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Chapter 0

Introduction

0.1 Regulator Integrals

The most central objects of this thesis are regulator integrals. In his fundamental
paper [1], Beilinson defined a regulator map and formulated his famous conjectures con-
necting special L-values to regulators. Let X be a smooth quasi-projective variety defined
over Q. Given two integers n > 0 and p, Beilinson’s regulator

rp : Hy (X, Q(p)) — Hp(X(C),R(p)),

is a Q-linear map from the motivic cohomology (‘an arithmetic invariant’) of X to the
Deligne—Beilinson cohomology (‘an analytic invariant’) of X. The Deligne—Beilinson co-
homology depends only on the complex analytic variety X (C). Beilinson’s conjectures
predict the special L-values at integers, up to a rational factors, in terms of the determi-
nants of regulators of some rational structures in the motivic cohomology groups.

Let N > 3 be an integer and H = {7 € C| Im(7) > 0} be the Poincaré upper half-
plane. Let Y(N) = I'(N)\H be the open modular curve associated to the congruence
subgroup

T'(N) = {(g Z) €SLy(Z)|a=d=1 (mod N),b=c=0 (mod N)},
where the action of I'(N) on H is given by Mobius transformations. In this case, for
j > 0, the Deligne—Beilinson cohomology group of Y (N)
Hp(Y (N),R(j +2)) = Hyp(Y (N), (2mi) " 'R)

is simply the the de Rham cohomology group with twisted coefficients (277)7*1.
In [2], Beilinson constructed a special cohomology class

Eis™ (uy, us) € HA(Y(N),R(j + 2))

in the Deligne-Beilinson cohomology, where u; € (Z/NZ)?. These classes are the image
of certain special elements in the motivic cohomology group H3,(Y (N),Q(j + 2)) under

>



6 CHAPTER 0. INTRODUCTION

the regulator map. In the case 57 = 0, they are called Beilinson-Kato elements, which
are constructed using cup-products of certain modular functions on Y (N) called Siegel
units. In general, the class Eis%o’j (u1,us) is - loosely speaking - constructed by taking the
product of a real-analytic Eisenstein series with a holomorphic Eisenstein series.

Beilinson also proved in [2] the following formula with the Rankin-Selberg method. He
showed that the integrals of these classes are related to some special L-values of modular
forms.

Theorem 0.1.1 (Beilinson [2]). Let f be a cusp eigenform of weight 2 on I'y(N). Let Ky
be the coefficient field of f. Note wy = 2mif(7)dr the holomorphic form associated to f.
Then

(1) For any ui,us € (Z/NZ)?, we have
/ ( )Eis%o’j (u1, up) A wy € (2m)j+1Q§:1>jL'( f,—j) - Ky,
Y(N

where Q}jf denotes Deligne’s real or imaginary periods of f.

(2) There ezist a level N’ divisible by N and a class Eissy ™ (uy, us) in level N' with
uy,uy € (Z/N'Z)?* such that the integral as in (1), computed in level N', is nonzero.

However, the constant factor in Ky and the level N’ are not given explicitly in Beilin-
son’s formula.

A new and more explicit calculation is recently done by Zudilin [49] and Brunault [11]
for j = 0. Instead of integration over Y (NN), they considered the following integral of the
regulator along the imaginary axis (i.e. the modular symbol {0, co})

00
/ EiS%O’O(Ul, U,Q),

0

With a powerful method of Rogers—Zudilin [48], they were able to show that

Theorem 0.1.2 (Zudilin [49], Brunault [10]). Let N > 3 be an integer. Let u; = (ay,by),
uy = (as,by) € (Z/NZ)? be nonzero vectors. Then we have

[ B, 0) = T (6,60, - G680, 0),

0 N2 b2,a1 bi,a2 " b2,—a1’

where the functions GY) are certain Fisenstein series of weight 1 level T'(N) with rational
coefficients (see Section for definition), and A*(f,s) denotes the reqularized value of
the completed L-function A(f,s).

With the help of the method of Rogers—Zudilin, we are able to generalize Theorem|0.1.2]
to arbitrary integer j > 0. Compared to Theorem our formula is more precise and
does not rely on a higher level N'.
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Theorem 0.1.3. Let N > 3 and j > 0 be integers. Let u; = (a1,b1), uy = (az,be) €
(Z/NZ)? be nonzero vectors. Then we have

X 00 GWJ+ 2T 192 s (A1 1 (1 1 :
/0 Eis%% (uy, up) = Wz(ﬁl) A (Gél?_@GéQ?al — (-G, Gl —j> .

Generally, we have classes Eis]%’k” (u1,ug) living in the Deligne—Beilinson cohomology

of fiber products of the universal elliptic curves. A universal elliptic curve E is a complex-
analytic manifold endowed with a fibration p : F — Y(N), with the property that the
fiber of p over a point [7] € Y(N) is exactly the elliptic curve E, = C/Z + Zr. Denote
by E* the w-fold fiber product of E over Y (N). Over each point [7] € Y(N), the fiber of
E™ over [7] is just the w-th power E¥ of the elliptic curve.

Let ki, k2, 7 be non-negative integers and wuy, us € (Z/NZ)* with u; # (0,0) if k; = 0.
Set w = ki + ko. Deninger—Scholl [22] and Gealy [28] generalized the construction of
Beilinson by defining the element

Eish "7 (uy, uy) € HEP2(EY, R(w + j + 2))

in the Deligne-Beilinson cohomology of E*. Deninger—Scholl and Gealy also generalized
Beilinson’s formula to higher weight case with the elements Eisg’k2’J(u1,u2) and cusp
eigenforms of weight w + 2.

In [11], Brunault considered the following regularized integral of regulator

*
/ EiS’SJ62 (Ul, 'LLQ),

Xw{0,00}

where X*{0, 00} is a certain (w + 1)-chain on E", called Shokurov cycle (see Section
for definitions). Again with the method of Rogers—Zudilin, he gave the following formula

/ Eis’;)l@ (u1,ug) = Cgy kA" <G£k1+1)G(1f2+1) _ G(k1+1)Gl(}k2+1) O) ’

1,—az ~ bz,a1 b1,a2 2,—ai’
Xw{0,00}

where
(k1 +2) (ks +2)

QN w+2
In Chapter [6] we generalize his formula and compute more general regulator integrals.
We obtain the following result (see Section

Ckl,kz = (27T)w+1ikl_k2+l € (27Ti)w+1Q.

Theorem 0.1.4. Let ki, ko, j be nonnegative integers with w = ki + ko. Let N > 3 and
up = (a1,b1), ug = (ag,be) € (Z/NZ)?, suppose that (a;,b;) # (0,0) if k; = 0 and b; # 0
if ki =1, then

[ B0 = G (GG — (176G )

b1,—az ~ba,a1 b1,a2 ba,—ay?
Xw{0,00}

with the constant

_ MR A G+ 2) (ke + 4 2) gy ey

Chikaj = SN2 (2m)“t € (27i) Q.
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It can be shown that the appearance of the power of 27i and the L-value at s = —j
within our formula are in accordance with Beilinson’s conjectures.
For integrals over more general Shokurov cycles we have

Theorem 0.1.5. Let w > m > kq, ky. Assume that if m = ky then ky = 0. Let N > 3
and uy = (a1, b1), ug = (ag,be) € (Z/NZ)?, suppose that (a;,b;) # (0,0) if k; = 0 and
b; # 0 if k; = 1, then the regulator integral

*
/ EiS%’k%J (ul, UQ>

XmYyw—m{0,00}

is a linear combination of L-values of quasi-modular forms (see Section with rational
coefficients .

In fact, in the higher weight case, the regulator integral usually does not converge. We
need a theory of regularized integrals to solve this. It is given in the following manner.

0.2 Generalized Mellin Transform and Regularized
Integral

Chapter |3] is devoted to establish a more general theory of Mellin transforms and
regularized integrals.

Fixing an integer k£ > 2, we denote by Si(I'1(V)) the space of holomorphic cusp forms
of weight k level I';(N). Given a cusp form f(7) = > o, ap(n)e*™7™ € Si(I'1(N)), the
completed L-function associated to f is essentially the Mellin transform of f

= [ i =m0,

n>1

However, for many modular functions, their Mellin transforms do not exist anymore.
To deal with some of these functions, the method of generalized Mellin transforms has
been proposed in various literature, such as [46], [17, Chapter 1] and [19, Section 8.6].

Our theory of generalized Mellin transform handles more general functions. We in-
vestigate first functions with exp-poly-log expansions and define their generalized Mellin
transforms and also their regularized integrals (see Section and Section . The the-
ory of generalized Mellin transform is used among other things in defining L-functions.
For instance, given a weakly holomorphic cusp form f =%~ o af(n)e*™7 € S;(SLy(Z))
of weight k, we are able to recover the definition of L-function of f by Bringmann, Fricke
and Kent [5]

Afos) = as(n )(F2§m27rmf0 53 ag(n 27m— 5, —)‘

n>ng n>ng



0.2. GENERALIZED MELLIN TRANSFORM AND REGULARIZED INTE-
GRAL

(0% 0 5

Figure 1. Modular symbols

Let a, 3 € PL(Q) be two distinct rationals. Let f(7) € So(I'1(N)) be a cusp form
of weight 2 level I'1(N). A modular symbol {«, 8} is an oriented geodesic from « to 8
on the upper half-plane H (depicted in Figure [1). According to the idea of Birch (also
independently by Manin), we can pair the closed form f(7)dr with {«, 8} in the following
way

(f(r)dr {a, 5}) = f(r)dr.
{e,8}

In particular, from Eichler—Shimura theory (see for example Kohnen—Zagier [31]), we find
the period of the cusp form

ro(f) = A(f, 1) = —i{f(7)dr, {0, 00}).

By Stokes’ theorem, we have the following 3-term relation

(T)dT + (T)dT + f(r)dr = 0.
{a,B} {87} {v.a}

For a general modular function f, the closed form f(7)dr probably does not vanish at
cusps and has nonzero residues. Consequently, the integration of f(7)dr along a modular
symbol may not converge and the 3-term relations may not hold as well.

We need the terminology of modular caps by Stevens [44] (see Section to handle
closed forms with exp-poly-log expansions. A modular cap [v, 8], is the segment of the
infinitesimal horocycle at « cut by two modular symbols {a, 8} and {v,«a} (depicted
in Figure . With our theory of regularization, we succeed in defining the regularized
integrals of a given closed form w along modular symbols and modular caps in Section [3.6]
The 3-term relations is replaced by the 6-term relations (see again Figure

/ w+/ w+/ w+/ w—l—/ w+/ w =0,
{azﬁ} [a,’ﬂﬂ {B»’Y} [ﬁ?a]W {’y,a} [’Yvﬁ}a

where the * indicates regularized integrals.
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{7, a}

Figure 2. Modular caps

These results can be summarized in the following theorem
Theorem 0.2.1. There is a well-defined integration pairing
epl(H (C) X KQ — C

where Ky is the space of modular symbols and modular caps, Qépl denotes the space of
closed forms on the Poincaré upper half-plane H with some growth conditions at cusps.

This integration pairing can also be generalized to higher weight cases, see Section
for more details.

0.3 Double L-functions

In [33], Manin constructed multiple L-functions of holomorphic cusp forms. In this
thesis we shall focus double modular L-functions. Let f = Y _;a,e*™7 and g =
> 50 bm€2™™T be two modular forms with respect to a congruence subgroup of SLy(Z).
Their double L-function is the following double Dirichlet series

LAt g,s182) = Zznsl n+m

n=1 m=0

10



0.4. DOUBLE L-VALUES WITH ROGERS-ZUDILIN METHOD 11

Manin studied also the iterated Mellin transform of cusp forms. The iterated Mellin
transform of f and g is given by the following integral

A(f7 g, S1, 52) = / g(itZ)t?_ldtZ / f(itl)til_ldtl,
0 to

which is also called a double L-function of f and g.

Based on our theory of regularized integrals, we give a tentative generalization of
double L-function to weakly holomorphic modular forms. Let f =3 . anq¢" and g =
> msmo 0m@™ be two weakly holomorphic modular forms in level SLy(Z) of weight ki > 2
and ky > 2 respectively. Fix an integer 0 < s; < k;. We define the double L-function
A(f, g, s1, s2) using generalized Mellin transform and show in Section that

Theorem 0.3.1. The double L-function A(f,g,s1,52), as a function of sq, extends to a
meromorphic function on the whole complex plane. It has possibly poles when so is an
integer from —sy to 0 or from ko to ko + ki — s1, and is holomorphic elsewhere.

We have also included some of its residues, for example,

b
Res A(f,g,51,52) = M-
S2=—581 S1
When ag = 0, k1 = ks = k we shall have
(k—2)!

ES%A(fvgvk - 1a32) = - (27T)k_1 {f?g}a

where {f, g} is the Bruinier-Funke pairing (see [7, (1.15)] for definition).

0.4 Double L-values with Rogers—Zudilin Method

Rogers and Zudilin introduced a new powerful method in the proof of Boyd’s conjec-
tures on Mahler measures (see [48]). A reinterpretation of their method via correspondence
of modular forms can be found in Diamantis-Neururer-Stromberg [23]. In [41], Shinder
and Vlasenko use Rogers—Zudilin method to compute an explicit example of double L-
value of Eisenstein-like series.

Inspired by the example of Shinder—Vlasenko, we look for more general identities of
double L-values in Section Write the double L-function

L(f,g,51,82) = (2m) D' (s2)L(f, g, 51, 52)-

Then for fixed s; € Z, the function LL(f, g, s1, s2) is meromorphic in se. From our theory
of generalized Mellin transform, the regularized value L*(f, g, s1,$2) in sy always exist.
Applying Rogers—Zudilin method, we show that

11



12 CHAPTER 0. INTRODUCTION

Theorem 0.4.1. Let N > 1 be an integer. Let ay,as,by1,by € Z/NZ and ky > 2, ko > 2
be positive integers. Suppose that 1 < s1 < k1 — 1, 1 < s9 < ky — 1 are integers with
ki < 81+ sy. Then the double L-value

ba,az? —ay,by’

L* (G((lljl’gl’ H (k2) ki — 81, ko — 82> + (_1)s1+52—1]L* (G(k1) Hb2 ) s ki — s1, ko — SQ)

18 a linear combination of L-values of certain quasi-modular forms with coefficients in
Q(¢n) of level T1(N?). Here G and H are certain Fisenstein series with coefficients in

Q(¢N) (see Section for definitions).

In particular in level N = 1, set Gy(7) = =25 + 3°°°  05,_1(n)¢" to be the Eisenstein
series of weight k. We deduce that

Theorem 0.4.2. Let ki > 4,ky > 4 be even number. Let 1 < s1 < ky —1 and 1 < 59 <
ky — s1 be integers with opposite parity. Set p = min{k; — sy, 82} — 1. Then

i51+82_1L* (Gk17 Gk27 S1, 82) = A" (DPG|]€1781782‘+1 : Gk2—51—52+17 1 - Sl)
+ 581+82=k’2—1(4ﬂ_)_1A* (DPG|k1781782‘+1a _81) .

Furthermore, the double L-value L*(Gy,, Gy,, s1, $2) is a Q[1/7]-linear combination of L-
values of modular forms with rational coefficients and L-values of Go

p QA <|:G|k1781782‘+17 Gk‘2751752+1j|m701d 9 1 — 81 — l)
L*(le,GkQ,Sl,SQ) S Z 1 &

=0

@A (G|k1—51—52‘+17 —S81 — p)

mpt+1

Example 0.4.3. Here we consider an example (k1, k2) = (8,10) and (s1,s2) = (1,4). We
have p = 3. As we shall see, this double L-value IL*(Gg, Gyg,1,4) can be made explicitly

L*(Gg, Gyg, 1,4) = A*(D3Gy - Gg, 0)
1 3 1

B _67207T3A(G10’ —3) - 364O7T2A(A12’ —2) - ﬁA(Aw: 0),

where Ao and Aqg are the unique normalized cusp forms of weight 12 and 16 respectively.

™

QA (Gk2—51—52+17 —81 — p)

P+ 1

+ 681+82=k2—1 + 581+82:k1:|:1

0.5 Mordell-Tornheim Double Eisenstein Series and
Cohen Series

This part is a joint work with Zhang. Let ki, ks and k3 be non-negative integers.
Tornheim [45] considered the following double series

Z Z nk1mk2 n + m)

n=1m=1

12
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which is now called the Mordell-Tornheim double zeta function.
Following this pattern, in this thesis we define the Mordell-Tornheim double Eisenstein
series

' 1
G (15 k1, ko, ks; wy,wo) = Z k1

ko ks )
1,72 €EL+TLT T1 T2 (CU17'1 + w27—2)

where kq, ko, k3 are non-negative integers and wy, wy are two integers, the primed summa-
tion means the terms which 71, 75 or w7 + wyT vanishes are omitted.
To find an explicit form of Mordell-Tornheim double Eisenstein series, we need to
introduce Cohen series. Given 0 < n < k — 2, define R,, € S to be the following series
—1 —n—1 ntl—k - ”(kf)
Ry, = ¢, Z (aT + b) (et + d) with ¢, = 2
a,b,c,dEZ

ad—bc=1

The series R,, can be also described as the unique cusp form such that

(f,R,) =rn(f) forall feSy,

where (,) indicates the Petersson inner product. The Cohen series is later extended by
Diamantis and O’Sullivan [24] to more general settings. Using their theory of Cohen series,
we are successful to give an explicit formula of Mordell-Tornheim double Eisenstein series
in Section 5.4, Loosely speaking, we prove that

Theorem 0.5.1. The Mordell-Tornheim double Fisenstein series is
G(T; k1, ko, kg wi, wa) = Geis + Geusps
where G.;s is an explicit Eisenstein series and Geysp is a linear combination of (modified)
products of Eisenstein series.
In the case wy = wy = 1 setting G(7; ky, ko, k3) = (= 1) G(1; ky, ko, k3;1,1) we get

/ 1
G(75 k1, ko, k3) = Z T

Tifratrs=0 1 72773
T1,T2, T3 €EL+LT

which is symmetric in kq, ko and k3. We obtain the following formula

Theorem 0.5.2. Let ki, ky and ks be nonnegative integers with ki + ks > 2, ko + k3 > 2,
ki+ky >2and k = k1 + ko + ks > 4. Then the Mordell-Tornheim double FEisenstein
series is the following modular form of weight k

ki1—2

ko +u—1
G(T5ky, ko, kz) = (—1)% ( Z 5u5k1(2)( ? : >Gk1—,qu2+k3+p

pu=0

ko—2
ki+v—1
+ Z 51/5]{:2(2) < ! >Gk2VGk1+k'3+l/
v=0

v

47T2 k1+]€2—2 ]{Jl—f-k’g
- DGj—9 — .
k;—2( k1 ) G-t < B

Hence the form #G(T; ki, ko, k3) has rational coefficients.

13
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Example 0.5.3. As an instance, let (kyi, ko, k3) = (2,3,7), with a direct computation we

get
34712 62270208
2.37)=-—"__(p DEECERA ).
G(732,3,7) 127702575( 2(7) + 7 (T))

0.6 Outline of this Thesis

Chapter|l|and Chapter 2| provide an introduction to the objects and theories needed in
this thesis. In particular, we recall the theory of quasi-modular forms and give a definition
of their L-functions, we also give a short introduction of Eisenstein symbols.

In Chapter [3, we review briefly the classical theory of Mellin transform. In the rest
of this chapter, we develop a theory of generalized Mellin transforms and regularized
integrals. These are the basic tools of the rest parts.

The Rogers—Zudilin method is introduced in Chapter We study the double L-
functions of weakly holomorphic modular forms. Certain double L-values of Eisenstein
series are computed with Rogers—Zudilin method at the end of this chapter.

The last chapter contains our final results on regulator integrals. All the computation
of regulator, involving periods and residues, is included in Chapter [6|

Chapter 5/is an independent chapter, which includes a collaborative work on Mordell-
Tornheim double Eisenstein series with Zhang.

14



Chapter 1

Preliminaries

In this chapter, we review the basic background knowledge about modular forms, L-
functions and incomplete gamma functions. We also introduce some preliminary results
which we will be using in this thesis.

1.1 Modular Forms and Quasi-Modular Forms

This section provides a brief introduction for the readers who may not be familiar
with the theory of quasi-modular forms or (weakly) holomorphic modular forms. Clear
and systematic references of quasi-modular forms are [19] and [47].

We fix the notations first. By H = {7 € C| Im(7) > 0} we denote the Poincaré upper
half-plane. Write H = H UP(Q). An element v = (24) € GL$ (Q) acts on H by

ar +b
et +d

VT =

2miT

We will write for brevity j(v,7) :=cr+d and g =€
In this thesis we usually focus on the following subgroups of I'; = SLy(Z)

T\ (N) ::{(CCL Z) eTila=d=1 (mod N), ¢=0 (modN)}

T(N) = {(‘CL Z) eTy(N)|b=0 (mod N)}

for a positive integer N. The notation I'" usually indicates a congruence subgroup, that is,
a subgroup of SLy(Z) containing the special subgroup I'(N) for some N.

Let f be a function from H to C and v = (¢ %) € SLy(Z), the slash operator of weight
k is defined as

ar +b
ct+d

(Fle) () = (er +d)*f ( ) )

15



16 CHAPTER 1. PRELIMINARIES

1.1.1 Definitions and Examples

Let T" be a congruence subgroup of SLy(Z) and k be a positive integer throughout this
section.

The cusps of T are a collection of left coset representatives of I'\IP*(Q). For every cusp
a € I\PYQ) we have an element o, € T'\ SLy(Z) with o,00 = a.

Definition 1.1.1. Let h be the smallest positive integer such that ({#) € I'. Let f(7 +
h) = f(7) be a periodic function. Then

(1) We say that f is holomorphic (resp. meromorphic) at oo, if the function ¢g : D —

{0} — C extends holomorphically (resp. meromorphically) to 0, where g(e%%) =
f(r) and D = {z € C||z| = 1} is the unit disk.

(2) We say that f is holomorphic (resp. meromorphic) at a cusp a, if f|ro.(7) is
holomorphic (resp. meromorphic) at co.

Definition 1.1.2. A function f :H — C is called a modular form of weight k, level I' if
(1) f is holomorphic on H.
(2) fis modular, ie. forall y = (2%) €T, flxy(1) = f(7).
(3) f is holomorphic at every cusp a € I'\P}(Q).
If we replace (3) by
(3’) f is meromorphic at every cusp of a € T\PY(Q),
then f is called a weakly holomorphic modular form.

A weakly holomorphic modular form has a Laurent Fourier expansion at a cusp «

fleoa(r) =D an(f)a"

n>ng

Thus a weakly holomorphic modular form has possibly exponential growth at cusps. We
call f cuspidal if f has constant term af(f) = 0 at every cusp « of I'. Denote by later
My (T), Si(T), Mi(T') and S, (T') the space of holomorphic modular forms, holomorphic
cusp forms, weakly holomorphic modular forms and weakly holomorphic cusp forms of
weight k respectively. When I" = SLy(Z) we omit it from the notations.

Example 1.1.3. Let k > 4 be an even integer, then we have Fisenstein series

/ 1
Gr(r)= lor +

(¢,d)#(0,0)

16



1.1. MODULAR FORMS AND QUASI-MODULAR FORMS 17

they are modular forms of level SLy(Z) and weight k. We can compute their Fourier
expansions, which are given by the normalized Eisenstein series

Ex(1) = gg((;)) =1- %]Z ;akl(n)q",

where By, is the k-th Bernoulli number defined by

P B
er —1 k!
E>0

and op_1(n) =3y, d"".

Definition 1.1.4. A quasi-modular form of level I and weight £ is a holomorphic function
f on H with a collection of functions f,..., f, over H such that

(1) each f; is holomorphic over H.

(2) f is quasi-modular,

bS]

) )= 350 (57) (L)

=0
for any v =(2%) eTl.

(3) f has at most polynomial growth, i.e. there exists a constant N > 0 such that
f(r)y=0 (y*N(l + |7'|2)N) as y — oo and y — 0.

If f, is nonzero in (1.1), the degree p is called the depth of f.

Denote by QM;,(T) the space of quasi-modular forms of weight & and by QM(T) its
subspace containing quasi-modular forms of weight k£ with depth < p.

Example 1.1.5. It is also possible to define Fisenstein series of weight k = 2. Set
_ Ga(7)
2¢(2)

In this case, the function Es is in fact quasi-modular of depth 1. It verifies the following
transformation rule (see for example [19, Corollary 5.2.17])

(er +d)2E, (‘” + b) ~ By - 2 < ¢ )

ct +d T \cr+d

Ey(7) =1-24) o1(n)g"

with f = fo = E» and fi = =% in (1.1).

Generally speaking, quasi-modular forms come from the derivatives of modular forms.

Let D = q% = %% be the differential operator, then the following result is well-known.

17



18 CHAPTER 1. PRELIMINARIES

Proposition 1.1.6 (Zagier [47, Proposition 20]). (1) The space of quasi-modular forms
QM (T) is closed under the differentiation D.

very quasi-modular form can be written uniquely as a linear combination of deriva-

2) E -modular f b it Jquel li bination of deri
tives of modular forms and Fy. More precisely, let QM"(T') denote the subspace of
quasi-modular forms of depth < p, then

- P DI (M_o;(I))  p<k
M_p I = 7=0 R J 2
@D {ea;?/%‘l Di(Mi () p>

where Mk(F) = My(T") for k # 2 and MQ(F) = My(I") & CEs.

Remark 1.1.7. It follows from Proposition that, given a quasi-modular form f in
QM ,fp (T") of depth at most p > 1, we have a unique decomposition

f= DI(F;) with Fj € My_o;.

As an example, for the quasi-modular form E? of weight 4 and depth 2, we have the
following identity (observed originally by Ramanujan)

E2? = E, +12DE,.

1.1.2 L-functions of Quasi-Modular Forms

In the rest of this section we offer a definition of L-functions for quasi-modular forms.
Fix now I' = I'1(N) with N > 1 an integer.

Given a modular form f = ) . a,(f)¢" € Mg(T'), recall that the L-function of f
is defined as the Dirichlet series L(f,s) = >.°2, a,(f)n~*. This Dirichlet series can be
analytically continued via the completed L-function

A(f,s) = N¥2(2m)~T(s)L(f, s) = N*/? /OOO (f(iy) — ao) y%

Let Wy @ My(I') — M(T") be the Atkin-Lehner involution

(W) =N (<)

then we have functional equation

A(f,s) = AW £,k — 5).

Moreover, the function A(f,s) + a“if) + ao(}?_/zf) is entire in s. Thus A(f,s) has only
possible poles at s = 0 and s = k. We refer readers to [37, Section 4.3] for more details
about L-functions of modular forms.

18



1.1. MODULAR FORMS AND QUASI-MODULAR FORMS 19

Definition 1.1.8. We define the L-function of F5 via its Dirichlet series

L) =3 P (s - )

and we define its completed L-function as
A(Es, s) = N*/(2m)~T(s)¢(s)¢ (s — 1).

A derivative D7 f has Fourier expansion D/ f = 7 - n/a,(f)q". We can define its
L-function via the Dirichlet series

L(D'f,s) = f: ags(_fj)
n=1
:L(f7 §—= .])7
and herewith we have its completed L-function
Ni/2(s —1)

A(D'f,s) = N*/*(2m)T(s)L(D’ f, 5) =
where the Pochhammer symbol (s — 1), is the falling factorial (s —j)(s—j+1)...(s—1).
In general, we define the L-functions of a quasi-modular form as follows

Definition 1.1.9. Let f € QM (T') be a quasi-modular form. Given a decomposition
f=320_y DI(F;) for Fj € My_s;, we define the L-function of f to be

L(f.3) = 3 L{Fy.5 =),

and the completed L-function to be

PN (s —1); ,
= WA(FjaS = 7).

Proposition 1.1.10. Let f € QMEP(F) be quasi-modular form of depth at most p, then
A(f,s) extends to a meromorphic function on whole complex plane, which has only possibly
simple poles when s = 0 or when s is an integer from k — p to k.

Proof. Suppose that f is given by the decomposition f = Z?:o DI(F;) for Fj € Mk_gj,
then

P N2(s— 1),
Mfos) = 3 S A s )

19



20 CHAPTER 1. PRELIMINARIES

If F; is modular, then (s — 1);A(F}, s — j) has only possibly simple poles at s = k — j if
j > 0 and has only possibly simple poles at s = 0 and s = k if 7 = 0. We only need to
focus on the remaining issue

A(Ez, s) = N*2(2m)~*T(s)¢(s)¢ (s — 1).

Since zeta function vanishes at negative even integers, the function A(Es,s) has only
simple poles at s = 0,1,2. If j = 0, then we have k = 2 and (s—1),;A(Ey, s—j) = A(E», s).
If j > 0, then (s — 1);A(E2, s — j) has only possibly simple poles at s = k — j. O]

Definition 1.1.11. Let f and g be two smooth functions on H and k£ and [ are fixed
integers, recall that the Rankin—Cohen bracket (see [19, Definition 5.3.23]) is

o (k=D [T = 1
[f,g]n—;( 1)( ; )( ne )D fDg.

