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Abstract

With the increasing complexity of supply chains led by economic globalization, integrated
supply chain management has become an important strategy utilized by the firms to reduce
the overall cost while meeting the customer service. This change has made academic
researchers and industrial practitioners pay more and more attention to multi-echelon

inventory management over the last two decades.

In this thesis, we study multi-echelon inventory systems with fixed order costs at each stock.
Because of the existence of fixed order costs, the optimization of such system becomes very
complicated. Recently, Guaranteed Service Approach (GSA) was used to set safety stock for
multi-echelon inventory systems, but without fixed order costs. We extend the GSA to
optimize (R, Q) inventory policies for multi-echelon inventory systems with Poisson demand
and fixed order costs. Our objective is to find optimal (R, Q) policy for such a system so that
its total cost is minimized while achieving a service level to customer. Three types of multi-
echelon inventory systems, serial systems, assembly systems and two-level distribution
systems are considered. For each type, we first establish a mathematical model for the
optimization problem. Then, the model is solved by an iterative procedure based on two
dynamic programming (DP) algorithms. One DP algorithm is used to solve the order size
decision sub-problem and the other is used to solve the reorder point decision sub-problem of
the model. Numerical experiments demonstrate the efficiency of the algorithms and the
procedure.

Key Words: Inventory Control; Business Logistics; Mathematical Optimization; Dynamic

Programming.






R&umeée

Face aune concurrence fé&oce par suite de la moddisation é&onomique, les entreprises
doivent bien gérer leurs chaines logistiques afin de réduire leurs colits d’exploitation tout en
amd@iorant leurs services au client. Un enjeu majeur de cette gestion et la gestion efficace des

stocks multi-&helons.

Dans cette thése, nous éudions des systeénes de stocks multi-&helons avec des cols de
passation de commande achaque stock. En raison de I’existence des coUts de passation de
commande, I’optimisation d’un tel systéme devient tres compliqguée. R&emment, 1’approche
de service garanti (GSA) a é&é€ utilisé pour déerminer les stocks de séurité pour les
systames de stocks multi-éhelons, mais sans cods fixes de passation de commande. Nous
géné&alisons la GSA pour optimiser la politique de stockage (R, Q) d’un systéme de stocks
multi-&helons avec la demande suivant un processus de Poisson et coUts fixes de passation
de commande achaque stock. Nous considé&ons trois types de systé@nes de stocks multi-
&helons, et pour chaque type, nous d'abord éablissons un modée mathénatique pour le
probléme d’optimisation. Ensuite, le modée est ré&olu par une procélure it&ative fondé sur
deux algorithmes de programmation dynamique (DP). Un algorithme DP est utilisé€ pour
réoudre le sous-probléme de déermination de quantités de commande et l'autre est utilisé
pour ré&soudre le sous-probléme de déermination de points de recommande du modéde. Les

résultats numé&iques dénontrent l'efficacitédes algorithmes et de la procélure.

Mots Clé&: Gestion des stocks; Logistique (Organisation); Optimisation Mathématique;

Programmation Dynamique.
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General Introduction

A supply chain is a network of enterprises through which products are produced and delivered
to end customers. Supply chain management (SCM) aims at optimizing a system wide
performance of such a network by coordinating the flow and the storage of goods from raw
material suppliers to distributors through manufacturers. In recent years, economic
globalization, product proliferation and fast product innovation have significantly increased
the complexity of supply chain management in many industries. One important issue in
supply chain management is managing/controlling inventories at all stocks in a general supply
network facing uncertain customer demands. The objective of this inventory management is

to reduce inventory costs while assuring a given high service level to customers.

Traditionally, inventories at different stocks in a supply chain were managed independently,
buffered by high inventories. Increasing competitive pressures and market globalization have
forced firms to make more efforts to reduce their inventories while improving the customer
service. This has been making academic researchers and industrial practitioners pay more and
more attention to multi-echelon inventory management which takes the interactions between

different stocks in a supply chain into consideration.

A supply chain with multiple stocks can be modeled as a multi-echelon inventory system,
where the stocks are arranged in multiple echelons or levels and each stock is replenished
from one or multiple stocks at a higher echelon. Multi-echelon inventory management adopts
a global optimization approach. In such an approach, the inventory optimizations of all stocks
are considered simultaneously, with an objective to minimize a system-wide cost while
meeting requirements on customer service. Therefore, the key strategy of multi-echelon
inventory management is efficient coordination of inventory policies among all participating

companies in a supply chain.

In the literature, there are two competing approaches for inventory system optimization:
stochastic service approach (SSA) and guaranteed service approach (GSA). In SSA, safety
stock is assumed to be the only buffer against demand variability. On the other hand, the GSA
model assumes the safety stock is sized to cover demand variability up to a certain level, i.e.,
the maximum reasonable lead time demand level. If a demand exceeds this level, excessive
part of the demand is treated by using extraordinary measures due to operating flexibility of

the underlying system. Compared with the SSA, the GSA models the entire system in an



approximate fashion but it allows a planner to make strategic and tactical inventory decisions

based on a simplified model.

In the literature, most studies on multi-echelon inventory systems assume no fixed order cost
at each stock or only the stock(s) at the highest echelon has (have) a fixed order cost.
However, in practice, each stock usually has a fixed cost which may correspond to the order
delivery cost or other quantity-independent costs. For a multi-echelon inventory system, if a
fixed order cost incurs at each stock of, (R, Q) policy or (s, S) policy is usually used as the
inventory policy of the system. Due to its simplicity and popularity in practice, we choose (R,
Q) policy rather than (s, S) policy for controlling multi-echelon inventory systems with fixed
order costs in this thesis. We study the optimization of (R, Q) policy for multi-echelon
inventory systems with stochastic customer demand and fixed order costs. Our objective is to
find the optimal (R, Q) policy for such a system so that its average system-wide total cost is
minimized while satisfying a target service level to customers. Three types of multi-echelon
inventory systems, serial systems, assembly systems and two-level distribution systems, are
considered.

The existence of fixed order costs at each stock makes the inventory policy optimization of
the multi-echelon inventory systems very difficult. The SSA, as a classical approach, was
usually used to solve such optimization problem. However, due to the high complexity of the
systems with fixed order costs, only approximate (heuristics) algorithms for finding near-

optimal inventory policies were developed under the SSA.

On the other hand, under the assumption that excessive demand superior to a certain level is
treated by operating flexibility, the GSA is able to model an inventory optimization problem
as a deterministic mathematical programming problem, which can be solved more easily. In
the literature, no previous work has used this approach to optimize multi-echelon inventory
systems with fixed order costs at each stock. Therefore, in this thesis, we use the GSA to
model and solve inventory optimization problems of multi-echelon inventory systems with
fixed order costs. Different from the standard GSA which ignores the operating flexibility
costs for using extraordinary measures to fulfill excessive demand, we develop a new GSA
which considers operating flexibility costs and the effects of extraordinary measures on the
material flows of the multi-echelon inventory systems in this thesis. In our study, maximum
reasonable level of lead time demand is determined according to a service level to final

customer.

The main contributions of this thesis include:



1) We extend the GSA to multi-echelon inventory systems with fixed order costs at each stock.
Since all previous works on the GSA only deal with inventory systems without fixed order
costs, this thesis is the first attempt to optimize multi-echelon inventory systems with fixed

order costs under the framework of the GSA.

2) The standard GSA ignores the effect of operating flexibility on the material flow and the
total cost of a multi-echelon inventory system. In this thesis, we extend the standard GSA by
considering the effect and by including explicitly the operating flexibility costs in our
inventory policy optimization models. In the models, the total cost of a multi-echelon
inventory system not only includes fixed order costs, on-hand inventory holding costs, but

also includes operating flexibility costs.

3) For each of the three types of multi-echelon inventory systems considered, we formulate a
mathematical programming model for the inventory policy optimization problem under the
framework of the GSA.

4) The consideration of the operating flexibility effects and costs makes our GSA model more
complicated than the standard GSA model with an objective function depending on two
service levels (a-service level and g-service level). We propose an iterative procedure to solve

the model based on the estimation of s-service level.

5) For given a-service level and p-service level, the inventory policy problem can be
decomposed into two sub-problems: one is to determine the optimal order size Q of each
stock (called Q-problem) and the other is to determine the optimal reorder point R of each
stock (called R-problem). We develop dynamic programming algorithms for efficiently

solving the two sub-problems.

6) The efficiency of the dynamic programming algorithms and the iterative procedure is

evaluated by numerical experiments.

This thesis consists of six chapters. Chapter 1 introduces basic concepts of inventory
management, the motivation of this research, and the specific problems studied in this thesis,
and provide a literature review for multi-echelon inventory management research related to
our work. Chapter 2 presents the basic terminology of multi-echelon inventory control as well
as a standard GSA model that can help the readers to understand the GSA models to be
developed in the upcoming chapters. In this chapter, we also discuss how to evaluate
operating flexibility costs under the GSA. In chapter 3, we consider serial systems with

Poisson customer demand and fixed order costs at each stock and develop a mathematical



programming model and a solution approach for optimizing their (R, Q) policies under the
GSA. The model takes into consideration both fixed order costs and operating flexibility costs
and the solution approach is based on two dynamic programming algorithms we develop or
adopt for two sub-problems of the model. The performances of the algorithms and the
solution approach are evaluated by numerical experiments. Chapter 4 extends the model and
the solution approach developed in Chapter 3 to assembly systems with numerical
experiments for performance evaluation as well. In Chapter 5, we consider two-level
distribution systems with one warehouse and multiple retailers. The analysis and optimization
of such systems are more difficult than serial and assembly systems. We also develop a
mathematical programming model and a solution approach for the optimization of the
distribution system under the GSA. In addition, we consider five different types of integer-
ratio constraints possibly imposed on the order sizes of the stocks of the system, and compare
their effectiveness by computational experiments. Finally, Chapter 6 concludes the thesis and

suggests some directions for further research.



Chapter 1 Introduction

1.1 Inventory Management

Products and services are usually delivered to end customers through a supply chain which is
a network of organizations connected together through the products and services that
separately and/or jointly add values to it. Many real-world supply chains, such as those found
in automotive, electronics, and consumer packaged goods industries, consist of a large
number of assembly and distribution operations realized in geographically dispersed facilities.
One challenge for the management of such a supply chain is the effective management of its
inventories located in multiple production and distribution facilities facing stochastic demand
and uncertain supply of products with high inventory and transportation costs. According to a
study, American companies spent almost 1 trillion dollars in supply-related activities in 2000
(or 10.1% of Gross Domestic Product), among which transportation costs constitute 58.6%,
inventory costs 37.4% and management costs 4% of the total cost. Generally, inventory can
represent from 20% to 60% of the total assets of manufacturing firms (Arnold, 2004).
Therefore, the total capital investment in inventories is enormous, and the control of the
capital tied up in raw material, work-in-progress, and finished goods offers a very important
potential for improvement. Scientific methods for inventory management can give a

significant competitive advantage.

Inventory management has a very important impact on the performance of an enterprise
especially the financial health of its balance sheet. As indicated by a study of the Aberdeen
Group (Viswanathan, 2007), inventory management was ranked on top of the list of
investments in application-oriented software for companies in 2007. In 2008 the market for
inventory management applications continued to increase by 4% over 2007 according to
AMR research (Trebilcock, 2009), demonstrating that companies were making more efforts
on improving their inventory management activities. An effective inventory management is
particularly important in the current increasing competitive environment due to market
globalization. In order to contain cost and free working capital, inventories need to be reduced
without sacrificing the service level to customers. Inventory management aims at determining
and controlling the inventory levels within physical inventory systems, so that the need for
product availability and the need for minimizing the costs related to inventory are well
balanced. As a matter of fact, inventory management may have conflicting objectives. One

objective is to keep stock levels as low as possible to minimize costs and free working



capitals as much as possible. Another objective is to provide a high service level to customers

in order to avoid the risk of lost sales in case of insufficient inventories.

It is seldom trivial to find the best balance between such goals, that is why we need to study
inventory management. One important issue of inventory management is to find an optimal
inventory policy to control the inventory replenishment of each stock in an inventory system
so as to minimize the costs related to inventory, while maintaining a given target level to
customers. Here, an inventory policy is a mechanism, which decides when a stock should
place an inventory replenishment order and in which quantity it should order. The
optimization of the inventory policy of the stock should consider its cost structure. In

inventory systems, many costs may be involved such as:

= costs for ordering, material handling, and transportation;
= costs for capital tied up in the inventories;

= costs for not providing an adequate customer service.

Correspondingly, fixed order costs, inventory holding costs and backorder/penalty costs arise.
Since the inventory policy decision has a very important impact on the costs, the research on

the optimization of inventory policies is of great practical and academic significance.
1.2 Multi-Echelon Inventory Systems

A supply chain with multiple stocks is usually modeled as a multi-echelon inventory system,
which is an inventory system with multiple stocks arranged in multiple echelons or levels,
where the “echelon” of a stock refers to the position (level) at which the stock is located

within the system. A multi-echelon inventory system is depicted as in Figure 1.1.

___________

\ 4

___________

Figure 1. 1 A multi-echelon inventory system



The main characteristics of a multi-echelon inventory system can be described as follows:
= The system is composed of multiple stocks and each stock has a physical location ;
= All stocks are grouped into multiple echelons (levels);

= Each stock at a lower echelon replenishes its inventory from one or multiple stocks at a

higher echelon.

Intuitively, one can imagine a multi-echelon inventory system as something resembling a
“network”, in which the “nodes” are the stocks of the participating companies that are inter-
connected in a supply chain (See Figure 1.1). Two nodes are connected through a directed
link (arc) in the network if the upstream node is a supplier of the downstream node or in other
words the downstream node is a customer of the upstream node. In real-world a multi-echelon
inventory system may be more complex than the one depicted in Figure 1.1 that is really a
chain rather than a network, because there may exist multiple suppliers and multiple

customers for each stock in the system.

On the basis of network structure, multi-echelon inventory systems can be classified into
serial systems, assembly systems, distribution systems and general systems. The simplest
structure is that of serial systems, in which each echelon only has a single stock. A more
complex structure is that of assembly systems, in which multiple components/subassemblies
are assembled into a single subassembly or final product and consequently a stock may have
multiple suppliers. In a distribution system, a supplier distributes (delivers) a product to
multiple customers, and therefore, the supplier can have multiple customers. In general case, a
multi-echelon inventory system can include any of the above three structures as parts of the
system (Zipkin, 2000).

Most consumer and industrial goods are distributed through multi-echelon inventory systems
of one sort or another. Any enterprise with geographically-dispersed markets, production
facilities, and material suppliers must rely on the performance of its multi-echelon inventory
system to remain competitive. The management of multi-echelon inventory systems is thus a

crucial part of supply chain management.
1.3 Multi-Echelon Inventory Management

Historically, the actors in a supply chain, i.e., manufacturers, warehouses, distributors, etc.,
planned and managed their inventories independently, and even in an enterprise its stocks at

different echelons were planned independently or in a sequential way. Here, sequential



planning means that the inventory planning of the stocks at each echelon only considers the
inventory planning of its immediate downstream stocks. However, such individual or
sequential planning approach completely neglects interdependencies between the stocks at
two adjacent echelons. As a result, some stocks might hold excessive inventories whereas the
others might frequently be in shortage, because the sequential approach does not well answer
the following questions: Is it more costly to hold inventory at an upstream or a downstream
echelon? How does the inventory planning of an upstream echelon affect the inventory
planning of a downstream echelon? Which level of service should each stock in an upstream
echelon provide to its internal customers (stocks in a downstream echelon) such that external

customer demand can be satisfied according to a target service level?

Increasing competitive pressures and market globalization have forced firms to change their
inventory planning and management strategies. To remain competitive and decrease inventory
costs, they now work together to plan and mange their supply chains in a coordinated way so
that products can be delivered to final customers at the least cost while achieving a high
service level to final customers. This has been making academic researchers and industrial
practitioners pay more and more attention to multi-echelon inventory management over the

past two decades.

Multi-echelon inventory management adopts a global optimization approach. In such
approach, all stocks (echelons) from the external suppliers to the end customers in a supply
network are considered simultaneously, with the objective of minimizing a system-wide cost
subject to constraints on customer service. Thus, the shortcomings of the sequential approach
are overcome. It is reported that “it is not unusual for a global supply chain to see inventory
levels reduced by as much as 15%-25%" (Ellis et al., 2009) due to effective multi-echelon

inventory management.

There are two drivers for the advancement of multi-echelon inventory management. Firstly,
the rapid development of information and computer technologies has made information
available to all enterprises and all stocks across a supply chain possible, this has made the
implementation of a multi-echelon inventory management application in such a supply chain
possible. Secondly, multi-echelon inventory research in recent years has brought us models
and methods that can capture and handle a broad variety of real inventory systems with a

large number of stocks at multiple echelons.



1.4 Models and Methods Used for Multi-Echelon Inventory Management

In this section we provide an overview of models and methods for multi-echelon inventory
management. This will help the reader to understand the materials to be presented in later
sections. In addition, we will briefly introduce different inventory policies used in the control

of multi-echelon inventory systems.
1.4.1 Inventory Models

From a mathematical inventory theory perspective, the inventory models used can be

classified into deterministic and stochastic inventory models.

Deterministic Inventory Models: A deterministic inventory model assumes that the demand
is deterministic. Due to this assumption, the analysis of the model is considerably simplified.
Stockout in a deterministic inventory model is usually not allowed. Deterministic inventory
models can further be subdivided into static and dynamic models. The static models are
usually derived from the classical economic order quantity (EOQ) which seeks for an optimal
trade-off between fixed order costs and variable inventory holding costs. Multi-stage EOQ-
type models exists. Such models can be used in the situations when the system conditions are
stable and there are no fluctuations in the demand. To deal with the situations with
deterministic time varying demand, various lot sizing models have been developed, which can
be applied in different situations. The most widely used methods for single stock lot sizing are
Wagner-Whittin method (Wagner and Whitin, 1958), Silver meal heuristics (Silver and Pyke,
1988), and part period balancing (Callarman and Hamrin, 1983). A review of lot sizing
models for multi-echelon (level) systems can be found in Teunter (1998). Note that these
deterministic models provide a basis for treating inventory systems with uncertainty.

Stochastic Inventory Models: Stochastic inventory models which specify the demand as a
stochastic process are more realistic compared with their deterministic counterparts. In spite
of the fact that it has been known for a long time that there exists an optimal inventory policy
under quite general conditions, optimal control parameters of the policy under the stochastic
setting are hard to be computed, let alone applying such policy to real inventory systems. One
reason for this is that the analysis of stochastic inventory models is usually very difficult. The
cost functions of most stochastic inventory models have been widely perceived as rather
complex and too difficult to be evaluated analytically (Zheng, 1992). In the literature, a
number of stochastic inventory models have been proposed; most of the models are stationary

with an infinite horizon. Most previous studies on stochastic inventory models were focused



on cost evaluation and on determining optimal control parameters for predetermined
inventory policies. In contrast, results on optimal policy structures are rare. In most studies the
demand is modeled as a Poisson process or compound Poisson process. Detailed information

will be provided in section 1.6.
1.4.2 Inventory Policies

In inventory management, an inventory policy determines when the state of a stock must be
reviewed, when the stock must place a replenishment order and in which quantity each order
must be placed by the stock. Most frequently used inventory policies for multi-echelon
inventory systems are base stock policy or order-up-to level policy, (R, Q) policy and (s, S)
policy according to the consideration of fixed order costs or not in the system. Moreover,
according to the different information used for order decision, existing inventory policies can
be also classified into two groups: installation inventory policies and echelon inventory
policies. The former considers only local stock information whereas the latter can be used
only when centralized information is available. Finally, inventory policies can be classified
into continuous review policies and periodic review polices according to the nature of their
inventory tracking. An inventory control system can be designed so that its inventory position
is monitored continuously or periodically, which leads to a continuous review and a periodic
review policy, respectively. Continuous review, also known as perpetual review, involves a
system that tracks each stock and updates inventory counts every time an item is removed
from inventory. On the other hand, periodic review involves counting and documenting
inventory at specified times. Periodic review with a short review period is, of course, very

similar to continuous review.

Base Stock Policy: With this policy, the inventory position of a stock is reviewed only after a
certain predetermined time interval. An order is placed to restore the inventory position to a
predetermined order-up-to-level. Therefore, the base stock policy is also known as “Order up
to level” policy because the order size is determined based on a predetermined order up to
level. This policy is in common use in real inventory systems as it does not require continuous
monitoring of the inventory status and thus makes it easy to be implemented, especially when
computerized systems are not available for inventory planning. This policy is optimal in case
that excess demand is backordered, the lead time is deterministic and no fixed order cost is

charged.
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Although base stock policy is very simple but this policy is optimal only when no fixed order
cost is charged. For this reason, (R, Q) policy and (s, S) policy which take account of fixed

order costs are also used in multi-echelon inventory systems.

(R, Q) Policy: This policy operates as follows: when the inventory position of a stock
declines to or below a reorder point R, an order of Q units is placed. When the inventory
position is periodically reviewed, the stock may be necessary to order a multiple of Q units_to
raise its inventory position to above R. The considered policy is therefore also referred to as
(R, nQ) policy, where n is the minimal positive integer such that the current inventory position

plus nQ units to be ordered will be greater than R.

(s, S) policy: This policy has two control parameters: the reorder point s and the order-up-to
level S. When the inventory position of a stock declines to or below s, the stock places an
order to bring its inventory position to the maximum level S. Compared with (R, Q) policy, (s,
S) policy no longer orders a multiple of a given order size. If the reorder point is always hit
exactly in case of continuous review and continuous demand, the two policies are equivalent

provided s=R and S=R+Q. Otherwise, the two policies are different.

In general, an inventory model using either (R, Q) policy or (s, S) policy has a complex
structure, this leads to a fact that few results exist for the optimization of such policy in the
context of multi-echelon inventory systems except for approximate optimization procedures.
Between the two policies, the use of (s, S) policy is more advantageous from a theoretical
point of view. However, their cost differences are, in general, very small, and in practice it is
often much easier to implement an (R, Q) policy. For this reason, we only consider (R, Q)

policy in this thesis.
1.4.3 Inventory Optimization Approaches

Two competing approaches have been developed over the years for inventory system
optimization. Although they solve the same inventory policy optimization problem in their
core, they make different assumptions with regard to the role of safety stock. In the SSA
model, safety stock is assumed to be the only buffer against demand variability. On the other
hand, the GSA model assumes that safety stock is sized to cover demand variability up to a
certain level only, i.e., the maximum reasonable lead time demand level. All demand
variability exceeding this level is treated by using extraordinary countermeasures due to
operating flexibility of the underlying system. The two approaches differ in demand treatment,

replenishment strategy and service time characteristics.
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Stochastic Service Approach (SSA): Most inventory models adopt the SSA. In the SSA,
each stock maintains a sufficient inventory level in order to meet its stochastic demand. When
the inventory level of a stock is not sufficient to meet the demand coming form its
downstream stocks or final customers, unsatisfied demand is fully backlogged and will be
filled later when on-hand inventory becomes available. This implies that the stock may have a
stochastic delay to fill an unsatisfied demand, the service time of the stock, which is defined
as the lead time for filling its demand is thus stochastic.

Guaranteed Service Approach (GSA): The GSA was originated from the work of Simpson
(1958). In the GSA, each stock sets a deterministic service time for meeting any demand from
its downstream stocks and guarantees that the demand can always be satisfied in the given
service time. This approach assumes that excessive customer demand superior to a bound is
treated by some extraordinary measures such as expediting and overtime. With this
assumption, each stock can predict its maximum demand to fill and assure a given service
time to its downstream stocks. Therefore, the service time of each stock in GSA is
deterministic. In the GSA model, it is assumed that extraordinary measures besides safety
stock exist to cope with demand variability, if the demand exceeds a certain maximum
reasonable level. However, this “operating flexibility” of using extraordinary measures is not
explicitly modeled in the standard GSA framework, and this becomes a major point of
criticism for such approach. In order to counteract this criticism, in this thesis, we adopt an
extended GSA model which explicitly considers the effect that operating flexibility measures

have on the material flow and the total cost of a multi-echelon inventory system.

In summary, the stochastic service approach (SSA) employs a more complicated model that
allows for a more exact and detailed understanding of the system. However, the model as well
as solution techniques for it are not easy to develop and are computationally hard. The
guaranteed service approach (GSA) models the entire system in an approximate fashion and
allows a planner to make strategic and tactical decisions without the need to approximate
portions of the system that are not captured by a simplified topological representation. For a
detailed comparison of these two approaches, please see Graves and Willems (2003) and
Humair and Willems (2006).

1.5 The problems studied in this thesis

In this thesis, we study the inventory optimization in multi-echelon inventory systems with

stochastic customer demand and fixed order costs. Because of existing fixed order costs at
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each stock, this optimization problem becomes more complicated, and most researchers have
been developed an approximate optimal method rather than exact method. We consider three
types of inventory system, such as serial, assembly and two-level distribution systems, our
objective is to find optimal inventory policy so that the average system-wide total cost is

minimized while achieving a target service level to customers.

Fixed order costs include the expense involved in placing an order for a quantity of material,
such as the paper work cost for preparing the order and the costs for the inspection, packaging
and delivery of the order. In practice, fixed order costs are often overlooked by companies as
they only pay attention to inventory holding costs and backorder costs. However, when
calculating the cost of ordering items, it is often a surprise to companies when they find out
how much it actually costs to have an item of material purchased and available at their
warehouse. Therefore, as an important part of system total costs, fixed order costs can not be

ignored.

The high complexity of multi-echelon inventory systems with fixed order costs makes the
optimization for their inventory policies very difficult. The SSA, as a classical inventory
optimization method, was usually used to solve such problem. However, the stochastic model
employed by this approach is usually hard to be solved because of its complicated structure
and the stochastic nature of the service time of each stock in the model. As a result, most
researchers only presented heuristic algorithms to solve such model, and these algorithms are
usually quite complicated. On the other hand, by assuming that excessive demand superior to
a certain level is treated by operating flexibility, the GSA is able to model an inventory policy
optimization problem as a deterministic mathematical programming problem which is much
easier to be solved. In addition, the latter approach can guarantee a deterministic service time
of each stock to its customers. Therefore, we adopt the GSA to model and solve the inventory

optimization problems considered in this thesis.

Previously, the GSA was only used to optimize multi-echelon inventory systems without
fixed order cost. In this thesis, we have generalized this approach to the optimization of multi-
echelon inventory systems with fixed order cost at each stock. Moreover, different from the
standard GSA which ignores the costs of using extraordinary measures to fulfill excessive

demand, our GSA has taken into account the operating flexibility costs.

As mentioned in Section 1.4, if fixed order costs occur at each stock, (R, Q) policy or (s, S)

policy is usually used as the inventory policy to control the replenishment process of a multi-
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echelon inventory system. In this thesis, we choose (R, Q) policy because it is more simple

than (s, S) policy and is more commonly used in practice.

In summary, this thesis has studied the optimization of (R, Q) policies for multi-echelon
inventory systems with fixed order costs at each stock by using the GSA with the objective to
minimize a system-wide total cost while achieving a given service level to end customers. The
costs of such systems include not only fixed order costs and inventory holding costs, but also
operating flexibility costs. In the past, none studied such problem by using the GSA.

1.6 Literature Review of Multi-Echelon Inventory Management

In this subsection we review the models and methods proposed in the literature for analysis
and optimization of multi-echelon inventory systems, especially for the systems with fixed
order costs. We first give a general introduction of the works in multi-echelon inventory
management in subsection 1.6.1. Then, we focus on the current studies of multi-echelon
inventory management using two optimization approaches: stochastic service approach (in
subsections 1.6.2, 1.6.3 and 1.6.4) and guaranteed service approach (in subsection 1.6.5). The

comparison between the two competing approaches is discussed in subsection 1.6.6.
1.6.1 General Studies of Multi-Echelon Inventory Management

The study of multi-echelon inventory systems was originated by a pioneering work of Clark
and Scarf (1960). In that work, they showed that an echelon base stock policy is optimal for a
‘pure” serial inventory system, in which the fixed order cost is charged only at the highest
echelon. For the system with fixed order costs at each echelon, they pointed out that an

optimal policy, if exists, may be complex and hard to implement.

Since 1960, a lot of research has been conducted to extend the work of Clark and Scarf.
Federgruen and Zipkin (1984) generalized Clark-Scarf model to the infinite horizon case.
Chen and Zheng (1994) provided a new proof of the results of Clark and Scarf by deriving
lower bounds on the long-run costs of their model. A more detailed discussion of these results
can be found in Zipkin (2000). Inderfurth (1991) and Minner (1997) proposed different
dynamic programming algorithms for finding optimal echelon base stock policy of the Clark-
Scarf model. Zangwill (1966, 1969) and Love (1972) presented discrete time dynamic
programming models for periodic review, finite horizon serial systems with time-varying
demand. Bessler and Veinott (1966) studied a general multi-echelon inventory system and
examined the near-optimality of “myopic” one-period policies for the system. Recently, Sinha
et al. (2011) provided a computationally simple and unified approach to finite- and infinite-
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horizon Clark-Scarf model. For these extensions, serial and assembly systems without fixed
order costs of echelon base stock policies have been shown to be optimal. For distribution
systems without fixed order costs, echelon base stock policies are optimal under the so-called
balance assumption, but they are not optimal without that assumption (Van Houtum, 2006).
Owing to the complex structure of the systems with fixed order costs at each echelon, most of
researchers have focused on optimizing and evaluating simple batch ordering policies, such as
(R, Q) policies. We will give an in-depth overview of the current studies on such problem in

the latter subsections according to the different types of inventory systems.

Almost at the same time, Simpson (1958) proposed the guaranteed service approach to
describe the dynamics and the control of a serial inventory system without fixed order costs,
in which each stock operates an installation base stock policy facing a random but bounded
demand. Simpson’s results showed that the optimal inventory policy for the serial system is
an “all or nothing” policy, i.e., each stock either has no safety stock, or carries enough stocks
to decouple the downstream stocks from the upstream stocks. Different extensions of

Simpson’s work for assembly and distribution systems will be introduced later.

Based on the two seminal papers by Clark and Scarf (1960) and Simpson (1958), two

competing approaches have been developed over the years.
1.6.2 Stochastic Service Approach for Serial Inventory Systems

In this subsection, stochastic service approach for serial inventory systems is reviewed,
especially for the systems with fixed order costs and operating (R, Q) policies. These works
can be essentially be classified into two categories: cost evaluation and optimization of

inventory policies. Other related studies on serial systems will also be reviewed.
Cost evaluation of (R, Q) inventory policy

For cost evaluation, Axsater (1998) considered a two-echelon serial system with continuous-
review installation (R, Q) policies and proposed a method to exactly evaluate holding and
shortage costs. Bodt and Graves (1985) first introduced echelon (R, Q) policies for a multi-
echelon, serial system and presented an approximated model for the cost evaluation of the
system. Axsater and Rosling (1993) have shown that echelon (R, Q) policies dominate
installation (R, Q) policies for serial and assembly systems. For distribution systems,
installation (R, Q) policies and echelon (R, Q) policies may, however, outperform each other
in different situations. Chen and Zheng (1994) developed a procedure for exact performance

evaluation of echelon (R, nQ) policies in serial systems. The procedure was applied to both
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continuous-review systems with compound Poisson demand and periodic-review systems
with independent, identically distributed demands. In their procedure, a fixed order cost is
charged for each replenishment rather than each order. Axsater (1997) proposed an alternative
scheme for the cost evaluation of echelon (R, Q) policies, which applies the concept of
matching supply units with demand which was originally used for the evaluation of

installation stock policies.
Optimization of (R, Q) inventory policy

For policy optimization, Chen and Zheng (1998) developed an algorithm to find a near-
optimal echelon (R, nQ) policy for serial systems with compound Poisson demand. Mitra and
Chatterjee (2004) considered two-echelon serial systems for fast moving items and analyzed
Bodt and Grave’s model from the implementation point of view, and suggested a possible
improvement of the model. Chen (2000) showed that if we ignore the fixed costs but order in
fixed sizes, an echelon (R, Q) policy is optimal for serial and assembly systems and the
optimal policy can be easily calculated. Shang and Song (2007) considered two stochastic
serial inventory models; one assumes that there is a fixed order size at each echelon, and the
other considers a fixed order cost only for external orders. They showed that the optimal
echelon (R, Q) policies of the models can be approximated by a series of independent, single-
stage optimal policies. Shang (2008) proposed a heuristic algorithm for finding near-optimal
base order sizes for serial system models. Shenas et al. (2009) studied a continuous-review
two-echelon serial system with Poisson demand. By considering the one-for-one
replenishment policy, a special case of installation/echelon (R, Q) policy, they proposed a
procedure for computing an optimal policy for the system by first solving a base stock policy
to set the inventory position of the supplier. Yang et al. (2011) also considered a continuous-
review two-echelon serial system with Poisson demand and an echelon (R, Q) policy, they
derived a necessary condition for the optimality of an echelon (R, Q) policy and the quasi-
convexity of the cost function for the system. Based on these properties, they designed a
simple heuristic algorithm to find a near-optimal echelon (R, Q) policy for the problem.
Dogru et al. (2008) considered a serial inventory system with a given fixed batch size per
echelon and linear inventory holding and penalty costs. On the basis of new average cost

formulas, they obtained newsvendor equations for the optimal reorder levels.

Some papers address (R, nQ, T) policies for the control of serial systems. Under such a policy,
each stock reviews its inventory in every T period and orders according to an installation or

echelon (R, nQ) policy. Shang and Zhou (2010) studied a periodic-review serial system
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controlled by echelon (R, nQ, T) policies with two types of fixed order costs: one associated
with each order size of Q units ordered and the other incurred for each inventory review. They
developed a simple heuristic for obtaining effective order sizes and reorder intervals. This
heuristic is based on finding lower and upper bounds of the total cost function. They also
provided a complete enumeration approach for finding the optimal order sizes and reorder
intervals. Chao and Zhou (2009) studied a serial system with echelon (R, nQ, T) policies and
fixed replenishment intervals. Since every stock places orders according to a regular schedule,
fixed order costs were not considered. They derived the optimal inventory control policy,
provided a distribution function solution for its optimal control parameters, and presented an
efficient algorithm for computing those parameters. Shang and Zhou (2009) proposed a
simple heuristic for generating a solution for echelon (R, nQ, T) policies by sequentially
solving a deterministic demand problem, a sub-problem with fixed reorder intervals, and sub-
problem with fixed order sizes. Van Houtum et al. (2007) considered a periodic-review serial
inventory system with fixed replenishment intervals. For this system, they proved the
optimality of base stock policy, derived newsvendor equations for the optimal base stock
levels, and developed an efficient exact solution procedure for the case with mixed Erlang

demands.
Other Studies on Serial Inventory Systems

Except for the above cited papers, Chen (1988) and Shang et al. (2010) studied the impacts of
different information sharing/coordination mechanism on the performance of serial inventory
systems controlled by installation/echelon (R, nQ) policies. Rezg et al. (2004) presented an
integrated method for inventory control of a production line made up of N machines, they
proposed a methodology combining the simulation and genetic algorithms to optimize
inventory control policies. Sahin et al. (2008, 2009) studied a three-stage system where
execution errors result in a discrepancy between the physical inventory and information
system. They introduced a new cost component for the conventional Newsvendor model,
capturing the cost of not satisfying an initial commitment due to inventory inaccuracy. Shang
(2012) proposed a simple heuristic for determining stocking levels in a serial inventory
system with non-stationary demand and no fixed order costs based on single-stage
approximations. Gallego and Ozer (2003) and Huh and Janakiraman (2008) proposed a new
heuristic and a new proof of the optimality of echelon base stock policies for serial inventory
systems without fixed order costs in the framework of the Clark-Scarf model. Arslan et al.

(2007) considered a single-product inventory system that serves multiple demand classes, and
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developed a model for cost evaluation and a heuristic for policy optimization under the
assumptions of Poisson demand and a continuous-review (R, Q) policy with rationing.
Axsater (2003) considered the problem of minimizing the holding costs under a fill rate
constraint for a continuous-review serial system with discrete compound Poisson demand.
The author showed that under some assumptions, the optimal policy is an echelon (R, nQ)
policy and provided a simple procedure for the determination of the optimal policy. Huh and
Janakiraman (2010) studied a periodic-review serial inventory system with lost sales and
derived elementary properties of the vector of optimal order sizes in this system. They showed
that the optimal order size at each stock is a decreasing function of the inventory at any

downstream stock and an increasing function of the inventory at any upstream stock.
1.6.3 Stochastic Service Approach for Assembly Inventory Systems

In this subsection, the stochastic service approach for assembly systems is generally presented.
Compared with serial systems, assembly systems with stochastic demand attracted relatively

less attention in the literature.

Schmidt and Nahmias (1985) characterized an optimal policy for a two-echelon assembly
system under stochastic demand. Rosling (1989) extended Clark-Scarf model to assembly
systems and showed that a general assembly systems without fixed order costs can be
transformed equivalent into a serial system. Both papers assume no fixed order costs in their
system considered. The inclusion of fixed order costs makes assembly systems with stochastic
demand extremely difficult. Schwarz and Schrage (1975) proposed a near-optimal policy for
an infinite horizon continuous-review assembly system with fixed order costs. Bodt and
Graves (1985) considered inventory policies with fixed lot sizing for an assembly system with
fixed order costs and developed an approximate method for finding near-optimal policies.
Carlson and Yano (1986) presented a heuristic approach for a two-echelon assembly system
with fixed order costs as well as upper and lower bounds on the optimal cost of the system.
Chen (2000) showed that if we ignore the fixed order costs but order in fixed sizes, an (R, nQ)
policy is optimal for assembly systems and the optimal policy can be easily calculated. Arda
and Hennet (2006) analyzed an inventory control problem with Poisson demand, they showed
that a base-stock policy coupled with a Bernoulli splitting process is easy to implement and
leads to cost savings since it is generally profitable to dispatch the orders between several

suppliers rather than to direct all the replenishment orders toward a single supplier.

