
HAL Id: tel-02964528
https://theses.hal.science/tel-02964528

Submitted on 12 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an Efficient Parallel Parametric Linear
Programming Solver

Hang Yu

To cite this version:
Hang Yu. Towards an Efficient Parallel Parametric Linear Programming Solver. Computer Arith-
metic. Université Grenoble Alpes, 2019. English. �NNT : 2019GREAM081�. �tel-02964528�

https://theses.hal.science/tel-02964528
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Mathématiques et Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Hang YU

Thèse dirigée par David MONNIAUX, Communauté Université
Grenoble Alpes
et codirigée par Michaël PERIN

préparée au sein du Laboratoire VERIMAG
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Vers un solveur de programmation linéaire
paramétrique parallèle efficace

Towards an Efficient Parallel Parametric
Linear Programming Solver

Thèse soutenue publiquement le 19 décembre 2019,
devant le jury composé de :

Monsieur DAVID MONNIAUX
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES, Directeur
de thèse
Monsieur MICHAËL PERIN
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES,
Examinateur
Monsieur PHILIPPE CLAUSS
PROFESSEUR, UNIVERSITE DE STRASBOURG, Rapporteur
Monsieur CHRISTOPHE ALIAS
CHARGE DE RECHERCHE HDR, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Rapporteur
Monsieur LIQIAN CHEN
MAITRE DE CONFERENCES, UNIV. NATIONALE TECH. DEFENSE A
CHANGSHA, Examinateur
Madame NADIA BRAUNER
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Examinateur

Président de jury: Madame NADIA BRAUNER

Contents

1 Introduction 3

2 Preliminaries 7
2.1 Convex polyhedra and polyhedra domain . 8

2.1.1 Convex polyhedra . 8

2.1.2 Double description of polyhedra . 8

2.1.3 Operators in polyhedra domain . 9

2.2 Floating point arithmetic . 10

2.3 Linear programming . 13

2.4 Simplex algorithm . 16

2.5 Parametric linear programming . 20

2.5.1 Definition of PLP . 20

2.5.2 Methods to solve PLP problems . 21

3 Sequential Parametric Linear Programming Solver 25
3.1 Flowchart of the algorithm . 25

3.2 Minimization . 27

3.2.1 Redundant Constraints . 27

3.2.2 Minimization using Farkas’ lemma . 27

3.2.3 Raytracing method for minimization . 29

3.3 Projection and Convex hull . 37

3.3.1 Projection . 38

3.3.2 Convex hull . 40

3.4 The sequential algorithm of PLP solver for computing projection and convex hull . . . 41

3.4.1 Overview of the sequential algorithm . 41

3.4.2 Construction of PLP problems . 42

3.4.3 Initial tasks . 46

3.4.4 Checking belonging of points . 46

3.4.5 Obtaining an optimal basis by solving LP using GLPK 46

3.4.6 Reconstructing rational matrix and extracting result 46

4 Contents

3.4.7 Checking adjacency regions . 48
3.5 Checkers and Rational Solvers . 52

3.5.1 Detecting flat regions . 52
3.5.2 Verifying feasibility of the result provided by GLPK 52
3.5.3 Obtaining sound and exact solution . 54

3.6 Dealing with Equalities . 55
3.6.1 Minimization with equalities . 56
3.6.2 Projection of a polyhedron with equalities . 56
3.6.3 Convex hull of polyhedra with equalities . 57

4 Degeneracy and Overlapping Regions 59
4.1 Introduction to degeneracy . 59

4.1.1 Primal degeneracy . 59
4.1.2 Dual degeneracy . 62

4.2 Degeneracy in linear programming . 64
4.2.1 Primal degeneracy . 64
4.2.2 Dual degeneracy . 65

4.3 Degeneracy in Parametric Linear Programming . 66
4.3.1 Overlapping regions . 66
4.3.2 Dual degeneracy in PLP . 67
4.3.3 Primal degeneracy in PLP . 68

4.4 Adjacency checker . 73

5 Parallelism 77
5.1 Preliminaries . 77

5.1.1 Race conditions and thread safe . 77
5.1.2 Mutex and lock-free algorithm . 78
5.1.3 TBB and OpenMP . 78

5.2 Parallel raytracing minimization . 78
5.3 Parallel Parametric Linear Programming Solver . 79

5.3.1 Scheduling tasks . 79
5.3.2 Dealing with shared data . 81
5.3.3 Updating algorithm of preventing degeneracy 82
5.3.4 Advantages and drawbacks of two versions 83

6 Experiments 87
6.1 Sequential algorithm for minimization . 88
6.2 Parallel minimization . 90
6.3 Projection via sequential PLP . 94

6.3.1 Experiments on randomly generated benchmarks 94

Contents 5

6.3.2 Experiments on SV-COMP benchmarks . 96
6.3.3 Analysis . 97

6.4 Convex hull via sequential PLP . 97
6.5 Parallel PLP . 99

6.5.1 Randomly generated benchmarks . 99
6.5.2 SV-COMP benchmarks . 107

6.6 Conclusion . 109

7 Future Work 111
7.1 Improving the current algorithm of the PLP solver . 111

7.1.1 The approach for checking adjacency . 111
7.1.2 Dual degeneracy in general PLP problems . 111

7.2 Towards a pure floating point algorithm of PLP solver 113
7.3 Other operators in the polyhedra domain using floating point arithmetic 113

Bibliography 119

Index 123

Contents 1

Notations

Capital letters (e.g. A) denote matrices, small bold letters (e.g. xxx) denote vectors, and small letters (e.g. b)
denote scalars. The ith row of A is aaai•, its jth column is aaa• j. For simplification, we use aaai to abridge aaai•.
The element at the ith row and the jth column of the matrix A is denoted by ai j. The superscript T (e.g.
AT) represents the transpose of a matrix or a vector. P denotes a polyhedron and C a constraint. The ith
constraint of P is Ci. Q denotes the field of rational numbers, and F is the set of finite floating-point
numbers, which is a subset of Q. In the pseudo-code the floating point (or rational) variables are denoted
by nameF (or nameQ); nameQ×F means that the variables are stored in both rational and floating point
numbers.

Contributions

We improved on the approach of the PLP solver represented in the work [1] in several aspects and
provided a more efficient implementation.

Floating-point arithmetic We replace most of the exact computations in arbitrary precision rational
numbers by floating-point computations, which is performed using an off-the-shelf linear programming
solver called GLPK. We can however recover exact solutions and check them exactly, following an
approach previously used for SMT-solving [2, 3]. We provide checkers to guarantee the soundness of
the results, and thus the floating-point solver will always return a sound solution. When it is necessary, a
rational solver is invoked which guarantees the precision of our result.

Degeneracy We resolve some difficulties due to geometric degeneracy, which previously resulted in
redundant computations. We aim at obtaining a partition of the space without overlapping areas because
of two reasons: i) we want to avoid the redundant computations; ii) when there is no overlaps, we are
able to check the precision of our result. But the occurrence of degeneracy leads to overlaps, and thus
we need to deal with the degeneracy. We proved that there is no dual degeneracy in our PLP solver, and
we proposed a method to avoid the primal degeneracy. Then we can check the precision of our result. If
the result is not precise, i.e., there are missing solutions of PLP, a rational solver will be launched for
computing these missing solutions.

Parallelism We implemented two level parallelism: in the first level we parallelized the algorithm of
the PLP solver; the minimization algorithm launched by the PLP solver is parallelized as the second
level. We used two strategies to parallelize the PLP algorithm: one used Intel’s Thread Building Blocks
(TBB), and the other used OpenMP tasks [4]. The details will be explained in Section 5.3.

2 Contents

Outline

In Chapter 1 we will present some related work. Some content related to polyhedra abstract domain will
be explained. We will also introduce the Verified Polyhedra Library (VPL), on which our work is based.

In Chapter 2 we first present preliminary knowledge about convex polyhedra. Then some basic
knowledge about floating point arithmetic will be exposed, as most of our computation use floating
point numbers. We will show what are linear programming (LP) and parametric linear programming
(PLP), as the core of our work is solving LP and PLP problems. There are various methods to solve LP
problems, but we will only present and use the Simplex algorithm.

Chapter 3 shows the sequential algorithm for computing polyhedral minimization, projection and
convex hull. A flowchart at the beginning of Chapter 3 illustrates the process of our algorithm, and we
then explain the cooperation between rational and floating point arithmetic.

Chapter 4 explains the degeneracy, which is a difficulty in our work. We will explain what are primal
degeneracy and dual degeneracy respectively with examples. We will show that degeneracy of PLP
will result in overlapping regions, which affects the precision of our approach. An algorithm will be
shown for avoiding the overlapping regions. We will also illustrates some checkers at several steps in
our floating point PLP solver, which ensure the correctness and precision of our floating point solver
with respect to the rational solver. We provide several rational procedures which have been implemented
in floating point numbers. Once a floating point procedure is proved to be incorrect or not applicable,
the corresponding rational procedure will be launched for computing the exact result.

In Chapter 5 the details of our parallelized algorithm of minimization and PLP solver will be
presented. Some basic knowledge about the libraries for parallel programming will be introduced. Then
we will detail our implementation.

The experiments of minimization, polyhedral projection and convex hull will be shown in Chapter 6.
We will focus on the performance analysis. The performance is affected by several parameters. We will
change one parameter each time and maintain the others to figure out the situation where our algorithm
of PLP solver has advantages and drawbacks compared to other polyhedra libraries. Then we will use
a static analyzer to extract some randomly selected programs from SV-COMP benchmarks [5], and
compare our approach with other state-of-art libraries on these benchmarks.

Chapter 7 shows some possible future work. Our approach contains rational solvers for obtaining
rational solutions and guaranteeing the correctness and precision of our algorithm. When the exact
solutions are not required, it is possible to use a pure floating point solver. We need to guarantee the
soundness in each step of computation.

Chapter 1

Introduction

Abstract interpretation [6] is a theory of sound approximation of the semantics of computer programs,
and it is used for obtaining invariant properties of programs, which may be used to verify their correctness.
Abstract interpretation searches for invariants within an abstract domain. For numerical properties, a
common and cheap choice is one interval per variable per location in the program, but it cannot represent
relationships between variables. Such imprecision often makes it difficult to prove properties of the
program using the interval domain. If we retain linear equalities and inequalities between variables,
we will obtain the domain of convex polyhedra [7], which is more expensive, but more precise. The
search for polyhedral invariants are provided in [8, 9]. The needed operations are projection, convex
hull, inclusion test and equality test, together with the operator widening [7, 10].

The abstract interpretation is sound if it prevents false negative, meaning that a state which could
present during execution is missing. In other words, the semantics described by the abstraction should
cover all the possible semantics during the execution. For guaranteeing the soundness the abstract
interpretation should be over-approximate, which means that if a property is proved to be true in
the abstract domain, the property must not be violated at run time. Considering an abstract convex
polyhedron P, in a sound system, if the initial state belongs to P, all possible time steps will never end
outside P.

Several implementations of the domain of convex polyhedra over the field of rational numbers are
available. The most popular ones for abstract interpretation are NewPolka1 and the Parma Polyhedra
Library (PPL) [11]. These libraries, and others [12, 13], use the double description of polyhedra: as
generators (vertices, rays and lines) and constraints (linear equalities and inequalities). Some operators
are easier to be computed on one description than on the other, and some, such as removing redundant
constraints or generators, are easier if both descriptions are available. To benefit from the efficiency
of double description, it is necessary to maintain the equivalence between the two descriptions. One
description is computed from the other using Chernikova’s algorithm [14, 15], which is expensive in
some cases. Furthermore, in some cases, one description is exponentially larger than the other. This in
particular occurs in the cases of the generator description of hypercubes, i.e., products of intervals.

1 Now distributed as part of Apron: http://apron.cri.ensmp.fr/library/

http://apron.cri.ensmp.fr/library/

4 Introduction

In 2012 Verimag started implementing a library using constraint-only description, which is called
VPL (Verified Polyhedra Library)2 [16, 1]. There are several reasons for using only constraints. We have
already cited the high complexity of the generator description of some polyhedra commonly found in
abstract interpretation. Besides, the high cost of Chernikova’s algorithm is able to be avoided if we use
the single description. Another reason is to be able to certify the results of the computation, in particular
that the obtained polyhedra includes the one that should have been computed, i.e., the soundness of the
result.

In the first version of VPL, which was implemented by Alexis Fouilhé in 2015 [16], all main
operations boil down to projection, which is performed using Fourier-Motzkin elimination [17]. This
method generates many redundant constraints which must be eliminated at a high cost. Besides, for
projecting out multiple variables, it computes all intermediate steps. For each variable λi to be eliminated,
the inequalities are divided into three groups depending on the sign (positive, negative and zero) of the
coefficient of λi. Then it computes the combination of each inequality from the positive group and that
from the negative group. These intermediate steps may have high description complexity.

Jones et al. explained the relationship between polyhedral projection and parametric linear program-
ming (PLP) in [18]. Based on this work, [19] proposed a new approach to compute polyhedral projection
using PLP, which can replace Fourier-Motzkin elimination. Inspired by [18] and [19], Alexandre
Maréchal implemented a novel algorithm for computing the projection and convex hull, which both boil
down to PLP, and released version 2.0 of the VPL.

VPL 2.0 was implemented in arbitrary precision arithmetic in OCaml [20]. The algorithm of the PLP
solver is intrinsically parallelable, however it is developed with OCaml, which does not well support
parallelism programming. Our work focuses on improving the efficiency of the algorithm of PLP solver,
and parallelizing it for obtaining a better performance.

In recent years some state-of-the-art methods are presented that aim at improving the efficiency of
polyhedra domain. The expensive cost of polyhedra domain is partially caused by the “dimension curse”
of double description. Thus there appears to be different ideas to solve the problem. What we did was
getting rid of the double description and developing new algorithms for the operators that are inefficient
using constraint-only description. There are other methods which focus on reducing the dimension
of the polyhedra [21, 13]. In the polyhedra library ELINA3 [13] the variables are divided into small
groups, where the variables in different groups are not related to each other. The authors compared
the performance of ELINA with the NewPolka library in Apron, and PPL library. By decreasing the
dimension of polyhedra, i.e, the number of variables, the ELINA library has a speed up of dozens of
times to thousands of times.

In other aspects, most of the existing polyhedra libraries use rational arithmetic, and thus some new
attempts use floating point arithmetic to improve the efficiency. Apart from our approach, the work in
[22] also presented an polyhedra domain in floating point numbers. The authors used constraint-only
description, and implemented a sound approach based on Fourier-Motzkin elimination. As the floating

2 Contributors: Alexis Fouilhé, Alexandre Maréchal, Sylvain Boulmé, Hang Yu, Michaël Périn, David Monniaux.
3 http://elina.ethz.ch/

5

point arithmetic is not precise, they obtain a set of linear interval inequalities after eliminating one
variable. Then they apply a sound linearization approach to these inequalities. Comparing with their
method, our approach has the advantage in several aspects: i) our approach gets rid of the intermediate
steps of Fourier-Motzkin elimination, which produce amount of redundant constraints; ii) we can project
out multiple variables each time; iii) our results are more precise as we reconstruct the rational solutions.

Chapter 2

Preliminaries

In this chapter, we will present some important preliminaries including convex polyhedra, floating point
arithmetic, non-parametric and parametric linear programming, etc.

The polyhedra abstract domain is firstly presented by P. Cousot and N. Halbwachs in [8]. A convex
polyhedron is composed of a set of linear constraints (equalities or inequalities). In static analysis, a
linear constraint represents the relationship between the variables of a program. Compared with other
numerical abstract domains, polyhedra domain is the most precise but most expensive one. There
are dozens of polyhedral operators in the polyhedra domain. In this paper we will mainly talk about
minimization, projection and convex hull.

A floating point number is the representation of a rational number in the computers, and the
representation may be approximate because of the rounding errors. When we use floating point
arithmetic, it is necessary to measure the round errors to guarantee the correctness of the results. The
study of the consequence of the rounding errors is a topic of numerical analysis. In this paper, we used
some basic knowledge of numerical analysis, which is explained in [23].

Linear programming is a method to compute the optimal value of a linear objective function
subjecting to a set of linear constraints. In the past decades several methods to solve linear programming
problems have been presented [24, 25]. In this paper we will only use Dantzig’s Simplex algorithm. The
difference between non-parametric and parametric linear programming is that the objective function
of the latter contains parameters. By setting the parameters to various values we obtain a set of non-
parametric linear programs whose objective functions are different. The parametric linear program can
be solved by computing these non-parametric linear programs and generalizing the results. We will also
present the method to solve a PLP problem using the Simplex algorithm directly. Both methods will be
used in the following chapters.

8 Preliminaries

2.1 Convex polyhedra and polyhedra domain

As we aim to implement an algorithm to manipulate the operations on convex polyhedra, in this section
we firstly present the definition and the descriptions of a convex polyhedron. We also introduce some
operators in the polyhedra domain.

2.1.1 Convex polyhedra

A polyhedron is made of faces, edges and vertices. A polyhedron is bounded if it does not contain
unbounded faces.

Example 2.1. The Figure 2.1(a) shows an unbounded polyhedron, which has 4 faces and 3 of them
are unbounded; the bounded polyhedron which contains 5 bounded faces is shown in Figure 2.1(b).

(a) Unbounded polyhedra. (b) Bounded polyhedra.

Figure 2.1

All the polyhedra we will mention in this paper are convex polyhedra, and thus we will omit the
word “convex” in the following context. According to [26], a convex set is defined as in Definition 2.1.

Definition 2.1 (Convex set). A set K ⊂ Qn is convex if and only if for each pair of distinct points
aaa, bbb ∈ K, the closed segment with endpoints aaa and bbb is contained in K.

2.1.2 Double description of polyhedra

A polyhedron can be represented by constraints or generators. A constraint defines a linear relation
between variables. It can be an equality, a strict or non-strict inequality. A constraint Ci on variables λλλ

in Qn is represented by Equation 2.1.
aaaTi λλλ ≤ bi (2.1)

where aaai = [ai0, · · · ,ain]
T are the coefficients of constraint Ci and bi is a constant. In the equation ≤ can

also be <,>,= or ≥, and we use ≤ as an example here.

2.1 Convex polyhedra and polyhedra domain 9

Equation 2.2 shows a polyhedron defined by the conjunction of m constraints.

P = {λλλ ∈Qn|
m∧

i=1

aaaTi λλλ ≤ bi} (2.2)

The Equation 2.2 can be represented in the matrix form. Give A ∈ Qm×n and bbb ∈ Qm, the same
polyhedron can be represented by Equation 2.3.

P = {λλλ ∈Qn|Aλλλ ≤ bbb} (2.3)

A polyhedron can also be represented by generators, i.e. vertices, rays, and lines, as it is shown in
Equation 2.4. A bounded polyhedron is represented by a set of vertices, and an unbounded polyhedron
is represented by the combination of vertices, rays and lines. The rays and lines define the unbounded
directions. A line can be considered as two rays which are collinear and in opposite directions.

P = {λλλ ∈Qn|λλλ =
|V|

∑
i=1

αivvvi +
|Y|

∑
i=1

βirrri +
|L|

∑
i=1

γillli,αi,βi ≥ 0,
|V|

∑
i=1

αi = 1} (2.4)

where V is a set of vertices, Y is a set of rays, L is a set of lines, and αi, βi, γi are constants.

Example 2.2. We can represent the unbounded polyhedron in Figure 2.2 by constraints as:

P = {2λ2 −1 ≥ 0,λ1 −λ2 ≥ 0}

The corresponding generator description is:

V = {(1
2
,
1
2
)}

Y = {(1,0),(1,1)}

2.1.3 Operators in polyhedra domain

The polyhedra domain contains dozens of operators. We will present the most frequently used ones.

Elimination of redundancy A polyhedron may contain constraints that are redundant, meaning that
removing these constraints will not change the polyhedron. The process of removing redundant
constraints is called minimization. A polyhedron whose redundant constraints are removed is
called a minimized polyhedron. We will present this operator in Section 3.2.

Meet The meet of polyhedra P1 and P2, which is denoted by P1 ⊓P2, is the conjunction of the
constraints of these two polyhedra, and then the result needs to be minimized.

10 Preliminaries

(a) Constraint description. (b) Generator description.

Figure 2.2

Join The join operator computes the convex hull of polyhedra. The convex hull of P1 and P2, i.e.
P1 ⊔P2, is the smallest convex set that contains P1 and P2. This operator will be introduced in
Section 3.3.

Inclusion The polyhedron P1 is included in P2 if ∀xxx ∈ P1, xxx ∈ P2. The inclusion test can be imple-
mented by testing redundancy: P1 ⊑P2 if all the constraints of P2 are redundant with respect to
P1.

Equality The polyhedra P1 = P2 if they define the same convex set, i.e. the two polyhedra contain
equivalent constraints. The equality test can be implemented by inclusion test: P1 =P2 if P1 ⊑P2

and P2 ⊑P1.

Projection The projection operator is used to eliminate variables and project the polyhedron to lower
dimension. It will be presented in Section 3.3.

Widening The widening operator is used for the loops. It is used to enforce the convergence of iteration
sequences or accelerate converging steps of the iterations.

2.2 Floating point arithmetic

As floating point arithmetic accounts for a large proportion in our computation, we will illustrate the
fundamental of floating point numbers. We start from the representation of a floating point number, and
then introduce the rounding errors. We also present some basic knowledge of numerical analysis [23]
which is used to measure the rounding errors.

2.2 Floating point arithmetic 11

Floating point numbers

In computers real numbers are represented approximately by floating-point numbers in the form
dd · · ·d × β e, where dd · · ·d is called significand, e is exponent, and β is the base. To unify the
form of floating point representation, IEEE (Institute of Electrical and Electronics Engineers) [27]
defined a technical standard for floating point numbers in 1990s, which is called IEEE Standard for
Floating-Point Arithmetic (IEEE 754). There are three specifications in IEEE 754:

- the base β , which is always 2 ;

- the precision, i.e., the number of digits in dd · · ·d

- an exponent range from emin to emax, with emin = 1− emax

According to IEEE 754 standard, the format of a floating point number is shown in Table 2.1. The
sign bit is either 0 for positive or 1 for negative. The significand of a normalized number is always in
the range of 1 to 2, i.e. in the form 1.d · · ·d, and thus there is no need to represent the leading digit
1 explicitly. So the significand 1.d · · ·d is stored as d . . .d. A bias needs to be added to the exponent
for representing negative numbers. The infinity +∞ and −∞ are denoted by setting the exponent bits
all ones and the significand all zeros. The numbers in form 0.d · · ·d, which are called denormalized
numbers, are represented by setting the exponent all zeros.

total sign exponent significand

single precision 32 bits 1 bit 8 bits 24 bits (one bit is implicit)

double precision 64 bits 1 bit 11 bits 53 bits (one bit is implicit)

Table 2.1 – floating point numbers format in IEEE 754 standard

Example 2.3. We use the subscript to represent the base, which is either 2 or 10. Let us see how to
store the decimal number 0.4062510 as single precision binary floating point number. 0.4062510 =

0.2510 +0.12510 +0.0312510 = 2−2
10 +2−3

10 +2−5
10 = 0.011012 = 1.1012 ×2−2. The sign bit stores 1,

as it is positive. There are 8 bits for exponent, and the range is −12710 to 12810, so we need to add a
bias 12710 to the exponent. Thus we have −210 +12710 = 12510 = 011111012. For the significand,
we only store 101. Then we obtain the binary number, which is shown in Table 2.2.

Rounding errors

Floating point numbers are not precise. The most common reason is that some real numbers cannot be
represented by limited binary numbers. As floating point numbers are stored as finite binary numbers,
the infinite binary numbers or the numbers with too many digits will be rounded. Therefore, there is a
difference between the floating point number and the exact value, which is called rounding errors.

12 Preliminaries

sign︷ ︸︸ ︷ exponent︷ ︸︸ ︷ significand︷ ︸︸ ︷
1 0 1 1 1 1 1 0 1 1 0 1 0 · · · 0

Table 2.2 – floating point numbers format in IEEE 754 standard

Example 2.4. What will happen if we run the piece of code below?

double a = 0.1 ;
double b = 0.6 ;
assert(a * 6 == b) ;

The assert will fail, because the decimal number 0.1 cannot be finitely represented by a binary number:
0.110 = 0.000112 which means the digits 0011 would repeat forever in an infinite representation.
Then the binary number will be truncated to limit bits. The stored value could be less or greater than
0.1 depending on the number of significant bits.

Machine epsilon

Because of the rounding errors, we cannot compare two floating-point numbers directly. Instead, we
need to use a threshold. To find out an appropriate threshold, it is necessary to measure the error
between the floating-point number and the real number it represents. The measurement of the quantity
of rounding errors is a problem in the field of numerical analysis. The rounding errors can be measured
by the machine epsilon, whose definition is given by Definition 2.2 according to [23].

Definition 2.2 (Machine epsilon). The machine epsilon ε is the difference between 1.0 and the next
representable floating point number greater than 1.0.

Given the precision p, according to IEEE 754 standard, we store p−1 digits in the significand part,
and the smallest representable number is obtained by filling the significand bits with 00 . . .01, which
represents 21−p

2 . Thus we know ε = 21−p
2 . For instance, in double precision ε = 2−52

2 ≈ 2.22−16
10 .

Basic arithmetic model

In the basic arithmetic model, the rounding errors between the floating point and the exact computation
of an operator op is given by Equation 2.5 [23].

f l(x op y) =
x op y
1+δ

op ∈ {+, −,×, ÷} (2.5)

where |δ |< u, u = 1
2 ε and ε is the machine epsilon. From Equation 2.5 we have:

| f l(x op y)− (x op y)|< ε| f l(x op y)| (2.6)

2.3 Linear programming 13

where | · | represents the absolute value.

Error bounds of inner product

The only rounding errors we need to measure in our algorithm is that of inner product of floating-point
numbers. According to [23], the error between the inner product of two vectors aaaTrrr and its floating-point
value f l(aaaTrrr) is:

| f l(aaaTrrr)−aaaTrrr| ≤ | f l(aaa)|T| f l(rrr)| αu
1−αu

(2.7)

where α = ⌈log2 m⌉+1, m is the dimension of aaa and rrr, and u = 1
2 ε .

Furthermore, Equation 2.8 can be derived from Equation 2.7.

| f l(aaaTrrr)−aaaTrrr| ≤ 1.01mu| f l(aaa)|T| f l(rrr)| (2.8)

where m is the size of the vector. As u < ε , we can use ε to replace u for simplifying implementation. To
simplify the explanation, we use t(aaa,rrr) to represent the rounding error of the inner product of aaa and rrr.

t(aaa,rrr) = 1.01mε| f l(aaa)|T| f l(rrr)| (2.9)

In most part of our procedure we do not consider the rounding errors during computation since
we reconstruct the final result in rational numbers and verify that it is a solution of the initial rational
problem. In several steps we need to consider and measure the rounding to guarantee the correctness of
the floating point arithmetic.

2.3 Linear programming

The linear programming (LP) is the core of our algorithm. In order to develop an efficient parametric
linear programming solver, we need to solve a set of linear programming problems. Therefore, we will
present the form of linear programming in this section.