Also, when f or g is an Eisenstein series of weight 2 we modify the construction of
Rankin—Cohen bracket to

12
E mod __ E - —1)" Dn+1
(2.9 = [Ez. gl — (—1)" == D"y,
12
E mod __ E . — Dn+1
[f’ Q]n [fa 2] n—l—k: f7
12
Ey, E5|™4 = [Fy, Es], — (1 + (=1)")——D"*'E,.
[, B, [E, Es] (1+( ))n+2 2

Proposition 1.1.12 ([19, Theorem 5.3.24, Proposition 5.3.27]). Let f € Mk(F) and
g € My(T") be two forms. Then

(1) The modified Rankin—Cohen bracket [f, g|™°? is a modular form of weight k+1+2n.
In general, the Rankin—Cohen bracket [f, g|™? is always a cusp form forn >0 .

n

mod
n -

(2) When f and g have rational Fourier coefficients, so does [f, g]

(3) We have [g, fl, = (=1)"[f, gl and [g, fI°" = (=1)"[f, gl
Let 6, = D — m be the Maass—Shimura differential operator. For j > 0, set
5i = Ot2j—2 O Ok1aj—4 0 - -+ 0 0 and ) to be the identity operator. Given two modular
forms f € My(I') and g € M;(T"), Lanphier [32] gave the following formula

e oy
kf'g—z FH+2n—2j-2) (k+l+2n—j—1 k[f7g]n—j‘

j=0 ( n—j ) ( J )

20



1.2. ZETA FUNCTIONS AND L-FUNCTIONS 21

Lemma 1.1.13. Let f € Mk(f‘) and g € J\Z(F) be two forms. Then

ey
Df-g= Z k+l+2n—;j—2 jk+l+2n—j—1 D’[f, gln—j. (1.2)
pardl QP [ G
Proof. The proof follows exactly the same as Lanphier [32, Theorem 1]. It is worth
noticing that his proof is purely combinatorial. We take holomorphic part in his proof
and everything carries over to the operator D and forms f and g.

O
From this lemma we get immediately the following identities of L-functions

Lemma 1.1.14. Let f € My(T) and g € M,(T) be two forms. Then

L(D"f9.5) =3 iDL (. gl s = ).
A(D"f -9.8) = 3" iy ()N2(s = 1,2m) A ([f. gy = ).

J=0

where N
N [

ki\J) = PO v —

(k+l+5_j2y 2) (k+l+2;z F 1)

Remark 1.1.15. Using Lemma|1.1.14 we are able to decompose A (D" f - g, s) into a linear
combination of L-functions of Rankin—Cohen brackets. This process plays a significant
role in Chapter [4] and Chapter [6]

In Section [3.4] we will tackle the L-functions of weakly holomorphic modular forms.

1.2 Zeta Functions and L-functions

Let x € R/Z and Re(s) > 1. The Hurwitz zeta function is the absolutely convergent
series

The Hurwitz zeta function can be extended to a meromorphic function for all s € C. It
has only a simple pole at s = 1 with residue 1.

Definition 1.2.1. Let a : Z/NZ — C be a complex function. We define the L-function
of a to be the series

Lo, s) = i &T(l?) = Z a(m)N~3C <%,3> .

n=1 meZ/NZ

21
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We write &(n) = 3, cz/nz @(m)(y™" for the Fourier transform of a.

Remark 1.2.2. For a € Z/NZ, let §, and 5, be the following functions from Z/NZ to C

0 else,
$a<n) ="
Then a
L(d4,8) = N7°C <N’ s) ,
and

We write a~(n) for the function n — a(—n). We say that the function « is even
(resp. odd) if &= = « (resp. a~ = —a) holds. For even or odd «, the following functional
equation holds

Theorem 1.2.3. Let o : Z/NZ — C be a complex function and & be the Fourier trans-
form of a.. If v is even then

1 /27\"° TS R
Lia,1—5) = <N> I'(s) cos (—) L(@, 5).
If « is odd then

2

Lia,1—s) = % (W)lsr(s) sin (7) L(@&, s).

Proof. 1t is proved in [30, Corollary 2 (b)] that we have the following functional equation
of Hurwitz zeta function

F —ims iTs A
Gl 1= 5) = oo (¢FC(as) 4 ¢ F {(a.5)
The proof is completely straightforward after summation over all x € %Z /NZ. O

Also we have

22



1.3. EISENSTEIN SERIES AND S-SERIES 23

Theorem 1.2.4. If n is a negative integer, then
L(a,n) = (=1)""'L(a™,n).
Moreover,
L(,0) 4+ L(a™,0) = —a(0).
In particular, if « is even, then L(a, s) vanishes at —2,—4,---, if a is odd, then L(«, s)
vanishes at —1,—3, - -

Proof. For s = 0 we have the following Hurwitz zeta values (see [11])

(6.0) = {5—{:,;} if 2 £ 0,

—% if x =0.

Sum over all z € %Z/ NZ then we get the two identities. ]

1.3 Eisenstein Series and S-series

Let N be a positive integer. Brunault used certain Eisenstein series of level I'(/V) and
['1(N?) in [11]. Following his notations and definitions, we will briefly review some facts
about Eisenstein series and their L-functions.

Given two functions «, 5 : Z/NZ — C and t,u € C, we define the S-series

S(ZUB(T) = Z Z a(m)B(n)mn gy,
m>1n>1

2miT

where gy = e~ . We see
1
katu t+kutk
D Sa,ﬁ — WSO‘HB .
The following three kinds of Eisenstein series will be useful in our later computations.

Lemma 1.3.1. Let k > 1 be an integer and (a,b) € (Z/NZ)?. Suppose (a,b) # (0,0) in
the case k = 2. Define

F () = ao(F) + N'H (S50 () + (C1)fsgl ()

6_[,,5(1 61)7670,

where

0 ifa=b=0,

ao(Fa(,lb)) = %E?I; ifa=0 and b # 0,

s~ %} da#0,

and for k > 2
a
ao(Fyy) = (55,1~ k)

Then Fa(lz) (1) is an Fisenstein series of level T'(N) weight k.

23
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Lemma 1.3.2. Let k > 1 be an integer and (a,b) € (Z/NZ)?. Suppose a # 0 in the case
k = 2. Define

G () = ao(GL) + (SR (N7) + (~1)RsPR ) (Nm))

0_p,0—qa
where
0 ifa=0b=0,
ao(GY)) = =%} fa=0andb#0,
ab %_{%} Zfa%()andbz(),
0 Zfa7é0andb7é0;
and for k > 2

k) _ (&, 1—=Fk) ifb=0,
aO(Ga,b> - { N Zfb 7& 0.

Then ngg (7) is an FEisenstein series of level T'1(N?) weight k.

(@]
<
L
~

Lemma 1.3.3. Let k > 1 be an integer and (a,b) € (Z/NZ)?. Suppose a # 0 in the case
k = 2. Define

HY(7) = ao(HG) + (SP5T(NT) + (1S () )

da,0b 840t
where )
0 ifa=0b=0,
_11+<§;V ifa—0andb 40,
a(HY)) =< 11L&
" _%1—@% ifa#0 and b =0,
14+¢% 14¢b .
\‘%@f%+%i%) if a7 0 and b #0,
and for k > 2
. b
k
ao(Hy) = {(=55. 1= h).

Then Hékb)(r) is an Eisenstein series of level T'1(N?) weight k.

Let Wiz be the Atkin-Lehner involution of level T';(N?), then we have ([11, Lemma

3.10)) |

W@dGﬁ): HY i (a, k) # (0,2),

N e
with a,b,b' € Z/NZ.

We also introduce the following real analytic Eisenstein series, which will give us the
Fourier expansion of Eisenstein symbols.

24



1.3. EISENSTEIN SERIES AND S-SERIES 25

Definition 1.3.4 (Brunault). Let a,b > 0 be integers and uy, us € Z/NZ. We define the
following real analytic Eisenstein series

FRb ()= ¢ (%a tb+ 2) +(—1)e+0¢ (—%,a Ty 2)

+(~1)%2mi <a Z b) Gy o (2iy) 001 (é (% atb+ 1) +(—1)*th¢ (—% a+b+ 1))

(PN G (a+b—) (2w iabot Cab1
- 2 a J -Z s —1 a+b ,Z 5J
P & e U ) B Sty ) VS s )

b . -\ j+1
(—1)eHN (a+b—j)! 2mi \? . N—a—b-14j (qi—a—b—1;j atbgi—a—b-1,
T Z% o \w) B (Bl 0+ (OB 5 ).

These Eisenstein series have constant terms which are usually complicated to compute.
To solve this, given an S-series S;%(T) with ¢, u two integers, we introduce the following
notation in this thesis

Definition 1.3.5. Let «, 5 : Z/NZ — C be two functions and ¢,u € Z, we define
0,u 1 o
st (7) = S?UB(T) + 5a(0)L(B, —u) t=0,
’ 502’5(7') t #0.

Set

GUm = > al@p®)Gl(n),

(a,b)€(Z/NT)2

if k =2 we assume further that a(0) >, c; nz 8(n) = 0. Then ng)B(T) is an Fisenstein
series of level 'y (N?) weight k. In particular, we have

bl as

k k
H) (1) =G, (7).

G (r) =Gy, (7)

The Eisenstein series become simpler via S-series with constant terms

Lemma 1.3.6. We have the following identity

GU D (iy) u>0
B, )
Sap(iNy) + (=1)*18." ;_(iNy) = { G5, (iy) — 50(0)B(0) = H0)L(e,0) u=0.

Proof. Note that for £ > 1 we have

L(0, 1 — k) = N*¢( k).

a
~1-
N?
25
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Also
1 fal jf 0
Loy = {3 (7} o z0
-3 if a=0.
The lemma follows straightforwardly by summation over all a,b € Z/NZ. O

Their Atkin—Lehner involutions are

Lemma 1.3.7. Let k > 1 and «o,8 : Z/NZ — C. If k = 2, assume further that
a(0) ZneZ/NZ B(n) =0. Then

ik
CAEAN
W (G) = 6%,

A quick computation shows

Lemma 1.3.8. Let k > 1 and o, : Z/NZ — C. If k = 2, assume further that
a(0) ZneZ/NZ B(n) =0. Then

A (G s) = N 2m) " T(s) (Llays =k + LB, ) + (~1)*L(a”,s = k+ 1)L(8™,5))

— FNFL(20) kD (k — 5) (L(@, k—$)L(B,1—s) + (—1)*L(a~, k — s)L(B~, 1 — s)).

1.4 Incomplete Gamma Function and Generalized Ex-
ponential Integral

The incomplete gamma functions have an important role in our later definition of
generalized Mellin transform. The main goal of this section is to give an introduction to
them. As a precise reference of incomplete gamma functions, see [38, Chapter §].

We recall initially the definitions of incomplete gamma functions. The incomplete
gamma functions are defined as the following integrals

['(s, 2) :/ t e tdt,
v(s, 2) :/ t~te tdt,
0

for Re(s) > 0 and z € C. Let v*(s,2) = 27°y(s,2)/I'(s). Then the function v*(s, z) has
the following power series expansion

Zk:

I(s+k+1)

z

WE

v (s,2) =e”

b
Il

0

it can be extended to an entire function in both s and z. With the relation I'(s, z) =
[(s)(1 — 2°y*(s, z)), we also have the analytic continuation of I'(s, z). In the case s is a
nonpositive integer, we take limits of s to fill missing values.

26
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Example 1.4.1. Let s = 0, the incomplete gamma function I'(0, 2), i.e. the exponential
integral E1(z) (see below), is the following multivalued function

I'0,z) = —W—Logz—z RE)
k=1 ’

With the recurrence relation I'(s+1, z) = sI'(s, z)+z%¢~* we can derive the values I'(—n, z)
for positive n.

Lemma 1.4.2. The function I'(s,z) can be extended to
(1) an entire function in z, when s € Z~o.

(2) a multivalued function (due to the multivalueness of Log z) in z with branching point
at z = 0, holomorphic in each sector, when s & Zq.

(8) an entire function in s, when z is nonzero.

For z € Ry and s € C, the incomplete gamma function has exponential growth
asymptotic expansion

z z

[(s,z) ~ 2" le ™ <1+3_1+ (5_1)§S_2)+...)

as |z| — oo (see [38, Section 8.11 (i)]).
Let j be a nonnegative integer. The generalized exponential integral defined in Mil-
gram [36] is the following integral

1

Fil(z) = —— <>01 t)7tsedt.
) = s | sty

For j = 0, it is known as the exponential integral
o0
Eq(2) :/ t e dt
1
=25"1T(1 — s, 2).
Since for nonzero z the exponential integral E(z) is entire in s, by

(1) &
i asr )

El(z) =

the derivative EY(z) can be continued to an entire function in s. For z = 0, we have
special value ([36])

EJ(0) = (s — 1) for Re(s) > 1.
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We hereby add the definition £7(0) :== 1/(s — 1)7™! for all s € C\{1}. Then the function
Fi(z) is defined for all (s,z) € (C\{1}) x C.

Milgram computed explicitly the function EY(z) with power series expansion and log-
arithms. In general for j > 0, EJ(z) is multivalued, holomorphic on each branch of
Log z.

To sum up, we have

Lemma 1.4.3. The function E’(z) is
(1) an entire function in z, when s € Ziog and j = 0.

(2) e %]z, thus meromorphic in z with only a simple pole at z = 0, when s = 0 and
j=0.

(3) a multivalued function (due to the multivalueness of Log z) in z with branching point
at z = 0, holomorphic in each sector, when in the else cases for s and j.

(4) an entire function in s, when z is nonzero.

(5) 1/(s—1)71, thus meromorphic in s with a pole of order j+1 at s = 1, when z = 0.
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Chapter 2

Eisenstein Symbols

Chapter 2| is dedicated to give a quick introduction and definition of Eisenstein sym-
bols. The readers are invited to obtain more details in Deninger—Scholl [22], Deninger [21]
and the book of Brunault-Zudilin [13]. We need to introduce several objects. In Sec-
tion 2.1, we will recall the definition of universal elliptic curve. We will discuss in Sec-
tion 2.2 the Deligne-Beilinson cohomology, in Section and Section [2.4]the Beilinson
conjecture and the construction and realization of Fisenstein symbols and the Beilinson—
Deninger—Scholl elements.

2.1 Universal Elliptic Curve

In this section we give a brief introduction on universal elliptic curve. The notations
are dispersed in different literature, here in this thesis we will follow the conventions
n [12].

Let N > 3 be an integer. Let Y (N) be the modular curve over Q with full level N
structure. From [29, (1.8)], the complex points of Y (N) are described as follows

Y(N)(C) = SLa(Z)\ (H x GLy(Z/NZ)),

where the action of SLy(Z) on H is given by Mobius transformations, on GLg(Z/NZ)
is given by left multiplications. It is endowed with the left action of GLy(Z/NZ) by
v+ (1;9) = (1;977). This curve is not geometrically connected, there is an isomorphism
of Riemann surfaces

~

(Z/NZ)* x T(N)\H = V(N

4(( o))

Let E be the universal elliptic curve over Y/(N). Let E* be the w-th fiber product of

E over Y(N). Then the complex points of E* can be described by the isomorphism (21
3.4])
EY(C) =~ (Z*" x SLy(Z)) \ (H x C* x GLy(Z/NZ)), (2.1)
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where the left action of SLy(Z) is

a b (i rwig) = CLT—Fb' 21 Zw (a b
C d 717"'7 w?g - CT—i—d’CT—i—d""’CT—i—d’ C d g )

the left action of Z2% is

(M, N1,y My M) = (T3 215+ o5 203 9) = (T3 20 F My — T, oo Z + My — Ny T3 G)-

The group GLy(Z/NZ) acts on E*(C) on the left side by

7'(7-;21,---,211);9) = (7;217"'7210;9’71-)'

Here in the semidirect product Z?* x SLy(Z), the group SLy(Z) acts on Z** on the left
side by v« (21,...,20) = (2177, ..., 2077 Y), regarding each element z; € Z? as a row
vector. There is an isomorphism of complex analytic manifolds

(Z/NZ)* x (Z*" x T(N)) \ (H x C*) = E“(C)

T I

For a point [(7;g)] € Y(N), the fiber of the projection E*(C) — Y (N)(C) is exactly
the w-th product of elliptic curve E., where E, = C/(Z + Z).

2.2 Deligne—Beilinson Cohomology

The purpose of this section is to give a short description and to review some properties
of Deligne—Beilinson cohomology. Classically it is defined as the hypercohomology of the
Deligne—Beilinson complex (cf. [22, Section 2]). The definition of Deligne-Beilinson
cohomology which is more convenient for us to use in this thesis comes from Burgos.
Further details can be found in Burgos-Kramer-Kiihn [16], Burgos [15, Section 2| and
Brunault-Zudilin [13, Section 8.1].

For a subring R of R we set R(n) = (2mi)"R. Let X be a smooth quasi-projective
complex variety. Suppose that j : X — X is a smooth compactification of X with normal
crossing divisor D = X\ X. For A € {R,C}, we denote by Eji 1 (X) the space of A-valued
smooth differential n-forms on X with logarithmic singularities along D.

The complex Ey, ~(X) is bigraded by

Elr(];g,(C(X) - @ Eﬁgc(X)7
p'+q'=n

where EP' denotes the subspace of forms of type (p,q) in B, c(X). The differential

d: E" — E™! can be decomposed as d = 9+ 0 with 0 : EF'¢' — EP'+L4 and 9 : BP9 —
EraL
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Definition 2.2.1 ([15, Theorem 2.6], also [13| Definition 8.3]). For an integer p > 0, let
the complex E,(X)* = (E,(X)", d})n>0 be

(2mi)P B R (X) N <@p/+/q/:n_1 Ef;/;(/c(X)) ifn <2p-—1,

,a'<p

(2mi)P B, 5 (X) N (@ oo E{;’g(’c(x)) if n > 2p.
and
—m(dw) ifn<2p-—1,
dpw = —200w ifn=2p—1,
dw if n > 2p,

where 7 is the projection @, , — @, ,-,-

Definition 2.2.2. Let X be a smooth quasi-projective complex variety. The Deligne—
Beilinson cohomology groups of X are defined as

Hp (X, R(p)) = H"(Ep(X)).

There is also a real version of Deligne-Beilinson cohomology. Let X be a smooth quasi-
projective variety defined over R. Let F., : X(C) — X (C) be the complex conjugation
(real Frobenius) on the complex points of X. Given a complex differential form w, we have
the de Rham conjugation Fyg : w +— FZ (@). For an integer p > 0, we set the complexes
E,(X/R) to be the invariants under the de Rham conjugation

E,(X/R) = E,(X(C))"*.
With the complex E,(X/R) we can define

Definition 2.2.3. Let X be a smooth quasi-projective variety defined over R. The
Deligne—Beilinson cohomology groups of X are defined as

Hp(X/R,R(p)) = H"(Ey(X/R)).

Remark 2.2.4. Our definition here relies on the smooth compactification X. However, it
follows from [14] that the Deligne-Beilinson cohomology does not depend on the choice
of the compactification X.

When p > n, the Deligne—Beilinson cohomology groups H7(X/R,R(p)) are given by
Proposition 2.2.5. Let S5 be the complex of real-valued smooth differential forms over
X(C) invariant under the de Rham conjugation on X(C). Let Q2(log D) be the complex
of holomorphic forms on X (C) with logarithmic singularities along D. Set m,(w) = %(w—l—
(—1)"w). For integers n > 2 and p > n, we have

SYT@R(n —1)|de = 71 (w) with w Q2 (log D
i3/ ) » 12 S ERODIE =) it € Oillos D)),

Hy (/R R(p) = LS E LN =)
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Proof. Notice that the complex EngVR(X ) actually computes the de Rham cohomology
H}n(X,R). The rest follows by direct computation with the complexes E,(X/R). O

Remark 2.2.6. When p > n, we see that the Deligne-Beilinson cohomology groups
Hp(X,R(p)) are simply the de Rham cohomology groups Hjjp,' (X, R(p — 1)) with twisted
coefficients.

The cup product of Deligne-Beilinson cohomology (see [16, Definition 5.14], also
in [22]) is a nature homomorphism, which is contravariant functorial, associative and
graded

U: Hp(X/R,R(p)) ® Hp (X/R,R(q)) — Hp™(X/R,R(p + q)).
In particular, for two classes [p,] € HL(X/R,R(n)) and [p,,] € HE(X/R,R(m)) associ-
ated to w,, resp. wy,, their cup product is represented by

Pn U Pm = Pn A ﬂ-m(wm) + (_l)nﬂ-n(wn) A Pm-

We also need to introduce the pullback and pushforward morphisms of Deligne—
Beilinson cohomology.

The Deligne-Beilinson cohomology groups Hp(X/R,R(p)) are contravariant functorial
in X. Let f: X — Y be a morphism between smooth quasi-projective complex varieties.
For all nonnegative integer n and integer p, there is a pullback morphism

fT - Hp(Y/R,R(p)) — Hp(X/R,R(p))
given by
el =11¢l,
where the inner f* is the pullback of differential forms.
Let f : X — Y be a proper morphism between smooth quasi-projective complex
varieties of relative dimension e. With Poincaré duality and the covariance of Deligne—

Beilinson homology ([16, Section 5.5]), for all nonnegative integer n and integer p there
is a pushforward morphism

for Hp(X/R,R(p)) — Hp *(Y/R,R(p — e)).
If0<n<pand 0 <n-—2e<p-— e, such pushforward morphism is given by

f*[SD] = [f* ]7

where the inner f, is the integration along the fiber (see [3, Definition before Proposition
6.14.1]), it is given by the following differential form

1
Jep = (2mi)e /fgo

For reader’s convenience, we give at the end of this section a summary of properties
of Deligne-Beilinson cohomology.

32



2.3. EISENSTEIN SYMBOLS 33

Theorem 2.2.7. (1) The functors X — HZ(X/R,R(p)) are contravariant in the cat-
egory of smooth quasi-projective complex varieties. Given a morphism f: X — Y
between smooth quasi-projective varieties, we have the pullback morphism with con-
travariant functoriality

f* Hp(Y/R,R(p)) — Hp(X/R,R(p)),
such morphism is given by the pullback of differential forms.

(2) Let f : X — Y be a proper morphism between smooth quasi-projective complex
varieties of relative dimension e, we have the pushforward morphism with covariant
functoriality

fo Hp(X/R,R(p)) = Hp *(Y/R,R(p — ¢)).

If0<n<pand 0 <n-—2e < p—e, such morphism is given by the integration
along the fiber of differential forms.

(3) There is a cup product U which is contravariant functorial, associative and graded.

2.3 Eisenstein Symbols

2.3.1 Beilinson’s Conjectures

Beilinson’s conjectures describe, up to rational factors, the special L-values of varieties
over number fields at integers. The central concept is a regulator map from the motivic
cohomology to the Deligne-Beilinson cohomology. For explicit descriptions of motivic
cohomology and regulator map, see [34] and [13] Section A.1, Section A.2].

Let X be a smooth quasi-projective variety over a field k. Let n be a nonnegative
integer and p be an integer, we have the motivic cohomology group H% (X, Q(p)) of X.
It has properties as follows

Theorem 2.3.1 ([22, (1.3)], [34, Lecture 3]). (1) The functors X — H}(X,Q(p)) are
contravariant in the category of smooth quasi-projective varieties over k. Given a
morphism f : X — 'Y, we have the pullback morphism with contravariant functori-
ality

£ Hy(Y.Q(p) = H(X.Q(p)).

(2) Let f : X — Y be a proper morphism between smooth quasi-projective varieties
over k of relative dimension e, we have the pushforward morphism with covariant
functoriality

fo: Hy(X,Q(p)) = Hy (Y, Q(p — ¢)).

(8) There is a cup product U which is contravariant functorial, associative and graded.

33



34 CHAPTER 2. EISENSTEIN SYMBOLS

Let Kk = R or C. Let X be a smooth quasi-projective variety over k. There is a
regulator map (see [22, (2.6)], also [13] Section A.2]), defined by Beilinson

rp : Hiy (X, Q(p)) = Hp(X/R,R(p)),

which commutes with cup products, pullbacks and pushforwards. Let k£ be a number field
and X be a smooth quasi-projective variety over k. Write X/R = X ®gR. The regulator
map associated to X is defined as the composition

rp - Hiy (X, Q(p)) — Hi(X/R,Q(p)) — Hp(X/R,R(p)),

where the first map is obtained by base change and the second map is the regulator map

of X/R.

Example 2.3.2. Let X be a smooth quasi-projective complex variety. In the case n =
p =1, we have isomorphism

H(X,Q(1)) =~ 0*(X) @2, Q.
The map rp sends any invertible function f to log|f|.

Assume that X is a smooth quasi-projective variety defined over Q. Let H’, (X, Q(j))z
be the integral part of the motivic cohomology (see [2} 2.4.2] or [22] (1.6), (1.7)]). Beilinson
defined a natural Q-structure B;; in detp Hi ' (X/R,R(j)) (see [2, 3.2] or [22, 2.3.2]).
Then he formulated the following conjecture on the L-value L(H™(X), s)

Conjecture 2.3.3 (Beilinson [1]). Let X be a smooth projective variety defined over Q.
Let 0 <1 <2dim X and let j > % + 1 be integers. Then

(1) The regulator map induces an isomorphism

rp s HYWH(X,Q())z — Hp ' (X/R,R(j)).

(2) We have
rp(det Hil'(X,Q(j))z) = L*(HFN(X),i+1—j) - Bij,

where L*(H™Y(X),i+1—j) denotes the leading coefficient of the Taylor expansion
ats=1+1-7.

2.3.2 Construction of Eisenstein Symbols

Here we give a short review on the construction of Eisenstein symbols. Eisenstein
symbols live in the motivic cohomology of fiber products of the universal elliptic curve.
Their images under the regulator map in Deligne-Beilinson cohomology can be described
with real-analytic Eisenstein series. For references and more explicit definitions see [22|
Section 4] and [2].
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Let N > 3 be an integer and Y (V) be the modular curve with level N structure. Let
X (N) be its usual compactification, obtained by adjoining some cusps. The set of cusps
Cn = X(N)—Y(N) is a finite set of closed points with bijections

Cy ~ { (3 £1) } \ GLy(Z/NZ).

The motivic cohomology group H},(Y(N),Q(1)) ~ O(Y(N))* ® Q is the group of
modular units defined over Q. There is a divisor map

Res), : H (Y(N),Q(1)) — Q[Cn],

where Q[Cx]® is the Q-linear space of divisors of degree 0 over Cy.
Let n be a positive integer. We define Q[Cx]™ to be the space

alon® = {1:61z/vn > |1 ((§ 1) o) = o) = (177 foran g}

Recall that E™ is the n-th fiber product of the universal elliptic curve E over Y (N).
Beilinson defined a residue map (see [2, (2.1.2)], also [22, (4.3.3)])

Resh, : Hif'(E™,Q(n + 1)) — Q[Cy]™.

There is an Eisenstein symbol map defined by Beilinson [2] (also [22, (4.6)]), which is
a canonical right inverse of Res'y, for n > 0. Beilinson constructed the Eisenstein symbol
map &}, with cup-products of certain elliptic functions which have divisors on N-torsion
sections of E. It is a map

Ery : QICN]™ — HYTH(E",Q(n+ 1))

satisfying Res’y, o £}y = id. In particular, the residue map Res’y, is a surjective map.
Let the horospherical map \% = Q[(Z/NZ)* — Q[Cn]™ be the following family of

map
Mg = Y el ) B ({5 })

(v1,v2)€(Z/NZ)?

where B,,, 5 denotes the Bernoulli polynomial and {z} is the fractional part of x.

Definition 2.3.4. For u € (Z/NZ)? assume further v # 0 if n = 0, we define the
Fisenstein symbol to be

Bis" (u) = 3 0 Ay (du) € Hyf'(E", Q(n +1)),
where ¢, is the characteristic function at wu.

The group GLy(Z/NZ) acts (right) on Hyi'(E™, Q(n+1)). Since the map Res’}, and
Exy are GLo(Z/NZ)-equivariant, we have
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Lemma 2.3.5. For all g € GLy(Z/NZ) and all w € (Z/NZ)? with u # 0 when n = 0,
we have
g" Eis"(u) = Eis"(ug).

Let ki, ko, j be non-negative integers and set w = k; + ky. Let kK = w + 2. Consider
the following diagram

EFititka
V pl K
)
Ek1+j Ek1+k2 Ej+k2

where p, : EMtitke 5 Fki+i js the projection on the first k; + j components, py :
ERitithk: y pitk2 ig the projection on the last ky + j components, and p : BFtith:
E*1+k2 i the projection by omitting the middle j components. Deninger—Scholl [22] and
also Gealy [28] constructed the following element

Definition 2.3.6. Let uy = (Cll,bl), Uy = (ag,bg) € (Z/NZ)2 with U; 7£ 0 when kl =0.
Then the Beilinson—Deninger—Scholl element is
Eis® 29 (u) uy) = p.(p} Bis™  (uy) U pj Bis®2™ (uy))
€ HYP(E, Q(w + j + 2)).
Example 2.3.7. In the case ky = ky = j = 0, we have Eis(u) = g, ® (2/N) where g,

is the Siegel unit on Y (N). After taking cup products we get the Beilinson-Kato element
(see [29]) Eis® % (uy, ug) = 4/N?*{gu,, Gu, } in the K-group K»(Y(N)) ® Q.

2.4 Realization of the Beilinson—Deninger—Scholl El-
ements

The aim of this section is to provide an explicit formula for the realization (i.e. the
image under regulator map) of the Beilinson—Deninger—Scholl element in the Deligne—
Beilinson cohomology.

Denote by (7;21,...,2,) the coordinates on E"(C). For all integers 0 < a < n we
define the following n-form on C"

¢a,n—a = Z dZa .. O'(a /\ dza(aJrl A dzo (n)
O'ESVL
After [2] and [11} Section 8], we have the following proposition

Proposition 2.4.1. Let u € (Z/NZ)*>. Assume u # 0 if n = 0. Then the element
rp(Eis" (u)) is represented by the following real analytic n-form

' 2
Fis? (1) = — - 27;; ZF;UT “(Vana mod dr,dr.
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Moreover, we have d Eis}(u) = m,(Eisy,,,(u)), where

n+1n+2

Bisf(0) = (—1)"" 12

(2i7r)"+1F(”+2) (T)dT A 0,

ogul

where the Fourier expansions of the functions F*"~* and F gre gien in Section .

