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Abstract

The language inclusion problem is recognised as being central to verification in different domains,
such as hardware, communication protocols, software systems, etc. There we might face two
challenges: non-determinism and infinite alphabets.

We propose two models of alternating automata over infinite alphabets: (i) alternating data
automata (ADA) and (ii) first-order alternating data automata (FOADA). They both recognise
the data words over infinite alphabets. In ADA model, the control states are Booleans and
the transition rules are specified by a set of formulae in a combined first-order theory of states
(Booleans) and data that relate past values of variables with current values of variables. But a
restriction of the ADA model is that, there is not hidden variable, hence all the data values taken
by the variables are visible in the input. But in FOADA model, the arguments of a predicate
atom track the values of the internal variables associated with the state, and these values are
invisible in the input sequence, which overcomes the restriction of the ADA model.

With these two alternating models, Boolean operations of union, intersection and comple-
ment can be done in linear time, thus matching the complexity of performing these opera-
tions in the finite-alphabet case. However, the price to be paid here is that the emptiness
checking becomes undecidable. For this reason, we provide two efficient semi-algorithms for
emptiness checking: (i) lazy predicate abstraction [33] and (ii) IMPACT method [45]. These
semi-algorithms are proven to terminate by returning a word from the language of the given au-
tomaton if one exists; but if the language of the given automaton is empty, then the termination
is not guaranteed.

The main application of our models is checking inclusions between various classes of au-
tomata extended with variables ranging over infinite domains that recognise languages over
infinite alphabets. The most widely known classes of this kind are timed automata and finite-
memory (register) automata. Another application is checking safety (mutual exclusion, absence
of deadlocks, etc.) and liveness (termination, lack of starvation, etc.) properties of parameterised
concurrent programs.

Besides the theoretical parts, we also have developed a tool - FOADA Checker [62], mainly
used for checking inclusion between two automata or checking emptiness of an automaton.
FOADA Checker is written in Java, via Java-SMT interface [57] and using Z3 SMT solver [53]
for spuriousness, coverage queries and interpolant generation. The IMPACT semi-algorithm [45]
has been implemented in the tool to check the emptiness of an automaton.

Keywords: Model Checking, Verification, Emptiness, Language Inclusion, Alternating, Infinite
Alphabets, IMPACT
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Résumé

Le problème de l’inclusion linguistique est reconnu comme étant au cœur de la vérification dans
différents domaines, tels que le matériel, les protocoles de communication, les systèmes logiciels,
etc. Nous pouvons être confrontés à deux défis: le non-déterminisme et les alphabets infinis.

Nous proposons deux modèles d’automates alternatifs sur des alphabets infinis : (i) les
automates alternatifs de données (ADA) et (ii) les automates alternatifs de données du premier
ordre (FOADA). Ils reconnaissent tous deux les mots de données sur des alphabets infinis. Dans
le modèle ADA, les états de contrôle sont des booléens et les règles de transition sont spécifiées
par un ensemble de formules combinées dans une théorie des états du premier ordre (booléens)
et des données associant les valeurs passées des variables aux valeurs actuelles des variables.
Mais le modèle ADA a une restriction : il n’y a pas de variable cachée, ainsi toutes les valeurs
de données prises par les variables sont visibles dans l’entrée. Pourtant dans le modèle FOADA,
les arguments d’un atome de prédicat tracent les valeurs des variables internes associées à l’état,
et ces valeurs sont invisibles dans la séquence d’entrée, ce qui surmonte la restriction du modèle
ADA.

Avec ces deux modèles en alternance, les opérations booléennes d’union, d’intersection et
de complément peuvent être effectuées en temps linéaire, ce qui correspond à la complexité de
l’exécution de ces opérations dans le cas d’un alphabet fini. Cependant, le prix à payer ici est que
la vérification du vide devient indécidable. Pour ceci, nous fournissons deux semi-algorithmes
efficaces pour la vérification du vide : (i) abstraction de prédicats paresseux [33] et (ii) méthode
IMPACT [45]. S’il existe un mot du langage de l’automate donné, il est prouvé que ces semi-
algorithmes se terminent en le retournant; mais si la langue de l’automate donné est vide, la
terminaison n’est pas garantie.

La principale application de nos modèles est de vérifier l’inclusion entre différentes classes
d’automates étendues avec des variables allant de domaines infinis reconnaissant les langues à
des alphabets infinis. Les plus connues de ce genre de classes sont les automates temporisés et
les automates à mémoire finie (registre). Une autre application est de vérifier les propriétés de
sécurité (exclusion mutuelle, absence de blocages, etc.) et de vitalité (résiliation, absence de
famine, etc.) des programmes concurrents paramétrés.

Outre les parties théoriques, nous avons également développé un outil - FOADA Checker [62],
en général à l’usage de la vérification de l’inclusion entre deux automates ou de la vérification
du vide d’un automate. FOADA Checker est écrit en Java, via l’interface Java-SMT [57] et en
utilisant le solveur Z3 SMT [53] pour les parasites, les requêtes de couverture et la génération
d’interpolation. Le semi-algorithme IMPACT [45] a été implémenté dans l’outil pour vérifier le
vide d’un automate.

Mots-Clés: Vérification de Modèle, Vérification, Vide, Inclusion Linguistique, Alternance,
Alphabets Infinis, IMPACT



5

Acknowledgements

I must start by thanking my supervisor, Radu Iosif, whose patience, guidance, encouragement,
support and trust were key to achieving this thesis. I got precious experiences from both
theoretical and practical aspects. I am also indebted to my co-supervisor, Susanne Graf, who
spent precious time in helping me.

Besides my supervisors, I would like to thank the rest of my thesis committee: Mr. VOJNAR
Thomas, Mr. PODELSKI Andreas, Mr. VEANES Margus and Mr. BOUAJJANI Ahmed, for
their encouragement, insightful comments and hard questions.

Last but not the least, I would like to thank my family, especially my dear wife, Taoran
YAN, for supporting me.



6



CONTENTS 7

Contents

1 Introduction 11

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.1 Non-Determinism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Infinite Alphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.1 Solutions for Non-Determinism . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 Solutions for Infinite Alphabets . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Solutions for both Non-Determinism and Infinite Alphabets . . . . . . . . 20

1.3.4 Solutions for Language Inclusion . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.1 Alternating Data Automata (ADA) . . . . . . . . . . . . . . . . . . . . . 22

1.4.2 First-Order Alternating Data Automata (FOADA) . . . . . . . . . . . . . 23

1.4.3 FOADA Checker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.6 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Preliminaries 27

2.1 First-Order Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Functions and Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.4 Interpretation and Valuation . . . . . . . . . . . . . . . . . . . . . . . . . 29



8 CONTENTS

2.1.5 Interpretation of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.6 Semantics of Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Craig’s Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Lyndon’s Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Automata on Finite Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Non-Deterministic Finite Automata (NFA) . . . . . . . . . . . . . . . . . 30

2.3.2 Runs and Languages of NFA . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.3 Deterministic Finite Automata (DFA) and Determinisation . . . . . . . . 32

2.3.4 Complementation of NFA . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Alternating Finite Automata (AFA) . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 Definition of AFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Languages of AFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Data Automata (DA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Definition of DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Languages of DA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Determinisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.4 Closure Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Alternating Data Automata (ADA) 41

3.1 Introduction of ADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.1 Data Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Definition of ADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Time Stamp and Accepted Words . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Closure Properties of ADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.3 Complementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.4 Proofs for Boolean Closures . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Antichains and Interpolants for ADA Emptiness . . . . . . . . . . . . . . . . . . 47

3.3.1 Undecidability for Emptiness Problem . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Post-Images and Acceptance Function . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Improvement by Anti-Chains . . . . . . . . . . . . . . . . . . . . . . . . . 48



CONTENTS 9

3.3.4 Safety Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.5 Abstraction and Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Checking Emptiness - Lazy Predicate Abstraction . . . . . . . . . . . . . . . . . 52

3.4.1 Abstract Reachability Tree (ART) . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Lazy Predicate Abstraction Semi-Algorithm . . . . . . . . . . . . . . . . . 53

3.5 Checking Emptiness - IMPACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 In-Place Refinement and Coverage . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 IMPACT Semi-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 First-Order Alternating Data Automata (FOADA) 63

4.1 Introduction of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Data Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Definition of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3 Execution Semantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Symbolic Execution of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Path Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Acceptance Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Elimination of Path Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.4 Elimination of Predicate Atoms . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Closure Properties of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Emptiness Problem of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.1 Unfoldings of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4.2 IMPACT Semi-Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Interpolant Generation of FOADA . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Over-Approximation and Interpolants . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Unfolding with Non-local Interpolants . . . . . . . . . . . . . . . . . . . . 84

5 Applications 87

5.1 Application on Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Application on Register Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Application on Predicate Automata . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 FOADA Checker 93

6.1 Brief User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



10 CONTENTS

6.1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1.2 Emptiness Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1.3 Inclusion Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Input Format - First-Order Alternating Data Automata (FOADA) . . . . . . . . 96

6.3 Input Format - Alternating Data Automata (ADA) . . . . . . . . . . . . . . . . . 97

6.4 Input Format - Predicate Automata (PA) . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusions 103

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



CHAPTER 1. INTRODUCTION 11

Chapter 1

Introduction

1.1 Motivation

The growth in complexity of designs increases the importance of system verification techniques
in many domains, such as hardware [59], software engineering, transportation, banking, telecom-
munications, national defence, aerospace and aeronautical engineering, etc. This could be at-
tributed to important safety requirements where errors either have huge commercial significance,
or even lead to life-threatening situations such as in the transport systems, power plants and so
forth.

The system verification aims at using formal proofs to demonstrate that a system meets
a certain specification. According to the needs, we pick up interesting information from the
description of a system or a specification, which is usually written in natural languages, and
then, we can use this filtered information to re-describe the system or the specification in an
abstract way under a certain specific concept, which is called a model. A model is an abstraction
that helps to explain a system or a specification, and can be used for studying the effects of
different components or for making predictions about behaviour.

Finite-state automaton (FSA) is a largely used model for verification. It is a mathemati-
cal model of computation in which different states of the system (or the specification) are defined
as the states of the model. The behaviour of the system (or the specification) is represented by
discrete state changes, called transitions. The transitions of the model are triggered by actions
or events, formally called input symbols. A word is a sequence of input symbols. Taking
one by one the input symbol from a word and starting from the initial state of the model, if
there exists an execution that leads to a final state of the model, then the word is accepted by
the model. The set of all the words accepted by a model A is called the language of A, often
denoted as L(A). In addition, the set of all possible input symbols is called the alphabet of
the model, usually denoted by Σ, and Σ∗ is the set of finite words with symbols from Σ.

Example 1.1 (Automaton for System) In a chemical production line, starting with an empty
bottle, we add chemical product in the bottle, and in the end we put a cap on. There are two
types of product: A and B; and there are two types of caps: normal cap and special cap. The
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bottles with different products must use different caps and Table 1.1 shows the type specification
of the cap for different products.

Product Cap
A Normal
B Special

A + B Special

Table 1.1: Cap Type Specification for Different Products

The finite-state automaton in Figure 1.1 explains how a complete chemical product is produced
in this chemical production line.

ABEMPTY OVER

A

B

add_A

add_B

normal_cap

special_cap

special_cap

add_A, add_B

add_A

add_B

add_A

add_B

Figure 1.1: An FSA for a Chemical Production System

Given a system that has already been modelled by an automaton, we can build automata
for the specifications that we want to check for the given system, over the same alphabet, hence
the same actions (or events) for both system and specifications.

Example 1.2 (Automaton for Specification) For the chemical production line in Example 1.1,
a recent study shows that the product B is toxic. For all the bottles containing the product B,
the special caps are necessary. Figure 1.2 describes the safe production specification where any
bottle containing toxic product (the product B) does have a special cap when the production is
over.
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NON-
TOXIC

OVER

TOXIC

add_A

add_B

add_A, add_B

normal_cap,
special_cap

special_cap

Figure 1.2: An FSA for a Safe Production Specification of the System in Example 1.1

If all the words that are accepted by the system model are also accepted by the given
specification, then the system meets the given specification. In other words, if we can prove
that the language of the system model is included in the language of the specification, then
the verification problem is solved. Hence, the verification problem is a language inclusion
problem.

There exists a classical solution (Figure 1.3) to solve the language inclusion problem. Instead
of checking language inclusion between two automata A and B over an alphabet Σ, we firstly
build a new automaton B, called the complement of B, whose language is the complement of
the language of B over the set of all available words Σ∗, so L(B) = Σ∗ − L(B); and then we
check whether the intersection between L(A) and L(B) is empty, so check if L(A) ∩ L(B) = ∅.

L(B)

L(A) ⊆ L(B)

L(A)

L(A) ∩ L(B) = ∅
Σ∗L(B)Σ∗

L(A)

Figure 1.3: A Technique to Solve the Language Inclusion Problem

Hence, the verification problem in which we check whether a system S meets a given property
P (hence check whether S |= P), can be transformed into an emptiness problem of the
intersection between (i) the language of system model L(MS) and (ii) the complement of the
language of the property L(MP), so check whether L(MS) ∩ L(MP) = ∅. Figure 1.4 shows
the transformation of the system verification problem into an emptiness problem.
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System 
Verification

• System : S
• Property : P
Ø Check : if S ⊨ P

Inclusion 
Problem

• System Model : MS
Language : L(MS)

• Property Model : MP
Language : L(MP)

Ø Check : if L(MS) ⊆ L(MP)

Emptiness 
Problem

• Complement of L(MP) : L(MP) 
Ø Check : if L(MS) ∩ L(MP) = ∅

Figure 1.4: From System Verification to Emptiness Problem

1.2 Challenges

1.2.1 Non-Determinism

A finite state automaton is called a deterministic finite automaton (DFA) if each of its
transitions is uniquely determined by its source state and input symbol, and reading an input
symbol is required for each transition. Hence, for any input, the deterministic finite state au-
tomaton produces a unique computation1. A non-deterministic finite automaton (NFA)2

does not need to obey the restrictions above. In other words, for any non-deterministic finite
automaton, from a given state, if we take an input symbol, there can be several possible next
states. Section 2.2 provides more details about NFA and DFA.

If we transform the verification problem into an emptiness problem (Figure 1.4), then we
have to complement the automaton of the specification. Complementing a DFA can be simply
done by just flipping the final states and the non-final states, but if the automaton is non-
deterministic, then this method does not work.

Example 1.3 If we complement the NFA in Figure 1.5.left by just flipping the final states and
the non-final states, then we obtain the NFA in Figure 1.5.right. But both of them accept the
word “a”, hence the complementation in this way is not correct.

1Some input word can block the computation, but the computation is still unique for DFA.
2Theoretically, any DFA is also a NFA. But here in this chapter, we use “NFA” in a narrower sense, referring

to those NFA who are not DFA.
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X

Z

a Y

a

X

Z

a
Y

a

Figure 1.5: Complement an NFA in a Wrong Way

One classical technique to deal with the non-determinism is converting a non-deterministic
automaton into a deterministic automaton that recognises the same language [52], by power-set
construction (also called subset construction). However, if a non-deterministic automaton has
n states, then the resulting deterministic automaton by subset construction may have up to 2n

states, an exponentially larger number, which makes the construction impractical for large
automata.

Example 1.4 Figure 1.6.a is an NFA with 3 states. Figure 1.6.b is a DFA that recognises the
same language as Figure 1.6.a does, but it has 8 states, which is exponentially larger.

X Z

a,b

{X}

Ya,c a,b

c

(𝑎)

(𝑏)

{Y} {X,Y}

c a

b

{X,Y,Z}
a

{X,Z}

b

c

a

{Z}

∅

a,b

c

a,b

c

a,b,c

b

{Y,Z}

c

b

c

a

a,b,c

Figure 1.6: A 3-State NFA to an 8-State DFA by Subset Construction
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1.2.2 Infinite Alphabets

When dealing with real-life systems, the models usually handle data from very large domains
that can be assumed to be infinite, such as 64-bit integers, floating point numbers, strings of
characters, etc. The correctness of this kind of systems must be specified in terms of data values.
Alternatively, sometimes the systems must respond to strict deadlines, which requires temporal
specifications expressed in terms of timed languages [4].

Example 1.5 Giving two integer arrays X and Y , as in Figure 1.7.left: (i) X0 = 1; (ii) Y0 = 1;
(iii) ∀i > 0 : Xi = Yi−1, Yi = Xi−1 +Yi−1. We want to check whether these two arrays meet the
specification, as in Figure 1.7.right: ∀i > 0 : Xi > Xi−1, Yi > Yi−1. Here, using finite alphabets
is not enough since integer is an infinite data domain.

0 1 2 3 …
1 1 2 3 …

1 2 3 5 …

X

Y

… i - 1 i i + 1 …
… >Xi-2 >Xi-1 >Xi …

… >Yi-2 >Yi-1 >Yi …

X

Y

Figure 1.7: Arrays and Specification in Example 1.5

Example 1.6 Figure 1.8 shows a timed system with two clocks x and y, which increase jointly as
time elapses. Clocks can be reset to 0 and restart timing at occurrence of a transition (supposed
to take no time), and then again, they will increase with time. The clock values are real numbers.

SAFE ALARM

REPAIR-
ING

FAILSAFE

problem
x := 0

done
22 ≤ y ≤ 25

repair
x ≤ 15
y := 0

delay
15 ≤ x ≤ 16
y := 0

repair
2 ≤ y ∧ x ≤ 56
y := 0

Figure 1.8: A Timed System

There exist some classical automata that can, to some extent, handle infinite alphabets,
such as timed automata [4] and finite-memory (register) automata [36]. But they both face the
closure problem for the complementation due to their infinite alphabets. In other words, for
these two kinds of automata, there exist automata for which the complement language cannot
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be recognised by an automaton in the same class. This excludes the possibility to transform the
inclusion problem into the emptiness problem.

1.3 State-of-the-Art

1.3.1 Solutions for Non-Determinism

As mentioned before, the NFA may need to be determinised in order to be complemented.
However, this determinisation may cause an exponential blow-up in the number of states. This
is the context in which alternation [12] has been introduced.

One classical alternating model is alternating finite automata (AFA) [12], where the
transitions are divided into existential (OR-relation, disjunctive branching) transitions and uni-
versal (AND-relation, conjunctive branching) transitions. In AFA, we also allow the formulae
true and false. We will introduce more about AFA in Section 2.4, and note that, the com-
plementation of an AFA can be done in linear time, since (i) we flip the final states and the
non-final states and this operation is linear; (ii) we flip ∧ and ∨ in the transition rules and this
operation is linear.

Example 1.7 The automaton in Figure 1.9 is an alternating finite automaton. The transition

rules are: (i) X
a−→ Y ∧ Z (ii) Y

a−→ Y (iii) Y
b−→ Y (iv) Z

b−→ X ∨ Y .

X

Z

Ya

a

a,b

b
b

Figure 1.9: An Alternating Finite Automaton

1.3.2 Solutions for Infinite Alphabets

Using finite alphabets for the models and the specifications is very restrictive when dealing with
real-life systems. However, there exist some classical models that can, to some extent, handle
infinite alphabets.
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One classical model is timed automata [4], which can capture several interesting aspects
of real-time systems, including some qualitative features such as liveness, fairness and non-
determinism, as well as some quantitative features such as periodicity, bounded response and
timing delays. Timed automata accept timed words - possibly infinite sequences in which a
real-valued time of occurrence is associated with each symbol. A timed automaton is a finite
automaton with a finite set of real-valued clocks. The clocks can be reset to 0 independently of
each other with the transitions of the automaton, and keep track of the time elapsed since the
last reset. The transitions of the automaton may impose certain constraints on clock values,
such that a transition may be taken only if the current values of the clocks satisfy the associ-
ated constraints. Language inclusion is generally undecidable3 for timed automata. Moreover,
the class of timed regular languages is not closed under complementation, this excludes the
possibility to transform the inclusion problem into an emptiness problem.

Example 1.8 The timed automaton in Figure 1.10 accepts the language:

{(aω, τ) | ∃i ≥ 1.∃j > i.(τj = τi + 1)}

where aω stands for the infinite concatenation of a to itself and τ is a time sequence (hence a
sequence of real numbers). The complement of this language cannot be characterised using a
timed automaton. The complement needs to make sure that no pair of a is separated by distance
1. Since there is no bound on the number of a that can happen in a time period of length 1,
keeping track of the times of all the a within the past 1 time unit would require an unbounded
number of clocks.

S0 S1

a :
x := 0

S2

a :
x = 1?

a a a

Figure 1.10: A Non-Complementable Timed Automaton

Another model of computation dealing with infinite alphabets, called finite-memory au-
tomata [36], is a natural generalisation of the classical finite-state automata [52]. This model
is also called register automata. The basic idea behind this model is to equip the automaton
with a finite set of registers, called windows. Each window is capable of being empty or storing
a symbol from the infinite alphabet. When the automaton takes the next input symbol: (i) if
no window contains the input symbol, then it is copied into a specified window depending on
the state; (ii) otherwise the test of equality applies. The language inclusion is undecidable for
finite-memory automata (register automata). Moreover, this model is generally not closed under
complementation, which makes it impossible to transform the inclusion problem into emptiness
problem.

3It becomes decidable if restricted to having at most one clock.



CHAPTER 1. INTRODUCTION 19

Example 1.9 The finite-memory automaton in Figure 1.11 accepts the language:

{σ1, σ2, ..., σn : ∃1 ≤ i ≤ j ≤ n.σi = σj}

The complement of this language cannot be characterised using a finite-memory automaton. As-
sume to the contrary that there exists a finite-memory automaton A that accepts the complement
of the language above, hence all the words where each symbol appears at most once. Since the
alphabet Σ is infinite, there exists a word σ ∈ L(A) of length |A|+ 1. We know that A accepts
a word σ′ of length |A| + 1 that contains at most |A| distinct symbols (see proposition 4 in
[36]), therefore some symbol of Σ must appear in σ′ more than once, in contradiction with the
assumption.

q0,1 q,2 f,2

1 2 1,2

# #

1 1

Figure 1.11: A Non-Complementable Finite-Memory Automaton

Symbolic finite automata (s-FA) [19, 58] are a model that can also, to some extent,
overcome the limitation of only handling finite and small alphabets. Symbolic automata allow
transitions to carry predicates and functions over a specified alphabet theory, such as linear
arithmetic, and therefore extend finite automata to operate over infinite alphabets, such as
the set of rational numbers. If it is decidable to check whether predicates in the algebra are
satisfiable, then (i) symbolic automata are closed under Boolean operations and (ii) emptiness
and inclusion are decidable. However, this model loses the previous values after each transition
since the values cannot be stored in registers or other forms of memory. This excludes the
possibility of comparing the current values with the past values.

Example 1.10 The symbolic automaton in Figure 1.12 defines the list of odd numbers with
length greater than 1.

Data automata (DA) [34] are extensions of non-deterministic finite automata (NFA) with
variables ranging over a possibly infinite data domain, equipped with a first-order theory. DA
model recognises the data words over infinite alphabets consisting of pairs (a, v) where a is
an input event from a finite set and v is a valuation of a finite set of variables that range
over a possibly infinite data domain. Data automata are closed under the Boolean operations of
intersection and complement, and these Boolean operations can be done in linear time. However,
the inclusion problem for data automata is undecidable. We introduce more details about data
automata in Section 2.5.
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Example 1.11 Consider the data automaton in Figure 1.13. There are two transition rules:

(i) P
a,x′=0∧v′=0−−−−−−−−→ Q and (ii) Q

b,x′=v+1∧v′=x−−−−−−−−−−→ Q, where x refers to the current values of x and
x′ refer to the next (new) value of x (idem for v and v′).

x = 1 mod 2

x = 0 mod 2

true

x = 1 mod 2

x = 1 mod 2
x = 0 mod 2

x = 0 mod 2

Figure 1.12: A Symbolic Automaton

P Q

a :
x’ = 0 ∧ v’ = 0

b :
x’ = v + 1 ∧ v’ = x

Figure 1.13: A Data Automaton

1.3.3 Solutions for both Non-Determinism and Infinite Alphabets

There exists an alternating model called predicate automata (PA) [26, 27, 39], in the class
of infinite-state automata which recognise languages over an infinite alphabet. This model is
used in some works on verification of parameterised concurrent programs with shared memory.
In this model, the alphabet consists of pairs of program statements and thread identifiers, thus
being infinite because the number of threads is potentially unbounded. The data theory in PA
is the theory of equality because thread identifiers can only be compared for equality or dis-
equality. The emptiness problem is undecidable when either (i) the predicates have arity greater
than one, or (ii) some transition rule is quantified. Checking emptiness of quantifier-free PA
is possible with some semi-algorithms, by explicitly enumerating reachable configurations and
checking coverage by looking for permutations of argument values. However, no semi-algorithm
exists for quantified PA.

Another alternating model that can, to some extent, handle infinite alphabets, is symbolic
alternating finite automata (s-AFA) [18]. The two key-features of s-AFA are that: (i) the
alphabet is symbolic, as in a symbolic finite automaton (s-FA) [19]; (ii) the automaton may
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make use of both existential and universal non-determinism, as in an alternating finite automa-
ton (AFA). For a normal s-AFA, the complementation can be done in linear time, however,
for any given s-AFA, the normalisation [18, 44, 61] which aims at converting an s-AFA into an
equivalent normal s-AFA, may (in the worst case) cause an exponential blow-up in the number
of outgoing transitions of any one state in an s-AFA.

1.3.4 Solutions for Language Inclusion

Antichains [23] algorithms or semi-algorithms have been implemented for automata on finite
words [20], on finite trees [9], on infinite words [24, 29], and for other applications where ex-
ponential constructions are involved such as model-checking of linear-time logic [21], games of
imperfect information [13, 7], and synthesis of linear-time specifications [28].

The idea is always to exploit the special structure of the subset constructions. For example,
consider the classical subset construction for the complementation of automata on finite words.
States of the complement automaton are sets of states of the original automaton, that we call
cells and denote by si. Set inclusion between cells is a partial order that turns out to be a
simulation relation for the complement automaton: if s2 ⊆ s1 and there is a transition from s1

to s3, then there exists a transition from s2 to some s4 ⊆ s3. This structural property carries
over to the sets of cells manipulated by reachability algorithms: if s2 ⊆ s1 and a final cell
can be reached from s1, then a final cell can be reached from s2. Therefore, in a breadth-first
search algorithm with backward state traversal, if s1 is visited by the algorithm, then s2 is
visited simultaneously; the algorithm manipulates ⊆-downward closed sets of cells that can be
canonically and compactly represented by the antichain of their ⊆-maximal elements.

