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Ecole doctorale n◦571 Sciences Chimiques : Molécules, Matériaux, Instrumentation et
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Thesis structure
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it.

Then, the main part of the manuscript includes publication-based chap-
ters which all respect a consistent thread, namely the development and
assessment of a computational workflow for calculating free energies of
mutations in metal-free and metal-containing protein systems. First, modifi-
cations of OPLS-AA (Optimized Potentials for Liquid Simulations - All Atoms)
force field to study zinc-containing metalloenzymes is presented. Secondly,
several ligand-free proteins and protein-ligand complexes are studied with
molecular dynamics simulations using the above-mentioned modified force
field. Thirdly, an in-house pmx-based protocol for free energy calculations
is assessed through participations in international blinded prediction chal-
lenges.

Finally, a classical "Conclusions" section closes this manuscript by summa-
rizing achieved works and presenting perspectives regarding the prediction
of β-lactamase mutations.
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Résumé

Introduction

En seulement quelques années, la résistance aux antibiotiques est de-
venu un problème majeur de santé publique au niveau mondial du fait de
l’émergence de souches bactériennes résistantes voire multi-résistantes. Cer-
taines d’entre elles (M. tuberculosis XDR ou PDR, A. baumannii, P. aeruginosa,
Enterobacteriaceae...) sont d’ores et déjà apparues comme résistantes à tout
l’arsenal d’antibiotiques présent sur le marché incluant les carbapénèmes,
principalement utilisés lors des traitements de dernier recours. De plus,
bien que ce phénomène de résistance apparaisse naturellement, l’utilisation
abusive d’antibiotiques dans les milieux médicaux et agricoles accélère ce
processus, laissant présager l’éventualité d’un basculement dans une ère dite
"post-antibiotique" dans laquelle les infections microbiennes ne pourront plus
être traitées efficacement via des traitements antibiotiques.

De leur côté, les bactéries peuvent acquérir une résistance aux antibio-
tiques de trois manières différentes : (a) le transfert vertical, dans lequel la
résistance est transmise d’une bactérie résistante à sa descendance, (b) le
transfert horizontal, dans lequel la résistance est transmise à une bactérie
depuis une bactérie morte (transformation), un bactériophage (transduction),
ou une bactérie résistante (conjugaison), et (c) une mutation ponctuelle
localisée sur le chromosome bactérien. Par ailleurs, chez les bactéries ré-
sistantes, on observe quatre mécanismes d’action pour contrer la présence
d’antibiotiques dans leur environnement : la sur-expression des pompes à
efflux, la diminution de la perméabilité membranaire, la modification de la
cible visée par les antibiotiques et la production d’enzymes de dégradation.

Au laboratoire, on s’intéresse aux antibiotiques de type β-lactames ainsi
qu’aux enzymes de dégradation, nommées β-lactamases, spécifiquement
développées pour hydrolyser ces derniers.

Il existe quatre familles de β-lactames (pénicillines, céphalosporines,
monobactames et carbapénèmes) ainsi que quatre grandes classes de β-
lactamases (A – pénicillinases, B – métalloenzymes, C – céphalosporinases et
D – oxacillinases). Initialement, ces dernières étaient spécifiques d’une ou
deux classes d’antibiotiques, mais de récentes enzymes présentent un spectre
d’hydrolyse beaucoup plus étendu englobant la plupart voire la totalité des
quatre classes de β-lactames.
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Les quatre classes de β-lactamases peuvent être réparties en deux familles
selon la constitution de leur site actif : les sérine-β-lactamases (classes A, C
et D) possèdent une sérine impliquée dans l’hydrolyse des β-lactames, alors
que chez les metallo-β-lactamases (classe B), ce mécanisme est assuré par un
ou deux ions zinc.

Objectifs de recherche

Cette thèse s’inscrit dans le contexte de la résistance aux antibiotiques
de type β-lactames avec un double objectif : (1) étudier, par dynamique
moléculaire, le comportement des β-lactamases en présence ou en absence
de ligands, et (2) prédire, par calcul d’énergie libre, de nouvelles mutations
ponctuelles conférant une résistance aux β-lactamases.

Développement

– I. Introduction –
Premièrement, la résistance aux antibiotiques est présentée au travers

(1) de l’évolution des méthodes de soins apportés aux malades depuis la
Préhistoire jusqu’à aujourd’hui, (2) de son origine via l’analyse de plusieurs
exemples tirés de la nature (animaux, environnement...) ou de l’activité hu-
maine (agriculture, hôpitaux...) et (3) de sa propagation fortement médiée
par l’environnement.

Deuxièmement, les acteurs de la résistance aux β-lactames sont détaillés,
en commençant par les systèmes de défense développés par les Entérobac-
téries, telles les porines ou les β-lactamases, pour lutter contre la pression
antibiotique. Ensuite, les β-lactames sont décrits de par leur structure et leur
rôle d’inhibiteurs de la protéine liant la pénicilline et, enfin, les β-lactamases
sont présentées de manière non exhaustive.

Troisièmement, certaines stratégies imaginées pour lutter contre la ré-
sistance aux antibiotiques sont brièvement listées, incluant les adjuvants
chimiques ou bio-mimétiques, les outils biotechnologiques (bacteriophages,
anticorps, nano-matériaux...) et computationnels (algorithme de prédiction,
"machine learning"...).
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– II. Nouveaux paramètres OPLS-AA pour les enzymes à zinc –
Dans ce projet, de nouvelles charges CM5 ont été développées pour

certains résidus en interaction avec un ion zinc présent dans le site actif de
certaines métalloenzymes, dont les métallo-β-lactamases. Ces charges ont
ensuite été implémentées et validées dans le champ de force OPLS-AA selon
des critères géométriques (distance zinc-atome coordonnant, RMSD du site
actif et de la protéine) sur un panel de 17 métalloenzymes représentatives.
Ainsi, les nouveaux résidus considérés sont : HME/HMD pour l’histidine Nε
et Nδ, CYSM pour la cystéine et ASM/GLM pour l’asparagine/glutamine.

– III. Etude des β-lactamases dans le champ de force OPLS-AA –
Ce chapitre présente quatre études, par dynamique moléculaire, de sérine-

et métallo-β-lactamases.
Premièrement, le paramétrage de ligands variés, incluant les antibiotiques

β-lactames, dans le champ de force OPLS-AA est présenté via l’utilisation
du programme MOL2FF développé au laboratoire. Certains antibiotiques
ont ensuite été utilisés dans une étude portant sur la caractérisation d’une
nouvelle sérine-β-lactamase de la classe C, CMY-136.

Deuxièmement, deux inhibiteurs de la métallo-β-lactamase IMP-1 ont été
testés sur NDM-1 au travers de simulations de dynamique moléculaire pour
évaluer la robustesse, en présence d’un ligand, des paramètres développés
dans le Chapitre 2.

Troisièmement, la mutation d’un résidu histidine, coordonnant un des
deux ions zinc catalytiques, en glycine a été étudiée chez la métallo-β-
lactamase SPM-1. Nous avions émis l’hypothèse qu’un résidu aspartate
situé non loin du site actif pouvait être amené à compléter la sphère de
coordination de l’ion zinc. Bien que certaines simulations aient révélé un
changement spontané de conformation validant notre hypothèse, une récente
étude a démontré qu’une molécule d’eau prenait la place de l’histidine mutée,
structure cristallographique à l’appui.

Enfin, de nombreux calculs d’énergie libre, utilisant le protocole pmx, ont
été réalisés afin d’étudier les processus de carboxylation et protonation de la
lysine catalytique dans les oxacillinases.
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– IV. L’aventure D3R-GC –
Le projet D3R-GC offre l’opportunité d’évaluer et de valider les protocoles

développés au laboratoire au travers de compétitions internationales de
prédiction à l’aveugle basées sur de la prédiction de poses et des calculs
d’énergie libre. Les résultats de trois de ces compétitions sont présentés dans
ce chapitre.

Conclusion

Les travaux méthodologiques présentés dans ce manuscrit de thèse ont
donc conduit au développement : (1) de nouveaux paramètres pour les
enzymes à zinc, implémentés dans le champ de force OPLS-AA et validés par
des simulations de dynamique moléculaire sur un panel de métalloenzymes
représentatives, (2) d’un protocole de paramétrisation de ligands covalents
pour étudier le comportement de certains β-lactames dans CMY-136, une
nouvelle β-lactamase caractérisée au laboratoire, et (3) d’un protocole de
calcul d’énergie libre évalué au moyen de compétitions internationales de
prédiction. Ce dernier a ensuite été utilisé pour tenter d’expliquer pourquoi
la carbamylation de la sérine catalytique n’a pas lieu dans certaines oxacilli-
nases.

Au travers de ces travaux, nous avons pu améliorer significativement
notre approche computationnelle et désormais tout est en place pour une
exploration exhaustive des mutations possibles dans les β-lactamases.
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Chapter I
Introduction

„
The thoughtless person playing with penicillin treatment is morally
responsible for the death of the man who succumbs to infection with
the penicillin-resistant organism. I hope this evil can be averted.

— Sir Alexander Fleming
(Microbiologist)





1
Antibiotics: a leap into resistance

Since the beginning of their history, human beings had to overcome
critical pandemics (smallpox, Black-Death, Spanish flu, AIDS. . . ) leading to
around 500 millions deaths. However, over the years, humans succeeded in
saving themselves and humanity is not as endangered as it was previously
thanks to advancements in modern medicine and to the enhancement of
the standard of living. This way, given the positive evolution of worldwide
demography, United Nations anticipated that the world’s population shall
reach 9,6 billions people by 2050. Simultaneously, a new global issue has
appeared in the last decades, threatening the current health and socio-
economic balance: the antibiotic resistance.

In this chapter, we will first have a brief look at how humans have
managed their health issues from the emergence of the human species until
today. Then, starting from the discovery of penicillin, benefits of the first
antibiotics will be introduced. Finally, we will discuss about a potential post-
antibiotics’ era due to the emergence of resistances and in which humans
shall not be able to survive with the current medications.

1.1 Changes in humans’ attitude

Analysis of prehistoric bones, particularly dental calculus in which DNA
from micro-organisms or food is trapped, revealed the Neanderthal mans’
habits in terms of diet and lifestyle. Thus, some of them seemed to be self-
medicating, such as ingesting mildew or poplar to get a natural antibiotic
(penicillium) or a pain-killer substance (salicylic acid), respectively [202].

In 3600 B. C., the Chinese enacted the first manuscripts of pharmacy,
followed by the ancient Egyptian ones in 2900 B. C., all dealing with the
power of Nature, inspired from religion, mythology and mysticism. Later,
in Ancient Greece and Rome, temples were dedicated to Asclepius, god of
healing, and philosophers became pharmacists (e.g. Aristotle) or vice versa
(e.g., Hippocrates). Thereafter, the Greek doctor Galen (131-201 A. D.) was
the worthy successor of his predecessors as he is now known as the father of
Pharmacy whose name is linked to the oath sworn by all new pharmacists,
the "Galen oath" (similarly, "Hippocrates oath" for new doctors).

3



Later, the period from Middle Ages to the 17th century was marked by a
return to medicinal plants and complex mixtures: this is the experimental
age of apothecaries. Up to 100 compounds were mixed in potions, then used
first as antidotes and cures for all ills afterwards. The Royal Declaration of
1777 and the Law of Germinal 1803 established the legal basis of French
pharmacy by permanently separating it from other medical activities, and
demonstrated a great desire for clarity and regulation in the preparation of
remedies. Therefore, instead of only treating people, it became important to
fully understand why the healing occurred.

That’s why, since the end of the 18th century, pharmacists and, by ex-
tension, scientists are seeking information about compounds responsible for
the observed biological activities. As reported in the Figure 1 depicting a
historical timeline, many therapeutic molecules were found or synthesized;
some of them will be discussed in the next subchapter.

Figure 1: From the antibiotics’ discovery to the emergence of antibiotic resistance:
key dates.
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1.2 From first antibiotics to antibiotics’ era

In 1871, François Hallopeau (1842-1919), a French dermatologist, coined
the word "antibiotic" to describe all substances preventing the development
of life. Later, in 1941, Selman Waksman, a Ukrainian biochemist and micro-
biologist living in the United States, defined the noun "antibiotic" as: "[any]
chemical substance, produced by micro-organisms, which has the capacity to
inhibit the growth of and even to destroy bacteria and other micro-organisms".
In current usage, an antibiotic is now literally identified as an "anti" "biotic",
namely any compound which kills a micro-organism or inhibit its growth,
with no distinction about its origin, either natural or synthetic.

The golden age of antibiotics began with the work of brilliant scientists,
rewarded by several Nobel Prizes, and whose stories will be summarized
below (Figure 2).

Figure 2: The antibiotic "wall of fame". Some of these scientists received the presti-
gious Nobel Prize:
— Physiology or Medicine — in 1908, Paul Ehrlich and Ilya Ilyich Mech-
nikov "in recognition of their work on immunity"; in 1945, Sir Alexander
Fleming, Ernst Boris Chain and Sir Howard Walter Florey, "for the discov-
ery of penicillin and its curative effect in various infectious diseases"; in
1952, Selman Abraham Waksman "for his discovery of streptomycin, the
first antibiotic against tuberculosis."
— Chemistry — in 1964, Dorothy Crowfoot Hodgkin, one of the three
women rewarded by a Nobel Prize, "for her determinations by X-ray
techniques of the structures of important biochemical substances."

1.2 From first antibiotics to antibiotics’ era 5



1.2.1 Louis Pasteur (1822-1895) and Jules F. Joubert (1834-1910)

In 1877, these two French scientists published their work revealing that
Bacillus anthracis, the etiologic agent of a livestock’s common disease, named
anthrax, can’t grow significantly in animals co-infected with other pathogenic
bacteria [154]. Starting with this observation, they made three assumptions:
(a) the Bacillus could form spores and survive in a stressful environment
(high temperature, pressure, pure oxygen); (b) the blood of a putrefied
animal (more than 16 hours) could kill a living animal without being exposed
to anthrax; and (c) the growth of Bacillus anthracis was delayed by other
microorganisms. However, Pasteur had already described a process, known
as la lutte pour la vie (the battle for life), in which bacteria could develop
in the blood during putrefaction [172]. In addition, other bacteria such
as Pseudomonas aeruginosa or Streptococcus pyogenes have been used to
prevent the infection from other microorganisms [70]. This antagonism was
thereafter described as circulating chemical substances released by some
bacteria in order to eradicate the others [31].

1.2.2 Paul Ehrlich (1854-1915)

The German physician had an idea based on the creation of "magic
bullet", fatal to microorganisms but totally safe for the host. In partnership
with the German chemist Alfred Bertheim (1879-1914) and the Japanese
bacteriologist Sahachiro Hata (1873-1938), Ehrlich produced organoarsenic
derivatives of the drug atoxyl to treat syphilis-infected rabbits. In 1909, they
finally found a compound able to successfully cure those rabbits with hopes
for the treatment of patients; this is the first example of chemotherapy [63].
Nevertheless, given the severe side effects, two additional compounds with an
increased solubility and a reduced toxicity were released: Salvarsan in 1909
(arsphenamine or Ehrlich 606) and Neosalvarsan in 1912. Later, in 1940s,
this drug will be replaced by another promising antibiotic: penicillin.

1.2.3 Alexander Fleming (1881-1955)

In 1890s, the two scientists Ernest Duchesne and Vicenzo Tiberio were
the first to discover an antibacterial action coming from mold [183] and
Penicillium [60] but were unable to identify its precise origin.
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In 1928, Sir Alexander Fleming, a Scottish biologist already well-known
for the discovery of the enzyme lysozyme in 1923, pinpointed a substance
with abilities to inhibit the growth of microbes (bacteriostatic) and even kill
other microorganisms (bactericidal).

When he returned to his laboratory, Fleming first noticed an unusual
colony of mold which grew in several Staphylococcus-containing Petri dishes.
Then, he spotted an absence of Staphylococcus bacteria around the mold
which led to the assumption of a substance preventing the bacteria’s devel-
opment. Identified as Penicillium notatum, a microscopic fungi cultivated
in the nearby laboratories, Fleming decided to name the latter substance,
penicillin [68].

Further tests in animals revealed no toxicity [19,121] but given the diffi-
culties encountered for its isolation and purification, penicillin was restricted
to a military use [6]. It was not until the work of other renowned scientists
that the story of penicillin was upgraded to an industrial level.

1.2.4 Ernst B. Chain (1906-1979), Howard W. Florey (1898-1968) and
Edward Abraham (1913-1999)

In 1940, Ernst Chain and Howard Florey, a German-born British bio-
chemist and an Australian pharmacologist, respectively, decided to continue
the work of Alexander Fleming on penicillin with the help of Edward Abra-
ham, a British chemist. With a view to develop it into a useful treatment,
they succeeded in isolating the molecule thanks to chromatography on an
alumine column. Besides the purification process, Abraham was in charge
of the elucidation of its chemical structure. In 1943, jointly with Ernst,
he presented the structure as a fused two ring system [39]. In 1945, this
assumption was confirmed using X-ray crystallography thanks to Dorothy
Hodgkin Crowfoot [51], whose involvement in the structural characterization
of several biological molecules has been very important (see below).

From 1942 to 1944, expatriated in the United States because of the
World War II, Florey involved the big American companies in the large-scale
production of penicillin. In 1944, one of those companies, named Pfizer,
opened its first penicillin production site and provided the American soldiers
which landed in Normandy during the famous D-Day. At last, from 1945,
penicillin is available in all pharmacies.
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1.2.5 Dorothy M. Hodgkin Crowfoot (1910-1994)

Dorothy Hodgkin Crowfoot, a British chemist, is a pioneer in the X-
ray crystallography field especially in the structural characterization of
biomolecules. In her track record, we find the first structure of a steroid
named cholesteryl iodide (1945) [38], the penicillin (1945) [51], the final
structure of vitamin B12 (1955) [24, 50], and after 35 years of work, the
structure of insulin (1969) [4].

1.2.6 Josef Klarer (1898-1953), Fritz Mietzsch (1896-1958) and
Gerhard Domagk (1895-1964)

Following the discovery of penicillin, in 1932, two German chemists,
Josef Klarer and Fritz Mietzsch, synthesized a new drug known as sulfon-
amidochrysoidine (KI-730, Prontosil). Its antibacterial activity was then
assessed by Gerhard Domagk, a German bacteriologist, in different type of
diseases [80]. In 1935, Ernest Fourneau’s group, at the Pasteur Institute
(Paris) found the active ingredient to be the sulfanilamide (Figure 4), a com-
pound already synthesized and patented in 1909 by Paul Gelmo (1879-1961)
but with no consideration for its medical potential. Moreover, sulfanilamide
has many advantages such as being cheap to produce, off patent and really
easy to modify, that’s why many companies launched large-scale production
of sulfonamides derivatives [10]. To give two successful light-hearted cases,
Domagk’s daughter and Franklin D. Roosevelt’s son had been totally cured by
Prontosil, which also boosted the popularity of such chemical scaffold. Fur-
thermore, it was the beginning of combinatorial approaches to obtain potent
synergistic effects: for example, trimethoprim, a powerful antibacterial agent,
combined with sulfadiazine, a sulfonamide-containing compound [190].

1.2.7 Selman Waksman (1888-1973) and Harold B. Woodruff
(1917-2017)

Both experts in soils microbiology, Waksman and Woodruff discovered
a novel class of antibiotics, namely aminoglycosides which include actino-
mycin (1940) [193], streptothricin (1942) [194], streptomycin (1943), and
neomycin (1949). Streptomycin was the first antibiotic used in the treat-
ment of tuberculosis, an infectious disease usually caused by Mycobacterium
tuberculosis.
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At last, scientists had found some clues to reach the "magic bul-
lets" dreamt by Paul Ehrlich, but as Edward Abraham noticed in 1940,
bacteria seems to have developed new biological weapons in order to
fight against selective pressure due to antibiotics: enzymes [2]. In the
next subchapter, we will focus on the current medical situation trying
to explain the origin of antibiotic resistance and why it is important
to urgently adopt a suitable behavior about antibiotic use in global
medicine.

1.3 Antibiotic resistance

The World Health Organization (WHO) is clear: "without urgent action,
we are heading for a post-antibiotic era, in which common infections and
minor injuries can once again kill". Nevertheless, the problem is more general
since it will affect not only the health sector but also the worldwide economy:
for example, a patient infected by one multi-drug resistant (MDR) strain will
stay longer at the hospital, have more expensive health cares and could have
greater risk of dying.

According to O’Neill’s report https://amr-review.org, whether no reac-
tion arise from the international community, antimicrobial resistance (AMR)
might be responsible for 10 million deaths per year in 2050 and may cost over
100 trillion USD by 2050. Indeed, the main problem comes from some MDR
bacteria which are now resistant to all existing antibiotics classes including
carbapenems, the last-resort antimicrobial weapons.

Historically, two antibiotics, colistin and tigecyclin, were found to be pow-
erful against pathogens. Nevertheless, after a short duration use of colistin in
1960s, it was suspended due to serious side effects, namely nephrotoxic, but
its use was maintained in animals. However, to face the emergence of MDR
bacteria, colistin was recently reintroduced for humans but, as feared, colistin
resistance quickly appeared [149]. From the tigecyclin side, a recent study
noted the emergence of plasmid-mediated high-level tigecycline resistance
genes in animals, meat for consumption and humans [86].

Hence, novel antimicrobial compounds with original activities are ur-
gently needed to ensure the survival of human species; this topic will be
discussed later. In this part, we will define the antibiotic resistance before
presenting the reasons which may explain this phenomenon, and we will
finish on the global role of environment in the spread of resistance.

1.3 Antibiotic resistance 9
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1.3.1 Definition

Antimicrobial resistance (AMR) arises when a microorganism become
resistant to an antimicrobial agent for which it was first susceptible. Over the
last few years, many antibiotics have been threatened by resistance and the
latter may arise and spread in different ways from one microbe to another
(Figure 3). First, through horizontal gene transfer, mobile integrons (i.e.,
genetic elements including a site-specific recombination system able to inte-
grate, express and exchange specific DNA elements, called gene cassettes)
carried on transposons (i.e., class of genetic elements that can “jump” to
different locations within a genome thanks to enzymes called transposases)
promote the share of resistance mechanisms. In other words, a resistance
gene can be spread among bacteria with genetic vehicles, named integrons,
and whose mobility is ensured by specific enzymes. Thus, a transposon
carrying several antibiotic resistance cassettes might confer a multi-resistant
phenotype to an organism initially susceptible or mono-resistant. Secondly,
through vertical gene transfer, bacteria may transmit natural mutations on
chromosomal genes to offsprings by replication. Finally, other mechanisms
such as circulating DNA (called plasmids) picked up by bacteria from envi-
ronment, transmission of integrons from dead bacteria or bacteriophages, or
the conjugation process may lead to the spread of resistance [48,131].

Otherwise, resistance may occur by different mechanisms, including
target’s modification, reduction in cell permeability, efflux systems’ over-
expression and production of specific enzymes (Figure 3).

1.3.2 Where does the antibiotic resistance come from ?

We previously dealt with the natural process of resistance but the main
cause is still a lack of public knowledge on antibiotics, leading to a misuse
even if their prescription and purchase are more and more controlled. This
improper use of antibiotics involved a non-natural selective pressure on mi-
croorganisms which forced them to rapidly evolve [66,82,180]. Moreover,
given that most antibiotics stem from natural fungi or bacteria, additional
selection pressures may happen due to antibiotic-producing strains. Indeed,
these strains may either transfer genes encoding resistance to their own
antibiotic (generally located in the same cluster as the antibiotic biosynthesis
ones) [92] or produce the antibiotic directly in the environment applying a
selective pressure on neighboring organisms [7]. One may even speak about
a genuine "resistome", namely a reservoir of resistance genes [156].
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Figure 3: Main mechanisms and acquisition pathways involved in antibiotic bacte-
rial resistance. Figure inspired from Figure 1 in Chellat et al., 2016 [41].

According to a recent study, the antibiotic resistance might also arise from
several drivers (clinical, biological, social, political, economic, environmental)
and results underline, for example, a clear difference between high-income
countries, in which antibiotic use remained flat over the past fifteen years,
and low to middle income countries in which antibiotic use suffered a sharp
increase due to economic improvements and changes in diet [191].

Another source of antibiotic resistance lies in agriculture field including
feedstocks, husbandry, aquaculture [90], horticulture, animals and so on. In
the next lines, we will see some examples to illustrate this.

— Agriculture — The prophylactic use of antibiotics in feeds (e.g., sulfon-
amides or other non-clinically relevant antibiotics), in other words, the
process of treating to prevent disease, may have far-reaching implications for
human health since it could potentially lead to the co-selection of environ-
mental bacteria with resistance to clinically important antibiotics [28].

Furthermore, during the fattening process, some veal calves are probably
fed with milk containing antimicrobial residues which is hypothesized to
explain the high extended spectrum β-lactamase (ESBL) loads in animals
at the entrance on farms [79]. By the same logic, antimicrobial effects on
swine gastrointestinal microbiota were analyzed and outcomes revealed an
emergence of antibiotic resistance genes (ARGs), in other words, another
kind of "resistome" [211].
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— Companion animals — Pets are not spared from antibiotic resistance
since some veterinary studies have been carried out on cats, dogs and horses,
highlighting a global lack of guidelines in this field (inappropriate doses,
veterinarian-dependent treatments. . . ) [94,140,179]. In addition, antibiotics
used in veterinary medicine from the Mediterranean Basin include mainly
tetracycline, aminoglycosides, fluoroquinolones, and polymyxins, but emer-
gence of ESBL and carbapenemase producers in animals seems to be related
to the co-selective pressure applied by the misuse of non-β-lactams rather
than to the use of β-lactams [53].

— Food — In terms of food, highly virulent strains of Arcobacter butzleri
were isolated from shellfish and characterized as multi-resistant (β-lactams,
vancomycin, tetracycline), raising questions about potential risks related
to their consumption [67]. Even more worrisome, carbapenem-resistant
enterobacteriaceae were found in ready-to-eat vegetables from supermarkets
in China, which constitutes a food safety issue [122].

1.3.3 Environmental spread of antibiotic resistance

Environment has, despite itself, a dual role in antibiotic resistance since
it is simultaneously guilty about being a huge "resistome" with all existing
antibiotic-producing bacteria, and victim of human or animal activities as
we saw in the previous subchapter. Thus, in this part, we will itemize a few
recent examples concerning the evolving environment behavior in antibiotic
resistance phenomenon.

In waters and soils, microorganisms are potentially threatened by pres-
ence of antibiotics increasingly released into these environments by agricul-
tural [127], human and animal activities. To enlighten this last point, a study
has been achieved on crows used to roost in a constructed wetland near
the University of Washington Bothell/Cascadia College (UWB/CC) campus.
Fecal isolates from Crow Roost and water isolates had similar antibiotic resis-
tance pattern whose approximately 40% were multi-drug resistant. However,
strains did not appear to survive for long in the wetland, but it shows a
possible transfer from corvids to waters. With their habits to forage on a
variety of wastes (garbage dumps, hospital, animal, feedlots), crows should
be considered as potential reservoirs and vectors of antibiotic resistant and
pathogenic bacteria (here, Escherichia coli), underlining a significant environ-
mental threat [175].
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— Soils — In addition, main processes determining the antibiotic persistence
in soils are sorption to organic particles and degradation/transformation. An
in-depth study revealed a wide range of disappearance time 50 (DT50) and
half-life values, depending on antibiotic physico-chemical properties, soil’s
features, and climatic factors (temperature, rainfall, humidity).

As a reminder, in Eco-toxicology language, half-life corresponds to the
time taken for 50% transformation of a test substance when the transfor-
mation can be described by first-order kinetics (value independent of the
initial concentration) and DT50 means the time needed to reduce the initial
concentration of this substance by 50%.

This way, some antibiotics have a half-life higher than 100 days, such as
fluoroquinolones (e.g., ciprofloxacin: 3466 days), tetracyclines (e.g., doxy-
cycline: 578 days), and macrolides (e.g., azithromycin: 990 days), while
easily-hydrolysable antibiotics have a half-life lower than 10 days, like β-
lactams (amoxicillin: 0.6 days). Results also underlined the antibiotic impact
on soil microbiome modifying both its composition (i.e., Gram-negative bac-
teria, Gram-positive bacteria, fungi) and its enzymatic activity. Nonetheless,
authors emphasized the discovery of new genes and enzymes related to
antibiotic resistance but claimed that precise estimation of the impact of
antibiotics on the activity and diversity of soil microbial communities remains
a great challenge [52].

— Waters — On the other hand, the emergence of antibiotic resistance in
waters has been scanned through several investigations across the world. In
Lake Água Preta (Brasil), used for human activities including post-treatment
consumption, high dissemination of ESBL-producing bacteria was observed
although authors mentioned this lake did not exhibit features of a strongly
impacted environment [71].

Moreover, wastewaters have been widely analyzed in order to detect an-
tibiotic resistance signs: in China, ESBLs-producing Escherichia coli isolated
from wastewater treatment plants showcased the role of plasmids in the mul-
tiple antibiotic resistance transfer [196]. Similarly in Sweden, β-lactamase
genes were identified from aquatic environments impacted by household and
hospital wastewater [110], while in Israel, the disinfection of greywater to
reduce the potential presence of pathogens and ARGs was advised [188].
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Additionally, in the United States, carbapenemase-producing bacteria
(CPB) with clinically important genotypes, including those producing Kleb-
siella pneumoniae carbapenemase (KPC) or New Delhi metallo-β-lactamase
(NDM), were exposed in a global analysis of wastewater treatment plants
effluent and nearby surface waters. As we saw in the subchapter 1.3.2, this is
a concern for both public health and animal agriculture since introduction
of CPB into intensively managed livestock populations could lead to their
amplification and foodborne dissemination [132].

Nevertheless, in silico analysis on Global Ocean Sampling metagenomic
revealed that majority of distant metallo-β-lactamases (MBLs) homologs from
Atlantic, Indian, and Pacific Oceans was mainly related to a chromosomally
encoded MBL, named GOB (i.e., from Chryseobacterium meningosepticum
class B), present in Elizabethkingia genus and only a minority of them was
related to the acquired MBL enzymes (VIM, SPM-1, and AIM-1) responsible
for global resistance in hospitals. Thus, authors concluded that low antibi-
otic impacted marine environments, such as the ocean, are probably not
the first source of the high-virulent ARGs currently threatening the public
health [69].

1.4 Summary

In this global introduction about antibiotic resistance, we first devel-
oped the simultaneous evolution of humans and healing methods, from
the basic use of plants in Prehistory to the elaborated design of medi-
cations by checking for compounds’ chemical identity and their related
biological properties, in the 19th century. Secondly, we defined what
antibiotic resistance phenomenon is and where it comes from, through
the analysis of several examples taken from nature (animals, environ-
ment, antibiotic-producing bacteria) and human activities (agriculture,
hospital, household). Thirdly, we detailed the role of environment in
the spread of antibiotic resistance, mostly supported by an anthropo-
logical help, and we noticed that even though it is not the main source
of current clinical issues, environment takes part in the global dissemi-
nation of ARGs.

In our team, we work especially on β-lactam resistance, therefore
next chapters will be focused on this topic.
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2
Actors of β-lactam resistance

Previously, we learnt that antibiotic resistance occurs when bacteria
evolve either naturally or under antibiotic pressure. Thus, to fully understand
the whole process, actors of β-lactam resistance must be presented. In
this subchapter, we will sequentially present Enterobacteriaceae bacteria, β-
lactam antibiotics and powerful biological weapons developed to fight against
antibiotic pressure: β-lactamases. To further complete the topic, Figure 4
presents other existing classes of antibiotics.

Figure 4: Existing antibiotic classes.

2.1 Enterobacteriaceae

2.1.1 General features

Enterobacteriaceae family is ubiquitous in various worldwide ecological
sources such as soil, water, vegetation and animals. In addition, some species
are human pathogens (e.g., Salmonella enterica, Shigella sp., Yersinia sp.)
while others belong to the mammalian gut microbiota, so called enteric
bacteria, in which they act as opportunistic pathogens (e.g., Escherichia coli,
Klebsiella spp., Proteus spp.).
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Main transmission of intestinal infections is classically fecal–oral with
various pathways: person-to-person, direct contact with animals or their
environment, or consumption of contaminated food or water. Infection may
also have an endogenous origin (e.g., bacterial translocation from the gut
to blood), resulting in extraintestinal disease, and is more often observed in
immunocompromised hosts or persons with underlying conditions such as
cirrhosis or those undergoing chemotherapy.

Enterobacteriaceae are Gram-negative bacteria, thereby with specific
properties further developed in the next part, facultative anaerobes, meaning
they can survive either in presence or absence of molecular oxygen (O2), and
sugar fermenting. Most of them possess flagella allowing motility and type I
fimbriae to adhere to their hosts cells.

2.1.2 Gram-negative bacteria features

Compared to Gram-positive bacteria, Gram-negative bacteria’s cell enve-
lope always includes (1) an outer membrane [62], containing lipopolysac-
charides (LPS), such as lipid A, core polysaccharides and O-antigens in
its outer side and phospholipids in its inner side, which protects (2) the
thin peptidoglycan layer, leading to a non-coloration by crystal violet in
Gram-staining method of bacterial identification (Figure 5), and (3) an inner
membrane, also named cytoplasmic membrane, made up of phospholipids
(e.g., phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl serine
and cardiolipin in E. coli [162]). Unlike Gram-positive bacteria which have a
dense peptidoglycan layer, Gram-negative bacteria have a thinner peptidogly-
can layer which allows the alcohol penetrate the cell, thus eliminating the
crystal violet during the third step.

Space delimited by inner and outer membranes, called periplasm, is filled
with a concentrated gel-like substance which can sequester potentially harm-
ful degradative enzymes such as RNAses or alkaline phosphatases. Otherwise,
LPS, linked to the outer leaflet of the outer membrane thanks to a fatty
acid-containing glucosamine disaccharide (lipid A), are also termed endotox-
ins [107] and are sensitively recognized by the immune system since their
release during cell lysis can cause septiceaemia. Moreover, a classification
of pathogenic strains was defined according to the O-antigens’ properties
after some variations between different strains of the same species were
identified [163]. LPS may bind each other in presence of magnesium ions
to create tight packing, enhanced by the high saturation of their acyl chains,
acting as an effective barrier against hydrophobic molecules.
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Additionally, specific transmembrane proteins, referred to as outer mem-
brane proteins (OMPs) or porins, contain large domains folded into β-sheets
and wrapped into cylinders, whose some of them (e.g. OmpF, OmpC) allow
the passive diffusion of small molecules such as monosaccharides, disaccha-
rides and amino-acids. Porins may also limit the diffusion of hydrophilic
molecules larger than around 700 Daltons.

To sum up, association between LPS and porins creates a powerful, effec-
tive and selective permeability barrier [145].

Figure 5: The Gram-staining method.

2.1.3 Peptidoglycan formation

Peptidoglycan, or murein, is one of the three layer constituting the cell
wall in Gram-negative bacteria. It is built by repetition of disaccharide N-
acetylglucosamine (NAG or GlcNAc) and N-acetylmuramic acid (NAM or
MurNAc), cross-linked by three to five peptide side chains [192] (Figure 6),
leading to a 3D mesh-like layer. Peptidoglycan monomers are synthesized
inside the cell, before being attached to a membrane carrier, named bacto-
prenol, and transported across the inner membrane. Once in the periplasm,
enzymes called transglycosidases perform a transglycosylation process, to
insert the newly created monomers into the existing peptidoglycan. In this
way, the C4 hydroxyl group of the GlcNAc will be joined to the C1 of MurNAc
in the glycan, displacing the lipid-PP from the glycan chain [203].
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Figure 6: Peptidic connection between two peptidoglycan layer. Figure modified
from GlycoPedia website [https://www.glycopedia.eu/e-chapters/the-
structure-of-bacterial-cell/article/peptidoglycan-molecular-structure].

2.1.4 Penicillin-binding proteins

Historically, penicillin-binding proteins (PBPs) are D,D-transpeptidases
for which identification was carried out by covalent labelling with radioactive
penicillin followed by gel electrophoresis [210]. PBPs catalyse the poly-
merization of the glycan strand (transglycosylation) and the cross-linking
between glycan chains (transpeptidation), as presented in Figure 7. This
enzymatic reaction follows a three-step mechanism: (1) fast and reversible
formation of a non-covalent Henri–Michaelis complex between the enzyme
and a peptidoglycan stem pentapeptide, called the donor strand, followed
by (2) attack of the active site serine on the carbonyl carbon atom of the
C-terminal D-Ala-D-Ala peptide bond, leading to the formation of an acyl-
enzyme intermediate and the simultaneous release of the C-terminal D-Ala
(acylation), and (3) deacylation in which either the shortened peptide is hy-
drolysed and released (carboxypeptidation), or is cross-linked with a second
peptidoglycan stem peptide called the acceptor strand (transpeptidation).

As exposed in Figure 6, the donor strand is covalently linked to the glycan
strands with an amide bond to the carboxyl carbon of the D-lactyl group of the
MurNAc. While glycans’ composition is highly conserved across species, this
pentapeptide sequence is more diverse and involve D-amino-acids, namely
non-natural.
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In the first position from the lactyl group, we found a L-alanine (L-Ala)
followed by a D-isoglutamic acid (D-iGlu), which is sometimes amidated
in Gram-positive bacteria to yield a D-isoglutamine (D-iGln). Then, the γ-
carbon of this residue is connected to probably the most variable amino acid
within the stem peptide, usually the meso-diaminopimelic acid (m-DAP) or
a D-lysine (D-Lys) in Gram-negative and Gram-positive, respectively [192].
Finally, the peptide stem ends with two D-alanines (D-Ala).

Despite a D,D-transpeptidase activity involving the formation of cross-
bridges, PBPs also display a D,D-endopeptidase activity to hydrolyse the
cross-bridges [173].

The main interest in developing new β-lactam antibiotics lies in the
structural resemblance between the D-Ala-D-Ala pattern and β-lactam ring;
this key point will be explained in the next section.

Figure 7: Peptidoglycan formation and inhibition of the penicillin-binding
protein (PBP). Figure inspired from Wikimedia Commons website
[https://commons.wikimedia.org/wiki/File:PBP_catalysis.svg].

2.2 β-lactam antibiotics

Since the discovery of penicillin, β-lactams remain among the most com-
monly used antibiotics to treat microbial infections, as concluded in a recent
survey about antibiotic consumption [113]. This widely use is due to the
efficiency and low toxicity of β-lactams besides having a mechanism targeting
a vital cellular function of bacteria, namely the cell wall synthesis, which is ab-
sent in humans cells. Otherwise, scientists have achieved numerous changes
in order to improve their chemical properties such as potency, spectrum of
activity, pharmacokinetics and safety profiles.
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2.2.1 Structure

Nowadays, four main classes of β-lactam antibiotics are prescribed in
clinics, including a monocyclic scaffold, namely monobactams [96, 182],
and bicyclic scaffolds, named according to the nature of the second cycle
linked to the initial four-membered β-lactam: penicillins (five-membered
thiazolidine), cephalosporins (six-membered dihydrothiazine) [26,144] and
carbapenems (five-membered pyrroline) [27]. Figure 8 depicts these chemi-
cal structures together with some examples of modified antibiotics used to
treat infections.

Figure 8: The four β-lactam classes.

2.2.2 Mode of action

Initially, β-lactams were identified as antibacterial agents due to their
structural similarity with the terminal D-Ala-D-Ala moiety [184], in other
words, the β-lactam amide and adjacent carboxylate groups mimicking the
peptide bond in peptidoglycan stem pentapeptide (as previously presented in
section 2.1).

Expected activity results from a nucleophilic attack of the PBP active
site serine on the β-lactam ring, leading to its opening (Figure 7). The
newly created acyl-enzyme complex is stable and not immediately hydrol-
ysed, thus inactivating the PBP enzyme and preventing the peptidoglycan
transpeptidation process [173].
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In consequence, given the subsequent bacterial cell wall weakening,
osmotic pressure differences between inside and outside of the cell cause
lysis and bacteria death [152].

2.2.3 Examples of chemical modifications

One golden rule: antibacterial activity has to be retained after application
of selected structural changes. This way, several positions on the β-lactam
scaffold should be considered: C6 in penicillins, C3 and C7 in cephalosporins,
C2 in carbapenems and C3 in monobactams (Figure 8).

Some modifications led to key developments such as introduction of
aminopenicillins (e.g., ampicillin) to extend penicillins’ spectrum activity
including Gram-negative bacteria [168], methicillin to counter penicillin-
resistant Staphylococcus aureus strains [167], and oxyiminocephalosporins
(e.g., cefotaxime, ceftazidime) to halt emergence of β-lactamase-mediated
resistance in Gram-negative bacteria [130].

2.3 β-lactamases

As previously outlined, different mechanisms may cause the emergence
of resistance, including, in the case of β-lactams, mutation or expression
of alternative PBPs, down-regulation of porins required for β-lactam entry,
efflux systems’ over-expression and production of specific enzymes (Figure
3) [111]. During my thesis, I mainly focused my work on the enzyme-
mediated resistance which arises from the activity of β-lactamases, enzymes
produced by both Gram-positive and Gram-negative bacteria in order to
hydrolyze the β-lactam amide [32].

Since resistance arose in Staphylococcus aureus via production of the PC1
enzyme [112] and methicillin was introduced to counter it [167], it’s a bit of
cat and mouse between scientists and bacteria. Nevertheless, introduction of
new β-lactams caused the emergence of new β-lactamases either by mutation
of existing families or dissemination of genes encoding new enzymes; as
a reference, the β-lactamase database (www.bldb.eu) [141] now gathers
information from over 4300 enzymes more or less characterized.
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2.3.1 Classification

Two systems are currently used to classify β-lactamases: one based on
activity, the Bush–Jacoby–Medeiros system [33,34], and another based on
sequence information, the Ambler system [9]. The latter defines four distinct
classes, namely class A, B, C and D, according to specific sequence patterns.
Furthermore, these four classes are split into two subgroups according to their
hydrolytic mechanism: classes A, C and D are defined as serine β-lactamases
(SBLs), with a catalytic serine, and class B includes metallo-β-lactamases
(MBLs), with one or two zinc ions as catalysts.

— Class A represent the most studied group with representative enzymes like
TEM (named after the patient Temoneira providing the first sample), SHV
(Sulfhydryl reagent variable), KPC (Klebsiella pneumoniae carbapenemase)
and CTX-M (Active on cefotaxime, first isolated at Munich). They can hydrol-
yse penicillins (amoxicillin, ticarcillin, piperacillin) but they are susceptible
to some inhibitors such as clavulanic acid, tazobactam and sulbactam.