Let uy = (ay,b1), us = (az,by) € (Z/NZ)?. If k; = 0 we assume u; # 0. Recall that
we have the following Beilinson-Deninger—Scholl element

Eis® 29 (uy, uy) = p.(p} Bis™ 1 (uy) U pj Bis® ™ (uy))
€ Hy(EY,Q(w + j + 2)).

With the formula of cup product, pullback and pushforward morphisms of Deligne—
Beilinson cohomology, we can get an explicit formula of the regulator of the Beilinson—
Deninger—Scholl element

Proposition 2.4.2. The element Eisy 7 (uy, uy) = rp(Bis®*9 (uy, uy)) is represented

by the following differential form
- k1,k2,j o * e k1+7 * 1 ko+j
Eisp ™ (u1, u2) = ps (P1 Eisp ™ (u1) A Thy 1 (93 Bispgy  (u2))

()R (6 Bist () A 9 Bisl ™ (ug)).

It is also possible to define the regulator of Beilinson—Deninger—Scholl element in level
N = 1,2. In these cases, the universal elliptic curve E(N) of level N does not exist
anymore. Letting N’ divisible by N with N’ > 3, we have the universal elliptic curve
E(N’) over Y(N'). The group GLo(Z/N'Z) acts on the complex points of the universal
elliptic curve E(N’)(C) and the Deligne-Beilinson cohomology of E(N')*. Write K for
the kernel of GLy(Z/N'Z) — GLy(Z/NZ). We define

Definition 2.4.3. Let N = 1,2. Given the integer N’ > 3 with N|N’, the Deligne—
Beilinson cohomology of E(N)" is formally defined as the following K-invariant

Hp(E(N)"/R,R(p)) == Hp(E(N')" /R, R(p))".

Observe that for g € GLy(Z/N'Z) we have g* Eish ™7 (uy, us) = Eisg ™7 (uy g, usg). A
regulator of level N can be constructed from a regulator of level N’ which is invariant
under K. We make the following definition

Definition 2.4.4. Let N = 1,2 and uy,uy € (Z/NZ)?. Let ky, ky > 2 and j be integers.
Suppose that the integer N’ > 3 is divisible by N. The element Eis%“k“ (uy,uz) of level

N is defined as the following element of level N’

N/ w+2j+2 /N’ N/
(W) Eisyl*27 (Nul, W“Q) € HE (E(N)"/R,R(w + j + 2)) .
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Note that our definition relies on the choice of N’. However, we will later recognize
that all our arguments and computations in Chapter 6] pass over directly in level N = 1, 2.
In the next chapter, we will define the Shokurov cycles. In general, the differential

form Eis%’k2’j (u1, uz) has nonzero constant terms in its Fourier expansion (cf. Section .
So the integral of the regulator Eis%’kz’J(ul,ug) over a Shokurov cycle usually does not

converge. We will build in Chapter|3/a theory of regularized integrals to solve this problem.
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Chapter 3

Regularization and Mellin Transform

The history of Mellin transformation can be traced back to Riemann. In his famous
study of (-function, he gave the following formula

< 1
r = —— 2 ldx.
O e Ea
In general setting, let f(z) be a complex-valued function with positive variable x, we have
the integral

Mt = [ " fa) e

with complex variable s. These integrals were later systematically analyzed by Mellin,
after whom the name of theory was derived. Mellin transform appears everywhere in the
theory of L-functions. For example, the Mellin transform of a modular form f € M,
along the imaginary axis is the completed L-function associated to f, as witnessed in
Subsection [1.1.2]

We aim to build a generalization of Mellin transform to more general modular func-
tions. This chapter is structured in two parts. The first part concerns about general-
ized Mellin transform and the latter concerns about periods and residues over extended
modular symbols. In the first part, we start by reviewing the classical theory of Mellin
transform, and then in Section[3.2]and Section [3.3|we define generalized Mellin transforms
and regularized integrals, the main tool of this thesis. Several examples of L-functions
are given in Section The second part is oriented towards regulator integrals. We
recall the extended modular symbols defined by Stevens [44] and formulate afterwards in
Section a theory of periods and residues of certain closed forms, such as our regulator
Eis%7k2’j(u1, UQ).

3.1 Mellin Transform

In this section, we retrieve the classical theory of Mellin transform, which can be found
in typical textbooks involving integral transforms. The Mellin transform is a basic tool in
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analyzing zeta functions and L-functions. References of this section include [20, Chapter
8] and [26].

Definition 3.1.1. Let f(z) be a continuous complex-valued function on (0,00). The
Mellin transform of f is given as

M(f,s) = /Ooo F(z) 2~ dz.

Let us recall that we have an existence strip when the asymptotic conditions at 0 and
00 are given.

Lemma 3.1.2. If we have two real constants o and 5 with o < B such that
flz)=0(x"%) when x — 0,
f(z)=0(z") when x — oo,

then the Mellin transform M(f,s) exists on the open strip a < Re(s) < f.

Also, we have an inversion formula for Mellin transform.

Lemma 3.1.3. Let F(s) = M(f,s) be the Mellin transform of f(t) on the strip a <
Re(s) < B. Assume that F(c + it) is integrable with respect to t for all o < ¢ < [3, then
we have equality

fl@) = — / o F(s)a~*ds

C2mi S
for all z on (0, 00).

We also list some basic formulas about Mellin transform.

Lemma 3.1.4. Let F(s) = M(f,s) (resp. G(s) = M(g,s)) be the Mellin transform of
f(x) (resp. g(x)) on the strip a < Re(s) < f (resp. o' < Re(s) < §'). Then we have the
following table about Mellin transforms.

Original functions Mellin transforms Existence strips
flaz), a >0 a *F(s) a < Re(s) <
flz=1) —F(-s) —B < Re(s) < —a
z*f(x),z€ C F(s+2) a<Re(s+2z)<p
DF f(z), k positive integer (—5=)(s — k)i F(s — k) a+k<Re(s) <fB+k
I f)g(a/t)L F(s)G(s) max{«, o'} < Re(s) < min{g, '}
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3.2 Generalized Mellin Transformation and Regular-
ized Integral 1

The classical Mellin transform deals with function relying on some crucial conditions
at boundaries. However, these conditions do not hold for many modular forms that we
encounter in this thesis. The technique of generalized Mellin transform, which appears
in many literature such as [26] and [46], are widely used to treat more general functions.
In a nutshell, the idea is that there is a connection between the asymptotic expansions of
a function and the poles of its Mellin transform. Similar ideas can also be found in [19,
Section 8.6].

Definition 3.2.1. Let f(x) be a complex-valued function of positive real variable z. We
say that f has poly-log asymptotic expansion at oo if for any real N

flz) = Z ¢ " (logz)™ 4+ o(z™") when x — o0,
Re(sn)<N

or in short

f(z) ~ ch 7" (logz)™ when x — oo,
where s, is a series of complex numbers with non-decreasing real parts Re(sg) < Re(s1) <
.-+ < Re(s,) < --- such that either there are finitely many s, or Re(s,) tends to infinity
as n — oo, and [, are nonnegative integers. If there are only finitely many (s,,[,),
we call f has finite poly-log asymptotic expansion. We write a(f;o0) as the formal sum
>, cnx*m(log )™ for the poly-log expansion of f at oc.

We can also consider functions with poly-log asymptotic expansion at 0.

Definition 3.2.2. One says that f(x) has (finite) poly-log asymptotic expansion at 0 if
f (%) has (resp. finite) poly-log asymptotic expansion at co. This is to say, for any real
N we have
flz) = Z ch " (logx)» + o(z™") when z — 0
Re(s),)>N

with s/, a series of complex numbers with non-increasing real parts Re(s;y) > Re(s]) >
.-+ > Re(s],) > --- such that either there are finitely many s/, or Re(s),) tends to negative
infinity as n — oo, and [,, nonnegative integers. Similarly, we write formally a(f;0) =
> onCn z~*(log z)" for its poly-log expansion at 0.

We will see soon, given a function f(z) with poly-log asymptotic expansions at 0 and
00, we can truncate its asymptotic expansions to define its generalized Mellin transform
F(s). Generally speaking, the asymptotic expansions of f(z) at 0 and co correspond to
the poles of the meromorphic continuation of F(s).

We are about to define the regularized value and regularized integral for a function
with poly-log asymptotic expansions. The idea is to take only the constant term in a
given expansion.
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Definition 3.2.3. Let f(z) be a continuous function on (0, co) with poly-log asymptotic
expansion at 0o. The reqularized value of f at oo is defined as the constant in a(f;o0)
(i.e. those terms with (s,,1,) = (0,0)), denoted by f*(cc). In a similar way, we can also
define the regularized value f*(0).

Let F'(s) be a meromorphic function on the whole complex plane with discrete poles.
The regularized value of F' at a € C is defined as

(3.1)

F*(a) = {hms—m(F(S) — P,(s)) if ais a pole,
| F() else,

where P,(s) is the principal part in the Laurent expansion of F(s) at s = a.

Let f(z) be a continuous complex-valued function on (0, 00). Assume that f has poly-
log asymptotic expansion at co. Let s € C. Suppose that g(x) is a primitive of f(z)x*~1,
that is,

dg(x) = f(z)a*da,
Then we claim that g(x) has also poly-log asymptotic expansions at 0 and co. Notice
that we have

(=D s41
/f”s(logx)ldx = {(S“Vﬂ*f' e (=(s+1)loga) +C s # —1,

(logx)“rl + C S = —1,

I+1
where ¢;(z) = 22:0 f—: is a polynomial. Hence there exists a poly-log asymptotic expansion
Q(z,log x) with zero constant term such that

g(x) ~ g*(00) + Q(z,logz) when x — oo.
Similarly we have the same argument at 0.

Definition 3.2.4. Let f(z) be a continuous function on (0, c0) with poly-log asymptotic
expansions at 0 and oo. Let g(x) be a primitive of f(z)x*! for a given s € C, then the
reqularized integrals of f(z) are defined as

/0 " f@)at T da = g(t) — 4°(0),

t C fla)a* d = g*(00) — g(b),
and o
i (x)2* " dz = g*(c0) — g*(0),

where t is an arbitrary positive real number.
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Example 3.2.5. The reqularized integral of a poly-log function is always zero. In fact,

00, % 1, 00, %
/ 2*(log )" dx —/ :Us(logx)ldx+/ 2*(log x)' dx
0 0 1

—1)! 1\
B {%m e (=(s+1)logx) |p=1 — ié—))lflx e (=(s+1)logx) |p=1 s # —1,
- log = +1 log = +1

Gogeh )y — Gty s=-L

=0.
Now let f(z) be a continuous function with poly-log asymptotic expansions

f(z) ~ Z cnz*"(logz)™  when x — oo,

n

f(z) ~ Z ey z*(logz)» when z — 0

n

as in Definition and Definition [3.2.2l To give a definition for the Mellin transform
of f(x), we split it into two parts with a cutting point 5 € (0, 00)

/000 f(x)z* tdx :/t:o f(x)z*tdr + /Oto f(z)z* 'da
—L(s) + R(s).

The first part L(s) converges absolutely for Re(s) < 0 and the second part R(s) converges
absolutely for Re(s) > 0. In fact L(s) can be continued meromorphically to the whole
complex plane. For arbitrary real o and Re(s) < 0, we have

:/too Fla)e*de

-/ m(f(x) ~asalf, oo [ fo)a s (33)

1)Fle, 1,

DI e

Re(sn)<a

(3.2)

where

a<a(f,00) = Z cnz " (logz)™™.

Re(sn)<a

Therefore L(s) can be extended meromorphically to the half-plane Re(s) < a. All the
same also works for R(s). It can be seen from (3.3) that their sum L(s) + R(s) does not
depend on the choice of ty3. In this manner, we can define

Definition 3.2.6. The generalized Mellin transform of f(x) is the sum of meromorphic
continuations of two parts

M(f,s) = L(s) + R(s).
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Typical examples of generalized Mellin transforms are completed L-functions of mod-
ular forms, see Example for details.

Conversely, the meromorphic continuation of Mellin transform also encodes the infor-
mation of poly-log asymptotic expansions at 0 and co.

Lemma 3.2.7 (|26, Theorem 4, (i) and (ii)]). Let f(z) be a continuous complez-valued
function with positive real variable x. Let F(s) = M(f,s) be its Mellin transform with
nonempty existence strip a < Re(s) < 8. Suppose F(s) extends to a meromorphic func-
tion on the strip v < a < Re(s) < B < § with finitely many poles, and F(s) is analytic on
Re(s) = v and Re(s) = 6. Let the sum of principle parts in the Laurent expansion F(s)
at all its poles in the strip v < Re(s) < d be

S
" (5 — 8y,)nt1’

n

If there exist n1,m2 € (o, B) such that for Re(s) € (y,m1) U (12,9),
|F(s)| = O(|s|'7%)  withe >0

as |s| — oo, then f(x) has a poly-log boundary conditions

_1\ln+1
flx) = Z Tn <%I_s”(log x)l”) +O(z™) when x — 0,
Re(sn)<a ’
and 1 In+1
flz) = Z —Tn (%i_s" (log :B)l") +O(x™%)  when x — oo.
Re(sn)>pB ’

Theorem 3.2.8. Suppose that f(x) is a continuous function on (0,00) with poly-log
asymptotic expansions

Z cnz " (logz)!™  when x — oo,

and
ch 41 log:)s when © — 0.

Let s € C and assume that g(x) is a primitive of f(x)x*~t. Let F(s) = M(f,s) be the
generalized Mellin transform of f(x). Then the following quantities are equal

(1) the regularized integral

f(x)z" dx = g*(o0) — g7(0),

0
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(2) the regularized value h*(c0) of the function

ey = [ fetdr,
1/x

(8) the following convergent integral obtained by removing poly-log parts

[ 0@ oty [0 —ustgioe) o s

o] t
/ ass(f Sldm—/ aes(f;00)z" td
¢
/ ot — /as(f; oo)z*~dx
1

a<s(f,00) = Z ¢z (log x)l"

where

Sn<s
as(f, 00 E cnz " (logz)!,  and
Spn<$
E cn " (log )"
Sn=S

(similar for ass(f,0) and so forth) are finite series and t is an arbitrary positive
real number.

(4) the regularized value F*(2)|,—s at s.

Proof. By h(x) = g(1/x) — g(x) we see (1) and (2) are equal. Notice that there is some
e > 0 such that f(z) — a>s(f;0) = O(z7*7) and as(f;00) = O(z7*"¢) when z tends to
0, f(z)—a<s(f;00) = O(x™°~¢) and as(f;0) = O(z~* ) when z tends to co. Recall that
the regularized integral of a poly-log function is always zero. So the regularized integral
in (1) equals

/0 (f(2) = as(f;0)) "~ dw + /too (f(z) — a<s(f;00)) 2° dz
- N a>s\J,; xs_ldl' — t Aeg(f;00 lL‘S_ldl’
/t (f;0) /0 (f;00)
t 0

Since 1 (log z)" has primitive (logH# which vanishes at x = 1 and has regularized values
0 at both z = 0 and = oo, we conclude that (1) and (3) are the same. It remains to
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46 CHAPTER 3. REGULARIZATION AND MELLIN TRANSFORM

show that (3) coincides with (4). Take ¢t = 1 in (3), we get
1 o)
[ G0 = asatrone e+ [ (60~ aculfi00) o
- /00 ass(f;0)r" tda — /1 aes(f;00)2" tda
1 0

[e.9]

N / (f(z) = azs(f;0)) 2" dw +/ (f(z) — acs(f;00)) 2° da

1
'Ill, '

(=1)1,,!
- Z (5 — s )l Z cnm:

s >s Sp<Ss

which is exactly the regularized value F*(s). O

3.3 Generalized Mellin Transformation and Regular-
ized Integral 11

In Section we considered functions with poly-log expansions at 0 and oco. This
includes a fair amount of functions. But there are also many usual functions having
exponential growth at cusps, such as the j-invariant

1
j(r) = T4+ 196884 + 21493760¢% + . ..

To cover these functions, we define

Definition 3.3.1. Let f(x) be a complex-valued function of positive real variable z. We
say that f(x) has exp-poly-log expansion at oo if for any real N

M
f(x)zz meAm® 4 Z bz *"(logz)™ +o(z™™) as x — oo,
m=1 Re(sn)>N

or in short

f(z) ~ Z Ay 27T N 4 Z by (logz)" as x — oo,
n

m

where o, € (C and Am € Ry are finite series, s,, and [, satisfy the same conditions as in

Definition If the asymptotic expansion has no log terms, then we say that f(x) has
exp-poly expansion.

Similarly as before we define
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Definition 3.3.2. We say that f(x) has exp-poly-log expansion at 0 if f(%) has exp-poly-
log asymptotic expansion at co. So the function f has asymptotic expansion

Za 27me m/x—i—Zb' = (logz)» when z — 0,

where o/, € C and X/, € R are finite series, 5], and [], satisfy the same conditions as in
Definition [3.2.2.

Let f(x) be a continuous function on (0, c0) with exp-poly-log asymptotic expansions

x) ~ Z am 7™M + some poly-log terms  as & — 00,

and
f(x) ~ Z an 2% e’ /T 4 some poly-log terms  as z — 0

as in Definition and Definition [3.3.2 We consider again the following decomposition

> s—ld — * s—ld fo s—ld
/0 f(z)z*da / f()etd + / f(@)z* e,

both integrals do not converge since they grow exponentially at 0 or co. Inspired by the
method of regularization of Petersson inner products in Bringmann—Diamantis—Ehlen [4],
we introduce

L(s;w) + R(s;w) = / f(z S—wrc /f s—w/xdx

with a complex variable w. It suffices to consider only the first integral L(s,w). For
Re(w) > 0, it converges absolutely. We see for Re(w) > 0

L(s;w) :/00 f(a:)xse_‘”d?x
:/ ( Zamx )\m:p> sew:pd?x

+ Z A (= A + W) 7T T (0 + 8, (— A + w)to)

m

=L1(s;w) + La(s;w).

Taking w = 0, the first line L;(s;0) is an integral of function with poly-log expansion at
infinity. As we showed before, it can be continued to a meromorphic function on whole
s-plane. We also want a definition of Ly(s;0), the typical way is to define it with analytic
continuation with respect to w. Following [4], we take only one branch of Log(z) with the
branch cut to be the ray {re? |r € Ry} to avoid problems on negative real axis, where
0 € (m, 3m) is a fixed angle.
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48 CHAPTER 3. REGULARIZATION AND MELLIN TRANSFORM

Lemma 3.3.3. Let w and s be complex numbers. For Re(w) > 0, the second part Ly(s;w)
defines an entire function in s. It can be continued to a holomorphic function of (w,s) in
the open domain C\{\, +re®? |r € Rso} x C. Moreover, the function Lo(s;0) is entire in
s and 1s independent of the choice of 6.

Proof. Recall that the incomplete gamma function I'(s, z) can be extended to a holomor-
phic function in both s and z in the sector {z € C| — 27 + 0 < argz < 0}. As long
as 0 € (m, ) the negative real axis is always contained in this sector. Accordingly, we
have an analytlc continuation of Ly(s;w) within the open set C\{\,, +7¢? |7 € R5q} x C.
Since —A,,to are negative reals, the incomplete gamma functions I'(o,, + s, —A,to) are
independent of the choice of 6. n

Write L(s;0) = Li(s;0) 4+ Ly(s;0). In the same spirit we can define R(s;0).
Definition 3.3.4. The generalized Mellin transform of f(x) is the sum of two parts
M(f,s) = L(s;0) + R(s; 0).

This definition is independent of the selection of ty. We observe that

L(s;w) = /10O <f(35) — Z amx"me“‘x> $Se_wxi—x

to dx
- fem Y — m _>\m —O’m—SF m ) _)\m )
/1 f(x)x’e x+zm:a ( + w) (Om + s + w)

summing up L(s;0) and R(s;0) together we see that the part involving ¢, vanishes.

Remark 3.3.5. In Ly (s;w), recall that we have the generalized exponential integral function

(see Section [1.4)
L(l,+ DEr o (w) = / (logt)mt* e dt
1

and its special value

(—1)lF1g,!

(s — sp)n

which is exactly the principle part coming from the Laurent expansion of L(s;0) at the
pole s = s,,.

D(ln + 1B _a(0) =

We offer in Section |3.4|several examples about generalized Mellin transforms of mod-
ular functions with exponential growth.
Let f(z) be a continuous function with exp-poly-log expansion

I)NZam Amx%—Zb v (logz) as x — oo.
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For 0 € C and A > 0 we have
/:p"e’\x dr = —(=A)"7"'T'(c +1,-\z) + C.
Given s € C, let g(x) be a primitive of f(z)z*"' then

g(w) ~ — Zam(—km)_am_sr(am + s, —Apnz) + Q(x,logz) as x —

for some poly-log asymptotic expansion Q(x,log x).

Remark 3.3.6. Note that for positive integer o we have
[(o, =) = (0 — D)!eMe,_1 (—Ax).

Thus if all o, + s are positive integers, I'(0,, + s, —A, ) are nothing but polynomials of
x and e~*®. In this case the primitive g(z) has also exp-poly-log expansion.

Definition 3.3.7. Let g(z) be a complex-valued function of positive real variable x.
Suppose g(z) has asymptotic expansion

M
g(l’) ~ Z ((ZmF(O'm7 —)\mx> + a;nxomfle)\mx)

m=1

+ Z b,z *"(logx)" + ¢ as ¥ — oo,
(Snvln)i(ovo)

where 0,,, A\, S and 1, satisfy the same conditions as in Definition[3.3.1, The regularized
value of g(z) at 0o, denoted also by g*(00), is defined as taking x = 1 in the exponential
part and omitting the poly-log terms

g*(o0) = Z (amD (o, —An) + al,e™) +c.

Tm,An
Similarly we can define ¢g*(0).

Remark 3.3.8. Note that we have infinite asymptotic expansions

[(o, =) ~ (=Ax)7 e (1 + (0=1) + (0=l =2) +.. ) :

x 2

The finite sum Y, (@nI(0m, —Anz) + @, 2" 'e**) must have exponential growth (if
nonzero). Hence the regularized value is well-defined.

This leads us to the definition of regularized integral.
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Definition 3.3.9. Let f(x) be a continuous function on (0, +00) with exp-poly-log asymp-
totic expansions at 0 and co. Let g(z) be a primitive of f(x)z*~! where s € C, then the
reqularized integrals of f(z) are defined as

Aﬁf@ﬂ“%ng@—yﬂw,

tﬂf@n“%m:g%w»—qm

and

o0, *

i (z)2*~ " dz = g*(00) — g*(0),

where t is an arbitrary positive real number.
An analogue of Theorem is given here

Theorem 3.3.10. Let f(x) be a continuous function on (0,00) with exp-poly-log asymp-
totic expansions. Let s € C and assume that g(x) is a primitive of f(x)z*~'. Suppose that
F(s) = M(f,s) is the generalized Mellin transform of f(x). Then the following quantities
are equal

(1) the regularized integral

o0, *

i (z)z* " dz = g*(c0) — g*(0),

(2) the regularized value h*(c0) of the function

)= [ e,

1/x

(3) the regularized value F*(2)|,—s at s.

Proof. The incomplete gamma function I'(o,, + s,—A\,) is always entire in s. Hence,
everything follows directly from Theorem [3.2.8 O

Remark 3.3.11. The generalized Mellin transform defined in this section lacks some prop-
erties, comparing to the classical one. For example, the generalized Mellin transform of
f(ax) may not be a=*F(s). However one can still verify the followings

M (f(x_l)a S) =-M (f('r>7 _8) )
M (2 f(x),5) =M (f(x), s+ 2).
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3.4 Examples of L-functions

Let £ > 2 be an integer. We work with only level SLy(Z) throughout this section,
though everything carries over to arbitrary levels.

Example 3.4.1. Given a holomorphic modular form f = EnZO ag(n)q™ € My, we see
the generalized Mellin transform of f is exactly the L-function of f

as(0) _ as(0)

s k—s

oo d
+ / Z af(n 727rny + i / 727rnyy y
o p=1 1/to p=1

Y

A(f,S): -

We know that the function A(f,s) is a meromorphic function of s with possibly poles at
s =0 and s = k. It verifies the functional equation

A(f,s) = i"A(f, k — s).

Example 3.4.2. Let f = ) . as(n)q" € St be a weakly holomorphic cusp form of
weight k. In [5], Bringmann, Fricke and Kent defined the L-function of f to be

AMfs) =S a;()I(s, 2mnto) s ar(n 2m

(27n)s

_Szw_n)

n>ng n>ng

Our regularization recovers their definition. In fact the generalized Mellin transform of f
18

Z af( )F( 27T7”Lt0 k Z af - S, 27r_n>
(2mn)* 27m
no<n<0 no<n<0
* o —27ny, s dy -k * - —27ny, k—s dy
+ Zaf(n)e Yy = 41 Zaf(n)e Yyr—s—=.
to =1 Yy 1/t0 n=1 )

We see that A(f,s) is an entire function of s. It satisfies the functional equation

A(f,s) =i"A(f, k — s).

Example 3.4.3. Let f =) . as(n)q" € M. be a weakly holomorphic form of weight
k with ap(0) # 0. Then the L-function of f is

B ap(n)l'(s, 27mt0 p 2”—0")
Alfys) = Z (27n)* Z 27rn ks
n>ngo n>ng
_ (0 a4 (0)
s k—s
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The last line comes form the constant term of f. We see that the function A(f,s) is a

meromorphic function of s with poles only at s =0 and s = k. It satisfies the functional
equation

A(f7 3) = ZkA(fa k— 8)'
Remark 3.4.4. We can also write the L-function of f as

A(f,s) =Y ap(n)Er_y(2mnte) +i* > ay(n)EBi_pes(27n/t),

n>ng n>ng
in view of the special value of exponential integral function F; ,(0) = —s .

Example 3.4.5. Let f be a harmonic Maass form of weight 2—k (see [6] for the definition
of a harmonic Maass form) with Fourier expansion

F@) =Y af(n)g"+ ) a; ()T (k —1,—4mny)q"

n>ng n<0

Then f has exp-poly expansions at 0 and co. The generalized Mellin transform of f is

at(n)l(s 27rnt0 [2—k—s, 22)
— f ’ 2k
A(f.s) = Z (27n)s Z 27Tn 2—k—s .
n>ngo n>ng
oo d
—l—/ Z a; (—n)l(k -1, 47my)627myys—y
to =1 Yy

oo o d
_k/ Z a;(_n)r(k‘ - 1, 47Tny)627myy2—k’—s_y‘
to p=1

Y

at(0) at(0)
A f 2k f _

(fys) + ==+ 5 —

Z a}“( n)T(s, 27mt0 2k Z af — k- s,2zr—0")

(2mn)s 27Tn 2-k=s
n>n0 n>no
29l (L a7 (n)D(I + s, 2mnty) a; (M)l +2—k— s, 22)
k—9 f ) 2 k f to ]

+( ) IZ:; l' <nz% (27T7L)5 Z 27TTL 2—k—s

This gives us one way to define the L-function of f. The function A(f,s) has possibly
poles at 0 and 2 — k. It verifies the functional equation

A(f,s) = 2 FA(f.2 — & — 5).
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3.5 Modular Symbols and Modular Caps

In this section we introduce the theory of extended modular symbols, including mod-
ular symbols and modular caps, originally defined by Stevens [44].

Let H be the Poincaré upper half-plane. Let WBS be the Borel-Serre completion of H
obtained by adding to each rational cusp a horocycle at infinity H,. Let a € P1(Q) be a
cusp and = € P}(R) — {a}, we add the ‘initial point’ 7, (z) of the oriented geodesic from
a to x to the boundary component of a. For each o € P(Q) and y > 0, we can assign «
with a horocycle HY. At the infinity cusp, the horocycle HY is the straight line Im 7 = y.
Given o = p/q € Q with p and g coprime, HY is the horocycle with Euclidean diameter
1/(¢*y). We may think of the horocycle at infinity H, as the limit of the horocycle HY
when y — oo.

Given a pair of distinct cusps, recall a modular symbol {a, 8} is a 1-chain on H®
represented by the closed oriented geodesic from « to 3 (illustrated in Figure [3) . It
has boundary ms(a) — 7, (8). We write 7% (/) for the intersection of {«, 8} and HY. Let
{a, B}Y be the segment of {a, 3} joining 7% () and m3(). Then the modular symbol can
be viewed as the limit of 1-chain {«, 5}Y, as y — oc.

B

Figure 3. Modular symbols and Horocycles at infinity

The modular cap, defined by Stevens, is the 1-chain represented by the segment of a
horocycle at infinity cut by two distinct modular symbols (illustrated in Figure . Write
[8,7]a for the segment of H, joining m,(3) to m (7). Let [3,7]% be the segment of HY
joining 7¥(f) and 7¥%(y). Then a modular cap [3,7], can be seen as the limit of [3,~]Y,
as y — 00.

We reformulate the definition of extended modular symbols by Stevens with relations
on modular symbols and caps.

