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Abstract 

With the increasing complexity of supply chains led by economic globalization, integrated 

supply chain management has become an important strategy utilized by the firms to reduce 

the overall cost while meeting the customer service. This change has made academic 

researchers and industrial practitioners pay more and more attention to multi-echelon 

inventory management over the last two decades.  

In this thesis, we study multi-echelon inventory systems with fixed order costs at each stock. 

Because of the existence of fixed order costs, the optimization of such system becomes very 

complicated. Recently, Guaranteed Service Approach (GSA) was used to set safety stock for 

multi-echelon inventory systems, but without fixed order costs. We extend the GSA to 

optimize (R, Q) inventory policies for multi-echelon inventory systems with Poisson demand 

and fixed order costs. Our objective is to find optimal (R, Q) policy for such a system so that 

its total cost is minimized while achieving a service level to customer. Three types of multi-

echelon inventory systems, serial systems, assembly systems and two-level distribution 

systems are considered. For each type, we first establish a mathematical model for the 

optimization problem. Then, the model is solved by an iterative procedure based on two 

dynamic programming (DP) algorithms. One DP algorithm is used to solve the order size 

decision sub-problem and the other is used to solve the reorder point decision sub-problem of 

the model. Numerical experiments demonstrate the efficiency of the algorithms and the 

procedure. 

Key Words: Inventory Control; Business Logistics; Mathematical Optimization; Dynamic 

Programming.  
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Résumé 

Face à une concurrence féroce par suite de la modélisation économique, les entreprises 

doivent bien gérer leurs chaînes logistiques afin de réduire leurs coûts d’exploitation tout en 

améliorant leurs services au client. Un enjeu majeur de cette gestion et la gestion efficace des 

stocks multi-échelons.  

Dans cette thèse, nous étudions des systèmes de stocks multi-échelons avec des coûts de 

passation de commande à chaque stock. En raison de l’existence des coûts de passation de 

commande, l’optimisation d’un tel système devient très compliquée. Récemment, l’approche 

de service garanti (GSA) a été utilisée pour déterminer les stocks de sécurité pour les 

systèmes de stocks multi-échelons, mais sans coûts fixes de passation de commande. Nous 

généralisons la GSA pour optimiser la politique de stockage (R, Q) d’un système de stocks 

multi-échelons avec la demande suivant un processus de Poisson et coûts fixes de passation 

de commande à chaque stock. Nous considérons trois types de systèmes de stocks multi-

échelons, et pour chaque type, nous d'abord établissons un modèle mathématique pour le 

problème d’optimisation. Ensuite, le modèle est résolu par une procédure itérative fondée sur 

deux algorithmes de programmation dynamique (DP). Un algorithme DP est utilisé pour 

résoudre le sous-problème de détermination de quantités de commande et l'autre est utilisé 

pour résoudre le sous-problème de détermination de points de recommande du modèle. Les 

résultats numériques démontrent l'efficacité des algorithmes et de la procédure. 

Mots Clés: Gestion des stocks; Logistique (Organisation); Optimisation Mathématique;  

Programmation Dynamique.   
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Notations 

Network 

N the number of stocks in a multi-echelon inventory system 

i stock index, i=1,…,N 

t time index…, 

s(i) the set of immediate successor of stock i  

SUC(i) the set consisting of stock i and all its successors 

P(i) the set of the immediate predecessors of stock i 

PRE(i) the set consisting of stock i and all its predecessors 

Demand 

F set of stocks facing external demand (customer demand)  

λi average demand rate of the customer demand at stock i, iF 

di(t) demand realization of stock i at time t, iF  

[ , )id t L t  the lead time demand over Li units of time of stock i, i=1,2,…,N 

[ , )id t L t


  
the lead time demand over Li units of time fulfilled normally by a multi-

echelon inventory system considered  

Di(τ) maximum reasonable lead time demand level over τ periods 

Time parameters and variables 

Ti Production time of stock i 

Si outbound service time of stock i 

SIi inbound service time of stock i 

Li net lead time of stock i 

Mi maximum replenishment time of stock i 

si upper bound of the outbound service time of stock i when iF  
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Performance measures 

hi
e
 Unit echelon on-hand inventory holding cost at stock i 

hi Unit on-hand inventory holding cost at stock i 

ci fixed order cost for placing each order by stock i to its supplier 

p 
operating flexibility cost for using extraordinary measures to fulfill each 

unit of excessive customer demand 

αi 
service level for stock i, which is defined as the probability of satisfying 

demand from the stock 

βi 
fill rate of stock i, which is the fraction of customer demand satisfied 

directly form the stock 

Inventory control and replenishment variables 

Ii(t) on-hand inventory of stock i, 

Ii
e
(t) echelon on-hand inventory of stock i 

ILi
e
(t) echelon inventory level of stock i 

IPi
e
(t) echelon inventory position of stock i 

OOi(t1, t2] 
the quantity of all orders placed by stock i from time t1 to time t2 (not 

including t1), i=1,2,…,N. 
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General Introduction 

A supply chain is a network of enterprises through which products are produced and delivered 

to end customers. Supply chain management (SCM) aims at optimizing a system wide 

performance of such a network by coordinating the flow and the storage of goods from raw 

material suppliers to distributors through manufacturers. In recent years, economic 

globalization, product proliferation and fast product innovation have significantly increased 

the complexity of supply chain management in many industries. One important issue in 

supply chain management is managing/controlling inventories at all stocks in a general supply 

network facing uncertain customer demands. The objective of this inventory management is 

to reduce inventory costs while assuring a given high service level to customers. 

Traditionally, inventories at different stocks in a supply chain were managed independently, 

buffered by high inventories. Increasing competitive pressures and market globalization have 

forced firms to make more efforts to reduce their inventories while improving the customer 

service.  This has been making academic researchers and industrial practitioners pay more and 

more attention to multi-echelon inventory management which takes the interactions between 

different stocks in a supply chain into consideration.  

A supply chain with multiple stocks can be modeled as a multi-echelon inventory system, 

where the stocks are arranged in multiple echelons or levels and each stock is replenished 

from one or multiple stocks at a higher echelon. Multi-echelon inventory management adopts 

a global optimization approach. In such an approach, the inventory optimizations of all stocks 

are considered simultaneously, with an objective to minimize a system-wide cost while 

meeting requirements on customer service. Therefore, the key strategy of multi-echelon 

inventory management is efficient coordination of inventory policies among all participating 

companies in a supply chain.  

In the literature, there are two competing approaches for inventory system optimization: 

stochastic service approach (SSA) and guaranteed service approach (GSA). In SSA, safety 

stock is assumed to be the only buffer against demand variability. On the other hand, the GSA 

model assumes the safety stock is sized to cover demand variability up to a certain level, i.e., 

the maximum reasonable lead time demand level. If a demand exceeds this level, excessive 

part of the demand is treated by using extraordinary measures due to operating flexibility of 

the underlying system. Compared with the SSA, the GSA models the entire system in an 
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approximate fashion but it allows a planner to make strategic and tactical inventory decisions 

based on a simplified model.  

In the literature, most studies on multi-echelon inventory systems assume no fixed order cost 

at each stock or only the stock(s) at the highest echelon has (have) a fixed order cost. 

However, in practice, each stock usually has a fixed cost which may correspond to the order 

delivery cost or other quantity-independent costs. For a multi-echelon inventory system, if a 

fixed order cost incurs at each stock of, (R, Q) policy or (s, S) policy is usually used as the 

inventory policy of the system. Due to its simplicity and popularity in practice, we choose (R, 

Q) policy rather than (s, S) policy for controlling multi-echelon inventory systems with fixed 

order costs in this thesis. We study the optimization of (R, Q) policy for multi-echelon 

inventory systems with stochastic customer demand and fixed order costs. Our objective is to 

find the optimal (R, Q) policy for such a system so that its average system-wide total cost is 

minimized while satisfying a target service level to customers. Three types of multi-echelon 

inventory systems, serial systems, assembly systems and two-level distribution systems, are 

considered. 

The existence of fixed order costs at each stock makes the inventory policy optimization of 

the multi-echelon inventory systems very difficult. The SSA, as a classical approach, was 

usually used to solve such optimization problem. However, due to the high complexity of the 

systems with fixed order costs, only approximate (heuristics) algorithms for finding near-

optimal inventory policies were developed under the SSA.  

On the other hand, under the assumption that excessive demand superior to a certain level is 

treated by operating flexibility, the GSA is able to model an inventory optimization problem 

as a deterministic mathematical programming problem, which can be solved more easily. In 

the literature, no previous work has used this approach to optimize multi-echelon inventory 

systems with fixed order costs at each stock. Therefore, in this thesis, we use the GSA to 

model and solve inventory optimization problems of multi-echelon inventory systems with 

fixed order costs. Different from the standard GSA which ignores the operating flexibility 

costs for using extraordinary measures to fulfill excessive demand, we develop a new GSA 

which considers operating flexibility costs and the effects of extraordinary measures on the 

material flows of the multi-echelon inventory systems in this thesis. In our study, maximum 

reasonable level of lead time demand is determined according to a service level to final 

customer. 

The main contributions of this thesis include: 
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1) We extend the GSA to multi-echelon inventory systems with fixed order costs at each stock. 

Since all previous works on the GSA only deal with inventory systems without fixed order 

costs, this thesis is the first attempt to optimize multi-echelon inventory systems with fixed 

order costs under the framework of the GSA. 

2) The standard GSA ignores the effect of operating flexibility on the material flow and the 

total cost of a multi-echelon inventory system. In this thesis, we extend the standard GSA by 

considering the effect and by including explicitly the operating flexibility costs in our 

inventory policy optimization models. In the models, the total cost of a multi-echelon 

inventory system not only includes fixed order costs, on-hand inventory holding costs, but 

also includes operating flexibility costs.  

3) For each of the three types of multi-echelon inventory systems considered, we formulate a 

mathematical programming model for the inventory policy optimization problem under the 

framework of the GSA.  

4) The consideration of the operating flexibility effects and costs makes our GSA model more 

complicated than the standard GSA model with an objective function depending on two 

service levels (α-service level and β-service level). We propose an iterative procedure to solve 

the model based on the estimation of β-service level. 

5) For given α-service level and β-service level, the inventory policy problem can be 

decomposed into two sub-problems:  one is to determine the optimal order size Q of each 

stock (called Q-problem) and the other is to determine the optimal reorder point R of each 

stock (called R-problem). We develop dynamic programming algorithms for efficiently 

solving the two sub-problems.  

6) The efficiency of the dynamic programming algorithms and the iterative procedure is 

evaluated by numerical experiments. 

This thesis consists of six chapters. Chapter 1 introduces basic concepts of inventory 

management, the motivation of this research, and the specific problems studied in this thesis, 

and provide a literature review for multi-echelon inventory management research related to 

our work. Chapter 2 presents the basic terminology of multi-echelon inventory control as well 

as a standard GSA model that can help the readers to understand the GSA models to be 

developed in the upcoming chapters. In this chapter, we also discuss how to evaluate 

operating flexibility costs under the GSA. In chapter 3, we consider serial systems with 

Poisson customer demand and fixed order costs at each stock and develop a mathematical 
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programming model and a solution approach for optimizing their (R, Q) policies under the 

GSA. The model takes into consideration both fixed order costs and operating flexibility costs 

and the solution approach is based on two dynamic programming algorithms we develop or 

adopt for two sub-problems of the model. The performances of the algorithms and the 

solution approach are evaluated by numerical experiments. Chapter 4 extends the model and 

the solution approach developed in Chapter 3 to assembly systems with numerical 

experiments for performance evaluation as well. In Chapter 5, we consider two-level 

distribution systems with one warehouse and multiple retailers. The analysis and optimization 

of such systems are more difficult than serial and assembly systems. We also develop a 

mathematical programming model and a solution approach for the optimization of the 

distribution system under the GSA. In addition, we consider five different types of integer-

ratio constraints possibly imposed on the order sizes of the stocks of the system, and compare 

their effectiveness by computational experiments. Finally, Chapter 6 concludes the thesis and 

suggests some directions for further research.   
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 Chapter 1 Introduction 

1.1 Inventory Management 

Products and services are usually delivered to end customers through a supply chain which is 

a network of organizations connected together through the products and services that 

separately and/or jointly add values to it. Many real-world supply chains, such as those found 

in automotive, electronics, and consumer packaged goods industries, consist of a large 

number of assembly and distribution operations realized in geographically dispersed facilities. 

One challenge for the management of such a supply chain is the effective management of its 

inventories located in multiple production and distribution facilities facing stochastic demand 

and uncertain supply of products with high inventory and transportation costs. According to a 

study, American companies spent almost 1 trillion dollars in supply-related activities in 2000 

(or 10.1% of Gross Domestic Product), among which transportation costs constitute 58.6%, 

inventory costs 37.4% and management costs 4% of the total cost. Generally, inventory can 

represent from 20% to 60% of the total assets of manufacturing firms (Arnold, 2004). 

Therefore, the total capital investment in inventories is enormous, and the control of the 

capital tied up in raw material, work-in-progress, and finished goods offers a very important 

potential for improvement. Scientific methods for inventory management can give a 

significant competitive advantage.  

Inventory management has a very important impact on the performance of an enterprise 

especially the financial health of its balance sheet. As indicated by a study of the Aberdeen 

Group (Viswanathan, 2007), inventory management was ranked on top of the list of 

investments in application-oriented software for companies in 2007. In 2008 the market for 

inventory management applications continued to increase by 4% over 2007 according to 

AMR research (Trebilcock, 2009), demonstrating that companies were making more efforts 

on improving their inventory management activities. An effective inventory management is 

particularly important in the current increasing competitive environment due to market 

globalization. In order to contain cost and free working capital, inventories need to be reduced 

without sacrificing the service level to customers. Inventory management aims at determining 

and controlling the inventory levels within physical inventory systems, so that the need for 

product availability and the need for minimizing the costs related to inventory are well 

balanced. As a matter of fact, inventory management may have conflicting objectives. One 

objective is to keep stock levels as low as possible to minimize costs and free working 
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capitals as much as possible. Another objective is to provide a high service level to customers 

in order to avoid the risk of lost sales in case of insufficient inventories. 

It is seldom trivial to find the best balance between such goals, that is why we need to study 

inventory management. One important issue of inventory management is to find an optimal 

inventory policy to control the inventory replenishment of each stock in an inventory system 

so as to minimize the costs related to inventory, while maintaining a given target level to 

customers. Here, an inventory policy is a mechanism, which decides when a stock should 

place an inventory replenishment order and in which quantity it should order. The 

optimization of the inventory policy of the stock should consider its cost structure. In 

inventory systems, many costs may be involved such as: 

 costs for ordering, material handling, and transportation; 

 costs for capital tied up in the inventories; 

 costs for not providing an adequate customer service. 

Correspondingly, fixed order costs, inventory holding costs and backorder/penalty costs arise. 

Since the inventory policy decision has a very important impact on the costs, the research on 

the optimization of inventory policies is of great practical and academic significance.  

1.2 Multi-Echelon Inventory Systems 

A supply chain with multiple stocks is usually modeled as a multi-echelon inventory system, 

which is an inventory system with multiple stocks arranged in multiple echelons or levels, 

where the “echelon” of a stock refers to the position (level) at which the stock is located 

within the system. A multi-echelon inventory system is depicted as in Figure 1.1. 

 

 

Figure 1. 1 A multi-echelon inventory system 
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The main characteristics of a multi-echelon inventory system can be described as follows: 

 The system is composed of multiple stocks and each stock has a physical location ; 

 All stocks are grouped into multiple echelons (levels); 

 Each stock at a lower echelon replenishes its inventory from one or multiple stocks at a 

higher echelon.  

Intuitively, one can imagine a multi-echelon inventory system as something resembling a 

“network”, in which the “nodes” are the stocks of the participating companies that are inter-

connected in a supply chain (See Figure 1.1). Two nodes are connected through a directed 

link (arc) in the network if the upstream node is a supplier of the downstream node or in other 

words the downstream node is a customer of the upstream node. In real-world a multi-echelon 

inventory system may be more complex than the one depicted in Figure 1.1 that is really a 

chain rather than a network, because there may exist multiple suppliers and multiple 

customers for each stock in the system.   

On the basis of network structure, multi-echelon inventory systems can be classified into 

serial systems, assembly systems, distribution systems and general systems. The simplest 

structure is that of serial systems, in which each echelon only has a single stock. A more 

complex structure is that of assembly systems, in which multiple components/subassemblies 

are assembled into a single subassembly or final product and consequently a stock may have 

multiple suppliers. In a distribution system, a supplier distributes (delivers) a product to 

multiple customers, and therefore, the supplier can have multiple customers. In general case, a 

multi-echelon inventory system can include any of the above three structures as parts of the 

system (Zipkin, 2000).  

Most consumer and industrial goods are distributed through multi-echelon inventory systems 

of one sort or another. Any enterprise with geographically-dispersed markets, production 

facilities, and material suppliers must rely on the performance of its multi-echelon inventory 

system to remain competitive. The management of multi-echelon inventory systems is thus a 

crucial part of supply chain management.  

1.3 Multi-Echelon Inventory Management     

Historically, the actors in a supply chain, i.e., manufacturers, warehouses, distributors, etc., 

planned and managed their inventories independently, and even in an enterprise its stocks at 

different echelons were planned independently or in a sequential way. Here, sequential 
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planning means that the inventory planning of the stocks at each echelon only considers the 

inventory planning of its immediate downstream stocks. However, such individual or 

sequential planning approach completely neglects interdependencies between the stocks at 

two adjacent echelons. As a result, some stocks might hold excessive inventories whereas the 

others might frequently be in shortage, because the sequential approach does not well answer 

the following questions: Is it more costly to hold inventory at an upstream or a downstream 

echelon? How does the inventory planning of an upstream echelon affect the inventory 

planning of a downstream echelon? Which level of service should each stock in an upstream 

echelon provide to its internal customers (stocks in a downstream echelon) such that external 

customer demand can be satisfied according to a target service level? 

Increasing competitive pressures and market globalization have forced firms to change their 

inventory planning and management strategies. To remain competitive and decrease inventory 

costs, they now work together to plan and mange their supply chains in a coordinated way so 

that products can be delivered to final customers at the least cost while achieving a high 

service level to final customers. This has been making academic researchers and industrial 

practitioners pay more and more attention to multi-echelon inventory management over the 

past two decades.  

Multi-echelon inventory management adopts a global optimization approach. In such 

approach, all stocks (echelons) from the external suppliers to the end customers in a supply 

network are considered simultaneously, with the objective of minimizing a system-wide cost 

subject to constraints on customer service. Thus, the shortcomings of the sequential approach 

are overcome. It is reported that “it is not unusual for a global supply chain to see inventory 

levels reduced by as much as 15%-25%” (Ellis et al., 2009) due to effective multi-echelon 

inventory management.  

There are two drivers for the advancement of multi-echelon inventory management. Firstly, 

the rapid development of information and computer technologies has made information 

available to all enterprises and all stocks across a supply chain possible, this has made the 

implementation of a multi-echelon inventory management application in such a supply chain 

possible. Secondly, multi-echelon inventory research in recent years has brought us models 

and methods that can capture and handle a broad variety of real inventory systems with a 

large number of stocks at multiple echelons. 
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1.4 Models and Methods Used for Multi-Echelon Inventory Management 

In this section we provide an overview of models and methods for multi-echelon inventory 

management. This will help the reader to understand the materials to be presented in later 

sections. In addition, we will briefly introduce different inventory policies used in the control 

of multi-echelon inventory systems. 

1.4.1 Inventory Models          

From a mathematical inventory theory perspective, the inventory models used can be 

classified into deterministic and stochastic inventory models.    

Deterministic Inventory Models: A deterministic inventory model assumes that the demand 

is deterministic. Due to this assumption, the analysis of the model is considerably simplified. 

Stockout in a deterministic inventory model is usually not allowed. Deterministic inventory 

models can further be subdivided into static and dynamic models. The static models are 

usually derived from the classical economic order quantity (EOQ) which seeks for an optimal 

trade-off between fixed order costs and variable inventory holding costs. Multi-stage EOQ-

type models exists. Such models can be used in the situations when the system conditions are 

stable and there are no fluctuations in the demand. To deal with the situations with 

deterministic time varying demand, various lot sizing models have been developed, which can 

be applied in different situations. The most widely used methods for single stock lot sizing are 

Wagner-Whittin method (Wagner and Whitin, 1958), Silver meal heuristics (Silver and Pyke, 

1988), and part period balancing (Callarman and Hamrin, 1983). A review of lot sizing 

models for multi-echelon (level) systems can be found in Teunter (1998). Note that these 

deterministic models provide a basis for treating inventory systems with uncertainty.  

Stochastic Inventory Models: Stochastic inventory models which specify the demand as a 

stochastic process are more realistic compared with their deterministic counterparts. In spite 

of the fact that it has been known for a long time that there exists an optimal inventory policy 

under quite general conditions, optimal control parameters of the policy under the stochastic 

setting are hard to be computed, let alone applying such policy to real inventory systems. One 

reason for this is that the analysis of stochastic inventory models is usually very difficult. The 

cost functions of most stochastic inventory models have been widely perceived as rather 

complex and too difficult to be evaluated analytically (Zheng, 1992). In the literature, a 

number of stochastic inventory models have been proposed; most of the models are stationary 

with an infinite horizon. Most previous studies on stochastic inventory models were focused 
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on cost evaluation and on determining optimal control parameters for predetermined 

inventory policies. In contrast, results on optimal policy structures are rare. In most studies the 

demand is modeled as a Poisson process or compound Poisson process. Detailed information 

will be provided in section 1.6. 

1.4.2 Inventory Policies 

In inventory management, an inventory policy determines when the state of a stock must be 

reviewed, when the stock must place a replenishment order and in which quantity each order 

must be placed by the stock. Most frequently used inventory policies for multi-echelon 

inventory systems are base stock policy or order-up-to level policy, (R, Q) policy and (s, S) 

policy according to the consideration of fixed order costs or not in the system. Moreover, 

according to the different information used for order decision, existing inventory policies can 

be also classified into two groups: installation inventory policies and echelon inventory 

policies. The former considers only local stock information whereas the latter can be used 

only when centralized information is available. Finally, inventory policies can be classified 

into continuous review policies and periodic review polices according to the nature of their 

inventory tracking. An inventory control system can be designed so that its inventory position 

is monitored continuously or periodically, which leads to a continuous review and a periodic 

review policy, respectively. Continuous review, also known as perpetual review, involves a 

system that tracks each stock and updates inventory counts every time an item is removed 

from inventory. On the other hand, periodic review involves counting and documenting 

inventory at specified times. Periodic review with a short review period is, of course, very 

similar to continuous review.  

Base Stock Policy: With this policy, the inventory position of a stock is reviewed only after a 

certain predetermined time interval. An order is placed to restore the inventory position to a 

predetermined order-up-to-level. Therefore, the base stock policy is also known as “Order up 

to level” policy because the order size is determined based on a predetermined order up to 

level. This policy is in common use in real inventory systems as it does not require continuous 

monitoring of the inventory status and thus makes it easy to be implemented, especially when 

computerized systems are not available for inventory planning.  This policy is optimal in case 

that excess demand is backordered, the lead time is deterministic and no fixed order cost is 

charged.  
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Although base stock policy is very simple but this policy is optimal only when no fixed order 

cost is charged. For this reason, (R, Q) policy and (s, S) policy which take account of fixed 

order costs are also used in multi-echelon inventory systems.  

(R, Q) Policy: This policy operates as follows: when the inventory position of a stock 

declines to or below a reorder point R, an order of Q units is placed. When the inventory 

position is periodically reviewed, the stock may be necessary to order a multiple of Q units to 

raise its inventory position to above R. The considered policy is therefore also referred to as 

(R, nQ) policy, where n is the minimal positive integer such that the current inventory position 

plus nQ units to be ordered will be greater than R.   

(s, S) policy: This policy has two control parameters: the reorder point s and the order-up-to 

level S. When the inventory position of a stock declines to or below s, the stock places an 

order to bring its inventory position to the maximum level S. Compared with (R, Q) policy, (s, 

S) policy no longer orders a multiple of a given order size. If the reorder point is always hit 

exactly in case of continuous review and continuous demand, the two policies are equivalent 

provided s=R and S=R+Q. Otherwise, the two policies are different.  

In general, an inventory model using either (R, Q) policy or (s, S) policy has a complex 

structure, this leads to a fact that few results exist for the optimization of such policy in the 

context of multi-echelon inventory systems except for approximate optimization procedures. 

Between the two policies, the use of (s, S) policy is more advantageous from a theoretical 

point of view. However, their cost differences are, in general, very small, and in practice it is 

often much easier to implement an (R, Q) policy. For this reason, we only consider (R, Q) 

policy in this thesis. 

1.4.3 Inventory Optimization Approaches         

Two competing approaches have been developed over the years for inventory system 

optimization. Although they solve the same inventory policy optimization problem in their 

core, they make different assumptions with regard to the role of safety stock. In the SSA 

model, safety stock is assumed to be the only buffer against demand variability. On the other 

hand, the GSA model assumes that safety stock is sized to cover demand variability up to a 

certain level only, i.e., the maximum reasonable lead time demand level. All demand 

variability exceeding this level is treated by using extraordinary countermeasures due to 

operating flexibility of the underlying system. The two approaches differ in demand treatment, 

replenishment strategy and service time characteristics.  
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Stochastic Service Approach (SSA): Most inventory models adopt the SSA. In the SSA, 

each stock maintains a sufficient inventory level in order to meet its stochastic demand. When 

the inventory level of a stock is not sufficient to meet the demand coming form its 

downstream stocks or final customers, unsatisfied demand is fully backlogged and will be 

filled later when on-hand inventory becomes available. This implies that the stock may have a 

stochastic delay to fill an unsatisfied demand, the service time of the stock, which is defined 

as the lead time for filling its demand is thus stochastic.   

Guaranteed Service Approach (GSA): The GSA was originated from the work of Simpson 

(1958). In the GSA, each stock sets a deterministic service time for meeting any demand from 

its downstream stocks and guarantees that the demand can always be satisfied in the given 

service time. This approach assumes that excessive customer demand superior to a bound is 

treated by some extraordinary measures such as expediting and overtime. With this 

assumption, each stock can predict its maximum demand to fill and assure a given service 

time to its downstream stocks. Therefore, the service time of each stock in GSA is 

deterministic. In the GSA model, it is assumed that extraordinary measures besides safety 

stock exist to cope with demand variability, if the demand exceeds a certain maximum 

reasonable level. However, this “operating flexibility” of using extraordinary measures is not 

explicitly modeled in the standard GSA framework, and this becomes a major point of 

criticism for such approach. In order to counteract this criticism, in this thesis, we adopt an 

extended GSA model which explicitly considers the effect that operating flexibility measures 

have on the material flow and the total cost of a multi-echelon inventory system.     

In summary, the stochastic service approach (SSA) employs a more complicated model that 

allows for a more exact and detailed understanding of the system. However, the model as well 

as solution techniques for it are not easy to develop and are computationally hard. The 

guaranteed service approach (GSA) models the entire system in an approximate fashion and 

allows a planner to make strategic and tactical decisions without the need to approximate 

portions of the system that are not captured by a simplified topological representation. For a 

detailed comparison of these two approaches, please see Graves and Willems (2003) and 

Humair and Willems (2006). 

1.5 The problems studied in this thesis  

In this thesis, we study the inventory optimization in multi-echelon inventory systems with 

stochastic customer demand and fixed order costs. Because of existing fixed order costs at 
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each stock, this optimization problem becomes more complicated, and most researchers have 

been developed an approximate optimal method rather than exact method. We consider three 

types of inventory system, such as serial, assembly and two-level distribution systems, our 

objective is to find optimal inventory policy so that the average system-wide total cost is 

minimized while achieving a  target service level to customers.   

Fixed order costs include the expense involved in placing an order for a quantity of material, 

such as the paper work cost for preparing the order and the costs for the inspection, packaging 

and delivery of the order. In practice, fixed order costs are often overlooked by companies as 

they only pay attention to inventory holding costs and backorder costs. However, when 

calculating the cost of ordering items, it is often a surprise to companies when they find out 

how much it actually costs to have an item of material purchased and available at their 

warehouse. Therefore, as an important part of system total costs, fixed order costs can not be 

ignored.  

The high complexity of multi-echelon inventory systems with fixed order costs makes the 

optimization for their inventory policies very difficult. The SSA, as a classical inventory 

optimization method, was usually used to solve such problem. However, the stochastic model 

employed by this approach is usually hard to be solved because of its complicated structure 

and the stochastic nature of the service time of each stock in the model. As a result, most 

researchers only presented heuristic algorithms to solve such model, and these algorithms are 

usually quite complicated. On the other hand, by assuming that excessive demand superior to 

a certain level is treated by operating flexibility, the GSA is able to model an inventory policy 

optimization problem as a deterministic mathematical programming problem which is much 

easier to be solved. In addition, the latter approach can guarantee a deterministic service time 

of each stock to its customers. Therefore, we adopt the GSA to model and solve the inventory 

optimization problems considered in this thesis.       

Previously, the GSA was only used to optimize multi-echelon inventory systems without 

fixed order cost. In this thesis, we have generalized this approach to the optimization of multi-

echelon inventory systems with fixed order cost at each stock. Moreover, different from the 

standard GSA which ignores the costs of using extraordinary measures to fulfill excessive 

demand, our GSA has taken into account the operating flexibility costs.     

As mentioned in Section 1.4, if fixed order costs occur at each stock, (R, Q) policy or (s, S) 

policy is usually used as the inventory policy to control the replenishment process of a multi-
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echelon inventory system. In this thesis, we choose (R, Q) policy because it is more simple 

than (s, S) policy and is more commonly used in practice.  

In summary, this thesis has studied the optimization of (R, Q) policies for multi-echelon 

inventory systems with fixed order costs at each stock by using the GSA with the objective to 

minimize a system-wide total cost while achieving a given service level to end customers. The 

costs of such systems include not only fixed order costs and inventory holding costs, but also 

operating flexibility costs. In the past, none studied such problem by using the GSA.    

1.6 Literature Review of Multi-Echelon Inventory Management 

In this subsection we review the models and methods proposed in the literature for analysis 

and optimization of multi-echelon inventory systems, especially for the systems with fixed 

order costs. We first give a general introduction of the works in multi-echelon inventory 

management in subsection 1.6.1. Then, we focus on the current studies of multi-echelon 

inventory management using two optimization approaches: stochastic service approach (in 

subsections 1.6.2, 1.6.3 and 1.6.4) and guaranteed service approach (in subsection 1.6.5). The 

comparison between the two competing approaches is discussed in subsection 1.6.6. 

1.6.1 General Studies of Multi-Echelon Inventory Management   

The study of multi-echelon inventory systems was originated by a pioneering work of Clark 

and Scarf (1960). In that work, they showed that an echelon base stock policy is optimal for a 

‘pure” serial inventory system, in which the fixed order cost is charged only at the highest 

echelon. For the system with fixed order costs at each echelon, they pointed out that an 

optimal policy, if exists, may be complex and hard to implement.   

Since 1960, a lot of research has been conducted to extend the work of Clark and Scarf. 

Federgruen and Zipkin (1984) generalized Clark-Scarf model to the infinite horizon case. 

Chen and Zheng (1994) provided a new proof of the results of Clark and Scarf by deriving 

lower bounds on the long-run costs of their model. A more detailed discussion of these results 

can be found in Zipkin (2000). Inderfurth (1991) and Minner (1997) proposed different 

dynamic programming algorithms for finding optimal echelon base stock policy of the Clark-

Scarf model. Zangwill (1966, 1969) and Love (1972) presented discrete time dynamic 

programming models for periodic review, finite horizon serial systems with time-varying 

demand. Bessler and Veinott (1966) studied a general multi-echelon inventory system and 

examined the near-optimality of “myopic” one-period policies for the system. Recently, Sinha 

et al. (2011) provided a computationally simple and unified approach to finite- and infinite-
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horizon Clark-Scarf model. For these extensions, serial and assembly systems without fixed 

order costs of echelon base stock policies have been shown to be optimal. For distribution 

systems without fixed order costs, echelon base stock policies are optimal under the so-called 

balance assumption, but they are not optimal without that assumption (Van Houtum, 2006). 

Owing to the complex structure of the systems with fixed order costs at each echelon, most of 

researchers have focused on optimizing and evaluating simple batch ordering policies, such as 

(R, Q) policies. We will give an in-depth overview of the current studies on such problem in 

the latter subsections according to the different types of inventory systems.    

Almost at the same time, Simpson (1958) proposed the guaranteed service approach to 

describe the dynamics and the control of a serial inventory system without fixed order costs, 

in which each stock operates an installation base stock policy facing a random but bounded 

demand. Simpson’s results showed that the optimal inventory policy for the serial system is 

an “all or nothing” policy, i.e., each stock either has no safety stock, or carries enough stocks 

to decouple the downstream stocks from the upstream stocks. Different extensions of 

Simpson’s work for assembly and distribution systems will be introduced later.   

Based on the two seminal papers by Clark and Scarf (1960) and Simpson (1958), two 

competing approaches have been developed over the years. 

1.6.2 Stochastic Service Approach for Serial Inventory Systems 

In this subsection, stochastic service approach for serial inventory systems is reviewed, 

especially for the systems with fixed order costs and operating (R, Q) policies. These works 

can be essentially be classified into two categories: cost evaluation and optimization of 

inventory policies. Other related studies on serial systems will also be reviewed.   

Cost evaluation of (R, Q) inventory policy 

For cost evaluation, Axsater (1998) considered a two-echelon serial system with continuous-

review installation (R, Q) policies and proposed a method to exactly evaluate holding and 

shortage costs. Bodt and Graves (1985) first introduced echelon (R, Q) policies for a multi-

echelon, serial system and presented an approximated model for the cost evaluation of the 

system. Axsater and Rosling (1993) have shown that echelon (R, Q) policies dominate 

installation (R, Q) policies for serial and assembly systems. For distribution systems, 

installation (R, Q) policies and echelon (R, Q) policies may, however, outperform each other 

in different situations. Chen and Zheng (1994) developed a procedure for exact performance 

evaluation of echelon (R, nQ) policies in serial systems. The procedure was applied to both 
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continuous-review systems with compound Poisson demand and periodic-review systems 

with independent, identically distributed demands. In their procedure, a fixed order cost is 

charged for each replenishment rather than each order. Axsater (1997) proposed an alternative 

scheme for the cost evaluation of echelon (R, Q) policies, which applies the concept of 

matching supply units with demand which was originally used for the evaluation of 

installation stock policies.   

Optimization of (R, Q) inventory policy 

For policy optimization, Chen and Zheng (1998) developed an algorithm to find a near-

optimal echelon (R, nQ) policy for serial systems with compound Poisson demand. Mitra and 

Chatterjee (2004) considered two-echelon serial systems for fast moving items and analyzed 

Bodt and Grave’s model from the implementation point of view, and suggested a possible 

improvement of the model. Chen (2000) showed that if we ignore the fixed costs but order in 

fixed sizes, an echelon (R, Q) policy is optimal for serial and assembly systems and the 

optimal policy can be easily calculated. Shang and Song (2007) considered two stochastic 

serial inventory models; one assumes that there is a fixed order size at each echelon, and the 

other considers a fixed order cost only for external orders. They showed that the optimal 

echelon (R, Q) policies of the models can be approximated by a series of independent, single-

stage optimal policies. Shang (2008) proposed a heuristic algorithm for finding near-optimal 

base order sizes for serial system models. Shenas et al. (2009) studied a continuous-review 

two-echelon serial system with Poisson demand. By considering the one-for-one 

replenishment policy, a special case of installation/echelon (R, Q) policy, they proposed a 

procedure for computing an optimal policy for the system by first solving a base stock policy 

to set the inventory position of the supplier. Yang et al. (2011) also considered a continuous-

review two-echelon serial system with Poisson demand and an echelon (R, Q) policy, they 

derived a necessary condition for the optimality of an echelon (R, Q) policy and the quasi-

convexity of the cost function for the system. Based on these properties, they designed a 

simple heuristic algorithm to find a near-optimal echelon (R, Q) policy for the problem. 

Dogru et al. (2008) considered a serial inventory system with a given fixed batch size per 

echelon and linear inventory holding and penalty costs. On the basis of new average cost 

formulas, they obtained newsvendor equations for the optimal reorder levels.  

Some papers address (R, nQ, T) policies for the control of serial systems. Under such a policy, 

each stock reviews its inventory in every T period and orders according to an installation or 

echelon (R, nQ) policy. Shang and Zhou (2010) studied a periodic-review serial system 
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controlled by echelon (R, nQ, T) policies with two types of fixed order costs: one associated 

with each order size of Q units ordered and the other incurred for each inventory review. They 

developed a simple heuristic for obtaining effective order sizes and reorder intervals. This 

heuristic is based on finding lower and upper bounds of the total cost function. They also 

provided a complete enumeration approach for finding the optimal order sizes and reorder 

intervals. Chao and Zhou (2009) studied a serial system with echelon (R, nQ, T) policies and 

fixed replenishment intervals. Since every stock places orders according to a regular schedule, 

fixed order costs were not considered. They derived the optimal inventory control policy, 

provided a distribution function solution for its optimal control parameters, and presented an 

efficient algorithm for computing those parameters. Shang and Zhou (2009) proposed a 

simple heuristic for generating a solution for echelon (R, nQ, T) policies by sequentially 

solving a deterministic demand problem, a sub-problem with fixed reorder intervals, and sub-

problem with fixed order sizes. Van Houtum et al. (2007) considered a periodic-review serial 

inventory system with fixed replenishment intervals. For this system, they proved the 

optimality of base stock policy, derived newsvendor equations for the optimal base stock 

levels, and developed an efficient exact solution procedure for the case with mixed Erlang 

demands.  

Other Studies on Serial Inventory Systems 

Except for the above cited papers, Chen (1988) and Shang et al. (2010) studied the impacts of 

different information sharing/coordination mechanism on the performance of serial inventory 

systems controlled by installation/echelon (R, nQ) policies. Rezg et al. (2004) presented an 

integrated method for inventory control of a production line made up of N machines, they 

proposed a methodology combining the simulation and genetic algorithms to optimize 

inventory control policies. Sahin et al. (2008, 2009) studied a three-stage system where 

execution errors result in a discrepancy between the physical inventory and information 

system. They introduced a new cost component for the conventional Newsvendor model, 

capturing the cost of not satisfying an initial commitment due to inventory inaccuracy. Shang 

(2012) proposed a simple heuristic for determining stocking levels in a serial inventory 

system with non-stationary demand and no fixed order costs based on single-stage 

approximations. Gallego and Ozer (2003) and Huh and Janakiraman (2008) proposed a new 

heuristic and a new proof of the optimality of echelon base stock policies for serial inventory 

systems without fixed order costs in the framework of the Clark-Scarf model. Arslan et al. 