— Class B gathers metalloproteins whose hydrolytic activity depends on
the presence of one or two zinc ions in the active site. Well-known enzymes
of this class are NDM (New Delhi metallo-β-lactamase) and VIM (Verona
integron-encoded metallo-β-lactamase). Otherwise, no activity on aztreonam
was reported and classic inhibitors are inefficient compared to divalent ion
chelators as EDTA (ethylenediaminetetraacetic acid).

— Class C β-lactamases, also termed cephalosporinases, may hydrolyse
aminopenicillins and first, second and third-generation cephalosporins. They
are inhibited by cloxacillin but clavulanic acid has no effect on them. CMY
(Active on cephamycins) and ADC (Acinetobacter derived cephalosporinase)
are representatives of this family.

— Class D enzymes, or oxacillinases (OXA), constitute a very heterogeneous
group based on hydrolysis profile. Initially, an enzyme was identified as
oxacillinase if the latter was able to hydrolyse oxacillin faster than it hy-
drolyses benzylpenicillins, but this definition has widely evolved regarding
the variety of enzymes currently observed among this class. Moreover, cer-
tain groups are especially involved in carbapenem resistance, for example,
OXA-23 and 24/40 groups in A. baumannii, and the OXA-48 group in Enter-
obacteriaceae.
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Figure 9: Three-dimensional structures of representative β-lactamases from each
class. Catalytic residues are displayed in orange and zinc ions as gray
spheres for serine-β-lactamases and metallo-β-lactamase, respectively.
Structures have been selected with two criteria: absence of relevant
ligands in the active site, namely apo-structures, and a resolution as high
as possible. (A) Class A KPC-2 (PDB 5ul8 1.15 Å). (B) Class B NDM-1
(PDB 5zgy 0.95 Å). (C) Class C AmpC (PDB 1ke4 1.72 Å). (D) Class D
OXA-48 (PDB 3hbr 1.90 Å). Figure inspired from Fig. 2 in Tooke et al.,
2019 [186].

2.3.2 Enzymatic mechanisms

First step of SBLs’ mechanism is similar to PBPs one: the catalytic serine
performs a nucleophilic attack on β-lactam ring resulting in its acylation
(covalent complex). Then, the complex is hydrolysed via a water molecule
located at a strategic position only in SBLs since there is no β-lactamase
activity in PBPs. MBLs use, in turn, a zinc-activated nucleophilic water to
lead the hydrolysis. Both mechanisms are reported in Figure 10.

— SBLs — Once regenerated after the nucleophilic attack of the water
molecule on acyl-enzyme complex, SBLs may inactivate additional β-lactam
molecules. This enzymatic reaction may be written as follows:

E+S k1−−⇀↽−−
k−1

E : S k2−−→ E−S k3,H2O−−−−→ E+P

in which, E, S, E:S, E-S and P represent a β-lactamase, a β-lactam substrate,
the Michaelis complex, the acyl-enzyme and the product with no longer
antibiotic activity, respectively.
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Figure 10: Mechanism of carbapenem hydrolysis achieved by serine-β-lactamases
(A) and metallo-β-lactamases (B). Key residue means the residue(s) —
may be the same — needed for the activation of Ser70, which is different
for each SBL class: Glu166 (class A), Tyr150 (class C), carboxylated ly-
sine KCX73 (class D), and for the activation of hydrolytic water. In MBLs
mechanism, anionic nitrogen intermediate is assumed to be protonated
by Asp120.

About rate constants, k1 and k−1 are related to the association and the
dissociation of the pre-acylation complex, k2 to the acylation process, and k3

to the deacylation process. Moreover, β-lactamases’ kinetics may be under-
stood thanks to various descriptors:

– Km, the Michaelis-Menten constant [72], defined as: Km = k3Ks

k2 + k3

where Ks, the thermodynamic constant [45], is: Ks = k−1 + k2

k1

– kcat, the maximum turnover number, defined as: kcat = k2k3

k2 + k3

– Vmax, the maximal activity, defined as: Vmax = kcat[ET ]
where ET is the total concentration of enzyme.

Also, Km, expressed in terms of concentration, represents the relative
affinity between E and S and the velocity at which the E-S complex is con-
verted into E and P; the bigger Km value is, the lower affinity is. Km also
corresponds to the substrate concentration when the velocity is equal to one
half of the maximal velocity for the reaction, meaning Vmax/2.
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— MBLs — Unlike SBLs, MBLs are zinc-containing enzymes with a differ-
ent hydrolytic mechanism in which a water molecule, coordinated to one
or two zinc ions, is activated into hydroxide anion (HO–) before opening
the β-lactam ring (Figure 10). Based on the zinc reliance, class B has been
subdivided into three subclasses: B1, which are enzymes fully active with
either one or two ions, B2 including enzymes which use one ion and are
inhibited by binding of an additional ion, and B3, with enzymes requiring
two ions [18,73,88,155].

Moreover, those subclasses do not have the same hydrolysis profile:
B1 and B3 enzymes have a broad-spectrum substrate profile (penicillins,
cephalosporins, and carbapenems) while B2 ones exhibits a narrow profile
focused on carbapenems [151].

Coming back to mechanisms, MBLs, with a di-zinc active site such as S.
maltophilia L1 (B3), first bind the β-lactam substrate through its carboxylate
and carbonyl groups, bridged by an activated water molecule. Then, one of
the zinc ions, helped by adjacent residues, polarizes the β-lactam carbonyl
to facilitate the nucleophilic attack by the hydroxide ion, which is hydro-
gen bonded to deprotonated Asp120. A tetrahedral species is subsequently
created but quickly transformed into an intermediate in which the β-lactam
nitrogen is anionic. Finally, a proton, whose origin is not validated and may
come from Asp120 or a close water molecule, is added to this nitrogen, whose
leads to the product formation.

Similarly in Bacillus cereus BcII enzyme (B1), which is active in both its
mononuclear and di-nuclear forms, mechanism requires the hydroxide ion to
be hydrogen bonded with Asp120 and other active site residues, and to be
bound to the zinc ion [49,197]. In this case, the source of the proton needed
to protonate the β-lactam nitrogen is unknown.

Finally, in the case of CphA enzyme (B2), the presence of a second
zinc ion is inhibiting. The proposed mechanism includes a water molecule
activated by either His118 or Asp120, rather than a zinc-mediated activa-
tion. The singular zinc ion appears to help the coordination of β-lactam
nitrogen [78,205].
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2.4 Summary

In this descriptive subchapter about actors of β-lactam resistance,
we first described the powerful weapons used by Enterobacteriaceae,
such as the presence of an outer membrane, porins or β-lactamases, in
order to fight against antibiotics pressure.

Secondly, we briefly exposed the chemical structures of developed
β-lactams and we explained how they work as a peptide bond mimic
of D-Ala-D-Ala pattern found in the peptidoglycan stem pentapeptide,
which is a penicillin-binding proteins’ substrate. This structural similar-
ity leads to inhibition of PBPs and, consequently, prevents the cell wall
formation and kills bacteria.

Thirdly, we focused on enzymes able to counter the antimicrobial
property of β-lactams by hydrolysing the β-lactam ring, hence their
name, β-lactamases. We also dealt with their classification, exposing
four classes with their respective features (spectrum of activity, poten-
tial inhibitiors. . . ) and two main hydrolytic mechanisms, either with a
catalytic serine or with one or two zinc ions.

For further information about β-lactamases (classification, existing
inhibitors, mechanisms. . . ), I recommend the reliable review written by
Tooke et al. [186].

Now that actors of β-lactam resistance have been reviewed, let’s in-
troduce the strategies established to limit, prevent and neutralise the
spread of existing resistant strains.
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3
Strategies against β-lactam resistance

Given the growing threat of antibiotic resistance in pathogens, novel
antimicrobial strategies need to be developed. For example, targeted killing
of pathogenic bacteria without harming the host microbiota is a promis-
ing strategy to cure disease and limit both antimicrobial-related dysbiosis,
namely a microbial imbalance inside the body (impaired microbiota), and
development of antimicrobial resistance.

An obvious strategy is the development of inhibitors active against bac-
teria’s main functions, such as biofilm formation [153], conjugation pro-
cess [23, 36], or protein translation by targeting and using the ribosomal
machinery as a platform for the directed-evolution of peptide-based antibi-
otics [40].

Otherwise, many reviews have been published about current strategies
used in the fight against antibiotic resistance [22,42,116,139,158,174,176]
and in this subchapter, we will provide a non-exhaustive list of the most
representative examples.

3.1 Antimicrobial adjuvants

This strategy relies on the synergy which may exist between compounds,
either natural or synthetic but with antimicrobial properties, and existing
antibiotics [81].

As a first example, iron oxide nanoparticles (IONPs), used in clinics for
their biocompatibility and magnetic properties, have been conjugated with
last-resort glycopeptide antibiotic teicoplanin to be magnetically directed to
infection sites [13].

More recently, combination of low-concentrated polymer, termed P, and
doxycycline killed over 99% of planktonic and biofilm Pseudomonas aerug-
inosa in 20 minutes, besides reducing the rate of resistance development
and restoring susceptibility to treatment in the resistant strains [143]. The
polymer P is composed of several units of biocompatible oligoethylene glycol
important for the low-fouling properties, hydrophobic ethylhexyl groups to
induce membrane disruption, and primary amino groups to interact with the
bacterial membrane (Figure 12.A).

27



This is also the case of β-lactamase inhibitors which have the mission to
incapacitate β-lactamases while antibiotic reach its target [41].

Given the β-lactam-oriented research focus of our laboratory, this point is
detailed below with a rapid overview of existing β-lactamase inhibitors.

3.1.1 β-lactamase inhibitors

Such anti-β-lactamase agents may act as (1) reversible/irreversible in-
hibitors with high affinity but unfavorable steric interactions (e.g., carbapen-
ems, cephalosporins), or (2) mechanism-based "suicide inhibitors" [30]. The
latter follow a mechanism of irreversible inactivation which may be written
as the following equation:

E+I k1−−⇀↽−−
k−1

E : I k2−−→ E − I∗ k3−−→ E−I

in which, E, I, E:I, E-I* represent a β-lactamase, a β-lactamase inhibitor, a
β-lactamase-inhibitor complex, and the permanently inactivated β-lactamase
or "dead-end complex", respectively.

About rate constants, k1 and k−1 are related to the association and the
dissociation of the β-lactamase-inhibitor complex, and k2 to the irreversible
inactivation. Irreversible inhibition can be characterized by first-order rate
constants: kinact, the inactivation rate achieved with an “infinite” concen-
tration of inactivator, and KI , the inhibitor’s concentration for which an
inactivation rate equal to kinact/2 is reached [29, 45]. However, while KI

may be approximately compared to Km for enzyme substrates, depending on
individual rate constants (k1, k−1, k2 and k3), the KI may or may not equal
the equilibrium constant Ki (= k−1/k1) determined under pre-steady-state
conditions.

Furthermore, the inhibitory concentration 50 (IC50) measures the amount
of inhibitor required to decrease the enzyme activity to 50% of its uninhibited
velocity. While an IC50 can reflect the inhibitor’s affinity or kcat/kinact ratio,
these parameters are not always concordant, namely an inhibitor can have
a weak "affinity" and slowly acylate the enzyme but still yield a low IC50
because of low deacylation rates.

Otherwise, the inhibitor’s activity can be evaluated by the turnover num-
ber (tn) (also equivalent to the partition ratio [kcat/kinact]), defined as the
number of inhibitor molecules hydrolysed per time unit before the irreversible
inactivation of one enzyme [35].

Figure 11 presents some inhibitors approved or in clinical development.
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Figure 11: Overview of existing β-lactamase inhibitors.

3.1.2 Newly discovered antimicrobials

Emergence of new antibacterials targeting both Gram-positive and Gram-
negative bacteria is needed as soon as possible to fight against the increasing
antibiotic resistance. To illustrate this point, a mini-review of developed
antibiotics, in the last two years, is presented below and Figure 12 sums up
their representative structures.

— Chemical compounds — From the early 1960s, quinolone has been im-
proved, from a narrow to an expanded spectrum and high efficacy against
both Gram-positive and Gram-negative bacteria, including mycobacteria, and
anaerobes. They may act by either inhibiting bacterial nucleic acid synthesis,
or disrupting the topoisomerase IV and DNA gyrase enzymes, or causing
breakage of bacterial chromosomes [157].

A tetrazole compound with dual inhibitory activity on SBLs and MBLs
was reported, together with crystal structures of complexes with CTX-M-14,
KPC-2, both serine β-lactamases (class A) and NDM-1, a metallo-β-lactamase
(class B) [187].

Tryptamine derivatives (Figure 12.B), used as antibiotic adjuvant, are
able to disarm colistin resistance in Gram-negative bacteria, with no bac-
terial toxicity [16], as well as niclosamide and its O-alkylamino-tethered
derivatives [206].
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Figure 12: Original developed antibiotics.

6-Bromoindolglyoxylamide derivatives (Figure 12.C) play a dual role as
antimicrobial agents and antibiotic enhancers in Gram-positive and Gram-
negative bacteria, through a rapid membrane depolarization and permeabi-
lization [120]. New β-lactam–tetramic acid hybrids also show promising
activities against both Gram-type bacteria [44].

Cyclic boronates may inhibit all SBLs classes by mimicking tetrahedral
intermediates common to SBL and MBL catalysis (Figure 11) [37,115].

— Antimicrobial peptides (AMPs) — Antimicrobial peptides (AMPs) are
highly selective, well tolerated and safe as an antimicrobial treatment [133],
may rapidly kill target cells, and display a broad activity spectrum on
pathogens like fungi, bacteria, virus and protozoan [54,64,65].

Additionally, AMPs belong to innate system of insects, amphibians and
mammals [55]. Recent developments led to the discovery of novel and
potent AMPs, such as helicoidal AMP with reduced hemolytic effect [119],
tridecaptin-inspired antimicrobial peptides with strong activity against MDR
Gram-negative bacteria [14].

In a similar vein, dimeric lysine N-alkylamides, developed as mimics of
AMPs, revealed high specificity on bacteria over mammalian cells, through a
suggested bacterial cell membrane disruption, and biofilm formation inhibi-
tion [147].
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Lately, AMPs from medicinal leech Hirudo medicinalis have been directly
identified in its genome by computational algorithms, synthesized and tested,
yielding promising outcomes on bacterial growth inhibition [83].

Very recently, an antimicrobial peptide, termed thanatin, was found to be
able to disrupt the outer membrane of NDM-1-producing bacteria by com-
petitively displacing divalent cations on the outer membrane and inducing
the release of lipopolysaccharides. Furthermore, an inhibition activity has
been highlighted on NDM-1 enzyme through the displacement of active site
zinc ions, therefore reversing carbapenem resistance in NDM-1-producing
bacteria in vitro and in vivo [126].

— Promising antibiotic combinations — Novel β-lactam-β-lactamase in-
hibitor combinations are expected to treat carbapenem-resistant Gram-negative
pathogens, like ceftazidime-avibactam and meropenem-vaborbactam. Vabor-
bactam (Figure 11), a boronate-based compounds known to inhibit SBLs, has
been recently classified as moderate inhibitor of MBLs [117].

New drugs are in clinical development such as avibactam combined
with aztreonam or ceftaroline, or the combination imipenem/cilastatin
with relebactam. However, β-lactam/β-lactamase inhibitors are ineffective
against MBLs (except aztreonam-avibactam) as well as Acinetobacter bau-
mannii [108].

Moreover, study of collateral sensitivity patterns in CTX-M-15 β-lactamase
revealed three non-synonymous mutations with increased resistance against
mecillinam or piperacillin–tazobactam while confering full susceptibility to
several cephalosporin drugs. Combination of mecillinam and cefotaxime
eliminated both wild-type and resistant CTX-M-15. This result underlines
how the rational design of drug combinations may limit the resistance evolu-
tion of horizontally transferred genes [169].

— Natural compounds — Mechanism of action of rhodomyrtone (Figure
12.D), an antibiotic isolated from the rose myrtle Rhodomyrtus tomentosa
used in Asian traditional medicine, has been recently elucidated and revealed
that rhodomyrtone traps membrane proteins in vesicles disrupting several
cellular functions, including the respiratory chain and the ATP synthase com-
plex. Given its uncharged non-amphipathic scaffold, rhodomyrtone is not a
typical membrane-inserting molecule.
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Molecular dynamics simulations revealed that it transiently binds to
phospholipid head groups causing distortion of lipid packing, thus providing
explanations for membrane fluidization and induction of membrane curva-
ture [171].

Besides its anti-tumor effects, embelin (Figure 12.E), a plant-based ben-
zoquinone which is the major active constituent of Embelia ribes Burm fruits,
can restore meropenem activity against a panel of NDM-positive pathogens
by interacting directly with the zinc ion through its hydroxyl group (proved
only by molecular dynamics simulation) [146].

Darwinolide (Figure 12.F), a marine natural product from the Antarc-
tic sponge Dendrilla membranosa, was shown to exhibit promising activ-
ity against the biofilm phase of methicillin-resistant Staphylococcus aureus
[178].

Numerous other scaffolds are also under investigation, such as cyclobu-
tanone [1], functionalized benzosiloxaboroles [61], or captopril-inspired
mercapto-propionamide [136]. If you are interested in reading more about
β-lactamase inhibitors, I recommend the following readings: Rotondo et
al. [170] for MBLs inhibitors, Krajnc et al. [115] for cyclic boronates’ dual
activity, and Docquier et al. [56] for an updated review on β-lactamase
inhibitors.

3.2 Experimental strategies

3.2.1 Inteins and pro-drugs

Inteins, also named protein introns, are protein sequences embedded into
a host protein, termed extein, from which they are auto-catalytically excised
in a process called protein splicing. During this, the intein ligates the extein
extremities, for example with a peptide bond, and allows the reconstitution
of the mature protein (Figure 13).

In a recent study, authors succeeded in engineering toxin–intein an-
timicrobials to selectively target and kill antibiotic-resistant Vibrio cholerae
bacteria [124]. Results showed a total extermination of resistant strains, with
a rate of escape mutants around 106-108, in zebrafish and crustacean larvae
which are natural hosts for Vibrio species.
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Figure 13: The intein mechanism. Figure inspired from Fig. 1 in Mazel et al.,
2019 [124].

Another strategy consists in using intrinsic enzymes of bacteria, such as
β-lactamase, to trigger the release of a specific antibiotic. For example, a
synthetic hybrid including a siderophore, a cephalosporin and an oxazolidi-
none, has proved its efficiency on Gram-negative bacteria [123]. Indeed, the
cephalosporin core is hydrolysed by a β-lactamase, releasing the oxazolidi-
none which can inhibit its target (Figure 14).

In normal treatment, Gram-negative bacteria are not affected by oxazo-
lidinone, due to their strong outer membrane and efflux systems. So, this
strategy revealed that it is possible to bypass these barriers using a pro-drug
system.

3.2.2 Bacteriophages

A bacteriophage, or informally phage, is a virus able to infect bacteria
and archaea by injection of its genome, so called prophage, in the cytoplasm,
with the aim to replicate itself. One strategy to counter antibiotic resistance
is to use temperate and lytic bacteriophages programmed to sensitize and
kill antibiotic-resistant bacteria (ARBs). Besides performing a typically lytic
life cycle, temperate bacteriophages are able to perform a lysogenic life cycle
in which introduction of prophage does not lead to bacteria death (Figure
15).
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Figure 14: β-lactamase as biological scissors to release a drug inside the cell.
Here, an oxazolidinone (compound 3) is released after the action of
a cephalosporinase on the cephalosporin core of the initial drug (com-
pound 1). Graphic modified from Figure 1 in Miller et al., 2018 [123].

Figure 15: Bacteriophages’ lytic and lysogenic cycles.
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This strategy has been already used to deliver a functional clustered
regularly interspaced short palindromic repeats–CRISPR-associated (CRISPR-
Cas) system into the ARBs’ genome [208]. Results outlined that this system
destroys both resistance-conferring plasmids and genetically modified lytic
phages, revealing a suitable strategy to kill only ARBs while protecting
antibiotic-sensitized bacteria. According to authors, such designed phages
might be used on hospital surfaces or hand sanitizers to facilitate elimination
of antibiotic-resistant pathogens.

Another study about carbapenem-resistant Acinetobacter baumannii was
carried out using lytic bacteriophage SH-Ab15519, rescuing mice from lethal
A. baumannii lung infection without harmful side effects [93].

3.2.3 Monoclonal antibodies

A reliable state-of-the-art has been done in a recent review about the
current situation of monoclonal antibodies research for MDR infections [135].
Antibodies have two main mechanisms of action which include (1) the
binding of bacterial surface-exposed antigenes, inducing lysis through either
the formation of the membrane attack complex (MAC) or phagocytosis, and
(2) the binding to bacterial exotoxins (Figure 16).

Figure 16: Antibodies’ mechanisms of actions. (A) Antibodies carry a complement
to activate the Membrane Attack Complex (MAC) leading to the cell
lysis. (B) Antibodies may promote the phagocystosis process by bringing
target bacteria closer to phagocytic cell effector. (C) Antibodies may
block exotoxins’ dissemination by catching them once released.
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3.2.4 Environmental aspects

This strategy aims to eliminate both ARBs and antibiotics present in
environmental places. Low-energy anaerobic–aerobic treatment reactors,
constructed wetlands, disinfection (chlorination), coagulation, nanomate-
rials and biochar are efficient processes to remove them from wastewater
treatment plants [15].

To understand the last three mechanisms, coagulation is an active method
to remove colloidal particles in water and treat turbidity, color, natural or-
ganic matter, and heavy metals [209], given the negative and positive charges
carried by colloidal particles and coagulants, respectively.

Regarding nanomaterials, two different mechanisms are possible: (1)
toxic ions are released by a functionalized nanomaterial, right after its entry
within the ARB, in combination with antibiotics, and (2) synergistic effects
are obtained through the same combination but, this time, with an active
effect from each partners.

Finally, biochar is active charcoal, derived from the pyrolysis of carbon-
rich biomass, containing rich mineral elements, large specific surface area
[207], and pores in which contaminants may be sorbed.

3.3 Theoretical strategies

3.3.1 Mathematical model

Most of health authorities think antibiotic use is linearly related to re-
sistance rates. However, theoretical and mathematical models stated that
relationships between antibiotic use and resistance rates is not linear, based
on the existence of fitness costs associated with resistance genes. Indeed, the
latter may only gain a survival advantage in environments with an antibiotic
selection pressure exceeding critical thresholds.

This way, some scientists identified minimum thresholds about use-
resistance relationships in several resistant strains from Europe [125]. Results
provided a first-step in identification of context-specific targets to streamline
the antibiotic use without over-restricting them.
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3.3.2 Algorithm

An original strategy has been developed based on the idea that antimi-
crobial peptide design could be seen as a language in which antimicrobial
peptides play the role of words and grammar refers to the frequency and
placement of amino acids. In addition, this language would be made up of
20 letters, one for each natural amino acid. For a sequence of xi amino acids,
the language model would try to predict the probability distribution over the
20 amino acids for the next amino acid in the sequence xi. A probability dis-
tribution function P (xi|x < i) is learned, where x < i refers to the sequence
of residues before xi (x1 to xi − 1). According to results of LSTM network,
10 peptides were synthesized and tested against known pathogens bringing
to light broad-spectrum antimicrobial activities [142].

3.3.3 Detection

A significant number of kits (~40) have been designed for accurate
detection of carbapenemases (e.g., NDM, VIM, IMP, KPC, OXA-48) using
different approaches such as real-time Polymerase Chain Reaction (PCR) to
amplify carbapenemase genes [91,150], or Matrix Assisted Laser Desorption
Ionization – Time Of Flight (MALDI–TOF) to detect either carbapenemase
activity [11] or plasmid-encoded carbapenemases [46].

3.3.4 Prediction

My thesis work follows this strategy, namely the development of an in
silico method to calculate the free energy cost of mutations in β-lactamases
and assess which one of them could give survival advantages to bacteria, in
order to further develop inhibitors which may counter them. Indeed, resis-
tance needs new mutations beneficial to bacteria while conserving functional
stability brought by important and critical interactions. Thus, it severely re-
duces the number of possible mutational combinations. Hereafter, examples
of antibiotic resistance prediction attempt are reported.

Directed evolution has been qualified as a powerful tool to predict in-
creased antibiotic resistance [148]. In this study, TEM-1 β-lactamase has
been evolved using directed evolution with cefotaxime selection. In all cases,
evolution resulted in the generation of a specific combination of mutations
(500-fold increased resistance).
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This combination was identified as equivalent to clinical isolate TEM-52,
whose crystallographic structure has been solved. Authors concluded that di-
rected evolution combined with structural analysis can be efficient to predict
future mutations which may boost antibiotic resistance.

Another fine study presents molecular modeling as an invaluable tool to
predict allosteric mutants’ effects [118]. First, molecular dynamics simulation
on β-lactamase CTX-M-9 were computed and validated through experimental
assays (hydrolysis kinetics, thermostability, antibiotic susceptibility, X-ray
crystallography. . . ). Results with purified enzymes outlined an increased
catalytic rate and efficiency, while mutant crystal structures did not reveal
apparent changes compared to wild-type. Then, machine-learning analyses
highlighted changes in the binding-pocket conformational ensemble explain-
ing the allosteric mutations’ mechanism of action.

Also, genome mining could be an efficient tool to find new Gram-negative
antibiotics. Two promising cationic nonribosomal peptides, named brevici-
dine and laterocidine, were found via analysis of 7395 bacterial genomes
and displayed bactericidal activities against Pseudomonas aeruginosa and
colistin-resistant Escherichia coli [160].

Lastly, a deep-learning approach, termed Deep-ARG, has been used to
predict ARGs from metagenomic data. Given the 30 antibiotic resistance
categories included, Deep-ARG models has successfully predicted ARGs with
both high precision (> 0.97) and recall (> 0.90). Improvements are expected
for under-represented ARG categories since more data become available and
all predicted results has been reported in a database, so called DeepARG-
DB [12].

3.4 Summary

In this last subchapter, we first presented antibiotic adjuvants use
as the main strategy to counter antibiotic resistance. Those additional
compounds, chemical or bio-mimetic, synthetic or natural, help to over-
come the main defensive barriers of bacteria, such as the outer mem-
brane and β-lactamases. Then, promising experimental strategies were
introduced using biological or chemical tools (bacteriophages, antibod-
ies, pro-drugs, nano materials. . . ). Finally, some computational strate-
gies were exposed with a growing buzz on machine learning techniques
due to explosion of digital information.
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Chapter II
New OPLS-AA force field parameters for

zinc-containing enzymes

1 publication:

Elisée, E., and Iorga, B.I. (2019) OPLS-AA force field parameterization
of zinc-coordinating residues in metalloenzymes. – manuscript submitted to
J. Chem. Inf. Model..





1
Overview

In our team, we mainly run molecular dynamics (MD) simulations in the
OPLS-AA force field for which there was no residue parameterized for coordi-
nating the zinc ion. Indeed, preliminary MD simulations of the representative
metallo-β-lactamase NDM-1 using existing OPLS-AA residues led to failed
coordinations from most of the coordinating residues, except aspartate.

Otherwise, in a force field, one can implement metal coordination by
means of several approaches presented in Figure 17. For simplicity, we se-
lected the non-bonded model depending on electrostatics in order to (1)
develop suitable parameters for computing MD simulations of metalloen-
zymes using a non-laborious approach and (2) assess the robustness of such
approach.

Figure 17: Approaches for implementing a metal into a force field. (A) The bonded-
model requires parameterization of bonds, angles and dihedrals involv-
ing the metal M and coordinating atoms R1−4. (B) The non-bonded
model simply considers electrostatic interactions, like van der Waals and
Coulomb, between M and R1−4. (C) The cationic dummy atoms model
uses cations, mimicking valence electrons of M , to bridge the latter and
R1−4.

In metallo-β-lactamases, the main coordinating residues are histidine,
cysteine and aspartate/glutamate, but some of them also contain a coordinat-
ing glutamine residue. That’s why, my first objective was the generation of
new charges for these amino acids using quantum chemistry calculations and
the Charge Model 5 (CM5). Subsequent validations have been carried out
through MD simulations of representative zinc-containing metalloenzymes.

This way, after a short introduction about force fields, the development
and validation of the new CM5 charges are reported in a publication-based
section.
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2
Force field analysis

Scientific research is mainly based on identification and deep under-
standing of which biological, chemical or physical process is involved before
seeking out alternatives or strategies to solve the problem of interest. This
way, one powerful computational method is to perform MD simulations,
namely let the biomolecule evolve and analyze its behavior in an aqueous
environment.

In MD, a molecule is defined as charged points (atoms) linked by springs
(bonds). The ensemble of bond lengths, bond angles and torsions, but also
non-bonding van der Waals and electrostatic interactions between atoms,
represent a constitutive part of a force field. Thus, the latter can be consid-
ered as a set of equations and associated constants designed to reproduce
molecular geometry and selected properties of training structures, and whose
robustness will strongly affect the trustworthiness of results. There are cur-
rently various generations of force fields built on a simple base — detailed in
this section — and displaying their own changes.

2.1 Emergence of force fields

Hereafter, a brief history about force fields’ origin and a non-exhaustive
list of well-known force fields are presented.

— 1930 — D. H. Andrews suggested to broaden the spectroscopic force
field concepts to carry out molecular mechanics [109].
— 1946 — F. H. Westheimer, also known for his pioneering work in physical
organic chemistry especially in the exploration of dehydrogenase enzymatic
mechanism, and J. E. Mayer defined a method for calculating the activation
energy for the racemization of optically active biphenyl derivatives [201].
— 1947 — F. H. Westheimer succeeded in manually calculating the transition
state of a tetra-substituted biphenyl [200].
— 1948 — T. L. Hill spelled the Van der Waals potential energy curve out [89].
— 1961 — J. B. Hendrickson calculated the first molecular mechanics on
cycloalkanes using a computer [87].
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— 1965 — K. B. Wiberg laid the groundwork for the development of a
molecular mechanics type program with ability to find energy minimum on
elementary cycloalkane compounds [204].
— 1976 — N. L. Allinger published a proof of concept: the first Molecular
Mechanics (MM) force field to make accurate predictions of molecular struc-
tures and properties, named MM1 [8].
— 1981 — P. K. Weiner developed the Assisted Model Building and Energy
Refinement (AMBER) force field using a united-atom description, in other
words, hydrogen atoms are not explicitly considered but are included into the
neighbouring heavy atom [198]. In 1986, S. J. Weiner published the ‘all-atom’
AMBER version in which hydrogen atoms are explicitly described [199].
— 1983 — Karplus’ group designed the Chemistry at HARvard Molecular
Mechanics (CHARMM) force field [25].
— 1984 — Groningen Molecular Simulation (GROMOS) force field develop-
ment by Berendsen et al. [20].
— 1988 — Jorgensen’s group conceived the Optimized Potential for Liquid
Simulations (OPLS) force field [102].
— 2001 — A reactive force field, termed ReaxFF, was elaborated by A. C.
T. van Duin et al. to study reactive chemical systems with thousands of
atoms [189].
— 2004 — J. Wang et al. generalize the existing AMBER force field in a
general AMBER force field (GAFF) [195]. The same year, Marrink et al.
developed a coarse grained (CG) model for lipid simulations [128].
— 2007 — Extension of the lipid CG model to biomolecular simulations, now
termed MARTINI, by Marrink et al. [129].
— 2013 — Polarizability was successfully considered in Atomic Multipole
Optimized Energetics for Biomolecular Simulation (AMOEBA) polarizable
multipole force field generated by Y. Shi et al. [177].

However, the use of a specific force field depends on the nature of
your training system. In that respect, one should employ class I force fields
(AMBER, CHARMM, OPLS) for studying dynamics of proteins or nucleic acids,
class II force fields (MMn series, Merck Molecular Force Field (MMFF)) to get
some properties of organic molecules and hydrocarbons (e.g., conformational
energies, vibrational spectra. . . ), and class III force fields (polarizable and
reactive force fields) to overcome the limitations of the two previous classes
and reproduce physical terms derived from quantum mechanics (QM), such
as total electrostatic energy and charge transfer.
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Indeed, classes I and II force fields are regarded as ‘additive’, namely
individual terms of the potential energy do not have a full physical mean-
ing, electric field modulations and effect of the environment on the charge
distribution are not included — there is no many-body effects. Additionally,
limitations include the transferability principle in which the parameterization
accuracy is better for compound belonging to the same class but not trans-
ferable from a force field to another and above all, it is impossible to have a
break or formation of chemical bonds.

Lastly, since their release, various changes were implemented in the previ-
ously listed force fields which are still undergoing continuous improvements.
To further read about them and others, I recommend the following reviews:
Ponder et al., 2003 [159], Monticelli et al., 2013 [138], Harrison et al.,
2018 [85], Jing et al., 2019 [97].

2.2 Fundamental principles

Force fields are basically designed under either molecular mechanics
(MM) or quantum mechanics (QM) principles. In MM method, classic me-
chanics is used to model molecular systems whose potential energy is de-
scribed as a function allowing the variation of coordinates to find the energy
minimum. Furthermore, by solving the classical equations of motion, one
can explore the MD — in case of proteins, water may be implemented to re-
produce an aqueous environment either explicitly (real hydrogen and oxygen
atoms) or implicitly with a polarizable dielectric continuum.

In QM method, one looks for accurate treatment of the system by solving
the Schrödinger equation with calculations involving higher computational
costs. Moreover, there are three fundamental principles: the quantization,
namely the transition from classical mechanics to quantum mechanics, the
wave-particle duality, in which every quantum entity is better described by
using both particles and waves definitions, and the uncertainty principle,
stating that there is a limit on measurements’ accuracy of each physical
property (e.g., given an electron’s position, its speed can’t be measured as
accurately as its position and vice versa) due to the description of electrons
as waveforms.

To clarify, entities defined by MM are present in a specific place at a
specific time, whereas entities defined by QM exist in a haze of probability
with a certain likelihood to be at one point or another.
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In hybrid method, such as QM/MM, it is possible to accurately describe
a small part of the system, such as an active site of an enzyme, by QM, and
consider the surrounding parts and the solvent by MM [3]. This method
requires calculations with higher computational costs but results are often
more accurate. For example, metalloenzymes are suitable candidates of
QM/MM approach since you may more closely reproduce the ions’ properties
(e.g. charge transfer, polarizability). This method is, inter alia, developed in
AMOEBA force field.

2.2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer (BO) approximation defines the quantum states
of molecules and simplifies the Schrödinger equation. Indeed, according to
Erwin Schrödinger (1887–1961), an atom is made up of a nucleus around
which electrons are moving with a certain uncertainty on their exact position.
Furthermore, electrons move at a certain distance from the nucleus, depend-
ing on their energy level, and thus delimiting areas in which there is a higher
probability to found them, termed atomic orbitals.

This way, the BO approximation allows the separation of nuclei’s mo-
tion from electrons’ motion. Physically, the mass of an atomic nucleus in a
molecule is more than one thousand times larger than the mass of an electron
(9.109× 10−31 kilograms). Thus, the nucleus is slower than electrons and its
motion may be neglected. Additionally, given the elementary charge, denoted
by e and equal to 1.60217634×10−19 coulomb (C), the negative charge carried
by one electron is −e and the global positive charge due to protons and car-
ried by nucleus is Ze (i.e., the atomic number times the elementary charge).
It results an attractive force −Ze2/r2 between the nucleus and the electron,
where r is the distance from the nucleus, acting on them and causing their
respective acceleration. According to Newton’s second law, the velocity of an
object, with a constant mass m, may be changed by an external force F such
as the latter equals mass times acceleration, termed a, namely F = m × a.
Thus, given that the magnitude of the acceleration is inversely proportional
to the mass (a = F/m), the electrons’ acceleration is two thousand larger
than nucleus one.

Hence, this approximation describes the electronic states of a molecule
by considering the nucleus as stationary, but in different discrete positions
so the electronic wavefunction may depend on nucleus’ positions even if its
motion is neglected.
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2.2.2 Functional form

Every force field describes the potential energy of a system (U) as de-
pending on the internal coordinates (r) of atoms, by a typical function which
may look like this:

U(r) = Ubonded + Unon−bonded

where Ubonded is the sum of internal terms describing bonds, angles and
dihedrals, Unon−bonded is the sum of external terms accounting for interactions
between non-bonded atoms separated by three or more covalent bonds, and
i, j, k, l are atoms of the system, such as:

Ubonded =
∑
bonds

U stretch
ij +

∑
angles

U bending
ijk +

∑
dihedrals

U torsion
ijkl

Unon−bonded =
∑
pairs

U vdW
ij +

∑
pairs

UCoulomb
ij

Mathematically expressed, we obtain these equations:

U stretch
ij = 1

2k
stretch
ij (rij − r0)2

where rij is the bond between atoms i and j with an ideal length r0 and a
force constant kstretchij .

U bending
ijk = 1

2k
bending
ijk (θijk − θ0)2

where θijk is the angle defined by atoms i, j and k with an ideal bond angle
θ0 and a force constant kbendingijk .

U torsion
ijkl = 1

2Vn[1 + cos(nφijkl − δn)]

where φijkl is the dihedral defined by atoms i, j, k and l with an nth order
force constant Vn and a phase angle δn for which δn = 0° and δn = 180° refer
to n odd and n even, respectively.

U vdW
ij = 4εij

(σij
rij

)12

−
(
σij
rij

)6


where εij is the van der Waals well depth and σij is the inter-atomic distance
at which Evdw

ij = 0. Mixing rules defined εij = √εiεj and σij = √σiσj.
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UCoulomb
ij = kC

qiqj
r2
ij

where qi and qj are atomic charges and rij is the inter-atomic distance.
kC = 1/4πε0 = 9× 109N.m2.C−2 is the Coulomb’s constant defined according
to the vacuum electric permittivity, or electric constant, ε0.

Existing force fields are built from this general energy function with some
additional terms to better fit to the desired properties. In my thesis, I used
OPLS-AA force field so let’s have a look at its development over the years.

2.3 OPLS-AA force field

2.3.1 History

In the early 1980s, Jorgensen and co-workers developed new potentials
to simulate liquid state properties (water and about 40 organic liquids),
hence the name Optimized Potentials for Liquid Simulations (OPLS). Non-
bonded interactions were initially derived by comparison to liquid-state
thermodynamics [99] since first applications of OPLS potentials were to
perform rigid-molecule Monte Carlo simulations of liquid hydrogen fluoride
[98]. Additionally, reproducible results were obtained about densities and
heats of vaporization, emphasizing the reliability of developed parameters.
In these methods, also termed OPLS-united atoms (OPLS-UA), aliphatic
hydrogens, i.e the most numerous, are included as part of an extended atom
to diminish the total number of atoms in the system, while other hydrogens
are explicitly considered.

First applications on proteins [101,102,185] were based on potentials
using a polar-hydrogen–only representation, namely only hydrogens bonded
to electronegative atoms like oxygen or nitrogen were displayed, and atom
types and valence (bond, angle, dihedral) parameters taken from AMBER
force field (1984), hence the name AMBER/OPLS force field.

Later, an all-atom version (OPLS-AA) was developed with the same
philosophy regarding the derivation of charges and van der Waals parameters
from simulations on pure liquids [105,106,164]. In this version, torsional
parameters’ development consisted in fitting to HF/6-31G* energy profiles
[134], while bond stretching and angle bending terms were implemented
with a wide inspiration from the AMBER all-atom force field (1986).
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Unlike AMBER94 force field [47] in which charges are obtained on a
case-by-case basis from fitting to electrostatic potential surfaces from ab initio
calculations, one of the main features of OPLS philosophy is the transferability
principle in which OPLS parameters are easily transferred from one molecule
to others if they shared similar chemical groups. Although OPLS parameters
were mainly derived from condensed phase simulations, reasonable outcomes
were obtained by comparing to gas-phase peptide energetics [17].

Finally, in 2000s, OPLS-AA force field underwent several changes, from
the implementation of the generalized Born/surface area (GB/SA) model
[104, 161] to the recent development of parameters for RNA [165], and
including, inter alia, improvements of peptide and protein torsional energetics
[166] and establishement of the LigParGen web server as an automatic
generator of OPLS-AA parameters for organic ligands [57].

2.3.2 OPLS-AA functional form

In OPLS-AA force field, certain equations previously described in para-
graph 2.2.2 were modified [100]. No additional term was implemented in
Ebond and Eangle:

Ebond =
∑
bonds

Kr(r − req)2

Eangle =
∑
angles

Kθ(θ − θeq)2

However, Etorsion and Enon−bonded were changed as follows:

Etorsion =
∑

dihedrals

V1

2 [1+cos(φi+fi1)+V2

2 [1−cos(2φi+fi2)+V3

2 [1+cos(3φi+fi3)

where φi is the dihedral angle, V1, V2, V3 are the Fourier’s, and f1, f2, f3 are
phase angles.

Enon−bonded = Eab =
on a∑
i

on b∑
j

fij

qiqje2

rij
+ 4εij

(σij
rij

)12

−
(
σij
rij

)6


where Eab is the interaction energy between molecules a and b. The same
expression is used for intramolecular non-bonded interactions between all
pairs of atoms (i < j) separated by three or more bonds. An additional
"fudge factor", termed fij, equals 1 except for intramolecular 1,4-interactions
for which it equals 0.5.
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ABSTRACT 

Metalloproteins are essential players in key biological processes and their study through molecular 

dynamics (MD) simulations is an important step in deciphering the underlying mechanisms or in 

designing new drugs. In this work, we used the non-bonded model approach to develop OPLS-AA 

parameters for several Zn-coordinating residues, that were missing from this force field: histidine 

(with two coordination modes, via Nε and Nδ) with the names HMD and HME, respectively, 

cysteine with the name CYSM and asparagine/glutamine with the names ASM/GLM. Their use 

on di-zinc systems (with metallo-β-lactamases as representative examples) required an additional 

constraint on the distance between the two zinc ions to maintain the correct geometry. We used 
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extensive MD simulations on a diverse validation dataset to show that these parameters are general 

and applicable to all zinc metalloenzymes. 

