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Abstract

Given a finite set of square tiles, the domino problem is the question of whether is it
possible to tile the plane using these tiles. This problem is known to be undecidable in
the planar case, and is strongly linked to the question of the periodicity of the tiling. In
this thesis we look at this problem in two different ways: first, we look at the particular
case of low complexity tilings and second we generalize it to more general structures than
the plane, groups.

A tiling of the plane is said of low complexity if there are at most mn rectangles of size
m × n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic,
with the consequence that the domino problem would be decidable for low complexity
tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized
version of Nivat’s conjecture for a particular class of tilings (a subclass of what is called of
algebraic subshifts). We also manage to prove that Nivat’s conjecture holds for uniformly
recurrent tilings, with the consequence that the domino problem is indeed decidable for
low-complexity tilings.

The domino problem can be formulated in the more general context of Cayley graphs
of groups. In this thesis, we develop new techniques allowing to relate the Cayley graph
of some groups with graphs of substitutions on words. A first technique allows us to show
that there exists both strongly periodic and weakly-but-not-strongly aperiodic tilings of
the Baumslag-Solitar groups BS(1, n). A second technique is used to show that the
domino problem is undecidable for surface groups. Which provides yet another class of
groups verifying the conjecture saying that the domino problem of a group is decidable if
and only if the group is virtually free.
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Résumé

Étant donné un ensemble fini de tuiles carrés, le problème du domino est la question : «est-
il possible de paver le plan entier en utilisant ces tuiles ?» Ce problème est connu pour
être indécidable dans le cas des pavages du plan, et est très fortement lié à la question de
la périodicité des pavages. Dans cette thèse nous abordons ce problème de deux points de
vue différents : d’abord en regardant le cas particulier des pavages de faible complexité,
ensuite en le généralisant aux structures plus générales des groupes.

Un pavage du plan est dit de faible complexité s’il y apparaît moins de mn rectangles
de taille m× n. Nivat conjecture en 1997 qu’un tel pavage est nécessairement périodique,
avec comme conséquence que le problème du domino serait décidable pour les pavages de
faible complexité. En continuant de développer des outils algébriques introduits par Kari
et Szabados, nous prouvons une version généralisée de la conjecture de Nivat pour une
classe de pavages particuliers (certains des sous-décalages algébriques). Nous parvenons
également à montrer que la conjecture de Nivat est vraie pour tout pavage uniformément
récurrent, avec comme conséquence que le problème du domino est effectivement décidable
pour les pavages de faible complexité.

Le problème du domino peut également se formuler dans le cadre plus général des
graphes de Cayley de groupes. Dans cette thèse nous développons de nouvelles tech-
niques permettant de relier les graphes de Cayley de certains groupes à des graphes de
substitutions. Une première technique nous permet de montrer qu’il existe à la fois des pa-
vages fortement apériodiques et faiblement-non-fortement apériodiques pour les groupes
de Baumslag-Solitar BS(1, n). Une seconde nous permet de montrer que le problème du
domino est indécidable pour les groupes de surface, ce qui fourni une nouvelle classe de
groupe vérifiant la conjecture disant que le problème du domino d’un groupe est décidable
si et seulement si le groupe est virtuellement libre.
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Tiivistelmä

Domino-ongelma on algoritminen kysymys, jossa kysyjä antaa äärellisen joukon kielletty-
jä paikallisia värikuvioita ja haluaa tietää, voidaanko diskreetti taso Z2 värittää niin, että
mikään kielletyistä kuvioista ei esiinny värityksessä. Ongelma tiedetään algoritmisesti rat-
keamattomaksi, eli ei ole olemassa yleispätevää algoritmia sen ratkaisemiseksi. Kysymys
liittyy läheisesti väritysten jaksollisuuteen. Väitöskirjassa tarkastellaan domino-ongelmaa
kahdesta näkökulmasta: sitä tutkitaan sellaisissa erityistapauksissa, joissa sallittuja pai-
kallisia värikuvioita on vain vähän, ja kysymys yleistetään diskreetistä tasosta muihin
ryhmiin.

Diskreetin tason Z2 värityksellä on alhainen kompleksisuus, jos joillain positiiviluvuil-
la n ja m värityksessä esiintyy korkeintaan mn erilaista m×n suorakulmion väritystä. M.
Nivat esitti vuonna 1997 otaksuman, että alhaisen kompleksisuuden väritys on väistämät-
tä jaksollinen. Tästä edelleen seuraisi, että domino-ongelma olisi algoritmisesti ratkeava
alhaisen kompleksisuuden tapauksessa, eli kunhan sallittujen m× n kuvioiden määrä on
korkeintaan mn. Karin ja Szabadoksen kehittämää algebrallista lähestymistapaa käyttäen
osoitamme yleistetyn version Nivat’n otaksumasta eräissä algebrallisissa väritysjoukoissa.
Todistamme myös, että Nivat’n otaksuma pätee uniformisesti rekurrenttien väritysten jou-
kossa, mikä puolestaan riittää todistamaan, että domino-ongelma on kuin onkin ratkeava
alhaisen kompleksisuuden tapauksissa.

Domino-ongelma voidaan myös esittää muissa ryhmissä kuin diskreetissä tasossa
Z2. Väitöskirjassa käytetään sanojen substituutiograafien ja joidenkin ryhmien Cayley-
graafien välisiä yhteyksiä. Tällaista menetelmää käyttäen osoitetaan, että Baumslag-
Solitar ryhmissä BS(1, n) on vahvasti jaksottomia alisiirtoja, mutta myös sellaisia, jot-
ka ovat heikosti jaksottomia mutta eivät vahvasti jaksottomia. Toinen vastaava menetel-
mä puolestaan osoittaa, että domino-ongelma on ratkeamaton ns. pintaryhmissä. Tämä
on jälleen uusi luokka ryhmiä, joka tukee otaksumaa, että domino-ongelma on ratkeava
ainoastaan virtuaalisesti vapaissa ryhmissä.
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Introduction

Tilings consist in covering a surface – most of the time the Euclidean plane – by copies
of geometric tiles, placed next to each other without holes nor overlaps. They are at the
origin of many computationally hard problems, starting with the domino problem, asking
whether a given set of tiles can tile the plane or not, which is already undecidable in the
planar case. In this thesis we are interested in understanding what makes this problem
hard, with two different approaches. The first one is to look at the impact that the
number of patterns appearing in tilings have on the decidability of the domino problem.
The second one is to consider tilings over more general combinatorial structures, to try to
understand the role that the structure itself can have on the decidability of the domino
problem. We will use two – a priori different – models of tilings of the combinatorial
structures that have been introduced with different motivations: subshifts and Wang
tiles.

Wang tiles were introduced by Wang [Wan61], whose goal was to study fragments of
first order logics. In this simple model, every tile is a square with colored edges. Two tiles
can be placed next to each other if the colors of their common edge match. A tiling of
the plane consists in positioning copies of tiles from a tileset in every position of Z2 such
that shared edges have the same color. This model has been used to prove most of the
computability results about tilings of the plane [Ber66; Rob71; Luk09], and extended to
other surfaces like the hyperbolic plane H2 [Goo05; Kar08]. Wang tiles are also naturally
linked to cellular automata, and this connection provided many undecidability results
about cellular automata [Kar90; Kar92; Kar94]. They have also been successfully used
in texture synthesis thanks to the non-repetitive properties of particular tilesets [Sta97;
Coh+03; Kop+06]. Finally, a refined model of Wang tiles has been used to produce
self-assembly structures performing computations using DNA [Win98; RPW04; Eva14].

Subshifts have been introduced by Morse and Hedlund in the late 30’s [MH38] to
study discrete time dynamical systems, giving birth to symbolic dynamics. A discrete
time dynamical system is usually defined by a couple (X,F ), where X is a compact
set of configurations and F : X → X is a continuous and bijective function. To every
point x0 of X, one can associate the trajectory (or orbit) of F , which is the sequence
(xn)n∈Z = (F n(x0))n∈Z. One way of simplifying the setting is to partition X into a finite
number of sets X = ⋃n

i=1 Ai. One can then encode the orbit of the point according to its
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trajectory with respect to the partition (see Fig. 1). Formally, we can define the function

φ :

X → {1, . . . , n}
x 7→ (φ(x)k)k∈Z

where
φ(x)k = i⇔ F k(x) ∈ Ai.

•F−1(x)

•x
•

F (x)

•
F 2(x)

•F 3(x)

•
F 4(x)

φ(x) = · · ·
−1 0 1 2 3 4

−1 0 1 2 3 4

· · ·

Figure 1 – A partition of X in three sets indexed by colors and the corresponding coding
of an orbit.

Let σ be the shift action on {1, . . . , n}Z, defined by:

∀i ∈ Z,∀w ∈ {1, . . . , n}Z, σ(w)i = wi+1.

Then, (φ(X), σ) is itself a dynamical system, usually much simpler than the initial one.
Obviously it depends on the chosen partition {Ak}, as choosing too small a partition
might lose information about (X,F ), and choosing one that is too big might lead to an
unnecessarily complicated dynamical system. However, for a large class of dynamical
systems (namely, when (X,F ) is expansive), it can be shown that one can always choose
a partition such that (φ(X), σ) has the same dynamical properties as (X,F ) [Hed69].

The dynamical system (φ(X), σ) is called a subshift, and the study of these particular
symbolic encodings of dynamical systems is exactly the subject of symbolic dynamics.
This approach has two main interests. First, the shift action σ is usually much simpler to
understand than F . Second, when the subshift (φ(X), σ) has a finite description, it can
be studied using tools from computability and complexity theory.

Subshifts are also studied independently of their dynamical origin. They can be defined
as subsets of AZ closed and invariant by the shift action σ, where A is any finite alphabet.
Subshifts have an equivalent combinatorial definition: X ⊆ AZ is a subshift if it can
be described as a set of colorings of Z, called configurations, that avoid a certain set of
patterns. If this set of forbidden patterns is finite, the subshift is called a subshift of finite
type (SFT for short). SFTs are the most interesting subshifts from a computability point
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of view since they have a finite description: a finite alphabet and a finite set of forbidden
patterns.

Figure 2 – The two configurations of the subshift of finite type defined by the set of
forbidden patterns { , }.

Subshifts over Z have been extensively studied, and the theory is well-developed. A
good reference about it is the book of Lind and Marcus [LM95]. An SFT is called nearest-
neighbor if its set of forbidden patterns contains only words of size two. It turns out
that any SFT is conjugate to a nearest-neighbor one. This allows to characterize SFTs
using finite labeled graphs, with the consequence that there is an algorithm deciding if
an SFT is empty or not given its set of forbidden patterns. As a nearest-neighbor SFT
is equivalent to a set of Wang dominoes (one-dimensional Wang tiles), this emptiness
problem is also called the domino problem. This characterization of SFTs using graphs
also allowed to characterize entropies of SFTs, that express the growth of the number
of patterns of configurations of the SFT. Despite the vast knowledge on the structure of
SFTs over Z, some problems are still open, for example it is still unknown if there is an
algorithm to decide if two SFTs are conjugate to each other [Boy08].

Naturally, the next step is to look for a more general model. One way to do this is
to inspect colorings of a two dimensional grid instead of a line. These higher dimensional
models have attracted more and more attention recently [Hoc10; HM10; AS13; HV17]. A
two dimensional subshift is a subset of AZ2 closed and stable by the two dimensional shift
action. As in dimension one, subshifts are also subsets of AZ2 whose elements avoid a set
of forbidden patterns, and if this set of patterns is finite the subshift is again called an
SFT. Any SFT is again conjugate to an SFT which is (two dimensional) nearest-neighbor.
Therefore, for any SFT X it is possible to find a set of Wang tiles such that its set of
valid tilings is conjugate to X. Conversely, the set of valid patterns of a set of Wang tiles
is an SFT, these two models are therefore equivalent. In dimension two however, there is
no straightforward representation as a graph, with the consequence that most problems
become much more involved. First, the domino problem – or emptiness problem – becomes
undecidable [Ber66]. The main explanation of this result is that the extra dimension adds
a lot of possibilities for the patterns that can appear in tilings; so much that there exist
SFTs containing only configurations that are not periodic, called aperiodic SFTs. This
was unexpected, as Wang conjectured that just like in dimension one, all SFTs contain a
periodic configuration. His conjecture would have implied the decidability of the domino
problem, as the existence of a periodic configuration is enough to ensure the decidability
of the domino problem. The link between SFTs and Wang tiles was not clear initially,
and when the two communities realized that Wang tiles and subshifts were essentially the
same models, it became clear that computability was a very powerful tool to understand
subshifts of dimension two and higher. An impressive result of Hochman and Meyerovitch
shows that the entropies of two dimensional SFTs correspond exactly to right-recursively
enumerable numbers [Hoc08; HM10]. Sets of periods of SFTs of dimensions two and three
have also been characterized in terms of complexity and computability classes [JV13a;
MV18; GMV18; JMV20], and many other results showed the strong links between higher
dimensional subshifts and computability [JV13b; JV15; HV17].
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There are several ways to measure the complexity of configurations and complexity
of subshifts. A natural one is the size of the alphabet, as one can build more complex
configurations using a bigger alphabet. Notably, this led researchers to look for a set of
aperiodic Wang tiles – or an aperiodic SFT – with the smallest number of tiles. Berger’s
initial set had 20426 tiles [Ber66], or 104 in his PhD thesis [Ber64]. It was improved,
among others, to 35 by Robinson [Rob71], 14 by Kari [Kar96], 13 by Culik [Cul96]. It
was finally lowered to 11 by Jeandel and Rao [JR15], who proved that it was the minimum
possible number for an aperiodic tileset. Although a bigger tileset provides more freedom
to produce complex patterns, the number of tiles does not represent how the different tiles
can match together, and how complex are the patterns that appear in the tilings. Already
in 1938, Morse and Hedlund used another notion, pattern complexity, and remarked that
it was strongly linked with periodicity, at least in dimension one. It is also the basis of
the definition of the entropy of subshifts. The pattern complexity of a one dimensional
configuration is the number of subwords of a given size n appearing in the configuration,
denoted by P (n). Morse and Hedlund proved that a one dimensional configuration is
periodic if and only if there exists n such that P (n) ≤ n [MH38]. In dimension two,
there is a similar definition of pattern complexity, counting the number P (m,n) of m×n
rectangles, in contrast to subwords. An analogue of Morse and Hedlund’s theorem would
be that a configuration is periodic if and only if P (m,n) ≤ mn for some m,n, as mn is the
area of the rectangle. However this does not hold, as there exists a periodic configuration
with complexity higher than mn [Cas00]. Nonetheless, the other direction was conjectured
in 1997 by Maurice Nivat [Niv97]: a configuration with pattern complexity P (m,n) ≤ mn
– called a low complexity configuration – must be periodic. Today, the conjecture is known
as Nivat’s conjecture. It is also conjectured that a similar property would hold not only
for rectangles, but for other convex shapes as well. Cassaigne proved that it cannot hold
for arbitrary non convex shapes, by giving a non periodic configuration whose complexity
relative to some (connected) shape is still low [Cas00]. In the same paper he remarks that
the natural generalization of Nivat’s conjecture to dimension three and higher does not
hold. Similarly, there is no hope of a similar conjecture withmn+1 bound, as there are non
periodic configurations with pattern complexity mn + 1. Such configurations have been
characterized by Cassaigne as two dimensional generalizations of Sturmian words [Cas99].
Another motivation to study the link between complexity and (a)periodicity arises from
questions of computer graphics, more precisely concerning procedural texture generation.
One of the goals is to develop efficient algorithms generating big portions of aperiodic
configurations, to generate non-repetitive textures. Having an aperiodic SFT with low
complexity would provide a hope for such efficient algorithms, as only few rectangles
would be valid for the SFT.

There have been numerous advances towards proving Nivat’s conjecture, which is still
open today. One way of approaching it is to look at particular complexity cases. For
example Sanders and Tijdeman proved that if there exists n such that P (2, n) ≤ 2n, then
the configuration must be periodic [ST02], later generalized to P (3, n) ≤ 3n by Cyr and
Kra [CK16]. Another direction is to look at configurations with lower complexity than mn,
say P (m,n) ≤ αmn with α < 1. Epifanio, Koskas and Mignosi showed Nivat’s conjecture
holds for α = 1/144 [EKM03]. It was improved by Quas and Zamboni to α = 1/16 [QZ04],
and lastly by Cyr and Kra to α = 1/2 [CK15]. Colle and Garibaldi refined Cyr and Kra’s
bound to mn

2 + |A| − 1 where |A| is the size of the alphabet of the configuration [CG19].
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Recently, Kari and Szabados introduced algebraic tools to tackle Nivat’s conjecture, which
lead to many interesting results. Their main result is that low complexity configurations
can be decomposed into a sum of finitely many periodic configurations, but with possibly
infinite alphabet [KS15b; KS15a; Sza18a]. A first consequence of this decomposition
is an asymptotic version of Nivat’s conjecture: if there are infinitely many m,n such
that P (m,n) ≤ mn, then the configuration is periodic [KS15b]. Using the same tools,
Szabados proved that in the particular case where the low-complexity configuration is a
sum of only two periodic configurations, then Nivat’s conjecture holds [Sza18b]. As a
corollary of this last result they give a simpler proof of Cyr and Kra’s α = 1/2 mentioned
above. Note that a priori the periodic configurations of the decomposition might have
unbounded coefficients, even if Szabados shows in his thesis [Sza18b] that they can be
chosen bounded (but still with infinite alphabet).

Over the last years, even more general subshifts have gathered interest: subshifts on
groups instead of multidimensional grids [Pia08; CP15; FT17]. In these models, config-
urations are colorings of a finitely presented group G, and subshifts are subsets of AG
closed and invariant by the shift action

σ :

G×AG → AG

(g, x) 7→ σg(x)
,

where for all h ∈ G, σg(x)h = xg−1h. The situation gets even more complicated in this
setting, for example it might not even be possible to algorithmically draw the Cayley graph
of the group if its word problem is undecidable [ABJ18]. Still, it is interesting to try to
understand what causes these complicated behavior to happen, and link group theoretical
properties to dynamical ones. The decidability of the domino problem obviously depends
on the group considered, as it is decidable for G = Z and undecidable for G = Z2. A
conjecture attributed to Ballier and Stein [BS13] states that the domino problem of a
group is decidable if and only if it is virtually free. It is known that all virtually free
groups have a decidable domino problem [ABJ18]. For the other direction, the domino
problem is known to be undecidable only for particular classes of groups: groups with
undecidable word problem [ABJ18], Baumslag-Solitar groups [AK13], non-virtually Z
polycyclic groups [Jea15b], and groups of the form G1 ×G2 with G1 and G2 two infinite
groups [Jea15c]. Exactly as for grids, periodicity is still a key concept, but even its
definition becomes more complicated. There are two definitions of periodicity: weak and
strong, which are equivalent for Z (and Z2 in the case of SFTs) but not for more general
groups. Historically, the existence of an aperiodic SFT is often the first step before proving
that the domino problem of a group is undecidable: for Z2 the aperiodic SFT is used as
a step of the proof; Goodman-Strauss found an aperiodic SFT over the hyperbolic plane
[Goo05], and Kari showed that its domino problem is undecidable [Kar08]. Although
conjectured to exist, there are currently no examples of groups having an undecidable
domino problem, a weakly aperiodic SFT but no strongly aperiodic SFT.

Main contributions
Contributions of this thesis revolve around the domino problem, and understanding ex-
actly what makes it a computationally hard problem in many cases. As aperiodicity is a
key ingredient of the undecidability of the domino problem, it makes sense to focus on it
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to tackle the domino problem.
With this in mind, we continue on Kari and Szabados work on Nivat’s conjecture. We

further develop the algebraic tools they introduced to study low complexity configurations.
First, we use techniques from elimination theory to study configurations under linear
constraints. We prove that the generalized Nivat’s conjecture holds for all configurations
of the 3-dot system. That is, a configuration of the 3-dot system with low complexity with
respect to any shape (even a non-connected one) has to be periodic. Then, we look at
algebraic subshifts, defined by a linear condition on the coefficient of their configurations,
of which the 3-dot system is a particular case. With our algebraic vocabulary, we ask for
all configurations of an algebraic subshift to be annihilated by a polynomial in a finite
field. A line polynomial is a polynomial whose coefficients are all aligned along a line, and
which is not a monomial. It turns out that an important property is the direction of line
polynomial factors of the polynomial defining the algebraic subshift. We prove that the
generalized Nivat’s conjecture holds for algebraic subshifts defined by polynomials having
all their line polynomial factors in the same direction. When the defining polynomial has
line polynomial factors in two different directions, the situation becomes more complex.
Indeed, we are able to find an example of such polynomial for which the generalized
Nivat’s conjecture holds and another one where it does not. This work can be found in
[KM19].

Then, we use techniques from Cyr and Kra’s paper [CK15], which are inspired by dy-
namical systems notions. We study directions of determinism (or of one-sided expansive-
ness) of low complexity configurations. We look in particular at directions of one-sided
determinism: directions that are deterministic along a vector u and non-deterministic
along −u). We prove that for a low-complexity configuration c, one can find a con-
figuration c′ in its orbit closure such that the orbit closure of c′ has no directions of
one-sided determinism. Combined with results from Boyle and Lind [BL97] and Cyr and
Kra [CK15], it shows that the orbit closure of any low complexity configuration (with
respect to a rectangle or a convex shape) contains a periodic configuration; solving Con-
jecture 8.2 from [Sza18a]. This has two important implications. First, it proves that
Nivat’s conjecture holds for uniformly recurrent configurations, which may be a big step
towards proving the conjecture itself. Second, it shows that there can be no aperiodic
SFTs of low complexity. More precisely, as soon as a subshift contains a low complex-
ity configuration, it also contains a periodic one. Consequently, the domino problem is
decidable for low complexity SFTs. These results have been published in [KM20].

After pattern complexity, we look at another reason that can make the domino problem
hard: the underlying structure on which the SFTs are built on. We mainly investigate the
links between some groups and orbit graphs of substitutions on words. We first show that
for particular Baumslag-Solitar groups, of the form BS(1, n), Aubrun and Kari’s weakly
aperiodic tileset [AK13] is in fact strongly aperiodic. After that, we use the similarities
between BS(1, n) and the substitution 0 7→ 0n to encode substitutions in a tileset over
BS(1, n), leading to a weakly but not strongly aperiodic tileset. This shows that both
strongly and weakly aperiodic tilesets exist over BS(1, n), which was an open problem
until now. These two results are a joint work with Julien Esnay [EM20].

The last result presented here is the undecidability of the domino problem for surface
groups [ABM19]. The first step of our construction is to remark that the Cayley graph
of surface groups is very similar to orbit graphs of particular substitutions. After that,
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we use a result inspired by Cohen and Goodman-Strauss aperiodic tileset over surface
groups [CG17] to superimpose tilings of orbit graphs of substitutions in a computable way.
Interpreting Kari’s proof of the undecidability of the domino problem for the hyperbolic
plane [Kar08] as the undecidability of the domino problem over the orbit graph of the
substitution 0 7→ 00, we are able to prove the undecidability of the domino problem
for orbit graphs of many substitutions, including the ones looking like surface groups.
This provides a reduction of the domino problem of the surface groups from the domino
problem of the hyperbolic plane.

Organization of the manuscript
This manuscript is organized in three chapters, the second and the third being independent
from each other.

The first chapter is a general introduction to symbolic dynamics. Without delving
too much into details, we introduce the necessary notions about subshifts, the domino
problem and pattern complexity. Most of these notions will be known by an advanced
reader, and thus may be skipped.

The second chapter deals with approaching Nivat’s conjecture using algebraic tools.
In Section 2.1 we introduce the necessary algebraic background and the work of Kari
and Szabados. Then we start with proving that the generalized Nivat’s conjecture holds
for the 3-dot system (Theorem 2.2.5), and for a subclass of algebraic subshifts (Corol-
lary 2.2.10). After that, we detail some tools from Cyr and Kra’s paper and use them
to show that low complexity configurations have a periodic configuration in their orbit
closure (Theorem 2.3.4), and the immediate consequences of this (Corollary 2.3.17 and
Corollary 2.3.18).

The third and last chapter explains our results about subshifts on groups. We start
by generalizing the definitions of Chapter 1 in the cases of groups in Section 3.1. Sec-
tion 3.1.1 and 3.1.2 may be skipped by a reader already familiar with subshifts on groups.
Section 3.1.3 generalizes even further the definition of subshifts over infinite graphs. Then
we introduce a few required notions about substitutions in Section 3.2. After that we study
periodicity of SFTs on the Baumslag-Solitar groups BS(1, n), starting by remarking that
Aubrun and Kari’s construction is strongly aperiodic in this case (Theorem 3.3.5), and
then explaining our weakly but not strongly aperiodic tileset (Theorem 3.3.12). Finally,
we show the undecidability of the domino problem of surface groups (Corollary 3.4.14)
and orbit graphs of particular substitutions (Theorem 3.4.12). The Bibliography is cut in
two parts, the second part containing all the papers in which the author is a co-author,
and not only the four papers constituting this thesis.
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CHAPTER 1

Preliminaries

There are two equivalent formalisms used to study tilings of multidimensional grids: sub-
shifts of finite type and Wang tiles. Introduced by different communities, they turned out
to define the same objects, but using different notations

Subshifts have been introduced by Morse and Hedlund in 1938 to study dynamical
systems [MH38]. By partitioning the space in a finite number of sets, it is possible to
deduce properties of the general dynamical system by studying the much simpler subshift
associated to it: a set of colorings of Z satisfying stability properties. A good introduction
to one dimensional subshifts can be found in the book of Lind and Marcus [LM95]. More
recently, higher dimension subshifts have been studied (colorings of Zd with d ≥ 2) [Ber66;
Hoc10; HM10], and even subshifts on arbitrary groups (more about them in Chapter 3).

Forgetting the dynamical aspect of subshifts and only looking at individual colorings
of Z falls in an another broad field: combinatorics on words. In this thesis we will
scratch this topic by looking at pattern complexity of individual colorings, and the natural
generalization over dimension higher than one.

On the other hand, the formalism of Wang tiles was introduced by Wang in 1961
[Wan61], motivated by the study of particular fragments of first order logics. Most of
the early results of computability about tilings of the plane have been proved in this
setting. The link between these two formalisms is not clear at first sight, but we will
see that subshifts of finite type of dimension two are actually equivalent to Wang tiles.
Thereby both formalisms can be used indifferently depending on the context, or combined,
as Hochman and Meyerovitch did to characterize entropies of two-dimensional subshifts
[Hoc08; HM10].

In this chapter we will formally define subshifts, Wang tiles and their main properties.
Then we define the notion of pattern complexity and its relation with periodicity of
colorings.
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Chapter 1. Preliminaries

1.1 Subshifts and Wang Tilings
In this thesis, A is a finite alphabet and for a vector v = (v1, . . . , vd) ∈ Zd, |v| = ∑

i |vi|
is the 1-norm.

1.1.1 Subshifts
A function x ∈ AZd is called a configuration (or a coloring of Zd) and the symbol at
position u ∈ Zd is denoted by xu (we also say that xu is the color of the cell u). The set
of all configurations AZd is called the full-shift (of dimension d). Let P ⊂ Zd be a finite
set, an element p ∈ AP is a pattern of support P , also called a coloring of P , and we say
that a pattern appears in a configuration x ∈ AZd (resp. another pattern p′ ∈ AP ′) if
there exists u in Zd (resp. there existsu in P ′) such that for all v in P, pv = xu+v (resp.
pv = p′

u+v). In this case, we denote p ⊏ x (resp. p ⊏ p′). We denote Supp(p) its support
P .

Definition 1.1.1 (Subshift). Let F be a set of patterns. A subshift XF is the set of
configurations avoiding all patterns from F .

XF =
{
x ∈ AZd | ∀p ∈ F, p 6⊏ x

}
.

Example 1.1. As first example, one can consider the finite alphabet A = { , } in di-
mension two, and F = { , }. Then XF is constituted of all configurations with an
horizontal half-plane filled with black and the rest filled with white, as well as all white
and all black configurations (see Fig. 1.1).

Figure 1.1 – The four types of configurations in XF defined in Example 1.1.

Note that F can be infinite, and that several sets of forbidden patterns may define the
same subshift.

Definition 1.1.2 (Subshift of finite type). A subshift X ⊆ AZd is of finite type (or SFT
for short) if there exists a finite set of patterns F such that X = XF .

From a computability point of view subshifts of finite type are the most interesting, since
they can be encoded by a finite description: they are uniquely defined by d,A and F ,
which are all finite. SFTs can also be equivalently defined by a set of allowed patterns
(which is not the case for general subshifts). To prove this, we need to define the language
of a subshift.

Definition 1.1.3. The language L(X) of a subshift X ⊆ AZd is the set of patterns that
appear in configurations of X:

L(X) = {p ⊏ x | ∃D ⊂ Zd, D finite and ∃x ∈ X}.
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1.1. Subshifts and Wang Tilings

For any finite support D ⊂ Zd, we set LD(X) = L(X) ∩ AD and call it the lan-
guage restricted to patterns of support D. If C is an hypercube of size n, we denote
LC(X) = Ln(X).

Proposition 1.1.1. Let X be an SFT. Then there exists n such that

X = XLn(X),

where Ln(X) = ACn\Ln(X) and Cn is the hypercube of size n. In other words, X can be
defined by allowing the set of patterns Ln(X).

Proof. Let X = XF with F a finite set of patterns and n ∈ N such that all supports of
patterns of F fit in an n× n× · · · × n hypercube of dimension d, denoted Cn. We prove
the contrapositive:

x /∈ X ⇔ x /∈ XLn(X). (1.1)
By definition, we have

x /∈ X ⇔ ∃p ∈ F, p ⊏ x

and
x /∈ XLn(X) ⇔ ∃p

′ ∈ Ln(X), p′ ⊏ x

Then, ∃p ∈ F, p ⊏ x⇔ ∃p′ ∈ Ln(X), p′ ⊏ x is true because:
• if there exists p ∈ F, p ⊏ x, then extract a coloring p′ of x of support Cn around p,

then p′ belongs to Ln(X),
• if there exists p′ ∈ Ln(X), as n is big enough, by definition of X = XF , there exists
p ∈ F such that p ⊏ p′.

Which proves Eq. (1.1).