(2007) considered a single-product inventory system that serves multiple demand classes, and 
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developed a model for cost evaluation and a heuristic for policy optimization under the 

assumptions of Poisson demand and a continuous-review (R, Q) policy with rationing. 

Axsater (2003) considered the problem of minimizing the holding costs under a fill rate 

constraint for a continuous-review serial system with discrete compound Poisson demand. 

The author showed that under some assumptions, the optimal policy is an echelon (R, nQ) 

policy and provided a simple procedure for the determination of the optimal policy. Huh and 

Janakiraman (2010) studied a periodic-review serial inventory system with lost sales and 

derived elementary properties of the vector of optimal order sizes in this system. They showed 

that the optimal order size at each stock is a decreasing function of the inventory at any 

downstream stock and an increasing function of the inventory at any upstream stock.   

1.6.3 Stochastic Service Approach for Assembly Inventory Systems 

In this subsection, the stochastic service approach for assembly systems is generally presented. 

Compared with serial systems, assembly systems with stochastic demand attracted relatively 

less attention in the literature.       

Schmidt and Nahmias (1985) characterized an optimal policy for a two-echelon assembly 

system under stochastic demand. Rosling (1989) extended Clark-Scarf model to assembly 

systems and showed that a general assembly systems without fixed order costs can be 

transformed equivalent into a serial system. Both papers assume no fixed order costs in their 

system considered. The inclusion of fixed order costs makes assembly systems with stochastic 

demand extremely difficult. Schwarz and Schrage (1975) proposed a near-optimal policy for 

an infinite horizon continuous-review assembly system with fixed order costs. Bodt and 

Graves (1985) considered inventory policies with fixed lot sizing for an assembly system with 

fixed order costs and developed an approximate method for finding near-optimal policies. 

Carlson and Yano (1986) presented a heuristic approach for a two-echelon assembly system 

with fixed order costs as well as upper and lower bounds on the optimal cost of the system. 

Chen (2000) showed that if we ignore the fixed order costs but order in fixed sizes, an (R, nQ) 

policy is optimal for assembly systems and the optimal policy can be easily calculated. Arda 

and Hennet (2006) analyzed an inventory control problem with Poisson demand, they showed 

that a base-stock policy coupled with a Bernoulli splitting process is easy to implement and 

leads to cost savings since it is generally profitable to dispatch the orders between several 

suppliers rather than to direct all the replenishment orders toward a single supplier.  

Next, we restrict our attention to installation/echelon (R, Q) policies for assembly systems 

with fixed order costs. Many papers have studied the (R, Q) policy on policy evaluation and 
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optimization (Hadley and Whitin, 1961; Veinott, 1965; Federgruen and Zheng, 1992; Rosling, 

2002; De Bodt and Graves, 1985; Axsater and Rosling, 1993; Axsater, 1997; Chen and Zheng, 

1994). Axsater (1997) suggested an alternative scheme for the evaluation of echelon (R, Q) 

policies, applying his concept of matching supply units with demand which was originally 

used for the evaluation of installation stock policies. A brief discussion of (R, Q) policies for 

assembly systems are given in Axsater and Rosling (1993) and Chen (2000). In practice, it is 

common to use a simple two-step approach to determine the order size Q and the reorder 

point R of an installation/echelon (R, Q) policy. In the first step, the stochastic demand is 

replaced by its mean and the order size Q is determined according to a standard EOQ model. 

In the second step, the reorder point R is determined with the given Q. Axsater (1996) and 

Gallego (1997) derived bounds for approximation errors when using such a method. 

Moreover, most of the previous work, which addressed (R, Q) policies, only presented 

heuristic algorithms rather than exact methods for cost evaluation and policy parameter 

optimization for assembly systems with fixed order costs.   

1.6.4 Stochastic Service Approach for Distribution Inventory Systems           

In this subsection, stochastic service approach for distribution systems is reviewed. We 

mainly focus on the current studies on two-level distribution systems with one-warehouse and 

multiretailers. In such systems, if all unsatisfied demands are backlogged and will be satisfied 

later, there exists an important extra issue that determines an allocation policy, which decides 

how to allocate the on-hand inventory of the warehouse to the retailer’s orders when these 

orders cannot be all satisfied on time. In addition, if all unsatisfied demands are not allowed 

backlogged, the problem becomes a problem with lost sales. Due to the increased complexity 

of distribution systems caused by models with allocation policies or lost sales, inventory 

management in distribution systems becomes more complex than that of serial and assembly 

systems. In the following, we review the current studies in these two categories separately. 

We also distinguish installation policies from echelon policies in the following review.  

Inventory Policies for Distribution Systems with Allocation Policy 

In the literature, one common allocation policy is the first-come first-served (FCFS), which 

fills customer orders according to their arrival time. The adoption of this allocation policy can 

simplify the analysis of the distribution systems but it is generally not optimal (Axsater, 2007). 

Because the priority of FCFS is always given to the earliest backlogged order, Chen and 

Samroengraja (2000) also referred to this policy as the past priority allocation (PPA) policy. 

In addition, they introduced another allocation policy, called the current priority allocation 
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(CPA) policy. This policy is used in the situation when the warehouse is unable to satisfy a 

retailer order immediately but at the same time has inventories earmarked for the other 

retailers’ orders. In each period the warehouse considers only the designated retailer and uses 

its on-hand inventory to fill the current as well as the backlogged orders from that retailer. 

Howard and Marklund (2011) considered a state-dependent myopic policy instead of the 

FCFS, which allows the allocation decisions to be postponed at a later point in time and based 

on the state of the system.  

With these allocation policies, inventory models with one-warehouse, multiretailers were 

received a great attention in the literature. The majority of the models assumes independent 

demands across retailers and use base stock policies or continuous-review (R, Q) policies. 

Studies on base stock policies for distribution systems are referred to Graves (1985), Axsater 

(1990), Caglar et al. (2000), Gallego et al. (2007) and Axsater (2007).   

Most previous studies with installation (R, Q) policies are focus on exact and approximate 

cost evaluation of such systems, as in Svoronos and Zipkin (1988) and Axsater (1993). A 

general overview of such studies before 2003 is given by Axsater (2003). Forsberg (1996) and 

Axsater (1998) presented different cost evaluation methods for the system with unit demand 

and general distribution inter-arrival times for customer orders. Cheung and Hausman (2000) 

presented an exact method for evaluating the steady-state performance of a warehouse in a 

two-level distribution system. Cachon (2001) provided an exact evaluation method for 

average inventory, backorders and fill rates for a two-level distribution system. Chen et al. 

(2001) considered a two-level distribution system under periodic-review installation (R, nQ) 

policies, and showed that under a certain condition, the inventory position at each location are 

stationary, uniformly distributed and independent of the inventory positions at other locations. 

Kiesmuller et al. (2004) developed an approximate evaluation method for a two-level 

distribution system with compound renewal demand. Axsater et al. (2007) assumed direct 

customer demand also occurred at the warehouse, and presented three cost evaluation 

techniques for such as system. All the above mentioned studies utilize installation and 

decentralized control policies.  

Alternatively, in a system where system-wide information is available, echelon (R, Q) policies 

can be used. Chen and Zheng (1997) and Axsater (1997) considered two-level distribution 

systems with Compound Poisson demand, but controlled by echelon (R, Q) policies. Because 

when all facilities (the warehouse and the retailers) apply echelon (R, Q) policies, the 

structure of the inventory model of the distribution systems becomes more complicated. In 
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order to simplify the analysis, some researchers studied new models for the system where the 

warehouse and the retailers use different inventory policies. For instance, Howard and 

Marklund (2011) considered distribution systems where the warehouse applies echelon (R, Q) 

policies and the retailers use base stock policies; they developed an exact cost evaluation 

method.  

On the other hand, only few papers studied policy parameter optimization of the distribution 

systems with installation/echelon (R, Q) policies. Early work on approximate optimization can 

be found in Deuermeyer and Schwarz (1981), Moinzadeh and Lee (1986) and Lee and 

Moinzadeh (1987). More recently, Axsater and Rosling (1993) demonstrated that installation 

stock and echelon (R, Q) policies may outperform each other in different situations for 

distribution systems. Axsater and Juntti (1996) analyzed two-level distribution systems with 

stochastic demand by simulation, the results showed that echelon (R, Q) policies seem to 

dominate installation (r, Q) policies for long warehouse lead times, while the opposite is true 

for short warehouse lead times. Axsater (2003) used a normal approximation of demands both 

for the retailers and the warehouse, and presented a simple technique for approximate 

optimization for the reorder points of the system. Axsater (2005) presented a simple technique 

for determining the backorder cost to decide its order point so that the sums of the expected 

costs are minimized.  

Inventory Policies for Distribution Systems with lost sales 

Research in the second category assumes that unsatisfied demands at the retailers are lost 

sales. Technically this may mean either a demand is lost as lost sales or it is expedited (i.e., 

satisfied by using some external measures). For two-level distribution systems, it is well 

known that the time between two successive orders from each retailer has an Erlang 

distribution if no sales are lost at any retailer. However, for a distribution system with lost 

sales at the retailers, there is no simple form for the probability distribution of the time 

between two successive orders from each retailer (Hill et al., 2007). That’s why lost sales 

models are generally more difficult to analyze than the corresponding backorder models. For 

this reason, even though researchers started studying lost sales inventory models around 

1960s, there were not many applications that considered such models. As in the first category, 

base stock policies are often chosen as inventory policies for two-echelon distribution systems 

with lost sales, which can be referred to Federgruen (1993), Nahmias and Smith (1994), 

Andersson and Melchiors (2001) and Haji et al. (2009) for a comprehensive review of the 

relevant research work on lost sales models. On the other hand, installation/echelon (R, Q) 
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policies are generally not optimal inventory policies for lost sales models, but they are widely 

used in practice. Cost evaluation of lost sales models is mainly focused on systems with 

continuous review installation (R, Q) policies and Poisson demand. Seifbarghi and Akbari 

(2006) developed an approximate cost function which is used in finding near-optimal reorder 

point of a two-level distribution system with the order sizes of all its stocks are given. Hill et 

al. (2007) also considered a two-level distribution system with the retailers using installation 

(R, Q) policies (with an exogenously given Q) and the warehouse applying an (SQ, (S-1)Q) 

policy, with non-negative integer S. They developed procedures for determining the average 

total stock in the system and for finding the optimal policy of the system. Bendre and 

Thorstenson (2008) analyzed the long-run average fill rate, inventory and ordering frequency 

and developed simple approximations for two-level distribution systems with installation (R, 

Q) policies and Poisson demand. Their approximation results were compared with the results 

obtained from simulations. To the best of our knowledge, the only paper considering lost sales 

models with parameter optimization stock (R, Q) policies is Al-Rifai and Rosseti (2007). They 

considered a two-level distribution system with the retailers controlled by installation (R, Q) 

policies for non-repairable items and approximately solved the optimization problem by 

decomposing the system according to echelon and installation and presented an iterative 

heuristic optimization algorithm. Recently, Bijvank and Vis (2011) provided a general review 

of lost sales inventory theory, they presented a classification scheme for the inventory policies 

most often used in literature and practice.  

1.6.5 Guaranteed Service Approach for Multi-Echelon Inventory Systems 

In this subsection, guaranteed service approach for multi-echelon inventory systems is 

presented. All previous works on the approach adopt base stock policies for the control of 

multi-echelon inventory systems without fixed order costs.  

The guaranteed service approach originated from the work of Kimball (1955), which was later 

reprinted in 1988 (Kimball, 1988). In that paper, Kimball studied a single stock with random 

but bounded demand, controlled by a base-stock policy. He proved that the bound of the 

demand during a given service time of the stock can be used to set its base-stock level. 

Simpson (1958) extended Kimball’s model to a serial inventory system and proved that the 

optimal inventory policy of the system is an “all or nothing” policy. Based on this so-called 

extreme point property, Graves (1988) noted that the optimization problem considered by 

Simpson can be solved by using a dynamic programming algorithm. In subsequent years, this 

approach has been extended to other network structures. Extensions to assembly and 
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distribution systems, spanning trees or even general acyclic network structures can be found 

in Inderfurth (1991), Inderfurth and Minner (1998), Graves and Willems (1996, 2000), 

Minner (2000), Humair and Willems (2006), and Humair and Willems (2011).  

Basically, all of the afore-mentioned contributions make use of dynamic programming as 

optimization technique. Minner (2001) studied the placement of strategic safety stocks in 

reverse supply chains under the GSA. Graves and Willems (2005) considered the safety stock 

optimization when a supply chain is configured for new products. For general acyclic 

networks, Lesnaia (2004) showed that the optimization problem is NP-hard, Humair and 

Willems (2011) imbed the dynamic program developed for spanning trees into an overall 

branch-and-bound algorithm. Minner (2000) presented several heuristic approaches for this 

network type. Humair and Willems (2006) studied the optimization of strategic safety stock 

placement in supply chains under with clusters of commonality. Magnanti et al. (2006) 

approximated the concave objective function with piecewise linear functions and make use of 

powerful Linear Programming solves.  

Over the last two decades, the guaranteed service approach has been extended in several ways. 

Whereas the original guaranteed service model assumes a common review period at all 

echelons, Bossert and Willems (2007) allow for an arbitrary, integer review period at echelon. 

Three different inventory control policies are analyzed, i.e., the constant base stock policy, 

constant base stock policy and adaptive base stock policy, and a solution to the inventory 

optimization problem is obtained by a modified version of the dynamic programming 

procedure of Graves and Willems (2000).  

Jung et al. (2008) studied integrated safety stock management of multi-echelon supply chains 

under production capacity constraints and the GSA. Recently, Graves and Willems (2008) 

extended their previous work (1996, 2000) to supply chains with non-stationary demand, and 

Schoenmey and Graves (2009) extended the work to supply chains with evolving demand 

forecasts.   

1.6.6 Comparison of Stochastic-Service Approach and Guaranteed- Service Approach 

Only few papers in the literature can be found that compare the two approaches. One such 

comparison was presented in Graves and Willems (2003). They applied both approaches to an 

assembly system and a spanning tree network and found that the guaranteed service model 

outperforms the stochastic service model. Klosterhalfen and Minner (2010) provided a 

comparison of the two approaches on two-level distribution systems and showed that the 
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superiority of any of the two approaches depends on their specific parameter settings and 

cannot be established in general. Moreover, they presented a method to derive appropriate 

internal service levels, which are used to define the operating flexibility costs in the 

guaranteed service model, Minner et al. (2003) gave some insights regarding the appropriate 

use of operating flexibility.  

1.7 The contributions of the thesis 

This thesis is motivated by the work of Graves and Willems (1996, 2000), they considered a 

general multi-echelon inventory system without fixed order costs and operating a base stock 

policy. In their work, they used the standard guaranteed service approach (GSA) to optimize 

the inventory policies and presented efficient dynamic programming algorithms for the 

optimization. We extend the GSA to multi-echelon inventory systems with fixed order costs 

at each stock (LI and CHEN, 2011). Three inventory systems, serial, assembly and 

distribution systems, are successively in our study. We use the guaranteed service approach 

(GSA) to obtain the optimal (R, Q) inventory policies of the systems. In addition, we extend 

the standard GSA by considering also the operating flexibility costs for using extraordinary 

measures to fill excessive demand. In summary, this thesis brings the following four main 

contributions. 

1) We extend the GSA to multi-echelon inventory systems with fixed order costs at each stock. 

Since all previous works on the GSA only deal with inventory systems without fixed order 

costs, this thesis is the first attempt to attack multi-echelon inventory systems with fixed order 

costs in the framework of the GSA (LI and CHEN, 2013).   

2) One open issue in the standard GSA is the consideration of the effect of the operating 

flexibility measures on the material flow and the total cost of a multi-echelon inventory 

system. We have addressed this issue by considering the effect on the material flow and 

including explicitly the operating flexibility costs in our inventory policy optimization models. 

For each type of multi-echelon inventory systems considered, we establish a mathematical 

model for its inventory policy optimization problem with the objective function consisting of 

fixed order costs, on-hand inventory holding costs and operating flexibility costs. This model 

extends the standard GSA model. 

3) The consideration of the operating flexibility effect makes the extended GSA model more 

complicated than the standard GSA model with an objective function depending on two 

service levels (-service level and -service level) of the system considered. We propose an 
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iterative procedure to solve the model based on the estimation of -service level and the 

calculation if its real value when the optimal inventory policy of the system is given. 

4) The efficiency of the iterative procedure relies on the efficient resolution of the two sub-

problems (sub-models) of the extended GSA model: One is to determine the optimal order 

size Q of each stock and the other is to determine the optimal reorder point R of each stock.  

For the first sub-problem, which is referred to as Q-problem, we develop an efficient dynamic 

programming (DP) algorithm. The second sub-problem, which is referred to as R-problem, is 

efficiently solved by using another DP algorithm we adopt from the literature. 

5) For the Q-problem, we find two important properties to reduce the state space of its 

decision variables, this makes our DP algorithm for the problem much more efficient than a 

DP algorithm in the literature.  

6) For the two-level distribution system we study, five different types of integer-ratio 

constraints that link the order size of the warehouse to the order sizes of the retailers are 

considered. For each type, we develop an efficient algorithm to solve the Q-problem. We 

compare these constraints in term of their cost-effectiveness, i.e., the cost of the system 

imposed by each type of integer-ratio constraints.  In the literature, no such comparison was 

made.  

7) All the algorithms developed in the thesis are evaluated and compared with numerical 

experiments on randomly instances. In addition, we conduct sensitivity analysis of the 

computation time of some algorithms with respect to the parameters of the multi-echelon 

inventory system considered in order to evaluate the impacts of the parameters on the 

performance of the algorithms we have developed.  

1.8 Conclusion   

Guaranteed service approach (GSA) has attracted a lot of attention both in academic 

community and industrial practitioners in recent years because if its simplicity and generality. 

Previously, this approach was only used for optimal placement of safety stocks in multi-

echelon inventory systems without fixed order costs. We apply this approach to inventory 

policy optimization of multi-echelon inventory systems with fixed order costs and extend the 

approach by considering operating flexibility costs. In Chapter 2, we will introduce some 

basic notions for multi-echelon inventory management and the guaranteed service approach 

and discuss its possible extension. In Chapter 3, 4, 5, we will present a series of mathematical 
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models and solution approaches for inventory policy optimization of serial, assembly and 

two-level distribution systems. Conclusions and perspectives will be given in Chapter 6.    
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Chapter 2 Preliminaries 

The goal of this chapter is to provide the reader with the basic terminology of multi-echelon 

inventory control theory as well as an understanding of an elementary inventory control 

model that forms the basis of the upcoming chapters. Section 2.1 outlines fundamentals that 

are required for a thorough understanding of the thesis. In Section 2.2, the basic inventory 

control terminology is introduced followed by a description of the batch ordering (R, Q) 

inventory policy and several performance measures for the evaluation of such policy. A major 

issue to be addressed in this thesis is how to use the guaranteed-service approach (GSA) to 

model the inventory control of different types of inventory systems. For this reason, we also 

describe the standard GSA in Section 2.3 and give some discussions about the operating 

flexibility and batch ordering (R, Q) policies under the framework of the GSA respectively in 

Section 2.4 and Section 2.5.  

2.1 Fundamentals  

2.1.1 Network structures 

If an inventory system involves multiple stocks, which are linked with each other through 

supply-demand relationships, it is called a multi-echelon inventory system. The system forms 

a supply network, which can be represented by a directed graph in which the nodes represent 

the stocks and the arcs represent the supply-demand relationships (Zipkin (2000)). Each node 

or stock in the network corresponds to a processing stage or a stocking location in the system. 

If a node is connected to several upstream nodes, then the node corresponds to an assembly 

stock that requires inputs (components) from each of the upstream nodes (stocks). All nodes 

(stocks) in the network are locations for holding work-in-processing or final product 

inventories. We deal with multi-echelon inventory systems with different types of supply 

networks. For defining the basic network structures of multi-echelon inventory systems, we 

first introduce the following system parameters. 

N = the number of nodes (stocks) in a system, 

s(i) = the set of the immediate successor of stock i, i=1,…,N, 

SUC(i) = the set consisting of stock i and all its successors, i=1,…,N, 

P(i) = the set of the immediate predecessors of stock i, i=1,…,N, 

PRE(i) = the set consisting of stock i and all its predecessors, i=1,…,N. 
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Serial Systems 

A serial system has the simplest structure with links multiple stocks in a serial way. Such a 

system consists of multiple stocks where each stock supplies only one successor stock and 

each stock replenishes its inventory from only one predecessor stock. In addition, the most 

upstream stock is supplied by an external supplier and the most downstream stock faces 

external customer demand for a finished product. In a serial system, each stock has a single 

direct predecessor and successor. For the upcoming exposition it is useful to assign a level 

code to each stock (See Figure 2.1). Whereas this is less relevant in the serial system case, 

since there is only one stock at each level, it is of great importance for the description of other 

more complex systems. A practical example of this type of inventory system can be found in 

the mechanical industry, for instance, where a metal material passes through several 

processing operations such as cutting, drilling, grinding before it becomes a final product. 

From an academic point of view the analysis of this simple system structure is a good starting 

point for investigating more complex ones. 

 

Figure 2. 1 A serial inventory system 

Assembly Systems 

In an assembly system a single finished product is assembled from several subassemblies. 

These subassemblies, in turn, may be assembled from several components or raw materials. 

Hence, an assembly system is characterized by the feature that each stock has at most one 

direct successor, but may have more than one direct predecessor. As in a serial system, all 

stocks on the most upstream level in an assembly system receive items from external 

suppliers and the stock on the most downstream level fills external customer demand (See 

Figure 2.2).  
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Figure 2. 2  An assembly inventory system 

Distribution Systems 

Similar to a serial system, a distribution system has a single most upstream stock that receives 

external supply. However, now each stock in the system may supply multiple downstream 

stocks except for the most downstream stocks which fill external customer demands. The 

stocks in such a system can be interpreted as warehouses, e.g., a central warehouse supplies 

regional warehouses which, in turn, supply retail outlets (See Figure 2.3). In terms of 

production network, one can think of a raw material that is split (separated) and specialized 

into several products when it is moved through the system as in a refinery. The distinguishing 

feature of a distribution network is that each stock has only one direct predecessor, but can 

have multiple direct successors.  

 

Figure 2. 3  A distribution inventory system 

In addition, a prototype network structure for most studies on distribution systems is a two-

level distribution system whereby a central warehouse supplies a product to a group of 

retailers. This structure can be depicted as Figure 2.4.  
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Figure 2. 4  A two-level distribution system  

2.1.2 Demand Processes 

For industrial companies, except for uncertainties they face on the supply side resulting from 

possible raw material shortage or machine break downs, a major difficulty arises on the 

demand side, because future customer orders cannot be predicted exactly (Simchi-Levi et al., 

2008). 

In the literature, the most commonly used demand distribution in various inventory models 

may be the Poisson distribution in discrete case and the normal distribution in continuous case 

(Zipkin, 2000).  

Poisson distribution  

The Poisson distribution is easy to specify, because it has only one parameter λ. Further, in 

many situations the model is shown to be fairly accurate. Finally, its mathematical simplicity 

facilitates analytical calculations. The probability mass function is defined as 
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Since the ordered items are not received immediately, but after a lead time, during which 

further demands need to be satisfied, the demand distribution over the lead-time is relevant for 

inventory control. For a deterministic lead time L, the distribution is the L-fold convolution of 

the single period demand random variable, if the demand process is assumed to be stationary 

and the single period demands are identically and independently distributed (i.i.d.). Since the 

sum of i=1,2,…,m independent Poisson random variables with parameters λi is Poisson 

distributed with parameter
1
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that, if period demands are identically and independently distributed according to a Poisson 

distribution with parameter λ1, the lead-time random variable for a deterministic lead-time of 

L periods has a Poisson distribution with parameter L∙λ1. 

Normal distribution  

The normal distribution is characterized by two parameters, the demand expectation   and 

standard deviation . The probability density function is given as 
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Consequently, in case the single period demand has a normal distribution, the lead-time 

demand is also normally distributed with an expected value of μL and standard 

deviation L . For the lead-time demand computation in case of stochastic lead times see, 

e.g., Tijms and Groenevelt (1984) and Eppen and Martin (1988).  

2.2 Inventory Control  

For an inventory system, its inventory control is to supervise the supply, the storage, and the 

accessibility of items in the system in order to ensure an adequate supply without excessive 

oversupply. The control requires an accounting procedure that determines the inventory 

system’s state based on which the inventory replenishment decision of the system is made.  

Therefore, we first introduce basic notions of the inventory accounting in Section 2.2.1. These 

notions will be used in the description of the inventory policy considered in this thesis, i.e., 

batch ordering (R, Q) policy. The description of batch ordering (R, Q) policy and some 

performance measures for inventory control will be presented in Section 2.2.2 and Section 

2.2.3, respectively.  

2.2.1 Inventory accounting 

In multi-echelon inventory system setting, the following terms are used for conceptually 

classifying different inventories.  

On-hand inventory, I 

This term describes the inventory quantity that is physically on the shelf and is available for 

directly satisfying customer demand. The on-hand inventory can never be negative. In 

connection with a time index t, I(t) denotes the on-hand inventory at time t.  

Backorders, BO 
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In case demand in a period exceeds the available inventory, a shortage occurs. Provided that 

customers are willing to wait for their products, the backorder represent the quantity of stocks 

that have already been requested, but are still to be delivered (backorder case). If customers 

do not wait, the shortage quantity is lost (lost-sales case). Similarly, BO(t) refers to the 

backorders at time t.  

Outstanding orders, OO 

The outstanding order denotes as the quantity of stocks, for which an order has already been 

placed, but has not yet been received. Together with the time index t, OO(t) specifies the 

outstanding orders at time t, before any of these items arrive in stock at a location. 

Inventory level, IL 

Inventory level is the net inventory quantity of a location, which is defined as the difference 

between the on-hand inventory and the backorders. Obviously, it can become negative. For a 

given time t, the inventory level at time t can be described as  

( ) ( ) ( )IL t I t BO t   

Inventory position, IP 

The inventory position comprises of the relevant information to trigger an order, because it 

also includes the inventory on order. The inventory position at a stock equals to its on-hand 

inventory minus all backorders of the stock locations at the lowest level, i.e., level 1. The 

inventory position at time t can be described as 

( ) ( )+ ( ) ( )IP t I t OO t BO t   

Echelon on-hand inventory, I
e 

This term describes the on-hand inventory of the location itself plus the physical inventories 

of all its downstream locations and in-transit physical inventory between these locations. I
e
(t) 

denotes the echelon on-hand inventory at time t.  

Echelon Inventory Level, IL
e
 

Echelon inventory level of a stock equals echelon on-hand inventory of the location minus all 

backorders of the stock locations at the lowest level, i.e., level 1. If a time index t is 

introduced, IL
e
(t) is the echelon inventory level at time t.   

Echelon Inventory Position, IP
e
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Echelon inventory position of a location equals outstanding orders of the location plus 

echelon on-hand inventory of the location minus all backorders of the stock locations at the 

lowest level, i.e., level 1. Echelon inventory position at time t (IP
e
(t)) is calculated as follows:   

( ) ( )+ ( ) ( )e eIP t I t OO t BO t   

2.2.2 Batch Ordering (R, Q) Policy 

An inventory control policy or system manages the inventory level of a stock by providing 

answers to the following three questions (Silver et al., 1998). 

 How often should the inventory status be determined? 

 When should a replenishment order be placed? 

 How many units should the replenishment order orders?   

In this thesis, we use (R, Q) policy as an inventory policy to control the inventories of the 

three different types of systems studied (serial, assembly and distribution systems). The 

motivation of choosing such a policy has been presented in the introduction. This policy can 

be used in a centralized or decentralized way, leading to echelon or installation (R, Q) policy. 

The installation (r, Q) policy is completely decentralized in the sense that ordering decision at 

each stock is exclusively based on its own inventory position. Such policy has the advantage 

that it does not require any information about the inventory situation at other stocks. However, 

the cost effectiveness of an installation (r, Q) policy is limited by the lack of information 

about the entire system. One way to take such information into account is to make order 

decisions based on the echelon inventory position of each stock instead of its installation 

inventory position. The echelon (R, Q) policy works exactly as an installation (r, Q) policy 

except that order decision at each stock is determined by its echelon inventory position. If a 

stock is controlled by an echelon (R, Q) policy, whenever its echelon inventory position is at 

or below the reorder point R, an order of Q units will be placed, where Q is the order size of 

the stock.   

Axsater and Rosling (1993) compared the two types of inventory policies, and drew some 

important conclusions for serial and assembly systems. They first demonstrated that the two 

policies can be transformed each other under mild conditions. On the one hand, for any stock i 

in a system with N stocks, an installation (ri, Qi) policy can always be replaced by an 

equivalent echelon (Ri, Qi) policy with the following relationship: 

                                     1 1=R r  and ( ) ( )= + +i s i s i iR R Q r  for i=2,…, N                                         (2-1) 
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On the other hand, an echelon (Ri, Qi) policy can also be replaced by an equivalent installation 

(ri, Qi) policy (with the same relationship (2-1)) if the following initial condition (2-2) holds: 

                                
( ) ( ) ( )(0) (0) ( 1)e e

i i s i s i i s iIP R IP R k Q                                            (2-2) 

where IPi
e
(0) is the initial echelon inventory position at stock i and ki is a positive integer. 

Moreover, Axsater and Rosling showed that echelon (R, Q) policy, in general, superior to 

installation (r, Q) policy for serial and assembly systems However, for general distribution 

systems, it is not clear under what conditions, one policy dominates the other. Axsater and 

Juntti (1996) analyzed a two-level distribution system by simulation studies, and 

demonstrated that echelon (R, Q) policies seem to dominate installation (r, Q) policies for 

systems with a long warehouse lead time, whereas the opposite domination is true for systems 

with a short warehouse leadtime, although the relative cost difference between the two types 

of policies is within 5%.  

2.2.3 Performance measures for inventory control 

To optimize an inventory control system, some performance measures should be defined to 

evaluate its effectiveness. The performance of an inventory control system can be measured 

either in terms of cost or service. Under a cost performance measure, the objective is to find 

control parameters of the system that minimize its total cost which may include ordering costs, 

inventory holding costs, and stockout penalty/backorder costs. However, in many practical 

situations backorder costs are generally hard to quantify. To overcome this difficulty, a 

service performance measure may be introduced under which the objective of the inventory 

control system is to achieve a predefined service level with minimal system costs. A detailed 

description of these cost and service measures are given in the following paragraphs.   

2.2.3.1 Cost performance measures 

For an inventory system, the major costs that will determine the structure and optimal 

parameters of its inventory policy mainly arise from the three costs related to ordering, 

inventory holding and shortage, respectively. By setting all these costs, the cost performance 

measure can be defined.  

Fixed Order Costs, c 

The fixed order cost only occurs when each order is placed. In practice, it may include the 

paper work cost for preparing the order and the costs for the inspection, packaging and 
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delivery (transportation) of the order. Let ci define a fixed order cost for placing an order by 

stock i to its supplier.  

Inventory Holding Cost, h  

This term is related directly to the maintenance cost of physical inventories. We define h
e
 or h 

as the echelon- or installation- inventory holding cost per unit of product per time unit. For 

stock i, note that the two types of holding costs can be transformed each other with the 

following relationship 

( )

e

i i jj P i
h h h


  and +1=0Nh  

Backorder Costs, b 

In SSA model, this cost incurred by a business when it is unable to fill an order and will be 

satisfied later. A backorder cost can be discrete, as in the cost to replace a specific piece of 

inventory, or intangible, such as the effects of poor customer service. Backorder costs are 

usually computed and displayed on a per-unit basis.   

Flexibility Cost, p 

Under the GSA model, it is assumed that, if lead time demand exceeds a prespecified level 

(maximum reasonable lead time demand level), additional countermeasures like overtime or 

expediting can be used to fill excessive demand beyond the level. This “operating flexibility” 

ensures the timely delivery of ordered items to its downstream stocks at a cost. Therefore, we 

define p as the cost of using such “operating flexibility” to fulfill each unit of excessive 

demand. In addition, since any stock except for the stock at the lowest level, i.e., level 1, 

never runs out of stock, the flexibility cost is only considered at stocks at level 1.  

2.2.3.2 Service performance measures 

The service performance measure of an inventory system can be defined in different ways. 

Since some customers may be interested in the percentage of the orders satisfied on-time 

among all orders and the others may be interested in the percentage of the demand satisfied 

on-time among the total demand, two different service levels, α- and β- service levels, are 

usually used to measure the service performance of an inventory system, which are defined in 

detail in the following. 

α- service level 
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In situations where only the occurrence of a stockout is important and not the quantity and 

duration of the shortage, the α-service level should be used. This service level is defined as 

the “probability of satisfying demand in an arbitrary period” (Klemm, 1973).  

Under the GSA model, the safety stock is strongly related to the α-service level of the stock. 

In this thesis, we set a predefined α-service level as an input parameter, by specifying this 

service level to customer, each stock indicates implicitly its preference for what range of its 

demand is covered by the stock itself and what range is fulfilled by using extraordinary 

measures.  

β- fill rate 

The β-fill rate is defined as the fraction of customer demand satisfied directly from stock. This 

service level can be written using the “expected units shortage” as follows: 

expected units shortage 
=1-

expected total demand
  

Different from α-service level, which represents the target probability of the extraordinary 

measures, the β-fill rate represents the quantity level need to be made available. In GSA 

model, it is assumed a predefined α-service level to express the maximum reasonable lead 

time demand level, so the optimization model and algorithm are described for the α-service 

level case only. Because of using (R, Q) policy, this thesis not only decide when should a 

replenishment order be placed (R), but also decide how large should the replenishment order 

be (Q). Therefore, β-fill rate is also a factor, need to consider in this thesis, we will give more 

detailed analysis of β-fill rate in the latter chapter.  

2.3 Guaranteed Service Approach 

The guaranteed service approach (GSA) was recently emerged as an alterative approach for 

optimally setting safety stocks in a supply chain. GSA provides inventory models different 

from those of SSA. In a GSA model, an inventory system is regarded as being more flexible 

than in the corresponding SSA model. The GSA assumes that further countermeasures besides 

safety stock exist to cope with demand variability. These additional measures are summarized 

by the term “operating flexibility” and comprise of measures such as overtime and expediting. 

With this operating flexibility, safety stock is only used to cover demand variability up to a 

certain level, the so-called maximum reasonable lead time demand level (Graves, 1998). If 

real lead time demand exceeds this level, the inventory system resorts to the operating 

flexibility in order to satisfy the whole demand on time. With this combination of safety stock 
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and operating flexibility there will be no stochastic delay in demand fulfillment. Thus, each 

stock can always guarantee 100% on-time service to its customers (direct downstream stocks) 

with a promised service time. Here, the service time of a stock is the time from the placement 

of an order by a direct downstream stock to the receipt of the order by the downstream stock.  

In order to understand the basic ideas of the GSA, we briefly introduce the work of Graves 

and Willems (2000). In their work, a general multi-echelon inventory system with periodic 

review and normal distribution demand process is considered under the GSA. Only inventory 

holding costs are considered in the system, and each stock i (i=1, 2, …, N) uses a base stock 

policy with base stock level BLi to control its inventory. The base stock level of each stock is 

determined according to its maximum reasonable lead time demand. Neither operating 

flexibility costs nor the effects of the operating flexibility on the material flows of the system 

are considered.  

The demand in the system has two types, external demand and internal demand. The external 

demand is the demand of final customer, which occurs only at the stocks in the lowest echelon. 

Let us denote the set of external demand nodes (stocks) by F. For each stock i in F, let di(t) 

denote its external demand at time (period) t, which comes from a stationary process. Let 

di[t1,t2) denote the total external demand of the stock from time t1 to time t2 without including 

time t2 for any t1≤ t2. Any other stock jF has only internal demand generated from its 

successor stocks, the internal demand of stock j at time t, dj(t), can be calculated according to  

the orders placed by its immediate successor stocks. 

For each stock i in F with normally distributed demand of mean i and standard deviation i , 

its maximum reasonable lead time demand level over lead time   is defined as: 

                                         ( ) ,i i i i iD k i F                                                                (2-3) 

where ki is a coefficient reflecting the percentage of time that the safety stock of stock i covers 

its demand variation. The choice of ki indicates how frequently the manager of the stock is 

willing to resort to operating flexibility to cover demand variability.  

For any other stock j (jF), Graves and Willems (2000) also define its lead time demand 

bound by combining the lead time demand bounds of its downstream stocks while considering 

risk pooling effects.  

In the GSA inventory model proposed by Graves and Willems (2000), there exist three types 

of service times, outbound service time (S), inbound service time (SI) and production time (T).  
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Outbound service times Under the GSA, each stock i guarantees a given service time Si to its 

direct downstream stocks. This means that the demand arriving at stock i at time t must be 

filled at t+Si.  

For each stock i facing customer demand, i.e., iF, an upper bound si may be imposed on its 

outbound service time, i.e., Si≤si, where si is the maximum outbound service time for the stock. 

The maximum outbound service time is a parameter specified by the end customer. For 

example, if the end customer wants him/her to be served immediately, stock i has to set si=0. 

Inbound service times For each stock i, its inbound service time SIi is defined as the time for 

stock i to get all of its inputs (ordered materials) from its direct upstream stocks (P(i)) and to 

commence production. We require that max{ ( )}i jSI S j P i  , since stock i cannot start 

production until all required inputs (materials) have been received.  

Production times Under the GSA, each stock i is assumed to have a deterministic production 

time Ti, which is the production lead time, given that all necessary components are available. 

Ti may be zero if stock i does not correspond to a production stage. 

For the three types of service times, the production times are input parameters of a GSA 

model, whereas the outbound and inbound service times are decision variables of the model.  

Net Lead Time  

Consider an order process. At time t, stock i observes demand di(t) from its immediate 

downstream stock(s) and starts replenishing inventory for the demand. It places an order with 

quantity di(t) to the upstream stocks and fills the demand with this order at the time t+SIi +Ti. 

According to the GSA, stock i guarantees to satisfy the demand at the time t+Si. This implies 

that if t+Si ≥ t+SIi +Ti, stock i can always satisfy the demand on time. Otherwise if t+Si < t+SIi 

+Ti, stock i has to store a certain amount of inventory to satisfy the demand occurred between 

time t+Si and time t+SIi +Ti, the length SIi +TiSi of the time interval [t+Si, t+SIi +Ti] is thus 

called the net lead time of stock i.  

The net lead times play an important role in the GSA, which can also be regarded as the 

decision variables in a GSA model. Since the maximum reasonable lead time demand level of 

each stock is usually defined as a function of its net lead time, it will be determined by an 

optimal solution of the model. 

