
HAL Id: tel-02967502
https://theses.hal.science/tel-02967502

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARIANE : Automated Re-Documentation to Improve
software Architecture uNderstanding and Evolution

Alexandre Le Borgne

To cite this version:
Alexandre Le Borgne. ARIANE : Automated Re-Documentation to Improve software Architecture
uNderstanding and Evolution. Other [cs.OH]. IMT - MINES ALES - IMT - Mines Alès Ecole Mines
- Télécom, 2020. English. �NNT : 2020EMAL0001�. �tel-02967502�

https://theses.hal.science/tel-02967502
https://hal.archives-ouvertes.fr

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR

ÉCOLE NATIONALE SUPÉRIEURE DES MINES D’ALÈS (IMT MINES ALÈS)

En Informatique

I2S – Information, Structures, Systèmes

Portée par l’Université de Montpellier

Unité de recherche LGI2P

ARIANE: Automated Re-documentat ion to Improve

software Architecture uNderstanding and Evolut ion

Présentée par Alexandre LE BORGNE

Le 24 Janvier 2020

Sous la direction de David DELAHAYE

et Marianne HUCHARD

 Devant le jury composé de

Nicolas ANQUETIL, MCF HDR, INRIA, Univ. Lille

Nicole LEVY, PR, CNAM Paris

Nicolas BELLOIR, MCF, IRISA, Ecoles de St-Cyr Coëtquidan

Mourad OUSSALAH, PR, LINA, Univ. Nantes

David DELAHAYE, PR, LIRMM, Univ. Montpellier

Marianne HUCHARD, PR, LIRMM, Univ. Montpellier

Christelle URTADO, MA IMT HDR, LGI2P, IMT Mines Alès

Sylvain VAUTTIER, MA IMT HDR, LGI2P, IMT Mines Alès

Rapporteur

Rapporteur, Présidente

Examinateur

Examinateur

Co-directeur

Co-directrice

Co-encadrante

Co-encadrant

iii

“En raison d’un appel à la grève émanant de la CGT, nous ne sommes pas en mesure de diffuser
l’intégralité de nos programmes habituels. Nous vous prions de nous en excuser.”

Radio France

v

Abstract
All along its life-cycle, a software may be subject to numerous changes that may affect its
coherence with its original documentation. Moreover, despite the general agreement that
up-to-date documentation is a great help to record design decisions all along the software
life-cycle, software documentation is often outdated. Architecture models are one of the ma-
jor documentation pieces. Ensuring coherence between them and other models of the soft-
ware (including code) during software evolution (co-evolution) is a strong asset to software
quality. Additionally, understanding a software architecture is highly valuable in terms of
reuse, evolution and maintenance capabilities. For that reason, re-documenting software
becomes essential for easing the understanding of software architectures. However archi-
tectures are rarely available and many research works aim at automatically recovering soft-
ware architectures from code. Yet, most of the existing re-documenting approaches do not
perform a strict reverse-documenting process to re-document architectures "as they are im-
plemented" and perform re-engineering by clustering code into new components. Thus,
this thesis proposes a framework for re-documentating architectures as they have been de-
signed and implemented to provide a support for analyzing architectural decisions. This
re-documentation is performed from the analysis of both object-oriented code and project
deployment descriptors. The re-documentation process targets the Dedal architecture lan-
guage which is especially tailored for managing and driving software evolution. Another
highly important aspect of software documentation relates to the way concepts are ver-
sioned. Indeed, in many approaches and actual version control systems such as GitHub,
files are versioned in an agnostic manner. This way of versioning keeps track of any file
history. However, no information can be provided on the nature of the new version, and
especially regarding software backward-compatibility with previous versions. This thesis
thus proposes a formal way to version software architectures, based on the use of the Dedal
architecture description language which provides a set of formal properties. It enables to
automatically analyze versions in terms of substitutability, version propagation and pro-
poses an automatic way for incrementing version tags so that their semantics corrrespond
to actual evolution impact. By proposing such a formal approach, this thesis intends to pre-
vent software drift and erosion. This thesis also proposes an empirical study, to validate
our approach named ARIANE, based on both re-documenting and versioning processes on
numerous versions on an enterprise project taken from GitHub.

vii

Remerciements
En premier lieu je tiens à remercier Jacky Montmain, directeur du Laboratoire de Génie In-
formatique et d’ingénierie de Production (LGI2P) de l’IMT Mines Alès, de m’avoir accueilli
au sein de l’équipe. Son écoute, sa patience et son dévouement pour les doctorants du LGI2P
m’auront permis de réaliser cette thèse dans les meilleures dispositions.

Je tiens ensuite à remercier l’ensemble des membres du jury qui ont accepté d’évaluer mon
travail et qui, malgré un report impromptu de la soutenance dans un climat social tendu,
se sont mobilisés pour que je soutienne dans les meilleures conditions possibles. Je remer-
cie particulièrement Madame Nicole Lévy d’avoir présidé le jury et rapporté ma thèse. Je
remercie également Monsieur Nicolas Anquetil d’avoir lui aussi accepté de rapporter ma
thèse. De même, je remercie Monsieur Mourad Oussalah d’avoir accepté d’examiner mon
travail de thèse. Enfin je remercie Monsieur Nicolas Belloir qui, en sa qualité d’examinateur
et ancien de mes enseignants, m’aura accompagné pendant mes études d’informatique et ce
jusqu’à ma soutenance de thèse.

Je tiens à présent à remercier mon équipe encadrante qui m’a fait confiance et sans laquelle je
ne serais pas arrivé au bout de ce travail. Leurs qualités tant professionnelles qu’humaines
m’auront porté tout au long de cette thèse. Ainsi je remercie mes directeurs de thèse : Mari-
anne Huchard qui a su apporter sa sagesse dans les réunions de travail, et toujours beaucoup
de bienveillance envers ses doctorants ; David Delahaye qui, malgré ou grâce à son esprit
formel, a toujours agrémenté nos échanges d’une bonne dose d’humour. Bien sûr je remercie
particulièrement mes encadrants de proximité qui m’ont suivi de près au LGI2P : Christelle
Urtado d’avoir toujours su me motiver pendant cette thèse et dont la justesse des conseils
m’aura aidé à y voir plus clair aux moments les plus déterminants ; Sylvain Vauttier pour
les éclairages souvent techniques et théoriques qu’il m’a apporté pendant cette thèse. Aussi,
je tiens à remercier mes encadrants pour leur disponibilité et la facilité que nous avons eu à
pouvoir échanger et ainsi avancer ensemble.

Je remercie aussi l’ensemble du personnel technique et administratif du LGI2P et plus par-
ticulièrement Claude Badiou et Edith Teychené pour leur gentillesse et leur abnégation.
Je remercie aussi l’ensemble des enseignants-chercheurs, doctorants, post-doctorants et in-
génieurs avec qui j’ai toujours eu plaisir à échanger. De même je remercie l’ensemble des
stagiaires, Paul Heidmann, Guillaume André et Valentin Colas qui m’auront aidé à mener
mon projet à bien. Je tiens également à remercier mes collègues et amis : Behrang, Quentin,
Pierre-Antoine, Thibault, Emilie, Clément, Pascale, Roland, Perrine, Lucie, Frank et tous
ceux avec qui j’ai eu l’occasion de passer de bons moments, et qui ont été d’un grand sou-
tien pendant ces trois ans.

Enfin je remercie ma famille, pour son amour et son soutien indéfectible qui m’auront porté
jusque-là. Je remercie aussi plus particulièrement Cécile que j’ai le bonheur d’avoir à mes
côtés depuis le début de ma thèse – cœur avec les doigts –.

ix

Contents

Abstract v

Remerciements vii

1 Introduction 1
1.1 General context of component-based software engineering 1
1.2 Documenting and versioning component-based software architectures issues 2
1.3 Thesis proposal and contribution . 2
1.4 Outline of the thesis . 4

2 Context and motivations 5
2.1 Component-based software engineering . 5

2.1.1 Component-based software life-cycle 6
2.1.2 Summary . 9

2.2 Component-based software architectures . 10
2.2.1 Basic concepts in software architecture 10
2.2.2 Architecture modeling . 12
2.2.3 Architecture evolution . 13
2.2.4 Architecture analysis . 15

2.3 The Dedal architecture model . 16
2.3.1 The Dedal abstract architecture specification level 18
2.3.2 The Dedal concrete architecture configuration level 19
2.3.3 The Dedal instantiated architecture assembly level 19
2.3.4 Dedal formal rules . 20

2.4 Motivations for re-documenting and versioning architectures 21
2.5 Conclusion . 21

3 State of the art 23
3.1 Study on component-based software architecture versioning 24

3.1.1 Versioning components . 25
3.1.2 Model evolution and versioning . 28
3.1.3 Versioning component-based software architectures 32
3.1.4 Discussion . 33

3.2 Architecture evolution approaches . 35
3.2.1 C2 / C2-SADEL . 35

x

3.2.2 Darwin . 36
3.2.3 Wright / Dynamic Wright . 36
3.2.4 ArchWare . 36
3.2.5 xADL . 37
3.2.6 Mae . 37
3.2.7 SOFA 2.0 . 37
3.2.8 Synthesis and comparison . 38

3.3 Retrieving architecture documentation and software maintainability 40
3.3.1 Software re-documentation approaches 40
3.3.2 Software architecture reconstruction approaches 41

3.4 Conclusion . 44

4 Re-documenting component-based software architectures 47
4.1 Process overview . 48

4.1.1 Inputs . 48
4.1.2 Process . 50
4.1.3 Output . 51

4.2 Re-documenting architectures . 52
4.2.1 SpringDSL, a DSL for mapping Spring Concepts 53
4.2.2 Model to model transformation: from descriptor model to partial Dedal

architecture model . 56
4.2.3 Extracting information from the object-oriented code 57
4.2.4 Re-documenting Assembly . 58
4.2.5 Re-documenting Configuration from Assembly 63
4.2.6 Re-documenting Specification . 64

4.3 Generalization . 69
4.3.1 Discussion . 69
4.3.2 Algorithm . 70

4.4 Conclusion . 72

5 Versioning component-based software architectures 73
5.1 Semantics in versioning . 74

5.1.1 Definitions and notations . 74
5.1.2 Traditional versioning . 75
5.1.3 Problems of current version management systems 76
5.1.4 Substitutability-based versioning . 77

5.2 Identification of architectural changes, version characterization 81
5.2.1 Identifying and categorizing component-based architecture changes . 81
5.2.2 Version meta-model . 84
5.2.3 Three-leveled version meta-model . 85

5.3 Predicting version propagation . 86
5.3.1 Typology of architectural change impact 86
5.3.2 Change impact analysis . 87

xi

5.4 Example of three-leveled architecture versioning 91
5.5 Conclusion . 94

6 Case study and implementation 97
6.1 Implementation of re-documentation and versioning approaches 98

6.1.1 Overview of DedalStudio . 98
6.1.2 Implementation of the re-documentation module 99

6.2 Implementation of architecture versioning . 104
6.3 Experimentation and evaluation . 106

6.3.1 Case study: Broadleaf Commerce . 107
6.3.2 Experimentation . 107

6.4 Conclusion . 113

7 Conclusion and Perspectives 115
7.1 Contributions . 115

7.1.1 Software re-documentation contributions 116
7.1.2 Software architecture versioning contributions 116

7.2 Limitations and perspectives . 117
7.2.1 Software re-documentation perspectives 117
7.2.2 Software architecture versioning perspectives 118
7.2.3 Experimental perspectives . 118

A XText-based Spring implementation 119

B SpringToDedal QVTo transformation 139

C Re-documentation algorithm 161

D Papers and tools 173
D.1 Released tools . 173
D.2 Published papers . 173

E Résumé en français 175

Bibliography 177

xiii

List of Figures

2.1 Waterfall development model . 7
2.2 The CBSD process . 8
2.3 Benett an Rajlich process model for evolution [BR00a] 14
2.4 Reuse development process [Zha10] . 17
2.5 Component interfaces (adapted from [Som11]) 17
2.6 Dedal architecture levels for a Home Automated Software [Mok+16a] 18

4.1 Process of Component-Based Software Architecture Reconstruction 48
4.2 Home Automation Software (HAS): XML-based Spring configuration 49
4.3 HAS: UML diagram . 49
4.4 SpringDSL representation of HAS Spring deployment descriptor 50
4.5 HAS: Dedal incomplete Assembly after step 2 50
4.6 HAS: Dedal Reconstructed Architecture Levels 51
4.7 Example of bean declaration with dependency injection 51
4.8 Three-level view of reconstructed Dedal architecture 51
4.9 Structure of the re-documentation module . 52
4.10 Configuration Xtext-based implementation . 53
4.11 Component Xtext-based implementation . 54
4.12 Reference Xtext-based implementation . 54
4.13 Excerpt of the SpringDSL Metamodel . 55
4.14 Dedal Metamodel Sub-part for M2M transformation 56
4.15 Mapping SpringDSL artifacts into Dedal artifacts 57
4.16 A single provided interface is exposed . 58
4.17 All provided interface are exposed . 58
4.18 Dedal Interactions Meta-Model . 60
4.19 Mapping Dedal Interfaces from type hierarchy 62
4.20 Example of Role Hierarchy based on the HAS Example 65
4.21 Identifying realized Component Roles . 67
4.22 Connecting Component Roles . 68
4.23 HAS: Reconstructed Specification . 68

5.1 Traditional versioning . 75
5.2 Substitutability-aware versioning . 77
5.3 Multilevel component versioning . 78
5.4 Finding transitively realized roles using substitutability 79

xiv

5.5 Multilevel architecture versioning . 79
5.6 Finding transitively implemented Specifications using substitutability 80
5.7 Dedal three-leveled architecture versioning . 81
5.8 Metamodel for semantic versioning . 85
5.9 Dedal versionable artifacts . 85
5.10 Base-Case: Functionality Connection Within a Three-Level Component-Based

Architecture . 87
5.11 Propagating version at three architecture levels 91
5.12 HAS type hierarchy extract . 92
5.13 HAS components version graph . 92
5.14 HAS initial architecture . 93
5.15 HAS: component instance addition . 94
5.16 HAS: component role replacement . 95
5.17 HAS: version graph . 95

6.1 DedalStudio (and output of the component-based-hierarchy-builder module) . . 99
6.2 Re-documentation module structure . 100
6.3 Example of built hierarchy from Java project (output of HierarchyBuilder mod-

ule) . 102
6.4 Example of SpringDSL file . 103
6.5 Dedal model comparison module . 104
6.6 Re-documented components and Java classes in function of architecture ver-

sions . 108
6.7 Component instances and XML Spring files in fonction of architecture versions 110
6.8 Version increment accuracy . 111
6.9 Version increment mistakes . 111
6.10 Architecture degeneration risks . 112

xv

List of Tables

3.1 Component versioning approaches . 34
3.2 Architecture versioning approaches . 35
3.3 Software evolution approaches: versioning integration 39
3.4 Existing software architecture reconstruction approaches 44

4.1 Java access level modifiers [Java] . 62

5.1 Substitutability-based architectural changes . 83
5.2 Replacing Components: Providing a Functionality 88
5.3 Replacing Components: Requiring a Functionality 90

D.1 Tool release websites . 173

1

Chapter 1

Introduction

This chapter gives a brief introduction of the context this thesis stands in, the problem which
is addressed, the proposed contributions, and presents the outline of the manuscript.

1.1 General context of component-based software engineering

Because of the constantly increasing complexity of software systems, new needs have ap-
peared from early ages of software engineering for advantageously producing and main-
taining software reducing costs. This is why component-based software engineering has
emerged in late 1990’s as a sub-discipline of software engineering, which promises to ad-
dress those issues. Component-based software engineering advocates a specific software
development approach centered on component reuse [Som11]. This discipline proposes
a set of methods and models which aim at improving component-based software devel-
opment (CBSD). CBSD approaches give a methodological support to enhance reusability
by providing guidelines to assemble already developed decoupled software components.
Those component are stored in repositories and referred as Off-The-Shelf components. It
therefore avoids building entire systems from scratch, taking advantage of past develop-
ments. It significantly decreases development costs and time-to-market preserving quality
of software components [CL02].

As an essential part of CBSD, software architectures give an abstraction of the software struc-
ture and expose the way that it is supposed to evolve [Gar00]. Software architecture models
therefore contain the list of the elements that are part of the system and the information
about how those elements are connected one to another. As software architectures are ab-
straction of software themselves, they capture the design decisions, which occur during
the development process. This level of abstraction helps to reason in terms of architectural
element evolution instead of source code evolution, which can be more difficult to under-
stand [GDT06].

However, despite CBSD processes have been improved over years, some issues remain that
concern software architecture maintenance and evolution [BCL12]. As part of those issues,
we can highlight the evolution of component-based software architecture documentation,

2 Chapter 1. Introduction

which often becomes obsolete [DP09], and the versioning of software architectures, which
is surprisingly not much discussed in literature.

1.2 Documenting and versioning component-based software archi-
tectures issues

Despite a lot of work [DP09] in the field of software engineering for improving the documen-
tation of software systems, software evolution still leads to design decision loss. Software
evolution without co-evolution of software models is but the ruin of architectures. Then,
most of the time, design decisions are lost due to architectural drift or erosion [GMW97].
We argue that the information that has been lost during software evolution must there-
fore be recovered prior to performing any crucial evolution task. A lot of work exists that
addresses this issue by generally proposing approaches that re-engineer software architec-
tures [DP09]. Very few of these approaches only intend to re-document component-based
architectures "as they are implemented". Moreover, none of these approaches consider more
than two abstraction levels whereas previous work on Dedal ADL has shown that three ab-
straction levels are necessary to handle the global software life-cycle [Zha+12b]. However,
such documentation is essential for performing software evolution.

Additionally, during its evolution, a software is subject to numerous changes that lead to
numerous versions of the software. Then, in order to keep track of the software history, it
is necessary to identify its successive versions. Despite abundant literature in the field of
databases and software versioning, little work even intend to address this issues in the field
of component-based software architectures. There are even fewer approaches that propose
a way to version components and / or architectures by using verifiable semantics. However,
such semantics are needed in order to well identify software versions since a wrong version
identifier may misguide software architects.

1.3 Thesis proposal and contribution

As a contribution, this thesis proposes to answer the following research questions:

• RQ1. Is it possible to re-document multi-abstraction level component-based architec-
tures from source code, and is it possible to retrieve abstract design decisions from this
re-documentation?

• RQ2. How to introduce semantics in component and architecture versioning?

• RQ3. Are such re-documenting and / or versioning approaches suitable for large soft-
ware systems?

• RQ4. Is it possible to identify drift and / or erosion situations by re-documenting and
analyzing software versions?

1.3. Thesis proposal and contribution 3

In order to improve software evolution, documentation must remain consistent with the
actual software implementation and deployment all along its life-cycle. Moreover, this doc-
umentation must cover the software development main steps, which are the specification,
the implementation, and the deployment. However, despite the well-known benefits of an
up-to-date documentation, it is often not consistent with the actual state of the software be-
cause of an undocumented evolution. Performing evolution tasks may therefore be difficult
in this case. This is why this thesis proposes an approach to re-document software architec-
tures from raw source code. This approach is based on Dedal [Zha+12b; Mok+16a], which
provides three architecture levels for tracking main steps of software life-cycle. Moreover, it
also provides a formalized basis for calculating automated evolution plan. This formalism
especially ensures the three architecture level coherence. In other words, it ensures that the
description of deployment is consistent with the description of implementation, and finally
that the description of implementation is consistent with the description of the specification.
Dedal therefore provides a good support for re-documenting software in order to retrieve
suitable software evolution capabilities. This contribution answers research question RQ1.

Another contribution of this thesis consists in using formal rules based on type theory
[Aré+07; Aré+09] to characterize component and architecture differences in terms of back-
ward compatibility. The characterization of changes is made from a change analysis impact
study. This study is based on formal Dedal architectural rules and allows us to derive a set
of rules to characterize substitutable and not substitutable changes. Change impact analysis
also makes it possible to derive rules of version propagation among the three Dedal archi-
tecture levels in order to preserve architectural consistency. This contribution also includes a
proposal to automatically change version identifiers accordingly to the kind of version that
is identified. This part of the thesis answers research question RQ2.

Finally, the last contribution of this thesis is the set of tools that have been developed in
order to answer research questions RQ3 and RQ4. Those tools can be fully integrated into
the eclipse ecosystem and DedalStudio, which is our CASE (Computer-Aided Software Engi-
neering) tool that supports the Dedal ADL. The tools have been released online (see GitHub1

and LGI2P’s web site2) and consist of the following components:

• SpringDSL is our implementation of XML Spring [Joh+04] grammar into the EMF3

environment.

• HierarchyBuilder proposes to build the entire type hierarchy of a Java project including
required libraries where traditional code parsers only consider source code.

• component-based-hierarchy-builder re-documents three leveled Dedal architectures from
source code and Spring framework.

• ProjectComparator calculates and characterizes architectural differences between two
versions of a Dedal architecture model.

1http://www.github.com/DedalArmy
2http://www.dev.lgi2p.mines-ales.fr/ariane/
3https://www.eclipse.org/emf/ [Last seen 2019-09-05]

4 Chapter 1. Introduction

• DiffAnalyzer analyzes found differences and checks for architectural deviation situa-
tions.

In addition to the main tooling contributions, we released the previously developed Dedal-
Studio modules as eclipse plugin online to ease its installation into the eclipse environment.

Next section presents the outline of the thesis.

1.4 Outline of the thesis

The thesis is organized as follows:

• Chapter 2 introduces in detail the context of this thesis. It presents the component-
based software development process and the component-based software architecture
concept. It also introduces the Dedal architecture description language.

• Chapter 3 introduces the state of the art of this thesis. It consists of three parts. The first
one is a survey of versioning approaches in literature in order to identify limits of these
approaches especially in term of formalization and automation of version identifica-
tion. The second one concerns formal architecture evolution approaches to highlight
their limits in terms of component and architecture versioning. Finally, the last one is a
survey that compares re-documentation and reconstruction approaches, and justifies
our choice for re-documenting software as three-leveled component-based architec-
ture with the Dedal ADL.

• Chapter 4 introduces the proposed approach and algorithm for re-documenting compo-
nent-based architectures from source code. It defines the different steps that lead from
an undocumented software to a three-level description of it.

• Chapter 5 introduces an approach for managing version identification in software his-
tories. This identification is based on a formal architecture impact analysis and pro-
poses rules for automatically characterizing component and architecture versions.

• Chapter 6 presents the implementation of our approach and introduces a study that
has been conducted on more than 200 versions of an enterprise open-source project
to re-document it and check the soundness of its version identification in terms of
architecture erosion / drift situation identification.

• Chapter 7 finally summarizes the thesis contributions and discusses limitations and
perspectives to this work.

5

Chapter 2

Context and motivations

Contents
1.1 General context of component-based software engineering 1

1.2 Documenting and versioning component-based software architectures
issues . 2

1.3 Thesis proposal and contribution . 2

1.4 Outline of the thesis . 4

As introduced in Chapter 1, the contribution of this thesis takes place in the field of Compo-
nent-Based Software Engineering (CBSE). More precisely, this thesis focuses on Component-
Based Software Architectures re-documention and versioning. This chapter is designed to
give a deeper understanding of the context this thesis stands in. As it takes places in the
continuity of Zhang’s thesis [ZUS10] and Mokni’s thesis [Mok15], it is positioned in the
same context and therefore follows the same outline as Zhang’s and Mokni’s thesis context.

2.1 Component-based software engineering

Component-Based Software Engineering appeared in late 1990’s as a subdiscipline of the
wide Software Engineering field. CBSE provides developers with methods, models and
guidelines oriented towards component-based systems [Pre97]. CBSE then emerged as a
reuse-based approach to software development [Som11]. The goal of CBSE, is to provide
keys for producing software from already developed components in opposition with de-
velopments realized from scratch. The motivation of such approach is to meet software
industry concerns about the reduction of costs, development time to meet customer needs,
software maintainability and reliability [SGM02]. Thus, CBSE quickly took a great place in
the field of Software Engineering. This success is due to some important factors. First of all,
software becomes more and more complex and provides more functionality. The use of soft-
ware components makes it possible to meet the need of producing more functionalities with
the same investment in terms of costs and time [Pre97]. Next, until CBSE, traditional ap-
proaches fail at supporting reuse. As stated by Sommerville [Som11], abstract unit descrip-
tions such as components can be considered as standalone service providers while object
classes are too much detailed and specific. Last but not least, software constantly evolves

6 Chapter 2. Context and motivations

and so do its requirements, which means that a support for easy change is needed. Council
and Heineman [CH01] identified the three following major concerns of CBSE:

• to support reusable component entities,

• to support development of systems as component assemblies,

• and to ease maintainability and upgrading of such systems by being able to customize
and replace their components.

However, despite the well founded benefit of such goals, achieving them in practice can be
very challenging and then improving reuse processes is tedious [Pre97]. This difficulty is
even emphasized in component-based software evolution practice, especially after software
deployment. Thus, for further understanding, it is necessary to consider component-based
software life-cycle.

2.1.1 Component-based software life-cycle

Before the concept of component-based software life cycle is introduced, it is important to
understand most global software development approaches.

2.1.1.1 Traditional software development processes

The waterfall model is an historic development model that has been proposed by Royce in
1970 [Roy87]. Most of the iterative software development approaches are based on the same
activities than the waterfall model [Som11]. Those activities are shown in Figure 2.1 and are
as follows:

1. Requirement definition: During this phase, the goals of the system are established.
At the end of this phase, a specification of the system that complies with the realiza-
tion of the goals is proposed. The specification defines functional and non-functional
requirements.

2. System and software design: During this phase, the software is designed accordingly
to the specification that has been produced at the previous phase. This design im-
plies to identify and describe a conceptual and technical solution for the software to
develop. Thus an architecture that describes the software is proposed.

3. Implementation and unit testing: This phases intends to produce an executable soft-
ware that corresponds to the previously proposed design. Implementation can be
composed of smaller units. The units are then verified and tested to meet their speci-
fication.

4. Integration and system testing: During this phase, system units are integrated and
the complete system is verified, validated, and finally released.

2.1. Component-based software engineering 7

5. Operation and maintenance: A system in operation needs continuous support and
maintenance. This continuous support may imply to loop on previous waterfall phases
for adding new functionalities, fixing bugs. . .

6. Retirement and disposal: This phase is often omitted in life-cycle models since it is
implicit. It consists in the phasing out of the system that can either be replaced or
completely terminated.

FIGURE 2.1: Waterfall development model

According to Sommerville [Som11], the waterfall model clearly separates the different phases
of the software development process and the main advantage of its model is that phases do
not overlap and documentation is incrementally produced and enriched. Such a develop-
ment model is more suitable for small projects which requirements are well understood.
However, such model is not appropriate to adapt to changing customer requirements. Such
an approach is not responsive since commitments must be made early in the development
process while in such models, results are produced very late [Som11].

2.1.1.2 Agile software development methods

In order to improve responsiveness of development processes, agile methods emerged in
the 1990’s. They support fast software development and are more adaptable to requirement
change. They were primarily meant to support fast iterative development of business appli-
cations with short release cycles [Som11]. A group of practitioners has established in 2001
a consensus named the manifesto of agile software. This consensus sets the values of agile
methods1. The manifesto argues for the following four values:

• Individuals and interactions over processes and tools.

• Working software over comprehensive documentation.

• Customer collaboration over contract negotiation.

1https://www.agilealliance.org/agile101/the-agile-manifesto/ [Last seen 2019-08-31]

8 Chapter 2. Context and motivations

• Responding to change following a plan.

Agile methods are iterative methods that emphasize incremental development. They en-
courage active collaboration with customers into the development process for feedback and
to ease requirement changes even after software delivery [Som11]. However, the main draw-
back of such methods resides in the fact that they depend too much on individual person-
alities. Developers may not be willing to bear the pressure of such processes, which may be
intense. On the other hand, customers may no be willing to spend the time that is necessary
to make those development processes valuable [Som11]. In addition, in such development
processes, prioritizing changes might be a difficult task when the process involves too many
stakeholders [Som11]. Thus, agile methods are well adapted to small and medium-sized
systems without the risks associated to large, complex and critical systems [Som11].

2.1.1.3 Component-based software development processes

The main purpose of Component-Based Software Development (CBSD) is to build entire
systems from preexisting components. Thus, there are two consequences on software de-
velopment processes [CCL05]. The first consequence is that software development by com-
ponent reuse is separated from component development. In CBSD processes, components
need to be already developed at the start of the process. Second, the development process
must include a component identification phase [Som11].

FIGURE 2.2: The CBSD process

CBSD activities are introduced in Figure 2.2 and are as follows:

1. Requirements: Requirements can be defined in the form of abstract component types
that describe the functionalities of the system. In a component-based approach, the
definition of requirements must take into account the ability to develop the system

2.1. Component-based software engineering 9

with existing components. If possible, the system is realized using preexisting soft-
ware components, otherwise, new components have to be developed or requirements
might change to meet the available component resources [CCL05].

2. System design: This phase is designed to define a complete architecture of the system
with refined component types that are fulfilled by existing software components. As
in the previous phase, components are reused according to their availability. Compo-
nents might need to be developed.

3. Component identification: This phase replaces the implementation phase of the tra-
ditional waterfall model. It consists in a combination of three activities:

(a) Component search: During this activity, component repositories are browsed
to identify suitable candidates to fit the architecture defined during the design
phase.

(b) Component selection: During this activity, a component composition is decided
in order to offer the best coverage of system requirements [Som11]. This activity
might be very complex since a perfect matching is often unrealistic.

(c) Component validation: Once components have been selected, they need to be
tested and validated in order to ensure that their behavior meets the system re-
quirements.

4. System integration: This phase consists in deploying selected components into as-
semblies to constitute the executable system architecture.

5. System test / validation: This phase corresponds to the traditional test phase. It en-
sures that system requirements are met.

6. Maintenance: In the context of CBSD, this phase consists in keeping the system up-
to-date by checking the availability of new component versions so that they can (if
they meet system requirements) be identified, tested and deployed to replace older
component versions.

7. Retirement and disposal: This phase has the same role as in traditional software de-
velopment processes.

2.1.2 Summary

CBSE proposes a reuse intensive approach to software development. CBSD has several
benefits compared to traditional software development processes as for instance, clear sepa-
ration of concerns, reduced complexity, reduced development time, and increased software
quality. However, it also comes with drawbacks. First of all, it can be difficult to identify
trusty software components that perfectly match requirements and sometimes it is not even
possible, which thus makes the adaptation of system requirements necessary. Second, man-
aging evolution of such systems can be tricky. During maintenance phase, if the changes

10 Chapter 2. Context and motivations

that are caused by new component version deployment are not carefully handled, they may
impact the whole system and compromise it. This issue is addressed in Chapter 5.

As an essential part of CBSE to handle components, the following section discusses the
notion of component-based software architecture.

2.2 Component-based software architectures

This section gives an overview of basic concepts related to Component-Based Software Ar-
chitectures (CBSA).

2.2.1 Basic concepts in software architecture

Software architectures are the outline of systems construction and evolution [TMD10]. They
intend to provide an abstraction of the structure of software systems. They also expose the
way systems are expected to evolve [Gar00]. Then, software architectures capture design
decisions that are made during the system development. The structure of the system, its
functional behavior, its interactions and its non-functional properties are design decisions.
Perry and Wolf [PW92] identify three kinds of architectural elements which can be sum-
marized into two major architectural concepts that are components and connectors. Those
architectural elements are as follows:

• Processing elements are comparable to components that process data.

• Data elements are comparable to components that contain data to be processed.

• Connecting elements stand between components and hold connections.

Next section goes deeper and gives a more detailed overview of what components and con-
nectors are.

2.2.1.1 Components

In order to define the concept of component, several definitions exist in the literature. A first
definition of component has been given by Szypersky [SGM02]:

"A software component is a unit of composition with contractually specified interfaces
and explicit context dependencies only. A software component can be deployed indepen-
dently and is subject to composition by third parties."

Thus according to Szypersky, a component is a "black box", which hides details about code
and implementation and which data is accessed through its interfaces. Components are
decoupled entities, they are developed for reuse, and they comply with the principles of
encapsulation, abstraction, and modularity.

A second definition has been given by Taylor et al. [TMD10]

2.2. Component-based software architectures 11

“A software component is an architectural entity that (1) encapsulates a subset of the
system’s functionality and/or data, (2) restricts access to that subset via an explicitly
defined interface, and (3) has explicitly defined dependencies on its required execution
context.”

According to Taylor et al., a component is a unit of composition, which encapsulates data
and provides and / or requires (from other components) services. Thus, the notion of com-
ponent is very wide and can represent a simple operation or an entire system according to
the architecture.

Thus, mixing those two definitions, a component is made of a set of interfaces, an imple-
mentation and a specification.

Interfaces typically are the communication channels of components. They manage the com-
ponent interactions with other components [SGM02]. An interface can be either provided
or required. A provided interface exposes a set of services, which are provided to other
components of the environment. In other words, other components may require services
through other component provided interfaces. Unlike provided interfaces, required inter-
faces define services that are required by a component from other components for its exe-
cution. Thus, using such interface mechanisms, components are decoupled entities, which
hide their complexity behind the exposure of provided and required interfaces and then are
highly reusable units.

On the contrary, component implementation refers to the internal definition of a compo-
nent, which includes the source code. However, the implementation of a component is only
considered at development time and is quickly hidden to be integrated to a CBSD process.
Doing so, no particular knowledge about their inner structure is needed to build component-
based architectures.

According to Crnkovic and Larsson [CL02], the specification of a component is the definition
(type) of its interfaces. In early stages of CBSE, interface specification was only a syntactical
definition of the sets of signatures that are either provided or required. Then, some Interface
Description Languages (IDLs) were proposed to specify component interfaces. On this basis,
the notion of contract was proposed by Meyer [Mey92]. The concept of contract extends the
purely syntactical information contained in interface specifications by adding the notion of
behavior. This early notion of behavior focused on the definition of pre- and post-conditions
on the interface operations. It has later been enriched with the concepts of synchronization
and service quality [Beu+99; BJP10].

2.2.1.2 Connectors

The second major architectural elements are connectors. Connectors intend to manage com-
munications between software system building blocks. In the context of CBSE, those blocks
are components. Thus, connectors are meant to bind components together so that a com-
ponent can invoke a service from another component and vice versa. Thus, connectors

12 Chapter 2. Context and motivations

are mediators between components [TMD10] and connect components through their inter-
faces. Computation concern (handled by components) and interaction concern (handled by
connectors) are then well decoupled. This separation of concerns thus emphasizes reuse
processes. According to Taylor et al. [TMD10], component interaction may become a very
serious and challenging concern in the context of large and long time support systems. A
connector may be of eight types, which have been identified by Mehta et al. [MMP00]: pro-
cedure call, event, data access, linkage, stream, arbitrator, adapter and distributor.

In some approaches such as C2-SADEL [MRT99] and Wright [AG97], connectors are consid-
ered as specific components with two communication points: the provided and the required
connector ends. They can also be represented as simple links between two component in-
terfaces [Mag+95].

2.2.2 Architecture modeling

Architecture modeling consists in describing one or more aspects of a system architecture.
To do so, a particular notation is used in order to standardize the description. Taylor et al.
[TMD10] define an architecture model as an artifact that captures parts or all of the design
decisions of the software architecture.

2.2.2.1 Architectural modeling notations

There are several levels of formalism in architectural modeling notations, which stretch from
informal to highly formal. Taylor et al. [TMD10] introduce three categories of architectural
modeling notations according to their level of formalism:

• Informal models: Those models do not have a formally defined syntax. They are
most often designed for non-technical stakeholders and usually presented as boxes-
and-lines diagrams.

• Semi-formal models: Those models have a formally defined syntax. They can be used
for both technical and non-technical stakeholders and are intended to find a balance
between formalism and expressiveness. UML2 is typically a semi-formal modeling
notation.

• Formal models: Those models have a formal syntax and also formally defined se-
mantics. They are most often intended to be used by the system technical stakehold-
ers. They are mostly used to address system criticality and their formalized semantics
make automated analysis possible.

Next section focuses on the languages that are used to describe architectures.

2http://www.omg.org/spec/UML/2.5/ [Last seen 2019-08-31]

2.2. Component-based software architectures 13

2.2.2.2 Architecture description languages

Architecture Description Languages (ADLs) are languages that are dedicated to architecture
modeling. They provide all the necessary features for describing software architectures. The
definition of ADL has been given by Medvidovic [MJ06]:

"An architecture description language is a language that provides features for modeling
a software system’s conceptual architecture, distinguished from the system’s implemen-
tation. An ADL must support the building blocks of an architectural description."

Thus, an ADL must provide the vocabulary to describe components and their interfaces,
connectors, and configurations.

ADLs can also be used for performing architecture analysis to support architecture evolu-
tion. Such an activity is directly related to the level of formalism of the ADL. Section 3.2
introduces few of them.

2.2.3 Architecture evolution

During its whole life-cycle, a software is designed to evolve, so does its architecture. This
evolution is considered as one of the most challenging tasks of CBSE. In order to under-
stand motivations and issues of architecture evolution, it is important to introduce software
evolution in general and the concept of architecture-centric evolution.

2.2.3.1 Software evolution

It is now well identified that the software maintenance phase concentrates most costs and
difficulties. As a proof of this statement, Lientz et al. [LST78] have shown in the 1970’s that
this phase costs about 60% of the global software production costs. The IEEE 1219 Standard
for software maintenance [Iee] defines maintenance as follows:

"Software maintenance is the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a modified
environment."

Moreover, the traditional CBSD process is too rigid and not suitable for dealing with evolu-
tion. As a matter of fact, requirements are also subject to change during the entire software
life-cycle. It is then not realistic to consider that requirements are all known and fixed before
starting the software design. In addition, experience acquired at the later phases might need
to be fed back to earlier phases [DM08]. This limitation was known a long time ago and a
particular interest to software evolution raised when Lehman stated the ”Laws of software
evolution” [Leh79]. He defined software evolution as follows:

"Software evolution is the collection of all programming activities intended to generate
a new version of some software from an older operational version. If these activities can
be performed at runtime without the need for system recompilation or restart, it becomes
dynamic software evolution."

14 Chapter 2. Context and motivations

The real novelty of this definition is that it dealt with system evolution rather than only
considering code evolution.

Bennett and Rajlich then proposed an evolutionary process model [BR00a] for coping with
the waterfall model limitations. As introduced in Figure 2.3, their model does not omit the
problem of software aging. Once it has been initially developed, the software may suffer
changes, which can lead to a degeneration of the software. When the software loses its
evolvability, it enters in the servicing phase, which is intended to keep the software alive by
applying small patches on it [DM08]. Finally, when it gets too hard and / or too expensive
to keep the software running, it enters in the "phase out" phase and is then terminated in the
close down phase.

FIGURE 2.3: Benett an Rajlich process model for evolution [BR00a]

2.2.3.2 Architecture-centric evolution

Architectures present a great advantage for managing software evolution. As discussed
before, architectures expose by nature the dimensions along which they are supposed to
evolve [Gar00]. They make it possible to reason about evolution in an abstract manner that
eases the understanding of change. They are also especially useful to estimate the cost that a
change may have in terms of time and financial cost. By nature, components that are part of
the architectures hide their complexity, then it is no more necessary to analyze source code
that can be hard to understand and modify [GDT06]. Actually, architectures enable high
level manipulations thanks to the nature of components, which can thus be added, deleted,
or replaced, and their connection modified.

Nonetheless, issues exist in architecture evolution. Software architectures may be degraded

2.2. Component-based software architectures 15

because of changes that lead to inconsistencies. Those inconsistencies may thus alter soft-
ware architectures in such a way that they lose their evolvability, which then leads (accord-
ing to Figure 2.3) to the progressive end of the software. It is then essential to prevent
such inconsistencies in software architectures. However, it is one of the greatest challenge
of CBSE and it can get very tricky to deal with such issue especially for reusing compo-
nents [GAO09]. This issue is addressed in Chapter 5 in terms of architecture consistency
recovering after versioning components (version propagation).

Next section introduces the notion of architectural inconsistency.

2.2.4 Architecture analysis

Architecture analysis intends to discover important system properties that are captured by
its architecture models [TMD10]. Such an activity implies that analyzed models are for-
mal as discussed in Section 2.2.2.1. Architecture analysis is typically useful to detect prob-
lems / inconsistencies in design decisions at early development stages.

According to Taylor et al. [TMD10], consistency is an internal architecture property that
guarantees that elements in an architecture model do not collide. They identify five types of
inconsistencies, which can appear in an architecture model:

• Name inconsistency: A name inconsistency occurs when several architectural ele-
ments have the same name and when an element that is not supposed to be accessed
is actually accessed. It can also happen if a non-existing element is accessed.

• Interface inconsistency: This inconsistency can occur in case of a name inconsistency
when a component requires a service which name does not match with a component
provided service or when interface types do not match.

• Behavioral inconsistency: A behavioral inconsistency occurs between components
that have services that do not match.

• Interaction inconsistency: An interaction inconsistency occurs when the interaction
protocol between two components is not respected. For instance, not respecting a
sequence for accessing a service may represent an interaction inconsistency.

• Refinement inconsistency: A refinement inconsistency occurs when architectural de-
sign decisions are changed, omitted or violated when an architectural description is
refined.

In addition to those inconsistencies, we can cite two major architecture mismatches that
have been introduced by Perry and Wolf [PW92]:

• Drift: Drift consists in the introduction of new design decisions at a low abstraction
level, which are not described in higher abstraction levels. For instance, a new func-
tionality is introduced in the implementation whereas it is not documented in higher
abstraction levels. Drift can be considered as a refinement inconsistency.

16 Chapter 2. Context and motivations

• Erosion: Erosion is defined by de Silva and Balasubramaniam [DSB12] as follows:

"Erosion is the phenomenon that occurs when the implemented architecture of a
software diverges from its intended architecture."

In other words, erosion consists in the violation by an architecture implementation
of design decisions described at higher abstraction level. As previously, erosion can
also be considered as a refinement inconsistency. The definition given by de Silva
and Balasubramaniam is interesting since it highlights the relation that exists between
two architecture levels. Taylor et al. denote these levels as prescriptive and descrip-
tive architectures [TMD10]. Little work has been lead to explicit these two levels and
study their relationship. However, Zhang et al. [ZUS10; ZUV10; Zha+12a; Zha+12b;
Mok+15] show that it is beneficial for architecture evolution and to control erosion to
explicitely describe those two levels and even to take the runtime architecture level
into account as dynamic changes can imply erosion. Considering erosion differently,
the fact that the intended architecture diverges from its implemented architecture may
be due to the addition of new requirements in the system’s specification but some of
them are not implemented. Zhang et al. define this issue as pendency which is the
introduction of new design decisions into a higher architecture level that are not im-
plemented by its lower architecture level.

Next section introduces the Dedal architecture model, which proposes to explicit the ar-
chitecture abstraction levels that must be considered in CBSD processes in order to im-
prove reuse and efficiently cope with architecture inconsistencies that may arise during
architecture-centric evolution.

2.3 The Dedal architecture model

Figure 2.4 introduces the proposal of Zhang [Zha10] to explicit the architecture descriptions
that are produced at each development step of a system. The process that is proposed fo-
cuses on three main development phases: specification (or design), implementation, and
deployment. At the end of requirement analysis, an architecture specification is designed
that defines the services that should be supplied by components. It also describes how
components should be connected to one another in order to meet requirements. Thus, the
architecture specification corresponds to the system intended architecture. The next step of
the process consists in defining an architecture description (configuration) that implements
the specification. This step is comparable to the component identification step of an usual
CBSD: architects select suitable concrete components that match those specified. Architects
then compose those concrete components to realize the complete architecture configuration.
The configuration therefore corresponds to the implemented architecture that realizes the
specification. The final life-cycle step described in this process consists in instantiating and
deploying the configuration. The corresponding architecture that is documented at this step
is called the assembly. It represents the architecture configuration as it is deployed.

2.3. The Dedal architecture model 17

FIGURE 2.4: Reuse development process [Zha10]

Zhang et al. [ZUS10; Zha+12b] proposed an ADL and architecture model named Dedal,
which supports such a process. This ADL clearly separates the three architecture definitions
into three abstraction levels: specification, configuration and assembly. In order to ease the
understanding, Figure 2.5 introduces the graphical notations of component interfaces that
are used in the example that follows. The example is introduced in Figure 2.6 and illustrates
the concepts of Dedal. This example is taken from Mokni’s thesis [Mok15] and is a small
architecture of a Home Automation Software (HAS). The HAS manages comfort scenarios
by automatically controlling the building’s lighting in function of the time. An orchestrator
component interacts with the appropriate devices to play the desired scenario. This example
is used in the following as a running example for improving our understanding of Dedal
concepts.