Next, we restrict our attention to installation/echelon (R, Q) policies for assembly systems

with fixed order costs. Many papers have studied the (R, Q) policy on policy evaluation and
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optimization (Hadley and Whitin, 1961; Veinott, 1965; Federgruen and Zheng, 1992; Rosling,
2002; De Bodt and Graves, 1985; Axsater and Rosling, 1993; Axsater, 1997; Chen and Zheng,
1994). Axsater (1997) suggested an alternative scheme for the evaluation of echelon (R, Q)
policies, applying his concept of matching supply units with demand which was originally
used for the evaluation of installation stock policies. A brief discussion of (R, Q) policies for
assembly systems are given in Axsater and Rosling (1993) and Chen (2000). In practice, it is
common to use a simple two-step approach to determine the order size Q and the reorder
point R of an installation/echelon (R, Q) policy. In the first step, the stochastic demand is
replaced by its mean and the order size Q is determined according to a standard EOQ model.
In the second step, the reorder point R is determined with the given Q. Axsater (1996) and
Gallego (1997) derived bounds for approximation errors when using such a method.
Moreover, most of the previous work, which addressed (R, Q) policies, only presented
heuristic algorithms rather than exact methods for cost evaluation and policy parameter

optimization for assembly systems with fixed order costs.
1.6.4 Stochastic Service Approach for Distribution Inventory Systems

In this subsection, stochastic service approach for distribution systems is reviewed. We
mainly focus on the current studies on two-level distribution systems with one-warehouse and
multiretailers. In such systems, if all unsatisfied demands are backlogged and will be satisfied
later, there exists an important extra issue that determines an allocation policy, which decides
how to allocate the on-hand inventory of the warehouse to the retailer’s orders when these
orders cannot be all satisfied on time. In addition, if all unsatisfied demands are not allowed
backlogged, the problem becomes a problem with lost sales. Due to the increased complexity
of distribution systems caused by models with allocation policies or lost sales, inventory
management in distribution systems becomes more complex than that of serial and assembly
systems. In the following, we review the current studies in these two categories separately.

We also distinguish installation policies from echelon policies in the following review.
Inventory Policies for Distribution Systems with Allocation Policy

In the literature, one common allocation policy is the first-come first-served (FCFS), which
fills customer orders according to their arrival time. The adoption of this allocation policy can
simplify the analysis of the distribution systems but it is generally not optimal (Axsater, 2007).
Because the priority of FCFS is always given to the earliest backlogged order, Chen and
Samroengraja (2000) also referred to this policy as the past priority allocation (PPA) policy.

In addition, they introduced another allocation policy, called the current priority allocation
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(CPA) policy. This policy is used in the situation when the warehouse is unable to satisfy a
retailer order immediately but at the same time has inventories earmarked for the other
retailers’ orders. In each period the warehouse considers only the designated retailer and uses
its on-hand inventory to fill the current as well as the backlogged orders from that retailer.
Howard and Marklund (2011) considered a state-dependent myopic policy instead of the
FCFS, which allows the allocation decisions to be postponed at a later point in time and based

on the state of the system.

With these allocation policies, inventory models with one-warehouse, multiretailers were
received a great attention in the literature. The majority of the models assumes independent
demands across retailers and use base stock policies or continuous-review (R, Q) policies.
Studies on base stock policies for distribution systems are referred to Graves (1985), Axsater
(1990), Caglar et al. (2000), Gallego et al. (2007) and Axsater (2007).

Most previous studies with installation (R, Q) policies are focus on exact and approximate
cost evaluation of such systems, as in Svoronos and Zipkin (1988) and Axsater (1993). A
general overview of such studies before 2003 is given by Axsater (2003). Forsberg (1996) and
Axsater (1998) presented different cost evaluation methods for the system with unit demand
and general distribution inter-arrival times for customer orders. Cheung and Hausman (2000)
presented an exact method for evaluating the steady-state performance of a warehouse in a
two-level distribution system. Cachon (2001) provided an exact evaluation method for
average inventory, backorders and fill rates for a two-level distribution system. Chen et al.
(2001) considered a two-level distribution system under periodic-review installation (R, nQ)
policies, and showed that under a certain condition, the inventory position at each location are
stationary, uniformly distributed and independent of the inventory positions at other locations.
Kiesmuller et al. (2004) developed an approximate evaluation method for a two-level
distribution system with compound renewal demand. Axsater et al. (2007) assumed direct
customer demand also occurred at the warehouse, and presented three cost evaluation
techniques for such as system. All the above mentioned studies utilize installation and

decentralized control policies.

Alternatively, in a system where system-wide information is available, echelon (R, Q) policies
can be used. Chen and Zheng (1997) and Axsater (1997) considered two-level distribution
systems with Compound Poisson demand, but controlled by echelon (R, Q) policies. Because
when all facilities (the warehouse and the retailers) apply echelon (R, Q) policies, the

structure of the inventory model of the distribution systems becomes more complicated. In
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order to simplify the analysis, some researchers studied new models for the system where the
warehouse and the retailers use different inventory policies. For instance, Howard and
Marklund (2011) considered distribution systems where the warehouse applies echelon (R, Q)
policies and the retailers use base stock policies; they developed an exact cost evaluation

method.

On the other hand, only few papers studied policy parameter optimization of the distribution
systems with installation/echelon (R, Q) policies. Early work on approximate optimization can
be found in Deuermeyer and Schwarz (1981), Moinzadeh and Lee (1986) and Lee and
Moinzadeh (1987). More recently, Axsater and Rosling (1993) demonstrated that installation
stock and echelon (R, Q) policies may outperform each other in different situations for
distribution systems. Axsater and Juntti (1996) analyzed two-level distribution systems with
stochastic demand by simulation, the results showed that echelon (R, Q) policies seem to
dominate installation (r, Q) policies for long warehouse lead times, while the opposite is true
for short warehouse lead times. Axsater (2003) used a normal approximation of demands both
for the retailers and the warehouse, and presented a simple technique for approximate
optimization for the reorder points of the system. Axsater (2005) presented a simple technique
for determining the backorder cost to decide its order point so that the sums of the expected

costs are minimized.
Inventory Policies for Distribution Systems with lost sales

Research in the second category assumes that unsatisfied demands at the retailers are lost
sales. Technically this may mean either a demand is lost as lost sales or it is expedited (i.e.,
satisfied by using some external measures). For two-level distribution systems, it is well
known that the time between two successive orders from each retailer has an Erlang
distribution if no sales are lost at any retailer. However, for a distribution system with lost
sales at the retailers, there is no simple form for the probability distribution of the time
between two successive orders from each retailer (Hill et al., 2007). That’s why lost sales
models are generally more difficult to analyze than the corresponding backorder models. For
this reason, even though researchers started studying lost sales inventory models around
1960s, there were not many applications that considered such models. As in the first category,
base stock policies are often chosen as inventory policies for two-echelon distribution systems
with lost sales, which can be referred to Federgruen (1993), Nahmias and Smith (1994),
Andersson and Melchiors (2001) and Haji et al. (2009) for a comprehensive review of the

relevant research work on lost sales models. On the other hand, installation/echelon (R, Q)
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policies are generally not optimal inventory policies for lost sales models, but they are widely
used in practice. Cost evaluation of lost sales models is mainly focused on systems with
continuous review installation (R, Q) policies and Poisson demand. Seifbarghi and Akbari
(2006) developed an approximate cost function which is used in finding near-optimal reorder
point of a two-level distribution system with the order sizes of all its stocks are given. Hill et
al. (2007) also considered a two-level distribution system with the retailers using installation
(R, Q) policies (with an exogenously given Q) and the warehouse applying an (SQ, (5-1)Q)
policy, with non-negative integer S. They developed procedures for determining the average
total stock in the system and for finding the optimal policy of the system. Bendre and
Thorstenson (2008) analyzed the long-run average fill rate, inventory and ordering frequency
and developed simple approximations for two-level distribution systems with installation (R,
Q) policies and Poisson demand. Their approximation results were compared with the results
obtained from simulations. To the best of our knowledge, the only paper considering lost sales
models with parameter optimization stock (R, Q) policies is Al-Rifai and Rosseti (2007). They
considered a two-level distribution system with the retailers controlled by installation (R, Q)
policies for non-repairable items and approximately solved the optimization problem by
decomposing the system according to echelon and installation and presented an iterative
heuristic optimization algorithm. Recently, Bijvank and Vis (2011) provided a general review
of lost sales inventory theory, they presented a classification scheme for the inventory policies

most often used in literature and practice.
1.6.5 Guaranteed Service Approach for Multi-Echelon Inventory Systems

In this subsection, guaranteed service approach for multi-echelon inventory systems is
presented. All previous works on the approach adopt base stock policies for the control of

multi-echelon inventory systems without fixed order costs.

The guaranteed service approach originated from the work of Kimball (1955), which was later
reprinted in 1988 (Kimball, 1988). In that paper, Kimball studied a single stock with random
but bounded demand, controlled by a base-stock policy. He proved that the bound of the
demand during a given service time of the stock can be used to set its base-stock level.
Simpson (1958) extended Kimball’s model to a serial inventory system and proved that the
optimal inventory policy of the system is an “all or nothing” policy. Based on this so-called
extreme point property, Graves (1988) noted that the optimization problem considered by
Simpson can be solved by using a dynamic programming algorithm. In subsequent years, this

approach has been extended to other network structures. Extensions to assembly and
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distribution systems, spanning trees or even general acyclic network structures can be found
in Inderfurth (1991), Inderfurth and Minner (1998), Graves and Willems (1996, 2000),
Minner (2000), Humair and Willems (2006), and Humair and Willems (2011).

Basically, all of the afore-mentioned contributions make use of dynamic programming as
optimization technique. Minner (2001) studied the placement of strategic safety stocks in
reverse supply chains under the GSA. Graves and Willems (2005) considered the safety stock
optimization when a supply chain is configured for new products. For general acyclic
networks, Lesnaia (2004) showed that the optimization problem is NP-hard, Humair and
Willems (2011) imbed the dynamic program developed for spanning trees into an overall
branch-and-bound algorithm. Minner (2000) presented several heuristic approaches for this
network type. Humair and Willems (2006) studied the optimization of strategic safety stock
placement in supply chains under with clusters of commonality. Magnanti et al. (2006)
approximated the concave objective function with piecewise linear functions and make use of

powerful Linear Programming solves.

Over the last two decades, the guaranteed service approach has been extended in several ways.
Whereas the original guaranteed service model assumes a common review period at all
echelons, Bossert and Willems (2007) allow for an arbitrary, integer review period at echelon.
Three different inventory control policies are analyzed, i.e., the constant base stock policy,
constant base stock policy and adaptive base stock policy, and a solution to the inventory
optimization problem is obtained by a modified version of the dynamic programming

procedure of Graves and Willems (2000).

Jung et al. (2008) studied integrated safety stock management of multi-echelon supply chains
under production capacity constraints and the GSA. Recently, Graves and Willems (2008)
extended their previous work (1996, 2000) to supply chains with non-stationary demand, and
Schoenmey and Graves (2009) extended the work to supply chains with evolving demand

forecasts.
1.6.6 Comparison of Stochastic-Service Approach and Guaranteed- Service Approach

Only few papers in the literature can be found that compare the two approaches. One such
comparison was presented in Graves and Willems (2003). They applied both approaches to an
assembly system and a spanning tree network and found that the guaranteed service model
outperforms the stochastic service model. Klosterhalfen and Minner (2010) provided a

comparison of the two approaches on two-level distribution systems and showed that the
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superiority of any of the two approaches depends on their specific parameter settings and
cannot be established in general. Moreover, they presented a method to derive appropriate
internal service levels, which are used to define the operating flexibility costs in the
guaranteed service model, Minner et al. (2003) gave some insights regarding the appropriate

use of operating flexibility.
1.7 The contributions of the thesis

This thesis is motivated by the work of Graves and Willems (1996, 2000), they considered a
general multi-echelon inventory system without fixed order costs and operating a base stock
policy. In their work, they used the standard guaranteed service approach (GSA) to optimize
the inventory policies and presented efficient dynamic programming algorithms for the
optimization. We extend the GSA to multi-echelon inventory systems with fixed order costs
at each stock (LI and CHEN, 2011). Three inventory systems, serial, assembly and
distribution systems, are successively in our study. We use the guaranteed service approach
(GSA) to obtain the optimal (R, Q) inventory policies of the systems. In addition, we extend
the standard GSA by considering also the operating flexibility costs for using extraordinary
measures to fill excessive demand. In summary, this thesis brings the following four main

contributions.

1) We extend the GSA to multi-echelon inventory systems with fixed order costs at each stock.
Since all previous works on the GSA only deal with inventory systems without fixed order
costs, this thesis is the first attempt to attack multi-echelon inventory systems with fixed order
costs in the framework of the GSA (LI and CHEN, 2013).

2) One open issue in the standard GSA is the consideration of the effect of the operating
flexibility measures on the material flow and the total cost of a multi-echelon inventory
system. We have addressed this issue by considering the effect on the material flow and
including explicitly the operating flexibility costs in our inventory policy optimization models.
For each type of multi-echelon inventory systems considered, we establish a mathematical
model for its inventory policy optimization problem with the objective function consisting of
fixed order costs, on-hand inventory holding costs and operating flexibility costs. This model
extends the standard GSA model.

3) The consideration of the operating flexibility effect makes the extended GSA model more
complicated than the standard GSA model with an objective function depending on two

service levels (a-service level and S-service level) of the system considered. We propose an
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iterative procedure to solve the model based on the estimation of g-service level and the

calculation if its real value when the optimal inventory policy of the system is given.

4) The efficiency of the iterative procedure relies on the efficient resolution of the two sub-
problems (sub-models) of the extended GSA model: One is to determine the optimal order
size Q of each stock and the other is to determine the optimal reorder point R of each stock.
For the first sub-problem, which is referred to as Q-problem, we develop an efficient dynamic
programming (DP) algorithm. The second sub-problem, which is referred to as R-problem, is
efficiently solved by using another DP algorithm we adopt from the literature.

5) For the Q-problem, we find two important properties to reduce the state space of its
decision variables, this makes our DP algorithm for the problem much more efficient than a

DP algorithm in the literature.

6) For the two-level distribution system we study, five different types of integer-ratio
constraints that link the order size of the warehouse to the order sizes of the retailers are
considered. For each type, we develop an efficient algorithm to solve the Q-problem. We
compare these constraints in term of their cost-effectiveness, i.e., the cost of the system
imposed by each type of integer-ratio constraints. In the literature, no such comparison was

made.

7) All the algorithms developed in the thesis are evaluated and compared with numerical
experiments on randomly instances. In addition, we conduct sensitivity analysis of the
computation time of some algorithms with respect to the parameters of the multi-echelon
inventory system considered in order to evaluate the impacts of the parameters on the

performance of the algorithms we have developed.
1.8 Conclusion

Guaranteed service approach (GSA) has attracted a lot of attention both in academic
community and industrial practitioners in recent years because if its simplicity and generality.
Previously, this approach was only used for optimal placement of safety stocks in multi-
echelon inventory systems without fixed order costs. We apply this approach to inventory
policy optimization of multi-echelon inventory systems with fixed order costs and extend the
approach by considering operating flexibility costs. In Chapter 2, we will introduce some
basic notions for multi-echelon inventory management and the guaranteed service approach

and discuss its possible extension. In Chapter 3, 4, 5, we will present a series of mathematical
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models and solution approaches for inventory policy optimization of serial, assembly and

two-level distribution systems. Conclusions and perspectives will be given in Chapter 6.
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Chapter 2 Preliminaries

The goal of this chapter is to provide the reader with the basic terminology of multi-echelon
inventory control theory as well as an understanding of an elementary inventory control
model that forms the basis of the upcoming chapters. Section 2.1 outlines fundamentals that
are required for a thorough understanding of the thesis. In Section 2.2, the basic inventory
control terminology is introduced followed by a description of the batch ordering (R, Q)
inventory policy and several performance measures for the evaluation of such policy. A major
issue to be addressed in this thesis is how to use the guaranteed-service approach (GSA) to
model the inventory control of different types of inventory systems. For this reason, we also
describe the standard GSA in Section 2.3 and give some discussions about the operating
flexibility and batch ordering (R, Q) policies under the framework of the GSA respectively in
Section 2.4 and Section 2.5.

2.1 Fundamentals
2.1.1 Network structures

If an inventory system involves multiple stocks, which are linked with each other through
supply-demand relationships, it is called a multi-echelon inventory system. The system forms
a supply network, which can be represented by a directed graph in which the nodes represent
the stocks and the arcs represent the supply-demand relationships (Zipkin (2000)). Each node
or stock in the network corresponds to a processing stage or a stocking location in the system.
If a node is connected to several upstream nodes, then the node corresponds to an assembly
stock that requires inputs (components) from each of the upstream nodes (stocks). All nodes
(stocks) in the network are locations for holding work-in-processing or final product
inventories. We deal with multi-echelon inventory systems with different types of supply
networks. For defining the basic network structures of multi-echelon inventory systems, we

first introduce the following system parameters.

N = the number of nodes (stocks) in a system,

s(i) = the set of the immediate successor of stock i, i=1,...,N,

SUC(i) = the set consisting of stock i and all its successors, i=1,...,N,
P(i) = the set of the immediate predecessors of stock i, i=1,...,N,

PRE(i) = the set consisting of stock i and all its predecessors, i=1,...,N.
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Serial Systems

A serial system has the simplest structure with links multiple stocks in a serial way. Such a
system consists of multiple stocks where each stock supplies only one successor stock and
each stock replenishes its inventory from only one predecessor stock. In addition, the most
upstream stock is supplied by an external supplier and the most downstream stock faces
external customer demand for a finished product. In a serial system, each stock has a single
direct predecessor and successor. For the upcoming exposition it is useful to assign a level
code to each stock (See Figure 2.1). Whereas this is less relevant in the serial system case,
since there is only one stock at each level, it is of great importance for the description of other
more complex systems. A practical example of this type of inventory system can be found in
the mechanical industry, for instance, where a metal material passes through several
processing operations such as cutting, drilling, grinding before it becomes a final product.
From an academic point of view the analysis of this simple system structure is a good starting

point for investigating more complex ones.

External I
Supplier o

Level 3 Level 2 Level 1

A 4

Customer
Demand

Figure 2. 1 A serial inventory system
Assembly Systems

In an assembly system a single finished product is assembled from several subassemblies.
These subassemblies, in turn, may be assembled from several components or raw materials.
Hence, an assembly system is characterized by the feature that each stock has at most one
direct successor, but may have more than one direct predecessor. As in a serial system, all
stocks on the most upstream level in an assembly system receive items from external
suppliers and the stock on the most downstream level fills external customer demand (See
Figure 2.2).
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Figure 2. 2 An assembly inventory system

Distribution Systems

Similar to a serial system, a distribution system has a single most upstream stock that receives
external supply. However, now each stock in the system may supply multiple downstream
stocks except for the most downstream stocks which fill external customer demands. The
stocks in such a system can be interpreted as warehouses, e.g., a central warehouse supplies
regional warehouses which, in turn, supply retail outlets (See Figure 2.3). In terms of
production network, one can think of a raw material that is split (separated) and specialized
into several products when it is moved through the system as in a refinery. The distinguishing
feature of a distribution network is that each stock has only one direct predecessor, but can

have multiple direct successors.

External
Supplier

Customer
Demand

Customer
Demand

Customer
Demand

Level 4 Level 3 Level 2 Level 1

Figure 2. 3 A distribution inventory system

In addition, a prototype network structure for most studies on distribution systems is a two-
level distribution system whereby a central warehouse supplies a product to a group of

retailers. This structure can be depicted as Figure 2.4.
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Figure 2. 4 A two-level distribution system
2.1.2 Demand Processes

For industrial companies, except for uncertainties they face on the supply side resulting from
possible raw material shortage or machine break downs, a major difficulty arises on the
demand side, because future customer orders cannot be predicted exactly (Simchi-Levi et al.,
2008).

In the literature, the most commonly used demand distribution in various inventory models
may be the Poisson distribution in discrete case and the normal distribution in continuous case
(Zipkin, 2000).

Poisson distribution

The Poisson distribution is easy to specify, because it has only one parameter A. Further, in
many situations the model is shown to be fairly accurate. Finally, its mathematical simplicity
facilitates analytical calculations. The probability mass function is defined as

e

=4 X0

0, otherwise

Since the ordered items are not received immediately, but after a lead time, during which
further demands need to be satisfied, the demand distribution over the lead-time is relevant for
inventory control. For a deterministic lead time L, the distribution is the L-fold convolution of
the single period demand random variable, if the demand process is assumed to be stationary
and the single period demands are identically and independently distributed (i.i.d.). Since the
sum of i=1,2,....m independent Poisson random variables with parameters A; is Poisson

distributed with parameter A = ZA, . For the lead-time demand random variable it follows
i=1
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that, if period demands are identically and independently distributed according to a Poisson
distribution with parameter A1, the lead-time random variable for a deterministic lead-time of

L periods has a Poisson distribution with parameter L-A;.
Normal distribution

The normal distribution is characterized by two parameters, the demand expectation , and

standard deviation s . The probability density function is given as

1 _ (X_”)z

f(x)= e 2
9 o2

Consequently, in case the single period demand has a normal distribution, the lead-time

demand is also normally distributed with an expected value of wL and standard
deviation o - /L . For the lead-time demand computation in case of stochastic lead times see,
e.g., Tijms and Groenevelt (1984) and Eppen and Martin (1988).

2.2 Inventory Control

For an inventory system, its inventory control is to supervise the supply, the storage, and the
accessibility of items in the system in order to ensure an adequate supply without excessive
oversupply. The control requires an accounting procedure that determines the inventory
system’s state based on which the inventory replenishment decision of the system is made.
Therefore, we first introduce basic notions of the inventory accounting in Section 2.2.1. These
notions will be used in the description of the inventory policy considered in this thesis, i.e.,
batch ordering (R, Q) policy. The description of batch ordering (R, Q) policy and some
performance measures for inventory control will be presented in Section 2.2.2 and Section

2.2.3, respectively.
2.2.1 Inventory accounting

In multi-echelon inventory system setting, the following terms are used for conceptually

classifying different inventories.
On-hand inventory, |

This term describes the inventory quantity that is physically on the shelf and is available for
directly satisfying customer demand. The on-hand inventory can never be negative. In
connection with a time index t, I(t) denotes the on-hand inventory at time t.

Backorders, BO
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In case demand in a period exceeds the available inventory, a shortage occurs. Provided that
customers are willing to wait for their products, the backorder represent the quantity of stocks
that have already been requested, but are still to be delivered (backorder case). If customers
do not wait, the shortage quantity is lost (lost-sales case). Similarly, BO(t) refers to the

backorders at time t.
Outstanding orders, OO

The outstanding order denotes as the quantity of stocks, for which an order has already been
placed, but has not yet been received. Together with the time index t, OO(t) specifies the

outstanding orders at time t, before any of these items arrive in stock at a location.
Inventory level, IL

Inventory level is the net inventory quantity of a location, which is defined as the difference
between the on-hand inventory and the backorders. Obviously, it can become negative. For a

given time t, the inventory level at time t can be described as
IL(t) = I (t) — BO(t)
Inventory position, IP

The inventory position comprises of the relevant information to trigger an order, because it
also includes the inventory on order. The inventory position at a stock equals to its on-hand
inventory minus all backorders of the stock locations at the lowest level, i.e., level 1. The

inventory position at time t can be described as
IP(t) = 1 (t)+O0(t) — BO(t)
Echelon on-hand inventory, I°

This term describes the on-hand inventory of the location itself plus the physical inventories
of all its downstream locations and in-transit physical inventory between these locations. I1°(t)

denotes the echelon on-hand inventory at time t.
Echelon Inventory Level, IL°

Echelon inventory level of a stock equals echelon on-hand inventory of the location minus all
backorders of the stock locations at the lowest level, i.e., level 1. If a time index t is

introduced, IL(t) is the echelon inventory level at time t.

Echelon Inventory Position, 1P°
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Echelon inventory position of a location equals outstanding orders of the location plus
echelon on-hand inventory of the location minus all backorders of the stock locations at the
lowest level, i.e., level 1. Echelon inventory position at time t (IP°(t)) is calculated as follows:

IP%(t) = 1°(t)+O0(t) — BO(t)
2.2.2 Batch Ordering (R, Q) Policy

An inventory control policy or system manages the inventory level of a stock by providing

answers to the following three questions (Silver et al., 1998).
« How often should the inventory status be determined?
« When should a replenishment order be placed?
« How many units should the replenishment order orders?

In this thesis, we use (R, Q) policy as an inventory policy to control the inventories of the
three different types of systems studied (serial, assembly and distribution systems). The
motivation of choosing such a policy has been presented in the introduction. This policy can
be used in a centralized or decentralized way, leading to echelon or installation (R, Q) policy.
The installation (r, Q) policy is completely decentralized in the sense that ordering decision at
each stock is exclusively based on its own inventory position. Such policy has the advantage
that it does not require any information about the inventory situation at other stocks. However,
the cost effectiveness of an installation (r, Q) policy is limited by the lack of information
about the entire system. One way to take such information into account is to make order
decisions based on the echelon inventory position of each stock instead of its installation
inventory position. The echelon (R, Q) policy works exactly as an installation (r, Q) policy
except that order decision at each stock is determined by its echelon inventory position. If a
stock is controlled by an echelon (R, Q) policy, whenever its echelon inventory position is at
or below the reorder point R, an order of Q units will be placed, where Q is the order size of
the stock.

Axsater and Rosling (1993) compared the two types of inventory policies, and drew some
important conclusions for serial and assembly systems. They first demonstrated that the two
policies can be transformed each other under mild conditions. On the one hand, for any stock i
in a system with N stocks, an installation (ri, Q;) policy can always be replaced by an

equivalent echelon (R;, Qi) policy with the following relationship:

R=r, and R=R,; +Q, *1; fori=2,...,N (2-1)

s()
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On the other hand, an echelon (R;, Qi) policy can also be replaced by an equivalent installation

(ri, Qi) policy (with the same relationship (2-1)) if the following initial condition (2-2) holds:
IP°(0)-R = IPse(i) 0)— Ry + (ki —DQy, (2-2)

where IP;¥(0) is the initial echelon inventory position at stock i and k; is a positive integer.

Moreover, Axsater and Rosling showed that echelon (R, Q) policy, in general, superior to
installation (r, Q) policy for serial and assembly systems However, for general distribution
systems, it is not clear under what conditions, one policy dominates the other. Axsater and
Juntti  (1996) analyzed a two-level distribution system by simulation studies, and
demonstrated that echelon (R, Q) policies seem to dominate installation (r, Q) policies for
systems with a long warehouse lead time, whereas the opposite domination is true for systems
with a short warehouse leadtime, although the relative cost difference between the two types

of policies is within 5%.
2.2.3 Performance measures for inventory control

To optimize an inventory control system, some performance measures should be defined to
evaluate its effectiveness. The performance of an inventory control system can be measured
either in terms of cost or service. Under a cost performance measure, the objective is to find
control parameters of the system that minimize its total cost which may include ordering costs,
inventory holding costs, and stockout penalty/backorder costs. However, in many practical
situations backorder costs are generally hard to quantify. To overcome this difficulty, a
service performance measure may be introduced under which the objective of the inventory
control system is to achieve a predefined service level with minimal system costs. A detailed

description of these cost and service measures are given in the following paragraphs.
2.2.3.1 Cost performance measures

For an inventory system, the major costs that will determine the structure and optimal
parameters of its inventory policy mainly arise from the three costs related to ordering,
inventory holding and shortage, respectively. By setting all these costs, the cost performance

measure can be defined.
Fixed Order Costs, ¢

The fixed order cost only occurs when each order is placed. In practice, it may include the

paper work cost for preparing the order and the costs for the inspection, packaging and
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delivery (transportation) of the order. Let c;define a fixed order cost for placing an order by

stock i to its supplier.
Inventory Holding Cost, h

This term is related directly to the maintenance cost of physical inventories. We define h® or h
as the echelon- or installation- inventory holding cost per unit of product per time unit. For
stock 1, note that the two types of holding costs can be transformed each other with the

following relationship

W =h-> 0 and hy,=0

eP(i)
Backorder Costs, b

In SSA model, this cost incurred by a business when it is unable to fill an order and will be
satisfied later. A backorder cost can be discrete, as in the cost to replace a specific piece of
inventory, or intangible, such as the effects of poor customer service. Backorder costs are

usually computed and displayed on a per-unit basis.
Flexibility Cost, p

Under the GSA model, it is assumed that, if lead time demand exceeds a prespecified level
(maximum reasonable lead time demand level), additional countermeasures like overtime or
expediting can be used to fill excessive demand beyond the level. This “operating flexibility”
ensures the timely delivery of ordered items to its downstream stocks at a cost. Therefore, we
define p as the cost of using such “operating flexibility” to fulfill each unit of excessive
demand. In addition, since any stock except for the stock at the lowest level, i.e., level 1,

never runs out of stock, the flexibility cost is only considered at stocks at level 1.
2.2.3.2 Service performance measures

The service performance measure of an inventory system can be defined in different ways.
Since some customers may be interested in the percentage of the orders satisfied on-time
among all orders and the others may be interested in the percentage of the demand satisfied
on-time among the total demand, two different service levels, a- and S- service levels, are
usually used to measure the service performance of an inventory system, which are defined in

detail in the following.

a- service level
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In situations where only the occurrence of a stockout is important and not the quantity and
duration of the shortage, the a-service level should be used. This service level is defined as

the “probability of satisfying demand in an arbitrary period” (Klemm, 1973).

Under the GSA model, the safety stock is strongly related to the a-service level of the stock.
In this thesis, we set a predefined a-service level as an input parameter, by specifying this
service level to customer, each stock indicates implicitly its preference for what range of its
demand is covered by the stock itself and what range is fulfilled by using extraordinary

measures.
p- fill rate

The p-fill rate is defined as the fraction of customer demand satisfied directly from stock. This

service level can be written using the “expected units shortage” as follows:

_expected units shortage
exp ected total demand

p=1

Different from a-service level, which represents the target probability of the extraordinary
measures, the g-fill rate represents the quantity level need to be made available. In GSA
model, it is assumed a predefined a-service level to express the maximum reasonable lead
time demand level, so the optimization model and algorithm are described for the a-service
level case only. Because of using (R, Q) policy, this thesis not only decide when should a
replenishment order be placed (R), but also decide how large should the replenishment order
be (Q). Therefore, p-fill rate is also a factor, need to consider in this thesis, we will give more

detailed analysis of g-fill rate in the latter chapter.
2.3 Guaranteed Service Approach

The guaranteed service approach (GSA) was recently emerged as an alterative approach for
optimally setting safety stocks in a supply chain. GSA provides inventory models different
from those of SSA. In a GSA model, an inventory system is regarded as being more flexible
than in the corresponding SSA model. The GSA assumes that further countermeasures besides
safety stock exist to cope with demand variability. These additional measures are summarized
by the term “operating flexibility” and comprise of measures such as overtime and expediting.
With this operating flexibility, safety stock is only used to cover demand variability up to a
certain level, the so-called maximum reasonable lead time demand level (Graves, 1998). If
real lead time demand exceeds this level, the inventory system resorts to the operating
flexibility in order to satisfy the whole demand on time. With this combination of safety stock
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and operating flexibility there will be no stochastic delay in demand fulfillment. Thus, each
stock can always guarantee 100% on-time service to its customers (direct downstream stocks)
with a promised service time. Here, the service time of a stock is the time from the placement

of an order by a direct downstream stock to the receipt of the order by the downstream stock.

In order to understand the basic ideas of the GSA, we briefly introduce the work of Graves
and Willems (2000). In their work, a general multi-echelon inventory system with periodic
review and normal distribution demand process is considered under the GSA. Only inventory
holding costs are considered in the system, and each stock i (i=1, 2, ..., N) uses a base stock
policy with base stock level BL; to control its inventory. The base stock level of each stock is
determined according to its maximum reasonable lead time demand. Neither operating
flexibility costs nor the effects of the operating flexibility on the material flows of the system

are considered.

The demand in the system has two types, external demand and internal demand. The external
demand is the demand of final customer, which occurs only at the stocks in the lowest echelon.
Let us denote the set of external demand nodes (stocks) by F. For each stock i in F, let di(t)
denote its external demand at time (period) t, which comes from a stationary process. Let
di[t;,t2) denote the total external demand of the stock from time t; to time t, without including
time t, for any t;< t,. Any other stock j¢ F has only internal demand generated from its
successor stocks, the internal demand of stock j at time t, dj(t), can be calculated according to
the orders placed by its immediate successor stocks.

For each stock i in F with normally distributed demand of mean g and standard deviation o,
its maximum reasonable lead time demand level over lead time 7 is defined as:
D.(r;))=7-u+koyr,,ieF (2-3)

where k; is a coefficient reflecting the percentage of time that the safety stock of stock i covers
its demand variation. The choice of k; indicates how frequently the manager of the stock is
willing to resort to operating flexibility to cover demand variability.

For any other stock j (j¢F), Graves and Willems (2000) also define its lead time demand
bound by combining the lead time demand bounds of its downstream stocks while considering

risk pooling effects.

In the GSA inventory model proposed by Graves and Willems (2000), there exist three types

of service times, outbound service time (S), inbound service time (SI) and production time (T).
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Outbound service times Under the GSA, each stock i guarantees a given service time S;to its
direct downstream stocks. This means that the demand arriving at stock i at time t must be
filled at t+S;.

For each stock i facing customer demand, i.e., ie F, an upper bound s; may be imposed on its
outbound service time, i.e., Si<sj, where s; is the maximum outbound service time for the stock.
The maximum outbound service time is a parameter specified by the end customer. For

example, if the end customer wants him/her to be served immediately, stock i has to set s;=0.

Inbound service times For each stock i, its inbound service time Sl; is defined as the time for

stock i to get all of its inputs (ordered materials) from its direct upstream stocks (P(i)) and to

commence production. We require that SI; > max{S; |j e P(i)}, since stock i cannot start

production until all required inputs (materials) have been received.

Production times Under the GSA, each stock i is assumed to have a deterministic production
time T;, which is the production lead time, given that all necessary components are available.

Ti may be zero if stock i does not correspond to a production stage.

For the three types of service times, the production times are input parameters of a GSA
model, whereas the outbound and inbound service times are decision variables of the model.

Net Lead Time

Consider an order process. At time t, stock i observes demand di(t) from its immediate
downstream stock(s) and starts replenishing inventory for the demand. It places an order with
quantity di(t) to the upstream stocks and fills the demand with this order at the time t+SI; +T;.
According to the GSA, stock i guarantees to satisfy the demand at the time t+S;. This implies
that if t+S; > t+SI; +T;, stock i can always satisfy the demand on time. Otherwise if t+S; < t+Sl;
+T;, stock i has to store a certain amount of inventory to satisfy the demand occurred between
time t+S; and time t+SI; +T;, the length SI; +T;—S; of the time interval [t+S;, t+SI; +T;] is thus

called the net lead time of stock i.

The net lead times play an important role in the GSA, which can also be regarded as the
decision variables in a GSA model. Since the maximum reasonable lead time demand level of
each stock is usually defined as a function of its net lead time, it will be determined by an

optimal solution of the model.

From the above analysis, for each stock i, if t+S; < t+SI; +T;, stock i has to hold a safety stock

to cover the demand over the time interval (t+S;, t+SI;+T;]. Therefore, the demand has to be
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covered from the inventory or by subtracting the demand from the base stock level BL;. Then,

the on-hand inventory at each stock i (i=1,2,...,N) can be formulated as
I,(t)=BL —d.(t+S,,t+SI. +T,] (2-4)

To provide 100% service level, I,(t) must be nonnegative. In order to satisfy this requirement,

Grave and Willems (2000) set the base stock level BL; to the maximum reasonable lead time
demand level of stock i over its net lead timeSI;+T;-S;, namely BL, = D,(SI,+T,-S;) . Hence,

the expected on-hand inventory at stock i is
D,(Sl, +T,=8,)—(Sk, +T, -S4 (2-5)

Consequently, instead of searching for the optimal base stock levels for the inventory system
considered, the GSA model proposed by Graves and Willems (2000) attempts to find the
optimal outbound and inbound service times or optimal net lead times for all stocks. This
model can be formulated as follows:

N
Min: Zhi{Di SE+T,=S)—-(SK+T, =S) 1}

i=1
Subject to:

SIL+T,-S, 20 fori=12,..,N

SI, =S, 20, for jeP(i)andi=12,...,N
S, <s forieF
S,,SI, >0 and integer for i=1,2,...,N

where h; is unit inventory holding cost of stock i and P(i)

The objective of the model is to minimize the total inventory holding cost of the multi-
echelon inventory system. The constraints ensure that the net lead time of each stock is
nonnegative, each stock cannot start production until all required inputs (materials) have been
received, and an upper bound is imposed on the outbound service time of each end stock
(each stock facing customer demand). The decision variables are outbound service time (S;)
and inbound service time (SI;) of each stock i. For this model, Graves and Willems (2000)
developed an efficient dynamic programming algorithm to solve it when the network structure

of the system is a spanning tree.
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If the considered system is a serial inventory system and the outbound service time for the
external customer is zero (s; = 0 for any ieF), Simpson (1958) proved that there exist an “all
or nothing” optimal solution for the model, such that each stock either has no safety stock

(Si=0) or has sufficient safety stock (Si=max{S;, jeP(i)}+T;).
2.4 Operating Flexibility and GSA

The GSA optimization model presented in Sections 2.3 considers neither operating flexibility
costs (i.e., the costs of using extraordinary measures to fill excessive demand) nor the effects
of operating flexibility on the material flows of an inventory system. In order to incorporate
operating flexibility costs in a GSA model, we should first know what kind of operating
flexibility measures can be used in reality. There are several possibilities for using operating
flexibility to achieve a guaranteed service, such as overtime, expediting or supplies from
external/outside suppliers. By resorting to these operating flexibility measures, supply
shortage is avoided since they can ensure that materials, which would not be available under

normal conditions, are made available on time.

