. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Fast-LDA : a Linear Discriminant Analysis for large scale data

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Transfer Learning for Large Scale Data

, Linear Ker-nelPCA and K-Means Clustering Using New Estimated Eigenvectors of the Sample Covariance Matrix, ? Conférences internationales avec articlesétendus 1. Nassara Elhadji Ille Gado, 2015.

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Linear Discriminant Analysis for Large-Scale data : Application on Text and Image data, 2016 IEEE 15th International Conference on Machine Learning and Applications (ICMLA), 2016.

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Linear Discriminant Analysis based on Fast Approximate SVD, SCITEPRESS 6th International Conference on Pattern Recognition, Applications and Methods, 2017.

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Transfer Learning for Large Scale Data using Subspace Alignment, IEEE 16th International Conference on Machine Learning and Applications, 2017.

N. Marz and J. Warren, Big Data : Principles and best practices of scalable realtime data systems, 2015.

K. Yu, X. Wu, W. Ding, and J. Pei, Scalable and accurate online feature selection for big data, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.11, issue.2, p.16, 2016.

M. Usama, G. Fayyad, P. Piatetsky-shapiro, and . Smyth, Knowledge discovery and data mining : Towards a unifying framework

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol.1, pp.281-297, 1967.

R. Vaishali, . Patel, G. Rupa, and . Mehta, Impact of outlier removal and normalization approach in modified k-means clustering algorithm, IJCSI International Journal of Computer Science Issues, vol.8, issue.5, pp.331-336, 2011.

S. Paul, . Bradley, M. Usama, and . Fayyad, Refining initial points for k-means clustering, ICML, vol.98, pp.91-99, 1998.

I. Ludmila, . Kuncheva, P. Dmitry, and . Vetrov, Evaluation of stability of k-means cluster ensembles with respect to random initialization, IEEE transactions on pattern analysis and machine intelligence, vol.28, pp.1798-1808, 2006.

A. Reinert, Une méthode de classification descendante hiérarchique : applicationà l'analyse lexicale par contexte. Les cahiers de l'analyse des données, vol.8, pp.187-198, 1983.

U. Von and L. , A tutorial on spectral clustering, Statistics and computing, vol.17, issue.4, pp.395-416, 2007.

Y. Bengio, J. Paiement, P. Vincent, O. Delalleau, N. L. Roux et al., Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering, Advances in neural information processing systems, pp.177-184, 2004.

Y. Andrew, M. I. Ng, Y. Jordan, and . Weiss, On spectral clustering : Analysis and an algorithm, Advances in neural information processing systems, vol.2, pp.849-856, 2002.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer Series in Statistics, 2001.

F. Dennis and . Sinclair, On tests of spatial randomness using mean nearest neighbor distance, Ecology, vol.66, issue.3, pp.1084-1085, 1985.

R. Haeb, -. Umbach, and H. Ney, Linear discriminant analysis for improved large vocabulary continuous speech recognition, Acoustics, Speech, and Signal Processing, vol.1, pp.13-16, 1992.

S. Ethel and . Gilbert, The effect of unequal variance-covariance matrices on fisher's linear discriminant function, Biometrics, pp.505-515, 1969.

K. Torkkola, Linear discriminant analysis in document classification, IEEE ICDM Workshop on Text Mining, pp.800-806, 2001.

S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Mullers, Fisher discriminant analysis with kernels, Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp.41-48, 1999.

H. Liu and W. Chen, A novel random projection model for linear discriminant analysis based face recognition, 2009 International Conference on Wavelet Analysis and Pattern Recognition, pp.112-117, 2009.

D. Cai, X. He, and J. Han, Training linear discriminant analysis in linear time, IEEE 24th International Conference on Data Engineering, pp.209-217, 2008.

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol.20, issue.3, pp.273-297, 1995.

E. Osuna, R. Freund, and F. Girosi, Support vector machines : Training and applications, 1997.

T. Joachims, Text categorization with support vector machines : Learning with many relevant features, European conference on machine learning, pp.137-142

. Springer, , 1998.

