed a lower affinity which illustrates the 

importance of hydrophobic interactions for the binding to Bcl-xL. Furthermore, because of the 
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poor solubility of these aromatic compounds in water, terminal carboxylate groups were added 

to improve it65. 

 
Figure 15: Strategy to inhibit the interaction between Bak BH3-peptide and Bcl-xL with a terphenyl compound. A) 
Crystal structure of Bak BH3-peptide/Bcl-xL complex. B) Docking results and HSQC results with residues shifted. C) 
Molecular structure of the best terphenyl derivative I.14. 

 Furthermore, docking studies coupled to HSQC NMR experiments with 15N-labelled Bcl-xL were 

performed to localize I.14 on the surface of Bcl-xL. Shifts were observed for several residues on 

the surface of Bcl-xL (Ala104, Leu130, Trp137, Arg139, Ile140, Phe146, Glu193, Tyr195 and Ser203) 

illustrating that I.14 interacts in the same binding cleft than the natural helical peptide (Figure 

15). The observed affinity of I.14 in the sub-micromolar range was a real improvement in 

comparison to small molecule inhibitors of Bcl-xL reported earlier in the literature with KD values 

more in the µM range68–70.  

More than one decade ago now, Gellman and coworkers developed  -, α/β-, (α/β + α)- and (α/β 

+ α)-peptides with the aim to tailor peptidomimetic foldamers that bind tightly to the BH3-

recognition cleft of Bcl-xL
38,71,72. They initially designed more than 200 β-peptides and α/β-

peptides to mimic the BH3 domain of Bak and identified a foldamer with a significant affinity for 

Bcl-xL
38,71,72. The best compound, I.15 (Figure 16A) is composed of an α/β-segment assembled 

with an α-peptide tail and exhibited a good affinity for Bcl-xL (IC50 = 0.029 µM). However, this 

hybrid sequence did not give any binding results with Mcl-1 protein. This absence of interaction 

appeared to be a significant limitation of this strategy because this foldamer-type ligand could 

have been more efficient and useful if it could have interacted with multiple anti-apoptotic Bcl-2 

protein family57. 
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Figure 16: Sequences of α/β-peptides mimicking the BH3 domain of Puma and X-ray crystal structure of the 
resulting complex at 2.2Å. A) Chemical structure of (β+α / α)-peptide foldamer that mimic well the BH3 domain. B) 
Sequences of Puma BH3 peptide and α/β-peptides Puma mimetic with dissociation constants determined by direct 
binding FP and peptide degradation assay to determine half-life at 50µM concentration in the presence of 5 µg/ml 

pronase. 3-residues are highlighted in green C) On the left, Puma mimetic I.19 (navy) bound to Bcl-xL protein (white) 
(pdb=2YJ1) overlaid with Puma/Mcl-1 complex (PDB = 2ROC) (green/red). On the right, overlay of α/β-peptide I.19 
(navy) with the Puma BH3 domain (green) and the Bim BH3 domain (yellow). Key interacting hydrophobic residue 
orientations (h1-h4) as well as the conserved Asp residue from the α-peptide BH3 sequence are well-mimicked by 
I.19.73  

Later on, they described a different approach to design effective α/β-peptide ligands74. Starting 

from a peptide corresponding to the Puma BH3 domain (I.16), they prepared 7 analogues 

containing regularly distributed 𝛼 → β3-amino acid residues along the natural protein sequence 

while keeping the native side-chains. These α/β-peptides possessed an ααβαααβ backbone 

pattern known to adopt a conformation very close to the -helical conformation75 and the 

position of β-residues was moved around the helical periphery (I.17-I.18) (Figure 16B). 

Fluorescence polarization assays were performed to determine the inhibition constant (Ki) of the 

seven α/β-peptides and several chimera-type inhibitors with nanomolar affinities for Bcl-xL and 

Mcl-1 were found72. The authors showed that a variation in the position of β-residues caused 

considerable changes in the affinity and selectivity for Bcl-xL or Mcl-1. Beside the binding affinity, 

the proteolytic stability was also improved with the insertion of β3-amino acids. This highlights 

the fact that the positioning of β-residues is critical for the function of these compounds. Their 
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results also highlighted that this sequence-based design was more efficient than the structure-

based one in engineering promising foldamers as PPI inhibitors. More recently, in collaboration 

with W. Douglas Fairlie, they reported the synthesis and first structural elucidation of an /-

peptide mimicking the Puma BH3 domain in complex with Bcl-xL73. The /-peptide which 

contains six β3-amino acids regularly distributed to keep the ααβαααβ backbone adopts an -

helical conformation with β3-amino acids aligned along one solvent-exposed face of the helix. The 

crystal structure of I.19 in complex with Bcl-xL was obtained at 2.4 Å (pdb= 2YJ1) and confirmed 

that the BH3-recognition site is involved in the binding with this compound (Figure 16C). The 

superimposition of helices showed the structural similarities between I.19, Puma and Bim BH3 

domains but also revealed differences in the orientation of some side-chains such as those of 

Tyr101 and Phe105. Additionally, the radius of curvature indicated that the helix was not straight 

and can bend to accommodate a binding partner. Furthermore, key binding residues of a native 

BH3 domain are well-mimicked by this /-peptide despite the additional backbone methylene 

carbon brought by β3-residues which is quite encouraging for the sequence-based design 

approach strategy. However, the affinity of I.19 for Mcl-1 remains low due to the orientation of 

solvent-exposed residues and may be improved thanks to these structural data. 

Concurrently, again in collaboration with the group of Fairlie, Gellman and coworkers published 

a series of analogues of the Bim BH3 domain that were composed of two different regular / 

patterns throughout the backbone76. They studied the local substitution of α-residues in a 18-mer 

α-peptide I.20 by β-residues keeping the appropriate side-chain and reinforced the fact that β-

residues aligned on one side of the helix can well-mimicry α-helix function. The two ααβαααβ 

(compound I.21) and αααβ (compound I.22) patterns have been tested and several /-peptide 

sequences showed effective mimicry of Bim BH3 domain (Figure 17). The ααβαααβ backbone 

allows an alignment of β3-residue side chains along one side of the helix. Remarkably, a X-ray 

crystal structure has been obtained for chimeric α/β-compounds I.21 and I.22 in complex with 

Bcl-xL. 
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Both crystal structures 

illustrate that Bim-derived 

α/β-peptides have huge 

similarities with the natural 

complex because they 

interact on the same area of 

Bcl-xL and side chains 

contacts are conserved. 

Despite the replacements of 

five α-amino acids by 

corresponding β3-residues, 

the four key hydrophobic 

residues defining the BH3 

domain remain present in 

I.22 with Ile3, Leu7, β3-Ile10 

and β3-Phe14 (Figure 17). 

Among the αααβ series, I.22 

exhibited the best affinity for 

Bcl-xL (Ki = 50 nM as 

determined by competition 

fluorescence polarization) 

and a similar affinity to Mcl-1. This study allowed the determination of a new substitution pattern 

for the BH3 domain mimicry in addition to the ααβαααβ pattern, thus expending the possible α/β 

combinations useful to mimic an α-helix such as here the BH3 domain of Bim. 

Other scaffolds such as oligopyridyl77, oligothienylpyridyl78 (exhibiting higher solubility), 

vinylogous amides (enaminones developed by Hamilton and coworkers)79 or more recently 

oligoamides (picolinamide and benzamide)80 led also to good helical mimetics of BH3 domains 

but several optimizations to increase the affinity and for cell penetration are still needed to make 

these molecules suitable for a pharmaceutical development. In comparison, The BH3-mimetic 

ABT-199, a small molecule helix mimetic that interacts with Bcl-2 entered on the market in 2016 

as Venetoclax is a promising anti-cancer treatment81,82. 

 

c) …the complex P300/HIF1α 

During this last decade, a new target for cancer therapy research, the hypoxia-inducible factor 1 

(HIF1) has emerged. As it accumulates in cancer cells and recruits coactivators CREB-binding 

protein/p300 (CBP/p300), HIF1 plays a key role in adaptation of tumor cells to hypoxia. This 

transcription factor is a heterodimer basic helix-loop-helix protein with two subunits: HIF1α and 

HIF1β83. The expression of over 40 genes is activated by HIF1 at transcriptional level84. In 

particular, HIF1α in complex with p300 activates VEGF (vascular endothelial growth factor) and 

its pro-angiogenic function. HIF1α regulates also gene encoding for glucose transporters leading 

B 

Figure 17: Sequence of natural peptide and two α/β peptide mimicries 
and crystal structure of one α/β peptide in complex with Bcl-xL. A) 
Sequences of natural peptide I.20 and α/β peptide I.21 and I.22. β3-
Residues are highlighted in green. B) Crystal structure of Bim BH3 peptide 
(yellow) in complex with Bcl-xL (pdb entry: 3FDL). The crystal structure of 
the compound I.22 (green) in complex with Bcl-xL reveals the same surface 
of contact as the one of the natural peptide is involved in the interaction 

(pdb entry: 4A1W). 
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cancer cell energy metabolism to be altered84. Furthermore, hypoxia inducible genes are involved 

in the angiogenesis (formation of capillary branches starting from preexisting capillaries) a 

complex process that involves numerous genes coming from different types of cells. For scientists, 

targeting the interaction between HIF1α and p300 should allow the control of HIF1α mediated 

hypoxia signaling. The solution structure of the HIF1α/p300 complex shows that the C-terminal 

transactivation helix domain (residues 786-826) of HIF1α interacts with the cysteine-histidine rich 

1 (CH1) domain of the coactivator p300 (Figure 18A)85. Key residues of HIF1α are involved in the 

interaction with p300: Leu818, Leu822, Asp823 and Gln824 that are located in a hydrophobic 

pocket of the p300/CBP CH1 domain.  

 
Arora and coworkers have designed oxopiperazine helix mimetics (OHMs, Figure 18) to reproduce 

the side-chain contacts established by the third helix of HIF1α when binding to p30086,87. These 

small scaffolds are assembled from natural amino acids and ethylene bridge constraints between 

nitrogen atoms of two neighbor residues. In contrast with the majority of nonpeptidic helix 

mimetics based on achiral aromatic backbones, OHMs are based on chiral scaffolds and should 

enhance specificity of binding. Because high resolution structure and computational analysis of 

the HIF/p300 complex suggested that OHM dimers should mimic the i, i+4 and i+6 or i+7 residues 

of α-helices, three key residue side-chains of the four involved in the natural complex (i.e. Leu818, 

Leu822 and Gln824) were equipped on the R1, R2 and R4 positions respectively87. To note, in the 

Figure 18: Presentation of hypoxia inducible factor in complex with CH1 domain and strategy to inhibit this 
interaction. A) The resulting complex controls the transcription of hypoxia–inducing genes. B) Solution 
structure of HIF-1α (blue) in complex with the CH1 domain (red) (pdb entry: 1L8C) and on the right, 
superimposition of the helix of HIF-1 and an oxopiperazine derivative. C) Chemical structure of oxopiperazine 
helix mimetics and affinity data81. 



Chapter I 
Targeting protein-protein interactions (PPIs) involved in cancer development 

38 
 

computational design (Rosetta) the R3 was not predicted to make contacts with the p300 proteins 

surface and an Ala residue side-chain was installed at this position. The binding affinities of this 

OMH series (5 compounds synthesized on solid phase) for the p300-CH1 domain were 

determined by using intrinsic tryptophan fluorescence spectroscopy and a sub-micromolar range 

affinities were obtained. The best affinity (Kd = 0.53±0.14 µM) was obtained for I.23 (Figure 18), 

which contains the native side-chain projections of Leu818, Leu822 and Gln82487. In cellulo assays 

have next shown that the down-regulation of several genes implicated in angiogenesis, apoptosis 

and cell proliferation was observed in cells treated with I.23. The authors also performed in vivo 

tests in mice and showed that I.23 could reduce tumor size without affecting measurable changes 

in animal body. To optimize HIF mimetics, the authors performed a computational approach with 

Rosetta to improve the binding affinity for p300-CH188. Predictions were evaluated with the 

synthesis of analogues I.24-I.27 that binds p300 with higher affinities than I.23 such as I.25 that 

presents a 13-fold enhancement in binding affinity (Kd=30.2±1.87 nM). This study highlights the 

efficacy and specificity of OHM derivatives for the inhibition of HIF-p300-CH1. Concurrently, Arora 

and coworkers also designed and optimized oxopiperazine analogues by relying on a 

computational approach with Rosetta and applied it for the design of novel p53 activation domain 

mimics and HIF1α88.  

Another foldamer strategy to inhibit the HIF1α/p300 consisted in designing 3-O-alkylated 

oligobenzamides to mimic the third helix of HIF1α 89. A. J. Wilson and coworkers conceived a 

series of these compounds and they even elongated one of their oligobenzamide analogue by 

conjugating it with the HIF-1α second helix (aa 794-813) with the aim here to increase the binding 

affinity as well as protein specificity (Figure 19)90.  

 
Figure 19: Chemical structure of the hybrid I.28 
with one letter code for the amino acids sequence 
of Helix 2 of HIF-1α in blue. 

 

The resulting molecule I.28 that referred 

as “bionic” hybrid by Wilson et al., showed an increased specificity although no real improvement 

in the binding to p300 (micromolar range) was observed in comparison with the native sequence 

(HIF-1α794-826). This original strategy was performed to increase specificity or to target longer 

peptide sequences. Perspectives for this target PPI have recently been reported by Wilson and 

coworkers91. In contrast with previous PPIs (hDM2, Bcl-2 family), HIF PPIs are more diverse, 

complex and larger which renders the development of high-affinity ligands more challenging. 

Moreover, no crystal structure of the HIF1α/p300 complex are currently available in the PDB while 

it would help for rational design to develop new inhibitors. Considerable progresses have been 

realized in the design and synthesis of PPI inhibitors. However, tailoring high affinity ligands with 

high specificity remains essential to inhibit this action of this promising target in an anticancer 

therapy context.  
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d) Other foldamers targeted PPIs involved in cancer 

In the literature, other PPIs involved in cancer development have been investigated such as the 

estrogen receptor (ER) in complex with an estrogen molecule. ER is a transcription factor of the 

nuclear receptor superfamily that mediates the expression of estrogen-activated genes and is 

involved in several diseases, in particular breast cancer, making it an important target for new 

therapeutic research. The estrogen molecule binds ER on its ligand binding domain leading to 

interaction with DNA-promoters followed by the recruitment of coactivators that are required for 

the expression of genes regulated by ER. These coactivator proteins present a conserved motif 

(LXXLL with L for Leucine and X for any amino acid) that is essential for the binding to the ER 

surface92. Regarding the mode of interaction, an α-helix is involved with the key residues localized 

on two faces of the helix (Figure 20A). In the literature, synthetic scaffolds designed to mimic 

multiple face contacts have been already reported by several groups. As described previously, 

Hamilton and coworkers had indeed developed terphenyl molecules capable to mimic i, i+4 and 

i+7 residues of an α-helix and lead to potent inhibitors of p53/MDM2 and Bcl-xL/Bak PPIs41,43,93. 

To mimic the LXXLL motif (i, i+3 and i+4 residues), backbone modifications of the terphenyl 

scaffold were necessary94. Hamilton et al. had previously developed a biaryl scaffold that closely 

mimics the projections of i, i+3 and i+4 residues (Figure 20B)43. With the expectation to improve 

the water solubility and bioavailability, they have then designed and synthesized substituted 

pyridylpyridones. Fluorescence polarization assays indicated micromolar range affinities of 

compounds for ER, with in particular I.29 that imitates quite well most of the LXXLL motif, with a 

Ki of 16 µM or the best compound I.30 of this series exhibiting a Ki of 4.2 µM underlining here 

that the introduction of the naphtyl group on the scaffold improved the recognition with the 

surface of ER. Altogether, these results indicate that bis-heteroaryl scaffold-containing mimicries 

are able to reproduce the α-helical motif LXXLL of coactivator proteins but there is still room for 

improving the affinity to ER by for instance performing detailed structure-activity relationship 

studies.  

 
Figure 20: X-ray crystal 
structure of ER ligand binding 
domain in complex with 
peptide GRIP1 coactivator and 
trisubstituted biaryl scaffold 
developed by Hamilton and 
coll. A) X-ray crystal structure of 
ER ligand binding domain (blue) 
in complex with peptide GRIP1 
coactivator α-helical peptide 
(yellow) (PDB entry: 3ERD) B) 
Chemical structure of 
pyridylpyridone derivatives I.29 
and I.30 mimicking i, i+3 and i+4 
residues of the α-helix. 
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Vascular endothelial growth factor (VEGF) plays an important role in the tumor angiogenesis95. 

Its activity is mediated by receptor tyrosine kinases VEGFR-1 and VEGFR-2. It is an important 

therapeutic target and several antagonists have been developed in anticancer therapies96,97. In 

the field of foldamers, substitutions of α amino acid to β3-residues have been introduced by 

Gellman and coworkers in a 19-mer cyclic peptide, binding to VEGF9-108 homodimer98. This 19-mer 

disulfide-constrained (C5-C15) peptide I.32 has been selected by phage display for the inhibition 

of the binding of VEGF with extracellular domains 1-3 of VEGFR-2 and a crystal structure have 

been obtained with next-best inhibitor I.31 (Figure 21A)99. To realize the local α→β3 replacement, 

they actually used a 19-mer cyclic peptide where the Met10 was replaced by norleucine to avoid 

sulfoxide formation (I.33). Hybrids α/β were synthesized and showed significant sub-micromolar 

affinities to VEGF (in the same range than the native peptide) and this despite a non-classical helix 

surface recognition. Additionally, a constrained β-amino acid residue Z (aminopyrrolidine 

carboxyl) was introduced into the sequence as previous studies showed that the introduction of 

constrained β-residues can favor the helical folding and have a positive effect on the affinity100. 

Furthermore, they demonstrated with the use of proteinase K, the resistance to proteolysis of 

α/β-peptides compared to the reference cyclic peptide with I.35 presenting a 15-fold higher 

stability than I.33 (Figure 21B). These results unveiled that foldamer-based design can be 

employed to mimic a polypeptide even with a discrete irregular conformation which is quite 

important because most protein recognition surface present irregularities. They next successfully 

applied this strategy to the Z-domain, a polypeptide composed of three α-helices101. These results 

will be described in the following section.  

 
Figure 21: X-ray crystal structure of VEGF in complex with I.31 and sequence of inhibitors of the interaction 
between VEGF and VEGFR-2. A) VEGF9-108 homodimer (blue) bound to the peptide I.31 (yellow) (PDB: 1KAT). B) 
Sequences of α-peptides and α/β-peptides with single-letter code for α-amino acids and nL for norleucine. β-residues 
are highlighted in green. 
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All these foldamers used as α-helical mimetics for PPI inhibition highlighted the potential of 

foldamer architectures for modern anticancer therapy approaches. Significant challenges remain 

before to envision possible clinical applications in particular by improving affinity and specificity 

for the protein targeted as well cell penetration and enzyme stability. After this section of 

foldamers to efficiently mimic the secondary structure of proteins we will now focus on their 

ability to mimic their tertiary structure. 

 

2. Helical tertiary structure motifs as modulators of PPIs 

As reported in this chapter with the aim to inhibit or modulate PPIs, various classes of modulators 

designed to mimic the secondary structures of one of the two partners have been identified. 

However, many biological functions depend on events that occur between highly ordered 

structures (mainly tertiary or quaternary folds). Therefore, mimicking tertiary structures became 

particularly challenging for protein interfaces involving more complicated modes of binding. In 

most of the cases, hot spots are indeed localized on multiple secondary structure motifs that have 

to be reproduced with synthetic mimics. Small molecules are not the best candidates for these 

big interfaces because of the large and irregular surfaces they involve during binding. Large 

polypeptides (such as antibodies) could target these protein surfaces, but their costly production, 

their proteolytic degradation and their low stability are major disadvantages to their use as 

therapeutics. Foldamers used as tertiary structure mimicries could be a really good alternative to 

circumvent these drawbacks. Until now only few studies have focused on the design, synthesis 

and analysis of foldamers able to mimic the tertiary structure of small proteins102–106.  

To guide the design of PPI inhibitors, scientists have developed computational tools to identify 

and study critical interfaces mediated by -helical tertiary structures. Arora and coworkers have 

sought protein complexes mediated by -helices in the Protein Data Bank and have developed a 

database of -helical dimers involved PPIs (DippDB)107. To construct DippDB they applied filters 

to a previous database originally conceived for single helical interfaces, HippDB108. In this study, 

they focused on the determination of potential PPI targets where a single α-helix mimetic may 

not be effective and sufficient to promote the inhibition. Coiled coils are helical dimers, where 

the strands can be associated either in an antiparallel or parallel orientation. They are often 

encountered in PPIs and mediate several cellular functions109,110: Arora and collab. have identified 

523 interactions implicated in biological process that require an -helix dimer mimetic to activate 

the pathway107. Coiled coils are heptad repeats with important hydrophobic residues at positions 

a and d whereas ionic residues are found at positions e and g. Their interfaces have been classified 

into three categories: case 1) helical dimer that interacts with a single partner protein through 

one predominant face; case 2) helical dimer that interacts with two protein partners through two 

faces and case 3) helical dimer that forms across an interface between partner proteins107. The 

analysis of biophysical properties of these coiled-coil interfaces showed that hot spot residues 

could be distributed over multiple helices but are localized over a compact area meaning that 

they could be mimicked by medium-sized molecules or miniproteins. The database thus 

developed allows a classification of all these interfaces with their PDB identifier codes as well as 
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the energetic contributions of the hot spot residues found at these interfaces. Over the last years, 

several examples of tertiary structure mimetics used as PPI inhibitors have emerged and illustrate 

an approach that can be considered as being highly promising.  

Regarding the synthesis, Arora and coworkers described the firsts an approach to modulate PPIs 

by developing secondary and tertiary protein domain mimics111. DippDB was employed to select 

the best designs and the authors focused on the most common tertiary structure encountered in 

Nature: the coiled-coils. While α-helices have hot spots with a regular distribution about every 

seven residues (two helical turns), in case of the α-helix dimers, the distribution of hot spots is 

approximately 13 residues107. In order to mimic this tertiary structure, salt bridge surrogates (SBS) 

have been applied as new backbones to stabilize original coiled coil sequences by replacing a non-

covalent bond by a covalent one with the installation of a bis-triazole linkage, resembling to a salt 

bridge.  

 

 
They first designed minimal coiled-coil mimics model sequence with a hydrophobic interface and 

intra and interhelical salt bridges leading to peptides A (Ac-ELAELEWRL-NH2) and B (Ac-

LWERIARLR-NH2)112. As this designed coiled coil did not spontaneously assemble in aqueous 

solution, they replaced an interhelical ionic bond by a covalent bond to stabilize short helix 

dimers. Several disulfide designs have been considered as well as bis-triazole bridges of varying 

lengths inserted at e/e’ positions to replace a weak interhelical ionic bond (I.36-I.38). As the 

relative helicity of peptides is usually determined with the mean ellipticity at 222 nm, CD analysis 

Figure 22: Design of salt bridge surrogate helix dimers as PPI inhibitor. A) Design of cross-linked helix dimers 
by replacement of an interchain ionic contact with bis-triazole linkers. Bis-triazole linkers of varying lengths 
resulting from azidolalanine, azidohomoalanine, and azidolysine residues were incorporated at coiled coil 
positions e/e’ to obtain dimers I.33, I.34 and I.35 respectively. At the bottom, CD spectra of I.33-I.35 in 50 
mM aqueous KF, pH 7.4. On the right, helical wheel representation of I.33. B) Helical wheel representations 
depicting sequences of I.36 and I.37 to mimic NHR2. (Adapted from Wuo et al., JACS 2015) 
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allowed the determination of I.36, derived from azidolysine, as the more helical. This result was 

confirmed by NMR experiments, in particular total correlation spectroscopy (TOCSY) and nuclear 

Overhausser effect spectroscopy (NOESY) that indicated a helical tertiary structure. 

This approach has then been applied to constrain an antiparallel coiled-coil present in the Nervy 

homology 2 (NHR2) domain of AMLI-ETO involved in leukemogenesis 112. This NHR2 domain 

mediates the oligomerization of AMLI-ETO required for the interaction between NHR2 domain 

and the NHR2-binding motif (N2B) of E-proteins that occurs through an antiparallel coiled coil113. 

Azidolysine residues have been inserted at e/e’ positions of the native sequence of NHR2 leading 

to compound I.39. However, CD experiments showed a nonhelical conformation that could be 

due to a lack of stabilization of the hydrophobic part. An interhelical disulfide bridge has been 

added distal from the triazole bridge, leading to I.40. CD analysis showed a significant 

improvement of the helicity in comparison with I.39. FP assays allowed the determination of 

affinity for the binding of dimers to N2B and the best value was obtained for I.40 (Kd=53± 20 µM 

whereas for the NHR2 peptide, Kd=356± 90 µM) which highlighted the importance of the 

conformation for the molecular recognition.  

In another study, Gellman, Horne and coworkers designed α/β-peptides to reproduce the folding 

of a polypeptide deriving from HIV protein gp41100. This protein is localized in the HIV membrane 

and plays a key role in the viral infection cycle. Indeed, it mediates viral envelope-host cell 

membrane fusion during HIV cell entry by insertion into the host membrane114. The trimeric gp41 

undergoes then a structural change with the formation of an antiparallel six-helix bundle115. 

Several α-peptides based on gp41 N-terminal heptad repeat (NHR) domain like I.41 or C-heptad 

repeat (CHR) domain like I.42, have been developed as anti-HIV agents and one of them, the drug 

enfuvirtide (Fuzeon by Roche), is currently used clinically116. However, in a similar way than for 

the α-peptides, in vivo this drug is quickly degraded by enzymes. In this context, α/β-peptides 

have been developed for their ability to mimic the structure and function of gp41 subunit and 

their higher resistance to proteolysis. To perform their design approach, Gellman, Horne and 

coworkers have first selected a mutated gp41 α-peptide derived from CHR region (I.43) having 

50% of modification compared to gp41 CHR domain, and by combining a series of Ala 

substitutions at various positions (i.e. Glu3, Glu7, Asn9, Thr12, Ser13, Ser17, Glu21, Ser22, Gln31, 

Glu32) and a series of i, i+4 salt bridges (i.e. between Glu and Arg at positions 2,6; 10,14 and 16,20; 

and between Glu and Lys at position 24,28) that enhance the helix component of the resulting -

peptide (Figure 23). Next, they performed local α→β residue substitutions according to  the 

“sequence-based design” method described earlier in this chapter (Figure 23) (see chapter A.1.b). 

They first performed a replacement by applying their ααβαααβ pattern allowing the alignment of 

β3-residues on one face of the helix (I.44), but FP assays revealed a poor affinity for gp41. Then, 

they synthesized chimeric α/β-peptides exhibiting a pure α-segment at the N-terminus and an 

α/β-segment at the C terminus (I.45 and I.46). I.45 exhibited a very high affinity for gp41 while 

I.46 showed a loss of affinity (Ki<0.2 nM and 15 µM respectively), illustrating here that the size 

and the localization of the inserted α/β segments matter. Cyclic β-residues able to constrain the 

backbone were incorporated in order to enhance folding propensity improving also the resistance 

to proteolysis. The high affinity obtained confirmed the utility of backbone stiffening as observed 
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for I.47 with Ki=0.3 nM. CD experiments have been performed with 1:1 mixtures of I.41 and CHR 

analogues. As for the α-peptide I.43, α/β-analogues I.45 and I.47 showed an induction of helicity, 

which is consistent with six-helix bundle formation. 

 

 
Furthermore, X-ray crystal structures have been obtained for I.41 in complex with I.43 and I.47 

and in both cases the crystal structures showed that six-helix bundles obtained are essentially 

similar to the native CHR sequence. However, at the C-terminus, the two bundles are very close 

to I.41 trimer whereas at N-terminus they diverge. X-ray crystal structures of both CHR analogs 

alone revealed a parallel trimeric helix bundle. Overall, this study showed that a long -helix can 

be structurally and functionally reproduced by designed foldamers.  

Concurrently, following the pioneered work of R. Raines117–119, Horne and coworkers have 

developed a general design strategy to mimic the tertiary folding of proteins with unnatural 

oligomers120. They choose the B1 domain of Streptococcal protein G (GB1, I.48) as a model system 

because of its well-defined tertiary structure involving all common secondary structures (helix, 

loop, sheet and turn). They performed backbone substitutions in the native sequence by 

Figure 23: Sequences α-peptide and β3-analogs derived from HIV gp41 with crystal structures A) Structure 
of the α-peptide and α/β-peptides analogs B) Crystal structures of six-helix bundles formed by NHR α-peptide 
I.41 (grey) in complex with α-peptide I.43 (yellow) and α/β-peptide I.47 (colored by residue with α in yellow, 
β3 in blue and cyclic in red) with a view from the side and down the superhelical axis. On the right, 
superimposition of I.43 and I.47 in complex with I.41 C) I.43 and I.47 at the surface of I.41 (grey). (Taken from 
Horne et al., PNAS, 2009) 
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introducing several unnatural residues such as β3-residues, D-α-residue, Cα-methyl and N-methyl 

residues. Various sequences were prepared by individually mutating one secondary structure 

(helix, loop, sheet or turn) with unnatural backbones (Figure 24). First, the α→β3 substitutions 

occurred in the helical part of GB1 on residues not directly involved in hydrophobic core packing 

(I.49). This substitution has also been introduced in the two loops of GB1 by replacing Val21 and 

Asp40 by β3-residues (I.50). Another sequence illustrates well the structural consequences of 

replacing two solvent-exposed residues Glu15 and Trp43 by N-Methyl-α-residues in the two sheet 

parts of GB1 (I.51). CD analysis showed a curve similar to that of the native peptide GB1 that 

confirmed its mimicry, but the midpoint of the thermal transition (Tm) was below the value of the 

native GB1 (Tm=75.6 °C and 81.4°C respectively). These results illustrate that the destabilization 

of the tertiary structure occurs even by mutating residues located at solvent-exposed positions. 

Then, they replaced α-amino acids in the turns of GB1 with a Cα-methyl-α-residue (Aib) in one 

turn and with D-α-residue in the other turn (I.52). Finally, they combined all these modifications 

within one sequence (I.53). They performed CD thermal denaturation experiments to determine 

thermodynamic data on all these modified sequences. The midpoints of the Tm obtained showed 

a loss of folding for all these modified compounds, in particular, a huge destabilization is observed 

for I.50 with a Tm of only 31°C. The best tolerated mutations were obtained when modification 

occurred in the loops of GB1 (I.50) with a Tm value of 77.6°C underlining here that this localization 

is the most favorable for modification without a huge impact on the tertiary folding. To note, X-

ray crystal structures were obtained for compounds I.49, I.50 and I.52 and highlighted that the 

tertiary folding of these three protein analogues is very similar to that of wild-type GB1.  

Consequently, Horne et al. demonstrated also that the tertiary structure of a protein could be 

mimicked with unnatural backbones and that helix, loop, sheet and turn can be individually 

modified at strategic positions without compromising the overall folding121. They recently applied 

this method to design and synthesize foldamer zinc finger domain mimics with the local 

introduction of a huge variety of unnatural backbones (such as β3-residue, N-Me-α amino acid or 

Aib for example)122. The peptide I.54 (Figure 24C) is derived from the third finger of specificity 

factor known for its folding and its metal-binding environment. The incorporation of β3-residues 

and N-Methyl α amino acid was done for analogues I.55 and I.56 with the incorporation of Aib 

also for the last one. These analogues showed a good mimicry of this new tertiary structure 

highlighting good design principles. This study may allow a better understanding of the structure 

and function induced by these backbone modifications122.  
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At the end of the previous sub-chapter, we have introduced the work of Gellman and coworkers 

on α/β-peptides deriving from the three-helix bundle “Z-domain scaffold”101. Indeed, Z-domains 

have been used as protein scaffolds for their capacity to specifically bind to a variety of 

proteins123. The “Z-domain” or “affibody” scaffold is derived from the B-domain in the 

immunoglobulin binding region of the staphylococcal protein A and has been widely studied124. 

The parent Z-domain, that is composed of 58 residues, interacts with Fc (a portion of IgG, the 

natural binding partner of protein A) through a large surface of 600 Å2 formed by helices 1 and 

2125. Z-domain derivatives have been designed to bind to a variety of protein targets such as VEGF 

or tumor necrosis factor-α (TNFα)126. α/β-peptides were designed to mimic Z-VEGF domain, a 

peptide composed of 59 amino acids obtained by phage display that binds to the receptor-binding 

region of VEGF126. As residues of Z-VEGF involved in the interaction are localized on helices 1 and 

2, a truncation by removing helix 3 was performed to simplify chemical synthesis. Indeed, this 

truncation had already been  

Figure 24 : Sequences and crystal structure of compounds for tertiary structure mimicry A) Sequences and 
structure map of wild-type GB1 (I.48) and backbone-modification analogues (I.49-I.53). Chemical structures 
of modified backbones are also represented. B) Crystal structures of wild-type GB1 (I.48) and three analogues 
(I.49, I.50 and I.52) with modified backbones depicted in blue (adapted from Reinert, J. Am. Chem. Soc. 2013) 
C) Primary sequence of peptide I.54 derived from the third finger of specificity factor 1 and backbone-
modification analogues I.55 and I.56  
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reported by Wells and coworkers with helices 1 and 2 retaining a high affinity for VEGF127,128. 

However, CD experiments suggested that helix 3 is important to stabilize the tertiary structure 

required for the binding129. Gellman and coworkers performed cysteine substitutions of His10 

and Pro39 in VEGF sequence in order to create a disulfide bridge and to stabilize the structure (α-

VEGF-2, I.57)101. The inhibitory constant (KI) for I.57, determined by competition fluorescence 

polarization assays was in the same range (0.40 µM) than Z-VEGF (0.41 µM). This bridged-peptide 

was used as starting point to do local α→β replacements in order to bind tightly to VEGF and to 

improve proteolysis resistance. β-amino acids encompassing a five-membered ring constraint (X 

and Z in Figure 4) were used to substitute α-residues not localized on the -helix binding face and 

several /−peptide oligomers showed significant affinity for VEGF. However, it appeared that 

some regions did not tolerate the introduction of cyclic-β-residues, such as the surrounding area 

of the central loop, leading to the installation of Aib-type residues in this region. Furthermore, β3-

residues were used to replace α-amino acids in the N-terminal segment and α/β-I.58 exhibited a 

better KI value than Z-VEGF (Figure 4) probably due to the helix stabilization. The impact on 

biostability of the introduction of unnatural backbones has been evaluated by performing 

degradation studies in the presence of proteinase K. While Z-VEGF presents a half-life of only 1.6 

min and its bridged version I.57 even faster (T1/2= 0.20 min), the two-helix α/β-peptide analogue 

I.58 showed a half-life 290-fold higher than I.57 (T1/2= 59 min). These results illustrate that the 

introduction of unnatural backbones in an α-peptide sequence can considerably improve its 

overall biostability. This strategy was then applied to Z-domain derivatives binding to other 

protein targets, leading to biostable α/β-peptide analogues of many Z-domain agents101. The 

authors have indeed extended the introduction of these unnatural backbones into α-peptides to 

mimic the first two helices of Z-IgG that binds the Fc part of IgG (I.53) and the Z-domain that binds 

the tumor necrosis factor α (TNFα) (I.54). Two-helix α/β-peptide analogues were tailored to bind 

these three targets and the specificity was conserved despite the unnatural backbones. ELISA 

tests showed that the binding of α/β-peptide analogues was similar to that of the native peptides 

illustrating the versatility of the Z-domain.  
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In addition, the X-ray crystal structure of I.52 in complex with VEGF was obtained at 3.1Å (Figure 

25B PDB:4WPB) and revealed that I.52 occupies the same binding site as Z-VEGF with the 

expected helix-loop-helix conformation. This study highlights the extension of α/β-peptides 

mimicking single helices to their use to mimic multi helical tertiary structure.  

All these studies show the high potential of foldamers as mimics of helical secondary and tertiary 

structures of peptides and proteins, making them good candidates for the inhibition of PPIs. Their 

versatility is a huge advantage for protein-like recognition surfaces but several improvements are 

still necessary to target more complex tertiary structures and to improve the affinity of foldamers 

for their target proteins. However, their ability to penetrate cell for intracellular target remains 

particularly challenging.  

 

3. To reach intracellular target with cell-penetrating foldamer 

To be considered as potential therapeutic drugs, foldamers targeting an intracellular target must 

be able to cross the cell membrane. Most often, as for polypeptides and oligonucleotides, their 

low membrane permeability is a huge limitation for their application as innovative and modern 

therapeutics. During the last decades, scientists have been focused on seeking solutions to 

perform intracellular transport of oligomers. The discovery of a positively charged peptide 

deriving from the homeodomain of Antennapedia with ability of translocation across the plasma 

Figure 25: Presentation of Z-VEGF1-38 α and α/β-peptides A) Primary sequences of α and α/β-peptides with 
non-natural peptides in color with their chemical structure. B) Crystal structure of I.58 (orange) in complex with 
VEGF (grey) (PDB 4WPB). C) Crystal structure of Z-VEGF (orange) in complex with VEGF (grey) (PDB 3S1K). 
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membrane as well as the intracellular transportation of oligomers by conjugation has opened new 

possibilities130. Several cell-penetrating peptides (CPPs) have been developed in order to 

transport molecule of interest into targeted cells. Several of these CPPs such as HIV-1 TAT131 

(Figure 26A) are rich in arginine residues the guanidinium headgroups facilitating their entry into 

cell132. Usually, CPPs are conjugated covalently or noncovalently to a cargo and an endocytosis 

pathway is required to promote cell-penetration. However, these complexes have low stability in 

vivo and chemical modifications could improve it. Scientists have handled new approaches with 

unnatural backbones including foldamers as new classes of molecular transporters. Several non-

natural oligomers inspired by control peptides have been designed such as oligocarbamates, 

guanidine-rich peptoids, D-Arg oligomers133, hybrids of α-peptide/β-peptoids134 or L/D-

octaarginine135 and β-peptides136,137. These compounds mimic the vehicle function of 

corresponding Arg-rich -peptides and are more resistant to proteolytic degradation. However, 

some compounds do not adopt a regular structure in solution but it does not appear to be 

required for crossing cell membranes138.  

Concurrently, Huc and coworkers have synthesized water soluble aromatic oligoamide foldamers 

which have been evaluated for their ability to penetrate into cell139. These foldamers were built 

with 8-amino-2-quinolinecarboxylic acid equipped with aminopropoxy side chains and fold as 

helices. These helices present a high stability, a smaller helical pitch than α-helices and are 

wider140. They determined that a minimum backbone length of eight residues with cationic side 

chains were necessary for cell penetration and water solubility. The octamer I.61 showed a high 

activity as cell-penetrating foldamer (CPF) on several cell lines and a membrane translocation 

mechanism was assumed (Figure 26B).  

Other foldamers have been directly developed to display cell-penetrating properties such as β-

peptides developed by Schepartz and coworkers. They have explored different approaches in 

order to improve the cell permeability of β-peptides mimicking p53 -peptide and able to bind 

HDM2 protein141. They inserted β3-homoarginine residues on the “salt bridge” face of the -helix. 

The cationic-patch insertion on this salt bridge face has shown its ability to bind equally to HDM2 

and penetrate cells with the same efficiency than the validated CPP (PRR)3 earlier developed by 

Daniels and Schepartz142.  
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In the group, Guichard, Douat and coworkers have developed pH-responsive urea-based cell-

penetrating foldamers (CPFs) for intracellular delivery of nucleic acids143. These CPFs are short 

aliphatic oligourea peptidomimetic, composed of ethylene diamine units linked through urea 

bonds, and known to exhibit a high helical propensity reminiscent of the α-helix144–147. The 

sequences of these urea-based CPFs were inspired by (1) a 8-mer antibacterial oligourea 

mimicking helical host-defense -peptides148,149 and (2) the amino acid composition of a cell-

penetrating peptide (CPP) LAH4 (KKALLALALHHLAHLALHLALALKKA), a His-rich peptide exhibiting 

a high transfection ability150. Indeed, histidines are pH-responsive residues frequently used in 

CPPs as they can provide pH-dependent membrane permeation and endosomal buffering 

referred to as a proton-sponge effect151. Several short 8-mer oligourea sequences were designed 

with the key side chains of LAH4, in particular several His and Arg side chains were localized on 

the polar surface to increase DNA compaction. To improve the transfection efficacy of the best 

sequence obtained, the size of the oligomer has been increased in order to improve the assembly 

properties of the resulting CPF with the plasmid DNA of interest. The best compound, I.56, was 

obtained through thiol-mediated dimerization of this promising sequence and showed a 

transfection capability without any apparent cytotoxicity in cell (Figure 26).  

 

B. Asf1: a new candidate target protein for anticancer therapy 

The Anti-Silencing Function 1 (Asf1) protein is a central histone chaperone with numerous 

partners and functions. Molecular bases of chromatin structure and function will be presented to 

Figure 26: Amino acid sequences of CCPs and chemical structure of CPF. A) Amino acid sequences of two 
CPPs B) Chemical structure of an oligoamide CPF I.61 C) Chemical structure of a dimer I.62 able to do 
transfection 
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define the biological interest of Asf1 protein, and its implication in human diseases, in particular 

in cancer, will be discussed in the following part. 

 

1. DNA and chromatin: the support of genetic information must be compacted 

The human genome contains 6 billion base pairs of DNA packaged into 23 pairs of chromosomes. 

Knowing that each base pair measure around 0.34 nanometers, one cell contains around 2 meters 

of DNA when fully extended. This genetic information must be compacted so that it can be 

contained in the nucleus of eukaryotic cells (around 10 µM of diameter) while specific segments 

of the genome need to be accessible to allow the cell to perform its nuclear function and maintain 

its survival. To organize this compaction and maintain the reading of the genetic information, 

specialized proteins that bind to and fold the DNA, provide higher levels of organization152.  

In eukaryotes, long linear DNA is associated with these specialized proteins that fold and pack the 

DNA thread into a more compact structure: the chromosome. The complex between these 

proteins called histones, and DNA is called chromatin (discovered in 1882 by Flemming). The 

chromatin can be found in two levels of organization. First, euchromatin is the active form of DNA 

compaction that make DNA accessible for translation. Then, heterochromatin that is a tightly pack 

form of DNA and considered as more “passive form”.  

At the simplest level, chromatin is found as a double-stranded helical structure of DNA (Figure 

27). The DNA is then associated with histone proteins and wraps around them to form complexes 

called nucleosomes. A linker histone, H1, is associated to the nucleosome to form the 

chromatosome, allowing the folding of nucleosomes into a 30 nm fiber. Fibers are then 

compressed and fold to produce the chromatid of chromosome. 
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Figure 27: Multiple levels of chromatin folding. DNA compaction within the interphase nucleus occurs through a 
hierarchy of histone-dependent interactions, including the formation of the nucleosome core particle, strings of 
nucleosomes (bead-on-a-string arrangement), the chromatosome core particle and 30 nm fibres (the existence of 
these fibres is debatable in vivo) and the association of individual fibres, which eventually produces tertiary structures 
(taken from Fyodorov, Nature reviews, 2017)153. 

 

2. The nucleosome is the unit of chromatin 

The nucleosome is the chromatin base unit and is repeated all along the chromatin fibers. First 

electron microscopy characterization of the chromatin structure in the 70’s showed that 

nucleosome are spherical particles of 11 nm diameter that were referred as “beads on a string 

structure”154. The nucleosome unit is indeed connected to the adjacent one through a segment 

of DNA linker. Nucleosome architecture is composed of about 146 base pairs (bp) of DNA wrapped 

around an octameric assembly of histone proteins155. Histones are small basic, highly positively 

charged polypeptides with more than 20% of lysines and arginines in the primary sequence. 

Indeed, their positive charge maximize the interactions with DNA, which is negatively charged. 

They contain two distinct domains: the histone tail domain and the histone-fold domain. The 

latter consists of three α-helices (α1, α2 and α3) linked by two loops (L1 and L2) (Figure 28) that 

participate to the core assembling motif. The histone-fold domain is involved in histone-histone 

interactions by charge complementarity. Two copies of each histone, namely H2A, H2B, H3 and 

H4 form the central core histone octamer of nucleosome. H2A and H2B form one heterodimer 
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whereas H3 and H4 formed the second one. During the formation of the nucleosome, first, two 

H3-H4 dimers interact together with a head to head arrangement, through H3(α2-α3)-H3(α2-α3) 

four helix bundle leading to (H3-H4)2 tetramer called “tetrasome”. 

The central position of DNA interacts with the tetrasome and initiates the nucleosome assembly. 

Finally, each H2A-H2B dimer associates with one side of the tetramer (H3-H4)2 through a second 

four-helix bundle between H4(α2-α3) and H2B(α2-α3). The addition of two dimers H2A-H2B 

completes the assembly of the nucleosome by enrolling the remaining DNA at the entry and the 

exit of the nucleosome156.  

The histone tail domain is located at the N-terminal part of each core histone proteins and at C-

terminal part of H2A histones. These domains are flexible and undefined polypeptides exposed 

to several regulatory post-translational modifications which play a role in nucleosome dynamics. 

 
The first X-ray crystal structure characterization of the nucleosome was published by Luger et al. 

at 2.8Å resolution in 1997. It provided molecular insights into the supramolecular assembly 

between DNA and histones (Figure 28B).7 Currently, numerous nucleosome core particle 

structures are found in the protein data bank (98 structures) with core histones from different 

species and different DNA sequences. The X-ray crystal structure shows that the 147 bp of DNA 

are wrapped in about 1.7 left-handed superhelix that surround the core histone. Moreover, the 

histone octamer complex presents several folded domains that are involved in the histone/DNA 

and histone/histone interactions. In particular, the loops H4 L2 and H3 L1 are interacting together 

through three hydrogen bonds.  

Figure 28: Formation of nucleosome. A) Step of the formation of nucleosome. First, the presentation of the histone 
fold domain. Second the formation of the dimer. Third, the presentation of the tetrasome with the tetramer (H3-
H4)2 bound to DNA. Finally, the scheme of the nucleosome with the addition of two dimers H2A-H2B. B) Crystal 
structure of the nucleosome at 2.8 Å with the 146 bp DNA phosphodiester backbones (orange and turquoise), and 
histone proteins (H3: blue, H4: purple, H2A: red and H2B: yellow) pdb:1AOI 

B A 
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During a DNA-dependent process, nucleosome must be disassembled in order to access free DNA 

and it should be reassembled when the process is completed to compact again chromatin. 

Histone proteins are essential for nucleosome assembly and its stabilization. However, histones 

must be handled upstream and downstream each DNA-dependent event what is achieved by 

specific proteins called histone chaperones. 

 

3. Histone assembly for the formation of nucleosome requires histone 

chaperones 

Histone chaperones are a group of highly acidic proteins that associate with histones and regulate 

nucleosome assembly157. They can be classified according to their specificity and selectivity for 

H2A-H2B or H3-H4 which results from specific structural features (Table 2). However, some 

histone chaperone like the histone Facilitates Chromatin Transcription (FACT) have the ability to 

bind both H2A-H2B and H3-H4 dimers158,159. On a structural point of view, there is low level of 

conservation among histone chaperones with structural folds used for their function and 

intrinsically disordered regions. However, they have an overall negative charge which gives them 

the ability to shield the excess positive charge of histones, which is essential to prevent the 

aggregation between DNA and histones160. 

