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ABSTRACT

Formal Probabilistic Verification of Wireless Sensor Networks

Maissa Elleuch

Sfax University, 2014

In the context of Wireless Sensor Networks (WSN), energy efficiency is consid-

ered as the most critical requirement. To preserve energy and thus extend the network

lifetime, the randomized node scheduling approach is one of the most widespread solu-

tions. Traditionally, the performance of the proposed scheduling algorithms for WSN

is usually analyzed using simulation or paper-and-pencil proof methods. Formal meth-

ods, in particular model checking, have been less frequently explored. However, these

methods either are not scalable or do not ensure accurate results, which are serious

drawbacks given the mission-critical WSN applications.

To cope with these intrinsic limitations, this thesis advocates the usage of higher-

order-logic theorem proving to formally analyze the probabilistic performance prop-

erties of randomly-deployed WSN using the k-set randomized node scheduling. Based

on the recently developed probability theory, available in the HOL theorem prover,

we present the foundational higher-order-logic formalizations of the randomized node

scheduling algorithm. Then, we build upon these foundations to formalize the key

performance attributes, namely the expected coverage intensity of the network, the

detection probability of an intrusion and the delay of detection for an occurring event.

Using the achieved formalizations, we present the formal verification of the optimal

network lifetime problem under Quality of Service (QoS) constraints associated to

coverage and detection. Due to the wide applicability of the k-set randomized node
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scheduling, these formalizations allow us to tackle the formal analysis of various WSN

applications. For illustration purposes, the thesis thus provides the formal perfor-

mance analysis of different randomly-scheduled wireless sensor networks deployed for

forest fire detection and border security monitoring.
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Résumé

Formal Probabilistic Verification of Wireless Sensor Networks

Maissa Elleuch

Université de Sfax, 2014

Dans le cadre des Réseaux de Capteurs sans Fil (RCSF), l’efficacité en énergie est

considérée comme la contrainte la plus critique. Pour économiser l’énergie et étendre

ainsi la durée de vie de ces réseaux, l’approche d’ordonnancement aléatoire des noeuds

est communément utilisée dans ce contexte. Traditionnellement, les performances des

algorithmes d’ordonnancement des noeuds proposés pour les RCSF sont analysées en

utilisant la simulation ou les modèles analytiques. Les méthodes formelles, en par-

ticulier la vérification de modèle, ont été moins souvent explorées. Toutefois, étant

donné le caractère probabiliste inhérent aux algorithmes d’ordonnancement aléatoire

de noeuds, ces méthodes ne peuvent, en aucun cas, fournir une analyse complètement

correcte, ce qui constitue une limitation majeure étant donné l’aspect critique des

applications de RCSF.

Pour surmonter les limitations majeures des techniques existantes, cette thèse préconise

l’utilisation de la logique d’ordre supérieur, à travers la technique de démonstration

de théorèmes, pour analyser formellement diverses propriétés probabilistes de perfor-

mance de RCSF utilisant l’ordonnancement aléatoire de noeuds. En se basant sur la

théorie des probabilités, récemment disponible dans le prouveur de théorèmes HOL,

nous développons les formalisations fondamentales de l’algorithme d’ordonnancement

aléatoire de noeuds en k-partitions. Ensuite, nous construisons sur ces fondations

pour formaliser les attributs clés de performance, à savoir l’intensité moyenne de la
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couverture réseau, la probabilité de détection d’une intrusion et le délai de détection

d’un évènement. En se basant sur les formalisations obtenues, nous présentons aussi

la vérification formelle du problème de la durée de vie optimale du réseau sous des con-

traintes de Qualité de Service (QoS) liées à la couverture et à la détection. En raison

de la large applicabilité de l’algorithme d’ordonnancement aléatoire de noeuds, ces for-

malisations nous permettent de s’attaquer à l’analyse formelle de diverses applications

de RCSF. A titre d’illustration, la thèse fournit l’analyse formelle des performances

de réseaux de capteurs sans fil déployés pour la détection des feux de forêts et la

surveillance de la sécurité des frontières.
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Chapter 1

Introduction

1.1 Motivation

The stunning progress in Micro-electromechanical Systems (MEMS) technology has

led to very small tiny sensors, so that their deployment on a wireless network over

an area is at once fast, reliable and cheap. Currently, Wireless Sensor Networks;

called also WSN, are being increasingly used to ensure a continuous and automated

monitoring of different kind of environments and serving thus limitless applications

including, home automation, external environmental monitoring and object tracking

[94]. Due to their inherent features, wireless sensor networks have attracted a great

deal of attention in the research community. Indeed, although these networks are di-

rect descendants of traditional wireless networks, their multiple resource constraints

make the existing algorithms for classical wireless networks, inappropriate. Further-

more, wireless sensor networks are highly dynamic networks in nature. Such networks

can thus commonly exhibit a lot of probabilistic behavior whose mainly due to the

random nodes deployment, the hostile environment and the unpredictable traffic pat-

terns. A wide variety of protocols and algorithms, more frequently probabilistic, have
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been thus specifically designed to meet the WSN requirements.

Due to their restricted size, sensors are basically battery-powered and thus have

very limited energy resources. This feature makes energy saving as one of the most

critical requirements within a wireless sensor network. Consider the example of a WSN

deployed for forest fire detection, in which the sensor nodes are randomly distributed

with a high density. Once deployed, the network is expected to keep functional for

a sufficiently long period while efficiently ensuring the monitoring of the whole forest

area. Such expectation will never be reached without appropriately scheduling the

energy of each of the sensor node to extend the lifetime of the whole network. In fact,

replacing or recharging the sensor batteries in such harsh environmental conditions

would be obviously hard. In addition, the heavy node deployment results in further

energy losses since it is highly probable that the same region would be simultaneously

covered, i.e., monitored by many nodes. On the other hand, monitoring every point

of the forest by keeping every node at the active state will surely lead to a huge waste

of energy and seems hence to be completely unrealistic [83]. Since a wild fire occurs

occasionally, some sensor nodes can be intuitively deactivated to save the network

energy. By having a smaller number of sensors active at any given time, the lifetime

of the overall system increases, at the cost of lower performances. Based on this

idea, various sensor scheduling algorithms have been explored in the open literature

[59, 73, 77, 1, 42, 87, 13, 83, 68, 46].

Scheduling sensor nodes to save energy is surely a simple and intuitive approach,

however it is very important to keep good monitoring performances of the area. For

the same forest fire application, the deployed WSN should be also able to detect the

outbreak of fires at any point with a high probability and report it within a small delay.

Consequently, besides the network lifetime, the coverage and detection performance
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equally arise as critical performance requirements. These application requirements

are called Quality of Service (QoS) constraints. According to the target applications,

different design goals have been taken into account in the design of sensor scheduling

algorithms. Early solutions have been conceived to extend the network lifetime while

preserving the coverage quality [59, 77, 1, 42, 13, 87] whereas other consider network

connectivity [15, 29, 14]. More recent scheduling solutions consider both constraints of

coverage and connectivity [78, 72, 97]. In this context, the k-set randomized scheduling

[52] considers the joint problem of coverage and connectivity. The main idea consists

in organizing a set of nodes by randomly subdividing them into a partition with “k”

sets. The formed subsets of nodes work alternatively within their allocated time slot

so that the overall network energy is preserved. Such algorithm, suitable for a wide

range of WSN applications, has shown good performance results in extending the

network lifetime while keeping acceptable performance.

Randomized algorithms are usually much more efficient [61], but more difficult

to validate. More particularly, the random feature of the k-set randomized scheduling

makes it very challenging to analyze for all possible cases. The random assignment

of the sensor nodes to the k sub-networks may lead to some sub-networks which

are completely empty. In this case, it is highly probable that unacceptable delays

will be made for the detection of a critical intrusion. Moreover, due to the random

deployment of nodes coupled with the randomized scheduling, it may happen that

certain parts of the area are not monitored at all or simultaneously monitored by many

sensors. Traditionally, the k-set randomized scheduling has been extensively analyzed

using paper-and-pencil based probabilistic technique [59, 77, 1, 42, 51, 87, 97]. The

reliability of the obtained analytical models is consolidated through simulation using

the Monte Carlo method [55]. Although based on mathematic as very powerful tool,

3



the complete correctness of analytical models is apparently hard to assert. Such

statement can be unbelievable but unfortunately true! The paper-and-pencil based

proof can be prone to human-errors regarding the set of assumptions or even the

mathematical steps. It is very common that missing a mathematical step or even a

very small sign error will result in faulty models. Evidently, all these limitations, if

not carefully spotted, lead to models which remain wrong forever, even till the design

stage. Added to that, the simulation approach, used to validate the analytical results,

usually produces very incredible results for various reasons such as the “bugs” that

may stem from the underlying computer programs. These analysis limitations can

have detrimental consequences especially in case of safety-critical applications like

forest fire detection, e.g., a fire threat may be ignored due to an undetected bug.

In order to overcome the common drawbacks of simulation, formal methods [31]

have been recommended as an efficient solution to validate a wide range of hardware

and software systems. Using mathematical techniques, such methods provide the pos-

sibility to rigorously analyze the mathematical model for the given system to check

if it meets a given property. In recent years, there was a growing interest in applying

formal methods in the context of analyzing wireless sensor networks to assess their

functional correctness or analyze their quantitative performance [58, 7, 64, 98]. Nev-

ertheless, wireless sensor networks pose many challenges in their analysis especially

because of their inherent randomness which imply that most of their properties are

probabilistic. Examples of such properties include the probability that an intrusion

event occurs or the expected coverage quality. More recent progress in the formal

methods area has presented efficient solutions to correctly include the probabilistic

feature in the system analysis. Probabilistic model checking is very commonly adopted

in this context. Such technique surely provides valuable understandings of the system
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behavior, however, as soon as WSN of large scale are concerned, state explosion prob-

lems [16] are shortly observed. In addition, many inaccuracies arise when modelling

the probabilistic metrics and in the reasoning support about statistical quantities like

expectation and variance.

1.2 Wireless Sensor Networks

A wireless sensor network can be basically defined as a collection of small tiny sensors

[94] that collaborate together to monitor a given area (see Figure 1.1). In general, a

sensor node is composed of four units: the sensing unit (sensors), the processing unit

(processors), the transmission unit (wireless transceivers) and the energy control unit

(battery). All of these four units are within the size of several cube millimeters [94].

Thanks to its sensing unit, a sensor can individually take different measurements of

the monitored area such as light, temperature, humidity, pressure and acceleration.

The communications between the sensor nodes is a short-range wireless communica-

tion, which is made possible thanks to their transmission unit. The gathered data is

either transmitted to a specific sensor called sink, whose main goal is to collect data

from different sensors, or directly to the gateway sensors (see Figure 1.1). Finally,

the data transmitted to the end user is analyzed and sent to a remote user so that

appropriate decisions can be taken. Depending on the application domain, a sensor

node may integrate optional modules such as a positioning system (GPS), or an en-

ergy harvesting system (solar cell). More recently, sensor nodes can be even equipped

with a movable system for mobility purposes [86].

• Structured vs. unstructured WSN:Wireless sensor networks can be roughly

classified into structured and unstructured according mainly to the kind of the

area of interest; indoor or outdoor [94]. In structured WSN, a given number
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Figure 1.1: The Network Architecture of a Wireless Sensor Network.

of nodes are usually placed at specific locations in a pre-planned way within a

closed environment, e.g., a building. For unstructured WSN, a greater number

of nodes is deployed in a completely ad-hoc manner into an open area like a

mountain. Therefore, a structured WSN is generally characterized by a lower

node density and requires thus little network maintenance. On the other hand,

several design issues regarding for example connectivity, detection and coverage,

are raised in unstructured WSN because of their ad-hoc feature.

• WSN applications: Wireless sensor networks have a wide variety of real-world

applications that can be mainly classified into two main categories: monitoring

and tracking [94]. Monitoring applications include monitoring environments,

health, power and manufacturing process. Environmental applications, for ex-

ample, enable the prevention from natural disasters through measuring environ-

mental indicators, e.g., earthquakes, forest fires and floods. Moreover, health

monitoring is also very useful in the biomedical domain to take care of a patient
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through in-body sensors. For power surveillance purposes, a WSN can be also

deployed to detect chemical or biological attacks. On the other hand, tracking

applications include tracking different kind of objects such as animals and hu-

mans. Military applications are also an example of tracking applications where

it is possible to make the detection and the identification of enemy intrusion

through a wireless sensor network. As examples of successful WSN applica-

tions, we can mention the WSN deployed to monitor the bird “Leach’s Storm

Petrel” in the Great Duck island in the USA [94], and the ZebraNet application

[94] for analyzing the wild animals over a harsh area of 1000m2 in Kenya.

1.3 Analysis Approaches for Wireless Sensor Net-

works

In what follows, we survey the existing approaches for the performance analysis of

randomized scheduling algorithms for WSN. While theoretical analysis is the most

commonly used approach, we extend our state-of-the-art to include also the formal

approaches applied in the general context of WSN.

1.3.1 Theoretical Analysis

Theoretical analysis, also known as paper-and-pencil based probabilistic technique,

has been widely used to validate randomized scheduling algorithms for WSN. Such

analysis consists in building a pure theoretical model by first identifying the required

random variables and the associated performance attributes. After that, a rigourous

analysis based on the foundations of probability theory is achieved. To validate the

analytical results, simulation, using the Monte Carlo method [55], is finally performed.
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Based on repeated random sampling, the Monte Carlo simulation method, build a pic-

ture of the probability distribution over which estimates of some statistical quantities,

e.g., expectation and variance, can be then made.

Several works report on the analysis of the randomized scheduling using paper-

and-pencil based probabilistic technique. In [87], a variant of the randomized schedul-

ing, called Lightweight Deployment-Aware Scheduling (LDAS), is proposed and stud-

ied via analytical modeling. Such schema deactivates redundant nodes using a random

weighted voting method.The corresponding performance analysis has examined some

metrics associated to redundancy, where many statistical quantities like the expec-

tation of non-covered area, have been proved. The resulting analytical model has

been validated through extensive simulations on a WSN deployed over a region of

150m× 150m with sensors whose detection range is 10m. The problem of scheduling

nodes in low-duty WSN has been also considered in [42]. The coverage extensity and

intensity of the network have been mathematically studied, then validated through

simulation using Matlab [80]. In [13, 52], a variant of the randomized scheduling,

based on uniform partitions, is presented. To show the practical effectiveness of this

algorithm, theoretical analysis, using probability theory, has been done to evaluate

pertinent performance metrics, namely, the network coverage, the detection probabil-

ity and delay, and the network lifetime [52, 89]. The resilience of the same algorithm

regarding clock asynchrony has been also mathematically investigated in [52]. In [92],

the coverage performance of the same scheduling algorithm has been mathematically

analyzed under different nodes deployment schemas while considering the size and

the shape of the intrusion objects. The detection probability under different scenarios

has been examined as well. The detection accuracy of WSN for forest fire detection

has been analyzed using paper-and-pencil analysis in [95]. Experimentation has been
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done to validate the forest fire system on a real prototype of 5 nodes. More gen-

erally, theoretical analysis has been conducted to validate the coverage performance

of the randomized scheduling algorithm, proposed in [13, 52], in the context of an

hybrid surveillance framework for environmental monitoring [92]. Results have been

validated through simulation on a circular surface of a radius R = 10000, where up

to n = 2000 nodes are uniformly deployed. Very interesting also is the recent work

of Quazi who has proposed a new kind of randomized nodes scheduling based on

some sensor information about neighbours and residual energy [56]. The coverage

performance has been considered through mathematical analysis while simulations

have been run with specific network sizes and different sensing ranges.

Clearly, the accuracy of a paper-and-pencil based proof heavily depends on the

human-error factor. Probabilistic models usually rely on a lot of intuition where most

of the assumptions are either not explicit or not so accurate. In addition, the simula-

tion technique applied to analyze such models is usually subject to many imprecisions.

Indeed, computer simulation relies on computer models which consists in some coded

algorithms coupled with numerical data to simulate the system. These models are

frequently prone to many coding errors, i.e., “bugs”. It is thus hard to completely

assert their correctness. Finally, the produced results through simulation can never

be generic, i.e., they are usually specific to given settings, e.g., the number of nodes,

their range, and the size of the sensing area. Such inherent inaccuracies are clearly

very compromising given the safety-critical feature of most of WSN applications.

1.3.2 Model Checking

Model checking is one of the most used formal methods for the probabilistic analysis

of wireless systems [70]. Traditional model checking is primarily based on building a
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mathematical model of the system which is exhaustively tested to check if it meets

a set of properties. The system to be verified is hence usually modelled as a finite

state automate, then the property of interest is formalized into a logical formula.

To verify the satisfiability of the property, the state space is exhaustively explored

through dedicated tools. Taking into account the probabilistic feature of the target

system, probabilistic model checking has recently emerged as a promising alternative

enabling thus a more realistic analysis.

Both model checking techniques; classical and probabilistic, have been success-

fully used to validate various aspects in the WSN context. In [64], the formal analysis

of the Optimal Geographical Density Control (OGDC) algorithm [97] has been per-

formed. The OGDC algorithm is a kind of randomized scheduling algorithm which

saves energy by switching nodes while maintaining network connectivity. The for-

mal analysis has been achieved in the RT-Maude rewriting tool [69] where common

performance metrics, such as network coverage intensity and lifetime, have been suc-

cessfully verified. Several other works have also reported on the use of the model

checker Uppaal [8] for the analysis of various protocols for WSN [25, 81]. Also, the

probabilistic model checker PRISM [84] has been used quite frequently for the ver-

ification of Medium Access Control (MAC) protocols designed for WSN [7, 28, 96].

General transmission properties for specific network configurations have been thus

formally checked. Some statistical measures such as expected communication latency

and energy consumption, have been formally analyzed as well. The state-based for-

mal verification method, model checking [16], has been also the basis of many formal

frameworks proposed for the validation of WSN. In [32], the model checker SPIN

[41] is used within the SLEDE framework to verify WSN security aspects for NesC

implementations. Similarly, a model checking based framework, called NesC@PAT
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[98], has been also used for verifying WSN implementations in the NesC language. In

this work, based on a formal semantics of the NesC language, the sensor behaviors

are captured through Labelled Transition Systems (LTSs) while the model checker

of the PAT tool [75] is used to analyze the WSN model. The target properties are

deadlock-freeness, state reachability and some temporal properties.

In addition to its accuracy, the main advantage of model checking method is

its mechanization. However, it suffers from the common problem of state space ex-

plosion [16]. Indeed, once the state graph of the verified system becomes too large,

its exploration for a given property turns out to be ’painful’ and even impossible.

Hence, during the verification of the OGDC algorithm [64], only networks of up to

6 nodes has been handled within a monitored surface of 15m × 15m. Similarly, in

[7], the network hops have been restricted to 3 and the number of schedules to 2 to

keep tractable model in PRISM. For the verification of ECO-MAC [96], the authors

have been obliged to readjust some parameters by a reduction factor to avoid a state

explosion problem which was completely unpredictable. Furthermore, the work of [98]

has reported over 1 million generated states for the verification of a single property.

In [32], some additional simplifying assumptions including some temporal abstrac-

tions and parameters reduction have been applied to carry out the analysis. On the

other hand, while probabilistic model checkers have been proposed to cope with the

probabilistic limitations of classical ones, these tools still lack of a sound probability

support. For example, in [64], a random function, which is assumed to be ’good’,

has been used to model probabilistic behavior. For Uniform distributions, a sampling

value generated by the same random function on a given interval is selected. Such

kind of analysis is not exhaustive and thus cannot be termed as formally verified. The
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authors of [64] have besides suggested the use of PMaude [2] to enhance their prob-

abilistic analysis results. Finally, the reasoning support for statistical quantities in

the PRISM model checker suffers from many shortcomings. Indeed, expected values

of the performance attributes are usually given through running several experiments

on the built model [7, 96]. These values have been usually specific to the chosen

configuration and can not be considered as general in any way.

Some other attempts for building formal simulation frameworks for WSN can

be found in [71, 26, 57, 54]. The main idea of these frameworks is to first describe

the different components of wireless sensor networks in a single formalism, e.g, timed

automata [71], process algebra [57], then provide the possibility of formal analysis of

some properties using formal tools [84, 67, 12]. Nevertheless, besides the fact that

most of the proposed frameworks have been restricted to the specification stage, no

interesting WSN case study has been made to show their effectiveness at the formal

verification side.

1.3.3 Theorem Proving

Unlike the many works based on model checking found for the analysis of wireless

sensor networks, very few works based on theorem proving exist in the open liter-

ature. In general, theorem proving [30] consists in formalizing a given system and

the properties of interest into logical statements of first or higher-order logic. Using

existing axioms and inference rules, a proof that the system satisfies these properties

is then built.