There exists also a semi-algorithm described in [34], which combines the principle of the
antichain-based language inclusion algorithm [2] with the interpolant-based abstraction refine-
ment semi-algorithm [45] via a general notion of language-based subsumption relation. This
method aims at solving the trace inclusion problem (an instance is shown in Figure 1.14).

q0
i

init :
x’ = 0
v’ = 1

q1
i

ai :
(i - 1)∆ ≤ x < i ∆
x’ = x + 1
v’ = i
∆’ = ∆

Ai=1,2,…,N

p0

B

p1 p2 … pN

init :
v’ = 1

a2 :
v’ = v + 1

a3 :
v’ = v + 1

aN :
v’ = v + 1

a1,2,…,N :
v’ = v

a2,3,…,N :
v’ = v

aN :
v’ = v

Figure 1.14: An Instance of the Trace Inclusion Problem
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1.4 Contributions

1.4.1 Alternating Data Automata (ADA)

One of our contributions is a new model of alternating automata over infinite alphabets, called
alternating data automata (ADA). Inspired by the data automata (DA) model [8] and
related studies [22, 34], we extend the DA model to the alternating automata model [60] where
the control states become Booleans and the transition rules are specified by a set of formulae in
a combined first-order theory of states (Booleans) and data that relate past values of variables
with current values of variables. As the DA model does, the ADA model recognises the data
words over infinite alphabets consisting of pairs (a, v) where a is an input event from a finite set
and v is a valuation of a finite set of variables that range over a possibly infinite data domain.

Example 1.12 Consider the alternating data automaton in Figure 1.15. The transitions are:

(i) X
a−→ Y ∧ x = 0 ∧ Z ∧ y = 0 (ii) Y

a−→ Y (iii) Y
b−→ Y (iv) Z

b−→ X ∧ y = x+ 1 ∨ Y ∧ x = y,
where X, Y and Z are Boolean control states, x refers to the current value of x and x refers to
the past value of x (idem for y and y).

X

Z

Y

a :
x = 0

a :
y = 0

a,b

b :
y = x + 1

b :
x = y

Figure 1.15: An Alternating Data Automata

With the ADA model, Boolean operations of union, intersection and complement can be
done in linear time, thus matching the complexity of performing these operations in the finite-
alphabet case. The price to be paid here is that emptiness checking becomes undecidable, this
is the reason why we provide two efficient semi-algorithms for emptiness checking. One of these
two semi-algorithms is based on lazy predicate abstraction [33]; and the other is based on the
IMPACT method [45]. These two semi-algorithms are proven to terminate by returning a word
from the language of the automaton if one exists. But if the language of the given automaton
is empty, then termination is not guaranteed.

A restriction of the ADA model here is that there is no hidden variable, hence all the data
values taken by the variables are visible in the input.
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More details about ADA are given in Chapter 3.

1.4.2 First-Order Alternating Data Automata (FOADA)

Another contribution of this thesis is a generalised alternating automata model, called first-
order alternating data automata (FOADA), in which states are predicate symbols, the
input is associated with data variables ranging over an infinite data domain and transitions use
formulae in the first-order theory of the data domain. As the ADA model does, the FOADA
model also recognises the data words over infinite alphabets consisting of pairs (a, v) where a is
an input event from a finite set and v is a valuation of a finite set of variables that range over
a possibly infinite data domain.

In the FOADA model, the arguments of a predicate atom track the values of the inter-
nal variables associated with the state, and these values are invisible in the input sequence.
This overcomes the restriction of ADA, and it solves a classical language inclusion problem
∩ni=1L(Ai) ⊆ L(B), between FSA with data variables whose languages are alternating sequences
of input events and variable valuations [34], where the variables of the right-hand side automa-
ton B are also controlled by the left-hand side automaton A, in other words, that B has no
hidden variables.

Example 1.13 Here is an example of FOADA A = (D,Σ, X,Q, ι, F,∆):

• D = Z, Σ = {a, b}, X = {x, y}, Q = {q0, q1, q2}, ι = q0(0), F = {q2},

• ∆ contains transitions:

q0(d)
a(x,y)−−−−→ q1(x) ∧ x > d ∧ q2(x, y) ∧ y > d,

q1(d)
b(x,y)−−−−→ q1(x) ∧ y < d ∨ q2(x, y) ∧ y > d,

q2(d, e)
b(x,y)−−−−→ q2(x, y) ∧ x > d ∧ y > e.

Note that d and e are not visible in the input.

The FOADA model is closed under union, intersection and complementation. Again, Boolean
operations are possible in linear time. As the ADA model, the price here to be paid is that
the emptiness checking of FOADA is undecidable, even for the simplest data theory of equality
[26]. Hence, in this thesis we also introduce an effective emptiness checking semi-algorithm for
FOADA model, in the spirit of the IMPACT procedure [45], originally developed for checking
safety of non-deterministic integer programs.

More details about FOADA are given in Chapter 4.
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1.4.3 FOADA Checker

For validation purposes, we also have developed a tool - FOADA Checker [62], mainly used
for checking inclusion between two automata or checking emptiness of an automaton. The
tool is written in Java, via Java-SMT interface [57] and using Z3 SMT solver [53] for checking
spuriousness, coverage queries and interpolant generation. The IMPACT semi-algorithm has
been implemented in the tool to check the emptiness of an automaton. The automata models
supported as input are: (i) predicate automata [26, 27], (ii) alternating data automata and (iii)
first-order alternating data automata.

More details about FOADA Checker are given in Chapter 6.

1.4.4 Applications

The main application of our models (ADA and FOADA) is checking inclusions between various
classes of automata extended with variables ranging over infinite domains that recognise lan-
guages over infinite alphabets. The most widely known such classes are (i) timed automata
[4] and (ii) finite-memory automata [36]. In both cases, complementation is not possible
inside the class and inclusion is undecidable. Our contribution here is providing a systematic
semi-algorithm for these decision problems. In addition, we can extend generic register au-
tomata [34] inclusion checking framework by allowing monitor (right-hand side) automata to
have local (hidden) variables that are not visible in the language.

Another application is checking safety (mutual exclusion, absence of deadlocks, etc.) and
liveness (termination, absence of starvation, etc.) properties of parameterised concurrent pro-
grams, consisting of an unbounded number of replicated threads that communicate via a fixed
set of global variables (locks, counters, etc.). The verification of parametric programs has been
reduced to checking the emptiness of a possibly infinite sequence of first-order alternating data
automata, called predicate automata [26, 27], encoding the inclusion of the set of traces of
a parametric concurrent program into increasingly general proof spaces, obtained by generali-
sation of counter-examples. The program and the proof spaces are first-order alternating data
automata over the infinite alphabet of pairs consisting of program statements and thread iden-
tifiers.

1.5 Organisation

Chapter 2 presents some preliminaries, including some basics of the first order logic, some brief
introductions to automata and alternating automata.

In Chapter 3 we define Alternating Data Automata (ADA). Then we introduce the
closure properties and show how the Boolean operations on ADA can be done in linear time.
After that, we introduce the anti-chains and interpolants for the emptiness of ADA. Based on
this, we provide two efficient semi-algorithms for emptiness checking, inspired by two state-of-
the-art abstraction refinement model checking methods: lazy predicate abstraction [33] and the
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IMPACT semi-algorithm [45].

In Chapter 4 we define First-Order Alternating Data Automata (FOADA). Then we
explain symbolic execution of FOADA. After that, we show that FOADA are closed under union,
intersection and complementation. The emptiness problem for FOADA is undecidable, therefore
we introduce an abstraction refinement semi-algorithm based on lazy annotation [45, 46] of the
symbolic execution paths with interpolants obtained by (i) applying quantifier elimination with
witness term generation and (ii) Lyndon interpolation in the quantifier-free theory of the data
domain with uninterpreted predicate symbols.

The main applications of ADA and FOADA is checking inclusions between various classes of
automata extended with variables ranging over infinite domains that recognise languages over
infinite alphabets. Chapter 5 shows the applications of our models for timed automata [4],
register automata [36] and predicate automata [26, 27].

Chapter 6 explains our tool, the FOADA Checker [62]. The IMPACT semi-algorithm [45]
described in previous chapters has been implemented in this tool. Some insightful case-studies
can also be found in this chapter.

1.6 Notations

The following notations are frequently used throughout this thesis:

• N : The symbol N denotes natural numbers;

• Z : The symbol Z denotes integers;

• R : The symbol R denotes real numbers;

• |S| : Given a set S, |S| denotes the cardinality of S;

• [a, b] : Given two integers a and b such that a ≤ b, [a, b] denotes the integer set {i ∈ Z | a ≤
i ≤ b};

• AB : Given two sets A and B, AB denotes the set of all functions f : A→ B.
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Chapter 2

Preliminaries

In this chapter, we introduce some basics that are important for the following chapters.

In the first section, we introduce the syntax of the First-Order Logic (FOL), starting by
terms and formulae; then we explain its semantics including interpretation and valuation. The
second section introduces Craig interpolation and Lyndon interpolation. In the third section,
we introduce some basics of automata on finite words. We start with Non-Deterministic Finite
Automata (NFA), then we introduce Deterministic Finite Automata (DFA) which is a partic-
ular case of NFA, and then we explain the transformation of an NFA into a DFA that accepts
the same language, which is called determinisation. We terminate this section by explaining
complementation of an NFA. In the forth section, we introduce alternation. We first present
Alternating Finite Automata (AFA) model, then we show how to complement AFA in linear
time.

2.1 First-Order Logic

2.1.1 Functions and Constants

Given a set of sort symbols ΣS , a function symbol fσ1,σ2,...,σ#(f):σf contains the following
information:

• σ1, σ2, ..., σ#(f) : σf is the function signature1 where:

– σ1, σ2, ..., σ#(f) ∈ ΣS are the sorts of the function arguments;

– σf ∈ ΣS is the sort of the function result;

• #(f) ≥ 0 is the function arity.

1We omit specifying the signature of a function when it is not necessary.
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For a function f with result sort σf , if #(f) = 0 then f is called a constant, and denoted
by fσf or simply2 f . For the Boolean sort Bool = {>,⊥} ∈ ΣS , we write > for the constant
true and ⊥ for the constant false.

2.1.2 Terms

Given a set of sort symbols ΣS , a set of function symbols ΣF and a countable set of variables
VAR where each variable xσx ∈ VAR (simply3 denoted as x) has an associated sort σx ∈ ΣS , a
term t of sort σt ∈ ΣS , denoted4 by tσt , is defined recursively by the grammar:

t ::= xσt , xσt ∈ VAR; variable

| cσt , cσt ∈ ΣF ; constant

| fσ1,σ2,...,σ#(f):σt(tσ1
1 , tσ2

2 , ..., t
σ#(f)

#(f) ), fσ1,σ2,...,σ#(f):σt ∈ ΣF ,

σ1, σ2, ..., σ#(f) ∈ ΣS ,

tσ1
1 , tσ2

2 , ..., t
σ#(f)

#(f) are terms; function application

2.1.3 Formulae

Given a set of sort symbols ΣS , a first-order formula φ is defined recursively by the grammar:

φ ::= tBool, tBool is Boolean term; Boolean term

| tσ1
1 ≈ t

σ2
2 , σ1, σ2 ∈ ΣS ,

tσ1
1 , tσ2

2 are terms; equality

| ¬ψ, ψ is first-order formula; negation

| ψ1 ∧ ψ2, ψ1, ψ2 are first-order formulae; conjunction

| ∃x.ψ, ψ is first-order formula,

x ∈ FV(ψ); existential quantification

In addition, we can write:

ψ1 ∨ ψ2 for ¬(¬ψ1 ∧ ¬ψ2), ψ1, ψ2 are first-order formulae; disjunction

ψ1 → ψ2 for ¬ψ1 ∨ ψ2, ψ1, ψ2 are first-order formulae; implication

∀x.ψ for ¬(∃x.¬ψ), ψ is first-order formula,

x ∈ FV(ψ); universal quantification

For a formula φ, we denote by FV(φ) the set of variables not occurring under the scope of
a quantifier in φ. It is also called the set of free variables.

2We omit specifying the sort of a constant when it is not necessary.
3We omit specifying the sort of a variable if it is not necessary.
4We omit specifying the sort of a term when it is not necessary.
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2.1.4 Interpretation and Valuation

Given a set of sort symbols ΣS and a set of function symbols ΣF , an interpretation I for
(ΣS ,ΣF ) maps each:

• Sort symbol σ ∈ ΣS : to a non-empty set σI ;

• Function symbol fσ1,σ2,...,σ#(f):σf ∈ ΣF with #(f) > 0 where σ1, σ2, ..., σ#(f), σf ∈ ΣS :
to a function fI : σI1 × σI2 × ...× σI#(f) → σI ;

• Constant symbol cσ ∈ ΣF where σ ∈ ΣS : to an element of σI .

Given an interpretation I, the set of all possible valuations under I is denoted by VI . A
valuation v ∈ VI maps each variable xσx ∈ VAR to an element of σIx . Given in addition a
value α ∈ σIx , we write v[x ← α] for a valuation such that: (i) v[x ← α](x) = α, and (ii)
v[x← α](y) = v(y) for any y ∈ VAR with y 6= x.

2.1.5 Interpretation of Terms

Given an interpretation I and a valuation v ∈ VI , the interpretation of a term t, denoted
by tIv , is defined recursively:

xIv = v(x), x ∈ VAR;

cIv = cI , c ∈ ΣF ;

fIv (t1, t2, ..., t#(f)) = fI(t1
I
v , t2

I
v , ..., t#(f)

I
v
), f ∈ ΣF , t1, t2, ..., t#(f) are terms;

2.1.6 Semantics of Formulae

Given an interpretation I and a valuation v ∈ VI , we write I, v |= φ if the first-order formula φ
is interpreted to true under I and v. We have the following recursive definitions:

I, v |= tBool iff tBool
I
v = >, tBool is Boolean term;

I, v |= t1 ≈ t2 iff t1
I
v = t2

I
v , t1, t2 are terms;

I, v |= ¬ψ iff I, v 6|= ψ, ψ is first-order formula;

I, v |= ψ1 ∧ ψ2 iff I, v |= ψ1 and I, v |= ψ2, ψ1, ψ2, are first-order formulae;

I, v |= ∃xσ.ψ iff I, v[xσ ← α] |= ψ for some α ∈ σI , ψ is first-order formula, xσ ∈ FV(ψ);

A first-order formula φ is satisfiable under the interpretation I if there exists a valuation
v such that I, v |= φ, otherwise φ is unsatisfiable under I. If I, v |= φ for any v under I, then
φ is valid under I.
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Given two formulae φ and ψ, we write φ |=I ψ and say that φ entails ψ under the interpre-
tation I, if and only if I, v |= φ implies I, v |= ψ for any valuation v.

2.2 Interpolation

2.2.1 Craig’s Interpolation

Given a formula φ, the vocabulary of φ, denoted V (φ), is the set of predicate symbols and
variables occurring in φ. For a term t, its vocabulary V (t) is the set of variables that occur in
t. Observe that quantified variables and the interpreted function symbols of the data theory do
not belong to the vocabulary of a formula.

Definition 2.1 [16, 17] For two formulae A and B such that A |= B, a Craig interpolant
is a formula I such that: (i) A |= I, (ii) I |= B and (iii) V (I) ⊆ V (A) ∩ V (B).

Definition 2.2 For two formulae A and B, suppose the conjunction A ∧ B is unsatisfiable, a
reverse interpolant is a formula I such that: (i) A |= I , (ii) I ∧ B is unsatisfiable and (iii)
V (I) ⊆ V (A) ∩ V (B).

2.2.2 Lyndon’s Interpolation

Lyndon’s interpolation theorem [43] is a stronger form of Craig’s interpolation theorem.
By P+(φ) we denote the set of predicate symbols that occur in φ under an even number of
negations and by P−(φ) we denote the set of predicate symbols that occur in φ under an odd
number of negations.

Definition 2.3 [43] Given two formulae A and B such that A ∧B is unsatisfiable, a Lyndon
interpolant is a formula I such that: (i) A |= I, (ii) I ∧ B is unsatisfiable and (iii) V (I) ⊆
V (A) ∩ V (B), P+(I) ⊆ P+(A) ∩ P+(B) and P−(I) ⊆ P−(A) ∩ P−(B).

2.3 Automata on Finite Words

2.3.1 Non-Deterministic Finite Automata (NFA)

A non-deterministic finite automaton (NFA) is a tuple A = (Σ, Q, I, F, δ) where:

• Σ is a finite input alphabet;

• Q is a finite set of states;



CHAPTER 2. PRELIMINARIES 31

• I ⊆ Q is the set of initial states;

• F ⊆ Q is the set of final states;

• δ : Q× Σ→ 2Q is the transition function.

Σ defines the symbols on which the automaton is defined. The set I defines the states in
which the automaton may start, and I is possibly empty. The transition function δ can be
identified with the relation →⊆ Q× Σ×Q given by:

for q, p ∈ Q, a ∈ Σ : q
a−→ p iff p ∈ δ(q, a)

Intuitively, q
a−→ p denotes that the automaton can move from the state q to the state p when

reading the input a.

Example 2.1 An example of NFA is depicted in Figure 2.1. Here in the AFA A = (Σ, Q, I, F, δ):

• Σ = {a, b};

• Q = {q0, q1, q2};

• I = {q0};

• F = {q2};

• δ is defined by:

δ(q0, a) = {q0}, δ(q0, b) = {q0, q1}, δ(q1, a) = {q2}, δ(q1, b) = {q2}, δ(q2, a) = δ(q2, b) = ∅

q0 q2

a,b

q1
b

a

b

Figure 2.1: A Non-Deterministic Finite Automaton

2.3.2 Runs and Languages of NFA

Let A = (Σ, Q, I, F, δ) be an NFA and w = a1, a2, ..., an ∈ Σ∗ a finite word of length n. A run
for w in A is a finite sequence of states q0, q1, ..., qn such that:

• q0 ∈ I

• qi
ai+1−−−→ qi+1 for all 0 ≤ i < n
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In an NFA A = (Σ, Q, I, F, δ), there can be several runs for a given word w ∈ Σ∗ and the
set of all possible runs for w in A is denoted by RA(w). A run r = q0, q1, ..., qn in A is called
accepting if qn ∈ F . In addition, a finite word w ∈ Σ∗ is called accepted by A if there exists
an accepting run for w.

The accepted language of an NFA A = (Σ, Q, I, F, δ), denoted by L(A), is the set of all
words in Σ∗ accepted by A:

L(A) = {w ∈ Σ∗ | ∃r ∈ RA(w).r is accepting}

For any NFA A = (Σ, Q, I, F, δ), here we extend the transition function δ to the function
δ∗ : Q× Σ∗ → 2Q as follows:

• δ∗(q) = {q} for q ∈ Q;

• δ∗(q, a) = δ(q, a) for q ∈ Q and a ∈ Σ;

• δ∗(q, a1, a2, ..., an) =
⋃

p∈δ(q,a1)

δ∗(p, a2, ..., an) for q, p ∈ Q and a1, a2, ..., an ∈ Σ and n ≥ 2.

Stated in words, given a state q ∈ Q and a word w ∈ Σ∗, δ∗(q, w) is the set of states that are
reachable from the state q for the input word w. Here we can represent the accepted language
of a NFA A = (Σ, Q, I, F, δ) by means of the extended transition function δ∗:

L(A) = {w ∈ Σ∗ | ∃q0 ∈ I.δ∗(q0, w) ∩ F 6= ∅}

2.3.3 Deterministic Finite Automata (DFA) and Determinisation

Let A = (Σ, Q, I, F, δ) be a NFA. A is called a deterministic finite automaton (ADA) if
|I| ≤ 1 and |δ(q, a)| ≤ 1 for all states q ∈ Q and all symbols a ∈ Σ. In other words, a NFA is a
DFA if it has at most one initial state and for each symbol the successor state of each state is
either uniquely defined or undefined.

A DFA A = (Σ, Q, I, F, δ) is total if it has exactly one initial state and for each symbol the
successor state of each state is uniquely defined, hence |I| = 1 and |δ(q, a)| = 1 for all states
q ∈ Q and all symbols a ∈ Σ. Total DFA is often written in the form A = (Σ, Q, ι, F, δ) where
ι stands for the unique initial state, and δ is a total transition function δ : Q × Σ → Q. In
addition, the extended transition function δ∗ of a total DFA can be viewed as a total function
δ∗ : Q × Σ∗ → Q, which for a given state q ∈ Q and a finite word w ∈ Σ∗, returns a unique
state p ∈ Q that is reached from the state q for the input word w, hence δ∗(q, w) = p. So here
particularly, the accepted language of a total DFA A = (Σ, Q, ι, F, δ) is given by:

L(A) = {w ∈ Σ∗ | δ∗(ι, w) ∈ F}

For a given NFAA = (Σ, Q, I, F, δ), we can construct a total DFAAD = (ΣD, QD, ιD, FD, δD)
that accepts the same language, hence L(A) = L(AD), by power-set construction (also called
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subset construction), in which we simulate A by moving the prefixes of the given input word
to the set of reachable states. This total DFA maybe exponentially larger than the original
NFA:

• AD starts in the state set I;

• If AD is in a state set Q′ ⊆ Q, then with the input symbol a ∈ Σ, AD moves to another
state set Q′′ =

⋃
q∈Q′

δ(q, a);

• If the input word has been consumed and AD is in a state set Q′ ⊆ Q that contains a
state in F , then AD accepts the input word.

More formally, we define AD = (ΣD, QD, ιD, FD, δD) as follows:

• ΣD = Σ;

• QD = 2Q;

• ιD = I;

• FD = {Q′ ⊆ Q | Q′ ∩ F 6= ∅};

• δD : 2Q × Σ→ 2Q is defined by: δD(Q′, a) =
⋃
q∈Q′

δ(q, a) for Q′ ∈ QD and a ∈ Σ.

Example 2.2 The NFA in Example 2.1 (depicted in Figure 2.1) in Page 31 is not deterministic
as on input symbol b in state q0 the next state is either q0 or q1. We apply power-set construction
to obtain a DFA accepting same language and the result is depicted in Figure 2.2.

{q0}

{q0,q1,q2}{q0,q2}

a

{q0,q1}
b

a b

a

b

a
b

Figure 2.2: Determinisation of NFA in Example 2.1 in Page 31
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2.3.4 Complementation of NFA

Since total DFA have exactly one run for each input word, complementing a total DFA is
simple, by just declaring all the non-final states to be final and all the final states to be non-
final. This defines again a total DFA that accepts the complement of the language of the
original DFA under the same alphabet. More formally, given a total DFA A = (Σ, Q, ι, F, δ),
then A = (Σ, Q, ι,Q \ F, δ) is a total DFA with L(A) = Σ∗ \ L(A).

For any given NFA A over an alphabet Σ, we can first transform it into a total DFA AD by
power-set construction, and complement AD to obtain AD. AD accepts the complement of the
language of A, hence L(AD) = Σ∗ \ L(A).

Example 2.3 Considering the total DFA in Figure 2.2, we declare all its non-final states to be
final, hence {q0} and {q0, q1} become final states; and we declare all its final states to be non-
final, hence {q0, q2} and {q0, q1, q2} become non-final states. Then we obtain a DFA, depicted
in Figure 2.3, which is the complement of the DFA in Figure 2.2, hence also the complement of
the NFA in Figure 2.1 in Page 31.

{q0,q1,q2}

{q0}

{q0,q2}

a

{q0,q1}
b

a b

a

b

a
b

Figure 2.3: Complement of NFA in Example 2.1 in Page 31

2.4 Alternating Finite Automata (AFA)

2.4.1 Definition of AFA

An alternating finite automaton (AFA) is a tuple A = (Σ, Q, ι, F, g) where:

• Σ is a finite input alphabet;

• Q = {q1, q2, ..., q|Q|} is a finite set of states;

• ι ∈ Q is the initial states;

• F ⊆ Q is the set of final states;
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• g : Q→ (Σ×B|Q| → B) is the transition function where B denotes the Boolean set {0, 1}.

In an AFA A = (Σ, Q, ι, F, g), the function g associates with each state q ∈ Q a Boolean
function g(q) : Σ × B|Q| → B. Given an input symbol a ∈ Σ and associating a Boolean value
ui with each of the |Q| states qi where qi ∈ Q for i ∈ N and 1 ≤ i ≤ |Q|, then g(q) computes a
Boolean value g(q)(a)(u1, u2, ..., u|Q|) to be associated with state q.

Example 2.4 In Figure 2.4 we introduce alternation into FSA, where there are two types of
alternating transitions: (i) a universal transition: q1

a−→ q2 ∧ q3; (ii) an existential transition:

q3
b−→ q1∨q2. Formally, we define an AFA A = (Σ, Q, ι, F, g), where Σ = {a, b}, Q = {q1, q2, q3},

ι = q1, F = {q2, q3} and g is given by Table 2.1. According to the definition of the function g,
we can also build three Σ×B|Q| → B tables referring respectively to g(q1), g(q2) and g(q3).

q1

q3

q2
a

a

a,b

b
b

Figure 2.4: An Automaton with Alternating Transitions

a b
q1 q2 ∧ q3 0
q2 q2 q2

q3 0 q1 ∨ q2

Table 2.1: g

a b
(0, 0, 0) 0 0
(0, 0, 1) 0 0
(0, 1, 0) 0 0

(0, 1, 1) 1 0
(1, 0, 0) 0 0
(1, 0, 1) 0 0
(1, 1, 0) 0 0

(1, 1, 1) 1 0

Table 2.2: g(q1)

a b
(0, 0, 0) 0 0
(0, 0, 1) 0 0

(0, 1, 0) 1 1

(0, 1, 1) 1 1
(1, 0, 0) 0 0
(1, 0, 1) 0 0

(1, 1, 0) 1 1

(1, 1, 1) 1 1

Table 2.3: g(q2)

a b
(0, 0, 0) 0 0
(0, 0, 1) 0 0

(0, 1, 0) 0 1

(0, 1, 1) 0 1

(1, 0, 0) 0 1

(1, 0, 1) 0 1

(1, 1, 0) 0 1

(1, 1, 1) 0 1

Table 2.4: g(q3)
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2.4.2 Languages of AFA

Given an n-tuple u = 〈u1, u2, ..., un〉 of Boolean values, we define the projection function π :
[1, n]→ (Bn → B) as follows:

π(i)(u) = ui for i ∈ N and 1 ≤ i ≤ n

With this projection, for an AFA A = (Σ, Q, ι, F, g), we define f , the characteristic vector
of F where:

π(i)(f) =

{
1 if qi ∈ F
0 if qi /∈ F

for i ∈ N and 1 ≤ i ≤ |Q|

For any AFA A = (Σ, Q, ι, F, g), we extend the function g to the function g∗ : Q → (Σ∗ →
(B|Q| → B)) as follows:

• g∗(qi)(λ) = π(i) where qi ∈ Q and λ ∈ Σ∗ is the empty string;

• g∗(qi)(ax)(u) = g(qi)(a, g
∗(q1)(x)(u), g∗(q2)(x)(u), ..., g∗(q|Q|)(x)(u)) where qi ∈ Q, a ∈ Σ,

x ∈ Σ∗, u = 〈u1, u2, ..., u|Q|〉 and uj ∈ {0, 1} for j ∈ N and 1 ≤ j ≤ |Q|.

