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Abstract

Atomic layer deposition (ALD) has emerged as an essential vapor deposition
technique of thin films for countless applications. The rising demand for electronic
components and nanostructured materials has established ALD as one of the
key fabrication processes in the nanotechnology market.

In this work, novel nanostructured materials that can be used as transducers
in biosensor devices are presented. These materials have been prepared by a
combination of ALD with top-down and bottom-up techniques such as nanosphere
lithography (NSL), physical vapor deposition (PVD), metal-assisted chemical
etching (MACE), and electrodeposition.

As a first promising candidate, silicon nanowires (SiNWs) covered with ZnO
by ALD were fabricated. These 3D structures are quite attractive for optical
biosensing applications thanks to their intense photoluminescence (PL) activity
at room temperature. These core/shell nanostructures were fully characterized
and tested as possible sensors for the detection of hydrogen peroxide, which is a
common reaction product of several oxidoreductases.

In addition, Au-covered hollow urchin-like ZnO nanostructures were prepared
with controlled size by combining NSL, ALD, electrodeposition, and electron
beam (E-beam) evaporation. The influence of the Au film thickness on the
surface-enhanced Raman scattering (SERS) capabilities of the substrates was
investigated. The optimized structures were used to detect thiophenol molecules
with a limit of detection (LOD) of 1078 M. Additionally, adenine can be detected
with a concentration as low as 1076 M. The excellent uniformity and batch-to-
batch repeatability of the substrates makes them excellent candidates for reliable
SERS sensing and biosensing.

Moreover, a miscellaneous group of novel materials with enticing features
that can be readily applied in sensing, catalysis, and plasmonics is presented.
Bimetallic Pd/Au nanoparticles supported on SiNWs with ALD and galvanic
replacement were fabricated. Furthermore, hollow urchin-like ZnO structures
with ZIF-8 via electrodeposition were fabricated for possible SERS applications.






Résumeé

Le dépot de couche atomique (ALD) est devenu une technique essentielle de dépot
en phase vapeur de couches minces pour de nombreuses applications. La demande
croissante de composants électroniques et de matériaux nanostructurés a fait de
ALD T'un des processus de fabrication clés du marché des nanotechnologies.

Dans ce travail, nous présentons de nouveaux matériaux nanostructurés
pouvant étre utilisés comme transducteurs dans des dispositifs a biocapteurs.
Ces matériaux ont été préparés en combinant ALD avec des techniques "top-
down" et "bottom-up" telles que la lithographie par nanosphere (NSL), le dépot
physique en phase vapeur (PVD), la gravure chimie assistée par des métaux
(MACE) et électrodéposition.

En tant que premier candidat prometteur, des nanofils de silicium (SiN'Ws)
recouverts de ZnO par ALD ont été fabriqués. Ces structures 3D sont tres
attractives pour les applications de biocapteurs optiques en raison de leur activité
intense de photoluminescence (PL) & température ambiante. Dans une premiere
approche, ces nanostructures cceur/coquille ont été entiérement caractérisées et
testées en tant que capteurs possibles pour la détection du peroxyde d’hydrogene,
qui est un produit de réaction courant de plusieurs oxydoréductases.

De plus, des nanostructures creuses en ZnO semblables a des oursins recou-
vertes de Au ont été préparées avec une taille contrdlée en combinant NSL, ALD,
électrodéposition et évaporation par faisceau d’électrons (E-beam). L’influence
de I’épaisseur du film Au sur les capacités de diffusion Raman (SERS) améliorées
en surface des substrats a été étudiée. Les structures optimisées ont été utilisées
pour détecter des molécules de thiophénol avec une limite de détection (LOD) de
10~8 M. De plus, I'adénine peut étre détectée avec une concentration aussi basse
que 1079 M. L’excellente uniformité et la répétabilité lot par lot des substrats en
font d’excellents candidats pour une détection et une biocapture SERS fiables.

En outre, un groupe diversifié de nouveaux matériaux présentant des carac-
téristiques attrayantes qui peuvent étre facilement appliqués a la détection, a la
catalyse et a la plasmonique est présenté. Des nanoparticules bimétalliques de
Pd/Au supportées sur SINWs avec ALD et un remplacement galvanique ont été
fabriquées. De plus, des structures ZnO creuses de type urchin avec ZIF-8 par
électrodéposition ont été fabriquées pour de possibles applications SERS.
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Chapter 1
Introduction

"The coming nanometer age can, therefore, also be called the age of interdisci-
plinarity [1]." Heinrich Rohrer, considered one of the fathers of nanotechnology,
encouraged scientists from different academic fields to combine their knowledge
for developing new ways to interact with matter at the nanoscale. We have
learned over the years that, long before we set out to manipulate single atoms
or detect single molecules, nature had already perfected the art of biology at
the nanoscale: DNA, one of the backbones of living organisms, has a diameter
of roughly 2nm. However, our ability to mimic nature has not been entirely
successful. When comparing nature’s elegant and effortless methods to our rather
cumbersome fabrication techniques, we can unequivocally see that there is yet a
wide gap waiting to be closed.

Nevertheless, a great deal of progress has been made, as we are finally
approaching the limits of Moore’s law, which states that the number of transistors
in an integrated circuit doubles every two years, and 7nm nodes are a reality and
are available in the market [2]. Part of this progressive miniaturization comes
from the combination of bottom-up and top-down approaches that combine
lithographic techniques and a peculiar vapor deposition technique: atomic layer
deposition (ALD).

It comes as no surprise then that almost every chip manufacturing company
uses a form of this technique and that recognition to its inventor, Tuomo Suntola,
has been paid by receiving numerous awards (including the 2018 Millenium
Technology Award). However, the full potential of ALD has just started to be
explored. A plethora of applications that touch almost every imaginable field
has been demonstrated and keeps growing. As Tuomo Suntola puts it: "Let’s
first think what to do, and then do it [3]." We have thus set ourselves to the task
of thinking what else can we do with ALD and how we can achieve it.

1.1 Atomic layer deposition

ALD is a vapor deposition technique enabling the preparation of thin film
materials with high conformality and excellent control over the thickness [4—
6]. Its origins can be traced back to two different places [7]. ALD was first
developed by Aleskovskii during the 1960s in Russia and was referred to as
molecular layering (ML) [8]. Later on, at the beginning of the 1970s in Finland,
Suntola developed the atomic layer epitaxy (ALE) technique to deposit ZnS for
electroluminescent displays [7, 9]. In the next decades and up to today, the route
was then referred to as ALD.

ALD is based on self-limiting reactions between a gas precursor and a solid
surface that allows the deposition of thin films in a layer-by-layer fashion. The



1. Introduction

ability to deposit conformal films on high aspect ratio structures, with high
uniformity over large areas, at (relatively) low temperatures, has made ALD
a technique of choice for the preparation of ultrathin films and a key enabling
technology [4, 10, 11]. ALD allows the deposition of a wide range of materials
such as oxides [4, 12], nitrides [13, 14], sulfides [15, 16], and pure elements [17-20].
These features have made ALD a relevant technique for many applications such
as fuel cells [21], metal oxide semiconductor field effect transistors (MOSFETS)
[22], water splitting [23] and purification [24], encapsulation [25], membranes
[14], solar cells [26, 27], and batteries [28]. Also, the possibility of controlling the
composition of the deposited layer by making nanolaminate or alloyed structures
allows the tailoring of the chemical and physical properties of the ALD prepared
materials [29, 30].
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Figure 1.1: Schematic representation of the ALD process

ALD is a cycle based process involving four steps (depicted schematically in
Fig. 1.1). In the first step, a precursor is introduced into the reactor chamber
and is left enough time to react with the surface groups of the substrate. Next,
the unreacted precursor molecules and the by-products are removed by purg-
ing/pumping the system with an inert gas (usually Ny or Ar). The third step
involves the introduction of a second precursor (the co-reactant) to react with
the adsorbed molecules. The final step consists in purging/pumping again the
system to remove unreacted precursor and by-products molecules. As a result,
one (sub) monolayer of the desired material is deposited on the substrate surface.
This cycle is then repeated until the desired thickness is obtained.

The use of ALD in the fabrication of nanomaterials for biological and medical
applications has proliferated and is now widely spread [31-35]. The compatibility
of ALD with the nanoscale of the components found in biomedical devices, the
biocompatibility of the materials that can be deposited, and the tuning of the
chemical reactivity are some of the reasons why there is a keen interest for using

2



Biosensors

ALD for biomedical applications. Among these applications, biosensing has
recently benefited from ALD as a tool for the fabrication of biosensors.

1.2 Biosensors

Generally speaking, biosensors are devices that allow the selective detection of a
target molecule [36], making them useful for many applications such as clinical
diagnosis [37], food safety [38], environmental monitoring [39], security and
bioterrorism [40, 41]. A typical biosensor configuration is presented in Fig. 1.2.
Biosensors have two main components: a biorecognition layer and a physical
transducer. When the analyte of interest (e.g., low molecular compound, [bio]
macromolecules, protein, virus, cell) is captured by the biorecognition element, a
biochemical signal is produced, and the transducer element transforms it into a
signal that can be measured and correlated (in some cases) to the concentration
of it.

‘ b‘v

<
'A’NA \

I BunBu 7000
A Nontarget analyte
Functionalized layer
. Bio-recognition element: enzyme,

Transducer antibody, cell, nucleic acid

&

Measurable signal

Figure 1.2: Typical biosensor configuration

Biosensors are selective thanks to the bioselective layer that interacts only
with the analyte of interest. However, the robustness, sensitivity, and the
detection limit of a biosensor are strongly influenced by the physical, chemical,
optical, and mechanical properties of the transducer material, which can be fine-
tuned by choosing a suitable material with unique architectures. Nanomaterials
have become more attractive than conventional materials in the micro/macro-
scale due to their high surface area and their ability to produce a stronger
signal upon interaction with analytes due to their enhanced physical properties.
Furthermore, the reduced size of nanomaterials can be exploited to create portable
devices, reduce the volume of the sample, improve the speed of detection, and
reduce the overall cost of production [42]. At the same time, as the activity
of the biorecognition element depends on its structure upon attachment to the
transducer layer, several immobilization strategies have been developed. For
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1. Introduction

instance, enzymes can be immobilized through covalent bonding, entrapment,
and cross-linking [43, 44]. Each one of these approaches presents advantages
and drawbacks that are determined by the type of biorecognition element, the
transducer, and the final biosensing application.

In general, biosensors can be classified either by the type of biorecognition ele-
ment (e.g., enzyme, antibodies, cell, nucleic acids) or by the nature of transducer
signal (i.e., electrochemical, optical, electrical, mass-sensitive, magnetic). As
one of the most reported types of biosensors, optical biosensors offer numerous
advantages such as direct, real-time, and label-free detection of both biological
and chemical analytes. The detection in this type of biosensors is based on the
interaction between the optical field and the biorecognition element [45]. Optical
biosensors can be divided into label-free and label-based. In label-free mode, the
signal comes directly from changes in the properties of the transducer material
(e.g., photoluminescence [PL], surface plasmon resonance [SPR], ellipsometry,
and surface-enhanced Raman spectroscopy [SERS]). On the other hand, in label-
based biosensors, the measured optical signal comes from the attached tag (e,g.,
fluorescence, colorimetric, and luminescence) [46].

1.3 Motivation and outline

The primary intention of this thesis is to apply ALD in the fabrication of
nanostructured transducer materials for biosensors. To this end, the combination
of ALD with other nanofabrication techniques is of utmost importance and
represents the core of this thesis. As briefly described in the introduction,
transducer materials need imperatively to be biocompatible and, preferably,
nanostructured. For this reason, ALD is one of the few techniques that allow
depositing biocompatible materials with a precise thickness control, and that can
be applied in different stages of the fabrication process of biosensors. Besides,
ALD is a high-throughput technique that can be easily scaled up for the industrial
production of biosensors, which represents a solution to one of the most significant
drawbacks in the biosensing technology: the mass production of affordable and
robust devices.

As one of the most mature ALD processes, the deposition of ZnO is suggested
as a candidate for the fabrication of transducers. The attractive physicochemical
and optical properties of ZnQ, its biocompatibility with biorecognition elements,
and the recent advances in its crystal growth technology are fully exploited. Also,
the flexibility of ALD to either coat a pre-fabricated nanostructure to produce
core-shell hybrids or to deposit a "seed" layer for the growth of defined nanos-
tructures is explored. To illustrate this, a combination of colloidal lithography
and ALD is proposed for the fabrication of core/shell structures. Likewise, a
different method that combines colloidal lithography, ALD, and electrodeposition
is offered for the growth of ZnO nanostructures.

Taking into consideration that the primary goal of biosensing is to obtain a
precise and rapid detection of an analyte, it is safe to say that optical biosensors
offer a possibility to tackle these needs. Thus, a variety of detection techniques
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Motivation and outline

have been developed, and their proof of concept has been demonstrated. On one
hand, conventional optical methods such as absorption, reflection, or scattering
provide information from changes in the incident beam of light after its interaction
with a sample. On the other hand, there is another type of optical sensing that is
based on the emission of light at a different wavelength than the incident one. In
particular, this work focuses on photoluminescence and surface-enhanced Raman
spectroscopies, which are two of the most promising optical sensing approaches.
For instance, PL can be employed for sensing by exciting a sample and looking at
changes in the PL spectrum upon interaction with an analyte. However, in the
case of SERS, the optical signal comes directly from the inelastically scattered
photons that interact with the analyte.

The motivation of this thesis is thus to provide a general overview of the
flexibility and versatility of ALD for the fabrication of biosensors. Several fabri-
cation techniques are used in combination with ALD to produce nanostructured
transducers. Even though the transducer materials showed in this thesis are not
fully introduced in a real biosensor device, this work envisions their application
and availability to a broad range of scientific fields.

The rest of the thesis is organized as follows:

Chapter 2 presents a short survey of the various ways ALD has been used for
biosensing technology. These involve nanofabrication steps, protection of
the biosensor, and enhancement of the optical, chemical, and catalytical
properties of the transducer material.

Chapter 3 follows the literature review by describing the fabrication and charac-
terization techniques used for the production of nanostructured transducers.
Furthermore, the experimental details for the fabrication of the two nanos-
tructures used in this work are addressed.

Chapter 4 displays the results obtained from the fabrication of hybrid ZnO/Si
core/shell structures and their possible application for PL biosensing.

Chapter 5 emphasizes on another type of high-aspect-ratio hybrid nanostruc-
tures based on ZnO and Au and their application as SERS substrates.

Chapter 6 features a set of hybrid materials that were produced by combining
galvanic replacement and electrodeposition and the nanostructures from
Chapter 4 and Chapter 5. Although no biosensing application is achieved,
these materials have potential feasibility to do so.
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Chapter 2
ALD for biosensing applications

ALD has proven to be a versatile technique to fabricate nanostructures [1—
4]. The precise thickness control and excellent conformality allowed by the
technique enables to fabricate complex nanostructures with a high surface area
that can be used for the design of biosensors. Some of the films deposited by
ALD can function as sacrificial layers that can be removed later by chemical or
physical etching to produce the desired nanostructure. Other films can be used
to fabricate the transducer element of a biosensor, which requires biocompatible
materials that can interact with the bio-recognition elements. Additionally, they
can be used to protect biosensors and improve their stability towards harsh
environments. In this chapter, ALD films deposited by ALD used in combination
with other techniques for nanofabrication will be discussed.

2.1 ALD to produce nanostructured biosensors

Recently, the interest in fabricating biosensors with nano-sized features has grown
because their dimensions are in the same range as the biological components of
the bio-recognition layer. A selection of nanostructured biosensors fabricated
using ALD is presented in Table 2.1. Jang et al. deposited a film of AloO3 by
ALD to be used as a sacrificial layer for the fabrication of a vertical nanogap
in a label-free electrical biosensor for the detection of streptavidin [5]. Al;O3
films of 5nm, 10nm and 15 nm were deposited to explore the effect on sensitivity
from different gap sizes. Fig. 2.1 shows the vertical nanogap fabricated with
5nm of Al,O3 and 2nm of Ti. By comparing the ratio of the current before
and after binding of streptavidin to biotin, they found out that the 7nm gap is
too small for the binding to take place (no change in current). However, they
observed significant current increases for the 12nm and 17 nm gaps. Similarly,
Im et al. combined nanosphere lithography (NSL) and ALD for the fabrication
of a periodic array of ring-shaped nanocavities with 10 nm gap size to be used
as a SERS substrate [6]. Fig. 2.2 presents a schematic representation of the
fabrication process. The number of ALD cycles controls the thickness of the
Al;O3 layer and this, in turn, controls the resulting gap size. Adenine was used
as an analyte to test the film-over-nanospheres (FON) substrate “FON-gap.”
SERS measurements revealed a strong 731 cm ™! purine stretch coming from
adenine that was used to test the detection limits of the SERS substrate. A
76 nM detection limit was obtained, which makes the FON-gap an excellent
bioanalytical platform for SERS biosensing.