Introduction 

Acting as cofactors, metal ions play an important role in so-called metalloproteins, which are 

involved in key biological processes such as respiration, photosynthesis or metabolism. Their 

presence may affect protein folding, binding modes of substrates or mechanisms for catalysis, by 

producing strong electrostatic interactions.1-2 Therefore, the current trend in both chemistry and 

biochemistry is to pinpoint the structural features responsible for the high efficiency of these 

enzymes in order to elucidate their complex mechanism or to successfully create artificial 

enzymes.3 

In this context, computational techniques, like molecular dynamics (MD), are suitable to analyze 

the behavior of metalloenzyme systems, provided that an appropriate force field including metal 

ions parameters is used. If these metal ions parameters are missing, there are several approaches 

to implement them based on the use of either bonded or non-bonded models.4 However, it is not 

obvious to correctly parameterize metal ions which are not embedded in a molecular structure, like 

porphyrin ring, by considering both electrostatic and dynamic aspects. For example, for about forty 

years, hemoglobin has been widely studied through MD simulations5 assuming that the 

coordinative saturation of the heme iron atom leads to weak electrostatic interactions between the 

active site and the protein. In subsequent years, force field improvements (i.e. new potential 

function) were introduced in order to accurately model metal-ligand interactions in 

metalloproteins,6 using bonded,7-9 non-bonded10-11 or cationic dummy models.12-14 

More recently, the Bonded Plus Electrostatics Model15 was used to develop the Zinc AMBER 

Force Field (ZAFF)7 and its generalized version Extended Zinc AMBER Force Field (EZAFF).16 
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It involves setting covalent bonds between the zinc ion and its coordinating environment besides 

calculating point charges. Our group also used a similar bonded model to successfully 

parameterize the carbonic anhydrase active site8 in OPLS-AA force field.17-20 As far as we are 

concerned, OPLS-AA has some advantages compared to existing force fields: it was developed 

with the objective of reproducing condensed-phase properties of model compounds, it is currently 

implemented in most MD software packages, and it has been shown by others21-22 and by us during 

our participation to the blind prediction challenges SAMPL23-25 and D3R26-27 to yield accurate 

results in free energy calculations. 

An important topic of research in our group during the recent years was to better understand the 

antibiotic resistance related to β-lactams, especially through computational techniques such as 

covalent docking, MD simulations and free energy calculations.28 We are mainly focused on 

enzymes, named β-lactamases, that are able to hydrolyze the β-lactam antibiotics.29 According to 

the key residues in their binding sites, these enzymes can be classified as serine- and metallo-β-

lactamases (SBLs and MBLs).30-32 Suitable OPLS-AA parameters were available for running 

simulations with SBLs,28 but the parameters for Zn-coordinating residues were missing, which 

made impossible the simulations on MBLs. In these conditions, we developed appropriate force 

field parameters for the Zn-coordinating residues using the OPLS-AA philosophy (especially 

about charge transferability)17-20 and the most recent protocols for charge computation.33-34 Initial 

attempts were made using both bonded and non-bonded models. The non-bonded model was 

chosen for the final implementation, as it was easier to implement, showed good performance and 

was more general. In this paper we describe the protocol that we followed for the development of 

OPLS-AA force field parameters for Zn-coordinating residues and their validation using extensive 
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MD simulations, showing that these parameters are general and applicable to all zinc 

metalloenzymes. 

 

Methods 

Structures. We considered a total of seventeen representative zinc-containing metalloproteins, 

featuring mono- and di-zinc coordination systems (Table 1 and Figure 1). The dataset contains 

metallo-β-lactamases (NDM-1, CphA, L1, GOB-18, LRA-12), human metalloenzymes (MMP-8, 

Carbonic Anhydrase, ACE-2) and all metalloenzymes that were used for ZAFF development.7 All 

corresponding structures were chosen according to the quality of the atomic coordinates (e.g. high 

resolution, no missing atoms or residues, presence of representative water molecules in the active 

site). The zinc coordinating residues were manually renamed with their respective new 

implemented residue names for MD simulations. 
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Figure 1. Ribbon representation of the seventeen metalloproteins used for the validation of 

parameters developed in this study. a) Angiotensin-Converting Enzyme-2 (1r42); b) Carbonic 

Anhydrase II (4q49); c) Carbonic Anhydrase II (1ca2); d) Carbonic Anhydrase II Mutant H119Q 

(1h9q); e) Matrix MetalloProteinase 8 (2oy2); f) E. coli DNA-polymerase III (1a5t); g) 

Endonuclease I PpoI (1a73); h) Zinc finger protein ZIF268 (1a1f); i) Gelatinase A (1ck7); j) 

Thermolysin (1l3f); k) 1,3-1,4-β-endoglucanase (1u0a); l) Fibroblast stromelysin 1 (2usn); m) 

NDM-1 metallo-β-lactamase (4hl2); n) CphA metallo-β-lactamase (3f9o); o) L1 metallo-β-

lactamase (1sml); p) LRA-12 metallo-β-lactamase (5aeb); q) GOB-18 metallo-β-lactamase 

(5k0w). 
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Table 1. List of PDB structures and features of the systems used in MD simulations. 

Protein name PDB Resolution (Å) Zn environment System[a] 

Angiotensin-Converting Enzyme-
2 (ACE-2) 1r42 2.20 HHDO 143,132 

Carbonic Anhydrase II (CAII) 
4q49 1.80 HHHO 64,169 

1ca2 2.00 HHHO 61,975 

New Delhi Metallo-β-lactamase 1 
(NDM-1) 4hl2 1.05 HHHO/HCDO[b] 54,069 

CphA metallo-β-lactamase 3f9o 2.03 HCDO 54,061 

L1 metallo-β-lactamase 1sml 1.70 HHHO/HHDO[b] 106,318 

Matrix MetalloProteinase 8 
(MMP-8) 2oy2 1.50 HHHD/HHHO[c] 34,171 

E. coli DNA-polymerase III 1a5t 2.20 CCCC 39,238 

Endonuclease I PpoI 1a73 1.80 CCCH 66,914 

Zinc finger protein ZIF268 1a1f 2.10 CCHH 54,583 

Gelatinase A 1ck7 2.80 CHHH 105,553 

Thermolysin 1l3f 2.30 HHDO/HOOO[b] 84,756 

1,3-1,4-β-endoglucanase 1u0a 1.64 HHDD 119,077 

Fibroblast stromelysin 1 2usn 2.20 HHHD 37,498 

Carbonic Anhydrase (CA) H119Q 1h9q 2.20 HHQO 62,200 

GOB-18 metallo-β-lactamase 5k0w 2.61 HHDO/HHQO[b] 85,358 

LRA-12 metallo-β-lactamase 5aeb 2.10 HHDO/HHQO[b] 62,713 
[a] Number of atoms in the system including protein, ions and water. [b] Di-zinc systems. [c] Two 

different Zn-containing binding sites. 
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Zinc environment. A previous PDB survey7 describes the main groups of zinc coordination 

spheres found in metalloenzymes, revealing various ligands like histidine, aspartate, glutamate, 

cysteine or water molecule. Similar residues are present within the active site of MBLs, with the 

notable additional presence of asparagine and glutamine. Therefore, for the calculation of initial 

charges we considered five simplified zinc complexes as models: methanethiolate for cysteine, 

imidazole for histidine, monodentate and bidentate acetate for aspartate/glutamate and acetamide 

for asparagine/glutamine (Figure 2). 
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Figure 2. Zinc complexes with simplified side chains for cysteine (A, methanethiolate, total 

charge: -2), histidine (B, imidazole, total charge: +2), aspartate/glutamate (C, monodentate acetate, 

total charge -2 and D, bidentate acetate, total charge: 0) and asparagine/glutamine (E, acetamide, 

total charge: +2) residues. 
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Charge calculations. The initial models were created using GaussView 5.0 (Semichem Inc, 

Shawnee Mission, KS, USA) by paying attention to respect symmetry in order to get equivalent 

charges. Geometry optimizations were performed using the B3LYP method35 and the 6-31G(d) 

basis sets. Starting from these symmetrical optimized models, Charge Model 5 (CM5) charges36 

were calculated using the M06-2X method37 and the 6-311+G(2df,2p) basis set. One of the main 

advantages of CM5 approach is its applicability to any charged or uncharged molecule containing 

any element of the periodic table, in the gas phase or in solution. Furthermore, recent calculations 

on a representative dataset of compounds in condensed-phase revealed an optimal scale factor of 

1.20 for CM5 charges, that provides a good correction for different approaches in treatment of 

aqueous solvation (e.g. pure liquid, implicit or explicit water).34 Therefore, CM5 charges were 

computed for our model complexes (Figure 2) using Gaussian 09, revision D.0138 and were scaled 

with the factor 1.20. 

MD simulations. Molecular dynamics simulations were performed using GROMACS version 

4.639 with the OPLS-AA force field.17-20 The protein is centered in a cubic periodic box, with at 

least 1.0 nm on each side. The simulation box is then filled with TIP4P water molecules40 and the 

system is neutralized with Na+ and Cl- ions until reaching the physiological ionic strength (150 

mM). All systems contain from 34,000 (MMP-8) to 140,000 (ACE-2) atoms including protein, 

water and ions (see Table 1 for the complete list of values). Energy minimization was then 

performed until convergence using a steepest descent algorithm to remove close contacts between 

water molecules and the protein. Equilibration step including position restraints on protein heavy 

atoms was then performed for 200 ps to relax the water molecules. Production steps were carried 

out running five replicas of 100 ns each for every validation system. During the equilibration and 
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production runs, the Nosé-Hoover41-42 and Parrinello-Rahman43-44 methods were respectively 

applied for temperature and pressure coupling. Electrostatics were calculated with the particle 

mesh Ewald method.45-46 The LINCS algorithm47 was chosen to constrain all bond lengths, and 

the time step was set at 2 fs. All simulations were performed using periodic boundary conditions 

and the “isothermal-isobaric” ensemble (NPT), namely when temperature T, pressure P, and 

number of particles N are constant. Finally, Lennard–Jones and electrostatics interactions cut-offs 

were both set at 1.0 nm. 

Trajectory analysis. Root-mean-square-deviation (RMSD) were calculated from trajectories 

using the Gromacs tool g_rmsdist39 (20,000 frames per replica). If a structure contains several 

identical metal sites in terms of Zn coordination sphere, they will be all considered in the RMSD 

results. Furthermore, simulations were manually inspected with VMD48 and Zn-Zn and Zn-X 

distances were computed using an in-house developed script. 

 

Results and Discussion 

We started our study by checking if the existing residues from the OPLS-AA force field are able 

to correctly describe the structure and the dynamical behavior of zinc metalloenzymes, with a 

special emphasis on the zinc coordination sphere. As expected, preliminary MD simulations (50 

ns) of representative MBLs showed a loss of zinc-coordination from histidine and cysteine 

residues, but we were satisfied to observe that the aspartate maintained the coordination to the zinc 

ion throughout the simulation. Similar simulations with glutamine-containing systems showed that 

the coordination of this residue to zinc was stable only in a limited number of cases. These 

preliminary results prompted us to start the development of new parameters for several residues 

coordinated to zinc: histidine (with two coordination modes, via Nε and Nδ) with the names HMD 
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and HME, respectively, cysteine with the name CYSM and asparagine/glutamine with the names 

ASM/GLM. 

Implementation of new residues. CM5 charges were computed on the simplified Zn complexes 

shown in Figure 2, following the protocol described previously.33 The partial charge of Zn ion 

from these complexes was modified to be +2 (the formal charge for the zinc ion in OPLS-AA force 

field) and the difference between the initial (CM5) and new (OPLS-AA) charges, divided by four 

(zinc coordination number), was added to the zinc-coordinating atom from each residue. A similar 

protocol was followed to connect the coordinating group with the backbone, through the Cα or Cβ 

atoms, depending on the system. The charges on the connecting atoms were adjusted to keep the 

overall charge as an integer. In the case of histidine, according to our previous results,24 the charge 

was changed on the exocyclic Cβ atom. For monodentate and bidentate models of acetate, the 

charges of coordinating oxygen atoms were homogenized before the implementation of a unique 

model. 

The charge computed using the CM5 method for carboxylate oxygen atoms in 

aspartate/glutamate residues (-0.7) was relatively close to the OPLS-AA value (-0.8). Considering 

that simulations of systems containing Zn-coordinated aspartate with the original OPLS-AA 

parameters are stable, with stable Zn-O distances and coordination maintained throughout the 

simulation, we decided to keep the original OPLS-AA parameters for the Zn-coordinated 

aspartate/glutamate residues. 

Preliminary simulations of systems containing Zn-coordinated histidine and CM5 charges also 

proved to be very stable, with Zn-N distances within 0.05 Å compared with the crystal structures. 

Therefore, these parameters were selected for further validation. 
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In contrast, the Zn-S distances in simulations of systems containing CYSM (with the CM5 

charges) had a systematic shift (0.1-0.3 Å) compared to PDB value (Table 2). In an attempt to 

identify more appropriate charges, we carried out seven simulations with modified charges on SG 

and CB atoms in CYSM (Table 3). Two Zn environments (CCCC and CHHH) were evaluated, 

where C and H represent cysteine and histidine residues, respectively (Table 2). Several alternative 

sets of charges showed an improvement in the Zn-S distance for the CCCC environment, but not 

for the CHHH one, so there was no combination of charges that was appropriate simultaneously 

for both environments. Considering these results, as well as the inherent imprecision (about 10%) 

on interatomic distances and angles due to refinement methods49 or crystal structure resolution,50 

prompted us to select as the best compromise our initial CM5 charges of CYSM residue for 

additional validation. 

A similar protocol was applied to the new Zn-coordinating glutamine residue (GLM), with 

modified charges on the CD and OE1 atoms and using mono-and di-zinc proteins (Table 3). The 

simulations showed good Zn-O distances (less than 0.08 Å deviation compared with the crystal 

structure) for the mono-zinc enzyme (HHQO environment), and slightly less (0.2-0.3 Å deviation) 

for the di-zinc enzyme (HHQO/HHDO environment) (Table 2). Again, no significant 

improvement was observed from the variation of these charges, so we kept our initial CM5 charges 

for subsequent validation. 

 

 

Table 2. Mean errors on Zn-X distances during the optimization of CYSM and GLM residues (see 

Table 3 for the charges used in these calculations). 
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Residue Zn environment 
Structure  

(PDB code) 

Mean errors (Å)[a] 

CM5[b] Set 1[c] Set 2[c] Set 3[c] Set 4[c] Set 5[c] Set 6[c] Set 7[c] 

CYSM 

CCCC  

(mono-zinc) 
1a5t 

0.183 0.182 0.168 0.160 0.139 0.069 0.049 0.070 

0.112 0.100 0.091 0.079 0.053 -0.059 -0.066 0.018 

0.131 0.130 0.118 0.107 0.063 0.013 -0.017 0.012 

0.164 0.160 0.155 0.141 0.125 -0.010 -0.913 0.069 

CHHH  

(mono-zinc) 
1ck7 0.307 0.255 0.241 0.279 0.220 0.304 0.290 0.266 

GLM 

HHQO  

(mono-zinc) 
1h9q -0.025 -0.034 -0.054 -0.057 -0.078 -0.087 0.001  

HHQO/HHDO 
(di-zinc) 5k0w 0.284 0.277 0.261 0.243 0.240 0.220 0.309  

[a] Errors were calculated as the difference between the crystallographic value and the simulation 
mean value. A positive value means a shorter Zn-X bond compared to crystallographic value, i.e. 
a stronger interaction. [b] Charges calculated using the CM5 method. [c] Exploratory sets of charges. 

 

Table 3. Different sets of charges tested for the coordinating atoms in CYSM and GLM residues 

(see Table 2 for the results). 

Residue Atoms 
Charges 

CM5[a] Set 1[b] Set 2[b] Set 3[b] Set 4[b] Set 5[b] Set 6[b] Set 7[b] 

CYSM 
CB -0.140 -0.220 -0.270 -0.320 -0.370 -0.420 -0.470 -0.520 

SG -0.980 -0.900 -0.850 -0.800 -0.750 -0.700 -0.650 -0.600 

GLM 
CD 0.394 0.368 0.318 0.268 0.218 0.168 0.518  

OE1 -0.826 -0.800 -0.750 -0.700 -0.650 -0.600 -0.950  
[a] Charges calculated using the CM5 method. [b] Exploratory sets of charges. 

 
A comparison between existing OPLS-AA residues and those developed in this study is 

presented in Figure 3. 
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Figure 3. Comparison between existing and new residues as implemented in OPLS-AA force field. 

Charge modifications for the side chains of following residues: glutamine GLN/GLM (A), 

histidine HISE/HME with protonation on Nε (B), cysteine CYSH/CYSM (C) and histidine 

HISD/HMD with protonation on Nδ (D). Existing OPLS-AA charges are colored in black whereas 

the new ones are colored in red. Charges for the corresponding hydrogen atoms are enclosed in 

square brackets. A black value with no associated red one means that the charge is identical in 

both old and new residues. 

 

 

Zn-Zn distance optimization. During simulations involving di-zinc systems, the distance 

between zinc ions was observed to increase to about 7 Å, instead of 3-4 Å in crystal structures, 
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due to electrostatic repulsion. To fix this issue, we first evaluated the Zn-Zn distances distribution 

of all di-zinc MBL structures present in the PDB (Figure 4), using an in-house script. The great 

majority of these structures show Zn-Zn bond length between 3.5 and 3.8 Å. Three of them were 

selected as representative structures of the minimum, mean and maximum Zn-Zn values: 1a8t 

(Bacteroides fragilis MBL, Zn-Zn distance: 2.84 Å), 5ewa (IMP-1 MBL, Zn-Zn distance: 3.71 Å) 

and 2nyp (Bacillus cereus II MBL, Zn-Zn distance: 4.73 Å). 

 

Figure 4. Zn-Zn bond length distribution among MBL structures present in the PDB (335 chains) 
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We introduced an artificial bond between the two zinc ions and on the three structures selected 

above we tested a wide range of force constants (kb) for the Zn-Zn bond in 5 ns MD simulations, 

with twelve values ranging from 700,000 to 25 kJ.mol-1.nm-2. Through these simulations we 

wanted to test if the corresponding crystallographic value could be reached starting from each 

representative structure (1a8t, 5ewa, 2nyp) with the same equilibrium bond length (b0) set to 3.705 

Å. We initially used the Gromacs default “[bonds] type 3”, but simulations crashed starting for kb 

values smaller than 2500 kJ.mol-1.nm-2, so we switched to a harmonic interaction, which is 

“[bonds] type 6” in Gromacs, that does not connect atoms by a chemical bond. The results are 

presented in Figure 4. In all three systems, constants higher than 25,000 kJ.mol-1.nm-2 maintain 

the Zn-Zn distance around the equilibrium distance with low fluctuation. Lower values increase 

the fluctuation and also the Zn-Zn distance, especially for the 1a8t structure, where in fact we 

would need to diminish it. In these conditions, we set up the following protocol that was used for 

all subsequent simulations with MBLs: i) b0 is set to the Zn-Zn bond length taken from the 

crystallographic input structure and ii) kb is set to a fixed value of 200,000 kJ.mol-1.nm-2, which is 

strong enough to maintain the Zn-Zn distance around the crystallographic value. 

 

2.4 Zn–OPLS publication 65



 17 

 

66 Chapter 2 Force field analysis



 18 

Figure 4. Zn-Zn distance evaluation on three representative systems using several force constants 

in 5 ns MD simulations: 1A8T (Bacteroides fragilis MBL, Zn-Zn distance in crystal structure: 

2.844 Å), 5EWA (IMP-1 MBL, Zn-Zn distance in crystal structure: 3.705 Å) and 2NYP (Bacillus 

cereus II MBL, Zn-Zn distance in crystal structure: 4.731 Å). The red line indicates the Zn-Zn 

bond length in the PDB structure. From the top down, horizontal lines refer to the maximum, mean 

and minimum values of the Zn-Zn distance per training system, respectively. 

Validation of new parameters. MD simulations using seventeen representative 

metalloenzymes (Figure 1 and Table 1) were performed to assess the validity of our new OPLS-

AA parameters developed for Zn-coordinating residues. We ran five replicas of 100 ns simulation 

for each metalloprotein, in order to ensure reproducibility.51 

RMSD values for the atoms constituting the metal sites and the protein backbone were calculated 

for every validation system in order to evaluate their steadiness. Globally, these plots show a good 

stability of the system during the 100 ns MD simulations, with values of around 1 Å (or less) for 

metal sites, as reported in Figure S1. Some proteins display a clear RMSD profile, such as 4q49, 

1ca2 and 1l3f, while others underwent slight conformational changes in the metal site, described 

by the common RMSD evolution of the Zn-coordinating atoms and their respective residues. 

Moreover, in 1a5t and 3f9o, Zn-coordinating atoms are really stable and only their belonging 

residue move slightly. An outsider case is 1a1f, a Zinc finger protein initially crystallized with 

DNA double-strand (not modeled in this study) whose MD simulations revealed high RMSD 

values (up to 10 Å). In the first simulation (md1), the protein quickly folded in a close 

conformation similar to a ring, and most of the RMSD result comes from ZN201 and ZN203 

contributions which are located in the metal sites at the extremities of the protein. In the second, 

third and fourth simulations (md2, md3 and md4, respectively), a structural rearrangement takes 
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place, yielding an overall “helix-shaped” conformation. In the fifth simulation (md5), the closing 

process occurred at the beginning, but some electrostatic repulsions forced the system to go back 

near the starting conformation.  

The distances between zinc ions and coordinating atoms were measured and mean values from 

all 85 simulations are reported in Table 4, showing really good results, with an absolute mean error 

of 0.058 Å on Zn-N distance for HME/HMD residues, 0.182 Å on Zn-S distance for CYSM residue 

and 0.158 on Zn-O distance for GLM residue. Furthermore, we obtained reasonable results 

(absolute mean errors of 0.105 Å and 0.276 Å, respectively) with the original OPLS-AA 

parameters for aspartate and glutamate residues. Lastly, the constraint applied to Zn-Zn distance 

in every di-zinc system led to an absolute mean error of only 0.051 Å. All plots are shown in Figure 

S2, together with a comparison with the corresponding value from the PDB structure. Finally, it is 

worth noting that the conformational changes that were observed to occur during the validation 

simulations in most cases did not disturb the Zn-X distances, thus underlining the robustness of 

this non-bonded approach and of our parameters. 

 

Table 4. Mean errors on Zn-X distances from the MD validation simulations. 

 Mean errors (Å)[a] 

Residue HMD/HME CYSM ASP GLM ZN 

Coordinating atom (X) NE2/ND1 SG OD1/OD2 OE1 ZN 

Non-absolute -0.035 0.174 0.042 0.031 -0.051 

Absolute 0.058 0.182 0.105 0.158 0.051 

N 71 19 12 3 8 
[a] Errors calculated as the sum of either absolute or non-absolute differences between the 

crystallographic value and the simulation mean value divided by N, the number of bond instances. 
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We are aware of the importance of polarization in metal-containing models, which allows a 

better description of electrostatic and energetic properties. Polarizable force fields, like 

AMOEBA,52 or quantum mechanics/molecular mechanics (QM/MM) approaches represent 

interesting alternatives for the simulation of these systems, but requiring a significantly higher 

computational cost. In these conditions, the parameters for Zn-coordinating residues that we have 

developed in this work should be useful for the whole community, allowing the study of systems 

containing zinc metalloproteins through MD simulations using OPLS-AA force field. 

 

Conclusion 

In this work, we developed new OPLS-AA force field parameters for three new residues 

(HMD/HME, CYSM and ASM/GLM) using quantum chemistry calculations. These parameters 

were validated by molecular dynamics simulations on seventeen representative metalloenzymes 

with different zinc coordination spheres. These simulations showed that the non-bonded model is 

suitable for simulating zinc-containing metalloproteins using the OPLS-AA force field, including 

those containing di-zinc systems like metallo-β-lactamases, and may represent an alternative to 

the bonded model, which requires a very complex parameterization process. Lastly, this method 

could be either extended to metalloproteins containing other divalent metals (magnesium, calcium, 

iron) or used to implement others amino acids which may coordinate metal ions. 
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Supporting Information. Supporting Information file contains the RMSD plots for protein 

backbone, Zn ions, and Zn-coordinating atoms, as well as the Zn-X distances during the 

validation MD trajectories. This material is available free of charge via the Internet at 

http://pubs.acs.org. 

AUTHOR INFORMATION 

Corresponding Author 

* Phone: +33 1 6982 3094; Fax: +33 1 6907 7247; Email: bogdan.iorga@cnrs.fr (B.I.I.). 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval 

to the final version of the manuscript. 

ACKNOWLEDGMENT 

PhD fellowship from the Université Paris-Saclay to E.E. is gratefully acknowledged. B.I.I.’s 

laboratory is member of the Laboratory of Excellence in Research on Medication and Innovative 

Therapeutics (LERMIT), supported by a grant from French National Research Agency (ANR-

10-LABX-33). 

 

REFERENCES 

1. Lehninger, A. L., Role of metal ions in enzyme systems. Physiol Rev 1950, 30, 393-429. 

2. Ren, P.; Chun, J.; Thomas, D. G.; Schnieders, M. J.; Marucho, M.; Zhang, J.; Baker, N. A., 

Biomolecular electrostatics and solvation: a computational perspective. Q Rev Biophys 2012, 45, 

427-491. 

70 Chapter 2 Force field analysis



 22 

3. Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria, J. S.; Tebo, A. G.; Mocny, 

C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V. L., Protein design: toward functional 

metalloenzymes. Chem Rev 2014, 114, 3495-3578. 

4. Li, P.; Merz, K. M., Jr., Metal Ion Modeling Using Classical Mechanics. Chem Rev 2017, 

117, 1564-1686. 

5. Case, D. A.; Karplus, M., Dynamics of ligand binding to heme proteins. J Mol Biol 1979, 

132, 343-368. 

6. Vedani, A.; Huhta, D. W., A new force field for modeling metalloproteins. J. Am. Chem. 

Soc. 1990, 112, 4759-4767. 

7. Peters, M. B.; Yang, Y.; Wang, B.; Fusti-Molnar, L.; Weaver, M. N.; Merz, K. M., Jr., 

Structural Survey of Zinc Containing Proteins and the Development of the Zinc AMBER Force 

Field (ZAFF). J Chem Theory Comput 2010, 6, 2935-2947. 

8. Bernadat, G.; Supuran, C. T.; Iorga, B. I., Carbonic anhydrase binding site parameterization 

in OPLS-AA force field. Bioorg. Med. Chem. 2013, 21, 1427-1430. 

9. Roberts, B. P.; Miller, B. R., 3rd; Roitberg, A. E.; Merz, K. M., Jr., Wide-open flaps are 

key to urease activity. J Am Chem Soc 2012, 134, 9934-9937. 

10. Stote, R. H.; Karplus, M., Zinc binding in proteins and solution: a simple but accurate 

nonbonded representation. Proteins 1995, 23, 12-31. 

11. Li, P.; Merz, K. M., Jr., Taking into Account the Ion-induced Dipole Interaction in the 

Nonbonded Model of Ions. J Chem Theory Comput 2014, 10, 289-297. 

2.4 Zn–OPLS publication 71



 23 

12. Pang, Y. P., Successful molecular dynamics simulation of two zinc complexes bridged by 

a hydroxide in phosphotriesterase using the cationic dummy atom method. Proteins 2001, 45, 183-

189. 

13. Duarte, F.; Bauer, P.; Barrozo, A.; Amrein, B. A.; Purg, M.; Aqvist, J.; Kamerlin, S. C., 

Force field independent metal parameters using a nonbonded dummy model. J Phys Chem B 2014, 

118, 4351-4362. 

14. Saxena, A.; Sept, D., Multisite Ion Models That Improve Coordination and Free Energy 

Calculations in Molecular Dynamics Simulations. J Chem Theory Comput 2013, 9, 3538-3542. 

15. Hoops, S. C.; Anderson, K. W.; Merz, K. M., Force field design for metalloproteins. J. Am. 

Chem. Soc. 1991, 113, 8262-8270. 

16. Yu, Z.; Li, P.; Merz, K. M., Jr., Extended Zinc AMBER Force Field (EZAFF). J Chem 

Theory Comput 2018, 14, 242-254. 

17. Jorgensen, W. L.; Tirado-Rives, J., The OPLS [optimized potentials for liquid simulations] 

potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. 

J Am Chem Soc 1988, 110, 1657-1666. 

18. Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J., Development and Testing of the OPLS 

All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. 

Chem. Soc. 1996, 118, 11225-11236. 

19. Robertson, M. J.; Tirado-Rives, J.; Jorgensen, W. L., Improved Peptide and Protein 

Torsional Energetics with the OPLSAA Force Field. J Chem Theory Comput 2015, 11, 3499-3509. 

72 Chapter 2 Force field analysis



 24 

20. Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation and 

Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate 

Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474-6487. 

21. Shirts, M. R.; Pitera, J. W.; Swope, W. C.; Pande, V. S., Extremely precise free energy 

calculations of amino acid side chain analogs: Comparison of common molecular mechanics force 

fields for proteins. J. Chem. Phys. 2003, 119, 5740-5761. 

22. Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W., Prediction of 

Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the 

OPLS Force Field. J Chem Theory Comput 2010, 6, 1509-1519. 

23. Beckstein, O.; Iorga, B. I., Prediction of hydration free energies for aliphatic and aromatic 

chloro derivatives using molecular dynamics simulations with the OPLS-AA force field. J. 

Comput. Aided Mol. Des. 2012, 26, 635-645. 

24. Beckstein, O.; Fourrier, A.; Iorga, B. I., Prediction of hydration free energies for the 

SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA 

force field. J. Comput. Aided Mol. Des. 2014, 28, 265-276. 

25. Kenney, I. M.; Beckstein, O.; Iorga, B. I., Prediction of cyclohexane-water distribution 

coefficients for the SAMPL5 data set using molecular dynamics simulations with the OPLS-AA 

force field. J. Comput. Aided Mol. Des. 2016, 30, 1045-1058. 

26. Selwa, E.; Elisée, E.; Zavala, A.; Iorga, B. I., Blinded evaluation of farnesoid X receptor 

(FXR) ligands binding using molecular docking and free energy calculations. J. Comput. Aided 

Mol. Des. 2018, 32, 273-286. 

2.4 Zn–OPLS publication 73



 25 

27. Chaput, L.; Selwa, E.; Elisée, E.; Iorga, B. I., Blinded evaluation of cathepsin S inhibitors 

from the D3RGC3 dataset using molecular docking and free energy calculations. J. Comput. Aided 

Mol. Des. 2019, 33, 93-103. 

28. Zavala, A.; Retailleau, P.; Elisée, E.; Iorga, B. I.; Naas, T., Genetic, biochemical and 

structural characterization of CMY-136 beta-lactamase, a peculiar CMY-2 variant. ACS Infect. 

Dis. 2019, 5, 528-538. 

29. Naas, T.; Oueslati, S.; Bonnin, R. A.; Dabos, M. L.; Zavala, A.; Dortet, L.; Retailleau, P.; 

Iorga, B. I., Beta-Lactamase DataBase (BLDB) – Structure and function. J. Enzyme Inhib. Med. 

Chem. 2017, 32, 917-919. 

30. Bonomo, R. A., beta-Lactamases: A Focus on Current Challenges. Cold Spring Harb 

Perspect Med 2017, 7, 1-15. 

31. Bush, K., Past and Present Perspectives on beta-Lactamases. Antimicrob Agents 

Chemother 2018, 62, e01076-18. 

32. Bush, K.; Bradford, P. A., Interplay between beta-lactamases and new beta-lactamase 

inhibitors. Nat Rev Microbiol 2019, 17, 295-306. 

33. Vilseck, J. Z.; Tirado-Rives, J.; Jorgensen, W. L., Evaluation of CM5 Charges for 

Condensed-Phase Modeling. J Chem Theory Comput 2014, 10, 2802-2812. 

34. Dodda, L. S.; Vilseck, J. Z.; Cutrona, K. J.; Jorgensen, W. L., Evaluation of CM5 Charges 

for Nonaqueous Condensed-Phase Modeling. J Chem Theory Comput 2015, 11, 4273-4282. 

74 Chapter 2 Force field analysis



 26 

35. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. J. 

Chem. Phys. 1993, 98, 5648-5652. 

36. Marenich, A. V.; Jerome, S. V.; Cramer, C. J.; Truhlar, D. G., Charge Model 5: An 

Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions 

in Gaseous and Condensed Phases. J Chem Theory Comput 2012, 8, 527-541. 

37. Zhao, Y.; Truhlar, D. G., Density functionals with broad applicability in chemistry. Acc 

Chem Res 2008, 41, 157-167. 

38. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. 

R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; 

Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; 

Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; 

Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, 

E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; 

Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. 

E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, 

O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; 

Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; 

Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09, Revision D.1, 

Gaussian Inc., Wallingford CT, USA (http://www.gaussian.com). 

39. Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.; 

Smith, J. C.; Kasson, P. M.; van der Spoel, D.; Hess, B.; Lindahl, E., GROMACS 4.5: a high-

2.4 Zn–OPLS publication 75



 27 

throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29, 

845-854. 

40. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., 

Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 

926-935. 

41. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. 

J. Chem. Phys. 1984, 81, 511-519. 

42. Hoover, W. G., Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 

1985, 31, 1695-1697. 

43. Parrinello, M.; Rahman, A., Crystal Structure and Pair Potentials: A Molecular-Dynamics 

Study. Phys. Rev. Lett. 1980, 45, 1196-1199. 

44. Parrinello, M.; Rahman, A., Polymorphic transitions in single crystals: A new molecular 

dynamics method. J. Appl. Phys. 1981, 52, 7182-7190. 

45. Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: An N⋅log(N) method for Ewald 

sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092. 

46. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G., A smooth 

particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593. 

47. Hess, B., P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. J Chem 

Theory Comput 2008, 4, 116-122. 

76 Chapter 2 Force field analysis



 28 

48. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. J. Mol. Graph. 

1996, 14, 33-38. 

49. Laskowski, R. A.; Moss, D. S.; Thornton, J. M., Main-chain bond lengths and bond angles 

in protein structures. J Mol Biol 1993, 231, 1049-1067. 

50. Laitaoja, M.; Valjakka, J.; Janis, J., Zinc coordination spheres in protein structures. Inorg 

Chem 2013, 52, 10983-10991. 

51. Knapp, B.; Ospina, L.; Deane, C. M., Avoiding False Positive Conclusions in Molecular 

Simulation: The Importance of Replicas. J Chem Theory Comput 2018, 14, 6127-6138. 

52. Shi, Y.; Xia, Z.; Zhang, J.; Best, R.; Wu, C.; Ponder, J. W.; Ren, P., The Polarizable Atomic 

Multipole-based AMOEBA Force Field for Proteins. J Chem Theory Comput 2013, 9, 4046-4063. 

2.4 Zn–OPLS publication 77



 S1 

Supporting Information 

OPLS-AA force field parameterization of zinc-

coordinating residues in metalloenzymes 

Eddy Elisée, Bogdan I. Iorga* 

Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, 

LabEx LERMIT, 91198 Gif-sur-Yvette, France 

 
 

Corresponding Author 

* Phone: +33 1 6982 3094; Fax: +33 1 6907 7247; Email: bogdan.iorga@cnrs.fr (B.I.I.). 

 

Table of contents 

Figure S1. RMSD plots for protein backbone, Zn ions, and Zn-coordinating atoms S2 

Figure S2. Zn-X distances during the validation MD trajectories    S7 

 
  

78 Chapter 2 Force field analysis



 S2 

 
Figure S1. RMSD plots for protein backbone, Zn ions, and Zn-coordinating atoms (black, red 

and blue, respectively) during the 100 ns validation trajectories for the seventeen 

metalloproteins studied. 
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Figure S1. (continued) 

80 Chapter 2 Force field analysis



 S4 

 
Figure S1. (continued) 
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Figure S1. (continued) 
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Figure S1. (continued) 
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Figure S2. Evolution of Zn-X distances during the 100 ns validation trajectories for the 

seventeen metalloproteins studied (one color per replica). Corresponding values extracted from 

PDB survey or ZAFF benchmark are represented by plain and dashed lines, respectively. 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Figure S2. (continued) 
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Chapter III
Molecular dynamics (MD) studies of
β-lactamases in OPLS-AA force field

1 publication:

Zavala, A., Retailleau, P., Elisée, E., Iorga, B. I., and Naas, T. (2019) Genetic,
biochemical and structural characterization of CMY-136 beta-lactamase, a
peculiar CMY-2 variant, ACS Infect. Dis. 5, 528-538 DOI: 10.1021/acsin-
fecdis.8b00240.

http://dx.doi.org/10.1021/acsinfecdis.8b00240
http://dx.doi.org/10.1021/acsinfecdis.8b00240




1
Overview

Several metalloenzymes have been already studied during the validation
work on zinc ion parameters, yielding reliable results (see Chapter II). Thus,
the aim of this chapter is to present some published or ongoing side projects
based on MD simulations, including free energy calculations, of serine- and
metallo-β-lactamases.

First, the in-house software MOL2FF, for automatically assigning OPLS-
AA parameters to covalent and free ligands, is detailed. During my PhD
work, I had parameterized numerous ligands, for example, β-lactam drugs
(this chapter), peptide-like ligands (confidential data) or D3R inhibitors
(Chapter IV). Furthermore, some β-lactam antibiotics, presented hereafter in
a publication, were used in covalent docking studies and MD simulations of
CMY-136 (SBL, class C).

Secondly, two easy-to-parameterize inhibitors of IMP-1 (MBL, class B1)
have been tested on NDM-1 (MBL, class B1), through MD simulations, to
assess the robustness of our new metal-containing active site parameters (see
Chapter II) in presence of ligands.

Thirdly, MD analysis of an interesting SPM-1 histidine-to-glycine mutant
(MBL, class B1) is presented [21]. Indeed, while this mutation takes place
on one of the active site zinc-coordinating histidine, β-lactamase activity is
maintained. Our assumption was based on a new zinc coordination by an
aspartate residue located on a loop in the proximity of the mutation site.
Nevertheless, a recent crystallographic structure of this mutant tells quite
another story [43].

Lastly, free energy calculations were performed, using a pmx-based pro-
tocol, in order to pursue the questions about protonation and carboxylation
processes in OXA enzymes (SBL, class D).
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2
Parameterization of covalent ligands in
OPLS-AA force field

2.1 MOL2FF software

2.1.1 Philosophy of OPLS-AA parameterization

In Chapter II, I have described the OPLS-AA force field by mentioning,
inter alia, the concept of transferability as a core feature for parameterizing
ligands. Indeed, one may summarize the philosophy of OPLS-AA parameteri-
zation as follows: the charge of an atom is defined by its neighbouring atoms,
for example an oxygen atom will not have the same charge in a carboxylic
acid as in an alcohol. Then, atoms are gathered into elementary building
blocks, i.e. chemical groups, that most of the time have integer charges and,
finally, these blocks can be fused to create bigger molecules but taking care
to adjust the charge of atoms at the blocks’ junction – that is considering the
influence of the vicinity (Figure 18).

Figure 18: Atoms’ charge adjustement in OPLS-AA force field. Charge on the red
carbon atom is the sum of the carbon charge in a CH2 group (–0.120)
plus the influence of secondary amine (+0.200) and thioether (+0.168)
groups.

Otherwise, OPLS-AA force field displays more than 900 atom types, which
is not enough for covering all diversity of chemical scaffolds. Table 1 gives
some examples of OPLS atom types in which ptype is the particule type (A
stands for Atoms), and epsilon, sigma are van der Waals parameters (see
Chapter II Section 2.2.2).
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This way, if the queried chemical group is not parameterized, it will be
necessary to implement it either by (1) combining two existing chemical
groups and adjusting the total charge, or (2) computing new charges using
quantum chemistry calculations before implementing new atom types. The
same principle is applicable to other parameters such as bonds, angles,
dihedrals and impropers – even though most of them are already described.
However, it is important to be aware of the complexity of parameterizing
bonded parameters through quantum chemistry calculations, and sometimes
it would be preferable to adapt existing atom types described in the force
field rather than try to develop from scratch new parameters.

Table 1: Examples of atom types in OPLS-AA force field. OPLS-AA philosophy:
given the charge +0.060 for the aliphatic hydrogen H, in order to build
neutral groups, the carbon charge in CH group must be –0.060, in CH2
group –0.120, etc.

1 2 3 4 5 6 7 8 9 10

opls_135 CT 6 12.01100 –0.180 A 3.50000e–01 2.76144e–01 12.01100 ; alkane CH3

opls_136 CT 6 12.01100 –0.120 A 3.50000e–01 2.76144e–01 12.01100 ; alkane CH2

opls_137 CT 6 12.01100 –0.060 A 3.50000e–01 2.76144e–01 12.01100 ; alkane CH

opls_138 CT 6 12.01100 –0.240 A 3.50000e–01 2.76144e–01 12.01100 ; alkane CH4

opls_139 CT 6 12.01100 0.000 A 3.50000e–01 2.76144e–01 12.01100 ; alkane C

opls_140 HC 1 1.00800 0.060 A 2.50000e–01 1.25520e–01 1.00800 ; alkane H

opls_145 CA 6 12.01100 –0.115 A 3.55000e–01 2.92880e–01 12.01100 ; Benzene C

opls_146 HA 1 1.00800 0.115 A 2.42000e–01 1.25520e–01 1.00800 ; Benzene H

1: opls type; 2: atom type; 3: atomic number; 4, 9: atomic mass; 5: charge; 6: ptype;
7: epsilon; 8: sigma; 10: comments.

This way, an algorithm termed MOL2FF was developed in our team during
the last years to handle the automatic parameterization of ligands in OPLS-AA
force field. MOL2FF uses the CACTVS Chemoinformatics Toolkit [95] for
processing the chemical structures.

2.1.2 MOL2FF algorithm

The aforesaid algorithm MOL2FF was initially designed as a fast and
powerful tool to automatically parameterize ligands in OPLS-AA force field.

First, the ligand must be provided by user in MOL2 format since this
format keeps structural information like bond multiplicity (simple, double
or triple) or atom types. Note however that three-dimensional coordinates
are not modified, therefore the user needs to supply the desired pose for MD
simulation – often obtained after a docking step.
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Secondly, the ligand structure is analyzed and converted into a Simplified
Molecular-Input Line-Entry System (SMILES) format, namely the ligand is
now described by a line notation using short American Standard Code for
Information Interchange (ASCII) characters (Figure 19). Indeed, the ligand
is split into one main backbone and sidechains – if some rings are present,
they are opened and new terminal atoms are equally numbered. Then,
the SMILES format is linearly written under the longer fragment, so-called
backbone, and sidechains are bracketed. With that kind of exported format,
it is straightforward for some software to translate it into a two-dimensional
drawing or a three-dimensional model with random coordinates.