Now with this function g∗, we can define the accepted words of the AFA. LetA = (Σ, Q, ι, F, g)
be an AFA, a word w ∈ Σ∗ is accepted by A if and only if:

g∗(ι)(w)(f) = 1 where f is the characteristic vector of F

Example 2.5 The word “ab” is accepted by the AFA in Example 2.4 and here is the proof:

g∗(q1)(ab)(0, 1, 1) = g(q1)(a, g∗(q1)(b)(0, 1, 1), g∗(q2)(b)(0, 1, 1), g∗(q3)(b)(0, 1, 1))

= g(q1)(a, g(q1)(b, g∗(q1)(λ)(0, 1, 1), g∗(q2)(λ)(0, 1, 1), g∗(q3)(λ)(0, 1, 1))

g(q2)(b, g∗(q1)(λ)(0, 1, 1), g∗(q2)(λ)(0, 1, 1), g∗(q3)(λ)(0, 1, 1))

g(q3)(b, g∗(q1)(λ)(0, 1, 1), g∗(q2)(λ)(0, 1, 1), g∗(q3)(λ)(0, 1, 1)))

= g(q1)(a, g(q1)(b, π(1)(0, 1, 1), π(2)(0, 1, 1), π(3)(0, 1, 1))

g(q2)(b, π(1)(0, 1, 1), π(2)(0, 1, 1), π(3)(0, 1, 1))

g(q3)(b, π(1)(0, 1, 1), π(2)(0, 1, 1), π(3)(0, 1, 1)))

= g(q1)(a, g(q1)(b, 0, 1, 1), g(q2)(b, 0, 1, 1), g(q3)(b, 0, 1, 1))

= g(q1)(a, 0, 1, 1)

= 1

The language accepted by an AFA is the set of all accepted words, hence for a given AFA
A = (Σ, Q, ι, F, g):

L(A) = {w ∈ Σ∗ | g∗(ι)(w)(f) = 1} where f is the characteristic vector of F
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2.5 Data Automata (DA)

2.5.1 Definition of DA

Data Automata (DA) are extensions of NFA with variables ranging over an infinite data
domain D, equipped with a first-order theory T(D).

Formally, a DA is a tuple A = (D,Σ, X,Q, ι, F,∆) where:

• D is a possibly infinite data domain;

• Σ is a finite alphabet of input events including a special padding symbol � ∈ Σ;

• X = {x1, x2, ..., x|X|} is a set of variables;

• Q is a finite set of states;

• ι ∈ Q is the initial state;

• F ⊆ Q is the set of final states;

• ∆ is a set of rules of the form q
a,φ(X,X′)−−−−−−→ q′ where a ∈ Σ is an input symbol and φ(X,X ′)

is a formula in T(D).

A configuration of a DAA = (D,Σ, X,Q, ι, F,∆) is a pair (q, v) ∈ Q×DX and a configuration

(q′, v′) is called a successor of (q, v) if and only if: (i) ∃a ∈ Σ.q
a,φ−−→ q′ ∈ ∆′; (ii) (v, v′) |=T(D) φ.

We denote the successor relation by (q, v)
a,φ−−→ (q′, v′) and we omit writing φ when no con-

fusion may arise. We denote by succ(q, v) = {(q′, v′) | (q, v) → (q′, v′)} the set of successors of
a configuration (q, v).

2.5.2 Languages of DA

For a DA A = (D,Σ, X,Q, ι, F,∆), a trace is a finite sequence w of pairs (vi, ai) taken from
DX × Σ:

w = (v0, a0), (v1, a1), ..., (vn−1, an−1), (vn, �)

Accordingly, a run of A over the trace w = (v0, a0), (v1, a1), ..., (vn−1, an−1), (vn, �) is a sequence
of configurations π:

π = (q0, v0), (q1, v1), ..., (qn, vn) for each i ∈ N, 0 ≤ i ≤ n− 1 : (qi, vi)
ai−→ (qi+1, vi+1)

We say that π is accepting if and only if qn ∈ F , in which case A accepts w. The language of
A, denoted by L(A), is the set of all traces accepted by A.
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2.5.3 Determinisation

Let A = (D,Σ, X,Q, ι, F,∆) be a DA, A is said to be deterministic if and only if, for each
trace w ∈ L(A), A has at most one run over w. Any DA can be determinised while preserving
its language. The reason why determinisation is possible for automata over an infinite data
alphabet DX ×Σ is that the successive values taken by each variable x ∈ X are tracked by the
language L(A) ⊆ (DX × Σ)∗. But there is an example of classical automata over an infinite
alphabet that cannot be determinised - timed automata [4], in which only the elapsed time is
reflected in the language but not the values of the clocks.

The determinisation procedure is a generalisation of the classical subset construction for word
automata [52] on finite alphabets. Formally, for a DAA = (D,Σ, X,Q, ι, F,∆), the deterministic
data automata (DDA) accepting the language L(A) are defined asAD = (D,Σ, X,QD, ιD, FD,∆D):

• D is the same infinite data domain;

• Σ is the same finite alphabet of input events including a special padding symbol � ∈ Σ;

• X = {x1, x2, ..., x|X|} is the same set of variables;

• QD = 2Q;

• ιD = {ι};

• FD = {P ⊆ Q | P ∩ F = ∅};

• ∆D is the set of rules P
a,θ−−→ P ′ such that: (i) ∀p′ ∈ P ′.∃p ∈ P.p

a−→ p′ ∈ ∆; (ii)
θ(X,X ′) ≡

∧
p′∈P ′

∨
p
a,ψ−−→p′∈∆,p∈P,a∈Σ

ψ ∧
∧

p′∈Q\P ′

∧
p
a,φ−−→p′∈∆,p∈P,a∈Σ

¬φ.

The main difference with the classical subset construction for Rabin-Scott automata is that
here we consider all sets P ′ of states that have a predecessor in P , not just the maximal such
set. This refined subset construction takes not only the alphabet symbols in Σ but also the
valuations of variables in X. This determinisation can be done for any theory Th(D) closed
under conjunction and negation.

Given a DAA = (D,Σ, X,Q, ι, F,∆) and its determinisationAD = (D,Σ, X,QD, ιD, FD,∆D),
we have5:

• For any w ∈ (DX × Σ)∗ and P ∈ QD, AD has exactly one run on w that starts in P ;

• L(A) = L(AD).

5The proof is in [34].
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2.5.4 Closure Properties

Given a DA A = (D,Σ, X,Q, ι, F,∆) and its determinisation AD = (D,Σ, X,QD, ιD, FD,∆D),
we can construct the complement of A, denoted by A, defined as follow:

A = (D,Σ, X,QD, ιD, QD \ FD,∆D)

A has the same structure as AD, and its set of final states consists of those subsets that contain
no final state of A, hence {P ⊆ Q | P ∩ F = ∅}. We have L(A) = (DX × Σ)∗ \ L(A).

Given two DA A = (D,Σ, X,QA, ιA, FA,∆A) and B = (D,Σ, X,QB, ιB, FB,∆B), we define
the intersection of these two DA: A × B = (D,Σ, X,QA × QB, (ιA, ιB), FA × FB,∆×) where

(qA, qB)
a,φ−−→ (q′A, q

′
B) ∈ ∆× if and only if: (i) qA

a,ψ−−→ q′A ∈ ∆A; (ii) qB
a,η−−→ q′B ∈ ∆B; (iii)

φ ≡ ψ ∧ η. And we have L(A× B) = L(A) ∩ L(B).

Above we show that DA are closed under intersection, now it is easy to show that DA are
also closed under union since:

L(A× B) = L(A) ∪ L(B)
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Chapter 3

Alternating Data Automata
(ADA)

Alternating automata have been widely used to model and verify systems that handle data
from finite domains, such as communication protocols or hardware. The main advantage of
the alternating model of computation is that complementation is possible in linear time, thus
allowing one to concisely encode trace inclusion problems that occur often in verification.

In this chapter, we consider a model of alternating automata over infinite alphabets, called
alternating data automata (ADA), whose transition rules are formulae in a combined theory
of Booleans and some infinite data domain, that relate past and current values of the data
variables. The data theory is not fixed, but rather it is a parameter of the class.

We also show that union, intersection and complementation are possible in linear time in
this model and though the emptiness problem is undecidable, we provide two efficient semi-
algorithms, inspired by two state-of-the-art abstraction refinement model checking methods:
lazy predicate abstraction [33] and the IMPACT semi-algorithm [45].

3.1 Introduction of ADA

3.1.1 Data Words

Firstly, we fix an interpretation I and a finite alphabet Σ of input events for the rest of this
section. Given a finite set X ⊂ VAR of variables of sort D, let X 7→ DI be the set of data
symbols. A data word w is a finite sequence:

(a1, v1), (a2, v2), ..., (a|w|, v|w|)

where a1, a2, ..., a|w| ∈ Σ and v1, v2, ..., v|w| : X → DI are valuations. We denote by ε the empty
sequence, by Σ∗ the set of finite sequences of input events and by Σ[X]∗ the set of data words



42 CHAPTER 3. ALTERNATING DATA AUTOMATA (ADA)

over X. This definition generalises the classical notion of words from a finite alphabet to a
possibly infinite alphabet Σ[X]. More precisely, when DI is sufficiently large or infinite, we can
map the elements of Σ into designated elements of DI and use a special variable to encode the
input events.

3.1.2 Definition of ADA

Given a finite set X ⊂ VAR of variables of sort D and a finite set B of Boolean variables, we
denote by FORM(B,X) the set of formulae φ such that FV Boolean(φ) ⊆ B and FV D(φ) ⊆ X.
In addition, by FORM+(B,X) we denote the set of formulae from FORM(B,X) in which each
Boolean variable occurs only under an even number of negations.

An alternating data automaton (ADA) is a tuple A = (D,Σ, X,Q, ι, F,∆) where:

• D is a possibly infinite data domain;

• Σ is a finite alphabet of input events;

• X ⊂ VAR is a finite set of variables of sort D;

• Q ⊂ VAR is a finite set of states which are Boolean;

• ι ∈ FORM+(Q, ∅) is the initial configuration;

• F ⊆ Q is the set of final states;

• ∆ : Q× Σ→ FORM+(Q,X ∪X) is a transition function where X denotes {x | x ∈ X}.

In each formula ∆(q, a) where q ∈ Q and a ∈ Σ, the variables X track the previous values
and X track the current values of variables of A. Observe that the initial configuration does
not contain free data variables, hence the initial values of the variables are left unconstrained.
The size of A is defined as |A| = |ι|+

∑
(q,a)∈Q×Σ

|∆(q, a)|.

Example 3.1 Figure 3.1.left depicts an ADA over DI = Z with an input alphabet Σ = {a, b},
variables X = {x, y}, states Q = {q0, q1, q2, q3, q4}, initial configuration ι = q0, final states
F = {q3, q4} and transitions ∆ given in Figure 3.1.right, where missing rules are assumed to be
false, for example ∆(q0, b) = ⊥. Transition rules ∆(q0, a) and ∆(q1, a) are universal, and there
is no existential non-deterministic rule in this ADA. Transition rule ∆(q2, a) ≡ q2∧x > x∧y > y
compares the current value of x (denoted by x) with the past value of x (denoted by x) and
compares the current value of y (denoted by y) with the past value of y (denoted by y). Transition
rule ∆(q0, a) ≡ q1 ∧ q2 ∧ x ≈ 0 ∧ y ≈ 0 constrains the current value of x and the current value
of y.
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q0

q2

q1a :
x ≈ 0
∧ y ≈ 0

a :
x ≈ y + 1
∧ y ≈ x + 1

q3

q4

b :
x ≥ y

b :
x > y

a :
x > x
∧ y > y

∆(q0, a) ≡ q1 ∧ q2 ∧ x ≈ 0 ∧ y ≈ 0

∆(q1, a) ≡ q1 ∧ q2 ∧ x ≈ y + 1 ∧ y ≈ x+ 1

∆(q1, b) ≡ q3 ∧ x ≥ y

∆(q2, a) ≡ q2 ∧ x > x ∧ y > y

∆(q2, b) ≡ q4 ∧ x > y

Figure 3.1: An Alternating Data Automaton

3.1.3 Time Stamp and Accepted Words

Given an ADA A = (D,Σ, X,Q, ι, F,∆), for an input event a ∈ Σ and a formula φ, we write
∆(φ, a) for the formula obtained from φ by simultaneously replacing each state q ∈ FVBoolean(φ)
by the formula ∆(q, a). Let Xk = {xk | x ∈ X}, for any k ∈ N, be a set of time-stamped
variables. We write ∆k(φ, a) for the formula obtained from φ by replacing each state q ∈
FVBoolean(φ) by the formula ∆(q, a)[Xk/X,Xk+1/X].

For any ADA A = (D,Σ, X,Q, ι, F,∆), given a word w = (a1, v1), (a2, v2), ..., (a|w|, v|w|)
where a1, a2, ..., a|w| ∈ Σ and v1, v2, ..., v|w| : X → DI , the run of A over w is the sequence of
formulae:

φ0(Q), φ1(Q,X0 ∪X1), φ2(Q,X0 ∪X1 ∪X2), ..., φ|w|(Q,X0 ∪X1 ∪ ... ∪X|w|)

where φ0 ≡ ι and ∀k ∈ [1, |w|].φk ≡ ∆k(φk−1, ak). Next, let us write ∆(ι, a1, a2, ..., a|w|) for
the formula φ|w|(X0, X1, ..., X|w|) above. We say that A accepts the word w if and only if
I, v |= ∆(ι, a1, a2, ..., a|w|) for the valuation v that maps:

• each x ∈ Xk to vk(x) for all k ∈ [1, |w|];

• each q ∈ FVBoolean(φ|w|) ∩ F to >;

• each q ∈ FVBoolean(φ|w|) \ F to ⊥;

Example 3.2 For the ADA in Example 3.1 (in Figure 3.1), where the function symbols have
standard arithmetic interpretation, the word w = (a, 0, 0), (a, 1, 1), (b, 2, 1) is not accepted. Here
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is the run of A on w:

q0 (φ0)

a,0,0−−−→ q1 ∧ q2 ∧ x1 ≈ 0 ∧ y1 ≈ 0 (φ1)

a,1,1−−−→ q1 ∧ q2 ∧ x2 ≈ y1 + 1 ∧ y2 ≈ x1 + 1 ∧ q2 ∧ x2 > x1 ∧ y2 > y1 ∧ x1 ≈ 0 ∧ y1 ≈ 0 (φ2)

b,2,1−−−→ q3 ∧ x2 ≥ y2 ∧ q4 ∧ x2 > y2 ∧ x2 ≈ y1 + 1 ∧ y2 ≈ x1 + 1

∧ q4 ∧ x2 > y2 ∧ x2 > x1 ∧ y2 > y1 ∧ x1 ≈ 0 ∧ y1 ≈ 0 (φ3)

with the valuation v where:

• v(x1) = 0, v(y1) = 0, v(x2) = 1, v(y2) = 1, v(x3) = 2, v(y3) = 1;

• v(q3) = >, v(q4) = >;

we can have:

φ3
I
v = > ∧ 1 ≥ 1 ∧ > ∧ 1 > 1 ∧ 1 = 0 + 1 ∧ 1 = 0 + 1

∧ > ∧ 1 > 1 ∧ 1 > 0 ∧ 1 > 0 ∧ 0 = 0 ∧ 0 = 0

= > ∧> ∧> ∧⊥ ∧ > ∧> ∧> ∧ ⊥ ∧> ∧> ∧> ∧>
= ⊥

Hence I, v 6|= ∆(q0, a, a, b), therefore the word w = (a, 0, 0), (a, 1, 1), (b, 2, 1) is not accepted.

3.2 Closure Properties of ADA

3.2.1 Intersection

Given two ADA A = (D,Σ, X,QA, ιA, FA,∆A) and B = (D,Σ, X,QB, ιB, FB,∆B), assuming
without loss of generality, that QA ∩QB = ∅, we define the intersection automaton:

A ∩ B = (D,Σ, X,QA ∪QB, ιA ∧ ιB, FA ∪ FB,∆A ∪∆B)

and we have L(A ∩ B) = L(A) ∩ L(B). The intersection can be built in linear time since
|A ∩ B| = |A|+ |B|.

3.2.2 Union

Given two ADA A = (D,Σ, X,QA, ιA, FA,∆A) and B = (D,Σ, X,QB, ιB, FB,∆B), assuming
without loss of generality, that QA ∩QB = ∅, we define the union automaton:

A ∪ B = (D,Σ, X,QA ∪QB, ιA ∨ ιB, FA ∪ FB,∆A ∪∆B)
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and we have L(A ∪ B) = L(A) ∪ L(B). The union can be built in linear time since |A ∪ B| =
|A|+ |B|.

3.2.3 Complementation

Given a set B of Boolean variables and a set X of variables of sort D, for a formula φ ∈
FORM+(B,X) with no negated occurrences of the Boolean variables, we define its comple-
ment:

φ1 ∧ φ2 ≡ φ1 ∨ φ2

φ1 ∨ φ2 ≡ φ1 ∧ φ2

φ ≡ φ if φ ∈ B
φ ≡ ¬φ if φ /∈ B atom

¬φ ≡ ¬φ if φ not atom

Given an ADA A = (D,Σ, X,Q, ι, F,∆), now we define the complement automaton:

A = (D,Σ, X,Q, ι,Q \ F,∆)

where ∆(q, a) ≡ ∆(q, a) for all q ∈ Q and a ∈ Σ. We have L(A) = Σ[X]∗ \L(A). The operation
of complementation can be build in linear time since |A| = |A|.

3.2.4 Proofs for Boolean Closures

We prove L(A ∪ B) = L(A) ∪ L(B) first, and the proof for L(A ∩ B) = L(A) ∩ L(B) is analo-
gous. Let w = (a1, v1), (a2, v2), ..., (an, vn) be a word, where n = 0 corresponds to the empty
word. We prove by induction on n ≥ 0 that ∆(ι1 ∨ ι2, a1, a2, ..., an) ⇔ ∆(ι1, a1, a2, ..., an) ∨
∆(ι2, a1, a2, ..., an). The case n = 0 follows from the definition of the initial configuration of A∪
B. For the inductive step n > 0, ∆(ι1∨ι2, a1, a2, ..., an) is obtained from ∆(ι1∨ι2, a1, a2, ..., an−1)
by replacing each variable q ∈ FVBoolean(ι1∨ ι2, a1, a2, ..., an−1) with ∆(q, an)[Xn−1/X,Xn/X],
denoted ∆n(∆(ι1 ∨ ι2, a1, a2, ..., an−1), an). Since by induction hypothesis:

∆(ι1 ∨ ι2, a1, a2, ..., an−1)⇔ ∆(ι1, a1, a2, ..., an−1) ∨∆(ι2, a1, a2, ..., an−1)

we obtain:

∆n(∆(ι1 ∨ ι2, a1, a2, ..., an−1), an)

⇔

∆n(∆(ι1, a1, a2, ..., an−1), an) ∨∆n(∆(ι2, a1, a2, ..., an−1), an)

⇔

∆(ι1, a1, a2, ..., an) ∨∆(ι2, a1, a2, ..., an)
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Proposition 3.1 Given a formula φ ∈ FORM+(Q,X) and a valuation v mapping each q ∈ Q
to a value v(q) ∈ B and each x ∈ X to a value v(x) ∈ DI , let v′ be the valuation that assigns
each q ∈ Q the value ¬v(q) and each x ∈ X the value v(x). Then we have I, v |= φ if and only
if I, v′ 6|= φ. (Can be proved immediately by induction on the structure of φ.)

To prove L(A) = Σ[X]∗ \ L(A), let w = (a1, v1), (a2, v2), ..., (an, vn) be a word and by
induction on n ≥ 0 show that:

∆(ι, a1, a2, ..., an) = ∆(ι, a1, a2, ..., an)

The case n = 0 is immediate, because FV(ι) ⊆ Q and thus ι ≡ ι. For the case n > 0, we
compute: ∆(ι, a1, a2, ..., an) = ∆(ι, a1, a2, ..., an) by induction on n ≥ 0.

In the case n = 0, we have ∆(ι, a1, a2, ..., an) ≡ ι. Then ε is accepted by A if and only if
v0 |= ι, where v0(q) = > if q ∈ F and v0(q) = ⊥, otherwise. But v0 |= ι if and only if v0 |= ι,
where v0(q) = > if q 6∈ F and v0(q) = ⊥, otherwise. Thus ε is accepted by A if and only if it is
not accepted by A.

For the case n > 0, we compute:

∆
n
(∆(ι, a1, a2, ..., an−1), an)

⇔
∆
n
(∆(ι, a1 . . . an−1), an)

⇔
∆(ι, a1, a2, ..., an)

Let v, v′ : (Q ∪
n⋃
i=0

Xi)→ (B ∪DI) be valuations such that:

• v(q) = > and v′(q) = ⊥, for each q ∈ F ;

• v(q) = ⊥ and v′(q) = >, for each q ∈ Q \ F ;

• v(x) = v′(x), for each x ∈ X0;

• v(x) = v′(x) = vi(x), for each x ∈ Xi and each i ∈ [1, n].

By Proposition 3.1, we have:

I, v |= ∆(ι, a1, a2, ..., an)

⇔
I, v′ 6|= ∆(ι, a1, a2, ..., an)

⇔
I, v′ 6|= ∆(ι, a1, a2, ..., an)

Thus for all w ∈ Σ[X]∗, we have w ∈ L(A) if and only if w 6∈ L(A).
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3.3 Antichains and Interpolants for ADA Emptiness

3.3.1 Undecidability for Emptiness Problem

The emptiness problem for ADA is undecidable, even in very simple cases. For example, given
the set of positive integers as DI , an ADA can simulate an alternating vector addition system
with states (AVASS) [15] using only atoms x ≥ k and x = x + k for k ∈ Z, with the classical
interpretation of the function symbols on integers. Since the reachability of a control state is
undecidable for AVASS [42], ADA emptiness is undecidable.

Consequently, given an ADA A, we give up on the guarantee for termination and build
semi-algorithms that meet the requirements below:

• if L(A) 6= ∅, the procedure will terminate and return a word w ∈ L(A) which is called a
counter-example of emptiness;

• if the procedure terminates without returning any counter-example, then L(A) = ∅.

3.3.2 Post-Images and Acceptance Function

Let A = (D,Σ, X,Q, ι, F,∆) be an ADA, given a formula φ ∈ FORM+(Q,X) and an input event
a ∈ Σ, we define the post-image function POSTA : FORM+(Q,X) × Σ → FORM+(Q,X) as
follows:

POSTA(φ, a) ≡ ∃X.∆(φ[X/X], a)

mapping each formula in FORM+(Q,X) to a formula defining the effect of reading the event a.

For any ADAA = (D,Σ, X,Q, ι, F,∆), we extend the post-image function to FORM+(Q,X)×
Σ∗ → FORM+(Q,X) as follows:

• POSTA(φ, ε) ≡ φ;

• POSTA(φ, ua) ≡ POSTA(POSTA(φ, u), a) for a ∈ Σ and u ∈ Σ∗.

And we define now the acceptance function ACCA : Σ∗ → FORM+(Q,X) as follows:

ACCA(u) ≡ POSTA(ι, u) ∧
∧

q∈Q\F

(q → ⊥) for u ∈ Σ∗.

The emptiness problem for an ADA A = (D,Σ, X,Q, ι, F,∆) then becomes “Does there exist
a word u ∈ Σ∗ such that the formula ACCA(u) is satisfiable?”. Since we ask a satisfiability
query, the final states of A need not be constrained. Because each state occurs positively in
ACCA(u), this formula has a model if and only if there is a model with every q ∈ F set to true.
A naive semi-algorithm enumerates all finite sequences and checks the satisfiability of ACCA(u)
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for each u ∈ Σ∗, using a decision procedure for the theory T(S, I)1.

3.3.3 Improvement by Anti-Chains

Given a partial order � over a data domain D, an antichain is a set A ⊆ D such that a 6� b
for any a, b ∈ A.

For any ADA A = (D,Σ, X,Q, ι, F,∆), since no Boolean variable from Q occurs un-
der negation in any formula, it is easy to prove the monotonicity property: given φ, ψ ∈
FORM+(Q,X), if φ |= ψ then POSTA(φ, u) |= POSTA(ψ, u) for any u ∈ Σ∗. This suggests an
improvement of the above semi-algorithm that enumerates and stores only a set U ⊆ Σ∗ for
which {POSTA(φ, u) | u ∈ U} forms an antichain with respect to the entailment partial order.
This is because, for any u, v ∈ Σ∗, if POSTA(ι, u) |= POSTA(ι, v) and ACCA(uw) is satisfi-
able for some w ∈ Σ∗, then POSTA(ι, uw) |= POSTA(ι, vw), thus ACCA(vw) is satisfiable as
well, and there is no need to check further for u, since the non-emptiness of A can be proved
using v alone. However, even with this improvement, the enumeration of sequences from Σ∗

diverges in many real cases, because infinite antichains exist in many interpretations, such as
q ∧ x ≈ 0, q ∧ x ≈ 1, ... for DI = N.

3.3.4 Safety Invariants

A safety invariant for an ADA A = (D,Σ, X,Q, ι, F,∆) is a function INV : (Q 7→ B) →
2X 7→D

I
such that, for every Boolean valuation β : Q → B, every valuation v : X → DI of the

data variables and every finite sequence u ∈ Σ∗ of input events, the following hold:

• I, β ∪ v |= POSTA(ι, u)⇒ v ∈ INV(β);

• v ∈ INV(β)⇒ I, β ∪ v 6|= ACCA(u).

If INV satisfies only the first point above, then we call it an invariant. Intuitively, a safety
invariant maps every Boolean valuation into a set of data valuations, that contains the initial
configuration ι ≡ POSTA(ι, ε), whose data variables are unconstrained, over-approximates the
set of reachable valuations and excludes the valuations satisfying the acceptance condition.

For an ADA A = (D,Σ, X,Q, ι, F,∆), a formula φ(Q,X) is said to define INV if and only
if for all β : Q → B and v : X → DI , we have I, β ∪ v |= φ if and only if v ∈ INV(β). And in
addition, we have following lemma:

Lemma 3.1 L(A) = ∅ if and only if A has a safety invariant.

The proof of Lemma 3.1 is very simple. Let A = (D,Σ, X,Q, ι, F,∆) in the following:

1The theory T(S, I) is the set of valid formulae written in the signature S, with the interpretation I. A
decision procedure for T(S, I) is an algorithm that takes a formula φ in the signature S and returns yes if and
only if φ ∈ T(S, I).
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⇐ This direction is trivial.

⇒ We define: INV : (Q→ B)→ 2X→D
I

as follows. For each β : Q→ B, let INV (β) = {v :
X → DI | ∃u ∈ Σ∗.β ∪ v |= POSTA(ι, u)}. Checking that INV is a safety invariant is
straightforward.

3.3.5 Abstraction and Refinement

Turning back to our issue of divergence of language emptiness semi-algorithms in the case
L(A) = ∅, we can observe that an enumeration of input sequences u1, u2, ... ∈ Σ∗ can stop at

step k as soon as
k∨
i=1

POSTA(ι, ui) defines a safety invariant for A. Although this condition can

be effectively checked using a decision procedure for the theory T(S, I), there is no guarantee
that this check will ever succeed.