J. Weston and C. Watkins, Multi-class support vector machines, 1998.

E. Bernhard, I. M. Boser, V. N. Guyon, and . Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152, 1992.

. Cs-withers, Mercer's theorem and fredholm resolvents, Bulletin of the Australian Mathematical Society, vol.11, issue.3, pp.373-380, 1974.

N. Beresford and . Parlett, The rayleigh quotient iteration and some generalizations for nonnormal matrices, Mathematics of Computation, vol.28, issue.127, pp.679-693, 1974.

A. Hoecker and V. Kartvelishvili, Svd approach to data unfolding, 1995.
URL : https://hal.archives-ouvertes.fr/in2p3-00022656

S. Saitoh, Theory of reproducing kernels and its applications, vol.189, 1988.

E. Bingham and H. Mannila, Random projection in dimensionality reduction : applications to image and text data, Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp.245-250, 2001.

P. Frankl and H. Maehara, The johnson-lindenstrauss lemma and the sphericity of some graphs, Journal of Combinatorial Theory, Series B, vol.44, issue.3, pp.355-362, 1988.

S. Dasgupta and A. Gupta, An elementary proof of the johnsonlindenstrauss lemma. International Computer Science Institute, pp.99-105, 1999.

D. Achlioptas, Database-friendly random projections, Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp.274-281, 2001.

R. Baraniuk, M. Davenport, R. Devore, and M. Wakin, A simple proof of the restricted isometry property for random matrices, Constructive Approximation, vol.28, issue.3, pp.253-263, 2008.

J. Nicholas and . Higham, Matrix nearness problems and applications, 1988.

T. Sarlos, Improved approximation algorithms for large matrices via random projections, Foundations of Computer Science, 2006. FOCS'06. 47th Annual IEEE Symposium on, pp.143-152, 2006.

A. K. Menon and C. Elkan, Fast algorithms for approximating the singular value decomposition, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.5, issue.2, p.13, 2011.

C. Boutsidis, A. Zouzias, W. Michael, P. Mahoney, and . Drineas, Randomized dimensionality reduction for-means clustering, IEEE Transactions on Information Theory, vol.61, issue.2, pp.1045-1062, 2015.

C. Bouveyron and S. Girard, Classification supervisée et non supervisée des données de grande dimension, La revue de Modulad, vol.40, pp.81-102, 2009.

J. Yang and J. Yang, Why can lda be performed in pca transformed space ? Pattern recognition, vol.36, pp.563-566, 2003.

D. Cai, X. He, and J. Han, Srda : An efficient algorithm for large-scale discriminant analysis, IEEE transactions on knowledge and data engineering, vol.20, issue.1, pp.1-12, 2008.

J. Ye and Q. Li, Lda/qr : an efficient and effective dimension reduction algorithm and its theoretical foundation, Pattern recognition, vol.37, issue.4, pp.851-854, 2004.

Q. Sinno-jialin-pan and . Yang, A survey on transfer learning, IEEE Transactions on knowledge and data engineering, vol.22, issue.10, pp.1345-1359, 2010.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng, Selftaught learning : transfer learning from unlabeled data, Proceedings of the 24th international conference on Machine learning, pp.759-766, 2007.

X. Zhu, Z. Huang, Y. Yang, C. Heng-tao-shen, J. Xu et al., Self-taught dimensionality reduction on the high-dimensional small-sized data, Pattern Recognition, vol.46, issue.1, pp.215-229, 2013.

A. Evgeniou and M. Pontil, Multi-task feature learning, Advances in neural information processing systems, vol.19, p.41, 2007.

Z. Zhang and J. Zhou, Multi-task clustering via domain adaptation, Pattern Recognition, vol.45, issue.1, pp.465-473, 2012.

X. Li, M. Fang, J. Zhang, and J. Wu, Sample selection for visual domain adaptation via sparse coding, Signal Processing : Image Communication, vol.44, pp.92-100, 2016.

B. Gong, Y. Shi, F. Sha, and K. Grauman, Geodesic flow kernel for unsupervised domain adaptation, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp.2066-2073, 2012.

