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Surveillance systems are important todts law enforcement agencies for fighting
crimes. Surveillancecontrol roomshave two main dutieslive monitoring the surveillance
areas, andcrime solving by investigating the archives. To support these difficult tasks,
several significant solutions from the research and market fields have been proposed.
However, the lack of generic and precise models for video content representation timake
building of fully automated intelligent video analysis and descripsgstema challenging
task. Furthermore, the application domain still shows a big gap between the research field
and the realpractical needs,it also show a lack between these real nesecand the on
market video analytics toolsConsequently in conventional surveillance systemisye
monitoring and investigating the archivssll rely mostly on human operators.

This thesis proposes a novel approach for textual describing important rcsnie
videos surveillance scenes, based on new generic cofext'VSSD ontolody with focus
on two objects interactions. The proposed ontology presents a new generic flexible and
extensible ontology dedicated for video surveillance scenes descripibile analysing and
understanding variety of video scenes, our approach introduces many new concepts and
methods concerning mediation and action at a distatistraction inthe description,anda
new manner of categorizing the scenek introduces a nevheuristic way to discriminate
between deformable and ncedeformable objects in the scenedt also highlights and
exports important features for better video objects interactions learning classificatiods
for better description These featuredf usedas key parameters in video analytics tools, are
much suitable for supporting surveillance systems operatiorsugh generating alertsand
intelligent search.

Moreover, our system outputs can support police incidents reports, according to
investigators meds, with many types of automatic textual description basadnew welt
structuredrule-based schemas or templates.

Additionally, in this thesis, many important propositions were made, driven by
practical experience, to reduce the existing gaps betweee #urveillance systems
}% & S}Ee*[ VvV * (E}u }v ¢] USZ €&+« €& Z(]o v SZ }uu &
the other side. These propositions encounter the research field, and the practical one,
especially at the level of future intelligence vidaoalytics development and integration
with other systemsSome of these propositions are innovative yet simple to be applied,
which can bring great benefits and optimize the use for surveillance systems operators
when live monitoring, investigating, and agsing the crimes.
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Les systemes de vidéosurveillance sont des outils importants pour les agences
chargées de l'application de la loi dans la lutte contre la criminalité. tlesmbresde
contréle de la vidéosurveillance ont deux fonctionspipales: surveiller en direct les zones
de surveillance et résoudre les infractions en enquétant les archives. Pour soutenir ces
taches difficiles, plusieurs solutions significatives issues des domaines de la recherche et du
marché ont été proposées. Cepdant, le manque de modéles génériques et précis pour la
représentation du contenu vidéo fait de la construction d'un systeme intelligent

usStu §]e- %0 analyse [et de décrire des vidéos une tache ardue. De pluse

Ju Jv [ % % 0] $]}oujours 8riEEcag important entre le domaine de la recherche

S 0e¢ ¢}]Jve E o0°U ]Jve] <p[uVv U vcu VSE e e¢}Jve E o0° S C
dans le marchéPar conséquencejusqu'a présent dans les systemes de surveillance
conventionnels,la surveillance en direct et la recherche dans des archiregssent
principalement sur des opérateurs humains.

Cette these propose une nouvelle approche pour la description textuelle de

contenus importants dans des scénes de vidéosurveillance, basée sumamnelle
«ontologie VSSD» générique, sans contexte, centrée sur les interactions entre deux objets.
L'ontologie proposéest générique flexible et extensibledédiée a la description de scenes
de vidéosurveillance. Tout en analysant les différentes stévidéo, notre approche
JvSE} u]s viu @ UE VIHA pAE v %Se 3 u 3Z} o }v EvV vE
distante,la description synthétiqueainsi qu[ 4 vnouvelle facon de segmenter la vidéo et de
classer les scénelous introduisonsine nouvelleméthode heuristique de distinction entre
les objets déformables et non déformables dans les scaviess proposons égalemedes
caractéristiques importantes pounne meilleure classificatiodes interactions entre les
objets vidég basées uE o[ %.2gelet urie]meilleure descriptiorCes caractéristiquesi
elles sont psjoJe ¢ }uu % E u SE * 0 ° Ve 0 ¢ }usS]Joe [ Vv oC-
adaptéespour aiderles opérateurs de systémes de surveilladctaversdes générations

hlertes et une rederche intelligente.

De plus, nos sorties systeme peuvent prendre en charge les rapports d'incidents de
police, selon les besoins des enquéteurs, avec de hombreux types de descriptions textuelles
automatiques basées sur de nouveaux schémas ou modelesstoignurés et basés sur des
régles.

Enfin dans cette thése, de nombreuses propositions importantes ont été faites,

o[ %o%o WUES O] A% E] v % E S]<pu U %o} EeriEe |gs]liEsoins des ESe  /
}% E § PE- *CeS U - « udEe Ae pomaine de[la vecherche et le domaine

Juu E ] o ~ O[]v HeSE] - o[ uS&E €8 X * %o E}%}*]S]}ve
recherche et le domaine pratique, en particulier au niveau du développement futur des

% E} n]de Jvs 00]P vie] [}v o0& o[Avd PE 3]}v A [ USCE o
Certaines de ces propositions sont novatrices mais simples a appliquer, ce qui peut apporter

[Ju%}ES v3e A vE P e+ & }%3Ju]le E o[pnd]o]s 8]}v % E o0 ¢ }9
surveillance lors du suivien|lE S U o[ vep!s s o[ v oCe e EJu X
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In an era of rapid technological developmeah many fields (social, political,
econom] U « pE]SCU YeU v §8Z }u% vC]l]vP Z vP « }( S§SZ
methods, getting more sophisticated by the day, the law enforcement agencies duties
towards their citizens are becoming more and more difficult to enfortkese duties
revolve araind the protection of persons, property and freedom, the maintaining of order
and the strengthening of security, public safety and the application of laws and regulations.
Thus, law enforcement agencies, areciontinuoussearch for effective public safegnd
security strategies to help deal with criminal and terrorist acts.

The new face of dealing and fighting with crimes is through collecting data, and
transforming this data into intelligence. Among the most modern public safety and law
enforcement toolds the surveillance systemwvhere thevideo surveillance is a big source of
data and thestrongpoint of the most investigations.

The rapid progress in technology, Multiplexing, digital technology, NVRs, storage and
processing madenormousprogress in sweillance systems. For that, the deployment of
video surveillance systems worldwide has grown exponentially in recent yeasy of
large cities have concerns about crimesyorist attacks,ncidents and antisociddehaviour
problems, such as fightsamdalism, breaking and accidents, often these cities have video
cameras already installed in the streets and around the imporsaes. Visual surveillance is
now used to monitor the security of sensitive areas, ass management and crime
reduction tool, such as in public places, schools, banks, shopping malls, transport
infrastructures (e.g. airports, underground stations), hitap, government buildingand
borders.

One of the mostimportant duties andgoak of surveillance systems is tlive
monitoring the surveillanceareas, in casdancidentoccurs,actions should be take®nother
main focusis crime solvingoy investigating tk archives.Two tasksare difficult to achieve,
due to lack of human resourcesfor active monitoringand of accurate parameters
concerning archive indexatiomMost, video surveillance recordings amdexed with rough
descriptors such asme, camera IDand some photometric parameters

Surveillance systems produce large amounts of video data which are stored for
immediate orfuture use. Years of video surveillaree recorded.A crucialneed is to make
sense of this massive quantity of visual data. Surveillance videogeaerousin motion
information whichrises upas one of the most importantclue to identify the dynamic
content of videos. Extraction and analysis of motion information in videoseasentialin
contentbased surveillance video analysis and understandirejecting and understanding
an incident is a simple missiéor human, but it is vergomplicatedfor machine.

There is a fundamental need to extract automatically meaningfuhtent and
produce higHevel scheme or descriptions of the activities. Such a system can help
effectively to generate alerts to assist the live monitoring, and can help intelligémtly
index, organize, and retrieve valuable information from surveillance video databases, and
finally to automatically generate useful reports.

Several significant solutions from the research and market fields have been
proposed. However, the lack of geneand precise models for video content representation
make building of fully automated intelligent video analysis and description a challenging
task. This lack is due tihe high complexity of video scenesand its diversity fromthe
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context to theobjectsand actiongypes Furthermore, for these reasons and many others,
the application domain still shows a big gap between the research field and the real needs,
also show a lack between these real needs and émemarket video analytics tools.
Unfortunately, till now, both tasks ofcrime solving and live monitoringp conventional
visual surveillance systems retgostly on human operators; either to dig hard threw
hundreds of hours in the archives, or to monitor actively hundreds of cameras.

Thisthesisproposes anovelapproach for textual description of thedeoscenesWe
claim it to be a new approach for a general knowletbgsed contexindependent
applicablein realworld surveillance videdOur approach is based on a proposed ontology,
which combinesobjects features and derive higavel information; our ontology is
methodologic and easily expendable.

From the perspective of an experienced Major, head of CCTV control roormgiine
two concernsof the approachwere, to: first automaticallyextract useful information for
investigating the archives argktting upalertsin reatcasesand secondto present itin an
understandableway for the system operatordy proposingnew sentencerepresentations
For that, vell-structured schemascan be applied t@enerate incident scene descripti®n
similar to ones used in police reporiese schemas am@socalledtemplates.

"On Friday 17/05/2019 ta15:06:32 A person "2" moves, in intersection spot "Ham
Rome" 83.895245, 35.4875360n the left of "Hamra"tseet, heading immediately nort
toward the person "1", occurring spectively irregularity in its shapeind big change:
occurring respectively on its surface having now smaller one, and having respe
considerable decreasing of its Speed.

"The twoobjects are approaching; a distant aggressive interaction occurs between th
Example of scene description and of object interaction description.

A description asthe one in the above examplean be very helpfulfor the
surveillance system operatordt is based on manyseful parameterssuch as objects
characteristics and interobjects parameters Those characteristicean be set up to
generate alertsThey also can be queried for tive archives.

This thesis also highlighthie existing gap betwee the research field and the
surveillance systen} % & $§} E ffom one side and the gap between the latter one with
the commercial (industry) field. &hy propositions were made driven byy personal
experience asresearcher and a CC0Oéntrol Room maager.

The research works presented in this thesis have been conducted under high
constraints of applicability in a professional context. They took place in the framework of
cooperation between IRIT Laboratory in the University of Paul Sab&lieulouse France,
and the Lebanese university, Beirut, Lebanon, and Beirut CCTV control room, Lebanon.
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|.1. State of the art

Understanding and textually describing a video scene is an easy task for most
humans, but is still a complex task to the computer. Automaiitew scene description
includes understanding and differentiating between tmeiltiplicity of the backgrounds, the
objects, the interactions, the scenes types, and the temporal ordémaxients and events
Moreover, it requires a translation of the infmation into a comprehensible textual
description or what is known as natural language.

The textual description, in general, can be used to improve wide range of
applications like humamnobot interaction, scene descriptor for blind, summary of (web
videos medical diagnosjssurveillance systems, robotics, militasystemsand others In
specific, for surveillance systems and traffic surveillance in cities, generating alerts for the
observers and intelligently investigating thechives for the investigats.

In the last decades, researchers have studied multiple strategies and ontologies to
bridge the gap existing between visual content and textual descripkon.that, Computer
vision and Natural language Processing (NLP) fields addresses such a pseplarately
and also, some workshops have been held on both ag&adrei et al., 2018)

Being stretchedover more than two decadesand having so many apgéitionshave
u §Z] € }( &+« E Z A EC A] X dzZ & (}JE U ]8[* <u]s
categorize all the works done in this area, especially as each contribution might differ
according to the needs, outputs, methodologies, automationrdeg used methds, and
even sometimes trends.

In addition, researches in the related fields to video descriptilke connecting
words to pictures, image captioning, video to text, narrating images in natural language
sentences, video captioning, video smn@rization, behaviour descriptions, natulahguage
video descriptions, and visual recognition and description, may share common methods or
follow similar methodology.

Not restricted to video surveillancexd main approaches can be noticed:

1- Behaviour uncrstanding and sentences generatiofBarbuet al., 2012)(Thomason,
Venugopalan, Guadarrama, Saenko, & Mooney, 2Q®&4jdarrama et al., 2013(A.
Rohrbach et al., 2014§R. Xu, Xiong, Chen, & Corso, 201&Y ¢ %% E} Z[e Vv U
chosenbecaug most of the researches following this approach are mainly focusing on
two stages:

a. Behaviour understanding andowrtent identification: also known as Knowledge
based or deterministic approachdsxtracting alheededfeatures for identifying the
semantic ontent and understanding the behaviour and the scene. A variety of
approaches, techniques and methodsive been proposed, wenention, object
detection and segmentation, object classificatiavbject recognition, multiobject
tracking, trajectory analysisgaction analysis, activity classification and recognition,
and others. Typically, this part may involve training individual classifiers to identify
background, objects, and actions in the scenes. As our main approadbougl on
extracting many of théeatures, we will furthermore discuss the state of art of each
of the corresponding methods in chapter IV.

b. Sentence generationgenerating a sentence, normally, based on a template with
syntactical structure (like Subje®terb-Object SVO tuples, place, antkre).It may
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uses alsoa probabilistic model to map the most important visual content results
from the videofor each of the template categories to generate a sentence.

Some approaches from the literature are explaimedhe next section

- In(S. Park & Aggarwal, 2004he authorspresent a method to describe twperson
interactions in a semanti®lL description. For that they detect bodypgture after
integrating individual body parts (head, torso, arms and legs) recognized using
Bayesian networks (BNgS)o recognize specific interactigritbey used decision tree
with rule-based spatial and tempokraonstraints. Then they map it into verb phrases
using sequential and simultaneous recognitions of the predefined interactions.
Human interactions arethen represented as causeteffect semantics between
syntactical <agenmnotion-target> triplets.

- In (Farhadi et al., 2010jhe authorsproposeda systembased on thedetecton of
one object per image, then map it to the corresponding textual descriptions using a
predefined languag&éemplates (triplet of S/-O).

- In(Barbu et al., 2012}he authorsuse a dynamic programming approach combined
with Hidden Markov Models to obtain verb labels for short video clips, for producing
sentential descriptions.

- In (Guadarrama et al., 2013he authorsused semantic hierarchies indicatethe
approprate level of theaccuracyand specificityof sentence fragments.

- In (M. Rohrbach et al., 2013he authorsincorporatedsemantic unaries and hand
centric features and utilized a GR&sed approach to generate video descriptions.
Their method is composed mainly of two steps; first to generate semantic
representation models, theyfeed a Conditional random field CRF using sken
trajectories and SIFT features and temporal context reasoning. Second they translate
it to natural language using Statistical Machine Translation (SMT).

- In(R. Xu et al., 2015Jor video sentence generan the authorsdesigneda deep
joint videolanguage embedding model.

- In(Hanckmann, Schutte, & Burghouts, 2Q1B¥ authorsproposed a hybrid method
to generate textual descriptions of video actions. Thsgstem hasnainlytwo parts,
anaction classifier and a description generatdhey detect and classify 48 actions in
a video usinghe Bagof features. The description generator, a ridased method,
finds the actors (persons or objects) in the video and connects these to the
appropriate vebs.

- Krishnamoorthy et al.(Krishnamoorthy, Malkarnenkar, Mooney,aedko, &
Guadarrama, 2013hey were the first to introduce early works of describing open
domain short videos data (YouTube videos). They used knowledge mined from
webscale text copora to determine the best likelihood of various combinations of
subjectverb-object triplets. They use a templateased approach to present the
textual description, as:® S Eu]v (E ~ Bubp#-<Verb (Present, Present
Continuous) Preposition (optional} Determiner (AThe)- K i X _ dZ C A op $§
the system automatially and by human evaluation.