In [36], a clock synchronization protocol for WSN, has been analyzed using the

Isabelle/HOL theorem prover [62]. More specifically, the correctness of the strict set of

constraints on the required parameters for full connectivity has been formally checked.
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A second work reports on the use of the PVS system [65] to build a theorem proving

based framework for WSN algorithms [9]. Within such formal framework, a WSN

algorithm can be formally specified using a library of mathematically specified sub-

blocks like the nodes, the network structure, communication primitives and protocols.

The communication primitives are functionalities for communication between nodes

like the forwarding, injection and dropping of packets, while the protocols are specified

so that they can use services installed on nodes. Services include the packet logger,

the receive buffer, the node scheduler and the clock. Each component is described

by a PVS model taken from the corresponding theory. Different versions of the same

component are available so that it is possible to analyze the same WSN algorithm

under several perspectives and at the desired level of abstraction. The resulted frame-

work is then extended to include some probabilistic scenarios such as nodes mobility

and link quality changes. The practical effectiveness of the whole PVS framework for

WSN, has been illustrated by manually analyzing the trace execution of the Surge

algorithm [9]. The authors have hence evaluated the receive queue size, the energy

consumption and the robustness to topology changes on a network of maximum 25

nodes with different topologies. By inspecting the execution traces, they have been

able to detect a potential problem of infinite loops of routed packets in the algorithm

specification. As a second case study, the correctness of the message delivery for the

Reverse Path Forwarding (RPF) algorithm has been formally analyzed in [10].

Despite the guaranteed advantages of the theorem proving technique, many

limitations have been recognized in the works mentioned above. Effectively, the formal

analysis, done in [36], has been performed for the required set of constraints on the

parameters and not for the properties of interest. This clearly restricts the scope of the

verification work. In addition, while the PVS framework [9] is supposed to be extended
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with some “dynamic” scenarios in [10], the randomness aspect has been characterized

by a pseudo-random generator. The nodes mobility, specified by the random walk

pattern, has been also specified through a simple recursive function. Furthermore,

considering the link quality changes for lossy channels with a uniform probability Pc,

this probability has been instantiated by a given value throughout the analysis. The

corresponding routing tables have been thus generated using the concrete value of

Pc. Given all these restrictions, it is unlikely that the analysis results using the PVS

framework can be considered as accurate regarding the probability modelling.

1.4 Problem Statement

Although the need of formal methods has been pointed out in many papers, effective

attempts at using them in the WSN context are not very common. On the other

hand, since wireless sensor networks are being increasingly explored for deployment

in many safety-critical applications, there is a great need to accurately assess their

correctness.

In summary, previous research techniques, used to validate these networks, are

not:

• reliable in capturing randomness of WSN into account. Although considering

the randomized aspects increases the confidence in the obtained results, the ex-

isting techniques, such as simulation and probabilistic model checking, usually

suffer from imprecisions in the probabilistic modelling and inabilities in reason-

ing about statistical quantities like expectation and variance.

• scalable to handle WSN of large size. Neither simulation, nor model checking

can provide an exhaustive analysis regardless of the design parameters values.
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Hence, the analysis results usually lack the generic property. This is a significant

limitation, especially that WSN are commonly deployed in applications of large

scale like environmental monitoring.

• accurate in their analysis. For example, the paper-and-pencil based probabilistic

technique is based on analyzing a theoretical model on paper by a human, which

makes it error prone. Similarly, the non-exhaustive nature of simulation makes

it inaccurate as well.

• practical enough to address the analysis of a wide range of WSN applications.

The usefulness of previous approaches is mostly limited to specific case studies

in the WSN domain.

In this thesis, we propose to use the HOL4 theorem prover to tackle the formal

analysis of wireless sensor networks. Through the choice of the HOL4 theorem prover,

we aim at providing trustworthy analysis of the target problem while developing solid

and scalable analysis results. Thanks to a rich probability library, this prover offers

promising abilities to reason about a wide range of randomness, including the formal

reasoning about WSN models with multiple continuous random variables, which has

not been addressed before. On the other hand, due to the usage of theorem proving,

the analysis results are guaranteed to be effectively sound, generic, and of a wide

applicability.

1.5 Proposed Methodology

We are interested to provide, in this thesis, a completely rigorous performance analysis

of wireless sensor networks using the k-set randomized scheduling algorithm, which

is a widely used probabilistic algorithm to save energy in the context of WSN. The

15



basic building blocks of the proposed methodology are depicted in Fig. 1.2, while the

formalization requirements are represented by shaded boxes at the left side.

To achieve the formal performance analysis of a given WSN application using

the k-set randomized scheduling, the first step is to formalize the description of the

WSN application as a system model in higher-order logic. This step mainly requires

the foundational formalizations of the randomized scheduling. Appropriate proba-

bilistic variables are thus needed to model the inherent randomness of the algorithm

as higher-order-logic functions. The second step consists in expressing the properties

of interest as higher-order-logic goals based on the formal system model developed

in the first step. This step is made possible due to the formalizations of the key

performance attributes including the network coverage, the detection probability, the

detection delay and the network lifetime. Our fundamental work is to develop the

formalizations of these performance attributes based on the paper-and-pencil prob-

abilistic models of the k-set randomized algorithm available in the open literature

[13, 52, 89]. Each of these performance attributes is hence formally specified taking

into account its probabilistic feature and verified afterwards utilizing the foundations

of probability theory. The foremost requirement here is to be able to correctly model

the probabilistic aspect of the performance properties within a theorem prover. The

resulting formalizations for each of the attributes, shown by the three rectangular

boxes at the left side of Fig. 1.2, are made available in distinct higher-order-logic

library or theory in order to facilitate the formal reasoning about WSN systems us-

ing the randomized scheduling. The third step is to formally provide the proofs of

the goals, developed in the previous step as theorems, in a theorem prover using the

pre-verified theorems. The output of the theorem prover, annotated by the dashed

edge rectangular box, certifies that the given performance properties are valid for the
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given WSN application using the k-set randomized nodes scheduling algorithm.

Figure 1.2: Proposed Methodology

It is important to note that the formalizations steps, mentioned above, are

mainly founded on the paper-and-pencil probabilistic analysis of the k-set randomized

algorithm available in [13, 52, 89]. Though, our main work is to formalize them in

higher-order-logic to handle the formal performance analysis of WSN within the sound

core of the HOL theorem prover. Finally, due to the wide applicability of the k-set

randomized algorithm in various WSN applications, the practical effectiveness of our

methodology is possible through formally analyzing various real-world applications,

such as, environmental outdoor monitoring [91] and enemy intrusion detection [63].

Although there are many propositions of node scheduling algorithms in the open

literature [1, 42, 59, 77, 87, 97], the k-set randomized scheduling, presented in [13],

is effectively considered as one of the most interesting. While certain scheduling al-

gorithms have been focused either on coverage or connectivity, the k-set randomized
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scheduling is distinguishable by considering the joint problem of coverage and connec-

tivity without too constraining assumptions. In addition, such algorithm is the only

found so far which provides rigorous paper-and-pencil probabilistic models in terms

of various performance metrics which are the network coverage, the detection proba-

bility, the detection delay and the network lifetime. Compared to the other proposed

node scheduling schemas, we therefore strongly believe that the k-set randomized

scheduling probabilistic algorithm is worth formalizing within a theorem prover.

Based on [34], we developed some formalizations of the k-set randomized schedul-

ing algorithm and the network coverage [20, 21]. Recently, a more generic formaliza-

tion of probability theory has been developed in the HOL theorem prover [60]. Aiming

at providing more solid and scalable formalizations, we decided thus to migrate our

previous higher-order-logic formalizations into the new HOL probability theory. Our

whole work, in this thesis, is primarily built on the most recent and generic probability

theory in the HOL4 theorem prover [39].

To the best of our knowledge, the formal analysis of the OGDC algorithm,

done in [64], constitutes the only one dealing with the formal analysis of a variant

of randomized scheduling algorithms through model checking within the RT-Maude

rewriting tool [69]. Besides the well-known limitations of model checking, limits in

the probability modelling have been clearly recognized by the authors themselves who

suggested the use of the PMaude tool [2] to enhance their results. The work of [9, 10]

can be also considered as related to ours in the general context of the formal analysis of

WSN through theorem proving. Although such work is intended to formalize dynamic

probabilistic scenarios, it has been largely limited by the probability support of the

PVS system which gave very inaccurate formalizations.

18



1.6 Thesis Contributions

The main contribution of this thesis is an approach for formally analyzing the perfor-

mance of wireless sensor networks using the k-set randomized nodes scheduling, which

is a widely used energy conservation algorithm in this context. For that purpose, we

build the foundational formalizations of the k-set randomized scheduling algorithm

for WSN and its key performance attributes within the sound core of the higher-order-

logic theorem prover. Our approach has the merits to provide accurate and generic

results while allowing modular reasoning about the different performance attributes.

Based on the proposed approach, the formal performance analysis of a wide range of

WSN applications is hence possible. Some of the key contributions of this thesis are

listed as follows.

• Formal specification of the k-set randomized nodes scheduling algorithm for

randomly deployed wireless sensor networks according to the given design as-

sumptions.

• Formalization of the coverage performance attributes which are the coverage of

a specific point of the monitored area and the coverage of the whole network

[20]. We successfully utilize these formalizations to provide the formal analysis of

the coverage behavior of a randomly-scheduled wireless sensor network deployed

for forest fire detection [21]. The same higher-order-logic developments of the

the coverage property have been applied to formally perform some asymptotic

analysis on a real-world WSN for volcanic earthquake detection as well [22].

• Formalization of the detection performance metrics including the detection prob-

ability and the detection delay of an intrusion event within the deployed WSN

[23]. These formalizations are primarily built upon some formal reasoning about
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the intrusion period of any occurring event. For illustration purposes, we for-

mally evaluate the detection performances of a WSN deployed for border se-

curity monitoring [23]. The developed formalizations regarding the detection

probability can be built upon to formalize other performance attributes, such as

the impact of clock asynchrony on the network coverage in randomly-scheduled

WSN [52].

• Formal verification of the optimal network lifetime based on both formalizations

of the coverage and detection properties. More particularly, we formally ana-

lyze the optimal lifetime problem under Quality of Service (QoS) constraints

associated to coverage and detection.

1.7 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we first present the k-set randomized scheduling algorithm for

wireless sensor networks. We also provide a brief description of the main theories

required to conduct the probabilistic analysis in the HOL4 theorem prover. The

theorem proving technique and the HOL4 theorem prover are also introduced in this

chapter.

In Chapter 3, we present our fundamental formalizations of the k-set random-

ized scheduling algorithm for wireless sensor networks according to a given system

model. We exploit these foundations to formally reason about the key coverage per-

formance attributes: the coverage intensity of a specific point and the expected value

of the network coverage intensity. To show the practical interest of our higher-order-

logic developments, we formally evaluate the coverage behavior of a real-world WSN
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application for forest fire detection.

In Chapter 4, we describe the higher-order-logic formalization of the detection

probability and the detection delay of an intrusion event in randomly-scheduled WSN.

Both of these probabilistic characteristics are built upon the formal analysis of a sta-

tistical property associated to the intrusion period of any occurring event. Using the

resulting theoretical developments of detection, the detection performance of a WSN

deployed for border security monitoring is formally checked where various detection

properties are analyzed including the asymptotic detection behavior of the given ap-

plication.

Chapter 5 shows how useful are the formalizations of coverage and detection,

developed in Chapters 3 and 4, for the formalization of the optimal network lifetime

under Quality of Service (QoS) constraints.

Finally, Chapter 6 provides concluding remarks and summarizes perspective

insights.
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Chapter 2

Preliminaries

In this chapter, we first present the k-set randomized scheduling algorithm for wire-

less sensor networks, in particular, the main design assumptions and performance

metrics are described. After that, we introduce the higher-order-logic theorem prov-

ing technique and the HOL theorem prover. We finally provide an overview of the

main theories required to conduct the probabilistic analysis within the HOL theorem

prover.

2.1 The k-set Randomized Scheduling Algorithm

for WSN

In the open literature, a wide variety of node scheduling algorithms have been pro-

posed for use in the context of wireless sensor networks [83]. The main idea of such

approach is to deactivate nodes by rounds so that the overall energy can be preserved.

While the common objective is to maximize the network lifetime, the nodes to deacti-

vate are usually chosen according to some selection criteria that can be deterministic

or completely random. Moreover, the proposed solutions fundamentally differ in their
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assumptions regarding the sensors (detection model, transmission range, location in-

formation, etc.) and the whole network (deployment strategy, network structure,

time synchronization, etc.) [83]. In this thesis, we are interested in a variant of node

scheduling which is completely random, that is the k-set randomized scheduling. This

algorithm has been separately proposed by [1] and [51]. The main idea of such ap-

proach is to randomly organize the nodes into alternatively working subsets of nodes.

Hence, during a given time slot, only the nodes belonging to the current active subset

are turned on and may report an occurring event while all the other nodes are inactive

and thus enables a whole energy saving of the overall system. Subsequently, we give a

detailed description of the k-set randomized scheduling algorithm. The most relevant

design assumptions and the performance metrics of interest are also surveyed.

2.1.1 Design Assumptions

The main design assumptions of the k-set randomized scheduling algorithm are as

follows [51, 13].

• Sensor sensing range: Every sensor can only sense the environment and

detect events within its circular sensing area. Hence, a sensor can never sense

an event being out of his detection range. The typical values of the detection

range are in the order of meters. It is important to note here that no relationship

is assumed between the detection range of a sensor and its transmission range

which is associated to the radio of the transmission unit.

• Network deployment: Deployment can be defined as how to physically put

the sensor nodes over the area of interest. This deployment can be either deter-

ministic or random. In a deterministic deployment, nodes are manually placed

at specific locations according to a given model such as grid. On the contrary, a
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random deployment relies on dropping the sensors from a boat or an helicopter

according to a given random model, which can Uniform, Poisson, etc. In [79],

it has been shown that random deployment is much cheaper and reliable than

the deterministic one. Moreover, scheduling deterministic network is simple and

may not be worth exploring. For the k-set randomized scheduling, a random

deployment is much more relevant. This random deployment is assumed to be

Uniform, i.e., the sensor nodes are fairly distributed over the monitored area.

Moreover, the deployment of one node is completely independent of the other

ones. In other words, the location of a given sensor does not have an impact on

the placement of another one.

• Communication architecture: Once the sensors are deployed over the area,

they have to organize themselves into a given communication architecture which

can be flat or hierarchical. In a flat structure, all the sensors have identical

role and communicate together via multi-hop radio communication to transmit

the data till the sink node. Whereas the hierarchical architecture relies on

organizing the sensors into clusters, where each sensor communicate first with

the corresponding cluster head, then this cluster head will directly communicate

with the sink node. For the k-set randomized scheduling, a flat structure is

simply assumed.

• Network density: The sensor density is the number of deployed sensors by

unit square. According to the application requirements, this density can be

average or high. Here, the network is assumed to be enough dense, which is

suitable for monitoring large area.
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2.1.2 Description

Consider a wireless sensor network that is formed by randomly deploying a set Sn =

{s0, s1, ..., s(n−1)} of n sensor nodes over a field of interest of size a. Each sensor has a

sensing area of size r. During the initialization stage, the k-set randomized scheduling

is run in parallel on every node as follows [51]. Each node starts by randomly picking

a number, denoted by i, ranging from 0 to (k − 1), where k is the number of subsets

or partitions. A node sj is thus assigned to the ith sub-network, designated by Si,

and will activate itself only during the scheduling round of that subset. At the end

of the algorithm, k disjoint sub-networks are created. These subsets will be working

independently and alternatively in a round-robin fashion. In other words, during a

given working round Ti, only the nodes belonging to the subset Si are turned on to

detect a potential event. Whereas, during all the other scheduled rounds, the nodes

of the subset Si will fall asleep. The main steps of the k-set randomized algorithm

can be summarized as follows.

The k-set randomized algorithm on sensor sj

1. Pick a random number i ∈ [0..(k − 1)]
2. Assign sj to subset Si

Intuitively, when the wireless sensor network is quite dense, each subset alone

can cover most of the area. The k-set randomized algorithm has the merits to be

a purely distributed algorithm, thus scalable for large networks. Table 2.1 lists the

main variable notations used for the k-set randomized scheduling, as well as their

significations.

For illustration purposes, Fig. 2.1 shows how the k-set randomized scheduling

algorithm splits arbitrarily a small WSN of eight sensor nodes to two sub-networks.

The eight nodes, randomly deployed in the monitored region, are identified by IDs
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Var. Signification
n The total number of deployed nodes
k The number of sub-networks or partitions
a The size of the monitored field
r The size of the sensing area of each sensor
Sn The initial set of sensors in the network whose cardinality is n
sj The sensor node number j such that 0 ≤ j ≤ (n− 1)
Si The sub-network number i such that 0 ≤ i ≤ (k − 1)
Ti The scheduling or working round of subset Si with 0 ≤ i ≤ (k − 1)

Table 2.1: Variable Notations for the k-set Randomized Scheduling

Figure 2.1: An example of the k-set randomized scheduling for 8 nodes and 2 subsets.

ranging from 0 to 7. The two sub-networks are called S0 and S1. Each node randomly

chooses a number 0 or 1 in order to be assigned to one of these two sub-networks.

Suppose that nodes 0; 2; 5, select the number 0 and join the subset S0 and nodes 1;

3; 4; 6; 7, choose the number 1 and join the subset S1. These two sub-networks will

work alternatively, i.e., when the nodes 0; 2; 5, with sensing ranges denoted by the

solid circles, are active, the nodes 1; 3; 4; 6; 7, illustrated by the dashed circles, will

be idle and vice-versa.
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2.1.3 Performance Metrics

The randomness in the k-set randomized scheduling algorithm, presented above,

makes it very challenging to analyze for all possible cases. Furthermore, the num-

ber of subsets k has a great impact on the overall network performance. The design

assumptions may have also different effects on the network performance attributes.

In addition to the network lifetime, the main relevant metrics for the performance

analysis of the k-set randomized scheduling algorithm, are the network coverage, the

detection delay and the detection probability [83, 52, 89]. These are the more related

metrics to the lifetime performance.

Figure 2.2: Illustration of Performance Attributes.

• Network coverage: Called also sensing coverage, the network coverage is a

spatial performance attribute which measures how well the area of interest is

monitored or tracked by the sensor nodes [83, 52]. In Figure 2.2, the point B is

covered by the sensor at the bottom whereas point A is uncoverd since it does

not belong to any of the sensing range of the two sensors. In general, the sensor

network is said to provide k-coverage when every point of the area is monitored

by at least k active sensors. If there are uncovered points, then the coverage is

said to be partial.
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• Detection probability: It is the probability that an occurring event can be

detected by one or more sensor nodes. It is clear that an event should be detected

with a high probability.

• Average detection delay: It is the average time spent from the occurrence

of an event to the time when the event is detected by some sensor nodes. We

require that an occurring event is detected with the smaller possible delay.

• Network lifetime: It is the time duration from which the network is no longer

alive. It depends basically on the lifetime of the individual sensors. In general,

the network should keep its operation as long as possible.

2.2 Probabilistic Analysis in HOL

In this section, we start by an overview of the higher-order-logic theorem proving

which includes a description of the HOL4 theorem prover. Then, we present the

probabilistic foundations available in this prover.

2.2.1 HOL Theorem Proving

The theorem proving based method consists in showing that a given assertion can be

deduced as a logical consequence of a set of statements (the axioms and assumptions).

Basically, an axiom designates an unprovable proposition to admit as is, whereas all

statements have to be written in the logical language of the proof assistant, which is

commonly propositional, first-order logic and higher-order logic. Each logic has its

own syntax that is used to describe the informal description. The general process be-

hind theorem proving is composed of three main steps: formally specifying the system

to be verified by functions in the target logic, formalizing the properties of interest as
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proof goals in the same logic and finally verifying these goals as theorems within the

proof assistant, using the existing axioms and inference rules. The proof procedure is

based on various techniques such as rewriting, simplification by repeated substitution,

decision procedures and mathematical induction. The theorem proving based method

offers a sound support for mathematical reasoning about systems using computers.

The proof of a given theorem is possible using only the existing axioms, primitive

inference rules and previously proved theorems. A wide variety of theorem provers

exist in the open literature. An overview of systems implementing mathematics in

the computer is available at [50]. Examples of the most successful higher-order-logic

provers include Isabelle [44], HOL4 [39], HOL Light [38], PVS [85], and Coq [17].