 
Table 2: Selectivity and functions of histone chaperones161 

Histone selectivity Histone chaperones Main functions 

H3-H4 

Asf1 Transport, Nucleosome 
assembly 

HIRA Deposition factor 
independent of DNA 

synthesis 

N1/N2 Storage 

Spt6 Transcription initiation and 
elongation 

Rtt106 Heterochromatic silencing 

CAF1 complex Deposition factor coupled to 
DNA synthesis (replication, 

repair) 

Hif1 Assist HAT 

FACT complex Transcription elongation 

H2A-H2B 

Nucleoplasmin Storage, transport, 
replication, transcription 

Nap1 Transport, transcription, 
replication 

Nucleolin Transcription 
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Histone chaperones are involved in several functions, such as histone storage, post-translational 

modifications (PTMs), transport, histone turn over or nucleosome assembly. The chaperones 

Nucleosome Assembly Protein 1 (Nap1) and Anti Silencing Function 1 (Asf1) are transporting the 

histones H2A-H2B and H3-H4 dimers respectively, from the cytoplasm (where they are 

synthesized) to the nucleus with the help of transport factors162–166. Otherwise, a soluble pool of 

soluble histones must be stored to meet the needs of the cell during stress conditions. 

Nucleoplasmin (NPM2)167 and Nuclear Autoantigenic Sperm Protein (NASP)168, are chaperones 

acting as a reservoir of H2A-H2B and H3-H4 dimers respectively. The recycling of histones also 

requires histone chaperones, such as FACT and its co-chaperone the Minichromosome 

Maintenance Complex 2 (MCM2) which recover old (H3-H4)2 tetramers168. Histone chaperones 

span also cellular processes such as DNA replication, transcription and DNA repair. Indeed, they 

are directly involved in histone deposition onto DNA during nucleosome assembly. H3-H4 dimers 

are first deposited involving specific histone chaperones followed by the deposit of H2A-H2B 

handled by other specific histone chaperones. After nucleosome assembly, a rapid exchange 

between nucleosomal H2A-H2B dimer and free one is performed by chaperone169. Malfunction 

in histone regulation can alter the barrier for cellular reprogramming, disrupt telomers and 

centromers functions and challenge DNA replication leading to numerous diseases. These protein 

chaperones are essential to assist histones with defined functions. One important chaperone, 

Asf1, is involved in different functions to assist histones H3-H4. 

 

4. Asf1: a central histone H3-H4 protein chaperone involved in cancer 

a) Asf1 exists as two paralogs in human 

The histone chaperone Asf1 belongs to the replication-coupling assembly factor (RCAF), a protein 

complex that helps for the assembly of nucleosome onto the newly replicated DNA170. This 

protein chaperone is present in yeast and in numerous eukaryotic organisms with conserved 

functions such as the replication-coupled (RC) and replication-independent (RI) chromatin 

assembly pathways171. These common properties are due to a conserved N-terminal region of 

156-amino acids whereas the C-terminal part could be highly divergent among species. A single 

isoform of Asf1 is present in yeast whereas mammals, in particular human, possess two isoforms 

Asf1a and Asf1b with 71% of similarity172. Human Asf1a and Asf1b share 61% identity with 

Drosophila Asf1 and 50% with yeast Asf1, illustrating the high conservation of Asf1 among species 

(Figure 29172). The alignment of the primary sequence shows that most of the conservation is 

localized on the N-terminal parts. Both isoforms Asf1a and Asf1b interact similarly with H3-H4 

dimer as well as with the chromatin-assembly factor 1 (CAF1), a complex of three polypeptides 

(p48, p60 and p150) in the replication-coupled assembly pathway171 and with MCM2, the helicase 

protein that unwired DNA ahead of the replication fork. Western-blot analyses have shown that 

Asf1a and Asf1b are expressed at the same levels during the cell cycle172 illustrating that there are 

not restricted to the S-Phase (part of the cell cycle during which DNA is replicated). Even if both 

isoforms contribute to the replicative function and could maybe substitute each other, there is 
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nevertheless a distinct physiological distribution and regulation. For example, Asf1a interacts 

specifically with the histone cell cycle regulator (HIRA) which shows its involvement in replication-

independent pathway173 whereas Asf1b plays an essential role in cell proliferation.  

 
With these two isoforms, Asf1 provide numerous functions and interacts with more than seven 

partners. Indeed, it has the ability to induce silencing upon overexpression, to bind acetylated 

histones H3 and H4, to cooperate with CAF1 for the assembly of the nucleosome onto newly 

replicated DNA174, and plays a key role for DNA damage response and DNA repair by interacting 

with the DNA damage checkpoint kinase Rad53175,176. 

 

b) Asf1 handles histones H3-H4 during their cellular life 

Asf1 is handling histone H3-H4 from their synthesis into the cytoplasm to their incorporation into 

the chromatin. This protects cells from potential cytotoxic effects due to an accumulation of free 

histones. H3-H4 dimers are first interacting with NASP and diacetylated by the histone 

actetyltransferase Hat1-RbAp46 complex (pRB-associated proteins p46). Dimers are then 

transferred to Asf1 in the cytoplasm, followed by the association with Importin-4 which facilitates 

the penetration into the nucleus157. NASP, RbAp46 and Asf1 bind dimers in different regions 

allowing the different binding to occur simultaneously, facilitating the transfer to Asf1177. Inside 

the nucleus, Asf1 delivers H3-H4 dimers to downstream chaperones such as CAF1 and HIRA, for 

nucleosome assembly. The protein codanin 1 is also found in cytosolic complex, interacting with 

Asf1 and negatively regulates histone delivery to CAF1 and HIRA (Figure 30A)178. Indeed, the 

codanin 1 binds to the same domain than these downstream chaperones.  

Figure 29: The alignment of Asf1 amino acid sequences. Human Asf1 are noted Hs, 
Drosophilia melanogaster (DmAsf1) and Saccharomyces cerevisiae (ScAsf1)21 
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Figure 30: Scheme of Asf1 handling histones H3-H4. A) Model of codanin 1 as negative regulator of Asf1 function. B) 
Model of the balance between biosynthesis and usage of histones depending on the histone buffer function of Asf1 
 

Moreover, Asf1 is involved in histone buffering and storage. It actually exists as an equilibrium 

between an active form and a pool of nonactive Asf1 (Figure 30B). When DNA replication is 

inhibited (as a consequence of replicational stress), the histone deposition is blocked and newly 

synthesized histones accumulate. Asf1 is then required for a checkpoint to form complexes with 

H3-H4 dimers179. Chaperone NASP which is involved in adjusting the soluble reservoir of H3-H4, 

may interact simultaneously with Asf1 to bind H3-H4 dimer and protect cells from potential 

cytotoxic effect. This suggests a balance between biosynthesis and usage of histones illustrating 

that Asf1 plays a key role to sequester the excess of histones into an active complex. It would 

allow immediate available histones for their deposition as soon as the DNA synthesis starts again. 

Then, Asf1 regulates the flow of S phase histones during replication stress.  

 

c) Asf1 plays a central role in nucleosome assembly 

During DNA replication two major processes affect chromatin structure: the disruption of pre-

existing nucleosome located ahead of replication forks (parental histone segregation) and the 

new histones deposition (de novo assembly). These parental and newly synthesized histones are 

incorporated into nucleosomes during S-phase through a process called replication-coupled (RC) 

nucleosome assembly.  

During the disassembly process, Asf1 may act as a histone acceptor to handle the evicted parental 

H3-H4 histone from nucleosome. These histones are randomly distributed to form new 

nucleosome downstream of the fork and could be mixed with new H3-H4 dimers. In RC 

nucleosome assembly, Asf1 synergizes with both MCM2 helicase and CAF1 for the recycling of 

parental histones H3-H4 and for the deposition of newly synthesized histones onto replicated 

DNA respectively179,180. Asf1 interacts directly with CAF1 through its largest subunit which brings 



Chapter I 
Targeting protein-protein interactions (PPIs) involved in cancer development 

58 
 

H3-H4 dimers close enough for their transfer onto DNA. As Asf1 also interacts with MCM2 

helicase, the transfer is done at proximity of the replication fork. Indeed, MCM2, that interacts 

directly with DNA, may capture (H3-H4)2 tetramer for the dissociation of the nucleosome 

(tetramer-to-dimers transition) and Asf1 could then separate the tetramer in two dimers. The 

formation of a complex between MCM2, Asf1 and H3-H4 dimer facilitates the access to replication 

fork168,181,182 (Figure 31). The interaction between both chaperones occurs through the dimer H3-

H4 as shown in the crystal structure of the complex Asf1-H3-H4-MCM2183 (pdb: 5C3I). 

 
All these processes are also modulated by histone post-translational modifications (PTMs). 

Indeed, after binding newly synthesized H3-H4 dimers184, Asf1 presents dimers for acetylation of 

Lysines such as Lys56 from H3 (by Rtt109-Vps75 complex)185,186, before to transfer them to CAF1. 

This acetylation allows a higher binding affinity of CAF1 enhancing de novo nucleosome assembly 

(Figure 32A) 187.  

A 

Figure 31: Structure and function of the complex Asf1-H3-H4-MCM2 A) Crystal structure of the complex with 
Asf1 in grey, histone H3 in blue histone H4 in deep purple and MCM2 in green at 3.5Å (pdb 5C3I) B) Models for 
the role of the Asf1-H3-H4-MCM2 complex in handling histones during replication. (1) After removal of H2A-H2B 
by chaperones (not represented), histone chaperones dedicated to H3-H4 could dissociate histones from DNA. 
The (H3-H4)2-MCM2 ternary complex could then be transiently formed and protected from its re-association 
with DNA upstream of the replisome machinery. (2) The Asf1–(H3-H4)2–MCM2 quaternary complex could 
constitute the next intermediate step for further protecting and destabilizing the (H3-H4)2 complex. (3) Parental 
histone reassembly could proceed by different mechanisms; the tetramer captured by MCM2 the N-terminus of 
MCM2 could be directly deposited on DNA without splitting or this histone tetramer could be directly transferred 
to the assembly chaperone CAF-1. Alternatively, histone tetramers split by ASF1 could be reassembled by CAF-
1 upon deposition on DNA. Besides, the human pathway dedicated to newly synthesized histones was also 
shown to involve ASF1 and CAF-1. The major histone fraction associated with MCM2 carries the specific 
modifications of newly synthesized histones suggesting that the quaternary complex could also transfer histones 
to CAF-1 for further assembly. All presented pathways remain hypothetical, may not be conserved in all species 
and may be restricted to some regions of the chromatin. (Adapted from Richet, Nucl. Ac. Res., 2015) 

B 
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Regarding DNA transcription and repair, these processes occur in a replication-independent (RI) 

manner 157. Asf1 is the only chaperone involved in both replication-coupled and replication-

independent nucleosome assemblies (Figure 32188)181. During RI nucleosome assembly, Asf1 

synergizes with HIRA and may promote heterochromatin gene silencing but the mechanism stills 

unknown. Indeed, in yeast, Asf1, HIRA and H3-H4 dimers form a complex that spreads along 

silenced domain to enhance transcriptional silencing. The complex between Asf1 and HIRA also 

interacts with Clr6 complex in order to promote deacetylation of histones which enforces 

silencing189. Finally, the complex affects the occupation and the position of nucleosome in 

heterochromatin by interacting with another complex called SHREC (HDAC repressor 

complex/Snf2). In human, only Asf1a interacts with HIRA and creates a facultative 

heterochromatin called senescence-associated heterochromatin foci (SAHF)190. Actually, the 

complex between Asf1a and HIRA causes condensed chromosome which allows the formation of 

SAHF and leads to nucleosomal density increase. The complex of Asf1-H3-H4-HIRA has been 

Figure 32: Histone chaperones are key regulators of replication-coupled and replication-independent 
nucleosome assembly A) Histone chaperones coordinate to regulate DNA replication-coupled nucleosome 
assembly. Once newly synthesized histone H3–H4 is imported into the nucleus, new H3–H4 of the Asf1-H3–H4 
complex is transferred to CAF-1 and Rtt106 for (H3–H4)2 formation and deposition onto newly synthesized DNA. 

Deposition onto replicated DNA depends, in part, on the interaction between CAF-1 and PCNA. Parental 
histones are also a source of histones for nucleosome assembly following DNA replication. B) HIRA and Daxx 
mediate replication-independent nucleosome assembly of H3.3–H4. In human cells, H3.3–H4 of the Asf1a-H3.3–
H4 complex is transferred to HIRA for deposition of H3.3–H4 at genic regions, possibly through interactions with 
RNA polymerase II and dsDNA. Daxx facilitates deposition of H3.3–H4 at telomere regions, although 
mechanisms by which Daxx-mediated histone deposition is regulated are currently unclear. 
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solved recently, illustrating another structure of cochaperones targeting an H3-H4 dimer191. 

To sum up, Asf1 assists CAF1 during the assembly of new DNA and is essential for replication-

independent chromatin assembly with the HIRA chaperone complex171. Asf1 mediates also 

chromatin disassembly from promoters during transcriptional activation as well as disassembly 

and reassembly of the chromatin during transcription elongation192. All non-DNA bound histones 

are interacting with Asf1, illustrating its fundamental role in the cell.  

 

After having defined the function and the role played by Asf1 in the cellular process, we will focus 

on the structural information gathered over the years and on the mode of interaction of Asf1 with 

the couple H3-H4 histones. 

 

d) Structural insights of the H3-H4 heterodimer in complex with Asf1  

The structure of histones H3 and H4 within the nucleosome to understand how these histones 

interact together with DNA is now well-documented thanks to X-ray and NMR experiments. 

However, there is still only few structural information regarding the interaction of histones with 

their chaperones in the absence of DNA. The first X-ray crystal structure of a complex between 

histones and their chaperone that has been elucidated was that of yeast Asf1 in complex with H3-

H4 dimer. It gave precious information regarding how Asf1 handles the soluble H3-H4 histone 

form and promotes their nucleosomal assembly and disassembly184. Later on, the human Asf1 in 

complex with H3-H4 dimer was successfully crystallized and the 3D structure revealed a similar 

binding mode between the human and yeast forms of Asf1193. The 3D structure shows that Asf1 

adopts an immunoglobin-like fold constituted of 9 β-strands connected with three helices in loops 

and acidic patches that mediate interactions with H3 (Figure 33A).  

 

Figure 33: Crystal structure of human Asf1-H3-H4 complex (PDB 2IO5). A: Cartoon representation of Asf1-
H3-H4 with Asf1 in grey, H3 in TV Blue and H4 in deep purple. B: Zoom on the interaction between Asf1 
(Magenta) and H3 α2 and α3 (deep purple) with the key residues annotated33. 

B A 
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At the molecular level, Asf1 binds to the fragment 106-135 of H3 located in the C-terminal region 

of H3 with multiple hydrophobic contacts involving β3, β4 and β6-9 strands of Asf1 (Figure 33B) 
184. Indeed, Asf1 Val45, Val92, Val94, Leu96 and Tyr112 make hydrophobic contacts with Leu109, 

Leu126 and Ile130 of H3. Furthermore, electrostatic interactions and hydrogen bonds occur 

between Asp54, Asp88, Arg108, Arg145 and Thr147 of Asf1 and Arg129, Lys122, Asp106 and 

Arg131 of H3 respectively. This C-terminal helix of H3 is the one involved in the formation of the 

(H3-H4)2 tetramer94 and the interaction of Asf1 with H3 C-terminal part is physically blocking the 

formation of (H3-H4)2 tetramer. The main contribution to the binding comes from the H3-α3 helix 

(residues 122-135) but the H3-α2 helix (residues 106-115) also interacts with Asf1 surface. The C-

terminal part of H3 α2 and the loop which connects α2-α3 interacts with residues of Asf1 in the 

β7-9 strands. The surface contact between the chaperone and H3 is quite extended with a surface 

about 900 Å2.  

Multi-dimensional NMR spectroscopy was performed by Ochsenbein et. al. to get information 

about the structure in solution of hAsf1 in complex with the histone H3 C-terminal helix194,195. 

Upon titration, the chemical shifts variations defined the binding surface as a concave groove of 

Asf1194. It is mainly hydrophobic with Val94 in the center surrounded by polar residues. The 

conformation of Asf1 is almost unchanged upon binding to histone H3. Investigations of HSQC 

experiments revealed that the peptide H3 (122-135) is unfolded in the absence of Asf1 whereas 

in its presence, the peptide adopts a helical conformation from residues 122 to 131. The authors 

showed that the interaction Asf1-H3α3 represents 85% of the total surface interaction meaning 

that it is the main contact zone. Titration experiments determined an affinity of the peptide of 

100 ±20 µM. The high-resolution complex of Asf1 with H3-H4 allowed the determination of key 

residues responsible for the interactions. Asf1 mutants were made with mutations into the 

binding groove to study their ability to bind H3-H4194. A mutation of Val94 (in the center of the 

binding site) into a positively charged Arg (V94R), was performed and led to an inability to bind 

H3. As the V94R mutation is located in close contact with Leu126 and Ile130, two key residues of 

H3, the introduction of positively charged arginine creates steric clashes and electrostatic 

repulsions leading to a destabilized complex195. In the natural complex, residue Asp54 of Asf1a 

makes salt bridge with Arg129 of H3 whereas Arg108 of Asf1a caps the C-terminus helix. 

Mutations D54R and R108E bring opposite charges and perturb the formation of salt bridges 

without leading to steric clashes because of the side chains are able to change their conformation.  



Chapter I 
Targeting protein-protein interactions (PPIs) involved in cancer development 

62 
 

 
Of interest, Asf1 is also interacting with the histone H4 through its C-terminal tail whereas the 

triple helical region of H4 is near Asf1 but does not interact directly with it. The C-terminal tail of 

H4 undergoes a major conformational change compared to its structure into nucleosome184. In 

the nucleosome, the short C-terminal segment of H4 (residues 96-99) adopts a parallel β-sheet 

with H2A and folds back over α3 of H4 whereas when interacting with Asf1, this C-terminal part 

does a rotation of about 180° to form an antiparallel β-sheet with β9 of Asf1 (Figure 34A). This β-

strand interacts with residues 144-148 of Asf1 especially through Thr96 that interacts with both 

H3 and Asf1 through Arg131 and Thr147 respectively. Nevertheless, the highest binding 

contribution of H4 comes from Phe100 that inserts into a hydrophobic pocket formed by β1 and 

β9 strands of Asf1 (Figure 34B). Van der Waals interactions are actually found between Phe100 

and residues of Asf1 composing the hydrophobic pocket: Leu6, Tyr11, Val109, Pro144 and Val145 

and that corresponds to 35% of the total surface interface between Asf1 and H4. The surface of 

interaction, although smaller than Asf1-H3 surface, involves about 500Å2. These results 

concerning the H4 tail suggest that it could act as control for the assembly and disassembly of the 

(H3-H4)2 tetramers by Asf1.  

In this thesis, we have focused our interest on the interaction between Asf1 and H3-H4 and more 

specifically on the C-terminal parts of histones H3 and H4. 

 

e) Role of Asf1 in cancer disease 

Histone chaperones are involved in the majority of chromatin-dependent processes. Thus, cancer 

cells might manipulate histones to promote mutagenesis and alter gene expression20,196. Studies 

have shown that cancer cells have abnormal gene expression, aberrant histone PTMs in promoter 

regions highlighting the changes in chromatin organization during tumorogenesis196,197. There is 

Figure 34: Asf1 interacting with histone H4. A) Representation of H4 in deep purple and Asf1 in grey 

illustrating the interaction with the C-terminal tail of H4 and β9 of asf1. B) The surface of Asf1 is represented 

in grey and the histone H4 is represented as ribbon in deep purple with the key residues involved in the 

interaction. (Pdb 2IO5, 2.7Å) 

B A 
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evidence that Asf1 is involved in several diseases such as Herpes Simplex Virus (HSV)198,congenital 

dyserythropoietic anaemia type I (CDAI)178 and in cancers. In this section, we will only focus on 

the implication of Asf1 in cancer. It has been previously demonstrated that Asf1 plays an 

important role in cell proliferation. Proliferation is one of the most relevant physiological context 

of human cancer and the use of histone chaperones as proliferation marker seems relevant199. 

Studies have shown that the concentration of Asf1 is much higher in several cancer forms than in 

normal cells. Furthermore, Asf1 has a role in longevity of cells as it facilitates the acetylation of 

H3 Lys56, which is known to increase lifetime186,200. Both Asf1a and Asf1b are involved in the S-

phase progression and have an impact in the Alternative Lengthening of Telomeres (ALT) pathway 

in cancer cells201,179,180. In human cancers, this pathway can be diverted to maintain a high 

proliferation of cancer cells and Asf1 may have a role on it202. 

Corpet and coworkers have highlighted the role of Asf1 in breast cancer203. They have investigated 

the distribution of the two human Asf1 isoforms related to cell proliferation and tumorogenesis. 

They assigned a key role for Asf1b in proliferation. In order to determine the expression of Asf1 

isoforms, they used specific antibodies able to specifically recognize one isoform to the other. 

Various cell lines were screened during these experiments. In particular, on MCF7 breast 

carcinoma cells in quiescence (phase of rest) a dramatic decrease of Asf1b was observed whereas 

in the case of Asf1a a minor decrease of its level of expression was revealed by 

immunofluorescence in presence of antibodies (Figure 35A). Quantitative RT-PCR was performed 

to determine the mRNA levels of Asf1a and Asf1b in asynchronous and quiescent human primary 

fibroblast cells as well as in young, old and senescent IMR90 human diploid primary fibroblasts 

(Figure 35B). The level of Asf1a mRNA is stable upon quiescence whereas there is a huge slump 

for Asf1b mRNA level in quiescent cells (about seven-fold). This suggests an important regulation 

of Asf1b expression. These results were confirmed by inducing quiescence of human primary 

fibroblast cell line, U2OS osteosarcoma cells and various cell lines. The authors concluded that in 

contrast to Asf1a, Asf1b is a specific marker of the state of cells (cycling/non-cycling or 

transiently/permanently arrested). 
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Furthermore, Asf1b correlates well with the proliferation status of breast cancer cell lines. Indeed, 

western-blot and RT-SPR analyses have been performed on tumoral and normal mammary cell 

lines and revealed an increase in the level of Asf1b mRNA in cancer cells (Figure 35C). In contrast, 

the level of Asf1a is almost unchanged. To note, the level of Asf1b also correlates with the 

proliferative status of mammary cells. The depletion of one isomer has distinct effects on cells. 

Indeed, the depletion of Asf1b leads to an upregulation of Asf1a which suggests a compensating 

mechanism. Moreover, its depletion alters nuclear morphology and prevents continued-

proliferation leading to cell death. In contrast, a depletion of Asf1a as no consequence on the 

level of Asf1b and on the nuclear morphology.  

Consequently, Asf1b can be viewed as a new proliferation marker in breast tumor samples. 

Indeed, the authors evaluated the correlation between both isoforms Asf1a and Asf1b and clinical 

parameters to evaluate a potential diagnosis value: the tumor size, the mitotic index and the 

grade of the tumor (Figure 36). A high correlation with Asf1b was found but none with Asf1a. 

Finally, Asf1b has a prognostic value in breast cancer. Indeed, patients were divided into two 

groups with low Asf1b level and high Asf1b level which was correlated to the tumor progression. 

The level of Asf1b was also associated with the proliferation rate and the aggressiveness of 

Figure 35:  Comparison between the expression of both isoforms Asf1a and Asf1b in function of the 
cell cycle. (A) Immunofluorescence assay in MCF7 cell line revealing the expression of Asf1a, Asf1b, 
CAF-1 mRNA in proliferating (AS) and quiescent (G0) state. DAPI was used to stain nuclei and the scale 
bar is 20µm. (B) Quantitative RT-PCR determination of Asf1a and Asf1b mRNA levels in proliferating 
AS and G0 primary fibroblasts or in young, old and senescent IMR90 human diploid primary 
fibroblasts. (C) Quantitative RT-PCR analysis of Asf1a and Asf1b mRNA in tumoral (T) and normal (Bst) 
mammary cell lines (Adapted from Corpet et al. 2011) 
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distinct breast cancers. This overexpression of Asf1b is also present in other types of cancers such 

as liver, ovarian, lung and skin cancers. 

 
Recent studies reported that Asf1a can also be used as prognostic marker in gastrointestinal and 

colorectal cancers204. Compared to non-cancerous cell, Asf1a is overexpressed in GIC tumors. 

Studies revealed that Asf1a has multiple effects in gastrointestinal cancer (GIC) such as the 

stimulation of the transcription of β-catenin genes due to tis interaction with Asf1a. 

All these studies showing the correlation between the level of expression of Asf1 and cancer 

highlight that this histone chaperone is a potential target to develop novel anticancer 

therapies205. Chemists just start to show interest in this protein chaperone, but so far, only few 

studies have been published concerning the inhibition of Asf1. In 2015, Miknis et.al. developed 

inhibitors of Asf1/H3-H4 by screening a series of small molecules derived from N-acyl 

hydrazones206. After a virtual screening of 139,735 compounds library and a molecular docking, 

best compounds were classified. Series of compound were prepared and showed IC50 varying 

from 12 to >100 µM. Seol et. al. identified small molecules that inhibit Asf1 and H3 Lys56 

acetylation only207. After screening a library with 260,000 compounds, 49 compounds were 

selected to be tested in vitro, leading to 6 hits. These compounds decrease the interaction 

between Asf1 and H3 in the range of 20-50 µM. The activity of these inhibitors is modest and high 

Figure 36: Correlation between Asf1b and prognostic value in breast cancer patients (A) 
Logarithmic expression levels of Asf1a and Asf1b in breast cancer samples, depending on 
indicated clinical factors with a >10 years patient follow-up. Boxes represent the 25–75th 
percentile, brackets: range; black line: median; black dots: outliers. Below each graph the P-
values determined by a Kruskal–Wallis test are indicated. Red color together with an asterisk * 
indicates a significant P-value (P<0.05). (B) Univariate Kaplan–Meier curves of the disease free 
interval and the occurrence of metastasis in patients expressing low (Asf1b ≤p0.7) or high 
(Asf1b >0.7) levels of Asf1b (Adapted from Corpet et al. 2011) 
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concentration is necessary meaning that optimizations as well as the development of other 

strategies are still needed to generate potent modulators of Asf1. 

 

C. Objectives of the thesis 

1. Short historic about oligourea foldamers 

Historically, oligourea peptidomimetics were first introduced by Burgess et al. in 1995208. Later 

associated to the foldamer family, aliphatic N,N’-linked oligoureas are aza-analogs of -peptides 

where amide moieties (CH2-CO-NH) have been replaced by urea ones (NH-CO-NH). This urea motif 

presents a carbonyl as H-bond acceptor and two NHs as H-bond donors. Despite similarities 

between amide and urea bonds such as the flatness, the robustness, the polarity and the ability 

to make H-bonds, notable differences exist between both chemical bonds. Indeed, the urea 

dipolar moment is higher than the amide one whereas the rotational energy barrier of urea is 

lower with 10-12 kcal.mol-1 instead of 16-20 kcal.mol-1 for amide209. The conformational behavior 

of these oligoureas has been extensively studied by the Guichard group over the last 15 years 

with detailed structural studies in solution and in the solid state. First, the solution structure of 

model N,N’-linked oligourea sequences (as for example H2N-Tyru-Lysu-Leuu-Valu-Pheu-Lysu-Valu-

Tyru-Alau-NH2
210) was determined by NMR spectroscopy and CD experiments and revealed a 

stable 2.5 helical secondary structure closely related to the (P)-2.614 helix of γ-peptides210,211. 

Remarkably, the second NH brought by the urea bond allows the formation of an additional H-

bond in comparison with corresponding -oligoamide isosteres. With this additional nitrogen, a 

three-centered H-bond network takes place, leading to the formation of a 12- or 14-membered 

pseudo cycles (12,14-helix). Next, NMR data recorded in various solvents presenting different 

polarities (pyridine, MeOH, DMSO, ACN) unveiled that the NH signals were strongly dispersed 

thus confirming their implication in the H-bond networks212. Furthermore, the observation of 

medium range Nuclear Overhausser effects (NOE) between residues in i/i+2 and i/i+3 relationship 

and repeated all along the sequence, were characteristic of a helical conformation (Figure 37A). 

Four to five urea residues in the backbone are necessary to promote helix formation in low 

polarity solvents and it has been demonstrated that helical nature is not strongly affected by the 

nature and composition of the side chains212. Far-UV CD experiments were also useful to study 

helix formation in solution. CD spectra of helical folded oligoureas recorded in several solvents 

(MeOH, TFE and ACN) displayed a characteristic helical signature with a minimum negative 

ellipticity at 188 nm and a maximum of positive ellipticity at 203 nm (Figure 37B)211. NMR and CD 

studies suggest that helical folding is maximized in a low or moderate polarity solvent such as 

pyridine and acetonitrile but it is worth noting that despite a weaker CD signal the 2.5-helix 

conformation is still populated in aqueous solution, which is interesting for biological 

applications148. The 2.5-helix nucleation is increased when terminal N-caps are introduced in 

oligourea sequence due to the presence of an additional H-bond acceptor at the N-terminus that 

avoids repulsive electrostatic interactions between the 2.5-helix macrodipole and the charged N-

terminus211. 
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These results were confirmed at the solid state with the X-ray crystal structure characterizations 

at atomic resolution of several oligourea sequences and the robustness of the 2.5-helix was 

thereby illustrated144,146,147. Like α-helix, the 2.5-helix of N,N’-linked oligoureas, whose residues 

derived from natural L-amino acids, is right-handed with a pitch of 5.1 Å whereas a pitch of 5 Å is 

observed for 4-peptides (Figure 38A). These structural data highlight the analogy between N,N’-

linked oligoureas and -peptides. Interestingly, the helical folding of oligoureas resembles that of 

α-peptides but some significant differences exist such as the number of residues per turn (2.5 for 

N,N’-linked oligoureas versus 3.6 for α-peptides). Furthermore, the pitch of the α-helix (5.4 Å) is 

a little bit higher than for oligoureas whereas the radius is lower (2.3 Å compared to 2.6 Å). These 

differences and the number of residues per turn in particular, which has a direct impact on the 

distribution of side chains at the surface of the helical structure, will need to be taken into account 

when attempting to use oligoureas to design effective mimics of α-helical peptides(Figure 38B). 

 

Figure 37: Structural data of oligourea obtained by NMR spectroscopy and CD experiments. A) Structural 
information obtained by NMR for the helical folding of oligoureas. In orange, characteristic NOE effects of the 
helix are represented. B) Typical Far UV-CD spectrum of a helical oligourea (model sequence: Boc-Valu-Alau-
Leuu-Valu-Alau-Leuu-NHMe) recorded in TFE at 0.2 mM. C) Polarity of oligourea 

C 
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Moreover, a recent advance in the group was the finding that sequence manipulation can be used 

to control the self-assembly of short amphiphilic oligoureas in aqueous conditions213.The design 

of entirely non-peptidic foldamers able to self-assemble into well-defined three-dimensional 

protein-like nanostructures have been reported for the first time. These results illustrate an 

important step concerning the structure-guided design of oligoureas which is essential for specific 

protein surface recognition and biological applications knowing the close link between structure 

and function.  

 

Despite the differences between both oligourea and helices, their similarities (polarity, right-

handed helix, …) suggested that the two backbones could be combined to develop hybrids 

Figure 38: Comparison of foldamer helical structures with the α-helix. A) Structure of α-peptide (in blue), ϒ-
peptide (in green) and oligourea (in orange) without side chains B) Diagram wheels of peptide in blue and 
oligourea in orange. 

A 
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oligomers consisting of both α-peptide and oligourea segments. The combination of the two 

backbones may bring advantages from both oligoureas and peptides: the natural recognition of 

α-helix and the innate helical stability of oligoureas. The introduction of oligourea residues into a 

peptide sequence while keeping the conformational preference may improve its biostability. 

Recent studies concerning the synthesis and conformational analyses of such hybrid compounds 

in organic solvents have been reported and confirm the feasibility of this new strategy214,215. 

Indeed, a unique helical conformation is observed in these hybrid systems which is stabilized 

thanks to a continuum of H-bonds all along the helix. The main topic of this PhD thesis will be to 

use this technology to develop hybrid compounds as peptide mimics and study their ability to 

recognize protein surfaces. 

 
2. Oligourea synthesis 

The first synthesis of aliphatic oligoureas has been reported by Burgess in 1995 who described a 

solid phase synthesis approach involving a succession of coupling and deprotection steps of 

protected isocyanates208. Several groups have then reported related procedures for the synthesis 

of oligoureas such as the use of diversely protected ethylene diamine activated monomers as 

precursors216–218. 

In the Guichard group, the preferred procedure for activated monomer synthesis consists in the 

direct conversion of N-protected ethylene diamine units into the corresponding activated 

carbamate by treatment with N,N’-disuccinimidyl carbonate (DSC). This synthetic approach allows 

the access to activated monomers with a variety of natural or even unnatural side-chains. The 

synthesis of N,N’-linked oligoureas is generally performed either in solution or on solid support 

depending on the length of the oligomers and the nature of side-chains to be appended. The solid 

phase synthesis (SPS) of oligoureas has been firstly developed by using a Fmoc strategy148. 

However, it quickly appeared the Fmoc protected group was not compatible with a routine 

preparation of oligoureas due to a partial instability under SPS conditions that resulted over-

insertion of monomeric units with poor overall purities and yields as chain length increases. 

Furthermore, this strategy was not incompatible with microwave assistance (degradation of N-

Fmoc monomer and uncontrolled oligomerization on the resin), increasing the time of coupling 

and number of equivalents required to perform SPS (up to 4h per coupling step). Concurrently, 

the Boc strategy has then been developed in solution and showed much higher robustness than 

the Fmoc strategy on the solid support and under microwave conditions149. However, the major 

drawback of this Boc strategy is that the resin that is generally used, the 4-

methylbenzhydrylamine (MBHA), requires a final fluorhydric acid cleavage which is detrimental 

for routine use. To solve these problems, Douat et al. have recently developed a new 

methodology allowing the use of TFA-labile resins under microwave irradiation219.They 

reinvestigated the use of azides as masked amines for SPS of oligoureas. This strategy is based on 

the coupling under microwave of succinimidyl (2-azido-2substituted ethyl) carbamates 

(compound A Figure 39).  
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The azide reduction is generally performed under Staudinger conditions in the presence of 

trimethylphosphine (PMe3) in Dioxane/H2O (70:30, v/v) solvent mixture. This had an impact on 

the choice of the resin that should be compatible with polar solvents, notably water used for the 

Staudinger reaction. For this reason, the NovaPEG Rink amide resin is generally used in the group 

because its polyethylene glycol matrix is known to present a high swelling in water220.  

This microwave-assisted SPS methodology which allows rapid and reproducible access to N,N’-

linked oligoureas exhibits clear benefits such as the enhancement of the rate of synthesis, the 

reduced amount of activated building blocks required per coupling and the recovery of oligoureas 

in higher purity and fair to good yields. This azide strategy is now routinely used in the laboratory 

and has been successfully applied for the synthesis of hybrid sequences in combination with 

standard peptide synthesis using Fmoc chemistry214,215.  

 

3. Objectives of the thesis  

As mentioned above, water-soluble oligoureas have the ability to form stable 2.5-helix in aqueous 

solution which is quite relevant for possible biological applications. Their design has been mainly 

Figure 39: A) Schematic representation of oligourea and formulas of azide monomers A and activated 
protected monomers B. B) Scheme of the solid phase synthesis approach under microwave assistance 
with the most recent azide strategy. 
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inspired by the sequences of bioactive peptides and these oligoureas have shown interesting 

activities such as their capacity to disrupt bacterial membrane and their ability to mimic cell 

penetrating peptides143,149. Oligoureas are resistant to proteolysis and closely mimic the α-helix 

of peptides which makes them interesting candidate to develop new therapeutics. However, with 

2.5 residues per turn of helix, precise mimicry of the projection of all the lateral chains of α-

peptides by using an oligourea backbone is challenging. In this context, the combination of 

oligourea and peptide backbones to form oligourea/peptide chimeras may be a good 

compromise. Indeed, the mixed backbone may provide additional modularity to generate 

effective peptide mimics. 

In this thesis, we aimed at testing oligoureas and oligourea/peptide chimeras as inhibitors of 

protein-protein interactions. In particular, we tried to design oligourea/peptide chimeras for the 

inhibition of a new target involved in cancer: the histone chaperon protein Asf1b. This project 

was initiated in the context of a collaboration with the team of Françoise Ochsenbein at CEA 

Saclay who has pioneered the structural characterization of the complex Asf1/H3/H4 combining 

NMR, crystallography and modeling studies. 

Firstly, and as a model study, we strived to study the effect of the insertion short urea segments 

into long helical peptides on the overall structure by focusing on high resolution structure 

determination. The number and the position in the sequence of urea residues have been varied 

leading to the synthesis of several chimeras. Their conformational properties as well as their self-

assembling properties were studied in solution and at the solid state.  

In the second part of this thesis, we will present our attempts to design effective α-helix mimics 

for the inhibition of PPIs by using urea based foldamers. We focused our work on oligourea-

peptide chimeras designed to mimic the helical C-terminal part of histone H3 and to inhibit the 

Asf1/H3/H4 interaction which is thought to be relevant in several cancers. The design guided by 

the structure, the synthesis and affinity of these compounds for the target protein Asf1 as well as 

our efforts to characterize the protein-foldamer interactions at high resolution will be described 

in this part. 

Finally, we have considered targeting a second binding site located in another face of the protein 

in order to increase the specificity and the affinity of our compounds for Asf1. In the native 

Asf1/H3/H4 complex, this second site recognizes the C-terminal tail of histone H4. Strategies to 

connect the two binding motifs (i.e. the helically folded H3 peptide/foldamer and the C-terminal 

tail of H4) including the rationale design and fine-tuning of the linking unit will be discussed and 

the impact of combining two distinct and remote binding motifs in one molecule on the affinity 

will be reported.  
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During my PhD work, we sought to evaluate the structural consequences of inserting a short 

urea segment in a peptide sequence known to adopt a stable α-helical conformation. Recent 

investigations in the group have indeed revealed that peptide and oligourea can be assembled 

together to form one unique helix in organic solvents1 and aqueous environment as well (data 

not published) (Chapter 1 C.3.). To extend this work and study the extent to which the α-helix 

can be mimicked by an oligourea insert, we thought that it would be interesting to apply this 

concept to peptides that have the capacity to self-assemble into defined tertiary structures 

like leucine-zipper domains. To do so, we have selected a model peptide that has been 

extensively studied in the literature: the yeast transcription factor GCN4 that would allow us 

to study the impact of a short urea segment insertion (two to three units) within a quite long 

α-peptide (> 30 residues) on the overall helicity as well as on the stability of the 

oligomerization states. 

 

A.  Peptides derived from the Leucine zipper domain of the transcription factor GCN4 

1. A parallel two-stranded coiled-coil 

a) The structure of GCN4 is based on heptad repeat 

The yeast transcription factor GCN4 regulates gene expression and can activate more than 30 

genes required for the biosynthesis of -amino acids. The 33-residue long GCN4 leucine zipper 

(GCN4-p1) is an α-helical coiled-coil presenting an abcdefg heptad repeat. Positions a and d 

are occupied by hydrophobic residues and polar residues generally elsewhere (Figure 40, 

XOOXOOO where X is hydrophobic and O is polar). An amphiphilic α-helix assembly is then 

obtained with hydrophobic stripes along one face of the helix.  
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The -residue composition and shape of these hydrophobic interfaces are crucial for the 

helical packing and for coiled coil folding. In GCN4-p1, a and d heptad positions are mainly 

occupied by Val and Leu residues respectively. Interestingly, an Asn residue is found at the 

central a position (position 16) in GCN4-p1 sequence and this residue plays a key role in the 

folding process by triggering coiled coil assembling through the formation of an interchain 

polar contact in the hydrophobic core of the dimer (see Figure 40A, helical wheel projection 

representation ). GCN4 was one of the first coiled-coil proteins to be crystallized and for which 

the X-ray crystal structure has been solved at 1.8Å2. This x-ray crystal structure shows that the 

peptide forms a parallel, two-stranded coiled coil of -helices that are packed as in the “knobs-

into-holes” model proposed in 1953 by Crick (Figure 40B3). Today, 157 X-ray crystal structures 

associated to GCN4 sequences are referenced in pubmed website. The wild type sequence 

GCN4-p1 generally form a right-handed homodimer with a parallel orientation4.  

 

b)  Fine tuning of the stoichiometry by sequence modulation 

Mutations in the sequence of GCN4 are known to change its oligomerization state4. In this 

leucine zipper coiled coil, Leu residues are present at about 80% of all d positions. 

Substitutions of these leucine with other hydrophobic residues may influence the overall 

structure of the resulting coiled–coils. In a seminal work, Alber, Kim and coworkers have 

Figure 40: Sequence and structure of GCN4-p1 dimer. A. Primary sequence of GCN4-p1 and helical wheel 
projection of the coiled-coil. B. X-ray crystal structure of GCN4-p1 dimer (pdb: 4dmd) at 2.0 Å resolution, in 
cartoon representation. Hydrophobic residues are depicted in stick and the polar contact between the two 
Asn residues is highlighted in yellow 
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designed GCN4 mutants by altering the hydrophobic core and characterized their structures 

in solution and in the solid state5. Mutations at a/d heptad positions have been simultaneously 

performed at four a positions and four d positions along GCN4-p1 sequence (Met2 remained 

unchanged). Circular dichroism experiments showed that each mutant remained -helical and 

present a midpoint of the thermal transition (Tm) higher than that of the GCN4-p1 native 

sequence. These peptide mutants were found to exist as dimeric, trimeric and tetrameric 

states in the crystal (Table 3). 

 
Table 3 : Sequences of mutant peptides with Tm and folding associated 

 
Interestingly, the occurrence of Ile residues at a positions conserved a dimer topology (II.1) 

whereas when located at d positions this residue disfavors dimeric state and leads to 

tetramers (II.3). At the contrary, the presence of Ile residues at both a and d positions induced 

trimeric assembly. This study illustrates that the distribution of β-branched residues on a and 

d positions governs the coiled-coil oligomerization process. Concurrently, the substitution of 

Asn16 with Val results in a mixed population of dimers and trimers even though the Tm 

exceeded the one recorded for GCN4-p1. This central polar residue appeared to be critical for 

driving the dimeric structure by forming buried hydrogen bonds. 

More recently, Horne and Oshaben have designed a series of dimeric coiled coil peptides 

derived from GCN4-p1 and exhibiting an identical quaternary folded structures6. The mutants 

of GCN4-p1 were modulated to improve the stability of the dimeric assembly (Figure 41). As 

mentioned above, the composition of the hydrophobic core appeared to be critical for the 

quaternary structure stability. Val residues at a position in the GCN4-p1 heptad sequence 

were mutated by Ile residues in order to increase the stability of the dimeric folds. Each 

sequence contains one Val to Ile mutation (II.7), two (II.8) or three mutations (II.9). The 

authors maintained the presence of Asn16 all along the series of mutants despite its polar 

nature as it helps for the specific obtaining of a dimer oligomerization.  
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CD experiments were carried out on the different sequences and the resulting CD curves 

confirmed that all the mutants retained an α-helical fold similar to that of the native GCN4-p1 

sequence and CD thermal melts curves showed that each peptide mutant has a similar 

cooperative unfolding transition corresponding to transition of a folded to unfolded state. All 

the peptide or protein folding process results from a cooperative effect7. Indeed, amino acids 

cooperate and create intramolecular interactions to drive the peptide to fold. For all peptide 

mutants, the shape of the CD thermal melt curves is identical, with a sigmoid profile indicating 

that when the peptide starts to unfold, all the structuration process is fast. It allows the 

peptide to pass quickly to a folded state to an unfolded one. The Tm value was determined as 

the temperature corresponding to 50% of fraction unfolded. The best Tm value (78 °C) was 

obtained for the sequence II.9 (encompassing three Val → Ile substitutions) that is higher than 

the Tm of GCN4-p1 obtained with the same experimental conditions (Tm= 62 °C). The Tm 

increased as the number of Val→Ile mutation increased. These results highlight that 

mutations of residues involved in the hydrophobic core do not really disrupt the overall 

helicity of the resulting coiled-coils but influence the overall stability of the helix assemblies 

and consequently of the quaternary structure. The authors obtained X-ray crystal structures 

of mutants that highlight the parallel chain topology. Furthermore, this structural analysis on 

GCN4-p1 analogues confirms that overall the packing of the hydrophobic core remained 

conserved for all mutants.  

Figure 41: Sequence and CD curves of mutant peptides of GCN4-p1. A. The primary sequence of GCN4-p1 
and hydrophobic core mutants (II.7-II.9) with their corresponding Tmvalues. B. CD thermal melts of GCN4-
p1 and mutants at 100µM in 10mM pH 7 phosphate buffer6. C. Comparison of the X-ray crystal structures 
of peptides II.7-II-9. Overlay of residues 2-30 with calculated backbone Root-Mean Square Deviations to 
peptide GCN4-p1 of 0.32Å for II.7 and II.8 and 0.77Å for II.9.  
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Besides modulation of the amino acid sequence that influences the folding behavior of GCN4 

coiled coil, previous study by Horne and coworkers showed that the environment has also an 

impact on the folding3. Biophysical studies suggested a dimeric and a trimeric form of GCN4-

p1 depending on the environment, hypothesis that was further confirmed by the high-

resolution crystal structure obtained3. The importance of the environmental conditions 

highlights the complexity of the folding behavior GCN4 (that is still considered as a simplest 

coiled-coil). 

These results could be potentially applied to design new oligomers deriving from native GCN4-

p1 sequence and predict their folding. They are important to take into account for future 

studies that will focus on one oligomerization state. Concurrently, side chains modifications 

to design GCN4 mutant peptides have underlined the possibility to tune the quaternary 

structure but the modification of the peptide backbone in these systems still remains 

challenging. 

 

2. α/β peptides to mimic GCN4 coiled-coil 

Horne, Gellman and coworkers studied the structural consequences of β3-amino acid 

insertions on the self-assembly process of GCN4 peptide sequences8. They have developed a 

“bottom-up” approach by performing a systematic α→β3 replacements at b and f positions in 

the native GCN4-p1sequence that induced substantial changes in the overall quaternary 

structure of the resulting GCN4-α/β-hybrid foldamer (II.10)8. Despite the fact that the 

incorporated 3-residues were located at solvent exposed positions, CD analysis at 100 M 

concentration of the /-peptide sequence II.10 suggested that only little helix formation was 

still present. Nonetheless, the authors managed to grow crystals and the X-ray crystal 

structure revealed that /-peptide II.10 formed a parallel helix bundle in the solid state with 

each bundle containing three /-peptide molecules. Interestingly, although the presence of 

3-residues alters the overall stoichiometry of the self-association, each subunit retained an 

α-helix-like conformation regardless the additional CH2 per helical turn. To recover a stable 

and defined quaternary structure, the authors next selected II.3 as a model where Leu and Ile 

residues were installed at most a position at d positions respectively (Table 1). The - to 3-

amino acid replacement was again performed at b and f positions in the sequence of II.38. In 

this case, the X-ray crystal structure solved at a resolution of 2.0 Å revealed that the resulting 

hybrid peptide II.11, self-assemble in a four-helix bundle like the parent peptide as shown the. 

Interestingly, a difference in the self-association behavior was again observed between the 

solution and the study in the solid state: while the data in solution were in favor of a trimeric 

bundle, the X-ray crystal structure revealed a stoichiometry of four molecules in parallel 

orientation mode. These results illustrate that altering the backbone while keeping the native 

side chains does not necessarily allow a complete mimicry of the α-peptide structure 

stoichiometry.  
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Later on, they reported new α/β-peptide foldamer (II.12-II.13) analogues of II.3 containing 

regular replacement of α→β-residues with an ααβ repeat pattern (Figure 42)9. Because each 

α→β3 replacement brings an additional flexible bond to the backbone, cyclic β-amino acids 

residues were introduced at selected positions to constrain the backbone and enhance the 

helix stability. Pyrrolidine-based residue (APC) were used to replace basic β-residues whereas 

ACPC were used to replace β3-residues with nonpolar chains. II.12 contains one cyclic residue 

and in II.13, five cyclic residues out of the eleven β-positions. The high-resolution crystal 

structures solved for the two compounds confirmed that they both display a tetrameric 

quaternary structure as the parent α-peptide II.3. CD spectra show that the α/β-peptide II.13 

displays high levels of folding and assembly. For II.12, the introduction of only one cyclic 

residue destabilizes the structure and causes changes in the self-association stoichiometry as 

II.12 is found as monomer, tetramer and pentamer in aqueous solution9. More recently, the 

same group evaluated the effect of introducing γ-residues in α/β-peptide helices and showed 

that the γ-residue preorganization is less important than the one of β-residue which is 

essential for helix stability10. Indeed, the helical propensity of γ-residue was not optimally 

suited to the α-helix mimetic conformation. 