Another interesting works were preserdéy (Guadarrama et al., 2013Das, Xu, Doell,
& Corso, 2013)

Sequence learning approadfA. Rohrbach et al., 201, qPeff Donahue et al., 201, 7).
Xu, Mei, Yao, & Rui, 201§)Yenugopalan et al., 2014Known also as deep learning
probabilisticor data-driven approaches.This approach directly learrie map between
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video content andtextual sentence.This approach carbe mainly dividedinto two

stages:

a. Video encoding stagealso known as Visual recognition where the visual features a
directly extracted, more accurately, learnt, using different types of deep neural
network algorithm, likeConvolutional Neural NetworkCNN, Recurrent Neural
Network (RNN) or Long Shérerm Memory (LSTM). The produced result composes
a fixed or dynanu realvalued vector.

b. Video decoding stagealso known as the sequence generation or text generation,
where the vector result of the first stage is fed for text generation, as single or
multiple sertences. For decoding, first RNMere used, RNN is a neunaétwork
adding extra feedback connections to fefward networks, enabling it to work
with sequences of inputsThen, he networkis updated groundedon every input
item and the precedinghidden state. They are networks with loops that allow
perseveringinformation. These networks, mainly, have been used in many fields
such as speech recognition, languagedelling image captioning, translation and
more. Different types of deep neural network are now in use, most commonly, deep
RNN, Bdirectional RNNLong Shorlferm Memory LSTM, Gated Recurrent Units
(GRU) or others.

In general, a sequence learning appro&thdesthe two steps ofcontent identification

and sentence generation by learning tmatch directly videos frames tchuman
sentences. Different ambination of encodinglecoding ajorithm may be used, to
mention CNNtRNN, RNXRNN, and deep reinforcement networks. An example of a
common architecture for video captioning using sequence learning approach is given in
Figurel-1] where 2D or 3D CNNs aggploited on a video sequencéo extract features

on optical flow imagesyideo frames,or othersY dZ Alevdl representations are
then produced bymean poolingor soft attention over these visual features. Timeon

the level of representations, an LSTM is trained for generating a sentence.

Figurel-1: An example of video captioning architecture using sequence learning approach, taker
(Z. Wu, Yao, Fu, & Jiang, 2017)

Examples of some important worke sequence learning approach:

- Some of theresearclkes on templatebased video representation udestatistical
machine translationgJeffrey Donahue et al., 2015Barbu et al., 2012)Atsuhiro
Kojima, Tamura, & Fukunaga, 200@). Rohrbach et al., 201.3These approaches
map semantic sentence representation (e.g. key objects, locations, and scenes), with
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a Conditional Random Field (CRF) model, to-lagél concepts such as the actors,
actions and bjects, for generating sentencem (Jeff Donahue et al., 201 7he
authors then improved their system bylearning the output sequence
representations into an LSTM model to translate it to a natural sentence.

- In(Venugopalan et al., 2014he authorsproposed an endo-end neural network to
generate video descriptions. By mean pooling, the features over all the frames are
represented by one vector, to be used as anuinpf an LSTM model to generate
sentences. For better modelling results, not only video contents and their spatio
temporal relationships were used, but also the syntactical structqvenugopalan
et al., 2015}hey extended their work by adding to the input framesdaoptical flow
images to feed an encodelecoder framework based on two LSTM modulEse
encodingconvertsvideo into a compact representatiofgllowed bythe decodingto
convertsthe output into a caption.

- In(Yao et al., 2015}he authorsproposed to utilize a temporal attention mechanism
and a spatietemporal convolutional neural network to obtain action features. The
resulting video representations were used as input into the-gerating RNN.

- In(Pan, Mei, Yao, Li, & Rui, 2016 authorsproposed to model video content and
textual semantics as a regularizer in Long Sfiertn Memory architecture(Pan,

Yao, Li, & Mei, 201 fresented LSTM with transferresemantic attributes (LSTM
TSA) architecture where the semantic features were extracted from both images and
videos using the CNN plus RNN framework for enhancing video sentence generation.

- In(Yu, Wang, Huang,ang, & Xu, 2016)he authorsused a hierarchical RNN (hRNN)
to describe long video containing more than one event. The notion of hierarchical
framework is to make use of the temporal dependency and semantic context
between the sentences in aection Mainly, they used two generators; a single
sentence generatoproduced by a Gate®ecurrent Unit (GRU) layer, using spatial
and temporal information present in a precise time interval of a video, aselction
generator models dependency between the senteficAs output, they generate a
mundane description using multiple sentences seation

- In (Long, Gan, & de Melo, 2018he authors proposed an LSTM with two multi
faceted attention layers which export temporal, motion and semantic properties,
using nearest neighbor (NN) search, Support Vector Machine (SVM) and hierarchical
recurrent neural encoders (HRNE) for a subject amtb yeediction based on the
temporal features.

- In(Das et al., 2013}he authors proposed tgeneratedense capons using sparse
objectstitching;their workfor the description is not datdriven, however it is based
on top-down ontology.

A comparative review of existingequence learning approacin video description
methods can be found in{J. Xu et al., 2016)Ryoo, Chen, Aggarwal, & RGlowdhury,
2010) (Awad et al., 2018pnd (Graham, Awad, & Smeaton, 2018n example of video

description (dense captioning) is show{Fiigurel-2]
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Figurel-2: An example of dense video captioning taken fr@hou, Zhou, Corso, Socher, & Xiong, 20:
The colour bars represent different events. Coloured texts highligvarg content to the event.

A comprehensive and interesting literature review on video description can be foufd in
Wau et al., 2017)and(Aafaqg, Mian, Liu, Gilani, & Shah, 2018)

Nevertheless, both approaches; Behaviour understanding and sentences generation an

Sentences learning, have some major flows:

1- The Behaviour understanding and sentences generati@approach according to
(Venugopalan et al., 201%)is approach is insufficient to model the richness of language
used in human descriptiong e.g., which attributes to se and how tochain them
effectively to generate a good description. Also, accordingZtoWu et al., 2017}he
missing, erroneous and misidentified information extracted from the video frames leads
to disjointed descriptionsin plus,the handcrafted templates risk being ngeneric for
the variety of scene typed. Xu et al2016)

2- The Sentences learning approactaccording to(Aafaqg et al., 2018)YThe majority of
current literature on video description focuses damain specificshort video clips with
limited vocabulariesof objectsandactivities _ X v wiréht state ofthe-art methods
may not be suitabldor long video sequences because thaginlyfocus onshort topic-
coherentones For that, the descriptiof longer videos and scenes havivariety of
types remains a challeegdue to the need ofarge vocabularies and training data. In
this domain, there is a lack of rich models that can learn the sentences to the
appropriate features in the frames sequence.

Despite the tremendous work done in the field of video description in general, the existing
state of art on video surveillance scene descriptas has it is particularitystill, however

not deeply prospected. For example, video description for movies, broadcast news, or
sports, can unveil practical drawbacks for video surveillgdesmgung Lou, Qifeng Liu, Tieniu
Tan, & Weiming Hu, 2004C. Fernandez, Baiget, Roca, & Gonzalez, 2011)

But even thoughthat most of the researches focus mainly on short 1somveillance videos,
some of the advancemestmade in the approaches can be used in the field of video
surveillance.

Next we mention some of the most influencing wodts video surveillanceinderstanding

anddescription:

- In Remagnino et allRemagnino, Tan, & Baker, 1998&emagnino, Tan, & Baker,
1998b) the authors mainly focus on traffic scene to represent the behaviour of
pedestrians and vehicles, where their system is based on Bayesian network to give
annotdions for some events in natural language. They handle also some cases of
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interaction between two objects when the distance between the two is below a
threshold.

In (Aishy, 2001 the authorsproposed a systerfor object and event extraction for video
processing and representation. Theainly targets vidos having realistic environment
(with objects occlusions, artefacts). They proposed three processing levels: video
enhancement, video analysis and meaningful content extraction (speatiporal
features), and video events interpretation. They tested tlgstem on reatime videos.
Nerveless they did not work on textual description, but they highlightecthieir
approach,many interesting aspestin this field, especially concerning the rease
features extrated, and the logical relations.

(Atsuhiro Kojima et al., 20020A. Kojima, lzumi, Tamura, & Fukunaga, 2@06)two of
the early works that propose@n human activitiesgenerating a hierarchical concept of
actions for natural language description appearing in real image sequehtesuthors
primarily describe videos of ane personperforming a single action. They detect
humans head and hands by a probabilistic approach, and then thethasepositions
and the head direction to estimate the human posture. Meanwhile, the most
appropriate verbs andmany syntactic elements are selecteds last step, they used
machine translation methotb generatenatural language tex

In (Jiangung Lou et al., 2002)he authors propose an approachfor semantic
interpretation of pedestrianand A Z] dehaviours for visual traffic surveillance. The
trajectories recorded ar¢hen analysed using dynamic clustering, they introdusased

on HMM, a trajectory segment analysis method to every trajectory class. ,Tihesach
segmentthey assign the action of the tracked target to four basic types: Move Forward,
Turn Right, Turn Left and Stop. Then they perform classification to feed the natural
language semantic interpretation. For that, they use a simple grammartemplate:

(The Obj) (Action) in (The place name) [at (high/low/middle) speed]. The system output
module is only activated when:

1. A new action i®ccurring(Move Forward, Turn Right, Turn Left and Stop).

2. Theobjectis entering a new region

3. An abnormal evet isoccurring

Their system is restricted to one scene type, and one object type, and did not take
interactions into consideration.

In (C. Fernandez et al., 2011rarles Fernandez, Baiget, Roca, @&Z%alez, 2008)the
authors present a supervised ontolodyased methodology. Their ontology shown in
(Carles Fernandez et al., 20@8gsent interesting ideas and intersect with camtology

in many concepts. They first perform image segmentation for agent trajectories
detection, body postures, and facial expressions, and targets identification. Then these
information passes by a user for ddidiering. They made this data for each detedt
agent available within a grouRdlane representation of the controlled scenario. The
uses XML for data exchange among the modules. Their approach consitergleo
surveillancedifferent scene type, indocand outdoorscenarios.

Their proposed taxoomical events include basic actions and events (e.g. walk, run, turn)
and some scenarispecific interpretation of behaviours (e.g. meeting, giving way,
chasing). Their textual output is presented like: turn (Agent 20, left, crosswalk).

24| Page



- In(Z. Xu, Zhi, Liang, Lin, & Luo, 201@) Hu, Xu, Li& Mei, 2015) (Z. Xu, Hu, & Mei,
2016)the authorsproposedapproaches werealledasVideo structural descriptioWSD.
VSDtargets at describingvideo content in textsentences.Firstly, theyextract the
semantic content from the videaelying on spatiotemporal segmentation, feature
selection, object recognitionSecondly, VSD aims at organiziegources inthe video
according totheir semantic relations. The proposed method iased on ontology;
which, between barracks, is highly recommended for a video structured description, it
defines a number of concepts includinghicle, people, andtraffic sigh, and their
spatialtemporal relations, which allow users to annotate trafficeats. In their
approaches, they did not consider objects interactions description in the scene.

- A very recent and interesting work was presenteqAmmed, Dogra, Kar, & Roy, 2019)
where the authorspresent templatebased technique that generates natural language
descriptions of surveillance events. First, they track moving objects, and then they
perform classification using CNN on thetmut into four classes: pedestrian, car, Bike,
and Cycle. Finally, their system generates natural language description based on
template: ‘A {color} {size} {type} in {speed}, coming from {entry zone} toward {exit
I}Jv f_ U «~ AZ]3 u ]uu AlZgeed, chming f@m Main Building toward
Z ] vsS] o e}v _X
dA} Ju%}@ES v % }]vie A E v}3] U }v EvV]vP §Z us8zZ}E+ v
SZ Ju%}ES v }( *SEM SUE S U%O0 S U Vv Zuuv A% ESe|
assumes a surveillancgcene with some prior region information, and they did not
consider interaction.

Other interesting research is presented(ifu, Meng, Lee, Choe, & Zhu, 2Q14) Xu & Song,
2016) (W. Hu, Xie, Fu, Zeng, & Maybank, 2003grber, Nagel, & Schreiber, 2002)

|.2. Goals and Challenges

Ourprimarygoal inthis thesisis to describe textually video surveillance scenes
comprehensive way to suppbopolice incidents reportsWe focuson scenes containing
exactly two objects. The secondary goal will be extracting valuable features useful for
generating alerts and investigating intelligently the archiveg surveillance system
operators

Automatic sykems that can assist police and law enforcement agencies still need
improvements in order to cope thexistingneeds whenworking with video surveillance.
While the video analytics companies focus on big in appearance deliveries dissipating small
basic isses that are the real police needs, the research field suffers from the-miss
integration, discontinuity of researches and missing the accuracy needed from the field (real
e eV v §Z uvVv P Ee* }( *HZ *CeS ue *SEUPPO (E}u o | }( I
"ZYA up z_ v "AZ § §Z C &E oo0oC v §} 0] S§Z JE +C*3 ue* ]v

The path leading to achieve these goals is vast, and contains many details. These
details are with significant challenges and involve questions that need to be answered.
Therefore, to direct this research, we could sum up the goylasking the following
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Which one of the two approaches is best suited for video survedlaBehaviour
understanding and sentences generation approawhsentences learning approach?
depends on several points
- The sentences learning approaiststill adevelopingfield. It works well with images, but

has limited vocabularies of objects ancttavities in videos, andks still not completely
suitable for dealing with the variety of scene types and the long video sequéAaéa

et al.,, 2018) (B-C. Chen, Chen, & Chen, 2Q1In) plus, in our researghthere is an
indispensable need for structural description and behaviour understanding features, like
speed, trajectoy, direction, shape and others; and working with learning approaches, till
now, did not encounter all these aspectsgether. However we believe thatthis
evolving fieldwill meetfinally all the needs

- For the Behaviour understanding and sentences gati@n approaches, as mentioned
before, there is three main difficulties:

1) The handcrafted templates risk being nganeric for the variety of scene types.
However, on video surveillanceresearches one big advantage is that we knows
exactly the needed outpguemplates for the system; as, it is similar to the real case
reports that already take into consideration the scenes varieties.

2) lItis insufficient to model the richness of language used in human descriptions. Again,
in the surveillance field, it is sudfent for the video surveillance reports to have a
simple structured sentence as output.

3) The missing, erroneous and misidentified information extracted from the video
frames leads to disjointed descriptions, which means the semantic content
identification approaches for extracting all the needed features still not up to norm,
and need a lot of improvements. Dealing with that, many enhancements appeared
recently on many levels in computer vision field, especially after benefiting from the
rapid and increasig machine learning field. And so, focusing on improving the
semantic content extraction with machine learning, and then combining their
advantages with the advantages of handcrafted featup€¢sWu, Li, Cao, Ji, & Lin,
2018) (Cilla, Patricio, Berlanga, & Molina, 20it4)an improve theresultingcontent
extraction.

Dealing with video surveillance system, from our perspectiveguires many
improvements to be made on many levels. But, in no case, we should lose the content
understanding outputs because it is the main cofevideo survdiance analysis.

Therefore, a description system suitable for video surveillance can be built using the
behaviour understanding and sentences generation approach. However, building a good
system cannot be without making some improvement, on different kvdly taking
advantages of themerging machine learning field.

Many other questions aremportant and essential for this research. However,
solving and answering thenssignificanty challengng.
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The following chapters will be answig these questionand a summary of these answers
is presentedn the chaptefVisectiorfVi2.

|.3. Thesis outline

This section provides an outline of the entire thesidich mainly consists of the
nextfive chaptersin order to achieve our goals

In chaptelﬂl trying to enable more integration between the high level semantics into
the low level features automatically extractewe present a new generknowledgebased
ontology, the "VideeSurveillanceDescription Ontology”, for describing video surveillance
scenes.

As one of the most important features that can rule the way that an object can do
the action, interaction or redmn, is its deformability, weresent a method tcclassify,in
chapter@l the deformablénon-deformable nature of a video object, using heuristic
approach.

In chapte@l we present our approaciior textual description of surveillance scenes
containingmainly two objectswith main focus onthe interaction occurringbetween the
two objects.For this, we present how weroduce activitymatrixes of usefulcharacteristics
which can be used for generating alerts and querying fuenes and how to generate
textual descriptiors of these matrixes.

In Chapten&l we highlight, based on our research and practical experietie,

AE]*3]VP P % SA v 8Z <pEA Joo v +Ce*3 ue }%an@h8}E <[ v

research field and the commercial (industry) field from the other s@ensequently, we
present many propositions about how to address these drawbacks.