Figure 19: SMILES description. The backbone (in green) and sidechains are identi-
fied in the SMILES pattern, located in the lower-right corner, according
to their respective color. Image modified from Wikimedia Commons
website [https://commons.wikimedia.org/wiki/File:SMILES.png].

Thirdly, the ligand is divided into substructural patterns, called SMILES
Arbitrary Target Specification (SMARTS), easily recognised and handled by
the Tool Command Language (Tcl) used by MOL2FF. Furthermore, SMARTS
language is extremely precise on substructural specification and atom typing
(Table 2). This way, an in-house database, gathering a number of OPLS-AA
substructures in SMARTS format, has been built and in which MOL2FF algo-
rithm looks for each chemical fragment obtained from the input structure. If
there is a match, all related parameters are added to the final OPLS-AA ligand
topology. If not, user has to implement a new substructure by following the
instructions presented in the Section 2.1.1.

Finally, a complete ligand topology in OPLS-AA force field is built and
ready to be validated in a MD simulation step carried out in explicit solvent.
Once validated, the ligand topology may be implemented in Ligandbook, an
online repository compiling force field parameters for small and drug-like
molecules [59]. In my project, I used to employ MOL2FF for parameterizing
ligands including covalent ones whose process is presented in the next sec-
tion.
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Furthermore, I had to fix some bugs concealed in the script: atoms in-
volved in a covalent bond were not correctly deleted (see section 2.2.1) and
charge modification was not possible on certain atoms shared by two chemi-
cal groups – this is what we call a conflict. However, further improvements
should be undertaken in order to restore some basic functionalities, ease
the implementation process of new parameters and better manage conflicts.
Figure 20 below sums up the previously described MOL2FF workflow.

Table 2: Some features of SMARTS language. For complete descrip-
tion, please consult the Daylight’s SMARTS theory manual.
[https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html].

Symbol Symbol name Examples

upper case letter aliphatic C

lower case letter aromatic c

#n atomic number [#6] carbon

@ anticlockwise chirality C@H

@@ clockwise chirality C@@H

- single bond (aliphatic) C-C

= double bond C=O

# triple bond C≡N

: aromatic bond c:c

Figure 20: MOL2FF algorithm workflow.
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2.1.3 LigParGen service

Since 2017, Jorgensen’s group has released the LigParGen website [57]
as an automatic generator of OPLS-AA parameters for organic molecules or
ligands (Figure 21).

Figure 21: LigParGen intuitive web interface
[http://zarbi.chem.yale.edu/ligpargen/].

By providing a SMILES or MOL2 input, OPLS-AA bonded (bonds, angles
and dihedrals) and non-bonded (Lennard-Jones) are computed by the BOSS
software [103], also developed by Jorgensen’s group, by analogy to the
existing OPLS-AA atom types. Regarding the partial atomic charges, corrected
Charge Model 1 A (CM1A) method is applied with a scale factor of 1.14 for
both neutral and charged molecules. In addition, a Localized Bond-Charge
Corrected (LBCC) method may be chosen for neutral molecules; this method
proved to significantly reduce errors on hydration free energies [58].

Nevertheless, given the optimized, but inevitable, charge calculation step,
LigParGen no longer follows the OPLS-AA philosophy about the transferability
concept, thus coming back to the AMBER approach. In addition to this,
new parameters, developed for the OPLS3 force field in collaboration with
Schrödinger [84], are not available for open access unless one upload a
ligand structure on LigParGen website and get the outcome.

However, it is interesting to parameterize a new ligand, for which one or
more chemical groups can not be defined with existing OPLS-AA parameters,
using LigParGen software, to possibly avoid calculating new parameters via
quantum chemistry. However, LigParGen may sometimes yield incorrect
parameters which need to be carefully reviewed.
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2.2 Covalent parameterization

As previously mentioned in the Chapter I Section 2.3, β-lactamase en-
zymes include metallo-β-lactamases (MBLs) and serine-β-lactamases (SBLs).
The latter perform antibiotic hydrolysis through a serine-dependent mecha-
nism which leads to the formation of a covalent acyl-enzyme intermediate.
In order to study such a complex by molecular dynamics (MD), preliminary
docking has to be conducted to obtain suitable starting poses (the covalent
docking technique will not be described in detail in this manuscript, see [181]
for a recent review). Once obtained, the pose has to be parameterized be-
fore running MD simulations; this step is based on the parameterization of
covalent ligands whose method is detailed hereafter.

2.2.1 Implementation in MOL2FF

Figure 22 shows the global idea of how covalent ligand parameterization
works using MOL2FF software.

Figure 22: Covalent β-lactam parameterization using MOL2FF software. SEC stands
for covalent serine which fused to the ligand constitute an acyl-complex
with an integer charge, here zero. Charge unit is the elementary charge
(e) and equals 1.602176565×10−19 Coulomb (C).
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First, the ligand is prepared by removing atoms which will not belong
to the future covalent bond, for example an hydroxyl group in the case of
β-lactam antibiotics, resulting in an increase of the initial ligand charge by
+0.080 e. Simultaneously, a covalent serine residue, termed SEC in OPLS-AA
force field, was parameterized by deleting the hydrogen from the sidechain
hydroxyl group resulting in a residue charge of –0.080 e. This way, when the
protein-ligand complex is prepared for MD simulation, the total charge will
be an offset integer.

2.2.2 Parameterized antibiotics

Figure 23 reports all β-lactam antibiotics that I have parameterized during
my PhD work. Some of them, like cefuroxime, cefotaxime and ceftazidime,
were used in MD simulations of CMY-136 (see next section 2.3).

Figure 23: Parameterized β-lactam antibiotics. Closed β-lactam rings are presented
here but hydrolysed and covalent forms have been equally parameter-
ized. (a): ampicillin, (b): temocillin, (c): imipenem, (d): meropenem,
(e): oxacillin, (f): cloxacillin, (g): aztreonam, (h): cefotaxime, (i):
cephalotin, (j): ceftazidime, (k): cefuroxime.
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With the widespread use and abuse of antibiotics for the past decades, antimicrobial resistance 

poses a serious threat to public health nowadays. β-Lactams are the most used antibiotics, and β-

lactamases the most widespread resistance mechanism. Class C β-lactamases, also known as 

cephalosporinases, usually do not hydrolyse the latest and most potent β-lactams, expanded 

spectrum cephalosporins and carbapenems. However, the recent emergence of extended-spectrum 

AmpC cephalosporinases, their resistance to inhibition by classic β-lactamase inhibitors, and the 

fact that they can contribute to carbapenem resistance when paired with impermeability 

mechanisms, means that these enzymes may still prove worrisome in the future. Here we report and 

characterize the CMY-136 β-lactamase, a Y221H point mutant derivative of CMY-2. CMY-136 

confers an increased level of resistance to ticarcillin, cefuroxime, cefotaxime and 

ceftolozane/tazobactam. It is also capable of hydrolysing ticarcillin and cloxacillin, which act as 

inhibitors of CMY-2. X-ray crystallography and modelling experiments suggest that the hydrolytic 

profile alterations seem to be the result of an increased flexibility and altered conformation of the 

Ω-loop, caused by the Y221H mutation.
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3

CMY-2-like enzymes are plasmidic class C β-lactamases that originated from the chromosomally-

encoded AmpC of Citrobacter freundii 1. They can be found in humans, feedstock animals, and 

pets2. CMY-2 is the most widespread plasmid-mediated AmpC (pAmpC) β-lactamase, which can be 

illustrated by the CMY-2-like enzymes reported to date, which amount to over 1403. They are also 

known as cephamycinases, because of their potential to hydrolyse these substrates, but they are also 

active on penicillins and first generation cephalosporins, and fairly resistant to inhibition by 

classical β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam)1. They are less active 

against third or fourth generation cephalosporins, and almost completely inactive against 

carbapenems. Lately however, several class C enzymes with extended-spectrum activity, termed 

extended-spectrum AmpC cephalosporinases (ESACs)4, have been reported, among them members 

of CMY-2-like family. Many of these enzymes show increased activity against third generation 

cephalosporins such as ceftazidime or cefotaxime, and even cefepime, a fourth-generation 

cephalosporin. When paired with impermeability mechanisms, CMY-2 may even mediate 

carbapenem resistance5. These enzymes are of clinical importance, and their study may prove 

important not only in understanding how their hydrolysis profile might evolve, but also to gain 

insights into their structure-function relationship, which in turn may aid in the development of new 

inhibitors, not only for class C but also for other classes of β-lactamases. We report here a novel 

CMY-2-like β-lactamase, CMY-136, we characterize it both biochemically and structurally, and 

provide the possible structural basis behind its hydrolysis profile differences when compared to 

CMY-2.

RESULTS

Isolation of blaCMY-136 gene

E. coli EC13 clinical isolate, identified from a urinary tract infection, displayed an unusual 

cephalosporinase phenotype6.  This isolate was resistant to ticarcillin and expanded spectrum 

cephalosporins, showed reduced susceptibility to cefoxitin, and showed increased susceptibility to 
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inhibition by clavulanic acid. Performing susceptibility testing on cloxacillin containing plates 

restored susceptibility to ticarcillin and expanded spectrum cephalosporins, suggesting a class C 

enzyme. PCR was positive for CMY-2, and sequencing revealed a novel CMY-2-like variant, which 

was assigned the name CMY-136, differing by a single amino acid substitution, Y221H, in a highly 

conserved position in class C β-lactamases3. The sequence alignment between CMY-2 and CMY-

136 is shown in Fig. S1.

Phenotypical characterization of CMY-136

The antimicrobial susceptibility profile conferred by CMY-136 was compared to that of CMY-2 by 

transforming E. coli TOP10 cells with a pTOPO plasmid harbouring either blaCMY-2 or blaCMY-

136 genes and performing disk diffusion susceptibility tests and MICs assays. CMY-2 and CMY-

136 show similar resistance profiles, they both confer resistance to penicillins and cephalosporins, 

and show susceptibility to cefepime and carbapenems (see Fig. S2 for the chemical structures of 

these β-lactams). Based on the disk diffusion test, when compared to CMY-2, CMY-136 confers 

increased resistance to ticarcillin and cefotaxime, low level resistance to cefoxitin, and shows 

increased susceptibility to inhibition by clavulanic acid. The MICs show that when compared to 

CMY-2, CMY-136 confers to E. coli decreased resistance to piperacillin and cefoxitin, and an 

increased level of resistance to ticarcillin, cefuroxime and cefotaxime (Table 1). According to the 

breakpoints of EUCAST, E. coli TOP10 expressing CMY-136 is also resistant to 

ceftolozane/tazobactam, whereas under the same conditions CMY-2 confers no resistance to it.

Table 1 MICs for E. coli TOP10 pTOPO-CMY-2 and E. coli TOP10 pTOPO-CMY-136.

 E. coli TOP10 pTOPO-CMY-2  E. coli TOP10 pTOPO-CMY-136β-lactam
 MIC (g/L) CLSI EUCAST  MIC (g/L) CLSI EUCAST

Amoxicillin >256    -* R >256    -* R
Amoxicillin + CLAa 32 R R 24 I R
Ticarcillin 32    -* R >256    -* R
Temocillin 24    -* R 24    -* R
Piperacillin 24 I R 12 S I
Piperacillin + TAZb 4 S S 2 S S

Page 4 of 34

ACS Paragon Plus Environment

ACS Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2.3 Publication 103



5

Cefoxitin >256 R R 16 I I
Cefuroxime 24 I R >256 R R
Cefotaxime 8 R R >32 R R
Ceftazidime 24 R R 24 R R
Ceftazidime + AVIc 0.38 S S 0.75 S S
Cefepime 0.125 S S 0.094 S S
Ceftolozane + TAZb 0.5 S S 2.5 I R
Imipenem 0.25 S S 0.19 S S
Meropenem 0.032 S S 0.023 S S
Ertapenem 0.012 S S 0.012 S S
Aztreonam  2 S I  3 S I

S: susceptible; I: intermediate; R: resistant
* values not available
aCLA: clavulanic acid
bTAZ: tazobactam
cAVI: avibactam

Genetic support of blaCMY-136 gene

Kieser7 extracted DNA from E. coli EC13 was electroporated into electrocompetent E. coli TOP10 

cells and plated on ampicillin-containing plates (100 mg/L). Several colonies that grew on 

ampicillin were confirmed by PCR and sequencing to be blaCMY-136 positive. Kieser DNA of E. 

coli EC13 and of electrotransformed E. coli TOP10 cells run on a 0.7% agarose gel revealed a 

single plasmid, pCMY-136 of ca. 90 Kbp in both isolates. Whole genome sequencing using 

Illumina technology of E. coli TOP10 (pCMY-136) revealed a 90844 bp plasmid in size, that 

belonged to the IncI1 group, and carried a single antibiotic resistance gene, blaCMY-136. BLAST 

search showed the closest deposited plasmid sequence to be the blaCMY-2 carrying plasmid 

pCVM22462 (accession number CP009566.1)8, isolated from a Salmonella enterica strain. It is 

99.98% identical to pCMY-136, excluding a 3,888-bp fragment that is absent in pCMY-136. This 

deletion is located 1,965-bp upstream of blaCMY-136/blaCMY-2 genes. This 3,888-bp fragment contains 

3 hypothetical protein ORFs and occurred contiguously downstream of an IS1294-like insertion 

sequence present on both plasmids.

Purification and biochemical characterization of CMY-136
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CMY-136 and CMY-2 were overexpressed and purified by Immobilized Metal Affinity 

Chromatography (IMAC), and purity of both enzymes was confirmed by SDS-PAGE, where a 

single band of ca. 41 kDa was observed. Steady-state kinetic parameters were determined to 

compare the catalytic activity of CMY-136 to that of CMY-2 against several β-lactams (Table 2). 

CMY-136 showed around a 10-fold increase in Km for most β-lactams assayed, with however, a 

few exceptions: (i) cephalothin (CEF), which showed a slightly higher affinity for CMY-136 than 

CMY-2, although other authors have reported a lower Km for CMY-2 against CEF9,10,11; (ii) 

cefoxitin (FOX), which showed a practically identical Km for both enzymes; (iii) β-lactams with a 

very high affinity for CMY-2 and a bulky, non-linear, R1 substituent, namely cefuroxime (CXM), 

cefotaxime (CTX) and ceftazidime (CAZ), which show a 103-104-fold increase in Km for CMY-

136; (iv) other β-lactams, namely ticarcillin (TIC) and cloxacillin (CLX), for which CMY-2 shows 

high affinity and no hydrolysis unlike CMY-136 that does hydrolyze them (see Fig. S2 for the 

meaning of the R1 and R2 substituents).

CMY-136 showed a decreased kcat for most of the preferred substrates of CMY-2, namely 

amino-penicillins and first generation cephalosporins, and also cefoxitin. However, it also shows an 

increased kcat for cefepime and ceftolozane, and a remarkably increased kcat (102-103-fold) for those 

β-lactams for which the most dramatic Km increase was also seen, CAZ, CTX, CXM. CMY-136 is 

also capable of hydrolysing cloxacillin and ticarcillin, which are not hydrolysed by CMY-2. In 

terms of their catalytic efficiency, all these translate into CMY-136 showing a lower efficiency than 

CMY-2 for most β-lactams tested, except for those not hydrolysed by CMY-2, TIC and CLX, and 

also ceftolozane.

Table 2 Steady-state kinetic parameters of β-lactamases CMY-136 and CMY-2.

 Km (µM) kcat (s-1) kcat/Km (mM-1 s-1)
Substrate CMY-2 CMY-136 CMY-2 CMY-136 CMY-2 CMY-136

Benzylpenicillin 0.6b 10.1* 24 b 7.83 40000 b 775
Cloxacillin 0.0002* 543 N.H. 0.47 N.H. 0.9
Ampicillin 0.16c 3.5* 0.55 c 0.43 3437 c 122
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Ticarcillin 0.03* 1.7* N.H. 0.15 N.H. 86
Cephaloridine 130a 1532 421 a 169 3240 a 110
Cephalothin 90 a 35 217 a 21.65 2400 a 618
Cefoxitin 0.15 b 0.2* 0.35 b 0.02 2333 b 111
Cefuroxime 0.005 b 21.6 0.014 b 9.42 2800 b 436
Cefotaxime 0.001 a 20 0.007 a 4.71 7000 a 236
Ceftazidime 0.15 a 2360 0.005 a 6.26 33 a 2.7
Cefepime 412 3588 0.37 1.79 0.9 0.5
Ceftolozane 200 1587 0.69 13.27 3.5 8.4
Imipenem 0.8 a 10.9 0.03 a 0.01 38 a 1.2
Aztreonam N.H. b N.H. N.H. b N.H. N.H. b N.H.

Errors for determined kinetic values are below 10%
N.H.: no hydrolysis detected with concentrations of substrate and enzymes up to 1,000 mM and 400 
nM, respectively.
a taken from 12,5

b taken from 9
c taken from 11

*Km values determined by inhibition assays as explained in experimental procedures

Table 3 shows IC50 values for aztreonam, tazobactam, and clavulanic acid. CMY-136 is similarly 

susceptible to inhibition by tazobactam as CMY-213,14.

Table 3 IC50 values (μM) for inhibitors of CMY-136 and CMY-2.

Inhibitor CMY-2 CMY-136
Tazobactam 3.2a 5.5
Clavulanic acid N.D. 137
Aztreonam N.D. 0.11

N.D.: not determined
a taken from13

CMY-136 crystallization and X-ray crystallography

CMY-136 crystallized in 0.1 M HEPES pH 7.5; 20% w/v PEG4000; 10% isopropanol. The 

structure was determined by molecular replacement using the deposited CMY-2 structure (PDB: 

1ZC2) as a template, and the model was refined to 1.60 Å (Table 4). R/Rfree values seem to be 

relatively high for the resolution obtained, which may be a consequence of merging two datasets 

(see experimental procedures). The asymmetric unit contains two protein chains, A and B, showing 
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no significant conformational differences between them. They have been modelled with 359 

residues each, with clear electron density observed for all regions of the protein. Several ordered 

water molecules have been modelled in the structure as well as phosphate anions and isopropyl 

alcohol molecules, from the crystallization condition. Both chains present the typical class C fold 

with an α-helical region and a mixed α-helix/β-sheet region. 99% of all residues are inside the 

favoured regions of the Ramachandran plot, and 1% in the allowed regions.

Table 4 Crystallography data collection and refinement statistics.
Data collection
 Space group P 1 21 1
 Cell dimensions  
  a, b, c (Å) 60.58, 58.09, 100.08
  α, β, γ (°) 90.00, 89.97, 90.00
 Resolution (Å) 16.1-1.60 (1.62-1.60)
 Rmerge 0.092 (0.67)
 I/σ(I) 9.9 (3.9)
 Completeness (%) 95.0 (96.3)
 Redundancy 4.2 (4.4)
 CC (1/2) 0.991 (0.775)
  
Refinement  
 Resolution range (Å) 16.10-1.60
 No. unique reflections 87,503
 Rwork/Rfree 23.4%/26.4%
 No. non-hydrogen atoms  
  Protein 5,642
  Water 396
  Ligand/Ions 67
  Total 6105
     Average B, all atoms (Å2) 19.8
  Protein 19.4
  Water 25.2
  Ligand/Ions 29.6
 Root mean squared deviations  
  Bond lengths (Å) 0.01
  Bond angles (°) 1.04
Values in parenthesis correspond to the higher resolution bin.
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CMY-136 shows the same overall conformation as CMY-2, and 3D alignment reveals a Cα RMSD 

of 0.465-0.486 Å between them. Several structural differences can be found when comparing CMY-

136 (Fig. 1) to CMY-2: (i) A phosphate molecule is positioned inside the active site of both CMY-

136 chains, with one of its oxygens buried inside the oxyanion hole. CMY-2 was crystallized with a 

citrate molecule inside the active site; (ii) The conformation adopted by the TYR221 in CMY-2, 

which interacts with the backbone of the Ω-loop at SER212 O and GLN215 O via two bridging 

waters, is different from the conformation found in CMY-136 for HIS221, whose sidechain invades 

the active site cavity, hydrogen bonding the aforementioned phosphate oxygen atom. The TYR221 

residue and its conformation are highly conserved in all class C enzymes reported to date (with the 

exception of PDC-85) and in all class C crystallographic structures deposited in the PDB that have a 

consensus length Ω-loop; (iii) In turn, the sidechain of ASP217 turns towards the interior of the Ω-

loop to partially occupy the space left by the conformational change of the Y221H mutation; (iv) 

The conformation adopted by the backbone of the Ω-loop residues ARG204 to GLN215 in CMY-

136 is different from the one found in CMY-2, that is also highly conserved in deposited class C 

structures with a consensus length loop, which translates into a backbone atoms RMSD between 

said residues in both crystal structures of 2.176 - 2.219 Å, a 4.56 - 4.68 Å displacement in the 

position of the Cα of VAL211, and the loss of the hydrogen bonds between GLU61 Oε and 

VAL211 N (Fig. 2) and between VAL209 O and GLY202 N (Fig. 2B). Two water molecules, w502 

and w504,occupy the usual space of residues V209-V211 backbone, and partially replace those lost 

hydrogen bonds (Fig. 2B); (v)The configuration of HIS210 sidechain is shifted from being 

positioned between, and interacting via pi-pi stacking with, TYR199 and TRP201 in CMY-2 – 

another highly conserved feature of class C structures, that fill this space with either HIS210 or 

ARG210 sidechains - to not directly interacting with any other residue, and hydrogen bonding w502 

(Fig. 2B). The space between TYR199 and TRP201 in the CMY-136 structure is filled by LYS290 

from another CMY-136 chain in the neighbouring asymmetric unit in the crystal structure; (vi) The 

conformation of the active site cavity residues and the hydrogen bond network between them is 
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highly conserved, with the exception of TYR150, which is slightly shifted towards the phosphate 

anchored in the active site, with a 3.1 Å displacement of its hydroxyl oxygen atom compared to 

TYR150 of the CMY-2 structure (Fig. 1 and Fig. S3). A water molecule can be found occupying 

this position, and TYR150 is still hydrogen bonding LYS67, and now also hydrogen bonds with the 

phosphate molecule and possibly ASN152, but no longer interacts with LYS315.

Fig. 1 Crystal structure of CMY-136. Active site cavity of CMY-136, with a phosphate molecule 

interacting with the oxyanion hole and other important residues. Note the conformation of the H221 
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sidechain, the position shift of Y150, and the water molecule occupying its hydroxyl usual position. 

Hydrogen bonds are depicted as dashed yellow lines. 2Fo-Fc electron density (contoured at 2σ) is 

shown.

Fig. 2 Comparison of the Ω-loop of CMY-136 and CMY-2. CMY-2 and CMY-136 are shown in 

green and magenta, respectively. a) Front view, the conformational change in the Ω-loop for CMY-

136 widens the active site cavity, displacing V211 Cα about 4.6 Å, and breaking the hydrogen bond 

with E61. Hydrogen bonds are depicted as dashed yellow lines. Displacement depicted as dashed 

orange lines. b) Side view, the conformational change also displaces H210 sidechain from its usual 

position interacting with residues 199-201. Hydrogen bonds are displayed as colored dashed lines 

according to model colors.

Modelling of covalent complexes of CMY-2 and CMY-136 with β-lactams

As no crystal structure of CMY-2 co-crystallized with β-lactams is available, covalent complexes of 

CMY-2 and CMY-136 with ceftazidime, cefotaxime and cefuroxime were created by superposing 

the structures of CMY-2 and CMY-136 with the available structures of class C enzymes with 
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ceftazidime (PDB code 1IEL) and cefotaxime (PDB code 4KG2), and in the case of cefuroxime, the 

covalently bound substrate was modelled on the conformation of the cefotaxime complex, given no 

covalent complex of class C enzymes with cefuroxime is available and both molecules show minor 

differences. Results show that in the case of CMY-2, acyl-enzyme complexes have minor clashes 

with L293 (Fig. 3A). In the case of CMY-136 numerous overlaps with residues H221 and Y150 

exist (Fig. 3C), which may explain the approximately 1000-fold increase in Km values for 

expanded spectrum cephalosporins for CMY-136 compared to CMY-2. Covalent complexes were 

then subjected to energy minimization steps, and results showed the conformational changes needed 

to resolve overlaps in the case of CMY-2 were smaller than those for CMY-136 (Fig. 3B and D, 

respectively). Both H221 and the R1 substituent of cephalosporins are displaced in opposite 

directions in the CMY-136 complexes, pushing the substrate outwards from the active site cavity 

and H221 towards the Ω-loop. In the case of CMY-2, displacements were smaller in magnitude, and 

they tended to approach the R1 substituent towards Y221 (see Fig. S2 for the meaning of the R1 

substituent).
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Fig. 3. Modelling of covalent complexes of CMY-2 and CMY-136 with ceftazidime. Covalent 

complexes were made by superposing the structures of CMY-2 or CMY-136 on the covalent 

complex of ceftazidime with AmpC (PDB code 1IEL). These were subjected to energy 

minimization. Covalent complex of CMY-2 with ceftazidime before (a) and after (b) minimization, 

as well as covalent complex of CMY-136 with ceftazidime before (c) and after (d) minimization are 

shown. Only relevant residues from CMY enzymes and ceftazidime are shown as sticks for 

simplicity. Overlaps between the ligand and the protein are depicted as red lines. In figures b and d, 

Page 13 of 34

ACS Paragon Plus Environment

ACS Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

112 Chapter 2 Parameterization of covalent ligands in OPLS-AA force field



14

both the minimized (cyan) and initial (green for CMY-2, orange for CMY-136) structures are 

shown for comparison. 

Molecular dynamics simulations of CMY-2 and CMY-136

To investigate the role of the Y221 mutation on the dynamics of the protein structure, 10 ns 

molecular dynamics (MD) simulations were performed in triplicate with four different systems (Fig. 

S4): CMY-2, CMY-136, CMY-136 with the Ω-loop modelled on the CMY-2 structure, and CMY-2 

with the Ω-loop modelled on the CMY-136 structure. For these MD simulations, citrate and 

phosphate ions were removed from the active sites of CMY-2 and CMY-136 structures, 

respectively. Root-mean-square deviation (RMSD) analysis of the trajectories reveals that the 

simulations reached stability within 2 ns and remained stable after that. Root-mean-square 

fluctuation (RMSF) analysis of Cα atoms in CMY-2 and CMY-136, expressed as B-factors, reveals 

some differences between them, regarding the flexibility of several parts of the structure (Fig. 4A). 

CMY-136 displays increased flexibility in the Ω-loop and H7 helix, from R204 up to H221, except 

for a short segment in the middle. An increased flexibility can also be found for part of the Q120 

loop, part of H10 and H11 helixes, and the C terminus of B3 strand, S318 and T319. Other loops 

around CMY-136 also have increased flexibility compared to CMY-2, to a lesser extent. There are 

also segments of decreased flexibility towards the exterior of the structure, contiguous to the 

previously described regions, the N-terminus of H10 helix and its preceding loop, C-terminus of 

H11 helix, H4 helix, G320, part of helixes H5 and H6, directly behind H4 helix in the tertiary 

structure, and also S343, next to the C-terminus of strand B3. It should be noted that R349, in the 

middle of H11, also shows decreased flexibility. Regions with increased flexibility can be found 

surrounding and forming the walls of the active site cavity, with regions of decreased flexibility 

further away (Fig. 4B).
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Fig. 4. Altered flexibility of CMY-136 Structure. a) CMY-2 and CMY-136 RMSF analysis, 

expressed as Cα B-factors. Compared to CMY-2, several regions displayed increased or decreased 

flexibility in the CMY-136 structure during MD simulation: part of the Ω-loop (R204-Y221), Q120 

loop (P118-R126), C-terminus of B3 strand (S318-G320), helixes H4 (D127-L131), H5 (A160-

G167), H6 (S169-M174), H10 (P277-A295), H11 (S343-Q361). b) Surface representation of CMY-

136 in the acyl-enzyme complex with CAZ, which is represented as green sticks. The surface of 

S64 is colored in purple. The surface of regions with increased flexibility, determined by Cα B-

factors, are colored in yellow, and those with decreased flexibility in red.

The MD simulations also demonstrate how the sidechain of Y221 in CMY-2 remains constantly in 

the same conformation, pointing outwards of S64, with its hydroxyl hydrogen bonding with the 

backbone of the Ω-loop directly or through bridging waters (Fig. 5A). In contrast, H221 in CMY-

136 displays much more flexibility, adopting several conformations in the active site throughout the 

MD simulation (Fig. 5B and 6). Other parts of the Ω-loop also show increased sidechain flexibility 

(Fig. 6), namely H210-S212 and Y199-W201, which normally interact closely with each other and 

with E61.
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Fig. 5. Flexibility of TYR 221 in CMY-2 and HIS 221 in CMY-136. A) Snapshot from the CMY-

2 MD simulation depicting the only conformation of Y221 observed throughout the 10 ns 

simulation. B) H221 conformations observed in four representative snapshots of the CMY-136 MD 

simulation. One of the conformations adopted is similar to that of Y221 for CMY-2 seen in panel A.

Page 16 of 34

ACS Paragon Plus Environment

ACS Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2.3 Publication 115



17

Fig. 6. Flexibility of Ω-loop in CMY-136 vs CMY-2. Individual atom B-factors of CMY-136 and 

CMY-2 Ω-loops. Note the increased flexibility of residue 221 in CMY-136, and also of regions 

H210-S212 and Y199-W201, which interact in CMY-2 as shown in Fig. 2.

This same H221 flexibility can be observed for the simulation of the CMY-136 model with the Ω-

loop, H7 and H221 sidechain starting with the same conformation as the CMY-2 crystal structure. 

In contrast, for the CMY-2 model with the Ω-loop, H7 and Y221 sidechain starting with the same 

conformation as the CMY-136 crystal structure, the native conformation of Y221 is not reached. 

Simulations for both enzymes starting either with the Ω-loop in the conformation observed in their 

own crystal structure, or in that of the other enzyme, seem to show that the conformation acquired 

by the Ω-loop during the simulations is independent of starting conformation. Snapshots of these 

four simulations were extracted every 1 ns and fitted on the CMY-2 or CMY-136 crystal structure 
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as references. Ω-loop Cα RMSD between the snapshot and the reference was determined, to assess 

conformational differences (Fig. S5). The analysis shows that both CMY-136 simulations, starting 

with a Ω-loop, H7 and H221 conformation as that observed in either the CMY-136 crystal structure 

or the CMY-2 crystal structure, present a lower RMSD compared to CMY-136 than to CMY-2 

crystal structures towards the end of the simulation. Similarly, for the CMY-2 simulation starting 

from the CMY-2 crystal structure conformation, some fluctuations can be observed during the 

simulation but finally the RMSD is also lower for its own native crystal structure than for that of the 

other enzyme, and in the same magnitudes as observed for CMY-136. In contrast, in the simulation 

of CMY-2 starting with the Ω-loop, H7 and Y221 conformation of the CMY-136 loop does not 

converge to the CMY-2 crystal structure conformation and remains closer to the CMY-136 crystal 

structure conformation. As mentioned earlier, for this simulation, Y221 does not acquire the native 

conformation observed in all class C structures.

 

DISCUSSION

We report here a novel β-lactamase belonging to the CMY-2 family, with an unusual 

mutation, Y221H, in a highly conserved position in class C β-lactamases. Analysis of the plasmid 

harbouring blaCMY-136 suggests it may have originated by mutation deriving from the blaCMY-2 

harbouring plasmid pCVM22462. It is noteworthy that the 3888bp fragment absent from pCMY-

136 but present in pCMY-2 occurs directly adjacent to IS1294, which may suggest its involvement 

in the deletion of this fragment15.

The biochemical characterization of CMY-136 suggests it to be less efficient than CMY-2 

in hydrolysing most β-lactams, the exception being ceftolozane, and also those not hydrolysed by 

the latter, cloxacillin and ticarcillin. The results for these three β-lactams corroborate what can be 

observed in the MIC assays. However, other significant differences in MICs for CMY-136 when 

compared to CMY-2 (increased MIC for cefotaxime and cefuroxime, and decreased MIC for 

cefoxitin) are not reflected in the catalytic efficiencies determined. In this regard, it has been 
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previously suggested that for class C enzymes, kcat may better represent the degree of resistance 

towards β-lactams16,17. Therefore, the comparison of kcat may explain better what is observed for the 

MICs. A 10-fold increase in kcat, or bigger, is observed for CMY-136 for cloxacillin, ticarcillin, 

cefuroxime, cefotaxime, ceftazidime, and ceftolozane, and a 10-fold decrease for cephalothin and 

cefoxitin. This corresponds well with observed MIC results, except for cloxacillin and cephalothin, 

for which MICs were not determined, and ceftazidime, which showed no difference in MIC 

between CMY-136 and CMY-2.

These results for CMY-136 are consistent with previously published results for similar 

cases. PDC-85, a variant of the chromosomally-encoded AmpC of Pseudomonas aeruginosa, is the 

only other class C enzyme presenting a Y221H mutation18. Similarly to CMY-136, the PDC-85 

variant showed an increase in MIC for ticarcillin and ceftolozane/tazobactam, and a decreased 

susceptibility to inhibition by cloxacillin, probably related to CMY-136 being capable of 

hydrolysing cloxacillin. In a different study, it was observed that the E. coli AmpC Y221G 

laboratory mutant showed an increased Km and kcat for cefotaxime, while at the same time 

significantly losing activity on cephalothin17. The authors evidenced that this mutation decreases the 

enzyme thermal stability, increase flexibility, and expand the active site cavity, and attribute the 

increase in cefotaxime hydrolysis to these effects, allowing for a better accommodation of the acyl-

enzyme complex into a catalytically competent conformation for de-acylation. For cephalothin, they 

propose the now missing stabilizing interactions between the substrate and the Y221G mutation to 

be responsible for the loss of hydrolysis.

The crystal structure of CMY-136 shows the same conformation as that of CMY-2, except 

for those differences described in the Results section. Just as for the Y221G AmpC mutant study, in 

CMY-136 the space no longer occupied by Y221 is partially occupied by D217, which turns 

towards the active site cavity. Another possible common feature is the expansion of the active site 

cavity, as the CMY-136 Ω-loop conformation displaces the V211 Cα from its usual position in class 

C structures by about 4.6Å. It is unclear whether the changes observed in the CMY-136 
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conformation are the result of the crystal configuration and interactions between neighbouring 

chains in it, the crystallization with a phosphate molecule in the active site, the consequences of the 

Y221H mutation, or a combination of them.

In order to investigate the high differences in affinity for expanded spectrum cephalosporins 

between CMY-2 and CMY-136, covalent complexes were created by superimposing the structures 

with available complexes and subjected to energy minimization, to evidence the conformations 

adopted by the acyl-enzyme complexes. As shown in Fig. 3, minimization does not lead to 

important conformational changes in the case of CMY-2. Superposition of the CMY-136 crystal 

structure on the complexes structures shows that there would be significant overlapping between the 

R1 sidechain of β-lactams and the H221 sidechain. This serves to explain why CMY-136 may show 

an increased Km for most β-lactams: in order for the β-lactam and the enzyme to interact, either the 

R1 sidechain or the H221 sidechain, or both, must adopt a different conformation from the one seen 

in most structures of class C enzymes in complex with substrates or the CMY-136 structure, 

respectively. Such conformational change most likely implies an energetic cost, that in turn 

represents an increase in Km. Furthermore, this higher energetic cost – and increase in Km – for 

CMY-136 interacting with most β-lactams seems to correlate with how big, bulky, ramified or rigid 

is the R1 substituent. There are much larger increases in Km for cloxacillin, ceftazidime, 

cefuroxime and cefotaxime than for those with a simpler R1 sidechain like benzylpenicillin or 

cephalothin. One possible explanation as for why such Km increase is less intense or doesn’t exist 

for CEF or FOX compared to CAZ or CXM, is that the R1 sidechain of the former is not as bulky, 

ramified, or rigid as for the others, and thus they may prove easier to accommodate inside the active 

site of CMY-136 with its Y221H mutation, implying less movement restrain for H221, or making 

more favourable contacts and hydrogen bonds, and thus with a lesser cost in terms of binding 

energy and Km.

The analysis of MD simulations suggests that the CMY-136 structure may show increased 

flexibility around the R1 and R2 pockets in the active site. The R2 pocket is usually described as 
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surrounded by the R2 loop (residues 289-307) and the proximal residues of helixes H10 and H111,19, 

and the R1 pocket is defined ad surrounded by the Ω loop (residues 178-226)1,19 (Fig. S6). The R1 

substituent of ceftazidime, and other β-lactams, also interacts with other residues surrounding it, 

namely Q120, N152, residues 218-220 and S343 (Fig. S6). As previously proposed by other 

authors9,20, an increased kcat may be a consequence of an increased protein flexibility, that may 

allow the acyl-enzyme complexes to more often adopt a conformation competent for being attacked 

by the hydrolytic water and be released. In the case of CMY-136, a change in the Ω-loop 

conformation, widening the active site cavity by displacing V211, may also participate in the kcat 

increase observed for certain substrates. As observed by the superposition and RMSD analysis of 

the MD simulations, the CMY-136 Ω-loop tends to adopt a conformation more similar to the one 

observed in the CMY-136 structure than to that observed in the CMY-2 structure, regardless of the 

starting conformation. For CMY-2 starting with the Ω-loop in its native conformation, some 

fluctuation is observed but finally a conformation more similar to this native one than to the one in 

CMY-136 crystal structure is adopted. As mentioned earlier, this is not observed for the CMY-2 

simulation starting with a CMY-136 Ω-loop conformation. In this simulation the loop remains more 

flexible and the Y221 sidechain adopts different conformations, as observed in the case of CMY-

136. The stability of the native Y221 conformation (conserved in class C structures) in the CMY-2 

MD simulation, and the fact that this conformation is not reached in a 10 ns simulation starting from 

a different conformation, suggests that the native conformation of the Ω-loop of class C enzymes 

may be quite stable, and a relatively high energetic barrier might have to be overcome to reach, or 

come out of it. In contrast, H221 in CMY-136 easily adopts several conformations throughout the 

simulations, starting from either crystal structure conformations (CMY-2 and CMY-136). This in 

turn may help to explain the experimental data observed, i.e. a flexible H221 would allow CMY-

136 to hydrolyse β-lactams in spite of its conformation in the crystal structure. Were H221 to 

remain in this conformation, CMY-136 would most likely be incapable of interacting with its 

substrates, especially those with a more rigid, bulkier, ramified R1 sidechain. The fact that H221 
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can adopt different conformations during the MD simulation, one of them similar to the Y221 

conformation in CMY-2, helps to imagine how it may still accommodate the substrates in its active 

site cavity. On the other hand, this flexibility may also explain the increase in Km observed for 

most β-lactams. Although H221 seems to be much more flexible than Y221 and may adopt several 

conformations, once CMY-136 is interacting with the substrate, H221 would probably lose much of 

its movement freedom. This would imply an energetic cost, and an increase in Km for the reaction. 

Such increase in Km would clearly not be observed in the case of CMY-2 or other class C enzymes 

with Y221 in its native conformation, as it is probably static enough that no movement restrain is 

imposed on it upon binding of the substrate.

CONCLUSION

CMY-136 is a novel β-lactamase, which belongs to the CMY-2-like family. It possesses a single 

unusual mutation, Y221H, in a position highly conserved in all class C β-lactamases. We compared 

here its genetic environment to that of the closest plasmid harbouring CMY-2 and characterized 

CMY-136 both biochemically and structurally. Finally, in silico modelling techniques suggested a 

possible structural explanation for the differences observed compared to CMY-2. These results 

allowed us to better assess the potential of class C β-lactamases for their spectrum extension and for 

their potential threat to public health. Finally, the identification of the Y221H mutation in a natural 

variant of CMY-2 and which confers resistance to ceftolozane/tazobactam prior to the use of this 

latter antibiotic in clinics is worrisome, since it may indicate a more rapid appearance of resistance, 

as this type of enzyme may be selected.

EXPERIMENTAL PROCEDURES

Bacterial strains
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blaCMY-136 was recovered from a urinary tract E. coli isolate EC136. blaCMY-2 was recovered from the 

E. cloacae ec-204 strain (Bicêtre strain collection). E. coli TOP10 (Invitrogen, Saint-Aubin, France) 

and E. coli BL21 (DE3) (Novagen, VWR International, Fontenay-sous-Bois, France) were used for 

cloning experiments and protein overproduction, respectively.

Plasmid extraction and cloning

Plasmid DNA from E. coli EC13 was extracted using the Kieser method7. The Kieser extracted 

DNA was used to transform E. coli TOP10 strain by electroporation. The electroporants were plated 

on TSA plate containing ampicillin (100 µg/ml). Transformants were analyzed by PCR using the 

primers CMY-2A and CMY-2B (5’-aaaaacatatgatgaaaaaatcgttatgctgc-3’ and 5’-

aaaaggatccttattgcagcttttcaagaatgc-3’, respectively). From the transformants harbouring blaCMY-2-like 

genes, plasmid DNA was extracted using Kieser’s method and subsequently analysed on a 0.7% 

agarose gel stained with ethidium bromide. Plasmids of ca. 154, 66, 48, and 7 kb of E. coli NCTC 

50192 were used as plasmid size markers21.

Plasmid sequencing (WGS)

Plasmid DNA was extracted from an E. coli TOP10 clone harbouring the wild type pCMY-136 

plasmid using the QIAGEN Plasmid Maxi Kit following the manufacturer’s instructions. The DNA 

concentration and purity were controlled by a Qubit® 2.0 Fluorometer using the dsDNA HS and/or 

BR assay kit (Life technologies, Carlsbad, CA, US). The DNA library was prepared using the 

Nextera XT-v3 kit (Illumina, San Diego, CA, US) according to the manufacturer’s instructions and 

then run on Miseq (Illumina) for generating paired-end 300-bp reads. De novo assembly was 

performed by CLC Genomics Workbench v9.5.3 (Qiagen, Hilden, Germany) after quality trimming 

(Qs ≥ 20) with word size 34.

The acquired antimicrobial resistance genes were identified by uploading the assembled plasmid to 

the Resfinder server v2.1 (http://cge.cbs.dtu.dk/services/ResFinder-2.1)22. Plasmid incompatibility 
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group was obtained by uploading the plasmid sequence to PlasmidFinder server 1.3 

(https://cge.cbs.dtu.dk/services/PlasmidFinder/)23. Plasmid sequence was blasted 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi)24 and compared to the best hit using Artemis Comparison 

Tool25.