FIGURE 2.5: Component interfaces (adapted from [Som11])

18 Chapter 2. Context and motivations

FIGURE 2.6: Dedal architecture levels for a Home Automated Soft-
ware [Mok+16a]

2.3.1 The Dedal abstract architecture specification level

This architecture description level corresponds to the design phase of a CBSD process. It is
designed to explicit the functional requirements of the software. Its purpose is to give an
abstract view of the involved software elements (components). At this architecture level,
design decisions consist in identifying abstract component types, which will be (re)used to
operate the defined required functionalities. Those abstract components are called compo-
nent roles.

Component roles are meant to declare the set of functionalities that are expected from avail-
able components. A component role declares a set of functionalities through the specifica-
tion of interfaces. Doing so, it allows a wider set of components to match the specification
and then be selected to implement the architecture. Component roles are thus guides for
helping the concrete component search and selection process.

Following this principle, the specification of the HAS example (Figure 2.6) is made of the
HomeOrchestrator component role, which handles lighting by using both Light and Luminos-
ity component roles and also the Time component role.

2.3. The Dedal architecture model 19

2.3.2 The Dedal concrete architecture configuration level

The configuration architecture level represents the implementation phase of a CBSD process.
It defines the concrete implementation that is adopted for the software system. A configura-
tion is defined by the set of selected components (during the identification process) that best
match the component roles defined in the architecture specification. These components are
called component classes and their associated types are called concrete component types.

A component class therefore corresponds to an existing software component that has been
stored in a repository. Dedal allows the definition of composite structures, which means that
components can either be primitive or composite. A primitive component class encapsulates
executable code whereas a composite component class encapsulates an inner architecture
configuration. In a composite component class, the exposed set of interfaces corresponds
to the set of unconnected interfaces of its inner components. Component classes may also
contain observable attributes to allow parameterization.

A concrete component type is an abstract representation of a set of component classes. It
declares a set of interfaces that a component class must define to be an implementation of
this type. They are used to perform classification of component classes and build indexes
in component repositories. Component roles are matched with concrete component types
to find suitable component classes. The matching is performed by using specialization and
substitution concepts inspired from those that have been defined by Arévalo et al. [Aré+07;
Abo+09; Aré+09; Abo+19]. The particularity of Dedal realization relation is the fact that a
component role can be realized by a single component class but also by a set of component
classes.

Figure 2.6 shows an implementation (configuration) of the HAS that complies with the spec-
ification. In this configuration, Orchestrator realizes HomeOrchestrator, Clock realizes Time,
whereas AdjustableLamp realizes both the Light and Luminosity component roles.

2.3.3 The Dedal instantiated architecture assembly level

The architecture assembly level is designed to capture decisions that are made at deploy-
ment time during the CBSD process. It corresponds to an assembly of instantiated com-
ponent classes which have been selected to implement the software. Those components
are then called component instances. The architecture assembly describes the software at
runtime and holds information about its internal state. The assembly lists the component
instances and their assembly constraints such as cardinality of connections, etc.

A component instance captures the decision that is made about how a given component
class from an architecture configuration is instantiated at runtime. A component instance
contains information about its initial and current states, defined and saved in a list of valued
attributes.

20 Chapter 2. Context and motivations

Figure 2.6 shows the HAS example architecture assembly. This assembly instantiates two
AdjustableLamp (lampdesk and lampSitting), one Clock (clock) and finally one Orchestrator (or-
chestratorHome). It is important to note that it is one of the possible instantiations of the
configuration.

2.3.4 Dedal formal rules

Another contribution of Dedal is the set of relations that exist between components in each
architecture description but also at different abstraction levels and also between architecture
levels themselves. In addition to the Zhang’s thesis [Zha10], Mokni implemented formal re-
lations that exist between components and architecture levels [Mok+16a] thanks to the B
language [Abr96]. Such a formalization makes it possible to perform automatic architecture
analysis as discussed in Section 2.2.2.1. The formalization of the ADL is based on the use
of type theory [LW94] generalized to components such as defined by Arévalo et al. [Aré+07;
Abo+09; Aré+09; Abo+19] and defines a set of formal rules for automatically detecting ar-
chitecture inconsistencies. Those relations are as follows:

• Component connections: The connection of components is verifiable thanks to the
use of type theory. Mokni et al. [Mok+16a] define the concept of compatible compo-
nent for a connection. This compatibility is calculated on the types of the interfaces
that are involved in the connection. To be compatible, two interfaces must have an
opposite direction (one must be a provided interface and the other one has to be re-
quired), and their types must match. It means that they must have the same type or
that the provided interface is a specialization of the required interface. Those rules are
applicable for any of the component connections at any of the architecture abstraction
levels.

• Component role realization: This is the relation that exists between component roles
and concrete component classes. This relation prevents refinement inconsistencies
since it verifies that a component class is a specialization of its "realized" component
role(s). In other words a concrete component class must be a subtype of its designed
role to be a realization of this role.

• Specification implementation: This is the relation that relates the configuration with
the specification. To be consistent with its specification, a configuration needs to define
a realization of the component roles that constitute the specification. All the connec-
tions that exist into the specification must also be declared into the configuration. In
other words, a configuration is a specialization (and thus a subtype) of its specification.

• Component class instantiation: This is the relation that exists between concrete com-
ponent classes defined into the configuration and their component instances defined
into the assembly. This relation verifies that component instances are instances of
component classes. This relation verifies that component instances satisfy to the con-
straints defined in component classes (cardinality of connections, etc.).

2.4. Motivations for re-documenting and versioning architectures 21

• configuration instantiation: This is the relation that relates a configuration with one
of its possible assemblies. As previously, this relation is formalized with type theory
which means that it verifies that an assembly is an instance of its configuration. It
verifies that all component classes are instantiated into the assembly and that all com-
ponent connections are also instantiated into the assembly.

2.4 Motivations for re-documenting and versioning architectures

Mokni et al. [Mok+16a] address automatic evolution in Dedal using formal rules based type
theory. They introduce a way for performing architecture analysis and automatic architec-
ture consistency recovery at three abstraction levels. Doing so, they provide an approach
for maintaining a long term evolution support to component-based software architectures.
However, experience shows that in many cases, software documentation either does not ex-
ist or is not well maintained, which leads to drift and / or erosion of software [DP09]. It
therefore appears as essential to be able to recover a documentation of such software in or-
der to re-found long term evolution support. This is what Chapter 4 addresses by proposing
a way to re-document three-level component-based architectures based on the Dedal formal
rules previously discussed.

Moreover, another key point that has not yet been addressed by the ADL concerns version-
ing issues of components, and architecture descriptions. This is even rarely addressed con-
cern in the field of CBSE. Still based on formal Dedal rules, Chapter 5 addresses versioning
problems in the context of three-level architecture descriptions.

2.5 Conclusion

This chapter introduces the context of this thesis by generally introducing the context of
Component-Based Software Engineering to accentuate the focus on Component-Based Soft-
ware Architecture and then introduce the concepts of the Dedal ADL.

This chapter identifies the main issues of CBSE such as reuse of existing software compo-
nents that is one of the main advantages of CBSE but still represents numerous challenges.
Another issue that is presented in this chapter concerns the management of software ar-
chitectures which, despite the progress in the field, represents a complex task to perform
in particular because of the inconsistencies that may raise during the software life cycle.
This chapter therefore introduces Dedal, which is an ADL that proposes to deal with those
challenges by representing the entire life-cycle of software but also to perform formal ar-
chitecture analysis, and automatic architecture evolution based on type theory. However,
Dedal (and other approaches) still do not completely cope with those two challenges. This
is what motivates this thesis since software evolution needs to address versioning problem-
atics and also re-documentation perspective that can improve maintainability of software
even after a long execution period.

22 Chapter 2. Context and motivations

Next chapter discusses the state of the art in the fields of component-based architecture
versioning and software re-documentation.

23

Chapter 3

State of the art

Contents
2.1 Component-based software engineering . 5

2.1.1 Component-based software life-cycle 6

2.1.1.1 Traditional software development processes 6

2.1.1.2 Agile software development methods 7

2.1.1.3 Component-based software development processes 8

2.1.2 Summary . 9

2.2 Component-based software architectures . 10

2.2.1 Basic concepts in software architecture 10

2.2.1.1 Components . 10

2.2.1.2 Connectors . 11

2.2.2 Architecture modeling . 12

2.2.2.1 Architectural modeling notations 12

2.2.2.2 Architecture description languages 13

2.2.3 Architecture evolution . 13

2.2.3.1 Software evolution . 13

2.2.3.2 Architecture-centric evolution 14

2.2.4 Architecture analysis . 15

2.3 The Dedal architecture model . 16

2.3.1 The Dedal abstract architecture specification level 18

2.3.2 The Dedal concrete architecture configuration level 19

2.3.3 The Dedal instantiated architecture assembly level 19

2.3.4 Dedal formal rules . 20

2.4 Motivations for re-documenting and versioning architectures 21

2.5 Conclusion . 21

Chapter 2 introduced the context of this thesis by presenting component-based develop-
ment and component-based software architectures. This chapter relates to issues that con-
cern version and documentation management of software architectures. For that reason,
this chapter surveys existing versioning approaches in order to identify which are the most

24 Chapter 3. State of the art

suitable for versioning component-based software architectures. This study identifies limits
of existing approaches in order to help us defining a new approach for component-based
software architecture versioning. The second study surveys existing software evolution ap-
proaches. It classifies those approaches in terms of versioning management capabilities and
implementation. Finally, the third study discusses and classifies software re-documentation
and reconstruction approaches. It describes existing approaches and points out their limits.
This study therefore help us to define a new re-documentation approach.

3.1 Study on component-based software architecture versioning

Initially, versioning activity came from the need of representing and retrieving the past states
of a file through its evolution [EC95]. The existing literature is dense and addresses numer-
ous issues such as difference discovery and characterization between two successive artifact
versions. Most of the time, versioning relies on text-based mechanisms [CCL12] such as in
very popular and used version control systems like Git [TH10] or CVS [Mor96]. In text-
based versioning, deltas between versions are identified through basic operations on text
in files. Text artifacts can be added to the file, they can also be deleted or modified which
can correspond in some cases to a replacement where a text artifact is deleted and replaced
by another one. Those text-based mechanisms are language-agnostic, which means that
the differences that are observed do not embed any semantics. However, other approaches
exist that come from the Software Configuration Management field. They define version
models [CW98] that specify how versions are identified and which are the characteristics
that are taken into account for the version identifier computation. Most of the time, ver-
sion identifiers are n−tuples, which are meant to be human readable and give information
about versions order. However this kind of information only provides information about
artifact anteriority. This is why semantics must be added to this numbering especially in
term of impact and compatibility with preexisting artifacts. This state of the art of version-
ing approaches aims at classifying versioning approaches. To classify component versioning
approaches, we aim at answering following questions:

• What kind of identifier is used?

• What is the semantic behind version identifiers?

• How are identifiers attributed?

• Is the concept of backward compatibility formally checked?

In order to classify component-based architecture versioning approaches we aim at answer-
ing following questions:

• Is the concept of backward compatibility formally checked?

• Is the concept of version propagation addressed?

3.1. Study on component-based software architecture versioning 25

This section does not address versioning mechanisms in an exhaustive way. It focuses on
approaches that can fit the context of a model-driven component-based software architec-
ture evolution. Thus, it first surveys existing component versioning approaches. Second it
surveys model evolution and versioning approaches to identify concepts that can be applied
to component-based software architectures. Third it surveys component-based software ar-
chitecture versioning approaches. Finally, it discusses the surveyed approaches to identify
their strength and limits.

3.1.1 Versioning components

Initially, version control mechanisms were introduced in component-based software devel-
opment in order to avoid recompiling unchanged components. This early change detection
was supported by fingerprinting mechanisms such as discussed by Crelier [Cre94]. How-
ever this technique only makes it possible to provide the vague information that a change
occurred without providing any other information. There exist several software component-
based version management approaches which have been widely used over the decades. This
subsection focuses on their main characteristics. The outline of this subsection is inspired
by Stuckenholz et al.’s [Stu05] work.

3.1.1.1 Library interface in Unix systems

In the late 80’s Sun Microsystems SunOS added dynamic shared libraries to Unix [Lev99].
This lead Sun to set up versioning mechanisms to support the evolution of the dynamic
libraries. In this first versioning system, library versions were identified by two version
digits (X.Y) for characterizing major (X) and minor (Y) releases. The semantics behind are
as follows :

• major version number is incremented if the new version breaks backward compatibil-
ity

• minor version number is incremented if the new component compatibility is pre-
served.

These mechanisms enable the link editor to choose among the available versions, the latest
compatible component to use being the component with the same major version number
and the highest minor number as possible [Gin+87]. However, this mechanism could not
ensure that the new version of the component would run on an earlier minor release level
such as presented by Brown et al. [BR00b]. Thus Sun refined their versioning mechanism into
an ELF-based binary format that contains libraries and executables. This new mechanism
relies on the decoration of shared library symbols such as methods. Decorated symbols
are then considered as required by the new version, thus the linker can dynamically search
into libraries and more reliably identify compatible components. This mechanism makes it
possible for Unix systems to maintain the parallel existence of multiple component versions.
However, as the information about library version is not automatically attached it is subject

26 Chapter 3. State of the art

to the interpretation of the developer who releases the new version. Mistakes can occur
during the versioning process which can be harmful for the system.

3.1.1.2 CORBA

CORBA component model is based on the Interface Description Language (IDL). Compo-
nents are specified in IDL and their descriptions are mapped into a target programming
language [OMG+02]. The change impact mechanism inherent to CORBA makes any change
in a component visible into its IDL specification. However, CORBA does not embed any
mechanism for managing component evolution and components cannot be enhanced by
version information. Actually it is possible to define several versions of a component but
they are actually separated by an explicit naming convention (version number is suffixed to
the component type identifier). It means that a new version of a component is considered
as a completely new component. This implies that all the components which depend on the
old version must be rebuilt to use the new version.

3.1.1.3 Windows Dynamic Link Libraries (DLL)

In order to manage their libraries, Microsoft introduced the concept of DLL to their operat-
ing system. This concept allowed to dynamically load required libraries at runtime. How-
ever, at the beginning, the Microsoft’s DLL concept did not embed any versioning mech-
anism. This led to numerous system crashes since applications could replace older DLL
versions that could still be used by other applications. This problematic behavior was called
DLL-Hell [Dev99; Pra01]. In next evolutions of Windows 98 SE and Windows ME operat-
ing systems, the possibility was added to better control the linkage of those DLLs through
the mechanism of isolated applications. This isolation made possible to create and deploy
COM components on one or more specific applications, avoiding the DLL-Hell problem.
However, versioning mechanisms have properly been implemented only from Windows
XP where component versions were specified into a manifest file. Thus applications can
dynamically load specific versions of DLL components. In order to manage versions, Mi-
crosoft chose a version identifier composed of four digits X.Y.Z.R where X is incremented
for major releases that break backward compatibility, Y for identifying minor versions and,
despite DLL versions are linked with X and Y , the two last digits correspond to Z the build
number and R the revision number. Those two last digits enable quick fix engineering pro-
cesses for a faster bug resolution [Bey01]. However, those labels are still attached manually
which means that they are dependent of developer’s assumptions.

3.1.1.4 COM / .NET

COM and .NET components have been introduced by Microsoft. COM component model
came first and in order to avoid DLL-Hell problems discussed in 3.1.1.3, Microsoft pol-
icy was to forbid changes in existing components. Thus a COM component interface is
given an unique identifier and instead of performing changes in the interface, a new inter-
face needs to be created which is given a new interface identifier. This way, DLL-Hell is

3.1. Study on component-based software architecture versioning 27

avoided but it is impossible for clients to discover new component features without rebuild-
ing them [Rog97]. With the upcoming of the .NET framework, Microsoft introduced the idea
of assemblies which can be versioned. The version identifier is a four-digit number that is
manually set by the developer. There exist two types of assemblies. Private assemblies only
have a limited scope to isolated applications, and shared assemblies can be deployed to the
Global Assembly Cache (GAC) to be shared by all the system applications [Low05]. Shared
assemblies are identified by a strong name which corresponds to a unique identifier of the
assembly. Thus multiple versions of shared assemblies can coexist, however there is no de-
fault mechanism for checking assemblies compatibility at runtime. Yet, approaches such as
the one developed by Eisenbach et al. [EJS03] make it possible to check inconsistencies into
assemblies, specifically when a component is upgraded. However, every component change
mechanism relies on developers which can still lead to mistakes.

3.1.1.5 Java

Component-based technologies JavaBeans [Javb; Eng97] and Enterprise Java Beans (EJB)
[Sha+01; RSB04; BMH06; MH97] are based on the Java language. As Java provides reflec-
tion mechanisms in its concepts, it is possible to analyze components at runtime in terms
of type and exported interfaces. The default class loader mechanism prevents the system
from loading several component versions at the same time. However, this default behavior
can be changed by the implementation of hierarchical class loaders. In Java, version man-
agement has been introduced to handle object serialization. The serialization mechanism
enables object persistence and their transmission between distant applications through Re-
mote Method Invocation (RMI). In the context of distributed systems, where RMI mecha-
nisms are used, a compatible change is defined as a change on a class which still allows
to unserialize (using the new class version) data-streams that have been serialized from an
older version of the class. Using custom class loaders also allows the definition of version-
ing policies. However, no standard rules exist to implement them which can lead to a loss
of portability of a component to another system. Moreover, it is not mandatory to enhance
component description with version information and no default version policy exists. Thus
users have to analyze the components they want to use. However, Java does not provide any
mechanism for automatically calculating the type of changes that occurred in components.
In addition, more recent Java releases (from 9) introduce the concept of modules. However,
version management still relies on tooling and frameworks (i.e., OSGi) instead of internal
Java mechanisms [MB17].

3.1.1.6 McCamant and Ernst approach

In their work, McCamant and Ernst [ME04] focus on semantic changes in components and
their impacts on what they call their operational abstraction. They define the term of opera-
tional abstraction as follows: "An operational abstraction is a set of mathematical properties
describing the observed behavior. An operational abstraction is syntactically identical to a
formal specification – both describe program behavior via logical formulas over program

28 Chapter 3. State of the art

variables – but an operational abstraction describes actual program behavior and can be
generated automatically."[ME04] By comparing the operational abstraction of old and new
component versions, it is possible to automatically detect incompatibilities during the up-
grade of a component and thus formally drive the evolution process of deployed component
versions. However, this approach only addresses behavioral changes and do not address the
source code change.

3.1.1.7 Brada and Bauml approach

Premsyl Brada’s approach is based on the Architecture Description Language (ADL) named
SOFA [PBJ98] which is discussed in 3.2.7. In his work [Bra99; Bra01a; Bra01b], he designed
a scheme for automatically identifying component version backward compatibility thanks
to automated tests using ELF-based component descriptions. The rules on which are based
compatibility or incompatibility calculations are directly derived from type theory and sub-
typing rules. Thus, as he formalized component version compatibility, the automated ver-
sion identification which is made after is much more reliable than manual approaches. Fi-
nally in further work (out of the SOFA approach) on automated versioning he defines first
with Valenta [BV06] and after with Bauml [BB09; BB11] an automated versioning approach
applied to OSGi world. In this work, authors question the reliability of component version
identifiers and then define a pattern for characterizing and identifying component version
and automatically assign them version numbers. Type analysis is the basis of version iden-
tification as in SOFA. They reuse the common version numbering X.Y.Z and define strict
rules for incrementing those numbers by analyzing type differences. If no type difference
has been found then Z is incremented since the new type is compatible with the previous
one. If the new type is a specialization of the old one, thus the change is compatible with
the old version and Y is incremented. Finally, in case where the new type is a generalization
or a mutation (e.g., it is not comparable anymore to the ancient type) then it means that the
new version is no more compatible with the old one and then X is incremented. This way,
component version numbers are set automatically which ensures strong understanding of
component version differences by developers that use and deploy them. This automated
version identification is also useful for component upgrading at runtime for ensuring soft-
ware consistency.

3.1.2 Model evolution and versioning

Considering that ADLs are defined by metamodels / grammars, versioning an instance of
an ADL metamodel / grammar amounts to the versioning of the described architecture.

In the context of software engineering, versioning plays an important role since it maintains
an historical archive of software past states and it also supports parallel evolution of artifacts
by teams [Est+05]. These concerns are transposable to the field of MDE. However, due to
the graph-based structure of models, already existing code versioning techniques are not
suitable since they mostly rely on text-based mechanisms. Indeed, text-based versioning
mechanisms fail at taking into account model structural information such as containment

3.1. Study on component-based software architecture versioning 29

references and multiplicities between several model artifacts. Thus it appeared that graph-
based approaches were needed to manage model versioning.

This is why model evolution and versioning has been widely influenced by the huge experi-
ence in the field of database schema evolution. Indeed because of early needs to keep track of
databases evolution, this field has already addressed numerous challenges that can be also
identified in the field of model evolution and versioning. For instance, lot of work addressed
the versioning of object-oriented database schemata from 80’s [KCB86; Zdo87; BM88; CK88;
Kat90; Lam92; TO93; UO96; UO98]. This came from the deep need of ensuring that the suc-
cessive versions of a database schema would not be incompatible with previous ones and
thus would ensure the consistency and coherency of schema with stored data. This research
is thus highly based on the concept of type substitution that is inherent to object-oriented
systems. Moreover, version models such as Iris [BM88], Encore [Zdo87], Lincks [Lam92],
Mosaic [Lan86], Orion [CK88], Version Server [KCB86; Kat90] and the model proposed by
Oussalah et al. [OTC93], Talens [TO93] et al. and Urtado et al. [UO96; UO98], propose mecha-
nisms for propagating versions. Those mechanisms aim at automating version management
by propagating version creation and destruction operations following dependency relations
between versioned artifacts.

This section is organized as follows, first it presents model evolution approaches. Second it
discusses version propagation in models.

3.1.2.1 Versioning models

A very common model versioning scenario involves parallel modifications of an unique
artifact version v0. The artifact has now a set of new versions ν = v1, v2, ..., vn where n
is the number of parallel versions of the artifact. Thus model versioning processes aim at
consolidating and merging this set of versions into a unique version v0 [PMR16].

As it has been identified by Altmanninger et al. [Alt+08; ASW09; Alt+09], a model versioning
process occurs following three steps:

• The change detection phase. This is the phase where the changes that occurred be-
tween v0 and the set of modified versions ν are detected and identified. This phase
can be realized following two different types of approaches [PMR16]:

– State-based detection: in a state-based detection approach, only the final states
of the modified versions is taken into account for identifying model changes.
Those approaches only support few operations which are additions, deletions
and changes.

– Operation-based detection: in an operation-based detection approach, the version
history relies on the model editor which has to save all the operations that have
been performed on a model. Those approaches make it possible to keep a record
of the operation sequence that leads to a new version of an artifact such as intro-
duced by Herrmanndoerfer et al. [HBJ09; Her09]. This can be useful for reverting

30 Chapter 3. State of the art

changes. However, those kinds of approaches are often editor dependent and
language specific.

• The conflict detection phase. In the context of parallel versioning, conflicts may arise.
For instance, in some cases, parallel changes are potentially overlapping or contradict-
ing. Conflicts are detected by comparing all the changes that occurred on a model
artifact so the overlapping contradicting ones are identified in order to be resolved.
There are two ways for resolving a conflict:

– Manual approaches: In those kinds of approaches, the user manually resolves con-
flicts between versions. Those kinds of techniques applied to modeling arti-
facts can be very challenging. Alanen and Porres [AP03] lead a seminal work
on how to cope with identifying, classifying and reconciling conflicts. For tex-
tual conflicts, the conflicting versions are presented side by side to the user who
chooses which action must be taken for resolving the conflict. However, in the
case of model artifacts, the resolution can be challenging due to the nature of
models that in many cases generates conflicts which cannot be resolved indepen-
dently [Bro+12].

– Automatic approaches: Another way for resolving conflicts is to automatically cal-
culate all possible combinations of operations that can lead to a valid version.
Thus, Cicchetti et al. [CDP09; CCL12] propose to define conflict patterns and res-
olution strategies through the use of a domain specific language (DSL) that they
define. Moreover, they define patterns that resolve syntactic as well as semantic
conflicts. Finally, they also define a versioning policy which still requires user
intervention for cases where no policy is defined. In order to fully automate the
process, Ehrig et al. [EET11] formalized a conflict resolution strategy. This strat-
egy is especially tailored for conflicts that occur on graph modifications. As this
is a formal approach, the obtained model is considered as consolidated (all the
conflicts have been resolved) by construction. Finally, another approach to auto-
matically address conflicts is to temporarily tolerate them. This is what is pro-
posed by Nuseibeh et al. [NER01] who argue that it may be beneficial since those
tolerated conflicts highlight parts of models that need to be further investigated
and improved.

• The inconsistency detection phase. Inconsistencies may happen while merging con-
current versions of a model artifact. Those problems usually take place when the con-
solidated version violates metamodel validation rules. Those inconsistencies are in
many cases resolved by users themselves. However Reder and Egyed [RE12] pro-
posed a fully automated approach. Unfortunately this solution is language-specific.

In order to manage those model versions, several versioning systems have been proposed
that use different combinations of discussed techniques. In their work on versioning UML
models, Stevens et al. [SWB03] introduce algorithms for calculating differences, merging
those differences and resolving conflicts. The differences are calculated from matching two

3.1. Study on component-based software architecture versioning 31

model versions and the unique identifiers of their elements. The approach is meta-model
independent and is able to identify additions, deletions and changes of model elements.
EMFStore has been proposed by Koegel et al. [KHS09] in the Eclipse1 Modeling Framework
(EMF2) ecosystem. It is a model repository which provides model version support. EMFS-
tore is an operation-based tool which relies on the Eclipse IDE. Once modifications on the
model are done, they are committed to the repository to save the new state of the model.
Odyssey-VCS 2 that has been proposed by Oliveira et al. [OMW05] is a language specific
version control system based on the UML language. As the tool of Stevens et al., it is state-
based and also takes advantage of model elements’ unique identifiers. On the basis of the
difference detection phase result, the tool automatically infers the operations that lead to
the last version of the model. The tool is also able to raise conflict warning in case of contra-
dictory changes. However, no inconsistency detection is performed after merging is done.
Last but not least, Altmanninger et al. proposed their tool named AMOR (Adaptable MOdel
veRsioning) [Alt+08] for managing model versioning. The tool provides capabilities such
as an extensible conflict detection mechanism and resolver components which goal is to
guide users during conflict resolution. Collaborative conflict resolution policies can also be
supported by AMOR.

3.1.2.2 Models and metamodels co-evolution and version propagation

Systems may be defined not by a single model but by a set of models that document dif-
ferent abstraction levels or viewpoints. These models are then inter-related and versioning
one model of the system may have an impact on its other representations. In the context
of an ADL that documents software at each step of its life-cycle (see Chapter 2), the repre-
sentation which is made at specification time can be considered as a metamodel of the one
that is produced at implementation time. The same relation exists between the representa-
tion that is produced at implementation time and the one that is produced at deployment
time. Indeed, those abstraction levels correspond to MOF3 M0, M1 and M2 levels. In other
words, such an ADL is described by a metamodel / grammar and an instance of its meta-
model / grammar contains several abstraction levels. Moreover, in CBSD the implementa-
tion is influenced by choices that are made at specification time but the specification might
also be influenced by choices that are made at implementation time (e.g., component avail-
able for being reused). This is why top down and bottom up mechanisms are needed for
propagating artifact versioning. Horizontal changes propagation are also needed in order to
adapt each representation level (e.g., a change at implementation time may influence other
artifacts of the implementation). Research on model evolution and versioning has brought
various approaches for managing co-evolution [PMR16]:

• Manual approaches such as Ecore2Ecore [HP06], Epsilon Flock [Ros+10; Ros+14] or
Taentzer et al. [Tae+13] manually migrate models in order to make them compliant
with their updated meta-model.

1https://www.eclipse.org
2https://www.eclipse.org/emf
3https://www.omg.org/mof/

32 Chapter 3. State of the art

• Operator approaches such as COPE / Edapt [Her09], MCL [Nar+09], Demuth et al.
[Dem+16] or Rumbaugh et al. [RJB04] are based on patterns and are characterized
by a set of predetermined strategies which can handle a step-by-step co-evolution of
meta-models and models.

• Inference approaches such as Cicchetti et al. [CDP09] or AML [Gar+09] rely on meta-
model comparison to generate a strategy for evolving models in order to conform to
their updated meta-model.

Propagating changes to models from metamodels is the only way in the literature for per-
forming version propagation in models. All those approaches are top down approaches that
adapt models to their changed metamodels. None of them copes with a bottom up evolu-
tion approach or with inner model change propagation. This is due to the nature of models
which cannot break the rules that are described by their metamodels. Yet the inconsistency
detection phase discussed in 3.1.2.1 can be assimilated to horizontal version propagation,
especially in Reder et al. approach [RE12] that defines validation trees for calculating the
impact of changes. Moreover, all the discussed approaches are based on tooling and do
not consider the semantics of model artifacts. Thus, although the concept of version propa-
gation is interesting for versioning software architectures, it cannot be performed by using
model-based approaches.

3.1.3 Versioning component-based software architectures

Only few work copes with versioning component-based software architectures. The few ap-
proaches that are presented here propose only basic mechanisms for architectural versioning
that do not take into account the entire life-cyle of the software.

SOFA 2 [PBJ98; HP04; BHP06] which is discussed in 3.2.7 provides a way for formally de-
fine component-based architectures and manage their evolution. The language gives also
the ability to calculate component version backward compatibility as discussed by Brada et
al. [Bra99; Bra01a; Bra01b]. However, even if SOFA 2 describes multiple abstraction levels,
and even if Brada [Bra03] describes a mechanism to propagate differences in order to re-
cursively discover component differences, the concept of change propagation and version
propagation is not addressed.

Mae [Ros+04] which is discussed in 3.2.6 is based on xADL 2.0 [DHT05] (discussed in 3.2.5)
that provides two abstraction levels by distinguishing design-time and run-time. How-
ever, even if Mae introduces some mechanisms for calculating component compatibility and
backward compatibility, this approach do not address any kind of version propagation.

Amirat et al. [ADO14] proposed a generic approach for evolving and versioning component-
based software architectures using ATL transformations. However in their approach they
do not address the key concept of version backward compatibility.

3.1. Study on component-based software architecture versioning 33

3.1.4 Discussion

This section covers a very wide research area in component, model and component-based
architecture versioning. Table 3.1 summarizes the surveyed component versioning approa-
ches. It appears that many works have already addressed the versioning of components
and especially in the context of libraries that can be dynamically linked and used by third
party applications which require them. Making applications use the last compatible com-
ponent versions has been addressed in several ways. Those approaches sometimes failed
at enabling several component versions to coexist. When approaches succeeded to man-
age multiple component versions, a naming convention is designed to help developers and
automated processes to choose among versions for the last compatible one. To do so, a
common template based on digit tuples is meant to carry information about the type of
component versions. Nowadays, the most used naming pattern is described in the Seman-
tic Versioning 2.0.04 approach and is very similar to what is proposed by Brada Valenta and
Bauml [BV06; BB09; BB11]. It consists in identifying any versionable artifact with a triple
X.Y.Z where X represents the major release number that is incremented when the new
version of the artifact is not backward compatible. Y is the minor release number. It is incre-
mented when the new version is backward compatible. Finally Z is the build number that
correspond to minor versions that may for instance correspond to bug fixes (the API and
the observable/external behavior of the artifact is not impacted by the changes). The only
addition of Semantic Versioning is the use of labels that can be passed as suffixes to pro-
vide additional information to developers. However, no mechanism ensures that version
numbers are well identified and the semantics associated to the tags may be null and void.
Indeed, most of the time those identifiers are set by developers themselves and mistakes
can occur. This is why most of the surveyed approaches fail at ensuring component version
backward compatibility. Only Brada and Valenta [BV06] propose a suitable approach based
on SOFA [PBJ98] that formally identifies backward compatible components. Later Brada
and Bauml [BB09] proposed to automate version identification using X.Y.Z pattern in the
OSGi world. As their methods is based on strict type-based rules, they ensure by design that
the computed identifier conveys the right semantics. Finally, despite the Semantic Version-
ing 2.0.0 approach perfectly fits a human readable form and proposes a sound numbering
scheme regarding backward compatibility, it does not explicitly identify the intention of the
evolution, i.e. distinction between versions that are designed as revisions or variants. A
variant is a version that is intended to co-exist with other versions of an artifact in order to
provide alternative feature configurations (product line engineering). A revision is a version
that is intended to replace the previous versions of an artifact (deprecation). As variant and
revision semantics is orthogonal to backward-compatibility (revisions may not be backward
compatible in order to allow re-engineering or technological breakthrough for instance), a
specific scheme is needed to identify them.

In the field of MDE, a lot of research also exists that aims at maintaining, evolving and
versioning models. To do so the domain has taken advantage of the already existing vast

4https://semver.org/

34 Chapter 3. State of the art

Approach Identifier Automatically
incremented

Incompatibility
check

Backward
compatibility
check

Unix X.Y − − −
CORBA − − − −
DLL X.Y.Z.R − − −
COM/.NET X.Y.Z.R − − −
Java − − X −
McCamant and Ernst − − X −
Brada and Bauml X.Y.Z X X X

TABLE 3.1: Component versioning approaches

research in the area of database schema evolution. Yet, some problems related to versioning
are not addressed in the field of MDE. For instance compatibility of models is not addressed
in a suitable way for components. Indeed, only the compliance of models to their meta-
models is analyzed / verified. However a model can evolve in an ecosystem in relation with
other models using it (for instance a model could be used by another in a transformation
process). Yet no mechanisms for checking the compatibility of changes with the ecosys-
tem seems to be addressed and then it gets difficult to ensure that a new model version is
substitutable for its older version as this can be done for instance with Dedal architectures.
It seems then very difficult in this context to formally identify model versions. Moreover,
despite it is addressed in the field of databases schema versioning, the concept of version
propagation is not well identified and addressed in the context of MDE. A lot of work deals
with co-evolution of models but not directly with version propagation. The only activity
of model versioning which can be assimilated to version propagation (or at least change
propagation) is the inconsistency detection phase. Unfortunately, in this phase the change
propagation occurs in a top down way. Actually, only changes that occur at metamodel
level can be propagated to the models. However in a component-based software architec-
ture evolution where, as in Dedal, several abstraction levels coexist in order to represent the
global life-cycle of software, a change can occur at any of these abstraction levels and still
may need to be propagated in a bottom up way as do the versions.

Table 3.2 summarizes approaches that address the concept of architecture versioning. Sur-
prisingly, the field of component-based software architectures does not address component
and architecture versioning in a very extensive way. The only approach which truly ad-
dresses component versioning is the one developed by Brada et al. [Bra99; Bra01a; Bra01b;
Bra03; BV06; BB09; BB11], based of the SOFA ADL [PBJ98]. However, despite the concept
of component version is very well developed, the approach does neither mention the ver-
sioning of architecture themselves nor mechanisms of version propagation within the SOFA
architecture abstraction levels.

It appears that component-based software architecture field lacks semantics in component
and architecture versioning. Within missing concepts, we identified no existing semantics
for versioning CBSAs and thus, that version propagation is not addressed in CBSA field.

3.2. Architecture evolution approaches 35

approach backward compatibility check version propagation
SOFA 2 X −
MAE / XADL − −
Amirat et al. − −

TABLE 3.2: Architecture versioning approaches

In order to fill the gap, this thesis proposes component versioning mechanisms inspired by
Brada et al. by identifying component backward compatibility from types and automatically
increment their version identifiers following type differences. Moreover, this thesis proposes
to extend such mechanisms to version entire architectures. Finally, it proposes to version
multi-leveled software architectures by performing a change impact analysis to ensure the
global architecture definition consistency.

Next section discusses architecture evolution approaches to identify an approach that meets
versioning needs.

3.2 Architecture evolution approaches

The existing literature about architecture evolution is very abundant. This section only dis-
cusses the approaches which are the most relevant with this thesis (i.e., component-based
software architecture evolution approaches that propose formal evolution mechanisms).
This survey intends to evaluate the capabilities of existing approaches to document soft-
ware architecture evolution and to determine whether they provide a support for architec-
ture versioning or not. To do so, we try to answer the following questions:

• What aspects of architecture life-cycle and evolution are supported by the approach?
How many abstraction levels does the approach provide to model architectures?

• What paradigm does the approach use to model architectures? Are all the abstraction
levels expressed with the same formalism?

• Does the approach provide a formalism that allows to derive specialization / substituta-
bility rules between components / architecture levels?

• Does the approach supports component / architecture versioning? Does it provides
version semantics?

3.2.1 C2 / C2-SADEL

C2-SADEL (Software Architecture Description and Evolution Language) has been proposed
by Medvidovic et al. [MRT98; MJ06] on top of the C2 approach [Tay+96] which defines C2-
style architectures. C2-style architectures are component- and message-based architectures
especially tailored for GUI and distributed applications. Their dedicated ADL, C2-SADEL,
provides sub-typing mechanisms that support architectural evolution. Moreover, this ADL
provides two architecture points of view by clearly identifying component instances and

36 Chapter 3. State of the art

types. Thus it supports two abstraction levels expressed in a component-based paradigm
that correspond to:

• the deployment of the software through the description of component instance and
their connectors / dependencies

• and the implementation of the software through the description of the component
classes and their connections.

Moreover, the C2-SADEL approach is based on strong subtyping mechanisms derived from
Object-Oriented subtyping rules. Those subtyping mechanisms are embodied by the use
of the Z language which is a first order logic language based on the Zermelo-Fraenkel Set
Theory [Hay+68]. Thus this ADL also supports, by extension of its subtyping rules, formal
architecture analysis such as detecting incoherency in component connections. However,
it does not address the versioning problem and thus does not propose any semantics for
identifying and producing component / architecture versions.

3.2.2 Darwin

Darwin [Mag+95] is an ADL which semantics are defined by π−calculus [MPW92]. It is
designed to specify the structure of distributed systems and describes components through
the use of a hierarchical decomposition scheme. Darwin only represents the implementation
of the software. The π−calculus formalism enables analyze the architecture and guarantees
the correctness of the component connections. Darwin also provides mechanisms to analyze
the impact of architectural changes, however, in this approach, component / architecture
versioning is not addressed and no semantics are proposed for identifying and producing
versions.

3.2.3 Wright / Dynamic Wright

Dynamic Wright [ADG98] extends the previous Wright [AG97] ADL. This ADL especially
supports evolution of distributed architectures and analyzes their behavior. Wright only
provides one abstraction level through architecture descriptions which mixes implemen-
tation and deployment information. Indeed, a Style (architecture description) is defined
by a list of components types, connector types and their instances. The concepts of im-
plementation and deployment are not clearly decoupled. Wright models are based on the
concept of CSP (Communicating Sequence Processes) [Hoa78] which formalizes component
behavior and allows architecture analysis. In Dynamic Wright, only the implementation is
represented. Finally, the concept of version is not addressed in the approach and thus no
semantics are defined for component / architecture versions.

3.2.4 ArchWare

ArchWare [Oqu+04] is an European project which provides a set of languages and tools for
engineering and evolving software system architectures. Architectures are modeled with

3.2. Architecture evolution approaches 37

π−ADL which is the language that is proposed by the project. This language is also based on
the π−calculus [MPW92]. π−ADL only represents the deployment of software by provid-
ing a single abstraction level in which component instances and their links are represented.
ArchWare also provides an Architecture Refinement Language (π−ARL) which gives the
ability to perform architecture change analysis since it relies on the π−calculus. However,
this approach still does not address the versioning activity and does not provide any seman-
tics for versions.

3.2.5 xADL

xADL [Kha+01] is an approach that aims at enabling architecture centric tool integration
with XML. This ADL is based on C2-style architectures and enables the definition of compo-
nent types and instances as well as connectors and connections to describe the implemen-
tation and the deployment of software. The xADL / xC2 Document Type Definition (DTD)
of the language takes the concept of component and connectors compatibility into account.
However, the concept of architecture compatibility is not addressed. Finally, the approach
addresses the concept of version by making it possible to define independent version graphs
for component, connectors and interface types. However, those mechanisms are not based
on a strong typed semantics that would give information about version backward compati-
bility.

3.2.6 Mae

Mae [Ros+04] is an approach which is built on top of the xADL ADL. It provides an ad-
ditional set of rules for checking compatibility among architectural elements. Those rules
capture backward compatibility of architectural elements such as components and connec-
tors with their predecessors. However, despite this upgrade that has been done to xADL,
the concept of architecture version and architecture backward compatibility is still not ad-
dressed.

3.2.7 SOFA 2.0

SOFA 2.0 [HP04; BHP06] is an evolution of SOFA [PBJ98] which relies on the MOF (Meta Ob-
ject Facilities) concepts. This language is designed to support distributed applications and
distributed runtime environment. The language proposes two abstraction levels through
one architecture description that describes the implementation and instantiation of software.
Versioning is taken into account and histories of interfaces and components are decoupled.
It provides mechanisms for checking component compatibility which can be used for tak-
ing backward compatibility of components into account such as discussed by Brada [Bra99]
where versioning is made from the change analysis. Moreover, as the concept of architec-
ture is modeled as composite component, the versioning of architectures can be taken into
account and backward compatibility can also be calculated with predecessors.

38 Chapter 3. State of the art

3.2.8 Synthesis and comparison

The characteristics of studied adls are summarized in Table 3.3. Most of the approaches
coping with software architecture evolution make use of ADLs for modeling architectures.
Within those approaches, only a few are based on formal languages / concepts that make
them component-compatibility aware. In the few approaches which have been discussed
in this section, C2-SADEL, Darwin, Dynamic Wright and Archware enter into this category.
Indeed, all of them are based on formal languages / concepts such as Z or π−calculus. How-
ever, despite the capabilities they provide for checking architecture consistency and compo-
nent capabilities, they do not provide versioning processes for their components / architectures.
Thus those approaches do not define component / architecture version backward compat-
ibility. xADL neither addresses the concept of version backward compatibility even if its
XML-based implementation of C2 (xADL / xC2 DTD) makes it aware of the concept of com-
ponent compatibility (without capabilities for checking it). However, its evolution Mae,
adds a set of rules for adding some semantics to the way components, connectors and in-
terfaces are versioned. Finally, SOFA is based on Object-Oriented typing rules which make
it aware of component / architecture compatibility and able to support version backward
compatibility discovering. At the end, despite some encouraging approaches, none of them
intends to formally represent the entire software life-cycle such as introduced in Chapter 2.
Thus, in order to develop our approach, we choose to use the Dedal ADL, which is intro-
duced in Section 2.3 since it provides all the mechanisms that are needed to version multi-
leveled software architectures.

3.2.
A

rchitecture
evolution

approaches
39

Architecture Modeling Architecture versioning support
CBSD supportApproach

ADL
Specification implementation deployment

Component
versioning

Architecture
versioning

Compatibility check
capabilities

Backward
compatibility support

C2 / C2-
SADEL

C2-SADEL X X − − − X −

Darwin Darwin − X X − − X −
Wright
/ Dynamic
Wright

Dynamic
Wright

− X − X − X −

ArchWare π−ADL,
π−ARL

− X X − − X −

xADL xADL − X X X X − −
Mae Mae − X X X X X −
SOFA 2 SOFA 2 − X X X X (composite

components)
X X

TABLE 3.3: Software evolution approaches: versioning integration

40 Chapter 3. State of the art

3.3 Retrieving architecture documentation and software maintain-
ability

Architectures are a great way for representing software at a high-level of abstraction. Fol-
lowing Garlan [Gar00] software architectures are important in several software develop-
ment aspects. They emphasize understanding, reuse, construction, evolution, analysis and
management of software. However, in many cases this abstract documentation either does
not exist, has been lost (the existing architecture is no more compliant with the actual one)
or its quality is very poor [SAO05]. The maintainability of software is then threatened and
it is necessary to retrieve this documentation in order to recover a suitable evolution and
maintainability context. In literature, two types of approaches exist. First of all strict re-
documentation approaches that aim at only recovering software documentation as it is (Sec-
tion 3.3.1). As defined by Chikofsky et al. [CC90], "redocumentation is the creation or revi-
sion of a semantically equivalent representation within the same relative abstraction level".
Thus, it consists in transforming the information contained in source code (and possibly
other documents) into an updated documentation about code. Secondly, reconstruction ap-
proaches (Section 3.3.2) aim at recovering software documentation but also to interpret the
way the software is implemented in order to perform some re-engineering. This section
covers both approaches.