The solution we adopt in the sequel is an abstraction to ensure the termination of invariant
computations. However, it is worth pointing out from the start that the abstraction alone will
only allow us to build invariants that are not necessarily safety invariants. To meet the latter
condition, we resort to counter-example guided abstraction refinement (CEGAR).

Formally, for a given ADA A = (D,Σ, X,Q, ι, F,∆), we fix Π ⊆ FORM(Q,X), a set of
formulae such that ⊥ ∈ Π and refer to these formulae as predicates. Given a formula φ, we
denote by φ# ≡

∧
{π ∈ Π | φ ∈ π} the abstraction of φ with respect to the predicates in Π.

The abstract version of the post-image is defined as follows:

• POST#
A(φ, ε) ≡ φ#;

• POST#
A(φ, ua) ≡ (POSTA(POST#

A(φ, u), a))# for a ∈ Σ and u ∈ Σ∗.

With this abstract version of post-image, we can define the abstract version of acceptance
function:

ACC#
A(u) ≡ POST#

A(ι, u) ∧
∧

q∈Q\F

(q → ⊥) for u ∈ Σ∗.

Lemma 3.2 For any bijection µ : N → Σ∗, there exists k > 0 such that
k∨

m=0
POST#

A(ι, µ(m))

defines an invariant INV# for A.

The proof of Lemma 3.2 is not complicated. It is sufficient to show that there exists k ≥ 0
such that for all u ∈ Σ∗ there exists i ∈ [0, k] such that POSTA(ι, u) |= POST#

A (ι, µ(i)). We

have POSTA(ι, u) |= POST#
A (ι, u) for all u ∈ Σ∗. But since Π is a finite set, also the set

{POST#
A (ι, u) | u ∈ Σ∗} is finite. Thus there exists k ≥ 0 such that, for all u ∈ Σ∗ there exists

i ∈ [0, k] such that POST#
A (ι, u)⇔ POST#

A (ι, µ(i)), which concludes the proof.

If we look back to the definition of safety invariants in the previous section, we are left with
fulfilling the second point from the definition. To this end, suppose that, for a given set Π of
predicates, the invariant INV# defined above meets the first point of the definition of a safety
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invariant but not the second point. In other words, there exists a finite sequence u ∈ Σ∗ such
that v ∈ INV#(β) and I, β ∪ v |= ACC#

A(u) for some Boolean β : Q→ B and data v : X → DI

valuations. Such u ∈ Σ∗ is called a counter-example. Once a counter-example u is discovered,
there are two possibilities: either (i) ACCA(u) is satisfiable, in which case u is feasible and
L(A) 6= ∅; or (ii) ACCA(u) is unsatisfiable, in which case u is spurious. In the first case, our
semi-algorithm stops and returns a witness for non-emptiness (the counter-example), obtained
from the satisfying valuation of ACCA(u). In the second case, we must strengthen the invariant

by excluding from INV# all pairs (β, v) such that I, β ∪ v |= ACC#
A(u). This strengthening

is carried out by adding to Π several predicates that are sufficient to exclude the spurious
counter-example.

Given an unsatisfiable conjunction of formulae ψ1 ∧ ψ2 ∧ ... ∧ ψn, an interpolant is a tuple
of formulae (I1, I2, ..., In) such that In ≡ ⊥, Ii ∧ ψi |= Ii+1 and Ii contains only variables and
function symbols that are common to ψi and ψi+1, for all i ∈ [1, n− 1]. Moreover, by Lyndon’s
Interpolation Theorem [43], we can assume without loss of generality that every Boolean variable
with at least one positive/negative occurrence in Ii has at least one positive/negative occurrence
in both ψi and ψi+1. In the following, we shall assume the existence of an interpolating decision
procedure for T(S, I) that meets the requirements of Lyndon’s Interpolation Theorem.

A classical method for abstraction refinement is to add the elements of the interpolant
obtained from a proof of spuriousness to the set of predicates. This guarantees progress, meaning
that the particular spurious counter-example, from which the interpolant was generated, will
never be revisited in the future. Though not always, in many practical test cases, this progress
property eventually yields a safety invariant.

Given a non-empty spurious counter-example u = a1, a2, ..., an, where n > 0, we consider
the following interpolation problem:

Θ(u) ≡ θ0(Q0) ∧ θ1(Q0 ∪Q1, X0 ∪X1) ∧ ... ∧ θn(Qn−1 ∪Qn, Xn−1 ∪Xn) ∧ θn+1(Qn)

where Qk = {qk | q ∈ Q} for k ∈ [0, n] are time-stamped sets of Boolean variables corresponding
to the set Q of states of A. The first conjunct θ0(Q0) ≡ ι[Q0/Q] is the initial configuration
of A, with every q ∈ FVBoolean(ι) replaced by q0. The definition of θk for all k ∈ [1, n], uses
replacement sets Rj ⊆ Qj , j ∈ [0, n], which are defined inductively below:

• R0 = FVBoolean(θ0);

• θj ≡
∧

qj−1∈Rj−1

(qj−1 → ∆(q, aj)[Qj/Q,Xj−1/X,Xj/X] and Rj = FVBoolean(θj) ∩ Qj for

each j ∈ [1, n];

• θn+1(Qn) ≡
∧

q∈Q\F
(qn → ⊥).

The intuition is that R0, R1, ..., Rn are the sets of states replaced, θ0, θ1, ..., θn are the sets of
transition rules fired on the run of A over u and θn+1 is the acceptance condition, which forces
the last remaining non-final states to be false. We recall that a run of A over u is a sequence:

φ0(Q), φ1(Q,X0 ∪X1), φ2(Q,X0 ∪X1 ∪X2), ..., φn(Q,X0 ∪X1 ∪ ... ∪Xn)
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where φ0 is the initial configuration ι and for each k > 0, φk is obtained from φk−1 by replacing
each state q ∈ FVBoolean(φk−1) by the formula ∆(q, ak)[Xk−1/X,Xk/X], given by the transition
function of A. Observe that, because the states are replaced with transition formulae when
moving one step in a run, these formulae lose track of the control history and are not suitable
for producing interpolants that relate states and data.

The main idea behind the above definition of the interpolation problem is that we would
like to obtain an interpolant (>, I0(Q), I1(Q,X), ..., In(Q,X),⊥) whose formulae combine states
with the data constraints that must hold locally, whenever the control reaches a certain Boolean
configuration. This association of states with data valuations is tantamount to defining ef-
ficient semi-algorithms, based on lazy abstraction. Furthermore, the abstraction defined by
the interpolants generated in this way can also over-approximate the control structure of an
automaton, in addition to the sets of data values encountered throughout its run.

The correctness of this interpolation-based abstraction refinement setup is captured by the
progress property below, which guarantees that adding the formulae of an interpolant for Θ(u) to
the set Π of predicates suffices to exclude the spurious counter-example u from future searches.

Lemma 3.3 Let A = (D,Σ, X,Q, ι, F,∆) be an ADA, for any sequence u = a1, a2, ..., a|u| ∈ Σ∗,
if ACCA(u) is unsatisfiable, then:

• Θ(u) is unsatisfiable;

• if (>, I0, I1, ..., In,⊥) is an interpolant for Θ(u) such that {Ii | i ∈ [0, n]} ⊆ Π, then

ACC#
A(u) is unsatisfiable.

In order to prove Lemma 3.3, we need to firstly see following proposition.

Proposition 3.2 Given a formula φ ∈ FORM+(Q,X) and a ∈ Σ, we have:

∆(φ, a)⇔ ∃Q′.φ[Q′/Q] ∧
∧
q∈Q

(q′ → ∆(q, a))

Here is the proof of Proposition 3.2:

⇒ If I, β ∪ v ∪ v |= ∆(φ, a), for some valuations β : Q → B and v : X → DI , v : X → DI ,
then we build a valuation β′ : Q′ → B such that I, β′ ∪ β ∪ v ∪ v |= φ[Q′/Q] ∧

∧
q∈Q

(q′ →

∆(q, a)). For each occurrence of a formula ∆(q, a) in ∆(φ, a) we set β′(q′) = true if
I, β∪v∪v |= ∆(q, a) and β′(q′) = false, otherwise. Since there are no negated occurrences
of such sub-formulae, the definition of β′ is consistent, and the check I, β′ ∪ β ∪ v ∪ v |=
φ[Q′/Q] ∧

∧
q∈Q

(q′ → ∆(q, a)) is immediate.

⇐ This direction is an easy check.
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Here is the proof of Lemma 3.3. Let Θ(u) ≡ θ0(Q0) ∧ θ1(Q0 ∪ Q1, X0 ∪X1) ∧ ... ∧ θn(Qn−1 ∪
Qn, Xn−1 ∪Xn) ∧ θn+1(Qn) in the following:

(1) We apply Proposition 3.2 recursively and get:

POST#
A (ι, u)[Qn/Q,Xn/X] ⇐⇒ ∃Q0,∃Q1, ...,∃Qn−1,∃X0,∃X1, ...,∃Xn−1.

n∧
i=0

θi

Assuming that Θ(u) is satisfiable, we obtain a model for ACCA(u) ≡ POSTA(ι, u) ∧
θn+1[Q/Qn].

(2) if (>, I0, I1, ..., In,⊥) is an interpolant for Θ(u), the following entailments hold:

– θ0 |= I0[Q0/Q];

– Ik−1[Qk−1/Q,Xk−1/X] ∧ θk |= Ik[Qk/Q,Xk/X], for all k ∈ [1, n];

– In[Qn/Q] ∧ θn+1 |= ⊥.

We prove that POST#
A (ι, a1, a2, ..., an) |= In by induction on n ≥ 0. This is sufficient to

conclude because ACC#
A (a1, a2, ..., an) ≡ POST#

A (ι, a1, a2, ..., an) ∧ θn+1[Q/Qn] |= In ∧
θn+1[Q/Qn] |= ⊥. For the base case n = 0, we have POST#

A (ι, ε) ≡ ι ≡ θ0[Q/Q0] |= I0.
For the induction step n > 0, we compute:

POSTA(ι, a1, a2, ..., an)[Qn/Q] ≡ (by def. of POST#
A )

∃Xn−1.∆
n(POST#

A (ι, a1, a2, ..., an−1), an)#[Qn/Q] |= (by Proposition 3.2)

∃Qn−1∃Xn−1.POST
#
A (ι, a1, a2, ..., an−1)[Qn−1/Q] ∧ θn |= (ind. hyp.)

∃Qn−1∃Xn−1.In−1[Qn−1/Q] ∧ θn |= In[Qn/Q]

3.4 Checking Emptiness - Lazy Predicate Abstraction

3.4.1 Abstract Reachability Tree (ART)

In the context of checking emptiness of an ADA A = (D,Σ, X,Q, ι, F,∆), an abstract reach-
ability tree (ART) is a tuple T = (N,E, r,Λ, R, T, /) where:

• N is a set of nodes;

• E ⊆ N × Σ×N is a set of edges;

• r ∈ N is the root of the directed tree (N,E);

• Λ : N → FORM(Q,X) is a labelling of the nodes with formulae such that Λ(r) = ι;

• R : N → 2Q is a labelling of nodes with replacement sets such that R(r) = FVBoolean(ι);
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• T : E →
∞⋃
i=0

FORM+(Qi, Xi, Qi+1, Xi+1) is a labelling of edges with time-stamped formu-

lae;

• / ⊆ N ×N is a set of covering edges.

Each node n ∈ N corresponds to a unique path from the root to n, labelled by a sequence
λ(n) ∈ Σ∗ of input events. The least infeasible suffix of λ(n) is the smallest sequence
v = a1, a2, ..., ak such that λ(n) = wv for some w ∈ Σ∗ and the following formula is unsatisfiable:

Ψ(v) ≡ Λ(p)[Q0/Q] ∧ θ1(Q0 ∪Q1, X0 ∪X1) ∧ ... ∧ θk+1(Qk)

where θ1, θ2, ..., θn+1 are defined as in the interpolation problem and θ0 ≡ Λ(p)[Q0/Q]. The
pivot of n is the node p corresponding to the start of the least infeasible suffix. We assume the
existence of two functions without detailing their implementation:

• FindPivot(u, T ) returning the pivot of a sequence u ∈ Σ∗ in an ART T ;

• LeastInfeasibleSuffix(u, T ) returning the least infeasible suffix of a sequence u ∈ Σ∗ in an
ART T ;

3.4.2 Lazy Predicate Abstraction Semi-Algorithm

We now have all the ingredients to describe the first emptiness checking semi-algorithm for ADA.
Semi-Algorithm 1 builds an ART whose nodes are labelled with formulae over-approximating
the concrete sets of configurations, and a covering relation between nodes in order to ensure
that the set of formulae labelling the nodes in the ART forms an antichain. Any spurious
counter-example is eliminated by computing an interpolant and adding its formulae to the set
of predicates.

Semi-Algorithm 1 Lazy Predicate Abstraction for ADA Emptiness

Input: an ADA A = (D,Σ, X,Q, ι, F,∆)

Output:

{
true if L(A) = ∅
a data word w ∈ L(A) if L(A) 6= ∅

1: let T = (N,E, r,Λ, /) be an ART
2: let Π be a set
3: let WorkList be a list
4: N := ∅
5: E := ∅
6: Λ := {(r, ι)}
7: / := ∅
8: add {⊥} into Π
9: add r into WorkList

10: while WorkList 6= ∅ do
11: dequeue n from WorkList
12: N := N ∪ {n}
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13: let λ(n) = a1, a2, ..., ak be the label of the path from r to n

14: if POST#
A(λ(n)) is satisfiable then

15: if ACCA(λ(n)) is satisfiable then

16: get model (β, v1, v2, ..., vk) of ACC#
A(λ(n))

17: return w = (a1, v1), (a2, v2), ..., (ak, vk)
18: else
19: p := FindPivot(λ(n), T )
20: v := LeastInfeasibleSuffix(λ(n), T )
21: Π := Π ∪ {I0, I1, ..., Ik} where (>, I0, I1, ..., Ik,⊥) is an interpolant for Ψ(v)
22: let S = (N ′, E′, p,Λ′, /′) be the sub-tree of T rooted at p
23: for (m, q) ∈ / such that q ∈ N ′ do
24: remove m from N and enqueue m into WorkList
25: remove S from T
26: enqueue p into WorkList
27: end for
28: end if
29: else
30: for a ∈ Σ do
31: φ := POST#

A(Λ(n), a)
32: if exist m ∈ N such that φ |= Λ(m) then
33: / := / ∪ {(n,m)}
34: else
35: let s be a fresh node
36: E := E ∪ {(n, a, s)}
37: Λ := Λ ∪ {(s, φ)}
38: R := {m ∈WorkList | Λ(m) |= φ}
39: for r ∈ R do
40: for m ∈ N such that (m, b, r) ∈ E, b ∈ Σ do
41: / := / ∪ {(m, s)}
42: end for
43: for (m, r) ∈ / do
44: / := / ∪ {(m, s)}
45: end for
46: end for
47: remove R from T
48: enqueue s into WorkList
49: end if
50: end for
51: end if
52: end while
53: return true

Semi-Algorithm 1 uses a work-list iteration to build an ART. We keep newly expanded
nodes of T in a queue WorkList, thus implementing a breadth-first exploration strategy, which
guarantees that the shortest counter-examples are explored first. When the search encounters a
counter-example candidate u, it is checked for spuriousness. If the counter-example is feasible,
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the procedure returns a data word w ∈ L(A), which interleaves the input events of u with the
data valuations from the model of ACCA(u). Since u is feasible, clearly ACCA(u) is satisfiable.
Otherwise, u is spurious and we compute its pivot p, add the interpolants for the least infeasible
suffix of u to Π, remove and recompute the sub-tree of T rooted at p.

Termination of Semi-Algorithm 1 depends on the ability of a given interpolating decision
procedure for the combined Boolean and data theory T(S, I) to provide interpolants that yield
a safety invariant, whenever L(A) = ∅. In this case, we use the covering relation / to ensure
that, when a newly generated node is covered by a node already in N , it is not added to the
work-list, thus cutting the current branch of the search.

Formally, for any two nodes n,m ∈ N , we have n/m if and only if POST#
A(Λ(n), a) |= Λ(m)

for some a ∈ Σ. In other words, if n has a successor whose label entails the label of m.

Π =
{⊥}

q0
PIVOT

⊤
a

add predicates
{q0,q1}

(𝑎) (𝑏)

(𝑐) (𝑑)

Π =
{⊥, q0, q1}

q0
PIVOT

q1
a

add predicates
{x ≤ 0 ∧ q2 ∧ y ≥ 0}

q1
a

⊤

b

Π =
{⊥, q0, q1, x ≤ 0 ∧ q2 ∧ y ≥ 0}

q0

PIVOTa

add predicates
{q1 ∧ q2, y > x – 1 ∧ q2}

a

⊤

b

q1 ∧ x ≤ 0 ∧ q2 ∧ y ≥ 0 q1 q1
a

⊥

b

Π =
{⊥, q0, q1, x ≤ 0 ∧ q2 ∧ y ≥ 0, q1 ∧ q2, y > x – 1 ∧ q2}

q0
a

q1 ∧ x ≤ 0 ∧ q2 ∧ y ≥ 0
PIVOT

q1 ∧ q2 ∧ y > x - 1 q1 ∧ q2 ∧ y > x - 1
a

⊥
b

a

⊥
b

Figure 3.2: Proving Emptiness of the ADA in Figure 3.1 by Semi-Algorithm 1

Example 3.3 Consider the ADA in Figure 3.1. First, Semi-Algorithm 1 fires the sequence a,
and since there are no other formulae than ⊥ in Π, the successor of ι ≡ q0 is > (see Figure
3.2.a). The spuriousness check for a yields the root of the ART as pivot and the interpolant
(q0, q1), which is added to the set Π. Then the > node is removed and the next time a is fired, it
creates a node labelled q1. The second sequence aa creates a successor node q1, which is covered
by the first, depicted with a dashed arrow (see Figure 3.2.b). The third sequence is ab, which
results in a new uncovered node > and triggers a spurious check. The new predicate obtained
from this check is x ≤ 0 ∧ q2 ∧ y ≥ 0 and the pivot is again the root. Then the entire ART
is rebuilt with the new predicates and the fourth sequence aab yields an uncovered node > (see
Figure 3.2.c). The new pivot is the end-point of a and the newly added predicates are q1 ∧ q2

and y > x − 1 ∧ q2. Finally, the ART is rebuilt from the pivot node and finally all nodes are
covered; thus proving the emptiness of the automaton (see Figure 3.2.d).
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Theorem 3.1 Given an ADA A = (D,Σ, X,Q, ι, F,∆):

• if L(A) 6= ∅, then Semi-Algorithm 1 terminates by returning a word w ∈ L(A) (hence the
termination is guaranteed when A is not empty);

• if Semi-Algorithm 1 terminates by reporting true, then L(A) = ∅ (although the termination
is not guaranteed when A is empty, if the semi-algorithm terminates by reporting true,
then A is surely empty, hence the correctness of the result is guaranteed).

Here is the proof of Theorem 3.1:

We prove the following invariant: each time Semi-Algorithm 1 reaches line 10, the set W of
nodes in WorkList contains all the frontier nodes in the ART (N ∪W,E, r,Λ, /) which are not
covered by some node in N , namely that:

W = {n | ∀m ∈ N, ∀a ∈ Σ.(n, a,m) 6∈ E ∧ (n,m) 6∈ /}

Initially, this is the case because W = {r} and E = / = ∅. If the invariant holds previously, at
line 10, it will hold again after line 26 is executed, because, when the sub-tree rooted at the
pivot p is removed, p becomes a member of the set of uncovered frontier nodes, and is added to
W at line 26. Otherwise, the invariant holds at line 10 and the control follows the else branch
at line 29. In this case, the newly created frontier node s is added to W only if it is not covered
by an existing node in N (line 32 ).

Next we prove that, if Semi-Algorithm 1 returns true, then
∨
n∈N

Λ(n) defines a safety invari-

ant. Suppose that Semi-Algorithm 1 returns at line 53. Then it must be that W = ∅. Each
node in N is either covered by another node in N , or all its successors are in N . We prove
first that

∨
n∈N

Λ(n) is an invariant: for any u ∈ Σ∗, there exists some node n ∈ N such that

POSTA(ι, u) |= Λ(n). Let u ∈ Σ∗ be an arbitrary sequence. If u labels the path from r to some

n ∈ N , we have POSTA(ι, u) |= POST#
A (ι, u) |= Λ(n) and we are done. Otherwise, let v be the

(possibly empty) prefix of u which labels the path from r to some n ∈ N , which is covered by
another m ∈ N , where (n, a,m) ∈ E, that is u = vav′, for some a ∈ Σ and v′ ∈ Σ∗. Moreover,

we have POSTA(ι, va) |= POST#
A (ι, va) |= Λ(m), by the construction of the set C of covering

edges: lines line 33, line 41 and line 44. Continuing this argument recursively from m, since
|v′| < |u|, we shall eventually discover a node p such that POSTA(ι, u) |= Λ(p).

To prove that
∨
n∈N

Λ(n) is, moreover, a safety invariant, suppose, by contradiction, that

there exists u ∈ Σ∗ such that ACCA(u) is satisfiable. By the previous point, there exists a
node p ∈ N such that POSTA(ι, u) |= Λ(p). But then we have ACCA(ι, u) |= ACCA(ι,Λ(p)),
thus ACCA(ι,Λ(p)) is satisfiable as well. However, this cannot be the case, because p has been
processed at line 15 and Semi-Algorithm 1 would have returned a counter-example, contradicting
the assumption that it returns true. This concludes the proof that

∨
n∈N

Λ(n) is a safety invariant,

thus L(A) = ∅, by Lemma 3.1. We have then proved the second point of the statement.

For the first point, assume that L(A) 6= 0 and let w = (a1, v1), (a2, v2), ..., (ak, vk) ∈ L(A)
be a word. By the above, Semi-Algorithm 1 cannot return true. Suppose, by contradiction that
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it does not terminate. Since the sequences from Σ∗ are explored in breadth-first order, every
sequence of length k is eventually explored, which leads to the discovery of w at line 15. Then
Semi-Algorithm 1 terminates returning w ∈ L(A).

3.5 Checking Emptiness - IMPACT

3.5.1 In-Place Refinement and Coverage

As pointed out by a number of authors, the bottleneck of predicate abstraction is the high
cost of reconstructing parts of the ART, subsequent to the refinement of the set of predicates.
The main idea of the IMPACT procedure [45] is that this can be avoided and the refinement
(strengthening of the node labels of the ART) can be performed in-place. This refinement step
requires an update of the covering relation, because a node that used to cover another node
might not cover it anymore after the strengthening of its label.

We consider a total alphabetical order ≺ on Σ and lift it to the total lexicographical order
≺∗ on Σ∗. A node n ∈ N is covered if (n, p) ∈ / or it has an ancestor m such that (m, p) ∈ /
for some p ∈ N . A node n is closed if it is covered, or Λ(n) 6|= Λ(m) for all m ∈ N such that
λ(m) ≺∗ λ(n). Observe that we use the coverage relation / here with a different meaning than
in Semi-Algorithm 1.

3.5.2 IMPACT Semi-Algorithm

The execution of Semi-Algorithm 2 consists of three phases: close, refine and expand, corre-
sponding to the CLOSE, REFINE and EXPAND in [45].

Semi-Algorithm 2 IMPACT for ADA Emptiness

Input: an ADA A = (D,Σ, X,Q, ι, F,∆)

Output:

{
true if L(A) = ∅
a data word w ∈ L(A) if L(A) 6= ∅

1: let T = (N,E, r,Λ, R, T, /) be an ART
2: let WorkList be a list
3: N := ∅
4: E := ∅
5: Λ := {(r, ι)}
6: R := FVBoolean(ι[Q0/Q])
7: T := ∅
8: / := ∅
9: add r into WorkList

10: while WorkList 6= ∅ do
11: dequeue n from WorkList
12: N := N ∪ {n}
13: let (r, a1, n1), (n1, a2, n2), ..., (nk−1, ak, n) be the path from r to n
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14: if ACCA(a1, a2, ..., ak) is satisfiable then
15: get model (β, v1, v2, ..., vk) of ACCA(λ(n))
16: return w = (a1, v1), (a2, v2), ..., (ak, vk)
17: else
18: let (>, I0, I1, ..., Ik,⊥) be an interpolant for Θ(a1, a2, ..., ak)
19: b := false
20: for i ∈ [0, k] do
21: if Λ(ni) 6|= Ii then
22: / := / \ {(m,ni) ∈ / | m ∈ N}
23: Λ(ni) := Λ(ni) ∧ Ii
24: if ¬b then
25: b := CLOSE(ni)
26: end if
27: end if
28: end for
29: end if
30: if n is not covered then
31: for a ∈ Σ do
32: let s be a fresh node
33: let e = (n, a, s) be a new edge
34: E := E ∪ {e}
35: Λ := Λ ∪ {(s,>)}
36: T := T ∪ {(e, θk)}
37: R := R ∪ {(s,

⋃
q∈R(n)

FVBoolean(∆(q, a)))}

38: enqueue s into WorkList
39: end for
40: end if
41: end while
42: return true

Function 1 CLOSE
Input: a node x

Output:

{
true if x is closed

false if x is not closed

1: for y ∈ N such that λ(y) ≺∗ λ(x) do
2: if Λ(x) |= Λ(y) then
3: / := (/ \ {(p, q) ∈ / | q is x or a successor of x}) ∪ {(x, y)}
4: return true
5: end if
6: end for
7: return false

Let n be a node removed from the WorkList. If ACCA(λ(n)) is satisfiable, the counter-
example λ(n) is feasible, in which case a model of ACCA(λ(n)) is obtained and a word w ∈
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L(A) is returned. Otherwise, λ(n) is a spurious counter-example and the procedure enters the
refinement phase. The interpolant for Θ(λ(n)) is used to strengthen the labels of all the ancestors
of n by conjoining the formulae of the interpolant to the existing labels. In this process, the
nodes on the path between r and n, including n, might become eligible for coverage, therefore
we attempt to close each ancestor of n that is impacted by the refinement. Observe that, in
this case the call to CLOSE must uncover each node which is covered by a successor of n. This
is required because, due to the over-approximation of the sets of reachable configurations, the
covering relation is not transitive, as explained in [45]. If CLOSE adds a covering edge (ni,m)
to /, it does not have to be called for the successors of ni on this path, which is handled via
the Boolean flag b. Finally, if n is still uncovered (it has not been previously covered during the
refinement phase), we expand n by creating a new node for each successor s via the input event
a ∈ Σ and inserting it into the WorkList.

Theorem 3.2 Given an ADA A = (D,Σ, X,Q, ι, F,∆):

• if L(A) 6= ∅, then Semi-Algorithm 2 terminates by returning a word w ∈ L(A) (hence the
termination is guaranteed when A is not empty);

• if Semi-Algorithm 2 terminates by reporting true, then L(A) = ∅ (although the termi-
nation is not guaranteed when A is empty, if the semi-algorithm terminates by reporting
true, then A is surely empty, hence the correctness of the result is guaranteed).