The HOL theorem prover [39] is a proof assistant of higher-order logic which

includes a very rich library of theories. A theory can be defined as a set of pre-verified

theorems for a given domain, function or operation. When needed, a HOL theory can

be loaded and used, which greatly aids the verification process. Additionally, users

may be assisted by automatic proof procedures [30], which are a collection of steps in

a single command. Despite the existence of all these theories and automatic proce-

dures, most of the time, proofs in HOL are interactive and require the intervention of

user. Various proof techniques, such as rewriting, simplification, specialization, gen-

eralization and mathematical induction, are available in HOL to aid the verification

process. In Table 2.2, we summarize some of the HOL symbols used throughout this

thesis and their corresponding mathematical interpretation [30].

Several higher-order-logic provers include the formalization of probability theory

(See e.g. [43, 49, 34, 4, 40, 60]). In this thesis, we utilize the recently developed and

most generic probability theory developed by Mhamdi [60], within the HOL4 theorem

prover. The work of Mhamdi [60] has the merit of generalizing the previous HOL
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Table 2.2: HOL Symbols
HOL Symbol Standard Symbol Meaning
∧ and Logical and
∨ or Logical or
∼ t ¬t Not t
λx.t λx.t Function that maps x to t(x)
SUC n n+ 1 Successor of a num
count n {m|m < n} Set of all m strictly less than n
PREIMAGE f s {x|f x ∈ s} The inverse image of the subset s
{x|P (x)} {λx.P (x)} Set of all x that satisfy the condition P
x pow n xn real x raised to num power n
exp x ex Exponential logarithm on x
SIGMA f s

∑

s f Sum of the sequence f(x) where x ∈ s
lim(λn.f n) lim

n→∞
f(n) Limit of the real sequence f

formalization of measure theory by including a Borel space. After specifying the

extended real numbers in HOL, he formalized measure, Lebesgue, probability and

information theories.

2.2.2 Measure Theory

In general, a measure can be considered as a generalization of the concepts of length,

area, volume, etc. It consists in assigning a number to each suitable subset of a given

set. Two widely common examples are the Lebesgue measure on an Euclidean space

and the probability measure on a Borel space. A measure function is defined over a

class of subsets, called the measurable sets, and assigns a non-negative real number

to every measurable set. Some of the important definitions of measure theory [11],

formalized in [60], are given below.

• Sigma algebra: It contains the empty set ∅, is closed under countable unions

and complementarity within the space χ.

• A triplet (χ,A, µ) where (χ,A) is a measurable space and µ : A → R is a
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measure.

• Measurable functions: A function f : X1 → X2 is called measurable if the

inverse image of a measurable set is also measurable, i.e., f−1(A) ∈ A1 for all

A ∈ A2, where A1 and A2 are measurable sets.

• Borel sigma algebra: The Borel sigma algebra is the smallest sigma algebra

generated by the open sets of X.

2.2.3 Probability Theory

The formalization of probability theory in HOL is based on the Kolmogorov axiomatic

definition of probability. Hence, by building upon the measure theory, this formal-

ization has the advantage to provide a unified framework for discrete and continuous

probability measures.

A probability measure P is basically a measure function on the sample space

Ω and an event is a measurable set within the set F of events which are subsets of

Ω. Thus, (Ω, F, P ) is a probability space iff it is a measure space and P (Ω) = 1. A

random variable is by definition a measurable function. A real random variable is

thus specified in HOL in the following definition [60].

Definition 2.1.

⊢ ∀X p. real random variable X p = prob space p ∧

∀x ∈ p space p ⇒ X x 6= NegInf ∧ X x 6= PosInf) ∧

X ∈ measurable (p space p,events p) Borel.

where X designates the random variable, p is a given probability space, NegInf

and PosInf are the higher-order-logic formalizations of negative infinity or positive

infinity, and Borel is the HOL definition of the Borel sigma algebra.
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The probability distribution of a random variable is specified as the function

that accepts a random variable X and a set s and returns the probability of the event

{X ∈ s}. It has been formalized in HOL [60] in Definition 2.2.

Definition 2.2.

⊢ ∀X p. distribution p X = (λs. prob p (PREIMAGE X s ∩ p space p)).

The expectation of a random variable X is defined in HOL as its Lebesgue

integral with respect to the probability measure p [60].

E[X] =

∫

Ω

Xdp. (2.1)

which has been formalized in HOL as follows.

Definition 2.3.

⊢ expectation = integral.

For a discrete random variable, the expectation has been verified in HOL in

Theorem 2.1.

Theorem 2.1.

⊢ ∀X p. FINITE (IMAGE X (p space p)) ∧ (real random variable X p)

⇒ (expectation p X = SIGMA (λr.

r × Normal (distribution p X {r})) (IMAGE X (p space p))).

where (IMAGE X (p space p)) designates the list of values taken by the function X

over the sample space (p space p). In the discrete case, this list has to be finite.

• Conditional probability in HOL
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The conditional probability has been also formalized in HOL [53] according to the

following mathematical definition.

Pr(A | B) =
Pr(A ∩B)

Pr(A)
. (2.2)

where A and B are two events of the set F of events.

Accordingly, the following useful results have been formally verified in HOL [53].

• If the events A and B are independent such that (Pr(B) 6= 0) , then

Pr(A | B) = Pr(A). (2.3)

• The conditional probability of the event (A ∪ B), given the event C is

Pr(A ∪B | C) = Pr(A | C) + Pr(B | C)− Pr(A ∩ B | C). (2.4)

• If A and B are disjoint, then the above equation becomes

Pr(A ∪ B | C) = Pr(A | C) + Pr(B | C). (2.5)

• The conditional probability of the event (A ∩ B) given the event C is

Pr(A ∩ B | C) = Pr(A | B ∩ C)× Pr(B | C). (2.6)

• Given that {Bi, i ∈ s}, is a finite partition of the entire sample space Ω, the law
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of total probability states that

Pr(A) =
∑

i∈s

Pr(A | Bi)× Pr(Bi). (2.7)

The above equation has been formalized in HOL as follows.

Theorem 2.2.

⊢ ∀p B A s. (prob space p) ∧ FINITE s ∧ (A ∈ events p) ∧

(∀x. x ∈ s ⇒ B x ∈ events p) ∧

(∀a b. a ∈ s ∧ b ∈ s ∧ (a 6= b) ⇒ DISJOINT (B a) (B b)) ∧

(BIGUNION (IMAGE B s) = p space p)

⇒ (prob p A =
∑

s (λi. (prob p (B i)) ×

(cond prob p A (B i))) s).

where

– The assumption (∀x. x ∈ s ⇒ B x ∈ events p) specifies a finite par-

tition of the whole outcome space Ω, i.e., a collection of events, which is

pairwise disjoint (∀a b. a ∈ s ∧ b ∈ s ∧ (a 6= b) ⇒ DISJOINT (B

a) (B b)), and whose union is Ω (BIGUNION (IMAGE B s) = p space p).

– cond prob is the HOL formalization of the conditional probability.

• Conditional Expectation

Based on the above probability formalizations, we next describe our higher-

order-logic developments of further probabilistic notions required for the work de-

scribed in this thesis, and which are not available in the HOL4 theorem prover.
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• Conditional independence: Two events A and B are conditionally independent

given the event C, iff:

Pr(A ∩ B | C) = Pr(A | B)× Pr(A | C). (2.8)

• The conditional independence is also equivalent to

Pr(A | B ∩ C) = Pr(A | C). (2.9)

• Discrete conditional expectation: The conditional expectation of the discrete

random variable X given the event (Y = y), denoted by E(X | Y = y), is the

expected value of X with respect to its conditional probability distribution, and

is mathematically specified as follows

E(X | Y = y) =
∑

x

x× Pr(X = x | Y = y). (2.10)

The concept of conditional expectation can be also extended to multiple events.

In the current work, we will basically require the conditional expectation of X

given two events, i.e., E(X | Y = y, Z = z), which is mathematically defined as

E(X | Y = y, Z = z) =
∑

x

x× Pr(X = x | Y = y ∩ Z = z). (2.11)

where Z is a discrete random variable. Definition 2.4 gives the higher-order-logic

formalization of the conditional expectation E(X | Y = y, Z = z).

Definition 2.4.
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⊢ ∀X Y Z y z p sx. cond expec 2 X Y Z y z p sx =

∑

space sx (λx. x ×

Normal (cond prob p (PREIMAGE X {x} ∩ p space p)

(PREIMAGE Y {y} ∩ p space p ∩ (PREIMAGE Z {z} ∩ p space p)))).

where the HOL function Normal is used to convert a real value to its correspond-

ing value in an extended real. Based on the above definition, we can easily verify,

in HOL, that E(X | Y = y) = E(X | Y = y, Ω = 1), where  Ω is the indicator

function on the probability space Ω.

• The conditional expectation of a function of a random variable is formally ver-

ified in HOL as

E(g(X) | Y = y) =
∑

x

g(x)× Pr(X = x | Y = y) (2.12)

• The law of total expectation: By analogy to the law of total probability (Equa-

tion (2.7)), we formally verify that

E(X) =
∑

y

E(X | Y = y)× Pr(Y = y) (2.13)
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Chapter 3

Coverage Analysis

After deployment, a wireless sensor network is expected to cover the whole area of

interest, i.e., any point of the monitored area should be monitored with at least

one sensor. In this chapter, we first formally develop the foundational higher-order-

logic formalizations of the randomized nodes scheduling algorithm for WSN, using

the recently developed probability theory, available in the HOL4 theorem prover.

Then, we build upon these foundations to formally reason about the key coverage

performance attributes: the coverage intensity of a specific point and the expected

value of the network coverage intensity. The coverage performance behavior of a real-

world WSN for forest fire detection is then formally analyzed illustrating thus the

practical interest of our higher-order-logic developments.

3.1 System Model

We consider a wireless sensor network formed by deploying n nodes over a field of

interest of any shape with size a. Every sensor in this WSN can only sense the

environment and detect events within its sensing range r. To preserve energy, the
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k-set randomized scheduling [13, 52, 89] is applied to partition the n nodes into k

subsets. In the following, we give provide the main set of assumptions required for

our higher-order-logic formalizations. More details about the algorithm and each of

its assumptions can be found in Section 2.1.

• The area of interest can have any shape.

• The node deployment is random following a Uniform distribution.

• The deployment of nodes is independent. This means that sensor nodes are

independently distributed of each other over the area of interest.

• The sensor density can be high or normal.

• The communication structure is flat.

• The sensing range of each sensor is uniform.

• The transmission range of each sensor is fixed.

• No hard time synchronization between nodes is required.

• Location information of each sensor are not needed.

Compared to other energy-efficient scheduling mechanisms [83], we believe that

the above set of assumptions are sufficiently realistic, so that the formalization of

the k-set randomized scheduling and its key performance metrics, within the HOL4

theorem prover, has significant contributions. These higher-order-logic formalizations

will be primarily based on the existing paper-and-pencil analysis available in the open

litterature [13, 52, 88, 93, 89].
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3.2 Formalization of the k-set Randomized Schedul-

ing

Given the description of the k-set randomized scheduling algorithm, presented in

Chapter 2, each sensor node randomly selects a unique number i out of the k available

options. The k generated subsets of nodes {Si, 0 ≤ i ≤ (k − 1)} are thus disjoint, i.e.,

a given node belongs to one subset at once. Afterwards, these node subsets are sched-

uled to work alternatively within their scheduling time slots {T i, 0 ≤ i ≤ (k − 1)}.

To emphasize on the impact of the random feature inherent to the k-set ran-

domized scheduling algorithm, we consider the example of a randomly-scheduled WSN

where the set of n nodes is partionned into (k = 3) subsets: S0, S1 and S2 (see Fig.

3.1). Let t0 be any reference time while an intrusion event e, which lasts L time units

and starts at time tz. Due to the probabilistic feature of the scheduling algorithm, the

sub-network S2 does not contain any node. Since the subsets are working by rounds, a

complete time slot is allocated to the subset S2 at every turn, but there are no active

nodes to detect the event e during the whole time slot. In an other scenario, all the

n nodes may randomly be assigned into the same partition giving only one subset,

which is non-empty. In this case, there will be a single round during which an event is

likely to be covered. The empty sub-networks of nodes, generated by the randomized

scheduling, hence have a significant effect on the overall network performance.

Subsequently, we are first interested in formally verifying the probability that

the k-set randomized node scheduling produces an empty partition or sub-network. As

previously mentioned, the basic idea of the randomized scheduling of nodes consists in

randomly assigning each of the node to one of the k sub-networks. This assignment is

done uniformly so that the random organization of the nodes into several sub-networks
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Figure 3.1: An example of the k-set randomized scheduling for n nodes and k = 3.

is potentially fair over the whole network. Each node intuitively joins a single subset

with the same probability
(

1
k

)

. The appropriate random variable, required in this

formalization, should uniformly distribute the nodes over the k sub-networks, i.e., a

Uniform random variable, which we formally specify as follows:

Definition 3.1. (The Uniform random variable)

⊢ ∀X p k. uniform distr rv X p k =

(real random variable X p) ∧

(IMAGE X (p space p) = IMAGE (λx.&x) (count (SUC k))) ∧

(∀m. m ∈ IMAGE X (p space p) ⇒ (distribution p X {m} = 1
&k
)).

where X is a real-valued random variable; real random variable, which takes values

on the integer interval [0..(k−1)], i.e., (IMAGE (λx.&x) (count (SUC k))) with the

probability distribution; distribution, equals
(

1
&k

)

. The operator &, used in the

above definition, allows the conversion of the natural number m into its extended real

number counterpart.

Using the output information of the Uniform random variable on the whole set
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of nodes n, we can identify if a given scheduled subset of nodes; Sj, is empty. Indeed,

a subset Sj is empty if the randomized scheduling does not assign any of the nodes to

that subset. In other words, none of the n nodes selects the number j. To model an

empty sub-network, we first consider the n Uniform random variables, generated as a

list, and then determine if the index of the sub-network; j, belongs or not to this list.

For that purpose, we start by specifying, in Definition 3.2, the HOL function

rd subsets which recursively generates a list of n elements.

Definition 3.2. (General list of n elements)

⊢ (∀x. rd subsets 0 x = []) ∧

(∀n x. rd subsets (SUC n) x = x::(rd subsets n x)).

where the input parameter n denotes the number of nodes which is a natural number,

and x is an extended real number.

Next, we formally specify, in Definition 3.3, a recursive HOL predicate, which

looks for a specific index j in a given list . The corresponding function subset empty

takes as inputs an extended real j and a list L having the format (h :: t), and returns

true only if j is not in the list L.

Definition 3.3. (Predicate for an empty subset)

⊢ (∀j. subset empty [] = T) ∧

(∀j h t. subset empty j (h::t) = (h 6= j) ∧ (subset empty j t)).

The set of n nodes is uniformly partitioned into k sub-networks, a node hence

joins a given subset Sj with the uniform probability
(

1
k

)

. The same node will miss

the same subset with the complement probability
(

1− 1
k

)

. Consequently, a given

subset Sj is empty if and only if the n sensors do not join, i.e., miss this subset. More
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formally, lets consider the event Ti,j: “The sensor i does not join the subset Sj”, we

have then

Pr(Sj is empty) = Pr(n sensors do not join Sj)

= Pr(T0,j ∩ ... ∩ T(n−1),j)

(3.1)

where

Pr(Ti,j) =

(

1−
1

k

)

(3.2)

Since the n sensor nodes miss the subset Sj independently, the events T0,j,...,T(n−1),j

will be mutually independent, which means that any given event is completely inde-

pendent of the intersection of any other events [27]. Based on that, the probability

that a given subset Sj is empty (Equation 3.1), can be obtained by applying the

mutual independence rule, which gives
(

1− 1
k

)n
.

Accordingly, we successfully verify, in Theorem 3.1, the probability that a given

subset Sj is empty in a randomly-scheduled WSN.

Theorem 3.1. (The basic probability of an empty subset)

The k-set randomized scheduling algorithm applied in a WSN of n nodes, may gen-

erate an empty subset with the following probability:

Pr(T0,j ∩ ... ∩ T(n−1),j) =
(

1− 1
k

)n

⊢ ∀X p k n j. (prob space p) ∧ (1 < k) ∧

(uniform distr rv (X k) p k) ∧ (j ∈ IMAGE (X k) (p space p)) ∧
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(∀s m. indep p ({x | (X k) x 6= m} ∩ (p space p))

({x | subset empty m (rd subsets s ((X k) x))} ∩ (p space p)))

⇒ (prob p ({x | subset empty j (rd subsets n ((X k) x))}

∩ p space p) =
(

1− 1

&k

)n
).

where

• The assumption (1 < k) ensures that the number of sub-networks is greater

than 1 since the randomized scheduling would be meaningless for (k = 1).

• (uniform distr rv (X k) p k) is the Uniform random variable, given in Def-

inition 3.1.

• The event ({x | subset empty j (rd subsets n ((X k) x))} ∩ p space p)

formally models the event of the probability given in Equation 3.2, i.e., the event

“The subset Sj is empty”. The function rd subsets (Definition 3.2) hence gen-

erates the output values of the Uniform random variable (X k) ordered as a list

of length n in which the predicate subset empty (Definition 3.3) looks for the

index j.

• The last assumption ensures the mutual independence over the set of the Ti,j

events (Equation (3.1) using the HOL function indep.

Proof. The proof of the above theorem is based on induction and the multiplication

rule, which switches the probability of a set of independent events to the product of

their respective probabilities, i.e., Pr(
⋂(n−1)

i=0 Ti,j) =
∏(n−1)

i=0 Pr(Ti,j). To complete the

proof, the verification of the probability distribution of the Uniform random variable,

Pr(Ti,j), and its complement, along with set theoretic analysis was required.

Since a sub-network is either empty or not, we can model such behavior by

simply a Bernoulli random variable Y, with the success probability (prob p ({x
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| subset empty j (rd subsets n ((X k) x))} ∩ p space p). We describe the

higher-order-logic formalization of an empty sub-network in HOL as follows.

Definition 3.4. (The basic empty subset random variable)

⊢ ∀Y n X p k j. subset empty rv1 Y n X p k j =

(bernoulli distr rv Y p (prob p ({x | subset empty j (rd subsets n

((X k) x)) = T} ∩ p space p))).

where we specify the higher-order-logic Bernoulli random variable with success prob-

ability pr in the following definition.

Definition 3.5. (The Bernoulli random variable)

⊢ ∀X p pr. bernoulli distr rv X p pr =

(real random variable X p) ∧

(IMAGE X (p space p) = {0;1}) ∧

(distribution p X {1} = pr).

Based on the above formalization, we can easily reverify the probability distri-

bution of an empty sub-network, already verified in Theorem 3.1, as follows.

Theorem 3.2. (The probability of an empty subset)

Given n empty subsets, generated by the k-set randomized scheduling, each modelled

as a Bernoulli random variables, the probability that the k-set randomized scheduling

algorithm may generate an empty subset is reverified to be equal to
(

1− 1
k

)n
.

⊢ ∀X Y p j n k.

(prob space p) ∧ (1 < k) ∧ (uniform distr rv (X k) p k) ∧

(j IN (IMAGE (X k) (p space p))) ∧ (subset empty rv1 Y n X p k j) ∧

(∀s m. indep p ({x | (X k) x 6= m} ∩ (p space p))
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({x | subset empty m (rd subsets s ((X k) x))} ∩ (p space p)))

⇒ (prob p ({x | Y x = 1} ∩ p space p) =
(

1− 1

&k

)n
).

Proof. The proof is based on some rewriting together with the proof of the probability

distribution of a Bernoulli random variable (Definition 3.5).

According to Theorem 3.2, we can notice how the probability distribution of an

empty sub-network, generated by the randomized node scheduling, depends only on

the input parameters k and n. For the sake of simplicity, we opt to abstract the Uni-

form random variable by directly modelling an empty subset using a Bernoulli random

variable, with success probability, the resulting probability value, i.e.,
(

1− 1
k

)n
. The

new higher-order-logic function, denoted sbst empty rv, is shown in Definition 3.6.

Definition 3.6. (The empty subset random variable using Bernoulli)

⊢ ∀X p k n.

sbst empty rv X p k n = bernoulli distr rv X p
(

1− 1

&k

)n
.

The higher-order-logic formalizations, presented so far, constitute our founda-

tions towards the formalization of the probabilistic performance properties of the

randomized node scheduling. While it would have been much simpler to directly

model an empty sub-network by a Bernoulli random variable (Definition 3.6), the

above analysis has been useful to concretely show the logical reasoning while justify-

ing the origin of the associated probability. In what follows, we will simply make use

of Definition 3.6, whereas the complete HOL code for this part is available at [19].
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3.3 Formalization of the Coverage Intensity of a

Specific Point

Within a wireless sensor network, any point of the deployment area should be mon-

itored by at least one active sensor, so that an occuring event, at any time, can be

detected (see Figure 2.2). The coverage ability of each point of the monitored area

is hence characterized by an intensity, whereas the coverage behavior of the whole

network is the average among all the nodes. The network coverage is thus a widely

used performance metric [94].

