Obtenir Le Grade De Docteur

Présentée Par

Alexandre Le Borgne Le

Janvier

Nicolas Anquetil

David Delahaye

Marianne Huchard

Christelle Urtado

Sylvain Vauttier

Présidente Rapporteur

Paul Heidmann

Guillaume André

Valentin Colas Qui M'auront

Clément Roland Pascale

THÈSE POUR

Co-encadrant

iii "En raison d'un appel à la grève émanant de la CGT, nous ne sommes pas en mesure de diffuser l'intégralité de nos programmes habituels. Nous vous prions de nous en excuser."

re-documentation is performed from the analysis of both object-oriented code and project deployment descriptors. The re-documentation process targets the Dedal architecture language which is especially tailored for managing and driving software evolution. Another highly important aspect of software documentation relates to the way concepts are versioned. Indeed, in many approaches and actual version control systems such as GitHub, files are versioned in an agnostic manner. This way of versioning keeps track of any file history. However, no information can be provided on the nature of the new version, and especially regarding software backward-compatibility with previous versions. This thesis thus proposes a formal way to version software architectures, based on the use of the Dedal architecture description language which provides a set of formal properties. It enables to automatically analyze versions in terms of substitutability, version propagation and proposes an automatic way for incrementing version tags so that their semantics corrrespond to actual evolution impact. By proposing such a formal approach, this thesis intends to prevent software drift and erosion. This thesis also proposes an empirical study, to validate our approach named ARIANE, based on both re-documenting and versioning processes on numerous versions on an enterprise project taken from GitHub.

Chapter 1 Introduction

This chapter gives a brief introduction of the context this thesis stands in, the problem which is addressed, the proposed contributions, and presents the outline of the manuscript.

General context of component-based software engineering

Because of the constantly increasing complexity of software systems, new needs have appeared from early ages of software engineering for advantageously producing and maintaining software reducing costs. This is why component-based software engineering has emerged in late 1990's as a sub-discipline of software engineering, which promises to address those issues. Component-based software engineering advocates a specific software development approach centered on component reuse [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. This discipline proposes a set of methods and models which aim at improving component-based software development (CBSD). CBSD approaches give a methodological support to enhance reusability by providing guidelines to assemble already developed decoupled software components.

Those component are stored in repositories and referred as Off-The-Shelf components. It therefore avoids building entire systems from scratch, taking advantage of past developments. It significantly decreases development costs and time-to-market preserving quality of software components [START_REF] Crnkovic | Building reliable componentbased software systems[END_REF].

As an essential part of CBSD, software architectures give an abstraction of the software structure and expose the way that it is supposed to evolve [START_REF] Garlan | Software architecture: a roadmap[END_REF]. Software architecture models therefore contain the list of the elements that are part of the system and the information about how those elements are connected one to another. As software architectures are abstraction of software themselves, they capture the design decisions, which occur during the development process. This level of abstraction helps to reason in terms of architectural element evolution instead of source code evolution, which can be more difficult to understand [START_REF] John C Georgas | Architecture-centric development: a different approach to software engineering[END_REF].

However, despite CBSD processes have been improved over years, some issues remain that concern software architecture maintenance and evolution [START_REF] Hongyu | A systematic review of software architecture evolution research[END_REF]. As part of those issues, we can highlight the evolution of component-based software architecture documentation, which often becomes obsolete [START_REF] Ducasse | Software architecture reconstruction: A processoriented taxonomy[END_REF], and the versioning of software architectures, which is surprisingly not much discussed in literature.

Documenting and versioning component-based software architectures issues

Despite a lot of work [START_REF] Ducasse | Software architecture reconstruction: A processoriented taxonomy[END_REF] in the field of software engineering for improving the documentation of software systems, software evolution still leads to design decision loss. Software evolution without co-evolution of software models is but the ruin of architectures. Then, most of the time, design decisions are lost due to architectural drift or erosion [START_REF] Garlan | Acme : An Architecture Description Interchange Language 1 Introduction[END_REF].

We argue that the information that has been lost during software evolution must therefore be recovered prior to performing any crucial evolution task. A lot of work exists that addresses this issue by generally proposing approaches that re-engineer software architectures [START_REF] Ducasse | Software architecture reconstruction: A processoriented taxonomy[END_REF]. Very few of these approaches only intend to re-document component-based architectures "as they are implemented". Moreover, none of these approaches consider more than two abstraction levels whereas previous work on Dedal ADL has shown that three abstraction levels are necessary to handle the global software life-cycle [START_REF] Huaxi Yulin Zhang | A three-level component model in component based software development[END_REF]. However, such documentation is essential for performing software evolution.

Additionally, during its evolution, a software is subject to numerous changes that lead to numerous versions of the software. Then, in order to keep track of the software history, it is necessary to identify its successive versions. Despite abundant literature in the field of databases and software versioning, little work even intend to address this issues in the field of component-based software architectures. There are even fewer approaches that propose a way to version components and / or architectures by using verifiable semantics. However, such semantics are needed in order to well identify software versions since a wrong version identifier may misguide software architects.

Thesis proposal and contribution

As a contribution, this thesis proposes to answer the following research questions:

• RQ1. Is it possible to re-document multi-abstraction level component-based architectures from source code, and is it possible to retrieve abstract design decisions from this re-documentation?

• RQ2. How to introduce semantics in component and architecture versioning?

• RQ3. Are such re-documenting and / or versioning approaches suitable for large software systems?

• RQ4. Is it possible to identify drift and / or erosion situations by re-documenting and analyzing software versions?

Thesis proposal and contribution

In order to improve software evolution, documentation must remain consistent with the actual software implementation and deployment all along its life-cycle. Moreover, this documentation must cover the software development main steps, which are the specification, the implementation, and the deployment. However, despite the well-known benefits of an up-to-date documentation, it is often not consistent with the actual state of the software because of an undocumented evolution. Performing evolution tasks may therefore be difficult in this case. This is why this thesis proposes an approach to re-document software architectures from raw source code. This approach is based on Dedal [START_REF] Huaxi Yulin Zhang | A three-level component model in component based software development[END_REF][START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF], which provides three architecture levels for tracking main steps of software life-cycle. Moreover, it also provides a formalized basis for calculating automated evolution plan. This formalism especially ensures the three architecture level coherence. In other words, it ensures that the description of deployment is consistent with the description of implementation, and finally that the description of implementation is consistent with the description of the specification.

Dedal therefore provides a good support for re-documenting software in order to retrieve suitable software evolution capabilities. This contribution answers research question RQ1.

Another contribution of this thesis consists in using formal rules based on type theory [START_REF] Arévalo | Precalculating component interface compatibility using FCA[END_REF][START_REF] Arévalo | Formal concept analysis-based service classification to dynamically build efficient software component directories[END_REF] to characterize component and architecture differences in terms of backward compatibility. The characterization of changes is made from a change analysis impact study. This study is based on formal Dedal architectural rules and allows us to derive a set of rules to characterize substitutable and not substitutable changes. Change impact analysis also makes it possible to derive rules of version propagation among the three Dedal architecture levels in order to preserve architectural consistency. This contribution also includes a proposal to automatically change version identifiers accordingly to the kind of version that is identified. This part of the thesis answers research question RQ2.

Finally, the last contribution of this thesis is the set of tools that have been developed in order to answer research questions RQ3 and RQ4. Those tools can be fully integrated into the eclipse ecosystem and DedalStudio, which is our CASE (Computer-Aided Software Engineering) tool that supports the Dedal ADL. The tools have been released online (see GitHub1 and LGI2P's web site2) and consist of the following components:

• SpringDSL is our implementation of XML Spring [START_REF] Johnson | The Spring framework -Reference documentation[END_REF] grammar into the EMF3 environment.

• HierarchyBuilder proposes to build the entire type hierarchy of a Java project including required libraries where traditional code parsers only consider source code.

• component-based-hierarchy-builder re-documents three leveled Dedal architectures from source code and Spring framework.

• ProjectComparator calculates and characterizes architectural differences between two versions of a Dedal architecture model.

• DiffAnalyzer analyzes found differences and checks for architectural deviation situations.

In addition to the main tooling contributions, we released the previously developed Dedal-Studio modules as eclipse plugin online to ease its installation into the eclipse environment.

Next section presents the outline of the thesis.

Outline of the thesis

The thesis is organized as follows:

• Chapter 2 introduces in detail the context of this thesis. It presents the componentbased software development process and the component-based software architecture concept. It also introduces the Dedal architecture description language.

• Chapter 3 introduces the state of the art of this thesis. It consists of three parts. The first one is a survey of versioning approaches in literature in order to identify limits of these approaches especially in term of formalization and automation of version identification. The second one concerns formal architecture evolution approaches to highlight their limits in terms of component and architecture versioning. Finally, the last one is a survey that compares re-documentation and reconstruction approaches, and justifies our choice for re-documenting software as three-leveled component-based architecture with the Dedal ADL.

• Chapter 4 introduces the proposed approach and algorithm for re-documenting component-based architectures from source code. It defines the different steps that lead from an undocumented software to a three-level description of it.

• Chapter 5 introduces an approach for managing version identification in software histories. This identification is based on a formal architecture impact analysis and proposes rules for automatically characterizing component and architecture versions.

• Chapter 6 presents the implementation of our approach and introduces a study that has been conducted on more than 200 versions of an enterprise open-source project to re-document it and check the soundness of its version identification in terms of architecture erosion / drift situation identification.

• Chapter 7 finally summarizes the thesis contributions and discusses limitations and perspectives to this work. As introduced in Chapter 1, the contribution of this thesis takes place in the field of Component-Based Software Engineering (CBSE). More precisely, this thesis focuses on Component-Based Software Architectures re-documention and versioning. This chapter is designed to give a deeper understanding of the context this thesis stands in. As it takes places in the continuity of Zhang's thesis [START_REF] Zhang | Architecture-centric component-based development needs a three-level ADL[END_REF] and Mokni's thesis [START_REF] Mokni | A formal approach to automate the evolution management in component-based software development processes[END_REF], it is positioned in the same context and therefore follows the same outline as Zhang's and Mokni's thesis context.

Chapter 2

Context and motivations

Component-based software engineering

Component-Based Software Engineering appeared in late 1990's as a subdiscipline of the wide Software Engineering field. CBSE provides developers with methods, models and guidelines oriented towards component-based systems [START_REF] Pree | Component-based software development-a new paradigm in software engineering?[END_REF]. CBSE then emerged as a reuse-based approach to software development [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. The goal of CBSE, is to provide keys for producing software from already developed components in opposition with developments realized from scratch. The motivation of such approach is to meet software industry concerns about the reduction of costs, development time to meet customer needs, software maintainability and reliability [START_REF] Szyperski | Component software: beyond object-oriented programming[END_REF]. Thus, CBSE quickly took a great place in the field of Software Engineering. This success is due to some important factors. First of all, software becomes more and more complex and provides more functionality. The use of software components makes it possible to meet the need of producing more functionalities with the same investment in terms of costs and time [START_REF] Pree | Component-based software development-a new paradigm in software engineering?[END_REF]. Next, until CBSE, traditional approaches fail at supporting reuse. As stated by Sommerville [START_REF] Sommerville | Software engineering 9th Edition[END_REF], abstract unit descriptions such as components can be considered as standalone service providers while object classes are too much detailed and specific. Last but not least, software constantly evolves and so do its requirements, which means that a support for easy change is needed. Council

and Heineman [START_REF] Council | Component-based Software Engineering Putting the Pieces Together[END_REF] identified the three following major concerns of CBSE:

• to support reusable component entities,

• to support development of systems as component assemblies,

• and to ease maintainability and upgrading of such systems by being able to customize and replace their components.

However, despite the well founded benefit of such goals, achieving them in practice can be very challenging and then improving reuse processes is tedious [START_REF] Pree | Component-based software development-a new paradigm in software engineering?[END_REF]. This difficulty is even emphasized in component-based software evolution practice, especially after software deployment. Thus, for further understanding, it is necessary to consider component-based software life-cycle.

Component-based software life-cycle

Before the concept of component-based software life cycle is introduced, it is important to understand most global software development approaches.

Traditional software development processes

The waterfall model is an historic development model that has been proposed by Royce in 1970 [START_REF] Winston | Managing the development of large software systems: concepts and techniques[END_REF]. Most of the iterative software development approaches are based on the same activities than the waterfall model [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. Those activities are shown in Figure 2.1 and are as follows:

1. Requirement definition: During this phase, the goals of the system are established.

At the end of this phase, a specification of the system that complies with the realization of the goals is proposed. The specification defines functional and non-functional requirements.

2. System and software design: During this phase, the software is designed accordingly to the specification that has been produced at the previous phase. This design implies to identify and describe a conceptual and technical solution for the software to develop. Thus an architecture that describes the software is proposed.

Implementation and unit testing:

This phases intends to produce an executable software that corresponds to the previously proposed design. Implementation can be composed of smaller units. The units are then verified and tested to meet their specification.

4. Integration and system testing: During this phase, system units are integrated and the complete system is verified, validated, and finally released.

Operation and maintenance:

A system in operation needs continuous support and maintenance. This continuous support may imply to loop on previous waterfall phases for adding new functionalities, fixing bugs. . .

Retirement and disposal:

This phase is often omitted in life-cycle models since it is implicit. It consists in the phasing out of the system that can either be replaced or completely terminated. According to Sommerville [START_REF] Sommerville | Software engineering 9th Edition[END_REF], the waterfall model clearly separates the different phases of the software development process and the main advantage of its model is that phases do not overlap and documentation is incrementally produced and enriched. Such a development model is more suitable for small projects which requirements are well understood.

However, such model is not appropriate to adapt to changing customer requirements. Such an approach is not responsive since commitments must be made early in the development process while in such models, results are produced very late [START_REF] Sommerville | Software engineering 9th Edition[END_REF].

Agile software development methods

In order to improve responsiveness of development processes, agile methods emerged in the 1990's. They support fast software development and are more adaptable to requirement change. They were primarily meant to support fast iterative development of business applications with short release cycles [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. A group of practitioners has established in 2001 a consensus named the manifesto of agile software. This consensus sets the values of agile methods1 . The manifesto argues for the following four values:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

• Responding to change following a plan.

Agile methods are iterative methods that emphasize incremental development. They encourage active collaboration with customers into the development process for feedback and to ease requirement changes even after software delivery [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. However, the main drawback of such methods resides in the fact that they depend too much on individual personalities. Developers may not be willing to bear the pressure of such processes, which may be intense. On the other hand, customers may no be willing to spend the time that is necessary to make those development processes valuable [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. In addition, in such development processes, prioritizing changes might be a difficult task when the process involves too many stakeholders [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. Thus, agile methods are well adapted to small and medium-sized systems without the risks associated to large, complex and critical systems [START_REF] Sommerville | Software engineering 9th Edition[END_REF].

Component-based software development processes

The main purpose of Component-Based Software Development (CBSD) is to build entire systems from preexisting components. Thus, there are two consequences on software development processes [START_REF] Crnkovic | Component-based development process and component lifecycle[END_REF]. The first consequence is that software development by component reuse is separated from component development. In CBSD processes, components need to be already developed at the start of the process. Second, the development process must include a component identification phase [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. 1. Requirements: Requirements can be defined in the form of abstract component types that describe the functionalities of the system. In a component-based approach, the definition of requirements must take into account the ability to develop the system with existing components. If possible, the system is realized using preexisting software components, otherwise, new components have to be developed or requirements might change to meet the available component resources [START_REF] Crnkovic | Component-based development process and component lifecycle[END_REF].

2. System design: This phase is designed to define a complete architecture of the system with refined component types that are fulfilled by existing software components. As in the previous phase, components are reused according to their availability. Components might need to be developed. in order to offer the best coverage of system requirements [START_REF] Sommerville | Software engineering 9th Edition[END_REF]. This activity might be very complex since a perfect matching is often unrealistic.

(c) Component validation: Once components have been selected, they need to be tested and validated in order to ensure that their behavior meets the system requirements.

4. System integration: This phase consists in deploying selected components into assemblies to constitute the executable system architecture.

System test / validation:

This phase corresponds to the traditional test phase. It ensures that system requirements are met.

6. Maintenance: In the context of CBSD, this phase consists in keeping the system upto-date by checking the availability of new component versions so that they can (if they meet system requirements) be identified, tested and deployed to replace older component versions.

Retirement and disposal:

This phase has the same role as in traditional software development processes.

Summary

CBSE proposes a reuse intensive approach to software development. CBSD has several benefits compared to traditional software development processes as for instance, clear separation of concerns, reduced complexity, reduced development time, and increased software quality. However, it also comes with drawbacks. First of all, it can be difficult to identify trusty software components that perfectly match requirements and sometimes it is not even possible, which thus makes the adaptation of system requirements necessary. Second, managing evolution of such systems can be tricky. During maintenance phase, if the changes that are caused by new component version deployment are not carefully handled, they may impact the whole system and compromise it. This issue is addressed in Chapter 5.

As an essential part of CBSE to handle components, the following section discusses the notion of component-based software architecture.

Component-based software architectures

This section gives an overview of basic concepts related to Component-Based Software Architectures (CBSA).

Basic concepts in software architecture

Software architectures are the outline of systems construction and evolution [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF]. They intend to provide an abstraction of the structure of software systems. They also expose the way systems are expected to evolve [START_REF] Garlan | Software architecture: a roadmap[END_REF]. Then, software architectures capture design decisions that are made during the system development. The structure of the system, its functional behavior, its interactions and its non-functional properties are design decisions.

Perry and Wolf [START_REF] Perry | Foundations for the study of software architecture[END_REF] identify three kinds of architectural elements which can be summarized into two major architectural concepts that are components and connectors. Those architectural elements are as follows:

• Processing elements are comparable to components that process data.

• Data elements are comparable to components that contain data to be processed.

• Connecting elements stand between components and hold connections.

Next section goes deeper and gives a more detailed overview of what components and connectors are.

Components

In order to define the concept of component, several definitions exist in the literature. A first definition of component has been given by Szypersky [START_REF] Szyperski | Component software: beyond object-oriented programming[END_REF]:

"A software component is a unit of composition with contractually specified interfaces and explicit context dependencies only. A software component can be deployed independently and is subject to composition by third parties."

Thus according to Szypersky, a component is a "black box", which hides details about code and implementation and which data is accessed through its interfaces. Components are decoupled entities, they are developed for reuse, and they comply with the principles of encapsulation, abstraction, and modularity.

A second definition has been given by Taylor et al. [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF] "A software component is an architectural entity that (1) encapsulates a subset of the system's functionality and/or data, (2) restricts access to that subset via an explicitly defined interface, and (3) has explicitly defined dependencies on its required execution context."

According to Taylor et al., a component is a unit of composition, which encapsulates data and provides and / or requires (from other components) services. Thus, the notion of component is very wide and can represent a simple operation or an entire system according to the architecture.

Thus, mixing those two definitions, a component is made of a set of interfaces, an implementation and a specification.

Interfaces typically are the communication channels of components. They manage the component interactions with other components [START_REF] Szyperski | Component software: beyond object-oriented programming[END_REF]. An interface can be either provided or required. A provided interface exposes a set of services, which are provided to other components of the environment. In other words, other components may require services through other component provided interfaces. Unlike provided interfaces, required interfaces define services that are required by a component from other components for its execution. Thus, using such interface mechanisms, components are decoupled entities, which hide their complexity behind the exposure of provided and required interfaces and then are highly reusable units.

On the contrary, component implementation refers to the internal definition of a component, which includes the source code. However, the implementation of a component is only considered at development time and is quickly hidden to be integrated to a CBSD process.

Doing so, no particular knowledge about their inner structure is needed to build componentbased architectures.

According to Crnkovic and Larsson [START_REF] Crnkovic | Building reliable componentbased software systems[END_REF], the specification of a component is the definition (type) of its interfaces. In early stages of CBSE, interface specification was only a syntactical definition of the sets of signatures that are either provided or required. Then, some Interface Description Languages (IDLs) were proposed to specify component interfaces. On this basis, the notion of contract was proposed by Meyer [START_REF] Meyer | Applying'design by contract[END_REF]. The concept of contract extends the purely syntactical information contained in interface specifications by adding the notion of behavior. This early notion of behavior focused on the definition of pre-and post-conditions on the interface operations. It has later been enriched with the concepts of synchronization and service quality [Beu+99; BJP10].

Connectors

The second major architectural elements are connectors. Connectors intend to manage communications between software system building blocks. In the context of CBSE, those blocks are components. Thus, connectors are meant to bind components together so that a component can invoke a service from another component and vice versa. Thus, connectors are mediators between components [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF] and connect components through their inter- In some approaches such as C2-SADEL [START_REF] Medvidovic | A language and environment for architecture-based software development and evolution[END_REF] and Wright [START_REF] Allen | A formal basis for architectural connection[END_REF], connectors are considered as specific components with two communication points: the provided and the required connector ends. They can also be represented as simple links between two component interfaces [START_REF] Magee | Specifying distributed software architectures[END_REF].

Architecture modeling

Architecture modeling consists in describing one or more aspects of a system architecture.

To do so, a particular notation is used in order to standardize the description. Taylor et al.

[TMD10] define an architecture model as an artifact that captures parts or all of the design decisions of the software architecture.

Architectural modeling notations

There are several levels of formalism in architectural modeling notations, which stretch from informal to highly formal. Taylor et al. [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF] introduce three categories of architectural modeling notations according to their level of formalism:

• Informal models: Those models do not have a formally defined syntax. They are most often designed for non-technical stakeholders and usually presented as boxesand-lines diagrams.

• Semi-formal models: Those models have a formally defined syntax. They can be used for both technical and non-technical stakeholders and are intended to find a balance between formalism and expressiveness. UML 2 is typically a semi-formal modeling notation.

• Formal models: Those models have a formal syntax and also formally defined semantics. They are most often intended to be used by the system technical stakeholders. They are mostly used to address system criticality and their formalized semantics make automated analysis possible.

Next section focuses on the languages that are used to describe architectures.

Architecture description languages

Architecture Description Languages (ADLs) are languages that are dedicated to architecture modeling. They provide all the necessary features for describing software architectures. The definition of ADL has been given by Medvidovic [START_REF] Medvidovic | Using software evolution to Focus architectural recovery[END_REF]:

"An architecture description language is a language that provides features for modeling a software system's conceptual architecture, distinguished from the system's implementation. An ADL must support the building blocks of an architectural description."

Thus, an ADL must provide the vocabulary to describe components and their interfaces, connectors, and configurations.

ADLs can also be used for performing architecture analysis to support architecture evolution. Such an activity is directly related to the level of formalism of the ADL. Section 3.2 introduces few of them.

Architecture evolution

During its whole life-cycle, a software is designed to evolve, so does its architecture. This evolution is considered as one of the most challenging tasks of CBSE. In order to understand motivations and issues of architecture evolution, it is important to introduce software evolution in general and the concept of architecture-centric evolution.

Software evolution

It is now well identified that the software maintenance phase concentrates most costs and difficulties. As a proof of this statement, Lientz et al. [START_REF] Bennet P Lientz | Characteristics of application software maintenance[END_REF] have shown in the 1970's that this phase costs about 60% of the global software production costs. The IEEE 1219 Standard for software maintenance [Iee] defines maintenance as follows:

"Software maintenance is the modification of a software product after delivery to correct faults, to improve performance or other attributes, or to adapt the product to a modified environment."

Moreover, the traditional CBSD process is too rigid and not suitable for dealing with evolution. As a matter of fact, requirements are also subject to change during the entire software life-cycle. It is then not realistic to consider that requirements are all known and fixed before starting the software design. In addition, experience acquired at the later phases might need to be fed back to earlier phases [START_REF] Demeyer | Software Evolution[END_REF]. This limitation was known a long time ago and a particular interest to software evolution raised when Lehman stated the "Laws of software evolution" [START_REF] Lehman | On understanding laws, evolution, and conservation in the large-program life cycle[END_REF]. He defined software evolution as follows:

"Software evolution is the collection of all programming activities intended to generate a new version of some software from an older operational version. If these activities can be performed at runtime without the need for system recompilation or restart, it becomes dynamic software evolution."

The real novelty of this definition is that it dealt with system evolution rather than only considering code evolution.

Bennett and Rajlich then proposed an evolutionary process model [START_REF] Keith | Software maintenance and evolution: a roadmap[END_REF] for coping with the waterfall model limitations. As introduced in Figure 2.3, their model does not omit the problem of software aging. Once it has been initially developed, the software may suffer changes, which can lead to a degeneration of the software. When the software loses its evolvability, it enters in the servicing phase, which is intended to keep the software alive by applying small patches on it [START_REF] Demeyer | Software Evolution[END_REF]. Finally, when it gets too hard and / or too expensive to keep the software running, it enters in the "phase out" phase and is then terminated in the close down phase.