*This chapter has been published as: O. Graniel, M. Weber, S. Balme, P. Miele, M.
Bechelany, Atomic layer deposition for biosensing applications, Biosensors and Bioelectronics,
122 (2018) 147-159. doi:10.1016/j.bios.2018.09.038.
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ALD to produce nanostructured biosensors

Top Au

Ti (2nm) 3
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Figure 2.1: (a) Cross-sectional transmission electron microscopy (TEM) images
of a 7nm vertical gold nanogap. Vertical line is an interfacial boundary of Al;O3
and air, which is filled with Pt for TEM analysis and (b) close-up view of circle
in (a). Reprinted with permission from [5]. Copyright 2007 American Vacuum
Society.

In order to fabricate materials with low dimensions, ALD has been used to
fill high aspect ratio nanoholes of porous materials [11] such as anodic aluminum
oxide (AAO) [12, 13]. Thanks to its controllable pore diameter, periodicity,
and density distribution [14], AAO has been incorporated successfully as a
template for biosensors fabrication. As an example, Tarish et al. obtained
highly ordered ZnO/ZnS core/shell nanotube arrays by using ALD of ZnO and
rapid thermal deposition with AAO as a template [15]. ALD has also been
used as a tool for tuning single solid-state nanopore sensors. Such sensors,
inspired by the pioneering work of Kasianowicz et al. on a-hemolysin [16], are
nanometer-sized apertures fabricated in thin films that allow label-free detection
of single molecules [17-19]. Thanks to its conformal deposition, ALD has been
used to coat nanopores with high aspect ratio [20]. For example, Cabello-
Aguilar et al. deposited Al;O3/ZnO nanolaminates to reduce the size of a
hydrophobic nanopore [21]. The diameter of the nanopore was fine-tuned for
a~hemolysin insertions. Al;O3/ZnO nanolaminates were chosen due to their low
surface roughness, which prevents the collonar growth of layers that can clog the
nanopore [22]. The ability of ALD to homogeneously coat the internal surface of a
nanopore allows an excellent surface functionalization [23]. This capability limits
the non-controlled adsorption of proteins outside the track-etched nanopore and
is useful for biosensing [9]. ALD has also been used to reduce electrical noise in
SiN [24] and PET [25] nanopores by coating them with a thin layer of Al;O3.

These examples show the relevance of ALD for the fabrication of nanos-
tructured biosensors and its versatility to be used in combination with other
fabrication techniques. The advantages of using ALD to deposit thin films can be
seen in the nanometer scale features achieved in the different types of biosensors
and the various morphologies that can be coated.
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Figure 2.2: (a) A schematic representation of the fabrication process for plasmonic
nanoring cavities based biosensors, using NSL and ALD. (b) Cross-sectional
schematics of the fabrication process. (c¢) Scanning electron micrograph (SEM) of
the nanoring cavities on the FON substrates. Scale bar: 200 nm. (d) SEM image
of the nanoring cavity array formed over a 16 pm x 10 pm area. (e) Photograph
of the nanoring cavity (FON-gap) sample. On the standard glass slide, the
FON-gap structures are made in a 2cm-wide circular area. Reprinted with
permission from [6]. Copyright 2013 John Wiley and Sons.

2.2 ALD for the fabrication of transducers

In order to produce a signal that can be measured and correlated to the presence
and concentration (in some cases) of a specific analyte, the transducer element
of a biosensor requires well-defined morphologies with optimal optical, electrical,
chemical, mechanical, and structural properties [26-28]. It is crucial that the
interaction between the analyte and the biorecognition element on the transducer
material produces a change in one or more of its physicochemical properties
(e.g., mass change, photoluminescence change, pH change, photocurrent change).
Also, the biocompatibility of the transducer element is necessary to facilitate the
immobilization of the biorecognition elements [29-31]. The capabilities offered
by ALD can effectively meet these challenges and examples of oxide transducers
fabricated with ALD are presented in Table 2.2.

Recently, Tereshchenko et al. used a ZnO film deposited by ALD as an
optical biosensor platform to detect Grapevine virus A-type (GVA) proteins
(GVA-antigens) for the first time [34]. ZnO was chosen due to its high isoelectric
point (~9.5), biocompatibility for the immobilization of GVA-antibodies, and
ability to change its photoluminescence (PL) emission when interacting with
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ALD for the fabrication of transducers

Table 2.2: Examples of films deposited by ALD for the fabrication of nanostruc-
tured biosensors

Material Application Substrate Analyte Detection Detection Ref.
Method range
TiOx Transducer LPG/ Avidin Optical Detection of [32]
layer TiOy/ (refractive avidin-biotin
Biotin index) complex
ZnO Transducer ZnO Glucose Electro- Sensitivity of  [33]
layer nanorods/ chemical 69.8 nm pnv !
GOy (current) cm 2
ZnO Transducer ZnO GVA Optical Sensitivity in  [34]
layer film/GVA antigen (photolu- the range
antibody mines- from
cence) 0.001 nm/ml
to 10 nm/ml

biomolecules. In their work, they deposited a 110 nm thick ZnO layer on a Si
substrate at a low deposition temperature of 100 °C. By looking at the PL signal
of the biosensor while adding different concentrations of GVA-antigen, they
detected the protein with sensitivity in the range from 0.001 nm/ml to 10 nm/ml.
Kim et al. grew ZnO nanorods using a hydrothermal method and a seed layer
deposited by ALD [33]. A 20nm ZnO was deposited and used to promote the
growth of high aspect ratio ZnO nanorods in a layer-by-layer fashion. Glucose
oxidase (GOy) was immobilized on the ZnO nanorods to detect glucose over a
range of different concentrations by cyclic voltammetry. The biosensor showed a
sensitivity of 69.8 nm/(uMcm?) for the ZnO nanorods with the highest surface
area.

Transducer materials can also be functionalized chemically to immobilize the
biorecognition element [35, 36]. The chemical grafting of biomolecules shows
an increase of the surface coverage when compared to physical adsorption and
improves the general stability and performance of the biosensor [37]. TiOy
was deposited on a long-period grating (LPG) induced in an optical fiber as a
transducer for the recognition of biotin-avidin interactions [32]. The transducer
layer was functionalized with amine groups to form a peptide bond with the
carboxyl group of biotin. X-ray photoelectron spectroscopy (XPS) was used
to confirm the successful functionalization with 3-aminopropyltriethoxy silane
(APTES) as well as biotin on the TiOy layer. A 13.2nm shift in the resonance
wavelength was obtained when binding of avidin to biotin took place, proving
the biosensor’s ability to detect this event.

The possibility of fabricating the transducer element in biosensors with ALD
has been demonstrated in the examples mentioned above. With the growing
need to fabricate biosensors with smaller dimensions, faster response rates, and
higher sensitivities, the use of transducers prepared by ALD will become more
common and will play a key role in the development of these devices.
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2.3 ALD layers to protect biosensors from their
environment

ALD deposited films have been used as protective coatings, for example, to limit
corrosion processes [38—40]. The ability to coat large areas with substantial
uniformity and excellent conformality are some of the advantages of ALD over
other thin film deposition techniques. Also, ALD provides dense, pinhole-free
films with outstanding adhesion properties [41]. These benefits have made ALD
an excellent choice to protect the surface of biosensors from aqueous environments
and render them stable and, in some cases, reusable. To illustrate this, a list of
biosensors with protective coatings deposited by ALD is presented in Table 2.3.

Table 2.3: Examples of films deposited by ALD for biosensor protection purposes

Material Application Substrate Analyte Detection Detection Ref.
Method range

Al203 Protection Silver Anthrax  Optical Limit of [42]
against film-over- biomar- (SERS) detection
oxidation of nanosphere  ker 1.4 x 103
Ag (AgFON) calcium spores
dipicoli-
nate
(CaDPA)
Al203 Protection of ~ ZnO Biofilm Mass- Limit of [43]
ZnO passivated sensitive detection
with AloO3 (SAW) 5.3pg
Si02 Protection of  InGaAsP SAPE Optical Detection of [44]
nanolaser multiple (air-bridge-  streptavidin-
structure quantum type biotin
well I'-BEL reaction
(MQW)/ lasing
biotin wavelength
shift)

Cha et al. used ALD of SiOy to protect the surface of a photonic crystal
(PC) band-edge laser (BEL) structure [44]. These In-P based structures are
subject to chemical attack, and their surface is full of defects that can cause
rapid carrier annihilation. By depositing a 5nm SiOs film, they successfully
protected the nanolaser device from harsh chemicals and used it as a layer for
biotin functionalization. Fig. 2.3 shows the overall functionalization process
schematically. Regions with PC pattern show a stronger fluorescence thanks
to their higher surface to volume ratio when compared to planar regions. Also,
they detected streptavidin with a figure of merit of ~800, which showed the high
sensibility of the BEL biosensor.

The sensitivity of a biosensor can be lowered when a protective layer is applied.
The properties of the material to be deposited, as well as its thickness, must be
optimized to reduce the possible detrimental effects on the performance of the
biosensor. Kim et al. used an ALD Al;Og film as a passivation layer to protect
the ZnO piezoelectric layer from bacterial growth media or animal serum of a
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(a) (b)

Biotin

Figure 2.3: (a) Schematic representation of the surface functionalization steps
for biosensing test. From top-left: 2D PC BEL fabrication; conformal deposition
of ALD-SiO9 layer; biotinylation of silica-terminated surface; and chemical
interaction between biotin and streptavidin molecules tagged with streptavidin-
phycoerythrin conjugate (SAPE). (b) Fluorescence microscopy image taken after
the dye-conjugated streptavidin was bound onto the biotin-functionalized PC
surface. Reprinted with permission from [44]. Copyright 2015 Royal Society of
Chemistry.

surface acoustic wave (SAW) biofilm sensor [43]. They calculated the normalized
theoretical sensitivity of the SAW sensor after applying a protective layer of
different materials (AloOs3, SisNy, SiO2, and Teflon) and observed that AlyOg
was the one that provided the lowest degradation in sensitivity. A 45nm Al;Og
film was deposited by E-beam evaporation, radio frequency (RF) sputtering and
ALD to assess the performance of each of the deposition techniques. After two
days in Lysogeny broth (LB) media bacterial suspension, the films prepared by
E-beam evaporation and RF sputtering led to some damage and did not protect
the ZnO layer successfully as compared to the ALD film (Fig. 2.4). E. coli was
cultured to test the SAW sensor for biofilm growth monitoring, and a detection
limit of 5.3 pm was achieved.

Zhang et al. deposited an ultrathin AlsOg layer on a AgFON substrate for
SERS detection [42]. The Al;O3 layer was used to protect Ag against oxidation
and allows preserving an excellent sensitivity. Also, the adsorption affinity
of the anthrax biomarker detected in this study for the Al,Og3 is five times
stronger than that for the AgFON alone. The SERS substrate was later used for
bacillus spores detection, and a limit of detection (LOD) of ~1.4 x 103 spores
was attained. The SERS substrate remained functional over a period of 9 months
and opens up the possibility to be used for biomedical, homeland security, and
environmental applications. These examples illustrate the feasibility of ALD to
deposit highly dense and conformal films for the protection of biosensors. The
improved long-term stability of ALD coated devices allows them to be reused
without having a detrimental impact on their sensing performance and opens up
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Figure 2.4: Optical images showing the surface of the SAW sensor passivated
with a 45 nm Al203 film using (a) E-beam evaporation, (b) RF sputtering (dark
area is ZnO) and (¢) ALD (no ZnO damage) in LB media with the bacterial
solution after two days. Reprinted with permission from [43]. Copyright 2012
Elsevier.

the possibility for biosensors to be used for in vivo monitoring.

2.4 Materials deposited by ALD

The properties of materials at the nanoscale strongly depend on their size,
shape, chemical composition, and surface area [45, 46]. Thus, ALD has been
extensively used to modify and enhance different electrical, optical, catalytical,
and structural properties of biosensor materials [24, 47-49]. In order to be used
in biosensing applications, the materials need to be biocompatible with the
biological components of the biosensor and should not compromise the sensitivity
and overall performance of these devices. Due to the popularity of FET type
biosensors [50-52], most of the applications of ALD in biosensing have been
focused so far on depositing high dielectric materials. Nonetheless, materials
with high refractive index and high catalytic activity have also been reported. In
this section, the materials deposited by ALD to fabricate biosensors have been
classified by their relevant property and are showcased with a few examples.

2.4.1 Materials with high dielectric constant

ALD has been used to deposit thin films of materials with high dielectric constant
to reduce leakage current, passivate surfaces and, in some cases, serve as gate
dielectrics [53, 54]). Examples of high dielectric constant oxides films deposited
by ALD for the fabrication of biosensors are presented in Table 2.4.
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2. ALD for biosensing applications

One of the most used high % oxides is Al;O3 [62, 63]. Due to its high break-
down field and high thermal stability, Al,O3 deposited by ALD can successfully
reduce surface leakage current [64]. Another positive aspect of this material for
biosensing is the fact that AloOg films by ALD present good biocompatibility
[65]. Chen et al. deposited a 10nm film of Al;O3 to prevent current leakage
between silicon nanowires and analyte solution in a FET biosensor for urea
detection [55]. The AlyOs film was later treated with oxygen plasma (to clean it
and render its surface hydrophilic) before functionalization with APTES and
urease enzyme. Krishna et al. developed a giant magnetoresistance (GMR)
biosensor based on magnetic nanoparticles for detection of influenza A virus [56].
In their work, they deposited an 18 nm thick Al,O3 film onto a GMR chip to
prevent current leakage.

Vello et al. deposited a 3.3nm Al;Oj3 insulating film on nickel interdigitated
electrodes to prevent leakage current and enable them to operate in an aqueous
buffered medium [66]. To obtain this, they immersed the interdigitated electrodes
coated with Al,Oj3 in a phosphate buffered saline (PBS) solution while applying 1
V to the pads of the device. The Al,O3 coated electrodes were functionalized with
tripeptide reduced glutathione (GSH) to detect the target enzyme glutathione
S-transferase (GST) by evaluating variations on the overall capacitance values.
The biosensor could detect GST at concentrations as low as 200 pmol/L (the
lowest value reported according to references) and could be easily regenerated
to be used several times. Yoo et al. deposited an Al,O3 layer on an SU-8
organic layer to fabricate a hybrid gate dielectric in a MoSs FET biosensor [57].
The 30nm Al;O3 layer provided high insulating properties and improved the
adhesion between the organic SU-8 layer and the MoS, /source-drain electrodes
multilayer. Fig. 2.5 shows the different layers of the epidermal skin-type MoS,
biosensor.

The flexible biochip was used for real-time detection of prostate-specific
antigen (PSA) with concentrations as low as 1pg/ml, which is much lower than
the value needed for clinical trials (~4ng/ml). In addition, they introduced
a commercial light-emitting diode (LED) to provide a direct diagnostic result,
which opens up the possibility to use this type of biosensors in point-of-care
(POC) and forensic applications.

Another high-x material that has been deposited by ALD for biosensing
applications is HfO5. HfO9 is known for its thermodynamic stability when
deposited on Si, which effectively reduces leakage current and makes it suitable
as a gate material for metal-oxide-semiconductor (MOS) devices [67-69]. Also,
HfO5 has an isoelectric point around pH 7 that makes it uncharged in many
biological solutions and can be functionalized with biomolecules [58].

Lee et al. developed a biosensor based on HfO, for human interleukin-10
(TL-10) detection by electrochemical impedance spectroscopy (EIS) [70]. They
deposited a 10.7nm film of HfO5 on a silicon wafer which was later functionalized
with self-assembled monolayers (SAMs) of an aldehyde-silane (11-(triethoxysilyl)
undecanal (TESUD)) and anti-human IL-10 mAb. By following the EIS of the
modified HfOy with increasing human-IL-10 concentrations, they demonstrated
that the biosensor had a working linear range of 0.1 pg/ml to 20 pg/ml and a

20



Materials deposited by ALD

(a)

Figure 2.5: Tllustration of the platform of an epidermal skin-type MoSs. (a)
Schematic of the PSA binding with the PSA antibody functionalized on the
MoS, surface. (b) and (c¢) schematic layout of the 2D multilayer MoS,; FETs.
Photograph (d) of an epidermal skin-type MoSs biosensor system consisting
of the biosensor, read-out circuits, and an LED as an indicator. (e) Optical
image and (f) atomic force microscopy (AFM) image of a flexible MoS, device.
Reprinted with permission from [57]. Copyright 2017 Springer Nature.

sensitivity of 49 ng/ml. Wang et al. reported a label-free MoSs nanosheet-based
FET biosensor covered with a 7nm to 8 nm layer of HfO5 [59]. Fig. 2.6 shows
the home-built microfluidic channel system where sample solutions were flowed
to be detected by the active area. Figure 6¢ shows the different layers that make
up the FET biosensor. They used HfO5 to serve as the gate dielectric layer,
to protect the metal electrodes from a fluidic environment, and to serve as a
starting layer for functionalization with silanes. The FET biosensor showed good
sensitivity (down to the femtomolar level) to cancer marker protein PSA and
high selectivity by not responding to BSA protein.