Minner (2000) and Klosterhalfen and Minner (2010) considered operating flexibility costs in
their comparison of the GSA with the SSA. They assumed that the operating flexibility
measure used is expediting. With this operating flexibility option, to appropriately incorporate

operating flexibility costs into a GSA model requires the following information:
« The quantity of items that are expedited
. The timespan for which the expediting takes place.

In order to estimate the expediting timespan, Klosterhalfen and Minner (2010) conducted a
simulation study on a two-level distribution system with one warehouse and two retailers. In
their study, they tested various parameters settings, such as a-service level, the production
time at the warehouse and coefficients of variation of customer demands. Specifically, the
following parameter settings are considered for the system:

= the a-service level varies between 16.67% and 95%,
= the production time at the warehouse (To) is set to 2 or 6,
= the coefficient of variation of the customer demand (cv) is set to 0.2 or 0.4.

Each instance in the simulation study was randomly generated with the above parameter

settings. Their experimental results on all randomly generated instances demonstrate that on
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average 98.53% of the items whose delivery is speeded up by using the operating flexibility
measure are expedited by one period only. This means that the speeded-up items would have
arrived in the second period. More specifically, all items are expedited by only one period
when Ty is 2, irrespective of the a-service level. In case of a longer Ty, i.e., To=6, only for the
instances with low a-service level (16.67% or 33.33%) and large coefficient of variation, i.e.,
cv=0.4, some items may be expedited by two periods or three periods in very rare situations.
Such rare situations occur only for at most 2% of all instances tested.

From this observation, instead of specifying operating flexibility costs depending on the
expediting duration, we can approximately define the operating flexibility costs irrespective
of the duration. This approximation is acceptable since on average 98.53% of the items

expedited are expedited by one period only.

The difficulty of specifying operating flexibility costs is comparable to the specification of the
backorder costs in an SSA inventory model. As we know, in most cases it is quite difficult to
directly evaluate backorder costs. As an alternative, backorder costs are usually specified
through a service level to customer. That is, for a single stock, if its expected service level is
a and its inventory holding cost per unit of product per unit of time is h, then unit back order
cost of the stock can be defined as p/(h+p) = a. Greater the expected service level of the stock,
bigger its unit backorder cost. Similarly, for the GSA, the unit operating flexibility cost of a

stock, denoted also by p, can be defined according to its expected service level to customer.

The unit operating flexibility cost, p, must be larger than the unit inventory holding cost, h.
Otherwise, it would be advisable to hold no stock at each stock by relying only on the
operating flexibility option.

In this thesis, we will consider both operating flexibility costs and the effects of operating
flexibility on the material flows of a multi-echelon inventory system. More detailed

discussion about both of them will be given in the latter chapters.
2.5 Batch Ordering (R, Q) Policy and GSA

As we have mentioned, all previous works on the GSA only deal with inventory systems
without fixed order costs, however, in practice, fixed order costs exist for most inventory
systems when economics of scale in production and/or in distribution exist. In this thesis, we
attempt to use the GSA to model and solve inventory policy optimization problem of multi-

echelon inventory systems with fixed order costs. Because of the existence of fixed order
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costs at each stock in such systems, we choose batch ordering (R, Q) policies as inventory

policies of the systems.

Because echelon (R, Q) policies are much easier to be handled than installation (r, Q) policies
under the GSA framework, in this thesis we choose echelon (R, Q) policy as the inventory
policy for a multi-echelon inventory system with order costs at each stock. In addition, for
serial and assembly systems, we confine ourselves to echelon (R, Q) policy that can be
transformed into equivalent installation (r, Q) policy with equation (2-1) when condition (2-2)
holds, because with this transformation the echelon (R, Q) policy can be easily implemented

in practice.

As most studies in the literature, we restrict our attention to echelon (R, Q) policies with
integer-ratio relationships. For serial and assembly systems, integer-ratio constraints mean
that the order size of each stock is a positive integer multiple of its immediate successor. For
two-level distribution systems, such integer-ratio constraints also exist but have different
forms. More detailed discussion about integer-ratio constraints in different systems will be

given in latter chapters.

Echelon (R, Q) policies with integer-ratio constraints have been proved to be cost-effective
for systems like serial and assembly systems. In practice, the coordination of order sizes
among different stocks in a multi-echelon inventory system can facilitate quantity
coordination among these stocks and can simplify packaging, transportation and stock count

in the system.

For serial systems, under the GSA and the integer-ratio assumption, we have r; > —Qj..
Because if rj < —Qi1 — 1, then r; + Qi1 < —1. This implies that stock i will not place any
replenishment order at its negative but reachable inventory position IP; = rj + Qj.1, which is

contradictory with the guaranteed service assumption of the GSA, because at the state, stock i
is in shortage. Moreover, for any r; € [-Qi.1, -2], we can replace it by .- = -1 since this
replacement will not change the timing of all replenishment orders of stock i, because: 1) IP;
<rjimplies IP; <+, 2) if IP; < (<0, from IP; e{ rj, ri + Qi, ..., i + Mi1Qig} and ri + Qi1 > 0,
we have IP; = r; < r;. Similar results hold for assembly systems. So for these two types of

systems, we assume r; > —1 in the rest of this thesis.

In the next chapter, we will extend the standard GSA to optimize (R, Q) policies for serial

systems with fixed order costs at each stock. The extended GSA will explicitly consider

42



operating flexibility costs and the effects of operating flexibility on the material flows of the

systems.
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Chapter 3 Optimization of (R, Q) Policies for Serial Systems

After the description of multi-echelon inventory systems and the guaranteed service approach
(GSA) in the last chapter, this chapter deals with the optimization of (R, Q) policies for serial
inventory systems with Poisson demand under the GSA. Except for considering inventory
holding costs as in standard GSA model, we also consider the fixed order costs and operating
flexibility costs. Following a description of the main assumptions and notations in Section 3.1,
a mathematical model for the optimization problem is formulated in Section 3.2. This model
can be solved by an iterative procedure based on two dynamic programming (DP) algorithms.
One DP algorithm is used to solve the order size decision sub-problem, and the other is used
to solve the reorder point decision sub-problem of the model. The two algorithms will be
described in detail in Section 3.3 and 3.4, respectively. The iterative procedure will be
presented in Section 3.5. Numerical experiments for evaluating the performances of the

procedure and the two DP algorithms will be reported in Section 3.6.
3.1 Problem Description

3.1.1 Serial System studied

A continuous review serial inventory system with N (N>2) stocks is considered, where stock
N orders from an external supplier with unlimited stock, stock N-1 orders from stock N, stock
N-2 orders from stock N-1, and so on. Finally, at the lowest stock, stock 1, customer demand
occurs. A stage may represent a production process, in which raw material is transformed into
a product, or a distribution process, in which a product is moved from one location to another
location. A serial inventory system with N stocks can be depicted as in Figure 3.1. No
capacity constraints exist at any of the stocks. All stocks in the system operate echelon (R, Q)
inventory policies. The customer demand is assumed to be stationary and independent Poisson

distribution with the average demand rate A.

We attempt to use the guaranteed service approach (GSA) to derive the optimal (R, Q) policy
for the system, so as to minimize the total system costs while satisfying the customer service
level. For the customer demand, the GSA sets a maximum reasonable lead time demand level
D(z) over t periods, all excessive customer demand superior to this level will be treated by

extraordinary measures.
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Figure 3. 1 A serial inventory system with N stocks

Moreover, for echelon (R, Q) inventory policy considered, we restrict it to one satisfying the
integer-ratio constraint, that is, the order size of each stock i is a multiple of the order size of
its immediate successor, i.e., stock i-1. Specifically, Q; is a multiple of Q;j.1, i.e., Qi=m;.1Qj.1,
where m;_; is a positive integer for i=1,2,...,N. This assumption is natural since stock i-1
always places an order of Q;.; units to stock i and each inventory replenishment order of stock
i is used to fulfill the demands from stock i-1. Integer-ratio (R, Q) policies have been proved
to be at least 98% cost-effective for systems like serial systems (Chen and Zheng, 1994). In
practice, the coordination of order sizes among different stages in a multi-echelon inventory
system can facilitate quantity coordination among these stocks and simplify packaging,
transportation and stock count in the system.

3.1.2 Maximum reasonable lead time demand level

One key assumption of the GSA is that a maximum reasonable lead time demand level is
specified for lead time demand of the customer and excessive part of the lead time demand
beyond the level is fulfilled by using operating flexibility. Here, the maximum level is not
defined directly on the demand of each period (or a given period) but the lead time demand.
Since the lead time is a decision variable in the GSA model, this level is usually defined as a

function of the lead time.

Let us denote the lead time demand over 7 units of time (z>0) from time t—zto time t

(t>7) byd[t—z,t) and the maximum reasonable lead time demand level over the lead time

demand by D(z). The bounded lead time demand assumption can be described as follows:
D(r) > d[t > 7,t) (3-1)

Note that the bounded demand assumption and the GSA were adopted by Graves and Willems
(1996, 2000) in the context of setting the safety stock in a supply chain. In their work, the
base stock level of each stock is set to cover all realizations of its lead time demand that fall
within an upper bound. If the lead time demand exceeds the upper bound, the stock might
resort to extraordinary measures such as expediting and overtime to fulfill the excessive part

of the demand. Following this logic, they set the bounds at the stock’s average lead time
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demand plus safety stock. Since the base stock level (or safety stock) is strongly related to the
service level of the stock, in this these, we set the lead time demand according to the event-
oriented service level to final customer as described in the above. By specifying a service
level to customer, each stock indicates implicitly its preference for what range of its demand
is covered by the stock itself and what range is fulfilled by using extraordinary measures. Of
course, the service level should be determined so that the total cost of the system is minimized,
this will be discussed later.

In a serial system depicted in Figure 3.1, the customer demand only occurs at stock 1, that is,
the maximum reasonable lead time demand level at stock 1 is defined as the minimum

number D(z) satisfying the following condition
p{d[t—7,t) <D()}> (3-2)

Since the customer demand at stock 1 follows a Poisson process with average demand rate 4,

D(z) can be calculated by

D(7) [ﬂy’l']k e—/lf

T >a (3-3)
k=0 :

We give a simple example, if =5 and ¢=0.9 according to the above inequality (3-3), the

maximum reasonable lead time demand level D(z) for different lead time z [0,10], can be
derived as in Table 3.1, where A=D(z)-D(z-1). From the table, we can see D(z)is neither

concave nor convex.

Table 3. 1 Maximum reasonable lead time demand level

T 0 1 2 3 4 5 6 7 8 9 10
D(x) 0 8 14 20 26 32 37 43 48 54 59
A 8 6 6 6 6 5 6 5 6 5

3.1.3 Cost Structure

For the serial inventory system considered, the total cost is assumed to consist of three costs:
inventory holding cost, fixed order costs and operating flexibility costs for fulfilling excessive
demand. Since we use an echelon (R, Q) inventory policy to control the system, the inventory
holding costs will be evaluated based on the echelon on-hand inventory of each stock. The
fixed order costs are evaluated based on the number of orders that each stock places to its
supplier (immediate upstream stock). That is, the placement of each order incurs a fixed order

cost. As for the third cost, they are assumed to depend linearly on the amount of demand
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fulfilled by using operating flexibility. Since any stock except for the stock 1 never runs out of
stock under the GSA model, the costs for using operating flexibility is only accounted one
time at stock 1. All parameters to be used in the formulation of the total cost are given as

follows:

ci: fixed cost for placing each order by stock i to its supplier, i.e., stock i+1,

h;: installation holding cost per unit product per time unit for stock i,

hi®: echelon holding cost per unit of product per time unit for stock i, i=1,2,...,N.

p: cost for using operating flexibility to fulfill each unit of excessive customer demand.

After the description of basic assumptions about the optimization problem, a mathematical

model will be formulated in the next section.
3.2 Mathematical Model Formulation

Before presenting the mathematical model, the definitions and notations used in it are first
given in Section 3.2.1, and we also give the detailed description about the objective function.
Finally, we will formulate a mathematical model for the optimization problem in Section
3.2.3.

3.2.1 Definitions and Notations

We first define the following notations that will be used later.
Indices

i: node index, i=1,...,N, where N represents the number of stocks (levels) in the system,
t: time index, t=0,1,...,» with continuous review.
Parameters

Li: net lead time of stock i, i.e., Li=SIi+T;-S;, i=1,2,...,N,

A: average demand rate of the customer demand at stock 1,
S1: an upper bound of outbound service time at stock 1.

At any time t,

li(t): on-hand inventory of stock i,

I;¥(t): echelon on-hand inventory of stock i,

IL;*(t): echelon inventory level of stock i,
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IP;%(t): echelon inventory position of stock i,

OO0i(ty, t]: the quantity of all orders placed by stock i from time t; to time t, (not including ty),
i=1,2,...,N.

d[t—L,t): the lead time demand over L; units of time of stock i, i=1,2,...,N,

a[t —L,,t) : the lead time demand over L; units of time fulfilled normally by the considered

system.
Decision Variables

g fill rate of the system,

R;: reorder point of stock i,

Qi: order size of stock i,

Si: outbound service time of stock i,

Sl;: inbound service time of stock i, i=1,2,...,N.
3.2.2 Objective Function

In this thesis, the objective is to minimize the average total costs of the system per time unit.
To formulate the total cost, we have to formulate three types of costs mentioned in Section

3.1.3, inventory holding costs, fixed order costs and operating flexibility costs for each stock.
Inventory holding costs

The average inventory holding costs per unit of time for stock i can be formulated ash’ - E[I:],
i=1,2,...,N.

Fixed order costs

Since p represents the percentage of the quantity of customer demand fulfilled normally
without operating flexibility, then, for each time unit the average number of units of customer

demand fulfilled normally is 23 . Therefore, the average fixed order cost per unit of time for

CAS

stock i can be formulated as ——.

Operating flexibility cost
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In order to formulate operating flexibility costs, we first need to know the average number of

customer demand fulfilled by using operating flexibility, which can be formulated as A(1- 3) .

Then, the average cost of using operating flexibility to fulfill excessive customer demand per
time unitis pA(1l— ).

Therefore, the objective function for the optimization problem is the total system cost of each
stock in the serial inventory system with N stocks. Therefore, the objective function is give as

under

Z(‘g—ﬁ+ he - E[1]) + pAL—f) (3-4)

i=1 i

Note that for the system if all units of customer demand fulfilled by using operating flexibility
are regarded as the units of demand not satisfied on-time under the SSA model,

then pcorresponds to the fill rate of the system.

3.2.3 Model Formulation

Under the GSA model, for stock i, if its immediate downstream stock, stock i-1, places an
order to it at time t, this order must be filled by stock i at time t+S;. In order to do so, stock i
should replenish its inventory corresponding to the order form its supplier (stock i+1) at time
t-(SIi+T;-S;), because in this way the inventory replenishment of stock i can be used to fill the
customer order at time t-(SIi+T;-S;)+(SIi+T;)= t+S;. The behavior of stock i is thus equivalent
to the behavior of a stock with the same demand process, net lead time SIi+T;-S; and zero
outbound service time, i.e., this behavior can be modeled by that of the stock with inventory
replenishment lead time SI;+T;-S; under the assumption that any customer demand is filled
(delivered) immediately without delay. With this equivalence, we can only consider net lead
time at each stock and assume that each order placed by a downstream stock will be filled
(delivered) immediately in analyzing the serial inventory system. For convenience, we replace

SIi+T;-S; by L; in the following formulation process.

According to the definitions about IP;°(t), we can derive the following equations for each

stock i,

IP%(t) = IP%(0) + OO, (0,t] - d[0, ),
IP*(t—L) = IP°(0)+ 00, (0,t - L.]-d[0,t - L), (3-5)
IPf(t)— IP°(t— L,) =00, (t — L, t] - d[t — L, t)
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At time t, stock i receives all its orders placed to its upstream stock i+1 in or before time t-L;,

but none of the orders placed after time t-L; is received by stock i, then, we can derive
I (t) = IPF ()~ 0O, (t— L, t] (3-6)
On the other hand, the following inventory balance equation is well-known:
ILE (1) = 1P (t-L,) —d[t — L, 1) (3-7)
Under the GSA model, stock i has no backorder because of using operating flexibility, then,
1L (t)=1°(t) (3-8)
From equation (3-7), we can derive that
I (®)=1R" (t- L) —d[t-L.t) (3-9)
For stock i, in order to provide 100% guaranteed service, |7 (t) >0 must be satisfied, then,
IP(t-L)>d[t—L,.b) (3-10)

Constraint (3-10) imposes a condition on IP°. In addition, another constraint which ensures no

stockout at each stock has to be considered. At stock i, no stockout means that on-hand

inventory l;(t) is always nonnegative.

According to the definition above, Ii(t) is given by
1L(®) = 15— 1P, () (3-11)
Under the condition I, (t) > 0, we have
1£() > 1P, (1) (3-12)
According to equation (3-9), the following inequality can be derived
IR® (t-L) 2 d[t— L, 1) + IP*, (1) (3-13)

Since the satisfaction of constraint (3-13) implies the satisfaction of constraint (3-10), only

constraint (3-13) need to be considered in the following analysis.

Under an echelon (R, Q) inventory policy, at stock i, after order decision, but before demand

occurrence, IP;® must be within the interval [Ri+1, Ri+Q;] for any stock i, such as

IP°(t-L,) €[R, +LR +Q], and IP5(t) e[R ,+L R, +Q.,]
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According to Hadley and Whitin (1961), IP; is uniformly distributed over the interval [Ri+1,

Ri+Qi], with the probability Qiof being at state R;+j, j=1,...,Qi. This implies that there is

t > L, such that IP®(t-L;)=R, +1and t can be taken as a time larger than any given number.

Two cases may happen for equation (3-13):

Case 1: L, >20. In this case, we have
1) d[t-L;,t) can take any positive integer value.

2) According to Zipkin (1986) or Simchi-Levi and Zhao (2007), ast — oo, the inventory
position IP?, (t) is statistically independent of the lead time demand d[t—L,,t).

3) IP?,(t) is uniformly distributed over the interval[R_, +L,R , +Q. ,].

The above three properties imply that starting from t-L, with inventory
position IR (t-L,)=R, +1, there exists a realization of the demand process from time t—L,to
time t such that d[t—L;,t) > D(L)and IP% (t)=R , +Q,,.

In this case, in order to ensure that inequality (3-13) holds for any demand realization under

the GSA (that is, the part D(L;) of the lead time demand d[t—L;,t) must be satisfied on time),

we must have:
R +1>D(L)+R ,+Q , fori=1,2,...,N (3-14)
where Ry and Qg are assumed to be 0.

Case 2:L,=0. In this case, D(L;)=0and inequality (3-13) becomes IP®(t) > IP (t) for any
time t. Since the echelon (R;, Q;) policy we consider is transformed from an installation (ri, Q;)

policy according to equation (2-1), we have R, +1=R , +Q., +r, +1. Since r, >-1(See section

2.3.3), we have R +1> R, +Q. ,. This implies that inequality (3-14) also holds for this case.

Now, we can derive a lower bound for each R;. After the replacement of L, by the net lead time

given above, we have,

i i-1
R ZZlD(SIj +T, —sj)+_§(;Qj —ifori=1.2,...,N (3-15)
= 1=
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Since the objective of the problem is to minimize the total cost, there exists an optimal

solution with R;, i=1,2,...,N given by the following equations.
i i—1
R=> D(SI;+T,-S;)+>.Q,—i fori=1,2,...,N (3-16)
j=1 i=0
Since 1004% of the total demand is fulfilled normally and the demand rate is A, we have

E[d[t - L, t)] = AL, (3-17)

Assume that all excessive demands are satisfied without incurring inventory holding costs.
This assumption is reasonable since the occurrence of excessive demand implies zero on-hand

level in the considered system. With this assumption, we can ignore excessive demand in the

calculation of expected inventory holding cost E[1°]. That is, when calculate E[1°]according
to equation (3-9), we must first replace d[t—L;,t) bya[t—l_i,t). After this replacement,

12 ()=IP°(t— Li)—dA[t— L, ,t)> 0 is always true. Since IP°(t) is uniformly distributed over the
interval [R, +1, R, +Q.] in steady state, we have:
Q;
EIR= Y R + ) =R+ 2 (3-18)
=

So we can derive E[1°] as follows:
. . A 14+Q.
E[IP*]=E[IP°(t-L,t)-d[t-L,t)]=R, +T'—2,ﬂLi (3-19)

By substituting R; given by (3-16) into equation (3-19) and replacing L, by SI, +T. —S;, we can

deriving the following equation:

E[If]=zi:D(SIj +T,-S,) = AB(SI, +T, —si)+iin —%—i fori=1,2,..N  (3-20)
i=0

j=L

With equation (3-4) and (3-20), the inventory policy optimization problem we study can be
formulated as the following nonlinear programming problem:
P: Minimize
N Clﬂ N . i
S [D DS +T,-S;) - AB(SI, +T, - S,) +
i=1 j=1

i=1 i

1+Q,
2

i1+ D QLI PAA-A)
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Subject to:

Q,=mQ fori=12---,N-1 (3-21)
SI.+T.-S, >0 fori=12,---,N (3-22)
SI.>S, , fori=12,---,N (3-23)
0<S,<s (3-24)

Q. >0 and integer for i=1, 2,..., N (3-25)
SI;, S, >0 and integer for i=1, 2,...,N (3-26)

The objective function represents the average total costs of the system in the long run.
Constraint (3-21) is the integer-ratio constraint between the order size of any two successive
stocks, in which the order size of stock i+1 must be a positive integer multiple of the order
size of its immediate successor, Q;. Constraint (3-22) assures that the net lead time at each
stock is nonnegative. Constraint (3-23) implies that each stock i can start production only
when all the inputs are available, so the inbound service time of each stock i must equal to or
greater than the outbound service time of its immediate upstream stock. Constraint (3-24)
imposes an upper bound s; on the outbound service time of stock 1, where s; may be given by
the required delivery lead time of final customer. Constraint (3-25) and (3-26) imply that all

the decision variables must be integer.

When g is known, pA(1- ) in the objective function of model P becomes a constant which

can be ignored and the model can be decomposed in two independent sub-models or sub-
problems, one with decision variables Q;and the other with decision variables Sl; and S;. The
two sub-problems are called order size decision sub-problem and reorder point decision sub-
problem or Q-problem and R-problem for short, respectively hereafter. The Q-problem has a
convex objective function composed of all Q-dependent cost terms and constraint (3-21) and
(3-25), whereas the R-problem has a nonlinear objective function composed of all R-
dependent cost terms and linear constraints (3-22), (3-23), (3-24) and (3-26).

Q-problem:

Minimize: Z[ 'Qﬁ +he( —l)+zhe Qul

Subject to:
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Q,=mQ fori=12--N-1

Q. >0 and integer for i=1, 2,..., N

R-problem:

Minimize: ZN:hf -[Zi: D(SI; +T,-S,) - A8l +T, - S))]

i=1 j=1
Subject to:

SI+T =S, >0 fori=1,2,---,N

SI, 2§, fori=12,---,N

i+1
0<S,<s

Sl., S, >0 and integer for i=1, 2,..., N

irYi

Obviously, the objective function of Q-problem is convex with respect to Q;, i=1,2,...,N, since
it is a kind of EOQ cost function. However, we find the objective function of R-problem is
neither convex nor concave through numerical analysis. The non-convex, non-concave nature
of this function is due to the irregular nonlinearity of demand bound D(SI, +T, -S;). In the
next two sections, we will use two efficient algorithms to solve the two sub-problems,
respectively. As soon as the two sub-problems are solved, the optimal order size Q;is given
by the solution of the Q-problem, and the optimal reorder point R; can be determined from

{SI;, Tj, Sj | 1< j< i} and {Q; | 0< j< i-1} according to equation (3-16).

The above analysis assumes £ is known. However S is not known, but it can be determined by
the parameters and inventory policy of the system considered. In the following sections, we
will first present two dynamic programming algorithms for solving the two sub-problems in
Section 3.3 and 3.4, respectively when a and g are given, and then present an iterative

procedure for solving the original inventory policy optimization problem in Section 3.5.
3.3 Dynamic Programming Algorithms for Q-problem

In this section, we propose a dynamic programming (DP) algorithm to solve Q-problem,

which determine the optimal order size Q" for echelon (R, Q) inventory policy used at each
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stock in the serial system studied. The basic principle of DP is first explained in Section 3.3.1,

and how to use it to solve the Q-problem will be introduced in detail in Section 3.3.2.
3.3.1 Basic Principle of DP

Dynamic program is an optimization approach that transforms a complex problem into a
sequence of simpler problems; its essential characteristic is the multistage nature of the
optimization procedure. The three most important elements of DP are stage, state and

recursive optimization.
1) Stages

The essential feature of a dynamic programming approach is the structuring of an
optimization problem into a multi-stage decision problem in which the decisions at multiple
stages are solved sequentially one stage at a time. Although each one-stage problem is solved
as an ordinary optimization problem, its solution influences the characteristics of the next
one-stage problem in the sequence. Often, the stages represent different time periods in the

planning horizon of a problem or different subsystems of a system.
2) States

Associated with each stage of an optimization problem is the state of the underlying system or
process. The state contains the information required to fully assess the consequences that the
current decision has upon further actions. The specification of the state of the system is
perhaps the most critical design parameter of a dynamic programming algorithm. Two general

rules for defining the state are:

= The state of a system should convey enough information to make future decisions without

regard to how the system reached the current state;

= The number of state variables should be as small as possible, since the computational
effort associated with a dynamic programming approach will be prohibitively expensive if

there are more than two state variables involved in the dynamic programming algorithm.
3) Recursive Optimization

The final general characteristic of a dynamic programming approach is its recursive
optimization procedure, which builds an optimal solution of a multi-stage decision problem
by first solving a one-stage problem and sequentially including and considering one stage at a
time until the optimal solution of the overall system has been found. This procedure can be

derived based on a backward induction process, where the first one-stage problem to be
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considered is in the final stage of the problem and one-stage problems are solved moving back
one stage at a time until all stages are considered. Alternatively, the recursive procedure can
be derived based on a forward induction process, where the first one-stage problem to be
solved is the initial stage of the problem and one-stage problems are solved moving forward
one stage a time until all stages are considered. In certain problem settings, only one of the

two induction processes can be applied.

The derivation of a recursive DP procedure for an optimization problem is based on the
principle of optimality, which can be stated as the property of any optimal policy that,
whatever the current state and decision, its remaining decisions must constitute an optimal

(sub) policy with regard to the state resulting from the current decision.
3.3.2 Dynamic Programming Algorithm

In order to apply dynamic program to the Q-problem, we first formulate the problem as a
multistage decision problem in a network whose nodes represent the states of the studied
system as shown in Figure 3.2. The network has a single starting node (source node) 0, a
single ending node (sink node) N+1, and intermediate nodes of N stages. Stage i corresponds
to stock i, i=1,2,...,N. Each node at stage i in the network indicates a possible value of the
order size Q; for stock i, and there is a directed arc from a node at stage i to a node at stage i+1

if @, = m,q, for some integer m;, where the decision variable m;is associated with the arc. In

the network, each path from the starting node to the ending node corresponds to a possible

solution of the Q-problem.

Start
node

............... N\ .

Stage i < node
\ Stage N+1

Stage 0

\‘O
O

Figure 3. 2 Dynamic programming network for Q-problem
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If we associate each arc from a node at stage i-1 to a node at stage i with the length
corresponding to the cost of stock i (i=1,2,...,N) and each arc from a node at stage N to the
ending node with zero length (cost), the total cost of the system is given by the length of a
path from the starting node to the ending node in the network since the total cost is the sum of
the costs of all stocks. The minimization of the total cost is thus equivalent to finding the

shortest path in the network.
The following notations will be used in the DP algorithm:

i: stage index, i=0,1,....,N+1, stage (stock) O and stage (stock) N+1lare two additional stages

(stocks) representing the starting state and ending state of the DP algorithm, respectively.

Qi: state variable of stock i, which represents a possible order size of stock i, i=1,2,...,N,

Wi: the set of all possible values of Q;, i=1,2,...,N,

mi.1: decision variable of stock i, i=2,...,N,

Mi.1(Qi-1): the set of permissible values of m;_; given the state Q;.; of stock i-1, i=2,...,N,
di(Qi-1, mj.1): the cost of stock i when its decision is m;.; and the state of stock i-1 is Qj.1,
fi(Qi): the minimal total cost from stock 0 to stock i when the state of stock i is Q;, i=1,2,...,N.

With the above notations and applying the dynamic programming optimality principle, the

state transition functions and the recursion equations of the DP algorithm can be written as:

Qi=m;.1'Qi1, 1=2,3,...,N,

M3 €M1 (Qiy

fo(Qo) =0

{fi (Q)=_ min ){di (Q_m_ )+ f,(Q)}r 1=123,--,N

where

d.(Q,m,.,)= Cgiﬂ +hf(1+2Qi —i)+§:hf Q=12+, N
dya(Qy.my) =0

In order to apply the above recursion equations to calculate fi(Q;) for each stock i, the state

space W, of stock 1 and the permissible decision set M;.1(Qi.1) of stock i must be determined

before the recursion process. The following two properties can be used to determine W; and

Mi.1(Qi-1) for i=2,3,....N.

Property 1: For serial inventory system with N stocks, an upper bound of Q; is given by:
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N
28 ¢
i=1
he +3hs +---+ (2N —=1)h i(Zi—l)h.e

i=1

le\/ 218(C,+Cy+---+Cy)

i-1
Proof: Substitute Q, = Hijl fori=2,...,N into the objective function of the Q-problem,
j:

we have

2B e N A 1+Hm < N
G IB h1 +Q1 1) Z[ G ﬂ ( J—l2 +Zhe*Hm Ql
Q1 i=2 Hm Ql

If all m; for i=1,2,..., N-1 are given, the above function contains only one variable Q;.
Because this function is convex with respect to Q;, the optimal value of Q; can be derived at
the point where the first derivative of the function with respect to Q; is equal to 0. After

calculating the first derivative, we can get the following equation:

;L’B -G+H =0,

1

c C
where G=c, +—2%+—— 4. —

M T ll_[mjm [Im,
j=1 =1

N-1
_( he +hs +- +he)+( hS +h 4+ h)m +---(Z he+zlh )Hm ;hﬁ,Hmj;
j=i+ j= j=
N-1 N-1
2/1ﬂ Z_l:ciHmij
Then, Qf = 1

Hm (¢ +2Zh )+2(hﬁ+2z he )Hm

j=i+l

From the above equation, it is obvious that the maximum value of Q; is attained when m;=m;

=...= mn.1= 1, then, we can derive,
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Zlﬂi C

N

D (2i-Dhf

i=1

d_ 2Ap(C,+C,+---+Cy)
Y\ hf 30+ + (2N —D)h?

Since Q1 must taken a positive integer value, W, for stock 1 can be taken as the integer set
{1,2,...,((}% }, where [ x]|=min{a e Z|a > x}and Z is the set of integers.

Property 2: For stock i (i=2,..., N) of the serial inventory system, if the state of stock i-1 is

Qi-1, then an upper bound of m;_; can be derived by:

24,3% c,
N—i+1 =

Qi \ JZ:; 2j-1-h7,

i-1
Proof: After substituting Q, = Hijl, fori=2,..., N into the objective function of the Q-

=1

problem, it can be rewritten as:

MP-i+R-Qi-mi+C

Q m
where P=c,_, + Goo  Gus o O :
i+1 rni-*—lmi+2 n’]i+1 T mN—l
1 e e e - 1 e e e jil
R=(Ehi+1+hi+2+"'hN)+ Z [(Ehj +hj+1+'”hN)Hmk]'
j=i+2 k=i+1
AB c C. 1 A —
C="2(c,+2++——)+(Eh"+hi +---+h3) + =h*+h°, +---+h3)| Im.].
Ql ( 1 ml mlmz_”mi_l) (2h1 2 N) ;[(2 i i+l N)IK:! k]

The objective function is convex with respect to variable m;, so the optimal value of m; is
attained at the point where the first partial derivative of the function with respect to m; is equal

to0,i.e.,

Hp. 1 RQ=0 fori=12...N-1
Q. m
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Then, m, :i,/iﬂ-i, fori=12,..,N-1.
Q R

From the above equation, it is obvious that the maximum value of m; is attained when mj,; =

Mi+2=...= Mn-.1=1, S0 we can derive that

N
) 1 228> ¢
m,_, = =

N—i+1

Qo \ > 2i-D-hiy,

Similarly, the permissible decision set M;_1(Qi.1) can be taken as the integer set[1, 2,---,[mi1—l].

With the above two bounds, the main steps of our dynamic programming algorithm can be

summarized in the following.
Step 1: Determine the set W, of possible values of Q; based on Property 1.

Step 2: Set i=1, calculate f;(Q;) for each Q1 in Wy, this gives the boundary condition of the DP

algorithm.

For stage i=2,...,N:

Step 3: Determine M;.1(Qi.1) based on Property 2, and according to the state transition function
Qi=mi_1-Qi.1, calculate fi(Q;).

Step 4: Set i=N+1, at the ending node, calculate fNﬂ(QNH):rgin fy(Qy) . fy(Qyy)is the

minimal cost for the Q-problem.

Step 5: Backtrack from stock N+1 to stock N, stock N to stock N-1,..., stock 1 to stock 0 to

find the optimal Q;  for each stock i.

Note that Crowston and Wagner (1973) presented a dynamic programming algorithm to solve
a lot size problem for assembly systems with deterministic demand. Their algorithm can also
be used to solve our Q-problem. Their algorithm first calculates an upper bound and a lower
bound of the optimal lost size for each stock, based on the lower bound and an upper bound of
the optimal cost of the joint lot-sizing problem. The efficiency of the algorithm strongly
depends on the second upper bound, which is obtained either by a heuristic or by a dynamic

programming algorithm of the same type but with coarse grid.
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We will compare our DP algorithm with Crowston and Wagner’s algorithm in Section 3.6 for

the purpose of evaluating the efficiency of the two algorithms for the Q-problem.
3.4 Dynamic Programming Algorithm for R-problem

In this section, we describe how to solve R-problem by dynamic programming when the
underlying network for the supply chain is a spanning tree. This algorithm is developed by
Graves and Willems (2000). Since the serial system we study also has a spanning tree
structure and our R-problem is similar to their problem with the only difference on objective
function, their dynamic programming algorithm can also be used to solve our problem. In the
following, we briefly introduce their algorithm applied to our problem.

In the terminology of dynamic programming, the R-problem will be solved by decomposing it
into N stages where there is a dynamic-programming stage for each node in the spanning tree.
In a spanning tree, it is easy to show that there will always a node that is adjacent to at most
one other node. The serial inventory system has a simple network structure, which already has
this important characteristic. Therefore, for an N-stock serial system, we only label stock i as
node i for i=1,2,...,N. And in order to show the characteristic of the spanning tree, we also
define p(i) to be the node with higher label that is adjacent to node i, for i=1,2,...,N-1, and

p(i)=i+1 can be derived directly. The node N obviously has no adjacent node with higher label.

Next, we will numerate the nodes in a spanning tree so that there will be a single state variable.
However, the state variable for the dynamic program will be either the inbound service time at
a stock or its outbound service time, where the determination depends on the topology of the

network.

In order to explain the dynamic programming recursion, we first define N(i) as the subset
nodes {1,2,...,i} that are connected to i on the sub-graph consisting of nodes {1,2,...,i}.And

N(i) can be determined by the following equations:
N@)={i}+N(@{-2)
This implies that N(i)={1,2,...,i}.

The dynamic programming algorithm evaluates a functional equation for all nodes (stocks), in
the order of their labels. According to Graves and Willems (2000), generally the functional
equation may have two different forms at each node (stock) i (i=1,2,...,N-1), depending on the
location of the node (stock) with higher label that is adjacent to node (stock) i. However, for

the serial system studied, each node (stock) i has only one upstream adjacent node (stock)
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with a higher label, i.e., node (stock) i+1, then the functional equation has the unique form. In

order to formulate the equation, let us define:

g,(SI): the minimum inventory holding cost for the sub-system (of the original serial system)

described by the sub-graph with node set N(i), where the inbound service time of stock i is

given by SI.

With this cost equation, the minimum inventory holding cost for the sub-system can also be

defined as a function of both outbound service time and inbound service time of node (stock) i:

C.(5,51) =1 [3 DS, +T,~5,)~ 28(S1, +T, ~S)]+_rmin_[g, ,(y)]

- <
=1 o

The above function consists of two terms, the first term is the inventory holding cost of node
(stock) i, which is a function of S and SI, and the second term corresponds to the nodes (stock)
in N(i) that are downstream of node (stock) i.