Architecture-centric evolution

Architectures present a great advantage for managing software evolution. As discussed before, architectures expose by nature the dimensions along which they are supposed to evolve [START_REF] Garlan | Software architecture: a roadmap[END_REF]. They make it possible to reason about evolution in an abstract manner that eases the understanding of change. They are also especially useful to estimate the cost that a change may have in terms of time and financial cost. By nature, components that are part of the architectures hide their complexity, then it is no more necessary to analyze source code that can be hard to understand and modify [START_REF] John C Georgas | Architecture-centric development: a different approach to software engineering[END_REF]. Actually, architectures enable high level manipulations thanks to the nature of components, which can thus be added, deleted, or replaced, and their connection modified.

Nonetheless, issues exist in architecture evolution. Software architectures may be degraded because of changes that lead to inconsistencies. Those inconsistencies may thus alter software architectures in such a way that they lose their evolvability, which then leads (according to Figure 2.3) to the progressive end of the software. It is then essential to prevent such inconsistencies in software architectures. However, it is one of the greatest challenge of CBSE and it can get very tricky to deal with such issue especially for reusing components [START_REF] Garlan | Architectural mismatch: Why reuse is still so hard[END_REF]. This issue is addressed in Chapter 5 in terms of architecture consistency recovering after versioning components (version propagation).

Next section introduces the notion of architectural inconsistency.

Architecture analysis

Architecture analysis intends to discover important system properties that are captured by its architecture models [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF]. Such an activity implies that analyzed models are formal as discussed in Section 2.2.2.1. Architecture analysis is typically useful to detect problems / inconsistencies in design decisions at early development stages.

According to Taylor et al. [START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF], consistency is an internal architecture property that guarantees that elements in an architecture model do not collide. They identify five types of inconsistencies, which can appear in an architecture model:

• Name inconsistency: A name inconsistency occurs when several architectural elements have the same name and when an element that is not supposed to be accessed is actually accessed. It can also happen if a non-existing element is accessed.

• Interface inconsistency: This inconsistency can occur in case of a name inconsistency when a component requires a service which name does not match with a component provided service or when interface types do not match.

• Behavioral inconsistency: A behavioral inconsistency occurs between components that have services that do not match.

• Interaction inconsistency: An interaction inconsistency occurs when the interaction protocol between two components is not respected. For instance, not respecting a sequence for accessing a service may represent an interaction inconsistency.

• Refinement inconsistency: A refinement inconsistency occurs when architectural design decisions are changed, omitted or violated when an architectural description is refined.

In addition to those inconsistencies, we can cite two major architecture mismatches that have been introduced by Perry and Wolf [PW92]:

• Drift: Drift consists in the introduction of new design decisions at a low abstraction level, which are not described in higher abstraction levels. For instance, a new functionality is introduced in the implementation whereas it is not documented in higher abstraction levels. Drift can be considered as a refinement inconsistency.

• Erosion: Erosion is defined by de Silva and Balasubramaniam [START_REF] De | Controlling software architecture erosion: A survey[END_REF] as follows:

"Erosion is the phenomenon that occurs when the implemented architecture of a software diverges from its intended architecture."

In other words, erosion consists in the violation by an architecture implementation of design decisions described at higher abstraction level. As previously, erosion can also be considered as a refinement inconsistency. The definition given by de Silva and Balasubramaniam is interesting since it highlights the relation that exists between two architecture levels. Mok+15] show that it is beneficial for architecture evolution and to control erosion to explicitely describe those two levels and even to take the runtime architecture level into account as dynamic changes can imply erosion. Considering erosion differently, the fact that the intended architecture diverges from its implemented architecture may be due to the addition of new requirements in the system's specification but some of them are not implemented. Zhang et al. define this issue as pendency which is the introduction of new design decisions into a higher architecture level that are not implemented by its lower architecture level.

Next section introduces the Dedal architecture model, which proposes to explicit the architecture abstraction levels that must be considered in CBSD processes in order to improve reuse and efficiently cope with architecture inconsistencies that may arise during architecture-centric evolution.

The Dedal architecture model

Figure 2.4 introduces the proposal of Zhang [START_REF] Huaxi | Multi-dimensional architecture description language for forward and reverse evolution of component-based software[END_REF] to explicit the architecture descriptions that are produced at each development step of a system. The process that is proposed focuses on three main development phases: specification (or design), implementation, and deployment. At the end of requirement analysis, an architecture specification is designed that defines the services that should be supplied by components. It also describes how components should be connected to one another in order to meet requirements. Thus, the architecture specification corresponds to the system intended architecture. The next step of the process consists in defining an architecture description (configuration) that implements the specification. This step is comparable to the component identification step of an usual CBSD: architects select suitable concrete components that match those specified. Architects then compose those concrete components to realize the complete architecture configuration.

The configuration therefore corresponds to the implemented architecture that realizes the specification. The final life-cycle step described in this process consists in instantiating and deploying the configuration. The corresponding architecture that is documented at this step is called the assembly. It represents the architecture configuration as it is deployed.

The Dedal abstract architecture specification level

This architecture description level corresponds to the design phase of a CBSD process. It is designed to explicit the functional requirements of the software. Its purpose is to give an abstract view of the involved software elements (components). At this architecture level, design decisions consist in identifying abstract component types, which will be (re)used to operate the defined required functionalities. Those abstract components are called component roles.

Component roles are meant to declare the set of functionalities that are expected from available components. A component role declares a set of functionalities through the specification of interfaces. Doing so, it allows a wider set of components to match the specification and then be selected to implement the architecture. Component roles are thus guides for helping the concrete component search and selection process.

Following this principle, the specification of the HAS example (Figure 2.6) is made of the HomeOrchestrator component role, which handles lighting by using both Light and Luminosity component roles and also the Time component role.

The Dedal concrete architecture configuration level

The configuration architecture level represents the implementation phase of a CBSD process.

It defines the concrete implementation that is adopted for the software system. A configuration is defined by the set of selected components (during the identification process) that best

The Dedal instantiated architecture assembly level

The architecture assembly level is designed to capture decisions that are made at deployment time during the CBSD process. It corresponds to an assembly of instantiated component classes which have been selected to implement the software. Those components are then called component instances. The architecture assembly describes the software at runtime and holds information about its internal state. The assembly lists the component instances and their assembly constraints such as cardinality of connections, etc.

A component instance captures the decision that is made about how a given component class from an architecture configuration is instantiated at runtime. A component instance contains information about its initial and current states, defined and saved in a list of valued attributes.

Figure 2.6 shows the HAS example architecture assembly. This assembly instantiates two AdjustableLamp (lampdesk and lampSitting), one Clock (clock) and finally one Orchestrator (or-chestratorHome). It is important to note that it is one of the possible instantiations of the configuration.

Dedal formal rules

Another contribution of Dedal is the set of relations that exist between components in each architecture description but also at different abstraction levels and also between architecture levels themselves. In addition to the Zhang's thesis [START_REF] Huaxi | Multi-dimensional architecture description language for forward and reverse evolution of component-based software[END_REF], Mokni implemented formal relations that exist between components and architecture levels [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] • Component connections: The connection of components is verifiable thanks to the use of type theory. Mokni et al. [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] define the concept of compatible component for a connection. This compatibility is calculated on the types of the interfaces that are involved in the connection. To be compatible, two interfaces must have an opposite direction (one must be a provided interface and the other one has to be required), and their types must match. It means that they must have the same type or that the provided interface is a specialization of the required interface. Those rules are applicable for any of the component connections at any of the architecture abstraction levels.

• Component role realization: This is the relation that exists between component roles and concrete component classes. This relation prevents refinement inconsistencies since it verifies that a component class is a specialization of its "realized" component role(s). In other words a concrete component class must be a subtype of its designed role to be a realization of this role.

• Specification implementation: This is the relation that relates the configuration with the specification. To be consistent with its specification, a configuration needs to define a realization of the component roles that constitute the specification. All the connections that exist into the specification must also be declared into the configuration. In other words, a configuration is a specialization (and thus a subtype) of its specification.

• Component class instantiation: This is the relation that exists between concrete component classes defined into the configuration and their component instances defined into the assembly. This relation verifies that component instances are instances of component classes. This relation verifies that component instances satisfy to the constraints defined in component classes (cardinality of connections, etc.).

• configuration instantiation: This is the relation that relates a configuration with one of its possible assemblies. As previously, this relation is formalized with type theory which means that it verifies that an assembly is an instance of its configuration. It verifies that all component classes are instantiated into the assembly and that all component connections are also instantiated into the assembly.

Motivations for re-documenting and versioning architectures

Conclusion

This chapter introduces the context of this thesis by generally introducing the context of Component-Based Software Engineering to accentuate the focus on Component-Based Software Architecture and then introduce the concepts of the Dedal ADL.

This chapter identifies the main issues of CBSE such as reuse of existing software components that is one of the main advantages of CBSE but still represents numerous challenges.

Another issue that is presented in this chapter concerns the management of software architectures which, despite the progress in the field, represents a complex task to perform in particular because of the inconsistencies that may raise during the software life cycle.

This chapter therefore introduces Dedal, which is an ADL that proposes to deal with those challenges by representing the entire life-cycle of software but also to perform formal architecture analysis, and automatic architecture evolution based on type theory. However, Dedal (and other approaches) still do not completely cope with those two challenges. This is what motivates this thesis since software evolution needs to address versioning problematics and also re-documentation perspective that can improve maintainability of software even after a long execution period. • What kind of identifier is used?

• What is the semantic behind version identifiers?

• How are identifiers attributed?

• Is the concept of backward compatibility formally checked?

In order to classify component-based architecture versioning approaches we aim at answering following questions:

• Is the concept of backward compatibility formally checked?

• Is the concept of version propagation addressed?

Windows Dynamic Link Libraries (DLL)

In order to manage their libraries, Microsoft introduced the concept of DLL to their operating system. This concept allowed to dynamically load required libraries at runtime. However, at the beginning, the Microsoft's DLL concept did not embed any versioning mechanism. This led to numerous system crashes since applications could replace older DLL versions that could still be used by other applications. This problematic behavior was called DLL-Hell [Dev99

Model evolution and versioning

Considering that ADLs are defined by metamodels / grammars, versioning an instance of an ADL metamodel / grammar amounts to the versioning of the described architecture.

In the context of software engineering, versioning plays an important role since it maintains an historical archive of software past states and it also supports parallel evolution of artifacts by teams [START_REF] Estublier | Impact of software engineering research on the practice of software configuration management[END_REF]. These concerns are transposable to the field of MDE. However, due to This section is organized as follows, first it presents model evolution approaches. Second it discusses version propagation in models.

Versioning models

A very common model versioning scenario involves parallel modifications of an unique artifact version v 0 . The artifact has now a set of new versions ν = v 1 , v 2 , ..., v n where n is the number of parallel versions of the artifact. Thus model versioning processes aim at consolidating and merging this set of versions into a unique version v 0 [START_REF] Paige | Evolving models in Model-Driven Engineering: State-of-the-art and future challenges[END_REF].

As it has been identified by Altmanninger et al. [Alt+08; ASW09; Alt+09], a model versioning process occurs following three steps:

• The change detection phase. This is the phase where the changes that occurred between v 0 and the set of modified versions ν are detected and identified. This phase can be realized following two different types of approaches [START_REF] Paige | Evolving models in Model-Driven Engineering: State-of-the-art and future challenges[END_REF]:

-State-based detection: in a state-based detection approach, only the final states of the modified versions is taken into account for identifying model changes.

Those approaches only support few operations which are additions, deletions and changes.

-Operation-based detection: in an operation-based detection approach, the version history relies on the model editor which has to save all the operations that have been performed on a model. Those approaches make it possible to keep a record of the operation sequence that leads to a new version of an artifact such as introduced by Herrmanndoerfer et al. [START_REF] Herrmannsdoerfer | COPE -Automating Coupled Evolution of Metamodels and Models[END_REF][START_REF] Herrmannsdoerfer | Operation-based versioning of metamodels with COPE[END_REF]. This can be useful for reverting changes. However, those kinds of approaches are often editor dependent and language specific.

• The conflict detection phase. In the context of parallel versioning, conflicts may arise.

For instance, in some cases, parallel changes are potentially overlapping or contradicting. Conflicts are detected by comparing all the changes that occurred on a model artifact so the overlapping contradicting ones are identified in order to be resolved.

There are two ways for resolving a conflict:

-Manual approaches: In those kinds of approaches, the user manually resolves conflicts between versions. Those kinds of techniques applied to modeling artifacts can be very challenging. Alanen and Porres [AP03] lead a seminal work on how to cope with identifying, classifying and reconciling conflicts. For textual conflicts, the conflicting versions are presented side by side to the user who chooses which action must be taken for resolving the conflict. However, in the case of model artifacts, the resolution can be challenging due to the nature of models that in many cases generates conflicts which cannot be resolved independently [START_REF] Brosch | An Introduction to Model Versioning[END_REF].

-Automatic approaches: Another way for resolving conflicts is to automatically calculate all possible combinations of operations that can lead to a valid version.

Thus, Cicchetti et al. [START_REF] Cicchetti | Managing dependent changes in coupled evolution[END_REF][START_REF] Cicchetti | A Solution for Concurrent Versioning of Metamodels and Models[END_REF] propose to define conflict patterns and resolution strategies through the use of a domain specific language (DSL) that they define. Moreover, they define patterns that resolve syntactic as well as semantic conflicts. Finally, they also define a versioning policy which still requires user intervention for cases where no policy is defined. In order to fully automate the process, Ehrig et al. [START_REF] Ehrig | A formal resolution strategy for operation-based conflicts in model versioning using graph modifications[END_REF] formalized a conflict resolution strategy. This strategy is especially tailored for conflicts that occur on graph modifications. As this is a formal approach, the obtained model is considered as consolidated (all the conflicts have been resolved) by construction. Finally, another approach to automatically address conflicts is to temporarily tolerate them. This is what is proposed by Nuseibeh et al. [START_REF] Nuseibeh | Making inconsistency respectable in software development[END_REF] who argue that it may be beneficial since those tolerated conflicts highlight parts of models that need to be further investigated and improved.

• The inconsistency detection phase. Inconsistencies may happen while merging concurrent versions of a model artifact. Those problems usually take place when the consolidated version violates metamodel validation rules. Those inconsistencies are in many cases resolved by users themselves. However Reder and Egyed [START_REF] Reder | Incremental consistency checking for complex design rules and larger model changes[END_REF] proposed a fully automated approach. Unfortunately this solution is language-specific.

In order to manage those model versions, several versioning systems have been proposed

that use different combinations of discussed techniques. In their work on versioning UML models, Stevens et al. [START_REF] Stevens | UML 2003-The Unified Modeling Language[END_REF] introduce algorithms for calculating differences, merging those differences and resolving conflicts. The differences are calculated from matching two model versions and the unique identifiers of their elements. The approach is meta-model independent and is able to identify additions, deletions and changes of model elements. the last version of the model. The tool is also able to raise conflict warning in case of contradictory changes. However, no inconsistency detection is performed after merging is done.

Last but not least, Altmanninger et al. proposed their tool named AMOR (Adaptable MOdel veRsioning) [START_REF] Altmanninger | AMOR -Towards Adaptable Model Versioning[END_REF] for managing model versioning. The tool provides capabilities such as an extensible conflict detection mechanism and resolver components which goal is to guide users during conflict resolution. Collaborative conflict resolution policies can also be supported by AMOR.

Models and metamodels co-evolution and version propagation

Systems may be defined not by a single model but by a set of models that document different abstraction levels or viewpoints. These models are then inter-related and versioning one model of the system may have an impact on its other representations. In the context of an ADL that documents software at each step of its life-cycle (see Chapter 2), the representation which is made at specification time can be considered as a metamodel of the one that is produced at implementation time. The same relation exists between the representation that is produced at implementation time and the one that is produced at deployment time. Indeed, those abstraction levels correspond to MOF3 M0, M1 and M2 levels. In other words, such an ADL is described by a metamodel / grammar and an instance of its metamodel / grammar contains several abstraction levels. Moreover, in CBSD the implementation is influenced by choices that are made at specification time but the specification might also be influenced by choices that are made at implementation time (e.g., component available for being reused). This is why top down and bottom up mechanisms are needed for propagating artifact versioning. Horizontal changes propagation are also needed in order to adapt each representation level (e.g., a change at implementation time may influence other artifacts of the implementation). Research on model evolution and versioning has brought various approaches for managing co-evolution [PMR16]:

• Manual approaches such as Ecore2Ecore [START_REF] Hussey | Advanced features of EMF[END_REF], Epsilon Flock [Ros+10; Ros+14] or Taentzer et al. [START_REF] Taentzer | Customizable Model Migration Schemes for Meta-model Evolutions with Multiplicity Changes[END_REF] manually migrate models in order to make them compliant with their updated meta-model.

• Operator approaches such as COPE / Edapt [START_REF] Herrmannsdoerfer | Operation-based versioning of metamodels with COPE[END_REF], MCL [Nar+09], Demuth et al.

[Dem+16] or Rumbaugh et al. [START_REF] Rumbaugh | Unified modeling language reference manual, the[END_REF] are based on patterns and are characterized by a set of predetermined strategies which can handle a step-by-step co-evolution of meta-models and models.

• Inference approaches such as Cicchetti et al. [START_REF] Cicchetti | Managing dependent changes in coupled evolution[END_REF] or AML [START_REF] Garcés | Managing Model Adaptation by Precise Detection of Metamodel Changes[END_REF] rely on metamodel comparison to generate a strategy for evolving models in order to conform to their updated meta-model.

Propagating changes to models from metamodels is the only way in the literature for performing version propagation in models. All those approaches are top down approaches that adapt models to their changed metamodels. None of them copes with a bottom up evolution approach or with inner model change propagation. This is due to the nature of models which cannot break the rules that are described by their metamodels. Yet the inconsistency detection phase discussed in 3.1.2.1 can be assimilated to horizontal version propagation, especially in Reder et al. approach [RE12] that defines validation trees for calculating the impact of changes. Moreover, all the discussed approaches are based on tooling and do not consider the semantics of model artifacts. Thus, although the concept of version propagation is interesting for versioning software architectures, it cannot be performed by using model-based approaches.

Versioning component-based software architectures

Only few work copes with versioning component-based software architectures. The few approaches that are presented here propose only basic mechanisms for architectural versioning that do not take into account the entire life-cyle of the software.

SOFA 2 [PBJ98; HP04; BHP06] which is discussed in 3.2.7 provides a way for formally define component-based architectures and manage their evolution. The language gives also the ability to calculate component version backward compatibility as discussed by Brada et al. [Bra99;[START_REF] Brada | Towards automated component compatibility assessment[END_REF][START_REF] Brada | Component Revision Identification Based on IDL/ADL Component Specification[END_REF]. However, even if SOFA 2 describes multiple abstraction levels, and even if Brada [START_REF] Brada | Specification-based component substitutability and revision identification[END_REF] describes a mechanism to propagate differences in order to recursively discover component differences, the concept of change propagation and version propagation is not addressed.

Mae [Ros+04] which is discussed in 3.2.6 is based on xADL 2.0 [DHT05] (discussed in 3.2.5)
that provides two abstraction levels by distinguishing design-time and run-time. However, even if Mae introduces some mechanisms for calculating component compatibility and backward compatibility, this approach do not address any kind of version propagation.

Amirat et al. [START_REF] Amirat | Evolving and Versioning Software Architectures Using ATL Transformations[END_REF] proposed a generic approach for evolving and versioning componentbased software architectures using ATL transformations. However in their approach they do not address the key concept of version backward compatibility.

Discussion

This section covers a very wide research area in component, model and component-based architecture versioning. correspond to minor versions that may for instance correspond to bug fixes (the API and the observable/external behavior of the artifact is not impacted by the changes). The only addition of Semantic Versioning is the use of labels that can be passed as suffixes to provide additional information to developers. However, no mechanism ensures that version numbers are well identified and the semantics associated to the tags may be null and void.

Indeed, most of the time those identifiers are set by developers themselves and mistakes can occur. This is why most of the surveyed approaches fail at ensuring component version backward compatibility. Only Brada and Valenta [START_REF] Brada | Practical verification of component substitutability using subtype relation[END_REF] propose a suitable approach based on SOFA [START_REF] Plášil | SOFA / DCUP : Architecture for Component Trading and Dynamic Updating[END_REF] that formally identifies backward compatible components. Later Brada and Bauml [START_REF] Bauml | Automated versioning in OSGi: A mechanism for component software consistency guarantee[END_REF] proposed to automate version identification using X.Y.Z pattern in the OSGi world. As their methods is based on strict type-based rules, they ensure by design that the computed identifier conveys the right semantics. Finally, despite the Semantic Versioning 2.0.0 approach perfectly fits a human readable form and proposes a sound numbering scheme regarding backward compatibility, it does not explicitly identify the intention of the evolution, i.e. distinction between versions that are designed as revisions or variants. A variant is a version that is intended to co-exist with other versions of an artifact in order to provide alternative feature configurations (product line engineering). A revision is a version that is intended to replace the previous versions of an artifact (deprecation). As variant and revision semantics is orthogonal to backward-compatibility (revisions may not be backward compatible in order to allow re-engineering or technological breakthrough for instance), a specific scheme is needed to identify them.

In the field of MDE, a lot of research also exists that aims at maintaining, evolving and versioning models. To do so the domain has taken advantage of the already existing vast Approach Identifier Automatically incremented

Incompatibility check Backward compatibility check Unix X.Y - - - CORBA - - - - DLL X.Y.Z.R - - - COM/.NET X.Y.Z.R - - - Java - - X - McCamant and Ernst - - X - Brada and Bauml X.Y.Z X X X TABLE 3.1: Component versioning approaches
research in the area of database schema evolution. Yet, some problems related to versioning are not addressed in the field of MDE. For instance compatibility of models is not addressed in a suitable way for components. Indeed, only the compliance of models to their metamodels is analyzed / verified. However a model can evolve in an ecosystem in relation with other models using it (for instance a model could be used by another in a transformation process). Yet no mechanisms for checking the compatibility of changes with the ecosystem seems to be addressed and then it gets difficult to ensure that a new model version is substitutable for its older version as this can be done for instance with Dedal architectures. Next section discusses architecture evolution approaches to identify an approach that meets versioning needs.

Architecture evolution approaches

The existing literature about architecture evolution is very abundant. This section only discusses the approaches which are the most relevant with this thesis (i.e., component-based software architecture evolution approaches that propose formal evolution mechanisms).

This survey intends to evaluate the capabilities of existing approaches to document software architecture evolution and to determine whether they provide a support for architecture versioning or not. To do so, we try to answer the following questions:

• What aspects of architecture life-cycle and evolution are supported by the approach?

How many abstraction levels does the approach provide to model architectures?

• What paradigm does the approach use to model architectures? Are all the abstraction levels expressed with the same formalism?

• Does the approach provide a formalism that allows to derive specialization / substitutability rules between components / architecture levels?

• Does the approach supports component / architecture versioning? Does it provides version semantics? Moreover, the C2-SADEL approach is based on strong subtyping mechanisms derived from Object-Oriented subtyping rules. Those subtyping mechanisms are embodied by the use of the Z language which is a first order logic language based on the Zermelo-Fraenkel Set

C2 / C2-SADEL

Theory [START_REF] Hayden | Zermelo-Fraenkel set theory[END_REF]. Thus this ADL also supports, by extension of its subtyping rules, formal architecture analysis such as detecting incoherency in component connections. However, it does not address the versioning problem and thus does not propose any semantics for identifying and producing component / architecture versions.

Darwin

Darwin

Wright / Dynamic Wright

ArchWare

ArchWare [START_REF] Oquendo | ARCH-WARE : Architecting Evolvable Software[END_REF] is an European project which provides a set of languages and tools for engineering and evolving software system architectures. Architectures are modeled with π-ADL which is the language that is proposed by the project. This language is also based on the π-calculus [START_REF] Milner | A calculus of mobile processes, I[END_REF]. π-ADL only represents the deployment of software by providing a single abstraction level in which component instances and their links are represented.

ArchWare also provides an Architecture Refinement Language (π-ARL) which gives the ability to perform architecture change analysis since it relies on the π-calculus. However, this approach still does not address the versioning activity and does not provide any semantics for versions.

xADL

xADL [START_REF] Khare | xADL: Enabling Architecture-Centric Tool Integration with XML[END_REF] is an approach that aims at enabling architecture centric tool integration with XML. This ADL is based on C2-style architectures and enables the definition of component types and instances as well as connectors and connections to describe the implementation and the deployment of software. The xADL / xC2 Document Type Definition (DTD) of the language takes the concept of component and connectors compatibility into account.

However, the concept of architecture compatibility is not addressed. Finally, the approach addresses the concept of version by making it possible to define independent version graphs for component, connectors and interface types. However, those mechanisms are not based on a strong typed semantics that would give information about version backward compatibility.

Mae

Mae [START_REF] Roshandel | Mae-a system model and environment for managing architectural evolution[END_REF] is an approach which is built on top of the xADL ADL. It provides an additional set of rules for checking compatibility among architectural elements. Those rules capture backward compatibility of architectural elements such as components and connectors with their predecessors. However, despite this upgrade that has been done to xADL, the concept of architecture version and architecture backward compatibility is still not addressed.