Let us remark that AZd is a metric space when equipped with the following distance:

dAZd (x, y) = 2− min{|v| | v∈Zd,xv 6=yv}.

The bigger is the disk on which x and y are the same, the closer they are for AZd . We
denote T v the shift action by v ∈ Zd, that translates a configuration by vector v:

∀u ∈ Zd, T v(x)u = xu−v.

Subshifts can equivalently be defined topologically, which was the original definition by
Morse and Hedlund.

Definition 1.1.1 bis (Subshift). The set X ⊆ AZd is a subshift if and only if it is closed
and shift-invariant.

We do not detail the equivalence here, which can be found in [Bar17] (Proposition 1.1)
for example. An immediate consequence is the following proposition.

Proposition 1.1.2. AZd is a compact space.

In particular, given a set of patterns pn of support Sn, if none of the pn contain a forbidden
pattern from F , and the Sn converges to Zd, then limn pn exists and belongs to XF .
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Chapter 1. Preliminaries

The orbit of a configuration x ∈ AZd is the set of all its shifts: O(x) = {Tu(x) | u ∈ Z2}
and its orbit closure O(x) is the topological closure of O(x). The orbit closure being shift
invariant and closed (which is not the case of the orbit which is just shift-invariant), it
is a subshift. It is also the intersection of all subshifts containing x. In terms of finite
patterns, c′ belongs to O(c) if and only if every finite pattern that appears in c′ appears
also in c. Note that it can be different of O(c) (see Example 1.2).

Example 1.2. Consider the two-dimensional configuration x defined byx0,0 =
xi,j = for all (i, j) 6= (0, 0)

The orbit O(x) contains all configurations with exactly one black cell. By definition, O(x)
also contains limn→∞ T (0,n)(x) = Z2

. This one is not in O(x) as it does not contain any
black cell, thus O(x) 6= O(x). See Fig. 1.2 for an illustration.

(a) All configurations of O(x) are shifts of c:
they have exactly one black cell.

(b) The all white configuration is in O(x)
but is not a translation of c.

Figure 1.2 – Configurations of O(x) and O(x) of Example 1.2.

Finally, we say that two subshifts are (topologically) conjugate if there is a homeo-
morphism (a bijective factor map) which commutes with the shift action between the
two.

1.1.2 Wang Tiles
Definition 1.1.4 (Wang cubes). A Wang cube of dimension d is a 2d tuple of colors from
a finite alphabet B, each color corresponding to a side of a d-dimensional hypercube. We
denote it t = (a1, b1, . . . , ad, bd) ∈ B2d, and by abuse of notation, a1(t) = a1, b1(t) = b1 . . ..
We call them Wang dominoes if d = 1 and Wang tiles if d = 2.

A finite set of Wang cubes is called a tileset. Let τ be a tileset. A Wang tiling x is a
coloring of Zd by cubes of τ (without rotations) : x ∈ τZd . Is is valid if the color of every
side of a tile matches the color of the neighbor side:

∀u ∈ Zd, b1(xu) = a1(xu+(1,0,...,0))
...

bd(xu) = ad(xu+(0,...,0,1))

12
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l

b

r

t

Figure 1.3 – A two-dimensional Wang tile and a portion of valid tiling.

We denote by Xτ the set of valid tilings by the tileset τ . Since the validity of a tiling
can be checked locally, Xτ is an SFT. Its set of allowed pattern is simply the set of two
matching Wang tiles next to each other. What is more surprising is that the other way
also holds: for any SFT X, there exists a set of Wang tiles τ such that its set of valid
tilings is isomorphic to X, in the sense that there exists a bijective morphism between X
and Xτ . We do not enter into the details of this construction, but the reader can refer to
[ABJ18].

Even though SFTs are sometimes more convenient to work with – thank to the fact
that their local rules can depend on cells further away than next neighbor – Wang tiles
are still an important model, since most of the computability results of next section have
been proved using this formalism.

1.1.3 Periodicity and Domino Problem
Periodicity, Aperiodicity

Definition 1.1.5. A configuration x ∈ AZd is periodic along a vector u ∈ Zd − {0}
if Tu(x) = x, or equivalently if for all v ∈ Zd, xv−u = xv. Vector u is called a periodicity
vector of x. If a configuration is not periodic, it is called aperiodic.

If u is a periodicity vector, the set of all vectors colinear to u is called a direction
of periodicity. If x has k non-colinear directions of periodicity, it is called k-periodic. In
particular, if all periodicity vectors of x are colinear, x is one-periodic, or weakly periodic.
And if x has d linearly independently vectors of periodicity, it is d-periodic, which is also
called fully periodic or strongly periodic.

Example. The 2D configuration on the left of Fig. 1.4 is one-periodic along vector (2, 2),
and the one on the right is two-periodic along vectors (2, 2) and (2,−2).

Definition 1.1.6. A subshift is aperiodic if it is not empty and contains no periodic
configurations. In the same way, a tileset τ is called aperiodic if all its valid tilings are
aperiodic.

Aperiodic subshifts in any dimension are easy to build from one-dimensional aperiodic
words.

13
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(a) One-periodic along (2, 2) (b) Two-periodic along (2, 2) and (2,−2)

Figure 1.4 – Periodic configurations.

Example 1.3 (Two-dimensional aperiodic subshift). Let w be the binary Champerowne
word, a biinfinite word containing the binary decomposition of all integers (see for exam-
ple [BV00]). Let x and y be 2D configurations defined by x(i,j) = wi+j and y(i,j) = wi−j.
They are both one-periodic along (1,−1) and (1, 1) respectively. Then, let z = x × y be
the configuration on ({0, 1} × {0, 1})Z2 defined by z(i,j) = (wi+j, wi−j). It is easy to see
that z is aperiodic, and so is O(z).
The same trick could be done in any dimension. However the existence of aperiodic SFT
(or aperiodic tileset) is not clear, and actually depends on the dimension.

Proposition 1.1.3. In dimension one, there exists no aperiodic tileset.

This is mostly due to the fact that a one-dimensional tileset can be represented by a finite
graph.

Proof. Wang dominoes are pairs of colors, let us call them t = (tl, tr). To every tileset τ ,
we associate an oriented graph Gτ defined as follows:

• its set of vertices is the set of tiles τ ,
• for (α, β) ∈ τ , an edge α→ β is in the graph if and only if αr = βl.

Then, a valid tiling of Z corresponds to a bi-infinite walk in the graph. Being finite, it has
a bi-infinite walk if and only if it has a cycle. The bi-infinite walk taking only this cycle
then corresponds to a periodic configuration: every tileset that have a valid configuration
also have a periodic one.

Such a simple finite graph cannot be defined for higher dimensions, where Wang tiles
turn out to allow much more complex tilings.

Theorem (Berger [Ber66]). In dimension two, there exists an aperiodic tileset.

This result was quite surprising, since it was initially conjectured by Wang that no
such tileset exists, like in dimension one. It follows easily that there exists aperiodic
tilesets in any dimension d ≥ 2.

Berger’s construction is quite complicated and uses 20426 tiles (or 104 for the one
presented in his PhD thesis [Ber64]). It was greatly simplified by the aperiodic tileset of
Robinson [Rob71], using only 56 tiles. The number of tiles was lowered by others later,

14
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notably to 14 by Kari [Kar96], using a construction we detail in Section 3.2.3. And finally
by Jeandel and Rao who build an aperiodic tileset of 11 tiles, which they prove to be the
smallest possible [JR15].

SFT are still more restrictive than general subshifts, for example having a (d − 1)-
periodic configuration in it allows us to build a d-periodic one.

Proposition 1.1.4 (consequence of Corollary 1 of [JMV20]). Let X be a d-dimensional
SFT. If X contains a (d− 1)-periodic configuration, then it contains a d-periodic one.

This proposition can be seen as a generalization of Proposition 1.1.3, as applying it to
d = 1 gives that any SFT of dimension one containing a 0-periodic configuration contains
a periodic one. In other words, every non-empty one dimensional SFT contains a periodic
configuration, which is exactly Proposition 1.1.3. In dimension two it becomes:

Proposition 1.1.5. Let X be a two-dimensional SFT. If X contains a periodic configu-
ration, then it contains a two-periodic one.

Domino Problem

Given a tileset, or an SFT, it is a natural question to ask whether they can actually tile the
space (or if the SFT is nonempty). This question is called the domino problem, the central
problem of this thesis, and we are finally ready to define it and give basic propositions
around it. Its name comes from the shape of one-dimensional Wang cubes, also called
Wang dominoes. When talking about SFTs, it is also known as the emptiness problem.
As we will see, it is closely related to its periodicity. We adopt here the formalism of SFTs
if not mentioned otherwise, more natural than Wang cubes in any dimension.

Definition 1.1.7 (Domino Problem). The domino problem (DP) is the following question
"given a tuple (d,A, F ), is the SFT XF non-empty ?"

In terms of tilings, it is equivalent to ask if a given tileset admits a valid tiling.
Wang already remarked that in dimension two, the domino problem is semi-decidable:

it is possible to recursively enumerate all empty SFTs. His idea is easily generalizable to
any dimension:

Proposition 1.1.6. There exists an algorithm with input an SFT XF halting if and only
XF = ∅.

Proof. The algorithm is the naive one consisting on trying to find a support impossible
to tile:

Is_Empty(XF )
for i = 1 to ∞ do

if all colorings of the hypercube of size i contain a pattern from F then
return XF = ∅

If this algorithm halts, we are sure that XF = ∅ since there is already an hypercube
that is impossible to color without forbidden patterns.

Conversely, assume that the algorithm does not halt. It means that there exists an
infinite sequence of pattern (pi)i∈N with support the hypercubes (pi)i∈N that contain no
forbidden patterns. By compactness (Proposition 1.1.2), we have that XF 6= ∅. Thus, the
algorithm halts if and only if XF = ∅.

15



Chapter 1. Preliminaries

Since the previous algorithm does not halt when the SFT is not empty, it is of no
help to decide the other way of the domino problem. Wang noticed that in dimension
two, it was possible to decide the domino problem for an SFT which contains a periodic
configuration. Here again, his proof is easily doable in any dimension d.

Proposition 1.1.7. With the hypothesis that the SFT is either empty or contains a d−1-
periodic configuration, DP is decidable.

Proof. For this proof we adopt the Wang tile formalism and call X the SFT of al valid
tilings. We already have a semi-algorithm for X = ∅, so we only need a semi-algorithm
halting if and only if X 6= ∅. The algorithm simply looks for a valid hypercube with
opposite sides having the same patterns, the patterns of the sides being understood as
patterns of dimension d− 1.

Is_Not_Empty(X)
for i = 1 to ∞ do

for all valid colorings of patterns pi of support the hypercube of size i do
if the opposite sides of c have the same pattern then

return X 6= ∅
If the algorithm halts there is a valid tiling of Zd: repeating this hypercube in all

dimensions produces a valid tiling of the hole space.
Thanks to Proposition 1.1.4, we know that if X contains a (d − 1)-periodic configu-

ration, it contains a fully periodic configuration x. Since x has d non-colinear vectors of
periodicity, there are integer linear combinations of them equal to

(k, 0, . . . , 0), (0, k, 0, . . . , 0), . . . , (0, . . . , 0, k)

for some k ∈ N, thus x is periodic along (k, 0, . . . , 0), (0, k, 0, . . . , 0), . . . , (0, . . . , 0, k) and
the algorithm will halt when the ball if size i is big enough to contain the hypercube of
size k.

In particular in dimension 1, the domino problem is decidable.

Corollary 1.1.8. DP is decidable in dimension one.

And in dimension two, we only need to find a one-periodic configuration to have DP
decidable.

Corollary 1.1.9. DP is decidable in dimension two with the hypothesis that the SFT is
either empty or contains a periodic configuration.

Proof. Let X be the considered SFT. If it contains a periodic configuration, it has a
two-periodic one by Proposition 1.1.5. Then, DP is decidable by Proposition 1.1.7.

Because Wang believed that they were no aperiodic SFT in dimension two, he also
conjectured that the domino problem was decidable. But Berger not only proved that
there are aperiodic SFTs in dimension two, he proved that the domino problem was in
fact undecidable in this case.

Theorem (Berger [Ber66]). DP is undecidable in dimension two.
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Using his aperiodic tileset as well as an encoding of Turing machines into a tileset,
Berger was able to build a tileset which admits a valid tiling if and only if a Turing
machine does not halt, providing a reduction from the halting problem. In Section 3.2.3
we will see an alternative construction from Kari, who is able encode another kind of
computations into a tileset.

From a straightforward reduction, we obtain that the domino problem is also undecid-
able in any dimension greater than two.

1.2 Pattern Complexity
Pattern complexity is a measure of complexity of configurations. However, it is "too
precise" for some uses, as it is not an invariant of conjugacy between subshifts. It is used
to defined the entropy of a subshifts, less precise, but which is invariant by conjugacy. We
do not need to define the entropy of a subshift in this thesis, the interested reader can
refer to [LM95] for an introduction to this topic.

1.2.1 Dimension 1
In dimension one pattern complexity is also known as factor complexity, as a pattern of
a word is called a factor of it.

Definition 1.2.1 (Pattern complexity – 1D). Let w ∈ AZ. The pattern complexity Pw(n)
of w is the number of subwords of w of size n:

Pw(n) = |{u ∈ An | u ⊏ w}| .

As we will use only this definition of complexity in this thesis, we will use simply the
term complexity to designate pattern complexity. It turns out that the complexity of a
word is directly linked to its periodicity.

Theorem 1.2.1 (Morse, Hedlund [MH38]). Let w ∈ AZ. The following propositions are
equivalent:

1. w is periodic,
2. there exists n ∈ N such that Pw(n) ≤ n,
3. there exists n0, C ∈ N such that ∀n ≥ n0, Pw(n) ≤ C.

In other words, it is equivalent for a word to have bounded complexity (we use the term
low complexity) and to be periodic.

1.2.2 Higher Dimension
Dimension Two

In dimension two, there is an analogous definition of low complexity configuration.

Definition 1.2.2 (Pattern complexity – 2D). Let c ∈ AZ2 and D ⊂ Z2 a finite shape.
The pattern complexity Pc(D) of c with respect to D is

Pc(D) =
∣∣∣{d ∈ AD | d ⊏ c}

∣∣∣ .
17



Chapter 1. Preliminaries

If D is a rectangle of size m×n, we denote by Pc(m,n) the rectangular pattern complexity
of c, which is maybe the most natural generalization of the one-dimensional definition of
complexity.

Definition 1.2.3 (Low complexity configuration). A configuration c ∈ AZ2 has low com-
plexity with respect to D if there exists a finite D ⊂ Z2 such that

Pc(D) ≤ |D|.

And if D is a rectangle of size m × n such that Pc(m,n) ≤ mn, we say that c has low
complexity with respect to a rectangle.

As one might guess, things get more complicated in dimension two. First, there
is no hope to have an equivalence like Morse-Hedlund’s theorem with our definition of
periodicity, since there exists a periodic configuration of complexity 2m+n−1. Take for
example the Champerowne word w and a 2D configuration c defined by x(i,j) = wi+j as
in Example 1.3. For all m,n, the complexity of w is Pw(n) = 2n, and the complexity of
c is Pc(m,n) = 2m+n−1, but it is (1,−1)-periodic. The other direction of the equivalence
was conjectured to be true by Maurice Nivat in 1997.

Conjecture (Nivat, 1997). If c is a configuration of low complexity with respect to some
rectangle, then it is periodic.

When formulated for a general shape, we call this the generalized Nivat’s conjecture, even
though it was not conjectured by Nivat.

Conjecture (Generalized Nivat’s conjecture). If c is a configuration of low complexity
with respect to any shape, then it is periodic.

And Nivat was right not to conjecture this: this generalized version does not hold in
general, as some shapes allow the construction of sublattices, allowing a non-periodic
configuration to have low-complexity with respect to this shape. Such a counterexample
can be found in Section 2.2.3. Julien Cassaigne even provided counterexamples with
connected shapes [Cas00]. It is still believed that the conjecture holds for any convex
shape.

In addition, Nivat’s conjecture is "optimal", since there exists a configuration not
periodic and with complexity mn+ 1 for any rectangle of size m× n. This configuration
is also very simple, as it is the one of Example 1.2, the all white configuration except one
cell. Indeed, there are mn different rectangles with the black square in them (one for each
position), and one all white: Px(m,n) = mn+ 1.

Note that one can define periodicity in dimension two differently that what is done in
this thesis. With a definition based on tool from logics, Durand and Rigo were able to
prove an equivalence similar to Morse and Hedlund’s one in any dimension [DR11].

Dimension Three

In dimension 3 and above, even an analogue if Nivat’s conjecture does not hold anymore.

Definition 1.2.4 (Pattern complexity (3D)). Let c ∈ AZ3 and D ⊂ Z2 a parallelepiped
of size m× n× k. The pattern complexity Pc(m,n, k) of c with respect to D is

Pc(m,n, k) =
∣∣∣{d ∈ AD | d ⊏ c}

∣∣∣ .
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Proposition 1.2.2. For all n ≥ 3, there exists an aperiodic configuration such that
Pc(n, n, n) ≤ n3.

Proof. Let n ∈ N. The configuration is build from two infinite lines of black cells, orthog-
onal but not parallel, spaced by n white cells. The rest is filled with white, see Fig. 1.5
for an illustration. In this configurations, there are n2 different cubes of size n × n × n
obtained when there is an intersection with the first line, n2 other cubes when intersecting
the other line, and one filled with white. Therefore, Pc(n, n, n) = 2n2 + 1 < n3 for n ≥ 3.

n

Figure 1.5 – The counterexample configuration disproving an analogue of Nivat’s conjec-
ture in 3D.
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CHAPTER 2

Nivat’s Conjecture

As detailed in Chapter 1, the complement of the domino problem is semi-decidable, the
non semi-decidable part being deciding if an SFT is not empty. However, we saw that if
there exists a periodic configuration if the subshift, it is actually possible to decide if it is
non-empty. This provides an algorithmic motivation to look at classes of subshifts which
always have a periodic configuration: their domino problem is decidable. A classical exam-
ple of such a class are block-gluing subshifts, which always have a periodic configuration
[PS15].

In this section we will look at the low complexity setting. If true, Nivat’s conjecture
would ensure that any low complexity configuration is periodic, and thus the class of
subshifts containing a low complexity configuration would have decidable domino problem.

Following the work of Kari and Szabados [KS15b; KS15a; Sza18a; Sza18b], we continue
to investigate Nivat’s conjecture using algebraic tools they developped.

In Section 2.1 we introduce the link between algebraic geometry and Nivat’s conjecture
and all the vocabulary needed to understand it. In Section 2.2 we look at particular SFTs
called algebraic SFTs, and prove that Nivat’s conjecture holds for them. And in the last
section (2.3) we use dynamical properties of subshifts to prove that any SFT containing
a low complexity configuration also contains a periodic one.

2.1 Preliminaries

2.1.1 Algebra
First, we need to introduce a couple of algebraic notions. We will only go through what
is needed to understand the results stated in this thesis, for a more in-depth introduction
to the subject the reader can refer to [CLO15].

Let R be a commutative ring (in our case it will be C, Z or Fp = Z/pZ). Then,
R[X1, . . . , Xd] denotes the set of polynomials in d variables over R. When speaking
of more than two variables, we will use the following simplifying notations: let v =
(v1, . . . , vd) ∈ Nd, then we write Xv = Xv1

1 · · ·Xvd
d and R[X] = R[X1, . . . , Xd]. Any
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polynomial f ∈ R[X] can then be written

f =
∑
v∈V

avX
v (2.1)

with V ⊂ Nd a finite set and av ∈ R for all v ∈ V . The set R[X±] denotes the set
of Laurent polynomials over R, which is obtained when taking V a finite set of Zd in
(2.1). In other words, it is the set of polynomials where the exponents are allowed to
be negative. The degree of f ∈ R[X±] is the maximum degree of the monomials of f :
deg(f) = max{|v| | v ∈ V } with the notation above. The convex hull of a polynomial is
the convex hull of the set {v ∈ V | av 6= 0} seen as a subset of Rd. Laurent polynomials
inherit many relevant properties from proper polynomials (see [Sza18a]). As a result,
when not precised a polynomial will designate a Laurent polynomial, and when needed
we use the term proper polynomial to talk about a polynomial in R[X].

Next, the set R[[X±]] denotes the set of formal power series over R, that is obtained
when the set V of (2.1) is also not required to be finite:

R[[X±]] =
{∑

v∈V
avX

v | V ⊆ Zd and ∀v ∈ V, av ∈ R
}
.

A line polynomial is a polynomial whose non-zero coefficients are aligned and which is
not a monomial. More precisely, f is a line polynomial if there exists u ∈ Zd and a finite
set K ⊂ Z with |K| ≥ 2 such that

f =
∑
k∈K

akX
ku.

Finally, a polynomial ideal I is a subset of R[X±] such that:
• the 0 polynomial is in I,
• for all f, g ∈ I, f + g ∈ I,
• for all f ∈ I and h ∈ R[X±], hf ∈ I.

For f1, . . . , fn ∈ R[X±] we denote 〈f1, . . . , fn〉 = {∑hifi | h1, . . . , hn ∈ R[X±]} the ideal
generated by the fis. An ideal I is principal if there exists f ∈ R[X±] such that I = 〈f〉.
The radical of an ideal I is

√
I = {r ∈ R[X±] | ∃n ∈ N, rn ∈ I}, and I is called a radical

ideal if I =
√
I.

2.1.2 Geometry
Let us go through few notions of two-dimensional discrete geometry.

The closed half plane in a direction u ∈ Z2 \ {0} is the set Hu = {x ∈ Z2| x · u ≤ 0},
and the open half plane Hu is defined analogously Hu = {x ∈ Z2| x · u < 0}. The
boundary of the half plane is the discrete line Hu \Hu.
If a discrete line L has direction vector v = (v1, v2) its slope is v2

v1
. Let w be not colinear

to v. Since v2
v1

is rational, we can define a unique line next to L the direction w, which
is the closest line parallel to L when translating L along any vector in Q2 parallel to w
(see Fig. 2.2). Note that if (− v1, v2) ·w > 0 (like in Fig. 2.2), the set of successive lines
next to L in direction w is the open half plane H(−v1,v2). If (− v1, v2) ·w > 0, it is equal
to H(v1,−v2).
We say that a finite set D ⊆ Z2 has an outer edge perpendicular to u ∈ Z2 \ {0} if there
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uu

(a)

uu

(b)

Figure 2.1 – Open (a) and closed (b) discrete half-planes with u = (−1, 2).

LL

L′L’

ww

Figure 2.2 – L is a discrete line with direction (2, 1) and L′ is the next line in direction
w = (−1, 2).

is x ∈ D such that D ⊆ x +Hu and there are at least two elements of D on the boundary
x + (Hu \Hu). See Fig. 2.3 for an illustration.

uu

Figure 2.3 – The set of square cells has an outer edge perpendicular to vector u = (−1, 2).

Let D ⊆ Z2 be non-empty and let u ∈ Z2 \ {0}. The edge Eu(D) of D in direction u
consists of the cells in D that are furthest in the direction u:

Eu(D) = {v ∈ D | ∀x ∈ D x · u ≤ v · u}.

We call D convex if D = C ∩ Z2 for a convex subset C ⊆ R2 of the real plane. For
D,E ⊆ Z2 we say that D fits in E if D + t ⊆ E for some t ∈ Z2.

The (closed) stripe of width k perpendicular to u is the set

Sku = {x ∈ Z2 | − k < x · u ≤ 0},

see Fig. 2.4 for an example. Clearly its edge Eu(S) in direction u is the discrete line
Z2 ∩ L where L ⊆ R2 is the real line through 0 that is perpendicular to u. The interior
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S◦ of S is S \ Eu(S), that is, S◦ = {x ∈ Z2 | − k < x · u < 0}.

uu

Figure 2.4 – Closed stripe Sku with u = (−1, 2) and k = 10

2.1.3 Links with Nivat’s Conjecture
Finally, we introduce what makes this whole chapter possible: the link between algebraic
geometry and 2D configurations. We go briefly through notions and results by Jarkko
Kari and Michal Szabados [KS15b; Sza18a; Sza18b], all related to algebra and Nivat’s
conjecture. A more complete review of these results can be found in [Kar19].

Let d be a positive integer. As defined in Section 1.1.1, a d-dimensional configuration
over an alphabet A is a function c ∈ AZd . However, it is possible to see them as a formal
series with d variables. The following series represents the configuration c, in the sense
that it contains all the information about c:∑

v∈Zd

cvX
v.

Such a series is called integral if for all v, cv ∈ Z, and finitary if there are only a finite
number of different cv. Unlike in [KS15b; Sza18a; Sza18b], we will identify configurations
with finite alphabet with finitary power series. In other words, in this thesis, a configura-
tion always refers to a finitary and integral power series, unless stated otherwise. With
this definition, it is equivalent to the definition of configuration of Section 1.1.1. In such
case, since the actual content of the alphabet does not matter, one can always assume
that the alphabet is over integers.

Now let us take a look at algebraic operations over configurations, and how they can
be interpreted for the configuration. The sum of two configurations c and d is always
defined:

c+ d =
∑

v∈Zd

(cv + dv)Xv.

The multiplication of two formal series is not always well defined, however, a multiplica-
tion between a power series and a Laurent polynomial is. One example is particularly
interesting: multiplication of a configuration c by a monomial Xu, which corresponds to
a translation of c by vector u:

Xuc =
∑

v∈Zd

cvX
u+v =

∑
v∈Zd

cv−uX
v.

From these operations, we have an nice algebraic characterization of periodicity.
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(0, 0) X

XY

Y 2

(a) Plot of X + XY + Y 2, black
cells representing a coefficient 1. (b) Plot of (1 + X4 + XY 3)(X + XY + Y 2).

It is easy to see the the 3 translated copies
of X + XY + Y 2 corresponding to the de-
velopment (X + XY + Y 2) + X4(X + XY +
Y 2) + Y 2(X + XY + Y 2).

Figure 2.5 – The opposite is also interesting: the configuration gives a way of visualizing
a formal series, and by extension any polynomials. Here are two examples for d = 2.

Proposition 2.1.1. A configuration c is periodic of period u ∈ Zd if and only if
(Xu − 1)c = 0.
And more generally, because having a line polynomial annihilator gives a recurrence rela-
tion on the configuration and the alphabet is finite, we have the following proposition.
Proposition 2.1.2. A configuration c is periodic in direction u if and only if there exists
a line polynomial f in direction u such that fc = 0.

We say that a polynomial annihilates a configuration c in a ring R if fc is the zero
power series in R. We call such an annihilator non-trivial if it is non-zero. As we will see,
polynomials annihilating a configuration will play a central role in many theorems. We
define

AnnR(c) = {f ∈ R[X±] | fc = 0}
the set of polynomials that annihilates c in R, called the annihilator of c. If not specified
otherwise, we take Ann(c) = AnnZ(c). Proposition 2.1.1 then shows that c is periodic
if and only if there exists u 6= 0 such that (Xu − 1) ∈ Ann(c). Therefore, studying the
annihilator is one possible way of proving that a configuration is periodic. Its study is
also motivated by the fact that it is a polynomial ideal, which provide many useful tools
to understand its structure, as we will see.

The following proposition already relates the low complexity of a configuration with
the existence of a non-trivial annihilator.
Proposition 2.1.3. Let c be a configuration and D ⊂ Zd a finite domain such that
Pc(D) ≤ |D|. Then there exist a non-trivial annihilator f ∈ Ann(c).

Then, using Hilbert’s Nullstellensatz, Kari and Szabados are able to refine this propo-
sition. They find a very specific form of annihilator in the ideal, close to what is needed
to prove the periodicity of c using Proposition 2.1.1.
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Theorem 2.1.4. Let c be a configuration with a non-trivial annihilator. Then there exists
u1, . . . ,ur ∈ Zd in pairwise distinct directions such that

(Xu1 − 1) · · · (Xur − 1) ∈ Ann(c).

In other words, to prove Nivat’s conjecture it is enough to prove that if we have a low
complexity 2D configuration with respect to a rectangle, then r = 1. This particular
annihilator gives a way of decomposing a configuration into a finite number of periodic
ones.

Theorem 2.1.5 (Decomposition theorem). Let c be a configuration with a non-trivial
annihilator. Then there exist periodic integral formal series (but possibly not finitary)
c1, . . . , cr such that

c = c1 + · · ·+ cr.

Example 2.1. The first example illustrating this decomposition is the counter-example of
the 3D generalization of Nivat’s conjecture (Proposition 1.2.2, page 19). Let us call it cn
for a fixed n. It can be seen as a sum of two configurations d and e defined bydi,0,0 = 1 for every i ∈ Z

di,j,k = 0 otherwise
and

d0,j,n = 1 for every j ∈ Z
di,j,k = 0 otherwise

.

Configurations d and e are respectively (1, 0, 0) and (0, 1, 0)-periodic, so they are respec-
tively annihilated by polynomials X(1,0,0) − 1 and X(0,1,0) − 1. Therefore, cn = d + e is
annihilated by (X(1,0,0) − 1)(X(0,1,0) − 1).

As stated in Theorem 2.1.5, the configurations obtained in the decomposition may not
be finitary. A good example of that is what is called the snowflake configuration c∗.
Example 2.2 (The snowflake configuration). Let α be a irrational number and define

c1
i,j = b(i+ j)αc, c2

i,j = biαc, c3
i,j = bjαc.

None of these configurations are finitary, however they are all one-periodic, and therefore
annihilated by XY −1, X−1 and Y −1, respectively. Then c∗ = c1−c2−c3 (see Fig. 2.6)
is finitary, and annihilated by (XY − 1)(X − 1)(Y − 1). However, it is not periodic and
cannot be decomposed as a sum of integral and finitary configurations [KS15a].

It is possible to obtain a bounded decomposition, however the coefficients might not
be integers anymore.

Theorem 2.1.6 (Bounded decomposition). Let c be a low complexity configuration. Then
c can be written as a sum of finitely many bounded power series with real coefficients.

In the two-dimensional case, Kari and Szabados proved that the annihilator ideal is
radical, leading to a characterization of the annihilator ideal and a better decomposition
of a low complexity configuration.