The functional equation for g,(SI) can be found by solving the following optimization

problem.

gi(SI):mSin(Ci(S:SI)

Subject to:
0<S<SI+T,
In the above model, SI is bounded by M, —T.. In addition, for the final stock, i.e., stock 1, S is
also bounded by its maximum service time, i.e., S, <s,.
In summary, the main steps of the dynamic programming algorithm are given in the following.

Step 1: For i:=1to N, evaluate g, (SI) for SI=0,1,..., M, -T;;
Step 2: Minimize g, (SI) to derive the optimal cost value of the R-problem;

Step 3: Backtrack from node N to node N-1,..., node 2 to node 1 to get the optimal inbound
service time (SI) and outbound service time (S) of each node (stock).

To summarize, at each stock of the dynamic program, we find the minimum inventory
holding costs for the sub-network with node set N(i), as a function of a state variable. The
state variable depends upon the location of the node (stock) with higher label that is adjacent

to the node (stock) i, i=1,2,..,N. When the higher labeling node (sock) is upstream of node
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(stock) i, the state variable is the inbound service time (Step 1). At node (stock) N (Step 2), we
determine the inventory costs for the entire network as a function of the inbound service time
to node (stock) N. At step 3, we optimize over the inbound service time to find the optimal

inventory cost.
3.5. Optimization Procedure

The original optimization problem, i.e., optimization of echelon (R, Q) policy for the serial
system under the GSA, can be resolved in two loops: 1) determine the optimal service level a,
and 2) for each given a, solve model P. Here, the first loop calls the second loop. Since only
one decision variable « is to be optimized in the first loop, it can be determined by using a line
search. We don’t know whether the total cost function of the system is convex with respect to
a. If it is, the line search can be carried out by using a method such as the golden section
method. Otherwise, it can be done by discretizing possible values of a over the interval [0, 1].
In practice, the service level a may be determined by customer or determined by the managers
of system according to their evaluation about the importance of the costs of using
extraordinary measures to fulfill excessive demand with respect to other costs. In such a
situation, loop 1 can be omitted. In the following, we will discuss how to solve model P for a

given a.
3.5.1 The calculation of the fill rate g

To solve model P, we need to know the fill rate 8, which can be determined by the parameters
and the inventory policy of the system considered. This section presented a method for

calculating the fill rate 5 of the system when its inventory policy is given.

For the serial system considered, let us denote the lead time of stock 1 by L, which is its net
lead time to be determined by solving the inventory policy optimization problem presented in
Section 3.4. Every time after the stock places an order with its (R, Q) policy to replenish its
inventory, its inventory position will be brought to i, ie{R+1, R+2,..., R+Q}. For simplicity,
the subscript “1” which indicates stock 1 is omitted in L, R, and Q. The shipment for this
order will arrive at the stock after its lead time. If the total customer demand during the lead
time, denoted by k, exceeds the inventory position i, i.e., k > i +1, the excessive part, i.e., k - i,
must be fulfilled by using extraordinary measures. Since the probability that the inventory
position of the stock reaches i (ie{R+1, R+2,..., R+Q}) after order placement is 1/Q

according to the uniform distribution of the position, the fill rate gcan be calculated according

to the following equation:
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R+Q k A-AL i
1-p= lz Z—(M‘)e M

i=R+1k=i+1 kl k

1R§i(uk A 1%&?2(@“ i

i=R+1k=i+1 i=R+1k=i+1 k

part 1 part 2

Note that 1-4 in the equation is the percentage of customer demand (in quantity) fulfilled by

using extraordinary measures.

The part 1 in the equation can be rewritten simply as follows:

R+Q ﬁ,Lk -AL R+Q Z,Lk AL 1R+Qi ﬂl_k -AL
sy ye 2y Sy yEe

i=R+1k=i+1 i=R+1 k=1 i=R+1 k=1
%Z(il—)k -AL (/IL)O -AL 1 RiQZ(X’Lk -AL
i=R+1k=0 Ol i=R+1 k=1
R+Q k -AL
i=R+1 k=1 k'
For part 2, we can derive that
R+Q Zoo: (/flL k -AL -i l RZ-F(:Q Z (ZL)ke -AL 1
i=R+1k=i+1 I k QI =R+1 k=i+l k
—lRfiz(M)keMi_lFf Z(itL)"eM 1
i=R+1 k=1 kl k QI =R+1 k= k
ﬂ.L R+Q (/IL)k 1 R+Q (/IL)
——[ 22 iy e
i=R+1 k=1 - i=R+1 k=1
(ﬂL)
Note that the term Z k is an infinite sum which cannot be calculated directly. In order

to efficiently calculate it in a finite time, let us define a function f(x) as follows:

= X< 1
fx)=) ——;
() kZ; "y
This function is well defined, has a finite value for any finite x, and is differentiable. Since the

k
g . X" 1. . . .
infinite series {F-E} Is convergent with a finite sum for any given x, we have

o]

df () _ &k 1_&x 1
dx _kz_;' k Z kl Z

X ko K

Then,
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/1Lx

f(AL)= Tdf(x) +£(0)= J'—dx

Therefore, part 2 can be derived as follows:

Rf i[(zL)k Ak i]:e" f(zL)Ffu-lRf Zi:[(zL)keﬂL 1

i=R+1k=i+1 k i=R+1 i=R+1 k=1

With this expression, S can be calculated efficiently in a finite time.
3.5.2 Algorithm for Original Model P

However, the inventory policy, which is derived from the optimal solution of model P,
depending also on p. Thus, £ cannot be derived directly from a by solving P on time. In the
following, we propose an iterative procedure to solve model P based on guessing the value of
£ in each iteration. Since g usually larger than « and close to # when a approaches 1, it is
initially set to « in the procedure. As soon as the value of  does not change in two successive
iterations, we have got the real g and the optimal echelon (R, Q) policy for the system can be
obtained by solving model P at the last iteration of the procedure.

The main steps of the procedure are given as follows:

Procedure BETA:

Step 0: Set f:=q;

Step 1: Solve the Q-problem and the R-problem to get the values (R;, Q;) for each stock i;

Step 2: Calculate the real fill rate 8~ of the system for the given echelon (R, Q) policy by using
the method proposed;

Step 3: If §'= 3, stop; Otherwise, set 8:= #~ and go to Step 1.

The numerical experiments to be presented in the next section show that the procedure is

always terminated after few iterations for all randomly generated instances.

Note that when the optimal echelon (R, Q) inventory policy found in the last iteration of the
above procedure is transformed into an installation (r, Q) policy for the serial inventory
system considered, the installation reorder point for stock i can be easily derived as
rr=D(SI, +T,—-S;)-1. Obviously, r,>-1, this coincides with one assumption made in

Section 3.2.
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3.6 Experiments Results

In this section, we evaluate the performance of the two dynamic programming algorithms for
the Q-problem and R-problem respectively and the performance of the procedure BETA
proposed by computational experiments on randomly generated instances. In addition, the
structure of the (R, Q) policy found by our GSA model proposed in Section 3.2 is analyzed by
numerical experiments in order to provide some managerial insights about the policy. The
algorithms and the procedure were implemented in C++ with Visual Studio 6.0 Compiler. All
experiments were carried out on a workstation 7550-XEON with 2GHz processor and 2Go
RAM, where multiple processes might be activated and run by multiple users at the same time.

3.6.1 Experiments for the resolution of Q-problem

In order to evaluate our proposed dynamic programming algorithm for the Q-problem, we
first compare it with Crowston and Wagner’s algorithm (referred to as algorithm CW
hereafter) on medium to large sized instances in Section 3.6.1.1, and then, we also give
sensitivity analysis on small sized instances in Section 3.6.1.2, for the purpose of analyzing

the impact of system parameters on the performance of the algorithm.
3.6.1.1 Efficiency analysis on large sized instances

We give the comparison between our algorithm and algorithm CW on three sets of medium to
large sized instances with 10 stocks, 50 stocks and 100 stocks, respectively. Each instance of

the Q-problem was randomly generated with the following parameter settings:
h® eU[L15], ¢, eh’-U[10,20], A €U[1,10]

Without loss of generality, we set f=1. Because if f<1, we can change 4 to A4 so that after this
change, the original Q-problem is equivalent to the Q-problem with fill rate 1 and average
demand rate 5.

For each set, 10 instances were generated and tested. The maximum and the average

computation time for the instances of each set for the two algorithms are given in Table 3.2.
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Table 3. 2 The results for the tested instances of Q-problem

Max/average computation time in seconds
Instance set

Our algorithm Algorithm CW
10 stocks 0.0011/0.0007 1.1517/0.1775
50 stocks 0.0183/0.0076 8.1493 / 1.4605
100 stocks 0.6206 / 0.1705 12.0918/ 2.2669

From the table, we can observe that our dynamic programming algorithm for the Q-problem is
much more efficient than algorithm CW in terms of computation time. The results show that
our algorithm is very efficient in solving large instances, with the maximum computation time

for an instance with 100 stages less than 1 seconds.
3.6.1.2 Sensitivity analysis on small sized instances

In this section, we tested three sets of small sized instances with 2 stocks, 3 stocks and 4
stocks, respectively. In this test, all instances of the Q-problem were generated with the

following parameter settings:
h* e{1,3,5}, ¢ {10,50,100}, A4 €{1,10,100}

Note that the installation holding cost h; can be derived from h® and h; is decreasing from
stock 1 to stock N.

For each combination of possible values of the parameters, one instance was generated, so the
total number of instances generated for the instance set with 2 stocks, 3 stocks, and 4 stocks is
243, 2187 and 19683, respectively. For each instance, we computed its optimal order size Q;"
and its cost using the dynamic programming algorithm. After analyzing the numerical results,

we obtain the following observations:

1) The computation time for each instance is very short, the average computation time is
0.00064 seconds for an instance with 2 stocks, 0.00065 seconds for an instance with 3 stocks
and 0.00079 for an instance with 4 stocks. This further confirms the efficiency of our

algorithm.

2) Qi increases in ¢;, and decreases in h;. This observation is obvious and already explained in

Shang and Zhou (2009). When c; become larger, in order to reduce fixed order costs, stock i

67



tends to increase Q; . Also, when h; becomes smaller, stock i tends to stock more inventory to

deal with demand variation by increasing Q; .

3) Q" increases in A since the average demand

impacts on order costs.

3.6.2 Experiments for the resolution of R-problem

In this section, we perform the experiments to evaluate the efficiency of the algorithm

proposed for R-problem. Similarly, six set of small, medium to large sized instances with 2, 3,

4, 10, 50 and 100 stocks respectively were tested. Each set contains 10 instances. All the

instances for R-problem were generated with parameters h®,T.,s,and 4 randomly generated

according to the uniform distributions described in Table 3.3, with the service level «

specified as 0.95. The computation results of t

he instances are given in Table 3.4.

Table 3. 3 Parameter settings of the tested instances of R-problem

Parameter Value
h’ h® eU[L5]
T. T, eU[L10]
S, s, €U[L3]
A A eU[1,10]

Table 3. 4 The results for the tested instances of R-problem

Max /average computation
Instance set .

time in seconds
2 stocks 0.00056 / 0.00041
Small instances 3 stocks 0.00055/ 0.00047
4 stocks 0.00072 / 0.00064

10 stocks 0.0041/0.0024

Mediumto large | o) i 0.8311/0.4567

instances

100 stocks 28.0513/12.1841

From Table 3.4, we can observe that for small instances (N=2, 3 and 4) the R-problem can be

solved almost instantaneously by using the dynamic programming algorithm of Graves and

Willems, whereas for larger instances (N=10, 50 and 100), the computation time of the
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algorithm becomes longer but is still quite short. This demonstrates the suitability of this

algorithm in solving the R-problem.
3.6.3 Experiments for the resolution of problem P with a given service level

The performance of the procedure BETA presented in Section 3.5 for solving problem P
depends on the two DP algorithms for solving Q-problem and the R-problem respectively. It
also depends on the number of iterations of Step 1-Step 3 performed by the procedure before
S converges to A. This performance is evaluated by computational experiments on the same
sets of randomly generated instances with 10, 50 and 100 stocks respectively as presented in
Section 3.3 and 3.4, but for each set of instances, four different a-service levels ranged from
0.8 to 0.98 were considered. For each instance set and each service level, 10 instances were

generated randomly with the same parameters setting in Section 3.3 and 3.4.

The maximum/average computation time and the maximum/average number of iterations of

the procedure for solving the instances in each set are given in Table 3.5.

Table 3.5 The results for the tested instances of problem P

. Max/average
Instant sets | “SSVI€ | computation times in Max/average number
level of iterations
seconds
0.80 0.0121/0.0066 3/29
10 stocks 0.90 0.0065 / 0.0046 3/21
0.95 0.0098 / 0.0058 2/2
0.98 0.0096 / 0.0062 2/2
0.80 2.6976/1.1846 3/25
50 stocks 0.90 1.2623/0.7305 3/22
0.95 1.3267/0.7861 2/2
0.98 1.5806 / 0.7629 2/2
0.80 23.8142/ 12.6553 3/21
100 stocks 0.90 28.108/13.576 3/2.1
0.95 15.2308 / 7.5805 2/2
0.98 10.8419/6.1872 2/2

From the table, we can see the maximum number of iterations for each instance is no more
than 3 and the average number of iterations for each instance is between 2 and 3, the two
numbers, which are very close, are neither sensitive to the number of stages in a serial system
nor sensitive to its a-service level. In addition, we can observe the two numbers of iterations
decrease when the a-service level increases, this may because when o approaches to one, g is
closer to a. For all instances tested, their maximum computation time and average

computation time of the procedure are short even for the largest instances with 100 stocks.
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There is no direct relationship between the service level and the two computation times. These
results show that the procedure BETA has a good convergence property and is
computationally efficient for solving the inventory policy optimization problem with a given

a-service level.

Note that we did not test the finding of the optimal a-service level for each instance when the
unit operating flexibility cost p is given, because this can be simply done by a line search or
by the discretization of possible values of « as mentioned in Section 3.5.

3.6.4 Structural analysis of the (R, Q) policy found by the GSA

For the base stock policy found by the GSA in the safe stock placement of a serial system, it
respects all-or-nothing rule if the service time to final customer is set to zero (s; = 0), i.e., S; =
0 or SI; + T; — S; = 0 for each stock. In order to analyze whether this rule is also valid for the
(R, Q) policy found by our proposed GSA, we conducted additional numerical experiments on
randomly generated instances of the serial system with 10 stages and s; = 0. We tested 24 sets

of instances, each set corresponds to a different pair of (1, ), where A and « are the demand

rate and the service level respectively. For each instance, h’ and T, are randomly generated as

in Table 3.3, i.e.,h’ €U[1,5], T, €[1,10]. For each set, 1000 instances are randomly generated.

For each instance, in case that its optimal (R, Q) policy obtained by our model does not
respect the all-or-nothing rule, we also calculate its optimal all-or-nothing (R, Q) policy by
imposing the rule (constraint) on our model. The results of this test are given by Table 3.6, in
which five numbers are given for each pair of (4, a). The first number is the percentage of
instances whose (R, Q) policy found by the GSA does not respect the all-or-nothing rule at
some stages, the second and the third give respectively the maximum number and the average
number of stages that does not respect the rule, and the fourth and the fifth give respectively
the maximum relative gap and the average relative gap of the total cost between the optimal
(R, Q) policy found by our model and the optimal all-or-nothing (R, Q) policy.

Table 3. 6 Analysis of the all-or-nothing rule for the (R, Q) policy found by the GSA

a=0.5 a=0.6 a=0.7 a=0.9 a=0.95 «=0.98
0%, 0%, 99.3%, 66.7%, 38.3%, 36.1%,
0, 0, 6, 4, 3, 2,
A=1 0, 0, 3.457, 1.458, 1.1018, 1.0997,
0, 0, 5.37%, 3.08%, 1.808%, 1.217%,
0 0 1.99% 0.66% 0.354% 0.221%
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0%, 84.5%, 69.9%, 27.7%, 13.8%, 9.3%,
0, 5, 4, 2, 2, 1,
A=3 0, 1.7503, 1.4764, 1.075, 1.0579, 1,
0, 2.705%, 2.052%, 0.756%, 0.461%, 0.589%,
0 0.7534% 0.578% 0.1403% 0.142% 0.123%
0%, 64.8%, 47.8%, 8.5%, 10.2%, 1.4%,
0, 3, 3, 2, 2, 1,
A=5 0, 1.345, 1.2406, 1.0123, 1.049, 1,
0, 0.977%, 0.953%, 0.332%, 0.333%, 0.37%,
0 0.275% 0.259% 0.0721% 0.0719% 0.084%
0%, 26.3%, 24.2%, 0%, 0%, 0%,
0, 2, 2, 0, 0, 0,
A=10 0, 1.061, 1.0728, 0, 0, 0,
0, 0.471%, 0.378%, 0, 0, 0,
0 0.117% 0.092% 0

From the table, we can observe: 1) for « = 0.5, all five numbers are zero; 2) the number of
instances not respecting the all-or-nothing rule will increase first and decrease then with the
increase of «a, with only one exception for the case of 2 =5 and a = 0.9; 3) this number if it is
not zero will decrease as the increase of A; 4) when the demand rate and the o-service level
are sufficiently large (1 > 10 and « > 0.9), all randomly generated instances validate the all-
or-nothing rule; 5) for the instances not validating the rule, the relative cost derivation
between the optimal (R, Q) policy found by our model and the optimal all-or-nothing (R, Q)
policy is quite small.

After a close examination, we find that the invalidity of the all-or-nothing rule by some
instances is because their lead time demand bound D(z) is not concave as illustrated by an
example in Section 2 (See Table 3.1). Our numerical experiments show that D(z+1)-D(7)
oscillates between A +1 and A after a certain value of A for these instances because of the
discrete nature of the Poisson demand. This oscillation makes D(z) neither concave nor
convex. If we modify D(z) a little bit by setting it to A after the value, then D(z) will be
concave and the obtained (R, Q) policy will be all-or-nothing policy. This modification of D(7)
by one unit at certain time points will neither sacrifice much the service level nor increase

much the total cost of the system.
3.7 Conclusion

In this chapter, we have studied a continuous review serial inventory system with Poisson
demand, fixed order costs, and controlled by an echelon (R, Q) inventory policy. We used the

guaranteed service approach (GSA) to optimize the parameters of the policy under the
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assumption that excessive beyond a prespecified bound will be fulfilled by using
extraordinary measures. Different from classical GSA approach, we also consider fixed order
costs and the operating flexibility costs for fulfilling excessive demand. A deterministic
mathematical programming model is established for the inventory policy optimization
problem. The model is solved by an iterative procedure based on two dynamic programming
(DP) algorithms for solving its two sub-models respectively. Experimental results
demonstrate the efficiency of the two algorithms and the procedure.
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Chapter 4 Optimization of (R, Q) Policies for Assembly Systems

In terms of network structure, serial inventory systems can be regarded as a special case of
assembly inventory systems, in which each stock has only one downstream stock. As an
extension, this chapter deals with the optimization of (R, Q) policy for an assembly inventory
system with Poisson demand under the GSA. The optimization methodology used in this
chapter is similar to that for serial inventory systems. However, different from the serial
system which has only one immediate predecessor, the assembly system studied in this
chapter may have a stock that has more than one immediate predecessor, this leads to a more
complicated network structure. Therefore, the dynamic programming algorithm for the order
size decision sub-problem (Q-problem) proposed in the last chapter cannot be directly used
for assembly systems. In this chapter, we develop a new dynamic programming algorithm to
solve Q-problem for assembly systems studied. The key idea of the algorithm is that the
dynamic programming recursive procedure is used in both forward and backward directions.
A forward procedure is applied first for the purpose of reducing the solution space of the
problem. Based on the solution obtained by the forward procedure, a backward recursive
procedure is used to identify the optimal decisions.

This chapter is organized as follows: The problem description and notation are first given in
Section 4.1. Then, a mathematical model for the optimization of (R, Q) policies for assembly
systems is formulated in Section 4.2. Two efficient dynamic programming algorithms for
order size decision sub-problem and reorder point decision sub-problem are developed in
Section 4.3 and Section 4.4 respectively. The original model is solved in Section 4.5 by an
iterative procedure based on the solutions of the two sub-problems. In Section 4.6, we give
some numerical experiments for evaluating the performances of the procedure and the two DP

algorithms.
4.1 Problem Description

Since the GSA has been described in the last chapter, this section will only briefly introduce

the assembly system studied and some special assumptions on the system.

Assembly system studied Consider a continuous review assembly inventory system with
multiple intermediate items (components and sub-assemblies) and a single end item. The
network structure of the system is defined by its bill-of-material (BOM) which is a tree whose

root node corresponds to the end item, as illustrated in Figure 4.1. All components at the
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highest level of the BOM are purchased from outside suppliers, these components are
assembled into a finished product (end item) at the lowest level of the BOM. Hereafter, the
stock of item i in the system is also called stock i, i=1,2,..,N. It is assumed that the outside
suppliers never run out of stock. Let N denote the number of items (stocks) in the system, N>3.
These items (stocks) are numbered from 1 to N, where item (stock) 1 represents the end item
(stock). Moreover, it is assumed that customer demand occurs only at the end item (stock) and
follows a Poisson process with the average demand rate A . For simplicity but without loss of
generality, we assume the assembly of one unit of each intermediate or end item (stock)

requires only one unit of each of its components.

External
Supplier

A 4

Item 4

External

Supplier Item 2
PP | Customer
Item 5 Demand

Exterr]al Item 1
Supplier

A 4

Item 6

External
Supplier

Item 3

\ 4

Item 7

Figure 4. 1 An assembly system with 7 items (stocks)

For such a system, our objective is to derive its optimal (R, Q) policy by using the guaranteed
service approach (GSA), so that the total cost of the system is minimized while satisfying a
target service level to final customer. As mentioned in Chapter 3, the total system cost
consists of three costs: fixed order cost, inventory holding cost and operating flexibility cost
(See Section 3.1.3).

Integer-ratio constraint Under an (R, Q) policy, we assume an integer-ratio constraint
between the order size of each stock i and its immediate successor s(i). Since each stock in the
assembly system has more than one upstream stock, the integer-ratio constraints can be

rewritten as:

Q =m,;, Q) fori=1,2,....N

wherem_.,. IS a positive integer and m_.,. is assumed to be 1 when i=1.

s(i)i s(i)i

Maximum reasonable lead time demand level The key assumption in the GSA is that lead

time demand of the customer is assumed to be bounded by a maximum reasonable lead time
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demand level and all excessive lead time demand superior to this level will be treated by
extraordinary measures. Similar to serial systems, the assembly system has only a single end
stock at which customer demand occurs. Therefore, under the assumption of Poisson
customer demand with average demand rate A and the predefined event-oriented service level

a, the maximum reasonable lead time demand level D(z) over any z units of time can be

determined by

D(r) (ﬁuT)ke_/IT N

=L “1

4.2 Mathematical Model Formulation

Similar to serial systems, the total cost of the assembly system with N stocks and

implemented with an (R, Q) policy can be formulated as equation (4-2).

> LB+ p20- ) @2)

In equation (4-2), the cost function has three terms, fixed order costs, inventory holding costs

and the costs of using operating flexibility to fulfill excessive customer demand.

Next, we briefly introduce the formulation of cost term E[1]for i=1,2,...,N.
At time t, the following balance equation is well-known:
I (t) = IR (t-L,) - d[t - L, 1) (4-3)

In the GSA, all customer demands inferior to the bounded demand can always be satisfied,

so IL5 (t)=I17(t) , we then have
I°(0) = IR (t-L,) —d[t L, 1) (4-4)
For stock i, in order to provide 100% guaranteed service, 17 (t) >0must be satisfied, i.e.,
IP(t-L)>d[t—L,.1) (4-5)

In addition, for stock i, no stockout means that on-hand inventory I, (t) is always nonnegative.

According to the definition above, I, (t) is given by

J ®= Iie ®- IP;Ei)(t) (4-6)
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Equation (4-6) is equivalent to the equation IR}, (t) = I (t)—1,(t) , which states that at time t
the echelon inventory position of the downstream stock s(i) of stock i is equal to the echelon
on-hand inventory of stock i minus the on-hand inventory of stock i, i.e. IRj; (t) is equal to the

inventories at or in transit to all i’s downstream stocks at time t. This is true since no

outstanding order placed by s(i) is waiting for delivery at stock i (in the equivalence model),

no backorder is at the lowest echelon of the system under GSA, and IR}, (t) is defined as

outstanding orders of s(i) waiting for delivery at stock i plus the inventories at or in transit to
all i’s downstream stock minus backorders at the lowest echelon at time t. Note that for an

assembly system, each stock has at most one immediate downstream stock.
From equation (4-4) and (4-6), we have

IR*(t—L,) = d[t— L, 1)+ IS, (1) (4-7)
Since the satisfaction of constraint (4-7) implies the satisfaction of constraint (4-5), we only
need to consider constraint (4-7).

Hadley and Whitin (1961) proved that IP;® is uniformly distributed over the interval [Ri+1,
Ri+Q;i], this means that there ist > L;, such that IR°(t-L;)=R, +1and t can be taken as a time

larger than any given number.
For equation (4-7), there may exist two cases, i.e., L, >0and L,=0. According to the analysis

in Chapter 3, we can derive the following two important results:

1) In the case of L, >0, if starting fromt—L, with inventory position IP®(t-L,)=R +1, there
exists a realization of the demand process from time t—L, to time t such
thatd[t—L;,t) > D(L;) and IR ()=R, ;) + Q-

In this case, in order to ensure that inequality (4-7) holds for any demand realization under the

GSA, we must have

R +1>D(L)+ Ry, +Qu for i=1,2,...,N (4-8)

where R, and Q, ,, are assumed to be 0.

76



2) In the case of L;=0, D(L;)=0and inequality (4-7) becomes IR (t) > IR} (t) for any time t.
Since the echelon (R;, Qi) policy we consider is transformed from an installation (r;, Q;) policy

according to equation (2-1), we have R +1=R; +Q,; +r +1. Since r, >-1(See Section

2.2.2), we have R +1> R ; +Q,,, this implies that inequality (4-8) also holds for this case.
Since L, =SI, +T, —S,, we can derive
R2D e DO +T =8+ (0, -Q-Cfori=1.2,...N  (4-9)

Where C; is the cardinality of SUC(i) for i=1,2,...,N.
Since the objective of the model is to minimize the total system costs in the long-run, there
must be an optimal solution with R;, i=1,2,...,N satisfying the following equations

R=2 e DO +T =8+ 0, Q—Q~Ci fori=12,...N  (4-10)

Assume that all excessive demands are satisfied without incurring inventory holding costs.

With this assumption, we can ignore excessive demand in the calculation of expected

inventory holding costs E[I7], that is,

E[d[t—SI. -T. +S;,t)]=E[d[t-SI. - T. +S,,t)] = A8(SI, +T. = S.) (4-11)
From equation (4-4), E[1°]for i=1,2,...,N can be derived as follows:

E[15]=E[IP*(t-SI. - T +S,)—d[t—SI. - T + S, t)]

E[IP°(t=SI,~T +S,)—d[t—SI. T +S,,)]
(4-12)

R, +¥—ﬂﬂ(8li +T.-S,)

- zjesucm DESI; +T;=5;) - 4Bl +T -S) + 2jeSUC(i)QJ +——-C

With equation (4-2) and (4-12) and referring to the guaranteed service approach proposed in
Graves and Willems (1996, 2000), we can formulate the inventory policy optimization

problem as the following nonlinear programming problem:
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P: Minimize

i%+i{h 12 sueq DI +T;=8)) = 2B(S1 +T, —si)+1+2Qi ~Cl+ 2 ey Qi
+pA(1-p)
Subject to:

Q =M Qy fori=12,---\N (4-13)

SI,+T,-S, 20 fori=12,---,N (4-14)

SI; 2max{S;;, }fori=12,---,N (4-15)

0<S,<s, (4-16)

Q. >0 and integer for i=1, 2,..., N (4-17)

SI,,S, =20 and integer for i=1, 2,..., N (4-18)

The objective function represents the average total costs of the system in the long run, which
consists of average fixed order costs, average inventory holding costs and operating flexibility
costs of using extraordinary measures. Constraint (4-13) is the integer-ratio constraint
between the order sizes of any two successive stocks. Constraint (4-14) assures that the net
lead time at each stock is nonnegative. Constraint (4-15) implies that each stock i can start
production only when all the inputs are available. Constraint (4-16) imposes an upper bound
s; on the outbound service time of stock 1. Constraint (4-17) and (4-18) imply that all the

decision variables must be integer.

In the objective function, £ is always unknown, this makes the optimization problem can not
be solved easily. We first assume that £ is given, then, the model P can be divided into two
independent sub-problems, order size decision sub-problem (Q-problem) and reorder point
decision sub-problem (R-problem). The Q-problem has a convex objection composed of all
Q-dependent cost terms and constraint (4-13) and (4-17), whereas the R-problem has a
nonlinear objective function composed of all R-dependent cost terms and linear constraints (4-
14), (4-15), (4-16) and (4-18).
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Note that when £ is known, pA(1— /) becomes a constant which can be ignored, the constant

N
term —Z(Cihie)+ PA(— /) in the objective function of P can be omitted in the two sub-

problems.
Q-problem:
_NCiﬂﬁ e1+Qi e
Minimize: ;[ G +h. > +Zj€PRE(i)hj Q]

Subject to:

Q =my;;,Q fori=12,---'N

Q. > 0and integer for i=1, 2,...,N
R-problem:

N
Minimize: ;hf 122 o0 DI +T;=5)) = 4861 +T, = S))]

Subject to:

SI,+T,-S, >0 fori=12,---,N
SI; 2 max{S;;, }fori=1,2,---,N
0<S,<s,
SI,,S; 20 and integer for i=1, 2,..., N

Based on the analysis in Section 3.5, § is always unknown, but it can be determined by the
inventory (R, Q) policy of the system. Therefore, in the next two sections, two efficient
dynamic programming algorithms will be proposed to solve Q-problem and R-problem in
Section 4.3 and Section 4.4 respectively when « and g are given. As soon as the two sub-
problems are solved, the optimal order size Q; and optimal reorder point R; for each stock can
be derived. Based on the optimal inventory (R, Q) policy, the fill rate g can also be calculated.
Finally, the original optimization problem P can be solved by an iterative procedure based on

deriving the optimal value of $ in Section 4.5.
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4.3 Dynamic Programming Algorithm for Q-problem

For a serial inventory system, we have proposed a dynamic programming algorithm to solve
the Q-problem. In the algorithm, a recursive procedure is first used to identify the optimal
decision at each stock depending on the state of its successor stock, and the optimal solution
of the problem can then be derived by a simple backtrack process. Different from the serial
system which has only one immediate predecessor, the assembly system studied may have a
stock that has more than one immediate predecessor, the dynamic programming algorithm

cannot be directly applied to solve the Q-problem of the assembly system.

In this section, we develop a new dynamic program for solving the Q-problem of the
assembly systems studied. The key idea of the algorithm is that the dynamic programming
recursive procedure is applied in two directions, i.e., both forward direction and backward
direction. In the forward procedure, the state of the system is extended forward from the end
stock to the stocks purchased from external suppliers, whereas the state is extended in the
reverse direction in the backward procedure. The forward procedure is applied first for the
purpose of reducing the solution space of the problem. Based on the solutions obtained by the
forward procedure, a backward recursive procedure is applied to identify the optimal decision

at each stock and then obtain the optimal solution of the problem.
4.3.1 Assumptions and Notations

To present the new dynamic programming (DP) algorithm, the problem studied is first
formulated as a multistep decision problem in a network whose nodes represent the states of
the system. To facilitate the network modeling of the DP, we first label (number) the stocks of
the assembly system with N stocks in a particular way based on its BOM as illustrated in

Figure 4.1.

Labeling the items (stocks): let U denote the set of unlabeled stocks and u denote the label
(number) assigned to the latest labeled stock. The labeling process starts from the end stock
which is labeled as stock 1, in each step we choose from U a stock whose successor has been
labeled, label (number) the stock as stock u+1, and remove it from U. This process is repeated

until U becomes empty.

In the following, the stock corresponding to node i is called stock i, i = 1, 2,..., N. Before
presenting the state space reduction technique and the DP algorithm, we first introduce the

following notations which will be used later.
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i: stock index, i=0,1,....,N+1, stock 0 and stock N+1are two dummy items (stocks) correspond

to the starting state and ending state of the network model for DP, respectively;

Qi: state variable of stock i, which represents a possible order size of stock i, and the set of all

possible values of Q; is denoted by W;, i=1,2,....N;
msiyi: decision variable of stock i, which links Q; with Qs), i.e., Q, = ms(i)iQs(i) , 1=2,...,N;

Msi)i(Qs(iy): the set of permissible values of mggy given the state Q) of stock i, i=2,...,N,
di(Qi): the cost of stock i when the current state is Q;, i=1,2,..,N.
4.3.2 State Space of Q;

By analysis of the objective function of the Q-problem and its integer-ratio constraints, i.e.,
constraint (4-13), we can find the following two important properties regarding W; and
Msi)i(Qsqy) for stock i, i=2,3,...,N. Based on the properties, the state space of each stock i
(i=1,2,...,N) can be determined.

Firstly, an upper bound of Q; is given by property 4.1.

Property 4.1: For an assembly inventory system with N stocks and the integer-ratio

constraints among Q; given by (4-13) for i=2,3,...,N, an upper bound of Q; is given by

N
. 248 ¢
Q= =% TR
;hi +2;ZJGPRE(i)hj
Proof: Substitute Q; byH,-Esucmmsun .Qfor i=1,2, ..., N in the objective function of the Q-

problem, we have

N CAB he 1+HjeSUC(i)m5(j)j Q
Z[ m +n 2
i=l HjeSUC(i) s(i) Q

If msy for i=1,2,..., N are fixed, the above function contains only one variable Q;. Because

e
+ZjePRE(i)hj 'szs(i). UESUC(k)mS(U)U Q]

the function is convex, its optimal value of Q; can be derived at the point where its first
derivative with respect to Q; is equal to 0. After calculating the first derivative, we can get the

following equation:

—é—'[j-G+H =0,

1
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Then,

N
C

Q=0 : )

i=1 HjeSUC(i) M)

2.8
N
e e
Zl:[(hi H jesuc(i) mS(i)J ) +ZZ jePRE(i) hJ' ' Hk:s(i),ueSUC(k) mS(U)u]
1=

By analyzing the above equation, the maximum value of Q; is attained when mg;); =1 for
i=1,2,..., N, then

ZZﬁici
N T .
Zﬂ:hi +2;ZjePRE(i)hj

Q

Let Ui(Qs()) denote the set of all possible values of Q; when Qs is given. Then, an upper
bound of mg;); for each item i, i=2,3,..,N is given by Property 4.2 as a function of the state Qs

of item s(i).

Property 4.2: For an assembly inventory system with N stocks and integer-ratio constraints
given by (4-13), if the order size of the immediate successor of stock i is Q) (i=2,..., N), then

an upper bound of mg); can be derived by

- 1 ZA'BZjePRE(i)Ci

m.,... = :
s(i)i e e
QS(i) SZjePRE(i)hj —2h

Proof: We first define V(i) as the set consisting of all the predecessors of stock i, and X(i) as

the set consisting of all successors of stock i.

If we substitute Q; by 11 .Qfor i=2,..., N in the objective function of the Q-

jesuc(i) mS(J’)J’

problem, the objective function, denoted by T, can be rewritten as:

T =£~LP+QS(i)-mS(m-R+M

Qs(i) My iy
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where

P= Z CjHUeSUC(i) My

jePRE(i) !
ersucu) mS(k)k

e
hj HueSUC(i) mS(U)U

2 ersucu) mS(k)k

J— e
R _ZjePRE(i) +Z|EV(i)h| !
cj/I

M :Zjex(i)[Q_j

e 1+Q e 1 e
+hj( 2 J)+ZjePRE(i)hj 'QS(i)]+§ZjePRE(i)hj :

The objective function T is convex with respect to mg;, so the optimal value of mg;); can be
derived at the point where the first partial derivative of the function with respect to mgy; is

equal to 0, so,
oa __A p* 3 +RQ,;, =0 fori=2,...,N
oMy Quay  Megy
Then,
ms(i)i:i /I,B-E fori=2,...,N
Qs(i) R

The maximum value of mg;; is attained when mgg;); =1 for jE€ V(i), so

- 1 \/ ZiZjePRE(i)CJ

m =
SZjEPRE(i) hj —2h

s(i)i
Qs(i)
According to the integer-ratio constraint (4-13), Ui(Qs) can be then be written as

Ui(Qs(i)) z{k‘k =Qs(i) : J (.I € Ms(i)i(Qs(i)))}!i ::LZ"-'! N

Ui(Qs(i)) can be calculated by m;(i)i and Qs

Then, the set of all possible value of Q; can be described as
W, ={U; (k) UU;(k;)---UU; (k,), where {k;, k,,- -+ k, eW,Fhi=2,....N

Therefore, the state space of each stock i (i=1,2,...,N) can be derive as follows:
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w = L2 Qi=1
" {Ui () UU, (k,)---UU, (k,), where {k, Ky, k, €W, Bhi=2,...,N

Under the two important Properties, the state space on each stock can be determined. And the

state space of each stock only depends on the order size of its immediate successor.
4.3.3 State Space Reduction

From the above analysis, we have got all possible values of Q; and its relationship with the
order size of its successor Qsg;). However, the correspondence between Q; and Qs is not one-
to-one, that is, for each value of Q; (QieWi;), there may exist more than one possible values of
Qs()- In this subsection, we propose a forward DP recursive procedure to determine the unique
Qs for any given Q; in the optimal solution of the Q-problem. This can help us to reduce the
state space of the problem when we apply a backward DP recursive procedure to identify its

optimal solution.