SOFA 2.0

SOFA 2.0 [HP04; BHP06] is an evolution of SOFA [START_REF] Plášil | SOFA / DCUP : Architecture for Component Trading and Dynamic Updating[END_REF] which relies on the MOF (Meta Object Facilities) concepts. This language is designed to support distributed applications and distributed runtime environment. The language proposes two abstraction levels through one architecture description that describes the implementation and instantiation of software.

Versioning is taken into account and histories of interfaces and components are decoupled.

It provides mechanisms for checking component compatibility which can be used for taking backward compatibility of components into account such as discussed by Brada [START_REF] Brada | Component change and version identification in SOFA[END_REF] where versioning is made from the change analysis. Moreover, as the concept of architecture is modeled as composite component, the versioning of architectures can be taken into account and backward compatibility can also be calculated with predecessors.

Synthesis and comparison

The characteristics of studied adls are summarized in Table 3.3. Most of the approaches coping with software architecture evolution make use of ADLs for modeling architectures.

Within those approaches, only a few are based on formal languages / concepts that make them component-compatibility aware. In the few approaches which have been discussed in this section, C2-SADEL, Darwin, Dynamic Wright and Archware enter into this category.

Indeed, all of them are based on formal languages / concepts such as Z or π-calculus. However, despite the capabilities they provide for checking architecture consistency and component capabilities, they do not provide versioning processes for their components / architectures. Thus, it consists in transforming the information contained in source code (and possibly other documents) into an updated documentation about code. Secondly, reconstruction approaches (Section 3.3.2) aim at recovering software documentation but also to interpret the way the software is implemented in order to perform some re-engineering. This section covers both approaches.

/ C2- SADEL C2-SADEL X X - - - X - Darwin Darwin - X X - - X - Wright / Dynamic Wright Dynamic Wright - X - X - X - ArchWare π-ADL, π-ARL - X X - - X - xADL xADL - X X X X - - Mae Mae - X X X X X - SOFA 2 SOFA 2 - X X X X (composite components) X X

Software re-documentation approaches

As stated by Chikofsky et al. [START_REF] Chikofsky | Reverse engineering and design recovery: A taxonomy[END_REF], re-documentation is the primal form of reverse engineering and is widely considered as a non-intrusive way for restructuring code information. There exist several approaches for re-documenting software architectures. Among One of the only model-oriented re-documentation approach has been proposed by Feng and Hongji [START_REF] Chen | Model oriented evolutionary redocumentation[END_REF]. They base their approach on the Java language and use its objectoriented paradigm to map its concepts with the OMG standards.

Software architecture reconstruction approaches

Many works have been led for reconstructing software architectures. This section focuses on the most similar to our proposed approach: approaches which extract component-based based architectures descriptions have been targeted. Moreover, retro-engineering approaches that aim at retrieving initial design decisions are differentiated from re-engineering approaches which reorganize the extracted information and / or software artifacts. Table 3.4

gives an overview of the approaches that have been considered.

This section is organized following the five criteria that have been defined by Ducasse et al. [START_REF] Ducasse | Software architecture reconstruction: A processoriented taxonomy[END_REF] in their taxonomy. Those criteria are as follows:

• The goals of the approach which can be: [TH99]) for maintaining several levels of abstraction at the same time (typically an architecture and its implementation) and avoiding drift and erosion.

(e) Analysis (i.e., PuLSE / SAVE [START_REF] Knodel | Static evaluation of software architectures[END_REF] and Huang et al. [START_REF] Huang | Runtime recovery and manipulation of software architecture of component-based systems[END_REF]) that can be made on architectural views, such as quality analysis to assist architects in their decisions.

(f) Evolution and Maintenance that can be made easier by software architecture reconstruction.

Our approach aims at improving component and architecture reuse, by extracting component-based multi-leveled architecture descriptions for the Dedal [ZUS10; Mok+16b; Mok+16a] ADL, but also at giving capabilities for managing conformance checking, evolution, co-evolution and maintenance using the formal rules that have been defined in Dedal.

• The kind of process that is used:

(a) Bottom-up approaches (i.e., ARES [START_REF] Eixelsberger | Software architecture recovery of a program family[END_REF] and ArchVis [START_REF] Hatch | Software Architecture Visualisation[END_REF]) use the lowestlevel information for creating the model. We define our approach as bottom-up since it is exclusively based on source code and deployment descriptor files that are present in projects.

• The inputs of the software architecture reconstruction:

(a) Non-Architectural inputs which may be the source code but also textual information like comments in the code (i.e., ArchVis [START_REF] Hatch | Software Architecture Visualisation[END_REF]), dynamic information like Our approach is based on source code analysis coupled to the exploitation of primitive architectural information implemented by the Spring technology.

• The techniques that are proposed:

(a) Quasi-manual (i.e., MAP [START_REF] Stoermer | MAP-Mining Architectures for Product Line Evaluations[END_REF]) where the tool only assists the engineer in understanding the extracted information. As Dedal [ZUS10; Mok+16b; Mok+16a] has been formalized and allows to perform automatic evolution calculation, we aim at providing an automatic extraction tool that would allow to fully automate the software architecture reconstruction process.

• The outputs that may be: Our approach produces a three-level formal Dedal architecture description and visualization thanks to the ADL.

However, all of those methods present several limitations. Indeed, they do not reconstruct architectures as they are implemented but perform some re-engineering. In addition, all of them deal with only two abstraction levels (implementation and deployment). Yet, those On the basis of this observation, this thesis proposes a retro-engineering approach based on three-level component-based architecture description reconstruction. This approach eases evolution, co-evolution and life-cycle tracking processes by providing a complete re-documentation (i.e., deployment through the Assembly level, implementation through the Configuration level, and design through the Specification level). Last but not least, this approach proposes to recover design decisions through the concept of Specification which is reconstructed from an abstraction of the concrete implementation. When it comes to software evolution, lack or loss of documentation may become a serious issue. Indeed, in many ways, a software may be subject to numerous changes during its whole life cycle. It is then necessary to maintain an up-to-date documentation of the software accordingly to it changes. However, in many cases, the software documentation either does not exists or is not well maintained. This may lead to drift and / or erosion of software [START_REF] Ducasse | Software architecture reconstruction: A processoriented taxonomy[END_REF]. Thus, in order to recover a good evolution management, the software must be re-documented in accordance with its actual state [Le +18].

Process overview

This section introduces the process that is proposed for reconstructing component-based software architectures. The reconstruction is made in five major steps which are as shown in <bean class="AdjustableLamp" id="lampDesk" /> <bean class="AdjustableLamp" id="lampSitting" /> <bean class="AlarmClock" id="aClock1" /> <bean class="SecurityManager" id="securityManager1" > <property name="alarm" ref="aClock1" /> </bean> <bean class="HomeOrchestrator" id="orchestrator1" > <property name="lights"> <set> <ref bean="lampDesk" /> <ref bean="lampSitting" /> </set> </property> <property name="clock" ref="aClock1" /> <property name="securityManager" ref="securityManager1" /> </bean> </beans> The source code is not introduced since only its structure is necessary for re-documenting the structural aspect of software architectures.

Process

As the first step of the re-documentation process, the deployment descriptor file is parsed for building an EMF-based representation of the software deployment. Finally, this information is used, still combined to the Java souce code, to re-document the Specification level as shown in Figure 4.6c.

Output

The output of the process is a complete three-level Dedal architecture composed of the Assembly, Configuration and Specification that are presented in Figures 4.6a Those relations are also re-documented during the process.

Next section discusses how the re-documentation is actually performed.

Re-documenting architectures

This section discusses how the different concepts are identified and mapped into architectural information, from the deployment descriptor to code analysis. This example is composed of five beans:

SpringDSL, a DSL for mapping Spring Concepts

• lampDesk and lampSitting, instance of AdjustableLamp

• aClock1, instance of AlarmClock

• securityManager1, instance of SecurityManager, that has a dependency to aClock1 declared in its tag property which name alarm is the name of the injected attribute in the SecurityManager Java class.

• orchestrator1, instance of HomeOrchestrator which refers lampDesk and lampSitting as its lights and aClock1 as its clock.

The graphical representation is provided by Sirius3 . This DSL thus eases the transformation which is made from Spring to Dedal. Indeed, it allows a direct mapping of XML-based descriptions as EMF objects which can then be mapped as Dedal artifacts through a Model

Model to model transformation: from descriptor model to partial Dedal architecture model

The second step of the proposed reconstruction process (Figure 4.1) consists in transforming the concepts of the SpringDSL model into Dedal artifacts. To do so, a simple mapping between the SpringDSL model and Dedal concepts is required.

As stated before, the transformation is implemented in QVT. The full implementation is not discussed here but can be found in Appendix B.

Comparing the fragment of the SpringDSL metamodel given in Figure 4.13 and the fragment of the Dedal metamodel given in Figure 4.14, it appears that a part of a Dedal model can be re-documented by only identifying concepts in SpringDSL that correspond to Dedal concepts. Thus, the mapping is realized as follows:

• a deployment (SpringDSL Configuration) is mapped as a Dedal Assembly, a Dedal Configuration is derived from the set of instantiated classes.

• a bean (SpringDSL Component) is mapped as a CompInstance since it typically is the declaration of an object instantiation. • a Reference is mapped into a connection. The bean that holds the reference is considered as the client while the one that is referenced is considered to be the required server. At this stage, component interfaces are not known, however the direction of connections can be deduced from dependency injections. Then, if a bean references another bean, it is considered as the client and thus the reconstructed component will be the owner of the required interface implied in the connection. On the other hand, the component that will be extracted from the referenced bean will own the provided interface that is the complementary part of the connection. shows how the mapping is performed following the previously discussed mapping rules.

Extracting information from the object-oriented code

This subsection introduces the proposed methodology for generating missing architectural information from object-oriented code. The class hierarchy of the HAS example that is implemented in Java, is shown in the UML diagram of At this step re-documentation follows three main stages. First of all, the Assembly level is completed by identifying component interfaces from the source code, then the Configuration level can be re-documented both from the information that are contained in the Assembly and the source code. Finally a Specification is generated from the Configuration level, in accordance with components / classes type hierarchy so that it is consistent with the Configuration level.

Re-documenting Assembly

First of all, the Assembly level must be fully completed thanks to source code analysis.

Mapping component instances

As early reconstructed component instances from the Assembly are not complete, they must be refined from code inspection. To do so, required component interfaces are identified from the dependencies which are injected into deployment descriptors. As corresponding class attributes are known from the dependency injection, it is easy to get required types from code inspection and by extension, those types are seen as the required interface types.

Considering the securityManager1 component instance in Figure 4.5, which instantiates the SecurityManager class (see Figure 4.3), provided interfaces will be calculated from the class itself. Its alarm attribute type, as it is implied in a connection, will be identified as a required interface. This will not be the case for the AdjustableLamp class, indeed it has an attribute named intensity which is not implied in any connection and thus which type will not be identified as a required interface.

As it is shown in Figures 4.16a types that can be obtained on component instances as separate provided interfaces. These reference types correspond to the different abstract types that are implemented by the component class. As this approach only takes place in a re-documenting process, no interface types can be calculated in order to avoid functionality overlapping among them. Indeed, this would introduce new types that do not exist in the code, which is not possible since the purpose of this reconstruction is to expose how the software is actually deployed and implemented. However, to avoid useless redundancy, when the abstract type of a class is identical to the abstract type of the interface it implements or the superclass it specializes, only the most specialized provided interface is kept, corresponding to the most specialized class. This corresponds to classes with only one ancestor, that do not declare any new public functionality or overload any inherited public functionality.

From this point, the classes which are deployed by the deployment descriptor are seen as very fine grained components of the architecture, which is coherent with the willing of redocumenting architectures "as they are implemented". The mapping of the interfaces is discussed in next subsection. Algorithm 1 introduces the way interfaces are re-documented from the source code. The whole class hierarchy is explored in order to extract an interface for each of its super types and itself. Thus an interface is mapped as follows:

Mapping component interfaces

• the interface is been given a direction to identify whether it is required or provided,

• then, it is named for being identified,

• and then, its type is calculated thanks to the procedure MapInterfaceType which maps the signatures (MapSignature procedure) the interface is composed of from the public methods of the class. source code and implementation decisions. This is the reason why each type of the hierarchy can be derived as an Interface which includes more generic ones. Thus, for instance a provided Interface which type is IC 1234 can be required by an Interface which type is IC 4

or any of its super types. In the situation where an architect decides to reconstruct an architecture and to expose every component Interface, each of the super types of IC 1234 would be considered as a candidate Interface to replace IC 1234 into a Connection.

Discussion. The main intention behind re-documenting component interfaces is to expose all its API methods. In other words, an interface exposes methods that can be reached by other components. However, there is not a generic way for identifying methods that are reachable by other components since, for instance in Java, access modifiers can modify the way an interface is perceived by its environment and thus the concept of API method differs according to the point of view. For instance in Java, it is possible to use four different access modifiers (Table 4.1). Thus in the world point of view the API methods are the public ones and in the package point of view where API methods are public, protected or have default access modifier. Then, in the implementation of the algorithm we chose to consider only public methods in interfaces, however other visibility options are valid for re-documenting interfaces.

The completion of Connections between components is discussed in the following.

Completion of connections

As it has previously been discussed, the analysis of deployment descriptors is a good way for identifying connections between components. It is also a good way for identifying the direction of those connections. However, as it is presented in Figure 4.18, a Dedal Connection must be set between two Interfaces: a provided one and a required one. For instance, in Figure 4.5 two connections are identified. A connection exists from orchestrator1 to aClock1 and another one from securityManager1 to aClock1. It means that both orchestrator1 and se-curityManager1 require an interface that belongs to aClock1. From an object-oriented point of view, such as UML (Figure 4. 4.17a where orchestrator1 and securityManager1 are connected to aClock1 through the exact type they require. This choice is proposed for simplicity and readability's sake (separate connections on separate interfaces as much as possible), as the many substitutable provided interfaces correspond to the same method implementation (we consider polymorphic substitution, as implemented in Java and defined in standard object-orientation).

Re-documenting Configuration from Assembly

The second step of the re-documentation process consists in deriving a Configuration from the previously re-documented Assembly.

Identifying component classes from component instances

In Identification of connections is discussed next.

Identifying Configuration connections

Once component classes are reconstructed, connections must be set.

Re-documenting Specification

Finally the last step of the re-documentation process consists in deriving a Specification from the previously re-documented Configuration.

Mapping component roles

As discussed before, in Dedal, the Specification level corresponds to an abstract description of the implementation. It is a more generic description that is derived from the Configuration level. Thus, in order to re-document a more generic architecture level, it is necessary to get the more generic component roles that are realized by component classes from the Configuration. To do so, the type hierarchy of those component classes must be traversed. In other words, component roles are generated by analyzing the type hierarchy of the classes which are present in the source code.

Identification of component roles

The

Identification of connections and representation of the Specification

Finally, the last step of the Specification reconstruction consists in connecting component roles. Figure 4.22 introduces how connections are identified from the Assembly level and

Generalization

This section discusses how the approach can be generalized.

Discussion

Despite the fact that the previous description of the re-documentation process is oriented on Java and Spring framework, it is actually suitable for other technologies since this approach is meant to be as generic as possible. Indeed, only few features are required for being able to re-document an architecture.

First of all the approach needs at least a kind of deployment descriptor. In the running example, Spring framework is used, however this technology is not mandatory for describing a deployment. As discussed previously a deployment descriptor must provide three kinds of information which are:

• the instances that compose the architecture,

• the classes which are instantiated,

• dependency injections.

Then as long as a deployment descriptor provides these information, it is suitable for the re-documentation process.

Secondly, the language is not fixed, the example targets Java but any other typed objectoriented language would fit the re-documenting process since object-oriented technologies provide inheritance mechanisms and type hierarchies that are highly used for retrieving abstract component roles.

Re-documenting algorithm is discussed in next subsection.

Algorithm

As the run of the algorithm has been described through the HAS example, this subsection does not introduce the whole algorithm which can be found in Appendix C. However, it discusses the generic specification of the main algorithm.

As it has been discussed in previous parts, the input of the re-documentation algorithm Thus, the re-documented three-leveld component-based architecture satisfies all the type constraints which make it consistent and thanks to this it is now possible to maintain this documentation all along the evolution of the software. More over, the strict type theory on which Dedal ADL is based makes it possible from now to detect defaults such as drift or erosion of the software as early as possible. Indeed those defaults imply a lose of coherence and thus architects can be warned and act in consequence, for instance by stopping their change or even propagating them among the three architecture levels so as the documentation to remain consistent [START_REF] Mokni | A three-level versioning model for component-based software architectures[END_REF].

Conclusion

This chapter introduced a generic way for re-documenting three-leveled component-based software architectures from object-oriented code and deployment descriptors. The re-documenting architecture is based on Dedal ADL which is especially tailored for managing software evolution. Moreover the type theory on which it is based ensures a good management of the architecture consistency. On a conceptual point of view, it proposes to re-document software as they are implemented through three-leveled component-based software architectures. On a technical point of view, it proposes an algorithm to re-document objectoriented software that use deployment descriptors. The proposed algorithm is meant to be generic and adaptable to any object-oriented technologies and deployment descriptor technologies. It answers research question RQ1: It is possible to re-document multi-abstraction level component-based architectures from source code, and it is possible to retrieve abstract design decisions from this re-documentation. However this approach presents several limitations. First, it only re-documents static aspect of software. In future work, the process should include also include a dynamic analysis to consider all the architecture aspects. Second, from a technical point of view, we chose to identify smallest roles as possible. However, this choice can be discussed. Dynamic analysis is needed in order to make more accurate choices about type decoupling. Future work should address this issue. Finally, SpringDSL is not taking all the Spring language into account for now. Thus, future work should enable to take all the language into account.

The next step is now to re-document the history of software project using Dedal and to formalize the concept of version so it can be extended with semantics which consider how the architecture evolved in the past.

During its evolution, a software is subject to numerous changes. Those numerous changes lead to numerous versions of the software. In order to keep track of this evolution and record a trace of software history, it is necessary to identify its versions. As it has been discussed in Section 3.1, lot of work has been lead on versioning software. However, few work deals with adding verifiable semantics in version identification and versioning componentbased software architectures. Finally, none of those work deal with propagating versions in component-based software architectures. Thus this chapter proposes an approach for identifying and characterizing versions using type-based semantics and also proposes an approach for performing version propagation in the context of multi-leveled architecture descriptions.

Semantics in versioning

This section presents versioning as it is performed by most common version control systems and discusses a coarse grained approach, based on history, for representing component and architecture evolution.

Definitions and notations

Notations. The used notation is as follows.

T 1 ≺ T 2 : T 1 is a subtype of T 2 . T 1 T 2 : T 1 is a subtype of T 2 or equal to T 2 . T 1 T 2 : T 1 is a supertype of T 2 . It is equivalent to T 2 ≺ T 1 T 1 T 2 : T 1 is a supertype of T 2 or equal to T 2 . It is equivalent to T 2 T 1 T 1 T 2 : T 1 is not comparable to T 2 . (T 1 T 2) ⇔ ¬(T 1 T 2) ⇔ ((T 1 T 2) ∨ (T 1 T 2)): T 1 is either a supertype of T 2 or not comparable to T 2 . (T 1 T 2) ⇔ ¬(T 1 T 2) ⇔ ((T 1 ≺ T 2) ∨ (T 1 T 2)): T 1 is either a subtype of T 2 or not comparable to T 2 . T 2 T 1 : T 2 replaces T 1 .
Version: A version of an evolving artifact represents a particular state of this artifact at a given time [START_REF] Conradi | Version models for software configuration management[END_REF]. The term artifact covers any versionable object such as a file, software object, component, architecture. A versioned artifact is an artifact which is put under versioned control and thus which states are maintained. In contrast, an unversioned item only considers its last state and performs changes by overwriting its current state. The difference between two versions is called a delta. An item version must be identifiable.

History: An artifact history is the record of all the states / versions of this artifact through its evolution.

Backward compatible version: An artifact version is said backward compatible if it can substitute its older version. For a new component version C new , being backward compatible

with its older version C old means that C new C old . In other words, if C new is subtitutable for C old then it is backward compatible. • revisions which intend to replace previous versions,

Traditional versioning

• variants which intend to be alternative versions that are not meant to replace previous versions but to provide alternative versions of the same component according to the developer / architect needs.

• and cooperation versions which intend to support collaborative work.

Then those versions must be identified. To do so versions are tagged (see Section 3.1) with a textual identifier since it is an easy and human readable way to identify versions. A very common way for tagging versions is the one proposed in Semantic Versioning 2.0.01 . Versions are labeled with a sequence of three numbers <major.minor.build> that corresponds to the type of version that is released. The number meanings are as follows :

• <major> stands for the major version identifier and is incremented when version changes make them incompatible.

• <minor> stands for the minor version identifier and is incremented when version changes preserve backward compatibility, such as addition of functionality.

• <build> version identifier is incremented for backward compatible bug fixes, patches. . . on their branches, however v3-1.1.0 is not a variant since it as been revised by v1-2.0.0 by a merge operation between v1-1.2.0 and v3-1.1.0. Finally, following Semantic Versioning 2.0.0, it is possible to identify with its label that v1-2.0.0 is not backward compatible with v1-1.2.0.

However no information is provided about backward compatibility with v3-1.1.0 which is a predecessor but on another variant branch.

Problems of current version management systems

As it has been stated before, despite an abundant literature in the field of versioning (see

Substitutability-based versioning

In the context of software components, it is possible to enhance Semantic Versioning approach with the automatic versioning approach developed by Bauml and Brada [START_REF] Bauml | Automated versioning in OSGi: A mechanism for component software consistency guarantee[END_REF]. In their approach they also use the same version tag pattern, however they base the automatic increment on the effect of the source code change on the type of the component. Thus they define four differences between component types which are:

• None : C new is of same type as C old thus C new is backward compatible with C old . In this case, the <build> number is incremented.

• Specialization : C new ≺ C old which means that C old is specialized by C new and thus C new is backward compatible with C old . In this case, the <minor> number is incremented.

• Generalization : C new C old which means that C old is generalized by C new and thus C new is not backward compatible with C old . In this case, the <major> number is incremented.

• Mutation : C new C old which means that there is no type relation between C old and C new due to a mutation and thus C new is not backward compatible with C old . In this case, the <major> number is incremented. • its required interface types are either super types or equal to the previous required interface types,

• its provided interface types are either subtypes or equal to the previous provided interface types,

• its own type is either a subtype or equal to the previous component type.

Moreover, component versions are numbered following Brada and Bauml principle, which ensures the meaning of version tags for further understanding by developers or architects.

This simple version graph and concepts thus make it possible to version components at a single architecture description level. Such a version graph can be reused then for versioning components at multiple abstraction levels. If

Versioning components at multiple abstraction levels

C 1 realizes R 1 then C 2 also realizes R 1 . If C 2 realizes R 2 then C 2 also realizes R 1 .
For instance in In addition to components, it is also possible to version architecture levels of Dedal. Indeed, as architecture levels are related to types, it is also possible to apply substitutability As previously and because substitutability principle also applies to architecture description levels (as they are also types) implementation relations can be transitively discovered as shown in Figure 5.6.

Versioning multiple component-based architectures description levels

Given two Specifications Spec 1 and Spec 2 and two Configurations Conf ig 1 and Conf ig 2 , and given the following subtype relations : Spec 2 Spec 1 and Conf ig 2 Cconf ig 1 .

If Conf ig 1 implements Spec 1 then Conf ig 2 also implements Spec 1 .

If Conf ig 2 implements Spec 2 then Conf ig 2 also implements Spec 1 .

Thus, in Figure 5.5, because Specification Spec -v1 -1.0.1 is substitutable for Specification Spec -v1 -1.0.0, Spec -v1 -1.0.0 is implemented by Conf ig -v1 -1.0.0.

Then it is time to consider whole three leveled component-based architectures.

Versioning three-leveled component-based architectures

Finally, as it is shown in Figure 5.7, a third point of view may be versioned, which corresponds to the whole architecture itself composed of the three architecture description levels.

As previously, version substitutability can be applied. In this point of view, each architecture version is composed of three architecture level descriptions that follow their own version history while they are also composed of components that can have their own histories. Version tags are not necessarily related one to another between each point of view (component, architecture level, whole architecture).

Identification of architectural changes, version characterization

The previous section introduces a very generic way for identifying and representing com-

Identifying and categorizing component-based architecture changes

First of all, it is necessary to identify which architectural changes may occur. There are three types of changes: changes that occur at the component level, changes that occur at one of the three Dedal architecture description levels and changes that occur in the global architecture.

Changes at component level: At component level, relevant changes concern interfaces and component attributes (for component classes)

. Component attributes may be added, deleted, or replaced as may be component interfaces. Moreover, changes may occur into interface type descriptions which are signature addition, deletion and replacement. Finally, a parameter of a signature may also be added, deleted or replaced.