3.3.1 Software re-documentation approaches

As stated by Chikofsky et al. [CC90], re-documentation is the primal form of reverse engi-
neering and is widely considered as a non-intrusive way for restructuring code informa-
tion. There exist several approaches for re-documenting software architectures. Among
those approaches we can cite XML-based approaches such as introduced by Hartmann et
al. [HHT01]. We can also cite incremental approaches introduced by Rajlich, Václav [Raj97;
Raj00] which produce text-based documentation. The Island grammar approach [VDK99;
Moo01] relies on a parser to analyze and textually re-document code. In the DMG (DocLike
Modularized Graph) Sulaiman et al. [SIS03] provide an advanced visualization graph as soft-
ware documentation. Finally and surprisingly, very few work has been lead on producing
model-oriented documentation.

One of the only model-oriented re-documentation approach has been proposed by Feng
and Hongji [CY07]. They base their approach on the Java language and use its object-
oriented paradigm to map its concepts with the OMG standards. They propose a tool,
MOREDOC (Model Oriented REDOCumentation), that automatically re-documents Object-
oriented software, taking advantage of MDE concepts. This re-documentation approach
is the closest to context that is introduced in Chapter 2. However, it does not address
component-based software architecture. Next section discusses architecture reconstruction
approaches where more work has been led for component-based software architectures.

3.3. Retrieving architecture documentation and software maintainability 41

3.3.2 Software architecture reconstruction approaches

Many works have been led for reconstructing software architectures. This section focuses
on the most similar to our proposed approach: approaches which extract component-based
based architectures descriptions have been targeted. Moreover, retro-engineering approaches
that aim at retrieving initial design decisions are differentiated from re-engineering ap-
proaches which reorganize the extracted information and / or software artifacts. Table 3.4
gives an overview of the approaches that have been considered.

This section is organized following the five criteria that have been defined by Ducasse et
al. [DP09] in their taxonomy. Those criteria are as follows:

• The goals of the approach which can be:

(a) Redocumentation is probably the universal goal of every software architecture re-
construction process since they are used during software’s life-cycle which prob-
ably suffered from drift of erosion during its evolution.

(b) Reuse (i.e., ARES [Eix+98], MAP [SO01], PuLSE / SAVE [Kno+06] and ROMAN-
TIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]), since recovering architecture de-
scriptions may highlight reusable entities as software components, frameworks,
etc.

(c) Conformance checking (i.e., Bauhaus [Kos02; EKS03; CKS05], DiscoTect [Yan+04],
PuLSE / SAVE [Kno+06] and Tran et al. [TH99]) for comparing the conceptual
description of the software and its actual implementation.

(d) Co-evolution (i.e., PuLSE / SAVE [Kno+06], Huang et al. [HMY06] and Tran et al.
[TH99]) for maintaining several levels of abstraction at the same time (typically
an architecture and its implementation) and avoiding drift and erosion.

(e) Analysis (i.e., PuLSE / SAVE [Kno+06] and Huang et al. [HMY06]) that can be
made on architectural views, such as quality analysis to assist architects in their
decisions.

(f) Evolution and Maintenance that can be made easier by software architecture recon-
struction.

Our approach aims at improving component and architecture reuse, by extracting
component-based multi-leveled architecture descriptions for the Dedal [ZUS10; Mok+16b;
Mok+16a] ADL, but also at giving capabilities for managing conformance checking,
evolution, co-evolution and maintenance using the formal rules that have been de-
fined in Dedal.

• The kind of process that is used:

(a) Bottom-up approaches (i.e., ARES [Eix+98] and ArchVis [Hat04]) use the lowest-
level information for creating the model.

42 Chapter 3. State of the art

(b) Top-down approaches (i.e., PuLSE / SAVE [Kno+06]) start with the highest-level
information. Hypotheses are made which are next checked to make sure that they
comply with the source code.

(c) Hybrid approaches (i.e., Tran et al. [TH99], X-Ray [MK01], MAP [SO01], Al-
borz [Sar03], Focus [DM01; MJ06], Bauhaus [Kos02; EKS03; CKS05], DiscoTect
[Yan+04], Pashov et al. [PR04], Huang et al. [HMY06], ROMANTIC [Cha+08;
Keb+12; SS13; Als+16; Sha+17]) aim at combining bottom-up and top-down ap-
proaches. In those kinds of approaches, hypotheses are made that are refined
using what is abstracted from low-level information.

We define our approach as bottom-up since it is exclusively based on source code and
deployment descriptor files that are present in projects.

• The inputs of the software architecture reconstruction:

(a) Non-Architectural inputs which may be the source code but also textual informa-
tion like comments in the code (i.e., ArchVis [Hat04]), dynamic information like
logs and execution trace (i.e., Alborz [Sar03], ArchVis [Hat04], Bauhaus [Kos02;
EKS03; CKS05], DiscoTect [Yan+04], Huang et al. [HMY06] and Pashov et al.
[PR04]). However those inputs may also be other kinds of information like the
physical organization (i.e., ArchVis [Hat04]) of the software. Human organiza-
tion may also provide information about coding standards in a company that can
make extraction easier and extraction rules more specific. Non-architectural inputs
may also involve historical information and human expertise. Historical informa-
tion can be used for instance for improving understanding of extraction results
but is rarely used [DP09]. Besides human expertise is used in most of the soft-
ware architecture reconstruction approaches since it is most of the time needed
over reconstruction iterations for validating results. Human expertise is useful
for the quality of the extraction but alter the automation of the process.

(b) Architectural inputs like architectural styles or viewpoints for guiding extraction.

Our approach is based on source code analysis coupled to the exploitation of primitive
architectural information implemented by the Spring technology.

• The techniques that are proposed:

(a) Quasi-manual (i.e., MAP [SO01]) where the tool only assists the engineer in under-
standing the extracted information.

(b) Semi-Automatic (i.e., Tran et al. [TH99], DiscoTect [Yan+04] and PuLSE / SAVE
[Kno+06]) where the software engineer guides the tool.

(c) Quasi-automatic (i.e., X-Ray [MK01], Alborz [Sar03], Bauhaus [Kos02; EKS03;
CKS05], ArchVis [Hat04], Pashov et al. [PR04], Huang et al. [HMY06] and RO-
MANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]) that are close to be fully au-
tomatic but still requires human expertise to ensure that the tool is going to the

3.3. Retrieving architecture documentation and software maintainability 43

right direction.

As Dedal [ZUS10; Mok+16b; Mok+16a] has been formalized and allows to perform
automatic evolution calculation, we aim at providing an automatic extraction tool that
would allow to fully automate the software architecture reconstruction process.

• The outputs that may be:

(a) Visual software representations are the most common result of software architec-
ture reconstruction processes.

(b) Architecture description (i.e., ARES [Eix+98], X-Ray [MK01], DiscoTect [Yan+04],
ArchVis [Hat04], Huang et al. [HMY06] and ROMANTIC [Cha+08; Keb+12; SS13;
Als+16; Sha+17]) for providing computable architectural information.

(c) Conformance checking can be vertical (i.e., Tran et al. [TH99], Bauhaus [Kos02;
EKS03; CKS05] and PuLSE / SAVE [Kno+06]) for verifying whether the recov-
ered architecture comply with the implementation, horizontal (i.e., Huang et al.
[HMY06] and ROMANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17]) for check-
ing conformance between two architectures (conceptual vs concrete, two recon-
structed views...) or both (i.e., DiscoTect [Yan+04]).

(d) Analysis (i.e., ARES [Eix+98], Alborz [Sar03], PuLSE / SAVE [Kno+06], Huang et
al. [HMY06]) that can be the result of any kind of analysis over the reconstructed
architectures such as quality analysis (i.e., ROMANTIC [Cha+08; Keb+12; SS13;
Als+16; Sha+17]).

Our approach produces a three-level formal Dedal architecture description and visu-
alization thanks to the ADL.

However, all of those methods present several limitations. Indeed, they do not reconstruct
architectures as they are implemented but perform some re-engineering. In addition, all of
them deal with only two abstraction levels (implementation and deployment). Yet, those
two levels might not correspond to the same paradigm (code Vs component-based archi-
tecture description) which is a drawback to co-evolve those abstraction levels. Then it is
essential for maintaining, evolving and tracking software life-cycle to have three-leveled
component-based architecture descriptions. Indeed, they give a more global but precise
understanding to architects by providing a means to model architecture design, imple-
mentation and deployment decisions separately. Finally, even the approaches that seem
close to ours either perform re-engineering such as ROMANTIC [Cha+08; Keb+12; SS13;
Als+16; Sha+17] that clusters classes into bigger components or DiscoTect [Yan+04] that re-
constructs architectures from execution traces corresponding to their dynamic instantiation.
There also exist approaches for re-documenting from object-oriented code through the use
of UML5diagrams [GK00; SM07]. Unfortunately those kinds of re-documenting approaches
do not perform component-based architecture reconstruction.

5http://www.uml.org/ [Last seen 04-13-2018]

44 Chapter 3. State of the art

On the basis of this observation, this thesis proposes a retro-engineering approach based on
three-level component-based architecture description reconstruction. This approach eases
evolution, co-evolution and life-cycle tracking processes by providing a complete re-documentation
(i.e., deployment through the Assembly level, implementation through the Configuration
level, and design through the Specification level). Last but not least, this approach proposes
to recover design decisions through the concept of Specification which is reconstructed from
an abstraction of the concrete implementation.

TABLE 3.4: Existing software architecture reconstruction approaches

approach process paradigm technique retro-engineering re-engineering inputs outputs
ARES [Eix+98] bottom-up procedural - x - source-code,

expertise
visualization, de-
scription, analy-
sis

Tran et al. [TH99] hybrid procedural quasi-auto - x source-code,
expertise

visualization,
vertical confor-
mance

X-Ray [MK01] hybrid procedural,
dis-
tributed

auto x - source-code,
expertise

visualization, de-
scription

MAP [SO01] hybrid procedural manual x - source-code,
expertise, style

visualization

Alborz [Sar03] hybrid procedural auto x - source-code,
dynamic, ex-
pertise

visualization,
analysis

Focus [DM01; MJ06] hybrid object-
oriented

manual - x source-code,
expertise, style

visualization

Bauhaus [Kos02; EKS03; CKS05] hybrid object-
oriented

auto - x source-code,
dynamic, ex-
pertise

visualization,
vertical confor-
mance

DiscoTect [Yan+04] hybrid object-
oriented

quasi-auto x - source-code,
dynamic, ex-
pertise, style

visualization, de-
scription, verti-
cal & horizon-
tal conformance,
analysis

ArchVis [Hat04] bottom-up object-
oriented

auto x - source-code,
textual, dy-
namic, phys-
ical, style,
viewpoint

visualization, de-
scription

Pashov et al. [PR04] hybrid procedural,
object-
oriented

auto - x source-code,
dynamic, ex-
pertise, style

visualization

PuLSE / SAVE [Kno+06] top-down procedural,
object-
oriented

quasi-auto - x source-code,
expertise, view-
point

visualization,
vertical confor-
mance, analysis

Huang et al. [HMY06] hybrid object-
oriented

auto x - source-code,
dynamic, style

description,
horizontal
conformance,
analysis

ROMANTIC [Cha+08; Keb+12; SS13; Als+16; Sha+17] hybrid object-
oriented

auto - x source-code visualization,
description,
horizontal
conformance,
analysis

3.4 Conclusion

State of the art shows that versioning management and software re-documentation still lack
concepts and techniques in the field of CBSE. Conceptual lacks concern the explicitation
of precise semantics in component and architecture versioning. Moreover, existing archi-
tecture evolution approaches do not provide version mechanisms for propagating version-
ing between all the descriptions produced during the software life-cycle (i.e., specification,
implementation, deployment, components at each level). Another conceptual lack is the
absence of approaches which re-document software as it is implemented. Moreover, none
provides support to re-document all the software life-cycle. On the other hand, technical
lacks concern the implementation of such approaches. Dedal ADL documents software life-
cycle as component-based software architectures. Moreover, as it has been formalized with

3.4. Conclusion 45

the B language, it is thus fully adapted for adding semantics into versioning process. Fi-
nally, has it is implemented into the Eclipse ecosystem: it is a strong base for implementing
our approach. On the versioning side, we chose to adapt Brada and Bauml approach to our
component-based architectures since they proposed a formal way to version components
and automatically increment their version identifiers.

47

Chapter 4

Re-documenting component-based
software architectures

Contents
3.1 Study on component-based software architecture versioning 24

3.1.1 Versioning components . 25

3.1.1.1 Library interface in Unix systems 25

3.1.1.2 CORBA . 26

3.1.1.3 Windows Dynamic Link Libraries (DLL) 26

3.1.1.4 COM / .NET . 26

3.1.1.5 Java . 27

3.1.1.6 McCamant and Ernst approach 27

3.1.1.7 Brada and Bauml approach 28

3.1.2 Model evolution and versioning . 28

3.1.2.1 Versioning models . 29

3.1.2.2 Models and metamodels co-evolution and version propa-
gation . 31

3.1.3 Versioning component-based software architectures 32

3.1.4 Discussion . 33

3.2 Architecture evolution approaches . 35

3.2.1 C2 / C2-SADEL . 35

3.2.2 Darwin . 36

3.2.3 Wright / Dynamic Wright . 36

3.2.4 ArchWare . 36

3.2.5 xADL . 37

3.2.6 Mae . 37

3.2.7 SOFA 2.0 . 37

3.2.8 Synthesis and comparison . 38

3.3 Retrieving architecture documentation and software maintainability . . . 40

3.3.1 Software re-documentation approaches 40

3.3.2 Software architecture reconstruction approaches 41

48 Chapter 4. Re-documenting component-based software architectures

3.4 Conclusion . 44

When it comes to software evolution, lack or loss of documentation may become a serious
issue. Indeed, in many ways, a software may be subject to numerous changes during its
whole life cycle. It is then necessary to maintain an up-to-date documentation of the soft-
ware accordingly to it changes. However, in many cases, the software documentation either
does not exists or is not well maintained. This may lead to drift and / or erosion of soft-
ware [DP09]. Thus, in order to recover a good evolution management, the software must be
re-documented in accordance with its actual state [Le +18].

4.1 Process overview

This section introduces the process that is proposed for reconstructing component-based
software architectures. The reconstruction is made in five major steps which are as shown in
Figure 4.1: (1) the Java object architecture recovery which results from the parsing of the de-
ployment descriptor, (2) the transformation of the deployment descriptor to an incomplete
Dedal Assembly, (3) the completion of the Assembly, (4) the extraction of the architecture
Configuration level and (5) the extraction of the Specification level.

FIGURE 4.1: Process of Component-Based Software Architecture Reconstruc-
tion

4.1.1 Inputs

Figure 4.1 introduces the re-documentation process. In order to re-document the software
architecture, the process needs two kinds of inputs. The first one is a deployment descriptor
which describes how a given software is instantiated. The second input is the source code

4.1. Process overview 49

<?xml version="1.0" encoding="UTF-8" standalone=no ?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
<bean class="AdjustableLamp" id="lampDesk" />
<bean class="AdjustableLamp" id="lampSitting" />
<bean class="AlarmClock" id="aClock1" />
<bean class="SecurityManager" id="securityManager1" >

<property name="alarm" ref="aClock1" />
</bean>
<bean class="HomeOrchestrator" id="orchestrator1" >

<property name="lights">
<set>

<ref bean="lampDesk" />
<ref bean="lampSitting" />

</set>
</property>
<property name="clock" ref="aClock1" />
<property name="securityManager" ref="securityManager1" />

</bean>
</beans>

FIGURE 4.2: Home Automation Software (HAS): XML-based Spring configu-
ration

of the software. Figure 4.2 introduces an example of an XML-based Spring [Joh+04] de-
ployment descriptor. This file contains information about class instances and dependency
injection which is the starting point of the re-documentation process. This example is a
Java-based example which code structure is presented in Figure 4.3 as an UML diagram.
The source code is not introduced since only its structure is necessary for re-documenting
the structural aspect of software architectures.

FIGURE 4.3: HAS: UML diagram

50 Chapter 4. Re-documenting component-based software architectures

FIGURE 4.4: SpringDSL representation of HAS Spring deployment descriptor

Configuration

Assembly

AdjustableLamp HomeOrchestrator AlarmClock SecurityManager

lampDesk

lampSitting

orchestrator1 aClock1 securityManager1

<< instantiates >> << instantiates >>
<< instantiates >>

<< instantiates >> << instantiates >> << instantiates >>

lights

lights
clock

securityManager

alarm

FIGURE 4.5: HAS: Dedal incomplete Assembly after step 2

4.1.2 Process

As the first step of the re-documentation process, the deployment descriptor file is parsed
for building an EMF-based representation of the software deployment. Figure 4.4 introduces
the result of parsing the deployment descriptor presented in Figure 4.2. Both representations
contain strictly the same information about bean instances, instantiated Java classes and
dependencies. For instance, Figure 4.4 shows a << bean >> named securityManager1

which << Class >> is SecurityManager and that has a << property >> named alarm

which is set with a Reference to the << bean >> named aClock1. This is equivalent to its
XML version shown in Figure 4.7

Then, this model-based representation of the deployment descriptor is the input of a model
to model transformation that transforms deployment descriptor information into partial ar-
chitecture information concerning Assembly and Configuration levels in Dedal language.
Figure 4.5 shows how Spring artifacts that are introduced in Figure 4.4 are arranged to fit
Dedal concepts.

Then, this partial information is used, in combination with the Java source code, as the
input of the third step that re-documents the Assembly level. Thus, missing information is
extracted for re-documenting Assembly as presented in Figure 4.6a. At this step, Assembly
is fully extracted.

4.1. Process overview 51

(A) HAS: Reconstructed Assembly (B) HAS: Reconstructed Configuration

(C) HAS: Reconstructed Specification

P: provided interface / R: required inter-
face / Grayed out interface: unconnected

FIGURE 4.6: HAS: Dedal Reconstructed Architecture Levels

<bean class="SecurityManager" id="securityManager1" >
<property name="alarm" <ref="aClock1" />

</bean>

FIGURE 4.7: Example of bean declaration with dependency injection

This information is then reused at the fourth step which re-documents the Configuration
level after the Assembly such as introduced in Figure 4.6b.

Finally, this information is used, still combined to the Java souce code, to re-document the
Specification level as shown in Figure 4.6c.

4.1.3 Output

The output of the process is a complete three-level Dedal architecture composed of the As-
sembly, Configuration and Specification that are presented in Figures 4.6a, 4.6b and 4.6c.

FIGURE 4.8: Three-level view of reconstructed Dedal architecture

52 Chapter 4. Re-documenting component-based software architectures

Figure 4.8 shows the three-levels of the re-documented Dedal architecture. This view shows
the relations that exist between the architecture levels and their respective components.
Those relations are also re-documented during the process.

Next section discusses how the re-documentation is actually performed.

4.2 Re-documenting architectures

This section discusses how the different concepts are identified and mapped into architec-
tural information, from the deployment descriptor to code analysis. Figure 4.9 represents
the structure of the re-documentation module. As shown in this figure, the SAR Module
(Software Architecture Re-documentation module) is composed of three sub-modules (in
grey):

• the DescriptorDSLModule. This module parses and instantiates a model-based repre-
sentation of the deployment descriptor.

• the DescriptorModelToDedalTransformation. This module uses the previously gener-
ated model-based description and applies a model to model transformation to gener-
ate the very first model artifacts of the Dedal Assembly and Configuration architec-
ture models.

• the CodeExtractionModule. This module aims at completing the information that have

<< Source Code>>
CodeBundle

<< Deployment Descriptor >>
DeploymentDescriptorFile

<< Source Code File >>
ClassOrInterface

<< Dedal ADL File>>
DedalADLFile

<< Dedal Architecture Description >>
Assembly

<< Dedal Architecture Description >>
Configuration

<< Dedal Architecture Description >>
Specification

SAR Module

DescriptorDSLModule

DescriptiorModelToDedalTransformation

CodeExtractionModule

<< Deployment Descriptor DSL File>>
DeploymentDescriptionModel

uses

produces

uses

uses

produces

produces

produces

refines

refines

FIGURE 4.9: Structure of the re-documentation module

4.2. Re-documenting architectures 53

1 /*<beans/> */
2 Configurat ion returns Configurat ion :
3 { Configurat ion }
4 (
5 ’<beans ’>
6
7 [. . .]
8 (components+=Component
9 [. . .]

10) ∗
11 [. . .]
12 (’</beans > ’) ;

FIGURE 4.10: Configuration Xtext-based implementation

been extracted from the deployment descriptors by exploring the code. It then re-
documents the Assembly and Configuration levels and also generates the Specifica-
tion level.

4.2.1 SpringDSL, a DSL for mapping Spring Concepts

As a natural consequence of a model-driven re-documentation process, a model-based rep-
resentation of the deployment descriptor is a starting point for being able to re-document
software as a component-based software architecture. Thus as a proof of concept, we im-
plemented a part of the XML-based grammar of the Spring [Joh+04] deployment descriptor
which we named SpringDSL. The Spring XML grammar has then been implemented us-
ing XText1. Thanks to Xtext, we direcly derived an EMF2-based metamodel of the Spring
language, we as well automatically generated a parsing tool for XML-based Spring deploy-
ment descriptors. Thus, it is possible to automatically get a model of Spring deployment
descriptors through a simple parsing by the Xtext-based tool.

In this part, only the concepts which are useful for the re-documentation process are pre-
sented, the full implementation of the Spring XML-based grammar is presented in Ap-
pendix A.

Figure 4.10 shows the a basic extract of the XML-based Spring grammar. An XML-based
Spring development starts with a < beans > tag and ends with a < /beans > tag. The beans
that constitute the description are declared in this scope. Figure 4.11 shows an extract of
the implemented grammar that describes bean declaration. The bean is declared through
a < bean > tag and may contain one or several names, a class attribute that provides the
information about the instantiated class and also additionnal features. Finally, Figure 4.12
presents the Feature rules which correspond to the set up of components (beans). In order
to inject dependencies, a Property must be declared through the < property > tag, with at

1https://www.eclipse.org/Xtext/ [Last seen 04-08-2018].
2https://www.eclipse.org/modeling/emf/[Last seen 04-08-2018].

54 Chapter 4. Re-documenting component-based software architectures

1 /*<bean/> */
2 Component returns Component :
3 { Component }
4 ’<bean ’
5 ((’ id= ’name=V a l i d S t r in g) ? & (’name= ’ names+=V a l id S t r i ng) ?
6 & c l a s s = CreationMethod
7 & [. . .]
8) (
9 (’/> ’)

10 | (’> ’
11 [. . .]
12 (f e a t u r e s +=Feature | [. . .]) ∗
13 ’</bean> ’)
14) ;

FIGURE 4.11: Component Xtext-based implementation

1 /**Abstract Class of elements present in bean */
2 A b s t r a c t A r t e f a c t returns A b s t r a c t A r t e f a c t :
3 Component | Attr ibuteTag |IdRefTag| ReferenceTag | C o l l e c t i o n ;
4
5 Feature returns Feature :
6 (Property |ConstructorArg) ;
7
8 /*<property/> */
9 Property returns Feature :

10 (’<property ’ ((
11 [. . .] |
12 ((’name= ’ name=V al i d S t r in g) ’> ’ (d e s c r i p t i o n =Descr ipt ion) ? (

a r t e f a c t = A b s t r a c t A r t e f a c t |NullTag) ’</property > ’)
13)
14) ;
15
16 /**Reference create by a tag */
17 ReferenceTag returns Reference :
18 { Reference }
19 ’< r e f ’ ’ bean= ’ r e f = ([A b s t r a c t A r t e f a c t |V a l i d S t r i n g]) (’/> ’| ’> ’ ’</ref > ’) ;

FIGURE 4.12: Reference Xtext-based implementation

4.2. Re-documenting architectures 55

FIGURE 4.13: Excerpt of the SpringDSL Metamodel

least a name and an artefact. The artefact can be of several kinds through the AbstractArte-
fact rule. Then, the Reference rule describes a reference to a bean which corresponds to the
declaration of dependency injection.

All the previously described grammar rules are then automatically derived as the meta-
model extract that is shown in Figure 4.13. In SpringDSL, a Configuration corresponds to a
Spring deployment and a Component corresponds to a bean.

The Spring deployment descriptor in Figure 4.2 is thus transformed into EMF objects such
as introduced in Figure 4.4. Bean tags are transformed into << bean >> objects, their class
attributes as << Class >> objects and their properties as Sets or References according to
the property kind.

Figure 4.4 presents an example of an XML-based Spring [Joh+04] deployment descriptor.
This example is composed of five beans:

• lampDesk and lampSitting, instance of AdjustableLamp

• aClock1, instance of AlarmClock

• securityManager1, instance of SecurityManager, that has a dependency to aClock1 de-
clared in its tag property which name alarm is the name of the injected attribute in the
SecurityManager Java class.

• orchestrator1, instance of HomeOrchestrator which refers lampDesk and lampSitting as its
lights and aClock1 as its clock.

The graphical representation is provided by Sirius 3. This DSL thus eases the transforma-
tion which is made from Spring to Dedal. Indeed, it allows a direct mapping of XML-based
descriptions as EMF objects which can then be mapped as Dedal artifacts through a Model

3https://www.eclipse.org/sirius/ [Last seen 08-23-2019]

56 Chapter 4. Re-documenting component-based software architectures

FIGURE 4.14: Dedal Metamodel Sub-part for M2M transformation

to Model transfomation implemented with the Operational QVT (QVTo4), which is the im-
plementation of the Query View Transformation (QVT) language in the eclipse ecosystem.
It is then possible to get the first Dedal artifacts as explained in next paragraph.

4.2.2 Model to model transformation: from descriptor model to partial Dedal
architecture model

The second step of the proposed reconstruction process (Figure 4.1) consists in transforming
the concepts of the SpringDSL model into Dedal artifacts. To do so, a simple mapping
between the SpringDSL model and Dedal concepts is required.

As stated before, the transformation is implemented in QVT. The full implementation is not
discussed here but can be found in Appendix B.

Comparing the fragment of the SpringDSL metamodel given in Figure 4.13 and the frag-
ment of the Dedal metamodel given in Figure 4.14, it appears that a part of a Dedal model
can be re-documented by only identifying concepts in SpringDSL that correspond to Dedal
concepts. Thus, the mapping is realized as follows:

• a deployment (SpringDSL Configuration) is mapped as a Dedal Assembly, a Dedal Con-
figuration is derived from the set of instantiated classes.

• a bean (SpringDSL Component) is mapped as a CompInstance since it typically is the
declaration of an object instantiation.

4https://projects.eclipse.org/projects/modeling.mmt.qvt-oml [Last seen 04-08-2018].

4.2. Re-documenting architectures 57

FIGURE 4.15: Mapping SpringDSL artifacts into Dedal artifacts

• a Class is mapped as a Dedal CompClass, it is the class that is instantiated by the com-
ponent instance (CompInstance).

• a Reference is mapped into a connection. The bean that holds the reference is considered
as the client while the one that is referenced is considered to be the required server. At
this stage, component interfaces are not known, however the direction of connections
can be deduced from dependency injections. Then, if a bean references another bean,
it is considered as the client and thus the reconstructed component will be the owner
of the required interface implied in the connection. On the other hand, the component
that will be extracted from the referenced bean will own the provided interface that is
the complementary part of the connection.

Figure 4.5 shows the partial Dedal architecture that is mapped thanks to QVTo. Figure 4.15
shows how the mapping is performed following the previously discussed mapping rules.

4.2.3 Extracting information from the object-oriented code

This subsection introduces the proposed methodology for generating missing architectural
information from object-oriented code. The class hierarchy of the HAS example that is im-
plemented in Java, is shown in the UML diagram of Figure 4.3. The HAS project is thus
composed of seven concrete classes, an abstract class and two interfaces.

At the end of the model to model transformation step, the basis of the architecture has

58 Chapter 4. Re-documenting component-based software architectures

(A) HAS Assembly (B) HAS Configuration

FIGURE 4.16: A single provided interface is exposed

(A) HAS Assembly (B) HAS Configuration

FIGURE 4.17: All provided interface are exposed

been re-documented. This step provides a very first and incomplete description of the As-
sembly level by exposing the deployed component instances, the instantiated component
classes and finally the connections which exist between components. The inputs of the re-
documenting algorithm consists in the three Dedal architecture descriptions that are being
reconstructed as well as the set of classes of the project. At this point, information must
have already been provided to the Assembly description through the deployment descrip-
tor analysis (e.g., Spring XML configuration files).

At this step re-documentation follows three main stages. First of all, the Assembly level
is completed by identifying component interfaces from the source code, then the Config-
uration level can be re-documented both from the information that are contained in the
Assembly and the source code. Finally a Specification is generated from the Configuration
level, in accordance with components / classes type hierarchy so that it is consistent with
the Configuration level.

4.2.4 Re-documenting Assembly

First of all, the Assembly level must be fully completed thanks to source code analysis.

4.2.4.1 Mapping component instances

As early reconstructed component instances from the Assembly are not complete, they must
be refined from code inspection. To do so, required component interfaces are identified
from the dependencies which are injected into deployment descriptors. As corresponding
class attributes are known from the dependency injection, it is easy to get required types
from code inspection and by extension, those types are seen as the required interface types.

4.2. Re-documenting architectures 59

Considering the securityManager1 component instance in Figure 4.5, which instantiates the
SecurityManager class (see Figure 4.3), provided interfaces will be calculated from the class
itself. Its alarm attribute type, as it is implied in a connection, will be identified as a required
interface. This will not be the case for the AdjustableLamp class, indeed it has an attribute
named intensity which is not implied in any connection and thus which type will not be
identified as a required interface.

As it is shown in Figures 4.16a and 4.17a there are several equivalent ways to re-document
provided interfaces in Assembly component instances. The first option, shown in Fig-
ure 4.16a, consists in extracting only the coarser grained, and thus most specialized, pro-
vided interface. It means that the component will provide only one interface that will expose
all the services the component provides. This interface corresponds to most universal one in
terms of provided functionalities and connection capabilities. This is the way that guaran-
tees maximal reusability capabilities. Indeed, as the provided interface corresponds to the
more specialized type in the component type hierarchy, then it can be used by any compo-
nent which would require any less specialized type. The second way for extracting provided
interfaces, introduced in Figure 4.17a, consists in exposing several provided interfaces that
correspond to each level of the component type hierarchy. For example the aClock compo-
nent instance that derives from the AlarmClock class in Figure 4.3 exposes three provided
interfaces which correspond to the types AlarmClock, Alarm and Clock. In this case, there is
no need to identify an interface for the IAlarm Java interface since the class bellow (Alarm)
barely implements the interface and does not define a new abstract type. This second solu-
tion is a refinement of the first since it still preserves a maximal reusability of the component
class thanks to its explicit IAlarmClock provided interface, which holds the most specialized
interface type and is thus the most generic provided interface. However, it makes it possible
to handle finer grained connections between components. The goal is to expose all reference
types that can be obtained on component instances as separate provided interfaces. These
reference types correspond to the different abstract types that are implemented by the com-
ponent class. As this approach only takes place in a re-documenting process, no interface
types can be calculated in order to avoid functionality overlapping among them. Indeed,
this would introduce new types that do not exist in the code, which is not possible since
the purpose of this reconstruction is to expose how the software is actually deployed and
implemented. However, to avoid useless redundancy, when the abstract type of a class is
identical to the abstract type of the interface it implements or the superclass it specializes,
only the most specialized provided interface is kept, corresponding to the most specialized
class. This corresponds to classes with only one ancestor, that do not declare any new public
functionality or overload any inherited public functionality.

From this point, the classes which are deployed by the deployment descriptor are seen as
very fine grained components of the architecture, which is coherent with the willing of re-
documenting architectures "as they are implemented". The mapping of the interfaces is
discussed in next subsection.

60 Chapter 4. Re-documenting component-based software architectures

4.2.4.2 Mapping component interfaces

FIGURE 4.18: Dedal Interactions Meta-Model

Figure 4.18 is a subpart of the Dedal metamodel which introduces how interactions are han-
dled by the ADL. An Interaction can be an Interface or a Port. However, since this approach
focuses on a re-documentation that occurs from raw source code and deployment descrip-
tors, only Interfaces are considered. Thus, a Dedal Interface is very similar to the object-
oriented concept of interface. An Interface is composed of a name to be identified within
the component, a direction to provide information about whether it provides of requires
functionalities and a type which is no more than the description of an interface as known in
object-oriented languages in other words, it consists in declaring the set of methods that are
part of the interface type. Signatures correspond to the declared methods of the interface
which themselves contain Parameters.

Algorithm 1 introduces the way interfaces are re-documented from the source code. The
whole class hierarchy is explored in order to extract an interface for each of its super types
and itself. Thus an interface is mapped as follows:

• the interface is been given a direction to identify whether it is required or provided,

• then, it is named for being identified,

• and then, its type is calculated thanks to the procedure MapInterfaceType which maps
the signatures (MapSignature procedure) the interface is composed of from the public
methods of the class.

Figure 4.19 illustrates the way interfaces are mapped from types in the code. Given a
type C, assuming the type hierarchy which is proposed in Figure 4.19 and considering
the re-documentation process as a strict retro-engineering process, each Interface that is
re-documented must correspond to the granularity of the types into the hierarchy. Indeed
it is the only way for ensuring the highest reusability and also the highest proximity to the

4.2. Re-documenting architectures 61

Algorithm 1 Mapping interfaces

Ensure:
1: ∀ interface ∈ result(∀ signature ∈ interface.interfaceType.signatures(

∃method ∈ class.methods, signature.type = method.type∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name))))

2: function MAPINTERFACES(class : Class, direction : DIRECTION)
3: result : Set(Interface)
4: result← {MAPINTERFACE(class, direction)}
5: for all super ∈ class.superTypes do
6: result← result

⋃
MAPINTERFACES(super, direction)

7: end for
8: return result
9: end function

Ensure:
1: ∀ signature ∈ result.interfaceType.signatures(∃method ∈ class.methods,

signature.type = method.type
∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name)))

2: function MAPINTERFACE(class : Class, direction : DIRECTION)
3: result : Interface
4: result.direction← direction
5: result.name← ”I” + class.name
6: result.interfaceType←MAPINTERFACETYPE(class)
7: return result
8: end function

Ensure:
1: ∀ signature ∈ result.signatures(∃method ∈ class.methods,

signature.type = method.type
∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name)))

2: function MAPINTERFACETYPE(class : Class)
3: result : InterfaceType
4: result.name← ”I” + class.name+ ” type”
5: for all m ∈ class.methods do
6: result.signatures← result.signatures

⋃
MAPSIGNATURE(m)

7: end for
8: return result
9: end function

62 Chapter 4. Re-documenting component-based software architectures

FIGURE 4.19: Mapping Dedal Interfaces from type hierarchy

Modifier Class Package Subclass World
public Y Y Y Y

protected Y Y Y N
no modifier Y Y N N

private Y N N N

Y: Yes / N: No

TABLE 4.1: Java access level modifiers [Java]

source code and implementation decisions. This is the reason why each type of the hierar-
chy can be derived as an Interface which includes more generic ones. Thus, for instance a
provided Interface which type is IC1234 can be required by an Interface which type is IC4

or any of its super types. In the situation where an architect decides to reconstruct an archi-
tecture and to expose every component Interface, each of the super types of IC1234 would
be considered as a candidate Interface to replace IC1234 into a Connection.

Discussion. The main intention behind re-documenting component interfaces is to expose
all its API methods. In other words, an interface exposes methods that can be reached by
other components. However, there is not a generic way for identifying methods that are
reachable by other components since, for instance in Java, access modifiers can modify the
way an interface is perceived by its environment and thus the concept of API method differs
according to the point of view. For instance in Java, it is possible to use four different access
modifiers (Table 4.1). Thus in the world point of view the API methods are the public ones
and in the package point of view where API methods are public, protected or have default
access modifier. Then, in the implementation of the algorithm we chose to consider only
public methods in interfaces, however other visibility options are valid for re-documenting
interfaces.

The completion of Connections between components is discussed in the following.

4.2. Re-documenting architectures 63

4.2.4.3 Completion of connections

As it has previously been discussed, the analysis of deployment descriptors is a good way
for identifying connections between components. It is also a good way for identifying the
direction of those connections. However, as it is presented in Figure 4.18, a Dedal Connec-
tion must be set between two Interfaces: a provided one and a required one. For instance, in
Figure 4.5 two connections are identified. A connection exists from orchestrator1 to aClock1
and another one from securityManager1 to aClock1. It means that both orchestrator1 and se-
curityManager1 require an interface that belongs to aClock1. From an object-oriented point
of view, such as UML (Figure 4.3), it means that both HomeOrchestrator and SecurityManager
classes have a relation to the AlarmClock class or one of its super types, in this example they
are respectively linked to Clock and Alarm through their respective clock and alarm proper-
ties. Moreover, those types are both substitutable by AlarmClock.

Then, in the case software re-documentation is performed choosing the first option, which
only represents biggest provided interfaces, the connections can be set directly from re-
quired interface to a single Interface of type IAlarmClock such as proposed in Figure 4.16a.
Required interfaces are derived from the component class type hierarchy, for instance as Se-
curityManager has an association to Alarm, securityManager1 requires an Interface which type
derives from the Alarm class. Finally, as it has been discussed in previous part, if an architect
decides to expose every component Interface, then candidates interfaces are explored for
connecting the required interface to the most generic provided interface such as proposed
in Figure 4.17a where orchestrator1 and securityManager1 are connected to aClock1 through
the exact type they require. This choice is proposed for simplicity and readability’s sake
(separate connections on separate interfaces as much as possible), as the many substitutable
provided interfaces correspond to the same method implementation (we consider polymor-
phic substitution, as implemented in Java and defined in standard object-orientation).

4.2.5 Re-documenting Configuration from Assembly

The second step of the re-documentation process consists in deriving a Configuration from
the previously re-documented Assembly.

4.2.5.1 Identifying component classes from component instances

In the first place, all concrete component classes in the Configuration must be identified
from the Assembly level. This identification comes naturally since deployment descrip-
tors embed the names of the classes that are instantiated. Thus component instances from
the Assembly also embed the reference to the CompClasses which are instantiated. For
instance, Figure 4.5, exposes the instantiation relations between component instances from
the Assembly level and the component classes which they instantiate. Those relations are
directly identified from deployment descriptors.

64 Chapter 4. Re-documenting component-based software architectures

Then component classes can be re-documented and their information completed through
the analysis of source code and component instances from the Assembly. To do so, the com-
ponent Interfaces of Configuration component classes are derived from the corresponding
component instance Interfaces. Indeed, the relation between component classes and compo-
nent instances is no more than an instantiation relation, thus component interfaces of com-
ponent instances are instances of the ones belonging to component classes. As it is shown in
Figures 4.16b and 4.17b the choice that is made at Assembly reconstruction step for expos-
ing a single or several provided interfaces will impact the provided interface multiplicity of
component classes into the Configuration.

Identification of connections is discussed next.

4.2.5.2 Identifying Configuration connections

Once component classes are reconstructed, connections must be set. They are derived from
the ones which exist in Assembly level. To do so, Assembly connections are simply copyied
between instantiated component classes such as presented in Figures 4.16 and 4.17 where,
for instance, the connection between orchestrator1 and securityManager1 (Figures 4.16a and 4.17a)
is copied between HomeOrchestrator and SecurityManager (Figures 4.16b and 4.17b). How-
ever in some cases, a component instance might be connected, through a same required in-
terface, to multiple component instances that belong to the same component type (the com-
ponent type used to define the required interface). This case is illustrated in Figures 4.16a
and 4.17a with orchestrator1 that is connected to two component instances, lampSitting and
lampDesk that both instantiate the AdjustableLamp component class (Figures 4.16b and 4.17b).
In such a case, these multiple connections between component instances are modeled as one
connection between component classes into the Configuration (in architecture configuration
models, connections correspond conceptually to connection classes that are instantiated in
Assemby models).

4.2.6 Re-documenting Specification

Finally the last step of the re-documentation process consists in deriving a Specification
from the previously re-documented Configuration.

4.2.6.1 Mapping component roles

As discussed before, in Dedal, the Specification level corresponds to an abstract description
of the implementation. It is a more generic description that is derived from the Configura-
tion level. Thus, in order to re-document a more generic architecture level, it is necessary to
get the more generic component roles that are realized by component classes from the Con-
figuration. To do so, the type hierarchy of those component classes must be traversed. In
other words, component roles are generated by analyzing the type hierarchy of the classes
which are present in the source code.

4.2. Re-documenting architectures 65

FIGURE 4.20: Example of Role Hierarchy based on the HAS Example

Thus in the first place, all potential component roles need to be mapped. They will next
be analyzed to get the restrained set of component roles which are actually realized by the
component classes from the Configuration. Component Interfaces at Specification level are
then mapped following the same principles than component Interfaces in Configuration
and Assembly. Figure 4.20 shows which roles can be reconstructed from AlarmClock class
and its type hierarchy. Then four component roles can be reconstructed from the Alarm-
Clock. This figure also introduces how those component roles are named. In order to avoid
name confusion with Configuration component classes which correspond to the actual im-
plementation of component roles, if a role is derived from a concrete type which means it
derives directly from an actual implementation then the name of the type from which de-
rives a component role must be completed by a suffix : " role". However if it derives from
an abstract type such as an interface or an abstract class, then there is no need to modify
the type name since those types cannot correspond to component classes at Configuration
level.

4.2.6.2 Identification of component roles

The next step of the Specification reconstruction consists in determining among all potential
component roles for each component class in the configuration which ones are realized (or
not) by the component class. A component role or a set of component roles is realized by
a component class if and only if all its required interfaces are preserved as well as all its
provided interfaces which are involved into connections with other components.

Algorithm 2 introduces the mapping and identification of component roles. In order to ex-
tract component roles from a component class, the type hierarchy of the component class is
traversed and a role is mapped for each of these types. Then, at each type hierarchy level
and for each potential component role, a "contract" is calculated. A "contract" is composed of

66 Chapter 4. Re-documenting component-based software architectures

Algorithm 2 Mapping Component Roles

Ensure:
1: ∀ role ∈ result((∀ interface ∈ role.componentInterfaces(

∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))

2: ∀ reqInterfaceType ∈ contract.first(∃ role ∈ result,
role.getAllRequiredTypes().contains(reqInterfaceType))

3: ∀ provInterfaceType ∈ contract.second(∃ role ∈ result,
role.getAllProvidedTypes().contains(provInterfaceType))

4: function MAPCOMPONENTROLES(
contract : Pair(Set(InterfaceType), Set(InterfaceType)),
class : Class) : Set(ComponentRole)

5: if ¬class.hasSuperType() then
6: return {MAPCOMPONENTROLE(class)}
7: end if
8: result : Set(ComponentRole)
9: for all superType ∈ class.superTypes do

10: result← result
⋃

MAPCOMPONENTROLES(
SPLITCONTRACT(superType, contract), superType)

11: end for
12: if SATISFYCONTRACT(roles, contract) then
13: return result
14: else
15: return {MAPCOMPONENTROLE(class)}
16: end if
17: return result
18: end function

4.2. Re-documenting architectures 67

FIGURE 4.21: Identifying realized Component Roles

the component interfaces that must be preserved to ensure the coherence between the Con-
figuration and Specification levels (see Section 2.3). Then, the set of realized component
roles contains the only component types which comply with the initial contract calculated
from the component class. Figure 4.21 illustrates the process. The component class type
from which the component role is extracted is component A. A contract is calculated for A
that corresponds to the set of interfaces to preserve. Then, its hierarchy is traversed, con-
tracts are recalculated at each type level and finally the set of realized component roles is
extracted. For instance, as it is introduced in Figure 4.17b, AlarmClock is connected through
IAlarm and IClock then when identifying its realized component roles, those two Interfaces
need to be preserved. Now considering Figure 4.20, component role (a) satisfies the contract
through its Interface IAlarmClock which specializes IClock and IAlarm. At the next hierar-
chy level, component role (b) realizes a part of the contract through its IAlarm Interface and
component role (c) realizes the other part through IClock. Component roles (b) and (c) satify
the contract. Thus component role (d) still needs to be checked, then a new contract is calcu-
lated from the subpart of the contract which is realized by component role (b). This contract
is composed of the IAlarm provided Interface. As component role (b) is an implementation
of the abstract type (d), then component role (b) is replaced by component (d) in the set
of realized components. It cannot be the same with HomeOrchestrator role (see Figure 4.23)
that requires SecurityManager role and which has no super type that preserves this required
interface.