Definition of an LP problem

Definition 2.3 (Linear function). A linear function f (xxx) is a function that satisfies additivity and
homogeneity, i.e., f (xxx+yyy) = f (xxx)+ f (yyy) and f (xxx) = α f (xxx), where xxx are variables. A linear equation
is an equation in the form ∑

n
i=0 aixi +b = 0, where ai and b are constants.

Given a function f (xxx) = ∑
n
i=0 aixi +b, when b ̸= 0, f (xxx) does not satisfy Definition 2.3, and it is

called linear affine function. But sometimes, as what we will do in this paper, a linear affine function is
simply called linear function.

Linear programming (LP) is a method to find the optimal value of a linear function subject to a set
of linear constraints. Given variables λλλ = [λ1, . . . ,λn]

T, an LP problem in standard form is expressed in

14 Preliminaries

Problem 2.10.

maximize Z(λλλ) =
n

∑
j=1

o jλ j

subject to
n

∑
j=1

ai jλ j = bi ∀i ∈ {1, · · ·m}

and λλλ ≥ 0

(2.10)

where Z(λλλ) is the linear objective function, ∑
n
j=1 ai jλ j = bi (∀i ∈ {1, · · ·m}) is the set of linear con-

straints, and ai j and o j are coefficients.

Standard form of an LP problem There are several ways to express an LP problem. In this paper,
except in a few cases, we will use the standard form to describe the LP problems, as it is shown in
Problem 2.10. All the LP problems can be transformed into standard form. For the objective function,
minimizing Z(λλλ) is equivalent to maximizing −Z(λλλ). The constraint aaaiλλλ ≤ bi can be transformed into
equality by adding a slack variable si ≥ 0 for each constraint Ci: aaaiλλλ + si = bi. We can also express the
constraint aaaiλλλ ≤ bi as ri = aaaiλλλ , ri ≤ bi, where ri is called row variable. In other words, there are two
alternative ways to transform the constraint Ci: aaaiλλλ ≤ bi into standard form: Ci: aaaiλλλ + si = bi,si ≥ 0 and
ri = aaaiλλλ , ri ≤ bi, which are equivalent. If a decision variable λi does not have the lower bound 0, we
can split it into two variables: λi = λ ′

i −λ ′′
i , λ ′

i , λ ′′
i ≥ 0.

Example 2.5. Assuming we have an LP problem in Problem 2.11, and we will transform it into
standard form.

minimize Z(λλλ) = 2λ1 +λ2

subject to λ1 −2λ2 ≤−4

2λ1 +λ2 ≥ 1

(2.11)

First we transform the objective function into:

maximize Z(λλλ) =−2λ1 −λ2

Then we unify the constraints with ≤ operator and obtain {λ1−2λ2 ≤−4, −2λ1−λ2 ≤−1}. Then to
make λλλ ≥ 0, we split the variables as λ1 = λ ′

1−λ ′′
1 , λ2 = λ ′

2−λ ′′
2 , where λ ′

1, λ ′′
1 , λ ′

2, λ ′′
2 ≥ 0. The orig-

inal constraints become {λ ′
1−λ ′′

1 −2λ ′
2+2λ ′′

2 ≤−4, −2λ ′
1+2λ ′′

1 −λ ′
2+λ ′′

2 ≤−1, λ ′
1, λ ′′

1 , λ ′
2, λ ′′

2 ≥
0}. By adding the slack variables, we have the LP in standard form, which is shown in Problem 2.12.

2.3 Linear programming 15

maximize Z(λλλ) =−2λ1 −λ2

subject to λ
′
1 −λ

′′
1 −2λ

′
2 +2λ

′′
2 + s1 =−4

−2λ
′
1 +2λ

′′
1 −λ

′
2 +λ

′′
2 + s2 =−1

and λ
′
1, λ

′′
1 , λ

′
2, λ

′′
2 , s1, s2 ≥ 0

(2.12)

Alternatively Problem 2.13 shows the standard form using row variables.

maximize Z(λλλ) =−2λ1 −λ2

subject to r1 = λ
′
1 −λ

′′
1 −2λ

′
2 +2λ

′′
2 + s1 r1 ≤−4

r2 =−2λ
′
1 +2λ

′′
1 −λ

′
2 +λ

′′
2 r2 ≤−1

and λ
′
1, λ

′′
1 , λ

′
2, λ

′′
2 ≥ 0

(2.13)

Matrix representation of an LP problem Given a matrix A ∈Qm×n and vectors bbb ∈Qm, ooo ∈Qn, the
LP problem can also be written in matrix form, which is shown in Problem 2.14.

maximize Z(λλλ) = oooTλλλ

subject to Aλλλ = bbb

and λλλ ≥ 0

(2.14)

The LP problem is optimal at λλλ
∗, and the optimal value is Z∗ such that:

Z∗ = Z(λλλ ∗) (2.15)

A solution is said to be feasible if it fulfills all the constraints; and a feasible solution is optimized
when the variables appear in the objective function cannot increase/decrease anymore.

Example 2.6. Assume we have an LP problem shown in Problem 2.16.

maximize Z(λλλ) = λ1 −3λ2 +2λ3 −λ4

subject to 3λ1 −λ2 +λ3 = 5

λ1 −3λ2 +3λ4 =−3

and λλλ ≥ 0

(2.16)

The objective function will be optimized at λλλ
∗ = (0,1,6,0), and Z∗ = 9. The objective function

is equivalent to Z′(λλλ) = −16
3 λ1 −2λ4 +9 by substituting λ2 =

1
3 λ1 +λ4 +1, λ3 = −8

3 λ1 +λ4 +6.

16 Preliminaries

As λλλ ≥ 0, λ1, λ4 cannot decrease anymore when they reach 0, and thus the value of Z′(λλλ) cannot
increase anymore, i.e, it reaches optimum.

2.4 Simplex algorithm

We use the Simplex algorithm [24, 25, 28] to solve the LP problems, so we explain it in details in
this section. We first introduce some useful denominations, and then explain each step of the Simplex
algorithm with an example.

There are primal Simplex algorithm and dual Simplex algorithm, but we will only present the former.
The later is a process of applying the primal Simplex algorithm to the dual of the original problem. In
the following context, when we mention Simplex, we mean the primal Simplex algorithm.

The standard Simplex algorithm contains two phases: the first phase looks for a feasible solution,
and the second searches the optimum. The constraints of an LP problem define a convex polyhedron. The
Simplex algorithm searches the solution λλλ

∗ among the vertices of this polyhedron. The first phase either
starts from a vertex if the original problem is already feasible, or starts from exterior of the polyhedron
otherwise. Once it reaches a vertex, the second phase starts.

Dictionaries An LP problem in the Simplex algorithm can be described by a dictionary, which is a
system of linear equations. It substitutes variables by their equivalent counterpart expressed in terms of
other variables. Consider Problem 2.10 which contains m constraints with n variables. If n > m, then m
variables can be expressed by the left n−m variables, as it is shown in Problem 2.17.

Z(λλλ) =
n

∑
j=m+1

o′jλ j + c

λi = bi −
n

∑
j=m+1

a′i jλ j (i = i, · · · ,m)

(2.17)

where c is a constant.
If we set the right-hand side variables to zero, the value of left-hand side variable λi will be bi. As

all the variables are non-negative, if all the bi has non-negative value, we will obtain a feasible solution.
The corresponding dictionary is called feasible dictionary.

Basic and non-basic variables The variables appear on the left-hand side of a dictionary are called
basic variables, and that on the right-hand side are nonbasic variables. The set of basic variables is
called a basis of the dictionary. The basic and non-basic variables form a partition of the variables, and
the new objective function is obtained by substituting the basic variables with non-basic variables.

2.4 Simplex algorithm 17

Example 2.7. Consider the Example 2.6. When the objective function reaches optimum, the basic
variables are λ3, λ4, and nonbasic variables are λ1, λ2. We have λ3 =−3λ1 +λ2 +5, λ4 =−1

3 λ1 +

λ2 −1. The new obtained objective function is Z′(λλλ) =−14
3 λ1 −2λ2 +11.

Entering and leaving variables The process of constructing a new linear system by switching a basic
variable with a nonbasic variable is called pivoting. The chosen basic variable is called leaving variable
(as it will leave the basis), and the chosen nonbasic variable is called entering variable.

First phase of the Simplex algorithm

If the initial LP problem is feasible, the first phase will be skipped; otherwise an auxiliary problem will
be solved for obtaining a feasible solution. Assuming Problem 2.10 is not feasible, its auxiliary problem
is shown in Problem 2.18.

maximize −w

subject to
n

∑
j=1

ai jλ j −w = bi (∀i ∈ {1, · · · ,m})

and λ j ≥ 0,w ≥ 0 (∀ j ∈ {1, · · · ,n})

(2.18)

The auxiliary problem can always be transformed into feasibility by choosing w as the entering
variable. The original LP problem is feasible if and only if the auxiliary problem has optimal solution
and the optimum is −w = 0. In other words, if the auxiliary problem reaches optimum but w is in the
basis, the original problem is still infeasible. The feasible solution will be obtained by eliminating w,
which is the nonbasic variable in the final system. Let us illustrate the process with Example 2.8.

Example 2.8.
maximize Z(λλλ) = 3λ1 +λ2 −2λ3 −3λ4

subject to λ1 +3λ2 −2λ3 = 4

2λ1 +λ3 −3λ4 =−2

and λ j ≥ 0 (∀ j ∈ {1, · · · ,4})

First we substitute λ1, λ2 by λ3, λ4 and obtain:

Z(λλλ) =−8
3

λ3 +λ4 −
4
3

λ1 =−1− 1
2

λ3 +
3
2

λ4

λ2 =
5
3
+

5
6

λ3 −
1
2

λ4

18 Preliminaries

By setting λ3, λ4 to zero, we can obtain λ1 =−1, which means that the dictionary is infeasible.
To obtain a feasible solution, we need to perform the first phase of the Simplex algorithm by solving
the following auxiliary problem.

maximize Z(λλλ ,w) =−w

subject to λ1 +
1
2

λ3 −
3
2

λ4 −w =−1

λ2 −
5
6

λ3 +
1
2

λ4 −w =
5
3

and λ j ≥ 0,w ≥ 0 (∀ j ∈ {1, · · · ,4})

By substituting λ1 and λ2 we can obtain the corresponding dictionary:

Z(λλλ ,w) =−w

λ1 =−1− 1
2

λ3 +
3
2

λ4 +w

λ2 =
5
3
+

5
6

λ3 −
1
2

λ4 +w

(2.19)

To obtain a feasible dictionary, in the first pivoting we need to choose w as the entering variable
and λ1 as the leaving variable. Then we will obtain the dictionary as follows:

Z(λλλ ,w) =−1−λ1 −
1
2

λ3 +
3
2

λ4

w = 1+λ1 +
1
2

λ3 −
3
2

λ4

λ2 =
8
3
+λ1 +

4
3

λ3 −2λ4

(2.20)

Then we choose λ4 to enter the basis, and w to leave. Finally we obtain a feasible dictionary:

Z(λλλ ,w) =−w

λ4 =
2
3
+

2
3

λ1 +
1
3

λ3 −
2
3

w

λ2 =
4
3
− 1

3
λ1 +

2
3

λ3 +
4
3

w

(2.21)

As w ≥ 0, the optimal function reaches the optimum 0. By eliminating w, we obtain the feasible
dictionary of the original problem, in which λ2 and λ4 are basic variables.

2.4 Simplex algorithm 19

Z(λλλ) =
2
3

λ1 −
7
3

λ3 −
2
3

λ4 =
2
3
+

2
3

λ1 +
1
3

λ3

λ2 =
4
3
− 1

3
λ1 +

2
3

λ3

(2.22)

Second phase of the Simplex algorithm

The second phase of the Simplex will find the optimal solution or report that the problem does not have
optimum, meaning that the objective function is unbounded.

In the standard form, the objective function needs to be maximized, and all the variables must satisfy
λi ≥ 0. Thus when all the coefficients of the nonbasic variables are non-positive, the objective function
reaches optimum; otherwise the objective function can be increased. Then one nonbasic variable whose
coefficient is positive should enter the basis. Given the entering variable λ j, the leaving variable is
λk = b′i−∑ j a′i jλ j, which minimizes the ratio b′i

a′i j
with a′i j > 0, where j ̸= k and λ j are nonbasic variables.

Example 2.9. Let us consider Problem 2.22 of Example 2.8. We obtained a feasible dictionary,
but the variable λ1 in the objective function has a positive coefficient 2

3 , meaning that the objective
function does not reach the optimum. It can be increased by augmenting the value of λ1. Thus we
choose the variable whose coefficient is positive, i.e. λ1, as the entering variable in the next pivoting.
Recall that the constraints are in the form λk = b′i −∑ j a′i jλ j. The only choice of leaving variable is
λ2, as in the first constraint λ4 =

2
3 − (−2

3 λ1 − 1
3 λ3) the coefficient of λ1 is negative. By doing the

pivoting, we obtain the final dictionary shown in Problem 2.23, in which the objective function cannot
be furthermore increased since the maximal value is only obtained by setting the nonbasic variables
λ2 and λ3 to 0, and any other choice would decrease the value of Z(λλλ).

Z(λλλ) =−2λ2 −λ3 +2

λ4 =
10
3
−2λ2 +

5
3

λ3

λ1 = 4−3λ2 +2λ3

(2.23)

All the nonbasic variables are set to their lower bound 0, and we obtain the optimal vertex
(4,0,0, 10

3) with the optimal value 2.

Simplex tableau

In the Simplex algorithm, the dictionary is normally represented in Simplex tableau. In the follow
sections, we will always use the Simplex tableau to illustrate a dictionary. The Simplex tableau of
Problem 2.10 is shown in Table 2.3, where oi are the coefficients of the objective function.

20 Preliminaries

λ1 · · · λn = constant

. . . · · · · · · · · · · · ·

row i ai1 · · · ain bi

. . . · · · · · · · · · · · ·

objective o1 · · · on −Z∗

Table 2.3 – Simplex tableau.

The last dictionary of Example 2.8 which gives the optimum can be written in the Simplex tableau
as shown in Table 2.4.

λ1 λ2 λ3 λ4 = constant

row 1 0 2 −5
3 1 10

3

row 2 1 3 −2 0 4

objective 0 −2 −1 0 −2

Table 2.4 – Simplex tableau example.

In the Simplex tableau, the objective function is written in the form Z(λλλ)−Z∗ = 0. In our example,
the objective function row in Table 2.4 is −2λ2 −λ3 −Z∗ =−2, so we have Z∗ = 2 by setting λ2, λ3 to
0.

2.5 Parametric linear programming

In this section we will catch a glimpse of the parametric linear programming (PLP), using which we
compute the polyhedral projection and convex hull. We will see the definition of the PLP, and also the
processes of solving a PLP problem.

2.5.1 Definition of PLP

A PLP problem is a linear optimization problem on the variables λλλ = [λ1, · · · ,λm]
T whose objective

function contains parameters xxx= [x1, · · · ,xn]
T. Problem 2.24 shows the standard form of a PLP problem1.

1 There is another form of PLP, in which the parameters appear on the right-hand side of the constraints.

2.5 Parametric linear programming 21

maximize Z(λλλ ,xxx) =
m

∑
i=1

(
n

∑
j=1

oi jx j − ci)λi

subject to
m

∑
j=1

ai jλ j = bi ∀i ∈ {1, · · ·k}

and λλλ ≥ 0

(2.24)

The problem can be reformulated in a more concise way by introducing an extra dimension to the
vector of parameters for representing the constant part ci. Given O ∈Q(n+1)×m, A ∈Qk×m, bbb ∈Qk and
xxx = [x1, · · · ,xn,1]T, Problem 2.25 shows the PLP in matrix form.

maximize Z(λλλ ,xxx) = xxxTOλλλ

subject to Aλλλ = bbb

and λλλ ≥ 0

(2.25)

2.5.2 Methods to solve PLP problems

The PLP problems can be solved directly by Simplex algorithm, or by solving a set of LP problems
which are obtained by instantiating the parameters xxx. We will use both methods in our algorithm of
PLP solver. The optimal solution of a PLP problem is a set of couples (Ri,Z∗

i (xxx)), where Ri is the
region of the space of parameters xxx, in which the basis does not change and Z∗

i (xxx) is the optimal function
corresponding to Ri, meaning that any instantiation point xxx in Ri leads to the optimal function Z∗

i (xxx).
The region is obtained from the sign condition from the objective function, i.e., all the coefficients should
be non-positive (or non-negative) if the objective is to be maximized (or minimized). An example of the
Simplex tableau of PLP is shown in Table 2.5. The coefficients of the nonbasic variables in the objective
function are linear expressions, and that of the basic variables are 0. Assuming we are computing the
maximization of the objective function, the coefficients should be non-positive. By this condition we
obtain the region

∧
i∈{1,··· ,q} ∑

n
k=1 oikxk + ci ≤ 0.

Solving PLP via Simplex algorithm First we apply the first phase of the Simplex algorithm (Sec-
tion 2.4) for obtaining a feasible solution with the basic and nonbasic variables. Then we express the
original objective function of the PLP problem in terms of the nonbasic variables for obtaining an optimal
function with the corresponding region. The next step is to pivot the Simplex tableau for obtaining other
optimal functions. Considering the example in Table 2.5, we select one from the nonbasic variables, say
λq, to enter the basis. The leaving variable is λr, which makes the ratio b j

a jq
be minimum for all j, where

a jq > 0. If ∀ j,a jq ≤ 0, then λq cannot enter the basis. We will take an example to explain this method in
Example 2.10.

22 Preliminaries

non-basic variables︷ ︸︸ ︷ basic variables︷ ︸︸ ︷ = constants

λ1 · · · λq · · · · · · λr · · · λm

... .

row j a jq · · · · · · 1 · · · 0 b j
... .

objective ∑
n
k=1 o1kxk + c1 · · · ∑

n
k=1 oqkxk + cq · · · · · · 0 · · · 0 −Z∗(xxx)

Table 2.5 – Simplex tableau.

Solving PLP via LP problems We randomly select an instantiation point in the parameter space, and
substitute the parameters xxx by this instantiation point for obtaining an LP problem. If the LP is optimal
at the vertex λλλ

∗, the PLP will also reach optimum at the same vertex λλλ
∗. By solving this LP problem we

can obtain an optimal solution and the corresponding basic and nonbasic variables, if it is not unbounded.
By expressing the objective function in terms of the nonbasic variables, we obtain an optimal solution
(Ri,Z∗

i (xxx)) of the PLP. Then we select another instantiation point outside Ri, and repeat the same steps
for obtaining other optimal solutions. This method will be shown on an example in Example 2.11.

Example 2.10. Considering the same constraints with Example 2.6, the PLP problem in Prob-
lem 2.26 can be obtained by replacing the objective vector oooT with xxxTO, where the matrix O =
−1 2 1 3

2 1 3 −2

0 −1 3 2

, and xxx =
[

x1 x2 1

]T
.

maximize Z(λλλ) = (−x1 +2x2)λ1 +(2x1 + x2 −1)λ2 +(x1 +3x2 +3)λ3 +(3x1 −2x2 +2)λ4

subject to 3λ1 −λ2 +λ3 = 5

λ1 −3λ2 +3λ4 =−3

and λλλ ≥ 0

(2.26)

A feasible basis λ1, λ2 can be obtained by solving the auxiliary problem shown in Problem 2.27.
Then we substituting λ1, λ2 by λ3, λ4 in the original PLP problem, and the corresponding Simplex
tableau is shown in Table 2.6. We obtain the optimal solution Z∗

1(xxx) =
5
4 x1 +

25
4 − 7

4 and R1 =

{9
8 x1 +

17
8 x2 +

25
8 ≤ 0, 39

8 x1 − 1
8 x2 +

7
8 ≤ 0}.

2.5 Parametric linear programming 23

maximize −w

subject to 3λ1 −λ2 +λ3 −w = 5

λ1 −3λ2 +3λ4 −w =−3

and λλλ ≥ 0,w ≥ 0

(2.27)

In the next pivoting, we choose λ3 as the entering variable. We can see that the coefficients of λ3 in
row 1 and row 2 are both positive, so we need to compare their ratios of the constant to the coefficient.
As 7

4/
1
8 > 9

4/
3
8 , we choose λ1 as the leaving variable. Then we obtain the new basis λ2, λ3, and the

Simplex tableau is shown in Table 2.7. We obtain the optimal solution Z∗
2(xxx) = 8x1 +19x2 +17 with

the region R2 = {−3x1 − 17
3 x2 − 25

3 ≤ 0, 6x1 +2x2 +4 ≤ 0}.
As the coefficients of λ4 in all rows are negative, λ4 cannot enter the basis. Now all the possible

bases have been found, and the algorithm terminates.

λ1 λ2 λ3 λ4 = constant

row 1 0 1 1
8 −9

8
7
4

row 2 1 0 3
8 −3

8
9
4

objective 0 0 9
8 x1 +

17
8 x2 +

25
8

39
8 x1 − 1

8 x2 +
7
8 −5

4 x1 − 25
4 x2 +

7
4

Table 2.6 – Simplex tableau example.

λ1 λ2 λ3 λ4 = constant

row 1 −1
3 1 0 −1 1

row 2 8
3 0 1 −1 6

objective −3x1 − 17
3 x2 − 25

3 0 0 6x1 +2x2 +4 −8x1 −19x2 −17

Table 2.7 – Simplex tableau example.

Example 2.11. Considering the same example with Problem 2.26, By substituting the parameters xxx
with the point (−1,0), we obtain the LP problem in Example 2.6. As the LP problem is optimized
with the basic variables λ3 and λ4, the PLP problem also reaches optimum with the same basis.
By substituting λ2 and λ3 we obtain the final objective function Z′(λλλ ,xxx) = (−3x1 − 17

3 x2 − 25
3)λ1 +

(6x1 +2x2 +4)λ4 +(8x1 +19x2 +17), and the optimal solution is (R2,Z∗
2(xxx)).

24 Preliminaries

The set of LP problems which are obtained by instantiating the parameters xxx with any point in
R1 will reach optimum with the same basis λ3, λ4, and thus the PLP will obtain the same optimal
function. To obtain other optimal functions, we need to instantiate xxx with the points outside R1.
With the instantiation point (−2,−2), we obtain the optimal solution (R1,Z∗

1(xxx)). Until now all the
optimal solutions have been found, as any other point outside R1 and R2 will lead to unbounded LP
problems.

Summary of the chapter

We presented some fundamental knowledge which is useful for the explanation of our efficient PLP
solver in the following chapters. We saw the convex polyhedra and its representations. In our approach
we use the constraint-only representation. We introduced some operators in the polyhedra domain. Our
approach aimed at computing the polyhedral projection and convex hull. As the minimization operator
is required in our PLP solver, we also provided an efficient minimization algorithm based on the work in
[29].

We introduced the floating point arithmetic and rounding errors. In the paper we use Equation 2.6
and Equation 2.9 to compute the thresholds which are used for comparing floating point numbers.

We illustrated the processes of solving an LP problem using the Simplex algorithm. The computation
processes can be shown in a dictionary or in the Simplex tableau form. In the following context we
mainly use the latter. The methods to solve a PLP problem are also been presented. The solution of
a PLP is a set of tuples (Ri,Z∗

i (xxx)), where Z∗
i (xxx) is an optimal function and Ri is the corresponding

region. Please be note that for two different regions Ri and R j, their optimal functions Z∗
i (xxx) and Z∗

j (xxx)
could be the same. This point will be explained into details in Chapter 4.

Chapter 3

Sequential Parametric Linear
Programming Solver

In this chapter we will present the overview of the sequential algorithm of the PLP solver. This work
was presented in our prior paper [30].

We provide a flowchart that illustrates the processes of computing the projection (or convex hull)
using our PLP solver. We will see that the minimization operator is required at several steps in the PLP
solver, so we will present the minimization algorithm before explaining the algorithm of the PLP solver.
We adapted the algorithm of raytracing minimization [29] to our floating point arithmetic.

Our PLP solver is based on the work of Maréchal et al. in [20]. Different from their work, we
mainly used floating point arithmetic, and the rational result will be constructed. We aimed to obtain the
rational result using floating point computations without impact on soundness and precision. Soundness
means that we need to obtain an over-approximate polyhedron of the correct one; precision means that
the resulting polyhedron should be the same as that obtained by rational computation using the same
algorithm.

Due to the imprecision of floating point computations, the result may be incorrect and the algorithm
may be not able to terminate. To avoid these problems, we use floating point thresholds to test the result
and use rational numbers to check and recompute the result when it is necessary.

The whole algorithm of the PLP solver is divided into several steps, and each step will be explained
into details. During the explanation of the algorithm, our focus will be on the cooperation of rational
and floating point arithmetic, and some specifics of floating point computations.

3.1 Flowchart of the algorithm

The Figure 3.1 shows the flow chart of our algorithm. The rectangles are processes and diamonds are
decisions. The processes/decisions colored in orange are computed in floating-point arithmetic, and
those in blue use rational numbers. The dotted red frames show cases that rarely happen, which means
that most computations in our approach use floating-point numbers.

26 Sequential Parametric Linear Programming Solver

Figure 3.1 – Flowchart of our PLP procedure

3.2 Minimization 27

3.2 Minimization

In the PLP algorithm, the minimization is required to minimize the input polyhedron and the obtained
regions, so we will present the algorithm in this section. We will present two methods of minimization,
and both of them will be used in our PLP solver.

3.2.1 Redundant Constraints

In our computation, there are several steps at which redundant constraints must be removed by mini-
mization of the polyhedron.

Definition 3.1 (Redundant constraints). A constraint is said to be redundant if it can be removed
without changing the shape of the polyhedron.

Example 3.1. Considering the constraints {C1 : −x1 +2x2 ≥ 2, C2 : 2x1 − x2 ≥ 1, C3 : −x1 − x2 ≥
−8, C4 : 2x1 +4x2 ≥ 7} in Figure 3.2, the red constraint C4 : 2x1 +4x2 ≥ 7 is redundant.

1 2 3 4

1

2

3

4

5

Figure 3.2 – Redundant constraint

3.2.2 Minimization using Farkas’ lemma

The redundancy of a constraint can be checked by Farkas’ lemma (Theorem 3.1) : a constraint Ci is
redundant if and only if it is a linear combination of other constraints. In other words, Ci: aaaixxx ≥ bi is
redundant if and only if it fulfills Equation 3.1.

∃yyy = [y1, . . . ,ym,y0]≥ 0, aaaixxx−bi =
m

∑
j=1, j ̸=i

y j(aaa jxxx−b j)+ y0 (3.1)

28 Sequential Parametric Linear Programming Solver

Equation 3.1 can be expressed in another way, which is shown in Equation 3.2. By writing it into
matrix form, we have Equation 3.3. If the system of linear inequalities has a solution, the first statement
of Farkas’ lemma is true; otherwise the second statement is true.

∃yyy = [y1, . . . ,ym,y0]≥ 0
m

∑
j=1, j ̸=i

a jky j = aik ∀k = {1, · · · ,n}

m

∑
j=1, j ̸=i

b jy j + y0 = bi

(3.2)

∃yyy = [y1, . . . ,ym,y0]≥ 0, Myyy = ddd, where M =

a11 · · · am1 0
...

a1n · · · amn 0

b1 · · · bm 1

, ddd = [ai1, · · · ,ain,bi]

T (3.3)

Theorem 3.1 (Farkas’ lemma). Let A ∈ Rm×n and bbb ∈ Rm. Then exactly one of the following two
statements is true:

• There exists an yyy ∈ Rn such that Ayyy = bbb and yyy ≥ 0.