Changes at one of the three

Type-based architectural changes categorization

The substitutability relation has already been formalized in Dedal. Table 5.1 summarizes the changes that can affect the architecture and categorizes them according to the substitutability of the new artifact version (substitutable or non-substitutable). Thus, this table

gives the rules that characterize versions for components, architecture levels and the whole architecture, according to the kind of change that is performed. As Dedal types are based on the work of Arevalo et al. [START_REF] Arévalo | Precalculating component interface compatibility using FCA[END_REF] which derives from the type theory defined by Liskov an

Wing [START_REF] Barbara | A behavioral notion of subtyping[END_REF], substitutability concepts that are defined in Dedal also derive from this theory. Thus parameters in interface signatures follow contravariance principles as do required interfaces, while for the other Dedal artifacts being substitutable for another artifact means being a subtype of the substituted artifact.

In Dedal, versionable artifacts are as follows:

• Components which can be of three different types (CompInstance, CompClass and

CompRole),

• ArchitectureDescriptions which can also be of three types (Assembly, Configuration and Specification) and

• DedalDiagram which is the global model that contains the three architecture description levels.

With this in mind, the conditions that are listed in Table 5.1 make it possible to fully automate the component, architecture levels descriptions and even whole three-leveled architectures are versioned. Indeed, following the proposition of Bauml and Brada [START_REF] Bauml | Automated versioning in OSGi: A mechanism for component software consistency guarantee[END_REF], by applying their approach to Dedal, the differences they identify can be identified as follow:

• None: means that the type has not changed, this can typically be the case when the core of a method has changed without changing its signature or when a component instance is initialized differently. The kind of change that leads to such outcome is not listed in Table 5.1 since it is not a structural change that affects the architecture. However, if such a change occurs then the <build> number is incremented to give developers / architects information about the change. And consequently if a component <build> number is incremented, then the containing architecture <build> number is also incremented and then the three-leveled architecture <build> number is also incremented.

• Specialization: means that the new artifact version is a subtype of its previous version.

It happens in case of any substitutable change listed in Table 5.1. In this case, the <minor> number of considered versioned artifact is incremented.

• Generalization: means that the new artifact version is a super-type of its previous version. In this case, the <major> number of considered versioned artifact is incremented.

• Mutation: means that the new artifact version is neither a subtype nor a super-type of its previous version. In this case, the <major> number of considered versioned artifact is incremented.

Then, as identifying versions becomes possible following these rules, it is necessary to define a version meta-model that embeds those concepts.

Version meta-model

In the previously discussed versioning approach, it is easy to identify backward compatible components or architectures on a same variant branch on the basis of their version number.

However, such identification of backward compatible artifacts between variants cannot be realized in the same way. An easy way to represent backward compatibility in this case is a visual representation such as introduced in Figure 5.2. To do so we define a meta-model that is designed to fully represent version derivation links. senting derivation relations between AbstractArtifact (versions). Moreover, in order to add semantic to the derivation relation between versions, ArtifactPrec can also be of type Retro-compatibleArtifactPrec that is designed to represent the precedence relation between a successor that is substitutable for its predecessor. In an ArtifactPrec the successor is considered as a revision of its predecessor if its belongs to the same AbstractBranch. Finally, an Abstrac-tArtifact also contains a Tag for being identified within its AbstractBranch. Thus variants

Three-leveled version meta-model

As it has been discussed before, semantic versioning can be applied from several perspectives in Dedal. Thus Figure 5.9 completes the metamodel shown in

Predicting version propagation

This section discusses the concept of version propagation within the three architecture description levels of Dedal [Le +17].

Typology of architectural change impact

Version propagation is inferred from Dedal substitutability concept. However, a substitutable change does not necessarily means that the coherence of the architecture is preserved. This is why this section introduces a typology of architectural change impact. This typology is based on component changes which are introduced in Table 5.1 at architecture level point of view. Indeed, component changes can be seen as a component replacement into an architecture description level. Moreover, component substitutability is sufficient for studying the impact of change in an architecture description level and its adjacent levels.

The aim of this typology is to be able to differentiates and identify impacts change may have on architecture description and to decide wether a change is compatible or not with an existing architecture.

Thus, the relevant change operations are as follows :

• Adding new artifacts.

• Removing artifacts.

• Replacing artifacts with others that may be substitutable for the previous ones or not.

At architecture description level, a component may be either replaced by a component that is substitutable for the replaced component or by a component that is not substitutable for the replaced component.

Moreover, in a component-based architecture, several kinds of artifacts are subject to change:

• components themselves, this is the most coarse-grained change,

• the interfaces of a component, which is a finer-grained change,

• signatures that is the finest-grained change.

Finally, in a change analysis context, several outcomes can be expected:

• the change has no impact on the architecture,

• the change impacts its own architecture level, • the change impacts adjacent architecture levels,

• the change impacts its own architecture level and adjacent architecture levels.

When studying architecture versioning in a Dedal development, it gets very relevant to study which is the initial level of change. Indeed, one of the most important aspects of using a three-level ADL is being able to perform co-evolution of those levels according to the origin of the perturbation. This is what it is discussed in the next section.

Change impact analysis

As Dedal is a three-level ADL, a change may occur (initiate) at any of its architecture levels. This study is based on replacement of provided / required functionality signature since such replacement is sufficient to analyze change impact. Indeed, component interactions are defined by their interfaces which are implied into connections. Thus, replacing a signature is equivalent to replacing its container interface and thus its container component.

Functionality substitutable for another. For a provided functionality sp new , being substitutable for another functionality sp old means that (1) the return type of sp new is equal or subtype [START_REF] Barbara | A behavioral notion of subtyping[END_REF] of the return type of sp old and (2) that the input parameters of sp old are equal or subtypes of the ones of sp new [START_REF] Arévalo | Precalculating component interface compatibility using FCA[END_REF]. Conversely, for a required functionality sr new , being substitutable for another functionality sr old means that (1) the return type of sr new is equal or a supertype of the return type of sr old ,and (2) that the input parameters of sr old are equal or supertypes of the ones of sr new . • The change has no impact on the architecture (Table 5.2a.Non-propagation). This case happens when the version is not propagated. The condition of non-propagation is given as follows, X Y Z for any replacement type. Y can either be substitutable for A or not. It means that the new version of the role does not break architectural coherence since it is compatible with other roles within Specification, and all the component classes that previously realized the replaced role remain subtypes of the new role. The change is not propagated.

Versioning at Specification Level

Hypothesis on types

B X A Z Ω R Y A Non-propagation X Y Z Propagation Inter-level Intra-level (Y X) (Y Z) ∨(Y ≺ X) ∨(Y Z) (Y X) ∧ (Y Z) (A) Specification Level

Hypothesis on types

B X A Z Ω R Y X Non-propagation B Y A Propagation Inter-level Intra-level (Y A ⇒↑) Y Ω ∨(Y B ⇒↓) [(Y A) ∨ (Y B)] ∧ (Y Ω) (B) Configuration Level

Hypothesis on types

B X A Z Ω R Y B Non-propagation Y X Propagation Inter-level Intra-level Y X Y R Y R (C) Assembly Level
• The change impacts its own architecture level (Table 5.2a.Propagation). It is a case of intra-level propagation, which occurs if Y is a supertype of Z or if they are not comparable. This happens when the compatibility of component roles involved in a connection is broken but the new component role is still realized into the Configuration level.

• The change impacts adjacent architecture levels (Table 5.2a.Propagation). This is a case of inter-level propagation, which occurs if Y is a subtype of X or if they are not comparable. This happens when the component classes that previously realized the old component role do not realize the new component role.

• The change impacts its own architecture level and adjacent architecture levels (Table 5.2a.Propagation). It is a case of inter and intra-level propagation, that is a combination of both propagation conditions, which is Y is not comparable neither to X nor Z. This happens when both inter-level and intra-level coherence are broken. ensures I 1 can be used as an instance of C 3 . This happens when the change does not break neither intra-level nor inter-level architecture coherence.

Versioning at Configuration Level

• The change impacts its own architecture level. As previously, it is a case of intra-level propagation. This happens if Y is not a subtype of Ω. However, this condition also implies at least a propagation to the Specification since

(A ≺ Ω) (Y Ω) ⇒ (Y A)
• The change impacts adjacent architecture levels. Since Configuration is the intermediate architecture level, then change may be propagated:

-To the specification (↑) if Y is not a subtype of A.
-To the assembly (↓) if Y is not a supertype of B.

• The change impacts its own architecture level and adjacent architecture levels. The change may be propagated in every direction with any combination of the previously discussed conditions. The change may be propagated in one, two or three directions at a time.

Versioning at Assembly Level

Table 5.2c summarizes the impact of replacing I 1 (Figure 5.10) by a third component instance I 1 , which provides a functionnality f () : Y . The possible outcomes that can be observed are as follows:

• The change has no impact on the architecture. As previously, the version is not propagated. It is the case when Y X for any type of replacement (substitutable or not-substitutable). This condition ensures that I 1 instantiates C 1 and is compatible with

I 2 .
• The change impacts its own architecture level. There is an intra-level propagation if Y is not a subtype of R. However, this is also a sufficient condition for implying an inter-level propagation.

• The change impacts adjacent architecture levels. There is an inter-level propagation if Y is not a subtype of X.

• The change impacts its own architecture level and adjacent architecture levels. As said before the condition of intra-level propagation also implies inter-level propagation.

Tables 5.3a, 5.3b and 5.3c give the rules of the symetric change impact analysis that corresponds to the replacement of required functionality at the three architecture levels (R 2 , C 2 and I 2 are replaced by a component that requires a functionality f () : Y). which is not substitutable for the previous one since at least one change is not substitutable.

Propagation example

Hypothesis on types

B X A Z Ω R Y Z Non-propagation A Y Ω Propagation Inter-level Intra-level Y Ω Y A (Y Ω) ∧ (Y A) (A) Specification Level

Hypothesis on types

B X A Z Ω R Y Ω Non-propagation Z Y R Propagation Inter-level Intra-level (Y Z ⇒↑) ∨ (Y R ⇒↓) Y X [(Y Z) ∨ (Y R)] ∧ (Y X) (B) Configuration Level

Hypothesis on types

B X A Z Ω R Y R Non-propagation Y Ω Propagation Inter-level Intra-level Y Ω Y B (Y Ω) ∧ (Y B) (C) Assembly Level
Indeed C 1 is not substitutable for C 1 since (Y Ω) while the previous provided interface type was X which is a subtype of Ω.

Generalization

1 to n replacement. The discussed analysis considers 1 to 1 replacement operations. However, this is sufficient to describe the propagation problem. Indeed, if a single component role is realized by multiple (n) component classes, then those component classes are considered together as a single composite component class that realizes a role. The same operation As a result of this analysis, it turns out that substitutability is a good criterion for predicting impact on intra-level consistency. However, this is not a sufficient one and a more detailed approach is needed for studying impact on inter-level coherence as it is shown in the previously discussed tables.

Example of three-leveled architecture versioning

This section introduces an example of three-leveled component-based architecture versioning. This example is based on an excerpt of the HAS that is discussed in Chapter 4. Then Light -v1 -1.0.0 is added to the HAS Assembly. According to Table 5.1, the outcome of a component addition at an architecture description level is a new version of the architecture level that is substitutable and thus The second part of the scenario consists in performing an incompatible change. Thus, as introduced in Figure 5.16, component role R Orch -v1 -1.0.0 is replaced by R Orch -v1 -2.0.0 that is not backward compatible. Thus the <major> version number of HAS Spec -v1 -1.0.0 is incremented to become HAS Spec-v1-2.0.0. It corresponds to the case of inter and intra-level propagation that is presented in Table 5.3a. Then the version must be propagated within the Specification level and also to the Configuration level. At Specification level, as the connection with R Light -v1 -1.0.0 changed (it requires a subtype of the interface

Conclusion

This chapter discusses a generic approach for versioning component-based software architectures and providing semantics to versions. Semantics are derived from strict type-based not a version propagation within multiple architecture levels. This analysis shows that substitutability is not sufficient for predicting version propagation and thus provides the conditions for such propagation. This chapter also proposes a metamodel for representing version histories considering backward-compatibility of artifacts at the three Dedal architecture levels. However, this metamodel can be adapted to other ADLs through the concept of AbstractArtefact. This chapter finally proposes a way for automatically increment version we implemented a re-documentation algorithm in DedalStudio. This chapter introduces the implementation which has been realized in order to apply the re-documentation approach on large projects and to re-document their history and thus analyze their evolution. It also describes an evaluation of the approach on a case study.

Implementation of re-documentation and versioning approaches

In order to take advantage of MDE-oriented tools that have been developed for years, the DedalStudio implementation leverages the Eclipse 1 ecosystem [START_REF] Mokni | A formal approach to automate the evolution management in component-based software development processes[END_REF]. Indeed, many tools in Eclipse emphasize MDE processes. EMF 2 (Eclipse Modeling Framework) allows the definition of meta-models and the generation of the corresponding Java code structures. Sirius 3 is a tool developped by Obeo. It is based on EMF and GMF 4 (Graphical Modeling Framework) and offers to create a graphical syntax as well as an editor for EMF models. Xtext 5 is a tool that enables to define textual grammars, export them as EMF meta-models and automatically generate a text editor for the specified language. The generated editor embeds a parser which is able to map the artifacts of the textual concrete syntax of the language with instances of the EMF metamodel that define its abstract syntax. QVTo 6 (Operational QVT) is the actual Eclipse-based implementation of the QVT 7 (Query View Transformation) language. QVT is a language that allows model to model transformations through the use of mapping rules. The re-documentation process has been implemented using these technologies provided by the Eclipse ecosystem.

Finally, in order to implement the versioning concepts presented in Chapter 5, we developed a module for finding differences between Dedal architecture versions and characterize them to propose semantic versioning. This module has also been implemented in the Eclipse world by using the EMF Compare API 8 .

Overview of DedalStudio

DedalStudio has been first developped in Mokni's thesis [START_REF] Mokni | A formal approach to automate the evolution management in component-based software development processes[END_REF]. Figure 6.1 introduces the Eclipse product that we derived from Mokni's work. A first release can be downloaded at https://github.com/DedalArmy/DedalStudio/releases.

As shown in Figure 6.1 it embeds a textual editor and a graphical editor for Dedal architecture models. Dedal textual syntax was defined using Xtext while the graphical one was defined using Sirius. In addition, both syntaxes are defined to describe the same language Typically, as we plan to re-document large projects the process is separated in two phases. The first one is a preparation phase to the re-documentation and the second one is the redocumentation itself. Those phases and the modules that operate then are discussed thereafter.

Implementation of the re-documentation module

Preparing re-documentation

The first phase before re-documenting software consists in preparing the inputs. Our approach focuses on Java projects that use deployment descriptors. Thus we need to perform some preprocessing operations.

XMLMerge. By nature, Spring projects can declare their deployment by using three architecture definition features:

• XML descriptors: In this case, architectures are defined by one or more XML descriptors. Those descriptors are parsed and interpreted by the Spring container at runtime.

In this kind of descriptors, beans are defined by < bean > tags and connections be- • Configuration classes: A configuration class is a specific Java class that is identified by an @Configuration annotation. Those classes are automatically processed by the Spring container to build the runtime architecture. This method enables pre-and postprocessing of beans initialization. Beans are declared by methods holding @Bean annotations and connections between them are defined by passing bean references to other bean constructors or property setters (another kind of explicit dependency injection handled by the container).

• Self-annotated classes: A self-annotated class is identified in the code by the @Component annotation. Connections are identified by @Autowired annotations associated with attributes that define the dependencies to be initialized by the Spring container (IoC).

They are automatically supplied by the container according to the available beans.

A difficulty for re-documenting such projects is that Spring configuration styles can be mixed up. Thus a part of the deployment may be described with XML descriptors while another part may be defined by configuration classes and / or self-annotated classes. Compared qualities of different approaches for the definition of architectures is out of this thesis scope and has been initiated by Perez et al. [START_REF] Perez | An Empirical Study about Software Architecture Configuration Practices with the Java Spring Framework[END_REF]. Those styles are in practice equivalent for defining architectures (bean sets related by connections). We chose to consider projects that use only XML-based descriptors as an initial data source for the experimentation. Those descriptors correspond to external descriptions of software deployment and enable explicit and encapsulated architecture definitions. However, a future work perspective is to extend re-documentation for those styles. Then as stated before, XML-based Spring deployment descriptions are often distributed among several XML descriptors. Thus, this module (XMLMerge) aims at parsing projects to identify all the Spring XML files and then to merge them so they can be used later for re-documenting software. The idea of such merging is to extract a global XML descriptor of the whole architecture since Spring allows bean referencing from a descriptor to another.

JarLoader. As Spring is a technology that mostly focuses on web services, numerous infrastructure beans such as Java Database Connectivity (JDBC) components are deployed from imported libraries. Thus, we need to take into account the fact that those libraries are compiled and most of the time imported using Maven. Then after they have been imported

in a project we need to load them with a custom class loader (JarLoader) that recursively parses a project to find all the libraries it contains. The classes that are part of these libraries can be then loaded at runtime on demand when the re-documentation process requires informations from them. This module is also used by the HierarchyBuilder module which is discussed next.

HierarchyBuilder. An essential part of the re-documentation process relies on the presence of a type hierarchy to manage a Specification re-documentation. Thus, in first intention, we tried to apply our approach to compiled Java projects which made it possible to recover a complete information about Java type hierarchy using the reflection capabilities that Java provides. However, we came to the conclusion that such an approach was difficult to implement since a lot of project compilations failed because of failing dependencies. Errors related to class loading was too much unpredictable depending on the re-documented project.

Thus we chose to build the class hierarchy directly from the project source code. To do so, we parse a project to list all the Java files. Then the hierarchy is built until the first library layer as shown in Figure 6.3 where Boolean (which has been added for example purpose) belongs to the java.lang library. to write the transformation. For now the transformation is not complete since it does not cope with delicate situations that exist in Spring such as non-basic schemes (i.e., < mvc > tags, etc.). However, further development can deal with such difficulties. Additionally those limitations do not question the relevancy and generalization of our approach. Indeed, Spring is a source of projects that we want to re-document and track their evolution. We want to establish the principles of the approach and not release an industrial tool. Thus, the basic elements that are taken into account represent enough data for our experimentation.

The extension to whole Spring is not a feasibility question but more a question of time. We used this implementation to re-document "real-life" projects extracted from GitHub.

Next section introduces the implementation of the module we developed to analyze differences between architecture model versions. and JarLoader sub-modules from the Re-documentation module. In the resulting CSV file, the substitutability field may have three values :

Implementation of architecture versioning

• true means that the considered architecture artifact is formally identified as substitutable by analyzing types which are identified in EMF Compare Diff objects and according to the rules that are summarized in Table 5.1.

• false means that the considered architecture artifact is formally identified as not substitutable by analyzing types which are identified in EMF Compare Diff objects and according to the rules that are summarized in Table 5.1.

• null means that substitutability of the architecture artifact could not be calculated from the EMF Compare Diff object. It can be the case when the considered artifact is not directly concerned by the actual difference but is induced by other differences. Thus neither the old and new versions of the artifact are reachable which makes the substitutability impossible to calculate.

DiffAnalyzer. This sub-module is written in Python and interprets the differences stored in CSV files that are generated by ProjectComparator. Every difference of each CSV file is counted according to the objects that differ, their type, kind and substitutability. The DiffAnalyzer module produces a global CSV file where each line represents a difference that has been analyzed. The global CSV file is composed of 84 columns that contain all the information from individual files but also add some information about versions and architecture themselves which are as follows:

• Intentional versioning accuracy: The intentional versioning accuracy corresponds to the accuracy of the version tagging (by developers) according to the actual tagging that would be performed by following our approach. This analysis assumes that the considered project applies the semantic versioning 2.0.010 approach. The accuracy of the architecture intentional versioning can be evaluated by using some indicators contained in CSV file for answering two questions:

-Should the new architecture be substitutable? This first question is answered by using version tags since they contain the developper analysis about backward compatibility. By comparing the old and the new version tag, it is easy to see if either the < major >, the < minor >, the < build > number or the version suffix has been changed. Thus, if the < major > version number has been incremented then the new architecture version should not be substitutable, otherwise it should. Moreover, a < minor > increment indicates backward compatible changes. Finally < build > increment and version suffix changes indicate backward compatible changes that should not have impact on the structure.

-Is the new architecture actually substitutable? By using information from difference files, it is easy to find out if an architecture is actually substitutable or not for its previous version. Indeed, in case the difference file contains not substitutable changes then the new architecture version is considered as not substitutable.

This makes it possible to propose a version increment according to the result of the difference analysis. And then to effectively evaluate intentional versioning accuracy.

• Architecture degeneration: Moreover, thanks to this information, it is possible to identify indicators that could be the sign of an architecture degeneration. Thus it is possible to partially answer the three following questions by analyzing the intention behind the version tag:

- -Is the new architecture subject to both erosion and drift? As this analysis is based on a bottom-up re-documentation, it is not possible to identify such mixed situations. Indeed, the erosion concept is based on deletions that break backward compatibility while the drift concept is based on changes that do not necessarily break backward compatibility. Thus, answering this question would require to know the initial willing of the architect, which is not possible in such approach.

Next section introduces the results of the experimentation we lead.

Experimentation and evaluation

In order to test our approach, we chose to apply it on "real-life" open source projects.

Data extraction. Data was extracted from GitHub 11 repositories. In order to target significant projects, the extraction was performed following the selection criteria proposed by Jarczyk et al. [START_REF] Jarczyk | Github projects. quality analysis of open-source software[END_REF]. Thus we extracted the last commit of Java projects rated over 100 stars and which have been forked at least 10 times [START_REF] Perez | An Empirical Study about Software Architecture Configuration Practices with the Java Spring Framework[END_REF]. The extracted projects also contained the "Spring" keyword. The last criteria of the extraction was the date of creation that needed to be after 2010-01-01 (after Spring 3 release). The extraction identified 524 projects.

Extraction metadata are available online 12 .

Project selection. As discussed in Section 6.1.2.1, our implementation only takes Spring XML files into account. Thus we needed to target projects that use Spring only in their XML form. Doing so, the data set was reduced to 63 projects. Then we analyzed projects to find a good candidate for applying our approach. A good candidate should be an industrial project with a version history where versions are identified following Semantic Versioning 2.0.0. We identified BroadleafCommerce which has more than 2200 classes in its 6.0.3-GA version (last version at the time of the extraction), 316 released versions and which applies Semantic Versioning 2.0.0 for tagging its versions.

Case study: Broadleaf Commerce

Experimentation

As a first requirement of the experimentation, we had to import as much as possible of the project required libraries for each version. As BroadleafCommerce uses Maven, we could easily import dependencies. We thus applied the re-documentation process on the Broadleaf-Commerce history and thus obtained 236 Dedal architecture versions which is the amount of releases between version 3.0.0.BETA1 and version 6.0.3-GA. No architecture has been redocumented before version 3.0.0.BETA1 since, due to unknown factor, re-documentation failed only for those versions. Then we could calculate differences between successive versions and obtained 221 difference files because of some loss due to EMFCompare 15 API fails.

The aim of this experimentation is to measure the intentional versioning accuracy and identify situations where drift and / or erosion of the architecture can be observed. • The amount of components that are declared from libraries is almost constant and much lower than the amount of components which are declared in the source code of the project. This means that the project relies on a constant component layer whereas the real evolution of its architectures lies in the evolution of the source code. Thus it is a very suitable project for calculating architecture differences and characterizing them.

• The number of component instances is always greater than the number of component classes in architecture versions. This indicates that the implementation and the deployment of the architectures are decoupled, favoring deployment reconfiguration and component instances parameterizing.

• The number of Java classes has increased all along the project evolution. Thus, it indicates that the complexity of the overall code structure also increases. Moreover, each class number growth or decrease seems to have an impact on the amount of components. Then, although deeper analysis of the project is required, it seems that the architecture versions are based on a policy which prevents them to grow too much and thus preserves more maintainable architectures. The architecture grows by stages until a drop in the amount of classes and components around the 150 th version. This drop is probably due to a simplification of the framework that aimed at reducing the size of architectures. Figure 6.7 reinforces this interpretation since it shows that component instances number clearly drops while the amount of XML files where they are declared suddenly grows. Deeper analysis would be needed to confirm this hypothesis. The next step of the experimentation is the calculation of differences between architecture versions and their characterization.

Characterizing BroadleafCommerce versions

We calculated differences between previously obtained architecture versions to characterize them. Doing so, we obtained a total of 221 difference models that we could analyze. There were a loss during the comparison process because of unknown EMF issues probably due to some EMF format inconsistencies.