Besides AloO3 and HfO5, ALD of ZrO» has also been reported for biosensors
fabrication. Thanks to its large energy bandgap and thermodynamic stability,
ZrOs has been considered as an alternative gate dielectric material [71-73]. Barik
et al. deposited ZrOs by ALD as gate insulator on an enzyme FET biosensor
[60]. They deposited ZrOs on the channel region of the biosensor to increase
its capacitance and thus gain sensitivity. Sticker et al. deposited a 15 nm thick
ZrO5 insulation layer on interdigitated microelectrodes for nanotoxicological
cell analysis [61]. By running computational simulations, they showed that
insulated interdigitated electrode structures had an improved electrical current
distribution when compared to bare electrodes. They successfully evaluated
the toxicity of silica nanoparticles (with and without protein coatings) on H441
cells by monitoring the impedance signal over time. The numerous examples
of biosensors that employ high-x oxides films prepared by ALD highlight the
importance of this technique for the fabrication of these devices. Moreover, the
conformal and pinhole free thin films of metal oxides successfully passivate the
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(@)

Sol Iutifn

PDMS Block Microfluidic
Cha

Figure 2.6: Schematic (a) and photo (b) of the biosensor configuration. (c)
Schematic of the biofunctionalization layers on the device surface (S [source]; D
[drain]). Reprinted with permission from [59]. Copyright 2014 John Wiley and
Sons.

surface of the biosensors without loss of sensitivity and make them promising
for miniaturized POC diagnostics.

2.4.2 Materials with high refractive index

Materials deposited by ALD with high refractive index have been used in optical
applications [74, 75] and microelectromechanical systems [76]. Owing to the
smoothness of the films and the ability to coat complex-shaped substrates with a
precise thickness control, ALD has been preferred over other thin film deposition
techniques like dip coating and self-assembly [77, 78]. Examples of high refractive
index films deposited by ALD for the fabrication of biosensors are presented in
Table 2.5.

Recently, Oubaha et al. deposited a TayO5 layer by ALD to increase the
sensing properties of a multianalyte biosensor [79]. TasO5 was chosen due to
its high refractive index, which increases the intensity of the evanescent field
by 440 times when compared to the system without the high refractive index
layer (HRIL). The thickness of the HRIL chosen for this work was 32 nm because
it provides the maximum evanescent wave enhancement. Cy-5-labeled mouse
immunoglobulin G (IgG) antibody was detected through fluorescence detection,
and a limit of detection of 0.251g/ml0.25 ng/ml was achieved. Smietana et al.
deposited an ALD layer of TiO3 on LPGs for a label-free optical biosensor [80].
TiO, was used for improving the refractive index sensitivity of the biosensor and
as a biocompatible material for endotoxin binding protein (adhesin) functional-
ization. The deposition of a 70 nm thick TiOs layer on the LPG increased the
refractive index sensitivity 2.8 times when compared to the bare LPG. Binding
of E. coli B lipopolysaccharide (LLPS) to bacteria adhesion was confirmed thanks
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to an increase in the spectral separation of resonances.

Table 2.5: Examples of materials with high refractive index deposited by ALD
for the fabrication of biosensors

Material Application Substrate Analyte Detection Detection Ref.
method range
TasOs5 Evanescent Waveguide-  Mouse Optical Limit of [79]
field based IgG (fluores- detection of
enhancement photonic antigen cence) 0.25 pg/ml
platform/
Cy5-
labelled
anti-mouse
IgG
antibody
TiO2 Improvement  LPG/ E. coli B Optical Positive test [80]
of refractive TiO2/E. LPS (refractive for
index coli B bac- index) adhesin-LPS
sensitivity teriophage binding

37 adhesin

2.4.3 Materials with catalytic activity

ALD has been used to improve the catalytic activity of materials thanks to its
ability to precisely control the catalyst particles properties and uniform dispersion
on the surface of the support [81-83]. Examples of materials with catalytic
activity deposited by ALD for the fabrication of biosensors are presented in
Table 2.6.

Recently, Choi et al. reported the decoration of carbon nanotubes (CNTs)
with Ni nanoparticles by ALD for non-enzymatic glucose sensing [85]. The
presence of Ni nanoparticles on CNTs was confirmed by TEM, high-angle
annular dark-field (HAADF), and energy-dispersive X-ray spectroscopy (EDX).
The ~8 nm Ni nanoparticles were uniformly distributed on the walls of the CNTs.
The selectivity of the sensor was confirmed by showing minimum changes in
the oxidation current when adding ascorbic acid or uric acid, whereas, in the
case of glucose, the value of the oxidation current was far more important. The
sensor presented a detection limit of 2 uM and a linear range of 0.005 mM to 2 mM.
Furthermore, it showed a rapid response and repeatability for non-enzymatic
detection of glucose.

At the nanoscale, both mass transport and electron transport play a cru-
cial role in obtaining excellent electrocatalytic properties. Nanoporous metals
decorated with transition-metal oxides have been proposed as structures that
can serve as electrochemical biosensors. Zhang et al. deposited a CoO layer
on nanoporous gold (NPG) for the detection of glucose and HoOg [84]. The
Au nanopores with a size ranging between 40 nm to 100 nm were covered with
100 to 800 cycles of CoO. When less than 200 cycles were used, the amorphous
CoO formed a discontinuous layer. On the other hand, a continuous layer was
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Table 2.6: Examples of materials with catalytic activity deposited by ALD for
the fabrication of biosensors

Material Application Substrate Analyte Detection Detection Ref.
Method range
CoO Electrode NPG/CoO  H202 Electro- Linear range [84]
body, chemical of detection
catalytic (current) 0.1 mM to
activity 92.9 mMm
Ni Electrocata- CNT-Ni Glucose Electro- Linear range  [85]
lyst for nanocom- chemical of detection
glucose posites (current) of 0.005 mM
oxidation to 2mM
Detection
limit of 2 pm
NiO Electrocata- NiO/SiC Glucose Electro- Linear range [86]
lyst for nanocom- chemical of detection
glucose posite (current) of 0.004 mm
oxidation to 7.5 mMm
Detection
limit of
0.32 pMm

observed at higher cycles. The NPG/CoO heterostructure showed an excellent
electrocatalytic activity of glucose oxidation owing to the interconnected Au
skeletons and the synergistic effect between Au and CoO. Furthermore, the elec-
trochemical biosensor could detect concentrations of hydrogen peroxide (H2O2)
as low as 0.1 mM and its sensitivity was comparable to other types of composite
electrodes based on graphene sheets, noble metals, and metal oxide nanoparticles.

2.5 Conclusions and future perspectives

ALD has rapidly become a valuable technique for the fabrication of biosensors
thanks to its ability to deposit a wide range of materials with precise thickness
control and excellent conformality. In this minireview, the crucial role of ALD for
the fabrication of different types of nanostructured biosensors and its capability
to improve their sensing properties has been shown. Immobilization of bio-
recognition elements has also been demonstrated on layers deposited by ALD
thanks to their biocompatibility and controlled chemical composition. The
continuous miniaturization trend of biosensor devices and the complexity of the
structures to coat demand high conformality, uniformity, and film quality that
conventional thin film deposition techniques such as chemical vapor deposition
(CVD) and physical vapor deposition (PVD) cannot achieve [87]. However,
there are still some challenges to overcome. Conventional ALD remains a slow
technique and requires mosf ot the time vacuum conditions that make the
processes somewhat expensive and difficult to scale up [88]. For this reason,
different approaches such as spatial atmospheric ALD [89-91], roll-to-roll systems
[92, 93], and rotating reactors [94, 95] are being developed to make the process
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(even) more scalable and compatible with industrial requirements. Additionally,
the design and synthesis of new and affordable precursors are needed to further
increase the availability of materials that can be deposited. This is a difficult
task given the constraints that the ALD reaction imposes on the precursors. The
chemicals must be volatile at room temperature (or by being slightly heated)
and thermally stable. Also, they must react quickly with the substrate to allow
surface saturation and provide a fast growth [96-98].

Furthermore, while some biosensors have passed the testing phase and have
become available in healthcare applications as handheld devices or portable units
[99], their design must still be improved so they can diversify their applications
in fields such as environmental monitoring, security and bioterrorism, and food
safety. Finally, it is safe to say that ALD (in combination with other fabrication
techniques) will push biosensors past the limitations they currently face by
providing robust, sensible, and selective platforms that will become part of our
everyday lives.
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Chapter 3
Materials and methods

Following the ideas reflected in Chapter 2, this chapter is dedicated to introducing
some of the underlying principles of the techniques used for the fabrication and
characterization of nanostructures. By combining high-throughput methods such
as colloidal lithography, physical vapor deposition (PVD), and electrodeposition,
with ALD, we attain nanometer-sized structures with different compositions.
Thus, the fabrication of silicon nanowires (SiNWs) and urchin-like structures are
investigated and optimized to function as reliable biosensors.

3.1 Fabrication techniques

3.1.1  Atomic layer deposition

The deposition of ZnO and Pd were carried out in a home-built ALD system
depicted in Fig. 3.1. The ALD reactor chamber has a circular (diameter of
83 mm) sample stage that can fit samples with a maximum height of 10 mm.
This chamber is connected to an Ar line, precursor vessels, and a rotary pump
that can achieve a base pressure of ~10~2 mbar

ALD chamber

———  , pump

Ar_’l -

Precursor vessels

Figure 3.1: Schematic diagram of the home-built ALD system used to deposit
ZnO and Pd in this work.

3.1.1.1 ZnO

Zinc oxide (ZnO) is a direct wide band gap (£, ~3.3eV) semiconductor with
an intense near-band-edge excitonic emission at room temperature and high
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isoelectric point. ZnO has been grown by pulsed laser deposition (PLD) [1],
molecular beam epitaxy (MBE) [2], metal organic chemical vapor deposition
(MOCVD) [3], and sputtering [4]. The rising interest for using ZnO in micro-
electronic applications that require a though control over the growth of the film
and high conformality, has paved the way for ALD to be one of the preferred
techniques to deposit it. As one of the first materials to be deposited by ALD,
ZnO has been prepared with different precursors, but by far the most common
is diethylzinc (DEZ). DEZ reacts with water following the reaction (where *
denotes surface species):

ZH(CQH5); +H,0 — ZnO* + 2 CoHg {1}

This reaction is highly exothermic and can be used to deposit ZnO from
ambient temperature up to 600°C [5]. The reactant and co-reactant tubes
connected to the ALD chamber were heated at 100 °C to avoid condensation
of the precursors. The deposition was carried out at either 80°C or 100°C
depending on the substrate to cover. Table 3.1 contains the process parameters
used in this work.

Table 3.1: ALD process parameters for the deposition of ZnO.

Pulse (s) Exposure (s) Ar purge (s)

DEZ 0.3 30 40
H,O 2 30 40

3.1.1.2 Pd

The long-standing attractiveness of palladium (Pd) for catalytic applications [6]
and its hydrogen storage capability [7] have been spotted by the ALD community
and different approaches have been developed for its deposition [8, 9]. To date, the
most used precursor for the deposition of Pd is Pd(II) hexafluoroacetylacetonate
Pd(hfac)s. In order to use this precursor, different co-reactants such as Hy [10]
and formalin (CH50) [11] have been used to reduce Pd** to Pd’. Furthermore,
the use of Ho and O plasmas to provide additional surface reactivity and lower
working temperatures than purely thermal processes has also been explored [12].
For this work, Pd was deposited from Pd(hfac)s as reactant and formalin as
co-reactant following the reaction pathway proposed by Elam et al. [11]:

Pd—H], + Pd(hfac)y — Pd—Pd(hfac);_, + « Hhfac {2}

Pd—Pd(hfac);_, + HCOH — Pd—Pd—H* + 2 —2 Hhfac + CO {3}

In reaction {2}, = Hfac molecules are liberated as a result of the Pd—H
reaction with one Pd(hfac),. Next, the Pd(hfac) surface reacts with HCOH as

34



Fabrication techniques

displayed on reaction {3}, where the HCOH is decomposed into 2H and CO.
Finally, the surface is regenerated by the reaction of H with Pd—hfac.

The Pd(hfac); was kept in a stainless steel bubbler heated at 70°C. The
deposition of Pd was carried out at 220 °C and the tubes connecting the precursor
and co-reactant were heated at 110 °C to avoid condensation. The parameters
used for the deposition of Pd are displayed in Table 3.2.

Table 3.2: ALD process parameters for the deposition of Pd.

Pulse (s) Exposure (s) Ar purge (s)

Pd(hfac)s 5 15 10
CH,O 1 15 60

3.1.2 Colloidal lithography

Since the first description of two-dimensional colloid crystallization by Pieranski
[13], the first reported lithographic mask by Fischer [14], and the first fabrication
of metallic nanostructures by R.P. van Duyne [15], the use of colloidal crystals
for the fabrication of nanostructures remains a powerful and dynamic tool. A
plethora of complex shapes such as nanotriangles [16], nanorings [17], nanobowls
[18], nanoneedles [19], and nanowires [20] has become possible by using colloidal
masks and the applications continue to grow.

Colloidal lithography, more commonly known as nanosphere lithography
(NSL), is based on the deposition of spheres (polystyrene, SiOy, PDMS, etc.) via
direct assembly on a solid substrate or by liquid interface-mediated processes and
their subsequent use as a lithographic mask. Each one of the two approaches to
deposit the spheres presents its advantages and limitations. For instance, direct
assembly on a solid substrate methods (e.g., drop casting, convective assembly,
spin coating, and electrophoretic deposition) are experimentally uncomplicated
and do not require fancy setups. Moreover, they can be used to prepare different
colloid arrangements with substrates that are already structured. On the contrary,
when liquid interface-mediated processes are used, the monolayer is not able to
adapt to nanostructured substrates due to its inherent low-energy state, which
prevents it from disassembling into different arrangements.

Overall, interface-mediated techniques do not suffer from the formation of
undesired multilayers as the colloidal particles are formed in a liquid interface
where they can assemble with the lowest free energy possible. Moreover, the
composition of the subphase can be tuned to (i.e., changing the pH or adding
electrolytes) promote the formation of macroscopic single crystal domains. Ad-
ditionally, different types of substrates can be used as the monolayer is formed
at the interface and only needs to be transferred to the surface of the substrate.
However, the majority of direct assembly methods are constrained by the choice
of substrate as they usually require a particular surface charge or hydrophilicity.
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Indeed, the Langmuir-Blodgett technique is the most well-known interface-
mediated process for colloidal crystallization [21]. This method was first conceived
for the assembly of molecular monolayers and involved the controlled compression
of molecular monolayers formed by spreading amphiphilic compounds at the
air-water interface. Once assembled, the monolayers adhere to a hydrophilic
substrate that is drawn in an upward fashion, and the process can be repeated
several times to produce multiple layers. Nevertheless, this technique requires
an extremely clean environment, and it is time-consuming.

To avoid the drawbacks of the Langmuir-Blodgett technique, Vogel et al.
developed a method that involves the direct assembly of colloidal crystals at
the air-water interface (Fig. 3.2). In this method, an ethanolic solution of
polystyrene spheres is deposited on the surface of a glass slide that is immersed
in a crystallization dish filled with water. As soon as the polystyrene spheres
touch the water, they assemble into a monolayer that can be later transferred to
a substrate immersed in the subphase.

LAY A

Im 09000 L] I w I

Figure 3.2: Schematic illustration and photographs of the monolayer fabrication
process. a,b) Addition of colloids to the interface via a tilted glass slide, ¢)
formation of a close-packed monolayer, d,e) monolayer transfer by immersion
of the transfer substrate and subsequent elevation under a shallow angle, f)
photograph of the deposition of 1pm colloids onto the air/water interface;
Individual, crystalline monolayer patches floating at the interface can be seen,
g) monolayer after drying on a Si wafer. Reprinted with permission from [22].
Copyright 2011 John Wiley and Sons.

3.1.2.1 Non-close packed monolayers

The interspacing of colloidal crystals can be modified to obtain sophisticated
lithographic masks that can be used in etching steps or angular evaporation to
fabricate different structures from those obtained with the classical NSL method.
There are two main approaches to obtain non-close packed monolayers. The first
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one involves the modification of a close-packed monolayer by using an etching
technique or by separating the spheres with a mechanical stretching (using an
elastomeric substrate). The second one uses the spin coating technique to deposit
solutions of nanospheres and monomers that can be later polymerized.

By far, the size reduction of close-packed 2D colloidal crystals by etching
methods such as isotropic plasma etching, anisotropic reactive ion etching (RIE),
and electron beam irradiation, is the most used approach in the literature owing
to its simplicity and precision [23]. Since its first introduction by Haginoya et
al. [24], the thinning of polystyrene spheres by RIE remains a powerful tool for
the fabrication of non-close packed lithographic masks [25]. Fig. 3.3 shows a
schematic diagram of the RIE chamber for the etching of polystyrene spheres. By
carefully choosing the size of the polystyrene spheres and the etching parameters,
the final size of the polystyrene spheres and their spacing can be modified for
the desired application. In general, the plasma etching process is performed at
low pressures (below 10 mbar) and the plasma can be started by either by a
RF source or as an inductively coupled plasma (ICP) through a coil [26]. The
RIE process has four main steps: 1) generation of chemically reactive species
as a result of the interaction of the generated plasma and the gas of interest; 2)
chemisorption of the reactive species on the surface of the polystyrene spheres;
3) formation of the volatile reaction product; and 4) desorption of the reaction
product and removal from the reaction chamber [27].