Cloning of blaCMY-136 and blaCMY-2 genes

PCR amplification of blaCMY-136 and blaCMY-2 genes was performed using total DNA extraction of E. 

coli EC13 and Enterobacter cloacae ec-204, and primers CMY-2A (5’-

aaaaacatatgatgaaaaaatcgttatgctgc-3’) and CMY-2B (5’-aaaaggatccttattgcagcttttcaagaatgc-3’). 

Amplicons were cloned into pCR®-Blunt II-TOPO® cloning plasmid (Invitrogen, Illkirch, France) 

under regulation by the pLac promoter. The recombinant pTOPO-cmy-136 and pTOPO-cmy-2 

plasmids were electroporated into the E. coli TOP10 strain and then selected using TSA-plate 

containing kanamycin (50 mg/L). blaCMY-136 and blaCMY-2 were amplified using primers INFcmy-2A 

(5’-aaggagatatacatatgatgaaaaaatcgttatgct-3’) and INFcmy-2B (5’-

ggtggtggtgctcgaattgcagcttttcaagaatgc-3’) and cloned into pET-41b(+) expression vector (Novagen, 

VWR International, Fontenay-sous-Bois, France) using the NEBuilder® HiFiDNA Assembly 

Cloning Kit (New England BioLabs®Inc, United Kingdom), following the manufacturer’s 

instructions. Recombinant plasmids pET41b-cmy-136 and pET41b-cmy-2 were electroporated into 

electrocompetent E. coli BL21 (DE3) and selected using TSA-plates containing kanamycin (50 

mg/L).

Recombinant plasmids were extracted using the Qiagen miniprep kit and both strands of the 

inserts were sequenced using M13 F and M13 R primers, for the pCR®-Blunt II-TOPO® plasmid 

(Invitrogen, Illkirch, France), and T7 promoter and T7 terminator primers, for pET-41b(+) 

(Novagen, VWR International, Fontenay-sous-Bois, France), with an automated sequencer (ABI 

Prism 3100; Applied Biosystems, Les Ulis, France). The nucleotide sequences were analysed using 
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software available at the National Center for Biotechnology Information website 

(http://www.ncbi.nlm.nih.gov).

Antimicrobial agents, susceptibility testing and microbiological techniques

Antimicrobial susceptibilities were determined by disk diffusion technique on Mueller-Hinton agar 

(Bio-Rad, Marnes-La-Coquette, France) and interpreted according to the EUCAST breakpoints, 

updated in 2015 (http://www.eucast.org). Minimal inhibitory concentration (MIC) values were 

determined using the Etest technique (BioMérieux, Paris, France).

β-Lactamase purification

Overnight cultures of E. coli BL21 (DE3) harbouring either pET41b-cmy-2 or pET41b-cmy-136 

recombinant plasmids were used to inoculate 2 L of BHI broth containing 50 mg/L kanamycin. 

Bacteria were cultured at 37ºC until reaching an OD of 0.6 at 600 nm, and protein expression was 

induced overnight at 25ºC with 0.2 mM IPTG. Cultures were then centrifuged at 6000 g for 15 min 

and the pellets resuspended with 10 mL of Buffer A (20 mM PBS, 175 mM K2SO4, 40 mM 

imidazol, pH 7.40). Bacterial cells were disrupted by sonication and protein solution was clarified 

by centrifugation at 10,000 g for 1 h at 4ºC. The supernatant was then centrifuged at 48,000 g for 1 

h at 4ºC. CMY-136 or CMY-2 was purified using a NTA-Nickel pseudo-affinity chromatography 

column (GE Healthcare, Freiburg, Germany). Elution was performed in a gradient of 0 to 100% 

Buffer B (20 mM PBS, 175 mM K2SO4, 500 mM imidazol, pH 7.40). Purity was assessed by SDS–

PAGE, and pure fractions were pooled and dialyzed against 100 mM sodium phosphate buffer (pH 

7.4) 50 mM potassium sulphate and concentrated up to 6.4 mg/ml using Vivaspin® columns (GE 

Healthcare, Freiburg, Germany). Protein concentration was determined using Bradford Protein 

assay (Bio-Rad) 26.

Steady-state kinetic parameters

Page 25 of 34

ACS Paragon Plus Environment

ACS Infectious Diseases

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

124 Chapter 2 Parameterization of covalent ligands in OPLS-AA force field



26

Kinetic parameters of purified CMY-136 and CMY-2 were determined at 100mM sodium 

phosphate buffer (pH 7.0), with extinction coefficients as detailed in Table S1. When available, 

published values from previous studies for CMY-2 were used for comparison with those determined 

for CMY-136 (Table 2). The kcat and Km values were determined by analysing hydrolysis of β-

lactams under initial-rate conditions with an ULTROSPEC 2000 model UV spectrophotometer 

(Amersham Pharmacia Biotech) using the Eadie–Hoffstee linearization of the Michaelis–Menten 

equation. The different β-lactams were purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, 

France). Low Km values were determined as competitive inhibition constants, Ki, in the presence of 

a good reporter substrate (cephalothin)11.

Protein crystallization and crystallography

Initial crystallization screenings of CMY-136 were set up using the Mosquito® HTS (TTP 

LabTech) in four crystallization screening suites: Classics, AmSO4, PEGs and PEGs II 

(Qiagen/NeXtal). Plates were incubated at 293K in the ROCK IMAGER 1000 (Formulatrix, Inc). 

The crystal was transferred to a cryo-protectant solution consisting of the mother liquor 

supplemented with 25% glycerol and flash-frozen in liquid nitrogen.

Diffraction data was collected at 100 K in a nitrogen cryostream on the PROXIMA2 beamline at the 

SOLEIL synchrotron (Saint-Aubin, France). The data were indexed and integrated with XDS27 in 

the autoPROC toolbox28. Two incomplete datasets were merged to try to make as complete a 

dataset as possible, using autoPROC. Data scaling was performed using AIMLESS29 from the 

CCP4 suite30. Data collection and refinement statistics are given in Table 4. The structure of CMY-

136  was solved by the molecular replacement method with Phaser31 using the structure of  CMY-2 

(PDB code 1ZC2) as a search model. The model was rebuilt manually in Coot32 and then refined 

using BUSTER-TNT33 with local noncrystallographic symmetry (NCS) restraints and a translation–

libration–screw (TLS) description of B factors34. The quality of the final refined model was 

assessed using MolProbity35. Crystal structure images were generated using PyMOL36.
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Structure analysis, covalent complexes and molecular dynamics simulations

CMY-136 structure comparison to the previously published CMY-2 structure (PDB code 1ZC2) 

and analysis of docking results were performed with UCSF Chimera package37.

Covalent complexes of CMY-2 and CMY-136 with ceftazidime, cefotaxime and cefuroxime were 

created by superposing the structures of CMY-2 and CMY-136 with the available structures of class 

C enzymes with ceftazidime (PDB code 1IEL) and cefotaxime (PDB code 4KG2), and modelling 

cefuroxime on the conformation of cefotaxime. Ligand structures were generated with 3D Structure 

Generator CORINA Classic (Molecular Networks GmbH, Nuremberg, Germany).

Molecular dynamics simulations of CMY-2 and CMY-136 were performed with Gromacs v4.637 

using the OPLS-AA force field.38 The covalent ligands were parametrized using a modified version 

of our in house MOL2FF tool. Each system was energy-minimized until convergence using a 

steepest descents algorithm. Molecular dynamics with position restraints for 200 ps was then 

performed followed by the production run of 10 ns, which was repeated three times to ensure the 

reproducibility. During the position restraints and production runs, the Parinello-Rahman method 

was used for pressure coupling, and the temperature was coupled using the Nosé-Hoover method at 

300 K. Electrostatics were calculated with the particle mesh Ewald method. The P-LINCS 

algorithm was used to constrain bond lengths, and a time step of 2 fs was used throughout. 

Nucleotide sequences accession numbers and PDB deposition.

The amino acid sequence of blaCMY-136 gene and the nucleotide sequence of its natural plasmid 

pCMY-136 have been submitted to the EMBL/Genbank nucleotide sequence database under the 

accession numbers AVR61040.1 and MG844436.1, respectively. The crystallographic structure of 

CMY-136 has been deposited to the PDB, accession code 6G9T. Authors will release the atomic 

coordinates and experimental data upon article publication.
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S2 
 

 

Fig. S1 Sequence alignment of CMY-2 and CMY-136. Sequence alignment of CMY-2 and 

CMY-136 showing the position of the mutated residue and secondary structure elements as defined 

for CMY-2 (PDB code 1ZC2). 
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Fig. S2 Chemical structures of β-lactams and β-lactamase inhibitors used in this study. The 

chemical structures of the β-lactam antibiotics or β-lactamase inhibitors mentioned in this study 

(MICs, enzyme kinetics or molecular modelling experiments) are shown here. The R1 and R2 

substituents are colored in red and blue, respectively. 
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Fig. S3 Different conformations of Y150 in the CMY-2 and CMY-136 structures. Superposition 

of CMY-2 (green) and CMY-136 (cyan) structures shows that the conformation adopted by Y150, a 

mechanistically important residue, in the CMY-136 structure differs from that observed in CMY-2, 

with a shift of 3.1 Å in its hydroxyl position. Other important residues are shown for reference. 
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Fig. S4 RMSD of the MD simulations. RMSD of the 10 ns simulations of CMY-2 (A) and CMY-

136 (B) carried out in triplicate. 
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Fig. S5. RMSD analysis of Ω-loop from MD trajectories. Ω-loop Cα RMSD analysis of the MD 

trajectories compared to CMY-2 and CMY-136 crystal structures. RMSD was calculated between 

crystal structure Ω-loops, and MD simulation snapshots taken every 1 ns. Regardless of starting 

conformation, CMY-136 structures tend to converge to a conformation closer to that of CMY-136 

crystal structure, and far from that of CMY-2 crystal structure. For CMY-2 simulations, when 

starting from the native structure conformation, Ω-loop conformation is maintained closer to it than 

to that of CMY-136 Ω-loop crystal structure. When starting from a CMY-136 Ω-loop conformation, 

however, CMY-2 Ω-loop conformation does not converge towards its own Ω-loop crystal structure 

conformation. Ω-loop RMSD between both crystal structures is represented by the purple dashed 

line. “CMY-2 MD”: simulations for the CMY-2 structure starting from its own crystal structure 

conformation; “CMY-136 MD”: simulations for the CMY-136 structure starting from its own 

crystal structure conformation; “CMY-2(conf. 136) MD”: simulations for the CMY-2 structure 

starting with the Ω-loop modelled on the CMY-136 crystal structure Ω-loop conformation; “CMY-

136(conf. 2) MD”: simulations for the CMY-136 structure starting with the Ω-loop modelled on the 

CMY-2 crystal structure Ω-loop conformation. 
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Fig. S6 R1 and R2 pockets in CMY-2. Surface representation of CMY-2 showing the different 

parts of the protein defining the R1 and R2 pockets. The R2 pocket (colored in red) is usually 

defined as surrounded by the R2 loop (residues 289-307) and the proximal parts of helixes H10 and 

H11. The R1 pocket (colored in yellow) is usually defined as surrounded by the Ω loop (residues 

178-226). Apart from this, the R1 substituent of ceftazidime can interact with other surrounding 

residues: Q120, N152, S343 and residues 318-320. For reference, ceftazidime is shown as green 

sticks. 
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Table S1 Extinction coefficients and wavelengths for β-lactams. Extinction coefficients and 

wavelengths used for the different substrates in the kinetic parameter determinations. 

Substrate Wavelength (nm) Δε (M-1 cm-1) 
Benzylpenicillin 232 1,100 
Cloxacillin 220 700 
Ampicillin 235 1,050 
Ticarcillin 235 1,050 
Cefaloridine 255 9,360 
Cefalotin 262 7,960 
Cefoxitin 265 7,380 
Cefuroxime 262 7,800 
Cefotaxime 265 6,260 
Ceftazidime 260 8,660 
Cefepime 264 8,240 
Ceftolozane 259 1,900 
Imipenem 297 9,210 
Aztreonam 318 640 
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3
MD simulations of MBL–ligand
complexes

After validation of parameters for the new OPLS-AA residues on ligand-
free metalloproteins, I wanted to test their robustness on MBL-ligand com-
plexes. This work was carried out at the beginning of my thesis, therefore,
given that at that time I hadn’t parameterized any β-lactam antibiotics, I chose
the representative NDM-1 enzyme and two easy-to-parameterize succinic
acid inhibitors of IMP-1.

3.1 System setup

3.1.1 Protein

The selected NDM-1 structure 4hl2 (Figure 24) was prepared as follows:
(1) zinc-coordinating residues were renamed according to the new developed
residues (see Chapter II), namely HMD for HIS[120, 189, 250], HME for
HIS122 and CYSM for CYS208, (2) ampicillin ligand, water and all non-
protein molecules – except the two active site zinc ions – were deleted, and
(3) checking of the structure revealed no missing atoms and residues.

Figure 24: Crystallographic structure of NDM-1 (PDB code 4hl2). Non-protein
residues (water, ligands, non-zinc ions) were removed for the MD simu-
lation.
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3.1.2 Ligands

Considering the structural similarity between IMP-1 and NDM-1 struc-
tures (metallo-β-lactamase B1 subclass), two IMP-1 structures each containing
a succinic acid inhibitor have been aligned on NDM-1 (Figure 25). This align-
ment revealed no important steric hindrance (Figure 25.A), therefore initial
poses for MD simulations were not obtained by docking calculations but by
transferring the BYS (PDB code 1jje) and BDS (PDB code 1jjt) inhibitors’ coor-
dinates into the NDM-1 structure (Figure 25.B-C). Then, the two compounds
were successfully parameterized using MOL2FF software.

Figure 25: Structures of NDM–1 and IMP–1 enzymes. (A) Structural alignment of
NDM–1 (PDB code 4hl2) and IMP–1 (PDB code 1jjt) colored in medium
purple and dark cyan, respectively. Surface representation of NDM–1
enzyme (PDB code 4hl2) complexed with (B) BYS inhibitor (PDB code
1jje) and (C) BDS (PDB code 1jjt) inhibitor.

3.1.3 MD simulations

Simulations were carried out using OPLS-AA force field implemented in
GROMACS version 4.6.0. The protocol is the same as reported in Chapter
II. Both NDM-1–inhibitor complexes contain around 54,000 atoms including
protein, water and ions. Production steps included one 100 ns simulation for
each complex and for the apo NDM-1 structure, namely with no ligand.
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3.2 Results and Discussion

First, a 100 ns MD simulation was performed using a prepared apo-
structure of NDM-1 and its dynamic evolution has been analysed by comput-
ing Root-Mean-Square Deviation (RMSD) of the backbone (Figure 26).

Figure 26: RMSD analysis of apo-NDM-1 backbone along a 100 ns MD simulation.

Outcomes revealed an overall stability of the protein even if deeper
investigations on the active site Zn-Zn distance pinpointed a sligth increase,
from 3.5 Å to 5 Å, due to repulsion effects. This issue has been fixed later on,
by setting a non-covalent bond between the two zinc ions (see Chapter II).

Then, NDM-1 enzyme complexed with inhibitors have been studied
through 100 ns MD simulations and its dynamic evolution has been also
described under RMSD calculations reported in Figure 27. From these two
RMSD plots, we may draw some common conclusions: (1) absence of drastic
changes in the RMSD curves reveals a probable equilibrium in protein stability,
even if a simple RMSD analysis may be not enough to fully characterize an
equilibrium state [114], (2) RMSD fluctuations through intermediate states
underline a certain flexibility of the protein active site, especially in cases (a)
and (d) where phenyl and 1,3-benzodioxole groups evolved from horizontal
to vertical conformations, and (3) phenyl group seems to be less involved in
interactions with the protein than the 1,3-benzodioxole one.

Otherwise, zinc-coordination, achieved by protein residues and inhibitors,
is not disturbed along both simulations as well as the distance between zinc
ions, even without setting a non-covalent bond.
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Figure 27: RMSD analysis of NDM-1–inhibitor complexes along 100 ns simula-
tions. In both plots, black color and red color refer to NDM-1 backbone
and ligand atoms, respectively. (A) BDS inhibitor. (B) BYS inhibitor.
For each screenshot (a-e), initial/intermediate poses are colored in (a)
beige/green, (b) beige/blue, (c) blue/pink, (d) beige/pink, and (e)
beige/blue.

In this section, we learnt that MD simulations of MBLs, with or
without ligand, may be carried out in a stable way using new devel-
oped OPLS-AA residues and a correct ligand parameterization. Indeed,
electrostatic charges seem to be sufficient to ensure a stable system in
the presence of a ligand – assumption supported by other simulations
on MBLs complexed with peptide-like ligands (confidential data). In
addition, suitable MD initial poses may be obtained in some cases by
aligning related crystallographic protein structures instead of running
docking calculations.
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4
MD simulations of an intriguing SPM-1
glycine mutant

A powerful search tool has been developed in our team, named ResMiner,
to retrieve β-lactamase sequences in genomic and metagenomic data. Coming
from one of those searches, six interesting MBLs sequences were identified.
Their closest known analogs were São Paulo metallo-β-lactamase 1 (SPM-1)
sequences with 35% of sequence identity; therefore we decided to term them
SPM-like.

However, SPM-1 belongs to the MBL B1 subclass in which one of the two
coordination pattern is normally HxHxD, with x being a "random" amino acid.
But in these new sequences, the first histidine (H) is replaced by a glycine
(G), which yields a GxHxD pattern (Figure 28).

1 11 21 31 41 51
4BP0-A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
OGU548 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M E R G1 
WP_013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M N L F R N Y Y N P I1 
WP_050 M P V T L H E V C Y T P R M T R A V L A I L W L L P S L A L V S V A C G G S E H V T E V A S V S S T T S A P G V A S R S1 
WP_053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
WP_061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 
WP_083 . . . . . . . . . . . . . M D Y I C K H D A F I A N S I E K E D H I I I P F I N L I K E E W R M K N I A I F V L V G V F1 

61 71 81 91 101 111
4BP0-A . . . . . . . . . . . . . . . . . . . . . . . . . G P K S S D H V D L P Y N L T A T K I D S D V F V V T D R D F Y S S N1 
OGU548 I K F F T S A V M I F L L V N V H H A Q N N N F K T V K V N D Y . . . . . . L T I N E I E K D V Y R V S H R F P W Q A N5 
WP_013 R N V M L I I F F V L T D L S L I A Q T Q P E Y P V I R L N D . . . . . . E L E V R E I L P N A F V I T H K F P W G G N12 
WP_050 A P A A V V Q V K G G E A A G A L P A S A E G L P E T K L S E . . . . . . D L V I R Q L A P D V H L I T H T F P W P A N61 
WP_053 . . . M S K K V K F C I I L I I Q T L T F T S C I T N G T N P K Y K L S E E L Q I S K I K K D T Y L V T H S Y P W P A N1 
WP_061 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q A N1 
WP_083 I I I G N T G C S S R L N V L S Q E K Q V G L P A N E R V F P I G E I G D K L Y A E E I Q E S V Y V I N H E F P W P S N48 

121 131 141 151 161 171
4BP0-A V L V A K M L D G T V V I V S S P F E N L G T Q T L M D W V A K T M K P . K K V V A I N T H F H L D G T G G N E I Y K K36 
OGU548 S L L V R V G D K D F V L A D T P I E N T G S E A L V E W M R K E F G D . I K L T V I N C G F H I D C L G G N H Y M I N59 
WP_013 S L V V L I G E K Y A V F V D T P Y T P E A T E N V L D W I N K Q Y G N . R Q F I E I N T G Y H V D N L G G N D A L L H66 
WP_050 A L L V E M A N G D L V L C D P T Y T V D A M R L V L A W M D E R Y G K . R R I V A L N T G F H I D R V G G N A A L L E115 
WP_053 S L L V L M N S K Y I L W I D T P Y T P E A T A Q V L K W I D E E I G S G Y S L V E I N T G F H I D N L G G N Q E L I K58 
WP_061 S M V V D I S P K D L L I I D A P W T S A S T R D L L K W A K D T F G D . R K I T A I N T G S H M D R V A G N D V F L A4 
WP_083 S M V V E M E T G D I V L V D T P Y T P A A T K Q L L D W I H K R F G E . R E I I A I N T G F H F D N L G G N Q V L V Q108 

181 191 201 211 221 231
4BP0-A M G A E T W S S D L T K Q L R L E E N K K D R I . K A . . A E F Y K N E D L K R R I L S S H P V P A D N V F D L K Q G .95 
OGU548 Q G F P V Y A S D M T L K L . F E E N K G N M I D R M . . L Q G I R D S M I I N S I K N L Q P T A P D H I F K A E E G .118 
WP_013 R N I P I I G S D K T V S L L R E R G E A T R Q L T M G W L E G P G N E K F L K R H E T I P Y V G P S Q I F Q L T E G .125 
WP_050 R G I P V Y G S D L T A R L V T T R S E A H R A W V R A S V D . . . D G A I A A V F E T Q P M V P P D R V F P I A E G .174 
WP_053 R N I P I Y G S E L T R Q L L D S N S A S T M A D M H I W L Q D E K Y T K Y R D V Y S Q F I F Y K P T H T F D I N I E .118 
WP_061 E G A D V Y S S D L T I K Y V . . . K K S K P T E L K S L A S R V S D P A I K A E F A K M K I R E A N H S F P L K E G .63 
WP_083 K D I P V Y G S S L T E L L I Y E Y G E A S R E L M L S W L N K P E T K E L Y N V Y Q Q I P Y V P P T E I F N L D K V D167 

241 251 261 271 281 291
4BP0-A . K V F S F S N E L V E V S F P G P A H S P D N V V V Y F P K K K L L F G G C M I K P K E . . . L G Y L G D A N V K A W151 
OGU548 . L T L H I G K E D I D I Y Y P G P A H T K D N I V V F F P E K G I L Y G G C M V K A L E Q S N L G N Q S D A D F E A W174 
WP_013 . Y H F T V G D E P I E V F F P G E T H A P D N I V V Y F P E R K I L F G G C M L R V . . G N G T G N R A D A N M D T W184 
WP_050 . L S L T F G E E K V V V H H P G P G H A P D N V V V F F P A H R L L F G G C L V A A G E R . . I G N T T D G D L A R W230 
WP_053 . Q S I K L G K N E A I I Y Y P G P T H T Y D N L V V Y L P K Q K I L F G G C M I F N A N A K K M G Y V K D G N I E E W177 
WP_061 . K T L S F G E K K A E I F Y P G H G H T K D N V V V Y L P D Y K I L Y G G C F I V G L . . P K L G Y I K E A D L K E W119 
WP_083 L Q N F R F G N E E V E I Y Y P G Q S H S P D N L V V Y F P E K N I L F G G C M I K S L D S K D L G N T A D A N L Q E W227 

301 311 321 331 341
4BP0-A P D S A R R L . . K K F D A K I V I P G H G E W G G P E M V N K T I K V A E K A V G E M R L207 
OGU548 P A S A Q E L L D K Y P D A K I V V P G H G M W G D L I I V R H T L E L L K K R . . . . . .233 
WP_013 K S S V E R L . . R D F D C V A V I P G H G I R F D P G V I E N T I S V L P . . . . . . . .241 
WP_050 G D A I R D L . . Q R F K A F S I V P G H G S R L D P G L L D H T L A L L A S A S P . . . .287 
WP_053 S K S L E Y L K E R F P D I K T V I P G H G S P G D S T L I A H T K E I I D A S K . . . . .236 
WP_061 P K A L D K M . . S R F D A K W V I P G H G T S Y S P D L I E H T K K L V K . . . . . . . .176 
WP_083 P K S V K K V L E R Y K D S K I V I P G H G K W G N I D L I K Y T L Q L C E E K S . . . . .287 

Figure 28: SPM-1 and SPM-like sequences alignment. Red and black frames
refer to H/GxHxD zinc-coordination pattern and a highly con-
served apartate residue, respectively. 4BP0-A: SPM-1 crystallo-
graphic sequence (PDB code 4bp0, chain A). OGU548 and the
WP series: the six SPM-like sequences. Alignment done with
UCSF Chimera software which uses the Clustal X Colour Scheme
[http://www.jalview.org/help/html/colourSchemes/clustal.html].
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Alternatively, other MBLs subclasses display slightly different patterns
such as NxHxD for B2 subclass, with an asparagine (N) in place of histidine,
and HxHxDH for B3 subclass.

Looking at these new sequences, we asked ourselves a priori if this glycine
mutation could be concerted with other mutations not involved in zinc coor-
dination but allowing another residue to replace the coordination initially
operated by histidine. In other words, could another residue appropriately
positioned replace histidine in zinc coordination?

After investigations, an aspartate residue was found to be highly con-
served among the seven sequences (Figure 28) and positioned on a flexible
loop. The sidechain of this aspartate is located at 7.4 Å from the zinc ion
coordinated by the mutated histidine (Figure 29).

Figure 29: SPM-1 crystallographic structure (PDB code 4bp0). Non-protein residues
(water, ligands, non-zinc ions) were removed. On the left, an overview
of SPM-1 secondary structures. On the right, a zoom on the active site,
with the mutated histidine and the highly conserved aspartate residues
colored in green and dark cyan, respectively.

This way, my objective was to run quite long MD simulations of SPM-1
and SPM-like histidine-to-glycine mutants in order to validate or not our
assumption. It was also another opportunity to assess the parameters for our
new OPLS-AA residues presented in Chapter II.

148 Chapter 4 MD simulations of an intriguing SPM-1 glycine mutant



4.1 System setup

4.1.1 Protein

Only three crystallographic structures were available for SPM-1 at the
time of experiments: 2fhx (only one zinc ion), 5ls3 (Y58C mutant and miss-
ing residues) and the selected one, 4bp0 (complete). Nowadays, there are
two additional available structures: 5ndb (complexed with cyclobutanone
inhibitor) and 5nde (apo-form). After a structural alignment, no difference
was observed compared to 4bp0, except Phe151 residue which is slightly
buried in the active site to interact with the inhibitor’s dichloro-substituent.

The selected SPM-1 structure 4bp0 (Figure 29) was prepared as fol-
lows: (1) zinc-coordinating residues were renamed under the new developed
residues (see Chapter II), namely HMD for HIS[108, 197, 258], HME for
HIS110 and CYSM for CYS216, (2) water and all non-protein molecules –
except the two active site zinc ions – were deleted, and (3) checking of the
structure revealed no missing atoms and residues.

For each SPM-like sequence, fifty models were built by homology mod-
elling on 4bp0 structure, using UCSF Chimera Interface to MODELLER, and
one was finally selected according to the best DOPE score. The six selected
models were then prepared following the same protocol as for 4bp0 and for
which atom equivalence is reported in the Table 3.

Table 3: Atom equivalence for SPM-1 (4BP0-A) and SPM-like (OGU548 and WP
series) structures. Colors refers to the active site residues depicted in
Figure 29: green for the mutated histidine and dark cyan for the highly
conserved aspartate.

His/Gly His His Asp Cys His Asp

4BP0-A 108 110 197 112 216 258 200

WP_061 80 82 169 84 188 226 172

WP_050 79 81 168 83 187 225 171

OGU548 79 81 168 83 187 229 171

WP_053 80 82 172 84 191 233 175

WP_083 80 82 174 84 193 235 177

WP_013 79 81 171 83 190 228 174
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4.1.2 MD simulations

Simulations were carried out using OPLS-AA force field implemented in
GROMACS version 4.6.0. The protocol is the same as reported in Chapter II.
All systems contain from 49,000 atoms (WP_013) to 67,000 atoms (SPM-1),
including protein, water and ions. Production steps included one 500 ns
simulation per system, which represents about a one-week calculation time
on 40-cores clustered computers.

4.2 Results and Discussion

Analysis of 500 ns trajectories required to keep only 1 frame over 100.
Then, overall analysis of each system have been visually undertaken. How-
ever, atom numbering may have changed during the different MD preparation
steps, therefore new numberings for histidine-to-glycine mutation (G) and
highly conserved aspartate (D) are reported below just after the correspond-
ing sequence name.

SPM-1 (D200/G108). At the beginning, D200 is located at 4.5 Å from
zinc ion and coordinated to it (~2 Å) starting from frame 25.
OGU548 (D166/G74), WP_061 (D140/G48) and WP_083 (D177/G80).
D166, D140 and D177 can not access to the active site since they are in-
volved in several hydrogen bonds all along the simulation.
WP_013 (D169/G74). Since the first frame, D169 interact with zinc ion and
this interaction is conserved until the end.
WP_050 (D166/G74). D166 is blocked by F75 residue and the active site is
practically unreachable all along the simulation.
WP_053 (D176/G81). D176 is buried in the protein, and moves away from
the active site until reaching the solvent-exposed surface.

Regarding the previous results, only two simulations validated our as-
sumption: SPM-1 and WP_013. Nevertheless, these positive results might
come from simulation artefacts since further investigations on outputs stem
from the energy minimization step revealed some defects. In the case of
SPM-1 and WP_013, minimized structures showed an aspartate very close to
the zinc ion (between 4 and 5 Å). Thus, we may assume this convergence
is due to either an "environmental factor", namely with no cumbersome
residues, or an issue in parameterization of zinc-zinc interaction.
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The latter assumption seemed to be supported by the analysis of zinc-zinc
distances which underscored an important point: distances were longer than
in the initial 4bp0 structure (3.4 Å), with values around 5–6 Å. Ergo, we
doubted about the veracity of our positive results since the zinc coordination
could come from the zinc displacement, i.e. zinc repulsion, rather than
from the aspartate. One solution will be to run new simulations with a
non-covalent bond set between the two zinc ions, as defined in Chapter II,
and observe if the aspartate residue will move towards the zinc in these
conditions.

I also ran a 500 ns MD simulation of NDM-1 in which Asp192 is located
at the same place as Asp200 in SPM-1. Then, I created the H120G mutant
and followed the same MD protocol. Results did not show a new zinc coordi-
nation by the Asp192 residue and distance between zinc ions was very large
(~8 Å).

In contrast, I carried out a survey upon the PDB website by looking for
structures of representative MBLs from B2 and B3 subclasses, in order to
study the presence or absence of this highly conserved aspartate residue
(Table 4).

Table 4: PDB survey on some MBLs from B2 (CphA) and B3 (L1, SMB-1, BJP-1,
AIM-1, FEZ-1, GOB-18, RM3) subclasses.

CphA L1 SMB-1 BJP-1 AIM-1 FEZ-1 GOB-18 RM3

1X8G
1X8H
1X8I
2GKL
2QDS
3F9O
3FAI
3IOF
3IOG
3SW3
3T9M

1SML 2AIO
2FM6 2FU6
2FU7 2FU8
2FU9 2GFJ
2GFK 2H6A
2HB9 2QDT
2QIN 2QJS
5DPX 5EVB
5EVD 5EVK
5HH5 5HH6

3VPE
3VQZ
5AXO
5AXR
5AYA
5BI5
5BIU

2GMN
3LVZ
3M8T
5NGG
5N5W
5WCM

4AWZ
4P62
4AWY
4AX0
4AX1

1JT1
1K07
1L9Y

5K0W 5IQK

In B2 subclass, structures of only one representative MBL can be found,
that is CphA, in which the equivalent residue of Asp200 in SPM-1 is far from
the HHH site, so there is no point in mutating histidine to glycine.
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In B3 subclass, the L1, AIM-1, RM3, SMB-1 and GOB-18 enzymes have
a glycine instead of the aspartate of interest, and no adjacent aspartate has
been observed.

Moreover, I could reveal another interesting residue at position 220
(an aspartate in AIM-1, RM3 and SMB-1, an asparagine in GOB-18, and a
cysteine in BJP-1) which potentially could coordinate the zinc ion if His116
was mutated to glycine. This is in contrast with FEZ-1, which has a glycine at
this postion 220.

Otherwise, some MBLs display a coordination pattern with less coordi-
nating residues, and that does not affect the active site structure, for example
L1 (B3 subclass). Therefore, even if such kind of mutations – histidine to
glycine – may not affect the β-lactamase activity, e.g. in Sediminispirochaeta
smaragdinae metallo-β-lactamase (SPS-1) enzyme [21], it is also possible
that no residue replace the mutated histidine. Nonetheless, a recent study
published a crystallographic structure of the histidine-to-glycine SPS-1 mu-
tant revealing the presence of a water molecule as the third zinc-coordinating
group [43]. Given the static property of crystallographic structures, there is
no reason to suggest that this observation reflects necessarily the reality or
the dynamic evolution of the enzyme in which some neighbouring residue
might also play a part in zinc coordination or not.

In this section, we learnt that zinc-coordinating histidine mutation
into a glycine residue might potentially lead to a structural rearrange-
ment of the active site, especially through the movement of an highly
conserved aspartate residue. Nevertheless, this observation was not
fully validated due to an artifact with the zinc-zinc distance in the MD
simulations that is now fixed. The recent publication of a crystallo-
graphic structure for this mutant showed the coordination of a water
molecule instead of the movement of the aspartate residue. In these
conditions, new MD simulations should be carried out using the non-
covalent zinc-zinc bond developed in Chapter II.

In addition, MD simulations could yield more or less reliable results
as long as a suitable and well-parameterized system is used; this case
is one more example of how challenging it is to identify false positive
outcomes in order to avoid drawing misleading conclusions.
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5
OXA β-lactamases studies using free
energy calculations

In this study, we focused on the analysis of oxacillinases (OXA), which
belong to the D class in serine-β-lactamase family, through alchemical free
energy calculations. Normally, these enzymes display a peculiar feature:
for example in OXA-48, lysine residue (Lys73) located near the catalytic
serine (Ser70) has to be carboxylated, in the presence of CO2, in order to
achieve β-lactam hydrolysis. Indeed, the carboxylated Lys73, also termed
KCX residue, is involved in several hydrogen bonds with other active site
residues through its new terminal carbamate group and seems to be involved
in (1) the catalytic Ser70 activation during the acylation process, and (2)
the activation of a water molecule to hydrolyse the acyl-enzyme complex.
For further details, one can read the updated review written by Tooke et
al. [186].

Nevertheless, some of these enzymes are not or only partially carboxy-
lated, as shown by the crystal structures of OXA-145 [137] or OXA-427
(Zavala, A., Retailleau, P., Bogaerts, P., Glupczynski, Y., Naas, T., Iorga, B.I.,
unpublished), with no clear reasons. Therefore, given that the carbamylation
of this residue involves two chemical transformations, namely either protona-
tion or carboxylation (Figure 30), we investigated the influence of the active
site environment on this process, using free energy calculations.

Figure 30: Protonation and carboxylation reactions of the lysine. Depending on
active site conditions, neutral lysine (middle) may be protonated (right)
or carboxylated (left).
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In the case where lysine is not carboxylated, three reasons are plausible:
(1) the lysine is protonated, so no possible carboxylation, (2) atmospheric
carbon dioxide could not enter the active site, or (3) the carboxylation occurs
but decarboxylation happens shortly after, in other words it is more favorable
for the lysine to be neutral than being carbamylated. When it comes to
assess if a process is favorable or not, a powerful computational strategy is to
undertake free energy calculations.

This way, we decided to study the protonation (NH2 ⇀↽ NH+
3 ) and the car-

boxylation (NH2 ⇀↽ KCX) reactions using an in-house modified version of the
software PMX developed by de Groot’s team which implies non-equilibrium
free energy calculations [5,74–77].

5.1 Alchemical PMX philosophy

The PMX protocol is an alchemical-based method to compute free ener-
gies whose detailed workflow is reported in Figure 5 of the D3R-GC2 paper
(Chapter IV section 2.1), but outlines will be also described hereafter.

The philosophy of alchemical transformations is based on the possibility
to simulate atoms’ modification, by changing their intrinsic properties, re-
sulting in totally different or non-physical (dummy) species. That change
corresponds to a certain amount of free energy which can be computed along
the simulation. In order to achieve that, a thermodynamic cycle describing
folded and unfolded states may be drawn (Figure 31).

Figure 31: Thermodynamic cycle for estimating the difference in stability between
wild type and mutant.

Nevertheless, vertical paths are not computationnally suitable since the
folding time of a small peptide might be limiting; thus, folding free energies
∆G2 and ∆G3 can not be directly obtained. One solution would be to get
free energies ∆G1 and ∆G4 from horizontal paths by running alchemical
mutations in which an amino acid A is morphed into another amino acid B,
and the corresponding free energy change is computed.
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The key point of such alchemical method is the generation of hybrid
topologies in which both aminoacids A and B contribute under a time-
dependent coordinate λ describing their completeness state. Then, λ = 0
and λ = 1 will refer to a complete atomic description of A and B residues,
respectively; for example, at λ = 0.3, the system is defined by 30% of residue
B and 70% of residue A; at λ = 0.8, it will include 80% of residue B and 20%
of residue A. On this basis, if this transformation is performed in both folded
and unfolded states, therefore the sum of all free energy values (∆∆G) must
equal zero because free energy is a state variable, i.e. independent of the
chemical path:

∆∆G = ∆G1 + ∆G2 −∆G3 −∆G4 = 0

∆∆G = ∆G3 −∆G2 = ∆G1 −∆G4

Given that the structural information on unfolded protein is unknown, the
unfolded state is assumed to be modeled by a small peptide.

5.2 System setup

5.2.1 Protein

The selected OXA-48, OXA-145, and OXA-427 structures were down-
loaded from PDB website (Figure 32) and prepared as follows: (1) ligands,
water and all non-protein molecules were deleted, and (2) checking of the
structure to complete missing atoms and residues.

Figure 32: Crystallographic structures of OXA-48 (A, PDB code 4s2p), OXA-145
(B, PDB code 4yin) and OXA-427 (C, PDB code 6huh, not yet released).
Lysine of interest and catalytic serine are colored in coral.
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5.2.2 Free energy calculations

Simulations were carried out using OPLS-AA force field implemented
in GROMACS version 4.6.0. Production steps included one equilibrium 10
ns simulation for every state A (λ = 0) and B (λ = 1). Snapshots from
equilibrium runs were then extracted (100 from each simulation) and each
of them was the starting structure of a 50 ps simulation in which alchemical
morph between the two states was undertaken. Finally, work values over
every non-equilibrium transition were extracted to estimate free energy
differences under the Crooks Fluctuation Theorem and using Crooks-Gaussian
Intersection (CGI) and Bennett Acceptance Ratio (BAR) as estimators.

Here, from the neutral lysine to the negatively charged KCX residue or to
the positively charged lysine, both carboxylation and protonation reactions
involved a mutation that modifies the charge of the residue, so the system
was designed as one box including the protein (folded state) and a Gly-X-Gly
tripeptide (unfolded state), with X stands for the initial or mutated residue
according to the path direction (A→B or B→A), separated by 30 Å (Figure
33). For example, in A⇀↽B reaction, the protein residue is converted from
state A to state B while the tripeptide residue is converted from state B to
state A. This way, the system has a conserved charge along the simulation
and resulting free energies may be related to its global work.

Figure 33: System setup for a mutation that modifies the charge of the residue.
The system has a conserved charge during the whole simulation. The
tripeptide Gly-X-Gly corresponds to the unfolded state of the protein.

In this part, I also adapted the script for system preparation, in which
the system protein+tripeptide was not correctly centered in the box. Indeed,
GROMACS software centers by default the system on its center of mass (COM)
but given the protein size compared to the tripeptide, the overall COM was
located near the protein COM; the tripeptide was therefore positioned outside
the box.
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5.3 Results and Discussion

Results are reported for each selected mutation in the Table 5. Accuracy is
assessed as the absolute sum of forward and reverse pathways and outcomes
are the mean of three independent simulations. Results in light mauve and
white lines were computed using CGI and BAR estimators, respectively.

Nevertheless, Aldeghi et al. [5] recommend using BAR estimator, instead
of CGI, since it gathers all available work values from forward and reverse
directions without making assumptions about the work distributions’ shape.
There is another estimator termed Jarzynski which is one-directional, namely
it considers only the work values coming from either forward or reverse
directions. However, given its exponential form, this estimator is statistically
flawed and therefore values at the tail of the work distribution, i.e. rare
events in which there is a minor work dissipation, will mostly contribute to
the average and free energy will converge slowly to the true value.

CGI and BAR estimators are sensitive to the lack of overlap between the
two distributions and large ΔG uncertainties mean an insuficient overlap.
There are several tips to increase the quality of the ΔG estimate by improving
the overlap: (1) slower transitions will keep the system closer to equilibrium,
resulting in reducing the work dissipation, and (2) additional non-equilibrium
transitions will increase the probability of observing rare events. Finally, mul-
tiple replicates of equilibrium and non-equilibrium simulations are advised
to assess the precision of free energy estimates.

In our case, accurate results (less than 2 kcal.mol−1 and low uncer-
tainties) were globally obtained for the protonation process revealing a
non-protonation of the lysine residue in all proteins studied. Thus, the non-
carboxylation of OXA-145 and OXA-427 might be the consequence of an
unfavored carboxylation process. Nevertheless, our preliminary calculations
for this carboxylation process are not precise enough to assess this hypothesis
and further investigations will be carried out in order to pinpoint the disrup-
tive elements. Indeed, for the carboxylation reaction, means colored in red
include positive and negative free energies which are not trustworthy since
we don’t know which simulation over the three pointed in the right direction,
either favorable or unfavorable.

Furthermore, another approach based on a strict loss of atoms, and no
longer on the creation of atoms involving use of dummies, will be tested (see
Chapter IV section 1.3).
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Table 5: Free energy results (kcal.mol−1) on carboxylation and protonation reac-
tions in OXA enzymes of interest. Acc.: Accuracy, KCX: carbamylated
lysine. Green and red colors mean validated and to-investigate values,
respectively. Numbers in brackets refer to standard deviation. Results in
light mauve and white lines were computed using CGI and BAR estimators,
respectively.

NH2→NH+
3 NH+

3→NH2 Acc. NH2→KCX KCX→NH2 Acc.