Consider the same example of a WSN deployed for forest fire detection, where

the randomized scheduling is applied to save energy over the whole network. The

outbreak of a fire at any point of the forest area should be covered with the highest

probability in order to alarm the user. Besides, the coverage characteristic may not be

correctly ensured, if for example, because of the unpredictable deployment of sensors,

there are no nodes deployed in the close area of the fire. On the other hand, it may

happen that there exist nodes in this area, but they are inactive due to the scheduling

rounds. However, such a typical application of WSN is considered as very critical

where missing an intrusion event can be really disastrous.

In the next analysis, we assume a wireless sensor network where the k-set ran-

domized scheduling is applied as energy conservation mechanism. Based on the refer-

ence paper-and-pencil probabilistic analysis [13, 52], we are first interested in formal-

izing the coverage intensity of a specific point of the monitored area, which we build

upon to develop the higher-order-logic formalization of the network coverage of the

whole WSN.

We suppose that a given point of the area is monitored by c sensors which form

46



a set S. Note that the variable c corresponds to the variable s used in the initial

specification [13, 52]. According to the randomized scheduling of nodes, each of the

node in set S belongs to only one scheduled sub-network, Si, where 0 ≤ i ≤ (k − 1)

(cf. Table 3.1). Let Sci denote the set of sensors that belongs to the sub-network Si

and covers a specific point inside the field, i.e., Sci ⊆ Si. The set S hence consists in

the union of the subsets Sci, where {0 ≤ i ≤ (k−1)}, and is specified in the following

equation.

S = Sc0 ∪ Sc1 ∪ Sc2 ∪ ... ∪ Sc(k−1) (3.3)

The coverage intensity of a specific point inside the monitored area, denoted

by Cp, is mathematically defined as [52] the average time during which the point is

covered in a whole scheduling cycle of length k × Ti. Since the WSN is randomly

scheduled, a given point would be covered if the current active subset, Si, contains

at least one node in the set of covering nodes, i.e., Sci. In other words, the subset

Sci is not empty. The term “empty”, used here, refers to a subset empty of covering

nodes since we are now reasoning on the set S. Consequently, the coverage metric of

a specific point depends on the scheduled non-empty subsets regarding the point of

interest, Sci, within a whole scheduling cycle.

Table 3.1 contains a summary of the variables notation that will be used through-

out the coverage part.

Let X be a random variable describing the total number of non-empty subsets,

i.e,

X =
k−1
∑

j=0

Xj (3.4)
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Var. Signification
a The size of the monitored field
r The size of the sensing area of each sensor
q The probability that each sensor covers a given point, equals r/a
Sci The set of sensors that belongs to the sub-network Si and covers a

specific point inside the field
Ti The working round of subset Si

S The set of nodes covering a specific point inside the field
c The cardinality of S

Table 3.1: Variable Notations for Coverage

where Xj is the Bernoulli random variable whose value is 1 in case of non-empty

subset. The coverage intensity of a given point in the monitored area, Cp, as originally

specified in [52], is then

Cp =
E[X]× Ti

k × Ti

(3.5)

where E[X] denotes the expectation of X (Equation 3.4), and Ti designates the length

of a scheduling cycle. In the equation above, the variable Ti is kept intentionally

unsimplified, so that the mathematical definition correctly refelects the textual one

regarding the time aspect.

Similar to the specification of an empty subset, presented in Definition 3.6,

we can describe a non-empty sub-network by a Bernoulli random variable with the

complement probability of
(

1− 1

k

)n
.

Definition 3.7. (The non-empty subset random variable)

⊢ ∀X p k c.

sbst non empty rv X p k c = bernoulli distr rv X p
(

1−
(

1− 1

&k

)c)

.

In higher-order logic, we model the coverage behavior of a specific point (Equa-

tion (3.5)) by the following predicate cvrge intsty pt.
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Definition 3.8. (The coverage intensity of a specific point)

⊢ ∀X p k s pr. cvrge intsty pt X p k s pr =

expectation p (λx. SIGMA (λi. ((X pr) i) x) s) / (&k).

where X: a random variable that returns an extended real number, p: the probability

space, k: the number of sub-networks, s: the summation set whose cardinality is k,

and pr: the probability of a non-empty subset.

In Theorem 3.3, we have been able to formally verify the following mathematical

expression for the coverage intensity of a point of the monitored area.

Theorem 3.3. (The coverage intensity of a specific point)

In a WSN of n nodes, randomly-scheduled into k partitions, consider a list of k

random variables modelling the non-empty subsets {X0, X1, ..., X(k−1)}, each with the

probability pr =
(

1− (1− 1
(&k)

)c
)

, the coverage intensity of a specific point satisfies:

Cp = pr

⊢ ∀X p k s c. (prob space p) ∧ (FINITE s) ∧ (CARD s = k) ∧

(1 < k) ∧ (pr = 1− (1− 1

(&k)
)c) ∧

(∀i. i ∈ s ⇒ sbst non empty rv ((X pr) i) p pr)

⇒ (cvrge intsty pt X p k s pr = Normal pr).

where

• The assumption (∀i. i ∈ s ⇒ sbst non empty rv ((X pr) i) p pr) in-

dicates that every element of the set s is modelled as a random variable of type

sbst non empty rv (Definition 3.7).
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• The HOL function Normal is used to convert a real value to its corresponding

value in an extended real.

Proof. The proof of the above theorem is mainly based on Theorem 3.4 about the

linearity of the expectation property. It is also a prerequisite to show the measurability

of the used events, along with some analysis on extended reals.

Theorem 3.4. (The expectation property)

Given a list of random variables {X0, X1, ..., Xs} over the sample space Ω, each with

a finite expectation, the expectation property satisfies:

E[
∑

i∈s Xi] =
∑

i∈s E[Xi]

⊢ ∀p X s. (prob space p) ∧ (FINITE s) ∧

(∀i. i ∈ s ⇒ real random variable (X i) p ∧

(expectation p (X i) 6= PosInf) ∧ (expectation p (X i) 6= NegInf))

⇒ (expectation p (λx. SIGMA (λi. (X i) x) s) =

SIGMA (λi. expectation p (X i)) s).

Proof. We proved Theorem 3.4 based on the proof of a more general result of the

expectation property which states that E[aX + bY ] = aE[X] + bE[Y ], where X, Y

are random variables and a, b are real numbers. Since the expectation is basically

specified using an integral (Definition 2.3), the latter proof required operations from

the Lebesgue theory coupled with some reasoning on the function integrability, as well

as some analysis on extended reals.
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3.4 Formalization of the Network Coverage Inten-

sity

We show that the coverage of every point of the monitored area is described by

a coverage intensity Cp (Definition 3.8). The average value of the coverage intensity

over all points of the given area represent a single performance metric, qualified as the

network coverage intensity. Mathematically, the network coverage intensity, denoted

by Cn, is specified, in Equation (3.6), as the expectation of the coverage intensity of

a specific point Cp [13, 52].

Cn = E[Cp] (3.6)

Based on the expression of Cp, shown in Theorem 3.3, we proved that the

coverage intensity Cp is equal to
(

1−
(

1− 1
k

)c)

. Accordingly, we can rewrite Equation

(3.6) as

Cn = E[1−

(

1−
1

k

)c

] (3.7)

From the above equation, we can notice how the value of Cn depends mainly on

c which is the number of nodes covering a given point of the field. Intuitively, a sensor

node covers or not a given point with the probability q = r
a
. We can thus assimilate

this fact to a Bernoulli trial with success probability q. Consider now the variable c

among the n nodes of the network, it becomes a Binomial random variable (C) with

the probability given in Equation (4.3). Thereby, the network coverage intensity Cn,

shown in Equation (3.7), is not a simple expectation, but rather an expectation of a

function of a random variable.
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Pr(C = j) = Cj
n ×

(r

a

)j

×
(

1−
(r

a

))n−j

(3.8)

where Cj
n is the binomial coefficient, r is the size of the sensing area of each sensor, a

is the size of the monitored area, and
(

r
a

)

is the probability that each sensor covers

a given point. In HOL, we formalize the Binomial random variable with n trials and

success probability q =
(

r
a

)

as follows.

Definition 3.9.

⊢ ∀X p q n. binomial distr rv X p q n =

(real random variable X p) ∧

(IMAGE X (p space p) = IMAGE (λx.&x) (count (SUC n))) ∧

(∀m. &m ∈ (IMAGE X (p space p)) ⇒

(distribution p X {&m} = &(binomial n m) × qm × (1− q)(n−m))).

where X is a real random variable on the probability space p, and IMAGE (λx.&x)

(count (SUC n)) gives the support of the Binomial, while the operator & allows

the conversion of the natural number m into its extended number counterpart. The

function binomial, used in the above definition, is the higher-order-logic formalization

of the binomial coefficient for reals, which we defined in HOL as follows.

Definition 3.10.

⊢ ∀n k. binomial n k = (binomial n 0 = (1:num)) ∧

(binomial 0 (SUC k) = (0:num)) ∧

(binomial (SUC n) (SUC k) = binomial n (SUC k) + binomial n k).

The coverage intensity of the whole WSN with n nodes has been formally spec-

ified by the function cvrge intsty network, shown in Definition 3.11. This function

takes as parameters: X: a random variable that returns an extended real number,
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p: the probability space, s: the summation set used in Definition 3.8, k: the number

of sub-networks, C: the random variable describing the number of covering nodes,

n: the total number of nodes, and q: the probability that each sensor covers a given

point.

Definition 3.11. (The network coverage intensity)

⊢ ∀X p k s C n q. cvrge intsty network X p k s C n q =

expectation p (λx. cvrge intsty pt X p k s (Pr cov k C n q x)).

where the function expectation designates the higher-order-logic formalization of

the expectation of a random variable that returns an extended real, and the function

Pr cov is defined by the following equation.

Pr cov k C n q x =

(

1− (1−
1

&k
)num(C n q x)

)

. (3.9)

The values (num(C n q x)), in the above definition, are the output values of the random

variable (C n q). The function num, used here, converts an extended real; (&m), to

its corresponding natural value m, using the real function floor. This conversion is

mandatory since the power function in HOL takes as a coefficient a natural number,

whereas the random variable function (C n q) returns an extended real.

Based on the higher-order-logic formalizations developed so far, we have been

able to formally verify the final network coverage intensity in the following theorem.

Theorem 3.5. (The network coverage intensity)

Given a list of k random variables {X0, X1, ..., X(k−1)} modelling the non-empty sub-

sets generated by the randomized scheduling, each with the probability (Pr cov), and a

Binomial random variable describing the number of nodes covering a given point with

a finite expectation, the network coverage intensity is:
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Cn = 1−
(

1− q

k

)n

⊢ ∀X p k s C n q. (prob space p) ∧ (events p = POW (p space p)) ∧

(0 < q < 1) ∧ (1 ≤ n) ∧ (1 < k) ∧

FINITE s ∧ (CARD s = k) ∧ (sn covers p (C n q) p q n) ∧

(expectation p (C n q) 6= PosInf) ∧

(expectation p (C n q) 6= NegInf) ∧

(∀i x. (i ∈ s) ∧ (x ∈ p space p) ⇒

sbst non empty rv (X (Pr cov k C n q x) i) p (Pr cov k C n q x))

⇒ (cvrge intsty network X p k s C n q = Normal (1−
(

1− q

&k

)n
)).

where

• The assumption (events p = POW (p space p)) describes the set of events to

be the power set of the sample space Ω.

• The assumptions (1 ≤ n) ensures that the WSN include at least one node,

while (0 < q < 1) checks that the probability q lies in [0..1].

• sn covers p is the Binomial random variable (Definition 3.9) with a finite ex-

pectation, i.e., (expectation p (C n q) 6= PosInf) ∧ (expectation p (C

n q) 6= NegInf). The variables (PosInf) and (NegInf) are the higher-order-

logic formalizations of positive infinity and negative infinity, respectively.

• The function (sbst non empty rv (X (Pr cov k C n q x) i) p (Pr cov k

C n q x)) is the function specified in Definition 3.7 where the input proba-

bility function (Pr cov k C n q x) is specified in Equation (3.9).
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Proof. The proof of Theorem 3.5 is firstly based on Theorem 3.3 together with the

linearity of the expectation property, which has been already verified for the proof of

Theorem 3.4. We then performed the verification of both produced expectations for

a constant random variable, and the function f fct of the Binomial random variable

C (Theorem 3.6). It has been also necessary to show that the expectation of the

function of random variable is finite which further involved operations on integral by

backchaining. Finally, a considerable amount of real analysis associated to the Bino-

mial theorem for reals (Theorem 3.7), and to the summation function was required

to complete the main proof.

Theorem 3.6.

⊢ ∀C p q n k.

(prob space p) ∧ (events p = POW (p space p)) ∧ (0 < q < 1) ∧

(1 ≤ n) ∧ (1 < k) ∧ (sn covers p C p q n)

⇒ (expectation p (λx. f fct (num (C x)) k) = Normal (1− q

(&k)
)n).

where the function f fct is defined as follows

f fct x k = Normal

(

1−
1

k

)x

. (3.10)

Proof. The proof of Theorem 3.6 has been possible using intermediate results on the

injectivity of some of the functions, as well as, some properties related to the random

variables functions. A lot of reasoning associated with the use of extended real and

the floor function, has also been required.

Theorem 3.7.

⊢ ∀a b n. (a + b)n =
∑n

i=0
(λi. &(binomial n i)× a(n−i)×bi).
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In this section, we presented our higher-order-logic formalizations of the k-set

randomized scheduling for wireless sensor networks, using the recently developed prob-

ability theory available in the HOL theorem prover [60]. These formalizations have

been then very useful to formally reason about the coverage performance properties.

The corresponding HOL code of the current formalizations is available at [19]. In the

next section, we will illustrate how the developed generic theorems extremely facilitate

the formal analysis of real-world WSN applications.

3.5 Application: Forest Fire Detection

Forest fires are considered to be one of the worst terrific disasters causing a lot of

environmental degradations. According to recent statistics [82], more than 100, 000

wild fires are annually reported throughout the world. For example, in Tunisia, 103

fires destroyed 287 hectares of forests just between May 1, 2012 and July 25, 2012 [66].

For early detection of wild fires and thus their prevention, robust surveillance systems

satisfying critical real-time constraints are required. More particularly, these systems

should be able to ensure a quick and accurate detection of any fire breakthrough. In

this respect, wireless sensor network technology meets all these requirements and has

been hence extensively explored for the detection of forest fires [18, 35, 5, 92, 95, 45].

Thereafter, we are interested in formally analyzing the coverage performances

of a forest fire detection system using wireless sensor network. Because of the harsh

nature of the target field, a random deployment by air-dropping sensors is obviously

much more practical in this context. The main goal of the dispersed nodes is to

sense and communicate values of temperature, humidity and barometric pressure to

a base station. A processing step is then performed in order to alarm the final user

in case of abnormal values. Hence, using a WSN to detect forest fires has the merits
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to guarantee a large monitoring area with an efficient real-time surveillance through

automatic alarms.

Due to the safety-critical feature of the target application, the deployed WSN

has to remain alive for a long period while ensuring a good coverage of any fire

breakthrough. Nevertheless, most of the existing systems for forest fire detection using

WSN suffer from serious lifetime limitations. For example, the system, presented in

[33], reported that a sensor deployed in a wild environment without a sleeping cycle,

cannot be kept alive for more than 5 days. In order to extend the whole network

lifetime, the k-set randomized scheduling algorithm has been proposed for use in the

given forest fire detection application [74, 92]. In the specified application, the nodes

have a sensing area r = 30, and are deployed into forest region of size a = 100m×100m,

whereas the success probability q of a sensor covering a point, is q = r
a
= 0.003.

Based on our theoretical development done in the previous section, we now

conduct a formal asymptotic analysis of the probabilistic coverage based on the key

design parameters: n; the total number of sensor nodes and k; the number of sched-

uled sub-networks. This important analysis is made possible thanks to Theorem 3.5

which gives a clear relationship between the network coverage intensity Cn and the

two parameters n and k. For that purpose, we are going to first prove the generic case

and then instantiate it for the given forest fire application. Hence, the generic net-

work coverage intensity (cvrge intsty network X p s k C n q) is simply denoted

by (Cn wsn X p s k C n q). Besides, the coverage of our forest fire detection ap-

plication can be specified by specializing Definition 3.11 since it describes the generic

coverage intensity of a WSN using a k-set randomized scheduling algorithm.
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Definition 3.12.

⊢ ∀X p s k C n q.

Cn frst X p s k C n = cvrge intsty network X p s k C n (0.003).

Then, we can easily check in HOL that (Cn frst X p s k C n) equals

Normal

(

1−

(

1−
(0.003)

k

)n)

(3.11)

It is important to note that, for space constraints and in all the next asymptotic

analysis, we will restrict the presented assumptions to the main mathematical ones

related to the used variables. Whereas, the complete HOL code for these asymptotic

analysis can be found in [19].

3.5.1 Formal Analysis based on the Number of Nodes

In a randomly-scheduled WSN, the number of deployed nodes n is known to be a

common critical attribute which has a significant impact on both energy and coverage.

Intuitively, deploying too many nodes will surely lead to a waste of energy since some

of the regions would be simultaneously covered by many sensors at once. On the other

hand, deploying too few nodes may not guarantee a good coverage if, for example, a

given point of the area does not have any of the deployed sensors in its surrounding

area. In the next analysis, we formally confirm this intuition through verifying the

coverage behavior of the whole network based on the number of nodes n.

Targeting a network coverage intensity Cn wsn of at least t, we verify, in Lemma

3.1, the minimum number of nodes; nmin, that are required to deploy for a given

number of subsets k.
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Lemma 3.1. (The lower bound on the number of nodes n given Cn wsn = t)

⊢ ∀X p s k C n q t. (1 ≤ n) ∧ (1 < k) ∧ (0 < q < 1) ∧

(0 < t < 1) ∧ (Normal t ≤ Cn wsn X p s k C n q)

⇒

[

ln (1−t)

ln(1− q

k)

]

≤ &n.

Proof. The higher-order-logic proof of the above lemma is based on some properties

of transcendental functions along with some arithmetic reasoning.

Next, we focus on studying the network coverage performance according to the

variation on the number of nodes n. Hence, we have been able to formally verify, in

Lemma 3.2, that the network coverage intensity Cn wsn is an increasing function of

n, i.e., a larger n value leads to a better coverage intensity. In this case, more points

of the monitored area are expected to be covered, since it is more likely that many

more sensor nodes are deployed in its surrounding area.

Lemma 3.2. (Cn wsn is an increasing sequence versus n)

⊢ ∀X p s k C q. (1 < k) ∧ (0 < q < 1)

⇒ (mono incr (λn. real(Cn wsn p X k s C n q))).

where the function real is used to convert the network coverage intensity of type

extended real to its corresponding real value, and mono incr is the HOL definition of

an increasing sequence, which we present in Definition 3.13.

Proof. The proof is based on Theorem 3.5 and some real analysis.

Definition 3.13. (increasing sequence)

⊢ ∀f. mono incr f ⇔ ∀n. f n ≤ f (SUC n).

We can deduce hence that under the randomized scheduling, which divides the network

into a given number k of sub-networks, any network coverage intensity Cn wsn can

be achieved by increasing the number of deployed nodes n.
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In Lemma 3.3, we formally check the asymptotic property regarding the number

of nodes n, that is when n is very large. Hence, as n becomes infinite, Cn wsn

approaches its ideal value 1.

Lemma 3.3. (Limit of Cn wsn when n is very large)

⊢ ∀X p s k C q. (1 < k) ∧ (0 < q < 1)

⇒ ( lim
n→+∞

(λn. real(Cn wsn X p s k C n q)) = 1).

Proof. We proved Lemma 3.3 using basic properties from the sequence theory.

Lemma 3.1 can be used to deduce useful results for the given forest fire detection

application using WSN. Hence, suppose that a network coverage intensity of at least

70% is targeted [89], then the lower bound on the number of required nodes n is

verified in Lemma 3.4.

Lemma 3.4. (The lower bound on the number of nodes n given Cn frst = 0.7)

⊢ ∀X p s k C n. (1 ≤ n) ∧ (1 < k) ∧ (Normal (0.7) ≤ Cn frst X p s k C n)

⇒

[

ln(1−0.7)

ln(1− 0.003
k )

]

≤ &n.

More concretely, if the randomized scheduling splits the set of nodes into (k = 4)

sub-networks, at least 1606 nodes are required to be deployed over the forest area in

order to achieve a network coverage intensity of 70%.