In order to prove Theorem 3.2, we firstly introduce the following lemma:

Lemma 3.4 Given an ART T = (N,E, r,Λ, R, T, /) built by Semi-Algorithm 2, we have:

POSTA(Λ(n), a) |= Λ(m), for all (n, a,m) ∈ E

Here is the proof of Lemma 3.4. We distinguish two cases. First, if (n, a,m) occurs on a
path in T that has never been refined, then Λ(m) = > and the entailment holds trivially.
Otherwise, let Ω be the set of paths ω = (n0, a1, n1), (n1, a2, n2), ..., (nk−1, ak, nk), where n0 = r
and (n, a,m) = (ni−1, ai, ni), for some i ∈ [1, k] and, moreover, a1, a2, ..., ak was found, at
some point, to be a spurious counter-example. Let (>, Iω0 , Iω1 , ..., Iωk ,⊥) be an interpolant for

Φ(a1, a2, ..., ak) ≡ Λ(r) ∧
k∧
i=1

θi ∧
∧

q∈R(nk)

(qk → ⊥), such that Iωi ∈ FORM+(Q,X), for all i ∈

[0, k]. According to Lyndon’s Interpolation Theorem, it is possible to build such an interpolant,
when Φ(a1, a2, ..., ak) is unsatisfiable. By Proposition 3.2, we obtain ∆i(Iωi−1, ai)[Qi/Q] ⇔
∃Qi−1.I

ω
i−1[Qi−1/Q,Xi−1/X] ∧ θi and, since Iωi−1[Qi−1/Q,Xi−1/X] ∧ θi |= Iωi [Qi/Q,Xi/X],

we obtain that ∆i(Iωi−1, ai)[Qi/Q] |= Iωi [Qi/Q,Xi/X]. Since Λ(ni−1) =
∧
ω∈Ω

Iωi−1 and Λ(ni) =∧
ω∈Ω

Iωi , we obtain POSTA(Λ(ni−1), ai) |= Λ(ni).
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Now we can prove Theorem 3.2. We prove first that, each time Semi-Algorithm 2 reaches
the line 10, we have:

W = {n | n uncovered,∃a ∈ Σ ∀s ∈ N.(n, a, s) 6∈ E} (1)

Initially, W = {r} and E = / = ∅, thus (1) holds trivially. Suppose that (1) holds at when
reaching line 10 and some node n was removed from W and inserted into N . We distinguish
two cases, either:

• n is covered, in which case W becomes W \ {n} and (1) holds,

or

• n is not covered, in which case W becomes (W \ {n} ∪ S), where S = {s 6∈ N | (n, a, s) ∈
E, a ∈ Σ} is the set of fresh successors of n. But then no node s ∈ S is covered and has
successors in E, thus (1) holds.

Then the condition (1) holds next time line 10 is reached, thus it is invariant.

Suppose first that Semi-Algorithm 2 returns true, thus W = ∅ and, by (1), for each node in
n ∈ N one of the following hold:

• n is covered,

or

• for each a ∈ Σ there exists s ∈ N such that (n, a, s) ∈ E.

We prove that, in this case,
∨
n∈N

Λ(n) defines a safety invariant and conclude that L(A) = ∅,

by Lemma 3.2. To this end, let u = a1, a2, ..., ak ∈ Σ∗ be an arbitrary sequence and let v1 be
the largest prefix of u that labels a path from r to some node n1 ∈ N . If v1 = u we are done.
Otherwise, by the choice of v1, it must be the case that a successor of n1 is missing from (N,E),
thus n1 must be covered, by (1) and the fact that W = ∅. Let n′1 be the closest ancestor of n1

such that (n′1, n
′′
1) ∈ /, for some n′′1 ∈ N , and let v′1 be the prefix of v1 leading to n′1. By the

construction of /, we have Λ(n′1) |= Λ(n′′1). Applying Lemma 3.4 inductively on v′1, we obtain
that POSTA(ι, v′1) |= Λ(n′1), thus POSTA(ι, v′1) |= Λ(n′′1). Continuing inductively from n′′1 , we
exhibit a sequence of strings v′1, v

′
2, ..., v

′
l ∈ Σ∗ and nodes r = m0,m1, ...,ml such that, for all

i ∈ [1, l]:

• v′i labels the path between mi−1 and m1 in (N,E);

• POSTA(ι, v′1, v
′
2, ..., v

′
i) |= Λ(mi).

Moreover, we have u = v′1, v
′
2, ..., v

′
k, thus POSTA(ι, u) |= Λ(mk) and we are done showing that∨

n∈N
Λ(n) is an invariant.

To prove that
∨
n∈N

Λ(n) is, moreover, a safety invariant, suppose that ACCA(u) is satisfiable,

for some u ∈ Σ∗ and let n ∈ N be a node such that POSTA(ι, u) |= Λ(n). By the previous point,
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such a node must exist. But then ACCA(u) |= ACCA(λ(n)), thus ACCA(λ(n)) is satisfiable,
and Semi-Algorithm 2 returns at line 16, upon encountering λ(n). But this contradicts the
assumption that Semi-Algorithm 2 returns true, hence we have proved that

∨
n∈N

Λ(n) is a safety

invariant, and L(A) = ∅ follows, by Lemma 3.2. We have then proved the second point of the
statement.

To prove the first point, assume that L(A) 6= ∅. By the previous point, Semi-Algorithm 2
does not return true. Suppose, by contradiction, that it does not terminate and conclude using
the breadth-first argument from the proof of Theorem 3.1.

Example 3.4 We show the execution of Semi-Algorithm 2 on the ADA in Figure 3.1. Initially,
the procedure fires the sequence a, whose end-point is labelled with > (see Figure 3.3.a). Since
this node is uncovered, we check the spuriousness of the counter-example and refine the label of
the node to q1. Since the node is still uncovered, two successors labelled with > are computed,
corresponding to the sequences aa and ab (see Figure 3.3.b). The spuriousness check for aa
yields the interpolant (q0, x ≤ 0 ∧ q2 ∧ y ≥ 0)) which strengthens the label of the end-point of a
from q1 to q1 ∧ x ≤ 0 ∧ q2 ∧ y ≥ 0. The sequence ab is also found to be spurious, which changes
the label of its end-point from > to ⊥, and also covers it (depicted with a dashed edge). Since the
end-point of aa is not covered, it is expanded to aaa and aab (see Figure 3.3.c). Both sequences
aaa and aab are found to be spurious, and the end-point of aab, whose label has changed from >
to ⊥, is now covered. In the process, the label of aa has also changed from q1 to q1∧y > x−1∧q2,
due to the strengthening with the interpolant from aab. Finally, the only uncovered node aaa
is expanded to aaaa and aaab, both found to be spurious (see Figure 3.3.d). The refinement of
aaab causes the label of aaa to change from q1 to q1∧y > x−1∧q2 and this node is now covered
by aa. Since its successors are also covered, there are no uncovered nodes and the procedure
returns true.

q0 ⊤a refined
q1

(𝑎)

q0[0] → q1[1] ∧ q2[1] ∧ x[1] = 1 ∧ y[1] = 0

q0 q1
a

q0[0] → q1[1] ∧ q2[1] ∧ x[1] = 1 ∧ y[1] = 0

refined
q1 ∧ x ≤ 0 ∧ q2 ∧ y ≥ 0

⊤⊤

a

(q1[1] → q1[2] ∧ q2[2] ∧ x[2] = y[1] + 1
∧ y[2] = x[1] + 1) ∧
(q2[1] → q2[2] ∧ x[2] > x[1]

∧ y[2] > y[1])

b(q1[1] → q3[2]

∧ x[1] ≥ y[1])
∧ (q2[1] → q4[2]

∧ x[1] > y[1]) 

refined
⊥

refined
q1

(𝑏) (𝑐)

q0
q1 ∧ x ≤ 0 ∧
q2 ∧ y ≥ 0

a
q0[0] → q1[1] ∧ q2[1] ∧ x[1] = 1 ∧ y[1] = 0

⊥q1

a

(q1[1] → q1[2] ∧ q2[2] ∧ x[2] = y[1] + 1
∧ y[2] = x[1] + 1) ∧
(q2[1] → q2[2] ∧ x[2] > x[1]

∧ y[2] > y[1]) b(q1[1] → q3[2]

∧ x[1] ≥ y[1])
∧ (q2[1] → q4[2]

∧ x[1] > y[1]) 

⊤

b

⊤

a
(q1[2] → q3[3]

∧ x[2] ≥ y[2])
∧ (q2[2] → q4[3]

∧ x[2] > y[2]) 

refined
⊥

refined
q1

refined q1 ∧ y > x – 1 ∧ q2

(q1[2] → q1[3] ∧ q2[3] ∧ x[3] = y[2] + 1
∧ y[3] = x[2] + 1) ∧ (q2[2] → q2[3]

∧ x[3] > x[2] ∧ y[3] > y[2])
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(𝑑)

q0
q1 ∧ x ≤ 0 ∧
q2 ∧ y ≥ 0

a
q0[0] → q1[1] ∧ q2[1] ∧ x[1] = 1 ∧ y[1] = 0

⊥q1 ∧ y > x – 1 ∧ q2

a

(q1[1] → q1[2] ∧ q2[2] ∧ x[2] = y[1] + 1
∧ y[2] = x[1] + 1) ∧
(q2[1] → q2[2] ∧ x[2] > x[1]

∧ y[2] > y[1])
b(q1[1] → q3[2]

∧ x[1] ≥ y[1])
∧ (q2[1] → q4[2]

∧ x[1] > y[1]) 

⊥

b

q1

a
(q1[2] → q3[3]

∧ x[2] ≥ y[2])
∧ (q2[2] → q4[3]

∧ x[2] > y[2]) 

(q1[2] → q1[3] ∧ q2[3] ∧ x[3] = y[2] + 1
∧ y[3] = x[2] + 1) ∧ (q2[2] → q2[3]

∧ x[3] > x[2] ∧ y[3] > y[2])

refined q1 ∧ y > x – 1 ∧ q2 ⊤
refined

q1

⊤ refined
⊥

b

a
(q1[3] → q1[4] ∧ q2[4] ∧ x[4] = y[3] + 1 ∧ y[4] = x[3] + 1)
∧ (q2[3] → q2[4] ∧ x[4] > x[3] ∧ y[4] > y[3])

(q1[3] → q3[4] ∧ x[3] ≥ y[3])
∧ (q2[3] → q4[4] ∧ x[3] > y[4]) 

Figure 3.3: Proving Emptiness of the ADA in Figure 3.1 by Semi-Algorithm 2
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Chapter 4

First-Order Alternating Data
Automata (FOADA)

Many results in formal language theory rely on the assumption that languages are defined over
finite alphabets. In practice, this assumption is problematic when attempting to use automata
as models of real-time systems or even simple programs, whose input and observable output
require taking into account data values, ranging over very large domains, better viewed as
infinite mathematical abstractions.

Alternating automata are a generalisation of non-deterministic automata with universal tran-
sitions, that create several copies of the automaton, which synchronise on the same input word.
Alternating automata are appealing for verification because they allow encoding of problems
such as temporal logic model checking in linear time, as opposed to the exponential time re-
quired by non-deterministic automata [60]. A finite-alphabet alternating automaton is typically

described by a set of transition rules q
a−→ φ, where q is a state, a is an input symbol and φ is a

positive Boolean combinations of states, viewed as propositional variables.

In this chapter, we introduce a generalisation of Boolean alternating automata, called First-
Order Alternating Data Automata (FOADA), in which transition rules are described by multi-
sorted first order formulae, with states and internal variables given by uninterpreted predicate
terms. The model is closed under union, intersection and complement, and its emptiness prob-
lem is undecidable, even for the simplest data theory of equality. To cope with this limitation,
we develop an abstraction refinement semi-algorithm based on lazy annotation of the sym-
bolic execution paths with interpolants, obtained by applying: (i) quantifier elimination with
witness term generation and (ii) Lyndon interpolation in the quantifier-free data theory with
uninterpreted predicate symbols. This provides a method for checking inclusion of timed and
finite-memory register automata, and emptiness of quantified predicate automata, previously
used in the verification of parameterised concurrent programs, composed of replicated threads,
with a shared-memory communication model.
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4.1 Introduction of FOADA

4.1.1 Data Words

Let Σ be a finite alphabet of input events. Given a finite set of variables X ⊆ VAR, we denote
by X 7→ D the set of valuations of the variables X and Σ[X] = Σ × (X 7→ D) be the possibly
infinite set of data symbols (a, v), where a is an input symbol and v is a valuation.

A data word is a finite sequence w = (a1, v1), (a2, v2), ..., (an, vn) of data symbols. Given a

word w, we denote by wΣ
def

==== a1, a2, ..., an its sequence of input events and by wD the valuation
associating each time-stamped variable x[i] the value vi(x), for all x ∈ VAR and i ∈ [1, n]. We
denote by ε the empty sequence, by Σ∗ the set of finite sequences of input events and by Σ[X]∗

the set of data words over the variables X.

4.1.2 Definition of FOADA

A first-order alternating data automaton (FOADA) is a tuple A = (D,Σ, X,Q, ι, F,∆)
where:

• D is a possibly infinite data domain;

• Σ is a finite alphabet of input events;

• X ⊂ VAR is a finite set of variables of sort D;

• Q is a finite set of predicates denoting control states;

• ι ∈ FORM+(Q, ∅) is a sentence defining initial configurations;

• F ⊆ Q is the set of predicates denoting final states;

• ∆ is a set of transition rules of the form q(y1, y2, ..., y#(q))
a(X)−−−→ ψ where q ∈ Q is predicate,

a ∈ Σ is an input event and ψ ∈ FORM+(Q,X ∪ {y1, y2, ..., y#(q)}) is a positive formula,
where X ∩ {y1, y2, ..., y#(q)} = ∅.

The intuition of a transition rule q(y1, y2, ..., y#(q))
a(X)−−−→ ψ is the following: a is the input event

and X are the input data values that trigger the transition, whereas q and y1, y2, ..., y#(q) are
the current control state and data values in that state, respectively. Without loss of generality,
we consider, for each predicate q ∈ Q and each input event a ∈ Σ, at most one such rule, as two
or more rules can be joined using disjunction.

The quantifiers occurring in the right-hand side formula of a transition rule are referred to
as transition quantifiers. The size of A is defined as |A| = |ι|+

∑
q(y)

a(X)−−−→ψ∈∆

|ψ|.
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4.1.3 Execution Semantic

The execution semantics of FOADA is given in close analogy with the case of Boolean alternating
automata, with transition rules of the form q

a−→ φ, where q is a Boolean constant and φ a positive
Boolean combination of such constants. For instance, q0

a−→ q1∧q2∨q3 means that the automaton
can choose to transition in either, both q1 and q2, or, in q3 alone. This intuition leads to saying
that the steps of the automaton are defined by the minimal Boolean models of the transition
formulae. In this case, both {q1 ← >, q2 ← >, q3 ← ⊥} and {q1 ← ⊥, q2 ← ⊥, q3 ← >}
are minimal models, however, {q1 ← >, q2 ← >, q3 ← >} is also a model but is not minimal.
The original definition of alternating finite-state automata [12] works around this problem by
considering Boolean valuations (models) instead of formulae. However, describing FOADA using
interpretations instead of formulae would be rather hard to follow.

For a formula φ and a valuation v, we define [[φ]]v
def

==== {I | I, v |= φ} and drop the v
subscript for sentences. A sentence φ is satisfiable if [[φ]] 6= ∅ and φ is unsatisfiable if [[φ]] = ∅.
An element of [[φ]] is called a model of φ. A formula φ is valid if I, v |= φ for every interpretation
I and every valuation v. For two formulae φ and ψ, we write φ |= ψ for [[φ]] ⊆ [[ψ]], in which
case we say that φ entails ψ.

Interpretations are partially ordered by the point-wise subset order, defined as I1 ⊆ I2 if
and only if pI1 ⊆ pI2 for each predicate p ∈ PRED. Given a set S of interpretations, a minimal
element I ∈ S is an interpretation such that for no other interpretation I ′ ∈ S \{I} do we have
I ′ ⊆ I. For a formula φ and a valuation v, we denote by [[φ]]µv and [[φ]]µ the set of minimal
interpretations from [[φ]]v and [[φ]], respectively.

Let A = (D,Σ, X,Q, ι, F,∆) be a FOADA. Given a predicate q ∈ Q and a tuple of data
values d1, d2, ..., d#(q), then q(d1, d2, ..., d#(q)) is called a configuration. To formalise the ex-
ecution semantics of automata, we relate sets of configurations to models of first-order sen-

tences. Each first-order interpretation I corresponds to a set of configurations C(I)
def

====
{q(d1, d2, ..., d#(q)) | q ∈ Q, (d1, d2, ..., d#(q)) ∈ qI}, called a cube. For a set S of interpreta-

tions, we define C(S)
def

==== {C(I) | I ∈ S}.

Definition 4.1 Given a word w = (a1, v1), (a2, v2), ..., (an, vn) ∈ Σ[X]∗ and a cube c, an execu-
tion of a FOADA A = (D,Σ, X,Q, ι, F,∆) over w, starting with c, is a possibly infinite forest
T = {T1, T2, ...}, where each Ti is a tree labelled with configurations, such that:

• c = {T (ε) | T ∈ T } is the set of configurations labelling the roots of T1, T2, ...;

• if q(d1, d2, ..., d#(q)) labels a node on the level j ∈ [1, n − 1] in Ti, then the labels of its
children form a cube from C([[ψ]]µη ), where η = vj+1[y1 ← d1, y2 ← d2, ..., y#(q) ← d#(q)]

and q(y1, y2, ..., y#(q))
aj+1(X)−−−−−→ ψ ∈ ∆ is a transition rule of A.

Definition 4.2 And an execution T over w, starting with c, is accepting if and only if:

• all paths in T have the same length n;
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• the frontier of each tree T ∈ T is labelled with final configurations q(d1, d2, ..., d#(q)), where
q ∈ F .

If A has an accepting execution over w starting with a cube c ∈ C([[ι]]µ), then A accepts w and
let L(A) be the set of words accepted by A.

4.2 Symbolic Execution of FOADA

4.2.1 Path Formulae

In the upcoming developments, it is sometimes more convenient to work with logical formulae
defining executions of automata, than with low-level execution forests. For this reason, we first
introduce path formulae Θ(α), which are formulae defining the executions of an automaton,
over words that share a given sequence α of input events.

Let A = (D,Σ, X,Q, ι, F,∆) be a FOADA. For any i ∈ N, we denote by:

• Q[i] = {q[i] | q ∈ Q}

• X [i] = {x[i] | x ∈ X}

the sets of time-stamped predicates and variables, respectively. As a shorthand, we write Q[≤n]

(resp. X [≤n]) for the set {q[i] | q ∈ Q, i ∈ [1, n]} (resp. {x[i] | x ∈ X, i ∈ [1, n]}). For a formula

ψ and i ∈ N, we define ψ[i] def
==== ψ[X [i]/X,Q[i]/Q] the formula in which all input variables and

state predicates (and only those symbols) are replaced by their time-stamped counterparts. As a
shorthand, we shall write q(y) for q(y1, y2, ..., y#(q)) when no confusion arises. Given a sequence
of input events α = a1, a2, ..., an ∈ Σ∗, the path formula of α is:

Θ(α)
def

==== ι[0] ∧
n∧
i=1

∧
q(y)

ai(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[i−1](y)→ ψ[i]

The automaton A, to which Θ(α) refers, will always be clear from the context. To formalise the
relation between the low-level configuration-based execution semantics and the symbolic path
formulae, consider a word w = (a1, v1), (a2, v2), ..., (an, vn) ∈ Σ[X]∗. Any execution forest T of
A over w is associated an interpretation IT of the set of time-stamped predicates Q[≤n], defined
as:

IT (q[i])
def

==== {(d1, d2, ..., d#(q)) | q(d1, d2, ..., d#(q)) labels a node on T i},∀q ∈ Q,∀i ∈ [1, n]

where T i refers to the level i in T .

Lemma 4.1 Given a first-order alternating data automaton A = (D,Σ, X,Q, ι, F,∆), for any
word w = (a1, v1), (a2, v2), ..., (an, vn) ∈ Σ[X]∗, we have:

[[Θ(wΣ)]]µwD
= {IT | T is an execution of A over w}.
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Here is the proof of Lemma 4.1:

⊆: Let I be a minimal interpretation such that I, wD |= Θ(wΣ). We show that there exists
an execution T of A over w such that I = IT , by induction on n ≥ 0. For n = 0, we
have w = ε and Θ(wΣ) = ι[0]. Because ι is a sentence, the valuation wD is not important
in I,Θ(wΣ) |= ι[0] and, moreover, since I is minimal, we have I ∈ [[ι[0]]]µ. We define the
interpretation J (q) = I(q[0]), for all q ∈ Q. Then C(J ) is an execution of A over ε and
I = IC(J ) is immediate. For the inductive case n > 0, we assume that w = u · (an, vn)

for a word u. Let J be the interpretation defined as I for all q[i], with q ∈ Q and
i ∈ [1, n − 1], and ∅ everywhere else. Then J , uD |= Θ(uΣ) and J is moreover minimal.
By the induction hypothesis, there exists an execution G of A over u, such that J = IG .
Consider a leaf of a tree T ∈ G, labelled with a configuration q(d1, d2, ..., d#(q)) and let

∀y1,∀y2, ...,∀y#(q).q
[n−1](y) → ψ[n] be the sub-formula of Θ(wΣ) corresponding to the

application(s) of the transition rule q(y)
an−−→ ψ at the (n − 1)-th step. Let v = wD[y1 ←

d1, y2 ← d2, ..., y#(q) ← d#(q)]. Because I, wD |= ∀y1,∀y2, ...,∀y#(q).q
[n−1](y) → ψ[n], we

have I ∈ [[ψ[n]]]v and let K be one of the minimal interpretations such that K ⊆ I and
K ∈ [[ψ[n]]]v. It is not hard to see that K exists and is unique, otherwise we could take the
point-wise intersection of two or more such interpretations. We define the interpretation
K(q) = K(q[n]) for all q ∈ Q. We have that K ∈ [[ψ]]µv if K was not minimal, K was not
minimal to start with, contradiction. Then we extend the execution G by appending to
each node labelled with a configuration q(d1, d2, ..., d#(q)) the cube C(K). By repeating
this step for all leaves of a tree in G, we obtain an execution of A over w.

⊇: Let T be an execution of A over w. We show that IT is a minimal interpretation
such that IT , wD |= Θ(wΣ), by induction on n ≥ 0. For n = 0, T is a cube from
C([[ι]]µ), by definition. Then IT |= ι[0] and moreover, it is a minimal such interpreta-
tion. For the inductive case n > 0, let w = u · (an, vn) for a word u. Let G be the
restriction of T to u. Consequently, IG is the restriction of IT to Q[≤n−1]. By the
inductive hypothesis, IG is a minimal interpretation such that IG , uD |= Θ(uΣ). Since
IT (q[n]) = {(d1, d2, ..., d#(q)) | q(d1, d2, ..., d#(q)) labels a node on the n-th level in T },
we have IT , wD |= ϕ, for each sub-formula ϕ = ∀y1,∀y2, ...,∀y#(q).q

[n−1](y) → ψ[n] of
Θ(wΣ), by the execution semantics of A. This is the case because the children of each
node labelled with q(d1, d2, ..., d#(q)) on the (n−1)-th level of T form a cube from C([[ψ]]µv ),
where v is a valuation that assigns each yi the value di and behaves like wD, otherwise.
Now suppose, for a contradiction, that IT is not minimal and let J ( IT be an interpre-

tation such that J , wD |= Θ(wΣ). First, we show that the restriction J ′ of J to
n−1⋃
i=0

Q[i]

must coincide with IG . Assuming this is not the case, i.e. J ′ ( IG , contradicts the min-
imality of IG . Then the only possibility is that J (q[n]) ( IT (q[n]), for some q ∈ Q. Let

p1(y1, y2, ..., y#(p1))
an−−→ ψ1, p2(y1, y2, ..., y#(p2))

an−−→ ψ2, ..., pk(y1, y2, ..., y#(pk))
an−−→ ψk be

the set of transition rules in which the predicate symbol q occurs on the right-hand side.
Then it must be the case that, for some node on the (n− 1)-th level of G, labelled with a
configuration pi(d1, d2, ..., d#(pi)), the set of children does not form a minimal cube from

C([[ψ
[n]
i ]]µ), which contradicts the execution semantics of A.
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4.2.2 Acceptance Formulae

Now we give a logical characterisation of acceptance, relative to given sequence of input events
α ∈ Σ∗. To this end, we constrain the path formula Θ(α) by requiring that only final states of
A occur on the last level of the execution. The result is the acceptance formula for α:

Υ(α)
def

==== Θ(α) ∧
∧

q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥

The top-level universal quantifiers from a sub-formula ∀y1,∀y2, ...,∀y#(q).q
[i](y) → ψ of Υ(α)

will be referred to as path quantifiers, in the following. Notice that path quantifiers are
distinct from the transition quantifiers that occur within a formula ψ of a transition rule

q(y1, y2, ...y#(q))
a(X)−−−→ ψ of A.

The acceptance formula Υ(A) is false in every interpretation of the predicates that assigns
a non-empty set to a non-final predicate occurring on the last level in the execution forest.
The relation between the words accepted by A and the acceptance formula above, is formally
captured by the lemma below.

Lemma 4.2 Given an automaton A = (D,Σ, X,Q, ι, F,∆), for every word w ∈ Σ[X]∗, the
following are equivalent:

(1) there exists an interpretation I such that I, wD |= Υ(wΣ);

(2) w ∈ L(A).

Here is the proof of Lemma 4.2:

1⇒2 Let I be an interpretation such that I, wD |= Υ(wΣ). We know that A has an execution
T over w such that I = IT . To prove that T is accepting, we show that (i) all paths in
T have length n and that (ii) the frontier of T is labelled with final configurations only.
First, assume that (i) there exists a path in T of length 0 ≤ m < n. Then there exists
a node on the m-th level, labelled with some configuration q(d1, d2, ..., d#(q), that has no
children. By the definition of the execution semantics of A, we have C([[ψ]]µη ) = ∅, where

q(y)
am+1(X)−−−−−−→ ψ is the transition rule of A that applies for q and am+1 and η = wD[y1 ←

d1, y2 ← d2, ..., y#(q) ← d#(q)]. Hence [[ψ]]η = ∅, and because I, wD |= Υ(α), we obtain

that I, η |= q(y) → ψ[m+1], thus (d1, d2, ..., d#(q)) 6∈ I(q). However, this contradicts the
fact that I = IT and that q(d1, d2, ..., d#(q)) labels a node of T . Second, assume that (ii),
there exists a frontier node of T labelled with a configuration q(d1, d2, ..., d#(q)) such that
q ∈ Q \ F . Since I, wD |= ∀y1,∀y2, ...,∀y#(q).q(y) → ⊥, by a similar reasoning as in the
above case, we obtain that (d1, d2, ..., d#(q)) 6∈ I(q), contradiction.