4.2.6.3 Identification of connections and representation of the Specification

Finally, the last step of the Specification reconstruction consists in connecting component
roles. Figure 4.22 introduces how connections are identified from the Assembly level and

68 Chapter 4. Re-documenting component-based software architectures

FIGURE 4.22: Connecting Component Roles

copied into the Specification. A basic mapping is done between the realized components
roles of two connected component classes, using the types of their interfaces.

(A) Considering Only Existing Types in the Source Code

(B) Avoiding to Use Existing Types, Even Abstract
Types (C) Mixing Both Representations

FIGURE 4.23: HAS: Reconstructed Specification

Figure 4.23 introduces three different possible and equivalent Specification re-documentation
results. Indeed, as it is the case for Configuration and Assembly re-documentation, it is pos-
sible to parameterize the re-documentation process of the Specification. In Figure 4.23a, the
architect has chosen to re-document the Specification level by only using the types which
exist into the source code. With this option, all the provided Interfaces (even unconnected)
are kept in the component so it strictly corresponds to a type into the source code. However,
both following propositions (Figures 4.23b and 4.23c) consider that, as component roles are
meant to be the most abstract component types, it is not always possible to find them into

4.3. Generalization 69

the source code so they describe the essential of the Specification. This is why those op-
tions get rid of unconnected provided Interfaces. Figure 4.23b introduces the case where
all component roles must be as abstract as possible, thus types from source code are not
reused as they are to define component roles (e.g., Clock that becomes Clock role). Finally,
Figure 4.23c introduces the inbetween representation which states that if the most abstract
type for describing a component role exists in the code then it must be used as component
role, however if it does not exist then it is calculated as it is done in Figure 4.23b. However,
in this final representation, if the most abstract component corresponds to a concrete type,
then it cannot be kept as is, in order to avoid type confusion with component classes from
the Configuration.

4.3 Generalization

This section discusses how the approach can be generalized.

4.3.1 Discussion

Despite the fact that the previous description of the re-documentation process is oriented on
Java and Spring framework, it is actually suitable for other technologies since this approach
is meant to be as generic as possible. Indeed, only few features are required for being able
to re-document an architecture.

First of all the approach needs at least a kind of deployment descriptor. In the running ex-
ample, Spring framework is used, however this technology is not mandatory for describing
a deployment. As discussed previously a deployment descriptor must provide three kinds
of information which are:

• the instances that compose the architecture,

• the classes which are instantiated,

• dependency injections.

Then as long as a deployment descriptor provides these information, it is suitable for the
re-documentation process.

Secondly, the language is not fixed, the example targets Java but any other typed object-
oriented language would fit the re-documenting process since object-oriented technologies
provide inheritance mechanisms and type hierarchies that are highly used for retrieving
abstract component roles.

Re-documenting algorithm is discussed in next subsection.

70 Chapter 4. Re-documenting component-based software architectures

4.3.2 Algorithm

As the run of the algorithm has been described through the HAS example, this subsection
does not introduce the whole algorithm which can be found in Appendix C. However, it
discusses the generic specification of the main algorithm.

As it has been discussed in previous parts, the input of the re-documentation algorithm
is the result of a model to model transformation from a deployment descriptor model to
a Dedal model. Also, it has been discussed that a deployment descriptor must provide
at least few information which are the instances, the modules which are instantiated and
dependency injections. Thus, after a model to model transformation to the Dedal ADL,
the resultant Dedal model must contain an Assembly that contains component instances,
a Configuration that contains component classes and a set of classes from the source code
which must not be empty. The Assembly and Configuration architecture descriptions must
also contain connections for which source (client attribute) and target (server attribute) are
known. However, this input Dedal model, cannot contain neither an interface into compo-
nent instances / classes nor a role into its Specification level. Those are the pre-conditions
of Algorithm 3. Those pre-conditions also specify that each component of the given Con-
figuration must be instantiated (see line 5) and each connection that exists in the Assembly
must exist into the Configuration (see line 6). Those last two rules ensure a part of the co-
herence of the Dedal model which are described in previous works [Mok+16b]. Indeed, as
it has been described earlier, to be coherent, all component classes from the Configuration
level must be instantiated into the Assembly level, and each connection that exists into the
Configuration must also be instantiated into the Assembly.

Finally at the end of the re-documentation, the obtained Dedal model must comply with
coherence principles between the three architecture levels. To do so, it must ensure that
component classes interfaces are instantiated into component instances so the component
instances are specialized component classes. All roles from the specification must be real-
ized by component classes, connection must be set with the involved interfaces in addition
to their client and server components and finally all the connections which exist into the
Specification must be implemented into the Configuration.

Thus, the re-documented three-leveld component-based architecture satisfies all the type
constraints which make it consistent and thanks to this it is now possible to maintain this
documentation all along the evolution of the software. More over, the strict type theory on
which Dedal ADL is based makes it possible from now to detect defaults such as drift or ero-
sion of the software as early as possible. Indeed those defaults imply a lose of coherence and
thus architects can be warned and act in consequence, for instance by stopping their change
or even propagating them among the three architecture levels so as the documentation to
remain consistent [Mok+16b].

4.3. Generalization 71

Algorithm 3 Main re-documentation algorithm

Require:
1: ∀ s ∈ {specification.componentRoles, specification.roleConnections}, s = ∅
2: ∀ s ∈ {classes, assembly.componentInstances, assembly.instanceConnections,
configuration.componentClasses, configuration.configConnections}, s 6= ∅

3: ∀ compInst ∈ assembly.componentInstances, compInst.compInterfaces = ∅
4: ∀ compCl ∈ configuration.componentClasses, (compCl.compInterfaces = ∅)

∧ (compCl.attributes = ∅)
5: ∀ compInst ∈ assembly.componentInstances,

(configuration.componentClasses =
⋃
i
compInsti.instantiates)

6: ∀ ac ∈ assembly.assemblyConnections, (∃ cc ∈ configuration.configConnections |
ac.clientElem.instantitates = cc.clientElem

∧ ac.serverElem.instantitates = cc.serverElem)
Ensure:

7: ∀ compInstance ∈ assembly.compInstances(
(∀ instanceConnection ∈ instanceConnections,
instanceConnection.serverInterface � instanceConnection.clientInterface))

∧
(∀ interface ∈ compInstance.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))))

8: ∀ compClass ∈ configuration.compClasses(
(∀ interface ∈ compClass.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name))))))∧

(∀ attribute ∈ compClass.attributes(∃ class ∈ classes(
∃ attr ∈ class.attributes, attribute.type = attr.type

∧
attribute.name = attr.name)))

9: ∀ compClass ∈ configuration.compClasses, (compClass.realizes 6= ∅)
∧(∀ role ∈ compClass.realizes, (compClass � role)

10: ∀ role ∈ specification.specComponents(
(∀ interface ∈ role.componentInterfaces(
∃ class ∈ classes(
∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name))))))∧

(∃ c ∈ classes | ∀ interface ∈ role.componentInterfaces,
interface.signatures ⊆ c.methods))

72 Chapter 4. Re-documenting component-based software architectures

11: procedure MAPARCHITECTURELEVELS(assembly : Assembly,
configuration : Configuration,
specification : Specification,
classes : Set(Class))

12: MAPCOMPONENTINSTANCES(classes, assembly.assmComponents)
13: MAPASSEMBLYCONNECTIONS(classes, assembly.assemblyConnections)
14: MAPCOMPONENTCLASSES(classes, assembly.assmComponents,

configuration.configComponents)
15: MAPCONFIGCONNECTIONS(classes, configuration.configConnections

assembly.assemblyConnections) /* identified during M2M transformation */
16: specification.componentRoles← BUILDCOMPONENTROLES(

classes, configuration.componentClasses,
configuration.configConnections)

17: specification.specConnections← MAPSPECCONNECTIONS(
configuration.configConnections)

18: end procedure

4.4 Conclusion

This chapter introduced a generic way for re-documenting three-leveled component-based
software architectures from object-oriented code and deployment descriptors. The re-docu-
menting architecture is based on Dedal ADL which is especially tailored for managing soft-
ware evolution. Moreover the type theory on which it is based ensures a good management
of the architecture consistency. On a conceptual point of view, it proposes to re-document
software as they are implemented through three-leveled component-based software archi-
tectures. On a technical point of view, it proposes an algorithm to re-document object-
oriented software that use deployment descriptors. The proposed algorithm is meant to be
generic and adaptable to any object-oriented technologies and deployment descriptor tech-
nologies. It answers research question RQ1: It is possible to re-document multi-abstraction
level component-based architectures from source code, and it is possible to retrieve abstract
design decisions from this re-documentation. However this approach presents several lim-
itations. First, it only re-documents static aspect of software. In future work, the process
should include also include a dynamic analysis to consider all the architecture aspects. Sec-
ond, from a technical point of view, we chose to identify smallest roles as possible. However,
this choice can be discussed. Dynamic analysis is needed in order to make more accurate
choices about type decoupling. Future work should address this issue. Finally, SpringDSL
is not taking all the Spring language into account for now. Thus, future work should enable
to take all the language into account.

The next step is now to re-document the history of software project using Dedal and to
formalize the concept of version so it can be extended with semantics which consider how
the architecture evolved in the past.

73

Chapter 5

Versioning component-based software
architectures

Contents
4.1 Process overview . 48

4.1.1 Inputs . 48

4.1.2 Process . 50

4.1.3 Output . 51

4.2 Re-documenting architectures . 52

4.2.1 SpringDSL, a DSL for mapping Spring Concepts 53

4.2.2 Model to model transformation: from descriptor model to partial
Dedal architecture model . 56

4.2.3 Extracting information from the object-oriented code 57

4.2.4 Re-documenting Assembly . 58

4.2.4.1 Mapping component instances 58

4.2.4.2 Mapping component interfaces 60

4.2.4.3 Completion of connections 63

4.2.5 Re-documenting Configuration from Assembly 63

4.2.5.1 Identifying component classes from component instances . 63

4.2.5.2 Identifying Configuration connections 64

4.2.6 Re-documenting Specification . 64

4.2.6.1 Mapping component roles 64

4.2.6.2 Identification of component roles 65

4.2.6.3 Identification of connections and representation of the Spec-
ification . 67

4.3 Generalization . 69

4.3.1 Discussion . 69

4.3.2 Algorithm . 70

4.4 Conclusion . 72

74 Chapter 5. Versioning component-based software architectures

During its evolution, a software is subject to numerous changes. Those numerous changes
lead to numerous versions of the software. In order to keep track of this evolution and
record a trace of software history, it is necessary to identify its versions. As it has been dis-
cussed in Section 3.1, lot of work has been lead on versioning software. However, few work
deals with adding verifiable semantics in version identification and versioning component-
based software architectures. Finally, none of those work deal with propagating versions
in component-based software architectures. Thus this chapter proposes an approach for
identifying and characterizing versions using type-based semantics and also proposes an
approach for performing version propagation in the context of multi-leveled architecture
descriptions.

5.1 Semantics in versioning

This section presents versioning as it is performed by most common version control systems
and discusses a coarse grained approach, based on history, for representing component and
architecture evolution.

5.1.1 Definitions and notations

Notations. The used notation is as follows.
T1 ≺ T2: T1 is a subtype of T2.
T1 � T2: T1 is a subtype of T2 or equal to T2.
T1 � T2: T1 is a supertype of T2. It is equivalent to T2 ≺ T1
T1 � T2: T1 is a supertype of T2 or equal to T2. It is equivalent to T2 � T1
T1 ‖ T2: T1 is not comparable to T2.
(T1 � T2) ⇔ ¬(T1 � T2) ⇔ ((T1 � T2) ∨ (T1 ‖ T2)): T1 is either a supertype of T2 or not
comparable to T2.
(T1 � T2) ⇔ ¬(T1 � T2) ⇔ ((T1 ≺ T2) ∨ (T1 ‖ T2)): T1 is either a subtype of T2 or not
comparable to T2.
T2 # T1: T2 replaces T1.

Version: A version of an evolving artifact represents a particular state of this artifact at a
given time [CW98]. The term artifact covers any versionable object such as a file, software
object, component, architecture. A versioned artifact is an artifact which is put under ver-
sioned control and thus which states are maintained. In contrast, an unversioned item only
considers its last state and performs changes by overwriting its current state. The difference
between two versions is called a delta. An item version must be identifiable.

History: An artifact history is the record of all the states / versions of this artifact through
its evolution.

5.1. Semantics in versioning 75

Backward compatible version: An artifact version is said backward compatible if it can
substitute its older version. For a new component version Cnew, being backward compatible
with its older version Cold means that Cnew � Cold. In other words, if Cnew is subtitutable
for Cold then it is backward compatible.

5.1.2 Traditional versioning

FIGURE 5.1: Traditional versioning

Traditionally versions are represented as a directed acyclic graph [CW98]. Nodes are artifact
successive versions and edges represent the derivation relations that show the anteriority of
artifact versions. Three kinds of versions can be identified [CW98]:

• revisions which intend to replace previous versions,

• variants which intend to be alternative versions that are not meant to replace previous
versions but to provide alternative versions of the same component according to the
developer / architect needs.

• and cooperation versions which intend to support collaborative work.

Then those versions must be identified. To do so versions are tagged (see Section 3.1) with
a textual identifier since it is an easy and human readable way to identify versions. A very
common way for tagging versions is the one proposed in Semantic Versioning 2.0.01. Ver-
sions are labeled with a sequence of three numbers <major.minor.build> that corresponds
to the type of version that is released. The number meanings are as follows :

• <major> stands for the major version identifier and is incremented when version
changes make them incompatible.

1https://semver.org/#semantic-versioning-200.[last seen 2019.07.03]

76 Chapter 5. Versioning component-based software architectures

• <minor> stands for the minor version identifier and is incremented when version
changes preserve backward compatibility, such as addition of functionality.

• <build> version identifier is incremented for backward compatible bug fixes, patches. . .

Thus developers / architects can at first sight know whether a new artifact version is back-
ward compatible with its older version and which kind of modifications were made. Ad-
ditional labels may be used to identify version branches, pre-releases etc.. Such version
tagging then makes it possible to precisely identify compatibility of artifact versions. Fol-
lowing the version graph introduced in Figure 5.1, variant branches are identified into the
version tag with a prefix (e.g., v1, v2, v3) and versions are tagged independently on their
own branch. Successive versions on a single branch are revisions, while leaves of branches
are variants. Thus artifact versions v2-1.0.0 and v1-2.0.0 are variants since they are leaves
on their branches, however v3-1.1.0 is not a variant since it as been revised by v1-2.0.0 by a
merge operation between v1-1.2.0 and v3-1.1.0. Finally, following Semantic Versioning 2.0.0,
it is possible to identify with its label that v1-2.0.0 is not backward compatible with v1-1.2.0.
However no information is provided about backward compatibility with v3-1.1.0 which is a
predecessor but on another variant branch.

5.1.3 Problems of current version management systems

As it has been stated before, despite an abundant literature in the field of versioning (see
Section 3.1), no approach exists that aims at versioning multi-leveled component-based ar-
chitectures. Moreover nowadays most important version manager systems such as GitHub2,
SVN3 etc.. do not consider any kind of semantics in the identification of versions. Indeed,
current version management systems only consider textual changes of versioned artifacts.
It is useful for being able to version a large amount of different artifacts, however it gets
hard for developers / architects to ensure the meaning of their version tags. In other words,
despite the fact that the common version tagging identifies build, minor and major versions,
there is no formal way to verify that a version is well identified since it is up to the devel-
oper / architect to state about it. This lack of semantics may lead to numerous problems
which especially relate to the backward compatibility of the new version.

In the context of component-based software architectures, a new version of a component
may be backward compatible with its old version. It means that the change to this new
component version may not critically impact the architecture. However, if the new com-
ponent version is not backward compatible, then it may raise several issues on the existing
software. The architect could, for instance, release a build of a component (after fixing a
bug for example), believing it is backward compatible, and introduce without knowing it
a technology gap that can break the architecture. This is why versioning needs verifiable
semantics.

2https://github.com [Last seen - 2019/08/29]
3https://subversion.apache.org/ [Last seen - 2019/08/29]

5.1. Semantics in versioning 77

5.1.4 Substitutability-based versioning

In the context of software components, it is possible to enhance Semantic Versioning ap-
proach with the automatic versioning approach developed by Bauml and Brada [BB09]. In
their approach they also use the same version tag pattern, however they base the automatic
increment on the effect of the source code change on the type of the component. Thus they
define four differences between component types which are:

• None : Cnew is of same type as Cold thus Cnew is backward compatible with Cold. In this
case, the <build> number is incremented.

• Specialization : Cnew ≺ Cold which means thatCold is specialized byCnew and thusCnew

is backward compatible with Cold. In this case, the <minor> number is incremented.

• Generalization : Cnew � Cold which means that Cold is generalized by Cnew and thus
Cnew is not backward compatible with Cold. In this case, the <major> number is in-
cremented.

• Mutation : Cnew ‖ Cold which means that there is no type relation between Cold and
Cnew due to a mutation and thus Cnew is not backward compatible with Cold. In this
case, the <major> number is incremented.

FIGURE 5.2: Substitutability-aware versioning

Thus the work of Bauml and Brada is directly applicable to components at each of the Dedal
architecture description level (Assembly, Configuration, Specification). Indeed, Dedal con-
tains a set of strict and formal rules [Mok+16b] which are based on type theory [Aré+07] as
discussed in Section 2.3. Those rules ensure that the three architecture description levels of
the ADL are coherent at each level and consistent to one another. Thus those type-based
rules formally frame the concept of component and architecture substitutability and make

78 Chapter 5. Versioning component-based software architectures

it possible to define version graphs such as presented in Figure 5.2. In this figure, a classical
version graph is presented since versions are defined from derivation relations. However,
this graph introduces the notion of substitutable derivation. A component version that is
substitutable for its previous version must verify that:

• its required interface types are either super types or equal to the previous required
interface types,

• its provided interface types are either subtypes or equal to the previous provided in-
terface types,

• its own type is either a subtype or equal to the previous component type.

Moreover, component versions are numbered following Brada and Bauml principle, which
ensures the meaning of version tags for further understanding by developers or architects.

This simple version graph and concepts thus make it possible to version components at a
single architecture description level. Such a version graph can be reused then for versioning
components at multiple abstraction levels.

5.1.4.1 Versioning components at multiple abstraction levels

FIGURE 5.3: Multilevel component versioning

Figure 5.3 shows two version graphs that correspond to two abstraction levels of compo-
nent descriptions (a component role at the Specification level and a component class at the
Configuration level). As it is shown in this figure, components follow their own evolution
process and are not necessarily versioned neither in the same time, nor in the same way.
Thanks to the notion of substitutability, it is possible to navigate into the version graph and
to instantly know if some version of a component role is realized by a component class or if
a component class realizes a component role.

5.1. Semantics in versioning 79

FIGURE 5.4: Finding transitively realized roles using substitutability

Considering the transitive substitutability relation, as it is shown in Figure 5.4:
Given two component rolesR1 andR2 and two component classes C1 and C2, and given the
following subtype relations : R2 � R1 and C2 � C1.
If C1 realizes R1 then C2 also realizes R1.
If C2 realizes R2 then C2 also realizes R1.

For instance in Figure 5.3, component class C-v1-1.0.0 realizes component role R-v1-1.0.0,
moreover, it is easy to find out that component class versions C-v1-1.0.1, C-v1-1.0.2, C-v1-
1.1.0 also realize the same component role since they all are substitutable for component
class C-v1-1.0.0. In the opposite direction, component class C-v1-2.0.0 realizes component
role R-v1-2.0.0 but also its previous versions R-v3-1.1.0 and R-v3-1.0.0. Thus, adding infor-
mation about version semantics into the version graph makes it possible to infer compati-
bility properties of given elements with all their predecessors. Now we can transpose this
concept at architecture description levels.

5.1.4.2 Versioning multiple component-based architectures description levels

FIGURE 5.5: Multilevel architecture versioning

In addition to components, it is also possible to version architecture levels of Dedal. In-
deed, as architecture levels are related to types, it is also possible to apply substitutability

80 Chapter 5. Versioning component-based software architectures

FIGURE 5.6: Finding transitively implemented Specifications using substi-
tutability

principles between two architecture levels. Therefore, the same semantics centered on retro-
compatibility of architecture levels can be applied between their successive versions. As it
is shown in Figure 5.5, versions of architecture levels may evolve independently, however
as previously presented with realized component roles, all the implementations of a Speci-
fication version can be identified automatically as well as all the Specification versions that
are being implemented by a Configuration version.

As previously and because substitutability principle also applies to architecture description
levels (as they are also types) implementation relations can be transitively discovered as
shown in Figure 5.6.
Given two Specifications Spec1 and Spec2 and two Configurations Config1 and Config2,
and given the following subtype relations : Spec2 � Spec1 and Config2 � Cconfig1.
If Config1 implements Spec1 then Config2 also implements Spec1.
If Config2 implements Spec2 then Config2 also implements Spec1.

Thus, in Figure 5.5, because Specification Spec− v1− 1.0.1 is substitutable for Specification
Spec− v1− 1.0.0, Spec− v1− 1.0.0 is implemented by Config − v1− 1.0.0.

Then it is time to consider whole three leveled component-based architectures.

5.1.4.3 Versioning three-leveled component-based architectures

Finally, as it is shown in Figure 5.7, a third point of view may be versioned, which corre-
sponds to the whole architecture itself composed of the three architecture description levels.
As previously, version substitutability can be applied. In this point of view, each archi-
tecture version is composed of three architecture level descriptions that follow their own
version history while they are also composed of components that can have their own his-
tories. Version tags are not necessarily related one to another between each point of view
(component, architecture level, whole architecture).

5.2. Identification of architectural changes, version characterization 81

FIGURE 5.7: Dedal three-leveled architecture versioning

5.2 Identification of architectural changes, version characterization

The previous section introduces a very generic way for identifying and representing com-
ponent / architecture versions. It also shows how it is possible to automatically visualize
backward compatibility of those versions all along their history. Thus in order to ensure
the meaning of such representation, the derivation relation identification as well as version
numbering must be supported by a strong, automatic and verifiable process. Then this
section discusses which are the architectural changes that are relevant for studying substi-
tutability of components / architectures. This identification of architectural changes is based
on previous work of Mokni et al. [Mok+16a] in the context of a formal architecture evolution
implemented with language B [Abr96].

5.2.1 Identifying and categorizing component-based architecture changes

First of all, it is necessary to identify which architectural changes may occur. There are three
types of changes: changes that occur at the component level, changes that occur at one of the
three Dedal architecture description levels and changes that occur in the global architecture.

Changes at component level: At component level, relevant changes concern interfaces
and component attributes (for component classes). Component attributes may be added,
deleted, or replaced as may be component interfaces. Moreover, changes may occur into

82 Chapter 5. Versioning component-based software architectures

interface type descriptions which are signature addition, deletion and replacement. Finally,
a parameter of a signature may also be added, deleted or replaced.

Changes at one of the three Dedal architecture levels: At Dedal architecture description
levels, relevant changes concern components and connections that can be added, deleted or
replaced. At this level, changes which occur at component level are considered as compo-
nent replacement since a new version of a component replaces its previous version.

Changes at the whole architecture level: At global architecture level, relevant changes
concern architecture description levels (Assembly, Configuration and Specification) re-
placements. As previously, changes that affect architecture levels are considered as replace-
ments since a new version of an architecture level replaces its previous version.

5.2.1.1 Type-based architectural changes categorization

The substitutability relation has already been formalized in Dedal. Table 5.1 summarizes
the changes that can affect the architecture and categorizes them according to the substi-
tutability of the new artifact version (substitutable or non-substitutable). Thus, this table
gives the rules that characterize versions for components, architecture levels and the whole
architecture, according to the kind of change that is performed. As Dedal types are based on
the work of Arevalo et al. [Aré+07] which derives from the type theory defined by Liskov an
Wing [LW94], substitutability concepts that are defined in Dedal also derive from this the-
ory. Thus parameters in interface signatures follow contravariance principles as do required
interfaces, while for the other Dedal artifacts being substitutable for another artifact means
being a subtype of the substituted artifact.

In Dedal, versionable artifacts are as follows:

• Components which can be of three different types (CompInstance, CompClass and
CompRole),

• ArchitectureDescriptions which can also be of three types (Assembly, Configuration
and Specification) and

• DedalDiagram which is the global model that contains the three architecture descrip-
tion levels.

With this in mind, the conditions that are listed in Table 5.1 make it possible to fully automate
the component, architecture levels descriptions and even whole three-leveled architectures
are versioned. Indeed, following the proposition of Bauml and Brada [BB09], by applying
their approach to Dedal, the differences they identify can be identified as follow:

• None: means that the type has not changed, this can typically be the case when the
core of a method has changed without changing its signature or when a component
instance is initialized differently. The kind of change that leads to such outcome is
not listed in Table 5.1 since it is not a structural change that affects the architecture.

5.2. Identification of architectural changes, version characterization 83

Substitutable Non-substitutable
Interface signatures

Parameter replacement:
paramnew � paramold

Parameter replacement:
(paramnew ‖ paramold)∨

(paramnew � paramold)
Parameter deletion Parameter addition

Interface type
Signature replacement:
signew � sigold

Signature replacement:
(signew ‖ sigold))∨

(signew � sigold)
Signature addition Signature deletion

Provided Interface
Interface Type replacement:
Int typenew � Int typeold

Interface Type replacement:
(Int typenew ‖ Int typeold)∨

(Int typenew � Int typeold)
Required Interface

Interface Type replacement:
Int typenew � Int typeold

Interface Type replacement:
(Int typenew ‖ Int typeold)∨

(Int typenew � Int typeold)
Component

Attribute replacement:
attrnew � attrold

Attribute replacement:
(attrnew ‖ attrold)∨

(attrnew � attrold)
Attribute addition Attribute deletion
Provided Interface addition Provided interface deletion
Provided Interface replacement:
Intnew � Intold

Provided interface replacement:
(Intnew ‖ Intold)

∨
(Intnew �

Intold)
Required interface deletion required interface addition

Component
changes

Required interface replacement:
Intnew � Intold

required interface replacement:
(Intnew ‖ Intold)

∨
(Intnew �

Intold)

Architecture description level
component replacement :
componentnew � componentold

component replacement:
(componentnew ‖ componentold)∨

(componentnew �
componentold)

Component addition Component deletion
Connection replacement:
(Intserv−new � Intserv−old)∧

(Intclient−old � Intclient−new)

Connection replacement:
(Intserv−new � Intserv−old)∨

(Intclient−old � Intclient−new)

Architecture
level
changes

Connection addition Connection deletion
Global Architecture

Assembly replacement:
asmnew � asmold

Assembly replacement:
asmnew � asmold

Configuration replacement:
(confignew � configold)∧

(confignew � asm)

Configuration replacement :
¬[(confignew � configold)∧

(confignew � asm)]

Global Ar-
chitecture
changes

Specification replacement:
(specnew � specold)∧

(specnew � config)

Specification replacement :
¬[(specnew � specold)∧

(specnew � config)]

TABLE 5.1: Substitutability-based architectural changes

84 Chapter 5. Versioning component-based software architectures

However, if such a change occurs then the<build> number is incremented to give de-
velopers / architects information about the change. And consequently if a component
<build> number is incremented, then the containing architecture <build> number
is also incremented and then the three-leveled architecture <build> number is also
incremented.

• Specialization: means that the new artifact version is a subtype of its previous version.
It happens in case of any substitutable change listed in Table 5.1. In this case, the
<minor> number of considered versioned artifact is incremented.

• Generalization: means that the new artifact version is a super-type of its previous ver-
sion. In this case, the <major> number of considered versioned artifact is incre-
mented.

• Mutation: means that the new artifact version is neither a subtype nor a super-type
of its previous version. In this case, the <major> number of considered versioned
artifact is incremented.

Then, as identifying versions becomes possible following these rules, it is necessary to define
a version meta-model that embeds those concepts.

5.2.2 Version meta-model

In the previously discussed versioning approach, it is easy to identify backward compatible
components or architectures on a same variant branch on the basis of their version number.
However, such identification of backward compatible artifacts between variants cannot be
realized in the same way. An easy way to represent backward compatibility in this case is
a visual representation such as introduced in Figure 5.2. To do so we define a meta-model
that is designed to fully represent version derivation links.

Figure 5.8 presents the proposed meta-model for representing versions with their seman-
tics. An History is composed of AbstractBranches and Precedence relations. An Abstract-
Branch represents version branches. It can be of two types, WorkingBranch for representing
branches that are not necessarily designed to contain releases, and Variant that is designed
to represent a branch which last artifact version is a variant of another Variant branch last
artifact version. An AbstractBranch is thus composed of AbstractArtifacts that can be any
kind of versionable artifact and a Tag for identifying branches. A Precedence relation can
be of two types. BranchPrec connects two AbstractBranches that play the respective roles
of predecessor and successor. It stands for representing precedence of branches in order to
keep track of branch history itself. Precedence can also be of type ArtifactPrec for repre-
senting derivation relations between AbstractArtifact (versions). Moreover, in order to add
semantic to the derivation relation between versions, ArtifactPrec can also be of type Retro-
compatibleArtifactPrec that is designed to represent the precedence relation between a suc-
cessor that is substitutable for its predecessor. In an ArtifactPrec the successor is considered as
a revision of its predecessor if its belongs to the same AbstractBranch. Finally, an Abstrac-
tArtifact also contains a Tag for being identified within its AbstractBranch. Thus variants

5.2. Identification of architectural changes, version characterization 85

FIGURE 5.8: Metamodel for semantic versioning

FIGURE 5.9: Dedal versionable artifacts

of an artifact are identified with a unique identifier composed of the AbstractBranch Tag as
a prefix followed by the AbstractArtifact Tag. Thus, thanks to this metamodel, it is possible
to semantically version three-leveled Dedal architectures.

5.2.3 Three-leveled version meta-model

As it has been discussed before, semantic versioning can be applied from several perspec-
tives in Dedal. Thus Figure 5.9 completes the metamodel shown in Figure 5.8 and presents
how it can be specialized to comply with the Dedal language. Thus, Components, Archi-
tectureDescriptions and the whole DedalDiagram (global Dedal architecture) can be ver-
sioned. Thus it allows to version architectures at three abstraction levels since a Component
can be any of CompInstance, CompClass and CompRole types and in the same way, an
ArchitectureDescription can be any of the three Dedal architecture description level.

86 Chapter 5. Versioning component-based software architectures

However, in the context of a three-level component-based software architecture, artifacts
cannot be replaced by newer version independently from their architecture siblings or con-
tainers. In some cases, a propagation of changes to other components or architecture levels
is needed. Thus versioning an artifact may imply to version other artefacts. This is what is
discussed in the next section.

5.3 Predicting version propagation

This section discusses the concept of version propagation within the three architecture de-
scription levels of Dedal [Le +17].

5.3.1 Typology of architectural change impact

Version propagation is inferred from Dedal substitutability concept. However, a substi-
tutable change does not necessarily means that the coherence of the architecture is pre-
served. This is why this section introduces a typology of architectural change impact. This
typology is based on component changes which are introduced in Table 5.1 at architecture
level point of view. Indeed, component changes can be seen as a component replacement
into an architecture description level. Moreover, component substitutability is sufficient for
studying the impact of change in an architecture description level and its adjacent levels.
The aim of this typology is to be able to differentiates and identify impacts change may
have on architecture description and to decide wether a change is compatible or not with an
existing architecture.

Thus, the relevant change operations are as follows :

• Adding new artifacts.

• Removing artifacts.

• Replacing artifacts with others that may be substitutable for the previous ones or not.

At architecture description level, a component may be either replaced by a component that
is substitutable for the replaced component or by a component that is not substitutable for the
replaced component.

Moreover, in a component-based architecture, several kinds of artifacts are subject to change:

• components themselves, this is the most coarse-grained change,

• the interfaces of a component, which is a finer-grained change,

• signatures that is the finest-grained change.

Finally, in a change analysis context, several outcomes can be expected:

• the change has no impact on the architecture,

• the change impacts its own architecture level,

5.3. Predicting version propagation 87

FIGURE 5.10: Base-Case: Functionality Connection Within a Three-Level
Component-Based Architecture

• the change impacts adjacent architecture levels,

• the change impacts its own architecture level and adjacent architecture levels.

When studying architecture versioning in a Dedal development, it gets very relevant to
study which is the initial level of change. Indeed, one of the most important aspects of
using a three-level ADL is being able to perform co-evolution of those levels according to
the origin of the perturbation. This is what it is discussed in the next section.

5.3.2 Change impact analysis

As Dedal is a three-level ADL, a change may occur (initiate) at any of its architecture lev-
els. This study is based on replacement of provided / required functionality signature since
such replacement is sufficient to analyze change impact. Indeed, component interactions are
defined by their interfaces which are implied into connections. Thus, replacing a signature
is equivalent to replacing its container interface and thus its container component.

Functionality substitutable for another. For a provided functionality spnew, being substi-
tutable for another functionality spold means that (1) the return type of spnew is equal or
subtype [LW94] of the return type of spold and (2) that the input parameters of spold are
equal or subtypes of the ones of spnew [Aré+07]. Conversely, for a required functionality
srnew, being substitutable for another functionality srold means that (1) the return type of
srnew is equal or a supertype of the return type of srold,and (2) that the input parameters of
srold are equal or supertypes of the ones of srnew.

Figure 5.10 shows a basic example of a three-level architecture. It represents the three Dedal
abstraction levels. The specification is composed of two component roles R1 and R2. They
are realized respectively by the component classes C1 and C2, that are in turn instantiated
by respectively I1 and I2.

5.3.2.1 Versioning at Specification Level

Table 5.2a summarizes the effects of role replacement on the architecture. Let us suppose
that role R1 is replaced by a new version R

′
1 which provides a functionality f() : Y . Several

outcomes can be observed:

88 Chapter 5. Versioning component-based software architectures

Hypothesis on types
B � X � A � Z � Ω � R
Y # A

Non-propagation
X � Y � Z
Propagation
Inter-level Intra-level
(Y ‖ X) (Y ‖ Z)
∨(Y ≺ X) ∨(Y � Z)

(Y ‖ X) ∧ (Y ‖ Z)

(A) Specification Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # X

Non-propagation
B � Y � A
Propagation
Inter-level Intra-level
(Y � A⇒↑) Y � Ω
∨(Y � B ⇒↓)
[(Y � A) ∨ (Y � B)] ∧ (Y � Ω)

(B) Configuration Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # B

Non-propagation
Y � X
Propagation
Inter-level Intra-level
Y � X Y � R

Y � R

(C) Assembly Level

TABLE 5.2: Replacing Components: Providing a Functionality

• The change has no impact on the architecture (Table 5.2a.Non-propagation). This
case happens when the version is not propagated. The condition of non-propagation
is given as follows,X � Y � Z for any replacement type. Y can either be substitutable
for A or not. It means that the new version of the role does not break architectural
coherence since it is compatible with other roles within Specification, and all the com-
ponent classes that previously realized the replaced role remain subtypes of the new
role. The change is not propagated.

• The change impacts its own architecture level (Table 5.2a.Propagation). It is a case
of intra-level propagation, which occurs if Y is a supertype of Z or if they are not
comparable. This happens when the compatibility of component roles involved in a
connection is broken but the new component role is still realized into the Configura-
tion level.

• The change impacts adjacent architecture levels (Table 5.2a.Propagation). This is a
case of inter-level propagation, which occurs if Y is a subtype of X or if they are not
comparable. This happens when the component classes that previously realized the
old component role do not realize the new component role.

• The change impacts its own architecture level and adjacent architecture levels (Ta-
ble 5.2a.Propagation). It is a case of inter and intra-level propagation, that is a combi-
nation of both propagation conditions, which is Y is not comparable neither to X nor
Z. This happens when both inter-level and intra-level coherence are broken.

5.3.2.2 Versioning at Configuration Level

Table 5.2b summarizes the effects of component class replacement on the architecture. Com-
ponent class C1 (Figure 5.10) is replaced by a component class C ′1, which provides a func-
tionality f() : Y . Then several outcomes can be observed:

• The change has no impact on the architecture. The change is not propagated. The
condition of non-propagation is given by B � Y � A for any replacement type. Y
can either be substitutable for X or not. (Y � A) ensures C ′1 realizes R1 and (Y � B)

5.3. Predicting version propagation 89

ensures I1 can be used as an instance of C3. This happens when the change does not
break neither intra-level nor inter-level architecture coherence.

• The change impacts its own architecture level. As previously, it is a case of intra-level
propagation. This happens if Y is not a subtype of Ω. However, this condition also
implies at least a propagation to the Specification since (A ≺ Ω) ` (Y � Ω)⇒ (Y � A)

• The change impacts adjacent architecture levels. Since Configuration is the interme-
diate architecture level, then change may be propagated:

– To the specification (↑) if Y is not a subtype of A.

– To the assembly (↓) if Y is not a supertype of B.

• The change impacts its own architecture level and adjacent architecture levels. The
change may be propagated in every direction with any combination of the previously
discussed conditions. The change may be propagated in one, two or three directions
at a time.

5.3.2.3 Versioning at Assembly Level

Table 5.2c summarizes the impact of replacing I1 (Figure 5.10) by a third component instance
I ′1, which provides a functionnality f() : Y . The possible outcomes that can be observed are
as follows:

• The change has no impact on the architecture. As previously, the version is not
propagated. It is the case when Y � X for any type of replacement (substitutable or
not-substitutable). This condition ensures that I ′1 instantiates C1 and is compatible with
I2.

• The change impacts its own architecture level. There is an intra-level propagation if
Y is not a subtype of R. However, this is also a sufficient condition for implying an
inter-level propagation.

• The change impacts adjacent architecture levels. There is an inter-level propagation
if Y is not a subtype of X .

• The change impacts its own architecture level and adjacent architecture levels. As
said before the condition of intra-level propagation also implies inter-level propaga-
tion.

Tables 5.3a, 5.3b and 5.3c give the rules of the symetric change impact analysis that corre-
sponds to the replacement of required functionality at the three architecture levels (R2, C2

and I2 are replaced by a component that requires a functionality f() : Y).

5.3.2.4 Propagation example

Figure 5.11 introduces a simple case of three-level version propagation. In this example, the
considered type hierarchy is B � X � A � Z � Ω � R and the change that is considered

90 Chapter 5. Versioning component-based software architectures

Hypothesis on types
B � X � A � Z � Ω � R
Y # Z

Non-propagation
A � Y � Ω

Propagation
Inter-level Intra-level
Y � Ω Y � A

(Y ‖ Ω) ∧ (Y ‖ A)

(A) Specification Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # Ω

Non-propagation
Z � Y � R
Propagation
Inter-level Intra-level
(Y � Z ⇒↑) ∨ (Y � R⇒↓) Y � X

[(Y � Z) ∨ (Y � R)] ∧ (Y � X)

(B) Configuration Level

Hypothesis on types
B � X � A � Z � Ω � R
Y # R

Non-propagation
Y � Ω

Propagation
Inter-level Intra-level
Y � Ω Y � B

(Y � Ω) ∧ (Y � B)

(C) Assembly Level

TABLE 5.3: Replacing Components: Requiring a Functionality

happens on a provided functionality. X is replaced by Y with (Y � R)
∧

(Y ‖ Ω). The result
of the change impact analysis is thus given by [(Y � A) ∨ (Y � B)] ∧ (Y � Ω). This result
corresponds to an intra-level and an inter-level (up and down) propagation of the version
since the architectural coherence has been compromised.

The initial change occurs on component class C1 which is replaced by C ′1 at Configuration
level. Thus, the type of the functionality of the new component is no more compatible
with component C2, then the initial change must be propagated in the new configuration
to replace C2 by a more suitable component version (C ′2). Next, as the coherence between
the Configuration and the Specification has been broken, the change is propagated to the
Specification by replacing both component roles that were previously realized by C1 and
C2. In the same way, change is propagated to the Assembly by replacing the previous C1

instance. At the end of this propagation, a new version of the architecture has emerged
which is not substitutable for the previous one since at least one change is not substitutable.
Indeed C ′1 is not substitutable for C1 since (Y ‖ Ω) while the previous provided interface
type was X which is a subtype of Ω.

5.3.2.5 Generalization

1 to n replacement. The discussed analysis considers 1 to 1 replacement operations. How-
ever, this is sufficient to describe the propagation problem. Indeed, if a single component
role is realized by multiple (n) component classes, then those component classes are consid-
ered together as a single composite component class that realizes a role. The same operation

5.4. Example of three-leveled architecture versioning 91

FIGURE 5.11: Propagating version at three architecture levels

can be realized in the case where a single component realizes multiple component roles.
Those component roles are seen as a single component role which exposes the interfaces
that describe the multiple roles.

Multiple connections. In a Dedal architecture, it is possible to connect a component inter-
face to several interfaces. A solution to generalize such cases is to separately study change
impacts on each connection.

As a result of this analysis, it turns out that substitutability is a good criterion for predicting
impact on intra-level consistency. However, this is not a sufficient one and a more detailed
approach is needed for studying impact on inter-level coherence as it is shown in the previ-
ously discussed tables.

5.4 Example of three-leveled architecture versioning

This section introduces an example of three-leveled component-based architecture version-
ing. This example is based on an excerpt of the HAS that is discussed in Chapter 4. Then
Figure 5.12 introduces the type hierarchy that is used in the following example.

The components that are derived from this hierarchy are introduced with their version
graph in Figure 5.13. Each version graph is represented as a three-level version graph so
realization and instantiation relations are shown. Thus ROrch is the role that corresponds to
the abstract type Orchestrator, RClock is the role that corresponds to the type Clock and RLight

is the role that corresponds to the type Light. Following the same principle,COrch,CClock and
CLight respectively correspond to types OrchestratorImpl (that cannot be abstract), Clock and
Light. IOrch, IClock, I1Light and I2Light are respectively component instances of COrch, CClock

92 Chapter 5. Versioning component-based software architectures

FIGURE 5.12: HAS type hierarchy extract

and CLight. In order to ease the understanding of the example, all the component levels
follow the same versioning process. In other words, ROrch − v1 − 1.0.0 is an incompatible
successor ROrch − v1 − 2.0.0 so do COrch − v1 − 1.0.0 and IOrch − v1 − 1.0.0 that also start
with the same version number.

FIGURE 5.13: HAS components version graph

Scenario. Considering the initial HAS architecture that is introduced in Figure 5.14, the
following changes occur. First of all, a new component instance (I2Light−v1−1.0.0) is added
to the HAS Assembly and then the component roleROrch−v1−1.0.0 is replaced byROrch−
v1− 2.0.0.

As shown in Figure 5.15 a component instance I2Light − v1 − 1.0.0 is added to the HAS As-
sembly. According to Table 5.1, the outcome of a component addition at an architecture
description level is a new version of the architecture level that is substitutable and thus

5.4. Example of three-leveled architecture versioning 93

FIGURE 5.14: HAS initial architecture

backward compatible. Then the <minor> version number of HAS Assembly − v1 − 1.0.0

is incremented to become HAS Assembly − v1 − 1.1.0. The addition of the component in-
stance does not break any connection that would imply to propagate the change within the
architecture, then no version propagation is needed and only the <minor> version num-
ber of the global architecture is incremented to reflect the minor change that occurred at the
Assembly level. Thus the new version of HAS − v1− 1.0.0 is HAS − v1− 1.1.0.

The second part of the scenario consists in performing an incompatible change. Thus, as
introduced in Figure 5.16, component roleROrch−v1−1.0.0 is replaced byROrch−v1−2.0.0

that is not backward compatible. Thus the <major> version number of HAS Spec − v1 −
1.0.0 is incremented to becomeHAS Spec−v1−2.0.0. It corresponds to the case of inter and
intra-level propagation that is presented in Table 5.3a. Then the version must be propagated
within the Specification level and also to the Configuration level. At Specification level,
as the connection with RLight − v1 − 1.0.0 changed (it requires a subtype of the interface
type which is provided by the RLight component) then another version of RLight must be
used, so RLight − v1 − 1.0.0 is replaced by RLight − v1 − 1.1.0 which provides a compatible
interface type. Then this change is propagated to the Configuration level where, following
the same principles, COrch − v1 − 1.0.0 is replaced by COrch − v1 − 2.0.0 and CLight − v1 −
1.0.0 is replaced by CLight − v1 − 1.1.0 to make Configuration consistent with Specification
again. The <major> version number of the Configuration is also incremented. Finally, as
the change that has been propagated to the Configuration broke the instantiation relation
between the Assembly and the Configuration, then it is propagated to the Assembly level.
Thus as previously, IOrch − v1v1.0.0 is replaced by IOrch − v1− 2.0.0, I1Light − v1− 1.0.0 and

94 Chapter 5. Versioning component-based software architectures

FIGURE 5.15: HAS: component instance addition

I2Light − v1 − 1.0.0 are respectively replaced by I1Light − v1 − 1.1.0 and I2Light − v1 − 1.1.0,
and finally the <major> version number of the assembly is incremented as is the one of the
global architecture.