From the above analysis, for each stock i, if t+Si < t+SIi +Ti, stock i has to hold a safety stock 

to cover the demand over the time interval (t+Si, t+SIi+Ti]. Therefore, the demand has to be 
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covered from the inventory or by subtracting the demand from the base stock level BLi. Then, 

the on-hand inventory at each stock i (i=1,2,…,N) can be formulated as 

                                                  ( ) ( , , ]i i i i i iI t BL d t S t SI T                                            (2-4) 

To provide 100% service level, ( )iI t must be nonnegative. In order to satisfy this requirement, 

Grave and Willems (2000) set the base stock level BLi to the maximum reasonable lead time 

demand level of stock i over its net lead time + -i i iSI T S , namely ( + - )i i i i iBL D SI T S . Hence, 

the expected on-hand inventory at stock i is 

                                                  ( ) ( )i i i i i i i iD SI T S SI T S                                             (2-5) 

Consequently, instead of searching for the optimal base stock levels for the inventory system 

considered, the GSA model proposed by Graves and Willems (2000) attempts to find the 

optimal outbound and inbound service times or optimal net lead times for all stocks. This 

model can be formulated as follows: 

Min: 
1

{ ( ) ( ) }
N

i i i i i i i i i

i

h D SI T S SI T S 


      

Subject to: 

0 1,2,...,i i iSI T S for i N     

0, ( ) 1,2,...,i jSI S for j P i and i N     

i iS s for i F   

, 0i iS SI  and integer for i=1,2,…,N 

where hi is unit inventory holding cost of stock i and P(i) 

The objective of the model is to minimize the total inventory holding cost of the multi-

echelon inventory system. The constraints ensure that the net lead time of each stock is 

nonnegative, each stock cannot start production until all required inputs (materials) have been 

received, and an upper bound is imposed on the outbound service time of each end stock 

(each stock facing customer demand). The decision variables are outbound service time (Si) 

and inbound service time (SIi) of each stock i. For this model, Graves and Willems (2000) 

developed an efficient dynamic programming algorithm to solve it when the network structure 

of the system is a spanning tree.   
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If the considered system is a serial inventory system and the outbound service time for the 

external customer is zero (si = 0 for any iF), Simpson (1958) proved that there exist an “all 

or nothing” optimal solution for the model, such that each stock either has no safety stock 

(Si=0) or has sufficient safety stock (Si=max{Sj, jP(i)}+Ti).  

2.4 Operating Flexibility and GSA  

The GSA optimization model presented in Sections 2.3 considers neither operating flexibility 

costs (i.e., the costs of using extraordinary measures to fill excessive demand) nor the effects 

of operating flexibility on the material flows of an inventory system. In order to incorporate 

operating flexibility costs in a GSA model, we should first know what kind of operating 

flexibility measures can be used in reality. There are several possibilities for using operating 

flexibility to achieve a guaranteed service, such as overtime, expediting or supplies from 

external/outside suppliers. By resorting to these operating flexibility measures, supply 

shortage is avoided since they can ensure that materials, which would not be available under 

normal conditions, are made available on time.  

Minner (2000) and Klosterhalfen and Minner (2010) considered operating flexibility costs in 

their comparison of the GSA with the SSA. They assumed that the operating flexibility 

measure used is expediting. With this operating flexibility option, to appropriately incorporate 

operating flexibility costs into a GSA model requires the following information:  

 The quantity of items that are expedited 

 The timespan for which the expediting takes place. 

In order to estimate the expediting timespan, Klosterhalfen and Minner (2010) conducted a 

simulation study on a two-level distribution system with one warehouse and two retailers. In 

their study, they tested various parameters settings, such as α-service level, the production 

time at the warehouse and coefficients of variation of customer demands. Specifically, the 

following parameter settings are considered for the system: 

 the α-service level varies between 16.67% and 95%, 

 the production time at the warehouse (T0) is set to 2 or 6, 

 the coefficient of variation of the customer demand (cv) is set to 0.2 or 0.4. 

Each instance in the simulation study was randomly generated with the above parameter 

settings. Their experimental results on all randomly generated instances demonstrate that on 
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average 98.53% of the items whose delivery is speeded up by using the operating flexibility 

measure are expedited by one period only. This means that the speeded-up items would have 

arrived in the second period. More specifically, all items are expedited by only one period 

when T0 is 2, irrespective of the α-service level. In case of a longer T0, i.e., T0=6, only for the 

instances with low α-service level (16.67% or 33.33%) and large coefficient of variation, i.e., 

cv=0.4, some items may be expedited by two periods or three periods in very rare situations. 

Such rare situations occur only for at most 2% of all instances tested.  

From this observation, instead of specifying operating flexibility costs depending on the 

expediting duration, we can approximately define the operating flexibility costs irrespective 

of the duration. This approximation is acceptable since on average 98.53% of the items 

expedited are expedited by one period only. 

The difficulty of specifying operating flexibility costs is comparable to the specification of the 

backorder costs in an SSA inventory model. As we know, in most cases it is quite difficult to 

directly evaluate backorder costs. As an alternative, backorder costs are usually specified 

through a service level to customer. That is, for a single stock, if its expected service level is 

 and its inventory holding cost per unit of product per unit of time is h, then unit back order 

cost of the stock can be defined as p/(h+p) = . Greater the expected service level of the stock, 

bigger its unit backorder cost. Similarly, for the GSA, the unit operating flexibility cost of a 

stock, denoted also by p, can be defined according to its expected service level to customer.  

The unit operating flexibility cost, p, must be larger than the unit inventory holding cost, h. 

Otherwise, it would be advisable to hold no stock at each stock by relying only on the 

operating flexibility option.  

In this thesis, we will consider both operating flexibility costs and the effects of operating 

flexibility on the material flows of a multi-echelon inventory system. More detailed 

discussion about both of them will be given in the latter chapters.  

2.5 Batch Ordering (R, Q) Policy and GSA 

As we have mentioned, all previous works on the GSA only deal with inventory systems 

without fixed order costs, however, in practice, fixed order costs exist for most inventory 

systems when economics of scale in production and/or in distribution exist. In this thesis, we 

attempt to use the GSA to model and solve inventory policy optimization problem of multi-

echelon inventory systems with fixed order costs. Because of the existence of fixed order 
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costs at each stock in such systems, we choose batch ordering (R, Q) policies as inventory 

policies of the systems.  

Because echelon (R, Q) policies are much easier to be handled than installation (r, Q) policies 

under the GSA framework, in this thesis we choose echelon (R, Q) policy as the inventory 

policy for a multi-echelon inventory system with order costs at each stock. In addition, for 

serial and assembly systems, we confine ourselves to echelon (R, Q) policy that can be 

transformed into equivalent installation (r, Q) policy with equation (2-1) when condition (2-2) 

holds, because with this transformation the echelon (R, Q) policy can be easily implemented 

in practice. 

As most studies in the literature, we restrict our attention to echelon (R, Q) policies with 

integer-ratio relationships. For serial and assembly systems, integer-ratio constraints mean 

that the order size of each stock is a positive integer multiple of its immediate successor. For 

two-level distribution systems, such integer-ratio constraints also exist but have different 

forms. More detailed discussion about integer-ratio constraints in different systems will be 

given in latter chapters.  

Echelon (R, Q) policies with integer-ratio constraints have been proved to be cost-effective 

for systems like serial and assembly systems. In practice, the coordination of order sizes 

among different stocks in a multi-echelon inventory system can facilitate quantity 

coordination among these stocks and can simplify packaging, transportation and stock count 

in the system. 

For serial systems, under the GSA and the integer-ratio assumption, we have ri  Qi-1. 

Because if ri   Qi-1  1, then ri + Qi-1  1. This implies that stock i will not place any 

replenishment order at its negative but reachable inventory position IPi = ri + Qi-1, which is 

contradictory with the guaranteed service assumption of the GSA, because at the state, stock i 

is in shortage. Moreover, for any ri  [-Qi-1, -2], we can replace it by 'ir
 = 1 since this 

replacement will not change the timing of all replenishment orders of stock i, because: 1) IPi 

 ri implies IPi  'ir
, 2) if IPi  'ir

<0, from IPi { ri, ri + Qi-1, …, ri + mi-1Qi-1} and ri + Qi-1  0, 

we have IPi = ri  ri. Similar results hold for assembly systems. So for these two types of 

systems, we assume ri  1 in the rest of this thesis. 

In the next chapter, we will extend the standard GSA to optimize (R, Q) policies for serial 

systems with fixed order costs at each stock. The extended GSA will explicitly consider 
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operating flexibility costs and the effects of operating flexibility on the material flows of the 

systems. 
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Chapter 3 Optimization of (R, Q) Policies for Serial Systems 

After the description of multi-echelon inventory systems and the guaranteed service approach 

(GSA) in the last chapter, this chapter deals with the optimization of (R, Q) policies for serial 

inventory systems with Poisson demand under the GSA. Except for considering inventory 

holding costs as in standard GSA model, we also consider the fixed order costs and operating 

flexibility costs. Following a description of the main assumptions and notations in Section 3.1, 

a mathematical model for the optimization problem is formulated in Section 3.2. This model 

can be solved by an iterative procedure based on two dynamic programming (DP) algorithms. 

One DP algorithm is used to solve the order size decision sub-problem, and the other is used 

to solve the reorder point decision sub-problem of the model. The two algorithms will be 

described in detail in Section 3.3 and 3.4, respectively. The iterative procedure will be 

presented in Section 3.5. Numerical experiments for evaluating the performances of the 

procedure and the two DP algorithms will be reported in Section 3.6.     

3.1 Problem Description     

3.1.1 Serial System studied 

A continuous review serial inventory system with N (N>2) stocks is considered, where stock 

N orders from an external supplier with unlimited stock, stock N-1 orders from stock N, stock 

N-2 orders from stock N-1, and so on. Finally, at the lowest stock, stock 1, customer demand 

occurs. A stage may represent a production process, in which raw material is transformed into 

a product, or a distribution process, in which a product is moved from one location to another 

location. A serial inventory system with N stocks can be depicted as in Figure 3.1. No 

capacity constraints exist at any of the stocks. All stocks in the system operate echelon (R, Q) 

inventory policies. The customer demand is assumed to be stationary and independent Poisson 

distribution with the average demand rate λ.  

We attempt to use the guaranteed service approach (GSA) to derive the optimal (R, Q) policy 

for the system, so as to minimize the total system costs while satisfying the customer service 

level. For the customer demand, the GSA sets a maximum reasonable lead time demand level 

D(τ) over τ periods, all excessive customer demand superior to this level will be treated by 

extraordinary measures.  
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Figure 3. 1  A serial inventory system with N stocks 

Moreover, for echelon (R, Q) inventory policy considered, we restrict it to one satisfying the 

integer-ratio constraint, that is, the order size of each stock i is a multiple of the order size of 

its immediate successor, i.e., stock i-1. Specifically, Qi is a multiple of Qi-1, i.e., Qi=mi-1Qi-1, 

where mi-1 is a positive integer for i=1,2,…,N. This assumption is natural since stock i-1 

always places an order of Qi-1 units to stock i and each inventory replenishment order of stock 

i is used to fulfill the demands from stock i-1. Integer-ratio (R, Q) policies have been proved 

to be at least 98% cost-effective for systems like serial systems (Chen and Zheng, 1994). In 

practice, the coordination of order sizes among different stages in a multi-echelon inventory 

system can facilitate quantity coordination among these stocks and simplify packaging, 

transportation and stock count in the system.   

3.1.2 Maximum reasonable lead time demand level 

One key assumption of the GSA is that a maximum reasonable lead time demand level is 

specified for lead time demand of the customer and excessive part of the lead time demand 

beyond the level is fulfilled by using operating flexibility. Here, the maximum level is not 

defined directly on the demand of each period (or a given period) but the lead time demand. 

Since the lead time is a decision variable in the GSA model, this level is usually defined as a 

function of the lead time.  

Let us denote the lead time demand over  units of time ( 0  ) from time t  to time t 

( t  ) by [ , )d t t  and the maximum reasonable lead time demand level over the lead time 

demand by ( )D  .  The bounded lead time demand assumption can be described as follows:   

                                                         ( ) [ , )D d t t                                                             (3-1) 

Note that the bounded demand assumption and the GSA were adopted by Graves and Willems 

(1996, 2000) in the context of setting the safety stock in a supply chain. In their work, the 

base stock level of each stock is set to cover all realizations of its lead time demand that fall 

within an upper bound. If the lead time demand exceeds the upper bound, the stock might 

resort to extraordinary measures such as expediting and overtime to fulfill the excessive part 

of the demand. Following this logic, they set the bounds at the stock’s average lead time 
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demand plus safety stock. Since the base stock level (or safety stock) is strongly related to the 

service level of the stock, in this these, we set the lead time demand according to the event-

oriented service level to final customer as described in the above. By specifying a service 

level to customer, each stock indicates implicitly its preference for what range of its demand 

is covered by the stock itself and what range is fulfilled by using extraordinary measures. Of 

course, the service level should be determined so that the total cost of the system is minimized, 

this will be discussed later.   

In a serial system depicted in Figure 3.1, the customer demand only occurs at stock 1, that is, 

the maximum reasonable lead time demand level at stock 1 is defined as the minimum 

number ( )D  satisfying the following condition 

                                                         { [ , ) ( )}p d t t D                                                   (3-2) 

Since the customer demand at stock 1 follows a Poisson process with average demand rate λ, 

( )D  can be calculated by  

                                                            
( )

0

[ ]

!

kD

k

e

k

 






                                                      (3-3) 

We give a simple example, if λ=5 and α=0.9 according to the above inequality (3-3), the 

maximum reasonable lead time demand level ( )D   for different lead time [0,10]  , can be 

derived as in Table 3.1, where = ( )- ( -1)D D  . From the table, we can see ( )D  is neither 

concave nor convex. 

Table 3. 1 Maximum reasonable lead time demand level 

  0 1 2 3 4 5 6 7 8 9 10 

D(τ) 0 8 14 20 26 32 37 43 48 54 59 

∆  8 6 6 6 6 5 6 5 6 5 

3.1.3 Cost Structure  

For the serial inventory system considered, the total cost is assumed to consist of three costs: 

inventory holding cost, fixed order costs and operating flexibility costs for fulfilling excessive 

demand. Since we use an echelon (R, Q) inventory policy to control the system, the inventory 

holding costs will be evaluated based on the echelon on-hand inventory of each stock. The 

fixed order costs are evaluated based on the number of orders that each stock places to its 

supplier (immediate upstream stock). That is, the placement of each order incurs a fixed order 

cost. As for the third cost, they are assumed to depend linearly on the amount of demand 
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fulfilled by using operating flexibility. Since any stock except for the stock 1 never runs out of 

stock under the GSA model, the costs for using operating flexibility is only accounted one 

time at stock 1. All parameters to be used in the formulation of the total cost are given as 

follows: 

ci: fixed cost for placing each order by stock i to its supplier, i.e., stock i+1, 

hi: installation holding cost per unit product per time unit for stock i,  

hi
e
: echelon holding cost per unit of product per time unit for stock i, i=1,2,…,N. 

p: cost for using operating flexibility to fulfill each unit of excessive customer demand.    

After the description of basic assumptions about the optimization problem, a mathematical 

model will be formulated in the next section.  

3.2 Mathematical Model Formulation  

Before presenting the mathematical model, the definitions and notations used in it are first 

given in Section 3.2.1, and we also give the detailed description about the objective function. 

Finally, we will formulate a mathematical model for the optimization problem in Section 

3.2.3.  

3.2.1 Definitions and Notations 

We first define the following notations that will be used later. 

Indices 

i: node index, i=1,…,N, where N represents the number of stocks (levels) in the system, 

t: time index, t=0,1,…,  with continuous review. 

Parameters 

Li: net lead time of stock i, i.e., Li=SIi+Ti-Si, i=1,2,...,N, 

λ: average demand rate of the customer demand at stock 1,  

s1: an upper bound of outbound service time at stock 1. 

At any time t,  

Ii(t): on-hand inventory of stock i, 

Ii
e
(t): echelon on-hand inventory of stock i, 

ILi
e
(t): echelon inventory level of stock i,  
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IPi
e
(t): echelon inventory position of stock i,  

OOi(t1, t2]: the quantity of all orders placed by stock i from time t1 to time t2 (not including t1), 

i=1,2,…,N. 

[ , )id t L t : the lead time demand over Li units of time of stock i, i=1,2,…,N, 

[ , )id t L t


 : the lead time demand over Li units of time fulfilled normally by the considered 

system.  

Decision Variables  

 : fill rate of the system,  

Ri: reorder point of stock i, 

Qi: order size of stock i, 

Si: outbound service time of stock i, 

SIi: inbound service time of stock i, i=1,2,…,N. 

3.2.2 Objective Function  

In this thesis, the objective is to minimize the average total costs of the system per time unit. 

To formulate the total cost, we have to formulate three types of costs mentioned in Section 

3.1.3, inventory holding costs, fixed order costs and operating flexibility costs for each stock.  

Inventory holding costs 

The average inventory holding costs per unit of time for stock i can be formulated as [ ]e e

i ih E I , 

i=1,2,…,N.  

Fixed order costs 

Since β represents the percentage of the quantity of customer demand fulfilled normally 

without operating flexibility, then, for each time unit the average number of units of customer 

demand fulfilled normally is . Therefore, the average fixed order cost per unit of time for 

stock i can be formulated as i

i

c

Q


. 

Operating flexibility cost 



 

 49 

In order to formulate operating flexibility costs, we first need to know the average number of 

customer demand fulfilled by using operating flexibility, which can be formulated as (1 )  . 

Then, the average cost of using operating flexibility to fulfill excessive customer demand per 

time unit is (1 )p  . 

Therefore, the objective function for the optimization problem is the total system cost of each 

stock in the serial inventory system with N stocks. Therefore, the objective function is give as 

under 

                                                 
1

( [ ]) (1 )
N

e ei
i i

i i

c
h E I p

Q


 



                                               (3-4) 

Note that for the system if all units of customer demand fulfilled by using operating flexibility 

are regarded as the units of demand not satisfied on-time under the SSA model, 

then  corresponds to the fill rate of the system.  

3.2.3 Model Formulation  

Under the GSA model, for stock i, if its immediate downstream stock, stock i-1, places an 

order to it at time t, this order must be filled by stock i at time t+Si. In order to do so, stock i 

should replenish its inventory corresponding to the order form its supplier (stock i+1) at time 

t-(SIi+Ti-Si), because in this way the inventory replenishment of stock i can be used to fill the 

customer order at time t-(SIi+Ti-Si)+(SIi+Ti)= t+Si. The behavior of stock i is thus equivalent 

to the behavior of a stock with the same demand process, net lead time SIi+Ti-Si and zero 

outbound service time, i.e., this behavior can be modeled by that of the stock with inventory 

replenishment lead time SIi+Ti-Si under the assumption that any customer demand is filled 

(delivered) immediately without delay. With this equivalence, we can only consider net lead 

time at each stock and assume that each order placed by a downstream stock will be filled 

(delivered) immediately in analyzing the serial inventory system. For convenience, we replace 

SIi+Ti-Si by Li in the following formulation process.  

According to the definitions about IPi
e
(t), we can derive the following equations for each 

stock i,  

                                     

( ) (0) (0, ] [0, ),

( ) (0) (0, ] [0, ),

( ) ( ) ( , ] [ , )

e e

i i i

e e

i i i i i i

e e

i i i i i i

IP t IP OO t d t

IP t L IP OO t L d t L

IP t IP t L OO t L t d t L t

  

     

     

                              (3-5) 
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At time t, stock i receives all its orders placed to its upstream stock i+1 in or before time t-Li, 

but none of the orders placed after time t-Li is received by stock i, then, we can derive 

                                                  ( ) ( ) ( , ]e e

i i i iIL t IP t OO t L t                                                  (3-6) 

On the other hand, the following inventory balance equation is well-known: 

                                                  ( ) ( - ) [ , )e e

i i i iIL t IP t L d t L t                                                 (3-7) 

Under the GSA model, stock i has no backorder because of using operating flexibility, then,  

                                                                ( )= ( )e e

i iIL t I t                                                            (3-8) 

From equation (3-7), we can derive that  

                                                    ( )= ( ) [ , )e e

i i i iI t IP t L d t L t                                               (3-9) 

For stock i, in order to provide 100% guaranteed service, ( ) 0e

iI t  must be satisfied, then,  

                                                       ( ) [ , )e

i i iIP t L d t L t                                                    (3-10) 

Constraint (3-10) imposes a condition on e

iIP . In addition, another constraint which ensures no 

stockout at each stock has to be considered. At stock i, no stockout means that on-hand 

inventory Ii(t) is always nonnegative.  

According to the definition above, Ii(t) is given by  

                                                            1( ) ( ) ( )e e

i i iI t I t IP t                                                 (3-11) 

Under the condition ( ) 0iI t  , we have  

                                                                
1( ) ( )e e

i iI t IP t                                                     (3-12) 

According to equation (3-9), the following inequality can be derived  

                                                  1( - ) [ , ) ( )e e

i i i iIP t L d t L t IP t                                           (3-13) 

Since the satisfaction of constraint (3-13) implies the satisfaction of constraint (3-10), only 

constraint (3-13) need to be considered in the following analysis. 

Under an echelon (R, Q) inventory policy, at stock i, after order decision, but before demand 

occurrence, IPi
e
 must be within the interval [Ri+1, Ri+Qi] for any stock i, such as  

( - ) [ 1, ]e

i i i i iIP t L R R Q   , and -1 1 1 1( ) [ 1, ]e

i i i iIP t R R Q      
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According to Hadley and Whitin (1961), IPi
e
 is uniformly distributed over the interval [Ri+1,  

Ri+Qi], with the probability 
1

iQ
of being at state Ri+j, j=1,…,Qi. This implies that there is 

it L such that ( - )= 1e

i i iIP t L R  and t can be taken as a time larger than any given number.  

Two cases may happen for equation (3-13): 

Case 1: 0iL  . In this case, we have 

1) [ , )id t L t can take any positive integer value. 

2) According to Zipkin (1986) or Simchi-Levi and Zhao (2007), as t  , the inventory 

position 
1( )e

iIP t
is statistically independent of the lead time demand [ , )id t L t . 

3) 
1( )e

iIP t
is uniformly distributed over the interval 1 1 1[ 1, ]i i iR R Q    . 

The above three properties imply that starting from it L with inventory 

position ( - )= 1e

i i iIP t L R  , there exists a realization of the demand process from time it L to 

time t such that [ , ) ( )i id t L t D L  and
-1 1 1( )=e

i i iIP t R Q  . 

In this case, in order to ensure that inequality (3-13) holds for any demand realization under 

the GSA (that is, the part ( )iD L of the lead time demand [ , )id t L t must be satisfied on time), 

we must have: 

                                           1 11 ( )i i i iR D L R Q      for i=1,2,…,N                                  (3-14) 

where R0 and Q0 are assumed to be 0. 

Case 2: =0iL . In this case, ( )=0iD L and inequality (3-13) becomes 
1( ) ( )e e

i iIP t IP t for any 

time t. Since the echelon (Ri, Qi) policy we consider is transformed from an installation (ri, Qi) 

policy according to equation (2-1), we have 1 11= 1i i i iR R Q r     . Since -1ir  (See section 

2.3.3), we have 1 11i i iR R Q    . This implies that inequality (3-14) also holds for this case.  

Now, we can derive a lower bound for each Ri. After the replacement of iL by the net lead time 

given above, we have, 

                                        
1

1 0

( )
i i

i j j j j

j j

R D SI T S Q i


 

      for i=1,2,…,N                      (3-15) 
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Since the objective of the problem is to minimize the total cost, there exists an optimal 

solution with Ri, i=1,2,…,N given by the following equations.   

                                        
1

1 0

= ( )
i i

i j j j j

j j

R D SI T S Q i


 

      for i=1,2,…,N                      (3-16) 

Since 100β% of the total demand is fulfilled normally and the demand rate is λ, we have  

                                                          [ [ , )]i iE d t L t L


                                                   (3-17) 

Assume that all excessive demands are satisfied without incurring inventory holding costs. 

This assumption is reasonable since the occurrence of excessive demand implies zero on-hand 

level in the considered system. With this assumption, we can ignore excessive demand in the 

calculation of expected inventory holding cost [ ]e

iE I . That is, when calculate [ ]e

iE I according 

to equation (3-9), we must first replace [ , )id t L t by [ , )id t L t


 . After this replacement, 

( )= ( ) [ , ) 0e e

i i i iI t IP t L d t L t


     is always true. Since ( )e

iIP t is uniformly distributed over the 

interval[ 1, ]i i iR R Q  in steady state, we have: 

                                            
1

11
[ ] ( )

2

iQ
e i

i i i

ji

Q
E IP R j R

Q 


                                           (3-18) 

So we can derive [ ]e

iE I  as follows: 

                             
1+

[ ] [ ( , ) [ , )]
2

e e i
i i i i i i

Q
E IP E IP t L t d t L t R L



                            (3-19) 

By substituting Ri given by (3-16) into equation (3-19) and replacing iL by i i iSI T S  , we can 

deriving the following equation: 

        
1

1 0

1+
[ ] ( ) ( )

2

i i
e i
i j j j i i i j

j j

Q
E I D SI T S SI T S Q i



 

          for i=1,2,…N          (3-20) 

With equation (3-4) and (3-20), the inventory policy optimization problem we study can be 

formulated as the following nonlinear programming problem: 

P: Minimize 

1

=1 1 1

1
{ [ ( ) ( ) ] } (1 )

2

N N i N
e ei i
i j j j i i i j i

i i j j ii

c Q
h D SI T S SI T S i h Q p

Q


  

  


                 
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Subject to:          

                                        1 1,2, , 1i i iQ mQ for i N                                                  (3-21) 

                                        0 1,2, ,i i iSI T S for i N                                                    (3-22) 

                                           
1 1,2, ,i iSI S for i N                                                         (3-23) 

                                                  1 10 S s                                                                           (3-24) 

                                    0iQ   and integer for i=1, 2,…, N                                                (3-25) 

                                , 0i iSI S   and integer for i=1, 2,…, N                                              (3-26) 

The objective function represents the average total costs of the system in the long run. 

Constraint (3-21) is the integer-ratio constraint between the order size of any two successive 

stocks, in which the order size of stock i+1 must be a positive integer multiple of the order 

size of its immediate successor, Qi. Constraint (3-22) assures that the net lead time at each 

stock is nonnegative. Constraint (3-23) implies that each stock i can start production only 

when all the inputs are available, so the inbound service time of each stock i must equal to or 

greater than the outbound service time of its immediate upstream stock. Constraint (3-24) 

imposes an upper bound s1 on the outbound service time of stock 1, where s1 may be given by 

the required delivery lead time of final customer. Constraint (3-25) and (3-26) imply that all 

the decision variables must be integer. 

When β is known, (1 )p  in the objective function of model P becomes a constant which 

can be ignored and the model can be decomposed in two independent sub-models or sub-

problems, one with decision variables Qi and the other with decision variables SIi and Si. The 

two sub-problems are called order size decision sub-problem and reorder point decision sub-

problem or Q-problem and R-problem for short, respectively hereafter. The Q-problem has a 

convex objective function composed of all Q-dependent cost terms and constraint (3-21) and 

(3-25), whereas the R-problem has a nonlinear objective function composed of all R-

dependent cost terms and linear constraints (3-22), (3-23), (3-24) and (3-26).  

Q-problem: 

Minimize: 1

=1

1
[ ( ) ]

2

N N
e ei i
i j i

i j ii

c Q
h i h Q

Q







       

Subject to:          
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1 1,2, , 1i i iQ mQ for i N     

                                                0iQ   and integer for i=1, 2,…, N           

            

R-problem: 

Minimize: 
=1 1

[ ( ) ( )]
N i

e

i j j j i i i

i j

h D SI T S SI T S


        

Subject to:          

0 1,2, ,i i iSI T S for i N                                                           

1 1,2, ,i iSI S for i N   

                                                                1 10 S s                                                                                                     

                                              , 0i iSI S   and integer for i=1, 2,…, N                                                       

Obviously, the objective function of Q-problem is convex with respect to Qi, i=1,2,...,N, since 

it is a kind of EOQ cost function. However, we find the objective function of R-problem is 

neither convex nor concave through numerical analysis. The non-convex, non-concave nature 

of this function is due to the irregular nonlinearity of demand bound ( )i i iD SI T S  . In the 

next two sections, we will use two efficient algorithms to solve the two sub-problems, 

respectively. As soon as the two sub-problems are solved, the optimal order size Qi is given 

by the solution of the Q-problem, and the optimal reorder point Ri can be determined from 

{SIj, Tj, Sj | 1 j i} and {Qj | 0 j i1} according to equation (3-16).  

The above analysis assumes β is known. However β is not known, but it can be determined by 

the parameters and inventory policy of the system considered. In the following sections, we 

will first present two dynamic programming algorithms for solving the two sub-problems in 

Section 3.3 and 3.4, respectively when α and β are given, and then present an iterative 

procedure for solving the original inventory policy optimization problem in Section 3.5.   

3.3 Dynamic Programming Algorithms for Q-problem 

In this section, we propose a dynamic programming (DP) algorithm to solve Q-problem, 

which determine the optimal order size *Q for echelon (R, Q) inventory policy used at each 
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stock in the serial system studied. The basic principle of DP is first explained in Section 3.3.1, 

and how to use it to solve the Q-problem will be introduced in detail in Section 3.3.2.  

3.3.1 Basic Principle of DP 

Dynamic program is an optimization approach that transforms a complex problem into a 

sequence of simpler problems; its essential characteristic is the multistage nature of the 

optimization procedure. The three most important elements of DP are stage, state and 

recursive optimization.  

1) Stages 

The essential feature of a dynamic programming approach is the structuring of an 

optimization problem into a multi-stage decision problem in which the decisions at multiple 

stages are solved sequentially one stage at a time. Although each one-stage problem is solved 

as an ordinary optimization problem, its solution influences the characteristics of the next 

one-stage problem in the sequence. Often, the stages represent different time periods in the 

planning horizon of a problem or different subsystems of a system.  

2) States 

Associated with each stage of an optimization problem is the state of the underlying system or 

process. The state contains the information required to fully assess the consequences that the 

current decision has upon further actions. The specification of the state of the system is 

perhaps the most critical design parameter of a dynamic programming algorithm. Two general 

rules for defining the state are: 

 The state of a system should convey enough information to make future decisions without 

regard to how the system reached the current state;  

 The number of state variables should be as small as possible, since the computational 

effort associated with a dynamic programming approach will be prohibitively expensive if 

there are more than two state variables involved in the dynamic programming algorithm.  

3) Recursive Optimization 

The final general characteristic of a dynamic programming approach is its recursive 

optimization procedure, which builds an optimal solution of a multi-stage decision problem 

by first solving a one-stage problem and sequentially including and considering one stage at a 

time until the optimal solution of the overall system has been found. This procedure can be 

derived based on a backward induction process, where the first one-stage problem to be 
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considered is in the final stage of the problem and one-stage problems are solved moving back 

one stage at a time until all stages are considered. Alternatively, the recursive procedure can 

be derived based on a forward induction process, where the first one-stage problem to be 

solved is the initial stage of the problem and one-stage problems are solved moving forward 

one stage a time until all stages are considered. In certain problem settings, only one of the 

two induction processes can be applied.  

The derivation of a recursive DP procedure for an optimization problem is based on the 

principle of optimality, which can be stated as the property of any optimal policy that, 

whatever the current state and decision, its remaining decisions must constitute an optimal 

(sub) policy with regard to the state resulting from the current decision.  

3.3.2 Dynamic Programming Algorithm 

In order to apply dynamic program to the Q-problem, we first formulate the problem as a 

multistage decision problem in a network whose nodes represent the states of the studied 

system as shown in Figure 3.2. The network has a single starting node (source node) 0, a 

single ending node (sink node) N+1, and intermediate nodes of N stages. Stage i corresponds 

to stock i, i=1,2,…,N. Each node at stage i in the network indicates a possible value of the 

order size Qi for stock i, and there is a directed arc from a node at stage i to a node at stage i+1 

if 
1i i iQ m Q  for some integer mi, where the decision variable mi is associated with the arc. In 

the network, each path from the starting node to the ending node corresponds to a possible 

solution of the Q-problem. 

 

Figure 3. 2  Dynamic programming network for Q-problem 

Start 

node 

Stage N  

End 

node 

 Stage 1  

Stage 2  

   Stage 0  Stage N+1  

 Stage i  
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If we associate each arc from a node at stage i-1 to a node at stage i with the length 

corresponding to the cost of stock i (i=1,2,…,N) and each arc from a node at stage N to the 

ending node with zero length (cost), the total cost of the system is given by the length of a 

path from the starting node to the ending node in the network since the total cost is the sum of 

the costs of all stocks. The minimization of the total cost is thus equivalent to finding the 

shortest path in the network.  

The following notations will be used in the DP algorithm: 

i: stage index, i=0,1,….,N+1, stage (stock) 0 and stage (stock) N+1are two additional stages 

(stocks) representing the starting state and ending state of the DP algorithm, respectively.   

Qi: state variable of stock i, which represents a possible order size of stock i, i=1,2,…,N, 

Wi: the set of all possible values of Qi, i=1,2,…,N,  

mi-1: decision variable of stock i, i=2,…,N, 

Mi-1(Qi-1): the set of permissible values of mi-1 given the state Qi-1 of stock i-1, i=2,…,N, 

di(Qi-1, mi-1): the cost of stock i when its decision is mi-1 and the state of stock i-1 is Qi-1,  

fi(Qi): the minimal total cost from stock 0 to stock i when the state of stock i is Qi, i=1,2,…,N.  

With the above notations and applying the dynamic programming optimality principle, the 

state transition functions and the recursion equations of the DP algorithm can be written as: 

Qi=mi-1∙Qi-1，i = 2, 3, …, N , 

1 1 1

1 1 1 1
( )

0 0

( ) min { ( , ) ( )} 1,2,3, ,

( ) 0

i i i

i i i i i i i
m M Q

f Q d Q m f Q i N

f Q

  

   


  




  , 

where 

1 1 1

1

1
( , ) ( ) , 1,2, ,

2

( , ) 0

N
e ei i

i i i i j i

j ii

N N N

c Q
d Q m h i h Q i N

Q

d Q m


  






     


 



 

In order to apply the above recursion equations to calculate fi(Qi) for each stock i, the state 

space W1 of stock 1 and the permissible decision set Mi-1(Qi-1) of stock i must be determined 

before the recursion process. The following two properties can be used to determine W1 and 

Mi-1(Qi-1) for i=2,3,…,N. 

 
Property 1: For serial inventory system with N stocks, an upper bound of Q1 is given by: 
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3 (2 1)
(2 1)
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i
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eN
i

i

c
c c c

Q
h h N h

i h








  
 

   





 

Proof: Substitute 
1

1

1

2,...,
i

i j

j

Q m Q for i N




   into the objective function of the Q-problem, 

we have  

1

1 2
11 1

1 11
2 11

1

1

1
1

( 1) [ ( ) * ]
2 2

i

j iN N
je e ei

i j ji
i j i j

j

j

m Q
cc Q

h h i h m Q
Q

m Q









  






     


  


 

If all mi for i=1,2,…, N-1 are given, the above function contains only one variable Q1. 

Because this function is convex with respect to Q1, the optimal value of Q1 can be derived at 

the point where the first derivative of the function with respect to Q1 is equal to 0. After 

calculating the first derivative, we can get the following equation: 

2

1

0G H
Q


    , 

where 32
1 1 1

1 1 2

1 1

i N

i N

j j

j j

c c cc
G c

m m m
m m

 

 

    

 
; 

1 1

1 2 2 3 1

1 1 1

1 1 1 1
( ) ( ) ( )
2 2 2 2

i NN
e e e e e e e e e

N N i j j N j

j i j j

H h h h h h h m h h m h m
 

   

             ; 

Then, 

11

12

1 1 1

1

2 2 11 1

2

( 2 ) ( 2 )

NN

i j N

i j i

N iN N N
e e e e

j j i j j

j i j ij j

c m c

Q

m h h h h m





 

 

    



 

  

 

   
. 

From the above equation, it is obvious that the maximum value of Q1 is attained when m1= m2 

=…= mN-1= 1, then, we can derive, 
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Since Q1 must taken a positive integer value, W1 for stock 1 can be taken as the integer set 

{1,2,…,
1Q

 
  

—

}, where min{ }x a Z a x     and Z is the set of integers.  

Property 2: For stock i (i=2,…, N) of the serial inventory system, if the state of stock i-1 is 

Qi-1, then an upper bound of mi-1 can be derived by: 

1 1
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Proof: After substituting 
1

1

1

, 2,...,
i

i j

j

Q m Q for i N




   into the objective function of the Q-

problem, it can be rewritten as: 
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The objective function is convex with respect to variable mi, so the optimal value of mi is 

attained at the point where the first partial derivative of the function with respect to mi is equal 

to 0, i.e., 

2

1
0 1,2, , 1i

i i

P RQ for i N
Q m


       
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Then, 
1

, 1,2,..., 1i

i

P
m for i N

Q R
     . 

From the above equation, it is obvious that the maximum value of mi is attained when mi+1 = 

mi+2 =…= mN-1=1, so we can derive that  
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Similarly, the permissible decision set Mi-1(Qi-1) can be taken as the integer set
1[1,2, , ]im





 
  

. 

With the above two bounds, the main steps of our dynamic programming algorithm can be 

summarized in the following. 

Step 1: Determine the set W1 of possible values of Q1 based on Property 1. 

Step 2: Set i=1, calculate f1(Q1) for each Q1 in W1, this gives the boundary condition of the DP 

algorithm. 

For stage i=2,…,N: 

Step 3: Determine Mi-1(Qi-1) based on Property 2, and according to the state transition function 

Qi=mi-1∙Qi-1, calculate fi(Qi). 

Step 4: Set i=N+1, at the ending node, calculate +1 1( ) min ( )
N

N N N N
Q

f Q f Q  . +1 1( )N Nf Q  is the 

minimal cost for the Q-problem.  

Step 5: Backtrack from stock N+1 to stock N, stock N to stock N-1,…, stock 1 to stock 0 to 

find the optimal Qi
* 
for each stock i. 

Note that Crowston and Wagner (1973) presented a dynamic programming algorithm to solve 

a lot size problem for assembly systems with deterministic demand. Their algorithm can also 

be used to solve our Q-problem. Their algorithm first calculates an upper bound and a lower 

bound of the optimal lost size for each stock, based on the lower bound and an upper bound of 

the optimal cost of the joint lot-sizing problem. The efficiency of the algorithm strongly 

depends on the second upper bound, which is obtained either by a heuristic or by a dynamic 

programming algorithm of the same type but with coarse grid.  