2⇒1 Let T be an accepting execution of A over w. We can prove that IT , wD |= Υ(wΣ). By
Lemma 4.1, we obtain IT , wD |= Θ(wΣ). Since every path in T is of length n and all
nodes on the n-th level of T are labelled by final configurations, we can here obtain that
IT , wD |=

∧
q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥, trivially.
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As an immediate consequence, one can decide whether A accepts some word w with a given
input sequence wΣ = α, by checking whether Υ(α) is satisfiable. However, unlike non-alternating
infinite-state models of computation, such as counter automata (non-deterministic programs
with integer variables), the satisfiability query for an acceptance (path) formula falls outside of
known decidable theories, supported by standard SMT solvers. There are basically two reasons
for this, namely (i) the presence of predicate symbols, and (ii) the non-trivial alternation of
quantifiers. To understand this point, consider for example, the decidable theory of Presburger
arithmetic [51]. Adding even only one monadic predicate symbol to it yields undecidability in
the presence of non-trivial quantifier alternation [32]. However the quantifier-free fragment of
Presburger arithmetic extended with predicate symbols can be shown to be decidable, using a
Nelson-Oppen style congruence closure argument [47].

To tackle this problem, we start from the observation that acceptance formulae have a par-
ticular form, which allows the elimination of path quantifiers and of predicates, by a couple
of satisfiability-preserving transformations. The result of applying these transformations is a
formula with no predicate symbols, whose only quantifiers are those introduced by the transi-
tion rules of the automaton, referred to as transition quantifiers. We shall further assume that
the first order theory of the data sort D has quantifier elimination, which allows to effectively
decide the satisfiability of such formulae. The next two sections introduce the elimination of
path quantifiers and predicates.

4.2.3 Elimination of Path Quantifiers

Consider a given sequence of input events α = a1, a2, ..., an and denote by αi the prefix
a1, a2, ..., ai of α for i ∈ [1, n] where α0 = ε.

Definition 4.3 Let Θ̂(α0), Θ̂(α1), ..., Θ̂(αn) be the sequence of formulae defined by:

• Θ̂(α0)
def

==== ι[0];

• Θ̂(αi)
def

==== Θ̂(αi−1) ∧
∧

cond1,cond2

q[i−1](t1, t2, ..., t#(q))→ ψ[i][t1/y1, t2/y2, ..., t#(q)/y#(q)]

for i ∈ [1, n]

where cond1: q[i−1](t1, t2, ..., t#(q)) occurs in Θ̂(αi−1)

and cond2: q(y1, y2, ..., y#(q))
ai(X)−−−−→ ψ ∈ ∆

We write Υ̂(α) for the prenex normal form of the formula:

Θ̂(αn) ∧
∧

q[n](t1,t2,...,t#(q)) occurs in Θ̂(αn),q∈Q\F

q[n](t1, t2, ..., t#(q))→ ⊥

Observe that Υ̂(α) contains no path quantifiers, as required. On the other hand, the scope

of the transition quantifiers in Υ̂(α) exceeds the right-hand side formulae from the transition
rules, as shown by the following example.
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Example 4.1 Consider an automaton A = (N, {a1, a2}, {x}, {q, qf}, ι, {qf},∆) where:

• ι = ∃z.z ≥ 0 ∧ q(z);

• ∆ = {q(y)
a1(x)−−−→ x ≥ 0 ∧ ∀z.z ≤ y → q(x+ z), q(y)

a2(x)−−−→ y < 0 ∧ qf (x+ y)}.

For the input event sequence α = a1a2, the acceptance formula is:

Υ(α) =∃z.z ≥ 0 ∧ q[0](z)∧
∀y.q[0](y)→ [x[1] ≥ 0 ∧ ∀z.z ≥ y → q[1](x[1] + z)]∧

∀y.q[1](y)→ [y < 0 ∧ q[2]
f (x[2] + y)]

The result of eliminating the path quantifiers, in prenex normal form, is shown below:

Υ̂(α) =∃z1∀z2.z1 ≥ 0 ∧ q[0](z1)

[q[0](z1)→ x[1] ≥ 0 ∧ (z2 ≥ z1 → q[1](x[1] + z2))]∧

[q[1](x[1] + z2)→ x[1] + z2 < 0 ∧ q[2]
f (x[2] + x[1] + z2)]

Now we show a formal relation between the satisfiability of an acceptance formula Υ(α) and

that of the formula Υ̂(α), obtained by eliminating the path quantifiers from Υ(α).

Lemma 4.3 For any input event sequence α = a1, a2, ..., an and each valuation v : X [≤n] → D,
the following hold:

• for all interpretations I, if I, v |= Υ(α) then I, v |= Υ̂(α);

• if there exists an interpretation I such that I, v |= Υ̂(α) then there exists an interpretation
J ⊆ I such that J , v |= Υ(α).

Here is the proof of Lemma 4.3:

(1) Trivial, since every sub-formula q(t1, t2, ..., t#(q)) → ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] of Υ̂ is
entailed by a sub-formula ∀y1,∀y2, ...,∀y#(q).q(y1, y2, ..., y#(q))→ ψ of Υ(α).

(2) By repeated applications of Fact 4.1.

Fact 4.1 Given formulae φ and ψ, such that no predicate atom with predicate symbol q occurs
in ψ(y1, y2, ..., y#(q)), for each valuation v, if there exists an interpretation I such that I, v |=
φ ∧

∧
q(t1,t2,...,t#(q)) occurs in φ

q(t1, t2, ..., t#(q)) → ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] then there exists

a valuation J such that J (q) ⊆ I(q) and J (q′) ⊆ I(q′) for all q′ ∈ Q \ {q} and J , v |=
φ ∧ ∀y1,∀y2, ...,∀y#(q).q(y1, y2, ..., y#(q))→ ψ.
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Here is the proof of Fact 4.1:

Assume w.l.o.g. that φ is quantifier free. The proof can be easily generalised to the case
where φ has quantifiers. Let J (q) = {(tv1, tv2, ..., tv#(q)) ∈ I(q) | q(t1, t2, ..., t#(q)) occurs in φ}
and J (q′) ⊆ I(q′) for all q′ ∈ Q \ {q}. Since I, v |= φ, we obtain also that J , v |= φ because the
tuples of values in I(q) \ J (q) are not interpretations of terms that occur within sub-formulae
q(t1, t2, ..., t#(q)) of φ. Moreover, two formulae:

(1)
∧

q(t1,t2,...,t#(q)) occurs in φ

q(t1, t2, ..., t#(q))→ ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]

(2) ∀y1,∀y2, ...,∀y#(q).q(y1, y2, ..., y#(q))→ ψ

(1) and (2) are equivalent under J , thus J , v |= ∀y1,∀y2, ...,∀y#(q).q(y1, y2, ..., y#(q)) → ψ, as
required. This concludes the proof.

4.2.4 Elimination of Predicate Atoms

We proceed with the elimination of predicate atoms from Υ̂(α) defined below.

Definition 4.4 Let Θ̃(α0), Θ̃(α1), ..., Θ̃(αn) be the sequence of formulae defined by Θ̃(α0)
def

====

ι[0] and, for all i ∈ [1, n], Θ̃(αi) is obtained by replacing each occurrence of a predicate atom

q[i−1](t1, t2, ..., t#(q)) in Θ̃(αi−1) by the formula ψ[i][t1/y1, t2/y2, ..., t#(q)/y#(q)], where q(y)
ai(X)−−−−→

ψ ∈ ∆. We write Υ̃(α) for the formula obtained by replacing, in Θ̃(α), each occurrence of a
predicate q[n], such that q ∈ Q \ F (resp. q ∈ F ), by ⊥ (resp. >).

Example 4.2 The result of the elimination of predicate atoms from the acceptance formula in
Example 4.1 is shown below:

Υ̃(α) = ∃z1∀z2.z1 ≥ 0 ∧ [x[1] ≥ 0 ∧ (z2 ≥ z1 → x[1] + z2 < 0)]

Since this formula is unsatisfiable, no word w with input event sequence wΣ = a1a2 is accepted
by the automaton A from Example 4.1.

At this point, we prove the formal relation between the satisfiability of the formulae Υ̂(α) and

Υ̃(α). Since there are no occurrences of predicates in Υ̃(α), for each valuation v : X [≤n] → D,

there exists an interpretation I such that I, v |= Υ̂(α) if and only if J , v |= Υ̃(α), for every

interpretation J . In this case we omit I and simply write v |= Υ̃(α).

Lemma 4.4 For any input event sequence α = a1, a2, ..., an and each valuation v : X [≤n] → D,
there exists an interpretation I such that I, v |= Υ̂(α) if and only if v |= Υ̃(α).

Here is the proof of Lemma 4.4 by induction on n ≥ 0:

• The base case n = 0 is trivial, since Υ̂(A) = Υ̃(A) = ι[0].



72 CHAPTER 4. FIRST-ORDER ALTERNATING DATA AUTOMATA (FOADA)

• For the induction step, we rely on Fact 4.2.

Fact 4.2 Given formulae φ and ψ, such that φ is positive, q(t1, t2, ..., t#(q)) is the only one
occurrence of the predicate symbol q in φ and no predicate atom with predicate symbol q occurs
in ψ(y1, y2, ..., y#(q)), for each interpretation I and each valuation v, we have:

I, v |= φ ∧ q(t1, t2, ..., t#(q))→ ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]

⇔

v |= φ[ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]/q(t1, t2, ..., t#(q))].

Here is the proof of Fact 4.2. We assume w.l.o.g. that φ is quantifier-free. The proof can be
easily generalised to the case φ has quantifiers:

⇒ We distinguish two cases:

– if (tv1, t
v
2, ..., t

v
#(q)) ∈ I(q) then I, v |= ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]. Since φ is pos-

itive, replacing q(t1, t2, ..., t#(q)) with ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] does not change
the truth value of φ under v, thus:

v |= φ[ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]/q(t1, t2, ..., t#(q))];

– else, (tv1, t
v
2, ..., t

v
#(q)) 6∈ I(q), thus v |= φ[⊥/q(t1, t2, ..., t#(q))]. Since φ is positive and

⊥ entails ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)], we obtain:

v |= φ[ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]/q(t1, t2, ..., t#(q))]

by monotonicity.

⇐ Let I(q) = {(tv1, tv2, ..., tv#(q)) | v |= ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]}. We distinguish two
cases:

– if I(q) 6= ∅, then I, v |= q(t1, t2, ..., t#(q)) and v |= ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)].
Thus replacing ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] by q(t1, t2, ..., t#(q)) does not change
the truth value of φ under I and v, and we obtain I, v |= φ. Moreover, I, v |=
ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] implies I, v |= q(t1, t2, ..., t#(q))→ ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)].

– else I(q) = ∅, hence v 6|= ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)], thus v |= φ[⊥/q(t1, t2, ..., t#(q))].
Because φ is positive, we obtain I, v |= φ by monotonicity. But I, v |= q(t1, t2, ..., t#(q))→
ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)] trivially, because I, v 6|= q(t1, t2, ..., t#(q)).

Finally, we define the acceptance of a word with a given input event sequence by means
of a formula in which no predicate atom occurs. As previously discussed, several decidable
theories, such as Presburger arithmetic, become undecidable if predicate atoms are added to
them. Therefore, the result below makes a step forward towards deciding whether the automaton
accepts a word with a given input sequence, by reducing this problem to the satisfiability of a
quantified formula without predicates.
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Lemma 4.5 Given an automaton A = (D,Σ, X,Q, ι, F,∆), for every word w ∈ Σ[X]∗, we have

wD |= Υ̃(wΣ) if and only if w ∈ L(A).

Here is the proof of Lemma 4.5:

• By Lemma 4.2, w ∈ L(A) if and only if I, wD |= Υ(wΣ), for some interpretation I;

• By Lemma 4.3 there exists an interpretation I such that I, wD |= Υ(wΣ) if and only if

there exists an interpretation J such that J , v |= Υ̂(wΣ);

• By Lemma 4.4 there exists an interpretation J such that J , v |= Υ̂(wΣ) if and only if

v |= Υ̃(wΣ).

4.3 Closure Properties of FOADA

Given a positive formula φ, we define the dual formula φ recursively as follows:

• φ1 ∨ φ2 = φ1 ∧ φ2

• φ1 ∧ φ2 = φ1 ∨ φ2

• t ≈ s = ¬(t ≈ s)

• ¬(t ≈ s) = (t ≈ s)

• ∃x.φ1 = ∀x.φ1

• ∀x.φ1 = ∃x.φ1

• q(x1, x2, ..., x#(q)) = q(x1, x2, ..., x#(q))

Observe that, because predicate atoms do not occur negated in φ, there is no need to define
dualisation for formulae of the form ¬q(x1, x2, ..., x#(q)). The following theorem shows closure
of automata under all Boolean operations.

Theorem 4.1 Given two automata A1 = (D,Σ, X,Q1, ι1, F1,∆1) and A2 = (D,Σ, X,Q2, ι2, F2,∆2),
such that Q1 ∩Q2 = ∅, the following hold:

• L(A∩) = L(A1) ∩ L(A2), where A∩ = (D,Σ, X,Q1 ∪Q2, ι1 ∧ ι2, F1 ∪ F2,∆1 ∪∆2);

• L(Ai) = Σ[X]∗ \ L(Ai), where Ai = (D,Σ, X,Qi, ιi, Qi \ Fi,∆i) and for i = 1, 2: ∆i =

{q(y)
a(X)−−−→ ψ | q(y)

a(X)−−−→ ψ ∈ ∆i}.

Moreover, |A∩| = O(|A1|+ |A2|) and |Ai| = O(|Ai|) for all i = 1, 2.

Here is the proof of Theorem 4.1:
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(1) ⊆ Let w ∈ L(A∩) be a word and T be an execution of A∩ over w. Since Q1 ∩Q2 = ∅,
it is possible to partition T into T1 and T2 such that the roots of Ti form a cube from
C([[ιi]]

µ), for all i = 1, 2. Because ∆1 ∩∆2 = ∅, by induction on |w| ≥ 0, one shows
that Ti is an execution of Ai over w, for all i = 1, 2. Finally, because T is accepting,
we obtain that Ti and T2 are accepting, respectively, hence w ∈ L(A1) ∩ L(A2).

⊇ Let w ∈ L(A1)∩L(A2) and let Ti an accepting execution of Ai over w, for all i = 1, 2.
We show that T1 ∪ T2 is an execution of A∩ over w, by induction on |w| ≥ 0. For
the base case |w| = 0, we have Ti ∈ C([[ιi]]

µ) for all i = 1, 2 and since Q1 ∩Q2 = ∅,
we have Ti ∪ T2 ∈ C([[ι1 ∧ ι2]]µ)). The induction step follows as a consequence of the
fact that ∆1 ∪∆2 is the set of transition rules of A∩. Finally, since both T1 and T2

are accepting, Ti ∪ T2 is accepting as well. Moreover, we have:

|A∩| = |ι1∧ι2|+
∑

q(y)
a(X)−−−→ψ∈∆1∪∆2

|ψ| = 1+|ι1|+|ι2|+
∑

q(y)
a(X)−−−→ψ∈∆1

|ψ|+
∑

q(y)
a(X)−−−→ψ∈∆2

|ψ|

(2) Let w ∈ Σ[X]∗ be a word. We denote by ΥA1(wΣ) and Υ̃A1(wΣ) (resp. ΥA1
(wΣ) and

Υ̃A1
(wΣ)) the formulae Υ(wΣ) and Υ(wΣ) forA1 andA1, respectively. It is enough to show

that Υ̃A1
(wΣ) = ¬ΥA1(wΣ) and apply Lemma 4.5 to prove that w ∈ L(A1)⇔ w 6∈ L(A1).

Since the choice of w was arbitrary, this proves L(A1) = Σ[X]∗ \ L(A1). By induction
on the number of predicate atoms in ΥA1

(wΣ) that are replaced during the generation of

Υ̃A1(wΣ). The proof relies on the following fact:

Fact 4.3 Let φ be a positive formula and let q(t1, t2, ..., t#(q)) be the only occurrence of a
predicate symbol within φ. Then, every formula φ with no predicate occurrences:

¬φ[ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]/q(t1, t2, ..., t#(q))]

≡

φ[¬ψ[t1/y1, t2/y2, ..., t#(q)/y#(q)]/q(t1, t2, ..., t#(q))]

The proof of Fact 4.3 can be done by induction on the structure of φ.

4.4 Emptiness Problem of FOADA

4.4.1 Unfoldings of FOADA

Given a finite input event alphabet Σ, for two sequences α, β ∈ Σ∗, we say that α is a prefix of
β, written α � β, if α = βγ for some sequence γ ∈ Σ∗. A set S of sequences is:

• prefix-closed if for each α ∈ S, if β � α then β ∈ S;
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• complete if for each α ∈ S, there exists α ∈ Σ such that αa ∈ S if and only if αb ∈ S for
all b ∈ Σ.

Definition 4.5 An unfolding of a first-order alternating data automaton A = (D,Σ, X,Q, ι, F,∆)
is a finite partial mapping U : Σ∗ →fin FORM+(Q, ∅), such that:

• DOM(U) is a finite prefix-closed complete set;

• U(ε) = ι;

• for each sequence αa ∈ DOM(U), such that α ∈ Σ∗ and a ∈ Σ:

U(α)[0] ∧
∧

q(y)
a(X)−−−→ψ

∀y1,∀y2, ...,∀y#(q).q
[0](y)→ ψ[1] |= U(αa)[1]

Moreover, U is safe if for each α ∈ DOM(U), the formula U(α)∧
∧

q∈Q\F
∀y1,∀y2, ...,∀y#(q).q(y)→

⊥ is unsatisfiable.

4.4.2 IMPACT Semi-Algorithm

The problem of checking emptiness of a given automaton is undecidable, even for automata
with predicates of arity two, whose transition rules use only equality and dis-equality, having
no transition quantifiers [26]. Since even such simple classes of alternating automata have no
general decision procedure for emptiness, we use an abstraction refinement semi-algorithm based
on lazy annotation [45, 46].

In a nutshell, a lazy annotation procedure systematically explores the set of execution paths
(in our case, sequences of input events) in search of an accepting execution. Each path has
a corresponding path formula that defines all words accepted along that path. If the path
formula is satisfiable, the automaton accepts a word. Otherwise, the path is said to be spurious.
When a spurious path is encountered, the search backtracks and the path is annotated with
a set of learned facts, that marks this path as infeasible. The semi-algorithm uses moreover a
coverage relation between paths, ensuring that the continuations of already covered paths are
never explored. Sometimes this coverage relation provides a sound termination argument, when
the automaton is empty.

We check emptiness of first order alternating automata using a version of the IMPACT lazy
annotation semi-algorithm [45].

Semi-Algorithm 3 IMPACT for FOADA Emptiness

Input: a FOADA A = (D,Σ, X,Q, ι, F,∆)

Output:

{
true if L(A) = ∅
a data word w ∈ L(A) if L(A) 6= ∅

1: let U = (N,E, r, U, /) be an unfolding tree
2: let WorkList be a list
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3: N := ∅
4: E := ∅
5: U := ∅
6: / := ∅
7: add r into WorkList
8: while WorkList 6= ∅ do
9: dequeue n from WorkList

10: N := N ∪ {n}
11: let α(n) be a1, a2, ..., ak
12: if Υ̃(α)(X [1], X [2], ..., X [k]) is satisfiable then

13: get model v of Υ̃(α)(X [1], X [2], ..., X [k])
14: return w = (a1, v(X [1])), (a2, v(X [2])), ..., (ak, v(X [k]))
15: else
16: let (I0, I1, ..., Ik) be a GLI (generalised Lyndon interpolant) for α
17: b := ⊥
18: for i ∈ [0, k] do
19: if U(ni) 6|= Ii then
20: Uncover := {m ∈ N | (m,ni) ∈ /}
21: / := / \ {(m,ni) ∈ / | m ∈ Uncover}
22: for m ∈ Uncover such that m is a leaf of U do
23: enqueue m into WorkList
24: end for
25: U(ni) := U(ni) ∧ Ji % see Section - Interpolant Generation of FOADA
26: if ¬b then
27: b := CLOSE(ni)
28: end if
29: end if
30: end for
31: end if
32: if n is not covered then
33: for a ∈ Σ do
34: let s be a fresh node
35: let e = (n, a, s) be a new edge
36: E := E ∪ {e}
37: U := U ∪ {(s,>)}
38: enqueue s into WorkList
39: end for
40: end if
41: end while
42: return true
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Function 2 CLOSE
Input: a node x

Output:

{
true if x is closed

false if x is not closed

1: for y ∈ N such that α(y) ≺∗ α(x) do
2: if U(x) |= U(y) then
3: / := (/ \ {(p, q) ∈ / | q is x or a successor of x}) ∪ {(x, y)}
4: return true
5: end if
6: end for
7: return false

Lazy annotation semi-algorithms [45, 46] build unfoldings of automata trying to discover
counter-examples for emptiness. If the automaton A in question is non-empty, a systematic
enumeration of the input event sequences (for instance, using breadth-first search) from Σ∗ will
suffice to discover a word w ∈ L(A), provided that the first order theory of the data domain
D is decidable (Lemma 4.2). However, if L(A) = ∅, the enumeration of input event sequences
may, in principle, run forever. The typical way of fighting this divergence problem is to define
a coverage relation between the nodes of the unfolding tree.

Definition 4.6 Given an unfolding U of an automaton A = (D,Σ, X,Q, ι, F,∆) a node α ∈
DOM(U) is covered by another node β ∈ DOM(U), denoted α v β if and only if there exists
a node α′ � α such that U(α′) |= U(β). Moreover, U is closed if and only if every leaf from
DOM(U) is covered by an uncovered node.

A lazy annotation semi-algorithm will stop and report emptiness provided that it succeeds
in building a closed and safe unfolding of the automaton. Notice that, for any three nodes of an
unfolding U , say α, β, γ ∈ DOM(U), if α ≺ β and α v γ, then β v γ as well. There is no need
to expand covered nodes, because, intuitively, there exists a word w ∈ L(A) such that α � wΣ

and α v γ only if there exists another word u ∈ L(A) such that γ � uΣ . Hence, exploring
only those input event sequences that are continuations of γ (and ignoring those of α) suffices
in order to find a counter-example for emptiness, if one exists.

An unfolding node α ∈ DOM(U) is said to be spurious if and only if Υ(α) is unsatisfiable.
In this case, we change (refine) the labels of (some of the) prefixes of α (and that of α), such
that U(α) becomes ⊥, thus indicating that there is no real execution of the automaton along
that input event sequence. As a result of the change of labels, if a node γ � α used to cover
another node from DOM(U), it might not cover it with the new label. Therefore, the coverage
relation has to be recomputed after each refinement of the labelling. The semi-algorithm stops
when (and if) a safe complete unfolding has been found.

Theorem 4.2 If an automaton A has a non-empty safe closed unfolding then L(A) = ∅.

The proof is not that complicated. Let U be a safe and complete unfolding of A, such that

DOM(U) 6= ∅. Suppose, by contradiction, that there exists a word w ∈ L(A) and let α
def

==== wΣ.
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Since w ∈ L(A), by Lemma 4.2, there exists an interpretation I such that I, wD |= Υ(α).
Assume first that α ∈ DOM(U). In this case, one can show, by induction on the length n ≥ 0
of w, that Θ(α) |= U(α)[n], thus I, wD |= U(α)[n]. Since I, wD |= Υ(α), we have I, wD |=∧
q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥, hence U(α)[n]∧

∧
q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥. By

renaming q[n] with q in the previous formula, we obtain U(α) ∧ ∀y1,∀y2, ...,∀y#(q).q(y)→ ⊥ is
satisfiable, thus U is not safe, contradiction.

We proceed thus under the assumption that α 6∈ DOM(U). Since DOM(U) is a non-empty
prefix-closed set, there exists a strict prefix α′ of α that is a leaf of DOM(U). Since U is closed,
the leaf α′ must be covered and let α1 � α′ � α be a node such that U(α1) |= U(β1), for some
uncovered node β1 ∈ DOM(U). Let γ1 be the unique sequence such that α1γ1 = α. Since α1 v
β1 and wΣ = α1γ1 ∈ L(A), there exists a word w1 and a cube c1 ∈ C([[U(α1)]]) ⊆ C([[U(β1)]]),
such that w1Σ = γ1 and A accepts w1 starting with c1. If β1γ1 ∈ DOM(U), we obtain a
contradiction by a similar argument as above. Hence β1γ1 6∈ DOM(U) and there exists a leaf of
DOM(U) which is also a prefix of β1γ1. Since U is closed, this leaf is covered by an uncovered
node β2 ∈ DOM(U) and let α2 ∈ DOM(U) be the minimal (in the prefix partial order) node
such that β1 � α2 � β1γ1 and α2 v β2. Let γ2 be the unique sequence such that α2γ2 = β1γ1.
Since β1 is uncovered, we have β1 6= α2 and thus |γ1| > |γ2|. By repeating the above reasoning
for α2, β2 and γ2, we obtain an infinite sequence |γ1| > |γ2| > ..., which is again a contradiction.

As mentioned above, we check emptiness of first order alternating automata using the same
method previously used to check emptiness of a simpler model of alternating automata, which
uses Boolean constants for control states and whose transition rules have no quantifiers [35].
The higher complexity of the automata model considered here, manifests itself within the inter-
polant generation procedure, used to refine the labelling of the unfolding. We discuss generation
of interpolants in the next section.

4.5 Interpolant Generation of FOADA

4.5.1 Over-Approximation and Interpolants

Typically, when checking the unreachability of a set of program configurations [45], the inter-
polants used to annotate the unfolded control structure are assertions about the values of the
program variables in a given control state, at a certain step of an execution. However, in an
alternating model of computation, it is useful to distinguish between (i) locality of interpolants
w.r.t. a given control state (control locality) and (ii) locality w.r.t. a given time stamp (time
locality). In logical terms, control-local interpolants are defined by formulae involving a single
predicate symbol, whereas time-local interpolants involve only predicates q[i] and variables x[i],
for a single i ≥ 0.

When considering an alternating model of computation, control-local interpolants are not
always enough to prove emptiness, because of the synchronisation of several branches of the
computation on the same sequence of input values.

Example 4.3 Consider, a FOADA with the following transition rules and final state qf :
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• q0(y)
a(x)−−−→ q1(y + x) ∧ q2(y − x)

• q1(y)
a(x)−−−→ y + x > 0 ∧ qf

• q1(y)
a(x)−−−→ q1(y + x)

• q2(y)
a(x)−−−→ y − x > 0 ∧ qf

• q2(y)
a(x)−−−→ q2(y − x)

Started in an initial configuration q0(0) with an input word (a, v1), (a, v2), ..., (a, vn−1), (a, vn),
such that vi(x) = ki, the automaton executes as follows:

q0(0)
(a,v1)−−−−→ {q1(k1), q2(−k1)} (a,v2)−−−−→ ...