Observe that the objective function of the Q-problem is additive with respect to the order size
of each stock and the integer-ratio constraints of the problem only relate the order size Q; to

the order size Q,;, of its immediate successor stock s(i), so the order size decision of each

stock only depends on the order size of its immediate successor, not on the order sizes of

other stocks.

Based on this observation, we can develop the forward recursive procedure, which starts from
the end stock (stock 1) and extends the current stock to its immediate predecessors in each

step until stock N.

Let f;(Qi) as the minimal total cost of stock i and its successors (SUC(i)) when the order size
of stock i is given by Q;, i=0,1,2,....,N. The state transition function and the recursion

equations can then be formulated as:

State transition functions:
Q =My - Qi) 1=12,...,N
Recursion equations:

f(Q)=,  min  4d QM) + fiy (Qu)}i =123 N,N+LQ, €W

Mg iyi €M iyi (Qs iy

f,(0)=0

where

84



Ciﬂ’ﬂ e 1+Qi e H
% Qe M) = . - 2 +ZjepRE(i)hj'Qs(i)’ 1=12---N,QeW,

Q
dy.1(Qy.my) =0

With the equations, for each stock i (i=0,1,2,...,N+1), we can calculate f;(Q;) for each possible

order size Q;j €W; and the corresponding integer ratio m,; that minimizes the right hand term

in the recursion equations.

For each stock i, let us define suc(i, Q) = (s(i), Q) ,» Where Q, is the unique order size of

stock s(i) obtained by the forward recursion procedure when the order size of stock i is Q;, for
any QieW;, i=1,2,...,N+1. The outputs of this procedure include a set of possible values of

triple (Q,, f,(Q), suc(i,Q,)) . Table 4.1 gives an example of the outputs obtained by the

procedure for stock 5 of the assembly system in Figure 4.1.

Table 4. 1 The outputs of the forward procedure

Outputs
Qs f5(Qs) suc(5, Qs)
1 131 (3,1)
2 78.5 (3,2)
5 69.33 3, 1)

From Table 4.1, we can see that for stock 5, there are three possible values of
(Q,, f-(Q;), suc(5,Q;)) with Qs =1, 2, and 5, respectively. The outputs given in Table 4.1

showthat Qs =1ifQs=1o0r5,and Q3 =2 if Qs = 2.

After the forward recursive procedure, for each stock i and possible value of Q; (QieW;), there
exists the unique possible value of Qs given by suc(i, Q;), and this one-to-one
correspondence can help us to reduce the state space in which the optimal solution of the Q-

problem is located.
4.3.4 Dynamic Programme Algorithm

The backward DP recursive procedure for the Q-problem of the assembly system studied can
be formulated in the decreasing order of the labels of its stocks as described in the above, i.e.,
from stock N to stock 1. This is, an assembly system with N stock can be regarded as “a serial

system” with N stages as depicted in Figure 4.2 (in this figure, N = 7), where stage N+1and
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stage 0 are two dummy stages correspond to the starting state and ending state for the DP
procedure, respectively, stage i (N > i >1) corresponds to stock i, and the state of stock i is
given by a possible value of batch size Q;. Since one-to-one correspondence between item i
and its immediate successor s(i), i.e., suc(i,Q.), is already given by the forward DP procedure,
the backward DP procedure can operate as the DP procedure for the Q-problem of the serial
system presented in the last chapter, except that the outputs of the forward DP procedure

(Q, f,(Q.),suc(i,Q,)) for each stock i (i=1,2,...,N) will be used in the backward DP procedure.

O
1
O
1
O
1
O
1
O
1
O
2
O
+-
O
1
<

stage 0 stage 1 stage 2 stage 3 stage 4 stage 5 stage 6 stage 7 stage 8

Figure 4. 2 The stages of an assembly system

Let gi(Q;) denote the minimal total cost of stock i and its all predecessor stocks of PRE(i)

when the order size of stock i is given by Q;eW;, i=N+1,N,...,1.

In the forward procedure, we already get all possible values of order size Q; for each stock i
and their corresponding values of suc(i,Q;) for the order size Qs of its immediate successor
stock s(i), i=0,1,2,...,N+1. These values are used as the possible values of the state variables

of stock i and stock s(i) in the backward search, for i=N+1, N, N-1,...,1,0.
Formally, the recursion equations of the backward DP procedure can be written as:

Recursion equations:

gN+l(O) =0

(Q.)= min (Q. . Some ), i=N,N=-1...,1,0 W
9.(Q) (j,Qj)e{(j,Qj->|st!c(ijjv>:(i,Qi)}ZieP(i)g‘(Q’)+d'(QS("’ sod 1= N, oL Q eW,

9,(0) = inln 9,(Q).Q eW,

For item j € P(i), if there is no Qj satisfying suc(},Q;) = (i,Q)), then gi(Qi) = oo.

After the execution of the backward recursive procedure, for each stock i, i=0,1,2, ...,N+1, we
calculate gi(Q;) for each Q;eW;, where go(0) is the optimal cost value of the Q-problem of the

assembly system studied.

In summary, the main step of the dynamic programming algorithm is presented in the

following.
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Step 1: Set i=0, fy(0)=0 as the boundary condition of the forward DP procedure.
Forward Recursion:

Step 2: i=1, calculate the set Wy of possible values of Q1 using Property 4.1. Then, calculate
suc(l, Q,) for each Qq in W;.

Fori=2,3,...,N;

Step 3: Calculate Ms;i(Qsg)) based on Property 4.2, according to the state transition

functionQ, =m,,; -Q,; and the forward recursion equations, calculate suc(i, Q;) for each Q.

Backward Recursion:

For i=N+1,N, N-1,..., 1;

Step 4: Based on suc(i, Q;), calculate g;(Q;) for each Q;.

Step 5: Calculate go(Qo), the minimal total cost of the Q-problem.

Step 6: Backtrack from stock 0 to stock 1, stock 1 to stock 2, ..., stock N-1 to stock N to find

the optimal order size Q;” for each stock i, i=1,2,...,N.
4.4 Dynamic Programming Algorithm for R-problem

Under the GSA, Graves and Willems (2000) presented an efficient dynamic programming
algorithm for finding the optimal service time of a multi-echelon inventory system with a
spanning tree structure. In assembly inventory system, there is no apparent order of the items
(nodes) in which the algorithm would proceed. However, Graves and Willems (1996, 2000)
label (number) the nodes in a spanning tree so that only one state variable, either the inbound
service time or outbound service time at each stock is required for the dynamic programming
recursion. In this section, we use their dynamic programming algorithm to solve the R-

problem. In the following, we will briefly introduce the algorithm applied to the R-problem.

We first label the nodes (stocks) in the assembly system and then describe the recursion

equation of the dynamic programming algorithm for the R-problem.

Labeling the nodes: Let U denote the set of unlabelled stocks and u denote the label (number)
assigned to the latest labeled stock. The node labeling process starts from a node at the highest
level of the BOM of the assembly system. In each step, we take a nodei € U which is adjacent
to at most one other node in U in the BOM, label it as node (stock) u+1, and remove it from U.

This process is repeated until U becomes empty.

87



Similar to serial system optimization problem, we also denote N(i) as the subset of nodes that
are connected to node i in the sub-graph consisting of nodes {1,2,..,i} of the BOM. N(i) can be
determined recursively by the following equation:

NG =i+ N()

The dynamic programming algorithm recursively evaluates a functional equation for each

node (stock), in the order of nodes give by the node labeling. Let us define f,(S)as the

minimum holding cost of the nodes (stocks) in N(i), when the outbound service time for item i
is set of S in the assembly system. Since each node (stock) i has only one downstream
adjacent node (stock) with a higher label, i.e., s(i), in the assembly system, according to
Graves and Willems (1996, 2000), the functional equation for each node (stock) i can be

formulated as:

C.(S,Sl)=h° '[Z,-esucm D(SI; +T,—=S,) = AB(S, +T, =S)1+ > min  [f,(SD]

ieP() o<s<min{sl,M;}

where C, (S, SI)is a function of the outbound service time and the inbound service time of

node (stock) i.

In the equation, the first term is the holding cost of node (stock) i as a function of S and SI,
and the second term is the holding cost of the node in N(i) that are upstream nodes of node
(stock) i.

With this function, the minimum holding cost f,(S) can be obtained by solving the following

optimization problem:
f.(S)= msin{Ci (S,S)}

Subject to:
max(0,S -T;)<SI <M, T,

Here, we can bind S by its maximum service time M,, and if stock i is the end stock, we

constrain S by its maximum service time as S, <s, .

The dynamic programming algorithm can be summarized in the following.

Step 1: For i:=1to N, evaluated f,(S) for S=0,1,..., M,;

Step 2: Minimize f (S) to derive the optimal objective function value of the R-problem;
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Step 3: Backtrack from node (stock) N to node (stock) N-1,..., node (stock) 2 to node (stock)
1 to get the optimal inbound service time and outbound service time of each node (stock).

4.5 Optimization Procedure

After the introduction of two DP algorithms for the two sub-problems (Q-problem and R-
problem), in this section we propose an iterative optimization procedure to solve the original
optimization problem (model P). As mentioned in Section 3.5, for a given service level «, the
original optimization problem can be solved by an iterative procedure based on guessing the

value of £ in each iteration. The procedure has two main steps in each iteration:
= For an estimated value of g, solve model P
= Calculate the real fill rate g of the considered system;

To solve model P, we first need to know the fill rate 4, which can be determined by the (R, Q)
inventory policy of the system considered. A method is developed for calculating the fill rate
S in Section 3.5 when its inventory policy is given. Since the fill rate § only depends on the
reorder point R and the order size Q of the end stock which is unique for the assembly system,

its fill rate £ can be calculated similarly by

R+Q o (/rLL)kelL k|
EDIP I

i=R+1k=i+1
1 R+Q (ﬂl_ k -AL R+Q o (/ILk -AL | .
2y P L2y s B o

i=R+1k=i+1 i=R+1k=i+1

Note that in the above formula the subscript “1” which indicates stock 1 is omitted in L, R and
Q, where L is the net lead time to be determined by solving the inventory policy optimization

problem.

With the formula for calculating £, we can propose an iterative procedure similar to that of the
serial system to solve model P. The procedure starts from setting o as an initial value of g. In
each iteration, for an estimated f, the optimal echelon (R, Q) policy for the considered system
is obtained by solving model P, and the real fill rate 5 of the system with the policy is then
calculated. If the two values of £ are identical, i.e., the value of £ does not change in two
successive iterations, the procedure stops. The main steps of the procedure are similar to that

of serial systems (See Section 3.5).
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When the optimal echelon (R, Q) inventory policy found in the last iteration, its
corresponding installation (r, Q) policy can be derived by a simple transformation
asr, =D(SI, +T, -S,)-1 fori=1,2,...,N.

4.6 Experiments Results

In this section, we perform computational experiments to evaluate the performance of the two
dynamic programming algorithms for the Q-problem and R-problem respectively and the
performance of the procedure BETA proposed. In addition, we also conduct a sensitively
analysis to examine the impacts of different system parameters on the performance of the
algorithm.

4.6.1 Experiments for the resolution of Q-problem

We first compared our algorithm with Crowston and Wagner’s algorithm (referred to as
algorithm CW hereafter) on three sets of medium to large sized instances (with 7 stocks and 3
levels, 15 stocks and 4 levels, 63 stocks and 6 levels, respectively). For each instance, each
stock has only two immediate predecessors and one immediate successor, except for the
components at the highest levels of the BOM with no predecessor and for the end stock at the
lowest level with no successor. Each instance of the Q-problem was randomly generated with
the following parameter settings:

h* eU[L5], ¢, e ht -U[10,20], A € U[L10]

As mentioned above, Crowston and Wagner (1973) proposed two methods to calculate the
upper bound of the total cost: a heuristic algorithm and a dynamic programming algorithm
with coarse grid, leading to two versions of algorithm CW. We compared our algorithm with
the two versions. Since both our dynamic programming algorithm and the algorithm CW are
exact algorithms which can find the optimal solution of the Q-problem, we only compare their

computation times.

For each set, 10 instances were randomly generated and tested. The average and the

maximum computation time for all instances of each set are given in Table 4.2.
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Table 4. 2 The results for the instances of Q-problem

Average / max computation time

Instance set _ Algorithm CW Algorithm CW
Our algorithm o ] )
(heuristic UB) (dynamic programming UB)

7 stocks, 3 levels 0.0008 / 0.0011 2.77915.712 0.095/0.376
15 stocks, 4 levels 0.002 /0.0028 13.958 / 38.005 4.35/24.17
63 stocks, 6 levels | 0.0049/0.0068 100.34/278.96 10.35/24.62

From the table, we can observe that our dynamic programming algorithm for the Q-problem is
more efficient than algorithm CW in both versions. The results in this table also demonstrate
that our algorithm is very efficient in solving large instances, with the maximum computation
time for an instance with 63 stocks less than 0.0068 seconds. In addition, if we examine the
difference between the maximum computation time and the average computation time of each
set of instances, we can find that the difference is quite small for our algorithm, whereas the
difference is much larger for both versions of algorithm CW. This means that in terms of
computation time, our algorithm is much less sensitive to the instance data than their

algorithm.

To identify the reason behind the sensitiveness of algorithm in computation time, we
extracted more detailed results of 5 instances from the instance set of 15 stocks. These results
are given in Table 4.3, which include the lower bound LB and the upper bound UB of the
optimal cost, the optimal cost (OPT) and the computation time obtained by algorithm CW.
Note that UB for each instance in this table was obtained by using the dynamic programming

algorithm with coarse grid.

Table 4. 3 The sensitiveness of the algorithm CW in computation time

No. LB uUB OPT Time
1 1270.26 1280.5 1280.5 0.0018
2 2123.99 2138.69 2138.69 0.0047
3 2342.77 3939.03 2374.33 0.7322
4 3447.69 12619.5 3483.06 8.3726
5 2614.04 13455.9 2661.97 24.1729
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From Table 4.3, we can observe large differences of the computation time among 5 instances,
with the minimum computation time 0.018 seconds for No.l instance and the maximum
computation time 24.1729 seconds for No.5 instance. The results also show that when the UB
of an instance is very close to its OPT, the computation time of algorithm CW is quite short,
as in the case of instance 1 and 2. In contrast, if the UB of an instance is quite poor and far
away from its OPT, the computation time will be much longer, as in the case of instance 3, 4
and 5. The bigger the gap between OPT and UB, the longer computation time of the algorithm.
However, neither the heuristic nor the dynamic algorithm with coarse grid can guarantee to
obtain a good UB. In some cases, the UB obtained by either of them is very poor. That’s why

the computation time of algorithm CW is very sensitive to the data of the instance considered.

Similar to algorithm CW, our algorithm also first get an upper bound and a lower bound of Q;
for each stock i, but the upper bound obtained by our algorithm is much tighter than that
obtained by their algorithm. That’s why our algorithm is much more efficient than algorithm
CW for the Q-problem. For example, for an instance of 7 stocks with bill-of-materials given
in Figure 4.1 and the following parameters:

h® ={4,3,4,3,5,5,5}, ¢, ={54,50,50,51,44,39,60}, A =10
Table 4.4 gives the upper bound Q" and the lower bound Q" of Q, for each stock i obtained by
our algorithm and algorithm CW, respectively.

Table 4. 4 The bounds of Q; by the two algorithms

7 stock, 3 level system |  Our algorithm Algorithm CW
stock 1 Q:"=1,Q,"=8 | Q."=1,Q,Y=41
stock 2 Q" =1,Q,Y=16 | Q," =1, Q,” =107
stock 3 Q:"=1,0Q,"=16 | Qs-=1,Q;” =86
stock 4 Q. =1,0Q.”=32 | Q) =1,Q," =625
stock 5 s-=1, Q" =24 s~ =1, Qs” =379
stock 6 Qs =1, Q" =24 | Q¢ =1, Qs” =378
stock 7 Q+=1,0Q.Y=28 | Q+=1,Q,Y =384

The results in Table 4.4 show that for this instance the upper bound of Q, derived by our

algorithm is much tighter than that obtained by algorithm CW.

92




4.6.2 Experiments for the resolution of R-problem

Similarly, three sets of instances with 7 stocks, 15 stocks and 63 stocks respectively were
considered. All the instances for the R-problem were created with parameters h®,T,,s and 4
randomly generated according to uniform distributions described in Table 4.5 and with the

service level a given as 0.95.

Table 4. 5 Parameter settings of the tested instances of R-problem

Parameter Value
h’ h® eU[L5]
T. T, eU[L10]
S, s, eU[L3]
A A eU[1,10]

The computation results of the instances are given in Table 4.6.

Table 4. 6 The results for the instances of the R-problem

Instance set Average/max computation time
7 stocks (3 levels) 0.0014 /0.0029
15 stocks (4 levels) 0.0073/0.0152
63 stocks (6 levels) 0.1495/0.2303

For table 4.6, we can observe that the computation time of the dynamic programming
algorithm for the R-problem is quite short for all three sets of instances with 7, 15 and 63

stocks, respectively, demonstrating the efficiency of the algorithm.

4.6.3 Experiments for the sensitivity analysis for the two algorithms

In order to analyze the impacts of key parametersh®,c,and A of an assembly system on the

performances of the two algorithms we developed, we conducted a sensitivity analysis of the
computation times of the algorithms with respect to the parameters. The assembly system
with 15 stocks was considered, and the values of its three parameters were varied according to

the three sets respectively as follows:

ht ={1,2,3,4,5}, ¢ =[15,25,35,45,55], 1 ={L10, 20,50, 80,100}
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For each combination of possible values of the parameters, one instance was generated.

4.6.3.1 Sensitivity analysis for Q-problem
In terms of the objective function of Q-problem, the computation time for Q-problem are
closely related to three parameters, h?,c,and A. Then, the total number of instances tested is

150. For each possible value of the parameter, we calculate the average computation time of

the instances when the other parameters changes. The main results are given in Figure 4.3,

Figure 4.4 and Figure 4.5.
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Figure 4.3 Computation time for Q-problem with respect to 1
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From the three figures, we can observe that the average computation time decreases inh’,c,,

and increase in A . That mainly because the state space of the order size at each stock i

decreases inh’,c,, and increase in A, larger state space of the order size will take more

computation time to solve. Therefore, the results demonstrate that the parameters

ash®,c.and A has major influence on the computation time of the algorithm we developed for

Q-problem.
4.6.3.2 Sensitivity analysis for R-problem

Similar to Q-problem, the computation time for R-problem are related parameters ashand 4,

so the total number of instances tested is 30. The results are given in Figure 4.6, Figure 4.7.
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Figure 4. 6 Computation time for R-problem with respect to 4
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Figure 4.7 Computation time for R-problem with respect to h;®

The result in Figure 4.6 shows that the computation time increases obviously in 4, and from

Figure 4.7, we can see that the computation time nearly increases in h?, but the increments are

very little. From the results, we can demonstrate that the parameter of A has major influence in

computation time of the algorithm of R-problem, relatively, the parameter of h?has only little

influence. Through analysis the results, we can find that the increase of A will take larger

bounded demand ( D(A) ), and the computation time will also increase.

It should be noted that the computation time increase of decrease is not significant as the

values of one or more these parameters change.
4.6.4 Experiments for the resolution of problem P with a given service level

As we know, the performance of BETA mainly depends on two factors: the DP algorithms for
solving Q-problem and R-problem respectively, and the number of iteration of Step 1-Step 3
by the procedure proposed in Section 4.5. This section will evaluate the performance of
BETA from the above two factors by numerical experiments on the same sets of randomly
generated instances with 7 stocks, 15 stocks and 63 stocks respectively as presented in Section
4.6.1 and Section 4.6.2, but for each set of instances, four different a-service level ranged
from 0.8 to 0.98 were considered. For each instance set, 10 instances were generated
randomly. We calculate the maximum/average computation time and the maximum/average

number of iterations of the procedure for the instances, and the results are given in Table 4.7.
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Table 4.7 The results for the tested instances of problem P

. Max/average Max/average
a-service :

level _ com_putatlon r!umb(_er of

times in seconds iterations
0.80 0.0021/0.0014 212
7 stocks and 3 0.90 0.0031/0.0017 212
levels 0.95 0.0036/0.0019 22
0.98 0.0036/0/0018 212
0.80 0.0048/0.0036 212
15 stocks and 0.90 0.0055/0/0032 2/2
4 levels 0.95 0.0071/0.0044 212
0.98 0.0074/0.004 212
0.80 0.1071/0.0198 22
63 stocks and 0.90 0.015/0.0109 212
6 levels 0.95 0.0201/0/0137 212
0.98 0.0174/0.0139 22

From the table, we can see that the number of iterations for each instance is always 2, this
indicates that the number of iterations is neither sensitive to the number of items in an
assembly system nor sensitive to its a-service level. Moreover, the maximum computation
time and average computation time of the procedure are short for all instances; this

demonstrates the efficiency of the procedure BETA and its good convergence property.
4.7 Conclusions

As an extension, this chapter deals with the optimization of (R, Q) policy for a continuous
review assembly system with Poisson demand under the GSA. Since each stock in the
assembly system has more than one predecessor, the dynamic programming algorithm for the
Q-problem proposed in the last chapter cannot be directly used. For this reason, we develop a
new dynamic programming algorithm for the order size decision problem. The new feature of
the algorithm is that the DP recursive procedure is used in both forward direction and
backward direction. The numerical experiments demonstrate the efficiency of the dynamic
programming algorithm and the iterative procedure used for solving the inventory policy
optimization problem of the assembly system studied.
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Chapter 5 Optimization of (R, Q) Policies for Two-Level

Distribution Systems

In the inventory management literature, a lot of research papers have been dedicated to the
study of two-level distribution systems in which a central warehouse supplies a product to a
set of retailers. The most distinguishing feature of the distribution systems is that each stock
has only one direct predecessor, but has multiple direct successors. This makes the analysis
and optimization of such systems more difficult than serial and assembly systems. Because
under the stochastic service approach (SSA), except for considering the inventory policy at
each stock, we must also consider the warehouse’s allocation policy which determines how
the available on-hand inventory of the warehouse is allocated to the demands of the retailers
when these demands cannot be totally satisfied. In this chapter, we try to optimize the (R, Q)
policy of a two-level distribution system with fixed order costs at each stock under the GSA.
Different from serial and assembly systems in which all items (stocks) have the same
maximum reasonable lead time demand level as presented in Chapter 3 and Chapter 4, for the
distribution system, we assume a maximum reasonable lead time demand level for each stock
no matter it is the stock of a retailer or the stock of the warehouse, These bounds may be
different. For each stock, its excessive lead time demand beyond the corresponding bound
will be fulfilled by using extraordinary measures at operating flexibility costs. In addition, we
assume a randomized initial condition for the system. This condition is introduced for
simplifying the formulation of the (R, Q) policy optimization problem of the system. Because
for distribution systems, echelon (R, Q) policies and installation (r, Q) policies cannot be
transformed each other, this makes the formulation of the optimization problem more
complicated. With these assumptions, we can first establish a mathematical model for the
optimization problem and then propose an optimization procedure to solve the model based
on the decomposition of the model into two sub-problems which are solved by using
dynamical programming algorithms or EOQ-based methods. More particularly, we consider
five different types of integer-ratio constraints possibly imposed on the order sizes of the

stocks of the system, and compare their effectiveness by numerical experiments.

This chapter is organized as follows: the problem definition and the model formulation are
given in Section 5.1 and Section 5.2 respectively. The two sub-problems (order size decision
sub-problem with five types of integer-ratio constraints, and reorder point decision sub-
problem) are solved by efficient dynamic programming algorithms in Section 5.3 and Section
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5.4. In Section 5.5, we propose an optimization procedure for solving the original
optimization problem for the two-level distribution system studied. Finally, in Section 5.6,

numerical experiments for evaluating the performances of the algorithms are presented.
5.1 Problem Description

This section describes the two-level distribution inventory system studied as well as the

assumptions made on the system for parameter optimization of its (R, Q) policy.

Two-level distribution system Consider a two-level distribution inventory system with a
central warehouse and N retailers as illustrated in Figure 5.1. We refer to the warehouse as
stock 0 and the retailer i as stock i, for i=1,2,...,N. The retailers order from the warehouse,
which in turn orders from an outside supplier with unlimited stock. All customer demands

(final demands) take place only at the retailers, and we assume that retailer i faces a Poisson

demand with average demand rate A (i=1,2,...,N) and these N demand processes are

independent. The internal demand occurring at the warehouse (stock 0) is generated by all

retailers.

Retailers

Customer
Demand

:
i Warehouse

External ‘ Customer
Supplier ' Demand

Customer
Demand

A 4

Level 2 Level 1

Figure 5. 1 A two-level distribution system studied
The following assumptions are made on the system:

= The demand of each retailer follows a Poisson process and the retailers have independent

demands;

= Under the GSA, except that each retailer uses extraordinary measures to fulfill its
excessive demand, the warehouse may also use extraordinary measures to fulfill its
excessive demand; In this case, operating flexibility costs are considered at both the

retailers and the warehouse.
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= Under the GSA, backorder at the warehouse is not allowed if we exclude the part of any

demand fulfilled by using extraordinary measures.

= The total cost of the system consists of fixed order costs and inventory holding costs at all

stocks, and operating flexibility costs at the retailers;
= Echelon (R, Q) policy is used to control the system;

= The initial echelon inventory position of each stock i can randomly take any integer value
in the interval [Ri+1, Ri+Qj], this is referred to as randomized initial condition hereafter.

Maximum reasonable lead time demand levels Denote by d.(t) the customer demand of
stock i at time t, and byd.[t;,t,) the total demand of stock i from time t; to time t, without
including t; for anyt, <t,. The total demand of the retailers at time t, d,(t), and their total lead

time demand over the time period [t,,t,), d[t;,t,) , can be defined as follows:

N N
do(t):Zdi(t), do[ﬁ’tz)zzdi[ﬁ’tz)
i=1 i=1
Sinced,(t), i=1, 2,..., N are N independent Poisson processes, their sum d,(t) is also a

N
Poisson process with average demand rate 4, = > 4 .
i=1

For each retailer i, suppose that it want to assurer a (event-oriented) service level g; to its
customers, its maximum reasonable lead time demand level D, () over zunits of time can then
be determined according to the service level. That is, D.(r) can be determined as the
minimum number satisfying the following condition:

p{d[t-r,t)<D(0)}za,i=12,..,N (5-1)

Note that D,(z) does not depend on time t because the customer demand of retailer i is

stationary.

Since the customer demand of each retailer i follows a Poisson process with average demand

rate A, we have

D (7) [212-] efﬂir

>a,i=12,..,N (5-2)
o k!

The integer demand bound D, (7) can then be computed according to inequality (5-2).
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In serial and assembly systems, the maximum reasonable lead time demand level is only
defined for the end item (stock) and all other items (stocks) have the same lead time demand
as that of the end item (stock). However, for the distribution system, since the demand of the
warehouse is the sum of the demands of all retailers in the long run, its maximum reasonable

lead time demand level should be different from these of the retailers, so we must also define

a maximum reasonable lead time demand level for the warehouse. Let D,(zr) denote the

maximum reasonable lead time demand level of the warehouse over z units of time. One way

N
is to define D,(7) asZDi (), but this definition does not take account of inventory risk
i=1

pooling at the retail level, leading to an overestimation of D,(z) as pointed out in Graves and
Willems (2000). As an alternative, we define D,(z) according to the service level that the
warehouse want to assure for final customers, that is, D,(z)is defined as the minimum

number satisfying the following condition:

p{d,[t—7,t) < D, (£)}> o (5-1b)

where ¢, is the warehouse’s service level to final customers and d [t —7,t) is the lead time

demand of all retailers, i.e., total final customer demand from time t - 7 to time t (not

including time t). Since d,(t) is a Poisson process with average demand rate 4, , we have:

Dy (@) Ao
) [ArTe ™ >q, (5-2b)
o k!

Since the warehouse is controlled by an echelon inventory policy and D,(z) is defined based

on the final customer demands rather than the orders placed by the retailers, we

interpret D,(7) in an “echelon” way. That is, the warehouse assures that no echelon stock out
occurs if the total final customer demand over lead time z does not exceed D,(7), otherwise

excessive part of the demand will be fulfilled by using extraordinary measures whose costs

are in charge of the warehouse.

The remain thing is to specify the external service level «, of the warehouse. One way is to
determine ¢, according to the inventory holding costs and the operating flexibility costs at

the warehouse. If the second costs are high, the warehouse should choose a high service

level o, , otherwise it should choose a lower «, . Another way is to determine ¢, according to
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N
the service levels and demand processes of all retailers, that is, we set «, :Zﬂ,,ai/
i=1

N
A .
i=1

This «, can be regarded as the global service level of all the retailers, or the global service
level of the system. The weight A assigned to ¢; in the definition takes account of the

demand level of each retailer. When N = 1, the distribution system becomes a serial system

and a,=¢, . This coincides with our definition of maximum reasonable lead time demand

levels for serial systems.
5.2 Mathematical Model Formulation

In this section, a mathematical model for the optimization of (R, Q) policy for the distribution
system considered will be described.

Since for the distribution system, the warehouse may also use extraordinary measures to
fulfill its excessive demand, we should also consider operating flexibility costs at the
warehouse level. Let us denote by p; and £, the unit operating flexibility cost and the fill rate
of stock i (i=0, 1, ..., N), respectively, where stock 0 denotes the warehouse and stock i (1 <
I < N) denotes retailer i. Here, the fill rate S, is defined as the total demand normally fulfilled
by stock i (in quantity) divided by its total demand in the long run under the GSA. For each
retailer i, £, is the same as its fill rate under the SSA if we consider all units of its demand
fulfilled by using extraordinary measures are regarded as the units of the demand not satisfied
on-time, so the calculation of £ can be done in a similar way as we have done for the
calculation of g in the cases of serial and assembly systems. For the warehouse, since it is
controlled by an echelon (R, Q) policy and its maximum reasonable lead time demand level
D,(z) is interpreted in an echelon way (See Section 5.1), its fill rate S, can be calculated as

N
if it is a single stock with demand do(t):z d,(t).

i=1

Since the inventory replenishment of each stock i (i=0, 1, ..., N), in the distribution system is
used to satisfy its normal demand (the part of the lead time demand not exceeding its

prespeified maximum reasonable level D. (7)), the average order size of the warehouse per
unit of time is given by A/ . Furthermore, as mentioned in Section 5.1, the operating

flexibility costs are now charged at both the retailers and the warehouse, so the cost function

of the optimization problem can be formulated as,
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> RN+ Y pA ) 3

Next, we formulate E[1°] for each stock i, i=0,1,...,N.

At time t, the following well-known inventory balance equation can be derived for each stock
i,i=0,1,...,N.

IL(t) = IP°(t—L)—d[t—L,t) (5-4)

Under the GSA, any lead time demand of retailer i inferior to its maximum reasonable level

can always be satisfied, so I (t) = I;(t), then,

I°(t) = IR (t- L) - d,[t - L, 1) (5-5)

For stock i, i=0,1,...,N, in order to provide 100% guaranteed service, I (t)>0 must be
satisfied, then,

P (t-L) > d[t—L,.1) (5-6)

In addition, for each stock i, i=0,1,...,N, no stockout means that its installation on-hand

inventory I, (t) is always nonnegative.

On the one hand, for each retailer i (stock i, i=1,2,...,N), since its installation on-hand

inventory, I,(t), is equal to its echelon on-hand inventory I¢(t), the nonnegative requirement

of I, (t) is implied by constraint (5-6).

On the other hand, for the warehouse (stock 0), its installation on-hand inventory I, (t) can be

formulated as

(O = 15O~ IR ) 5-7)
Because I, (t) > 0, we have
HOEDNAO (5-9)

From (5-5), we have I;(t) = IR (t—L,)—d,[t—L,,t) . This equation together with (5-8)

implies that:
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IR (t-Ly) = IR () + doft— Ly 1) (5-9)

For the warehouse, constraint (5-6) and constraint (5-9) must be both satisfied. Since for i=0
the satisfaction of constraint (5-9) implies the satisfaction of constraint (5-6), we only need to

consider constraint (5-9) for the warehouse.

For each retailer i, in order to ensure inequality (5-6) holds for any demand realization, the

following inequality must hold:
R+1>D (L) (5-10)
Since L, =SI, +T, —S;, we can derive
R > D (SI, +T,—S,) -1 fori=1,2,..,N (5-11)
For the warehouse, under an echelon (R, Q) inventory policy, after order decision, its echelon

inventory position IPo will be within the interval [Ro+1, Ro+Qg]. The echelon inventory

position 1Py and the (echelon) inventory positions 1P; (i=1,2,...,N) of the retailers may be
dependent, because they are driven by common demand processes (Simchi-Levi and Zhao,
2012). However, according to Simchi-Levi and Zhao (2012), if we assume randomized initial

condition for the system, then P :(ﬁie, i€{0, 1, ..., N}) is uniformly distributed in S°,

where S¢ ={(si, i€{0, 1, .., N})|sie{Ri+1, Ri+2,..., Ri+Qi}} is the state space of IP". With
this jointly uniform distribution result and the independence between lead time demand

do[t — Ly, t) and inventory position IR°(t) (i=1, 2, ..., N), the following inequality must hold:

R +12 (R +Q)+Dy(Ly) (5-12)
Then,
R, ZZN:(Ri +Q.)+D,(SI, +T,-S,) -1 (5-13)

In summary, the above conditions can be described as follows:

R >D.(SI, +T. —S,) -1, forretaileri,i=12,...,N

N (5-14)
Ry =Y (R +Q)+Dy(Sl,+T, —S,) -1, for the warehouse

i=1
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Since our objective is to minimize the total cost of the system in the long-run, its optimal

batching ordering (R, Q) policy must satisfy the following equations:
R=D,(SI, +T, -S;) -1 forretaileri,i=1,2,...,N

> (5-15)
Ry=D_ (R +Q)+Dy(Sl, +T, —S,) -1, for the warehouse
i=1

Note we use the relationship between IP*and 1° (i=0,1,...,N) described above to find the
expected echelon on-hand inventory E[1°] . Hadely and Whitin (1961) show that IP® is
uniformly distributed over the interval [R +1, R +Q.], then the probability of being at

stateR + j, j =1,...,Q, is given by

EIRT - YR+ )R+ (5-16)

From the definition of (i [t—L;, t)and 5, we have:

Efdhft L, 0] = AAL, (5-17)

Similarly, we assume that all excessive demands are satisfied by using extraordinary measures

without incurring inventory holding costs. With this assumption, we can ignore excessive

demand in the calculation of expected inventory holding cost E[If]. That is, when calculate
E[17] according to (5-5), we first replace dft—L,t) by d[t—L.,t) . So we can
derive E[I7]as

E[I71=E[IR°]- [ [t - L.OI=R +%_ﬂiﬂi L (5-18)

By substituting R; given by (5-15) into equation (5-18), we can derive

D,(SI. +T,—=S,)—AB(SI. +T. -S,)+ Qiz_l, fori=12,..,N

i[Di (S 4T =S)1= 4B, (Sly + Ty = Sp) + Qoz_l

E[If]= (5-19)

N
+> Q-N, fori=0
i=1

With equation (5-3) and (5-19), the inventory optimization problem studied can be formulated

as the following nonlinear programming problem:
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P: Minimize

N Cﬂ’ﬁ e Q —1 e N N
%Whi UBEH+T=S) = A/ S +T =) +=7 1+ D(SI +T,=S)+ > Q ~ N1+
i=0 i i=1 i=1
N
> PAL-A)
i=0
Subject to:
SI,+T,-S, 20 fori=12,---,N (5-20)
SI, =S, fori=12,---,N (5-21)
0<S§,<s,i=12,...,N (5-22)
Q, >0 and integer for i=1, 2,..., N (5-23)
SI,, S, 20 and integer for i=1, 2,..., N (5-24)

In the above model, the objective function represents the average total costs of the two-level
distribution system in the long-run. Constraint (5-20) assures that the net lead time of each
stock is nonnegative. Constraint (5-21) implies that the inbound service time of each retailer is
no less than the outbound service time of the warehouse. Constraint (5-22) imposes an upper
bound s; on the outbound service time of the stock of each retailer i, i=1,2,...,N. Constraint (5-
23), (5-24) implies that all decision variables must be nonnegative. Note that additional
integer-ratio constraint on order size Q; (i=0,1,...,N) may be added to be the model because of

practical requirements, this will be discussed in Section 5.3.

When all g; are known, both the objective function and the constraints of model P can be
separated into two sub-problems, order size sub-problem and reorder point sub-problem. The
two sub-problems, which are referred to as Q-problem and R-problem respectively hereafter,
have decision variables Q; and {Sl;, Si}, respectively.

N N
Note that the constant term —(%Z hf +hsN)+>_ p.A (1— 3) in the objective function of P can
i=0 i=0

be omitted in the two sub-problems.

Q-problem:

Minimize: ZN:[(%JFW -%)+h§ -iQi]

i=0 i
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Subject to:
Q. >0 and integer for i=1, 2,..., N

R-problem:
N N
Minimize: > he-[(D(SI; +T,=S,) = 4B, (Sl, +T,=S)]+h; - > D(SI, +T, - $S,)
i=0 i=1

Subject to:
SI.+T.-S, >0 fori=12,---,N
SI, =S, fori=12,...,N

0<S, <s,i=12,..,N

SI,,S; =0 and integer for i=1, 2,..., N

In the next two sections, we will develop efficient algorithms to solve the two sub-problems
for the given o; and pi. Moreover, for the Q-problem, five different types of integer-ratio
constraints are considered, and we present an efficient algorithm to solve the Q-problem with
each type of integer-ratio constraints.