Definition 3.5.1. Let Ky be the free abelian group spanned by modular symbols and

23
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{7, a}

Figure 4. The 6-term relation

caps, modulo the 6-term relations

{Oé,ﬁ} + {577} + {77@} = [a7ﬁ]7 + [577]04 + [/7705]57

3-term relations
[Oéa 6]5 + [ﬁ?ﬁ)/]ts + [’77 05]6 =0

and relations

{a, a} =0,

{aaﬂ} - - {5,(){},

[ﬁv B]a =0,

1B, == [7, Bla-
(The 6-term relation is depicted in Figure [4])

There is a left action of GLJ (Q) on Ky given by

gia, B} ={ga, 98},
98,7 =198, 97 ga-

This action is compatible with the action of GL (Q) on the Borel-Serre completion "
Let I' be a subgroup of GL3 (Q). Then I' acts on Ky. The space Ky(T') is defined as

the group of I'-coinvariants, i.e. Ky/(x — vz |z € Kg,v € '), and modulo all torsions.
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Theorem 3.5.2 (Stevens [44] (1.8)]). Let a be a rational number with continued fraction
in the form

1
o = ag —
1
a1 —
1
R
Qn,
where ag is an integer and a; are positive integers.
Let 12;1 = %, ’;—2 =%, %, e ’;—" = «a with ¢; > 0 be the successive convergents and set
— n

_ (10 _(—Po P _ (=P P
V-1= (0 1) , Yo = (_qo (]—1) 3 y Yn = (_qn Q1 .

Then we have the following decomposition

{007 Oé} = - Z’Wc{oov 0} + ’Yn[O, %]oo + Z’kal[07 ak]oo - [07 a]oo-
k=0 " k=0

Unlike modular symbols, extended modular symbols are unlikely to be finitely gener-
ated since there are too many caps. From Theorem we deduce immediately

Theorem 3.5.3. Let N > 1 be an integer and rq, ..., 7., be the right coset representatives
of D(N) in SLy(Z). Then Ko(N) :== Ky(T'(N)) is generated by the Manin symbols r;{0, oo}
and caps 1[0, &), where a € Q.

3.6 Integration over Extended Modular Symbols
Observe that the regulator Eisg’kz’j is represented by a closed form which has usually
polynomial growth at cusps. Its integral along the Shokurov cycle (see Definition 3.6.11

later)
/ Eisg’bd (uy, us)
Xme_m{U,OO}

will not converge in general cases.
Another example comes from the weakly holomorphic quasi-modular form f = Fyj of
weight 2. It has Fourier expansions

1
F(T) = = + 720 + 178956¢ + 16714880¢° + . . .
q

and exp-poly growth at certain cusps. To define a period of Fyj means to inspect the
integral of closed form f(7)dr along the modular symbol {g~'oo, 00} for g € SLy(Z)

ry(g) = / Y B

—loo

95



56 CHAPTER 3. REGULARIZATION AND MELLIN TRANSFORM

Unfortunately this integral is not convergent.

Let w be a real-analytic closed 1-form on H. Usually w is set to be invariant under
some congruence subgroup, then w is real-analytic modular of weight 2. One may pose
the following questions

(1) Is it possible to define the period of w, namely, for every modular symbol {«, 5}, a
(regularized) integral ff* w?

(2) If so, will we have 3-term relations like Stokes’ formula?

(3) Do we have periods in higher weights?

3.6.1 Weight 2 Case

Let us use our theory of regularization to introduce a definition of regularized integrals
along extended modular symbols. The first thing that we need is a moderate growth of
the closed form w at every cusp.

Let w be a real-analytic closed 1-form on H. Any element g € GLj (Q) acts on H and
we have g*w as the pullback of the differential form w. Given any a = p/q € Q with p

and ¢ coprime, we set
D U
Oq = ( ) S SLQ(Z),
q v

then 0,00 = a. The element o, is unique modulo the parabolic subgroup at infinity. For
two such elements o, and o/, we have

oo, € {:I: <(1) T) ‘ mEZ}.

Definition 3.6.1. Let Q}jpl (H,C) be the space of real-analytic complex-valued closed

1-forms w which satisfy the following conditions
(1) for every g € SLy(Z), the 1-form g*w has exp-poly-log expansions at infinity with
respect to y. This is to say, let 7 = z + iy € H and g*w = fi(z,y)dr + fo(z,y)dT,

then for every z, the functions fi(z,-) and fa(z,) have exp-poly-log asymptotic
expansions at oo.

(2) for every g € SLy(Z) and x € R, the integral f[o o]t g*w has exp-poly-log expansions
at infinity with respect to y, where [0, z]¥, is the line segment from iy to = + iy.

Indeed, the first condition guarantees the existence of integrals of w along modular
symbols (periods) and the second condition guarantees the existence of integrals of w
along modular caps (residues).
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3.6. INTEGRATION OVER EXTENDED MODULAR SYMBOLS 57

Remark 3.6.2. If f(y) has exp-poly-log expansion at infinity, it is evident that f(ay) has
also exp-poly-log expansion at infinity for a € R.,. This indicates that we can replace in
the definition SLy(Z) by GL3 (Q) since

r s _TT—I—S
0t) T ¢

only changes the imaginary part y = Im(7) to its multiple.

Proposition 3.6.3. Let w € Q (%, C) be a closed 1-form and {a, B} be a modular
symbol. Then the function
= [ w
{a,p}v

has exp-poly-log expansion at infinity. In particular, the reqularized value I*(o0) exists.

Proof. The integral is taken from 7% () to 73(a) (see Figure . Take any cutting point
t between them on {«, 8}, we denote by {74 (8),t}(resp. {t,73(c)}) the segment joining
74(8) and t (resp. t and mj()). Then

/ w = / w + / w
{a,B8}Y {m8.(8),t} {t.m5(a)}

—1 —1 .

B oq t ‘ot Re(og "t)+iy §

= oW oW
Re(og 't)+iy orlt

B

Since o w and ojw have exp-poly-log expansions at oo, the regularized values of both
integrals at oo are well-defined. O]

For integrals over modular caps, let us use the same idea.

Proposition 3.6.4. Let w € QL (H,C) be a closed 1-form. Then the function

epl
I(y) / w.
B4

has exp-poly-log expansion at infinity. In particular, the reqularized value J*(00) exists.

Proof. By o[B8, 7]} = [05'8,05"7]%, we have

/ W= / oLw
(B4 [0a'B,05 V%
= / oaw — / orw.
0,06 '7]% 0,00 "Bk
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Definition 3.6.5. Let w € Q! (H,C) and let {a, 3}, [3, 7]« be a modular symbol and a

epl
modular cap. We define the regularized integrals of w along the modular symbol {«, 5}

and cap [57 'Y]a
/a ’ /
{8} [B:7]a

to be the regularized values of f{a gy W and f[ﬁ Ly W as Y — 00.

It is imperative that we can perform change of variable on our regularized integrals.
This is to say, given an extended modular symbol k € Ky, for all g € SLy(Z) we should

have the identity
/ g'w= / w.
K gk

In particular, if w is invariant under some congruence subgroup I', then we can pair it with
elements in the extended modular symbol space Ky(I'). Luckily, this is not a problem
with our definition of horocycles HY.

Lemma 3.6.6. An element g € SLy(Z) preserves the horocycles HY, that is,
gHY = H},.
In particular, we have o, HY, = HY.

Proof. Let a = p/q € Q with p and g coprime. Then

w € o, HY. < Imo ‘w= TR M —
°O “ lp — qu|?
= (Re(w) —p/q)” + (Im(w) — 1/(2¢*))" = (1/(2¢%))*

—w € H}.
For general g € SLy(Z) we have
gH& = (90a)H, = Hy,.
0

Lemma 3.6.7. Let w € QL (H,C) and g € SLy(Z). Let {a,B},[8,7]a be a modular

epl
symbol and a modular cap. Then

/a B * / a,gf3

{a,8} {9a,98}

/ 5 * / y
[ﬁv ]a [gﬁvg }904

o8
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Proof. From Lemma we find that g € SLy(Z) preserves the horocycles, that is,
gHY = Hy,, gHj=H,

go

Consequently,
/ g'w = / w
{a,B}v {998}
/ g'w = / w.
[8.7)& [98,97]Fa
Take both side regularized value we win. O]

Theorem 3.6.8. There is a well-defined pairing

Qipl(’H, C)xKy — C
(w,{, B}) — w
{a7ﬂ}
(w, [B8,7]a) — w
[B:7]a

giwen by the regqularized integrals over modular symbols and caps.

Proof. We only need to check the 6-term relations. The rests are obvious. Let o, 3,7 €
P'(Q) be distinct cusps. Integrating w over the closed 1-chain {a, 8}Y 4 [a,7]% + {8, 7}¥ +
[B,aly +{v,a}” + [, B]Y (see Figure , by Stokes’ theorem we get

/ w—l—/ w—l—/ w—l—/ w—l—/ w+/ w = 0.
{a,B}Y [a7]% {8}V 8,015 {r.a}y [v.Bl&

Take regularized value we see
/ w+/ w+/ w+/ w+/ w+/ w = 0.
{azﬁ} [a,'ﬂﬁ {B»’Y} [5705]7 {Wia} [775}04
O
Let T" be a congruence subgroup of SLy(Z). We write Qipl(”;’-[, C)* for the subspace of
closed 1-forms invariant under the action of I'. Immediately we have

Theorem 3.6.9. There is a well-defined pairing
QL (H,O)F x Ky(T) — C

epl
*

(w, {e, B}) — w
{a.8}

*

(w, [B,7]a) — w
[B)a

given by the reqularized integrals over modular symbols and caps.
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Remark 3.6.10. With continued fraction decomposition (see Theorem|3.5.2)), to determine
all the periods and residues of w € Qipl(H, C), it suffices to compute for every g € SLy(Z)
the integrals

/ gw, / g w.
0 [0,0] 0

3.6.2 Higher Weight Case

The way to deal with higher weight forms is using Shokurov cycles [42] (see also [35]).
Let & > 2 be an integer and set w = k — 2. Let Z(X,Y),, be the linear subspace of the
free Z-algebra generated by X and Y which consists of non-commutative homogeneous
polynomials of degree w. Define the left action of g = (24) € SLy(Z) on Z(X,Y),, by

(gP)(X,Y) = P(dX — bY, —cX +aY).

The linear space Z(X,Y),, has dimension 2" and is generated by the polynomials [ ;" (a; X+

Definition 3.6.11. Let 0 < m < w be an integer and «, 3 € P1(Q) be two distinct

cusps. Let o = (9 '). Given a non-commutative polynomial P =[], (a; X + b;Y) with

a;,b; € Z, the Shokurov cycle is the following (w + 1)-cycle on E*(C)
P{O{,ﬁ} = {(7-7 t1<CL17' + b1>7 s 7tw(a’w7_ + bw)v U) | T E {Oé, ﬁ}7 tl? s 7tw € [07 1]}7

where {«, 5} is the modular symbol.

Denote by 7, p the fiber of projection P{«, 8} — {«a, S} at 7. If P =[], (a;: X +b;Y)
with a;, b; € Z then

Yrp = {(T;t1(a17 + b1), .. tw(@wT + by);0) | 1, ..ty € [0,1] .
In particular, the fiber of the projection X™Y"*~™{«, 5} — {«, B} at 7, is
Yo = {(T5 00T, oo Ty bty ooy b 0) [ E1, ooty € [0, 1]}
and the fiber of X™Y"~"{0, 00} — {0,000} at iy is
Yo = {3 tt1y, o Y, b, -t 0) | B, -t € [0, 1]
If w = 0 then the Shokurov cycles are nothing but modular symbols.

Definition 3.6.12. The torsion-free abelian group Ky = Z(X,Y),, ®7Ks is call the space
of weight k extended modular symbols. We endow the space of extended modular symbols
K with the tensor product action of SLy(Z).
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3.6. INTEGRATION OVER EXTENDED MODULAR SYMBOLS 61

The abelian group Ky, is generated by the modular symbols P{«a, 8} and caps P[53,7]a,
where P = [[;_,(a;X + ;YY) is a polynomial in Z(X,Y’),. Let K;(N) be the quotient of
Ky by all yx — z for x € Ky, v € I'(IV), that is, the I'(V)-coinvariants, and then modular
any torsion.

Let v be the following holomorphic map

v:HxC¥— EY(C)
(7521, oy 28) = [(T5 21, .+ oy 215 0)]
which maps to a connected component of E¥(C). Let w be a complex-valued real-analytic

closed (w + 1)-form on E¥(C). To integrate w along a Shokurov cycle P{a, S}, it is
equivalent to integrate w on the fiber 7, p first and then on the modular symbol 7 € {a, 5}

fot ) -
P{avﬂ} {‘LB} Yr,P

Since integration along the fiber commutes with the exterior differential (see [3, Proposi-
tion 6.14.1]), the form f7 , w is a closed form on H. Seeing this, we define

Definition 3.6.13. Let Q’:pj;l(Ew,C) be the collection of complex-valued real-analytic
closed (w + 1)-form w on E"(C) which verifies the following conditions

(1) v*w is of the form

7777 w

Viw = Z Wey..oe N2 Ao Adzlon),

where we, is a 1-form on H and dzfo) = dz;, dzfl) = dz;.

----- €n

(2) We have [ we QL (H,C) for every P =[[" (a;X +b;Y) € Z(X,Y),. That is,
Yr,P ep! ?
integration along the fiber of w always gives us a closed 1-form with exp-poly-log

expansions.

Here the first condition ensures the linearity of integration along extended modular
symbols. The second condition allows us to define the regularized integrals. With these
conditions, we can define

Definition 3.6.14. For a differential form w € Q“(EY C) and P{a, 8}, P[B3,7]a a

epl
modular symbol and a modular cap in Ky, we define symbolically the regularized integrals

w = a; / w,
/P{a,ﬁ} ; {a,8} s,

W = (1]/ / w,
/P[ﬂﬂ/]a ; [B:’Y}a 'YT,PJ-

where P = 37 a;P; is a decomposition of P with P; = [];Z,(a;; X + b;;Y) for some
Qji, bj,i € 7.
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62 CHAPTER 3. REGULARIZATION AND MELLIN TRANSFORM

Now we arrive at

Lemma 3.6.15. Let w € Qu " (EY, C) and g € I(N). Let P{a,} and P[3,7]s be a
modular symbol and modular cap in Ky. Then

L= Lo
P{a,B} (gP){ga,98}
/ o= / w
P[B]a (gP)[gB,97]ga

Proof. Given P =[]~ (a;X + b;Y) with a;,b; € Z we denote the (w + 1)-cycle
P{a,ﬁ}y - {(Ta t1<(117' + bl)? s 7tw(a’w7— + bw)7 U) | T E {Oé7 6}y7 tla s 7tw € [07 ”}

Now w is invariant under the action of an element g € I'(N). Thus

/ g'w = / w.
P{a,B} P{a,B}

Then our regularized integral [ ; (e} ¥ is the regularized value of the function

I(y) = / W= / gw
P{o,B}v 9(P{o,B}Y)

as y — oo. Let g = (24) € I'(N). Setting 7/ = g7, we find that g(P{a,}Y) is the
following (w + 1)-cycle

{( , a9 i+ by Awg T+ by )

T — Y/, ... Y T ErE—— [0

g+ d Y cg i+ d g

7 e {ga, g8}, t1,.. ., ty, € [0,1]}.

Since t; %9 T4 — ¢, (q;(dr’ — b) + b(—c7’ + a)), we have g(P{a, 8}Y) = (gP){ga, g5}

7 cg— 7' +d
Thus,
I(y) :/ w :/ w.
P{a,B}v (9P){ga.gB}Y

Take regularized value as y — oo we see the identity. The same works for modular
caps. ]

Following the same pattern,

Theorem 3.6.16. There is a well-defined pairing
QUH(EY C) x Kg(N) — C

epl
(w, P{a, B}) — w
P{a,f}
(w, P[B,7]a) —> W
P[B:’Y}a
Proof. All that remains for us to check is the 6-term relations. It follows directly from
the 6-term relations of the form [ w € Q.,(#,C). O
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3.7 Application to Eisenstein Symbols

Proposition 3.7.1. Let t,u € C. The S-series St" (@y) has poly-log asymptotic expan-
sions at y = 0 and co. Moreover, if t and u are both integers, the S-series S (y) +
(— )”“Siqf _(iy) has finite poly-log asymptotic expansions.

Proof. When Re(s) > 0, the S-series Szfz;(zy) has Mellin transform (see [11, Lemma 7.1})

F(s) = (%”) U R(8)L(as — OL(B. 5 — ).

It continues to a meromorphic function on the whole complex plane with only finite
many poles from two L-functions, and it may have poles (possibly infinite many) of large
negative integers from the gamma factor. But in either case, the Mellin transform has
finitely many poles on every bounded strip and verifies the condition of Lemma [3.2.7]
thus f has poly-log asymptotic expansions at y = 0 and oc.

The Mellin transform of 57" (iy) + (—1)t+“5i’1_‘”8_ (iy) is

(%)_SF(S)UJ( s —tL(B, s —u) 4 (— 1)t+“L(a_,s—t)L(ﬁ_73—U>)-

If t and u are both integers, the L-value L(c, s—t)L(3, s—u)+(—1)""“L(a™, s—t)L(8~, s—
u) vanishes for large negative integer s, thus Szluﬁ(zy) + (—1)““52’? s (iy) has finite poly-
log asymptotic expansions. O

Since Si“ﬂ(zy) has poly-log asymptotic expansions we see
Proposition 3.7.2. For functions o, 3 : Z/NZ — C and t,u € C. Let s € C, we have

| st - ((%)_zm)ua,z ~L(. 2 - u>>

*

Recall the real analytic Eisenstein series
o n‘ n + 2 a,n— a —
Eish(uy) = — N Z Fo (1) Yamn—a mod dr,dT

and the holomorphic Eisenstein series

2
nt1t T 4 + (2m>n+1F (n+2) ( Ydr Ao

ogul

Bishoi(u1) = (=1)

can be expressed with S-series.
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64 CHAPTER 3. REGULARIZATION AND MELLIN TRANSFORM
Proposition 3.7.3. The element Eisg’kQ’j(ul,ug) belongs to the space Q;‘;jl(Ew,(C). So
there is a well-defined linear map

/ Eisi "7 (uy, u) : Ki(N) — C.

Proof. Since for g € GLy(Z/NZ) we have g* Eish ™7 (uy, u) = Eisp ™7 (uyg, ug), it is
enough to show that for all ui,us € (Z/NZ)? (with u; # 0 if k; + j = 0), the differential

form f7 R Eis%’kg’j (u1,uz) has exp-poly-log expansion and residues at infinity. Let P €

Z(X,Y ), be a polynomial. Integrating the forms dzfl) A Adz$™ on the fiber Vr.P
gives us polynomials of 7 and 7.
The form [ Eisp™7(uy, us) is a linear combination of products of 7, 7 and St (),
Vr,P D ’

SL4(T). Since S-series decreasing exponentially at infinity ([23, Section 3]), the differential

form fy R Eis%””’j (u1,uz) has also poly-log expansion at oco.

Every term in the Fourier expansion involving ¢™/" = e>™7/N with n > 1 tends to 0
as y — oo. Thus, the residue comes only from the constant terms of Eisp and Eisy,;. To
compute a residue of a regulator at infinity is hence equivalent to compute the residue of
a polynomial of 7 and 7 at infinity. Thus, the residues always exist. O]
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Chapter 4

Double [L-values

In this chapter, we discuss the double L-functions and the method of Rogers—Zudilin.
We define and study the double L-functions of weakly holomorphic modular forms in
Section with our theory of generalized Mellin transform. In Section [4.3] we explain
the method of Rogers—Zudilin. In the last Section [4.4] we use Rogers—Zudilin method to
show that many double L-values of Eisenstein series are linear combinations of modular
L-values.

4.1 Generalized Iterated Mellin Transform

In [33] Manin defined the multiple L-functions for several modular forms. Some special
double L-values of Eisenstein series are discussed in Brown [9] and Shinder—Vlasenko [41].
We start first with introducing their definitions.

Let f =), 0anq" and g = > ., bng™ be two modular forms of some congruence
subgroup of SLy(Z). Their double L-function is the following double Dirichlet series

o0 o
LAt g,s182) = Zznsl n+m

n=1 m=0

We write L(fa g, 81, 82) = (27T)7S2F(32)L(f7 g, 51, 32)'
If ap = 0, there is another double L-function of f and g given by the following iterated
integral (see [33])

A(f7 g, 51, 32) = / g(itZ)tZQ_ldtZ / f(itl)til_ldtl.
0 to

The connection of two L-functions is given by Sreekantan’s formula [43]. Let ag = 0 and
s1 be a positive integer. Then

51 s1—1
L(fvgvsb‘SQ): (27T> ZA(f,g,Sl_T,SQ‘I‘T)- (41)
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The double L-function is an iterated Mellin transform of the two functions f and ¢g. In
general the iterated Mellin transform is the following iterated integral

M(f79751,32> _/ g(ZtQ)tZQ_ldtQ/ f(itl)til_ldtl.
0 to

We manage to generalize this definition for functions with more general growth conditions.
Let f(z) be a function with poly-log expansions. Recall that the primitive of f(z)x*™!
also has poly-log expansions. We define

Definition 4.1.1. Let f and g be two functions with poly-log expansions at 0 and oo.
Then the generalized iterated Mellin transform of f and g is the following iterated regu-
larized integral

o0, *

M(f, g, 51, 52) — / gttty [ flit)E .
0

to

Let f(x) be a function with exp-poly expansions and s € C such that the following
condition is met

f(z) ~ Z A n "™ e + some powers of z as x — oo,
Om,An

f(z) ~ Z a’mnx";"e’\;@/’” + some powers of z as x — 0 (1)
T A,

such that o, + s and —o/, — s are nonnegative integers.

We know from Remark that the primitive of f(z)z*~! also has exp-poly expansions.
So we define

Definition 4.1.2. Let f and g be two functions with exp-poly expansions. Let s; € C
and f satisfying the condition (). Then the generalized iterated Mellin transform of f
and g is the following iterated regularized integral

00, *

M(f> g, 51, 82) = / g(it2>t;2_1dt2 f(itl)til_ldtl.
0

t2

4.2 Double L-functions of Weakly Holomorphic Mod-
ular Forms

In this section we give an analogue of double L-functions to weakly holomorphic mod-
ular forms. The essential tool that we use is the generalized iterated Mellin transform
introduced in the former section.

Let f = ZnZno a,q" and g = ZmZMo b,mq™ be two weakly holomorphic modular forms
of level SLy(Z), with weight k; > 2 and ko > 2 respectively. Notice that the forms f and
g have exp-poly expansions at infinity. Moreover, if 0 < s; < k; is an integer, then f and
s1 satisfy the condition (). Hence, we define
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FORMS 07

Definition 4.2.1. Let f,g € M, be two weakly holomorphic modular forms of level
SLo(Z) with weight k; > 2 and ky > 2 respectively. Let 0 < s; < k; be an integer. The
double L-function of f and g is the following generalized iterated Mellin transform

00, *

A(f,g, 81782) = / g(Ztg) 52— 1dt2 f(’it1>ti1_ldt1.
0

t2

To compute double L-function, we split it again as before

o, *

A(f, g, 31752)—/ glita)t5? Lty f(itl)til—ldtl
0 to

o0, * OO, *

1
Pt + / gttt [ Ft ey,
0

to

_ / g(its) 2\ dt
1

t2
Here both integrals are evaluated in the sense of generalized Mellin transform. The left
one is

o, *

L= / gttty [ FlitE—dt,
1

to

e a,I'(s1,2mnts) t
—/1v g(ZtZ)tQ L (Z (27Tn)sl a0l> dtz

S
n#0 1

Since I'(s1,2) = (s1 — 1)le "eg, —1(x), we see that L is

s1—1
Qo &

_— o) ts gy —1)! b “2m(ntm)tyrtse =gy
51 glitz)ty 2+ (81 Za Z (2mn)s—r! / ‘

1

Explicitly,
I 3121 (s1 =1 Z b (5o 47, 27(m +n)) < 1 (s; —1)! Z anb, 1

rl 27T (9 \s1+s2 e nsl_r(m—i—n)sﬁ‘r — rl (271')51 r S~ NS 8o 4 1

n#0 n#0
by, I , 2 1
 a Z (1 + 80,2mm) 1 aob .

Cryts S et s )

Expressing with exponential integral it becomes
S1— 1
(s1— 1 apnbmEy sy 2m(m+n)) 1

n#0
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For the right one we have

O, *

1
R— / gttty [ f(itE
0

t2

1 00,% 2%
:/ g(itQ)tgz_ldtQ( f(itl)til‘ldtl—/ f(itl)til_ldh)
0 0 0

[ee) 1 00
=i"A(f,51) / g(it)th? 52 dty — i / g(it2)t§2_1dt2/ flit) = .
1 0 1/ts
So
, byl (ky — s9,2mm) 1
R =i"A il ’ — k2 A b
¢ (f7 81>m2¢0 (27rm)’“2_52 ? (f?sl) Ol{?g sy
1 0
=i [ gty [ g
0 1/t2
The last line is
N 1 . a,I’ <k’1 — S1, 2?—”) t;likl
— ik it - — dt
Z /0 o)t nz;éo (2mrn)ka—s1 aokl — 51 ’
[ee) k1—s1
K14k . ko—so—1 CLnF (kl — 51, 27Tnt2) t2
= T2 to)t — dty.
1 /1 g(ita)ty <nz750 (2mn)ki—s ag ko — 51 2
Similar to L, we have
. b F(lﬁg — S92 27rm) i 1
R =i"A = ’ —iMA b
? (f)sl)rnzﬂ) (27rm)k2_82 ¢ (f7 81) Ok'g — s
k1—s1—1

Foy ko 1 (ky—s1—1)! b (ko — so + 1, 2m(m +n))
-t Z ﬁ (27T)k1+k2781732 Z nlﬁfslfr(m + n>k2752+r

r=0 n+m#0
n#0
k1—s1—1
4 Rtk Z l (k1 —s1 —1)! Z anbm 1
rl (27T)k1*slfr nki—si—r kQ — So 471
r=0 n+m=0
n#0
L itk ao Z b (k1 + ky — s1 — s9,2mm) 1
(27T)k1+k2—51—52 mkitke—s1—s2 ki — 51
m#0
) 1
. zk1+k2a0b0

(k1 —s1) (k1 + ko — 51 — 82)'
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FORMS o9

The result can be shorter with exponential integral functions

R :Zsz(f> 31) Z melfk2+52<27rm)

ki—s
B ik1+k2 121 (kl — 851 — ]_)' Z anmel_k2+s2_T (27T(m + n))

r! (2mn)ki—s1—r

r=0 nm
Z'k1+k2
+ aOme1+S1+S2*k1*k2 (271'771)
ki — s
m

In conclusion,

Theorem 4.2.2. Let f = Z@no a,q" and g = ZmZWO bmq™ be two weakly holomorphic
modular forms of weight ki > 2 and ky > 2 respectively. Let 0 < s1 < ki be an integer.
Then

1. The double L-function A(f,g,s1,s2), as a function of sa, extends to a meromorphic
function on the whole sy-plane.

2. As a function of sa, A(f, g, s1,S2) has possibly poles when sy is an integer from —s;
to 0 or from ky to ko + ki — s1, and A(f, g, $1, s2) is holomorphic elsewhere.

3. We have residues

apbg oy +k
Res A(fagaSbSQ): ) Res A(f7g731782) = -
sa=—51 S1 so=ko+ka—s1 ki — s

aobo

4. Suppose ag =0, k1 = ko = k then

k—2)!
SP;g(s)A(f,g,k —1,89) = _((27r)"3—>1 {f:9},

k—2)!
ReSA<f7g717$2):_( k)

so=kg (27’(’) -1 {f’ g} + ZkA(f? 1>b0>

where {f, g} = >,z ‘Zﬁf—j{‘ is the Bruinier-Funke pairing of f and g defined in [7,

(1.15)].

Remark 4.2.3. 1t is interesting to observe that Bruinier-Funke pairing appears in the
residue. Here we give a clue. The pairing {f, g} = 0 for all g € S} is equivalent to say
that D'=*f is a weakly holomorphic form of weight 2 — k. Then ¢ - D% f is exactly a
weakly holomorphic form of weight 2, which must be cuspidal. Therefore there is no pole
in the L-function A(f, g,k — 1, s9).
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Following the identity (4.1), when ag = 0 we define another double L-function of f
and g to be

s1—1
27)%1
L(fa9781732): (F(S)l) § A(fagasl_ta82+t)‘
t=0

We have immediately

Theorem 4.2.4. Let f =3 - a,q" and g =3 - . bng™ be two weakly holomorphic
modular forms of weight ki > 2 and ky > 2 respectively. Suppose ag = 0. Let 0 <
s1 < ki be an integer. Then as a function of sa, the double L-function L(f,g,s1,$2) can
be extended meromorphically to the entire so-plane. It has possibly poles when so is an
integer from —sy to 0 or from ko to ko + ki — s1, and holomorphic elsewhere.

4.3 Rogers—Zudilin Method

Rogers and Zudilin [40] introduce a powerful tool to calculate Mahler measures and
L-series. Their method has various applications, especially in evaluating double L-values
of Eisenstein series. We will introduce in this section their method.