To conclude, local -residue to -residue replacements have been used extensively by the 

Gellman group to explore the effect of residue homologation on α-helix bundle formation.  

Although regularly spaced β-residue are α-helix compatible, this work has also revealed the 

subtle impact of such backbone modifications on the physical behavior of the corresponding 

Figure 42: Sequence of peptide foldamers with their crystal structure
7,8. A.  Amino acid sequences of 

α/β-peptides (II.10-II.13) and α-peptides GCN4-p1 and II.3. Hydrophobic a and d position residues are 
highlighted with boldface type. α-amino acids are abbreviated with the one letter code and β3-amino 
acids are highlighted in green. Cyclic β-amino acids are in red with the following abbreviation: X=ACPC, 
Z=APC. B. Crystal structure of α/β-peptide II.10 (PDB: 2OXJ) with β3-amino acids in cyan. C. Crystal 
structures of α/β-peptides II.12 (PDB: 3C3G), and II.13 (PDB: HEY).  
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-peptide hybrids. In my PhD work, we wanted to evaluate the possibility of inserting a short 

urea segment in place of an -peptide one while maintaining the overall folding properties of 

the resulting /urea-hybrid oligomer compared to the cognate peptide. To do so, we 

considered replacing several consecutive α- positions with a urea segment, herein referred as 

the “block foldamer” approach in the GCN4-p1 model sequence. We hoped that this strategy 

would allow us to determine the consequences at different structural levels of 

peptide→oligourea replacements and delineate the requirements for systematic oligourea 

replacement within α-peptides and α-helix mimicry. 

 

B. Design of α/urea chimeras to mimic the quaternary structure of GCN4 – Molecular 

modeling studies 

1. Combine amino acid and urea residues in one unique helix 

Combining the non-natural backbone of foldamers and α-peptides in a single chain is 

promising in order to modulate the tertiary structure of proteins11,12. Because of physical and 

structural similarities between the α-helix and the oligourea 2.5-helix such as polarity 

(carbonyl orientation) and pitch13,14, the insertion of urea segment(s) into a peptide thus 

seems feasible. As mentioned in the previous chapter, recent studies in our group showed 

that the introduction of aliphatic oligourea at the C- or N-terminus of a short α-peptide can 

propagate the helical conformation1. The high-resolution structural data reported show a 

continuous intramolecular H-bond network allowing the combination of the α-helix in the 

peptide segment and a canonical 2.5-helix in the oligourea segment (Figure 431). 

 
The α-helix and the 2.5-helix of oligourea are connected together through a unique hydrogen 

network (C=O…H-N; i, i+3 and i, i+4). At the junction, hydrogen bonds occur between carbonyl 

and NHs of the two types of residues. However, the insertion of urea segment may cause 

Figure 43: X-ray crystal structure of two oligourea/peptide chimeras. A) X-ray crystal structure of a 
chimera with the peptide part (green) and the introduction of a urea cap at the N-terminus side 
(grey) B) X-ray crystal structure of a chimera with the peptide part in green and the introduction of 
a urea cap at the C-terminus with the lateral view on the left and corresponding top view on the 
right. 
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changes in the peptide part of the chimera. Parameters have indeed been calculated with the 

Helanal program15 using αC carbon of amino acid residues only (Table 4). Results reveal few 

differences between the two peptide parts of the helix with first the urea segment located at 

the N-terminus and second at the C-terminus (A and B in Figure 43 respectively). The peptide 

segment of the helix A displays almost the same parameters than a regular α-helix whereas 

the helix B shares value of Ψ angle which is similar to that of the 310-helix as well as the H-

bonding pattern (i, i+3 C=O…H-N).  
Table 4: Average of the peptide parameters and torsion angles obtained from X-ray crystal structure of helices 
A and B calculated with the Helenal program using αC carbons of amino acid residues only1. A comparison 
between the α- and 310-helices is presented. 

 Helix A Helix B α-helix 310-helix 

(Φ, Ψ) [°] (-66, -40) (-69, -29) (-63, -42) (-57, -30) 

Residues per turn  3.6 3.6 3.63 3.24 

Radius [Å]  2.3 2.2 2.3  

Unit height [Å]  1.5 1.6 1.56 1.94 

Rise per turn [Å] 5.4 5.8 5.4 6.29 

 

This study illustrates the compatibility of α-peptides with oligoureas and the feasibility of the 

formation of hybrid helix peptide/oligourea. Two distinct segments were connected together 

and the resulting hybrid chimeras retain properties of both species. Moreover, the 

introduction of short urea caps could nucleate and stabilize the formation of an α-helical 

conformation1. However, the original study has been carried out in organic solvent and 

aqueous solution remains a more challenging environment. To have foldamers exhibiting 

water-solubilizing side-chains on their surface is indeed mandatory for biological applications. 

In order to develop a general approach to mimicry peptide folding and self-association, the 

insertion of an oligourea segment has been studied in model peptide GCN4-p1. 

We first reasoned on the possibility to substitute one α-helix turn. As a first step, we thought 

to replace three consecutive amino acids by two consecutive urea units (diad) that actually 

corresponds to a little less than a full turn (3.6 

residues per turn in α-helix and 2.5 residues per 

turn in oligourea helix). In a second step, we 

wanted to replace four consecutive -residues 

by three urea units (triad) corresponding this 

time to a little bit more than a full turn of -helix. 

The superimposition of four amino acids by three 

urea residues illustrates that for one full -helical 

turn, the size is almost similar (Figure 44). In 

contrast to our previous studies mentioned 

above, we decided to insert urea diads or triads 

in the middle of the sequence, thus generating 

three distinct segments (αααXuXuααα). Due to 

the importance of the hydrophobic effect, involving residues at positions a and d for the self-

assembly of coiled-coil, we have decided to substitute residues at positions e, f and g to start. 

These positions have indeed the advantage to present three consecutive amino acids that are 

Figure 44: Overlay of 4 amino acids in α-helical 
conformation in blue and 3 urea residues in 
orange 
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oriented toward solvent. These amino acids could be replaced by a urea diad and may have 

less impact on the overall self-assembly. As starting point, we decided to substitute the -

amino acid residues at the central position, Leu13Ser14Lys15, by two urea units.  

 

2. Substituting 2 urea units (diad) for 3 consecutive α amino acid residues  

Starting from the crystal structure of GCN4-p1, a molecular modeling study has been 

performed by Jean Dessolin and Remy Baily (@ CBMN-Modelling of biomolecules and 

numerical imaging team) with the insertion of a short oligourea segment replacing three 

consecutive α-amino acid residues. A replacement of three α-amino acids (Leu13Ser14Lys15) 

at e, f and g central position by two urea residues encompassing a methyl side chain (noted 

Au) was modeled with a classic dynamic study under Amber force fields. The superimposition 

of GCN4-p1 and its modified version GCN4-p1-2Au (II.14: 

RMKQLEDKVEELAuAuNYHLENEVARLKKLVGER) was done (Figure 45). 

 
Swapping three consecutive residues of an -turn with a urea diad appears to be well-

tolerated by the -helix. With two urea residues replacing three amino acids (LSK), only two 

lateral chains can be mimicked. The position and orientation of the methyl side chains of the 

two urea residues seem to match reasonably well with those of Leu13 and Lys15 side-chains 

respectively.  However, it could be interesting to see if mimicry can be improved by shifting 

the side-chain corresponding to the Lys residue from the -carbon to the α-position of the 

urea backbone. However, to maintain a proper screw sense of the helix in the urea segment, 

the configuration at this -carbon has to be inverted to a (R) configuration (all L-amino-acids 

are (S) except L-cysteine which is (R))13. 

The replacement of these residues at e, f and g positions might not have a huge impact on the 

hydrophobic core and self-association process because the selected residues have their side-

Figure 45: Superimposition of GCN4-p1 (grey) and GCN4-p1-2Au (model) where the LSK segment was 
replaced by two urea residues (orange). 
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chains exposed to the solvent. Moreover, we hypothesized that a modification in the central 

position would not disturb too much the nucleation of the helix because less than one helical 

turn has been replaced.  

3. Substituting 3 urea units (triad) for 4 consecutive α amino acid residues 

Another molecular modeling study has been performed, this time with the replacement of 

four consecutive α-amino-acids by 3 urea residues. The superimposition of GCN4-p1 and 

GCN4-p1-3Au (with three urea residues, II.15: RMKQLEDKVEEAuAuAuNYHLENEVARLKKLVGER) 

was made for direct comparison of side chain orientation (Figure 46). In comparison with the 

first in silico study, here the objective was to replace the entire turn of an α-helix by a full turn 

of 2.5 oligourea helix. In the same manner as presented above, the urea segment was 

introduced in the middle of the α-peptide sequence. The fit between GCN4-p1 and II.15 was 

more challenging than for the previous model, illustrating a more drastic change due to the 

introduction of the triad. 

 
The Leu12Leu13Ser14Lys15 segment was replaced by three Alau residues and after 

minimization, the superimposition of the two sequences gave several clues regarding the 

positioning and orientation of the side chains of urea-type units. In contrast with the previous 

modelling (three  to two Alau mutations), this time a hydrophobic -residue, the Leu12, is 

swapped by a urea residue. The Leu12 side-chain in GCN4-p1 is indeed involved in a 

hydrophobic contact with its counterpart located on the other oligomer. It is therefore 

important to reproduce this key interaction with the first urea side chain by keeping the 

isobutyl side-chain on the CH. Next, based on the result of the modelling, the side chain SC2 

Figure 46: Superimposition of GCN4-p1 in grey and a model of GCN4-p1-4Au. The dimer of GCN4-p1 
is represented in grey with one helix in surface and the other one superimposed with the GCN4-p1 
modified in light pink and urea residues in orange. A zoom on the urea segment superimposition is 
shown and the side chains 1, 2 and 3 (noted SC1, SC2 and SC3) are localized.  
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in orange in Figure 46 of the second urea unit appear to mimic reasonably well the side chain 

orientation of the third -residue chain (Ser14) and the third side chain SC3 of the oligourea 

segment (in orange) appears to be close enough to the side chain of the fourth −Lys15 to 

expect a similar projection of the linear butylamine chain. Consequently, the triad of urea units 

Leuu-Seru-Lysu could potentially replace the Leu-Leu-Ser-Lys -peptide segment in an attempt 

to mimic the 3.6-helical turn.  

 

C. Local replacement of consecutive α amino acids residues by ureido units 

After bibliographic studies, we decided to work with the sequence II.9, the mutant peptide of 

GCN4-p1 that was reported to better stabilize the dimeric assembly6. The sequence of II.9 was 

used as reference for direct comparison with sequences containing urea replacements. The 

first step was then to synthesize the peptide and to perform CD thermal melting experiments 

to compare our results with the literature. 

1. Synthesis and optimization of the reference peptide II.9 

With the aim to unveil potential synthetic difficulties, we first decided to reproduce the solid 

phase synthesis (SPS) of the reference GCN4-VI peptide6. The synthesis of this reference 

peptide II.9 was thus performed by using classical N-Fmoc chemistry on commercially 

available low loading TFA-labile resins in order to reduce as much as possible aggregation 

issues. Moreover, all SPS were performed under microwave assistance to increase coupling 

and deprotection reaction rates and get higher purity of the crudes. Besides, during my PhD 

project, the group has acquired an automated microwave peptide synthesizer, the Liberty-

Blue from CEM that allows a high reproducibility of the coupling/deprotection cycles and pilots 

the dispensing of the different reagents within the reaction vessel all along the synthesis. 

In a first attempt, the synthesis of II.9 was carried out on Rink amide NOVAPEG resin (loading 

0.46 mmol.g-1) in a 0.050 mmol scale. Iterative couplings of N-Fmoc-protected amino acids 

were done twice in presence of (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium (BOP) 

and N,N’-diisopropylethylamine (DIEA) as coupling reagents (Table 5). After final capping by 

acetylation of the main chain, the peptide was released from the support by performing a TFA 

cleavage using a “cocktail mixture” composed of TFA/TIS/H2O/EDT: (92.5:2.5:2.5:2.5, v/v/v/v). 

 
Table 5: Comparison of three syntheses of II.9 with different resins and different coupling reagents 

Synthesis Resin Coupling 
agents 

Coupling 
conditions 

Profile 

SII.1 NOVAPEG 
(0.46 mmol.g-1) 

BOP/DIEA 2 x 
75°C/30W/5min 
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SII.2 Polystyrene LL 
(0.37 mmol.g-1) 

BOP/DIEA 2 x 
75°C/30W/5min 

 
SII.3 Polystyrene LL 

(0.37 mmol.g-1) 
HBTU/HOBt

/DIEA 
2 x 

75°C/30W/5min 

 
 

The peptide was then precipitated with cold Et2O and the crude material was directly analyzed 

by analytical RP-HPLC. The HPLC analysis revealed a crowded profile with the presence of a 

main peak that was further analyzed by mass spectrometry (ESI positive mode) and 

corresponded to II.9 with a relatively low purity of 28% (see Table 3 entry 1). The presence of 

so many impurities surrounding the main peak rendered its purification by semi-preparative 

RP-HPLC extremely tricky with limited recovery of the expected reference peptide II.9 in 

sufficient quantity for structural study. Importantly, the main objective of this study being to 

introduce oligourea segment in the model sequence, the synthesis of the peptide segments 

must be as good as possible because the introduction of the urea units within the sequence 

could bring anticipated synthesis issues in particular partial azide reduction of the first 

introduced urea unit (SII.1).  

We next repeated the SPS of II.9 by replacing the NOVAPEG resin by the more conventional 

Rink amide MBHA resin. We have indeed already observed that this polymer matrix gave much 

better results for oligourea synthesis than the NOVAPEG one and this even if this matrix 

encompassing a PEG shell was reported to give better peptide syntheses in comparison to 

polystyrene matrix16,17. This second synthesis of II.9 (SII.2) was carried out following the same 

coupling/deprotection cycle conditions as those described in Scheme 1. The RP-HPLC 

chromatogram after TFA cleavage and Et2O precipitation showed this time the presence of a 

major peak with a purity of 42% and much less impurities surrounding it (Table 5). As expected, 

ESI-MS analysis confirmed that the main peak corresponded to the peptide II.9. Changing the 

resin matrix clearly improved the overall synthesis of II.9, underlining here a positive impact 

of a non-polar polystyrene resin compared to a PEG one. 
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In a last synthesis optimization, we decided to evaluate the use of another coupling reagent 

than BOP which tends to disappear from peptide chemical suppliers. Instead of using in situ 

phosphonium-type coupling reagent, we applied N,N,N',N'-Tetramethyl-O-(1H-benzotriazol-

1-yl) uronium hexafluorophosphate (HBTU), an uronium-based coupling reagent in 

combination with 1-Hydroxybenzotriazole (HOBt), commonly used to reduce the risk of 

epimerization during the condensation cycle by enhancing the coupling reaction rates. The 

DIEA was kept as base during the course of this third SPS (SII.3). After TFA cleavage and 

peptide precipitation, the HPLC chromatogram showed the presence of a major peak 

corresponding to II.9 with a good purity of 70%, significantly higher than the previous 

synthesis (Figure 47). The full peptide II.9 was purified by semi-preparative HPLC and obtained 

with an overall yield of 10%. 

 

 

Figure 47: RP-HPLC of II.9 pure with a gradient of 10-100% ACN in water and mass spectrometry of the peptide. 

The synthesis of the peptide II.9 has been optimized and the peptide was obtained in a good 

yield paving the way to a possible introduction of urea units within the backbone of II.9. It is 

important to note that in the literature (including supporting information), it is difficult to find 

detailed experimental information about the synthesis, purification and yields of GCN4-p1 and 

Scheme 1: General scheme for the solid phase synthesis of peptides including II.9 
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related peptide analogues. Then, it is difficult to compare our yields with what has been 

already published in the literature. 

2. Synthesis of urea type monomers and solid phase chimera synthesis 

a) Substituting 2 urea units (diad) for 3 consecutive α-residues 

i) Solution synthesis of azide monomers activated as succinimidyl carbamates 

Few years ago, the group has developed a new solid phase synthesis methodology of 

oligoureas and related hybrids compatible with the use of TFA-labile resins16. The main 

objective of this strategy was to preclude the use of the Boc strategy that requires a final HF 

cleavage which is not compatible with a daily use of a solid phase approach and raise safety 

issues. To do so, a new set of azide-type building blocks were developed where the azide group 

was used as a masked amine allowing the use of orthogonal side-chain protections that can 

be removed during the TFA cleavage. This approach is now routinely used in the laboratory 

and most natural but also non-natural amino acid side-chains can be appended on azide-type 

monomers. Depending on the nature of the side-chain, two optimized synthesis routes were 

developed to give access to the different building blocks16 (Scheme 2). In path A, commercially 

available protected -amino acids (Boc, Fmoc or Z) are first reduced into alcohols 1, 

deprotected before conversion into the corresponding azide 3 by using a recently reported 

“shelf-stable” diazo transfer reagent: imidazole-1-sulfonyl azide hydrochloride18–20. The 

alcohol is then converted into a phthalimide intermediate 4 through a Mitsunobu reaction and 

subsequently reduced into the corresponding amine 5 in presence of hydrazine hydrate. The 

final step consists in the activation of the resulting primary amine with N'N'-disuccinimidyl 

carbonate (DSC). During the preparation of the first series of azide building blocks it has been 

observed that this route was not compatible with short aliphatic side-chains (i.e. R= CH3, 

CH(CH3)2, CH2-CH(CH3)2, -(CH2)3-CH3) because the azido alcohol intermediates are too volatile 

to guarantee correct overall yield. Consequently, the route B was envisioned and mainly 

consists in performing the Mistunobu reaction before the conversion of the amine into azide.  
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With the aim to substitute several consecutive -residues by urea ones in the sequence of II.9, 

we needed to have in hands several activated azide-type monomers. Firstly, activated 

carbamates deriving from Ala, Val, Leu and Ile have been synthesized through the route B 

(Scheme 3) starting from Boc-L-Ala-OH, Boc-L-Val-OH, Boc-L-Leu-OH and Boc-L-Ile-OH 

respectively. Activated monomers N3-AlaU-OSu (M1), N3-ValU-OSu, (M2), N3-LeuU-OSu (M3) 

and N3-IleU-OSu (M4) were obtained with 28%, 37%, 33% and 32% overall yield respectively.  

 
Scheme 3 : Synthesis of succinimidyl (2-azido-2-substituted ethyl) carbamate M1-M4 starting from N-Boc-
protected amino acids. 

Secondly, succinimidyl (2-azido-2-substituted ethyl) carbamate with positively charged side 

chains have been synthesized starting from corresponding N-Fmoc-L-Lys(Boc)-OH and N-

Fmoc-L-Arg(Pbf)-OH following route A (Scheme 4). To note removal of Fmoc protecting group 

Scheme 2: General procedure for the preparation of succinimidyl (2-azido-2-substituted ethyl) 
carbamate (azide monomers) Mx with two routes depending on the nature of the side chain. 
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in solution was carried out in presence of DBU as base to prevent the formation of the adduct 

between dibenzofulvene and piperidine which can be problematic to eliminate in solution 

from the newly formed primary amine. Azide activated monomers N3-Lys(Boc)U-OSu (M5) and 

N3-Arg(Pbf)U-OSu (M6) were obtained in 27% and 26% yield respectively.  

 
Scheme 4 : Synthesis of azide monomers activated as succinimidyl carbamates oM5 and M6 starting from 
Fmoc-Lys(Boc)-OH and Fmoc-Arg(Pbf)-OH. 

 

Route A was applied to perform the synthesis of N3-Ser(OtBu)U-OSu (M7) which was recovered 

in overall 27% yield.  

 

 
Scheme 5: Synthesis of succinimidyl (2-azido-2-substituted ethyl) carbamate M7 starting from Z-protected 
amino serine derivative. 

 

ii) Solution synthesis of a monomer with inversed configuration 

As evoked in the section related to the design of the hybrid sequences, we thought to prepare 

some building blocks with the side-chain shifted on the second carbon, to potentially evaluate 
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and improve the level of mimicry that can be achieved when replacing the LSK segment 

(residues13-15) in II.9 (Chapter II, B. 2.). In particular, we focused on the Lys side chain that 

could be potentially better mimicked by shifting the side chain to the Cα carbon along with an 

inversion of the absolute configuration on this carbon ((S)→ (R)). N3-Lys(Boc)inv
U-OH M8 was 

therefore prepared starting from corresponding D-amino acid and following the synthetic 

route detailed below.  

 
Scheme 6: The synthesis of succinimidyl (2-azido-1-substituted ethyl) carbamate M8, bearing  a shifted lysine 
side chain 

 

iii) Solid phase synthesis of chimeras 

During this PhD work, I focused my attention on the solid phase synthesis of chimera 

oligomers due to its robustness, its flexibility and its rapidity. Syntheses were performed on a 

rink amide Polystyrene resin (loading: 0.42 mmol.g-1) on a 50 µmole scale. Taking into account 

the high number of α-amino acids for the peptide part (30 residues), the two peptide parts 

were synthesized with the automatic synthesizer, Liberty Blue. Concerning the addition of the 

two urea residues, they are added manually under microwave assistance (CEM Discover), 

using azide monomers activated as carbamate of succinimide. The coupling occurs with 1.5 eq 

of monomers Mx in presence of a base and after the Staudinger reaction under microwave 

irradiation allows the regeneration of the free amine for the next coupling (Scheme 7). the 

second peptide segment is next introduced by stepwise coupling of the N-Fmoc amino acids 

on the Liberty Blue in presence of HBTU, HOBt and DIEA. After final acetylation, compounds 

were cleaved from the resin with TFA/Tris/H2O/EDT (92.5:2.5:2.5:2.5). 
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After precipitation in Et2O and lyophilization, compounds were purified on semi-preparative 

HPLC. They were then characterized by RP-HPLC and mass spectrometry.  

 
Table 6 : Sequences of chimeras oligomers with the LSK segment replaced by two urea residues 

Compound Sequence 
tR 

(min) 

MW 
(g.mol-1) 

Yield 
(%) 

  1    5     10     15     20     25     30        
  g a b c d e f g a b c d e f g a b c d e f g a b c d e f g a b c d     

II.9 Ac R M K Q L E D K I E E L L S K N Y H L E N E I A R L K K L I G E R NH2 7,98 4077 10 

II.16 Ac R M K Q L E D K I E E L Lu Ku N Y H L E N E I A R L K K L I G E R NH2 7,56 4048 8 

II.17 Ac R M K Q L E D K I E E L Lu Kinv
u N Y H L E N E I A R L K K L I G E R NH2 7,5 4048 8 

II.18 Ac R M K Q L E D K I E E L Iu Ku N Y H L E N E I A R L K K L I G E R NH2 7 4048 9 

II.19 Ac R M K Q L E D K I E E L Vu Ku N Y H L E N E I A R L K K L I G E R NH2 6,68 4034 8 

II.20 Ac R M K Q L E D K I E E L Au Ku N Y H L E N E I A R L K K L I G E R NH2 6,49 4006 11 

 

Five chimeric sequences II.16 to II.20 were prepared by replacing the Leu-Ser-Lys tripeptide 

by various diurea sequences. Oligomer II.17 is analogous to II.16 but contains the Lysu 

analogue with the shifted side chain. Oligomers II.18-II.20 were prepared to evaluate the best 

way to mimic the hydrophobic Leu13 side chain.  

The chromatogram RP-HPLC of the crude oligomer chimera II.17 shows that the synthesis can 

be performed without any special difficulty. The major peak which corresponds to the desired 

product as confirmed by mass spectrometry was isolated with a purity of 96% (Figure 48). 

Scheme 7: General scheme of solid phase synthesis of /urea chimeras 



Chapter II 
A model system to investigate α-helix mimicry with peptide/oligourea hybrids  

104 
 

 
We next wanted to study the impact of replacing one residue involved in the hydrophobic core 

by a urea derivative. We thus focused on modifications of tripeptide Leu12-Ser14 and Ile23-

Arg25.  In compound, II.21, Leu12 was mimicked by the introduction of N3-LeuU-OSu, Ser14 in 

i+2 position by SerU (II.21). Finally, we wanted to replace a residue involved in the hydrophobic 

core in another region of the peptide. The Ile23 was then mimicked by IleU and AlaU whereas 

the residue i+2, Arg25 was replaced by ArgU (II.22 and II.23).  

 
Table 7: Sequences of chimera oligomers where the urea segment is introduced in the hydrophobic core 

Compound Sequence 
tR  

(min) 

MW  

(g.mol-1) 

Yield 

(%) 

  1    5     10     15     20     25     30        

  g a b c d e f g a b c d e f g a b c d e f g a b c d e f g a b c d     

II.9 Ac R M K Q L E D K I E E L L S K N Y H L E N E I A R L K K L I G E R NH2 7,98 4077 10 

II.21 Ac R M K Q L E D K I E E Lu  Su K N Y H L E N E I A R L K K L I G E R NH2 5,9 4022 11 

II.22 Ac R M K Q L E D K I E E L L S K N Y H L E N E Iu  Ru L K K L I G E R NH2 7,23 4078 16 

II.23 Ac R M K Q L E D K I E E L L S K N Y H L E N E Au  Ru L K K L I G E R NH2 6,29 4038 11 

 

All these sequences after synthesis and purification were then used for structural analysis. 

 

 

Figure 48:RP-HPLC Chromatograms of the chimera II.17 crude (left) and after purification 
(right) and Mass spectrometry analysis 
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b) Substituting 3 urea units (triad) for 4 consecutive α amino acid residues  

i) Solution synthesis of azide monomers activated as succinimidyl carbamate 

Azide monomer M9 with a carboxylate side chain and activated as a succinimyl carbamate 

was prepared from commercially available Z-L-Glu(OtBu)-OH via the route A (see scheme 

8)C.2)a)i) In these conditions, monomers N3-Glu(OtBu)U-OSu (M9) was obtained with an 

overall yield of 20%. The monomers M2, M3, and M5 required for the synthesis of this series 

of oligomers were described in Part C.2) a) i)). 

 
Scheme 8: Multi-step synthesis of activated monomer N3-Glu(OtBu)u-OSu M10. 

 

ii) Solid phase synthesis of chimeras 

Syntheses of chimeras were performed on a Rink amide polystyrene resin (loading: 0.42 

mmol.g-1) on a 50 µmole scale as described in paragraph C.2.a)iii). The peptide segments were 

assembled on the Liberty Blue, while the three consecutive urea residues were introduced 

manually under microwave conditions on a Liberty Bio apparatus. Two sequences have been 

designed to replace four consecutive -residues by three urea ones (Chapter II B.3.). We 

focused on the same region as before, meaning in the middle of the GCN4-IV sequence and 

selected two peptide segments to replace containing Leu12 either as the first or the last 

residue.  

In the case of sequence II.25, whose frame of oligourea replacement is shifted compared to 

II.24, it is worth noting that two -residues involved in the hydrophobic core (a and d 

positions) are replaced. The Leu mutation in position 12 was kept as a reference mutation 

point and -residues from 9 to 11 were substituted by a ValU and GluU to mimic the side chains 

in positions 9 and 11 respectively. The choice of replacing the Ile side-chain by a shorter one 

like the ValU was driven by the fact that we made the assumption that the shortening of this 

side-chain could compensate increased diameter of the oligourea helix, thus providing a 

better orientation/positioning of the branched propyl side-chain.  
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Table 8: Different reference peptides and chimeras II.24-II.25 sequences synthesized that encompassed 4 
amino acids to 3 urea substitutions (in blue). In right columns physical chemistry data of the 3 synthesized 
chimeras. 

 Sequence 
tR  

(min) 

MW 
(g.mol-1) 

Yield  
(%) 

  1    5     10     15     20     25     30        

  g a b c d e f g a b c d e f g a b c d e f g a b c d e f g a b c d     

II.9 Ac R M K Q L E D K I E E L L S K N Y H L E N E I A R L K K L I G E R NH2 7,98 4077 10 

II.24 Ac R M K Q L E D K I E E Lu Au  Ku N Y H L E N E I A R L K K L I G E R NH2 6,38 4035 15 

II.25 Ac R M K Q L E D K Vu Eu  Lu L S K N Y H L E N E I A R L K K L I G E R NH2 6,27 4006 20 

 

After purification by semi-preparative RP-HPLC and lyophilization, all /urea chimeras were 

used to perform structural investigations in solution and in the solid state.  

 

c) Mutation of Asn16: switching from dimeric to trimeric assembly 

As described in chapter A.1.a, GCN4-p1 peptide forms a homodimer where two Asn16 are 

forming inter-helical hydrogen bonds (Figure 49)4,21. This key residue is known to be 

determinant for the oligomerization state because it has been reported that mutating this 

residue lead to other oligomerization states. Indeed, the peptide sequence where Val residues 

occupied most of the a positions including the Asn16 position (only the Met2 at the N-termini 

was conserved) and Leucine residues at d positions leads to a mixed bundle population 

comprising dimeric and trimeric conformations5. In other mutated sequences, Asn16 was 

replaced by isoleucine or leucine as well as residues at a position leading to dimeric, trimeric 

or even tetrameric forms5. In the GCN4-p1 sequence, the residue Asn16 has also been 

replaced by valine or other polar 

residues: threonine, serine, and 

glutamine22. These mutations 

induced a change in the bundle 

stoichiometry with the formation of 

three-helix bundles that have been 

further characterized in the solid 

state by X-ray crystallography. 

Altogether these studies highlighted 

the pivotal role played by this polar 

residue in the stoichiometry of the 

bundle assembly through hydrogen 

bond contacts between the peptide 

chains. 

A new strategy with the aim to replace the -Asn only by its urea counterpart was developed. 

This would allow to study the influence of a change in the environment of this residue only 

Figure 49: Heptad arrangement of GCN4-p1 showing the 
interhelical hydrogen bond between the carboxamide 
groups of Asparagines 
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and the consequences of an additional C in the backbone due to the replacement of 1 α-

residue by 1 urea. 

 

i) Solution synthesis of activated azide monomer with Asn side chain 

A new urea monomer (M10) derived from commercially available Fmoc-L-Asn(Trt)-OH, was 

synthesized. The preparation of this new building block was performed following the route B 

described in the general procedure and the monomer M10 was obtained with a global yield 

of 34% ( Scheme 9).  

 
Scheme 9: Synthetic scheme for the preparation of succinimidyl (2-azido-2-substituted ethyl) carbamate M10 
(N3-Asn(Trt)u-OSu) 

 

ii) Asn16→Leu16 peptide and chimeras synthesis 

In the previous designed chimeras, most of the short oligourea segments have been 

introduced in the center of the sequence of II.9, near the Asn16. We thought that if the lateral 

chain of Asn16 was shifted due to the introduction of the oligourea segment, it could influence 

the oligomerization state and disturb the dimer conformation. We decided to replace Asn16 

with an -Leu residue in the sequence of II.17, in order to investigate if this substitution could 

have a positive impact on the oligomerization state as well as bundle stabilization (i.e. II.26 in 

Table 9). Concurrently, the corresponding peptide sequence II.27 incorporating Leu residues 

in all a position (at the exception of Met2) and Ile residues in all d position has been synthesized 

as well as its chimera version incorporating the LeuU LysU diad in place of the Leu13Ser14Lys15 

segment (II.28)8. As described above, the SPS of these three sequences was performed on a 

low loading Rink amide-MBHA resin (loading: 0.42 mmol.g-1) on a 50 µmole scale. In addition 

to these modifications we envisioned to prepare the chimera II.29 where the Asn16 was 

replaced by its urea counterpart (i.e. AsnU, NU in Table 9). The aim of this single →urea 

mutation was to study the structural consequences of having installed one extra carbon C 

plus a urea bond in the backbone of II.26 on the folding and oligomerization state. 

 

 
Table 9: Sequences synthesized to study the influence of Asn16 in the oligomerization state 
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 Sequence 
tR 

(min) 

MW 
(g.mol-1) 

Yield 
(%) 

  1    5     10     15     20     25     30       
 

  g a b c d e f g a b c d e f g a b c d e f g a b c d e f g a b c d     

II.9 Ac R M K Q L E D K I E E L L S K N Y H L E N E I A R L K K L I G E R NH2  7,98 4077 10 

II.26 Ac R M K Q L E D K I E E L Lu  Kinv
u L Y H L E N E I A R L K K L I G E R NH2  7.83 4047 8 

II.27 Ac R M K Q I E D K L E E I L S K L Y H I E N E L A R I K K L L G E R NH2  7,95 4076 11 

II.28 Ac R M K Q I E D K L E E I Lu Kinv
u L Y H I E N E L A R I K K L L G E R NH2  7,76 4047 10 

II.29 H2N R M K Q L E D K I E E L L S K Nu  Y H L E N E I A R L K K L I G E R NH2  6.99 4064 12 

 

3. Circular Dichroism monitored thermal melting data  

Circular dichroism (CD) is a spectrometric method that is often used to assess information on 

the secondary and tertiary protein structures. With their chromophores, proteins present 

characteristic CD spectra with peptide bond absorption in far UV region (240-180 nm) giving 

information concerning the secondary structure23. The environment of aromatic amino acid 

side chains is observed in the near UV region (320-260 nm) and allows some additional 

knowledge on the tertiary structure of the protein investigated. CD experiments also allow the 

determination of the melting point, the reversibility of structural changes or the percentage 

of secondary structure elements. The main advantages of CD technique are the convenience 

and the quick access to structural data. Furthermore, only small amount of material is required 

to obtain good quality spectra and samples can eventually be recovered as this technique is 

non-destructive.  

To evaluate the impact of the insertion of urea block in the peptide sequence of II.9, CD 

seemed to be a spectrometric method of choice. CD spectra of GCN4-p1 indicate that an α-

helical structure is adopted by the peptide in aqueous solution4. The characteristic data of α-

helices are found with a maximum near 190 nm and two minima at 208 and 222 nm. The CD 

intensity at 222 nm indicates the helical folding of GCN4-p1 because this wavelength 

corresponds to the negative maximum of the molar ellipticity [] for -peptides known to 

adopt an -helix conformation. CD spectra of oligoureas are different and present a 

characteristic signature with a positive maximum of ellipticity around 203 nm and a negative 

maximum of ellipticity around 188 nm24. Then, in our case, the two wavelengths near 190 and 

203 nm are not judicious points to focus because signal of peptide and oligourea overlaps. 

Because the CD spectrum of helical aliphatic oligoureas is generally silent in this region, the 

wavelength at 222 nm can be used to monitor α-helix formation. The change of helicity will 

be followed to evaluate the impact of the introduction of a urea segment in the peptide 

sequence. 

 

a) CD for chimeras with urea diad 

The chimera oligomers with the insertion of a diad and the reference peptide II.9 have been 

first studied in solution with CD analysis. All experiments have been performed in a phosphate 

buffer (10 mM, pH 7) at 100 µM concentration6. By applying the same experimental conditions 
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as those already reported by Horne and coworkers we had a mean to compare the data 

obtained with the chimera series to that of the native peptide II.9 and evaluate the reliability 

of CD spectroscopy in the context of this structural investigation. 

All the CD spectra were recorded from 260 to 200 nm at 20°C and we focused our attention 

to the shape of the curve around 222 nm. Moreover, here it is important to underline that 

that we assume that at this wavelength there is not a direct contribution of the urea 

chromophore in the observed cotton effect of the /urea chimera and the values at 222 nm 

were considered to only reflected the contribution of the peptide segments to the overall 

folding. Thereby, the lowest this value would be, the more stable the helical 

folding/assembling of the molecule should be. As a comparison, in the literature GCN4-p1 has 

a negative maximum of the mean residue ellipticity (MRE) [θ]MRE at 222 nm of -33 

deg.cm2.dmol-1res-1 x 103 5.  

 

 

The CD spectra of II.16 and II.17 showed that having replaced 3 consecutive -amino acid 

residues (Leu12Ser13Lys14 segment) by 2 ureas residues (diad) seems to be partially tolerated 

by the  helix bundle assembly. The overall shape of the CD curves is maintained and is in favor 

of a conserved helicity, but for both chimeras (II.16 and II.17) the absolute value of the [θ]MRE 

at 222 nm is significantly lower than for the native peptide II.9 (-23, -17 and -32 x103 

deg.cm2.dmol-1.res-1 respectively see Figure 50A). Surprisingly, these results suggest that 

chimeras II.16 and II.17 are less folded than II.9. Despite oligourea have been shown to 

promote and stabilize helicity in a peptide segment, the introduction of this diad within the 

peptide sequence seems to alter the backbone conformation even though most of the side 

chains remained conserved. This caused important changes and do not lead to a completely 

mimicry of the α-peptide. The decrease in ellipticity may also reflect a weaker stability of the 

bundle due to less favorable inter helix interactions. The two chimeras present a difference of 

[θ]RME at 222 nm of 6 000 deg.cm2.dmol-1.res-1. This illustrates that the position of the Lysu side 

chain on the Cα (II.16) is less stable than when the side-chain is appended on the Cβ (II.17). 

This shift impacts the folding and the stability of the resulting chimera.  
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This CD structural study was completed with the second series of mutations by analysis of 

chimeras II.18-II.20 (Figure 51 A). The minima values for [θ]222 were higher than for the 

reference peptide II.9 meaning that as previously, the helicity is conserved but the α-helix is a 

disrupted by the presence of the urea units. Interestingly, the residue mean ellipticity of II.19 

is in the same range than II.17 even though there is one missing methylene on the side chain 

of the first urea residue (Valu to Leuu) illustrating here that another lateral chain can be well-

tolerated for overall folding. The two other chimera oligomers II.18 and II.20 showed higher 

loss of the negative contribution at 222nm concomitant with a decrease in helix folding 

propensity.  

We next recorded CD spectra from 260 to 200 nm at 20°C for the series of chimera oligomers 

where the diad was this time introduced at positions 12-14 and 23-25 in the peptide sequence 

(II.21-II.23, Figure 51 B). In these compounds, the diad replaced three consecutive -residues 

one of them being involved in the hydrophobic core (in a position for II.21 and in d position 

for II.22 and II.23 respectively). As previously, we focused our attention on the shape of the 

CD curves around 222 nm. The [θ]RME value of the bands at 222 nm for these chimeras are 

weaker than for the reference peptide II.9, but also than for the previous chimeras. This result 

suggests that overall the helical folding is more disrupted by the insertion of the diads at these 

positions. The chimera exhibiting the highest molar ellipticity in this series is II.21 with the 

diad replacing residues at positions 12-14, nearby the first zone of modification. However, 

with a [θ]RME222 = -10010. deg cm2dmol-1res-1, the [θ]RME absolute value is lower than for all the 

previous modifications (II.16-II.20) which suggests a negative contribution of the urea diad 

insertion on the hydrophobic core and therefore on the helical folding. For chimeras II.22 and 

II.23, the diad was introduced to replace amino acids at positions 23-25 and again absolute 

ellipticity values are lower to that observed for II.21. Moreover, regarding II.23 the shape of 

the curve does not suggest any helical folding meaning that this introduction of the urea diad 

at positions 23-25 is detrimental for folding and self-assembly. 

Variable temperature CD analyses (from 4°C to 100°C) were next carried out in order to have 

access to the midpoint of the thermal transition (Tm) of each molecule. The molar ellipticity at 
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222 nm was plotted against the temperature and the Tm values were obtained by fitting the 

data with the Boltzmann sigmoid equation. As expected, thermal melts curve of II.9 compared 

well to the one earlier published by Horne et al.6 validating here our experimental conditions 

(Tm= 71 °C for II.9 and 77 °C in the literature).  

The results depicted in (Figure 50B) showed that the reference peptide presents an unfolding 

transition at a Tm= 71 °C and hybrids α/urea compounds present also this transition but the 

thermal unfolding midpoints for the chimeras are  lower due to the introduction of two urea 

residues that may locally destabilize the helical folding. This observed behavior renders 

quantitative thermodynamic difficult to interpret. With the increase of the temperature, the 

observed [θ]222 absolute value for II.16 and II.17 is lower than the one of II.9, suggesting that 

the assemblies formed by these chimera oligomers are less stable than the assembly formed 

by the peptide itself. In contrast to what observed with CD spectra at 20°C, the best Tm for the 

chimeras was obtained for II.17 (i.e. Tm = 33°C) whereas II.16 presents an unfolding transition 

state at a Tm = 27°C. These results are not in line with the values of [θ]RME222 at 20 °C that was 

more favorable for II.16 than for II.17. This suggests that the difference between the two Tm 

values of II.16 and II.17 may not be significant.  

 The second series of chimeras II.18-II.20 present a less negative band at 222 nm (Figure 52 

A), suggesting that the assemblies formed by II.16 and II.17 are likely to be a little bit more 

stable compared to the assemblies formed by II.18-II.20. Moreover, the variable temperature 

CD spectra show an even less negative band at 222 nm for II.21, II.22 and a weak signal for 

II.23 (Figure 52 B). The Tm of the chimera II.21, bearing diad in its center, exhibits a much lower 

Tm than peptide II.9, but this Tm remains the best values in these series of three chimeras. Its 

value ( 11°C) is in the same range of order than that of II.18 with the urea segment shifted 

of one residue. In regards to the two other chimeras, the Tm of II.22 is extremely low (Tm = 

16°C, below room temperature) and for II.23, the Tm could not be determined; the shape of 

the curve is not in favor of coiled coil-type folding. These CD results suggest that these second 

series of chimeras present a poor self-assembly propensity.  

These results indicate that with the introduction of a urea segment, the Tm decreased 

substantially. The best Tm value was obtained for compound II.17, containing the LysU where 

the side-chain is branched on the Cα. Furthermore, we can observe that by decreasing the 
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number of carbons on the lateral chain of the urea residue mimicking the Leu13, the Tm 

decreased. This suggests that keeping the original side-chains in the urea diad seems to be the 

best compromise for helical secondary structure mimicry. Despite this Leu13 branched side-

chain being solvent exposed, its nature seems to be important for folding and assembly. For 

all the chimeras screened in this study, temperature experiments have been performed from 

4 - 100°C and from 100 - 4°C, and the all the curves were superimposable, highlighting here 

that the change of folding state is reversible.  

We were next interested in gathering the thermodynamic parameters of the folding/unfolding 

process which in principle are accessible from these variable temperature CD experiments25,26. 

The peptide II.9 and related chimeras undergo a two-state transition between a folded state 

(F) and an unfolded state (U) in function of the temperature. The fraction of oligomer folded 

at a given temperature is noted α. 

α= (θt-θU)/(θF-θt)      (1) 

where θt is the ellipticity value observed at a given temperature, θU the ellipticity value of the 

unfolded state and θF the ellipticity value of the fully folded state. The Gibbs-Helmholtz 

equation can be used to describe the folding state as a function of temperature. 

ΔG = ΔH(1-T/Tm)- ΔCp((Tm-T)+Tln(T/Tm))   (2) 

Tm is the temperature at which K = 1 and α = 0.5 

The constant of folding K is: 

ΔG= -RTlnK       (3) 

where R is the gas constant (1.98 cal.mol-1), T the temperature (Kelvin) and K the constant of 

folding.  

α= K/(1+K)       (4) 

The CD structural data have been reported in Table 10. Variable temperature CD experiments 

support the results obtained with the CD spectra of chimera oligomers II.16-II.23 at 20°C on 

the destabilizing effect of urea diad on folding and self-assembly. We can observe in the table 

8, that a low minimum of ellipticity at 222 nm does not necessary lead to a high Tm value. 

Indeed, II.18 presents a molar ellipticity lower than II.16 whereas the Tm is in the same range 

( 27°C). This is quite surprising as II.18 presents of the lowest negative band ([θ]222=-10 960 

deg cm2dmol-1res-1), whereas it leads the best Tm in this series. This result suggests that despite 

a poor -helical content due to the introduction of a urea diad, the quaternary fold of chimera 

oligomers remains present in solution. This may also reflect a possible contribution of the urea 

chromophore to the CD spectrum even at 222 nm. The changes in Tm corresponds to a 

destabilization of about 1.9-2.2 kcal.mol-1 for chimeras II.16 - II.22. The strongest 

destabilization occurs with II.23 with 4.9 kcal.mol-1 which is in adequacy with previous results 

and confirms that this 23-25 position is not the best to substitute. The central position restores 

the most the desired conformation. 

 
Table 10: Sequence and circular dichroism data for peptide II.9 and chimeras II.16-II.23. a [θ]222 determined 
from the CD curves at 20 °C and expressed in deg.cm2.dmol-1.res-1.b the fraction of helicity was calculated with 
[θ]222 (see experimental part) c Melting temperature (Tm) of compound at 100 µM concentration in 10 mM 
phosphate buffer, pH 7. d Change of folding free energy with respect to II.9. 

Compound [θ]222
a % helicityb Tm  (°C)c ΔΔGfold

d 

II.9 -32300 91 71±0.78  
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II.16 -23032 67 27±0.12 1.9 

II.17 -16764 49 33±0.23 2.0 

II.18 -10965 33 26±0.61 1.6 

II.19 -16796 49 19±0.52 2.1 

II.20 -14972 44 16±0.99 2.2 

II.21 -9881 30 23±0.34 1.9 

II.22 -7361 23 16±0.23 4.9 

II.23 -3286 12 n.m. - 

 

The insertion of oligourea segment in the center of the α-peptide appears to be better 

tolerated by the helix conformation (more than 33% of helicity) than when it is shifted to the 

C-terminal part of II.9. A drastic decrease of the ellipticity value was indeed observed for the 

two last chimeras II.22 and II.23 reflecting loss of helicity, in particular in case of II.23 bearing 

an Alau side-chain at position 23. The observed effects appear to be cumulated. The shift of 

the mutation and the lack of branched side-chain are indeed detrimental for helix population 

and bundle formation. This last observation for II.23 confirmed that the best results were 

obtained by keeping the native side chains on urea residues. 

The destabilizing effect resulting from the introduction of a urea diad in the peptide backbone 

can be context dependent, i.e. it may be due to the location of the diad. Another hypothesis 

is that the number of urea residues is too low to sufficiently stabilize the helix (only two urea 

residues whereas 2.5 residues are required for one full helical turn). With only two urea 

residues the helical turn of the urea segment is not complete leading to a shift in the 

distribution of side-chains and to a decrease of the overall helicity in comparison with the 

reference peptide. 

From these first results, we could consider that the introduction of an additional urea residue 

within the peptide backbone might offer a better ‘lock’ of the urea 2.5-helix and could have a 

beneficial effect on the stabilization of the secondary structure and quaternary folds.  

b) CD for chimeras with a oligourea triad 

The CD curves of chimeras encompassing a urea triad within the peptide sequence, were also 

recorded from 260 to 200 nm (Figure 53A). The CD spectra of II.24 and II.25 showed that the 
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replacement of four consecutive -amino acids by three urea residues seems not to be really 

well-tolerated by the peptide backbone with poor helical folding. The overall shape of the CD 

curves is indeed in favor of a conserved helicity, however the helicity (30% for II.24 and 29% 

for II.25) is much lower for both chimeras than for native peptide II.9. This suggests that the 

insertion of a urea triad at these two positions strongly disrupts the helical secondary 

structure. 

 

This conclusion is further supported by variable temperature CD experiments recorded 

between 4°C and 100°C (and reversely from 100°C to 4°C) with the monitoring of the molar 

ellipticity at 222 nm for compounds II. 24 and II.25. Curves of chimeras are quite similar to 

each other but showed a markedly different cooperative unfolding transition compared to II.9 

(Figure 53B). Indeed, chimeras II. 24 and II. 25 exhibited much lower Tm values (12 and 18 °C 

respectively) than peptide II.9 indicating a low self-assembly propensity. For both chimeras, 

the Tm values are also lower than for chimeras with the introduction of two urea residues in 

place of three consecutive -amino acids described in the previous section. Increasing the 

number of urea residues substitutions seems to further decrease the helix-bundle stability.  