All the above analysis assumes that all g are known. However, f; are unknown, but they can
be determined by the inventory policies of the system. Based on the solutions of the two sub-
problems, we will introduce a method for calculating fi, and the original optimization
problem (model P) can be resolved by an optimization procedure.

5.3 Dynamic Programming Algorithm for Q-problem

In practice, integer-ratio constraints may be imposed on the order size of the warehouse (Qo)
and the order sizes of the retailers (Qj, i=1,2,...,N). That is, the order size of a stock may be
required to be a multiple of the order size of another stock. Such constraints can facilitate
order/shipment quantity coordination between two supply/demand facilities and simplify their
order packaging, transportation and inventory accounting. Many companies have recognized
these managerial benefits of having such integer-ratio constraints in multi-echelon inventory

management (Cheng and Zheng, 1997).

For the two-level distribution system studied, researchers have considered different types of
integer-ratio constraints, but no comparison among them was made in terms of the

effectiveness. In Section 5.3.1, we will introduce five different types of integer-ratio
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constraints possibly imposed on the system, and the Q-problem with each type of integer-ratio
constraints will be solved by a dynamic programming algorithm or an EOQ-based algorithm
in Section 5.3.2. Numerical experiment results on the evaluation of the effectiveness of the
five different types of integer-ratio constraints and their impacts on the optimal order sizes of

the system will be given in Section 5.6.
5.3.1 Integer-ratio Constraints for Q-problem

Five different types of integer-ratio constraints corresponding to five cases respectively are

described as follows.
Case 1: without integer-ratio constraint;

In this case, no relationship exists between the order size of the warehouse (Qo) and the order
size of any retailer (Qj, i=1,2,...,N). This corresponds to the situation when the warehouse and
the retailers have no intention to coordinate their order/shipment quantities. In this case, the
Q-problem has a simple structure, which can be divided into N-independent sub-problems and

solved as the classical EOQ model.
Case 2: Qi=m;-Qn, for some integers m;, i=1,2,...,N-1.

This kind of integer-ratio constraints was considered by Chen and Zheng (1997) in their
model of a two-level distribution system with one warehouse and multiple retailers, where
retailer N is taken as the reference retailer and its order size Qy is taken as the base-lot of all
other retailers in the system. Here, retailer N can be replaced by any other retailer (i # N) and
the choice of the reference retailer and its order size depends on the average demand rate of
each retailer. Under the assumption that initial on-hand inventory at the warehouse is also an

integer multiple of the base-lot, they showed that such a restriction is not too costly.
Case 3: Qi=mj-q, for some integers m;, i=0,1,2,...,N.

Similarly, this case also assumes a base-lot for the distribution system, in which the order size
of each stock (Qj, i=0,1,...,N) is an integer multiple of the base-lot denoted by q. Here, q can
also be regarded as the common factor of Qo, Qs,...,Qn. In practice, g may correspond to the
capacity of a pallet for delivery. The capacity is the number of units of a product that the

pallet can carry for order shipment.
Case 4: Qo=m;-Q;, for some integers m;, i=1,2,...,N.

This case assumes that the order size at the warehouse (Qo) is always an integer multiple of
the order size of each retailer (Q;, i=1,2,...,N). This assumption, which is commonly adopted
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in the inventory management literature, is quite natural if the inventory replenishment policy
of the warehouse is to satisfy all or nothing of each retailer’s order (Axsater, 1996). This
coordination strategy sets a strict restriction between the order size of the warehouse and the

order size of each retailer, it may bring extra coordination costs to the system.
Case 5: Qo=mo-go, Qi=m; *q1, 1< 1 < N, qo=Ko-ql, for some integers m;, i=1,2,...,N, Ko.

In case 2 and case 3, a base-lot is assumed for both the warehouse and the retailers in the
distribution system. However, since the warehouse and the retailers belong to different levels
in a supply chain, this order size coordination strategy may be difficult to implement. Based
on this observation, we propose the case 5 of integer-ratio constraints. This case assumes
there exist a base-lot for each level in the system, i.e., go for the warehouse level (level 0) and
Qs for the retailer level (level 1). That is, the order sizes of all the stocks at the same level have
a common base-lot and the base-lot at a high level (level 0) is an integer multiple of the base-
lot at a lower level (level 1), i.e., the base-lot at the warehouse (o) is an integer multiple of

that at the retailers (g1).

In the next section, we will develop efficient algorithms to solve the Q-problem with the

integer-ratio constraints in five cases.
5.3.2 Dynamic Programming for Q-problem

According to the characteristic of the cases for the Q-problem, we present efficient algorithms

to solve for deriving the optimal Q" at each stock.

Before introducing the algorithms, we first transform the objective function of the Q-problem

as the following expression.

N e
GAB +1-Qi whereH; = "y
> Q2 h'+2h5,i=12,...,N

The new expression of the objective function will be used later for describing the procedure of

the algorithms.
5.3.2.1 EOQ model for Q-problem with case 1

For the Q-problem without integer-ratio constraints, the problem can be divided into N-

independent sub-problems, and each sub-problem will be solved as EOQ model.

Therefore, the optimal Q" at each stock i (i=0,1,...,N) can be divided as follows:
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Q = —ZCiHm i=0,1..,N

5.3.2.2 The algorithm for Q-problem with case 2

We develop a simple algorithm to solve the Q-problem respect to case 2, the key idea of the
algorithm is that we first use two important properties we have found to reduce the state space
of the problem. After the state space reduction, a simple algorithm working on the reduced
state space is used to identify the optimal solution.

The following notations are first introduced as follows:

Qi: state variable of stock i, which represents a possible order size of stock i, i=0,1,...,N and

the set of all possible values of Q; is denoted by W;,

Wh: the set of all possible values of the base-lot Qy,

m;: decision variable of stock i, i=0,1,..., N-1,

Mi(Qn): the set of permissible values of m; given the state of the base-lot Qy,
di(Qi): the cost of stock i when its state of stock i is Q;j,

C: the minimum total cost for the system.

1) State space reduction

By analysis of the objective function of the Q-problem and its integer-ratio constraints, i.e.,
case 2, we can find the following two important properties regarding Wy and M;(Qy) for stock
1,1=0,1,2,..., N-1. Based on the properties, the state space of each stock i, i=0,1,2,...,N can be

derived.
Firstly, an upper bound of the base-lot Qy is given by Property 5.1.

Property 5.1: For a two-level distribution system with one-warehouse, N-retailers and the
integer-ratio constraints among Q; given by case 2, an upper bound of the base-lot Qy is given

by
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Since Qy is an integer, with the property, Wy can be taken as the integer set 01‘{1,2,---,{QN —‘},

where[ x |=min{fa e Z|a > x}and Z is the set of integers.

Let Ui(Qn) denote the set of all possible values of Q; when Qy is given. Then, an upper bound

of m; for each stock i, i=0, 1,2,...,N-1 is given by Property 5.2 as a function of the state Qy .

Property 5.2: For a two-level distribution system with N retailers and the integer-ratio

constraints of case 2, if the order size of the base-lot is Qy , then an upper bound of m; is given

by

1 |2cAp
Q \ H

m = for i=021,...N-1

From this property, if Qy is given, the permissible decision set M;(Qy) can be taken as the

set{l, 2,---,[mi —‘}. According to the integer-ratio constraints given by case 2, Uj(Qn) can then

be written as

Ui(QN)z{Q|Q=QN ‘m, me M|(QN)}!| =012,..,N-1

Ui(Qn) can be calculated from rﬁi and Qx.

2) The procedure of the algorithm

Since the objective function of the Q-problem is additive with respect to the order size of each
stock and the integer-ratio constraint with case 2 of the problem only relate the order size Q;to
the order size of the base-lot Qy, so the order size decision of each stock only depends on the
order size of the base-lot Qn. Therefore, we develop a simple algorithm based on the base-lot

given by QneW) for solving the problem.

Let gi(Qn) denote the minimal cost of stock i for i=0,1,..,N-1 when the base-lot is Q.

9i(Qy)=, min 'd;(j), Qy €Wy

Therefore, the minimal total cost C of the Q-problem with case 2 can be derived by

c :rgindN(QNng.(QN),QN eW,
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whered.(Q,)= 9 + > Q, 1=01..,N.

i
In summary, the main step of the algorithm is presented in the following.

Step 1: Calculate the upper bound of the base-lot Wy and the set of U;(Qy) for i=0,1,..,N-1
using the two properties;

Step 2: For i=0,1,...,N-1, calculate g;(Qn) for QneWy ;
Step 3: Calculate C, the minimal total cost of the Q-problem;

Step 4: Backtrack from stock N to stock i, i=0,1,...,N-1 to get the optimal batch size Q; for
each stock i, i=0,1,2,...,N.

5.3.2.3 The algorithm for Q-problem with case 3

Similar with case 2, the integer-ratio constraint in this part also set a base-lot for the Q-

problem; therefore, we can use the algorithm in Section 5.2 to solve the problem in this case.

There also exist two similar important properties to reduce the state space for the problem,
here, let Wy as the upper bound of the base-lot g, then, based on the two properties, we can
calculate Wy and M;(q) for i=0,1,...,N as follows:

Since q and m; are integers, then, W, and M;i(q) can be taken as the integer set

of{1,2,---,[ﬂ}and {1,2,---,(n_1i —‘}for i=0,1,...,N, respectively.,

According to the integer-ratio constraints given by case 3, Ui(q) can be written as
U,(9)={Q|Q=g-m, meM,(@)}i=012,...,N

Next, the minimal cost of each stock i when the base-lot is g, i.e., gi(q) (i=0,1,...,N ) can be

calculate by

g;(q)= min d.(j), g eW

jevi(@)

Thus, minimal total cost of the Q-problem with case 3 can be derived by
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1=0
And the optimal Q" for each stock i, i=0,1,...,N can be derived by a simple backtrack process.
5.3.2.4 Crowston-Wagner’s algorithm for Q-problem with case 4

Crowston and Wagner (1973) presented a dynamic programming algorithm (referred to
algorithm CW) to solve a lot size problem for assembly systems with deterministic demand.
Their algorithm can also be used to solve our Q-problem with case 4 since it has the same
structure. Their algorithm first calculates an upper bound and a lower bound of the optimal lot
size for each stock, based on a lower bound and an upper bound of the optimal cost of the
joint lot-sizing problem. Next, we give the following procedures for solving such a problem
by algorithm CW.

Firstly, the objective function can be written as:

A H {Hozhg

CA
f(Q)="2L,1.Q,
Q) Q 2 ° H =h*+2h,i=12,...N

Next, the upper and lower bounds of order size Q; for each stock i (i=0,1,...,N) can be
calculate by the following procedures:

264

Stepl: take Q. = H—'B' ,1=0,1,2,..., N into fi(Q), i=0,1,2,...,N, then,

_CAB +H7 2648 012N :

N
Step 2: get the lower bound of the total cost L:Z Z;

i=0

Step 3: an upper bound of the total cost, U, can be derived from a feasible heuristic solution.
Step 4: with the upper bound U and the lower bound L, the cost of each stock i (fi(Q;)) for
iI=0,1,2,...,N may be determined: U-(L- Z;), that is

M+E.Qi =Z+U-L
Q 2

Then, we can solve directly for upper and lower bounds of each stock i,Q”, Q".
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In addition, better bounds on the optimal Q;, such that Q™ < Q" <Q™*can be obtained as
follows:
Q™ =max(Q";QL), mes(i), Q™ =min(Q”;QY), me P(i)
Let W; denote the state space of each stock i, i=0,1,2,...,N, then, W; can be derived by
W,=[Q™, Q™]

Since the order size at the warehouse must be an integer multiple of each retailer, i.e.,
Qo=m;Q;, i=1,2,...,N, we assume V;(Qo) (i=1,2,...,N) as the set of all possible value of Q; of

stock i (retailer i) when the order size of stock O (the warehouse) is given by QoeWo.

Let gi(Qi) present the minimal cost at stock i and all its successors when Q; is given by Q;eWi.
The state transition function and the recursion equations of the DP algorithm can then be

formulated as:
State transition function:

Q=m-Q,i=12..,N

Recursion equations:

9;(Q)=d,(Q), Q eW,,i=L2,..N
go(Qo):do(Qo)+Z min g](k)' Qo e\No

jes0) kev, (Qp)

9,(0)= r%!)n 90(Qy), Q, W,

where

_CGAS H 4 L
d.(Q)= Q + > Q,i=01..N

Then, the problem can be solved by the dynamic recursive procedure, and the optimal Q" for

each stock can be derived by a backtrack procedure.
5.3.2.5 The algorithm for Q-problem with case 5

In two-level distribution system studied, the key meaning of case 5 is that for each level, there
exists a base-lot, i.e., go for the warehouse and q; for all retailers, and moreover, the base-lot
go must be an integer multiple of that of g, therefore, there exist the following constraint for

the system:
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Qo =MyQy, Qi = miql,i=l,2,...N ’q0=k0q1

In this part, we may consider the two levels separately. First, for the lowest level (the level of
all retailers), i.e., level 1, similar with the algorithm for case 2, we calculate the upper bound
of the base-lot q;, denoted by Wy, and M;(q;) for i=1,2,...,N.

Since g and m; are integers, then, Wjand M;(q) can be taken as the integer set

of{1,2,---,{q_l1}and {1,2,---,[mi—|}for i=1,....N, respectively.

Then, Ui(q,) for stock i, i=1,2,...N at level 1 can be written as
U,(q) ={Q|Q=0g,-m, meM,(q)}i=12..,N

Secondly, for level 0, considering the above constraints, we can derive the following

relationship between Qq and q;.
Q, =k,myy

If we assume r,=k,m,, then, the upper bound of ro, denoted by Ry, can be get by

Then, Ry can be taken as the integer set of{1,2,---,(r_01}.

And Uj(q;) for stock O at level 0 can be written as:
Uo(ql) :{Q|Q:q1'r1 re Ro}

After getting Ui(qy) for each stock i, i=0,1,...,N, next, the minimal cost of each stock i when

the lowest base-lot q; is given by g; W3, can be calculated by
g (@)= min d; (). g, «W,

Thus, minimal total cost of the Q-problem with case 5 can be derived by
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1 1=0
And the optimal Q" for each stock i, i=0,1,...,N can be derived by a simple backtrack process
5.4 Dynamic Programming Algorithm for R-problem

In this section, we also use an efficient dynamic programming algorithm (Graves and Willems,
1996) to solve the optimization problem for finding the optimal service times of a two-level
distribution system with a spanning tree structure under the GSA. In the following, we briefly

introduce their algorithm applied to the R-problem studied.

In the algorithm, a multi-echelon inventory system is described by a graph in which each node
represents a stock in the system and two nodes are connected by a directed arc if the
corresponding two stocks are connected (one stock is a supplier of the other stock). In the
graph, let N(i) denote the subset of nodes (stocks) {1,2,...,i} that are connected to i on the
sub-graph consisting of nodes {1,2,...,i}. N(i) will be used to explain the dynamic
programming recursion. For the distribution system studied, N(i) can be recursively

determined by the following equation:
N(i)={i}+P(i)
This implies that N(0)= {0}, N(i)={0,i}, i=1,2,...,N.

The dynamic programming algorithm evaluates a functional equation for all nodes (stocks), in
the order of their indexes (labels). According to Graves and Willems (1996), generally the
functional equation may have two different forms at each node i (i=1,2,...,N-1), depending on
the location of the node with higher index that is adjacent to node i. However, for the
distribution system studied, each node i has only downstream adjacent nodes with a higher
index, then the functional equation has the unique form. In order to formulate the equation, let

us define:

fi(S): the minimum inventory holding cost for the sub-system (of the original distribution
system) described by the sub-graph with node set N(i), where the outbound service time of
stage i is given by S.

With this cost function, the minimum inventory holding cost for the sub-system can also be

defined as a function of both outbound service time and inbound service time of node i (stock

i):
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j=1

The first term is the inventory holding cost of node i (stock i), which is a function of S and SI.

The second term corresponds to the nodes (stocks) in N(i) that are upstream of node i (stock ).
The functional equation for f;(S) can be found by solving the following optimization problem.

f,(S) =min{C, (S, 1)}

Subject to:
max{0,S —T,}<SI <M, —T,and Sl integer.

In the above model, S is bounded by M;-T;, where M; is the maximum replenishment time of
node i (stock i). In addition, if node i is the retailer, S is also bounded by its maximum service

time, i.e.,s <sfori=1,2,...N.

In summary, the main steps of the dynamic programming algorithm are given in the following.
Step 1: For i:=0 to N, evaluate fi(S) for S=0,1,...,M;.
Step 2: Minimize f\(SI) to derive the optimal cost value of the R-problem.

Step 3: backtrack from node (stock) N to Node (stock) N-1,..., Node (stock) 2 to Node (stock)

1 to get the optimal inbound service time and outbound service time of each node (stock).
5.5 Optimization Procedure

Similar to serial systems, the original optimization problem, i.e., optimization of echelon (R,
Q) policy under the GSA for the distribution system can be resolved by an iterative procedure
as presented in Section 3.5. The procedure has two main steps: firstly, for an estimated fill
rate of the system, the optimal order size Q and the optimal reorder point R for each stock are
calculated by solving two sub-problems using two dynamic algorithms. Secondly, the real fill
rate of each stock in the system is calculated given its inventory policy. When the real fill rate
of each stock equals to its estimated fill rate, the optimal solution of the original problem is
found.

For the serial and assembly systems considered in last two chapters, they have only one end
stock, so there is only one fill rate g for the entire system, i.e. the fill rate of stock i (i = 1,

2, ..., N) can be written as:

117



However, for the two-level distribution system considered, the warehouse has multiple
retailers (end stocks) and these retailers may have different fill rates. For each retailer i, if its

reorder point and its order size of retailer i are given by R; and Qj, respectively, its fill rate S,

can be calculated in the following way:

5= 1_iR§'z(ﬂ,L)e“ K-i

Q||R+1k =i+l k
R +Q; K 5-AiL R +Q Ka-AiL -
_ 122(/“_')6 +1ZZ(2,L)e L;
Q. i=R; +1k=i+1 Q. i=R;+1k=i+1 k

Similarly, with the echelon interpretation of D,(z), the fill rate 5, of the warehouse can be

calculated as:

1 RtQ (XOLO)keZOLO k-i

Bp=l-m D, D

QOI =Ry +1k=i+1 k

1 Ro+Qo (ﬂ'oLo)keAOLo 1 RotQy (ﬂoLo)ke-ﬂoLo i_
RO D TR R

Qo i=Ry +1k=i+1 Qo i=Ry+1k=i+1 -

From the above analysis, the fill rate of each stock in the distribution system can be calculated
according to its inventory control parameters (R;, Qi) (i=0, 1, ..., N); however, the inventory
(R, Q) policy is also derived from the optimal solution of model P, depending on f;. Therefore,
Si cannot be derived directly from o; by solving P on time. In the following, we use an
iterative procedure to solve the original problem (model P) based on guessing the value of f;
at each iteration. When the real ;i equals to its estimated value, the optimal solution of the
original problem can be resolved. The procedure has the following characteristics: 1) the
initial value of f; is set to «;; 2) the procedure stops when the estimated value of g; does not
change in two successive iterations for each i (i =0, 1,..., N). The main steps of the procedure

are given as follows:

Procedure BETA:

Step 0: For i=0, 1,...,N, set B =« ;

Step 1: Solve the Q-problem and the R-problem to get the values (R;, Q;) for each stock i;

Step 2: Calculate the real fill rate 8 (i=0,1,...,N) of the system for the given (R, Q) policy by

using the method proposed;
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N
Step 3: Ifsz — B |< e (¢is a very small positive number), stop; Otherwise, set 3 = 3 for

i=0

i=1,2,...,N and go to Step 1.

In the next section, we will perform series of numerical experiments to evaluate the efficiency

of the procedure proposed in this section.
5.6 Numerical Experiments

In this section, we evaluate the performance of the two algorithms for the Q-problem and R-
problem respectively and the performance of the procedure BETA proposed for solving the
inventory policy optimization problem P by computational experiments on randomly

generated instances.
5.6.1 Experiments for the Resolution of Q-problem

In section 5.3, for the five different cases of integer-ratio constraints in Q-problem, we
develop relevant algorithms to solve it, and furthermore, derive the optimal Q" on the base of
the characteristic of each case. In order to identify the sensitiveness of algorithms in the five
different cases of Q-problem, we first give a set of small sized instance (N=4) for the purpose
of analyzing more detailed information for the algorithms, and then, we will consider five sets
of medium to large sized instances with N=10, 20, 50, 100, respectively, in an attempt to give

further analysis in larger systems by using the algorithms proposed.
5.6.1.1 Small sized instances (N=4)

For this set of instance, 5 instances are generated and tested, and all parameters are given to
be deterministic. For each instance, we will evaluate three index, optimal value (OPT),
optimal order size (Q") and the computation time. The parameter setting and the results are

given in Table 5.1.

Table 5. 1 The results for the small sized instances of Q-problem with N=4

E3

No. Parameters Cases OPT Q time (s)
casel | 56.6538 13,4,4,4,4 0.00037

hf={1,1,1,1,1}, case2 | 56.6667 12,4,4,4,4 0.00061

1 4i={4,1,1,1,1}, case 3 | 56.6538 13,4,4,4,4 0.000451
¢i= {20,20,20,20,20} case4 | 56.6667 12,3,3,3,3 0.000669

case5 | 56.6538 13,4,4,4,4 0.000271

2 hf={1,0.1,1,0.1,1}, casel | 121.233 29, 10, 8,10, 8 0.000371

119



2i={12,3,3,3,3}, case 2 | 121.622 27,9,9,9,9 0.000489

ci= {35,35,35,35,35} case 3 | 121.233 29, 10, 8, 10, 8 0.00046

case4 | 121.622 27,9,9,9,9 0.008461

case5 | 121.233 29, 10, 8, 10, 8 0.000294

case 1 92.222 22,5,6,8,8 0.000326

h={1,0.1,1,0.1,1}, case 2 92.819 21,7,7,7,7 0.000705

3 2i={10,1,2,3,4}, case 3 92.222 22,5,6,8,8 0.000464
ci= {25,25,25,25,25} case 4 93.475 24,4,6,8,8 0.00041

case 5 92.222 22,5,6,8,8 0.000395

casel | 29.7729 | 69,10, 17, 22, 26 0.000477

h;?={0.1,0.1,0.1,0.1,0.1}, case 2 30.988 63,21, 21,21, 21 0.000161

4 2i={16,1,3,5,7}, case 3 | 29.7729 | 69,10, 17, 22, 26 0.000586
ci= {15,15,15,15,15} case 4 29.85 72,9, 18, 24, 24 0.000241

case5 | 29.7729 | 69,10, 17, 22, 26 0.00044

casel | 13.0278 40,6,8,7,9 0.000419

h={0.1,0.1,0.1,0.1,0.1}, case 2 13.175 40,8,8,8,8 0.000971

5 2i={16,1,3,5,7}, case 3 | 13.0278 40,6,8,7,9 0.000562
ci= {15,15,15,15,15} case 4 13.075 40,5, 8,5, 10 0.000231

case5 | 13.0278 40,6,8,7,9 0.000386

From Table 5.1, after analyzing the numerical results, we can obtain the following

observations:

1) For five integer-ratio constraints cases, we always developed efficient algorithms to solve,

and the optimal order size Q" for each stock can be derived;

2) By observing the optimal value (OPT), we can see that the OPT are similar among the five
different cases, only exiguous differences exists; this result demonstrate that the system-wide
costs tend to be insensitive to the choice of order sizes in the system. And if we give further

analysis about the results, the following rules about the OPT can be derived:

<OPT_,., <OPT,

case4 — case2

OPT,

casel

=OPT,

case3

=OPT,

case5

From the above observation, we can see that the OPT of case 1, case 3 and case 5 are equal,
this circumstance only occurs when the base-lot of case 3 and case 5 are equal to 1, in this
situation, the case 3 and case 5 can be regarded as the case of without integer-ratio constraints,

i.e., case 1. And we can also see that the OPT of case 4 are less than or equal to that of case 2,
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this means that the integer-ratio constraint of case 2 are tighter than that of case 4 for the

system studied.

(4) From the table, the computation times of the five cases are quite short for all five cases,

demonstrating the efficiency of the algorithms.

5.6.1.2 Large sized instances (N=10, 20, 50, 100)

For each set, 10 instances are generated and tested. Each instance of Q-problem was randomly

generated with the following parameters settings:

h® eU[L5], ¢ ehf-U[10,20], A €U[L10]

The optimal value (OPT) and the computation time for the instances of each set are given in
Table 5.2, Table 5.3, Table 5.4 and Table 5.5.

Table 5. 2 The results for the instances of Q-problem with N=10

OPT (optimal value) Time (s)

No. | casel case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5
1 409.57 | 417.66 | 409.57 | 411.63 | 409.57 0.0002 | 0.00088 | 0.00045 | 0.0045 | 0.00034
2 454.77 | 460.5 | 456.77 457 456.77 | 0.00023 | 0.00054 | 0.00042 | 0.0047 | 0.00033
3 607.14 | 612.83 | 607.14 | 610.5 | 607.14 | 0.00023 | 0.00085 | 0.00043 | 0.0041 | 0.00036
4 609.12 620 609.12 | 612.08 | 609.12 | 0.00024 | 0.00093 | 0.00042 | 0.0043 | 0.0004
5 515.67 | 518.67 | 515.67 | 517.5 | 515.67 | 0.00023 | 0.00092 | 0.00037 | 0.0046 | 0.00037
6 664.73 | 668.32 | 664.73 | 668.94 | 664.73 | 0.00021 | 0.00148 | 0.00047 | 0.0042 | 0.00038
7 356.89 367.7 356.89 | 358.25 | 356.89 0.00023 | 0.00095 | 0.00038 | 0.0041 | 0.00038
8 361.79 | 369.62 | 361.79 | 364.66 | 361.79 0.00022 | 0.00095 | 0.00065 | 0.0044 | 0.00035
9 379.14 | 384.66 | 379.14 380 379.14 0.00025 | 0.00117 | 0.00038 | 0.0039 | 0.00037
10 43256 | 434.37 | 43256 | 434.37 | 432.56 0.00022 0.0001 | 0.00037 | 0.0041 | 0.00032

Table 5. 3 The results for the instances of Q-problem with N=20
OPT (optimal value) Time (s)

No. case 1 case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5
1 916.95 | 947.85 | 916.59 | 920.70 | 916.59 | 0.00026 | 0.0011 | 0.00053 | 0.0085 | 0.00048
2 747.49 769.2 | 747.49 | 749.95 | 747.49 | 0.00031 | 0.00067 | 0.00064 | 0.0085 | 0.00047
3 620.42 | 626.44 | 62042 | 623.3 | 620.42 | 0.00025 | 0.00069 | 0.00068 | 0.0091 | 0.00042
4 1299.8 | 1309.9 | 1299.8 | 13015 | 1299.8 | 0.00028 | 0.00069 | 0.00058 | 0.0116 | 0.00041
5 939.04 960.9 | 939.04 | 943,55 | 939.04 | 0.00036 | 0.002 | 0.00078 | 0.0123 0.001
6 14155 1447.1 | 14155 | 14225 | 14155 | 0.00028 | 0.0016 | 0.00075 | 0.0116 | 0.00057
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7 1002.9 10204 | 1002.9 | 1006.7 | 1002.9 | 0.0003 | 0.0014 | 0.00058 | 0.0078 | 0.00045

8 905.83 918.38 | 905.83 | 908.97 | 905.83 | 0.00028 | 0.0011 | 0.00055 | 0.0174 | 0.00065

9 1372.1 1387.6 | 1372.1 | 1381.0 | 1372.1 | 0.0003 | 0.0012 | 0.00051 | 0.0129 | 0.00045

10 804.66 807.25 | 804.66 807.3 804.66 | 0.00028 | 0.0011 | 0.00065 | 0.0173 | 0.00056
Table 5. 4 The results for the instance of Q-problem with N=50
OPT (optimal value) Time ()

No. | casel case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5
1 3247.7 | 3294.7 | 3247.7 | 3257.6 | 3247.7 | 0.00038 | 0.0062 | 0.0012 | 0.0135 | 0.00079
2 21543 | 2162.3 | 21543 | 2159.4 | 2154.3 | 0.00032 | 0.0053 | 0.00098 | 0.0129 | 0.00072
3 23245 | 2361.0 | 23245 | 2329.8 | 23245 | 0.00031 | 0.0052 | 0.0013 | 0.0127 | 0.00074
4 1864.3 | 19035 | 1864.3 | 1868.8 | 1864.3 | 0.00033 | 0.0052 | 0.0013 | 0.0125 | 0.0014
5 2632.6 | 2668.7 | 2632.6 | 2643.8 | 2632.6 | 0.00043 | 0.0056 | 0.0011 | 0.0124 | 0.0013
6 22339 | 22734 | 22339 | 2240.1 | 22339 | 0.00034 | 0.0051 | 0.0012 | 0.0083 | 0.0012
7 30184 | 3064.6 | 3018.4 | 3028.3 | 3018.4 | 0.00041 | 0.0052 | 0.0012 | 0.0152 | 0.0015
8 2259.9 | 22854 | 2259.9 | 2267.3 | 2259.9 | 0.00034 | 0.0055 | 0.0011 | 0.0178 | 0.0013
9 24112 | 24342 | 24112 | 24198 | 2411.2 | 0.00036 | 0.0057 | 0.0013 | 0.0164 | 0.00074
10 2067.2 | 2078.1 | 2067.2 | 2073.6 | 2067.2 | 0.00037 | 0.0053 | 0.00096 | 0.0163 | 0.0011

Table 5. 5 The results for the instances of Q-problem with N=100
OPT (optimal value) Time (s)

No. | casel case 2 case 3 case 4 case 5 case 1 case 2 case 3 case 4 case 5
1 6233.3 | 6339.2 | 6233.3 | 6246.3 | 6233.3 | 0.00064 | 0.0061 | 0.0027 | 0.0139 | 0.0013
2 5505.2 | 5530.2 | 55052 | 5524.4 | 5505.2 | 0.00053 | 0.014 | 0.0023 | 0.013 | 0.0023
3 5463.1 | 5488.8 | 5463.1 | 5478.2 | 5463.1 | 0.00074 | 0.0075 | 0.0019 | 0.0198 | 0.0029
4 4598.9 | 4614.6 | 4598.9 | 4609.0 | 4598.9 | 0.00063 | 0.0102 | 0.0024 | 0.0324 | 0.0023
5 4049.8 | 4123.1 | 4049.8 | 4063.7 | 4049.8 | 0.00062 | 0.0101 | 0.0021 | 0.0224 | 0.0027
6 4687.0 | 4732.8 | 4687.0 | 4702.0 | 4687.0 | 0.00065 | 0.0073 | 0.0018 | 0.0208 | 0.0026
7 54455 | 5498.1 | 54455 | 5461.6 | 5445.1 | 0.00072 | 0.0066 | 0.0025 | 0.0148 | 0.0024
8 5800.9 | 5822.6 | 5800.9 | 5817.6 | 5800.9 | 0.00064 | 0.0061 | 0.0022 | 0.0271 | 0.0015
9 5317.2 | 5351.7 | 5317.2 | 5331.9 | 5317.2 | 0.00076 0.01 0.012 0.0431 | 0.0016
10 49555 | 5063.1 | 4955.5 | 4973.3 | 4955.5 | 0.00066 | 0.0086 0.015 0.0329 | 0.0015

From the four tables, we can observe that the computation time of the dynamic programming

algorithm is very short for each instance in the four sets of instances; this demonstrates that,

even for the large instances with 100 retailers, the Q-problem with different integer-ratio

cases can be solved efficiently by using the algorithm. In addition, the observations about the
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optimal cost of the problem obtained for the small instances in the last subsection are also

valid for the large instances in this subsection.
5.6.2 Experiments for the Resolution of R-problem

Similarly, a set of small sized instances with N=4 and four sets of medium to large sized

instances with N=10, 20, 50, 100, respectively were tested. Each set contains 10 instances. All

the instances for R-problem were generated with parameters h, Ti, s; and A randomly

generated according to the uniform distributions described in Table 5.6, with the service

level ¢; (i=1,2,...,N) for all retailers specified as 0.95. The computation results of the

instances are given in Table 5.7.

Table 5. 6 Parameter settings of the tested instances of R-problem

Parameter Value
h¢ h* eU[L,5]
T, T eU[110]
S, s, €U[L3]
A 4 €U[L10]

Table 5. 7 The results for the tested instances of R-problem

Instance set Max / Average computation time (s)
Small instance N=4 0.00299s / 0.00167s
N=10 0.00313s/0.00202s
Medium to large N=20 0.00512s / 0.00303s
instances N=50 0.08188s/0.01688s
N=100 0.06219s / 0.0322s

From Table 5.7, we can observe that for small instance (N=4) the R-problem can be solved
almost instantaneously by using the dynamic programming algorithm of Grave and Willems,
whereas for larger instances (N=10, 20, 50 and 100), the computation time of the algorithm
becomes longer but is still quite short. This demonstrates the suitability of this algorithm in

solving the R-problem.
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5.6.3 Experiments for the resolution of problem P with a given service level

In this section, we evaluate the performance of procedure BETA by numerical experiments on
the same sets of randomly generated instances with N=10, 20, 50 and 100 respectively as
presented in Section 5.6.1 and 5.6.2. For each instance set, four different a-service levels
ranged from 0.8 to 0.98 were considered and 10 instances were generated randomly for each a.
We calculated the maximum/average computation time and the maximum/average number of

iterations of the procedure BETA for the instances, and the results are given in Table 5.8.

Table 5.8 The results for the tested instances of problem P

. Max/average Max/average
a-service -
level _computation r}umb(_er of
times in seconds iterations
0.80 0.2799/0.1193 4/3.8
N=10 0.90 0.2412/0.1113 4/3.2
0.95 0.3167/0.1646 3/3
0.98 0.1575/0.1165 3/3
0.80 1.4726/0.7084 4/4
N=20 0.90 2.5285/0.8465 4/3.5
0.95 0.8885/0.5517 3/3
0.98 1.3599/0.5706 3/3
0.80 2.1309/1.7164 4/4
N=50 0.90 6.2981/2.4684 4/4
0.95 4.4845/2.5109 4/3.2
0.98 2.6383/1.4581 3/3
0.80 4.476/3.2181 4/4
N=100 0.90 7.3628/4.1323 4/3.9
0.95 4.285/2.6031 4/3.2
0.98 5.3823/3.8045 3/3

From the table, we can observe that the maximum number of iterations for each instance is no
larger than 4, and is very close to its corresponding average number of iterations. The two
numbers of iterations decrease when the a-service level increases. This observation about the
number of iterations of procedure BETA is similar to that in the last two chapters. It
demonstrates that the number is neither sensitive to the number of retailers nor sensitive to the
a-service level of the distribution system considered. In addition, the maximum computation
time and the average computation time of the procedure are short even for the largest

instances with N=100. These results show that the procedure BETA has a good convergence
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property and is very efficient in solving the inventory optimization problem of the distribution

system with a given a-service level.
5.7 Conclusion

This chapter has studied a two-level distribution system with Poisson final demands and fixed
order costs at each stock. As we know, for distribution systems, echelon (R, Q) policies and
installation (r, Q) policies can not be transformed each other, this makes the inventory policy
optimization problem of the considered system more complicated. To simplify the
formulation of the problem, we have assumed randomized initial condition for the distribution
system. With this assumption, we have proposed a mathematical model and an iterative
procedure for optimizing the (R, Q) policy of the system under the GSA framework. The
procedure is based on the resolution of the model’s two sub-problems, Q-problem and R-
problem, which are solved by using a dynamic programming algorithm or an EOQ-based
method. Five different types of integer-ratio constraints are considered for the Q-problem and
their cost-effectiveness are compared. Finally, the performances of the algorithms and the

procedure are evaluated by numerical experiments.
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Chapter 6 Conclusions and Perspectives

In this thesis, we have studied the inventory policy optimization of multi-echelon inventory
systems with fixed order costs at each stock. Because of existing fixed order costs, this
problem becomes very difficult for general multi-echelon inventory systems. In the literature,
two competing approaches are used to solve inventory optimization problems, stochastic
service approach (SSA) and guaranteed service approach (GSA). Compared with the SSA
whose model usually has a very complicated structure, the GSA describes a multi-echelon
inventory system in an approximate fashion and can provide a relatively simple mathematical
programming model for the system. This simplified model allows a planner to make strategic
and tactical decisions on the inventories of the system such as safety stock placement. The
key assumption of the GSA is that excessive demand superior to a certain level is treated by
operating flexibility. Based on this assumption, the GSA can formulate the inventory
optimization problem as a deterministic mathematical programming problem. However, in
most studies of the GSA, the costs of using operating flexibility were not considered in its
optimization model. This has caused the criticism of this approach in the past. In addition,
fixed order costs which often exist in industrial supply chains were ignored in the model. To
the best of our knowledge, no previous work has used the GSA to optimize multi-echelon
inventory systems with fixed order costs. Therefore, in this thesis we have focused on two
major research topics: 1) Use the GSA to optimize multi-echelon inventory systems with
fixed order costs at each stock. 2) Extend the GSA to consider operating flexibility costs in

inventory policy optimization of the systems.