Lemma 4.3.1. Let tq,t9,u1,us, s € C be complex numbers and oy, o, f1, B2 : Z/NZ — C
be functions. We have

> t1,u i to,u . dy > s . Ul ,U2—S Z dy
[ s () st = [Csueans (D) vl

Y Y
Proof. (See [24, Theorem 3.2]) This is equivalent to

~ t1,u i to,u2 sdy_ > t1+s,ta [ Up,U2—S { de
/0 Sall,ﬁll (N_y) Sa22,622 (ZNy)y ; - /0 Soell,ocg Z(ZNy)Sa;ﬁ; (N_y) ) ?

m1
n2

Upon the change of variable y — ™y, we find

~ —2r L orman sd
/ a1 (my)B1(n1)a(me)Ba(ng)e TNy e mmanayy &
0

Y
m ’ * —2mmim —2r 72 sdy
- (_1) / 01 (1) s (ma) By (n1) Ba(na)e ™M aVe T N gy =
n2 0 Y
We finish the proof by summing up every term. O

Rogers—Zudilin Method can be seen as a way to exchange L-functions of Eisenstein
series. We provide a simple heuristic interpretation of this. Consider the following Mellin
transforms of S-series

i s o 2\ "’
R = [ sy = () Tenae - 0060 - )
0
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4.3. ROGERS-ZUDILIN METHOD 71

and

B 2\ "
R = [ s = (37) rotn - 0L - w)
0

With inverse Mellin transform we see their convolution is
e’} Y Z " ‘ . dy c+100
[Tt () s = [ Reome o

Pay attention that the Mellin transforms Fj(—v) and Fy(v + s) should both exist when
Re(v) = ¢ (this may not happen in generall). Exchanging the L-functions we get

(%ﬂ) : /CCHOO ['(=v)L(on, —v — 1) L(B1, —v — w)

: T'(v+ s)L(ag, v+ s —to) L(Ba, v + s — ug)dv
_ (% h /CHOO L(—v)L(B1, —v — u1) L(B2,v + s — us)
=\ ¥ - 1) 1 2, 2

T'(v+s)L(ag, —v — t1) L(ag, v + s — t9)dv.

> S . U1, U2—S Z de
/ Sa e (iy) Sgy e (—) y .
0 ) ()

We give now the following variation of Rogers—Zudilin method which can simplify a
lot of things in our later calculations.

The latter is exactly

Lemma 4.3.2. Let ay,a9,01,02 : Z/NZ — C be functions. Let t1,ui,us and s be
integers with 1 < —uy < s < uy and t; > 0. Suppose further that L(B1,z) has no poles

when u; = —1 and L(ag, z) has no poles when s = 1. Then
[ (et ) () (s comrsn Y iy
(i ) () o o
[ o) o ) ()
4 (—1)hts (Sgggs 4 (_1)u1+s+182ﬁgs> (i) (SZ;UZ;S X (_1)t1+u2+s+15tall,j¢;2:s> <§) ys@_

Proof. Note that

co* “ ) 1 ws - 1 s
/ 521’ 5 | =) + 594=001(0)L(B1, —u1) 82’2 B, (1Y) + 52(0) L(B2, —u2) | y &
0 ’ Y 2 ’ 2 Y
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72 CHAPTER 4. DOUBLE L-VALUES

1,U1 U2 (s sy
/ kalﬂl( )'52252( )y_
0 Yy

(% (%ﬂ) I'(—2)L(cq, —2z — 1) L(B1, —2 — 1) L, —uz)a2(0)>

is the sum of the integral

and two regularized values

ES

zZ=S
*

+ (% (2%) : F(Z)(Stl:oL(ﬂl, —ul)L(ag, Z)L(BQ, z — u2)a1(0)>

There are exactly eight products like this, they sum altogether to become

o, * dy
t1,u1 t1+ui+1 gti,ur 0,u2 uz+1 o0,u2 . s@d
7 (st st ) (D) (st 4 (st ) ) o
d

S oot U U U Z sU U S u . S y
+<_1)t1+ /O (Stl 1 +( 1)t1+ 1+1St1 1 ) <_) (5122—7252 +( 1)t1+ 2+ +1522 22) (zy)y ?

aq ﬁl a1 Bl y

and two regularized values

; (%T)s%(w? +(~1)=H1 55, —u)

(C(=2)L(ar + (=1)"*ar, —z = ) L(Br + (=1)" 180, —2 —w))

+% (QWW) 8,001 (0)L(By + (=1)" 67, —uy)

- (D(z)L(az + (—1)°aq, 2) L(Bo + (—1)" M By, 2 — wp))

Applying Rogers—Zudilin method to the products S{;* (% )S}jﬁ;o(iy), we see that the
integral becomes

oo 0,u1+s u1+s+1 o0,u1+s t1,ua—s t14+us+s+1 ot1,u2—s i sdy

/0 <Sa2 él + ( 1> 1 S Qg 151 > ( ) <Sa11 622 ( 1) o Sa11 ;2 > <§> Y ?
s oo u1+s ul+s u1+s U2 —S uo+s U2 —S i s
+<_1)t1+ /0 (SO_1+ 4 ( 1) 1+ +1522 ;+ ) ( ) <S:;1 ;2 ( 1)t1+ 2+ +IS:;11 ,822 > (_) Yy .

Qo 7ﬁl

*

= (4.2)

*

z=s"

Since Loy + (—1)"**a7, —s — t1) = 0 and the only poles in (4.2) comes from I'(—z),

we can exchange the L-functions

az(0)L(By + (—1)" " By, —up)

C(T(=2)Llon + (1) fay, =2 = ) L(By + (=1)" B, —2 —wy))
(=
)

*

zZ=s

=ay(0)L(By + (=) B, —s —wy)
(D(=2)L(ar + (—1)" "oy, —z — 1) L(Ba + (—1) '8y, —2 — us + 5)) i

|z:s'
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Similarly,

(1) B, —uy)
(P(2) Lz + (=1)°aq, 2) L(Ba + (= 1) M55 2 — uy)) |
(_1)t1+u1+s+15; S—u2)
- (P(2)L(ag + (=1)%ay, 2) L(Br + (=1)" 67, 2 — ug — s))

After collecting everything we get indeed

o0, % .
’ 0,u1+s u1+s+10,u1+s t1,u2—s t14uz+s+1gti,ug—s ¢ @
[ o o (s (1)

*

zZ=Ss

*

z=s"

Y Y
_1)t1ts ot 0,u1+s ur+s+10u1+s t1,uz—s _])ttuetstlgliua—s 1 8@
+(—1) /0 (Sagﬁl +(=1) Saz B ) (7y) (S% B2 +(=1) 80‘1”85 > (y) Y Y

]

4.4 Double L-values of Eisenstein Series

With Rogers—Zudilin method we are able to give some interesting identities about
double L-values.

Let N > 1 be an integer. Let f =) . a,q" and g = > -, bm¢™ be two modular
forms of level I'; (), weight k1 and ko respectively. Their double L-function

L(f, 9,51, 52) :(I;Sf;) L(f,g,51,52)

~ T(s9) i Qpbm
(27 “— n®(n+m)*
converges for s; and s, sufficiently large.

Following Shinder and Vlasenko [41], given 0 < s; < ky and s, € C with Re(s) > 0,
we are capable to write the double L-function L(f, g, s1, $2) as an integral

(f, g, 51, 82 Z Z n81 n + m /0 yszfle*%r(m&n)ydy

n=1 m=0

— / Z Z %6—2w<m+n>yy52@
0 == n* Y
> o e (s 0Y
=/ (9- D7 f*) (iy)y™—,
0 Y
where D™ f* = %" n"*a,q" is the repeated primitive of f* = f — ao.

Noticing a quasi-modular form or a repeated primitive of modular form must have
poly-log expansions at 0 and oo, we make the following definition
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74 CHAPTER 4. DOUBLE L-VALUES

Definition 4.4.1. Fixing s; € Z, the double L-function L(f, g, s1,s2) is defined as the
generalized Mellin transform

- d
L(f, g, S1, 82) = /0 (g . D_Slf*) (Z-y)yszgy

Generally L(f, g, s1, s2) is meromorphic as a function of sy. Denote by L*(f, g, s1, s2)
as its regularized value at a given ss.

A direct corollary of the Rogers—Zudilin method in Lemma is

Theorem 4.4.2. Let ay,as,b1,bo € Z/NZ and ky > 2, ko > 2 be positive integers. Let
1<s1 <k —1,1<sy < ky—1 be integers with k; < s1 + sg. If 51+ s9 < ko then

NS (GE B Ry = sk — 52

a1,b1? "7 ba,az’

+ (—1)51+82_1ik2Nk2_1]L* (G(kl) HUCQ) k’l — 51, k?g - SQ)

—a1,b1? b2, —az’

_ ss1+s2—ki+1 arsi+sa—kiT * (k2—s2—s1+1) (s1+s2—k1+1)
=1 N L (Gbg,al 7 41p s ,1—81,81—k1+1

+ (_1)81+82712’S1+827’€1+1N81+827k1L* (G(k2752*31+1) H(81+82*k1+1)’ 1 _ 31, S1 — kl + 1)

b2,—a1 ? b1, —a2

1 — _
502 (F1)00, ) LBy = 8-y, A" (D771 (GE2 Y 4 (1RG0 ) 50— k)

ba,a1 ba,—a1
If s1 + s9 > ko then

ikQNkQ_lL* <G(k1) H(k2) kl — 51, k’g — 82)

a1,b1’ “7bo,a2?

+ (—1)81+82_1ik2Nk2_1L* (G(kl) Hlfj,z—)aza ki — s1,ky — 82)

—ay,by’

— jsrtsa—kit1 prsitsa—ka] * (G(81+82*k‘2+1) H(51+82*k1+1)’ Sg— ko 4+ 1,8 — ki + 1)

a1,b2 » 77 by,a2

—a1,b2 » 7 7by,—a2

+ (—1)81+s2_1i81+52_k1+1N81+82_k1]L* (G(51+82—/€2+1) H($1+S2—k1+1)’ Sg — k2 4 17 s — kl + 1)

1 _ _
+ §5sl+32 (k1>6b1 (O)L(éaz - 57a27 O)A* <Dk278171 <G(k1 k) + (_1)k1G(k1 k2+1)> yS1 — kl) .

al,bz b2,—al
All the G’s and H'’s here are supposed to be Eisenstein series.

Remark 4.4.3. Tt is worth noticing that the latter double L-values in the above proposition
are nothing but L-values of quasi-modular forms. Moreover, if k; = 1 or some G, H are
quasi-modular of weight 2, Theorem remains true, in the sense of modulo L-values
of Eisenstein series. In these cases there will be some lost constant terms in Eisenstein
series of weight 1 or 2.

In particular if N =1 let Gy(r) = =25 + 37> | o4_1(n)q" be the Eisenstein series of
weight k. With Theorem and Lanphier’s formula (1.2), we obtain
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4.4. DOUBLE L-VALUES OF EISENSTEIN SERIES 75

Theorem 4.4.4. Let ki > 4,k > 4 be even number. Let 1 < s1 < ky —1 and 1 < 59 <
ko — s1 be integers with opposite parity. Set p = min{k; — sy, 82} — 1. Then

7;81+S271L* (Gk17 Gk27 51, 82) = A* (-DpG|k:1—81—82‘+1 : Gk2—81—82+17 1 - 81)
+ 5814—82=1€2—1(471-)71*/\)’< (Dplel_Sl_SZH‘l? _51) .

Moreover, the double L-value 1L*(Gy,, Gy,, $1,52) is a Q[1/x]-linear combination of L-
values of modular forms with rational coefficients and L-values of Go

p QA <[G|k1—sl—52\+17 Gk‘2781752+1:|m70[d 9 1 — 81 — l)
L*(le,Gk2,Sl,$2) S Z I P

=0
Q A (G|k1—51—52‘+17 —S1 — p)

pt+1

™

QA (Gk2—51—82+17 —81 — p)

P+ 1

+ 681+$2:k2—1 + 581+52:k1:|:1

Here we give some concrete examples of double L-values in level SLy(Z).

Example 4.4.5. Let ky = 6, ko = 6. Noticing there is no cusp form of weight 10, we

have
L*(Gﬁa GG7 27 1) - - L*(G4a G47 07 _1)
= NGy Gy, —1)
1
= - EA(G& —1)
and

L*(Gg, Gg, 2,3) =L*(Gg, Gy, —2, —1) + (47) 'A*(D?*Gy, —2)
:A*<D2GQ : Gg, —1) + (47T)71A*<D2GQ7 —2)

5
= 2 A(Gy,—4) + ——A(Gy, —3).

473

Example 4.4.6. Let ky =6, ko = 8. Then

1672

L*(G67G8a 172) = - L*(G47G67 _1a0)
— _L*(DG, - Gy, 0)

11 1
_ A —1) 4+ —A(A
252007 (Gro, )+35o (4,0)

and

L*(G(;, Gg, ]_, 4) - L*(GQ, G4, —3, 0)
=L*(D’G; - G4,0)

3 (G, —1) -~ A(Gy,—3) + ——A(A,0)

56074 ’ 64073 ’ 672 e

where A is the unique normalized Hecke eigenform of weight 12.
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76 CHAPTER 4. DOUBLE L-VALUES

Example 4.4.7. Let s; and sy verify the conditions in Theorem [4.4.4. Assume that
s1=k1—1orsy=1. Then

L*(Gk17 Gk:za S1, 1) - i81A(Gk1—81 : sz—sla ]- - 81) - 581:k2—2ik2 (47T)_1A(Gk‘1—81a _81)7
and

L* (Gk17Gk27 kl - 17 82) = _ikl+82A(G82 : Gk27k1782+27 2 - kl)
- 5822162—k1ik2 (47)_1A(Gk2—k‘1—82+27 1- kl)

A list of extra examples about double L-values is given in Appendix [A]

Remark 4.4.8. If s; and s, have same parity, then the double L-value L*(Gy,, Gy,, s1, $2)
maybe not modular. Such examples can be find in [9].
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Chapter 5

Mordell-Tornheim Double
Eisenstein Series

The Mordell-Tornheim double zeta function, originally defined by Tornheim [45], is

the double series
o o 1
Z Z nkimke (n + m)k3 ’

n=1 m=1

where ki, ko and k3 are both non-negative integers. He studied in detail the convergence
condition of such series and their values. It can be seen as a double version of the Riemann
(-function.

We manage to construct a double version of the original Eisenstein series

ro1
Gk (T) = E E
weZ+2Lt

The double Eisenstein series of Mordell-Tornheim type is the following series

/ 1
G (15 k1, ko, ks;wi,wo) = Z k1 ko

1 ks’
1,2 €EL+TLT 1 T2 (wlTl + w27—2)

where kq, ko, k3 are non-negative integers and wq, wy are two integers, the primed summa-
tion means the terms which 7, 75 or w73 4+ woTs vanishes are omitted. In the later part
of this chapter, it is always convenient to assume that w; and w, are coprime positive
integers.

To investigate the Mordell-Tornheim double Eisenstein series, we introduce the theory
of Cohen series developed by Diamantis and O’Sullivan [24] in Section 5.3l With the
technique of partial fraction decomposition and Cohen series, we are able to give in Section
an explicit formula of Mordell-Tornheim double Eisenstein series into an Eisenstein
part and a cusp part. The formula we obtained in the specific case w; = wy = 1 (Theorem
has some interesting applications, some identities on divisor functions will be given
in Section [5.5]
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78 CHAPTER 5. MORDELL-TORNHEIM DOUBLE EISENSTEIN SERIES

5.1 Convergence of Mordell-Tornheim Double Series

In this section, we will give the sufficient and necessary conditions of the convergence of
both double zeta series and Eisenstein series of Mordell-Tornheim type. We recall firstly
a necessary and sufficient condition of convergence for Mordell-Tornheim zeta function,
given in Tornheim [45].

Lemma 5.1.1 (Tornheim). Let ki, ko, ks be reals. Then the Mordell-Tornheim double

zeta series
Cur(ky, ko, ks) = ;;gkllkz I +1s)

converges if and only if ky + ks > 1, ko + ks > 1 and ky + ko + k3 > 2.

We now state the following theorem which concerns the convergence of Mordell-
Tornheim double zeta series.

Theorem 5.1.2. Let ky, ko, k3 be non-negative integers. Then the symmetrized Mordell-
Tornheim double zeta series

! 1
Cur,z(k1, ko, k3 wi, wa) =
ll,l;z l]fIZSQ (wily + w212)k3

converge absolutely if and only if k1 +ks > 1, ko+ks > 1, ky+ko > 1 and ky+ ko + ks > 2.

Proof. Up to some sign change, it is equivalent that we consider the following two sum-

mation
Z Z lk1lk2

Li=11ly=1 W1l1+OJ2l2)

and

ZZ

k1 k2 k
=1 I l l2 \wlll —CUQl2’ 3

The convergence of first series is equivalent to

Z Z [F]% 11 + 1p)"

l1=11x=1

which is exactly the Lemma [5.1.1] We divide the second summation into two parts by
considering wql; — woly > 0 and wyl; — wols < 0. For the first part, it is equivalent to

[c o lNe o]

1
2.2 (I3 + walo)™ 152152

la=113=1

which can be also deduced from Lemma[5.1.1] The second part is similar. O
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5.1. CONVERGENCE OF MORDELL-TORNHEIM DOUBLE SERIES 79

Theorem 5.1.3. Let ky, ko, ks be non-negative integers and 7 € H. Then the Mordell-
Tornheim double Eisenstein series

! 1
G (73 k1, ko, k3jwi, we) = Z k1 ko

1€l Zr 11 T2 (OJ17'1 + wQTQ)kS
converge absolutely if and only if k1 +ks > 2, ko+ks > 2, ki + ko > 2 and ky+ ko + ks > 4.
Proof. As well-known, given a fixed 7 € H, for any m,n € 7Z,

Im 4+ n1| <, |m|+ |n| and |m|+ |n| <, |m+ n7.

Therefore we know that the absolute convergence of the series is equivalent to the con-
vergence of the following positive series

5 ! = (1)

mrremims (] 4 01" (Jma] + [na])™ (Jwrmy + woms| + |wing + wons|)

Clearly the series (j5.1)

/ 1 ! 1
< Z | [F1/2 [ ma 272 |wrmy + woma|Fs/? Z 1 [F1/2 s [F2/2 |wyng + wano|Fs/2”
m1,mo€Z ni,no€ZL

Note that some terms are missing in the inequality, in fact they converge obviously under
our condition, so we omit them for simplification.

According to Theorem [5.1.2] both two sums are convergent if ky + ko > 2, ki + k3 > 2,
ko + k3 > 2 and ky + ko + k3 > 4. This gives us the if part.

Conversely, we can assume that w; and wy are positive. Then the sum has a
subseries

1
ZI k ke ks

mi,mami >0 (m1 + nl) ! (mg + TlQ) 2 (wlml + wamsg + wing + w2n2)

By setting l; = my + ny, and [, = my + ng, it becomes

Z L+ 1)l +1)

ke (w1l 4 waly)™

l1,12>0

Note that both w; and wsy are positive, by Lemma we find that the sum (5.1)
converges only if (k1 — 1)+ ks > 1, (ke — 1)+ ks > 1l and (ky — 1)+ (ko — 1) + k3 > 2.
Recall that the Mordell-Tornheim double Eisenstein series have the same convergence
as the sum (5.1). Thus the series G (7; ki, ko, k3; w1, ws) converges only if ki + k3 > 2,
k2+k3>2and k1+/€2+l{33 > 4.
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Since w; and wq are coprime, setting 73 = w1 + Wy we find

/ 1
G(T;klak%kZ&;wlaw?): Z 1 ko

k
71,72 E€EL+LT T To (wlTl + w27-2)
' 1
— (—]_)ka:Ifl Z ( k1+ )kl kz k3
T2,T3ELA+ZLT 73 WaT2)" 2" T3

= (_1)k2w’f1G (7-7 k27 k37 kla 17 w2) .

k3

This implies that G (7; ky, ks, k3; w1, ws) converges only when all the four symmetric con-
ditions ky + ko > 2, ky + k3 > 2, ky + k3 > 2 and ky + ko + k3 > 4 hold. This gives us the
only if part. m

5.2 Double Zeta Functions and Partial Fraction De-
composition

The aim of this section is to determine the Mordell-Tornheim double zeta values. In
fact, they can be made explicitly with products of Hurwitz zeta values. We will see the
key ingredient in the proof is the following partial fraction decomposition.

Lemma 5.2.1. Let ki, ky and ks be nonnegative integers. Then we have the following
partial fraction decomposition
1 ki—1 (k2+/il—1) ko—1 (k1+VV—1)

= -
lllﬂllzm(ll + l2)l~c3 Z lklfu (l +l )k2+k3+u ;0 ng_V (ll + l2)k1+k3+v

k1— 1 1) (k3+u 1) k3z—1 (_1)k1<k‘1+u—1)

o Z lkl ,ulk2+k3+,u + Z (ll +l2>k3711 llél—f—kg—f—l/'

n=0 v=0

Let z € R, we will need the following Hurwitz zeta function
! 1
s,x) = —_—.
CZ( ) % (n + LU)S

Here Y_' means the summation omit the term n = —x when 2 € Z. The function (z(s, r)
converges absolutely for Re(s) > 1. It can be also defined for s = 1 as a Cauchy principal
value. In this case, it reduces to the cotangent function

(z(1,x) = lim Z/ 1 :{0 if xr € Z
N

meot(mx) else

Proposition 5.2.2. Let ky, ko, k3 be nonnegative integers which verifies the condition in
Theorem . Then Mordell-Tornheim double zeta value Cyr z(ky, ke, ks;wi, we) is a Q-
linear combinations of (k) and Hurwitz zeta values , ,,\ Cz(m, r/w2)Cz(k —m, wir/w,)
with 1 <m < k — 1, here the sum is taken for all r modulo ws.
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5.3. COHEN SERIES AND PERIODS OF CUSP FORMS 81

Proof. With partial fraction decomposition, a general Mordell-Tornheim double zeta
value can be reduced to the case where ki or ks equals 0.

1
Z/ [k k2

k3
I laez U1 b2 (W111+W2l2)

k1—1 ko (kodu—1 ka—1 k1 ki4+v—1
_Z/ Z wiwy? (1) +§: wrtes (7))
- k k

= W (wily Fwalp)Rethetu S 12wl A+ wolp )i tRet

Iy ,l2€Z
ki1
k -1
_Z ( 2 >CMT,Z(7€1 —u,0,ky + ks + u;wy, wo)
k‘2 1
k
+Z ( prve )CMT,Z(OJ‘CQ_Uakl“r‘k3+v§w17w2)-

It remains to focus on the case ky = 0. Taking modulo wy, we are able to decompose each
term into a product of two Hurwitz zeta values.

>
lkl (w1l1 + Wng)kB

l1,l2€Z "1
wo—1
-> ¥ —wrt )
- k1 ks ki+k
o S lll‘3 lele 3
lg=wyr (wg)
wo—1
= Z w;klikggz(lﬁ, T/MQ)CZ(]{}?,,(,UlT/WQ) — wkaCZ(kl + ]{73)
r=0

Note that this series is not convergent if k; or k3 equals 1, but we can interpret this sum
as a Cauchy principal value and everything still works. O]

5.3 Cohen Series and Periods of Cusp Forms

In this section we introduce the Cohen series originally defined by Cohen [18], roughly
speaking, these series represent the linear functionals arising from the periods. We will
also generalize these series to a more general twisted version.

Let T'; = SLy(Z) be the full modular group. Let T'(N) C I'y be the congruence group
of level N and let a be a cusp of I'(N). The parabolic subgroup I'(IV),, contains all the
elements in I'(V) that fix a. Let 0, € SLy(R) be the element such that 0,00 = @ and

6T (N)aoa - {1} = {i (é jlv)m }

A cusp form f € Si(I'(N)) have a Fourier expansion at «

fleoa(T) = Z amf(m)qm/N,
m=1
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Let p/q be rational, recall that the twisted L-function associate to f is

Lulfsipfn) = Y 2,
m=1

this Dirichlet series can be continued to the whole complex plane via the completed L-
function

Aa(f,5:p/q) = (27) *N°T(s)La(f, 5 p/q) = /OOO (Fleo) (iy N S) ys%_

In particular, for 0 < n < k — 2, we have the twisted n-th periods of f

r(fi0/q) = A(f,n + 1;p/q).

Consider the cusp form R,, in Si(I'y) which represents the periods of cusp forms, that
is, for any f € Si(I'y)
<f7 Rn) = T’n<f),

Cohen in [18] (see also Kohnen—Zagier [31]) gave an explicit characterization of R,, which
is given via the so-called Cohen series

1
_ 1
Fn = Z (aT + b)mL(er + d)k—n-1’

a,b,c,d€Z
ad—bc=1

where ¢, = ik*I*"QQ*kﬂ(kgz).
They also showed that there exists a unique cusp form X,,, € Si(I';) such that for
any Hecke eigenform f, we have the following Rankin-Selberg type identity

(fs Xonn) = ro(F)ral(f),

where m,n be two integers with opposite parity. An explicit formula for X,,, in term
of Eisenstein series is also given. Let f,g € M, (I'(N)) be two modular forms of weight
k1, ko, recall the Rankin-Cohen bracket of index [ is given by

rah= X (M (BT o
ptv=l

This Rankin—Cohen bracket is in general a modular form of weight k; + ko + 21, and is a
cusp form if [ is nonzero. In the case when f or g is Eisenstein series of weight 2, recall
that the modified Rankin—-Cohen bracket is defined by

472

[f7 G2]lm0d = [f? G2]l - kl + lDl+1f7
4 2
(G, Gl = (G, Gl = (14 (—1)) 57 D .
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5.3. COHEN SERIES AND PERIODS OF CUSP FORMS 83

Let 0 < m < n < k/2 with opposite parity, then X, ,, is given by
1

8(mi)k(*2)

-«%ﬂmT%—n—ﬂ%—DNn—m+1mﬁﬂﬂthmmﬂww

F(k + 1) Bn+1kanfl G )
B, m+D)(k—n—1) ")

Xm,n :<_ 1)(k+n—m+1)/2

- 5m,0

With the obvious relation X,,,, = (=1)¥2X,,_5_,, all other X,,, can be determined in
the same manner.
We follow Diamantis—O’Sullivan [24] to define the generalized Cohen series

1
(03T + /@)% i (o y, T)F

CiNa(T: 8:0/q) = Z

Yel'(N)

where s € C. Then we state the following theorem, which is originally from Diamantis—
O’Sullivan, with a slight modification to arbitrary width N.

Theorem 5.3.1. Let k > 2 be an integer and p/q € Q. Then the series Cy no(T, $;0/q)
is absolutely convergent when s lies in the strip 1 < Re(s) < k—1. It has a meromorphic
continuation to all s € C as a cusp form in Sg(I'(N)), which satisfies the following
Petersson inner product identity for all cusp form f € Sp(I'(IV))

T(k—1)

_ _ . o2—kisnje__ L= 1)
(f:CenalT,5p/q) = en2" e "T()T(k—s)

Ao(f, k= s:—p/q), (5.2)

where ey = 2 when N € {1,2} and ey =1 when N > 2.

For simplicity, we write Cix(7, $;p/q) = Cr.1.00(7, 5;p/q). The Cohen series Ci(T, s;p/q)
satisfies
Ce(r,sip/q) = Ci(7,s3p/q +n), neL.

With generalized Cohen series, we now state the twisted version for kernel of the period
map.

Theorem 5.3.2. Let k > 2 be an even integer and p/q € Q, then there is a unique cusp
form R,(p/q) € Sk(I'1) such that

(fs Ru(p/q@)) = m(fip/a)

given by
Ru(p/q) = cepCrlT k —n —1;=p/q).
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Let p,, : Sk, — Sk be the linear functional defined by
fera(f)f, f any normalized Hecke eigenform.
We define the cusp form

Xonn(0/0) = pm(Ru(p/q) + (—1)""" ' R (—p/q)).

Given a basis of Hecke eigenforms, the cusp form R, (p/q) + (—1)" "™ R,(—p/q) decom-
poses as

Ru(p/q) + (=1)" ™' R,(=p/q)
—Z n(p/a) + (=1)" " Ry (=p/a), 1) 1)

—Z ra(fip/0) + (1) (F; —p/a)) (f, £)7LF.

Apply the functional p,, we see

Xonn(p/q) = Zrm (ra(fsp/a) + (1" ru(fs =p/@) (F, /).

So we conclude that

Proposition 5.3.3. Let k > 2 be an even integer and p/q € Q, then there exists a unique
cusp form X, ,(p/q) € Sk(I'1) such that for any normalized Hecke eigenform f

{f, Xonn(p/2)) = () (ru(fip/0) + (=1)" "0 (f; —p/q)) -

The cusp form X, ,(p/q) can also be made explicitly in terms of Rankin-Cohen brack-
ets of Eisenstein series, however, of higher level rather than level 1.

Let N > 1 be an integer and u € (Z/NZ)?. Recall an Eisenstein series of weight k
and level I'(NV) is the following series

_ 1
Gp(1) = Z m

Lemma 5.3.4. Letn > 1,m > 1 and [ be positive integers. Let N > 1 be an integer and
w € (Z/NZ)*. Suppose that n +m > 4 and k = n + m + 2l is an even number. Let
f € Sk(T'y) be a cusp form, then

- - mo 2272l,ik7n,n.m+n k—92 .
X e S ()

w,we(Z/NZ)2
v=wu

1(f) (rmgi1 (fs —w/N) + (=1)" i1 (f;w/N)) -
Here Y. [GY,G¥" is a modular form of level 1.

w,ve(Z/NZ)2
V=wu
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Proof. Let u € (Z/NZ)? and v = wu. A direct computation shows that

G505 =Cmiy” Y (-1 () ) e )

o=l p) L(n)I'(m)I(1+ 1)
. ZI ( cH Z, (aN+wc)” )
c.dez (e +d)m+r ez (aNT 4+ bN + w(er + d))ntv
s
_(ariyt Ln O 4D (o (5.3)
L(n)(m)0(1+ 1)
Z’ (ad — be)!
oty (e + (a7 b4 G er + )
(c,d)=w

Summing around all € (Z/NZ)?, they in (5.3) splits into three parts

Z/ ((Zd — bc)l
e (er Ayt (aT + b+ (e + d))nH
(c,d)=u

/ / /
= >+ D+ > .
a,b,c,deZ a,b,c,deZ a,b,c,dEZ
ad—bc=0 ad—bc>0 ad—bc<0

the first sum is either 0 (when [ > 0) or an Eisenstein series of level 1 (when [ = 0) which
makes no contribution in the Petersson product. The second and the third sum altogether
turn out to be a cusp form of level 1

o0

1
> it (DiCk(mon 4 Lw/N) + (=1)"ThCi(r,n + 1 —w/N) .

h=1

Hence by Theorem [5.3.1],

NE

W<f; ThCr(T,n 4+ l;w/N) + (—=1)"ThCr(T,n + [; —w/N)>

i

1

= }(Zlf—(lli)lékvm+l1 (rmsi-1(f; —w/N) + (=1)""mp—1(f;w/N))

h=1
_ (2m) " i1

T 1= 1) Thi—2(f) (Pmyia (f; —w/N) + (=1)" 1 (f;w/N)) .