This can be due to the position of the triad into the peptide sequence. The urea triad was 

inserted around the key residue Asn16, and as described before, the alteration of this residue 

can have a profound impact on the stoichiometry of the folding assembly. Furthermore, the 

triad involves the replacement of one polar residue at positions a and d, which has an impact 

on the packing arrangement in the hydrophobic core and can disrupt the folding as well as the 

assembly such as for chimeras II.21-II.23. The changes in Tm corresponds to 2.0 kcal.mol-1 

destabilization for the introduction of triad in central positions 12-15 (II.24) and the 

introduction in positions 9-12 is a little bit more stable with 1.7 kcal.mol-1 (II.25) (Table 11). 

However, because we do not observe a true cooperative two-state unfolding process, these 

figures are just estimates and must be interpreted with caution.    
Table 11: Sequence and circular dichroism data for peptide II.9 and chimeras II.24 and II.25.  a [θ]222 determined 
with CD scans at 20 °C and expressed in deg cm2 dmol-1 res-1. .b the fraction of helicity was calculated with [θ]222 
(see experimental part)c Melting temperature (Tm) of 100 µM compound in 10 mM phosphate buffer, pH 7. d 

Change of folding free energy with respect to II.9. 

Compound [θ]222
a % Helicityb T

m 
(°C)c ΔΔGfold

d 

II.9 -32300 91 71±0.78  

II.24 -9723 30 12±1.85 2.0 

II.25 -9429 29 18±2.7 1.7 

 

The CD data reported in Table 11 suggest that the introduction of a segment with one 

additional urea residues does not lead to a faithful mimic capable to lock and stabilize the 

helical folding. The insertion of triad decreases the coiled-coil assembly and hence the helicity. 

It is important to remind that as a parallel homodimer coiled-coil mimetic, the oligourea 

segment of each monomer interacts face to face in the self-assembly process, which could 

lead to increased destabilization. One hypothesis is that the size of triad, a bit higher than one 

urea helical turn (2.5 residues), could be too long and thus alter surrounding side chains 

encoded information, giving rise to visible changes in self-association behavior. It could be 

interesting, for future engineering efforts, to increase the number of urea residues to 5 
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(replacing 7 amino acids) to have two full helical turns in order to study the impact on the 

stability. Another point to figure out, is that in our design of triads, we change the nature of 

some side chains whereas we saw previously that best results were obtained with the native 

side chains. These results were not known when we first engineered this series of compounds 

and other results in the group had showed that to replace side chains of amino acids by shorter 

ones could be well tolerated (non-published results). Changing these side chains could have a 

positive impact for the stability but certainly not a colossal one because the backbone stills 

plays an important role also.  

Despite a sufficient number of urea residues to make a full helix turn, results are quite 

disappointing. An explanation can be found by the lack of structural uniqueness after having 

inserted a three urea-residue segment. Indeed, the introduction of a urea segment can have 

a negative impact on the orientation of the side chain of Asn16 which is responsible for the 

specificity of a defined oligomeric state. The different CD signatures can reflect a tendency to 

adopt other stoichiometries than dimer but to confirm this hypothesis, other structural 

methods are required.  

 

 

c) CD for chimeras with mutation of Asn16 

CD experiments have been performed on compounds exhibiting mutation of Asn16 with the 

aim this time to study the importance of this residue on the oligomerization state. All the CD 

spectra of chimera oligomers with diad II.26, II.28 and II.29 and cognate peptide II.27 were 

recorded from 260 to 200 nm at 20°C, at 100 µM concentration in phosphate buffer (10 mM, 

pH 7). We focused our attention on the residue mean ellipticity at 222 nm and we observed 

that θ222 for chimeras were lower than for the peptide II.27 (Figure 54) that presents a higher 

helicity (83% see Table 12). These results show that, as discussed before, the introduction of 

urea diad in the peptide segment perturbs the helical folding.  

Variable temperature CD experiments have also been performed from 4 to 100°C (and 

reversely) at 222 nm for this last series of compounds (Figure 54B). The shape of the curves 

for the peptide II.27 (GCN4-pLI) and chimera compounds II.26 and II.28 is different than for 

previous compounds including the reference peptide II.9. Indeed, the sigmoidal shape is no 

more visible, but the shape obtained for the peptide II.27, more linear, is similar to what is 

reported in the literature for a tetrameric folding5. The absolute value of ellipticity for 
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chimeras II.26 and II.28 is lower than for the peptide II.27, but for these three compounds, an 

exact determination of the melting temperature was not possible as we did not observe any 

transition state. The Tm obtained by fitting the data to a two-state model, were superior to 

100 °C, suggesting the high stability of the coiled-coil or another oligomerization state. 

Compound II.26 that shares the same sequence than chimera II.17, at the exception of an 

Asn16 → Leu16 substitution, presents a much more stable coiled-coil assembly than previous 

chimera. This highlights that the substitution of this key residue (Asn16) has drastic structural 

consequences on the stability and self-assembly. The other chimera II.28, with Leu at a 

positions and Ile at d positions, presents a similar behavior meaning that the nature of the 

hydrophobic core is not essential here for the self-assembly propensity and coiled-coil 

stability. These results underline once again the key role of the Asn16 in the formation of 

dimer through polar contact.  

Regarding chimera II.29, the shape of the CD curve reminds that of peptide II.9 suggesting 

here a similar oligomerization behavior. However, the substitution of this Asn16 has a huge 

impact on the helicity (42% instead of 91%) highlighting the importance of this residue for the 

folding. The Tm value for II.29 is lower than for peptide II.9 (53 and 71°C respectively) meaning 

that the introduction of the urea residue destabilizes the assembly even though this fall in the 

value of Tm is less important than for the other studied chimera series. This result confirms 

that the change in the backbone composition has a direct impact on the helical structural 

folding and bundle self-assembly. Overall the GCN4 coiled-coil model has key structural 

constraints and any perturbation can have a huge impact on the folding, making any 

interpretation of these phenomena more complex.  

 
Table 12: Sequence and CD data for peptide II.9 and chimeras II.26-II.29.  a [θ]222 determined from the CD 
spectra recorded at 20 °C and expressed in deg cm2 dmol-1 res-1.b the fraction of helicity was calculated with 
[θ]222 (see experimental part). cMelting temperature (Tm) of chimeras at 100 µM, in 10 mM phosphate buffer, 
pH 7. 

Compound [θ]
222

a % Helicityb T
m 

 (°C)c 

II.9 -32300 91 71±0.78 

II.26 -19223 56 _ 

II.27 -29291 83 _ 

II.28 -14503 43 _ 

II.29 -14366 42 53±0.79 

 

These circular dichroism experiments gave us important structural information about the 

impact of the introduction of oligourea segment in a long model peptide. A main limitation of 

CD is the low-resolution structural information. Although a reliable estimation of the 

secondary structure of a peptide is obtained, the information on the quaternary structure are 

not detailed. To evaluate the stoichiometry of chimeras, other methods are necessary such as 

sedimentation equilibrium, differential scanning calorimetry, NMR or x-ray crystallography. In 

our case, we were interested in correlating these CD data with high-resolution structures of 

chimera oligomers assemblies. As GCN4 derivatives are known to be amenable to 

crystallization in aqueous conditions, we focused our efforts on x-ray crystallographic analysis.  
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4. Crystallographic assays 

X-ray crystallography is a structural technique that requires crystals that diffract to high 

resolution. This technique allows the determination of the three-dimensional molecular 

structure at tomic resolution. The principle is to dissolve a pure sample in solution at high 

concentration and to find the correct conditions to induce its crystallization. The elucidation 

of these conditions is the rate limiting step of X-ray crystallography.  

All synthesized chimeras were subjected to 

crystallization assays through hanging drop 

vapor diffusion method (Figure 55) in 

aqueous conditions. This popular method 

has for principle a buffer solution in the 

crystallization well and a drop on the 

coverslip that is composed of the protein 

solution and the solubilizing buffer (1:1)27. 

The coverslip is returned and the drop stills 

suspended. The vapor pressure around the 

drop is higher than in the reservoir. With 

the pressure gradient across the vapor space, water is lost in the drop and precipitant 

concentration in the drop equilibrates with the precipitant concentration in the well.  

Crystallization conditions were selected by variations around those reported for the reference 

peptide II.9 (0.15 M sodium citrate tribasic pH 5.6, 20% v/v 2-propanol and 15% PEG w/v 

4000). Several commercially available screening kits (JBS basic 1, basic 2 and classic ones) were 

also used to start and by learning this technique, I managed to grow crystals of good sizes for 

chimeras II.16, II.18 and II.24 (Figure 56). In contrast to II.16, we did not obtain crystals for 

II.17 illustrating here that despite the best Tm of II.17, the switch of the lysine side chain on 

the carbon Cα, may destabilize the helical structure with an impact on the crystallization 

process. However, as the environment can have an influence on the stability of compounds, 

other conditions must be tried again to obtain good-quality crystals. 

These crystals are encouraging results because 

it indicates that some chimeras own a sufficient 

structural order to make crystallization 

possible. However, crystals were only obtained 

when the oligourea segment was introduced in 

the LLSK center position (12-15) suggesting that 

it could be a good area for modifications to 

obtain crystals. Crystals were frozen in N2 and 

diffraction data of compounds II.16 and II.18 

were obtained at 2.2 Å and 3.0 Å respectively 

by Jérémie Buratto (structural biologist in our 

team) who brought them to the synchrotron. 

For II.16, the space group P222 was found with 

Figure 55: Hanging drop vapor diffusion method for 
crystallization with the inverted drop in yellow and the buffer 
solution in the well in blue. 

Figure 56: Example of crystals obtained for II.16 
before optimization 



Chapter II 
A model system to investigate α-helix mimicry with peptide/oligourea hybrids  

118 
 

a unit cell (39.24, 47.31, 49.96, 90.00, 90.00, 90.00; a,b,c,α,β,γ). Concerning II.24, diffraction 

data were also obtained but the resolution was too low. 

However, data obtained for II.16 and II.18 could not be used to solve the atomic structure as 

a phase problem appeared leading to the impossibility to exploit the data. Indeed, the phase 

angle between the diffracted angle and the amplitude of the reflection are related with the 

intensity of a diffracted spot but the determination of the phase angle is not direct in our case. 

To solve this problem, an indirect isomorpheous replacement method was used to incorporate 

heavy atoms into crystals. We thought to iodinate the tyrosine 17 in the chimera sequences. 

Indeed, using iodo-tyrosine as a phasing tool may be beneficial for structure determination 

using a single-wavelength anomalous diffraction28. Assays for the iodination of the tyrosyl side 

chain have then been performed during the crystallization process with the addition of an 

iodinating agent (I2/KI) in the drop or directly in the well. However, we were not successful in 

reproducing crystals by using this iodination procedure. Another approach consists in 

performing the iodination post-synthesis by using N-iodosuccinimide as iodinating agent. This 

strategy is actually in progress in the group and we expect that it will help in solving the X-ray 

crystal structure of II.16 and II.18 chimeras. 

Presently, our results with crystallography data did not allow the determination of atomic 

structures of our chimeras which is clearly missing. These crystal structures would indeed help 

us to understand and to study the influence of the introduction of the oligourea segment on 

the quaternary structure. Besides, it would be interesting to compare the structure of 

chimeras with diad or triad in order to optimize the design. Crystal structures would also allow 

us to check our hypothesis regarding the change in the orientation of Asn16 side-chain after 

having introduced the urea segment. Much effort on the crystallization method was done. 

First results are encouraging and new crystallogenesis efforts will be required to obtain 

crystals with heavy atoms, solve the phase problem and determine the structure with our 

data. New crystal assays will be necessary to find crystal conditions for other interesting 

compounds such as II.17, II.21, II.26 - II.29 and improve II.24. In short term, this would allow 

us to design new chimera sequences and to propose new modifications such as the increase 

of urea segment size. As mentioned before, to insert 5 urea residues within the peptide 

sequence would permit the installation of two full urea-helical turns which may potentially 

promote a better stabilization of the helical structure. Indeed, the proportion of -residues is 

clearly higher compared to the urea residues (these chimeras are the longest synthesized in 

the group at the moment) and increasing the number of urea residues might be positive for 

structure and assembly. 

 

In this project, we have performed a series of →urea mutations with two different size of 

urea-segments with the aim to study the structural consequences on chimera folding and 

oligomerization state of the local insertion of a urea backbone in the main peptide chain. The 

nature of the side chains is also important for folding, in particular for residues involved in the 

hydrophobic core and inter-helix contacts. The position of the short urea segment is essential 

for the folding process and the chimeras equipped with urea blocks in the middle of the 

peptide sequence gave the best results. However, the introduction of this block in the center 

may induce a shift of the key residue Asn16 side-chain as well as other key side chains and is 

likely to have an impact on the oligomerization state. Unfortunately, all the structural 
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information gathered after CD experiments have not been yet confirmed by X-ray 

crystallography. This interpretation limitation precludes at this stage to define general rules 

to design effective mimics of α-helical peptides. However, the introduction of a urea segment 

in the center of a long peptide sequence (> 20 residues) is feasible via solid phase synthesis 

approaches earlier developed in the group, which is encouraging. Nevertheless, some of the 

chimeras described in this chapter have maintained significant helical folding even though the 

insertion of urea-diads or triads reduces overall stability, which is also a positive result. The 

results obtained for helix bundles can be extended to the rational design of α/urea hybrids as 

modulators of protein-protein interaction involving α-helix recognition. Indeed, GCN4 bundles 

required helical monomers and self-assembly that compare well to protein-protein 

interactions where α-helices are involved in the recognition process. We can now apply this 

strategy to our selected peptides involved in protein-protein interaction between histones H3-

H4 and Asf1 proteins. 
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We have previously demonstrated that the insertion of a urea-diad or triad in a peptide sequence 

is feasible and that overall the helical structure is maintained with nonetheless local distortions. 

We were interested in applying this chimera’s concept to a more biologically relevant target by 

modulating PPIs involved in cancer and in particular the Asf1/H3-H4 complex. As discussed in 

chapter I.B, Asf1 is over-expressed in several cancers, including breast cancer and constitutes a 

valuable biological target for modern anticancer treatment1. The following work aims to design 

urea-based foldamers able to mimic the C-terminal part of histone H3 in order to modulate the 

natural Asf1/H3-H4 complex interaction with synthetic molecules that would potentially display 

better drug properties and possibly pharmaceutical interest.  

This work was performed in close collaboration with the team of Françoise Ochsenbein (CEA of 

Saclay, University of Paris Sud) which has a unique expertise in the structural biology of the 

Asf1/H3-H4 interaction, including the characterization of peptides engineered to bind ASf1 using 

a combination of NMR and X-ray crystallography as well as molecular modeling. During my PhD 

training, I had the chance to be hosted in the Ochsenbein’s team to perform some experiments. 

Remarkably, Ochsenbein and coll. have indeed designed -peptides of different length and amino 

acid composition capable of inhibiting the Asf1/H3-H4 interaction up to the nanomolar 

concentration range2. However, synthetic and/or natural peptides present weaknesses, such as 

instability to proteolysis, immunogenicity in some cases and rapid clearance from the body, that 

make them unsuitable for cellular and in vivo applications and for their use as therapeutics. These 

peptide candidates were therefore selected as model sequences to engineer and finely tune the 

first urea-based foldamers as inhibitors of the human Asf1 and H3-H4 interaction and chromatin 

regulation function with improved biostability compared to natural -peptides. 

A. Design of /urea chimeras for Asf1/H3-H4 inhibition

1. A synthetic α-helical peptide with improved binding affinity to Asf1

(developed by M. Bakail, previous phD in Ochsenbein team)

Given the large and complex interface between Asf1 and H3-H4, the inhibitory peptide strategy 

appeared to be more suitable than the small molecule approach. This was indeed recently 

confirmed by the poor affinity and selectivity of library of small molecules targeting Asf1/H33,4. 

The fewer number of reports about this histone chaperone compared to papers about p53 for 

example, highlights the novelty of this anticancer target. The approach reported by F. Ochsenbein 

et al. for the design of peptides binding to Asf1 was based on the C-terminal helix-α3 of histone 

H3, herein referred as peptide p1 (residues 117 to 131 of H3 encompassing the key 

residues: Leu126, Arg129 and Ile130). p1 showed a measurable binding affinity for Asf1 with 

a dissociation constant (Kd) of 8.70±0.3µM determined by isothermal titration calorimetry 

(ITC). The x-ray 
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crystal structure of Asf1-p1 complex at 2.0Å confirms that the p1 peptide interacts with Asf1 in 

the same manner as in the full protein. However, this pentadecapeptide is only helically folded 

upon Asf1 binding5. In order to decrease the conformational entropic cost associated with the 

“folding and binding process”, various mutations were introduced for helical stabilization. After 

several loops of computational designs followed by experimental validations, a first “good” 

affinity peptide ligand herein named p2 (see Table 13) was conceived. (1) A capping box (ASTE 

tetrapeptide) was introduced at the N-terminal position with a shift of one residue compared to 

the reference peptide p1. (2) in addition, the peptide was lengthened on its C-terminus in order 

to reach the hydrophobic binding pocket of the histone H4 Phe100 residue (described in Chapter 

I) by engineering an -amino acid sequence to bridge the C-terminus of H3 peptide and the N-

terminal part of histone H4 β-strand. (3) Computational design with Rosetta software was 
performed to explore individual mutations effects. A set of amino acid systematic mutations was 
performed to stabilize the helical conformation by salt bridges and to gain better hydrophobic 
contacts with the Asf1 surface. In particular, the initial Asp6 in p1 was substituted by a Trp 

making new hydrophobic contact with Asf1-Val92 and - interaction with Asf1-Tyr112. A global 

affinity gain of 100-fold with respect to p1 was measured but the interaction could further be 

optimized. The last round of peptide binding optimization has consisted in performing the last 

critical mutations. Careful inspection of the Asf1-p2 structure solved at 2.3Å, has indeed 

revealed repulsive electrostatic interactions between p2 and the surface of Asf1. Consequently, 

Arg4 and Glu8 in p2 sequence were switched. Furthermore, the Arg-Gly dipeptide motif 

prone to degradation and already present at the C-terminus of p1 was mutated into Ala-

Gly. The last mutation has consisted in replacing the neutral Asn22 by its Asp22 acidic version 

thus making an additional salt bridge contact with surface of Asf1. All together these three 

mutations significantly increased the binding of resulting p3 peptide to Asf1 with a KD value 

reaching the single digit nanomolar range: 3 ± 1nm.6
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Table 13: Sequence of peptide inhibitors used as reference in the context of this PhD work. A one letter code for 
the natural α-amino acids is used and the Napthylalanine is referred with a three letters code Nal 

Sequence KD (µM)

-1 5 

p1 T I M P K D I Q L A R R I R G 8.700±0.330 

p2 A S T E R K W A E L A R R I R G A G G V T L N G F G 0.055 ±0.020 

p3 A S T E E K W A R L A R R I A G A G G V T L D G F G 0.003±0.001 

p3h A S T E E K W A R L A R R I A G 0.150±0.050 

p4 Ac E K W A R L A R R I A G 0.310±0.050 

p5 Ac E K Nal A R L A R R I A G 0.240±0.110 

X-ray crystal structure of the complex Asf1-p3 was obtained at 1.9 Å resolution. As expected from

the round of computational design and experimental evaluation, it revealed two binding epitopes

corresponding to the N-terminal -helix that reproduces the binding mode of the C-terminal α-

helix of histone H3 and a C-terminal β-strand mimicking the C-terminal segment of histone H45,7,8.

In the same manner than in the natural complex, the major contributions to the Asf1 surface

interaction occur through the helical part of p3. In particular, three hydrophobic residues Trp6,

Leu9 and Ile13 are located into hydrophobic groove of Asf1 (Figure 57). As already observed for

p2, Trp6 packs against Asf1 Val92 and Tyr112 side chains. As hypothesized, this interaction is also

stabilized thanks to several salt bridges between residues Arg145, Asp88, Glu49 and Asp54 of Asf1

and residues Asp22, Lys5, Arg8 and Arg12 of p3 respectively. Finally, intramolecular hydrogen

bond between the carbonyl of Gly25 main chain and NH of Phe24 stabilizes the β-strand

secondary structure allowing Phe24 to be well-positioned into the hydrophobic pocket but this

part will be more detailed in the next chapter. In this chapter, we will focus on the α-helical part

of p3 to design α/urea hybrid compounds.
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Urea-based foldamers targeting the surface of the histone chaperone Asf1 were designed by 

relying on the crystal structure of Asf1-p3 as a template. To simplify our design approach, we first 

focused our efforts on reproducing the key contact of the α-helix of p3 with the surface of Asf1, 

herein referred as p3h. Importantly, as the N-terminal sequence of p3h (ASTE) was initially 

introduced as a capping box to stabilize the -helical conformation of the peptide9, these four 

residues were preliminary omitted as we sought that the urea contribution could be sufficient to 

lock a helix of this length. With the aim to best mimic the positioning of p3h α-helix, side-chain 

B 

Figure 57: X-ray crystal structure of Asf1-p3 complex and similarities between the -helical  and urea 
foldamer backbone. A. Crystal structure of Asf1 (grey) in complex with p3 (blue). A) Cartoon 

representation of p3 (dark blue) in contact with the surface of Asf1 (light grey) with a zoom of the -
helical segment of p3 showing 3 key residues involved in the interaction. B) X-ray representation of 
peptide p3 (blue), a full oligourea (orange) and the superimposition of both. 

A 



Chapter III 
Conception of urea-based foldamers to target the interaction between Asf1 and H3-H4 

128 
 

orientation and spatial arrangement, we did a “simple” superimposition of its x-ray crystal 

structure from the Asf1/p3 complex with the crystal structure of a homo-oligourea. This simple 

modeling quickly revealed the inherent difficulty to well mimic p3h with a homo-oligourea of the 

same length without observing a strong deviation of the urea-backbone helices and side-chain 

orientation that would have as major consequences steric clashes with the Asf1 surface. This first 

model prompted us to begin this project with an α-/urea hybrid approach in order to reproduce 

the folding of p3h and to maintain as much as possible the spatial arrangement of the key residue 

side chains (Trp5, Leu9, Arg12 and Ile13) at the surface of Asf1. 

Based on our previous knowledge of the hybrid chimera approach, we selected p3h chimeras 

exhibiting three urea residues (triad) in place of four α-amino acids. As previously carried out for 

GCN4 Leucine zipper, we decided to perform a urea triad scan along the p3h backbone by each 

time keeping the side-chain composition. During this first round of design, we also observed that 

the p3 Trp6 could potentially be substituted by non-proteinogenous aromatic residues such as a 

Naphtylalanine (Nal) that could better sit on an “empty” hydrophobic region of the Asf1 surface. 

Moreover, in order to gain additional binding information and an easy way of binding and 

structural comparisons between our chimeras and Asf1, two additional peptides were 

synthesized. Peptide p4 that corresponded to an ASTE truncated version of p3h and its analogue 

p5 equipped with Nal instead of Trp6 were synthesized by SPPS and their binding to Asf1 were 

determined by ITC (Table 1). When compared to p3h, KD values are two and about 1.6 times 

higher for p4 (Kd = 0.31 µM) and p5 (Kd = 0.24 µM) respectively than for p3h, once again 

underlining here the -helix stabilizing effect of the ASTE capping box during the binding to Asf1. 

Nonetheless, for peptides of this length (12-mer), p4 and p5 recorded KD value seemed promising 

and especially the peptide p5 can be viewed as a good starting candidate for urea-type residue 

installation. Additionally, installing a urea triad in this short peptide sequence may compensate 

the absence of the capping box by bringing new structural constraints such as the H-bond network 

between the carbonyl and the 2 NH of the urea function in vis à vis.  

 

2. Urea triad scan of a short synthetic α-helical peptide  

Urea triads were introduced along p5 backbone at various positions in order to perform what we 

will call here a urea scan (by analogy to the Ala scan) aiming at identifying the best position of this 

short urea segment. Moreover, in order to reduce the number of positive charges meaning for p5 

the number of guanidinium moieties, the Arg8 residue which does not contribute to the Asf1 

binding was replaced by a Gln one.  

Firstly, activated carbamates deriving from Gln, Nal and Arg have been synthesized starting from 

the corresponding Fmoc-protected amino acids. The orthogonal protections, trityl for Gln and Pbf 
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for Arg, were chosen for their compatibility with the final resin cleavage. For some chimera 

sequences in the group, low yields were obtained with the azide strategy due to partial reductions 

observed after the first urea residue. This difficulty in reducing the azide in chimera always occurs 

after the installation of the urea-residue on a peptide segment whereas the reverse was never 

observed. To overcome this problem, we thought of a new strategy that consisted to introduce 

the first urea residue in Fmoc strategy. Then, the activated monomer Fmoc-Gln(Trt)U-OSu M11, 

Fmoc-(1)NalU-OSu M12 and Fmoc-ArgU(Pbf)-OSu M13 have been synthesized in solution starting 

from the Fmoc-Gln(Trt)-OH, Fmoc-(1)Nal-OH and Fmoc-Arg(Pbf)-OH. After the formation of 

Fmoc-protected amino alcohol (step a), the alcohol was converted into the corresponding alkyl 

iodide (step b) then azide (Scheme 10). After a step of hydrogenation to obtain the corresponding 

amine (d), followed by the activation, the N-Fmoc protected activated carbamate monomers 

M11, M12 and M13 were recovered with 36%, 24% and 18% overall yield respectively.  

 

Scheme 10: Multi-step synthesis of Fmoc-protected activated monomers M11-M13. 

 

One main limitation of the use of the Fmoc strategy is the high number of equivalents required 

by coupling (2 x 5 eq.) and its total incompatibility with microwave irradiation10 rendering the 

coupling steps much longer than the azide strategy. For these reasons, the urea residues following 

the first one were always introduced in azide strategy.  

The activated monomer N3-Gln(Trt)U-OSu (M14), was synthesized starting from the Fmoc-

Gln(Trt)-OH. After the Fmoc-deprotection of the alcohol derivative and multi-step synthesis, M14 

was recovered with a yield of 23% ().  
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Scheme 11 : Multi-step synthesis of succinimidyl (2-azido-2-substituted ethyl) carbamate monomers, N3-Gln(Trt)-
OSu, (M14). 

 

The activated carbamates N3-NalU-OSu, M16 and N3-HPheU-OSu M17, have been synthesized 

starting from unprotected starting amino acids H-L-1Nal-OH and H-L-HPhe-OH. The side chain did 

not require protection, allowing to start with an unprotected amino acid and to save a 

deprotection-step during the multi-step synthesis. The activated monomers M16 and M17 were 

obtained with 36% and 30% global yield respectively (Scheme 12). The other activated monomers 

M3 and M6 were synthesized as described previously in Chapter II C.2.a)i). 
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Scheme 12: Multi-step synthesis of succinimidyl (2-azido-2-substituted ethyl) carbamate monomers N3-Nalu-OSu, 
(M16) and N3-HPheu-OSu (M17). 

For this series of compounds in urea scan, the solid phase synthesis (SPS) of the chimeras was 

performed on Rink amide MBHA resin. When the first urea residue introduced was derived from 

Gln, the first coupling was performed in Fmoc-strategy followed by the azide strategy (Scheme 

13) whereas the azide strategy only was used for others first residue.  

 

Scheme 13: Solid phase synthesis of chimeras with the introduction of the first urea residue in Fmoc-strategy 

 

Chimeras ch1-ch4 were synthesized and after purification on RP-HPLC expected compounds were 

identified by mass spectrometry and recovered in 15 to 30% overall yields (Table 14).  
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Figure 58: Example of HPLC chromatogram and ESI-MS of a pure chimera ch3 

These four chimeras in hand, isothermal titration calorimetry (ITC) was used to investigate their 

binding to Asf1 and gain access to several important thermodynamic values including the 

dissociation constant KD. For all the four chimeras, the measured values of Kd were comprised 

between 8.7 to 3.6 µM. The best sequence ch3 exhibits a relatively good affinity for Asf1 (Kd= 3.6 

µM), that nonetheless remains ten times higher than the binding affinity of p5 (Kd= 0.2 µM). In 

this chimera, the central Leu-Ala-Arg-Arg α-tetrad of p5 was swapped with LeuuGlnuArgu urea-

triad. Moreover, as this binding affinity is more than twice better than the three other chimeras, 

this central position modification seems to be the most tolerated by p5 α-helix when complexed 

to Asf1 and ch3 foldamer was thus selected for a thorough structural study. 

Table 14: Sequences of ch1-ch4 chimeras with urea triads and characterization by RP-HPLC and ESI-MS. 

 

Sequence Yield 
(%) 

tR 
(min) 

ESI-MS 
[M+3H]3+ 

p5 Ac E K Nal  A R L A R R I A NH2 55 4.22 473.33 

ch1 Ac E K Nal  A R L - Q
u
 R

u
 I

u
 A NH2 21 3.42 470.54 

ch2 Ac E K Nal  A R L
u
 - Q

u
 R

u
 I A NH2 30 4.57 470.60 

ch3 Ac E K Nal  A R
u
 L

u
 - Q

u
 R I A NH2 15 4.80 470.67 

ch4 Ac E K Nal
u      - R

u
 L

u
 A R R I A NH2 28 4.37 478.96 

 

Interestingly, ITC technique provides thermodynamic information and it is also possible to have 

access to the heats exchanged during the interactions between the two partners. The 

determination of other thermodynamic values can be obtained such as the change in free energy 

ΔG, the change of enthalpy ΔH and the change of entropy ΔS11–15. A given binding affinity can be 

the results of many combinations of enthalpy and entropy. These thermodynamic values were 
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calculated and reported for each chimera ch1-ch4 and compared to those obtained for p5 (Figure 

59). Here, the analysis of these thermodynamic data reveals similar range of enthalpies and 

entropies for the four chimeras. The change of enthalpy is negative (meaning an exothermic mode 

of interaction takes place during the binding to Asf1) and varies between -3.1 and -4.5 kcal.mol-1 

for chimeras ch1 and ch2 respectively. The binding enthalpy brings favorable contributions 

suggesting the formation of some interactions like H-bonds with Asf1. Concerning the entropies, 

they contribute between -2.3 and -3.7 Kcal.mol-1 to the binding energy. For ch1, the binding is 

mostly entropic, maybe driven by hydrophobicity or by possible rigidification of the backbone but 

coupled to a favorable enthalpy. In contrast, for chimeras ch2-ch4, the binding is predominantly 

enthalpic with favorable entropy suggesting that the hydrophobicity can be optimized. 

In comparison to the peptide p5, the enthalpy values of the chimeras are lower whereas they are 

optimized entropically. These results highlight that the introduction of the urea-triad improves 

the order but concurrently decreases the enthalpy and therefore has a negative impact on the 

affinity to Asf1. Indeed, extremely good affinity is reached when both enthalpy and entropy are 

optimally contributing to the binding. This first series of /urea chimeras are entropically well-

suited but to optimize the affinity to Asf1, the next objective would be to improve their binding 

enthalpy. This unfavorable enthalpy is actually observed for many complexes16. 
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Figure 59: Thermodynamic parameters of compounds ch1-ch4 measured by ITC. ITC curves of ch1-ch4 and fitted 
curves are shown. Experiments were carried out at 20°C, in a 50mM Tris-HCl pH7.4 

 

For some foldamer sequences, their interaction to the surface of Asf1 was further characterized 

by heteronuclear NMR techniques thus allowing us to compare their mode of binding to the one 

already studied in details by the group of F. Ochsenbein with their first generation of peptides5,17. 

NMR titration experiments were performed by the team of F. Ochsenbein on ch2 and ch3 with 

Asf1 uniformly 15N labeled. The significant variation in the Asf1 15N-HSQC spectra reveals than ch2 

and ch3 interact in the same region than p3h. However, during titration experiments, differences 

in the kinetic of exchange were noticed. Whereas a slow exchange rate is observed for the 

resonance of some protein residues (such as Asf1 Thr93) as for p3h, other residues are in rapid 

exchange (Asf1 Val95 and Tyr112) (Figure 60). Indeed, as illustrated for ch3, there are several 

crosspeaks for which two chemical shifts were observed, such as Val45 in a manner similar to 

p3h, reflecting here that the association/dissociation phenomenon is slow on NMR time scale 

(Figure 60B). In contrast, for some crosspeaks in the 1H-15N-HSQC spectrum such as Thr93, 

crosspeak shifting intermediates are observed reflecting a fast association/dissociation 

phenomenon. These observations indicate that an intermediate rate occurs for these chimeras. 
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All together these NMR results confirm that the original binding mode of p3h is partially restituted 

despite drastic backbone modifications with the introduction of the urea triad. 

 

 

Figure 60: Comparative NMR analysis of Asf1, Asf1-ch2 and Asf1-ch3. A) Overlay of NMR 1H-15N HSQC spectra of 
free Asf1 (black), Asf1/ch2 (red) and Asf1/ch3 (green) complexes. B) Overlay of NMR 1H-15N HSQC spectra upon 
titration of Asf1 with ch3 on the top and p3h on the bottom showing the NMR exchange regime. Experiments were 
carried out at 20°C, in Tris 10mM buffer pH7.5. Red arrows indicate the direction from the initial (free ASF1, blue 
with black cross) to the final (saturated ASF1, red) position of the resonance signal on the spectrum. 

 

With the aim to get a structural snapshot of the mode of binding of this chimera with Asf1 protein, 

crystallogenesis screens have been performed for all compounds ch1-ch4. Remarkably, several 

crystals of the As1f/chimera complexes grown in different conditions were obtained for 

compounds ch1 and ch4. After X-ray diffraction at the synchrotron (Soleil), the best data obtained 

were at 3.3 and 2.4 Å respectively. However, so far, the structures have not yet been solved but 

efforts are still devoted in this direction. 

This first generation of chimera with a 4 →3 urea replacement strategy having given promising 

binding results, we decided to pursue this approach by increasing the number of urea residues to 

(1) improve the entropy of the systems and (2) to see if we could also gain in binding enthalpy. 

Adding extra urea-type units in the backbone of ch3 may help to better lock the unbound helical 

conformation thus enhancing S, the binding entropy. Indeed, the entropy of the system is 
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function of the chain length and the conformational entropy of each residue (- or urea-) as it is 

related to the local folding and the degree of freedom18. Concurrently to improve the binding 

enthalpy (H), the number of contacts (i.e. non-covalent interactions) at the interface between 

Asf1 surface and chimeras should be improved. 

 

3. Different approaches to expand the oligourea region and first X-ray crystal 

structure of an α/urea chimera complexed to Asf1 

 

a) Varying the number of urea residues in the chimera sequence 

From the result gathered in the first series of chimera with a 4-α to 3 urea pattern we observed 

that the best installation of the urea triad was actually in the middle of peptide p5. With the aim 

to improve the Asf1 binding affinity, we synthesized several new sequences where one or even 

two extra urea residues were installed at N-terminus side of the urea triad of ch3. We did not 

want to modify the Arg9 in p5 because from the X-ray crystal structure of p3, the guanidinium 

side chain was known to make a key salt bridge with the surface of Asf1 and its replacement could 

result in reduced binding affinity as previously observed for ch2.  

Chimera ch5 is indeed the version of ch3 presenting a Nalu urea-residue whereas in ch6, the 

naphthyl ring was substituted by a phenyl one with an additional methylene unit to bring 

additional flexibility to this side-chain and offer a potential better adaptation of the aromatic ring 

to the Asf1 surface. To compare with the previous SPS, these new chimeras were synthesized in 

full azide-chemistry (Scheme 14).  
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Scheme 14: Solid phase synthesis of chimera compounds in full azide-strategy 

Chimeras ch5 and ch6 were only recovered with low yields (2 and 2.5% respectively). These poor 

yields result from a major limitation of this SPS using azide strategy introduced earlier: an 

incomplete reduction of the azide moiety of the newly installed Glnu residue probably due to 

steric hindrance provided by the Trt protection on the amide side-chain. Indeed, the crude 

product of ch5 obtained after cleavage was analyzed by RP-HPLC and several peaks were 

observed. They were isolated and independently identified by ESI mass spectrometry analysis and 

this partial azide reduction was mostly observed after the introduction of Glnu but other truncated 

chimera sequences were also found after this urea residue. This issue of incomplete azide 

reduction was also observed in other projects developed in the team and seems to be sequence 

dependent. In all cases, the recovered quantities of ch5 and ch6 were sufficient to investigate 

their binding affinity to Asf1. 

At this stage we were even tempted to enlarge the urea segment by one unit and to install a 

pentaurea “sandwiched” between two short peptide segments. In this context another 

compound was designed where Glu4 of ch3 was conserved as a natural amino acid but Lys5 was 

replaced by its urea counterpart with the Lys side chain migration on the Cα carbon of the urea 

residue combined with an inversion of its absolute configuration ((S)→ (R)) to better reproduce 

the spatial orientation at the Asf1 surface. The canonical configuration would indeed result in an 

inappropriate orientation of the Lys side chain and consequently a steric clash with Asf1 Glu49 

and would also lead to strong destabilization of the helical structure. The activated monomer N3-
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Lys(Boc)inv
u-OSu M8 was therefore prepared starting from corresponding D-amino acid and 

following the synthetic route detailed in chapter II C.2)a)ii). This activated monomer M8 in hands, 

we synthesized the chimera ch7 where a total of seven -residues were replaced by five urea 

ones, which corresponds to two full -helical turns (Table 15). Importantly, in this chimera side-

chain composition, the HPheu urea residue was selected. 

All the binding affinities to Asf1 were determined by performing ITC experiments and showed 

that the best affinity for Asf1 was obtained for chimera ch5 equipped with tetraurea in its centre 

and a Naphtyl group as aromatic moeity (KD= 2.7 µM in Table 15). This result was quite 

encouraging even though the affinity gain compared to ch3 was of only 1.3-fold. The main interest 

here is that it confirmed that extanding the urea composition of the chimera of one unit does not 

have a negative impact on Asf1 binding and appears to be well-tolerated by the protein surface. 

Interestingly, the substitution of the Nalu side chain by HPheu one induced a fall in the capacity of 

ch6 to make key interactions with Asf1. Regarding the sequence ch7 having a pentaurea segment, 

this chimera does not interact with Asf1 enough tightly to measure a KD. This last result was a bit 

disappointing as the replacement of two full turn of helix (7 α→ 5 urea residues) is not enough 

efficient but this can be also due to the inversed configuration of the LysU side chain and/or to 

HPheU as aromatic that bring a negative contribution to the binding.  

 

Table 15 : Second generation of chimeras equipped with urea segments composed by 4 to 5 unit and 
characterization by RP-HPLC and ESI-MS. 

 

Sequence Yield 
(%) 

tR 
(min) 

ESI-MS 
[M+H]+ 

p5 Ac E K Nal 
 
A R L A R R I A NH2 55 4.22 1420.84 

ch3 Ac E K Nal A Ru Lu Qu R I A NH2 15 4.80 1409.87 

ch5 Ac E K Nalu Ru Lu Qu R I A NH2 2 4.55 1367.73 

ch6 Ac E K HPheu Ru Lu Qu R I A NH2 2.5 4.82 1331.60 

ch7 Ac E invKu HPheu Ru Lu Qu R I A NH2 1.7 4.72 1360.60 

 

So far it is difficult to say that the observed negative effect on Asf1 binding was brought by the 

extra urea unit in ch6 because the only sequence that we have evaluated did not contain the NalU 

and we did not investigate the consequence of repositioning the Lys side-chain on the regular 

C of urea-residue on Asf1 binding. Nonetheless, we have acquired structural knowledge on the 

number of urea residues tolerated to maintain a correct binding to Asf1 and that their central 

location on p5 is preferred and we can envision to modulate the nature and side chain 

compositions of the future generation of chimeras. 
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The thermodynamic data of this second generation of p5 chimeras will be discussed in details in 

the next paragraph.  

 

b) Effect of Replacing the aromatic residue in the chimeras  

With the continuous aim to optimize the entropy, we designed sequences where the nature of 

the aromatic urea residue was modified to improve the interaction with Asf1 and its affinity. 

Before these modifications, I focused on the synthesis of our best chimera compounds, ch5, in 

order to compare different strategies for SPS. The low yield obtained in the previous paragraph 

can be explained by partial reductions of first azide residues. Firstly, we tried to increase the time 

of the reduction through the Staudinger reaction. Instead of twice 15 min, we tried to increase to 

30 minutes twice or three times, but the yields were in the same range due to the same partial 

reduction problems. Secondly, ch5 was synthesized in azide strategy except the first urea residue 

M11 that was introduced in Fmoc strategy. The RP-HPLC analysis of the crude after cleavage 

showed a better quality of the chromatogram, in agreement with the improvement of the SPS. 

After purification by semi-preparative RP-HPLC, ch5 was recovered this time in 7.5 % yield. To 

note, many problems occurred during this purification process leading to a loss of materials and 

pure ch5, letting us envisioning that the overall yield could have been much even better. 

Finally, I have also synthesized the chimera ch5 where all the urea-residues were installed by 

relying on the Fmoc-strategy (Scheme 15). The activated monomers Fmoc-(1)NalU-OSu (M12) and 

Fmoc-ArgU(Pbf)-OSu (M13) were also required.  
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Scheme 15: Solid phase synthesis of chimera ch5 in Fmoc strategy SIII.3 

The SPS in Fmoc-strategy was next performed and ch5 was recovered in 24% yield after semi-

preparative purification. This improvement of the yield was quite encouraging but was mostly 

due to the ideal conditions of the purification. Indeed, the yields of crude were 56% and 49% for 

the first residue entered in Fmoc-strategy SIII.2 and the full Fmoc-strategy SIII.3 (Table 16). 

Because of the full Fmoc-strategy is time consuming and 10 equivalents of monomers are 

necessary compared to 3 eq for SIII.2, despite the better yield, we decided to use the Fmoc-

strategy only to enter the GlnU. We supposed that in the same condition of purification, the pure 

yield would be similar than what was obtained for the full Fmoc-strategy.  

 

Table 16: Conditions of solid phase synthesis of urea segment of ch5 

Synthesis Coupling 

conditions 

Deprotection 

conditions 

Profile Yields 

SIII.1 DIC/Oxyma 

2 x 75°C 

/25W/15min 

N3-strategy 

3 x 

75°C/25W/30mi

n 

 

 

Crude 

Yield= 23% 

Pure Yield= 

2.5% 
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SIII.2 DIC/Oxyma 

2 x 50°C 

/50W/15min 

Glnu in Fmoc 

strategy 

N3-strategy 

2 x 

50°C/50W/15mi

n 

 

Crude 

Yield= 56% 

Pure Yield= 

7.5% 

SIII.3 DIC/Oxyma 

2 x 50°C 

/50W/15min 

Fmoc-strategy 

2 x 

50°C/50W/15mi

n 

 

Crude 

Yield= 49% 

Pure Yield= 

24% 

 

After optimizing the SPS of our chimera, new sequences were synthesized through SIII.2. The 

nature of the side chain in third position of chimera ch5 was varied with first the installation of 

TrpU (ch8) and AlaU (ch9) to evaluate the importance of the aromatic moiety for the Asf1 binding 

(Table 17). The determination of affinities by ITC experiment showed that the best KD value 

remained the one measured for ch5. Having reintroduced the original Trp side-chain present in 

p3h induced a significant decreased in binding affinity (around 4-fold l increase of the KD value 

compared to ch5; KD=10.6 ± 4µM). The same trend was observed with the installation of Ala side-

chain but this time it was anticipated (KD=13.5±4 µM).  

Table 17: Sequence of third generation of /urea chimeras with variation of the side-chain composition at the 
third positions and characterization by RP-HPLC and ESI-MS.  

 
Sequence Yield 

(%) 
tR 

(min) 
ESI-MS [M+H]+ 

p5 Ac E K Nal A R L A R R I A NH2 55 4.22 1420.84 

ch5 Ac E K Nalu - Ru Lu Qu - R I A NH2 7.5 4.55 1367.73 

ch6 Ac E K HPheu - Ru Lu Qu - R I A NH2 2.5 4.82 1331.60 

ch8 Ac E K Wu - Ru Lu Qu - R I A NH2 4 5.30 [M+2H]2+678.82 

ch9 Ac E K Au - Ru Lu Qu - R I A NH2 6.5 4.80 1241.60 

 

The thermodynamic data were extracted from ITC experiments and are reported in Figure 61. The 

best combination between enthalpy and entropy was obtained for ch5 that showed the best KD. 
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The binding is mostly entropic coupled with a favorable enthalpy. The most important loss of 

binding affinity to Asf1 was observed for ch8 and ch9 with KD values above 10 µM. These results 

are in favor of a better positioning of the naphtyl group at the surface of Asf1 and may better 

contribute to the Asf1 binding. In comparison with chimeras containing the triad oligourea 

segment, the combination of enthalpy and entropy differs in the sense that in this series, the 

entropy contribution to binding is predominant in most cases (ch5, ch6 and ch9). However, values 

are in the same range of order, illustrating here that there is no thermodynamic penalty resulting 

from the presence of the additional urea unit. Similarly, the binding entropy is improved 

compared to the reference -peptide p5, highlighting the robustness and the stability of the 

overall helical structure. However, for all the tested chimeras the absolute value of enthalpy 

remained much lower to that recorded for p5 underlining that the contacts and noncovalent 

interactions between chimera and its protein partner are not optimal and that there is real room 

for improving the binding efficiency. To conclude the thermodynamic parameters gathered after 

ITC experiments told us that the weaker binding to Asf1 observed for this series of chimeras are 

the results of a modest enthalpy contribution. Nevertheless, we managed to optimize entropically 

our hybrid compounds. 
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Figure 61: Thermodynamic data of compounds ch5-ch9 measured by ITC. ITC curves of ch5, ch6, ch8 and ch9 and 
fitted curves are shown. Experiments were carried out at 20°C, in a 50mM Tris-HCl pH7.4 

 

As for the first series of chimeras, the structural analysis in solution was again performed using 
15N-HSQC NMR experiments with ch5, ch6 and ch9 to help localizing the binding region of the 

aromatic moiety. First, the best chimera ch5 was compared to p3h (Figure 62). The addition of 

ch5 induces significant variations of chemical shift in the Asf1 15N-HSQC spectrum that confirm its 

interaction with Asf1. Titration experiments revealed that a rapid exchange rate occurs, 

illustrating a fast dissociation and association mechanism between Asf1 and ch5. Furthermore, 

the affected residues of Asf1 (45-57, 90-97, 111 and 147) correspond to the ones involved in the 

binding with the natural H3 C-terminal helix17. In comparison with p3h, the Asf1 15N-HSQC spectra 

upon the addition of ch5 show that the same resonances are affected but differences are 

observable. Indeed, some residues do not vary upon the addition of ch5 whereas a strong 

variation of resonances are visible upon the addition of p3h (residues 60-63 and 71--77). These 
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affected residues upon the addition of p3h but not ch5 is actually a hydrophobic patch 

corresponding to a non-specific binding zone (Figure 62B).  