Finally, in ChaptdV| a general conclusionnd future works of this thesis are
presented.
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[1.1. Introduction

Multimedia content particularly videosare big data source. While current video
browsing methodologies ar mainly timebased, there is acrucial need to develop
intelligent methods for effective storing, indexing, organizing, mining and retrieval from
surveillance video databases. However, until no&vZ E [¢ *5]00 o | Jv ep Z pus
intelligent systems

One probable reason for this lacking is that video is subject to different
interpretation and description which can vary according to systemgaipes needs and
applications (Pavlidis, 1992) (Kunt, 1991) (Jain, 1991) Many video representation
techniques addressed this problem by trying to develop a specific solution for each
application. Others fous on solving complex situations by assuming a simple environment,
for example, without object occlusion, noise, or artefacts.

Consequently, advanced conteb&sed videcanalysishas become aastly active
researchfield, andsignificant results have beereported for the last two decadg$lua, Lu,
& Zhang, 2004)(Muller-Schneiders, Jager, Loos, & Niem, 20@8jactlar et al., 2001)
However, the lack oprecise and generic models for video content representation and the
complexity of video processing algorithms make the develapneé fully automatic video
semantic content description a challenging task. Actually, the complexity and diversity of
video senes makes hard to map the lelavel features extracte@utomaticallyfrom video
data, into highlevel semantic concepihis challenge, which often referred as the semantic
gap, is corresponding lolevel spatietemporal features that can be automaticaixtracted
from video data with highevel semantic concepts. Thisauses the existing systems and
approach to be too nofflexible and cannot satisfy the need of video applications at the
semantic level. So the use of domain knowledge is very necessayatie higher level
e uv3] ¢« Jv p3lu 8] % Ee]vPX dZ]e ]* AZ E ~Kv3}o}PC_ vs E-

Ontology is composed of a set of terms (vocabulary) and specifications about their
meanings (properties, relationships). The most referenced definition of tbeom of
ontology is given by(Borst & Borst, 1997) W ~ (}&u o *% (] S]}v }( L

v %3p o]l I8]was used in many fields as a knowledge management and

representation approach. For the expression of concepts and relations in ontology, several
standard description languages have been defined, we mention: Resource Description
Framework (RDFJRDE 2004) Web Ontology Language (OW({QWL 2004) and, for
multimedia, the XML Schema in MPEG.

Ontology is a way to represent formally the knowledge. On the top of that, it is not
gualified by the vocabulary but the conceptualizations that the vocabulary termas ar
intended to deliver. Thus, no change is conceptually made when translating the terms from
one language to. In addition, ontology is a mean for the experts of different domains to
communicate together, to share their experience and accumulate knowledge.

Many important efforts, based on ontologies, have been done in the field of video
analysis, in general, and video surveillance in particular. In the state of the eftregent
some of these works.
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In the last section of this chaptewe present our ontolgy named "Video
SurveillanceDescription Ontology”. It is aew generic approach for video surveillance
description, and designed to be used as a generalist-leig#l layer for video analysis,
principally in a videeurveillance systemWe considered théemporal dimension of the
video, using appropriate features. Our proposed ontology introduces six main classes; one
of which is a representation for generic scene types, divided into fifteen subtypes according
to the number of moving objects before and aftthe interaction. This ontology will be
based on in the next chapters to fulfil an automatic textual description of video surveillance,
focusing mainly on interactions between objects.

11.2. RelatedWorks

11.2.1. Ontology benefitsand requirements

Ontology is a wayo reduce the semantic gap in videmalysisbetween low levefeatures
and theneeded output They presenpowerful mechanismfor organizingstructuring, and
sharingknowledge Thereasoning flexibility, shareability, and representation make these
models suitable to surveillance domains. For instarmeplogy of video understanding will
enable different expertsto communicate and exchange their point of view about
functionalityor anexpected output result.

We can already see that having a dombasel ontology is important to reach our
objectives AsKorpipaa et al. mentionedsome of the basic requirementbat hold also for
our approach whendesigning our ontology are the smplicity, the {fexibility, the
extensibility the genericity, and the exmssivenesgKorpipaa, Jani, Kela, Malm, & others,
2003)

Despite the great advanogentsin the last decade, the complexity and the quantity
of possible complexactivities (Naeem & Bigham, 200,7the importance of the sematics
associated with a behaviok. Chen & Nugent, 2008hd the interaction of severalbjects
in the same environmen{Cook, Augusto, & Jakkula, 20068ingla, Cook, & Schmitter
Edgecombe 2010) among others, makecreating a suitable ontology, based on
understanding of human behaviowa challengng task

11.2.2. Previous worls on video analysisusing ontologies

The state of the artof both approaches for video analysithe datadriven
approahesandthe knowledgebasedapproachesmentioned in the state of the arsection
.1, reports many researches based on ontolog{®@odriguez, Cuéllar, L, & Calve-lores,
2014)

Nevertheless, working on ontologies trespastige video surveillance domain to a
wider onewhich the video in general.
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1.2.2.A. Ontology on contextual information and contexdware

A significant amount of researeb on ontology has beemone for the structural
representation and recognition of contextual informatiqRRodriguez et al., 2014and
activities and interactionslmportant contextaware ontologies have been proposed, like,
CONON (CONtext ONitgy) (Haas, 1995)the Pervasive Information Visualization Ontology
(PIVON) ~, EE E U-s], E G @ &® 1U2000) the Context Aggregation and
REasoning (CARE) middlewéterrera & Martinez, 2001 and the fuzzy ontolog{B. Wang,
Liang, Qian, & Dang, 2013) wide range of factors are used to classifgseprevious wak
in human motion analysis and video understanding, suchmaxsietbased vs. nomodel
based, humarobject interactions and group activities, action and activity recognition and
classification,complex activities recognition and behaviour understandingd avideo
description etc.

Also, anumber of surveys have reviewed the use of ontologies for context modglling
user context and human BehavioRodriguez et al., 2014)Villalonga et al., 2016)

11.2.2.B. Ontology in the domain of video surveillance

For video structured description, ontologies are highlgamamended(Z. Xu et al.,
2014) In the domain of video surveillance, various approaches of ontologies and algorithms
were used to address different stages of the probléWezzani & Cucchiara, 2010)

Video surveillance has its own set of most significant entities, terms, hierarchies, and
relations. Due to the huge set of possible cases combined with tkibiliey of description,
the definition of unique video surveillance ontology is very ambitious and probably
unfeasible. Nonetheless, a set of actions, events and entities can be selected due to their
importance. The surveillance community has made sonopgsals for action, event, human
activity and behaviour ontologies. Some shared concepts can be found among the following
ontologies; also some ideastérsect with our proposed ones

Video Surveillance Online Repository (VISQRXZzani & Cucchiara, 20183) a
platform for annotating, and retrieving surveillance videos, which used as a support tool fo
different projects. It contains a large set of multimedia data and corresponding annotations.
VISOR provides a list of video surveillance concepts used in the Visor system. The main
concept of dividing between context and content is shared between martplagies,
including ours.

In (Ly, Truong, & Nguyen, 201&pehaviourontology is proposed, mainly based on
set of scene model related by set of time relation. The set of scene model contains set of
object model where low level data specified, set of object relation, and set of object
condition. Some of the concepts of the object Model intersect with ours.

More recent work can be found ifAlonso, Leal, Escalante, & Succar, n.the
authors presentViVA ontology whichis based on(Kazi Tani, Lablack, Ghomari, & Bilasco,
2015) (SanMiguel, Martinez, & Garcia, 20@8)d ~"*s /K Z U . Vi/A ontology proposes
three main classes Content, Context and System. VIVA was designed with owl format and
using Protégé. Protégé assuitabletool for ontology presentationwhich wedecided to use
it for our approach in the interpretation of my graphical representation. Also, concepts
concerning place, weather, location, and object may meet our same objectives, as follow;
some of those influence our ontaly.

Other interesting ontologies can be foundtive AppendixVII|1.
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11.3. Proposed Ontology

The varied nature of objects participating to a scene, the variety of scene types or
contexts, and the complex nature of the object behaviours, actions and interactions and in
the execution, requires an abstract level of inf@aton to reduce the size of the description
scope. This work presents an ontoldggsed method that combines loievel primitives of
objects basic features, like size, colour, locations, speed and others, that should allow to
intelligently deriving more maningful highlevel information.

In order to realize the knowledgeased and automatic generic description of video
surveillance introduced in the previous section, the knowledge for video analysis is
abstracted. Among many distinctive characteristicstiiis ontology, we mention that it:

1- Focuses mainly on the objects interactions, nonetheless it is expendable.

2- Presents detailed propositions about the interaction, from a methodologic and
systematic approach.

3- Is not directed by the results of theutbmatic analysis, and there is no pre
assumption or condition which restricts this ontology.

4- Targets mainly the level of generic and abstract description, but it can be applied to
any scene type or context.

5- Shall be convenient to describe real irdetions during incidents as they appear in

ds }vSE}o E}}lue[ E %} ESX
6- Focuses on new concepts concerning mediation, action at a distant and close

interaction, deformable and nedeformable objects, and others.

Our proposed ontology, named "Vid&unreillanceSceneDescription Ontology" or
NsAn o Ky S} malRIg describes the concepts thatae video, objects, and action¥SD
ontology has been designed to be used as a generalist-legél layer for a video analysis,
principaly in videasurveillarce system VSSD ontology proposes six main classésntext,
Object, Video, Activity, Scene and Descriptor [Ggerell-1).

Figurell-lW s~~~ }v§}o}P g¢lass¢gEObjett, Video, Context, Activity, Scene and Descriptor.

[1.3.1. Context

This class contains dlie elements that provide information about the real context
sedFigurell-2] For example: the GRSordinates the place where the actiohappenswhich
can have two typedindoor: Bank, School, etc.; Outdoor: circulation, garden, Parking; etc.)
the environment (weather, altitude, temperature, pressure, lighting, humidity, noise) and
the time class, one of the moshportant classes that drive all other class.
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Figurell-2: The Context class.

11.3.2. Object

The Object clasgepresents instances of humans, animals, plants, machines and all
other inert objects see[Figure 1I-3] This class can representll what exist in an
environment. One of the most important features that can rule the way that an object can
do the action, interaction or reaction is its deformabilifyne deformabilitycriteriais mainly
deduced from the object shapand motion,and is lased on the degree of deformation
(Kambhamettu C., Goldgof D. B., Terzopoulos D., Huang T. S., \W8@4) focusing on an
area of interest, the first thing to distinguish, if an object appears far/deep énfthme, is
its deformability. Non-deformable objects actions or reactions during an interaction are
easy to detect, analyse, understand and maybe predict. When deformable parts of an
object, move freely in unpredicted way, thprediction becomes more difficult even for a
human brain.

We chose to group all objectgh two general sukclasses, deformable and non
deformable objects Cbject deformability dilemma is considered in chap@ and in
sectionlE/IS.Z object classificationf-or example, humans and animalee "deformable”.
Plants, machines and inert objects can be deformable or-adeformable e.g.a tree is
considered as defornide when each of the branches can move differently than the others
or the trunk A machine in this ontology indicates the machines controlled by intelligence
(humans or artificial intelligence) like a car or a robot, in the opposite of an inert object like
a box.Wemay find some of those objecgts other ontologiesunder the name of agent.

Figurell-3: The Object class.

32| Page



11.3.3. Video

In visualsurveillance systemshe cameras arenainlyfixed. As the same object may
appear several times in the same video, each appearance will be considered as an instance
in Video_Object alss. So, the Video_Object class is a subclass of video and object, classes
sedFigurell-4] This instance is delimited from the first moment of that appearance to the
last one.

Figurell-4: The Video, object, video_object, and context classes.

A sub_objectis mainly used for deformable objects, for example for articulated
segments of human and animal bodies, or parts of machines, etc. A video object can have
sewral sub_Objects. Asve may havemany states for each appearance (instance of
video_object class)each of the states describes thabject/video object state Similarly
many of the states can be taken for each of the sub_objects to create a sub_objeet_stat
see[Figure II-5] The number of states depends on the time of appearance, time of
disappearance, and the suitable frame difference thatwarild take. In plus, for each state,
the video object state can have manifeatures (attributes) like shape surface,
displacement, speed, trajectory and many others.

Figurell-5: The Sub_object, Video_Object_state, and Sub_object_state classes.

33| Page



11.3.4. Activity andAction

Different taxonomies are used for describing an action. We can find, among others,
the terms operation, gesture, action, event, activity, amehaviour So far, there is not a
unique standard ontological definition of those notions or concepts. Maary be found in
different articles (Herath, Harandi, & Porikli, 2017{Ranasinghe, Al Machot, & Mayr,
2016)(Morris & Trivedi, 2008)Lavee, Rivlin, & Rudzsky, 20q8aptelinin, 2013)

Usually, the lérature nameswhat human isdoing and the wayt is doing it human
behaviour or human activity interchangeabfRos, Cudlr, Delgado, & Vila, 2013)
(Remagnino, Foresti, & Ellis, 20083ashidi & Cook, 2009y heseactivity/behaviourterms
correspond to a sequence of human actions. However, most of these authors agree to
define human action as the simplest unit in the human activity. As new approaches are
being developedL. Chen & Nugent, 2009new levels appear in the system. Rbat, a
difference should be made between the terms human behaviour, events and activity to
differentiate between the concepts of what a human is doing in the environment (activity),
and the purpse or meaing it could have (behaviourfpn Event is the occurrence of an
activity in a particular place during a particular time interval. The Behaviour is a description
of activities and events within a specific context.

In our ontology we embed threbierarchical layersactivity, actioninteraction and
operation.

An activity, according to(Blunden, 1978)is the units of life It is purpseful and

A 0}%]vP Jvd E 3§]}v SA We 31@®e 5Z.pAlEo (Kaplelininde
2013) An activity is hierarchicallstructuredinto actions sedFigurell-6] For more complex
scenesactivitiesmay be, sequential, or concurrent according to performing time.

The second ler is the Action. The actionis based onconscious processes
concentratingto fulfil a goal or its sugoals.In the philosophy of actioWilson & Shpall,
2016) an action is defied asintentional, purposive, conscious andlgectively meaningful
activity. For example, pushing a person is an action, wtakehing a cold is not considerad
one.

In case of two or many objects, an action begins when one of thbgeets has the
intent to perform an actioneven while approachingThis action ends when the objects
retreat. They may approadcigain to begin another action.

Another important concept is the mediation.The main distinctive features of
humans, such ashguage, culture and society, the production and use of advanced tools,
etc., all involve mediation; here we note the mediation of information as the most
important one among interactions. They represent different aspects of the same
phenomenon, that is,ite emergence of a complex system of structures and objects, both
immaterial and material which serve as mediating means embedded in the interaction
between human beings and the world and shaping the interaction. In culhusédrical
psychology, mediations, arguably, the most important concept of all; it serves as the
cornerstone of the activity theory as a whdMygotsky & Colel978)

Vv &£ u%o (}& SZ u ] S]}tv ]- Zpu v ¢Z}}SJvP Vv}SZ & } i S ~Z
case the bullet can be considered as the mediatidfe may equally well consider the
linguistic interaction as a transmission of infornoetj for example s€ [vP *, lodhe X
opposite, whentwo humansare boxing two animals are fightingyr when two animals are
following each otherthere is no mediation between the two objects or unmediated action.
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We can considerthat implicit information helps both objects to coordinate their
interactions.

In the case of one, two or many objects, and where the action/interaction is
unmediated, or at leasinot well noticed as visual mediation by the application, we
distinguish between two action types:

action/interaction”, or example:when two objectsare running together,or whentwo
humars are saluting each other, etc.

whentwo humansare fighting or hand shaking, etc

An Action is a series @jperations done by an object on nobody, object, or many
objects. The operationare consideredthe lowerlevel unitsimplementationof the action.
Accordingly thelnteraction Statescan document the state of interaction at a related
moment (existence, type anaggressivenesgs
We present the relations between components and action. But those relations can be the
same for activity and operatigror for the interaction sate. We mention that:

- An object or video_object or sub_object can have an action/interaction, and an action is
done by an object or video_object or sub_object.

- Avideo contains an action, and an action is viewed in a video.

- Avideo_object_state or a subbject_state is a part of an action, and an action can have
instance a video_object_state or a sub_object_state.