• There exists a yyy′ ∈ Rm such that ATyyy′ ≥ 0 and bbbTyyy′ < 0.

Example 3.2. Let use consider the same example as Example 3.1. To determine if the constraint
C4 of Example 3.1 is redundant with respect to {C1, C2, C3}, we need to solve the satisfiability
problem ∃y1,y2,y3,y0 ≥ 0 such that aaa4xxx−b4 = y1(aaa1xxx−b1)+y2(aaa2xxx−b2)+y3(aaa3xxx−b3)+y0, i.e.,
Problem 3.4.

− y1 +2y2 − y3 = 2

2y1 − y2 − y3 = 4

−2y1 − y2 +8y3 + y0 =−7

y0,y1,y2,y3 ≥ 0

(3.4)

We obtain yyy = [y1,y2,y3,y0]
T = [10

3 ,
8
3 ,0,

7
3]

T, such that 2x1 + 4x2 − 7 = 10
3 (−x1 + 2x2 − 2) +

8
3(2x1 −x2 −1)+ 7

3 , meaning that C4 is redundant. In this case the first statement of Farkas’ lemma is
true.

3.2 Minimization 29

On the contrary, C1 is irredundant, as the second statement of Farkas’ lemma is true. By solving
Problem 3.5, we can find yyy′ = [4,0,1], and AT yyy′ = [7,4,1,1]T > 0, bbbTyyy′ =−6 < 0.

2y1 − y2 +2y3 =−1

− y1 − y2 +4y3 = 2

− y1 +8y2 −7y3 + y0 =−2

y0,y1,y2,y3 ≥ 0

(3.5)

3.2.3 Raytracing method for minimization

When there are much more irredundant constraints than redundant ones, using Farkas’ lemma is not
efficient. To find out the irredundant constraints more efficiently, Maréchal et al. presented a novel
method using raytracing to minimize polyhedra [29]. We improved this approach by using floating
point arithmetic instead of rational computations. The use of floating-point numbers here will not
cause a soundness problem for static analysis, because in the worst case we eliminate constraints that
should not be removed. That results in a larger polyhedron which includes the correct one, i.e., the
abstract polyhedron is over approximated. At several steps we need to check the results of floating point
computation for guaranteeing the precision and soundness. We first review the minimization algorithm,
and then present adaptations we made for floating point computation.

3.2.3.1 Overview of the raytracing minimization

There are two phases in raytracing minimization. The first phase aims at finding as many irredundant
constraints as possible. Rays are launched from a point inside the polyhedron toward each boundary.
The constraint whose boundary is firstly hit by a ray is irredundant. The remaining constraints whose
redundancy status is not solved by the first phase will be determined by the second phase: if we can find
an irredundancy witness point, then the corresponding constraint is irredundant.

Definition 3.2 (Irredundancy Witness). An irredundancy witness of a constraint Ci is a point that
violates Ci but satisfies the other constraints.

A ray rrri was launched in the first phase from the interior point toward the boundary of Ci : aaaixxx ≤ bi

in the direction aaai. To determine the redundancy status of Ci, we need to solve the problem ∃xxx, aaaixxx >
bi,

∧
j ̸=i aaa jxxx ≤ b j, where the constraints C j : aaa jxxx ≤ b j are the set of constraints whose boundaries hit by

rrriii before the boundary of Ci is reached. If the satisfiability problem is infeasible, then Ci is redundant
as the irredundancy witness point cannot be found; otherwise a point ppp will be obtained, but ppp is not
necessarily an witness of the irredundancy of Ci (see Figure 3.4). Another ray rrr′i will be launched from
the interior point to the point ppp. Then Ci will be first hit by rrr′i if it is irredundant, and ppp is its irredundancy
witness; or another point ppp′ will be obtained by solving aaaixxx > bi,

∧
j ̸=i aaa jxxx ≤ b j,

∧
k ̸=i aaakxxx ≤ bk, where

the boundaries of Ck : aaakxxx ≤ bk are first hit by rrr′i. By adding constraints incrementally and solving a set

30 Sequential Parametric Linear Programming Solver

of satisfiability problems, either the boundary of Ci will be first hit by a ray if it is irredundant, or an
infeasible solution will be obtained otherwise.

Figure 3.3 – The point w1 is a witness of the irredundancy of C1: It satisfies all constraints but C1.
Therefore, removing C1 would change the polyhedron because w1 would then belong to it.

Example 3.3. Figure 3.4 shows an example of checking the redundancy status of the constraint C1.
In Figure 3.4(a) a ray is launched from the interior point ppp to C1, and hits constraints C2 and C3 before
reaching C1. In Figure 3.4(b) a point ppp′ is found, which satisfies C2 and C3 but violates C1. The ray
launched from ppp to ppp′ hits C1 first, which proved that C1 is irredundant.

p

C1

C2

C3

(a)

p

p

C1

C2

C3

(b)

Figure 3.4 – The process of checking the redundancy status of the constraint C1 using the second phase
of raytracing minimization.

3.2.3.2 Adaptations for floating point computation

Now that we review the raytracing minimization algorithm of [29], let use detail the technicalities
required for adapting the algorithm to floating point arithmetic.

Solving satisfiability and optimization problems We use GLPK1 (GNU Linear Programming Kit) to
solve the optimization problems in our approach. For solving the satisfiability problems, we just set the
1 https://www.gnu.org/software/glpk/

3.2 Minimization 31

objective function to 0. GLPK provides several routines for solving the LP problems, which are written
in ANSI C, but we only used the Simplex algorithm.

Launching rays from a central point The raytracing algorithm uses an interior point from which we
launch rays in directions perpendicular to the boundaries of the constraints. If we simply ask for any
point inside a bounded polyhedron, we can construct an LP problem to compute a point that satisfies the
constraints and does not locate on the boundaries, i.e., satisfies

∧
i aaaixxx < bi with strict inequalities. Since

GLPK does not support inequalities, one could be tempted to shift the non-strict constraints a little to
simulate strict ones. Considering the strict constraint Ci : aaaixxx < bi, we can obtain a non-strict constraint
C′

i by shifting it:
C′

i : aaaixxx ≤ bi −∥aaa∥δ (3.6)

where δ is a positive constant.

However choosing an appropriate quantity for δ is difficult: if it is small we will obtain a point
which is too close to the boundaries; if it is large, we may end up with an infeasible problem. Hence we
prefer to compute a point located in a “central position” of the polyhedron, which is far away from the
boundaries.

Considering a point ppp which is inside a polyhedron P, di =
bi−aaai ppp
∥aaai∥ is the distance from ppp to the

boundary of constraint Ci of P, where ∥aaai∥ is the Euclidean norm of the vector aaai. We aim at pushing
the point ppp to a position which is as far as possible from the boundaries. Problem 3.7 shows the LP for
finding the central point by adjusting the point ppp and the variable l. The variables di only appear for the
sake of readability.

maximize l

subject to di =
bi −aaai ppp
∥aaai∥

, l ≤ di (∀Ci ∈ P)
(3.7)

When the LP is optimized, we get an optimal vertex [ppp l], from which we can obtain the expected
central point ppp (Figure 3.5(a)). For unbounded polyhedra, there is no central point, as the polyhedron
does not have a “central” position. In this case it is safe to apply the shifting strategy presented in
Problem 3.6: no matter how large δ is, we can always obtain an interior point. The Simplex algorithm
will obtain a satisfiability point at one vertex of the shifted polyhedron. As it is shown in Figure 3.5(b),
one point of the two will be found as the interior point. One exception is the case where the unbounded
polyhedron contains parallel constraints (Figure 3.5(c)). In this case if we shift the constraints with a
large threshold, no point could be found. But the LP in Problem 3.7 is suitable for this special situation.

We do not need to test the shape of the polyhedron for choosing the method to find the interior point.
We always try to find a central point using Problem 3.7. If the optimization problem is unbounded, we
then try to obtain an interior point by shifting constraints.

32 Sequential Parametric Linear Programming Solver

(a)
(b)

(c)

Figure 3.5 – How to obtain an interior point in different cases: In Figure (a) and Figure (c) the central
points are found; for the case of Figure (b) the constraints are shifted for obtaining an interior point.

Testing emptiness of the interior The polyhedron can also have an empty interior, and thus we cannot
find any interior point.

Theorem 3.2. The polyhedron P has empty interior if and only if the optimal value l in Problem 3.7
is zero.

Proof. If the constraints of the polyhedron are unsatisfiable, we cannot find a point ppp inside the
polyhedron. This case can be easily detected. We here consider the problem of detecting the “flat”
polyhedron whose interior is empty. It means that the inequality constraints entail an equality. Consider

3.2 Minimization 33

a satisfiable polyhedron
∧

i aaaixxx ≤ b. There exists at least one point ppp that satisfies this polyhedron, and
we must have bi −aaai ppp ≥ 0, i.e., di ≥ 0. As l is maximized, there must exist di such that l = di, otherwise
l can still be increased. Then we know that l ≥ 0. (If ppp is outside the polyhedron, we must have l < 0,
and l is not maximized.)

If the polyhedron has empty interior, the point ppp must locate on the boundary of the polyhedron,
then one of the di is equal to 0, so l must be 0.

Now we need to prove that if l = 0, P must have empty interior. It is equivalent to: if P has
non-empty interior, then l > 0. Assume ppp is on the boundary of Ci, i.e. di = l = 0. As the polyhedron
has non-empty interior, if we move the point ppp a little towards the interior of the polyhedron, we will
have l = di > 0. That means when l = 0 the objective function l is not maximized. Therefore, if the
polyhedron has non-empty interior, l must be lager than 0.

We just proved that when l = 0 the polyhedron has empty interior, but the Simplex solver in GLPK

uses floating-point arithmetic, and thus we cannot perform the test l = 0 if l is a floating point number.
Therefore we use a relative large threshold 10−2 for comparison. If l < 10−2, we will check the
satisfiability of the obtained interior point by aaai ppp ≤ b+ t(aaai, ppp), where t(aaai, ppp) = 1.01nε|aaai|T|ppp| is the
threshold (Equation 2.9). If the satisfiability test fails, the algorithm will report that the floating point
solver cannot find a central point. Then we switch to a rational solver to deal with the problem. We do
not need to test the correctness of the optimization, as we just try to find a point at the center, and any
point near the center is fine.

Computing an irredundancy witness point In the process of testing if a constraint Ci : aaaixxx ≤ bi is
redundant with respect to other constraints C j, where j ̸= i, we need to solve a satisfiability problem:
∃xxx, aaaixxx > bi,

∧
j ̸=i aaa jxxx ≤ b j for computing the irredundancy witness point of the constraint Ci (Sec-

tion 3.2.3.1). For efficiency, we solve this problem in floating point using GLPK. However, GLPK does
not support strict inequalities, thus we need tricks to deal with them.

One way is to shift the strict inequality constraint Ci a little for obtaining a non-strict inequality
C′

i : aaaiiixxx ≥ bi + ε , where ε is a positive constant. This method is however requires to provide a suitable ε ,
which is the same problem that we faced for computing the interior point. One exception is that when
the polyhedron is a cone, it is always possible to find a point that satisfies aaaixxx ≥ bi + ε,

∧
j ̸=i aaaixxx ≤ b by

shifting the constraint Ci, no matter how large ε is.

We designed another method for non-conic polyhedra. Instead of solving a satisfiability problem,
we solve the optimization problem shown in Problem 3.8. The found optimal vertex xxx∗ is the solution
we are looking for if it satisfies aaaixxx∗ > bi + t(aaai,xxx∗) (see Equation 2.8 about t).

maximize aaaixxx

subject to aaa jxxx ≤ b j (∀ j ̸= i)
(3.8)

34 Sequential Parametric Linear Programming Solver

Example 3.4. Let use consider the polyhedron shown in Figure 3.6: P = {C1 : x2 ≤ 2,C2 : x1 + x2 ≤
7,C3 : −x1 + x2 ≤ 0}, whose interior point is ppp. We want to test the redundancy status of the
constraint C1. In Figure 3.6(a), the ray launched from ppp to C1 hit C2 first, and found the point ppp′

which violates C1 and satisfies C2. Then in Figure 3.6(b) the ray launched from ppp to ppp′ hit C3 first,
so we need to find a point that violates C1 and satisfies C2, C3, i.e., solving the satisfiability problem
{x2 > 2,x1 + x2 ≤ 7,−x1 + x2 ≤ 0}.

In Figure 3.7(a) we shift the non-strict inequality C′
1 : x2 > 2 and obtain C′′

1 . By solving the
satisfiability problem {x2 ≥ 2+ ε,x1 + x2 ≤ 7,−x1 + x2 ≤ 0} we get the witness point www. If we
compute the optimum in the direction x2 with constraints {−x1 + x2 ≤ 0,x1 + x2 ≤ 7}, as it is shown
in Figure 3.7(b), we obtain a witness point www′.

(a) The ray hit C2 first and found ppp′. (b) The ray launched from ppp to ppp′ hit C3 first.

Figure 3.6

(a) Compute the irredundancy witness point www of C′1
by ε-shifting. The witness www is on C′′1 and satisfies
C2, C3 but violates C′1.

(b) Compute the irredundancy witness point by op-
timizing in the direction x2 shown by the red vector.

Figure 3.7

3.2 Minimization 35

3.2.3.3 Preprocess of raytracing minimization

Before giving the whole floating point raytracing minimization algorithm, there is another point to
be explained. The polyhedron to be minimized may contain implicit equalities, i.e., an equality
resulting from the combination of several inequalities, for instance x1 ≤ x2, x2 ≤ x3, x3 ≤ x1 producing
x1 = x2 = x3. In this case the polyhedron to be minimized has an empty interior. As we have explained,
the raytracing minimization seeks for a point inside the polyhedron to be minimized. When there are
implicit equalities the raytracing minimization method cannot find the interior point, and thus we need
to eliminate these implicit equalities before applying the raytracing minimization.

Eliminating implicit equalities Consider the polyhedron P =
∧

i aaaixxx ≤ bi. The way to remove the
implicit constraints is that we select the constraints that may construct the implicit constraints in floating
point computation, and then from these selected constraints we use a rational solver to search for the
combination of inequalities constructing the equality. The purpose of using the floating point solver is to
decrease the number of constraints that will be given to the rational solver and to improve the efficiency.

As what we have mentioned in Section 3.2.3.2, the minimization algorithm contains the step of
testing the interior emptiness of the polyhedron P. If the floating point solver reports that P has an
empty interior, there may exist implicit inequalities. Then we try to find a point ppp which fulfills all the
constraints Ci : aaaixxx ≤ bi of P. If ppp can be found, P probably contains implicit equalities. In this case
we select all the constraints Ci fulfill aaai ppp ≤ bi + t(aaai, ppp), i ∈ {1, · · · ,k}, i.e, the constraints closed to ppp
(see Equation 2.8 about t). Among these selected constraints we look for a combination producing the
equation aaaixxx−bi =−∑α j(aaa jxxx−b j), α j ≥ 0, i ̸= j. If this combination cannot be found, it means that
there is no implicit equalities; otherwise we will obtain a set of equalities. By substituting the equalities
into the inequalities, we will obtain the reduced inequalities, which is explained in Example 3.5. All the
implicit equalities will be eliminated by repeating this process.

Example 3.5. Given a polyhedron P = {C1 : 2x1 + x2 ≤ 5, C2 : x1 −3x2 ≤ 2,C3 : −x1 +3x2 ≤−2},
the constraints C2 and C3 construct an equality x1 −3x2 = 2. As the equality does not appear in the
polyhedron explicitly, it is an implicit equality. Once obtain the equality x1 −3x2 = 2, we substitute
x1 by x2, i.e. x1 = 3x2 +2. By substituting x1 of the remaining inequality 2x1 + x2 ≤ 5, we obtain
7x2 ≤ 1.

3.2.3.4 The floating point raytracing minimization algorithm

The pseudo-code of the algorithm of the raytracing minimization is shown in Algorithm 1. As we said,
Q denotes the field of rational numbers, and F is the set of finite floating-point numbers. The variables
stored as floating point numbers are denoted by nameF.

Termination There is another point to be explained about Algorithm 1. During the process of
computing the witness point, Algorithm 1 may loop forever because of imprecision of floating point

36 Sequential Parametric Linear Programming Solver

Algorithm 1: Raytracing minimization algorithm.

Input: polyF: the polyhedron to be minimized
Output: the indices of the irredundant constraints and the witness point
Function Minimize(polyF)

// try to obtain a central point of the polyhedron

pF = GetCentralPoint(polyF)
if LP is unbounded then

// if cannot find a central point, compute any point inside the polyhedron

pF = GetInteriorPoint(polyF)
if pF == none then

report polyhedron has empty interior
terminate

// launch rays from the interior point to each boundary

raysF = LaunchRays(polyF, pF)
/* compute the distance from the interior point to each boundary along the direction

of rayF, and set the constraint whose boundary was first met as irredundant */

foreach rayF in raysF do
constraintIdx = FirstHitConstraint(polyF, rayF, pF)
SetAsIrredundant(constraintIdx)

foreach constraint idx in undetermined constraints do
/* if the floating point minimization cannot determine the redundancy status,

set the constraint as redundant for guaranteeing soundness */

if cannot determine then
SetAsRedundant(idx)

else
/* if the irredundancy witness point exists, the corresponding constraint is

irredundant; otherwise it is redundant */

if found irredundancy witness point then
SetAsIrredundant(idx)

else
SetAsRedundant(idx)

return indices of irredundant constraints with their witness point

computation. Considering the example in Figure 3.8, in which the polyhedron is colored in blue, and
ppp is the interior point. We want to check if C1 is redundant. The ray rrr launched from ppp to ppp′ hit C1

first, and then hit C2. In exact computation the algorithm should report that C1 is irredundant. But if we
compute in floating point numbers, when the gray area is extremely small, the distance l1 from ppp to C1

and the distance l2 from ppp to C2 are nearly equal. Because of rounding errors, the floating point solver
may misjudge that l2 < l1, i.e., the ray rrr hit C2 first. Then it would find the same point ppp′, which violates
C1 and satisfies C2. Then the same ray rrr would be launched from ppp to ppp′. Because of the misjudge of
the comparison of l1 and l2, the process would be repeated, and Algorithm 1 would loop for ever.

3.3 Projection and Convex hull 37

To avoid this problem, we need to maintain a list of constraints which are hit before reaching C1.
If the hit constraint exists in the list, the process of checking redundancy should stop and report the
constraint C1 as redundant.

Figure 3.8 – When the gray area is extremely small, the ray may misjudge the first hit constraint as C2
instead of C1.

Soundness The algorithm of raytracing minimization using floating point arithmetic is sound, meaning
that the polyhedron which is minimized by the floating point minimization algorithm always contains
the exact minimized polyhedron. In other words, the minimization algorithm should always report a
constraint as redundant when it cannot determine the redundancy status of this constraint.

In the first phase of raytracing minimization, the determination of irredundancy consists in comparing
the distances from the interior point to each constraint, which are floating point numbers. A constraint
Ci is irredundant only if di + t < d j, ∀ j ̸= i, where di (or d j) is the distance from the interior point to the
constraint Ci (or C j), t = max(|di|, |d j|)ε is the threshold and ε is the machine epsilon. If there are several
constraints C j satisfy |di −d j|< t, then Ci will be marked as undetermined and will be remained to the
second phase. In the second phase, if GLPK cannot find an irredundancy witness point www that fulfills
Ci : aaaixxx ≤ bi, we can believe it and mark Ci as redundant; if GLPK found the irredundancy witness point,
we need to test that the point really violates Ci with a threshold t: aaaiwww > bi + t(aaai, ppp) (see Equation 2.8
about t). If the test fails, the constraint Ci will be marked as redundant.

We have seen that in the second phase, a constraint is reported as redundant if: i) GLPK cannot find
the witness point; ii) the thresholded satisfiability test aaaiwww > bi + t(aaai, ppp) fails; iii) there is numerical
errors during the computation of witness point (the same hit constraint appears repeatedly).

As a result, some irredundant constraints may be misjudged as redundant, which results in over-
approximation, but not unsoundness in static analysis.

3.3 Projection and Convex hull

We present in this section how the PLP solver can be used to compute projection and convex hull,
following the work of Maréchal et al. [20]. Then we will be able to explain our efficiency improvement
using floating point computations.

38 Sequential Parametric Linear Programming Solver

3.3.1 Projection

Given a polyhedron P in d dimensions, the polyhedral projection can eliminate 1 to d −1 dimensions
and obtain a polyhedron P ′ in lower dimensions such that P ⊏ P ′×Q1 ×·· ·×Qe for elimination of
dimensions 1 to e.

Example 3.6. Figure 3.9 shows an example of projecting a 3D polyhedron to 2D. The polyhedron to
be projected (in gray) is P = {−15x1 −x2 +6x3 ≥ 0, −3x1 −4x2 +5x3 ≥ 0, −2x2 +x3 ≥−3,−x2 +

2x3 ≥ 0,6x1+x2+10x3 ≥ 0,x1+4x2−24x3 ≥−59,2x1+8x2+11x3 ≥ 0}. We eliminate the variable
x3 and obtain the projected polyhedron (in purple) P ′ = {−x1 ≥ −1, 77x1 + 32x2 ≥ −259, x1 −
44x2 ≥−131, x1 +4x2 ≥−11}.

Figure 3.9 – Projecting a 3D polyhedron to 2D.

Fourier-Motzkin elimination [31] is a classic method to project polyhedra in constraint-only de-
scription. This method has two drawbacks: i) it can only eliminate one variable each time, ii) many
redundant constraints could be produced during the process. Those drawbacks are the motivation to
compute projection using PLP [19, 18, 20].

PLP for projection The polyhedron to be projected is P: Axxx+ bbb ≥ 0. Assume we will eliminate
xp, · · · ,xq, where 1 ≤ p ≤ q ≤ n. To compute the projection, following [20] we construct a PLP shown
in Problem 3.9, in which xxx are the parameters, and λλλ are decision variables, with xxx = [x1, · · · ,xn]

T,

3.3 Projection and Convex hull 39

λλλ = [λ0, · · · ,λm]
T.

minimize
m

∑
i=1

λi(aaaixxx+bi)+λ0

subject to
m

∑
i=1

λi(aaai ppp+bi)+λ0 = 1 (*)

n

∑
i=1

ai jλi = 0 (∀ j ∈ {p, · · · ,q})

and λi ≥ 0 (∀i ∈ {0, · · · ,m})

(3.9)

where ppp = [p1, · · · , pn]
T is a point inside the projected polyhedron and it is called normalization point.

The (*) equation in Problem 3.9 is called normalization constraint, which makes sure that: i) at least
one of the λi is not zero; ii) all the constraints of regions intersect at the same point ppp; iii) the obtained
projected polyhedron is free of redundancy (see [1] for explanation). Let us consider the projected
polyhedron shown in Figure 3.9. Figure 3.10(a) shows the regions obtained from the normalized
PLP problem, i.e., Problem 3.9. If we replace the normalization constraint with ∑

m
i=0 λi = 1, which

only guarantees that not all the variables are zero, we obtain the regions without normalization in
Figure 3.10(b). In these two figures, the regions with the same color have the same optimal function. We
can see that in Figure 3.10(b) there are two more regions which are in yellow and gray. The yellow region
corresponds to a redundant constraint of the projected polyhedron, and the gray region corresponds to
the trivial constraint 0 ≤ 1.

(a) The regions with normalization of Prob-
lem 3.9. (b) The regions with the constraint ∑λi = 1.

Figure 3.10

40 Sequential Parametric Linear Programming Solver

3.3.2 Convex hull

The convex hull of two polyhedra is the smallest convex set that contains the two polyhedra. Given two
polyhedra P1 : A′xxx′+bbb′ ≥ 0, P2 : A′′xxx′′+bbb′′ ≥ 0, the convex hull of P1 and P2 is: P1 ⊔P2 = {xxx|xxx =
αxxx′+(1−α)xxx′′,A′xxx′+bbb′ ≥ 0,A′′xxx′′+bbb′′ ≥ 0,0 ≤ α ≤ 1}.

The Figure 3.11 shows an example of the convex hull of two polyhedra in 2D. The orange areas are
the polyhedra, and the red frame is the boundary of the convex hull.

Figure 3.11 – The convex hull of two polyhedra in 2D.

PLP for convex hull We recall here the method designed by Maréchal et al. [20] to compute the
convex hull via PLP. Let P = P1 ⊔P2 with P1: A′xxx′+bbb′ ≥ 0 and P2: A′′xxx′′+bbb′′ ≥ 0, where A′ ∈Qm′×n,
bbb′ ∈Qm′

, A′′ ∈Qm′′×n and bbb′′ ∈Qm′′
. As P1 ⊑ P and P2 ⊑ P, each constraint of P is redundant with

respect to both P1 and P2. According to what we have explained in Section 3.2.2, for each constraint
Ci : aaaixxx+bi ≥ 0 of P, we have ∃λλλ

′ ≥ 0,aaaixxx+bi = ∑
m′
j=1 λ ′

j(aaa
′
jxxx

′+b′j)+λ ′
0 = ∑

m′′
j=1 λ ′′

j (aaa
′′
j xxx

′′+b′′j)+λ ′′
0 .

Thus we have the constraints (**) in Problem 3.10. The constraint (*) is the normalization constraint, as
in Problem 3.9.

minimize
m′

∑
i=1

λ
′
i (aaa

′
ixxx

′+b′i)+λ
′
0

subject to
m′

∑
i=1

λ
′
i (aaa

′
i ppp+b′i)+λ

′
0 = 1 (*)

A′T
λλλ
′−A′′T

λλλ
′′ = 0

b′Tλλλ
′+λ

′
0 −b′′Tλλλ

′′−λ
′′
0 = 0 (**)

and λ
′
i ≥ 0,λ ′′

j ≥ 0 (∀i ∈ {0, · · · ,m′},∀ j ∈ {0, · · · ,m′′}) (**)

(3.10)

where ppp = [p1, · · · , pn]
T is the normalization point.

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 41

3.4 The sequential algorithm of PLP solver for computing projection
and convex hull

In this section we present our sequential algorithm of PLP solver. We will see how to solve the PLP
problem in floating point numbers and reconstruct the rational results. Some checkers are provided to
ensure the soundness and precision of the results. When it is necessary, rational solvers can be invoked
for computing exact solutions.

3.4.1 Overview of the sequential algorithm

In the pseudo-code of the sequential algorithm of the PLP solver (Algorithm 2), we annotate data with
nametype, where name is the name of data and type is either Q or/and F. Q×F means that the data is
stored in both rational and floating-point numbers. The PLP problem is stored in both floating point and
rational numbers. The optimal functions are in rational numbers, and the corresponding regions are in
both floating point and rational numbers.