 

Figure 62: Comparative NMR analysis of Asf1 interacting with ch5 or p3h. A. overlay of NMR 1H-15N HSQC spectra 
corresponding to the free (blue), p3h-bound to Asf1 (green), or ch5-bound to Asf1 (cyan). Spectra were recorded at 
25°C, in Tris 10mM buffer pH7.5, before and after addition of an excess of ligand (100 µM p3h or ch5). Asf1 hot spots 
are indicated in red. B. and C. Structure mapping of ASF1 chemical shift variations (CSV) upon p3h binding (B) or ch5 
binding (C). The first representations show models of ASF1 (grey cartoon) bound to p3h (green sticks) or ch5 (blue 
sticks). In the second representations, surface color-coded representations of CSVs of ASF1 upon p3h or ch5 binding. 
From left to right, Asf1 is rotated by 90° each time with respect to the previous pose. CSV are reported as slightly 
(0.07-0.14, light color), moderately (0.14-0.21, moderate color), and highly (>0.21, dark color) affected Asf1 residues 
upon ligand binding. Variation below 0.07 ppm are considered negligible (grey). The coloration is green for p3h (B) 
or blue for ch5 (C) according to CSV cutoffs. The red circle represents the non-specific region.  
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In addition, upon the addition of p3h, a slow exchange rate is observed suggesting that a slow 
association/dissociation occur between Asf1 and p3h. These results prove that the referent 
peptide p3h and the chimera ch5 present a different binding mode. However, the region of the 
interaction is the same and the chimera have the advantage to be more selective. Another 
sequence was synthesized and tested where ASTE was added in N-terminal of ch5 (ASTE-ch5), 
used as a capping box for p3h. It did not change the binding properties of ch5 as all data were 
comparable to ch5. 

The 15N-HSQC spectrum upon the addition of ch5 and ch6 shows a similar variation but the 
chimera ch6 induces smaller chemical shift variations than ch5. In the case of ch9, the difference 
is stronger as the chemical shifts variation are more important. For all these chimeras, a rapid 
exchange rate is occurring. 

 

Figure 63: Comparative HSQC analysis of ch5, ch6 and ch9. A and B, upper panels, overlay of NMR 1H-15N HSQC 
spectra corresponding to the free Asf1 (blue), ch5-bound (cyan), ch6-bound (A) (orange), or ch9-bound (B) (red) 
forms of ASF1. Spectra were recorded at 25°C, in Tris 10mM buffer pH7.5, before and after addition of an excess of 
chimera (100 µM). The inset shows ASF1 Ile97 signal variation upon titration with ch6 or ch9. ch6 and ch9, like ch5, 
show a rapid exchange rate. A and B, lower panels, surface color-coded representations of CSVs of Asf1 upon ch6 (A) 
or ch9 (B) binding. Asf1 is in surface representation. In black and red, residues more or less affected upon ch5 binding, 
respectively. Two orientations of ASF1 are shown (0-180°) (adapted from May Bakail’s PhD thesis manuscript) 
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These results show the importance of naphthyl group for the interaction with Asf1 and confirms 

that the nature of the aromatic has an impact on the binding. As ch5 is the best chimera, we used 

its sequence to check our hypothesis concerning the removal of the N-capping box of p3h. Indeed, 

we supposed that in presence of oligourea segment this cap should not be necessary. Then, the 

sequence ch5 with ASTE added in N-terminal (ASTE-ch5) was synthesized and tested in solution. 

This cap did not change the binding properties of ch5 as all data were comparable. Indeed, 15N-

HSQC spectra are overlapping considerably (Figure 64A) and the measure of affinity by ITC is 

comparable (KD=4.27±0.52 µM). Otherwise, a negative peptide control was synthesized in order 

to confirm the importance of the oligourea segment in ch5. The peptide p6 (= Ac-EK-Nal-RLQ-RIA-

NH2) was synthesized on Liberty Blue and recovered after RP-HPLC with 65% yield. 15N-HSQC 

spectra show that there is no impact of p6 in the region where ch5 interacts (Figure 64B). 

However, the non-specific site of Asf1 is affected upon the addition of p6. This result was 

supported by ITC experiments where no interaction could be measured. It confirms the 

importance of oligourea segment and that our design allowed the conception of a chimera able 

to mimic the natural peptide. 

 

Figure 64: Comparative HSQC analysis of ch5, ASTE-ch5 and p6. A and B, upper panels, overlay of NMR 1H-15N HSQC 
spectra corresponding to the free Asf1 (blue), ch5-bound (cyan), ASTE-ch5-bound (A) (magenta), or p6-bound (B) 
(red) forms of Asf1. Spectra were recorded at25°C, in Tris 10mM buffer pH7.5, before and after addition of an excess 
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of chimera (100µM). The zoomed box shows Asf1 T93 signal variation upon titration with ASTE-ch5. As ch5, ASTE-
ch5 shows a rapid exchange rate. A and B, lower panels, surface color-coded representations of CSVs of Asf1 upon 
ASTE-ch5 (A) or p6 (B) binding. Asf1 is in surface representation with hot spots residues colored in red (acidic 
residues), and black (hydrophobic residues). Two orientations of ASF1 are shown (0-180°). 

Finally, a sequence inspired by ch5 where the basic amino acid Lys2 was replaced by an Arg was 

synthesized. This sequence ch10= ER-Nalu-Argu-Leuu-Glnu-RIA was synthesized as described 

before and recovered with 10% yield after purification on RP-HPLC. ITC experiment led to the 

determination of a Kd=4.6±0.5 µM illustrating the importance of Lys2 for the specific binding to 

Asf1. All in all, ch5 is the chimera with the best affinity for Asf1 in this series, and we decided to 

focus on this compound and try crystallization in the presence of Asf1.  

 

c) Crystal structure of ch5 interacting with Asf1 

For the best Asf1 binding α/urea hybrid foldamers, many efforts have been devoted in 

crystallogenesis trials in order to have access to the solid state structure of the resulting 

complexes. During her PhD thesis in the group of F. Ochsenbein, May Bakail managed to grow 

crystals of Asf1-ch5 complex and solved the crystal structure at 1.8 Å resolution. She used the X-

ray crystal structure of human Asf1a (PDB 2I32) as reference and after having performed 

molecular replacement she determined that the space group was P1. 
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Table 18: Crystal data collection and refinement statistics for the Asf1 –ch5 complex 

 

The X-ray crystal structure of Asf1-ch5 complex confirmed that ch5 interacts in the same region 

than p3h, corresponding to the histone H3 binding domain of Asf1. This supports the results 

gathered in solution by heteronuclear NMR spectroscopy. At first glance, the overall helix 

conformation of the chimera ch5 at the surface of Asf1 is maintained. However, when looking in 

more detail a distortion of the helix structure is clearly visible and highlights a more opened helical 

conformation which is maintained by a H-bond network comprising the urea backbone but also 

by an H-bond between Tyr112 and the carbonyl of Leuu5 (Figure 65B and D). A water molecule is 

also present at the center of the helix inducing a bridge of H-bonds within the urea segment that 

may stabilize the helix. Several other interactions occur between ch5 and Asf1 such as salt bridge 

between Lysu2 and residues Glu49 and Asp88 of Asf1. Other salt bridges occur also between Arg7 

and Argu4 of ch5 with Asp54 and Glu51 of Asf1.An additional H-bond occurs between the side 
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chain of Arg7 and the carbonyl of its main chain. Remarkably, the two key residues Leuu5 and Ile8 

of ch5 are well positioned into hydrophobic pocket formed by residues Val92, Val94, Gly110, 

Tyr111 and Tyr112 of Asf1 (Figure 65C).  
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Figure 65: Crystal structure of the complex Asf1-ch5 at 1.8 Å. A. Overview of the structure of the 
complex Asf1 (grey) and ch5 with peptide segment in blue and oligourea segment in orange. B. Helical 
conformation of the chimera ch5 and top view. C. Representation of ch5 at the surface of Asf1 with H-
bonds represented in yellow dots D. Zoom on the contacts between Asf1 and the lysine side chain at P2 
of ch5. Red dots correspond to water molecule 
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However, some residues show a binding mode to Asf1 that differs from what would be expected. 

For example, ArgU4 interacts with Asf1 by making a salt bridge with Glu51, thus mimicking the 

Arg12 of p3h. In addition, the surface of the guanidinium which is hydrophobic below the plane 

of the guanidinium19 actually stacks over the alkyl chain of Arg7. Of particular interest, is the 

additional hydrogen bond that occurs between the carbonyl of LeuU5 and the hydroxyl group of 

Tyr112. This interaction causes the oligourea/peptide helix to bend and to adopt a non-canonical 

conformation upon binding to Asf1. However, the napthyl ring of NalU3 that we were expecting 

to interact trough hydrophobic contacts with Asf1 Val92 and Tyr112 side-chains does not make 

any interaction and seems rather being oriented toward solvent. This result is quite surprising 

because we previously observed that this naphtyl group is involved in the binding to Asf1; its 

mutation to PheU or even TrpU diminishes considerably the binding affinity (see Table 5). When 

looking more in details at the X-ray crystal structure, by adding asymmetrical units, it appeared 

that the NalU3 residue is actually positioned in the non-specific region of an asymmetrical 

molecule of Asf1. This was not observed in solution and may be due to crystal packing forces.  

Overall, these results confirm the direct interaction between ch5 and Asf1 and provide us with 

key structural information on the binding of this family of urea-based foldamers to Asf1. 

Moreover, the observed helix distortion suggests here that the urea-helix presents some plasticity 

to adapt itself to Asf1 surface, which is a main structural feature of these /urea hybrid chimeras 

that, to the best of our knowledge, has not been reported so far for other foldamer architectures 

targeting PPIs. The results gathered with this first X-ray structure are valuable and should be 

practically useful for future designs of chimera sequences with improved binding affinity to Asf1.  

 

d) In cellulo activity of /urea chimera ch5 

i) Conjugation of ch5 with a cell-penetrating peptide 

As described in Chapter I, Asf1 is an intracellular target meaning that with the aim to inhibit its 

chaperone function, the synthesized /urea chimeras must be able to cross over the cell 

membrane and reach the cytoplasm where Asf1 is located. In this context, we decided to append 

a cell-penetrating peptide (CPP) at the N-extremity of our lead compound, ch5. Cell-penetrating 

peptides brought major advances for the development of intracellular peptide-like drugs20,21. 

CPPs are capable to transport different cargos (oligonucleotides, proteins, plasmids) across the 

membrane. Depending on the nature and composition of CPP, the mechanism of cell penetration 

can vary: endosomal uptake is often encountered, but also direct membrane crossing can 

occur20,22,23. Usually, CPP sequences involve positively charged amino acids. Besides, Schepartz et 

al. have reported that the insertion of two or three Arg amino acids at judicious position into an 

α-helix can lead to cell permeability24. Active inhibitory peptides can be equipped at either N- or 
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C-terminus with a variety of CPP sequences to help their entrance in mammalian cells25. In the 

context of this project, we have decided to lengthen ch5 sequence at its N-terminal end with the 

well-known sequence (Arg-Arg-Pro)5, a proline rich CPP highly efficient for the delivery of peptide 

cargos within cells26.  

Regarding the synthesis of this CPP adduct, to circumvent any SPS issues related to the chain 

length of this peptide/urea construct, we decided to introduce a linker at the N-terminal part of 

ch5 and to attach the CPP C(RRP)5A by relying on disulfide bridge formation (Scheme 16). 

Moreover, incorporating, a bioreducible disulfide linker would also enhance the chimera ch5 

delivery and release within the cytoplasm because the CPP segment would be cleaved by the 

presence of excess of glutathione inside the cells once the CPP adduct would have been 

internalized. Several synthesis trials have been performed to find how to conveniently couple the 

H-Cys-(Arg-Arg-Pro)5-Ala-NH2 to thiol-modified ch5 (HS-ch5). First, the peptide p7 (= (NPys-S)-C-

(RRP)5-A-NH2) was synthesized on the automatic synthesizer Liberty Blue onto polystyrene rink 

amide resin. The commercially available Boc-L-Cys(NPys)-OH was used for the last coupling 

performed manually. After purification on RP-HPLC, the vector peptide was recovered with 40% 

yield.  

 

Scheme 16: Conjugation approach for the synthesis of CPP-ch5 

 

Second, we wanted to incorporate a S-trytil-3-mercaptopropionic acid on the resin bound ch5 

free amine to give rise to compound HS-ch5. (Scheme 17) However, the HPLC profile and MS 

analysis of the crude material recovered after TFA cleavage showed that this linker has not been 
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efficiently installed (as the desired product represented 24% of the crude) and the main product 

obtained (47% of crude) corresponded to the free N-terminus amine of ch5. 

 

Scheme 17 : Solid phase synthesis of HS-ch5 and its HPLC chromatogram  

 

We hypothesized that the low coupling efficiency of this linker was the consequence of a steric 

hindrance induced by the Trityl protection on the thiol function. Furthermore, the conjugation 

with the CPP did not work properly, but was performed on few quantities. To circumvent this 

problem, we thought to change our strategy and to introduce directly the activated version of 3-

Mercaptopropionic acid equipped with 3-nitro-2-pyridinesulfenyl (NPys) moiety (Scheme 18). 

Indeed, this activating group being TFA-resistant, it can be also easily removed in presence of tri-

alkylphosphine and water27. The synthesis was performed following SIII.2, except that the 

coupling of NPyS-S(CH2)2COOH was performed at r.t. To confirm the efficiency of the last coupling 

properly, a microcleavage was performed after washings of the resin. Surprisingly again, two 

major peaks were observed by RP-HPLC and after LC-MS analysis corresponded to the desired 

product NPys-ch5 bound to the resin and to a side-product Prop-ch5 resulting of the addition of 

the free 3-mercaptopropionic acid to the resin-bound activated thiol (see Scheme 18).  

This LC-MS results obtained from the crude material suggests here that once loaded on the free-

amine bound resin, the NPys activated linker has probably reacted with the free-thiol linker 

remained in solution. This side-reaction took place due to an extended time of coupling thus 

letting for the excess of S-Npys-3-mercaptoproprionic acid to decompose in basic media and 

release the corresponding thiol-free 3-mercaptoproprionic acid. Even though the recovered 

compound was not entirely the expected one, this result underlines that this time the coupling 
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reaction was efficient. In order to save the synthesis time as well as to overcome the by-product 

formation on the remaining resin, we decided to reduce the disulfide bridge on resin by using 

trimethylphosphine and water on resin-bound NPys-ch5 and Prop-ch5 (both being present on the 

same batch of resin). Then the activating NPys group was re-installed by reaction in presence of 

2,2’-dithiobis(5-nitropyridine) in a basic medium at room temperature. After final TFA cleavage 

and after semi-preparative RP-HPLC purification, the expected oligomer NPys-ch5 was recovered 

with 6.5 % overall yield. 

 

Scheme 18: SPS of NPys-ch5 with removal of the side product 



Chapter III 
Conception of urea-based foldamers to target the interaction between Asf1 and H3-H4 

155 
 

The NPys-ch5 compound in hands, the CPP vector peptide could be conjugated. As the peptide 

p7 was already synthesized and stocked, the NPys was removed in presence of DTT to couple the 

resulting peptide to NPys-ch5 in highly concentrated media at neutral pH (Scheme 19). The 

compound CCP-ch5 was purified on semi-preparative HPLC, recovered with 42% yield and could 

be used for cellular test.  

 

 

Scheme 19 : Chemical structure of ch5 conjugated with the CPP H-Cys-(Arg-Arg-Pro)5-Ala-NH2 with the urea 
segment depicted in orange, peptide extremities are depicted in black and the CPP is in black. 

 

Once this conjugate between CPP and ch5 in hands, cellular experiments were performed in order 

to evaluate the biological activity of the /urea hybrid foldamer ch5 in cellulo by targeting cancer 

cell lines. Previous study in the group of F. Ochsenbein have first revealed that CPP-p3 exhibited 

a direct action on Asf1 activity in cellulo with regression of cell growth presumably by directly 

inhibiting the replication process leading to cell death (paper submitted). To monitor the cell 

viability in presence of our ch5 conjugate CPP-ch5, a series of cellular assays such as MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays (colorimetric tests used to assess 

the metabolic activity of cells) were performed on U20S cancerous cell lines28. 

Another peptide where the 3 key residues of p2 were replaced by Ala side chain was used as 

negative control (p8=ASTERKAAEAARRARGAGGVTLNGFG). Then, natural peptide, CPP-p8, CPP-p2 

and CPP-ch5 were tested into cell. Because of the poor biostability of natural peptides, each 

conjugated inhibitor was delivered twice a day for 48h. During this cell assay, ch5 was also used 

free of conjugation in order to determine if this chimera could self-penetrate cancer cells. 
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Actually, the results show that ch5 alone behaves like CPP-p8, meaning that there is no observed 

cytotoxic effect on U20S cell line whereas the CPP-p2 decreases considerably cell viability (Figure 

66A). This confirms the necessity to use a vector peptide for a cellular entry and activity of ch5. 

Fluorescence microscopy experiments were performed at three different concentrations (5, 10, 

20 µM) to efficiently count the living cells. The chimera CPP-ch5 presents a dose-dependent effect 

such as CPP-p2 (the number of cells decrease when the inhibitor concentration increases) 

whereas CPP-p8 do not present any toxicity effect (Figure 66B). Furthermore, DNA was measured 

with fluorescence cell imaging and we could determine that CPP-ch5 and CPP-p2 show a similar 

accumulation of cells in S phase which is not the case for control peptide p8 (Figure 66C). Finally, 

flow cytometry experiments, based on the staining of nuclei with propidium iodide (PI) followed 

by a bromodeoxyuridine (BrdU), were performed to distinguish different phase cycle (G0, G1, G2, 

S and M). This fluorescence technic shows that when cells are in contact with CPP-ch5, the cell 

progression into S phase is stopped (Figure 66D). This result highlights that α/urea hybrid CPP-

ch5 has perturbed the proliferation cycle of cancer cells and exhibits cytotoxicity for cancer cells. 
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Figure 66: Cellular experiments performed on chimera CPP-ch5. A. when not coupled to a CPP, ch5 has no effect on 
U2OS cells compared to CPP-p8 and CPP-p2. Cells were treated and cell viability was assessed by MTT assay. Data 
are expressed as percentages of control cells (N/T) washed with DPBS/Pyrene butyrate solution. B. absolute cell count 
assessed by fluorescence microscopy reveals a significant loss of U2OS cells induced by (RRP)5-SS-ch5. Vectorized 
peptides and ch5 were added directly in the culture medium every 12h during 48H at final concentrations of 5, 10 or 
20µM. Data are expressed as a percentage of N/T control cells. C. U2OS cell cycle profiled by fluorescence cell 
imaging. Curves represent cell population (nuclei frequency) in intervals of Hoechst fluorescence intensity. D. Flow 
cytometry of cell cycle distribution according to PI (x-axis) and BrdU (y-axis) fluorescence intensities (left). (RRP)5-
peptides and (RRP)5-SS-ch5 were added directly in the culture medium at final concentrations of 10 and 5µM, 
respectively. Data were acquired after 3h cells incubation. Right, Quantification of slowed S cells. In B, C and D, N/T 
refers to non-treated control cells. Error bars indicate s.d. in two independent experiments (experiments performed 
by May Bakail) 
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To confirm that the results of the cellular assays are really the reflect of the in cellulo action of 

the chimera ch5 conjugate with the CPP (CPP-ch5), further negative control experiments in the 

presence of the vector peptide (i.e. p9=H-(RRP)5-NH2) has to be performed and complemented 

with two control chimera sequences where the two key anchoring residues LeuU5 and Ile8 of ch5 

were replaced by Ala side chains (CPP-ch11= A(RRP)5-C(-S-S-linker)-EK-NalU-ArgU-AlaU-GlnU-RAA-

NH2). Peptide p9 has been synthesized on the Liberty Blue peptide synthesizer and the adduct 

CCP-ch11 was prepared according to the procedure described previously. However, the cellular 

assays have not been performed yet.  

 

ii) Enzymatic degradation study with a selection of enzymes 

Although peptides are promising candidates as therapeutics, their major weakness is their 

modest stability in biological fluids29,30. In our study, we introduced urea-type residues in order 

to improve the stability of natural peptides inhibitors such as p2 and p3. To investigate the 

enhanced biostability brought by the urea segment, we performed a series of enzyme 

degradation assays. Trypsin was first selected as model enzyme. This enzyme is a pancreatic 

serine protease involved in the digestion of food proteins31. It specifically cleaves proteins on the 

C-terminal side of positively charged lysine and arginine residues. The degradation study was 

performed in a 96-well plate and followed by RP-HPLC (Figure 67).  

 

Figure 67: Comparison of the Trypsin enzymatic degradation of p5 and ch5 
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The curves of degradation study over a period of 20 hours show that p5 is quickly digested by 

Trypsin whereas ch5 is stable over the two first hours and is half degraded after 12 hours. Two 

main peptide p5 segments are observed by RP-HPLC during the first 1 hours, and correspond to 

the predicted Ac-EK-Nal-ARLAR, and Nal-ARLARRIA fragments. Regarding ch5 after 20 hours of 

Trypsin digestion, the main degraded segment was identified as being Ac-EK-NalU-ArgU-LeuU-GlnU-

R. This result highlights that having installed a urea segment dramatically improve the stability of 

the resulting chimera in biological environment. Interestingly, no cleavage after the Lys2 occurred 

during the degradation assay suggesting here that connecting a urea residue on the C-terminal 

part of a positively charged residue prevent Trypsin’s degradation.  

This preliminary enzymatic degradation results are encouraging because they confirm our 

hypothesis that the introduction of an oligourea segment in a peptide sequence may increase its 

biostability. Indeed, in the presence of Trypsin, the chimera ch5 presents a stability highly 

improved compared to p5. Others degradation studies in plasma for instance are necessary to 

determine half life time of p5 and chimeras. This work is currently under progress. 

 

e) Consequences of replacing Leu5 anchoring residue on Asf1 binding affinity 

With these encouraging results obtained with ch5, we have designed new /urea hybrids in order 

to improve the affinity to Asf1. For this new series of compounds, modeling studies have been 

performed by Seydou Traore, a post-doctoral researcher in the team of Raphaël Guerrois (@ CEA 

Saclay). The crystal structure of Asf1-ch5 complex was used as model of modeling studies and 

single mutations were introduced in the sequence of ch5 using the Rosetta software, a structure 

prediction tool developed by Baker and coll.32,33. A force field from Rosetta, called ‘mm_std’ was 

used for the modelling of sequences with the substitution of LeuU5.   

A new series of chimera hits were gathered during this modeling study where the best compounds 

corresponded to the substitution of the key residue LeuU5 by various hydrophobic residues. 

Indeed, mastering the insertion of the aliphatic side-chain in the Asf1 hydrophobic pocket 

occupied by the -Leu residue could have a huge impact on Asf1 binding affinity. To access to this 

new series of Asf1 inhibitors, two new azide-type monomers deriving from 3,3-Diphenyl-L-Alanine 

and Norleucine have been synthesized. Regarding the activated monomer N3-DiPheU-OSu, the 

synthesis route described in Scheme 12 was followed and the final monomer M18 was obtained 

with 31% global yield. The azide carbamate monomer N3-NleU-OSu, M19, obtained from Ureka 

(young innovative enterprise from ImmuPharma group), synthesized as described in Scheme 3 

from Chapter II and was obtained with 30% yield.  
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Figure 68: Chemical structure of azide activated monomers N3-DiPheu-OSu M18 and N3-Nleu-OSu M19 

These new monomers as well as M12 and M13 were next used to replace Leuu
5 in the sequence 

of ch5. New sequences reported in Table 19 were synthesized as described in Scheme 14 and 

recovered after RP-HPLC purification in  10% yields. Chimeras ch10-ch12 were designed thanks 

to the modelling study described above whereas meanwhile I suggested the last one 

encompassing the NleU urea-residue to evaluate the impact of branched versus linear aliphatic 

side chains on the binding affinity.  

Table 19: Sequences of α/urea chimeras with variation of the side-chain composition at the 5th position and 
characterization by RP-HPLC and ESI-MS. 

 

ITC experiments allowed the determination of affinity constants and we can notice that the KD 

values measured for this new series of compounds are actually less good than for ch5. Especially, 

the replacement of LeuU5 by HPheU leads to a KD almost 10-fold higher and it is even worse for 

the replacement by NalU as the interaction is no more measurable. This suggests that the length 

of the side chains and its aromaticity disturb the interaction with Asf1 leading to a loss or even an 

absence of affinity. These results highlight that a single side-chain modification can have a huge 

impact on the binding. Surprisingly, the substitution of LeuU by DiPheU present a better KD than 

the previous substitutions suggesting that replacing Leu side chain by a wider one is more 

tolerated but the binding affinity remains below that of ch5. In this second generation of 

chimeras, the best compound ch15 possesses a LeuU → NleU substitution meaning from a 

Sequence  Yield 
(%) 

tr (min) [M+H]+ 

ch5 Ac E K Nalu Argu Leuu Glnu R I A NH2  4.55 1367.73 

ch12 Ac E K Nalu Argu HPheu Glnu R I A NH2 12 3.60 1416.69 

ch13 Ac E K Nalu Argu Nalu Glnu R I A NH2 12 4.16 1451.75 

ch14 Ac E K Nalu Argu DiPheu Glnu R I A NH2 15 4.19 1478.62 

ch15 Ac E K Nalu Argu Nleu Glnu R I A NH2 27 3.89 1367.90 
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branched to a linear aliphatic side-chain. However, the KD value measured remains slightly higher 

to that of ch5.  

 

 

Figure 69: Thermodynamic data of compounds ch10-ch13 measured by ITC. Experiments were carried out at 20°C, 
in a 50mM Tris-HCl pH7.4 

 

The thermodynamic data of ch5, ch14 and ch15 are in the same range of order although ch15 

presents a slightly better entropy than ch5 whereas the enthalpy is lower as a consequence of 

the substitution of Leuu (Figure 69). However, due to the margin errors, this observation has to 

be taken with care. However, the ratio enthalpy/entropy obtained for ch12 was lower to that 

recorded for ch5 resulting to an important loss of binding.  

Despite promising modelling studies, none of these new chimeras present an improved binding 

affinity compared to ch5. This suggests that despite virtual predictions of improved contacts with 

Asf1 surface, binding experiments are mandatory to confirm or not the models and, in our case, 

it showed that the interaction with Asf1 is actually disrupted.  

 

4. Effect of introducing a urea cap at the N-terminus of Asf1 binding peptide p4 

In -peptide with helix propensity, the lack of hydrogen bonds at the end of the helix can diminish 

the overall helical conformation. To circumvent this drawback, specific sequences, termed cap, 
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can be introduced at one helix end to stabilize the first or last helical turn9. These capping 

sequences contain appropriate residues that allows the formation of additional non-covalent 

interations (e.g. H-bonds, salt bridges) involving both main chain and side chains that will stabilize 

the helix. Concerning p3h, the ASTE sequence installed in the N-terminal end brings additional H-

bonds. Another approach to develop Asf1 inhibitors was to stabilize the α-helix by replacing the 

ASTE sequence with a N-terminal urea capping box. In order to determine the number of urea 

residues required to replace ASTE capping box, two compounds containing a urea cap composed 

of three or four Alau were conceived. Due to the large number of α-amino acids to couple before 

to enter the first urea residue, we decided to follow the same N-Fmoc-strategy described in 

Scheme 15 to prepare these two p3h mimics. Hence, Fmoc-Alau-OSu (M20) was first synthesized 

in solution in 34% overall yield (Scheme 20) before to be manually coupled on the growing peptide 

sequence attached to the LL Rink amide MBHA resin. 

 

Scheme 20: Multi-step synthesis of Fmoc-Alau-OSu (M20). 

After TFA cleavage and semi-preparative RP-HPLC purification, ch17 was recovered in 25% yield. 

Although ch17 was the major product identified in the crude after TFA cleavage, a second product 

was also present and actually corresponded to ch18 (one additional AlaU residue installed during 

the SPS process: over-insertion issue) (Figure 70). We took advantage of this issue and purified 

this “by-product” by semi-preparative RP-HPLC and recovered in 10% yield. 
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Figure 70: RP-HPLC of the crude ch17 with the by-product ch16. 10-100% ACN in 10 min at 50°C 

 

Table 20: Sequences of chimeras ch17-ch19 with yield after purification, characterization by RP-HPLC and ESI-MS. 

Sequence 
Yield 

(%) 
tR 

(min) 
[M+2H]2+ 

ch17 Ac  Au Au Au E K W A R L A R R I A NH2 25 4.7 856.53 

ch18 Ac Au Au Au Au E K W A R L A R R I A NH2 10 4.8 906.47 

ch19 Ac Au Au Au Au - K W A R L A R R I A NH2 20 4.9 842.0 

 

ITC experiments showed that the insertion of a urea cap led to a slight decrease of Asf1 binding 

affinity compared to p3h. This loss of affinity is more important for ch18 (KD= 0.50 ± 0.02 µM) 

encompassing 4 urea residues than for ch17 equipped 3 Alau (KD= 0.26 ± 0.02 µM). 

Thermodynamic data revealed that a loss of enthalpy occurs with four Alau residues leading to 

the loss of binding affinity (Figure 71). This can be due to steric clashes that could occur in the N-

terminal region in contact with Asf1 surface. The loss of binding affinity can also be due to the 

absence of side chains in the capping box that could interact with the surface of Asf1 and make 

additional contacts. Regarding the entropy, in comparison with p3h, the -TS value decreased for 

ch17 and even more for ch18 and ch19 which is in agreement with previous observations on 

introduction of urea residues in the middle of the peptide sequence (see paragraph 3a). 

Interestingly, the entropy values are better when 4 urea residues are present such as for ch18 
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and ch19 and both chimeras shown similar values. This result highlights that in the central or 

terminal positions, the introduction of an oligourea segment brings an improvement of the 

entropy contribution thus suggesting a more constrained/stable helical conformation interacting 

with Asf1 surface than in the case of the regular peptide p3h. 

 

Figure 71: Thermodynamic data of compounds ch17-ch19 measured by ITC experiments. ITC curves of p3h, ch17-
ch18 and fitted curves are shown. Experiments were carried out at 20°C, in a 50mM Tris-HCl pH7.4 

 

Concurrently, 15N-HSQC NMR experiments revealed a strong similarity between the spectra of 

Asf1 upon the addition of p3h, ch17 or ch18 (Figure 72). Mapping CSVs on the model of p3-Asf1 

complex confirmed the common behavior between the three inhibitors. However, some 

differences are visible in the N-terminal part of p3h with residues Glu49 and Gln55 that are more 

affected in presence of the urea cap. 
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Figure 72 : 1H-15N HSQC NMR experiments of Asf1 bound to p3h, ch17 and ch18 A. overlay of 1H-15N HSQC NMR 
spectra corresponding to the free Asf1 (black), p3h- Asf1 (red) at 25 °C, ch17- Asf1 (orange), or ch18- Asf1 (green) at 
20°C. B. structure mapping of Asf1 chemical shift variations upon ch17 or ch18 binding. Given the high similarity, a 
unique set of representations is shown. The first representation shows model of Asf1 (grey cartoon) bound to p3h 
(blue, cartoon/sticks) on which CSV are reported from yellow to red: slightly (yellow), moderately (orange), highly 
(red) affected Asf1 residues upon if binding. In green, residues less affected by p3h. For the surface representation, 
the same colors were used. From left to right, two side representations of Asf1, 0° and rotated by 180°.  

 

To summarize this study of urea cap installation, the replacement of the ASTE peptide capping 

box by 3 or 4 urea residues is feasible without dramatically disturbing the binding affinity to Asf1. 

In this study, only Alau residues were used to form the capping box. Capping box with appropriate 
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side-chains for additional H-bond formation could be envisioned to improve the affinity to Asf1. 

Moreover, having in hands a high-resolution X-ray structures of ch17-ch19 would definitely be 

useful for successful engineering of this urea cap.  

Overall during the course of these chimera designs, we have observed that the introduction of a 

urea segment at the central position or N-terminal part improves the binding entropy but 

decrease the enthalpy leading to a loss of binding affinity. However, these chimeras seem to be 

promising candidates for further design PPI modulators in particular in the context of Asf1, as 

they can accommodate their conformation to the surface of the protein, they target while 

exhibiting improved biostability. The best chimera ch5 presents interesting properties including 

antiproliferative effect on cancer cells which is quite encouraging. Despite the fact that we were 

successful in getting one X-ray crystal structure of ch5/Asf1 complex, designing new chimeras 

based on this structure appeared to be trickier than anticipated. Having new X-ray crystal 

structures (i.e. urea scans and capping box) would help to better understand the binding and 

guide new designs. To pursue our efforts to design potent inhibitors of histone/Asf1 interactions, 

we were next interested in developing a full oligourea sequence. This has not been investigated 

so far in the group and remains particularly challenging. 

 

B. Design and synthesis of homo-oligourea sequences mimicking H3118-131 peptide 

1. Molecular modeling approach for pure oligourea finding 

To design homo-oligourea sequences mimicking the C-terminal part of H3 histone, molecular 

modeling has been performed by S. Traore (@ CEA Saclay). The X-ray crystal structure of Asf1-ch5 

complex was used to perform the computational modeling. The crystal structure of an oligourea 

was placed manually in the binding region of Asf1 and ch5. To satisfy an optimal positioning of 

side chains, Cα and Cβ of the three key residues (Nal, Leu, Ile) were fitted manually. The Rosetta 

software was used to determine a possible sequence. 
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Figure 73: Prediction of the binding mode for a full oligourea 

Several sequences of homo-oligourea were predicted for Asf1 binding (Figure 73). The obtained 

sequence after design and correction seems well-appropriate to interact with Asf1. As Asnu3 and 

Asnu5 may be solvent-exposed, several charged side-chains such as Arg or Gln can be used to 

replace Asn one.  

 

2. Preparation of oligourea sequences and determination of the affinity to Asf1 

To begin with this strategy of applying homo-oligourea to recognize the surface of Asf1, a first 

sequence was synthesized on LL Rink amide MBHA resin. We chose to replace the Asnu side-chain 

from the model prediction by Gln and Arg ones because these urea residues were already present 

in the sequence of ch5. Regarding the synthesis of this first full oligourea, ol1, the SPS was 

performed by using the azide strategy and all the required azide-type monomers were available 

in the laboratory. After purification by semi-preparative RP-HPLC, the sequence ol1 was obtained 

in 13% yield (Table 21). 

 

Table 21: Sequence of ol1 with yield after purification, characterization by RP-HPLC and ESI-MS. 

 Sequence 
Yield 
(%) 

tR  
(min) 

[M+H]+ 

ch5 Ac E K Nalu Argu Leuu Glnu R I A NH2 8 4.55 1367.73 

ol1 iPru - Lysu Trpu Argu Leuu Glnu Argu Ileu - NH2 13 4.32 1286.66 
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ITC experiments revealed that ol1 interacts with Asf1 with a quite good KD= 4.6 µM. This result is 

really encouraging for a first attempt to mimic the C-terminal part of H3 with a pure urea 

oligomer. The thermodynamic data determined by ITC experiment showed actually some 

similarities between ol1 and ch5 (Figure 74). Indeed, the ol1 and ch5 exhibit similar value of 

enthalpy, and more surprisingly, the binding entropy of ol1 is also similar to that of ch5. With a 

full oligourea, we could expect that the entropy would increase as the 2.5-helix is expected to be 

more stable and already formed before the binding to Asf1. This result reflects that a wide range 

of enthalpy/entropy combinations can lead to similar affinity. The entropic contribution does not 

necessary increase despite the increasing number of urea residues suggesting that the only way 

to improve the affinity is to improve the enthalpy of binding. To do so, optimizing one side-chain 

can have a huge impact on the enthalpy and consequently on the binding affinity.  

 

Figure 74. Thermodynamic data of compound ol1 measured by ITC experiments.  ITC curves of ol1 and fitted curves 
are shown. Experiments were carried out at 20°C, in a 50mM Tris-HCl pH7.4 

 

NMR titration and mapping experiments should be soon performed and will give access to 

precious information regarding the mode of binding and interaction zone on Asf1 surface. 

Besides, crystallogenesis assays of Asf1/ol1 complex have been initialized and several crystals 

were obtained. Unfortunately, these recent data have not been treated yet to solve the crystal 

structure of the complex. The resolution of this new structure would be really interesting to 
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understand the binding of ol1 to Asf1 and this would guide the design of new homooligoureas for 

optimizing the interaction with Asf1 surface.  

In this chapter, we have demonstrated that the design of urea-based foldamers for the inhibition 

of PPIs, by focusing on the interaction with the chaperon protein Asf1, is within reach. The results 

obtained by ITC and NMR experiments are encouraging with some synthetic inhibitors presenting 

affinities in the micromolar range and interacting in the same region than the natural H3 C-

terminal end. In particular, two compounds are promising: the chimera ch5 and now the full 

oligourea ol1. Indeed, the first one presents the best affinity for Asf1 and is cytotoxic for a cancer 

cell line. Furthermore, we have demonstrated that the introduction of a urea segment in a 

peptide sequence improves the biostability which is a real advantage for pharmaceutical 

development. In continuation of this part, the full oligourea ol1 showed promising data as the 

affinity for Asf1 is also in the micromolar range and mainly, the biostability should be considerably 

improved. Indeed, previous study in the group on full oligoureas confirmed their “super high” 

stability and integrity even after 24h in presence of a set of proteases34. However, the affinities 

of these compounds have to be improved to make them fully specific to the Asf1 target. We have 

been faceing during this PhD thesis the difficulty of improving the affinity of our lead compounds. 

One main concern remains how to get compounds presenting higher binding enthalpy t. After 

several rounds of designs and sequence optimization, the team of F. Ochsenbein managed to 

conceive an -peptide with a final affinity to Asf1 100-fold higher to the starting peptide by 

reaching a fourth hydrophobic pocket located in another face of the Asf1 surface. We therefore 

thought that we could also improve our best chimera ch5 by enlarging the C-terminal extremity.  
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A. From micro to subnanomolar affinity to Asf1 by epitope tethering 

1. Improved H3-H4 mimicry by integrating the histone H4 binding epitope 

The X-ray crystal structure of the natural Asf1-H3-H4 complex allowed the determination of four 

key residues localized on H3 and H4 histones respectively that concentrate most of the binding 

interaction with Asf1: residues Leu126, Arg129, Ile130 for H3 and Phe100 for H4 (Figure 75)1. 

Designing an inhibitor capable of integrating these four binding epitopes was quite challenging 

because a distance of 21.6 Å separates the farthest anchor residues Leu126 and Phe100 (pdb 

2io5). Thanks to a step by step approach evoked earlier in the chapter III,a.,1, the team of F. 

Ochsenbein and more particularly during the PhD thesis of M. Bakail succeeded in conceiving the 

peptide p3 exhibiting a KD value in the nanomolar range (KD=3 ± 1 nM) reflecting a gain of affinity 

about 100-fold with respect to the helical part of p3h. This -peptide can be decomposed in three 

peptide fragments: (1) the α-helical part that reproduced the C-terminal three key contacts of H3 

(numbered in the peptide Leu10, Arg13 and Ile14) combined with extra interacting side-chain 

making additional hydrophobic and polar contacts, (2) a second -peptide fragment mimicking 

the C-terminal β-strand of H4 and comprising the anchor residue Phe100 and (3) a peptide linker 

aimed to bridge the two fragments. For the design of this bridge, due to a distance of 8.7 Å 

between the Cα of Arg131 in H3 and the Cα of Arg95 in H4 (Figure 75B), a length of 4-residues 

(GAGG) was chosen. This fragment adopts a turn allowing the β-strand fragment mimicking H4 

(in red) to be well positioned at the surface of Asf1 and restored the Phe side chain into the 

hydrophobic pocket as shown in the X-ray crystal structure of the complex between Asf1 and p3 

solved at 1.98 Å (Figure 75C).  
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Figure 75 : Design method of peptide p3 and X-ray crystal structure with Asf1. A. X-ray crystal structure of Asf1-
H3-H4 complex (pdb= 2io5)1 with Asf1 in grey, H3 in blue and H4 in red. B. Binding region of Asf1 with the C-
terminal part of H3 in blue and the C-terminal part of H4 in red. Binding epitopes are represented in pink. C. X-ray 
crystal structure of Asf1 in complex with p3. The helical part is depicted in blue, the H4 mimicking segment in red 
and the linker is represented in green. Binding epitope are represented in pink. D. Zoom on Phe24 of p3 into the 
hydrophobic pocket of Asf1. 
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This crystal structure confirmed that as expected the helical part of p3 (p3h) is positioned in the 

same manner than the C-terminal part of H3 (described in Chapter III.A.1). Moreover, the four 

binding epitopes are well located within Asf1 hydrophobic pockets allowing to restore the 

contacts found in the natural complex between H3-H4 and Asf1. Indeed, in the same manner than 

the Phe100 of histone H4, the Phe24 of p3 is well-positioned in the hydrophobic pocket of Asf1 

(Figure 75D). This suggests that the choice and composition of the peptide linker was appropriate 

and nicely bridge the two -peptide secondary structure (-helix and -strand). However, the 

structure also revealed that some of the residues constituting the loop of the linker (GAGG) do 

not interact directly with Asf1 revealing here some opportunities in terms of peptidomimetic 

design for further optimization. Interestingly, salt bridges are observed between residues Glu49 

and Arg145 of Asf1 and residues Arg8 and Asp22 of p3 (Figure 76). Concurrently, several hydrogen 

bonds are present all along the extension of p3 such as Asf1 Arg108 with the backbone of p3-

Arg12 or Asf1 Arg148 that interacts with OH function of Thr20 side-chain and the backbone of 

Phe24.  

 

Figure 76: Interactions observed into the complex between Asf1 and p3. A List of Asf1 residues interaction with p3 
residues. B X-ray crystal structure of the complex with zoom on H-bonds involved for the stabilization of the complex. 

The lack of interactions between the linker of p3 with the surface of Asf1 as well as its length 

prompted us to propose some structural optimizations. In order to master the synthesis of this 
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second generation of Asf1 modulators, we first decided to investigate the solid phase synthesis 

of p3 because this peptide was previously bought by the group of F. Ochsenbein to different 

peptide suppliers.  

 

2. Optimized solid phase synthesis of elongated Asf1 binding peptides 

combining two remotes binding sites  

In order to unveil potential difficulties during the synthesis of full length /urea hybrid foldamer, 

we first decided to synthesize the C-terminal part of p3, that will be necessary for the further 

modification of the p3 segment linker (GAGG) as well as for the elongation of ch5 at its C-terminal 

end. We focused on the synthesis of peptide p10 = RIAGAGGVTLDGFG which was performed on 

a TFA-labile resin using classical N-Fmoc chemistry. As for the other peptide syntheses described 

earlier, all the SPPS were performed under microwave assistance to increase the rate of coupling 

and deprotection steps while improving the crude purity. p10 was synthesized on the automated 

microwave peptide synthesizer Liberty Blue and a series of different conditions was screened.  

In a first attempt, the synthesis of p10 was carried out on Rink amide NOVAPEG resin (loading 

0.46 mmol.g-1) on a 0.050 mmol scale. Iterative couplings of N-Fmoc-protected amino acids were 

performed once in presence of 1,3-Diisopropylcarbodiimide (DIC) and Oxyma, coupling reagents 

known to decrease epimerization (compared to DIC/HOBt) and avoid side reactions occurring 

with high levels of base (Table 22)2. The peptide was then released from the resin through a TFA-

cleavage using a “cocktail mixture” containing TFA/TIS/H2O (95:2.5:2.5, v/v/v). 

After precipitation of the peptide with cold Et2O, the crude material was directly analyzed by 

analytic RP-HPLC. Unexpectedly, the RP-HPLC chromatogram revealed a crowded profile 

presenting multiple peaks including the expected p10 (tr=5.9 min for gradient 10-100% ACN in 

10min) further identified by mass spectrometry (ESI positive mode). Consequently, the poor 

apparent purity combined with the presence of so many impurities surrounded the expected 

peptide rendered its purification extremely tricky (SIV.1 Table 22). 

 

Table 22: Different conditions to optimize SPPS of p10 
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Synthesis Resin Coupling conditions Profile 

SIV.1 NOVAPEG 

(loading 0.46 

mmol.g-1)  

Single coupling 

DIC/Oxyma 

75°C /25W/15min 

Arg: Double coupling 

 

SIV.2 Polystyrene MBHA 

Rink amide 

(loading 0.37 

mmol.g-1)  

Single coupling 

DIC/Oxyma 

50°C /50W/15min 

Arg: Double coupling 

 

SIV.3 Chemmatrix 

(loading 0.45 

mmol.g-1)  

Double coupling 

DIC/Oxyma 

2 x 50°C 

/50W/15min 

Arg: Double coupling 
 

SIV.4 NOVAPEG 

(loading 0.46 

mmol.g-1)  

Double coupling 

DIC/Oxyma 

2 x 75°C 

/25W/15min 

Arg: Double coupling 

+manually 
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During the second and third synthesis, we have replaced the NOVAPEG resin by either a Rink 

amide MBHA resin or ChemMatrix resin (100% polyethylene glycol, PEG, Iris Biotech). Regarding 

the synthesis SIV.2, the coupling/deprotection cycle conditions remained identical to those 

applied for SIV.1 whereas in the case of SIV.3 a double coupling of each residue was systematically 

performed on ChemMatrix resin (Table 22). After TFA-cleavage and Et2O precipitation, the RP-

HPLC analysis showed this time the presence of a major peak identified by ESI-MS as being the 

expected peptide p10. Nonetheless and despite the visible improvement of the SPPS quality, 

many impurities were still surrounded the major peak that limited the purification step and more 

importantly, this was totally unfavorable with further peptide elongation to give rise to entire p3 

peptide and hybrid sequence development. A common chemical feature of these two syntheses 

SIV.5 Polystyrene MBHA 

Rink amide 

(loading 0.37 

mmol.g-1)  

Double coupling 

DIC/Oxyma 

2 x 75°C 

/25W/15min 

Arg: Quadruple 

coupling  

SIV.6 Polystyrene MBHA 

Rink amide 

(loading 0.37 

mmol.g-1)  

Double coupling 

BOP/DIEA 

2 x 75°C 

/25W/15min 

Arg: Double coupling 

+manually 
 

SIV.7 Polystyrene MBHA 

Rink amide 

(loading 0.37 

mmol.g-1)  

Single coupling 

DIC/Oxyma 

2 x 75°C 

/25W/15min 

Arg: Double coupling 

 

Fmoc-Val-

Thr(psiMe-MePro)-

OH 
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was the difficulty to introduce the last N-Fmoc-Arginine residue. The mass spectrometry analysis 

indeed revealed the presence of the peptide deleted of this residue (tr= 6.1 min).  

Nevertheless, in comparison with the SPPS on Rink amide MBHA, the SPPS on ChemMatrix was 

considerably improved. This was probably due to the double coupling performed for SIV.3 

whereas a single coupling was performed for SIV.2. To validate this hypothesis, two more 

syntheses with all the coupling steps repeated twice were performed on NOVAPEG and Rink 

amide MBHA resins (SIV.4 and SIV.5 in Table 22). Moreover, the final N-Fmoc-L-Arginine(Pbf)-OH 

was coupled twice with the automated synthesizer and once more manually for SIV.4 and was 

even coupled four times with the Liberty blue synthesizer during SIV.5 synthesis. After TFA 

cleavage and Et2O precipitation of this two new batches of resin, the RP-HPLC chromatograms 

revealed a net improvement of the crude profiles with the presence of a major peak and a purity 

of 51 and 37% for SIV.4 and SIV.5 respectively. Even though impurities remained around the main 

peak, the SPS carried out on the NOVAPEG resin and accompanied by double coupling steps was 

considerably improved compared to SIV.1. Regarding the polystyrene resin (SIV.5), the quality of 

the SPS appeared better than the one of SIV.1 but still contained the deleted sequence missing 

the last Arg residue.  

Finally, a last synthesis was again performed on Rink amide MBHA resin by this time employing 

another coupling reagent system: Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium 

hexafluorophosphate (BOP) with N, N’-Diisopropylethylamine (DIEA) (SIV.6). Unfortunately, the 

RP-HPLC analysis of the crude reaction revealed a similar profile than those obtained in presence 

of DIC/Oxyma (the two last peaks at 7.3 and 8.1 min corresponds to Tris). 