Figurell-6: TheActivity, ActionInteraction, and Operationlas®s

[1.3.5. Scene

To define a methodologic and systematic approach to describe the video scene
especially theinteraction between video objects in video surveillaneg identify fifteen
types according to the number of moving objects and to their characterigtgzgures)
before and after the action

single object is moving in the scene at some moment it stBgamples: car parks, etc.
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object is moving in the scene, withouhy interaction with another moving object, at
some moment it stopsafter mainly changing and interacting with the environment
(background)Examples: car hits a store causing it to stop, etc.

object is moving in the scene without any interaction with another object or without
changing anything in the environment (background). Examples: human walking, or doing
sports, car passing, etc.

is moving in the scene without any interaction with another moving object but mainly
changing and interacting with the environment (background). Examples: person
switching on the lights, person is smoking, caitshing on the lamps, crashing an ATM
machine etc.

when a single object is moving in the scene without any interaction with another moving
object but changing and intecting with the inert objects of the environment (taking or
leaving an inert object); and by that it changes its characteristics either gaining (good
influence) or losing (bad influence) some. Examples: person or animal handling an inert
object like box, peson wears or removes his vast or hat, etc.

object in the scene, at a given moment, performs an action with another inert object,
hence the object stops and makes the rinebject to move. Examples: one ball hit
another fixed ball and stops, one moving car hits another car hence it stops and makes
the other car to move, etc.

the scene, al given moment, performs an action with another inert object and makes it
to move. Examples: one ball hit another fixed ball, person is opening a door, one moving
car hits an inert object (like another car) and makes it to move, etc.

at a glvenmoment d|V|deS|nt020bJects Examples: person jumps out from a car,
person removes his vast or hat, etc.

moving objects in the scene and, at a given moment, one object do an action and stops
the other object. Examples: a moving car hits a moving person, etc.

thescerethat ataglvenmomentmergelnto one single object. Examples: person
jumps into a moving car, a person jumps on a moving skateboard, a person picks up and
wears a hat, etc.

objects in the scene that, at a given moment, interact and stop moving. Examples: two
cars make an accident; two objects collide and stop, etc.

objects in the scene withut any interaction between them. Examples: two cars passing
near each otherftwo humanspassing by without any far or close interaction, human and
animal ceappear in a scene without any kind of interaction, etc.

mthesceneataglven momenttheylnteraamd then continue. Examples: two cars

are passing near each other ingto avoidcollision, two humas followeach other two
humars walking together, animal wailkg near a human, two humarsalute each other,
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two humars waving to each other, two humarseeing and walking toward each other,
animal isenclosing on a humamywo animals fightingtwo humars boxing,etc.

are many moving objects in the scenateracting together at a give moment, and
continuing after.We do not consider here many objects in the scene so that the
interaction can be divided in couples. This category it méa describe scenes with a
crowd. Anyway, this category may be divided into many other ones, but as it is not our
field of interest, we preferred to keep it as one category. Examples: groupniigar
cheering, etc.

These fifteen types are mainly foed on scenes with 0, 1, and 2 objects in the
scenes. For more than two objects in the scene, we put all of them in one class for later
reconsiderationWe must notice that a scene can also be a mixture of many of these types.

Concerning theScene_Sub_Typewe may introduce more detailed interaction
categories, such ast distance or physical, Aggressive or Peaceful.

Figurell-7: The Scene, and Descriptor classes

11.3.6. Description

This class is intended ttescribethe whole scene from objects to action/interaction
and context, according to the scene type and sub_type. It contains two main sub_classes:
Abstract_Description, Semantic_DescriptiaedFigurell-7] Thosedescriptions of a scene
can be done using two methods:
require for example the localization of body parts, the object or the action identification;
the most importantis what happens. Using this method, we consider all the possible
combinations of actions/interactions in order to recognize, later, which one is the
closest to this scene action. It is considered that the actuator actuated and action as a
single box.
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of each object, sulmbject, action, operationelementapart is required.

Then, the scene description, according to the scene type anctyggb and the
method used, canda generic abstract (context free) or a much more semantic text where
the context has a big influence.

In[Figurell-8]we present the abstract description used in this stusige chaptdtV] To have
a semantic description one can adsimply,on this abstract description the information
taken from the context, like locatig time, place, and place, et€or example:

"At frame 201 "Deformable" object "1' "On Saturday 10/11/2018, at 11:35:22,
enters the scene, in "C" spot, on the "Ll person "1" enters the scene, in t

Middle" of the "Outside" area of the came
field of view, heading "Up Left", havin
respectively "regular'shape "small" surfece,

intersection "VerdurDunant" (33.890540
35.484180), on the right of Verdun stre
heading south, having respectively sm

and "slow" speed". body, and slow speéd

Exampleof abstract description Example fosemantic description

Figurell-8: Abstract description, having in the location and direction: U (Up), M (Middle), D (Down), R (R
(Left), I (inside), and Ouytside).

Finally, in|Figure 1I-9] we present all mentioned components of théVideo
SurveillanceDescription Ontology".
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Figurell-9: The proposed "VideSurveilanceDescription Ontology".

11.4. Conclusion

In this chapter, we presentedour proposedgeneric ontology for video description, mainly

for video surveillance, taking into consideration some shared concepts as context, object,
sub_object, activities, etc. Als it presents some entities with new concepts like
deformable/nondeformable object, fifteen scene types, close/far interaction,
aggressiveness of interaction, etc. This ontolagly be based on, in the next chaptets,

fulfil an automatic textual desiption of video surveillance, focusing on interactions
between two objects
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[11.1. Introduction

For the purpose of semantic video analysis and understanding, it is especially
important to recognize andtudy the video contenti.e., the background, objectagctions,
and their movementyto better understand their meaning. Recent research focuses on
object movement and its meaning. Accordingly, object properties and characteristics are of
considerable impdance. One property that significantly drives and influences the objects
movements and actions is the object deformability. Object deformability is an important
property to qualify the actioner and the actionee, it also gives the main clues to well
underdand the action. From surveillance point of view, rdeformable objects reactions,
during an interaction with another object, are easy to detect, analyse, understand and
maybe predict. While deformable parts of an object, make the analysis more ditoert
for a human brain. As the deformability criterion of an object is one of the most important
high-level features, we found it crucial to differentiate between the two classes.

In many research works, object deformability is a mandatory prior piece of
information, for further interpretation, which is not actually automatically extracted, instead
it is assumed.

A deformable object is an object that, when in motion, can undergo shape
deformations, for example, a walking man, or a running animal. Adedormable object,
by contrast, has a rigid shape, for example, a passing car, an opening door. We define
temporal motion as a fragment of an object motion for a small number of successive
frames. "Nonrigid motion" is standardly used to refer to all articiddf elastic, and fluid
motion, denoted here "deformable motion". Likewise, rigid motion is denoted as -'non
deformable motion". Importantly, deformable objects can have both deformable and non
deformable motion, whereas nedeformable objects are restrictetb non-deformable
motion.

The deformable / nordeformable nature can hardly be established by a learning
approach given the difficulty of producing the data necessary for learning. On the other
hand, from a visual point of view, the definition of the ceptis relatively well defined. So
we propose a heuristic approach expressing a physical model.

This chapter presents a new fully automated method for classifying deformable and
non-deformable objects. lanalyses§Z } i &[« u}A u v3e ~} i ReratidigsreU ]
deformable from nordeformable motion, and infers from this whether the moving object is
deformable or nondeformable. Our classification method is effective without having any
prior information about the environment, the shape of the objeat,its displacement, and
it does not depend on prassumptions. Our method aims mainly to deal with video
surveillance content where there is only one moving object in the scene. But applying object
detection or segmentation algorithm, as done in the chi{@l this method can easily be
extended and applied on scenes having several objects.

As stated above, we study object deformability &galysingits motion. Thus, a
motion-estimation technique is used to estate motion between frames. Geometric
transformations (viz., Fundamental matrix and Homography) are pursued to determine
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whether each of the observed motions corresponds to a transformation. Hence, it is
indispensable that we investigate, in Sec, the background and related works in both
motion and object deformability, in addition to some motiestimation techniques and
geometric transformations. In Secti@& we explain our approach. We thgresent, in
Sectio@4, the experiments we have done in order to validate and evaluate our method.

111.2. Background and related works

111.2.1. Background

The world seen by humans when moving appears stable, rigid, anee-thr
dimensional (3D). This impression is probably the result of the fact that retinal images
change over timgHogervorst, Kappers, & Koenderink, 199X)fundamental ability of the
human visual system is its capacity to interpret motion in space. The visual system is capable
of extracting useful information about the 3D structure from sleeretinal changes. This
process is usually called structdrem-motion (SFM). However the ease with which humans
detect motion and navigate around objects, and the difficulties in duplicating these
capabilities in machines, have led to major challengesdmputer engineers and scientists
in understanding vision in humans and machi(®ggarwal & Nandhakumar, 1988)

Human vision is privy to many sources of depth information that do not depend
merely on stereovision. These sources of information include motion parallax, shape from
shading, and textural information. Parallel to this, studies that work with photography in
general (i.e., both video and images) have proposed methods for extracting useful
information about objects from images and framé&8e distinguish works in the folldng
directions:

- translation and/or rotation movement of a rigid bodif;sai & Huang, 1984)

- projection: affine or orthographic, or perspectiy®el Bue, Lladd, & Agapito, 2007a)

- Ju vel]lv 0 %% E} Z W i ~"SEU SPE &E}u D &pjival&DU %o
(0}JAU Z vP § (Zang, \Déerschner, & Schrater, 2009)

- extraction of 2D object featuse points, corners, lines, edges, conic arcs, features
correspondences, or the optical flotoll, Volz, & Bruhn, 2013)

- appearance of the object in multiame, (Hogervorst et al., 1997)

- types of view: monocular or stereoscopic or multiple view images Hartley &
Zisserman, 2003a)

Good reviews and plenty of explicatioobthe available methods for estimating the
3D structure and motion from sequences of monocular and stereoscopic images can be
found in (Aggarwal & Nandhakumar, 198&imilarly,(Huang & Netravali, 2009provides an
excellent review for exploiting the consistency by using the nftdthe analysis and
studying the object motion and structure from feature correspondences.

For a long time, studies proposing motibased approaches to motion analysis have
been largely restricted to the study of nateformable object motion, or they were obliged
to assume it. However, in the real world, deformable object motion is far more common.

Recently, thestudies onanalysingarticulated motion, particularly human motion,
has beeninspired by a tremendous number of applications, and this analysis can be
gererally categorized as: (l)odetbased approache§l. Wang, Liu, Wu, & Yuan, 204yl
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(2) methods that do not requirea priori shape modelg§H. Wang, Klaser, Schmid, & Liu,
2013) In the latter approachmostly useful for motion tracking when dealingthv an
unknown object where na priori Iv}Ao P }us 82 wuls]}v }E& SZ } i S[e ¢
available The major difficulty to this type of approachis to establish feature
correspondenceConsequently, to get around the problengsearchers eithethey impose
}veSE ]JvSe }v S Dehhviousdrtheyfocus on higHevel processingupposinghat
matching is knowra priori. Modelbased approaches have the benefit of knowing, in priori,
the approximate shape of the object, simplify this problem. Howgtregse methods are not
% % 0] o AZ v Jv(}Eu 3]}v  }uS8 8Z } i S[* *Z % ]* puv Alo o

Despite this, there has been a lot wfork on nondeformable objects and object
deformability, and an increasing number of studies on deformable objects, espewitil
regard to simulating or segmenting articulated objects. However, most of these works
assume the deformability (or nedeformability) of the objects, and relatively little research
concerns the automatic discrimination of deformable and +t@fiormabke moving objects.
Some of this research is mentioned in the following subsection (i.e., Subﬁoi’l). In
addition, because our object classification technique is based on motion classification, we
will briefly address motiomestimation techniquesviz., homography and fundamental
matricesv given its pertinence to this study.

I11.2.2. Works related to objet deformability

L. Wixson andA. Selinge(Wixson & Selinger, 1998)sed a reference image pre
obtained from the video sequence for classifying moving objects as rigid erigidrbased
on the similarity of their appearance over multiple frames. yt@ok ashypothesisthat the
appearance ofhe rigid objects under viewing conditions similar to orthographic projection
changes much more slowly than that of mast the non-rigid living ones It should be
mentioned here that feature correspondences are not used with this method. According to
the authas, the results are preliminary, and the method requires further testing and
guantification; and additional work is needed to mitigate fluctuations resulting from
occlusions that occur when the object moves behind a structure and for dealing with small
object movements. In addition, they use relatively few number of experiments compared to
other studies.

A. J. Lipton(Alan J Lipton & others, 199@ked the residual flow to analyze the
rigidity and periodicity of moving objects. His work is based on the assumption that rigid
objects present little residualdiv, whereas nosrigid moving objectslisplayhigher average
residual flow. However, this method cannot be applied to slowly moving objects nor to any
revolving objects.

R. Cutler and L. S. Dafi®oss Cutler & Davis, 20q0pposed a method based on the
temporal selsimilarity of a moving objecfTheir approach suggests that, whan object
displays periodic motion, its seisimilarity measureshows periodic motion. They use
periodicityto categorize moving object®ut their techniqgue assumes that each object can
be properly segmented from the background. However, this assumption does not always
hold true.

J. Yan and M. Pollefey¥an & Pollefeys, 200&poncentrated on a factorization
method based on motion segmentation in trajectory data. Factorizabased methods find
an initial segmentation by thresholding the entries of a similarity matrix built from the
factorization of the matrix of data points. According to E. Elhamifar anddél (Elhamifar &
Vidal, 2009) it is likely that such factorizatidbased methods, in general, are correct

42| Page



provided that the subspaces are independent, but they fail when this assumption is violated.
Moreover, these methods are sensitive to noise. Otherwise, a spedtraiering method,

such as the one used by J. Yan and M. Pollefeys, can be used to deal with the issues already
mentioned by using local information around each point to establish similarity between
pairs of points. Thebjectivein J. Yan and M. Pollefeys was to segtmenwide range of
motion, including independentrigid, nonrigid, articulated, degenerate, nodegenerate.

The data is then segmented by applying spectral clustering to this similarity matrix.
According to E. Elhamifar and V. Rene, such methods areflesve at dealing with points
near the intersection of two subspaces, because iegghbourhoodof a point can contain
points from different subspaces. This issue can be resolved with-waptisimilarities that
capture the curvature of a collection ofomts within an affine subspace. However, the
complexity of building a muhivay similarity grows exponentially with the number of
subspaces and their dimensions.

A. Del Bue et alDel Bue, Lladd, & Agapito, 200#)aluated a method that uses a
trajectory toautomatically segment a set of rigid and nogid moving points within a
deformable object, given a set of 2D image measurements. They noticed a higher
misclassificationatio with weak perspective effects, andgaeater proportion of nonrigid
points. Furthermore, points that are rigid for only a part of the sequence may go
undetected. In addition, their proposal was subject to a relatively few experiments.

D. Zang et a(Zang et al., 2009)sed the optical(0}A &} Jv( & 8Z } i §[« E]P]
reflectance. They used the optical flow exclusively to detect rigid object motion for both
specular and diffuse reflective surfaces. However, in order to derive the relationship
between optic flow and rigisbject mdion, they assumed that both the viewer and the
environment were distant from the object, approximated by orthographic viewing and
illumination parameterized by the direction on a sphere. Further, their results are also based
on relatively few simulationxamples and experiments.

Feng et al(Feng, Won, Jeong, & Jeong, 20af)posal an image matching method
to match rigid object irage and norrigid object image by utilizing the same feature.

To the best of our knowledge, no previous research has proposed a method with the
following characteristics: full automation in discerning deformable and-aeformable
objects; complete genery and applicability to any type of object in a video (i.e., general
perspective projection for the general motion of a general object); a method that does not
rely on conditions, assumptions, or additional information about the object in advance; one
that takes into account the fact that deformable objects sometimes behave as non
deformable objects; and a method that benefits from temporal consistency. Our approach is
the first one to join all those points together.

In this study, the discrimination ofgid from nonrigid motion is studied, to farther
infer the rigidity or none of the object.