M. Szymon-zar-eba, J. Kocot, and . Tomczak, Domain adaptation for image analysis : An unsupervised approach using boltzmann machines trained by perturbation, International Conference on Systems Science, pp.14-22, 2016.

A. Gaidon and E. Vig, Online domain adaptation for multi-object tracking, 2015.

J. Tao, S. Wen, and W. Hu, Robust domain adaptation image classification via sparse and low rank representation, Journal of Visual Communication and Image Representation, vol.33, pp.134-148, 2015.

M. Sugiyama, M. Krauledat, and K. Müller, Covariate shift adaptation by importance weighted cross validation, Journal of Machine Learning Research, vol.8, pp.985-1005, 2007.

B. Zadrozny, Learning and evaluating classifiers under sample selection bias, Proceedings of the twenty-first international conference on Machine learning, p.114, 2004.

F. Vella, Estimating models with sample selection bias : a survey, Journal of Human Resources, pp.127-169, 1998.

M. Gheisari and M. Baghshah, Unsupervised domain adaptation via representation learning and adaptive classifier learning, Neurocomputing, vol.165, pp.300-311, 2015.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, Unsupervised visual domain adaptation using subspace alignment, Proceedings of the IEEE international conference on computer vision, pp.2960-2967, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00869417

. Cheng-an, Y. Hou, Y. Tsai, Y. Yeh, and . Wang, Unsupervised domain adaptation with label and structural consistency, IEEE Transactions on Image Processing, vol.25, issue.12, pp.5552-5562, 2016.

I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. W. Aha, Unsupervised and transfer learning challenge, The 2011 International Joint Conference on, pp.793-800, 2011.

. Sinno-jialin-pan, T. James, Q. Kwok, and . Yang, Transfer learning via dimensionality reduction, AAAI, vol.8, pp.677-682, 2008.

L. Duan, D. Xu, and I. Tsang, Learning with augmented features for heterogeneous domain adaptation, 2012.

C. Wang and . Sridhar-mahadevan, Heterogeneous domain adaptation using manifold alignment, IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol.22, p.1541, 2011.

X. Shi, Q. Liu, W. Fan, and P. Yu, Transfer across completely different feature spaces via spectral embedding. Knowledge and Data Engineering, IEEE Transactions on, vol.25, issue.4, pp.906-918, 2013.

Q. Wu, H. Wu, X. Zhou, M. Tan, Y. Xu et al., Online transfer learning with multiple homogeneous or heterogeneous sources, IEEE Transactions on Knowledge and Data Engineering, vol.29, issue.7, pp.1494-1507, 2017.

W. Sui, X. Wu, Y. Feng, and Y. Jia, Heterogeneous discriminant analysis for cross-view action recognition, Neurocomputing, vol.191, pp.286-295, 2016.

W. Dai, Y. Chen, G. Xue, Q. Yang, and Y. Yu, Translated learning : Transfer learning across different feature spaces, Advances in neural information processing systems, pp.353-360, 2009.

B. Kulis, K. Saenko, and T. Darrell, What you saw is not what you get : Domain adaptation using asymmetric kernel transforms, Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pp.1785-1792, 2011.

J. Gao, R. Huang, and H. Li, Sub-domain adaptation learning methodology, Information Sciences, vol.298, pp.237-256, 2015.

M. Vishal, R. Patel, R. Gopalan, R. Li, and . Chellappa, Visual domain adaptation : A survey of recent advances, IEEE signal processing magazine, vol.32, issue.3, pp.53-69, 2015.

B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars, Subspace alignment for domain adaptation, 2014.

R. Xia, C. Zong, X. Hu, and E. Cambria, Feature ensemble plus sample selection : domain adaptation for sentiment classification, IEEE Intelligent Systems, vol.28, issue.3, pp.10-18, 2013.

I. W. Sinno-jialin-pan, J. T. Tsang, Q. Kwok, and . Yang, Domain adaptation via transfer component analysis, IEEE Transactions on Neural Networks, vol.22, issue.2, pp.199-210, 2011.