0,

i

.......

Oxyg.lasma E

Substrate electrode "-:‘.':,,,.

|

Vacuum pump
~ ) RF source

Figure 3.3: Schematic illustration of the RIE process to create a non-close packed
monolayer.
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3.1.3 Metal-assisted chemical etching

The fabrication of silicon (Si) nanostructures by using top-down and bottom-up
approaches remains one of the most active areas in the semiconductor indus-
try [28]. Si nanostructures have been fabricated by different methods such as
RIE, vapor-liquid-solid (VLS) growth, electrochemical etching, laser ablation,
molecular beam epitaxy, and metal-assisted chemical etching (MACE). First
introduced by Li and Bohn [29], the MACE technique allows the fabrication
of Si nanostructures with precise control on the size, length, crystallographic
orientation, doping type, and doping concentration [30]. In contrast, the fabri-
cation of large arrays of vertically-aligned Si nanostructures by using the VLS
method poses a challenge due to catalyst contamination and difficult orientation
control. Furthermore, the VLS method and the RIE etching introduce many
crystallographic defects that affect the overall quality of the Si nanostructures.

In a traditional MACE process, a Si substrate covered by a noble metal thin
film is immersed in an etching solution of hydrogen fluoride (HF) and Hy05).
Consequently, the Si underneath the noble metal is etched faster than the one
not covered by the noble metal and, depending on the initial morphology of
the noble metal, Si nanopores or SINWs are created. For example, Huang et
al. developed a method to fabricate SINWs by using a patterned Ag mask
with defined size-pores created with NSL [31]. This NSL-based method allows
controlling the final diameter of the SINWs (by changing the parent sphere size)
as well as their length (by adjusting the etching time).

Different reported models describe the chemical and electrochemical reactions
that occur during the MACE process [32]. Tt is widely accepted that the reactions
occur preferentially at the metal/etching solution interface. For simplicity, we
will consider the model proposed by Huang et al. [28] involving a Si substrate
covered by a Au mask fabricated with NSL. Fig. 3.4 displays the different process
taking place during MACE. First, the reduction of the HoO5 occurs at the metal
(cathode reaction):

Hy05 4+ 2H' +2¢~ — 2H,0 {4}

The e in reaction {4} are taken from Au being dissolved:

A’ — Au*T 43¢ {5}

Second, owing to the more electronegative character of Au when compared to
Si, the Au ions are reduced back to Au® by taking e~ from the Si substrate. The
generated holes are locally injected underneath the Au layer and they oxidize Si
into SiO5. Third, HF dissolves SiOs:

Fourth, the Si in contact with Au is etched at a faster rate than the bare Si
substrate. Finally, the holes generated underneath the Si in contact with the
noble metal are diffused to the walls of the pore.
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® hole [ noble metal 1 Si substrate

Figure 3.4: Schematic illustration of the different processes involved in MACE.
The numbers indicate the steps introduced in this subsection. Reprinted with
permission from [28]. Copyright 2011 John Wiley and Sons.

3.1.4 Electrodeposition

The electrodeposition technique to deposit metals (and alloys) from a solution
containing ionic species has been widely used at the industrial scale for several
decades and is well documented in the literature [33, 34]. In particular, this
fabrication technique has been used to increase the corrosion resistance of mate-
rials, increase the conductivity in electronic components, and even for decorative
purposes to imbue materials with an attractive appearance [35]. Simultaneously,
the electrodeposition of semiconductors as thin films and nanostructures has
found many practical applications in the field of photovoltaic solar panels and
large-area display devices [36, 37].

3.1.5 ZnO

As an important semiconducting oxide material, ZnO has been electrodeposited
from aqueous and non-aqueous media to form thin films, nanorods [38], flat
disklike-deposits [39], and more recently, urchin-like structures [40]. To this
day, the two main routes to electrodeposit ZnO are via an oxygen saturated
solution [41] or a nitrate solution [42]. In general, the electrodeposition of ZnO
described by Peulon and Lincot requires an oxygen-saturated solution containing
the adequate concentration of ZnCl, and three electrodes, as shown in Fig. 3.5.

A cathodic potential is applied and hydroxide ions are generated at the
surface of the working electrode:

O, +2H,0 +4e” —> 40H™ {7}

The generated hydroxide ions react with Zn ions and ZnO is precipitated:

Zn** +20H" — ZnO + H,0 {8}

By changing the electrochemical conditions, ZnO can be deposited with
different morphologies depending on the desired application. Likewise, Elias et
al. [43] developed a method to fabricate urchin-like nanostructures by combining
NSL, ALD, and electrodeposition. In this technique, the length and diameter

39



3. Materials and methods
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Figure 3.5: Schematic illustration of the electrochemical cell used in this work
for the electrodeposition of ZnO.

of the ZnO nanowires can be tuned by changing the electrodeposition charge
density and the concentration of ZnCly, respectively.

3.1.6 ZIF-8

The research interest in the electrochemical synthesis of metal organic frameworks
(MOFSs) has risen tremendously in the past few years. These nanoporous materials
whose framework is based on metallic nodes held together by bridging organic
linkers have found potential applications in gas separation [44], energy storage
[45], sensing [46], and microelectronics [47]. While this might seem exciting, the
majority of these applications are based on MOFs in bulk form, which hinders
their use in membranes, sensors, and integration with microelectronics that
require MOF crystals as thin films or coatings [48]. Recently, MOF films have
been produced by means of electrochemical synthesis methods, which opens
up the possibility for their large-scale production in industrial processes. The
electrochemical deposition of MOF's can proceed anodically or cathodically. In
the anodic approach, metal ions are introduced to a solution containing an organic
ligand by electrochemically oxidizing a metal support, which produces a thin
MOF film on the anodic surface [49]. In cathodic deposition, the reduction of ions
(e.g., nitrates) at the cathode induces the deprotonation of organic linkers that
can react with metal ions, which triggers the formation of MOF's [50]. Although
attractive enough, the cathodic approach is usually accompanied by co-deposition
of the corresponding metal, which is unwanted in many cases. Recently, the
first cathodic deposition of a zeolitic imidazolate framework material (ZIF) was
achieved by Zhang et al. [51]. In their method, they perform a ZIF-8 synthesis by
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saturating with oxygen the precursors solution of ZnCly and imidazole organic
ligands in methanol (Fig. 3.6).

Methanol

Figure 3.6: Schematic illustration of the oxygen mediated cathodic deposition of
ZIF-8. Reprinted with permission from [51]. Copyright 2019 John Wiley and
Sons.

This oxygen-triggered approach allows depositing large-area uniform ZIF-8
films while avoiding the plating of Zn metal. The proposed reaction mechanism
involves the reduction of Oy to Oz~ on the electrode surface (reaction {9}),
the subsequent formation of a superoxo-Zn'' complex (reaction {10}), and the
reaction between Zn''-imidazole complexes and superoxo-Zn'! intermediates
(reaction {11}), which finally evolve to ZIF-8 via ligand-exchange, nucleation,
and crystal growth [52].

Oy +e —— Oy~ {9}
Zn*t + 0*" — (Zn*")(0y7) {10}
2(Zn**)(027) + 2 [Zn(HmiM),, L, ] — {11}

2 [Zn(miM)(HmiM),,, _1L,] + 2 Zn*" 4+ Hy05 + Oy

3.1.7 Galvanic replacement

Bimetallic nanostructures exhibit unique catalytic, electronic, optical, and mag-
netic properties that set them apart from their monometallic analogs [53]. Several
methods such as precipitation [54], sol-gel [55], hydrothermal [56], galvanic re-
placement [57], and ALD [58] have been developed to precisely control their
shape, size, and composition. Among these, the galvanic replacement approach
represents one of the most versatile and simple methods that enable the synthesis
of bimetallic and hollow materials with a high degree of control in their compo-
sition, surface morphology, and size [59]. The galvanic replacement reaction is
a spontaneous redox reaction that occurs between a metal and ions of another
metal in solution. The reaction is driven by the difference in standard electrode
potentials of the metals, which results in dissolution (oxidation) of one of the
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metals and the plating of the second metal (reduction). Recently, the galvanic
replacement reaction has been exploited to produce bimetallic nanostructures
based on Au and Pd for applications in catalysis [60], sensing [61], and plasmonics
[62]. Given the difference in reduction potential between Au®*/Au (1.4eV) and
Pd*"/Pd (0.195¢eV) pairs, the replacement reaction can proceed as follows:

3Pd° +2Au*t — 3Pd*t +2Au {12}

When a Pd nanoparticle is in contact with a Au®*" ion, the Pd atoms from
the surface are quickly oxidized and dissolved to produce Pd** ions into the
suspension reaction. At the same time, Au®" are reduced and deposited on
the surface of the nanoparticle. The composition of the resulting alloy can be
changed by adjusting the amount of Au®" ions relative to the amount of Pd
metal [63].

3.1.8 Physical vapor deposition

Physical vapor deposition processes are based on the production of a condensable
vapor from a material (in liquid or solid form) and its subsequent condensation
in a substrate to form a thin film [64]. In general, PVD processes are used to
deposit films of elements and alloys with thicknesses that go from just a few
nanometers to several microns [65]. Also, the technique presents exceptional
flexibility in terms of the size (which can go as large as 10 ft x 12 ft) and
the geometrical complexity of substrates. Depending on the way the vapor is
produced, PVD processes can be classified into vacuum deposition (evaporation),
sputter deposition, arc vapor deposition, and ion plating.

3.1.8.1 Electron beam evaporation

Vacuum evaporation by electron beam (E-beam) is a PVD process where intense
beams of high-energy electrons are used to vaporize materials [66]. Fig. 3.7
presents a schematic representation of an E-beam evaporation system. E-beam
evaporation allows the deposition of most pure metals (even those with high
melting points) and is especially suitable for refractory materials such as most
ceramics (oxides and nitrides), glasses, carbon, and refractory metals [67]. Typi-
cally, the electron beams used in this technique are accelerated to high voltages
(1I0kV to 15kV) and are focused by electric or magnetic fields to bombard a
material contained in a crucible. To avoid the interaction between the vaporized
material and the gas molecules contaminating the system, the deposition usually
takes place in the range of 10 — 10" mbar. Additionally, deposition rates as
high as 50 pms~! can be achieved.

3.1.8.2 Sputter deposition

The sputtering phenomenon is based on the bombardment of a solid surface
by high-energy ions and the resulting physical (not thermal) vaporization of
atoms from the surface by the momentum transfer [68]. The sputter deposition
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Figure 3.7: Schematic illustration of an E-beam evaporation system. Reprinted
from Evaporation materials, Neyco. Retrieved June 06 2019 from https://www.
neyco.fr/en/page/evaporation-materials. Copyright 2019 Neyco.

technique can be used to deposit films either by sputtering from an elemental (or
an alloy) target or by sputtering from a compound target (where, in most cases,
there is a loss of the more volatile material). Depending on the condition under
which the sputtering is done, the process can be classified into direct current
(DC), RF, magnetron, and ion beam sputtering [69]. Among these, DC sputtering
presents the simplest configuration [70]. Fig. 3.8 shows a typical configuration of
a DC sputtering system schematically. Generally, the DC configuration comprises
a cathode (target), an anode (where the substrate to cover is placed), and a DC
power source (supplying a potential between 0.5keV to 5keV) that are placed
in a vacuum chamber at either low pressure (<5 x 1073 mbar) or high pressure
(5 x 1073 mbar to 3 x 10"?mbar). The sputtering chamber is filled with Ar,
and a plasma is created (and sustained) by applying a DC voltage between the
electrodes. The Ar ions generated by the glow discharge are accelerated to the
negatively biased target, and sputtering of the surface of the target occurs. The
sputtered species proceed in the direction of the substrate, and a thin film is
formed.

3.1.9 Conclusions

In the first half of this chapter, we described nano and micro fabrication processes
that combine both top-down and bottom-up approaches. These techniques, which
are currently used in many well-established and emerging applications in the
industry, will continue to be key players in the ongoing industrial revolution. In
the next section, the underlying principle of the characterization techniques used
to study the physicochemical properties of the SINWs and urchin-like structures
will be discussed.
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Figure 3.8: Schematic illustration of a DC sputtering evaporation system.
Reprinted from What is DC sputtering?, Semicore. Retrieved June 06 2019
from http://www.semicore.com/news/94-what-is-dc-sputtering. Copyright 2019
Neyco.

3.2 Characterization methods

It is well known that, once you obtain a new material, the first thing to do is to
study its physical, chemical, optical, and mechanical properties. In particular,
when a novel nanomaterial is produced, the characterization and measurement
of its physicochemical properties represents an interesting challenge. Similarly,
when the fabrication process of a material involves several steps, careful attention
must be paid between each of the stages to make sure that no problems have
occurred. In the second half of this chapter, the elemental aspects of the
characterization techniques that were used to study the materials fabricated in
this work are introduced.

3.2.1 Scanning electron microscopy

Scanning electron microscopy (SEM) is an electron probe characterization method
that uses a high-energy electron beam for imaging and chemical analysis of a
material. Fig. 3.9 shows the principal components of an SEM instrument. The
electron gun at the top of the column produces a beam that is focused through
a series of magnetic lenses and is rastered in a squared area of the surface of
a sample. The variety of signals produced by the interaction of the electrons
with the sample (e.g., secondary electrons, backscattered electrons, x-rays) are
detected to provide information about the topography and composition of the
sample (with the aid of a solid state x-ray detector for EDX). In general, there
are no complicated steps to prepare samples, and the only requirement is for the
samples to be sufficiently conductive (non-conductive samples are usually coated
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with a thin film of Pt).
The morphology of all the samples was characterized by a Hitachi S4800
SEM.
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Figure 3.9: Schematic illustration of the main components of a scanning electron
microscope. Reprinted with permission from [71]. Copyright 2008 Taylor &
Francis.

3.2.2 Transmission electron microscopy

Transmission electron microscopy (TEM) is based on the same principles as SEM
except for the detector (direct imaging on a fluorescent screen or PC screen with
a charge coupled device or CCD) that is capable of capturing images generated
by transmitted electrons. Fig. 3.10 shows the principal components of a TEM
apparatus. Moreover, TEM uses even higher voltages than SEM (60keV to
300keV compared to 1keV to 50keV) and can achieve a spatial resolution of up
to ~50pm (~0.5nm for SEM). Due to the requirement of transmitted electrons,
the samples must be very thin (<150nm for regular TEM and <30nm for high-
resolution TEM). This thinning usually involves tedious and complex preparation
techniques that require a trained and experienced user. TEM experiments were
performed in an HR-TEM JEOL ARM-200F, working at 200 kV, equipped with
an EDX detector.

3.2.3 Atomic force microscopy

Atomic force microscopy (AFM) is another powerful imaging technique that,
by scanning in a grid-like fashion an atomically sharp probe tip over a surface,
can produce topographical images and also, with some modifications of the
tip, allows to measure the forces of adhesion between the surface of the sample
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Figure 3.10: Schematic diagram of the internal structure of a transmission elec-
tron microscope. Reprinted from Basic principles of TEM operation, Microscopy
Australia. Retrieved June 06 2019 from https://myscope.training/legacy/tem/
introduction/. Copyright 2019 Microscopy Australia.

and the tip [72]. A generic AFM system is shown in Fig. 3.11. The sample is
positioned on a piezoelectric stage that can move in the x, y, and z direction.
The cantilever tip is positioned close to the surface of the sample. The stage
is moved laterally to scan the desired area of the sample. As the cantilever
moves over the sample, it becomes deflected due to the topography of the surface.
The degree of deflection is measured by following changes in the reflected laser
beam that moves on the photodetector. The distance between the cantilever
and the sample is held constant by an electronic feedback control that adjusts
the z-position of the sample. There are two main configurations for an AFM
system. In contact mode, the tip of the cantilever remains in intimate contact
with the sample while the stage is moving. This mode is appropriate for hard
materials as it does not damage their surface. For weakly-bound specimens or
softer materials, the tapping mode is used. In this mode, the tip of the cantilever
has intermittent contact with the sample. This mode prevents damage to the
sample and allows to image the amplitude and phase difference of the resonance
vibration. The affinity of the tip for the surface of the sample can be used to
create a chemical map based on the differences between the materials [73]. AFM
was performed with a NANOMAN 5 device from Veeco, and it was controlled
with the Nanoscope V software in tapping mode.