[11.2.3. Motion estimation

D}S]}v &lu 3]JwU A] } e« <p]s8}U & CGul]v 8Z u}s]lv[e A S}E-
e EISZ Z VA E}u }v (E u S} | Xei SASEJ}V ]t Jv VU v o
SZ Ju P [ (U PpE}I S]}v ijviio v U ¢} (]Jv JvP §Z SEu u}lsS]}v
%} % E} 0 uU ¢} 18 00 3ZdZ%WpSEvwA ujk@EevX C E o § 3} §7Z
Ju P }JE 38} «% 1(] %bo B3 QUE@AZE evPuo E o} leW}dB]}Iw]d 03X
Iv. —~ve wu}S]}v (] o «U Z %o}]vE ]e}vepBUME Z ASEIME |E 3]}vU
A o0} ]5ClZ »3 v (E}u v BEZHA PO} 3]}vX
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Iv Al } o <pv U u}s]v 1°}( 1 }EFuE]IvX +3]Ju S]vP §Z u}s§]
]+ He (HO *8 ES]VP %}]vE (JE *}0oA]JvP « A E 0 Jeep * % ES Jv]Vl
ME § u}sS]}v  ¢S]Ju SJ}v ] ee-w8h o S} vio®e]*U u}sS]}v v oC
Ju%ps E Ale]}vl Ywuil] $]}vU v 8Z]e Jv(}EuU 3]}v ]e (HV u V¢
puv EeS v JvP v } i § SE I]JvPX
The most common methods for estimating the motion field can be categorized into
pixetbased methods(or "direct’ methods) and feature- e usz}e« ~}1E v |E
methods)(Dufaux & Moscheni, 1995)
Direct Methods
- Pixelrecursive algorithms
- Transformdomain approaches
- Optical flow(Barron, Fleet, & Beauchemin, 199@eauchemin & Barron, 1995)
f Differential techniques.
f Phasecorrelation methods.
f Frequencydomain methods.
f Blockmatching method¢Khammar, 2012)Love & Kamath, 2006)
- IndirectMethods
f Featurecorrespondence methodg-arin & de With, 2005fTorr & Zisserman, 2000)

For more general comprehensive and comparative techniqtles reader is referred to
Appendifvili2.

l11.2.4. Projective transformation and Epipolar Geometry

For better understanding how the transformations (the homodmagand the
fundamental) can serve our objectives in tkisapter, we found it indispensable to clarify
some points:

11.2.4.A. Homography (projective transformation)

JUIPE %ZC ] }v %Sy ooC €& o § §} }oo]lv S8]}vU %eC
% E}i S$]A §E wx (i} &muinyéitible transformation from a projective space (for
example, the real projective plane).

/18 1o }ve] & s} Pv @Eo SE ve(}EuU §]}v 3A v 82 A
%0 Vv (5 E Ju PJvP A]§Z %R .MEartkey &Zidserman,@003b),}u}PE % ZC
o¢} <+ E] * 8Z SE ve(}E&uU S]}v (E}u }v %0 Vv SIWWIZ E ~]X .
For example, the projection of points of a plane into an image plane can be described with
homography.

dZueU (}JE * 3 }( %}IvS WEGSf P} EAY Ju P U 1( Bo $Z %o
E }%o0 VvV EY HZE E 0S5 -GVPWP?I Z}u}PE %ZC u SEWEU +pn Z

X'=H.X (eq.ll-1)
.V E %% E « v3¥ Al3Z Z}ulP v }ue 1}EVRD @ o]v G\
Z}u}P v }ue SCE ve(}EuU S]}vX
s E]}pue OP}E]SZue Z A vSVWd B} %LU} PSE % ZCX ~}u  He %

JEE *%}v v U AZ]Jo }83Z Ee+ pe o]v U 0o]Jv e Vv %}]vieU }v]
}E& SZ %0 v & S ASPE X

Iv P v E oU <S]Ju S]}v oP}E]S5Zu- v (Crimirisi] Reid, & }@& ]VvP
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Zisserman, 1999) W ~vgw & P }u SE&PulPvipvipees ¢S]Ju S]}veU o]v &E
ZYu}P v }ue SJu SJ}veU v o]Jv & Z}u}P v }ue ¢S]Ju S]}veX &}d
}v. E&v]vP §Z ¢ u $Z} eU S§Z & @nybhayvAgpswal, Shwahar, &
Narayanan, 2005) v (Dubrofsky2009)W

NB: In real images, the position of the point§;and Sgis perturbed by noise. Image
measurement errors will occur in both images and the estimation of H might not be
perfectly accurate. For this reason, the imagesgin the first image is mapped by H to the
point * &in the second image; andi& not necessarily equal té 4 S gM* &, vice versa :

Figurelll-1: Symmetric Transfer Error

If we suppose that@éﬁgét* &y is the Euclidean image distee in the second image
between the measured poing gand the point* &, and @S, ?5%5; is the distance in the
first image. Then, the error for a couple of corresponding posté S gan be measured in

both images by a simplaethod calledSymmetric Transfer Err@figurelll-1):

‘N} L @Tig* 8o E @Tig* ?5aT 0 (eq.11-2)
Further, for all he corresponding point$y~ §5 EL sa 0:
‘N L ASy: @Tig* a0 E @Tg* ?5aTi0 ; (eq.111-3)

Other error measurements can be used. These errors haan lidentified in the
literature.

111.2.4.B. Fundamental matrix

&}E 8Z u}*3 P v GEoviw (JEEuU o } i 8 ulAlvR}{Eo U §Z
3 }( %}]vE JEE yBolwf VIVeSA} %o Eo¥E}iZ]Al}v JuP + E & o0 §
&UV U vS 0 u SEHAW ey Z S

LA a A | lIvVE (eq.lIF4)
dZ &uv Uu Vv3 0 &ZSELAMU v $5~&XA/S 0} Z + « Av PE -
(E }uU v ]S VvV U % Z %}]vs Jv Vv Ju P S} MSZIBGE &}V
Ju P X

ANAEo uszZ}e (JE <3]Ju §]vP 8Z &puv uvio usSE]E Z A
usz}e E o]v GU AZ E =« }3Z E+ E Vv}iX 0]*8 }(SZ ¢« u S.
%}]vS OP}E]|SZuplwS |RPPFE]SZuUuU u SZ} - ¢« $2v RIJW4S]EVP
E % E}i 3]})v EE}Eo0o0A]S3F¥057254 E u $Z} U u]vlj@I|@®®P §Z
P }lu SE] EE}IE ~]X XU SZ ™ u%oe}v ]S v v S§Z sCuu S
> Av -ERE<p E § }%3]u]l 8]}vU v ]8 & $]A 167 EEXl &IESD}E
Jv(}&u S]}vU sZ & s @& ( E®R: Heakley & Zisserman, 2003lb)
(QuanTuan Luong & Faugeras, 1996) \JQuangTuan Luong, Deriche, Faugeras, &
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Papadopoulo, 1993

NB: Before estimating the fundamental matrix, we should mention that in real images,
similarly to the note mentioned above, the position of the poirfig@and S 4is perturbed by
noise, and so, image measurement errors will occur in both the images, for that the epipolar

constraintééxééégLrl ]JAiU YU E ] v}S (pooC « S]*(] U SZ vW
Ty & &yL Y Mr  EL s& &/ Y= algebraic error.  (eqg. I11-5)
Then the pointss@and S5 } v}S v e E]JO0C 0] * }v SZ %o]%}0 & O]V

Figurelll-2).

Figurelll-2: Symmetric Epipolar Distance

However, rather than searching for the algebraic er®a geometric error can be
often measured on image planes. This leads to the definition of epipolar distance (error),
which is, in the right images the perpendicular distance from the poitsto the epipolar
line ZL. &, and is written askS  &g0. In the same manner, in the left image it will be
TkSg Xééé‘o
In General, the epipolar distance is computed for both iegatp avoid any bias in
VC }u%opusS S]}v pe]vP $Z % ]%}0 E 3 v SYmmetriGZpipols AZ [
Distance

For a couple of corresponding poing§g " S

‘N L @Ty( 8o E @T(' a0 (eq 111-6)
For all the corresponding point§,* $§ EL s&0:
‘Npal A @Tia( a0 E @T(' &0 ; (eq.1IIl-7)

Also, other error measurements are being used, that can be found in the literature.
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111.3. Proposed approach

In the real world, a general moving object has displacement, for example, from
position Apto position Bp. Its features correspond atoth positions, as do the points along
its surface. This displacement can be represented by 3D motion vect%éﬁr PKa=Ina
video, using a general projective camera, this object is projected on image planes (of
different positions Ap, Bp, Go Y+ AZ E Z JuP %0V ~(E u-]e 3Z %oC
position in 3D space at different time. Subsequenty, rfBotion vectors %are projected to
2D motion vectors&from frame position Ap to frame position B, where each vector
represents the displacement of a pixel from one image to another. This gives the
corresponding pointsix* AU AZ &BdxfE € 3$Z 35A} ASE uldlg }( sz A 3§}

The main questions here are:

1. First, how to detect object motion?

2. Then, how to find displacements of object points from frame position to another (2D
motion vectors)?

Answers can be found in the moti@stimation subsectionll]3.1.

When a static camera is used, the backgrounds in the frames are static.
Consequently, background estimated motion in the frames will be a null vector. Moreover,
because there is only one moving object in the scene, the magiimation will pant out
the object movement represented by motion vectors.

This process begins by deciding, for each temporal motion, whether the
displacement between time;tand % is deformable or not. In the case of ndeformable
object motion, there will be a partidar transformation to mapTgto its correspondingT'y
This leads us to epipolar geometry and the Fundamental matnd, in special cases, to
the Homography matrix.

Later, we will attempt to calculate this transformation. If found with a correct
mapping, the temporal didpcement (motion) is classified as rdaformable, else, it is
considered as deformable. However, in each of the above cases, the object can be either.
Thus, we studied the temporal consistency of the displacements to determine whether the
object is defornable or nordeformable.

In summary, first, we detect object movements and estimate the motions vectors in
the scene, using the optical flow as a motestimation method (explained in detail
in|E|3.1, below). The output from this step will be motions vectors belonging to the moving
object, false vectors detected outside the moving object, falsely estimated vectors inside
the moving object, and unusable motion vectors. Then, we filter theseom® vectors (as
explained iriES.Z, below). This step removes false, wrongly estimated, and unusable
motion vectors. Only the true positive vectors belonging to the moving object remain. Next,
we search forhe transformation (Fundamental/Homographic matrix), if there is one, which
satisfies these movements (as discussed in SubsBrS). The output from this is the
estimated transformation H/F. Subsequentlye vdetermine whether the transformation
correctly maps the two sets of corresponding points. By reference to this, the decision is
made about the detected temporal motion as to whether it is deformable (as detailed
below, ir@3.4). Finally, from the sequence of the temporal deformability of movements,
we can infer the deformability of the moving object (for which, see SubsGrS). This
step will ultimately classify thebgject moving through the scene as deformable or nhon
deformable. We explain the sequence of procedures and the proposed algorithms in
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Subsectioflll|3.6. Thus, in short, the proposed approach follows the five stejpresented
infFigurelll-3

Figurelll-3: Flow chart for the proposed method

[11.3.1. Motion estimation

dZ]e *3u C JVA}OoA ¢ }ve] E]JVP 3Z % &AL Bu P} i%d %N VvEZ }
SE ve(}E&u S]}vU J( vGQGU SZ2 S }EE So0C U %o SZ }EE *%o}Vv |V

§Z]e vU E o] o usdZPv ]85 Vv %E} A EC veU uE
S vE }( pefwPEpeU v E PG (F Mo AVS]VP §Z %]&E 0 ]*%
ulAJvP } i $X D}E }A EU §Z % ]o0]3C 8} SCE | Z ulAJvP } i

E <p]J]E X dZ]e upes Ju v A]8Z sz ]o]SC 8§} <SJu § vC I]v
UlA uvs }JE } i JBvEE]}S §

D vCU u vs]}v ]Jv 2 & o § AYEIeU %% E} Z + (}E u}s]
(0}A %% E} Z-+U ( E&E} ZU o} | us Z]JvPYe A E A oo /
§ «§ X

The most competitive methods, useful for this study, are the optical flow, thekblo
matching and the feature correspondence. Conceptually, the optical flow field is a set of
condensedfeature matcheshavingone matchfor every image pixelConversely, one can
view featurecorrespondence methods as optical flow computation at a fewectet
locations with a high probability that the optical flow will be correctly estimatdavo major

differences between feature correspondences and optical flow may be idenfifiekih &
Zelek, 2008)

- Feature correspondences have a higher signal to noise ratio.

- The number of reliable feature correspondences is lower than the number of optical
flow values.
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The opticafflow approach is a weknown concept that has been exploited for several
years, with many techniques and a variety of meth@8arronet al., 1994)

One of the most interesting methods of working with the optical flow is the Lucas
Kanade methodLucas, Kanade, & others, 198However, experiments with the Lueas
Kanade algorithm reveal that it is unsuitable for large displacements caused by the
approximation when omitting highesrder terms (i.e.,higher than the first terms in the
opticatflow equation)(Bruhn, Weickert, & Schndorr, 200%5Wedel & Cremers, 2011Thus,
improvements (e.g., the pyramidal approa@urt & Adelson, 1983have been made to the
LucasKanade algorithmMarzat(Marzat, 2008presented a pyramidal implementation of the
Lucaskanade method with regularized leasjuares. To ameliorate the results, Marzat used
several optimization techniques: he implemented a pyramidal approach (i.e., a- multi
resolution approach) anth plus aniterative and temporal refinement. The reader is referred
to (Marzat, 2008)and (Dumortier, 2009) to read more about the pyramidal representation
and its advantages after implementing Lu¢amade methodd v D EI [« % CE u]
method.

Marzat (Marzat, 2008)and Dumortier, 2009(Dumortier, 2009)conducted many
comparative tests, focusing on differential techniques (viz., the tkiaasde algorithm, the
Horn-Schunck algorithm, and blockatching approaches). This is related to the fact that
other techniques do not appear dense, nor do they use excessive filtering or many
parameters. According to Marzat, his algorithm is more accurate than the-Kacesle ad
blockmatching algorithms. On one hand, as we saw, the :Leasde algorithm is unsuitable
for large disparities. On the other hand, a bleuktching algorithm using typical techniques,
such as those explained {(Khammar, 2012)cannot give suipixelwise information without

LIt is an estimation to linearize the least squares, because the calculations with least squares risk producing an

absurdestimation. So the least squares: became:

, with I' adjustable,representing the regularity of the solution.
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further processingMarzat solved these problems by using scale pyramids which reduces the
image resolution. The disparities gained here are then used in the higher resolution images.
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(Horn & Schunck, 1981)MeinhardtLlopis, Sanchez Pérez, & Kondermann, 2QB3adski
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- It offers more precision (i.e., sylixel estimation) for the motion vectors
- It does not require much filtering

- It detects both slow and fast motion

- Itis more coherent andonsistent

- Itis completely parallelizable
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111.3.2. Motion filtering

The purpose of this step is to eliminate all unreliable motion veadtiata that have
not been already filtered b E1 3[« 0P} E]3 Z-positideZ apearance of vector
movements in uniform areas is the first case that can be detected. The second case appears
when the detected vectors are parallel to the local texture (Ségurelll-9), meaning that
any estimation of those vectors will be erroneous. This is a typical limitation, and one that is
common to all opticaflow estimation tools. The Lucd&anade algorithm can identify such
cases when motion vectors are estimated withethelp of a tensestructure matrix of
ANACL E vl T ~IX X AZv 8§ o 8 }v }( 185 1P VA op s ]+ o0}
especially small vectors are insignificant to further interpretation. Thus, and to avoid further
critical errors in processing, is indispensable to filter all such vectors, even if, in doing so,
there is a risk of losing some trypmsitive vectors. For this type of work, it is better to have
fewer reliable vectors than many that are unreliable. All the remaining vectors should
belong to the moving object, and they should be reliable and regularly dispersed over the
parts of the object. To achieve this, after detecting and estimating motion vectors with
D &l §[+ oP}E]3Zu (}J&E Z %]/A o Jv §Z o] @e use@Ethe U SZE
smalktvectors filter, uniformity filterandtexture filter.