12.17 (0.72) -12.19 (0.62) 0.03 -1.67 (1.01) 1.29 (1,02) 0.38
OXA-48

11.44 (0.63) -12.27 (0.50) 0.83 -1.82 (0.83) 1.92 (0.76) 0.11

13.00 (0.66) -12.12 (0.59) 0.88 -1.77 (1.01) -1.00 (0.96) 2.77
OXA-145

13.46 (0.54) -11.62 (0.43) 1.84 -1.47 (0.98) -0.80 (0.51) 2.27

15.01 (1.04) -13.40 (0.97) 1.61 -0.13 (0.95) -0.18 (1.06) 0.31
OXA-427

15.53 (1.17) -13.65 (0.53) 1.87 -1.92 (1.01) -0.23 (0.70) 2.15

12.54 (0.77) -11.08 (0.62) 1.46 -1.01 (1.11) 1.95 (0.94) 0.94
OXA-48(N76L)

12.58 (0.74) -11.38 (0.66) 1.20 -2.01 (0.93) 2.47 (0.94) 0.46

10.93 (0.71) -12.54 (0.67) 1.61 -0.51 (1.22) 1.18 (0.97) 0.67
OXA-48(N76S)

10.98 (0.72) -12.11 (0.51) 1.12 0.21 (0.93) 2.52 (1.23) 2.73

12.82 (0.78) -9.94 (0.69) 2.89 0.42 (1.05) -0.04 (0.98) 0.38
OXA-48(N76H)

13.25 (0.44) -9.01 (0.54) 4.24 -0.85 (0.72) -0.18 (1.16) 1.03

13.88 (0.78) -13.18 (0.67) 0.69 -2.84 (1.03) 0.47 (0.95) 2.37
OXA-48(N76I)

14.86 (0.66) -12.92 (0.83) 1.93 -2.22 (0.74) 0.86 (0.73) 1.35

12.67 (0.68) -11.35 (0.68) 1.31 -3.04 (1.02) 2.03 (1.09) 1.01
OXA-48(V120T)

12.38 (0.58) -10.93 (0.44) 1.45 -3.44 (1.08) 2.08 (0.77) 1.36

15.33 (0.82) -14.36 (0.86) 0.98 -0.55 (1.16) -0.62 (1.26) 1.17
OXA-48(V120F)

14.91 (0.62) -13.46 (0.54) 1.45 -0.28 (0.71) 0.56 (1.27) 0.28

12.91 (0.67) -15.96 (0.81) 3.04 -0.16 (1.18) 2.22 (1.02) 2.06
OXA-48(V120I)

13.56 (0.91) -16.34 (0.82) 2.78 -0.79 (0.91) 1.98 (1.04) 1.19

13.80 (0.77) -12.73 (0.84) 1.07 -1.44 (1.02) 0.29 (0.91) 1.15
OXA-48(V120L)

13.05 (0.69) -12.15 (0.95) 0.90 -1.59 (0.69) 0.87 (0.77) 0.72

14.34 (0.80) -13.51 (0.79) 0.83 -1.27 (1.09) 3.10 (1.06) 1.83
OXA-48(V120M)

13.99 (0.45) -13.14 (0.55) 0.85 -1.30 (0.63) 2.03 (0.60) 0.73

12.36 (0.65) -14.75 (0.73) 2.39 -1.39 (1.09) 1.41 (1.11) 0.03
OXA-48(L158I)

12.56 (0.42) -14.50 (0.52) 1.94 -0.22 (0.97) 2.83 (0.51) 2.61

12.57 (0.74) -13.04 (0.70) 0.48 -1.73 (1.02) 1.47 (1.04) 0.26
OXA-48(L158V)

11.45 (0.44) -12.62 (0.61) 1.17 -1.90 (0.74) 0.85 (0.88) 1.06

12.23 (0.83) -12.26 (0.84) 0.03 -3.32 (0.98) 1.69 (1.11) 1.62
OXA-48(L158P)

11.87 (0.78) -11.28 (0.82) 0.60 -5.02 (1.10) 1.95 (1.02) 3.06
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Chapter IV
Blinded prediction challenges: the

D3R-GC adventure
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1
Overview

1.1 Drug Design Data Resource (D3R)

The D3R project gives opportunities to assess and validate computational
protocols through blinded prediction Grand Challenge (D3R–GC) based
on pose-prediction, affinity ranking, and free energy calculations. First, a
dataset of ligands in SMILES format, namely with no three-dimensional
coordinates, along with one protein target are generously provided by well-
known pharmaceutical companies to D3R organizers (Table 6).

Table 6: Overview of D3R datasets, each including a main protein target, a series of
ligands and some protein-ligand structures solved by X-ray crystallography.

D3R–GC2 D3R–GC3 D3R–GC4

Providers Roche Janssen Novartis

Targets Farnesoid X Cathepsin S BACE-1

Ligands 102 136 154

X-ray
structures 36 26 20

Then, the challenge timeline is divided in two main stages. In Stage 1,
participants have to blindly predict: (1) the crystallographic poses of a given
number of ligands (Table 1, "X-ray structures"), (2) the affinity ranking for all
D3R ligands (Table 1, "Ligands") and, optionally, (3) the absolute or relative
binding affinities for some D3R ligands listed in a free energy (FE) subset.

In other words, participants must provide docking poses and scores, which
will be assessed by D3R organizers through RMSD calculations, between
submitted poses and crystallographic ones, and comparison between the
submitted ranking (scoring) and a ranking done according to experimental
values for the protein-ligand interaction (IC50).

In Stage 2, participants have to perform the same submission as previously
but now considering structural information taken from the crystallographic
structures released at the end of Stage 1.
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1.2 Strategy

Since our first participation in international computational challenges,
we have continuously improved our entire prediction workflow involving
two steps: (1) a preliminary analysis of publicly available structural and bio-
chemical data to identify the most appropriate docking software and scoring
function for the system of interest, and (2) prediction of binding modes (pose
prediction) and of relative affinities of ligands (scoring), using the selected
parameters.

Indeed, given that the first step always requires performing docking cal-
culations in order to rank the ligand dataset and get suitable poses for the
second step of free energy calculations, our golden rule is to deeply search
for both existing structural and affinity data about the training target.

This way, we are able to (1) assume whether a ligand might be active or
inactive on the target, based on similarities between D3R ligands and existing
tested compound, and (2) appreciate the target’s flexibility in presence or
absence of interesting ligands in order to cluster different conformations and
select one or more representative structures for docking.

Beyond the care taken in the preliminary step, we were particularly con-
cerned with the free energy calculations’ part. As mentioned in the previous
chapter, we have designed a pmx-based protocol, detailed in the D3R-GC2
paper (Chapter IV Section 2.1), to compute the relative binding free energy
of ligands, in a selected target, through alchemical transformations. Our
main objective was obviously to evaluate it with the D3R training datasets.

1.3 What we have learned

In hindsight and given our experience, we can draw conclusions on our
strategy. First, the correct prediction of poses does not only rely on the
selected docking algorithm or software but also on the careful preparation of
ligand (protonation states...) and protein (conformations, crystallographic
waters...) structures. Furthermore, known ligand poses may drive new
ligand’s positioning if both share structural similarities, leading to better
docking results. We especially experimented this during the last D3R-GC4
competition by building BACE ligands from similar crystallographic ones be-
fore performing docking calculations, and this proved to be a highly efficient
approach as our prediction was the best in this section.
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This way, we obtained excellent outcomes in pose prediction that would
probably not have occured equally with tested docking softwares consider-
ing the D3R ligands’ macrocycle core which brings much more degrees of
freedom. However, an accurate pose does not necessarily mean an accurate
score-ranking since it may strongly depends on the robustness of the core
docking algorithm.

Free energy calculations, in turn, yielded unbalanced outcomes through
the three D3R challenges. In D3R–GC2, there were two FE subsets built with
sulfonamide-containing compounds: one termed set1, containing ligands
with a 4,5,6,7-tetrahydro-1H-indole core, and another termed set2, gathering
ligands with a spiro core. While great results were obtained for sulfo, with
a submission being ranked #2, really not competitive ones were obtained
for spiranes, with a submission being ranked #20. Different reasons were
assumed but one appeared to be the most probable, namely two potential
non-optimal dihedrals related to the sulfonamide group which appeared to
be compensated by other dihedrals in set1 but not in set2.

In D3R–GC3, FE ligands were similar to those from set1 but with a sulfon-
amide group linked to a 4,5,6,7-tetrahydro-1H-indazole core. Issues about
wrong dihedrals in sulfonamide group were fixed but in this challenge, better
results were obtained by using only the co-crystallized ligands, highlighting a
global bad positioning of peripheral groups which might affect the ranking.
Nevertheless, MD simulations of docking poses in explicit solvent significantly
improved the ranking. All this corroborates with the idea that no good quality
scoring predictions can be obtained from inaccurate docking poses.

In D3R–GC4, BACE ligands from FE dataset were challenging since it
deals with big changes in macrocycle core, including its opening. Also, we
observed a limitation of our pmx-based protocol on a simple case involving
a terminal N-dimethyl amide group. Indeed, its disappearance was not a
problem but its appearance led to the failure of simulations. The solution to
this problem might be the gathering of ligands around a common and simpler
scaffold, thus avoiding the addition of dummy atoms. As we don’t perform
minimization steps before running the morphing process, some dummy atoms
of the ligand could appear at the same place of a water molecule or residue
atom, which may cause, in certain cases, clashes leading to a crash of the
simulation.
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2
D3R publications

Lastly, participants are invited to publish their results in the Journal
of Computer-Aided Molecular Design, providing an excellent opportunity
for sharing information about developed computational tools, encountered
issues, solutions and breakthrough strategies. During my PhD, I have con-
tributed to three D3R challenges as follows: preliminary data mining on
each target (all), docking calculations (D3R-GC2) and free energy calcula-
tions (D3R-GC4). They are included in the next publication-based chapters
and organised by year: D3R-GC2 (2017), D3R-GC3 (2018) and D3R-GC4
(2019).
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ABSTRACT 

Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an 

initial analysis of the available structural data from the PDB allowing the selection of the most 

appropriate combination of docking software and scoring function. Subsequent docking 

calculations showed that the pose prediction can be carried out with a certain precision, but this 

is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a 

problem and cannot be successful in the absence of good pose predictions. Our free energy 

calculations on two different subsets provided contrasted results, which might have the origin in 

non-optimal force field parameters associated with the sulfonamide chemical moiety. 

 

INTRODUCTION 

Drug Design Data Resource (D3R, https://drugdesigndata.org/) organizes, on a regular basis, 

blinded prediction challenges with the aim to evaluate the performance of tools and protocols 

that are used in real-life computer-aided drug discovery projects. To achieve this, datasets 

presenting different levels of difficulty are presented to the community, which is asked to 

predict, in “blind” conditions, the binding modes and the relative affinities of compounds. 

The D3R Grand Challenge 2, which was held in 2016, was focused on a single protein, 

farnesoid X receptor (FXR, Figure 1), a target with multiple potential applications that has 

received much attention during the recent years [1-30]. 
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 3 

 

Figure 1. Mesh surface representation of a representative crystal structure (PDB code 3OLF) of 

the FXR target. The binding site, as defined for our docking studies, is colored in red, and the 

ligand is colored in green. 

In Phase 1 the participants were asked to provide affinity predictions for 102 FXR ligands and 

pose predictions for 36 of them. In Phase 2 the participants were required to provide the same 

affinity predictions as in Phase 1, taking into account the additional structural data (36 new 

protein-ligand complexes) released at the end of Phase 1. 

Figure 2 shows the chemical structures of compounds from FXR dataset for which the pose 

predictions were required. Most of the compounds included in this dataset can be organized in 

four homogeneous classes based on their chemical structures (benzimidazoles, isoxazoles, 

sulfonamides, spiro compounds), and the remaining ones presented inhomogeneous structures 

and were included in a group called miscellaneous. Biological activities data were available for 

some compounds from this dataset [31-33]. The exact composition of each group can be found in 

the Electronic Supplementary Material, as well as the structures of the entire FXR dataset, 

containing 102 ligands used for ranking prediction (Figure S1). 
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Figure 2. Chemical structures of the 36 FXR ligands included in Phase 1 for pose prediction 

(compound FXR_33 was ultimately retired from the pose prediction analysis). 

Additionally, the participants were asked to predict the relative affinities for two homogeneous 

subsets of compounds that are suited for free energy calculations. The structures of compounds 

(count of 15 and 18, respectively) included in the two free energy subsets are presented in 

Figures 3 and 4. 
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Figure 3. Chemical structures of the 15 FXR ligands included in free energy set1 

(sulfonamides). 
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Figure 4. Chemical structures of the 18 FXR ligands included in free energy set2 (spiro 

compounds). 
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METHODS 

Protein structures. We found 27 crystal structures available in the Protein Data Bank (PDB) 

[34] for FXR (see the Electronic Supplementary Material for the complete list). These structures 

constituted our evaluation dataset. All ligands, ions and solvent molecules that were present were 

manually removed, then the structures were superimposed on the reference structure apo FXR 

provided by the D3R Grand Challenge organizers, in order to conserve the same coordinate 

system through the whole process. Missing residues in the structures were added using Modeller 

9v12 [35]. Hydrogen atoms were added using Hermes, the graphical interface of Gold v5.2.2 

[36] software, or with AutoDock Tools [37] prior to docking. 

Ligands. Ligand structures from the evaluation dataset were retrieved from PDB in the 

SMILES format and they were converted into three-dimensional MOL2 files using CORINA 

v3.60 (http://www.molecular-networks.com/). This protocol was used instead of retrieving 

directly the three-dimensional coordinates from the PDB in order to avoid any bias in the 

docking process that might be related to the initial coordinates of the ligands. Ligand structures 

used in Phase 1 were obtained from the SMILES strings provided by organizers upon conversion 

into three-dimensional MOL2 files using CORINA. Three-dimensional coordinates of the 

ligands used in Phase 2 were built using UCSF Chimera [38], by superimposing their common 

backbone on the released FXR_17, FXR_10 and FXR_12 crystal structures and by manual 

addition of the appropriate substituents. In all cases, the protonation state for all compounds was 

adjusted at physiological pH using LigPrep (Schrödinger, http://www.schrodinger.com/). 
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Docking. In the preliminary analysis step, several docking software and scoring functions have 

been tested (re-docking and cross-docking) for their ability to reproduce the protein-ligand 

complexes from the evaluation dataset: Gold [36] with the GoldScore, ChemScore, ChemPLP 

and ASP scoring functions, Vina [39] and AutoDock [37]. Default parameters were used in all 

cases for docking, except with Gold, where a search efficiency of 200% was used in order to 

better explore the conformational space. The binding sites were considered with Gold as spheres 

with a 20 Å radius around the Cα atom of Ala288 (numbering from the 1OSV structure). With 

Vina and AutoDock, the binding sites were defined as a 40 x 40 x 40 Å3 cube centered on the 

same atom. The protein was considered to be either rigid, or with a few key residues 

(Leu291/Asn297/Met332/Arg335/Ser336/His451/Trp458 or Arg335 only) from the binding site 

as flexible. As a result of preliminary analysis, Gold with the ASP scoring function and the rigid 

protein was used in the Phase 1 predictions. In Phase 2, the rescoring of the FXR complexes was 

carried out using Gold with the ASP scoring function. For submission, the protein structures 

were converted into PDB format using UCSF Chimera [38], and the docking poses were 

converted into MOL format using CORINA (the MOL format corresponds to the SDF output 

format in CORINA). Unfortunately, the ligand conversion with CORINA was carried out 

initially without the option “-d no3d”, which led to the generation of new coordinates and 

therefore invalid conformations in our “rjyhz” submission. The results reported here (named 

“rjyhz_revised”) represent the correct poses, obtained with the option “-d no3d”. 

Free energy calculations. The protein used for free energy calculation was taken from PDB 

database with PDB entry corresponding to 3FLI. Three-dimensional coordinates of ligands were 

built using UCSF Chimera [38], by superimposing common backbone on released FXR_17, 

FXR_10 and FXR_12 structures. In the set2, the structure solved by X-ray crystallography for 
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FXR_12 had two alternative positions for the aromatic ring substituent (AA and AB). Both of 

them were considered in our calculations, and the one leading to the most favorable energy 

chosen for the submission. Alchemical free energies were calculated using Gromacs [17] and 

OPLS-AA force field [40,41], some scripts from the PMX software [42-44] and some in house 

developed scripts. The main steps of this protocol are presented in Figure 5. Hybrid structures 

and topologies were built using a modified version of the MOL2FF package developed in our 

team. Hybrid topologies represent simultaneously both ligands, the contribution of each structure 

being controlled by a parameter λ. For example, a λ value of 0 represents exclusively the ligand 

A, a λ value of 1 represents exclusively the ligand B, and a λ value of 0.3 represents a 

contribution of 70% of the ligand A and a contribution of 30% of the ligand B. FXR_91 was 

used as reference structure for set1, and FXR_10 or FXR_12 for set2. Equilibrium 10 ns MD 

simulations were performed for the two states (corresponding to lambda 0 and 1), using Gromacs 

[17] and OPLS-AA force field [40,41]. Snapshots from the equilibrium runs were extracted to 

spawn 100 simulations of 50 ps each to alchemically morph between the two states of the 

system. The work values over every non-equilibrium transition were extracted and further used 

to estimate the free energy differences relying on the Crooks Fluctuation Theorem and utilizing 

Crooks-Gaussian Intersection as estimator. When the charge was the same in the two ligands 

considered for the alchemical transformation, separate calculations were carried out for the 

transformation A into B of the protein-ligand complex and of the ligand alone, the relative free 

energy of binding being the difference between the corresponding work for these two 

transformations (see Figures S2 and S3 in the Electronic Supplementary Material file). When the 

charge was different between the two ligands, a single box containing the protein-ligand complex 

and the ligand alone, separated by 30 Å, was considered. The ligand from the complex was 
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converted from state A into B, whereas the ligand alone was converted simultaneously from state 

B into A. In these conditions, the overall charge of the system was conserved during the whole 

simulation, and the relative free energy of binding between ligands corresponds to the global 

work for this system  (see Figure S4 in the Electronic Supplementary Material file). 
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Figure 5. The main steps of the protocol used for the calculation of alchemical free energies. 
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Graphics. Chemical structures were depicted using CACTVS Chemoinformatics Toolkit 

v3.409 (Xemistry, http://www.xemistry.com/), images for protein structures were generated 

using PyMol 1.8.1 (Schrödinger, http://www.pymol.org/) and histograms were obtained using 

the R package (http://www.r-project.org). 

Statistics. Statistics were computed using the online tools available at 

http://www.sthda.com/english/rsthda/correlation.php. 

Chemoinformatics. Tanimoto similarities were computed using CACTVS Chemoinformatics 

Toolkit v3.409 (Xemistry, http://www.xemistry.com/). 

 

RESULTS AND DISCUSSION 

In our previous participations to the SAMPL3 (2011) [45], SAMPL4 (2013) [46], CSAR (2014) 

[47] and D3R Grand Challenge (2015) [48] docking and virtual screening challenges we 

followed an approach involving two steps. The first step consists in a preliminary analysis of 

information available in literature (structural, and in some cases enzymatic data), which allows 

the identification of the best combination of docking software and scoring function that are 

suited for studying the system of interest. In the second step, the combination of docking 

software and scoring function is used to predict the binding modes (pose prediction) and the 

relative affinities of ligands (scoring). As our previous studies [45-48] highlighted the 

importance of using enhanced genetic algorithm parameters for docking (a search efficiency of 

200%), in this work we used the same parameters in order to ensure an adequate conformational 

sampling of docking conformations. 

Preliminary analysis 
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We found 27 crystal structures of FXR that were available in the Protein Data Bank (PDB) 

[34]. These structures were organized in five distinct groups, according to their conformation and 

the ligand present in the binding site (see the Electronic Supplementary Material for a complete 

list of these structures and the exact composition of each group). A representative structure was 

selected from each group, based on the crystal structure resolution and the lack of missing 

residues. The three-dimensional structure of protein in these structures is well conserved, with 

the exception of two fragments (residues 258-285 and 335-358) that are very flexible (Figure 6). 

These five structures, together with the apo FXR structure provided by the organizers, constitute 

our evaluation dataset, which was used in re-docking and cross-docking calculations using the 

FXR ligands from all the 27 structures available and several combinations of docking software 

and scoring functions: Gold with the GoldScore, ChemScore, ChemPLP and ASP scoring 

functions, Vina and Autodock. 

 

Figure 6. Representative 6 FXR PDB structures superimposed: a) general view, showing a very 

good global conservation of structural features; b) zoom on residues 258-285 and 335-358, 

highlighting the conformational flexibility of these fragments. The structures are represented as 

2.1 D3R–GC2 publication 179



 15 

follows: 1OSV (green), 3FLI (cyan), 3OLF (magenta), 4WVD (yellow), FXR apo (wheat), 

3HC5 (gray). 

RMSD values compared with the native ligands from the crystallographic structures were 

calculated for all docking poses. In order to evaluate the accuracy of docking and scoring, we 

have considered the lowest RMSD value and the RMSD value of the best ranking pose for each 

combination protein-ligand-(docking software)-(scoring function). AutoDock provided very poor 

results, with most of the docking conformations positioned outside the binding site, whereas 

Gold/ASP, followed by Gold/GoldScore and Vina, could reproduce rather well the native 

protein-ligand complexes, especially in the cross-docking calculations. As expected, the re-

docking results outperformed the cross-docking results. It was also observed that the 

combination of a protein and a ligand belonging to the same group was more favorable than a 

combination of a protein and a ligand from different groups. 

 

Pose prediction and scoring 

The 102 FXR ligands from the D3R Grand Challenge 2 dataset containing 180 ligands were 

docked on the 6 representative FXR structures shown in Figure 6 using Gold with the ASP 

scoring function. For each ligand, the best-ranked docking conformation was selected and the 

overall ranking was submitted, as well as the coordinates for the ligands FXR_1 to FXR_36. For 

the ligands belonging to a group for which crystal structures were available (e.g. benzimidazoles, 

isoxazoles), the RMSD was calculated using the largest common fragment, and the 

conformations with the best RMSD were selected for a second submission. The RMSD 

calculation was realized using an in house developed script based on CACTVS 

Chemoinformatics Toolkit. The poses from the spiro and sulfonamides groups were visually 
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inspected using UCSF Chimera. Only the 3FLI and the APO structures provided docking poses 

with a carboxylate group (that is present in most spiro structures and in FXR_101 from the 

sulfonamides group) interacting with Arg335. This was considered as the correct orientation, 

since most of the crystalized ligands show the same kind of interaction. Overall, poses obtained 

with the structure 3OLF were selected for benzimidazoles, with 1OSV for steroids, with 3HC5 

for isoxazoles and with 3FLI for all others. 

The performance of submissions for pose prediction (best RMSD and RMSD of pose 1) is 

presented in Figure 7, showing a relatively good result that we obtained in this category 

compared with the other participants. 
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Figure 7. Performance of Phase 1 pose prediction submissions (Kendall Tau) for the FXR D3R 

Grand Challenge 2 dataset: best RMSD (a) and RMSD of pose 1 (b). Our submissions are 

colored in red (see text for details). 

Our scoring results for the two submissions in Phase 1 were very modest, with Kendall Tau 

values of 0.13 and 0.072. Table S1 from the Supplementary Information file shows the rank of 

the best RMSD pose for compounds with existing reference structural data (53 compounds out of 

102 compounds from the dataset). A mean value of 4.68 (out of 10 poses in each case) was 
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obtained for this rank, which is quite low. If we also consider that for the remaining 49 

compounds with no reference structure available we have no information about the docking 

reliability, these data altogether might explain the incorrect scoring prediction. 

The crystallographic structures of the 36 FXR complexes proposed for pose prediction were 

released at the end of Phase 1. A comparison of several representative docking poses and the 

corresponding crystallographic conformations is provided in Figure 8. We predicted well the 

conformation of most benzimidazoles, but the other three groups (isoxazoles, spiro compounds 

and sulfonamides) were more challenging, and we could predict correctly only the overall 

orientation of the ligand, but not the details of the interaction with the binding site. The 

compounds from the miscellaneous group were even more difficult, and in some cases our 

prediction was completely opposite compared to the crystal structure. 
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Figure 8. Comparison of our docking poses (cyan) with crystal structure conformations 

(magenta) for representative FXR ligands from different families: a) benzimidazoles 

(FXR_21/3OLF, RMSD 0.97 Å); b) isoxazoles (FXR_4/3HC5, RMSD 3.87 Å); c) spiro 

compounds (FXR_10/3FLI, RMSD 2.85 Å); d) sulfonamides (FXR_16/3FLI, RMSD 2.03 Å); e) 

miscellaneous (FXR_34/1OSV, RMSD 3.76 Å); f) miscellaneous (FXR_5/3FLI, RMSD 4.70 Å). 

In Phase 2, the three-dimensional coordinates of the ligands FXR_37 to FXR_102 were built 

using UCSF Chimera [38], by superimposing their common backbone on the released FXR_17, 

FXR_10 and FXR_12 crystal structures. The protein-ligand complexes of these ligands, together 

with the 36 ligands from the crystal structures, were rescored using Gold with the ASP scoring 

function and the results were slightly improved compared with Phase 1, with a Kendall Tau 

value of 0.17. 

 

Free energy calculations 

The free energy calculations were carried out using a protocol adapted from the methodology 

implemented within the PMX software [42-44]. An important advantage of our procedure is the 

possibility to simulate transformations involving charge modification, which is relatively 

difficult or even impossible using other protocols (see the Methods section and Figures S2, S3 

and S4 in the Electronic Supplementary Material for more details). 

We obtained very good results for the free energy prediction of the set1 (sulfonamides), our 

submission nszkx being ranked #2. However, the corresponding submission 2ytv8 for set2 (spiro 

compounds) was not at all competitive, being ranked #20 (Figure 9). After the end of the D3R 

Grand Challenge 2 we have recomputed all data after fixing a bug in the hybrid topologies, and 
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also using docking poses instead of crystal structures (equivalent of Phase 1 calculations carried 

out retrospectively) and using AMBER/GAFF force field instead of OPLS-AA (Figure 9). 

 

Figure 9. Performance of Phase 2 free energy submissions for set1 (a) and set2 (b). The 

correlation coefficients are represented as follows: Kendall tau in blue, Spearman rho in light 

blue and Pearson r in cyan. Our submissions are colored in dark red, red and pink, respectively 

(nszkx and 2ytv8). The results obtained on recomputed simulations after fixing a bug in the 
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hybrid topologies are represented in different shades of green (nszkx_af and 2ytv8_af). The 

results from simulations using docking poses instead of crystal structures (equivalent of Phase 1 

calculations carried out retrospectively) are represented in magenta (nszkx_d). The results from 

simulations using AMBER/GAFF force field instead of OPLS-AA are represented in orange 

(nszkx_am). 

Tables 1 and 2 contain the detailed computed values for set1 and set2, respectively, together 

with the corresponding statistics (Kendall’s rank correlation tau, Spearman’s rank correlation rho 

and Pearson’s product-moment correlation r). 

For set1, similar results were obtained with OPLS-AA before and after correction, as well as 

with AMBER/GAFF force field. However, when docking poses were used as initial coordinates 

(which represents Phase 1 calculations carried out retrospectively), no correlation was obtained. 

This corroborates with the pose prediction results, showing that no good quality predictions can 

be obtained from inaccurate docking poses.  

 

Table 1. Free energies computed for set1. FXR_91 was used as reference compound. 

  OPLS-AA before correction (nszkx) OPLS-AA after correction (nszkx_af) OPLS-AA with docking poses (nszkx_d) AMBER/GAFF (nszkx_am) 

 Experimental IC50 (μM) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) 

FXR_17 0.79 -9.32 1.16 -18.35 1.12 -17.02 1.43 -10.30 1.92 

FXR_45 28.85 -3.14 2.33 -21.21 2.15 -38.07 1.57 -30.63 2.33 

FXR_46 62.37 -3.81 21.82 -12.98 1.26 -14.93 21.24 -4.09 1.82 

FXR_47 20.96 NA NA -18.61 2.41 19.33 1.85 -4.02 3.04 

FXR_48 100.00 NA NA 5.36 1.75 -9.26 1.89 NA NA 

FXR_49 100.00 -3.73 1.48 -9.47 1.02 -18.39 0.85 -1.95 1.38 

FXR_91 29.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FXR_93 46.66 -8.98 1.26 -4.04 0.39 -5.29 0.46 2.91 0.55 

FXR_95 32.17 -8.39 1.45 -6.63 1.21 -11.51 1.61 -11.16 1.45 

FXR_96 58.86 -19.12 1.62 -21.36 2.15 -16.79 1.86 NA NA 

FXR_98 13.14 -21.07 1.42 -12.95 0.97 -22.69 1.49 -22.68 2.05 

FXR_99 100.00 -6.34 1.59 -11.07 0.56 -12.02 2.03 -9.77 1.17 

FXR_100 19.14 -15.86 2.49 -25.81 3.05 -13.11 3.60 -4.52 2.90 

FXR_101 27.64 -36.24 3.38 -27.94 3.69 -9.78 3.46 NA NA 

FXR_102 29.23 -0.15 2.85 13.45 2.17 17.31 2.97 15.34 2.97 

  Correlation coefficient p-value Correlation coefficient p-value Correlation coefficient p-value Correlation coefficient p-value 
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Kendall’s rank correlation tau 0.2452 0.2455 0.2512 0.1962 0.0000 1.0000 0.2290 0.3025 

Spearman’s rank correlation rho 0.3851 0.1937 0.4444 0.0970 0.0824 0.7702 0.3643 0.2444 

Pearson’s product-moment correlation r 0.2648 0.3819 0.3029 0.2726 -0.1110 0.6936 0.1668 0.6044 

 

For set2, the results were quite disappointing, with negative correlations with OPLS-AA 

before and after the correction. Apparent better correlations were obtained with OPLS-AA using 

the docking poses and with AMBER/GAFF, but they are not representative since they were 

computed only for 12 and 6 values, all of them belonging to the FXR_12 subset (see Table 2 for 

the compounds belonging to the FXR_10 and FXR_12 subsets), so we decided not to represent 

them in Figure 9. 

 

Table 2. Free energies computed for set2. The FXR_10 subset contains the five compounds 

marked with a star, and the FXR_12 subset contains the remaining compounds. FXR_10 and 

FXR_12 were used as reference compounds for each subset, then all free energies from subset 

FXR_10 were translated relative to FXR_12. 

  OPLS-AA before correction (2ytv8) OPLS-AA after correction (2ytv8_af) OPLS-AA with docking poses AMBER/GAFF 

 Experimental IC50 (μM) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) ΔΔG (kJ/mol) ΔΔG error (kJ/mol) 

FXR_10* 5.64 -10.69 0.81 -4.85 0.48 NA NA NA NA 

FXR_12  0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

FXR_38* 100.00 -27.49 – -18.86 – NA NA NA NA 

FXR_41  100.00 -15.19 4.15 -3.24 4.27 7.55 4.73 NA NA 

FXR_73* 11.22 10.77 – -14.83 – NA NA NA NA 

FXR_74 0.66 -3.16 – -2.57 0.16 NA NA NA NA 

FXR_75* 100.00 -71.30 – -32.41 – NA NA NA NA 

FXR_76  41.83 -0.01 0.62 -1.78 66.29 2.78 0.22 12.07 0.55 

FXR_77 0.25 -2.35 0.35 -2.47 0.23 -1.54 2.89 -6.09 0.67 

FXR_78  0.03 -15.94 1.08 -5.89 19.75 1.07 105.65 NA NA 

FXR_79* 4.15 2.39 – 14.84 – NA NA NA NA 

FXR_81 2.69 -11.09 0.73 -10.97 18.40 -11.58 65.68 NA NA 

FXR_82  0.18 7.14 0.85 2.60 0.58 4.83 0.52 2.69 1.99 

FXR_83 0.33 -1.75 0.31 5.02 0.77 3.75 6.78 NA NA 

FXR_84  4.54 -5.87 0.66 4.09 17.88 3.23 10.41 NA NA 

FXR_85 0.30 -9.67 0.40 -5.10 90.68 -1.96 0.29 -0.41 1.60 

FXR_88 0.54 -3.73 0.40 0.81 0.33 2.84 0.36 NA NA 

FXR_89 0.74 -10.31 75.22 -4.15 75.34 -2.27 40.07 4.80 0.87 

  Correlation coefficient p-value Correlation coefficient p-value Correlation coefficient p-value Correlation coefficient p-value 

Kendall’s rank correlation tau -0.2772 0.1107 -0.2772 0.1107 0.0303 0.9466 0.4667 0.2722 

Spearman’s rank correlation rho -0.3320 0.1784 -0.3630 0.1387 0.1748 0.5883 0.5429 0.2972 

Pearson’s product-moment correlation r -0.6900 0.0015 -0.6105 0.0071 0.4651 0.1276 0.8012 0.0554 
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We tried to find a rational explanation for the discrepancy of the results obtained for set1 and 

set2, using the same protocol. Among the possible hypotheses, we can mention: i) the intrinsic 

greater structural diversity in set2 compared with set1; ii) incorrect force field parameters and iii) 

insufficient conformation sampling of ligands. 

To validate the first hypothesis, we computed the Tanimoto similarity matrix for set1 and set2 

(see Tables S2 and S3 in Electronic Supplementary Material). The global mean values of 

Tanimoto similarity for the two datasets are very close, 0.88 and 0.86, respectively, suggesting a 

similar degree of diversity. However, a visual inspection of the two datasets shows that set1 is 

quite homogeneous, with variations on the substitution pattern of a single phenyl ring. On the 

other hand, compounds from set2 contain variations on two fragments: one can be a diversely 

substituted phenyl ring, and the other can be either a thienyl ring or a diversely substituted 

phenyl ring. According to the presence or not of the thienyl ring, set2 can be divided into two 

subsets, which have FXR_10 and FXR_12 as representative compounds. We computed the 

statistics separately on these two subsets and the results are presented in Table 3. Compared with 

the whole set2, only a small improvement in the correlation with experimental data is observed 

for the FXR_12 subset. However, for the FXR_10 subset we observe almost a perfect 

anticorrelation with the experimental data. Overall, this analysis shows that the differences 

between the structural diversity of set1 and set2 are too small to be discriminated by descriptors 

such as Tanimoto similarity, but the set2 is more diverse and can be divided in two subsets. One 

of these subsets, containing a thienyl substituent, has a major negative impact in the prediction of 

free energies for set2. 

 

Table 3. Statistics computed for the subsets FXR_10 and FXR_12 of set2. See Table 2 and text 

for the list of compounds included in each subset. 
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  OPLS-AA before correction OPLS-AA after correction 

FXR_10 subset Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Kendall’s rank correlation tau -0.5270 0.2065 -0.9487 0.0230 

Spearman’s rank correlation 

rho 

-0.6669 0.2189 -0.9747 0.0048 

Pearson’s product-moment 

correlation r 

-0.8377 0.0766 -0.7737 0.1247 

FXR_12 subset Correlation 

coefficient 

p-value Correlation 

coefficient 

p-value 

Kendall’s rank correlation tau -0.2564 0.2519 -0.0513 0.8577 

Spearman’s rank correlation 

rho 

-0.2692 0.3733 -0.0330 0.9206 

Pearson’s product-moment 

correlation r 

-0.3261 0.2769 -0.0902 0.7696 

 

To evaluate the pertinence of the second hypothesis, we analyzed the conformational 

distribution of the ligands FXR_17, FXR_10 and FXR_12, as representative structures for set1 

and the two subsets of set2, in two force fields, OPLS-AA and AMBER/GAFF. In each case, we 

extracted and superimposed all the 501 conformations from the 10 ns molecular dynamics 

simulation of the ligand alone in water. The result is presented in Figure S5 (Electronic 

Supplementary Material). 

For compound FXR_17, we observe 4 main differences between the distributions OPLS-AA 

(a) and AMBER/GAFF (b): i) the phenyl ring is mostly parallel with the bicyclic system in a, 

and perpendicular in b; ii) the amide group is mostly perpendicular with the bicyclic system in a, 

and parallel in b; iii) the distribution of the thienyl ring around the dihedral C-N-S-C is restricted 

to a very narrow window in a, whereas in b there are two larger windows in opposite positions, 

showing in the latter case an unrestricted exchange between these two positions; iv) in a the 

thienyl ring shows equivalent populations of both faces, whereas in b the rotation around the 

dihedral N-S-C-S is very much restricted. However, as the predictions of set1 using either OPLS-

AA or AMBER/GAFF are very similar (see Figure 9a and Table 1), these differences should not 

have a major contribution or, more probably, should cancel mutually. 
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For compound FXR_10, we observe in a a restricted rotation around the C-N-S-C dihedral 

and, in opposition with FXR_17, an impossible rotation around the N-S-C-S dihedral, probably 

because of the close proximity of the amide oxygen. In the case of b, we observe a free rotation 

around the C-N-S-C dihedral and a restricted rotation around the N-S-C-S dihedral, similar with 

FXR_17. 

Finally, we observe for FXR_12 a restricted rotation around the C-N-S-CA dihedral in a and a 

free rotation around the N-S-CA-CA dihedral (the chlorine substituent is positioned equally on 

both sides), whereas in b the rotation around the C-N-S-CA dihedral is relatively free in the 

conditions of simulations, but the rotation around the N-S-CA-CA dihedral is almost completely 

restricted. 

These results suggest the possible existence of two non-optimal dihedrals associated with the 

sulfonamide group, similarly with a recent report regarding the incorrect conformational 

sampling of linezolid [49]. For set1, their influence might be compensated by two other 

dihedrals, which is not the case for set2. Additionally, in the FXR_12 subset there are two 

atropoisomers that can contribute to the overall binding energy, whereas in our calculations we 

have considered only one, the most favorable. 

The third hypothesis, insufficient conformation sampling of ligands, is not very probable given 

the length of our molecular dynamics simulations and the relative rigidity of the ligands. If the 

conformation space is not sampled correctly, this should be more due to inadequate force field 

parameters than to insufficient length of simulations. Along the same lines, in a few specific 

cases, the standard deviation of our predictions is unusually high (see the “ΔΔG error” columns 

in Tables 1 and 2), especially for set2. 
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CONCLUSIONS 

We used in this work a protocol in two steps, involving an initial analysis of the available 

structural data from the PDB, which allows the selection of the most appropriate combination of 

docking software and scoring function. Subsequent docking calculations showed that the pose 

prediction can be carried out with a certain precision, but this is dependent on the specific nature 

of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in 

the absence of good pose predictions. Our free energy calculations on two different subsets 

provided contrasted results, which might have the origin in non-optimal force field parameters 

associated with the sulfonamide chemical moiety. 

Electronic Supplementary Material. The Electronic Supplementary Material contains the 

chemical structures of the entire FXR dataset, the rank of best RMSD poses, conformational 

distribution of representative ligands, Tanimoto similarity matrices and a schematic description 

of the systems and thermodynamic cycles used for free energy calculations. 
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Protein Data Bank (PDB) structures available 
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Figure S1. Chemical structures of the entire FXR dataset, containing 102 ligands used for ranking 

prediction. 
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Figure S2. Performance of Phase 1 pose prediction submissions (Kendall Tau) for the FXR D3R Grand Challenge 2 
dataset (RMSD for pose 1). Our submission is colored in red. 
 

 

 
 
 
 
 
Figure S3. Performance of Phase 2 free energy submissions for set2 (Kendall Tau in blue, Spearman Rho in light blue 
and Pearson R in cyan). Our submissions are colored in different shades of red, respectively. 
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Figure S4. Thermodynamic cycle for the calculation of relative binding affinities of ligands L1 and L2 compared with the protein 
P. 

 
 

Figure S5. Schematic representation of the system used for the calculation of relative binding affinities of ligands L1 and L2 for 
the protein P, in the case of a charge conserving structural change on the ligand. 
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Figure S6. Schematic representation of the system used for the calculation of relative binding affinities of ligands L1 and L2 for 
the protein P, in the case of a charge modifying structural change on the ligand. 

 
 

LB+�A P LA�B+

Charge	modifyingmutation

30	Å

212 Chapter 2 D3R publications



 1 

Blinded evaluation of cathepsin S inhibitors from the 

D3RGC3 dataset using molecular docking and free 

energy calculations 

Ludovic Chaput,1,2,‡ Edithe Selwa,1,‡ Eddy Elisée,1,‡ Bogdan I. Iorga1,* 

1 Institut de Chimie des Substances Naturelles, CNRS UPR 2301, LabEx LERMIT, 91198 Gif-

sur-Yvette, France 

2 Department of Nephrology and Dialysis, AP-HP, Tenon Hospital, INSERM UMR_S 1155, 

75020 Paris, France 

 

Corresponding Author 

* Phone: +33 1 6982 3094; Fax: +33 1 6907 7247; Email: bogdan.iorga@cnrs.fr (B.I.I.). 

Author Contributions 

‡ These authors contributed equally. 

 

Manuscript Click here to access/download;Manuscript;D3RGC3-paper-
JCAMD-v3-revision-formatted.docx

Click here to view linked References
2.2 D3R–GC3 publication

2.2 D3R–GC3 publication 213



 2 

KEYWORDS: docking ; ranking ; scoring function ; free energy calculations ; Gold ; Vina ; 

Glide ; Gromacs ; PMX ; cathepsin S inhibitors ; D3R ; Drug Design Data Resource ; Grand 

Challenge 3 ; D3RGC3 

214 Chapter 2 D3R publications



 3 

ABSTRACT 

During the last few years, we have developed a docking protocol involving two steps: i) the 

choice of the most appropriate docking software and parameters for the system of interest using 

structural and functional information available in public databases (PDB, ChEMBL, PubChem 

Assay, BindingDB, etc.); ii) the docking of ligand dataset to provide a prediction for the binding 

modes and ranking of ligands. We applied this protocol to the D3R Grand Challenge 3 dataset 

containing cathepsin S (CatS) inhibitors. Considering the size and conformational flexibility of 

ligands, the docking calculations afforded reasonable overall pose predictions, which are 

however dependent on the specific nature of each ligand. As expected, the correct ranking of 

docking poses is still challenging. Post-processing of docking poses with molecular dynamics 

simulations in explicit solvent provided a significantly better prediction, whereas free energy 

calculations on a subset of compounds brought no significant improvement in the ranking 

prediction compared with the direct ranking obtained from the scoring function. 

 

INTRODUCTION 

Drug Design Data Resource (D3R, https://drugdesigndata.org/) organizes, on a regular basis, 

blinded prediction challenges with the aim to evaluate the performance of tools and protocols 

that are used in real-life computer-aided drug discovery projects. To achieve this, datasets 

presenting different levels of difficulty are presented to the community, which is asked to 

predict, in “blind” conditions, the binding modes and the relative affinities of compounds. 

The D3R Grand Challenge 3, which was held in 2017, was focused on a single protein, 

cathepsin S (CatS, Figure 1), a target with multiple potential applications that has received much 

attention during the recent years [1-5]. 
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Figure 1. Solid surface representation of a representative crystal structure of cathepsin S (PDB 

code 3IEJ) with the ligand 599 in stick representation. The binding site, as defined for our 

docking studies, is colored in yellow, and the ligand is colored in cyan. 