Theorem 2.1.7 (Two-dimensional decomposition). Let c be a two-dimensional configura-
tion with a non-trivial annihilator. Then there exist line polynomials ϕ1, . . . , ϕr in pairwise
distinct directions such that:

Ann(c) = ϕ1 · · ·ϕrH
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Figure 2.6 – The snowflake configuration with α the golden ratio.

with H uniquely defined and cH a two-periodic configuration such that H = Ann(cH).
Moreover, there exist one-periodic integral formal series c1, . . . , cr, such that

Ann(ci) = 〈ϕi〉, and
c = c1 + · · ·+ cr + cH .

This decomposition relies on the primality of the annihilator ideal in the two-dimensional
case. In higher dimension, Szabados and Kari conjectured that the ideal remains principal,
which would lead to a similar decomposition.

Let us define ord(c) := r from Theorem 2.1.7, which characterizes the periodicity of
the configuration.

Corollary 2.1.8. Let c be a two-dimensional configuration with a non-trivial annihilator.
Then:

• ord(c) = 0 if and only if c is two-periodic,
• ord(c) = 1 if and only if c is one-periodic,
• ord(c) ≥ 2 if and only if c is not periodic.

In particular, if a configuration is annihilated by a line polynomial, ord(c) ≤ 1 so the
configuration is periodic.

This study of the annihilator ideal leads to a first major result: an asymptotic version
of Nivat’s conjecture.

Theorem 2.1.9 (Asymptotic Nivat’s conjecture). Let c be a two-dimensional configura-
tion such that Pc(m,n) ≤ mn holds for infinitely many pairs (m,n) ∈ Z2. Then c is
periodic.

The last result proved by Kari and Szabados is the case ord(c) = 2, for which they
are able to prove that Nivat’s conjecture holds using some techniques from Cyr and
Kra [CK15].

Theorem 2.1.10. Let c be a two-dimensional configuration such that Pc(m,n) ≤ mn for
some m,n ∈ N and c = c1 + c2 with c1 and c2 are periodic configurations. Then c is
periodic.
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As a consequence, they provide an alternative proof of Cyr and Kra’s approximation
bound of Nivat’s conjecture.

Theorem 2.1.11 (Cyr, Kra [CK15]). Let c be a configuration such that there exist m,n
such that Pc(m,n) ≤ mn

2 . Then c is periodic.

The case ord(c) ≥ 3 remains open, and the many particularities of the case ord(c) = 2
makes us believe that ord(c) = 3 might be the hard step separating us from proving the
whole conjecture.

2.2 Algebraic Subshifts
In this section, we will introduce algebraic subshifts (similar to finite state topological
Markov subgroups, also used in the literature). Using algebraic techniques introduced
before, we will show that for algebraic subshifts defined with a well-chosen class of poly-
nomials, the generalized Nivat’s conjecture holds.

In this thesis, we define an algebraic subshift to be a subshift whose configurations
are annihilated by the same polynomial. More precisely, let R be a finite field and f ∈
R[[X±1, Y ±1]] a non-zero polynomial. The algebraic subshift defined by f is

Xf = {c ∈ R[[X±1, Y ±1]] | fc = 0}.

Since configurations of Xf are defined by a local rule, Xf is a subshift of finite type, and
c ∈ Xf ⇐⇒ f ∈ AnnR(c)⇐⇒ fc = 0.

One motivation to study these subshifts is that if there is a counterexample of Nivat’s
conjecture, it belongs to some algebraic subshift. Indeed, if the configuration is finitary,
the symbols can be renamed as elements of a finite field of the appropriate size. Then,
Proposition 2.1.3 shows that any low complexity configuration is annihilated by some
polynomial. Therefore, it would be enough to prove Nivat’s conjecture for algebraic
subshifts to prove it in full generality.

We will show that Nivat’s conjecture is true (and even its generalized formulation) for
algebraic subshifts defined by a polynomial which has all its line polynomial factors in
the same direction. These results were published in [KM19].

2.2.1 The 3-dot System
In 1978 Ledrappier introduced an example of algebraic subshift which is mixing but with
zero entropy [Led78]. Called the 5-dot system, it is the algebraic subshift defined by the
polynomial 1 +X +Y +X−1 +Y −1. We will start by studying the example that initiated
our results: the 3-dot system (sometimes called Ledrappier subshift), a variation of the
5-dot system introduced by Ledrappier. We call Fp = Z/pZ.

Definition 2.2.1 (3-dot system). The 3-dot system L is the algebraic subshift XfL
over F2

defined by the annihilator fL = 1 +X + Y .

We will see that the generalized Nivat’s property is strongly related to the number
of line polynomial factors of the polynomial defining the algebraic subshift. It turns out
that fL has none, making it a simple example to start with. The easiest way of proving
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that fL has no line polynomial factor is to look at the shape of its convex hull, since it is
related to the line polynomial factors of fL, as stated by Corollary 2.2.2.

Lemma 2.2.1. Let g, h be non-zero polynomials over a domain R such that supp(g) has
an outer edge perpendicular to v. Then also supp(gh) has an outer edge perpendicular
to v.

Proof. Let vector u ∈ Z2\{0} be perpendicular to v. By hypothesis there are x ∈ supp(g)
and a line polynomial α in the direction u such that supp(g) ⊆ x+Hv and supp(g−α) ⊆
x + Hv. Here α contains the terms of g along the boundary of the half plane x + Hv.
Analogously, for any non-zero polynomial h there exists y ∈ supp(h) and polynomial β 6= 0
that is either a monomial or a line polynomial in the direction u such that supp(h) ⊆
y+Hv and supp(h−β) ⊆ y+Hv. But then supp(gh) ⊆ x+y+Hv and supp(gh−αβ) ⊆
x + y + Hv. Because αβ is a line polynomial in the direction u, this proves that the
support of gh has an outer edge perpendicular to v.

Corollary 2.2.2. If f 6= 0 has a line polynomial factor in the direction u then supp(f)
has outer edges perpendicular to v and −v, where v is a vector perpendicular to u.

Proof. A line polynomial g in the direction u has outer edges perpendicular to v and −v.
The claim then follows directly from Lemma 2.2.1.

The convex hull of fL is a triangle, therefore, it cannot have any parallel outer edges,
and so fL has no line polynomial factors.

Corollary 2.2.3. Polynomial fL = 1 +X + Y has no line polynomial factors.

It is also easy to see that fL is an irreducible polynomial in F2, which implies Corol-
lary 2.2.3.

We need one last lemma to prove our main result, stating that the factors of line
polynomials are always line polynomials in the same direction.

Lemma 2.2.4. Let f be a line polynomial over a domain R and let g be a factor of f .
Then g is a line polynomial in the same direction as f , or a monomial.

Proof. First, let us remark that a polynomial h is a line polynomial in direction u if
and only if supp(h) is a segment with direction u, which is its only outer edge (with the
opposite one, which is the same).

Let g be a factor of f that is not a line polynomial in the same direction as f , nor a
monomial. From the previous remark, it means that supp(g) has an outer edge e that is
not parallel to the direction of f . However, by Lemma 2.2.1, it would mean that f has
an outer edge parallel to e, which is not possible.

Now we can prove that the 3-dot system has the generalized Nivat’s property.

Theorem 2.2.5. Any low complexity c ∈ XfL
is periodic.

Proof. In this proof we are going to talk about annihilators of c over F2 and over Z. We
interpret c as a configuration over Z using the renaming F2 −→ Z that maps 0F2 7→ 0Z
and 1F2 7→ 1Z. In this context, AnnZ(c) is the annihilator ideal of the configuration over Z
obtained after this renaming. We are going to prove the following stronger statement: if

29



Chapter 2. Nivat’s Conjecture

AnnZ(c) contains a non-zero polynomial then c is periodic. The result then follows from
Proposition 2.1.3.

Let c ∈ L be non-periodic. We first prove that AnnF2(c) is the principal ideal generated
by fL, that is, for every g ∈ AnnF2(c) there exists α ∈ F2[X±1, Y ±1] such that g = αfL.
Let g ∈ AnnF2(c) be a proper polynomial (which means that all exponents of variables
are non-negative). Because X = 1 + Y + fL we can eliminate variable X by replacing
each occurrence of X in g by 1 + Y + fL. This yields g = α(X,Y )fL + β(Y ) for some
polynomial α(X,Y ) and a polynomial β(Y ) which is in variable Y only. Because both fL
and g are annihilators of c, β(Y ) ∈ AnnF2(c) as well.

If β 6= 0 then it is either a single monomial (in which case c = 0) or a line polynomial
annihilator of c. In both cases, ord(c) ≤ 1, and so c is periodic in the direction of the line
polynomial by Corollary 2.1.8. The theorem is true in this case.

If β = 0, then g = αfL as claimed. Consider then arbitrary g ∈ AnnF2(c) with possibly
some negative exponents. Because g = X iY jg′ for some i, j ∈ Z and a proper polynomial
g′ ∈ AnnF2(c), we conclude that also in this case g is a multiple of fL, and therefore we
have that AnnF2(c) is the principal ideal generated by fL.

Now it remains to show that AnnZ(c), the set of annihilators over Z, is trivial. Suppose
by contradiction that there is a non-zero annihilator in AnnZ(c). By Theorem 2.1.4 there
exist non-zero (i1, j1), . . . , (im, jm) ∈ Z2 such that (X i1Y j1−1) · · · (X imY jm−1) ∈ AnnZ(c).
By performing all computations in F2 instead of Z, we have that (X i1Y j1−1) · · · (X imY jm−
1) ∈ AnnF2(c). But then this polynomial, which only has line polynomial factors, is a
multiple of fL. All non-trivial factors of line polynomials are line polynomials in the same
direction (Lemma 2.2.4) so all irreducible factors of fL are line polynomials, but fL has
no polynomial factors (Corollary 2.2.3). Note that we implicitly used the fact that every
polynomial can be uniquely factored into its irreducible factors (see for example Theorem
5 on page 149 of [CLO15]).

In fact, we will see that any low complexity c ∈ XfL
is even two-periodic, as shown in

Theorem 2.2.9 below.

2.2.2 Annihilators with Line Polynomial Factors in One Direc-
tion

The next step is to try to generalize the previous technique to other algebraic subshifts.
In this section, we extend this technique to algebraic subshifts defined by polynomials
having no polynomial factor, or all in the same direction.

Resultant

One of the key element in the proof of Theorem 2.2.5 is the fact that we can find an
annihilator with one of the two variables eliminated from it. It turns out that this is
something we can do with other annihilators than fL, and to do so we will use basic
notions of elimination theory, a theory that conveniently focuses on eliminating variables
in polynomials. We will mostly use one object from it: resultants.

Resultant are usually defined for proper polynomials, so in order to stick with usual
definitions we define them likewise. We will still use them for talking about Laurent
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polynomials, which is not a problem since from a Laurent polynomial annihilator we can
always obtain a proper one by multiplying it by a suitable monomial.

Let R be a field (for example Fp for a prime p) and let K = R[Y ] be the ring of
polynomials in one variable Y . ThenK[X] = R[X,Y ] is the ring of polynomials in variable
X and Y over R. We will only define resultants for polynomials in two variables, but note
that they can be defined for any number of variables in general (see for example [CLO15]).

Definition 2.2.2 (Resultant). Let f, g ∈ K[X] be two polynomials of positive degree,
written as

f = a0X
k + · · ·+ ak, a0 6= 0

g = b0X
l + · · ·+ bl, b0 6= 0.

The Sylvester matrix of f and g with respect to X is the following (k+ l)× (k+ l) matrix:

SylX(f, g) =



a0 b0
a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... a2

. . . a0
... b2

. . . b0
... ... . . . a1

... ... . . . b1

ak
... a2 bl

... b2

ak
... bl

...
. . . ... . . . ...

ak bl



,

with 0s filling the empty spaces.
The resultant of f and g with respect to X is the determinant of the Sylvester matrix:

ResX(f, g) = Det (SylX(f, g)) .

Notably, ResX(f, g) ∈ K = R[Y ]: it is a polynomial in one variable Y .
Hopefully, we do not need to work directly with the definition of the resultant. All we

need are the two key properties of the resultant, whose proofs can be found in [CLO15].
The first shows that the value of the resultant is linked to the common factors of the two
polynomials.

Proposition 2.2.6. Two polynomials f and g have a common factor in R[X,Y ] if and
only if ResX(f, g) = 0.

Proposition 2.2.7. There exist α, β ∈ R[X,Y ] such that

αf + βg = ResX(f, g).

The second proposition is what makes the determinant useful to eliminate variables:
it explicits a linear combination of polynomials in two variable resulting in a polynomial
in one variable Y : the resultant. The next lemma shows how these properties can be used
in the context of annihilators of a configuration.

Lemma 2.2.8. Let c be a power series over a field R. If c is annihilated by two non-zero
polynomials f and g with no common factors then c is two-periodic.
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Proof. Using Proposition 2.2.7, let α, β ∈ R[X,Y ] be such that

αf + βg = ResX(f, g).

Because f and g are both annihilators of c so is ResX(f, g). Then, f and g having no
common factors, Proposition 2.2.6 tells us that ResX(f, g) 6= 0. We found an annihilator
which is a line polynomial or a monomial (only with variable Y ) so c must be periodic
along Y .

Symmetrically, there also exist γ, δ ∈ R[X,Y ] such that

γf + δg = ResY (f, g).

Again, ResY (f, g) 6= 0, so c is also periodic along X.

Note that in the case where R = Z, Lemma 2.2.8 can be directly derived from the
structure of the annihilator explained in Theorem 2.1.7.

Annihilators with Line Polynomial Factors in the Same Direction

Using the previous lemma, we can easily generalize Theorem 2.2.5 for other polynomials.
We consider an algebraic subshift Xf over a finite field Fp defined by an annihilator
f ∈ Fp[X±1, Y ±1]. A configuration c ∈ Fp[[X±1, Y ±1]] will also be interpreted as a
configuration over Z by mapping the symbols by aFp 7→ aZ for all a ∈ {0, 1, . . . , p − 1}.
Then, as in the proof of Theorem 2.2.5, we can define both AnnFp(c) and AnnZ(c), and
use the fact that any g ∈ AnnZ(c) is also in AnnFp(c) when its coefficients are reduced
modulo p.

Theorem 2.2.9. Let c ∈ Xf for a polynomial f ∈ Fp[X±1, Y ±1], and suppose that AnnZ(c)
contains a non-zero polynomial.

• If f has no line polynomial factors then c is two-periodic.
• If all line polynomial factors of f are in the same direction then c is periodic in this

direction.

Proof. By Theorem 2.1.4 there exists non-zero (i1, j1), . . . , (im, jm) ∈ Z2 such that

(X i1Y j1 − 1) · · · (X imY jm − 1) ∈ AnnZ(c).

By performing computations modulo p instead, we have that

g(X,Y ) = (X i1Y j1 − 1) · · · (X imY jm − 1) ∈ AnnFp(c).

If f has no line polynomial factors then f and g do not have any common factors. By
Lemma 2.2.8 then c is two-periodic. This proves the first claim.

Suppose then that all line polynomial factors of f are in the same direction. Let h be
the greatest common divisor of f and g so that we can write f = f ′h and g = g′h where
f ′ and g′ do not have common factors. Note that h is a line polynomial: it is a product of
line polynomials as a factor of g. And all these line polynomials are in the same direction
because h is a factor f .

Because c′ = hc is annihilated by both f ′ and g′ it follows from Lemma 2.2.8 that
c′ is two-periodic. In particular, there is a line polynomial h′ in the direction of h that
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annihilates c′. We have hh′ ∈ AnnFp(c) so that c is annihilated by the line polynomial hh′

and is therefore periodic in its direction.

Using Proposition 2.1.3 we now immediately get that algebraic subshifts defined by an
annihilator with all its line polynomial factors in the same direction have the generalized
Nivat’s property.

Corollary 2.2.10. Let c ∈ Xf for a polynomial f ∈ Fp[X±1, Y ±1] whose line polynomial
factors are all in the same direction. If c has low complexity then it is periodic.

It is interesting to remark that elements of the 3-dot system are exactly the space-time
diagrams of the one-dimensional XOR cellular automaton. This can be generalized to a
general one-dimensional additive cellular automata.

An additive cellular automata is a dynamical system acting on a one-dimensional
configuration c belongings to FpZ for example. Its rule can be represented by a polynomial
g(X) = ∑k

i giX
i such that at each time step, the cellular automaton applies a local

transformation

fj : cj 7→
j+k∑
i=j

gici

and can be naturally extended to a global transformation f : FpZ → FpZ by applying the
local transformation to every position j of c. A space-time diagram of such a cellular au-
tomata is a two dimensional configuration c such that for all j ∈ Z, f((ci,j)i∈Z) = (ci,j+1)i∈Z.
The set of space-time diagrams of an additive cellular automata form an algebraic SFT,
defined by f(X,Y ) = Y − g(X) ∈ Fp[X±1, Y ±1], by definition of the local rule of the
cellular automata. See Section 9 of [Kar05] for a short discussion about additive cellular
automata.

Corollary 2.2.11. Let c be a configuration being the space-time diagram of a one-
dimensional additive cellular automata over Fp. If c has low complexity, then it is periodic.

Proof. Let us call g(X) the rule of the one-dimensional additive cellular automata con-
sidered. Since the considered one-dimensional cellular automata is additive, its rule can
be expressed as a univariate polynomial g(X). Its set of space-time diagrams is then the
algebraic subshift Xf defined by f(X,Y ) = Y − g(X) ∈ Fp[X±1, Y ±1].

If g(X) has at least two terms then the support of f has triangular shape and therefore
f has no line polynomial factors. If g(X) has one term then f itself is a line polynomial.
In both case, Corollary 2.2.10 holds.

In dimension higher than two, we have no counterexample to Corollary 2.2.10. How-
ever, in order to use the same trick – finding a line polynomial by using resultant of known
annihilators – one need to have more than two annihilating polynomials. Multipolynomial
resultants are not as easy to use as usual resultants, and as a consequence we do not have
a formulation of Theorem 2.2.9 working in dimension other than two.

2.2.3 Square Annihilators
After Corollary 2.2.10, it is natural to take a look at configurations annihilated by polyno-
mials with line polynomial factors in more directions. It turns out that already products
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of two line polynomials include examples with and without the generalized Nivat’s prop-
erty, showing that just having two different directions makes things more complex. We
first prove that the 4-dot system defined by (1 + X)(1 + Y ) over F2 has the generalized
Nivat’s property and then we show that the system defined by (1 +X2)(1 +Y 2) does not.

The 4-dot System

Definition 2.2.3 (4-dot system). The 4-dot system S is the algebraic subshift XfS
over

F2 defined by the annihilator fS = 1 +X + Y +XY = (1 +X)(1 + Y ).

Theorem 2.2.12. Every low complexity c ∈ XfS
is periodic.

Proof. Similarly as before, we are going to prove the more general statement that if c has
a non-trivial annihilator p0 over Z then it is periodic.

We first observe that c = h + v for h, v ∈ F2[[X±1, Y ±1]] that are (1, 0)-periodic and
(0, 1)-periodic, respectively. Indeed, we can take hi,j = c0,j and vi,j = ci,0 + c0,0, for all
i, j ∈ Z. Because (1 + X i)(1 + Y j) is a multiple of (1 + X)(1 + Y ) over F2, polynomial
(1 + X i)(1 + Y j) annihilates c, for all i, j ∈ Z. This means that ci,j = c0,j + ci,0 + c0,0 =
hi,j + vi,j.

Using the periodicity of h and v we can write h = 1(X)s(Y ) and v = t(X)1(Y ), with
1(X) = ∑

i∈ZX
i and s, t two formal series depending only on one variable. Let us define

another binary configuration d by

d(X,Y ) = t(X)s(Y ).

In other words, d is the configuration that has ones where both h and v have ones:

di,j =

1 if hi,j = vi,j = 1
0 otherwise

.

Interpreted in Z, we have
c = h+ v − 2d.

This is the case since the two sides are identical modulo two and both sides only contain
values 0 and 1.

Consider next the polynomial

p = p0(X − 1)(Y − 1)

over F2. Because p0 annihilates c, and X − 1 and Y − 1 annihilate h and v, respectively,
we have that pc = ph = pv = 0. Therefore pd = 0 as well, which can be written as

p(X,Y )t(X)s(Y ) = 0,

emphasizing the variable dependencies of the polynomials. We have the following two
cases:

Case 1 Suppose that p(X,Y )t(X) = 0. Let us rewrite p(X,Y ) collecting together terms
with the same power of variable Y , obtaining

p(X,Y ) =
∑
j∈Z

Y jpj(X)
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where at least some pj(X) is a non-zero polynomial. We have∑
j∈Z

Y jpj(X)t(X) = 0.

This is an identity of formal power series so that pj(X)t(X) = 0 for all j ∈ Z. But
then also pj(X)v = pj(X)t(X)1(Y ) = 0, so that v is annihilated by a non-zero
horizontal line polynomial (or a non-zero monomial) pj(X). We conclude that v is
horizontally periodic. But then also c = h + v is horizontally periodic as a sum of
two horizontally periodic configurations.

Case 2 Suppose that p(X,Y )t(X) 6= 0. Now we rewrite p(X,Y )t(X) grouping together
variables with the same power of variable X, obtaining

p(X,Y )t(X) =
∑
i∈Z

X iqi(Y ),

where at least some qi(Y ) is a non-zero polynomial. Note that all qi(Y ) are poly-
nomials because powers of the variable Y only come from the polynomial p(X,Y ).
Because

0 = p(X,Y )d(X,Y ) = p(X,Y )t(X)s(Y ) =
∑
i∈Z

X iqi(Y )s(Y ),

we have that qi(Y )s(Y ) = 0 for all i ∈ Z. Analogously to case 1 above, this implies
that h is vertically periodic, and therefore also c is vertically periodic.

An Algebraic Subshift Without the Generalized Nivat’s Property

For some polynomials with two line polynomial factors, the associated subshift does not
have the generalized Nivat’s property. This is typically the case when the annihilating
polynomial allows the use of sublattices. The following result can be inferred from Exam-
ple 1 in [ST00].

Theorem 2.2.13. There exists a configuration c over F2 annihilated by fT = (1+X2)(1+
Y 2) which is not periodic but has low complexity.

Proof. Let us take c = h+ v, with

hi,j =

1 if j = 0 and i even
0 otherwise

and vi,j =

2 if i = 1 and j even
0 otherwise

.

Visually, c is the superposition of a horizontal and a vertical line on two disjoint sublattices,
see Fig. 2.8. Clearly h is one-periodic with periodicity vector (2, 0) and v is one-periodic
with periodicity vector (0, 2). Their sum c is not periodic.

The periodicity of h and v directly implies that fT annihilates c: h being (2, 0)-periodic
(1 + X2)h = 0 and, analogously, v being (0, 2)-periodic (1 + Y 2)v = 0. This means that
fT c = (1 +X2)(1 + Y 2)h+ (1 +X2)(1 + Y 2)v = 0.

The last thing we have to check is that c has low complexity, i.e, there is a shape
D such that Pc(D) ≤ |D|. It is sufficient to take D to be the scattered 3x3 square, as
shown in Fig. 2.7. Patterns of shape D in c will only contain values from one of the four
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Figure 2.7 – The shape D of low complexity.
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Figure 2.8 – Sublattices of c and shape D superimposed. The horizontal line is from h
and the vertical one from v.

sublattices, depending on the parity of its position. If D is superimposed with the two
sublattices filled with 0, the pattern is blank. With one sublattice, it can only contain
values from h, so it can have four different values: blank, and the horizontal line crossing
at the top, the middle or the bottom. If it is on the last sublattice, then it has values
from v, and here again there are four different possibilities. Counting the blank shape
only once, we obtain Pc(D) = 1 + 3 + 3 = 7 < 9 = |D|.

2.3 Low Complexity Subshifts
Instead of focusing on a single configuration of low complexity, it can be interesting to
look at subshifts in which all configurations have low complexity. One of the motivations
to study these subshifts is that if Nivat’s conjecture is true, then the domino problem is
trivially decidable for them. Therefore the decidability alone may be an easier problem to
tackle first, and from an algorithmic point of view it is the most interesting consequence
of Nivat’s conjecture.

In this section we will focus on low complexity with respect to a rectangle (in opposition
to the general shape of the previous section). In this setting we define low complexity
subshifts and prove that they always contain a periodic configuration. As a consequence
we prove that the domino problem is indeed decidable for low complexit subshifts. And
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2.3. Low Complexity Subshifts

finally, we are able to use this to prove that Nivat’s conjecture holds for uniformly recurrent
configurations.

After introducing a few more concept from dynamical systems, we show our method
to extract a periodic configuration from a low complexity one (Theorem 2.3.4). And then
we detail the main consequences of this result (Corollary 2.3.17 and Corollary 2.3.18).
These results can also be found in [KM20].

2.3.1 Concepts from Dynamical Systems
A configuration c is called uniformly recurrent if for every c′ ∈ O(c) we have O(c′) = O(c).
This is equivalent to O(c) being a minimal subshift in the sense that it has no proper non-
empty subshifts inside it. A classical result by Birkhoff [Bir12] implies that every non-
empty subshift contains a minimal subshift, so there is a uniformly recurrent configuration
in every non-empty subshift.

Definition 2.3.1 (Deterministic subshift). A subshift X is deterministic in direction u
if for all c, c′ ∈ X

c|Hu = c′|Hu =⇒ c = c′,

that is, if the content of a configuration in the half plane Hu uniquely determines the
contents in the rest of the cells.

Note that it is enough to verify that the value c0 on the boundary of the half plane
is uniquely determined. This notion is also known as one-sided expansiveness in the
literature, (two-sided) expansiveness meaning that the content of a single stripe uniquely
determine the whole configuration.

Proposition 2.3.1. Let X be such that for some vector u and all c, c′ ∈ X,

c|Hu = c′|Hu =⇒ c0 = c′
0.

Then X is deterministic in direction u.

Proof. Let c, c′ ∈ X such that c|Hu = c′|Hu . Since the boundary of Hu is a line intersecting
the origin, there exists v a vector such that Hu \ Hu = {kv | k ∈ Z}. Let σ be the
shift by vector v. Because v defines the boundary of Hu, we have that for all k ∈ Z,
σk(c)|Hu = σk(c′)|Hu , so σk(c)0 = σk(c′)0 by hypothesis. Or in other words, for all
k ∈ Z, ckv = c′

kv: c and c′ are identical on one additional line L. By applying this to
successive translated c and c′ we can obtain that they are identical on successive next
lines to L along u (as define page 22), and by induction on Z \Hu, so c = c′.

Moreover, determinism in direction u implies that only a finite region uniquely determines
the content of the cell c0 (Proposition 2.3.2 below).

Definition 2.3.2 (Discrete box). Let u ∈ Z2 and k ∈ N. The discrete box of direction u
and width k is the set

Bk
u = {x ∈ Z2 | − k < x · u < 0 and − k < x · u⊥ < k}.

where we denote by u⊥ a vector orthogonal to u and that has the same length as u (for
example (n,m)⊥ = (m,−n)). See Fig. 2.9 for an illustration.
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Chapter 2. Nivat’s Conjecture

uu u⊥u⊥

Figure 2.9 – The discrete box Bk
u with u = (−1, 2) and k = 10.

Proposition 2.3.2. Let X be deterministic in direction u. Then there exists k ∈ Z such
that for all c, c′ ∈ X,

c|Bk
u

= c′|Bk
u

=⇒ c0 = c′
0.

Proof. By contradiction, assume that for all k ∈ Z, there exists c, c′ ∈ X such that

c|Bk
u

= c′|Bk
u

and c0 6= c′
0.

Then, because limk→∞ Bk
u = Hu, compactness of X allow us to extract c, c′ ∈ X such that

c|Hu = c′|Hu and c0 6= c′
0,

contradicting the determinism of X in direction u.

If X is deterministic in directions u and −u we say that u is a direction of two-sided
determinism. If X is deterministic in direction u but not in direction −u we say that u
is a direction of one-sided determinism. Directions of two-sided determinism correspond
to directions of expansivity in the symbolic dynamics literature. If X is not deterministic
in direction u we call u a direction of non-determinism. Finally, note that the concept
of determinism in direction u only depends on the orientation of vector u and not on its
norm.

2.3.2 Extracting Periodicity from Low Complexity
Using these tools from dynamics systems, our goal is to extract periodicity from a low
complexity configuration. We do that in two steps. First, we show that having an
annihilator allows to find a configuration with no one-sided determinism.

Theorem 2.3.3. Let c be a two-dimensional configuration that has a non-trivial annihi-
lator. Then O(c) contains a configuration c′ such that O(c′) has no direction of one-sided
determinism.

Second, from this result, using a technique by Cyr and Kra [CK15], we then obtain the
second main result of this section, stating that under the hypotheses of Nivat’s conjec-
ture, a configuration contains arbitrarily large periodic regions, solving Conjecture 8.2 of
[Sza18a].

Theorem 2.3.4. Let c be a two-dimensional configuration that has low complexity with
respect to a convex shape. Then O(c) contains a periodic configuration.
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2.3. Low Complexity Subshifts

Removing One-sided Determinism (Theorem 2.3.3)

In this section we prove Theorem 2.3.3 by showing how we can “remove” one-sided direc-
tions of determinism from subshifts with annihilators.

Let c be a configuration over alphabet A ⊆ Z that has a non-trivial annihilator. By
Theorem 2.1.4 it has then an annihilator ϕ1 · · ·ϕm where each ϕi is of the form

ϕi = xniymi − 1 for some vi = (ni,mi) ∈ Z2. (2.2)

Moreover, vectors vi can be chosen pairwise linearly independent, that is, in different
directions. We may assume m ≥ 1.

Denote X = O(c), the subshift generated by c. A polynomial that annihilates c anni-
hilates all elements of X, because they only have local patterns that already appear in c.
It is easy to see that X can only be non-deterministic in a direction that is perpendicular
to one of the directions vi of the polynomials ϕi:

Proposition 2.3.5. Let c be a configuration annihilated by ϕ1 · · ·ϕm where each ϕi is
of the form (2.2). Let u ∈ Z2 be a direction that is not perpendicular to vi for any
i ∈ {1, . . . ,m}. Then X = O(c) is deterministic in direction u.