111.3.2.A. Smalkvectors filter
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11.3.2B.  Uniformity filter
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11.3.2C.  Texture Filter

D &Il §[+ u §Z} pe e-Kadade approach, which is based on moti@ttor

estimation according to gradient calculat&nThat can generate false vectors estimation,
especially on edges whe vectors appear parallel with local texture. In this filtering, these
vectors must be eliminated. Thus, for each of the motion vectors remaining after small

A S}E+ (Jo§ E]JvP v uv](}Eu]s8C (Josd EJvPU ]v | E (E u U
tZ A $}JE suyEE}uv JvP o0} IU Jv 8Z JE 3§]}v v }E] vs §]}v }(

A EP }(]vd vel]3C[* A E] 8]}ve ~ J(( & v e+ ]e 0}AU *} 3Z wu}s
direction and orientation as the local texture; that means it is neitable and it will be
eliminated.

Applying the 3 filters ofFigurelll-5}c and[Figurelll-9]c give accordinglyas results

Figurelll-8| andFigurelll-10
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Figurelll-5: Walking Scene: Frames refere@re ['5la andFigurell5lb), andresult of D E1 §[e
algorithm appliedyivgFigurelll-5fc (without filtering).

Figure lll -7: Walking Scene: Texture
Filtering (zoomed size) [pfigureT1T-6] we
can noice that the groups of false vectors

near the left foot of the boy are deleted.

Figure Il -6: Walking Scene: Uniformity Filtering result
(regular size) qkigure IlT-5c; we can notie that the groups
of false vectors on the left and near the boy are deleted
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Figurelll-8: Highway 4 scene:

Figurelll -9: Highway 4 scene: Uniformity Filterin

result (zoomed size)[Biqure TIT-8

Frames referenggegurel
igurelll-8ic without filtering).

algorithm appliedgiv

"ng e
lc; we can notice

that the false vectors around t

he car are deleted

I-8}a and[Figurelll-8]b), andresult of D G| §[e

Figure Il -10: Highway 4scene: Texture Filtering

sult (zoomed size)IEiéure -9

we can notice thai

thefalse vectors near right doors of the car are

deleted
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Figurelll-11:SceneZLWK D SHUVRQ )UDPH ODUIDWTYYV DOJR
111.3.3. Transformation
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The case of a general projective camera as uncalibrated camera is the case of this study, seeking more generality.
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It can be used for a lot of applications: camera fixed in mobile vehicle, mobile vehicle in
urban or building environment and robots in movements....
The homography matrices were also tested, by a simple replacement eof th
fundamentals one.
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11.3.3A. Homography (Projective transformation)

S E]}ue OP}E]ZZus A E % E}%}e ()38 tHe preBed@ Wk, C <3]u
deformable motions and objects should be distingeidlirom nondeformable ones. To this
aim, an estimation algorithm will be used to estimate the homography that relate the
corresponding points of the objects, either if the object is deformable or isdef@rmable;
and results will be compared. Thus, anmgmrison method with the same estimating
algorithm will be employed. This will attenuate the result errors effects.

Thus, v §Z]s *8p CU A pe-Iv}¥®& HARdoP}E]SZu  }p%o Als
VIEuU o]l 8¢}y E30 C v R HaRlay & Zisserman, 2003p) E *3]Ju S]vP §Z
ZIUu}PE %WZC XedS]Ju $SZ ,}u} P EuksZEgiverntwo sets of corresponding
points. dZ v}@Eu o]l>d~E >algorithm is linear homogeneous solutiobased } v
u]v]u]l]as Buitable cost function $}numerically solve the linear equations of the
Homography

The solution proposed by the NDLT is the method of least squares using Singular
Value Decomposition (SVAbdetAziz & Karara, 1971)

E W } (}JE E >dUthd Matlab functionvgg_H from_x_lin(Zisserman et al.,
2012)

111.3.3.B. Fundamental Matrix

General projective cameravhichis as uncalibrated cameres studied in this work
seeking more generalitytlwo perspective views (two imagesgaonsidered: right and left.
Besidethis, set of points in one image and its correspondences in the other are also
represented.The aim in this part is to find the transformation that can map each of the
points in one image to its correspondence, in tlikey image.

/v 8Z]e *3u CU 3Z 6% Hu3o]bP}®WsAu]~HF- 8§} 38Ju 8§ 8§z
&MUV U VS 0 WSAEPFAE]S % E}A] - <M 8 @E epode v He 18 ]e
8§} Ju%eo WXB¥%}]vS OPAE]{FE+3 JVSE} C >Xv PACHPE}9e 2z &
(LonguetHiggins, 1981y v $Z v }u%d@ VA[EZA S]IG]}IWES0 C v e]ee Eu Vv
(R. Hartley & Zisserman, 2003b)

dZ &V *3Ju § « 8Z &uV uvVv3 o uSE]EU P]JA v A} « 5« }(
dZ 3 ESJvP «<p 38]}v ] 1(( & VS AJ&EZuSZZ ZJWIRE % ZC us ]
He]vP 8Z e+ u u ]v 8 %e* ~u]v]ul]l]vP *ul]s o }¢S (pv S]}v §}
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Zisserman, 2003

E W } (}@® B A |he Maslab functionfundmatrix(Kovesi, n.d.)

3

The DirecLinear Transform (DLT) algorithm was introduced by ABdél and Krara(AbdetAziz & Karara, 1971)
4

The normalization step was introduced by Hart{By . Hartley, 1997)
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111.3.4. Deformable and NorDeformable Motiors
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x For H: Tishould coincide with* &for all the N pointsTy(S 5L * &, EL s& 0)and T
should coincide with* ?5 & gfor all the N pointsT(§,L *?°& 4 EL s&0).

x For F: the case is a little bit different}should be on the epipolar lindfcorresponding
to Tyfor all the N points Ty(H L (& EL sa 0) and Tyon the epipolar line i
corresponding toTffor all the N pointsT( 4L (' &4 EL s&0).
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Becausew and w should be generalized as much as possible so that they can be
applied to all types of objects (deformablegn-deformable, small, medium, and large, with
texture, smooth, etc.) and movements (slow, medium, fast, small, large, in all directions,
etc.), theFor H motion nondeformability thresholdswand w should be investigated as to
whether they can be affeged by the following two parameters:
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Tablelll-1: Table of ultimate thresholds: (a, b): a is thapping error thresholdand b is thenotion non
deformability thresholdbelow these thresholds is the correspondiegcentage of succe$%o).

ormalization
1 2 3 4 5 6 7 8 9 10
Transformatio

ks @A of (14 | @A | B8 | G | (64 | (74 | (O | (108 ] (13 | (14

Mean 84.07 | 85.66 | 85.28 | 85.84 | 84.65 | 85.29 | 86.06 | 86.69 | 85.11
H 87.8)
distance IR A N D U D T D U D O N
T 73.42 | 7357 | 73.85| 74.32 | 74.29 | 74.23 | 75.03 | 72.87 | 71.53 | 73.9
onafoa 06 | (I | a4 [ @8 | @2 [ @8 | @8 | @48 [ 6 @,
Mean 83.36 | 79.13 | 76.92 | 76.04 | 75.52 | 76.65 | 80.91 | 82.56 | 81.06 | 90.76
F 1 distance I D R D R I A S I D I D I I B A
o 8156 | 82.16 | 82 | 82.05| 82.04 | 82.32 | 82.93 | 82.68 | 80.98 | 80.51
1 & s G | @26 (50, | (78, | (120, | (160, (345, | (350,
Symmetri| 2o @e8) g res | gs 10 (8258';’ 85.28 | 85.16 | 85.43 | 85.14 gfg' 86.89 | 83.66
H | c Transfer ) ) 3) ) ) ) ) 8) ) )

Error 73.86 | 74.48 | 74.62 | 74.32 | 7451 | 74.23 | 75.33 | 72.75 | 71.63 | 74.15

1 s #a] 06 | 22 66 | (15 | 25 | @5 | @7, | 61 | (72
Sym_rnetrl 6.9 81.31 | 80.16 @8, 76.25 | 81.31 | 83.08 | 83.02 | 82.61 | 81.26 | 81.18
F | c Epipolar ) y | 8O ) ) ) ) ) )

Distance

81.8 | 82.58 | 82.09 | 82.41 | 82.79 | 82.92 | 83.12 | 82.64 | 81.45 | 82.44

111.3.5. Deformable and NorDeformable Objects
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As a result, several cases must be considered

x In the series of motion classifications, if a motion is classifiedef@rmable motion
thenvif thisis said of adleformable objectvthe classification is correct and should be
left unchanged (i.e., it should not be corrected), buté&formable motionis said of a
non-deformable object,then the classification is an error and should be corrected to
non-deformable motion

x In the series of motion classifications, if a motion is classifiech@asdeformable
motion, thenvif this is said of awon-deformable objectvthe classification is correct
and should left unchanged (i.e., it should not be corrected), buton-deformable
motion is said of aleformable object,then two cases appear:
o Either, the classification is an error and should be corrected to deformable.
o Or, the classification is correct and:

f Either, the motion classification should be left unchangedthat it remainsion-
deformable motion taking into consideration that this is a case coinsistent
non-deformable motion from aleformable object

f Or, the motion classification should be changedd&formable motion even
though this is known to be untie from a temporal point of view. It is, however,
true from a general point of view for classifying the object per se as deformable,
because this is the case miconsisteninon-deformable motion (in a one or two
frames) of adeformable object

The motion {e.,the temporary motion)s denotedaccording tathe frame of its motion vectorand the dedination frame Forexample the displacement
of the object from frame X(the suitable corresponding frame of fér the study) to frame XX ZX) is calledmotion X.
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Therefore for all of these reasons:

X At first, the temporal consistency will be studied when the motion is classified for all
series of movements to correct classification errors, and to exclude the inconsistent non
deformable movements in a deformable object.

x Secwod, object deformability will be inferred from the corrected (persistent) series of

motion classifications, taking into consideration the consistent-deformable motions
of a deformable object.

The temporal information can be used to study the consisyenf the motion
classification results and will lead to an improvement in the reliability of decisions over time.

Iv §Z]e *3u CU A pe -3X]83u%CE oP}E]SZuU %o E} %o} C :
:}o@affré & Joly, 2005 dZ ]E P} o A+ 8§} JUBSE}AS IZ @& &u v } i 3
§ 3}E }% E 3]vP ]Jv % v v3oC }v Z (Eu }( Al } } puv
}i 8§ 8§ S§}E & ~7eu}}sSZ _ o}vP SZ SJu  Ju ve]}v pe]vP 5 u%
Iv}E & S} E p (o § S]}ve ~]MX}XBUE( 8« So $HhweelU : (|
v} Eeffré & Joly, 2005%0 (E } %o } * E%0}]S]VP §Z % Ee]*S v %0 E } %o
Al } e <cpv X dZ C }ve] E S uMmYE o AJvWERAGB( v 2 «p i
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To validate all the correct detections, and reject all the false alarms, they search N
and N so as to maximize:

f "%f $2%: R0Og; & :; OO0g;?7L f"%f S2:: ROg; 2:; OO0g;
C& cE

c " 7?5
Lf"%fSLi 2:: LEMLI 2:; LEM
L g, Ve (€q.111-10)
C C ?5
L f%fSLi FLIMOMLT  oFLING M
‘o wme e

Having X =Number of correct detections in N frames / Y =Number of false alarihs
frames.

L« is the probability of succesd¥4 L s F L.is the probability of failure.
Lyis the probability to have a false alarm in a frang/ L s F Ly

Or they proposed to find N and,ldy maximizing recall and precision:

f"%f SUHNA?=HHF U HLNA?EOEKJ

\ \ 7 RO (eq.ll-11)
L f"%fSU2:: ROg; E :sF U,
fgé;‘_’fS 6= SF Y S E 2 RO F 25 OO0

Having:

AAD= 4620080032430 0080%¥00¢cee
T 4ea0@@lad Y o Oal ax

(eq.1-12)

s p62Qoal0ad @0 00X P 0cer i
2NA?7 EOLI\é%éO@%UXQQQO@@YQOQaB (eq.lll-13)
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But they are lead to the same results of the first equation.
They proposed a numerical resolution for theximization of the two expressions.

dZ Ju ]Jv }JUE *3p CU Z}A A EU J- v}8 }i & § 8]lv }J@&E (
M €& $Z E o0 °**](] S]}vX "SE] S0C *% I]JvPU SZ vU Jv }uE S
}voC }EE S }E ( X DJ=ep(]o+B(} SI}ve ~IX XU (o o0 +](] S]}
( Jop&E v sz 0 **J(] S]}vX - & sposSU s§Z oP}E]SZu ]v §
u} 1(1 38]}vew XPXU y v z pu- lv 82 u AJu]l 8]}v <y 8]}v
v % v wvgalfré & Joly, 2003) AZ] Z ] v}$§ §Z * Jv }HE Sp CX d.
<u S]tv Ju W
#NC=T2>; O0g; €:: ROg;?

%%
L =NC=T2:: ROg; 2::; OO0g; :: ROL;;
%
L =NC=T2:: RO0g; 2::; O0g; :0 F; ROt;; (eq.ll-14)
%
L =NC=T2:: ROg;2::; OO0g; :; QOFOt;;
c&L

where Xis the number of correct classifications Wframes, andY is the number of dise
classifications inN frames. In (Jaffré & Joly, 2005)L is the probability of success,

M L s F L.is the probability of failure Lyis the probability of a false alarm in a frame, and

M, L s F L in our case (without misdetean), Ly L M L Mand MjL Lc L L

NB: while the problem has been change to a classification, and, X and Y are not completely
independent, in addition, Y=K, it seems enough to maximize only the X term without the Y

term (f " %df Scg 2%: R Og; 3. But the need of both of the terms (X and Y) in the
maximization equation is proved in tippendifVI|3.

Also, as reminderW ~ | « ]S8[ §Z }v ]8]}v 0 % E} ]0]SgUe sYu]Su 3Z v}
probability of A knowing that B have occurred.

Now, 2:: ROg; L Afe %LW?%and 2::; 00g; :; QO F Og;;will generate two

cases(N><= NN, => N<=N/2) or (N>N-N, => N>N/2): )
X 1fNz<=N/2, then 2::; O0g; :; QO F 0g;; L Afyy WMLV

Figurelll-12: The cas®&,<=N/2.

x If N>N/2, then 2::; O0g; :; QO FO0q;i L Ay WMLV because  the
2::; O0g; :; QO F Og;;whenN-N, <Y<Nisequal to0.

Figurelll-13: The cas®&,>N/2
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Finally, the maximization equation will be:

=N C= TKAG: WL’ Ud<AE.@'{5 OENLE? Y 1f N2 GN/2

#NC=T2>: R Og; & (eq.11-15)
o =N €= TKAGy, WLUF?WIATS ofMLC? Ul IF N2 > Ni2
ot -

To find the optimal values fdl and N, that suit our aim, the numerical resolution
proposed in(Jaffré & Joly, 2005yas used to maximize the expression, having a probability
of successp = 82.58and a probability of failureg= 10082.58= 17.42 We selected in
[Table II-1] the case of the Fundamental matrix as the transformation, the Symmetric
Epipolar Distance as the distance measure, normalization level twomidyeping error
threshold (P=2.2 and themotion nondeformability threshold(P= 80.16

However, the set of solutions was a plateau (Mendi@@, and a solution was
found that can be generic to several applications. Thus, the cobplBb) taken is:I{, N) =
(11, 6, where, 2=; O04; € :: R Og; 1s maximized t®.988454.

Then, to study the temporal consistency of a series of motion classifications, for each
classification of motion deformability, we consider a window of 11 classifications (5 to the
left, from before; 1 under considation; and 5 to the right, from after). There are then four
possible cases. If thedesired classification (i.e., the classification result, under
consideration, that we are studying in terms of its consistency)deaformable (or,
respectively, non-deformable), the number of deformablenotion classifications (Nb)
between the 11 motion classifications is counted:

x If nb >= §the classification remairdeformable (respectivelynon-deformable).
x If nb < 6 the classification should be changed tmn-deformable (respectively,
deformable).

When this temporakonsistency algorithm was applied once to the corpus (on 24 series
from different videos), theercentage of succes$ar the entire algorithm increased by more
than 6%, resulting in an 89% accuracy rate (eeeexamples ifTablelll-2] below).