This study allowed us to determine the best conditions to do this part of peptide but in regards 

to our objective of elongating the C-terminal part of ch5, the Rink amide MBHA polystyrene resin 

was selected as this support gave the best results for the synthesis of ch5. However, further 

investigations to identify by-products were performed in order to improve at best this peptide 

sequence for the future introduction of urea-type units. First, considering the size of the peptide, 

we supposed that aggregation may occur rendering the chain elongation difficult, in particular to 

enter the final Arg. To overcome this problem, as our peptide sequence permitted it, we 

incorporated a pseudo-proline residue substituting the Val-Thr dipeptide. These units Fmoc-Xaa-

Yaa-ψMe,Mepro are known to avoid aggregation as they removed a H-bond donor during the 

synthesis thanks to a cyclocondensation reaction of the side chain (Ser, Thr or Cys) linking it to 

the nitrogen in N-terminal3. Indeed, Mutter et. al. developed pseudo-prolines (oxazolidine) to 

overcome the problems of poor solvation and solubility that can occurred during the SPPS of large 

peptide 4,5. The introduction of this pseudo-proline (oxazolidine) dipeptides brings kinks into the 

peptide backbone decreasing aggregation during chain grow. During the course of TFA-cleavage, 

the pseudo-proline dipeptide is reopened to give back to the initial dipeptide (Scheme 21). In the 
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sequence of p3, the dipeptide Val20Thr21 was therefore substituted by its commercially available 

Fmoc-Val-Thr(psiMe-MePro)-OH version.  

 

Scheme 21 : Opening of the pseudo-proline Val-Thr(psiMe-MePro) during TFA cleavage 

 

To evaluate the effect of this pseudo-proline, the SPPS was performed on Polystyrene Rink amide 

MBHA resin (0.37 mmol/g), and the coupling steps were performed only once to see if the use of 

the N-Fmoc-Val-Thr(psiMe-MePro)-OH can have real impact on the efficiency of the SPPS. 

Furthermore, the Arg residues were coupled only twice on automated Liberty Blue synthesizer 

(SIV.7 in Table 1). After release of the peptide from the support, the RP-HPLC chromatogram 

showed an optimized profile comparable with the double coupling synthesis (SIV.5). The major 

peak was identified by ESI mass spectrometry as being the expected product and interestingly we 

could not identify this time the truncated peptide missing an Arg underlining here that the 

introduction of a pseudo-proline has a beneficial effect on the automated p10 synthesis on solid 

support.  

Extensive investigations by ESI mass spectrometry were done to identify the two peaks at 4.65 

min and 4.72 min respectively with mass corresponding to a loss of 18 and an addition of + 67. 

These two masses indicate that a side reaction occurred and they are actually characteristics of 

an aspartimide formation during the Fmoc deprotection in presence of piperidine. Indeed, the 

presence of Asp-Gly dipeptide in the p10 sequence is prone to aspartimide formation6,7. First the 

cyclic aspartimide is formed and then piperidine can react on the carbonyl functions of 

aspartimide to give rise to piperidides and thus leading to mass excess of +67 (Scheme 22). It is 

clear, that this aspartimide formation was surely occurring since our first attempts of SPS of p10 

but due to the presence of numerous side-products, combined with the deletion of the Arg 

residue, its identification and characterization were rendered more difficult.  
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Scheme 22:  Mechanism of aspartimide formation 

 

To avoid the aspartimide formation we decided to introduce the commercially available N-Fmoc-

Asp(tBu)-(Dmb)Gly-OH dipeptide that contains 2,4-dimethoxybenzyl (Dmb), a backbone amide 

protecting group8,9. It will prevent aspartimide formation during the course of the synthesis and 

will be removed during the final TFA cleavage.  

All these clues concerning the synthesis allowed us to synthesize the full p3 peptide on WANG 

resin because we needed an acidic function at the C-terminus. The Fmoc-Val-Thr(psiMe-MePro)-

OH (4 equiv.) was introduced with HATU (3.8 equiv.)/DIEA (0.8 equiv.) at 75°C/25 W for 20 

minutes, the Fmoc-Asp(tBu)-(Dmb)Gly-OH (4 equiv.) with HATU (3.8 equiv.) and DIEA (8 equiv.) 

at 75°C/25 W for 5 minutes twice and all the N-Fmoc-protected amino acids were coupled once. 

RP-HPLC chromatogram of the crude confirms the presence of a major peak corresponding to the 

expected compound (purity of 44%). After RP-HPLC purification (gradient 20-50% ACN in 20min), 

the pure product was obtained with an overall yield of 10% (Figure 77).  
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Figure 77: Characterization of the peptide p3 by RP-HPLC with the crude (A) and the pure product after purification 
with a gradient of 20-50% ACN in 20 min (B) and ESI-MS characterization (C) 

The synthesis of p3 was hence optimized which was essential for future modifications of its 

sequence.  

 

B. Structure based variations of the spacer unit between the two peptide binding motifs in 

p3 

1. Replacing the GAGG peptide segment by an isosteric peptidomimetic 

segment 

The crystal structure of p3 in complex with Asf1 confirms that GAGG peptide segment stops the 

helix propagation10,11 and does not directly interact with the protein surface. However, its loop 
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conformation allows a good positioning of the Phe24 in the hydrophobic pocket occupied by the 

same residue (Phe100) of histone H4.  

 

 
Figure 78: View at the GAGG interface of the X-ray crystal structure of p3/Asf1 complex. The -helical part of p3 is 
represented in blue, the spacer in green, the mimicking part of H4 in red and key hot-spot residues in pink. The 
orange arrow indicates the Cα of Gly18 and the yellow one indicates the H-bond between Val19 of p3 and Arg148 of 
Asf1 

 

We first reasoned on the possibility to directly substitute this GAGG segment because it does not 

make any contact with Asf1 surface. A basic study of p3/Asf1 X-ray crystal structure suggested us 

that this hydrophobic segment could be replaced by a non-peptidic aliphatic segment. Moreover, 

this simple substitution could also have a positive impact on the SPS of the peptide (see chapter 

IV paragraph A2). To replace this segment, we first envisioned to use an aliphatic linker containing 

five carbons such as aminovaleric acid. Hence, N-Fmoc-aminovaleric acid M21 (N-Fmoc-AVA-OH) 

was synthesized from its commercially available unprotected aminovaleric acid following regular 

Fmoc protection conditions and was recovered in moderate yield (40%, see Scheme 23). 
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Scheme 23: Synthesis of Fmoc-AVA-OH (M21) in Acetonitrile 

 

Additional structural information was gathered when looking deeply at this contact region of the 

p3/Asf1 complex. The NH amide of p3 Val19 makes indeed an H-bond with Arg148-Asf1 side-

chain and the Cα of Gly18-p3 is oriented toward this Arg148 (Figure 78). This suggested the 

possibility of introducing a urea bond at this Cα position in order to form one additional H-bond 

with the Asf1 surface trough the guanidinium moiety of Arg148 side-chain and thereby improving 

(1) the well-positioning of the valeric-type linker on Asf1 surface and (2) the way it orients the 

rest of the peptide sequence. To do so, the commercially available N1-Fmoc-1,3-diaminopropane 

hydrochloride (N-Fmoc-Dap,HCl) was activated as a carbamate of succinimide to obtain Fmoc-

Dapu-OSu, M22 in satisfactory yield (71%, see Scheme 24).  

 
Scheme 24: Synthesis of Fmoc-DAPu-OSu (M22) in CH3Cl2 

 

These two monomers M21 and M22 in hands, the SPPS of p11 (ASTEEKWARLARRIA-AVA-DAPu-

VTLDGFG see Figure 79) was performed on a preloaded N-Fmoc-Gly-Wang resin (loading 0.78 

mmol.g-1, 0.05 mmol, 64 mg). The unmodified peptide parts of p3 were synthesized as previously 

described whereas N-Fmoc-Ava-OH was coupled twice in presence of BOP (5 equiv.)/DIEA (7 

equiv.) and N-Fmoc-Dapu-OSu was coupled three times at room temperature with DIEA (7 equiv.) 

manually. After cleavage in TFA conditions, the desired compound was recovered, purified on RP-

HPLC and recovered with 9% yield. 

 

 
Figure 79: Chemical structure of p11 with the modified linker in green 



Chapter IV 
Targeting two remote epitopes on Asf1 by combining two binding motifs in a single molecule 

 

186 
 

 

ITC experiments were performed by adding the peptide p11 (0.05 mM) into the cell sample 

containing the protein Asf1 (0.005 mM) in Tris buffer (50 mM, pH 7.4) (Figure 80). The binding 

affinity of p11 for Asf1 was in the same range than p3 with KD=0.013 µM and a stoichiometry N=1 

similar to p3 was determined. This illustrates that this aliphatic modification allows the 

conservation of the positioning of key residues at the Asf1 surface. Thermodynamics data will be 

discussed in details in the following section.  

 
Figure 80: ITC curves and corresponding fitted curves giving access to the thermodynamics data of the binding. 
Experiments were carried out in Tris-HCl pH7.4 buffer at 20°C with the peptide in the syringe at 0.05 mM and Asf1 
protein in the sample cell at 0.005 mM.  

Besides, NMR experiments as well as X-ray crystallography assays are currently in progress in the 

lab of F. Ochsenbein. 

 

2. Simplification of the connection between the two Asf1 binding motifs by 

removing the GAGG segment 

 

Another design approach has consisted in shortening the length of the peptide spacer installed 

to reach the two binding zones of Asf1 surface. Based on the crystal structure of p3/Asf1 complex, 

we designed a shorter spacer bypassing the loop formed by the GAGG segment (Figure 81). We 

thought that the side-chain of Thr21 pointing toward the Ala15, could be substituted by a short 

aliphatic side-chain connected to Ala15 in order to maximize the contacts with Asf1 surface and 

to well-position the two peptide segments (the helical and the β-strand ones) of p3. For this study, 
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we decided to modulate the number of methylene units so as to determine the optimal length of 

this lateral spacer.  

 
Figure 81: Design of a shorten linker to bypass the GAGG segment. A. Model design of the spacer (light green) on 
the X-ray crystal structure of p3-Asf1. B. Chemical structure of compound designed with the variable number of 
methylene units n= 1 or 2. 

In this context and with the aim to reproduce the good spatial orientation of the Thr side chain, 

we decided to use a γ-amino acid with two methylene units coupled to the side-chains of an acidic 

residue (i.e. Glu or Asp residue) as connection point with the β-sheet part of peptide p3. While 

Fmoc-γ-aminobutyric acid (Fmoc-GABA-OH) is commercially available, monomers Fmoc-Glu(OH)-

NH2 (M23), and Fmoc-Asp(OH)-NH2 (M24) were synthesized from N-Fmoc-Glu(OtBu)-OH and N-

Fmoc-Asp(OtBu)-OH respectively by following the synthetic route depicted in Scheme 25. After 

the installation of the primary amide in the presence of ammoniac, the side-chain tert-Butyl 

protection was easily removed in the presence of TFA and desired products were recovered in 52 

and 45% yield respectively. 

A 

B 
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Scheme 25: Synthesis of monomers M23 and M24 

 

The solid phase syntheses of peptides p12 and p13 was performed on Fmoc-Gly-Wang resin LL 

(0.30 mmol.g-1) and monomers Fmoc-GABA-OH, Fmoc-Glu-NH2 or Fmoc-Asp-NH2 were manually 

coupled with BOP/DIEA as coupling reagents whereas the unmodified peptide parts of p3 were 

installed with the Liberty Blue synthesizer. After RP-HPLC purification, peptides p12 and p13 were 

recovered in 18% and 14% yield respectively (Table 23). These SPPS appeared to be much simpler 

compared to that of p3 probably due to a different behavior of the growing peptide chain on the 

resin. In addition, this time we did not have to resort to pseudoproline (Fmoc-Val-Thr(Me-

MePro)-OH) residue, the Val19Thr20 dipeptide being absent of the p12 and p13 peptide sequences.  

 

Table 23: Sequences of peptides p11-p13 and characterization by HPLC and mass spectrometry 

 Sequence Yield 
(%) 

tr 
(min) 

[M+4H]4+ 

p3 A S T E E K W A R L A R R I A G A G G V T L D G F G 10 4.71 673.47 
p11 A S T E E K W A R L A R R I AVA DAPu V T L D G F G 9 5.65 672.30 
p12 A S T E E K W A R L A R R I Glu GABA L D G F G 18 3.35 598.24 
p13 A S T E E K W A R L A R R I Asp GABA L D G F G 14 3.75 594.82 

 

Remarkably, the determination of binding affinities to Asf1 of this new series of p3 analogues 

carried out by ITC measurements showed that p3, p11 and p12 exhibited a similar KD with a value 

of  0.01 µM.  

Interestingly, if p11 and p12 showed comparable binding affinity than the one recorded for p3, 

p13 missing one methylene unit on the central bridge presented a KD value diminished by a factor 

of about three. It is likely that in the case of p13 the aliphatic bridge is a little bit too short to 

perfectly position the resulting peptide backbone on the surface of Asf1 and that some deviations 

of the spatial orientation of the key side-chains occurred. 



Chapter IV 
Targeting two remote epitopes on Asf1 by combining two binding motifs in a single molecule 

 

189 
 

 

 
Figure 82: The binding parameters (affinity constant KD, stoichiometry N, binding enthalpy ΔH, entropy -TΔS and 
free energy ΔG) of p11-p13 determined during ITC measurements 

 

The binding signatures for the three designed peptides p11-p13 were extracted from the ITC 

experiments and are reported in Figure 82. The enthalpy and entropy obtained for this series of 

peptides (i.e. p11-p13) are in the same range of order than p3, illustrating here that the central 

modifications do not lead to thermodynamic penalties. Similarly, the high absolute values of 

enthalpy of p11, p12 and to a lesser extent of p13 combined with unfavorable entropy factors 

reveal that binding to Asf1 surface occurs thanks to strong polar interactions with (i.e. H-bonds 

and Van der Waals interaction) with conformational changes of the peptides. To note, p12 shows 

a value of entropic contribution that is more favorable to the binding that those measured for p3 

and p11 suggesting here a higher contribution of the hydrophobic interactions and possibly a 

better anchoring of the Phenyl side-chain into the hydrophobic pocket of Asf1.  

However, and even though showing the lowest entropy factor (-TS = 3.5), peptide p13 also 

presents the lowest absolute enthalpy of binding value and consequently the lowest binding 

affinity to Asf1 due to the probable loss of polar interactions during the course of the binding.  
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This study confirmed the feasibility of mutating or even by-pass the GAGG spacer in p3 leading to 

a simplified SPPS and maintaining a high affinity for Asf1 protein. Additional structural analysis in 

solution (15N-HSQC NMR experiments) have been performed on this series of peptides but 

unfortunately all the data have not been retrieved and analyzed yet. Moreover, several crystals 

have been obtained for p11 and p12 at more than 10 Å and 2.2 Å resolution respectively. The 

crystals obtained for p11 were really small and data set was of poor quality to be refined. An 

optimization of crystals conditions will be required. However, a rapid observation of the electron 

density for p12 suggested that the helical part was well-localized at the surface of Asf1 whereas 

the C-terminal part was in contact with another Asf1 protein. This unexpected result can find an 

explanation in a crystallography artefact. Crystal conditions should be optimized soon in order to 

obtain higher resolution crystal data sets. 

 

3. Extension of the urea/amide peptidomimetic by adding the histone H4 

binding epitope at the C-terminus 

The huge improvement of binding affinity to Asf1 brought by the presence of the second binding 

epitope Phe25 in p3, motivated us to investigate the potential increase of binding affinity after 

lengthening the C-terminal part of ch5 chimera. Considering the binding affinity results gathered 

with the peptides p3, p11 and p12, several peptides sequences were appended at the C-terminus 

of ch5 foldamer with the aim to establish their incidence on the binding to Asf1.  

 

a) Lengthening of ch5 C-terminus with the p3 peptide end and affinity 

determination by ITC experiment 

First, we were interested to elongate the ch5 foldamer with the native C-terminal sequence of 

p3. The incorporation of this C-terminal segment of p3 including the GAGG loop at the C-terminal 

end of ch5, would indeed integrate the second binding epitope (Phe residue) and thereby should 

have a positive impact on the binding affinity to Asf1 protein. A basic superimposition of the X-

ray crystal structures of p3 and ch5 confirmed the feasibility of this elongation strategy even 

though a small shift of 1.8 Å between the p3 Ala15 and ch5 Ala9 was noticed (Figure 83).  
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Figure 83 : Superimposition of ch5 and p3 X-ray crystal structures aiming at tethering the C-terminal segment of 
p3 and reach the second binding epitope. Urea residues of ch5 are in orange whereas the peptide part is in dark 
blue. The helical part of p3 is represented in light blue, the loop in green and the H4 β-sheet mimicking segment is 
represented in red. 

The synthesis of the tethered chimera, ch20, was carried out on N-Fmoc-Gly-WANG resin LL. The 

C-terminal peptide segment was automatically introduced with the Liberty Blue microwave 

synthesizer using the same conditions and peptide strategy to those optimized for p3, whereas 

the urea part and the last -amino acid residues were introduced manually as previously 

described during the synthesis of ch5. After RP-HPLC semi-preparative purification, the expected 

/urea chimera ch20 was recovered with an overall yield of 7%.  

This new hybrid sequence was next assayed for its ability to bind better to Asf1. ITC experiments 

performed under the same conditions unveiled that chimera ch20 actually exhibits a KD value 

remaining in the micromolar range (KD=1.2 ± 0.2 µm). This result illustrates a really slight 

improvement of the affinity compared to ch5 (KD=2.7 ± 0.6 µm). Compared to the drastic 

improvement in binding affinity observed between p3h (KD=150 ± 50 nm) and p3 (KD= 3 ± 1 nm), 

the binding affinity obtained for ch20 is quite disappointing and underlines that the targeted 

insertion of the phenyl side-chain within the hydrophobic pocket of Asf1 is probably not occurring.  

Crystallography assays are currently in progress in the lab of F. Ochsenbein but we do not have 

data in hands yet. Having the crystallographic data of the ch20/Asf1 complex would obviously 

give us precious structural information in order to better understand the binding mechanism of 

ch20 and optimize the chemical connection between the chimera ch5 and the rest of p3. 
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b) Synthesis of ch5 lengthened at C-terminus with the short-cut strategy and 

affinity determination by ITC experiment 

Another approach to lengthen ch5 C-terminus was based on the insertion of the “by-pass linkers” 

developed for peptides p12 and p13 respectively. Using these shorter linkers would considerably 

reduce the size and the molecular weight of the foldamers making them more valuable for 

potential future drug development. Despite the fact that the best affinity results were obtained 

for p12, we decided to equip ch5 with both linkers. Indeed, the superimposition of ch5 and p3 

crystal structure in complex with Asf1 showed a shift of the position of Cα of Ala in C-terminus, 

suggesting that one linker potentially optimal for p3 could be less efficient to bridge the chimera 

ch5. Hence, both linkers were installed and the synthesis of the two new chimeras ch21 and ch22 

was performed (Figure 84).  

 

 

Figure 84: Chemical structure of ch5 elongated with “by-pass” spacers leading to ch21 and ch22. Natural amino 
acids are in black, urea residues in orange and spacer in green. The corresponding HPLC chromatograms of pure 
products with a gradient of 20-100% ACN in 10 min are represented in the right. 

The solid phase synthesis of these two chimeras, ch21 and ch22 was performed on N-Fmoc-Gly-

WANG-resin LL. The peptide part was introduced as described in the paragraph 2 and the urea 

part was introduced in the same way than for the synthesis of ch5 (scheme 4, chapter 3, A, 3, b). 

After RP-HPLC semi-preparative purification, the expected /urea hybrid foldamers ch21 and 

ch22 were both obtained with an overall yield of 13% (Table 24). Again, the recovered yields 
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underline that having removed the GAGG segment considerably simplified the SPS of the new 

chimera sequences. 

Table 24: Sequences of chimera ch5 lengthened at C-terminal end characterization by HPLC and mass spectrometry 

 Sequence 
Yield 
(%) 

tr 
(min) 

[M+3H]3+ 

p3 A S T E E K W A R L A R R I A G A G G V T L D G F G 10 4.71 673.47 

ch5     E K Nalu Ru Lu Qu R I A          8 4.55 456.67 

ch20     E K Nalu Ru Lu Qu R I A G A G G V T L D G F G 7 5.41 767.75 

ch21     E K Nalu Ru Lu Qu R I Glu GABA L D G F G 13 4.13 667.71 

ch22     E K Nalu Ru Lu Qu R I Asp GABA L D G F G 13 4.16 663.05 

 

The binding affinities to Asf1 were again determined by performing ITC experiments and chimeras 

ch21 and ch22 exhibit dissociation constant of 6.2 ± 0.9 µM 2.2 ± 0.8 µM respectively (Figure 85). 

The shapes of the fitting curves are not as good as for the peptide and more similar to ch5. In 

contrast with -peptides p12 and p13, the best affinity was recorded for the shortest linker 

equipped with Asp residue of ch22 which is better tolerated than with the additional carbon from 

Glu residue spacer residue in ch21. This confirms our wish to test both linkers due to the shift of 

Ala residue in C-terminus of ch5. However, these binding affinity values remain less good than 

the one recorded after tethering with the native C-terminal part of p3. Despite these encouraging 

results the best affinity for lengthened chimera remains the one observed with p3 (ch20). This 

suggests that the bridge between ch5 with the H4 mimicking segment is not optimal and 

considering the KD values there are big chance that the Phe side-chain does not reach its 

hydrophobic pocket. 

At the opposite of ch5 that showed a favorable entropic factor (-TS negative), all the new 

chimera sequences exhibit penalty from the entropic contribution that diminishes the binding to 

Asf1 (Figure 85). Concurrently, the absolute enthalpy value of each new sequence appears to be 

considerably enhanced in comparison to ch5 highlighting an optimization of the polar contacts 

and interactions during the association process of the chimeras with Asf1. 

ITC measurements reveal that sequences ch21 and ch22, which are equipped with the “by-pass” 

linker, have an improved binding enthalpy compared to ch5, exhibiting an absolute H (14 and 

around 11) value close to that of p3 (17). However, the penalty brought by the entropic factor 

considerably diminish the capacity of the resulting sequences ch20-ch22 to tightly bind to Asf1, 

this even though the S values recorded for chimeras ch20-ch21 appear better than that of p3.  
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Figure 85: The binding parameters (affinity constant KD, stoichiometry N, binding enthalpy ΔH, entropy -TΔS and 
free energy ΔG) of ch20-ch22 determined during ITC measurements 

 

As for the other series of chimeras discussed in the previous chapters, structural analyses in 

solution will be soon performed (15N-HSQC NMR experiments) and the X-ray crystallography 

assays as well. Intense efforts are currently done in this direction in the group of Françoise 

Ochsenbein. 
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In this chapter, we showed that the binding affinity of chimeras could be improved by increasing 

the absolute value of the binding enthalpy. The lengthening of ch5 in C-terminus has been 

performed and the synthesis has been optimized allowing the preparation of several sequences 

that have been screened for their binding affinity to Asf1. All these chimeras showed affinities for 

the protein Asf1 in the same range or slightly better than ch5. These results highlight that the 

fragment approach can be highly efficient to gain binding affinity to Asf1. Despite the fact that 

crucial structural information is still missing (in solution and at solid state), these results are 

extremely encouraging for future peptidomimetic constructions with the aim to improve the 

affinity of chimeras or even to access homo-oligoureas as H3 helical mimicking fragments. The 

determination of the X-ray crystal structure would be also beneficial for these new designs even 

though molecular modeling studies can be helpful in finely tune the engineered sequences.   
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Conclusion and perspectives 
 

 

Oligourea peptidomimetics combine several interesting properties such as a stabilized and 

predictable helical conformation and resistance to proteolysis, making them interesting 

candidates for the development of drugs. In this thesis, we showed that their urea-based 

backbone could be combined with the -peptide backbone to form α/urea chimeras retaining 

helical conformation. Short urea segments were successfully introduced at different positions of 

water-soluble peptides of various sizes. In several cases, the solid phase synthesis required 

optimization cycles to efficiently prepare the target chimera sequences. Remarkably, the desired 

α/urea hybrid foldamers were all recovered in honorable yields. During this SPS optimization 

time, it also clearly appeared that the synthesis of this family of chimera foldamers could only be 

mastered if the peptide component was accessible in high purity and yield.  

Regarding the design of /urea hybrid foldamers mimicking GCN4-p1 peptide, the selection of 

the side-chains appeared to be a key parameter to mimic as much as possible the native peptide. 

The mimicry appeared to be even more complex when mutations were introduced at the vicinity 

of the Asn16residue in GCN4-p1 sequence due to its key role in the self-assembly process. In this 

project, we showed that the insertion of a short urea-based segment within a long peptide has 

an impact on the overall structural conformation of the resulting chimera. We studied the 

conformational behavior of a series of GCN4-p1 mimics in solution while focusing on getting a 

high-resolution crystal structure essential for the characterization of the quaternary structure of 

the resulting chimera assemblies. However, despite having obtained crystals suitable for X-ray 

diffraction and high-resolution data sets for several compounds, unfortunately no X-ray structure 

have yet been solved. Many efforts are currently devoted in the group to overcome the phasing 

problem and to grow new crystals in different crystallization conditions. Indeed, solving one 

structure of a GCN4-p1 mimic at atomic resolution would give us crucial structural information 

on the impact of the →urea substitution pattern and would facilitate new designs for an 

efficient chimera copy of native GCN4-p1 assembly. The length of the urea segment might be 

increased to have a stronger effect of the urea segment for optimal stabilization and propagation 

of the helical conformation. Another perspective would be to study for example the self-assembly 

in solution by performing differential scanning calorimetry experiments. In the absence of high 

resolution structural data, it remains difficult to establish a general and precise rule for 

replacement of a peptide segment by a urea backbone but nevertheless, we have shown here 

that introducing a urea segment into a peptide sequence known to adopt -helix conformation 

is a feasible concept. 
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The second part of this thesis was devoted to the design of α-helix mimics for the inhibition of 

Asf1/H3-H4 complex by resorting to the urea-based foldamer approach. We essentially focused 

our work on the design and the synthesis of α/urea chimeras able to mimic the C-terminal part of 

histone H3. The side chain selection was determinant to reach a good binding affinity to Asf1, in 

particular to find a way to recapitulate the main hot-spot interactions. However, the choice of the 

other side-chains was also important in order to improve the binding enthalpy with the formation 

of additional salt bridges or H-bonds between the urea-based foldamer and the protein surface. 

To do so, basic molecular modelling methods or more sophisticated ones were used and, in some 

cases, revealed their efficiency. Indeed, a simple superimposition of the X-ray crystal structure of 

reference p3 peptide with the backbone of an oligourea (for which the crystal structure was 

available) led to the design of chimera ch5 which after synthesis and binding assays revealed to 

be really promising. More sophisticated methods such as Rosetta were also used to optimize key 

isobutyl side chain of LeuU5 in ch5. However, the results gathered from this new optimization 

cycle were quite disappointing. Nonetheless and to our delight, when the same software was 

used to design the first full homooligourea ol1, this sequence showed promising binding affinity 

to Asf1. 

 The thermodynamic data characterizing the interactions between urea-based foldamers and 

Asf1 were determined by ITC experiments and showed that the introduction of the urea segment 

results in a more favorable entropy term but the loss of binding enthalpy impacts the overall 

binding affinity. However, we managed to obtained short chimeras (9 residues) with micromolar 

range affinities. Efforts have been done to characterize at the solid state the protein-foldamer 

interactions and we were pleased to obtain in the group the first X-ray crystal structure of a urea-

based foldamer (ch5) in complex with a protein (Asf1). This result confirmed that ch5 interacts 

with Asf1 in the same region than the C-terminal part of H3. The X-ray crystal structure also 

highlighted the adaptability/plasticity of ch5 to adapt itself to the surface of Asf1. Furthermore, 

this compound was tested in cellulo and showed a toxicity for cancer cells which is really 

encouraging for future drug development. However, additional experiments are necessary to 

confirm that the observed toxicity was induced by engagement of the target (by the chimera) and 

not from the cell penetrating peptide used to deliver the chimera within cells in a non-specific 

manner. Nevertheless, this preliminary cellular study unveils the potential of peptide backbone 

modifications with urea segment. Additionally, the enzymatic stability of ch5 was clearly 

improved compared to the corresponding peptide which offers a significant advantage over α-

helical backbones. For this series of /urea chimera, 1H-15N HSQC NMR experiments have been 

performed and the data are currently being treated to give access to additional structural 

information in solution. A number of new crystallization trials have been performed and current 

efforts focus on the resolution of structures or improvement of crystallization conditions, in 

particular for the series of /urea hybrid foldamers encompassing three urea-type units.  
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Finally, by targeting a second binding site located on another face of Asf1 surface, we managed 

to slightly improve the affinity of our lead compound ch5, in particular, the binding enthalpy was 

clearly improved. However, compared to peptide p3, the affinity of the lengthened version of ch5 

remains significantly lower. An important design work on the GAGG linker has been performed 

but further improvements are still mandatory to optimally position the Phe side-chain into its 

Asf1 hydrophobic pocket. As a first possibility, the aliphatic linker composed of the aminovaleric 

acid and the DAPu (Figure 86) could be inserted in ch5 sequence as the corresponding full peptide 

version presented an affinity similar to p3. 

 

Figure 86: Chemical structure of ch5 lengthened in C-terminal with aliphatic linker 

 

Besides, to improve the binding enthalpy of such elongated chimeras, S. Traore in the team of R. 

Guerois has done a simple molecular modelling study using Pymol to build new linkers (Figure 

87). Indeed, as unnatural backbones are present into the sequence, the use of Rosetta appeared 

to be too much complicated as new parameters were requested to be first implemented. Despite 

this limitation, this model suggests us new sequences to synthesize. In contrast to already 

prepared and discussed chimeras, the Val19Thr20 residues of p3 are conserved in this model, 

increasing the size of the linker. This could be beneficial for the binding to Asf1 as it could restore 

the H-bond occurring between side chains Thr20 of p3 and Thr147 of Asf1.  
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Figure 87: Design of a short linker to remove GAGG segment in ch5 elongation. 

 

This basic model could allow the design of future sequences to be synthesized and evaluated for 

their ability to associate with Asf1. Another sequence that could be synthesized corresponds to 

ch5 with the aliphatic spacer found in p11. This illustrates a room for improving the binding 

affinity of chimeras to Asf1. An alternative approach could be envisioned to design a linker with 

oligourea residues.  

Finally, efforts are needed to obtain additional structural information in solution by HSQC-NMR 

as well as in the solid state with crystallogenesis trials. Crystals have already been obtained for 

peptides derived from p3 and efforts to improve the crystallogenesis conditions are underway.  

 

This thesis was supported by La Ligue contre le Cancer which allowed the initiation of new projects 

that will be pursued, in particular the project targeting Asf1 in collaboration with the team of F. 

Ochsenbein as new funding was obtained at the end of my PhD in the group. Importantly, a 

collaboration with the team of G. Almouzni at the Curie institute would provide increased 

knowledge about the mode of action of compounds in this series in cells and also in vivo. 

Moreover, all the results gathered during this thesis will be useful for other projects in particular 

for those involving PPIs in general. The development of the chimera synthesis on solid support 

has been optimized during my PhD work, in particular for water-soluble sequences and for the 

introduction of urea segments into large peptides.  
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Finally, the potential of full oligoureas used as PPI inhibitors is only at its first stage and will be 

deeper explored because this peptidomimetic approach could be highly valuable for future drug 

design. These urea-based foldamers represent an interesting synthetic tool for extracellular and 

intracellular targets highlighting their clear potential for pharmaceutics. In addition, this 

foldamer-based toolbox could be combined with other orthogonal chemical approaches 

developed by other groups to improve the biological activities of α-helical peptides. 
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A. General methods 

Commercially available reagents were used throughout without purification. The solvents were 

purchased from Sigma-Aldrich. THF, DCM and Toluene were preliminary dried by passing through 

solvent drying system (SPS 800 Manual from MBraun). TFA was purchased from Alfa Aesar. DMF 

and DCM for solid phase synthesis were purchased from Carlo ERBA. RP-HPLC-quality acetonitrile 

(ACN) and MilliQ water were used for RP-HPLC analyses and semi-preparative purification. N-

protected amino acids were purchased from Polypeptide Laboratories or Iris Biotech. NovaPEG 

Rink amide resin, Rink amide MBHA resin and Fmoc-Gly-Wang resin were purchased from 

Novabiochem.  

Thin layer chromatography (TLC) was performed on silica gel 60 F254 (Merck) with detection by 

UV light and charring with 1% w/w ninhydrin in ethanol followed by heating. Flash Column 

chromatography was carried out on silica gel (40-63 μm, Merck). Purifications by automated 

Combiflash were performed with the Teledyne Isco Combiflash Rf+. 

Solid phase peptide syntheses with microwave irradiation were carried out on Liberty Blue 

System, from CEM (CEM μWaves S.A.S., Orsay, France). Solid phase oligourea syntheses with 

microwave irradiation were carried out on Discover Bio system, from CEM (CEM μWaves S.A.S., 

Orsay, France). 

Analytical RP-HPLC analyses were performed on a Dionex ultimate U3000 using a 

Macherey-Nagel Nucleodur column (4.6 × 100 mm, 3 μm) at a flow rate of 1 mL/min. The mobile 

phase was composed of 0.1% (v/v) TFA-H2O (Solvent A) and 0.1% (v/v) TFA-CH3CN (Solvent B). 

Semi-preparative purifications of oligoureas were performed on a Dionex ultimate U3000 using a 

Macherey-Nagel Nucleodur VP250/10 100-16 C18ec column (10 × 250 mm, 16 μm) at a flow rate 

of 4 mL/min. Preparative purifications of oligoureas were performed on a Gilson GX-281 using a 

Macherey-Nagel Nucleodur VP250/21 100-5 C18ec column (21 × 250 mm, 5 μm) at a flow rate of 

20 mL/min. 

1H NMR and 13C NMR spectra were recorded on three different NMR spectrometers: (1) 

an Avance II NMR spectrometer (Bruker Biospin) with a vertical 7.05T narrow-bore/ultrashield 

magnet operating at 300 MHz for 1H observation and 75 MHz for 13C observation by means of a 

5-mm direct BBO 1H/19F_XBB_H probe with Z gradient capabilities; (2) a DPX-400 NMR 

spectrometer (Bruker Biospin) with avertical 9.4T narrow-bore/ultrashield magnet operating at 

400 MHz for 1H observation by means of a 5-mm direct QNP 1H/13C/31P/19F probe with gradient 

capabilities; (3) an Avance III NMR spectrometer (BrukerBiospin) with a vertical 16.45T 

narrowbore/ultrashield magnet operating at 700 MHz for 1H observation by means of a 5-mm TXI 
1H/13C/15N probe with Z gradient capabilities. Chemical shifts are reported in parts per million 

(ppm, δ) relative to the 1H or 13C residual signal of the deuterated solvent used. 1H NMR splitting 

patterns with observed first-order coupling are designated as singlet (s), broad singlet (brs), 
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doublet (d), triplet (t), or quadruplet (q). Not defined 1H NMR splitting patterns are designated as 

multiplet (m). Coupling constants (J) are reported in hertz (Hz).  

ESI-HRMS analyses were carried out on a Thermo Exactive with an ion trap mass analyzer 

from the Mass Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 

3033 - IECB), Pessac, France. ESI-MS analyses were carried out on a ThermoElectron LCQ 

Advantage spectrometer equipped with an ion trap mass or on a Agilent 6230 with a time of flight 

analyzer with an UHPLC Agilent 1290 Infinity (Agilent Eclipse Plus C18 RRHD 1.8µM 2.1*50 mm) 

from the Mass Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 

3033-IECB). 

All Circular dichroism (CD) spectra were recorded on a J-815 Jasco dichrographe (Jasco 

France, Nantes, France) using a quartz cell with a path length of 1 mm or 2mm (Hellma, Paris, 

France). Samples temperature was regulated at 20°C. Data were collected in continuous scan 

mode with a data pitch of 1 nm, a scanning speed of 50 nm/min, an integration time of 5 s, 2 nm 

bandwidth and two accumulations per sample. Samples Data were collected as raw ellipticity (ψ 

in mdeg) and converted to per residue mean ellipticity (PRME with [θ] = ellipticity) in 

deg.cm2.dmol-1.residue-1 using the following equation:     [θ]= (ψ x 10-3) / (res x l x c) 

Where res is the number of α-residues in the oligomer, l is the pathlength in cm, and c is the 

oligourea concentration in dmol.cm-3.  

 

B. Solution synthesis of Monomers 

1. Preparation of azide protected O-succinimidyl carbamate monomers 

Activated monomers equipped with Ala- (M1), Val- (M2), Leu- (M3) and Ile- (M4) side chains were 

synthesized as previously reported1.        



Experimental part 

206 
 

                 
 

Procedure for conversion into alcohol 

The N-Boc-Ile OH*2H2O (10g, 10.4mmol) was dissolved in THF under N2 and 

cooled to -20°C. After addition of NMM (1.35 mL, 12.24 mmol) and IBCF (1.6 

mL, 12.24 mmol) the mixture reaction was stirred at -20°C for 40 min. The 

resulting white suspension was filtered off and a solution of NaBH4 (462 mg, 

12.24 mmol) in water was added drop by drop to the filtrate cooled to -20°C. The reaction was 

left to react overnight.  After the addition of water and THF removal under reduced pressure, the 

aqueous solution was extracted with EtOAc. The organic layers were combined and washed two 

times with 1M KHSO4, two times with solution of saturated NaHCO3, once with Brine solution and 

dried over MgSO4. After concentration under vacuum, and silica gel flash chromatography, the 

desired pure product was furnished as a colorless oily product with 96% yield. 

 

tert-butyl (2S,3S)-1-hydroxy-3-methylpentan-2-ylcarbamate M4b: 1H NMR (300 MHz, CDCl3) δ 
4.65 (s, 1H), 3.75 – 3.55 (m, 2H), 3.50 (d, J = 4.7 Hz, 1H), 1.45 (s, 9H), 1.42 (s, 2H), 1.20 – 1.09 (m, 
1H), 0.93 (d, J = 2.4 Hz, 3H), 0.91 (d, J = 1.9 Hz, 3H). 
 
Procedure for conversion of alcohol into phtalimide- Mitsunobu reaction: 

 

N-Boc-Ile-alcohol (2.16g, 10 mmol) was dissolved in anhydrous THF 

under N2 atmosphere pressure. PPh3 (3.15g, 12 mmol) in THF and 

phthalimide (1.76g, 12 mmol) were added, followed by dropwise 

addition of DIAD (2.4mL, 12 mmol). The reaction mixture was stirred 

overnight at r.t. After concentration under reduced pressure, a flash silica gel chromatography 

was performed to remove PPh3 and the material was directly used to the next step. 
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Boc removal and azide formation on Boc-Ile-Phthalimide: 

N-Boc-Ile-Phthalimide was dissolved in pure TFA (10mL) and left to react 

without stirring for 2 h. The TFA was removed under reduced pressure and 

the TFA salt was dried overnight on vacuum line. The TFA salt was directly 

engaged in the next step without any purification. To a solution containing 

the TFA salt (10 mmol) in CH3CN/H2O (1:1), were successively added K2CO3 

(2.04g, 12.84 mmol), imidazole-1-sulfonyl azide hydrochloride (N3SO2Imidazole.HCl) (2.46 g, 

11.77 mmol) and CuSO4.5H2O (15 mg, 0.1 mmol). The mixture was stirred at r.t. overnight. The 

reaction mixture was then filtered off to remove the remaining K2CO3. After concentration under 

reduced pressure, EtOAc was added. The organic phase was washed two times with KHSO4 

solution (1M), once with Brine, dried over magnesium sulfate and concentrated under reduced 

pressure. After silica gel flash chromatography, the desired pure product was furnished as a 

colorless oily product with 45% yield. 

 
(S)- (2-azido-3-methylpentyl)phtalimide M4c: 1H NMR (300 MHz, CDCl3) δ 7.98 – 7.33 (m, 4H), 
3.64 (s, 1H), 2.27 (dd, J = 58.3, 15.9 Hz, 1H), 1.57 (s, 2H), 1.40 (d, J = 15.0 Hz, 2H), 1.18 – 1.00 (m, 
3H), 0.98 – 0.72 (m, 3H). 
 
Procedure for azide Ile amine derivative: 

To a solution of azido phthalimide derived of Ile (4.8 mmol, 1.3g) in MeOH, 

hydrazine hydrate (690 µL, 14 mmol) was added. The reaction mixture was heat 

to reflux and the reaction was stirred 4h with apparition of a white precipitate. 

The reaction mixture was filtered off, washed with MeOH and the filtrate was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

layer was washed twice with 1M HCl solution. The combined aqueous phases were again washed 

with EtOAc and were neutralized by addition of K2CO3 until pH8. The aqueous phase was finally 

extracted with DCM and the combined organic layers were dried over MgSO4, concentrated 

under reduced pressure but not until dryness to avoid the loss of azido Ile derivative which is 

quite volatile. Resulting azido amine was directly engaged for activation step without further 

purification.  

 
Synthesis of N3-Ile-OSu: 

To a stirred suspension of disuccinimidyl 

carbonate (DSC) (1.23g, 4.8 mmol) in 

distilled DCM, was added drop by drop a 

solution of the derivative amine in DCM.  

The reaction mixture was stirred 4 h and was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

phase was washed two times with 1M KHSO4, once with Brine solution and dried over MgSO4 
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before to be concentrated under reduced pressure. The product was precipitated in a cold 

mixture pentan/Et2O (3:7, v/v) and furnished as solid with a yield of 76%. 

 
 (S)-2,5-dioxopyrrolidin-1-yl (2-azido-3-methylpentyl)carbamate M4 : solid, 45%, 1H NMR (300 

MHz, CDCl3) δ (ppm) = 5.46 (s, 1H), 3.58 – 3.40 (m, 1H), 3.17 – 3.04 (m, 2H), 2.83 (s, 4H), 1.77 – 

1.58 (m), 1.61 – 1.44 (m), 0.99 – 0.92 (m, 6H); HRMS (ESI-TOFMS) m/z calcd for C11H21N6O4 

[M+NH4]+ 301.1618, found 301.1618 

 

The activated monomers containing Lys- (M5), Arg- (M6), Ser- (M7), Glu- (M9), Asn- (M10) and 

Gln- (M11) side chains were synthesized as previously reported1, following path A, starting from 

the N-Fmoc protected amino acid for Lys- and Arg- derivatives and the N-Cbz protected (L) amino 

acid for Ser- and Glu- derivatives. The Asn type monomer was synthesized following the path B, 

starting from N-Fmoc protected amino acid. Fmoc deprotection was performed using DBU, as 

previously described2. Activated monomers M5, M7, M9 and M10 were previously described3. 

 

 
 

General procedure for N-Fmoc-protected alcohol formation  

The N-Fmoc protected amino acid (10 mmol) was dissolved in THF under N2 and cooled to -20°C. 

After addition of NMM (1.35 mL, 12.24 mmol) and IBCF (1.6 mL, 12.24 mmol) the mixture reaction 

was stirred at -20°C for 40 min. The resulting white suspension was filtered off and a solution of 

NaBH4 (462 mg, 12.24 mmol) in water was added drop by drop to the filtrate cooled to -20°C. The 

reaction was left to react overnight.  After the addition of water and THF removal under reduced 

pressure, the aqueous solution was extracted with EtOAc. The organic layers were combined and 

washed two times with 1M KHSO4, two times with solution of saturated NaHCO3, once with Brine 

solution and dried over MgSO4. After concentration under vacuum, and silica gel flash 

chromatography, the desired pure product was furnished. 
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M6b: solid, 93%1H NMR (300 MHz, CDCl3) δ 7.75 (t, J = 7.1 
Hz, 2H), 7.65 – 7.54 (m, 2H), 7.48 – 7.32 (m, 4H), 6.24 (s, 
1H), 5.29 (t, J = 14.5 Hz, 1H), 4.42 (d, J = 6.1 Hz, 2H), 4.20 
(d, J = 5.9 Hz, 2H), 3.63 (dd, J = 21.4, 10.6 Hz, 2H), 3.23 (d, 
J = 21.9 Hz, 2H), 2.95 (d, J = 7.0 Hz, 3H), 2.54 (dd, J = 20.5, 
9.1 Hz, 6H), 2.27 (d, J = 20.3 Hz, 1H), 2.10 (d, J = 5.3 Hz, 
3H), 1.48 – 1.40 (m, 6H). 
 

 

M14b: White solid, 90% yield,  1H NMR (300 MHz, CDCl3) δ 7.73 
(t, J = 9.5 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.38 (dd, J = 14.6, 7.1 Hz, 
2H), 7.33 – 7.26 (m, 10H), 7.21 – 7.14 (m, 8H), 7.01 (s, 1H), 5.85 
(d, J = 6.1 Hz, 1H), 4.39 (p, J = 10.4 Hz, 2H), 4.20 (dd, J = 12.3, 5.7 
Hz, 2H), 2.67 – 2.39 (m, 2H), 2.07 (dd, J = 7.8, 4.2 Hz, 2H). 
 
 

 

 

(S)-tert-butyl2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-

hydroxypropyl)-1Hindole-1-carboxylate M15b: Solid, 90%; 1H NMR (300 

MHz, CDCl3) δ (ppm)= 8.13 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.5 Hz, 2H),  7.69-

7.25 (m, 10H), 5.21 (d, J = 6.6 Hz, 1H),  4.45 (d, J = 6.9 Hz, 2H),  4.23 (t, J = 

6.8 Hz, 1H), 4.10 (brs,1H), 3.72 (d, J = 4.7 Hz, 2H), 3.02 (d, J = 6.0 Hz, 2H), 

2.05 (brs, 1H), 1.67 (s, 9H). 

 

General procedure for Fmoc removal 

N-Fmoc protected amino alcohol was dissolved in EtOAc and DBU was added. The, mixture 

reaction was left to react at r.t. for 1h. EtOAc was removed under reduced pressure and the 

resulting crude product was directly engaged in the next step without any further purification. 

 

General procedure for amine to azide conversion  

To a solution containing the TFA salt (10 mmol) in CH3CN/H2O (1:1), were successively added 

K2CO3 (2.04g, 12.84 mmol), imidazole-1-sulfonyl azide hydrochloride (N3SO2Imidazole.HCl) (2.46 

g, 11.77 mmol) and CuSO4.5H2O (15 mg, 0.1 mmol). The mixture was stirred at r.t. overnight. The 

reaction mixture was then filtered off to remove the remaining K2CO3. After concentration under 

reduced pressure, EtOAc was added. The organic phase was washed two times with KHSO4 

solution (1M), once with Brine, dried over magnesium sulfate and concentrated under reduced 

pressure. After silica gel flash chromatography, the desired pure product azides was furnished as 

pure compounds. 
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(S)-4-azido-5-hydroxypentyl (3-N-(2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl guanidine M6c: 
white solid, 76%; 1H NMR (300 MHz, CDCl3) δ 6.27 (s, 1H), 6.11 
(s, 1H), 5.30 (s, 1H), 3.75 – 3.52 (m, 2H), 3.52 – 3.38 (m, 1H), 
3.34 – 3.13 (m, 2H), 2.96 (s, 3H), 2.53 (d, J = 20.4 Hz, 6H), 2.15 
– 2.07 (m, 3H), 1.61 (tt, J = 16.7, 8.5 Hz, 3H), 1.44 (d, J = 10.9 Hz, 
6H). 

 

 

(S)-4-azido-5-hydroxy-N-tritylpentanamide M11c: white solid, 91%; 1H-

RMN (CDCl3, 300MHz): δ 7.16-7.42 (m, 15H) , 6.64 (s, 1H), , 3.92 (s, 1H), 

3.39-3.62 (m, 2H), 2.36-2.54 (m, 2H), 1.71-1.82 (m, 2H), 1.25 (s, 1H),  

 

 

 

(S)-tert-butyl2-(2-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-3-

hydroxypropyl)-1Hindole-1-carboxylate M15c: oil, 82%; 1H NMR (300 

MHz, CDCl3) δ (ppm)= 8.13 (d, J = 8.0 Hz, 1H), 7.69-7.25 (m, 4H), 3.95-3.62 

(m, 3H),  3.02 (m, 2H), 1.72 (s, 9H). 