Figure 5.17 introduces the version graph that is obtained during the HAS architecture evo-
lution. It also shows the version propagation that occurs during the second step of the
scenario. Then the HAS architecture has been versioned at three abstraction levels and fol-
lowing three points of view during its whole evolution.

Alternate scenario. Has one can see, at step two of the previously described scenario, if
the change was on component role RLight − v1 − 1.0.0 (replaced by RLight − v1 − 1.1.0)
then the change would have been substitutable into the Specification level but would still
have implied a version propagation to the Configuration level. Indeed such change would
have broken the realization relation with CLight − v1− 1.0.0. However the final architecture
version would have been substitutable for HAS − v1− 1.1.0.

5.5 Conclusion

This chapter discusses a generic approach for versioning component-based software archi-
tectures and providing semantics to versions. Semantics are derived from strict type-based

5.5. Conclusion 95

FIGURE 5.16: HAS: component role replacement

FIGURE 5.17: HAS: version graph

substitutability concepts that make it possible to formalize backward compatibility for com-
ponent / architecture versions. Proposed semantics enables to classify architectural differ-
ences in terms of substitutability. This substitutability-based versioning is then applied to
Dedal and used in a change impact analysis to determine change scenarii which imply or
not a version propagation within multiple architecture levels. This analysis shows that
substitutability is not sufficient for predicting version propagation and thus provides the
conditions for such propagation. This chapter also proposes a metamodel for representing
version histories considering backward-compatibility of artifacts at the three Dedal archi-
tecture levels. However, this metamodel can be adapted to other ADLs through the concept
of AbstractArtefact. This chapter finally proposes a way for automatically increment version

96 Chapter 5. Versioning component-based software architectures

identifiers considering version semantics. However, this chapter does not addresses com-
prehensively all the version management issues like for instance re-engineering histories in
repositories for easing reuse processes. Such mechanisms will be studied in future work.
This chapter nonetheless answers research question RQ2 about how to introduce semantics
in component and architecture versioning.

Next chapter introduces the implementation of our re-documentation and versioning ap-
proaches approaches and the experimentation which has been led for validating them.

97

Chapter 6

Case study and implementation

Contents
5.1 Semantics in versioning . 74

5.1.1 Definitions and notations . 74

5.1.2 Traditional versioning . 75

5.1.3 Problems of current version management systems 76

5.1.4 Substitutability-based versioning . 77

5.1.4.1 Versioning components at multiple abstraction levels . . . 78

5.1.4.2 Versioning multiple component-based architectures descrip-
tion levels . 79

5.1.4.3 Versioning three-leveled component-based architectures . . 80

5.2 Identification of architectural changes, version characterization 81

5.2.1 Identifying and categorizing component-based architecture changes 81

5.2.1.1 Type-based architectural changes categorization 82

5.2.2 Version meta-model . 84

5.2.3 Three-leveled version meta-model . 85

5.3 Predicting version propagation . 86

5.3.1 Typology of architectural change impact 86

5.3.2 Change impact analysis . 87

5.3.2.1 Versioning at Specification Level 87

5.3.2.2 Versioning at Configuration Level 88

5.3.2.3 Versioning at Assembly Level 89

5.3.2.4 Propagation example . 89

5.3.2.5 Generalization . 90

5.4 Example of three-leveled architecture versioning 91

5.5 Conclusion . 94

Chapters 4 and 5 introduced the foundations of our re-documentation and versioning ap-
proach. In our approach, we use the Dedal ADL, which has been defined in Zhang’s the-
sis [Zha10]. This ADL has then been formalized and a CASE (Computer-Aided Software
Engineering) tool has been developed in Mokni’s thesis In order to validate our approach,

98 Chapter 6. Case study and implementation

we implemented a re-documentation algorithm in DedalStudio. This chapter introduces the
implementation which has been realized in order to apply the re-documentation approach
on large projects and to re-document their history and thus analyze their evolution. It also
describes an evaluation of the approach on a case study.

6.1 Implementation of re-documentation and versioning approaches

In order to take advantage of MDE-oriented tools that have been developed for years, the
DedalStudio implementation leverages the Eclipse1 ecosystem [Mok15]. Indeed, many tools
in Eclipse emphasize MDE processes. EMF2 (Eclipse Modeling Framework) allows the defi-
nition of meta-models and the generation of the corresponding Java code structures. Sirius3

is a tool developped by Obeo. It is based on EMF and GMF4 (Graphical Modeling Frame-
work) and offers to create a graphical syntax as well as an editor for EMF models. Xtext5 is
a tool that enables to define textual grammars, export them as EMF meta-models and auto-
matically generate a text editor for the specified language. The generated editor embeds a
parser which is able to map the artifacts of the textual concrete syntax of the language with
instances of the EMF metamodel that define its abstract syntax. QVTo6 (Operational QVT)
is the actual Eclipse-based implementation of the QVT7 (Query View Transformation) lan-
guage. QVT is a language that allows model to model transformations through the use of
mapping rules. The re-documentation process has been implemented using these technolo-
gies provided by the Eclipse ecosystem.

Finally, in order to implement the versioning concepts presented in Chapter 5, we developed
a module for finding differences between Dedal architecture versions and characterize them
to propose semantic versioning. This module has also been implemented in the Eclipse
world by using the EMF Compare API8.

6.1.1 Overview of DedalStudio

DedalStudio has been first developped in Mokni’s thesis [Mok15]. Figure 6.1 introduces the
Eclipse product that we derived from Mokni’s work. A first release can be downloaded at
https://github.com/DedalArmy/DedalStudio/releases.

As shown in Figure 6.1 it embeds a textual editor and a graphical editor for Dedal archi-
tecture models. Dedal textual syntax was defined using Xtext while the graphical one was
defined using Sirius. In addition, both syntaxes are defined to describe the same language

1https://www.eclipse.org/ [Last seen 2019-09-05]
2https://www.eclipse.org/emf/ [Last seen 2019-09-05]
3https://www.eclipse.org/sirius/ [Last seen 2019-09-05]
4https://www.eclipse.org/modeling/gmp/ [Last seen 2019-09-05]
5https://www.eclipse.org/Xtext/ [Last seen 2019-09-05]
6https://projects.eclipse.org/projects/modeling.mmt.qvt-oml [Last seen 2019-09-05]
7https://www.omg.org/spec/QVT/ [Last seen 2019-09-05]
8https://www.eclipse.org/emf/compare/documentation/latest/developer/developer-guide.html [Last

seen 2019-09-05]

https://github.com/DedalArmy/DedalStudio/releases

6.1. Implementation of re-documentation and versioning approaches 99

FIGURE 6.1: DedalStudio (and output of the component-based-hierarchy-builder
module)

(meta-model) which allows to automatically modify the textual description of Dedal models
through the modification of the graphical editor and vice-versa.

The first implementation of DedalStudio was a proof of concept for automated architecture
evolution processes defined in Mokni’s thesis [Mok15], thus the plugins that correspond
to the Mokni’s work have been refactored and are now released as easily installable Eclipse
plugins at http://www.dev.lgi2p.mines-ales.fr/ariane/p2/dedal/2019-06. The
plugins that have been developed in our approach have also been released at http://
www.dev.lgi2p.mines-ales.fr/ariane/p2/springdsl/2019-06 (for SpringDSL)
and http://www.dev.lgi2p.mines-ales.fr/ariane/p2/redoc/2019-06 (for the
re-documentation tools). All the modules that have been developed during this work are
available as Maven9 modules at http://www.dev.lgi2p.mines-ales.fr/ariane/
mvn/. In addition, source code repositories can be found at https://www.github.com/
DedalArmy.

6.1.2 Implementation of the re-documentation module

Figure 6.2 introduces the structure of the re-documentation module. This module is com-
posed of four sub-modules: XMLMerge, JarLoader, HierarchyBuilder, SpringToDedal and component-
based-hierarchy-builder. SpringDSL that is the sixth module shown in Figure 6.2 has not been
implemented as part of the re-documentation module but as a standalone plugin project.

Typically, as we plan to re-document large projects the process is separated in two phases.

9https://maven.apache.org/ [Last seen 2019-09-05]

http://www.dev.lgi2p.mines-ales.fr/ariane/p2/dedal/2019-06
http://www.dev.lgi2p.mines-ales.fr/ariane/p2/springdsl/2019-06
http://www.dev.lgi2p.mines-ales.fr/ariane/p2/springdsl/2019-06
http://www.dev.lgi2p.mines-ales.fr/ariane/p2/redoc/2019-06
http://www.dev.lgi2p.mines-ales.fr/ariane/mvn/
http://www.dev.lgi2p.mines-ales.fr/ariane/mvn/
https://www.github.com/DedalArmy
https://www.github.com/DedalArmy

100 Chapter 6. Case study and implementation

FIGURE 6.2: Re-documentation module structure

The first one is a preparation phase to the re-documentation and the second one is the re-
documentation itself. Those phases and the modules that operate then are discussed there-
after.

6.1.2.1 Preparing re-documentation

The first phase before re-documenting software consists in preparing the inputs. Our ap-
proach focuses on Java projects that use deployment descriptors. Thus we need to perform
some preprocessing operations.

XMLMerge. By nature, Spring projects can declare their deployment by using three archi-
tecture definition features:

• XML descriptors: In this case, architectures are defined by one or more XML descrip-
tors. Those descriptors are parsed and interpreted by the Spring container at runtime.
In this kind of descriptors, beans are defined by < bean > tags and connections be-
tween them are defined by explicit dependency injection (< ref > nested tags or ref
attributes associated with property tags).

• Configuration classes: A configuration class is a specific Java class that is identified
by an @Configuration annotation. Those classes are automatically processed by the
Spring container to build the runtime architecture. This method enables pre- and post-
processing of beans initialization. Beans are declared by methods holding @Bean anno-
tations and connections between them are defined by passing bean references to other
bean constructors or property setters (another kind of explicit dependency injection
handled by the container).

6.1. Implementation of re-documentation and versioning approaches 101

• Self-annotated classes: A self-annotated class is identified in the code by the @Compo-
nent annotation. Connections are identified by @Autowired annotations associated with
attributes that define the dependencies to be initialized by the Spring container (IoC).
They are automatically supplied by the container according to the available beans.

A difficulty for re-documenting such projects is that Spring configuration styles can be
mixed up. Thus a part of the deployment may be described with XML descriptors while
another part may be defined by configuration classes and / or self-annotated classes. Com-
pared qualities of different approaches for the definition of architectures is out of this thesis
scope and has been initiated by Perez et al. [Per+19]. Those styles are in practice equiv-
alent for defining architectures (bean sets related by connections). We chose to consider
projects that use only XML-based descriptors as an initial data source for the experimen-
tation. Those descriptors correspond to external descriptions of software deployment and
enable explicit and encapsulated architecture definitions. However, a future work perspec-
tive is to extend re-documentation for those styles. Then as stated before, XML-based Spring
deployment descriptions are often distributed among several XML descriptors. Thus, this
module (XMLMerge) aims at parsing projects to identify all the Spring XML files and then to
merge them so they can be used later for re-documenting software. The idea of such merg-
ing is to extract a global XML descriptor of the whole architecture since Spring allows bean
referencing from a descriptor to another.

JarLoader. As Spring is a technology that mostly focuses on web services, numerous in-
frastructure beans such as Java Database Connectivity (JDBC) components are deployed
from imported libraries. Thus, we need to take into account the fact that those libraries are
compiled and most of the time imported using Maven. Then after they have been imported
in a project we need to load them with a custom class loader (JarLoader) that recursively
parses a project to find all the libraries it contains. The classes that are part of these libraries
can be then loaded at runtime on demand when the re-documentation process requires in-
formations from them. This module is also used by the HierarchyBuilder module which is
discussed next.

HierarchyBuilder. An essential part of the re-documentation process relies on the presence
of a type hierarchy to manage a Specification re-documentation. Thus, in first intention, we
tried to apply our approach to compiled Java projects which made it possible to recover a
complete information about Java type hierarchy using the reflection capabilities that Java
provides. However, we came to the conclusion that such an approach was difficult to imple-
ment since a lot of project compilations failed because of failing dependencies. Errors related
to class loading was too much unpredictable depending on the re-documented project.

Thus we chose to build the class hierarchy directly from the project source code. To do so,
we parse a project to list all the Java files. Then the hierarchy is built until the first library
layer as shown in Figure 6.3 where Boolean (which has been added for example purpose)
belongs to the java.lang library. Figure 6.3 is based on the HAS example. It is the output

102 Chapter 6. Case study and implementation

of the HierarchyBuilder module. The figure exposes the hierarchy of all classes / interfaces
(i.e., HomeOrchestratorImpl inherits from abstract class HomeOrchestrator. However the hi-
erarchy of libraries is not exposed since it can easily be explored through the Java reflect
API.

FIGURE 6.3: Example of built hierarchy from Java project (output of Hierar-
chyBuilder module)

6.1.2.2 Re-documentation

The second phase consists in re-documenting component-based architectures as discussed
in Chapter 4.

SpringDSL. Since this approach is model driven, we searched a way to abstract the Spring
text descriptors and transform them into manipulable object models. A first option would
have been to use an XML parser to generate DOMs corresponding to Spring deployment de-
scriptors. However this does not allow to identify semantic model artifacts that can be easily
transformed to re-document Dedal architectures based on EMF. Thus we implemented the

6.1. Implementation of re-documentation and versioning approaches 103

Spring grammar using Xtext (see Appendix A) in order to automatically generate a L* parser
that would parse Spring descriptor and generate a model of the Spring descriptor and not
simply a model of the XML document. As shown in Figure 6.4 the XML structure of the
descriptor is transformed into an EMF model which eases the transformation to Dedal in
next module.

FIGURE 6.4: Example of SpringDSL file

SpringToDedal. In order to take advantage of the SpringDSL model to begin software
re-documentation as a Dedal architecture, we need to generate an incomplete Dedal model
from the Spring deployment descriptor artifacts. To do so it is only required to perform a ba-
sic mapping of SpringDSL artifacts to Dedal artifacts. Thus we used QVTo (see Appendix B)
to write the transformation. For now the transformation is not complete since it does not
cope with delicate situations that exist in Spring such as non-basic schemes (i.e., < mvc >

tags, etc.). However, further development can deal with such difficulties. Additionally
those limitations do not question the relevancy and generalization of our approach. Indeed,
Spring is a source of projects that we want to re-document and track their evolution. We
want to establish the principles of the approach and not release an industrial tool. Thus, the
basic elements that are taken into account represent enough data for our experimentation.
The extension to whole Spring is not a feasibility question but more a question of time.

component-based-hierarchy-builder. Finally this last module implements the re-docu-
mentation algorithm which is discussed in Chapter 4 and developed in Appendix C. This
module is an Eclipse plugin and is intended (in further upgrades) to be dynamically used in
Java Spring projects to make architects and developers able to keep an eye on the architec-
ture they deploy since it can be fuzzy in numerous cases. Thus, this module uses the Spring-
ToDedal transformation to transform the merged Spring descriptor from the XMLMerge mod-
ule and obtain the incomplete Dedal architecture model. Then it uses the HierarchyBuilder
module as a reflect-like API on Java source code and libraries to re-document software. Fig-
ure 6.1 shows DedalStudio after we re-documented our running HAS example. As the model

104 Chapter 6. Case study and implementation

has been automatically generated, the textual and graphical forms of the language are also
automatically generated by Eclipse tools (Xtext and Sirius) according to the model.

We used this implementation to re-document "real-life" projects extracted from GitHub.
Next section introduces the implementation of the module we developed to analyze dif-
ferences between architecture model versions.

6.2 Implementation of architecture versioning

Figure 6.5 shows the structure of the model comparator module. It is composed of two
sub-modules which are ProjectComparator and DiffAnalyzer.

FIGURE 6.5: Dedal model comparison module

ProjectComparator. This sub-module is based on EMF compare. It compares Dedal archi-
tecture versions two by two and generates CSV files that describe the differences which are
found between architecture versions. The advantage of using CSV files is that they are easily
portable and analyzable with Python libraries. One CSV file is generated for every model
comparison. Each generated CSV file contains information about all the differences that are
observed between two model versions. This information is composed of five fields: the old
model version tag, the new version tag, the object that differs, the kind of the difference and
finally the backward compatibility of the change. The object field of the CSV file contains,
for each difference in the file, the type and the name of the object for further analysis by the
DiffAnalyzer sub-module. As it is discussed in Chapter 5 a difference can be of three types
for a component-based architecture. It can be either an addition, a deletion or a change. Fi-
nally, as it is discussed in Chapter 5, substitutability of architecture artifacts is based on the

6.2. Implementation of architecture versioning 105

analysis of types. This is why the ProjectComparator sub-module uses HierarchyBuilder
and JarLoader sub-modules from the Re-documentation module. In the resulting CSV file,
the substitutability field may have three values :

• true means that the considered architecture artifact is formally identified as substi-
tutable by analyzing types which are identified in EMF Compare Diff objects and ac-
cording to the rules that are summarized in Table 5.1.

• false means that the considered architecture artifact is formally identified as not sub-
stitutable by analyzing types which are identified in EMF Compare Diff objects and
according to the rules that are summarized in Table 5.1.

• null means that substitutability of the architecture artifact could not be calculated from
the EMF Compare Diff object. It can be the case when the considered artifact is not di-
rectly concerned by the actual difference but is induced by other differences. Thus
neither the old and new versions of the artifact are reachable which makes the substi-
tutability impossible to calculate.

DiffAnalyzer. This sub-module is written in Python and interprets the differences stored
in CSV files that are generated by ProjectComparator. Every difference of each CSV file
is counted according to the objects that differ, their type, kind and substitutability. The
DiffAnalyzer module produces a global CSV file where each line represents a difference
that has been analyzed. The global CSV file is composed of 84 columns that contain all
the information from individual files but also add some information about versions and
architecture themselves which are as follows:

• Intentional versioning accuracy: The intentional versioning accuracy corresponds to
the accuracy of the version tagging (by developers) according to the actual tagging
that would be performed by following our approach. This analysis assumes that the
considered project applies the semantic versioning 2.0.010 approach. The accuracy of
the architecture intentional versioning can be evaluated by using some indicators con-
tained in CSV file for answering two questions:

– Should the new architecture be substitutable? This first question is answered
by using version tags since they contain the developper analysis about backward
compatibility. By comparing the old and the new version tag, it is easy to see
if either the < major >, the < minor >, the < build > number or the version
suffix has been changed. Thus, if the < major > version number has been incre-
mented then the new architecture version should not be substitutable, otherwise
it should. Moreover, a < minor > increment indicates backward compatible
changes. Finally < build > increment and version suffix changes indicate back-
ward compatible changes that should not have impact on the structure.

10https://semver.org/ [Last seen - 2019-07-03]

106 Chapter 6. Case study and implementation

– Is the new architecture actually substitutable? By using information from differ-
ence files, it is easy to find out if an architecture is actually substitutable or not for
its previous version. Indeed, in case the difference file contains not substitutable
changes then the new architecture version is considered as not substitutable.

This makes it possible to propose a version increment according to the result of the
difference analysis. And then to effectively evaluate intentional versioning accuracy.

• Architecture degeneration: Moreover, thanks to this information, it is possible to iden-
tify indicators that could be the sign of an architecture degeneration. Thus it is possible
to partially answer the three following questions by analyzing the intention behind the
version tag:

– Is the new architecture version subject to erosion? Typically, it is possible to
identify a situation that could indicate software erosion when:

∗ The new version is denoted as substitutable by the new version tag.

∗ The new version is actually given as not substitutable by difference analysis.

∗ The new version derives from at least one artifact deletion which breaks the
architecture substitutability.

– Is the new architecture subject to drift? It is possible to identify a situation that
could indicate software drift when:

∗ The new version only has incremented < build > number (or has changed
version tag suffix) but the analysis reveals that a< minor > increment would
have been more accurate. It means that developers did not intend to change
the structure of the software while they actually changed it in a substitutable
way.

∗ Otherwise it can also be the case if architecture substitutability is not pre-
served (wrong version increment and substitutability loss) and if no deletion
is observed.

– Is the new architecture subject to both erosion and drift? As this analysis is
based on a bottom-up re-documentation, it is not possible to identify such mixed
situations. Indeed, the erosion concept is based on deletions that break backward
compatibility while the drift concept is based on changes that do not necessarily
break backward compatibility. Thus, answering this question would require to
know the initial willing of the architect, which is not possible in such approach.

Next section introduces the results of the experimentation we lead.

6.3 Experimentation and evaluation

In order to test our approach, we chose to apply it on "real-life" open source projects.

6.3. Experimentation and evaluation 107

Data extraction. Data was extracted from GitHub11 repositories. In order to target sig-
nificant projects, the extraction was performed following the selection criteria proposed by
Jarczyk et al. [Jar+14]. Thus we extracted the last commit of Java projects rated over 100
stars and which have been forked at least 10 times [Per+19]. The extracted projects also con-
tained the "Spring" keyword. The last criteria of the extraction was the date of creation that
needed to be after 2010-01-01 (after Spring 3 release). The extraction identified 524 projects.
Extraction metadata are available online12.

Project selection. As discussed in Section 6.1.2.1, our implementation only takes Spring
XML files into account. Thus we needed to target projects that use Spring only in their XML
form. Doing so, the data set was reduced to 63 projects. Then we analyzed projects to find
a good candidate for applying our approach. A good candidate should be an industrial
project with a version history where versions are identified following Semantic Versioning
2.0.0. We identified BroadleafCommerce which has more than 2200 classes in its 6.0.3-GA
version (last version at the time of the extraction), 316 released versions and which applies
Semantic Versioning 2.0.0 for tagging its versions.

6.3.1 Case study: Broadleaf Commerce

BroadleafCommerce13 is an enterprise open source e-Commerce framework based on Spring
that is available on GitHub14. It aims at providing a support for the development of enterprise-
class, commerce-driven websites. The project is composed of 184 branches and 323 releases,
it has 66 contributors, 1282 stars on GitHub and has been forked 1036 times (at the time of
the 2019-09-21). The extraction occurred on the 2019-05-03, at this date we gathered 316 re-
leased versions (the amount of versions at the time of the extraction). The experimentation
has been lead on the versions from 3.0.0.BETA1 to 6.0.3-GA.

6.3.2 Experimentation

As a first requirement of the experimentation, we had to import as much as possible of
the project required libraries for each version. As BroadleafCommerce uses Maven, we could
easily import dependencies. We thus applied the re-documentation process on the Broadleaf-
Commerce history and thus obtained 236 Dedal architecture versions which is the amount of
releases between version 3.0.0.BETA1 and version 6.0.3-GA. No architecture has been re-
documented before version 3.0.0.BETA1 since, due to unknown factor, re-documentation
failed only for those versions. Then we could calculate differences between successive ver-
sions and obtained 221 difference files because of some loss due to EMFCompare15 API fails.
The aim of this experimentation is to measure the intentional versioning accuracy and iden-
tify situations where drift and / or erosion of the architecture can be observed.

11https://github.com [Last seen - 2019-08-29]
12https://github.com/DedalArmy/MISORTIMA/tree/data-study-spring-deploy-features
13http://www.broadleafcommerce.com [Last seen - 2019-09-21]
14https://github.com/BroadleafCommerce/BroadleafCommerce [Last seen - 2019-09-21]
15https://www.eclipse.org/emf/compare/ [Last seen 2019-09-05]

108 Chapter 6. Case study and implementation

6.3.2.1 Re-documenting BroadleafCommerce history

Figure 6.6 summarizes the output of the BroadleafCommerce history architecture re-docu-
mentation. It shows the evolution of the number of declared components in the architecture
versions and the evolution of the number of classes that compose the project considering
architecture versions which have been numbered from 1 to 236.

FIGURE 6.6: Re-documented components and Java classes in function of ar-
chitecture versions

Five curves represent the number of components: one for each re-documented architecture
level (i.e., Assembly, Configuration, Specification), the two last ones represent the compo-
nent classes that are declared in the source code and those which are declared in imported
libraries. Observing Figure 6.6 we can identify following characteristics of the BroadleafCom-
merce project:

• The amount of components that are declared from libraries is almost constant and
much lower than the amount of components which are declared in the source code of
the project. This means that the project relies on a constant component layer whereas
the real evolution of its architectures lies in the evolution of the source code. Thus it is
a very suitable project for calculating architecture differences and characterizing them.

• The number of component instances is always greater than the number of compo-
nent classes in architecture versions. This indicates that the implementation and the

6.3. Experimentation and evaluation 109

deployment of the architectures are decoupled, favoring deployment reconfiguration
and component instances parameterizing.

• The number of Java classes has increased all along the project evolution. Thus, it indi-
cates that the complexity of the overall code structure also increases. Moreover, each
class number growth or decrease seems to have an impact on the amount of com-
ponents. Then, although deeper analysis of the project is required, it seems that the
architecture versions are based on a policy which prevents them to grow too much and
thus preserves more maintainable architectures. The architecture grows by stages until
a drop in the amount of classes and components around the 150th version. This drop
is probably due to a simplification of the framework that aimed at reducing the size of
architectures. Figure 6.7 reinforces this interpretation since it shows that component
instances number clearly drops while the amount of XML files where they are declared
suddenly grows. Deeper analysis would be needed to confirm this hypothesis.

• The amount of component roles is equal to the amount of component classes. The
small gap between both (component classes and component roles) curves can be ex-
plained by issues which occur during the re-documentation if some external libraries
that are needed in the project are missing, which means that the project may have
internal dependencies that could not be resolved. It may also indicate that some com-
ponent roles are realized by several component classes.

Another outcome of this re-documentation consists in comparing each of the re-documented
Specification and Configuration to find out whether or not Specification is composed of
more abstract types than the Configuration. 100% of the re-documented Specifications are
more abstract than their respective Configurations. In other words, at least one component
role in each re-documented Specification is more abstract than the component role that
realizes it. It may indicate a good respect of Java development good practices in terms
of Java interface declaration and use.

The next step of the experimentation is the calculation of differences between architecture
versions and their characterization.

6.3.2.2 Characterizing BroadleafCommerce versions

We calculated differences between previously obtained architecture versions to characterize
them. Doing so, we obtained a total of 221 difference models that we could analyze. There
were a loss during the comparison process because of unknown EMF issues probably due
to some EMF format inconsistencies.

As it has been discussed before, we aimed at identifying situations that could induce drift
or erosion. Figure 6.8 shows the architecture version increment accuracy measured on the
project. Surprisingly only 2.71% architecture versions are rightly incremented (according to
the intentional versioning accuracy). Moreover 10.41% of those version increments are cor-
rect according to the backward compatibility but are not correctly incremented. This means
that in those cases, developers did not manage to identify structural changes while they

110 Chapter 6. Case study and implementation

FIGURE 6.7: Component instances and XML Spring files in fonction of archi-
tecture versions

figured out the right backward compatibility properties. Finally, a lot of version (86.88%) in-
crements are wrong. These results are completed by Figure 6.9 which shows the proportions
of version increment mistakes according to their types. Thus 4.19% of the mistakes concern
< minor > increments that should be < major > ones, 10.70% concern < build > incre-
ments that should be< minor > and the remainder (85.12%) concerns< build > increments
that should be < major >. Those results can be interpreted as follows:

• < build > for < minor > increment: They correspond to the inaccurate version incre-
ments of Figure 6.8. They correspond to a good backward compatibility analysis but to
a lack of architectural impact perception since developers did not notice architectural
change.

• < build > for < major > increment: They correspond to the majority of wrong ver-
sion increments of Figure 6.8. However 53% of them correspond to suffix changes
which can correspond to a release cycle where developers consider that suffixes should
not necessarily be backward compatible since it is not clarified in Semantic Versioning
2.0.0 approach. Although still 86 of the < build > increments are used to perform
changes in a non-substitutable way which is a problem considering the loss of version
tag accuracy that becomes useless.

6.3. Experimentation and evaluation 111

FIGURE 6.8: Version increment accuracy

• < minor > for < major > increment: As for the previous item, incompatible changes
are indicated as compatible which leads to a fast version tags obsolescence.

FIGURE 6.9: Version increment mistakes

Such version identification mistakes can progressively lead to a loss of architectural agility
(considering component replacement, reconfiguration...) due to unexpected compatibility
issues and then can lead to architecture degeneration.

Figure 6.10 introduces the proportion of situations that could lead to architecture degener-
ation situations that can be identified all along the BroadleafCommerce framework evolution.

112 Chapter 6. Case study and implementation

Thus almost 40% of architecture versions are in situation of potential architecture degenera-
tion:

• Erosion. 22.17% of BroadleafCommerce architecture versions show indicators of archi-
tectural erosion. This is mainly due to a bad version identification as it is discussed
before. Then unwanted major changes such as undocumented artifact deletions may
lead to software erosion. Then the erosion situations are identified mostly (45 / 49)
from < build > increments that should be < major > which means that only few
mistakes are made on < minor > version increments. However such mistakes still
occur.

• Drift. In the same way, drift situation could be observed in 16.74% of architecture
versions. 23 of them correspond to < build > increments that should be < minor >

and 14 correspond to < build > increments that should be < major >. Thus it con-
cerns both substitutable and not substitutable versions. This shows that developers
are probably less sensible to drift than to erosion problems. Indeed, if we assume that
developers do not consider that version suffixes must be backward compatible, then
we identified more potential drift situation than erosion ones.

FIGURE 6.10: Architecture degeneration risks

Then this experimentation shows that an automated versioning process based on strict type
rules is necessary to ensure a good consistency of version tags.

6.3.2.3 Threats to validity

Some threats to validity can be identified on this experimentation.

Threats to external validity. The first external validity threat relates to the way projects
were selected. The selection itself may potentially bias the results. Indeed, we chose to

6.4. Conclusion 113

study a specific kind of projects which is not representative of all the ways Spring is used
and thus this may not fully be representative of all the Spring developers habits. A second
threat to external validity is the generalization. This threat is directly linked to the previous
one. Indeed, more experimentation need to be led on other technologies than Spring to
ensure generalization of the approach in practice.

Threats to internal validity. Due to the lack of existing workbench, it is not guaranteed
that all the dependencies of the projects are imported and loaded into project directories
which can lead to re-documentation imprecision. Re-documented architectures can thus
potentially miss some architectural artifacts. The threat that is identified by Kalliamvakou
et al. [Kal+16] which states that "many active projects do not use GitHub exclusively" can
also imply a lack on the presence of all the project dependency.

6.3.2.4 Discussion

By being able to re-document three-leveled architectures and to calculate and characterize
differences between their versions, this experimentation shows that such approach could be
adapted to real projects. Indeed, the fact that it could be applied on more than 200 versions of
an enterprise project is encouraging. Moreover, such approach can be coupled to other em-
pirical studies for analyzing developer habits in term of architecture impact. Additionally,
it can be coupled to more precise experimentation that would focus on other characteristics
which could explain the evolution of architectures. For instance, analyzing commits could
probably help to better identifying and explaining architecture evolution phases such as the
drop of components that can be observed in Figure 6.6. Finally the implementation of the
approach needs to be completed by further work to take into account more of the Spring
framework, and also other technologies such as Enterprise Java Beans (EJBs).

6.4 Conclusion

This chapter presents our implementation and an experimentation of architecture re-docu-
mentation and versioning. The applicative contributions that are discussed in this chapter
consist of the re-documentation and versioning tools. From the re-documentation perspec-
tive, this chapter introduces SpringDSL that is our Xtext-based implementation of the Spring
XML grammar. HierarchyBuilder builds the entire type hierarchy of Java projects and gener-
ates UML models. The component-based-hierarchy-builder module then re-documents three-
leveled Dedal architectures. In future work, improvement should be made to SpringDSL
which does not take all the language into account and other technologies might be sup-
ported. Moreover, the implementation is Java-based, although, the approach should be im-
plemented for other languages. From the versioning point of view, this chapter introduces
ProjectComparator that compares architecture models and characterize their differences. Dif-
fAnalyzer analyzes differences for identifying drift and erosion situations. To improve the
version management, it is important to implement single component histories management
in future work. Then the management of those histories needs to be integrated into IDEs

114 Chapter 6. Case study and implementation

for easing reuse. The presented experimentation shows that it is possible to re-document
large enterprise software and help to manage better versioning by automating the process.
Indeed, this approach proves that it is suitable for re-documenting more than 200 versions of
BroadleafCommerce framework which is a large enterprise open-source project. It is also suit-
able to characterize them in terms of substitutability in order to propose better version tags
that are more consistent with their actual state. Thus by re-documenting and versioning ar-
chitectures, it also shows that it is possible to support long time evolution thanks to the three
Dedal architecture levels. Moreover, as it is discussed in this chapter, all the re-documented
architectures have more abstract Specifications which is good for improving the reuse of
software components and architectures as well as managing their evolution. This answers
research question RQ3: such re-documenting and / or versioning approaches are suitable
for large software systems. Finally, the fact that drift and erosion situations can be observed
from this experimentation directly answers reserach question RQ4: it is possible to identify
drift and / or erosion situations by re-documenting and analyzing software versions.

115

Chapter 7

Conclusion and Perspectives

Contents
6.1 Implementation of re-documentation and versioning approaches 98

6.1.1 Overview of DedalStudio . 98

6.1.2 Implementation of the re-documentation module 99

6.1.2.1 Preparing re-documentation 100

6.1.2.2 Re-documentation . 102

6.2 Implementation of architecture versioning 104

6.3 Experimentation and evaluation . 106

6.3.1 Case study: Broadleaf Commerce . 107

6.3.2 Experimentation . 107

6.3.2.1 Re-documenting BroadleafCommerce history 108

6.3.2.2 Characterizing BroadleafCommerce versions 109

6.3.2.3 Threats to validity . 112

6.3.2.4 Discussion . 113

6.4 Conclusion . 113

This thesis presents our approach named ARIANE. This chapter summarizes the contribu-
tions of the thesis and discusses their limits, as well as some perspectives.

7.1 Contributions

This thesis contributes to the field of component-based software engineering. It especially
addresses the problem of documentation loss during software evolution. It also addresses
the problem of version identification in the context of component-based software architec-
tures and more particularly software architectures that are described at multiple abstraction
levels. It is organized around two main issues. The first one consists in recovering software
documentation by a proposed re-documenting process. Moreover, the recovered documen-
tation must describe the software at each step of its life cycle. Its deployment, implementa-
tion and specification must be re-documented in order to refound long-time evolution sup-
port. The second one consists in automating versioning of component-based architectures.

116 Chapter 7. Conclusion and Perspectives

Moreover, in order to version each of the successive descriptions of software architectures,
it is necessary to version them at multiple architectural levels. Then, they are versioned at
component level, at architecture description level (i.e., Specification, Configuration, and As-
sembly) and finally at a global level, which is composed of the three architecture levels.

7.1.1 Software re-documentation contributions

The first contribution of this thesis concerns software re-documentation. From a conceptual
point of view, this thesis proposes an approach to re-document software architectures as
they are implemented. In particular, it proposes to re-document them from object-oriented
code and deployment descriptors. It is based on the type theory defined by Mokni et al.
[Mok+16a], which provides a strong theoretical basis for analyzing component type hier-
archies. The particularity of this approach is that it actually re-documents the software
life-cycle. Re-documented architectures are composed of three description levels, which
represent the specification of the software, its implementation, and its deployment. Those
architecture levels are described in the Dedal ADL and are respectively the Specification, the
Configuration and the Assembly.

The technical corresponding contribution is the re-documentation algorithm. This algorithm
maps software concepts into Dedal architectures. The resulting architectures are composed
of three abstraction levels, which are consistent to one another. This algorithm is generic
and can be applied to any object-oriented and / or deployment descriptor technologies.

Finally, the applicative contribution of software re-documentation consists of the set of tools
that have been released for implementing the approach. It has been implemented for re-
documenting Java based projects that use the Spring [Joh+04] to describe their deployment.
Thus this contribution is composed of the release of several tools as eclipse plugins and / or
Maven1 modules. SpringDSL implements the Spring XML grammar in the EMF ecosys-
tem to automatically derive EMF-based Spring models. Derived models are directly usable
as they are. In the case of this thesis, we perform a model to model transformation from
SpringDSL to Dedal. The second released module is the HierarchyBuilder module. It builds
the entire hierarchy of Java projects and also includes the type hierarchy of its dependen-
cies. The module generates a UML description of the Java project based on the PlantUML2

language. The component-based-hierarchy-builder module is the actual implementation of the
re-documentation algorithm. This module generates Dedal architectures from Java source
code and Spring XML deployment descriptors.

7.1.2 Software architecture versioning contributions

The second contribution of this thesis concerns the versioning of component-based software
architectures. From a conceptual point of view, this thesis proposes an approach to formally
analyze backward compatibility of component and architecture versions. In particular, it

1https://maven.apache.org/ [Last seen 2019-09-05]
2http://plantuml.com/fr/ [Last seen - 2019-09-26]

7.2. Limitations and perspectives 117

is based on the type theory defined by Arévalo et al. [Aré+07; Aré+09; Abo+19] to analyze
substitutability of components and / or architectures after an architectural change occurred.
This allows classification of changes in terms of substitutability. It is proposed as a formal
change impact analysis based on the type theory developed by Mokni et al. [Mok+16a]. This
change impact analysis relies on formal rules that make it possible to classify changes in
terms of the impact they have on the existing architecture, considering it a three levels of
abstraction. A change that is substitutable in its own architecture level may impact other
description levels. Version propagation can be predicted from this change impact analysis.

From a technical point of view, this thesis proposes a metamodel for representing version
histories considering backward compatibility at three abstraction levels. It also proposes to
automatically increment version identifiers based on this analysis.

From an applicative point of view, the contribution consists of the implementation of two
modules. The first one is the ProjectComparator, which compares architecture models us-
ing the EMFCompare3 tool and characterizes their differences in terms of artifact backward
compatibility. Those differences can be analyzed by the DiffAnalyzer, which finds out ar-
chitectural derive situations such as drift and erosion. This module also calculates the best
version identifier increment from the substitutability analysis of the new architecture ver-
sion.

7.2 Limitations and perspectives

This section identifies limitations of this thesis and discusses some perspectives.

7.2.1 Software re-documentation perspectives

The presented approach for re-documenting software at three levels of architecture presents
some limitations.

First, from a conceptual point of view, the approach only takes static information into ac-
count and then re-documents component-based architectures from deployment descriptors,
which are static descriptions. In future work, this static re-documentation must be com-
pleted with dynamic re-documentation to consider all architecture aspects.

Second, from a technical point of view, we chose to identify the smallest roles as possible.
However, this choice is based on type hierarchy and can be discussed. When several com-
ponent roles can be identified for a single component class, they are automatically defined
as the realized component roles. However, dynamic analysis would help to ensure that
they are well identified. In fact, it could be more accurate to keep a more coarse grained
component role in some cases. This issue should be addressed in future work. In the same
way, component interfaces are filled with public class methods. However, as the visibility
of class methods changes according to the point of view (i.e., package, subclass. . .) future
work should address this issue by proposing options to re-document interfaces.

3https://www.eclipse.org/emf/compare/ [Last seen 2019-09-05]

118 Chapter 7. Conclusion and Perspectives

Finally, from the applicative point of view, several improvements should be made. First
of all, the implementation of SpringDSL needs to be completed in order to deal with all
the language. Additionally, more deployment descriptor languages should be implemented
to broadcast this approach to other languages. Last but not least, the implementation is
made for Java projects, but in future work, it needs to be extended to other object-oriented
languages. Another improvement that can be done in further work, is to include the archi-
tecture re-documenting module directly into Integrated Development Environments (IDEs)
to guide the architect in real-time.

7.2.2 Software architecture versioning perspectives

The presented versioning approach also presents some limitations.

From a technical point of view, the approach should include the management of architec-
tural artifact histories into component repositories. This would highly enhance reuse pro-
cesses. Moreover, as previous work on Dedal discussed automated evolution [Mok+16a],
mechanisms for replacing, adding, deleting, and propagating versions would be easily han-
dled.

From an applicative point of view, it is necessary to handle component versioning by not
only tracking architecture evolution but also keeping a record of each component version.
Then, the three-leveled version history management needs to be implemented from the pro-
posed version metamodel. As previously, this approach gets valuable if it can guide soft-
ware architects, and it needs to be integrated into IDEs.

7.2.3 Experimental perspectives

This thesis proposes to re-document and analyze versions on more than 200 architecture
versions. However, this experimentation is not yet validated by experts. In future work, we
plan to involve developers in a feedback process in order to further assess the accuracy and
relevance of our approach.

119

Appendix A

XText-based Spring implementation

1 grammar org . x t e x t . spring . SpringConfigDsl hidden (WS, ML_COMMENT)
2 generate springConfigDsl " ht tp ://www. x t e x t . org/spring/SpringConfigDsl "
3 import " ht tp ://www. e c l i p s e . org/emf/2002/ Ecore " as ecore
4

5

6 S p r i n g P r o j e c t returns S p r i n g P r o j e c t :
7 { S p r i n g P r o j e c t }
8 ’ <?xml ’ ’ vers ion ’ ’= ’STRING ’ encoding ’ ’= ’STRING (’ standalone ’ ’= ’ (’ yes ’| ’

no ’)) ? ’ ?> ’
9 c o n f i g u r a t i o n s +=Configurat ion ;

10

11

12 AbstractKeyValue :
13 (A b s t r a c t A r t e f a c t |DataStr ing)
14 ;
15

16 /**Abstract Class of elements present in bean */

17 A b s t r a c t A r t e f a c t returns A b s t r a c t A r t e f a c t :
18 Component | Attr ibuteTag |IdRefTag| ReferenceTag | C o l l e c t i o n ;
19

20 /**Abstract Class of Collection */

21 C o l l e c t i o n returns C o l l e c t i o n :
22 Array| s L i s t | s S e t | Map | Props ;
23

24 /**Abstract Class of Collection */

25 /*Util:

26 (UtilConstant|UtilPropertyPath|UtilProperties/* |UtilList|UtilMap|

UtilSet)

27 ;*/

28

29 /*<beans/> */

30 Configurat ion returns Configurat ion :
31 { Configurat ion }
32 (
33 ’<beans ’

120 Appendix A. XText-based Spring implementation

34

35 ((’ d e f a u l t autowire= ’ defaultAutowire=AutoWiredType) ?
36 &(’ d e f a u l t i n i t method= ’ defaul t Ini tMethod=Va l i d S t r i n g) ? //Method

37 &(’ d e f a u l t autowire candidates= ’ defaultAutowireCandidates=V al i d S t r i n g) ?
//REGEX

38 &(’ d e f a u l t destroy method= ’ defaultDestroyMethod=Va l i d S t r i n g) ? //Method

39 &(’ d e f a u l t lazy i n i t = ’ d e f a u l t L a z y I n i t =DefaultableBoolean) ?
40 &(’ d e f a u l t merge= ’ defaultMerge=DefaultableBoolean) ? //Default is false

41 &(’ p r o f i l e = ’ p r o f i l e =V a l i d S t r i n g) ?
42 & (IdDashAndColon ’= ’ V a l id S t r i ng) ∗)
43 ’> ’)
44 d e s c r i p t i o n =Descr ipt ion ?
45 (components+=Component| a l i a s +=Al ias|imports+=Import
46 | c o n t e x t s+=Context
47 |mvcs += MVC
48 |a spec t s+=Aspect
49 | u t i l C o n s t a n t s +=Uti lConstant| u t i l L i s t s += U t i l L i s t |utilMaps+=

UtilMap
50 | u t i l P r o p e r t i e s += U t i l P r o p e r t i e s | u t i l S e t s += U t i l S e t |

u t i l P r o p e r t i e s P a t h +=Uti lProper tyPath
51 |txAdvices+=TxAdvise|txJ taTransact ionManager+=

TxJtaTransactionManager
52

53) ∗
54 (ConfigurationComposite+=Configurat ion) ∗
55 (’</beans > ’) ;
56

57 MVC:
58 {MVC}
59 (’<mvc ’ ’ : ’ ’ annotat ion driven ’ ’/> ’)
60 ;
61

62

63

64 /*<alias/> */

65 Alias returns Alias :
66 { Al ias }
67 ’< a l i a s ’ ’name= ’ o r i g i n =[Component|V a l i d S t r i n g] ’ a l i a s = ’ a l i a s =

V a l id S t r i ng (’/> ’ |(’> ’ ’</ a l i a s > ’)) ;
68

69 /*<import/> */

70 Import returns Import :
71 { Import }
72 ’<import ’ ’ resource= ’ resource=V a l i d S t r i n g (’/> ’ |(’> ’ ’</import > ’))
73 ;
74

75 Context :
76 ’<contex t : ’ ContextType

Appendix A. XText-based Spring implementation 121

77 ;
78

79 ContextType returns Context :
80 (AnnotationConfig|ComponentScan|LoadTimeWeaver|MbeanExport|

MbeanServer|PropertyHolder|SpringConfigured)
81 ;
82

83 /** looks for annotations on beans in the same application context in

which it is defined */

84 AnnotationConfig :
85 { AnnotationConfig }
86 (’ annotat ion conf ig ’ ((’/> ’) |(’> ’ ’</contex t : annotat ion config > ’)))
87 ;
88

89 /** Spring can automatically detect stereotyped classes and register

corresponding BeanDefinitions with the ApplicationContext

90 * (implicitly enables the functionality of <context:annotationconfig>)

91 *
92 * basepackage The comma/semicolon/space/tab/linefeedseparated list of

packages to scan for annotated components.