 

 61 

We will compare our DP algorithm with Crowston and Wagner’s algorithm in Section 3.6 for 

the purpose of evaluating the efficiency of the two algorithms for the Q-problem.  

3.4 Dynamic Programming Algorithm for R-problem  

In this section, we describe how to solve R-problem by dynamic programming when the 

underlying network for the supply chain is a spanning tree. This algorithm is developed by 

Graves and Willems (2000). Since the serial system we study also has a spanning tree 

structure and our R-problem is similar to their problem with the only difference on objective 

function, their dynamic programming algorithm can also be used to solve our problem. In the 

following, we briefly introduce their algorithm applied to our problem.  

In the terminology of dynamic programming, the R-problem will be solved by decomposing it 

into N stages where there is a dynamic-programming stage for each node in the spanning tree. 

In a spanning tree, it is easy to show that there will always a node that is adjacent to at most 

one other node. The serial inventory system has a simple network structure, which already has 

this important characteristic. Therefore, for an N-stock serial system, we only label stock i as 

node i for i=1,2,…,N. And in order to show the characteristic of the spanning tree, we also 

define p(i) to be the node with higher label that is adjacent to node i, for i=1,2,…,N-1, and  

p(i)=i+1 can be derived directly. The node N obviously has no adjacent node with higher label.  

Next, we will numerate the nodes in a spanning tree so that there will be a single state variable. 

However, the state variable for the dynamic program will be either the inbound service time at 

a stock or its outbound service time, where the determination depends on the topology of the 

network.  

In order to explain the dynamic programming recursion, we first define N(i) as the subset 

nodes {1,2,…,i} that are connected to i on the sub-graph consisting of nodes {1,2,…,i}.And 

N(i) can be determined by the following equations: 

( ) { } ( 1)N i i N i    

This implies that N(i)={1,2,…,i}.   

The dynamic programming algorithm evaluates a functional equation for all nodes (stocks), in 

the order of their labels. According to Graves and Willems (2000), generally the functional 

equation may have two different forms at each node (stock) i (i=1,2,…,N-1), depending on the 

location of the node (stock) with higher label that is adjacent to node (stock) i. However, for 

the serial system studied, each node (stock) i has only one upstream adjacent node (stock) 
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with a higher label, i.e., node (stock) i+1, then the functional equation has the unique form. In 

order to formulate the equation, let us define:  

( )ig SI : the minimum inventory holding cost for the sub-system (of the original serial system) 

described by the sub-graph with node set N(i), where the inbound service time of stock i is 

given by SI.  

With this cost equation, the minimum inventory holding cost for the sub-system can also be 

defined as a function of both outbound service time and inbound service time of node (stock) i: 

1 1

1

1

( , ) [ ( ) ( )] min [ ( )]
i i

i
e

i i j j j i i i i
S y M T

j

C S SI h D SI T S SI T S g y
 


  



         

The above function consists of two terms, the first term is the inventory holding cost of node 

(stock) i, which is a function of S and SI, and the second term corresponds to the nodes (stock) 

in N(i) that are downstream of node (stock) i.  

The functional equation for ( )ig SI can be found by solving the following optimization 

problem. 

( ) min( ( , )i i
S

g SI C S SI  

Subject to: 

0 iS SI T    

In the above model, SI is bounded by i iM T . In addition, for the final stock, i.e., stock 1, S is 

also bounded by its maximum service time, i.e., 1 1S s . 

In summary, the main steps of the dynamic programming algorithm are given in the following. 

Step 1: For i:=1 to N, evaluate ( )ig SI for SI=0,1,…, i iM T ; 

Step 2: Minimize ( )ig SI to derive the optimal cost value of the R-problem; 

Step 3: Backtrack from node N to node N-1,…, node 2 to node 1 to get the optimal inbound 

service time (SI) and outbound service time (S) of each node (stock).    

To summarize, at each stock of the dynamic program, we find the minimum inventory 

holding costs for the sub-network with node set N(i), as a function of a state variable. The 

state variable depends upon the location of the node (stock) with higher label that is adjacent 

to the node (stock) i, i=1,2,..,N. When the higher labeling node (sock) is upstream of node 
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(stock) i, the state variable is the inbound service time (Step 1). At node (stock) N (Step 2), we 

determine the inventory costs for the entire network as a function of the inbound service time 

to node (stock) N. At step 3, we optimize over the inbound service time to find the optimal 

inventory cost.   

3.5. Optimization Procedure  

The original optimization problem, i.e., optimization of echelon (R, Q) policy for the serial 

system under the GSA, can be resolved in two loops: 1) determine the optimal service level α, 

and 2) for each given α, solve model P. Here, the first loop calls the second loop. Since only 

one decision variable α is to be optimized in the first loop, it can be determined by using a line 

search. We don’t know whether the total cost function of the system is convex with respect to 

α. If it is, the line search can be carried out by using a method such as the golden section 

method. Otherwise, it can be done by discretizing possible values of α over the interval [0, 1]. 

In practice, the service level α may be determined by customer or determined by the managers 

of system according to their evaluation about the importance of the costs of using 

extraordinary measures to fulfill excessive demand with respect to other costs. In such a 

situation, loop 1 can be omitted. In the following, we will discuss how to solve model P for a 

given α. 

3.5.1 The calculation of the fill rate β 

To solve model P, we need to know the fill rate β, which can be determined by the parameters 

and the inventory policy of the system considered. This section presented a method for 

calculating the fill rate β of the system when its inventory policy is given.  

For the serial system considered, let us denote the lead time of stock 1 by L, which is its net 

lead time to be determined by solving the inventory policy optimization problem presented in 

Section 3.4. Every time after the stock places an order with its (R, Q) policy to replenish its 

inventory, its inventory position will be brought to i, i{R+1, R+2,…, R+Q}. For simplicity, 

the subscript “1” which indicates stock 1 is omitted in L, R, and Q. The shipment for this 

order will arrive at the stock after its lead time. If the total customer demand during the lead 

time, denoted by k, exceeds the inventory position i, i.e., k  i +1, the excessive part, i.e., k - i, 

must be fulfilled by using extraordinary measures. Since the probability that the inventory 

position of the stock reaches i (i{R+1, R+2,…, R+Q}) after order placement is 1/Q 

according to the uniform distribution of the position, the fill rate  can be calculated according 

to the following equation:  
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Note that 1- in the equation is the percentage of customer demand (in quantity) fulfilled by 

using extraordinary measures. 

The part 1 in the equation can be rewritten simply as follows: 
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For part 2, we can derive that 
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Note that the term
=1

( ) 1

!

k

k

L

k k



  is an infinite sum which cannot be calculated directly. In order 

to efficiently calculate it in a finite time, let us define a function f(x) as follows: 

=1

1
( )=

!

k

k

x
f x

k k



 ; 

This function is well defined, has a finite value for any finite x, and is differentiable. Since the 

infinite series {
1

!

kx

k k
 } is convergent with a finite sum for any given x, we have  

-1 -1

=1 =1 =0

( ) 1 1 -1
= = = ( -1)=

! ! !

k k k x

k k k

df x kx x x e
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Then, 
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Therefore, part 2 can be derived as follows: 
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With this expression,  can be calculated efficiently in a finite time. 

3.5.2 Algorithm for Original Model P 

However, the inventory policy, which is derived from the optimal solution of model P, 

depending also on β. Thus, β cannot be derived directly from α by solving P on time. In the 

following, we propose an iterative procedure to solve model P based on guessing the value of 

β in each iteration. Since β usually larger than α and close to β when α approaches 1, it is 

initially set to α in the procedure. As soon as the value of β does not change in two successive 

iterations, we have got the real β and the optimal echelon (R, Q) policy for the system can be 

obtained by solving model P at the last iteration of the procedure.  

The main steps of the procedure are given as follows: 

Procedure BETA: 

Step 0: Set β:=α; 

Step 1: Solve the Q-problem and the R-problem to get the values (Ri, Qi) for each stock i; 

Step 2: Calculate the real fill rate β
*
 of the system for the given echelon (R, Q) policy by using 

the method proposed; 

Step 3: If β
*
= β, stop; Otherwise, set β:= β

*
 and go to Step 1.  

The numerical experiments to be presented in the next section show that the procedure is 

always terminated after few iterations for all randomly generated instances. 

Note that when the optimal echelon (R, Q) inventory policy found in the last iteration of the 

above procedure is transformed into an installation (r, Q) policy for the serial inventory 

system considered, the installation reorder point for stock i can be easily derived as 

( ) 1i i i ir D SI T S    . Obviously, 1ir   , this coincides with one assumption made in 

Section 3.2. 
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3.6 Experiments Results  

In this section, we evaluate the performance of the two dynamic programming algorithms for 

the Q-problem and R-problem respectively and the performance of the procedure BETA 

proposed by computational experiments on randomly generated instances. In addition, the 

structure of the (R, Q) policy found by our GSA model proposed in Section 3.2 is analyzed by 

numerical experiments in order to provide some managerial insights about the policy. The 

algorithms and the procedure were implemented in C++ with Visual Studio 6.0 Compiler. All 

experiments were carried out on a workstation 7550-XEON with 2GHz processor and 2Go 

RAM, where multiple processes might be activated and run by multiple users at the same time. 

3.6.1 Experiments for the resolution of Q-problem   

In order to evaluate our proposed dynamic programming algorithm for the Q-problem, we 

first compare it with Crowston and Wagner’s algorithm (referred to as algorithm CW 

hereafter) on medium to large sized instances in Section 3.6.1.1, and then, we also give 

sensitivity analysis on small sized instances in Section 3.6.1.2, for the purpose of analyzing 

the impact of system parameters on the performance of the algorithm.  

3.6.1.1 Efficiency analysis on large sized instances 

We give the comparison between our algorithm and algorithm CW on three sets of medium to 

large sized instances with 10 stocks, 50 stocks and 100 stocks, respectively. Each instance of 

the Q-problem was randomly generated with the following parameter settings: 

[1,5]e

ih U , [10,20]e

i ic h U  , [1,10]U  

Without loss of generality, we set β=1. Because if β<1, we can change λ to λβ so that after this 

change, the original Q-problem is equivalent to the Q-problem with fill rate 1 and average 

demand rate λβ.  

For each set, 10 instances were generated and tested. The maximum and the average 

computation time for the instances of each set for the two algorithms are given in Table 3.2.  
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Table 3. 2  The results for the tested instances of Q-problem 

Instance set 
Max/average computation time in seconds 

Our algorithm Algorithm CW 

10 stocks 

50 stocks 

100 stocks 

0.0011 / 0.0007 

0.0183 / 0.0076 

0.6206 / 0.1705 

1.1517 / 0.1775 

8.1493 / 1.4605 

12.0918 / 2.2669 

From the table, we can observe that our dynamic programming algorithm for the Q-problem is 

much more efficient than algorithm CW in terms of computation time. The results show that 

our algorithm is very efficient in solving large instances, with the maximum computation time 

for an instance with 100 stages less than 1 seconds. 

3.6.1.2 Sensitivity analysis on small sized instances 

In this section, we tested three sets of small sized instances with 2 stocks, 3 stocks and 4 

stocks, respectively. In this test, all instances of the Q-problem were generated with the 

following parameter settings:  

{1,3,5}e

ih  , {10,50,100}ic  , {1,10,100}  

Note that the installation holding cost hi can be derived from hi
e 

and hi is decreasing from 

stock 1 to stock N.  

For each combination of possible values of the parameters, one instance was generated, so the 

total number of instances generated for the instance set with 2 stocks, 3 stocks, and 4 stocks is 

243, 2187 and 19683, respectively. For each instance, we computed its optimal order size Qi
*
 

and its cost using the dynamic programming algorithm. After analyzing the numerical results, 

we obtain the following observations:   

1) The computation time for each instance is very short, the average computation time is 

0.00064 seconds for an instance with 2 stocks, 0.00065 seconds for an instance with 3 stocks 

and 0.00079 for an instance with 4 stocks. This further confirms the efficiency of our 

algorithm.  

2) Qi
*
 increases in ci, and decreases in hi. This observation is obvious and already explained in 

Shang and Zhou (2009). When ci become larger, in order to reduce fixed order costs, stock i 
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tends to increase Qi
*
. Also, when hi becomes smaller, stock i tends to stock more inventory to 

deal with demand variation by increasing Qi
*
. 

3) Q
*
 increases in  since the average demand impacts on order costs. 

3.6.2 Experiments for the resolution of R-problem   

In this section, we perform the experiments to evaluate the efficiency of the algorithm 

proposed for R-problem. Similarly, six set of small, medium to large sized instances with 2, 3, 

4, 10, 50 and 100 stocks respectively were tested. Each set contains 10 instances. All the 

instances for R-problem were generated with parameters 
1, ,e

i ih T s and λ randomly generated 

according to the uniform distributions described in Table 3.3, with the service level α 

specified as 0.95. The computation results of the instances are given in Table 3.4. 

Table 3. 3  Parameter settings of the tested instances of R-problem 

Parameter Value 

e

ih  

iT  

1s  

  

[1,5]e

ih U  

[1,10]iT U  

1 [1,3]s U  

[1,10]U  

 

Table 3. 4  The results for the tested instances of R-problem  

Instance set 
Max /average computation 

time in seconds 

Small instances 

2 stocks 

3 stocks 

4 stocks 

0.00056 / 0.00041 

0.00055 / 0.00047 

0.00072 / 0.00064 

Medium to large 

instances 

10 stocks 

50 stocks 

100 stocks 

0.0041 / 0.0024 

0.8311 / 0.4567 

28.0513 / 12.1841 

From Table 3.4, we can observe that for small instances (N=2, 3 and 4) the R-problem can be 

solved almost instantaneously by using the dynamic programming algorithm of Graves and 

Willems, whereas for larger instances (N=10, 50 and 100), the computation time of the 
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algorithm becomes longer but is still quite short. This demonstrates the suitability of this 

algorithm in solving the R-problem. 

3.6.3 Experiments for the resolution of problem P with a given service level  

The performance of the procedure BETA presented in Section 3.5 for solving problem P 

depends on the two DP algorithms for solving Q-problem and the R-problem respectively. It 

also depends on the number of iterations of Step 1-Step 3 performed by the procedure before 

β
*
 converges to β. This performance is evaluated by computational experiments on the same 

sets of randomly generated instances with 10, 50 and 100 stocks respectively as presented in 

Section 3.3 and 3.4, but for each set of instances, four different α-service levels ranged from 

0.8 to 0.98 were considered. For each instance set and each service level, 10 instances were 

generated randomly with the same parameters setting in Section 3.3 and 3.4. 

The maximum/average computation time and the maximum/average number of iterations of 

the procedure for solving the instances in each set are given in Table 3.5.  

Table 3. 5  The results for the tested instances of problem P 

Instant sets 
α-service 

level 

Max/average 

computation times in 

seconds 

Max/average number 

of iterations 

10 stocks 

0.80 
0.90 
0.95 
0.98 

0.0121 / 0.0066 
0.0065 / 0.0046 
0.0098 / 0.0058 
0.0096 / 0.0062 

3 / 2.9 
3 / 2.1 
2 / 2 
2 / 2 

50 stocks 

0.80 
0.90 
0.95 
0.98 

2.6976 / 1.1846 
1.2623 / 0.7305 
1.3267 / 0.7861 
1.5806 / 0.7629 

3 / 2.5 
3 / 2.2 
2 / 2 
2 / 2 

100 stocks 

0.80 
0.90 
0.95 
0.98 

23.8142 / 12.6553 
28.108 / 13.576 

15.2308 / 7.5805 
10.8419 / 6.1872 

3 / 2.1 
3 / 2.1 
2 / 2 
2 / 2 

From the table, we can see the maximum number of iterations for each instance is no more 

than 3 and the average number of iterations for each instance is between 2 and 3, the two 

numbers, which are very close, are neither sensitive to the number of stages in a serial system 

nor sensitive to its α-service level. In addition, we can observe the two numbers of iterations 

decrease when the α-service level increases, this may because when α approaches to one, β is 

closer to α. For all instances tested, their maximum computation time and average 

computation time of the procedure are short even for the largest instances with 100 stocks. 
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There is no direct relationship between the service level and the two computation times. These 

results show that the procedure BETA has a good convergence property and is 

computationally efficient for solving the inventory policy optimization problem with a given 

α-service level. 

Note that we did not test the finding of the optimal α-service level for each instance when the 

unit operating flexibility cost p is given, because this can be simply done by a line search or 

by the discretization of possible values of α as mentioned in Section 3.5.  

3.6.4 Structural analysis of the (R, Q) policy found by the GSA 

For the base stock policy found by the GSA in the safe stock placement of a serial system, it 

respects all-or-nothing rule if the service time to final customer is set to zero (s1 = 0), i.e., Si = 

0 or SIi + Ti – Si = 0 for each stock. In order to analyze whether this rule is also valid for the 

(R, Q) policy found by our proposed GSA, we conducted additional numerical experiments on 

randomly generated instances of the serial system with 10 stages and s1 = 0. We tested 24 sets 

of instances, each set corresponds to a different pair of (, ), where  and  are the demand 

rate and the service level respectively. For each instance, e

ih  and iT  are randomly generated as 

in Table 3.3, i.e., [1,5]e

ih U , [1,10]iT  . For each set, 1000 instances are randomly generated. 

For each instance, in case that its optimal (R, Q) policy obtained by our model does not 

respect the all-or-nothing rule, we also calculate its optimal all-or-nothing (R, Q) policy by 

imposing the rule (constraint) on our model. The results of this test are given by Table 3.6, in 

which five numbers are given for each pair of (, ). The first number is the percentage of 

instances whose (R, Q) policy found by the GSA does not respect the all-or-nothing rule at 

some stages, the second and the third give respectively the maximum number and the average 

number of stages that does not respect the rule, and the fourth and the fifth give respectively 

the maximum relative gap and the average relative gap of the total cost between the optimal 

(R, Q) policy found by our model and the optimal all-or-nothing (R, Q) policy. 

Table 3. 6  Analysis of the all-or-nothing rule for the (R, Q) policy found by the GSA 

 =0.5  =0.6  =0.7  =0.9  =0.95  =0.98  

=1  

0%, 
0, 
0, 
0, 
0 

0%, 
0, 
0, 
0, 
0 

99.3%, 
6, 

3.457, 
5.37%, 
1.99% 

66.7%, 
4, 

1.458, 
3.08%, 
0.66% 

38.3%, 
3, 

1.1018, 
1.808%, 
0.354% 

36.1%, 
2, 

1.0997, 
1.217%, 
0.221% 
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=3  

0%, 
0, 
0, 
0, 
0 

84.5%, 
5, 

1.7503, 
2.705%, 
0.7534% 

69.9%, 
4, 

1.4764, 
2.052%, 
0.578% 

27.7%, 
2, 

1.075, 
0.756%, 
0.1403% 

13.8%, 
2, 

1.0579, 
0.461%, 
0.142% 

9.3%, 
1, 
1, 

0.589%, 
0.123% 

=5  

0%, 
0, 
0, 
0, 
0 

64.8%, 
3, 

1.345, 
0.977%, 
0.275% 

47.8%, 
3, 

1.2406, 
0.953%, 
0.259% 

8.5%, 
2, 

1.0123, 
0.332%, 
0.0721% 

10.2%, 
2, 

1.049, 
0.333%, 
0.0719% 

1.4%, 
1, 
1, 

0.37%, 
0.084% 

=10  

0%, 
0, 
0, 
0, 
0 

26.3%, 
2, 

1.061, 
0.471%, 
0.117% 

24.2%, 
2, 

1.0728, 
0.378%, 
0.092% 

0%, 
0, 
0, 
0, 
0 

0%, 
0, 
0, 
0, 
0 

0%, 
0, 
0, 
0, 
0 

From the table, we can observe: 1) for  = 0.5, all five numbers are zero; 2) the number of 

instances not respecting the all-or-nothing rule will increase first and decrease then with the 

increase of , with only one exception for the case of  = 5 and  = 0.9; 3) this number if it is 

not zero will decrease as the increase of ; 4) when the demand rate and the -service level 

are sufficiently large (  10 and   0.9), all randomly generated instances validate the all-

or-nothing rule; 5) for the instances not validating the rule, the relative cost derivation 

between the optimal (R, Q) policy found by our model and the optimal all-or-nothing (R, Q) 

policy is quite small.  

After a close examination, we find that the invalidity of the all-or-nothing rule by some 

instances is because their lead time demand bound D() is not concave as illustrated by an 

example in Section 2 (See Table 3.1). Our numerical experiments show that D(+1)-D() 

oscillates between  +1 and  after a certain value of  for these instances because of the 

discrete nature of the Poisson demand. This oscillation makes D() neither concave nor 

convex. If we modify D() a little bit by setting it to  after the value, then D() will be 

concave and the obtained (R, Q) policy will be all-or-nothing policy. This modification of D() 

by one unit at certain time points will neither sacrifice much the service level nor increase 

much the total cost of the system. 

3.7 Conclusion  

In this chapter, we have studied a continuous review serial inventory system with Poisson 

demand, fixed order costs, and controlled by an echelon (R, Q) inventory policy. We used the 

guaranteed service approach (GSA) to optimize the parameters of the policy under the 
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assumption that excessive beyond a prespecified bound will be fulfilled by using 

extraordinary measures. Different from classical GSA approach, we also consider fixed order 

costs and the operating flexibility costs for fulfilling excessive demand. A deterministic 

mathematical programming model is established for the inventory policy optimization 

problem. The model is solved by an iterative procedure based on two dynamic programming 

(DP) algorithms for solving its two sub-models respectively. Experimental results 

demonstrate the efficiency of the two algorithms and the procedure.  
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Chapter 4 Optimization of (R, Q) Policies for Assembly Systems 

In terms of network structure, serial inventory systems can be regarded as a special case of 

assembly inventory systems, in which each stock has only one downstream stock. As an 

extension, this chapter deals with the optimization of (R, Q) policy for an assembly inventory 

system with Poisson demand under the GSA. The optimization methodology used in this 

chapter is similar to that for serial inventory systems. However, different from the serial 

system which has only one immediate predecessor, the assembly system studied in this 

chapter may have a stock that has more than one immediate predecessor, this leads to a more 

complicated network structure. Therefore, the dynamic programming algorithm for the order 

size decision sub-problem (Q-problem) proposed in the last chapter cannot be directly used 

for assembly systems. In this chapter, we develop a new dynamic programming algorithm to 

solve Q-problem for assembly systems studied. The key idea of the algorithm is that the 

dynamic programming recursive procedure is used in both forward and backward directions. 

A forward procedure is applied first for the purpose of reducing the solution space of the 

problem. Based on the solution obtained by the forward procedure, a backward recursive 

procedure is used to identify the optimal decisions.    

This chapter is organized as follows: The problem description and notation are first given in 

Section 4.1. Then, a mathematical model for the optimization of (R, Q) policies for assembly 

systems is formulated in Section 4.2. Two efficient dynamic programming algorithms for 

order size decision sub-problem and reorder point decision sub-problem are developed in 

Section 4.3 and Section 4.4 respectively. The original model is solved in Section 4.5 by an 

iterative procedure based on the solutions of the two sub-problems. In Section 4.6, we give 

some numerical experiments for evaluating the performances of the procedure and the two DP 

algorithms.      

4.1 Problem Description 

Since the GSA has been described in the last chapter, this section will only briefly introduce 

the assembly system studied and some special assumptions on the system.    

Assembly system studied Consider a continuous review assembly inventory system with 

multiple intermediate items (components and sub-assemblies) and a single end item. The 

network structure of the system is defined by its bill-of-material (BOM) which is a tree whose 

root node corresponds to the end item, as illustrated in Figure 4.1. All components at the 
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highest level of the BOM are purchased from outside suppliers, these components are 

assembled into a finished product (end item) at the lowest level of the BOM. Hereafter, the 

stock of item i in the system is also called stock i, i=1,2,..,N. It is assumed that the outside 

suppliers never run out of stock. Let N denote the number of items (stocks) in the system, N>3. 

These items (stocks) are numbered from 1 to N, where item (stock) 1 represents the end item 

(stock). Moreover, it is assumed that customer demand occurs only at the end item (stock) and 

follows a Poisson process with the average demand rate . For simplicity but without loss of 

generality, we assume the assembly of one unit of each intermediate or end item (stock) 

requires only one unit of each of its components. 

 

Figure 4. 1  An assembly system with 7 items (stocks) 

For such a system, our objective is to derive its optimal (R, Q) policy by using the guaranteed 

service approach (GSA), so that the total cost of the system is minimized while satisfying a 

target service level to final customer. As mentioned in Chapter 3, the total system cost 

consists of three costs: fixed order cost, inventory holding cost and operating flexibility cost 

(See Section 3.1.3). 

Integer-ratio constraint Under an (R, Q) policy, we assume an integer-ratio constraint 

between the order size of each stock i and its immediate successor s(i). Since each stock in the 

assembly system has more than one upstream stock, the integer-ratio constraints can be 

rewritten as: 

( ) ( )i s i i s iQ m Q , for i=1,2,…,N 

where
( )s i im is a positive integer and

( )s i im is assumed to be 1 when i=1. 

Maximum reasonable lead time demand level The key assumption in the GSA is that lead 

time demand of the customer is assumed to be bounded by a maximum reasonable lead time 

Item 6 

Customer 
Demand 

 Demand 

 External 

 Supplier 

  Supplier 

 External 
 Supplier 

  Supplier 

 External 
 Supplier 

  Supplier 

 External 
 Supplier 

  Supplier 

Item 4 

Item 5 

Item 7 

Item 2 

Item 3 

Item 1 



 

 75 

demand level and all excessive lead time demand superior to this level will be treated by 

extraordinary measures. Similar to serial systems, the assembly system has only a single end 

stock at which customer demand occurs. Therefore, under the assumption of Poisson 

customer demand with average demand rate and the predefined event-oriented service level 

α, the maximum reasonable lead time demand level ( )D  over any units of time can be 

determined by 

                                                             
( )

0

( )

!

kD

k

e

k

 






                                                     (4-1) 

4.2 Mathematical Model Formulation 

Similar to serial systems, the total cost of the assembly system with N stocks and 

implemented with an (R, Q) policy can be formulated as equation (4-2). 

                                                
1

( [ ]) (1 )
N

e ei
i i

i i

c
h E I p

Q


 



                                              (4-2) 

In equation (4-2), the cost function has three terms, fixed order costs, inventory holding costs 

and the costs of using operating flexibility to fulfill excessive customer demand.  

Next, we briefly introduce the formulation of cost term [ ]e

iE I for i=1,2,…,N.  

At time t, the following balance equation is well-known: 

                                                    ( ) ( - ) [ , )e e

i i i iIL t IP t L d t L t                                              (4-3) 

In the GSA, all customer demands inferior to the bounded demand can always be satisfied, 

so ( )= ( )e e

i iIL t I t , we then have 

                                                       ( ) ( - ) [ , )e e

i i i iI t IP t L d t L t                                           (4-4) 

For stock i, in order to provide 100% guaranteed service, ( ) 0e

iI t  must be satisfied, i.e.,  

                                                               ( ) [ , )e

i i iIP t L d t L t                                            (4-5) 

In addition, for stock i, no stockout means that on-hand inventory ( )iI t is always nonnegative. 

According to the definition above, ( )iI t is given by 

                                                               ( )( ) ( ) ( )e e

i i s iI t I t IP t                                              (4-6) 
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Equation (4-6) is equivalent to the equation ( ) ( ) ( ) ( )e e

s i i iIP t I t I t  , which states that at time t 

the echelon inventory position of the downstream stock s(i) of stock i is equal to the echelon 

on-hand inventory of stock i minus the on-hand inventory of stock i, i.e. ( ) ( )e

s iIP t is equal to the 

inventories at or in transit to all i’s downstream stocks at time t. This is true since no 

outstanding order placed by s(i) is waiting for delivery at stock i (in the equivalence model), 

no backorder is at the lowest echelon of the system under GSA, and ( ) ( )e

s iIP t is defined as 

outstanding orders of s(i) waiting for delivery at stock i plus the inventories at or in transit to 

all i’s downstream stock minus backorders at the lowest echelon at time t. Note that for an 

assembly system, each stock has at most one immediate downstream stock.      

From equation (4-4) and (4-6), we have                         

                                               ( )( ) [ , ) ( )e e

i i i s iIP t L d t L t IP t                                                (4-7) 

Since the satisfaction of constraint (4-7) implies the satisfaction of constraint (4-5), we only 

need to consider constraint (4-7).  

Hadley and Whitin (1961) proved that IPi
e
 is uniformly distributed over the interval [Ri+1, 

Ri+Qi], this means that there is it L , such that ( - )= 1e

i i iIP t L R  and t can be taken as a time 

larger than any given number.  

For equation (4-7), there may exist two cases, i.e., 0iL  and =0iL . According to the analysis 

in Chapter 3, we can derive the following two important results： 

1) In the case of 0iL  , if starting from it L with inventory position ( - )= 1e

i i iIP t L R  , there 

exists a realization of the demand process from time it L to time t such 

that [ , ) ( )i id t L t D L  and ( ) ( ) ( )( )=e

s i s i s iIP t R Q . 

In this case, in order to ensure that inequality (4-7) holds for any demand realization under the 

GSA, we must have 

                                          ( ) ( )1 ( )i i s i s iR D L R Q    for i=1,2,…,N                                   (4-8) 

where (1)sR and (1)sQ are assumed to be 0. 
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2) In the case of =0iL , ( )=0iD L and inequality (4-7) becomes ( )( ) ( )e e

i s iIP t IP t for any time t. 

Since the echelon (Ri, Qi) policy we consider is transformed from an installation (ri, Qi) policy 

according to equation (2-1), we have
( ) ( )1 1i s i s i iR R Q r     . Since 1ir   (See Section 

2.2.2), we have
( ) ( )1i s i s iR R Q   , this implies that inequality (4-8) also holds for this case.  

Since i i i iL SI T S   , we can derive 

                              
( ) ( )

( )i j j j j i ij SUC i j SUC i
R D SI T S Q Q C

 
       for i=1,2,…,N         (4-9) 

Where Ci is the cardinality of SUC(i) for i=1,2,…,N. 

Since the objective of the model is to minimize the total system costs in the long-run, there 

must be an optimal solution with Ri, i=1,2,…,N satisfying the following equations 

                            
( ) ( )

( )i j j j j i ij SUC i j SUC i
R D SI T S Q Q C

 
        for i=1,2,…,N        (4-10) 

Assume that all excessive demands are satisfied without incurring inventory holding costs. 

With this assumption, we can ignore excessive demand in the calculation of expected 

inventory holding costs [ ]e

iE I , that is, 

                           
^

[ [ , )] [ [ , )] ( )i i i i i i i i iE d t SI T S t E d t SI T S t SI T S                  (4-11) 

From equation (4-4), [ ]e

iE I for i=1,2,…,N can be derived as follows: 

           

^

( ) ( )

[ ] [ ( ) [ , )]

[ ( ) [ , )]

1
( )

2

1
( ) ( )

2

e e

i i i i i i i i

e

i i i i i i i

i
i i i i

i
j j j i i i j ij SUC i j SUC i

E I E IP t SI T S d t SI T S t

E IP t SI T S d t SI T S t

Q
R SI T S

Q
D SI T S SI T S Q C




 

       

       


    


         

    (4-12) 

With equation (4-2) and (4-12) and referring to the guaranteed service approach proposed in 

Graves and Willems (1996, 2000), we can formulate the inventory policy optimization 

problem as the following nonlinear programming problem: 
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P: Minimize 

( )( ) ( )
=1 1

1
{ [ ( ) ( ) ] }

2

(1 )

N N
e ei i
i j j j i i i i j s ij SUC i j PRE i

i ii

c Q
h D SI T S SI T S C h Q

Q

p




 

 



          

 

   
 

Subject to:          

                                       ( ) ( ) 1,2, ,i s i i s iQ m Q for i N                                                  (4-13) 

0 1,2, ,i i iSI T S for i N                                                      (4-14) 

                                        
( )max{ } 1,2, ,i P iSI S for i N                                                (4-15)                                               

                                                    1 10 S s                                                                         (4-16)                                                                                       

                                     0iQ   and integer for i=1, 2,…, N                                               (4-17)                                                        

                                   , 0i iSI S   and integer for i=1, 2,…, N                                           (4-18)                                              

                       The objective function represents the average total costs of the system in the long run, which 

consists of average fixed order costs, average inventory holding costs and operating flexibility 

costs of using extraordinary measures. Constraint (4-13) is the integer-ratio constraint 

between the order sizes of any two successive stocks. Constraint (4-14) assures that the net 

lead time at each stock is nonnegative. Constraint (4-15) implies that each stock i can start 

production only when all the inputs are available. Constraint (4-16) imposes an upper bound 

s1 on the outbound service time of stock 1. Constraint (4-17) and (4-18) imply that all the 

decision variables must be integer. 

In the objective function, β is always unknown, this makes the optimization problem can not 

be solved easily. We first assume that β is given, then, the model P can be divided into two 

independent sub-problems, order size decision sub-problem (Q-problem) and reorder point 

decision sub-problem (R-problem). The Q-problem has a convex objection composed of all 

Q-dependent cost terms and constraint (4-13) and (4-17), whereas the R-problem has a 

nonlinear objective function composed of all R-dependent cost terms and linear constraints (4-

14), (4-15), (4-16) and (4-18). 
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Note that when β is known, (1 )p  becomes a constant which can be ignored, the constant 

term ( ) (1 )
N

e

i i

i

C h p    in the objective function of P can be omitted in the two sub-

problems. 

Q-problem: 

Minimize: ( )( )
=1

1
[ ]

2

N
e ei i
i j s ij PRE i

i i

c Q
h h Q

Q





      

Subject to:          

( ) ( ) 1,2, ,i s i i s iQ m Q for i N   

0iQ  and integer for i=1, 2,…, N 

            

R-problem: 

Minimize: 
( )

=1

[ ( ) ( )]
N

e

i j j j i i ij SUC i
i

h D SI T S SI T S


        

Subject to:          

0 1,2, ,i i iSI T S for i N     

( )max{ } 1,2, ,i P iSI S for i N   

1 10 S s   

, 0i iSI S   and integer for i=1, 2,…, N 

Based on the analysis in Section 3.5, β is always unknown, but it can be determined by the 

inventory (R, Q) policy of the system. Therefore, in the next two sections, two efficient 

dynamic programming algorithms will be proposed to solve Q-problem and R-problem in 

Section 4.3 and Section 4.4 respectively when α and β are given. As soon as the two sub-

problems are solved, the optimal order size Qi and optimal reorder point Ri for each stock can 

be derived. Based on the optimal inventory (R, Q) policy, the fill rate β can also be calculated. 

Finally, the original optimization problem P can be solved by an iterative procedure based on 

deriving the optimal value of β in Section 4.5.  
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4.3 Dynamic Programming Algorithm for Q-problem 

For a serial inventory system, we have proposed a dynamic programming algorithm to solve 

the Q-problem. In the algorithm, a recursive procedure is first used to identify the optimal 

decision at each stock depending on the state of its successor stock, and the optimal solution 

of the problem can then be derived by a simple backtrack process. Different from the serial 

system which has only one immediate predecessor, the assembly system studied may have a 

stock that has more than one immediate predecessor, the dynamic programming algorithm 

cannot be directly applied to solve the Q-problem of the assembly system.    

In this section, we develop a new dynamic program for solving the Q-problem of the 

assembly systems studied. The key idea of the algorithm is that the dynamic programming 

recursive procedure is applied in two directions, i.e., both forward direction and backward 

direction. In the forward procedure, the state of the system is extended forward from the end 

stock to the stocks purchased from external suppliers, whereas the state is extended in the 

reverse direction in the backward procedure. The forward procedure is applied first for the 

purpose of reducing the solution space of the problem. Based on the solutions obtained by the 

forward procedure, a backward recursive procedure is applied to identify the optimal decision 

at each stock and then obtain the optimal solution of the problem.   

4.3.1 Assumptions and Notations 

To present the new dynamic programming (DP) algorithm, the problem studied is first 

formulated as a multistep decision problem in a network whose nodes represent the states of 

the system. To facilitate the network modeling of the DP, we first label (number) the stocks of 

the assembly system with N stocks in a particular way based on its BOM as illustrated in 

Figure 4.1.  

Labeling the items (stocks): let U denote the set of unlabeled stocks and u denote the label 

(number) assigned to the latest labeled stock. The labeling process starts from the end stock 

which is labeled as stock 1, in each step we choose from U a stock whose successor has been 

labeled, label (number) the stock as stock u+1, and remove it from U. This process is repeated 

until U becomes empty.  

In the following, the stock corresponding to node i is called stock i, i = 1, 2,…, N. Before 

presenting the state space reduction technique and the DP algorithm, we first introduce the 

following notations which will be used later.  
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i: stock index, i=0,1,….,N+1, stock 0 and stock N+1are two dummy items (stocks) correspond 

to the starting state and ending state of the network model for DP, respectively;   

Qi: state variable of stock i, which represents a possible order size of stock i, and the set of all 

possible values of Qi is denoted by Wi, i=1,2,…,N; 

ms(i)i: decision variable of stock i, which links Qi with Qs(i), i.e., ( ) ( )i s i i s iQ m Q ,  i=2,…,N; 

Ms(i)i(Qs(i)): the set of permissible values of ms(i)i given the state Qs(i) of stock i, i=2,…,N, 

di(Qi): the cost of stock i when the current state is Qi, i=1,2,..,N.  

4.3.2 State Space of Qi 

By analysis of the objective function of the Q-problem and its integer-ratio constraints, i.e., 

constraint (4-13), we can find the following two important properties regarding W1 and 

Ms(i)i(Qs(i)) for stock i, i=2,3,…,N. Based on the properties, the state space of each stock i 

(i=1,2,…,N) can be determined.  

Firstly, an upper bound of Q1 is given by property 4.1. 

Property 4.1: For an assembly inventory system with N stocks and the integer-ratio 

constraints among Qi given by (4-13) for i=2,3,…,N, an upper bound of Q1 is given by 

1
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Proof: Substitute Qi by
( ) 1( ) s j jj SUC i

m Q


 for i=1,2, …, N in the objective function of the Q-

problem, we have  

( ) 1( )
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If ms(i)i for i=1,2,…, N are fixed, the above function contains only one variable Q1. Because 

the function is convex, its optimal value of Q1 can be derived at the point where its first 

derivative with respect to Q1 is equal to 0. After calculating the first derivative, we can get the 

following equation: 

2

1

0G H
Q


    , 
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where 
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By analyzing the above equation, the maximum value of Q1 is attained when ms(i)i =1 for 

i=1,2,…, N, then 
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Let Ui(Qs(i)) denote the set of all possible values of Qi when Qs(i) is given. Then, an upper 

bound of ms(i)i for each item i, i=2,3,..,N is given by Property 4.2 as a function of the state Qs(i) 

of item s(i).   