We use a work list to store a set of tasks. A task is stored as a triple (www, R f rom, Ff rom), in which www is
generated by the region R f rom and it is the irredundancy witness point of the constraint whose boundary
is Ff rom. The task points www are in the parameters’ domain, and we use them to compute unexplored
regions. An initial task will be added into the work list, and more tasks will be appended during the
execution of the algorithm.

Given a PLP problem, the solution goes through several steps. We first list the steps, and then explain
each step into details in the following sections.

Step 1 Construct the PLP for computing projection or convex hull.

Step 2 Pick up a random valuation of the parameters for obtaining a initial task (www, none, none)
and push it into the work list W .

Step 3 Fetch a task (www, R f rom, Ff rom) from W .

Step 4 Check if the point www is covered by any known region. If it is not, go to Step 5; otherwise go
to Step 10.

Step 5 Instantiate the parametric objective with www to obtain a standard (non-parametric) LP problem.

Step 6 Solve the LP problem obtained in Step 5 using GLPK to obtain a basis B.

Step 7 Reconstruct the PLP problem which is equivalent to the original one associated to B.

Step 8 Minimize the region, and store the current solution associated to B.

Step 9 Add more tasks of which the task points are outside the obtained region into the work list.

Step 10 Check if the obtained region and the region R f rom are adjacent.

Step 11 Go to Step 2 and repeat the processes until W = /0.

42 Sequential Parametric Linear Programming Solver

3.4.2 Construction of PLP problems (Step 1)

The first step of our approach is to construct the PLP problem for computing projection (Problem 3.9)
or convex hull (Problem 3.10). For constructing the PLP problem, we need to choose a normalization
point. By instantiating the parameters with this point, we obtain the normalization constraint. The set of
constraints of the PLP problem are all equalities, and thus we need to eliminate the redundant equalities,
i.e. the equalities which are equivalent to others, which can be performed by Gaussian Elimination. Then
we substitute the equalities into the inequalities λλλ ≥ 0 for reconciling our approach with GLPK. After
that we minimize the set of inequality constraints. The details are explained below. At the end of Step 1,
we store the constraints of the PLP problem in both rational and floating point numbers. The rational
constraints are used for reconstructing rational results, and the floating point constraints are given to
GLPK for solving the LP problems. The constraints in floating point numbers are inequalities, and then
the Simplex algorithm in GLPK will add slacks variables to each inequalities, i.e., the inequalities will be
transformed into equalities in GLPK. Thus we store the rational constraints as equalities such that they
are in the same form as in GLPK.

Choosing a normalization point Consider the projection operator implemented via PLP and P ′ =

P/{xp, · · · ,xq} is the resulting polyhedron, i.e., the polyhedron obtained by projecting out the variables
{xp, · · · ,xq} of P. The point ppp′ used during PLP computation for normalization of P ′ must be in the
interior of P ′. ppp′ is computed from a point ppp in the interior of P by ppp′ = ppp/{xp, · · · ,xq}, i.e., the
components {xp, · · · ,xq} of ppp are discarded. For convex hull, P ′ = P1 ⊔P2, the point ppp is chosen either
in P1 or in P2. As P1 ⊑P ′ and P2 ⊑P ′, ppp′ = ppp must be in the interior of the obtained polyhedron P ′.

The normalization point ppp′ in the projected polyhedron is computed in floating-point numbers. As
the constraints of the PLP problem will be stored in both floating-point and rational numbers, we need
to convert ppp′ into rational for constructing the rational constraints, and make sure that the rational point
is still inside the resulting polyhedron. The point ppp′ ∈ P ′ if ppp ∈ P, so we compute ppp, convert it into
rational numbers, and then check if ppp is still inside P. This is straightforward: firstly we keep k digits in
decimal part and convert the value into rational by computing its continued fraction. If the rational point
does not satisfy P, we keep k+1 digits and do that repeatedly until a satisfiable point is obtained.

Applying Gaussian Elimination A PLP problem may contain constraints that are equivalent to each
other, i.e., redundant equalities, which should be removed. We apply Gaussian Elimination to the
augmented matrix (Definition 3.3) of the constraints of the PLP problem for obtaining the augmented
matrix in reduced row echelon form2, and thus all the redundant equalities will be removed.

Definition 3.3 (Augmented matrix). Given the system of equalities Axxx = bbb, its augmented matrix is
[A|bbb].

2 To adapt to the description in our approach, we define the reduced echelon from differently from that in the textbook.

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 43

Definition 3.4 (Reduced row echelon form of a matrix). A matrix is in reduced row echelon form if
it fulfills the conditions below:

• All rows with at least one nonzero element are above rows of all zeros.

• Each nonzero row contains an element 1.

• Each column containing the element 1 has zeros everywhere else.

Example 3.7. Considering the matrix

3 −1 1 0 5

1 −3 0 3 −3

, its reduced form is

1 0 9
24 −3

8
9
4

0 1 1
8 −9

8
7
4

. The matrix

1 9
24 0 −3

8
9
4

0 1
8 1 −9

8
7
4

 is also in reduced form.

Reconciling with GLPK To solve LP problems, GLPK always adds row variables to the constraints,
no matter they are equalities or inequalities. Assuming we have an equality aaaiλλλ = bi, which is expressed
in GLPK as an equality ri = aaaiλλλ with a bound ri = bi, where ri is a row variable. The systematic
introduction of row variables can introduce spurious dimension in the results of our PLP solver, and this
will lead to wrong regions, which will be explained in Example 3.8. The idea to reconcile GLPK and
our procedure is to prevent GLPK from adding useless row variables to equality constraints. Hence we
transform the original problem into a reduced form without equality constraints. Let us illustrate it on an
example.

Example 3.8. Consider a polyhedron {−40x2 ≤−7, −x1 ≤ 20, −x1 +5x2 +3x3 ≤ 20}, from which
we want to eliminate the variable x1 using our PLP solver. We construct the PLP problem for
projection in Problem 3.11 with the normalization point (0,1.2,0).

minimize λ1(40x2 −7)+λ2(x1 +20)+λ3(x1 −5x2 −3x3 +20)+λ0

subject to 41λ1 +20λ2 +14λ3 +λ0 = 1

λ2 +λ3 = 0

and λ1,λ2,λ3,λ0 ≥ 0

(3.11)

The PLP solver instantiates the parameters (x1,x2) of the objective function with a point, say
(1,1,1), to obtain a standard (non-parametric) LP problem shown in Problem 3.12. GLPK transforms
this LP problem into Problem 3.13.

44 Sequential Parametric Linear Programming Solver

minimize 33λ1 +21λ2 +13λ3 +λ0

subject to 41λ1 +20λ2 +14λ3 +λ0 = 1

λ2 +λ3 = 0

and λ1,λ2,λ3,λ0 ≥ 0

(3.12)

minimize

subject to

and

33λ1 +21λ2 +13λ3 +λ0

r1 = 41λ1 +20λ2 +14λ3 +λ0, r1 = 1

r2 = λ2 +λ3, r2 = 0

λ1,λ2,λ3,λ0 ≥ 0

(3.13)

Solving Problem 3.13 with GLPK leads to choosing λ1, r2 as basic variables. Then we can restate
Problem 3.11 into an equivalent PLP with the basis λ1, r2:

minimize

subject to

and

r1(
40
41 x2 − 7

41)+λ2(x1 − 800
41 x2 +

960
41)+λ3(x1 − 765

41 x2 −3x3 +
918
41)+λ0(−40

41 x2 +
48
41)

λ1 =
1
41 r1 − 20

41 λ2 − 14
41 λ3 − 1

41 λ0, r1 = 1

r2 = λ2 +λ3, r2 = 0

λ1,λ2,λ3,λ0 ≥ 0
(3.14)

We know that λ2 = −λ3 = 0, as λ2,λ3 ≥ 0, and r1 = 1, which means the objective function
in Problem 3.14 is equivalent to (40

41 x2 − 7
41)+ λ0(−40

41 x2 +
48
41), where λ2 and r1 are replaced by

their fixed bound. Since λ0 has a lower bound, the objective function reaches minimum when
the parametric coefficient of λ0 is non-negative, i.e. in the region {−40

41 x2 +
48
41 ≥ 0}. This is the

expected result. But the information λ2 = −λ3 is not straightforward for GLPK because of the
introduce of λ2. When our region reconstruction procedure requests GLPK to get the bound of the
non-basic variables r1, λ2 and λ3, it obtains fixed bound r1 = 1 but lower bound λ2 ≥ 0, λ3 ≥ 0.
Based on this information λ2 and λ3 remain in the objective function, which leads to the region
{x1 − 800

41 x2 +
960
41 ≥ 0, x1 − 765

41 x2 −3x3 +
918
41 ≥ 0, −40

41 x2 +
48
41 ≥ 0} in Q3, whereas we expected a

region in Q2. The error is obvious, as x1 should have been eliminated.
To avoid this issue, we transform the equalities into inequalities before giving them to GLPK. We

substitute λ1, λ2 in the inequalities and the objective function by λ1 =
6
41 λ3 − 1

41 λ0 +
1

41 , λ2 =−λ3,
and obtain the reduced form of the constraints of Problem 3.11 is shown in Problem 3.15. The
substitution can be computed by Gaussian Elimination. The augmented matrix of the constraints

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 45

{41λ1 +20λ2 +14λ3 +λ0 = 1, λ2 +λ3 = 0} is

41 20 14 1 1

0 1 1 0 0

. By applying Gaussian Elimi-

nation, we obtain the reduced matrix

1 0 − 6
41

1
41

1
41

0 1 1 0 0

, which is equivalent to the substitution

λ1 =
6

41 λ3 − 1
41 λ0 +

1
41 , λ2 =−λ3.

subject to
6
41

λ3 −
1
41

λ0 +
1

41
≥ 0

−λ3 ≥ 0

and λ3,λ0 ≥ 0

(3.15)

The next step is to remove the redundant constraints. As what explained in Section 3.2.3.3, we
need to eliminate the implicit equalities before using the raytracing minimization. We found the
implicit equality λ3 = 0, substituted it into the inequality constraints and the objective function,
and obtained our final LP problem shown in Problem 3.16. Then we need to use the raytracing
minimization to remove the redundant constraints. In our example, the two constraints are both
irredundant.

subject to − 1
41

λ0 +
1
41

≥ 0

and λ0 ≥ 0
(3.16)

GLPK will add a row variable to the constraint and obtain r1 = λ0, r1 ≥ 0. To keep the equivalent
representation of the constraint in GLPK and in our approach, we add a slack variable λ1 to the
constraint and obtain the equality 1

41 λ0 +λ1 = 1
41 with λ0, λ1 ≥ 0. We store this equality as the

constraint of the PLP problem. The final PLP problem is shown in Problem 3.17, which is equivalent
to the original PLP in Problem 3.11.

minimize λ0(−
40
41

x2 +
8
41

)+
40
41

x2 −
7
41

subject to
1
41

λ0 +λ1 =
1

41
and λ1, λ0 ≥ 0

(3.17)

46 Sequential Parametric Linear Programming Solver

3.4.3 Initial tasks (Step 2)

In Step 2 of the PLP solver, one initial point, which is different from the normalization point, will be
randomly selected to trigger the algorithm. The initial task point will be inserted into the work list firstly,
and then more task points will be inserted during the computation approach.

3.4.4 Checking belonging of points (Step 3-4)

Before exploring a region using a task point (Step 5), we need to check if the point is covered by any
known region for avoiding recomputation. Assume we fetch a task (qqq,R,F) from the work list, and
test if the task point qqq is inside the region

∧
i oooixxx ≤ ci. As there is no strict inequality in floating-point

arithmetic, we cannot simply test oooiqqq < ci, and hence we test oooiqqq ≤ ci − t(oooi,qqq), where t is defined by
Equation 2.8. If the test succeeds, it guarantees that qqq locates in the interior of the region. However, if it
reports the point is not covered, the point may still be inside the region. This may lead to recomputation
of the corresponding LP problem at a low probability. This approach guarantees that no task will be
missed. The termination is guaranteed, as we maintain a set of bases (stored in a hash table) which are
obtained from GLPK. If a basis is found to be existed in the hash table, the computation will terminate.

3.4.5 Obtaining an optimal basis by solving LP using GLPK (Step 5-6)

If the point qqq taken from the work list is not covered by any known region, we will construct the objective
function of the LP problem by instantiating the parameters with qqq. The LP problem is:

minimize
n

∑
i=1

λi(aaaiqqq+bi)+λ0

subject to
n

∑
i=1

λi(aaai ppp+bi)+λ0 = 1 (*)

n

∑
i=1

ai jλi = 0 (∀ j ∈ {p, · · · ,q})

and λi ≥ 0 (∀i ∈ {0, · · · ,n})

(3.18)

Then we solve the LP problem with the Simplex method in GLPK. GLPK reconstructs the constraints
into the form (λB)i = ∑

n
j=1 ai j(λN) j + ci, where (λB)i is a basic variable, (λN)i is a non-basic variable,

and ci is a constant. A new objective function is obtained by substituting the basic variables with non-
basic variables. We extract the indices of basic and non-basic variables from GLPK for reconstructing
the rational results.

3.4.6 Reconstructing rational matrix and extracting result (Step 7-9)

We solved Problem 3.18 in floating-point numbers using GLPK. Had the solving been done in exact
arithmetic, one could retain the optimal point λλλ

∗, but here we cannot use it directly. Instead, we exploit

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 47

the partition of the variables into basic and non-basic variables, and from this partition we can recompute
exactly, in rational numbers, the optimal function, as well as a certificate that it is feasible.

Consider the Simplex tableau below in Table 3.1. Let M denote the matrix of constraints and O

λ1 · · · λm = constant
... .

row j a j1 · · · a jm b j
... .

objective ∑
n
k=1 o1kxk + c1 · · · ∑

n
k=1 omkxk + cm −Z∗(xxx) = ∑

n
k=1 zkxk + z0

Table 3.1 – Simplex tableau.

the matrix of the PLP objective function in Table 3.1. The ith column corresponds to the coefficients
of ith variable, where the variables λλλ = [λ1, · · · ,λm]; the last column of the each matrix represents the
constants.

M =

a11 · · · a1m b1

...
. . .

...
...

an1 · · · anm bn

 O =

o11 · · · om1 z1

...
. . .

...
...

o1n · · · omn zn

c1 · · · cm z0

(3.19)

To generalize the result of the LP, we need to reconstruct the matrices M and O associated to the
basis B provided by GLPK. We extract the columns corresponding to the basic variables from matrices in
Problem 3.19, and use MB and OB to denote the sub-matrices of M and O only containing these extracted
columns. By linear algebra in rational arithmetic3 we compute a matrix Θ, representing the substitution
performed by the Simplex algorithm, which result in the coefficients of the objective function of the
PLP problem being 0. We compute the matrix Θ by Θ = OBM−1

B , where M−1
B denotes the inverse of

MB (actually, we do not inverse that matrix but instead call a solver for linear equation systems). Then
we apply this substitution to the objective matrix O to get the matrix of the new objective function
O′: O′ = O−ΘM. As OB = ΘMB, by applying O−ΘM the columns corresponding to the basic variables
become 0.

Detecting optimum in PLP We detect the optimal function and the corresponding region from the
matrix O′. The variables of our PLP problem for computing projection have lower bound 0, which means
that the objective function of the PLP problem reaches the optimal when all the non-basic variables reach
their lower bound and their coefficients should be non-negative. Each non-zero column in O′ represents

3 We use Flint, which provides exact rational scalar, vector and matrix computations, including solving of linear systems.
http://www.flintlib.org/

http://www.flintlib.org/

48 Sequential Parametric Linear Programming Solver

a function in xxx, which is the coefficient of a non-basic variable, say λ j. The conjunction of constraints∧
j/∈B(O

′
• j)

Txxx ≥ 0 defines a region of xxx where j belongs to the indices of non-basic variables. Note that
the region itself is a polyhedron. Therefore, the conjunction of constraints may contain redundancy and
we must apply the minimization procedure over it. The minimization algorithm produces irredundancy
witness points of all the irredundant constraints, which are points located over each constraint. Thus
they can be used for instantiating the PLP objective and exploring new part of the parameter space. We
insert these witness points into the work list and use them to do the next explorations.

3.4.7 Checking adjacency regions (Step 10)

Once we found a new region, the witness points of this region are added into the work list as new task
points. Then more regions will be explored by these tasks. But there is a subtlety: the region found by
the witness point may not be adjacent to the original region, i.e. they do not share the same boundary
(see Figure 3.12).

Adjacent regions Consider the example in Figure 3.12. Assume we found a new region R1, and
one of its constraints is C1. The exploration using the witness point www1 of C1 finds a region R2 which
is not adjacent to R1, i.e., there is a gap between the boundary of C1 belonging to R1 and that of C2

belonging to R2. It is possible that the witness point www2 of C2 will not find the region between R1 and
R2 (www2 could be in R1 or beyond). Hence there is a risk of missing a region. To prevent missing regions,
we need to check adjacency of regions once we found a new region. Considering the same example
in Figure 3.12: once found the region R2 with the point www1, we check adjacency of R1 and R2. The
adjacency test is designed to provide a point www′ between the two regions if adjacency does not hold.
Thus www′ is inserted into the work list for exploring the missing region between R1 and R2.

R1

R2

w2

w1

?

C1

C2

w'

Figure 3.12 – An example of missing regions

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 49

The method to check adjacency To check adjacency we compare each constraint of the two regions
syntactically in rational numbers. We can use a syntactic test thanks to the normalization constraint
(*) of Problem 3.9. If two regions have a common boundary, they are likely to be adjacent, but this is
not a sufficient condition. We need to consider the situation in Figure 3.13, in which the constraints C1

and C2 have a common boundary, which is denoted by F , but their regions R1 and R2 are not adjacent.
To detect this situation we need an additional test. If two regions are adjacent, they should have the
same optimal value along the direction of the common boundary. We choose a point randomly on the
boundary F , and evaluate the optimal functions of R1 and R2 with this point. If we obtain the same
value, then the two regions are adjacent. Recall that the boundary F of a constraint oooxxx+ c ≥ 0 is an
equation oooxxx+ c = 0. To get a point ppp on the boundary F , we choose a coefficient oi which is not 0, and
set the other components to zero. Then by solving o1 ×0+ · · ·+oi pi + · · ·+on ×0+ c = 0, we obtain
pi =− c

oi
. The point ppp = (0, · · · ,− c

oi
, · · · ,0) is on the boundary. As we said, if Z∗

1(ppp) = Z∗
2(ppp) the two

regions R1 and R2 are adjacent.

R1

C1

C2

R1

F

Figure 3.13 – Limitation of syntactic adjacency checking

Finding a point between non-adjacent regions When the previous test reports that regions R1 and
R2 are not adjacent, we compute an additional point between them, as it is shown in Figure 3.14. We
compute the length l0 between the two points www1 and www2. The length from www1 to the nearest frontier of C1

is l1 and that from www2 to the frontier of C2 is l2. The segment from www1 to www2 intersects the boundaries of
C1 and C2 at w′

1 and w′
2 respectively. The new instantiation point www3 is the middle of the segment w′

1w′
2.

The adjacency test is performed in rational computation. The new point www3 is computed in floating point
arithmetic, as www1 and www2 are in floating point numbers.

Generally speaking, we do not need to consider the imprecision of floating point arithmetic here, as
the point www3 can locate at any place inside the missed region. What matters is that www3 should not be too
closed to the boundary, otherwise the exploration of regions may loop forever. Considering the same
example in Figure 3.14, if the added point www3 in R3 is extremely closed to C1, it may find the region R1

(although the algorithm will terminate once found that the basis has already been found). Then R1 is

50 Sequential Parametric Linear Programming Solver

checked to be not adjacent to R2, and the same point would be added. Repeatedly R1 would be found,
and so on. To avoid this situation, we check l0 > l1 + l2 + t, where t = ε max(|l0|, |l1|, |l2|). If this test
fails, we discard the point www′, and rely on a rational checker to make up the missed region (Chapter 4.4).
Note that missing a region cannot break the soundness of the result.

R1

R2

R3

l1

l2

l0

w1

w2

w1'

w2'

w3

C1

C2

Figure 3.14 – Add point between regions

3.4 The sequential algorithm of PLP solver for computing projection and convex hull 51

Algorithm 2: Sequential algorithm of PLP solver for computing projection.

Input: polyQ: the polyhedron to be projected
[xp, ...,xq]: the variables to be eliminated
n: number of initial points

Output: (optimumsQ,regionsQ×F) the set of optimal functions with their regions
Function Plp(polyQ, [xp, ...,xq], n)

/* convert the polyhedron to be projected which is stored in rational numbers into

floaing point numbers */

polyF = GetFloat(polyQ)
// minimize the polyhedron to be projected

irredundantIdx = Minimize(polyF)
minimizedPolyQ×F = GetSubPoly(polyQ, irredundantIdx)
// construct the PLP problem for computing projection

pl pQ×F = ConstructPlp(minimizedPolyQ×F, [xp, ...,xq])
// take any point different from the normalization point as an initial task point

worklistF = GetInitialTasks(minimizedPolyQ, n)
(optimumsQ,regionsQ×F) = none
while worklistF ̸= none do

// take a task in the work list

(wF, R f rom
Q, Ff rom) = GetTask(worklistF)

/* Rcurr
Q is none if wF is not inside any known region; otherwise Rcurr

Q is the

region wF located in */

Rcurr
Q = CheckCovered(regionsF, wF)

// compute a new region with wF

if Rcurr
Q == none then

/* set the parameters to wF, use GLPK to solve the obtained LP problem, and

obtain the basic and nonbasic variables from GLPK */

(basicIndices, nonbasicIndices) = GlpkSolveLp(wF, pl pF)
// reconstruct the PLP problem for obtaining rational result

reconstructMatrixQ = Reconstruct(pl pQ, basicIndices)
(newOptimumQ, newRegionQ×F) = ExtractResult(reconstructMatrixQ,

nonbasicIndices)
// minimize the new region using floating point arithmetic

(irredundantIdx, witnessListF) = Minimize(newRegionF)
/* obtain minimized rational region by extracting the irredundant constraints

from the rational region */

minimizedRQ = GetRational(newRegionQ, irredundantIdx)
// store the result

Insert((optimumsQ,regionsQ×F), (newOptimumQ, minimizedRQ×F))
// add the irredundancy witness points into the work list as new task points

AddWitnessPoints(witnessListF, worklist)
Rcurr

Q=minimizedRQ

/* if the the two regions are not adjacent, add an extra task point between them;

otherwise store them as adjacent regions */

if AreAdjacent(Rcurr
Q, R f rom

Q, Ff rom) then
Fcurr = GetCrossBoundary(Rcurr

Q, R f rom
Q, Ff rom)

StoreAdjacencyInfo(R f rom
Q, Ff rom, Rcurr

Q, Fcurr)
else

AddExtraPoint(worklist, Rcurr
Q, R f rom

Q)

52 Sequential Parametric Linear Programming Solver

3.5 Checkers and Rational Solvers

We implemented most part of our procedure in floating-point numbers for the search of a solution
followed by a reconstruction of the exact solution using efficient algorithm of linear algebra. But there
are several cases where we should switch to exact checkers (and solvers if necessary) during the search
in order to ensure the soundness and precision of the result. In the following sections we will address
these rational processes.

3.5.1 Detecting flat regions

Our regions are obtained by reconstructing the rational matrix of the PLP objective function. They
are converted into floating-point representation when the solver builds an LP problem for GLPK by
instantiating the parameters in the PLP objective with a point (in floating point representation) picked up
in the work list. As the regions are normalized and intersect at the same point, they are in the shape of
cones. During the conversion, the constraints will lose accuracy, and thus a cone could be misjudged
as flat, meaning it has empty interior. For instance, we have a cone {C1 : −100000001

10000000 x1 + x2 ≤ 0, C2 :
100000000
10000000 x1 − x2 ≤ 0}, which is not flat. After conversion, C1 and C2 will be represented in floating-point

numbers as {C1 : −10.0x1 + x2 ≤ 0, C2 : 10.0x1 − x2 ≤ 0}, and the floating-point cone is flat. Thus the
flat region will be discarded which results in imprecision of the result.

Our algorithm of raytracing minimization will report that the region is flat if it cannot find a point
inside the floating point region. In this case we need to invoke a rational checker to test if the region
is really flat. In The rational checker, all the constraints are shifted to the direction in the interior of
the region. As the region is a cone, the constraints of a flat region will become infeasible after shifting,
and a non-flat region will still be a cone. Thus we invoke our pure rational Simplex solver to test the
satisfiability of the shifted constraints. If the shifted constraints becomes infeasible, i.e., the region is
flat, we launch a rational minimization algorithm, which is implemented using Farkas’ lemma, to obtain
the minimized region.

3.5.2 Verifying feasibility of the result provided by GLPK

GLPK uses a threshold (10−7 by default) when checking the feasibility of the solution. It may thus
report a feasible result when the problem is in fact infeasible. Assume that we have an LP problem
whose constraints are C1 : λ1 ≥ 0,C2 : λ2 ≥ 0,C3 : λ1 +λ2 ≤ 10−8, GLPK will obtain (λ1,λ2) = (0,0) as
a solution, whereas this point does not fulfill the constraints.

A solution is feasible if all the nonbasic variables reach their lower bound 0, and the basic variables
fulfill their bound λλλ ≥ 0. That means when the solution is infeasible, at least one of the basic variable is
negative, i.e., ∃λi ∈ B, λi < 0, where B is the basis provided by GLPK. In this case the objective function
of the PLP is not a non-negative combination of the constraints of the polyhedron to be projected, which
results in an unsound result (see Example 3.9). Therefore we must test the feasibility of the result
provided by GLPK in rational numbers.

3.5 Checkers and Rational Solvers 53

Example 3.9. Consider the example in Figure 3.15: we have a polyhedron P = {x1 + x2 − 5 ≥
0, −x1 + x2 + 3 ≥ 0, x1 − x2 + 2 ≥ 0, −x1 − x2 + 8 ≥ 0}, and we want to eliminate x1. The PLP
problem for computing this projection is shown below.

minimize λ1(x1 + x2 −5)+λ2(−x1 + x2 +3)+λ3(x1 − x2 +2)+λ4(−x1 − x2 +8)+λ0

subject to λ1 +3λ2 +2λ3 +2λ4 +λ0 = 1

λ1 −λ2 +λ3 −λ4 = 0

and λi ≥ 0 (∀i ∈ {0, · · · ,4})

(3.20)

The expected projected polyhedron is P ′ = {x2 ≥ 1, x2 ≤ 5}. If we choose λ1, λ3 as basic variables,
we will have λ1 = 5λ2 + 4λ4 +λ0 − 1, and λ3 = −4λ2 − 3λ4 −λ0 + 1. By setting λ2, λ4, λ0 to 0,
we obtain λ1 = −1, and thus the basis λ1, λ3 leads the LP problem to infeasibility. If we use the
infeasible basis λ1, λ3 to reconstruct the objective function, we will obtain a new objective function:

λ2(10x2 −30)+λ4(6x2 −18)+λ0(2x2 −7)+(−2x2 +7)

from which we can obtain a face x2 ≤ 7
2 . This face narrows the expected polyhedron P ′ to {x2 ≥

1, x2 ≥ 7
2}, and thus the obtained polyhedron is not an over-approximation of the correct polyhedron.

We end up with an unsound result.