In the case where m or n equals 1 or 2, we use Hecke’s trick to add |er + d|® in the

summation. The corresponding Rankin-Cohen bracket is changed to the modified version.
O
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Corollary 5.3.5. Let N > 2, we have

n I'E—n—-1)I'n+1 —n— v w mo
Koo/ =t EEZZ OO D s (5™ G, g

w,v€(Z/NZ)2
v=wu

> vy Gz(n+ Lwr/N)G(k —n+ 1,r/N)G
B INFC (k) ’“)

In particular, we recover Zagier’s identity

Fk—n—1C(n+1) o
87Tk ([Gn+17Gk—n—1]0 d

F(k + 1) Bn+lBk—n—1 )
k
By T'(n+2)I'(k—n)

XO,n :7;”+1

We now define further the double Cohen series

1
2 (V7 + wi)* (Y7 + w2)*2j (7, 7)*

v€ely

Ck(Ta 51, 82, W1, WQ) =

where wy,wy € Q and sq, s9 are integers such that 1 < s1 4+ s9 < k — 1.

Lemma 5.3.6. Let wy,ws € Q and sy, so be integers with 1 < s; + so < k — 1. Then the
double Cohen series Ci(T, 1, S9; w1, ws) converges absolutely.

Proof. We omit the detail and refer to [24]. The treatment is similar as there. ]

Proposition 5.3.7. Let wi,ws € Q and sy, Sy be integers with 1 < s1+ so < k—1. Then
the double Cohen series is a cusp form in Sy, more precisely

s1—1 (_1)“ so+p—1
Ck(T, S1, 82;w17w2) — Z (—u)

= (wZ — w1)32+#

so—1 1 v(sitv—1
+ Z (=1) ( Y )Ck(T,SQ_V;MQ).

v=0 <w1 - w2)51+V

Proof. We proceed with Lemma to get

1
2 (Y7 + w1) " (7 + wa) =2 (v, 7)*

~yel
_2335 (=1 (=) 1
(Y7 + wi)s 7 (wa — wr)s2 i j(y, T)*

vel' p=0

so—1 (_1);/ 31+l/1/71 1
SF e

~ver v=0 wa) ¥ (Wi — wa) (v, TR

Ck<7—v S1 — MSM)
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In both two sums each term is a Cohen series except for the cases p=s1 — 1, v = s9 — 1.
The exceptional cases contribute as

S1+s2—2
R ((F=r?) 3 ( 11 ) 1
(wg — wy)s1ts2—l YT 4w T 4w ) Gy, )P

~yel

This series should converge absolutely since the else converge absolutely by Theorem 5.3.1]
To compute this term, we need the following Cauchy principle value when u € C\Z

N
= 7 cot Tu.

lim n
N—oo n u
N

By rearranging the summation, we have

Z( 1 1 ) 1
YT Hw T+ we ) j(y, )k

~yel
- Y > ) e 55
A \yrantw arntes) 0Tk (5:5)
2m
= Z (cot T(yT + wy) — cot (YT + wo)) = -
iy, 7)
YEL o \I'
On the other hand, let ¢ = €*™7 and ¢; = €*™i, j = 1,2, we have
gq+1
cot(m(yr +wy)) =i " = il + 2050+ 24" +---).
j
Hence the equation (/5.5)) gives us the cusp form
—4mi( q — q — m m q"
Y S > - Y
~El o \I' m=1 m=1 YEL\T J\Ys

Let f be a cusp form, as in the proof of Theorem [5.3.1 we can compute the following
Petersson inner product

<f7 _47””;((11 p) )We;\pj(v k:> = 4mil'(k mz:; 47Tm k: 1 =g ™).

On the other hand,
<f7 Ck(Ta 17 wj)> = 237]?7”.1\00(.]‘.7 k—1; —Cd)

=4mil(k —1) Z —<4c;f751)k) oq;

m>1

Hence by comparing these two Petersson inner products, we find

1 1 1
EE: ( - ) i = Ci(7, L;w1) — Ci(7, L3 w2). (5.6)

S\mtwn T +w) ()

]
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5.4 Mordell-Tornheim double Eisenstein Series

Let ki, ko and k3 be positive integers with ki + k3 > 2, ko + k3 > 2, k1 + ko > 2 and
ki + ko + ks > 4. Then by Theorem [5.1.3] the Mordell-Tornheim double Eisenstein series

/ 1
G(Ta kl;k27k3;w17w2> — Z k1 ko

k3
T ElA T T To (wlﬁ + CUQTQ)

converges absolutely. In this section, we will give an explicit formula for the Mordell-
Tornheim double Eisenstein series in terms of classical Eisenstein series. More precisely,
we have the following theorem

Theorem 5.4.1. Let ki, ko, k3 be positive integers, wy,ws € Z and T € H, then we have
G<Ta kla k?a k'37 Wi, WQ) = Geis + chsp
Here G.;s is an Fisenstein series which is given by

. Cur,z(k1, ko, ks; wi, wo)

2¢ (k) G

The Geysp 15 a cusp form given by

k1—2 (_1>k1 (k3+ﬂ—1)
chsp = Z k3+ﬂ fﬂ 5,uEk1(2)
1

ky — ko + k
. ([G]ﬂ,'u, Gk2+k3+u]6ﬂ0d . 2(( 1 N)i‘((]j)‘i‘ 3+ ,U,) Gk)

ks—1 1)k1 (k1+1/ 1)

+ Z k1+V —kl

( Z [GU G“ ]mod_ZT‘wl Cz(kg—l/CUQT/wl) (k1+k2+l/ r/wl)G>
w,5E (/w1 2)? famy Tkl 2W1C( ) A

T=wou

here the modified Rankin—Cohen brackets in last line involves only FEisenstein series of
even weights when wy s 1 or 2.

Proof. Let 71 = ar + b and 75 = c7 + d, we write

b
det(Tl,Tg) = det (CCL d) .

First, we consider the part

1
Geis = Z, F1__k2 P

3
sy T T+ 2m)
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Since 11, 7o and w;T + wyTy are proportional,

/ 1
Gleis = Z k1, ko

ks
det(r1,m2)=0 T T2 (wlTl + wQTQ)

/ 1 / 1
- Z o ks Z

wW1n + wam
n,meZ ( ! 2 ) ged(e,d)=1

= CMT,Z(kla ko, k3;W1,W2)/2C(1f) - G

Now we consider the remaining part

1
chsp == Z k1 ko

ks’
det(r1,72) 0 Ty To (w1T1 -+ CL)QTQ)

We split again the sums into two parts

1
Z k1, ko

ks
det(r1,72) 0 Ty To (CL)17'1 -+ CL)QTQ)

(cr + d)F

1 1
- Z k1 _ko + Z

ks k1, _ko
det(r1,72)>0 T T2 <w17—1 + w27—2)

kg’
det(71,72)<0 T T2 (WlTl + w27—2)

89

Changing the variable by 75 — —7» in the second sum, we see it is enough to calculate only

the first one. This sum can be computed with double Cohen series and Hecke operator

1
Z k1 _ko

k3
det(71,72)>0 T o <w17-1 + w27_2)

-y !

S (a1 + b)¥ (e1 + d)*F2(wy (a7 + b) + wa(cT + d))*s

ad—bc>0

o0

I IDY :

k

k 3
—1 apedez (oTEb\¥ [at+b | wa k
n=1 Zd—cbczen (c7’+d) ct+d w1 (CT d)

:wlk?’i Z L

n=1 dety=n (/VT)kl (,YT + w2/w1)k3j(7a T)k

o0

_ 1
=™ Y 5 T (Calr kb 0, w2/ wn)).

n=1

Hence, Gyusp equals

o

_ 1
w1 . Z nk-1 (Tnck(T7 kl’ k37 O’ w2/w1) + (_1)k2Tnck(T7 kla k37 O? _WZ/wl)) :

n=1
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Recalling Proposition we see that

1
—1

1—2
+u—1
u(k?) M ) ( 1/ 2)k3+u

NE
z??‘

(TuC(7, k1, k3; 0, wo fwr) + (—1)2T,Ch(T, K, ks 0, —ws /wr))

3
Il
—_

o

Il
—

—_
~—

=

M L
3

(TCi(7, k1 — 11;0) + (= 1) T,Cp(7, k1 — 13 0))

-1

S (B

v
0

3
F ol
—_

+

— 1
Z T Ck 7' k’3 I/;WQ/Wl) + (—1)k37yTan(7', k’3 — U, —LUQ/Wl)) .

nk 1
n=1

If wy is 1 or 2, the last line vanishes when k3 — v is odd. As has been evaluated in the proof
of Lemmal(5.3.3] the sum Gy, can be computed clearly with Rankin-Cohen brackets. [

In the case wy = wy = 1, the Mordell-Tornheim double Eisenstein series

/ 1
G(T; kv, ko, k) = E , o 2
3

T1+72+73=0
T1,79,73 EL+LT

symmetric in ki, ko and k3, may be expressed in a more brief form.

Theorem 5 4.2. Let ki, ko and ks be positive integers which satisfy the condition in
Theorem[5.1.5. Then we have the following

k1—2
ko +pu—1
G<T kl? k27 k3 ( Z 5# k1(2 ( ? : )lequerker#

ko—2
ki +v—1
_'_ Z 5115]62(2) ( ! )GkQVGk1+kJ3+I/

1%
47’(’2 k1—|—]€2—2 /{?1+/{32
DGy — Gy ).
k—2< ky — 1 ) b ( ey g

Hence #G(T; ki, ks, k3) has rational coefficients.
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5.5. EXAMPLES AND FOURIER COEFFICIENTS OF MORDELL-

TORNHEIM DOUBLE EISENSTEIN SERIES o

5.5 Examples and Fourier Coefficients of Mordell-
Tornheim Double Eisenstein Series

Recall that we have the normalized Eisenstein series Fj,

Example 5.5.1. Let k = 6. All the Mordell-Tornheim double Fisenstein series of weight
6 s listed as follows

G(1;1,2,3) = ——F,
(7—7 ) &y ) 945 6(7—)7
276
:2,2,2) = —F .
G(Tv 3 4y ) 945 6(7_)

Example 5.5.2. Let k = 8. All the Mordell-Tornheim double Fisenstein series of weight
6 s listed as follows

8

T
G(T7 ]-7 27 5) = - 14175E8(T)7
278
G(T7 ]-7 37 4) - 14175E8(T)7
28
G(Tv 27 27 4) - 14175 E8<T)7
G(7;2,3,3) = 0.

Example 5.5.3. Let k = 12 and k1 = ky = k3 = 4. Then we have a Mordell-Tornheim
double Fisenstein series of weight 12

38712

G(r;4,4,4) = ——— (E12<T) —

91216125

111196800 )
13129 ’

where A is the unique Hecke cusp form of weight 12.

Example 5.5.4. For any integer k > 1, we have G(7;2k,2k + 1,2k +1) = 0. In fact, we
have

3G(7;2k, 2k + 1,2k + 1)

- / T+ To + 73 —0
- : : 2k+1_2k+1_2k+1 —
T 7'3

Ti+7a+73=0 '1 2
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Using Theorem 4 and evaluating the coefficients of ¢", we have the following formula

2k—1
2k + p 6k + 1 6k + 1
i Z ( z ) ((4k: + u) Baenopouuln) + <4k 14 u) B 14021

2t

— 2(6k +1) (%Gf ,u) z_: O2k—u (M) k(N — m))

m=1

— (6k+1) (;”;) noge1(n) — (‘2”; i f) Oo1(n).

When k = 1, we recover the classical formula from Ramanujan
n—1
504 > " o1(m)os(n —m) = 2007(n) + 2105(n) — 42n05(n) + o1(n).
m=1

Example 5.5.5. For any integer k > 1, G(7;1,2k,2k + 1) is an FEisenstein series. In

fact, we have

G(1;1,2k,2k+ 1) + G(7; 1,2k + 1, 2k)

/ To + T3
= E : TS BT —Glaps2(7).
Ti+7ofr3=0 ‘172 3

Fuvaluating the coefficients of ¢, we get

2k—2
4k + 1 4k + 1
Z (B%u <2k _ M) U2k+1+u(n) + B2k+2+u (Zk - 1) 021@7#71(”)

n=0

2|p
4]{: n—1
_2(4k + 1) (2]{: + p+ 1) Z O-Qk_l—li(m)oék-l—l-i-lt(n - m))

m=1

= (4k + 1)noy—1(n) — (4k + 3)0441(n) /2.

When k = 1, we recover the classical formula from Ramanujan
n—1
240 > " o1(m)os(n —m) = 2105(n) — 30no3(n) + 1003(n) — o1(n).
m=1

More examples of Mordell-Tornheim double Eisenstein series G(; ky, ko, k3) can be

found in Appendix
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Chapter 6

Final Computations

In Chapter 2| we introduced the element Eisle’]”’j (u1,us) and then in Chapter 3| we
established a theory of regularized integrals which is applicable for this regulator. So the
following regulator integrals do make sense

* *
/ Eiss 7 (uy, uy)  and / Eisi 27 (uy, uy).

P{0,00} P[0,a]

In this chapter we aim to compute these integrals. We begin first by stating our fi-
nal results on computation of regulator integrals, including periods and residues of the
regulator Eisg’kQ’j (ug,ug) for P = X™Y™™™ for certain m > ki, ko. In Section and
Section the regulator integral is clearly delineated. We will need certain preparatory
calculations about regulators, given in Section and Section [6.6l The whole computa-
tion and our final proof are included in Section and Section The vital tool is the

Rogers—Zudilin method given by Lemma [4.3.2]

6.1 Results

We compute explicitly the periods of the regulator. The period

*
/ Eisg’kz’] (Ul, UQ)

Xw{0,00}

is exactly a Q(w + 1)-multiple of L-value of a modular form with rational coefficients.
More precisely we obtain

Theorem 6.1.1. Let ki, ko, j be nonnegative integers with w = ki + ko. Let N > 3 and
up = (a1,b1), us = (ag,by) € (Z/NZ)?, suppose that (a;,b;) # (0,0) if k; = 0 and b; # 0
if ki =1, then

/ Eisg,kz,j (U]_,UQ) — OkthJA* <G(k’1+1)G(k2+1) _ (_1)]G(k1+1)G(k2+1) _])

b1,—az ~ ba,a1 b1,a2 ba,—ay?
Xw{0,00}
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94 CHAPTER 6. FINAL COMPUTATIONS

with the constant

ik + 5+ 2) (ko + 75 +2

o N wtj+2 )ikl_k2+(j+1)2(27)w+l € Q(w+1).

Ckhkz,j =

Remark 6.1.2. The appearance of the L-value at s = —j is in accordance with the Beilin-
son’s conjectures that we discussed in Subsection [2.3.1]
Also we compute the residues
/ Eng’kz’j(Ul, UQ),
X¥[0,2]o0

the result is given below

Theorem 6.1.3. Let ki, ko, j be nonnegative integers with w = ki + ko. Let N > 3 and
up = (a1,b1), ug = (ag,by) € (Z/NZ)?, suppose that (a;,b;) # (0,0) of k; =0 and b; # 0
if k; =1, then

*
/ Bish 529 (4 ug) = R4 (uy, y) + (—1)M 49 Rhabid (. ),
Xv[0,2]0o

where

ky+ )Wk +7+2)(ka+ 7 +2)
2(ky + 1) Nkati+3
L(6_qy, —ko — § — 1) L(6p, + (=1)" 96y ey + 5 + 1)a*2

Rkl,kz,j(ub u2) _ (_1)éj(j—1)+k250(a1> ( (2m’)k2+1

Here we exhibit several examples of regulator integrals.

Example 6.1.4. Let j = 0, then we recover the following Brunault’s result [11, Theorem
1.1]

/ Eise*2 (uy, ug) =
Xw{0,00}
(k1 +2)(k2+2)
QN w+2
Example 6.1.5. Let ky = ky =0 and j = 1 then we have period
* 9
[ o = 22 (e
{

3 b1,—az " bz,a1
0,00} N

b1,—az ' b2,a1 b1,a2 ba,—a1’

(27T)w+17:k1_k2+1A* (G(k1+1)G(k2+1) o G(k1+1)G(k2+1) 0) )

1 1
+ Gl(n?az Gl(?z?*m ’ _1>

and residue .

Eisy™" (u1, up) = RO (uy, ug) + RO (ug, uy)
[0,x] 00

with
RO’O’l(uhw) = do(a1) <77 L(0—as5 —2)L(0p, — 0, 2).
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Example 6.1.6. Let k1 =0, ks =1 and j = 1 then we have periods

* 2472
/ Eis™ (ur, up) = — A (Gz(i) Gy

G(l) G(Q)
X{0,00) N4 —az bz,a1+

b1,a2 " b2,—a1’ _1>

and

* *
-.0,1,1 _ ;0,11
/ Eisp " (u1, uz) —/ Eisg " (u1, us)
Y{0,00} o+ X {00,0}

*
=— / Eis%l’l(ula, U20)

X{0,00}

24m%i 0 ) @) 1) @)
= N4 A (G*ah*b2G*a2,bl + G*albeG*a%*bl’ _1> :

In more general, for certain ki, ks < m < w, the period

*
/ EiS%’k%] (ul, UQ>

Xmyw=m{0,00}
is a linear combination of L-values of quasi-modular forms with rational coefficients.

Theorem 6.1.7. Let ki, ko, 7 be nonnegative integers with w = ky + ky. Let m be an
integer with ki,ko < m < w. Assume that if m = kg then ky = 0. Let N > 3 and

up = (a1, b1), ug = (ag,by) € (Z/NZ)?, suppose that (a;,b;) # (0,0) if k; =0 and b; # 0
if k; =1, then

/* Eisklrk%j(lbl U2) = j'(kl +] + 2)(k2 +j + 2) Z'klik2+(j+1)2
Xmyw-m 0,00} D ) ANw+i+2

(2m)“t!
| (A* (Do (Gt = (e =) (G + (cretn ) )

b2,a1 ba,—a1
J l
1 /[4r
+ ZZ il ( N)
-1

A ((_1>w+m+1Dw7m+lG(mfk2+1)G(mfk1+l) + (_1)ijferlG(mfngrl)G(mflirl), —j + l)

b1,a2 ba,a1 b1,—az2 ba,—ay

e (] + l)! 47 - (1)

- <_1)] ; ]' N Ck’z,m—k‘l,kg—l

A* (DwfmflGl()?;b::iJrl)G{(}T{;kfrl) + (_1)wfm+j+1DwfmflGl()Z’l;lk1+1)Gl()7l7?:§22+1)’ —j o l)
i AN

+(-1) Y =+ Ol ot
= 7 N

b2,a1 b1,a2 b2,—a1 b1,—az

A (Dw_m_lG(m_le)G(m_k2+1) + (—1)wmmitl pummetgimohi ) glm ket g l) >,
where the C and C® are integers defined in Definition|6.4.4.
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96 CHAPTER 6. FINAL COMPUTATIONS

Remark 6.1.8. Thanks to Lanphier’s identity, we are able to rewrite the result in The-
orem as linear combination of L-values of modular forms (also Gy) with rational
coefficients.

After an inspection we can find out that Theorem extends to level N =1,2. In
particular, we get

Theorem 6.1.9. Let ky > 2, ky > 2 be even integers with w = ki + ko. Let the integers
ki, ke <m < w be odd and j > 0 be even, we have in level 1

/ Bish#23(0,0) = "1 -*2 4002 2(20) 4 i) (k) + § + 2) (ke + § + 2)
Xmyw—m{(,c0}

* w—m . d (47T)l * w—m~+l :
: (2/\ (DY " Gim—ky+1 - Greiy41, —J) + E I A* (D Gmto+1 - Gmtr1,1 — J)

=1
w—m

+1)! - * w—m— ;
- Z <] j' ) (47T) lclgi?m,kh;m,l/\ (D le—k’H‘l ' Gm—k2+17 -] l)

' + D! w—m— :
+ Z j O]E:i)m ki1,ko— le (‘D le_kl+1 ' Gm—k2+17 —J— l) >

6.2 The Regulator Integrals

Recall in Section we introduced the regulator

Eisi ™7 (uy, us) = p.(pt Eisp ™ (uy) U pj Eish2 1 (uy))
€ Hp™(E" /R, R(w +j +2)),

where p, p; and py are the projections

Ek1 +j+k2
Ekiti Fkitke Fitk2

Write 6 for the isomorphism on E**7 defined by
0 : Ekz XY (N) Ej XY (N) Ekl l) Ekl Xy (N) Ej XY (N) EkQ.

Note that 6 also restricts to an isomorphism E*2+k1 — EF+F2 we write it also as 6 by an
abuse of notation.
Set g=0"topol, ¢ =p; o0 and ¢ = py 0 0. We have commutative diagram

Ekatithkr Oy pkitjtks

| ’|

Fkatka L} Ekitke
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6.2. THE REGULATOR INTEGRALS 97

Since 0*p, = (071)ups = (071 = ¢.0* and 0*p = ¢}, we have
0" Eisp ™7 (uy, ug) = ¢, (g5 Bish2 ™ (ug) U ¢f Bish 7 (uy)).

Definition 6.2.1. Let 7, ,,, be the following fiber of (#7!), X™Y*“~™{0, 00} on E* Xy ()
B

Ny = LY 1Y, - o ity Uy b kg1 -« s Chyy Wkg 1Yy - <5 Gy, 0) [ E1, .oty € [0, 1]}
We endow 7, ,,, with the orientation induced by the product orientation [0, 1] x [0, 1]*

With the isomorphism (2.1), we write (7; 21, ..., 2k, t1, .-, tj, 21, - - . , 2},,) for the co-
ordinates on E¥T/(C). We take the canonical orientation dzy A dzy A -+ A dzy, A dzg, A
dty Ndty A - Ndtg NdEg Adzy A -2 A dE, on ERTITR2

We divide the whole regulator integral into two parts

/ Eisp ™7 (ur, uy) = / P+ (P} Eisp ™ (un) Ay 411 (5 Bisys” (u2)))
Xmyw-m{0,00} (000}

+/X o }(—1)k1+j+1p*(ﬂk1+j+1(ﬁEiSZZz( 1) A ps EisE ™ (u)).
m w—m Oyoo

For the second integral we have

(-ppet [ P (oo (0 Bisf () A3 Bish ™ 1)

Xmyw—m{(,00}

-y [ o 0 (T2 (0 B 0)) A3 Bl 02))
(6= 1) XY w=m{0 00

:<_1)(k1+j+1)(k2+j+1) /(91) et }9 (p*(pz EISJDJrkz(W) A oy a1 (D] Elsh1+j<u1))))
:<_1)(k1+j+1)(k2+j+1)+k1j+k2j /(;1) R } (q2 Eis 2+J<u2) A 7Tk1+]+1(ql Elsg;orl 1<u1)))

The isomorphism 6 change the orientation of X™Y“~™{0, 00} with a sign (—1)**2 so it
iS o, *
ettt [ g il ) A B )

For brevity, we set

00,% .
TFoR23 () ) = / / s (P} Eisi ™ (uy) A Ty 11 (05 Eisy2 (u2))),
0 Y

Y, m

and ok
J’“l’k“ (uy,us) / / q2 Elskﬁj (ug) A gy 141 (g} Eisforlk1 (ul)))
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98 CHAPTER 6. FINAL COMPUTATIONS

Finally, the full regulator is given as
/ Eisp 7 (uy, uy) = / P (P} Bispy ™ (1) A k1 (03 Bisy2) (u2)))
X"LY“}77”{O,OO} XnLY’wf’m{O’OO}

+/X N }(—1)'“1+j+1p*(7rk1+]+1(p1Elshlﬂ( 1)) A Bisp ™ (us))
m w—m 0700

_ [kl’k2’j(ul,U2) + (_1)k1+k2+j+1Jk1,k2,j(ul’uz).

6.3 Explicit Regulators

Let us start by recalling our object of interest.
Given uy = (a1, by), uz = (az,b2) € (Z/NZ)?, we have the differential forms

. . k1+j
et (/f1+J)!(k1+J+2 bt -
Bisp ™ (u1) = — N Z Fgulf T Yy 4j—a  mod dT,dT
<k1 +j)'(k1 +j + 2) 1 gy a,k1+j—a 1 —a=—ki1+a —
T 2rN Im(—;) Z Fogu, (— ;)T T Yo ki+j—a mod dr,dT
a=0

and

Eisy?” (us) = (—1) (2im) > I EE 2 (DY dr A gy 40

ogua

katjrrR2 T 7 +2
N

Let m: EMHitke(C) — H and 7’ : E*T7+*1(C) — H be the canonical projections onto
the upper half-plane. Let v : H — Y (N)(C) be the map onto the connected component
of Y(N) given by 7 — [(7,0)]. Given t € R, set W = 77 1({0,00}), W' = 7'~ 1({0, 00}),
V = 771([0,2]%) and V' = 7'71(]0,x]%). They can be seen as subvarieties of E*(C).
Then we see directly that

Lemma 6.3.1. We have differential forms

k143
Py Eisp T (w) = Cry 7971y " (— e pee a(y)pﬂ/)a kitj—a  mod dy
a=0
ki+y
p1 Eisp MFI (uy) |y = Dyy Z Fc‘fu’?ﬂ “(z + y)p1¥ak +j—a mod dr,dT

and

* Tas (k
p3 Bl (uz) [ =2Cady A FY272) (i) pin, 10
* Tas k
j EIS;?O?_](UQ) lv =2Dodx A FEfQﬂH)(x + 1Y) D5 Vky+5.05
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6.3. EXPLICIT REGULATORS 99

where
_ ki + ) (k1 + 5 +2) ko +j+2, . :
Ci = k1 3< O, =2 J T 20 9;r\ketit+l
= 27N G iy (FEmEE
(k1 + )W k1 + 7+ 2) ko4+374+2 o it
=— Dy = ————(—2im )"+,
Symmetrically we get
Lemma 6.3.2. We have differential forms
‘ ka+j
g3 Bisy ™ (ug) [y =Cly 7971y " (—1)Rtime ety a<y>q2wa ktj—a  mod dy
a=0

kao+j
¢ Eiss2™ (uy)|y =Dly Z F&EtI70%(0 + i) 5o hyrj—a  mod dr,dT

and
q Eisifjj(m)\w' =2C%dy N F—szlﬂ”) (1Y) 41 V1450
g1 Bisy? (un) v =2Djda A UL (@ + iy)giodn, 40,
where
i (B2 + k2 + 7+ 2) k1+]+2 -
O/ - _ ko g( C/ 2 kl—‘,—j—‘rl,
1= 2N ! o (%)

N 2T TN

With the Fourier development in Lemma[1.3.4, we are able to use S-series to demon-
strate the differential form p* Eisk ™ (uy).

Lemma 6.3.3. We have '
2 EiSleﬂ (u1)lw =m0 +m

with
ki+J

Mo :Cl Z(_l)k1+j_aay F=j=1 *wakﬁ—] —as

a=0

N k145 i 7
e Ii—ki—1—j kytjal,l—ki—1—j
m=(=)"" S G > (Sébl I <§> DS, <_>> o

=0 Y
ki N o E ghi—hi—1=j i [yftigh k=1 i a dd
+ (—1) Skiti2 7t Z 5 by 0y ; + (—1) 5oy bay & ; mod dy,
1=0
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100 CHAPTER 6. FINAL COMPUTATIONS

where .
o= L(8,, k1 +j+2)+ (=D)L 4,k + 5 +2)

: k
q _ g =D am\™ lij Pi¥akiti-a
: ! N (k1 +j—a)(a—1)"

Proof. (See [11, (25)]) Note that we write the Fourier expansion with the S-series here
for the sake of simplicity. This will prevent us from some intricate discussions of constant
terms later. [

and

After exchanging ki and ko,

Lemma 6.3.4. We have .
¢ Bisg ™ (uy)lwr = o + 14

with
ka+j
= 1Y (=) y T T g gy,
a=0
vkt Y = Liky—1—j [ & hotigll—ka—1—j ( 1 !
n = (—i) Qka+j+2 & Z (86b2 dasy <§> +(=1) 85—52’5*“2 <§>) “
1=0
. N bt Sll—ko—1—j [ 1 I l—ko—1—5 [ 1 —
4 (—i)k2 i3 Ch Z (5571,2,;@2 ’ <§> + (—1)k2+35(§b2,8a22 ’ <§>> Y, mod dy,
1=0
where
= L(0py, ko +j +2) + (1) L(3_4,, ko + j +2)
and

. ko
QO — (k2 +4 = 1)! am A y! i:] G5 Vaky+j—a
! l! N (ky +7—a)l(a—1)

6.4 Binomial Identities
We first prove some identities involving binomial coefficients which we will need in the
future computations of the regulator integral.