93 * annotationconfig Indicates whether the implicit annotation post-
processors should be enabled. Default is "true".

94 * namegenerator The fullyqualified class name of the BeanNameGenerator

to be used for naming detected components.

95 * resourcepattern Controls the class files eligible for component

detection. "** /*.class"

96 * scoperesolver The fullyqualified class name of the

ScopeMetadataResolver to

97 * be used for resolving the scope of detected components.

98 * scopedproxy Indicates whether proxies should be generated for

detected

99 components

100 * usedefaultfilters Indicates whether automatic detection of classes

annotated with @Component, @Repository, @Service, or

101 @Controller should be enabled. Default is "true".

102 */

103 ComponentScan :
104 { ComponentScan }
105 ’ component scan ’
106 ((’ base package= ’ basePackage=V a l id S t r i n g)
107 &(’ annotat ion conf ig= ’ annotat ionConfig=sBoolean) ?
108 &(’namegenerator= ’ nameGeneratorBean =[Component|Va l i d S t r i n g]) ?
109 &(’ resource pat te rn= ’ r e s o u r c e P a t t e r n=V a l i d S t r i n g) ?
110 &(’ scope r e s o l v e r = ’ scopeResolver =[Component|V a l i d S t r i n g]) ?
111 &(’ scoped proxy= ’ scopedProxy=EnumScopedProxy) ?
112 &(’ use d e f a u l t f i l t e r s = ’ u s e D e f a u l t F i l t e r s =sBoolean) ?
113)
114

122 Appendix A. XText-based Spring implementation

115

116 ((’/> ’) |(’> ’ (i n c l u d e F i l t e r s += I n c l u d e F i l t e r) ∗ (e x c l u d e F i l t e r s +=
E x c l u d e F i l t e r) ∗ ’</contex t : componentscan > ’))

117 ;
118

119

120 I n c l u d e F i l t e r :
121 ’<contex t : inc lude f i l t e r ’
122 ((’ type= ’ type=EnumTypeFilter)
123 &(’ express ion= ’ express ion=V a l i d S t r i n g)
124)
125 ((’/> ’) |(’> ’ ’</contex t : inc lude f i l t e r > ’))
126 ;
127

128 E x c l u d e F i l t e r :
129 ’<contex t : exclude f i l t e r ’
130 ((’ type= ’ type=EnumTypeFilter)
131 &(’ express ion= ’ express ion=V a l i d S t r i n g)
132)
133 ((’/> ’) |(’> ’ ’</contex t : exclude f i l t e r > ’))
134 ;
135

136 /** loadtime weaving for Aspect class */

137 LoadTimeWeaver :
138 { LoadTimeWeaver }
139 ’ load time weaver ’ ((’ a s p e c t j weaving= ’ aspect jWeaving=Va l i d S t r i n g) ? & (

’ weaver c l a s s = ’ weaverClass=V a l i d S t r i n g) ?) ((’/> ’) |(’> ’ ’</contex t :
load time weaver> ’))

140 ;
141

142

143 MbeanExport :
144 { MbeanExport }
145 ’mbeanexport ’ ((’ d e f a u l t domain= ’ defaultDomain=Va l i d S t r i n g) ? & (’

r e g i s t r a t i o n = ’ r e g i s t r a t i o n =MbeanRegistrationEnum) ? & (’ server= ’
server =[Component|V al i d S t r i n g]) ?) ((’/> ’) |(’> ’ ’</contex t : mbean-
export > ’))

146 ;
147

148

149

150 MbeanServer :
151 { MbeanServer }
152 ’mbeanserver ’ ((’ agent id= ’ agentId=V a l i d S t r i n g) ? & (’ id= ’name=

V a l i d S t r i ng) ?) ((’/> ’) |(’> ’ ’</contex t : mbeanserver > ’))
153

154 ;
155

Appendix A. XText-based Spring implementation 123

156 PropertyHolder :
157 (PropertyPlaceholder|PropertyOverride) ;
158

159 /** Placeholder for properties files */

160

161

162 PropertyPlaceholder :
163 ’ property placeholder ’
164 (p r o p e r t y f i l e = P r o p e r t y F i l e ?
165 &(’ ignore resource not found= ’ ignoreResourceNotFound=sBoolean) ? & (’

ignore unresolvable= ’ ignoreUnresolvable=sBoolean) ? &(’ l o c a l -
overr ide= ’ loca lOverr ide=sBoolean) ?

166 & (’ order= ’ order=V a l i d S t r i ng) ? &(’ p r o p e r t i e s r e f = ’ p r o p e r t i e s R e f =[
Component|V a l i d S t r i n g]) ?

167 & (’ system p r o p e r t i e smode= ’ systemPropertiesMode=V a l i dS t r i n g) ?//
Depreciated since 3.1

168) ((’/> ’) |(’> ’ ’</contex t : property placeholder > ’))
169 ;
170

171 /** Activates pushing of override values into bean properties */

172 PropertyOverride :
173 ’ property overr ide ’
174 (p r o p e r t y f i l e = P r o p e r t y F i l e
175 &(’ ignore resource not found= ’ ignoreResourceNotFound=sBoolean) ? & (’

ignore unresolvable= ’ ignoreUnresolvable=sBoolean) ? &(’ l o c a l overr ide
= ’ loca lOverr ide=sBoolean) ?

176 & (’ order= ’ order=V a l i d S t r i ng) ? &(’ p r o p e r t i e s r e f = ’ p r o p e r t i e s R e f =[
Component|V a l i d S t r i n g]) ?

177) ((’/> ’) |(’> ’ ’</contex t : property override > ’))
178 ;
179

180 /*Signals the current application context to apply dependency injection

to nonmanaged classes that are

181 instantiated outside of the Spring bean factory (typically classes

annotated with the @Configurable annotation). */

182 SpringConfigured :
183 { SpringConfigured }
184 ’ spring configured ’ ((’/> ’) |(’> ’ ’</contex t : spring configured > ’))
185 ;
186

187 /** Aspect main tags */

188 Aspect returns Aspect :
189 ’<aop : ’ AspectType
190 ;
191

192 AspectType returns Aspect :
193 (AopAspectJAutoproxy|AopConfig)
194 ;

124 Appendix A. XText-based Spring implementation

195

196 /** To enable @AspectJ support with XML based configuration */

197 AopAspectJAutoproxy :
198 { AopAspectJAutoproxy }
199 ’ a s p e c t j autoproxy ’ ((’ expose proxy= ’ exposeProxy=sBoolean) ? & (’ proxy-

t a r g e t c l a s s = ’ proxyTra je tClass=sBoolean) ?) ((’/> ’) |(’> ’ (aopincludes
+=AopInclude) ∗ ’</aop : a s p e c t j autoproxy > ’))

200 ;
201

202 /** Include @AspectJ aspect use with Spring AOP*/

203 AopInclude :
204 ’ inc lude ’ ’name= ’ aopInclude =[Component|Va l i d S t r i n g] ((’/> ’) |(’> ’ ’</

aop : include > ’))
205 ;
206

207 AopConfig :
208 { AopConfig } (
209 ’ conf ig ’ ((’ expose proxy= ’ exposeProxy=sBoolean) ? & (’ proxy t a r g e t c l a s s

= ’ proxyTra je tClass=sBoolean) ?)
210 ((’/> ’)
211 |(’> ’ ((aopPointcuts+=AopPointcut) ∗ (aopAdvisors+=AopAdvisor) ∗ (aspe c t s

+=AopAspect) ∗) ’</aop : config > ’)
212)
213

214)
215 ;
216

217 AopPointcut :
218 ’<aop : pointcut ’
219 ((’ express ion= ’ express ion=V a l id S t r i ng) &(’ id= ’name=V a l i d S t r in g))
220 ((’/> ’) |(’> ’ ’</aop : pointcut > ’))
221

222 ;
223 /* (pointcut|pointcutref)*/

224 AopAdvisor :
225 ’<aop : advisor ’
226 ((’ advice r e f = ’ adviceRef =[TxAdvise|V a l id S t r i n g]) & (’ id= ’name=

V a l i d S t r i ng) ? & (’ order= ’ order=V a l i dS t r i n g) ? & ((pointcut=
PointCutExpression) |(’ pointcut r e f = ’ pointcutRef =[AopPointcut|
V a l i d S t r i ng])))

227 ((’/> ’) |(’> ’ ’</aop : advisor > ’))
228 ;
229

230 PointCutExpression returns AopPointcut :
231 ’ po intcut= ’ express ion=V a l i d S t r i n g
232 ;
233

Appendix A. XText-based Spring implementation 125

234 /**(pointcut | declareparents | before | after | afterreturning | after-
throwing | around)* */

235 AopAspect :
236 ’<aop : aspect ’ ((’ id= ’name=V a l i d S t r in g) & (’ order= ’ order=V a l id S t r i n g)

& (’ r e f = ’ backingBeanRef =[Component|V a l id S t r i ng])) ’> ’ (
aopPointcuts+=AopPointcut|dec laredParents+=DeclareParents|advises
+=Advise) ∗ ’</aop : aspect > ’

237 ;
238

239 /* Introductions

240 * Allows this aspect to introduce additional interfaces that the

241 advised object will transparently implement. */

242 DeclareParents :
243 ’<aop : d ec lare parents ’
244 (
245 (’ types matching= ’ typeMatching=Va l i d S t r i n g)
246 &(implementInterface=AopImplInterface)
247 &((d e f a u l t I m p l I n t e r f a c e =AopDefault ImplInterface)
248 |(delegateImplRef=AopDelegateImplRef))
249)
250 ((’/> ’) |(’> ’ ’</aop : de c lare parents > ’))
251 ;
252

253

254 /**The fully qualified name of the interface that will be introduced. */

255 AopImplInterface returns I n t e r f a c e :
256 ’ implement i n t e r f a c e = ’name=V a l i d S t r in g
257 ;
258

259 /*The fully qualified name of the interface that will be introduced. */

260 AopDefault ImplInterface :
261 ’ d e f a u l t impl= ’name=V al i d S t r in g
262 ;
263

264 /*A reference to the bean that will serve as the default implementation

of the introduced

265 interface. */

266 AopDelegateImplRef :
267 ’ de legate r e f = ’ r e f =[Component|V a l i d S t r i n g]
268 ;
269

270 Advise :
271 (BeforeAdvise|AfterAdvise|AroundAdvise|AfterReturning|AfterThowing)
272 ;
273

274

275 BeforeAdvise :

126 Appendix A. XText-based Spring implementation

276 ’<aop : before ’ (((’ po intcut r e f = ’ pointcutRef =[AopPointcut|V al i d S t r i n g])
|(’ pointcut= ’ PointcutExpress ion=V a l id S t r i n g)) & (’ method= ’ method=
V a l id S t r i ng))

277 ((’/> ’) |(’> ’ ’</aop : before > ’))
278 ;
279

280 AfterAdvise :
281 ’<aop : a f t e r ’ (((’ po intcut r e f = ’ pointcutRef =[AopPointcut|V al i d S t r i n g])

|(’ pointcut= ’ PointcutExpress ion=V a l id S t r i n g)) & (’ method= ’ method=
V a l id S t r i ng))

282 ((’/> ’) |(’> ’ ’</aop : a f t e r > ’))
283 ;
284

285 AroundAdvise :
286 ’<aop : around ’ (((’ po intcut r e f = ’ pointcutRef =[AopPointcut|V al i d S t r i n g])

|(’ pointcut= ’ PointcutExpress ion=V a l id S t r i n g)) & (’ method= ’ method=
V a l id S t r i ng))

287 ((’/> ’) |(’> ’ ’</aop : around> ’))
288 ;
289

290 AfterReturning :
291 ’<aop : a f t e r re turning ’ (((’ po intcut r e f = ’ pointcutRef =[AopPointcut|

V a l id S t r i ng]) |(’ po intcut= ’ PointcutExpress ion=V a l i d S t r i n g)) & (’
method= ’ method=V a l i dS t r i n g) & (’ re turning= ’ returningValue=
V a l id S t r i ng))

292 ((’/> ’) |(’> ’ ’</aop : a f t e r returning > ’))
293 ;
294

295 AfterThowing :
296 ’<aop : a f t e r throwing ’ (((’ po intcut r e f = ’ pointcutRef =[AopPointcut|

V a l i d S t r i ng]) |(’ po intcut= ’ PointcutExpress ion=V a l i d S t r i n g)) & (’
method= ’ method=V a l i dS t r i n g) & (’ throwing= ’ throwingValue=
V a l i d S t r i ng))

297 ((’/> ’) |(’> ’ ’</aop : a f t e r throwing > ’))
298 ;
299

300

301 TxAdvise :
302 ’< tx : advice ’ ((’ id= ’name=V a l i d S t r in g) &
303 (’ t r a n s a c t i o n manager= ’ transactionManager=Va l i d S t r i n g) ? //Default

value="transactionManager"

304)
305 ’> ’
306 (t x A t t r i b u t e =TxAttr ibute) ?
307 ’</tx : advice > ’
308 ;
309

310 TxAttr ibute :

Appendix A. XText-based Spring implementation 127

311 { TxAttr ibute }
312 ’< tx : a t t r i b u t e s ’ ’> ’
313 (txMethods+=TxMethod) +
314 ’</tx : a t t r i b u t e s > ’
315

316 ;
317

318 TxMethod :
319 ’< tx : method ’
320 ((’name= ’name=V a l i d S t r in g)
321 &(’ i s o l a t i o n = ’ i s o l a t i o n =EnumIsolation) ?
322 &(’ no r o l l b a c k f o r = ’ noRollBackFor=V a l i d S t r i n g) ?//ref Exeption

323 &(’ propagation= ’ propagation=EnumIsolation) ?
324 &(’ read only= ’ readOnly=sBoolean) ?
325 &(’ r o l l b a c k f o r = ’ r o l l b a c k F o r=V a l i d S t r i n g) ? //ref Exeption

326 &(’ timeout= ’ timeOut=V a l i d S t r i n g) ? //int default value:1

327) ;
328

329 TxJtaTransactionManager :
330 { TxJtaTransactionManager }
331 ’< tx : j t a t r a n s a c t i o n manager ’
332 ((’/> ’) |(’> ’ ’</tx : j t a t r a n s a c t i o n manager> ’))
333

334 ;/*<bean/> */

335 Component returns Component :
336 { Component }
337 ’<bean ’
338 ((’ id= ’name=V a l i d S t r in g) ? & (’name= ’ names+=V a l id S t r i ng) ?
339 & c l a s s = CreationMethod
340 & (f e a t u r e s +=PNamespace) ∗
341 & (f e a t u r e s += CNamespace) ∗
342 & (’ a b s t r a c t = ’ a b s t r a c t =sBoolean) ? //bool

343 & (’ autowire candidate= ’ autowireCandidate=DefaultableBoolean) ? //enum

344 & (’ autowire= ’ autowire=Defaul tableBoolean) ? //enum

345 & (’ dependson= ’ dependsOn=[Component|V a l i dS t r i n g]) ? //ref a bean

346 & (’ destroy method= ’ detroyMethod=V a l id S t r i n g) ? //ref a method

347 & (’ i n i t method= ’ initMethod=V a l id S t r i ng) ? //ref a method

348 & (’ lazy i n i t = ’ l a z y I n i t =Defaul tableBoolean) ? //enum

349 & (’ parent= ’ parent =[Component|V a l id S t r i n g]) ? //ref a bean

350 & (’ primary= ’ primary=sBoolean) ? //bool

351 & (’ scope= ’ scope=V a l id S t r i ng) ?
352)
353 (
354 (’/> ’)
355 | (’> ’
356 d e s c r i p t i o n =Descr ipt ion ?
357

128 Appendix A. XText-based Spring implementation

358 (f e a t u r e s +=Feature|lookupMethods+=LookupMethod| q u a l i f i e r s +=
Q u a l i f i e r |meta+=MetaTag

359 |(aopScopedProxy=AopScopedProxy) | u t i l P r o p e r t i e s P a t h +=
Uti lProper tyPath

360) ∗
361 ’</bean> ’)
362)
363 ;
364

365

366

367

368 CreationMethod :
369 ((’ f a c t o r y method= ’ factoryMethod=V a l id S t r i n g) ? & c l a s s =(Class|Factory)

)
370 ;
371

372 /*If the bean is created by a factory */

373 ClassOrFactory :
374 (Class|Factory)
375 ;
376

377 Factory :
378 (’ f a c t o r y bean= ’ factoryBean =[Component|Va l i d S t r i n g]) ;
379

380 Class returns Class :
381 (’ c l a s s = ’/*(path=Path ’.’)? classname=ID */ classname=

V a l id S t r i ng)
382 ;
383

384

385 /*Path of the class */

386 /*Path returns ecore::EString:

387 (ID (’.’ID)*)

388 ;

389 */

390

391 AopScopedProxy :
392 { AopScopedProxy }
393 ’<aop : scoped proxy ’ (’ proxy t a r g e t c l a s s = ’ proxyTargetClass=V al i d S t r i n g) ?

((’/> ’) |(’> ’ ’</aop : scopedproxy> ’))
394 ;
395

396

397 Feature returns Feature :
398 (Property |ConstructorArg)
399 ;
400

Appendix A. XText-based Spring implementation 129

401 /*<property/> */

402 Property returns Feature :
403 (’<property ’ ((
404 ((’name= ’ name=V a l i d S t r in g) & (a r t e f a c t =(ReferenceAtt|

A t t r i b u t e A t t))) (’/> ’| ’> ’ (d e s c r i p t i o n =Descr ipt ion) ? ’</
property > ’))

405 | ((’name= ’ name=V a l i d S t r in g) ’> ’ (d e s c r i p t i o n =Descr ipt ion) ? (
a r t e f a c t = A b s t r a c t A r t e f a c t |NullTag) ’</property > ’)

406)
407)
408 ;
409

410 /** If Attribute is a attribute of <property/>/<Constructorarg/> */

411 A t t r i b u t e A t t returns A t t r i b u t e :
412 { A t t r i b u t e }
413 ((’ value= ’ value=V a l i d S t r i n g))
414 ;
415

416 /**Attribute create by a tag */

417 Attr ibuteTag returns A t t r i b u t e :
418 ({ A t t r i b u t e }
419 ’<value ’ (’ type= ’ type=V a l i d S t r i n g) ? ((’> ’ value=QSTRING ’</value > ’) |(’

/> ’)))
420 |(Ut i lConstant)
421 ;
422

423 Attr ibutSimple returns A t t r i b u t e :
424 value=V a l i dS t r i n g
425 ;
426 AttributSimpleValue returns A t t r i b u t e :
427 ’ value= ’ value=V a l i dS t r i n g
428 ;
429 /** <Idref/> */

430 IdRefTag returns A t t r i b u t e :
431 { A t t r i b u t e }
432 ’< i d r e f ’ ’ bean= ’ value=V a l i d S t r i n g ((’/> ’) |(’> ’ ’</i d r e f > ’))
433 ;
434 /** If Reference is a attribute of <property/>/<Constructorarg/> */

435 ReferenceAtt returns Reference :
436 { Reference }
437 ’ r e f = ’ r e f =[Component|V a l i d S t r i n g]
438 ;
439

440 /**Reference create by a tag */

441 ReferenceTag returns Reference :
442 { Reference }
443 ’< r e f ’ ’ bean= ’ r e f = ([A b s t r a c t A r t e f a c t |V a l i d S t r i n g]) (’/> ’| ’> ’ ’</ref > ’)
444 ;

130 Appendix A. XText-based Spring implementation

445

446

447 ReferenceComponent returns Reference :
448 r e f =[Component|V al i d S t r i n g]
449 ;
450

451 /** <constructorarg/>*/

452 ConstructorArg returns Feature :
453 ’< c o n s t r u c t o r arg ’
454 (((ConstructorArgAtt)
455 ((’> ’ (d e s c r i p t i o n =Descr ipt ion) ? ’</ c o n s t r u c t o r arg > ’) |(’/> ’))
456)
457 |
458 ({ Feature }
459 ((’ index= ’ index=V a l i d S t r i n g) ?&("name="name=V a l i d S t r in g) ?&(" type

=" type=V a l i d S t r in g) ?) ’> ’
460 (d e s c r i p t i o n =Descr ipt ion) ?
461 (a r t e f a c t = A b s t r a c t A r t e f a c t |NullTag)
462 ’</ c o n s t r u c t o r arg > ’
463)
464)
465

466 ;
467

468 /*If the parameter is a attribute */

469 ConstructorArgAtt returns Feature :
470 (
471 (’ index= ’ index=V a l i d S t r i n g) ?
472 & ("name="name=V a l i d S t r in g) ?
473 & (a r t e f a c t =Attr ibutesCons)
474)
475 ;
476

477 Attr ibutesCons returns A b s t r a c t A r t e f a c t :
478 (
479 ({ A t t r i b u t e } (’ value= ’ value=V a l id S t r i ng & (’ type= ’ type=

V a l id S t r i ng) ?))
480 | ({ Reference } (’ r e f = ’ r e f =[Component|V a l i dS t r i n g] /* &(’type=’

STRING)? */))
481)
482

483

484 ;
485

486 /*Attribute created in <constructorarg/> */

487 /*AttributeAttCons returns Attribute:

488 {Attribute}

489 (((’value=’STRING)& (’type=’type=STRING)?))

Appendix A. XText-based Spring implementation 131

490 ;*/

491

492

493 /*Attribute created in <constructorarg/> */

494 /*ReferenceAttCons returns Reference:

495 {Reference}

496 (((’ref=’ref=[Component|STRING]) & (’type=’STRING)?))

497 ;*/

498

499

500 PNamespace returns Feature :
501 ’p : ’name=ID ((’ r e f ’ ’= ’ a r t e f a c t =ReferenceComponent) | ’= ’ a r t e f a c t =

Attr ibutS imple)
502 ;
503

504 CNamespace returns Feature :
505 ’ c : ’name=ID ((’ r e f ’ ’= ’ a r t e f a c t =ReferenceComponent) | ’= ’ a r t e f a c t =

Attr ibutS imple)
506

507 ;
508

509

510 LookupMethod :
511 ’<lookupmethod ’ ((’name= ’name=V a l i d S t r in g) & (’ bean= ’ r e f =[Component|

V a l id S t r i ng])) ((’/> ’) |(’> ’ ’</lookupmethod> ’))
512 ;
513

514 Q u a l i f i e r :
515 ’< q u a l i f i e r ’
516 ((’ type= ’ type=V a l i d S t r i ng) &(’ value= ’ value=V a l i dS t r i n g) ?)
517 ((’/> ’) |(’> ’ (q u a l i f i e r A t t r i b u t e s += Q u a l i f i e r A t t r i b u t e) ∗ ’</ q u a l i f i e r > ’)

)
518

519 ;
520 MetaTag returns Meta :
521 ’<meta ’
522 ((’ key= ’ key=V a l i d S t r i ng) &(’ value= ’ value=V a l i dS t r i n g))
523 ((’/> ’) |(’> ’ ’</meta> ’))
524

525

526 ;
527 Q u a l i f i e r A t t r i b u t e :
528 ’< a t t r i b u t e ’
529 ((’ key= ’ key=V a l i d S t r i ng) &(’ value= ’ value=V a l i dS t r i n g))
530 ((’/> ’) |(’> ’ ’</ a t t r i b u t e > ’))
531

532 ;
533

132 Appendix A. XText-based Spring implementation

534 /* <array> */

535 Array returns Array :
536 ({ Array })
537 (’<array ’ ((’ value type= ’ valueType=Va l i d S t r i n g) ? &(’ merge= ’ merge=

DefaultableBoolean) ?) ’> ’
538 (d e s c r i p t i o n =Descr ipt ion) ?
539 (a r t e f a c t s += A b s t r a c t A r t e f a c t |NullTag) ∗
540 ’</array > ’)
541 ;
542

543 /*<list/> */

544 s L i s t returns s L i s t :
545 ({ s L i s t }
546 (’< l i s t ’ ((’ value type= ’ valueType=Va l i d S t r i n g) ? &(’ merge= ’ merge=

DefaultableBoolean) ?) ’> ’
547 (d e s c r i p t i o n =Descr ipt ion) ?
548 (a r t e f a c t s += A b s t r a c t A r t e f a c t |NullTag) ∗
549 ’</ l i s t > ’)) |(U t i l L i s t)
550 ;
551

552 /*<set/> */

553 s S e t returns s S e t :
554 { s S e t }
555 ((’< s e t ’ ((’ value type= ’ valueType=V a l id S t r i n g) ? &(’ merge= ’ merge=

DefaultableBoolean) ?) ’> ’
556 (d e s c r i p t i o n =Descr ipt ion) ?
557 (a r t e f a c t s += A b s t r a c t A r t e f a c t |NullTag) ∗
558 ’</set > ’)) | U t i l S e t
559 ;
560

561 /*<props/> */

562 Props returns Props :
563 ({ Props }
564 (’<props ’ ((’ value type= ’ valueType=Va l i d S t r i n g) ? &(’ merge= ’ merge=

DefaultableBoolean) ?) ’> ’
565 (d e s c r i p t i o n =Descr ipt ion) ?
566 (props+=Prop) ∗
567 ’</props> ’)) | U t i l P r o p e r t i e s
568 ;
569

570 /*<prop/> */

571 Prop :
572 ’<prop ’ ’ key= ’ key=V a l i d S t r i n g ’> ’ value=QSTRING ’</prop> ’
573 ;
574

575 /*<map/> */

576 Map:
577 {Map}

Appendix A. XText-based Spring implementation 133

578 (’<map ’ ((’ key type= ’ keyType=Va l i d S t r i n g) ?& (’ merge= ’ merge=
DefaultableBoolean) ? & (’ value type= ’ valueType=V a l i d S t r in g) ?) ’> ’

579 (d e s c r i p t i o n =Descr ipt ion) ?
580 (e n t r i e s +=MapEntry) ∗
581 ’</map> ’) |UtilMap
582

583 ;
584

585 /*Entries for map */

586 MapEntry returns MapEntry :
587 ’<entry ’
588 ((MapEntryKey| MapEntryValue|MapEntryAtt)
589 | (
590 /*(’valuetype=’valueType=ValidString)?*/ ’> ’
591 key=Key (value= A b s t r a c t A r t e f a c t |NullTag)
592 (d e s c r i p t i o n =Descr ipt ion) ?
593 (’</entry > ’)))
594

595

596 ;
597

598 /*If the key is a attribute */

599 MapEntryKey returns MapEntry :
600 ((’ value type= ’ valueType=V a l id S t r i ng) ? &
601 (key=MapEntryKeyAtt)) ’> ’
602 (d e s c r i p t i o n =Descr ipt ion) ?
603 value= A b s t r a c t A r t e f a c t
604 (’</entry > ’)
605 ;
606

607 /*If the value is a attribute */

608 MapEntryValue returns MapEntry :
609 ((’ value type= ’ valueType=V a l id S t r i ng) ? &
610 (value=Attr ibutSimpleValue|value=MapEntryValRef)) ’> ’
611 key=Key
612 (d e s c r i p t i o n =Descr ipt ion) ?
613 (’</entry > ’)
614 ;
615

616 /*If the key and the value are attributes */

617 MapEntryAtt returns MapEntry :
618 ((’ value type= ’ valueType=V a l id S t r i ng) ? key=MapEntryKeyAtt & (value=

Attr ibutSimpleValue |(value=MapEntryValRef)))
619 ((’/> ’) |(’> ’ (d e s c r i p t i o n =Descr ipt ion) ? ’</entry > ’))
620 ;
621

622 /*<key/> */

623 Key :

134 Appendix A. XText-based Spring implementation

624 { Key }
625 ’<key ’ ’> ’ (d e s c r i p t i o n =Descr ipt ion) ? (key= A b s t r a c t A r t e f a c t |NullTag) ’</

key> ’
626 ;
627

628 /*if key is a attribute */

629 MapEntryKeyAtt returns Key :
630 { Key } /*(’key=’key1=ValidString|keyref=MapEntrykeyRef)*/

631 (’ key= ’ key=DataStr ing|key=MapEntrykeyRef)
632 ;
633

634

635 MapEntrykeyRef returns Reference :
636 (’ key r e f = ’ r e f =[Component|Va l i d S t r i n g])
637 ;
638 MapEntryValRef returns Reference :
639 (’ value r e f = ’ r e f =[Component|Va l i d S t r i n g])
640 ;
641

642

643 Uti lConstant :
644 { Ut i lConstant }
645 ’< u t i l : constant ’
646 ((’ s t a t i c f i e l d = ’ S t a t i c F i e l d =STRING)
647 &(’ id= ’name=V al i d S t r in g) ?
648)
649 ((’/> ’) |(’> ’ ’</ u t i l : constant > ’))
650 ;
651

652 Uti lProper tyPath :
653 ’< u t i l : property path ’ ((’ id= ’name=V a l i d S t r in g)& (’ path= ’ path=V a l id S t r i ng)

)
654 ((’/> ’) |(’> ’ ’</ u t i l : constant > ’))
655 ;
656

657 U t i l P r o p e r t i e s :
658 { U t i l P r o p e r t i e s }
659 ’< u t i l : p r o p e r t i e s ’
660 (
661 (p r o p e r t y f i l e =PropertyFi leS imple) ?
662 &(’ id= ’name=V a l i d S t r in g) ?
663 &(’ ignore resource not found= ’ ignoreResourceNotFound=sBoolean) ?
664 &(’ l o c a l overr ide= ’ loca lOverr ide=sBoolean) ?
665 &(’ scope= ’ scope=V a l i d S t r i n g) ?
666 &(’ value type= ’ valueType=V a l i d S t r i n g) ?
667 ((’/> ’) |(’> ’ (props+=Prop) ∗ ’</ u t i l : proper t ies > ’))
668)
669 ;

Appendix A. XText-based Spring implementation 135

670

671 U t i l L i s t :
672 { U t i l L i s t }
673 ’< u t i l : l i s t ’
674 ((’ id= ’name=V a l i d S t r in g) ?
675 &(’ l i s t c l a s s = ’ l i s t C l a s s =V a l i d S t r i n g) ?
676 &(’ scope= ’ scope=V a l i dS t r i n g) ?
677 &(’ value type= ’ valueType=V a l i d S t r i n g) ?
678)
679 ((’/> ’) |(’> ’ (a r t e f a c t s += A b s t r a c t A r t e f a c t) ∗ ’</ u t i l : proper t ies > ’))
680 ;
681

682 UtilMap :
683

684 { UtilMap }
685 ’< u t i l : map ’
686 ((’ id= ’name=V al i d S t r in g) ?
687 &(’ key type= ’ keyType=V a l i dS t r i n g) ?
688 &(’mapc l a s s = ’ mapClass=V a l i d S t r i n g) ?
689 &(’ scope= ’ scope=V a l i dS t r i n g) ?
690 &(’ value type= ’ valueType=V a l i d S t r i n g) ?
691

692)
693 ((’/> ’) |(’> ’ (e n t r i e s +=MapEntry) ∗ ’</ u t i l : map> ’))
694 ;
695

696 U t i l S e t :
697 { U t i l S e t }
698 ’< u t i l : s e t ’
699 ((’ id= ’name=V al i d S t r in g) ?
700 &(’ s e t c l a s s = ’ s e t C l a s s =V a l i d S t r i n g) ?
701 &(’ scope= ’ scope=V a l i dS t r i n g) ?
702 &(’ value type= ’ valueType=V a l i d S t r i n g) ?
703

704)
705 ((’/> ’) |(’> ’ (a r t e f a c t s += A b s t r a c t A r t e f a c t) ∗ ’</ u t i l : se t > ’))
706 ;
707 PropertyFi leS imple returns P r o p e r t y F i l e :
708 (’ l o c a t i o n = ’ l o c a t i o n =Va l i d S t r i n g)
709 ;
710 P r o p e r t y F i l e :
711 ((’ l o c a t i o n = ’ l o c a t i o n =V a l id S t r i ng) & (’ f i l e encoding= ’ f i l eEncoding=

V a l id S t r i ng) ?)
712 ;
713

714

715 Descr ipt ion :
716 ’<descr ip t ion > ’QSTRING ’</descr ip t ion > ’

136 Appendix A. XText-based Spring implementation

717 ;
718

719

720 DataStr ing :
721 s=V a l i d S t r in g
722 ;
723

724 IdDashAndColon :
725 ID ((’ ’ ID) |(’ : ’ ID) ∗)
726 ;
727

728 IdWithDash :
729 ID (’ ’ ID) ? ;
730

731

732 QSTRING hidden (ML_COMMENT) :
733 (ID|INT|WS|V a l i d S t r i n g
734 | ’ , ’| ’ . ’| ’ ; ’| ’ : ’| ’ ’| ’ ? ’| ’ ! ’
735 | ’+ ’| ’ ∗ ’| ’= ’| ’ ◦ ’ | ’> ’
736 | ’/ ’| ’| ’| ’\\ ’
737 | ’ (’| ’) ’| ’ { ’| ’ } ’| ’ " ’|" ’ "| ’ [’| ’] ’
738 | ’@ ’| ’& ’| ’ # ’
739) ∗ ;
740

741 NullTag :
742 ’<n u l l ’ (’/> ’| ’> ’ ’</null > ’)
743 ;
744 V a l i d S t r i ng :
745 (STRING| ’ " t rue " ’| ’ " f a l s e " ’| ’ " d e f a u l t " ’| ’ " no " ’| ’ "byName" ’| ’ " byType " ’| ’

" c o n s t r u c t o r " ’| ’ " i n t e r f a c e s " ’| ’ " t a r g e t C l a s s " ’)
746 ;
747

748 /**********ENUM */

749 enum sBoolean :
750 FALSE= ’ " f a l s e " ’ |FALSE=" ’ f a l s e ’ "
751 |TRUE= ’ " t rue " ’ |TRUE= " ’ t rue ’ "
752 ;
753 enum DefaultableBoolean :
754 DEFAULT= ’ " d e f a u l t " ’ |DEFAULT=" ’ d e f a u l t ’ "
755 |FALSE= ’ " f a l s e " ’ |FALSE=" ’ f a l s e ’ "
756 |TRUE= ’ " t rue " ’ |TRUE= " ’ t rue ’ "
757 ;
758 enum AutoWiredType :
759 DEFAULT= ’ " d e f a u l t " ’ |DEFAULT=" ’ d e f a u l t ’ "
760 |NO= ’ " no " ’ |NO=" ’ no ’ "
761 |BYNAME= ’ "byName" ’ |BYNAME= " ’byName ’ "
762 |BYTYPE= ’ " byType " ’ |BYTYPE= " ’ byType ’ "
763 |CONSTRUCTOR= ’ " c o n s t r u c t o r " ’|CONSTRUCTOR=" ’ c o n s t r u c t o r ’ "

Appendix A. XText-based Spring implementation 137

764 ;
765 enum EnumScopedProxy :
766 NO= ’ " no " ’ |NO=" ’ no ’ "
767 |INTERFACES= ’ " i n t e r f a c e s " ’ |INTERFACES=" ’ i n t e r f a c e s ’ "
768 |TARGETCLASS= ’ " t a r g e t C l a s s " ’|TARGETCLASS=" ’ t a r g e t C l a s s ’ "
769 ;
770 enum EnumTypeFilter :
771 ANNOTATION= ’ " annotat ion " ’ |ANNOTATION=" ’ annotat ion ’ "
772 |ASSIGNABLE= ’ " a s s i g n a b l e " ’ |ASSIGNABLE=" ’ a s s i g n a b l e ’ "
773 |ASPECTJ= ’ " a s p e c t j " ’ |ASPECTJ= " ’ a s p e c t j ’ "
774 |REGEX= ’ " regex " ’ |REGEX= " ’ regex ’ "
775 |CUSTOM = ’ " custom " ’ |CUSTOM =" ’ custom ’ "
776 ;
777

778 enum MbeanRegistrationEnum :
779 FAILONEXISTING= ’ " f a i l O n E x i s t i n g " ’ |FAILONEXISTING=" ’ f a i l O n E x i s t i n g ’

"
780 |IGNOREEXISTING= ’ " i g n o r e E x i s t i n g " ’ |IGNOREEXISTING=" ’ i g n o r e E x i s t i n g ’

"
781 |REPLACEEXISTING= ’ " r e p l a c e E x i s t i n g " ’|REPLACEEXISTING=" ’

r e p l a c e E x i s t i n g ’ "
782 ;
783 enum EnumIsolation :
784 DEFAULT= ’ "DEFAULT" ’ |DEFAULT=" ’DEFAULT ’ "
785 |READ_UNCOMMITTED= ’ "READ_UNCOMMITTED" ’ |READ_UNCOMMITTED=" ’

READ_UNCOMMITTED’ "
786 |READ_COMMITTED = ’ "READ_COMMITTED" ’ |READ_COMMITTED =" ’

READ_COMMITTED ’ "
787 |REPEATABLE_READ = ’ "REPEATABLE_READ" ’ |REPEATABLE_READ =" ’

REPEATABLE_READ ’ "
788 |SERIALIZABLE= ’ "SERIALIZABLE" ’ |SERIALIZABLE=" ’SERIALIZABLE ’

"
789 ;
790

791 enum PropagationEnum :
792 REQUIRED= ’ "REQUIRED" ’ |REQUIRED=" ’REQUIRED ’ "
793 |SUPPORTS= ’ "SUPPORTS" ’ |SUPPORTS=" ’SUPPORTS ’ "
794 |MANDATORY= ’ "MANDATORY" ’ |MANDATORY=" ’MANDATORY’ "
795 |REQUIRES_NEW= ’ "REQUIRES_NEW" ’ |REQUIRES_NEW=" ’REQUIRES_NEW ’ "
796 |NOT_SUPPORTED= ’ "NOT_SUPPORTED" ’ |NOT_SUPPORTED=" ’NOT_SUPPORTED ’ "
797 |NEVER= ’ "NEVER" ’ |NEVER=" ’NEVER ’ "
798 |NESTED= ’ "NESTED" ’ |NESTED=" ’NESTED ’ "
799 ;
800 /***TERMINAL RULES */

801 terminal ID : ’^ ’ ? (’ a ’ . . ’ z ’| ’A’ . . ’Z ’| ’ _ ’) (’ a ’ . . ’ z ’| ’A’ . . ’Z ’| ’ _ ’|
’ 0 ’ . . ’ 9 ’) ∗ ;

802 terminal INT returns ecore : : EInt : (’ 0 ’ . . ’ 9 ’) + ;
803

138 Appendix A. XText-based Spring implementation

804 terminal STRING :
805 ’ " ’ (’\\ ’ . | ! (’\\ ’| ’ " ’)) ∗ ’ " ’ |
806 " ’ " (’\\ ’ . | ! (’\\ ’|" ’ ")) ∗ " ’ "
807 ;
808

809 terminal WS : (’ ’| ’\ t ’| ’\r ’| ’\n ’) + ;
810

811 terminal ANY_OTHER: . ;
812

813 terminal ML_COMMENT:
814 ’ <! ’> ’> ’ ;

139

Appendix B

SpringToDedal QVTo transformation

1 transformation springToDedal (in spring : SpringModel , out dedal :
DedalModel) ;

2

3

4 modeltype SpringModel " s t r i c t " uses springConfigDsl (’ ht tp ://www. x t e x t . org
/spring/SpringConfigDsl ’) ;

5 modeltype DedalModel " s t r i c t " uses dedal (’ ht tp ://www. dedal . f r /metamodel ’)
;

6

7

8

9

10

11 //

//

12 //

//

13 //

//

14 // MAIN

//

15 //

//

16 //

//

17 //

//

18

19

20 main () {
21 spring . r o o t O b j e c t s () [S p r i n g P r o j e c t] >map toDedalDiagram () ;

140 Appendix B. SpringToDedal QVTo transformation

22 }
23

24

25

26

27

28 //

//

29 //

//

30 //

//

31 // MAPPINGS

//

32 //

//

33 //

//

34 //

//

35

36

37 //

38 // DedalDiagram //

39 //

40

41 mapping SpringModel : : S p r i n g P r o j e c t : : toDedalDiagram () : dedal : :
DedalDiagram {

42 name := " Generated Diagram " ;
43 a r c h i t e c t u r e D e s c r i p t i o n s := s e l f . c o n f i g u r a t i o n s .

g e t A r c h i t e c t u r e D e s c r i p t i o n s () ;
44 }
45

46

47 //

48 // DedalConfiguration //

49 //

50

51 mapping SpringModel : : Configurat ion : : toDedalConfigurat ion () : DedalModel : :
Configurat ion {

52 i f (s e l f . a l i a s >notEmpty ())
53 {
54 r e s u l t . name := s e l f . a l i a s > f i r s t () . a l i a s + " Configurat ion " ;
55 }

Appendix B. SpringToDedal QVTo transformation 141

56 e lse
57 {
58 r e s u l t . name := spring . t o S t r i n g () + " Configurat ion " ;
59 } ;
60 configComponents := s e l f . getConfigComponents () ;
61 configConnect ions := s e l f . getConfigConnections () ;
62 //TODO

63 }
64

65

66 //

67 // DedalAssembly //

68 //

69

70 mapping SpringModel : : Configurat ion : : toDedalAssembly () : DedalModel : :
Assembly {

71 name:= " defaultName " ;
72 i f (s e l f . a l i a s >notEmpty ())
73 {
74 r e s u l t . name := s e l f . a l i a s > f i r s t () . a l i a s + " Assembly " ;
75 }
76 e lse
77 {
78 r e s u l t . name := spring . t o S t r i n g () + " Assembly " ;
79 } ;
80 assmComponents := s e l f . getAssmComponents () ;
81 assemblyConnections := s e l f . getAssemblyConnections () ;
82 //TODO

83 }
84

85

86 //

87 // CompInstance //

88 //

89

90 mapping SpringModel : : Component : : toCompInstance () : DedalModel : :
CompInstance {

91 var instanciatedCompClass := resolveone (compClass : dedal : : CompClass |
compClass . name . = (s e l f . _ c l a s s . getComponentClassName ())) ;

92 i n s t a n t i a t e s := instanciatedCompClass ;
93

94

95 var numbId : I n t e g e r ;
96 numbId := 0 ;
97 (DedalModel : : CompInstance) . a l l I n s t a n c e s () >forEach (c i)
98 {
99 i f (c i . i n s t a n t i a t e s = i n s t a n t i a t e s)

100 {

142 Appendix B. SpringToDedal QVTo transformation

101 numbId:=numbId+1;
102 }
103 } ;
104

105 i f (s e l f . name. < >(null))
106 {
107 name := s e l f . name
108 }
109 e lse i f (s e l f . names . length () . < >(0))
110 {
111 name := s e l f . names>at (0)
112 }
113 e lse
114 {
115 i f (s e l f . _ c l a s s . _ c l a s s . oclIsTypeOf (SpringModel : : Class))
116 {
117 name := s e l f . _ c l a s s . _ c l a s s . oclAsType (SpringModel : : Class) .

classname + numbId . t o S t r i n g () ;
118 }
119 e lse i f (s e l f . _ c l a s s . _ c l a s s . oclIsTypeOf (SpringModel : : Factory))
120 {
121 name := s e l f . _ c l a s s . _ c l a s s . oclAsType (SpringModel : : Factory) .

factoryBean . name ;
122 }
123 e lse
124 {
125 name := " d e f a u l t " ;
126 }
127 } ;
128 }
129

130

131 //

132 // CompClass //

133 //

134

135 mapping SpringModel : : Component : : toCompClass () : DedalModel : : CompClass {
136 var tempname : o c l s t d l i b : : S t r i n g ;
137 i f (s e l f . _ c l a s s . _ c l a s s . oclIsTypeOf (SpringModel : : Class))
138 {
139 tempname := s e l f . _ c l a s s . _ c l a s s . oclAsType (SpringModel : : Class) .