This thesis has considered three different types of multi-echelon inventory systems: serial
systems, assembly systems, and two-level distribution systems. For each system, we assume
that its final customer demand is generated by a Poisson process, a fixed cost is charged at
each stock when it places an order, and each stock is controlled by a (R, Q) policy. Our
objective is to find optimal (R, Q) policy for the system so that the system’s total cost which
contains inventory holding costs, fixed order costs, and operating flexibility costs is

minimized while satisfying a given service level to customer.

After a general introduction and literature review in chapter 1 and some preparatory work in
chapter 2, chapter 3 deals with the optimization of (R, Q) policies for a continuous-review
serial inventory system with Poisson demand and fixed order costs. Under the GSA, we first

establish a mathematical model for the problem, which is a nonlinear programming model.
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Since the objective function of the model depends on two service levels (a-service level and
pS-fill rate) of the system, we propose an iterative procedure to solve the model based on
estimation of g-fill rate when a-service level is given. The iterative procedure relies on the
resolution of two sub-problems of the model: order size decision sub-problem (Q-problem)
and reorder point sub-problem (R-problem). We develop an efficient dynamic programming
(DP) algorithm to solve the Q-problem, based on two important properties about the state
space of its decision variables; this makes our DP algorithm much more efficient than a DP
algorithm in the literature. The R-problem is solved by using another DP algorithm proposed
by Graves and Willems. The numerical experiments demonstrate that the two DP algorithms
are very efficient in solving the Q-problem and R-problem of large size with a short
computation time. The numerical results also show that the iterative optimization procedure
has a good convergence property and is computationally efficient in solving the inventory

policy optimization problem.

Chapter 4 extends the model and the solution approach proposed in Chapter 3 to assembly
systems. Since the assembly systems studied have a more complicated structure than serial
systems, in which a stock may have more than one direct predecessor stocks, the DP
algorithm of the Q-problem for serial systems cannot be directly used for assembly systems.
Therefore, we develop a new DP algorithm to solve the Q-problem of the assembly systems,
in which both forward recursive procedure and backward recursive procedure are used to
identify the optimal solution of the problem. The numerical experiments demonstrate the

efficiency of the DP algorithm.

Chapter 5 focuses on the optimization of (R, Q) policies for two-level distribution systems.
The most distinguishing feature of a distribution system is that each stock may have multiple
direct successor stocks; this network structure makes the analysis and optimization of the
system more difficult. For the system, we also establish a mathematical model for its
inventory policy optimization problem and present an optimization procedure to solve the
model. More particularly, for the Q-problem, we consider five different types of integer-ratio
constraints imposed on the order sizes of the warehouse and the retailers. For each type, we
propose an efficient algorithm to solve the Q-problem. We compare the five types of integer-
ratio constraints in terms of their cost-effectiveness by numerical experiments. The numerical
experiments also demonstrate the efficiency of the optimization procedure in solving the
inventory optimization problem of the distribution system studied.
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This thesis has extended the application domain of the GSA from safety stock placement of
multi-echelon inventory systems without order costs to the optimization of (R, Q) policies of
multi-echelon inventory systems with fixed order costs at each stock. It has also extended the
standard GSA by explicitly considering operating flexibility costs and effects in the GSA

model of the optimization problem.

Although the work of this thesis has demonstrated advantages of the GSA in the optimization
of multi-echelon inventory systems, much work remains to be done. There are some potential
directions for future research. Firstly, the performance of the inventory policy found by the
GSA should be compared with the performance of the inventory policy found by the SSA. In
the literature, very few contributions that conduct such a comparison are available, especially,
for multi-echelon inventory system with fixed order costs. This is mainly because the
stochastic inventory model employed by the SSA usually has a very complicated structure if
fixed orders are taken into consideration, and it is very difficult to derive an optimal inventory
policy for such system, only heuristic algorithms were developed. Moreover, how to fairly
compare the two approaches is still an open problem because they are based on two different
settings: the SSA has backorder costs whereas the GSA has operating flexibility costs. For
these reasons, we have not compared the two approaches in this thesis, but it is one of

important topics for our future research.

Secondly, in this thesis, the customer demand process is assumed to be a Poisson process, but
in reality, this demand may follow another stochastic process. In future, we will extend our
work to multi-echelon inventory systems with other demand processes, such as normal

distributed or compound Poisson processes.

Thirdly, this thesis only considers continuous-review inventory systems. In practice, the
inventory position of each stock may be reviewed periodically. In this case, (R, Q) policy is
generalized and replaced by (R, nQ) policy. Optimizing (R, nQ) policies for periodic review
multi-echelon inventory systems under the GSA are also in the list of our future research

topics.

Fourthly, in this thesis, when we consider inventory policy optimization of a two-level
distribution system, we assume the system has randomized initial condition. It is worthy to
study whether this condition can be relaxed for the distribution system. Moreover, extending
our GSA approach to distribution systems with more than two levels is also a future research

topic.
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Finally, this thesis has considered individually three types of multi-echelon inventory systems,
I.e., serial systems, assembly systems and two-level distribution systems. In practice, a supply
chain may have both assembly structure and distribution structure. One of our future work is
to study general multi-echelon inventory systems in which all possible links between stocks

are permitted.
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Ré&umeéen Fran@is
Introduction Géné&ale

Une chame d'approvisionnement est un réseau d'entreprises atravers lequel les produits sont
fabriqués et livré&s aux consommateurs finaux. La gestion de la chame d'approvisionnement
(SCM) vise aoptimiser sa performance de maniée globale par coordonner les flux et les
stockages des marchandises des fournisseurs de matiées premi&es aux magasins passés par
les fabricants. Au cours des derniées annees, la mondialisation é&onomique, la proliféation
et I'innovation rapide des produits ont considé&ablement accru la complexitéde cette gestion.
Une question importante dans la gestion de la chaine d’approvisionnement est la gestion des
stocks dans un tel ré&seau face aux demandes clientées incertaines. L'objectif de cette gestion
est de réluire les coGis de stockage tout en assurant un haut niveau de service donnéaux

clients.

Traditionnellement, diffé&ents stocks dans une chame d'approvisionnement ont &&gé&é de
maniée indépendante, menant aun niveau deveé de certains stocks dans la chame. Les
pressions compéitives accrues et la mondialisation des marchés ont obligé€les entreprises a
faire plus d'efforts pour réuire leurs stocks tout en amé@iorant le service ala clientée. Cela a
attiréde plus en plus d’attention des chercheurs académiques et des praticiens industriels ala
gestion des stocks multi-&helons qui prend en compte les interactions entre les diffé&ents

stocks dans la chame d'approvisionnement.

Une chame d'approvisionnement avec plusieurs stocks peut &re modé&isée comme un systéne
de stocks multi-é&helons, ou les stocks se trouvent en plusieurs &helons ou niveaux. La
gestion des stocks multi-&helons adopte une approche d'optimisation globale. Dans une telle
approche, les optimisations de tous les stocks sont considéeéss simultanément, avec un
objectif de minimiser leur co(i total tout en répondant aux exigences de service clientée. Par
conséguent, la straté&jie clépour la gestion des stocks multi-&helons est la coordination

efficace des approvisionnements de tous les stocks dans une chame d'approvisionnement.

Dans la litté&ature, il existe deux approches concurrentes pour I’optimisation des systémes de
stocks multi-&helons: 1’approche de service stochastique (SSA) et I'approche de service
garanti (GSA). Dans la SSA, la disposition d’un stock de sécurité pour chaque stock est le
seul moyen pour protéger contre la variabilitéde la demande clientée. En revanche, la GSA

pré&ume que le stock de sé&uritéest dimensionnépour couvrir la variabilitéde la demande
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jusqu'aun certain niveau, i.e., le niveau maximum raisonnable de la demande. Si la r&lisation
de cette demande est sup€&ieure ace niveau, la partie excessive de la demande sera satisfaite
par des mesures extraordinaires telles que les heures supplémentaires ou la sous-traitance. Par
rapport ala SSA, la GSA moddise un systane de stocks multi-é&helons de maniee
approximative, mais elle permet aun planificateur du systéne de prendre ses deéeisions

stratégiques ou tactiques sur la gestion de ces stocks baseées sur un modde simplifié

Dans la litté&ature, la plupart des éudes sur les syst@mes de stocks multi-é&helons ne
considerent pas le cott de passation de commande achaque stock. Cependant, dans la
pratique, chaque stock a généalement un cod fixe pour passer une commande, qui peut
correspondre au cott de la livraison de la commande ou a d’autres cotts indépendants de la
quantitéde la commande. Pour un systéme de stocks multi-é&helons, si un cot de passation
de commande se produit achaque stock, la politique (R, Q) ou la politique (s, S) est
géné&alement utilisée pour la gestion du systene. En raison de sa simplicit€et sa popularité
dans la pratique, nous choisissons la politique (R, Q) plutd@ que la politique (s, S) pour la
gestion d’un systeme de stocks multi-éhelons avec des co(ts de passation de commande dans
cette these. Nous éudions I'optimisation de la politique (R, Q) pour les systames de stocks
multi-&helons avec la demande clientée suivant un processus de Poisson et un coQt de

passation de commande achaque stock.

L'existence d’un cotit de passation de commande achaque stock rend I'optimisation de la
politique de stockage pour un systame de stocks multi-é&helons trés difficile. La SSA, comme
une approche classique, a é&é& géné&alement utilis€ pour ré&oudre un tel probleme
d'optimisation. Toutefois, en raison de la grande complexitéd un tel systéme avec des colts
de passation de commande, seuls les algorithmes approximatifs (heuristiques) ont &é
développés pour trouver des politiques de stockage proches de 1I’optimum dans le cadre de la
SSA.

Dautre part, dans I'nypothese que la demande excessive sup&ieure aun certain niveau soit
satisfaite par la flexibilité d’exploitation d’un systéme telle que les heures supplémentaires ou
la sous-traitance, la GSA est capable de modé@iser le probléme d'optimisation de la politique
de stockage du systéne comme un probléme de programmation mathénatique déerministe,
qui peut &re résolu plus facilement. Dans la litté&ature, aucuns travaux antérieurs n’ont utilisé
cette approche pour optimiser un systéne de stocks multi-&helons avec des cods de
passation de commande achaque stock. Par consé&juent, dans cette these, nous utilisons la

GSA pour mod@iser et ré&oudre des problémes d'optimisation de politique de stockage pour
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plusieurs systénes de stocks multi-&helons avec des cods de passation de commande.
Diffé@ente de la GSA standard qui ignore les cofits de flexibilité d’exploitation engendrés lors
que des mesures extraordinaires sont utilisées pour satisfaire la demande excessive, nous
développons une nouvelle approche de type GSA qui considee les cods de flexibilité
d'exploitation et les effets de cette flexibilitésur les flux physiques du systame de stocks
multi-&helons dans cette these. Dans notre éude, le niveau maximum raisonnable de la
demande d’un stock durant son déai d’approvisionnement est déterminé en fonction d'un

niveau de service au client final.
Les principales contributions de cette these sont les suivantes:

1) Nous appliquons la GSA al’optimisation des systémes de stocks multi-&helons avec des
coQs de passation de commande achaque stock. Puisque tous les travaux antéieurs sur la
GSA ne considerent que des systé@nes de stocks multi-éhelons sans co(is de passation de
commande, le travail de cette these est le premier essai de 1’optimisation des systémes de

stocks multi-&helons avec des codts de passation de commande dans le cadre de la GSA.

2) La GSA standard ignore les effets de la flexibilitéd'exploitation sur les flux physiques et le
col total d'un systame de stocks multi-&helons. Dans cette thése, nous géné&alisons la GSA
standard en tenant compte de ces effets et en incluant les coGs de flexibilitéd'exploitation
dans notre modée d'optimisation des politiques de stockage d’un tel systéme. Dans ce modéle,
le co(t total du systéme inclut non seulement les cos fixes de passation de commande, les

colts de possession des stocks, mais aussi les cots de flexibilitéd'exploitation.

3) Pour les systémes en série, les systémes d’assemblage, et les systémes de distribution a
deux niveaux, nous éablissons des modées de programmation mathématique pour les

problémes d'optimisation de leurs politiques de stockage (R, Q) dans le cadre de la GSA.

4) La prise en compte des effets et des cots de la flexibilitéd'exploitation rend notre modéle
de la GSA plus compliqué que celui de la GSA standard. Ce premier modée a une fonction
objectif d&endante de deux niveaux de service (niveau de service « et taux de remplissage f).
Nous proposons une procélure it&ative pour ré&soudre le modée basésur I'estimation du taux

de remplissage.

5) Pour un niveau de service o et un taux de remplissage f donnés, le probleme
d’optimisation de la politique de stockage pour un systéme de stocks multi-éhelons peut &re
dé&omposeé en deux sous-problémes: le sous-probléne de déermination de quantités de

commande (Q-problame) et le sous-probléne de déermination de points de recommande (R-
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probléme). Nous développons des algorithmes de programmation dynamique (DP) pour

résoudre efficacement les deux sous-problémes.

6) Les efficacité des algorithmes de DP et de la proc&lure ité&ative sont é&aluées par des

expé&iences numeiques.

Le r&suméfranqis de cette these se compose de cing chapitres. Dans le chapitre 1, un &at de
I’art est fait sur les éudes en gestion des stocks multi-&helons liées anotre travail. Dans le
chapitre 2, nous consid&ons les systémes en sé&ie avec la demande clientée suivant un
processus de Poisson et cotis de passation de commande achaque stock et développons un
modée de programmation mathématique et une approche de ré&olution pour I'optimisation
des politiques de stockage (R, Q) des systémes dans le cadre de la GSA. Le modée prend en
considéation ala fois les cots de passation de commande et les coGs de flexibilité
d'exploitation et I'approche de résolution est basée sur deux algorithmes de programmation
dynamique que nous développons ou adoptons pour deux sous-problénes du modée. Les
performances des algorithmes et de I'approche de résolution sont évaluées par des exp€&iences
nume&iques. Chapitre 3 généalise le modée et I'approche de résolution déelopp& dans le
chapitre 3 aux systénes d'assemblage avec des expé&iences nume&iques pour I'é&aluation de
performance aussi. Dans le chapitre 4, nous considé&ons les systames de distribution adeux
niveaux avec un entrep& et plusieurs déaillants. L'analyse et l'optimisation de ces systémes
sont plus difficiles que les systémes en s€&ie et les systémes d'assemblage. Nous développons
&jalement un modée de programmation mathénatique et une approche de ré&olution pour
I'optimisation des systémes de distribution dans le cadre de la GSA. Plus particulieeement,
nous considéons cing diffé&ents types de contraintes de ratio entier éventuellement imposées
sur les quantités de commande des stocks du systéne éudi€ et comparons leurs efficacités
par des exp&iences nume&iques. Enfin, le chapitre 5 conclut le travail ré&liséde cette these et

préente des perspectives pour la recherche future.
Chapitre 1 Etat de P’art

Dans ce chapitre, nous faisons un état de 1’art sur les modédes et les mé&hodes proposees dans
la litté&ature pour I'analyse et I'optimisation des systémes de stocks multi-&helons, en

particulier pour les systémes avec des codts de passation de commande.

Nous donnons d'abord une introduction géné&ale sur les travaux dans la gestion des stocks
multi-&helons. Ensuite, nous nous concentrons sur les éudes actuelles sur la gestion des

stocks multi-&helons en utilisant deux approches d'optimisation: I’approche de service
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stochastique (SSA) et I'approche de service garanti (GSA). Une comparaison entre les deux

approches concurrentes est également abordee dans ce chapitre.
Les éudes généales de la gestion des stocks multi-&helons

L'é@ude des systames de stocks multi-&helons a &élancé par un travail pionnier de Clark et
Scarf (1960). Dans ce travail, ils ont montréque la politique optimale de stockage pour un
systéme en sé&ie dans lequel le cott de passation de commande est facturéqu'au plus haut
&helon est une politique é&helon. Pour un systéme de stocks multi-ehelons avec un cott de
passation de commande achaque stock, ils ont soulignéque sa politique optimale, si elle
existe, a une structure complexe et est difficile acalculer.

Depuis 1960, beaucoup d’études ont &€menées pour genéaliser le travail de Clark et Scarf,
comme Federgruen et Zipkin (1984), Chen et Zheng (1994), Zipkin (2000) et ainsi de suite.
Ré&emment, Sinha et al. (2011) ont fourni une approche de calcul plus simple et unifié pour
le modée Clark-Scarf avec un horizon temporal fini ou infini. Rosling (1989) a montréque la
politique échelon de stockage est aussi optimale pour, les systémes d’assemblage sans coUs
de passation de commande. Pour les systé@nes de distribution sans co(is de passation de
commande, la politique &helon de stockage n’est pas optimal dans le cas géné&al (Van
Houtum, 2006). En raison de la complexitédes systénes de stocks multi-&helons avec un
co(x de passation de commande & chaque stock, la plupart d’études ont concentré sur
I'optimisation et I'éaluation de la politique de point de commande, i.e., la politique (R, Q),
pour ces systames.

Presque dans la mé&me déennie, Simpson (1958) a proposé l'approche de service garanti
(GSA) pour la moddisation et la gestion des stocks d'un syst@me en sé&ie sans cods de
passation de commande. Dans ce systéme, chaque stock, qui a une demande alétoire mais
bornée, est g&é par une politiqgue base-stock (une politique d’approvisionnement a
recompléement pé&iodique). Les ré&ultats de Simpson ont montrégue la politique optimale de
stockage pour le syst@me en sé&ie est une politique <tout ou rien>3 c'est adire, chaque stock
soit ne posséde d’aucun stock de sé&uritésoit possetle d’un stock de seeuritésuffisant pour lui
dé&oupler des stocks en aval et des stocks en amont. Diffé&entes extensions du travail de

Simpson pour les systémes d'assemblage et de distribution ont &éfaites plus tard.

Sur la base des deux articles fondamentaux de Clark et Scarf (1960) et de Simpson (1958),

deux approches concurrentes ont @éédéveloppees au fil de temps.
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Les éudes de ’approche de service stochastique pour les systénes en s&ie

Dans ce paragraphe, l'approche de service stochastique pour les systémes en sé&ie est revue,
en particulier pour les systénes avec des co(is de passation de commande et g&é& par la

politique de stockage (R, Q).

Sur I'évaluation de cot, Axsater (1998) a consid&éun systame en s&ie adeux niveaux gge
par des politiques installations (R, Q) et a propos€une mé&hode pour évaluer exactement le
cott de stockage et le cott de rupture de stock du systéme. Axsater et Rosling (1993) ont
montréque les politiques &helons (R, Q) dominent les politiques installations (R, Q) pour les
systames en sé&ie et les systames d'assemblage. Chen et Zheng (1994) ont déseloppéune
proc&lure pour I'évaluation exacte de la performance de la politique &helon (R, nQ) pour les
systémes en sé&ie. Dans leur procé&lure, un cot de passation de commande est facturépour

chaque approvisionnement plut@ que pour chague commande.

Sur l'optimisation de politiques de stockage, Chen (2000) a montréque si I'on ignore les coUis
de passation de commande mais la quantitéde chaque commande est donné, une politique
&helon (R, Q) est optimale pour les systémes en sé&ie et les systémes d'assemblage. Shang et
Song (2007) ont consid&éédeux moddes stochastiques des systames en s&ie en supposant
que soit la quantitéde commande soit donné& achaque stock soit un col de passation de
commande est facturé uniquement pour les commandes externes. lls ont montré que les
politiques optimales éhelon (R, Q) des modées peuvent &re estimées par une sé&ie de
politiques indépendants et optimales aseul stade. Yang et al. (2011) ont &alement considgé
un systé@me en s&ie adeux €helons avec la demande suivant aun processus de Poisson et
gé&é€par une politique €helon (R, Q), ils ont d&ivéune condition né&essaire pour I'optimalité
d'une politique €&helon (R, Q) et la quasi-convexitéde la fonction de cott du systéme. Sur la
base de ces propriéés, ils ont propos€un algorithme heuristique simple pour trouver une
politique (R, Q) quasi-optimale pour le systéne. Shang et Zhou (2010) ont &udiéun systéne
en s&ie geeépar la politiqgue ehelon (R, nQ, T) avec deux types de coUis de passation de
commande: l'un associé achaque commande de Q unité et l'autre encouru lors de chaque
inventaire d’un stock. 1ls ont dé&elopp&une heuristique simple pour obtenir les quantités et

les intervalles optimaux de commande.
Les é&udes de I’approche de service stochastique pour les syst@nes d’assemblage

Par rapport aux systames en sé&ie, les systames d'assemblage avec la demande stochastique

ont attirérelativement peu d‘attention dans la litté&ature.
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Schmidt et Nahmias (1985) a caract&is€une solution optimale pour un systéne d'assemblage
adeux niveaux avec la demande stochastique. Rosling (1989) ont montréqu’un systeme
d’assemblée géné&ale sans cols de passation de commande peut &re transforméen un
systame en s&ie €@uivalent. Ces deux articles supposent qu’aucun coGt de passation de
commande n’existe dans les syst@mes considéés. L'inclusion des cols de passation de
commande rend les syst@mes d'assemblage avec la demande stochastique extr@nement
difficiles. De nombreux articles ont éudiél'évaluation et I'optimisation de la politique (R, Q)
(Federgruen et Zheng, 1992; Rosling, 2002; De Bodt et Graves, 1985; Chen et Zheng, 1994).
Une discussion sur la politiqgue (R, Q) pour les systames d'assemblage est donné& dans
Axsater et Rosling (1993) et Chen (2000). En pratique, on souvent utiliser une approche
simple en deux &apes pour déerminer la quantitéde commande Q et le point de commande R
d'une politique installation/éhelon (R, Q). Dans la premiee éape, la demande stochastique
est remplacé par sa valeur moyenne et la quantitéde commande Q est déerminé selon un
modée EOQ standard. Dans la deuxiene &ape, le point de commande R est déerminépour la
quantitéde commande Q donnée. Notons que la plupart des travaux pré&élents, qui éudient
la politique (R, Q), pré&entent des algorithmes heuristiques plut@ que des mé&hodes exactes
pour I'é&aluation de co(t et I'optimisation de la politique pour les systénes d'assemblage avec

des coUs fixes de passation de commande.
Les é&udes de l’approche de service stochastique pour les systénes de distribution

Dans ce paragraphe, nous nous concentrons sur les éudes sur les systames de distribution a

deux niveaux avec un entrep& et plusieurs déaillants.

La plupart des éudes préé&lentes avec la politique installation/&helon (R, Q) se focalisent
sur I'éaluation exacte ou approximative des cois de ces syst@mes, comme dans Svoronos et
Zipkin (1988) et Axsater (1993). Une revue géné&ale de ces éudes avant 2003 est donné par
Axsater (2003). Kiesmuller et al. (2004) a déreloppéune méhode d'évaluation approximative
pour un systeémne de distribution adeux niveaux. Seifbarghi et Akbari (2006) a d&ive la
fonction du coQt qui est utilisé pour trouver de maniee approximative le point de commande
d'un systéme de distribution adeux niveaux. Axsater et al. (2007) a pré&entétrois techniques
pour I’é&aluation du cott d’un systéme de distribution a deux niveaux. Howard et Marklund
(2011) ont considé&éun systéme de distribution dans lequel I'entrep& applique la politique
&helon (R, Q) et les dé&aillants utiliser les politiques base-stock, ils ont développé une

mehode exacte pour I’&valuation du cot du systeme.
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Peu d’articles ont éudié I'optimisation de la politique installation/éhelon (R, Q) pour les
systémes de distribution. Axsater et Rosling (1993) ont dénontréque la politique installation
(R, Q) et la poltique €helon (R, Q) peuvent dominer I’'un l’autre dans des situations
diffé&entes pour les systames de distribution. A notre connaissance, le seul article considé&ant
des moddes de vente perdue avec la politique (R, Q) est Al-Rifai et Rossetti (2007). Bijvank
et Vis (2011) ont fourni une revue géné&ale de la théorie de gestion des stocks avec la vente

perdue.
Les éudes de ’approche de service garanti pour les systénes de stocks multi-&helons

Tous les travaux antéieurs sur cette approche ont utilisédes politiques base-stock pour la

gestion des syst@mes de stocks multi-é&helons sans co(is de passation de commande.

py s

L'approche de service garanti provient du travail de Kimball (1955), qui a ééréalitéen 1988
(Kimball, 1988). Dans cet article, Kimball a éudiéun seul stock avec la demande alétoire
mais bornee, g&e&par une politique base-stock. 1l a prouveéque la borne de la demande durant
le délai d’approvisionnement du stock peut &re utilisé& pour définir son niveau de base-stock
(niveau de réeompléement). Simpson (1958) a géné&alis€le modde de Kimball &un systéne
en s&ie et prouveéque la politique optimale de stockage du systéme est une politique “tout ou
rien”. Sur la base de cette propriéé& Grave (1988) a démontréque le probléme d'optimisation
considé&é par Simpson peut &re réolu en utilisant un algorithme de programmation
dynamique. Plus tard, cette approche a &é géné&alisé& aux systémes d'assemblage, aux
systames de distribution, et &des systames plus géné&aux dans Inderfurth (1991), Inderfurth et
Minner (1998), Graves et Willems (1996, 2000), Minner (2000), Humair et Willems (2006),
et Humair et Willems (2011).

Ré&emment, Grave et Willems (2008) et Schoenmey et Grave (2009) ont éendu leurs travaux
antéieurs (1996, 2000) aux chames d'approvisionnement avec la demande non-stationnaire

ou avec I'éolution de la prévision de la demande.
Comparaison de I'approche de service stochastique et approche de service garanti

Seuls quelques articles dans la litté&ature comparent les deux approches. L une comparaison a
é@é&faite dans Graves et Willems (2003). lls ont appliquédeux approches pour un systéne
d’assemblage et a constatéque I’approche de service garanti domine 1’approche de service

stochastique.

Klosterhalfen et Minner (2010) ont fait une autre comparaison des deux approches sur des

systames de distribution adeux niveaux et ont montréque la sup&ioritéde I'une des deux

137



approches déend de leurs paramétres speeifiques et ne peut &re éablie en géné&al. En outre,
ils ont pré&sentéune méhode pour déerminer le niveau de services interne appropri€ qui est
utilisépour définir les coGts de flexibilitéd'exploitation dans le modée de GSA. Minner et al.
(2003) a donné quelques indications concernant l'utilisation appropriee de la flexibilité
d'exploitation. Notons que toutes les comparaisons cités ci-dessus sont axeées sur les

systémes de stocks multi-&helons sans codts de passation de commande.
Chapitre 2 : Optimisation de Politiques de Stockage (R, Q) pour les Systémes en Sé&rie

Apres la description des systames de stockage multi-é&helons et I'approche de service garanti
(GSA) dans le dernier chapitre, ce chapitre traite de I'optimisation de politiques de stockage
(R, Q) pour les systémes en s&ie avec Poisson demande dans le cadre de la GSA. A part la
prise en compte des cods de stockage atous les stocks comme dans le modée standard de la
GSA, nous considé&ons également des colis de passation de commandes et des cods de
flexibilité d’exploitation. Aprés une preésentation des hypothéses et des notations, nous
formulerons un modée mathénatique pour le probléne. Ce modéde peut &re résolu par une
proceélure ité&ative fondé sur deux algorithmes de programmation dynamique (DP). Un
algorithme DP est utilis€pour ré&oudre le sous-probléne de déermination de quantité de
commande (Q-probléne), et lautre est utilisé pour ré&oudre le sous-probléme de
déermination de points de recommande (R-probléme). Les exp&iences nume&iques que nous
avons faites sur des instances géné&ées alé&toirement démontrent que les algorithmes et la

procélure proposés sont tres efficaces.
Description du Probléne

Un systéme de stocks en sé&ie avec N stades (stocks) dont I’inventaire est fait en temps réel
est considé € oule stade N commande auprés d’un fournisseur externe avec un stock illimité&
stade N-1 commande du stade N, stade N-2 commande du stade N-1, et ainsi de suite. Enfin,
au stade final, i.e., stade 1, la demande clientée se produit. Tout stade du systé@me est g&é
par une politique de stockage (R, Q). La demande clientéle du stock suit un processus de
Poisson de taux moyen 4. Le coG de passation de chaque commande et le coGt de stockage
&helon par unitéde produit par unitéde temps du stock i est ¢; et h® respectivement,
i=1,2,...,N. En outre, le coti de la flexibilitéd’exploitation de p est facturépour chaque unité

de produit rempli &l'aide d’une mesure extraordinaire.

Dans le cadre de la GSA, I’hypothese clé est que la demande clienteéle du stade final est

stochastique et bornée. La partie excessive de toute demande sup&ieure aune borne est
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satisfaite par des mesures extraordinaires telles que les heures supplémentaires ou la sous-
traitance. Donc, pour un niveau de service a (0 < a <1) donné€au stade final, i.e., stade 1, la

bonne supé&ieur D(z) de la demande totale durant un déai de r unités de temps peut &re

formulé& comme suit:

D(z) [/IT]k efﬂr

> 2-1
T @D

Nous pouvons dénontrer que D(z) est ni concave et ni convexe avecr .

Notations

Indices:

i: Index de stade, i=1,...,N, otN est le nombre de stades dans le systéme,
t: Index de temps, t €[0, 0]

Paraméres

Ti: D@&ai de production du stock i, i=1,2,...,N,

Li: Ddai net du stock i, i.e., Li=SI;+T;-S;, i=1,2,...,N,

A: Taux de demande moyenne de la demande clientée au stock 1,
a. Niveau de service du systéme,

s;: Borne sur le déai de service aval au stock 1.

A D’instant t,

li(t): Stock physique du stock i,

I;(t): Stock physique &helon du stock i,

IL;*(t): Niveau de stock €helon du stock i,

IP;%(t): Stock disponible é&helon du stock i,

d[t—L,t) : Demande totale durant un déai de L; unité de temps du stock i,

d[t—L,t): Demande remplie normalement par le systéme considéédurant un déai de L;

unité& de temps du stock i, i=1,2,...,N.

Variables de de&ision
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B Taux de remplissage du systeme,

Ri: Point de recommande du stock i,

Qi: Quantitéde commande du stock i,

Si: Dé&ai de service aval du stock i,

Sl;: Ddai de service amont du stock i, i=1,2,...,N.
Mod@isation du Probléme

L’objectif du systéme en sé&ie est pour minimiser le cott total moyen, qui comprend des coGis
de passation de commandes, des colts de stockage et des cofts de flexibilité d’exploitation

donné& par

> Lk -ED+ i) @2

Pour chaque stock i, une équation d’évolution du niveau de stock €&helon peut &re d&ive ci-

dessous:
ILS (1) = 1P? (t-L,) —d[t - L. 1) (2-3)
Dans le cadre de la GSA, ILS(t) = 1°(t) > Oetl. (t)>0,
IP*(t-L,) 2 d[t L, t) + IPE, (1) (2-4)

Par ailleurs, nous pouvons &jalement obtenir que, a partir du tempst—L, avec le stock
disponible &helon IP°(t-L,)=R; +1, il existe une r&lisation du processus de la demande du

temps t—L, au temps t tel que d[t—L;,t)>D(L) etIP5(t)=R, +Q.,.

Avec ce résultat important, afin d’assurer que I’inégalité (2-4) est valable pour toute

r&lisation de la demande dans la GSA, nous devons avoir
i i-1
R =Y D(SI;+T,-S,)+ > Q;—ipouri=1,2,...,N (2-5)
j=1 j=0

Puisque I'objectif du problene est de minimiser le co total, il existe une solution optimale

avec Rj, i= 1,2, ..., N donnés par I’équation suivante.

i i-1
R=> D(SI;+T,-S;)+>.Q;—i pour i=1,2,...,N (2-6)
j=0

j=1
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Selon Hadely and Whitin (1960), le stock disponible é&helon IP®(t) est distribué

uniforménent dans l'intervalle[R, +1, R, +Q,], donc, nous pouvons obtenir E[1;] comme suit:
E[I;1=E[IR(t—L,,t)—d[t—L,,1)]
—E[IP*(t—L,,t)—d[t—L,,1)]

-R +§—/w|_i (2-7)

=3 D(SI, 4T, -S,) - AB(S1 +T.-5)+ 50, _%_i
=t j=0

Avec I'éuation (2-2) et (2-7), nous formulons le probléne d'optimisation de la politique de

stockage comme le probléne de programmation non liné&ire ci-dessous:

P: Min
Nl%+§l“{hie [Zl: D(SI, +T, —S,) - 4B +T, —si)+1+2Qi —i]+ih; Q_}+ pA-p)
i=1 i= i= j=i
Sous les contraintes suivantes:
Q..=mQ pouri=12-N-1 (2-8)
SI, +T,-S, 20 pouri=12,---,N (2-9)
SI, =S, pouri=12,---,N (2-10)
0<S, <5 (2-11)
Q. >0 et entier pour i=1, 2,..., N (2-12)
SI;, S, >0 etentier pour i=1, 2,..., N (2-13)

Dans ce modée, la fonction objective est de minimiser le co(t total du systé@me qui se
compose des coUs de stockage, des coUs de passation de commandes et des coGs de
flexibilité d'exploitation. Les contraintes (2-8) sont les contraintes de ratio entier entre la
quantité de commande d’un stock et celle de son successeur. Les contraintes (2-9) assurent
que le ddai net de chaque stock est non néatif. Les contraintes (2-10) impliquent que chaque
stock peut commencer la production lorsque toutes les matieres (composants) né&essaires sont

disponibles. Les contraintes (2-11) imposent une borne sup€&ieure s; sur le d&ai de service
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aval du stock 1. Les contraintes (2-12) et (2-13) signifient que toutes les variables de deeision

doivent &re entiéeres.

Lorsque S est connu, pA(1- B)dans la fonction objective du modée P devient une constante

qui peut &re ignoréet le modée peut &re d&omposeés en deux sous-problénes indéendants,
I'un avec variables de deeision Q; et l'autre avec des variables de déeision Sl; et S;. Les deux
sous-problémes sont appelés le probléne de déermination de quantités de commande (Q-
probléne) et le probléne de déermination de points de recommande (R-probléme)

respectivement.

Q-probléme :
cA . .
Min: Z[ 'Qﬁ +ht. —i)+ Zh Q]
Sous les contraintes suivantes:
Q,=mQ pouri=12---,N-1

Q. > Oetentier pour i=1, 2,...,N
R- probléme:
Min: ihﬁ-[io(sh+Tj—sj)—ﬂﬂ(SIi+Ti—Si)]
= =1
Sous les contraintes suivantes:
SI,+T.—S, 20 pouri=12,---,N
SI,>S,  pouri=12,---,N
0<§,<s,
SI,, S, =20 etentier pour i=1, 2,...,N

De&s que les deux sous-problénes sont résolus, la quantité€ optimale Q; est donné par la
solution du Q-probléme, et le point de commande optimale R; peut &re déerminépar {SI;, Tj,

Sj| 1< j< i} et {Q; | 0< j< i-1} selon I’équation (2-6).

L’analyse ci-dessus suppose S que soit connu. Cependant £ n’est pas connu, mais elle peut
é@re déerminée par la politique de stockage (R, Q) du systé@me consid&é& Par conséguent,

deux algorithmes de programmation dynamique efficaces sont proposés pour ré&oudre le Q-
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probléme et R-probléne respectivement lorsque a et § sont donnés. Sur la base de la politique
optimale de stockage (R, Q), f peut également étre calculé. Enfin, le probléme d’origine
(modée P) peut &@re réolu par une procédure itérative fondée sur I’estimation de la valeur

optimale de .
Algorithmes de Programmation Dynamique pour les sous-Problénes

Pour le Q-probléme, nous développons d’abord deux propriétés importantes pour déterminer

I’espace d’état W; de chaque variable Q;, pour i=1,2,...,N.

Propriéé&l: Pour un systéne en s&ie avec N stades, une borne sup€&ieure de Q; est donnee

par:

ZEﬁi C
ZN:(Zi -Dh’

Propri&é&2: Pour le stock i du systéme en sé&ie, si le point de commande du stock i-1 est

donnépar Q;.1, une borne sup€&ieure de m;.; peut &re obtenue par:

ZﬂﬂZN; C;

i—1+ j

N
Qu {\ > @j-n*he
=1

Nous dé&signons U;i(Qsg)) comme I'ensemble de toutes les valeurs possibles de Q; lorsque Qs
est donné Selon la contrainte de ratio entier (3-8), Ui(Qsy) peut &re alors s'é&rire comme

U Q) ={k|k =Q - i (i <m )}i=12,..,N

Par conséguent, I'espace d'é&at de Q; (i = 1,2, ..., N) peut &re dé&ivécomme suit:

w o &2 Q=1
| {Ui(kl)UUi(kz)”’UUi(kn)v 0/5/17% 1vk2""'kn E\Ns(i)}}vi =2,.,N

Basé sur les deux proprié&é importantes, nous pouvons développer un algorithme de
programmation dynamique pour résoudre Q-probléne afin de trouver les meilleures quantité&s

de commande pour tous les stocks.
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Pour le R-probléme, nous avons appliqué un algorithme de programmation dynamique
proposé€par Graves and Willems (1996, 2000) pour trouver les déais de service amont et aval

(Si, SIi) optimaux du systeme éudie
Proc&lure d’Optimisation

Le probléme d’optimisation original, i.e., I’optimisation de politique de stockage (R, Q) pour
le systéme en sé&ie dans la cadre de la GSA, peut &re résolu en deux boucles : 1) dé&erminer
le niveau de service optimal a et 2) pour chaque o donné& réoudre le modée P. Ici, la
premie&e boucle appelle la deuxiéme boucle. Du fait qu’une seule variable décision « doit &re
optimisé dans la premiére boucle, elle peut &re déerminé en utilisant une recherche linéire.
Dans le cas oula fonction objective du systéme est convexe par rapport &a, la recherche
linéaire peut étre effectuée a I’aide d’une méthode telle que la méthode de la section d’or.
Sinon, elle peut &re faite en discré&isant les valeurs possibles de o sur l'intervalle [0, 1]. A la

suite, nous allons discuter de la fagon de ré&oudre le modée P pour un « donné

Pour réoudre le modée P, nous avons besoin de calculer le taux de remplissage f, qui peut
é@re déerminé par les paramétres et la politiqgue de (R, Q) du systéme consid&é& Nous

préentons une méhode de calculer £ du systene comme suit.

l R+Q o (//“_ k -AL _i

pLG 2

i=R+1k=i+1 k
B 1 R+Q (ﬂ,l_)k -AL 1 R+Q (ﬂ,l_)k -AL |
_1__.2 2 g ki z z Kl Kk
i=R+1k=i+1 - i=R+1k=i+1 .