Tablelll-2: Results from the temporal consisterayelioration testing on 75 different videddlé1 frame},
taking the Fundamental matrix, the Symmetric Epipolar distance, and the noaticlitevel 2,A Z Gif A XT

v P AT XX
o % of fal lassificati % of false
% of true classification 70 Offalse classiiicatio it vo0 2 non
as deformable
deformable
Before temporal 82.58 9.06 8.36
consistency
After temporal 89.025 6.025 4.95

consistency

The outputs from the temporatonsistency algorithm are the corrected and
smoothed series of motion classifications. However, in case there are still isolated
classifications after applying the tempom@bnsistency algorithm, this algorithm care b
reiterated as needed, until the final output is completely smooth and unchangeable (i.e.,
stable). When temporatonsistency was applied, it increased the percentage of success by
more than 6%, see the exampl@s|Tablelll-2]above When applied a second time, the
percentage of succegpercentage of true classification) increased to more than 91Byb6.
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taking into account working with that big variety of videos and those very hard scenes taken
(critical scenes, msectior@M), and knowing that the 8.2% of errors were the errors of

D &l §[+ oP}E]3Zu pupo 8 Als8z 82 EE}E- }( (]Jos E]vPU
transformation and the errors of classification wiotion deformability, this percentage is
considered as a good percentage relatively.

Nb: Supposing that a 3D object seen by a camera can be considered a planar object, the
Homography matrix can be used, but in such casesp#reentage of successill be 75%
without temporal consistency, and 80% with temporal consistency.

The final step in classifying the object is simple. We classify the object as deformable
or not by looking on the motiowlassification series of its appearance. If all the persistent
motion classifications are netleformable, then the object is nedeformable. Yet, the
existence of one suberies of deformable classifications is sufficient for the object to be
classified as deformable.

111.3.6. Proposed Algorithms

, AJvP % E}A] $Z)®BIpWPE( £% 0¥ % U A SuEv vIA 8§} §7
s <ULV ¢ WU s} S EGu]v (}JEuw OEW ov}w}S]}ve v } i SeU
§]Jo ]Jv3&Z (}oo}A]JvP OP}E]EZu-W

Deformable and nordeformable motion algorithm

Step 1:Estimate motion between two frame pe]vP D EI [« oP} GE].ll).~" H e §]
This generates a motion field.

Step 2Filter the motion field using three filters (Subsec.2).

Step 3:If the average length of the motion field (ALMF) rist between 7 and 10
(Subsectio@3.4), Steps 1 and 2 should be repeated after changing (by eloigning or
approaching) the input frame that is being compared wiitle current frame until
the average length of the motion field falls between 7 and 10.

Step 4: Normalize the motion field to obtain normalized corresponding points
(Subsectiofill]3.4).

Step 5:Estimate the tranformationsvi.e., the Fundamental matrix,Krespectively, the
Homography k) corresponding to each normalization level (Subse@ﬁw)

Step 6:Calculate the percentage of correctly mapped poinit§ for F respectively | for H)
corresponding to each normalization level (Subsegtit.4).

Step 71f ', R A (resp.’| R A) then the motion is nomleformable, given thatd and A
are the mapping error thresholds for Bnd H, corresponding to each normalization
level (Subsectidil]3.4). Otherwise, if ; O A (resp.’| O A), then the motion is
deformable.

Deformable and nordeformable object algorithn(Subsectio@?,.S)

Step 1 Apply the temporakonsistency algorithm to the series objeubtion classifications.
This results in the application of theefdrmable and nordeformable motion
algorithm to all moving objects appearing in the scene.

Step 2:If the smoothed motiorclassification series results from Step 1 are not totally
smooth, then Step 1 is repeated on this new series, until we obtain agmabthed
and unchangeable (i.e., stable) series.

Step 3if a subseries of deformable motion exists in the final smoothed and stable meotion
classification series, then the object is deformable. If not, the object is- non
deformable.
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l11.4. Experiments
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- Many types of scenes
- Deformable and nomeformable objects.
- Different resolutions.
- 1(( € v§ I]v }( S8]}ve ~Euvv]vPU (]JPZS]JvPU E}oo]vPU €& <Z
- Different speed of action (slow or fast).
- Different luminosities (indoor and outdoor).
- Different distances (close and far ses).
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A. ANy (EYu N, 1P ZA CddforWiablevobiect

c d
Figurell-14W ~ v (&}u ~,]JPZA CT_W ~ +« &E u 66U ~ +« &E u 060U ~
vectors (755x%2 corresponding points).

B. ~ v (Elu ~t oldefétmalle object with deformable motion

C d
Figurell-15: ~ v (E&}u "t ol]JvP_W ~ ¢« &E u 6iU ~ ¢« & E u 6iU ~ « D}S]}
(8365%2 corresponding points).
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C. N v (Elu Mlu il W (JEuU o }defosmdb]e motion } v

c d
Figurell-16W ~ v (E}u » }Ju1T_W ~ « &E u {i6U ~ « &E& u {idU ~ « D}
vectors (36x2 corresponding points).

Thresholds for the motiordeformability experiments
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X The biggst number (or percentage) of motions M é&ghave their own percentages of
correctly mapped pomtsl(bEL E LiEor L'S [E above the corresponding threshold.
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Likewise, the minimum number of motions i &.have their own percentages of
correctly mapped points, below this same corresponding threshold. In other words, we
retain the "best maximum" of nodeformable motions above the threshold, and an
"acceptable minimum” of nowleformable motions below the thrémld.

X The biggest number (or percentage) of motions&nhave their own percentages of
correctly mapped points I¢ E L' E L3 Eor L'  below the corresponding threshold.
Likewise, the minimum number of motions i have their own percentages of
correctly mappé points, above the corresponding threshold. In other words, we keep
the "best maximum" of deformable motions below the tlreold and an "acceptable
minimum" of deformable motions above the threshold.

«Z}A+ &2al fhreshold (the yellow vertical line), where all rdeformable
motions (in NI have their respective percentages of correctly mapped points above the
threshold, and all deformable motions (in)have their respective percentages of i@mtly
mapped points below this threshold. While for the discovered threshold (the violet oblique
line), the maximum noweformable motions (in NI have their percentages of correctly
mapped points above the threshold, and the maximum deformable motion®{§ have
their percentages of correctly mapped points below this threshold.

Sub-set ND, of nondeformable motions Sub-set D of deformable motions
Figurelll-17: Ideal thre$old (the yellow verticdine) and thediscoveredne(the violet oblique line)

&}E 5Z]* %opE %o} U v Allv }( PE %Z ] pe Xtt 00 ]
%S 0 D]v]upu 'E %Z—X &}E vC PJMIVEE EU}dEus§iww Av
J*3 Vv 3C% U PE %¥Z (}E(BBu uld]3C 3TRRUIBRO « 13- ]-
} S ]v * (Joo}AW
x The subset ND; of the nondeformable motions is sorted in descending order,
according to the percentage of correctly mapped points for each frame in thestub
X On the other had, the subset D; of the deformable motions is sorted in ascending
order, according to the percentage of correctly mapped points for each frame in the
sub-set.
X A percentage is given for each element in the two-sats, representing its placement
within the subs 38X dZ]e A op ]ePlacement ®&centage. &} E A u%o U §Z
5™ element inND, will be given the percentagewH s r r;aQand the5"™ element inD;
will have the percentagewH s r r; &N
X A graph is constructed such that:
o0 TheXaxis represents the Placement Percentage.
0 TheYaxis represents percentage of correctly mapped points.
0 Seriesl represents the reverse sort@dD; elements (i.e., frames) in blue.
o Seried represents the sorted) elements (i.e., frames) in red.
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Figurelll-18/shows the graph for a normalization levelZfwith the Fundamental matrif,,
using the mean distam; and with amapping error threshoI(fJGé L s

Figurelll-18: Graph for Fwith a mapping error thresholdU® L s y=70, intersecting with Series 0 at 62.6, a
Series 1 at 97.

Note that forany point(x, y) on the curve:
series. "lfar"éiample,ﬁ: 60on Seriedl, 60%o0f the nondeformable motions are above
this point. Ifx = 60on Serie®, however,60%of the deformable motions are below it.
Thu5|fy:60 60% of the point correspondences in the motion field are correctly
mapped, given that the Fundamentglis fourd.

Here the requested thresholdis a value oy=t, where:

((maximum of points in Series 1 are above line y=fnaximum of points in Series 0 are
below line y=t)).

With this type of graph, the intersection of the two curves represents the best
existing solution, where the maximum number of ndeformable motions (irlNDy)) have
their percentages of correctly mapped points above this coincidence point, and the
maximum number of deformable motions (iB) have their percentages of correctly
mapped points blow this coincidence point. Let I(s,t) be the intersection point, with t
denoting the requested threshold.

For example, ifFigurelll-18] if we settle fory= 7Q rather than the intersection point,
we know that97%of non-deformable motions are above this threshold, and consequently
well classified. However, onl§2.6% of deformable motions are below this threshold,
meaning that oty 62.6% are well classifiedlternatively,if we takey=t=79.13(the ordinate
of the intersection point), ther82.16%of deformable andB3%of non-deformable motions
are well classified, and this is the optimal percentage.

Let I(s,t) be the intersectiopoint, with t denoting the requested threshold. Notice
that the abscissas, for the point of intersectioni(s,t) represents, in this case, the
percentage of succesfor the entire algorithm, insofar as the number of deformable
motions and the number of medeformable motions that are tested are approximately the
same. Moreover, the Placement Percentage is the same for both $¢fiesdD.
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In summary, the intersection points in the graph indicate the best threshold for their
normalization level, according For Hwith the usable distance. Accordingly, we calculate
the motion nondeformability threshoIdSUg f « 104 for each normalization level (see
following graphgor n=1..3).

Figurelll -19: Graph of the Hwith 1/ét LU Figurelll -20: Graph of the k with 1/2}'J LU
Figure Il -21: Graph of the Hwith %% L U Figure 11 -22: Graph of the Fwith %% L U
Figure Il -23: Graph of the Hwith ¥/ L U Figure Il -24: Graph of the Fwith 15° L U
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Tablelll-3: Table of temporamotion nm-deformability threshold&r each normalization when tmeapping
error thresholdis fixed tol %5 L Uand %5, L U a, b): ais thepercentagef success 6 andb is themotion
nondeformability threshold

ormalization
\\w\ 1 2 3 4 5 6 7 8 9 10
Transfor

H  mean . ¢ . (7328, (659, (6449, (62.15, (6146, (622, (6136, (58.13, (58.63, (59.34,
distance © 9 78.06) 43.61) 25) 15)  9.88) 6.74) 4.8) 3.4) 265 1.94)

Foomean . oo 5 (7995 (8216, (8045, (79.23, (77.57, (7486, (7295, (72.2, (7108, (7352,
distance O 9249) 79.13) 67.22) 57.87) 49.82) 42.16) 36.62) 31.47) 27.3) 23.21)
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B- Ultimate Thresholds
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Figurelll-25: Graph of the variation of curves with intersection points according to variable mapping er
thresholds, for F, normalization 3, mean distance, anthaping error threshold of)Y L rdard +sr
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111.5. Conclusion
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topics where knowledge about object deformability is apun

Thisstudy provides the video surveillance research a rigorous and precise algorithm,
which can bemajor feature when classifying the interaction be&ten scenes objects. Also it
is an important characteristic for the objects to be described at thal tiextual output.
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IV.1.Introduction

Most existing video surveillance systems provide the infrastructureamlycapture
video images, transmitstore, and distributethem, while the task of threat detection and
analysisis leftto human operators. Detecting an incident in a Is@urceor searching the
video archives for a specific one almost completely relies on scarce and costly human
resources.

Every seconctounts. e fastest theoperator detecs the incident the best the
damageis minimized. Incident detection counts on the capabilities of a human operaior
observe to analyse(detect and identify)y moving objects and to understand theiactions
and interactionswithin the field-of-view (FOV) of the camesa

In the management of surveillance control rooms, the caragrarmonitor ratio or
the number of CCTV screens per operator is an important factor. Most of the police forces,
in surveillance field, suffer from human resources deficierispecially wherhaving a big
number of cameras. Consequently, a limited number of operators are responsible to
constantly monitor a large area, by observing a single monitor showing multiple streams
simultaneously or sequentially, and this is the case of most of CCTMlocmutms. However
vigilant the operatorsre, monitoring processsuffers fromthe huge amount ofnformation,
whichleads toinattention due to fatiguejnterruptions anddistractions and physical limits
Police operators cannot keepontinuous surveillance effectively. Unfortunatelyin such
manual systemmanyincidents are missletected.As a result, surveillanogdeosare often
used in passivemonitoring or as evidence for poshcidentsinvestigations. These miss
detections of important events carebdangerous in critical surveillance tasks such as public
places, sensitive locations, airport, and border control surveillance.

Besidethis, accessing video data storage is very limited and far away from efficiency
when the analysts are working on pestident investigation. Those video analysts need
specific location, specific time and specific incident type and description. Most of the time,
at least one of thosehree is not available or, leZ psay, not accurate. For this reason, it
may take a veryong time for a human to detect it. Then tracking the involved objects
(persons and vehicles) and analysing them is another part of the problem. The analyst
should fetch all surrounding cameras to trace each one of those objects, and hopefully
uncover allthe necessary information about them. The information may be object
identification, person description, vehicle description and plate number, etc. In some cases,
it may take months to analyse one incident

To overcome these limitations of traditional suilence methods, the computer
vision and artificial intelligence commuigis are seeking to develop automated systems for
the reaktime monitoring and archives investigation of contents understanding like vehicles,
people, other obgcts, actions and intedions.

In a surveillance control room, especially when observing a dynamic scene like public
places, motion is the daily basis. As mentioned, motion information stands out as the most
important cue to identify the dynamic content of videos. Extraction andlysis of motion
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information in videos are crucial in automated surveillance video systems. And as daily
motion is the regular thing, the most important part of observation or analysis is to focus on
norn-linear motion like the one we may observe dureng interaction between objects in the
scene, mainly humans, vehicles, or any kind of moving objects, either deformable -or non
deformable. The scene type and environment can be very divers. Moreover, many objects
can exist in the scene, and many tgpef interaction could occur, as mentioned in the
ontology.

For most human, describing what is happening in a video is an easy task. For
computers, extracting, analysing, and understanding what is happening from video pixels
and generating a description is stllvery complex problenA relativelywide panel of works
on many fields concerning video description in general and video surveillance in particularly
has been publishegdsee the state of the art in chapte). [To simplify the problem, some
researches addmore assumptions to significantly improve the results but limiting so their
applicability in the real world. Most of the researches have specific limitatibhey are
designed for particular sebf objects, and actions in a specific context. They oféek of a
generic multimodal framework to achieve system robustness in multiple contexts, object
types and actions performed.

The state of the artfor videos surveillance descriptiomasthoroughly discusseth
chapter|I| where we showed that the behaviour understanding and sentences generation
approach is themost suitable forour video surveillance description systeindeed this
approach takes into consideration he need for extracting important behaviour
understarding fedures, and the need for generexpressive structural descriptioiror that
reason in the nextsection we share an overview of some of the researches on automated
video surveillance, where the interest is to focus on the semantic cdrfesatureswhich
can be usefufor video description.Those features aramainly involvedin the behaviour
understanding and automated visual surveillance fields.

Then, we present our proposed approach, whichaigeneric Video Surveillance
Sene Description (VSSI) with main focus on interactions between objects, designed to
meet the needs of dynamically changing conditions like objects, interaction and context.