Proof. Suppose X is not deterministic in direction u. By definition, there exist d, e ∈ X
such that d 6= e but d|Hu = e|Hu . Denote ∆ = d− e. Because ∆ 6= 0 but ϕ1 · · ·ϕm ·∆ = 0,
for some i we have ϕ1 · · ·ϕi−1 ·∆ 6= 0 and ϕ1 · · ·ϕi ·∆ = 0. Denote ∆′ = ϕ1 · · ·ϕi−1 ·∆.
Because ϕi ·∆′ = 0, configuration ∆′ is periodic in direction vi. But because ∆ is zero in
the half plane Hu, also ∆′ is zero in some translate H ′ = Hu − t of the half plane. Since
the periodicity vector vi of ∆′ is not perpendicular to u, the periodicity transmits the
values 0 from the region H ′ to the entire Z2. Hence ∆′ = 0, a contradiction.

Let u ∈ Z2 be a one-sided direction of determinism of X. In other words, u is a
direction of determinism but −u is not. By the proposition above, u is perpendicular to
some vi. Without loss of generality, we may assume i = 1. We denote ϕ = ϕ1 and v = v1.

Let k be such that the content of the discrete box B = Bk
u determines the content of

cell 0, that is, for d, e ∈ X
d|B = e|B =⇒ d0 = e0. (2.3)

As pointed out in Section 2.3.1, any sufficiently large k can be used. We can choose k so
that k > |u⊥ · v|. To shorten notations, let us also denote H = H−u.

Lemma 2.3.6. For any d, e ∈ X such that ϕd = ϕe holds:

d|B = e|B =⇒ d|H = e|H .

Proof. Let d, e ∈ X be such that ϕd = ϕe and d|B = e|B. Denote ∆ = d − e. Then
ϕ∆ = 0 and ∆|B = 0. Property ϕ∆ = 0 means that ∆ has periodicity vector v, so this
periodicity transmits values 0 from the region B to the stripe

S =
⋃
i∈Z

(B + iv) = {x ∈ Z2 | − k < x · u < 0},

See Fig. 2.10 for an illustration of the regions H, B and S. As ∆|S = 0, we have that
d|S = e|S. Applying (2.3) on suitable translates of d and e allows us to conclude that
d|H = e|H .

39



Chapter 2. Nivat’s Conjecture
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Figure 2.10 – Discrete regions H = H−u, B = Bk
u and S in the proof of Lemma 2.3.6. In

the illustration u = (−1, 2) and k = 10.

A reason to prove the lemma above is the following corollary, stating that X can only
contain a bounded number of configurations that have the same product with ϕ:

Corollary 2.3.7. Let c1, . . . , cn ∈ X be pairwise distinct. If ϕc1 = · · · = ϕcn then
n ≤ |A||B|.

Proof. Let H ′ = H − t, for t ∈ Z2, be a translate of the half plane H = H−u such that
c1, . . . , cn are pairwise different on H ′. Consider the translated configurations di = τ t(ci).
We have that di ∈ X are pairwise different on H and ϕd1 = · · · = ϕdn. By Lemma 2.3.6,
configurations di must be pairwise different on domain B. There are only |A||B| different
patterns in domain B.

Let c1, . . . , cn ∈ X be pairwise distinct such that ϕc1 = · · · = ϕcn, with n as large
as possible. By Corollary 2.3.7 there exists such a maximal n such that c1, . . . , cn are
pairwise distinct. Let us repeatedly translate the configurations ci by τu and take a limit:
by compactness there exists n1 < n2 < n3 . . . such that

di = lim
j→∞

τnju(ci)

exists for all i ∈ {1, . . . , n}. Configurations di ∈ X inherit the following properties from
ci:

Lemma 2.3.8. Let d1, . . . , dn be defined as above. Then
(a) ϕd1 = · · · = ϕdn, and
(b) Configurations di are pairwise different on translated discrete boxes B′ = B − t for

all t ∈ Z2.

Proof. Let i1, i2 ∈ {1, . . . , n} be arbitrary, i1 6= i2.
(a) Because ϕci1 = ϕci2 we have, for any n ∈ N,

ϕτnu(ci1) = τnu(ϕci1) = τnu(ϕci2) = ϕτnu(ci2).

Function c 7→ ϕc is continuous in the topology so
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ϕdi1 = ϕ lim
j→∞

τnju(ci1) = lim
j→∞

ϕτnju(ci1) = lim
j→∞

ϕτnju(ci2) = ϕ lim
j→∞

τnju(ci2) = ϕdi2 .

(b) Let B′ = B − t for some t ∈ Z2. Suppose di1|B′ = di2 |B′ . By the definition of con-
vergence, for all sufficiently large j we have τnju(ci1)|B′ = τnju(ci2)|B′ . This is equivalent
to τnju+t(ci1)|B = τnju+t(ci2)|B. By Lemma 2.3.6 then also τnju+t(ci1)|H = τnju+t(ci2)|H
where H = H−u. This means that for all sufficiently large j the configurations ci1 and
ci2 are identical on the domain H − nju − t. But these domains cover the whole Z2 as
j −→∞ so that ci1 = ci2 , a contradiction.

Now we pick one of the configurations di and consider its orbit closure. Choose d = d1
and set Y = O(d). Then Y ⊆ X. Any direction of determinism in X is also a direction
of determinism in Y . Indeed, this is trivially true for any subset of X. But, in addition,
we have the following:

Lemma 2.3.9. Subshift Y is deterministic in direction −u.

Proof. Suppose the contrary: there exist configurations x, y ∈ Y such that x 6= y but
x|H = y|H where, as before, H = H−u. In the following we construct n+ 1 configurations
in X that have the same product with ϕ, which contradicts the choice of n as the maximum
number of such configurations.

By the definition of Y all elements of Y are limits of sequences of translates of d = d1,
that is, there are translations τ1, τ2, . . . such that x = limi→∞ τi(d), and translations
σ1, σ2, . . . such that y = limi→∞ σi(d). Apply the translations τ1, τ2, . . . on configurations
d1, . . . , dn, and take jointly converging subsequences: by compactness there are k1 < k2 <
. . . such that

ei = lim
j→∞

τkj
(di)

exists for all i ∈ {1, . . . , n}. Here, clearly, e1 = x.

Let us prove that e1, . . . , en and y are n + 1 configurations that (i) have the same
product with ϕ, and (ii) are pairwise distinct. This contradicts the choice of n as the
maximum number of such configurations, and thus completes the proof.

(i) First, ϕx = ϕy: Because x|H = y|H we have ϕx|H−t = ϕy|H−t for some t ∈ Z2.
Consider c′ = τ t(ϕx − ϕy), so that c′|H = 0. As ϕ2 · · ·ϕm annihilates ϕx and ϕy,
it also annihilates c′. An application of Proposition 2.3.5 on configuration c′ in
place of c shows that O(c′) is deterministic in direction −u. (Note that −u is not
perpendicular to vj for any j 6= 1, because v1 and vj are not parallel and −u is
perpendicular to v1.) Due to the determinism, c′|H = 0 implies that c′ = 0, that is,
ϕx = ϕy.
Second, ϕei1 = ϕei2 for all i1, i2 ∈ {1, . . . , n}: By Lemma 2.3.8 we know that
ϕdi1 = ϕdi2 . By continuity of the function c 7→ ϕc we then have

ϕei1 = ϕ limj→∞ τkj
(di1) = limj→∞ ϕτkj

(di1) = limj→∞ τkj
(ϕdi1)

=

ϕei2 = ϕ limj→∞ τkj
(di2) = limj→∞ ϕτkj

(di2) = limj→∞ τkj
(ϕdi2)
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Because e1 = x, we have shown that e1, . . . , en and y all have the same product with
ϕ.

(ii) Pairwise distinctness: First, y and e1 = x are distinct by the initial choice of x
and y. Next, let i1, i2 ∈ {1, . . . , n} be such that i1 6= i2. Let t ∈ Z2 be arbitrary
and consider the translated discrete box B′ = B − t. By Lemma 2.3.8(b) we
have τkj

(di1)|B′ 6= τkj
(di2)|B′ for all j ∈ N, so taking the limit as j −→ ∞ gives

ei1 |B′ 6= ei2|B′ . This proves that ei1 6= ei2 . Moreover, by taking t such that B′ ⊆ H
we see that y|B′ = x|B′ = e1|B′ 6= ei|B′ for i ≥ 2, so that y is also distinct from all
ei with i ≥ 2.

The following proposition captures the result established above.

Proposition 2.3.10. Let c be a configuration with a non-trivial annihilator. If u is a
one-sided direction of determinism in O(c) then there is a configuration d ∈ O(c) such
that u is a two-sided direction of determinism in O(d).

Now we are ready to prove Theorem 2.3.3.

Proof of Theorem 2.3.3. Let c be a two-dimensional configuration that has a non-trivial
annihilator. Every non-empty subshift contains a minimal subshift [Bir12], and hence
there is a uniformly recurrent configuration c′ ∈ O(c). If O(c′) has a one-sided direction
of determinism u, we can apply Proposition 2.3.10 on c′ and find d ∈ O(c′) such that u
is a two-sided direction of determinism in O(d). But because c′ is uniformly recurrent,
O(d) = O(c′), a contradiction.

Periodicity in Low Complexity Subshifts (Theorem 2.3.4)

In this section we prove Theorem 2.3.4. Since every non-empty subshift contains a uni-
formly recurrent configuration, we assume in this subsection that c is uniformly recurrent.

Our proof of Theorem 2.3.4 splits in two cases based on Theorem 2.3.3: either O(c)
is deterministic in all directions or for some u it is non-deterministic in both directions u
and −u. The first case is handled by the following well-known corollary from a theorem
of Boyle and Lind [BL97]:

Proposition 2.3.11. A configuration c is two-periodic if and only if O(c) is deterministic
in all directions.

For the second case we apply the technique by Cyr and Kra [CK15]. This technique was
also used in [Sza18b] to address Nivat’s conjecture. The result that we read from [CK15;
Sza18b], although not explicitly stated in this form, is the following:

Proposition 2.3.12. Let c be a two-dimensional uniformly recurrent configuration that
has low complexity with respect to a convex shape. If for some u both u and −u are
directions of non-determinism in O(c) then c is periodic in a direction perpendicular to
u.

Let us prove this proposition using lemmas from [Sza18b]. A central concept
from [CK15; Sza18b] is the following. Let c be a configuration and let u ∈ Z2 \ {0}
be a direction. In analogy with subshifts, we call LD(c) the set of D-patterns that c
contains. A finite discrete convex set D ⊆ Z2 is called u-balanced in c if the following
three conditions are satisfied, where E = Eu(D) denotes the edge of D in direction u:
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(i) |LD(c)| ≤ |D|,
(ii) |LD(c)| < |LD\E(c)|+ |E|, and
(iii) |D ∩ L| ≥ |E| − 1 for every line L perpendicular to u such that D ∩ L 6= ∅.

The first condition states that c has low complexity with respect to shape D. The second
one implies that there are fewer than |E| different (D \ E)-patterns in c that can be
extended in more than one way into a D-pattern of c. The last one states that the edge
E is nearly the shortest among the parallel cuts across D.

Lemma 2.3.13 (Lemma 2 of [Sza18b]). Let c be a two-dimensional configuration that has
low complexity with respect to a rectangle, and let u ∈ Z2 \ {0}. Then c has a u-balanced
or a (−u)-balanced set D ⊆ Z2.

It turns out that this lemma relies only on the convexity of the rectangle, and it is therefore
also true for a configuration with low complexity with respect to any other convex shape.

Lemma 2.3.14. Let c be a two-dimensional configuration that has low complexity with
respect to a convex shape, and let u ∈ Z2\{0}. Then c has a u-balanced or a (−u)-balanced
set D ⊆ Z2.

A crucial observation in [CK15] connects balanced sets and non-determinism to peri-
odicity. This leads to the following statement.

Lemma 2.3.15 (Lemma 4 of [Sza18b]). Let d be a two-dimensional configuration and
let u ∈ Z2 \ {0} be such that d admits a u-balanced set D ⊆ Z2. Assume there is a
configuration e ∈ O(d) and a stripe S = Sku perpendicular to u such that D fits in S and
d|S◦ = e|S◦ but d|S 6= e|S. Then d is periodic in direction perpendicular to u.

With these we can prove Proposition 2.3.12.

Proof of Proposition 2.3.12. Let c be a two-dimensional uniformly recurrent configuration
that has low complexity with respect to a convex shape. Let u be such that both u and
−u are directions of non-determinism in O(c). By Lemma 2.3.14 configuration c admits
a u-balanced or a (−u)-balanced set D ⊆ Z2. Without loss of generality, assume that D
is u-balanced in c. As O(c) is non-deterministic in direction u, there are configurations
d, e ∈ O(c) such that d|Hu = e|Hu but d(0,0) 6= e(0,0). Because c is uniformly recurrent,
exactly the same finite patterns appear in d as in c. This means that D is u-balanced
also in d. From the uniform recurrence of c we also get that e ∈ O(d). Pick any k large
enough so that D fits in the stripe S = Sku. Because 0 ∈ S and S◦ ⊆ Hu, the conditions
in Lemma 2.3.15 are met. By the lemma, configuration d is p-periodic for some p that is
perpendicular to u. Because d has the same finite patterns as c, it follows that c cannot
contain a pattern that breaks period p. So c is also p-periodic.

Now Theorem 2.3.4 follows from Propositions 2.3.11 and 2.3.12, using Theorem 2.3.3
and the fact that every subshift contains a uniformly recurrent configuration.

Proof of Theorem 2.3.4. Let c be a two-dimensional configuration that has low complexity
with respect to a convex shape. Replacing c by a uniformly recurrent element of O(c),
we may assume that c is uniformly recurrent. Since c is a low complexity configuration,
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by Proposition 2.1.3 it has a non-trivial annihilator. By Theorem 2.3.3 there exists c′ ∈
O(c) such that O(c′) has no direction of one-sided determinism. If all directions are
deterministic in O(c′), it follows from Proposition 2.3.11 that c′ is two-periodic. Otherwise
there is a direction u such that both u and −u are directions of non-determinism in O(c′).
Now it follows from Proposition 2.3.12 that c′ is periodic.

2.3.3 Deciding the Domino Problem
Theorem 2.3.4 first application comes when looking at what we call low complexity sub-
shifts.

Definition 2.3.3 (Low complexity subshift). Let D = {1, . . . , n} × {1, . . . ,m} for some
m,n ∈ N The subshift X is said to have low complexity (with respect to a rectangle) if
all c ∈ X have low complexity with respect to D.

Note that this definition of low complexity subshift is different of the one define by Donoso,
Durand, Maass and Petite in [Don+16], where they only ask for a polynomial pattern
complexity.

One motivation to introduce those subshifts is that they capture the computability as-
pects of Nivat’s conjecture: if Nivat’s conjecture holds, their domino problem is decidable.
It turns out that we do not need the full Nivat’s conjecture to hold, since Theorem 2.3.4 is
enough to prove that their domino problem is decidable: indeed, Theorem 2.3.4 provides
a periodic configuration in the subshift.

Corollary 2.3.16. Let X 6= ∅ be a low-complexity subshift with respect to a rectangle.
Then X contains a periodic configuration.

Proof. Let c ∈ X be arbitrary. By Theorem 2.3.4 O(c) ⊆ X contains a periodic configu-
ration.

Corollary 2.3.17. Let X 6= ∅ be a low-complexity subshift with respect to a rectangle.
Then there is an algorithm to determine whether X 6= ∅.

Proof. By Corollary 2.3.16, if X 6= ∅ then X contains a periodic configuration. Hence,
by Corollary 1.1.9, DP is decidable.

In particular, let X be an SFT defined be a set of pattern P ⊂ AD with D some rectangle
of size m × n. If |P | ≤ mn, then X is a low complexity subshift, and so there is an
algorithm to decide whether it is empty or not.

It would be interesting to study similar statements for the bound |P | ≤ mn + 1.
Obviously Nivat’s conjecture does not hold for such bound, but we conjecture there is
no aperiodic SFT with rectangular complexity mn + 1, so Corollary 2.3.16 and Corol-
lary 2.3.17 would still hold. Unfortunately most of the tools we have are designed to
study the low complexity case, so the precise complexity gap between the periodicity
promised by Nivat’s conjecture on one side and aperiodic SFTs on the other side seems
hard to grasp for now.
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2.3.4 The Uniformly Recurrent Case
The most interesting, yet most direct consequence of Theorem 2.3.4 is that it solves Nivat’s
conjecture for uniformly recurrent configurations.

Corollary 2.3.18 (Nivat’s conjecture, uniformly recurrent case). A uniformly recurrent
configuration c that has low complexity with respect to a convex shape is periodic.

Proof. Because c has low complexity with respect to a convex shape then by Theorem 2.3.4
there is a periodic configuration c′ ∈ O(c). Because O(c′) contains only translates and
limits of translates of c′, all configurations in O(c′) are periodic. Finally, because c is uni-
formly recurrent we have O(c) = O(c′), which implies that all elements of O(c), including
c itself, are periodic.

Solving this case is interesting because, intuitively, non uniformly recurrent configu-
rations seem easier to handle. A configuration is not uniformly recurrent if some of its
regions can disappear in a limit of translations, i.e. they cannot be found everywhere.
These regions might provide artefacts allowing the configuration to have high complexity.
The example of Fig. 1.2 on page 12 illustrates this in the easiest case: when the region
is a single cell. In the general case however the geometry of the artefact might be much
more complicated, and we believe that solving the non uniformly recurrent case might
require clever case disjunction based on the discrete geometry of these regions.

2.3.5 Non-rectangular Shape
Nivat’s conjecture is usually stated for a low complexity configurations with respect to
a rectangle (see page 18). We saw that our results extend quite easily to convex shapes,
and it is widely believed that Nivat’s conjecture still holds for any convex shape.

In Section 2.2 our results only relied on the existence of an annihilator, thus allowing
results holding for configurations of low complexity with relation to any shape. For this
section however, our result needs a convex shape. Moreover, there is no hope to prove
Nivat’s conjecture for arbitrary shapes, since some configurations are known to have low
complexity with respect to some shape (even connected ones) but not periodic [Cas00].
For non-convex shapes Theorem 2.3.4 is not true, but all counter-examples we are aware
of are based on periodic sublattices, for example the one presented in Section 2.2.3. It
would be a very interesting to find counter-examples that are not based on this idea of
sublattices. We conjecture that for an SFT defined using at most |D| allowed patterns
of support D, Corollary 2.3.16 and Corollary 2.3.17 still holds for arbitrary shapes. In
other words, we conjecture that there does not exist a two-dimensional low complexity
aperiodic SFT defined by at most |D| patterns of arbitrary support D. A special case of
this is the recently solved periodic cluster tiling problem [Sze98; Bha20].

As shown by Proposition 1.2.2, Nivat’s conjecture fails for higher dimensions. However,
we believe that Corollary 2.3.16 and Corollary 2.3.17 might still hold in any dimension
for SFTs defined by at most |D| patterns of arbitrary support D.
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CHAPTER 3

Substitutions and Groups

In this chapter, we will study a generalization of the subshifts previously defined: instead
of a grid we build SFT over Cayley graphs of finitely generated groups. We will focus on
particular examples of groups, all sharing similar properties relating their Cayley graph
with substitutions on words. We begin by defining the useful notions about subshifts
on groups in Section 3.1 and substitutions in Section 3.2. Then in Section 3.3 we study
periodicity problems over Baumslag-Solitar groups and the domino problem of the surface
groups in Section 3.4

3.1 Subshifts on Groups and Graphs
In the previous chapter, we defined subshifts over a d-dimensional grid. We extend all
the usual definitions to subshifts over finitely generated groups in Section 3.1.1 and Sec-
tion 3.1.2. Then, we extend some of them to the even more general case of infinite graphs
in Section 3.1.3.

3.1.1 Group Presentation and Cayley Graphs
A Grain of Group Theory

A group G can be defined combinatorially by its presentation 〈S | R〉 with S a generating
set and R ⊆ (S ∪ S−1)∗ a set of relators, i.e. a set of words on S ∪ S−1 that identify to
the identity of G. The group 〈S〉 is the free group with generating set S. Then, every
relator in R identifies a words to 1G. Some example of classical groups defined by their
presentation are:

Z = 〈a〉

F2 = 〈a, b〉

Z2 = 〈a, b | aba−1b−1〉
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Formally, G = FS/C with FS the free group over S and C the conjugate closure of R in
FS. Obviously, different presentations can define the same group up to isomorphism. A
group is virtually free if it has a subgroup of finite index that is free.

The Cayley graph Γ of a group G = 〈S | R〉 is a labeled graph with set of vertices
elements of G. Then, the edge (g, h) is in EΓ with label l ∈ S ∪ S−1 if and only if gl = h.
Note that the Cayley graph depends on the presentation of the group and not the group
itself, so one group have many different Cayley graphs.

A natural decision problem for groups is the word problem: "given a word w on S∪S−1,
does w represent the identity in G (w = 1G) ?" There are recursively presented groups for
which this problem is undecidable [Nov55; Boo58], and in this case it becomes impossible
to algorithmically draw the Cayley graph. To avoid this problem, we will only consider
groups with decidable word problem in this thesis.

Subshifts over Groups

A configuration x over G = 〈S | R〉 is a coloring of its Cayley graph by a finite finite
alphabet A, that we denote x ∈ AG. Let S ⊂ G be a finite set, a pattern p with support
S is a coloring of S: p ∈ AG. Such a pattern appears in a configuration x (resp. another
pattern p′ of support S ′) if there exists g ∈ G, such that for all h ∈ S, xgh = ph (resp. if
there exists g ∈ S ′, such that for all h ∈ S, pgh = ph). In this case, we denote p ⊏ x (resp.
p ⊏ p′).
AG is called the full-shift over G, and X ⊆ AG is called a subshift if there exists a set

F such that X is the set of all configurations that do not contain any patterns from F .
In this case we write:

X = XF =
{
x ∈ AΓ | ∀p ⊏ x, p /∈ F

}
.

Note that there can be several set of forbidden patterns defining the same subshift. If
there exists a finite F such that X = XF , X is called a subshift of finite type (SFT for
short). Like in the case of grids, SFTs can be defined using a finite set of allowed patterns
instead of forbidden ones.

The left shift action on AG is defined by

T :

G×AG → AG

(g, x) 7→ T g(x)
,

where ∀h ∈ G, T g(x)h = xg−1h.
AG is a metric space equipped with the distance:

d(x, y) = 2− inf{|g| | g∈G,xg 6=yg}.

Like for subshifts over grids, subshifts over groups can be defined equivalently as the
subsets of AG that are closed and shift-invariant.

Again, like in the d-dimensional case, every SFT over a group can be seen as a set of
valid tilings by a set Wang tiles and vice-versa. In order to keep this introduction short we
do not define Wang tile for arbitrary groups nor we prove the equivalence. We will define
them more precisely in the particular case of Baumslag-Solitar groups in Section 3.3.
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The Domino Problem of Groups

Definition 3.1.1 (Domino problem of a group). The domino problem of a fixed group
G = 〈S | R〉 is the following question: "Given an SFT XF by its alphabet A and set of
forbidden patterns F , is XF 6= ∅ ?".
We denote DP(G) the domino problem of the group G.

Interestingly, even if a Cayley graph of a group depends on the choice of generators, the
decidability of the domino problem does not [ABJ18]. Hence we can talk of the domino
problem of a group, without specifying a choice of generators. We introduce briefly the
known results about it in this section, a more in-depth review of the topic can be found
in [ABJ18].

For now, the decidability of the domino problem is known only for a few examples of
groups. We know it is undecidable for:

• groups with undecidable word problem [ABJ18],
• Baumslag-Solitar groups [AK13],
• non-virtually Z polycyclic groups [Jea15b],
• groups of the form G1 ×G2 with G1 and G2 two infinite groups [Jea15c].

And it is known to be decidable only for virtually free groups [MS85; KL05] In fact, it is
even conjectured that they are the only groups with decidable domino problem.

Conjecture 1. A group has decidable domino problem if and only if it is virtually free.

A possible origin for this conjecture is Halins grid theorem (see [Die04] for a recent
proof): every graph with a thick end has a grid as minor. Cayley graphs of non-virtually
free groups having a thick end [Woe89], they have a grid as minor by Halins grid theorem.
Since most proofs of undecidability for the domino problem of a group relies on finding a
grid (Z2) in its Cayley graph, it seem reasonable to conjecture that all non-virtually free
groups have undecidable domino problem. The obstacle to transform this intuition into a
proof is that finding the subgrid as minor is not enough, in order to do a reduction from
the domino problem of Z2 one must find this subgrid using local rules of an SFT. Not
only known proofs of Halins grid theorem do not provide such a local way of finding a
grid, they are not constructive. Thus, a general proof of this conjecture still seems out of
reach.

Apart from the tilings perspective, there is also motivation from logics to study this
conjecture. The domino problem can be expressed in monadic second order (MSO) logic.
It turns out that MSO logic on a graph is undecidable on Cayley graphs of non-virtually
free groups (MSO logic is undecidable on non-context-free groups [KL05], and a non-
virtually free group is always non-context-free [MS85]). Proven true, Conjecture 1 would
show that the domino problem fragment is "big" in the MSO logic.

3.1.2 Periodicity, Aperiodicity
The orbit of x is defined to be OG(x) = {T g(x) | g ∈ G}, and its stabilizer is
Stabg(x){g ∈ G | T g(x) = x}. There are two definitions of periodicity for x ∈ AG:

• x is weakly periodic if StabG(x) 6= {1G},
• x is strongly periodic if OG(x) is finite.
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On an infinite line (G = Z) these two definitions are the same, because there can be
only one direction of periodicity (see Section 1.1.3). For other finitely presented groups
the picture looks like higher dimensional grids, weak periodicity corresponding to one-
periodicity and strong periodicity to full periodicity. These notions of periodicity extend
to subshifts, for which we can define aperiodicity in the two following ways:

• a subshift is weakly aperiodic if it is non-empty and contains no strongly periodic
configuration,

• a subshift is strongly aperiodic if it is non-empty and contains no weakly periodic
configuration.

Since we are mostly interested in the aperiodicity of subshifts, we will restrict ourself to
talk about periodicity of configurations and aperiodicity of subshifts in order to not mix
these terms. Thanks to Proposition 1.1.5, these two definitions coincide for Z and Z2, but
again, for more general groups they might be different.

Except that strong aperiodicity implies weak aperiodicity, the link between the two
notions is not really known. They seem linked to the decidability of the domino problem,
since most of the proofs of undecidability make use of a strong or weak aperiodic SFT.
Currently, all groups we know to have both weak and strong aperiodic SFTs have unde-
cidable domino problem (for example Zd with d ≥ 2), and we do not know any groups
without strong aperiodic SFTs that have decidable domino problem. If the word prob-
lem is undecidable, then the domino problem is also undecidable [ABJ18]. Piantadosi
also proved that virtually free groups Fn for n ≥ 2 had a weakly aperiodic SFT but no
strongly aperiodic SFT [Pia08]. Not directly linked to the domino problem, Jeandel still
proved that the existence of a strongly aperiodic SFT implied that the word problem of a
group is decidable [Jea15a]. Cohen proved that groups with two ends or more do not have
strongly aperiodic subshifts, and conjectured that the other way was also true [Coh17].
It is conjectured that some groups have undecidable domino problem and no strong ape-
riodic SFT – for example the lamplighter group, but we still have no proven examples of
this. Table 3.1 summarizes the links known between periodicity and the decidability of
the domino problem.

(must have one end) [Coh17] (Conjecture: two ends and more ?) [Coh17]
XXXXXXXXXXXXDP

Aperiocity ∃ Strongly aperiodic SFT
∃ Weakly aperiodic SFT

6 ∃ Strongly aperiodic SFT
∃ Weakly aperiodic SFT

6 ∃ Strongly aperiodic SFT
6 ∃ Weakly aperiodic SFT

Decidable DP
Decidable WP ? Virtually free groups [Pia08] Virtually Z groups

Undecidable DP
Decidable WP

(virtually)
Zd, d ≥ 2
H2 [Goo05]

BS(n, n) [EM20]
Z2 ⋊H [BS19]

G1 ×G2 ×G3 [Bar19]

? ?

Undecidable DP
Undecidable WP

hhhhhhhhhhhhhhhhhh

[Jea15a] ? ?

Table 3.1 – Summary of known results linking periodicity and decidability of the domino
problem (DP) and word problem (WP) for infinite groups. Thanks to Julien Esnay for
his version of this table.
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3.1.3 Subshifts over Graphs
The combinatorial definition of subshifts can be extended to more general graphs than
Cayley graphs. We consider bounded degree countably infinite graphs with labeled edges.
In this context, a graph Γ is defined to be a triple (VΓ, EΓ, LΓ) with VΓ a countable (usually
infinite) set of vertices, EΓ ⊆ V 2

Γ a set of edges such that for every v ∈ VΓ its degree
d(v) = |{u ∈ VΓ | (u, v) ∈ EΓ or (v, u) ∈ EΓ}| is bounded by a constant independent of v.
LΓ : EΓ → L is a labeling function assigning to every edge a label from a finite set L.
Let S, T ⊂ VΓ. A mapping ϕ : S → T is a label preserving graph isomorphism if it is a
bijection and

• for all u, v ∈ S, (u, v) ∈ EΓ if and only if (ϕ(u), ϕ(v)) ∈ EΓ;
• for all u, v ∈ S, LΓ ((u, v)) = LΓ ((ϕ(u), ϕ(v))).
Let us fix a graph Γ and A be a finite alphabet. A configuration over Γ is a function

x ∈ AΓ. If S ⊂ VΓ is finite and connected, a pattern (with support S) is a function
p : S → A. Such a pattern appears in a configuration x (resp. in a pattern p′ : T → A)
if there exists a finite set of vertices T ⊂ VΓ (resp. T ⊂ S ′) and a label preserving graph
isomorphism ϕ : S → T such that pu = xϕ(u) (resp. pu = p′

ϕ(u)) for every u ∈ S. In this
case, we denote p ⊏ x (resp. p ⊏ p′).

Like for groups, AΓ is called the full shift and a set XF ⊆ AΓ is called a subshift if
there exists a set F such that XF is the set of all configurations that do not contain any
patterns from F . If there exists such a F which is finite, XF is an SFT. XF is a nearest
neighbor subshift if all patterns of F have as support two vertices connected by an edge.

Definition 3.1.2 (Domino problem of a graph). The domino problem of a fixed graph Γ
is the following question: "Given an SFT XF on Γ by its alphabet A and set of forbidden
patterns F , is XF 6= ∅ ?".
We denote DP(Γ) the domino problem of the graph Γ.