As it has been discussed before, we aimed at identifying situations that could induce drift or erosion. Figure 6.8 shows the architecture version increment accuracy measured on the project. Surprisingly only 2.71% architecture versions are rightly incremented (according to the intentional versioning accuracy). Moreover 10.41% of those version increments are correct according to the backward compatibility but are not correctly incremented. This means that in those cases, developers did not manage to identify structural changes while they of version increment mistakes according to their types. Thus 4.19% of the mistakes concern < minor > increments that should be < major > ones, 10.70% concern < build > increments that should be < minor > and the remainder (85.12%) concerns < build > increments that should be < major >. Those results can be interpreted as follows:

• < build > for < minor > increment: They correspond to the inaccurate version increments of Figure 6.8. They correspond to a good backward compatibility analysis but to a lack of architectural impact perception since developers did not notice architectural change.

• < build > for < major > increment: They correspond to the majority of wrong version increments of Figure 6.8. However 53% of them correspond to suffix changes which can correspond to a release cycle where developers consider that suffixes should not necessarily be backward compatible since it is not clarified in Semantic Versioning 2.0.0 approach. Although still 86 of the < build > increments are used to perform changes in a non-substitutable way which is a problem considering the loss of version tag accuracy that becomes useless. Figure 6.10 introduces the proportion of situations that could lead to architecture degeneration situations that can be identified all along the BroadleafCommerce framework evolution.

Thus almost 40% of architecture versions are in situation of potential architecture degeneration:

• Erosion. 22.17% of BroadleafCommerce architecture versions show indicators of architectural erosion. This is mainly due to a bad version identification as it is discussed before. Then unwanted major changes such as undocumented artifact deletions may lead to software erosion. Then the erosion situations are identified mostly (45 / 49) from < build > increments that should be < major > which means that only few mistakes are made on < minor > version increments. However such mistakes still occur.

• Drift. In the same way, drift situation could be observed in 16.74% of architecture versions. 23 of them correspond to < build > increments that should be < minor > and 14 correspond to < build > increments that should be < major >. Thus it concerns both substitutable and not substitutable versions. This shows that developers are probably less sensible to drift than to erosion problems. Indeed, if we assume that developers do not consider that version suffixes must be backward compatible, then we identified more potential drift situation than erosion ones. Then this experimentation shows that an automated versioning process based on strict type rules is necessary to ensure a good consistency of version tags.

Threats to validity

Some threats to validity can be identified on this experimentation.

Threats to external validity. The first external validity threat relates to the way projects were selected. The selection itself may potentially bias the results. Indeed, we chose to study a specific kind of projects which is not representative of all the ways Spring is used and thus this may not fully be representative of all the Spring developers habits. A second threat to external validity is the generalization. This threat is directly linked to the previous one. Indeed, more experimentation need to be led on other technologies than Spring to ensure generalization of the approach in practice.

Threats to internal validity. Due to the lack of existing workbench, it is not guaranteed that all the dependencies of the projects are imported and loaded into project directories which can lead to re-documentation imprecision. Re-documented architectures can thus potentially miss some architectural artifacts. The threat that is identified by Kalliamvakou et al. [START_REF] Kalliamvakou | An in-depth study of the promises and perils of mining GitHub[END_REF] which states that "many active projects do not use GitHub exclusively" can also imply a lack on the presence of all the project dependency.

Discussion

By being able to re-document three-leveled architectures and to calculate and characterize differences between their versions, this experimentation shows that such approach could be adapted to real projects. Indeed, the fact that it could be applied on more than 200 versions of an enterprise project is encouraging. Moreover, such approach can be coupled to other empirical studies for analyzing developer habits in term of architecture impact. Additionally, it can be coupled to more precise experimentation that would focus on other characteristics which could explain the evolution of architectures. For instance, analyzing commits could probably help to better identifying and explaining architecture evolution phases such as the drop of components that can be observed in Figure 6.6. Finally the implementation of the approach needs to be completed by further work to take into account more of the Spring framework, and also other technologies such as Enterprise Java Beans (EJBs).

Conclusion

This chapter presents our implementation and an experimentation of architecture re-documentation and versioning. The applicative contributions that are discussed in this chapter consist of the re-documentation and versioning tools. From the re-documentation perspective, this chapter introduces SpringDSL that is our Xtext-based implementation of the Spring XML grammar. HierarchyBuilder builds the entire type hierarchy of Java projects and generates UML models. The component-based-hierarchy-builder module then re-documents threeleveled Dedal architectures. In future work, improvement should be made to SpringDSL which does not take all the language into account and other technologies might be supported. Moreover, the implementation is Java-based, although, the approach should be implemented for other languages. From the versioning point of view, this chapter introduces ProjectComparator that compares architecture models and characterize their differences. Dif-fAnalyzer analyzes differences for identifying drift and erosion situations. This thesis presents our approach named ARIANE. This chapter summarizes the contributions of the thesis and discusses their limits, as well as some perspectives. Moreover, in order to version each of the successive descriptions of software architectures, it is necessary to version them at multiple architectural levels. Then, they are versioned at component level, at architecture description level (i.e., Specification, Configuration, and Assembly) and finally at a global level, which is composed of the three architecture levels.

Contributions

Software re-documentation contributions

The first contribution of this thesis concerns software re-documentation. From a conceptual point of view, this thesis proposes an approach to re-document software architectures as they are implemented. In particular, it proposes to re-document them from object-oriented code and deployment descriptors. It is based on the type theory defined by Mokni et al.

[Mok+16a], which provides a strong theoretical basis for analyzing component type hierarchies. The particularity of this approach is that it actually re-documents the software life-cycle. Re-documented architectures are composed of three description levels, which represent the specification of the software, its implementation, and its deployment. Those architecture levels are described in the Dedal ADL and are respectively the Specification, the Configuration and the Assembly.

The technical corresponding contribution is the re-documentation algorithm. This algorithm maps software concepts into Dedal architectures. The resulting architectures are composed of three abstraction levels, which are consistent to one another. This algorithm is generic and can be applied to any object-oriented and / or deployment descriptor technologies.

Finally, the applicative contribution of software re-documentation consists of the set of tools that have been released for implementing the approach. It has been implemented for redocumenting Java based projects that use the Spring [START_REF] Johnson | The Spring framework -Reference documentation[END_REF] to describe their deployment.

Thus this contribution is composed of the release of several tools as eclipse plugins and / or Maven1 modules. SpringDSL implements the Spring XML grammar in the EMF ecosystem to automatically derive EMF-based Spring models. Derived models are directly usable as they are. In the case of this thesis, we perform a model to model transformation from SpringDSL to Dedal. The second released module is the HierarchyBuilder module. It builds the entire hierarchy of Java projects and also includes the type hierarchy of its dependencies. The module generates a UML description of the Java project based on the PlantUML 2 language. The component-based-hierarchy-builder module is the actual implementation of the re-documentation algorithm. This module generates Dedal architectures from Java source code and Spring XML deployment descriptors.

Software architecture versioning contributions

The . This change impact analysis relies on formal rules that make it possible to classify changes in terms of the impact they have on the existing architecture, considering it a three levels of abstraction. A change that is substitutable in its own architecture level may impact other description levels. Version propagation can be predicted from this change impact analysis.

From a technical point of view, this thesis proposes a metamodel for representing version histories considering backward compatibility at three abstraction levels. It also proposes to automatically increment version identifiers based on this analysis.

From an applicative point of view, the contribution consists of the implementation of two modules. The first one is the ProjectComparator, which compares architecture models using the EMFCompare3 tool and characterizes their differences in terms of artifact backward compatibility. Those differences can be analyzed by the DiffAnalyzer, which finds out architectural derive situations such as drift and erosion. This module also calculates the best version identifier increment from the substitutability analysis of the new architecture version.

Limitations and perspectives

This section identifies limitations of this thesis and discusses some perspectives.

Software re-documentation perspectives

The presented approach for re-documenting software at three levels of architecture presents some limitations.

First, from a conceptual point of view, the approach only takes static information into account and then re-documents component-based architectures from deployment descriptors, which are static descriptions. In future work, this static re-documentation must be completed with dynamic re-documentation to consider all architecture aspects.

Second, from a technical point of view, we chose to identify the smallest roles as possible.

However, this choice is based on type hierarchy and can be discussed. When several component roles can be identified for a single component class, they are automatically defined as the realized component roles. However, dynamic analysis would help to ensure that they are well identified. In fact, it could be more accurate to keep a more coarse grained component role in some cases. This issue should be addressed in future work. In the same way, component interfaces are filled with public class methods. However, as the visibility of class methods changes according to the point of view (i.e., package, subclass. . .) future work should address this issue by proposing options to re-document interfaces.

Finally, from the applicative point of view, several improvements should be made. First of all, the implementation of SpringDSL needs to be completed in order to deal with all the language. Additionally, more deployment descriptor languages should be implemented to broadcast this approach to other languages. Last but not least, the implementation is made for Java projects, but in future work, it needs to be extended to other object-oriented languages. Another improvement that can be done in further work, is to include the architecture re-documenting module directly into Integrated Development Environments (IDEs)

to guide the architect in real-time.

Software architecture versioning perspectives

The presented versioning approach also presents some limitations.

From a technical point of view, the approach should include the management of architectural artifact histories into component repositories. This would highly enhance reuse processes. Moreover, as previous work on Dedal discussed automated evolution [START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF],

mechanisms for replacing, adding, deleting, and propagating versions would be easily handled.

From an applicative point of view, it is necessary to handle component versioning by not only tracking architecture evolution but also keeping a record of each component version.

Then, the three-leveled version history management needs to be implemented from the proposed version metamodel. As previously, this approach gets valuable if it can guide software architects, and it needs to be integrated into IDEs.

Experimental perspectives

This thesis proposes to re-document and analyze versions on more than 200 architecture versions. However, this experimentation is not yet validated by experts. In future work, we plan to involve developers in a feedback process in order to further assess the accuracy and relevance of our approach. return result 9: end function

ARIANE : Re-documentation automatique pour améliorer la compréhension et l'évolution d'architectures logicielles

Tout au long de son cycle de vie, un logiciel peut connaître de nombreux changements affectant potentiellement sa conformité avec sa documentation originelle. De plus, bien qu'une documentation à jour, conservant les décisions de conception prises pendant le cycle de développement, soit reconnue comme une aide importante pour maîtriser les évolutions, la documentation des logiciels est souvent obsolète. Les modèles d'architectures sont l'une des pièces majeures de la documentation. Assurer leur cohérence avec les autres modèles d'un logiciel (incluant son code) pendant les processus d'évolution (co-évolution) est un atout majeur pour la qualité logicielle. En effet, la compréhension des architectures logicielles est hautement valorisable en termes de capacités de réutilisation, d'évolution et de maintenance. Pourtant les modèles d'architectures sont rarement explicitement disponibles et de nombreux travaux de recherche visent à les retrouver à partir du code source. Cependant, la plupart des approches existantes n'effectuent pas un strict processus de rétro-documentation afin de re-documenter les architectures "comme elles sont implémentées" mais appliquent des étapes de ré-ingénierie en regroupant des éléments de code dans de nouveaux composants. Ainsi, cette thèse propose un processus de re-documentation des architectures telles qu'elles ont été conçues et implémentées, afin de fournir un support d'analyse des décisions architecturales effectives. Cette re-documentation se fait par l'analyse du code orienté objet et les descripteurs de déploiement de projets. Le processus re-documente les projets dans le langage de description d'architecture Dedal, qui est spécialement conçu pour contrôler et guider l'évolution des logiciels. Un autre aspect très important de la documentation des logiciels est le suivi de leurs différentes versions. Dans de nombreuses approches et gestionnaires de version actuels, comme GitHub, les fichiers sont versionnés de manière agnostique. S'il est possible de garder une trace de l'historique des versions de n'importe quel fichier, aucune information ne peut être fournie sur la sémantique des changements réalisés. En particulier, lors du versionnement d'éléments logiciels, il n'est fourni aucun diagnostic de retro-compatibilité avec les versions précédentes. Cette thèse propose donc un mécanisme de versionnement d'architectures logicielles basé sur le métamodèle et les propriétés formelles de l'ADL Dedal. Il permet d'analyser automatiquement les versions en termes de substituabilité, de gérer la propagation de version et d'incrémenter automatiquement les numéros de versions en tenant compte de l'impact des changements. En proposant cette approche formelle, cette thèse vise à prévenir le manque de contrôle des décisions architecturale (dérive / érosion). Cette thèse s'appuie sur une étude empirique, pour valider notre approche nommée ARIANE, en appliquant les processus de redocumentation et de versionnement à de nombreuses versions d'un projet industriel extrait de GitHub.

ARIANE: Automated Re-Documentation to Improve software Architecture uNderstanding and Evolution

All along its life-cycle, a software may be subject to numerous changes that may affect its coherence with its original documentation. Moreover, despite the general agreement that up-to-date documentation is a great help to record design decisions all along the software life-cycle, software documentation is often outdated. Architecture models are one of the major documentation pieces. Ensuring coherence between them and other models of the software (including code) during software evolution (co-evolution) is a strong asset to software quality. Additionally, understanding a software architecture is highly valuable in terms of reuse, evolution and maintenance capabilities. For that reason, re-documenting software becomes essential for easing the understanding of software architectures. However architectures are rarely available and many research works aim at automatically recovering software architectures from code. Yet, most of the existing re-documenting approaches do not perform a strict reverse-documenting process to re-document architectures "as they are implemented" and perform re-engineering by clustering code into new components. Thus, this thesis proposes a framework for re-documentating architectures as they have been designed and implemented to provide a support for analyzing architectural decisions. This re-documentation is performed from the analysis of both object-oriented code and project deployment descriptors. The re-documentation process targets the Dedal architecture language which is especially tailored for managing and driving software evolution. Another highly important aspect of software documentation relates to the way concepts are versioned. Indeed, in many approaches and actual version control systems such as GitHub, files are versioned in an agnostic manner. This way of versioning keeps track of any file history. However, no information can be provided on the nature of the new version, and especially regarding software backward-compatibility with previous versions. This thesis thus proposes a formal way to version software architectures, based on the use of the Dedal architecture description language which provides a set of formal properties. It enables to automatically analyze versions in terms of substitutability, version propagation and proposes an automatic way for incrementing version tags so that their semantics corrrespond to actual evolution impact. By proposing such a formal approach, this thesis intends to prevent software drift and erosion. This thesis also proposes an empirical study, to validate our approach named ARIANE, based on both re-documenting and versioning processes on numerous versions on an enterprise project taken from GitHub.

Contents 1 . 1 1. 4

 114 General context of component-based software engineering 1 1.2 Documenting and versioning component-based software architectures issues . 2 1.3 Thesis proposal and contribution . 2 Outline of the thesis . 4

FIGURE 2. 1 :

 1 FIGURE 2.1: Waterfall development model

FIGURE 2. 2 :

 2 FIGURE 2.2: The CBSD process

3.

 Component identification: This phase replaces the implementation phase of the traditional waterfall model. It consists in a combination of three activities: (a) Component search: During this activity, component repositories are browsed to identify suitable candidates to fit the architecture defined during the design phase. (b) Component selection: During this activity, a component composition is decided

 faces. Computation concern (handled by components) and interaction concern (handled by connectors) are then well decoupled. This separation of concerns thus emphasizes reuse processes. According to Taylor et al.[START_REF] Richard N Taylor | Software architecture: foundations, theory, and practice[END_REF], component interaction may become a very serious and challenging concern in the context of large and long time support systems. A connector may be of eight types, which have been identified by Mehta et al.[START_REF] Nikunj R Mehta | Towards a taxonomy of software connectors[END_REF]: procedure call, event, data access, linkage, stream, arbitrator, adapter and distributor.

FIGURE 2. 3 :

 3 FIGURE 2.3: Benett an Rajlich process model for evolution[START_REF] Keith | Software maintenance and evolution: a roadmap[END_REF]

FIGURE 2. 4 :

 4 FIGURE 2.4: Reuse development process[START_REF] Huaxi | Multi-dimensional architecture description language for forward and reverse evolution of component-based software[END_REF]

 match the component roles defined in the architecture specification. These components are called component classes and their associated types are called concrete component types. A component class therefore corresponds to an existing software component that has been stored in a repository. Dedal allows the definition of composite structures, which means that components can either be primitive or composite. A primitive component class encapsulates executable code whereas a composite component class encapsulates an inner architecture configuration. In a composite component class, the exposed set of interfaces corresponds to the set of unconnected interfaces of its inner components. Component classes may also contain observable attributes to allow parameterization. A concrete component type is an abstract representation of a set of component classes. It declares a set of interfaces that a component class must define to be an implementation of this type. They are used to perform classification of component classes and build indexes in component repositories. Component roles are matched with concrete component types to find suitable component classes. The matching is performed by using specialization and substitution concepts inspired from those that have been defined by Arévalo et al. [Aré+07; Abo+09; Aré+09; Abo+19]. The particularity of Dedal realization relation is the fact that a component role can be realized by a single component class but also by a set of component classes.

Figure 2 .

 2 Figure 2.6 shows an implementation (configuration) of the HAS that complies with the specification. In this configuration, Orchestrator realizes HomeOrchestrator, Clock realizes Time, whereas AdjustableLamp realizes both the Light and Luminosity component roles.

 the graph-based structure of models, already existing code versioning techniques are not suitable since they mostly rely on text-based mechanisms. Indeed, text-based versioning mechanisms fail at taking into account model structural information such as containment references and multiplicities between several model artifacts. Thus it appeared that graphbased approaches were needed to manage model versioning. This is why model evolution and versioning has been widely influenced by the huge experience in the field of database schema evolution. Indeed because of early needs to keep track of databases evolution, this field has already addressed numerous challenges that can be also identified in the field of model evolution and versioning. For instance, lot of work addressed the versioning of object-oriented database schemata from 80's [KCB86; Zdo87; BM88; CK88; Kat90; Lam92; TO93; UO96; UO98]. This came from the deep need of ensuring that the successive versions of a database schema would not be incompatible with previous ones and thus would ensure the consistency and coherency of schema with stored data. This research is thus highly based on the concept of type substitution that is inherent to object-oriented systems. Moreover, version models such as Iris[START_REF] Beech | Generalized version control in an objectoriented database[END_REF], Encore[START_REF] Stanley B Zdonik | Version management in an object-oriented database[END_REF], Lincks[START_REF] Lambrix | Aspects of version management of composite objects[END_REF],Mosaic[START_REF] Landis | Design Evolution and History in an Object-Oriented CAD/-CAM Database[END_REF], Orion[START_REF] Chou | Versions and change notification in an objectoriented database system[END_REF], Version Server[START_REF] Katz | Version modeling concepts for computer-aided design databases[END_REF][START_REF] Randy | Toward a unified framework for version modeling in engineering databases[END_REF] and the model proposed by Oussalah et al. [OTC93], Talens [TO93] et al. and Urtado et al. [UO96; UO98], propose mechanisms for propagating versions. Those mechanisms aim at automating version management by propagating version creation and destruction operations following dependency relations between versioned artifacts.

 EMFStore has been proposed by Koegel et al. [KHS09] in the Eclipse 1 Modeling Framework (EMF 2) ecosystem. It is a model repository which provides model version support. EMFStore is an operation-based tool which relies on the Eclipse IDE. Once modifications on the model are done, they are committed to the repository to save the new state of the model. Odyssey-VCS 2 that has been proposed by Oliveira et al. [OMW05] is a language specific version control system based on the UML language. As the tool of Stevens et al., it is statebased and also takes advantage of model elements' unique identifiers. On the basis of the difference detection phase result, the tool automatically infers the operations that lead to

 It seems then very difficult in this context to formally identify model versions. Moreover, despite it is addressed in the field of databases schema versioning, the concept of version propagation is not well identified and addressed in the context of MDE. A lot of work deals with co-evolution of models but not directly with version propagation. The only activity of model versioning which can be assimilated to version propagation (or at least change propagation) is the inconsistency detection phase. Unfortunately, in this phase the change propagation occurs in a top down way. Actually, only changes that occur at metamodel level can be propagated to the models. However in a component-based software architecture evolution where, as in Dedal, several abstraction levels coexist in order to represent the global life-cycle of software, a change can occur at any of these abstraction levels and still may need to be propagated in a bottom up way as do the versions.

 C2-SADEL (Software Architecture Description and Evolution Language) has been proposed by Medvidovic et al. [MRT98; MJ06] on top of the C2 approach [Tay+96] which defines C2style architectures. C2-style architectures are component-and message-based architectures especially tailored for GUI and distributed applications. Their dedicated ADL, C2-SADEL, provides sub-typing mechanisms that support architectural evolution. Moreover, this ADL provides two architecture points of view by clearly identifying component instances and types. Thus it supports two abstraction levels expressed in a component-based paradigm that correspond to: • the deployment of the software through the description of component instance and their connectors / dependencies • and the implementation of the software through the description of the component classes and their connections.

 [START_REF] Magee | Specifying distributed software architectures[END_REF] is an ADL which semantics are defined by π-calculus[START_REF] Milner | A calculus of mobile processes, I[END_REF]. It is designed to specify the structure of distributed systems and describes components through the use of a hierarchical decomposition scheme. Darwin only represents the implementation of the software. The π-calculus formalism enables analyze the architecture and guarantees the correctness of the component connections. Darwin also provides mechanisms to analyze the impact of architectural changes, however, in this approach, component / architecture versioning is not addressed and no semantics are proposed for identifying and producing versions.

 Wright[START_REF] Allen | Specifying and analyzing dynamic software architectures[END_REF] extends the previous Wright[START_REF] Allen | A formal basis for architectural connection[END_REF] ADL. This ADL especially supports evolution of distributed architectures and analyzes their behavior. Wright only provides one abstraction level through architecture descriptions which mixes implementation and deployment information. Indeed, a Style (architecture description) is defined by a list of components types, connector types and their instances. The concepts of implementation and deployment are not clearly decoupled. Wright models are based on the concept of CSP (Communicating Sequence Processes)[START_REF] Antony | Communicating sequential processes[END_REF] which formalizes component behavior and allows architecture analysis. In Dynamic Wright, only the implementation is represented. Finally, the concept of version is not addressed in the approach and thus no semantics are defined for component / architecture versions.

 those approaches we can cite XML-based approaches such as introduced by Hartmann et al. [HHT01]. We can also cite incremental approaches introduced by Rajlich, Václav [Raj97; Raj00] which produce text-based documentation. The Island grammar approach [VDK99; Moo01] relies on a parser to analyze and textually re-document code. In the DMG (DocLike Modularized Graph) Sulaiman et al. [SIS03] provide an advanced visualization graph as software documentation. Finally and surprisingly, very few work has been lead on producing model-oriented documentation.

(a)

 a Redocumentation is probably the universal goal of every software architecture reconstruction process since they are used during software's life-cycle which probably suffered from drift of erosion during its evolution. (b) Reuse (i.e., ARES [Eix+98], MAP [SO01], PuLSE / SAVE [Kno+06] and ROMAN-TIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]), since recovering architecture descriptions may highlight reusable entities as software components, frameworks, etc. (c) Conformance checking (i.e., Bauhaus [Kos02; EKS03; CKS05], DiscoTect [Yan+04], PuLSE / SAVE [Kno+06] and Tran et al. [TH99]) for comparing the conceptual description of the software and its actual implementation. (d) Co-evolution (i.e., PuLSE / SAVE [Kno+06], Huang et al. [HMY06] and Tran et al.

 (b) Top-down approaches (i.e., PuLSE / SAVE[START_REF] Knodel | Static evaluation of software architectures[END_REF]) start with the highest-level information. Hypotheses are made which are next checked to make sure that they comply with the source code. (c) Hybrid approaches (i.e., Tran et al. [TH99], X-Ray [MK01], MAP [SO01], Alborz [Sar03], Focus [DM01; MJ06], Bauhaus [Kos02; EKS03; CKS05], DiscoTect [Yan+04], Pashov et al. [PR04], Huang et al. [HMY06], ROMANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]) aim at combining bottom-up and top-down approaches. In those kinds of approaches, hypotheses are made that are refined using what is abstracted from low-level information.

 logs and execution trace (i.e., Alborz[START_REF] Sartipi | Software architecture recovery based on pattern matching[END_REF], ArchVis[START_REF] Hatch | Software Architecture Visualisation[END_REF], Bauhaus [Kos02; EKS03; CKS05], DiscoTect [Yan+04], Huang et al. [HMY06] and Pashov et al. [PR04]). However those inputs may also be other kinds of information like the physical organization (i.e., ArchVis [Hat04]) of the software. Human organization may also provide information about coding standards in a company that can make extraction easier and extraction rules more specific. Non-architectural inputs may also involve historical information and human expertise. Historical information can be used for instance for improving understanding of extraction results but is rarely used [DP09]. Besides human expertise is used in most of the software architecture reconstruction approaches since it is most of the time needed over reconstruction iterations for validating results. Human expertise is useful for the quality of the extraction but alter the automation of the process. (b) Architectural inputs like architectural styles or viewpoints for guiding extraction.

 (b) Semi-Automatic (i.e., Tran et al. [TH99], DiscoTect [Yan+04] and PuLSE / SAVE [Kno+06]) where the software engineer guides the tool. (c) Quasi-automatic (i.e., X-Ray [MK01], Alborz [Sar03], Bauhaus [Kos02; EKS03; CKS05], ArchVis [Hat04], Pashov et al. [PR04], Huang et al. [HMY06] and RO-MANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]) that are close to be fully automatic but still requires human expertise to ensure that the tool is going to the right direction.