(a,vn−1)−−−−−→ {q1(

n−1∑
i=1

ki), q2(−
n−1∑
i=1

ki)}
(a,vn)−−−−→ ∅

An over-approximation of the set of cubes generated after one or more steps is defined by the
formula ∃x1∃x2.q1(x1) ∧ q2(x2) ∧ x1 + x2 ≈ 0. Observe that a control-local formula using one
occurrence of a predicate would give a too rough over-approximation of this set, unable to prove
the emptiness of the automaton.

In the rest of this section, let us fix an automaton A = (D,Σ, X,Q, ι, F,∆). Due to the
above observation, none of the interpolants considered will be control-local and we shall use the
term local to denote time-local interpolants, with no free variables.

Definition 4.7 Given a non-empty sequence of input events α = a1, a2, ..., an ∈ Σ∗, a gener-
alised Lyndon interpolant (GLI) is a sequence (I0, I1, ..., In) of formulae such that, for all
k ∈ [1, n− 1]:

• P−(Ik) = ∅;

• ι[0] |= I0 and Ik ∧ (
∧

q(y)
ai(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[k](y)→ ψ[k+1]) |= Ik+1;

• In ∧
∧

q∈Q\F
∀y1,∀y2, ...,∀y#(q).q(y) is unsatisfiable.

Moreover, the GLI is local if and only if V (Ik) ⊆ Q[k], for all k ∈ [1, n].

The following proposition states the existence of local GLI for the theories in which Lyndon’s
Interpolation Theorem holds. If there exists a Lyndon interpolant for any two formulae φ and
ψ, such that φ ∧ ψ is unsatisfiable, then any sequence of input events α = a1, a2, ..., an ∈ Σ∗,
such that Υ(α) is unsatisfiable, has a local GLI (I0, I1, ..., In). Here is the proof.

By definition, Υ(α) is the formula:

ι[0]∧
n∧
i=1

∧
q(y)

ai(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[i−1](y)→ ψ[i]∧

∧
q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥
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We define the formulae:

• ϕi
def

====
∧

q(y)
ai(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[i−1](y)→ ψ[i], for all i ∈ [1, n]

• ψ def
====

∧
q∈Q\F

∀y1,∀y2, ...,∀y#(q).q
[n](y)→ ⊥

Observe that V (ι[0]) ⊆ Q[0], V (ϕi) ⊆ Q[i−1] ∪Q[i] ∪X [i], for all i ∈ [1, n], and V (ψ) ⊆ Q[n]. We

apply Lyndon’s Interpolation Theorem for the formulae ι[0] and
n∧
i=1

ϕi ∧ψ and obtain a formula

I0, such that ι[0] |= I0, I0∧
n∧
i=1

ϕi∧ψ is unsatisfiable, V (I0) ⊆ V (ι[0])∩ (
n⋃
i=1

V (ϕi)∪V (ψ)) ⊆ Q[0]

and P−(I0) ⊆ P−(ι[0]) ∩ (
n⋃
i=1

P−(ϕi) ∪ P−(ψ)) = ∅. Repeating the reasoning for the formulae

I0 ∧ ϕ1 and
n∧
i=2

ϕi ∧ ψ, we obtain I1, such that I0 ∧ ϕ1 |= I1, I1 ∧
n∧
i=2

ϕi ∧ ψ is unsatisfiable,

V (I1) ⊆ (V (I0) ∪ V (ϕ1)) ∩ (
n⋃
i=2

V (ϕi) ∪ V (ψ)) ⊆ Q[1] and P−(I1) ⊆ (P−(I0) ∪ P−(ϕ1)) ∩

(
n⋃
i=2

P−(ϕi)∪P−(ψ)) = ∅. Continuing in this way, we obtain formulae (I0, I1, ..., In) as required.

The main problem with the local GLI construction described in the proof of above is that the
existence of Lyndon interpolants is guaranteed in principle, but the proof is non-constructive.
Building an interpolant for an unsatisfiable conjunction of formulae φ ∧ ψ is typically the job
of the decision procedure that proves the unsatisfiability and, in general, there is no such pro-
cedure, when φ and ψ contain predicates and have non-trivial quantifier alternation. In this
case, some provers use instantiation heuristics for the universal quantifiers that are sufficient for
proving unsatisfiability, however these heuristics are not always suitable for interpolant genera-
tion. Consequently, from now on, we assume the existence of an effective Lyndon interpolation
procedure only for decidable theories, such as the quantifier-free linear (integer) arithmetic with
uninterpreted functions (UFLIA, UFLRA, etc.) [56].

This is where the predicate-free path formulae come into play. For a given event sequence α,
the automaton A accepts a word w such that wΣ = α if and only if Υ̃(α) is satisfiable. Assuming
further that the equality atoms in the transition rules of A are written in the language of a
decidable first order theory, such as Presburger arithmetic, Lemma 4.5 gives us an effective way
of checking emptiness of A, relative to a given event sequence. However, this method does not
cope well with lazy annotation, because there is no way to extract, from the unsatisfiability
proof of Υ̃(α), the interpolants needed to annotate α. This is because (i) the formula Υ̃(α),
obtained by repeated substitutions loses track of the steps of the execution, and (ii) quantifiers

that occur nested in Υ̃(α) make it difficult to write Υ̃(α) as an unsatisfiable conjunction of
formulae from which interpolants are extracted.

The solution we adopt for the first issue (i) consists in partially recovering the time-stamped

structure of the acceptance formula Υ(α) using the formula Υ̂(α) in which only transition
quantifiers occur. The second issue (ii) is solved under the additional assumption that the
theory of the data domain D has witness-producing quantifier elimination. More precisely, we
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assume that, for each formula ∃x.φ(x), there exists an effectively computable term τ , in which
x does not occur, such that ∃x.φ(x) and φ[τ/x] are equisatisfiable. These terms, called witness
terms in the following, are actual definitions of the Skolem function symbols from the following
folklore theorem.

Theorem 4.3 [11] Given Q1x1Q2x2...Qnxn.φ a first-order sentence, where Q1, Q2, ..., Qn ∈
{∃,∀} and φ is quantifier-free, let ηi

def
==== fi(y1, y2, ..., yki) if Qi = ∀ and ηi

def
==== xi if Qi = ∃,

where fi is a fresh function symbol and {y1, y2, ..., yki} = {xj | j < i,Qj = ∃}. Then the
entailment Q1x1Q2x2...Qnxn.φ |= φ[η1/x1, η2/x2, ..., ηn/xn] holds.

See Theorem 2.1.8 and Lemma 2.1.9 in [11] for the proof of Theorem 4.3.

Examples of witness-producing quantifier elimination procedures can be found in the liter-
ature for e.g. linear integer (real) arithmetic (LIA,LRA), Presburger arithmetic and Boolean
algebra of sets and Presburger cardinality constraints (BAPA) [41].

Under the assumption that witness terms can be effectively built, let us describe the genera-
tion of a non-local GLI for a given input event sequence α = a1, a2, ..., an. First, we generate suc-
cessively the acceptance formula Υ(α) and its equisatisfiable forms Υ̂(α) = Q1x1Q2x2...Qmxm.Φ̂

and Υ̂(α) = Q1x1Q2x2...Qmxm.Φ̃, both written in prenex form, with matrices Φ̂ and Φ̃, respec-
tively. Because we assumed that the first order theory of D has quantifier elimination, the
satisfiability problem for Υ(α) is decidable. If Υ(α) is satisfiable, we build a counter-example
for emptiness w such that wΣ = α and wD is a satisfying assignment for Υ(α). Otherwise,
Υ(α) is unsatisfiable and there exist witness terms τi1 , τi2 , ..., τil , where {i1, i2, ..., il} = {j ∈
[1,m] | Qj = ∀}, such that Φ̃[τi1/xi1 , τi2/xi2 , ..., τil/xil ] is unsatisfiable. Then it turns out

that the formula Φ̂[τi1/xi1 , τi2/xi2 , ..., τil/xil ], obtained analogously from the matrix of Υ̂(α),
is unsatisfiable as well. Because this latter formula is structured as a conjunction of formulae
ι[0]∧φ1∧φ2∧ ...∧φn∧ψ, where V (φk)∩Q[≤n] ⊆ Q[k−1]∪Q[k] and V (ψ)∩Q[≤n] ⊆ Q[n], it is now
possible to use an existing interpolation procedure for the quantifier-free theory of D, extended
with uninterpreted function symbols, to compute a sequence of non-local GLI (I0, I1, ..., In) such
that V (Ik) ∩Q[≤n] ⊆ Q[k] for all k ∈ [1, n].

Example 4.4 The formula Υ̃(α) in Example 4.2 is unsatisfiable and let τ2 = z1 be the witness

term for the universally quantified variable z2. Replacing z2 with τ2 in the matrix of Υ̂(α) in
Example 4.1 yields the unsatisfiable conjunction:

z1 ≥ 0 ∧ q[0](z1) ∧ q[0](z1)→ x[1] ≥ 0 ∧ (z1 ≥ z1 → q[1](x[1] + z1))∧

q[1](x[1] + z1)→ x[1] + z1 < 0 ∧ q[2]
f (x[2] + x[1] + z1)

A non-local GLI for the above is:

(q[0](z1) ∧ z1 ≥ 0, x[1] ≥ 0 ∧ q[1](x[1] + z1) ∧ z1 ≥ 0,⊥)

A function ξ : N→ N is (i) [strictly] monotonic if and only if for each n < m we have ξ(n) ≤
ξ(m) [ξ(n) < ξ(m)] and (ii) finite-range if and only if for each n ∈ N the set {m | ξ(m) = n} is
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finite. If ξ is finite-range, we denote by ξ−1
max(n) ∈ N the maximal value m such that ξ(m) = n.

The lemma below gives the proof of correctness for the construction of non-local GLI.

Lemma 4.6 Given a non-empty input event sequence α = a1, a2, ..., an ∈ Σ∗, such that Υ(α) is

unsatisfiable, let Q1x1Q2x2...Qmxm.Φ̂ be a prenex form of Υ̂(α) and let ξ : [1,m] → [1, n] be a
monotonic function mapping each transition quantifier to the minimal index from the sequence
Θ̂(α0), Θ̂(α1), ..., Θ̂(αn) where it occurs. Then one can effectively build:

• witness terms τi1 , τi2 , ..., τil , where {i1, i2, ..., il} = {j ∈ [1,m] | Qj = ∀} and V (τij ) ⊆
X [≤ξ(ij)] ∪ {xk | k < ij , Qk = ∃},∀j ∈ [1, l] such that Φ̂[τi1/xi1 , τi2/xi2 , ..., τil/xil ] is
unsatisfiable;

• a GLI (I0, I1, ..., In) for α, such that V (Ik) ⊆ Q[k] ∪ X [≤k] ∪ {xj | j < ξ−1(k), Qj = ∃},
for all k ∈ [1, n].

Here is the proof of Lemma 4.6:

(1) If Υ(α) is unsatisfiable, by Lemma 4.3 and Lemma 4.4, we obtain that, successively Υ̂(α)

and Υ(α) are unsatisfiable. Let Q1x1Q2x2...Qmxm.Φ̂ and Q1x1Q2x2...Qmxm.Φ̃ be prenex

forms for Υ̂(α) and Υ(α), respectively. Since we assumed that the first order theory of
the data domain has witness-producing quantifier elimination, one can effectively build
witness terms τi1 , τi2 , ..., τil , where {i1, i2, ..., il} = {i ∈ [1,m] | Qi = ∀} and:

– V (τij ) ⊆ X [≤ξ(ij)] ∪ {xk | k < ij , Qk = ∃}, for all j ∈ [1, l];

– Φ̃[τi1/xi1 , τi2/xi2 , ..., τil/xil ] is unsatisfiable.

Let Φ̂0, Φ̂1, ..., Φ̂n be the sequence of quantifier-free formulae, defined as follows:

– Φ̂0 is the matrix of some prenex form of ι[0];

– for all i = 1, 2, ..., n, let Φ̂i be the matrix of some prenex form of:

Φ̂i
def

==== Φ̂i−1 ∧
∧

cond1,cond2

q[i−1](t1, t2, ..., t#(q))→ ψ[i][t1/y1, t2/y2, ..., t#(q)/y#(q)]︸ ︷︷ ︸
def

====φi

where cond1 : q[i−1](t1, t2, ..., t#(q)) occurs in Φ̂i−1

and cond2 : q(y1, y2, ..., y#(q))
ai(X)−−−−→ ψ ∈ ∆

It is easy to see that Φ̂ is the matrix of some prenex form of:

Φ̂n ∧
∧

q[n](t1,t2,...,t#(q)) occurs in Φ̂n,q∈Q\F

q[n](t1, t2, ..., t#(q))→ ⊥

︸ ︷︷ ︸
def

====ψ
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We can obtain a sequence of quantifier-free formulae Φ̃0, Φ̃1, ..., Φ̃n such that Φ̃i ≡ Φ̂i,
for all i ∈ [1, n] and Φ̃ is obtained from Φ̃n by replacing each occurrence of a predicate

atom q(t1, t2, ..., t#(q)) in Φ̃n by ⊥ if q ∈ Q \ F and by > if q ∈ F . Clearly Φ̃ ≡ Φ̂, thus

Φ̂[τi1/xi1 , τi2/xi2 , ..., τil/xil ] ≡ Φ̃[τi1/xi1 , τi2/xi2 , ..., τil/xil ] ≡ ⊥.

(2) With the notation introduced at (1), we have Φ̂ = Φ̂0 ∧
n∧
i=1

φi ∧ ψ. Consider the sequence

of witness terms τi1 , τi2 , ..., τil , whose existence is provided by (1). Because V (τij ) ⊆
X [≤ξ(ij)] ∪ {xk | k < ij , Qk = ∃} for all j ∈ [1, l], and moreover ξ−1 is strictly monotonic,
we obtain:

– V (Φ̂0[τi1/xi1 , τi2/xi2 , ..., τil/xil ]) ⊆ Q[0] ∪X [0] ∪ {xj | j < ξ−1
max(0), Qj = ∃};

– V (φi[τi1/xi1 , τi2/xi2 , ..., τil/xil ]) ⊆ Q[i−1] ∪Q[i] ∪X [≤i] ∪ {xj | j < ξ−1
max(i), Qj = ∃}

for all i ∈ [1, n];

– V (ψ[τi1/xi1 , τi2/xi2 , ..., τil/xil ]) ⊆ Q[n] ∪X [≤n] ∪ {xj | j ∈ [1,m], Qj = ∃}.

By repeatedly applying Lyndon’s Interpolation Theorem, we obtain a sequence of formulae
(I0, I1, ..., In) such that:

– Φ̂0[τi1/xi1 , τi2/xi2 , ..., τil/xil ] |= I0 and V (I0) ⊆ Q[0] ∪X [0] ∪ {xj | j < ξ−1
max(0), Qj =

∃};
– Ik−1 ∧ φi[τi1/xi1 , τi2/xi2 , ..., τil/xil ] |= Ik and V (Ik) ⊆ Q[k] ∪ X [≤k] ∪ {xj | j <
ξ−1
max(k), Qj = ∃} for all k ∈ [1, n];

– In ∧ ψ[τi1/xi1 , τi2/xi2 , ..., τil/xil ] is unsatisfiable.

To show that (I0, I1, ..., In) is a GLI for a1, a2, ..., an, it is sufficient to notice that:∧
q(y)

ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[k](y)→ ψ[k+1] |= φk

for all k ∈ [1, n]. Consequently, we obtain:

– ι[0] |= Φ̂0 |= I0, by Theorem 4.3;

– Ik−1 ∧ (
∧

q(y)
ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[k−1](y)→ ψ[k]) |= Ik−1 ∧ φk |= Ik;

– In ∧ (
∧

q∈Q\F
∀y1,∀y2, ...,∀y#(q).q(y)→ ⊥) |= In ∧ ψ |= ⊥.

In conclusion, under two assumptions about the first order theory of the data domain, namely
the (i) witness-producing quantifier elimination, and (ii) Lyndon interpolation for the quantifier-
free fragment with uninterpreted functions, we developed a rather generic method that produces
generalised Lyndon interpolants for infeasible input event sequences. Moreover, each formula Ik
in the interpolant refers only to the current predicate symbols Q[Ik], the current and past input
variables X [≤k] and the existentially quantified transition variables introduced at the previous
steps {xj | j < ξ−1

max(k), Qj = ∃}. The remaining question is how to use such non-local inter-
polants to label the unfolding of an automaton and to compute the coverage between nodes of
the unfolding.
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4.5.2 Unfolding with Non-local Interpolants

The unfolding U of an automaton A = (D,Σ, X,Q, ι, F,∆) is labelled by formulae U(α) ∈
FORM+(Q, ∅), with no free symbols, other than predicate symbols, such that the labelling is
compatible with the transition relation of the automaton. The following lemma describes the
refinement of the labelling of an input sequence α of length n by a non-local GLI (I0, I1, ..., In),
such that V (Ik) ⊆ Q[k] ∪ X [≤k] ∪ Xk where Xk are the existentially quantified variables from

the prenex normal form of Υ̂(αk).

Lemma 4.7 Let U be an unfolding of an automaton A = (D,Σ, X,Q, ι, F,∆) such that α =
a1, a2, ..., an ∈ DOM(U) and (I0, I1, ..., In) be a GLI for α. The mapping U ′ : DOM(U) →
FORM+(Q, ∅) defined as:

• U ′(αk) = U(αk) ∧ Jk, for all k ∈ [1, n], where Jk is the formula obtained from Ik by
replacing each time-stamped predicate symbol q(k) by q and existentially quantifying each
free variable in Ik;

• U ′(β) = U(β) if β ∈ DOM(U) and β 6� α;

is an unfolding of A.

The proof of Lemma 4.7 is not complicated. The new set of formulae U ′(α0), U ′(α1), ..., U ′(αn)
complies with Definition 4.5, because:

• U ′(α0) ≡ ι, since, by point 2 of Definition 4.7, we have ι[0] |= I0, thus ι |= J0 and
U ′(α0) = U(α0) ∧ J0 ≡ ι ∧ J0 ≡ ι;

• by point 3 of Definition 4.7, we have, for all k ∈ [1, n− 1]:

Ik ∧
∧

q(y)
ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[k](y)→ ψ[k+1] |= Ik+1

We write I
〈j〉
k for the formula in which each predicate symbol q[k] is replaced by q[j]. Then

the following entailment holds:

I
〈0〉
k ∧

∧
q(y)

ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[0](y)→ ψ[1] |= I

〈1〉
k+1

Because Jk is obtained by removing the time stamps from the predicate symbols and
existentially quantifying all the free variables of Ik, we also obtain, by applying Fact 4.4
below:

J
[0]
k ∧

∧
q(y)

ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[0](y)→ ψ[1] |= J

[1]
k+1

Since U satisfies the labelling condition of Definition 4.5 and U ′(αk) = U(αk) ∧ Jk, we
obtain, as required:

U ′(αk)[0] ∧
∧

q(y)
ak(X)−−−−→ψ∈∆

∀y1,∀y2, ...,∀y#(q).q
[0](y)→ ψ[1] |= U ′(αk+1)[1]
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Fact 4.4 Given formulae φ(x, y) and ψ(x) such that φ(x, y) |= ψ(x), we also have ∃x.φ(x, y) |=
∃x.ψ(x).

The proof of Fact 4.4 is quite simple. For each choice of a valuation for the existentially quantified
variables on the left-hand side, we chose the same valuation for the variables on the right-hand
side.

Observe that, by Lemma 4.6, the set of free variables of a GLI formula Ik consists of (i)
variables X [≤k] keeping track of data values seen in the input at some earlier moment in time,
and (ii) variables that track past choices made within the transition rules. Basically, it is not
important when exactly in the past a certain input has been read or when a choice has been
made, as only the value of the variable determines the future behaviour. Intuitively, existential
quantification of these variables does the job of ignoring when in the past these values have been
seen.

The last ingredient of the lazy annotation semi-algorithm based on unfoldings consist in the
implementation of the coverage check, when the unfolding of an automaton is labelled with
conjunctions of existentially quantified formulae with predicate symbols, obtained from inter-
polation. By Definition 4.6, checking whether a given node α ∈ DOM(U) is covered amounts
to finding a prefix α′ � α and a node β ∈ DOM(U) such that U(α′) |= U(β), or equivalently,
the formula U(α′) ∧ ¬U(β) is unsatisfiable. However, the latter formula, in prenex form, has
quantifier prefix in the language ∃∗∀∗ and, as previously mentioned, the satisfiability problem
for such formulae becomes undecidable when the data theory subsumes Presburger arithmetic
[32].

Nevertheless, if we require just a yes/no answer (i.e. not an interpolant) recently developed
quantifier instantiation heuristics [54] perform rather well in answering a large number of queries
in this class. Observe, moreover, that coverage does not need to rely on a complete decision
procedure. If the prover fails in answering the above satisfiability query, then the semi-algorithm
assumes that the node is not covered and continues exploring its successors. Failure to compute
complete coverage may lead to divergence (non-termination) and ultimately, to failure to prove
emptiness, but does not affect the soundness of the semi-algorithm (real counter-examples will
still be found).
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Chapter 5

Applications

The main application of first-order alternating data automata (FOADA) is checking inclusions
between various classes of automata extended with variables ranging over infinite domains that
recognise languages over infinite alphabets. The most widely known such classes are timed
automata [4] and finite-memory automata [36] (also called register automata). In both cases,
complementation is not possible inside the class and inclusion is undecidable. Our contribution
is providing a systematic semi-algorithm for these decision problems. In addition, the method
described in Section 4.4 can extend generic register automata inclusion checking framework [34],
by allowing monitor (right-hand side) automata to have local variables, that are not visible in
the language.

Another application is checking safety (mutual exclusion, absence of deadlocks, etc.) and
liveness (termination, lack of starvation, etc.) properties of parameterised concurrent programs,
consisting of an unbounded number of replicated threads that communicate via a fixed set of
global variables (locks, counters, etc.). The verification of parametric programs has been reduced
to checking the emptiness of a (possibly infinite) sequence of first order alternating automata,
called predicate automata [26, 27], encoding the inclusion of the set of traces of a paramet-
ric concurrent program into increasingly general proof spaces, obtained by generalisation of
counter-examples. The program and the proof spaces are first order alternating automata over
the infinite alphabet of pairs consisting of program statements and thread identifiers.

5.1 Application on Timed Automata

The standard definition of a finite timed word is a sequence of pairs (a1, τ1), (a2, τ2), ..., (an, τn) ∈
(Σ × R)∗, where R is the set of real numbers, such that 0 ≤ τi < τi+1, for all i ∈ [1, n − 1].
Intuitively, τi is the moment in time where the input event ai occurs. Given a set C of clocks,
the set Φ(C) of clock constraints is defined inductively as the set of formulae x ≤ c, x ≥ c, ¬δ,
δ1 ∧ δ2, where x ∈ C, c ∈ Q is a rational constant and δ, δ1, δ2 ∈ Φ(X).

A timed automaton is a tuple T = (Σ, S, S0, F, C,E) where:
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• Σ is a finite set of input events;

• S is a finite set of states;

• S0 ⊆ S is the set of initial states;

• F ⊆ S is the set of final states;

• C is a finite set of clocks;

• E ⊆ S × Σ× S × 2C × Φ(C) is the set of transitions (s, a, s′, λ, δ) from state s to state s′

with symbol a, where λ is the set of clocks to be reset and δ is a clock constraint.

A run of T over a timed word w = (a1, τ1), (a2, τ2), ..., (an, τn) is a sequence (s0, γ0), (s1, γ1), ..., (sn, γn),
where si ∈ S, γi : C → R are clocks valuations, for all i ∈ [1, n] and:

• s0 ∈ S0 and γ0(x) = 0 for all x ∈ C;

• for all i ∈ [1, n], there exists a transition (si, ai, si+1, λi, δi) ∈ E such that γi+τi+1−τi |= δi,
and for all x ∈ C, γi+1(x) = 0 if x ∈ λi and γi+1(x) = γi(x) + τi+1 − τi, otherwise.

Here τ0
def

==== 0 and γi + τi+1 − τi is the valuation mapping each x ∈ C to γi(x) + τi+1 − τi.
The run is accepting if and only if sn ∈ F , in which case T accepts w. As usual, we denote by
L(T ) the set of finite words accepted by T . It is well-known that, in general, there is no timed
automaton accepting the complement language (Σ × R)∗ \ L(T ) and, moreover, the language
inclusion problem is undecidable [4].

Given a timed automaton T = (Σ, S, S0, F, C,E), we define a first-order alternating au-
tomaton (FOADA) AT = (R,Σ, {t}, QT , ιT , FT ,∆T ), with a single input variable t, ranging
over R, such that each timed word w = (a1, τ1), (a2, τ2), ..., (an, τn) corresponds to a unique
data word d(w) = (a1, v1), (a2, v2), ..., (an, vn) such that vi(t) = τi for all i ∈ [1, n] and
L(AT ) = {d(w) | w ∈ L(T )}. The only difficulty here is capturing the fact that all the
clocks of T evolve at the same pace, which is easily done using a technique from [30], which
replaces each clock xi of T by a variable yi tracking the difference between the values of t and
xi.

Formally, if C = {x1, x2, ..., xk} and S = {s1, s2, ..., sm}, we define QT
def

==== {q1, q2, ..., qm}
where #(qi) = k+ 1 for all i ∈ [1,m], ιT

def
====

∨
si∈S0

qi(0, 0, ..., 0), FT
def

==== {qi | si ∈ F} and, for

each transition (si, a, sj , λ, δ) ∈ E, ∆T contains the rule:

qi(y1, y2, ..., yk, z)
a(t)−−→ t > z ∧ δ(z − y1, z − y2, ..., z − yk) ∧ qj(y′1, y′2, ..., y′k, t)

where y′i stands for z if xi ∈ λ and for yi, otherwise. Moreover, nothing else is in ∆T . We
establish the following connection between a timed automaton and its corresponding first order
alternating automaton.

Proposition 5.1 Given a timed automaton T = (Σ, S, S0, F, C,E), the first-order alternating
data automaton (FOADA) AT = (R,Σ, {t}, QT , ιT , FT ,∆T ) recognises the language L(AT ) =
{d(w) | w ∈ L(T )}.
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Here is the proof of Proposition 5.1:

⊆ Let w = (a1, v1), (a2, v2), ..., (an, vn) ∈ L(AT ) be a data word. We show the existence of
a timed word (a1, τ1), (a2, τ2), ..., (an, τn) ∈ L(T ) such that vi(t) = τi, for all i ∈ [1, n], by
induction on n ≥ 0. In fact we shall prove the following stronger statements:

(1) each execution of AT over w starting with a cube c ∈ C([[ιT ]]µ) is a linear tree, in
which each node has at most one child;

(2) for each execution qi0(d0
1, d

0
2, ..., d

0
k, τ0), qi1(d1

1, d
1
2, ..., d

1
k, τ1), ..., qin(dn1 , d

n
2 , ..., d

n
k , τn) of

AT , T has an execution (si0 , γ0), (si1 , γ1), ..., (sin , γn) over the timed word (a1, τ1),
(a2, τ2), ..., (an, τn), such that, for all i ∈ [1, n] and all l ∈ [1, k], we have γi(xl) =
τi−1 − dil.