classname ;
140 }
141 e lse
142 {
143 tempname := s e l f . _ c l a s s . _ c l a s s . oclAsType (SpringModel : : Factory) .

factoryBean . name ;
144 } ;

Appendix B. SpringToDedal QVTo transformation 143

145 name := tempname ;
146 }
147

148

149 //

150 // ComponentClass //

151 //

152

153 mapping SpringModel : : CreationMethod : : toComponentClass () : DedalModel : :
CompClass {

154 var compClass : DedalModel : : CompClass ;
155 var tempname : S t r i n g ;
156 i f (s e l f . _ c l a s s . oclIsTypeOf (SpringModel : : Class))
157 {
158 tempname := s e l f . _ c l a s s . oclAsType (SpringModel : : Class) . classname ;
159 compClass := s e l f . resolveone (compC : DedalModel : : CompClass | compC

. name = tempname) ;
160 i f (compClass = null)
161 name := tempname ;
162 }
163 e lse
164 {
165 name := s e l f . _ c l a s s . oclAsType (SpringModel : : Factory) . factoryBean .

name ;
166 }
167 }
168

169

170 //

171 // AssemblyConnection //

172 //

173

174 mapping SpringModel : : Component : : toAssemblyConnection (name : Str ing , r :
SpringModel : : Reference) : DedalModel : : InstConnect ion {

175

176 var source := s e l f . name ;
177 var sourceRef : CompInstance ;
178 _property := source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l (" \" " , " "

) ;
179 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
180 var t a r g e t := r . r e f . oclAsType (SpringModel : : Component) . name ;
181 var t a r g e t R e f : CompInstance ;
182 t a r g e t R e f := r . r e f . oclAsType (SpringModel : : Component) .map

toCompInstance () ;
183 c l i e n t I n s t E l e m := sourceRef ;
184 serverInstElem := t a r g e t R e f ;
185 }

144 Appendix B. SpringToDedal QVTo transformation

186

187 mapping SpringModel : : Component : : toAssemblyConnection (name : Str ing , c :
SpringModel : : Component) : DedalModel : : InstConnect ion {

188

189 var source := s e l f . name ;
190 var sourceRef : CompInstance ;
191 _property := source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l (" \" " , " "

) ;
192 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
193 var t a r g e t R e f := c . map toCompInstance () ;
194 c l i e n t I n s t E l e m := sourceRef ;
195 serverInstElem := t a r g e t R e f ;
196 }
197

198 mapping SpringModel : : Component : : toAssemblyConnection_set (name : Str ing , r :
SpringModel : : Reference) : DedalModel : : InstConnect ion {

199

200 var source := s e l f . name ;
201 var sourceRef : CompInstance ;
202 _property := " s e t : "+source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l ("

\" " , " ") ;
203 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
204 var t a r g e t := r . r e f . oclAsType (SpringModel : : Component) . name ;
205 var t a r g e t R e f : CompInstance ;
206 t a r g e t R e f := r . r e f . oclAsType (SpringModel : : Component) .map

toCompInstance () ;
207 c l i e n t I n s t E l e m := sourceRef ;
208 serverInstElem := t a r g e t R e f ;
209 }
210

211 mapping SpringModel : : Component : : toAssemblyConnection_set (name : Str ing , c :
SpringModel : : Component) : DedalModel : : InstConnect ion {

212

213 var source := s e l f . name ;
214 var sourceRef : CompInstance ;
215 _property := " s e t : "+source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l ("

\" " , " ") ;
216 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
217 var t a r g e t R e f := c . map toCompInstance () ;
218 c l i e n t I n s t E l e m := sourceRef ;
219 serverInstElem := t a r g e t R e f ;
220 }
221

222 mapping SpringModel : : Component : : toAssemblyConnect ion_l is t (name : Str ing , r :
SpringModel : : Reference) : DedalModel : : InstConnect ion {

Appendix B. SpringToDedal QVTo transformation 145

223

224 var source := s e l f . name ;
225 var sourceRef : CompInstance ;
226 _property := " l i s t : "+source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l (

" \" " , " ") ;
227 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
228 var t a r g e t := r . r e f . oclAsType (SpringModel : : Component) . name ;
229 var t a r g e t R e f : CompInstance ;
230 t a r g e t R e f := r . r e f . oclAsType (SpringModel : : Component) .map

toCompInstance () ;
231 c l i e n t I n s t E l e m := sourceRef ;
232 serverInstElem := t a r g e t R e f ;
233 }
234

235 mapping SpringModel : : Component : : toAssemblyConnect ion_l is t (name : Str ing , c :
SpringModel : : Component) : DedalModel : : InstConnect ion {

236

237 var source := s e l f . name ;
238 var sourceRef : CompInstance ;
239 _property := " s e t : "+source . r e p l a c e A l l (" \" " , " ") +" . "+name . r e p l a c e A l l ("

\" " , " ") ;
240 sourceRef := resolveone (compInst : DedalModel : : CompInstance | compInst .

name=source) ;
241 var t a r g e t R e f := c . map toCompInstance () ;
242 c l i e n t I n s t E l e m := sourceRef ;
243 serverInstElem := t a r g e t R e f ;
244 }
245

246 //

247 // ConfigConnection //

248 //

249

250 mapping SpringModel : : Component : : toConfigConnection (name : Str ing , r :
SpringModel : : Reference) : DedalModel : : ClassConnection {

251

252 var source := s e l f . _ c l a s s . getComponentClassName () ;
253 var sourceRef : CompClass ;
254 _property := name ;
255 sourceRef := resolveone (compClass : DedalModel : : CompClass | compClass .

name=source) ;
256 var t a r g e t := r . r e f . oclAsType (SpringModel : : Component) . name ;
257 var t a r g e t R e f : CompClass ;
258 t a r g e t R e f := r . r e f . oclAsType (SpringModel : : Component) .map toCompClass

() ;
259 c l i en tClassE lem := sourceRef ;
260 serverClassElem := t a r g e t R e f ;
261

146 Appendix B. SpringToDedal QVTo transformation

262 }
263

264 mapping SpringModel : : Component : : toConfigConnection (name : Str ing , c :
SpringModel : : Component) : DedalModel : : ClassConnection {

265

266 var source := s e l f . _ c l a s s . getComponentClassName () ;
267 var sourceRef : CompClass ;
268 _property := name ;
269 sourceRef := resolveone (compClass : DedalModel : : CompClass | compClass .

name=source) ;
270 var t a r g e t R e f := c . map toCompClass () ;
271 c l i en tClassE lem := sourceRef ;
272 serverClassElem := t a r g e t R e f ;
273

274 }
275

276

277

278

279

280 //

//

281 //

//

282 //

//

283 // QUERIES

//

284 //

//

285 //

//

286 //

//

287

288

289

290

291

292 //

293 // getDiagramName //

294 //

295

Appendix B. SpringToDedal QVTo transformation 147

296 query getDiagramName (c o n f i g s : Set (SpringModel : : Configurat ion)) : S t r i n g
{

297 var name := " DefaultName " ;
298 i f (c o n f i g s = null)
299 {
300 name := " n u l l " ;
301 }
302 e lse
303 {
304 name := c o n f i g s> s i z e () . t o S t r i n g () + " _ i n _ i t " ;
305 } ;
306 c o n f i g s > forEach (c)
307 {
308 name := " GeneratedDiagram " ;
309 } ;
310

311 return name ;
312 }
313

314

315 //

316 // getArchitectureDescriptions //

317 //

318

319 query SpringModel : : Configurat ion : : g e t A r c h i t e c t u r e D e s c r i p t i o n s () :
OrderedSet (DedalModel : : A r c h i t e c t u r e D e s c r i p t i o n) {

320 var a r c h i t e c t u r e D e s c r i p t i o n s : OrderedSet (DedalModel : :
A r c h i t e c t u r e D e s c r i p t i o n) ;

321 a r c h i t e c t u r e D e s c r i p t i o n s += s e l f .map toDedalConfigurat ion () ;
322 a r c h i t e c t u r e D e s c r i p t i o n s += s e l f .map toDedalAssembly () ;
323 return a r c h i t e c t u r e D e s c r i p t i o n s ;
324 }
325

326

327 //

328 // getAssmComponents //

329 //

330

331 query SpringModel : : Configurat ion : : getAssmComponents () : Sequence (
DedalModel : : CompInstance) {

332 var assmComponents : Sequence (DedalModel : : CompInstance) ;
333 assmComponents := s e l f . components > map toCompInstance () ;
334 return assmComponents ;
335 }
336

337

338 //

339 // getConfigComponents //

148 Appendix B. SpringToDedal QVTo transformation

340 //

341

342 query SpringModel : : Configurat ion : : getConfigComponents () : Sequence (
DedalModel : : CompClass) {

343 var configComponents : Sequence (DedalModel : : CompClass) ;
344 s e l f . components>forEach (c)
345 {
346 var s := c . _ c l a s s . getComponentClassName () ;
347 var cc := resolveone (compClass : DedalModel : : CompClass | compClass .

name = c . _ c l a s s . getComponentClassName ()) ;
348 i f (cc = null)
349 configComponents += c . map toCompClass () ;
350 } ;
351 return configComponents ;
352 }
353

354

355 //

356 // getComponentClass //

357 //

358

359 query CreationMethod : : getComponentClassName () : S t r i n g {
360 var name : S t r i n g ;
361 i f (s e l f . _ c l a s s . oclIsTypeOf (SpringModel : : Class))
362 {
363 name := s e l f . _ c l a s s . oclAsType (SpringModel : : Class) . classname ;
364 }
365 e lse
366 {
367 name := s e l f . _ c l a s s . oclAsType (SpringModel : : Factory) . factoryBean .

name . t o S t r i n g () ;
368 } ;
369 return name ;
370 }
371

372

373 //

374 // getAssemblyConnections //

375 //

376

377 query SpringModel : : Configurat ion : : getAssemblyConnections () : Sequence (
DedalModel : : InstConnect ion) {

378 var assemblyConnections : Sequence (DedalModel : : InstConnect ion) ;
379 s e l f . components>forEach (c)
380 {
381 assemblyConnections += c . get Ins tConnect ions ()
382 } ;
383 return assemblyConnections ;

Appendix B. SpringToDedal QVTo transformation 149

384 }
385

386

387 //

388 // getConfigConnections //

389 //

390

391 query SpringModel : : Configurat ion : : getConfigConnections () : Sequence (
DedalModel : : ClassConnection) {

392 var configConnect ions : Sequence (DedalModel : : ClassConnection) ;
393 s e l f . components>forEach (c)
394 {
395 configConnect ions += c . getClassConnect ions ()
396 } ;
397 return configConnect ions ;
398 }
399

400

401 //

402 // getInstConnections //

403 //

404

405 query SpringModel : : Component : : ge t Ins tConnect ions () : Sequence (DedalModel
: : InstConnect ion) {

406 var connect ions : Sequence (DedalModel : : InstConnect ion) ;
407 s e l f . f e a t u r e s >forEach (f)
408 {
409 i f (f . a r t e f a c t . oclIsTypeOf (SpringModel : : Reference))
410 {
411 i f (f . a r t e f a c t . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
412 connect ions += s e l f . map toAssemblyConnection (f . name , f .

a r t e f a c t . oclAsType (SpringModel : : Reference)) ;
413 }
414 e lse i f (f . a r t e f a c t . oclIsTypeOf (SpringModel : : Component))
415 {
416 connect ions += s e l f . map toAssemblyConnection (f . name , f .

a r t e f a c t . oclAsType (SpringModel : : Component)) ;
417 }
418 e lse
419 {
420 i f (f . a r t e f a c t . oclIsKindOf (SpringModel : : Collect ion))
421 {
422 connect ions += f . a r t e f a c t . oclAsType (SpringModel : :

Collect ion) . ge t Ins tConnect ions (s e l f , f . name) ;
423 }
424 }
425 } ;

150 Appendix B. SpringToDedal QVTo transformation

426 return connect ions ;
427 }
428

429 query SpringModel : : _ C o l l e c t i o n : : ge t Ins tConnect ions (c : SpringModel : :
Component , name : S t r i n g) : Sequence (DedalModel : : InstConnect ion) {

430 var connect ions : Sequence (DedalModel : : InstConnect ion) ;
431 i f (s e l f . oclIsTypeOf (SpringModel : : s S e t))
432 {
433 (s e l f . oclAsType (SpringModel : : s S e t)) . a r t e f a c t s >forEach (f2)
434 {
435 i f (f2 . oclIsTypeOf (SpringModel : : Reference))
436 {
437 i f (f2 . oclAsType (SpringModel : : Reference) . r e f . oclIsKindOf (

SpringModel : : Component))
438 connect ions += c . map toAssemblyConnection_set (name , f2

. oclAsType (SpringModel : : Reference)) ;
439 }
440 e lse i f (f2 . oclIsTypeOf (SpringModel : : Component))
441 {
442 var e x i s t s : Boolean ;
443 e x i s t s := f a l s e ;
444 dedal . objectsOfType (DedalModel : : Assembly) >forEach (asm)
445 {
446 asm . assmComponents>forEach (comp)
447 {
448 i f (comp . name = f2 . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
449 {
450 e x i s t s := t rue
451 }
452 } ;
453 i f (not e x i s t s)
454 {
455 asm . assmComponents += f2 . oclAsType (SpringModel : :

Component) .map toCompInstance () ;
456 } ;
457 } ;
458 connect ions += c . map toAssemblyConnection_set (name , f2 .

oclAsType (SpringModel : : Component)) ;
459 }
460 }
461 }
462 e lse i f (s e l f . oclIsTypeOf (SpringModel : : s L i s t))
463 {
464 (s e l f . oclAsType (SpringModel : : s L i s t)) . a r t e f a c t s >forEach (f2)
465 {
466 i f (f2 . oclIsTypeOf (SpringModel : : Reference))
467 {

Appendix B. SpringToDedal QVTo transformation 151

468 i f (f2 . oclAsType (SpringModel : : Reference) . r e f . oclIsKindOf (
SpringModel : : Component))

469 connect ions += c . map toAssemblyConnect ion_l is t (name ,
f2 . oclAsType (SpringModel : : Reference)) ;

470 }
471 e lse i f (f2 . oclIsTypeOf (SpringModel : : Component))
472 {
473 var e x i s t s : Boolean ;
474 e x i s t s := f a l s e ;
475 dedal . objectsOfType (DedalModel : : Assembly) >forEach (asm)
476 {
477 asm . assmComponents>forEach (comp)
478 {
479 i f (comp . name = f2 . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
480 {
481 e x i s t s := t rue
482 }
483 } ;
484 i f (not e x i s t s)
485 {
486 asm . assmComponents += f2 . oclAsType (SpringModel : :

Component) .map toCompInstance () ;
487 } ;
488 } ;
489 connect ions += c . map toAssemblyConnect ion_l is t (name , f2 .

oclAsType (SpringModel : : Component)) ;
490 }
491 }
492 }
493 e lse i f (s e l f . oclIsTypeOf (SpringModel : : Map))
494 {
495 (s e l f . oclAsType (SpringModel : : Map)) . e n t r i e s >forEach (e)
496 {
497 i f (e . key . key . oclIsTypeOf (SpringModel : : Reference))
498 {
499 i f (e . key . key . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
500 connect ions += c . map toAssemblyConnection (name , e . key

. key . oclAsType (SpringModel : : Reference)) ;
501 }
502 e lse i f (e . key . key . oclIsTypeOf (SpringModel : : Component))
503 {
504 connect ions += c . map toAssemblyConnection (name , e . key . key

. oclAsType (SpringModel : : Component)) ;
505 }
506 e lse i f (e . key . key . oclIsKindOf (SpringModel : : Collect ion))
507 {

152 Appendix B. SpringToDedal QVTo transformation

508 connect ions += e . key . key . oclAsType (SpringModel : :
Collect ion) . ge t Ins tConnect ions (c , name) ;

509 } ;
510 i f (e . value . oclIsTypeOf (SpringModel : : Reference))
511 {
512 i f (e . value . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
513 connect ions += c . map toAssemblyConnection (name , e .

value . oclAsType (SpringModel : : Reference)) ;
514 }
515 e lse i f (e . value . oclIsTypeOf (SpringModel : : Component))
516 {
517 connect ions += c . map toAssemblyConnection (name , e . value .

oclAsType (SpringModel : : Component)) ;
518 }
519 e lse i f (e . value . oclIsKindOf (SpringModel : : Collect ion))
520 {
521 connect ions += e . value . oclAsType (SpringModel : : Collect ion)

. ge t Ins tConnect ions (c , name) ;
522 } ;
523 }
524 } ;
525 return connect ions ;
526 }
527

528

529 //

530 // getClassConnections //

531 //

532

533 query SpringModel : : Component : : getClassConnect ions () : Sequence (DedalModel
: : ClassConnection) {

534 var connect ions : Sequence (DedalModel : : ClassConnection) ;
535 s e l f . f e a t u r e s >forEach (f)
536 {
537 i f (f . a r t e f a c t . oclIsTypeOf (SpringModel : : Reference))
538 {
539 i f (f . a r t e f a c t . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
540 {
541 var e x i s t s : Boolean ;
542 e x i s t s := f a l s e ;
543 connect ions>forEach (c)
544 {
545 i f (c . c l i en tClassE lem . name . = (s e l f . _ c l a s s .

getComponentClassName ())
546 and c . serverClassElem . name . = (f . a r t e f a c t . oclAsType

(SpringModel : : Reference) . getName ()))

Appendix B. SpringToDedal QVTo transformation 153

547 {
548 e x i s t s := t rue ;
549 } ;
550 } ;
551 i f (not e x i s t s)
552 {
553 connect ions += s e l f . map toConfigConnection (f . name , f .

a r t e f a c t . oclAsType (SpringModel : : Reference)) ;
554 }
555 }
556 }
557 e lse i f (f . a r t e f a c t . oclIsTypeOf (SpringModel : : Component))
558 {
559 var e x i s t s : Boolean ;
560 e x i s t s := f a l s e ;
561 connect ions>forEach (c)
562 {
563 i f (c . c l i en tClassE lem . name . = (s e l f . _ c l a s s .

getComponentClassName ())
564 and c . serverClassElem . name . = (f . a r t e f a c t . oclAsType (

SpringModel : : Reference) . getName ()))
565 {
566 e x i s t s := t rue ;
567 } ;
568 } ;
569 i f (not e x i s t s)
570 {
571 connect ions += s e l f . map toConfigConnection (f . name , f .

a r t e f a c t . oclAsType (SpringModel : : Component)) ;
572 }
573 }
574 e lse i f (f . a r t e f a c t . oclIsKindOf (SpringModel : : Collect ion))
575 {
576 connect ions += f . a r t e f a c t . oclAsType (SpringModel : :

Collect ion) . getClassConnect ions (s e l f , f . name) ;
577 }
578 } ;
579 return connect ions ;
580 }
581

582 query SpringModel : : _ C o l l e c t i o n : : getClassConnect ions (c : SpringModel : :
Component , name : S t r i n g) : Sequence (DedalModel : : ClassConnection) {

583 var connect ions : Sequence (DedalModel : : ClassConnection) ;
584 i f (s e l f . oclIsTypeOf (SpringModel : : s S e t))
585 {
586 (s e l f . oclAsType (SpringModel : : s S e t)) . a r t e f a c t s >forEach (f2)
587 {
588 i f (f2 . oclIsTypeOf (SpringModel : : Reference))

154 Appendix B. SpringToDedal QVTo transformation

589 {
590 i f (f2 . oclAsType (SpringModel : : Reference) . r e f . oclIsKindOf (

SpringModel : : Component))
591 {
592 var e x i s t s : Boolean ;
593 e x i s t s := f a l s e ;
594 connect ions>forEach (con)
595 {
596 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
597 and con . serverClassElem . name . = (f2 . oclAsType (

SpringModel : : Reference) . getName ()))
598 {
599 e x i s t s := t rue ;
600 } ;
601 } ;
602 i f (not e x i s t s)
603 {
604 connect ions += c . map toConfigConnection (name , f2 .

oclAsType (SpringModel : : Reference)) ;
605 }
606 }
607 }
608 e lse i f (f2 . oclIsTypeOf (SpringModel : : Component))
609 {
610 var e x i s t s : Boolean ;
611 e x i s t s := f a l s e ;
612 dedal . objectsOfType (DedalModel : : Configurat ion) >forEach (

conf ig)
613 {
614 conf ig . configComponents>forEach (comp)
615 {
616 i f (comp . name = f2 . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
617 {
618 e x i s t s := t rue
619 }
620 } ;
621 i f (not e x i s t s)
622 {
623 conf ig . configComponents += f2 . oclAsType (

SpringModel : : Component) . map toCompClass () ;
624 } ;
625 e x i s t s := f a l s e ;
626 } ;
627 connect ions>forEach (con)
628 {

Appendix B. SpringToDedal QVTo transformation 155

629 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .
getComponentClassName ())

630 and con . serverClassElem . name . = (f2 . oclAsType (
SpringModel : : Component) . _ c l a s s .
getComponentClassName ()))

631 {
632 e x i s t s := t rue ;
633 } ;
634 } ;
635 i f (not e x i s t s)
636 {
637 connect ions += c . map toConfigConnection (name , f2 .

oclAsType (SpringModel : : Component)) ;
638 }
639 }
640 }
641 }
642 e lse i f (s e l f . oclIsTypeOf (SpringModel : : s L i s t))
643 {
644 (s e l f . oclAsType (SpringModel : : s L i s t)) . a r t e f a c t s >forEach (f2)
645 {
646 i f (f2 . oclIsTypeOf (SpringModel : : Reference))
647 {
648 i f (f2 . oclAsType (SpringModel : : Reference) . r e f . oclIsKindOf (

SpringModel : : Component))
649 {
650 var e x i s t s : Boolean ;
651 e x i s t s := f a l s e ;
652 connect ions>forEach (con)
653 {
654 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
655 and con . serverClassElem . name . = (f2 . oclAsType (

SpringModel : : Reference) . getName ()))
656 {
657 e x i s t s := t rue ;
658 } ;
659 } ;
660 i f (not e x i s t s)
661 {
662 connect ions += c . map toConfigConnection (name , f2 .

oclAsType (SpringModel : : Reference)) ;
663 }
664 }
665 }
666 e lse i f (f2 . oclIsTypeOf (SpringModel : : Component))
667 {
668 var e x i s t s : Boolean ;

156 Appendix B. SpringToDedal QVTo transformation

669 e x i s t s := f a l s e ;
670 dedal . objectsOfType (DedalModel : : Configurat ion) >forEach (

conf ig)
671 {
672 conf ig . configComponents>forEach (comp)
673 {
674 i f (comp . name = f2 . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
675 {
676 e x i s t s := t rue
677 }
678 } ;
679 i f (not e x i s t s)
680 {
681 conf ig . configComponents += f2 . oclAsType (

SpringModel : : Component) . map toCompClass () ;
682 } ;
683 e x i s t s := f a l s e ;
684 } ;
685 connect ions>forEach (con)
686 {
687 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
688 and con . serverClassElem . name . = (f2 . oclAsType (

SpringModel : : Component) . _ c l a s s .
getComponentClassName ()))

689 {
690 e x i s t s := t rue ;
691 } ;
692 } ;
693 i f (not e x i s t s)
694 {
695 connect ions += c . map toConfigConnection (name , f2 .

oclAsType (SpringModel : : Component)) ;
696 }
697 }
698 }
699 }
700 e lse i f (s e l f . oclIsTypeOf (SpringModel : : Map))
701 {
702 (s e l f . oclAsType (SpringModel : : Map)) . e n t r i e s >forEach (e)
703 {
704 i f (e . key . key . oclIsTypeOf (SpringModel : : Reference))
705 {
706 i f (e . key . key . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
707 {
708 var e x i s t s : Boolean ;

Appendix B. SpringToDedal QVTo transformation 157

709 e x i s t s := f a l s e ;
710 connect ions>forEach (con)
711 {
712 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
713 and con . serverClassElem . name . = (e . key . key .

oclAsType (SpringModel : : Reference) . getName
()))

714 {
715 e x i s t s := t rue ;
716 } ;
717 } ;
718 i f (not e x i s t s)
719 {
720 connect ions += c . map toConfigConnection (name , e .

key . key . oclAsType (SpringModel : : Reference)) ;
721 }
722 }
723 }
724 e lse i f (e . key . key . oclIsTypeOf (SpringModel : : Component))
725 {
726 var e x i s t s : Boolean ;
727 e x i s t s := f a l s e ;
728 dedal . objectsOfType (DedalModel : : Configurat ion) >forEach (

conf ig)
729 {
730 conf ig . configComponents>forEach (comp)
731 {
732 i f (comp . name = e . key . key . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
733 {
734 e x i s t s := t rue
735 }
736 } ;
737 i f (not e x i s t s)
738 {
739 conf ig . configComponents += e . key . key . oclAsType (

SpringModel : : Component) . map toCompClass () ;
740 } ;
741 e x i s t s := f a l s e ;
742 } ;
743 connect ions>forEach (con)
744 {
745 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
746 and con . serverClassElem . name . = (e . key . key .

oclAsType (SpringModel : : Component) . _ c l a s s .
getComponentClassName ()))

158 Appendix B. SpringToDedal QVTo transformation

747 {
748 e x i s t s := t rue ;
749 } ;
750 } ;
751 i f (not e x i s t s)
752 {
753 connect ions += c . map toConfigConnection (name , e . key .

key . oclAsType (SpringModel : : Component)) ;
754 }
755 }
756 e lse i f (e . key . key . oclIsKindOf (SpringModel : : Collect ion))
757 {
758 connect ions += e . key . key . oclAsType (SpringModel : :

Collect ion) . getClassConnect ions (c , name) ;
759 } ;
760 i f (e . value . oclIsTypeOf (SpringModel : : Reference))
761 {
762 i f (e . value . oclAsType (SpringModel : : Reference) . r e f .

oclIsKindOf (SpringModel : : Component))
763 {
764 var e x i s t s : Boolean ;
765 e x i s t s := f a l s e ;
766 connect ions>forEach (con)
767 {
768 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
769 and con . serverClassElem . name . = (e . value .

oclAsType (SpringModel : : Reference) . getName
()))

770 {
771 e x i s t s := t rue ;
772 } ;
773 } ;
774 i f (not e x i s t s)
775 {
776 connect ions += c . map toConfigConnection (name , e .

value . oclAsType (SpringModel : : Reference)) ;
777 }
778 }
779 }
780 e lse i f (e . value . oclIsTypeOf (SpringModel : : Component))
781 {
782 var e x i s t s : Boolean ;
783 e x i s t s := f a l s e ;
784 dedal . objectsOfType (DedalModel : : Configurat ion) >forEach (

conf ig)
785 {
786 conf ig . configComponents>forEach (comp)

Appendix B. SpringToDedal QVTo transformation 159

787 {
788 i f (comp . name = e . value . oclAsType (SpringModel : :

Component) . _ c l a s s . getComponentClassName ())
789 {
790 e x i s t s := t rue
791 }
792 } ;
793 i f (not e x i s t s)
794 {
795 conf ig . configComponents += e . value . oclAsType (

SpringModel : : Component) . map toCompClass () ;
796 } ;
797 e x i s t s := f a l s e ;
798 } ;
799 connect ions>forEach (con)
800 {
801 i f (con . c l i en tClassE lem . name . = (c . _ c l a s s .

getComponentClassName ())
802 and con . serverClassElem . name . = (e . value . oclAsType (

SpringModel : : Component) . _ c l a s s .
getComponentClassName ()))

803 {
804 e x i s t s := t rue ;
805 } ;
806 } ;
807 i f (not e x i s t s)
808 {
809 connect ions += c . map toConfigConnection (name , e . value

. oclAsType (SpringModel : : Component)) ;
810 }
811 }
812 e lse i f (e . value . oclIsKindOf (SpringModel : : Collect ion))
813 {
814 connect ions += e . value . oclAsType (SpringModel : : Collect ion)

. getClassConnect ions (c , name) ;
815 } ;
816 }
817 } ;
818 return connect ions ;
819 }
820

821 query SpringModel : : Reference : : getName () : S t r i n g {
822 i f (s e l f . r e f . oclIsTypeOf (SpringModel : : Reference))
823 {
824 return s e l f . r e f . oclAsType (SpringModel : : Reference) . getName () ;
825 }
826 e lse i f (s e l f . r e f . oclIsTypeOf (SpringModel : : Component))
827 {

160 Appendix B. SpringToDedal QVTo transformation

828 return s e l f . r e f . oclAsType (SpringModel : : Component) . _ c l a s s .
getComponentClassName ()

829 } ;
830 return null
831 }

161

Appendix C

Re-documentation algorithm

Algorithm 1 Main re-documentation algorithm

Require:
1: ∀ s ∈ {specification.componentRoles, specification.roleConnections}, s = ∅
2: ∀ s ∈ {classes, assembly.componentInstances, assembly.instanceConnections,
configuration.componentClasses, configuration.configConnections}, s 6= ∅

3: ∀ compInst ∈ assembly.componentInstances, compInst.compInterfaces = ∅
4: ∀ compCl ∈ configuration.componentClasses, (compCl.compInterfaces = ∅)

∧ (compCl.attributes = ∅)
5: ∀ compInst ∈ assembly.componentInstances,

(configuration.componentClasses =
⋃
i
compInsti.instantiates)

6: ∀ ac ∈ assembly.assemblyConnections, (∃ cc ∈ configuration.configConnections |
ac.clientElem.instantitates = cc.clientElem

∧ ac.serverElem.instantitates = cc.serverElem)
Ensure:

7: ∀ compInstance ∈ assembly.compInstances(
(∀ instanceConnection ∈ instanceConnections,
instanceConnection.serverInterface � instanceConnection.clientInterface))

∧
(∀ interface ∈ compInstance.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))))

162 Appendix C. Re-documentation algorithm

8: ∀ compClass ∈ configuration.compClasses(
(∀ interface ∈ compClass.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name))))))∧

(∀ attribute ∈ compClass.attributes(∃ class ∈ classes(
∃ attr ∈ class.attributes, attribute.type = attr.type

∧
attribute.name = attr.name)))

9: ∀ compClass ∈ configuration.compClasses, (compClass.realizes 6= ∅)
∧(∀ role ∈ compClass.realizes, (compClass � role)

10: ∀ role ∈ specification.specComponents(
(∀ interface ∈ role.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))∧

(∃ c ∈ classes | ∀ interface ∈ role.componentInterfaces,
interface.signatures ⊆ c.methods))

11: procedure MAPARCHITECTURELEVELS(assembly : Assembly,
configuration : Configuration,
specification : Specification,
classes : Set(Class))

12: MAPCOMPONENTINSTANCES(classes, assembly.assmComponents)
13: MAPASSEMBLYCONNECTIONS(classes, assembly.assemblyConnections)
14: MAPCOMPONENTCLASSES(classes, assembly.assmComponents,

configuration.configComponents)
15: MAPCONFIGCONNECTIONS(classes, configuration.configConnections

assembly.assemblyConnections)
16: specification.componentRoles← BUILDCOMPONENTROLES(

classes, configuration.componentClasses,
configuration.configConnections)

17: specification.specConnections← MAPSPECCONNECTIONS(
configuration.configConnections)

18: end procedure

Appendix C. Re-documentation algorithm 163

Algorithm 2 Re-Documenting Assembly

Ensure:
1: ∀ compInstance ∈ compInstances(

(∀ instanceConnection ∈ instanceConnections,
instanceConnection.serverInterface � instanceConnection.clientInterface))

∧
(∀ interface ∈ compInstance.componentInterfaces(
∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))))

2: procedure MAPCOMPONENTINSTANCES(classes : Set(Class),
compInstances : Set(CompInstance))

3: for all compInstance ∈ compInstances do
4: class← classes.getByName(compInst.instantiates.name)
5: compInstance.interfaces←MAPINTERFACES(class,

DIRECTION.PROV IDED)
6: for all attribute ∈ class.attributes do
7: if ¬attribute.type.isPrimitive() then
8: compInstance.interfaces← compInstance.interfaces⋃

MAPINTERFACES(attribute.type, DIRECTION.REQUIRED)
9: end if

10: end for
11: end for
12: end procedure

Ensure:
1: ∀ instanceConnection ∈ instanceConnections,

instanceConnection.serverInterface � instanceConnection.clientInterface

2: procedure MAPASSEMBLYCONNECTIONS(classes : Set(Class),
instanceConnections : Set(InstConnection))

3: for all instanceConnection ∈ instanceConnections do
4: MAPINSTANCECONNECTION(classes,

instanceConnection)
5: end for
6: end procedure

164 Appendix C. Re-documentation algorithm

Ensure:
1: instanceConnection.serverInterface � instanceConnection.clientInterface

1: procedure MAPINSTANCECONNECTION(classes : Set(Class),
instanceConnection : InstanceConnection)

2: server ← instanceConnection.server
3: client← instanceConnection.client
4: injectedAttributeType← instanceConnection.injectedAttribute.type
5: class← classes.getByName(injectedAttributeType.name)
6: requiredInterfaceType← MAPINTERFACETYPE(class)
7: instanceConnection.serverInterface← server.interfaces.getByKind(

requiredInterfaceType) // it may also be a subtype
8: classConnection.clientInterface← client.interfaces.getByType(

requiredInterfaceType)
9: end procedure

Algorithm 3 Re-Documenting Configuration

Ensure:
1: ∀ compClass ∈ compClasses((∀ interface ∈ compClass.componentInterfaces(

∀ signature ∈ interface.interfaceType.signatures(
∃ class ∈ classes(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name))))))∧

(∀ attribute ∈ compClass.attributes(∃ class ∈ classes(
∃ attr ∈ class.attributes, attribute.type = attr.type

∧
attribute.name = attr.name)))

2: procedure MAPCOMPONENTCLASSES(classes : Set(Class),
compInstances : Set(CompInstance),
compClasses : Set(ComponentClass))

3: class← classes.getByName(compInst.instantiates.name)
4: for all compInstance ∈ compInstances do
5: compClass← compInstance.instantiates
6: if compClass.interfaces = ∅ then
7: for all interface ∈ compInstance.interfaces do
8: newInterface← copy(interface)
9: compClass.interfaces← compClass.interfaces

⋃
newInterface

10: interface.instantiates getsnewInterface
11: end for
12: for all attribute ∈ class.attributes do
13: compClass.attributes← compClass.attributes

⋃
MAPATTRIBUTE(attribute)

14: end for
15: end if
16: end for
17: end procedure

Appendix C. Re-documentation algorithm 165

Ensure:
1: result.type = attribute.type
2: result.name = attribute.name

3: function MAPATTRIBUTE(attribute : Attribute)
4: result : DedalAttribute
5: result.type← attribute.type
6: result.name← attribute.name
7: return result
8: end function

Ensure:
9: ∀ instanceConnection ∈ instConnecions(

∃ classConnection ∈ classConnections,
instanceConnection.client.instantiates.contains(classConnection.client)∧
instanceConnection.server.instantiates.contains(classConnection.sever)∧
instanceConnection.clientInterface.type �
classConnection.clientInterface.type∧
instanceConnection.serverInterface.type �
classConnection.serverInterface.type∧
classConnection.serverInterface.type � classConnection.clientInterface.type)

10: procedure MAPCONFIGCONNECTIONS(classes : Set(Class),
configConnections : Set(ClassConnection)
instConnections : Set(InstanceConnection))

11: for all instConnection ∈ instConnections do
12: classConnection← configConnections.findByAttributeName(

instConnection.injectedAttribute)
13: classConnection.clientInterface← classConnection.client.findInterface(

instConnection.clientInterface)
14: classConnection.serverInterface← classConnection.client.findInterface(

serverConnection.clientInterface)
15: end for
16: end procedure

166 Appendix C. Re-documentation algorithm

Algorithm 4 Re-Documenting Specification

Require:
1: (classes 6= ∅) ∧ (compClasses 6= ∅) ∧ (clConnections 6= ∅)

Ensure:
2: ∀ compClass ∈ compClasses, (compClass.realizes 6= ∅)

∧(∀ role ∈ compClass.realizes, (compClass � role)
3: ∀ role ∈ compClass.realizes((∀ interface ∈ role.componentInterfaces(

∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))∧

(∃ c ∈ classes | ∀ interface ∈ role.componentInterfaces,
interface.signatures ⊆ c.methods))

4: procedure BUILDCOMPONENTROLES(classes : Set(Class),
compClasses : Set(ComponentClass),
clConnections : Set(ClassConnection))

5: for all compClass ∈ compClasses do
6: initialContract : Pair(Set(InterfaceType), Set(InterfaceType))
7: initialContract← computeContract(compClass, clConnections)
8: compClass.realizes← MAPCOMPONENTROLES(initialContract,

classes.getByName(compClass.name))
9: end for

10: end procedure

Appendix C. Re-documentation algorithm 167

Ensure:
1: ∀ role ∈ result((∀ interface ∈ role.componentInterfaces(

∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name)))))

2: ∀ reqInterfaceType ∈ contract.first(∃ role ∈ result,
role.getAllRequiredTypes().contains(reqInterfaceType))

3: ∀ provInterfaceType ∈ contract.second(∃ role ∈ result,
role.getAllProvidedTypes().contains(provInterfaceType))

4: function MAPCOMPONENTROLES(
contract : Pair(Set(InterfaceType), Set(InterfaceType)),
class : Class) : Set(ComponentRole)

5: if ¬class.hasSuperType() then
6: return {MAPCOMPONENTROLE(class)}
7: end if
8: result : Set(ComponentRole)
9: for all superType ∈ class.superTypes do

10: result← result
⋃

MAPCOMPONENTROLES(
SPLITCONTRACT(superType, contract), superType)

11: end for
12: if SATISFYCONTRACT(roles, contract) then
13: return result
14: else
15: return {MAPCOMPONENTROLE(class)}
16: end if
17: return result
18: end function

168 Appendix C. Re-documentation algorithm

Ensure:
1: ∀ interface ∈ result.componentInterfaces(

∀ signature ∈ interface.interfaceType.signatures(
∃method ∈ class.methods, signature.type = method.type

∧
signature.name = method.name

∧
(∀ parameter ∈ signature.parameters(
∃ p ∈ method.parameters, parameter.type = p.type

∧
parameter.name = p.name))))

2: procedure MAPCOMPONENTROLE(class : Class) : ComponentRole
3: result : ComponentRole
4: result.interfaces←

MAPINTERFACES(class,DIRECTION.PROV IDED)
5: for all attribute ∈ class.attributes do
6: if ¬attribute.type.ISPRIMITIVE() then
7: result.interfaces←

MAPINTERFACE(attribute.type,DIRECTION.REQUIRED)
8: end if
9: end for

10: end procedure

Ensure:
1: ∀ interfaceType ∈ result.first(∃ interface ∈ compClass,

interfaceType = interface.interfaceType)
2: ∀ interfaceType ∈ result.second((∃ interface ∈ compClass,

interfaceType = interface.interfaceType)
∧

(∃ classConnection ∈ classConnections,
classConnection.serverInterface.interfaceType = interfaceType))

3: function COMPUTECONTRACT(compClass : ComponentClass,
classConnections : Set(ClassConnection)

):Pair(Set(InterfaceType), Set(InterfaceType))
4: requiredInterfaceTypes← componentClass.interfaces.getAllRequiredTypes()
5: for all classConnection ∈ classConnections do
6: if classConnection.serverInterface ∈ compClass.interfaces then
7: connectedProvidedInterfaceTypes←

connectedProvidedInterfaceTypes⋃
classConnection.serverInterface.interfacetype

8: end if
9: end for

10: return (requiredInterfaceTypes,
connectedProvidedInterfacetypes)

11: end function

Appendix C. Re-documentation algorithm 169

Ensure:
1: result ⊆ initialContract
2: ∀ interfaceType ∈ result.first(∃ interface ∈MAPINTERFACES(class, null) ,

interfaceType = interface.interfaceType)
3: ∀ interfaceType ∈ result.second(∃ interface ∈MAPINTERFACES(class, null) ,

interfaceType = interface.interfaceType)

4: function SPLITCONTRACT(class : Class,
initialContract : Pair(Set(InterfaceType),
Set(InterfaceType))

5: compRole : ComponentRole
6: compRole← MAPCOMPONENTROLE(class)
7: requiredInterfaceTypes← compRole.interfaces.getAllRequiredTypes()
8: providedInterfaceTypes← compRole.interfaces.getAllProvidedTypes()
9: return ((initialContract.first

⋂
requiredInterfaceTypes),

(initialContract.second
⋂
providedInterfaceTypes))

10: end function

Ensure:
1: result = true⇒ (contract.first ⊆ requiredInterfaces)

∧(contract.second ⊆ providedInterfaces)

2: function SATISFYCONTRACT(compRoles : Set(ComponentRoles),
contract : Pair(Set(InterfaceType),
Set(InterfaceType)):Boolean

3: requiredInterfaces : Set(Interface)
4: providedInterfaces : Set(Interface)
5: for all compRole ∈ compRoles do
6: requiredInterfaces← requiredInterfaces⋃

compRole.interfaces.resolveAll(interface : Interface|
interface.direction = DIRECTION.REQUIRED)

7: providedInterfaces← providedInterfaces⋃
compRole.interfaces.resolveAll(interface : Interface|
interface.direction = DIRECTION.PROV IDED)

8: end for
9: return (contract.first ⊆ requiredInterfaces)

∧(contract.second ⊆ providedInterfaces)
10: end function

170 Appendix C. Re-documentation algorithm

Ensure:
1: ∀ classConnection ∈ classConnecions(∃ roleConnection ∈ result,

classConnection.client.realizes.contains(roleConnection.client)∧
classConnection.server.realizes.contains(roleConnection.sever)∧
classConnection.clientInterface.type � roleConnection.clientInterface.type∧
classConnection.serverInterface.type �
roleConnection.serverInterface.type∧
roleConnection.serverInterface.type � roleConnection.clientInterface.type)

2: function MAPSPECCONNECTIONS(classConnections : Set(ClassConnection))
3: result : Set(RoleConnection)
4: for all classConnection ∈ classConnections do
5: result← result

⋃
MAPROLECONNECTION(classConnection)

6: end for
7: return result
8: end function

Ensure:
1: classConnection.client.realizes.contains(result.client)
2: classConnection.server.realizes.contains(result.sever)
3: classConnection.clientInterface.type � result.clientInterface.type
4: classConnection.serverInterface.type � result.serverInterface.type
5: result.serverInterface.type � result.clientInterface.type

6: function MAPROLECONNECTION(
classConnection : ClassConnection)

7: result : RoleConnection
8: serverInterfaceType← classConnection.serverInterface.type
9: clientInterfaceType← classConnection.clientInterface.type

10: serverRoles← classConnection.server.realizes
11: clientRoles← classConnection.client.realizes
12: serverRole← serverRoles.findRoleByInterfaceType(serverInterfaceType))
13: clientRole← clientRoles.findRoleByInterfaceType(clientInterfaceType))
14: serverInterface← serverRole.interfaces.getByKind(serverInterfaceType)
15: clientInterface← clientRole.interfaces.getByType(clientInterfaceType)
16: result.server ← serverRole
17: result.serverInterface← serverInterface
18: result.client← clientRole
19: result.clientInterface← clientInterface
20: return result
21: end function

Appendix C. Re-documentation algorithm 171

Algorithm 5 Mapping interfaces

Ensure:
1: ∀ interface ∈ result(∀ signature ∈ interface.interfaceType.signatures(

∃method ∈ class.methods, signature.type = method.type∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name))))

2: function MAPINTERFACES(class : Class, direction : DIRECTION)
3: result : Set(Interface)
4: result← {MAPINTERFACE(class, direction)}
5: for all super ∈ class.superTypes do
6: result← result

⋃
MAPINTERFACES(super, direction)

7: end for
8: return result
9: end function

Ensure:
1: ∀ signature ∈ result.interfaceType.signatures(∃method ∈ class.methods,

signature.type = method.type
∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name)))

2: function MAPINTERFACE(class : Class, direction : DIRECTION)
3: result : Interface
4: result.direction← direction
5: result.name← ”I” + class.name
6: result.interfaceType←MAPINTERFACETYPE(class)
7: return result
8: end function

Ensure:
1: ∀ signature ∈ result.signatures(∃method ∈ class.methods,

signature.type = method.type
∧
signature.name = method.name∧

(∀ parameter ∈ signature.parameters(∃ p ∈ method.parameters,
parameter.type = p.type

∧
parameter.name = p.name)))

2: function MAPINTERFACETYPE(class : Class)
3: result : InterfaceType
4: result.name← ”I” + class.name+ ” type”
5: for all m ∈ class.methods do
6: result.signatures← result.signatures

⋃
MAPSIGNATURE(m)

7: end for
8: return result
9: end function

172 Appendix C. Re-documentation algorithm

Ensure:
10: result.type = method.type
11: result.name = method.name
12: ∀ parameter ∈ result.parameters(∃ p ∈ method.parameters,

parameter.type = p.type
∧
parameter.name = p.name)

13: function MAPSIGNATURE(method : Method)
14: result : Signature
15: result.type← method.type
16: result.name← method.name
17: for all p ∈ method.parameters do
18: result.parameters← result.parameters

⋃
MAPPARAMETER(p)

19: end for
20: return result
21: end function

Ensure:
1: result.type = parameter.type
2: result.name = parameter.name

3: function MAPPARAMETER(parameter : Parameter) : DedalParameter
4: result : DedalParameter
5: result.type← parameter.type
6: result.name← parameter.name
7: return result
8: end function

173

Appendix D

Papers and tools

D.1 Released tools

item url
GitHub repositories

DedalStudio https://github.com/DedalArmy/DedalStudio
Dedal https://github.com/DedalArmy/Dedal

SpringDSL https://github.com/DedalArmy/SpringDSL
Re-Documentation module https://github.com/DedalArmy/Redoc

DedalModelComparator https://github.com/DedalArmy/DedalModelComparator
DiffAnalyzer https://github.com/DedalArmy/DiffAnalyzer

Maven repository
http://www.dev.lgi2p.mines-ales.fr/ariane/mvn

Eclipse plugin sites
Dedal http://www.dev.lgi2p.mines-ales.fr/ariane/p2/dedal/2019-06/

SpringDSL http://www.dev.lgi2p.mines-ales.fr/ariane/p2/springdsl/2019-06/
Re-Documentation http://www.dev.lgi2p.mines-ales.fr/ariane/p2/redoc/2019-06/

TABLE D.1: Tool release websites

D.2 Published papers

Le Borgne, A., Delahaye, D., Huchard, M., Urtado, C., Vauttier, S. Substitutability-Based Ver-
sion Propagation to Manage the Evolution of Three-Level Component-Based Architectures.
In SEKE: Software Engineering and Knowledge Engineering, Jul 2017, Pittsburgh, United
States. pp.18-23

Le Borgne, A., Delahaye, D., Huchard, M., Urtado, C., Vauttier, S. Recovering Three-Level
Architectures from the Code of Open-Source Java Spring Projects. In SEKE: Software Engi-
neering and Knowledge Engineering, Jul 2018, San Francisco, United States. pp.199-202

Quentin Perez, Alexandre Le Borgne, Christelle Urtado, Sylvain Vauttier. An Empirical
Study about Software Architecture Configuration Practices with the Java Spring Frame-
work. In SEKE: Software Engineering and Knowledge Engineering, Jul 2019, Lisbon, Portu-
gal. pp.465-468

175

Appendix E

Résumé en français

Tout au long de son cycle de vie, un logiciel peut connaître de nombreux changements affec-
tant potentiellement sa conformité avec sa documentation originelle. De plus, bien qu’une
documentation à jour, conservant les décisions de conception prises pendant le cycle de
développement, soit reconnue comme une aide importante pour maîtriser les évolutions, la
documentation des logiciels est souvent obsolète. Les modèles d’architectures sont l’une des
pièces majeures de la documentation. Assurer leur cohérence avec les autres modèles d’un
logiciel (incluant son code) pendant les processus d’évolution (co-évolution) est un atout
majeur pour la qualité logicielle. En effet, la compréhension des architectures logicielles
est hautement valorisable en termes de capacités de réutilisation, d’évolution et de mainte-
nance. Pourtant les modèles d’architectures sont rarement explicitement disponibles et de
nombreux travaux de recherche visent à les retrouver à partir du code source. Cependant, la
plupart des approches existantes n’effectuent pas un strict processus de rétro-documentation
afin de re-documenter les architectures "comme elles sont implémentées" mais appliquent
des étapes de ré-ingénierie en regroupant des éléments de code dans de nouveaux com-
posants. Ainsi, cette thèse propose un processus de re-documentation des architectures
telles qu’elles ont été conçues et implémentées, afin de fournir un support d’analyse des
décisions architecturales effectives. Cette re-documentation se fait par l’analyse du code
orienté objet et les descripteurs de déploiement de projets. Le processus re-documente les
projets dans le langage de description d’architecture Dedal, qui est spécialement conçu pour
contrôler et guider l’évolution des logiciels. Un autre aspect très important de la documen-
tation des logiciels est le suivi de leurs différentes versions. Dans de nombreuses approches
et gestionnaires de version actuels, comme GitHub, les fichiers sont versionnés de manière
agnostique. S’il est possible de garder une trace de l’historique des versions de n’importe
quel fichier, aucune information ne peut être fournie sur la sémantique des changements
réalisés. En particulier, lors du versionnement d’éléments logiciels, il n’est fourni aucun
diagnostic de retro-compatibilité avec les versions précédentes. Cette thèse propose donc
un mécanisme de versionnement d’architectures logicielles basé sur le métamodèle et les
propriétés formelles de l’ADL Dedal. Il permet d’analyser automatiquement les versions en
termes de substituabilité, de gérer la propagation de version et d’incrémenter automatique-
ment les numéros de versions en tenant compte de l’impact des changements. En proposant

176 Appendix E. Résumé en français

cette approche formelle, cette thèse vise à prévenir le manque de contrôle des décisions ar-
chitecturale (dérive / érosion). Cette thèse s’appuie sur une étude empirique, pour valider
notre approche nommée ARIANE, en appliquant les processus de re-documentation et de
versionnement à de nombreuses versions d’un projet industriel extrait de GitHub.