(a)

 a Visual software representations are the most common result of software architecture reconstruction processes. (b) Architecture description (i.e., ARES [Eix+98

 two levels might not correspond to the same paradigm (code Vs component-based architecture description) which is a drawback to co-evolve those abstraction levels. Then it is essential for maintaining, evolving and tracking software life-cycle to have three-leveled component-based architecture descriptions. Indeed, they give a more global but precise understanding to architects by providing a means to model architecture design, implementation and deployment decisions separately. Finally, even the approaches that seem close to ours either perform re-engineering such as ROMANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17] that clusters classes into bigger components or DiscoTect [Yan+04] that reconstructs architectures from execution traces corresponding to their dynamic instantiation. There also exist approaches for re-documenting from object-oriented code through the use of UML 5 diagrams [GK00; SM07]. Unfortunately those kinds of re-documenting approaches do not perform component-based architecture reconstruction.

Figure 4 .

 4 Figure 4.1: (1) the Java object architecture recovery which results from the parsing of the deployment descriptor, (2) the transformation of the deployment descriptor to an incomplete Dedal Assembly, (3) the completion of the Assembly, (4) the extraction of the architecture Configuration level and (5) the extraction of the Specification level.

FIGURE 4 . 1 :

 41 FIGURE 4.1: Process of Component-Based Software Architecture Reconstruction

Figure 4 .

 4 Figure 4.1 introduces the re-documentation process. In order to re-document the software architecture, the process needs two kinds of inputs. The first one is a deployment descriptor which describes how a given software is instantiated. The second input is the source code

FIGURE 4 .

 4 FIGURE 4.2: Home Automation Software (HAS): XML-based Spring configuration

Figure 4 .

 4 2 introduces an example of an XML-based Spring [Joh+04] deployment descriptor. This file contains information about class instances and dependency injection which is the starting point of the re-documentation process. This example is a Java-based example which code structure is presented in Figure 4.3 as an UML diagram.

FIGURE 4 .

 4 FIGURE 4.3: HAS: UML diagram

FIGURE 4 . 4 :FIGURE 4 . 5 :

 4445 FIGURE 4.4: SpringDSL representation of HAS Spring deployment descriptor

 Figure 4.4 introduces the result of parsing the deployment descriptor presented in Figure 4.2. Both representations contain strictly the same information about bean instances, instantiated Java classes and dependencies. For instance, Figure 4.4 shows a << bean >> named securityM anager1 which << Class >> is SecurityM anager and that has a << property >> named alarm which is set with a Ref erence to the << bean >> named aClock1. This is equivalent to its XML version shown in Figure 4.7 Then, this model-based representation of the deployment descriptor is the input of a model to model transformation that transforms deployment descriptor information into partial architecture information concerning Assembly and Configuration levels in Dedal language.

Figure 4 .

 4 Figure 4.5 shows how Spring artifacts that are introduced in Figure 4.4 are arranged to fit Dedal concepts.Then, this partial information is used, in combination with the Java source code, as the input of the third step that re-documents the Assembly level. Thus, missing information is extracted for re-documenting Assembly as presented in Figure4.6a. At this step, Assembly is fully extracted.

(

 A) HAS: Reconstructed Assembly (B) HAS: Reconstructed Configuration (C) HAS: Reconstructed Specification P: provided interface / R: required interface / Grayed out interface: unconnected

FIGURE 4 .

 4 FIGURE 4.6: HAS: Dedal Reconstructed Architecture Levels

FIGURE 4 . 7 :

 47 FIGURE 4.7: Example of bean declaration with dependency injection

 , 4.6b and 4.6c.

FIGURE 4 .

 4 FIGURE 4.8: Three-level view of reconstructed Dedal architecture

Figure 4 .

 4 Figure 4.8 shows the three-levels of the re-documented Dedal architecture. This view shows the relations that exist between the architecture levels and their respective components.

FIGURE 4 . 9 :FIGURE 4 .

 494 FIGURE 4.9: Structure of the re-documentation module

As a natural consequence

 of a model-driven re-documentation process, a model-based representation of the deployment descriptor is a starting point for being able to re-document software as a component-based software architecture. Thus as a proof of concept, we implemented a part of the XML-based grammar of the Spring [Joh+04] deployment descriptor which we named SpringDSL. The Spring XML grammar has then been implemented using XText 1 . Thanks to Xtext, we direcly derived an EMF 2 -based metamodel of the Spring language, we as well automatically generated a parsing tool for XML-based Spring deployment descriptors. Thus, it is possible to automatically get a model of Spring deployment descriptors through a simple parsing by the Xtext-based tool.In this part, only the concepts which are useful for the re-documentation process are presented, the full implementation of the Spring XML-based grammar is presented in Appendix A.

Figure 4 .

 4 Figure 4.10 shows the a basic extract of the XML-based Spring grammar. An XML-based Spring development starts with a < beans > tag and ends with a < /beans > tag. The beans that constitute the description are declared in this scope.Figure 4.11 shows an extract of

Figure 4 .

 4 FIGURE 4.11: Component Xtext-based implementation

FIGURE 4 .

 4 FIGURE 4.13: Excerpt of the SpringDSL Metamodel

Figure 4 .

 4 Figure 4.4 presents an example of an XML-based Spring [Joh+04] deployment descriptor.

FIGURE 4 .

 4 FIGURE 4.14: Dedal Metamodel Sub-part for M2M transformation

FIGURE 4 .

 4 FIGURE 4.15: Mapping SpringDSL artifacts into Dedal artifacts

Figure 4 .

 4 Figure 4.5 shows the partial Dedal architecture that is mapped thanks to QVTo.Figure 4.15

Figure 4

 4 Figure 4.5 shows the partial Dedal architecture that is mapped thanks to QVTo.Figure 4.15

Figure 4 .

 4 3. The HAS project is thus composed of seven concrete classes, an abstract class and two interfaces. At the end of the model to model transformation step, the basis of the architecture has (A) HAS Assembly (B) HAS Configuration

FIGURE 4 .

 4 FIGURE 4.16: A single provided interface is exposed

FIGURE 4 .

 4 FIGURE 4.17: All provided interface are exposed

 and 4.17a there are several equivalent ways to re-document provided interfaces in Assembly component instances. The first option, shown in Figure 4.16a, consists in extracting only the coarser grained, and thus most specialized, provided interface. It means that the component will provide only one interface that will exposeall the services the component provides. This interface corresponds to most universal one in terms of provided functionalities and connection capabilities. This is the way that guarantees maximal reusability capabilities. Indeed, as the provided interface corresponds to the more specialized type in the component type hierarchy, then it can be used by any component which would require any less specialized type. The second way for extracting provided interfaces, introduced in Figure4.17a, consists in exposing several provided interfaces that correspond to each level of the component type hierarchy. For example the aClock component instance that derives from the AlarmClock class in Figure4.3 exposes three provided interfaces which correspond to the types AlarmClock, Alarm and Clock. In this case, there is no need to identify an interface for the IAlarm Java interface since the class bellow (Alarm) barely implements the interface and does not define a new abstract type. This second solution is a refinement of the first since it still preserves a maximal reusability of the component class thanks to its explicit IAlarmClock provided interface, which holds the most specialized interface type and is thus the most generic provided interface. However, it makes it possible to handle finer grained connections between components. The goal is to expose all reference

FIGURE 4 .Figure 4 .

 44 FIGURE 4.18: Dedal Interactions Meta-Model

Figure 4 .

 4 Figure 4.19 illustrates the way interfaces are mapped from types in the code. Given a type C, assuming the type hierarchy which is proposed in Figure 4.19 and consideringthe re-documentation process as a strict retro-engineering process, each Interface that is re-documented must correspond to the granularity of the types into the hierarchy. Indeed it is the only way for ensuring the highest reusability and also the highest proximity to the

 Figures 4.16band 4.17b the choice that is made at Assembly reconstruction step for exposing a single or several provided interfaces will impact the provided interface multiplicity of component classes into the Configuration.

and 4 .

 4 17a with orchestrator1 that is connected to two component instances, lampSitting and lampDesk that both instantiate the AdjustableLamp component class (Figures 4.16b and 4.17b). In such a case, these multiple connections between component instances are modeled as one connection between component classes into the Configuration (in architecture configuration models, connections correspond conceptually to connection classes that are instantiated in Assemby models).

FIGURE 4 .

 4 FIGURE 4.20: Example of Role Hierarchy based on the HAS Example

Figure 4 .

 4 20 shows which roles can be reconstructed from AlarmClock class and its type hierarchy. Then four component roles can be reconstructed from the Alarm-Clock. This figure also introduces how those component roles are named. In order to avoid name confusion with Configuration component classes which correspond to the actual implementation of component roles, if a role is derived from a concrete type which means it derives directly from an actual implementation then the name of the type from which derives a component role must be completed by a suffix : " role". However if it derives from an abstract type such as an interface or an abstract class, then there is no need to modify the type name since those types cannot correspond to component classes at Configuration level.

FIGURE 4 .

 4 FIGURE 4.21: Identifying realized Component Roles

Figure 4 .

 4 21 illustrates the process. The component class type from which the component role is extracted is component A. A contract is calculated for A that corresponds to the set of interfaces to preserve. Then, its hierarchy is traversed, contracts are recalculated at each type level and finally the set of realized component roles is extracted. For instance, as it is introduced in Figure 4.17b, AlarmClock is connected through IAlarm and IClock then when identifying its realized component roles, those two Interfaces need to be preserved. Now considering Figure 4.20, component role (a) satisfies the contract through its Interface IAlarmClock which specializes IClock and IAlarm. At the next hierarchy level, component role (b) realizes a part of the contract through its IAlarm Interface and component role (c) realizes the other part through IClock. Component roles (b) and (c) satify the contract. Thus component role (d) still needs to be checked, then a new contract is calculated from the subpart of the contract which is realized by component role (b). This contract is composed of the IAlarm provided Interface. As component role (b) is an implementation of the abstract type (d), then component role (b) is replaced by component (d) in the set of realized components. It cannot be the same with HomeOrchestrator role (see Figure 4.23) that requires SecurityManager role and which has no super type that preserves this required interface.

FIGURE 4 .

 4 FIGURE 4.22: Connecting Component Roles

FIGURE 4 .

 4 FIGURE 4.23: HAS: Reconstructed Specification

Figure 4 .

 4 Figure 4.23 introduces three different possible and equivalent Specification re-documentation results. Indeed, as it is the case for Configuration and Assembly re-documentation, it is possible to parameterize the re-documentation process of the Specification. In Figure 4.23a, the architect has chosen to re-document the Specification level by only using the types which exist into the source code. With this option, all the provided Interfaces (even unconnected) are kept in the component so it strictly corresponds to a type into the source code. However, both following propositions (Figures 4.23band 4.23c) consider that, as component roles are

 and

a

 figuration must be instantiated (see line 5) and each connection that exists in the Assembly must exist into the Configuration (see line 6). Those last two rules ensure a part of the coherence of the Dedal model which are described in previous works[START_REF] Mokni | A three-level versioning model for component-based software architectures[END_REF]. Indeed, as it has been described earlier, to be coherent, all component classes from the Configuration level must be instantiated into the Assembly level, and each connection that exists into the Configuration must also be instantiated into the Assembly.Finally at the end of the re-documentation, the obtained Dedal model must comply with coherence principles between the three architecture levels. To do so, it must ensure that component classes interfaces are instantiated into component instances so the component instances are specialized component classes. All roles from the specification must be realized by component classes, connection must be set with the involved interfaces in addition to their client and server components and finally all the connections which exist into the Specification must be implemented into the Configuration.

FIGURE 5 .

 5 FIGURE 5.1: Traditional versioning

 Thus developers / architects can at first sight know whether a new artifact version is backward compatible with its older version and which kind of modifications were made. Additional labels may be used to identify version branches, pre-releases etc.. Such version tagging then makes it possible to precisely identify compatibility of artifact versions. Following the version graph introduced in Figure5.1, variant branches are identified into the version tag with a prefix (e.g., v1, v2, v3) and versions are tagged independently on their own branch. Successive versions on a single branch are revisions, while leaves of branches are variants. Thus artifact versions v2-1.0.0 and v1-2.0.0 are variants since they are leaves

FIGURE 5 .

 5 FIGURE 5.2: Substitutability-aware versioning

FIGURE 5 . 3 :

 53 FIGURE 5.3: Multilevel component versioning

FIGURE 5 . 4 :

 54 FIGURE 5.4: Finding transitively realized roles using substitutability

 Figure 5.3, component class C-v1-1.0.0 realizes component role R-v1-1.0.0, moreover, it is easy to find out that component class versions C-v1-1.0.1, C-v1-1.0.2, C-v1-1.1.0 also realize the same component role since they all are substitutable for component class C-v1-1.0.0. In the opposite direction, component class C-v1-2.0.0 realizes component role R-v1-2.0.0 but also its previous versions R-v3-1.1.0 and R-v3-1.0.0. Thus, adding information about version semantics into the version graph makes it possible to infer compatibility properties of given elements with all their predecessors. Now we can transpose this concept at architecture description levels.

FIGURE 5 . 5 :

 55 FIGURE 5.5: Multilevel architecture versioning

FIGURE 5 . 6 :

 56 FIGURE 5.6: Finding transitively implemented Specifications using substitutability

FIGURE 5 . 7 :

 57 FIGURE 5.7: Dedal three-leveled architecture versioning

 ponent / architecture versions. It also shows how it is possible to automatically visualize backward compatibility of those versions all along their history. Thus in order to ensure the meaning of such representation, the derivation relation identification as well as version numbering must be supported by a strong, automatic and verifiable process. Then this section discusses which are the architectural changes that are relevant for studying substitutability of components / architectures. This identification of architectural changes is based on previous work of Mokni et al.[START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF] in the context of a formal architecture evolution implemented with language B[START_REF]The B Book -Assigning Programs to Meanings[END_REF].

 Dedal architecture levels: At Dedal architecture description levels, relevant changes concern components and connections that can be added, deleted or replaced. At this level, changes which occur at component level are considered as component replacement since a new version of a component replaces its previous version. Changes at the whole architecture level: At global architecture level, relevant changes concern architecture description levels (Assembly, Configuration and Specification) replacements. As previously, changes that affect architecture levels are considered as replacements since a new version of an architecture level replaces its previous version.

Figure 5 .

 5 Figure 5.8 presents the proposed meta-model for representing versions with their semantics. An History is composed of AbstractBranches and Precedence relations. An Abstract-Branch represents version branches. It can be of two types, WorkingBranch for representing branches that are not necessarily designed to contain releases, and Variant that is designed to represent a branch which last artifact version is a variant of another Variant branch last artifact version. An AbstractBranch is thus composed of AbstractArtifacts that can be any kind of versionable artifact and a Tag for identifying branches. A Precedence relation can be of two types. BranchPrec connects two AbstractBranches that play the respective roles of predecessor and successor. It stands for representing precedence of branches in order to keep track of branch history itself. Precedence can also be of type ArtifactPrec for repre-

FIGURE 5 .

 5 FIGURE 5.8: Metamodel for semantic versioning

Figure 5 .

 5 8 and presents how it can be specialized to comply with the Dedal language. Thus, Components, Archi-tectureDescriptions and the whole DedalDiagram (global Dedal architecture) can be versioned. Thus it allows to version architectures at three abstraction levels since a Component can be any of CompInstance, CompClass and CompRole types and in the same way, an ArchitectureDescription can be any of the three Dedal architecture description level. However, in the context of a three-level component-based software architecture, artifacts cannot be replaced by newer version independently from their architecture siblings or containers. In some cases, a propagation of changes to other components or architecture levels is needed. Thus versioning an artifact may imply to version other artefacts. This is what is discussed in the next section.

FIGURE 5 .

 5 FIGURE 5.10: Base-Case: Functionality Connection Within a Three-Level Component-Based Architecture

Figure 5 .

 5 Figure 5.10 shows a basic example of a three-level architecture. It represents the three Dedal abstraction levels. The specification is composed of two component roles R 1 and R 2 . They are realized respectively by the component classes C 1 and C 2 , that are in turn instantiated by respectively I 1 and I 2 .

Table 5 .

 5 2b summarizes the effects of component class replacement on the architecture. Component class C 1 (Figure 5.10) is replaced by a component class C 1 , which provides a functionality f () : Y . Then several outcomes can be observed: • The change has no impact on the architecture. The change is not propagated. The condition of non-propagation is given by B Y A for any replacement type. Y can either be substitutable for X or not. (Y A) ensures C 1 realizes R 1 and (Y B)

Figure 5 .

 5 Figure 5.11 introduces a simple case of three-level version propagation. In this example, the considered type hierarchy is B X A Z Ω R and the change that is considered

 happens on a provided functionality. X is replaced by Y with (Y R) (Y Ω). The result of the change impact analysis is thus given by [(Y A) ∨ (Y B)] ∧ (Y Ω). This result corresponds to an intra-level and an inter-level (up and down) propagation of the version since the architectural coherence has been compromised. The initial change occurs on component class C 1 which is replaced by C 1 at Configuration level. Thus, the type of the functionality of the new component is no more compatible with component C 2 , then the initial change must be propagated in the new configuration to replace C 2 by a more suitable component version (C 2). Next, as the coherence between the Configuration and the Specification has been broken, the change is propagated to the Specification by replacing both component roles that were previously realized by C 1 and C 2 . In the same way, change is propagated to the Assembly by replacing the previous C 1 instance. At the end of this propagation, a new version of the architecture has emerged

FIGURE 5 .

 5 FIGURE 5.11: Propagating version at three architecture levels

Figure 5 .

 5 Figure 5.12 introduces the type hierarchy that is used in the following example. The components that are derived from this hierarchy are introduced with their version graph in Figure 5.13. Each version graph is represented as a three-level version graph so realization and instantiation relations are shown. Thus R Orch is the role that corresponds to the abstract type Orchestrator, R Clock is the role that corresponds to the type Clock and R Light is the role that corresponds to the type Light. Following the same principle, C Orch , C Clock and C Light respectively correspond to types OrchestratorImpl (that cannot be abstract), Clock and Light. I Orch , I Clock , I 1 Light and I 2 Light are respectively component instances of C Orch , C Clock

FIGURE 5 .

 5 FIGURE 5.12: HAS type hierarchy extract

FIGURE 5 .

 5 FIGURE 5.13: HAS components version graph

FIGURE 5 .

 5 FIGURE 5.14: HAS initial architecture

 type which is provided by the R Light component) then another version of R Light must be used, so R Light -v1 -1.0.0 is replaced by R Light -v1 -1.1.0 which provides a compatible interface type. Then this change is propagated to the Configuration level where, following the same principles, C Orch -v1 -1.0.0 is replaced by C Orch -v1 -2.0.0 and C Light -v1 -1.0.0 is replaced by C Light -v1 -1.1.0 to make Configuration consistent with Specification again. The <major> version number of the Configuration is also incremented. Finally, as the change that has been propagated to the Configuration broke the instantiation relation between the Assembly and the Configuration, then it is propagated to the Assembly level. Thus as previously, I Orch -v1v1.0.0 is replaced by I Orch -v1 -2.0.0, I 1 Light -v1 -1.0.0 and

FIGURE 5 .

 5 FIGURE 5.15: HAS: component instance addition

Figure 5 .

 5 Figure 5.17 introduces the version graph that is obtained during the HAS architecture evolution. It also shows the version propagation that occurs during the second step of the scenario. Then the HAS architecture has been versioned at three abstraction levels and following three points of view during its whole evolution.

FIGURE 5 .

 5 FIGURE 5.16: HAS: component role replacement

 FIGURE 6.1: DedalStudio (and output of the component-based-hierarchy-builder module)

Figure 6 .

 6 Figure 6.2 introduces the structure of the re-documentation module. This module is composed of four sub-modules: XMLMerge, JarLoader, HierarchyBuilder, SpringToDedal and componentbased-hierarchy-builder. SpringDSL that is the sixth module shown in Figure 6.2 has not been implemented as part of the re-documentation module but as a standalone plugin project.

FIGURE 6

 6 FIGURE 6.2: Re-documentation module structure

 tween them are defined by explicit dependency injection (< ref > nested tags or ref attributes associated with property tags).

 FIGURE 6.3: Example of built hierarchy from Java project (output of Hierar-chyBuilder module)

FIGURE 6. 4 :

 4 FIGURE 6.4: Example of SpringDSL file

 component-based-hierarchy-builder. Finally this last module implements the re-documentation algorithm which is discussed in Chapter 4 and developed in Appendix C. This module is an Eclipse plugin and is intended (in further upgrades) to be dynamically used in Java Spring projects to make architects and developers able to keep an eye on the architecture they deploy since it can be fuzzy in numerous cases. Thus, this module uses the Spring-ToDedal transformation to transform the merged Spring descriptor from the XMLMerge module and obtain the incomplete Dedal architecture model. Then it uses the HierarchyBuilder module as a reflect-like API on Java source code and libraries to re-document software. Figure6.1 shows DedalStudio after we re-documented our running HAS example. As the model has been automatically generated, the textual and graphical forms of the language are also automatically generated by Eclipse tools (Xtext and Sirius) according to the model.

Figure 6 . 5

 65 Figure 6.5 shows the structure of the model comparator module. It is composed of two sub-modules which are ProjectComparator and DiffAnalyzer.

FIGURE 6. 5 :

 5 FIGURE 6.5: Dedal model comparison module

BroadleafCommerce

 13 is an enterprise open source e-Commerce framework based on Spring that is available on GitHub 14 . It aims at providing a support for the development of enterpriseclass, commerce-driven websites. The project is composed of 184 branches and 323 releases, it has 66 contributors, 1282 stars on GitHub and has been forked 1036 times (at the time of the 2019-09-21). The extraction occurred on the 2019-05-03, at this date we gathered 316 released versions (the amount of versions at the time of the extraction). The experimentation has been lead on the versions from 3.0.0.BETA1 to 6.0.3-GA.

6. 3

 3 Figure 6.6 summarizes the output of the BroadleafCommerce history architecture re-documentation. It shows the evolution of the number of declared components in the architecture versions and the evolution of the number of classes that compose the project considering architecture versions which have been numbered from 1 to 236.

FIGURE 6

 6 FIGURE 6.6: Re-documented components and Java classes in function of architecture versions

FIGURE 6. 7 :

 7 FIGURE 6.7: Component instances and XML Spring files in fonction of architecture versions

FIGURE 6. 8 :

 8 FIGURE 6.8: Version increment accuracy

FIGURE 6. 9 :

 9 FIGURE 6.9: Version increment mistakes

FIGURE 6 .