In addition, we established, in Lemmas 3.2 and 3.3, that any network coverage

intensity Cn wsn can be achieved by increasing the number of deployed nodes n,

regardless of the input values k and q. These results can be easily verified for the

network coverage intensity, Cn frst, in the context of the given forest fire application

(Lemmas 3.5 and 3.6).
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Lemma 3.5. (Cn frst is an increasing sequence versus n)

⊢ ∀X p s k C. (1 < k)

⇒ (mono incr (λn. real(Cn frst X p s k C n))).

Lemma 3.6. (Limit of Cn frst when n is very large)

⊢ ∀X p s k C. (1 < k)

⇒ ( lim
n→+∞

(λn. real(Cn frst X p s k C n)) = 1).

3.5.2 Formal Analysis based on the Number of Subsets

According to Lemmas 3.2 and 3.3, enhancing the coverage capacities of the deployed

WSN, is usually possible through the deployment of more nodes. Nevertheless, after

the first deployment, the number of sensor nodes becomes known and fixed. Besides,

a second deployment would be very costly in the context of wild fields such as forests,

since nodes are generally deployed by throwing them from an airplane. Considering

a fixed number of nodes n, we formally study now the effect of the number of sub-

networks k on the coverage performance of the whole network. In particular, we

explore the asymptotic network coverage as well as many other useful properties

according to the number of subsets k.

Investigating the impact of the k-values on coverage, the general intuition about

the randomized scheduling approach is as follows: with the increase on the number

of subsets k, the individual sensor energy decreases since there will be probably few

sensors in each subset. On the other hand, too many scheduled sub-networks means

also a shorter schedule round, which in turn normally translates to a worse network

coverage intensity Cn wsn. Based on these remarks, we next make a formal derivation

of the limiting coverage according to the parameter k.
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Hence, we have been able to first formally verify, in Lemma 3.7, that a smaller

k value induces a larger network coverage Cn wsn, i.e., Cn wsn decreases while in-

creasing k.

Lemma 3.7. (Cn wsn is a decreasing sequence versus k)

⊢ ∀X p s C n q. (1 ≤ n) ∧ (0 < q < 1)

⇒ (mono decr (λk. real (Cn wsn X p s k C n q))).

where the HOL function mono decr is given in Definition 3.14.

Proof. Similar to Lemma 3.2, the above proof can be easily deduced using Theorem

3.5 and some real analysis.

Definition 3.14. (Decreasing sequence)

⊢ ∀ f. mono decr f ⇔ ∀n. f (SUC n) ≤ f n.

As expected, we also formally confirm, in Lemma 3.8, that given a fixed number

of nodes n, the network coverage intensity Cn wsn goes to 0 when k becomes very

large. In other words, the network coverage intensity Cn wsn definitely decreases

when the WSN is partitioned into a quite large number of sub-networks k.

Lemma 3.8. (Limit of Cn wsn when k is very large)

⊢ ∀X p s C n q. (1 ≤ n) ∧ (0 < q < 1)

⇒ ( lim
k→+∞

(λk. real (Cn wsn p X p s k C n q)) = 0).

Proof. The proof of the above lemma is deduced using intermediate results associated

to real and sequential limits. The above three lemmas, showing the relationship

between the k-values and the probabilistic coverage of the network, are very consistent

with our intuition about the randomized scheduling. They can be hence useful to

deduce interesting results in the context of the given forest fire detection application.

62



Consequently, for our forest fire detection application, increasing k surely saves more

energy, but leads to a very low network coverage intensity Cn frst (Lemma 3.9),

which is not good at all.

Lemma 3.9. (Cn frst is a decreasing sequence versus k)

⊢ ∀X p s C n. (1 ≤ n)

⇒ (mono decr (λk. real (Cn frst X p s k C n))).

In addition, we reconfirm the result of Lemma 3.8 using Lemma 3.10, i.e., in-

creasing the number of deployed nodes n gives smaller network coverage and hence a

poor performance of the deployed application.

Lemma 3.10. (Limit of Cn frst when k is very large)

⊢ ∀X p s C n. (1 ≤ n)

⇒ ( lim
k→+∞

(λk. real (Cn frst X p s k C n)) = 0).

The randomized scheduling is thus a dynamic approach which provides performance

adjustments of the deployed WSN application according to the value of k.

3.5.3 Formal Analysis based on Uniform Partitions

The randomness in the node scheduling approach leads to sub-networks of different

sizes with respect to the number of nodes. Obviously, the ideal case arises when the

algorithm makes a fair organization of the network into subsets of the same size. In

this case, the parameters k and n are proportional so that the number of nodes n can

be written as k × m, where m is the number of nodes per subset. In what follows,

we closely investigate the asymptotic performance behavior of the k-set randomized

algorithm regarding coverage in the case of a uniform split of the nodes.

63



In particular, as the number of sub-networks k goes infinite, the upper limit of

the network coverage Cn wsn has been formally verified in Lemma 3.11.

Lemma 3.11. (Limit of Cn wsn if n and k are proportional)

⊢ ∀X p s C m q. (0 < q < 1)

⇒ lim
k→+∞

(λk. real(Cn wsn X p s k C (m × k) q)) = 1 - e−q×(&m).

Proof. In the HOL theorem prover, the proof of the above lemma has been quite

challenging requiring the important mathematical result stated in Lemma 3.12, which

has not been available in HOL and we had to prove it part of our development.

Lemma 3.12. (Exponential limit)

⊢ ∀x. lim
k→+∞

(1+ x

k
)k = ex.

Proof. The main prerequisite for the proof of the above result consists in Lemma 3.13.

For that purpose, we first proceed by considering the 2 sequences Sn =
∑n

0
xk

k!
and

Un = (1+ x
n
)n, get their difference |Sn − Un|, show that |Sn − Un| ≤

x2

n
×e|x| and then

apply Lemma 3.13 such that H = |Sn − Un| and V = x2

n
×e|x|. The proof steps involve

thus long complex real analysis including summation, some factorial properties, real

product and arithemetic series, as well as, many properties related to the sequence

convergence.

Lemma 3.13. (Convergence property for 2 sequences)

⊢ ∀H V. (∀n. 0 ≤ H n) ∧ (∀n. H n ≤ V n) ∧ (V → 0)

⇒ (H → 0).

Proof. To prove Lemma 3.13, we start by rewriting with the limit definition and then

apply some real properties.
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Based on Lemma 3.11, we can hence verify that whenm becomes very very large,

the uniform network coverage will surely approach 1. Such result is considered as a

second verification of Lemma 3.3 in the specific case where n and k are proportional.

Lemma 3.14. (Limit of uniform coverage Cn wsn)

⊢ ∀X p s C q. (0 < q < 1)

⇒ lim
m→+∞

(λm. lim
k→+∞

(λk. real(Cn wsn X p s k C (m × k) q)) = 1.

Finally, we show that the two results, obtained above, are also valuable for

the given forest fire detection application through a simple instantiation of the input

parameter q by its value. The corresponding HOL analysis is given in the following 2

lemmas.

Lemma 3.15. (Limit of Cn frst if n and k are proportional)

⊢ ∀X p s C m.

⇒ lim
k→+∞

(λk. real(Cn frst X p s k C (m × k))) = 1 - e−(0.003)×(&m).

Lemma 3.16. (Limit of uniform coverage Cn frst)

⊢ ∀X p s C.

lim
m→+∞

(λm. lim
k→+∞

(λk. real(Cn frst X p s k C (m × k))) = 1.

The formal analysis of the behavior of the presented forest fire application using

WSN, done in this section, is a very interesting illustration of the useflness of our

coverage developments. Table 3.2 summarizes the set of properties verified for the

corresponding application. Unlike traditional analysis techniques for the validation

of a WSN for forest fire detection, using the k-set randomized scheduling algorithm,

our approach is much more efficient. While paper-and-pencil based analysis [92] or

simulation [95] cannot guarantee the correctness of the scheduling performance re-

sults, the reported theorems in this chapter are accurate given the inherent soundness
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of theorem proving and its generic nature, e.g., the coverage intensity for any given

randomly-scheduled WSN application can be computed by instantiating Theorem 3.5

with appropriate values of n and k. Contrarily, simulation is usually restricted to

specific network configurations, while probabilistic model checking is frequently us-

ing parameter abstraction in order to cope with the state-space explosion problem.

Moreover, for each of the formally verified theorems, the set of required assumptions is

clearly stated so that there is no doubt about missing a critical assumption. Such as-

pect can never be ensured in simulation and model checking where many assumptions

can be taken into account without explicitly mentioning them.

Verified Property Formulation

The lower bound on n given (Cn frst = t) n ≥ ln(1−t)

ln(1− q

k)
Cn frst is an increasing sequence versus n mono incr (Cn frst)
Cn frst approaches 100% when n is very large lim

n→+∞
Cn frst = 1

Cn frst is a decreasing sequence versus k mono decr (Cn frst)
Cn frst definitely decreases when k is very large lim

k→+∞
Cn frst = 0

Limit of Cn frst if uniform partitions (n = k ×m) 1− e−q×m

Table 3.2: Coverage Analysis of the Forest Fire Application

3.6 Summary and Discussions

The work, presented throughout this chapter, constitutes the first step towards our

higher-order-logic theorem prover based approach for the formalization of the k-set

randomized scheduling within the sound core of the HOL theorem prover (see Figure

1.2). For that purpose, we provided the fundamental formalizations of the randomized

scheduling first and then based on them we developed our formalizations of the two

key coverage performance measures, i.e., the coverage intensity of a specific point

and the network coverage intensity. We have been also able to show the practical
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effectiveness of our formalizations on a WSN application for forest fire detection.

Compared to probabilistic model checkers where statistical properties are not so

accurately specified, we have been able to achieve formal and precise analysis of the

network coverage as a statistical measure of the coverage intensity for a specific point.

In addition, the formal performance analysis of the coverage behavior of the forest

fire application clearly show the effectiveness of our theoretical developments. Thanks

to the proposed approach, this is the first time, to the best of our knowledge, that

the performance analysis of this kind of a WSN application is analyzed in a complete

formal manner. It has been thus possible to formally provide a generic asymptotic

analysis for all possible values of the design parameters, and in the specific case of

the considered forest fire application. Furthermore, such verification enables reliable

asymptotic reasoning of the deployed WSN. It is important to note here that the

presented application is a simple case study illustrating the practical interest of our

work, but the claimed generic results can be obviously valuable for any other WSN

application as well. Besides, the coverage behavior of a randomly-scheduled WSN for

volcanic earthquakes detection has been formally analyzed in [22].

The HOL development consumed about 1500 lines of code for the formal analy-

sis of the randomized scheduling, the coverage performance properties and the WSN

application for forest fire detection. Many challenges have been encountered in the

current work. Firstly, although the higher-order-logic modelling seem to depend on

simple discrete random variables, the major difficulty was to understand the initial

probabilistic model of the algorithm and translate it into higher-order logic. This

includes the efforts involved to establish, based on some abstract mathematical mod-

els [13, 52, 89], the right formalizations using the appropriate random variables and

higher-order-logic functions. Moreover, the existing probabilistic models are generally
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not so reliable either regarding the complete set of assumptions or the correctness of

the mathematical analysis done by hand, which may include human errors. Neither

the assumptions, nor the list of the design parameters were exhaustive in the existing

textbooks [13, 52, 89]. Moreover, it is very common that some mathematical steps,

taken as granted for specialists, require great investigation from a reader’s perspective.

Indeed, the theoretical flow of the analysis, usually based on a lot of intuition and

restricted to some mathematical steps, found to be confusing for higher-order-logic

formalization. However, to sucessfully achieve our main formalization task, every

step, in the original analysis, has to be deeply investigated at the mathematic level in

order to correctly map it into HOL. Such difficulties have been, for example, noticed

when formally specifying the network coverage (Definition 3.11). There was no real

explication about the network coverage as the expectation of a function of a Binomial

random variable. It has been directly used within the analysis and a lot of mathe-

matical efforts have been thus involved to find out the main mathematical relations.

Besides, the higher-order-logic definition of expectation, available in the HOL theorem

prover, has been found to be general enough to handle the expectation of a function.

Secondly, the HOL library of theorems cannot be regarded as exhaustive and

thus it may happen that a foundational result to verify a desired theorem is missing.

At the outset, the formal verification time and effort becomes quite high. Even a

very good knowledge of the prover abilities does not permit to completely avoid such

problem. Therein, the proof of the Bionimal theorem for reals (Theorem 3.7), required

to complete the main proof of coverage (Theorem 3.5), is a very good illustration.

Also, the missing theorem lim
k→+∞

(1+ x

k
)k = ex, has made the proofs of Lemmas 3.11

and 3.14, quite tedious consuming on their own 500 lines of HOL code.
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It is worthy to remind that early formalizations of the k-set randomized schedul-

ing algorithm and the coverage attributes, have been subject to migration into the

new HOL probability theory developed in the HOL theorem prover [60]. At the be-

ginning of the thesis, we built upon another probabilistic framework developed in the

HOL theorem prover [34] to formally analyze the k-set randomized scheduling algo-

rithm. In [20], we presented the HOL formalization of the corresponding coverage

properties, whereas the efficiency of our higher-order-logic developments have been

shown on a real-world WSN application for forest fire detection [21]. Recently, a

more generic formalization of probability theory has been made available in the HOL

theorem prover [60]. Since our HOL formalizations constitute the first part of the

whole methodology, described in Figure 1.2, we decided thus to migrate our previous

higher-order-logic formalizations into the new HOL probability theory. Such decision,

even difficult and time consuming, has been primarily motivated by the fact that we

are targeting more evolutive probabilistic analysis of the k-set randomized scheduling

with the formalization of further performance aspects that will be shown in the rest

of this thesis. These aspects should require some probabilistic features which are not

available in [34].

Due to fundamental differences in the foundations of the two probability theo-

ries in [34] and [60], the current resulting formalizations is completely different from

the previous one [20]. The new probability theory allows indeed to cater for arbitrary

probability spaces and is thus more generic and complete compared to the previous

formalization in which the probability space has to be the universe of a set. More-

over, the specification of the randomized algorithm has been found to be much more

straightforward with [60]. Unlike the work in [20], the developed proofs also required
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much less reasoning about sets and lists producing thus less lengthy proofs. How-

ever, these proofs have been more laboured involving usually results from the three

HOL theories: Lebesgue, measure and extended reals. An extensive understanding of

the inherent theoretical foundations of [60] was thus required to successfully achieve

the target formalizations in the HOL theorem prover. Hopefully, the existing results

from the formalized probability theory helped us to keep the amount of proof efforts

reasonable.

Finally, it will be very interesting to formally check the relationship between

the coverage and detection performances showing that coverage can reflect detection

[52]. These interesting characteristics can be analyzed based on the formalization of

the detection properties, which will be elaborated in the next chapter.
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Chapter 4

Detection Analysis

In this chapter, we describe the fundamental formalizations of the key detection met-

rics of randomly-deployed wireless sensor networks using the randomized scheduling

of nodes. For that, based on the probability theory available in the HOL theorem

prover, we first formally reason about the intrusion period of any occurring event.

Then, we build upon this characteristic to formally verify the detection probability

and the detection delay. For illustration purposes, we formally analyze the detection

performance of a WSN deployed for border security monitoring.

4.1 Formalization of the Intrusion Period

Based on the description of the k-set randomized algorithm, given in Chapter 2, the

k formed subsets of nodes {Si, 0 ≤ i ≤ (k − 1)} are disjoint and work alternatively

within their scheduling time cycles/slots {T i, 0 ≤ i ≤ (k − 1)}. In a wireless sensor

network, an event, e.g., the outbreak of a fire in a forest, randomly occurs at any

time. The duration of this event, denoted L, will obviously overlap with a number of

scheduling cycles T (see Fig. 4.1). We are interested in formally verifying the average
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number of overlapping cycles with an intrusion period L.

Consider s; the remainder of the intrusion period L in terms of the number of

slots T . Mathematically, by expressing L in terms of T , the variable s can be specified

by the following equation [89].

s =
L

T
+ 1−

⌈

L

T

⌉

(4.1)

Let t0 be any reference time and tz the beginning of the intrusion event. Fig.

4.1 shows how the interval [t0, t0 + T ] is split into two regions according to s. Hence,

if tz belongs to the interval

• [t0, t0 + (1− s)× T ], then L overlaps
⌈

L
T

⌉

with the probability (1− s).

• ]t0 + (1− s)× T, T [, then L overlaps
(⌈

L
T

⌉

+ 1
)

with the probability s.

As an example, let us take an intrusion event which lasts for a duration L = 2.8T ,

as illustrated in Fig. 4.1. Hence, L overlaps either
⌈

L
T

⌉

=
⌈

2.8T
T

⌉

= 3 cycles with the

probability (1− s = 0.2), or 4 cycles with the probability (s = 0.8).

We can now formalize in higher-order logic the average number of overlapping

cycles with an intrusion period L. For this purpose, we proceed by first formally

specifying the corresponding random variable which describes the number of overlap-

ping cycles within an intrusion period L. Based on the above description, we model

this behavior by a random variable denoted by IT . This random variable can be

characterized in higher-order logic by the following predicate intr distr rv on the

probability space p such that the image of IT on (p space p) is in {
⌈

L

Ts

⌉

;
⌈

L

Ts

⌉

+ 1},

and its probability distribution over {
⌈

L

Ts

⌉

} is (1− s).

Definition 4.1.
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Figure 4.1: Detection Analysis [89].

⊢ ∀IT p s (L:real) (Ts:real). intr distr rv IT p s L Ts =

(real random variable IT p) ∧

(IMAGE IT (p space p) = {
⌈

L

Ts

⌉

;
⌈

L

Ts

⌉

+ 1}) ∧

(distribution p IT {
⌈

L

Ts

⌉

} = 1 - s).

The definition above accepts five parameters: IT : a random variable that returns an

extended real number, p: the probability space, s: the variable specified in Equation

(4.1), L: the length of the intrusion period, and Ts: the length of a time slot. Please

note that for the sake of simplicity, we take s as a separate variable, although it

depends only on L and Ts.

It is important to note that the original specification [89] does not give any

indication about the random variable IT . Indeed, the reference textbook was just

reasoning on a binary random variable, taken intuitively, with values in the set {0; 1}.
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Clearly, the latter random variable is completely different from the random variable,

IT , that we specify to describe the number of overlapping cycles with an intrusion

period L, which is {
⌈

L
Ts

⌉

;
⌈

L
Ts

⌉

+ 1}.

We can now formally verify, in Theorem 4.1, the main property of interest, i.e.,

the average number of overlapping cycles with an intrusion period L as the expectation

of the random variable IT .

Theorem 4.1.

⊢ ∀IT p s L Ts. (0 < Ts) ∧ (0 < L) ∧ (intr distr rv IT p s L Ts)

⇒ (expectation p IT = Normal( L

Ts
+ 1))).

where the function expectation, used in the above theorem, designates the higher-

order-logic formalization of the expectation of a random variable that returns an

extended real, whereas, the HOL function Normal is used to convert a real value to

its corresponding value in an extended real. The proof of Theorem 4.1 is based on

the verification of the probability distribution on {
⌈

L

Ts

⌉

} and {
(⌈

L

Ts

⌉

+ 1
)

}, along with

some analysis on extended real.

4.2 Formalization of the Detection Probability

In a randomly-scheduled WSN, the probability of detecting an intrusion event (D) is

usually specified using the probability of the event “being unable to detect an intrusion

(UD)” [93, 89]. Thus, using the probability rule of complement, we have:

Pr(D) = 1− Pr(UD) (4.2)

The detection performances of a wireless sensor network mainly depends on the

number of nodes covering the occurring events. In Chapter 3, we demonstrated that
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the number of nodes covering a point where the intrusion event happens is a Binomial

random variable (C) with the following probability.

Pr(C = j) = Cj
n ×

(r

a

)j

×
(

1−
(r

a

))n−j n!

j! (n− j)!
(4.3)

where Cj
n is the binomial coefficient indexed by the number j of nodes covering an

occurring event and the total number n of deployed nodes. Please note that we refer

to the above random variable (C), by c throughout the next analysis.

Given that the events {c = j, 0 ≤ j < n} form a partition of the entire sample

space (Ω = p space p), we can establish from Equation (4.2), using the law of total

probability (Equation (2.7)), that

Pr(D) = 1−
n

∑

j=0

Pr(UD | c = j)× Pr(c = j) (4.4)

where Pr(UD | c = j) is the conditional probability of being unable to detect the

intrusion event given that (c = j).

Based on the analysis done in [89], we discuss the probability Pr(UD | c = j)

according to the values of j, i.e., the number of sensor nodes covering a point when

the intrusion event happens, and L, i.e., the intrusion period.