In Phase 1A the participants were asked to predict the crystallographic poses of 24 CatS 

ligands, the affinity ranking for 136 CatS ligands and the relative binding affinities for a 

designated free energy subset of 33 compounds. In phase 1B, the organizers released the 

corresponding receptor structures for the 24 CatS ligands, and asked to predict the 

crystallographic poses using the released receptor structures. In Phase 2 the participants were 

required to provide the same affinity predictions for the subset of 136 ligands and relative free 
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energy for the subset of 33 compounds as in Phase 1, but taking into account the additional 

structural data (24 new protein-ligand complexes) released at the end of Phase 1B. The CatS 

dataset containing the 136 ligands used for ranking prediction can be found in the Electronic 

Supplementary Material (Figure S3). 

Figure 2 shows the chemical structures of the 24 compounds from CatS dataset for which the 

pose predictions were required. Additionally, the participants were asked to predict the relative 

affinities for one homogeneous subset of compounds that is suited for free energy calculations. 

The structures of the 33 CatS inhibitors included in the free energy subset are presented in Figure 

3. 
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 6 

 

Figure 2. Chemical structures of the 24 CatS ligands included in Phase 1 for pose prediction. 
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Figure 3. Chemical structures of the 33 CatS ligands included in the free energy set. 
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 8 

 

Figure 3. Chemical structures of the 33 CatS ligands included in the free energy set (continued). 

 

METHODS 

Protein structures. We found 38 crystal structures of CatS available in the Protein Data Bank 

(PDB) [6] from which 31 were human CatS and 7 were mouse CatS (see Table S1 in the 

Electronic Supplementary Material for the complete list). These structures were superposed, 

showing no conformational variability for the backbone and for most sidechains. The only 

exceptions were the sidechains of residues Lys64, Arg141 and Asn161, which are very flexible, 

adopting multiple conformations, and of residues Phe146 and Phe211, which adopt two major 
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orientations each. The residues Lys64 and Arg141 are relatively far from the binding site and 

therefore their flexibility was not taken into account for the docking process. In these conditions, 

we generated four representative conformations of CatS (named CatS_conf1 to CatS_conf4) 

starting from the structure 1GLO (apo) and adjusting the orientations of Phe146 and Phe211. 

These conformers, with the ions and solvent molecules manually removed, were superimposed 

on the reference structure CatS (containing the SO4 ion) provided by the D3R Grand Challenge 

3 organizers, in order to conserve the same coordinate system through the whole process. 

Hydrogen atoms were added using Hermes, the graphical interface of Gold v5.2.2 software [7], 

or with Maestro, the graphical interface of Schrödinger software (http://www.schrodinger.com), 

prior to docking. 

Ligands. A training set of CatS ligands was constituted by gathering from ChEMBL, PubChem 

Assay and BindingDB databases the compounds with known activity (IC50) for CatS (1591 

unique compounds). The structures of these compounds were retrieved in SMILES format and 

were converted into three-dimensional MOL2 files using Ligprep v37014  (Schrödinger, 

http://www.schrodinger.com). The same conversion from SMILES into MOL2 formats was 

applied to the D3RGC3 dataset of CatS inhibitors provided by organizers. In all cases, the 

protonation state for the compounds was adjusted at physiological pH using LigPrep 

(Schrödinger, http://www.schrodinger.com). 

Preliminary docking. In the preliminary analysis step, several docking software and scoring 

functions have been tested for their ability to predict relative affinity ranking and reproduce the 

protein-ligand complexes: Gold [7] with the GoldScore, ChemScore, ChemPLP and ASP scoring 

functions, Vina [8] and Glide (Schrödinger, http://www.schrodinger.com). Default parameters 

were used in all cases for docking, except with Gold, where a search efficiency of 200% was 
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used in order to better explore the conformational space. For Glide, the standard precision (SP) 

mode was used. The binding sites were considered with Gold as spheres with a 20 Å radius 

around a virtual point with coordinates (-7,12,-8). With Vina, the binding sites were defined as a 

25 x 25 x 25 Å3 cube centered on the same virtual point. With Glide, the binding site was defined 

with a inner box of 13 x 12 x 13 Å3 and an outer box of 30 x 29 x 30 Å3. Glide attempts to 

position the ligand center within the inner box volume, while the outer box is defined to contain 

all the ligand atoms. The docking calculations were carried out with the four CatS conformers 

described above and with the two structures (containing a DMSO molecule and a SO4 ion, 

respectively) provided by the organizers. All structures were rigid during the docking process. 

Ten docking poses were generated for each ligand from the training set and from the CatS 

D3RGC3 dataset. 

Phase 1A docking. From the preliminary analysis, Gold with the ASP scoring function were 

identified as the most adapted for the given system, and therefore were used for Phase 1 

predictions. The conformation CatS_conf4 gave the best results in the preliminary docking step 

(data not shown) and was used for the docking of most compounds from the CatS D3RGC3 

dataset. Notable exceptions are: i) for compounds CatS_4 and CatS_6, which contain a different 

scaffold, the structure 3MPF was used; ii) for compound CatS_14, the structure provided by 

organizers containing the DMSO molecule was used; iii) for compounds CatS_2, CatS_17, 

CatS_20, CatS_22, CatS_23 and CatS_24, the structure provided by organizers containing the 

SO4 ion was used. The two flip/flop forms of the amide side chain from Asn161 were 

considered, and then best pose (in terms of score or RMSD) selected. The same Gold docking 

parameters as described above were used, except that 100 docking poses were generated for each 

ligand. In the post-docking processing procedure, docking complexes were used as input 
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structures for 10 ns molecular dynamics simulations in explicit solvent using Gromacs and 

AMBER 99SB force field. During the simulation, constraints were applied on the protein 

backbone and on the ligand core fragment that was also constrained during docking. The first 1ns 

was discarded and the remaining snapshots clusterized (using the g_cluster tool available in 

Gromacs) in order to provide a single cluster. The representative structure of this cluster was 

selected for submission (1 structure per compound). 

Phase 1B docking. After the release of the 24 crystal structures corresponding to the 

compounds CatS_1 to CatS_24 (but without the coordinates of the ligands), we carried out 

docking calculations for each of these structures with its native ligand using the same conditions 

as in Phase 1A (Gold with the ASP scoring function, 100 docking poses generated for each 

ligand). 

Phase 2 docking. Our experience from Phase 1A using Gold/ASP with scaffold match 

constraints showed that the atoms with constraints applied were not always well aligned with the 

reference structure, even when very strong constraints are used (increase of the weight 

parameter, that determines how closely ligand atoms fit onto the scaffold, up to 2000). Therefore, 

in Phase 2 we used the Glide/SP protocol described above, with the exception of scaffold 

constraints that were applied on the common substructure of ligands with either CatS_15, 

CatS_20 or CatS_24. The best Glide/SP docking scores were selected for Phase 2 ranking 

prediction submission (1 per compound). The related docking poses for the 33 CatS compounds 

from the free energy dataset were used as the starting points for following free energy 

calculations. 
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Free energy calculations. The complexes selected in the previous step represented the input for 

relative alchemical free energies calculations, using the protocol described in a previous study 

[9]. Hybrid structures and topologies were built using a modified version of the MOL2FF 

package developed in our team. CatS_67 was used as reference structure for the free energy 

calculations. Briefly, equilibrium 10 ns MD simulations were performed for the two states 

(corresponding to lambda 0 and 1), using Gromacs [10] and OPLS-AA force field [11,12]. 

Snapshots from the equilibrium runs were extracted to spawn 100 simulations of 50 ps each to 

alchemically morph between the two states of the system. The work values over every non-

equilibrium transition were extracted using some scripts from the PMX software [13-15] in order 

to estimate the free energy differences relying on the Crooks Fluctuation Theorem and utilizing 

Crooks-Gaussian Intersection as estimator. As described previously [9], when the two ligands 

considered for the alchemical transformation had the same charge, separate calculations in 

explicit solvent were carried out for the transformation of the protein-ligand complex and of the 

ligand alone. The relative free energy of binding is then calculated as the difference between the 

corresponding work for these two transformations. When the two ligands had different charges, a 

single box containing the protein-ligand complex and the ligand alone, separated by 30 Å, was 

used. The ligand from the complex was converted in one direction, whereas the ligand alone was 

converted simultaneously in the opposite direction. Thus, the overall charge of the system is 

conserved during the whole simulation, and the global work for this system represents the 

relative free energy of binding between ligands. 

Submission preparation. Protein structures were converted into PDB format for submission 

using UCSF Chimera [16], and the docking poses were converted into MOL format using 
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CORINA v3.60 (http://www.molecular-networks.com/), as the MOL format corresponds to the 

SDF output format in CORINA. 

Graphics. Chemical structures were depicted using CACTVS Chemoinformatics Toolkit 

v3.409 (Xemistry, http://www.xemistry.com/), images for protein structures were generated 

using PyMol 1.8.1 (Schrödinger, http://www.pymol.org/). 

Statistics. Statistics were computed using the R-package (http://www.r-project.org). 

Chemoinformatics. Tanimoto similarities were computed using Canvas (Schrödinger). 

 

RESULTS AND DISCUSSION 

During the last years we developed a protocol for docking and virtual screening that proved to be 

relatively successful in our participation to different blind prediction challenges: SAMPL3 

(2011) [17], SAMPL4 (2013) [18], CSAR (2014) [19], D3R Grand Challenge (2015) [20] and 

D3R Grand Challenge 2 (2016) [9]. This protocol involves two steps, the first one representing a 

preliminary analysis of publicly available structural and biochemical data in order to identify the 

most appropriate docking software and scoring function for the system of interest. In the second 

step, we use these parameters for the prediction of binding modes (pose prediction) and of 

relative affinities of ligands (scoring). Enhanced genetic algorithm parameters for docking (a 

search efficiency of 200%) proved to be beneficial in our previous studies [17-20,9], especially 

for big and flexible ligands. Therefore, the same parameters were used in this work to explore as 

exhaustively as possible the docking conformations of ligands from the CatS D3RGC3 dataset. 

Preliminary analysis 
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The superposition of the 38 crystal structures of CatS identified in the PDB (Table S1) showed 

very little conformational variability on backbone and on most side chains, with the exception of 

a few residues shown in Figure 4. Among these structures, 19 contain a ligand in the active site, 

and 4 of these ligands (599, 23Z, N2A and N2D from the structures 3IEJ, 3KWN, 3MPE and 

3MPF, respectively) share a common scaffold with some compounds from the CatS D3RGC3 

dataset. The three-dimensional structure of protein in these structures is well conserved, with the 

exception of two side chains of Phe211 and Phe146 that adopted alternative orientations, as 

found in 3 representative structures (PDB codes 2F1G, 3N4C, 3MPF). Therefore, we used an apo 

structure of CatS (PDB code 1GLO) to build 4 conformers, representing the four combinations 

of representative conformations for Phe211 and Phe146 side chains. In addition, 2 structures 

(containing a DMSO molecule and a SO4 ion) were provided by the D3RGC3 organizers to take 

into account specific ligand-DMSO or ligand-SO4 interactions. These six structures were used in 

the preliminary docking calculations. 
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Figure 4. All 38 CatS structures available in the PDB superimposed (cartoon representation). 

Flexible residues are shown as sticks. 

A training set containing 1591 unique CatS ligands (known IC50) was created with data from 

ChEMBL, PubChem Assay and BindingDB databases and used to assess the performance of 
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different docking software in terms of pose prediction and relative ranking of docking poses: 

Gold with the GoldScore, ChemScore, ChemPLP and ASP scoring functions, Vina and Glide. 

The analysis of the docking results showed that no docking program was able to provide a 

good prediction for the relative affinity ranking. The Spearman’s and Kendall’s correlation 

coefficients between docking scores and pIC50 values of ligands from the training set are 

reported in Table S2. 

Surprisingly, the Spearman’s and Kendall’s correlation coefficients (Table S2) seem to 

indicate in some cases an anti-correlation between docking scores and pIC50. Indeed, the scatter 

plot Score versus pIC50 (Figure S2) seems to indicate the existence of two clusters of 

compounds (two distinct clouds of points). To investigate this observation, we calculated the 

distance matrix between the compounds from the training set, based on the molprint 2D 

descriptor, the Tanimoto distance (Canvas, Schrödinger), and a hierarchical cluster analysis (R). 

These results highlighted the existence of a large cluster of compounds (colored in blue) that 

tend to have favorable docking scores despite low to moderate pIC50 (Figures S1 and S2, 

red/blue dendrogram and scatterplot). This blue cluster can explain in part some anti-correlations 

observed between the docking scores and pIC50 values (Table S2). Further calculation of 

Tanimoto distances between the compounds from the CatS D3RGC3 and the training set 

identified 292 compounds with a Tanimoto score >0.5 compared with at least one of the 141 

CatS D3RGC3 compounds, and all these compounds belong to the blue cluster (Figures S1 and 

S2). The Spearman’s and Kendall’s correlation coefficients for the 292 compounds from the blue 

cluster (Table S2) show that Vina provided the best results, with correlation coefficients between 

0.29 and 0.47 (Spearman’s) and between 0.21 and 0.34 (Kendall’s), depending on the CatS 
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conformation used for docking. Other docking programs and scoring functions did not provide 

good correlations for the 292 compounds from the blue cluster.  

The ability of the docking programs to reproduce crystallographic poses was also evaluated. 

The 141 compounds from the D3RGC3 CatS dataset were docked on the four representative 

CatS conformations using different docking software and scoring function combinations and the 

RMSD were calculated between the common substructure of these compounds with the ligand 

599 from the structure 3IEJ (Figure 5). The mean RMSD values for the 141 compounds from the 

D3RGC3 CatS dataset are reported in the Table 1, showing that Gold with the ASP scoring 

function clearly outperformed the other docking programs and scoring functions for all the 4 

CatS conformers, with mean RMSD values between 2 and 3 Å. In these conditions, Gold with 

the ASP scoring function and the CatS_conf4 structure were selected for the next step. 
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Figure 5. a) Ligand 599 in the active site of cathepsin S (crystal structure, PDB code 3IEJ); b) 

Chemical structure of ligand 599. The common substructure of this ligand with the compounds 

from CatS D3RGC3 dataset is represented in sticks (a) and colored in blue (b). 

 

Table 1. Analysis of preliminary docking poses for the 141 compounds from the CatS dataset 

using four representative conformations of CatS. For all 10 docking poses of each ligand, RMSD 

values (Å) were calculated using the common substructure between the ligand and compound 

599 (see Figure 5). The best RMSD value for each ligand was retained and the overall mean 

values are shown below. 

 CatS_conf1 CatS_conf2 CatS_conf3 CatS_conf4 

Gold/Goldscore 4.32 4.72 5.09 4.07 

Gold/Chemscore 3.40 3.54 3.46 3.36 

Gold/ASP 2.52 2.69 2.91 2.59 

Gold/ChemPLP 3.55 4.00 3.98 3.56 

Glide/SP 3.19 4.86 4.64 3.40 

Vina 3.18 5.78 5.63 3.37 

 

Pose prediction and scoring (Phase 1A) 

The 141 CatS ligands were docked with Gold and the ASP scoring function, generating 100 

poses for each ligand. The CatS_conf4 conformer was used for docking the vast majority of 

compounds, with some exceptions (see the Methods section for details). 

 Three versions of the protocol were tested: i) one without any constraints; ii) one with 

constraints on the common substructure between the ligand and one of PDB ligands 599, 23Z 

and N2A and iii) one with the same constraints as above, followed by a 10 ns molecular 
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dynamics simulation in explicit solvent. The details of all submissions are presented in Table 2. 

The “best RMSD” submission without constraints (entry 3) and the “best score” submission with 

constraints (entry 5) provided similar performances (RMSD of 4.36 Å and 4.34 Å, respectively). 

The post-processing of docking poses with molecular dynamics (MD) simulations (entry 7) 

clearly improved the quality of the prediction (RMSD of 2.96 Å). Thus, it seems that such MD 

simulations are beneficial for a better positioning of flexible substituents. 

 

Table 2. Overview of all predictions submitted and their performance (see the Electronic 

Supplementary Material for the plots corresponding to these results). 

Entry 
Docking 

protocol 

Pose 

selection 
Stage 

Prediction 

type 

Submission 

code 

Number of 

predictions 

submitted 

Mean 

RMSD 

(Å) 

Spearman 

correlation 

Kendall 

correlation 

1 

Gold/ASP 

no 

constraints 

Best score 1A 
pose 

prediction 
gior3 24 5.19 – – 

2 

Gold/ASP 

no 

constraints 

Best score 1A ranking dhr26 136 – 0.39±0.08 0.28±0.06 

3 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1A 

pose 

prediction 
tjwks 24 4.36 – – 

4 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1A ranking v3c55 136 – 0.34±0.08 0.24±0.06 

5 

Gold/ASP 

scaffold 

match 

constraint 

Best score 1A 
pose 

prediction 
5pmnj 24 4.34 – – 

6 

Gold/ASP 

scaffold 

match 

constraint 

Best score 1A ranking jg6d4 136 – 0.43±0.08 0.29±0.05 

7 

Gold/ASP 

scaffold 

match 

constraint 

MD 

(Gromacs, 

Amber 

99SB) 

1A 
pose 

prediction 
va7rj 23 2.96 – – 
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8 

Vina 

 no 

constraints 

Best score 1A ranking – – – 0.42 0.29 

9 

Gold/ASP 

no 

constraints 

Best score 1B 
pose 

prediction 
8wv4r 24 8.49 – – 

10 

Gold/ASP 

no 

constraints 

Best 

RMSD 
1B 

pose 

prediction 
8byha 24 3.95 – – 

11 

Glide/SP 

scaffold 

match 

constraint 

Best score 2 ranking 87q5m 33 – 0.34±0.18 0.20±0.14 

12 

Glide/SP 

scaffold 

match 

constraint 

Best score 2 
ranking 

free energy 
js3r3 33 — 0.35±0.17 0.25±0.12 

 

The performance of pose prediction is variable within the dataset, depending on the nature of 

the ligand, as shown in Figure 6. When only half of the ligand structure is correctly positioned 

(a), very high RMSD values are obtained, but when the core of the ligand is correctly positioned 

(b and c), moderate to very good RMSD values can be expected. 
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Figure 6. Comparison of our Phase 1A best ranking poses without constraints (submission 

“gior3”, cyan) with the corresponding crystal structure conformations (magenta) for compounds 

CatS_7 (a, RMSD 7.84 Å), CatS_17 (b, RMSD 4.33 Å) and CatS_20 (c, RMSD 1.03 Å). 

 

Pose prediction (Phase 1B) 

In Phase 1B, we carried out docking calculations using the 24 crystal structures corresponding 

to the compounds CatS_1 to CatS_24 that were released at the end of Phase 1A (but without the 

coordinates of the ligands) with their native ligands. The results from Table 2 (entries 9 and 10) 

show that the re-docking of ligands into their native structures provided only a slight 

improvement in the pose prediction for the “best RMSD” submission (from 4.36 Å to 3.95 Å) 

and a very bad pose prediction for the “best score” submission (8.49 Å instead of 5.19 Å). 

 

Scoring and free energy calculations (Phase 2) 

In phase 2, we only predicted the relative ranking for the 33 compounds of the free energy set 

(Table 2, entries 11 and 12). We used the Glide/SP protocol with scaffold constraints applied on 

the common substructure of ligands with either CatS_15, CatS_20 or CatS_24. The poses with 

the best docking score (1 pose per compound) were submitted for Phase 2 ranking prediction. 

The same CatS complexes were also used for relative free energy calculations, which were 

carried out using a protocol described in a previous paper [9]. The compound CatS_67 was used 

as reference, and the calculations were designed in order to minimize the transformations 

involving a change in the global charge of the ligand (Figure 7). Our previous study [9] has 

highlighted some potential OPLS-AA force field issues involving non-optimal dihedrals 
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associated with the sulfonamide group that are now fixed (manuscript in preparation), the 

simulations from this study using optimal parameters. 

 

 

Figure 7. Diagram showing the pathways used for relative free energy calculations. The 

molecule (m) number corresponds to the CatS compounds numbering in the free energy dataset 

(see Figure 3). The compounds highlighted in green, orange and blue are positively charged, 

neutral and negatively charged, respectively. 

 The correlation coefficients obtained in Phase 2 are not as good as those obtained in Phase 1A, 

indicating that Glide is not performing well in ranking the poses from this free energy subset 

(Table 2, entry 11). Similarly, the free energy calculations do not improve the quality of the 
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ranking prediction compared with the direct ranking prediction from the scoring function (Table 

2, entry 12). However, much better results are obtained when considering only the co-

crystallized ligands (RMSEc of 0.32±0.24 kcal/mol, Kendall’s τ of 1.0±0.47, Spearman’s ρ of 

1.0±0.49, Pearson’s r of 0.83±0.49), indicating a possible bad positioning of the peripheral 

groups that may affect the correct ranking of the compounds. 

 

CONCLUSIONS 

In this challenge we used a protocol involving an initial assessment of the most appropriate 

docking software and parameters using structural and functional information available in public 

databases followed by the docking of a CatS inhibitors dataset to provide a prediction for the 

binding modes and ranking of ligands. The size and conformational flexibility of ligands were 

important factors to take into account, and the docking calculations afforded reasonable overall 

pose predictions, which are however dependent on the specific nature of each ligand. In general, 

the rigid core of the ligands was well positioned, but the conformation of the flexible substituents 

was more difficult to predict, in spite of the high value of search efficiency used in the docking 

process. As we also observed during the previous D3R challenges, the correct ranking of docking 

poses is still a problematic issue. Post-processing of docking poses with molecular dynamics 

simulations in explicit solvent can significantly improve the prediction. No significant 

improvement in the ranking prediction, compared with the direct ranking obtained from the 

scoring function, was provided by free energy calculations. 

Electronic Supplementary Material. The Electronic Supplementary Material contains the list 

of CatS crystal structures from the PDB, the chemical structures of the scoring CatS D3RGC3 

dataset, and the plots showing the performance of our submissions. 
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Table S1. Cathepsin S structures available in the PDB 
PDB code Resolution (Å) Ligand Organism 

1GLO 2.2 – Homo sapiens 
1MS6 1.9 BLN Homo sapiens 
1NPZ 2.0 C1P Homo sapiens 
1NQC 1.8 C4P Homo sapiens 
2C0Y 2.1 – Homo sapiens 
2F1G 1.9 GNF Homo sapiens 
2FQ9 1.65 – Homo sapiens 
2FRA 1.9 – Homo sapiens 
2FRQ 1.6 – Homo sapiens 
2FT2 1.7 – Homo sapiens 
2FUD 1.95 – Homo sapiens 
2FYE 2.2 – Homo sapiens 
2G6D 2.5 – Homo sapiens 
2G7Y 2.0 – Homo sapiens 
2H7J 1.5 – Homo sapiens 
2HH5 1.8 GNQ Homo sapiens 
2HHN 1.55 GNQ Homo sapiens 
2HXZ 1.9 – Homo sapiens 
2OP3 1.6 TF5 Homo sapiens 
2R9M 1.97 Y11 Homo sapiens 
2R9N 2.0 – Homo sapiens 
2R9O 2.0 – Homo sapiens 
3IEJ 2.18 599 Homo sapiens 

3KWN/5QC4 2.1 23Z Homo sapiens 
3MPE/5QBY 2.25 N2A Homo sapiens 
3MPF/5QBV 1.8 N2D Homo sapiens 

3N3G 1.6 93N Homo sapiens 
3N4C 1.9 EF3 Homo sapiens 
3OVX 1.49 O64 Homo sapiens 
4P6E 1.8 2FC Homo sapiens 
4P6G 1.58 2FZ Homo sapiens 
4BPV 2.0 – Mus musculus 
4BQV 1.7 – Mus musculus 
4BS5 1.25 MG2 Mus musculus 
4BS6 1.2 – Mus musculus 
4BSQ 1.96 QQV Mus musculus 
4MZO 1.47 – Mus musculus 
4MZS 1.85 – Mus musculus 
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 S4 

 
 
Table S2. Kendall’s τ and Spearman’s ρ correlations for the whole training set (black) and of a subset of 
compounds having a Tanimoto similarity score of >0.5 with any compound from the CatS D3RGC3 dataset 
(blue). See also Figure S1. 

 CatS_conf1  CatS_conf2  CatS_conf3  CatS_conf4  
 Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman 

Gold 
(Goldscore) 

-0.05 
0.04 

-0.07 
-0.18 

-0.07 
-0.13 

-0.10 
-0.21 

-0.10 
0.04 

-0.14 
-0.23 

-0.06 
0.07 

-0.09 
-0.09 

Gold 
(Chemscore) 

-0.20 
-0.12 

-0.29 
0.07 

-0.20 
-0.14 

-0.28 
-0.20 

-0.22 
-0.16 

-0.33 
0.06 

-0.18 
-0.07 

-0.26 
0.10 

Gold (ASP) -0.07 
0.04 

-0.10 
0.07 

-0.09 
-0.05 

-0.13 
-0.08 

-0.07 
0.00 

-0.10 
0.00 

-0.08 
0.07 

-0.12 
0.10 

Gold 
(ChemPLP) 

-0.09 
-0.02 

-0.14 
-0.02 

-0.08 
-0.11 

-0.12 
-0.16 

-0.12 
-0.08 

-0.18 
-0.11 

-0.10 
0.06 

-0.14 
0.09 

Glide (SP) 0.11 
0.12 

0.17 
0.17 

-0.03 
-0.13 

-0.04 
-0.19 

-0.03 
-0.06 

-0.05 
-0.10 

0.07 
0.02 

0.10 
0.03 

Vina 0.04 
0.25 

0.06 
0.35 

0.00 
0.21 

0.00 
0.29 

0.03 
0.29 

0.04 
0.42 

0.04 
0.34 

0.06 
0.47 
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Figure S1. Dendrogram showing that the training set contains two main clusters (red and blue, left) and that 
the second cluster contains three distinct sub-clusters (magenta, orange and green, right). The compounds 
that are similar with the CatS ligands from the D3RGC3 dataset belong all to the blue cluster, and are 
homogeneously distributed within the three sub-clusters magenta, orange and green. 

 
Figure S2. Correlation of Gold ASP (left) and Vina (right) docking scores (using CatS_conf4) with pIC50 
for all compounds from the training set. The compounds are colored according to the two main clusters (see 
Figure S1). 
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Figure S3. Chemical structures of the score CatS dataset, containing 136 ligands used for ranking prediction. 
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Figure S4. Performance of Phase 1A pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds, complete submissions). Our submissions are 
colored in green. See Table 2 in the main text for details. 

 

 
Figure S5. Performance of Phase 1A pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds, incomplete submissions). Our submission is 
colored in green. See Table 2 in the main text for details. 
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 S13 

 
Figure S6. Performance of Phase 1B pose prediction submissions for the CatS D3R Grand Challenge 3 
dataset (RMSD for pose 1, mean value over all compounds). Our submissions are colored in green. See 
Table 2 in the main text for details. 
 

 
Figure S7. Performance of Phase 1A ranking prediction submissions (Kendall Tau, mean value over all 
compounds) for the CatS D3R Grand Challenge 3 dataset. Our submissions are highlighted in green. See 
Table 2 in the main text for details. 
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 S14 

Figure S8. Performance of Phase 2 ranking prediction submissions (Kendall Tau, mean value over all 
compounds, incomplete submissions) for the CatS D3R Grand Challenge 3 dataset. Our submission is 
highlighted in green. See Table 2 in the main text for details. 
 
 

 
Figure S9. Performance of Phase 2 free energy submissions (Kendall Tau, mean value over all compounds) 
for the CatS D3R Grand Challenge 3 dataset. Our submission is highlighted in green. See Table 2 in the 
main text for details. 
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our in-house docking workflow that involves in the first step the selection of the
most suitable docking software for the system of interest based on structural and
functional information available in public databases, followed by the docking of the
dataset to predict the binding modes and ranking of ligands. The macrocyclic nature
of the BACE ligands brought additional challenges, which were dealt with by a care-
ful preparation of the three-dimensional input structures for ligands. This provided
top-performing predictions for BACE, in contrast with CatS, where the predictions in
the absence of guiding constraints provided poor results. These results highlight the
importance of previous structural knowledge that is needed for correct predictions on
some challenging targets. After the end of the challenge, we also carried out free en-
ergy calculations (i.e. in a non-blinded manner) for CatS using the pmx software and
several force fields (AMBER, Charmm). Using knowledge based starting pose con-
struction allowed reaching remarkable accuracy for the CatS free energy estimates.
Interestingly, we show that the use of a consensus result, by averaging the results
from different force fields, increases the prediction accuracy.

Keywords molecular docking · free energy calculations · molecular dynamics ·
pmx · D3R challenge · Beta secretase 1 · Cathepsin S · Inhibitors

1 Introduction

Over the years, the blinded prediction challenges regularly organized by the Drug
Design Data Resource (D3R, https://drugdesigndata.org/) became valuable
opportunities to assess the quality and performance of in-house methodologies often
used in computer-aided drug discovery projects. The concept is simple: datasets are
generously provided by known pharmaceutical companies and presented to the com-
putational chemistry community, which is invited to blindly predict binding modes
and relative affinities of ligands.

The D3R Grand Challenge 4 was organized in 2018 and was based on two protein
targets: cathepsin S (CatS, Fig. 1a), which was already present in the previous D3R
Grand Challenge 3, and beta-secretase 1 (BACE, Fig. 1b). Cathepsin S is a lysosomal
cysteine protease involved, inter alia, in antigen presentation, nociception, itch, pain
and whose regulation may be important in several diseases as psoriasis, rheumatoid
arthritis and glioblastoma [1–9]. Beta-secretase 1 is an aspartic-acid protease involved
in the formation of myelin sheaths in peripheral nerve cells and in Alzheimer’s dis-
ease by cleavage of the amyloid precursor protein, leading, in the end, to amyloid-β
peptide aggregation [10–13]. However, recent publications relate the possible fail of
BACE inhibitors in Alzheimer’s trials [14, 15].

The BACE subchallenge included three stages. In Phase 1A, the participants were
asked to predict the crystallographic poses of 20 BACE ligands (Fig. 2), the affinity
ranking for 154 BACE ligands (Fig. S1 in the Electronic Supplementary Material)
and the relative binding affinities for a designated free energy subset of 34 BACE lig-
ands (Fig. 3). In Phase 1B, organizers released the corresponding receptor structures
(without ligands) for the 20 BACE ligands composing the pose prediction subset, and
the participants could repeat the pose prediction using this additional information. In
Phase 2, organizers released the complexes from the pose prediction subset and the
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a b

Fig. 1 Solid surface representation of representative crystal structures of BACE (a, PDB code 3K5C [16])
and cathepsin S (b, PDB code 1GLO [17]) with the ligands (BACE_68 and CatS_86, respectively) in
stick representation and colored in cyan. The binding sites, defined as spheres of 20 Å around the atom
OG1 of THR72 in a and around a virtual point with coordinates [-7,8,-4] in b, are colored in pink and
orange, respectively.

participants were required to repeat the affinity predictions for the subset of 154 lig-
ands and the relative free energy for the subset of 34 compounds as in Phase 1A,
but taking into account the structural information from the 20 released protein-ligand
complexes. The CatS subchallenge included a single stage, Phase 2, with ranking pre-
diction for two datasets of 459 ligands (structures not shown) and 39 ligands (Fig. 4),
the latter being designed for relative free energy calculations.

2 Methods

2.1 Protein structures

Analysis of Protein Data Bank [18] revealed 341 available crystal structures of human
BACE but only 337 of them, including four synthetic structures (1M4H [19], 4TRW
[20], 4TRY [20], 4TRZ [20]), were considered in this work since two structures were
not released when the panel of proteins has been built (6EQM [21] and 6DMI [22])
and two proteins contained useless extra-domains (1UJJ [23], 1UJK [23]). Further-
more, four apo structures were found but only one was complete, namely without
missing residues (1SGZ [24]).

The three-dimensional alignment of all these structures revealed a perfectly con-
served fold except for three regions: the first turn near the active site (VAL309-
ASP318), the second turn (LYS9-GLY13) with open (e.g. structure 2VIZ [25]) and
closed (e.g. structure 2VIJ [26]) conformations, and the third turn (PRO70-GLY74).

The proteins were protonated at physiological pH using the appropriate tool cor-
responding to each docking software: Hermes for GOLD and Maestro for Glide and
Vina.
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Fig. 2 Chemical structures of the D3R GC4 BACE pose prediction dataset.

The structural analysis for cathepsin S was carried out during our participation to
the D3R Grand Challenge 3 in 2017 [27] and, given the similarity of the CatS ligands
proposed in the previous and the present challenges, we decided to use in this study
the same protocol, with the exception of the constraints during the docking process,
which were not used anymore.

2.2 Ligands

Three-dimensional coordinates for all compounds were generated in MOL2 format
using two protocols: i) random conformations were built from SMILES strings using
LIGPREP V45011 (Schrödinger, http://www.schrodinger.com), software also
used to adjust protonation states at physiological pH; and ii) bioactive conformations
were built manually from the closest macrocycle-containing BACE ligands avail-
able in the PDB (see the Electronic Supplementary Material for the correspondence
between these structures) or from the closest CatS ligands released during the previ-
ous D3R GC3 challenge (haan-CatS_11, wcgq-CatS_10 and mekm-CatS_13), using
UCSF Chimera [28].

The ajustement of protonation states at physiological pH for all ligands makes that
the CatS ligands have a total charge of +2, which is in agreement with the instructions
provided by the organizers of D3R GC4 challenge stating that "all compounds in both
the BACE and CatS free energy sets [are expected to have] a charge of +2 at the assay
pH values of 4.5 (BACE) and 5.0 (CatS)." In contrast, our BACE ligands have a total
charge of +1, which is in apparent contradiction with these instructions. We were
concerned about this difference and we investigated in more detail the BACE binding
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Fig. 3 Chemical structures of the D3R GC4 BACE free energy dataset.

site residues that would interact with this second charge (which in individual BACE
ligands should be positioned in different regions of space). We could evidence no
specific ionic interaction and therefore, we continued our study with ligands having a
total charge of +1. To the best of our knowledge, there is no specific study providing
an experimental proof that the BACE inhibitors from this series have a total charge
of +2 when bound to the protein.

We organized the BACE ligands in four groups, according to the nature of the
macrocyclic core: (A) aliphatic macrocycle, (B) one aromatic ring, (C) two aromatic
rings, (D) no macrocycle. The substituents bound to the macrocycle are hereinafter
referred to as "lateral chains". Table S1 in the Electronic Supplementary Material
sums up the design plan of the 158 ligands.
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Fig. 4 Chemical structures of the D3R GC4 CatS free energy dataset.
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2.3 Preliminary docking

A training set was created with 14 BACE structures containing ligands similar with
those from the D3R GC4 dataset (similarity evaluated using Tanimoto method). IC50
values could be retrieved from BindingDB database [29] for 12 of them (see Table
S2 in the Electronic Supplementary Material).

The alignment of these structures showed a reasonable conserved three-dimensional
structure, except for two amino acids: i) the conformation of ARG235 in the structure
3DV1 [30] clashes with the ligands from structures 2VIJ [26], 2VJ7 [31], 2VNM [32],
3K5C [16] and 4DPF [33], whereas other equivalent arginines, e.g. ARG296 in the
structure 2VIJ [26], show no clashes; b) the conformation of GLN73 in the structure
3DV1 [30], like most equivalent glutamines in this position, clashes with all ligands
except those from the 3K5C [16], 3K5F [34] and 3IVH [35] structures.

We finally chose the 3K5C structure for all subsequent docking studies as its
active site is open enough to accept all other ligands from the training set (only 4DPF
ligand has a phenyl substituent, as in BACE_69 and BACE_82, which is slightly
clashing with the 3K5C surface, but no amino acid in its environment seems to be an
issue).

In the next step, several docking software and scoring functions have been tested
for their ability to predict relative affinity ranking and reproduce the protein-ligand
complexes from this training dataset: GOLD [36] with the GoldScore, ChemScore,
ChemPLP and ASP scoring functions, Vina [37] and Glide (Schrödinger, http:
//www.schrodinger.com). Default parameters were used in all cases for docking,
except with GOLD, where a search efficiency of 200% and the "flip ring corners" op-
tion were used in order to better explore the conformational space and of the ligands
macrocycles. For Glide, the standard precision (SP) mode was used. The binding sites
were considered with GOLD as spheres with a 20 Å radius around the OG1 atom of
THR72 (numbering from the 3K5C structure). With Vina, the binding sites were de-
fined as a 62 x 64 x 80 Å3 cube centered on the same atom. The protein structure
(3K5C) was considered to be rigid during the docking process and the ligands fully
flexible. Fifty docking poses were generated for each ligand from the training set.

2.4 Phase 1A docking

From the preliminary analysis, Gold with the GoldScore scoring function were identi-
fied as the most adapted for the BACE system (see Section 3.1 and Table 1 for a more
detailed discussion), and therefore were used for Phase 1 predictions with default val-
ues except search efficiency which was set to 200%. To explore ring conformations
and the ligand flexibility the options flip ring corners, flip pyramidal N and flip amide
bonds were activated. All the ligands were docked onto the 3K5C [16] structure, the
ligands being fully flexible and the receptor rigid. The docking calculation was car-
ried out with two hydrogen bond constraints involving the backbone oxygen atoms
of residues GLY230 and GLY34 and any atoms of the ligands. Additional docking
calculations were also carried out with ligands generated from SMILES, and also

2.3 D3R–GC4 publication 259



8 E. Elisée et al.

without any constraints. In all these cases, as expected, the poses are slightly worse
compared to those obtained with constraints, and only the latter were submitted.

Analysis of the training dataset has emphasized a conserved hydrogen bond in
all the ligands involving the backbone oxygen atom of residue GLY230 and also one
hydrogen bond, founds in most of the ligands, involving the backbone oxygen atom
of residue GLY34. Therefore, docking simulations were carried out with hydrogen
bond constraints on either or both oxygen atoms, and also without constraints, for all
compounds from the BACE D3RGC4 dataset, with 100 docking poses generated for
each ligand.

The RMSD between the common substructure of the macrocyclic core and the
side chain parts of the ligand and of one of PDB ligands AR9 (3DV1 [30]), 0BI (3K5C
[16]), OLG (4DPF [33]), 0XA (4GMI), 1R8 (4KE0 [38]) and BAV (3DV5 [30]) were
calculated using an in house developed script based on CACTVS Chemoinformatics
Toolkit (http://www.xemistry.com/). The two RMSD values were added and the
poses with the smaller sum were selected for submission (1 score per compound).

The second submission (1 score per compound) consisted of the best ranking pose
for each docking.

Protein structures were converted into PDB format for submission using UCSF
Chimera [28], and the docking poses were converted into MOL format using CO-
RINA version 3.60 (http://www.molecular-networks.com) (the MOL format
corresponds to the SDF output format in CORINA).

2.5 Phase 1B docking

After the release of the 20 crystal structures corresponding to the compounds BACE_1
to BACE_20 (but without the coordinates of the ligands), we carried out docking
calculations with each ligand individually onto the corresponding structure released
at the end of Phase 1A (Gold with the GoldScore scoring function, 100 docking poses
generated for each ligand). Each ligand was individually docked onto the correspond-
ing structure released at the end of Phase 1A. The docking calculation was carried out
with two hydrogen bond constraints involving the backbone oxygen atoms of residues
GLY230 and GLY34 and any atoms of the ligands.

2.6 Phase 2 docking

As no significantly new structural information was brought by the 20 protein-ligand
complexes released at the end of Phase 1B, for the BACE subchallenge in Phase 2 we
have submitted the same files as in Phase 1A.

For the CatS subchallenge we used our protocol from Grand Challenge 3 (2017)
[27] and performed the docking with Gold using ASP scoring function and 100 poses
per ligand. In contrast with our previous predictions of CatS inhibitors [27], this time
no constraints were used during the docking process.
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2.7 Free energy calculations

All free energy calculations were carried out after the end of the challenge (i.e. in a
non-blinded manner).

The D3R GC4 cathepsin S free energy dataset was composed of 39 structurally
similar CatS ligands (Fig. 4).

Free energies for Cathepsin S binders were estimated using non-equilibrium free
energy calculation protocol [39]. Firstly, a mapping between ligands was established
(Fig. 5): ligand CatS_79 was used as an initial reference connecting to the other
molecules (gray edges in the graph). This way double free energy differences (∆∆G)
for every compound with respect to CatS_79 could be evaluated. Subsequently, re-
dundancies in the graph were introduced (red edges) to allow for formation of cycles
that could be further used to correct for under-sampling [40]. In total 109 transitions
were considered.

Fig. 5 Graph of CatS ligand mappings for relative free energy calculations. Circle size and color encode
the node connectivity, i.e. the number of edges connected to a node (ligand). Gray edges mark the con-
nections between every ligand and compound CatS_79; the additional red edges have been introduced as
redundancies to allow for cycle closure correction.

For the free energy calculations of CatS inhibitors we used the same ligand struc-
tures that were used as input for docking calculations (see Section 2.2 for details).
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For every transition between two ligands hybrid structures and topologies were
generated using pmx package [41]. Prior to starting molecular dynamics simulations,
the solvated systems were energy minimized by keeping the position restraints of
1000 kJ/mol−1nm−2 on all heavy atoms. Afterwards, a 10 ps constant temperature
and volume simulations were performed still retaining the position restraints on heavy
atoms. Starting from the end states of the NVT simulations, equilibrium simulations
in isothermal-isobaric conditions for the ligands in solution and bound to protein
were performed for 6 ns. Subsequently, 80 snapshots were extracted equidistantly in
time from the last 4 ns of each trajectory and rapid 200 ps transitions were spawned
driving the system from one physical state (ligand A) to another (ligand B). The non-
equilibrium work values were recorded for every transition and related to the free en-
ergy difference based on the Crooks Fluctuation Theorem [42]. Maximum likelihood
estimator was used to estimate free energy difference [43]. The whole procedure,
including equilibrium sampling and non-equilibrium transitions, was repeated three
times. The final free energy estimate was calculated as a mean of the three replicas.
The errors for individual free energy differences were calculated as standard errors
of the three repeats.