 

 

 

General procedure for conversion of alcohol into phthalimide- the Mitsunobu reaction 

To a solution of PPh3 in anhydrous THF at 0°C and under positive N2 atmosphere pressure, were 

successively added DIAD and phthalimide. Azido alcohol dissolved in anhydrous THF was next 

added dropwise and the reaction mixture was stirred and allowed to reach the r.t. After 4 hours, 

the reaction was completed. THF was removed under reduced pressure and the crude material 

was directly engaged in the next step. 

 

General procedure for azido amine synthesis 

To a solution of azido phthalimide derived of Ile (1eq) in MeOH, hydrazine hydrate (3eq) was 

added. The reaction mixture was heat to reflux and the reaction was stirred 4h with apparition of 

a white precipitate. The reaction mixture was filtered off, washed with MeOH and the filtrate was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

layer was washed twice with 1M HCl solution. The combined aqueous phases were again washed 

with EtOAc and were neutralized by addition of K2CO3 until pH8. The aqueous phase was finally 

extracted with DCM and the combined organic layers were dried over MgSO4, concentrated 

under reduced pressure but not until dryness to avoid the loss of azido Ile derivative which is 
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quite volatile. Resulting azido amine was directly engaged for activation step without further 

purification.  

 
General procedure for the preparation of azide protected O-succinimidyl carbamate monomers 
To a stirred suspension of disuccinimidyl carbonate (DSC) (1eq) in distilled DCM, was added drop 

by drop a solution of the derivative amine in DCM.  The reaction mixture was stirred 4 h and was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

phase was washed two times with 1M KHSO4, once with Brine solution and dried over MgSO4 

before to be concentrated under reduced pressure to furnish activated carbamate as solid.  

 

(S)-2,5-dioxopyrrolidin-1-yl (2-azidopentyl-3-N-(2,2,4,6,7-pentamethyldihydrobenzofuran-5-

sulfonyl)guanidine) carbamate M6: solid with 72% yield; 1H NMR (300 MHz, CDCl3) δ 6.12 (s, 2H), 

5.91 (s, 1H), 5.15 – 5.01 (m, 1H), 3.65 (s, 2H), 3.44 (d, J = 6.9 Hz, 1H), 3.37 – 3.27 (m, 2,), 2.96 (s, 

2H), 2.85 (s, 4H), 2.57 (d, J = 20.3 Hz, 6H), 2.10 (s, 3H), 1.63 (m, 

2H), 1.46 (s, 6H), 1.32 – 1.24 (m, 2H).13C NMR (75 MHz, CDCl3) 

δ 170.45, 156.19, 152.28, 138.67, 132.61, 132.39, 132.28, 

128.80, 124.92, 117.78, 86.69, 77.58, 77.36, 77.16, 76.74, 

60.95, 44.60, 44.14, 43.33, 28.74, 28.14, 25.67, 25.28, 19.43, 

18.10, 12.61. HRMS (ESI-TOFMS) m/z calcd for C24H34N8O7S 

[M+H]+ 578.2271, found 579.2327 

 

(S)-2,5-dioxopyrrolidin-1-yl(-4-azido-N-tritylpentanamide) carbamate 

M11 : solid, 75% yield ; 1H-RMN (CDCl3, 300 MHz): δ (ppm) = 7.16-7.42 

(m, 15H), 6.7 (s, 1H), 5.6 (s, 1H), 3.5 (m, 1H), 3.2 (m), 2.8 (s, 4H), 2.4 (t, 

2H), 1.8 (q, 2H); 13C-RMN (CDCl3, 75 MHz): δ= 168.8, 143.5, 127.1, 

126.18, 75.9, 69.5, 59.2, 30.6, 24.4, 23.8. 

 

 

 

 

(S)-tert-butyl 2-(2-azido-3-((((2,5-dioxopyrrolidin-1-

yl)oxy)carbonyl)amino)propil)-1Hindole-1-carboxylate M151:solid, 

76% yield; 1H NMR (300 MHz, CDCl3) δ (ppm)= 8.13 (s, 1H), 7.62 – 7.49 

(m, 2H), 7.46 – 7.31 (m, 2H), 6.33 (d, J = 28.6 Hz, 1H),  3.70 – 3.53 (m, 

2H), 3.45 (dt, J = 45.8, 23.1 Hz, 1H), 3.07 – 3.03 (m, 2H), 2.80 (s, 4H), 

1.67 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 170.08, 124.90, 123.90, 122.85, 

118.84, 115.61, 77.58, 77.58, 77.36, 77.16, 76.74, 52.80, 46.48, 31.57, 

28.35, 25.60. HRMS (ESI-TOFMS) m/z calcd for C21H24N6O6Na [M+Na]+ 479.1649, found 479.1643 
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General procedure for amine to azide conversion  

To a solution containing the N-free amino acid (10 mmol) in CH3CN/H2O (1:1), were successively 

added K2CO3 (2.04g, 12.84 mmol), imidazole-1-sulfonyl azide hydrochloride (N3SO2Imidazole.HCl) 

(2.46 g, 11.77 mmol) and CuSO4.5H2O (15 mg, 0.1 mmol). The mixture was stirred at r.t. overnight. 

The reaction mixture was then filtered off to remove the remaining K2CO3. After concentration 

under reduced pressure, EtOAc was added. The organic phase was washed two times with KHSO4 

solution (1M), once with Brine, dried over magnesium sulfate and concentrated under reduced 

pressure. After silica gel flash chromatography, the desired pure product was furnished as pure 

compounds. 

 

(S)-2-azido-3-(naphthalen-1-yl)propanoic acid  

M16b: brown oil; 87% yield; 1H-RMN (CDCl3, 300 MHz): δ 3.18 (dd, J = 14.4, 9.5 

Hz, 1H), 3.57-3.70 (m, 2H), 4.08-4.21 (m, 2H), 7.28-7.87 (m, 7H) 

 

 

(S)-2-azido-4-phenylbutanoic acid 

 M17b: yellow oil, 71%; 1H-RMN (CDCl3, 300MHz): δ 2.04-2.28 ppm (m, 2H), 2.68-

2.90 (m, 2H), 3.9 ppm (dd, J=8.8, 4.9 Hz, 1H), 7.21-7.35 (m, 5H), 8.56 (s, 1H) 
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(S)-2-azido-3-diphenylpropanoic acid 

M18b: 97%1H NMR (300 MHz, CDCl3) δ 7.67 (dd, J = 14.0, 7.3 Hz, 5H), 7.35 – 
7.15 (m, 5H), 4.42 (d, J = 9.3 Hz, 1H), 2.30 (s, 1H). 
 

 

 

General procedure for azide alcohol formation 

The azide amino acid (2g, 1 eq) was dissolved in THF under N2 and cooled to -20°C. After addition 

of NMM (1.2 eq) and IBCF (1.2 eq) the mixture reaction was stirred at -20°C for 40 min. The 

resulting white suspension was filtered off and a solution of NaBH4 (1.2 eq) in water was added 

drop by drop to the filtrate cooled to -20°C. The reaction was left to react overnight.  After the 

addition of water and THF removal under reduced pressure, the aqueous solution was extracted 

with EtOAc. The organic layers were combined and washed two times with 1M KHSO4, two times 

with solution of saturated NaHCO3, once with Brine solution and dried over MgSO4. After 

concentration under vacuum, and silica gel flash chromatography, the desired pure product was 

furnished. 

(S)-2-azido-3-(naphthalen-1-yl)propan-1-ol  

M16c: brown oil, 86%; 1H-RMN (CDCl3, 300 MHz): δ 3.35 (qd, J = 14.1, 7.1 Hz, 

2H), 3.56-3.82 (m, 2H), 3.86-3.94 (m, 1H), 7.42-8.09 (m, 7H) 

 

 

(S)-2-azido-4-phenylbutan-1-ol  

M17c: yellow oil, 70%; 1H-RMN (CDCl3, 300 MHz): δ 1.79-1.91 (m, 2H), 2.63-2.94 

(m, 2H), 3.74 (ddd, J = 39.2, 12.9, 7.2 Hz, 2H), 3.96 (d, J = 6.7 Hz, 1H), 7.26-7.35 

(m, 5H) 

 

 

(S)-2-azido-3-diphenylpropan-1-ol  

M18c: 1H NMR (300 MHz, CDCl3) δ 8.00 – 7.64 (m, 10H), 4.94 – 4.77 (m, 2H), 
4.42 (d, J = 9.3 Hz, 1H), 1H NMR (300 MHz, CDCl3), 2.30 (s, 1H). 
 

 

 

General procedure for conversion of alcohol into phthalimide- the Mitsunobu reaction 

To a solution of PPh3 in anhydrous THF at 0°C and under positive N2 atmosphere pressure, were 

successively added DIAD and phthalimide. Azido alcohol dissolved in anhydrous THF was next 

added dropwise and the reaction mixture was stirred and allowed to reach the r.t. After 4 hours, 

the reaction was completed. THF was removed under reduced pressure and the crude material 

was directly engaged in the next step. 
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General procedure for azido amine synthesis 

To a solution of azido phthalimide derived of Ile (1eq) in MeOH, hydrazine hydrate (3eq) was 

added. The reaction mixture was heat to reflux and the reaction was stirred 4h with apparition of 

a white precipitate. The reaction mixture was filtered off, washed with MeOH and the filtrate was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

layer was washed twice with 1M HCl solution. The combined aqueous phases were again washed 

with EtOAc and were neutralized by addition of K2CO3 until pH8. The aqueous phase was finally 

extracted with DCM and the combined organic layers were dried over MgSO4, concentrated 

under reduced pressure but not until dryness to avoid the loss of azido Ile derivative which is 

quite volatile. Resulting azido amine was directly engaged for activation step without further 

purification. 

General procedure for the preparation of azide protected O-succinimidyl carbamate monomers 

To a stirred suspension of disuccinimidyl carbonate (DSC) (1eq) in distilled DCM, was added drop 

by drop a solution of the derivative amine in DCM.  The reaction mixture was stirred 4 h and was 

concentrated under reduced pressure. The crude material was dissolved in EtOAc and the organic 

phase was washed two times with 1M KHSO4, once with Brine solution and dried over MgSO4 

before to be concentrated under reduced pressure to furnish activated carbamate as solid. 

 

(S)-2,5-dioxopyrrolidin-1-yl (2-azido-3-naphten-1-

ylpropan)carbamate M16: solid, 75% yield; 1H-RMN (CDCl3, 300MHz): δ 

(ppm) =, 7.42-8.07 (m, 7H), 5.52 (s, 1H), 3.92-4.02 (m, 1H), 3.5 (ddd, J = 

13.9, 6.5, 4.0 Hz, 2H), 3.30 (m, 2H), 2.82 (s, 4H); 13C-RMN (CDCl3, 75 

MHz): δ= 170, 151.2, 134, 132.2, 128, 127.2, 126.5, 125.8, 122.5, 61.8, 

44.8, 35, 25.1; HRMS (ESI-TOFMS) m/z calcd for C18H17N5O4Na [M+Na]+ 

390.1173, found 390.1178. 

 

(S)-2,5-dioxopyrrolidin-1-yl (2-azido-4-phenylbutan) carbamate M17 : 

White solid, 79%; 1H-RMN (CDCl3, 300MHz): δ (ppm) = 7.18-7.34 (m, 5H), 

5.51 (s, 1H), 3.39-3.58 (m, 2H), 3.17-3.28 (m, 1H), 2.82 (s, 4H), 2.73 (dd, J 

= 12.0, 4.4 Hz, 2H), 1.87 (dd, J = 15.9, 8.1 Hz, 2H); 13C-RMN (CDCl3, 75 

MHz): δ= 170.8, 151.5, 141.2, 129, 127.2, 61.8, 46, 32.5, 31.8, 25.1; HRMS 

(ESI-TOFMS) m/z calcd for C15H17N5O4Na [M+Na]+ 354.1173, found 

354.1180.  
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(S)-2,5-dioxopyrrolidin-1-yl (2-azido-3-diphenylpropan) carbamate 

M18: solid, 57% yield, 1H NMR (300 MHz, DMSO) δ 7.47 (dd, J = 14.0, 

7.3 Hz, 4H), 7.35 – 7.15 (m, 6H), 4.53 (t, J = 8.4 Hz, 1H), 4.11 (d, J = 

10.7 Hz, 2H), 3.19 (dd, J = 10.5, 2.8 Hz, 1H), 3.10 – 2.96 (m, 1H), 2.77 

(s, 4H);13C NMR (75 MHz, CDCl3) δ 169.80, 140.52, 129.07, 128.14, 

127.47, 65.69, 55.01, 45.19, 30.59, 25.47.HRMS (ESI-TOFMS) m/z 

calcd for C20H23N5O4 [M+H]+ 411.1775 found 411.1800 

 

2. Preparation of azide protected O-succinimidyl carbamate monomer M8 

encompassing the Lys-type side chain in  position with an inversion of 

configuration 

(S)-(9H-fluoren-9-yl)methyl(1-hydroxy-5-N-tert-butoxycarbonylaminohex-2-yl)carbamate 

M8a: 

In a round bottom flask, N-Fmoc protected amino 

acid Fmoc-D-Lys(Boc)-OH (5 g, 10.7 mmol) was 

dissolved in anhydrous THF under positive N2 

atmosphere and cooled down to -20°C4. Isobutyl 

chloroformate (1.67 mL, 12.8 mmol) and NMM 

(1.4 mL, 12.8 mmol) were added and the reaction 

was stirred at -20°C for 25 min. After filtration of the resulting NMM salt, the filtrate was cooled 

down to 0°C and a solution of NaBH4 (485 mg, 12.8 mmol) in water was slowly added. The reaction 

mixture was let under stirring for 10 min. The crude mixture was then concentrated under 

reduced pressure. A 1 M aqueous solution of KHSO4 was next added then extracted twice with 

EtOAc. The organic layers were combined and washed twice with a saturated aqueous solution 

of NaHCO3, once with brine and dried over sodium sulfate before to be concentrated under 

vacuum. Silica gel flash chromatography was performed in a mixture of cyclohexane / EtOAc (7: 

3; v/v) to give pure M8a as a white solid in 92% yield. 

M8a: 1H-NMR (CDCl3, 300MHz): δ 1.43 (s, 9H), 1.59 (d, J = 28.7 Hz, 2H), 2.04 (d, J = 2.9 Hz, 1H) 

3.02-3.12 (m, 1H), 3.17 (d, J = 5.9 Hz, 2H), 3.63 (s, 2H), 4.21 (t, J = 6.7 Hz, 2H), 4.42 (d, J = 5.2 Hz, 

4H), 4.56 (s, 1H), 5.02 (s, 1H), 7.29-7.82 (m, 8H) 

 (S)-(9H-fluoren-9-yl)methyl(1-iodo-5-N-tert-butoxycarbonylaminohex-2-yl)carbamate M8b: 

M8a was converted into iodine M8b according to the 

procedure described by Sureshbabu et al.5. To a 

solution of triphenylphosphine (2.9 g, 25.3 mmol) in 

anhydrous CH2Cl2 under N2 atmosphere, at O°C, were 

successively added Imidazole (4.26g, 42.2 mmol) and 

Iodine (6.42g, 25.3 mmol). N-Fmoc protected amino 

alcohol derivative M8a was dissolved in anhydrous CH2Cl2 and added dropwise to the reaction 

mixture. The reaction mixture was allowed to reach room temperature and stirred overnight. 

After evaporation of CH2Cl2 under reduced pressure, the crude mixture was dissolved in EtOAc 
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and successively washed three times with a 0.5 M aqueous solution of Na2S2O3, twice with a 1M 

aqueous solution of KHSO4, once with brine and dried over sodium sulfate. The crude product 

was concentrated under reduced pressure. Silica gel flash chromatography was performed in 

cyclohexane/EtOAc (9 : 1, v/v) to obtain pure M8b as a white solid in 90% yield.  

M8b: 1H-NMR (CDCl3, 300MHz): δ 1.36 (d, J = 7.6 Hz, 2H), 1.41 (s, 9H), 1.53 (d, J = 9.3 Hz, 4H), 3.12 

(d, J = 5.5 Hz, 2H), 3.29 (d, J = 6.5 Hz, 1H), 3.42 (d, J = 8.9 Hz, 2H), 4.23 (t, J = 6.7 Hz, 1H), 4.31-4.38 

(m, 2H), 4.51 (d, J = 10.3 Hz, 1H), 4.87 (d, J = 4.5 Hz, 1H), 7.30-7.79 (m, 8H)  

 (S)-(9H-fluoren-9-yl)methyl(1-azido-5-N-tert-butoxycarbonylaminohex-2-yl)carbamate M8c: 

The N-Fmoc protected amino iodine derivative M8b 

(3.92 g, 6.95 mmol) was dissolved in DMF. NaN3 (1.36 g, 

20.8 mmol) was added and the reaction mixture was 

stirred at room temperature overnight. EtOAc was added 

to this reaction mixture and the organic layer was 

washed six times with H2O, three times with 1M aqueous solution of KHSO4 solution, twice with 

brine and dried over sodium sulfate. The crude was concentrated under reduced pressure before 

to be purified with silica gel flash chromatography in cyclohexane/EtOAc (9: 1, v/v) to obtained 

M8c as a white solid, 53% yield.  

M8c: 1H-NMR (CDCl3, 300MHz): δ 0.72 – 0.92 (m, 2H) 1.42 (s, 9H), 2.15 (s, 1H), 3.11 (d, J = 6.4 Hz, 

2H), 3.41 (tt, J = 12.4, 6.1 Hz, 2H), 3.76 (s, 1H), 4.21 (t, J = 6.6 Hz, 1H), 4.41 (dd, J = 17.7, 8.9 Hz, 

2H), 4.53 (s, 1H), 4.83 (d, J = 7.9 Hz, 1H), 6.93 (d, J = 14.3 Hz, 3H), 7.87 – 7.28 (m, 8H) 

 (R)-tert-butoxycarbonyl-6-azidohexyl-5-amine M8d: 

The N-Fmoc protected azide derivative M8c was dissolved 

in EtOAc and DBU (3 eq, 1.6 ml, 11 mmol) was added. The 

mixture reaction was stirred at room temperature for 10 

minutes. Precipitate was filtered and washed twice with 

EtOAc. The product was concentrated under reduced 

pressure and M8d was obtained as a white solid. 

M8d: 1H-NMR (CDCl3, 300MHz): δ 1.43 (s, 9H), 1.51 (d, J = 6.2 Hz, 4H), 1.69 – 1.63 (m, 2H), 3.15 – 

3.08 (m, 2H), 3.18 (dd, J = 10.1, 4.2 Hz, 2H), 3.39 – 3.27 (m, 2H), 4.63 (s, 1H), 5.29 (s, 1H) 

 (S)-2,5-dioxopyrrolidin-1-yl (2-azido-5-N-ter-butoxycarbonylaminohexyl) carbamate M8 : 

To a stirred suspension of disuccinimidyl carbonate (795 

mg, 3.1 mmol) in freshly distilled CH2Cl2 (50 mL) was 

added drop by drop a solution of M8d (3.1 mmol) in 

DCM (50 mL). After 4 hours, the reaction mixture was 

concentrated under reduced pressure and the crude 

material was dissolved in EtOAc (70 mL). The organic layer was washed twice with 1M aqueous 

solution of KHSO4, once with brine, dried over Na2SO4 and concentrated under reduced pressure 

to furnish an oily product. The activated carbamate M8 was successfully precipitated in a mixture 

of pentane/Et2O (3:7, v/v) and obtained as a white solid with 75 % yield. 
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M8: overall yield of 30%. 1H-NMR (CDCl3, 300MHz): δ 1.41 (s, 9H), 1.50-1.58 (m, 2H), 1.6 (s, 2H), 

1.64-1.7 (m, 2H), 2.88 (s, 4H), 3.09 (dt, J = 13.3, 8.3 Hz, 2H), 3.56 – 3.44 (m, 2H), 3.74 (s, 1H) 4.62 

(s, 1H), 5.54 (s, 1H); 13C-RMN (CDCl3, 75 MHz): δ 23, 24.8, 27, 27.5, 30, 40, 51.2, 54.8, 79.2, 152, 

156, 170; HRMS (ESI-TOFMS) m/z for C16H26N6O6Na [M+Na]+ 421.1812, found 421.1809. 

 

3. Preparation of Fmoc-N-protected O-succinimidyl carbamates monomers  

 

 
Figure 88: Multi-step synthesis of Fmoc-N-protected 

Fmoc-Gln(Trt)u-OSu (M11), Fmoc-Nalu-OSu (M12), Fmoc-Argu(Pbf)-OSu (M13) Fmoc-Alau-OSu 

(M20) were synthesized through the multi-step synthesis describe above. 

 

General procedure for N-Fmoc protected amino alcohol formation 

In a round bottom flask containing N-Fmoc protected amino acid (1 eq) dissolved in anhydrous 

THF cooled to -20°C, under N2 atmosphere, NMM (1.2 eq) and IBCF (1.2 eq) were added. The 

reaction mixture was let stirring for 40 min. The resulted white precipitate was filtered off. NaBH4 

(30 mmol, 1 g, 1.2 eq) in solution in water was added dropwise to the filtrate at 0°C. The reaction 

was left stirring 10 min, quenched with water and then concentrated under reduced pressure. 

After adding ethyl acetate, organic layer was washed twice with KHSO4 solution (1M) and twice 

with saturated solution of NaHCO3, once with brine. After drying over sodium sulfate, the organic 

layer was concentrated. The product was purified on silica gel flash chromatography in EtOAc/ 

cyclohexane (from 1/9 to 6/4). 
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(S)-(9H-fluoren-9-yl)methyl (1-hydroxy N-tritylpentanamide-2-
yl)carbamate M11a : White solid, 95% yield,  1H NMR (300 MHz, 
CDCl3) δ 7.73 (t, J = 9.5 Hz, 2H), 7.61 – 7.54 (m, 2H), 7.38 (dd, J = 
14.6, 7.1 Hz, 2H), 7.33 – 7.26 (m, 10H), 7.21 – 7.14 (m, 8H), 7.01 
(s, 1H), 5.85 (d, J = 6.1 Hz, 1H), 4.39 (p, J = 10.4 Hz, 2H), 4.20 (dd, 
J = 12.3, 5.7 Hz, 2H), 2.67 – 2.39 (m, 2H), 2.07 (dd, J = 7.8, 4.2 Hz, 
2H). 
 

(S)-(9H-fluoren-9-yl)methyl (1-hydroxy-3-naphtylpropan-2-
yl)carbamate M12a: White solid, 88% yield, 1H NMR (300 MHz, 
CDCl3) δ 8.19 (t, J = 17.0 Hz, 1H), 7.95 – 7.83 (m, 1H), 7.77 (d, J = 
7.7 Hz, 2H), 7.53 (dt, J = 15.1, 10.8 Hz, 4H), 7.43 – 7.29 (m, 4H), 
5.11 (s, 1H), 4.41 (d, J = 6.8 Hz, 2H), 4.18 (d, J = 11.3 Hz, 1H), 3.67 
(d, J = 15.7 Hz, 2H), 3.41 (s, 1H), 3.30 (dd, J = 13.8, 8.2 Hz, 1H). 
 

 

(S)-(9H-fluoren-9-yl)methyl (1-hydroxy-3-N-(2,2,4,6,7-

pentamethyldihydrobenzofuran-5-sulfonyl)guanidine)-2-

yl)carbamate M13a:white solid, 92%1;H NMR (300 MHz, 

CDCl3) δ 7.75 (t, J = 7.1 Hz, 2H), 7.65 – 7.54 (m, 2H), 7.48 – 7.32 

(m, 4H), 6.24 (s, 1H), 5.29 (t, J = 14.5 Hz, 1H), 4.42 (d, J = 6.1 Hz, 

2H), 4.20 (d, J = 5.9 Hz, 2H), 3.63 (dd, J = 21.4, 10.6 Hz, 2H), 3.23 

(d, J = 21.9 Hz, 2H), 2.95 (d, J = 7.0 Hz, 3H), 2.54 (dd, J = 20.5, 

9.1 Hz, 6H), 2.27 (d, J = 20.3 Hz, 1H), 2.10 (d, J = 5.3 Hz, 3H), 

1.48 – 1.40 (m, 6H). 

 

 

 

(S)-(9H-fluoren-9-yl)methyl (1-hydroxypropan-2-yl)carbamate 

M20a: white solid, 85 % yield; 1H NMR (300 MHz, CDCl3) δ 7.77 

(d, J = 7.4 Hz, 2H), 7.59 (d, J = 7.4 Hz, 2H), 7.46 – 7.29 (m, 4H), 4.83 

(s, 1H), 4.44 (d, J = 6.3 Hz, 3H), 4.22 (t, J = 6.6 Hz, 2H), 3.82 (s, 1H), 

3.65 (s, 1H), 3.54 (s, 2H). 

 

General procedure for conversion of alcohol into iodine derivative 

Iodine derivatives were obtained from the corresponding alcohols according to the procedure of 

Sureshbabu et al.5. To a solution of triphenylphosphine (3 eq) in anhydrous CH2Cl2 under N2 

atmosphere, at O°C, were successively added Imidazole (5 eq) and Iodine (3 eq). N-Fmoc 

protected amino alcohol derivative (1 eq) was dissolved in anhydrous CH2Cl2 and added dropwise 

into the reaction mixture. The reaction mixture was allowed to reach the room temperature and 

stirred overnight. After evaporation of CH2Cl2 under reduced pressure. The crude was dissolved 

in EtOAc and washed three times with a 0.5 M aqueous solution of Na2S2O3, twice with a 1M 
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aqueous solution of KHSO4, once with brine and dried over sodium sulfate. The crude product 

was concentrated under reduced pressure. Silica gel flash chromatography was performed in 

cyclohexane /EtOAc (9 : 1, v/v) to obtain pure M11b (95%), M12b (88%), M13b (92%), and M19b 

(85%).  

 

(S)-(9H-fluoren-9-yl)methyl (1-iodo N-tritylpentanamide-2-
yl)carbamate M11b : white solid, 83% yield, 1H NMR (300 MHz, 
CDCl3) δ 7.76 (d, J = 7.6 Hz, 2H), 7.63 – 7.56 (m, 2H), 7.48 – 7.28 (m, 
11H), 7.25 – 7.16 (m, 8H), 6.73 (s, 1H), 5.04 (d, J = 8.0 Hz, 1H), 4.51 
(dd, J = 10.5, 6.9 Hz, 1H), 4.37 (t, J = 8.4 Hz, 1H), 4.20 (dd, J = 18.5, 
12.0 Hz, 1H), 3.47 (s, 1H), 3.29 (dt, J = 10.3, 7.7 Hz, 2H), 2.34 (t, J = 
6.5 Hz, 2H), 1.87 (s, 2H). 
 

 

(S)-(9H-fluoren-9-yl)methyl (1-iodo-3-naphtylpropan-2-
yl)carbamate M12b: white solid, 83% yield, 1H NMR (300 MHz, 
CDCl3) δ 8.23 (d, J = 8.0 Hz, 2H), 7.94 – 7.80 (m, 2H), 7.82 – 7.69 
(m, 4H), 7.57 (dd, J = 15.4, 7.9 Hz, 4H), 7.49 (dd, J = 14.0, 6.9 Hz, 
3H), 7.42 (dd, J = 15.3, 7.4 Hz, 4H), 7.40 – 7.28 (m, 3H), 5.02 (s, 
1H), 4.49 – 4.34 (m, 2H), 4.21 (dd, J = 15.6, 9.9 Hz, 1H), 3.85 (s, 
1H), 3.54 – 3.34 (m, 2H), 3.17 (dd, J = 18.0, 9.4 Hz, 2H). 
 

 

(S)-(9H-fluoren-9-yl)methyl (1-iodopentyl-3-N-(2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl)guanidine)-2-

yl)carbamate M13b: solid, 86% yield, 1H NMR (300 MHz, 
CDCl3) δ 7.78 – 7.61 (m, 4H), 7.60 – 7.36 (m, 4H), 6.28 – 6.08 
(m, 1H), 5.07 (d, J = 9.2 Hz, 1H), 4.45 (d, J = 5.6 Hz, 2H), 4.20 (t, 
J = 6.8 Hz, 1H), 3.74 (s, 1H), 3.48 – 2.73 (m, 1H), 2.99 (s, 3H), 
2.95 (s 2H), 2.92 (s, 3H), 2.63 (s, 2H), 2.56 (s, 2H), 2.20 – 1.82 
(m, 3H), 1.69 (s, 6H), 0.95 – 0.83 (m, 2H). 
 

 

 

(S)-(9H-fluoren-9-yl)methyl (1-iodopropan-2-

yl)carbamateM20b: white solid, 73% yield. 1H NMR (300 MHz, 

CDCl3) δ 7.80 (d, J = 7.4 Hz, 2H), 7.65 (t, J = 8.0 Hz, 2H), 7.51 – 

7.32 (m, 4H), 4.86 (s, 1H), 4.44 (dt, J = 16.6, 10.0 Hz, 3H), 4.25 

(dd, J = 13.0, 6.2 Hz, 2H), 3.63 (s, 1H), 3.49 (s, 2H), 1.48 (s, 1H). 
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General procedure for conversion of iodine into azide 

The N-Fmoc protected amino iodine derivative (1 eq) was dissolved in DMF. NaN3 (3 eq) was 

added into the reaction mixture that was stirred at room temperature overnight. EtOAc was 

added to the reaction mixture that was washed with H2O six times, three times with 1M KHSO4 

solution, twice with brine and dried over sodium sulfate. The crude was concentrated under 

reduced vacuum before to be purified with silica gel flash chromatography in cyclohexane/EtOAc 

(9: 1, v/v). 

 

(S)-(9H-fluoren-9-yl)methyl (1-azido N-tritylpentanamide-2-
yl)carbamate M11c: White solid, 56% yield, 1H NMR (300 MHz, 
CDCl3) δ 7.74 (d, J = 7.5 Hz, 2H), 7.62 – 7.51 (m, 3H), 7.43 – 7.28 
(m, 9H), 7.23 – 7.12 (m, 9H), 6.73 (s, 1H), 4.99 (d, J = 8.9 Hz, 1H), 
4.54 – 4.33 (m, 3H), 4.20 (t, J = 6.5 Hz, 1H), 3.73 (d, J = 4.7 Hz, 1H), 
3.36 (s, 2H), 2.30 (dd, J = 14.8, 7.9 Hz, 2H), 1.75 (d, J = 44.6 Hz, 2H). 
 

 

(S)-(9H-fluoren-9-yl)methyl (1-azido-3-naphtylpropan-2-
yl)carbamateM12c : White solid, 56% yield, 1H NMR (300 MHz, 
CDCl3) δ 8.18 (d, J = 7.9 Hz, 1H), 7.93 – 7.67 (m, 4H), 7.61 – 7.27 
(m, 10H), 5.02 (d, J = 7.1 Hz, 1H), 4.43 (d, J = 6.9 Hz, 2H), 4.22 (d, 
J = 6.2 Hz, 2H), 3.41 (t, J = 13.6 Hz, 3H), 3.22 (dd, J = 13.9, 8.6 Hz, 
1H). 
 
 

 

 

(S)-(9H-fluoren-9-yl)methyl (1-azidopentyl-3-N-(2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl)guanidine)-2-

yl)carbamate M13c :1H NMR (300 MHz, CDCl3) δ 7.63 (dd, J = 
69.1, 53.9 Hz, 4H), 7.17 (dt, J = 20.5, 5.6 Hz, 4H), 6.91 (s, 1H), 6.52 
(s, 1H), 4.85 (s, 2H), 3.53 (s, 3H), 2.27 (d, J = 60.3 Hz, 6H), 2.17 (s, 
4H),  1.33 (s, 2H), 1.27 (d, J = 8.7 Hz, 7H), 1.03 (s, 2H), 0.92 – 0.74 
(m, 6H). 
 

 

 

(S)-(9H-fluoren-9-yl)methyl (1-azido-propan-2-yl)carbamate 

M20c: White solid, 59% yield. 1H NMR (300 MHz, CDCl3) δ 7.75-

7.62 (m, 4H), 7.54 – 7.38 (m, 4H), 4.84 (s, 1H), 4.68 (d, J = 6.2 Hz, 

3H), 4.12 (s, 2H), 3.62 (s, 1H), 3.41 (d, J = 6.6 Hz, 2H), 2.55- (s, 

1H). 
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General procedure for conversion of azide into amine 

In a round bottom flask containing N-Fmoc protected amino azide derivative (1 eq) dissolved in a 

mixture MeOH/ chloroform (9:1; v/v), Pd/C (10% in mass, 300 mg) was gently added under N2. 

The reaction mixture was stirred overnight at r.t. under H2 atmosphere. Pd/C was filtered carefully 

over Millipore paper filter and the filtrate was concentrated under reduced pressure. The product 

was precipitated in ice bath with a mixture of EtOAc/Et2O (5:5, v/v). The precipitate was filtered, 

dried and engaged to the following step without any purification. 

 

General procedure for the preparation of N-Fmoc protected activated carbamate monomers 

In a round bottom flask containing N-Fmoc amine derivative (1 eq) dissolved in anhydrous CH2Cl2, 

under N2 atmosphere, at 0°C, NMM (1.2 eq) was added. The reaction was let under magnetic 

stirring for about 5 min and disuccinimidyl carbonate (1 eq) dissolved in anhydrous CH2Cl2 was 

added slowly. The reaction mixture was let under magnetic stirring for additional 4 hours after 

which the reaction mixture was quenched by adding a 1M aqueous solution of KHSO4. The 

aqueous solution was then extracted twice with EtOAc and the combined organic layers were 

finally washed twice with brine. After drying over sodium sulfate, the product was concentrated 

under reduced pressure and vacuum to furnish the activated carbamate monomers.  

 

(S)-(9H-fluoren-9-yl)methyl (1-(2,5-dioxopyrrolidin-1-
yl)-5-N-tritylpentanamide-2-yl)carbamate M11 : 
white solid, 91% yield, 1H NMR (300 MHz, CDCl3) δ 7.74 
(d, J = 7.7 Hz, 2H), 7.57 (dd, J = 16.0, 8.8 Hz, 2H), 7.33 
(ddd, J = 11.0, 9.8, 4.5 Hz, 10H), 7.25 – 7.16 (m, 9H), 
6.74 (s, 1H), 5.78 (d, J = 24.7 Hz, 1H), 5.33 – 5.11 (m, 
1H), 4.57 – 4.27 (m, 3H), 3.66 (d, J = 13.4 Hz, 1H), 3.28 
(d, J = 20.1 Hz, 1H), 3.08 (s, 1H), 2.74 (s, 4H), 2.45 (d, J = 

37.3 Hz, 2H), 1.96 – 1.65 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 169.67, 144.45, 141.34, 128.64, 
128.01, 127.69, 127.12, 119.95, 71.65, 69.70, 67.74, 65.78, 52.53, 50.35, 47.33, 46.13, 45.00, 
33.39, 26.94, 25.43.; HRMS (ESI-TOFMS) m/z for C44H40N4O7 [M+H]+ 736.2897, found 737.2973. 
 

(S)-(9H-fluoren-9-yl)methyl (1-(2,5-dioxopyrrolidin-3-
naphtylpropan-2-yl)carbamateM12 :White solid, 59% 
yield, 1H NMR (300 MHz, DMSO) δ 8.57 (t, J = 5.5 Hz, 
1H), 8.16 (d, J = 8.0 Hz, 1H), 7.84 (dd, J = 32.7, 7.4 Hz, 
3H), 7.69 – 7.49 (m, 4H), 7.45 – 7.21 (m, 6H), 4.31 – 4.05 
(m, 3H), 3.90 (t, J = 14.4 Hz, 1H), 3.51 – 3.41 (m, 1H), 
3.26 (dd, J = 9.5, 7.2 Hz, 2H), 3.05 (dd, J = 13.9, 9.2 Hz, 
1H), 2.83 – 2.72 (m, 4H), 2.35 – 2.21 (m, 1H). HRMS (ESI-
TOFMS) m/z for C23H29N3O6Na [M+H]+ 563.2056, found 

564.2131. 
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S)-(9H-fluoren-9-yl)methyl (1-(2,5-dioxopyrrolidin -3-
N-(2,2,4,6,7-pentamethyldihydrobenzofuran-5-

sulfonyl)guanidine)-2-yl)carbamateM13 : White solid, 
91% yield, 1H NMR (300 MHz, CDCl3) δ 7.77 (d, J = 7.4 
Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 7.47 – 7.31 (m, 4H), 
6.38 (s, 1H), 6.20 (s, 2H), 5.44 (s, 1H), 4.46 (d, J = 6.5 Hz, 
2H), 4.23 – 4.15 (m, 1H), 3.77 (s, 2H), 3.35 (s, 1H), 3.26 
(s, 2H), 2.94 (s, 2H), 2.79 (s, 4H), 2.57 (d, J = 21.1 Hz, 
6H), 2.10 (s, 3H), 1.45 (s, 6H), 1.38 (d, J = 9.0 Hz, 2H), 
1.29 (t, J = 4.4 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 

170.47 (s), 144.64 – 143.51 (m), 141.40 (s), 132.23 (d, J = 9.8 Hz), 128.71 (d, J = 12.1 Hz), 127.53 
(d, J = 43.1 Hz), 120.05 (s), 87.81 – 85.02 (m), 67.56 – 66.20 (m), 47.32 (s), 43.26 (s), 28.70 (s), 
25.63 (s), 19.50 (s), 18.12 (s), 12.61 (s).HRMS (ESI-TOFMS) m/z for C39H46N6O9S [M+H]+ 774.30, 
found 774.32 
 

(S)-(9H-fluoren-9-yl)methyl (1-(2,5-dioxopyrrolidin -

propan-2-yl)carbamate M20: White solid, 93% yield; 
1H NMR (300 MHz, CDCl3) δ 7.75 (t, J = 10.3 Hz, 2H), 

7.67 – 7.56 (m, 2H), 7.35 (ddt, J = 18.1, 11.6, 9.1 Hz, 

4H), 5.87 (s, 1H), 4.75 (s, 1H), 4.51 (dd, J = 19.1, 12.6 

Hz, 2H), 4.41 (d, J = 6.3 Hz, 1H), 4.22 (t, J = 6.4 Hz, 1H), 3.88 (s, 1H), 3.32 (d, J = 21.3 Hz, 2H), 2.79 

(s, 4H); HRMS (ESI-TOFMS) m/z for C23H23N3O6 [M+H]+ 438.15, found 438.23 

 

 

3-tritylsulfanyl-propionic acid6: The desired 

compound was synthesized as described 

previously6. 

 

4. Synthesis of monomers M21-M24 

Synthesis of N-Fmoc-valeric acid M21: 

In a round bottom 

flask containing 5-

aminovaleric acid 

(8.5 mmol, 1 g) 

dissolved in and aqueous solution of Na2CO3 (0.15 M), a 0.1M solution of Fmoc-OSu (10.2 mmol, 

3.45 g) in CH3CN was added dropwise. The reaction was let under magnetic stirring overnight at 

r.t. After concentration under rotavapor, the crude product was purified on silica gel flash column 

chromatography and the expected N-Fmoc-valeric acid was isolated in 39% yield. 

M21: 1H NMR (300 MHz, CDCl3) δ 7.75 (t, J = 14.3 Hz,26H), 7.61 (d, J = 8.4 Hz, 2H), 7.47 – 7.30 (m, 

4H), 4.83 (d, J = 6.6 Hz, 1H), 4.50 – 4.34 (m, 2H), 4.28 – 4.18 (m, 1H), 3.24 (d, J = 6.8 Hz, 2H), 1.26 

(d, J = 5.6 Hz, 6H). HRMS (ESI-TOFMS) m/z for C20H21NO4 [M+H]+ 339.39, found 339.83 
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Synthesis of N-Fmoc-DAP-OSu M22: 

In a round bottom flask 

containing N-Fmoc-

NH-(CH2)2NH2, HCl (1 g, 

3.37 mmol) in solution 

in DCM, NMM (430 µL, 4 mmol,) was added. After 5 min, the resulting solution was added to DSC 

(0.863 g, 3.37 mmol, 1 eq) dissolved in DCM. The reaction was let under magnetic stirring at r.t. 

for 4 hrs. After concentration under reduced pressure, EtOAc was added and the organic phase 

was washed 2 times with 1M aqueous solution of KHSO4 and once with brine. Recrystallisation 

was performed with a pentane/Et2O (3:7, v/v) solvent mixture and compound M22 was recovered 

a white solid in 71% yield. 

M22:  1H NMR (300 MHz, CDCl3) δ 7.76 (d, J = 7.4 Hz, 2H), 7.59 (d, J = 7.1 Hz, 2H), 7.44 – 7.27 (m, 

4H), 5.99 (s, 1H), 4.98 (s, 1H), 4.47 (d, J = 6.5 Hz, 2H), 4.20 (t, J = 6.3 Hz, 1H), 3.26 (dd, J = 13.0, 6.1 

Hz, 4H), 2.82 (s, 4H), 1.66 (dd, J = 15.9, 10.3 Hz, 2H). HRMS (ESI-TOFMS) m/z for C23H23N3O6 [M+H]+ 

437.15, found 437.93 

 

Synthesis of monomers M23 and M24 

 
To a solution of N-Fmoc protected amino acid (1 eq) dissolved in anhydrous THF cooled to -20°C, 

under N2 atmosphere, TEA (1.2 eq) and IBCF (1.2 eq) were added. The reaction mixture was let 

stirring for 40 min. NH4OH (1.2 eq) in solution was added dropwise to the filtrate at 0°C. The 

reaction was left stirring 2h. After concentration under reduced pressure, ethyl acetate was 

added and the organic layer was washed twice with KHSO4 solution (1M) and twice with saturated 

solution of NaHCO3, once with brine. After drying over sodium sulfate, the organic layer was 

concentrated. The product was purified on silica gel flash chromatography in EtOAc/ cyclohexane 

(from 1/9 to 6/4). TFA was directly added to the pure compound and the reaction was le stirring 

for 2 hrs. After concentration under reduced pressure, the product was precipitated in cold Et2O 

and the pure product was obtained as white solid. 
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(S)-(9H-fluoren-9-yl)methyl (1-amide-butanoic acid-2-yl)carbamate M23: 

white solid, 76% yield; 1H NMR (300 MHz, MeOD) δ 7.83 (d, J = 7.3 Hz, 2H), 

7.68 (dt, J = 24.4, 12.2 Hz, 2H), 7.60 – 7.23 (m, 4H), 4.72 – 4.32 (m, 1H), 4.27 

(d, J = 6.7 Hz, 1H), 4.25 – 3.81 (m, 2H), 3.34 (dt, J = 3.2, 1.6 Hz, 2H), 2.34 (t, J 

= 7.5 Hz, 2H), 2.21 – 1.98 (m, 1H), 1.98 – 1.72 (m, 1H). HRMS (ESI-TOFMS) 

m/z for C19H18N2O5 [M+H]+ 354.12, found 354.62 

 

 
(S)-(9H-fluoren-9-yl)methyl (1-amide-pentanoic acid-2-yl)carbamate M24: 

white solid, 72% yield; 1H NMR (300 MHz, DMSO) δ 7.91 (d, J = 7.5 Hz, 2H), 

7.71 (dd, J = 14.2, 7.5 Hz, 2H), 7.40 (dt, J = 26.2, 7.4 Hz, 4H), 4.74 – 4.61 (m, 

1H), 4.51 – 4.36 (m, 2H), 4.27 (t, J = 6.4 Hz, 2H), 2.87 (dd, J = 18.4, 6.2 Hz, 1H), 

1.93 (s, 1H). 13C NMR (75 MHz, DMSO) δ 170.94, 155.21, 145.65, 141.18, 

128.14, 127.59, 125.74, 120.60, 67.44, 49.45, 48.09. HRMS (ESI-TOFMS) m/z 

for C20H20N2O5 [M+H]+ 368.13, found 368.22 
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C. Solid phase synthesis of oligomers 

1. Solid phase synthesis of oligomers in Chapter II 

General procedure A for solid phase peptide synthesis under microwave irradiation using azide 

strategy 

 
Scheme 26 : Solid phase synthesis of compounds in chapter II 

 

Peptides were prepared on a 50 to 100 µmol scale. Polystyrene rink amide MBHA resin (loading 

0.45 mmol/g) was placed in the reaction vessel (CEM), and pre-swelled with DMF for 1-2h. All 

coupling steps were performed under inert atmosphere and microwave irradiation on the Liberty 

Blue system (CEM). The temperature was maintained by modulation of power and controlled with 

a fiber optic sensor. Stock solution of Fmoc-α-Xaa-OH (6 eq relative to the resin loading), HBTU (6 

eq), HOBt (6 eq) and DIEA (12 eq) solutions were prepared in DMF except for DIEA that was 

prepared in N-methyl pyrolidone (from Carlo Erba). The mixture was added into the reaction 

vessel through Liberty Blue system. The vessel was then irradiated twice (75°C/30W/5min and 

50°C for Fmoc-His-OH). The resin was then filtered off and washed with DMF. Fmoc removal was 

carried out with 20% of piperidine in DMF under microwave irradiation (155 W, 75°C, 15 sec) + 

(35W, 90°C, 50 sec). Finally, the resin was swelled in a mixture TFA/TIS/H2O (92.5:2.5:2.5:2.5, 
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v/v/v/v) and let to react for 4hrs. Then, the resin was filtered off, washed with TFA (2 x 2mL) and 

DCM (2 x 2mL) into a falcon and cold Et2O was added into the falcon. The filtrate in the falcon was 

centrifuged and the supernatant was removed. The crude oligomer was analyzed by RP-HPLC and 

lyophilized. The crude oligomer was next purified by preparative RP-HPLC using the appropriate 

gradient to a final purity ≥ 95% and lyophilized. 

 

II.9:  Ac-RMKQLEDKIEELLSKNYHLENEIARLKKLIGER-NH2 

The peptide II.9 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1) with 

commercially available Fmoc-α-Xaa-OH following the general procedure A with coupling 

performed in the presence of HOBt, HBTU and DIEA. The desired product was purified by 

preparative RP-HPLC with H2O/0.1% TFA (solvent A) and ACN/0.1% TFA (solvent B) as mobile 

phases. A gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was used. The product was 

recovered with an overall yield of 10%. ESI-MS (MW = 4079.79: m/z 2040.6 [M+2H]2+, 1360.7 

[M+3H]3+, 1020.8 [M+4H]4+, 816.8 [M+5H]5+ ,680.9 [M+6H]6+; gradient 20-100% B, 5 min: tR= 7.98 

min. 

 
Figure 89: RP-HPLC chromatogram of II.9 (10-100% of B in 10 min) 

 

II.16:  Ac-RMKQLEDKIEELLuKuNYHLENEIARLKKLIGER-NH2 

Peptide II.16 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1) with 

commercially available Fmoc-α-Xaa-OH and monomers M3 and M5 following the general 

procedure A with couplings performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 8%. ESI-MS (Mw 4048.8): m/z 1013.4 

[M+4H]4+, 810.9 [M+5H]5+, 675.9 [M+6H]6+, 579.5 [M+7H]7+; gradient 20-100% B, 5 min: tR= 7.56 

min. 
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Figure 90: RP-HPLC chromatogram of II.16 (10-100% ACN in 10 min, 50°C) 

 

II.17:  Ac-RMKQLEDKIEELLuKinv
uNYHLENEIARLKKLIGER-NH2 

 

The peptide II.17 was synthesized on a 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M3 and M8 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min 

was used. The product was recovered with an overall yield of 8%. ESI-MS (Mw 4050.79): m/z 

2025.9 [M+2H]2+ 1013.4 [M+4H]4+, 810.9 [M+5H]5+, 675.9 [M+6H]6+; gradient 10-100% B, 10 min, 

50°C: tR= 7.5 min. 