 6 FIGURE 6.10: Architecture degeneration risks

 This thesis contributes to the field of component-based software engineering. It especially addresses the problem of documentation loss during software evolution. It also addresses the problem of version identification in the context of component-based software architectures and more particularly software architectures that are described at multiple abstraction levels. It is organized around two main issues. The first one consists in recovering software documentation by a proposed re-documenting process. Moreover, the recovered documentation must describe the software at each step of its life cycle. Its deployment, implementation and specification must be re-documented in order to refound long-time evolution support. The second one consists in automating versioning of component-based architectures.

 second contribution of this thesis concerns the versioning of component-based software architectures. From a conceptual point of view, this thesis proposes an approach to formally analyze backward compatibility of component and architecture versions. In particular, it is based on the type theory defined by Arévalo et al. [Aré+07; Aré+09; Abo+19] to analyze substitutability of components and / or architectures after an architectural change occurred.This allows classification of changes in terms of substitutability. It is proposed as a formal change impact analysis based on the type theory developed by Mokni et al.[START_REF] Mokni | A formal approach for managing component-based architecture evolution[END_REF]

mapping

 SpringModel : : Component : : toAssemblyConnection (name : S t r i n g , c : SpringModel : : Component) : DedalModel : : I n s t C o n n e c t i o n { var s o u r c e : = s e l f . name ; var s o u r c e R e f : CompInstance ; _ p r o p e r t y : = s o u r c e . r e p l a c e A l l (" \" " , " ") + " . " +name . r e p l a c e A l l (" \" " , " ") ; s o u r c e R e f : = resolveone (compInst : DedalModel : : CompInstance | compInst . name=s o u r c e) ; var t a r g e t R e f : = c . map toCompInstance () ; c l i e n t I n s t E l e m : = s o u r c e R e f ; s e r v e r I n s t E l e m : = t a r g e t R e f ; } mapping SpringModel : : Component : : toAssemblyConnection_set (name : S t r i n g , r : SpringModel : : R e f e r e n c e) : DedalModel : : I n s t C o n n e c t i o n { var s o u r c e : = s e l f . name ; var s o u r c e R e f : CompInstance ; _ p r o p e r t y : = " s e t : " +s o u r c e . r e p l a c e A l l (" \" " , " ") + " . " +name . r e p l a c e A l l (" \" " , " ") ; s o u r c e R e f : = resolveone (compInst : DedalModel : : CompInstance | compInst . name=s o u r c e) ; var t a r g e t : = r . r e f . oclAsType (SpringModel : : Component) . name ; var t a r g e t R e f : CompInstance ; t a r g e t R e f : = r . r e f . oclAsType (SpringModel : : Component) . map toCompInstance () ; c l i e n t I n s t E l e m : = s o u r c e R e f ; s e r v e r I n s t E l e m : = t a r g e t R e f ; } mapping SpringModel : : Component : : toAssemblyConnection_set (name : S t r i n g , c : SpringModel : : Component) : DedalModel : : I n s t C o n n e c t i o n { var s o u r c e : = s e l f . name ; var s o u r c e R e f : CompInstance ; _ p r o p e r t y : = " s e t : " +s o u r c e . r e p l a c e A l l (" \" " , " ") + " . " +name . r e p l a c e A l l (" \" " , " ") ; s o u r c e R e f : = resolveone (compInst : DedalModel : : CompInstance | compInst . name=s o u r c e) ; var t a r g e t R e f : = c . map toCompInstance () ; c l i e n t I n s t E l e m : = s o u r c e R e f ; s e r v e r I n s t E l e m : = t a r g e t R e f ; } mapping SpringModel : : Component : : t o A s s e m b l y C o n n e c t i o n _ l i s t (name : S t r i n g , r : SpringModel : : R e f e r e n c e) : DedalModel : : I n s t C o n n e c t i o n { var s o u r c e : = s e l f . name ; var s o u r c e R e f : CompInstance ; _ p r o p e r t y : = " l i s t : " +s o u r c e . r e p l a c e A l l (" \" " , " ") + " . " +name . r e p l a c e A l l (" \" " , " ") ; s o u r c e R e f : = resolveone (compInst : DedalModel : : CompInstance | compInst . name=s o u r c e) ; var t a r g e t : = r . r e f . oclAsType (SpringModel : : Component) . name ; var t a r g e t R e f : CompInstance ; t a r g e t R e f : = r . r e f . oclAsType (SpringModel : : Component) . map toCompInstance () ; c l i e n t I n s t E l e m : = s o u r c e R e f ; s e r v e r I n s t E l e m : = t a r g e t R e f ; } mapping SpringModel : : Component : : t o A s s e m b l y C o n n e c t i o n _ l i s t (name : S t r i n g , c : SpringModel : : Component) : DedalModel : : I n s t C o n n e c t i o n { var s o u r c e : = s e l f . name ; var s o u r c e R e f : CompInstance ; _ p r o p e r t y : = " s e t : " +s o u r c e . r e p l a c e A l l (" \" " , " ") + " . " +name . r e p l a c e A l l (" \" " , " ") ; s o u r c e R e f : = resolveone (compInst : DedalModel : : CompInstance | compInst . name=s o u r c e) ; var t a r g e t R e f : = c . map toCompInstance () ; c l i e n t I n s t E l e m : = s o u r c e R e f ; s e r v e r I n s t E l e m : = t a r g e t R e f ; } ////

 Component : : toConfigConnection (name : S t r i n g , r : SpringModel : : R e f e r e n c e) : DedalModel : : ClassConnection { var s o u r c e : = s e l f . _ c l a s s . getComponentClassName () ; var s o u r c e R e f : CompClass ; _ p r o p e r t y : = name ; s o u r c e R e f : = resolveone (compClass : DedalModel : : CompClass | compClass . name=s o u r c e) ; var t a r g e t : = r . r e f . oclAsType (SpringModel : : Component) . name ; var t a r g e t R e f : CompClass ; t a r g e t R e f : = r . r e f . oclAsType (SpringModel : : Component) . map toCompClass () ; c l i e n t C l a s s E l e m : = s o u r c e R e f ; s e r v e r C l a s s E l e m : = t a r g e t R e f ;

 Taylor et al. denote these levels as prescriptive and descriptive architectures [TMD10]. Little work has been lead to explicit these two levels and study their relationship. However, Zhang et al. [ZUS10; ZUV10; Zha+12a; Zha+12b;

Chapter 3 State of the art Contents 2.1 Component-based software engineering .

 Summary .

	Next chapter discusses the state of the art in the fields of component-based architecture
	versioning and software re-documentation.
	2.1.1 Component-based software life-cycle
	2.1.1.1 Traditional software development processes
	2.1.1.2 Agile software development methods
	2.1.1.3 Component-based software development processes
	2.1.2

2.2 Component-based software architectures .

	2.2.1 Basic concepts in software architecture
	2.2.1.1 Components .
	2.2.1.2 Connectors .
	2.2.2 Architecture modeling .
	2.2.2.1 Architectural modeling notations
	2.2.2.2 Architecture description languages
	2.2.3 Architecture evolution .
	2.2.3.1 Software evolution .
	2.2.3.2 Architecture-centric evolution
	2.2.4 Architecture analysis .
	2.3

The Dedal architecture model .

	2.3.1 The Dedal abstract architecture specification level
	2.3.2 The Dedal concrete architecture configuration level
	2.3.3 The Dedal instantiated architecture assembly level
	2.3.4 Dedal formal rules .
	2.4

Motivations for re-documenting and versioning architectures 2.5 Conclusion .

	suitable for versioning component-based software architectures. This study identifies limits
	of existing approaches in order to help us defining a new approach for component-based
	software architecture versioning. The second study surveys existing software evolution ap-
	proaches. It classifies those approaches in terms of versioning management capabilities and
	implementation. Finally, the third study discusses and classifies software re-documentation
	and reconstruction approaches. It describes existing approaches and points out their limits.
	This study therefore help us to define a new re-documentation approach.
	3.1
	Chapter 2 introduced the context of this thesis by presenting component-based develop-
	ment and component-based software architectures. This chapter relates to issues that con-
	cern version and documentation management of software architectures. For that reason,
	this chapter surveys existing versioning approaches in order to identify which are the most

Study on component-based software architecture versioning

	Initially, versioning activity came from the need of representing and retrieving the past states
	of a file through its evolution [EC95]. The existing literature is dense and addresses numer-
	ous issues such as difference discovery and characterization between two successive artifact
	versions. Most of the time, versioning relies on text-based mechanisms [CCL12] such as in
	very popular and used version control systems like Git [TH10] or CVS [Mor96]. In text-
	based versioning, deltas between versions are identified through basic operations on text
	in files. Text artifacts can be added to the file, they can also be deleted or modified which
	can correspond in some cases to a replacement where a text artifact is deleted and replaced
	by another one. Those text-based mechanisms are language-agnostic, which means that
	the differences that are observed do not embed any semantics. However, other approaches
	exist that come from the Software Configuration Management field. They define version
	models [CW98] that specify how versions are identified and which are the characteristics
	that are taken into account for the version identifier computation. Most of the time, ver-
	sion identifiers are n-tuples, which are meant to be human readable and give information
	about versions order. However this kind of information only provides information about
	artifact anteriority. This is why semantics must be added to this numbering especially in
	term of impact and compatibility with preexisting artifacts. This state of the art of version-
	ing approaches aims at classifying versioning approaches. To classify component versioning
	approaches, we aim at answering following questions:

.1.1 Library interface in Unix systems

	This section does not address versioning mechanisms in an exhaustive way. It focuses on to the interpretation of the developer who releases the new version. Mistakes can occur
	approaches that can fit the context of a model-driven component-based software architec-during the versioning process which can be harmful for the system.
	ture evolution. Thus, it first surveys existing component versioning approaches. Second it
	surveys model evolution and versioning approaches to identify concepts that can be applied 3.1.1.2 CORBA
	to component-based software architectures. Third it surveys component-based software ar-CORBA component model is based on the Interface Description Language (IDL). Compo-chitecture versioning approaches. Finally, it discusses the surveyed approaches to identify nents are specified in IDL and their descriptions are mapped into a target programming their strength and limits. language [OMG+02]. The change impact mechanism inherent to CORBA makes any change
	in a component visible into its IDL specification. However, CORBA does not embed any 3.1.1 Versioning components mechanism for managing component evolution and components cannot be enhanced by
	Initially, version control mechanisms were introduced in component-based software devel-version information. Actually it is possible to define several versions of a component but
	opment in order to avoid recompiling unchanged components. This early change detection they are actually separated by an explicit naming convention (version number is suffixed to
	was supported by fingerprinting mechanisms such as discussed by Crelier [Cre94]. How-the component type identifier). It means that a new version of a component is considered
	ever this technique only makes it possible to provide the vague information that a change as a completely new component. This implies that all the components which depend on the
	occurred without providing any other information. There exist several software component-old version must be rebuilt to use the new version.
	based version management approaches which have been widely used over the decades. This
	subsection focuses on their main characteristics. The outline of this subsection is inspired
	by Stuckenholz et al.'s [Stu05] work.
	3.1In the late 80's Sun Microsystems SunOS added dynamic shared libraries to Unix [Lev99].
	This lead Sun to set up versioning mechanisms to support the evolution of the dynamic
	libraries. In this first versioning system, library versions were identified by two version
	digits (X.Y) for characterizing major (X) and minor (Y) releases. The semantics behind are
	as follows :
	• major version number is incremented if the new version breaks backward compatibil-
	ity
	• minor version number is incremented if the new component compatibility is pre-
	served.
	These mechanisms enable the link editor to choose among the available versions, the latest
	compatible component to use being the component with the same major version number
	and the highest minor number as possible [Gin+87]. However, this mechanism could not
	ensure that the new version of the component would run on an earlier minor release level
	such as presented by Brown et al. [BR00b]. Thus Sun refined their versioning mechanism into
	an ELF-based binary format that contains libraries and executables. This new mechanism
	relies on the decoration of shared library symbols such as methods. Decorated symbols
	are then considered as required by the new version, thus the linker can dynamically search
	into libraries and more reliably identify compatible components. This mechanism makes it
	possible for Unix systems to maintain the parallel existence of multiple component versions.
	However, as the information about library version is not automatically attached it is subject

.1.6 McCamant and Ernst approach

	avoided but it is impossible for clients to discover new component features without rebuild-variables -but an operational abstraction describes actual program behavior and can be
	ing them [Rog97]. With the upcoming of the .NET framework, Microsoft introduced the idea generated automatically."[ME04] By comparing the operational abstraction of old and new
	of assemblies which can be versioned. The version identifier is a four-digit number that is component versions, it is possible to automatically detect incompatibilities during the up-
	manually set by the developer. There exist two types of assemblies. Private assemblies only grade of a component and thus formally drive the evolution process of deployed component
	have a limited scope to isolated applications, and shared assemblies can be deployed to the versions. However, this approach only addresses behavioral changes and do not address the
	Global Assembly Cache (GAC) to be shared by all the system applications [Low05]. Shared source code change.
		assemblies are identified by a strong name which corresponds to a unique identifier of the
	3.1	assembly. Thus multiple versions of shared assemblies can coexist, however there is no de-
		fault mechanism for checking assemblies compatibility at runtime. Yet, approaches such as
		the one developed by Eisenbach et al. [EJS03] make it possible to check inconsistencies into
		assemblies, specifically when a component is upgraded. However, every component change
		mechanism relies on developers which can still lead to mistakes.
		3.1.1.5 Java
		Component-based technologies JavaBeans [Javb; Eng97] and Enterprise Java Beans (EJB)
		[Sha+01; RSB04; BMH06; MH97] are based on the Java language. As Java provides reflec-
		tion mechanisms in its concepts, it is possible to analyze components at runtime in terms
		of type and exported interfaces. The default class loader mechanism prevents the system
		from loading several component versions at the same time. However, this default behavior
		can be changed by the implementation of hierarchical class loaders. In Java, version man-
		agement has been introduced to handle object serialization. The serialization mechanism
	enables object persistence and their transmission between distant applications through Re-; Pra01]. In next evolutions of Windows 98 SE and Windows ME operat-mote Method Invocation (RMI). In the context of distributed systems, where RMI mecha-ing systems, the possibility was added to better control the linkage of those DLLs through nisms are used, a compatible change is defined as a change on a class which still allows the mechanism of isolated applications. This isolation made possible to create and deploy to unserialize (using the new class version) data-streams that have been serialized from an COM components on one or more specific applications, avoiding the DLL-Hell problem. older version of the class. Using custom class loaders also allows the definition of version-However, versioning mechanisms have properly been implemented only from Windows ing policies. However, no standard rules exist to implement them which can lead to a loss XP where component versions were specified into a manifest file. Thus applications can of portability of a component to another system. Moreover, it is not mandatory to enhance dynamically load specific versions of DLL components. In order to manage versions, Mi-component description with version information and no default version policy exists. Thus crosoft chose a version identifier composed of four digits X.Y.Z.R where X is incremented users have to analyze the components they want to use. However, Java does not provide any for major releases that break backward compatibility, Y for identifying minor versions and, mechanism for automatically calculating the type of changes that occurred in components. despite DLL versions are linked with X and Y , the two last digits correspond to Z the build In addition, more recent Java releases (from 9) introduce the concept of modules. However, number and R the revision number. Those two last digits enable quick fix engineering pro-version management still relies on tooling and frameworks (i.e., OSGi) instead of internal cesses for a faster bug resolution [Bey01]. However, those labels are still attached manually which means that they are dependent of developer's assumptions. Java mechanisms [MB17].
	3.1.1.4 COM / .NET 3.1In their work, McCamant and Ernst [ME04] focus on semantic changes in components and COM and .NET components have been introduced by Microsoft. COM component model their impacts on what they call their operational abstraction. They define the term of opera-came first and in order to avoid DLL-Hell problems discussed in 3.1.1.3, Microsoft pol-tional abstraction as follows: "An operational abstraction is a set of mathematical properties icy was to forbid changes in existing components. Thus a COM component interface is describing the observed behavior. An operational abstraction is syntactically identical to a given an unique identifier and instead of performing changes in the interface, a new inter-face needs to be created which is given a new interface identifier. This way, DLL-Hell is formal specification -both describe program behavior via logical formulas over program

.1.7 Brada and Bauml approach

	Premsyl Brada's approach is based on the Architecture Description Language (ADL) named
	SOFA [PBJ98] which is discussed in 3.2.7. In his work [Bra99; Bra01a; Bra01b], he designed
	a scheme for automatically identifying component version backward compatibility thanks
	to automated tests using ELF-based component descriptions. The rules on which are based
	compatibility or incompatibility calculations are directly derived from type theory and sub-
	typing rules. Thus, as he formalized component version compatibility, the automated ver-
	sion identification which is made after is much more reliable than manual approaches. Fi-
	nally in further work (out of the SOFA approach) on automated versioning he defines first
	with Valenta [BV06] and after with Bauml [BB09; BB11] an automated versioning approach
	applied to OSGi world. In this work, authors question the reliability of component version
	identifiers and then define a pattern for characterizing and identifying component version
	and automatically assign them version numbers. Type analysis is the basis of version iden-
	tification as in SOFA. They reuse the common version numbering X.Y.Z and define strict
	rules for incrementing those numbers by analyzing type differences. If no type difference
	has been found then Z is incremented since the new type is compatible with the previous
	one. If the new type is a specialization of the old one, thus the change is compatible with
	the old version and Y is incremented. Finally, in case where the new type is a generalization
	or a mutation (e.g., it is not comparable anymore to the ancient type) then it means that the
	new version is no more compatible with the old one and then X is incremented. This way,
	component version numbers are set automatically which ensures strong understanding of
	component version differences by developers that use and deploy them. This automated
	version identification is also useful for component upgrading at runtime for ensuring soft-
	ware consistency.

 Table3.1 summarizes the surveyed component versioning approaches. It appears that many works have already addressed the versioning of components and especially in the context of libraries that can be dynamically linked and used by third party applications which require them. Making applications use the last compatible component versions has been addressed in several ways. Those approaches sometimes failed at enabling several component versions to coexist. When approaches succeeded to manage multiple component versions, a naming convention is designed to help developers and automated processes to choose among versions for the last compatible one. To do so, a common template based on digit tuples is meant to carry information about the type of component versions. Nowadays, the most used naming pattern is described in the Seman-

tic Versioning 2.0.0 4 approach and is very similar to what is proposed by Brada Valenta and Bauml [BV06; BB09; BB11]. It consists in identifying any versionable artifact with a triple X.Y.Z where X represents the major release number that is incremented when the new version of the artifact is not backward compatible. Y is the minor release number. It is incremented when the new version is backward compatible. Finally Z is the build number that

Table 3

 3 In order to fill the gap, this thesis proposes component versioning mechanisms inspired by Brada et al. by identifying component backward compatibility from types and automatically increment their version identifiers following type differences. Moreover, this thesis proposes to extend such mechanisms to version entire architectures. Finally, it proposes to version multi-leveled software architectures by performing a change impact analysis to ensure the global architecture definition consistency.

	approach	backward compatibility check version propagation
	SOFA 2	X	-
	MAE / XADL -	-
	Amirat et al.	-	-
		TABLE 3.2: Architecture versioning approaches

.2 summarizes approaches that address the concept of architecture versioning. Surprisingly, the field of component-based software architectures does not address component and architecture versioning in a very extensive way. The only approach which truly addresses component versioning is the one developed by Brada et al. [Bra99; Bra01a; Bra01b; Bra03; BV06; BB09; BB11], based of the SOFA ADL [PBJ98]. However, despite the concept of component version is very well developed, the approach does neither mention the versioning of architecture themselves nor mechanisms of version propagation within the SOFA architecture abstraction levels. It appears that component-based software architecture field lacks semantics in component and architecture versioning. Within missing concepts, we identified no existing semantics for versioning CBSAs and thus, that version propagation is not addressed in CBSA field.

TABLE 3

 3

.3: Software evolution approaches: versioning integration 3.

3 Retrieving architecture documentation and software maintain- ability

	Architectures are a great way for representing software at a high-level of abstraction. Fol-
	lowing Garlan [Gar00] software architectures are important in several software develop-
	ment aspects. They emphasize understanding, reuse, construction, evolution, analysis and
	management of software. However, in many cases this abstract documentation either does
	not exist, has been lost (the existing architecture is no more compliant with the actual one)
	or its quality is very poor [SAO05]. The maintainability of software is then threatened and
	it is necessary to retrieve this documentation in order to recover a suitable evolution and
	maintainability context. In literature, two types of approaches exist. First of all strict re-
	documentation approaches that aim at only recovering software documentation as it is (Sec-

tion 3.3.1). As defined by Chikofsky et al.

[START_REF] Chikofsky | Reverse engineering and design recovery: A taxonomy[END_REF]

, "redocumentation is the creation or revision of a semantically equivalent representation within the same relative abstraction level".

TABLE 3

 3 , it is thus fully adapted for adding semantics into versioning process. Finally, has it is implemented into the Eclipse ecosystem: it is a strong base for implementing our approach. On the versioning side, we chose to adapt Brada and Bauml approach to our component-based architectures since they proposed a formal way to version components and automatically increment their version identifiers. .2.4 ArchWare . 3.2.5 xADL . 3.2.6 Mae . 3.2.7 SOFA 2.0 .

	.4: Existing software architecture reconstruction approaches	
	approach	process	paradigm	technique retro-engineering re-engineering inputs		outputs
	ARES [Eix+98]	bottom-up procedural	-	x	-	source-code,	visualization, de-
							expertise		scription, analy-
									sis
	Tran et al. [TH99]	hybrid	procedural quasi-auto	-	x	source-code,	visualization,
							expertise		vertical confor-
									mance
	X-Ray [MK01]	hybrid	procedural,	auto	x	-	source-code,	visualization, de-
			dis-				expertise		scription
			tributed					
	MAP [SO01]	hybrid	procedural manual	x	-	source-code,	visualization
							expertise, style
	Alborz [Sar03]	hybrid	procedural	auto	x	-	source-code,	visualization,
							dynamic,	ex-	analysis
							pertise	
	Focus [DM01; MJ06]	hybrid	object-	manual	-	x	source-code,	visualization
			oriented				expertise, style
	Bauhaus [Kos02; EKS03; CKS05]	hybrid	object-	auto	-	x	source-code,	visualization,
			oriented				dynamic,	ex-	vertical confor-
							pertise		mance
	DiscoTect [Yan+04]	hybrid	object-	quasi-auto	x	-	source-code,	visualization, de-
			oriented				dynamic,	ex-	scription, verti-
							pertise, style	cal & horizon-
									tal conformance,
									analysis
	ArchVis [Hat04]	bottom-up object-	auto	x	-	source-code,	visualization, de-
			oriented				textual,	dy-	scription
							namic,	phys-
							ical,	style,
							viewpoint	
	Pashov et al. [PR04]	hybrid	procedural,	auto	-	x	source-code,	visualization
			object-				dynamic,	ex-
			oriented				pertise, style
	PuLSE / SAVE [Kno+06]	top-down procedural,	quasi-auto	-	x	source-code,	visualization,
			object-				expertise, view-	vertical confor-
			oriented				point		mance, analysis
	Huang et al. [HMY06]	hybrid	object-	auto	x	-	source-code,	description,
			oriented				dynamic, style	horizontal
									conformance,
									analysis
	ROMANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17] hybrid	object-	auto	-	x	source-code	visualization,
			oriented						description,
									horizontal
									conformance,
									analysis
	3.4 Conclusion							
	State of the art shows that versioning management and software re-documentation still lack
	concepts and techniques in the field of CBSE. Conceptual lacks concern the explicitation
	of precise semantics in component and architecture versioning. Moreover, existing archi-
	tecture evolution approaches do not provide version mechanisms for propagating version-
	ing between all the descriptions produced during the software life-cycle (i.e., specification,
	implementation, deployment, components at each level). Another conceptual lack is the

absence of approaches which re-document software as it is implemented. Moreover, none provides support to re-document all the software life-cycle. On the other hand, technical lacks concern the implementation of such approaches. Dedal ADL documents software lifecycle as component-based software architectures. Moreover, as it has been formalized with the B languageContents 3.1 Study on component-based software architecture versioning 3.1.1 Versioning components . 3.1.1.1 Library interface in Unix systems 3.1.1.2 CORBA . 3.1.1.3 Windows Dynamic Link Libraries (DLL) 3.1.1.4 COM / .NET . 3.1.1.5 Java . 3.1.1.6 McCamant and Ernst approach 3.1.1.7 Brada and Bauml approach 3.1.2 Model evolution and versioning . 3.1.2.1 Versioning models .

3.1.2.2 Models and metamodels co-evolution and version

propagation . 3.1.3 Versioning component-based software architectures 3.1.4 Discussion . 3.2 Architecture evolution approaches . 3.2.1 C2 / C2-SADEL . 3.2.2 Darwin . 3.2.3 Wright / Dynamic Wright . 33.2.8 Synthesis and comparison . 3.3 Retrieving architecture documentation and software maintainability . . . 3.3.1 Software re-documentation approaches 3.3.2 Software architecture reconstruction approaches 3.4 Conclusion . 44

 <?xml version="1.0" encoding="UTF-8" standalone=no ?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 3), it means that both HomeOrchestrator and SecurityManager classes have a relation to the AlarmClock class or one of its super types, in this example they are respectively linked to Clock and Alarm through their respective clock and alarm properties. Moreover, those types are both substitutable by AlarmClock.

Then, in the case software re-documentation is performed choosing the first option, which only represents biggest provided interfaces, the connections can be set directly from required interface to a single Interface of type IAlarmClock such as proposed in Figure

4

.16a.

Required interfaces are derived from the component class type hierarchy, for instance as Se-curityManager has an association to Alarm, securityManager1 requires an Interface which type derives from the Alarm class. Finally, as it has been discussed in previous part, if an architect decides to expose every component Interface, then candidates interfaces are explored for connecting the required interface to the most generic provided interface such as proposed in Figure

 next step of the Specification reconstruction consists in determining among all potential

	6:	return {MAPCOMPONENTROLE(class)}
	7:	end if
	8:	
	10:	result ← result MAPCOMPONENTROLES(
		SPLITCONTRACT(superT ype, contract), superT ype)
	11:	end for
	12:	if SATISFYCONTRACT(roles, contract) then
	13:	return result
	14:	else
	15:	return {MAPCOMPONENTROLE(class)}
	16:	end if
	17:	component roles for each component class in the configuration which ones are realized (or return result
	not) by the component class. A component role or a set of component roles is realized by 18: end function
		a component class if and only if all its required interfaces are preserved as well as all its
		provided interfaces which are involved into connections with other components.
		Algorithm 2 introduces the mapping and identification of component roles. In order to ex-

tract component roles from a component class, the type hierarchy of the component class is traversed and a role is mapped for each of these types. Then, at each type hierarchy level and for each potential component role, a "contract" is calculated. A "contract" is composed of Algorithm 2 Mapping Component Roles Ensure: 1: ∀ role ∈ result((∀ interf ace ∈ role.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name))))) 2: ∀ reqInterf aceT ype ∈ contract.f irst(∃ role ∈ result, role.getAllRequiredT ypes().contains(reqInterf aceT ype)) 3: ∀ provInterf aceT ype ∈ contract.second(∃ role ∈ result, role.getAllP rovidedT ypes().contains(provInterf aceT ype)) 4: function MAPCOMPONENTROLES(contract : P air(Set(Interf aceT ype), Set(Interf aceT ype)), class : Class) : Set(ComponentRole) 5: if ¬class.hasSuperType() then result : Set(ComponentRole) 9:

for all superT ype ∈ class.superT ypes do

 This is why those options get rid of unconnected provided Interfaces. Figure4.23b introduces the case where all component roles must be as abstract as possible, thus types from source code are not reused as they are to define component roles (e.g., Clock that becomes Clock role). Finally,

	Figure 4.23c introduces the inbetween representation which states that if the most abstract
	type for describing a component role exists in the code then it must be used as component
	role, however if it does not exist then it is calculated as it is done in Figure 4.23b. However,
	in this final representation, if the most abstract component corresponds to a concrete type,
	then it cannot be kept as is, in order to avoid type confusion with component classes from
	the Configuration.