3.2 Substitutions
The main results from this chapter come from the similarity of the Cayley graph of some
groups with the graph of specific substitutions. In this section we introduce the needed
material about substitutions, orbit graphs and their tilings.

3.2.1 Definition and Properties
Deterministic Substitutions

Let A be a finite alphabet. In this section, Aω = AN is the set of right-infinite words
(with index starting at 0) and ωA = A−N\{0} the set of left-infinite words (with index
starting at −1).

A (deterministic) substitution (also known as morphism) is a map σ : A → A∗. It
can naturally be extended to A∗, Aω and ωA by applying it to every letter of a (possibly
infinite) word and concatenating the resulting words. There are several ways of extending
it to AZ, we chose the formalism of pointed bi-infintie words. In this formalism, a biinfinte
word w ∈ AZ is seen as two infinite words separated by a fixed point: w ∈ ωA · Aω.
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Chapter 3. Substitutions and Groups

Applying a substitution σ to a (pointed) biinfinte word w = u ·v is defined to be σ(u ·v) =
σ(u) · σ(v) (see Fig. 3.1).

w−2 w−1 w0 w1 w2. . . . . .

σ(w−2) σ(w−1) σ(w0) σ(w1) σ(w2). . . . . .

w

σ(w))

Figure 3.1 – Application of a substitution σ to a biinfinte word w.

A letter is mortal for σ if there exists k such that σk(a) = ε and the set of mortal
letters of σ is denoted by Mσ. The mortality exponent t of σ is the smallest integer t ≥ 0
such that σk(a) = ε for all a ∈Mσ. For a letter a ∈ A such that σ(a) = xaw with w ∈ A∗

and x ∈M∗
σ , we define the positive infinite iteration of σ on a:

−→
σω(a) = σt−1(x) · · ·σ(x) x a w σ(w)σ2(w) · · · ∈ Aω.

Similarly, if σ(a) = wax with w ∈ A∗ and x ∈M∗
σ we define the negative infinite iteration

of σ on a:
←−ωσ(a) = · · · σ2(w) σ(w) w a x σ(x) · · ·σt−1(x) ∈ ωA.

Then, we define the set

Aσ = {a ∈ A | ∃x, y ∈ A∗, σ(a) = xay and xy ∈M∗
σ}

and
Fσ =

{
σt(a) | a ∈ Aσ and t is the mortality exponent of σ

}
.

Using these notation, we can characterize de biinfinte fixpoints of a substitution σ:

Theorem 3.2.1 (Proposition 4 of [SW99]). Let w be a biinfinte pointed word. The
equation σ(w) = w has a solution if and only if w = x · y with y ∈ Aω, x ∈ ωA such that
either

• y ∈ F ω
σ , or

• y ∈ F ∗
σ

−→
σω(a) for some a ∈ A and there exists u ∈ M∗

σ and v /∈ M∗
σ such that

σ(a) = uav.
And either

• x ∈ ωFσ, or
• x ∈ ←−ωσ(a)F ∗

σ for some a ∈ A and there exists u /∈ M∗
σ and v ∈ M∗

σ such that
σ(a) = uav.

If the substitution σ has no mortal letters (Mσ = ∅), the definitions above becomes:
−→
σω(a) = a w σ(w)σ2(w) · · · ∈ Aω,
←−ωσ(a) = · · ·σ2(w) σ(w) w a ∈ ωA.

And the sets Aσ and Fσ becomes empty, which also simplifies Theorem 3.2.1:
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Corollary 3.2.2. Let w be a biinfinte pointed word and σ a substitution with no mortal
letters. The equation σ(w) = w has a solution if and only if w = x · y with y ∈ Aω,
x ∈ ωA such that

• x = −→σω(a) for some a ∈ A and there exists w ∈ A∗ such that σ(a) = aw, and
• y =←−ωσ(a′) for some a′ ∈ A and there exists w ∈ A∗ such that σ(a′) = wa′.

Substitution systems

A parent function P : Z→ Z is an onto and non-decreasing function. In particular, such
a function P satisfies that for every i ∈ Z, P (i + 1) − P (i) ∈ {0, 1}. Let u = (ui)i∈Z ∈
(N \ {0})Z be a biinfinte sequence of positive integers. The accumulation function of u is
the function ∆: Z→ Z given by

∆(i) =


∑i−1
k=0 uk if i ≥ 1

0 if i = 0
−∑−1

k=i uk if i ≤ −1
.

Note that the family of discrete intervals (Ik)k∈Z where Ik = [∆(k); ∆(k+1)−1] forms
a partition of Z. If P is a parent function, and if we define the sequence u by ui = |P−1(i)|
for every i ∈ Z, then we get that P (j) = i for every j ∈ [∆(i); ∆(i + 1) − 1], where ∆ is
the accumulation function of u.

A non-deterministic substitution is a couple (A, R) where A is a finite alphabet and
R ⊂ A×A∗ is a finite set called the relation, whose elements are called production rules.
We say that an infinite word ω ∈ AZ produces the word ω′ ∈ AZ with respect to the parent
function P if for every i ∈ Z, one has (ωi, ω′|[∆(i);∆(i+1)−1]) ∈ R, where ω′|[∆(i);∆(i+1)−1] is
the finite subword of ω′ that appears on indices {j ∈ Z | P (j) = i}. In this case we
shall extend the above notation and write (ω, ω′) ∈ R. An orbit of a non-deterministic
substitution (A, R) is a set {(ωi, Pi)}i∈Z ∈

(
AZ × ZZ

)Z
such that for every i ∈ Z, Pi is a

parent function, and the word ωi produces the word ωi+1 with respect to Pi. Note that
the previous deterministic substitutions can be seen as non-deterministic substitutions
with |R| = 1 and impose to the parent function P (0) = 0.

A non-deterministic substitution (A, R) has an expanding eigenvalue if there exist
λ > 1 and v : A → R+ \ {0} such that for every (a, w) ∈ R,

λ · v(a) =
|w|∑
i=1

v(wi).

3.2.2 Orbit Graphs and Tilings

Let (A, R) be a non-deterministic substitution and denote M = max(a,w)∈R |w|. Let
Ω = {(ωi, Pi)}i∈Z of (A, R) be an orbit of (A, R), with Pi parent functions (onto and non-
decreasing) and (ωi)i∈Z a sequence of biinfinite words such that for all i ∈ Z ωi produces
ωi+1 with respect to Pi. The orbit graph associated with the orbit Ω is the graph ΓΩ with
set of vertices Z2, edges EΩ given by

• for every i, j ∈ Z, ((i, j), (i, j + 1)) ∈ EΩ,
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• for every i ∈ Z and every k ∈ [∆i+1(j); ∆i+1(j + 1)− 1],

((i, j), (i+ 1, k)) ∈ EΩ,

and labeling function LΩ : EΩ → {next} ∪ [0;M − 1] given by
• for every i, j ∈ Z, LΩ (((i, j), (i, j + 1))) = next;
• for every i ∈ Z and every k ∈ [∆i+1(j); ∆i+1(j + 1)− 1],

LΩ (((i, j), (i+ 1, k))) = k −∆i+1(j),

where ∆i is the accumulation function associated with
(
|P−1
i (j)|

)
j∈Z

for every i ∈ Z.
Note that ΓΩ depends uniquely upon the parent functions {Pi}i∈Z and not on {ωi}i∈Z.
However, we implicitly require that the sequence of parent functions defines an orbit
Ω = {(ωi, Pi)}i∈Z of (A, R).

•

• •

•

• • • •

•

• • •

(0,−1)

(1,∆1(−1))

(1,∆1(0) − 1)

0 1

(0, 0)

(1,∆1(0))

(1,∆1(0) + 1)

(1,∆1(0) + 2)

(1,∆1(1) − 1)

0 1 2 3

(0, 1)

(1,∆1(1))

(1,∆1(1) + 1)

(1,∆1(2) − 1)

0 1 2

Figure 3.2 – Part of an orbit graph. Dashed arrow are edges of the graph labeled with
next.

Orbits as tilings of R2

In addition to orbit graphs, orbits can also be represented as tilings of the plane. Let (A, R)
be a non-deterministic substitution with an expanding eigenvalue λ > 1 and v : A → R+ \
{0}. For every production rule (a, w) ∈ R, we define the (a, w)-tile in position (x, y) ∈ R2

as the square polygon with |w| + 3 edges pictured in Fig. 3.3, where w = w1 . . . wk
(horizontal edges are curved to be more visible, but are in fact just straight lines).

Remark. The length of the top edge and the sum of lengths of bottom edges of this tile
are the same. Since (A, R) has an expanding eigenvalue λ > 1 with v, one has

k∑
j=1

1
λ
v(wi) · ey = ey

λ
· λ · v(a) = v(a) · ey,

so that the bottom right vertex (x+ 1
λ

(v(w1) + · · ·+ v(wk)) ey, y − log(λ)) is indeed (x+
v(a) · ey, y − log(λ)).

The (A, R)-tiles is the set of all (a, w)-tiles in position (x, y) for all possible (a, w) ∈ R
and x, y ∈ R. Given an orbit Ω = {(ωi, Pi)}i∈Z for (A, R) a tiling of R2 for Ω is a function
ΨΩ : Z2 → R2 such that for every (i, j) ∈ Z2 we have:

• ΨΩ(i, j) = (x, y) if and only if ΨΩ(i, j + 1) = (x+ v((ωi)j) · ey, y);
• ΨΩ(i, j) = (x, y) if and only if ΨΩ(i+ 1,minP−1

i+1(j)) = (x, y − log(λ)).
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•

• •

•• • •

(a,w)-tile

(x, y)

(x, y − log(λ))

v(a) · ey

log(λ)

1
λv(w1) · ey 1

λv(w2) · ey

. . .

. . .

. . . 1
λv(wk) · ey

(a,w1 . . . wk) ∈ R

Figure 3.3 – An (a, w)-tile for some production rule (a, w) ∈ R with w = w1 . . . wk.

Note that by the previous remark, the collection of (A, R) obtained by putting an
((ai)j, ai+1|[∆i+1(j);∆i+1(j+1)−1])-tile at position ΨΩ(i, j) defines a tiling of R2, that is, the
collection of square polygons covers R2 and has pairwise disjoint interiors. See Fig. 3.4.
Moreover, fixing one position, say ΨΩ(0, 0) = (0, 0) defines the function ΨΩ completely. It
follows that for a substitution with an expanding eigenvalue, there is always a tiling for
it.

ω−1
0 -tile

ω0
−2-tile ω0

−1-tile ω0
0-tile ω0

1-tile

•

• •

(0, 0)

Figure 3.4 – A tiling ΨΩ of an orbit into R2.

Proposition 3.2.3. If a substitution (A, R) has an expanding eigenvalue, then for every
orbit Ω of (A, R) there exists a tiling ΨΩ for Ω.

3.2.3 The Domino Problem on the Hyperbolic Plane
The hearth of the proofs of this chapter is the construction of Kari, proving that the
domino problem is undecidable for pentagonal tiling of the hyperbolic plane H2 [Kar08].
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In this section we briefly review this construction on Z2 and H2. Most of the ideas of his
construction were already present in his aperiodic tileset [Kar96].

Tiling of the plane

A piecewise affine map f is given by a set of rational affine maps f1, . . . , fk : R2 7→
RR and disjoints unit square domains U1, . . . , Uk ⊂ R2 with integer corners such that
U = U1 ∪ . . . ∪ Uk and

f :

U → R2

x 7→ fi(x) for x ∈ Ui
.

A point x ∈ R2 is called immortal if for all i ∈ N, f i(x) ∈ U . The mortality problem of
piecewise affine maps is the following question: "Does a piecewise affine map with square
domains U1, . . . , Uk with integer corners have an immortal point ?" Kari showed that this
problem is undecidable, and his proof of the undecidability of the domino problem consists
in encoding this problem into a tiling.

We say that the Wang tile

n

w e

s

computes an affine function f : R2 → R2 if:

f(n) + w = s + e. (3.1)

If we tile a line of width m of such tiles

average = n

average = s

w e· · ·

and averaging of the equation (3.1), we obtain:

f(n) + w
m

= s + e
m
, (3.2)

with n representing the average of the top labels and s the average of the bottom labels.
Let i ∈ Z. We say that a biinfinite sequence (xk)k∈Z ∈ {i, i + 1}Z represents a real

number x ∈ [i, i + 1] if there exists a growing sequence of intervals I1 ⊂ I2 ⊂ ... ⊆ Z of
size at least 1, 2, ... such that:

lim
k→+∞

∑
j∈Ik

xj
|Ik|

= x.
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Note that if (xk)k∈Z is a representation of x, all the shifted sequences (xl+k)k∈Z for every
l ∈ Z are also representations of x. A sequence (xk)k∈Z can a priori represent several
distinct real numbers since different interval sequences may make it converge to different
points. A sequence of vector (x)i = (x1

i , x
2
i ) represents a vector x = (x1, x2) if (x1

i )i
represents x1 and (x2

i )i represents x2.
When taking the limit of (3.2) over a sequence of intervals, we obtain that if the

sequence of color at the top of an infinite line represents x ∈ R, then the bottom sequence
represents f(x).

To obtain a set of tile T computing a piecewise affine map f divided into f1, . . . , fk,
we take the sets of tiles T1, . . . , Tk computing f1, . . . , fk, then T = ⋃

i Ti. Such a tiling
admits a valid tiling of Z2 if and only if f has an immortal point. Kari showed that
any piecewise affine map f whose domains have integer points can be transformed into a
finite tileset that computes f in the previous sense. Which provides the reduction of the
domino problem overs Z2 from the mortality problem of piecewise affine maps. Moreover,
if f is chosen carefully the valid tilings are necessarily aperiodic.

Tiling of the hyperbolic plane

The undecidability of the domino problem over Z2 was already known, but the novelty of
this approach is that it is very easily generalizable to the hyperbolic plane. In the chosen
model, the hyperbolic plane is tiled by copies of the following pentagonal tile.

. . . . . .

...

...
Figure 3.5 – Pentagonal tiling of H2.

Note that the curved edges are represented as such for readability but are straight in
the model. In this model, it is again possible to define a tileset that computes an affine
function. A pentagonal tile:

n

w e

s1 s2
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computes an affine function f : R2 → R2 if:

f(n) + w = s1 + s2

2
+ e.

Tiling a line with such tiles, we obtain the same property as in Z2 that if the top colors
represent x, the bottom ones represent f(x). With the same technique, we can derive a
tileset that encodes a piecewise affine map f , and that admits valid tilings of H2 if and
only if f has an immortal point. Here again, Kari provides a way of building a finite tiling
that computes any piecewise affine map f whose domains have integer points, proving
that the domino problem over H2 is undecidable.

Theorem 3.2.4 (Kari, 2008 [Kar08]). The domino problem is undecidable in the hyper-
bolic plane.

This construction was the starting point of Aubrun and Kari’s proof of the undecid-
ability of the domino problem over Baumslag-Solitar groups [AK13], as Baumslag-Solitar
groups BS(1, 2) are the closest group to the previous tiling model of the Hyperbolic plane.
We come back on this proof in Section 3.3. Tilings of H2 with pentagons can also be seen
as tilings of orbits of the substitution 0 7→ 00, and we will generalize this idea to other
substitutions in Section 3.4.

3.3 Periodicity in Baumslag-Solitar Groups
The pentagonal tiling of the hyperbolic plane seen previously can be seen as a Cayley graph
of a monoid, and the natural group we obtain when completing it is the Baumslag-Solitar
group with parameters (1, 2). Using similar techniques Aubrun and Kari proved that
any Baumslag-Solitar group also have undecidable domino problem. Their construction
provide a weakly aperiodic SFT (or tiling) of the group. In this section, we focus on
Baumslag-Solitar groups with parameters (1, n), and we will show that Aubrun and Kari’s
construction is actually strongly aperiodic for these groups (Section 3.3.2). Then, we build
a weakly but not strongly aperiodic SFT over BS(1, n) (Section 3.3.3). These result are
a joint work with Julien Esnay [EM20].

3.3.1 Baumslag-Solitar Groups
In general, Baumslag-Solitar groups depend on two parameters m,n ∈ Z, and are defined
by the presentation:

BS(m,n) =< a, b | bamb−1 = an > .

We will focus on the case where m = 1, the case n = 1 being similar to it. In this case,
the presentation becomes

BS(1, n) =< a, b | bab−1 = an > .

As mentioned in Section 3.1.1, SFTs over a group can be equivalently defined as Wang
tiles. We precise the formalism of Wang tiles in the particular case of BS(1, n), since it is
the one Aubrun and Kari used to define their aperiodic SFT. A Wang tiling is a particular
SFT where the alphabet is a set of Wang tiles τ , which are tuples of colors of the form
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s = (ns, ls, rs, bs1, . . . , bsn). To make notations easier, we denote:

s(top) = ns

s(left) = ls

s(right) = rs

s(bottom1) = bs1
...

s(bottomn) = bsn

A tiling is then a configuration over the group using the alphabet τ : t ∈ τBS(1,n). We say
that a tiling is valid if the colors of neighbor tiles match. That is, for any g ∈ BS(1, n)
and tg the associated tile at position g, we have:

tg(right) = tga(left)
tg(top) = tgb(bottom1)
tg(top) = tga−1b(bottom2)
tg(top) = tga−2b(bottom3)

...
tg(top) = tga−(n−1)b(bottomn)

See Fig. 3.6 for an illustration of these rules.

•

• •

• ••

• •

• •

g ga

tg(right) tga(left)
•

• •

• ••

• •

• •

• • •

ga−1b

gb

g

tga−1b(bottom2)

tgb(bottom1)

tg(top)

Figure 3.6 – Illustration of the neighbor rules for BS(1, 2).

3.3.2 Aubrun-Kari Tileset is Strongly Aperiodic
In their paper showing that the domino problem is undecidable for BS(m,n), Aubrun
and Kari provide a counter-example to the fact that their tileset is strongly aperiodic
[AK13]: they exhibit a period bab−1a2ba−1b−1a−2 in the specific case of BS(2, 3). One
can remark that the period bab−1aba−1b−1a−1 works in the general case of BS(m,n) with
m > 1, n > 1. However, this counter-example does not work anymore if m = 1. In this
section, we show that their tileset is in fact strongly aperiodic in the BS(1, n) case with
n ≥ 2.

We start by a key lemma: in BS(1, n), one can use a normal form to write the elements
of the group.
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Lemma 3.3.1 (Normal form inBS(1, n)). For all g ∈ BS(1, n), there are integers k1, k2 ∈
N0 and l ∈ Z such that g = b−k1albk2.

Proof. From the definition of BS(1, n), we have that:
(1) ba = anb,
(2) ba−1 = a−nb,
(3) ab−1 = b−1an,
(4) a−1b−1 = b−1a−n.

Consequently, taking an element of BS(1, n) as a word w written with a and b, we can:
• Move each positive power of b to the right of the word using (1) and (2) repeatedly;
• Move each negative power of b to the left of the word using (3) and (4) repeatedly;

so that we finally get a form for the word w which is: b−k1albk2 with k1, k2 ∈ N0 and
l ∈ Z.

Remark. This form is not unique (a = b−1anb for instance), unless we impose k1 to be
minimal. However, the sum k2 − k1 is constant for all forms of a given word.

Indeed, suppose we have b−k1albk2 = b−k′
1al

′
bk

′
2 . Then

b−k1al = b−k′
1al

′
b−(k2−k′

2)

= b−k′
1−(k2−k′

2)al
′nk2−k′

2

Hence we get al′nk2−k′
2 −l = b−k1+k′

1+k2−k′
2 . Since it is clear that ai = bj if and only if

i = j = 0 in BS(1, n), we obtain k2 − k1 − (k′
2 − k′

1) = 0 which is what we wanted.

We call Lg = {gak | k ∈ Z} the level of g ∈ G. The previous remark allows to properly
define |g|b = k2−k1 the height of g, and it is actually the height of all elements in Lg. We
now tile BS(1, n) using tiles as described in Section 3.3.1. We use the same vocabulary
to talk about lines of tiles: for a given line of tiles located between levels Lg and Lgb−1 ,
we talk about the upper side of the line to refer to level Lg, and the lower side of the line
to refer to level Lgb−1 . We consider tilesets with integers on the upper and lower sides of
each tile.

Theorem 3.3.2 (Aubrun & Kari [AK13]). Let n ∈ N and f : I → R be a piecewise affine
map with rational coefficients, with I an interval of R with rational bounds. There exists
Yf an SFT on BS(1, n) given by a tileset τf such that:

1. a line of tiles represents at least one real x ∈ I on its upper side by forming a
sequence that uses two integers with distance 1;

2. if a line of tiles represents a real x ∈ I on its upper side, then it represents (possibly
among others) f(x) on its lower side;

3. Yf is nonempty if and only if f has an immortal point in its domain of definition.

We define f : [1
3 , 2]→ [1

3 , 2], with:

f(x) =

2x if x ∈ [1
3 , 1)

1
3x otherwise

Since 2 and 3 are coprime, this piecewise affine map has no periodic point, so for all
x ∈ [1

3 , 2], fk(x) = x ⇒ k = 0. Moreover, all points in its domain of definition are
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immortal. Applying Theorem 3.3.2 we can build an SFT Yf with this specific map that
is nonempty. Thanks to the fact that f has no periodic point, Yf is weakly aperiodic (see
[AK13]). We will now prove that it is also strongly aperiodic.

One key ingredient to prove this statement is the following. Usually, a given line could
represent several reals, depending on the choice of the sequence of intervals. But inside
a tiling of the whole group, our particular f forces any two represented reals on a line to
be the same.

For a given line Lg and a configuration x ∈ AG, we define the sequence (ugi )i∈Z := xgai

to be the sequence of digits on the line Lg (its origin depending on g).

Lemma 3.3.3. For any g ∈ BS(1, n), the sequence (ugi )i∈Z represents a unique real
number.

Proof. Assume that ug represents two distinct reals x and z.
This means that ug·b−1 represents both f(x) and f(z) because of the way the SFT Y

is built. Similarly, for any k ∈ N, ug·b−k represents both fk(x) and fk(z).
As it is explained in [DGG14], f can be seen as a rotation on the circle S1 through

the following mapping:

ϕ : [1
3
, 2]→ S1

ϕ(x) = log(x) + log(3)
log(2) + log(3)

mod 1

This mapping is bijective up to the two endpoints of the interval that are identified. The
map r := ϕ ◦ f ◦ ϕ−1 appears to be a rotation of angle log(2)

log(2)+log(3) . Indeed, for every
α ∈ ϕ([1

3 , 1[),

ϕ ◦ f ◦ ϕ−1(α) = ϕ(2ϕ−1(α))

= log(2) + log(ϕ−1(α)) + log(3)
log(2) + log(3)

mod 1

= α + log(2)
log(2) + log(3)

mod 1

and similarly, for every α ∈ ϕ([1, 2]), one has

ϕ ◦ f ◦ ϕ−1(α) = ϕ(1
3
ϕ−1(α))

= log(ϕ−1(α))
log(2) + log(3)

mod 1

= α + log(2)
log(2) + log(3)

mod 1

The angle log(2)
log(2)+log(3) is irrational. As a consequence, {rk(x) | k ∈ N} and

{rk(z) | k ∈ N} are both dense in S1.
We introduce darc(e2iπθ, e2iπψ) = m(ψ − θ) ∈ [0, 1) for θ, ψ ∈ R, where m(ψ − θ) is

the only real in [0, 1) congruent to ψ − θ mod 1. We call darc the oriented arc distance
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(measured counterclockwise) between two elements of S1. It is not really a distance since
it is not symmetric and has no triangular inequality, but its basic properties will suffice
here. Since r is a rotation, it is easy to check that it preserves darc. Hence we have that
∀k ∈ N, darc(rk(x), rk(z)) is constant equal to some c ∈ [0, 1[.

Let us partition S1 between A = ϕ((1
3 , 1)), B = ϕ([1, 2)), and

C = {ϕ(2)} = {ϕ(1
3)} = {0}. We want to show that there is some l ∈ N for which

rl(x) ∈ A and rl(z) ∈ B. Were this not the case, we would have an infinite number of
integers k ∈ N such that rk(z) ∈ B and rk(x) ∈ B, since 0 is reached at most once by
each orbit (because we have a rotation of irrational angle). Then, because r preserves
the counterclockwise order, we would have darc(rk(x), 0) ≥ darc(rk(x), rk(z)) = c (see
Fig. 3.7). But by density of {rk(x) | k ∈ Z}, there exists some k0 ∈ N such that
darc(rk0(x), 0) < c: contradiction. Hence there exists l ∈ N such that rl(x) ∈ A and
rl(z) ∈ B.

A

B

x
c

y

r(x)

cr(y)

rl(x)
c

rl(y)

Figure 3.7 – Preservation of the oriented arc distance darc by r and intersection of the arc(
rl(x), rl(z)

)
and the boundary between A and B.

Since rl = ϕ ◦ f l ◦ ϕ−1 and considering the definitions of A and B, f l(x) ∈ (1
3 , 1) and

f l(z) ∈ [1, 2). But this would cause f l(x) to be represented by a sequence of 0’s and 1’s
(with an infinite number of 0s) and f l(z) by a sequence of 1’s and 2’s (with an infinite
number of 2s). However, the SFT Yf is build such that a line contains only elements in
{0, 1} or {1, 2}, but not both (property 2 of Theorem 3.3.2): this is a contradiction.

Therefore, x and z must be equal, hence the uniqueness of the real number represented
by a line of tiles.

Using previous results, we are now able to prove that the real represented on a line of
the tiling only depends on the number of b it contains, its depth.

Lemma 3.3.4. Let y ∈ Yf and 1G the identity of BS(1, n).
If we set x as the unique real represented by the sequence u1G, then for every

g ∈ BS(1, n), ug represents f−|g|b(x) in the configuration y.

Proof. We will prove this result for g = bm first. The result is clear if m ≤ 0 (remember
that f is applied positively when we multiply by b−1). Let m > 0. If we call x′ the unique
real represented by the level Lbm , then L1G

represents fm(x′) by construction of Y . By
Lemma 3.3.3, either fm(x′) = x, and on [1

3 , 2), since f is bijective, x′ = f−m(x).
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Now let us consider any g ∈ BS(1, n) and let x′ be the real represented by ug.
Using Lemma 3.3.1, we write g = b−k1albk2 , with k1, k2 ∈ N0, l ∈ Z. Let us define
h = b−k1al. Since h ∈ Lb−k1 , uh represents fk1(x) thanks to the previous paragraph. We
also have h = gb−k1−|g|b . Because −k1 − |g|b = −k2 ≤ 0, the construction of Y implies
that uh also represents fk1+|g|b(x′). By uniqueness of the representation (Lemma 3.3.3),
fk1+|g|b(x′) = fk1(x), and so x′ = f−|g|b(x).

The uniqueness in Lemma 3.3.3 may seem anecdotal but the fact that there are not
several reals represented on each line is actually fundamental. Without it, we could not
necessarily compare two reals represented by the same line, and thus we could have a
"vertical" period (of the form bm). Indeed, one level could represent both x and fm(x)
using different interval sequences (Ik) and (Jk), and another level m steps down would
be identical, so that at the second level fm(x) is represented with the intervals (Jk) that
"correspond" to the (Ik) that represent x at the first level. Then x and fm(x) could cohabit
on the same line without any need to be equal.

Lemma 3.3.3 suppresses this possibility of cohabitation and allows via Lemma 3.3.4
for a non-ambiguous definition of what each level represents. This fact prevents vertical
periods, and it can be used to prevent any period whatsoever. In other words we can
prove that Aubrun and Kari’s SFT is strongly aperiodic on BS(1, n).

Theorem 3.3.5. For every n ≥ 2, the Baumslag-Solitar group BS(1, n) admits a strongly
aperiodic SFT.

Proof. Let y ∈ Yf , and g ∈ StabBS(1,n)(y). Using Lemma 3.3.1, we can write g = b−k1albk2

with k1, k2, l ∈ N.
Let x be the real represented by u1G . By Lemma 3.3.4, ug represents fk1−k2(x). Since

g ∈ StabBS(1,n)(y), ug = ue and so fk1−k2(x) = x (using Lemma 3.3.3). The aperiodicity
of f then implies that k1 = k2. We call this common value k.

Let us assume l 6= 0. Then g = b−kalbk and gn = b−k(an)lbk. We can reduce the whole
word to b−k+1albk−1 using the relation an = bab−1 – and this is true even if k = 0. More
generally, we notice that for any positive integer i, iterating the process i times, we obtain
that gni = b−k+ialbk−i ∈ StabBS(1,n)(y).

Since for all i, gni ∈ StabBS(1,n)(y), we can obtain a contradiction with an argument
similar to Prop 6. of [AK13]. The fact that bjalb−j ∈ StabBS(1,n)(y) means that ubj = ub

jal

hence ub
j is a l-periodic sequence. Since this is true for any j > −k and since said

sequences can only use digits among {0, 1, 2}, we have a finite number of such sequences.
In particular, there are j1 6= j2 such that the two levels Lbj1 and Lbj2 read the same
sequence (up to index translation). Then these two levels represent respectively f j1(x)
and f j2(x), and since the two sequences on these levels are the same, f j1(x) = f j2(x).
This equality contradicts the fact that f has no periodic point, since we had j1 6= j2.

As a consequence, any non-trivial g ∈ BS(1, n) cannot be in StabBS(1,n)(x), and we
finally get that StabBS(1,n)(x) = {1G}: YF is strongly aperiodic.

Following Theorem 3.3.5, a question remains: why is Aubrun and Kari’s SFT strongly
aperiodic? Is this because BS(1, n) behaves like Z2 and all its weakly aperiodic SFTs are
also strongly aperiodic? Or does Aubrun and Kari’s construction happen to be strong

63



Chapter 3. Substitutions and Groups

enough? It turns out that the latter is the correct answer, as we build in the following
section an SFT on BS(1, n) that is weakly but not strongly aperiodic.