3.2.4 X-ray diffraction

X-ray diffraction (XRD) is one of the most noteworthy analytical methods to
analyze the crystalline structure of materials. X-rays get diffracted because the

46


https://myscope.training/legacy/tem/introduction/
https://myscope.training/legacy/tem/introduction/

Characterization methods

photodiode

amm—

cantilever

laser beam

force between
sample surface and tip

Figure 3.11: Schematic illustration of an atomic force microscope. Reprinted
from Nanoscale Informal Science Education Network. Retrieved June 06 2019
from https://myscope.training/legacy /tem/introduction/. Copyright 2019 NISE
network.

wavelength of x-rays is in the same order of magnitude of the spacing between
atoms and planes of atoms of a crystalline compound. The diffracted x-rays
provide a pattern that can be used to determine the structural orientation of the
atoms in a given compound. One of the keystones of XRD is the Bragg equation:

nA = 2dsin 6 (3.1)

In this equation, n is an integer (1,2,3,...n), A is the wavelength, d is the
interplanar distance between atomic planes, and 6 is the angle of incidence
of the x-ray beam with respect to these planes. Crystalline materials show
long-range periodic structures that are displayed as Bragg diffraction peaks. In
the simplest case, an XRD measurement consists of a group of intensities and
the angles at which they are observed [74]. The resulting pattern represents the
fingerprint of the material and can be later used for chemical identification by
comparing it to diffraction patterns found in databases such as the International
Centre for Diffraction Data (ICDD). For this work, XRD was performed with a
PANalytical X’pert-PRO diffractometer equipped with an X’celerator detector
using Ni-filtered Cu Ko radiation).

3.2.5 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is technique that allows to study the
surface chemistry of a material [75]. The technique involves irradiating a material
in a high vacuum (~1 x 10~® mbar) with monochromatic or polychromatic soft
x-rays and analyzing the kinetic energy of the detected electrons coming from
the top 1-10 nm of the material being analyzed. The emitted electrons have
measured kinetic energies given by:
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KE = hv — BE — ¢, (3.2)

were hv is the energy of the photon, BFE is the binding energy of the atomic
orbital from which the electron originates, and ¢, is the spectrometer work
function. By counting these emitted electrons over a range of kinetic energies, a
photoelectron spectrum is obtained. The position and intensity of the peaks in
this spectrum enable the proper identification and quantification of the elements
in the material. Changes in the chemical state of an element can be determined
by shifts in the BE due to changes in the measured K E. For instance, the
BE of the core electrons will increase if the valence electrons are slightly more
distant to the core due to the formation of bonds with other elements [76].
XPS measurements were performed with a VG ESCALAB 250 spectrometer
(ThermoFisher Scientific, Waltham, MA, USA).

3.2.6 Photoluminescence spectroscopy

Photoluminescence (PL) spectroscopy is a nondestructive characterization tech-
nique used to study the electronic structure of materials, especially for semi-
conductors. In some ways, the emission of photons from semiconductors is the
reverse of the absorption of photons. However, emission only occurs in a narrow
band of empty states that produces a spectrum much thinner than that of the
absorption (which can involve all states in a semiconductor) [77]. Fig. 3.12 shows
a schematic representation of the PL process.
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Figure 3.12: Schematic illustration of the PL process in a direct bandgap
semiconductor.

In a PL spectroscopy setup, a laser beam (with energy much larger than
the bandgap of the semiconductor) is directed toward a sample to generate free
electrons and holes in the conduction and valence bands, respectively. These
excited carriers can later relax and recombine by emitting light with the energy
of the bandgap [78]. The emitted photons are dispersed with a monochromator
and detected with a CCD or a photomultiplier tube. Fig. 3.13 shows a schematic
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representation of the experimental setup for PL spectroscopy. While it is possible
to study almost all semiconductor materials with PL, only a weak signal can
be measured from indirect bandgap semiconductors. Thus, for the case of
direct bandgap semiconductors (e.g., ZnO) an abundant amount of information
regarding their localized defects and impurities (and their concentration), optical
emission efficiencies, and composition of the material (i.e., alloy composition)
can be extracted by analyzing the PL spectrum.
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Figure 3.13: Schematic diagram of a standard PL spectroscopy setup. Reprinted
with permission from [79]. Copyright 2008 Springer Nature.

3.2.7 Raman spectroscopy
3.2.7.1 Raman effect

The interaction of light with matter can result in either absorption, scattering,
or no-interaction with the material (photons pass through it). The inelastic
scattering of light was first described theoretically by Smekal in 1923 [80] and
observed experimentally for the first time in 1928 by Raman and Krishnan [81].
In Raman spectroscopy, two types of scattering are involved. The first one
is called Rayleigh scattering, and it occurs when the emitted photon has the
same energy as the incident photon (elastic scattering). In the second case, the
incident photon can transfer energy to the material (or vice versa), and it will
be scattered with different energy (inelastic scattering). Light scattered with
less energy than the incident light is called Stokes, while the one with higher
energy is called anti-Stokes. Fig. 3.14 displays the elastic and inelastic light
scattering processes. In the Stokes process, the material goes from a base level
E\ to virtual state with higher energy. However, in the anti-Stokes process, if
the material is in an excited state F.ip, the scattered photon will have higher
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energy and the material will return to the base level Fy. At room temperature,
the number of molecules in an excited state is minimal and, for this reason, the
anti-Stokes process is less intense. In general, Raman spectroscopy involves only
the detection of the Stokes signal [82].
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Figure 3.14: Schematic diagram of a Raman spectrum showing vibrational
Raman effects. The Stokes process produces scattered light with lower energy
than the incident light, while anti-Stokes produces scattered light with a higher
energy than the incident light. Retrieved June 06 2019 from http://www.ltbh-
berlin.de/en/technologies/raman/. Copyright 2019 NISE network.

3.2.7.2 Surface-enhanced Raman spectroscopy

Surface-enhanced Raman spectroscopy (SERS) is a technique that is used to
amplify by several orders of magnitude (reaching 8-9 orders of magnitude per
single molecule) the Raman signals coming from a material [83]. The resulting
peaks in a Raman spectrum correspond to vibrational modes of the analyte.
The effect was first observed by Fleischman et al. [84] and further ex-
plained firstly by Jeanmaire and Van Duyne [85] and secondly by Albrecht and
Creighton [86]. The amplification effect of the Raman signal comes from two
main mechanisms: electromagnetic (EM) and chemical (CE). The first involves
the electromagnetic interaction of light with metals through excitations known
as plasmon resonances. The second mechanism is related to changes in the polar-
izability of the probe due to its adsorption on the metal surface. Although both
mechanisms are multiplicative, it is widely accepted that the main contribution
to the enhancement comes from the EM mechanism [87]. To perform a SERS
experiment, care must be taken while choosing the metallic substrate (usually
Ag or Au), the characteristics of the laser excitation (e.g., wavelength), and
the adsorption properties of the analyte. In general, Au and Ag are the two
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most used metals for the fabrication of SERS substrates [88] due to their optical
properties (their plasmon resonances are in the visible/infrared) and their ease
of manipulation for preparing nanostructures.

In this work, Raman measurements were performed with an InVia Raman
spectrometer equipped with three different lasers (532 nm, 633 nm, and 785 nm)
and an optical microscope with various objectives (50 x — 0.50 NA and 100 x —
0.9 NA) in backscattering geometry. Fig. 3.15 shows a schematic representation
of the Raman spectrometer used in this work.
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Figure 3.15: Schematic illustration of a Renishaw InVia InVia Raman spectrom-
eter. Reprinted with permission from [89]. Copyright 2011 John Wiley and
Sons.

3.2.8 Conclusions

The structural, morphological, chemical, and optical properties of nanomaterials
and nanostructures can be achieved by using a combination of techniques such
as SEM, TEM, AFM, XRD, XPS, PL, and Raman spectroscopy. The necessary
information to successfully fabricate and test a nanostructure/nanomaterial can
be extracted by using the aforementioned techniques.

3.3 Materials

Polystyrene spheres (aqueous dispersion, 10 % w/w, size 1 and 0.5 um), sodium
dodecyl sulfate (SDS, CAS: 151-21-3, purity > 99 %), hydrofluoric acid (HF,
CAS: 47590, 48 % w/w), hydrogen peroxide (H2Oo, CAS: 31642, 30% w/w
in H50), nitric acid (HNOs, CAS: 30709, >65% w/w), and hydrochloric acid
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(HCL, CAS: 258148, 37 % w/w), and 2-Methylimidazole (HmiM, CAS: 693-98-1,
> 99 %) were purchased from Sigma-Aldrich. Carboxylate-modified polystyrene
spheres (aqueous dispersion, 4 % w/w, size 5 pm) were purchased from Thermo
Scientific. ZnCly (CAS: 7646-85-7, purity > 98 %) and potassium chloride
(KCL, CAS: 7447-40-7, purity > 99 %) were purchased from Fluka. Thiophenol
(CeH5SH, CAS: 108-98-5, purity > 99 %) and hydrogen tetrachloroaurate (IIT)
trihydrate (HAuCly - 3H20, CAS: 16961-25-4, purity > 99 %) were purchased
from Alfa Aesar. Diethylzinc ((CoHs)oZn, DEZ, CAS: 557-20-0, purity > 95 %)
was purchased from Strem Chemicals. Boron-doped (8-25 € cm) p-type (100)
crystal orientation Si wafers were purchased from LG Siltron Inc. Korea. Indium
tin oxide (ITO) deposited on quartz was purchased from Prézisions Glas &
Optik.

3.4 Experimental details for silicon nanowires covered with
ZnO by ALD

3.4.1 Fabrication of silicon nanowires covered by ALD

Fig. 3.16 presents a schematic view of the overall process for the synthesis of
SiNWs. A Si wafer was cut into 1 cm X 1 cm pieces and were cleaned sequentially
with deionized (DI) water(18.2 M) cm), ethanol and acetone by ultrasonication
for 15 min in each solvent. Then the substrates were treated by oxygen plasma
to have a hydrophilic surface. The floating-transferring technique was used to
deposit polystyrene spheres on the Si substrates.

Briefly, 40 pnLi of polystyrene spheres diluted by an equal amount of ethanol,
was applied onto the modified substrates. After holding the substrate stationary
for a while to disperse the solution, the wafer was then slowly immersed into
the glass vessel filled with DI water, and polystyrene spheres started to form
a monolayer on the water surface. After, 5L of an SDS solution (10 % w/w)
were added to the water interface to change the surface tension and consolidate
the particles. As a result, a large monolayer with highly ordered areas was
obtained. Then, this monolayer of polystyrene spheres was transferred to the
target substrate. The quality of the polystyrene spheres monolayer mask can
be assessed right away by looking at the uniformity of the color throughout the
whole area.

The reflected color of the pattern varies with the size of the spheres and the
quality of the arrangement. After drying the sample in air at room temperature,
the spheres were self-assembled into a close-packed, two-dimensional ordered
lattice via attractive capillary forces.

After the consolidation of the polystyrene spheres monolayer, the diameter
of the polystyrene spheres was decreased by oxygen plasma etching for 5 min to
expose a part of the surface of the wafer for metal deposition. In order to stick
the polystyrene spheres to the Si surface, a heat treatment at 100 °C for 30 min
was performed. Next, a 30 nm Au film was deposited by sputter deposition. The
sputtering was carried out at a discharge of 25 mA in a vacuum with a pressure
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Figure 3.16: Schematic illustration of the different processes involved in MACE.
The numbers indicate the steps introduced in this subsection.

below 0.1 mbar. After, the polystyrene spheres were removed by sonicating
the samples during 5 s in ethanol. The samples covered by Au were etched
with a solution of HyO/H205/HF with a volume ratio of 1:0.15:0.3 at room
temperature for 1, 2, 5, and 7 min. To remove the residual Au, the samples
were dipped in an aqua regia solution (a mixture of HNOj3 and HCI). Finally,
20 nm of ZnO were deposited by ALD at 100 °C with the parameters showed on
Table 3.1. Similarly, 100 cycles of Pd were deposited at 220 °C on bare SiNWs
with the parameters showed on Table 3.2.

3.4.2 Characterization of ZnO deposited by ALD on silicon
nanowires

The XRD patterns were measured in the 26 angular region between 10° and 60°
with a scan speed of 2°min~! and a step rate of roughly 0.02°s~!. From the
XRD patterns, the grain size was calculated using the Debye-Scherer equation.
SiNWs covered by ALD of ZnO were also investigated by TEM. The cross-sections
and lamellas for TEM investigations were prepared by Focused Ton Beam (FIB).
The FIB milling was carried out with a JEOL, JIB-4000.

Raman scattering was measured in backscattering geometry with a spectral
resolution of 1e¢cm™'. The incident light was not polarized, and also the light
detector contained no polarization filters. Raman spectroscopy was performed
with a 488nm laser. The beam was focused on the samples with a 50 x
microscope objective with a NA = 0.4. The incident optical power was changed
by using neutral density filters in the beam path. PL spectroscopy was studied in
the spectral range of 350 nm to 800 nm with an excitation wavelength of 280 nm.

To test the capability of ZnO for detecting HoO2, a home-made PL setup
was used. The PL was studied in the spectra range of 360 nm to 600 nm with
an excitation wavelength of 330 nm. The samples were introduced into a black
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anodized aluminum chamber filled with a solution of 0.01 M phosphate buffered
saline (PBS) and varying concentrations of HyOs.

3.5 Experimental details for Au-covered hollow urchin-like
ZnO structures

3.5.1 Fabrication of Au-covered hollow urchin-like ZnO
structures

Fig. 3.17 presents a schematic view of the overall process for the synthesis of
Au-covered ZnO urchin-like structures. First, ITO substrates 1cm x 2 cm were
cleaned by sonication for 15 min in acetone, ethanol, and isopropanol sequentially
and finally dried under air. After, the PS spheres were deposited on the ITO
substrates using a previously reported method with slight modifications [22].

Briefly, a 1:2 solution of polystyrene (PS) spheres and anhydrous ethanol
was added dropwise with a micropipette onto the surface of a tilted glass slide
(previously treated with oxygen plasma) that was resting on the wall of a Petri
dish filled with DI water. Afterward, 5uL of an SDS solution (10 % w/w) were
added to the water surface to change the surface tension and pack together the
polystyrene spheres. The self-assembled PS spheres were then transferred to the
ITO substrate (previously exposed to a 4 W, 254nm UV lamp for 15 min to
render it hydrophilic) by carefully introducing the substrate into the Petri dish
and removing it from the solution at an angle of 45°. Once dry, the substrates
were heated in an oven at 100 °C for 30 min to promote the adhesion of the PS
spheres to the substrate. Next, the size of the spheres was reduced to produce a
non—close-packed arrangement by reactive ion etching in Oy plasma (0.6 mbar,
50W). The size of the polystyrene spheres was controlled by adjusting the oy
plasma exposure time. As an example, after being etched for 5 min, the diameter
of the PS spheres was reduced to 460 nm, leaving an interparticle distance of
60nm (Fig. B.1).

Afterward, a 20 nm-thick ZnO layer was deposited on the PS spheres-covered
substrates by ALD. The ZnO films were grown at 80°C with the parameters
showed on Table 3.1. Subsequently, electrodeposition of ZnO was performed
using a previously reported procedure [40]. A three electrode configuration was
used with the ITO/polystyrene spheres/ZnO ensemble as a working electrode, a
Pt plate as the counter electrode, and Ag/AgCl as the reference electrode. An
aqueous solution of 0.05mM ZnCl, (zinc precursor) and 0.1 M KC1 (supporting
electrolyte) was used as the electrolyte and was continuously bubbled with O
during the whole electrodeposition process. The electrodeposition was carried out
at 80 °C with a constant electric potential of -1 V during 15 min in a VersaSTAT
3 potentiostat. Once the electrodeposition was completed, the PS spheres were
burned off in air at 600 °C for 2 h. Finally, a Au layer (10, 30 and 50 nm) was
deposited by E-beam evaporation on top of the substrates.
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Figure 3.17: Schematic illustration of the different processes involved in the
fabrication of Au-covered hollow urchin-like structures.

3.5.2 Characterization of Au-covered hollow urchin-like
structures

The morphology of the as-prepared Au-covered urchin-like ZnO samples was
characterized by SEM (Fig. 3.18).

In addition, samples were prepared for TEM experiments by performing
angular cuts using FIB using a gallium source working at 10 kV, with 60°,
40° and 30° incident angle geometries over a large area (50 um). In this way,
several particles were cut at different axis and geometry. TEM experiments were
performed at 200 kV. Samples were sonicated in ethanol after ion milling and
drop cast on commercially available Cu grids and vacuum dried overnight in a
desiccator. Fig. 3.18 displays TEM and EDX measurements for the Au-covered
ZnO urchin-like structures.

The XRD patterns were measured in the 26 angular region between 20° and
70° with a scan speed of 2°min~"! and a step rate of roughly 0.02°s~!. Fig. 3.18
shows the XRD patterns of ITO, urchin-like ZnO, and Au-covered urchin-like
ZnO structures for comparison.

SERS measurements were performed with a Raman microscope with a 785 nm
laser and a 100 x objective lens with a NA = 0.9 in a backscattering geometry.
The samples were irradiated with laser powers of 0.48 mW (633 nm) and 0.55 mW
(785 nm) with acquisition times between 1 s and 10 s. For comparison, all the
collected spectra were normalized by laser power and acquisition time. The
average SERS intensities reported and relative standard deviations (RSD) were
calculated with 25 SERS spectra.
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Figure 3.18: SEM micrographs of (a) an array of well-organized PS spheres, (b)
PS spheres after been subjected to an oxygen plasma treatment, (c) ordered
hollow urchin-like ZnO structures, and (d) urchin-like ZnO structures covered by
a 30 nm-thick Au layer deposited by e-gun evaporation. The insets show higher
magnifications of the corresponding SEM images.