The first point above is by inspection of ιT =
∨

si∈S0

qi(0, 0, ..., 0) and of the rules from

∆T . Indeed, each minimal model of ιT corresponds to a cube q(0, ..., 0) and each rule has
exactly one predicate atom on its right-hand side, thus each node of the execution will
have at most one successor. The second point is by induction on n ≥ 0.

⊇ Let w = (a1, τ1), (a2, τ2), ..., (an, τn) ∈ L(T ) be a time word. By induction on n ≥ 0, we
show that for each run (si0 , γ0), (si1 , γ1), ..., (sin , γn) of T over w, AT has a linear execution
qi0(d0

1, d
0
2, ..., d

0
k, τ0), qi1(d1

1, d
1
2, ..., d

1
k, τ1), ..., qin(dn1 , d

n
2 , ..., d

n
k , τn) such that, for all i ∈ [1, n]

and all l ∈ [1, k], we have γi(xl) = τi−1 − dil.

An easy consequence is that the timed language inclusion problem “given timed automata
T1 and T2, does L(T1) ⊆ L(T2) ?” is reduced in polynomial time to the emptiness problem
L(AT1)∩L(AT2

) = ∅, for which Section 4.4 provides a semi-algorithm. Observe, moreover, that
no transition quantifiers are needed to encode timed automata as first-order alternating data
automata (FOADA).

5.2 Application on Register Automata

Finite-memory automata, most commonly referred to as register automata [36] are among the
first attempts at lifting the finite alphabet restriction of classical automata. In a nutshell, a
register automaton is a finite-state automaton (FSA) equipped with a finite set of registers
x1, x2, ..., xr able to copy input values and compare them with subsequent input. Consequently,
basic results from classical automata theory, such as the pumping lemma or the closure under
complement do not hold in this model and, moreover, inclusion of languages recognised by
register automata is undecidable [48].

Let Σ be an infinite alphabet, # be a symbol not in Σ and r > 0 be an integer constant,
denoting the number of registers. An assignment is a word V = v1, v2, ..., vr such that if vi = vj
and i 6= j then vi = #, for all i, j ∈ [1, r]. We write [V ] for the set {vi | i ∈ [1, r]} of values in the
assignment V . A finite-memory (register) automaton is a tuple R = (S, q0, U, ρ, µ, F ) where:

• S is a finite set of states;
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• q0 ∈ S is the initial state;

• U = u1, u2, ..., ur is the initial assignment;

• ρ : S → [1, r] is the re-assignment partial function;

• µ ⊆ S × [1, r]× S is the transition relation;

• F ⊆ S is the set of final states.

A run of R over an input word a1, a2, ..., an ∈ Σ∗ is a sequence (s0, V0), (s1, V1), ..., (sn, Vn) such
that V0 = U and, for all i ∈ [1, n], exactly one of the following holds:

• if there exists k ∈ [1, r] such that ai = (Vi−1)k then Vi = Vi−1 and (si−1, k, si) ∈ µ;

• otherwise ai 6∈ [Vi−1], ρ(si−1) is defined, (Vi)ρ(si−1) = ai, for each k ∈ [1, r] \ {ρ(si−1)}, we
have (Vi)k = (Vi−1)k and (si−1, ρ(si−1), si) ∈ µ.

Intuitively, if the input symbol is already stored in some register, the automaton moves to the
next state if, moreover, the transition relation allows it, otherwise it copies the input to the
register indicated by the re-assignment, erasing the previous value, and moves according to the
transition relation.

The translation of register automata to first order alternating automata is quite natural,
because registers can be encoded as arguments of predicate atoms. Formally, given a register
automaton R = (S, s0, U, ρ, µ, F ) over a data domain D, such that S = {s0, s1, ..., sm}, we de-
fine the first-order alternating data automaton (FOADA) AR = (D, {α}, {x}, QR, ιR, FR,∆R)
where:

• α 6∈ Σ;

• QR
def

==== {q0, q1, ..., qm};

• #(qi) = r for all i ∈ [1,m];

• ιR
def

==== q0(U);

• FR
def

==== {qi | si ∈ F};

• for each transition (si, k, sj) ∈ µ, ∆R contains the rule:

qi(y1, y2, ..., yt)
α(x)−−−→ yk = x∧qj(y1, y2, ..., yr)∨

r∧
i=1

x 6= yi∧qj(y1, y2, ..., yk−1, x, yk+1, yk+2, ..., yr)

Moreover, nothing else is in ∆R. The connection between register automata and first order
alternating data automata (FOADA) is stated below.
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Proposition 5.2 Given a register automaton R = (S, s0, U, ρ, µ, F ) over a data domain D, the
first-order alternating data automaton (FOADA) AR = (D, {α}, {x}, QR, ιR, FR,∆R) recog-
nises the language:

L(AR) = {(α, a1), (α, a2), ..., (α, an) | a1, a2, ..., an ∈ L(R)}

Here is the proof of Proposition 5.2:

⊆ Let w = (α, a1), (α, a2), ..., (α, an) ∈ L(AR). First, it is easy to show that each ex-
ecution of AR, that starts in some cube c ∈ C([[ιR]]µ), is a linear tree with labels
q0(V0), q1(V0), ..., qn(V0) such that V0 = U . Second by induction on n ≥ 0, we prove
that AR has a run as above over w only if R has a run (q0, V0), (q1, V1), ..., (qn, Vn) over
a1, a2, ..., an.

⊇ Let w = a1, a2, ..., an ∈ L(R) and q0(V0), q1(V0), ..., qn(V0) be a run of R over w, such that
V0 = U . By induction on n ≥ 0, we can build an execution ofAR over (α, a1), (α, a2), ..., (α, an)
that is a linear tree with labels q0(V0), q1(V1), ..., qn(Vn).

Consequently, the language inclusion problem “given register automata R1 and R2, does
L(R1) ⊆ L(R2) ?” is reduced in polynomial time to emptiness problem L(AR1

)∩L(AR2
) = ∅,

for which Section 4.4 provides a semi-algorithm. Notice further that the encoding of register
automata as first-order alternating data automata (FAODA) uses no transition quantifiers.

5.3 Application on Predicate Automata

The model of predicate automata [26, 27] has emerged recently as a tool for checking safety
and liveness properties of parameterised concurrent programs, in which there is an unbounded
number of replicated threads that communicate via global variables. Predicate automata recog-
nise finite sequences of actions that are pairs (σ, i) where σ is from a finite set Σ of program
statements and i ∈ N ranges over an unbounded set of thread identifiers. To avoid clutter, we
shall view a pair (σ, i) as a data symbol (σ, v) where v(x) = i, for a designated input variable x.

Since thread identifiers can only be compared for equality, the data theory of predicate
automata is the first order theory of equality. Moreover, transition quantifiers are only needed
for checking termination and, generally, liveness properties [27].

However, the execution semantics of predicate automata differs from that of first order
automata with respect to the following detail: initial configurations and successors of predicate
automata are defined using the entire sets of models of the initial sentence and transition rules,
not just the minimal ones, as in our case.

Formally, a run of a predicate automaton P = (Σ, {x}, Q, ι, F,∆) over a word (a1, v1), (a2, v2),
..., (an, vn) is a sequence of interpretations I0, I1, ..., In such that I0 ∈ [[ι]] and for each i ∈ [1, n],
each q ∈ Q and each tuple (d1, d2, ..., d#(q)) ∈ Ii−1(q), we have Ii ∈ [[ψ]]v, for each rule
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q(y1, y2, ..., y#(q))
ai(x)−−−→ ψ ∈ ∆, where v = vi[y1 ← d1, y2 ← d2, ..., y#(q) ← d#(q)]. The run is

accepting if and only if I(q) 6= ∅ for all q ∈ Q \ F .

In fact, as shown next, this more simple execution semantics is equivalent, from the language
point of view, with the semantics given by Definition 4.1 and Definition 4.2. We believe that
the semantics of first-order alternating data automata based on minimal models is important
for its relation to the textbook semantics of Boolean alternating automata [12].

Proposition 5.3 Given a predicate automaton P = (Σ, {x}, Q, ι, F,∆), let AP be the first-order
alternating automaton that has the same description as P. Then L(P) = L(AP).

Here is the proof of Proposition 5.3:

⊆ Let w = (a1, v1), (a2, v2), ..., (an, vn) ∈ L(P) be a word and I0, I1, ..., In be an accepting

execution of P over w. Let I
[i]
j be the interpretation that associates each predicate q[i] the

set Ij(q), for i, j ∈ [1, n]. Then one builds, by induction on n ≥ 0, an execution T of AP
such that IT ⊆

n⋃
i=0

I
[i]
i , where IT is the unique interpretation associated with T . Since

I0, I1, ..., In is accepting, we have I
[n]
n (q[n]) = ∅, for all q ∈ Q \ F and hence IT (q[n]) = ∅,

for all q ∈ Q \ F and, consequently w ∈ L(AP).

⊇ Let w = (a1, v1), (a2, v2), ..., (an, vn) ∈ L(AP) be a word and T be an accepting execution
of AP over w. We define the sequence of interpretations I0, I1, ..., In as Ii(q) = IT (q[i]),
for each i ∈ [1, n] and each q ∈ Q. By induction on n ≥ 0 one shows that I0, I1, ..., In is
an execution of P. Moreover, since T is accepting, we have In(q) = IT (q[n]) = ∅, for each
q ∈ Q \ F , thus w ∈ L(P).

As before, this result enables using the semi-algorithm from Section 4.4 for checking empti-
ness of predicate automata. We point out that, although quantifier-free predicate automata
with predicates of arity one are decidable for emptiness [26], currently there is no method for
checking emptiness of predicate automata with predicates of arity greater than one, other than
the explicit enumeration of cubes. Moreover, no method for dealing with emptiness in the pres-
ence of transition quantifiers is known to exist.
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Chapter 6

FOADA Checker

Besides the theoretical parts, we also have developed a tool - FOADA Checker [62], mainly
used for checking inclusion between two automata or checking emptiness of an automaton.
The tool is written in Java, via Java-SMT interface [57] and using Z3 SMT solver [53] for
spuriousness, coverage queries and interpolant generation. The IMPACT semi-algorithm has
been implemented in the tool to check the emptiness of an automaton. The supported input
automata (can be parsed by our own parser written in ANTLR4 [50]) are: (i) predicate automata
[26, 27], (ii) alternating data automata and (iii) first-order alternating data automata.

In the first section, we show how to install the tool and use it to check inclusion of two
automata or emptiness of an automaton. And then, we show the input format of first-order
alternating data automata, which is the default data structure of the tool. After that, we intro-
duce the input formats of alternating data automata and predicate automata, and explain how
to transform them into the default data structure of the tool, hence first-order alternating data
automata. In the end, we show some experimental results.

6.1 Brief User Guide

6.1.1 Installation

FOADA Checker can be downloaded via [62] and it only supports two operating systems: (i)
Mac-OS and (ii) Linux. Once it has been downloaded, the installation can be simply done by
typing following command in terminal under the downloaded folder:

1 sudo make install

After the installation, we can verify whether all the solvers (SMT Interpol [49], Z3 SMT
Solver [53], MathSAT 5 [37] and Princess [55]) are successfully integrated with JavaSMT, by
simply typing following command:

1 foada -c
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Figure 6.1: Screenshot of a Successful Installation on Mac-OS

6.1.2 Emptiness Checking

FOADA Checker is able to check whether the language of a given automaton is empty, by simply
typing following command:

1 foada -e example.foada

We have implemented a version of IMPACT semi-algorithm [45] in the tool for emptiness
checking. We have two cases:

• if the given automaton is empty, then the termination is not guaranteed; but if the tool
terminates by reporting “empty” (Figure 6.2), then the given automaton is truly empty,
hence the correctness of the result is guaranteed;

• if the given automaton is not empty, then the termination is guaranteed algorithmically1,
and the tool reports “not empty” together with a counter-example (Figure 6.3), which is
a word from the language of the given automaton.

Figure 6.2: Screenshot of an Empty Automaton

1Any error of the solver might break the program. But besides that, the termination is guaranteed.
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Figure 6.3: Screenshot of a Non-Empty Automaton

The counter-example reported by the tool consists of different lines, where each line contains:

• an event symbol (for example, “a” in Figure 6.3)

• a valuation of variables (for example, “any any any any any −4357 4642 4260 6054 5464”
in Figure 6.3)

6.1.3 Inclusion Checking

FOADA Checker can also check the language inclusion between two given automata, by simply
typing following command:

1 foada -i example1.foada example2.foada

The inclusion checking implemented in the tool is also based on IMPACT semi-algorithm
[45]. We have two cases:

• if the inclusion holds, then the termination is not guaranteed; but if the tool terminates
by reporting “inclusion holds”, then the inclusion truly holds, hence the correctness of the
result is guaranteed;

• if the inclusion does not hold, then the termination is guaranteed algorithmically2, and
the tool reports “inclusion does not hold” together with a counter-example, which is a
word from the language of the first given automaton that is not accepted by the second
given automaton.

We have implemented Boolean operations of intersection and complement, so L(A) ⊆ L(B)
is transformed into L(A) ∩ L(B) = ∅, which is an emptiness problem. The inclusion checking
of FOADA Checker calls the emptiness checking function. Hence, the counter-example of in-
clusion checking reported by the tool is in the same format as the one for emptiness checking,
consisting of different lines, where each line contains an event symbol and a valuation of variables.

2Any error of the solver might break the program. But besides that, the termination is guaranteed.
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6.2 Input Format - First-Order Alternating Data Automata
(FOADA)

A FOADA input file describing a FOADA A = (D,Σ, X,Q, ι, F,∆) contains:

• declaration of states (Q): (pred (q0 q1 ... q|Q|))

• declaration of event symbols (Σ): (event (a1 a2 ... a|Σ|))

• declaration of initial configuration (ι): (initial ι)

• declaration of final states (F ): (final (f1 f2 ... fk))

• declaration of transition rules (∆) in the format:

(trans

(qi ((d1 Sortd1
) (d2 Sortd2

) ... (d#(qi) Sortd#(qi)
)))

(aj ((x1 Sortx1
) (x2 Sortx2

) ... (x|X| Sortx|X|)))

(ψ)

)

where:

– qi ∈ Q;

– d1, d2, ..., d#(qi) are the arguments of qi;

– Sortm is the sort of m;

– aj ∈ Σ;

– x1, x2, ..., x|X| ∈ X;

– ψ ∈ FORM+(Q,X ∪ {d1, d2, ..., d#(qi)}) is a positive formula in SMT2 format [1],
where X ∩ {d1, d2, ..., d#(qi)} = ∅.

Example 6.1 The source code below describes a FOADA A = (D,Σ, X,Q, ι, F,∆) where:

• D = Z, Σ = {a}, X = {x}, Q = {p, q}, ι = p(0), F = {q},

• and there are two transitions:

p(d)
a(x)−−−→ q(x) ∧ x ≥ 0

q(d)
a(x)−−−→ q(x) ∧ d ≥ 0

1 (pred (p q))

2 (event (a))

3 (initial (p 0))

4 (final (q))

5

6 (trans (p ((d Int))) (a ((x Int))) (and (q x) (>= x 0)))

7 (trans (q ((d Int))) (a ((x Int))) (and (q x) (>= d 0)))
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6.3 Input Format - Alternating Data Automata (ADA)

An ADA input file describing an ADA A = (D,Σ, X,Q, ι, F,∆) contains:

• declaration of states (Q):

STATES

q0 q1 ... q|Q|

• declaration of initial configuration (ι):

INITIAL

ι

• declaration of final states (F ):

FINAL

f1 f2 ... fk

• declaration of event symbols (Σ):

SYMBOLS

a1 a2 ... a|Σ|

• declaration of variables (X):

VARIABLES

x1 x2 ... x|X|

• declaration of transition rules (∆):

TRANSITIONS

ai1 qj1

ψk1

#

ai2 qj2

ψk2

#

...

#

ai|∆| qj|∆|

ψk|∆|

#

where:
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– ai1 , ai2 , ..., ai|∆| ∈ Σ;

– qj1 , qj2 , ..., qj|∆| ∈ Q;

– ψk1 , ψk2 , ..., ψk|∆| ∈ FORM+(Q,X ∪ X) are formulae in SMT2 format [1], where X
denotes {x | x ∈ X}.

Example 6.2 The source code below describes an ADA A = (D,Σ, X,Q, ι, F,∆) where:

• D = Z, Σ = {a}, X = {x, y}, Q = {q0, q1, q2}, ι = q0 ∧ q2, F = {q1},

• and there are three transitions:

∆(q0, a) ≡ q1 ∧ x1 = 0 ∧ y1 = 0

∆(q1, a) ≡ q1 ∧ x1 = x0 + 1 ∧ y1 = y0 + 1

∆(q2, a) ≡ q2 ∨ ¬(x1 = y1)

1 STATES

2 q0 q1 q2

3

4 INITIAL

5 (and q0 q2)

6

7 FINAL

8 q1

9

10 SYMBOLS

11 a

12

13 VARIABLES

14 x y

15

16 TRANSITIONS

17 a q0

18 (and q1 (= 0 x1) (= y1 0))

19 #

20 a q1

21 (and q1 (= x1 (+ x0 1)) (= y1 (+ y0 1)))

22 #

23 a q2

24 (or q2 (not (= x1 y1)))

25 #

Once an ADA has been read by FOADA Checker as the input, it is stored as a FOADA that
is equivalent to the original ADA, hence recognising the same language.

Example 6.3 The ADA A in Example 6.2 is transformed into a FOADA A′ = (D′,Σ′, X ′, Q′, ι′, F ′,∆′)
that is equivalent to A once it has been read as the input, where:

• D′ = D = Z, Σ = Σ′ = {a}, X ′ = X = {x, y}, Q′ = Q = {q0, q1, q2}, F ′ = F = {q1},

• ι′ = q0(0, 0) ∧ q2(0, 0),
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• and there are three transitions in ∆′:

– q0(x0, y0)
a(x1,y1)−−−−−→ q1(x1, y1) ∧ x1 = 0 ∧ y1 = 0

– q1(x0, y0)
a(x1,y1)−−−−−→ q1(x1, y1) ∧ x1 = x0 + 1 ∧ y1 = y0 + 1

– q2(x0, y0)
a(x1,y1)−−−−−→ q2(x1, y1) ∨ ¬(x1 = y1)

6.4 Input Format - Predicate Automata (PA)

FOADA Checker supports predicate automata [26, 27] as inputs. Once a PA has been read
by the tool as the input, it is stored as a FOADA that is equivalent to the original PA, hence
recognising the same language.

Example 6.4 The source code below is a predicate automaton from an example set [40]. It
is an example for the tool “Duet” [38], which is a static analysis tool designed for analysing
concurrent programs.

1 start: {a}() /\ {b}().

2 final: none.

3

4 {a}() --( a1 : i )-> {c}(i).

5 {b}() --( a1 : i )-> {d}(i).

6 {c}(i) --( a2 : j )-> {e}(i).

7 {d}(i) --( a2 : j )-> {e}(j).

8 {e}(i) --( a3 : j )-> true.

Example 6.5 The PA in the source code above is stored as a FOADA A = (D,Σ, X,Q, ι, F,∆)
accepting the same language once it has been read by FOADA Checker as the input, where:

• D = Z, Σ = {a1, a2, a3}, X = {x}, Q = {{a}, {b}, {c}, {d}, {e}}, ι = {a}()∧{b}(), F = ∅,

• and there are five transitions in ∆:

– {a}() a1(x)−−−→ {c}(x)

– {b}() a1(x)−−−→ {d}(x)

– {c}(i) a2(x)−−−→ {e}(i)

– {d}(i) a2(x)−−−→ {e}(x)

– {e}(i) a3(x)−−−→ true
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6.5 Experimental Results

We have done experiments with several sources:

• predicate automata models [26, 27, 40]:

– incdec.pa

– localdec.pa

– ticket.pa

– count thread0.pa

– count thread1.pa

– local0.pa

– local1.pa

• timed automata inclusion problems:

– abp.ada

– train.ada

– rr-crossing.foada

• array logic entailments:

– array rotation.ada

– array simple.ada

– array shift.ada

• hardware circuit verification [34]:

– hw1.ada

– hw2.ada

• parametric verification problems checking inclusions of the form
N⋂
i=1

L(Ai) ⊆ L(B):

– train-simple1.foada

– train-simple2.foada

– train-simple3.foada

– fischer-mutex2.foada

– fischer-mutex3.foada

The experiments were carried out on a Mac-OS x64 - 1.3 GHz Intel Core i5 - 8 GB 1867
MHz LPDDR3 machine, and the experimental results are reported in Table 6.1.
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Example |A| (bytes) L(A) = ∅? Nodes Expanded Nodes Visited Time (ms)
incdec.pa 499 no 21 17 779

localdec.pa 678 no 49 35 1814
ticket.pa 4250 no 229 91 9543

count thread0.pa 9767 no 154 128 8553
count thread1.pa 10925 no 766 692 76771

local0.pa 10595 no 73 27 1431
local1.pa 11385 no 1135 858 101042

array rotation.ada 1834 yes 9 8 1543
array simple.ada 3440 yes 11 10 6787
array shift.ada 874 yes 6 5 413

abp.ada 6909 no 52 47 4788
train.ada 1823 yes 68 67 7319
hw1.ada 322 Solver Error / / /
hw2.ada 674 yes 20 22 4974

rr-crossing.foada 1780 yes 67 67 7574
train-simple1.foada 5421 yes 43 44 2893
train-simple2.foada 10177 yes 111 113 8386
train-simple3.foada 15961 yes 196 200 15041

fischer-mutex2.foada 3000 yes 23 23 808
fischer-mutex3.foada 4452 yes 33 33 1154

Table 6.1: Experiments with First-Order Alternating Data Automata

The advantage of using FOADA Checker over the INCLUDER [3] tool from [34] is the
possibility of having infinite alphabet automata with hidden (local) variables, whose values are
not visible in the input. In particular, this is essential for checking inclusion of timed automata
that use internal clocks to control the computation.
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Chapter 7

Conclusions

7.1 Summary of Contributions

In order to face the two challenges mentioned in the beginning of this thesis: (i) non-determinism
and (ii) infinite alphabets, we propose two models of alternating automata over infinite al-
phabets: (i) alternating data automata (ADA) and (ii) first-order alternating data automata
(FOADA). They both recognise the data words over infinite alphabets consisting of pairs (a, v)
where a is an input event from a finite set and v is a valuation of a finite set of variables that
range over a possibly infinite data domain.

In ADA model, the control states are Booleans and the transition rules are specified by a
set of formulae in a combined first-order theory of states (Booleans) and data that relate past
values of variables with current values of variables. But a restriction of the ADA model is that,
there is not hidden variable, hence all the data values taken by the variables are visible in the
input. But in FOADA model, the arguments of a predicate atom track the values of the internal
variables associated with the state, and these values are invisible in the input sequence, which
overcomes the restriction of the ADA model.

With these two alternating models, Boolean operations of union, intersection and comple-
ment can be done in linear time, thus matching the complexity of performing these operations
in the finite-alphabet case.

However, the price to be paid here is that the emptiness checking becomes undecidable. For
this reason, we provide two efficient semi-algorithms for emptiness checking: (i) lazy predicate
abstraction [33] and (ii) IMPACT method [45]. These semi-algorithms are proven to terminate
by returning a word from the language of the given automaton if one exists; but if the language
of the given automaton is empty, then the termination is not guaranteed.

The main application of these two models is checking inclusions between various classes of
automata extended with variables ranging over infinite domains that recognise languages over
infinite alphabets. The most widely known such classes are (i) timed automata [4] and (ii)
finite-memory automata [36]. In both cases, complementation is not possible inside the class
and inclusion is undecidable. Our contribution here is providing a systematic semi-algorithm for
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these decision problems. In addition, we can extend generic register automata [34] inclusion
checking framework by allowing monitor (right-hand side) automata to have local (hidden)
variables that are not visible in the language.

Another application is checking safety (mutual exclusion, absence of deadlocks, etc.) and
liveness (termination, lack of starvation, etc.) properties of parameterised concurrent programs,
consisting of an unbounded number of replicated threads that communicate via a fixed set of
global variables (locks, counters, etc.). The verification of parametric programs has been reduced
to checking the emptiness of a possibly infinite sequence of first-order alternating data automata,
called predicate automata [26, 27], encoding the inclusion of the set of traces of a parametric
concurrent program into increasingly general proof spaces, obtained by generalisation of counter-
examples. The program and the proof spaces are first-order alternating data automata over the
infinite alphabet of pairs consisting of program statements and thread identifiers.

Besides the theoretical parts, we also have developed a tool - FOADA Checker [62], mainly
used for checking inclusion between two automata or checking emptiness of an automaton.
FOADA Checker is written in Java, via Java-SMT interface [57] and using Z3 SMT solver [53]
for spuriousness, coverage queries and interpolant generation. The IMPACT semi-algorithm
[45] has been implemented in the tool to check the emptiness of an automaton. The supported
input automata are: (i) predicate automata [26, 27], (ii) alternating data automata and (iii)
first-order alternating data automata. These input automata can be parsed by our own parser
written in ANTLR4 [50], and they are all stored as FOADA once they have been parsed by the
tool.

The advantage of using FOADA Checker over the INCLUDER [3] tool from [34] is the pos-
sibility of having infinite alphabet automata with hidden (local) variables, whose values are not
visible in the input. In particular, this is essential for checking inclusion of timed automata that
use internal clocks to control the computation.

7.2 Future Work

For the moment, the examples of alternating data automata (ADA) and first-order alternating
data automata (FOADA) for timed automata (TA) inclusion problems, array logic entailments,
hardware circuit verification problems and parametric verification problems are produced man-
ually from some existing classical examples written in C/C++, such as abp.ada, train.ada,
rr-crossing.foada, array rotation.ada, train-simple1.foada, etc. (see Section 6.5 ). This excludes
the possibility of using huge classical examples as the inputs of our tool (FOADA Checker) since
the manual transformation requires too much work and some errors might occur during the man-
ual transformation. We are thinking of studying those C/C++ examples, and extending the
parser in our tool so that the tool can directly parse those examples and generate corresponding
ADA or FOADA.

We are also going to apply our models and tool to more kinds of verification problems, such
as parametric system verification [10], which asks whether a system composed of n replicated
processes is safe, for all n ≥ 2. By safety we mean that every execution of the system stays clear
of a set of global error configurations, such as deadlocks or mutual exclusion violations. Even if



CHAPTER 7. CONCLUSIONS 105

we assume each process to be finite-state and every interaction to be a synchronization of actions
without data exchange, the problem remains challenging because we want a general proof of
safety, that works for any number of processes. In general, parametric verification is undecidable
if unbounded data is exchanged [6], while various restrictions of communication (rendez-vous)
and architecture (ring, clique) define decidable sub-problems [5, 14, 25, 31]. Seminal works con-
sider rendez-vous communication, allowing a fixed number of participants [14, 25, 31], placed
in a ring [14, 25] or a clique [31]. Recently, MSO-definable graphs (with bounded tree and
clique-width) and point-to-point rendez-vous communication were considered in [5].
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