3.3.3 A Weakly not Strongly Aperiodic Tileset of BS(1, n)
Our weakly but not strongly aperiodic SFT will work by encoding specific (deterministic)
substitutions into BS(1, n). In this section we consider only deterministic substitutions,
so we will not specify it anymore. Indeed, looking at the Cayley graph of BS(1, n), it is
very similar to orbit graphs of constant-size substitutions. Indeed, one "sheet" of BS(1, n)
is isomorphic the orbit graph of 0 7→ 0n. In this section, we start by creating artificially a
set of substitutions that are easy to encode in BS(1, n). In the next section we show that
in fact, these "artificial" substitutions are the only binary substitutions that are possible
to encode in BS(1, n) with our method.

The substitutions σi

Let A = {0, 1}. For r ∈ {0, . . . , n− 1}, let σr : A → An be the following substitution:

σr :

0 7→ 0n−r−110r

1 7→ 0n
.

We may also write σ = σ0 and call the other ones the shifts of σ.
Note that, for l ∈ {0, 1} and i ∈ {0, . . . , n − 1}, σr(l)i = 0 if and only if l = 0 and
i = n − r − 1. All σr(0) are cyclic permutations of the same finite word. To simplify
notations, we denote ρ = T−1 the shift action on biinfinite words.

Lemma 3.3.6. For any biinfinite word u ∈ AZ, any i, r ∈ {0, . . . , n− 1} and j ∈ Z,

(σr ◦ ρj(u))i = σr(uj)i = (σr(u))nj+i.

Proof. For i ∈ {0, . . . , n− 1}, σr(ρj(u))i depends on the letter of ρj(u) at position 0 only,
that is uj (See Fig. 3.8), hence σr(ρj(u))i = σr(ρj(u)0)i = σr(uj)i.

Similarly, the letter (σr(u))nj+i does not depend on the totality of u but only on uj:
it is the ith letter of σr(uj).

uj−2 uj−1 uj uj+1 uj+2. . . . . .

σr(uj−2) σr(uj−1) σr(uj) σr(uj+1) σr(uj+2). . . . . .

(σr ◦ ρj(u))i = σr(uj)i

ρj(u)

σr ◦ ρj(u)

Figure 3.8 – Illustration of Lemma 3.3.6.

Lemma 3.3.7. For any r ∈ {0, . . . , n− 1},

σr = ρr ◦ σ.
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Proof. By Lemma 3.3.6, for any u ∈ AZ, j ∈ Z and i ∈ {0, . . . , n− 1}, we have

σr(u)nj+i = (σr(uj))i.

If i+r ∈ {0, . . . , n−1} then (σr(uj))i = (σ(uj))i+r considering how the ith letter of σr(uj)
is simply r-shifted to the right in σ(uj). Additionally,

(σ(uj))i+r = (σ(u))i+r+nj
= (ρr ◦ σ(u))i+nj

by Lemma 3.3.6 again. Aligning all the equalities we obtained, we can conclude in that
case.

If 2n − 2 ≥ i + r ≥ n, i > n − r − 1, we have (σr(uj))i = 0 by definition of σr.
Furthermore, this is also the value of (σ(uj+1))i+r−n since i+r−n < n−1 and by definition
of σ. Then (σr(uj))i = 0 = (σ(uj+1))i+r−n. Once again, (σ(uj+1))i+r−n = (σ(u))i+r+nj by
Lemma 3.3.6, which allows us to conclude.

Lemma 3.3.8. For n ≥ 3, σ1 has a unique fixpoint. For n = 2, σ1 has no fixpoint but
σ1

2 has two fixpoints.

Proof. Since σ1 has no mortal letters, Corollary 3.2.2 gives us that σ1(w) = w if and only
if w = x · y with

• x = −→σ1
ω(a), a such that there exists w ∈ A∗, σ1(a) = aw;

• y =←−ωσ1(a′), a′ such that there exists w ∈ A∗, σ1(a′) = wa′.
Notice that σ1(0) = 0n−210 and σ1(1) = 0n, for n ≥ 3, so the only choice for a and a′ is
a = a′ = 0. Then σ1 has a fixpoint that is ←−ωσ1(0).−→σ1

ω(0) and which is unique.
For n = 2 the same reasoning concludes that σ1 has no fixpoint. However, since

σ1
2(0) = 0010 and σ1

2(1) = 1010, the same reasoning also yields that σ1
2 has two fixpoints

that are
←−−−−
ω(σ1

2)(0).
−−−→
(σ1

2)ω(0) and
←−−−−
ω(σ1

2)(0).
−−−→
(σ1

2)ω(1).

Lemma 3.3.9. Let s = σik ◦ · · · ◦σi1 for any i1, . . . , ik ∈ {0, . . . , n−1}. Then all fixpoints
of s are aperiodic.

Proof. Let w be a fixpoint of s. To prove its aperiodicity we follow a proof from [Pan86]
simplified for our specific case.

First, let us show that the two subwords 00 and 01 can be found in w.
• For 00, let us define s′ = σik−1 ◦ . . . ◦ σi1 . Then, by definition, w = σik(s′(w)) (by

convention s′(w) = w if k = 1). We are going to prove that s′(w) always contains
a 1. As a consequence, w = σik(s′(w)) contains 00 because σik(1) = 0n. Suppose
s′(w) = ...0.... If k = 1, it means that w = ...0..., but then s(w) 6= w so this is
impossible. If k = 2, then s′ = σi1 so the only way to have s′(w) = ...0... is to have
w = ...1..., but again s(w) 6= w. If k ≥ 3, let us define t = σik−3 ◦ . . . ◦ σi1 . With
this notation, w = σik ◦ σik−1 ◦ σik−2(t(w)). The assumption s′(w) = ...0... causes
σik−2(t(w)) = ...1.... However, this is impossible since ...1... has no antecedent by
σik−2. Therefore s′(w) must contains a 1 and we can find 00 in w.

• For 01, the only way for w not to contain 01 is to be of the form w = ...0...,
w = ...1... or w = ...10.... But it is clear that s(...0...) 6= ...0..., s(...1...) 6= ...1...
and s(...10...) 6= ...10... hence none of them can be fixpoints.
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Hence s(00) and s(01) can also be found in w since s(w) = w. We have s(00) 6= s(01);
consider the largest prefix on which they agree, call it u2, with |u2| > 1. Then both u20
and u21 can be found in w. Hence s(u20) and s(u21) can also be found in w. We have
s(u20) 6= s(u21); consider the largest prefix on which they agree, call it u3, with |u3| > |u2|.
Then both u30 and u31 can be found in w. Hence s(u30) and s(u31) can also be found in
w.

Repeating this reasoning, we can build subwords of w as large as we want, with two
choices for their last letter. Hence the factor complexity of w is unbounded, and so w is
aperiodic by Theorem 1.2.1 (Morse and Heldund).

Encoding substitutions in BS(1, n)

We now show how to encode such substitutions in tilings of the group BS(1, n). We define
the tileset τσ on BS(1, n), n ∈ N, n ≥ 2, to be the tiles shown on Fig. 3.9 for all l ∈ {0, 1}
and i ∈ {0, . . . , n− 1}. Remark that a tile is uniquely defined by the couple (l, i).

•

• •

• • • •. . .

l

σi(l)

i i

Figure 3.9 – Tiles of τσ: left and right colors are identical and equal to i, top color is l
and bottom colors are all letters of σi(l).

This tileset will be the weakly but not strongly aperiodic tileset we are looking for.
Lemmas 3.3.8 and 3.3.9 study the words that can appear on lines of the tiling, by looking
at the fixpoints of σ1. They prove that no biinfinite word can be both a fixpoint for the
σis and a periodic word, forbidding one direction of periodicity for any configuration we
will encode with our tileset. This naturally leads to the following proposition:

Lemma 3.3.10. No configuration of τσ can be ak-periodic for any k ∈ N.

Proof. Suppose that there is a configuration x of τσ such that ∀g ∈ BS(1, n), xak·g = xg
(ak-periodicity). Call w = (xaj )j∈Z. w is k-periodic by ak-periodicity of the configuration.
But w is also nk-periodic. Hence (xbaj )j∈Z is k-periodic. Indeed, by construction, when ap-
plying the correct substitution σi to xbaj and xbaj+k , one obtains the words xanj . . . xanj+n−1

and xanj+nk . . . xanj++nk+n−1 which are one and the same by nk-periodicity of w. With the
same argument, one can show that for any integer l > 0, (xblaj )j∈Z must be k-periodic.
However, these biinfinite sequences only use digits among {0, 1, 2} so there are a finite
number of such sequences. In particular, two of these sequences are the same. Since one is
obtained from the other by applying the correct succession σis, we get a periodic sequence
that is a fixpoint of some s = σiN ◦ . . . ◦ σi1 for some i1, . . . , iN ∈ {0, . . . , n − 1}. This
contradicts Lemma 3.3.9.
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The case n = 2 being a degenerate case, we begin by building a weakly periodic
configuration in the case where n ≥ 3.

Lemma 3.3.11. There exists a weakly periodic configuration in Xτσ for n ≥ 3.

Proof. We define w as the unique fixpoint of σ1 obtained thanks to Lemma 3.3.8.
Let f(k) = b k

n
c be the function maps k to the quotient in the euclidean division of k

by n and r(k) its remainder. We also define F (k) = f(k + 1) and R(k) = r(k + 1).

Xτσ is nonempty We define a configuration x describing which tile (cg, ig) is assigned
to g, i.e. xg = (cg, ig), using the canonical form g = b−kalbm. Then, we check that x does
verify the adjacency rules of Xτ . Define x ∈ τσBS(1,n) by

xb−kal := (wl, 1)
xb−kalbm := (wFm(l), R ◦ Fm−1(l)) for m > 0.

Let us prove that x ∈ Xτσ . Let g = b−kalbm.
• If m > 0, we have

xga(left) = xb−kal+nmbm(left)
= R ◦ Fm−1(l + nm)
= R ◦ Fm−1(l)
= xg(right).

• If m = 0, we have

xga(left) = xb−kal+1(left)
= R ◦ Fm−1(1)
= xg(right).

Let j ∈ {0, . . . , n− 1}. We have

xga−jb(bottomj+1) = xb−kal−jnm
bm+1(bottomj+1)

= σR◦Fm(l−jnm)(wFm+1(l−jnm))j
(Lemma 3.3.6) = σR◦Fm(l−jnm)(w)nFm+1(l−jnm)+j

(Lemma 3.3.7) = σ(w)nFm+1(l−jnm)+j+R◦Fm(l−jnm)

(by definition of F and R) = σ(w)Fm(l−jnm)+j+1

(Lemma 3.3.7) = σ1(w)Fm(l−jnm)+j

(since w is a fixpoint of σ1) = wFm(l−jnm)+j

(Fm(l − jnm) + j = Fm(l)− j + j) = wFm(l)

= xg(top)

All adjacency conditions are verified, consequently x describes a valid configuration of
Xτσ .

The configuration x is b-periodic With the definition of x, it is easy to check that
for any g ∈ BS(1, n), xbg = xg. Hence it is a weakly periodic configuration.
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We can now obtain our main theorem:

Theorem 3.3.12. For n ≥ 2, the tileset τσ forms a weakly aperiodic but not strongly
aperiodic SFT on BS(1, n).

Proof. First, in the n ≥ 3 case, there is a weakly periodic configuration in Xτσ by
Lemma 3.3.11. Hence it is not a strongly aperiodic SFT.

In the case n = 2, we define u and v the two fixpoints of σ1
2 (Lemma 3.3.8 again) and

remark that v = σ1(u) and u = σ1(v). We define a configuration x ∈ τσBS(1,n) by:

xb−kal :=

(ul, 1) if k +m ≡ 0 mod 2
(vl, 1) if k +m ≡ 1 mod 2

xb−kalbm :=

(uFm(l), R ◦ Fm−1(l)) for m > 0 if k +m ≡ 0 mod 2
(vFm(l), R ◦ Fm−1(l)) for m > 0 if k +m ≡ 1 mod 2

and we use the same notations as in the proof of Lemma 3.3.11. The reasoning is also
the same, except instead of using w an alternation appears between u and v in all the
equations. As a consequence, the configuration is b2-periodic instead of b. Once again,
Xτσ is consequently not strongly aperiodic.

Now, using Lemma 3.3.10, and since all powers of a are of infinite order in BS(1, n), we
get that for any valid configuration x of Xτσ , |OrbBS(1,n)(x)| = +∞, for any n ≥ 2. Hence
no configuration of Xτσ is strongly periodic, and so the SFT is weakly aperiodic.

3.3.4 Shift-similar Substitutions
The main interest of the σis in our proof is that if a biinfinite word can be de-substituted
by one of the σis, then with a proper translation it can be de-substituted by any shift
of it, and the resulting word will be the same for all shifts. This fact is at the core of
Lemma 3.3.6, itself central in the proof of Theorem 3.3.12. A natural question is then:
can we find other substitutions ς with this convenient property? We will restrict ourselves
to substitutions on the two-letter alphabet A and of constant size n ∈ N, n ≥ 2.

Definition 3.3.1. We say that a substitution ς is shift-similar if for every i ∈ {0, . . . , n},
the sets

Si =
{
(ς(0)ς(0))i..i+n−1 , (ς(0)ς(1))i..i+n−1 ,

(ς(1)ς(0))i..i+n−1 , (ς(1)ς(1))i..i+n−1

}
all have cardinal at most 2.

This condition reflects what we truly need to encode a substitution in the Cayley graph
of BS(1, n): at most two types of n-long subwords of juxtapositions like ς(0)ς(1), so that
we have at most two ways to associate a letter – that is, 0 or 1 – to each of them when
going "up" in the Cayley graph.

Note that if there is some i0 ∈ {0, . . . , n} such that Si0 has cardinal 1, then (ς(0)ς(0))i0..i0+n−1 =
(ς(1)ς(1))i0..i0+n−1 and so ς(0) = ς(1). As a consequence, all Si have cardinal 1. It is easy
to see that these three properties are equivalent.
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We say that a shift-similar substitution is non-trivial if one Si has cardinal 2, or
equivalently all Si have cardinal 2, or equivalently ς(0) 6= ς(1). In that case, we write
these sets Si = {Ai, Bi} with Ai = (ς(0)ς(0))i..i+n−1 and Bi = (ς(1)ς(1))i..i+n−1. We can
then define n+ 1 substitutions ς0, . . . , ςn by

ςi :

0 7→ Ai

1 7→ Bi

.

As before, we call these substitutions shifts of ς. Note that ς0 = ςn = ς.

For example, the substitution σ0 :

0 7→ 001
1 7→ 000

defined before is shift-similar. Indeed,

the two image words differ by only one letter, hence the sets Si are of cardinal 2.
Surprisingly, it turns out that the particular definition we had in Section 3.3.3 is the

only way of defining a non-trivial shift-similar substitution.

Theorem 3.3.13. Over an alphabet of size two, ς is a non-trivial shift-similar substitution
if and only if there exists i0 such that ς(0)i = ς(1)i for all i 6= i0 and ς(0)i0 6= ς(1)i0.

Proof. To simplify notations, we write α = ς(0) and β = ς(1). It is clear that if there
exists i0 such that αi = βi for all i 6= i0 and αi0 6= βi0 , then ς is a non-trivial shift-similar
substitution.

For the other direction, let us consider ς a non-trivial shift-similar substitution. Let
i ∈ {0, . . . , n}. For Si to be of cardinal 2, necessarily one of the following cases must be
true (see Fig. 3.10):

1) (αα)i..i+n−1 = (αβ)i..i+n−1 and (βα)i..i+n−1 = (ββ)i..i+n−1
2) (αα)i..i+n−1 = (βα)i..i+n−1 and (αβ)i..i+n−1 = (ββ)i..i+n−1
3) (αα)i..i+n−1 = (ββ)i..i+n−1 and (αβ)i..i+n−1 = (βα)i..i+n−1.

α β

α α

=

i i+ n− 1n

β α

α α

=

i i+ n− 1n

β β

α α

=

i i+ n− 1n

Figure 3.10 – The three cases for Si to be of cardinal 2: the window in green represents
an equality, and the colored portions are the consequent parts of α and β made equal.

First, if case 3) is true for even one single index i, then the shift-similar substitution
is a trivial one, because then ς(0) = ς(1).
Therefore, for any i, one must have either 1) or 2). Case 1) is true for i = 0 and 2) is
true for i = n, otherwise α = β and the substitution is trivial. Consequently, there exists
some i0 ∈ {0, . . . , n− 1} such that 1) is true for i = i0 and 2) is true for i = i0 + 1.

Case 1) being true for i = i0 implies that α and β agree from indices 0 to i0 − 1 (this
being possibly an empty interval). Case 2) being true for i = i0 + 1 implies that α and β
agree from indices i0 + 1 to n− 1.

Hence α and β agree everywhere except on their ith0 letter.

Remark. The notion of recognizability by Mossé [Mos92] may seem rather close to the
one of shift-similarity: it expresses the idea that for a substitution σ, any element in
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Xσ (the substitutive shift, see for instance [Ber+19]) can be uniquely cut into blocks
that determine its antecedent. Considering Theorem 3.3.13, one can check that any shift-
similar substitution and its shifts are recognizable in the sense of Mossé.

However, consider the substitution

σ :

0 7→ 0001
1 7→ 1110

and its shifts σ1, σ2, σ3. All of them are recognizable in the sense of Mossé, yet σ is not
shift-similar since it is not of the form given by Theorem 3.3.13.

As a consequence, shift-similarity implies recognizability, but the converse is not true.

It is really interesting that the very particular substitution σ0 defined above is in fact
the only binary substitution that is possible to encode in BS(1, n) (with our encoding
method). An interesting perspective would be to find the generalization of Definition 3.3.1
for bigger alphabets and see if an analogous of Theorem 3.3.13 still holds.

Another open question is whether BS(m,n) has a strongly aperiodic SFT. As our
method use Aubrun and Kari’s construction, it is of no use here, and there exists no other
aperiodic SFT over BS(m,n) to our knowledge.

3.4 The Domino Problem on Surface Groups

Surface groups are of particular interest for Conjecture 1 because they fall off all the solved
cases. They can also be seen as a natural generalization of Z2 – which is the surface group
of genus one – thus suggesting that the domino problem might be undecidable for them.
Moreover, in 2017 Cohen and Goodman-Strauss found a strongly aperiodic SFT for the
surface groups [CG17]. Although it dos not formally imply anything about the domino
problem, the existence of a strongly aperiodic SFT is often a strong hint towards the
undecidability of the domino problem. A key element of their proof is the idea that the
Cayley Graph of surface groups is very similar to an orbit graph of well-chosen substitution.
Regarding the domino problem, the closest result to a substitution-related structure is
Kari’s proof of the undecidability of the domino problem for the hyperbolic plane [Kar08],
whose tilings can be seen as SFTs over the orbit graph of the substitution 0 7→ 00. However,
a direct adaptation of this proof works only for substitutions of constant size, which is
not the case of the surface groups. Like in the previous section, we make use of a normal
form in the group. Nonetheless in this case, the normal form is harder to see in term
of generators of the group, and we need to define an SFT that "draws" directions in the
Cayley Graph, allowing us to find this normal form effectively.

After showing how orbits graphs can be found inside surface groups (Section 3.4.1), we
show how ideas from Cohen and Goodman-Strauss can be used to to the same for more
general substitutions (Section 3.4.2), including the ones we need for the surface groups.
These result have been published in [ABM19].
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3.4.1 Finding Orbit Graphs in Surface Groups
Surface Groups

Surface groups are the groups that are isomorphic to the fundamental group of some
surface of genus g ≥ 1. For our purpose, we are interested by the presentation of surface
groups:

Gg = 〈a1, b1, . . . , ag, bg | [a1, b1] · · · [ag, bg]〉,
where [a, b] = aba−1b−1 is the commutator of a and b. The cycles of minimum size
of the Cayley graph of Gg are always 2g-cycles, labeled by cyclic permutations of
[a1, b1] · · · [ag, bg]. We call these minimal cycles the elementary cycles of the graph.

It is interesting to notice that the surface group of genus 1 is 〈a, b | ab = ba〉 ∼= Z2,
explaining how surface groups of genus grater than one are generalization of Z2, for which
the domino problem is undecidable. In the few examples we have, the method used to
prove that the domino problem is undecidable for groups often relies on finding Z2 in the
group. This is for example the case of the proof of Jeandel for groups of the form G1×G2
with G1 and G2 infinite. However the hyperbolic nature of surface groups makes it hard
to find a regular grid in them. Following the idea from Cohen and Goodman-Strauss
[CG17], we are able to find an orbit graph of a substitution, and do a reduction from his
case.

Two groups are G1 and G2 are commensurable if there exist subgroups H1 ⊆ G1
and H2 ⊆ G2 of finite index such that H1 is isomorphic to H2. The decidability of the
domino problem of finitely generated groups is known to be a commensurability invariant
(Corollary 9.3.34 of [ABJ18]). All surface groups of genus g ≥ 2 are commensurable
(Proposition 6.7 of [CK17]). Thus, it is enough to prove that the domino problem is
undecidable for the surface group of genus 2. In this section, we will call G the surface
group of genus 2 (that will be simply called surface group from now on)

G =< a, b, c, d | [a; b][c, d] > .

The generating set {a, b, c, d} will be called S.
We now do the reduction of the domino problem on the surface group from the domino

problem of an orbit graph of a substitution, that we will show to be undecidable in
Section 3.4.2.

An Orbit Graph in the Surface Group

Let us call CG = Γ(G,S}) the Cayley graph of the surface group given by S. In order to
define a distance on G we also consider Γ(G,D), with

D = {w | w subword of a cyclic permutation of [a, b][c, d]}.

This Cayley graph corresponds to CG with the addition of all cords in every elementary
cycles (see Fig. 3.11). We then define d a distance on G:

d(g, h) = min{|w| | w ∈ D∗, gw =G h}.

Intuitively, d(g, h) is the smallest number of elementary cycles that must be crossed to go
from g to h in CG. Let Bi = {g ∈ G | d(1G, g) ≤ i} be the ball of radius i for this distance
and Ci = {g ∈ G | d(1G, g) = i} the sphere of radius i, so that Bi+1 \ Bi = Ci+1 and the
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Cis partition G.

a

b

a−1

b−1 c

d

c−1

d−1

aba−1

Figure 3.11 – An elementary cycle of CG with the added cords of Γ(G,D).

The substitution then arise from the structure of the Cis. Fix some i ≥ 1. In CG every
element of Ci have exactly two neighbors in Ci, and either:

(a) one neighbor in Ci−1;
(b) zero neighbor in Ci−1.

Because of the constant degree of Cayley graphs, every element of Ci either have 5 or 6
neighbors in Ci+1 depending of its type (a or b). For some g ∈ Ci, if we look at the types of
the right neighbors of its 5 (resp. 6) neighbors in Ci+1, they are of types ab5ab5ab5ab5ab4

(resp. ab5ab5ab5ab5ab5ab4). This leads us to define the substitution s : {a, b} → {a, b}∗

by {
s(a) = (ab5)4ab4

s(b) = (ab5)5ab4.

This substitution is defined so that neighbors of g ∈ Ci that are in Ci can be seen as
neighbor letters in the substitution, neighbors in Ci−1 as the parents (if they exists), and
neighbors in Ci+1 as the sons of words produced by applying s (see Fig. 3.12).

a b b b b b a b b b b b a b b b b b a b b b b b a b b b b

a Ci

Ci+1

(a)

a b b b b b a b b b b b a b b b b b a b b b b b a b b b b b a b b b b

b

(b)

Figure 3.12 – The two types of elements in CG and the corresponding sequences of type
under them in Ci+1.

From now on, we fix Ω = (ωi, Pi)i∈Z an orbit of the substitution s defined above, and
denote by Θ its associated orbit graph. Let us note that s admits an expanding eigenvalue
(λ = 17 + 12

√
2 and v(b)/v(a) = 1+

√
2

2 ).
The two graphs CG and Θ are so similar that in fact the decidability of their domino

problem is equivalent. In order to prove this we will do a reduction from the domino
problem on Θ (that we will show to be undecidable in Section 3.4.2) to the domino
problem on CG. Formally, it is enough to build a computable map that sends sets of
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patterns over Θ to set of patterns over CG. This map is not trivial since CG has strictly
less edges than Θ, therefore this "lost information" has to be reconstructed from the edges
we have in CG. Fortunately, this is possible to do, and even in a local way: we are able
to create an SFT X over CG that recovers the information carried by the missing edges
between CG and Θ. Note that an SFT is not required to do the reduction, but it provides
a locally computable map, which is a nice bonus.

Definition of X

To define the SFT X, we introduce a notion of directions that will correspond to following
edges of the orbit graph. More formally, let us first consider the general alphabet A0,
consisting of the tuples

(c, (h1, d1), (h2, d2), . . . , (h8, d8))
such that:

• c ∈ {■,□} is a color,
• (h1, . . . , h8) is a permutation of (a, a−1, b, b−1, c, c−1, d, d−1), the generators of G and

their inverses,
• d1, . . . , d8 ∈ {←,→, ↑, ↓1, ↓2, ↓3, ↓4, ↓5, ↓6} the directions associated to each genera-

tor.
Let x ∈ AG0 be a configuration over A0. For every g ∈ G, if the first coordinate of xg is
c = ■ (resp. c = □), we call xg a black (resp. white) cell.

The alphabet A1 ⊆ A0 is made of three types of elements with more precise directions
imposed, depending on the color c:

(■, (h1,←), (h2,→), (h3, ↑), (h4, ↓1), (h5, ↓2), (h6, ↓3), (h7, ↓4), (h8, ↓5))

(□, (h1,←), (h2,→), (h3, ↓1), (h4, ↓2), (h5, ↓3), (h6, ↓4), (h7, ↓5), (h8, ↓6))
Black cells have directions left, right, up and down, whereas whites ones have only left,
right and down. Note that for both cells, up, left and right are unique. We can then define
their top, left and right neighbors.

Definition 3.4.1. Let x ∈ AG1 be a configuration over A1 and g ∈ G. We define:
• gh1 the left neighbor of g in x, denoted by ←x(g),
• gh2 is the right neighbor of g in x, denoted by →x(g),
• If xg is a black cell, gh3 is the top neighbor of g in x, denoted by ↑x(g),
• gh3+i for i ∈ {1, ..., 5}, (resp. gh2+i for i ∈ {1, ..., 6} for a white cell) is the i-th

bottom neighbor of g in x, denoted by ↓i,x(g).

Let us call F1 the set of all elementary cycles that are not of the form of Fig. 3.13,
and we want to forbid these patterns to appear in X. We also impose the orientations to
be as drawn on the figure. For example, the right generator of a is g2, its top generator
is g−1

1 , and the other directions of a are not constrained by this cycle. Similarly, the left
generator of b is g−1

2 , its right generator g3 and other directions unconstrained.
We also add the constraint that directions must be consistent between adjacent cells.

To do so, we define the set F2 , which is the set of patterns on the support {1G, h} for

73



Chapter 3. Substitutions and Groups

∗

a
g2

b
g3 g4 g5 g6 g7

g1 g8

∗
g8 ∗

a
g2

b
g3 g4 g5 g6

g1 g7

Figure 3.13 – The two possible types of colorings of elementary cycles. There are no color
constraints on ∗ , and the cycle g1 . . . g8 is any cyclic permutation of [a, b][c, d].

h ∈ S, such that x1G
and xh are linked by mismatching directions. That is,

F2 =


pattern p of support{1G, h}

∣∣∣∣∣∣∣∣∣∣∣

←p(1G) = h and →p(h) 6= 1G or
→p(1G) = h and ←p(h) 6= 1G or
↑p(1G) = h and ∀i, ↓i,p(h) 6= 1G or

∃i, ↓i,p(1G) = h and ↑p(h) 6= 1G


.

⇁ X is the subshift over G with alphabet A1 and set of forbidden patterns F1 ∪ F2.

Note that because F1 ∪ F2 is finite, X is an SFT.

Non-emptiness of X

A simple way to show that there is always a configuration x ∈ X is to construct it as a limit
of a sequence of configurations (yn)n∈N of another SFT X2. This other SFT will be similar
to X, but with an extra orange tile. More precisely, we have X2 ⊂ (A1 ∪ {orange})G,
with

orange :=
(
■, (a, ↓1), (a−1, ↓2), (b, ↓3), (b−1, ↓4), (c, ↓5), (c−1, ↓6), (d, ↓7), (d−1, ↓8)

)
.

We can extend the definitions of left, right, top and bottom neighbors consistently with
this new element in the alphabet. Then, we call F ′

1 and F ′
2 the extensions of F1 and F1

with the new color and the extended definitions of neighbors.
⇁ X2 is the subshift over G with alphabet A1 and set of forbidden patterns F ′

1 ∪ F ′
2.

Intuitively, because the letter orange has only bottom neighbors, the presence of an
orange cell will create rings (see Fig. 3.14 and Lemma 3.4.1).

Definition 3.4.2. L ⊂ G is a set of left-right neighbors of x ∈ X2 if we can access all
its elements by taking only their left and right neighbors, i.e. for every g ∈ L, we have
L = {. . . ,←3

x(g),←2
x(g),←x(g), g,→x(g),→2

x(g),→3
x(g), . . .}.

If L is finite, it is called a ring, if it is infinite it is called a line.

Lemma 3.4.1. For all i, there exists a pattern pi ∈ (A1 ∪ {orange})Bi containing no
forbidden patterns of F and such that (pi)g is an orange cell if and only if g = 1G.

Proof. By induction on i, we prove a stronger statement:

Hi : "There exists a coloring of Bi, in which the orange tile appears, but only at the
origin. Moreover, in this coloring, Cj is a ring for all j ≤ i."
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Figure 3.14 – Coloring of B1.

For i = 1, apply the first cycle of Fig. 3.13 eight times, and from the orange origin,
get the sphere of radius 1, which is a cycle as stated (see Fig. 3.14).

Now suppose we have a coloring of Bi as in the statement. We will use the cycles of
Fig. 3.13 on the ring Ci to build Ci+1. We are sure that all the cells on Ci are only black
and whites due to the induction hypothesis on the orange cell. Each of the black cells on
Ci must have 5 bottom cells, and each white one needs 6. We proceed iteratively, starting
from any cell c and any down generator g1 of this cell. As the two possible cycles start
the same, we put the colors ■, □, □, □, □ following the generators g1, g2, g3, g4, g5, with
the consistent orientation. For the two next colors, it depends where g8 leads. If it leads
to Ci+1, we are in the first case of Fig. 3.15, and we use the colors of the first cycle. We
start the process again but with cell c and generator g−1

8 . If g8 leads to Ci, we are in the
second case of Fig. 3.15, and we use the corresponding colors. We then start again but
with the cell c′ and generator g−1

7 . We continue this process until all cells of Ci have their
bottom neighbors colored.