Figure 3.15 – The expected projected polyhedron by projecting out x1 of P is P ′.

We use the basis B for reconstructing the matrix A of the constraints Aλλλ = bbb such that the basic
variables have coefficient 1, and obtain the new constraints A′λλλ = bbb′. When the LP problem reaches
an optimum, the non-basic variables are at their lower bound 0, so the value of the basic variables are
just the value of bbb′. We just need to verify that all coordinates in bbb′ are non-negative. If it is not in
this case, GLPK must encounter a precision problem. Then we call our Simplex algorithm in rational
arithmetic which follows the standard textbook implementation. But it is not pure-rational. We construct
the objective function of the LP problem with a point in floating point numbers, and thus we still use

54 Sequential Parametric Linear Programming Solver

floating-point numbers for checking if all the coefficients of non-basic variables in the objective function
are non-negative, i.e. checking if o j ≥ ε , where o j is the floating-point coefficient of the objective
function and ε is the machine epsilon. But we do the pivoting in the Simplex tableau in rational numbers.
This mixing of rational and floating point computations may provide a fake optimal solution, i.e., a
solution which is feasible but not optimized, but in the context of projection and convex hull of polyhedra
for static analysis it will not lead to unsoundness. A fake optimal solution may lead to less precise
solution, i.e., some faces are missing, but our adjacency checker (see Section 4.4) will reconstruct all the
missing faces.

Algorithm 3: Rational feasibility checker and solver.

Input: pl pQ: the PLP problem to be solved
wF: the current task point
basicIndices: the indices of basic variables obtained from GLPK

Function FeasibilityChecker(pl pQ, basis)
reconstructMatrixQ = Reconstruct(pl pQ, basicIndices)
feasible = IsFeasible(reconstructMatrixQ)
/* if GLPK returns an infeasible solution, use a rational solver to solve the LP

problem */

if feasible == false then
// try to get a feasible solution

feasibleBasis = RationalSimplexPhase1(pl pQ)
if feasibleBasis == none then

report infeasible
// test if the solution is optimal

currOb jectiveF = GetObj(wF, pl pQ, feasibleBasis)
optimal = IsOptimal(currOb jectiveF)
// compute an optimal solution

while optimal == false do
enteringIdx = GetEnteringVar(currOb jectiveF)
newBasis = RationalSimplexPivot(pl pQ, enteringIdx)
currOb jectiveF = GetObj(wF, pl pQ, feasibleBasis)
optimal = IsOptimal(currOb jectiveF)

return newBasis
else

return basis

3.5.3 Obtaining sound and exact solution

We presented the rational checkers and solvers. In this section we summarize the mean for obtaining a
sound and exact solution. We consider in turn all the processes (1 to 8) of our PLP solver depicted in the
flowchart of Figure 3.1 and for each one we study the potential impact of floating point computations on
the exact solution.

3.6 Dealing with Equalities 55

The result should always be sound if all the variables fulfill λλλ ≥ 0, i.e., if the PLP problem is feasible,
as the objective is a non-negative combination of the constraints of the polyhedron to be projected. As
we explained in Section 3.5.2, we used a rational checker (and a rational solver) to ensure the feasibility
of the PLP, the result must be sound.

We have explained in Section 3.2.3 that in raytracing minimization all the constraints which cannot
be determined by the floating point solver are reported as redundant, and meanwhile they are added
into a undetermined list. As the regions are stored in both floating point and rational numbers, all the
constraints with an undetermined status (redundant or irredundant) can be resolved using rational solver
which looks for the existence of a Farkas’ combination expressing the undetermined constraint. So the
results of processes 1 (minimize the input polyhedron using raytracing minimization) and 8 (minimize
the region using raytracing minimization) can be fixed by rational solvers and exact solutions will always
be produced.

The process 2 (add initial instantiation point of parameters into the work list) does not affect the
result, as any point in the parameter space can be chosen for the initial exploration. We explained
in Section 3.4.4 that the process 3 (test if the point belongs to a known region) will not discard any
instantiation point, as a point which is not covered by any region can never be reported to be covered.
Thus the process 3 cannot lead to impression.

Considering the processes 4 (construct an LP problem with the instantiation point) and 5 (solve
the LP problem with GLPK), in Section 3.5.2 we explained that GLPK may obtain a solution which
is infeasible, and thus we need to verify the feasibility of the result provided by GLPK. GLPK may
also report a solution which is not optimal for the given direction but optimal for a slightly different
LP problem. We did not provide a checker for this situation, as in any case we will be able to use the
returned basis to construct a region. This step may lead to missing regions, but they can be reconstructed
by a rational procedure (Section 4.4).

The process 6 (add an instantiation point between the two regions) may discard some points in
extreme cases (explained in Section 3.4.7), and this may cause the miss of regions. But the missing
regions will be made up by the adjacency checker at the end, as what we presented in Section 4.4.

The process 7 (check if a region is flat in floating point numbers) has been presented in Section 3.5.1:
a rational checker (and a rational solver) will be launched when the floating point solver reports that the
region is flat.

As a summary, all the processes running in floating point arithmetic and having an impact on
soundness and precision are verified by rational checkers and the result is repaired by rational processes
when it is necessary. The adjacency checker at the end guarantees completeness of the exploration.
Hence our approach is able to obtain the same solution as a pure rational approach.

3.6 Dealing with Equalities

Until now all the constraints we mentioned are inequalities. In this section we will talk about how to
deal with equalities.

56 Sequential Parametric Linear Programming Solver

3.6.1 Minimization with equalities

Initially the equalities and inequalities are divided and stored separately. We choose a variable in each
equality and substitute it in the inequalities and equalities by its definition in terms of other variables.
Then replace these selected variables in the inequalities by the others.

Example 3.10. Given the polyhedron P = {3x1 + x2 + 2x4 + 4x5 ≥ 5, −x1 + x3 + 4x4 + 2x5 ≥
−2, 6x1 −2x3 = 5, 8x1 −3x2 = 2, −2x1 +3x2 −2x3 = 3}, the constraints are divided into

Peqn = {6x1 −2x3 = 5,8x1 −3x2 = 2,−2x1 +3x2 −2x3 = 3}

Pineq = {3x1 + x2 +2x4 +4x5 ≥ 5,−x1 + x3 +4x4 +2x5 ≥−2}

As x1 =
1
3 x3 +

5
6 , we can obtain

x1 =
1
3

x3 +
5
6

−3x2 +
8
3

x3 =−14
3

3x2 −
8
3

x3 =
14
3

As x2 =
8
9 x3 +

14
9 , we have

x1 =
1
3

x3 +
5
6

x2 =
8
9

x3 +
14
9

(3.21)

The third equality becomes 14
3 = 14

3 , so it is eliminated. The Equation 3.21 shows the equalities
without redundancy.

Now we substitute x1 and x2 with x3 in the inequalities. The obtained constraints are shown in
Equation 3.22.

34x3 +36x4 +72x5 ≥ 17

4x3 +24x4 +12x5 ≥−7
(3.22)

Then we minimize the inequalities using either method presented in Section 3.2. The minimized
polyhedron is: P ′ = {6x1 −2x3 = 5, 9x2 −8x3 = 14, 34x3 +36x4 +72x5 ≥ 17, 4x3 +24x4 +12x5 ≥
−7}.

3.6.2 Projection of a polyhedron with equalities

Before computing projection of the polyhedron, we select variables defined by the equalities among
the ones to be eliminated. Then we apply the projection operators to the equalities and inequalities

3.6 Dealing with Equalities 57

separately. The variable xe to be eliminated no more appears in the inequalities and its value is defined
by an equality in terms of other variables. Thus this equality does not restrict the projected polyhedron
and it can simply be removed.

Example 3.11. Consider the polyhedron P = {x1 − x2 = 0,x1 + x3 ≥ 5}. If we want to eliminate
x1, then the polyhedron will be transformed into P = {x1 = x2,x2 + x3 ≥ 5}. The variable x1 no
more appears in the inequalities, and only in equality x1 = x2. The projected polyhedron is then
P\{x1}= {x2 + x3 ≥ 5}.

3.6.3 Convex hull of polyhedra with equalities

To compute the convex hull of two polyhedra using PLP, we need to pick up an interior point for
minimization in one of the polyhedra. In the case where both polyhedra contain equalities (thus they
both have empty interior), it is impossible to find such an interior point.

One strategy to solve this problem is that instead of selecting a point inside one of the polyhedra, we
can find a point in the interior of their convex hull, as long as the convex hull has non-empty interior.
By the definition of the convex hull P1 ⊔P2 = {xxx|xxx = αxxx′+(1−α)xxx′′, xxx′ ∈ P1, xxx′′ ∈ P2, 0 ≤ α ≤ 1},
we can choose a point xxx′ inside P1 and another point xxx′′ inside P2 for computing a point xxx inside their
convex hull.

Another strategy to deal with this situation is to compute the convex hull via projection. Benoy et
al. presented in [32] a method to get the convex hull by computing a polyhedral projection. Recall the
convex hull of two polyhedra P1 and P2:

P1 ⊔P2 = {xxx|xxx = αxxx′+(1−α)xxx′′, A′
Ixxx

′+bbb′I ≥ 0, A′
Exxx′+bbb′E = 0,

A′′
I xxx′′+bbb′′I ≥ 0, A′′

Exxx′′+bbb′′E = 0, 0 ≤ α ≤ 1}
(3.23)

To obtain the convex hull, we need to eliminate xxx, xxx′ and α . As the equation xxx = αxxx′+(1−α)xxx′′

is not linear, we need to change variables. By introducing yyy′ = αxxx′ and yyy′′ = (1−α)xxx′′, we obtain
Equation 3.24.

P1 ⊔P2 = {xxx|xxx = yyy′+ yyy′′, A′
Iyyy

′+αbbb′I ≥ 0, A′
Eyyy′+αbbb′E = 0,

A′′
I yyy′′+(1−α)bbb′′I ≥ 0, A′′

Eyyy′′+(1−α)bbb′′E = 0, 0 ≤ α ≤ 1}
(3.24)

By substituting yyy′′ = xxx− yyy′ into the inequalities, we obtain the encoding of convex hull which is shown
in Equation 3.25.

P1 ⊔P2 = {xxx|A′
Iyyy

′+αbbb′I ≥ 0, A′
Eyyy′+αbbb′E = 0, A′′

I (xxx− yyy′)+(1−α)bbb′′I ≥ 0,

A′′
E(xxx− yyy′)+(1−α)bbb′′E = 0, 0 ≤ α ≤ 1}

(3.25)

To obtain the polyhedron which represents the convex hull, i.e. the set of xxx, we need to eliminate yyy′ and
α .

58 Sequential Parametric Linear Programming Solver

Summary of the chapter

In this chapter we presented our sequential algorithm of PLP solver with two minimization methods.
We mainly used the floating point raytracing minimization. When the floating point computation cannot
determine the redundancy status of any constraint, the rational minimization implemented using Farkas’
lemma will be invoked. Because of the rounding errors of the floating point arithmetic, we did some
adaptation to the raytracing minimization for guaranteeing termination of the algorithm and soundness
of the result, i.e., the resulting polyhedron is an over-approximation of the correct one.

We illustrated the polyhedral projection and convex hull geometrically, and also explained the way
to compute them using PLP. We used GLPK to solve the LP problems in floating point numbers. To
reconcile our approach with GLPK, we need to simplify the equality constraints of PLP into inequalities.
In each step of the PLP solver, we must consider the impact of floating point arithmetic. Due to the
floating point computations, the results may be unsound or imprecise. The result is unsound if GLPK

obtain a reports an infeasible solution as a feasible one. In other words, GLPK obtain an infeasible
basis but returns it as a feasible one, which means that the real feasible basis has not been found. Thus
we provided a checker for testing the feasibility of the result obtained from GLPK. The checker for
guaranteeing the precision will be presented in Section 4.4. The focus of our PLP solver is on computing
the polyhedra with inequalities. As we explained, the equalities need to be dealt with separately.

Chapter 4

Degeneracy and Overlapping Regions

Degeneracy [33, 25, 28, 34] is a difficulty of our approach. It is a general issue in LP which may lead to
the cycling of the Simplex algorithm, and there are mature solutions to deal with it. In PLP it leads to
overlapping regions. In this chapter we present the fundamental of degeneracy, the impact on LP and
PLP, and the methods to handle it.

Base on the work in [39] we implement an algorithm to deal with the degeneracy in our PLP solver,
and thus the overlapping regions can be avoided. Once the overlapping regions are avoided, we can
check the precision of the resulting polyhedron. If there are missing regions, it means that the floating
point computation is not precise enough, and we use a rational procedure to compute these regions.

4.1 Introduction to degeneracy

There are two kinds of degeneracy. The primal degeneracy [33, 28] means that the unique optimum can
be expressed by several different bases, and the dual degeneracy [25, 34] happens when there exist more
than one optimums.

Now let us consider the example shown in Figure 4.1. The pyramid in 3 dimensions is made of 5
constraints and 4 of them intersect at the top point.

4.1.1 Primal degeneracy

Let us compute the optimum in the direction toward the top of the pyramid shown in Figure 4.1: the
optimal solution is given by the top vertex.

Once the system is rewritten as equality constraints by introducing slack variables. The number of
basic variables, defined in terms of the others, corresponds to the number of equalities. The original
variables are nonbasic variables, and thus the number of non-basic variables equals the number of
dimensions of the constraints

∧m
i=1 aaaixxx ≤ bi, which is 3 in this example. A vertex in 3 dimensions is

specified by 3 faces. That means 3 of the constraints associated to the nonbasic variables intersect at
the optimal vertex, and the non-basic variables reach their lower bound (for minimization problems),
which is 0 in our case. But in this example, a fourth constraint also intersects at the same vertex, which

60 Degeneracy and Overlapping Regions

makes the corresponding basic variable equal to 0. In this situation the vertex could be specified in 4
different ways, i.e., we may have 4 bases if any three constraints of the four could be chosen as non-basic
variables. The optimal vertex remains the same, but the partition of basic and nonbasic variables varies.
This is a case of primal degeneracy.

Let us take Example 4.1 to figure out how primal degeneracy occurs during computations. We will
see that given a entering variable, there could be multiple choices of leaving variables as their ratios (the
constant over the coefficient) are the same. We choose one of them to leave the basis, and in the next
pivoting the constants corresponding to the remaining candidates will become zero.

Figure 4.1 – Degeneracy

Example 4.1. Consider the example in Figure 4.1, in which the polyhedron is P= {x3 ≥ 0, 2x1−x3 ≥
2, −2x1 +4x2 −3x3 ≥ 2, −2x1 − x3 ≥−6, −2x2 − x3 ≥−8}, and we compute the maximal value
in the direction (0,0,1). The LP problem is shown in Problem 4.1.

maximize x3

subject to 2x1 − x3 ≥ 2

−2x1 +4x2 −3x3 ≥ 2

−2x1 − x3 ≥−6

−2x2 − x3 ≥−8

and x1, x2, x3 ≥ 0

(4.1)

4.1 Introduction to degeneracy 61

We transform this problem into the standard form by adding slack variables, and obtain Prob-
lem 4.2.

maximize x3

subject to −2x1 + x3 + x4 =−2

2x1 −4x2 +3x3 + x5 =−2

2x1 + x3 + x6 = 6

2x2 + x3 + x7 = 8

and xi ≥ 0 ∀i ∈ {1,2,3,4,5,6,7}

(4.2)

We solve this LP problem by Simplex algorithm. Let us use the slack variables x4, x5, x6, x7 as
the initial basic variables. We can see that the problem is infeasible currently, and we need to find a
feasible dictionary by applying the first phase of Simplex algorithm.

After several pivoting, we obtained the feasible dictionary with basic variable x1, x2, x6, x7, and
the corresponding Simplex tableau is shown in Table 4.1. Now we start the second phase of the
Simplex algorithm. We choose x3 as the entering variable, as its coefficient in the objective function
is positive. We have two choice of leaving variable, as both row 3 and row 4 bound x3 by 2. The
primal degeneracy occurs as we have multiple choices of leaving variable. We choose x6 to leave the
basis. By doing one pivoting, we obtain Table 4.2. The obtained objective function does not contain
positive coefficient, so the problem is maximized, and the optimal value is 2. The basic variables
are x1, x2, x3, x7. By setting the nonbasic variables to 0, we obtain the value of basic variables,
and the optimal vertex is (x1,x2,x3,x4,x5,x6,x7) = (2,3,2,0,0,0,0). Geometrically the optimal point
is (2,3,2) (Figure 4.2(a)). In Table 4.2 x7 is a basic variable, but its value is 0. As we said, the
degeneracy occurs when there are basic variables have value 0. Indeed exchanging the basic variable
x7 with any of the nonbasic variables x4, x5, x6 will bound x8 to the same value 0, and thus the value
of the objective function will remain the same.

If we choose x7 as the leaving variable instead of x6, the optimal value and the optimal vertex
will be the same, but the basis will become x1, x2, x3, x6. If we do one more pivoting, another basis
x1, x2, x3, x5 at the same optimal vertex will be found. Another possible construction of the basis is
x1, x2, x3, x4. We force x4 to enter the basis, and obtain Table 4.3. However, although it leads to the
optimal value 2, the objective function contains a positive coefficient. Thus the Simplex algorithm
believes that the LP did not reach the optimum. We obtained 3 possible bases which lead the LP
problem to the optimum.

62 Degeneracy and Overlapping Regions

x1 x2 x3 x4 x5 x6 x7 = constant

row 1 1 0 −1
2 −1

2 0 0 0 1

row 2 0 1 −1 −1
4 −1

4 0 0 1

row 3 0 0 2 1 0 1 0 4

row 4 0 0 3 1
2

1
2 0 1 6

objective 0 0 1 0 0 0 0 0

Table 4.1

x1 x2 x3 x4 x5 x6 x7 = constant

row 1 1 0 0 - 1
4 0 1

4 0 2

row 2 0 1 0 1
4 −1

4
1
2 0 3

row 3 0 0 1 1
2 0 1

2 0 2

row 4 0 0 0 −1 1
2 −3

2 1 0

objective 0 0 0 −1
2 0 −1

2 0 -2

Table 4.2

x1 x2 x3 x4 x5 x6 x7 = constant

row 1 1 0 0 0 −1
8

5
8 −1

4 2

row 2 0 1 0 0 −1
8

1
8

1
4 3

row 3 0 0 1 0 1
4 −1

4
1
2 2

row 4 0 0 0 1 −1
2

3
2 −1 0

objective 0 0 0 0 −1
4

1
4 −1

2 −2

Table 4.3

4.1.2 Dual degeneracy

When dual degeneracy occurs, the objective function reaches the same optimum at multiple vertices.
The optimal value remains the same, but the optimal vertices are different. Let us illustrate the dual
degeneracy on Example 4.2.

4.1 Introduction to degeneracy 63

Example 4.2. Considering the polyhedron in Figure 4.1, let us compute the maximization in the
direction −x3. By applying the first phase and several pivoting in the second phase of the Simplex
algorithm, we obtain Table 4.4, in which the basis is x1, x2, x6, x7, and the corresponding optimal
vertex is (x1,x2,x3,x4,x5,x6,x7) = (1,1,0,0,0,0,4,6).

We could also obtain three other optimal bases: x1, x2, x4, x7 with optimal vertex
(3,2,0,2,0,−2,4), x1, x2, x4, x5 with optimal vertex (3,4,0,4,8,0,0) and x1, x2, x5, x6 with optimal
vertex (1,4,0,0,12,4,0). In all these situations, the optimal value are the same which is 0, but the
vertices are different. That is the difference from the primal degeneracy.

Geometrically we could obtain the four vertices at the bottom in Figure 4.1, which are (1,1,0),
(3,2,0), (3,4,0) and (1,4,0) (Figure 4.2(b)).

x1 x2 x3 x4 x5 x6 x7 = constant

row 1 1 0 −1
2 −1

2 0 0 0 1

row 2 0 1 −1 −1
4 −1

4 0 0 1

row 3 0 0 2 1 0 1 0 4

row 4 0 0 3 1
2

1
2 0 1 6

objective 0 0 −1 0 0 0 0 0

Table 4.4

(a) Primal degeneracy: one optimum, one optimal
vertex with 4 possible bases.

(b) Dual degeneracy: one optimum, 4 possible ver-
tices and one basis for each of them.

Figure 4.2 – Optimal vertices.

64 Degeneracy and Overlapping Regions

4.2 Degeneracy in linear programming

The problem of degeneracy in LP has been known for decades. In this section we talk about the primal
degeneracy firstly, and then the dual degeneracy. Several methods to deal with the primal degeneracy for
avoiding cycling will be introduced.

4.2.1 Primal degeneracy

The occurrence of primal degeneracy leads to inefficiency of the algorithm, and moreover it may cause
the Simplex algorithm to cycle. Many methods have been proposed to avoid cycling, for example
Bland’s rule [35] and the perturbation method [36].

Bland’s rule guarantees the termination of the Simplex algorithm by selecting the entering and
leaving variables which have the smallest indices. Bland’s rule is easy to implement but the value of
objective function increases slowly.

Theorem 4.1 (Bland’s rule). Among all candidates to enter the basis, select the variable having the
lowest index; among all candidates to leave the basis, select the variable having the lowest index.

Another well-known method is the perturbation method. To avoid multiple choices of the leaving
variable, this method perturbs the constraints by adding a small value εi to each constraint Ci and make
sure that ε1 ≫ ε2 ≫ ··· ≫ εn−1 ≫ εn > 0. But it is difficult to choose the value of εεε , and there will be
arithmetic problem. A common way to choose the value for εεε is that ε1 = c,ε2 = c2, · · · ,εn = cn, where c
is a very small positive constant. But it still cannot ensure that ε1 > kε2 after amount of additions, where
k is a large positive constant. A better way to implement the perturbation method is the lexicographic
method [37], in which εεε are kept symbolic. Let us present the lexicographic perturbation with an
example.

Example 4.3. Considering again the example of Problem 4.2, the perturbated problem is shown in
Problem 4.3.

maximize x3

subject to −2x1 + x3 + x4 =−2+ ε1

2x1 −4x2 +3x3 + x5 =−2+ ε2

2x1 + x3 + x6 = 6+ ε3

2x2 + x3 + x7 = 8+ ε4

and xi ≥ 0 ∀i ∈ {1,2,3,4,5,6,7}

(4.3)

After perturbation, the Table 4.1 (in Page 62) becomes Table 4.5. Given the entering variable x3, the
only choice of leaving variable is x7, as 2+ 1

2 ε1 +
1
2 ε3 > 2+ 1

6 ε1 +
1
6 ε2 +

1
3 ε4. In other words, the

4.2 Degeneracy in linear programming 65

dictionary in Table 4.2 will become infeasible as we can obtain x7 =−ε1 +
1
2 ε2 − 3

2 ε3 < 0. For the
same reason, the basis x1, x2, x3, x4 will also lead to infeasibility.

Geometrically the vertex vvv is split into two vertices vvv1 and vvv2, as it is shown in Figure 4.3.
vvv1 = (2− 5

12 ε1 +
1

12 ε2 +
1
6 ε4, 3− 1

12 ε1 − 1
12 ε2 +

1
3 ε4, 2+ 1

6 ε1 +
1
6 ε2 +

1
3 ε4) is the optimal vertex

without primal degeneracy.

x1 x2 x3 x4 x5 x6 x7 = constant

row 1 1 0 −1
2 −1

2 0 0 0 1− 1
2 ε1

row 2 0 1 −1 −1
4 −1

4 0 0 1− 1
4 ε1 − 1

4 ε2

row 3 0 0 2 1 0 1 0 4+ ε1 + ε3

row 4 0 0 3 1
2

1
2 0 1 6+ 1

2 ε1 +
1
2 ε2 + ε4

objective 0 0 1 0 0 0 0 0

Table 4.5

An alternative way to implement the perturbation method is to compare the perturbation terms in
lexicographic order, i.e., the lexicographic perturbation, which will be explained in details later in this
chapter.

v v1
v2

Figure 4.3 – Split vertex.

4.2.2 Dual degeneracy

It is proposed in [38] that: cycling can only occur in the presence of primal degeneracy. That means
the dual degeneracy will not lead to cycling. When there are multiple optimal vertices, the Simplex
algorithm will reach one of them. If we only care about the optimal value the dual degeneracy will not
affect the result.

66 Degeneracy and Overlapping Regions

4.3 Degeneracy in Parametric Linear Programming

In this section we show the impact of the degeneracy on the PLP. We will first prove that there is no dual
degeneracy our PLP problems for computing projection and convex hull thanks to the normalization
constraint. Then we will propose a method to deal with the primal degeneracy for avoiding overlapping
regions.

4.3.1 Overlapping regions

Ideally, the parametric linear programming outputs a partition of the space of parameters, meaning
that the produced regions do not have overlap except on their boundaries (we shall from now on say
“do not overlap” for short) and cover the whole parameter space. This may not be the case due to two
reasons: i) geometric degeneracy, which leads to overlapping regions; ii) imprecision due to floating
point arithmetic, which result in insufficient coverage. The latter will be dealt with by our rational
checker, which will be explained in Section 3.5.

When the regions do not overlap, it is possible to check if the space of parameters is fully covered.
It needs to verify that each boundary of a region is shared by one of its adjacent regions (proof in
Section 3.5). If a boundary has no region on the other side, the space is not fully covered. This simple
test cannot be used if there exist overlapping regions. We thus need to get rid of overlapping regions.

In a non-degenerate parametric linear program, for a given optimization objective, there is only one
optimal vertex (no dual degeneracy), and this optimal vertex is described by only one basis (no primal
degeneracy), i.e., the optimal solution corresponds to a unique partition of variables into basic and
non-basic. Thus, in a non-degenerate parametric linear program, for a given instantiation of parameters
there is one single optimal basis (except at boundaries), meaning that only one basis corresponds to one
region. However when there is degeneracy, there will be multiple bases corresponding to one optimal
vertex/function, and each of them computes a region. These regions may be overlapping. We call the
regions corresponds to the same optimal function degenerated regions.

Theorem 4.2. There will not be overlapping regions if there is no degeneracy.

Proof. Recall that the solution of a PLP problem is a set of tuples (Ri,Z∗
i (xxx)), each of which associates

to a basis obtained from GLPK. Each optimal function may correspond to multiple regions, i.e., ∃i, j
such that Ri ̸=R j but Z∗

i (xxx) = Z∗
j (xxx).

In parametric linear programming, the regions are yielded by the partition of variables into basic
and non-basic, i.e., each region is defined by a unique basis. The parameters within one region lead the
PLP problem to the same partition of variables. If there are overlapping regions, say Ri and R j, the
PLP problem will be optimized by multiple bases when the parameters belong to Ri ⊓R j. In this case
there must be degeneracy: these multiple bases may lead to multiple optimal vertices when we have
dual degeneracy (in fact we will prove that there is no dual degeneracy in our algorithm of PLP solver),
or the same optimal vertex when we have primal degeneracy. By transposition, we know that if there is

4.3 Degeneracy in Parametric Linear Programming 67

non-basic variables︷ ︸︸ ︷ basic variables︷ ︸︸ ︷ constants

λ1 · · · λq · · · · · · λr · · · λs · · · λn

... .

row j a jq · · · · · · 1 · · · 0 · · · 0 b j
... .

row k akq · · · · · · 0 · · · 1 · · · 0 bk
... .

objective f1 · · · fq · · · · · · 0 · · · 0 · · · 0 −Z∗(xxx)

Table 4.6 – Simplex tableau.

no degeneracy, the PLP problem will always obtain a unique basis with given parameters, and there will
be no overlapping regions.