Definition 6.4.1. Let a,b,c be nonnegative integers such that b,¢ < a. The numbers
H, . are the hypergeometric sums

D S D ()

€1+-+e=c 5=0
€;€{0,1}

a—>b —c, —b
pr— F ! ._1 .
( c )2 1(a—b—c+1’ )
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6.4. BINOMIAL IDENTITIES 101

One see directly that
Lemma 6.4.2. Let k,m,a be non-negative integers and a, m < k, we have
Himp—a = (—1)"Hgmqa
The following variation of Chu-Vandermonde identity is needed in the computation.

Lemma 6.4.3. Let n,a,b be positive integers,

s () -{l

We will need also the following constants.

Definition 6.4.4. Let k, m, [, j be non-negative integers and m < k, we define the con-

stants i
a
Cho = Ho e
k,m,l l k7 7k

a=l

k+j a
(2) .
Ckml] = Z (l)Hk,m,k’-‘rj—a'

a=max{j,l}

Lemma 6.4.5. Let k,m, [, j be non-negative integers and m < k.Then the constants C,Sq)m

and C,f)m will vanish if | <m.

Proof. Let us show that C’,gzg,bl ;=0 when [ < j, the proof of the other case [ > j follows

in exactly similar way, and C,i},;,l follows as well. Note that

k. m .
2 s a-+J m a+s k—m —a—s
Clg,r)n,l,jxkzzz(_l) < I ><5>I ’ (k—a—s)xk ’

thus C’( ; is the k-th coefficient in the power series of product of

() =S () ()

a=0 s=

k—m
k —
(1+x) ( m)
t=0
Meanwhile,

—m 1 +1 —m m—Il— _l’_l

and

is a polynomial of degree k — 1. So we conclude C’k =0 for Il <m. m

mylg
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102 CHAPTER 6. FINAL COMPUTATIONS

We shall need the following lemma to simplify some L-values of quasi-modular forms
with Lanphier’s formula.

Lemma 6.4.6. Let m,n > 1 and r,p > 0 be integers. Set
N (m+1-1
l W)

am,n<t> = (m+n+2172t72) (m+n+2l7t71)
I—t t

to be the coefficient which appears in Lanphier’s formula (1.2). Then

Z(—zf% (at2() + (—1)at2 (1)) = 0.

l+p
Proof. We see

- (M gy (mtn+p=2)(m+n+2p—1)
2 (2 G piamn(t) = (m+p—1)]

T

_ ot (m+t+p—1)r!
> 2)(

m+n+t+2p—t(r—1t)

t=0
This is exactly the hypergeometric value

(m—l—m—l—p—Z)!F —rmtp
(m+n+2p—2)"""\m+n+2p" ")

—r,m-+ - -r,n-+
2F1( p):(l—z)2F1( p>

With the relation

3 < A
m+n+2p m-+n+2p
we conclude. n

Lemma 6.4.7. Let k,m be non-negative integers and m < k, then

k 0 m#0,
ZHkma:
rar S B AR )

Proof. Exchange the order of sum, we see

a=0 a=0 s=0
0o m k—m+s E—m
— —18
> (D) 2 (L70)
. . _1\s m k—m
-3 (")
:5m:02k‘—m
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6.5 Some Preparations I

In preparation to computing the regulator integral, we first evaluate their integration
along the fibers v, ,,, and 7, ,,,. Let us start by the following integrals.

Lemma 6.5.1. When m > kq,

J

CB . (_1)k31—a (k1+j—a)ym+j 0 <a< klu
0 ]{?1 <a< kl +j,

/ Po(P1%aky4j—a N PsWkytjo) =
Yr,m

YDyt j<a<ki+]

* 1 a,k '—a/\ 5 ko+7j J .
/%mp (pldj yk1+g 1)277/}07 2+j) 0§CL<],

[
0
)= Cs - (_1)j_a(?)ym+j J<a<k+y,
0 0<a<y,

/ Pi (D101 4j—a,a N PsWkotj0
Yr,m

and

Cs - (—1)m—kitiza (li;?_“)ym*j 0<a<k,

* 1 j—a,a A 5 i) =
[yﬂmp (p1¢k1+3 , prO,kz-i-J) {O ky <a<k +7,

where —
1.0 1 1:]:

C =(—1 2](] 1)—

S

Proof. Recall that we take the canonical orientation dz;y A dzy A -+ Adzg, N\ dzZg, Adt; A
dty \---Ndty Ndtj Ndzp A - - NdZ, on EF+itkz  For the first identity, when 0 < a < ky,
we have

* *
plwa,h—i-j—a A pkaf2+j70

ki+J - (1) (k1) (€ky+1) (€ky+5)
:( . > S de A Ady Y AdET A N
Yei=ki1+j—a

Adty Ao Ndtg NdZp A - Ndzy,

N —1
e (ki tJ (1) (eky)
Z(—l)QJ(JH)( . ) Eszk Aoy A ANz NN A d,
i—=K1—a
A (dty Ndty) -+ A (dt; A dty),

and when a > kq, this form vanishes because we have at least one dt; Adt; = 0. Integrating
along each fiber of the projection p : EF+ith> — EM+k2 while noticing the fact [, dt A
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104 CHAPTER 6. FINAL COMPUTATIONS
dt = —2iIm 7, we get

/ Pe(P1Vaks+j—a N DoWUkyjo0)
Yr,m

1 * *
= / (27TZ)‘7 /E‘j p1¢aykl+j_a /\ pkaz-&-J,O
Yr,m T
N —1
a

]{31 —a
e e A
J

The second one is similar, when 5 < a,

/ P (P1Varkr+i—a N P50kt j)
Yy, m

1 . .
= / (271'2)7 /Ej plwa,k1+j*a A prO,kQJrj
Yy,m T

1 k A L |
:/ (2mi)i /Ej ( 1:]) Z dzisl) A...Adzlgikl) /\dtgﬂcﬁrl) /\"'/\dtg»sklﬂ)
Yy,m ]

Ye;=k1+j—a

ANdEy N NdE Nd2y N AN dE

 (—1)¥0D (2m) (kl ” >_1( i )(—1>mﬂ"“(z‘y)’“<—2z‘y>j

a ki +j—a

Take k1 + 7 — a instead of a and we get the rests. O]

For integral over 7, ,,, we have similar results.
Lemma 6.5.2. When m > kq,

r al(ka+j—a)! ;
CY3 ’ jlko! Hk’Q,m—k‘th—amerj 0<a< kQ?

* 5 a | —a A 1 j = .
/ny’m q (C]z¢ Jko+j Q1wk1+],0) {0 ]4;2 <a< k2 +i

al(ka+j—a)! P :
Cs- (_l)klﬂQ(;TJQ!@HkQ,m—kl,km—aym“ J<a<ky+j,

% > a,katj—a/\ ! k14+j) — ]
/Wm 0 (B Vaky+j—a NG V0 k1 +5) {O 0<a<j

Y(ka+j—a)! ; . .
Cfli : a(le;]a)sz,m—kha—jmerj J S a S kQ +]a

* 5 ko+j—a,a N ki+7 = .
/Wm G (B Vkyrj—aa N QVki140) {O 0<a<j
and

ial j—a)! ma-i
Cfli ) (_1)k1+]'(l€;!+g!)Hk2,m—k1,ay 0 <a< k?a

G (B Vkotj—a,a NG V0 k1 15) = .
/mhm ( 2V ka+) 1 1+J 0 /{2 <a< k2+j,
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where _ )
i kol !

7w (ks + )

Proof. The proof follows exactly the same as Lemma [6.5.1] We take the first one as an
example.

The form

Cl = (—1)29G-1

* *
q1 ¢a,k2+j—a A qukri-j,O

k N ! € €k €k € ;
:( 2+‘7) S d A Ade AdnTE Y A
a Yei=ka+j—a

Adty A ANdty ANdzg A A dzg,

ke 4+ i\ T . c
:(—1)§7(7+1)< 2+]) Z dz 1)/\---/\dz;c(zkz)/\dzl/\---/\alzk1

a Yei=ko—a
A (dty Ndty) -+ A (dtj A diy)

vanishes precisely if 0 < a < k;. Recalling the constant

Hk?vm*kl,sza = Z (_1)€1+---+6m,k1’
61+"'+Ek2=k2—a
€€{0,1}
we integrate this form on 7,,, and get the first formula. -

With Lemma we can get

Lemma 6.5.3. When m > ky, for 0 <1 < k; + j, we have

[ png = {57 AT
//y P(SU A P30 kyvj) = {53 =y kll(ll—k;l)! (%)lﬂ ym i /glggl l<§k]i1 15,
/vy,m PO A Pytiryso) = {33 (DM gty () /;1;[ ljk]f,l + 7,
/vy,m Pe(QU A P50 kytj) = {003 | (_1)m+j’%1! (%)klﬂ ym ; 7: 27
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Proof. For the first one,

(k45— D! (4 \"™ l 1)ki—a
AU A Phitby o) = Cy - 2L () e

/wp( tAPrtio) = Cs 41 N Z /ﬁ—a )(a—1)!

o, Uatg =Dt (am\T mﬂlklzl S

Ji! N (ky —l—a la)!

. l k1—1

:cs.w am\ m+yllz yrta (P17
0k — 1) \N a

B 0, [ # kq,
G )Ty L=
For the second one

/ P+ (U A D30 kat5)
Yy,m

. ki+j m—a
(ki j— D) (4 I+1 kit ZJ (—1)™ ) .
g N (k1 +j—a)(a—Da—7)

a=max{j,l}

:Cg.

We consider the case [ > j first, then

| v npston)
Yy,m
:C-M dm il m+Jlk1§:l —)m " (a +1)!
° L N k:1+]—l—a)'a'(a+l—j)!

—C.l 4_7 A k+ylk1il ma—l ki +7—10\[a+1
SN . i)

With Lemma we know this equals

07 0 S I < kla
I 1 . .
03 ' <_1) fits k:l!(ll—k1)! (%) yk‘H : kl <Il< kl +J
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For the case [ < j, we have

/ PS4 A P30 g+ 5)
Yy,m
D G AL o k+ylz D97 (a + j)!
’ AL N kl—a'a'a—lJrj)!

_ (kl_'_j_l)' 4m a k—i—] l k —j—a CL—|—]
=G ik N Z I )

which leads to the same result as [ > j. The rest calculations are similar. O

Along the same lines of Lemma we have the followings results.

Lemma 6.5.4. When m > ky, for 0 <1 < kg + j, we have

kot+i—0)! (4r\lH+1 ~(1) i
/ @ (U A Gy vjo) = Cs - ( 2j!k]2! : <W) Ckz,m—kl,zy L m =k <1<k,
o Y 0 else,

kotj—0)! 4z \ I+ ~(2) i :
/ G (NG Yok, +5) = Cy - (~D)R I B () O ™ m—ky U< ka4,
Ny om Y 0 else,

m—ky (ka+j=1! (4r\I+1 2 m-+j— .
/ G (OUAG o) — 4 O3 (7D b e D (%) O™ m— ki ST< ko 4,
Ny m o 0 else,

mAj (ka4j—D! (4r\I+1 ~(1) m+j—
/ ¢ (UNG Yok, +5) = {Cil’»'(—l) B D () ) g T m— ke <1<y,
* sR1
My,m

0 else.

6.6 Some Preparations II

We compute in this section some explicit regularized L-values of Eisenstein series and
their derivatives.

Lemma 6.6.1. Let |l > 0 and k > 0 be integers, then

oo . k d

| (B + -0 ) Y -

0 Yy
2m) ()N L6y 4+ (—1) 718y, DL(6, + (=16, 1 — k — 1).

In particular, if | < k, this reqularized integral will vanish.
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Proof. Let ay(F 55,1?2)) be the constant term in the Fourier expansion of F| éTQ). We have

Fi’f,,“)(iy) — Fékjf)(zy) These lead to

(k+2) dy

1) = [y (R + (0 )

)

o d

[ v (F’““ 1>’*1F5,’“_tf><z'y>)—y

0 )
o d
/ v (RS ) + CEED ) = a0l G + (1) ao(FLE)

N [Ty (s§i§1<zy>+< 11505 iy)

d
-1 Ok—i-l I+k q0,k+1 /- Y
F DTSy + (GO () <

d
— —k—1 S 0,k+1 y
=N /0 4 (SS—H-(—l)l*15b75a+(_1)l+k57 (Zy)> Y

Therefore by Proposition [3.7.2]

(2m)~°T'(s) .

H(S) - Nk+1—s

L(b_y 4 (=1)"10y, ) L(8q + (—=1)1**6_g, 5 — k — 1).
This function H(s) extends to a meromorphic function on the whole s-plane. So the

regularized integral has the value H x (I). If [ < k then L(5, + (—=1)*716_o,l —k—1) =0
holds. Hence H(l) = 0 in this case. O

Lemma 6.6.2. Let k be a nonnegative integer, then
k) k) ) dY
(F5™ ) = 7™ i) 5 =
0
(27)F 20 (k + 2)i" 2N L (0, + (— 1)1 0 g, k + 2)L(8 — 0y, 1).
Proof. Notice that FékJ’ (i/y) = (i )’“”F(]ng )(iy). Therefore,
00, % —(h42) . dy 00, % B
| (B =) L= [y (R - B )
0 Yy 0
00, % . ' d
= [ (R )~ )
0

00, * dy
_ N —k—1k42 k+2—s g0,k+1 -J
N /0 Y %, dat(-1 >k+18_a,6b—5_b(ly) y

(2m)sF 2T (k 4 2 — s)it*2
- Ns—1

Take s = 0 we get the result. O]

Lo+ (=116 0k 4+2— 8)L(0y — 54,1 — 5).
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Lemma 6.6.3. Let ki > ko and s > 1 be nonnegative integers. Let o, 3 : Z/NZ — C be
functions. Then

00, % d
| (st sty ) iy o
0

00, * Cl
+ (Do / (803 + (-nyPeterisge) i)y
0

:ik1+k2+1Nk1+k2+23(2ﬂ_) k1—ko—s—1 (kl + S) EkQ + S)
S

CL(G A+ (—1D)RHET Ry s+ DL(B+ (1) 8 ke + s+ 1),

Proof. Notice that when z — 0, we have I'(z +1—s) ~ (—1)s’lmz’1 and I'(z — kg —

) ~ (—1)k2ts T is),zA Thus,

00, % - 7de
[ (st (st ) vy
0 Y
00, % d
+ (_1)k1+s+1/ (821,’]7; + (—1)k1+k2+18];1”;72> (zNy) gy
0
1M

=(2m)* ILI%) (T(z = s)L(B+ (=187, 2 —ky — 8)) - L(a+ (1) a™, 2 — ks — s)
—(-1rm B Wy (0(z — ky = ) LB + (1) 2 — ks — )
Lia+ (=)o~ 2 — k) — 5)
=(— 1) 2(27)” —k2 (Ko S+| s)! Nk2+sA(G —ka+1) + (- >k2+sG;kr18_k2+1 —ky — 5).

With Atkin—Lehner involution in Lemma it becomes

(—1)%2 2m) 2 )

T NERAGE T (el B b s+ )

Finally applying Lemma we find that the regularized integral is

(—1)k2(27]') k1—ko—s— 1(k1 + S) <‘k2 + S) kl k2+1Nk1+k22+25
S!

CL(G& A+ (=P HTET kb s+ D) L(B+ (1) 37 kg 4+ 5+ 1)

]

6.7 Final Computations

Now we manage to calculate the full regulator integral. To do this, we will separate
the full integral into four parts [y, Ji, I and Jy in the Subsection [6.7.1] In the case
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m > k; and m > ke, we will find that [; and J; actually vanish. Via Rogers—Zudilin
method, we will be able to write I and J, precisely with some modular L-values. For the
rest case, we will inspect carefully the remaining terms, then we will be aware that they
will not appear in the final result. At last we will show how to evaluate the residues of
the regulator in the Subsection [6.7.4]

6.7.1 Full Regulator Integrals

Consider first the regulator integral

*
I= / pe (DB (1) A Ty (3 Bisf () )
Xmyw-m{( oo}

we see

v e Bt Kot id2) o s % —(kati+2) .\ .
Thy+j+1 <P2 Eisj2 ™ (u2)> lw = Cady A <F£qf;rj+ )(@y)pzl/}kzﬂ,o —F ’ (Zy)pzwo,kzﬂ')
Fotit2) /o \ ok kotit2) /oy s
=dy N Cy (chf;ffz; )(@y)]?z?/szﬂ,o - FE;;,]; )(ly)p21/fo,k2+j> .

The integral I divides into two parts I; and I5.

I :/ / y2 <770 A Thy 41 (D5 EiSZi;rj(W)))
0 Yy,m

ki1+J

:(—1)k1+j0102/ 7 dy/ Z(_l)k1+j_a0é1y_k1_j_l
0 2

y,m qg=0

. o)y —(ka4it2) . |
- Ds <p1¢a,k1+jfa A (F£%2+J+2)(Zy)p2wk2+j,0 - F(_Z;HJF )(Z?J)pgwo,kzﬂ)) :

Precisely, with Lemma we have
00, % k1 k + - a )
h= (0 anCiCal [ (X (M T e )
0 a=0

k1+j '
_ (_1)m—k1+j Z (j) ym—kl—lf(kijfrm(iy))'

a=j

Hence [; is the following regularized integral

ki+j4+1\ [~ 19) . et 15k +i42) .\ d
(—1>k1a1010203( g 2 ) /0 g (P i) 4 (1) IF(JH)(zy))?y.
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For the other part I, we have

I, = / / DPx 771 A 7Tk2+j+1(p; Eisiffj (W)))

= (—1)HCyN ki~ 1/ dy/ 80’“2”“ (iy) + (- 1)’“2+]5°k2+”+1(@y)) « (M A D3 j0)
Yy,

by ,0—aqg 0—by:0aq

o by 767(1,2

_( )k1+]0 N- ko—j— 1/ dy/ SO k2+J+1 Zy) +( 1)k2+]80 k2+j+1(ly)> Ds (,,71 /\p;wo,kfrj)'

8y s6as

Writing explicitly with Lemma we see Iy is a sum of four integrals

ki+j . .

| . o0% ? (

o ky—j Li—ki—1—j [ [Ykitighl-ki-1=j [ ©
b= V00 (/0 W Z <85b17 oy (y) R (y))

(8&:?;;];—1(2:9) + ( )kz—i—]SO Jkat+j+1 (zy)) / D (Ql VAN p;¢k2+j,0)
Yy,m

(5 b2,6a2
00, ki+j i 1
d ghi=ki—1=5 (L) o (qykitighl-ki-1=j (L
+ A Y lz:; ( [ by ,6a1 Y ( ) 6b1 76_“1 )
& ok QA D
(82 2(;‘,—]+1(Zy) + ( )k2+]82 2+§]+1 (Zy)) / Dx (Ql /\p2¢k2+j,0)
by —ag by:%az Yy,m

ki+ , ,
_ lzf Liki-1-j ( + (-1 )k1+]8ll ki—1—j [ ¥
5?)17 al Yy o b1v5—a1 Yy

(82 k;—t—;:ﬁ; (zy) + ( )k2+]80 k2+J+1(zy)> / P (Ql A p;zﬂo,kﬁ_j)
Yy,m

6172 :6(12

gy i i

_ Limki—1—j (¥ [Ykrtighi—hi-1-3 (L
Z (85 by:0aq (y) +( ) 85b1,5_a1 (y))
(82921 (i) + (1) 8% iy ) /
8

0—bgy,0—ag Obg,0aq

D (ﬁl A p§¢o,k2+j)> :

y,m

Also we have the other part of the regulator

J = / s <q2 Els%ﬂ(uQ) A Thy+j+1 (ql Elsklﬂ (u1)>> ,
(

9-1), Xmyw=—m{0 co}

it divides into the following two integrals J; and J; as well. Applying Lemma we
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get the first part

Ji = / / 770 A T 4i+1(Q7 E13h1+] (Ul))>

ko+j

_ (—l)kQHC{Cé /OO " dy Z k:z+] a0y / —ko—j—1
0
* k 2) .\ % (k1+5+2)
/ g« <92wa,kz+j—a A (FﬁullJerr (@y>q1¢k1+j,0 Fﬂl“ ’ ( >Q1¢0 k1+1)>
My,m

It follows from Lemma that J; is

ko

. . k _ 00, % d
(—1)k2+]a'C’{C§C§(Z(—l)k2+] 2 al( 2‘1“kj a)! Higy ey g a/ Y™ ng(]le-ﬁ-]-i-Q)(Zy)gy
a=0 ’ 2' 0

k2 . *
m+j—a al ko + J— CL)' - m— (k1+j+2) dy
+Z(_1) e : Glks! Hk27mk17k2a/0 Y k2F7;1J (1y )? :

Therefore,
ka

Ji = d/ClC5C5Y (1)

a=0

(Z!(kQ +] - a)'
k!

[y (P Gy + (-1 G ) .
0

HkQ,m—kLkz—a

The second part is

Jo = / / 771 A 7Tk1+g+1((]1 Els’:fo;rj (ul))>

0—by:0ay

= (~DHCN TR (/ dy/ 82:1;”:1 iy) + (= 1) ST y)) gs (M A G{¥k1150)

00, % )
[ (e P ) 0 ).
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Likewise we have

00, % ka+j . .

. 1 X ’ ) )

_ kotj —ki—3 1 v l,l—kg—1—3 - kotjel,l—ko—1—j v
Jy = i N 0102</0 dy EZO (s% iy (y) + (-1 (y))

(80 kl+]+1(ly) + (_1)k1+j89,k1+j+1<iy)> / 0 (QE A QT¢k1+j,0)
Ny,m

By 06—y 5ty 00,
cone 124 (i i
+ d Sl,l—k%—l—j - + 1k2+]sll ko—1—j -
— %
<82 B ) 4 (—1) IS k1+§+1(zy)> / ¢ (4 N @1 ¥r,+50)
b1:9—aq by%aq Nym

kQ"l‘j Z 7/
o Sz,z-fcg—l—j A 1 k2+38” ko—1—j5 [ ©
12; ( P20z Y DS Y

<80 Jki+7+1 (/ly) + ( )k1+]80 kl+]+1(2y)> / Q*<Qg A q;¢0,k1+j)
Tly,m

) bl,(L,ll 6b1 76111

k2+] Z Z
. l,l—kg—1—7 - kz-l—jllkgl] -
> (3 () o ()

e *
(80 Jki4j+1 (zy) + ( 1)k1+JSgb’i5+az+1 (zy)) / G (Ql A Q1w0,k1+j>> :
My,m

9 by :5—a1

In later subsections we will compute thoroughly Iy, I, J; and J,. The part I; and
Ji can be evaluated with the regularized L-values introduced in Section 6.6, As we said
before, we do not expect that they appear in our final results after some cancellations.
The more important parts I and Jo, we will show they give us modular L-values by dint
of Rogers—Zudilin method.
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6.7.2 Case m > ki, m > ko

With the regularized L-values of F' in Lemma we find in this case [; = J; =0, so
I =1, and J = J,. According to Lemma [6.5.3] the integral 5 is a sum of four integrals

(47r)ki+t
k1542 Nki+ko+j+1]; |

. o m— k1+]d Skl —1=j 3 k1+]8k1 —1=j 3
(s () commsio, (G

(S° 5 i) 4 (1) )

I, =M+

C1CyC5

Sty 0—ay 0—by,0an
Iy z]:l (47r> oo*ym brtit g, (8l+k1l 1-j (f) 4 (—1)ftighthul=1=) (E))
2 I 5_b, bay Y 8ty 0—a; Y
- < b ) + (1) )
sy (5) [ (e () s )
(8 i) + ()8 (i)

- oo . 1 1
+ (=1 m+]+1/ m—Fki+j J Skl i + k1+18k1 —1=5 [ 2
(st [y (st (0] (st

‘ <Sq,k2+j+1 (iy) + (~1 >k2+380 k2+g+1(zy)> )

5—1)2767(12 6b2 6&2

We take out the eight products of the first, last integrals and the eight products of the
terms [ = 0 within the second and third integrals. They are

e Cyedgk—i—i (B | (QOkatit1 —1\k2tigOkatit+l )
(Sabl,sal ( )+( DA (y>) (S50 ) + (~1)fIsghe i)

Y
— k-1 (4 1)k1tigkt,—1=j : ( 0,ka+j+1 1yk2+i gOkats+1 )
+ < ) (85 by 5a1 <y> + ( ) 85b1 5_a1 (y)) 8552 §_a2 (Zy) + ( ) 86 by 5a2 (Z?/)
_q\m+ki+j+1 [ gki,—1—j 1 1)kitighn—1-j 1 ( 0,ka+5+1 ¢ 1)ketigOkatitl )
+ (-1 (85,,173&1 (y) (DRSS (y)) S5 o, (W) + (=)= 8= iy)
1 \ym+j+1 k1,—1—j 1 _1\k1+igkl,—1—j 1 ( 0,ka+j+1 /- ka+7j 0,ka+j+1 )
=1y (st (£ eyt (D)) (8200 i) (1) ).

Via Rogers—Zudilin method as in Lemma [4.3.2] the sixteen products of S-series can be
collected together to provide us the following integral

00, % .
k1,w—m 0,m—k
Sth — | &M 1
/0‘ 5b1 ( 1)k16 by 5*“2"—( 1)wim+16“2 y 6172 ( 1)m k1+7+16 bo» 5a1+( 1)]5—a1( y)
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For each 1 <[ < j, we have eight products of S-series

_1\k o m—ki1+j—1 I4+k1,l-1—3 1 —1)ktighthyl=1=j 1
(=1) /0 Y 4 <85b1’8a1 (y)+( D S‘Sbl"g—al (y))

. <Sq,k2+j+1(z-y> + (_1)k2+j897k2+j+1(l-y)>

5b2757a2 5—b276a2

() /Oo’* kil gy (Sf;brk}’l‘l‘j (5) . (_1>k1+j3l6+1:1,§—1—j (5))
0 1% —0b1Y—ay
. <Sq,k2+j+1 (Zy) + (_1)k2+j897k2+j+1(2'y>)

5—1;2757(12 5b2,5a2

Applying Rogers—Zudilin method in a similar manner, they become the following integral

/ ’ (_1)k1+k2+m+1 (SQ’mA_kl + (_1)m—k1+189,m—§1 )(zy)
0

51,2,5“1 5—b27§7a1
Itk l+w— I+ky J+w— i _ 1 dy
.(sg A G D K m) (—) ym R =
1%s2 1 2 Yy Yy
00, *
] 0, —k - 07 —k y
+ o (S8 (ST ) (i)
0 Oby:0—ay 0—by,0ay

_ _ 7 i g d
_ S?k;’”w m oy (_1)m+k2+182+k1,é+w m) (L) etk 14y
b1:9—ag —by50a2 Y Yy

Thus we get

I — (_1)k2+%j(j+1)+1im+k2+j(2ﬂ)kl+k2+lj!(k?1 +j +2) (ko +j +2)
B A NFE1+hatj+3

00, % .
k1,w—m ? 0,m—~k .
. gk — | 8 ! e x )
(/0 8y +H(—1)F10_p 0 —ay +(—1)* "™ H1da, y ) Oyt (=1)mTEITITG ) 00 +(—1)]5—a1( y)

ym—k1+j+1 @

Yy
j I oo
+ Z l 4_7T (_1)k1+k2+m+1 <89,mjk1 + (_l)m—kl—HSQ,mf{ﬂ ) (Z )
=1 l' N 0 6b27§a1 5—b2767a1 y

Ikl w— Ikl w— v ki1 4Y
. 85+ 37 +w—m + (—1)m+k2+185+ 1,6+w m — )y ki+j-l+129
b1+%ag —b1:0—ag y y

1 47T o ] 0,m7k1 m—k1+1 0,m7k1 .
+ Z ﬁ (W) /0 <_1)] <S‘§b278—a1 * (_1> S$7b278a1> (”/)

=1

. Sl-‘rk}l,l-‘r’w—m + (_1)m+k2+18l+k1,l+w—m 2 ym—k1+j—l+1d_y
51;1 76—112 5—171,5:12 Yy Yy :
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Changing variable y — Niy we see

k2+%j(j+1)+1Z'm+k2+j(2ﬂ-)k1+k2+1j!(kal +74+2) (ks +J+2) | y—mki—i—1

I=(-1) A NFk1+k2+j+3
oo k1, w—m . 0,m—Fk1 L
. (/0 86b1+(71)k16*b1 ’5_a2+(71)w_m+15a2 (ZNy)SSbQ+(_1)m_k1+j+15—b275(11 +(_1)j5*a1 <Ny)
—m—i—kl—j—ld_y
)
+ i (47T)l Oo’*<_1)k1+k2+m+1 Sl+kl7l+U)—m + (_1)m+k2+18l+k1,l+w—m (N )
=1 l! 0 06y :0ag 0y 0—ay VY

. m—k1,0 _1\ym—ki+1gm—ki,0 L —m+k1—j+l—1@
<88a1,5b2 +(=1) SS_Q1,37b2> (Ny) y y

/ A7)t
+Z(“)

=1
_ _ 1 , dy
. 81” kljo -1 m—k1+187ﬁ kjlao> v —m+k1—j+1-12"5 )

. ki,w—m .
We have always w—m < ky. If m = w, we claim that 85;#(_1)%6%1 PR Ty (iNy)

by :0—ay —by Oay

/ ’ (_1)]' <8l+k1,l+w7m + (_1>m+k2+182+k1,é+w7m> (ZNZ/)
0

is already an Eisenstein series. In fact, if m = w then

k1,w—m .
8(5;1 +(—1)k1 5—b1 ,(5,a2+(_1)w7m+15a2 (ZNy)
—gh10 (iNy)

8y H(=1)*16_4, .60y —ay
:G(k1+1) (zy) _ G(k1+1) (zy)

b1,—a2 b1,a2

By Lemma and Lemma we have the following identities about Eisenstein
series and their derivatives

ghivm (iNy) = D (G ) = ()G ) )

8oy H(—1)F16_y 6 ap+(—1)w—mF15,, bi,—az2

0,m—k1 U\ pmekn) [ G v ki) [0
Ssb2+(71)'m,7k1+j+187b27Sa1+(71)]’$_a1 (Ny) — Hb27a1 <N2y> + ( 1) Hb27—al (NQy) .