Ci

Bi−1

g2 g3 g4 g5 g6 g7

g1 g8

c

Ci

Bi−1

a
g2

b
g3 g4 g5 g6

g1 g7g8

c c’

Figure 3.15 – From Bi to Bi+1.

With this process, we colored a new ring, which is exactly Ci+1. Indeed, the newly
colored cells are in Ci+1, because one cycle separates them from Ci and there are no other
cells in Ci+1 because adding one cycle to these will increase the distance to i+ 2.

Because Bi+1 = Bi ∪ Ci+1, we now have colored Bi+1. We have not placed any new
orange tile, so the only one is the one from Bi i.e., by induction hypothesis, the origin.
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Therefore, the statement is proved for i+ 1.

We can now use these patterns to build a configuration of X.

Lemma 3.4.2. X is not empty.

Proof. By compactness of (A1 ∪ {orange})G there exists a configuration x̃ ∈ X2 which
coincides with all pis of Lemma 3.4.1. In particular, the orange tile appears only at the
origin of x̃. By compactness and shift-invariance of X2, there exists x ∈ X2 that have no
orange tile.

The last step is to remark that X contains exactly the configurations of X2 with no
orange tile, therefore x ∈ X.

Configurations of X

Now that we know that X is non-empty, we take a look at some properties of its configu-
rations which will be useful for our reduction.

We first show that without the orange tile, configurations cannot have rings: they can
only have infinite lines. We prove the contrapositive:

Lemma 3.4.3. If there is a ring in a configuration of X2, then orange must appear.

In particular, it means that X contains no configuration with a ring.

Proof. Let C ⊂ G be a ring of x ∈ X2. As patterns from F1 do not appear in X2, unless
C is a singleton and x|C = orange, it must contain at least eight elements and at least
two of them must be black cells and hence have top neighbors. The key point is that
C1 := ↑x(C) = {↑x(g) | g ∈ C} is also a ring, but with strictly less elements. Indeed,
because all cycles are colored like Fig. 3.13, we know that the top neighbors of C are
organized as a ring (we can "stick" cycles all around C). And this ring is strictly smaller
than the previous one, because for each 7 our 6 cells of C we have 1 or 2 cells in C1 (see
Fig. 3.16).

C

C1

Figure 3.16 – Top neighbors of rings are smaller rings.
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Iterating the process of taking the top neighbor ring every time, we reduce the size of
C which is finite. The process necessarily ends with the ring of size one. Then, {orange}
the only possible ring with one element, since for any other cell xg, →x (g) 6= g. And
therefore orange appears in x.

Because X does not have the orange cell in its alphabet A2, there cannot be any rings
in its configurations by Lemma 3.4.3. It means that starting from any element, one can
take its right neighbor infinitely many times and never loop on the initial element. This
forms infinite lines (in the sense of Definition 3.4.2), which are all above and below the
others (Fig. 3.17), thanks to the way cycles are colored.

. . . . . .

. . . . . .

Figure 3.17 – Infinite lines of X.

These lines have the same structure as an orbit graph: each black cell has 5 (black)
bottom children with 24 whites on the line, and each white cell has 6 bottom children
with 29 whites on the line. Exactly the same way as in the orbit graph Θ.

Moreover, we can show that these lines induce a height function on G: when going
down, one never comes back to an upper line. This is a corollary of the following lemma,
stating that if one take a loop of directions (in the sense of the neighbors in X), there are
the same number of "up" than "down".

Lemma 3.4.4. Let x ∈ X, g ∈ G and a1, . . . , ak ∈ {←x,→x, ↑x, ↓1,x, ↓2,x, . . .}, k > 0 such
that ak ◦ . . . ◦ a1(g) = g. Then

|{i ∈ {1, . . . , k} | ai =↑x}| = |{j ∈ {1, . . . , k} | ∃k, aj =↓k,x}| .

Proof. Since ak ◦ . . . ◦ a1(g) = g, the sequence of moves a1 . . . ak gives a cycle γ starting
from the vertex g in the Cayley graph CG of G. By abuse of notation, we will also call ai
the labels of the edges in CG (thus from now we think of ai as an element of S ∪ S−1). So
we are given a word w = a1 . . . ak ∈ (S∪S−1)k which represents the identity 1G. Since the
word problem of the surface group of genus 2 can be solved by Dehn’s algorithm [SD12],
this implies that we can obtain a finite sequence of words w = w0, w1, w2, . . . , wN = 1G
such that |wi| > |wi+1| and wi+1 is obtained by wi by replacing the leftmost cyclical
subword of [a, b][c, d] of length at least 5 by the inverse of its complement –for instance,
the word ba−1b−1cd can be rewritten as ba−1b−1cd(c−1d−1a)(c−1d−1a)−1 = a−1cd – and
then reducing the resulting word (eliminating pairs ss−1 and s−1s for some generator s).

Because configurations in x do not contain patterns in F2, the operation of reducing
w eliminates the same amount of up and down moves. Without loss of generality, we can
replace w by its reduced version. On the Cayley graph CG, the operation of replacing
a cyclical subword u ⊏ w by the inverse of its complement corresponds to decomposing
the cycle γ induced by w into an elementary cycle γ0 and the remaining cycle γ′. More
precisely, if w = w1uw2, and uv is an elementary cycle with |v| < |u| then w induces the
cycle γ, uv the elementary cycle γ0 and w1v

−1w2 the remaining cycle γ′.
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We then prove the lemma by induction on the length of the chain

w = w0, w1, w2, . . . , wN = 1G.

In what follows, if ζ is a path in CG and a1 . . . ak its associated word on S∪S−1, we denote

↑(ζ) := |{i ∈ {1, . . . , k} | ai =↑x}|

and
↓(ζ) := |{j ∈ {1, . . . , k} | ∃k, aj =↓k,x}|.

If N = 0, then the reduced version of w is the empty word. Hence ↑(γ) =↓(γ).
If N ≥ 1, denote w′ = w1v

−1w2 the word on S ∪ S−1 obtained after simplification
by one cyclic permutation of [a, b][c, d], γ′ the resulting cycle and γ0 the elementary cycle
corresponding to the simplification as explained above (see Fig. 3.18). Denote by ai (resp.
aj) the directed edge in γ0 which is labeled by ↑x (resp. ↓x,k for some k) in configuration
x. We distinguish between four cases, depending on where ai and aj are located. As no
patterns from F1 appear in x, the elementary cycle γ0 satisfies ↑(γ0) =↓(γ0) = 1, and by
induction hypothesis, ↑(γ′) =↓(γ′). Observe also that the directed edges ai, aj of γ0 are
reversed if they also appear in γ′.

1. If γ0 ∩ γ contains neither ai nor aj (see Fig. 3.18a). Then we have that

↑(γ) =↑(γ′)− ↓(γ0) =↓(γ′)− ↑(γ0) =↓(γ).

2. If γ0 ∩ γ contains ai and aj (see Fig. 3.18b). Then we have that

↑(γ) =↑(γ′)+ ↑(γ0) =↓(γ′)+ ↓(γ0) =↓(γ).

3. If γ0 ∩ γ contains ai but not aj (see Fig. 3.18c). Then we have that

↑(γ) =↑(γ′)− ↓(γ0)+ ↑(γ0) =↑(γ′) =↓(γ′) =↓(γ).

4. If γ0 ∩ γ contains aj but not ai (similar to case 3). Then we have that

↑(γ) =↑(γ′) =↓(γ′) =↓(γ′)+ ↓(γ0)− ↑(γ0) =↓(γ).

γ0

γ′

γ

ai

aj

(a) ai, aj /∈ γ0 ∩ γ

γ0

γ′

γ
ai

aj

(b) ai, aj ∈ γ0 ∩ γ

γ0

γ′

γ
ai

aj

(c) ai ∈ γ0 ∩ γ and aj /∈ γ0 ∩ γ

Figure 3.18 – Possible cases for the induction. The cycle γ′ (in green) is obtained from
the cycle γ (in black) by deletion of one elementary cycle γ0 (in blue).

Let us define →−1
x (g) =←x(g), ↓−1

1,x(g) =↑x(g), and 1G to be the identity of G. Using
this notation and the informations encoded by X, we can express any element of G with
a normal form.
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Lemma 3.4.5. For any g ∈ G and x ∈ X, there exists i, j such that g =→j
x◦ ↓i1,x(1G).

Note that because it uses the neighbor notation, the generators appearing in this normal
form in fact depend on the choice of the configuration x.

Proof. Let x ∈ X and g ∈ G. As each symbol of A2 contains all 8 directions, it is clear
that there exist a1, . . . , ak ∈ {←x,→x, ↑x, ↓1,x, ↓2,x, . . .} such that g = ak ◦ . . . ◦ a1(1G).

First, we can get rid of all ↓ that are not ↓1, indeed for any l, ↓ l,x =→6(l−1)
x ◦ ↓1,x

(see Fig. 3.19). So, by transforming all ↓ like this, we obtain i1, . . . , il ∈ Z such that
g =↓il1,x◦ →il−1

x . . . ◦ ↓i21,x◦ →i1
x (g).

↓1,x
↓l,x

→6(l−1)
x

Figure 3.19 – Transformation to get only ↓1 down operations.

Let us concentrate on ↓n1,x◦ →m
x (h) for some m,n ∈ Z and h ∈ G. Let w be the

word of size m such that wi = x→i
x(h) for i ∈ {1 . . .m}. Then, as shown of Fig. 3.20,

↓ n1,x◦ →m
x (h) =→ |sm(w)|

x ◦ ↓ n1,x(h). By doing this operation on all incorrectly ordered
operations in the sequence, and obtain i and j such that g =→j

x(↓i1,x(1G)).

•1G

•
h

|w|

n

|s(w)|

Figure 3.20 – Transformation to reorder the operations.

A bijection between Θ and the surface group

This normal form allows us to make a bijection between vertices of CG (that are elements
of G) and vertices of θ (that are elements of Z2). Let us fix some x ∈ X, that exists since
X 6= ∅. We define fx : Z2 → G to be the following:

fx(i, j) =→j
x◦ ↓i1,x(1G).

Lemma 3.4.6. For every x ∈ X, the function fx is a bijection.
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Proof. First, f is well-defined because the operations →x(g) and ↓1,x(g) are both well-
defined for any g ∈ G. The existence of i, j ∈ Z such that g =→j

x◦ ↓i1,x(1G) is ensured by
Lemma 3.4.5.

For the uniqueness of such i, j, let us assume there are i′, j′ ∈ Z such that
g =→j′

x ◦ ↓i
′

1,x(1G). Since g−1 · g = 1G, we get

↓−i′1,x◦ →−j′

x (g) =↓−i′1,x◦ →j−j′

x ◦ ↓i1,x(1G) = 1G.

Lemma 3.4.4 ensures that i = i′. Then, because we only consider ↓1,x operations (the first
bottom neighbor and not the others), their inverses are ↑x operations. It means that the
only way of having a cycle is to have ↓−i′

1,x(1G) =↓−i′
1,x◦ →j−j′

x (1G). Thus we have a cycle
using only right operations (or only left operations), Lemma 3.4.3 ensures that j = j′

since the only way of having a cycle with only right (or only left) operations is to not
apply any.

We can moreover prove that fx also preserves locality between the two graphs.

Lemma 3.4.7. The following equivalences are true:

1.

(u, v) ∈ EΘ

LΘ(u, v) = next
⇔ fx(v) =→x(fx(u))

2.

(u, v) ∈ EΘ

LΘ(u, v) = k ∈ {0, . . . ,M − 1}
⇔ fx(v) =→k

x◦ ↓1,x(fx(u))

where M is the number of sons of u.

Proof. 1. If LΘ(u, v) = next, then (u, v) = ((i, j), (i, j + 1)), and so
fx(v) =→j+1

x ◦ ↓i1,x(1G) =→x(fx(u)).
Conversely, assume fx(v) =→x(fx(u)). Consider i, j such that fx(u) =→j

x◦ ↓i1,x(1G).
Then fx(v) =→j+1

x ◦ ↓i1,x(1G), implying that (u, v) = ((i, j), (i, j + 1)) by definition
of fx. Then, we can only have LΘ(u, v) = next.

2. Assume that LΘ(u, v) = k, we know that (u, v) = ((i, j), (i + 1,∆i+1(j) + k)) and
so fx(v) =→∆i+1(j)+k

x ◦ ↓ i+1
1,x (1G) =→k

x◦ ↓1,x◦ → j
x◦ ↓ i1,x(1G) =→k

x◦ ↓1,x(fx(u)) by
definition of ∆i+1(j).
Conversely suppose fx(v) =→k

x◦ ↓0,x(fx(u)). Assume also that fx(u) =→j
x◦ ↓i1,x(1G),

then

fx(v) =→k
x◦ ↓1,x◦ →j

x◦ ↓i1,x(1G) =→k
x◦ →∆i+1(j)

x ◦ ↓i+1
1,x (1G)

=→∆i+1(j)+k
x ◦ ↓i+1

1,x (1G).

So we get (u, v) = ((i, j), (i+ 1,∆i+1(j) + k)) and LΘ(u, v) = k.

The bijection fx itself cannot be a label preserving graph isomorphism, since we lack
some edges in CG, but it nevertheless enjoys a useful property: if φ is a label preserving
graph isomorphism for Θ, then so is fx ◦ φ ◦ f−1

x for CG,x, and if φ is a label preserving
graph isomorphism for CG,x, then so is f−1

x ◦ φ ◦ fx for Θ, where CG,x is a relabeling of Cg
according to the configuration x. So roughly speaking, any local pattern is preserved by
fx or by f−1

x (see Corollary 3.4.8 below).
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Corollary 3.4.8. Let A be a finite alphabet. For any configuration c ∈ AG, p ⊏ c ⇒
f−1
x (p) ⊏ f−1

x (c). Conversely for any d ∈ AΘ, q ⊏ d⇒ fx(q) ⊏ fx(d).

Proof. Define CG,x the oriented labeled graph obtained from CG by replacing every label
in CG by the corresponding symbol in {←,→, ↑, ↓1, ↓2, ↓3, ↓4, ↓5, ↓6} found in the configu-
ration x: if gi ∈ S ∪ S−1 labels (g, g · gi) in CG and (gi, ⋆) ⊏ xg, then ⋆ labels (g, g · gi)
in CG,x. Since there is no ambiguity here, let us write f = fx in this proof for lighter
notations.

We first prove that if φ is a label preserving graph isomorphism for CG,x, then so is
ψ = f−1 ◦φ ◦ f for Θ. Obviously, ψ is a bijection as composition of bijections. Take some
edge (u, v) ∈ EΘ, then

LΘ(u, v) = next⇔ f(v) =→x(f(u)) (by Lemma 3.4.7)
⇔ LCG,x

(f(u), f(v)) =→x

⇔ LCG,x
(φ ◦ f(u), φ ◦ f(v)) =→x (φ is label-preserving)

⇔ LΘ
(
f−1 ◦ φ ◦ f(u), f−1 ◦ φ ◦ f(v)

)
= next (by Lemma 3.4.7)

⇔ LΘ (ψ(u), ψ(v)) = next

and for k ∈ {0, . . . ,M − 1},

LΘ(u, v) = k ⇔ f(v) =→k
x◦ ↓1,x(f(u)) (by Lemma 3.4.7)

⇔ φ ◦ f(v) =→k
x◦ ↓1,x (φ ◦ (f(u))) (φ is label-preserving)

⇔ LΘ(f−1 ◦ φ ◦ f(u), f−1 ◦ φ ◦ f(v)) = k (by Lemma 3.4.7)
⇔ LΘ (ψ(u), ψ(v)) = k.

Assume now that p ∈ AS, with S a finite subset of G, is a pattern that appears in
a configuration c ∈ ACG . By definition, there exists φ : S → T a label preserving graph
isomorphism for CG such that

φ(p) = c|T.

Define ψ := f−1 ◦φ◦f . By what precedes, ψ is also a label preserving graph isomorphism
for Θ, and

ψ
(
f−1(p)

)
= f−1 ◦ φ(p)
= f−1(c|T )
= f−1(c)|f−1(T ).

So the pattern f−1(p) appears in the configuration f−1(c).

Conversely, let us prove that if φ is a label preserving graph isomorphism for Θ, then
so is ψ = f ◦ φ ◦ f−1 for CG,x. Take some edge (u, v) ∈ G, then

LCG,x
(u, v) =→x ⇔ LΘ(f−1(u), f−1(v)) = next (by Lemma 3.4.7)

⇔ LΘ(φ ◦ f−1(u), φ ◦ f−1(v)) = next (φ is label-preserving)
⇔ LCG,x

(
f ◦ φ ◦ f−1(u), f ◦ φ ◦ f−1(u)

)
=→x (by Lemma 3.4.7)

⇔ LCG,x
(ψ(u), ψ(v)) =→x.
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For l ∈ {0, . . . , 7}, if v corresponds to the ↓l,x neighbor of u in CG, it corresponds to the
6(l − 1)-th child of f−1(u) in Θ and vice-versa (see Fig. 3.19). Therefore,

LCG,x
(u, v) =↓l,x ⇔ LΘ(f−1(u), f−1(v)) = 6(l − 1) (by Lemma 3.4.7)

⇔ LΘ(φ ◦ f−1(u), φ ◦ f−1(v)) = 6(l − 1) (ϕ is label-preserving)
⇔ LCG,x

(
f ◦ φ ◦ f−1(u), f ◦ φ ◦ f−1(v)

)
=↓l,x (by Lemma 3.4.7)

⇔ LCG,x
(ψ(u), ψ(v)) =↓l,x.

As previously, let S be a finite subset of Z2 and q ∈ AS a pattern that appears in
a configuration d ∈ AΘ. By definition, there exists φ : S → T a label preserving graph
isomorphism for Θ such that

φ(q) = d|T .
With ψ := f ◦ φ ◦ f−1, we have

ψ (f(q)) = f ◦ φ(q)
= f(d|T )
= f(d)|f(T ).

So the pattern f(q) appears in the configuration f(d).

The reduction from the orbit graph

We now have everything in hand to do the formal reduction from domino problem of the
orbit graph of s to domino problem of the surface group.

Lemma 3.4.9. Let Θ be an orbit graph of an orbit Ω of the substitution s. If DP is
undecidable on Θ, then DP is undecidable on the surface group of genus 2.

Proof. Let A be a finite alphabet and Y ⊆ AΘ an SFT over Θ, given by a finite set
of forbidden patterns FY . We define Z the SFT over G with set of forbidden patterns
FZ := fx(FY ), where fx is defined in Lemma 3.4.6. Clearly FZ can be constructed
effectively from FY . We show that Z = ∅ if and only if Y = ∅, providing a reduction to
DP(Θ).

Suppose Z = ∅ and consider a configuration c ∈ AG. The configuration d := f−1
x (c)

is thus in AΘ. Since Z = ∅, necessarily c contains a forbidden pattern p from the set FZ .
Since p ⊏ c, Corollary 3.4.8 implies that f−1

x (p) ⊏ f−1
x (c) = d. So a pattern f−1

x (p) from
FY appears in any configuration c ∈ AG, i.e. the subshift Y is empty.

Conversely, if Y = ∅, take any d ∈ AΘ and c := fx(d) ∈ AG. Because Y = ∅, d contains
a forbidden pattern q ∈ FY . Since q ⊏ d, Corollary 3.4.8 implies that fx(q) ⊏ fx(d) = c.
Therefore, the pattern fx(q) ∈ FZ appears in any d ∈ AΘ, so Y = ∅ as well and the
equivalence is proved.

3.4.2 The Domino Problem on Orbit Graphs
The goal of this section is to show that the domino problem of any orbit graph associated
to an orbit of a non-deterministic substitution with an expanding eigenvalue is undecid-
able. In order to prove this we show a variation of the "Technical Lemma" of Cohen
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and Goodman-Strauss [CG17]. Their lemma takes two primitive expansive deterministic
substitutions (A, σ) and (A′, τ) and produces a non-deterministic one that simulates the
orbits of (A, σ) and (A′, τ) in its orbits. Their proof uses the idea of superposing two
tilings associated to the substitutions and coding their intersections. For our purposes,
we will consider any orbit Ω of a non-deterministic substitution (A, R) with an expanding
eigenvalue λ and construct a subshift of finite type Y in ΓΩ which encodes an orbit graph
of the specific substitution ({0}, 0 7→ 00). We believe the same reduction can be done
encoding more general substitutions than ({0}, 0 7→ 00), but encoding only ({0}, 0 7→ 00)
simplifies the proof and is enough to prove the undecidability result we want. For techni-
cal reasons that will become clear during the proof, we will first consider the case where
λ > 2 and then deduce the general case from this case.

Let us fix a non-deterministic substitution (A, R) with an expanding eigenvalue λ > 2.
Without loss of generality, we may choose the function v : A → R+ \ {0} associated to λ
such that v(a) > 4 for each a ∈ A.

Let Ω = {(ωi, Pi)}i∈Z be an orbit of (A, R). We will construct a finite alphabet B and
a finite set of forbidden patterns F such that the subshift Y ⊂ BΓΩ defined by the set of
forbidden patterns F has the following properties:

1. Y is non-empty,
2. every configuration y ∈ Y encodes an orbit graph of the substitution ({0}, 0 7→ 00).
We first give an informal description of the alphabet B. Recall that Ω = {(ωi, Pi)}i∈Z

is an orbit of (A, R) and call Ξ = {((0∞)i, Qi)}i∈Z an orbit of ({0}, 0 7→ 00). By Propo-
sition 3.2.3 both of these orbits can be realized as tilings of R2. Symbols from B will
encode non-empty finite regions of the tiling with ({0}, 0 7→ 00) that can be "seen inside"
(A, R)-tiles. These regions will be chosen in such a way that their union recovers the
whole tiling and they are pairwise disjoint. More precisely, the alphabet B will consist of

• A production rule (a, w) ∈ R describing the type of (A, R)-tile.
• Two integers (h, t), describing a finite region of the tiling associated to an orbit of

({0}, 0 7→ 00). The integer h represents the number of ({0}, 0 7→ 00) tiles than
can fit vertically in the current type of (A, R)-tile and t is the number that fits
horizontally on the top edge.

• A tuple of |w| pairs of integers
(
(b0, s0), (b1, s1) . . . , (b|w|−1, s|w|−1)

)
which describes

how to locally paste the region with its neighboring regions. More precisely, it
contains all information needed to recover the function Qi from the finite coded
regions. Each bi represents the index of the ({0}, 0 7→ 00)-tile that intersects the
left corner of the i-th bottom edge of the (A, R)-tile (starting from 0), and si its
binary label, depending if the vertex intersects the left or right child of bi (see
Fig. 3.21).

The 0 7→ 00-tile in position (x, y) ∈ R2 is the square polygon whose five vertices have
coordinates (x, y), (x, y− log(2)), (x+ey, y− log(2)), (x+2 ·ey, y− log(2)) and (x+2 ·ey, y)
as pictured on the left of Fig. 3.21. The width of these tiles depends on their position
–more precisely only on their second coordinate– but their height does not and is always
log(2).

By Proposition 3.2.3 we can tile the plane with this family of tiles by putting tiles
vertex to vertex, each tile having a left and a right neighbor, two children and one parent.
In the sequel we will be interested in blocks of such tiles. The (h, t)-block in position
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(x, y) ∈ R2 is a pattern of width 2tey and height h log(2), filled in with tiles as pictured on
Fig. 3.21, and whose top left vertex has coordinates (x, y). Similarly, by Proposition 3.2.3
we can also tile R2 with (A, R)-tiles and speak of the (a, w)-tile at position (x, y) as
in Fig. 3.3.

•

• •

•••

0 7→ 00-tile

(x, y)

2 · ey

log(2)

ey ey

•

•

(x, y)

(x, y − 4 log(2))

6 · ey

Figure 3.21 – A 0 7→ 00-tile, and a (3, 4)-block in position (x, y) ∈ R2.

Let (x, y) ∈ R2, x̃ ∈ [0; 2 · ey[ and ỹ ∈ [0; log(2)[. We want to consider the largest
values (h, t) such that an (A, R)-tile at position (x+ x̃, y− ỹ) intersects the interior of the
top-left tile of the (h, t)-block at (x, y) and the bottom right corner (x+ 2tey, y−h log(2))
of the (h, t)-block is contained in the (A, R)-tile (see Fig. 3.22).

0 1 2 3 4 5 6 7

(A, R)-tile
(a,w1w2w3)

1 2 6

(x, y)

(x+ x̃, y − ỹ)

Figure 3.22 – The blue (3, 2)-block intersects the (A, R)-tile in the manner described
above. The bottom vertices of the (A, R)-tile have horizontal coordinates correspond-
ing to tiles on the last line of the 0 7→ 00-block. Namely the 2nd (index 1), the 3rd
(index 2) and the 7th (index 6). These vertices are respectively on the left, right and
right child of these 0 7→ 00-tiles. Therefore, the associated symbol of B is given by:
((a, w1w2w3), (3, 2), [(1, 0), (2, 1), (6, 1)]).

We also need information of how to paste consecutive coded blocks. Each integer bi
for i ∈ {0, . . . , |w| − 1} will code the number counted from left to right of the tile in the
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bottom row of the (h, t)-block which is the parent of the top-left tile of the block coded
by the i-th son of (a, w). The value si ∈ {0, 1} indicates whether the top-left tile of the
block coded by the i-th son of (a, w) is the left (0) or right (1) son (for an example see
the caption of Fig. 3.22).

Definition of the alphabet B

We now define the alphabet B formally. A symbol

b =
(
(a, w), (h, t), [(b0, s0), . . . , (b|w|−1, s|w|−1)]

)
is in B if and only if (a, w) ∈ R and there exists (x, y) ∈ R2, x̃ ∈ [0, 2 · ey[ and ỹ ∈ [0, log(2)[
such that

1. there is a (a, w)-tile in position (x+ x̃, y − ỹ);
2. h =

⌊
log(λ)+ỹ

log(2)

⌋
;

3. t =
⌊
x̃+v(a)·ey−ỹ

2·ey

⌋
;

4. For every i ∈ {0, . . . , |w| − 1},

• bi =
⌊
x̃+ey−ỹ−log(λ)

∑i

k=1 v(wk)
2ey−(h−1) log(2)

⌋
;

• si =
⌊
x̃+ey−ỹ−log(λ)

∑i

k=1 v(wk)
2ey−h log(2)

⌋
mod 2.

The values h and t represent the height and width of the largest block of 0 7→ 00-tiles
that fit in the (A, R)-tile as shown on Fig. 3.22. The numbers bi code the number of the
0 7→ 00-tile on the bottom row of the (h, t)-block (from left to right starting at 0) such
that the horizontal coordinate of the i-th bottom vertex of the (A, R)-tile is contained in
it. The numbers si satisfy that the tile indicated by bi is connected to the top-left tile
coded by the i-th son of the (A, R)-tile by the label si.

Remark that as λ > 2, we have h ≥ 1. Furthermore, h can take only two consecutive
integer values. Similarly, for a given production rule (a, w) ∈ R, the bounds impose that t
is an integer satisfying

⌊
v(a)

4

⌋
≤ t ≤

⌊
1 + v(a)

2

⌋
, as we chose the function v : A → R+ \ {0}

such that for every a ∈ A v(a) > 4, we get that t ≥ 1. There are thus only finitely
many possible pairs (h, t). Finally, bi describes the index of the tile (starting from 0) on
the last row of the (h, t) block which contains the same vertical coordinate as the vertex
corresponding to the i-th son of the (a, w)-tile and thus can take values in [0; 2h−1(t+1)−1].
As si ∈ {0, 1} we conclude that there are finitely many symbols in B.

Definition of the forbidden patterns F

The set of forbidden patterns F is build such that the pieces of 0 7→ 00 tiles encoded
match correctly.

All forbidden patterns in F have supports which consist of three vertices {u, v, w} such
that (u, v), (u,w) are edges, L((u, v)) = next and L((u,w)) = ℓ for some ℓ appearing in
the parent matching labels of the orbit graph. We denote by

bu =
(
(au, zu), (hu, tu), [(bu0 , su0), . . . , (bu|w|−1, s

u
|w|−1)]

)
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the symbol appearing in u and use similar notations for v and w. The pattern
p : {u, v, w} → B will be in F if and only if one of the following conditions does not
hold:

1. aw = (zu)ℓ+1;
2. hu = hv;
3. If ℓ < |zu| − 1, then 2(buℓ+1 − buℓ ) + suℓ+1 − suℓ = tw.
4. If ℓ = |zu| − 1, then 2(2hu−1tu + bv0 − bu|zu|−1) + sv0 − su|zu|−1 = tw.

The first rule says that if the rule (a, z1z2 . . . zk) appears in a vertex, then a rule
starting with zℓ+1 should appear in the son labeled with ℓ. The second rule says any two
symbols that lie in a row of the orbit graph have the same height h. The third and fourth
rules say that if w is the ℓ-th son of u, then the length tw of the block appearing at w
must be consistent with the bottom row of the block appearing at u (see Fig. 3.23).

u

w

92 17

t

h

17

8

Figure 3.23 – Illustration of the third item in the definition of the set of forbidden patterns
F : there are 8 = b2 − b1 tiles in the bottom row of the top tile and s2 = 1, s1 = 0. Thus
there must be 2(b2− b1) + (s1− s2) = 17 tiles on the top row of the pattern coded by the
tile appearing below u (which is called w). To make the picture smaller, the bottom tile
is drawn shorter than it should be. If the rightmost tile is considered, we must add the
number of tiles 2h−1t to b0 of the rightmost tile for the formula to add up.

Consider an orbit Ω = {(wi, Pi)}i∈Z of (A, R) and its associated orbit graph ΓΩ. We
define Y ⊂ BΓΩ as the subshift consisting of all colorings of ΓΩ by symbols of B where
the patterns from F do not appear.

Lemma 3.4.10. For every orbit Ω = {(wi, Pi)}i∈Z of (A, R) the subshift Y ⊂ BΓΩ is
non-empty.