4.3.2 Dual degeneracy in PLP

Theorem 4.3. For projection and convex hull, the parametric linear program exhibits no dual degen-
eracy.

Proof. We shall see that the normalization constraint (the constraint (∗) in Problem 3.9) in the parametric
linear programs defining projection and convex hull prevents dual degeneracy.

Assume that at the optimum Z∗(xxx) we have the Simplex tableau in Table 4.6. Let λk denote the
decision variables with λk ≥ 0, and let fk = oookxxx+ ck be the parametric coefficients of the objective
function. Assuming the basic variable leaving the basis is λr and the nonbasic variable entering the basis
is λq. Currently λr is defined by the jth row as ∑ j a jpλp +λr = b j, where the λp are nonbasic variables.
That means λr = b j when the nonbasic variables are set to their lower bound, which is 0 here.

We look for another optimum in another direction by doing one pivoting. As the current system is
feasible, we have b j ≥ 0. To maintain the feasibility, we must choose λq such that a jq > 0. As we only
choose the non-basic variable who has negative objective coefficient to enter the basis, then we know
fq < 0. By pivoting we obtain the new objective function Z′(λλλ ,xxx) = Z(λλλ ,xxx)− fq

b j
a jq

. The new basis
defines a new solution λ ∗ and a new optimal function shown in Equation 4.4.

Z∗′(xxx) = Z∗(xxx)− fq
b j

a jq
(4.4)

Let us assume that we are faced with the dual degeneracy, which means that we obtain the same
objective function after the pivoting, i.e., Z∗′(xxx) = tZ∗(xxx), where t is a positive scalar. Let us denote
the normalization point by ppp. Due to the normalization constraint at the point ppp enforcing Z∗′(ppp) =

68 Degeneracy and Overlapping Regions

Z∗(ppp) = 1, we have t = 1. Hence we obtain Equation 4.5.

Z∗′(xxx) = Z∗(xxx) (4.5)

Considering Equation 4.4 and Equation 4.5 we obtain

fq
b j

a jq
= 0 (4.6)

Since fq ̸= 0, b j must equal to 0, which means that we in fact faced a primal degeneracy.

4.3.3 Primal degeneracy in PLP

Many methods to prevent the non-parametric LP problem from cycling are known [35, 25, 36]. These
methods can be applied to the PLP problems. But in PLP problems we also need to avoid overlapping
regions besides avoiding the cycling. We implemented an approach to avoid overlapping regions based
on the work of Jones et al. [39], which used the lexicographic perturbation method [25]. This method
adds the perturbation terms to the right-hand side of the constraints. We need to modify their approach
for two reasons: i) GLPK does not support the lexicographic perturbation method, and thus we cannot
solve an LP problem with the perturbation matrix; ii) we need to adapt the parallel algorithm.

Our strategy is the following: once entering a new region, we check if there is primal degeneracy:
it occurs when one or several basic variables equal zero. In this case we will explore all degenerated
regions for the same optimal function, using, as explained below, a method avoiding overlaps. Our
algorithm is shown in Algorithm 4.

How to avoid the primal degeneracy in PLP? First of all, let us see a case where the regions are
overlapping.

Example 4.4. Figure 4.4 shows two regions in 3D, and ppp is the normalization point. We cut the
regions and obtain a 2D view of them, which is shown in blue and pink. Figure 4.5 shows the 2D
view of the regions, and these regions correspond to the same optimal function. Figure 4.5(a) and
Figure 4.5(b) are two possible compositions of degenerated regions that cover the whole corresponding
space. Figure 4.5(c) shows the problematic case where the regions are overlapping. The reason is
that when the parameters locate in the purple area, two different bases will lead the constructed LP
problem to optimum. We aim to avoid the overlap and obtain the result either in Figure 4.5(a) or in
Figure 4.5(b).

Our solution against overlaps is to avoid the primal degeneracy, as we have proved that if there is no
degeneracy there will be no overlapping regions (Theorem 4.2). The method to avoid primal degeneracy
is adding perturbation terms to the right-hand side of the constraints [39]. These perturbation terms are
“infinitesimal”, meaning that the right-hand side, instead of being a vector of rational scalars, becomes a

4.3 Degeneracy in Parametric Linear Programming 69

Figure 4.4 – A region in 3D.

(a) (b) (c)

Figure 4.5 – Example of overlapping regions. The regions obtained from bases B1 and B2 cover the
whole space corresponding to their face without overlapping; similar for B3 and B4. But we may obtain
the bases B1 and B4, which results in overlaps and an incomplete coverage of the space.

matrix where the first column corresponds to the original vector bbb, the second column corresponds to
the first infinitesimal ε1, the third column to the second infinitesimal ε2, etc. Instead of comparing scalar
coordinates using the usual ordering on rational numbers, we compare row vectors of rationals using the
lexicographic ordering. After the perturbation, there will be no primal degeneracy. As the perturbed
vectors b′+(k′1ε1, · · · ,k′nεn) and b′′+(k′′1ε1, · · · ,k′′nεn) in two different rows cannot be equal.

Implementation of the perturbation method The initial perturbation matrix is a k∗k identity matrix:
Mp = I, where k is the number of constraints. Then the perturbation matrix will be updated during
the reconstruction of the constraint matrix. After adding this perturbation matrix, the right-hand side
becomes B = [bbb|Mp]. The new constants are vectors in the form vvvi = [bi 0 · · · 1 · · · 0]. We compare
the vectors by lexico-order: vvv >l vvv′ if the first non-zero element of vvv is greater than that of vvv′, where >l

represents lexicographically greater. For instance, vvv1 = [1 0 0] is greater than vvv2 = [0 1 1].

To obtain a new basis, in contrast to working with non-degeneracy regions, we do not solve the
problem using floating point solver, as GLPK does not support features for perturbation method. Instead,
we pivot directly on the perturbated rational matrix.

70 Degeneracy and Overlapping Regions

non-basic variables︷ ︸︸ ︷ basic variables︷ ︸︸ ︷ constants

λ1 · · · λq · · · · · · λr · · · λn

... .

row j a jq · · · · · · 1 · · · 0 b j
... .

objective · · · · · · ∑
n
k=1 oqkxk + cq · · · · · · 0 · · · 0 −Z∗(xxx)

Table 4.7

λ1 · · · λq · · · · · · λr · · · λn

... .

row j 1 · · · · · · 1
a jq

· · · 0 b j
a jq

... .

objective · · · · · · 0 · · · · · · − 1
a jq

(∑n
k=1 oqkxk + cq) · · · 0 −Z∗(xxx)

Table 4.8

In each pivoting, one non-basic variable will be chosen for entering the basis. All the non-basic
variables will be considered for finding out all the adjacent regions. Given an entering variable λ j, we
select λl in Ci as the leaving variable from all the constraints in which bi = 0 such that the ratio vvvi

ai j

is the smallest using the comparison >l . If such a leaving variable with bi = 0 does not exist, a new
optimal function will be obtained by crossing the corresponding boundary and it will not be treated by
Algorithm 4, but will be computed with a task point by Algorithm 2. On the other hand if a leaving
variable with bi = 0 exists, we will obtain a degenerated region (the optimal function will not change).
In this case we store the basis associated to that region and we maintain a set of bases that have been
explored. After each pivot, we will check if the obtained basis exists in the set of bases, and thus the
already explored regions will not be recomputed. We search all the degenerated regions by crossing all
the boundaries of the already explored degenerated regions. Once all the boundaries have been crossed,
all the degenerated regions corresponding to the same optimal function are found.

We benefit from Algorithm 4 in another aspect: there is no need to check adjacency of the degenerated
regions. As we compute an degenerated region by doing only one pivoting across a boundary, the
obtained region must be adjacent to the original one, as it is shown in Theorem 4.4.

Theorem 4.4. The region obtained by doing one pivoting in the Simplex tableau must be adjacent to
the original region.

Proof. Considering the Table 4.7, we want to cross the boundary ∑
n
k=1 oqkxk + cq ≥ 0 of the region

associated to the variable λq, i.e., we choose λq as entering variable. Assuming the leaving variable is λr,

4.3 Degeneracy in Parametric Linear Programming 71

by doing one pivoting we obtain the tableau in Table 4.8. The obtained region is − 1
a jq

(∑n
k=1 oqkxk+cq)≥

0. As 1
a jq

≥ 0 (otherwise the dictionary becomes infeasible), the region is equivalent to −(∑n
k=1 oqkxk +

cq) ≥ 0, which has the same boundary of the previous region ∑
n
k=1 oqkxk + cq ≥ 0 but refer to the

complementary half-space, and the two regions are adjacent.

As a summary, we transform from Algorithm 2 to Algorithm 4 when there are degenerated regions,
which is detected by checking the existence of bi = 0. For preventing the regions from overlapping, we
need to avoid the primal degeneracy by adding perturbation terms to the right-hand side of the constraints
of the PLP problem. When solving the PLP problem we do pivoting in the rational Simplex tableau
instead of solving the instantiated LP problems using GLPK, as GLPK does not support the perturbation
method.

72 Degeneracy and Overlapping Regions

Algorithm 4: Algorithm to avoid overlapping regions.

Input: wF: the task point
pl pQ×F: the PLP problem to be solved

Output: degeneracy regions correspond to the same optimal solution
Function DiscoverNewRegion(wF, pl pQ×F)

// get the basis which leads the LP problem to the optimum

glpkBasis = GlpkSolveLp(wF, pl pF)
basicIdx = FeasibilityChecker(pl pQ, glpkBasis)
// test if there is primal degeneracy

degenerate = Reconstruct(pl pQ, basicIdx)
/* if there is primal degeneracy, compute all the degenerated regions corresponding

to the same optimal function */

if degenerate then
size = GetSize(basicIdx)
// add a perturbation matrix, which is an identity matrix initially

perturbMQ = GetIdentityMatrix(size)
basisList = none
Insert(basisList, basicIdx)
degBasic = none
foreach basic variable v do

/* if the basic variable v equals to 0, then it is degenerated, and insert

it into degBasic */

if v == 0 then
Insert(degBasic, GetIdx(v))

while basisList ̸= none do
// get a basis from the list of bases

currBasis = GetBasis(basisList)
if currBasis has been found then

continue
// use the basis to compute a region, and store the solution

nonBasicIdx = GetNonBasic(currBasis)
(reconstructMQ, perturbMQ) = Reconstruct(pl pQ, basicIdx, perturbMQ)
(newOptimumQ, newRegionQ×F) = ExtractResult(reconstructMQ, nonbasicIdx)
irredundantIdx=Minimize(newRegionF)
minimizedRQ = GetRational(newRegionQ, irredundantIdx)
Insert((optimumsQ,regionsQ×F), (newOptimumQ,minimizedRQ×F))
// compute new basis by crossing each boundary of the minimized region

foreach constraint i in minimizedRQ do
// use the nonbasic variable associated to i as the entering variable

enteringV = GetIdx(i)
// choose the leaving variable using lexico-order comparison

leavingV = SearchLeaving(degBasic, perturbMQ)
/* if the leaving variable can be found, there exists a degenerated

region associated to the basis newBasis beyond the boundary of i */

if leavingV ̸= none then
newBasis = GetNewBasis(basicIdx, enteringV, leavingV)
Insert(basisList, newBasis)

4.4 Adjacency checker 73

4.4 Adjacency checker

We have proved that if no degeneracy occurs, there will be no overlapping regions. Thus all the regions
have their adjacencies. We shall now prove that no face of the projected polyhedron will be missed if
each region can find all the adjacent regions across each of its boundaries.

We will show that a situation as the one shown in Figure 4.6 cannot happen: the four regions
correspond to different optimal functions. R1,R2 and R3 all found their adjacent regions, but the region
of the space denoted by R4 has not been explored. In Figure 4.6 there exist two adjacent regions for
boundaries of R4. We here show that this is an impossible situation in a PLP problem.

R1

R2

R3

R4

Figure 4.6 – An impossible situation: R1, R2, R3 have their adjacent regions, but R4 is missing.

Theorem 4.5. No face is missed if all regions found their adjacent regions.

Proof. Consider the situation in Figure 4.7: we cross the boundary F of the region Ri, and the adjacent
regions related to F are R j and Rk with corresponding optimal functions Z j and Zk, and Z j ̸= Zk. We
need to do one pivoting to cross F from Ri. Assume λq is the entering variable associated to F in
the objective. If there are two adjacent regions, there will be two possible leaving variables, say λr

and λs. In the Simplex algorithm we always choose the variable with the smallest ratio of the constant
and the coefficient as the leaving variable. When there are two possible leaving variables, the value
of these two ratios must be equal, that is b j

a jq
= bk

akq
. In this case we face the primal degeneracy, and

f ∗(xxx)− b j
a jq

fq = f ∗(xxx)− bk
akq

fq. This is a contradictory to the assumption Z j ̸= Zk. Hence the situation
can not happen.

Theorem 4.5 shows that to find out all the faces, we just need to ensure that all the regions have their
adjacencies. Although we tried to pick up task points between the regions which are not adjacent, in
practice there may be still missed region because of floating point arithmetic, We invoke an adjacency
checker in the last phase of the algorithm. If a boundary is not shared by two regions we will use our
rational solver to explore beyond that boundary. We detail that last phase. Note that the information of

74 Degeneracy and Overlapping Regions

Figure 4.7 – The region Ri has two adjacent regions R j and Rk, whose optimal function Z j and Zk are
not equal.

adjacency is saved in Algorithm 2: if the regions Ri and R j are adjacent by crossing the boundaries Fm

of Ri and Fn of R j, we set the cell of (Ri,Fm) and (R j,Fn) to true in the adjacency table. When the
adjacency checker finds out a pair (Rk,Fp) whose cell in the adjacency table contains false, we cross
the boundary Fp and use a rational procedure to compute the missing region and the corresponding
optimal function. If the region r does not have its adjacency beyond the boundary b, we compute the
missing region by crossing b. In other words, we choose the variable associated to b as the entering
variable and do one pivoting for obtaining the missing region. Then we check if all the boundaries of the
new obtained region have known adjacent regions. The main algorithm terminates when all the new
obtained regions have complete adjacencies. Algorithm 5 summarizes this process.

4.4 Adjacency checker 75

Algorithm 5: Algorithm to check adjacency and add missed regions.

Input: pl pQ×F: the PLP problem to be solved
adjInfo: the graph that contains the information of adjacency
(optimumsQ, regionsQ×F): the list of optimal functions with their regions

Function AdjacencyChecker(pl pQ×F, adjInfo, (optimumsQ, regionsQ×F))
toBeFound = none
// find out each region r whose adjacent region is missing beyond the boundary b

foreach r in 0 to Size(regionsQ×F) do
foreach b in 0 to BoundarySize(r) do

if HasAdjacency(adjInfo, r, b) == false then
Insert(toBeFound, (r,b))

while toBeFound ̸= none do
(r,b) = GetBoundary(toBeFound)
adj = false
// try to find adjacent regions among all the regions whose adjacency is missing

foreach (r’,b’) in toBeFound do
adj = AreAdjacency(regionsQ, r, b, r’, b’)
if adj == true then

SetAdjInfo(adjInfo, r, b, r’, b’)
Remove(toBeFound,(r’,b’))
break

/* if the adjacent region has not been found, compute the missing region using a

rational procedure */

if adj == false then
(newOptimumQ, newRegionQ) = CrossBoundary(pl pQ, regionsQ, r, b)
newRegionF = GetFloat(newRegionQ)
minimizedRQ×F = Minimize(newRegionQ×F)
foreach boundary in newRegionQ×F do

(newR,newB) = GetIdx(minimizedRQ×F, boundary)
Insert(toBeFound, (newR,newB))

76 Degeneracy and Overlapping Regions

Summary of the chapter

In this chapter we illustrated the primal and dual degeneracy with examples. For LP problems the primal
degeneracy is more noticed than dual degeneracy as the former may lead to cycling. There are various
methods of avoiding cycling, such as Blind’s rule and the perturbation method.

For PLP the degeneracy leads to overlapping regions. We proved the absence of dual degeneracy in
our PLP problems for computing projection and convex hull, and thus we only need to deal with the
primal degeneracy. Based on the work in [39] we adapted the lexicographic perturbation to our PLP
solver. After the perturbation we can always obtain a unique basis with any task point in each region,
and thus overlapping regions are avoided.

We proved that, without overlapping regions, if all the regions have their adjacent regions, there is
no missing region. If any adjacent region is missing, we use a rational procedure to compute this region.
The adjacency checker guarantees the precision of our result.

Chapter 5

Parallelism

In this chapter we first present some preliminaries of our parallel algorithm. Then we show the parallel
algorithm of the PLP solver with a second level parallelism for the raytracing minimization. In the
parallel raytracing minimization, each thread computes the redundancy status of one constraint. The
parallelism is simple to implement as the computations of the redundancy status of the constraints
are independent. In the parallel PLP solver, each thread computes one optimal function with the
corresponding region. It is more complex to parallelize this algorithm as the number of regions is
unknown in advance, i.e., the tasks are dynamically added. Besides there is data shared by multiple
threads. To implement the parallelism we need to modify our sequential algorithm shown in Algorithm 2
and Algorithm 4 at several steps. The work in this chapter was presented in our paper [40].

5.1 Preliminaries

We will explain race conditions, which may lead the parallel algorithm to an undesirable situation, and
the techniques to avoid it. Then TBB and OpenMP will be introduced, using which we implemented the
parallelism.

5.1.1 Race conditions and thread safe

A race condition occurs when the result of an algorithm depends on the sequence of the accessing
of threads. In other words, if the sequence of multiple threads is not controlled, because of the race
condition, the result may be incorrect.

Let us see a simple example. Assuming we have two pieces of code in Algorithm 6. The value of
val2 could be 5, if the thread A increases val after the thread B reading it, or 6 otherwise.

Thread safe means that the data types or the piece of code can be executed by multiple threads
without race conditions.

78 Parallelism

Algorithm 6: Example of race condition
array = {1,3,5,7,9}
Function Thread_A

foreach val in array do
val = val + 1

Function Thread_B
val2 = array[2] + 1

5.1.2 Mutex and lock-free algorithm

Mutex (Mutual exclusion) is a strategy to prevent race conditions. If a piece of code is blocked by a
mutex, only one (or a given number) thread can access it. By locking the shared data, the race conditions
can be avoided.

Lock-free data structures can be accessed by multiple threads safely without using mutex locks.
Lock-free strategy could provide better performance than using mutex.

5.1.3 TBB and OpenMP

We implemented the parallel algorithm using Intel’s Thread Building Blocks (TBB)1, and OpenMP
tasking2 [4] respectively, which can be selected during compilation time.

Intel Threading Building Blocks (TBB) is a C++ template library for task-based parallel program-
ming. It provides concurrent data structures and task scheduling algorithms. To use TBB, we just need to
specify the tasks without any details about threads, and the TBB library will map the tasks onto threads
efficiently. Besides, TBB also supports nested parallelism.

OpenMP (Open Multi-Processing) is an application program interface (API) that is used for shared
memory multiprocessing programming in C/C++ and Fortran on multi-platform. It includes both
compiler directives and runtime library routines. Parameters such as the number of threads to be used
can be set both programmatically and through environment variables.

5.2 Parallel raytracing minimization

Now we explain the parallelism on raytracing minimization. As the first phase of the algorithm only
contains a matrix multiplication and selecting the minimum value which is the minimum distance from
the interior point to the constraint, the execution time can be negligible with respect to the second phase.
Thus we only parallelized the second phase. The parallelism is easy to be implemented as the rays are
launched independently.

The only shared data is the list containing the redundancy status of the constraints, which is stored in
std::vector<Status>, where Status is a user-defined structure. Any constraint has one of the three

1 https://www.threadingbuildingblocks.org/
2 The OpenMP version is implemented by Camile Coti and David Monniaux.

https://www.threadingbuildingblocks.org/

5.3 Parallel Parametric Linear Programming Solver 79

status: irredundant, redundant, or undetermined. Initially all constraints are undetermined. In the first
phase, some constraints are determined as irredundant. In the second phase, each thread will take one
undetermined constraint and check its redundancy status. The list of the state is preassigned and has
fixed size, which is the same as the number of constraints. So there is no concurrency problem of access
and reallocation, i.e., the container will not grow and the stored elements will not be moved. Another
problem we need to take care is the race condition. In this algorithm we do not need any extra work
to protect the shared data because of two reasons: i) each thread will only modify a specific cell in the
vector; ii) one thread will not read other cells in the list.

Parallelism using OpenMP The most straightforward way to parallelize the algorithm is to use the
OpenMP directive omp parallel for, which is the combination of omp parallel and omp for.
The directive omp parallel invokes additional threads, and the original and new created threads will
execute the code inside the scope marked by this directive. The directive omp for splits the work and
assign them among the threads.

We can also select the strategy of scheduling among static, dynamic and guided. The static

strategy assigns the iterations to the threads evenly; the dynamic assigns a given number to each thread,
and the thread which finishes its work firstly will take the next group of tasks; guided is similar to
dynamic, but the number of tasks in each group to be allocated will decrease exponentially.

We put the second phase of the raytracing minimization inside the omp parallel for scope using
dynamic strategy, and the undetermined constraints will be assigned to the active threads.

Parallelism Using TBB TBB provides tbb::parallel_for function, which implements similar
strategy to omp parallel for. It accepts a range of tasks, and the range will be partitioned into
subranges. As it is shown in Algorithm 7, tbb::parallel_for calls the function operator() of a
given class automatically with a divided subranges.

5.3 Parallel Parametric Linear Programming Solver

We have seen in Algorithm 2 that the algorithm of the PLP solver performs independent tasks, and thus
the algorithm can be parallelized. Here we will present the parallel algorithm of the PLP solver.

5.3.1 Scheduling tasks

We use tbb::parallel_do to assign tasks to the threads, and use the provided feeder to add new tasks.
Once one thread finishes its task, another task will be assigned.

In OpenMP version, we used the OpenMP tasking model to manage the tasks, in which a single
thread creates tasks, and each task will be fetched by one thread. The tasking feature is introduced since
OpenMP 3.0. Different from the omp parallel directive, in which the number of iterations is known in
advance, OpenMP tasks can be dynamically created, and thus it can be used in while loops and recursive
functions.

80 Parallelism

Algorithm 7: Parallel minimization.

Input: undeterminedConsF: the constraints to be checked for redundancy
Function Determine(undeterminedConsF)

size = GetSize(undeterminedConsF)
range = [0,size)
#ifdef _TBB
// this function will call Body.operator() automatically

tbb::parallel_for(range,Body())
#elif defined _OPENMP
#pragma omp parallel for schedule(dynamic)
for idx in range do

DetermineStep(idx)
#else
// without TBB or OpenMP, run as a sequential algorithm

for idx in range do
DetermineStep(idx)

#endif

// the parameter subrange is provided by TBB

Function Body.operator(subrange)
for idx in subrange do

DetermineStep(idx)

// test the redundancy status by searching an irredundancy witness point

Function DetermineStep(idx)
if cannot determine then

SetAsRedundant(idx)
else

if found irredundancy witness point then
SetAsIrredundant(idx)

else
SetAsRedundant(idx)

5.3.1.1 Dealing with multiple threads

As we explained, we do not need to take care of the assignment of tasks, as it will be scheduled by TBB
or OpenMP. The only matter we need to pay attention to is avoiding multiple threads computing on the
same problem, which will result in the inefficiency of the algorithm. Consider that when the thread A is
computing on the region R1, the thread B completed the computation on R2 and generated a witness
point www which is inside R1. Then the thread C can fetch www and compute on the same region as the thread
A, as R1 has not been generated.

It is impossible to completely avoid multiple threads computing on the same region, but we can
reduce the possibility of its occurrence by Algorithm 8. If two threads compute on the same region, they

5.3 Parallel Parametric Linear Programming Solver 81

must obtain the same basis. Thus it is possible to detect the repetition of computations by comparing the
basis before obtaining the region. Once obtain an optimal basis from GLPK, we store it into a hash table.
If the basis has already been encountered, the thread should stop and abandon the current task. As the
cost of solving an LP problem is much less than the whole process of computing a region, we can nearly
avoid the repeated computation.

Algorithm 8: Checking bases

(basicIndices, nonbasicIndices) = GlpkSolveLp(wF, pl pF)
if basicIndices is infeasible then

(basicIndices, nonbasicIndices) = RationalSimplex(wF, pl pQ)
// test if the basis has been obtained for avoiding recomputation

atomic existed = AddBasis(basicIndices)
if existed then

return
else

· · ·

5.3.2 Dealing with shared data

The optimal functions are stored in a shared list. The corresponding regions are also stored for checking
weather a task point belongs to any known region and testing adjacency of two regions. The elements in
the list may be accessed by multiple threads while other threads are appending new regions into the list.

In TBB version, the set of regions are stored in tbb::concurrent_vector, which is a concurrent
data structure provided by TBB. Multiple threads can access the stored elements, grow the container and
append new elements concurrently. In OpenMP version, we use our simple lock-free implementation3

based on an array with a large, statically defined maximal capacity, using atomic operations for increasing
the current number of items.

There is a problem in both versions. The size of the container will be increased before the new item
is appended, and thus not all the items in the list are ready for reading. A segmentation fault will occur
if we try to fetch the new item when it is not completely appended yet. For instance, if we append a new
element to the container containing n elements, whose indices are 0 to n−1, at a moment the size of the
container is n+1 while it only has n elements. Thus if we try to get the new element by its index n, the
segmentation fault will occur.

To solve this problem, we use the mutex lock in C++ standard library or a lock-free implementation,
in which we store the number of items which are ready for reading. If the number of ready items nready

is less than the size of the container n f ill , then the threads need to wait until all the items are ready for
reading. The algorithm of concurrent appending is shown in Algorithm 9.

3 The lock-free data structure is provided by David Monniaux.

82 Parallelism

Algorithm 9: Current appending

Input: (newOptimumQ,newRegionQ×F): the new optimal function with its region that will be
appended
(optimumsQ,regionsQ×F): the list of optimal functions with their regions

Function CurrentAppend
atomic { i = n f ill , n f ill = n f ill +1 }
Insert((optimumsQ,regionsQ×F), (newOptimumQ,newRegionQ×F))
while nready < i do

spinning or using a condition variable
// nready == i here

atomic { nready = i+1 }

5.3.3 Updating algorithm of preventing degeneracy

In sequential version of Algorithm 4, we simply start from any basis and find out all the degenerated
regions which correspond to the same optimal function. But this is not enough for avoid overlapping
regions in parallel algorithm. Consider the situation in Figure 5.1: thread 1 took the task point www1, and it
is computing on the region R1; meanwhile thread 2 obtained the task point www2, which is not covered
by any known region as the computation of R1 has not completed. Thus thread 2 obtains the basis
corresponding to the region R2 by solving the LP problem. As the obtained basis has not been found,
thread 2 will continue the computation and obtain R2, which overlaps with R1. Thus we need to update
Algorithm 4 for avoiding this situation, and the updated algorithm is shown in Algorithm 11.