Property 4.2: For an assembly inventory system with N stocks and integer-ratio constraints 

given by (4-13), if the order size of the immediate successor of stock i is Qs(i) (i=2,…, N), then 

an upper bound of ms(i)i can be derived by 

( )

( )

( ) ( )
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Proof: We first define V(i) as the set consisting of all the predecessors of stock i, and X(i) as 

the set consisting of all successors of stock i. 

If we substitute Qi by 
( ) 1( ) s j jj SUC i

m Q


 for i=2,…, N in the objective function of the Q-

problem, the objective function, denoted by T, can be rewritten as: 

( ) ( )

( ) ( )

1
s i s i i

s i s i i

T P Q m R M
Q m


      , 
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where  
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The objective function T is convex with respect to ms(i)i, so the optimal value of ms(i)i can be 

derived at the point where the first partial derivative of the function with respect to ms(i)i is 

equal to 0, so, 
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Then,   
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The maximum value of ms(i)i is attained when ms(j)j =1 for j∈V(i), so  
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According to the integer-ratio constraint (4-13), Ui(Qs(i)) can be then be written as 

( ) ( ) ( ) ( )( ) { ( ( ))}, 1,2,...,i s i s i s i i s iU Q k k Q j j M Q i N      

Ui(Qs(i)) can be calculated by
( )s i im


and Qs(i). 

Then, the set of all possible value of Qi can be described as  

1 2 1 2 ( ){ ( ) ( ) ( ), { , , , }}, 2,...,i i i i n n s iW U k U k U k where k k k W i N    

Therefore, the state space of each stock i (i=1,2,…,N) can be derive as follows: 
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1
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U k U k U k where k k k W i N
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 
 

 

Under the two important Properties, the state space on each stock can be determined. And the 

state space of each stock only depends on the order size of its immediate successor. 

4.3.3 State Space Reduction 

From the above analysis, we have got all possible values of Qi and its relationship with the 

order size of its successor Qs(i). However, the correspondence between Qi and Qs(i) is not one-

to-one, that is, for each value of Qi (QiWi), there may exist more than one possible values of 

Qs(i). In this subsection, we propose a forward DP recursive procedure to determine the unique 

Qs(i) for any given Qi in the optimal solution of the Q-problem. This can help us to reduce the 

state space of the problem when we apply a backward DP recursive procedure to identify its 

optimal solution. 

Observe that the objective function of the Q-problem is additive with respect to the order size 

of each stock and the integer-ratio constraints of the problem only relate the order size Qi to 

the order size ( )s iQ of its immediate successor stock s(i), so the order size decision of each 

stock only depends on the order size of its immediate successor, not on the order sizes of 

other stocks.  

Based on this observation, we can develop the forward recursive procedure, which starts from 

the end stock (stock 1) and extends the current stock to its immediate predecessors in each 

step until stock N.  

Let fi(Qi) as the minimal total cost of stock i and its successors (SUC(i)) when the order size 

of stock i is given by Qi, i=0,1,2,…,N.  The state transition function and the recursion 

equations can then be formulated as: 

State transition functions: 

( ) ( ) , 1,2, ,i s i i s iQ m Q i N    

Recursion equations: 

( ) ( ) ( )

( ) ( ) ( ) ( )
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0

( ) min { ( , ) ( )} 1,2,3, , , +1,

(0) 0
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where 
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With the equations, for each stock i (i=0,1,2,…,N+1), we can calculate fi(Qi) for each possible 

order size Qi Wi and the corresponding integer ratio
( )s i im that minimizes the right hand term 

in the recursion equations.    

For each stock i, let us define ( , )isuc i Q = 
( )( ( ), )s is i Q , where 

( )s iQ  is the unique order size of 

stock s(i) obtained by the forward recursion procedure when the order size of stock i is Qi, for 

any QiWi, i=1,2,…,N+1. The outputs of this procedure include a set of possible values of 

triple ( , ( ), ( , ))i i i iQ f Q suc i Q . Table 4.1 gives an example of the outputs obtained by the 

procedure for stock 5 of the assembly system in Figure 4.1.  

Table 4. 1 The outputs of the forward procedure 

Outputs 

Q5 f5(Q5) suc(5, Q5) 

1 131 (3, 1) 

2 78.5 (3, 2) 

5 69.33 (3, 1) 

From Table 4.1, we can see that for stock 5, there are three possible values of 

5 5 5 5( , ( ), (5, ))Q f Q suc Q  with Q5 =1, 2, and 5, respectively. The outputs given in Table 4.1 

show that Q3 = 1 if Q5 = 1 or 5, and Q3 = 2 if Q5 = 2.  

After the forward recursive procedure, for each stock i and possible value of Qi (QiWi), there 

exists the unique possible value of Qs(i) given by suc(i, Qi), and this one-to-one 

correspondence can help us to reduce the state space in which the optimal solution of the Q-

problem is located.  

4.3.4 Dynamic Programme Algorithm 

The backward DP recursive procedure for the Q-problem of the assembly system studied can 

be formulated in the decreasing order of the labels of its stocks as described in the above, i.e., 

from stock N to stock 1. This is, an assembly system with N stock can be regarded as “a serial 

system” with N stages as depicted in Figure 4.2 (in this figure, N = 7), where stage N+1and 
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stage 0 are two dummy stages correspond to the starting state and ending state for the DP 

procedure, respectively, stage i (N  i 1) corresponds to stock i, and the state of stock i is 

given by a possible value of batch size Qi. Since one-to-one correspondence between item i 

and its immediate successor s(i), i.e., ( , )isuc i Q , is already given by the forward DP procedure, 

the backward DP procedure can operate as the DP procedure for the Q-problem of the serial 

system presented in the last chapter, except that the outputs of the forward DP procedure 

( , ( ), ( , ))i i i iQ f Q suc i Q for each stock i (i=1,2,…,N) will be used in the backward DP procedure. 

 

Figure 4. 2  The stages of an assembly system 

Let gi(Qi) denote the minimal total cost of stock i and its all predecessor stocks of PRE(i) 

when the order size of stock i is given by QiWi, i=N+1,N,…,1. 

In the forward procedure, we already get all possible values of order size Qi for each stock i 

and their corresponding values of suc(i,Qi) for the order size Qs(i) of its immediate successor 

stock s(i), i=0,1,2,…,N+1. These values are used as the possible values of the state variables 

of stock i and stock s(i) in the backward search, for i=N+1, N, N-1,…,1,0. 

Formally, the recursion equations of the backward DP procedure can be written as: 

Recursion equations: 

' '
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
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
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
  


  

For item ( )j P i , if there is no Qj satisfying ( , ) ( , )j isuc j Q i Q , then gi(Qi) = ∞. 

After the execution of the backward recursive procedure, for each stock i, i=0,1,2, …,N+1, we 

calculate gi(Qi) for each QiWi, where g0(0) is the optimal cost value of the Q-problem of the 

assembly system studied.    

In summary, the main step of the dynamic programming algorithm is presented in the 

following.  

stage 0     stage 3  stage 4  stage 5  stage 7   stage 6  stage 2  stage 1    stage 8 
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Step 1: Set i=0, f0(0)=0 as the boundary condition of the forward DP procedure.  

Forward Recursion: 

Step 2: i=1, calculate the set W1 of possible values of Q1 using Property 4.1. Then, calculate 

suc(1, Q1) for each Q1 in W1.  

For i=2,3,…,N; 

Step 3: Calculate Ms(i)i(Qs(i)) based on Property 4.2, according to the state transition 

function
( ) ( )i s i i s iQ m Q  and the forward recursion equations, calculate suc(i, Qi)  for each Qi. 

Backward Recursion: 

For i=N+1,N, N-1,…, 1;  

Step 4: Based on suc(i, Qi), calculate gi(Qi) for each Qi.  

Step 5: Calculate g0(Q0), the minimal total cost of the Q-problem. 

Step 6: Backtrack from stock 0 to stock 1, stock 1 to stock 2, …, stock N-1 to stock N to find 

the optimal order size Qi
*
 for each stock i, i=1,2,…,N.   

4.4 Dynamic Programming Algorithm for R-problem  

Under the GSA, Graves and Willems (2000) presented an efficient dynamic programming 

algorithm for finding the optimal service time of a multi-echelon inventory system with a 

spanning tree structure. In assembly inventory system, there is no apparent order of the items 

(nodes) in which the algorithm would proceed. However, Graves and Willems (1996, 2000) 

label (number) the nodes in a spanning tree so that only one state variable, either the inbound 

service time or outbound service time at each stock is required for the dynamic programming 

recursion. In this section, we use their dynamic programming algorithm to solve the R-

problem. In the following, we will briefly introduce the algorithm applied to the R-problem.    

We first label the nodes (stocks) in the assembly system and then describe the recursion 

equation of the dynamic programming algorithm for the R-problem.  

Labeling the nodes: Let U denote the set of unlabelled stocks and u denote the label (number) 

assigned to the latest labeled stock. The node labeling process starts from a node at the highest 

level of the BOM of the assembly system. In each step, we take a node i U which is adjacent 

to at most one other node in U in the BOM, label it as node (stock) u+1, and remove it from U. 

This process is repeated until U becomes empty.  
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Similar to serial system optimization problem, we also denote N(i) as the subset of nodes that 

are connected to node i in the sub-graph consisting of nodes {1,2,..,i} of the BOM. N(i) can be 

determined recursively by the following equation: 

( )
( ) { } ( )

j P i
N i i N j


   

The dynamic programming algorithm recursively evaluates a functional equation for each 

node (stock), in the order of nodes give by the node labeling. Let us define ( )if S as the 

minimum holding cost of the nodes (stocks) in N(i), when the outbound service time for item i 

is set of S in the assembly system. Since each node (stock) i has only one downstream 

adjacent node (stock) with a higher label, i.e., s(i), in the assembly system, according to 

Graves and Willems (1996, 2000), the functional equation for each node (stock) i can be 

formulated as: 

( ) ( ) 0 min{ , }
( , ) [ ( ) ( )] min [ ( )]

j

e

i i j j j i i i jj SUC i j P i S SI M
C S SI h D SI T S SI T S f SI

   
          

where ( , )iC S SI is a function of the outbound service time and the inbound service time of 

node (stock) i.  

In the equation, the first term is the holding cost of node (stock) i as a function of S and SI, 

and the second term is the holding cost of the node in N(i) that are upstream nodes of node 

(stock) i.  

With this function, the minimum holding cost ( )if S can be obtained by solving the following 

optimization problem: 

( ) min{ ( , )}i i
SI

f S C S SI  

Subject to: 

max(0, )i i iS T SI M T     

Here, we can bind S by its maximum service time iM , and if stock i is the end stock, we 

constrain S by its maximum service time as 1 1S s .  

The dynamic programming algorithm can be summarized in the following. 

Step 1: For i:=1 to N, evaluated ( )if S for S=0,1,…, iM ; 

Step 2: Minimize ( )Nf S to derive the optimal objective function value of the R-problem; 
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Step 3: Backtrack from node (stock) N to node (stock) N-1,…, node (stock) 2 to node (stock) 

1 to get the optimal inbound service time and outbound service time of each node (stock).  

4.5 Optimization Procedure 

After the introduction of two DP algorithms for the two sub-problems (Q-problem and R-

problem), in this section we propose an iterative optimization procedure to solve the original 

optimization problem (model P). As mentioned in Section 3.5, for a given service level α, the 

original optimization problem can be solved by an iterative procedure based on guessing the 

value of β in each iteration. The procedure has two main steps in each iteration: 

 For an estimated value of β, solve model P 

 Calculate the real fill rate β of the considered system; 

To solve model P, we first need to know the fill rate β, which can be determined by the (R, Q) 

inventory policy of the system considered. A method is developed for calculating the fill rate 

β in Section 3.5 when its inventory policy is given. Since the fill rate β only depends on the 

reorder point R and the order size Q of the end stock which is unique for the assembly system, 

its fill rate β can be calculated similarly by  

-+
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- -+ +
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 

   

 

Note that in the above formula the subscript “1” which indicates stock 1 is omitted in L, R and 

Q, where L is the net lead time to be determined by solving the inventory policy optimization 

problem.  

With the formula for calculating β, we can propose an iterative procedure similar to that of the 

serial system to solve model P. The procedure starts from setting α as an initial value of β. In 

each iteration, for an estimated β, the optimal echelon (R, Q) policy for the considered system 

is obtained by solving model P, and the real fill rate β of the system with the policy is then 

calculated. If the two values of β are identical, i.e., the value of β does not change in two 

successive iterations, the procedure stops. The main steps of the procedure are similar to that 

of serial systems (See Section 3.5).    
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When the optimal echelon (R, Q) inventory policy found in the last iteration, its 

corresponding installation (r, Q) policy can be derived by a simple transformation 

as ( ) 1i i i ir D SI T S     for i=1,2,…,N. 

4.6 Experiments Results 

In this section, we perform computational experiments to evaluate the performance of the two 

dynamic programming algorithms for the Q-problem and R-problem respectively and the 

performance of the procedure BETA proposed. In addition, we also conduct a sensitively 

analysis to examine the impacts of different system parameters on the performance of the 

algorithm.  

4.6.1 Experiments for the resolution of Q-problem 

We first compared our algorithm with Crowston and Wagner’s algorithm (referred to as 

algorithm CW hereafter) on three sets of medium to large sized instances (with 7 stocks and 3 

levels, 15 stocks and 4 levels, 63 stocks and 6 levels, respectively). For each instance, each 

stock has only two immediate predecessors and one immediate successor, except for the 

components at the highest levels of the BOM with no predecessor and for the end stock at the 

lowest level with no successor. Each instance of the Q-problem was randomly generated with 

the following parameter settings: 

[1,5], [10,20], [1,10]e e

i i ih U c h U U     

As mentioned above, Crowston and Wagner (1973) proposed two methods to calculate the 

upper bound of the total cost: a heuristic algorithm and a dynamic programming algorithm 

with coarse grid, leading to two versions of algorithm CW. We compared our algorithm with 

the two versions. Since both our dynamic programming algorithm and the algorithm CW are 

exact algorithms which can find the optimal solution of the Q-problem, we only compare their 

computation times.  

For each set, 10 instances were randomly generated and tested. The average and the 

maximum computation time for all instances of each set are given in Table 4.2. 
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Table 4. 2 The results for the instances of Q-problem 

Instance set 

Average / max computation time 

Our algorithm 
Algorithm CW 

(heuristic UB) 

Algorithm CW 

(dynamic programming UB) 

7 stocks, 3 levels 0.0008 / 0.0011 2.779 / 5.712 0.095 / 0.376 

15 stocks, 4 levels 0.002 / 0.0028 13.958 / 38.005 4.35 / 24.17 

63 stocks, 6 levels 0.0049 / 0.0068 100.34 / 278.96 10.35 / 24.62 

From the table, we can observe that our dynamic programming algorithm for the Q-problem is 

more efficient than algorithm CW in both versions. The results in this table also demonstrate 

that our algorithm is very efficient in solving large instances, with the maximum computation 

time for an instance with 63 stocks less than 0.0068 seconds. In addition, if we examine the 

difference between the maximum computation time and the average computation time of each 

set of instances, we can find that the difference is quite small for our algorithm, whereas the 

difference is much larger for both versions of algorithm CW. This means that in terms of 

computation time, our algorithm is much less sensitive to the instance data than their 

algorithm. 

To identify the reason behind the sensitiveness of algorithm in computation time, we 

extracted more detailed results of 5 instances from the instance set of 15 stocks. These results 

are given in Table 4.3, which include the lower bound LB and the upper bound UB of the 

optimal cost, the optimal cost (OPT) and the computation time obtained by algorithm CW. 

Note that UB for each instance in this table was obtained by using the dynamic programming 

algorithm with coarse grid.  

Table 4. 3  The sensitiveness of the algorithm CW in computation time 

No. LB UB OPT Time 

1 1270.26 1280.5 1280.5 0.0018 

2 2123.99 2138.69 2138.69 0.0047 

3 2342.77 3939.03 2374.33 0.7322 

4 3447.69 12619.5 3483.06 8.3726 

5 2614.04 13455.9 2661.97 24.1729 
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From Table 4.3, we can observe large differences of the computation time among 5 instances, 

with the minimum computation time 0.018 seconds for No.1 instance and the maximum 

computation time 24.1729 seconds for No.5 instance. The results also show that when the UB 

of an instance is very close to its OPT, the computation time of algorithm CW is quite short, 

as in the case of instance 1 and 2. In contrast, if the UB of an instance is quite poor and far 

away from its OPT, the computation time will be much longer, as in the case of instance 3, 4 

and 5. The bigger the gap between OPT and UB, the longer computation time of the algorithm. 

However, neither the heuristic nor the dynamic algorithm with coarse grid can guarantee to 

obtain a good UB. In some cases, the UB obtained by either of them is very poor. That’s why 

the computation time of algorithm CW is very sensitive to the data of the instance considered.  

Similar to algorithm CW, our algorithm also first get an upper bound and a lower bound of Qi 

for each stock i, but the upper bound obtained by our algorithm is much tighter than that 

obtained by their algorithm. That’s why our algorithm is much more efficient than algorithm 

CW for the Q-problem. For example, for an instance of 7 stocks with bill-of-materials given 

in Figure 4.1 and the following parameters: 

{4,3,4,3,5,5,5}, {54,50,50,51,44,39,60}, 10e

i ih c     

Table 4.4 gives the upper bound U

iQ and the lower bound L

iQ of
iQ for each stock i obtained by 

our algorithm and algorithm CW, respectively. 

Table 4. 4  The bounds of Qi by the two algorithms 

7 stock, 3 level system Our algorithm Algorithm CW 

stock 1 Q1
L
 =1, Q1

U
 =8 Q1

L
 =1, Q1

U
 =41 

stock 2 Q2
L
 =1, Q2

U
 =16 Q2

L
 =1, Q2

U
 =107 

stock 3 Q3
L
 =1, Q3

U
 =16 Q3

L
 =1, Q3

U
 =86 

stock 4 Q4
L
 =1, Q4

U
 =32 Q4

L
 =1, Q4

U
 =625 

stock 5 Q5
L
 =1, Q5

U
 =24 Q5

L
 =1, Q5

U
 =379 

stock 6 Q6
L
 =1, Q6

U
 =24 Q6

L
 =1, Q6

U
 =378 

stock 7 Q7
L
 =1, Q7

U
 =28 Q7

L
 =1, Q7

U
 =384 

The results in Table 4.4 show that for this instance the upper bound of iQ derived by our 

algorithm is much tighter than that obtained by algorithm CW.  
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4.6.2 Experiments for the resolution of R-problem  

Similarly, three sets of instances with 7 stocks, 15 stocks and 63 stocks respectively were 

considered. All the instances for the R-problem were created with parameters 
1, ,e

i ih T s and λ 

randomly generated according to uniform distributions described in Table 4.5 and with the 

service level α given as 0.95. 

Table 4. 5  Parameter settings of the tested instances of R-problem 

Parameter Value 

e

ih  

iT  

1s  

  

[1,5]e

ih U  

[1,10]iT U  

1 [1,3]s U  

[1,10]U  

The computation results of the instances are given in Table 4.6. 

Table 4. 6  The results for the instances of the R-problem 

Instance set Average/max computation time 

7 stocks (3 levels) 0.0014 / 0.0029 

15 stocks (4 levels) 0.0073 / 0.0152 

63 stocks (6 levels) 0.1495 / 0.2303 

For table 4.6, we can observe that the computation time of the dynamic programming 

algorithm for the R-problem is quite short for all three sets of instances with 7, 15 and 63 

stocks, respectively, demonstrating the efficiency of the algorithm.  

4.6.3 Experiments for the sensitivity analysis for the two algorithms 

In order to analyze the impacts of key parameters ,e

i ih c and of an assembly system on the 

performances of the two algorithms we developed, we conducted a sensitivity analysis of the 

computation times of the algorithms with respect to the parameters. The assembly system 

with 15 stocks was considered, and the values of its three parameters were varied according to 

the three sets respectively as follows: 

{1,2,3,4,5}, [15,25,35,45,55], {1,10,20,50,80,100}e

i ih c     
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For each combination of possible values of the parameters, one instance was generated. 

4.6.3.1 Sensitivity analysis for Q-problem 

In terms of the objective function of Q-problem, the computation time for Q-problem are 

closely related to three parameters, ,e

i ih c and . Then, the total number of instances tested is 

150. For each possible value of the parameter, we calculate the average computation time of 

the instances when the other parameters changes. The main results are given in Figure 4.3, 

Figure 4.4 and Figure 4.5. 
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Figure 4. 3   Computation time for Q-problem with respect to λ 
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Figure 4. 4  Computation time for Q-problem with respect to hi
e
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Figure 4. 5Computation time for Q-problem with respect to ci 

From the three figures, we can observe that the average computation time decreases in ,e

i ih c , 

and increase in  . That mainly because the state space of the order size at each stock i 

decreases in ,e

i ih c , and increase in  , larger state space of the order size will take more 

computation time to solve. Therefore, the results demonstrate that the parameters 

as ,e

i ih c and has major influence on the computation time of the algorithm we developed for 

Q-problem.   

4.6.3.2 Sensitivity analysis for R-problem 

Similar to Q-problem, the computation time for R-problem are related parameters as e

ih and ,  

so the total number of instances tested is 30. The results are given in Figure 4.6, Figure 4.7. 
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Figure 4. 6 Computation time for R-problem with respect to λ 
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Figure 4.7 Computation time for R-problem with respect to hi
e
 

The result in Figure 4.6 shows that the computation time increases obviously in  , and from 

Figure 4.7, we can see that the computation time nearly increases in e

ih , but the increments are 

very little. From the results, we can demonstrate that the parameter of has major influence in 

computation time of the algorithm of R-problem, relatively, the parameter of e

ih has only little 

influence. Through analysis the results, we can find that the increase of  will take larger 

bounded demand ( ( )D  ), and the computation time will also increase. 

It should be noted that the computation time increase of decrease is not significant as the 

values of one or more these parameters change. 

4.6.4 Experiments for the resolution of problem P with a given service level 

As we know, the performance of BETA mainly depends on two factors: the DP algorithms for 

solving Q-problem and R-problem respectively, and the number of iteration of Step 1-Step 3 

by the procedure proposed in Section 4.5. This section will evaluate the performance of 

BETA from the above two factors by numerical experiments on the same sets of randomly 

generated instances with 7 stocks, 15 stocks and 63 stocks respectively as presented in Section 

4.6.1 and Section 4.6.2, but for each set of instances, four different α-service level ranged 

from 0.8 to 0.98 were considered. For each instance set, 10 instances were generated 

randomly. We calculate the maximum/average computation time and the maximum/average 

number of iterations of the procedure for the instances, and the results are given in Table 4.7. 
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Table 4.7 The results for the tested instances of problem P  

 
α-service 

level 

Max/average 

computation 

times in seconds 

Max/average 

number of 

iterations 

7 stocks and 3 

levels 

0.80 
0.90 
0.95 
0.98 

0.0021/0.0014 
0.0031/0.0017 
0.0036/0.0019 
0.0036/0/0018 

2/2 
2/2 
2/2 
2/2 

15 stocks and 

4 levels 

0.80 
0.90 
0.95 
0.98 

0.0048/0.0036 
0.0055/0/0032 
0.0071/0.0044 
0.0074/0.004 

2/2 
2/2 
2/2 
2/2 

63 stocks and 

6 levels 

0.80 
0.90 
0.95 
0.98 

0.1071/0.0198 
0.015/0.0109 

0.0201/0/0137 
0.0174/0.0139 

2/2 
2/2 
2/2 
2/2 

From the table, we can see that the number of iterations for each instance is always 2, this 

indicates that the number of iterations is neither sensitive to the number of items in an 

assembly system nor sensitive to its α-service level. Moreover, the maximum computation 

time and average computation time of the procedure are short for all instances; this 

demonstrates the efficiency of the procedure BETA and its good convergence property.  

4.7 Conclusions     

As an extension, this chapter deals with the optimization of (R, Q) policy for a continuous 

review assembly system with Poisson demand under the GSA. Since each stock in the 

assembly system has more than one predecessor, the dynamic programming algorithm for the 

Q-problem proposed in the last chapter cannot be directly used. For this reason, we develop a 

new dynamic programming algorithm for the order size decision problem. The new feature of 

the algorithm is that the DP recursive procedure is used in both forward direction and 

backward direction. The numerical experiments demonstrate the efficiency of the dynamic 

programming algorithm and the iterative procedure used for solving the inventory policy 

optimization problem of the assembly system studied.  
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Chapter 5 Optimization of (R, Q) Policies for Two-Level 

Distribution Systems 

In the inventory management literature, a lot of research papers have been dedicated to the 

study of two-level distribution systems in which a central warehouse supplies a product to a 

set of retailers. The most distinguishing feature of the distribution systems is that each stock 

has only one direct predecessor, but has multiple direct successors. This makes the analysis 

and optimization of such systems more difficult than serial and assembly systems. Because 

under the stochastic service approach (SSA), except for considering the inventory policy at 

each stock, we must also consider the warehouse’s allocation policy which determines how 

the available on-hand inventory of the warehouse is allocated to the demands of the retailers 

when these demands cannot be totally satisfied. In this chapter, we try to optimize the (R, Q) 

policy of a two-level distribution system with fixed order costs at each stock under the GSA. 

Different from serial and assembly systems in which all items (stocks) have the same 

maximum reasonable lead time demand level as presented in Chapter 3 and Chapter 4, for the 

distribution system, we assume a maximum reasonable lead time demand level for each stock 

no matter it is the stock of a retailer or the stock of the warehouse, These bounds may be 

different. For each stock, its excessive lead time demand beyond the corresponding bound 

will be fulfilled by using extraordinary measures at operating flexibility costs. In addition, we 

assume a randomized initial condition for the system. This condition is introduced for 

simplifying the formulation of the (R, Q) policy optimization problem of the system. Because 

for distribution systems, echelon (R, Q) policies and installation (r, Q) policies cannot be 

transformed each other, this makes the formulation of the optimization problem more 

complicated. With these assumptions, we can first establish a mathematical model for the 

optimization problem and then propose an optimization procedure to solve the model based 

on the decomposition of the model into two sub-problems which are solved by using 

dynamical programming algorithms or EOQ-based methods. More particularly, we consider 

five different types of integer-ratio constraints possibly imposed on the order sizes of the 

stocks of the system, and compare their effectiveness by numerical experiments.  

This chapter is organized as follows: the problem definition and the model formulation are 

given in Section 5.1 and Section 5.2 respectively. The two sub-problems (order size decision 

sub-problem with five types of integer-ratio constraints, and reorder point decision sub-

problem) are solved by efficient dynamic programming algorithms in Section 5.3 and Section 
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5.4. In Section 5.5, we propose an optimization procedure for solving the original 

optimization problem for the two-level distribution system studied. Finally, in Section 5.6, 

numerical experiments for evaluating the performances of the algorithms are presented. 

5.1 Problem Description 

This section describes the two-level distribution inventory system studied as well as the 

assumptions made on the system for parameter optimization of its (R, Q) policy. 

Two-level distribution system Consider a two-level distribution inventory system with a 

central warehouse and N retailers as illustrated in Figure 5.1. We refer to the warehouse as 

stock 0 and the retailer i as stock i, for i=1,2,…,N. The retailers order from the warehouse, 

which in turn orders from an outside supplier with unlimited stock. All customer demands 

(final demands) take place only at the retailers, and we assume that retailer i faces a Poisson 

demand with average demand rate i  (i=1,2,…,N) and these N demand processes are 

independent. The internal demand occurring at the warehouse (stock 0) is generated by all 

retailers. 

 

Figure 5. 1  A two-level distribution system studied 

The following assumptions are made on the system: 

 The demand of each retailer follows a Poisson process and the retailers have independent 

demands; 

 Under the GSA, except that each retailer uses extraordinary measures to fulfill its 

excessive demand, the warehouse may also use extraordinary measures to fulfill its 

excessive demand; In this case, operating flexibility costs are considered at both the 

retailers and the warehouse. 
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 Under the GSA, backorder at the warehouse is not allowed if we exclude the part of any 

demand fulfilled by using extraordinary measures.  

 The total cost of the system consists of fixed order costs and inventory holding costs at all 

stocks, and operating flexibility costs at the retailers; 

 Echelon (R, Q) policy is used to control the system;  

 The initial echelon inventory position of each stock i can randomly take any integer value 

in the interval [Ri+1, Ri+Qi], this is referred to as randomized initial condition hereafter. 

Maximum reasonable lead time demand levels Denote by ( )id t  the customer demand of 

stock i at time t, and by 1 2[ , )id t t the total demand of stock i from time t1 to time t2 without 

including t2 for any 1 2t t . The total demand of the retailers at time t, 0 ( )d t , and their total lead 

time demand over the time period 1 2[ , )t t , 0 1 2[ , )d t t , can be defined as follows: 

0 0 1 2 1 2

1 1

( )= ( ), [ , ) [ , )
N N

i i

i i

d t d t d t t d t t
 

   

Since ( )id t , i=1, 2,…, N are N independent Poisson processes, their sum 0 ( )d t  is also a 

Poisson process with average demand rate
0

1

N

i

i

 


 .  

For each retailer i, suppose that it want to assurer a (event-oriented) service level αi to its 

customers, its maximum reasonable lead time demand level ( )iD  over  units of time can then 

be determined according to the service level. That is, ( )iD  can be determined as the 

minimum number satisfying the following condition: 

                                             { [ , ) ( )} , 1,2,...,i i ip d t t D i N                                        (5-1) 

Note that ( )iD  does not depend on time t because the customer demand of retailer i is 

stationary.     

Since the customer demand of each retailer i follows a Poisson process with average demand 

rate i , we have 

                                               
( )

0

[ ]
, 1,2,...,

!

iiD k

i
i

k

e
i N

k

 






                                              (5-2) 

The integer demand bound ( )iD  can then be computed according to inequality (5-2). 
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In serial and assembly systems, the maximum reasonable lead time demand level is only 

defined for the end item (stock) and all other items (stocks) have the same lead time demand 

as that of the end item (stock). However, for the distribution system, since the demand of the 

warehouse is the sum of the demands of all retailers in the long run, its maximum reasonable 

lead time demand level should be different from these of the retailers, so we must also define 

a maximum reasonable lead time demand level for the warehouse. Let 0 ( )D   denote the 

maximum reasonable lead time demand level of the warehouse over  units of time. One way 

is to define 0 ( )D   as
1

( )
N

i

i

D 


 , but this definition does not take account of inventory risk 

pooling at the retail level, leading to an overestimation of 0 ( )D   as pointed out in Graves and 

Willems (2000). As an alternative, we define 0 ( )D   according to the service level that the 

warehouse want to assure for final customers, that is, 0 ( )D  is defined as the minimum 

number satisfying the following condition: 

        0 0 0{ [ , ) ( )}p d t t D                      (5-1b) 

where 0  is the warehouse’s service level to final customers and 0[ , )d t t  is the lead time 

demand of all retailers, i.e., total final customer demand from time t -  to time t (not 

including time t). Since 0 ( )d t  is a Poisson process with average demand rate 0 , we have: 

                       
00 ( )

0
0

0

[ ]

!

D k

k

e

k

   






                                                (5-2b) 

Since the warehouse is controlled by an echelon inventory policy and 0 ( )D   is defined based 

on the final customer demands rather than the orders placed by the retailers, we 

interpret 0 ( )D   in an “echelon” way. That is, the warehouse assures that no echelon stock out 

occurs if the total final customer demand over lead time  does not exceed 0 ( )D  , otherwise 

excessive part of the demand will be fulfilled by using extraordinary measures whose costs 

are in charge of the warehouse. 

The remain thing is to specify the external service level 0  of the warehouse. One way is to 

determine 0  according to the inventory holding costs and the operating flexibility costs at 

the warehouse. If the second costs are high, the warehouse should choose a high service 

level 0 , otherwise it should choose a lower 0 . Another way is to determine 0  according to 
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the service levels and demand processes of all retailers, that is, we set 0  =
1 1

N N

i i i

i i

 
 

  .     

This 0  can be regarded as the global service level of all the retailers, or the global service 

level of the system. The weight i  assigned to i  in the definition takes account of the 

demand level of each retailer. When N = 1, the distribution system becomes a serial system 

and 0 = 1 . This coincides with our definition of maximum reasonable lead time demand 

levels for serial systems. 

5.2 Mathematical Model Formulation 

In this section, a mathematical model for the optimization of (R, Q) policy for the distribution 

system considered will be described.   

Since for the distribution system, the warehouse may also use extraordinary measures to 

fulfill its excessive demand, we should also consider operating flexibility costs at the 

warehouse level. Let us denote by pi and i  the unit operating flexibility cost and the fill rate 

of stock i (i = 0, 1, …, N), respectively, where stock 0 denotes the warehouse and stock i (1  

i  N) denotes retailer i. Here, the fill rate i  is defined as the total demand normally fulfilled 

by stock i (in quantity) divided by its total demand in the long run under the GSA. For each 

retailer i, i  is the same as its fill rate under the SSA if we consider all units of its demand 

fulfilled by using extraordinary measures are regarded as the units of the demand not satisfied 

on-time, so the calculation of i  can be done in a similar way as we have done for the 

calculation of   in the cases of serial and assembly systems. For the warehouse, since it is 

controlled by an echelon (R, Q) policy and its maximum reasonable lead time demand level 

0 ( )D   is interpreted in an echelon way (See Section 5.1), its fill rate 0  can be calculated as 

if it is a single stock with demand 0

1

( )= ( )
N

i

i

d t d t


 . 

Since the inventory replenishment of each stock i (i = 0, 1, …, N), in the distribution system is 

used to satisfy its normal demand (the part of the lead time demand not exceeding its 

prespeified maximum reasonable level ( )iD  ), the average order size of the warehouse per 

unit of time is given by i i  . Furthermore, as mentioned in Section 5.1, the operating 

flexibility costs are now charged at both the retailers and the warehouse, so the cost function 

of the optimization problem can be formulated as,  
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0 0

( [ ]) (1 )
N N

e ei i i
i i i i i

i ii

c
h E I p

Q

 
 

 

                                    (5-3) 

Next, we formulate [ ]e

iE I for each stock i, i=0,1,…,N. 

At time t, the following well-known inventory balance equation can be derived for each stock 

i, i = 0, 1,…, N. 

                                                       ( ) ( ) [ , )e e

i i i i iIL t IP t L d t L t                                         (5-4) 

Under the GSA, any lead time demand of retailer i inferior to its maximum reasonable level 

can always be satisfied, so ( ) ( )e e

i iIL t I t , then,  

                                                     ( ) ( ) [ , )e e

i i i i iI t IP t L d t L t                                            (5-5) 

For stock i, i=0,1,…,N, in order to provide 100% guaranteed service, ( ) 0e

iI t  must be 

satisfied, then,  

                                                          ( ) [ , )e

i i i iIP t L d t L t                                                  (5-6) 

In addition, for each stock i, i=0,1,…,N, no stockout means that its installation on-hand 

inventory ( )iI t is always nonnegative. 

On the one hand, for each retailer i (stock i, i=1,2,…,N), since its installation on-hand 

inventory, ( )iI t , is equal to its echelon on-hand inventory ( )e

iI t , the nonnegative requirement 

of ( )iI t is implied by constraint (5-6).   

On the other hand, for the warehouse (stock 0), its installation on-hand inventory 0 ( )I t can be 

formulated as 

                                                     
0 0

1

( ) ( ) ( )
N

e e

i

i

I t I t IP t


                                                     (5-7) 

Because 0 ( ) 0I t  , we have  

                                                       
0

1

( ) ( )
N

e e

i

i

I t IP t


                                                             (5-8) 

From (5-5), we have
0 0 0 0 0( ) ( ) [ , )e eI t IP t L d t L t    . This equation together with (5-8) 

implies that: 
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0 0 0 0

1

( ) ( ) [ , )
N

e e

i

i

IP t L IP t d t L t


                                         (5-9) 

For the warehouse, constraint (5-6) and constraint (5-9) must be both satisfied. Since for i=0 

the satisfaction of constraint (5-9) implies the satisfaction of constraint (5-6), we only need to 

consider constraint (5-9) for the warehouse.  