3.6 Experimental details for hybrid Pd/Au and ZnO/Au/ZIF-8
materials

3.6.1 Fabrication and characterization of silicon nanowires
decorated with Pd/Au nanoparticles

Silicon nanowires were prepared following the same procedure shown in Sec-
tion 3.4.1. For the galvanic replacement reaction, a 15.66 mM solution of HAuCly
in DI water with a final volume of 2 ml was prepared. The HAuCly concentration
was chosen according to the Pd loading in our sample. The HAuCly solution
was poured into a small vial and was heated in a silicon oil bath at 70°C. The
SiNWs/Pd sample was introduced into the previously heated solution and was
left to react for 16 h. Finally, the SiNWs/Pd/Au sample was thoroughly washed
with DI water and left to dry at ambient temperature.

The morphology and composition of the SINWs/Pd/Au samples was investi-
gated with SEM and EDX. The composition was also studied by XPS with an
excitation source of Al Ko (1486.6€V). The analyzed surface had a diameter of
500 um. The BEs of the obtained peaks were calibrated with the Cls peak for
—c-c— bonds at 284.8¢V.
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. Zn0 (002)

Figure 3.19: a) TEM image of a Au-covered ZnO urchin-like structure and b)
high-resolution image of the selected area in image a). The inset in b) shows the
FFT operation of the image. ¢) TEM and (d-g) EDX elemental mapping images
of a Au-covered hollow ZnO urchin-like structure. Blue, red, and green illustrate
Zn, O, and Au, respectively.

3.6.2 Fabrication and characterization of ZnO/Au/ZIF-8 hollow
urchin-like structures

Au decorated hollow ZnO urchin-like structures were prepared following the
procedure displayed in Section 3.5.1 with slight modifications. Briefly, 5 ulL of
an SDS solution (10 % w/w) were added to the surface of a Petri dish filled with
DI water. After, a 1:2 solution of 5 pm carboxylate-modified polystyrene spheres
and ethanol was added dropwise to the water surface of the Petri dish. After
the polystyrene spheres had formed a monolayer, the Os plasma treated ITO
substrate was carefully introduced into the Petri dish and removed from the

57



3. Materials and methods

5000
4500 -
4000 -
3500
3000
2500-”\N“NMM~J
2000 \
1500 -
1000 -

500 - XWMMMWMMMMWMWWMMAh

0 e e A
20 25 30 35 40 45 50 55 60 65 70
26(°)

— ITO
—— ZnO urchin
ZnO urchin/Au

Au (111)

Au (200)
Au (220)

nO (100)
ZnO (002)
Zno (101)

[

Intensity (a.u.)

Figure 3.20: XRD patterns of ITO, urchin-like ZnO, and Au-covered urchin-like
ZnO structures in the 20° to 70° 26

solution at an angle of 45°. For the electrodeposition of ZIF-8, a methanolic
solution of ZnCly (10 mM) and 2-methylimidazole (HmiM, 30 mM) was saturated
with Oy for 30 min before starting the process. CV deposition (100mV s~!) with
a potential range of —1V to 0V was performed during 4 h. After deposition, the
samples were washed with copious amounts of methanol and dried at ambient
temperature. The sample morphology was characterized with SEM, while the
chemical composition was studied with XRD.

3.7 Conclusions

Judging from the various techniques used in combination with ALD, we can
say with confidence that it is possible to fabricate nanostructures with precise
control of the size, morphology, and composition. For instance, SEM, TEM, and
AFM were used to confirm the high aspect ratio of the SINWs and urchin-like
structures. Specifically, by performing SEM after each of the fabrication steps,
the quality of the resulting nanostructures could be assessed. In the case of
TEM, the crystalline quality of ZnO in both structures could be studied, and a
better understanding of the individual features and details could be achieved.
Equally important, techniques like XRD, XPS, and Raman are crucial for the
correct identification of each of the chemical elements found on the produced
nanostructures. As an illustration, XRD was used to evaluate the crystallinity
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of the ZnO covering the SINWs. In a similar way, XPS was used to determine
the oxidation state of Pd and Au from the Pd/Au decorated SINWs structures.
Equally important, the photoluminescence and Raman spectroscopies were used
to test the feasibility of the as-prepared samples to be used as transducers for
sensing.

In the next three chapters, the morphological, chemical, and optical charac-
teristics of the prepared nanostructures will be discussed in detail. In the case of
SiNWs/ZnO structures, a preliminary application for HoO2 sensing will be shown.
Similarly, the application of the ZnO/Au urchin-like structures as potential SERS
substrates will be demonstrated by detecting two different analytes. Finally, the
potential applications of SINWs decorated with Pd/Au nanoparticles and urchin
like ZnO/Au/ZIF-8 structures will be discussed.
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Chapter 4

Si nanowires covered with ZnO by
atomic layer deposition for
photoluminescence sensing

Silicon (Si) continues to be the most widely used semiconductor due to its high
stability and non-toxicity, quantum confinement effects, high carrier mobility, and
well-established nanofabrication techniques [1, 2]. Recently, one dimensional (1D)
silicon nanostructures (e.g., SiINWs and Si nanopillars) have received considerable
attention thanks to their abilities to scatter and trap incident light, large surface
to volume ratio, and other unique electronic and optical properties that make
them attractive for a wide range of applications such as electronic devices [3-5],
energy storage devices [6, 7], thermoelectrics [8-10], and biosensors [11-14].

The first preparation of Si whiskers with <111> orientation was reported
in 1957 by Treuting and Arnold [15]. In 1964, Wagner and Ellis performed an
illuminating work and established the vapor-liquid-solid (VLS) mechanism for
the growth of Si whiskers [16]. These pioneering studies opened up exciting
possibilities for the fabrication and investigation of SINWs. In 2002, Peng et al.
introduced an HF-etching-assisted nanoelectrochemical strategy to synthesize
wafer-scale aligned SiNWs [17]. To date, SINWs can be fabricated by different
methods such as CVD [18], laser ablation [19], molecular beam epitaxy [20],
chemical etching [21], and solution growth [22]. Among these preparation
methods, the metal-assisted chemical etching (MACE) of silicon substrates in
combination with NSL has emerged as a promising method to fabricate large
areas of ordered SINWs [7, 23]. MACE and NSL techniques have experience an
increasing attention, mainly because MACE is an inexpensive and straightforward
process that allows controlling various parameters of the etched nanostructures
such as shape, height, diameter, and crystallographic orientation [24-26]. The
main advantages of NSL are its short preparation time, high level of hexagonal
structure orientation, and the possibility of applying it directly onto different
types of surfaces [27].

7Zn0O has attracted intensive research effort for its unique properties such as
thermal and chemical stability, optical transparency, and piezoelectricity [28].
The addition of ZnO as shells around SiNWs (as cores) can have substantial and
beneficial impact on the stability, as well as on the mechanical, photoelectrochem-
ical, and sensing properties when compared to bare ZnO nanowires fabricated

*Parts of this chapter have been published as: O. Graniel, V. Fedorenko, R. Viter,
I. Tatsunskyi, G. Nowaczyk, M. Weber, K. Zateski, S. Jurga, V. Smyntyna, P. Miele, A.
Ramanavicius, S. Balme, M. Bechelany, Optical properties of ZnO deposited by atomic layer
deposition (ALD) on Si nanowires, Materials Science and Engineering: B, 236-237 (2018)
139-146. doi:10.1016/j.mseb.2018.11.007.
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with other techniques [29-31]. Similarly, Si is an attractive substrate thanks to
its excellent thermal conductivity, superior crystalline quality, low cost, and size
availability with different types of doping.

ZnO thin films can be prepared using various techniques, but the conformality
of the deposit required for its preparation as a shell around NWs requires the
use of ALD [32-35]. To date, ALD is one of the most promising deposition
methods for growing uniform thin films, especially in the cases where precise
film thickness control, high reproducibility, thickness uniformity, and excellent
conformity are required [36, 37].

In the present work, SINWs produced by MACE in combination with NSL
followed by an ALD deposition of ZnO are investigated. The structural and
optical properties of the obtained nanostructures are evaluated. Finally, the
SiNWs/ZnO hybrid structures are tested as possible transducers for HoO4 sensing
by photoluminescence spectroscopy.

4.1 Results and discussion

The final diameter of the SINWs depends on the Oy plasma etching time as
seen in Fig. 4.1. The etching of polystyrene spheres from 1 to 10 minutes allows
decreasing the polystyrene spheres diameter from (960 + 10) nm to (610 + 10) nm.
Fig. 4.1a shows a SEM image of PS spheres deposited on a Si wafer, which
confirms the possibility to obtain a relatively large area, close-packed, hexagonal
polystyrene monolayer, produced by the floating-transferring technique. Fig. 4.1f
shows a photograph of a monolayer pattern of polystyrene spheres prepared by
the mentioned technique on a 2cm x 2 cm silicon wafer. The substrate presents a
characteristic color that is caused by the diffraction of light from the polystyrene
sphere array. Fig. 4.2 shows the final structure of SINWs (etching time is 5
min) after depositing 50 nm ZnO film by ALD. The SEM images display the
conformal ZnO coating on the SINWs by ALD.

Fig. 4.3 (a) 2D and (b) three dimensional (3D) images of the SINWs covered
with a 50 nm ZnO layer by ALD. The array of SiINWs exhibit hexagonal packing
over a large area of 15um x 15pm as previously shown by SEM. Due to the
high aspect ratio of the SiNWs, the AFM probe cannot reach the bottom part of
the sample and degrades quickly. For this reason, the total length of the SiINWs
cannot be seen by AFM and would require the use of exotic FIB milled tips and
carbon nanotube/fiber tips [38].

XRD patterns of SINWs (etched for 7 min) covered with 20 and 50 nm of
Zn0O by ALD are shown in Fig. 4.4. Three prominent peaks appear at 20 =
31.78°, 34.35°, 36.25° and 56.69°, which correspond to the (100), (002), (101),
and (110) reflections of the hexagonal wurtzite phase of ZnO, respectively. This
indicates that both films are polycrystalline, as commonly reported for ZnO
films deposited by ALD [34, 39, 40]. A peak with low intensity at 20 = 47.46°
appears for the 50 nm thick sample, which corresponds to the (102) reflection of
Zn0.
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Diameter, um

Time, min

Figure 4.1: Schematic illustration of the RIE process to create a non-close packed
‘
d

Figure 4.2: SEM images of SiNWs etched for 5 min and covered with a 50 nm
ZnO layer deposited by ALD.

monolayer.

The grain sizes D of the deposited films are estimated using the following
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Figure 4.3: a) 2D and b) 3D AFM images SiNWs covered with a 50 nm ZnO
layer by ALD.
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Figure 4.4: XRD patterns of SINWs (etched for 7 min) covered with 20 and 50
nm of ZnO by ALD.

formula [41]:
0.9
~ Bcosb

where ) is the wavelength of X-ray used (A = 0.154 nm), 3 is the full width at
half maximum intensity in radians, and 6 is the Bragg angle. The average value

(4.1)
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of grain size is found to be (7.50 & 0.45) nm, and (14.0 + 6.5) nm for samples
etched for 7 minutes and covered with 20 and 50 nm of ZnO, respectively.

Fig. 4.5 shows the high-resolution TEM images of ZnO/SiNWs with different
ZnO layer thicknesses. SINWs coated with 20 nm of ZnO by ALD are presented
in Fig. 4.5a. The TEM images show that the 20 nm ZnO layer covers conformally
and homogeneously the SINWs ZnO. The distance between the nearest wires is
reduced from 150 to 300 nm. Also, we noticed that the diameter of the wires is
about 450 nm on the top and 850 nm at the bottom. Thus, the wires have the
shape of a truncated trapezoid. This shape could be due to the longer exposure
time of the top part with the etching solution according to Dawood et al. [42].
Macroporous structure of the wires could also be observed (Fig. 4.5a). This can
be explained by the lateral transport of the charge carriers [23].

Fig. 4.5b shows a TEM image of silicon nanowires covered by a 50 nm ZnO
layer. This layer has a maximum thickness of 55 nm at the top of the SINWs.
For both samples, the ZnO layers have a polycrystalline phase. The size of
nanocrystallites was estimated by doing an elliptical shape fit, and the longer
axis was used as the nanocrystallite size. The average grain size for the 50
and 20 nm ZnO layers was almost the same (11.8 & 2.5) nm and (10.0 & 2.5) nm,
respectively), which confirmed the results obtained by XRD. The TEM images
demonstrate the ability to produce highly uniform layers of ZnO on SiNWs by
using ALD.

4
|

|
55.81nm

|

\

Y

50.60nm

20 nm

Figure 4.5: Cross-sectional TEM images of SINWs with (a) 20 and (b) 50 nm of
Zn0O by ALD.

Raman spectroscopy was used to confirm the composition of SINWs covered
by ALD of ZnO. Fig. 4.6 shows the Raman spectra of Si nanowires (7 min.
etching) with 20 and 50 nm of ZnO by ALD. An intense peak (Eg [high]) of Si
is observed at 520cm ™! due to light penetrating through the thin ZnO films
[43]. However, by increasing the number of accumulations, a Raman peak at
(432 £ 2)cm ™! (Ey [high]) that corresponds to the wurtzite phase of ZnO, was
observed (inset of Fig. 4.6). This mode is associated with the motion of oxygen
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atoms [43-46]. The Eg (high) mode peak (full width at half maximum [FWHM]
of ~20 cm™1) is broader than the one for bulk ZnO (FWHM is less than 10 cm 1)
and is shifted to higher frequencies or blue shifts. The broadening of the peak
and the blue shift are attributed to phonon confinement effects [47].
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——20 nm ZnO
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Figure 4.6: Raman spectra of bare SINWs (etched for 7 min) and after the
deposition of ZnO (20 and 50 nm) by ALD.

The PL of SiNWs/ZnO nanostructures with different thicknesses are displayed
in Fig. 4.7. The PL spectra showed strong peaks in the range of 410nm to
450 nm with a long PL tail going to higher wavelengths. Deconvolution of the
PL spectra was performed using Gauss fitting in Origin software (see Appendix
Fig. A.1). The spectra deconvolution showed peaks centered at 376-379, 411-415,
434-437, 447-480, 490-540, 570-640 nm, and 660-740 nm related to free exciton,
Zn interstitials, Zn vacancies, neutral oxygen vacancies, single charged oxygen
vacancies, double charged oxygen vacancies, and surface defects, respectively
[38,56,68,69] [34, 40, 48, 49]. The domination of defect emission bands points to
deviations in the stoichiometry of the prepared 3D ZnO nanostructures. The
decrease of PL intensity for ZnO samples deposited on 7 min etched SiNWs could
be related to higher light scattering caused by their length. It is suggested that
both the high surface area and the anti-reflective properties of the nanostructures
might have an impact on the overall PL emission [50].

As a first approach for biosensing, the SINWs/ZnO structures etched for 5 min
and covered with a 50 nm layer of ZnO were tested for the detection of hydrogen
peroxide HoOo, which is catalytically produced by many oxido-reductase enzymes
when acting on a substrate. The samples etched for 5 min and covered with
50 nm of ZnO were selected because they displayed the strongest PL emission
that allows improving the overall signal-to-noise ratio. This concept has been
reported for the indirect detection of glucose by Sodzel et al. by using ZnO
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Figure 4.7: PL spectra of SINWs (etched for 2, 5, and 7 min) covered with (a)
20 and (b) 50 nm of ZnO by ALD.

nanoparticles in a 10 mM to 130 mMm range [51]. Fig. 4.8 shows the PL spectra of
SiNWs/ZnO structures after adding different concentrations of HoOs.

The PL intensity decreases in the presence of HoOs and continues to do so
as bigger amounts are added into the solution. The nature of this PL quenching
can be explained by a collisional mechanism presented schematically in Fig. 4.9.
After exciting ZnO, its charge carriers are separated into electrons and holes
that go to the conduction and valence bands, respectively.

The radiative recombination of these carriers is followed by the emission of
a photon with energy close to the ZnO bandgap (near band edge emission or
NBE) or by relaxation through deep level effects (deep level defect emission or
DLE) [51]. At the same time, HoO2 decomposes catalytically into HoO and Os
on the surface of ZnO by acting as an electron acceptor. This acceptance of
electrons from the conduction band of ZnO prevents its radiative recombination
and quenching of the PL occurs. In addition, several reports show that HyO5
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Figure 4.8: Dependence of the PL signal on the HoO5 concentration.
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Figure 4.9: Schematic representation of the PL. quenching mechanism of ZnO

upon exposure to HyOs.

can reduce deep level defects by filling O or Zn vacancies to form ZnO, which
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SiNW/ZnO

could account for the quenching of the DLE (but not for the NBE) [52-54].