4.23c

) consider that, as component roles are meant to be the most abstract component types, it is not always possible to find them into the source code so they describe the essential of the Specification.

 ∀ s ∈ {specif ication.componentRoles, specif ication.roleConnections}, s = ∅ 2: ∀ s ∈ {classes, assembly.componentInstances, assembly.instanceConnections, conf iguration.componentClasses, conf iguration.conf igConnections}, s = ∅ 3: ∀ compInst ∈ assembly.componentInstances, compInst.compInterf aces = ∅ 4: ∀ compCl ∈ conf iguration.componentClasses, (compCl.compInterf aces = ∅) : ∀ compClass ∈ conf iguration.compClasses, (compClass.realizes = ∅) ∧(∀ role ∈ compClass.realizes, (compClass role) 10: ∀ role ∈ specif ication.specComponents((∀ interf ace ∈ role.componentInterf aces(∃ class ∈ classes(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name

	Algorithm 3 Main re-documentation algorithm 11: procedure MAPARCHITECTURELEVELS(assembly : Assembly,
	12: 13: 14:	conf iguration : Conf iguration, specif ication : Specif ication, classes : Set(Class)) MAPCOMPONENTINSTANCES(classes, assembly.assmComponents) Require: MAPASSEMBLYCONNECTIONS(classes, assembly.assemblyConnections) MAPCOMPONENTCLASSES(classes, assembly.assmComponents, 1: ∧ (compCl.attributes = ∅) conf iguration.conf igComponents)
	15: 16:	MAPCONFIGCONNECTIONS(classes, conf iguration.conf igConnections 5: ∀ compInst ∈ assembly.componentInstances, (conf iguration.componentClasses = i assembly.assemblyConnections) /* identified during M2M transformation */ compInst i .instantiates) specif ication.componentRoles ← BUILDCOMPONENTROLES(6: ∀ ac ∈ assembly.assemblyConnections, (∃ cc ∈ conf iguration.conf igConnections | classes, conf iguration.componentClasses,
		ac.clientElem.instantitates = cc.clientElem conf iguration.conf igConnections)
	17:	∧ ac.serverElem.instantitates = cc.serverElem) specif ication.specConnections ← MAPSPECCONNECTIONS(Ensure: conf iguration.conf igConnections)
	18: end procedure

7: ∀ compInstance ∈ assembly.compInstances((∀ instanceConnection ∈ instanceConnections, instanceConnection.serverInterf ace instanceConnection.clientInterf ace)) (∀ interf ace ∈ compInstance.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ class ∈ classes(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name))))))) 8: ∀ compClass ∈ conf iguration.compClasses((∀ interf ace ∈ compClass.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ class ∈ classes(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))))) (∀ attribute ∈ compClass.attributes(∃ class ∈ classes(∃ attr ∈ class.attributes, attribute.type = attr.type attribute.name = attr.name))) 9(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))))) (∃ c ∈ classes | ∀ interf ace ∈ role.componentInterf aces, interf ace.signatures ⊆ c.methods))

 Int type new Int type old Interface Type replacement: (Int type new Int type old) (Int type new Int type old) Required Interface Interface Type replacement: Int type new Int type old Interface Type replacement: (Int type new Int type old) (Int type new Int type old) Component Attribute replacement: attr new attr old (Int serv-new Int serv-old) (Int client-old Int client-new) Connection replacement: (Int serv-new Int serv-old) (Int client-old Int client-new)

		Substitutable	Non-substitutable
		Interface signatures
		Parameter replacement:	Parameter replacement:
		param new param old	(param new param old)
			(param new param old)
		Parameter deletion	Parameter addition
		Interface type
		Signature replacement:	Signature replacement:
		sig new sig old	(sig new sig old))
			(sig new sig old)
		Signature addition	Signature deletion
		Provided Interface
		Interface Type replacement:	
	Component		
	changes		
			Attribute replacement:
			(attr new attr old)
			(attr new attr old)
		Attribute addition	Attribute deletion
		Provided Interface addition	Provided interface deletion
		Provided Interface replacement:	Provided interface replacement:
		Int new Int old	(Int new	Int old) (Int new
			Int old)
		Required interface deletion	required interface addition
		Required interface replacement:	required interface replacement:
		Int new Int old	(Int new	Int old) (Int new
			Int old)
		Architecture description level
		component replacement :	component replacement:
		component new component old	(component new component old)
			(component new
			component old)
	Architecture	Component addition	Component deletion
	level	Connection replacement:	
	changes		
		Connection addition	Connection deletion
		Global Architecture
		Assembly replacement:	Assembly replacement:
		asm new asm old	asm new asm old
	Configuration replacement: (conf ig Global Ar-chitecture	
	changes		
		Specification replacement:	
		(spec	

new conf ig old) (conf ig new asm) Configuration replacement : ¬[(conf ig new conf ig old) (conf ig new asm)] new spec old) (spec new conf ig) Specification replacement : ¬[(spec new spec old) (spec new conf ig)]

TABLE 5

 5

.1: Substitutability-based architectural changes Chapter 5. Versioning component-based software architectures

Table 5

 5

.2a summarizes the effects of role replacement on the architecture. Let us suppose that role R 1 is replaced by a new version R 1 which provides a functionality f () : Y . Several outcomes can be observed:

TABLE 5

 5

	.2: Replacing Components: Providing a Functionality

TABLE 5

 5

.3: Replacing Components: Requiring a Functionality

 https://www.eclipse.org/modeling/gmp/ [Last seen 2019-09-05] 5 https://www.eclipse.org/Xtext/ [Last seen 2019-09-05] 6 https://projects.eclipse.org/projects/modeling.mmt.qvt-oml [Last seen 2019-09-05] 7 https://www.omg.org/spec/QVT/ [Last seen 2019-09-05] 8 https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html [Last seen 2019-09-05]

	1 https://www.eclipse.org/ [Last seen 2019-09-05]
	2 https://www.eclipse.org/emf/ [Last seen 2019-09-05]
	3 https://www.eclipse.org/sirius/ [Last seen 2019-09-05]

4

Is the new architecture version subject to erosion?

 Typically, it is possible to identify a situation that could indicate software erosion when: * The new version is denoted as substitutable by the new version tag. * The new version is actually given as not substitutable by difference analysis. * The new version derives from at least one artifact deletion which breaks the architecture substitutability.

	-Is the new architecture subject to drift? It is possible to identify a situation that
	could indicate software drift when:
	* The new version only has incremented < build > number (or has changed
	version tag suffix) but the analysis reveals that a < minor > increment would
	have been more accurate. It means that developers did not intend to change
	the structure of the software while they actually changed it in a substitutable
	way.
	* Otherwise it can also be the case if architecture substitutability is not pre-
	served (wrong version increment and substitutability loss) and if no deletion
	is observed.

 To improve the version management, it is important to implement single component histories management in future work. Then the management of those histories needs to be integrated into IDEs for easing reuse. The presented experimentation shows that it is possible to re-document large enterprise software and help to manage better versioning by automating the process. Indeed, this approach proves that it is suitable for re-documenting more than 200 versions of BroadleafCommerce framework which is a large enterprise open-source project. It is also suitable to characterize them in terms of substitutability in order to propose better version tags that are more consistent with their actual state. Thus by re-documenting and versioning architectures, it also shows that it is possible to support long time evolution thanks to the three Dedal architecture levels. Moreover, as it is discussed in this chapter, all the re-documented architectures have more abstract Specifications which is good for improving the reuse of software components and architectures as well as managing their evolution. This answers research question RQ3: such re-documenting and / or versioning approaches are suitable for large software systems. Finally, the fact that drift and erosion situations can be observed from this experimentation directly answers reserach question RQ4: it is possible to identify drift and / or erosion situations by re-documenting and analyzing software versions.

	Chapter 7
	Conclusion and Perspectives

Contents 6.1 Implementation of re-documentation and versioning approaches 98 6.1.1 Overview of DedalStudio . 98 6.1.2 Implementation of the re-documentation module 99 6.1.2.1 Preparing re-documentation 100 6.1.2.2 Re-documentation . 102 6.2 Implementation of architecture versioning 104 6.3 Experimentation and evaluation . 106 6.3.1 Case study: Broadleaf Commerce . 107 6.3.2 Experimentation . 107 6.3.2.1 Re-documenting BroadleafCommerce history 108 6.3.2.2 Characterizing BroadleafCommerce versions 109 6.3.2.3 Threats to validity . 112 6.3.2.4 Discussion . 113 6.4 Conclusion . 113

 /// mapping SpringModel : :

			//
	//	ConfigConnection	//
	///		

//

 ∀ compInstance ∈ compInstances((∀ instanceConnection ∈ instanceConnections, instanceConnection.serverInterf ace instanceConnection.clientInterf ace)) (∀ interf ace ∈ compInstance.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ class ∈ classes(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name))))))) ∀ compClass ∈ compClasses((∀ interf ace ∈ compClass.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ class ∈ classes(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))))) (∀ attribute ∈ compClass.attributes(∃ class ∈ classes(∃ attr ∈ class.attributes, attribute.type = attr.type attribute.name = attr.name))) ∃ classConnection ∈ classConnections, instanceConnection.client.instantiates.contains(classConnection.client) instanceConnection.server.instantiates.contains(classConnection.sever) instanceConnection.clientInterf ace.type classConnection.clientInterf ace.type instanceConnection.serverInterf ace.type classConnection.serverInterf ace.type classConnection.serverInterf ace.type classConnection.clientInterf ace.type) ∀ interf ace ∈ result.componentInterf aces(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))) Set(ClassConnection)):P air(Set(Interf aceT ype), Set(Interf aceT ype)) requiredInterf aceT ypes ← componentClass.interf aces.getAllRequiredT ypes() ∀ interf aceT ype ∈ result.f irst(∃ interf ace ∈MAPINTERFACES(class, null) , interf aceT ype = interf ace.interf aceT ype) 3: ∀ interf aceT ype ∈ result.second(∃ interf ace ∈MAPINTERFACES(class, null) , interf aceT ype = interf ace.interf aceT ype) 4: function SPLITCONTRACT(class : Class, initialContract : P air(Set(Interf aceT ype), Set(Interf aceT ype)) Interf ace| interf ace.direction = DIRECT ION.REQU IRED) 7: providedInterf aces ← providedInterf aces compRole.interf aces.resolveAll(interf ace : Interf ace| interf ace.direction = DIRECT ION.P ROV IDED) ∀ classConnection ∈ classConnecions(∃ roleConnection ∈ result, classConnection.client.realizes.contains(roleConnection.client) classConnection.server.realizes.contains(roleConnection.sever) classConnection.clientInterf ace.type roleConnection.clientInterf ace.type classConnection.serverInterf ace.type roleConnection.serverInterf ace.type roleConnection.serverInterf ace.type roleConnection.clientInterf ace.type) 2: function MAPSPECCONNECTIONS(classConnections : Set(ClassConnection)) serverInterf ace ← serverRole.interf aces.getByKind(serverInterf aceT ype) 15: clientInterf ace ← clientRole.interf aces.getByT ype(clientInterf aceT ype) ∀ interf ace ∈ result(∀ signature ∈ interf ace.interf aceT ype.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))) 2: function MAPINTERFACES(class : Class, direction : DIRECT ION) ∀ signature ∈ result.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name)))

	Ensure:
	1: instanceConnection.serverInterf ace instanceConnection.clientInterf ace
	Algorithm 2 Re-Documenting Assembly Ensure: Algorithm 5 Mapping interfaces 1: procedure MAPINSTANCECONNECTION(classes : Set(Class), Ensure: Ensure: instanceConnection : InstanceConnection) 2: server ← instanceConnection.server 3: client ← instanceConnection.client 4: injectedAttributeT ype ← instanceConnection.injectedAttribute.type 5: class ← classes.getByN ame(injectedAttributeT ype.name) 6: requiredInterf aceT ype ← MAPINTERFACETYPE(class) 7: instanceConnection.serverInterf ace ← server.interf aces.getByKind(requiredInterf aceT ype) // it may also be a subtype 8: classConnection.clientInterf ace ← client.interf aces.getByT ype(requiredInterf aceT ype) 9: end procedure Algorithm 3 Re-Documenting Configuration Ensure: Ensure: 1: result.type = attribute.type 2: result.name = attribute.name 3: function MAPATTRIBUTE(attribute : Attribute) 4: result : DedalAttribute 5: result.type ← attribute.type 6: result.name ← attribute.name 7: return result 8: end function 1: 3: result : ComponentRole 4: result.interf aces ← MAPINTERFACES(class, DIRECT ION.P ROV IDED) Ensure: 1: result ⊆ initialContract 2: 5: compRole : ComponentRole 6: compRole ← MAPCOMPONENTROLE(class) Ensure: 1: 3: result : Set(RoleConnection) 4: for all classConnection ∈ classConnections do 5: result ← result MAPROLECONNECTION(classConnection) 6: end for 1: 3: result : Set(Interf ace) 4: result ← {MAPINTERFACE(class, direction)} 5: for all super ∈ class.superT ypes do 6: result ← result MAPINTERFACES(super, direction) 7: end for 8: return result 9: end function 1: 9: end if 10: end for 11: end for 12: end procedure Ensure: 1: ∀ instanceConnection ∈ instanceConnections, instanceConnection.serverInterf ace instanceConnection.clientInterf ace 3: for all instanceConnection ∈ instanceConnections do 4: MAPINSTANCECONNECTION(classes, instanceConnection) 5: end for 6: end procedure Ensure: 8: end if 9: end for 10: end procedure Ensure: 7: return result 8: end function Ensure: Ensure: 6: result.interf aceT ype ← MAPINTERFACETYPE(class) 7: return result 8: end function 1: 8: newInterf ace ← copy(interf ace) 9: compClass.interf aces ← compClass.interf aces newInterf ace 10: interf ace.instantiates getsnewInterf ace 11: end for 12: 12: 10: serverRoles ← classConnection.server.realizes Ensure: classConnection ← conf igConnections.f indByAttributeN ame(instConnection.injectedAttribute) 13: classConnection.clientInterf ace ← classConnection.client.f indInterf ace(instConnection.clientInterf ace) 14: classConnection.serverInterf ace ← classConnection.client.f indInterf ace(serverConnection.clientInterf ace) 15: end for 4: 5: for all classConnection ∈ classConnections do 6: if classConnection.serverInterf ace ∈ compClass.interf aces then 7: connectedP rovidedInterf aceT ypes ← connectedP rovidedInterf aceT ypes classConnection.serverInterf ace.interf acetype 8: end for 9: return (contract.f irst ⊆ requiredInterf aces) 11: clientRoles ← classConnection.client.realizes 12: serverRole ← serverRoles.f indRoleByInterf aceT ype(serverInterf aceT ype)) 13: clientRole ← clientRoles.f indRoleByInterf aceT ype(clientInterf aceT ype)) 14: 16: result.server ← serverRole 17: result.serverInterf ace ← serverInterf ace 1: 3: result : Interf aceT ype 16: end procedure 8: end if ∧(contract.second ⊆ providedInterf aces) 18: result.client ← clientRole 4: result.name ← "I" + class.name + " type" for all attribute ∈ class.attributes do 13: 9: end for 10: end function 19: result.clientInterf ace ← clientInterf ace 5: for all m ∈ class.methods do compClass.attributes ← compClass.attributes MAPATTRIBUTE(attribute) 14: 10: return (requiredInterf aceT ypes, 20: return result 6: result.signatures ← result.signatures MAPSIGNATURE(m) connectedP rovidedInterf acetypes) 21: end function 7: end for end for 15: end if 11: end function 8:
	16:	end for
	17: end procedure

2: procedure MAPCOMPONENTINSTANCES(classes : Set(Class), compInstances : Set(CompInstance))

3:

for all compInstance ∈ compInstances do 4:

class ← classes.getByN ame(compInst.instantiates.name) 5: compInstance.interf aces ← MAPINTERFACES(class, DIRECT ION.P ROV IDED) 6: for all attribute ∈ class.attributes do 7: if ¬attribute.type.isP rimitive() then 8: compInstance.interf aces ← compInstance.interf aces MAPINTERFACES(attribute.type, DIRECT ION.REQU IRED) 2: procedure MAPASSEMBLYCONNECTIONS(classes : Set(Class), instanceConnections : Set(InstConnection)) 2: procedure MAPCOMPONENTCLASSES(classes : Set(Class), compInstances : Set(CompInstance), compClasses : Set(ComponentClass)) 3: class ← classes.getByN ame(compInst.instantiates.name) 4: for all compInstance ∈ compInstances do 5: compClass ← compInstance.instantiates 6: if compClass.interf aces = ∅ then 7: for all interf ace ∈ compInstance.interf aces do 9: ∀ instanceConnection ∈ instConnecions(10: procedure MAPCONFIGCONNECTIONS(classes : Set(Class), conf igConnections : Set(ClassConnection) instConnections : Set(InstanceConnection)) 11: for all instConnection ∈ instConnections do 2: procedure MAPCOMPONENTROLE(class : Class) : ComponentRole 5: for all attribute ∈ class.attributes do 6: if ¬attribute.type.ISPRIMITIVE() then 7: result.interf aces ← MAPINTERFACE(attribute.type, DIRECT ION.REQU IRED) 1: ∀ interf aceT ype ∈ result.f irst(∃ interf ace ∈ compClass, interf aceT ype = interf ace.interf aceT ype) 2: ∀ interf aceT ype ∈ result.second((∃ interf ace ∈ compClass, interf aceT ype = interf ace.interf aceT ype) (∃ classConnection ∈ classConnections, classConnection.serverInterf ace.interf aceT ype = interf aceT ype)) 3: function COMPUTECONTRACT(compClass : ComponentClass, classConnections : 7: requiredInterf aceT ypes ← compRole.interf aces.getAllRequiredT ypes() 8: providedInterf aceT ypes ← compRole.interf aces.getAllP rovidedT ypes() 9: return ((initialContract.f irst requiredInterf aceT ypes), (initialContract.second providedInterf aceT ypes)) 10: end function Ensure: 1: result = true ⇒ (contract.f irst ⊆ requiredInterf aces) ∧(contract.second ⊆ providedInterf aces) 2: function SATISFYCONTRACT(compRoles : Set(ComponentRoles), contract : P air(Set(Interf aceT ype), Set(Interf aceT ype)):Boolean 3: requiredInterf aces : Set(Interf ace) 4: providedInterf aces : Set(Interf ace) 5: for all compRole ∈ compRoles do 6: requiredInterf aces ← requiredInterf aces compRole.interf aces.resolveAll(interf ace : 1: classConnection.client.realizes.contains(result.client) 2: classConnection.server.realizes.contains(result.sever) 3: classConnection.clientInterf ace.type result.clientInterf ace.type 4: classConnection.serverInterf ace.type result.serverInterf ace.type 5: result.serverInterf ace.type result.clientInterf ace.type 6: function MAPROLECONNECTION(classConnection : ClassConnection) 7: result : RoleConnection 8: serverInterf aceT ype ← classConnection.serverInterf ace.type 9: clientInterf aceT ype ← classConnection.clientInterf ace.type 1: ∀ signature ∈ result.interf aceT ype.signatures(∃ method ∈ class.methods, signature.type = method.type signature.name = method.name (∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters, parameter.type = p.type parameter.name = p.name))) 2: function MAPINTERFACE(class : Class, direction : DIRECT ION) 3: result : Interf ace 4: result.direction ← direction 5: result.name ← "I" + class.name 2: function MAPINTERFACETYPE(class : Class)

http://www.github.com/DedalArmy

http://www.dev.lgi2p.mines-ales.fr/ariane/

https://www.eclipse.org/emf/ [Last seen 2019-09-05]

https://www.agilealliance.org/agile101/the-agile-manifesto/ [Last seen

2019-08-31]

https://www.eclipse.org

https://www.eclipse.org/emf

https://www.omg.org/mof/

https://semver.org/

http://www.uml.org/ [Last seen04-13-2018]

https://www.eclipse.org/Xtext/ [Last seen 04-08-2018].

https://www.eclipse.org/modeling/emf/[Last seen 04-08-2018].

https://www.eclipse.org/sirius/ [Last seen08-23-2019]

https://semver.org/#semantic-versioning-200.[last seen

2019.07.03]

https://github.com [Last seen -2019/08/29]

https://subversion.apache.org/ [Last seen -2019/08/29]

https://maven.apache.org/ [Last seen 2019-09-05]

https://semver.org/ [Last seen -2019-07-03]

https://maven.apache.org/ [Last seen

2019-09-05] 2 http://plantuml.com/fr/ [Last seen -2019-09-26]

https://www.eclipse.org/emf/compare/ [Last seen 2019-09-05]

Remerciements

DedalStudio https://github.com/DedalArmy/DedalStudio Dedal https://github.com/DedalArmy/Dedal SpringDSL https://github.com/DedalArmy/SpringDSL Re-Documentation module https://github.com/DedalArmy/Redoc DedalModelComparator https://github.com/DedalArmy/DedalModelComparator DiffAnalyzer https://github.com/DedalArmy/DiffAnalyzer Maven repository http://www.dev.lgi2p.mines-ales.fr/ariane/mvn Eclipse plugin sites Dedal http://www.dev.lgi2p.mines-ales.fr/ariane/p2/dedal/2019-06/ SpringDSL http://www.dev.lgi2p.mines-ales.fr/ariane/p2/springdsl/2019-06/ Re-Documentation http://www.dev.lgi2p.mines-ales.fr/ariane/p2/redoc/2019-06/

TABLE D.1: Tool release websites

Chapter 5

Versioning component-based software architectures Contents identifiers considering version semantics. However, this chapter does not addresses comprehensively all the version management issues like for instance re-engineering histories in repositories for easing reuse processes. Such mechanisms will be studied in future work. This chapter nonetheless answers research question RQ2 about how to introduce semantics in component and architecture versioning.

Next chapter introduces the implementation of our re-documentation and versioning approaches approaches and the experimentation which has been led for validating them.

Chapter 6

Case study and implementation

Contents

Appendix A XText-based Spring implementation grammar org . x t e x t . s p r i n g . SpringConfigDsl hidden (WS, ML_COMMENT) g e n e r a t e s p r i n g C o n f i g D s l " h t t p ://www. x t e x t . org/ s p r i n g /SpringConfigDsl " import " h t t p ://www. e c l i p s e . org/emf/2002/ Ecore " as e c o r e S p r i n g P r o j e c t r e t u r n s S p r i n g P r o j e c t : | u t i l C o n s t a n t s += U t i l C o n s t a n t | u t i l L i s t s += U t i l L i s t |utilMaps+= UtilMap | u t i l P r o p e r t i e s += U t i l P r o p e r t i e s | u t i l S e t s += U t i l S e t | u t i l P r o p e r t i e s P a t h += U t i l P r o p e r t y P a t h |txAdvices+=TxAdvise| t x J t a T r a n s a c t i o n M a n a g e r += TxJtaTransactionManager * scopedproxy Indicates whether proxies should be generated for detected components * usedefaultfilters Indicates whether automatic detection of classes annotated with @Component, @Repository, @Service, or @Controller should be enabled. Default is "true". ;

/ ** Attribute create by a tag * / A t t r i b u t e T a g r e t u r n s A t t r i b u t e : ; Q u a l i f i e r :

' < q u a l i f i e r ' ((' type= ' type= V a l i d S t r i n g) &(' value= ' value= V a l i d S t r i n g) ?)

((' /> ') |(' > ' (q u a l i f i e r A t t r i b u t e s += Q u a l i f i e r A t t r i b u t e) * ' </ q u a l i f i e r > '))

;

MetaTag r e t u r n s Meta : ment les numéros de versions en tenant compte de l'impact des changements. En proposant cette approche formelle, cette thèse vise à prévenir le manque de contrôle des décisions architecturale (dérive / érosion). Cette thèse s'appuie sur une étude empirique, pour valider notre approche nommée ARIANE, en appliquant les processus de re-documentation et de versionnement à de nombreuses versions d'un projet industriel extrait de GitHub.