Also, we have

Sl+k1,l+wfm(z-Ny) + (_1)m+k2+18l+k1,l+wfm(z-Ny) _ DwferlG(mszJrl)(Z'y)’

8, ,0aq 8ty ,0-ag bi,a2
I+k1 l+w—m - mkot+1ol+ki l+w—m /. _ pw—m+l ~(m—ke+1) /.
Sabl 0 ay (iNy) + (=1) Sa_bl Bas (iNy) =D Gy —an (1Y)
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and
0,m—k; L _ 1\m—k14+1g0,m—k; L _ rp(m—k141) [
Ssbz’gal <Ny) (=1 854,2,37‘11 (Ny) N HbQ’al (NQy) ’

0,m—k; L _1\m—k1+1 0,m—Fk1 L _ (m—k1+1) Z
SSbesfal <Ny) + ( 1> SS—lQ,Sal (Ny) - Hb?y_al (NQy) :

At last, we perform the Atkin-Lehner involution Wy2(H, C(Lk)) =i kN G((lkg to all the Eisen-
stein series H, then the integral I becomes a sum of L-values of quasi-modular forms.
Eventually we get

I = (_1)k2+%j(]‘+1)ik1+k2+j+1(27r)k1+k2+1j!(kl +] i 2)(k2 _'_] N 2)

AN F1+kz+j+2
. (A* (Dw—m <GI(JT:§§+1) B (_1)w—mG£TCL—2k2+1)> (Gl(;z;kl+l) i (_l)jaézf:fll_u,_l)) ,—j>
71 /4!
* w+m w—m m—ko+1 m—ki+1
+ Z ﬁ (N) A ((_1) + +1D —HGZ(;l,aQ 2+ )Gl(;g,al 1+1) (61)

=1

+ (=1) prmHGm k) glmkidD) j> )

b1,—az b2,—a1

The computation of J, is the same as I,. We can separate J, into two integrals, each
contains a sum of eight products of Eisenstein series

‘ ko+1 w—m . ] 4 —1

ko+j (47T) !~ (J + l) an (1)

v 2k2+j+2Nk1+k2+j+1]€2]010203 Z 4! N Ckmm—khkz—l
1=0

_ " [ gl 4 1 ykerti gl 1=d—l4ks @
(/0 ( dag:0b, Yy +( ) 0—ag,0—by Yy

(S )+ (<)Y iy ) gty
b1+79—aq 6*171’60‘1

(=1 m+]+1/ Sjlflfj,fl+k2 - -1 k2+]8jlflf],fl+k2 °
(ot [ (st (D) (s (£

. (Sq,k1+j+1 (zy) 4 (_1)k1+j89,k1+j+1 (Zy)) ymk2+j+ldy)

§,b1,5,a1 551,5,11
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and

‘ ko1 w—m ;. ] 4 —1

Kot (471') Vel (j + l) i (2)

v 2k2+j+2Nk1+k2+j+1k2!010203 Z 4! N Okz,m*khszl
I=—j

R T B S e e A e ) _yketigil-gtiks (1
(< ) /0 (sag,a@ y TEDEEE y

_ (Sq,k1+j+1(z-y> " (_1)k1+j59,k1+j+1(2-y)> ymke it gy

5b1 75—a1 5—b1 75111

-1 k1+j+1/ ’ Sjl—l—j,—l+k2 E 1 k2+j8A—l—1—j7—l+k2 E
Al N el () B ¢

. <Sq,k1+j+1 (’Ly) + (_1)k1+j89,k1+j+1 (Zy)) ymk2+j+ldy> )

5—b1 75—a1 5b1 75a1

Applying Rogers—Zudilin method in the same way as Iy, Jo becomes

ko1 w—m ;. ' —1
i (47) st e N U D! (AT (1)
S = S Ny (1020 2 j\N Cham—tr o
=0

o m— j —l4+ko,—l—m+w i m— —lt+ko,—l—m+w 7
/0 y k2+]+ldy (861,:6_2(11 + (5) +(_1) k1+186,:_2,¢25a1 + (§)>

- (8pmtiy) + (-1 (i)

5b175a2 J,bl,é‘_oq
wimtj1 [ etk —l—mtw [ k1 +1 @ —ltka,—l—mtw [ 0
s (st (5) « comesee (0))
(80758 (i) + (1) i)

Oby 0—ay 0_py ay

' ko+1 w—m , . | 4 —1
Kot (47T> e ¥al (.7 + l) il (2)
0 Qka+j+2 Nkit+ka+j+1], | 010203 l; 41 N Ck27m*k1,k2*lvj

= m—ka+j+l —l+ka,—l-m+w l m—ki+1g—Il+ka,—l—-m+w v
/0 " dy - (—1) (5&,2,551 (;) + (=D)L (;))

- (8pmtiy) + (—1 ISR (i)

6171 ’6"‘2 571)1 76—a2

w+m+j —l+ko,—l—m+w 1 m— kot i
+(_1> +m+y (Séb;— —2a1 + (_) +(_1) k1+1857:;’§a1 + (_))
Y y
. (Sva*kQ (Zy) + (_1)m7k2+1897m7{€2 (Zy)) '

Sby 0—ay 0_py day

In the case [ = w—m, we claim that all the S-series S, [Hh2—f=mtwy (_1)m=htl Grlths,~l=miw
in the integral are already Eisenstein series. If a; = 0, then the constant term of
Gpy—ay — Gy, vanishes. If a; # 0, then the constant terms of both Gy, _,, and G, 4,
are zero.
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6.7. FINAL COMPUTATIONS 119

Thus
J = (C1yrbioen PR ORI 4 + 2) (ks + +2)

N A NF1 k2 tjt2

w—m , . —1
oy UEDE AT oo

j‘ N kg,m—kl,kz—l

=0

* w—m—Il ~y(m—k1+1) ~(m—ka+1 w+m-+j w—m—1 ~(m—k1+1 m—ka+1) .
A D Gl(72,*1111 GI(JLGQ ’ ) + (_]‘) - +j+1D sz,m ' )C;’l(n,faQ2 7_.] B l>

w—m ;. -1
Ly URDEAT o

j' N k‘g,mfkl,kgfl,j

A* (Dw—m—lG(m7k1+1)G(m*k2+1) + (_1)w+m+j+lDw—m—lG(m*lirl)G(m*’”Jrl), —j — l> .

ba2,a1 b1,a2 ba,—ay b1,—az

6.7.3 Case m=Fk; > ky or m = ]{32, ki =0

In the case m = ky > kg or m = ko but k; = 0 we are facing two problems. The first
one is that there are lost integrals I; and J; which may not vanish. The second one is that
there are Eisenstein series of weight 1 having some lost constant terms. We will compute
exactly those lost integrals and constant terms in this section and show they actually do
not appear in the final result.

Fuvaluation of the first part I. Recall that the integral

r ki +74+1 e
I:—lklaCC’C/ m—k1—1
1 ( ) 1230 ( j+1 )?/

(P i)+ (B FE D )Y ay,

By Lemma [6.6.1] I; vanishes unless m = ky. If m = k; happens, with the regularized
L-value of F' in Lemma we have

J+1 0 y

Namely

ki+j+2)ka+7+2) - PPN .
. L6 1)ty k 2
8(j + 1)mit2N (% +(=1) ki +2)

L0y + (= 1RG0,k + 5+ 2)L(0_p, — 6y, 1)
. _ l'('+1)ij(k1 +]+2>'(k2 +]+2)' R _1\k1+5 8 .
—5m=k1( 1)2J ’ 8(] + 1)N7Tj+2 L((Sfbl + ( 1) J§b1> k1 +J+ 2)

’ L(Sfaz + (_1)k2+j+18a2? k2 +] + 2)[’(5*1’2 - 6b27 1)

Iy = gy (—1ybi0-01 L
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120 CHAPTER 6. FINAL COMPUTATIONS

Next we are going to evaluate I, recall

e )t (R 4+ 5+ 2) (ke 45+ 2)
ANF1+ka+5+3

([ (st v st vy

? ., dy
SOm k1 1)~ k1+180m k1 ) v —mAk—j—19Y
( 6b2 6&1 + ( ) o_ b 6—0,1 Ny y y

w+m+7j oo k1, w—m m k1, w—m .
(et [ (g (e ) vy
SOm k1 1)~ k1+18m k10> L —mAk—j—1 %Y
( 6”2 0—ay +( ) 0—bg:9ay Ny Y Yy (62)

(47T)l oo w+m w—m m w—m .
+Z T, (—1)wtmtl <8l+l~c1,l+ 4 (—1)mrhetighthul >(2Ny)
1=0

61)1 76412 7171 6—(12

_ ] 1 dy
gOm—k1  (_ {ym—ki+1g0m—k ) R P e .
< 5172 da; ( ) 0—by,0—ay Ny Y Yy

I, :< 1)k2+2J(J+1)+1Z N—m+/€1—j—1

(47T)l oo i (ol itk ltw—m m Ik +w—m /-
+Z—” P (S ()RS ) (V)

. L dy
gom—ki 1)m—ki+1g0m= kl) L —mAkiHl—j-129 )
( By s6—ay +(=1) 580 ) \ Ny Yy ”

The evaluation of I5 is exactly the same compared to the case m > k; and m > ks, unless
we have some lost constant terms in S-series. In fact if k; = 0 then

0,w—m .
6b1 +6*bl ,6_a2+(_1)w—m+16a2 (ZNy)
=S5, (iNy)

651—"_6_51’6*“2 ag
1 .
=G\, (iy) — G (iy).

Thus the lost constant terms only come from the S-series 82:;”_’“. This happens only
when m = kq. If so we see

00 i\ <00 Y i\ L
85172 day (Ny) 8571)273—(11 (Ny) _Hb2,a1 (Nzy) 9 L(6w,,0),
0,0 { 0,0 l ) ) 1 A
Sgbz’g—al (N_y> N 86 by day (Ny) Hbz7—a1 <N_2y> - 5 - L(5b270)>

they both share the same constant term

1. 1. N
5 + L<5b270) - §L(6b2 - 67b270) - %L<5b2 - 57b27 1)
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6.7. FINAL COMPUTATIONS 121

Then we have
[2 - A + B + O,

where the part A is the one which is identical to (6.1), the part B is coming from the lost
term in the first two integrals of when m = ki, and the part C'is from the lost term
in the last two integrals of when m = k.

The part A is

kot LiGan TR @)U Ry o+ 2) (Ko + 5+ 2)

A=(-1)

ANFk1+ka+5+2
* w—m m—ko+1 w—m m—k +1 m—k +1 y m—k +1 .
(e (Do (i — e (Gl + e ) )

J l
L f4m\" wAmA1 pyw—m- (m—ka+1) ~(m—k1+1)
+§:ﬁ<ﬁ> A ((—1) DUt G
=1

b1,a2 b27al

b1,—az b2,—a1

+ (_1)ijfm+lG(mfk2+1)G(m7k1+1) ] — ]) )

With the regularized L-value in Lemma [6.6.3] we can compute B and C. We have

B—s (_1)k2+éj(j+1)+1ikl+k2+j(27f)k1+k2+lj!(k1 +J+2) (ke +j+2)
— Um=k; 4Nk1+k’2+2j+4

- N A A
(0 LG (1) 1 2)

)
00, % .. d
. ( [ (s, + (capetstite, ) gy
0 LT e )
w+m-+7j oo . —-m e dy
+ (=1t +g+1/0 (S?;fj@ +(—1)k1+k2+18§iﬁ2’57‘12> (iNy)y +h1—j 1?)7
that is,
. 7 (k + 2)!1(k i+ 2)! s N
B :(Sm:lﬂ(_1)%j(j_1)+1Z ( - +j - ) ( = +] * ) L(é—b1 + (_1)k1+35517 kl +.] + 2)

2j+47rj+2(]' + l)N
L6y + (=)=, kg + 5+ 2)L(6_y, — 6y, 1).

In a similar manner we have

o . . J l :
— _pytigyn PR+ g+ 2 ke + g+ 2N~ (D (T

L5 by + (1), kg + § + 2)L(0 gy + (=1)F2THS Ky + G+ 2)
- L(0_p, — Oy, 1),
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122 CHAPTER 6. FINAL COMPUTATIONS

that is,

1)%3’(3'71)”(]{51 "fj + 2)!(k2 +j +2)! (1 _ 2j+1)
23+47Tj+2(j + 1)]\7
L(S*bl + <_1)k1+j5b17 kl +] + 2)[/(3*&2 + (_1)k2+j+15a27 k? +] + 2)
L(d_p, — 0p,, 1).
Sum up altogether we see immediately [; + B+ C = 0. Eventually only the main part
A will survive. We conclude that [ = A.
Fuvaluation of the second part J. We are now left to compute the other part J. Like

our computation of I, only if m = ks do we have nontrivial J; and lost constant terms in
Jo. Then m = ke and k; = 0 in this case. If so we have

Thked () = / / 00 (63 Bis3 (u) A ey (0] i (1))
0 My,m

:]kQ’kl’j (UQ, Ul).

C= (Sm:kl (_

6.7.4 Residues of the Regulators

In the present subsection we compute the residues of ElSkl k2. (u1,us) along the mod-

ular caps. We will compute only in the case m = w, its re81due along X"[0,z]s. For
general cases m < w, we can compute its residues along XY w=m0, 2]+ exactly the same
way.

In the beginning we have the following integrals. Their calculations are exactly the
same compared to Lemma [6.5.1]

Lemma 6.7.1. We have

k1+j a kl—aTkg—I—a 0 <a< kl,

* 1 a —a A 5
/%wp (D1 %k +5 Pyryti0) = { ki <a<k +j7,

(yTetizered j <a <k + 7,
0<a<y,

/—’H

/ p*(piwa,kﬁrjfa Ap;¢0,k2+]
Yr,w

()T <a <k A+,

k a,a /\ ]
/T wp (PYVky+j— Pa¥ks+50) = {0 0<a<y,

and

Dy - (—1)/ (lirjj_a)?J] Fhetarkiza (0 < g < Ky,

* 1 j—a,a N p; i) = ]
/%wp (p1¢k1+g , p2¢0,k2+1) {O ki <a <k +j,

where ‘
kq!g!

1. .
Dy = (—1)3i0—0 1
= D )
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6.7. FINAL COMPUTATIONS 123

Let us look back on the regulator

ki+j
D] Elsklﬂ (u1)lv = D1y Z Fakiti= “(z 4+ 1y)piYaki+j—a mod dr,dT

oul

and
p3 Bisy2 (us)|v = 2Dada A FUZT2 (@ 4 iy)p3tons 40,

where V = 771([0, 2]%,). Since

j =(ka+j+2
Mg (P3 EiSE ™ (w2) ) [y = Dada A (F7 2 i)pstnio + Floy ™ y)pivonss

= dz A D, (F(RHZH) (2 + 1Y) P5Vkotjo + Pt (z + iy)Pzi/fo,sz') ’

—az,—bz —az,b2

we have

R(y) ::/ D (pl Eish ™ (u1) A Thypji1 <p2 Eis2 ™/ (u2)>)

X [0,x]%

* ki+j ]
:(—1)k1+'7D1D2/ djj (aoy + (_1)k1+]—a( 1 + ]) boy_kl_])
[071‘} Yrom q=0 a

Pe (D3 %akiri—a N CoP3hatj0 + Pitogars)) + Ole 2™/,

where

ag =L(0_ay, k1 + 5 +2) + (= 1) L(S,,, k1 + 7 + 2),
by =04, (0)(—20) ™I (L(6_py, by + j + 1) + (1) L(Sp,, ky + j + 1)) ,
co=N"FT (5 o) —hy— 37— 1)

(ko+j+2
are constant terms which appear in the Fourier expansions of F' “bkljj “and F ;;j[;; ),

After Lemma [6.7.1] we have

R(y) = (—1)k1+‘jCOD1D2D3/ dx

[0,2]%
k1 . .
- (k N\ [k _ ,
' (Z (Goy + (_1)k1+]—a< 1;_])boy_k1_]> ( 1 +j] CL) yj(x . iy)kl_“(x + iy)k2+“
a=0
k1 E 4 i Li_g
+(=1) Z (aoy + (-1)“( 1a ])boy—k1—1> ( 1 j )yj(x _ iy)k2+a(:13 + Z'y)k’l—a>
a=0

+ O(e’zﬂy/N).
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124 CHAPTER 6. FINAL COMPUTATIONS

Viewing R(y) as a polynomial of y, we only need to consider its constant terms. Therefore
R*(c0) is the coefficient of y** in

(-].)kH_jb()CODngDg / dx

[0,7]%
k1 . .
5" ok 5\ (k45— . 4
. ( (_1)k1+]—a( la j)( 1 j CL> (:L‘—Zy)kl_a(l’+ly)k2+a
a=0
ky + ki 47— . N
+Z ( 1 J)( Y ) (¢ = i) (o + iy)" )

Observe that this polynomial is

(—l)klbocODngDg (kl + ]) / dx
J [0,z]%

> (/ﬂ) ((—2+iy)" (@ + )" (@ + i)™ — (z —iy)™ (—z +iy)"(z +iy)" )

a=0 a
k kv +7Y 6 vk Nk - Nk
:(—1) 1b0€0D1D2D3< j )(2Z’y) 1 / ((I + Zy) 24 (QJ — Zy) 2) dx.
0,28

This yields
k ' *
R*(OO) = (—1)k12b060D1D2D3 ( ! j_ j) (Qi)kﬁ_l / l'deZE
(0,2]5
E .
= (—1)k1 2b060D1D2D3< ! ;_ ]) (2Z)k1 (l{ + 1) 1 k2+1

Set RFkR23(uy uy) = (—=1)"2byco D1 Dy D3 (kl;”) (20)% (kg + 1)~1a**! then we can obtain
another integral

Oxoo 777-m

Rk2 k1 J u27 Ul)

6.8 Proof of Results

Proof of Theorem and Theorem[6.1.3. The full regulator is given as

/ Eisp ™ (u1, up) = / P (P} Bisp ™ (ur) A iy 401 (p5 Bisys” (u2)))
Xmyw=m{0,c0} Xmyw=m{0,00}

+/XY { }(—1)k1+j+1p*(ﬂk1+g+1(p1ElS;f”(m))APZEiS%+j(uQ))
m w—m 0700

_ [kljkz’j(u17u2) + (_1)k1+k2+j+1Jk1,k27j(ul7'U,Q).
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6.8. PROOF OF RESULTS 125

And when m = w the residue is

/ Eisp ™ (u1, uz) = / P+ (P Bisp ™ (ur) A iy 141 (p3 Bisy2” (u2)))
Xv[0,x]00 Xv[0,x]oo

+/X 041 (—1)k1+j+1p (ﬂ-k1+J+1(p1 Elsh1+3(ul)) /\p; Eis’;)z+j<u2))

— Rkl’kQ’j(ul,UQ) + (—1)k1+k2+j+15k1’k2’j(ul,UQ).

We get the result directly from the computations of periods I and J and residues R and
S we did in Section O

If m = w we have much simpler result with Lanphier’s formula.

Proof of Theorem . If m = w then we have the constants C" )kz g, = Land c?
( l). We deduce 1nstantly from Theorem that

o.k2ke+lj

: : . s k+y+2)(k2+3+2)
E k1,k2,j —(—1 %](]-‘rl ( 1 k1 ko+j+1 9 w1
gy P ) = 1) e

] <2A* (Géllc:ralQ)G(szrl) (— )JG (k1+1) G(k2+1) —j)

ba2,a1 b1,a2 ba,—a1’

bi,—az ~ba,—ay”’

ll ( ) ( D Gblfl(:;l)Gblizl ( 1)leG(k1+1)G(k2+1) [ J)

b2,a1 b1,a2 ba,—ay ~'b1,—az?

J

3

le (_) A (1 Dieiiai - Dak2+1c:<’ﬂ+l>z-j)).
=0

We claim that the last two lines actually vanish. With Lanphier’s formula we can rewrite
the L-value of quasi-modular forms

J l
L [4m (k1+1) (k241 ka+1) ~(k1+1)
Z ﬁ (W) ( D Gbl a2 Gl(722(11 : ( )JD Gl(722a1 )Gbl az 7l o >

=0

to the following explicit sum of L-values of Rankin—Cohen brackets

J 4 p )
S50 (57) & ([e? 61,0 )
p=0

with
j—p
Pt [ i+ j—p+1_t+
Z t+p (ak1£1,k2+1(75) + (=17t akgf—l,kl—i-l(t)) .
t=
It is indicated in Lemma 6| that we have actually B(p) = 0, this gives us the desired
result. 0
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Appendix A

Table of L*(Gy, , Gy, 51, 52) with
k1+ ko <14

Let the L-functions be
A(Gy, s) = (2m) T (s)((s)¢(s — k + 1)
and

AA,s) = @m) T () [T =7 +p"7)

p

they satisfy the functional equations

A(Gy,s) = i"A(Gy, bk —s)  and  A(A,s) = A(A, 12— s).

Double L-values L*(Gy,, Gy,, $1, 52) with 1 < s1 < ky and 1 < s9 < ky — s7.

kil == 4, kz =4
L*(G4,Gy4,1,2) = 25A(G, —2) + 2-A(Gy, —1)

L*(G47 G47 27 1) = _%A(G% _2> - 15_2A(G47 _1)

k1:4,k§2:6

L*(Gy, G, 1,2) = g3z A (G, —2) + 755-A(Ge, —1)

— 8072 480w
IL’*((G4> GGa 174) = #A(G% _3) + : A<G47 _2)

1672

L*(Gy, Gg, 2,1) = —5-A(Gy, —2) — 55A(Gs, —1)
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128 APPENDIX A. TABLE OF L*(Gg,,Gg,, S1,52) WITH K, + K, < 14

L*(G47 G67 27 3) = _%A(G% _3> 247|—A(G47 _2)

L*(Gy, Gs, 3,2) = LA(Gs, —3) + SA(Gy, —2)

k1:6,k2:4

L*(Gﬁ7G47 172) — 107 ZA(G47 ) 240 A<G67 _1)

L*(Gs, Gy, 2,1) = == A(Gy, —2) — 55A (G, —1)

k1:4,k2:8

L*<G47 Gs, 1, 2) = mA(G& _2> 1008 A(GSa - )

L*(G4,Gs,1,4) = 15 MGy, —3) + 752 A(Gg, —2)

L*(G4a GS’ 17 6) T 167 SA(G4> ) 48W2A(GG> _2)

L*(G47 Gs, 2, 1) = 1271-A(G67 _2> - 126A((G787 _1>

L*(G4, G87 27 3) = T 30r 2A(G47 ) 240 A(Gﬁa _2)

(G47 G87 27 5) 21 A(G47 _3> 12() A<G67 )

4072
L*(G47 G87 37 2) = 16%/\(@47 _3) + 8_70A(G67 _2)

L*(G4, GS7 37 4) = _mLWA(GZb _3) - 8_7()A(Gﬁa _2)

k1:6,k2:6

(G67<G671>2) 480 A(G&_l)

L*(Gyg, Gg, 1,4) = — 2 A(Gy, —4) — 725 A(Gy, —3)

L*<G67G67271) 120A(G87_1)

L*<Gﬁ7 G67 27 3) = %A(G% _4) 167 QA(G47 _3)

L*(G& GGv 3’ 2) = _%A(G% _4) - 167|—A(G4a _3)

L (G67 GGa 47 1) = %A(G% _4> + %A(G47 _3)

128



129

k1:8,k2:4

L*(G& G47 1’ 2) = %A(G& - ) 336 A(G& _1)

L*(Gs, Gy, 2,1) = =L A(Gg, —2) — A (Gg, —1)
ki =4, ky =10
L*(G4,Gio,1,2) = =52 A(A,0) + 55 A(Gs, —2) + 1555-AMGro, —1)
L*(G4, Gro,1,4) = =5 A (A, 0) + 125 A (G, —3) + 5522 A(Gs, —2)
L*(Ga, G, 1,6) = — A (A, 0) — L5 A(Gg, —2)
L*(G4,Gio,1,8) = =5 A(A,0) + 55 A (G, —3) + 1553 M(Gs, —2)

L*(G4> GlO) 27 1) = _ﬁA(G& - ) = A(Gloa _1)

480

L*<G47 G107 27 3) - A<G67 ) A(GB7 _2)

5671'2 5047r

L*(Gy, Gyo,2,5) = 240 -\ (Gs, —2)

L*<G47 GlOu 27 7) = A<G67 _3) - &A(G& _2)

" 56m2

L*(G4,G1o,3,2) = =A(Gs, —3) + 12:A(Gs, —2)

126

L*(G4, GlOa 37 4) A(G87 _2)

T 120

L*(Gy4, Gio,3,6) = &= A(Gg, —3) + 12:A(Gs, —2)

126
ki =6,k =8
L*(Gs, Gs, 1,2) = 555A(A, 0) + 555053 AMGro, —1)
L*(Gs, Gs, 1,4) = #5A(A,0) — z565A(Gy, —4) — 755 A(Ge, —3)
L*(Ge, Gs, 1,6) = g5A(A,0) — 3255A(G2, —5) — 222 A(Gy, —4)

L*(Gg, Gs, 2,1) = —=-A(Gyg, —1)

"~ 5040

LG, Gs, 2,3) = 15 A(Ga, —4) + 123 A(Gg, —3)
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130 APPENDIX A. TABLE OF L*(Gg,,Gg,, S1,52) WITH K, + K, < 14

L*(Gs, Gs, 2,5) = 1525 A(Ga, —5) + 5 A(Gy, —4)

1674
L*(G67 GS7 37 2) YT 2A(G47 ) - 1607TA(G67 _3)
L*(Go, Gs, 3,4) = — 53 A(Gy, —5) — 5 A(Gy, —4)

IL* (Gﬁy GSa 47 ]-) = %A(Glh _4) + 8_70A(Gﬁa _3)
(G67 G87 4 3) A(GQ7 ) %A(G‘l? _4>

L*(Gﬁu G87 57 2) = _%A(G% _5> - %A(G47 _4)

k1:8,k22:6

L (G& Gﬁa 17 2) 3;)()/x(A O)

=== A (G, —1)

16800

]L*(G& GG? 17 4) = 6;2A<A O) A(G47 _4> 1287 5A<G67 _3>
L*(GSaGG7271) 5040A(G107_1)
L*(G& G67 27 3) = KLSA(G% _4) 167 2A<G67 )

IL‘*(G& GG7 37 2) = _%A(G% _4) - 8_70A(G67 _3>

L~ (G& Gﬁa 47 ]-) = %A(Glb _4) + 8_70A(G67 _3)

k1:10,k2:4

L*<Glo,G4,1,2) - 1 A(A O)

225

2 A(Gg, —2) +

1872

1200 A(Gw? )

L*(Gl()7 <G47 27 1) = _16%‘/\(@87 _2) . A(Glou _1)

480
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Appendix B

Table of G(7;kq, ko, k3) with weight
lower than 12

Mordell-Tornheim double Eisenstein series G(7; ky, ko, k3) with k = ky + ko + k.

k=6
6

G(7;1,2,3) = — g E6(7)

G(7:2,2,2) = 22 Fy(7)

k=8

71—8
G(1;1,2,5) = —TmES(T)

G(731,3,4) = — 2 Fy(7)
G(1;2,2,4) = {2 Fs(r)

G(71;2,3,3) =0

k=10

71.10

G(T, 1, 2, 7) = —mElo(T)
G(7;1,3,6) = — 5= Eio(7)

710

G(T, 1,4, 5) = —mElo(T)
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132 APPENDIX B. TABLE OF G(r; K3, K», K3) WITH WEIGHT LOWER THAN 12

G(7:2,2,6) = 22 _Fyo(7)

155925

G(1:2,3,5) = 467775E10( 7)
G(7:2,4,4) = 22 _Eyo(7)

467775

G(7:3,3,4) = — 22 _Fyo(7)

T a67775
k=12

G(1;1,2,9) = —% (Eyp(7) — LBUSI0 A (7))
G(7;1,3,8) = — gz (Bia(7) + T550 A7)

G(T’ 1,4, 7) - 63?5;15317;18275 (El? %A( ))

G(7;1,5,6) = 637835917;18275 (El? - 10§?S§ES4OA( ))
G(7:2,2,8) = 638805817;18275 (Bra(7) — 2551 AT
O(r;2,3,7) = i (Buotr) + 2202

43712 4 42456960
G(T 2,4, 6 ~ 58046625 (El? 29713 A

)
E12 62270208 A )
(7))
(7))

G(T 2.5, 5) 38712 (E12(7') . 111196800A

91216125 13129

7T12
G(7:3,3,6) = _123302575 (E12(T) 6212177042708A( ))
G(733,4,5) = _9112917%125 (E12(T) o 11};&19623300A( ))

G(T 4,4 4) 38712 (E12( ) 111196800A( ))

91216125 13129
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