For each retailer i, in order to ensure inequality (5-6) holds for any demand realization, the 

following inequality must hold: 

                                                              1 ( )i i iR D L                                                         (5-10) 

Since i i i iL SI T S   , we can derive   

                                                ( ) 1i i i i iR D SI T S     for i=1,2,..,N                                 (5-11) 

For the warehouse, under an echelon (R, Q) inventory policy, after order decision, its echelon 

inventory position 0

e

IP  will be within the interval [R0+1, R0+Q0]. The echelon inventory 

position 0

e

IP  and the (echelon) inventory positions 
e

iIP  (i = 1, 2, …, N) of the retailers may be 

dependent, because they are driven by common demand processes (Simchi-Levi and Zhao, 

2012). However, according to Simchi-Levi and Zhao (2012), if we assume randomized initial 

condition for the system, then 
e

IP =(
e

iIP , i{0, 1, …, N}) is uniformly distributed in S
e
, 

where S
e
 ={(si, i{0, 1, …, N})| si{Ri+1, Ri+2,…, Ri+Qi}} is the state space of 

e

IP . With 

this jointly uniform distribution result and the independence between lead time demand 

0 0[ , )d t L t  and inventory position ( )e

iIP t (i = 1, 2, …, N), the following inequality must hold: 

                                                        
0 0 0

1

1 ( ) ( )
N

i i

i

R R Q D L


                                           (5-12) 

Then,  

                                                     
0 0 0 0 0

1

( ) ( ) 1
N

i i

i

R R Q D SI T S


                                (5-13) 

In summary, the above conditions can be described as follows: 

                                    
0 0 0 0 0

1

( ) 1, , 1,2,...,

( ) ( ) 1,

i i i i i

N

i i

i

R D SI T S for retailer i i N

R R Q D SI T S for the warehouse


    



     



           (5-14) 
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Since our objective is to minimize the total cost of the system in the long-run, its optimal 

batching ordering (R, Q) policy must satisfy the following equations: 

                                     
0 0 0 0 0

1

= ( ) 1, , 1,2,...,

= ( ) ( ) 1,

i i i i i

N

i i

i

R D SI T S for retailer i i N

R R Q D SI T S for the warehouse


   



    



            (5-15) 

Note we use the relationship between e

iIP and e

iI (i=0,1,…,N) described above to find the 

expected echelon on-hand inventory [ ]e

iE I . Hadely and Whitin (1961) show that e

iIP is 

uniformly distributed over the interval [ 1, ]i i iR R Q  , then the probability of being at 

state , 1,...,i iR j j Q  is given by 

                                                 
1

11
[ ] ( )

2

iQ
e i

i i i

ji

Q
E IP R j R

Q 


                                     (5-16) 

From the definition of [ , )i id t L t


 and i , we have: 

                          
^

[ [ , )]i i i i iE d t L t L                                          (5-17) 

Similarly, we assume that all excessive demands are satisfied by using extraordinary measures 

without incurring inventory holding costs. With this assumption, we can ignore excessive 

demand in the calculation of expected inventory holding cost e

iE I   . That is, when calculate 

e

iE I    according to (5-5), we first replace [ , )i id t L t  by ˆ [ , )i id t L t . So we can 

derive [ ]e

iE I as 

                                    
^ 1

[ ]= [ ] [ [ , )]
2

e e i
ii i i i i i i

Q
E I E IP E d t L t R L 


                             (5-18) 

By substituting Ri given by (5-15) into equation (5-18), we can derive 

          
0

0 0 0 0 0

0 1

1
( ) ( )+ , 1,2,...,
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 

 
 


     

 
         


 

    (5-19) 

With equation (5-3) and (5-19), the inventory optimization problem studied can be formulated 

as the following nonlinear programming problem: 
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P: Minimize 

0

=0 1 1

0

1
[( ( ) ( ) ] [ ( ) ]

2

(1 )

N N N
e ei i i i
i i i i i i i i i i i i i

i i ii

N

i i i

i

c Q
h D SI T S SI T S h D SI T S Q N

Q

p

 
 

 

 




             



  



 

Subject to:          

                                            0 1,2, ,i i iSI T S for i N                                                (5-20) 

                                                   
0 1,2, ,iSI S for i N                                                    (5-21) 

                                                0 , 1,2,...,i iS s i N                                                         (5-22) 

                                       0iQ   and integer for i=1, 2,…, N                                              (5-23) 

                                      , 0i iSI S   and integer for i=1, 2,…, N                                         (5-24) 

In the above model, the objective function represents the average total costs of the two-level 

distribution system in the long-run. Constraint (5-20) assures that the net lead time of each 

stock is nonnegative. Constraint (5-21) implies that the inbound service time of each retailer is 

no less than the outbound service time of the warehouse. Constraint (5-22) imposes an upper 

bound si on the outbound service time of the stock of each retailer i, i=1,2,…,N. Constraint (5-

23), (5-24) implies that all decision variables must be nonnegative. Note that additional 

integer-ratio constraint on order size Qi (i=0,1,…,N) may be added to be the model because of 

practical requirements, this will be discussed in Section 5.3.  

When all βi are known, both the objective function and the constraints of model P can be 

separated into two sub-problems, order size sub-problem and reorder point sub-problem. The 

two sub-problems, which are referred to as Q-problem and R-problem respectively hereafter, 

have decision variables Qi and {SIi, Si}, respectively.  

Note that the constant term 0

0 0

1
( )+ (1 )
2

N N
e e

i i i i

i i

h h N p  
 

    in the objective function of P can 

be omitted in the two sub-problems.  

Q-problem: 

Minimize: 
0

=0 1

[( ) ]
2

N N
e ei i i i
i i

i ii

c Q
h h Q

Q

 



      
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Subject to:          

0iQ   and integer for i=1, 2,…, N 

R-problem: 

Minimize: 
0

=0 1

[( ( ) ( )] ( )
N N

e e

i i i i i i i i i i i i

i i

h D SI T S SI T S h D SI T S 


            

Subject to:          

0 1,2, ,i i iSI T S for i N     

0 1,2, ,iSI S for i N   

0 , 1,2,...,i iS s i N    

, 0i iSI S   and integer for i=1, 2,…, N 

In the next two sections, we will develop efficient algorithms to solve the two sub-problems 

for the given αi and βi. Moreover, for the Q-problem, five different types of integer-ratio 

constraints are considered, and we present an efficient algorithm to solve the Q-problem with 

each type of integer-ratio constraints.  

All the above analysis assumes that all βi are known. However, βi are unknown, but they can 

be determined by the inventory policies of the system. Based on the solutions of the two sub-

problems, we will introduce a method for calculating βi, and the original optimization 

problem (model P) can be resolved by an optimization procedure.  

5.3 Dynamic Programming Algorithm for Q-problem 

In practice, integer-ratio constraints may be imposed on the order size of the warehouse (Q0) 

and the order sizes of the retailers (Qi, i=1,2,…,N). That is, the order size of a stock may be 

required to be a multiple of the order size of another stock. Such constraints can facilitate 

order/shipment quantity coordination between two supply/demand facilities and simplify their 

order packaging, transportation and inventory accounting. Many companies have recognized 

these managerial benefits of having such integer-ratio constraints in multi-echelon inventory 

management (Cheng and Zheng, 1997). 

For the two-level distribution system studied, researchers have considered different types of 

integer-ratio constraints, but no comparison among them was made in terms of the 

effectiveness. In Section 5.3.1, we will introduce five different types of integer-ratio 
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constraints possibly imposed on the system, and the Q-problem with each type of integer-ratio 

constraints will be solved by a dynamic programming algorithm or an EOQ-based algorithm 

in Section 5.3.2. Numerical experiment results on the evaluation of the effectiveness of the 

five different types of integer-ratio constraints and their impacts on the optimal order sizes of 

the system will be given in Section 5.6. 

5.3.1 Integer-ratio Constraints for Q-problem 

Five different types of integer-ratio constraints corresponding to five cases respectively are 

described as follows. 

Case 1: without integer-ratio constraint; 

In this case, no relationship exists between the order size of the warehouse (Q0) and the order 

size of any retailer (Qi, i=1,2,…,N). This corresponds to the situation when the warehouse and 

the retailers have no intention to coordinate their order/shipment quantities. In this case, the 

Q-problem has a simple structure, which can be divided into N-independent sub-problems and 

solved as the classical EOQ model.  

Case 2: Qi=mi∙QN, for some integers mi, i=1,2,…,N-1. 

This kind of integer-ratio constraints was considered by Chen and Zheng (1997) in their 

model of a two-level distribution system with one warehouse and multiple retailers, where 

retailer N is taken as the reference retailer and its order size QN is taken as the base-lot of all 

other retailers in the system. Here, retailer N can be replaced by any other retailer (i  N) and 

the choice of the reference retailer and its order size depends on the average demand rate of 

each retailer. Under the assumption that initial on-hand inventory at the warehouse is also an 

integer multiple of the base-lot, they showed that such a restriction is not too costly. 

Case 3: Qi=mi∙q, for some integers mi, i=0,1,2,…,N. 

Similarly, this case also assumes a base-lot for the distribution system, in which the order size 

of each stock (Qi, i=0,1,…,N) is an integer multiple of the base-lot denoted by q. Here, q can 

also be regarded as the common factor of Q0, Q1,…,QN. In practice, q may correspond to the 

capacity of a pallet for delivery. The capacity is the number of units of a product that the 

pallet can carry for order shipment.  

Case 4: Q0=mi∙Qi, for some integers mi, i=1,2,…,N. 

This case assumes that the order size at the warehouse (Q0) is always an integer multiple of 

the order size of each retailer (Qi, i=1,2,…,N). This assumption, which is commonly adopted 



 

 109 

in the inventory management literature, is quite natural if the inventory replenishment policy 

of the warehouse is to satisfy all or nothing of each retailer’s order (Axsater, 1996). This 

coordination strategy sets a strict restriction between the order size of the warehouse and the 

order size of each retailer, it may bring extra coordination costs to the system. 

Case 5: Q0=m0∙q0, Qi=mi ∙q1, 1 i  N, q0=k0∙q1, for some integers mi, i=1,2,…,N, k0. 

In case 2 and case 3, a base-lot is assumed for both the warehouse and the retailers in the 

distribution system. However, since the warehouse and the retailers belong to different levels 

in a supply chain, this order size coordination strategy may be difficult to implement. Based 

on this observation, we propose the case 5 of integer-ratio constraints. This case assumes 

there exist a base-lot for each level in the system, i.e., q0 for the warehouse level (level 0) and 

q1 for the retailer level (level 1). That is, the order sizes of all the stocks at the same level have 

a common base-lot and the base-lot at a high level (level 0) is an integer multiple of the base-

lot at a lower level (level 1), i.e., the base-lot at the warehouse (q0) is an integer multiple of 

that at the retailers (q1).  

In the next section, we will develop efficient algorithms to solve the Q-problem with the 

integer-ratio constraints in five cases.  

5.3.2 Dynamic Programming for Q-problem 

According to the characteristic of the cases for the Q-problem, we present efficient algorithms 

to solve for deriving the optimal Q
*
 at each stock. 

Before introducing the algorithms, we first transform the objective function of the Q-problem 

as the following expression. 

0

0 0
2 2 , 1,2,...,

eN
i i i i

i i e e
i i i

hc H
Q where H

Q h h i N

 




   

 
  

The new expression of the objective function will be used later for describing the procedure of 

the algorithms. 

5.3.2.1 EOQ model for Q-problem with case 1 

For the Q-problem without integer-ratio constraints, the problem can be divided into N-

independent sub-problems, and each sub-problem will be solved as EOQ model. 

Therefore, the optimal Q
*
 at each stock i (i=0,1,…,N) can be divided as follows: 
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* 2
, 0,1,...,i i i

i

i

c
Q i N

H

 
   

5.3.2.2 The algorithm for Q-problem with case 2 

We develop a simple algorithm to solve the Q-problem respect to case 2, the key idea of the 

algorithm is that we first use two important properties we have found to reduce the state space 

of the problem. After the state space reduction, a simple algorithm working on the reduced 

state space is used to identify the optimal solution.  

The following notations are first introduced as follows: 

Qi: state variable of stock i, which represents a possible order size of stock i, i=0,1,…,N and 

the set of all possible values of Qi is denoted by Wi, 

WN: the set of all possible values of the base-lot QN, 

mi: decision variable of stock i, i=0,1,…, N-1, 

Mi(QN): the set of permissible values of mi given the state of the base-lot QN,  

di(Qi): the cost of stock i when its state of stock i is Qi, 

C: the minimum total cost for the system.  

1)  State space reduction 

By analysis of the objective function of the Q-problem and its integer-ratio constraints, i.e., 

case 2, we can find the following two important properties regarding WN and Mi(QN) for stock 

i, i=0,1,2,…, N-1. Based on the properties, the state space of each stock i, i=0,1,2,…,N can be 

derived.  

Firstly, an upper bound of the base-lot QN is given by Property 5.1.  

Property 5.1: For a two-level distribution system with one-warehouse, N-retailers and the 

integer-ratio constraints among Qi given by case 2, an upper bound of the base-lot QN is given 

by 

0

0

2

=

N

i i i

i
N N

i

i

c

Q

H

 








—
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Since QN is an integer, with the property, WN can be taken as the integer set of
_

{1,2, , }NQ
 
 
 

, 

where min{ }x a Z a x     and Z is the set of integers.    

Let Ui(QN) denote the set of all possible values of Qi when QN is given. Then, an upper bound 

of mi for each stock i, i=0, 1,2,…,N-1 is given by Property 5.2 as a function of the state QN .  

Property 5.2: For a two-level distribution system with N retailers and the integer-ratio 

constraints of case 2, if the order size of the base-lot is QN , then an upper bound of mi is given 

by   

21
=0,1,..., -1i i i

i

i i

c
m for i N

Q H

 

   

From this property, if QN is given, the permissible decision set Mi(QN) can be taken as the 

set{1,2, , }im
 

  
. According to the integer-ratio constraints given by case 2, Ui(QN) can then 

be written as  

( ) { , ( )}, 0,1,2,..., 1i N N i NU Q Q Q Q m m M Q i N       

Ui(QN) can be calculated from im


and QN. 

2) The procedure of the algorithm 

Since the objective function of the Q-problem is additive with respect to the order size of each 

stock and the integer-ratio constraint with case 2 of the problem only relate the order size Qi to 

the order size of the base-lot QN, so the order size decision of each stock only depends on the 

order size of the base-lot QN. Therefore, we develop a simple algorithm based on the base-lot 

given by QNWN for solving the problem.         

Let gi(QN) denote the minimal cost of stock i for i=0,1,..,N-1 when the base-lot is QN. 

( )
( )= min ( ), 

i N

i N i N N
j U Q

g Q d j Q W


  

Therefore, the minimal total cost C of the Q-problem with case 2 can be derived by  

-1

=0

min ( )+ ( ),
N

N

N N l N N N
Q

l

C d Q g Q Q W   
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where ( )= , 0,1,...,
2

i i i i
i i i

i

c H
d Q Q i N

Q

 
   . 

In summary, the main step of the algorithm is presented in the following.  

Step 1: Calculate the upper bound of the base-lot WN and the set of Ui(QN) for i=0,1,..,N-1 

using the two properties; 

Step 2: For i=0,1,…,N-1, calculate gi(QN) for QNWN ; 

Step 3: Calculate C, the minimal total cost of the Q-problem; 

Step 4: Backtrack from stock N to stock i, i=0,1,…,N-1 to get the optimal batch size Qi
*
 for 

each stock i, i=0,1,2,…,N. 

5.3.2.3 The algorithm for Q-problem with case 3  

Similar with case 2, the integer-ratio constraint in this part also set a base-lot for the Q-

problem; therefore, we can use the algorithm in Section 5.2 to solve the problem in this case.    

There also exist two similar important properties to reduce the state space for the problem, 

here, let Wq as the upper bound of the base-lot q, then, based on the two properties, we can 

calculate Wq and Mi(q) for i=0,1,…,N as follows: 
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c
m i N

q H
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  ; 

Since q and mi are integers, then, Wq and Mi(q) can be taken as the integer set 

of
_

{1,2, , }q
 
 
 

and {1,2, , }im
 

  
for i=0,1,…,N, respectively.,   

According to the integer-ratio constraints given by case 3, Ui(q) can be written as  

( ) { , ( )}, 0,1,2,...,i iU q Q Q q m m M q i N      

Next, the minimal cost of each stock i when the base-lot is q, i.e., gi(q) (i=0,1,…,N ) can be 

calculate by  

( )
( )= min ( ), 

i

i i
j U q

g q d j q W


  

Thus, minimal total cost of the Q-problem with case 3 can be derived by 
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=0

min ( ),
N

l
q

l

C g q q W   

And the optimal Q
*
 for each stock i, i=0,1,…,N can be derived by a simple backtrack process.  

5.3.2.4 Crowston-Wagner’s algorithm for Q-problem with case 4 

Crowston and Wagner (1973) presented a dynamic programming algorithm (referred to 

algorithm CW) to solve a lot size problem for assembly systems with deterministic demand. 

Their algorithm can also be used to solve our Q-problem with case 4 since it has the same 

structure. Their algorithm first calculates an upper bound and a lower bound of the optimal lot 

size for each stock, based on a lower bound and an upper bound of the optimal cost of the 

joint lot-sizing problem. Next, we give the following procedures for solving such a problem 

by algorithm CW.     

Firstly, the objective function can be written as: 

0 0

0
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2 2 , 1,2,...,

e
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f Q Q
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   

  

 

Next, the upper and lower bounds of order size Qi for each stock i (i=0,1,…,N) can be 

calculate by the following procedures: 

Step1: take
2

, 0,1,2,...,i i i
i

i

c
Q i N

H

 
  into fi(Qi), i=0,1,2,…,N, then,  

2
, 0,1,2,...,

22

i i i i i i i
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ii i
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c H c
z i N

Hc

H

   


     ; 

Step 2: get the lower bound of the total cost
0

=
N

i

i

L z


 ; 

Step 3: an upper bound of the total cost, U, can be derived from a feasible heuristic solution.  

Step 4: with the upper bound U and the lower bound L, the cost of each stock i (fi(Qi)) for 

i=0,1,2,…,N may be determined: U-(L- Zi), that is 

2

i i i i
i i

i

c H
Q Z U L

Q

 
      

Then, we can solve directly for upper and lower bounds of each stock i, ,U L

i iQ Q . 
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In addition, better bounds on the optimal Qi, such that min * max

i i iQ Q Q  can be obtained as 

follows:  

min max( ; ), ( )L L

i i mQ Q Q m s i  , max min( ; ), ( )U U

i i mQ Q Q m P i   

Let Wi denote the state space of each stock i, i=0,1,2,…,N, then, Wi can be derived by  

min max=[ , ]i i iW Q Q  

Since the order size at the warehouse must be an integer multiple of each retailer, i.e., 

Q0=miQi, i=1,2,…,N, we assume Vi(Q0) (i=1,2,…,N) as the set of all possible value of Qi of 

stock i (retailer i) when the order size of stock 0 (the warehouse) is given by Q0W0.  

Let gi(Qi) present the minimal cost at stock i and all its successors when Qi is given by QiWi. 

The state transition function and the recursion equations of the DP algorithm can then be 

formulated as: 

State transition function: 

0 , 1,2,...,i iQ m Q i N    

Recursion equations: 

0

0

0 0 0 0 0 0(0) ( )

-1 0 0 0 0
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(0) min ( ),

j

i i i i i i
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g Q d Q g k Q W
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
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
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

  

where  

( )= , 0,1,...,
2

i i i i
i i i

i

c H
d Q Q i N

Q

 
    

Then, the problem can be solved by the dynamic recursive procedure, and the optimal Q
*
 for 

each stock can be derived by a backtrack procedure. 

5.3.2.5 The algorithm for Q-problem with case 5  

In two-level distribution system studied, the key meaning of case 5 is that for each level, there 

exists a base-lot, i.e., q0 for the warehouse and q1 for all retailers, and moreover, the base-lot 

q0 must be an integer multiple of that of q1, therefore, there exist the following constraint for 

the system: 
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0 0 0Q m q , 1, =1,2,...i iQ m q i N , 0 0 1=q k q  

In this part, we may consider the two levels separately. First, for the lowest level (the level of 

all retailers), i.e., level 1, similar with the algorithm for case 2, we calculate the upper bound 

of the base-lot q1, denoted by W1, and Mi(q1) for i=1,2,…,N.  

_
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q H
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  ; 

Since q and mi are integers, then, W1and Mi(q) can be taken as the integer set 

of
_

1{1,2, , }q
 
 
 

and {1,2, , }im
 

  
for i=1,…,N, respectively.   

Then, Ui(q1) for stock i, i=1,2,…N at level 1 can be written as 

1 1 1( ) { , ( )}, 1,2,...,i iU q Q Q q m m M q i N      

Secondly, for level 0, considering the above constraints, we can derive the following 

relationship between Q0 and q1. 

0 0 0 1=Q k m q  

If we assume 0 0 0=r k m , then, the upper bound of r0, denoted by R0, can be get by  

0 0 0
0

1 0

21 c
r

q H

 

  

Then, R0 can be taken as the integer set of
_

0{1,2, , }r
 
 
 

.   

And Ui(q1) for stock 0 at level 0 can be written as: 

0 1 1 0( ) { , }U q Q Q q r r R     

After getting Ui(q1) for each stock i, i=0,1,…,N, next, the minimal cost of each stock i when 

the lowest base-lot q1 is given by q1W1, can be calculated by 

1

1 1 1
( )

( )= min ( ), 
i

i i
j U q

g q d j q W


  

 Thus, minimal total cost of the Q-problem with case 5 can be derived by 
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1

1 1 1

=0

min ( ),
N

l
q

l

C g q q W   

And the optimal Q
*
 for each stock i, i=0,1,…,N can be derived by a simple backtrack process

 
 

5.4 Dynamic Programming Algorithm for R-problem 

In this section, we also use an efficient dynamic programming algorithm (Graves and Willems, 

1996) to solve the optimization problem for finding the optimal service times of a two-level 

distribution system with a spanning tree structure under the GSA. In the following, we briefly 

introduce their algorithm applied to the R-problem studied. 

In the algorithm, a multi-echelon inventory system is described by a graph in which each node 

represents a stock in the system and two nodes are connected by a directed arc if the 

corresponding two stocks are connected (one stock is a supplier of the other stock). In the 

graph, let N(i) denote the subset of nodes (stocks) {1,2,…,i} that are connected to i on the 

sub-graph consisting of nodes {1,2,…,i}. N(i) will be used to explain the dynamic 

programming recursion. For the distribution system studied, N(i) can be recursively 

determined by the following equation:   

N(i)={i}+P(i) 

This implies that N(0)= {0}, N(i)={0,i}, i=1,2,…,N. 

The dynamic programming algorithm evaluates a functional equation for all nodes (stocks), in 

the order of their indexes (labels). According to Graves and Willems (1996), generally the 

functional equation may have two different forms at each node i (i=1,2,…,N-1), depending on 

the location of the node with higher index that is adjacent to node i. However, for the 

distribution system studied, each node i has only downstream adjacent nodes with a higher 

index, then the functional equation has the unique form. In order to formulate the equation, let 

us define: 

fi(S): the minimum inventory holding cost for the sub-system (of the original distribution 

system) described by the sub-graph with node set N(i), where the outbound service time of 

stage i is given by S.  

With this cost function, the minimum inventory holding cost for the sub-system can also be 

defined as a function of both outbound service time and inbound service time of node i (stock 

i): 
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i i j j j i i i i i P i
y SI

j

C S SI h D SI T S SI T S f y 
 



         

The first term is the inventory holding cost of node i (stock i), which is a function of S and SI. 

The second term corresponds to the nodes (stocks) in N(i) that are upstream of node i (stock i).  

The functional equation for fi(S) can be found by solving the following optimization problem. 

( ) min{ ( , )}i i
SI

f S C S SI  

Subject to:  

max{0, }i i iS T SI M T    and SI integer. 

In the above model, SI is bounded by Mi-Ti, where Mi is the maximum replenishment time of 

node i (stock i). In addition, if node i is the retailer, S is also bounded by its maximum service 

time, i.e.,
i iS s for i=1,2,…,N. 

In summary, the main steps of the dynamic programming algorithm are given in the following.  

Step 1: For i:=0 to N, evaluate fi(S) for S=0,1,…,Mi. 

Step 2: Minimize fN(SI) to derive the optimal cost value of the R-problem.  

Step 3: backtrack from node (stock) N to Node (stock) N-1,…, Node (stock) 2 to Node (stock) 

1 to get the optimal inbound service time and outbound service time of each node (stock).  

5.5 Optimization Procedure 

Similar to serial systems, the original optimization problem, i.e., optimization of echelon (R, 

Q) policy under the GSA for the distribution system can be resolved by an iterative procedure 

as presented in Section 3.5. The procedure has two main steps: firstly, for an estimated fill 

rate of the system, the optimal order size Q and the optimal reorder point R for each stock are 

calculated by solving two sub-problems using two dynamic algorithms. Secondly, the real fill 

rate of each stock in the system is calculated given its inventory policy. When the real fill rate 

of each stock equals to its estimated fill rate, the optimal solution of the original problem is 

found.  

For the serial and assembly systems considered in last two chapters, they have only one end 

stock, so there is only one fill rate β for the entire system, i.e. the fill rate of stock i (i = 1, 

2, …, N) can be written as: 
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1 2= =......= N     

However, for the two-level distribution system considered, the warehouse has multiple 

retailers (end stocks) and these retailers may have different fill rates. For each retailer i, if its 

reorder point and its order size of retailer i are given by Ri and Qi, respectively, its fill rate i  

can be calculated in the following way: 
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Similarly, with the echelon interpretation of 0 ( )D  , the fill rate 0 of the warehouse can be 

calculated as: 
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From the above analysis, the fill rate of each stock in the distribution system can be calculated 

according to its inventory control parameters (Ri, Qi) (i = 0, 1, …, N); however, the inventory 

(R, Q) policy is also derived from the optimal solution of model P, depending on βi. Therefore, 

βi cannot be derived directly from αi by solving P on time. In the following, we use an 

iterative procedure to solve the original problem (model P) based on guessing the value of βi 

at each iteration. When the real βi equals to its estimated value, the optimal solution of the 

original problem can be resolved. The procedure has the following characteristics: 1) the 

initial value of βi is set to αi; 2) the procedure stops when the estimated value of βi does not 

change in two successive iterations for each i (i = 0, 1,…, N). The main steps of the procedure 

are given as follows: 

Procedure BETA: 

Step 0: For i=0, 1,…,N, set :i i  ;  

Step 1: Solve the Q-problem and the R-problem to get the values (Ri, Qi) for each stock i; 

Step 2: Calculate the real fill rate *

i  (i=0,1,…,N) of the system for the given (R, Q) policy by 

using the method proposed; 
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Step 3: If *

0

| |
N

i i

i

  


   ( is a very small positive number), stop; Otherwise, set *

i i  for 

i=1,2,…,N and go to Step 1.  

In the next section, we will perform series of numerical experiments to evaluate the efficiency 

of the procedure proposed in this section.  

5.6 Numerical Experiments 

In this section, we evaluate the performance of the two algorithms for the Q-problem and R-

problem respectively and the performance of the procedure BETA proposed for solving the 

inventory policy optimization problem P by computational experiments on randomly 

generated instances.  

5.6.1 Experiments for the Resolution of Q-problem  

In section 5.3, for the five different cases of integer-ratio constraints in Q-problem, we 

develop relevant algorithms to solve it, and furthermore, derive the optimal Q
*
 on the base of 

the characteristic of each case. In order to identify the sensitiveness of algorithms in the five 

different cases of Q-problem, we first give a set of small sized instance (N=4) for the purpose 

of analyzing more detailed information for the algorithms, and then, we will consider five sets 

of medium to large sized instances with N=10, 20, 50, 100, respectively, in an attempt to give 

further analysis in larger systems by using the algorithms proposed.    

5.6.1.1 Small sized instances (N=4)  

For this set of instance, 5 instances are generated and tested, and all parameters are given to 

be deterministic. For each instance, we will evaluate three index, optimal value (OPT), 

optimal order size (Q
*
) and the computation time. The parameter setting and the results are 

given in Table 5.1. 

Table 5. 1  The results for the small sized instances of Q-problem with N=4 

No. Parameters Cases OPT Q
* time (s) 

1 

hi
e
={1,1,1,1,1},  

λi={4,1,1,1,1},  

ci= {20,20,20,20,20} 

case 1 

case 2 

case 3 

case 4 

case 5 

56.6538 

56.6667 

56.6538 

56.6667 

56.6538 

13, 4, 4, 4, 4 

12, 4, 4, 4, 4 

13, 4, 4, 4, 4 

12, 3, 3, 3, 3 

13, 4, 4, 4, 4 

0.00037 

0.00061 

0.000451 

0.000669 

0.000271 

2 hi
e
={1,0.1,1,0.1,1},  case 1 121.233 29, 10, 8, 10, 8 0.000371 
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λi={12,3,3,3,3},  

ci= {35,35,35,35,35} 

case 2 

case 3 

case 4 

case 5 

121.622 

121.233 

121.622 

121.233 

27, 9, 9, 9, 9 

29, 10, 8, 10, 8 

27, 9, 9, 9, 9 

29, 10, 8, 10, 8 

0.000489 

0.00046 

0.008461 

0.000294 

3 

hi
e
={1,0.1,1,0.1,1},  

λi={10,1,2,3,4},  

ci= {25,25,25,25,25} 

case 1 

case 2 

case 3 

case 4 

case 5 

92.222 

92.819 

92.222 

93.475 

92.222 

22, 5, 6, 8, 8 

21, 7, 7, 7, 7 

22, 5, 6, 8, 8 

24, 4, 6, 8, 8 

22, 5, 6, 8, 8 

0.000326 

0.000705 

0.000464 

0.00041 

0.000395 

4 

hi
e
={0.1,0.1,0.1,0.1,0.1},  

λi={16,1,3,5,7},  

ci= {15,15,15,15,15} 

case 1 

case 2 

case 3 

case 4 

case 5 

29.7729 

30.988 

29.7729 

29.85 

29.7729 

69, 10, 17, 22, 26 

63, 21, 21, 21, 21 

69, 10, 17, 22, 26 

72, 9, 18, 24, 24 

69, 10, 17, 22, 26 

0.000477 

0.000161 

0.000586 

0.000241 

0.00044 

5 

hi
e
={0.1,0.1,0.1,0.1,0.1},  

λi={16,1,3,5,7},  

ci= {15,15,15,15,15} 

case 1 

case 2 

case 3 

case 4 

case 5 

13.0278 

13.175 

13.0278 

13.075 

13.0278 

40, 6, 8, 7, 9 

40, 8, 8, 8, 8 

40, 6, 8, 7, 9 

40, 5, 8, 5, 10 

40, 6, 8, 7, 9 

0.000419 

0.000971 

0.000562 

0.000231 

0.000386 

From Table 5.1, after analyzing the numerical results, we can obtain the following 

observations: 

1) For five integer-ratio constraints cases, we always developed efficient algorithms to solve, 

and the optimal order size Q
*
 for each stock can be derived; 

2) By observing the optimal value (OPT), we can see that the OPT are similar among the five 

different cases, only exiguous differences exists; this result demonstrate that the system-wide 

costs tend to be insensitive to the choice of order sizes in the system. And if we give further 

analysis about the results, the following rules about the OPT can be derived:  

1 3 5 4 2= = <case case case case caseOPT OPT OPT OPT OPT  

From the above observation, we can see that the OPT of case 1, case 3 and case 5 are equal, 

this circumstance only occurs when the base-lot of case 3 and case 5 are equal to 1, in this 

situation, the case 3 and case 5 can be regarded as the case of without integer-ratio constraints, 

i.e., case 1. And we can also see that the OPT of case 4 are less than or equal to that of case 2, 
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this means that the integer-ratio constraint of case 2 are tighter than that of case 4 for the 

system studied.  

(4) From the table, the computation times of the five cases are quite short for all five cases, 

demonstrating the efficiency of the algorithms.  

5.6.1.2 Large sized instances (N=10, 20, 50, 100) 

For each set, 10 instances are generated and tested. Each instance of Q-problem was randomly 

generated with the following parameters settings: 

[1,5]e

ih U , [10,20]e

i ic h U  , [1,10]U  

The optimal value (OPT) and the computation time for the instances of each set are given in 

Table 5.2, Table 5.3, Table 5.4 and Table 5.5. 

Table 5. 2  The results for the instances of Q-problem with N=10 

 OPT (optimal value) Time (s) 

No. case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5 

1 409.57 417.66 409.57 411.63 409.57 0.0002 0.00088 0.00045 0.0045 0.00034 

2 454.77 460.5 456.77 457 456.77 0.00023 0.00054 0.00042 0.0047 0.00033 

3 607.14 612.83 607.14 610.5 607.14 0.00023 0.00085 0.00043 0.0041 0.00036 

4 609.12 620 609.12 612.08 609.12 0.00024 0.00093 0.00042 0.0043 0.0004 

5 515.67 518.67 515.67 517.5 515.67 0.00023 0.00092 0.00037 0.0046 0.00037 

6 664.73 668.32 664.73 668.94 664.73 0.00021 0.00148 0.00047 0.0042 0.00038 

7 356.89 367.7 356.89 358.25 356.89 0.00023 0.00095 0.00038 0.0041 0.00038 

8 361.79 369.62 361.79 364.66 361.79 0.00022 0.00095 0.00065 0.0044 0.00035 

9 379.14 384.66 379.14 380 379.14 0.00025 0.00117 0.00038 0.0039 0.00037 

10 432.56 434.37 432.56 434.37 432.56 0.00022 0.0001 0.00037 0.0041 0.00032 

 

Table 5. 3  The results for the instances of Q-problem with N=20 

 OPT (optimal value) Time (s) 

No. case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5 

1 916.95 947.85 916.59 920.70 916.59 0.00026 0.0011 0.00053 0.0085 0.00048 

2 747.49 769.2 747.49 749.95 747.49 0.00031 0.00067 0.00064 0.0085 0.00047 

3 620.42 626.44 620.42 623.3 620.42 0.00025 0.00069 0.00068 0.0091 0.00042 

4 1299.8 1309.9 1299.8 1301.5 1299.8 0.00028 0.00069 0.00058 0.0116 0.00041 

5 939.04 960.9 939.04 943.55 939.04 0.00036 0.002 0.00078 0.0123 0.001 

6 1415.5 1447.1 1415.5 1422.5 1415.5 0.00028 0.0016 0.00075 0.0116 0.00057 
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7 1002.9 1020.4 1002.9 1006.7 1002.9 0.0003 0.0014 0.00058 0.0078 0.00045 

8 905.83 918.38 905.83 908.97 905.83 0.00028 0.0011 0.00055 0.0174 0.00065 

9 1372.1 1387.6 1372.1 1381.0 1372.1 0.0003 0.0012 0.00051 0.0129 0.00045 

10 804.66 807.25 804.66 807.3 804.66 0.00028 0.0011 0.00065 0.0173 0.00056 

 

Table 5. 4   The results for the instance of Q-problem with N=50 

 OPT (optimal value) Time (s) 

No. case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5 

1 3247.7 3294.7 3247.7 3257.6 3247.7 0.00038 0.0062 0.0012 0.0135 0.00079 

2 2154.3 2162.3 2154.3 2159.4 2154.3 0.00032 0.0053 0.00098 0.0129 0.00072 

3 2324.5 2361.0 2324.5 2329.8 2324.5 0.00031 0.0052 0.0013 0.0127 0.00074 

4 1864.3 1903.5 1864.3 1868.8 1864.3 0.00033 0.0052 0.0013 0.0125 0.0014 

5 2632.6 2668.7 2632.6 2643.8 2632.6 0.00043 0.0056 0.0011 0.0124 0.0013 

6 2233.9 2273.4 2233.9 2240.1 2233.9 0.00034 0.0051 0.0012 0.0083 0.0012 

7 3018.4 3064.6 3018.4 3028.3 3018.4 0.00041 0.0052 0.0012 0.0152 0.0015 

8 2259.9 2285.4 2259.9 2267.3 2259.9 0.00034 0.0055 0.0011 0.0178 0.0013 

9 2411.2 2434.2 2411.2 2419.8 2411.2 0.00036 0.0057 0.0013 0.0164 0.00074 

10 2067.2 2078.1 2067.2 2073.6 2067.2 0.00037 0.0053 0.00096 0.0163 0.0011 

 

Table 5. 5  The results for the instances of Q-problem with N=100 

 OPT (optimal value) Time (s) 

No. case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5 

1 6233.3 6339.2 6233.3 6246.3 6233.3 0.00064 0.0061 0.0027 0.0139 0.0013 

2 5505.2 5530.2 5505.2 5524.4 5505.2 0.00053 0.014 0.0023 0.013 0.0023 

3 5463.1 5488.8 5463.1 5478.2 5463.1 0.00074 0.0075 0.0019 0.0198 0.0029 

4 4598.9 4614.6 4598.9 4609.0 4598.9 0.00063 0.0102 0.0024 0.0324 0.0023 

5 4049.8 4123.1 4049.8 4063.7 4049.8 0.00062 0.0101 0.0021 0.0224 0.0027 

6 4687.0 4732.8 4687.0 4702.0 4687.0 0.00065 0.0073 0.0018 0.0208 0.0026 

7 5445.5 5498.1 5445.5 5461.6 5445.1 0.00072 0.0066 0.0025 0.0148 0.0024 

8 5800.9 5822.6 5800.9 5817.6 5800.9 0.00064 0.0061 0.0022 0.0271 0.0015 

9 5317.2 5351.7 5317.2 5331.9 5317.2 0.00076 0.01 0.012 0.0431 0.0016 

10 4955.5 5063.1 4955.5 4973.3 4955.5 0.00066 0.0086 0.015 0.0329 0.0015 

From the four tables, we can observe that the computation time of the dynamic programming 

algorithm is very short for each instance in the four sets of instances; this demonstrates that, 

even for the large instances with 100 retailers, the Q-problem with different integer-ratio 

cases can be solved efficiently by using the algorithm. In addition, the observations about the 
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optimal cost of the problem obtained for the small instances in the last subsection are also 

valid for the large instances in this subsection.  

5.6.2 Experiments for the Resolution of R-problem         

Similarly, a set of small sized instances with N=4 and four sets of medium to large sized 

instances with N=10, 20, 50, 100, respectively were tested. Each set contains 10 instances. All 

the instances for R-problem were generated with parameters hi
e
, Ti, si and i  randomly 

generated according to the uniform distributions described in Table 5.6, with the service 

level i  (i=1,2,…,N) for all retailers specified as 0.95. The computation results of the 

instances are given in Table 5.7. 

Table 5. 6  Parameter settings of the tested instances of R-problem 

Parameter Value 

e

ih  

iT  

is  

i  

[1,5]e

ih U  

[1,10]e

iT U  

[1,3]is U  

[1,10]i U   

 

Table 5. 7  The results for the tested instances of R-problem 

Instance set Max / Average computation time (s) 

Small instance N=4 0.00299s / 0.00167s 

Medium to large 

instances 

N=10 0.00313s / 0.00202s 

N=20 0.00512s / 0.00303s 

N=50 0.08188s / 0.01688s 

N=100 0.06219s / 0.0322s 

From Table 5.7, we can observe that for small instance (N=4) the R-problem can be solved 

almost instantaneously by using the dynamic programming algorithm of Grave and Willems, 

whereas for larger instances (N=10, 20, 50 and 100), the computation time of the algorithm 

becomes longer but is still quite short. This demonstrates the suitability of this algorithm in 

solving the R-problem.   
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5.6.3 Experiments for the resolution of problem P with a given service level 

In this section, we evaluate the performance of procedure BETA by numerical experiments on 

the same sets of randomly generated instances with N=10, 20, 50 and 100 respectively as 

presented in Section 5.6.1 and 5.6.2. For each instance set, four different α-service levels 

ranged from 0.8 to 0.98 were considered and 10 instances were generated randomly for each α. 

We calculated the maximum/average computation time and the maximum/average number of 

iterations of the procedure BETA for the instances, and the results are given in Table 5.8.  

Table 5.8 The results for the tested instances of problem P  

 
α-service 

level 

Max/average 

computation 

times in seconds 

Max/average 

number of 

iterations 

N=10 

0.80 
0.90 
0.95 
0.98 

0.2799/0.1193 
0.2412/0.1113 
0.3167/0.1646 
0.1575/0.1165 

4/3.8 
4/3.2 
3/3 
3/3 

N=20 

0.80 
0.90 
0.95 
0.98 

1.4726/0.7084 
2.5285/0.8465 
0.8885/0.5517 
1.3599/0.5706 

4/4 
4/3.5 
3/3 
3/3 

N=50 

0.80 
0.90 
0.95 
0.98 

2.1309/1.7164 
 6.2981/2.4684 
4.4845/2.5109 
2.6383/1.4581 

4/4 
4/4 

4/3.2 
3/3 

N=100 

0.80 
0.90 
0.95 
0.98 

4.476/3.2181 
7.3628/4.1323 
4.285/2.6031 
5.3823/3.8045 

4/4 
4/3.9 
4/3.2 
3/3 

From the table, we can observe that the maximum number of iterations for each instance is no 

larger than 4, and is very close to its corresponding average number of iterations. The two 

numbers of iterations decrease when the α-service level increases. This observation about the 

number of iterations of procedure BETA is similar to that in the last two chapters. It 

demonstrates that the number is neither sensitive to the number of retailers nor sensitive to the 

α-service level of the distribution system considered. In addition, the maximum computation 

time and the average computation time of the procedure are short even for the largest 

instances with N=100. These results show that the procedure BETA has a good convergence 
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property and is very efficient in solving the inventory optimization problem of the distribution 

system with a given α-service level.  