J. Tao, D. Song, S. Wen, and W. Hu, Robust multi-source adaptation visual classification using supervised low-rank representation, Pattern Recognition, vol.61, pp.47-65, 2017.

M. Long, G. Ding, J. Wang, J. Sun, Y. Guo et al., Transfer sparse coding for robust image representation, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

J. Chen, L. Tang, J. Liu, and J. Ye, A convex formulation for learning shared structures from multiple tasks, Proceedings of the 26th Annual International Conference on Machine Learning, pp.137-144, 2009.

J. Chen, L. Tang, J. Liu, and J. Ye, A convex formulation for learning a shared predictive structure from multiple tasks. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.35, issue.5, pp.1025-1038, 2013.

A. Argyriou, T. Evgeniou, and M. Pontil, Multi-task feature learning, Advances in neural information processing systems, pp.41-48, 2007.

L. Jie, T. Tommasi, and B. Caputo, Multiclass transfer learning from unconstrained priors, Computer Vision (ICCV), 2011 IEEE International Conference on, pp.1863-1870, 2011.

W. Dai, Q. Yang, G. Xue, and Y. Yu, Boosting for transfer learning, Proceedings of the 24th international conference on Machine learning, pp.193-200, 2007.

J. T. Zhou, I. W. Tsang, M. Sinno-jialin-pan, and . Tan, Heterogeneous domain adaptation for multiple classes, Artificial Intelligence and Statistics, pp.1095-1103, 2014.

P. Arthur and . Dempster, A high dimensional two sample significance test, The Annals of Mathematical Statistics, pp.995-1010, 1958.

Z. Bai and H. Saranadasa, Effect of high dimension : by an example of a two sample problem, Statistica Sinica, pp.311-329, 1996.

. Zd-bai, Methodologies in spectral analysis of large dimensional random matrices, a review, Statistica Sinica, pp.611-662, 1999.

Z. Bai and . Jack-w-silverstein, Spectral analysis of large dimensional random matrices, vol.20, 2010.

S. Zheng, Central limit theorems for linear spectral statistics of large dimensional f-matrices, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, vol.48, pp.444-476, 2012.

J. Wishart and . Clapham, A study in sampling technique : the effect of artificial fortilisers on the yield of potatoes, The Journal of Agricultural Science, vol.19, issue.4, pp.600-618, 1929.

J. Wishart, A problem in combinatorial analysis giving the distribution of certain moment statistics, Proceedings of the London Mathematical Society, vol.2, issue.1, pp.309-321, 1929.

M. Iain and . Johnstone, On the distribution of the largest eigenvalue in principal components analysis, Annals of statistics, pp.295-327, 2001.

X. Mestre, Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. Information Theory, IEEE Transactions on, vol.54, issue.11, pp.5113-5129, 2008.

A. Vladimir, L. A. Mar?enko, and . Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR-Sbornik, vol.1, issue.4, p.457, 1967.

S. Geman, A limit theorem for the norm of random matrices. The Annals of Probability, pp.252-261, 1980.

. Jack-w-silverstein, The smallest eigenvalue of a large dimensional wishart matrix. The Annals of Probability, pp.1364-1368, 1985.

M. Antonia, S. Tulino, and . Verdú, Random matrix theory and wireless communications, Foundations and Trends R in Communications and Information Theory, vol.1, issue.1, pp.1-182, 2004.

R. Adamczak, On the marchenko-pastur and circular laws for some classes of random matrices with dependent entries, Electronic Journal of Probability, vol.16, pp.1065-1095, 2011.

T. Tao, Topics in random matrix theory, vol.132, 2012.

W. Jiang and F. Chung, Transfer spectral clustering, Machine Learning and Knowledge Discovery in Databases, pp.789-803, 2012.

C. Studholme, L. G. Derek, D. Hill, and . Hawkes, An overlap invariant entropy measure of 3d medical image alignment, Pattern recognition, vol.32, issue.1, pp.71-86, 1999.

A. Biem, S. Katagiri, and B. Juang, Pattern recognition using discriminative feature extraction, IEEE Transactions on Signal Processing, vol.45, issue.2, pp.500-504, 1997.