• Case 1. (j = 0) and for any duration L, Pr(UD | c = 0) = 1. Given that there

is 0 covering nodes, it is sure that an intrusion event can never be detected.

• Case 2. {0 < j ≤ n} ∩ {L ≥ (k − 1)× Ts}, Pr(UD | c = j) = 0.

Since there are k working rounds, each of length T , an event lasting more than

(k− 1)× T , and having at least one covering active node (0 < j) will be always

detected.

• Case 3. {0 < j ≤ n} ∩ {L < (k − 1) × T )}, Pr(UD | c = j) 6= 0. An event
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lasting less than (k− 1)× T with at least one covering active node (0 < j), will

be usually detected with a given probability which is not null.

By extracting the first term (j=0) of the summation in Equation (4.4), we obtain

Pr(D) = 1− (Pr(UD | c = 0)× Pr(c = 0) +
n

∑

j=1

Pr(UD | c = j)× Pr(c = j)) (4.5)

According to case 1, we have Pr(UD | c = 0) = 1, and we hence can rewrite

Equation (4.5), using Equation (4.3), as

Pr(D) = 1− ((1− q)n +
n

∑

j=1

Pr(UD | c = j)× Pr(c = j)) (4.6)

In the following, we are interested in formally verifying the detection probability

Pr(D) for occurring events of any length L. More particularly, we focus on the for-

malization of the summation term of Equation (4.6). For that purpose, we distinguish

2 cases, i.e., {L < (k − 1)× T )} and {L ≥ (k − 1)× T )}.

4.2.1 Detection Probability for Short Events

The mathematical model for the performance analysis of the detection probability

has directly given the final result of Equation (4.6). Only few explanations related to

pure mathematical steps can be found in [93]. However, in order to achieve accurately

the higher-order-logic formalizations of Equation (4.6), we require to reason about all

the implicit steps related to the probabilistic analysis.

According to the intrusion period analysis, done in Subsection 4.1, we know

that the intrusion period L, for events lasting {L < (k− 1)× T )}, may overlap either

76



⌈

L
T

⌉

or (
⌈

L
T

⌉

+1) scheduling cycles T . Thus, an intrusion event which lasts L, cannot

be detected either when L overlaps
⌈

L
T

⌉

cycles, or when L overlaps (
⌈

L
T

⌉

+ 1) cycles.

Using the following events

• A12 = The intrusion period L overlaps
⌈

L
T

⌉

cycles.

• A22 = The intrusion period L overlaps (
⌈

L
T

⌉

+ 1) cycles.

It is possible to express the whole event of non-detection, denoted by UD, as follows

UD = UD ∩ (A12 ∪ A22) (4.7)

Now, applying Equations (2.4) and (2.6) to Pr(UD | c = j) in Equation (4.6),

along with the fact that the events A12 and A22 are disjoint, we get the following

result.

Pr(UD | c = j) = Pr(UD | A12 ∩ (c = j))× Pr(A12 | c = j) +

Pr(UD | A22 ∩ (c = j))× Pr(A22 | c = j) (4.8)

Intuitively, for a given intrusion event of length L, the occurrence of the event (A12

= L overlaps
⌈

L
Ts

⌉

cycles), and the event (c = j) describing that there are j covering

nodes, are governed by distinct and noninteracting physical processes [27]. Hence,

the two events turn out to be independent. According to Equation (2.3), we get

hence Pr(A12 | c = j) = Pr(A12) = Pr(IT =
⌈

L
Ts

⌉

), where IT is the intrusion

random variable as specified in Definition 4.1. Similarly, we obtain Pr(A22 | c = j) =

Pr(IT =
⌈

L
Ts

⌉

+ 1). This allows us to rewrite the RHS of Equation (4.8) as
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Pr(UD | A12 ∩ (c = j))× Pr(A12) + Pr(UD | A22 ∩ (c = j))× Pr(A22) (4.9)

On the other hand, the event “UD | A12∩ (c = j)” indicates the event of “being

unable to detect an intrusion event” given that “the intrusion period L overlaps
⌈

L
Ts

⌉

cycles” and “there are j covering nodes”. Indeed, if an event, covered with j nodes and

overlapping
(

h =
⌈

L
T

⌉)

rounds, is not detected, then it means that all the j covering

nodes miss the h consecutive subsets. In other words, the sequence of h subsets do

not contain covering nodes. Such event is expressed by the following equation.

Bh,c = H1,c ∩H2,c ∩ .. ∩Hi,c ∩ .. ∩Hh,c =

(

h
⋂

i=1

Hi,c

)

(4.10)

where Hi,c is the event that none of the c covering sensor nodes belongs to the working

subset i, i.e., Hi,c is empty, and the set of events {H1,c, H2,c, ..., Hh,c} is mutually

independent. We say that a finite set of events is mutually independent if and only if

every event is independent of any intersection of the other events [27]. The probability

of the above event (Equation (4.10)) has been proved in [20], to be equal to
(

k−h
k

)c
,

where k is the number of disjoint subsets.

Accordingly, Equation (4.6) becomes

Pr(D) = 1− ((1− q)n +
n

∑

j=1

[

Pr(A12)× Pr(B⌈L
T ⌉,j

) + Pr(A22)× Pr(B⌈L
T ⌉+1,j)

]

)

(4.11)

Based on the above reasoning, we successfully verify, in Theorem 4.2, the final

expression of the detection probability Pr(D) for events lasting {L < (k − 1)× T}.
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Theorem 4.2.

⊢ ∀p X IT UD rv k q n s L Ts. (prob space p) ∧ (1 < k) ∧

(1 ≤ n) ∧ (0 < q < 1) ∧ (sn covers p X p q n) ∧ (0 < Ts) ∧

(0 < L) ∧ (L < &(k-1)×Ts) ∧ (0 < s < 1) ∧

((udset n k s L Ts q) ∈ events p) ∧ (intr distr rv IT p s L Ts) ∧

(sbst empty sch rv (UD rv (SUC i)) p k c (SUC i)) ∧

(indep rv p IT X Borel Borel) ∧ (cond prob p (udset n k s L Ts q)

(PREIMAGE X {0} ∩ p space p) = 1) ∧

(A12 = PREIMAGE IT {
⌈

L

Ts

⌉

} ∩ p space p) ∧

(A22 = PREIMAGE IT {
⌈

L

Ts

⌉

+ 1} ∩ p space p) ∧

(Hic = IMAGE (λi. PREIMAGE (UD rv (SUC i)) {1} ∩ p space p)) ∧

(∀x. x ∈ count (SUC n) ⇒ (cond prob p (udset n k s L Ts q)

(A12 ∩ (PREIMAGE X {&x} ∩ p space p)) = prob p
(

⋂

(i<⌈ L

Ts⌉)
Hic

)

∧

(cond prob p (udset n k s L Ts q)

(A22 ∩ (PREIMAGE X {&x} ∩ p space p)) = prob p
(

⋂

(i<⌈ L

Ts⌉+1)Hic
)

))

⇒ (prob p (p space p DIFF (udset n k s L Ts q)) =

1− (1− s)×

(

1−
(⌈ L

Ts⌉)
k

× q

)n

− s×

(

1−
(⌈ L

Ts⌉+1)
k

× q

)n

).

where

• sn covers p is the Binomial random variable (Definition 3.9).

• intr distr rv is the intrusion random variable (Definition 4.1).

• sbst empty sch rv is the higher-order-logic formalization of an empty sub-

network in HOL. We modelled such behavior by a Bernoulli random variable

with success probability
(

1− 1
k

)c
.

79



• The assumption (indep rv p IT X Borel Borel) ensures the independence

between the two random variables X and IT .

• The HOL function (udset n k s L Ts q)models the main event of non-detection

UD, as specified in Equation (4.2). This function depends on various design pa-

rameters, i.e., n: the number of sensor nodes, k: the number of sub-networks,

L: the intrusion period, Ts: the scheduling time slot, and s: the remainder of

L in terms of Ts.

• The assumption (cond prob p (udset n k s L Ts q) (PREIMAGE X {0} ∩

p space p) = 1) reflects the first case, discussed at the beginning of this sub-

section.

• The events A12, A22, and Hic are the HOL formalizations of the same events

used throughout our mathematical reasoning.

• The last assumption is the probability equality discussed just after Equation

(4.9).

• The event ((p space p) DIFF (udset n k s L Ts q)) formalizes the com-

plement event of UD.

The proof of the above theorem is primarily based on the application of the total

probability law (Equation (2.7)) which further requires the verification of the corre-

sponding assumptions regarding the partition of the events (Theorem 2.2). Moreover,

various conditional probability rules (Equations (2.3), (2.4), (2.5), (2.6) and (2.7)),

have been used as well. For that purpose, the proof utilizes the measurability of the

different events and the verification of the probability distributions of the events A21

and A22. A lot of real analysis related to Theorem 3.7, verified in Chapter 3, and
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formalizing the Binomial theorem for reals, and to the summation function, has been

also required to achieve the proof.

4.2.2 Detection Probability for Long Events

According to the second case, discussed at the beginning of this Subsection, we simply

verify that the detection probability Pr(D), for events which length is L ≥ (k−1)×T ,

equal to

Pr(D) = 1− (1− q)n (4.12)

using Theorem 4.2. Such result is very significant since it illustrates the linking

between our coverage formalizations, done in [20], and the new results on the detection

probability Pr(D). In general, a point in the area is covered if any occurring event at

this point can be detected. Such feature is measured through the network coverage

intensity Cn, which determines how well the monitored area is covered [52]. When an

event lasts for a duration (L ≥ than (k − 1)× T ), it means that a full working cycle,

lasting k × T , is spent at least one time, and all the sub-networks {Si, 0 ≤ i ≤ n}

have been hence working at least once. The intuition is that such event is surely

detected within one of the working subsets, and its detection probability is equal to the

coverage measurement of the network, when the whole network is assimilated to one

sub-network, i.e, Cn for (k = 1). The above equation formally confirms this intuition,

and shows how the behavior of the detection probability Pr(D) for events lasting

(L ≥ (k − 1)× T ) matches the one for network coverage intensity Cn for (k = 1).
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4.3 Formalization of the Average Detection Delay

Within a wireless sensor network, the average detection delay is generally defined as

the expectation of the time elapsed from the occurrence of an intrusion event to the

time when this event is detected by some sensor nodes [89, 52]. In this part, we target

the formal verification of this average detection delay, denoted by E(D). Mathemat-

ically, E(D) is specified as the expectation of the random variable D describing the

detection delay. We suppose that E(D) is finite.

Let DTi the average time that the intrusion is detected in the ith round. For the

first round (i = 1), the delay is obviously zero (DT1 = 0). Since the subsets of nodes

are working by rounds (cf. Fig. 4.1), it is thus intuitive that the delay for detecting

an intrusion depends on the detection round i. In addition, the DTi values depend

also on the starting time, tz, of the intrusion, i.e., A12 and A22. Hence, for the second

round (i = 2), based on Fig. 4.1, we can find that

• If tz ∈ [t0, t0 + (1− s)× T ], then (DT2 = T − (1−s)×T
2

).

• If tz ∈ ]t0 + (1− s)× T, T [, then (DT2 =
s×T
2
).

More generally, according to the original specification [89, 52], if tz ∈ [t0, t0+(1−s)×

T ], i.e., given A12, then:

DTi | A12 =











0 if i = 1
(

(i− 1)− (1−s)
2

)

× T if 1 < i ≤
⌈

L
T

⌉

(4.13)

However, when tz ∈ ]t0 + (1− s)× T, T [, we have

DTi | A22 =











0 if i = 1
(

(i− 2) + s
2

)

× T if 1 < i ≤
⌈

L
T

⌉

+ 1
(4.14)
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Note that the notations (DTi | A12) and (DTi | A22) refer to the values taken by the

random variable D given A12 and A22, respectively.

Based on Equations (4.13) and (4.14), we notice how the detection delay values

depend on the detection round i. Consider the random variable DRi that describes

the detection round. Conditioning on the events A12 and A22, the values of DRi are

DRi | A12 = {i+ 1|0 ≤ i ≤ ph1− 1} where ph1 = min(k,

⌈

L

T

⌉

) (4.15)

DRi | A22 = {i+ 1, 0 ≤ i ≤ ph2− 1} where ph2 = min(k,

⌈

L

T

⌉

+ 1) (4.16)

The minimum values for the variables ph1 and ph2 are considered since we have at

most k detection rounds (cf. Fig. 4.1). As an example, consider a WSN which is

randomly scheduled into (k = 3) sub-networks, and two intrusion events E1 and E2

whose starting time tz is in [t0, t0 + (1 − s) × T ], and lasting (L1 = 1.8 × T ) and

(L2 = 3.2 × T ), respectively. In the case of event E1,
⌈

L1
T

⌉

= 2, and the possible

rounds of detection would be i = {1, 2}. For event E2,
⌈

L2
T

⌉

= 4, but the potential

detection rounds are i = {1, 2, 3}, i.e., at most 3 which is equal to k.

According to the two above equations, we formally define a general HOL function

that describes the detection round random variable in Definition 4.2.

Definition 4.2.

⊢ ∀DR p ph. delay rnd rv DR p ph =

(real random variable DR p) ∧

(IMAGE DR (p space p) = IMAGE (λj. &SUC j) (count ph)).
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The main expected detection delay E(D) has been formalized in HOL using the

function delay wsn, which is specified as follows

Definition 4.3.

⊢ ∀p D n k q. delay wsn p D n k q = expectation p D.

where p is the probability space, D is a random variable, n is the number of deployed

nodes, k is the number of disjoint subsets, and q is the probability that each sensor

covers a given point. The expected detection delay E(D) can be mathematically

written, using the total expectation law (Equation (2.13)) and Equation (4.3), as

E(D) =
n

∑

j=1

E(D | c = j)× Pr(c = j)

=
n

∑

j=1

E(D | c = j)× Cj
n ×

(r

a

)j

×
(

1−
(r

a

))n−j

(4.17)

where E(D | c = j) is the conditional expectation of the real random variable D

with respect to the event (c = j). Notice that the case (c = 0) is not considered in

Equation (4.17). Indeed, if there is no covering node, then an intrusion can never be

detected, and the delay E(D) will be infinite which is not desirable.

In higher-order logic, we model the detection delay behavior, in Definition 4.4,

as a real random variable with a finite image on the space Ω.

Definition 4.4.

⊢ ∀D p. delay rv D p = (real random variable D p) ∧

FINITE (IMAGE D (p space p)).

In the following, we focus on the formal verification of the term E(D | c = j)

in Equation (4.17) for occurring events of any length L. Based on the definition
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of conditional expectation (Equation (2.10)), E(D | c = j) can be mathematically

expressed as

E(D | c = j) =
∑

d

(D = d)× Pr(D = d | c = j) (4.18)

Applying the total probability law (Equation (2.7)) on the partition {A12, A22}, and

given the independence of the random variable IT and c (Equation (2.3)), we can

establish, using Equation (2.6), that

E(D | c = j) = (1− s)×
∑

d

(D = d)× Pr(D = d | A12 ∩ (c = j)) +

s×
∑

d

(D = d)× Pr(D = d | A22 ∩ (c = j))

(4.19)

The RHS of Equation (4.19) can be now rewritten, using the reverse definition of

conditional expectation for two events (Equation (2.11)), as

(1− s)× E(D | A12, (c = j)) + s× E(D | A22, (c = j)) (4.20)

Based on the above equation, we can clearly distinguish two distinct conditional

expectations given the events A12 and A22. According to the analysis done at the

beginning of this subsection, these conditional expectations can be established as

E(D | A12, (c = j)) = E(DC1 | c = j) (4.21)

E(D | A22, (c = j)) = E(DC2 | c = j) (4.22)
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where DC1 and DC2 are the random variables describing the detection delay when

(A12 = L overlaps
⌈

L
T

⌉

cycles) and (A22 = L overlaps (
⌈

L
T

⌉

+ 1) cycles), respectively.

More specifically, based on Equations (4.13) and (4.14), DC1 and DC2 can be written

as

DC1 = (λx.

(

x−
3

2
+

s

2

)

× T ) ◦DR1 (4.23)

DC2 = (λx.
(

x− 2 +
s

2

)

× T ) ◦DR2 (4.24)

where the ◦ operator denotes the function composition, and DR1 and DR2 are the de-

lay round random variables given A12 and A22, respectively, as described in Equations

(4.15) and (4.16).

Plugging the above two equations, into Equations (4.21) and (4.22), and apply-

ing the conditional expectation of a function of a random variable (Equation (2.12)),

we derive, from Equation (4.20), that the conditional expectation of D given (c = j),

E(D | c = j), equals

(1− s)×

ph1
∑

i=2

(i−
3

2
+

s

2
)× T × Pr(DR1 = i | A12 ∩ (c = j)) +

s×

ph2
∑

i=2

(i− 2 +
s

2
)× T × Pr(DR2 = i | A22 ∩ (c = j)) (4.25)

Now, analyzing the relationship between the random variables, we can establish

that DR1 and IT are conditionally independent given the random variable c. Indeed,

in terms of events, the information A12 does not add anything about (DR1 = i) if we

already know that (c = j). Similarly for (DR2 = i) and A22 given (c = j). Using
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Equation (2.8), we can simplify Equation (4.25) into

E(D | c = j) = (1− s)×

ph1
∑

i=2

(i−
3

2
+

s

2
)× T × Pr(DR1 = i | c = j) +

s×

ph2
∑

i=2

(i− 2 +
s

2
)× T × Pr(DR2 = i | c = j) (4.26)

Developing the terms Pr(DR1 = i | c = j) and Pr(DR2 = i | c = j), in the

above equation, according to the definition of conditional probability (Equation (2.2))

along with Equation (2.7), we get the following result.

E(D | c = j) = (1− s)×

ph1
∑

i=2

(i− 3
2
+ s

2
)× T × Pr((DR1 = i) ∩ (c = j))

∑ph1
i=1 Pr((DR1 = i) ∩ (c = j))

+ s×

ph2
∑

i=2

(i− 3
2
+ s

2
)× T × Pr((DR2 = i) ∩ (c = j))

∑ph2
i=1 Pr((DR2 = i) ∩ (c = j))

(4.27)

We formally verify, in Theorem 4.3, the HOL theorem formalizing Equation

(4.27).

Theorem 4.3.

⊢ ∀p X D n q IT s L Ts DC1 DC2 DR1 DR2 ph1 ph2.

(prob space p) ∧ (events p = POW (p space p)) ∧

(delay rv D p) ∧ (intr distr rv IT p s L Ts) ∧

(1 < k) ∧ (0 < q < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(1 < ph1) ∧ (1 < ph2) ∧ (0 < s < 1) ∧

(sn covers p X p q n) ∧ (indep rv p IT X Borel Borel) ∧

(delay rnd rv DR1 p ph1) ∧ (delay DC rv DC1 DR1 p 3
2
s Ts) ∧
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(delay rnd rv DR2 p ph2) ∧ (delay DC rv DC2 DR2 p 2 s Ts) ∧

(cond indep rv p DR1 IT X Borel Borel Borel) ∧

(cond indep rv p DR2 IT X Borel Borel Borel) ∧

(∀i. (1 ≤ i) ∧ (i < SUC n) ⇒

((cond expec 2 D IT X
⌈

L

T

⌉

(&i) p Dsx =

cond expec 2 DC1 IT X
⌈

L

T

⌉

(&i) p DC1sx) ∧

(cond expec 2 D IT X
(⌈

L

T

⌉

+ 1
)

(&i) p Dsx =

cond expec 2 DC2 IT X
(⌈

L

T

⌉

+ 1
)

(&i) p DC2sx)))

⇒ (∀i. (1 ≤ j) ∧ (j < SUC n) ⇒

E(D | c = j) = (1− s)×
∑ph1

i=2

(i− 3

2
+ s

2
)×Ts×Pr((DR1=i)∩(c=j))

∑ph1

i=1 Pr((DR1=i)∩(c=j))
+

s×
∑ph2

i=2

(i−2+ s

2
)×Ts×Pr((DR2=i)∩(c=j))

∑ph2

i=1 Pr((DR2=i)∩(c=j))
.)

where

• The assumptions (cond indep rv p DR1 IT X Borel Borel Borel) and

(cond indep rv p DR2 IT X Borel Borel Borel) ensure the conditional in-

dependence between the different random variables.

• The variables DC1 and DC2, as described in Equations (4.23) and (4.24), are char-

acterized through the HOL function (delay DC rv DC DR p a s Ts) which is

defined as follows

⊢ ∀DC DR p a s Ts. delay DC rv DC DR p a s Ts =

(∀x. x ∈ (p space p) ⇒ (0 ≤ DC x)) ∧

(DC = ((λx. (x - a +
(Normal s)

2
)×(Normal Ts))) ◦ DR).