Proof. By Proposition 3.2.3 there exists a tiling ΨΩ : Z2 → R2 for Ω. Similarly, fixing an
orbit Ξ of ({0}, 0 7→ 00) there is a tiling ΨΞ : Z2 → R2 for Ξ.
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3.4. The Domino Problem on Surface Groups

We claim that for every u = (i, j) ∈ Z2, there is u∗ = (i∗, j∗) ∈ Z2 such that if
ΨΞ(u∗) = (x, y) then ΨΩ(u) = (x + x̃, y − ỹ) for some x̃ ∈ [0, 2 · ey[ and ỹ ∈ [0, log(2)[.
Indeed, by definition of tiling, note that if ΨΞ(i1, j1) = (x1, y1) and ΨΞ(i2, j2) = (x2, y2)
then y2 = y1 − (i2 − i1) log(2). Therefore if we let ΨΩ(u) = (a, b) we can first find i∗ such
that ΨΞ(i∗, k) = (·, y) ∈ R×[b, b+log(2)[ for all k ∈ Z. Furthermore, if ΨΞ(i∗, j1) = (x1, y1)
and ΨΞ(i∗, j2) = (x2, y2) we have y1 = y2 = y and x2 − x1 = 2(j2 − j1)ey. Therefore we
can find j∗ such that ΨΞ(i∗, j∗) = (x, y) ∈ [a, a + 2ey[×[b, b + log(2)[. Hence, letting
u∗ = (i∗, j∗) we have ΨΩ(u)−ΨΞ(u∗) = (x̃,−ỹ) as required.

Let us define a configuration c : Z2 → B. At c(i, j) we place the symbol of B associated
to the ((ai)j, ai+1|[∆i+1(j);∆i+1(j+1)−1])-tile at position ΨΞ((i, j)∗) + (x̃,−ỹ) as described in
the definition of B. We claim that c ∈ Y . To do so, we need to show that c does not
contain any forbidden pattern from F , i.e. that any pattern with one of the supports
defining F satisfies the four conditions described above.

Let u, v, w ∈ Z2 such that L((u, v)) = next and L((u,w)) = ℓ and consider the pattern
c|{u,v,w}. In order to prove that c ∈ Y , we have to prove that any such c|{u,v,w} is not in
F , i.e. all of the four items of page 86 hold. Denote (x̄, ȳ) = ΨΩ(u), (x, y) = ΨΩ(u∗),
(x̃,−ỹ) = (x̄− x, ȳ − y) and the production rule appearing at u be (a, z1 . . . zk) and thus
0 ≤ ℓ < k. By definition of c we have that aw = zℓ+1 = (zu)ℓ+1 and hence item 1 of
page 86 holds. By definition of tiling we have that ΨΩ(v) = (x̄ + v(a)eȳ, ȳ) and so if we
have u∗ = (i∗1, j∗

1) and v∗ = (i∗2, j∗
2) then i∗2 = i∗1. This implies that hu = hv and therefore

2 of page 86 holds. To simplify the notations for the remainder of the proof, we drop
the superscripts for u, that is, we denote h = hu, bui = bi and sui = si and maintain the
superscripts for v and w.

By the Euclidean division algorithm, we have that for any 0 ≤ ℓ < k:

2bℓ + sℓ =

 x̃+ ey−ỹ−log(λ)∑ℓ
r=1 v(zr)

2ey−h log(2)

 .
Also, as v(a) = e− log(λ)

∑k

r=1 v(zr) we have that:

2(2h−1t+ bv0) + sv0 = 2ht+

 x̄+ v(a)ey−ỹ − x− 2tuey

2ey−h log(2)


=

 x̃+ ey−ỹ∑k
r=1 v(zr)e− log(λ)

2ey−h log(2)



and thus we will denote 2(2h−1t+ bv0)+sv0 simply by 2bk +sk as it has the same expression
as the numbers above.

On the other hand, we have ΨΩ(w) = (x̄ + eȳ−log(λ)∑ℓ
k=1 v(zk), ȳ − log(λ)). It is easy

to verify that ΨΞ(w∗) = (x+ 2ey−h log(2)(2bℓ + sℓ), y − h log(2)). It follows that

ΨΩ(w)−ΨΞ(w∗) =
(
x̃+ eȳ−log(λ)

ℓ∑
k=1

v(zk)− 2ey−h log(2)(2bℓ + sℓ), − (ỹ + log(λ)− h log(2))
)

and thus
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tw =
⌊
x̃+ eȳ−log(λ)∑ℓ

k=1 v(zk)− 2ey−h log(2)(2bℓ + sℓ) + v(zℓ+1)eȳ−log(λ)

2ey−h log(2)

⌋

=
⌊
x̃+ eȳ−log(λ)∑ℓ+1

k=1 v(zk)
2ey−h log(2)

⌋
− (2bℓ + sℓ)

= (2bℓ+1 + sℓ+1)− (2bℓ + sℓ)
= 2(bℓ+1 − bℓ) + sℓ+1 − sℓ.

Therefore, conditions 3 and 4 are also satisfied, which means that c|{u,v,w} /∈ F . It
follows that c ∈ Y and so Y is non-empty.

Simulation of orbits of ({0}, 0 7→ 00) on (A, R).

For every b ∈ B we can associate a finite graph Γb = (Vb, Eb, Lb) which appears as an
induced subgraph on any orbit graph of ({0}, 0 7→ 00) as follows: let (h, t) be the second
coordinate of b, the vertex set is

Vb = {(i, j) | i ∈ [0;h− 1], j ∈ [0, t2i − 1]}

and the edges have labels given byLb(((i, j), (i, j + 1))) = next for every i and every j < t2i − 1
Lb(((i− 1, b j2c), (i, j))) = j mod 2 for every i ≥ 1 and every j.

See Fig. 3.24 for an illustration of this graph.

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

• • • • • • • • • • • •

Figure 3.24 – A (3, 3)-block and its associated Γ(3,3) graph. The next edges are shown as
dashed lines.

Remark that for every b ∈ B the associated graph Γb is non-empty. As λ > 2 and
v(a) > 4 for every a ∈ A we have that the numbers (h, t) associated to every b ∈ B are
both larger than 1.

More generally, given a finite connected subset S ⊂ Γ and a pattern q : S → B which
appears in some configuration of Y , we can associate a finite subgraph Γq by pasting
together the graphs (Γq(s))s∈S in the following way:
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1. Whenever u, v ∈ S are connected by a next edge from u to v, we connect Γq(u) to
Γq(v) by joining the rightmost vertices of Γq(u) to the leftmost vertices of Γq(v) with
next edges. More precisely, if q(u) codes an (h, t)-block, then for every i ∈ [0;h−1]
we connect the vertex (i, t2i − 1) of Γq(u) to (i, 0) of Γq(v) by a next edge.

2. Whenever u,w ∈ S are connected by an edge with label i, we look at the coordinate
(bi, si) of q(u) and connect the left-top vertex of Γq(w) to bi-th vertex on from the
left on the bottom row of Γq(u) using an si-edge and then connect all vertices on the
top row of Γq(w) to the bottom row of Γq(u) alternating 0− 1 edges. More precisely,
if q(u) codes an (h, t)-block then for each j we connect vertex (h− 1, bi + b si+j

2 c) of
the bottom row of Γq(u) to vertex (0, j) from the top row of Γq(w) with a label si + j
mod 2. If (h − 1, bi + b si+j

2 c) does not appear in the bottom row of Γq(u) and u is
connected to some vertex v by a next label, then the vertex (h− 1, bi + b si+j

2 c) gets
replaced by vertex (h− 1, bi + b si+j

2 c − 2h−1t) of Γq(v).

These pasting rules are consistent because no pattern from F appears in q. More
precisely, if two vertices are connected by a next edge the blocks they code have the same
height by rule 2 of F and thus the first rule is coherent. If two vertices are connected by
an i-edge then the sites where the graphs are pasted do not overlap and cover everything
by rules 3 and 4 of F . The pasting rules are illustrated in Fig. 3.25.
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1 0 1

•
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•
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Γq(w)•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1

•

0 1
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u v
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Figure 3.25 – The rules for pasting graphs.

Let Σ be a finite alphabet and FΣ a set of nearest neighbor forbidden patterns on
the orbit graph of ({0}, 0 7→ 00) over the alphabet Σ. We define BΣ as the set of pairs
(b, pb) such that b ∈ B and pb : Γb → Σ is a pattern. Also, for a pattern p on ΓΩ with
alphabet BΣ denote by πB(p) the restriction to the first coordinate of BΣ. Also denote by
q(p) : ΓπB(p) → Σ the pattern over ({0}, 0 7→ 00) whose support is the graph ΓπB(p) and is
obtained by pasting together the corresponding patterns pb on the second coordinate of
BΣ.

Define FB,Σ as the set of all patterns p over the alphabet BΣ which have supports which
consist in three vertices {u, v, w} in ΓΩ such that (u, v), (u,w) are edges, L((u, v)) = next
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and L((u,w)) = ℓ for some ℓ appearing in the parent matching labels of the orbit graph
ΓΩ, and that satisfy one of the following two properties:

1. The pattern πB(p) obtained by restricting p to the first coordinate of BΣ is in F ;
2. The pattern q(p) obtained by pasting the patterns of p described by the second

coordinate of BΣ contains a forbidden pattern from FΣ.

Clearly FB,Σ has finitely many patterns (up to label preserving graph isomorphism).
For any orbit Ω of (A, R) we define the subshift of finite type YΣ ⊂ (BΣ)ΓΩ as the set of
all colorings of ΓΩ by BΣ where no pattern from FB,Σ appears.

The next lemma states that it is equivalent to look at the emptiness of a subshift over
({0}, 0 7→ 00) or its encoding over an orbit graph of some substitution (A, R) with an
expanding eigenvalue λ > 2.

Lemma 3.4.11. Let Ω and Ξ be orbits of (A, R) and ({0}, 0 7→ 00) respectively. Let ΓΩ,
ΓΞ be orbit graphs of Ω and Ξ respectively. Let XΣ be the subshift on ΓΞ with alphabet Σ
defined by the nearest neighbor forbidden patterns FΣ and let YΣ ⊂ (BΣ)ΓΩ be defined as
above. Then YΣ = ∅ if and only if XΣ = ∅.

Proof. Assume there exists ỹ ∈ YΣ. Let ỹ|n be the restriction of ỹ to the vertices [−n, n]2
in ΓΩ. By definition of FBΣ the pattern q(ỹ|n) does not contain any pattern from FΣ. By
a standard compactness argument, the sequence of patterns (q(ỹ|n))n∈N subconverges to a
configuration x ∈ ΣΓΞ which does not contain any pattern from FΣ and thus x ∈ XΣ 6= ∅.

Conversely, let x ∈ XΣ. By Lemma 3.4.10 there exists a configuration y ∈ Y . By
identifying for each vertex v ∈ ΓΩ the graphs Γy(v) as a partition of the vertices of ΓΞ, we
can construct a second coordinate px,y,v = x|Γy(v) which satisfies the second rule of FB,Σ.
By definition ỹ = (y(v), px,y,v) is in YΣ which is thus non-empty.

Remark that in the previous lemma, the alphabet BΣ and the set of forbidden patterns
FB,Σ which define YΣ only depend upon Σ, FΣ and the substitution (A, R). It does not
depend upon the choice of orbit Ω of (A, R).

And finally, we derive the general case in the following theorem.

Theorem 3.4.12. The domino problem is undecidable on any orbit graph of a non-
deterministic substitution with an expanding eigenvalue.

Proof. For clarity, let us first assume that the expanding eigenvalue λ associated to (A, R)
satisfies λ > 2. Let Σ and FΣ be respectively an alphabet and a nearest neighbor set of
forbidden patterns for an orbit graph ΓΞ of an orbit Ξ of ({0}, 0 7→ 00) which define
a nearest neighbor SFT XΣ. By Lemma 3.4.11 we know that XΣ = ∅ if and only if
YΣ = ∅. Furthermore, we claim that the alphabet and set of forbidden patterns which
define YΣ can be constructed effectively from Σ and FΣ. Indeed, the subshift Y does not
depend upon Σ and thus its alphabet B and forbidden patterns F can be hard-coded in
the algorithm. It is easy to see that from B one can effectively construct the alphabet BΣ
and the forbidden patterns FB,Σ which define YΣ.

These two facts together show that if DP(ΓΩ) is decidable and λ > 2, then so is DP(ΓΞ).
Using the result of Kari (Theorem 3.2.4) we have that DP(ΓΞ) is undecidable, hence DP(ΓΩ)
is also undecidable.

We can now deal with the remaining case where 1 < λ ≤ 2. For an integer m ≥ 1 we
define the relation Rm recursively by:
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• R1 = R.
• Rk+1 is the set of all pairs (a, (c1

1 . . . c
1
ℓ1)(c2

1 . . . c
2
ℓ2) . . . (c1

k . . . c
1
ℓk

)) in A×A∗ for which
there is a pair (a, b1 . . . bk) ∈ Rk such that (bi, ci1 . . . ciℓi) ∈ R for each i ∈ {1, . . . , k}.

In other words, Rm is the set of all relations that can be obtained by starting with a
symbol a ∈ A and replacing m times each letter by the right hand side of a production
rule of R. Let n ∈ N such that λn > 2 and note that the substitution (A, Rn) has the
expanding eigenvalue λn > 2.

Let Ω = {(wi, Pi)}i∈Z be an orbit of (A, R). We have that for each k ∈ {0, . . . , n− 1}

Ωn,k :=
{(
win+k, Pin+k−(n−1) ◦ · · · ◦ Pin+k−1 ◦ Pin+k

)}
i∈Z

is an orbit of (A, Rn). As before, let Σ and FΣ be respectively an alphabet and a nearest
neighbor set of forbidden patterns which define a nearest neighbor SFT XΣ. Let Y n,k

Σ be
the subshift YΣ we constructed above, but now for the substitution (A, Rn) and orbit Ωn,k.
Denote by BnΣ and F n

B,Σ the alphabet and set of forbidden patterns of Y n,k
Σ respectively.

By Lemma 3.4.11 we have that Y n,k
Σ = ∅ if and only if XΣ = ∅.

We are going to construct a subshift Z on ΓΩ which encodes a copy of Y k,n
Σ for each

k ∈ {0, . . . , n − 1}. Consider again the alphabet BnΣ. For every pattern p ∈ F n
B,Σ

with support {u, v, w} such that L((u, v)) = next and L((u, v)) = ℓ we define the set
of patterns Fp such that every q ∈ Fp has support {v, u1, u2, . . . , un = w0, w1, . . . wℓ}
such that L((u1, v)) = next, for every i ∈ {1, . . . , n}, L((ui, ui+1)) = 0 and for every
j ∈ {0, . . . , ℓ− 1}, L(wi, wi+1) = next and every pattern q in Fp has the property that
q(u1) = p(u), q(v) = p(v) and q(wℓ) = pℓ (See Fig. 3.26).

0

0

0

u1 v

u2

. . .

unw0 = w1 w2 . . . w`

`

u v

w

Figure 3.26 – On the left a pattern p ∈ F n
B,Σ. The corresponding patterns have the support

shown on the right and coincide with p in the three colored vertices.

Clearly each set Fp is finite for each p. We define FZ := ⋃
p∈Fn

B,Σ
Fp. As F n

B,Σ is finite,
we conclude that FZ is finite. It is easy to see that it can be effectively constructed from
F̃ n

B,Σ. We claim that Z ⊂ (Bn
Σ)ΓΩ = ∅ if and only if XΣ = ∅.

Indeed, suppose Z 6= ∅ and let z ∈ Z. We can define a configuration y ∈ (Bn
Σ)ΓΩn,0 by

setting y(i, j) = z(i · n, j). It follows from the definition of FZ that no patterns from F̃ n
Σ

appear in y and hence y ∈ Y 0,n
Σ . In turn, this implies that XΣ 6= ∅. Conversely, if XΣ 6= ∅

we have that each Y k,n
Σ is non-empty. Let y(k) ∈ Y k,n

Σ and define

z(i, j) = y(i mod n)
(⌊

i

n

⌋
, j
)
.

From the definition of FZ it follows that no forbidden patterns appear in z and hence
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z ∈ Z. It follows that if DP(ΓΩ) is decidable, then so is DP(ΓΞ). Using the result of Kari
on the hyperbolic plane (page 58) we have that DP(ΓΞ) is undecidable, hence DP(ΓΩ) is
also undecidable.

Using this, we can finally prove the main result of this section.

Theorem 3.4.13. The domino problem is undecidable on the surface group of genus 2.

Proof. Lemma 3.4.9 does the reduction from the domino problem of the orbit orbit graph
of the substitution s, which is undecidable since s has an expanding eigenvalue.

Corollary 3.4.14. The domino problem is undecidable for every surface group.

Proof. The undecidability of the domino problem is a commensurability invariant (see
Corollary 9.53 of [BR18]), and all surface groups of genus g ≥ 2 are commensurable
(see Proposition 6.7 of [CK17] for a recent reference). By combining these two facts
with Theorem 3.4.13, we obtain the undecidability of domino problem for surface groups
of any genus g ≥ 2. As the domino problem on Z2 –the surface group of genus 1– is
undecidable, we obtain our result.

Most of the proofs of undecidability of the domino problem for groups consist in finding
a grid in its Cayley graph. Our method is new in that sense, since it "finds" the hyperbolic
plane H2 in the group. It would be interesting to see for which other classes of groups this
method can be used. We believe that it might be extended to more general hyperbolic
groups for example.
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Conclusion and Open Problems

Many interesting problems arose during the elaboration of this thesis. In the hope that
some of them might be solved in the future, we recall them in this chapter.

Algebraic Approach to Nivat’s Conjecture
In Chapter 2 we tackled Nivat’s conjecture using algebraic tool introduced by Kari and
Szabados. We proved that the generalized Nivat’s conjecture holds for algebraic subshifts
defined by a polynomial with all its line polynomial factors aligned (Theorem 2.2.9). Then,
we showed that the orbit closure of a low-complexity configuration with respect to a convex
shape contains a periodic configuration (Theorem 2.3.3).

In this chapter, the biggest open problem is obviously Nivat’s conjecture. Corol-
lary 2.3.18, showing that Nivat’s conjecture holds for uniformly recurrent configurations
might be a big step forward, the conjecture itself seems still pretty hard to handle. For
what we know, algebraic tools do not seem particularly well-suited to handle the remain-
ing case of non-uniformly recurrent configurations. Indeed, polynomial annihilators are
a very uniform property on configurations, even if there are non-uniformly recurrent con-
figurations with polynomial annihilators. But it might also be that the theory is not
developed enough, and that we lack of the proper tools to better understand these non-
uniformly recurrent configurations. We think that one step forward can be to analyze the
geometry of the non-uniform patterns. For now the only thing we can deduce from Corol-
lary 2.3.18 is that low complexity non-uniformly recurrent configurations have arbitrarily
large periodic portions in them.

In Section 2.3 we mention a particular case of low complexity subshifts: SFTs defined
by a set of at most |D| allowed patterns of arbitrary finite support D ⊂ Zd. We call these
low complexity SFTs. In the case of low complexity SFTs, we think that several results
about low complexity subshifts may be extended. We are not aware of any aperiodic SFT
with low complexity, even with respect to any shape. Thus, even if Nivat’s conjecture
does not hold for arbitrary shapes, Corollary 2.3.16 and Corollary 2.3.17 might hold, at
least for low complexity SFTs.

Open Problem 1. Let D ⊂ Z2 be a finite shape. Is there a low complexity SFT with
respect to D without periodic configuration?
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Open Problem 2. Is the domino problem decidable for low complexity SFT with respect
to any finite D ⊂ Z2?

Corollary 2.3.16 can be understood as the non-existence of low complexity aperiodic
SFT. Understanding the complexity of aperiodic subshifts is a very interesting subject, and
little is known about it. Corollary 2.3.16 provides a lower bound, and if Nivat’s conjecture
is true, all configurations of SFTs with low-complexity with respect to a rectangle are
actually periodic. However, It would be very surprising if aperiodic SFTs of complexity
mn+ 1 existed.

Open Problem 3. Let X be an SFT defined by mn+ 1 allowed rectangular patterns of
size m× n. Does X contains a periodic configuration?

There always exists m,n, a large constant C and a set of mn + C allowed patterns
defining an aperiodic SFT. It would be interesting to know what is the smallest possible
constant. For know, we just know from Corollary 2.3.16 that C = 0 does not work.
As mentioned in the introduction, finding aperiodic SFTs with low pattern complexity
may have an application in procedural texture generation. Aperiodic SFTs provide a
way of generating non-repetitive patterns in a certain way, the drawback being that it
is sometimes computationally hard to produce large patterns that belong to such SFT.
Having an aperiodic SFT with not too big complexity might provide an SFT with efficient
algorithm to generate large allowed patterns.

In dimension higher than two, Nivat’s conjecture does not hold (Proposition 1.2.2),
but some weaker results may still hold. Already remarked by Szabados in his PhD thesis,
a big obstacle of the algebraic approach for higher dimension is that the annihilator ideal
is much less understood in higher dimension. He conjectures that just like in dimension
two, the annihilator ideal is a radical ideal ([Sza18a], Conjecture 8.3). But even then,
ideals of polynomials in three variables are much more complicated and there is no proof
of a minimal decomposition of radical ideals as there is in dimension two (Theorem 2.4.6
of [Sza18a]). Thus, a nice decomposition like Theorem 2.1.7 seems hard to get in higher
dimensions.

We think that Corollary 2.3.16 and Corollary 2.3.17 might also hold in any dimension
for low complexity SFTs, again with respect to any shape.

Open Problem 4. Let D ⊂ Zd be a finite shape. Is there a low complexity SFT with
respect to D without periodic configuration?

Open Problem 5. Is the domino problem decidable for low complexity SFTs with respect
to any finite D ⊂ Zd?

The main obstacle to generalize them is that key intermediate steps like Proposition 2.3.12
are not known in higher dimensions.
Note that there is no hope to have such generalization for low complexity subshifts, as
Cassaigne has built (in an unpublished note) a uniformly recurrent low complexity con-
figuration in dimension 3. Therefore, its orbit closure is a low complexity subshift and
aperiodic.

Recall Corollary 2.2.10, stating that the generalized Nivat’s conjecture holds for alge-
braic subshifts defined by a polynomial whose line polynomial factors are aligned. The
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proof relies on resultants, whose value depends on the common factors of the two polynomi-
als, which is the same as their roots for univariate resultants. To generalize Theorem 2.2.9
to higher dimensions, one may use multipolynomial resultants, but they are not as easy
to use as resultant. Unfortunately this generalization of the resultant depends on roots of
multivariate polynomials (which are not equivalent to their factors anymore). We do not
know any formulation of Theorem 2.2.9 working in dimension other than two, but one
way to achieve this could be to study more in-depth the varieties at play when using the
multipolynomial resultant.

The last open problem we mention related to Chapter 2 is the periodic tiling problem.
As we will see, it is closely related to Nivat’s conjecture, and was one of the initial
motivation of Kari and Szabados’s algebraic approach. Let us state this problem, usually
defined in terms of sets, using algebraic tools of Chapter 2. Let d be the dimension of the
space. In this context, a tile is a polynomials T ∈ F2[X1, . . . , Xd] = F2[X] and we say it
tiles the space if there exists C ∈ F2[[X±]] such that

TC = 1 in Z,

where 1= ∑
v∈Zd Xv is the configuration over Zd with 1s in every position. It is important

that the multiplication TC is done in Z and not F2. Informally, TC corresponds to the
configuration with a translate of T positioned in every non-zero cell of C, adding their
values if they overlap. Then, T tiles the space if there exists such a C such that translated
copies of T fill the whole space (TC ≥ 1) but do not overlap (TC ≤ 1). The configuration
C is called a co-tiler, and T tiles the space periodically if there exists a periodic co-tiler.
Note that because they are binary configurations, both C and T can be seen as sets of
Zd where v ∈ C ⇔ Cv = 1 and v ∈ T ⇔ Tv = 1. Lagarias and Wang conjectured the
following:

Conjecture (Periodic tiling problem. Lagarias, Wang [LW96]). If a tiles tiles Zd, then
it also tiles it periodically.

This conjecture is true for d = 1, where every tiling is in fact periodic. Using ergodic
theory, Bhattacharya proved recently that it was true for d = 2 [Bha20]. For higher
dimension, the conjecture is still open. It is only know to hold in any dimension in the
case where |T | = 4 or |T | = p with p a prime number [Sze98].

The link between the periodic tiling problem and Nivat’s conjecture comes from the
fact that every T -pattern of C must contain exactly one 1, so PC(T ) = T . Therefore every
co-tiler is of low complexity with respect to T . This further motivates the study of Open
Problem 4 as it would imply that the period tiling problem is true in any dimension.

In his paper, Szegedy [Sze98] finds, for every tile T , an equivalent tile S|T | in Z|T |−1 such
that if there is a fully periodic by S|T | then there exists a periodic tiling by T . S|T | turns
out to be quite easy, since it can be defined as

S|T | =
|T |−1∑
i=0

X i.

S|T | can be seen as a |T | − 1-dimensional generalization of the 2D polynomial 1 +X + Y
defining the 3-dot system (see Section 2.2.1). This suggests that higher dimensional
algebraic subshifts might also be useful to solve the periodic tiling problem.

95



Chapter 3. Substitutions and Groups

The Domino Problem of Groups
In Chapter 3, we studied links between the structure of some groups and orbit graphs of
substitutions. In Section 3.3 we proved that Baumslag-Solitar groups BS(1, n) have both
strongly aperiodic tilesets (Theorem 3.3.5) and weakly not strongly aperiodic tilesets (The-
orem 3.3.12). Finally, in Section 3.4 we proved that the domino problem of orbit graphs
of many non-deterministic substitutions is undecidable (Theorem 3.4.12) and deduce the
same for the domino problem of surface groups (Corollary 3.4.14).

For general Baumslag-Solitar groups BS(m,n) we only know the existence of a weakly
aperiodic tileset [AK13], and it is hard to even conjecture if they have a strongly aperiodic
one or not. They are among the few candidates to have no strongly aperiodic SFT but
undecidable domino problem. All we know is that the potential proof will have to use
the fact that Baumslag-Solitar groups are non residually finite for m 6= n 6= 1. Indeed,
Baumslag-Solitar groups are residually finite if and only if m = n or m = 1 or n = 1, and
in these cases they have a strongly aperiodic tileset. The case m = 1 is Theorem 3.3.5 of
this thesis, and the case m = n is done in [EM20].

In Theorem 3.3.13 we characterize substitutions over binary alphabet that can be
naturally encoded over the Cayley graph of BS(1, n), called shift-similar substitutions. It
would be interesting to know how shift-similar substitutions with bigger alphabet can be
characterized and if they are as limited as the ones with binary alphabet. We also wonder
how shift-similar substitutions can be extended to be able to encode substitutions in more
general BS(m,n) groups.

Conjecture 1 states that the domino problem is undecidable if and only if it is virtually
free. It seems far out of reach for the moment, as not even a proof strategy has been
found to tackle it, and it would be a breakthrough to be able to characterize groups with
undecidable domino problem.

A more realistic goal would be to know how far the reduction of Corollary 3.4.14 can
be pushed. In other words, what other groups can we find groups that have a Cayley
graph close enough to an orbit graph of a substitution for our method to work and prove
that they have undecidable domino problem. We believe that one-ended word-hyperbolic
groups are good candidates for this. As did Cohen, Goodman-Strauss and Rieck to find a
strongly aperiodic SFT over hyperbolic groups [CGR17], we can remark that the language
of geodesics of a one-ended word-hyperbolic group G which are lexicographically minimal
is a regular language. The intuition is that the deterministic finite automaton recognizing
this language might be enough to find an orbit graph inside the Cayley graph of G. Letters
of the alphabet would be the states of the automaton and the rules of the substitution
would be given by the transition function of the automaton. Surface groups were easier
because they have a planar Cayley graph, and exactly one orbit graph is enough to cover
the whole graph. For more general word-hyperbolic groups, the main difficulty is that we
have no guarantee to find such a simple structure, there may be several orbit graphs that
merge and/or split.

One-ended word-hyperbolic groups are particularly interesting as they are the only
case we need to treat to solve the domino problem conjecture (Conjecture 1) for all word-
hyperbolic groups, as we remarked in the end of [ABM19]. By combining known results
about word-hyperbolic groups we showed that if word-hyperbolic a group is not virtually
free, it must contain a one-ended word-hyperbolic subgroup.
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Proposition 4.1. If the domino problem of one-ended word-hyperbolic groups is undecid-
able, then the domino problem conjecture holds for all word-hyperbolic groups.
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Résumé

Étant donné un ensemble fini de tuiles carrés, le problème du domino est la question :
«est-il possible de paver le plan entier en utilisant ces tuiles ?» Ce problème est connu
pour être indécidable dans le cas des pavages du plan, et est très fortement lié à la
question de la périodicité des pavages. Dans cette thèse nous abordons ce problème
de deux points de vue différents : d’abord en regardant le cas particulier des pavages
de faible complexité, ensuite en le généralisant aux structures plus générales des
groupes.

Un pavage du plan est dit de faible complexité s’il y apparaît moins de mn rectangles
de taille m× n. Nivat conjecture en 1997 qu’un tel pavage est nécessairement pério-
dique, avec comme conséquence que le problème du domino serait décidable pour
les pavages de faible complexité. En continuant de développer des outils algébriques
introduits par Kari et Szabados, nous prouvons une version généralisée de la conjec-
ture de Nivat pour une classe de pavages particuliers (certains des sous-décalages
algébriques). Nous parvenons également à montrer que la conjecture de Nivat est
vraie pour tout pavage uniformément récurrent, avec comme conséquence que le pro-
blème du domino est effectivement décidable pour les pavages de faible complexité.

Le problème du domino peut également se formuler dans le cadre plus général des
graphes de Cayley de groupes. Dans cette thèse nous développons de nouvelles tech-
niques permettant de relier les graphes de Cayley de certains groupes à des graphes
de substitutions. Une première technique nous permet de montrer qu’il existe à la
fois des pavages fortement apériodiques et faiblement-non-fortement apériodiques
pour les groupes de Baumslag-Solitar BS(1, n). Une seconde nous permet de mon-
trer que le problème du domino est indécidable pour les groupes de surface, ce qui
fourni une nouvelle classe de groupe vérifiant la conjecture disant que le problème
du domino d’un groupe est décidable si et seulement si le groupe est virtuellement
libre.
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