Please note that in the sequential version this problem does not appear because the single thread
needs to complete the computation on R1 before fetching the task point www2. Then it will report that www2

is covered by R1.

Figure 5.1 – Multiple threads obtained different basis in parallel algorithm.

5.3 Parallel Parametric Linear Programming Solver 83

Our solution to against this problem is to find out the “smallest” basis among all the bases associated
to the degenerated regions, meaning that the basic variables have smallest subscripts. Once this basis is
found, we append it into a hash table containing the bases that have been explored. Thus when another
thread obtains a task point inside a degenerated region corresponding to the same optimal function, it
will also find out the same smallest basis, which is always the same one. Then it will figure out that the
basis has been seen and stop the computation.

Algorithm 10 shows the algorithm to find out the ordered basis list, from which we can obtain the
“smallest” basis. We firstly count the number of degenerated basic variables, i.e., the number of zeros
appears on the right-hand side of the reconstructed constraints and denote this number by degNum.
Then from the degenerated basic variables and the nonbasic variables select degNum variables that will
construct the basis with the remaining basic variables.

Example 5.1. Given the basic variables λ2,λ4 of which λ2 = 0, and the nonbasic variables λ1,λ3,
we need to choose one variable among λ1,λ2 and λ3 to construct the basis with λ4. The first
choice is λ1 as it has the smallest subscript. We can obtain an ordered list of candidates of bases:
{(λ1,λ4), (λ2,λ4), (λ3,λ4)}. We firstly take (λ1,λ4), and test if the corresponding region has
non-empty interior. If the region is flat, we then take (λ2,λ4) and so on.

5.3.4 Advantages and drawbacks of two versions

5.3.4.1 TBB

In TBB version we benefit from the provided interfaces and concurrent containers. One drawback of
TBB is that in general cases it provides stack-like constructs, which means that the tasks are last-in-
first-out4. The algorithm of projection with PPLP is essentially a graph search algorithm. In our case
it is better to do a breadth-first search to avoid repeatedly extracting the same regions (although the
recomputation has been stopped by testing the existence of the basis obtained from GLPK), whereas the
last-in-first-out containers lead to depth-first search.

OpenMP is easy to use. We do not need to install any library, and only use the provided compiler
directives. But we need to guarantee that the compiler we used supports OpenMP.

4 If a thread has enough tasks to do, it will do depth-first execution; otherwise it will do temporary breadth-first execution.
More details are presented in https://software.intel.com/en-us/node/506103.

84 Parallelism

Algorithm 10: Obtain the basic variables who has smallest subscript.
Input: basicIdx: the indices of basic variables

nonbasicIdx: the indices of nonbasic variables
Output: a list contains the bases, which are sorted in lexico order of their subscript.
Function GetBasisList(basicIdx, nonbasicIdx)

idxList = none
remained = none
Insert(idxList,nonbasicIdx)
degNum = 0
// find all the basic variables which equal to 0

foreach basic variable v do
if v == 0 then

Insert(idxList, GetIdx()v))
degNum = degNum + 1

else
Insert(remained, GetIdx(v))

/* now idxList contains the indices of nonbasic variables and that of the basic

variables which equal to 0 */

Sort(idxList)
/* get all possible combinations of degNum variables from idxList, and the

combinations are sorted by their indices in lexico-order */

selectedList = ChooseFrom(idxList, degNum)
/* construct a set of possible bases, which are sorted by their indices in

lexico-order */

newBasisList = GetBasis(remained, selectedList)
return newBasisList

5.3 Parallel Parametric Linear Programming Solver 85

Algorithm 11: Updated algorithm to avoid overlapping regions.

Input: wF: the task point
pl pQ×F: the PLP problem to be solved

Output: degeneracy regions correspond to the same optimal solution
Function DiscoverNewRegion(wF, pl pQ×F)

glpkBasis = GlpkSolveLp(wF, pl pF)
basicIdx = FeasibilityChecker(pl pQ, glpkBasis)
degenerate = Reconstruct(pl pQ, basicIdx)
if degenerate then

nonBasicIdx = none
/* compute the set of possible bases, which are sorted by their indices in

lexico-order */

orderedBasisList = GetBasisList(basicIdx,nonBasicIdx)
// find the smallest basis in lexico-order

for b in orderedBasisList do
nonBasicIdx = GetNonBasic(basicIdx)
(reconstructMQ) = Reconstruct(pl pQ, b)
(newOptimumQ, newRegionQ×F) = ExtractResult(reconstructMQ, nonbasicIdx)
if newRegionQ has non-empty interior then

basicIdx = b
break

// start from the smallest basis, compute all the degenerated regions

size = GetSize(basicIdx)
perturbMQ = GetIdentityMatrix(size)
basisList = none
Insert(basisList, basicIdx)
degBasic = none
foreach basic variable v do

if v == 0 then
Insert(degBasic, GetIdx(v))

// the remaining part is the same as the sequential algorithm

while basisList ̸= none do
· · ·

86 Parallelism

Summary of the chapter

We parallelized our algorithms of raytracing minimization and PLP solver using TBB and OpenMP
separately. Thanks to TBB and OpenMP the tasks are scheduled automatically, and we do not need to
assign them to the threads by hand. One advantage of TBB is that it provides concurrent data structures,
and thus the shared data can be accessed and appended concurrently. In OpenMP version we provided a
simple implementation of lock-free data structure. In both version we need to pay attention to the shared
data stored in the concurrent vector (for TBB version) or the lock-free data structure (for OpenMP
version) when we access the items by their indices, since appending items and increasing the size of the
container is not atomic.

The parallel PLP solver is different from the sequential algorithm in some details. To guarantee
a unique basis for each region, we found out the “smallest” possible basis for avoiding two threads
obtaining different bases with the task points inside the same region, and thus the overlapping regions
were avoided.

Chapter 6

Experiments

In this section we will present some experiments on raytracing minimization and the PLP solver for
computing the projection and convex hull. We first analyze the advantages and disadvantages of our
sequential algorithms, and then we analyze the speedup (the ratio of the runtime of the sequential
algorithm for solving a problem to the time taken by the parallel algorithm to solve the same problem)
of our parallelism by running it on various of threads.

We used three libraries in our implementation:

- Eigen 3.3.2 for floating-point vector and matrix operations;

- FLINT 2.5.2 for rational arithmetic, vector and matrix operations;

- GLPK 4.6.4 for solving linear programs in floating-point.

The experiments of minimization and some experiments on the projection and convex hull are
performed using our randomly generated benchmarks, as we need a single varying parameter for
analyzing the pros and cons. These benchmarks contain randomly generated polyhedra in which the
coefficients of constraints range from -50 to 50. In each experiment, we use 10 polyhedra generated with
the same parameters. To smooth out experimental noise, we perform the experiments on each polyhedron
for 5 times resulting in 50 executions for each set of parameters. Then we sum up the running time of 50
executions, and divide the total time by 5 for obtaining the average execution time of 10 polyhedra. The
second part of experiments on projection (and convex hull) used SV-COMP benchmarks [5], by which
we will see the performance of our algorithm on real-world programs. We compare the performance on
these benchmarks with ELINA library [13].

The experiments with sequential algorithms are carried out on a machine with Intel(R) Core(TM)
i5-6200U CPU. And the parallel experiments are performed on two servers: S1 has 2 Intel(R) Xeon(R)
Gold 6138 CPU (each has 20 cores) and 192 GB of RAM; S2 has 2 Intel(R) Xeon(R) CPU E5-2650,
each CPU has 8 cores and 64 GB RAM. We used GCC 7.2.0 to compile the code.

The figures of performance are shown in line charts, and the variance of 5 executions are shown by
vertical bars.

88 Experiments

6.1 Sequential algorithm for minimization

We first compare the performance of three minimization methods: the minimization in NewPolka library
of Apron1, rational minimization algorithm using Farkas’ lemma, and the raytracing method. We
consider three parameters: the number of constraints (C), the number of variable (V) and the redundancy
ratio (R). For example, if we have 10 constraints where 3 are redundant, then R = 30%. The redundant
constraints are created as combinations of irredundant constraints. All the irredundant constraints have
20% density, i.e., there are 20% coefficients of the constraints are 0.

Then we compare the raytracing minimization and the floating point minimization algorithm using
Farkas’ lemma for analyzing the advantage of raytracing minimization on the polyhedra having low
redundancy ratio.

Number of constraints In this experiment we used the polyhedra whose number of constraints ranges
from 2 to 46. We can see in Figure 6.1 that when the number of constraints is small the performance of
the three methods are similar, but the execution time of Apron increases significantly after that. This
can be explained. As Apron uses double description of polyhedra, the cost depends on the number of
generators. We have said that the number of generators increases exponentially when the polyhedra
are hypercubes, meaning that a polyhedron in n dimension having 2n generators. When C′ = V + 1
the polyhedra are simplexes, where C′ denotes the number of irredundant constraints. A simplex is a
n-dimensional polyhedron whose has n+1 generators, i.e. the number of generators increases linearly.
When C′ >V +1 the number of generators increases at a high growth rate. Figure 6.1(b) is a zoomed
figure of Figure 6.1(a), and the variation of the number of generators is shown in Table 6.1.

(a) (b)

Figure 6.1 – Variation of constraints. C=[2,46], V =12, R=50%.

Number of variables In Figure 6.2 the line of Apron shows a peak, and when C′ ≥ 2V the execution
time of Apron increases sharply. Then the execution time decreases. This because the polyhedron tends

1 https://github.com/antoinemine/apron

https://github.com/antoinemine/apron

6.1 Sequential algorithm for minimization 89

constraint number 2 4 6 8 10 12 14 16

generator number 130 130 130 130 130 130 130 130

constraint number 18 20 22 24 26 28 30 32

generator number 130 130 130 130 474 1252 2689 4836

constraint number 34 36 38 40 42 44 46

generator number 8999 15725 22472 35947 50000 72448 97582

Table 6.1 – Number of generators. C=[2,46], V=12, R=50%.

to be a simplex when C′ and V tend to be equal, and the number of generators (see Table 6.1) will
decrease if C′ is large enough corresponding to V .

The execution time of rational minimization using Farkas’ lemma increases steadily, and it performs
better than Apron when the generator number is large (the middle in Figure 6.2). The line of raytracing
minimization is nearly flat, which shows the advantage of floating-point arithmetic.

Figure 6.2 – Variation of variables. C=40, V =[2,20], R=50%

variable number 2 3 4 5 6 7 8 9 10 11

generator number 200 360 802 1780 3604 6568 11022 17800 23213 31606

variable number 12 13 14 15 16 17 18 19 20

generator number 32320 32200 30734 21230 15067 8550 3613 1042 210

Table 6.2 – Number of generators. C=40, V =[2,20], R=50%

Number of redundant constraints This experiment shows the effect of redundancy ratio, which is
from 10% to 90%. In Figure 6.3 the cost of Apron is high when R < 50%, i.e., the number of irredundant

90 Experiments

constraints C′ < 20, which is more than twice that of variables. In this case the polyhedra are hypercubes,
and the cost of double description explodes. The number of generators is shown in Table 6.3. This shows
the disadvantage of double description. The other methods seem to be less sensitive to the redundancy
ratio compared to Apron.

Figure 6.3 – Variation of redundancy. C=40, V =10, R=[10%,90%].

redundancy ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

generator number 383823 240358 135260 61426 24435 6334 827 110 110

Table 6.3 – Number of generators. C=40, V =10, R=[10%,90%]%

In higher dimension We have seen that the floating-point raytracing method has advantages with
respect to the rational methods. Here (Figure 6.4) we focuses on the two floating-point methods:
raytracing minimization and floating point minimization using Farkas’ lemma. We did experiments on
polyhedra which have more constraints in higher dimensions. All the experiments show the advantage
of the raytracing method when the polyhedra contain more irredundant constraints than redundant ones.
In higher dimension the raytracing method has more obvious advantages.

Results analysis In general the raytracing method is more efficient than the rational ones. The
constraint-only description is more efficient when the polyhedra are hypercubes. The raytracing method
is more efficient than the floating point algorithm using Farkas’ lemma when the ratio of redundancy is
low. Therefore, it is better to use raytracing minimization for the polyhedra contain more irredundant
constraints than redundant ones.

6.2 Parallel minimization

These experiments are performed on the server S2 whose characteristics are described on Page 87.
Figure 6.5 to Figure 6.8 shows the performance of the raytracing minimization with different number

6.2 Parallel minimization 91

(a) C=200, V =30, R=[5%,95%] (b) C=600, V =50, R=[5%,95%]

(c) C=200, V =150, R=[5%,95%] (d) C=60, V =200, R=[5%,95%]

Figure 6.4 – Performance of floating-point algorithms for minimization in higher dimension

of threads. The figures on the left shows the execution time of using 1 to 32 threads, and the zoomed
figures are shown on the right.

As it is shown in Figure 6.5 and Figure 6.6, when the size of the polyhedra is not large, i.e. C = 200
and V = 30 in our experiment, using more threads than 8 does not improve the performance, especially
when the redundancy ratio is low, as there are not enough parallel tasks. Besides the libraries need to
pay extra effort for arranging the needless threads. In Figure 6.7 and Figure 6.8, the size of polyhedra
are increased to C = 600 and V = 50. Using a larger number of threads shows better performance.
Figure 6.9 compares the performance of OpenMP and TBB version on a polyhedron generated with
C = 600, V = 50 and R = 95%. We can see that the parallelisms using OpenMP and TBB have similar
performance.

92 Experiments

Figure 6.5 – Parallel raytracing minimization with OpenMP, C=200, V =30, R=[5%,95%]

Figure 6.6 – Parallel raytracing minimization with TBB, C=200, V =30, R=[5%,95%]

Figure 6.7 – Parallel raytracing minimization with OpenMP, C=600, V =50, R=[5%,95%]

6.2 Parallel minimization 93

Figure 6.8 – Parallel raytracing minimization with TBB, C=600, V =50, R=[5%,95%]

(a) Performance. (b) Speedup.

Figure 6.9 – Parallel raytracing minimization with different threads, C=600, V =50, R=95%

94 Experiments

6.3 Projection via sequential PLP

In this section, we analyze the performance of our PLP solver on projection operators. We compare its
performance with that of the NewPolka library of Apron.Since NewPolka does not exploit parallelism,
we compare it to our library running with only one thread, and thus we consider our PLP solver as a
sequential algorithm.

6.3.1 Experiments on randomly generated benchmarks

In the line charts, the execution time of NewPolka library of Apron is depicted in blue, and our solver
(denoted by PLP) appears in red. To illustrate the performance benefits from the floating-point arithmetic,
we turned off GLPK and always use the Simplex algorithm implemented in rational numbers (denoted by
rational), whose execution time is shown by the orange lines2. It reveals that solving the LP problems in
floating-point numbers and reconstructing the rational Simplex tableau leads to significant improvement
of performance.

The generation of polyhedra is controlled by 4 parameters: number of constraints (C), number of
variables (V), projection ratio (PR) and density (D). The projection ratio is the proportion of eliminated
variables: for example if we eliminate 6 variables out of 10, the projection ratio is 60%. The density
represents the ratio of zero coefficients: if there are 2 zeros in 10 coefficients, the density is 20%.
Through numerous experiments, we found that when the parameters C = 19,V = 8,PR = 62.5% and
D = 37.5%, the execution time of PLP and Apron are similar, so we maintain three of them and make
the other one varying to analyze the variation of performance.

Recall that in order to obtain the projection of a convex polyhedron P defined by constraints, Apron
(and all libraries based on the same approach, including PPL) computes a generator description of P,
projects it and then computes a minimized constraint description.

Projection ratio In Figure 6.10(a) we study the impact of the projection ratio. We can see that the
execution time of PLP is almost the same for all the cases, whereas that of Apron changes significantly.
Apron spends a lot of time on computing the generator description of each polyhedron. We plot the
execution time of PLP (Figure 6.10(b)) and the number of regions (Figure 6.10(c)), which vary with the
same trend. That means the cost of our approach depends on the number of regions to be explored.

The more variables are eliminated, the lower dimension the projected polyhedron has. Then the cost
of Chernikova’s algorithm for converting from the generators into the constraints will be less (Table ??).
This explains why Apron is slow when the projection ratio is low, and becomes faster when the number
of variables to be eliminated is larger.

Number of constraints Fixing the other parameters, we increase the number of constraints from 12
to 30. The result is shown in Figure 6.11. We can see that Apron is faster than PLP when constraints are

2 The minimization is still computed in floating-point numbers.

6.3 Projection via sequential PLP 95

(a)

(b) (c)

Figure 6.10 – C=19, V =8, D=37.5%, PR=[25%,87.5%]

fewer than 19; beyond that, its execution time increases significantly. In contrast, the execution time of
PLP grows much more slowly.

Figure 6.11 – C=[12,30], V =8, D=37.5%, PR=62.5%

96 Experiments

Number of variables In Figure 6.12(a) the range of variables is 3 to 15. It shows that the performance
are similar for Apron and PLP when variables are fewer than 11, but beyond that the execution time of
Apron explodes as the number of variables increases. The zoomed figure is shown in Figure 6.12(b).
This experiment shows that in high dimensions our algorithm using PLP solver is more efficient.

(a) (b)

Figure 6.12 – C=19, V =[3,15], D=37.5%, PR=62.5%

Density The Figure 6.13 shows the effect of density. The execution time varies for both Apron and
PLP with the increase of density, with the same trend.

Figure 6.13 – C=19, V =8, D=[12.5%,75%], PR=62.5%

6.3.2 Experiments on SV-COMP benchmarks

In this experiment we used the analyzer Pagai [41] and SV-COMP benchmarks [5]. We randomly
selected some C programs from the category of Concurrency Safety, Software System and Reach Safety.
Then we used Pagai to analyze the program and extracted the polyhedra to be projected. We compute the
projection on these polyhedra, and compare the results of our PLP algorithm on projection, NewPolka

6.4 Convex hull via sequential PLP 97

Program Apron (ms) ELINA (ms) PLP (ms) ACN AVN AR

pthread-complex-buffer 0.29 0.18 0.32 3.25 3.06 2

ldv-linux-3.0-module-loop 0.57 0.22 0.37 3.16 16.19 2

ssh-clnt-01 0.29 0.18 0.32 3.53 2.61 1.98

ldv-consumption-firewire 0.45 0.28 0.7 7.19 6.14 3.2

busybox-1.22.0-head3 0.75 0.38 1.31 10.94 6.14 5.5

ldv-linux-3.0-usb-input 0.27 0.16 0.29 3 2 2

bitvector-gcd 0.33 0.19 0.73 5 3 4

array-example-sorting 0.33 0.2 0.63 4.78 3.67 2.89

ldv-linux-3.0-bluetooth 255.66 2.46 12.46 20.62 17.66 18.86

ssh-srvr-01 0.43 0.24 1.2 5.91 4.68 4.61

Table 6.4 – Performance of PLP algorithm on projection on SV-COMP benchmarks.

of Apron and ELINA (introduced in Chapter 1). In Table 6.4, we present the name of programs, the
average time spent on projection in milliseconds, the average number of constraints (ACN), variables
(AVN) and regions (AR).

PAGAI was designed to minimize the complexity of the polyhedra and thus it takes a small subset of
the variables into the invariants; relationship with other variables are ignored. Thus in the benchmarks
most polyhedra have small number of constraints and dimensions. As a result of our experiments on
the random generated polyhedra, our approach does not have advantage in this case. As it is shown,
our algorithm has advantage over Apron when the polyhedra contain more constraints and/or in higher
dimension, e.g, polyhedra in ldv-linux-3.0-module-loop and ldv-linux-3.0-bluetooth, as we get rid of
maintaining double description. ELINA is the most efficient on SV-COMP benchmarks.

6.3.3 Analysis

We conclude that our approach has remarkable advantage over Apron for projecting polyhedra having
large number of constraints or/and variables; but it is not a good choice for solving problems with few
constraints in low dimensions. Our sequential algorithm is less efficient than ELINA on SV-COMP
benchmarks, as the number of constraints/dimensions of the polyhedra is small, in which case our
approach does not have advantage.

6.4 Convex hull via sequential PLP

In this section we present several experiments on computing the convex hull of two polyhedra. We first
perform the experiments on our randomly generated benchmarks, then on the SV-COMP benchmarks.

98 Experiments

We use V to denote the number of variables and C1 and C2 to denote the number of constraints of
the two polyhedra respectively. We can see in Figure 6.14 and Figure 6.15 that when the polyhedra
having a small number of constraints and variables, the NewPolka library of Apron is more efficient than
our approach using PLP. When the size of polyhedra is larger, for instance in Figure 6.16 and Figure 6.17
the algorithm of PLP solver has better performance. We obtain a similar result to the experiments on
projection: our algorithm of PLP solver has advantage for the polyhedra having a large number of
constraints and variables.

Table 6.5 presents the results of experiments on the random selected programs from SV-COMP
benchmarks. Our PLP algorithm is slower than both Apron and ELINA on these benchmarks, in which
the polyhedra have a small number of constraints and variables.

Figure 6.14 – CN1=4, CN2=[2,7], V =4. Figure 6.15 – CN1=4, CN2=5, V =[2,7].

Figure 6.16 – CN1=15, CN2=[12,19], V =6. Figure 6.17 – CN1=20, CN2=15, V =[2,6].

6.5 Parallel PLP 99

Program Apron (ms) ELINA (ms) PLP (ms) ACN AVN AR

array-memsafety 0.28 0.18 1.98 2.63, 2.63 2.5 6.75

busybox-1.22.0 0.34 0.21 0.73 3.5, 2.5 7 3.5

bitvector 0.31 0.19 0.5 2.0, 1.5 4.5 1.5

loops 0.28 0.19 0.9 2.88, 2.88 3.0 4.88

ldv-linux-3.0-atm 0.43 0.26 1.36 4.5, 4.5 7.5 5.5

loop-invgen 0.38 0.24 9.89 5.8, 5.9 3.4 21.5

Table 6.5 – Performance PLP algorithm on convex hull on SV-COMP benchmarks.

6.5 Parallel PLP

In this section we report some experiments of our parallel algorithm of the PLP solver on projection.
First we performed experiments on randomly generated benchmarks. Secondly we used the selected
SV-COMP benchmarks.

6.5.1 Randomly generated benchmarks

6.5.1.1 Performance on various numbers of constraints and dimensions

In the first experiment, we consider polyhedra in very low dimensions. We project out 1 variable from
polyhedra with 4 constraints and 2 variables. Figure 6.18 shows that the execution time increases slowly
with the number of threads. As we sum up the running time of 10 polyhedra with the same parameters,
the average running time of one polyhedron is only 0.35 to 0.7 milliseconds. Our algorithm takes
time to construct the PLP and to preprocess the constraints (Gaussian elimination, eliminating implicit
constraints, etc.) which are sequential. The parallelized approaches then solve the LP problems and
reconstruct the rational results. When the LP problems are small, the parallel steps take a low proportion
of the total execution time, and thus the parallelism cannot speed up the algorithm significantly. Besides,
the average number of regions of the projected polyhedra is 2, and thus there are not enough tasks for all
the threads. With the increase of the number of threads, there is extra cost for scheduling the tasks and
managing the shared data. Thus the performance becomes worse when the number of threads gets larger.

Now let us see the results of performance on the polyhedra having 25 constraints in 15 dimensions.
We can see that in Figure 6.19, in both versions the performance basically remains the same when
the number of threads is greater than 8. Our understanding is that when there are not enough tasks,
increasing thread number cannot improve the performance.

The results on polyhedra with 100 constraints and 50 variables are shown in Figure 6.20. The two
versions have similar performance. With 12 threads, the speedup factor reaches 4. The performance of
parallelism is mainly limited by the total number of regions (or the number of tasks in the work list) and

100 Experiments

(a) Performance. (b) Speedup.

Figure 6.18 – Variation of redundancy, C=4, V =2, D=0%, eliminating 1 variable. The average number
of regions is 2.

(a) Performance. (b) Speedup.

Figure 6.19 – C=25, V =15, D=20%, eliminating 1 variable. The average number of regions is 172.5.

computations of degenerated regions. If the number of tasks is less than that of threads, there will be
some threads waiting for tasks, and thus launching more threads will not improve performance. The
degenerated regions, which are regions corresponding to the same optimal function, are computed by
one thread in our approach (shown in Algorithm 4). When there are a great amount of degenerated
regions, the one thread computing on them may take more time than other threads, i.e., this thread may
complete its tasks much later than the others. In this case the total execution time depends on the thread
computing the degenerated regions.

6.5.1.2 Generation graph of regions

Let us see the generation of regions for analyzing the impact factors of the parallelism. We perform the
experiments on a polyhedron having 12 constraints in 10 dimension. The performance and speedup are
shown in Figure 6.21. We can see that the performance improves while the number of threads increases

6.5 Parallel PLP 101

(a) Performance. (b) Speedup

Figure 6.20 – C=100, V =50, D=20%, eliminating 1 variable. Average region number is 2928.4.

from 1 to 6. Beyond that the execution time tends to stabilize. The execution time even slightly increases
when the number of threads is greater than 12.

In the generation graphs in Figure 6.22 to Figure 6.33, a node represents one region. A region is
generated from the region above it, and the two regions are connected by a solid or dotted line. The solid
line represents the region below is computed by the task point generated by the corresponding region
above. The degenerated regions are connected by dotted lines. Please note that the numbers labeling do
not matter, and they are just assigned according to the generation order. What is of interest is the shape
of the graph, which depends on the geometry of the regions (how many adjacent regions do they have),
and on the selection of the next exploration point in the work list. The width of the graph captures the
possibility to keep the threads busy.

Figure 6.22 and Figure 6.23 illustrate the generation graph with 1 thread. It is likely that TBB uses a
last-in-first-out strategy to manage the tasks, and OpenMP uses first-in-first-out strategy. In TBB version
a region is computed with a point generated by the latest obtained region, and in OpenMP version the
threads tend to take the oldest tasks, i.e., the ones generated by the region 0.

From 1 thread to 6 threads (Figure 6.22 to Figure 6.26, Figure 6.29 to Figure 6.31), it is likely that all
the threads are busy. In Figure 6.27 and Figure 6.32 the region 0 generated 11 task points, and one of the
12 threads needs to wait for a task. In the case of using more threads(Figure 6.28, Figure 6.33), there will
be more threads waiting for tasks. On one hand not all the threads are used when there are not enough
tasks, and on the other hand TBB/OpenMP needs to manage the shared data, concurrent data structures,
etc, which takes time. The speedup of both versions are likely to be limited by the computation of
degenerated regions when they use 16 threads, which are shown in Figure 6.28 and Figure 6.33.

102 Experiments

(a) Performance. (b) Speedup.

Figure 6.21 – C=12, V =10, D=20%, eliminating 1 variable.

6.5 Parallel PLP 103

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Figure 6.22 – C=12, V =10, D=20%, running
with 1 thread, TBB.

0

1 2 3 4 5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 36

31

32

33

34

35

37

38

39

40

41

Figure 6.23 – C=12, V =10, D=20%, running
with 1 thread, OpenMP.