 
Figure 91: RP-HPLC chromatogram of II.17 (10-100% B in 10 min, 50°C) 
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II.18:  Ac-RMKQLEDKIEELIuKuNYHLENEIARLKKLIGER-NH2 

 

The peptide II.18 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M4 and M5 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC with H2O (0.1% TFA) and ACN (0.1% TFA). A gradient 20-60% 

of ACN in 20 min with a flow of 20mL/min was used. The product was recovered with an overall 

yield of 9%. ESI-MS (Mw 4050.8): m/z 1013.4 [M+4H]4+, 810.9 [M+5H]5+, 675.9[M+6H]6+;579.5 

[M+7H]7+; gradient 20-100% B, 5 min: tR= 7 min. 

 
Figure 92: RP-HPLC chromatogram of II.18 (10-100% B in 10 min, 50°C) 

II.19: Ac-RMKQLEDKIEELVuKuNYHLENEIARLKKLIGER-NH2 

The peptide II.19 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M2 and M5 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 8%. ESI-MS (Mw 4036.7): m/z 1009.9 

[M+4H]4+, 808.1 [M+5H]5+, 577.5 [M+7H]7+; gradient 20-100% ACN, 5 min: tR= 6.68 min. 
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Figure 93: RP-HPLC chromatogram of II.19 (10-100% B in 10 min, 50°C) 

II.20: Ac-RMKQLEDKIEELAuKuNYHLENEIARLKKLIGER-NH2 

The peptide II.20 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M1 and M5 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC with H2O (0.1% TFA) and ACN (0.1% TFA). A gradient 20-60% 

of ACN in 20 min with a flow of 20mL/min was used. The product was recovered with an overall 

yield of 11%. ESI-MS (Mw 4007.7): m/z 1336.9 [M+3H]3+, 1002.9 [M+4H]4+, 802.3 [M+5H]5+; 668.9 

[M+6H]6+; 573.5 [M+7H]7+; gradient 20-100% ACN, 5 min: tR= 6.49 min. 

 
Figure 94: RP-HPLC chromatogram of II.20 (10-100% B in 10 min, 50°C) 

II.21:  Ac-RMKQLEDKIEELuSuKNYHLENEIARLKKLIGER-NH2 

The peptide II.21 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1) with 

commercially available Fmoc-α-Xaa-OH and monomers M3 and M7 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20-to 60% of B in 20 min with a flow of 20 mL/min 
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was used. The product was recovered with an overall yield of 11%. ESI-MS (Mw 4024.7): m/z 

1006.9 [M+4H]4+,805.7 [M+5H]5+, 671.6 [M+6H]6+; gradient 20-100% ACN, 5 min: tR= 5.9 min. 

 
Figure 95: RP-HPLC chromatogram of II.21 (10-100% B in 10 min, 50°C) 

II.22:  Ac-RMKQLEDKIEELLSKNYHLENEIuRuLKKLIGER-NH2 

The peptide II.22 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M4 and M6 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to60% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 16%. ESI-MS (Mw 4066.8): m/z 

1356.3 [M+3H]4+, 1017.4 [M+4H]4+, 814.1 [M+5H]5+, 581.8 [M+7H]7+; gradient 20-100% ACN, 5 

min: tR= 7.23 min. 

 
Figure 96: RP-HPLC chromatogram of II.22 (10-100% B in 10 min, 50°C) 

 

II.23:  Ac-RMKQLEDKIEELLSKNYHLENEAuRuLKKLIGER-NH2 

The peptide II.23 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M1 and M6 following the general 
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procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min 

was used. The product was recovered with an overall yield of 10%. ESI-MS (Mw 4028.7): m/z 

1006.9 [M+4H]4+, 805.7 [M+5H]5+, 575.8 [M+7H]7+; gradient 20-100% ACN, 5 min: tR= 6.29 min. 

 
Figure 97: RP-HPLC chromatogram of II.23 (10-100% B in 10 min, 50°C) 

 

 

II.24:  Ac-RMKQLEDKIEELuAuKuNYHLENEIARLKKLIGER-NH2 

The peptide II.24 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M1, M3 and M5 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min 

was used. The product was recovered with an overall yield of 15%. ESI-MS (Mw 4037.7): m/z 

2019.5 [M+2H]2+, 1346 [M+3H]3+, 1010.2 [M+4H]4+, 808.3 [M+5H]5+, 673.8 [M+6H]6+; gradient 20-

100% ACN, 5 min: tR= 6.38 min. 

 
Figure 98: RP-HPLC chromatogram of II.24 (10-100% B in 10 min, 50°C) 
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II.25:  Ac-RMKQLEDKVuEuLuLSKNYHLENEIARLKKLIGER-NH2 

The peptide II.25 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M2, M3 and M9 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min 

was used. The product was recovered with an overall yield of 20%. ESI-MS (Mw 4009.7): m/z 

1337.3 [M+3H]3+, 1003.2 [M+4H]4+, 802.7 [M+5H]5+, 669.1 [M+6H]6+; gradient 20-100% ACN, 5 

min: tR= 6.27 min. 

 
Figure 99: RP-HPLC chromatogram of II.25 (10-100% B in 10 min, 50°C) 

II.26:  Ac-RMKQLEDKIEELLuKinv
uLYHLENEIARLKKLIGER-NH2 

The peptide II.26 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1) with 

commercially available Fmoc-α-Xaa-OH and monomers M3 and M8 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min 

was used. The product was recovered with an overall yield of 8%. ESI-MS (Mw 4049.8): m/z 1013.5 

[M+4H]4+, 810.8 [M+5H]5+, 875.6 [M+6H]6+; gradient 20-100% B, 5 min: tR= 7.83 min. 
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Figure 100: RP-HPLC chromatogram of II.26 (10-100% ACN in 10 min, 50°C) 

 

II.27:  Ac-RMKQIEDKLEEILSKLYHIENELARIKKLLGER-NH2 

The peptide II.27 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1) with 

commercially available Fmoc-α-Xaa-OH following the general procedure A with coupling 

performed in presence of HOBt, HBTU and DIEA. The desired product was purified by preparative 

RP-HPLC. A gradient 20 to 60% of B in 20 min with a flow of 20mL/min was used. The product was 

recovered with an overall yield of 11%. ESI-MS (Mw 4078.8): m/z 1019.3 [M+4H]4+, 815.1 

[M+5H]5+, 679.7[M+6H]6+; gradient 20-100% B, 5 min: tR= 7.95 min. 

 
Figure 101: RP-HPLC chromatogram of II.27 (10-100% B in 10 min, 50°C) 

 

II.28:  Ac-RMKQIEDKLEEI LuKinv
uLYHIENELARIKKLLGER-NH2 

-500

0

500

0 2 4 6 8 10

A
b

s 
(m

A
u

)

Time (min)

-200

-100

0

100

200

0 2 4 6 8 10

A
b

s 
(m

A
u

)

Time (min)



Experimental part 

234 
 

The peptide II.28 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and monomers M3 and M8 following the general 

procedure A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product 

was purified by preparative RP-HPLC with H2O (0.1% TFA) and ACN (0.1% TFA). A gradient 20-60% 

of B in 20 min with a flow of 20mL/min was used. The product was recovered with an overall yield 

of 10%. ESI-MS (Mw 4049.8): m/z 1350.8 [M+3H]3+, 1013.4 [M+4H]4+, 810.9 [M+5H]5+, 675.9 

[M+6H]6+, 579.8 [M+7H]7+; gradient 20-100% B, 5 min: tR= 7.76 min. 

 
Figure 102: RP-HPLC chromatogram of II.28 (10-100% B in 10 min, 50°C) 

 

II.29:  Ac-RMKQLEDKIEELLSKNuYHLENEIARLKKLIGER-NH2 

The peptide II.29 was synthesized on 50 µmol scale, on Polystyrene resin (0.37 mmol.g-1)  with 

commercially available Fmoc-α-Xaa-OH and the monomer M10 following the general procedure 

A with coupling performed in presence of HOBt, HBTU and DIEA. The desired product was purified 

by preparative RP-HPLC with H2O (0.1% TFA) and B (0.1% TFA). A gradient 20 to 60% of B in 20 

min with a flow of 20mL/min was used. The product was recovered with an overall yield of 12%. 

ESI-MS (Mw 4066.7): m/z 1017.6 [M+4H]4+, 814.2 [M+5H]5+, 678.7 [M+6H]6+, 581.9 [M+7H]7+; 

HPLC (H2O 0.1% TFA), (B 0.1%TFA); gradient 20-100% B, 5 min: tR= 6.99 min. 

-50

0

50

100

150

0 2 4 6 8 10

A
b

s

Time (min)



Experimental part 

235 
 

 
Figure 103: RP-HPLC chromatogram of II.29 (10-100% B in 10 min, 50°C) 

 

Analyze with circular dichroism: 

 

To calculate the percentage of helical structure, the minimum of ellipticity [θ]RME was observed 

at 222nm. 

%helicity= ([θ]RME222-[θ]c) + ([θ]∞222-[θ]c) 

where [θ]c is the molar ellipticity of a non-structured peptide and [θ]∞222 is the molar ellipticity 

of a fully α-helical structured peptide. They could be respectively defined as: 

[θ]c= (2220 - 53T) 

[θ]∞222= (-44000 + 250T) x (1- k / N) 

With T the temperature in degree Celsius and N the number of peptide units. (1- k / N) is a 

correction of terminal effect with k the number of carbonyl group not involved in H-bond 

network. For amide peptides in C-terminus, a value of k=3 was used7.  

 

2. Solid phase synthesis of oligomers in Chapter III 

General procedure B for solid phase peptides synthesis under microwave irradiation with Liberty 

Blue 
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Scheme 27:General method of SPPS with Liberty Blue 

Oligomers were prepared on a 50 to 100 µmol scale. Polystyrene Rink amide resin (loading 0.45 

mmol/g) was placed in the reaction vessel, and pre-swelled with DMF for 1-2h. The vessel was 

then placed inside the microwave reactor of the Liberty Blue. The temperature was maintained 

by modulation of power and controlled with a fiber optic sensor. Fmoc-α-Xaa-OH (5 eq relative 

to the resin loading), DIC (5 eq) and Oxyma (5 eq), were dissolved in DMF. The vessel was then 

irradiated (75°C,170 W, 15 sec) + (90°C, 35 W, 110 sec). The resin was then filtered off and washed 

with DMF (3  3 mL). Fmoc removal was carried out with 20% of piperidine in DMF (2mL) under 

microwave irradiation (75°C, 155W, 15 sec) + (90°C, 35W, 50 sec). When Acetyl N-cap was 

needed, an additional step was performed manually with a mixture acetic anhydride/DCM (1:1, 

v/v). Finally, the resin was swelled in a mixture TFA/TIS/H2O/ (95:2.5:2.5, v/v/v) and let to react 

for 4hrs under slight shaking. Then, the resin was filtered off, washed with TFA (2 x 2mL) and 

CH2Cl2 (2 x 2mL) and the filtrate was evaporated under reduced pressure. After precipitation in 

cold Et2O, the crude oligomer was analyzed on RP-HPLC and lyophilized. The crude oligomer was 

purified by preparative or semi-preparative RP-HPLC using the appropriate gradient to a final 

purity ≥ 95% and lyophilized. 

 

p4: Ac-EKWARLARRIA-NH2 

Peptide p4 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa- following 

the general procedure C. The desired product was purified by preparative RP-HPLC: H2O (0.1% 

TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was used. The 

product was recovered with an overall yield of 49%. ESI-MS (Mw 1410.7): m/z 705.8 [M+2H]2+, 

470.8 [M+3H]3+, 353.4 [M+4H]4+; gradient 20-100% B, 5 min: tR= 3.88 min. 
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Figure 104: RP-HPLC chromatogram of p4 (10-100% ACN in 10 min, 50°C) 

 

p5: Ac-EK-Nal-ARLARRIA-NH2 

Peptide p5 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa- following 

the general procedure B. The desired product was purified by preparative RP-HPLC: H2O (0.1% 

TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was used. The 

product was recovered with an overall yield of 55%. ESI-MS (Mw 1420.8): m/z 711.6 [M+2H]2+, 

474.7 [M+3H]3+, 366.3 [M+4H]4+; gradient 20-100% B, 5 min: tR= 4.22 min. 

 

 
Figure 105: RP-HPLC chromatogram of p5 (10-100% ACN in 10 min, 50°C) 

 

p7: (NPys-(S-S))-C-(RRP)5-A-NH2 
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Peptide p7 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa- following 

the general procedure C. The desired product was purified by preparative RP-HPLC: H2O (0.1% 

TFA), ACN (0.1% TFA); a gradient 15 to 30% of B in 15 min with a flow of 20 mL/min was used. The 

product was recovered with an overall yield of 40%. ESI-MS (Mw 2347.8): m/z 782.8 [M+3H]3+, 

587.8 [M+3H]3+; gradient 20-100% B, 5 min: tR= 3.34 min. 

 
Figure 106: RP-HPLC chromatogram of p7 (10-100% ACN in 10 min, 50°C) 

p9=H-(RRP)5-NH2 

Peptide p9 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa- following 

the general procedure B. The desired product was purified by preparative RP-HPLC: H2O (0.1% 

TFA), ACN (0.1% TFA); a gradient 20 to 40% of B in 20 min with a flow of 20 mL/min was used. The 

product was recovered with an overall yield of 49%. ESI-MS (Mw 2064.5): m/z 687.9 [M+3H]3+, 

516.9 [M+4H]4+, 344.9 [M+6H]6+; gradient 20-100% B, 5 min: tR= 3.51 min. 

 

 
Figure 107: RP-HPLC chromatogram of p9 (10-100% ACN in 10 min, 50°C) 
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General procedure C for solid phase oligomers synthesis under microwave irradiation with 

Discover Bio 

 
Scheme 28: General procedure of SPS of chimeras 

 

Oligomers were prepared on a 50 to 100 µmol scale. Polystyrene Rink amide resin (loading 0.76 

mmol/g) was placed in the reaction vessel, and pre-swelled with DMF for 1-2h. For sequences 

composed of less than four amino acids at the C-terminus, all steps were performed under inert 

atmosphere and microwave irradiation on the Discover Bio system (CEM). The vessel was then 

placed inside the microwave reactor. The temperature was maintained by modulation of power 

and controlled with a fiber optic sensor. Fmoc-α-Xaa-OH (5 eq relative to the resin loading), DIC 

(5 eq) and Oxyma (5 eq), were dissolved in DMF. The resulting mixture was manually added to 

the reaction vessel. The vessel was then irradiated (75°C,25 W, 5 min) once for all amino acids 

except Arg, repeated twice. The resin was then filtered off and washed with DMF (3  3 mL). Fmoc 

removal was carried out with 20% of piperidine in DMF (2mL) under microwave irradiation (75°C, 

155W, 15 sec) + (90°C, 35W, 50 sec). These coupling and reduction steps were monitored with 

the Kaiser test8. In some sequences, the first urea residue (Fmoc-Gln(Trt)-OSu) M11 was 

introduced in Fmoc-strategy with DIEA (7eq) at r.t. for 2h twice. Fmoc removal was performed as 

described before. Otherwise, the azide protected succinimidyl carbamate activated monomer 

(1.5 equiv. relative to the resin loading) were dissolved into DMF (1.5 mL) and were added to the 

reaction vessel (CEM), followed by DIEA (3 equiv.). The reaction vessel was then irradiated under 

microwave (50°C, 50W, 15 min). A double coupling was performed systematically. The resin was 

filtered and washed with DMF (3 x 3mL). After that, the resin was washed with a mixture of 1,4-

dioxane:H2O (7:3 v/v) in order to perform the reduction of the azide group (3 x 3mL). The 
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Staudinger reaction was performed under the microwave irradiation (50°C, 50W, 15 min) in the 

mixture 1,4- dioxane:H2O (1.5mL) with 1M PMe3 solution in THF (10 eq relative to the resin 

loading) used as reducing agent. The reduction step was systematically performed twice. The 

resin was then filtered and washed with DMF (4 x 3 mL). These coupling and reduction steps were 

monitored with the chloranil test9.For adding the last amino acids, the Fmoc-α-Xaa-OH was added 

as described before. When an Acetyl N-cap was needed, an additional step was performed with 

a mixture acetic anhydride/DCM (1:1, v/v). Finally, the resin was swelled in a mixture 

TFA/TIS/H2O/ (95:2.5:2.5, v/v/v) and let to react for 4hrs under slight shaking. Then, the resin was 

filtered off, washed with TFA (2 x 2mL) and CH2Cl2 (2 x 2mL) and the filtrate was evaporated under 

reduced pressure. After precipitation in cold Et2O, the crude oligomer was analyzed on RP-HPLC 

and lyophilized. The crude oligomer was purified by preparative or semi-preparative RP-HPLC 

using the appropriate gradient to a final purity ≥ 95% and lyophilized. 

 

 

ch1: Ac-EK-Nal-ARLQuRuIuA-NH2 

The compound ch1 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M4, M6 and M14 following the general procedure C without introduction of the 

first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O 

(0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was 

used. The product was recovered with an overall yield of 21%. ESI-MS (Mw 1409.7): m/z 1409.7 

[M+H]+, 705.3 [M+2H]2+, 470.5 [M+3H]3+; gradient 20-100% B, 5 min: tR= 3.42 min. 

 
Figure 108: RP-HPLC chromatogram of ch1 (10-100% ACN in 10 min, 50°C) 

 

ch2: Ac-EK-Nal-ARLuQuRuIA-NH2 

The compound ch2 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6 and M14 following the general procedure C without introduction of the 

first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O 
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(0.1% TFA), ACN (0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was 

used. The product was recovered with an overall yield of 30%. ESI-MS (Mw 1409.7): m/z 1409.8 

[M+H]+, 705.5 [M+2H]2+, 470.6 [M+3H]3+; gradient 20-100% B, 5 min: tR= 4.57 min. 

 
Figure 109: RP-HPLC chromatogram of ch2 (10-100% ACN in 10 min, 50°C) 

ch3: Ac-EK-Nal-A-RuLuQuRIA-NH2 

The compound ch3 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6 and M11 following the general procedure C with introduction of the first 

urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O 

(0.1% TFA), ACN (0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was 

used. The product was recovered with an overall yield of 15%. ESI-MS (Mw 1409.7): m/z 1409.8 

[M+H]+, 705.5 [M+2H]2+, 470.7 [M+3H]3+; gradient 20-100% B, 5 min: tR= 4.80 min. 

 
Figure 110: RP-HPLC chromatogram of ch3 (10-100% ACN in 10 min, 50°C) 

 

ch4: Ac-EK-Nalu-ArguLeuuARRIA-NH2 
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The compound ch4 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6 and M16 following the general procedure C without introduction of the 

first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O 

(0.1% TFA), ACN (0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was 

used. The product was recovered with an overall yield of 28%. ESI-MS (Mw 1436.8): m/z 1409.7 

[M+H]+, 705.3 [M+2H]2+, 470.5 [M+3H]3+; gradient 20-100% B, 5 min: tR= 4.37 min. 

 
Figure 111: RP-HPLC chromatogram of ch4 (10-100% ACN in 10 min, 50°C) 

 

ch5: Ac-EK-Nalu-RuLuQuRIA-NH2 

The compound ch5 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6, M14 and M16 following the general procedure C with introduction of 

the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 7%. ESI-MS (Mw 1367.7): m/z 1367.7 

[M+H]+, 684.5 [M+2H]2+, 456.7 [M+3H]3+; gradient 20-100% B, 5 min: tR= 4.55 min. 
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Figure 112: RP-HPLC chromatogram of ch5 (10-100% ACN in 10 min, 50°C) 

 

Solid phase synthesis of ch5 under microwave irradiation using Fmoc strategy 

 
Scheme 29: Solid phase synthesis of ch5 with the Fmoc-strategy 

Oligomer was prepared on a 50 µmol scale. Polystyrene rink amide resin (loading 0.52 mmol/g, 

0.05 mmol, 96 mg) was placed in the reaction vessel and pre-swelled with DMF for 1h. All steps 

were performed under inert atmosphere and microwave irradiation on the Discover Bio system 

(CEM). The vessel was then placed inside the microwave reactor. The temperature was 

maintained by modulation of power and controlled with a fiber optic sensor. Fmoc-α-Xaa-OH (5 

eq relative to the resin loading), DIC (5 eq) and Oxyma (5 eq), were dissolved in DMF. The mixture 

was added into the reaction vessel manually. The vessel was then irradiated (170W, 75°C, 1 min) 

+ (35W, 90°C, 3 min). The resin was then filtered off and washed with DMF (3  3mL). Fmoc 
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removal was carried out with 20% of piperidine in DMF (2 mL) under microwave irradiation (155 

W, 75°C, 15 sec) + (35 W, 90°C, 50 sec). These coupling and reduction steps were monitored with 

the Kaiser test8. The N-Fmoc protected succinimidyl carbamate activated monomers (5 equiv. 

relative to the resin loading) were dissolved into DMF (2 mL) and were added to the reaction 

vessel (CEM), followed by DIEA (7equiv.). The reaction vessel was then let without microwave 

irradiation (r.t., 2hrs). A double coupling was performed systematically. The resin was filtered off 

and washed with DMF (3  3mL). Fmoc removal was carried out as described above. These urea-

building block coupling and reduction steps were monitored with the chloranil test9. The 

installation of the last amino acids was performed as described in procedure B. Finally, the resin 

was swelled in a mixture TFA/TIS/H2O/ (95:2.5:2.5, v/v/v) and let to react for 4hrs. Then, the resin 

was filtered off, washed with TFA (2 x 2mL) and CH2Cl2 (2 x 2 mL) and the filtrate was evaporated 

under reduced pressure. After precipitation in cold Et2O, the crude oligomer was analyzed by RP-

HPLC and lyophilized. The crude oligomer was purified by preparative RP-HPLC using the 20-50% 

ACN in 20 min gradient to obtain ch5 with 21% yield and a final purity ≥ 95% and lyophilized. 

 

NPys-ch5 

 
The compound NPys-ch5 was synthesized on 100 µmol scale with commercially available Fmoc-

α-Xaa-and monomers M3, M6, M14 and M16 following the general procedure C with introduction 

of the first urea residue in Fmoc-strategy. 3-Nitro-2Pyridine-3-Mercaptopropionic acid (5eq) was 

coupled in presence of DIC (5eq) and Oxyma (5eq) at r.t., overnight. After microcleavage, and 

identification of a side produc by ESI-MS, disulfide bond was reduced with PMe3 (10 eq) in 

Dioxane/H2O (70:30) 50°C,50W, 15 min x 2. Finally, 3-Nitro-2-pyridinesulfonyle (1.5 eq) was 

coupled with 1.1 eq DIEA 1.1 eq 1hr atr.t. The desired product was purified by preparative RP-

HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 

mL/min was used. The product was recovered with an overall yield of 6%. ESI-MS (Mw 1522.9): 

m/z 507.7 [M+H]+; gradient 20-100% B, 5 min: tR= 5.35 min. 
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Figure 113: RP-HPLC chromatogram of NPys-ch5 (10-100% ACN in 10 min, 50°C) 

 

CCP-ch5:  

 
4 mg of NPys-ch5 was dissolved into 100µL of water and C-(PRR)5-A dissolved in 50 µL of water 

was added. 10 µL of NH4CO3 (0.1M) was added to reach a pH of 7. A yellow coloration was 

observed in solution. The reaction was left overnight at r.t. The desired compound CCP-ch5 was 

purified by semi-preparative RP-HPLC (10-50 % ACN in 20min). The product was recovered with a 

yield of 48%. ESI-MS (Mw 3650.5): m/z 523.3 [M+7H]7+; gradient 20-100% B, 5 min: tR= 3.62 min. 
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Figure 114: RP-HPLC chromatogram of CCP-ch5 (10-100% ACN in 10 min, 50°C) 

 

ASTE-ch5: ASTEEK-Nalu-Argu-Leuu-Glnu-RIA-NH2 

 

The compound ASTE-ch5 was synthesized on 50 µmol scale on NOVAPEG resin (loading 0.46 

mmol.g-1) with commercially available Fmoc-α-Xaa-and monomers M3, M6, M14 and M16 

following the general procedure C with introduction of the first urea residue in Fmoc-strategy. 

The desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a 

gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was used. The product was 

recovered with an overall yield of 6%. ESI-MS (Mw 1756.1): m/z 1756.8 [M+H]+; gradient 20-

100% B, 5 min: tR= 4.11 min. 

 

 
Figure 115: RP-HPLC chromatogram of ASTE-ch5 (10-100% ACN in 10 min, 50°C) 
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ch6: Ac-EK-HPheu-RuLuQuRIA-NH2 

The compound ch6 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6, M14 and M17 following the general procedure C without introduction 

of the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-

HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 

mL/min was used. The product was recovered with an overall yield of 2%. ESI-MS (Mw 1331.6): 

m/z 1331.6 [M+H]+, 666.4 [M+2H]2+, 444.9 [M+3H]3+; gradient 20-100% B, 5 min: tR= 4.82 min. 

 

 
Figure 116: RP-HPLC chromatogram of ch6 (10-100% ACN in 10 min, 50°C) 

 

ch7: Ac-EKu-HPheu-RuLuQuRIA-NH2 

The compound ch7 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6, M14, M16 and M8, following the general procedure C without 

introduction of the first urea residue in Fmoc-strategy. The desired product was purified by 

preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a 

flow of 20 mL/min was used. The product was recovered with an overall yield of 3%. ESI-MS (Mw 

1346.7): m/z 1346.6 [M+H]+, 673.0 [M+2H]2+; gradient 20-100% B, 5 min: tR= 4.55 min. 
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Figure 117: RP-HPLC chromatogram of ch7 (10-100% ACN in 10 min, 50°C) 

 

ch8: Ac-EK-Wu-RuLuQuRIA-NH2 

The compound ch8 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6, M14, and M15, following the general procedure C without introduction 

of the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-

HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 40% of B in 20 min with a flow of 20 

mL/min was used. The product was recovered with an overall yield of 4%. ESI-MS (Mw 1353.6): 

m/z 678.8 [M+2H]2+, 452.8 [M+3H]3+; gradient 20-100% B, 5 min: tR= 5.3 min. 

 
Figure 118: RP-HPLC chromatogram of ch8 (10-100% ACN in 10 min, 50°C) 

 

ch9: Ac-EK-Au-RuLuQuRIA-NH2 
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The compound ch9 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M1, M3, M6, and M14, following the general procedure C without introduction 

of the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-

HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 

mL/min was used. The product was recovered with an overall yield of 3%. ESI-MS (Mw 1241.5): 

m/z 1241.6 [M+H]+, 621.4 [M+2H]2+; gradient 20-100% B, 5 min: tR= 3.81 min. 

 

 
Figure 119: RP-HPLC chromatogram of ch9 (10-100% ACN in 10 min, 50°C) 

 

ch10= ER-Nalu-Ru-Lu-Qu-RIA-NH2 

The compound ch9 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M3, M6, M11 and M16, following the general procedure C without introduction 

of the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-

HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 

mL/min was used. The product was recovered with an overall yield of 10%. ESI-MS (Mw 1395.7): 

m/z 1395.8 [M+H]+, 698.7 [M+2H]2+; gradient 20-100% B, 5 min: tR= 5.03 min. 

 
Figure 120: RP-HPLC chromatogram of ch10 (10-100% ACN in 10 min, 50°C) 
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CPP-ch11= A(RRP)5-C(-S-S-linker)-EK-Nalu-Argu-Alau-Glnu-RAA-NH2 

ch11 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-and monomers 

M1, M6, M11, and M16, following the general procedure C with introduction of the first urea 

residue in Fmoc-strategy. The last amino acid, Boc-L-Cys.NPyS (5eq) was coupled with 5 

equivalents of DIC (5eq) and Oxyma (5 eq) at r.t. overnight The desired product was purified by 

preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a 

flow of 20 mL/min was used. Then, 4 mg of activated ch11 was dissolved into 100µL of water and 

C-(PRR)5-A dissolved in 50 µL of water was added. 10 µL of NH4CO3 (0.1M) was added to reach a 

pH of 7. A yellow coloration was observed in solution. The reaction was left overnight at r.t. The 

desired compound CCP-ch11 was purified by semi-preparative RP-HPLC (10-50 % ACN in 20min). 

The product was recovered with a yield of 52% for the conjugation. ESI-MS (Mw 3581.3): m/z 

1193.6 [M+3H]3+, 895.4 [M+4H]4+; gradient 20-100% B, 5 min: tR= 4.29 min. 

 
Figure 121: RP-HPLC chromatogram of CPP-ch11 (10-100% ACN in 10 min, 50°C) 

 

ch12= EK-Nalu-Argu-HPheu-Glnu-RIA-NH2 

The compound ch12 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M6, M11, M16, and M17, following the general procedure C with introduction of 

the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 12%. ESI-MS (Mw 1415.7): m/z 

1416.7 [M+H]+, 708.3 [M+2H]2+, 472.5[M+3H]3+; gradient 20-100% B, 5 min: tR= 3.60 min. 
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Figure 122: RP-HPLC chromatogram of ch12 (10-100% ACN in 10 min, 50°C) 

 

ch13= EK-Nalu-Ru-Nalu-Qu-RIA-NH2 

The compound ch13 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M6, M11, and M16, following the general procedure C with introduction of the 

first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O 

(0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was 

used. The product was recovered with an overall yield of 12%. ESI-MS (Mw 1451.7): m/z 1451.7 

[M+H]+, 725.5 [M+2H]2+, 483.7[M+3H]3+; gradient 20-100% B, 5 min: tR= 4.14 min. 

 
Figure 123: RP-HPLC chromatogram of ch13 (10-100% ACN in 10 min, 50°C) 

 

ch14= EK-Nalu-Ru-DiPheu-Qu-RIA-NH2 
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The compound ch14 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M6, M11, M16, and M18, following the general procedure C with introduction of 

the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 15%. ESI-MS (Mw 1477.8): m/z 

1478.6 [M+H]+, 739.3 [M+2H]2+, 493.2[M+3H]3+; gradient 20-100% B, 5 min: tR= 4.19 min. 

 
Figure 124: RP-HPLC chromatogram of ch14 (10-100% ACN in 10 min, 50°C) 

 

ch15= EK-Nalu-Ru-Nleu-Qu-RIA-NH2 

The compound ch15 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomers M6, M11, M16, and M19, following the general procedure C with introduction of 

the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 27%. ESI-MS (Mw 1367.7): m/z 

1367.9 [M+H]+, 684.5 [M+2H]2+, 456.6[M+3H]3+; gradient 20-100% B, 5 min: tR= 3.89 min. 
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Figure 125: RP-HPLC chromatogram of ch15 (10-100% ACN in 10 min, 50°C) 

ch16= AuAuAuEKWARLARRIA-NH2 

The compound ch16 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomer M20, following the general procedure C with introduction of the first urea residue 

in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN 

(0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was used. The product 

was recovered with an overall yield of 25%. ESI-MS (Mw 1711.1): m/z 856.5 [M+2H]2+, 571.1 

[M+3H]3+; gradient 20-100% B, 5 min: tR= 4.69 min. 

 
Figure 126: RP-HPLC chromatogram of ch16 (10-100% ACN in 10 min, 50°C) 

 

ch17= AuAuAuAuEKWARLARRIA-NH2 

The compound ch17 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomer M20, following the general procedure C with introduction of the first urea residue 
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in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN 

(0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was used. The product 

was recovered with an overall yield of 10%. ESI-MS (Mw 1811.1): m/z 906.5 [M+2H]2+, 604.6 

[M+3H]3+; gradient 20-100% B, 5 min: tR= 4.72 min. 

 

 
Figure 127: RP-HPLC chromatogram of ch17 (10-100% ACN in 10 min, 50°C) 

 

ch18= AuAuAuAuKWARLARRIA-NH2 

The compound ch18 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomer M20, following the general procedure C with introduction of the first urea residue 

in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN 

(0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min was used. The product 

was recovered with an overall yield of 25%. ESI-MS (Mw 1682.1): m/z 842.0 [M+2H]2+, 561.6 

[M+3H]3+; gradient 20-100% B, 5 min: tR= 4.94 min. 
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Figure 128: RP-HPLC chromatogram of ch18 (10-100% ACN in 10 min, 50°C) 

 

ol1 : Ip-KuWuRuLuQuRuIu-NH2 

The compound ol1 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa-

and monomer M20, following the general procedure C with introduction of the first urea residue 

in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN 

(0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min was used. The product 

was recovered with an overall yield of 13%. ESI-MS (Mw 1285.9): m/z 1286.6 [M+2H]2+, 643.8 

[M+3H]3+, 429.5 [M+4H]4+; gradient 20-100% B, 5 min: tR= 4.32 min. 

 
Figure 129: RP-HPLC chromatogram of ol1 (10-100% ACN in 10 min, 50°C) 

 

3. Solid phase synthesis of oligomers in Chapter IV 
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General procedure D for solid phase oligomers synthesis under microwave irradiation using azide 

strategy 

Oligomers were prepared on a 50 to 100 µmol scale. Fmoc-Gly-WANG resin (loading 0.30 mmol/g, 

0.05mmol) was placed in the reaction vessel, and pre-swelled with DMF for 1-2h. For amino acids 

at the C-terminus, all coupling steps were performed on the Liberty Blue system (CEM). Fmoc-α-

Xaa-OH (5 eq relative to the resin loading), DIC (5 eq) and Oxyma (5 eq) were dissolved in DMF. 

The mixture was added into the reaction vessel through Liberty Blue system and was irradiated 

under microwave (170W, 75°C, 15sec) + (35W, 90°C,110sec) for all Fmoc-α-Xaa-OH. All the 

coupling steps were performed once except for the Arg (two times). The Fmoc-Val-Thr(psiMe-

MePro)-OH (4 eq) was introduced with HATU (3,8 eq)/DIEA (0,8 eq) at 75°C/25 W for 20 minutes 

and the Fmoc-Asp(tBu)-(Dmb)Gly-OH (4 eq) with HATU (3,8 eq) and DIEA (8 equiv.) at 75°C/25 W 

for 5 minutes twice. The resin was then filtered off and washed with DMF. Fmoc removal was 

carried out with 20% of piperidine in DMF under microwave irradiation (155W, 75°C, 15 sec) + 

(35W, 90°C, 50 sec). Regarding the azide part, the same reaction vessel was installed inside the 

microwave reactor CEM Discover Bio. The first urea residue (Fmoc-Gln(Trt)-OSu) M11 was 

introduced in Fmoc-strategy with DIEA (7eq) at r.t. for 2h twice. Fmoc removal was performed as 

described before. Otherwise, the azide protected succinimidyl carbamate activated monomer 

(1.5 eq relative to the resin loading) were dissolved into DMF (1.5 mL) and were added to the 

reaction vessel (CEM), followed by DIEA (3eq). The reaction vessel was then irradiated under 

microwave (50°C, 50W, 15min). A double coupling was performed systematically. The resin was 

filtered off and successively washed with DMF (3  and two times with a mixture of 1,4-

dioxane:H2O (7:3 v/v) in order to perform the azide reduction (3  3mL). Azide reduction was 

performed under microwave irradiation (50°C, 50W, 15 min) in the mixture 1,4- dioxane:H2O 

(1.5mL) with 1M PMe3 solution in THF (10 equiv. relative to the resin loading) as reducing agent. 

This reduction step was systematically performed twice. The resin was then filtered off and 

washed with DMF (4  3 mL). These coupling and reduction steps were monitored with the 

chloranil test9. To couple the remaining amino acids, the reaction vessel was let inside the 

microwave reactor (CEM Discover Bio). Fmoc-α-Xaa-OH (5 eq relative to the resin loading), DIC (5 

eq) and Oxyma (5 eq), were dissolved in DMF. The resulting mixture was manually added to the 

reaction vessel. The vessel was then irradiated (75°C,25 W, 5 min) once for coupling. The resin 

was filtered off and washed with DMF (3  3 mL). Fmoc removal was carried out with 20% of 

piperidine in DMF (2mL) under microwave irradiation (75°C, 155W, 15 sec) + (90°C, 35W, 50 sec). 

After final washing with CH2Cl2, the resin was swelled in a mixture TFA/TIS/H2O (95:2.5:2.5, v/v/v) 

and let to react for 4hrs under slight shaking. Then, the resin was filtered off, washed with TFA (2 

x 2mL) and CH2Cl2 (2 x 2mL) and the filtrate was evaporated under reduced pressure. After 

precipitation in cold Et2O, the crude oligomer was analyzed on RP-HPLC and lyophilized. The crude 

oligomer was purified by preparative RP-HPLC using the appropriate gradient to a final purity ≥ 

95% and lyophilized. 

 

p3: ASTEEK WARLARRIAGAGGVTLDGFG 
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The compound p3 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa, 

following the general procedure D without the introduction of urea residue. The desired product 

was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B 

in 20 min with a flow of 20 mL/min was used. The product was recovered with an overall yield of 

10%. ESI-MS (Mw 2690.0): m/z 1345.6 [M+2H]2+, 897.5 [M+3H]3+, 673.5 [M+4H]4+; gradient 20-

100% B, 5 min: tR= 4.71 min. 

 

 
Figure 130: RP-HPLC chromatogram of p3 (10-100% ACN in 10 min, 50°C) 

 

p11: ASTEEK WARLARRI-Ava-DAPu-VTLDGFG 

The compound p11 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa, 

following the general procedure D with manual introduction of M21 (5 eq) with DIEA (7eq) at r.t. 

15 min x 3 and M22 (5 eq) with BOP (5 eq) and DIEA (7 eq) at r.t. 20 min x 2. The desired product 

was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B 

in 20 min with a flow of 20 mL/min was used. The product was recovered with an overall yield of 

9. ESI-MS (Mw 2689.1): m/z 672.3 [M+4H]4+; gradient 20-100% B, 5 min: tR= 5.65 min. 
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Figure 131: RP-HPLC chromatogram of p11 (10-100% ACN in 10 min, 50°C) 

 

p12: ASTEEK WARLARRI-Glu-γAbu-VTLDGFG 

The compound p12 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa 

and M23, following the general procedure D. Fmoc-GABA-OH (5 eq) and M23 (5eq) were coupled 

manually with BOP(6eq)/DIEA (6eq). The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 19%. ESI-MS (Mw 2389.7): m/z 

1195.5 [M+2H]2+, 797.3 [M+3H]3+, 598.2 [M+4H]4+; gradient 20-100% B, 5 min: tR= 3.35 min. 

 
Figure 132: RP-HPLC chromatogram of p12 (10-100% ACN in 10 min, 50°C) 

 

p13: ASTEEK WARLARRI-Asp-γAbu-VTLDGFG 
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The compound p13 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa 

and M24, following the general procedure D. Fmoc-GABA-OH (5 eq) and M24 (5eq) were coupled 

manually with BOP(6eq)/DIEA (6eq).The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 50% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 14%. ESI-MS (Mw 2375.7): m/z 

1188.6 [M+2H]2+, 792.8 [M+3H]3+, 594.8 [M+4H]4+; gradient 20-100% B, 5 min: tR= 3.75 min. 

 
Figure 133: RP-HPLC chromatogram of p13 (10-100% ACN in 10 min, 50°C) 

 

ch19: EK-Nalu-Argu-Leuu-Glnu-RIAGAGGVTLDGFG 

The compound ch19 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa 

and monomers M3, M6, M11, and M16, following the general procedure D with introduction of 

the first urea residue in Fmoc-strategy. The desired product was purified by preparative RP-HPLC: 

H2O (0.1% TFA), ACN (0.1% TFA); a gradient 20 to 60% of B in 20 min with a flow of 20 mL/min 

was used. The product was recovered with an overall yield of 6%. ESI-MS (Mw 2299.7): m/z 767.8 

[M+3H]3+; gradient 20-100% B, 5 min: tR= 5.41 min. 
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Figure 134: RP-HPLC chromatogram of ch19 (10-100% ACN in 10 min, 50°C) 

 

ch20: EK-Nalu-Argu-Leuu-Glnu-RI-Glu(-γAbu-LDGFG) 

The compound ch20 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa 

including Fmoc-GABA-OH (Iris BIOTECH GMBH) and monomers M3, M6, M11, M16 and M23, 

following the general procedure D with introduction of the first urea residue in Fmoc-strategy. 

Fmoc-GABA-OH (5 eq) and M23 (5eq) were coupled manually with BOP(6eq)/DIEA (6eq). The 

desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 

20 to 50% of B in 20 min with a flow of 20 mL/min was used. The product was recovered with an 

overall yield of 13%. ESI-MS (Mw 2000.3): m/z 1001.1 [M+2H]2+, 667.7 [M+3H]3+, 501.1 [M+4H]4+; 

gradient 20-100% B, 5 min: tR= 4.13 min. 

 
Figure 135: RP-HPLC chromatogram of ch20 (10-100% ACN in 10 min, 50°C) 

 

ch21: EK-Nalu-Argu-Leuu-Glnu-RI-Asp(-γAbu-LDGFG) 
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The compound ch21 was synthesized on 50 µmol scale with commercially available Fmoc-α-Xaa 

including Fmoc-GABA-OH (Iris BIOTECH GMBH) and monomers M3, M6, M11, M16 and M24, 

following the general procedure D with introduction of the first urea residue in Fmoc-strategy. 

Fmoc-GABA-OH (5 eq) and M24 (5eq) were coupled manually with BOP(6eq)/DIEA (6eq). The 

desired product was purified by preparative RP-HPLC: H2O (0.1% TFA), ACN (0.1% TFA); a gradient 

20 to 50% of B in 20 min with a flow of 20 mL/min was used. The product was recovered with an 

overall yield of 13%. ESI-MS (Mw 1986.3): m/z 994.1 [M+2H]2+, 663.1 [M+3H]3+, 497.5 [M+4H]4+; 

gradient 20-100% B, 5 min: tR= 4.16 min. 

 
Figure 136: RP-HPLC chromatogram of ch21 (10-100% ACN in 10 min, 50°C) 

 

 

 

D. Affinity experiments performed at CEA Saclay 

 

Protein production and purification 

Recombinant (His)6 – GST – Tev site – hAsf1a 1-156 fusion proteins were produced from the 

pETM30 plasmid. Unlabelled and 15N uniformly labeled proteins were obtained as described in by 

Mousson et al.10 Briefly, soluble (His)6-tagged GST fusion proteins were first purified on GSH 

agarose (Sigma). After a Tev site cleavage, the (His)6-tagged TEV protease used and the (His)6-

tagged GST were trapped in a Ni-NTA agarose column (Qiagen). The flow through fraction 

containing Asf1 proteins was finally purified by anion exchange chromatography using a Resource 

Q 6 mL column (GE Healthcare). Asf1 proteins were diafiltrated against a 50 mM Tris-HCl pH 7.4 

storage buffer and concentrated using an Amicon device (Millipore) and an YM10 regenerated 

cellulose membrane (Millipore). The storage buffer was further replaced by NMR buffer (below) 

using the same system. Protein and peptide concentrations were determined by UV 

spectrophotometry (NanoDrop, Thermo Scientific) for molecules containing tryptophan residue 

(absorption at 280 nm) or Naphthalene containing residue (absorption at 277 nm). For peptides 
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missing any aromatic residues, the concentration was determined by mass spectrometry (S. 

Dubois, CEA-Saclay).  

 

 

Isothermal Titration Calorimetry (ITC) 

All IsoThermal Calorimetry (ITC) experiments were performed in a VP-ITC titration calorimeter 

(Malvern). All experiments were carried out at 20°C, in a 50 mM Tris-HCl pH7.4 buffer with Asf1 

proteins in the sample cell and peptides/foldamers in the syringe. Protein and ligand 

concentrations varied between 5 µM – 15 µM and 50 µM - 300 µM, respectively, with a 

protein/molecule ratio ranging from 1:10 to 1:20 depending on binding affinities. Protein and 

molecule samples were prepared in the same buffer and extensively degassed (ThermoVac, 

Malvern) before loading on instrument. After equilibrating the cell at 20°C, the rotating syringe 

(310 rpm) injected during 12 or 20 sec ligand solution aliquots of 6 or 10 µL into Asf1 protein 

solution at intervals of 280 sec until saturation was observed. Raw ITC data were processed with 

the Origin 7.0 Software (OriginLab, Malvern) using the One-Set of sites fitting model. The 

sigmoidal curves obtained allowed the determination of the following parameters: stoichiometry 

(N), association constant (Ka) (KD was deduced as KD = 1/Ka) and the change in enthalpy (ΔH). The 

standard molar Gibbs energy change (ΔG) and standard molar entropic contribution (TΔS) were 

then calculated using the relationships 𝛥𝐺 = −𝑅𝑇𝑙𝑛(𝐾𝐴) = 𝑇𝛥𝑠 − 𝛥𝐻, where R is the gas 

constant (8.314472 J.K-1mol-1) and T is the temperature in Kelvin (293.15 K). All ITC experiments 

were performed in duplicate.    

 

Nuclear magnetic resonance (NMR) binding experiments 

NMR experiments were carried out in a Bruker DRX-600 spectrometer equipped with a cryoprobe. 

Interaction experiments and resonance assignments were adapted from (Mousson et al.10. All 

NMR experiments were performed at a protein concentration of 50 µM in NMR buffer (10 mM 

Tris-HCl pH 7.4, 0.1 mM EDTA, 0.1 mM DSS, 0.1 mM NaN3, protease inhibitors (Roche), 10% D2O). 

Heteronuclear single quantum correlation (HSQC) spectra of the uniformly 15N labeled Asf1 

proteins were recorded at 298°K. For titration experiments, inhibitory molecule aliquots at a 

concentration of 13 µM were added successively and HSQC spectra were recorded after each 

addition until saturation was observed. Proton chemical shifts (in ppm) were referenced relative 

to internal DSS and 15N reference was set indirectly relative to DSS using frequency ratios11. NMR 

data were processed using Topspin (Bruker) and analyzed using Sparky (T.D. Goddard and D.G. 

Kneller, UCSF). Chemical shift variation upon binding was calculated as 𝛥𝛿 = [(𝛿𝐻𝑁
𝑓

− 𝛿𝐻𝑁
𝑏 )

2
+

(0.17 × (𝛿𝑁
𝑓

−  𝛿𝑁
𝑏)

2
]1/2, where f and b refer to free and bound forms respectively. The scaling 

factors normalize the magnitude of the 1H and 15N chemical shift changes (in ppm)12. Assignments 

of HSQC spectra of Asf1 bound to inhibitory foldamers were obtained by following progressive 

variations of chemical shifts upon titration. 

 

Crystallization, data collection and structure determination 
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Asf1-ch5 were mixed and the complex was concentrated to 8.6 mg/mL in a buffer 50 mM Tris-HCl 

pH7.4. Crystals of the complex were grown by sitting drop vapor diffusion at 20 °C against 

reservoir solution containing 100 mM Citrate pH 4.2, 300 mM LiSO4, 26% PEG3350. Crystals were 

soaked in a 100 mM Citrate pH 4.2, 300 mM LiSO4, 26% PEG3350, 20% Glycerol cryo-protectant 

solution before being flash-frozen in liquid nitrogen. Diffraction data were collected on the 

PROXIMA-1 beamline at the synchrotron SOLEIL (Saint Aubin, France) at a temperature of 100 K 

with X-ray wavelength of 0.97857Å. Diffraction images recorded with PILATUS 6 M detector were 

processed using the XDS package13. Best data sets were obtained from two crystals of Asf1-ch5 

belonging to space group P1 which diffracted up to 1.8Å resolution. The two data sets were 

merged and scaled and the structure of Asf1-ch5 complex was determined by molecular 

replacement using MOLREP14 with the human Asf1a structure (chain A of PDB entry 2I32) as 

model probe. Best solution contained two complexes per asymmetric unit. Model building was 

performed with Coot15 and structure refinement was achieved with BUSTER version 2.10 

(Cambridge, United Kingdom). Final refinement statistics are presented in Table 25. Structure 

representations presented in all figures were drawn with PYMOL software (Schrödinger).  
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Table 25: Refinement statistics of ch5-Asf1 
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