Dans I'&juation ci-dessus, on note le dé&ai net au stade 1 par L. En raison de la simplification,

I'indice, "1", qui indique le stade 1, est omis dans L, R et Q.

A la suite, nous proposons une procédure ité&ative pour ré&soudre le modde P basé& sur
I’estimation de la valeur de £ achaque ité&ation. Depuis S est gené&alement plus grand que «
et proche de « lorsque o est proche de 1, il est initialis€aa dans la proc&lure. Dés que la
valeur de 8 ne change pas en deux ité&ations successives, nous avons obtenu le f rél et la
politique &helon optimale de (R, Q) pour le systéne par la ré&olution du modee P lors de la
derniere ité&ation de la proce&dure.

Notez que lorsque la politique &helon optimale de (R, Q) trouvé dans la proc&lure est
transformé en une politique installation optimale de (r, Q) pour le systéme en sé&ie consid&é
Le point de commande de cette politigue peut @&re facilement calculé
commer, = D(SI, +T, -S;) -1.
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Expé&iences Numé&iques

Nous avons éaluéles performances de deux algorithmes de programmation dynamique pour
le Q-probléne et R-probléme, respectivement, et la performance de la proc&lure ité&ative
proposee par des expe&iences numeiques sur des instances gen&és alé@toirement. Tout
d'abord, nous avons testéles algorithmes de programmation dynamique proposés pour le Q-
probléme et le R-probléme sur six ensembles d’instances avec 2, 3, 4, 10, 50 et 100 stades,
respectivement. Les résultats expé&iences indiquent que les algorithmes de programmation
dynamique sont efficaces pour résoudre le Q-probléme et R-probléme. En suite, la
performance de la procé&lure ité&ative est é&alué par des exp&iences nume&iques sur les
ménes ensembles d'instances géné&és alé&toirement. Pour chaque ensemble d'instances,
quatre diffé&entes valeurs de a variant de 0,8 &0,98 ont &é& considééss. Les ré&ultats
numeiques ont montréque la procélure ité&ative a une bonne propriééde convergence et est

efficace pour ré&oudre le probleme d'optimisation de la politique du stockage avec un a donné

Chapitre 3: Optimisation de Politiques de Stockage (R, Q) pour les Systénes

d’assemblage

Plus géné&alement, ce chapitre traite de 1’optimisation de politique de (R, Q) pour un systéne
d’assemblage avec Poisson demande dans le cadre de la GSA. La méthodologie
d’optimisation utilisée dans ce chapitre est similaire a celle pour les systemes en série.
Toutefois, un systéeme d’assemblage, qui a plus d’un prédécesseur immédiat pour certains
stocks, se distingue d’un systéme en série qui a un seul prédécesseur immédiat pour tous les
stocks, ce qui conduit aune structure de ré&eau plus compliqué Par conséguent, lI'algorithme
de programmation dynamique pour le probléne de déermination de quantités de commande
(Q-probléme) proposédans le dernier chapitre ne peut &re directement utilis€pour le systéne
d'assemblage. Dans ce chapitre, nous déseloppons un nouvel algorithme de programmation
dynamique pour résoudre le Q-probléne du systéme d’assemblage étudié. L’idée clé de cet
algorithme est que la procélure ré&ursive de programmation dynamique est effectuee dans les
deux directions, avant et arriere. Une proceélure reéeursive en avant est appliqués en premier
temps dans le but de ré&luire I'espace de solutions du probléne. Sur la base des solutions
obtenues par la procélure en avant, une procé&lure en arriere est utilisé& pour identifier la

solution optimale.

Description et mod&isation du probleme
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Nous considé&ons un systéme d'assemblage avec plusieurs articles intermédiaires (composants
et sous-assemblages) et un produit final unique. On suppose que le stock de chaque article est
revu en temps reel. La structure du réseau du systéme est définie par sa nomenclature (bill of
material, BOM) qui est un arbre dont le nceud racine correspond au produit final. On suppose
N est le nombre d’articles dans le systéme, N>3. Ces articles sont numé&oté de 1 aN, ou
l'article 1 représente le produit final. L’article i est notéstock i pour i=1,2,...,N. En outre,
nous supposons que la demande clientée du produit final suit un processus de Poisson de taux

moyen 4 . Comme mentionné&dans le chapitre 3, le cott total du systé@ne se compose de trois
types de cods: coGis de passation de commandes, coGs de stockage et cotis de flexibilité
d’exploitation. L’objectif est de minimiser le cofit total du systeme a long terme sujet a un

niveau de service o au client donné
Dans le cadre de la GSA, pour un niveau de service o donnée, une borne supé&ieure D(z)sur la

demande totale durant un déai de 7 unité de temps peut &re formulé comme suit:

D(r) [/IT]k eflf

> 3-1
¢ 1)

Le probléne d'optimisation de la politique de stockage éudi€épour le systame d'assemblage

peut &re formulécomme un probléme de programmation non lin&ire suivant:

P: Mini

Z%J“;{hie 12 csuoq PO +T;=8)) =48I +T, - Si)+¥_ci]+zjePRE(i) hi-Qu}

i=1 Y

+pA(l-5)

Sous contraintes suivantes:

Q =m,;, Q) pouri=12,-,N (3-2)
SI,+T,—=S; =0 pouri=12,---,N (3-3)
SI; > max{S,, }pouri=12,---,N (3-4)
0<S,<s, (3-5)

Q, >0 etentier pour i=1, 2,..., N (3-6)
SI,,S, =20 etentier pour i=1, 2,...,N (3-7)
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Dans la fonction objective, g est toujours inconnu. Nous supposons d'abord que S soit donn&
alors, le modéde P peut &re diviséen deux sous-problémes indéendants, le sous-probléme de
déermination de quantités de commande (Q-probléme) et le sous-probléme de déermination
de points de recommande (R-probléne). Le Q-problene a une fonction objective convexe
compose de tous les termes dépendant de Q et des contraintes (3-2) et (3-6), alors que le R-
probléme a une fonction objective non linéire composee de tous les termes dépendant de R et
des contraintes lin&ires (3-3), (3-4), (3-5) et (3-7).

Algorithmes de Programmation Dynamique pour les sous-Problénes

Diffé&ent d’un syst@ne en sé&ie qui ne possete qu'un seul pr&léesseur immeliat, le systéne
d'assemblage éudiépeut avoir le stock d’un article qui a plus d'un pré&léesseur immetiat,
I'algorithme de programmation dynamique ne peut pas &re directement appliqguéaréoudre le
Q-probléme du systame d'assemblage. Dans ce chapitre, nous déseloppons un nouveau
programme dynamique pour réoudre le Q-probléne des systames d'assemblage. L'idé& cléde
I'algorithme est que la procélure réeursive de programmation dynamique est appliquée dans
deux directions, asavoir, ala direction en avant et la direction en arriée. Dans la procé&lure
en avant, I’état du systé@me est mis en extension en avant apartir du stock du produit final aux
stocks des articles achetés aupres de fournisseurs externes, tandis qu’dans la procelure en
arriére, 1’état du systéme est mis en extension dans le sens inverse. La procé&lure en avant est
appliquée en premier temps dans le but de réuire I'espace de solutions du probléne. Basésur
les solutions obtenues par la procé&lure en avant, la proc&lure en arriee est appliquée pour
identifier la deeision optimale pour chaque stock et ensuite obtenir la solution optimale du

probléme.

Pour le R-probléme, nous avons aussi appliqguéun algorithme de programmation dynamique
propos€par Graves et Willems (1996, 2000) pour trouver les déais de service amont (S) et les

dé&ais de service aval (SI) optimaux du systame éudié
Procédure d’optimisation

Apres I'introduction de deux algorithmes DP pour les deux sous-problénes (Q-probleme et R-
probléne), nous proposons une procélure d'optimisation it&ative pour résoudre le probleme
d'optimisation d'origine (modée P). Comme mentionnédans le chapitre 2, pour un niveau de
service o donn€au client, le probléme d'optimisation peut &re réolu par une procé&lure
it&ative fondé sur I’estimation de la valeur de f achaque it&ation. La procé&lure comporte

deux éapes principales dans chaque it&ation:
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= Pour une valeur estimee de S, résoudre le modée P;
= Calculer le taux remplissage S réel du systéme consid&é

Parce que le taux de remplissage f ne dépend que du point de recommande R et de la quantité
de commande Q du stock du produit fini qui est unique pour le syst¢éme d’assemblage, son

taux de remplissage S peut &re calculésimilairement par

R+Q o ;th -AL K-i
Sy yeRe

i=R+1k=i+1
B 1 R+Q (ﬂl_k -AL R+Q o (/ILk -AL |
EDIP LIRS 3 YL T

i=R+1k=i+1 i=R+1k=i+1
A noter que, dans la formule ci-dessus l'indice "1™ qui indique le stock 1 est omise dans L, R
et Q, ouL est le d&ai net déerminépar la réolution du probléne d'optimisation de la

politique de stockage.

Avec la formule pour le calcul de £, nous pouvons proposer une procélure similaire acelle
pour le systéme en sé&ie pour ré&soudre le modéle P. La proc&lure commence apartir de la
mise en « comme la valeur initiale de . A chaque ité&ation, pour une £ estimee, la politique
&helon optimale de (R, Q) pour le systéne considé&&est obtenue en ré&olvant le modée P, et
le taux de remplissage S reel du systame est ensuite calculé Si les deux valeurs de £ sont

identiques, la procéure s'arr&e.
Expé&iences Numé&iques

Nous avons effectuédes expé&iences nume&iques pour &aluer les performances des deux
algorithmes de programmation dynamique pour le Q-probléme et R-probléme, respectivement,
et la performance de la procélure it&ative proposés. En outre, nous avons effectuéé&alement
une analyse de sensibilitépour examiner les impacts des parametres diffé&ents du systéme sur
la performance de l'algorithme. Toutes les expé&iences sont effectuéss sur trois ensembles
d’instances avec 7 articles et 3 niveaux, 15 articles et 4 niveaux et 63 articles et 6 niveaux,
respectivement. Pour le Q-probléne, nous avons comparénotre algorithme avec l'algorithme
de Wallace et Michael. Les ré&ultats montrent que notre algorithme de programmation
dynamique proposé pour le Q-probléme est plus efficace que l'algorithme de Wallace et
Michael, et ils démontrent aussi que notre algorithme est trés efficace pour la ré&olution des
grandes instances, avec un temps de calcul maximal de moins de 0,0068 secondes pour les
instances avec 63 articles. Pour le R-probleme, les ré&ultats numé&iques démontrent que le

temps de calcul de I'algorithme de programmation dynamique est assez court, ce qui dénontre
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I'efficacitéde l'algorithme. En outre, pour le Q-probléne, nous pouvons observer que le temps
de calcul moyen diminue en h®, ¢;, et augmenter en 2, les ré&ultats &alement démontrent que
le paramétre A a une influence considéable sur le temps de calcul de l'algorithme. Pour le R-
probléne, nous pouvons observer que le paramére de A a une influence considé&able en

temps de calcul, relativement, le paramétre de h;® n'a que peu d'influence.

Chapitre 4: Optimisation de Politiques de Stockage (R, Q) pour les Systénes de

Distribution aDeux Niveaux

Dans ce chapitre, nous éudions un systa@me de distribution adeux niveaux avec un entrep& et
plusieurs dé&aillants. La caracté&istique la plus distinctive d’un tel systéne est que chaque
stock a un seul préléesseur direct, mais a plusieurs successeurs directs. Dans ce systéme,
toutes demandes finales, qui se produisent chez les déaillants seulement, suivent de diffé&ents
processus de Poisson et sont indéendantes. On suppose que chaque stock dans le systéme a
un cod fixe pour passer chaque commande et que chaque stock est g&épar une politique de
stockage (R, Q) avec I’inventaire en temps reéel du stock. Dans le cadre de la GSA, nous
supposons que la demande excessive au-dela d’un niveau maximum raisonnable sera satisfaite
en utilisant des mesures extraordinaires avec colts de la flexibilit¢ d’exploitation. De plus,
nous supposons que le systéme éudi€ a une condition initiale randomisé. Dans ces
hypotheses, nous pouvons établir un modele mathématique pour le probléme d’optimisation et
ensuite proposer une procédure d’optimisation pour résoudre le modele basé sur la
déomposition du modée en deux sous-problénes qui sont ré&olus en utilisant un algorithme
de programmation dynamique ou en calculant la quantité de commande €onomique
correspondantes. Plus particuli&ement, nous considé&ons cing diffé&ents types de contraintes
de ratio entier &entuellement imposées sur les quantité&s de commande des stocks du systéme

éudié& et comparons leurs efficacité par des exp€é&iences nume&iques.
Description et modé@isation du probléme

Nous considé&ons un systéme de distribution dans lequel un entrep@ approvisionne N
détaillants. L’entrepdt est noté comme stock 0 et le détaillant i comme stock i pour i=1,2,...,N.

On suppose que la demande clientée du stock i suit un processus de Poisson de taux moyen 4 .

Le col de passation de chaque commande et le coGt de stockage eshelon par unitéde produit
par unité de temps du stock i sont ¢; et h® respectivement, i=0,1,....N. De plus, nous

définissons p; et fi comme le colt unitaire de flexibilité d’exploitation et le taux de
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remplissage du déaillant i (i=0,1,...,N) respectivement, ou S, est le taux de remplissage de
I’entrepot.

Puisque I’approvisionnement de I’entrepot est utilisé pour satisfaire la demande normale (la
partie de la demande en dessous du niveau maximum raisonnable), la quantité moyenne

commandée de 1’entrepdt par unité de temps est donnée par 4, f3, .

Dans le cadre de la GSA, pour un niveau de service «; donnée au client du déaillant i, une

borne supé&ieure D,(z) sur la demande totale durant un déai de r unité& de temps de ce stock

peut &re formulé& comme suit:

Di(7) [212-] efﬂir

>a,i=12,...,N (4-1)
o k!

Dans les systémes en série et les systémes d’assemblage, la borne sup&ieure de la demande
durant un ddai est définie uniquement pour le stock du produit final et tous les autres stocks
ont la méne borne que celui du stock final. Toutefois, pour le systéme de distribution,
puisque la demande de I'entrep@ est la somme des demandes de tous les déaillants &long
terme, la borne sup€&ieure de la demande de cet entrep& durant un déai doit &re diffé&ente de

celles des déaillants, donc nous devons aussi définir une borne supé&ieure D,(z) de la

demande totale durant un déai de 7 unités de temps pour I’entrepot, et elle peut étre formulée

comme la suivante:

N

Dy (7) K A—=A0T
r]‘e ;
yrl'e ™ > a,, Where o, ==
o k!

P
1

(4-1b)

Ol est le niveau de service de I'entrep& aux clients finaux.

Supposons que dans le systame &udie, le stock i emploie un politique €&helon de stockage (R,
Qi), pour son approvisionnement. Dans les hypotheses de la demande borné et la condition
initiale randomisée du systéme, le probléeme d’optimisation que nous étudions peut étre

formulécomme le probléne de programmation non linéuire suivant:

P: Minimize
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> SR (DS, +T=5) = A4S +T,=8)+ LRI D8I, +T,-5)+ 20 ~N]

+Z piAL-5)

Sous les contraintes suivantes:

SI,+T.—S, 20 pouri=12,---,N (4-2)
SI,>S, pouri=12,---,N (4-3)
0<S§,<s,i=12,...,N (4-4)

Q. >0 et entier pour i=1, 2,..., N (4-5)
SI,,S, 20 etentier pour i=1,2,...,N (4-6)

Dans ce modéde, les variables de deeision relatives achaque stock i sont la quantité de
commande Q;, le déai de service aval S; et le ddai de service amont Sl;; T; est le d&ai de
production du stock i; s; est une bornésupé&ieure imposeé sur le ddai de service aval du

stock, sj, i=1,2,...,N sont des paramétres donnés.

Dans la fonction objective, £ est toujours inconnu, ce qui rend le probléme d’optimisation
difficile a résoudre. Nous supposons d’abord que S est donné& le modée P peut donc &re
dé&omposéen deux sous-problames indéendants : le Q-problame qui a une fonction objectif
composée de I’ensemble des termes relatives aQ; (i=0,1,...,N), et des contraintes (4-5), et le
R-probléme qui a une fonction objectif composée de tous les termes relatives aR;, i=0,1,...,N
et des contraintes linéaires (4-2), (4-3), (4-4) et (4-6).

Dans la suit, nous développons des algorithmes efficaces pour réoudre les deux sous-

problémes pour « et S donnes.

Toutes les analyses ci-dessus supposent que £ soit connue. Cependant, f est toujours inconnue,
mais elle peut &re déerminee par les paramétres et la politique de stockage (R, Q) du systeme.
Basé sur les solutions des deux sous-problémes, nous avons propos€ une meéhode pour
calculer g, et une procélure d'optimisation pour résoudre le probléne d'optimisation d'origine
(modée P).

Contraintes de Ratio entier pour le Q-probléne
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Pour le Q-probléme, il peut avoir des contraintes supplémentaires reliant la quantité de
commande d’un stock a celle de son fournisseur. Par exemple, on demande que la quantité de
commande d’un fournisseur soit un multiple de la quantit¢é de commande de son client. De
nombreux chercheurs ont éudiediffé&ents types de contraintes de ratio entier dans un systéne
de distribution a deux niveaux, mais aucune comparaison entre ces contraintes n’a ééfaite en
termes d’efficacité. Dans ce chapitre, nous considérons cinq différents types de contraintes de

ratio entier pour le Q-probléme.
Les diffé&ents types de contraintes de ratio entier dans cing cas sont deerits comme suit.
Cas 1 : sans contrainte de ratio entier;

Dans ce cas, il n’existe pas de lien entre la quantit¢é de commande de 1’entrepdt (Qo) et la
quantité de commande d’un détaillant (Q;, i=1,2,...,N). Dans ce cas, le Q-probléne a une
structure simple, qui peut &re divis€en sous-problénes N indéendants et ré&olu par la

meéhode de la quantitéde commande é&onomique (EOQ method).
Cas 2 : Qi=m;-Qn, pour certains entiers m;, i=1,2,..., N-1;

Ce genre de contraintes de ratio entier a é&examinépar Chen et Zheng (1997) dans leur
modele d’un systeme de distribution a deux niveaux avec un entrep6t et plusieurs détaillants,
ouQy est considé&é&comme la taille de lot de base du systéme. Ici, le déaillant N peut &re
remplacépar tout autre déaillant (i=N) et le choix du déaillant de réé&ence déend du taux
moyen de la demande de chaque déaillant. Dans 1’hypothése que le stock disponible initial &
I’entrepot est également un multiple entier de la taille de lot de base, ils ont montré qu’une

telle restriction n’est pas trop coUieuse.
Cas 3 : Qi=mj-q, pour certains entiers m;, i=0,1,...,N;

De méne, ce cas suppose une taille de lot de base dans le systé@me de distribution, dans
laguelle la quantitéde commande de chaque stock (Q;, i=0,1,...,N) doit &re un multiple entier
de la taille de lot de base noté q. Dans la pratique, q peut correspondre ala capacitéd'une
palette pour la livraison. La capacitéest le nombre d'unité& d'un produit que la palette peut

porter pour lI'expé&lition d’une commande.
Case 4: Qo=m;-Q;, pour certains entiers m;, i=1,2,...,N.

Ce cas suppose que la quantitéde commande de I’entrepdt (Qo) est toujours un multiple entier
de la quantitéde commande de chaque dé&aillant (Q;, i=1,2,...,N). Cette hypothése, qui est
couramment adopté& dans la litté&ature de gestion des stocks, est tout afait naturelle vu que la
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politique d’approvisionnement de I’entrepdt est de satisfaire tout ou rien d’une commande de

déaillant (Axsater, 1996).

Case 5: Qo=mo+Qo, Q1,...n=Mi... 01,151 <N, qo=ko:ql, pour certains entiers m;, i=1,2,...,N,
Ko.

Dans le cas 2 et 3, une taille de lot de base est géné&alement supposé pour l'entrepd et les
déaillants dans le systéme de distribution. Cependant, puisque 1’entrepdt et les détaillants
appartiennent adiffé&ents niveaux dans la chame d’approvisionnement, cette stratégic de
coordination peut &re difficile amettre en application. Donc, le cas 5 propose une nouvelle
contrainte de ratio entier. Ce cas suppose qu’il existe une taille de lot de base pour chaque
niveau dans le systéme, c'est-adire, qo est la taille de lot de base pour le niveau d’entrepot
(niveau 0) et q; est la taille de lot de base pour le niveau de déaillant (niveau 1), et les
quantités de commande de tous les stock au mé&ne niveau ont la taille de lot de base commune,
la taille de lot de base au niveau d’entrep6t (niveau 0) doit étre un multiple entier de la taille

de lot de base au niveau de déaillant (niveau 1), c'est-adire, go est un multiple entier de q;.
Algorithmes de programmation dynamique pour les sous-Problemes

Pour le Q-probléme, nous avons consid&écing diffé&ents types de contraintes de ratio entier,
et ont déeloppé des algorithmes de programmation dynamique pour résoudre ce sous-
probléme, sauf une méhode de la quantité de commande €onomique (EOQ method)
appliquée pour ré&soudre le Q-probléme avec le contrainte de ratio entier du cas 1.

Pour le R-probléme, nous avons appliqué 1’algorithme de programmation dynamique propose
par Graves et Willems (1996, 2000) pour le résoudre afin de trouver les meilleurs déais de

service amont et aval (S, Sl) du systéme &udié
Procédure d’Optimisation

Similaire aux syst@mes en sé&ie et systémes d’assemblage, le probléme d'optimisation
d’origine peut &re ré&olu par une proc&lure it&ative. La proc&lure comporte deux éapes
principales: d'une part, pour un taux de remplissage estimé&du systé@ne, nous calculons la
quantitéde commande optimale (Q;) et le point de recommande optimale (R;) pour chaque
stock en réolvant deux sous-problémes al'aide de deux algorithmes de programmation
dynamique. Deuxiénement, nous calculons le taux de remplissage ré&l du systéne donnésa
politique de stockage. Lorsque le taux de remplissage reéel est &al au taux de remplissage

estimé la solution optimale du probléne d’origine est trouvee.
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Pour le systame de distribution &deux niveaux considé&és, I'entrepd a plusieurs déaillants et
ces dé&aillants peuvent avoir diffé&ents taux de remplissage. En outre, le taux de remplissage
externe de I'entrep@ est géné&alement diffé&ent des taux de remplissage des détaillants.

Pour chaque stock i, (i=0,1,2, ...,N), si le point de recommande et la quantitéde commande du
déaillant i sont donné& par R; et Q;, respectivement, son taux de remplissage fi peut &re

calculécomme suit:

pen LT $ ALYeN 1R S Gt G o)

J

Q &uéh K Q &u&h koK
A la suite, nous utilisons une procélure ité&ative pour ré&soudre le probléne d'origine (modée
P) basé sur ’estimation de la valeur de f; achaque ité&ation. Quand le ;i rél est égal asa
valeur estimeg, la solution optimale du probléme d’origine peut &re trouvés. La proce&lure
présente les caractéistiques suivantes: 1) la valeur initiale de g; est fixéaa;, 2) la procélure
s'arr&e lorsque la valeur estimée de chaque Si ne change pas dans deux ité&ations successives
(i=0,1,..N).

Expé&iences Numeé&iques

Nous avons évaluéles performances de deux algorithmes de programmation dynamique pour
le Q-probléne et R-probléme, respectivement, et la performance de la proc&lure ité&ative

proposee par des exp&iences numeiques sur des instances gené&és alé@toirement.

Pour le Q-probléne, afin d'analyser les impacts de diffé&ents types de contraints de ratio-
entier, nous avons testéun ensemble d’instances de petite taille (N= 4), et ensuite nous avons
considé&é cing ensembles d’instances de moyenne agrande taille avec N=9, 20, 50, 100,
respectivement, dans une tentative d’analyser plus profondément les performances des
algorithmes proposés. D'apres les réultats des exp€&iences, nous pouvons observer que les
cods optimaux sont similaires parmi les cing cas diffé@ents, ces ré&ultats démontrent que le
cod total du systéme est insensible au choix des quantités de commande dans le systéme. Les
temps de calcul des cing cas sont assez courts, ce qui démontre I'efficacitédes algorithmes.
Pour le R-probléne, les cing mémes ensembles d’instances sont testés. A partir des réultats,
nous pouvons observer que pour les petites instances (N=4), le R-probléme peut &re ré&solu
presque instantan@ment en utilisant l'algorithme de programmation dynamique de Graves et
Willems, alors que pour les grandes instances (N= 9, 20, 50 et 100), le temps de calcul de
I'algorithme devient plus long, mais il est encore assez court. Cela dénontre la pertinence du

choix de cet algorithme pour la résolution du R-probleme.
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Chapitre 5 Conclusions et perspectives

Dans cette thése, nous avons éudiél'optimisation de la politique de stockage des systames de
stocks multi-&helons avec des coGs fixe de passation de commande achaque stock. En
raison de D’existence des colits de passation de commande, ce probléne d’optimisation
devient tres difficile pour les systames gené&aux de stocks multi-&helons. Dans la litt&ature,
deux approches concurrentes sont utilisées pour réoudre le probléme, I'approche de service
stochastique (SSA) et I'approche de service garanti (GSA). Par rapport &la SSA dont le
modéde a géné&alement une structure trés complexe, la GSA mod@&ise un systame de stocks
multi-&helons de maniée approximative et peut éablir un modde de programmation
mathématique relativement simple pour le systéne. Ce modde simplifié permet & un
planificateur du systéme de prendre des deeisions stratégiques ou tactiques sur le placement

de stocks de s&urité

L'hypothése principale de la GSA est que la demande excessive sup&ieure aun certain niveau
est satisfaite a 1’aide de la flexibilitéd'exploitation. Sur la base de cette hypothese, la GSA
peut formuler le probléme d'optimisation de la politique de stockage d’un systéme de stocks
multi-&helons comme un probléne de programmation mathénatique dé&erministe.
Cependant, dans la plupart des éudes pré&élentes de la GSA, les coGs de la flexibilité
d’exploitation n'‘ont pas &e&pris en compte dans son modée d'optimisation. Cela a provoqué
la critique de cette approche dans le pass€ De plus, les co(ts fixes de passation de commande
qui existent souvent dans les chames d'approvisionnement industrielles ont &€ignoré dans le
modée. A notre connaissance, aucun travail pré&&lent n’a utilis€la GSA pour optimiser les
systénes de stocks multi-é&helons avec des coGs fixes de passation de commande. Par
cons&juent, dans cette thése, nous avons concentrésur deux grands thémes de recherche: 1)
Utilisez la GSA pour optimiser les systames de stocks multi-&helons avec des coOs fixes de
passation de commande achaque stock. 2) Géné&aliser la GSA pour tenir compte des codts de

la flexibilitéd'exploitation dans lI'optimisation de la politique de stockage des systémes.

Cette these a consideeé trois diff@ents types de systames de stocks multi-éhelons: les
systames en s€ie, les systé@mes d'assemblage, et les systémes de distribution adeux niveaux.
Pour chaque systéme, nous supposons que la demande du client final est géné&é& par un
processus de Poisson, un cot fixe est facturé achaque stock quand il passe une commande,
et chaque stock est g&épar une politique (R, Q). Notre objectif est de trouver une politique

optimale (R, Q) pour le systame de sorte que le coGt total du systé@me qui contient les coGis de
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stockage, les cols de fixes de passation de commande et les cots de flexibilitéd'exploitation

est minimisé&tout en respectant un niveau de service offert au client.

Aprés une introduction géné&ale et une revue de la litté&ature dans le chapitre 1, chapitre 2
aborde I'optimisation de la politique (R, Q) pour un systa@me en s&ie avec la demande suivant
un processus de Poisson et coUs fixes de passation de commande. Dans le cadre de la GSA,
nous avons d'abord é&abli un modee mathénatique pour le probléme d’optimisation, qui est
un modée de programmation non linéaire. Puisque la fonction objective du modée dépend de
deux niveaux de service (niveau de service « et du taux de remplissage ) du systa@me, nous
proposons une procé&lure it&ative pour ré&soudre le modee basésur I'estimation du taux de
remplissage S lorsque le niveau de service a est donné La procé&lure ité&ative appuie sur la
résolution de deux sous-problémes du modée: le probléne de déermination de quantité de
commande (Q-probléme) et le probléne de déermination de points de recommande (R-
probléne). Nous avons développé un algorithme programmation dynamique(DP) efficace
pour réoudre le Q-probléne, basésur deux propriéés importantes sur I'espace d'éat de ses
variables de deision, ce qui rend notre algorithme DP beaucoup plus efficace qu'un
algorithme DP dans la litté&ature. Le R-probléne est ré&olu en utilisant un autre algorithme
DP proposé par Graves et Willems. Les expé&iences numé&iques montrent que les deux
algorithmes DP sont trés efficaces pour réoudre le Q-probléne et R-probléne de grande
taille avec un temps de calcul court. Les réultats numé&iques montrent éalement que la
procélure ité&ative d'optimisation a une bonne propriééde convergence et un calcul efficace

pour résoudre le probléme d'optimisation de la politique de stockage.

Chapitre 3 géné&alise le modée et I'approche de réolution proposé dans le chapitre 2 aux
systémes d'assemblage. Eant donnéque les systémes d'assemblage éudiés ont une structure
plus complexe que les systames en s€&ie, l'algorithme DP du Q-probléne pour les systémes en
sé&ie ne peut &re directement utilis€épour les systames d'assemblage. Par conséjuent, nous
avons développé un nouvel algorithme DP pour ré&oudre le Q-probléme des systémes
d'assemblage, dans lequel une procé&lure reeursive avant et une procelure réursive arriere
sont utilisés ala fois pour identifier la solution optimale du probléme. Les expé&iences

numéiques dénontrent I'efficacitéde I'algorithme.

Chapitre 4 porte sur l'optimisation de la politique (R, Q) pour les systémes de distribution a
deux niveaux. L’optimisation d’un tel systéme est plus difficile que celle d’un systéme
d’assemblage. Pour le systéne de distribution, nous avons aussi éabli un modée

mathématique pour son probléme d'optimisation de la politique de stockage et déselopp&une
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proc&lure d'optimisation pour ré&oudre le modée. Plus particuliéement, nous considéons
cing diffé&ents types de contraintes de ratio entier éentuellement imposees sur les quantités
de commande de I'entrep@ et des déaillants. Pour chaque type, nous avons proposeé un
algorithme efficace pour réoudre le Q-probleme. Nous ont comparé les cingq types de
contraintes de ratio entier en termes de leurs efficacités par des exp&iences humeiques. Les
exp&iences numé&iques démontrent l'efficacitéde la proc&lure d'optimisation pour réoudre
le probléne d'optimisation des stocks du systeme de distribution éudié

Cette these a éendu le domaine d'application de la GSA du placement de stocks sé&uritédans
les systames de stocks multi-&helons sans cods de passation de commande al'optimisation
de la politique (R, Q) des systames de stocks multi-&helons avec des cods fixes de passation
de commandes achaque stock. Il a éjalement &endu la GSA standard en tenant compte
explicitement les cos de flexibilitéd'exploitation et les effets de cette flexibilitédans le

modée GSA du probléne d'optimisation.

Bien que le travail de cette thése ait d@montréles avantages de la GSA dans I'optimisation des
systénmes de stocks multi-é&helons, beaucoup de travail reste a faire. Il y a quelques
orientations possibles pour la recherche future. Tout d'abord, la performance de la politique
des stockages conqle par la GSA devrait &re comparé avec la performance de la politique

des stockages con@le par la SSA.

Dans la litté&ature, tres peu d’études contribuent a une telle comparaison, en particulier, pour
les systames de stocks multi-é&helons avec des co(is de passation de commande. C'est acause
que le modéde stochastique employépar la SSA a souvent une structure trés complexe si les
coQs fixes de passation de commande sont prises en considéation, et il est trés difficile de
trouver une politique optimale de stockage pour un tel systéme, seuls les algorithmes
heuristiques ont &é&développé&s. Donc, la comparaison des deux approches est encore un

probléme ouvert.

Deuxianement, dans cette these, le processus de demande clientée est supposéd’&re un
processus de Poisson, mais en relité la demande peut suivre un autre processus stochastique.
A l'avenir, nous éudierons des systémes de stocks multi-&helons avec d'autres processus de

demande, tels que le processus de Poisson composéet le processus de distribution normale.

Troisiénement, cette thése ne considée que des systames de stocks multi-&helons avec
I’inventaire continu de chaque stock. Dans la pratique, 1’état d’un stock peut &re revu

p&iodiquement. Dans ce cas, la politique (R, Q) est gen&alisee et remplaces par la politique
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(R, nQ). L’optimisation de la politique (R, nQ) pour les systémes de stocks multi-ehelons
avec I’inventaire périodique de chaque stock dans le cadre de la GSA est &alement dans la

liste de nos sujets de recherche futurs.

Enfin, cette thése a considé&é trois types de systames de stocks multi-&helons, i.e., les
systames en sé&ie, les systa@nes d'assemblage et les systémes de distribution &deux niveaux.
Dans la pratique, une chame d'approvisionnement peut avoir a la fois une structure
d'assemblage et une structure de distribution. Un de nos travaux futurs est d’é&udier des
systames de stocks multi-&helons plus géné&aux dans lesquelles tous les liens entre les stocks

sont possibles.
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Peng LI
Doctorat : Optimisation et Sireté des Systémes

Optimisation de politiques de stockage
(R, Q) pour les systemes multi-échelons
avec service garanti

Face a une concurrence féroce par suite de la
modélisation économique, les entreprises doivent
bien gérer leurs chaines logistiques afin de réduire
leurs coiits d’exploitation tout en améliorant leurs
services au client. Un enjeu majeur de cette gestion
et la gestion efficace des stocks multi-échelons.
Dans cette thése, nous étudions des systémes de
stocks multi-échelons avec des coiits de passation
de commande a chaque stock. En raison de
I’existence des coiits de passation de commande,
Poptimisation d’'un tel systéme devient trés
compliquée. Récemment, I’approche de service
garanti (GSA) a été utilisée pour déterminer les
stocks de sécurité pour les systémes de stocks
multi-échelons, mais sans coiits fixes de passation
de commande. Nous généralisons la GSA pour
optimiser la politique de stockage (R, @) d’un
systeme de stocks multi-échelons avec la demande
suivant un processus de Poisson et coiits fixes de
passation de commande a chaque stock. Nous
considérons trois types de systémes de stocks
multi-échelons, et pour chaque type, nous d'abord
établissons un modéle mathématique pour le
probléme d’optimisation. Ensuite, le modele est
résolu par une procédure itérative fondée sur deux
algorithmes de programmation dynamique (DP). Un
algorithme DP est utilisé pour résoudre le sous-
probleme de détermination de quantités de
commande et I'autre est utilisé pour résoudre le
sous-probleme de détermination de points de
recommande du modele. Les résultats numériques
démontrent I'efficacité des algorithmes et de la
procédure.

Mots clés : gestion des stocks - optimisation
mathématique - logistique (organisation) -
programmation dynamique.

Optimization of (R, @) Policies for Multi-
echelon Inventory Systems with
Guaranteed Service

With the increasing complexity of supply chains led
by economic globalization, integrated supply chain
management has become an important strategy
utilized by the firms to reduce the overall cost while
meeting the customer service. This change has
made academic researchers and industrial
practitioners pay more and more attention to multi-
echelon inventory management over the last two
decades.

In this thesis, we study multi-echelon inventory
systems with fixed order costs at each stock.
Because of the existence of fixed order costs, the
optimization of such system becomes very
complicated. Recently, Guaranteed Service Approach
(GSA) was used to set safety stock for multi-echelon
inventory systems, but without fixed order costs. We
extend the GSA to optimize (R, @) inventory policies
for multi-echelon inventory systems with Poisson
demand and fixed order costs. Our objective is to
find optimal (B, @) policy for such a system so that
its total cost is minimized while achieving a service
level to customer. Three types of multi-echelon
inventory systems, serial systems, assembly
systems and two-level distribution systems are
considered. For each type, we first establish a
mathematical model for the optimization problem.
Then, the model is solved by an iterative procedure
based on two dynamic programming (DP)
algorithms. One DP algorithm is used to solve the
order size decision subproblem and the other is used
to solve the reorder point decision subproblem of the
model. Numerical experiments demonstrate the
efficiency of the algorithms and the procedure.

Keywords: inventory control - mathematical
optimization - business logistics — dynamic
programming.
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