• The variable Dsx = (IMAGE D (p space p), POW (IMAGE D (p space p))),
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and the same equality applies to DC1sx and DC2sx for the corresponding vari-

ables DC1 and DC2, respectively.

The proof of Theorem 4.3 is quite similar to the proof of Equation (4.27) from Equation

(4.18). In particular, the reasoning was primarily based on the specification of the

above function (delay DC rv DC DR p a s Ts) by considering only positive values,

given that it describes the detection delay behavior which can never be negative. In

this case, the terms (i− 3
2
+ s

2
) and (i− 2+ s

2
) can be shown to be equal 0 for (i = 1),

and the correct summation index of the numerator can be hence proved. Moreover, a

lot of reasoning associated with the use of summation including the proof of injectivity

for some functions, and real analysis, was also required.

In Equation (4.27), the event “(DR1 = i)∩(c = j)” indicates that “the intrusion

event is detected in the ith round” and “there are j covering nodes”. Indeed, if an

event, covered with j nodes, is detected in the ith round, then it means that all the

j covering nodes miss the (i − 1) consecutive subsets, and the first covering nodes

belong to the subset i. Such event is exactly the same as the following event.

Ai,j =





(i−1)
⋂

m=1

Hm,j ∩H i,j





=
(

Bi−1,j ∩H i,j

)

(4.28)

where

• Hm,j and Bi−1,j are the same events used in Equation (4.10).

• the set of events {Bi−1,j, H i,j} is mutually independent.

The probability of the above event (Equation (4.28)) has been already formally verified
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in [20], and is equal to
[

(

k−i+1
k

)j
−

(

k−i
k

)j
]

.

At the end, we establish that the final average detection delay E(D) (Equation

(4.17)) is

E(D) =
n

∑

j=1

E(D | c = j)× Cj
n ×

(r

a

)j

×
(

1−
(r

a

))n−j

(4.29)

where

E(D | c = j) = (1− s)×

ph1
∑

i=2

(i− 3
2
+ s

2
)× T ×

[

(

k−i+1
k

)j
−

(

k−i
k

)j
]

∑ph1
i=1

(

k−i+1
k

)j
−

(

k−i
k

)j

+ s×

ph2
∑

i=2

(i− 2 + s
2
)× T ×

[

(

k−i+1
k

)j
−

(

k−i
k

)j
]

∑ph2
i=1

(

k−i+1
k

)j
−

(

k−i
k

)j
)

(4.30)

It is important to note that the final HOL theorem for the verification of the main

function of the average detection delay delay wsn (Definition 4.3) has not been pre-

sented here but an interested reader can access it from [19].

In this section, we detailed the higher-order-logic formalizations of the detection

performances of wireless sensor networks using the k-set randomized scheduling. The

corresponding HOL code is available at [19]. In the next section, we will demonstrate

how the resulting universally quantified theorems greatly facilitate the formal analysis

of real-world WSN applications.
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4.4 Application: Formal Analysis of WSN for Bor-

der Surveillance

Wireless sensor networks have been widely explored for border monitoring applications

[3]. The main goal of a WSN deployed for border monitoring is to continuously detect

intruding elements with a high probability and a small delay. These systems are useful

for the detection of forces or vehicles in a military context [37], or the prevention of

illegal intrusions of migrants or terrorists along a country border. In this context,

the potential harsh nature of the field of interest makes a random deployment by air-

dropping sensors much more practical. In this section, we are interested in formally

analyzing the detection performances of a wireless sensor network deployed for a

border monitoring application [92, 76].

Due to the safety-critical feature of the target application, the deployedWSN has

to remain alive as long as possible while ensuring an efficient detection. Nevertheless,

as stated in [3], most of the existing WSN for border monitoring suffer from lifetime

limitations, e.g., a REMBASS sensor node, once deployed, can be functional for 30

days only [37]. In case of using the WSN to monitor terrorist intrusions along a

mountainous border, it is obviously not required to monitor the whole area at all

times. Thus, we can use the k-set randomized scheduling algorithm to preserve energy

in a given border monitoring application [92]. In the specified application, the nodes

have a sensing area r = 30, and are deployed into an area of size a = 10000m2,

whereas, the success probability q of a sensor covering a point, is q = r
a
= 0.28.

In the previous section, we analyzed the detection probability Pr(D) according

to the intrusion length L by distinguishing 2 cases: {L < (k − 1) × Ts)} and {L ≥

(k − 1) × Ts)}. It is important to note that, in the current application analysis, we
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focus on the first case; {L < (k − 1) × Ts)}, which reflects transient events, that

may not be detected, and is thus the most pertinent part of this analysis. For the

other case, i.e., {L ≥ (k − 1) × Ts)}, we have already discussed that the detection

probability Pr(D) equals the network coverage, and its asymptotic behavior has been

investigated in [21].

Based on our theoretical development done in the previous section, we now

conduct a formal asymptotic analysis of the probabilistic detection and delay based

on the parameters n and k. For that, we are going to tackle the generic case and

then instantiate it for the given border monitoring application. Hence, we simply

denote (prob p (p space p DIFF (udset n k s L Ts q))) by (Pd wsn p n k s

L Ts q) and (delay wsn p D n k q) as (D wsn p D n k q). In the context of our

application, we basically verify two main properties of interest related to the detection

probability of the events of interest and the detection delay. Thus, we easily check in

HOL that (prob p (p space p DIFF (udset n k s L Ts (0.28)))) equals

1− (1− s)×

(

1−

(⌈

L
Ts

⌉)

k
× (0.28)

)n

− s×

(

1−

(⌈

L
Ts

⌉

+ 1
)

k
× (0.28)

)n

(4.31)

and, the expected detection delay, (delay wsn p D n k (0.28)), is

n
∑

j=1

E(D | c = j)× Cj
n × (0.28)j × (1− (0.28))n−j (4.32)

where E(D | c = j) represents the expression specified in Equation (4.30). Next,

we simply denote Equation (4.31) and Equation (4.32), by (Pd surv p n k s L Ts

(0.28)) and (D surv p D n k (0.28)), respectively. It is important to note that,

for space constraints, and in all the asymptotic analysis below, we only mention
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the main mathematical assumptions related to the used variables in the detection

probability and delay. Whereas, the complete HOL code for these asymptotic analysis

can be found in [19].

4.4.1 Formal Analysis based on the Number of Nodes

We formally verify that the detection probability is an increasing function of n, i.e.,

a larger n value leads to a better detection probability.

Lemma 4.1.

⊢ ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

∧ (L < &(k-1)×Ts) (0 < q < 1)

⇒ (mono incr (λn. Pd wsn p n k s L Ts q))).

where mono incr is the HOL definition given in Definition 3.13.

Besides, we formally verify, in Lemma 4.2, that the probability of detecting an

intrusion event approaches 1 as the number of deployed nodes becomes very very

large.

Lemma 4.2.

⊢ ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(L < &(k-1)×Ts) ∧ (0 < q < 1)

⇒ lim
n→+∞

(λn. Pd wsn p n k s L Ts q) = 1.

where lim is the HOL formalization of limit for real sequences.

Similarly, it is also very useful to investigate the delay behavior of the random-

ized scheduling. Thus, we formally verify, in Lemma 4.3, that the detection delay

D wsn starts to be decreasing versus the number of nodes n from a given range,
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denoted n0. Consequently, D wsn becomes smaller when a large number of nodes is

deployed. In this case, an intrusion is expected to be detected more quickly, since it

is likely that many more covering nodes are deployed in the surrounding area.

Lemma 4.3.

⊢ ∀p k q s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

∧ (0 < q < 1)

⇒ (mono decr range (λn. (real (D wsn p D n k q))))).

where the function real is used to convert the detection delay of type extended real

to its corresponding real value, and the HOL function mono decr range is specified

in Definition 4.5. In addition, looking for the range from which the detection delay

starts to be decreasing versus n, was somewhere tricky. Given the complexity of the

mathematical expressions of the detection delay, the HOL analysis of the lemma 4.3

has required a lot of real reasoning on the convergence of series and the properties of

infinite sums.

Definition 4.5.

⊢ ∀ f. mono decr range f ⇔ (∃n0. ∀n. n ≥ n0 ⇒ f (SUC n) ≤ f n).

Based on Lemmas 4.1 and 4.2, we establish that any target detection probability

Pd wsn can be achieved by increasing the number of deployed nodes n, for any values

of the input variables k, q, s, L, and Ts. More specifically, these results can be easily

verified for the detection probability, Pd surv, in the context of the given border

monitoring application (Lemmas 4.4 and 4.5).

Lemma 4.4.

⊢ ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)
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∧ (L < &(k-1)×Ts)

⇒ (mono incr (λn. Pd surv p n k s L Ts (0.28)))).

Lemma 4.5.

⊢ ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

∧ (L < &(k-1)×Ts) ⇒ lim
n→+∞

(λn. Pd surv p n k s L Ts (0.28)) = 1.

In addition, we reconfirm the result of Lemma 4.3 using Lemma 4.6, i.e., in-

creasing the number of deployed nodes n gives smaller detection delays and thus a

better performance of the deployed application.

Lemma 4.6.

⊢ ∀p k s L Ts. (1 < k) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

⇒ (mono decr range (λn. (real (D surv p D n k (0.28))))).

According to Lemmas 4.1 and 4.3, enhancing the detection capacities of the

deployed WSN, is possible through the deployment of more nodes. However, random

deployment is known to be very costly for most WSN applications. In the context of

a WSN using the k-set randomized scheduling, it is usually possible to improve the

whole detection capacity of the network by simply updating the number of disjoint

subsets k by a suitable value.

4.4.2 Formal Analysis based on Uniform Partitions

Next, we formally study the asymptotic performance behavior of the k-set randomized

algorithm when the nodes are uniformly partionned.

In particular, we successfully verify, in Lemma 4.7, the upper limit of the detec-

tion probability Pd wsn when n = k ×m and k goes to infinity.
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Lemma 4.7.

⊢ ∀p m q s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(0 < q < 1) ∧ (∀k. L < &k×Ts) ⇒

lim
k→+∞

(λk. Pd wsn p (k×m) k s L Ts q) =

1− (1− s)× e−⌈
L

Ts
⌉ × q× m− s× e−(⌈

L

Ts
⌉+1) × q× m.

Similar to the proof of Lemmas 3.11 and 3.14 in Chapter 3, the proof of the above

lemma is based on the mathematical result consisting in lim
k→+∞

(1+ x

k
)k = ex, which

we had to prove first in order to correctly achieve this proof.

Based on Lemma 4.7, the analysis of the above limit versus various parameters

such as the intrusion period L, and the number of nodes per subset m, is now feasi-

ble. We hence verify that when m is very large, the detection probability will surely

approach 1. Such result is considered as a second verification of Lemma 4.2 in the

specific case where n = k ×m.

Lemma 4.8.

⊢ ∀p q s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (0 < q < 1) ∧

(∀k. L < &k×Ts)

⇒ lim
m→+∞

(λm. lim
k→+∞

(λk. Pd wsn p (k×m) k s L Ts q)) = 1.

Finally, we show that the above mentioned two results are also valuable for the

given application for border surveillance through a simple instantiation of the input

parameter q by its value. The corresponding HOL analysis is given in the following 2

lemmas.

Lemma 4.9.

⊢ ∀p m s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(∀k. L < &k×Ts)
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⇒ lim
k→+∞

(λk. Pd surv p (k×m) k s L Ts (0.28)) =

1− (1− s)× e−⌈
L

Ts
⌉ × (0.28)× m− s× e−(⌈

L

Ts
⌉+1) × (0.28)× m.

Lemma 4.10.

⊢ ∀p s L Ts. (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧ (∀k. L < &k×Ts)

⇒ lim
m→+∞

(λm. lim
k→+∞

(λk. Pd surv p (k×m) k s L Ts (0.28))) = 1.

Thanks to the sound support of the detection attributes developed within the

HOL theorem prover, we have been able to provide an accurate analysis of the WSN

application for border surveillance using the k-set randomized scheduling. Table 4.1

gives a summary of the verified properties. Based on the discussion, presented in

Chapter 4 of this thesis, it is clear that other analysis techniques can never have this

efficiency. Indeed, previous simulation works are mainly based on pseudo-random

modelling. Similarly, compared to probabilistic model checkers, a major novelty pro-

vided in this chapter is the ability to perform formal and accurate reasoning about

statistical properties of the problem. Hence, it was possible to verify the detection

delay as a statistical measure using conditional expectation. Moreover, the generic

nature of theorem proving and the high expressibility of higher-order logic, allows

us to set up theorems for any values for the number of nodes n, the number of dis-

joint subsets k, the success probability q, the intrusion period L, and the scheduling

time slot T . Obviously, such generality can never be achieved by simulation and

model checking. Finally, because missing a critical assumption can lead to verifica-

tion failure within the theorem prover, the current approach is distinguishable by its

completeness regarding the minimum set of assumptions.
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Verified Property Formulation

Pd surv is an increasing function of n mono incr (Pd surv)
Pd surv approaches 1 when n is very large lim

n→+∞
Pd surv = 1

Limit of Pd surv if uniform partitions (n = k×m) 1− (1− s)× e−⌈
L
T
⌉× q×m

−s× e−(⌈
L
T
⌉+1) × q ×m

D surv a decreasing function of n from a certain
range

mono decr range (D surv)

Table 4.1: Detection Analysis of the Border Surveillance Application

4.5 Summary and Discussions

In this chapter, we developed the formalizations of the detection properties of wire-

less sensor networks using the k-set randomized scheduling within the HOL theorem

prover. In Section 4.1, we have been able to achieve accurate formalizations of the

intrusion period of any occurring event, upon which we have built our formal de-

velopments of the detection probability and delay. Besides, the formal performance

analysis of the detection behavior of the border surveillance application, presented in

Section 4.4, definitely show the usefulness of the theoretical higher-order-logic devel-

opments. Furthermore, such verification enables reliable asymptotic reasoning of the

deployed WSN. These formalizations allow us to formally verify the detection related

characteristics of most WSN using the k-set randomized scheduling, and many other

general WSN applications since the formalized detection metrics are widely used in

this context.

The theoretical development of the detection properties consumed approxi-

mately about 260 man hours and 2400 lines of code within the HOL theorem prover.

Whereas, the formal analysis of our application took, in total, 1900 lines of HOL

code including 1500 lines for the proof of Lemma 4.3. We believe that many chal-

lenges are incurred in the current work. Similar to the coverage formalization, done in

Chapter3, the first major challenge was to map a probabilistic model of a real WSN

98



algorithm [89, 52], which is far from a pure mathematical problem, into higher-order

logic. The mathematical modelling of real-world systems is commonly very intuitive.

The support textbooks [89, 52] hence included many hidden steps with very few at-

tached explanations either when considering the random variables or when applying

the probability rules. Nevertheless, to achieve the higher-order-logic formalizations of

the detection attributes, we have to reason correctly about all missing probabilistic

steps so that we can understand the flow of the theoretical analysis. For example,

apart some indications about the random variables, given in Equations (4.13) and

(4.14), the probabilistic model implicitly considers all the other random variables

without any attached textual explanations. With the number of random variables

involved, their formal specification was thus very complex. Furthermore, the mathe-

matical analysis was very abstract regarding many aspects like the use of conditional

expectation or the correspondence between the different probability events. Even a

mathematical specialist cannot efficiently address these critical issues, since such spe-

cialist should have comprehensive notions from the WSN side as well. At this stage,

a good background on probability theory and a solid knowledge of the WSN context

are both required to effectively understand the probabilistic reasoning.

The second main difficulty is the underlying limitations of the libraries, avail-

able in the HOL theorem prover, which were missing many mathematical concepts

mandatory for the current formalization. We have thus expanded the HOL probabil-

ity theory by various aspects related to conditional reasoning, such as the conditional

independence (Equation 2.9), the conditional expectation (Definition 2.4), and some

of the associated properties like the law of total expectation (Equation 2.13). In ad-

ditional to that, to show the behavior of the detection delay versus the parameter n

in Lemma 4.3, we have to construct a formal-reasoning friendly proof, which is quite
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different than the paper-and-pencil model [89] involving thus a considerable amount

of additional reasoning support in HOL.

On the other hand, our previous development on coverage, presented in Chap-

ter 3, helped significantly to keep the amount of proof efforts sufficiently acceptable.

Fortunately, we have been able to take advantage of some reutilizations. We hence

checked how the foundational formalizations of the randomized scheduling, in partic-

ular the formalization of an empty sub-network (Definition 3.6), has been commonly

useful in reasoning about the detection metrics. In addition, the Binomial theorem

for reals, shown in Theorem 3.7, has been readily used to verify Theorem 4.2. Fi-

nally, the proofs of Lemmas 4.7 and 4.8 have been based on the mathematical result

( lim
k→+∞

(1+ x

k
)k = ex), already proved for Lemmas 3.11 and 3.14 in the coverage work.

The formalizations achieved in Chapters 3 and 4 lay interesting foundations for

our future work on the higher-order-logic formalization of the lifetime properties of

WSN using the k-set randomized scheduling, which will be described in the next chap-

ter. Similarly, once the formal reasoning support of the lifetime aspect is developed

in the HOL theorem prover, the performance of other interesting WSN applications,

such as underwater monitoring, can also be formally analyzed.
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Chapter 5

Lifetime Analysis

In WSN using the k-set randomized scheduling, the network lifetime is considered as

the most critical performance attribute reflecting energy efficiency. In this chapter,

we make use of the formalizations of coverage and detection in HOL to provide the

higher-order-logic formalization of the optimal network lifetime. More particularly,

we formally analyze the optimal lifetime problem under Quality of Service (QoS)

constraints associated to the maximization of the network coverage and the detection

probability and the minimization of the detection delay.

5.1 Problem Formulation

In the coverage analysis, presented in Chapter 3, we have formally verified the min-

imum number of nodes that are required to deploy in order to ensure a network

coverage intensity Cn of at least t, denoted here as Cnreq, for a given number of sub-

networks k. Hence, if we suppose that a network coverage intensity of at least Cnreq is

targeted, then the lower bound on the number of required nodes, i.e., nmin, has been

verified as follows.
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n ≥

[

ln(1− Cnreq)

ln
(

1− q

k

)

]

. (5.1)

where q is the probability that a sensor covers a given point inside the field.

Moreover, we can formally deduce that for a given n and a network coverage

intensity of at least Cnreq, the upper bound on the number of disjoint subsets k is

given as follows:

k ≤
q

1− e
ln(1−Cnreq)

n

. (5.2)

which is equivalent to

k ≤
q

(1− (1− Cnreq)
1

n )
. (5.3)

In both scenarios, a network coverage intensity of at least Cnreq is achieved. How-

ever the other detection metrics, are not guaranteed. For example, in the first case,

deploying nmin nodes to ensure a coverage quality of at least Cnreq, may lead to the

worst values for the detection metrics, which is not desired at all.

Since the main goal of the k-set randomized scheduling is extending the network

lifetime, all the performance metrics should be set so that this lifetime is maximized.

In other words, it would be good if we can achieve appropriate values of the network

coverage intensity; Cn, the detection probability; Pd, and the detection delay; D,

while maximizing the network lifetime; TNlife. These appropriate values constitute

Quality of Service (QoS) constraints which are pre-defined values, given by the user.

These QoS constraints mainly depend on specific design requirements according to

the target WSN application.

In the context of a wireless sensor network using the randomized scheduling to
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preserve energy, the network lifetime is “the elapsed time during which the network

functions well” [88, 89]. In other words, the network lifetime is the time spent from

the point when the network starts to be functional until the network is no longer able

to detect intrusions. Mathematically, the network lifetime, denoted by TNlife, has

been mathematically specified as follows [88, 89].

TNlife = k × TSlife (5.4)

where k is the number of subsets and TSlife is the average lifetime of a typical sensor,

which is a constant value. It is important to note that the network is assumed to be

composed of identical sensors.

Consequently, given a number of nodes n, we are looking to maximize the net-

work lifetime TNlife under the conditions of minimizing the delay D, maximizing the

detection probability Pd and the network coverage intensity Cn, respectively. The

lifetime maximization problem can be formulated as follows [88, 89].



































1. D ≤ QoSDD

2. Pd ≥ QoSDP

3. Cn ≥ QoSCn

4. n = c.

(5.5)

where QoSDD, QoSDP , and QoSCn
are predefined QoS constraints associated to the

delay D, the detection probability Pd, and the network coverage intensity Cn, respec-

tively, and c is a constant value.