N. Goel, G. Bebis, and A. Nefian, Face recognition experiments with random projection, International Society for Optics and Photonics, pp.426-437, 2005.

S. Belongie, C. Fowlkes, F. Chung, and J. Malik, Spectral partitioning with indefinite kernels using the nyström extension, European conference on computer vision, pp.531-542, 2002.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, Spectral grouping using the nystrom method. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, issue.2, pp.214-225, 2004.

H. Ahmed, J. Sameh, and . Wisniewski, A trace minimization algorithm for the generalized eigenvalue problem, SIAM Journal on Numerical Analysis, vol.19, issue.6, pp.1243-1259, 1982.

B. Wang, J. Pineau, and B. Balle, Multitask generalized eigenvalue program, AAAI, pp.2115-2121, 2016.

A. Roger and . Horn, Cr johnson matrix analysis, 1985.

P. Van-dooren, A generalized eigenvalue approach for solving riccati equations, SIAM Journal on Scientific and Statistical Computing, vol.2, issue.2, pp.121-135, 1981.

D. Cai, X. He, and J. Han, Isometric projection, AAAI, pp.528-533, 2007.

X. He and P. Niyogi, Locality preserving projections, Advances in neural information processing systems, pp.153-160, 2004.

K. Liu, Y. Cheng, J. Yang, and X. Liu, An efficient algorithm for foley-sammon optimal set of discriminant vectors by algebraic method, International Journal of Pattern Recognition and Artificial Intelligence, vol.6, issue.05, pp.817-829, 1992.

C. Boutsidis, A. Zouzias, W. Michael, P. Mahoney, and . Drineas, Randomized dimensionality reduction for k-means clustering, 2011.

J. Lu, N. Konstantinos, A. Plataniotis, and . Venetsanopoulos, Face recognition using lda-based algorithms, IEEE Transactions on Neural networks, vol.14, issue.1, pp.195-200, 2003.

K. Torkkola, Linear discriminant analysis in document classification, IEEE ICDM Workshop on Text Mining, pp.800-806, 2001.

S. S. Kim and . Vanderploeg, Qr decomposition for state space representation of constrained mechanical dynamic systems, ASME J. Mech. Trans, vol.108, issue.2, pp.183-188, 1986.

A. K. Menon and C. Elkan, Fast algorithms for approximating the singular value decomposition, ACM Transactions on Knowledge Discovery from Data (TKDD), vol.5, issue.2, p.13, 2011.

H. Gene, C. Golub, and . Loan, Matrix computations, vol.3, 2012.

C. Boutsidis, Random projections for k-means clustering, Advances in Neural Information Processing Systems, pp.298-306, 2010.

T. Urruty, C. Djeraba, and D. A. Simovici, Clustering by random projections, Advances in Data Mining. Theoretical Aspects and Applications, pp.107-119, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01857358

D. Achlioptas, Database-friendly random projections : Johnson-lindenstrauss with binary coins, Journal of computer and System Sciences, vol.66, issue.4, pp.671-687, 2003.

S. Santosh and . Vempala, The random projection method, vol.65, 2005.

G. Gorrell, Generalized hebbian algorithm for incremental singular value decomposition in natural language processing, EACL, vol.6, pp.97-104, 2006.

J. Robert, A. Durrant, and . Kabán, Compressed fisher linear discriminant analysis : Classification of randomly projected data, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.1119-1128, 2010.

J. Robert, A. Durrant, and . Kaban, Random projections as regularizers : learning a linear discriminant from fewer observations than dimensions, Machine Learning, vol.99, pp.257-286, 2015.

B. Tu, Z. Zhang, S. Wang, and H. Qian, Making fisher discriminant analysis scalable, International Conference on Machine Learning, pp.964-972, 2014.

C. Boutsidis, A. Zouzias, W. Michael, P. Mahoney, and . Drineas, Randomized dimensionality reduction for k-means clustering, IEEE Transactions on Information Theory, vol.61, issue.2, pp.1045-1062, 2015.