All the molecular dynamics simulations were performed with Gromacs [44]. Two
protein force fields were used: Amber99SB*ILDN [45–47] and Charmm36m [48].
For ligands the generalized amber force field (GAFF v2.0) [49] was used in combi-
nation with Amber99sb*ILDN. Atom types and charges for ligands in Charmm force
field were assigned using MATCH algorithm [50] ; CGenFF 4.1 [51] was used for
bonded parameters. The systems were solvated with TIP3P water [52]. Na+ and Cl−

ions were added to neutralize the simulation box and reach 150 mM salt concentra-
tion. Particle Mesh Ewald [53, 54] was used to treat long range electrostatics with the
real space cutoff of 1.1 nm, Fourier spacing of 0.12 nm. Van der Waals interactions
were smoothly switched off between 1.0 and 1.1 nm. All bonds were constrained by
the LINCS [55] algorithm. Temperature was kept at 298 K by means of the veloc-
ity rescaling thermostat [56] with the time constant of 0.1 ps. Pressure of 1 bar was
controlled with the Parrinello-Rahman barostat [57] with the time constant of 5 ps.

For reconstructing ∆G values from double free energy differences (∆∆G) CatS_79
was used as a reference. Free energies were calculated with GAFF (Amber) and
CGenFF (Charmm) force fields. Furthermore, a consensus result was obtained by
averaging the results from GAFF and CGenFF force fields [58]. The overall calcula-
tion accuracy was assessed by means of root mean squared error (RMSE), Pearson’s,
Kendall’s and Spearman’s correlation coefficients. The errors for these measures were
obtained by means of bootstrapping. The bootstrap procedure followed closely the
one described in previous D3R challenges [59]: namely, 10,000 samplings with re-
placement were performed from the calculated and experimental value sets. The ex-
perimental values were modified by adding Gaussian noise with the mean of zero and
standard deviation of RTln Ierr, whith Ierr = 2.5.

The D3R GC4 BACE free energy dataset was composed of 34 structurally similar
BACE ligands (Fig. 3). During the free energy calculations we have encountered
difficulties with the stability of simulations and convergence problems. These might
be due, at least in part, to the variations in the macrocyclic scaffold of BACE ligands
from this dataset.
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2.8 Graphics

The figures representing protein-ligand complexes were generated with Pymol [60],
and the chemical structures were drawn using ChemDraw Professional 16.0 (PerkinElmer
Informatics). The CatS ligand perturbation network was built with NetworkX [61].
The results of CatS calculations were visualized using Matplotlib [62] library.

3 Results and Discussion

From our participation to previous docking and virtual screening challenges, SAMPL3
(2011) [63], SAMPL4 (2013) [64], CSAR (2014) [65], D3R Grand Challenge (2015)
[66], D3R Grand Challenge 2 (2016) [67] and D3R Grand Challenge 3 (2017) [27],
we developed a protocol for docking and virtual screening that proved to be relatively
successful. This protocol involves two steps, the first one representing a preliminary
analysis of publicly available structural and biochemical data in order to identify the
most appropriate docking software and scoring function for the system of interest. In
the second step, we use these parameters for the prediction of binding modes (pose
prediction) and of relative affinities of ligands (scoring). Enhanced genetic algorithm
parameters for docking (a search efficiency of 200%) proved to be beneficial in our
previous studies [27, 63–67], especially for big and flexible ligands. Thus, in this
work we used the same parameters in order to ensure an adequate conformational
sampling of docking conformations.

3.1 Preliminary analysis

In the preliminary analysis step, the ligands from the training set were docked using
the structure 3K5C [16] and different combinations of docking software and scor-
ing functions, and the results analyzed for accuracy in terms of pose prediction and
ranking. In order to evaluate the accuracy of docking and scoring, we have con-
sidered the lowest RMSD value and the RMSD value of the best ranking pose for
each combination protein-ligand-(docking software)-(scoring function) reported in
Table 1. The RMSD values were computed for all atoms, with the crystallographic
structures of these ligands as reference (see Table S2 for the list of ligands with known
structures composing the training dataset.) Table 1 shows that Gold with the Gold-
Score scoring function clearly outperformed the other docking programs and scoring
functions in the pose prediction of the training set. Vina provided very poor results,
with most of the docking conformations positioned outside the binding site, whereas
Gold/GoldScore, followed by Gold/ChemScore and Glide/SP, could reproduce rather
well the native protein-ligand complexes. In these conditions Gold with GoldScore
with the 3K5C structure were used for the following steps.

No significant correlation could be found between the docking score and biologi-
cal activity (pIC50) for the 12 compounds from the training set for which experimen-
tal biological data were available.
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Software/Scoring function Method for generating ligand 3D structure Average RMSD for best pose (Å)
Glide/SP SMILES 3.24
GOLD/GoldScore SMILES 2.48
GOLD/ChemScore SMILES 3.14
GOLD/ChemPLP SMILES 2.95
GOLD/ASP SMILES 3.50
Vina SMILES 6.87
Glide/SP PDB 3.14
GOLD/GoldScore PDB 2.35
GOLD/ChemScore PDB 2.85
GOLD/ChemPLP PDB 3.27
GOLD/ASP PDB 3.19
Vina PDB 6.41

Table 1 Preliminary evaluation of the training dataset. See Table S2 for the list of ligands with known
structures composing the training dataset.

3.2 Phase 1A: Pose prediction and ranking (BACE)

The 154 BACE ligands were docked on 3K5C [16] structure using Gold and the
GoldScore scoring function generated 50 poses for each ligand. Three versions of the
protocol were tested (see the Methods section for details) with and without hydrogen
bonds constraints. For the ligands belonging to a group for which crystal structures
were available, the RMSD was calculated between the common substructure of the
macrocyclic core and the side chain parts of the ligand and of one of PDB ligands
AR9 (3DV1 [30]), 0BI (3K5C [16]), OLG (4DPF [33]), 0XA (4GMI), 1R8 (4KE0
[38]) and BAV (3DV5 [30]) using an in house developed script based on CACTVS
Chemoinformatics Toolkit (http://www.xemistry.com/). The two RMSD values
were added and the poses with the smaller sum were selected for submission in phases
1 and 2. RMSD values compared with the part of the native ligands from the crystallo-
graphic structures were calculated for all docking poses. We obtained RMSD values
calculated on the common substructure with ligands with known structures ranging
from 1.52 Å to 1.90 Å for the "Best RMSD" prediction and from 1.81 Å to 2.30 Å
for the "Best Score" prediction. The results demonstrate that the use of constraints
induced similar performances in the two cases and, as expected, the poses without
constraints are slightly worse compared to those obtained with constraints, and only
the latter were submitted.

The release of the Phase 1A results showed that our two BACE ranking predic-
tions performed the best in this competition, and that the "Best RMSD" pose predic-
tion was ranked 7th. The pose predictions for the best and the worst compounds are
presented in Fig. 6.

3.3 Phase 1B: Pose prediction (BACE)

In Phase 1B, we carried out docking calculations using the 20 crystal structures cor-
responding to the compounds BACE_1 to BACE_20 that were released at the end
of Phase 1A (but without the coordinates of the ligands) with their native ligands. The
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a b

Fig. 6 Comparison of our BACE Phase 1A best and worst pose predictions for compounds BACE_3 (a,
green) and BACE_7 (b, cyan) with the corresponding BACE complexes that were released at the end of
the challenge (RMSD 0.39 Å and 2.60 Å, respectively).

re-docking of ligands into their native structures provided only a slight improvement
in the pose prediction. Similar to the phase 1A, adding constraints did not improve
the predictions, so only simulations with one constraint were submitted.

3.4 Phase 2: Ranking (BACE and CatS)

As no significantly new structural information was brought by the 20 protein-ligand
complexes released at the end of Phase 1B, for the BACE subchallenge in Phase 2 we
decided to submit the same results as in Phase 1A.

Concerning CatS simulations, similar as it was done for BACE, RMSD calcula-
tions between the common substructure of the ligand and of one of PDB ligands B8J
(5QBU), BCJ (5QC6), BJJ (5QCG), B9S (5QC1) and BFV (5QC8) were calculated
using an in house developed script based on CACTVS Chemoinformatics Toolkit
(http://www.xemistry.com/). The ranking with the best final RMSD poses were
selected for submission (see Section 2.4 for details about RMSD calculation).

The pose prediction is variable within the CatS docking simulations, inducing
poorer results compared with BACE. Some ligands are incorrectly positioned as il-
lustrated in Fig. 7a, but when the core of the ligand is correctly positioned (Fig. 7b),
a significant improvement in RMSD is observed.

3.5 Free energy calculations

For timing reasons, no free energy predictions were submitted during the challenge,
and all free energy calculations are presented retrospectively.

Overall, calculated free energies are well within 1 kcal/mol deviation from the
experimental measurements in terms of AUE and RMSEC (Table S3,Fig. 8). In terms
of absolute agreement with the experimental ∆G values, as measured by AUE and
RMSEC, our calculations using GAFF force field outperformed all the other submis-
sions to the D3R GC4 (Fig. 8). When predicting the overall trend (Pearson correla-
tion) and ligand ranking by their binding affinity (Kendall’s and Spearman’s correla-
tion), GAFF based calculations were only superseded by another set of submissions
utilizing the same ligand force field in an alchemical free energy calculation setup.
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a b

Fig. 7 Comparison of our CatS Phase 2 best ranking poses for compounds CatS_105 (a, cyan) and
CatS_245 (b, green) with the ligand BCJ (magenta) from the CatS crystal structure 5QC6 (RMSD 11.20
Å and 1.88 Å, respectively, on the macrocyclic core).

The free energy estimates based on the CGenFF and Charmm36m force field com-
bination performed slightly, but consistently worse with respect to all the considered
quality measures.

Prediction accuracy further increased when applying the consensus approach.
This observation is consistent with the previously reported observations for pro-
tein thermostabilities [58], DNA nucleotide mutations [68], protein-ligand interac-
tions [69].

Of the 39 estimated free energy values, the consensus force field approach only in
3 cases shows a deviation from experiment larger than 1 kcal/mol. One of the major
sources of error in the current calculation procedure comes from the starting pose
definition. In the current setup, pose construction based on the structural data from the
previous D3R GC3 challenge (Section 2.2) proved to yield highly accurate results. In
other attempts, where we probed the accuracy of alchemical predictions when starting
from a distorted set of poses the estimation accuracy markedly decresed. All in all,
starting pose generation needs to be taken with care as it largely modulates accuracy
achievable with alchemical free energy calculations.

Force field AUE (kcal/mol) RMSEC (kcal/mol) Pearson’s r Kendall’s τ Spearman’s ρ
GAFF 0.40 ± 0.09 0.45 ± 0.10 0.72 ± 0.14 0.49 ± 0.12 0.67 ± 0.16
CGenFF 0.48 ± 0.10 0.50 ± 0.11 0.60 ± 0.16 0.39 ± 0.13 0.54 ± 0.17
Consensus 0.37 ± 0.10 0.43 ± 0.10 0.72 ± 0.15 0.49 ± 0.12 0.67 ± 0.16

Table 2 Summary of the calculated alchemical free energy accuracies in terms of average unsigned error
(AUE), root mean squared error (RMSE), Pearson’s, Kendall’s and Spearman’s correlation coefficients.

4 Conclusions

Using the D3R Grand Challenge 4 dataset containing Beta-secretase 1 (BACE) and
Cathepsin S (CatS) inhibitors, we have evaluated the performance of our in-house
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Fig. 8 Summary of the CatS free energy calculation results. The calculations performed in this work
(GAFF - blue, CGenFF - red, consensus - yellow) are shown together with the other submissions: a
RMSEC , b Pearson correlation c, Kendall’s τ and d Spearman’s correlation.

docking workflow that involves in the first step the selection of the most suitable
docking software for the system of interest based on structural and functional infor-
mation available in public databases, followed by the docking of the dataset to predict
the binding modes and ranking of ligands. The macrocyclic nature of the BACE lig-
ands brought additional challenges, which were dealt with by a careful preparation
of the three-dimensional input structures for ligands. This provided top-performing
predictions for BACE, in contrast with CatS, where the predictions in the absence of
guiding constraints provided poor results. These results highlight the importance of
previous structural knowledge that is needed for correct predictions on some chal-
lenging targets. After the end of the challenge, we also carried out free energy cal-
culations (i.e. in a non-blinded manner) for CatS using the pmx software and several
force fields (AMBER, Charmm). Using knowledge based starting pose construction
allowed reaching remarkable accuracy for the CatS free energy estimates. Interest-
ingly, we show that the use of a consensus result, by averaging the results from dif-
ferent force fields, increases the prediction accuracy.
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Table S1. Templates used for manually building the three-dimensional BACE structures 

Ligand Template macrocycle Template lateral 
chains 

Type of macrocycle 
and number of 

atoms 
BACE_1 0N1 AR9 B15 

BACE_2 BAV 1R6/8 A16 

BACE_3 BAV BAV A16 

BACE_4 BAV 0BI A16 

BACE_5 BAV 0XA A16 

BACE_6 0N1 BAV B15 

BACE_7 0N1 BAV B15 

BACE_8 0BI BAV B16 

BACE_9 0BI BAV B16 

BACE_10 0BI BAV B16 

BACE_11 BAV BAV B16 

BACE_12 0BI BAV C15 

BACE_13 0BI - C16 

BACE_14 0BI 0BI C16 

BACE_15 0BI BAV C16 

BACE_16 0BI BAV C16 

BACE_17 0BI - C16 

BACE_18 0BI BAV B16 

BACE_19 1QT AR9 B14 

BACE_20 - AR9 - 

BACE_21 BAV BAV A16 

BACE_22 BAV BAV A16 

BACE_23 BAV 0BI A16 

BACE_24 BAV BAV A16 

BACE_25 BAV BAV A16 

BACE_26 BAV BAV A16 
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BACE_27 BAV 0XA A16 

BACE_28 BAV BAV A16 

BACE_29 BAV 0XA A16 

BACE_30 BAV 0XA A16 

BACE_31 BAV 0XA A16 

BACE_32 BAV BAV A16 

BACE_33 BAV BAV A16 

BACE_34 AR9 BAV A15 

BACE_35 BAV BAV A16 

BACE_36 BAV BAV A16 

BACE_37 AR9 BAV A15 

BACE_38 BAV 0BI A16 

BACE_39 BAV 0XA A16 

BACE_40 0N1 BAV B15 

BACE_41 0BI BAV B16 

BACE_42 0BI BAV B16 

BACE_43 0BI BAV B16 

BACE_44 0N1 BAV B15 

BACE_45 0BI BAV B16 

BACE_46 0BI BAV B16 

BACE_47 0BI BAV B16 

BACE_48 0BI 0XA B16 

BACE_49 0BI BAV B16 

BACE_50 0BI BAV B16 

BACE_51 0BI BAV B16 

BACE_52 0BI 0BI B16 

BACE_53 0BI BAV B16 

BACE_54 0N1 BAV B15 

BACE_55 0BI BAV B16 
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BACE_56 0BI BAV B16 

BACE_57 0BI 0XA B16 

BACE_58 0BI 0XA B16 

BACE_59 0BI 0BI B16 

BACE_60 0BI BAV B16 

BACE_61 0BI BAV B16 

BACE_62 0BI BAV B16 

BACE_63 0BI 1R6/8 B16 

BACE_64 0BI 0XA B16 

BACE_65 0BI BAV B16 

BACE_66 0BI BAV B16 

BACE_67 0BI 0XA B16 

BACE_68 0BI 0BI B16 

BACE_69 0BI BAV B16 

BACE_70 0BI BAV B16 

BACE_71 0BI BAV B16 

BACE_72 0BI BAV B16 

BACE_73 0BI BAV B16 

BACE_74 0BI BAV B16 

BACE_75 0BI 0BI B16 

BACE_76 0BI BAV B16 

BACE_77 0BI 0BI B16 

BACE_78 0BI BAV B16 

BACE_79 0BI 0XA B16 

BACE_80 0BI BAV B16 

BACE_81 0BI 0BI B16 

BACE_82 0BI BAV B16 

BACE_83 0BI 0BI B16 

BACE_84 0BI 0XA B16 
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BACE_85 BAV BAV A16 

BACE_86 BAV BAV A16 

BACE_87 BAV BAV B16 

BACE_88 BAV BAV C15 

BACE_89 0BI BAV B17 

BACE_90 BAV 0BI B16 

BACE_91 BAV 1R6/8 B16 

BACE_92 BAV BAV B16 

BACE_93 BAV BAV B16 

BACE_94 0BI BAV B15 

BACE_95 0BI 0BI B15 

BACE_96 0BI 0XA C16 

BACE_97 0BI BAV C15 

BACE_98 0BI 0BI C15 

BACE_99 0BI BAV C15 

BACE_100 0BI BAV C16 

BACE_101 0BI BAV C16 

BACE_102 0BI 0BI C16 

BACE_103 0BI BAV C16 

BACE_104 0BI - C16 

BACE_105 0BI BAV C16 

BACE_106 0BI BAV C15 

BACE_107 0BI BAV C15 

BACE_108 0BI 0XA C15 

BACE_109 0BI 0XA C16 

BACE_110 0BI 0XA C16 

BACE_111 0BI 1R6/8 C16 

BACE_112 0BI 0BI C16 

BACE_113 0BI BAV C15 
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BACE_114 0BI BAV C16 

BACE_115 0BI BAV C15 

BACE_116 0BI BAV C15 

BACE_117 0BI 0XA C16 

BACE_118 0BI BAV C15 

BACE_119 0BI 0BI C15 

BACE_120 0BI BAV C15 

BACE_121 0BI BAV C15 

BACE_122 0BI BAV C16 

BACE_123 0BI BAV C16 

BACE_124 0BI BAV C16 

BACE_125 0BI 0XA C16 

BACE_126 0BI - C16 

BACE_127 0BI 0XA C16 

BACE_128 0BI 1R6/8 C16 

BACE_129 0BI 0XA C16 

BACE_130 0BI BAV C16 

BACE_131 0BI 0BI C16 

BACE_132 0BI BAV C15 

BACE_133 0BI 0BI C15 

BACE_134 0BI BAV C15 

BACE_135 0BI BAV C15 

BACE_136 0BI BAV C15 

BACE_137 0BI BAV C15 

BACE_138 0BI BAV C16 

BACE_139 0BI BAV C16 

BACE_140 0BI 0BI C15 

BACE_141 0BI BAV C16 

BACE_142 0BI - B16 
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BACE_143 BAV BAV A16 

BACE_144 0BI 0BI C17 

BACE_145 - 0BI - 

BACE_146 - BAV - 

BACE_147 AR9 AR9 A15 

BACE_148 BAV AR9 A16 

BACE_149 BAV AR9 A16 

BACE_150 BAV AR9 A16 

BACE_151 BAV AR9 A16 

BACE_152 0N1 AR9 B15 

BACE_153 BAV AR9 B16 

BACE_154 0BI AR9 C16 

BACE_155 0BI AR9 C15 

BACE_156 0BI AR9 B15 

BACE_157 BAV AR9 C15 

BACE_158 BAV AR9 C15 
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Table S2. Ligands composing the BACE training dataset 

PDB structure Ligand IC50 (μM) pIC50 

3K5C 0BI 17 4.77 

4DPF 0LG 400 3.40 

4DPI 0N1 78 4.11 

4GMI 0XA – – 

4K8S 1QT 36 4.44 

4KE1 1R6 2.5 5.60 

4KE0 1R8 17 4.77 

2PH8 35A 1800 2.74 

3DV1 AR9 590 3.23 

2F3F AXF 190 3.72 

2F3E AXQ 156 3.81 

3DV5 BAV 27 4.57 

2QZK I21 27 4.57 

1XS7 MMI – – 

 

Table S3. Absolute alchemical free energies for the Cathepsin S ligand set after applying cycle 

closure correction (kcal/mol). The GAFF and CGenFF values were obtained by averaging results 

from 3 independent repeats. 

Ligand Experiment GAFF CGenFF Consensus 

CatS_4 -8.93 -9.24±0.40 -10.03±0.07 -9.65±0.21 

CatS_9 -9.41 -9.01±0.63 -10.09±0.46 -9.57±0.39 

CatS_29 -9.70 -10.06±0.10 -9.90±0.07 -9.98±0.06 

CatS_30 -9.37 -9.57±0.27 -10.01±0.89 -9.79±0.47 

CatS_52 -8.88 -10.07±0.39 -10.32±0.20 -10.21±0.22 

CatS_76 -9.17 -9.03±0.28 -9.57±0.10 -9.31±0.15 

CatS_79 -9.61 -9.54±0.26 -9.54±0.26 -9.54±0.19 

CatS_84 -8.90 -8.73±0.26 -9.24±0.11 -9.01±0.14 

CatS_122 -10.57 -11.10±0.52 -10.58±0.84 -10.85±0.49 

CatS_127 -9.78 -10.19±0.26 -9.58±0.26 -9.88±0.19 
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CatS_130 -8.25 -8.83±1.13 -8.73±0.26 -8.77±0.58 

CatS_131 -9.02 -9.78±0.36 -9.72±0.82 -9.76±0.45 

CatS_132 -9.11 -9.53±0.61 -9.48±0.37 -9.50±0.36 

CatS_139 -9.29 -8.81±0.35 -9.42±0.09 -9.12±0.18 

CatS_141 -8.53 -8.83±0.44 -9.31±0.32 -9.08±0.27 

CatS_142 -8.55 -8.90±0.18 -9.27±0.14 -9.08±0.11 

CatS_144 -9.06 -8.70±0.37 -9.84±0.67 -9.26±0.38 

CatS_153 -8.97 -9.37±0.36 -9.52±0.09 -9.44±0.18 

CatS_155 -10.02 -9.67±0.62 -10.05±0.20 -9.86±0.33 

CatS_157 -9.41 -9.20±0.37 -9.74±0.24 -9.46±0.22 

CatS_160 -9.82 -9.64±0.25 -10.18±0.13 -9.91±0.14 

CatS_162 -8.50 -9.07±0.14 -8.56±0.54 -8.82±0.28 

CatS_165 -8.28 -7.82±0.54 -8.98±0.24 -8.39±0.30 

CatS_167 -9.45 -9.10±0.35 -9.05±0.41 -9.07±0.27 

CatS_172 -9.33 -9.26±0.40 -9.44±0.10 -9.35±0.21 

CatS_174 -9.71 -9.19±0.27 -9.62±0.12 -9.41±0.15 

CatS_176 -10.09 -9.60±0.19 -9.54±0.15 -9.57±0.12 

CatS_177 -9.45 -9.19±0.51 -9.41±0.16 -9.30±0.27 

CatS_178 -10.09 -9.87±0.10 -9.58±0.18 -9.72±0.10 

CatS_180 -10.33 -9.73±0.34 -9.85±0.21 -9.79±0.20 

CatS_181 -10.57 -10.71±0.16 -10.42±0.43 -10.56±0.23 

CatS_184 -9.26 -9.36±0.10 -9.69±0.19 -9.51±0.11 

CatS_185 -9.91 -9.68±0.71 -10.03±0.50 -9.86±0.43 

CatS_186 -8.57 -9.16±0.26 -9.46±0.06 -9.31±0.13 

CatS_191 -9.87 -9.94±0.21 -9.78±0.85 -9.85±0.44 

CatS_195 -9.55 -9.27±0.22 -9.58±0.09 -9.43±0.12 

CatS_252 -8.36 -9.22±0.20 -9.52±0.07 -9.38±0.11 

CatS_253 -8.63 -9.60±0.06 -9.86±0.13 -9.74±0.07 

CatS_255 -8.30 -8.84±0.12 -9.58±0.22 -9.21±0.13 
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Table S4. Relative alchemical free energies for the Cathepsin S ligand set prior to 

applying cycle closure correction (kcal/mol). The GAFF and CGenFF values were 

obtained by averaging results from 3 independent repeats. 

Edge GAFF CGenFF Consensus 

CatS_79-CatS_127 -0.43±0.37 0.05±0.37 -0.19±0.26 

CatS_79-CatS_130 0.90±1.11 1.35±0.21 1.12±0.57 

CatS_79-CatS_131 -0.08±0.36 -0.35±0.82 -0.22±0.45 

CatS_79-CatS_132 -0.25±0.61 0.28±0.37 0.01±0.36 

CatS_79-CatS_139 0.43±0.08 0.45±0.16 0.44±0.09 

CatS_79-CatS_141 0.64±0.36 0.00±0.30 0.32±0.23 

CatS_79-CatS_142 0.72±0.13 0.11±0.41 0.41±0.22 

CatS_79-CatS_144 0.43±0.37 -0.20±0.67 0.12±0.38 

CatS_79-CatS_153 -0.15±0.34 0.13±0.18 -0.01±0.19 

CatS_79-CatS_155 0.24±0.51 -0.67±0.17 -0.21±0.27 

CatS_79-CatS_4 0.22±0.43 -0.48±0.69 -0.13±0.41 

CatS_79-CatS_157 0.14±0.35 -0.31±0.14 -0.09±0.19 

CatS_79-CatS_160 0.02±0.34 -0.94±0.27 -0.46±0.22 

CatS_79-CatS_162 0.47±0.14 1.78±0.54 1.13±0.28 

CatS_79-CatS_165 1.70±0.54 -0.35±0.24 0.67±0.30 

CatS_79-CatS_167 0.38±0.35 0.14±0.41 0.26±0.27 

CatS_79-CatS_172 0.55±0.43 -0.08±0.08 0.24±0.22 

CatS_79-CatS_174 0.10±0.27 0.12±0.12 0.11±0.15 

CatS_79-CatS_176 -0.18±0.19 0.15±0.15 -0.02±0.12 

CatS_79-CatS_177 0.44±0.17 -0.06±0.11 0.19±0.10 

CatS_79-CatS_178 -0.17±0.54 -0.40±0.22 -0.28±0.29 

CatS_79-CatS_9 0.61±0.30 -0.72±0.41 -0.05±0.25 

CatS_79-CatS_180 -0.25±0.24 -0.47±0.17 -0.36±0.15 

CatS_79-CatS_181 -1.29±0.16 -0.89±0.43 -1.09±0.23 
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CatS_79-CatS_184 0.39±0.12 -0.25±0.18 0.07±0.11 

CatS_79-CatS_185 0.52±0.62 -0.44±0.49 0.04±0.39 

CatS_79-CatS_186 0.37±0.10 0.04±0.33 0.21±0.17 

CatS_79-CatS_191 -0.59±0.18 0.63±0.83 0.02±0.43 

CatS_79-CatS_195 0.36±0.34 0.06±0.06 0.21±0.17 

CatS_79-CatS_252 0.17±0.20 0.10±0.07 0.13±0.11 

CatS_79-CatS_253 -0.26±0.62 -0.27±0.25 -0.26±0.33 

CatS_79-CatS_255 1.13±0.11 -0.15±0.19 0.49±0.11 

CatS_79-CatS_29 -0.12±0.43 -0.75±0.69 -0.43±0.41 

CatS_79-CatS_30 -0.52±0.25 -0.52±0.89 -0.52±0.46 

CatS_79-CatS_52 -0.56±0.50 -0.11±0.31 -0.34±0.30 

CatS_79-CatS_76 0.02±0.18 -0.17±0.04 -0.07±0.09 

CatS_79-CatS_84 1.18±0.18 0.08±0.27 0.63±0.16 

CatS_79-CatS_122 -1.45±0.52 -0.85±0.84 -1.15±0.49 

CatS_127-CatS_142 1.60±0.29 0.36±0.22 0.98±0.18 

CatS_130-CatS_142 -0.12±0.25 -0.33±0.20 -0.23±0.16 

CatS_131-CatS_252 0.65±0.77 0.36±0.22 0.50±0.40 

CatS_132-CatS_142 0.32±0.30 0.42±0.27 0.37±0.20 

CatS_139-CatS_76 -0.11±0.12 -0.28±0.08 -0.20±0.07 

CatS_141-CatS_252 -0.84±0.23 -0.38±0.48 -0.61±0.27 

CatS_142-CatS_139 0.16±0.34 -0.40±0.32 -0.12±0.24 

CatS_144-CatS_142 -0.19±0.30 0.58±0.50 0.20±0.29 

CatS_155-CatS_30 0.40±0.27 -0.19±0.69 0.11±0.37 

CatS_4-CatS_9 0.45±0.57 0.13±0.10 0.29±0.29 

CatS_157-CatS_153 -0.04±0.25 0.22±0.10 0.09±0.14 

CatS_160-CatS_180 -0.23±0.35 0.30±0.19 0.03±0.20 

CatS_162-CatS_167 -0.29±0.56 -0.29±0.28 -0.29±0.32 

CatS_165-CatS_142 -1.10±0.22 -1.16±0.19 -1.13±0.15 

CatS_167-CatS_252 -0.44±0.28 -0.24±0.09 -0.34±0.15 
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CatS_174-CatS_177 -0.26±0.26 0.16±0.20 -0.05±0.16 

CatS_176-CatS_180 -0.23±0.09 -0.15±0.17 -0.19±0.09 

CatS_177-CatS_172 0.13±0.57 -0.09±0.14 0.02±0.29 

CatS_178-CatS_191 0.04±0.15 -0.04±0.25 0.00±0.15 

CatS_9-CatS_52 -0.89±0.55 -0.68±0.29 -0.78±0.31 

CatS_180-CatS_172 0.16±0.31 0.42±0.16 0.29±0.18 

CatS_181-CatS_167 1.84±0.33 1.25±0.26 1.55±0.21 

CatS_184-CatS_186 0.19±0.33 0.21±0.34 0.20±0.24 

CatS_185-CatS_139 1.68±0.50 0.58±0.13 1.13±0.26 

CatS_191-CatS_30 0.20±0.31 0.44±0.58 0.32±0.33 

CatS_195-CatS_76 0.49±0.31 0.28±0.12 0.39±0.17 

CatS_252-CatS_177 0.70±0.30 -0.04±0.14 0.33±0.17 

CatS_253-CatS_255 0.52±0.08 0.37±0.18 0.45±0.10 

CatS_255-CatS_252 -0.55±0.47 0.03±0.14 -0.26±0.24 

CatS_29-CatS_30 0.63±0.15 0.22±0.09 0.43±0.09 

CatS_30-CatS_178 -0.65±0.17 1.26±0.31 0.31±0.18 

CatS_52-CatS_4 0.73±0.07 0.59±0.28 0.66±0.14 

CatS_84-CatS_139 -0.14±0.25 -0.38±0.20 -0.26±0.16 

CatS_122-CatS_139 2.49±0.57 1.27±0.67 1.88±0.44 

CatS_127-CatS_139 1.28±0.13 0.21±0.47 0.74±0.24 

CatS_130-CatS_139 0.24±0.77 -0.43±0.51 -0.09±0.46 

CatS_131-CatS_139 1.02±0.41 -0.02±0.30 0.50±0.25 

CatS_132-CatS_139 0.75±0.39 0.05±0.38 0.40±0.27 

CatS_139-CatS_186 -0.23±0.63 0.03±0.17 -0.10±0.33 

CatS_141-CatS_84 0.46±0.37 0.01±0.16 0.24±0.20 

CatS_142-CatS_84 0.13±0.05 -0.27±0.29 -0.07±0.15 

CatS_144-CatS_139 -0.53±0.07 0.50±0.26 -0.02±0.13 

CatS_153-CatS_76 -0.24±0.13 -0.12±0.39 -0.18±0.21 

CatS_155-CatS_153 0.36±0.50 0.53±0.13 0.45±0.26 
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CatS_4-CatS_255 -0.00±0.40 0.57±0.85 0.28±0.47 

CatS_157-CatS_184 -0.11±0.14 0.15±0.27 0.02±0.15 

CatS_160-CatS_157 0.69±0.34 0.17±0.19 0.43±0.19 

CatS_162-CatS_252 -0.43±0.33 0.17±0.81 -0.13±0.44 

CatS_165-CatS_130 -1.03±0.77 0.20±0.23 -0.42±0.40 

CatS_167-CatS_177 -0.15±0.40 -0.37±0.15 -0.26±0.22 

CatS_172-CatS_186 0.27±0.14 0.03±0.10 0.15±0.09 

CatS_174-CatS_172 -0.08±0.20 0.44±0.14 0.18±0.12 

CatS_176-CatS_177 0.39±0.20 0.12±0.20 0.25±0.14 

CatS_177-CatS_184 -0.37±0.17 -0.17±0.10 -0.27±0.10 

CatS_178-CatS_155 -0.13±0.23 -0.13±0.12 -0.13±0.13 

CatS_9-CatS_157 -0.05±0.28 0.85±0.55 0.40±0.31 

CatS_180-CatS_177 0.55±0.17 0.40±0.13 0.47±0.11 

CatS_181-CatS_252 0.59±0.31 1.54±0.73 1.06±0.40 

CatS_185-CatS_252 0.30±0.14 0.59±0.22 0.44±0.13 

CatS_186-CatS_177 0.12±0.37 0.08±0.08 0.10±0.19 

CatS_191-CatS_155 0.33±0.19 0.08±0.13 0.21±0.12 

CatS_195-CatS_184 -0.15±0.27 -0.22±0.23 -0.18±0.18 

CatS_252-CatS_139 0.09±0.09 -0.04±0.26 0.02±0.14 

CatS_253-CatS_252 0.43±0.15 0.30±0.43 0.36±0.23 

CatS_255-CatS_139 -0.05±0.60 0.27±0.23 0.11±0.32 

CatS_29-CatS_155 0.62±0.22 -0.89±0.89 -0.13±0.46 

CatS_30-CatS_76 0.28±0.52 0.18±0.55 0.23±0.38 

CatS_52-CatS_167 1.26±0.95 1.21±0.48 1.24±0.53 

CatS_76-CatS_84 0.17±0.13 0.35±0.22 0.26±0.13 

CatS_84-CatS_252 0.07±0.23 -0.63±0.16 -0.28±0.14 

CatS_122-CatS_252 1.78±0.58 1.15±0.62 1.47±0.42 
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Figure S1. Chemical structures of the 158 ligands composing the BACE dataset. The pose prediction subset 
is composed of 20 compounds, BACE_1 to BACE_20. The ranking subset is composed of 154 compounds, 
i.e. all with the exception of BACE_2, BACE_3, BACE_17 and BACE_18.  
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Conclusions

„
I am turned into a sort of machine for observing facts and grinding
out conclusions.

— Charles Darwin
(Naturalist)





— Conclusions — In this thesis, the main objective was to perform in silico
predictions of β-lactamase mutations using a pmx-based free energy protocol.
This way, methodological developments have been carried out in order to (1)
study SBLs (considering the covalent bond in protein-ligand complexes) and
MBLs (considering the zinc ions) by MD simulations, and (2) compute free
energies in a reliable and robust manner. Summary of the achieved works is
presented below, chapter per chapter.

In Chapter II, new zinc-coordinating residues have been parameterized
to study zinc-containing metalloenzymes in OPLS-AA force field. New param-
eters were successfully assessed and validated by MD simulations of fourteen
representative metalloenzymes. This work also revealed a misrepresenta-
tion of zinc-zinc distances in di-zinc systems, probably due to a repulsion
phenomenon that may occurs when two positive charges are close to each
other, here every zinc ion display a +2 charge. This issue was corrected by
implementing a non-covalent bond between the two zinc ions based on the
crystallographic distance.

In Chapter III, several MD studies were performed in order to keep
verifying our methodological developments: (a) implementation of covalent
bond was validated on SBLs-ligand systems, (b) MBLs-ligand systems were
analyzed using initial ligand poses obtained by superimposition of related
crystallographic protein structures, resulting in overall stable systems and
pinpointing ligands as stabilizers of zinc-zinc interaction without applying a
non-covalent bond, (c) zinc-coordinating histidine mutations into a glycine
residue led to the expected structural rearrangement of the active site by
displacement of an adjacent aspartate residue, but uncertainties on this ob-
servation arose due to the instability of the zinc-zinc distance, issue that was
fixed later, and (d) encouraging results were obtained for the protonation
reaction of a lysine residue in the active site of SBLs by using our pmx-based
protocol – nevertheless, further investigations needs to be undertaken to
improve the reliability of simulations for the carboxylation reaction.

In Chapter IV, several participations in D3R-GC competitions provided
us a certain overview of our computational workflow’s strengths and weak-
nesses: we significantly improved our docking protocol by using available
structural information and several docking softwares, while we faced the
limitations of our free energy protocol which failed in computing trustworthy
results for docking poses since they were often not correctly overlapped
therefore reducing calculations’ accuracy.
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At the end of this PhD journey, if I were to draw conclusions about my
experience in Molecular Modeling field, I would retain the following non-
exhaustive tips:
– Take the time to properly set up your training system by checking all
parameters without blindly trust existing scripts: prepare your protein or
ligand with a correct parameterization in the selected force field, think about
which element could be important for the experiment (waters, cofactors,
ions...), run fairly long simulations to identify potential instabilities.
– Perform replicas to assess, inter alia, the reproducibility of an observed
event or the reliability of computed values such as free energies.
– Be aware of new released publications in your specific field but also in
related ones to maybe catch up on new ideas.
– Don’t hesitate to ask your working colleagues, boss or anyone on a suitable
forum if you face a problem, they could have a solution to fix it !

— Perspectives — Given the different improvements designed within the
allocated time of this thesis, everything appears to be ready for first in silico
predictions of β-lactamase mutations in the presence or absence of ligand.
The study would be focused on one representative enzyme of each class:
KPC-2 (A), NDM-1 (B), CMY-2 (C) and OXA-48 (D). Figures 34 and 35 report
all found single mutations connecting members of a same family; indeed,
two simultaneous mutations could be equally carried out but first milestone
is to validate our pmx-based protocol on single mutations. Nevertheless, we
might encounter some inconsistencies with NDM-1 enzyme since it is difficult
to correctly reproduce the genuine electrostatic and polarisable zinc ions’
environment in normal MD simulations. In practice, we may compare com-
puted free energies to experimental ones in the case of ligand-free proteins
or to binding affinities in the case of protein-ligand complexes. The aim
is to find some mutations which could enhance the antibiotic resistance by
either promoting their hydrolysis or preventing inhibitors’ action, therefore
susceptible to arise in the future. This way, new inhibitors or antibiotics could
be designed by taking into account this information in order to negate the
effect of such mutants.

Moreover, regarding histidine-to-glycine mutants in SPM-like proteins,
additional MD simulations must be run with the developed non-covalent
bond between the two active site zinc ions, in order to evaluate once more
our assumption about the potential replacement of mutated zinc-coordinating
histidine by the neighbouring aspartate.
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Finally, the protocol involving a loss rather than a gain of atoms will
be investigated to achieve the carboxylation process in OXA-48 and its mu-
tants, OXA-145 and OXA-427.
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Figure 34: Single mutations in KPC, NDM-1 and OXA families.
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Titre : Vers la prédiction in silico des mutations liées à la résistance aux antibiotiques.
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Résumé : La résistance aux antibiotiques est une menace sérieuse pour la santé publique. En effet, si on
ne change pas rapidement notre consommation excessive d’antibiotiques, la situation actuelle va se dégrader
jusqu’à basculer dans une ère dite ”post-antibiotique”, dans laquelle plus aucun antibiotique ne sera efficace
contre les infections microbiennes. Bien que ce phénomène de résistance apparaisse naturellement, l’utilisation
abusive d’antibiotiques accélère le processus. De plus, la présence de pathogènes multi-résistants neutralise l’ef-
fet des traitements existants et dans le cas de chirurgies courantes (césariennes, transplantations d’organe...),
la situation peut rapidement s’aggraver voire devenir mortelle.
C’est pourquoi des directives, émanant des autorités sanitaires, doivent être mises en place afin de contrôler
l’utilisation des médicaments, et ce, à tous les niveaux de la société, des individus au secteur agricole en passant
par les professionnels de santé et les industries pharmaceutiques. Le monde de la recherche scientifique, quant
à elle, doit trouver des nouvelles stratégies pour enrayer la propagation de la résistance.
Dans ce contexte, cette thèse a pour objectif le développement d’une méthode de prédiction, par calculs d’énergie
libre, des mutations de β-lactamases favorables à l’hydrolyse des β-lactames. Ces travaux méthodologiques
ont donc conduit au développement : (1) de nouveaux paramètres pour les enzymes à zinc, implémentés
dans le champ de force OPLS-AA et validés par des simulations de dynamique moléculaire sur un panel
de métalloenzymes représentatives, (2) d’un protocole de paramétrisation de ligands covalents pour étudier le
comportement de certains β-lactames dans CMY-136, une nouvelle β-lactamase caractérisée au laboratoire, et
(3) d’un protocole de calcul d’énergie libre évalué au moyen de compétitions internationales de prédiction. Ce
dernier a ensuite été utilisé pour tenter d’expliquer pourquoi la carbamylation de la sérine catalytique n’a pas
lieu dans certaines oxacillinases.
Au travers de ces travaux, nous avons pu améliorer significativement notre approche computationnelle et
désormais tout est en place pour une exploration exhaustive des mutations possibles dans les β-lactamases.

Title : Towards in silico prediction of mutations related to antibiotic resistance.
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OPLS-AA force field.

Abstract : Antibiotic resistance is a global concern threatening worldwide health. Indeed, if we don’t change
our overconsumption of antibiotics, the current situation could worsen until a ”post-antibiotic” era in which
existing treatment would be ineffective against microbial infections. Despite the natural occurrence of antibiotic
resistance, the misuse of antibiotics is speeding up the process. Furthermore, presence of multi-resistant patho-
gens negates the effect of modern treatments and usual surgeries (caesarean sections, organ transplantations...)
might be riskier in the future, or even lethal.
That’s why, common guidelines have to be edicted by health authorities in order to control antibiotic use at
every level of society, from individuals to healthcare industry including health professionals and agriculture
sector. As for scientific research, new strategies have to be considered in order to limit the spread of antibiotic
resistance.
In that context, the presented thesis aimed at developing a protocol to predict, by free energy calculations,
β-lactamase mutations which could promote the hydolysis of β-lactams antibiotics. In order to achieve that,
we developed several methodological approaches including : (1) new parameters for zinc enzymes implemented
in OPLS-AA force field and thereafter validated using molecular dynamics simulations of representative zinc-
containing metalloenzymes, (2) a protocol to parameterize covalent ligands in order to analyze the dynamical
behavior of some β-lactams in CMY-136, a novel β-lactamase recently characterized in our laboratory, and (3)
a pmx-based free energy protocol. The latter was also assessed through several international blinded prediction
challenges, and finally used to find out why carbamylation of the catalytic serine is not observed in certain
OXA enzymes.
Throughout this work, we made significant improvements in our protocol, and now everything is in place for
an exhaustive prediction of possible mutations in β-lactamases.
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