104 Experiments

0

1 2

3 4

5 7

6

8

10

9

11

12

13

15

14

16

17

18

19

21

20

23

22

24

25

26

27

28

29

31

30

33

32

35

34

36

37 39

38

40

41

Figure 6.24 – C=12,
V =10, D=20%, running
with 2 threads, TBB.

0

1 2 3 4

7 5 6 8

9 1110 13

12 1617

14

15

19

182124

22

20

23

27

28

25

26

29

32 31

30

34

33

3537

39

36

38

40

41

Figure 6.25 – C=12, V =10, D=20%, running with 4 threads, TBB.
0

1 2 3 6 4 5

9 7 10 11 8 12

15 1419 16 13 18

17 2120 25

22

2327

26

24

29 30

28

32

33

31

34 37

35

36

38 41

39

40

Figure 6.26 – C=12, V =10, D=20%, running with 6 threads, TBB.

6.5 Parallel PLP 105

0

1 2 3 4 5 6 9 11 14 15 17

7 12 10 8 18 13 19

21

20

2225 16

23 26 27

24

30

31

39 33

3228

34

29

37

36 41

38

35

40

Figure 6.27 – C=12, V =10, D=20%, run-
ning with 12 threads, TBB.

0

1 3 4 5 6 8 11 15 14 16

2 7 9 12 13 17

10

20 18 22 36 19 23

21

28

25

24

26

27 32

30 29

31 33

34

35

37

38

39

40

41

Figure 6.28 – C=12, V =10, D=20%, running with 16
threads, TBB.

0

1 2 3 4 5 6 7 8 9 10 13

15 17 19 11 22

12

14

16

18

20

21

23

24

25

26

27

28

29

30

31

32

33

34 35

36

41 37

38

39

40

Figure 6.29 – C=12, V =10, D=20%,
running with 2 threads, OpenMP.

0

2 1 3 4 5 6 7 8 9 10 11

13 14 16 17 18 20 21 23 24 26 28 29 32 31 12 41

15

19

22

25

27 30

34

33

3635

37

39 38

40

Figure 6.30 – C=12, V =10, D=20%, running with 4
threads, OpenMP.

0

2 4 3 5 1 6 7 8 9 10 12

11 14 15 16 18 19 20 21 22 23 25 26 27 29 30 31 32 35 37 36 13 38 39 40

41 17

24

28

33

34

Figure 6.31 – C=12, V =10, D=20%, running with 6 threads, OpenMP.

106 Experiments

0

1 2 3 4 5 6 7 9 8 10 11

12 14 17 18 13 16 19 20 21 22 23 25 26 34 27 28 29 30 33 32 35 15 36 37 38

24

31

39

40

41

Figure 6.32 – C=12, V =10, D=20%, running with 12 threads, OpenMP.

0

1 2 3 4 5 7 8 9 14 15 17

6 10 11 12 13 16 28 20 18 26 31 19 21 22 23 24

25

27 34 29 30 32

35 36

33

37

38

39

40

41

Figure 6.33 – C=12, V =10, D=20%, running with 16 threads, OpenMP.

6.5 Parallel PLP 107

6.5.2 SV-COMP benchmarks

We used the same selected SV-COMP benchmarks as for the experiments of the sequential algorithm for
computing projection. In this experiment, we show the average execution time of 5 executions on the
same polyhedron, i.e. total running time

number of polyhedron×5 .
Most of the polyhedra in these benchmarks exhibit a small number of regions, as it is shown in

Table 6.4, for most of them the performance becomes worse as the number of threads increases (some of
them are slightly improved at first) (shown in Figure 6.34(a) to Figure 6.34(i)). These results are similar
to our experiment on randomly generated polyhedra which obtained 2 projected regions on average
(Figure 6.18). The parallelism on ldv-linux-3.0-bluetooth (Figure 6.34(j)) shows good performance, as
the projected polyhedra on these programs have a significant number of regions.

(a) pthread-complex-buffer (b) ldv-linux-3.0-module-loop

(c) ssh-clnt-01 (d) ldv-consumption-firewire

108 Experiments

(e) busybox-1.22.0-head3 (f) ldv-linux-3.0-usb-input

(g) bitvector-gcd (h) array-example-sorting

(i) ssh-srvr-01 (j) ldv-linux-3.0-bluetooth

Figure 6.34

6.6 Conclusion 109

6.6 Conclusion

We did a set of experiments on minimization, projection and convex hull. The raytracing minimization
using floating point arithmetic has a big advantage over using rational numbers. When the redundancy
ratio is low, raytracing minimization is more efficient. We use it in our PLP algorithm for minimizing
the obtained regions, as they contain more irredundant constraints than redundant ones.

Our PLP solver improved the efficiency significantly by using floating point arithmetic instead of
rational computations. Compared to NewPolka library which used double description of polyhedra,
our approach are more efficient when solving problems in high dimensions. Our approach also has an
advantage for solving big problems which contains a large number of constraints. Our algorithm is less
efficient for computing small sized polyhedra.

For solving the problems which are not very small, the parallelism improved the performance
obviously. But it is not a good strategy to use parallel algorithm for solving small problems, which
means when the number of obtained regions is small, as there will be not enough tasks for all the threads
and considerable time will be spent on scheduling the tasks and managing the shared data. Thus we
conclude that it is a good strategy to use our PLP solver for computing the projection/convex hull of the
polyhedra having a large number of constraints and/or variables. It is better to use the parallel algorithm
in this case, as when the constraint number/variable number is large, the obtained polyhedron tends to
have a large number of regions.

Chapter 7

Future Work

In this chapter we talk about the future work. We will first explain some possible improvements and
supplements to the current version of the PLP solver. Then we will show that it is possible to implement
a pure floating point PLP solver for computing projection and convex hull, if the rational result is not
required. Without rational procedures the soundness of the result can be guaranteed, i.e., the resulting
polyhedron is over-approximate, but the precision could be lower. For other operators, the pure floating
point solver cannot obtain a sound result, and we need new algorithms to compute these operators using
pure floating point arithmetic.

7.1 Improving the current algorithm of the PLP solver

In this section we explain the possible improvements on our PLP solver. First the method of checking
adjacency could be more efficient. Second the PLP solver could be adapted for solving more general
PLP problems which do not have the normalization constraint.

7.1.1 The approach for checking adjacency

We currently store the regions that have been explored into an unstructured array; checking whether
an optimization direction is covered by an existing region is done by a linear search. This could be
improved in two ways: i) regions corresponding to the same optimum (primal degeneracy) could be
merged into a single region; ii) regions could be stored in a structure allowing fast search. For instance,
we could use a binary tree where each node is labeled with a hyperplane, and each path from the root
corresponds to a conjunction of half-spaces; then each region is stored only in the paths such that the
associated half-spaces intersects the region.

7.1.2 Dual degeneracy in general PLP problems

For more general cases, i.e., PLP problems without the normalization constraint, we need to deal with
the dual degeneracy. We have two strategies: i) applying perturbation method to the objective function;

112 Future Work

ii) transforming the problem into its dual form and apply our method to solve primal degeneracy to the
dual problem.

Perturbing the objective function The perturbated objective function is shown in Equation 7.1. We
can choose a small value for εi, and then the LP problem with instantiated objective function can be
solved by GLPK. But this will lead to numerical problem. Another possibility is to deal with εεε as
“infinitesimal” and compare the ratio in lexico-order, as what we did for perturbing the constraints of the
PLP. But the disadvantage is that we cannot use GLPK to solve the LP problems and we need to add the
perturbation terms to the rational matrix, as GLPK does not support the perturbation method.

There is a third method. When the dual degeneracy occurs, one or multiple coefficients of the
nonbasic variables in the objective function equal to zero. We can pick up these variables, say xi, · · ·x j,
and optimize the obtained objective function furthermore in each direction of xi, · · ·x j one by one. Each
optimization is based on the result of the previous one. Then by solving several optimization problems,
a unique optimal vertex will be found.

Z(λλλ ,xxx) =
m

∑
i=1

(
n

∑
j=1

ai jx j −bi + εi)λi (7.1)

Dual problem Given an LP problem in Problem 7.2, the corresponding dual problem is shown in
Problem 7.3. The primal problem does not have dual degeneracy if its dual problem does not have primal
degeneracy. Hence we can add perturbation terms to the right-hand side of the constraints of the dual
problem for avoiding primal degeneracy, and thus the original problem can get rid of dual degeneracy.

maximize Z(λλλ) =
n

∑
j=1

o jλ j

subject to
n

∑
j=1

ai jλ j ≤ bi ∀i ∈ {1, · · ·m}

and λλλ ≥ 0

(7.2)

minimize Z(yyy) =
m

∑
i=1

biyi

subject to
m

∑
i=1

ai jyi ≥ oi ∀i ∈ {1, · · ·m}

and yyy ≥ 0

(7.3)

7.2 Towards a pure floating point algorithm of PLP solver 113

7.2 Towards a pure floating point algorithm of PLP solver

In this section we talk about the possibility of implementing a pure floating point PLP solver for solving
projection and convex hull without impact on soundness.

For the situation where the exact solution is not required, it is possible to get rid of the rational
approaches and obtain a sound floating point solution, i.e., the resulting polyhedron contains all the
possible states that can be reached by the program in running time. We remove the rational processes
from the flowchart in Figure 3.1 and obtain the flowchart of pure floating point algorithm, which is
shown in Figure 7.1.

To obtain a sound result, the obtained polyhedron could lose some faces, but it should not contain
any face that narrows the correct polyhedron. We have seen that in the raytracing minimization, some
irredundant constraints could be removed. Thus the witness point of the corresponding constraint will
never be added, and there will be a risk of missing regions, i.e. the obtained polyhedron may lose some
faces. Even thought the obtained polyhedron is sound.

Two processes in the PLP solver which were computed in rational numbers need to be replaced by
floating point arithmetic: checking adjacency and verifying the feasibility of the result obtained from
GLPK. The criterion of checking adjacency is that: i) the regions which are not adjacent could be judged
as adjacent; ii) the regions which are adjacent should never be judged as nonadjacent. If the nonadjacent
regions are misjudged as adjacent, we will end up with missing the region between them, and the final
result will be larger but sound. But if the adjacent regions are misjudged as nonadjacent, we will always
try to add an extra task point between them, and the algorithm may loop forever.

The objective function of the PLP problem is a non-negative combination of a set of constraints, and
we expected to obtain an over-approximated polyhedron. However, as what we already said, GLPK may
obtain a solution which is in fact infeasible. In this case some of the variables have negative value, and
thus the obtained polyhedron is not a non-negative combination anymore, which results in an unsound
result. Therefore, we need to guarantee the feasibility of the solution from GLPK using a floating point
checker.

7.3 Other operators in the polyhedra domain using floating point arith-
metic

We saw that the results of minimization, projection and convex hull can be guaranteed to be sound using
pure floating point computations. Now we talk about the inclusion and equality test.

By our raytracing method and PLP solver, we can guarantee the soundness of eliminating redundancy,
meet, join and projection operators. Our approach does not implement the widening operator, so we will
not talk about it. Let us see the other operators.

The inclusion operator can be implemented by minimization: considering two polyhedra P and
P ′, P ⊑ P ′ if ∀C′

i ∈ P ′, C′
i is redundant with respect to P. But we cannot guarantee the soundness

114 Future Work

load polyhedra construct PLP
add initial instantiation

point of parameters
into the work list

fetch an instantiation
point

the point belongs to a
known region?

the region is adjacent
to the previous region?

yes

construct an LP
problem with the
instantiation point

no

solve the LP problem
with GLPK

basis has been found?

no

work list is empty?

yes

yes

add an instantiation
point between the two

regions
no

feasible?

no

discard the task

no

yes

region is flat?
(check in float)

yes
minimize the region

using raytracing
minimization

no

add witness points of
this region into the

work list

store the optimal
function and the region

terminate

yes

minimize the input
polyhedron using

raytracing minimization

Figure 7.1 – Flowchart of pure floating point PLP procedure

7.3 Other operators in the polyhedra domain using floating point arithmetic 115

of the inclusion operator computed by our floating point minimization, as our strategy is to report an
undetermined constraint as redundant to ensure the soundness of minimization. When we test if P is
included in P ′ by our strategy, the approach may report P ⊑ P ′ when in fact P ̸⊑ P ′. An analyzer using
polyhedra would consider that P ′ is a sound approximation of the reachable states. Thus some states of
P which are not included in P ′ could be reached at running time.

The equality test can be implemented by double inclusion test. Similarly, we may report two
polyhedra are equal, which are in fact unequal, and thus it is unsound.

As a conclusion, we cannot guarantee the soundness of inclusion and equality test using floating
point minimization with the current strategy. We need to explore new methods for these operators.

Acknowledgements

First I would like to express my special thanks to my supervisors Dr. David Monniaux and Dr. Michaël
Périn, who spare no effort to help me and inspire me during the three years. They are always so patient
with my buggy code and the reports having annoying structures. They not only teach me the knowledge,
but also show me the method to present the work and the way to do research. I also want to present my
great thank to Dr. Laurent Mounier, who helped me so much with my first attempt to teach. Then I want
to show my special thank to my families, who always support me at any time, and my two cats, who
always sit beside my laptop and try to type some sentences when I was writing my thesis in the night. I
would like to thank all my friends and colleague in Verimag for their help and kindness.

Bibliography

[1] Alexandre Maréchal. New Algorithmics for Polyhedral Calculus via Parametric Linear Program-
ming. Theses, UGA - Université Grenoble Alpes, December 2017.

[2] David Monniaux. On using floating-point computations to help an exact linear arithmetic decision
procedure. In International Conference on Computer Aided Verification, pages 570–583. Springer,
2009.

[3] Tim King, Clark Barrett, and Cesare Tinelli. Leveraging linear and mixed integer programming for
smt. In Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design, pages
139–146. FMCAD Inc, 2014.

[4] OpenMP Architecture Review Board. OpenMP Application Programming Interface, 4.5 edition,
November 2015.

[5] Dirk Beyer. Automatic verification of c and java programs: Sv-comp 2019. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems, pages 133–155.
Springer, 2019.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252.
ACM, 1977.

[7] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
of a program. In Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 84–96. ACM, 1978.

[8] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among variables
of a program. In POPL, pages 84–96, 1978.

[9] Nicolas Halbwachs. Détermination automatique de relations linéaires vérifiées par les variables
d’un programme. PhD thesis, Université Scientifique et Médicale de Grenoble & Institut National
Polytechnique de Grenoble, March 1979.

[10] Patrick Cousot and Radhia Cousot. Static determination of dynamic properties of programs. In
Proceedings of the 2nd International Symposium on Programming, Paris, France. Dunod, 1976.

[11] Roberto Bagnara, Patricia M Hill, and Enea Zaffanella. The parma polyhedra library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and software
systems. Science of Computer Programming, 72(1):3–21, 2008.

[12] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract domains for static
analysis. In International Conference on Computer Aided Verification, pages 661–667. Springer,
2009.

120 Bibliography

[13] Gagandeep Singh, Markus Püschel, and Martin Vechev. Fast polyhedra abstract domain. In ACM
SIGPLAN Notices, volume 52, pages 46–59. ACM, 2017.

[14] NV Chernikova. Algorithm for discovering the set of all the solutions of a linear programming
problem. USSR Computational Mathematics and Mathematical Physics, 8(6):282–293, 1968.

[15] Hervé Le Verge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, 1992.

[16] Alexis Fouilhé. Revisiting the abstract domain of polyhedra: constraints-only representation and
formal proof. PhD thesis, Université Grenoble Alpes, 2015.

[17] George B Dantzig. Fourier-motzkin elimination and its dual. Technical report, STANFORD UNIV
CA DEPT OF OPERATIONS RESEARCH, 1972.

[18] Colin N Jones, Eric C Kerrigan, and Jan M Maciejowski. On polyhedral projection and parametric
programming. Journal of Optimization Theory and Applications, 138(2):207–220, 2008.

[19] Jacob M Howe and Andy King. Polyhedral analysis using parametric objectives. In International
Static Analysis Symposium, pages 41–57. Springer, 2012.

[20] Alexandre Maréchal, David Monniaux, and Michaël Périn. Scalable minimizing-operators on
polyhedra via parametric linear programming. In International Static Analysis Symposium, pages
212–231. Springer, 2017.

[21] Nicolas Halbwachs, David Merchat, and Laure Gonnord. Some ways to reduce the space dimension
in polyhedra computations. Formal Methods in System Design, 29(1):79–95, 2006.

[22] Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point polyhedra abstract domain.
In Asian Symposium on Programming Languages and Systems, pages 3–18. Springer, 2008.

[23] Nicholas J Higham. Accuracy and stability of numerical algorithms, volume 80. Siam, 2002.

[24] George B Dantzig. Maximization of a linear function of variables subject to linear inequalities.
Activity analysis of production and allocation, 13:339–347, 1951.

[25] George B Dantzig and Mukund N Thapa. Linear programming 2: theory and extensions. Springer
Science & Business Media, 2006.

[26] Branko Grünbaum, Victor Klee, Micha A Perles, and Geoffrey Colin Shephard. Convex polytopes.
1967.

[27] David Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Computing Surveys (CSUR), 23(1):5–48, 1991.

[28] Vasek Chvatal, Vaclav Chvatal, et al. Linear programming. Macmillan, 1983.

[29] Alexandre Maréchal and Michaël Périn. Efficient elimination of redundancies in polyhedra by ray-
tracing. In International Conference on Verification, Model Checking, and Abstract Interpretation,
pages 367–385. Springer, 2017.

[30] Hang Yu and David Monniaux. An efficient parametric linear programming solver and application
to polyhedral projection. In International Static Analysis Symposium, pages 203–224. Springer,
2019.

[31] Leonid Khachiyan. Fourier–motzkin elimination method. Encyclopedia of Optimization, pages
1074–1077, 2009.

Bibliography 121

[32] Florence Benoy, Andy King, and Frédéric Mesnard. Computing convex hulls with a linear solver.
Theory and Practice of Logic Programming, 5(1-2), 2005.

[33] George B Dantzig and Mukund N Thapa. Linear programming 1: introduction. Springer Science
& Business Media, 2006.

[34] Tomas Gal. Postoptimal Analyses, Parametric Programming, and Related Topics: degeneracy,
multicriteria decision making, redundancy. Walter de Gruyter, 2010.

[35] Robert G Bland. New finite pivoting rules for the simplex method. Mathematics of operations
Research, 2(2):103–107, 1977.

[36] George B Dantzig. Application of the simplex method to a transportation problem. Activity
Analysis and Production and Allocation, 1951.

[37] George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for minimizing
a linear form under linear inequality restraints. Pacific Journal of Mathematics, 5(2):183–195,
1955.

[38] Horst A Eiselt and C-L Sandblom. Linear programming and its applications. Springer Science &
Business Media, 2007.

[39] Colin N Jones, Eric C Kerrigan, and Jan M Maciejowski. Lexicographic perturbation for mul-
tiparametric linear programming with applications to control. Automatica, 43(10):1808–1816,
2007.

[40] Camille Coti, David Monniaux, and Hang Yu. Parallel parametric linear programming solving, and
application to polyhedral computations. In International Conference on Computational Science,
pages 566–572. Springer, 2019.

[41] Julien Henry, David Monniaux, and Matthieu Moy. Pagai: A path sensitive static analyser.
Electronic Notes in Theoretical Computer Science, 289:15–25, 2012.

Index

Abstract domain, 5
Abstract interpretation, 5
Adjacency, 48
Augmented matrix, 43

Basic variables, 16
Bland’s rule, 54, 58
Bounded and unbounded polyhedra, 5

Central point, 30
Chernikova’s algorithm, 5
Convex hull, 39
Convex polyhedra, 5
Convex polyhedra domain, 5

Dictionaries, 15
Double description, 5, 6
Dual degeneracy, 55, 59, 60

Entering variables, 17

Farkas’ lemma, 27
Floating point numbers, 11

Implicit equalities, 35
Irredundancy witness point, 29

Leaving variables, 17
Lexicographic perturbation, 58
Linear Programming, 14
Linear programming, 14
Lock-free data structures, 73

Machine epsilon, 13

Minimization, 25
Mutex, 73

Nonbasic variables, 16

OpenMP, 74
Overlapping regions, 59

Parametric linear programming, 21
Perturbation method, 58
Polyhedra domain, 7
Primal degeneracy, 53, 57, 62, 79
Projectin, 37
Projection, 38

Race condition, 73
Redundant constraints, 25
Rounding errors, 12

Simplex algorithm, 15
Simplex tableau, 20
Soundness, 8

TBB, 74
Thread safe, 73

Verified polyhedra library, VPL, 8

124 Index

Abstract

VPL (Verified Polyhedra Library) is an abstract polyhedra domain using constraint-only description. All
main operators boiled down to polyhedral projection, which can be computed using Fourier-Motzkin
elimination [20]. This method generates many redundant constraints which must be eliminated at a
high cost. A novel algorithm was implemented in VPL for computing the polyhedral projection using
parametric linear programming (PLP) [34], which can replace Fourier-Motzkin elimination. This PLP
solver can also be used for computing the join operator (convex hull). Our work focuses on improving
the efficiency of the algorithm of PLP solver.

In prior work, PLP [39, 1] was done in arbitrary precision rational arithmetic. In this work, we
present an approach where most of the computations are performed in floating-point arithmetic, and then
exact rational results are reconstructed. The result obtained from our approach is guaranteed to be sound.
We also propose a workaround for a difficulty called degeneracy, which plagued previous attempts at
using PLP for computations on polyhedra: in general the (parametric) linear programming problems
are degenerated, resulting in redundant computations and duplicates in geometric descriptions. The
algorithm of the PLP solver is intrinsically parallelable, however it was developed in VPL with OCaml,
which does not well support parallelism programming. In our approach, which is implemented with
C++, we proposed a task-based scheme for parallelizing it. Two parallel implementations have been
realized using two different parallel mechanisms: Intel’s Thread Building Blocks (TBB)1 and OpenMP
tasks [4].

Résumé

VPL (Verified Polyhedra Library) est un domaine de polyhèdres abstraits utilisant une description
uniquement par contrainte. Tous les opérateurs principaux se résumaient à une projection polyédrique
pouvant être calculée à l’aide de l’élimination de Fourier-Motzkin. Cette méthode génère de nombreuses
contraintes redondantes qui doivent être éliminées à un coût élevé. Un nouvel algorithme a été mis en
œuvre dans VPL pour calculer la projection polyédrique à l’aide de la programmation linéaire paramé-
trique (PLP), qui peut remplacer l’élimination de Fourier-Motzkin. Ce solveur PLP peut également être
utilisé pour calculer l’opérateur de jointure (coque convexe). Notre travail est axé sur l’amélioration de
l’efficacité de l’algorithme du solveur PLP.

Dans des travaux antérieurs, le PLP était effectué en arithmétique rationnelle de précision arbitraire.
Dans ce travail, nous présentons une approche dans laquelle la plupart des calculs sont effectués en
arithmétique en virgule flottante, puis les résultats rationnels exacts sont reconstruits. Le résultat obtenu
grâce à notre approche est assuré d’être solide. Nous proposons également une solution de contournement
à une difficulté appelée dégénérescence, qui entachait les tentatives précédentes d’utilisation de PLP
pour les calculs sur polyèdres : en général, les problèmes de programmation linéaire (paramétrique) sont

1 https://www.threadingbuildingblocks.org/

Index 125

dégénérés, ce qui entraîne des calculs redondants et des doublons dans les descriptions géométriques.
L’algorithme du solveur PLP est intrinsèquement parallèle, mais il a été développé en VPL avec OCaml,
qui ne prend pas bien en charge la programmation en parallélisme. Dans notre approche, qui est
implémentée avec C ++, nous avons proposé un schéma basé sur les tâches pour le paralléliser. Deux
implémentations parallèles ont été réalisées en utilisant deux mécanismes parallèles différents : les blocs
de construction de threads (TBB) d’Intel et les tâches OpenMP.

	Contents
	1 Introduction
	2 Preliminaries
	2.1 Convex polyhedra and polyhedra domain
	2.1.1 Convex polyhedra
	2.1.2 Double description of polyhedra
	2.1.3 Operators in polyhedra domain

	2.2 Floating point arithmetic
	2.3 Linear programming
	2.4 Simplex algorithm
	2.5 Parametric linear programming
	2.5.1 Definition of PLP
	2.5.2 Methods to solve PLP problems

	3 Sequential Parametric Linear Programming Solver
	3.1 Flowchart of the algorithm
	3.2 Minimization
	3.2.1 Redundant Constraints
	3.2.2 Minimization using Farkas' lemma
	3.2.3 Raytracing method for minimization

	3.3 Projection and Convex hull
	3.3.1 Projection
	3.3.2 Convex hull

	3.4 The sequential algorithm of PLP solver for computing projection and convex hull
	3.4.1 Overview of the sequential algorithm
	3.4.2 Construction of PLP problems
	3.4.3 Initial tasks
	3.4.4 Checking belonging of points
	3.4.5 Obtaining an optimal basis by solving LP using glpk
	3.4.6 Reconstructing rational matrix and extracting result
	3.4.7 Checking adjacency regions

	3.5 Checkers and Rational Solvers
	3.5.1 Detecting flat regions
	3.5.2 Verifying feasibility of the result provided by GLPK
	3.5.3 Obtaining sound and exact solution

	3.6 Dealing with Equalities
	3.6.1 Minimization with equalities
	3.6.2 Projection of a polyhedron with equalities
	3.6.3 Convex hull of polyhedra with equalities

	4 Degeneracy and Overlapping Regions
	4.1 Introduction to degeneracy
	4.1.1 Primal degeneracy
	4.1.2 Dual degeneracy

	4.2 Degeneracy in linear programming
	4.2.1 Primal degeneracy
	4.2.2 Dual degeneracy

	4.3 Degeneracy in Parametric Linear Programming
	4.3.1 Overlapping regions
	4.3.2 Dual degeneracy in PLP
	4.3.3 Primal degeneracy in PLP

	4.4 Adjacency checker

	5 Parallelism
	5.1 Preliminaries
	5.1.1 Race conditions and thread safe
	5.1.2 Mutex and lock-free algorithm
	5.1.3 TBB and OpenMP

	5.2 Parallel raytracing minimization
	5.3 Parallel Parametric Linear Programming Solver
	5.3.1 Scheduling tasks
	5.3.2 Dealing with shared data
	5.3.3 Updating algorithm of preventing degeneracy
	5.3.4 Advantages and drawbacks of two versions

	6 Experiments
	6.1 Sequential algorithm for minimization
	6.2 Parallel minimization
	6.3 Projection via sequential PLP
	6.3.1 Experiments on randomly generated benchmarks
	6.3.2 Experiments on SV-COMP benchmarks
	6.3.3 Analysis

	6.4 Convex hull via sequential PLP
	6.5 Parallel PLP
	6.5.1 Randomly generated benchmarks
	6.5.2 SV-COMP benchmarks

	6.6 Conclusion

	7 Future Work
	7.1 Improving the current algorithm of the PLP solver
	7.1.1 The approach for checking adjacency
	7.1.2 Dual degeneracy in general PLP problems

	7.2 Towards a pure floating point algorithm of PLP solver
	7.3 Other operators in the polyhedra domain using floating point arithmetic

	Bibliography
	Index