5.7 Conclusion  

This chapter has studied a two-level distribution system with Poisson final demands and fixed 

order costs at each stock. As we know, for distribution systems, echelon (R, Q) policies and 

installation (r, Q) policies can not be transformed each other, this makes the inventory policy 

optimization problem of the considered system more complicated. To simplify the 

formulation of the problem, we have assumed randomized initial condition for the distribution 

system. With this assumption, we have proposed a mathematical model and an iterative 

procedure for optimizing the (R, Q) policy of the system under the GSA framework. The 

procedure is based on the resolution of the model’s two sub-problems, Q-problem and R-

problem, which are solved by using a dynamic programming algorithm or an EOQ-based 

method. Five different types of integer-ratio constraints are considered for the Q-problem and 

their cost-effectiveness are compared. Finally, the performances of the algorithms and the 

procedure are evaluated by numerical experiments. 
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Chapter 6 Conclusions and Perspectives 

In this thesis, we have studied the inventory policy optimization of multi-echelon inventory 

systems with fixed order costs at each stock. Because of existing fixed order costs, this 

problem becomes very difficult for general multi-echelon inventory systems. In the literature, 

two competing approaches are used to solve inventory optimization problems, stochastic 

service approach (SSA) and guaranteed service approach (GSA). Compared with the SSA 

whose model usually has a very complicated structure, the GSA describes a multi-echelon 

inventory system in an approximate fashion and can provide a relatively simple mathematical 

programming model for the system. This simplified model allows a planner to make strategic 

and tactical decisions on the inventories of the system such as safety stock placement. The 

key assumption of the GSA is that excessive demand superior to a certain level is treated by 

operating flexibility. Based on this assumption, the GSA can formulate the inventory 

optimization problem as a deterministic mathematical programming problem. However, in 

most studies of the GSA, the costs of using operating flexibility were not considered in its 

optimization model. This has caused the criticism of this approach in the past. In addition, 

fixed order costs which often exist in industrial supply chains were ignored in the model. To 

the best of our knowledge, no previous work has used the GSA to optimize multi-echelon 

inventory systems with fixed order costs. Therefore, in this thesis we have focused on two 

major research topics: 1) Use the GSA to optimize multi-echelon inventory systems with 

fixed order costs at each stock. 2) Extend the GSA to consider operating flexibility costs in 

inventory policy optimization of the systems. 

This thesis has considered three different types of multi-echelon inventory systems: serial 

systems, assembly systems, and two-level distribution systems. For each system, we assume 

that its final customer demand is generated by a Poisson process, a fixed cost is charged at 

each stock when it places an order, and each stock is controlled by a (R, Q) policy. Our 

objective is to find optimal (R, Q) policy for the system so that the system’s total cost which 

contains inventory holding costs, fixed order costs, and operating flexibility costs is 

minimized while satisfying a given service level to customer.  

After a general introduction and literature review in chapter 1 and some preparatory work in 

chapter 2, chapter 3 deals with the optimization of (R, Q) policies for a continuous-review 

serial inventory system with Poisson demand and fixed order costs. Under the GSA, we first 

establish a mathematical model for the problem, which is a nonlinear programming model. 
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Since the objective function of the model depends on two service levels (α-service level and 

β-fill rate) of the system, we propose an iterative procedure to solve the model based on 

estimation of β-fill rate when α-service level is given. The iterative procedure relies on the 

resolution of two sub-problems of the model: order size decision sub-problem (Q-problem) 

and reorder point sub-problem (R-problem). We develop an efficient dynamic programming 

(DP) algorithm to solve the Q-problem, based on two important properties about the state 

space of its decision variables; this makes our DP algorithm much more efficient than a DP 

algorithm in the literature. The R-problem is solved by using another DP algorithm proposed 

by Graves and Willems. The numerical experiments demonstrate that the two DP algorithms 

are very efficient in solving the Q-problem and R-problem of large size with a short 

computation time. The numerical results also show that the iterative optimization procedure 

has a good convergence property and is computationally efficient in solving the inventory 

policy optimization problem.   

Chapter 4 extends the model and the solution approach proposed in Chapter 3 to assembly 

systems. Since the assembly systems studied have a more complicated structure than serial 

systems, in which a stock may have more than one direct predecessor stocks, the DP 

algorithm of the Q-problem for serial systems cannot be directly used for assembly systems. 

Therefore, we develop a new DP algorithm to solve the Q-problem of the assembly systems, 

in which both forward recursive procedure and backward recursive procedure are used to 

identify the optimal solution of the problem. The numerical experiments demonstrate the 

efficiency of the DP algorithm.  

Chapter 5 focuses on the optimization of (R, Q) policies for two-level distribution systems. 

The most distinguishing feature of a distribution system is that each stock may have multiple 

direct successor stocks; this network structure makes the analysis and optimization of the 

system more difficult. For the system, we also establish a mathematical model for its 

inventory policy optimization problem and present an optimization procedure to solve the 

model. More particularly, for the Q-problem, we consider five different types of integer-ratio 

constraints imposed on the order sizes of the warehouse and the retailers. For each type, we 

propose an efficient algorithm to solve the Q-problem. We compare the five types of integer-

ratio constraints in terms of their cost-effectiveness by numerical experiments. The numerical 

experiments also demonstrate the efficiency of the optimization procedure in solving the 

inventory optimization problem of the distribution system studied. 
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This thesis has extended the application domain of the GSA from safety stock placement of 

multi-echelon inventory systems without order costs to the optimization of (R, Q) policies of 

multi-echelon inventory systems with fixed order costs at each stock. It has also extended the 

standard GSA by explicitly considering operating flexibility costs and effects in the GSA 

model of the optimization problem. 

Although the work of this thesis has demonstrated advantages of the GSA in the optimization 

of multi-echelon inventory systems, much work remains to be done. There are some potential 

directions for future research. Firstly, the performance of the inventory policy found by the 

GSA should be compared with the performance of the inventory policy found by the SSA. In 

the literature, very few contributions that conduct such a comparison are available, especially, 

for multi-echelon inventory system with fixed order costs. This is mainly because the 

stochastic inventory model employed by the SSA usually has a very complicated structure if 

fixed orders are taken into consideration, and it is very difficult to derive an optimal inventory 

policy for such system, only heuristic algorithms were developed. Moreover, how to fairly 

compare the two approaches is still an open problem because they are based on two different 

settings: the SSA has backorder costs whereas the GSA has operating flexibility costs. For 

these reasons, we have not compared the two approaches in this thesis, but it is one of 

important topics for our future research.  

Secondly, in this thesis, the customer demand process is assumed to be a Poisson process, but 

in reality, this demand may follow another stochastic process. In future, we will extend our 

work to multi-echelon inventory systems with other demand processes, such as normal 

distributed or compound Poisson processes.   

Thirdly, this thesis only considers continuous-review inventory systems. In practice, the 

inventory position of each stock may be reviewed periodically. In this case, (R, Q) policy is 

generalized and replaced by (R, nQ) policy. Optimizing (R, nQ) policies for periodic review 

multi-echelon inventory systems under the GSA are also in the list of our future research 

topics. 

Fourthly, in this thesis, when we consider inventory policy optimization of a two-level 

distribution system, we assume the system has randomized initial condition. It is worthy to 

study whether this condition can be relaxed for the distribution system. Moreover, extending 

our GSA approach to distribution systems with more than two levels is also a future research 

topic. 
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Finally, this thesis has considered individually three types of multi-echelon inventory systems, 

i.e., serial systems, assembly systems and two-level distribution systems. In practice, a supply 

chain may have both assembly structure and distribution structure. One of our future work is 

to study general multi-echelon inventory systems in which all possible links between stocks 

are permitted.   
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Résumé en Français 

Introduction Générale 

Une chaîne d'approvisionnement est un réseau d'entreprises à travers lequel les produits sont 

fabriqués et livrés aux consommateurs finaux. La gestion de la chaîne d'approvisionnement 

(SCM) vise à optimiser sa performance de manière globale par coordonner les flux et les 

stockages des marchandises des fournisseurs de matières premières aux magasins passés par 

les fabricants. Au cours des dernières années, la mondialisation économique, la prolifération 

et l'innovation rapide des produits ont considérablement accru la complexité de cette gestion. 

Une question importante dans la gestion de la chaîne d’approvisionnement est la gestion des 

stocks dans un tel réseau face aux demandes clientèles incertaines. L'objectif de cette gestion 

est de réduire les coûts de stockage tout en assurant un haut niveau de service donné aux 

clients. 

Traditionnellement, différents stocks dans une chaîne d'approvisionnement ont été gérés de 

manière indépendante, menant à un niveau élevé de certains stocks dans la chaîne. Les 

pressions compétitives accrues et la mondialisation des marchés ont obligé les entreprises à 

faire plus d'efforts pour réduire leurs stocks tout en améliorant le service à la clientèle. Cela a 

attiré de plus en plus d’attention des chercheurs académiques et des praticiens industriels à la 

gestion des stocks multi-échelons qui prend en compte les interactions entre les différents 

stocks dans la chaîne d'approvisionnement. 

Une chaîne d'approvisionnement avec plusieurs stocks peut être modélisée comme un système 

de stocks multi-échelons, où les stocks se trouvent en plusieurs échelons ou niveaux. La 

gestion des stocks multi-échelons adopte une approche d'optimisation globale. Dans une telle 

approche, les optimisations de tous les stocks sont considérées simultanément, avec un 

objectif de minimiser leur coût total tout en répondant aux exigences de service clientèle. Par 

conséquent, la stratégie clé pour la gestion des stocks multi-échelons est la coordination 

efficace des approvisionnements de tous les stocks dans une chaîne d'approvisionnement. 

Dans la littérature, il existe deux approches concurrentes pour l’optimisation des systèmes de 

stocks multi-échelons: l’approche de service stochastique (SSA) et l'approche de service 

garanti (GSA). Dans la SSA, la disposition d’un stock de sécurité pour chaque stock est le 

seul moyen pour protéger contre la variabilité de la demande clientèle. En revanche, la GSA 

présume que le stock de sécurité est dimensionné pour couvrir la variabilité de la demande 
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jusqu'à un certain niveau, i.e., le niveau maximum raisonnable de la demande. Si la réalisation 

de cette demande est supérieure à ce niveau, la partie excessive de la demande sera satisfaite 

par des mesures extraordinaires telles que les heures supplémentaires ou la sous-traitance. Par 

rapport à la SSA, la GSA modélise un système de stocks multi-échelons de manière 

approximative, mais elle permet à un planificateur du système de prendre ses décisions 

stratégiques ou tactiques sur la gestion de ces stocks basées sur un modèle simplifié. 

Dans la littérature, la plupart des études sur les systèmes de stocks multi-échelons ne 

considèrent pas le coût de passation de commande à chaque stock. Cependant, dans la 

pratique, chaque stock a généralement un coût fixe pour passer une commande, qui peut 

correspondre au coût de la livraison de la commande ou à d’autres coûts indépendants de la 

quantité de la commande. Pour un système de stocks multi-échelons, si un coût de passation 

de commande se produit à chaque stock, la politique (R, Q) ou la politique (s, S) est 

généralement utilisée pour la gestion du système. En raison de sa simplicité et sa popularité 

dans la pratique, nous choisissons la politique (R, Q) plutôt que la politique (s, S) pour la 

gestion d’un système de stocks multi-échelons avec des coûts de passation de commande dans 

cette thèse. Nous étudions l'optimisation de la politique (R, Q) pour les systèmes de stocks 

multi-échelons avec la demande clientèle suivant un processus de Poisson et un coût de 

passation de commande à chaque stock.  

L'existence d’un coût de passation de commande à chaque stock rend l'optimisation de la 

politique de stockage pour un système de stocks multi-échelons très difficile. La SSA, comme 

une approche classique, a été généralement utilisé pour résoudre un tel problème 

d'optimisation. Toutefois, en raison de la grande complexité d’un  tel système avec des coûts 

de passation de commande, seuls les algorithmes approximatifs (heuristiques) ont été 

développés pour trouver des politiques de stockage proches de l’optimum dans le cadre de la  

SSA. 

D'autre part, dans l'hypothèse que la demande excessive supérieure à un certain niveau soit 

satisfaite par la flexibilité d’exploitation d’un système telle que les heures supplémentaires ou 

la sous-traitance, la GSA est capable de modéliser le problème d'optimisation de la politique 

de stockage du système comme un problème de programmation mathématique déterministe, 

qui peut être résolu plus facilement. Dans la littérature, aucuns travaux antérieurs n’ont utilisé 

cette approche pour optimiser un système de stocks multi-échelons avec des coûts de 

passation de commande à chaque stock. Par conséquent, dans cette thèse, nous utilisons la 

GSA pour modéliser et résoudre des problèmes d'optimisation de politique de stockage pour 
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plusieurs systèmes de stocks multi-échelons avec des coûts de passation de commande. 

Différente de la GSA standard qui ignore les coûts de flexibilité d’exploitation engendrés lors 

que des mesures extraordinaires sont utilisées pour satisfaire la demande excessive, nous 

développons une nouvelle approche de type GSA qui considère les coûts de flexibilité 

d'exploitation et les effets de cette flexibilité sur les flux physiques du système de stocks 

multi-échelons dans cette thèse. Dans notre étude, le niveau maximum raisonnable de la 

demande d’un stock durant son délai d’approvisionnement est déterminé en fonction d'un 

niveau de service au client final. 

Les principales contributions de cette thèse sont les suivantes: 

1) Nous appliquons la GSA à l’optimisation des systèmes de stocks multi-échelons avec des 

coûts de passation de commande à chaque stock. Puisque tous les travaux antérieurs sur la 

GSA ne considèrent que des systèmes de stocks multi-échelons sans coûts de passation de 

commande, le travail de cette thèse est le premier essai de l’optimisation des systèmes de 

stocks multi-échelons avec des coûts de passation de commande dans le cadre de la GSA.  

2) La GSA standard ignore les effets de la flexibilité d'exploitation sur les flux physiques et le 

coût total d'un système de stocks multi-échelons. Dans cette thèse, nous généralisons la GSA 

standard en tenant compte de ces effets et en incluant les coûts de flexibilité d'exploitation 

dans notre modèle d'optimisation des politiques de stockage d’un tel système. Dans ce modèle, 

le coût total du système inclut non seulement les coûts fixes de passation de commande, les 

coûts de possession des stocks, mais aussi les coûts de flexibilité d'exploitation. 

3) Pour les systèmes en série, les systèmes d’assemblage, et les systèmes de distribution à 

deux niveaux, nous établissons des modèles de programmation mathématique pour les 

problèmes d'optimisation de leurs politiques de stockage (R, Q) dans le cadre de la GSA. 

4) La prise en compte des effets et des coûts de la flexibilité d'exploitation rend notre modèle 

de la GSA plus compliqués que celui de la GSA standard. Ce premier modèle a une fonction 

objectif dépendante de deux niveaux de service (niveau de service α et taux de remplissage β). 

Nous proposons une procédure itérative pour résoudre le modèle basé sur l'estimation du taux 

de remplissage. 

5) Pour un niveau de service α et un taux de remplissage β donnés,  le problème 

d’optimisation de la politique de stockage pour un système de stocks multi-échelons peut être 

décomposé en deux sous-problèmes: le sous-problème de détermination de quantités de 

commande (Q-problème) et le sous-problème de détermination de points de recommande (R-
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problème). Nous développons des algorithmes de programmation dynamique (DP) pour 

résoudre efficacement les deux sous-problèmes.  

6) Les efficacités des algorithmes de DP et de la procédure itérative sont évaluées par des 

expériences numériques. 

Le résumé français de cette thèse se compose de cinq chapitres. Dans le chapitre 1, un état de 

l’art est fait sur les études en gestion des stocks multi-échelons liées à notre travail. Dans le 

chapitre 2, nous considérons les systèmes en série avec la demande clientèle suivant un 

processus de Poisson et coûts de passation de commande à chaque stock et développons un 

modèle de programmation mathématique et une approche de résolution pour l'optimisation 

des politiques de stockage (R, Q) des systèmes dans le cadre de la GSA. Le modèle prend en 

considération à la fois les coûts de passation de commande et les coûts de flexibilité 

d'exploitation et l'approche de résolution est basée sur deux algorithmes de programmation 

dynamique que nous développons ou adoptons pour deux sous-problèmes du modèle. Les 

performances des algorithmes et de l'approche de résolution sont évaluées par des expériences 

numériques. Chapitre 3 généralise le modèle et l'approche de résolution développés dans le 

chapitre 3 aux systèmes d'assemblage avec des expériences numériques pour l'évaluation de 

performance aussi. Dans le chapitre 4, nous considérons les systèmes de distribution à deux 

niveaux avec un entrepôt et plusieurs détaillants. L'analyse et l'optimisation de ces systèmes 

sont plus difficiles que les systèmes en série et les systèmes d'assemblage. Nous développons 

également un modèle de programmation mathématique et une approche de résolution pour 

l'optimisation des systèmes de distribution dans le cadre de la GSA. Plus particulièrement, 

nous considérons cinq différents types de contraintes de ratio entier éventuellement imposées 

sur les quantités de commande des stocks du système étudié, et comparons leurs efficacités 

par des expériences numériques. Enfin, le chapitre 5 conclut le travail réalisé de cette thèse et 

présente des perspectives pour la recherche future. 

Chapitre 1 Etat de l’art 

Dans ce chapitre, nous faisons un état de l’art sur les modèles et les méthodes proposées dans 

la littérature pour l'analyse et l'optimisation des systèmes de stocks multi-échelons, en 

particulier pour les systèmes avec des coûts de passation de commande. 

Nous donnons d'abord une introduction générale sur les travaux dans la gestion des stocks 

multi-échelons. Ensuite, nous nous concentrons sur les études actuelles sur la gestion des 

stocks multi-échelons en utilisant deux approches d'optimisation: l’approche de service 
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stochastique (SSA) et l'approche de service garanti (GSA). Une comparaison entre les deux 

approches concurrentes est également abordée dans ce chapitre. 

Les études générales de la gestion des stocks multi-échelons 

L'étude des systèmes de stocks multi-échelons a été lancée par un travail pionnier de Clark et 

Scarf (1960). Dans ce travail, ils ont montré que la politique optimale de stockage pour un 

système en série dans lequel le coût de passation de commande est facturé qu'au plus haut 

échelon est une politique échelon. Pour un système de stocks multi-échelons avec un coût de 

passation de commande à chaque stock, ils ont souligné que sa politique optimale, si elle 

existe, a une structure complexe et est difficile à calculer.  

Depuis 1960, beaucoup d’études ont été menées pour généraliser le travail de Clark et Scarf, 

comme Federgruen et Zipkin (1984), Chen et Zheng (1994), Zipkin (2000) et ainsi de suite. 

Récemment, Sinha et al. (2011) ont fourni une approche de calcul plus simple et unifiée pour 

le modèle Clark-Scarf avec un horizon temporal fini ou infini. Rosling (1989) a montré que la 

politique échelon de stockage est aussi optimale pour, les systèmes d’assemblage sans coûts 

de passation de commande. Pour les systèmes de distribution sans coûts de passation de 

commande, la politique échelon de stockage n’est pas optimal dans le cas général (Van 

Houtum, 2006). En raison de la complexité des systèmes de stocks multi-échelons avec un 

coût de passation de commande à chaque stock, la plupart d’études ont concentré sur 

l'optimisation et l'évaluation de la politique de point de commande, i.e., la politique (R, Q), 

pour ces systèmes.  

Presque dans la même décennie, Simpson (1958) a proposé l'approche de service garanti 

(GSA) pour la modélisation et la gestion des stocks d'un système en série sans coûts de 

passation de commande. Dans ce système, chaque stock, qui a une demande aléatoire mais 

bornée, est géré par une politique base-stock (une politique d’approvisionnement à 

recomplètement périodique). Les résultats de Simpson ont montré que la politique optimale de 

stockage pour le système en série est une politique «tout ou rien», c'est à dire, chaque stock 

soit ne possède d’aucun stock de sécurité soit possède d’un stock de sécurité suffisant pour lui 

découpler des stocks en aval et des stocks en amont. Différentes extensions du travail de 

Simpson pour les systèmes d'assemblage et de distribution ont été faites plus tard. 

Sur la base des deux articles fondamentaux de Clark et Scarf (1960) et de Simpson (1958), 

deux approches concurrentes ont été développées au fil de temps. 
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Les études de l’approche de service stochastique pour les systèmes en série  

Dans ce paragraphe, l'approche de service stochastique pour les systèmes en série est revue, 

en particulier pour les systèmes avec des coûts de passation de commande et gérés par la 

politique de stockage (R, Q).  

Sur l'évaluation de coût, Axsater (1998) a considéré un système en série à deux niveaux géré 

par des politiques installations (R, Q) et a proposé une méthode pour évaluer exactement le 

coût de stockage et le coût de rupture de stock du système. Axsater et Rosling (1993) ont 

montré que les politiques échelons (R, Q) dominent les politiques installations (R, Q) pour les 

systèmes en série et les systèmes d'assemblage. Chen et Zheng (1994) ont développé une 

procédure pour l'évaluation exacte de la performance de la politique échelon (R, nQ) pour les 

systèmes en série. Dans leur procédure, un coût de passation de commande est facturé pour 

chaque approvisionnement plutôt que pour chaque commande. 

Sur l'optimisation de politiques de stockage, Chen (2000) a montré que si l'on ignore les coûts 

de passation de commande mais la quantité de chaque commande est donnée, une politique 

échelon (R, Q) est optimale pour les systèmes en série et les systèmes d'assemblage. Shang et 

Song (2007) ont considéré deux modèles stochastiques des systèmes en série en supposant 

que soit la quantité de commande soit donnée à chaque stock soit un coût de passation de 

commande est facturé uniquement pour les commandes externes. Ils ont montré que les 

politiques optimales échelon (R, Q) des modèles peuvent être estimées par une série de 

politiques indépendants et optimales à seul stade. Yang et al. (2011) ont également considéré 

un système en série à deux échelons avec la demande suivant à un processus de Poisson et 

géré par une politique échelon (R, Q), ils ont dérivé une condition nécessaire pour l'optimalité 

d'une politique échelon (R, Q) et la quasi-convexité de la fonction de coût du système. Sur la 

base de ces propriétés, ils ont proposé un algorithme heuristique simple pour trouver une 

politique (R, Q) quasi-optimale pour le système. Shang et Zhou (2010) ont étudié un système 

en série géré par la politique échelon (R, nQ, T) avec deux types de coûts de passation de 

commande: l'un associé à chaque commande de Q unités et l'autre encouru lors de chaque 

inventaire d’un stock. Ils ont développé une heuristique simple pour obtenir les quantités et 

les intervalles optimaux de commande. 

Les études de l’approche de service stochastique pour les systèmes d’assemblage  

Par rapport aux systèmes en série, les systèmes d'assemblage avec la demande stochastique 

ont attiré relativement peu d'attention dans la littérature.  
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Schmidt et Nahmias (1985) a caractérisé une solution optimale pour un système d'assemblage 

à deux niveaux avec la demande stochastique. Rosling (1989) ont montré qu’un système 

d’assemblée générale sans coûts de passation de commande peut être transformé en un 

système en série équivalent. Ces deux articles supposent qu’aucun coût de passation de 

commande n’existe dans les systèmes considérés. L'inclusion des coûts de passation de 

commande  rend les systèmes d'assemblage avec la demande stochastique extrêmement 

difficiles. De nombreux articles ont étudié l'évaluation et l'optimisation de la politique (R, Q)  

(Federgruen et Zheng, 1992; Rosling, 2002; De Bodt et Graves, 1985; Chen et Zheng, 1994). 

Une discussion sur la politique (R, Q) pour les systèmes d'assemblage est donnée dans 

Axsater et Rosling (1993) et Chen (2000). En pratique, on souvent utiliser une approche 

simple en deux étapes pour déterminer la quantité de commande Q et le point de commande R 

d'une politique installation/échelon (R, Q). Dans la première étape, la demande stochastique 

est remplacée par sa valeur moyenne et la quantité de commande Q est déterminée selon un 

modèle EOQ standard. Dans la deuxième étape, le point de commande R est déterminé pour la 

quantité de commande Q donnée. Notons que la plupart des travaux précédents, qui étudient 

la politique (R, Q), présentent des algorithmes heuristiques plutôt que des méthodes exactes 

pour l'évaluation de coût et l'optimisation de la politique pour les systèmes d'assemblage avec 

des coûts fixes de passation de commande. 

Les études de l’approche de service stochastique pour les systèmes de distribution 

Dans ce paragraphe, nous nous concentrons sur les études sur les systèmes de distribution à 

deux niveaux avec un entrepôt et plusieurs détaillants.  

La plupart des études précédentes avec la politique installation/échelon (R, Q) se focalisent 

sur l'évaluation exacte ou approximative des coûts de ces systèmes, comme dans Svoronos et 

Zipkin (1988) et Axsater (1993). Une revue générale de ces études avant 2003 est donnée par 

Axsater (2003). Kiesmuller et al. (2004) a développé une méthode d'évaluation approximative 

pour un système de distribution à deux niveaux. Seifbarghi et Akbari (2006) a dérivé la 

fonction du coût qui est utilisée pour trouver de manière approximative le point de commande 

d'un système de distribution à deux niveaux. Axsater et al. (2007) a présenté trois techniques 

pour l’évaluation du coût d’un système de distribution à deux niveaux. Howard et Marklund 

(2011) ont considéré un système de distribution dans lequel l'entrepôt applique la politique 

échelon (R, Q) et les détaillants utiliser les politiques base-stock, ils ont développé une 

méthode exacte pour l’évaluation du coût du système. 
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Peu d’articles ont étudié l'optimisation de la politique installation/échelon (R, Q) pour les 

systèmes de distribution. Axsater et Rosling (1993) ont démontré que la politique installation 

(R, Q) et la poltique échelon (R, Q) peuvent dominer l’un l’autre dans des situations 

différentes pour les systèmes de distribution. A notre connaissance, le seul article considérant 

des modèles de vente perdue avec la politique (R, Q) est Al-Rifai et Rossetti (2007).  Bijvank 

et Vis (2011) ont fourni une revue générale de la théorie de gestion des stocks avec la vente 

perdue. 

Les études de l’approche de service garanti pour les systèmes de stocks multi-échelons  

Tous les travaux antérieurs sur cette approche ont utilisé des politiques base-stock  pour la 

gestion des systèmes de stocks multi-échelons sans coûts de passation de commande. 

L'approche de service garanti provient du travail de Kimball (1955), qui a été réédité en 1988 

(Kimball, 1988). Dans cet article, Kimball a étudié un seul stock avec la demande aléatoire 

mais bornée, géré par une politique base-stock. Il a prouvé que la borne de la demande durant 

le délai d’approvisionnement du stock peut être utilisée pour définir son niveau de base-stock 

(niveau de récomplètement). Simpson (1958) a généralisé le modèle de Kimball à un système 

en série et prouvé que la politique optimale de stockage du système est une politique “tout ou 

rien”. Sur la base de cette propriété, Grave (1988) a démontré que le problème d'optimisation 

considéré par Simpson peut être résolu en utilisant un algorithme de programmation 

dynamique. Plus tard, cette approche a été généralisée aux systèmes d'assemblage, aux 

systèmes de distribution, et à des systèmes plus généraux dans Inderfurth (1991), Inderfurth et 

Minner (1998), Graves et Willems (1996, 2000), Minner (2000), Humair et Willems (2006), 

et Humair et Willems (2011).  

Récemment, Grave et Willems (2008) et Schoenmey et Grave (2009) ont étendu leurs travaux 

antérieurs (1996, 2000) aux chaînes d'approvisionnement avec la demande non-stationnaire 

ou avec l'évolution de la prévision de la demande.  

Comparaison de l'approche de service stochastique et approche de service garanti 

Seuls quelques articles dans la littérature comparent les deux approches. L’une comparaison a 

été faite dans Graves et Willems (2003). Ils ont appliqué deux approches pour un système 

d’assemblage et a constaté que l’approche de service garanti domine l’approche de service 

stochastique. 

Klosterhalfen et Minner (2010) ont fait une autre comparaison des deux approches sur des 

systèmes de distribution à deux niveaux et ont montré que la supériorité de l'une des deux 
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approches dépend de leurs paramètres spécifiques et ne peut être établie en général. En outre, 

ils ont présenté une méthode pour déterminer le niveau de services interne approprié, qui est 

utilisé pour définir les coûts de flexibilité d'exploitation dans le modèle de GSA. Minner et al. 

(2003) a donné quelques indications concernant l'utilisation appropriée de la flexibilité 

d'exploitation.  Notons que toutes les comparaisons citées ci-dessus sont axées sur les 

systèmes de stocks multi-échelons sans coûts de passation de commande. 

Chapitre 2 : Optimisation de Politiques de Stockage (R, Q) pour les Systèmes en Série 

Après la description des systèmes de stockage multi-échelons et l'approche de service garanti 

(GSA) dans le dernier chapitre, ce chapitre traite de l'optimisation de politiques de stockage 

(R, Q) pour les systèmes en série avec Poisson demande dans le cadre de la GSA. A part la 

prise en compte des coûts de stockage à tous les stocks comme dans le modèle standard  de la 

GSA, nous considérons également des coûts de passation de commandes et des coûts de 

flexibilité d’exploitation. Après une présentation des hypothèses et des notations, nous  

formulerons un modèle mathématique pour le problème. Ce modèle peut être résolu par une 

procédure itérative fondée sur deux algorithmes de programmation dynamique (DP). Un 

algorithme DP est utilisé pour résoudre le sous-problème de détermination de quantités de 

commande (Q-problème), et l'autre est utilisé pour résoudre le sous-problème de 

détermination de points de recommande (R-problème). Les expériences numériques que nous 

avons faites sur des instances générées aléatoirement démontrent que les algorithmes et la 

procédure proposés sont très efficaces.   

Description du Problème 

Un système de stocks en série avec N stades (stocks) dont l’inventaire est fait en temps réel 

est considéré, où le stade N commande auprès d’un fournisseur externe avec un stock illimité, 

stade N-1 commande du stade N, stade N-2 commande du stade N-1, et ainsi de suite. Enfin, 

au stade final, i.e., stade 1, la demande clientèle se produit. Tout stade du système est  géré 

par une politique de stockage (R, Q).  La demande clientèle du stock suit un processus de 

Poisson de taux moyen λ. Le coût de passation de chaque commande et le coût de stockage 

échelon par unité de produit par unité de temps du stock i est ci et hi
e
 respectivement, 

i=1,2,…,N. En outre, le coût de la flexibilité d’exploitation de p est facturé pour chaque unité 

de produit rempli à l'aide d’une mesure extraordinaire.  

Dans le cadre de la GSA, l’hypothèse clé est que la demande clientèle du stade final est 

stochastique et bornée. La partie excessive de toute demande supérieure à une borne est 
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satisfaite par des mesures extraordinaires telles que les heures supplémentaires ou la sous-

traitance. Donc, pour un niveau de service α ( 0 1  ) donné au stade final, i.e., stade 1, la 

bonne supérieur ( )D  de la demande totale durant un délai de unités de temps peut être 

formulée comme suit: 

                                                           
( )

0

[ ]

!

kD

k

e

k

 






                                                       (2-1) 

Nous pouvons démontrer que ( )D   est ni concave et ni convexe avec . 

Notations 

Indices: 

i: Index de stade, i=1,…,N, où N est le nombre de stades dans le système, 

t: Index de temps, [0, ]t   

Paramètres 

Ti: Délai de production du stock i, i=1,2,…,N, 

Li: Délai net du stock i, i.e., Li=SIi+Ti-Si, i=1,2,...,N, 

λ: Taux de demande moyenne de la demande clientèle au stock 1, 

α: Niveau de service du système, 

s1: Borne sur le délai de service aval au stock 1. 

A l’instant t,   

Ii(t): Stock physique du stock i, 

Ii
e
(t): Stock physique échelon du stock i, 

ILi
e
(t): Niveau de stock échelon du stock i,  

IPi
e
(t): Stock disponible échelon du stock i,  

[ , )id t L t : Demande totale durant un délai de Li unités de temps du stock i, 

[ , )id t L t


 : Demande remplie normalement par le système considéré durant un délai de Li 

unités de temps du stock i, i=1,2,…,N. 

Variables de décision  
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 : Taux de remplissage du système,  

Ri: Point de recommande du stock i, 

Qi: Quantité de commande du stock i, 

Si: Délai de service aval du stock i, 

SIi: Délai de service amont du stock i, i=1,2,…,N. 

Modélisation du Problème  

L’objectif du système en série est pour minimiser le coût total moyen, qui comprend des coûts 

de passation de commandes, des coûts de stockage et des coûts de flexibilité d’exploitation 

donnée par 

                                               
1

( [ ]) (1 )
N

e ei
i i

i i

c
h E I p

Q


 



                                                 (2-2) 

Pour chaque stock i, une équation d’évolution du niveau de stock échelon peut être dérivée ci-

dessous: 

                                                ( ) ( - ) [ , )e e

i i i iIL t IP t L d t L t                                                   (2-3) 

Dans le cadre de la GSA, ( ) ( ) 0e e

i iIL t I t  et ( ) 0iI t  , 

                                                  1( - ) [ , ) ( )e e

i i i iIP t L d t L t IP t                                              (2-4) 

Par ailleurs, nous pouvons également obtenir que, à partir du temps it L avec le stock 

disponible échelon ( - )= 1e

i i iIP t L R  , il existe une réalisation du processus de la demande du 

temps it L au temps t tel que [ , ) ( )i id t L t D L   et
-1 -1 -1( )=e

i i iIP t R Q . 

Avec ce résultat important, afin d’assurer que l’inégalité (2-4) est valable pour toute 

réalisation de la demande dans la GSA, nous devons avoir 

                                      
1

1 0

( )
i i

i j j j j

j j

R D SI T S Q i


 

      pour i=1,2,…,N                      (2-5) 

Puisque l'objectif du problème est de minimiser le coût total, il existe une solution optimale 

avec Ri, i= 1,2, ..., N donnés par l’équation suivante. 

                                  
1

1 0

= ( )
i i

i j j j j

j j

R D SI T S Q i


 

      pour i=1,2,…,N                          (2-6) 
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Selon Hadely and Whitin (1960), le stock disponible échelon ( )e

iIP t est distribué 

uniformément dans l'intervalle[ 1, ]i i iR R Q  , donc, nous pouvons obtenir [ ]e

iE I comme suit: 

                             

1

1 0

[ ] [ ( , ) [ , )]

[ ( , ) [ , )]

1+

2

1+
= ( ) ( )

2

e e

i i i i

e

i i i

i
i i

i i
i

j j j i i i j

j j

E I E IP t L t d t L t

E IP t L t d t L t

Q
R L

Q
D SI T S SI T S Q i









 

   

   

  

        

             (2-7) 

Avec l'équation (2-2) et (2-7), nous formulons le problème d'optimisation de la politique de 

stockage comme le problème de programmation non linéaire ci-dessous: 

P: Min 

1

=1 1 1

1
{ [ ( ) ( ) ] } (1 )

2

N N i N
e ei i
i j j j i i i j i

i i j j ii

c Q
h D SI T S SI T S i h Q p

Q


  

  


                 

Sous les contraintes suivantes:          

                                      1 1,2, , 1i i iQ mQ pour i N                                                    (2-8) 

                                      0 1,2, ,i i iSI T S pour i N                                                     (2-9) 

                                      
1 1,2, ,i iSI S pour i N                                                             (2-10) 

                                      1 10 S s                                                                                        (2-11) 

                                     0iQ   et entier pour i=1, 2,…, N                                                  (2-12) 

                                    , 0i iSI S   et entier pour i=1, 2,…, N                                             (2-13) 

Dans ce modèle, la fonction objective est de minimiser le coût total du système qui se 

compose des coûts de stockage, des coûts de passation de commandes et des coûts de 

flexibilité d'exploitation. Les contraintes (2-8) sont les contraintes de ratio entier entre la 

quantité de commande d’un stock et celle de son successeur. Les contraintes (2-9) assurent 

que le délai net de chaque stock est non négatif. Les contraintes (2-10) impliquent que chaque 

stock peut commencer la production lorsque toutes les matières (composants) nécessaires sont 

disponibles. Les contraintes (2-11) imposent une borne supérieure s1 sur le délai de service 
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aval du stock 1. Les contraintes (2-12) et (2-13) signifient que toutes les variables de décision 

doivent être entières.    

Lorsque β est connu, (1 )p  dans la fonction objective du modèle P devient une constante 

qui peut être ignoré et le modèle peut être décomposée en deux sous-problèmes indépendants, 

l'un avec variables de décision Qi et l'autre avec des variables de décision SIi et Si. Les deux 

sous-problèmes sont appelés le problème de détermination de quantités de commande (Q-

problème) et le problème de détermination de points de recommande (R-problème) 

respectivement.  

Q-problème : 

Min: 1

=1

1
[ ( ) ]

2

N N
e ei i
i j i

i j ii

c Q
h i h Q

Q







       

Sous les contraintes suivantes:          

1 1,2, , 1i i iQ mQ pour i N     

                                                0iQ  et entier pour i=1, 2,…, N           

R- problème:  

Min: 
=1 1

[ ( ) ( )]
N i

e

i j j j i i i

i j

h D SI T S SI T S


        

Sous les contraintes suivantes:          

                                               0 1,2, ,i i iSI T S pour i N                                                           

                                               
1 1,2, ,i iSI S pour i N   

                                               1 10 S s                                                                                                     

                                              , 0i iSI S   et entier pour i=1, 2,…, N                                                    

Dès que les deux sous-problèmes sont résolus, la quantité optimale Qi est donnée par la 

solution du Q-problème, et le point de commande optimale Ri peut être déterminé par {SIj, Tj, 

Sj | 1 j i} et {Qj | 0 j i1} selon l’équation (2-6).  

L’analyse ci-dessus suppose β que soit connu. Cependant β n’est pas connu, mais elle peut 

être déterminée par la politique de stockage (R, Q) du système considéré. Par conséquent, 

deux algorithmes de programmation dynamique efficaces sont proposés pour résoudre le Q-
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problème et R-problème respectivement lorsque α et β sont donnés. Sur la base de la politique 

optimale de stockage (R, Q), β peut également être calculé. Enfin, le problème d’origine 

(modèle P) peut être résolu par une procédure itérative fondée sur l’estimation de la valeur 

optimale de β.   