IV.2.State ofthe art

Working on video content analysis and understanding, it is not a field for video
surveilance application only, but it trespassthat for many other applications and
domairs. There is a big need in variety of applications and domains not restricted to
surveillance applications, we mention: video indexing (commonly based on text or other) for
contentbased video annotation / retrieval, humaomputer interfaces, computer games,
animation and special effects, video editing, analysis of sport athletics, healthcare systems,
v E S3]A % % 0] 3]}v v VA]JE}vu v8 ~ p3lu 8§ o0 Z}pe o
segmentation, analysis of human conditions (e.g§,Z0 §] % E(}E&u v YeU § X

A lot of studies mainly focused on surveillance applications, like person
identification, person or car trackingrowd flux analysis and statistics or congestion analysis
(Feris, Datta, Pankanti, & Sun, 201&)omaly detection and alarmingNeves, Narducci,
Barra, & Proenca, 2016paccess controlinteractive surveillance using multiple cameras
(tracl]JvP } 1 SeYeU %o }%o(@Hou RBuR3Erg P2011)behaviour analysigPantic,
Pentlard, Nijholt, & Huang, 2007{Y. Ko, 2008&ndaction recognition(Neves et al., 2016)
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Behaviour analysis and semantic content extractioncontains analysis and
recagnition of motion, actiongnd interactions between object#. is, forvisual surveillance
one of the most advanced and complex research in image processing, computer vision, and
artificial intelligence. The studies in this arBuson the advancementof visual analysis
techniques in order to extradhe semanticnformation aboutregularityor abnormality of
the scenes objectbehavious (e.g., human &ehicle)

An automated visual surveillance system which can understand and learn behaviour
from observedactivities in a video sequence requires a reliableegration of image
processing techniques and artificial intelligence techniq(ks, 2004)T. Xiang & Gong,
2008)

Our main goalis to obtain ameaningful semantic content which can be used for
description of what is happening in a monitored areajther in live modeto take
appropriate action based orhat interpretation or in offline mode like storing the video
sequencewith the textual descriptionto provide aneasyintelligentaccessThe description
may vary according to theeed, context, objectandintendedactions

For extractinguseful content features, many means were usettpending on the
output specific goal we mention: object detection and segmentation, object tracking
trajectory analysis, action analysis, activity classification and recognition, and others.

,UP uuvsd }v & Z AQIE vw v Ee3 v JvP_ e3pu ] e v uE
not restricted to only video surveillance systems; Many excellent surveyg§Wkéiu,Tan,
Wang, & Maybank, 2004Yishwakarma & Agrawal, 2013)

(Taha, H. Zayed, E. Khalifa, & MH&tbaty, 2014)(Teddy Ko, 2011)T. Ko, 2008)
(Liang Wang, Hu, & Tan, 2008hd (Kumar & Mittal, 2007¥liscuss the general framework
and the general architecture of a video understanding system exploiting behaviour analysis.

More recently, since the evolution of many neural network techniques, many of
these techniques and algorithms were used in many content extraction fiSloisiecontent
extractions werdargelyimproved and achieved satisfied results, other stdt mature As
can be clearly predicted, the introduction of these machine learning teclesidor this field
of research is very promising.

Next, we present the stat of the art ofsomerelated subjectsconcerning object(s)
tracking, trajectory analysis, action analysis and recognition, and textual description
templates Aso the reader can ref to the Appendi5 for more related works
concerning object detectionpbject segmentationobject classificabn and video action
analysis.Finally, before presenting our proposed approach, we highlgrine of the
compkxitiesthat face most worksvhen dealing withvideo surveillance

IV.2.1. Object trackingand Multi-object tracking
IV2.1A. Object tracking

The taskis to track moving objectthrough framesequencs. Object tracking isthe
process of locatingover time, a moving objet This can be difficultin some cases;
dependng on the angle, distance and the object speddost studiesuse matching
technigues tomake sure that the same blob is bein@qdked in each subsequent frame.
Different techniquesan be mainly dided into £ven main categoriesaccording tqMorris
& Trivedi, 2008)which are regionbased trackingcontour-based trackingfeature-based
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tracking, modetbased trackinghybrid tracking,optical flowbased trackingprediction
based techniques.

In another approach(Neves et al., 2018)istinguishin general, tracking approaches
regarding to thetrackingtechnique adopted (Bayesian, Kernel Filter Model / Shdgye
Detection) and the type of informationmption, appearance, andhape) used to model
target objects, usually denoted as target representation.

To track moving objects,egp neural networks, especially convolutional neural
networks (CNNjvere recently proposed. Som@omising results are showim (H. Li, Li, &
Porikli, 2016)and (Nam & Han, 2016)Wang et al. in (Lijun Wang, Ouyang, Wang, & Lu,
2015) proposed to create an object tracker by online selecting the most significant
hierarchical features from an ImageNet grained CNN.

Zhai et al(Zhai, Chen, Mori, & Roshtkhari, 201@ed a Bayesian classifier as a loss
layer in CNN tracker.

As forNam et al (Nam & Han, 2016}heytrained a multtdomain CNINfor tracking
objects, usindearning generic representations.

Comprehensive surveys for conventional object tracking can be fou(dorris &
Trivedi, 2008) (Teddy Ko, 2011and(W. Hu et al., 2004)

A comparison of methods based on deep learnimgt mainly focused on visual
tracking,has beerpresentedin (P. Li, Wang, Wang, & Lu, 2018¢cording to Li and al., their
compari®n shows that, using deegnvolutional neural networkor tracking, could
improve significantly the performance.

IV2.1.B. Multi-objecttracking

To solve the problem of multbject tracking,one can plan to use the object tracking
algorithms, inmultiple ingances; however this approach requires an additional data
association modulgeas, for example in the Multiple Hypothesis Trackin(@eid, 1979)or the
Joint Probabistic Data Association FiltéFortmann, BaShalom, & Scheffe, 1983)r the
appearance similarityBreitenstein, Reichlin, Leibe, KolMeier, & Gool, 2009)or the
predictionbased trackingParticle filter, Kalman filter)Our selected approach~"D}&]}v
Based Multiple Objectréicking- D d> ~ ~]upo]v| dfter éXecking moving objects
in each frame uses kalman filter to% & | § §Z S& ,|lfor askoct&fipgthe
detections corresponding to the same objeover time

Other techniques were proposed like Objectfacker, Deform PMT, PWP3D,
GloballyOptimal Greedy Algorithms, Continuous Energy Minimization for Maltget
Tracking, Twdasranularity Tracking, GME&Racker, Urban Tracker, BPF, Tracking Interacting
Objects, Learning to Track, and many others.

A comprative work of many of theabove algorithms is presented in the
experimental section IV.4However,it is important to mention that this comparison was
made at an early stage of this thesis. Therefaeme recent studies based on deep
learning,were notincluded in this comparison, but will be considereain future work.

Recently inf(Ankush Agarwal & Suryavanshi, 2Q1RAg authorspropose amultiple
object tracking by using eegion based convolutional neural network (RCNN) for object
detection and by creating a regression network for generic object tracking.
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In (Milan, Rezatofighi, Dick, Reid, & Schindler, 2Qh&)authorsused arecurrent
neural networkand LSTMto perform target state prediction,state updates, and data
association.

Another work using deep neural network fbtulti-object trackingcan be found in
(Gaidon, Wang, Cabon, & Vig, 2Q16)

IV.2.2. Trajectory analysis

The trajectory of motion is important for the analg of a video, and can be widely
applied to many domainssuch asndexing and extracting a vidg®V. Hu et al., 2007)W.
Hu et al., 2004)video scene segmentation, vide@mantic analysisThe analysis of the
trajectories can help the recognition of the events, actions or interactions between objects.
It is anintermediate level between th low and the high level of analysis. However, the
direct modelling of spatidemporal variations of trajectories isomplexbecause of their
nor-linearity.

Movement trajectories provide rich information about the spat@mporal activity
of an object. Eachrajectory records not only the coordinates of points (the position
sequence of the tracked target) and the local directions (direction of the object at each
position) on the image trajectorig®ashir, Khokhar, & Schonfeld, 20QBuzan, Sclaroff, &
Kollios, 2004) (Chan, Hoogs, Schrdierer, & Petersen, 2004)but also speed and
acceleration(Hongeng, Nevatia, & Bremond, 2004Xiaogang Wang, Tieu, & i@son,
2006)

An enormous work on the understanding of behaviours, events and actions has been
conducted on the basis of trajectory analysis. The majority of these efforts in the field of
visual surveillance are focused on similarity and clustering ofdraries (Anjum &
Cavallaro, 2008)Kataoka et al., 2013)Xiaogang Wang et al., @6), detection of abnormal
trajectories(Kataoka et al., 2013(Dimitrios Makris & Ellis, 2003D. Makris & Ellis, 2005)
detection and classification of eventZ. Zhang, Huang, Tan, & Wang, 20QR)ciarelli,
Micheloni, & Foresti, 2008)Hervieu, Bouthemy, & Cadre, 200&nd scene modelling
(Points of Interest (POI) where interesting events happen (entry / exit, stop), activity paths
(PA), junctions, roadgXiaogang Wang et al., 200€p. Makris & Ellis, 2005Black, Ellis, &
Makris, 2004)and (Sangho Park & Trivedi, 200Where, later discussed iV.3.3,a similar
outputs were presented with our approach.

A recent work(Dogra, Ahmed, & Bhaskar, 20J@8pposed a method using a finite
state machine to analyse the trajectory and the instantaneous velocity to detect what they
vu ]85 " Aoffiterest U u ve AZ v v Jvd E «3]vP A &E] §]}ve }
of interest used to help in summarizing the scenes.

In our approach we used a similar concept to detect important variation, but not
only in velocity and trajectory, but also directions, surfada, moments, and deformability,
to trigger the description at such moments.

IVV.2.3. Action andActivity classification andecognition

Another important area of research todaig Action and activity classification and
recognition Its goal is to automaticallgnalyse ongoing activities from an unknown videlo.
includesthe analysis and the recognition of patterns itaer higher level description of
objectsactions and interactionsAlso, t is the process of recognizing the actionskiwow
andunderstand what is Appening in aivencontext(Loy, 201Q)
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In video various types of activitiesit differs accordingto many varieties and
complexity, which make difficult to analyse, classify aedognize these activities. To
overcome these difficulties and improve their system, most of the researches in this field
apply some restrictions, concerning scene ty@diver, Rosario, & Pentland, 200N evatia,
Zhao, & Hongeng, 2003)n object type(Liang Wang et al., 20Q3Moeslund, Hilton, &
Kruger, 2006)(Ivanov, Stauffer, Bobick, & Grimson, 19%8tion type(A. Kojima, Tamura,

& Fukunaga, 2002jAggarwal, 2004)scenariaH. Li, Tang, Wu, Zhang, & Lin, 20{D)Wu,
Osuntogun, Choudhury, Philipose, & Rehg, 20QX) Gupta & Davis, 20Q7jRyoo &
Aggarwal, 2007a)

Video monitoring or analysinguspiciousactivities can be conceptually divided in to four
categorie§Vishwakarma & Agrawal, 2018\ggarwal & Ryoo, 2011)

1- Gesturesthey arethe elementary movements of peoéarticulations;also, theyare
the atomic components describinthe overall motion. This ation is simple andis
performed in a short time, such as: moving a leg, turning a head, etc.

2- Actions: they are single person activities where multiple gestures (atomic actions)
compose it in demporalsequence, such as: walking, and jumping, et

3- Interactions: they are interobject activities that involve two or more objects (human,
animal, object, etg. For example, One to one interaction like human running together,
animal chasing a humamwo humanare fighting(Tg & Cavallaro, 2010)YZen, Lepri,
Ricci, & Lanz, 2010)nteraction between many object¢Coppola, Cosar, Faria, &
Bellotto, 2017) (Candamo, Shreve, Goldgof, Sapper, & Kasturi, 2038nhgho Park &
Aggarwal, 2006)Sangho Park & AggarwalD03) person t vehicle interactionS. Park &
Trivedi, 2007)Human and inert objects like human leaving a Haggarwal & Ryoo,
2011) (Ryoo & Aggarwal, 2007aMoore, Essa, & Hayes, 1999A. Gupta & Dauvis,
2007) (Peursum, West, & Venkatesh, 200%ferrando, Gera, Massa, & Regazzoni,
2006) etc

4- Crowd activitiesithey are the activities performed by groups of multipdbjects (S.
Pellegrini, Ess, Schindler, & Gool, 2008jistani et al., 2011}Stefano Pellegrini, Ess, &
Van Gool, 2010Q)Cui, Liu, Gao, & Metaxas, 201(Hzczodrak et al., 2011 ho & Kng,
2012) (Ke, Sukthankar, & Hebert, 200Fpr example: arotest, a group of wild animals,
etc.

Taking advantage from these four categorieg preser in the chapter lla deeper
perspective for conceptually categorizing the type of video surveillsuwmne into 15
categories

Human activity recognition approachesmainlydivided into two categories. (1) The
traditional representationbased approaclbased on the feature detecte and descriptors
e.g. trajectory and Scakdnvariant Feature Transform (SIF@f)en for action recognition a
generic trainable classifiés applied (2) Learningpased representation approach, which is a
recently developed approach with capability learning features automatically and directly
from the images and frame this approach noeedfor feature detectors and descriptors.

A- Traditional human_activity recognitionapproaches or approaches based on hand
crafted local featureswas classifiedby (Aggarwal & Ryoo, 201ljpto two main
categories: No+hierarchical and hierarchical approach.

1- The nonhierarchical apprach or single layerapproach recognizes the human
activity, baseddirectly on image sequencesy matching the activity withalready
known ones. This approach mainly used f@imple and short activities such as
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periodic activities and primitive action (jypimg, running, waving, etc.t is divided
into two subclasses: sequential approach and sptioee approach.

2- The hierarchical approadkusually usedor complex human activities such emulti-
object activities humanobject interactions and group actiies. It represent these
by describing them in terms of simpler activitids.can be classified into three
categories syntactic approaches, statistical approaches, and descriased
approach.

LearningBased Action Representation Approach

On otherhand, this recent approach is based on the last progress on learning field. It has

capability to learn the feature automatically from the raw data (frames). A new concept

endto-end learning is introduced, means the transformation from plgeel to actim

classification.

(Sargano, Angelov, & Habib, 20Hyided these approaches into two categories: non

deep learningbased approaches and deep learningsed approaches

1- NonDeep Learning@ased Approaches
These approaches are basedtwo main approachedlictionary learningvhere the
representative vectors, called code words (codebook), learned from the large
number of samplesand genetic programmingvhere features areautomatically
learned the spatiotemporal motion features for action recognition.

2- Deep LearnindBased Approaches:
(Deng & Yu, 2014)ave classified the deep learning models into three categoses:
generative/unsupervised models (like Deeplige Networks (DBNs), Restricted
Boltzmann Machines (RBMs), Deep Boltzmann machines (DBMs), and regularized
auto-encoder3, b- discriminative/Supervised models (lik€onvolutional Neural
Networks (CNNsDeep Neural Networks (DNNs), and Recurrent Neuravdl&s
(RNNSs)), and- Hybrid models.

Interesting works is being handled newly in this fitham, Khoudour, Crouzil, Zegers,
& Velastin, 2019)Also, important survey can be seen(AsadiAghbolaghi et al., 2017)

But © far,as mentioned beforea lot of workwith the learning model$ias been done

on images and classification in imageéere hosealgorithms have achievedvery good
results In videos,some work dealt with gestures, actions and group activites
promisingresultswere found However, fully datadriven deep models, referred to as
No-1}E_U Z A o<} <}u iroVid¢ds&Shrgano et al.,, 2017Wwhere the
performance of the learningased methodssolelyis still not up to the mark. This is
mainly due to the unavailability of huge datasets for action recognition unlike in the
object recognition where hugeatasetexists

For action and activity classification and recognitiaitl, now, either in both approaches
(traditional and learning)not very distinctive results haveeen dme on the level of
interaction.

Some studies suggest that unsupervised leariting going to be far more important in the
long run. Since the human and anintedrning is mostly unsupervised.

In our work we focus mainly on the interactions. Our intention is to detect the existence of
interaction between two objects, and to classifyaccording to its types. As usifgarning
basedapproactes for videos at the stage of features extractiastill not satisfying and
does nottake into consideration thetemporal nature of interactiors, we choose to extract
meaningful feature appropate for our classification.Nerveless, we used for our
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classifications the Erningbased approaches in bottaces, NorDeep and Deep learning
see sectiorexperiment§\|4 5.

IV.2.4. Textual description templates

In the state of the artof the behaviour understanding and sentences generation
approach usedfor our video surveillance description systeshows that many sentence
generationsare based orhandcraftedstructured templates. These templates differ from
work to another according to needSome of these templateare presented ifiTablelV-