Besides quenching of the PL emission, we observed a shift of the main DLE
peak (~418nm as we increased the concentration of HoOy. Table 2.1 shows
the position of the four main peaks after Gaussian fitting with Origin software
(see Appendix Fig. A.2). The violet emission centered at ~418 nm has been
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attributed to zinc vacancies [55], interstitial zinc [56], and interface traps [57],
which reflects the poor consensus among the different sources in the literature.
As we increase the HoO4 concentration, a red shift is observed, reaching ~431 nm
for the highest HoOs concentration. This blue emission has been attributed to
oxygen vacancies at the surface of ZnO [58]. However, as previously mentioned,
H505 can fill O or Zn vacancies or form ZnO, which could decrease the number
of oxygen vacancies and would contradict the reports on the origin of the blue
emission.

Table 4.1: Position of the four main PL peaks before and after interaction with
HQOQ.

Hy02 (mM) Peak 1 Peak 2 Peak 3 Peak 4

0 384 418 486 529
10 384 420 481 513
20 384 427 485 530
30 384 431 487 530

4.2 Conclusions

In summary, we have demonstrated a simple method for the fabrication of
ordered aligned SiNWs/ZnO core shell nanostructures. The method combines
colloidal lithography with MACE. The conformal deposition of ZnO on the SiNWs
was achieved by using ALD. The ordered SiNWs produced by this method
may find many applications in array devices such as field-effect transistors,
sensors, electrodes, and two-dimensional photonic crystals. The detailed study of
structural and optical properties of the core-shell SINWs/ZnO heterostructures
was presented. The X-ray diffraction analysis revealed that all samples have a
hexagonal wurtzite structure. The grain sizes, as measured using XRD data,
were found to be in the range of 7 - 14 nm and were confirmed by TEM. The
TEM and SEM images demonstrated the ability to produce highly uniform layers
of ZnO covered silicon nanowires by the ALD technique. The study of PL spectra
of SiNWs/ZnO showed the domination of defect emission bands, which points
to deviations in the stoichiometry of the prepared 3D ZnO nanostructures. We
also observed the reduction of the PL intensity of SINWs/ZnO etched for 7 min
that could be due to the higher light scattering caused by increasing the length
of the nanowires. Finally, we tested the SINWs/ZnO structures as transducers
for the detection of HyOs. Quenching of the PL signal was observed, and a
mechanism for this effect was proposed. These results open new perspectives for
the preparation of optical and sensing devices.
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Chapter 5

Au-covered hollow urchin-like ZnO
nanostructures for
surface-enhanced Raman
scattering sensing

Surface-enhanced Raman spectroscopy (SERS) has emerged as one of the most
powerful analytical techniques that offer single-molecule detection [1]. Its out-
standing sensitivity and non-destructive character have found many applications
in many fields such as chemistry [2], medicine [3], biology [4], and environmental
sciences [5]. SERS substrates are mainly fabricated with noble metals (Ag, Au,
Cu) due to their strong interaction with electromagnetic waves and the excitation
of the localized surface plasmon resonance (LSPR) that can be tuned in the
ultraviolet-visible-near infrared (UV-Vis-NIR) region [5, 6]. These noble metals
are usually combined with nanostructures such as nanospheres [7], nanowires [8],
nanogaps [9], nanotrees [10], and nanorods [11] that provide roughened metal
surfaces and plasmonically active “hot spots” that enhance the Raman signal by
several orders of magnitude [12]. Additionally, thanks to their inherent SERS
activity [13], semiconductors have been used to fabricate metal/semiconduc-
tor hybrid nanostructures that exhibit both electromagnetic enhancement and
charge-transfer effects [14]. Furthermore, these highly-efficient SERS hybrids
present additional properties that make them attractive for applications such as
photocatalysis [15], water splitting [16], and solar energy conversion [17]. As a
semiconductor material with a wide direct bandgap (3.37 €V), biocompatibility
[18], and promising optical properties [19], ZnO has been employed for the
construction of high-surface-area SERS substrates with a wide range of tunable
morphologies [20].

However, the fabrication of reproducible and stable SERS substrates remains
a significant challenge [21]. Therefore, much attention has been paid to find facile,
repeatable, and high-throughput fabrication methods for large-area nanostruc-
tured substrates. Among these methods, NSL has proven to be a reproducible
and inexpensive technique that offers well-ordered arrays of nanostructures with
wafer-scale throughput [22, 23]. Thus, NSL has been used in combination with
other techniques to fabricate different types of SERS substrates such as silver
film over nanosphere (AgFON) [24], gold semishells [25], nanoring cavities [26],
nanopyramids [27], and optrodes [28]. Recently, high-surface-area urchin-like
structures decorated with Ag have been successfully used as SERS substrates
[20-31]. Nevertheless, even though Ag is preferred over Au due to its higher

*Parts of this chapter will be submitted to the Journal of Materials Chemistry C
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SERS activity, Ag is prone to oxidation in air or water environments [32]. Conse-
quently, decreasing its SERS enhancement factor (EF) as a result of changes in
its chemical and plasmonic properties [33]. Herein, we report a high-surface-area
reproducible SERS substrate consisting of Au-covered ZnO urchin-like hollow
structures for the detection of thiophenol. This substrate was fabricated by
using scalable techniques that include NSL, ALD [34], electrodeposition, and
electron beam (E-beam) evaporation. NSL was used to obtain a template of
well-organized spheres that were later covered with a seed layer of ZnO deposited
by ALD. Afterward, ZnO nanowires (NWs) were grown via a hydrothermal
method to obtain the urchin-like structures which were finally subjected to
E-beam evaporation of Au.

5.1 Results and discussion

Among the different approaches to fabricate ordered arrays of PS spheres,
the direct assembly at the air-water interface has been demonstrated to be a
simple and low-cost method that offers high-quality monolayers over large areas.
Fig. 3.18a shows a SEM micrograph of a large area monolayer of PS spheres with
a high degree of order. In order to produce a non-closed-packed monolayer, the
PS spheres are exposed to oxygen plasma (Fig. 3.18b). This treatment allows
controlling the size of the urchins and space between them. After reducing the size
of the PS spheres, a thin 20nm ZnO layer was deposited by ALD as a seed layer
to promote the growth of ZnO NWs (Fig. 3.18b). Owing to its high conformality
and homogeneity, the ALD method promotes the uniform generation of ZnO
NWs on the surface of the PS spheres, unlike pure hydrothermal methods or
sputtering were the thickness control of the seed layer becomes a challenge [35].
In addition, the ALD layer anchors the PS spheres to the IT'O substrate and
renders their surface electrically conductive for the electrodeposition process.
Fig. 3.18c shows the morphology of the urchin-like ZnO structures. Thanks to
the homogeneous ALD seed layer, the electrodeposited ZnO NWs are evenly
distributed on the surface of the PS spheres. The size and length of the ZnO
NWs of the urchin-like structures deposited by electrodeposition can be tuned
by changing the electrochemical conditions (i.e., zinc precursor concentration
and charge density) [36]. Finally, the urchins are homogeneously covered by a
Au film via E-beam evaporation with thicknesses of 10 nm, 30 nm and 50 nm.
Fig. 3.18d shows the as-synthesized Au-covered urchin-like structures with a Au
layer thickness of 30nm (10nm and 50 nm are shown on Fig. B.2).

The morphology and crystallinity of the urchin-like structures were studied by
TEM. Fig. 3.19a clearly shows the Au film that covers the top of the urchin-like
structures and the 20 nm ZnO seed film deposited by ALD. Notably, the TEM
images display a cavity with a reduced contrast and a shell with a uniform dark
gray color (Fig. B.3), clearly showing the hollow character of the structures. The
high-resolution (HR) TEM image from Fig. 3b shows the lattice fringes that
correspond to ZnO and Au. Likewise, the fast Fourier transform (FFT) of the
HRTEM image shows the (002) plane of ZnO. Additionally, to further confirm
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that the PS core of the urchin structures is removed after annealing, an EDX
mapping was performed. The EDX elemental mapping (Fig. 3.19d) shows that
Zn and O are located in the core of the urchin, while Au is covering the outer
shell of the structure.

XRD measurements were carried out to study the cristallinity of the samples.
The XRD patterns of I'TO, urchin-like ZnO, and Au-covered urchin-like ZnO
structures are displayed in Fig. 3.20. The diffraction peaks at 31.8°, 34.4° and
36.4° can be assigned to the hexagonal wurtzite planes of (100), (002), and (101)
of ZnO [37, 38], while the peaks at 38.2°, 44.5° and 64.6° can be assigned to the
face-centered-cubic (fce) planes of (111), (200), and (220) of Au [39, 40]. These
results show the crystalline nature of the samples and the successful fabrication
of a ZnO/Au composite. The remaining peaks correspond to the ITO film
deposited on quartz that is used as a substrate [41].

The SERS activity of the substrates was optimized by depositing different
thicknesses of Au. Fig. 5.1 shows the Raman spectra of thiophenol molecules
grafted on the ZnO urchin-like structures covered with 10 nm, 30 nm and 50 nm
of Au deposited by e-gun evaporation. Thiophenol was selected due to its ability
to form SAMs via S—Au bonds [42] and its non-resonance behavior near the
sclected excitation wavelengths (633 nm and 785 nm) [43].

The characteristic vibrational modes of thiophenol molecules (1073 M) are
well-observed (see refs [44-46]) like those at 999 cm ™! corresponding to the ring
out-of-plane deformation and the C—H out-of-plane bending (noted, respectively:
r-o-d and v(CH)), 1022 cm ™! corresponding to the C—C symmetric stretching and
the ring in-plane deformation (noted, respectively: v(CC) and r-i-d), 1072 cm~*
corresponding to the C—C symmetric stretching and C—S stretching (noted,
respectively: v(CC) and v(CS)), and at 1572 cm~! the C—C symmetric stretching
(noted: v(CC)). For comparison, we studied the intensity of the peak at 999 cm™?.
It is noticeable that the Raman peaks intensities become larger as we increase
the Au layer thickness for the two excitation wavelengths. This is in accordance
with literature reports where it is shown that the thickness of the metallic layer
plays an important role on the overall SERS enhancement [47-49]. For our
complete study, we chose the 30 nm-thickness with the excitation wavelength of
785 nm to obtain a good compromise between the SERS signal enhancement
and a low overall cost of production of these SERS substrates.

Fig. 5.2a shows the thiophenol spectra obtained from different structures
for the purpose of comparison. When ZnO nanowires covered with Au (30 nm)
of a size comparable from those on the ZnO urchin-like structures were used,
the characteristic Raman peaks of thiophenol could be barely distinguished.
Similarly, for the bare Au film (30nm), the thiophenol peaks could be hardly
identified. This result shows that the urchin-like structures present the highest
SERS activity from these three types of substrate configurations.

Given the complex 3D morphology of the urchins, it is difficult to know the
exact number of molecules that are excited in the SERS measurements [50, 51].
For this reason, the SERS gain (Gsgrs) for the 30 nm Au-covered ZnO urchins
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Figure 5.1: SERS spectra of thiophenol (1073 M) from different Au film thick-
nesses (10, 30, and 50 nm) for the two excitation wavelengths used in our
experiments: (a) 633 nm and (b) 785 nm.
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Figure 5.2: (a) SERS spectra of thiophenol (1073 M) from a 30 nm Au film, a
30 nm Au ZnO NWs, and a 30 nm Au covered urchin-like ZnO, which present
an offset to improve the data visualization. (b) SERS spectra of the 30 nm
Au-covered ZnO urchins with different thiophenol concentrations. The spectra
are not background-corrected and were recorded at the excitation wavelength of
785 nm.

SERS substrates was calculated by using the formula:

I
GsERrs ~ I:ﬂ (5.1)

[9] were IRaman represents the Raman intensity of a planar 30 nm Au thin film
functionalized with thiophenol and Isgprs represents the Raman intensity of of
a thiophenol solution in ethanol (1M; see Fig. B.4).
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Results and discussion

Thus, the highest Gsgprs value for the Raman peak at 1572cm™! was
5.3 x 10%)(Table 5.1).

Table 5.1: Calculated SERS gains Gggrs for four Raman peaks (1mM of
thiophenol) at the excitation wavelength of 785 nm for ZnO urchin-like structures
covered with a 30 nm Au film.

Raman shift (cm™) 999 1022 1072 1572
Isers 15066 12199 16926 9539
IRaman 79 32 55 18
GsERS 1.9 x 102 3.8x 10> 3.1x10®> 5.3x103

This outstanding Gsgrs can be attributed to the combination of different
effects such as efficient light trapping [30] and the generation of hot spots from
almost-touching NWs from adjacent urchins [52]. Additionally, the size of the
gaps between the Au-covered urchin-like structures is in the same range as the
excitation wavelength, which could contribute to the enhancement of localized
electromagnetic fields and effective absorption of light by the LSPR [9, 31].
SERS measurements with a range of concentrations from 1072 M to 10~ M were
performed in order to assess the limit of detection (LOD) of the substrates
. Fig. 5.2b shows the Raman spectra of the substrates grafted with different
thiophenol concentrations. The intensities of the Raman peaks remain strong
up to a concentration of 1 x 10~ M and then decrease considerably for the
concentration of 1078 M where only the peak at 999 cm ™! remains visible. This
LOD is comparable with values reported in the literature for thiophenol and
similar Au-based structures [45, 48].

To demonstrate the large-area uniformity of the Au-covered hollow urchin-like
structures, we constructed a Raman intensity map of the 999 cm~! peak over
a 20pum x 20 pm area with a step size of 1 um (Fig. 5.3a). The 400 point map
shows an almost continuous bright-colored area with a few darker spots where the
intensity is lower, which demonstrates the reasonable uniformity of the substrate.

Additionally, the substrate-to-substrate repeatability was investigated by
measuring the intensity of the 999cm~! peak from three different batches.
Fig. 5.3b shows the intensity distribution for three different samples. The
average RSD value was found to be <10 % which indicates decent repeatability
of the SERS substrates and shows their excellent performance.

Finally, to demonstrate the biomolecule sensing capability of these substrates,
we chose the biomolecule adenine which can be used in the detection of DNA or
RNA analytes [9, 26]. Fig. 5.4 shows Raman spectra of adenine at three different
concentrations. The characteristic purine stretch at 736 cm ™! is noticeable up
to a concentration of 1M and the spectra show a low signal-to-noise ratio,
which is beneficial for future biosensing applications and is comparable to results
published in the literature [9, 26].
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Figure 5.3: (a) Raman map image of the 999 cm~! peak from a randomly selected
area (20 pm x 20 um) on the Au-covered hollow urchin-like structures at the 785
nm excitation wavelength. (b) Intensity distribution of the 999 cm~! peak of
three different samples with an average RSD value <10 %.
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Figure 5.4: SERS detection of adenine with a LOD of 1pM. An offset was
applied to improve the data visualization.

5.2 Conclusions
In summary, high-surface-area Au-covered hollow ZnO urchin-like structures were

prepared by combining NSL, ALD, electrodeposition, and E-beam evaporation.
These high-throughput methods are readily scalable and allow the precise control
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of the size of the urchins and the interparticle distance. The amplification of the
SERS signal of thiophenol was investigated by depositing different thicknesses of
Au and the optimal thickness was selected. The LOD of the optimized substrates
was tested by detecting thiophenol down to 10~® M. Additionally, the batch-to-
batch repeatability was demonstrated and an average RSD <10 % was obtained.
Finally, adenine was detected up to a concentration of 107% M to demonstrate the
biosensing capability of our substrate. These results suggest that the Au-covered
hollow urchin-like ZnO structures are viable candidates for ultrasensitive and
repeatable SERS sensing and biosensing.
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Chapter 6

Synthesis of hybrid Pd/Au and
ZnO/Au/ZIF-8 materials

Nanostructured materials have significantly changed materials science as we
know it. Their fabrication methods have provided a new generation of hybrid
structures with tunable physical, mechanical, chemical, and optical properties.
Nanomaterials have gained attention due to their enhanced performance when
compared to their bulk counterparts, making them attractive for many industrial
applications. The design of innovative nanostructured materials requires a strict
control of their size, shape, and composition. Furthermore, these nanoengineered
materials must be cost-effective and compatible with large scale production
lines. As one of the few techniques that allows to deposit thin films with
control down to the angstrom level, ALD has become an essential tool for the
assembly of nanostructured materials. In addition, its compatibility with current
manufacturing methods makes it a promising candidate for the high-throughput
processing of nanostructured components.

In this chapter, we propose two novel materials based on the SINWs and
urchin-like ZnO structures displayed in Chapter 4 and Chapter 5, respectively.
First, to overcome the difficulties of depositing bimetallic Pd and Au nanoparticles
directly on the SiINWs, a combination of ALD and galvanic replacement reaction
are proposed. Second, a novel electrochemically-based approach to deposit a
thin film of ZIF-8 MOF is introduced. Third, the fabrication processes, physical
properties, and chemical composition will be discussed. Finally, as these are
only preliminary results, general perspectives and examples of how they could
be applied for SERS sensing will be suggested.