H. Mia, J. Peter, and V. Sabine, A fast method for robust principal components with applications to chemometrics, vol.60, pp.101-111, 2002.

J. Baik and . Jack-w-silverstein, Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis, vol.97, issue.6, pp.1382-1408, 2006.

D. Passemier and J. Yao, On determining the number of spikes in a highdimensional spiked population model, Random Matrices : Theory and Applications, vol.1, issue.01, p.1150002, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00584933

S. Ubaru, Y. Saad, and U. Edu, Fast methods for estimating the numerical rank of large matrices, Proceedings of The 33rd International Conference on Machine Learning, pp.468-477, 2016.

J. Baik and . Jack-w-silverstein, Eigenvalues of large sample covariance matrices of spiked population models, Journal of Multivariate Analysis, vol.97, issue.6, pp.1382-1408, 2006.

D. Passemier and J. Yao, On determining the number of spikes in a highdimensional spiked population model, Random Matrices : Theory and Applications, vol.1, issue.01, p.1150002, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00584933

P. Raghavan and M. Henzinger, Computing on data streams, Proc. DIMACS Workshop External Memory and Visualization, vol.50, p.107, 1999.

T. Joachims, A probabilistic analysis of the rocchio algorithm with tfidf for text categorization, 1996.

W. Zhang, T. Yoshida, and X. Tang, A comparative study of tf* idf, lsi and multi-words for text classification, Expert Systems with Applications, vol.38, issue.3, pp.2758-2765, 2011.

Q. Sinno-jialin-pan and . Yang, A survey on transfer learning, IEEE Transactions on knowledge and data engineering, vol.22, issue.10, pp.1345-1359, 2010.

R. Samdani and W. Yih, Domain adaptation with ensemble of feature groups, IJCAI Proceedings-International Joint Conference on Artificial Intelligence, vol.22, p.1458, 2011.

D. Zhang and D. Shen, Alzheimer's Disease Neuroimaging Initiative, et al. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer's disease, NeuroImage, vol.59, issue.2, pp.895-907, 2012.

S. Ben-david, J. Blitzer, K. Crammer, and F. Pereira, Analysis of representations for domain adaptation, Advances in neural information processing systems, pp.137-144, 2007.

D. Yu, K. Yao, H. Su, G. Li, and F. Seide, Kl-divergence regularized deep neural network adaptation for improved large vocabulary speech recognition, Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp.7893-7897, 2013.

H. Trevor, T. Robert, and F. Jerome, The elements of statistical learning : data mining, inference and prediction, vol.1, pp.371-406, 2001.

Y. Yin, Z. Bai, and . Pathak-r-krishnaiah, On the limit of the largest eigenvalue of the large dimensional sample covariance matrix, Probability theory and related fields, vol.78, pp.509-521, 1988.

Y. Zhang and D. Yeung, A convex formulation for learning task relationships in multi-task learning, 2012.

P. Soucy, W. Guy, and . Mineau, A simple knn algorithm for text categorization, Proceedings IEEE International Conference on, pp.647-648, 2001.

M. Long, J. Wang, G. Ding, J. Sun, and P. Yu, Transfer feature learning with joint distribution adaptation, Proceedings of the IEEE international conference on computer vision, pp.2200-2207, 2013.

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Linear kernelpca and k-means clustering using new estimated eigenvectors of the sample covariance matrix, IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp.386-389, 2015.

. Nassara-elhadji-ille, E. Gado, M. Grall-maës, and . Kharouf, Linear discriminant analysis based on fast approximate svd, ICPRAM, pp.359-365, 2017.

E. Elhadji-ille-gado-nassara, M. Grall-maës, and . Kharouf, Linear discriminant analysis for large-scale data : Application on text and image data, Machine Learning and Applications (ICMLA), pp.961-964, 2016.

C. Wang, G. Pan, T. Tong, and L. Zhu, Shrinkage estimation of large dimensional precision matrix using random matrix theory, Statistica Sinica, pp.993-1008, 2015.

S. Sun, H. Shi, and Y. Wu, A survey of multi-source domain adaptation. Information Fusion, vol.24, pp.84-92, 2015.