Algorithmes de Programmation Dynamique pour les sous-Problèmes  

Pour le Q-problème, nous développons d’abord deux propriétés importantes pour déterminer 

l’espace d’état Wi de chaque variable Qi, pour i=1,2,…,N.  

Propriété 1: Pour un système en série avec N stades, une borne supérieure de Q1 est donnée 

par: 

1
1

1

2

(2 1)

N

i

i

N
e

i

i

c

Q

i h















 

Propriété 2: Pour le stock i du système en série,  si le point de commande du stock i-1 est 

donné par Qi-1, une borne supérieure de mi-1 peut être obtenue par: 

1 1

1
1

1

2
1

(2 1)*

N

i

j i

i N i
ei
i j

j

c

m
Q

j h





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
 



 






 

Nous désignons Ui(Qs(i)) comme l'ensemble de toutes les valeurs possibles de Qi lorsque Qs(i) 

est donné. Selon la contrainte de ratio entier (3-8), Ui(Qs(i)) peut être alors s'écrire comme 

_

( ) ( ) 1( ) { ( )}, 1,2,...,i s i s i iU Q k k Q j j m i N      

Par conséquent, l'espace d'état de Qi (i = 1,2, ..., N) peut être dérivé comme suit:  

1

1 2 1 2 ( )

{1,2, , }, 1

{ ( ) ( ) ( ), { , , , }}, 2,...,
i

i i i n n s i

Q i
W

U k U k U k o鵮 k k W i N


 

 
 

 

Basé sur les deux propriétés importantes, nous pouvons développer un algorithme de 

programmation dynamique pour résoudre Q-problème afin de trouver les meilleures quantités 

de commande pour tous les stocks.  
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Pour le R-problème, nous avons appliqué un algorithme de programmation dynamique 

proposé par Graves and Willems (1996, 2000) pour trouver les délais de service amont et aval 

(Si, SIi) optimaux du système étudié. 

Procédure d’Optimisation  

Le problème d’optimisation original, i.e., l’optimisation de politique de stockage (R, Q) pour 

le système en série dans la cadre de la GSA, peut être résolu en deux boucles : 1) déterminer 

le niveau de service optimal α et 2) pour chaque α donné, résoudre le modèle P. Ici, la 

première boucle appelle la deuxième boucle. Du fait qu’une seule variable décision α doit être 

optimisée dans la première boucle, elle peut être déterminée en utilisant une recherche linéaire. 

Dans le cas où la fonction objective du système est convexe par rapport à α, la recherche 

linéaire peut être effectuée à l’aide d’une méthode telle que la méthode de la section d’or. 

Sinon, elle peut être faite en discrétisant les valeurs possibles de α sur l'intervalle [0, 1]. A la 

suite, nous allons discuter de la façon de résoudre le modèle P pour un α donné.   

Pour résoudre le modèle P, nous avons besoin de calculer le taux de remplissage β, qui peut 

être déterminé par les paramètres et la politique de (R, Q) du système considéré. Nous 

présentons une méthode de calculer β du système comme suit. 
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1 ( ) -
=1-

!

1 ( ) 1 ( )
  =1- +

! !

k LR Q

i R k i

k L k LR Q R Q

i R k i i R k i
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
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 
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 

   

 

Dans l'équation ci-dessus, on note le délai net au stade 1 par L. En raison de la simplification, 

l'indice, "1", qui indique le stade 1, est omis dans L, R et Q. 

A la suite, nous proposons une procédure itérative pour résoudre le modèle P basée sur 

l’estimation de la valeur de β à chaque itération. Depuis β est généralement plus grand que α 

et proche de α lorsque α est proche de 1, il est initialisé à α dans la procédure. Dès que la 

valeur de β ne change pas en deux itérations successives, nous avons obtenu le β réel et la 

politique échelon optimale de (R, Q) pour le système par la résolution du modèle P lors de la 

dernière itération de la procédure.  

Notez que lorsque la politique échelon optimale de (R, Q) trouvée dans la procédure est 

transformée en une politique installation optimale de (r, Q) pour le système en série considéré. 

Le point de commande de cette politique peut être facilement calculé 

comme ( ) 1i i i ir D SI T S    . 
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Expériences Numériques 

Nous avons évalué les performances de deux algorithmes de programmation dynamique pour 

le Q-problème et R-problème, respectivement, et la performance de la procédure itérative 

proposée par des expériences numériques sur des instances générées aléatoirement. Tout 

d'abord, nous avons testé les algorithmes de programmation dynamique proposés pour le Q-

problème et le R-problème sur six ensembles d’instances avec 2, 3, 4, 10, 50 et 100 stades, 

respectivement. Les résultats expériences indiquent que les algorithmes de programmation 

dynamique sont efficaces pour résoudre le Q-problème et R-problème. En suite, la 

performance de la procédure itérative  est évaluée par des expériences numériques sur les 

mêmes ensembles d'instances générées aléatoirement. Pour chaque ensemble d'instances, 

quatre différentes valeurs de α variant de 0,8 à 0,98 ont été considérées. Les résultats 

numériques ont montré que la procédure itérative a une bonne propriété de convergence et est 

efficace pour résoudre le problème d'optimisation de la politique du stockage avec un α donné. 

Chapitre 3 : Optimisation de Politiques de Stockage (R, Q) pour les Systèmes 

d’assemblage 

Plus généralement, ce chapitre traite de l’optimisation de politique de (R, Q) pour un système 

d’assemblage avec Poisson demande dans le cadre de la GSA. La méthodologie 

d’optimisation utilisée dans ce chapitre est similaire à celle pour les systèmes en série. 

Toutefois, un système d’assemblage, qui a plus d’un prédécesseur immédiat pour certains 

stocks, se distingue d’un système en série qui a un seul prédécesseur immédiat pour tous les 

stocks, ce qui conduit à une structure de réseau plus compliqué. Par conséquent, l'algorithme 

de programmation dynamique pour le problème de détermination de quantités de commande 

(Q-problème) proposé dans le dernier chapitre ne peut être directement utilisé pour le système 

d'assemblage. Dans ce chapitre, nous développons un nouvel algorithme de programmation 

dynamique pour résoudre le Q-problème du système d’assemblage étudié. L’idée clé de cet 

algorithme est que la procédure récursive de programmation dynamique est effectuée dans les 

deux directions, avant et arrière. Une procédure récursive en avant est appliquée en premier 

temps dans le but de réduire l'espace de solutions du problème. Sur la base des solutions 

obtenues par la procédure en avant, une procédure en arrière est utilisée pour identifier la 

solution optimale.  

Description et modélisation du problème 
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Nous considérons un système d'assemblage avec plusieurs articles intermédiaires (composants 

et sous-assemblages) et un produit final unique. On suppose que le stock de chaque article est 

revu en temps réel. La structure du réseau du système est définie par sa nomenclature (bill of 

material, BOM) qui est un arbre dont le nœud racine correspond au produit final. On suppose 

N est le nombre d’articles dans le système, N>3. Ces articles  sont numérotés de 1 à N, où 

l'article 1 représente le produit final. L’article i est noté stock i pour i=1,2,…,N. En outre, 

nous supposons que la demande clientèle du produit final suit un processus de Poisson de taux 

moyen . Comme mentionné dans le chapitre 3, le coût total du système se compose de trois 

types de coûts: coûts de passation de commandes, coûts de stockage et coûts de flexibilité 

d’exploitation. L’objectif est de minimiser le coût total du système à long terme sujet à un 

niveau de service α au client donné.  

Dans le cadre de la GSA, pour un niveau de service α donnée, une borne supérieure ( )D  sur la 

demande totale durant un délai de unités de temps peut être formulée comme suit: 
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Le problème d'optimisation de la politique de stockage étudié pour le système d'assemblage 

peut être formulé comme un problème de programmation non linéaire suivant: 

P: Mini 
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Sous contraintes suivantes:          

                                              ( ) ( ) 1,2, ,i s i i s iQ m Q pour i N                                         (3-2) 

                                               0 1,2, ,i i iSI T S pour i N                                           (3-3) 

                                               ( )max{ } 1,2, ,i P iSI S pour i N                                         (3-4)                                                  

                                                                 1 10 S s                                                              (3-5)                                                                                                 

                                               0iQ   et entier pour i=1, 2,…, N                                         (3-6)                                            

                                             , 0i iSI S   et entier pour i=1, 2,…, N                                     (3-7) 
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Dans la fonction objective, β est toujours inconnu. Nous supposons d'abord que β soit donné, 

alors, le modèle P peut être divisé en deux sous-problèmes indépendants, le sous-problème de 

détermination de quantités de commande (Q-problème) et le sous-problème de détermination 

de points de recommande (R-problème). Le Q-problème a une fonction objective convexe 

composée de tous les termes dépendant de Q et des contraintes (3-2) et (3-6), alors que le R-

problème a une fonction objective non linéaire composée de tous les termes dépendant de R et 

des contraintes linéaires (3-3), (3-4), (3-5) et (3-7). 

Algorithmes de Programmation Dynamique pour les sous-Problèmes   

Différent d’un système en série qui ne possède qu'un seul prédécesseur immédiat, le système 

d'assemblage étudié peut avoir le stock d’un article qui a plus d'un prédécesseur immédiat, 

l'algorithme de programmation dynamique ne peut pas être directement appliqué à résoudre le 

Q-problème du système d'assemblage. Dans ce chapitre, nous développons un nouveau 

programme dynamique pour résoudre le Q-problème des systèmes d'assemblage. L'idée clé de 

l'algorithme est que la procédure récursive de programmation dynamique est appliquée dans 

deux directions, à savoir, à la direction en avant et la direction en arrière. Dans la procédure 

en avant, l’état du système est mis en extension en avant à partir du stock du produit final aux 

stocks des articles achetés auprès de fournisseurs externes, tandis qu’dans la procédure en 

arrière, l’état du système est mis en extension dans le sens inverse. La procédure en avant est 

appliquée en premier temps dans le but de réduire l'espace de solutions du problème. Basé sur 

les solutions obtenues par la procédure en avant, la procédure en arrière est appliquée pour 

identifier la décision optimale pour chaque stock et ensuite obtenir la solution optimale du 

problème. 

Pour le R-problème, nous avons aussi appliqué un algorithme de programmation dynamique 

proposé par Graves et Willems (1996, 2000) pour trouver les délais de service amont (S) et les 

délais de service aval (SI) optimaux du système étudié.  

Procédure d’optimisation  

Après l'introduction de deux algorithmes DP pour les deux sous-problèmes (Q-problème et R-

problème), nous proposons une procédure d'optimisation itérative pour résoudre le problème 

d'optimisation d'origine (modèle P). Comme mentionné dans le chapitre 2, pour un niveau de 

service α donné au client, le problème d'optimisation peut être résolu par une procédure 

itérative fondée sur l’estimation de la valeur de β à chaque itération. La procédure comporte 

deux étapes principales dans chaque itération: 



 

 148 

 Pour une valeur estimée de β, résoudre le modèle P;  

 Calculer le taux remplissage β réel du système considéré; 

Parce que le taux de remplissage β ne dépend que du point de recommande R et de la quantité 

de commande Q du stock du produit fini qui est unique pour le système d’assemblage, son 

taux de remplissage β peut être calculé similairement par   
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= +1 = +1

- -+ +
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A noter que, dans la formule ci-dessus l'indice "1" qui indique le stock 1 est omise dans L, R 

et Q, où L est le délai net déterminé par la résolution du problème d'optimisation de la 

politique de stockage. 

Avec la formule pour le calcul de β, nous pouvons proposer une procédure similaire à celle 

pour le système en série pour résoudre le modèle P. La procédure commence à partir de la 

mise en α comme la valeur initiale de β. A chaque itération, pour une β estimée, la politique 

échelon optimale de (R, Q) pour le système considéré est obtenue en résolvant le modèle P, et 

le taux de remplissage β réel du système est ensuite calculé. Si les deux valeurs de β sont 

identiques, la procédure s'arrête. 

Expériences Numériques  

Nous avons effectué des expériences numériques pour évaluer les performances des deux 

algorithmes de programmation dynamique pour le Q-problème et R-problème, respectivement, 

et la performance de la procédure itérative proposée. En outre, nous avons effectué également 

une analyse de sensibilité pour examiner les impacts des paramètres différents du système sur 

la performance de l'algorithme. Toutes les expériences sont effectuées sur trois ensembles 

d’instances avec 7 articles et 3 niveaux, 15 articles  et 4 niveaux et 63 articles  et 6 niveaux, 

respectivement. Pour le Q-problème, nous avons comparé notre algorithme avec l'algorithme 

de Wallace et Michael. Les résultats montrent que notre algorithme de programmation 

dynamique proposé pour le Q-problème est plus efficace que l'algorithme de Wallace et 

Michael, et ils démontrent aussi que notre algorithme est très efficace pour la résolution des 

grandes instances, avec un temps de calcul maximal de moins de 0,0068 secondes pour les 

instances avec 63 articles. Pour le R-problème, les résultats numériques démontrent que le 

temps de calcul de l'algorithme de programmation dynamique est assez court, ce qui démontre 
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l'efficacité de l'algorithme. En outre, pour le Q-problème, nous pouvons observer que le temps 

de calcul moyen diminue en hi
e
, ci, et augmenter en λ, les résultats également démontrent que 

le paramètre λ a une influence considérable sur le temps de calcul de l'algorithme. Pour le R-

problème, nous pouvons observer que le paramètre de λ a une influence considérable en 

temps de calcul, relativement, le paramètre de hi
e
 n'a que peu d'influence.  

Chapitre 4: Optimisation de Politiques de Stockage (R, Q) pour les Systèmes de 

Distribution à Deux Niveaux 

Dans ce chapitre, nous étudions un système de distribution à deux niveaux avec un entrepôt et 

plusieurs détaillants. La caractéristique la plus distinctive d’un tel système est que chaque 

stock a un seul prédécesseur direct, mais a plusieurs successeurs directs. Dans ce système, 

toutes demandes finales, qui se produisent chez les détaillants seulement, suivent de différents 

processus de Poisson et sont indépendantes. On suppose que chaque stock dans le système a 

un coût fixe pour passer chaque commande et que chaque stock est géré par une politique de 

stockage (R, Q) avec l’inventaire en temps réel du stock. Dans le cadre de la GSA, nous 

supposons que la demande excessive au-delà d’un niveau maximum raisonnable sera satisfaite 

en utilisant des mesures extraordinaires avec coûts de la flexibilité d’exploitation. De plus, 

nous supposons que le système étudié a une condition initiale randomisée. Dans ces 

hypothèses, nous pouvons établir un modèle mathématique pour le problème d’optimisation et 

ensuite proposer une procédure d’optimisation pour résoudre le modèle basé sur la 

décomposition du modèle en deux sous-problèmes qui sont résolus en utilisant un algorithme 

de programmation dynamique ou en calculant la quantité de commande économique 

correspondantes. Plus particulièrement, nous considérons cinq différents types de contraintes 

de ratio entier éventuellement imposées sur les quantités de commande des stocks du système 

étudié, et comparons leurs efficacités par des expériences numériques.  

Description et modélisation du problème 

Nous considérons un système de distribution dans lequel un entrepôt approvisionne N 

détaillants. L’entrepôt est noté comme stock 0 et le détaillant i comme stock i pour i=1,2,…,N. 

On suppose que la demande clientèle du stock i suit un processus de Poisson de taux moyen i . 

Le coût de passation de chaque commande et le coût de stockage échelon par unité de produit 

par unité de temps du stock i sont ci et hi
e
 respectivement, i=0,1,…,N. De plus, nous 

définissons pi et βi comme le coût unitaire de flexibilité d’exploitation et le taux de 
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remplissage du détaillant i (i=0,1,…,N) respectivement, où β0 est le taux de remplissage de 

l’entrepôt.  

Puisque l’approvisionnement de l’entrepôt est utilisé pour satisfaire la demande normale (la 

partie de la demande en dessous du niveau maximum raisonnable), la quantité moyenne 

commandée de l’entrepôt par unité de temps est donnée par 0 0  .   

Dans le cadre de la GSA, pour un niveau de service αi donnée au client du détaillant i, une 

borne supérieure ( )iD  sur la demande totale durant un délai de unités de temps de ce stock 

peut être formulée comme suit: 

                                                 
( )

0

[ ]
, 1,2,...,

!

iiD k

i
i

k

e
i N

k

 
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

                                             (4-1) 

Dans les systèmes en série et les systèmes d’assemblage, la borne supérieure de la demande 

durant un délai est définie uniquement pour le stock du produit final et tous les autres stocks 

ont la même borne que celui du stock final. Toutefois, pour le système de distribution, 

puisque la demande de l'entrepôt est la somme des demandes de tous les détaillants à long 

terme, la borne supérieure de la demande de cet entrepôt durant un délai doit être différente de 

celles des détaillants, donc nous devons aussi définir une borne supérieure 0 ( )D  de la 

demande totale durant un délai de unités de temps pour l’entrepôt, et elle peut être formulée 

comme la suivante:  
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                                    (4-1b) 

Où 0 est le niveau de service de l'entrepôt aux clients finaux. 

Supposons que dans le système étudie, le stock i emploie un politique échelon de stockage (Ri, 

Qi), pour son approvisionnement. Dans les hypothèses de la demande bornée et la condition 

initiale randomisée du système, le problème d’optimisation que nous étudions peut être 

formulé comme le problème de programmation non linéaire suivant: 

P: Minimize 
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Sous les contraintes suivantes:          

                                                 0 1,2, ,i i iSI T S pour i N                                          (4-2) 

                                                     
0 1,2, ,iSI S pour i N                                                  (4-3) 

                                                     0 , 1,2,...,i iS s i N                                                      (4-4) 

                                               0iQ   et entier pour i=1, 2,…, N                                          (4-5) 

                                            , 0i iSI S   et entier pour i=1, 2,…, N                                       (4-6) 

Dans ce modèle, les variables de décision relatives à chaque stock i sont la quantité de 

commande Qi, le délai de service aval Si et le délai de service amont SIi; Ti est le délai de 

production du stock i ; si est une borné supérieure imposée sur le délai de service aval du 

stock, si, i=1,2,…,N sont des paramètres donnés.  

Dans la fonction objective, β est toujours inconnu, ce qui rend le problème d’optimisation 

difficile à résoudre. Nous supposons d’abord que β est donné, le modèle P peut donc être  

décomposé en deux sous-problèmes indépendants : le Q-problème qui a une fonction objectif 

composée de l’ensemble des termes relatives à Qi (i=0,1,…,N), et des contraintes (4-5), et le 

R-problème qui a une fonction objectif composée de tous les termes relatives à Ri, i=0,1,…,N 

et des contraintes linéaires (4-2), (4-3), (4-4) et (4-6).  

Dans la suit, nous développons des algorithmes efficaces pour résoudre les deux sous-

problèmes pour α et β donnés.  

Toutes les analyses ci-dessus supposent que β soit connue. Cependant, β est toujours inconnue, 

mais elle peut être déterminée par les paramètres et la politique de stockage (R, Q) du système. 

Basé sur les solutions des deux sous-problèmes, nous avons proposé une méthode pour 

calculer β, et une procédure d'optimisation pour résoudre le problème d'optimisation d'origine 

(modèle P). 

Contraintes de Ratio entier pour le Q-problème 
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Pour le Q-problème, il peut avoir des contraintes supplémentaires reliant la quantité de 

commande d’un stock à celle de son fournisseur. Par exemple, on demande que la quantité de 

commande d’un fournisseur soit un multiple de la quantité de commande de son client. De 

nombreux chercheurs ont étudié différents types de contraintes de ratio entier dans un système 

de distribution à deux niveaux, mais aucune comparaison entre ces contraintes n’a été faite en 

termes d’efficacité. Dans ce chapitre, nous considérons cinq différents types de contraintes de 

ratio entier pour le Q-problème.  

Les différents types de contraintes de ratio entier dans cinq cas sont décrits comme suit. 

Cas 1 : sans contrainte de ratio entier; 

Dans ce cas, il n’existe pas de lien entre la quantité de commande de l’entrepôt (Q0) et la 

quantité de commande d’un détaillant (Qi, i=1,2,…,N). Dans ce cas, le Q-problème a une 

structure simple, qui peut être divisé en sous-problèmes N indépendants et résolu par la 

méthode de la quantité de commande économique (EOQ method).  

Cas 2 : Qi=mi∙QN, pour certains entiers mi, i=1,2,…, N-1;  

Ce genre de contraintes de ratio entier a été examiné par Chen et Zheng (1997) dans leur 

modèle d’un système de distribution à deux niveaux avec un entrepôt et plusieurs détaillants, 

où QN est considéré comme la taille de lot de base du système. Ici, le détaillant N peut être 

remplacé par tout autre détaillant (iN) et le choix du détaillant de référence dépend du taux 

moyen de la demande de chaque détaillant. Dans l’hypothèse que le stock disponible initial à 

l’entrepôt est également un multiple entier de la taille de lot de base, ils ont montré qu’une 

telle restriction n’est pas trop coûteuse.  

Cas 3 : Qi=mi∙q, pour certains entiers mi, i=0,1,…,N;   

De même, ce cas suppose une taille de lot de base dans le système de distribution, dans 

laquelle la quantité de commande de chaque stock (Qi, i=0,1,…,N) doit être un multiple entier 

de la taille de lot de base notée q. Dans la pratique, q peut correspondre à la capacité d'une 

palette pour la livraison. La capacité est le nombre d'unités d'un produit que la palette peut 

porter pour l'expédition d’une commande. 

Case 4: Q0=mi∙Qi, pour certains entiers mi, i=1,2,…,N. 

Ce cas suppose que la quantité de commande de l’entrepôt (Q0) est toujours un multiple entier 

de la quantité de commande de chaque détaillant (Qi, i=1,2,…,N). Cette hypothèse, qui est 

couramment adoptée dans la littérature de gestion des stocks, est tout à fait naturelle vu que la 
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politique d’approvisionnement de l’entrepôt est de satisfaire tout ou rien d’une commande de 

détaillant (Axsater, 1996).  

Case 5: Q0=m0∙q0, Q1,…,N=mi,…,N∙q1,1≤ i ≤ N, q0=k0∙q1, pour certains entiers mi, i=1,2,…,N, 

k0. 

Dans le cas 2 et 3, une taille de lot de base est généralement supposée pour l'entrepôt et les 

détaillants dans le système de distribution. Cependant, puisque l’entrepôt et les détaillants 

appartiennent à différents niveaux dans la chaîne d’approvisionnement, cette stratégie de 

coordination peut être difficile à mettre en application. Donc, le cas 5 propose une nouvelle 

contrainte de ratio entier. Ce cas suppose qu’il existe une taille de lot de base pour chaque 

niveau dans le système, c'est-à-dire, q0 est la taille de lot de base pour le niveau d’entrepôt 

(niveau 0) et q1 est la taille de lot de base pour le niveau de détaillant (niveau 1), et les 

quantités de commande de tous les stock au même niveau ont la taille de lot de base commune, 

la taille de lot de base  au niveau d’entrepôt (niveau 0) doit être un multiple entier de la taille 

de lot de base au niveau de détaillant (niveau 1), c'est-à-dire, q0 est un multiple entier de q1.    

Algorithmes de programmation dynamique pour les sous-Problèmes  

Pour le Q-problème, nous avons considéré cinq différents types de contraintes de ratio entier, 

et ont développé des algorithmes de programmation dynamique pour résoudre ce sous-

problème, sauf une méthode de la quantité de commande économique (EOQ method) 

appliquée pour résoudre le Q-problème avec le contrainte de ratio entier du cas 1.     

Pour le R-problème, nous avons appliqué l’algorithme de programmation dynamique proposé 

par Graves et Willems (1996, 2000) pour le résoudre afin de trouver les meilleurs délais de 

service amont et aval (S, SI) du système étudié.   

Procédure d’Optimisation 

Similaire aux systèmes en série et systèmes d’assemblage, le problème d'optimisation 

d’origine peut être résolu par une procédure itérative. La procédure comporte deux étapes 

principales: d'une part, pour un taux de remplissage estimé du système, nous calculons la 

quantité de commande optimale (Qi) et le point de recommande optimale (Ri)  pour chaque 

stock en résolvant deux sous-problèmes à l'aide de deux algorithmes de programmation 

dynamique. Deuxièmement, nous calculons le taux de remplissage réel du système donné sa 

politique de stockage. Lorsque le taux de remplissage réel est égal au taux de remplissage 

estimé, la solution optimale du problème d’origine est trouvée. 
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Pour le système de distribution à deux niveaux considérés, l'entrepôt a plusieurs détaillants et 

ces détaillants peuvent avoir différents taux de remplissage. En outre, le taux de remplissage 

externe de l'entrepôt est généralement différent des taux de remplissage des détaillants.  

Pour chaque stock i, (i=0,1,2, ...,N), si le point de recommande et la quantité de commande du 

détaillant i sont donnés par Ri et Qi, respectivement, son taux de remplissage βi peut être 

calculé comme suit: 
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A la suite, nous utilisons une procédure itérative pour résoudre le problème d'origine (modèle 

P) basé sur l’estimation de la valeur de βi à chaque itération. Quand le βi réel est égal à sa 

valeur estimée, la solution optimale du problème d’origine peut être trouvée. La procédure 

présente les caractéristiques suivantes: 1) la valeur initiale de βi est fixé à αi, 2) la procédure 

s'arrête lorsque la valeur estimée de chaque βi ne change pas dans deux itérations successives 

(i = 0, 1, ..., N).  

Expériences Numériques  

Nous avons évalué les performances de deux algorithmes de programmation dynamique pour 

le Q-problème et R-problème, respectivement, et la performance de la procédure itérative 

proposée par des expériences numériques sur des instances générées aléatoirement.   

Pour le Q-problème, afin d'analyser les impacts de différents types de contraints de ratio-

entier, nous avons testé un ensemble d’instances de petite taille (N= 4), et ensuite nous avons 

considéré cinq ensembles d’instances de moyenne à grande taille avec N=9, 20, 50, 100, 

respectivement, dans une tentative d’analyser plus profondément les performances des 

algorithmes proposés. D'après les résultats des expériences, nous pouvons observer que les 

coûts optimaux sont similaires parmi les cinq cas différents, ces résultats démontrent que le 

coût total du système est insensible au choix des quantités de commande dans le système. Les 

temps de calcul des cinq cas sont assez courts, ce qui démontre l'efficacité des algorithmes. 

Pour le R-problème, les cinq mêmes ensembles d’instances sont testés. A partir des résultats, 

nous pouvons observer que pour les petites instances (N=4), le R-problème peut être résolu 

presque instantanément en utilisant l'algorithme de programmation dynamique de Graves et 

Willems, alors que pour les grandes instances (N= 9, 20, 50 et 100), le temps de calcul de 

l'algorithme devient plus long, mais il est encore assez court. Cela démontre la pertinence du 

choix de cet algorithme pour la résolution du R-problème. 
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Chapitre 5 Conclusions et perspectives 

Dans cette thèse, nous avons étudié l'optimisation de la politique de stockage des systèmes de 

stocks multi-échelons avec des coûts fixe de passation de commande à chaque stock. En 

raison de l’existence des coûts de passation de commande, ce problème d’optimisation 

devient très difficile pour les systèmes généraux de stocks multi-échelons. Dans la littérature, 

deux approches concurrentes sont utilisées pour résoudre le problème, l'approche de service 

stochastique (SSA) et l'approche de service garanti (GSA). Par rapport à la SSA dont le 

modèle a généralement une structure très complexe, la GSA modélise un système de stocks 

multi-échelons de manière approximative et peut établir un modèle de programmation 

mathématique relativement simple pour le système. Ce modèle simplifié permet à un 

planificateur du système de prendre des décisions stratégiques ou tactiques sur le placement 

de stocks de sécurité. 

L'hypothèse principale de la GSA est que la demande excessive supérieure à un certain niveau 

est satisfaite à l’aide de la flexibilité d'exploitation. Sur la base de cette hypothèse, la GSA 

peut formuler le problème d'optimisation de la politique de stockage d’un système de stocks 

multi-échelons comme un problème de programmation mathématique déterministe. 

Cependant, dans la plupart des études précédentes de la GSA, les coûts de la flexibilité 

d’exploitation n'ont pas été pris en compte dans son modèle d'optimisation. Cela a provoqué 

la critique de cette approche dans le passé. De plus, les coûts fixes de passation de commande 

qui existent souvent dans les chaînes d'approvisionnement industrielles ont été ignorés dans le 

modèle. A notre connaissance, aucun travail précédent n’a utilisé la GSA pour optimiser les 

systèmes de stocks multi-échelons avec des coûts fixes de passation de commande. Par 

conséquent, dans cette thèse, nous avons concentré sur deux grands thèmes de recherche: 1) 

Utilisez la GSA pour optimiser les systèmes de stocks multi-échelons avec des coûts fixes de 

passation de commande à chaque stock. 2) Généraliser la GSA pour tenir compte des coûts de 

la flexibilité d'exploitation dans l'optimisation de la politique de stockage des systèmes. 

Cette thèse a considéré trois différents types de systèmes de stocks multi-échelons: les 

systèmes en série, les systèmes d'assemblage, et les systèmes de distribution à deux niveaux. 

Pour chaque système, nous supposons que la demande du client final est générée par un 

processus de Poisson, un coût fixe est facturée à chaque stock quand il passe une commande, 

et chaque stock est géré par une politique (R, Q). Notre objectif est de trouver une politique 

optimale (R, Q) pour le système de sorte que le coût total du système qui contient les coûts de 
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stockage, les coûts de fixes de passation de commande et les coûts de flexibilité d'exploitation 

est minimisé tout en respectant un niveau de service offert au client. 

Après une introduction générale et une revue de la littérature dans le chapitre 1, chapitre 2 

aborde l'optimisation de la politique (R, Q) pour un système en série avec la demande suivant 

un processus de Poisson et coûts fixes de passation de commande. Dans le cadre de la GSA, 

nous avons d'abord établi un modèle mathématique pour le problème d’optimisation, qui est 

un modèle de programmation non linéaire. Puisque la fonction objective du modèle dépend de 

deux niveaux de service (niveau de service α et du taux de remplissage β) du système, nous 

proposons une procédure itérative pour résoudre le modèle basé sur l'estimation du taux de 

remplissage β lorsque le niveau de service α est donné. La procédure itérative appuie sur la 

résolution de deux sous-problèmes du modèle: le problème de détermination de quantités de 

commande (Q-problème) et le problème de détermination de points de recommande (R-

problème). Nous avons développé un algorithme programmation dynamique(DP) efficace 

pour résoudre le Q-problème, basé sur deux propriétés importantes sur l'espace d'état de ses 

variables de décision, ce qui rend notre algorithme DP beaucoup plus efficace qu'un 

algorithme DP dans la littérature. Le R-problème est résolu en utilisant un autre algorithme 

DP proposé par Graves et Willems. Les expériences numériques montrent que les deux 

algorithmes DP sont très efficaces pour résoudre le Q-problème et R-problème de grande 

taille avec un temps de calcul court. Les résultats numériques montrent également que la 

procédure itérative d'optimisation a une bonne propriété de convergence et un calcul efficace 

pour résoudre le problème d'optimisation de la politique de stockage. 

Chapitre 3 généralise le modèle et l'approche de résolution proposés dans le chapitre 2 aux 

systèmes d'assemblage. Étant donné que les systèmes d'assemblage étudiés ont une structure 

plus complexe que les systèmes en série, l'algorithme DP du Q-problème pour les systèmes en 

série ne peut être directement utilisé pour les systèmes d'assemblage. Par conséquent, nous 

avons développé un nouvel algorithme DP pour résoudre le Q-problème des systèmes 

d'assemblage, dans lequel une procédure récursive avant et une procédure récursive arrière 

sont utilisés à la fois pour identifier la solution optimale du problème. Les expériences 

numériques démontrent l'efficacité de l'algorithme. 

Chapitre 4 porte sur l'optimisation de la politique (R, Q) pour les systèmes de distribution à 

deux niveaux. L’optimisation d’un tel système est plus difficile que celle d’un système 

d’assemblage. Pour le système de distribution, nous avons aussi établi un modèle 

mathématique pour son problème d'optimisation de la politique de stockage et développé une 
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procédure d'optimisation pour résoudre le modèle. Plus particulièrement, nous considérons 

cinq différents types de contraintes de ratio entier éventuellement imposées sur les quantités 

de commande de l'entrepôt et des détaillants. Pour chaque type, nous avons proposé un 

algorithme efficace pour résoudre le Q-problème. Nous ont comparé les cinq types de 

contraintes de ratio entier en termes de leurs efficacités par des expériences numériques. Les 

expériences numériques démontrent l'efficacité de la procédure d'optimisation pour résoudre 

le problème d'optimisation des stocks du système de distribution étudié. 

Cette thèse a étendu le domaine d'application de la GSA du placement de stocks sécurité dans 

les systèmes de stocks multi-échelons sans coûts de passation de commande à l'optimisation 

de la politique (R, Q) des systèmes de stocks multi-échelons avec des coûts fixes de passation 

de commandes à chaque stock. Il a également étendu la GSA standard en tenant compte 

explicitement les coûts de flexibilité d'exploitation et les effets de cette flexibilité dans le 

modèle GSA du problème d'optimisation. 

Bien que le travail de cette thèse ait démontré les avantages de la GSA dans l'optimisation des 

systèmes de stocks multi-échelons, beaucoup de travail reste à faire. Il y a quelques 

orientations possibles pour la recherche future. Tout d'abord, la performance de la politique 

des stockages conçue par la GSA devrait être comparée avec la performance de la politique 

des stockages conçue par la SSA. 

Dans la littérature, très peu d’études contribuent à une telle comparaison, en particulier, pour 

les systèmes de stocks multi-échelons avec des coûts de passation de commande. C'est à cause 

que le modèle stochastique employé par la SSA a souvent une structure très complexe si les 

coûts fixes de passation de commande sont prises en considération, et il est très difficile de 

trouver une politique optimale de stockage pour un tel système, seuls les algorithmes 

heuristiques ont été développées. Donc, la comparaison des deux approches est encore un 

problème ouvert. 

Deuxièmement, dans cette thèse, le processus de demande clientèle est supposé d’être un 

processus de Poisson, mais en réalité, la demande peut suivre un autre processus stochastique. 

À l'avenir, nous étudierons des systèmes de stocks multi-échelons avec d'autres processus de 

demande, tels que le processus de Poisson composé et le processus de distribution normale. 

Troisièmement, cette thèse ne considère que des systèmes de stocks multi-échelons avec 

l’inventaire continu de chaque stock. Dans la pratique, l’état d’un stock peut être revu 

périodiquement. Dans ce cas, la politique (R, Q) est généralisée et remplacée par la politique 



 

 158 

(R, nQ). L’optimisation de la politique (R, nQ) pour les systèmes de stocks multi-échelons 

avec l’inventaire périodique de chaque stock dans le cadre de la GSA est également dans la 

liste de nos sujets de recherche futurs. 

Enfin, cette thèse a considéré trois types de systèmes de stocks multi-échelons, i.e., les 

systèmes en série, les systèmes d'assemblage et les systèmes de distribution à deux niveaux. 

Dans la pratique, une chaîne d'approvisionnement peut avoir à la fois une structure 

d'assemblage et une structure de distribution. Un de nos travaux futurs est d’étudier des 

systèmes de stocks multi-échelons plus généraux dans lesquelles tous les liens entre les stocks 

sont possibles. 
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Optimisation de politiques de stockage 
(R, Q) pour les systèmes multi-échelons 
avec service garanti 
 
Face à une concurrence féroce par suite de la 
modélisation économique, les entreprises doivent 
bien gérer leurs chaînes logistiques afin de réduire 
leurs coûts d’exploitation tout en améliorant leurs 
services au client. Un enjeu majeur de cette gestion 
et la gestion efficace des stocks multi-échelons.  
Dans cette thèse, nous étudions des systèmes de 
stocks multi-échelons avec des coûts de passation 
de commande à chaque stock. En raison de 
l’existence des coûts de passation de commande, 
l’optimisation d’un tel système devient très 
compliquée. Récemment, l’approche de service 
garanti (GSA) a été utilisée pour déterminer les 
stocks de sécurité pour les systèmes de stocks 
multi-échelons, mais sans coûts fixes de passation 
de commande. Nous généralisons la GSA pour 
optimiser la politique de stockage (R, Q) d’un 
système de stocks multi-échelons avec la demande 
suivant un processus de Poisson et coûts fixes de 
passation de commande à chaque stock. Nous 
considérons trois types de systèmes de stocks 
multi-échelons, et pour chaque type, nous d'abord 
établissons un modèle mathématique pour le 
problème d’optimisation. Ensuite, le modèle est 
résolu par une procédure itérative fondée sur deux 
algorithmes de programmation dynamique (DP). Un 
algorithme DP est utilisé pour résoudre le sous-
problème de détermination de quantités de 
commande et l'autre est utilisé pour résoudre le 
sous-problème de détermination de points de 
recommande du modèle. Les résultats numériques 
démontrent l'efficacité des algorithmes et de la 
procédure. 
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programmation dynamique. 
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Optimization of (R, Q) Policies for Multi-
echelon Inventory Systems with 
Guaranteed Service 
 
With the increasing complexity of supply chains led 
by economic globalization, integrated supply chain 
management has become an important strategy 
utilized by the firms to reduce the overall cost while 
meeting the customer service. This change has 
made academic researchers and industrial 
practitioners pay more and more attention to multi-
echelon inventory management over the last two 
decades.  
In this thesis, we study multi-echelon inventory 
systems with fixed order costs at each stock. 
Because of the existence of fixed order costs, the 
optimization of such system becomes very 
complicated. Recently, Guaranteed Service Approach 
(GSA) was used to set safety stock for multi-echelon 
inventory systems, but without fixed order costs. We 
extend the GSA to optimize (R, Q) inventory policies 
for multi-echelon inventory systems with Poisson 
demand and fixed order costs. Our objective is to 
find optimal (R, Q) policy for such a system so that 
its total cost is minimized while achieving a service 
level to customer. Three types of multi-echelon 
inventory systems, serial systems, assembly 
systems and two-level distribution systems are 
considered. For each type, we first establish a 
mathematical model for the optimization problem. 
Then, the model is solved by an iterative procedure 
based on two dynamic programming (DP) 
algorithms. One DP algorithm is used to solve the 
order size decision subproblem and the other is used 
to solve the reorder point decision subproblem of the 
model. Numerical experiments demonstrate the 
efficiency of the algorithms and the procedure. 
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