6.1 Pd/Au nanoparticles

Bimetallic nanostructures have attracted a great deal of attention in the last
decade not only for their distinct electronic, optical, and catalytic properties
but also for their potential applications in photocatalysis [1], drug delivery [2],
water remediation [3], biosensing [4], and energy conversion in low-temperature
fuel cells [5]. Unfortunately, for surface-enhanced Raman spectroscopy (SERS)
applications, only substrates made from silver (Ag), gold (Au), and copper
(Cu) have been used, which limits their range of applications. For this reason,
considerable effort has been put for developing SERS-active substrates based on
other transition metals. In particular, Palladium (Pd) has been proposed as an
alternative SERS-active material due to its stability and catalytical applications
in electrochemistry and surface science. Although present, the enhancement
factors that can be obtained with Pd (10! to 10%) are much lower than the ones
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coming from Ag, Au, and Cu (109).

Thus, one of the strategies that have been proposed to improve the SERS
activity of Pd has been to combine it with SERS-active materials like Ag and
Au. This approach takes advantage of the strong electromagnetic field created
by the Ag or Au SERS-active substrate when excited with the right excitation
line. For instance, Hu et al. prepared core-shell Au@Pd structures by chemical
deposition of Pd on Au seeds with different sizes [6]. The Au@Pd nanoparticles
were deposited on a glassy carbon electrode for in-situ electrochemical SERS
measurements of carbon monoxide (CO) to confirm that the Pd shell on the Au
core was uniform. Furthermore, the Au@Pd nanoparticles displayed a higher
SERS enhancement of more than two orders of magnitude when compared with
bare roughened Pd electrodes. Similarly, Zhang et al. developed a seed-mediated
growth method to produce highly branched concave Au/Pd nanocrystals with five-
fold symmetric features [7]. Owing to their sharp multitips and edges, the Au/Pd
nanostructures exhibited efficient SERS-activity and superior electrocatalytic
activity. Crystal violet dye was detected at concentrations as low as 10712 M.

6.1.1 Results and discussion for silicon nanowires decorated
with Pd/Au nanoparticles

Fig. 6.1 shows the SEM images of SiNWs decorated with Pd and Pd/Au nanos-
tructures by combining ALD and galvanic replacement. After optimization of
the deposition process, it was found that 100 ALD cycles produced an homo-
geneous coating of highly dispersed Pd nanoparticles on the surface of SINWs
(Fig. 6.1a,b). Next, Au was introduced in the Pd nanoparticles by performing a
galvanic replacement reaction. Fig. 6.1d shows a top view image of the SINWSs
decorated with Pd/Au nanostructures and confirms the preservation of the
SiNWs architecture.

Additionally, EDX was performed to confirm the presence of Pd and Au on
the SINWs as shown in Fig. 6.2. Considering that the depth of penetration of
the EDX measurement is ~500 nm, the majority of the signal comes from the
SiNWs (Si, O) and only a small portion is due to the Pd/Au nanoparticles. [8].

The Pd/Au decorated SINWs were further analyzed by XPS to determine the
oxidation states of Pd and Au. The two peaks with binding energies of 84.5 eV
and 88.2 eV correspond to the Au 4fr, and Au 4fs,, respectively, which indicate
that Au is in its metallic form (Au®) [9]. Furthermore, the 3.7 ¢V binding energy
difference of the Au 4f7, and the Au 4f;, components is attributed to the Au 4f
ionization process, which is in agreement with the values found in the literature
[10, 11]. Likewise, the presence of metallic Pd can be confirmed by looking at the
Pd 3ds, and Pd 3ds, at binding energies of 335.4 eV and 340.5 eV, respectively
[12]. Also, no Au®" or chlorine signals were detected in their corresponding
photoelectron region, which tells us that the washing procedure was effective for
the removal of Au" salt residues.

To have an insight into the distribution of Au and Pd species on the SINWs
TEM and EDX-element mapping should be performed. Moreover, different Aus™
concentrations and galvanic replacement reaction times should be tested in order
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Figure 6.1: SEM images of (a), (b), (¢) SINWs decorated with Pd by ALD.
Top view of (d) SiNWs decorated with Pd and Au structures after galvanic
replacement.

14000 ~ Element % Weight | % Atomic
Si
U C 2 6
12000 o 4 8
Si 71 80
Pd 13 4
Au 10 2
10000 Total: 100 100
0
£ 8000 -
=}
S
6000
4000 -
2000 o F
C|
O T T T T 1
2 4 6 8 10
Energy (keV)

Figure 6.2: EDX spectrum of the as-synthesized SiNWs/Pd/Au structures.
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Figure 6.3: XPS spectra of the Pd/Au system showing (a) Au 4f and (b) Pd 3d
core level spectra.

to control the Au:Pd ratio. Finally, Raman measurements should be conducted
to test the SERS activity of the substrates. In the next section, a hybrid 3D
nanostructure based on ZIF-8 and ZnO will be discussed.

6.2 ZIF-8

Metal organic frameworks (MOFs) constitute a novel class of crystalline materials
that are formed through the self-assembly of metal cations (nodes) and organic
ligands (linkers). Their diverse structural topologies, unprecedented porosity,
and versatile chemical functionalities (host-guest interactions) have made them
attractive for applications such as gas storage and separation [13], fabrication of
luminescent materials [14], drug delivery [15], and catalysis [16]. The size and
aperture of the pores can be fine-tuned by carefully selecting the appropriate
metal ion clusters and organic linker sizes and shapes, controlling the catenation
(i.e., interpenetration or interweaving of identical frameworks), and taking into
account the directional mobility of the linkers.

Recently, the potential of MOFs to improve the detection capabilities of
SERS substrates has been explored. For instance, He et al. developed a
facile one-pot method to prepare AUQMOF-5 nanoparticles wherein a single
Au nanoparticle is coated with a uniform MOF-5 shell [17]. The core-shell
Au@MOF-5 nanoparticles with a shell thickness of ~3nm were highly selective
towards COs in a gas mixture of Ny, Oo, and CO. For comparison purposes,
bare Au nanoparticles and MOF-5 spheres where exposed to CO5 and no Raman
signals were observed, which demonstrated the critical role of the combination
of Au and MOF-5 in the specific core-shell nanostructure. Impressively enough,
the influence of aggregation of the nanoparticles towards the repeatability of the
measurements can be seen as a drawback. Recently, Kreno et al. deposited a
thin film of ZIF-8 to detect a series of volatile organic compounds (VOCs) that
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do not absorb on the surface of Ag "films-over-nanospheres" (FON) substrates
[18]. However, the adsorbed molecules were much larger than the 3.4 A pore
apertures, suggesting that the adsorption was preferably at grain boundaries in
the film and thus no molecular sieving effect could be envisioned.

6.2.1 Results and discussion for ZIF-8 deposited on urchin-like
ZnO structures

SEM images of the bare ZnO/Au and ZnO/Au/ZIF-8 urchin-like structures are
shown in Fig. 6.4. As shown in Fig. 6.4, the ZIF-8 film covers the entire urchin
structure with small crystallites. This polycrystalline morphology is similar as to
the structure seen on a flat ITO substrate [19]. As shown on the XRD pattern
from Fig. 6.5, the ZIF-8 film on top of the ZnO/Au structures shows peaks that
coincide with the reflections of the simulated pattern, confirming that the single
phase is ZIF-8 [20]. Additionally, EDX was performed to further confirm the
presence of ZIF-8 on the ZnO/Au urchin-like structures by detecting C and N
(Fig. 6.6).

Figure 6.4: SEM images of urchin-like ZnO/Au structures (a) before and (b)
after ZIF-8 electrodeposition. The inset in (b) shows a magnification of the
Z1F-8 crystals.

So far, the presence of ZIF-8 was confirmed by XRD and EDX measurements.
A further analysis with TEM should be conducted to have an insight into the
distribution of ZIF-8 on the Au/ZnO urchin-like structures. Also, considering
that the electromagnetic enhancement suffers an exponential attenuation with
distance [21] (within just a few nanometers), different thicknesses of ZIF-8 should
be produced to test the influence on the overall SERS enhancement factor.
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Figure 6.5: XRD patterns of the urchin-like ZnO/Au structures and the urchin-
like ZnO/Au/ZIF-8 structures. The simulated XRD pattern of ZIF-8 is given
under the corresponding measured pattern. The peaks of ITO come from the
underlying substrate.
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Figure 6.6: EDX spectrum of the as-synthesized ZIF-8/Au/ZnO urchin-like
hybrid structures.
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6.3 Conclusions

Pd/Au nanoparticles supported on SiNWs were synthesized by a combination of
ALD and the galvanic replacement reaction. Their general morphology before
and after the galvanic replacement reaction was studied. The composition and
chemical state of the Pd/Au nanoparticles was confirmed with EDX and XPS.
Further characterization techniques like HRTEM would be of great interest to
elucidate the exact morphology and crystallinity of the nanoparticles, which
could give us an insight into the replacement mechanism and segregation of Au
into the Pd nanoparticles. We believe that these bimetallic nanoparticles could
be used as SERS substrates for sensing of relevant biomolecules [6, 7, 22].

ZnO/Au/ZIF-8 hollow urchin-like structures were synthesized by an oxygen-
assisted cathodic electrodeposition strategy. The overall morphology was studied
by SEM and the chemical composition was confirmed by XRD. The microstruc-
tures should be further analyzed with TEM and EDX to study the ZIF-8 film
thickness and to confirm the ZnO/Au/ZIF-8 core-shell structure. These hybrid
structures could be used as potential SERS substrates for the sensing of volatile
organic compounds [17, 18, 23].
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Chapter 7
Summary and outlook

The primary motivation of the different projects presented in this thesis was to
develop different nanostructured transducers by using ALD in combination with
other fabrication techniques. This motivation was addressed by developing two
distinct approaches. The first one was based on the combination of ALD and
lithographic etching processes to produce high aspect ratio structures that could
be used as optical transducers. The second approach involved the elaboration of
complex architectures based on ZnO by combining ALD and electrodeposition
to introduce structural features that can benefit future biosensing applications.
In the following, a summary of the specific achievements is given:

o SiNWs/ZnO were produced with a simple method that combines MACE,
NSL, and ALD. The versatility of the method to change the spacing
between the SINWs and their height is demonstrated by modifying the RIE
treatment and etching times. The ability of ALD to conformally coat these
3D SiNWs nanostructures with ZnO was confirmed by TEM. Also, XRD
and Raman spectroscopy were employed to determine the crystallite size
of ZnO and the implications on its optical properties. Photoluminescence
measurements of the structures with different etching times and ZnO
thicknesses were performed and it was found that the nanostructures
obtained with a 5 min etch showed the strongest PL emission. Finally,
the 5 min etched SINWs/ZnO were exposed to varying concentrations of
H505 while recording their PL emission spectra as a first approach for
sensing. Quenching of the PL emission was observed with the first addition
of HoO5, and a mechanism for this observation was proposed.

e Though there exist numerous approaches to produce nanostructures based
on 7ZnO, their reliable and controlled generation is still not trivial. One of
the most powerful techniques to create ZnO-based structures is ALD. In this
thesis, a combination of NSL, ALD, electrodeposition, and e-beam evapo-
ration was used to produce highly-ordered ZnO/Au urchin-like structures.
The SERS capabilities of these substrates was investigated by grafting
them with thiophenol. After testing three different Au layer thicknesses, it
was found that the both 30 nm and 50 nm thicknesses presented the highest
enhancements. The LOD of the optimized substrates was determined to
be 10~® M. Furthermore, the batch-to-batch repeatability was tested and
a RSD of <10 % was obtained. Adenine was detected with concentrations
as low as 1079 M, which demonstrates the capability of the substrates to
biomolecules sensing. These results suggest that the urchin-like ZnO/Au
structures can be successfully applied as SERS substrates.
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e The SiNWs and urchin-like structures described above were used as a basis

to prepare Pd/Au nanoparticles and ZnO/Au/ZIF-8 films, respectively.
The formation of Pd nanoparticles was achieved by using ALD. After, Au
was introduced to the SINWs/Pd structures by the galvanic replacement
reaction. EDX and XPS techniques were used to confirm the chemical
composition of these sructures and it was found that Au had been replace
successfully by looking at its oxidation state. The deposition of ZIF-8 on
ZnO/Au urchin-like structures was performed by using a novel oxygen-
assisted cathodic synthesis strategy. The morphology of these structures
was studied with SEM, which showed an homogeneous film of ZIF-8 covering
the 3D structures. Additionally, the composition of the films was studied
with XRD, which confirmed the presence of ZIF-8 on the surface of the
urchins.

A short outlook for the possible research directions of the projects introduced
in this thesis is described as follows:

o The selection of an adequate functionalization method of the SINWs/ZnO
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structures for the immobilization of bio-recognition elements should be
studied. Furthermore, the selection of a relevant enzyme/substrate system
for the biosensing proof-of-concept should be addressed. Also, the stability
of the ZnO layer towards aqueous environments should be tested as many
biosensing applications involve the introduction of the substrates into
complex media (e.g., blood). Because POC applications demand the use of
portable devices, the photoluminescence properties of the nanostructures
should be tested with adequate compact UV lightsources.

To have a deeper understanding of the exact Raman enhancement mecha-
nism of the Au/ZnO urchin-like structures, finite-difference time-domain
(FDTD) simulations could be performed. In addition, the influence of the
size and geometry of the urchins on the localization of the LSPR could be
investigated. Similarly, the influence on the optical properties and SERS
enhancement of the substrates after annealing (transformation of the Au
film into nanoparticles) could be studied. To validate the biosensing capa-
bility of the substrates, DNA detection could be envisioned by immobilizing
a capture probe DNA on the surface of the Au/ZnO urchin-like structures,
which could detect a target DNA carrying a reporter probe labeled with a
dye, leading to a detectable SERS signal.

The morphology of the SINWs/Pd/Au could be investigated by TEM. Also,
the influence on the Pd loading and the ratio of Au replacement could be
performed, which could give a broader tunability of the composition and
morphology of these bimetallic nanostructures. Moreover, these hybrid
structures could be tested for SERS activity by choosing an adequate probe.
Regarding the ZnO/Au/ZIF-8 urchin-like structures, TEM measurements
could be performed to have a better idea of the morphology of the ZIF-8



film. The thickness of the ZIF-8 film could be changed in order to study the
influence on the morphology and optical properties of the hybrid structures.
Extinction and SERS measurements could be conducted with a suitable
probe that cannot be adsorbed on a bare Au surface (e.g., benzene) to
study the capability of the ZIF-8 film for trapping these type of molecules.

In the last decade, the vast amount of theoretical and experimental work
on transducer elements for biosensing has expanded the collection of available
materials and nanostructures. The influencing demand of fabricating reliable and
robust biosensors has stimulated the development of novel approaches that can
deliver reproducible nanostructured substrates with a tough control of their size,
composition, and morphology. As one of the few established methods that allows
depositing thin films with high conformality over complex 3D structures, ALD
has revolutionized the semiconductors industry by becoming a key technology
for microelectronic devices fabrication. Moreover, the ALD technology has had
a direct impact in the development of novel types of biosensors platforms by
being combined with other fabrication techniques such as NSL, electrodeposition,
and electrospinning. However, a cost-effectiveness analysis should be performed
before these approaches can be implemented into large scale production lines.
For instance, ALD is a slower (up to two orders of magnitude) technique than
CVD and usually requires vacuum conditions, thus making it hard and expensive
to scale up. Additionally, when lithographic techniques based on nanospheres
are used to produce wafer-scale nanostructures, the resulting substrate is usually
accompanied by point defects that can have a negative effect on their overall
performance. Thus, to overcome these limitations, novel approaches such as
spatial ALD and nanoimprint lithography (NIL) have been developed and
represent cost-effective tools that can be implemented to produce nanostructured
transducer materials for biosensors.

Going forward, we believe that the SINWs and urchin like structures presented
in this work will serve as the basis for future transducer elements by targeting
portable systems that are non-invasive and that can be used at home. Moreover,
their tailorability and potential surface functionalization with bio-recognition
elements derived from semi-synthetic ligands (e.g., aptamers, affibodies, peptide
arrays, and molecularly imprinted polymers) will further expand their use as
transducers for sensitive, selective, and stable biosensors. Finally, we envision
that the nanostructures and techniques presented in this work will continue to
expand their presence in real-world applications.
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Appendix for Chapter 4
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Figure A.1: Deconvolution of peaks for the PL spectra of SINWs prepared at
different etching times: 2, 5 and 7 minutes, and after ALD of 20 and 50 nm of

ZnO.
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Figure A.2: Deconvolution of peaks for the PL spectra of SINWs etched for 5

min and covered with a 50 nm ZnO film by ALD, and after being exposed to
(b), (c), and (d), 10 mM, 20 mM, and 30 mM of HyOs.
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Figure B.1: SEM micrograph of PS spheres exposed to an Oy plasma for 5 min.

Figure B.2: SEM micrographs of urchin-like ZnO structures covered by a a) 10
nm and a b) 50 nm Au layer deposited by e-gun evaporation (scale bar: 1pm).
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Figure B.3: TEM image of a Au-covered ZnO urchin-like structures. The cavity
has a reduced contrast and a shell with a uniform dark gray color.
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Figure B.4: Raman spectrum of thiophenol in ethanol recorded at the excitation
wavelength of 785 nm where the four Raman peaks studied here are displayed.
The rest of the peaks correspond either to thiophenol or ethanol. Reprinted with
permission from [1]. Copyright 2017 Elsevier.
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