According to Equation (5.4), maximizing the network lifetime TNlife is to max-

imize the number of sub-networks k. Nevertheless, based on the detection analysis,

we have already verified that the detection delay D is an increasing function of k.
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A very large k will thus imply a large detection delay D, which is not suitable in

this context. There is thus an upper bound on the k-values so that a good coverage

Cn can be ensured with an acceptable delay D. This bound on the k-values is pre-

sented in Equation (5.3). The third assumption of the lifetime problem (Equation

(5.5)) can be thus substituted by Equation (5.3). The main issue here is to optimize

the lifetime under the given QoS constraints rather than maximizing it. The lifetime

maximization problem becomes an optimization problem.







































1. D ≤ QoSDD

2. Pd ≥ QoSDP

3. 1 ≤ k ≤ q

(1−(1−QoSCn )
1
n )

4. n = c.

(5.6)

where q is the probability that a sensor covers a given point inside the field.

5.2 Mathematical Analysis of the Optimal Life-

time

Theorem 5.1 presents the conditions under which the optimal lifetime problem, given

in Equation (5.6), has an optimal solution [88, 89].

Theorem 5.1.

The optimal lifetime problem has an optimal solution if:

1. D ≤ QoSDD < (Q−1+s)(Q2−1+s)
2Q(Q+1)

[1− (1− q)n],

2. Pd ≥ 1− (1− q)c ≥ QoSDP > 0,

3. 1 ≤ k ≤ q

(1−(1−QoSCn )
1
n )
,

4. 0 < QoSCn
< 1,
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5. n = c.

with Q =
⌈

L
T

⌉

and s = L
T
+ 1 −

⌈

L
T

⌉

, where L is the duration of an occurring event

and T is the length of a scheduling cycle. The above theorem is equivalent to

Sa = {k | D ≤ QoSDD <
(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (1− q)n] , (5.7)

Pd ≥ 1− (1− q)c ≥ QoSDP > 0,

1 ≤ k ≤
q

(1− (1−QoSCn
)

1

n )
, 0 < QoSCn

< 1, n = c}

is non-empty and is bounded.

Proof. The proof consists in a mathematical analysis of the optimization prob-

lem based on various properties associated to the different performance metrics. This

mathematical analysis states that an optimal solution exists, if there exist values of k

satisfying the conditions of the problem. Indeed, each condition of the optimization

problem (Equation (5.6)) generates a set of k-values, which has to be proved to be

non-empty and bounded. The term bounded, used here, basically means “bounded

above” since the integer set of k-values is naturally bounded below. Unfortunately,

the reference textbooks [88, 89] provide a very abstract proof deducing directly the

main conclusion, i.e., the big set Sa is non-empty and bounded. A larger investiga-

tion from the mathematical view as well as the WSN one, has been necessary to be

able to understand the whole reasoning. In what follows, the proof steps regarding the

main properties “bounded” and “non-empty”, are detailed for each of the performance

aspect.
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• Detection delay

According to the optimization problem (Equation 5.6), the detection delay met-

ric generates the following set of k-values.

SD = {k | D ≤ QoSDD <
(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (1− q)n] , n = c} (5.8)

The proof that SD is non-empty and is bounded requires the following 2 results, i.e.,

• The detection delay D is an increasing function of k, that we denote here by

D(k).

• The detection delay D tends to a function independent of k when k is large

enough and limk→∞D = (Q−1+s)(Q2−1+s)
2Q(Q+1)

[1− (1− q)n].

Based on that, we can deduce that the maximum possible values of D is limk→∞D,

i.e., QoSDD < limk→∞D.

Given the complexity of the delay expression, it is clear that trying to get the

concrete bounds of k to prove that the set SD is bounded, will not be straightforward.

Thus, we try to verify that there should be some mathematical results that have been

directly applied to prove that SD is bounded. Through a deeper mathematical study,

we succeed to find out these results, which are explained below.

Theorem 5.2.

If a given sequence an → a, then ∀ε > 0, there are only finitely many n for which

| an − a |≥ ε.

Proof. Consider ε > 0, and the set Aε = {n ∈ N : | an − a |≥ ε}. Using the

limit definition for the real sequence an, we have: ∀ε > 0 there exists N such that
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| an − a |< ε whenever ∀n. n ≥ N . The set of n for which | an − a |≥ ε will be

contained in the set {1, 2, ..., N}, and hence finite.

The second important result states that:

Theorem 5.3.

Every finite set of integer s has an upper bound.

Proof. The proof is based on induction on the finite set s and some results from the

arithmetic theory.

Consider Theorem 5.2 for the sequence D(k), that describes the detection delay,

and by taking ε = (limk→∞D) − QoSDD = (Q−1+s)(Q2−1+s)
2Q(Q+1)

[1− (1− q)n] − QoSDD,

we can then deduce that the set SD is finite. Consequently, based on Theorem 5.3,

we can get that SD is bounded.

Now, using the monotonicity of the detection delay sequence on the number

of partitions k together with some reasoning on the quality of service constraints,

we can conclude that the set SD is non-empty. Indeed, we know that the detection

delay is an increasing function of k. According to the lifetime optimization problem

(Equation 5.5), we look for minimizing the delay D(k) so that the values of D(k) are

below QoSDD, but cannot go below D(1). Hence, we have D(k) ≥ D(1), which gives

D(1) ≤ QoSDD. This ensures that 1 ∈ SD, and hence non-empty.

• Detection probability

The second set SPd (Equation 5.9) has also to be proved as non-empty and bounded.

SPd = {k | Pd ≥ Pd|k=1 = (1− (1− q)c) ≥ QoSDP > 0, n = c} (5.9)

For that, we require to analyze the behavior of the detection probability Pd regarding

the parameter k, requiring thus the following 2 results.
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• The detection probability Pd is a decreasing function of k.

• The detection probability Pd tends to 0 when k is large, i.e., limk→∞ Pd = 0.

According to the detection probability expression, shown in Chapter 4, it is clearly

quite difficult to get the bounds on the parameter k for the set SPd, using pure

mathematical operations. Similar to the detection delay, analyzed above, we can

prove that SPd is finite using Theorem 5.2 with ε = QoSDP , which is > 0. Applying

Theorem 5.3 together with the latter result, we can establish that the set SPd is

bounded.

Using the same reasoning on SD, we can make sure that the set SPd is non-empty.

Hence, while the detection probability is decreasing with k, the lifetime optimization

problem (Equation 5.5) tries to find the optimal k-values that maximize the detection

probability. Consequently, Pd(k) ≥ QoSDP , but QoSDP cannot go above Pd(1), i.e,

QoSDP ≤ Pd(1). Finally, we can deduce that (k = 1) ∈ SPd, which guarantees that

the set SPd is non-empty.

• Network coverage

Unlike the detection metrics, the k upper bound for the coverage set, SCn, can

be obtained through some mathematical operations. Hence, we can clearly show that:

SCn = {k | 1 ≤ k ≤
q

(1− (1−QoSCn
)

1

n )
, n = c} (5.10)

is bounded and is non-empty.

Finally, we can easily show that the big set
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Sa = {k | D ≤ QoSDD <
(Q− 1 + s)(Q2 − 1 + s)

2Q(Q+ 1)
[1− (1− q)n] , n = c},(5.11)

∩ {k | Pd ≥ 1− (1− q)c ≥ QoSDP > 0, n = c}

∩ {k | 1 ≤ k ≤
q

(1− (1−QoSCn
)

1

n )
, 0 < QoSCn

< 1, n = c}

is bounded, using the above reasoning on the three different sets SD, SPd and SCn.

Since the event (k = 1) has been already shown to be in each of the three sets SCn,

SPd and SD, we can easily deduce that this event (k = 1) is also in the intersection of

these sets, i.e., ∈ Sa. Hence, the big set Sa is also non-empty.

5.3 Formalization of the Optimal Lifetime

In HOL, we have to formally verify Theorem 5.1 which gives the conditions under

which the optimal lifetime solution exists. According to the above analysis, we have to

demonstrate that the set Sa is non-empty and bounded. Using the higher-order-logic

formalizations developed in the previous two chapters, each one of the generated sets

is proved to be non-empty and bounded. The main intermediate lemmas underlying

these proofs are as follows.

• The detection delay D is an increasing function of k.

• limk→∞D = (Q−1+s)(Q2−1+s)
2Q(Q+1)

[1− (1− q)n]

• The detection probability Pd is a decreasing function of k.

• limk→∞ Pd = 0.

• 1 ≤ k ≤ q

(1−(1−Cnreq)
1
n )
.
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Consider that Cnwsn, Pdwsn and Dwsn represent the network coverage, the de-

tection probability and the detection delay, respectively. Next, we describe our formal

verification of each of the required lemmas for the lifetime problem, where the consid-

ered assumptions are the commonly used assumptions for the variables: n, q, L, Ts,

and s, which designates the number of deployed nodes, the probability that each sen-

sor covers a specific point, the length of the intrusion period, the scheduling round and

the remainder of the intrusion period L in terms of the number of slots T (Equation

4.1), respectively.

• Detection delay

First, we show, in Lemma 5.1, that the detection delay of a randomly-scheduled

WSN, D wsn, increases as the value of k increases. In other words, the detection

delay D wsn becomes very large when the WSN is divided into a quite large number

of sub-networks k. In this case, the allocated time slot for each subset would be small,

so that the active nodes do not have enough time to detect the occurring intrusion.

Lemma 5.1.

⊢ ∀p q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

∧ (0 < q < 1) ⇒ (mono incr (λk. real (D wsn p D n k q))).

where the HOL function mono incr is given in Definition 3.13. The proof of the above

lemma has been based on computing the derivative of the corresponding real functions

and applying the Mean Value Theorem (MVT). Thus, this reasoning involves a large

amount of real analysis with very complicated mathematical expressions including

summations and using various properties of sequences and series of real numbers. It

is important to note that the original proof of the above lemma in [93, 89] was missing
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a whole fraction term, which is fortunately positive and thus does not finally affect

the validity of the function monotonicity.

Next, the limit of the detection delay D wsn regarding the parameter k is shown

in the following lemma.

Lemma 5.2.

⊢ ∀p q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts)

∧ (0 < q < 1) ⇒ ( limk→∞ D wsn =
(Q−1+s)(Q2−1+s)

2Q(Q+1)
[1− (1− q)n]).

We verified Lemma 5.2 based on the Mean Value Theorem (MVT).

• Detection probability

Based on the parameter k, we perform now an interesting study of the limiting be-

havior of the detection probability. We formally verify, in Lemma 5.3, that a smaller

k value induces a larger detection probability Pd wsn, i.e., Pd wsn decreases while

increasing the value of k. Increasing k surely saves more energy, but a significant

increase in k may induce several sub-networks, which in turns translates to a poor

detection probability.

Lemma 5.3.

⊢ ∀p k q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(0 < q < 1) ∧ (∀k. L < &k×Ts)

⇒ (mono decr (λk. Pd wsn p n k s L Ts q)).

where the HOL function mono decr is specified in Definition 3.14. The proof of the

above lemma has been based on some real theoretic reasoning. According to the two

results, shown in Lemmas 5.1 and 5.3, increasing the number of subsets k leads to

poor performances in terms of both detection probability and delay.
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Now, we formally confirm, in Lemma 5.4, that given a number of nodes n, the

detection probability Pd wsn goes to 0 when k becomes very large. This result thus

gives a lower bound on allowable detection probability.

Lemma 5.4.

⊢ ∀p k q n s L Ts. (1 ≤ n) ∧ (0 < s < 1) ∧ (0 < L) ∧ (0 < Ts) ∧

(0 < q < 1) ∧ (∀k. L < &k×Ts)

⇒ lim
k→+∞

(λk. Pd wsn p n k s L Ts q) = 0.

Consequently, the randomized scheduling algorithm appears to perform good detec-

tion for networks with acceptable k values, but the above result shows that per-

formance may be definitely degraded if the number of partitions k increases. We

reconfirm then that the randomized scheduling has a dynamic property enabling per-

formance adjustments of the deployed WSN application according to the value of

k.

• Network coverage

We formally deduce that for a given n and a network coverage intensity of at

least t, the upper bound on the number of disjoint subsets k is given as follows.

Lemma 5.5.

⊢ ∀p X k s C n q. (1 ≤ n) ∧ (1 < k) ∧ (0 < q < 1) ∧ (0 < t < 1) ∧

(Normal t ≤ (Cn wsn p X k s C n q))

⇒ k ≤
q

1− e
ln(1−t)
(&n)

.

This result formally confirms the general intuition about the randomized scheduling

approach. Increasing k saves energy, but leads to several sub-networks, which in

turns translates to a worse network coverage intensity Cn wsn. This can decrease
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the performance of the whole network, which makes the accuracy in the probabilistic

analysis of the value of k very important after the deployment.

The higher-order-logic formalizations of Theorem 5.2 and Theorem 5.3 are as

follows.

Theorem 5.4.

⊢ ∀U (e:real) (A:real). (0 ≤ e) ∧ (U → A)

⇒ FINITE {(k : num) : e ≤ | U(k)− A |}.

Theorem 5.5.

⊢ ∀(s:num->bool). FINITE s ⇒ (∃m. n. (n ∈ s)⇒ n < m).

Table 5.1 outlines the required properties for the lifetime analysis versus the

coverage and detection performances.

Verified Property Formulation

D wsn is an increasing function of k mono incr (D wsn)

Limit of D wsn when k is very large (Q−1+s)(Q2−1+s)
2Q(Q+1)

[

1−
(

1− r
a

)n]

Pd wsn is an decreasing function of k mono decr (Pd wsn)
Pd wsn definitely decreases when k is very large lim

k→+∞
Pd wsn = 0

The upper bound of k when (Cn wsn = t)
q

1− e
ln(1−t)

n

Table 5.1: Verified Properties for the Lifetime Analysis

5.4 Summary and Discussions

In this chapter, we have been able to formally analyze, within the HOL theorem

prover, the optimal lifetime problem (Equation 5.5) under Quality of Service (QoS)

constraints, for wireless sensor networks using the k-set randomized scheduling. These
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QoS constraints are associated to the key performance metrics, i.e., the network cov-

erage, the detection probability and the detection delay. More particularly, there are

two main conditions on the k-values, under which the optimal lifetime solution exists

for such problem. These conditions require that the big set Sa of k-values, shown in

Equation (5.7), is non-empty and bounded. For that, we built upon the higher-order-

logic foundations developed in the previous two chapters to verify this minimal set of

conditions.

The current lifetime analysis, presented in this chapter, primarily illustrates the

great interest of the higher-order-logic developments achieved for the other perfor-

mance metrics. Indeed, the lifetime verification has been possible thanks to the sound

and complete formalizations of the network coverage, done in Chapter 3, together with

the detection probability and delay, presented in Chapter 4. The successful verifica-

tion of the lifetime optimization problem thus clearly highlights the main advantages

of our theoretical developments of the coverage and detection attributes in terms of

precision and coherence. Hence, it would not have been possible to effectively achieve

the main lifetime proof if, for example, there was a missing assumption on one of the

design parameters in the detection part.

While the main goal of the previous formalizations on coverage and detection

was to formally verify the mathematical expressions associated with the probabilistic

attributes of interest, the lifetime problem is considered in a completely different way.

Indeed, the lifetime definition of a randomly-partitioned wireless network, as specified

in the paper-and-pencil probabilistic models [88, 89], is very simple (Definition 5.4)

and does not require any investigation from the formalization side. However , it was

found to be quite interesting to tackle the formal analysis of the lifetime optimization
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problem (Equation 5.7) under quality of service constraints. Clearly, the higher-

order-logic formalization process for the network lifetime is quite different from the

three other performance metrics where the main idea was to formally analyze the

conditions under which the optimal network lifetime exists, rather than verify the

lifetime in itself.

Comparably to the other performance aspects, many difficulties have been im-

plied in the lifetime verification. Although the lifetime proof seems simple, there were

many hidden steps making the understanding of the main proof quite challenging.

Hence, except for the coverage set where the concrete bounds on k were simple to

get, the other sets on the delay D and the detection probability Pd have been directly

deduced to be non-empty and bounded. These deductions, based on some missing

steps, have required significant mathematical investigations. No indication was given

about which mathematical result is applied. Nevertheless, it is very common that

some details which seem obvious for mathematicians turn out to be very hard to

follow from the reader’s side.

Secondly, the high degree of interactivity required within a theorem prover in

general and in HOL, in particular, was also a huge obstacle for a quick formalization.

Hence, tedious mathematical efforts may be needed to prove a basic result or just to

correctly handle complicated summations. For instance, the proof of Lemma 5.1 of a

half-page in the original textbook [89], has been switched into 12 pages of HOL code.

For the same lemma, we discovered that a whole fraction term was missing in the

original mathematical analysis [89]. This discrepancy would have a crucial impact on

the final result if the term was of opposite sign. On the other hand, it is clear that it

would not have been possible to catch this error based on a manual inspection unless

the proof is redone step by step. Such interesting finding clearly highlights the main
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strength of formal methods guaranteeing accurate and complete results.

Finally, it is very worth to note that the formal developments of lifetime can be

quite valuable to analyze any randomly-scheduled WSN like the WSN applications,

already done in the previous two chapters, or even a general surveillance framework

for WSN [91].
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a whole methodology (shown in Figure 1.2) for the formal prob-

abilistic analysis of the performances of wireless sensor networks using the k-set ran-

domized scheduling, which is a widely used algorithm to preserve energy in this con-

text. Hence, using the measure theoretic formalization of probability theory in the

HOL theorem prover, we provided the foundational formalizations of the randomized

node scheduling algorithm and verified its key performance attributes which are the

network coverage, the detection probability and the detection delay. These are the

most important performance metric associated to energy efficiency. We also described

the formal analysis of the lifetime maximization problem under Quality of Service

(QoS) constraints of coverage and detection. The theoretical formalizations offer us

the possibilities to formally handle the performance characteristics of most WSNs us-

ing the k-set randomized scheduling. In order to illustrate the practical effectiveness of

our foundational results, we utilize them to perform the formal probabilistic analysis

of various WSN applications for forest fire detection and border security surveillance.
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It is true that formal methods have been considered, for a while, from a pure

theoretical side so that their application on real world problems turns out to be quite

difficult and limited. The top raised challenge of the current work is on how to fit

a formal method technique, which is theorem proving, into a practical algorithm of

the wireless sensor network context. Compared with the existing approaches such

as traditional paper-and-pencil probabilistic modelling, simulation and probabilistic

model checking, our theorem-proving based approach allows a generic formal verifi-

cation of randomly-scheduled wireless sensor networks regardless of the values of the

design parameters. Besides, due to the sound support of probability theory available

in the HOL theorem prover, our approach enables much more reliable validation of

the probabilistic performance attributes of interest including statistical quantities. Fi-

nally, unlike most of the previous work that focuses on the validation of the functional

aspects of WSNs, our work is distinguishable by addressing the performance aspects.

6.2 Future Work

The proposed approach, described in this thesis, can be generalized to tackle the for-

mal analysis of the k-set randomized scheduling under other assumptions, and even

other variant of the algorithm [48, 6, 42]. Actually, the presented formalizations can be

valuable to formally verify the same algorithm with, for example, a modified shape of

the intrusion object [90], a Poisson deployment [47], and in a three-dimensional mon-

itoring space [92]. A very interesting extension of the coverage formalization, done in

Chapter 3, is the formal analysis of the resilience of the k-set randomized algorithm to

clock asynchrony. Once the higher-order-logic formalization of the Gaussian random

variable is made available, we can formally re-verify the relationship between the cov-

erage result and the clock synchronization aspect. We can also think about the formal
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analysis of the complexity of the binary search procedure, proposed in [89], to find

the best k-values for the optimal lifetime problem, presented in Chapter 5. Based on

the paper-and-pencil analysis done in [63], the formalization of the optimal detection

probability can be also investigated in the same way of the network lifetime (Chapter

5). As a complement verification to the performance analysis done, an interesting

research challenge would be to perform a functional verification of the extra-on rule

[52] which ensures the connectivity property within randomly-scheduled WSN.

A fundamental open question in the WSN context consists in establishing the

formal analysis of probabilistic problems, requiring Markov chains modelling, within

a higher-order-logic theorem prover. Examples of such problems include MAC proto-

cols [24] for WSN. That way, the higher-order-logic formalizations of some common

random variables such as Bernoulli or Binomial, readily developed, can be very useful.
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Résumé : Ce travail préconise l’utilisation de la logique d’ordre supérieur, 
à travers la technique de démonstration de théorèmes, pour analyser 
formellement diverses propriétés probabilistes de performance de Réseaux 
de Capteurs Sans Fil (RCSF) utilisant l’ordonnancement aléatoire de 
noeuds. Ce travail a été développé au sein du prouveur de théorèmes 
HOL4. 

Abstract: This work advocates the use of higher-order-logic, through 
theorem proving, to formally analyze various probabilistic performance 
properties of Wireless Sensor Networks (WSN) using the randomized node 
scheduling to save energy. This work has been developed within the HOL4 
theorem prover. 
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