177

Bibliography

[Abo+09] Nour Alhouda Aboud, Gabriela Arévalo, Jean-Rémy Falleri, Marianne Huchard,
Chouki Tibermacine, Christelle Urtado, Sylvain Vauttier, and Gabriela Ar. “Au-
tomated architectural component classification using concept lattices”. In: Soft-
ware Architecture, 2009 & European Conference on Software Architecture. WIC-
SA/ECSA 2009. Joint Working IEEE/IFIP Conference on. IEEE. 2009, pp. 21–30.
ISBN: 9781424449859.

[Abo+19] Nour Aboud, Gabriela Areévalo, Olivier Bendavid, Jean-Rémy Falleri, Nico-
las Haderer, Marianne Huchard, Chouki Tibermacine, Christelle Urtado, and
Sylvain Vauttier. “Building Hierarchical Component Directories”. In: Journal of
Object Technology 18.1 (Mar. 2019), 2:1–37. ISSN: 1660-1769.

[Abr96] J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, 1996.

[ADG98] Robert Allen, Remi Douence, and David Garlan. “Specifying and analyzing
dynamic software architectures”. In: International Conference on Fundamental
Approaches to Software Engineering. Springer. 1998, pp. 21–37.

[ADO14] Abdelkrim Amirat, Afrah Djeddar, and Mourad Oussalah. “Evolving and Ver-
sioning Software Architectures Using ATL Transformations”. In: The Interna-
tional Arab Conference on Information Technology (ACIT’2014). 2014.

[AG97] Robert Allen and David Garlan. “A formal basis for architectural connection”.
In: ACM Transactions on Software Engineering and Methodology (TOSEM) 6.3 (1997),
pp. 213–249.

[Als+16] Z. Alshara, A. D. Seriai, C. Tibermacine, H. L. Bouziane, C. Dony, and A.
Shatnawi. “Materializing Architecture Recovered from Object-Oriented Source
Code in Component-Based Languages”. In: 10th ECSA Proc. Vol. 9839. LNCS.
Copenhagen, Denmark: Springer, 2016, pp. 309–325. ISBN: 978-3-319-48992-6-
23.

[Alt+08] Kerstin Altmanninger, Kerstin Kappel, Angelika Kusel, Werner Retschitzegger,
Martina Seidl, Wieland Schwinger, and Manuel Wimmer. “AMOR – Towards
Adaptable Model Versioning”. In: 1st International Workshop on Model CoEvolu-
tion and Consistency Management in conjunction with MODELS 08 (2008), pp. 55–
60.

[Alt+09] Kerstin Altmanninger, Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl,
Konrad Wieland, and Manuel Wimmer. “Why model versioning research is

178 Bibliography

needed!? an experience report”. In: Proceedings of the MoDSE-MCCM Work-
shop@ MoDELS. Vol. 9. 2009.

[AP03] Marcus Alanen and Ivan Porres. “Difference and union of models”. In: Inter-
national Conference on the Unified Modeling Language. Springer. 2003, pp. 2–17.

[Aré+07] Gabriela Arévalo, Nicolas Desnos, Marianne Huchard, Christelle Urtado, and
Sylvain Vauttier. “Precalculating component interface compatibility using FCA”.
In: Proceedings of the 5th international conference on Concept Lattices and their Ap-
plications. Ed. by Jean Diatta, Peter Eklund, and Michel Liquière. Montpellier,
France: CEUR Workshop Proceedings Vol. 331, 2007, pp. 241–252.

[Aré+09] Gabriela Arévalo, Nicolas Desnos, Marianne Huchard, Christelle Urtado, and
Sylvain Vauttier. “Formal concept analysis-based service classification to dy-
namically build efficient software component directories”. In: International jour-
nal of general systems 38.4 (2009), pp. 427–453.

[ASW09] Kerstin Altmanninger, Martina Seidl, and Manuel Wimmer. “A survey on model
versioning approaches”. In: International Journal of Web Information Systems 5.3
(2009), pp. 271–304. ISSN: 1744092.

[BB09] Jaroslav Bauml and Premek Brada. “Automated versioning in OSGi: A mech-
anism for component software consistency guarantee”. In: 2009 35th Euromi-
cro Conference on Software Engineering and Advanced Applications. IEEE. 2009,
pp. 428–435.

[BB11] Jaroslav Bauml and Premek Brada. “Reconstruction of type information from
java bytecode for component compatibility”. In: Electronic Notes in Theoretical
Computer Science 264.4 (2011), pp. 3–18.

[BCL12] Hongyu Pei Breivold, Ivica Crnkovic, and Magnus Larsson. “A systematic re-
view of software architecture evolution research”. In: Information and Software
Technology 54.1 (2012), pp. 16 –40. ISSN: 0950-5849.

[Beu+99] Antoine Beugnard, J-M Jézéquel, Noël Plouzeau, and Damien Watkins. “Mak-
ing components contract aware”. In: Computer 32.7 (1999), pp. 38–45.

[Bey01] Derek Beyer. C# Com+ Programming. M & T Books, 2001.
[BHP06] Tomas Bures, Petr Hnětynka, and František Plášil. “Sofa 2.0: Balancing ad-

vanced features in a hierarchical component model”. In: Software Engineer-
ing Research, Management and Applications. 4th International Conference on. IEEE.
2006, pp. 40–48.

[BJP10] Antoine Beugnard, Jean-Marc Jézéquel, and Noël Plouzeau. “Contract aware
components, 10 years after”. In: arXiv preprint arXiv:1010.2822 (2010).

[BM88] David Beech and Brom Mahbod. “Generalized version control in an object-
oriented database”. In: Proceedings. Fourth International Conference on Data En-
gineering. IEEE. 1988, pp. 14–22.

[BMH06] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0. " O’Reilly Me-
dia, Inc.", 2006.

Bibliography 179

[BR00a] Keith H Bennett and Václav T Rajlich. “Software maintenance and evolution: a
roadmap”. In: Proceedings of the Conference on the Future of Software Engineering.
ACM. 2000, pp. 73–87.

[BR00b] David J Brown and Karl Runge. “Library Interface Versioning in Solaris and
Linux.” In: Annual Linux Showcase & Conference. 2000.

[Bra01a] Premysl Brada. “Towards automated component compatibility assessment”.
In: Workshop on Component-Oriented Programming (WCOP’2001). Citeseer. 2001.

[Bra01b] Přemysl Brada. “Component Revision Identification Based on IDL/ADL Com-
ponent Specification”. In: Proceedings of the 8th European Software Engineering
Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ESEC/FSE-9. Vienna, Austria: ACM, 2001, pp. 297–
298. ISBN: 1-58113-390-1.

[Bra03] Premysl Brada. “Specification-based component substitutability and revision
identification”. In: Univerzita Karlova, Matematicko-fyzikální fakulta (2003).

[Bra99] Přemysl Brada. “Component change and version identification in SOFA”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 1725 (1999), pp. 360–368. ISSN:
16113349.

[Bro+12] Petra Brosch, Gerti Kappel, Philip Langer, Martina Seidl, Konrad Wieland, and
Manuel Wimmer. “An Introduction to Model Versioning”. In: Proceedings of the
12th International Conference on Formal Methods for the Design of Computer, Com-
munication, and Software Systems: Formal Methods for Model-driven Engineering.
SFM’12. Bertinoro, Italy: Springer-Verlag, 2012, pp. 336–398. ISBN: 978-3-642-
30981-6.

[BV06] Premysl Brada and Lukas Valenta. “Practical verification of component substi-
tutability using subtype relation”. In: 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications (EUROMICRO’06). IEEE. 2006, pp. 38–
45.

[CC90] Elliot J. Chikofsky and James H Cross. “Reverse engineering and design recov-
ery: A taxonomy”. In: IEEE software 7.1 (1990), pp. 13–17.

[CCL05] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. “Component-based de-
velopment process and component lifecycle”. In: Journal of Computing and In-
formation Technology 13.4 (2005), pp. 321–327.

[CCL12] Antonio Cicchetti, Federico Ciccozzi, and Thomas Leveque. “A Solution for
Concurrent Versioning of Metamodels and Models.” In: Journal of Object Tech-
nology 11.3 (2012), pp. 1–32.

[CDP09] Antonio Cicchetti, Davide Di Ruscio, and Alfonso Pierantonio. “Managing de-
pendent changes in coupled evolution”. In: Proceedings of the International Con-
ference on Theory and Practice of Model Transformations. Springer. 2009, pp. 35–
51.

[CH01] WT Council and GT Heineman. “Component-based Software Engineering Putting
the Pieces Together”. In: Addison Weysley (2001).

180 Bibliography

[Cha+08] Sylvain Chardigny, Abdelhak Seriai, Mourad Oussalah, and Dalila Tamzalit.
“Extraction of component-based architecture from object-oriented systems”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 5292 LNCS (2008), pp. 322–325.
ISSN: 03029743.

[CK88] Hong-Tai Chou and Won Kim. “Versions and change notification in an object-
oriented database system”. In: Proceedings of the 25th ACM/IEEE design automa-
tion conference. IEEE Computer Society Press. 1988, pp. 275–281.

[CKS05] A. Christl, R. Koschke, and M. A. Storey. “Equipping the reflexion method with
automated clustering”. In: 12th WCRE Proc. Pittsburgh, USA, 2005, pp. 10–98.
ISBN: 0-7695-2474-5.

[CL02] Ivica Crnkovic and Magnus Peter Henrik Larsson. Building reliable component-
based software systems. Artech House, 2002.

[Cre94] Régis Bernard Joseph Crelier. “Separate compilation and module extension”.
PhD thesis. ETH Zurich, 1994.

[CW98] Reidar Conradi and Bernhard Westfechtel. “Version models for software con-
figuration management”. In: ACM Computing Surveys 30.2 (1998), pp. 232–282.

[CY07] Feng Chen and Hongji Yang. “Model oriented evolutionary redocumentation”.
In: 31st Annual International Computer Software and Applications Conference (COMP-
SAC 2007). Vol. 1. IEEE. 2007, pp. 543–548.

[Dem+16] Andreas Demuth, Markus Riedl-Ehrenleitner, Roberto E Lopez-Herrejon, and
Alexander Egyed. “Co-evolution of metamodels and models through consis-
tent change propagation”. In: Journal of Systems and Software 111 (2016), pp. 281–
297.

[Dev99] P Devanbu. “The ultimate reuse nightmare: Honey, i got the wrong dll”. In: the
5th Symposium on Sofware Reuseability. 1999, pp. 178–180.

[DHT05] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. “A Compre-
hensive Approach for the Development of Modular Software Architecture De-
scription Languages”. In: ACM Transactions on Software Engineering and Method-
ology 14.2 (Apr. 2005), pp. 199–245. ISSN: 1049-331X.

[DM01] Lei Ding and Nenad Medvidovic. “Focus: A light-weight, incremental approach
to software architecture recovery and evolution”. In: Proceedings - Working IEEE/I-
FIP Conference on Software Architecture, WICSA 2001 (2001), pp. 191–200.

[DM08] Serge Demeyer and Tom Mens. Software Evolution. Springer, 2008.
[DP09] S. Ducasse and D. Pollet. “Software architecture reconstruction: A process-

oriented taxonomy”. In: IEEE TSE 35.4 (2009), pp. 573–591. ISSN: 00985589.
[DSB12] Lakshitha De Silva and Dharini Balasubramaniam. “Controlling software ar-

chitecture erosion: A survey”. In: Journal of Systems and Software 85.1 (2012),
pp. 132–151.

[EC95] Jacky Estublier and Rubby Casallas. “Three dimensional versioning”. In: Soft-
ware Configuration Management (1995), pp. 118–135.

Bibliography 181

[EET11] Hartmut Ehrig, Claudia Ermel, and Gabriele Taentzer. “A formal resolution
strategy for operation-based conflicts in model versioning using graph modi-
fications”. In: International Conference on Fundamental Approaches to Software En-
gineering. Springer. 2011, pp. 202–216.

[Eix+98] W Eixelsberger, M Ogris, H Gall, and B Bellay. “Software architecture recovery
of a program family”. In: International Conference on Software Engineering (1998),
pp. 508–511.

[EJS03] Susan Eisenbach, Vladimir Jurisic, and Chris Sadler. “Managing the evolution
of. net programs”. In: International Conference on Formal Methods for Open Object-
Based Distributed Systems. Springer. 2003, pp. 185–198.

[EKS03] T. Eisenbarth, R. Koschke, and D. Simon. “Locating features in source code”.
In: IEEE TSE 29.3 (2003), pp. 210–224. ISSN: 00985589.

[Eng97] Robert Englander. Developing JAVA beans. " O’Reilly Media, Inc.", 1997.
[Est+05] Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey

Clemm, Walter Tichy, and Darcy Wiborg-Weber. “Impact of software engineer-
ing research on the practice of software configuration management”. In: ACM
Transactions on Software Engineering and Methodology 14.4 (2005), pp. 383–430.

[GAO09] David Garlan, Robert Allen, and John Ockerbloom. “Architectural mismatch:
Why reuse is still so hard”. In: IEEE software 26.4 (2009), pp. 66–69.

[Gar00] David Garlan. “Software architecture: a roadmap”. In: Proceedings of the Confer-
ence on the Future of Software Engineering. Citeseer. 2000, pp. 91–101.

[Gar+09] Kelly Garcés, Frédéric Jouault, Pierre Cointe, and Jean Bézivin. “Managing
Model Adaptation by Precise Detection of Metamodel Changes”. In: Model
Driven Architecture - Foundations and Applications. Ed. by Richard F Paige, Alan
Hartman, and Arend Rensink. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 34–49. ISBN: 978-3-642-02674-4.

[GDT06] John C Georgas, Eric M Dashofy, and Richard N Taylor. “Architecture-centric
development: a different approach to software engineering”. In: XRDS: Cross-
roads, The ACM Magazine for Students 12.4 (2006), pp. 6–6.

[Gin+87] Robert A Gingell, Meng Lee, Xuong T Dang, and Mary S Weeks. “Shared li-
braries in SunOS”. In: AUUGN 8.5 (1987), p. 112.

[GK00] M. Gogolla and R. Kollmann. “Re-documentation of Java with UML class di-
agrams”. In: Proc. 7th Reengineering Forum, Reengineering Week 2000. Zurich,
Switzerland, 2000.

[GMW97] David Garlan, Robert Monroe, and David Wile. “Acme : An Architecture De-
scription Interchange Language 1 Introduction”. In: Proceedings of the 1997 con-
ference of the Centre for Advanced Studies on Collaborative research (CASCON) (1997),
p. 7.

[Hat04] A. Hatch. “Software Architecture Visualisation”. PhD thesis. Durham Univer-
sity, 2004, 173 pp.

[Hay+68] Seymour Hayden, Ernst Zermelo, Abraham Adolf Fraenkel, and John F Ken-
nison. Zermelo-Fraenkel set theory. CE Merrill, 1968.

182 Bibliography

[HBJ09] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. “COPE - Au-
tomating Coupled Evolution of Metamodels and Models”. In: ECOOP 2009 –
Object-Oriented Programming. Ed. by Sophia Drossopoulou. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 52–76. ISBN: 978-3-642-03013-0.

[Her09] Markus Herrmannsdoerfer. “Operation-based versioning of metamodels with
COPE”. In: Proceedings of the 2009 ICSE Workshop on Comparison and Versioning
of Software Models, CVSM 2009. 2009, pp. 49–54. ISBN: 9781424437146.

[HHT01] Jochen Hartmann, Shihong Huang, and Scott Tilley. “Documenting software
systems with views II: an integrated approach based on XML”. In: Proceedings
of the 19th annual international conference on Computer documentation. ACM. 2001,
pp. 237–246.

[HMY06] G. Huang, H. Mei, and F. Q. Yang. “Runtime recovery and manipulation of
software architecture of component-based systems”. In: Automated Software En-
gineering 13.2 (2006), pp. 257–281. ISSN: 0928-8910.

[Hoa78] Charles Antony Richard Hoare. “Communicating sequential processes”. In:
The origin of concurrent programming. Springer, 1978, pp. 413–443.

[HP04] Petr Hnětynka and František Plášil. “Distributed versioning model for MOF”.
In: Proceedings of the winter international synposium on Information and communi-
cation technologies. Trinity College Dublin. 2004, pp. 1–6.

[HP06] K Hussey and M Paternostro. “Advanced features of EMF”. In: Tutorial at EclipseCon
(2006), p. 218.

[Iee] “IEEE Standard for Software Maintenance”. In: IEEE Std 1219-1998 (1998), pp. 1–
56.

[Jar+14] Oskar Jarczyk, Błażej Gruszka, Szymon Jaroszewicz, Leszek Bukowski, and
Adam Wierzbicki. “Github projects. quality analysis of open-source software”.
In: International Conference on Social Informatics. Springer. 2014, pp. 80–94.

[Java] Controlling Access to Members of a Class. URL: https://docs.oracle.com/
javase/tutorial/java/javaOO/accesscontrol.html.

[Javb] JavaBeans documentation. URL: https://www.oracle.com/technetwork/
java/javase/documentation/index-141852.html.

[Joh+04] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, et al. “The Spring
framework – Reference documentation”. In: Interface 21 (2004), p. 27.

[Kal+16] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. “An in-depth study of the promises and perils
of mining GitHub”. In: Empirical Software Engineering 21.5 (2016), pp. 2035–
2071. ISSN: 1573-7616.

[Kat90] Randy H Katz. “Toward a unified framework for version modeling in engi-
neering databases”. In: ACM Computing Surveys (CSUR) 22.4 (1990), pp. 375–
409.

[KCB86] Randy H Katz, Ellis Chang, and Rajiv Bhateja. Version modeling concepts for
computer-aided design databases. Vol. 15. 2. ACM, 1986.

https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
https://www.oracle.com/technetwork/java/javase/documentation/index-141852.html
https://www.oracle.com/technetwork/java/javase/documentation/index-141852.html

Bibliography 183

[Keb+12] Selim Kebir, Abdelhak Djamel Seriai, Sylvain Chardigny, and Allaoua Chaoui.
“Quality-centric approach for software component identification from object-
oriented code”. In: Proceedings of the 2012 Joint Working Conference on Software
Architecture and 6th European Conference on Software Architecture, WICSA/ECSA
2012 (2012), pp. 181–190.

[Kha+01] Rohit Khare, Michael Guntersdorfer, Peyman Oreizy, N Medvidovic, Richard
N R N Taylor, and Nenad Medvivovic. “xADL: Enabling Architecture-Centric
Tool Integration with XML”. In: Proceedings of the 34th Annual Hawaii Interna-
tional Conference on System Sciences. 2001, pp. 3–6. ISBN: 0-7695-0981-9.

[KHS09] M. Koegel, J. Helming, and S. Seyboth. “Operation-based conflict detection and
resolution”. In: 2009 ICSE Workshop on Comparison and Versioning of Software
Models. 2009, pp. 43–48.

[Kno+06] J. Knodel, M. Lindvall, D. Muthig, and M. Naab. “Static evaluation of software
architectures”. In: 10th CSMR Proc. Bari, Italy: IEEE, 2006, pp. 279–294. ISBN:
0-7695-2536-9.

[Kos02] R Koschke. “Atomic Architectural Component Recovery for Program Under-
standing and Evolution”. In: International Conference on Software Maintenance
(ICSM’02). 2002, pp. 2–5. ISBN: 0769518192.

[Lam92] Patrick Lambrix. Aspects of version management of composite objects. Linköping
University, Department of Computer and Information Science, 1992.

[Lan86] Gordon Landis. “Design Evolution and History in an Object-Oriented CAD/-
CAM Database.” In: COMPCON. 1986, pp. 297–305.

[Le +17] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S. Vauttier. “Substitutability-
Based Version Propagation to Manage the Evolution of Three-Level Component-
Based Architectures”. In: 29th SEKE Proc. Pittsburgh, USA, 2017, pp. 18–23.

[Le +18] A. Le Borgne, D. Delahaye, M. Huchard, C. Urtado, and S. Vauttier. “Recov-
ering Three-Level Architectures from the Code of Open-Source Java Spring
Projects”. In: to appear 30th SEKE Proc. San-Francisco, USA, 2018.

[Leh79] Meir M Lehman. “On understanding laws, evolution, and conservation in the
large-program life cycle”. In: Journal of Systems and Software 1 (1979), pp. 213–
221.

[Lev99] John R Levine. Linkers & loaders. Vol. 1. Morgan Kaufmann, 1999.
[Low05] J Lowy. “Programming .NET components (ed.)” In: OReilly Media Inc (2005).
[LST78] Bennet P Lientz, E. Burton Swanson, and Gail E Tompkins. “Characteristics of

application software maintenance”. In: Communications of the ACM 21.6 (1978),
pp. 466–471.

[LW94] Barbara H Liskov and Jeannette M Wing. “A behavioral notion of subtyping”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 16.6
(1994), pp. 1811–1841.

[Mag+95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. “Specifying
distributed software architectures”. In: Software Engineering— (1995).

184 Bibliography

[MB17] Sander Mak and Paul Bakker. Java 9 Modularity: Patterns and Practices for Devel-
oping Maintainable Applications. " O’Reilly Media, Inc.", 2017.

[ME04] Stephen McCamant and Michael D. Ernst. “Early Identification of Incompati-
bilities in Multi-component Upgrades”. In: ECOOP 2004 – Object-Oriented Pro-
gramming. Ed. by Martin Odersky. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2004, pp. 440–464. ISBN: 978-3-540-24851-4.

[Mey92] Bertrand Meyer. “Applying’design by contract’”. In: Computer 25.10 (1992),
pp. 40–51.

[MH97] Vlada Matena and Mark Hapner. “Enterprise JavaBeans TM”. In: Sun Microsys-
tems (1997).

[MJ06] Nenad Medvidovic and Vladimir Jakobac. “Using software evolution to Focus
architectural recovery”. In: Automated Software Engineering 13.2 (2006), pp. 225–
256. ISSN: 09288910.

[MK01] Nabor C. Mendonça and Jeff Kramer. “An approach for recovering distributed
system architectures”. In: Automated Software Engineering 8.3-4 (2001), pp. 311–
354. ISSN: 09288910.

[MMP00] Nikunj R Mehta, Nenad Medvidovic, and Sandeep Phadke. “Towards a taxon-
omy of software connectors”. In: Proceedings of the 22nd international conference
on Software engineering. ACM. 2000, pp. 178–187.

[Mok15] Abderrahman Mokni. “A formal approach to automate the evolution manage-
ment in component-based software development processes. (Une approche
formelle pour automatiser la gestion de l’{é}volution dans les processus de
d{é}veloppement {à} base de composants)”. PhD thesis. University of Mont-
pellier, France, 2015.

[Mok+15] Abderrahman Mokni, Marianne Huchard, Christelle Urtado, Sylvain Vauttier,
and Yulin Zhang. “An evolution management model for multi-level component-
based software architectures”. In: 2015.

[Mok+16a] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and H. Y. Zhang. “A formal
approach for managing component-based architecture evolution”. In: SCP 127
(2016), pp. 24–49.

[Mok+16b] Abderrahman Mokni, Marianne Huchard, Christelle Urtado, and Sylvain Vaut-
tier. “A three-level versioning model for component-based software architec-
tures”. In: Proceedings of the 11th International Conference on Software Engineering
Advances. Roma, Italy, 2016, pp. 178 –183.

[Moo01] Leon Moonen. “Generating robust parsers using island grammars”. In: Pro-
ceedings Eighth Working Conference on Reverse Engineering. IEEE. 2001, pp. 13–
22.

[Mor96] Tom Morse. “CVS”. In: Linux Journal 1996.21es (1996), p. 3.
[MPW92] Robin Milner, Joachim Parrow, and David Walker. “A calculus of mobile pro-

cesses, I”. In: Information and Computation 100.1 (1992), pp. 1–40. ISSN: 10902651.
[MRT98] Nenad Medvidovic, David S Rosenblum, and Richard N Taylor. “A type theory

for software architectures”. In: Tech. Rep. UCI-ICS-98-14 (1998).

Bibliography 185

[MRT99] Nenad Medvidovic, David S Rosenblum, and Richard N Taylor. “A language
and environment for architecture-based software development and evolution”.
In: Proceedings of the 1999 International Conference on Software Engineering (IEEE
Cat. No. 99CB37002). IEEE. 1999, pp. 44–53.

[Nar+09] Anantha Narayanan, Tihamer Levendovszky, Daniel Balasubramanian, and
Gabor Karsai. “Automatic Domain Model Migration to Manage Metamodel
Evolution”. In: Model Driven Engineering Languages and Systems. Ed. by Andy
Schürr and Bran Selic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 706–711. ISBN: 978-3-642-04425-0.

[NER01] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. “Making inconsis-
tency respectable in software development”. In: Journal of Systems and Software
58.2 (2001), pp. 171–180.

[OMG+02] Object Management Group OMG et al. Common Object Request Broker Architec-
ture: Core Specification. 2002.

[OMW05] Hamilton Oliveira, Leonardo Murta, and Cláudia Werner. “Odyssey-VCS: A
Flexible Version Control System for UML Model Elements”. In: Proceedings of
the 12th International Workshop on Software Configuration Management. SCM ’05.
Lisbon, Portugal: ACM, 2005, pp. 1–16. ISBN: 1-59593-310-7.

[Oqu+04] Flavio Oquendo, Brian Warboys, Ron Morrison, and Régis Dindeleux. “ARCH-
WARE : Architecting Evolvable Software”. In: Engineering (2004), pp. 1–16.

[OTC93] Chabane Oussalah, Guilaine Talens, and MF Colinas. “Concepts and methods
for version modeling”. In: Proceedings of EURO-DAC 93 and EURO-VHDL 93-
European Design Automation Conference. IEEE. 1993, pp. 332–337.

[PBJ98] František Plášil, Dušan Bálek, and Radovan Janec. “SOFA / DCUP : Archi-
tecture for Component Trading and Dynamic Updating”. In: Proc. Fourth Int’l
Conf. Configurable Distributed Systems (ICCDS ’98) (1998), pp. 43–52.

[Per+19] Quentin Perez, Alexandre Le Borgne, Christelle Urtado, and Sylvain Vaut-
tier. “An Empirical Study about Software Architecture Configuration Practices
with the Java Spring Framework”. In: 2019.

[PMR16] Richard F. Paige, Nicholas Matragkas, and Louis M. Rose. “Evolving models in
Model-Driven Engineering: State-of-the-art and future challenges”. In: Journal
of Systems and Software 111 (2016), pp. 272 –280. ISSN: 0164-1212.

[PR04] I. Pashov and M. Riebisch. “Using feature modeling for program comprehen-
sion and software architecture recovery”. In: Proc. 11th IEEE Int’l Conf. and Wk-
shp on the Engineering of Computer-Based Systems (2004), pp. 406–417.

[Pra01] Steven Pratschner. “Simplifying deployment and solving DLL Hell with the
.NET framework”. In: MSDN Magazine (2001).

[Pre97] Wolfgang Pree. “Component-based software development-a new paradigm in
software engineering?” In: Proceedings of Joint 4th International Computer Sci-
ence Conference and 4th Asia Pacific Software Engineering Conference. IEEE. 1997,
pp. 523–524.

186 Bibliography

[PW92] Dewayne E Perry and Alexander L Wolf. “Foundations for the study of soft-
ware architecture”. In: ACM SIGSOFT Software engineering notes 17.4 (1992),
pp. 40–52.

[Raj00] Václav Rajlich. “Incremental redocumentation using the web”. In: IEEE Soft-
ware 17.5 (2000), pp. 102–106.

[Raj97] Václav Rajlich. “Incremental redocumentation with hypertext”. In: Proceedings.
First Euromicro Conference on Software Maintenance and Reengineering. IEEE. 1997,
pp. 68–72.

[RE12] Alexander Reder and Alexander Egyed. “Incremental consistency checking for
complex design rules and larger model changes”. In: International Conference on
Model Driven Engineering Languages and Systems. Springer. 2012, pp. 202–218.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language
reference manual, the. Pearson Higher Education, 2004.

[Rog97] D Rogers. Inside COM: Microsoft’s Component Object Model. 1997.
[Ros+04] Roshanak Roshandel, André van der Hoek, Marija Mikic-Rakic, and Nenad

Medvidovic. “Mae—a system model and environment for managing architec-
tural evolution”. In: ACM Transactions on Software Engineering and Methodology
13.2 (2004), pp. 240–276.

[Ros+10] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, and Fiona A C Polack.
“Model Migration with Epsilon Flock”. In: Theory and Practice of Model Transfor-
mations. Ed. by Laurence Tratt and Martin Gogolla. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 184–198. ISBN: 978-3-642-13688-7.

[Ros+14] Louis M Rose, Dimitrios S Kolovos, Richard F Paige, Fiona A C Polack, and
Simon Poulding. “Epsilon Flock: a model migration language”. In: Software &
Systems Modeling 13.2 (2014), pp. 735–755. ISSN: 1619-1374.

[Roy87] Winston W Royce. “Managing the development of large software systems: con-
cepts and techniques”. In: Proceedings of the 9th international conference on Soft-
ware Engineering. IEEE Computer Society Press. 1987, pp. 328–338.

[RSB04] Ed Roman, Rima Patel Sriganesh, and Gerald Brose. Mastering enterprise jav-
abeans. John Wiley & Sons, 2004.

[SAO05] Sergio Cozzetti B de Souza, Nicolas Anquetil, and Káthia M de Oliveira. “A
study of the documentation essential to software maintenance”. In: Proceedings
of the 23rd annual international conference on Design of communication: document-
ing & designing for pervasive information. ACM. 2005, pp. 68–75.

[Sar03] K. Sartipi. “Software architecture recovery based on pattern matching”. In:
ICSM Proc. Amsterdam, The Netherlands: IEEE, 2003, pp. 293–296. ISBN: 0-
7695-1905-9.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component software:
beyond object-oriented programming. Pearson Education, 2002.

[Sha+01] Bill Shannon et al. “Java 2 platform enterprise edition specification, v1. 3”. In:
Sun Microsystems 901 (2001).

Bibliography 187

[Sha+17] A. Shatnawi, A. D. Seriai, H. Sahraoui, and Z. Alshara. “Reverse engineering
reusable software components from object-oriented APIs”. In: JSS 131 (2017),
pp. 442–460. ISSN: 01641212.

[SIS03] Shahida Sulaiman, Norbik Bashah Idris, and Shamsul Sahibuddin. “Re-documenting,
visualizing and understanding software system using DocLike Viewer”. In:
Tenth Asia-Pacific Software Engineering Conference, 2003. IEEE. 2003, pp. 154–163.

[SM07] A. Sutton and J. I. Maletic. “Recovering UML class models from C++: A de-
tailed explanation”. In: IST 49.3 (2007), pp. 212–229. ISSN: 09505849.

[SO01] C. Stoermer and L. O’Brien. “MAP–Mining Architectures for Product Line
Evaluations”. In: IEEE / IFIP WICSA Proc. Amsterdam, The Netherlands, 2001,
pp. 35–44. ISBN: 0769513603.

[Som11] Ian Sommerville. “Software engineering 9th Edition”. In: ISBN-10137035152
(2011).

[SS13] Anas Shatnawi and Abdelhak Djamel Seriai. “Mining reusable software com-
ponents from object-oriented source code of a set of similar software”. In: Pro-
ceedings of the 2013 IEEE 14th International Conference on Information Reuse and
Integration, IEEE IRI 2013 (2013), pp. 193–200.

[Stu05] Alexander Stuckenholz. “Component evolution and versioning state of the
art”. In: ACM SIGSOFT Software Engineering Notes 30.1 (2005), p. 7.

[SWB03] Perdita Stevens, Jon Whittle, and Grady Booch. UML 2003–The Unified Model-
ing Language, Modeling Languages and Applications: 6th International Conference
San Francisco, CA, USA, October 20-24, 2003, Proceedings. Vol. 2863. Springer,
2003.

[Tae+13] Gabriele Taentzer, Florian Mantz, Thorsten Arendt, and Yngve Lamo. “Cus-
tomizable Model Migration Schemes for Meta-model Evolutions with Multi-
plicity Changes”. In: Model-Driven Engineering Languages and Systems. Ed. by
Ana Moreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo, and Peter Clarke.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 254–270. ISBN: 978-3-
642-41533-3.

[Tay+96] Richard N Taylor, Nenad Medvidovic, Kenneth M Anderson, E James White-
head Jr, Jason E Robbins, Kari A Nies, Peyman Oreizy, and Deborah L Dubrow.
“A Component- and Message- Architectural Style for GUI Software”. In: IEEE
Transactions on Software Engineering 22.6 (1996), pp. 390–406.

[TH10] Linus Torvalds and Junio Hamano. “Git: Fast version control system”. In: URL
http://git-scm. com (2010). last visited: 03.05.2017.

[TH99] John B. Tran and Richard C. Holt. “Forward and reverse repair of software ar-
chitecture”. In: 1999 Conference of the Centre for Advanced Studies on Collaborative
research (CASCON ’99) (1999), pp. 12–21.

[TMD10] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. “Software archi-
tecture: foundations, theory, and practice”. In: (2010).

[TO93] Guilaine Talens and Chabane Oussalah. “Versions of simple and composite
objects”. In: In Proc. 19th VLDB. Citeseer. 1993.

188 Bibliography

[UO96] Christelle Urtado and Chabane Oussalah. “Propagation de versions dans les
objets complexes.” In: INFORSID. 1996, pp. 331–349.

[UO98] Christelle Urtado and Chabane Oussalah. “Complex entity versioning at two
granularity levels”. In: Information systems 23.3-4 (1998), pp. 197–216.

[VDK99] Arie Van Deursen and Tobias Kuipers. “Building documentation generators”.
In: Proceedings IEEE International Conference on Software Maintenance-1999 (ICSM’99).’Software
Maintenance for Business Change’(Cat. No. 99CB36360). IEEE. 1999, pp. 40–49.

[Yan+04] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman. “DiscoTect: a sys-
tem for discovering architectures from running systems”. In: 26th ICSE Proc.
Edinburgh, UK, 2004, pp. 470–479. ISBN: 0-7695-2163-0.

[Zdo87] Stanley B Zdonik. “Version management in an object-oriented database”. In:
Advanced Programming Environments. Springer. 1987, pp. 405–422.

[Zha10] Huaxi Yulin Zhang. “Multi-dimensional architecture description language for
forward and reverse evolution of component-based software”. PhD thesis. Mont-
pellier 2, 2010.

[Zha+12a] Huaxi Zhang, Christelle Urtado, Sylvain Vauttier, Lei Zhang, Marianne Huchard,
and Bernard Coulette. “Dedal-CDL: Modeling First-class Architectural Changes
in Dedal”. In: 2012 Joint Working IEEE/IFIP Conference on Software Architecture
and European Conference on Software Architecture. IEEE. 2012, pp. 272–276.

[Zha+12b] Huaxi Yulin Zhang, Lei Zhang, Christelle Urtado, Sylvain Vauttier, and Mari-
anne Huchard. “A three-level component model in component based software
development”. In: Proceedings of ACM SIGPLAN Notices. Vol. 48. 3. ACM. 2012,
pp. 70–79.

[ZUS10] H. Y. Zhang, C. Urtado, and S.Vauttier. “Architecture-centric component-based
development needs a three-level ADL”. In: 4th ECSA Proc. Vol. 6285. LNCS.
Copenhagen, Denmark: Springer, 2010, pp. 295–310.

[ZUV10] Huaxi Yulin Zhang, Christelle Urtado, and Sylvain Vauttier. “Architecture-
centric development and evolution processes for component-based software”.
In: Proc. of 22nd SEKE Conf., Redwood City, USA (July 2010). 2010, p. 25.

Bibliography 189

ARIANE : Re-documentation automatique pour améliorer la compréhension et l’évolution
d’architectures logicielles
Tout au long de son cycle de vie, un logiciel peut connaître de nombreux changements affectant potentiellement sa conformité
avec sa documentation originelle. De plus, bien qu’une documentation à jour, conservant les décisions de conception prises
pendant le cycle de développement, soit reconnue comme une aide importante pour maîtriser les évolutions, la documentation
des logiciels est souvent obsolète. Les modèles d’architectures sont l’une des pièces majeures de la documentation. Assurer
leur cohérence avec les autres modèles d’un logiciel (incluant son code) pendant les processus d’évolution (co-évolution) est
un atout majeur pour la qualité logicielle. En effet, la compréhension des architectures logicielles est hautement valorisable
en termes de capacités de réutilisation, d’évolution et de maintenance. Pourtant les modèles d’architectures sont rarement
explicitement disponibles et de nombreux travaux de recherche visent à les retrouver à partir du code source. Cependant,
la plupart des approches existantes n’effectuent pas un strict processus de rétro-documentation afin de re-documenter les
architectures "comme elles sont implémentées" mais appliquent des étapes de ré-ingénierie en regroupant des éléments de
code dans de nouveaux composants. Ainsi, cette thèse propose un processus de re-documentation des architectures telles
qu’elles ont été conçues et implémentées, afin de fournir un support d’analyse des décisions architecturales effectives. Cette
re-documentation se fait par l’analyse du code orienté objet et les descripteurs de déploiement de projets. Le processus
re-documente les projets dans le langage de description d’architecture Dedal, qui est spécialement conçu pour contrôler et
guider l’évolution des logiciels. Un autre aspect très important de la documentation des logiciels est le suivi de leurs dif-
férentes versions. Dans de nombreuses approches et gestionnaires de version actuels, comme GitHub, les fichiers sont ver-
sionnés de manière agnostique. S’il est possible de garder une trace de l’historique des versions de n’importe quel fichier,
aucune information ne peut être fournie sur la sémantique des changements réalisés. En particulier, lors du versionnement
d’éléments logiciels, il n’est fourni aucun diagnostic de retro-compatibilité avec les versions précédentes. Cette thèse propose
donc un mécanisme de versionnement d’architectures logicielles basé sur le métamodèle et les propriétés formelles de l’ADL
Dedal. Il permet d’analyser automatiquement les versions en termes de substituabilité, de gérer la propagation de version et
d’incrémenter automatiquement les numéros de versions en tenant compte de l’impact des changements. En proposant cette
approche formelle, cette thèse vise à prévenir le manque de contrôle des décisions architecturale (dérive / érosion). Cette
thèse s’appuie sur une étude empirique, pour valider notre approche nommée ARIANE, en appliquant les processus de re-
documentation et de versionnement à de nombreuses versions d’un projet industriel extrait de GitHub.

ARIANE: Automated Re-Documentation to Improve software Architecture uNderstand-
ing and Evolution
All along its life-cycle, a software may be subject to numerous changes that may affect its coherence with its original documen-
tation. Moreover, despite the general agreement that up-to-date documentation is a great help to record design decisions all
along the software life-cycle, software documentation is often outdated. Architecture models are one of the major documen-
tation pieces. Ensuring coherence between them and other models of the software (including code) during software evolution
(co-evolution) is a strong asset to software quality. Additionally, understanding a software architecture is highly valuable in
terms of reuse, evolution and maintenance capabilities. For that reason, re-documenting software becomes essential for easing
the understanding of software architectures. However architectures are rarely available and many research works aim at au-
tomatically recovering software architectures from code. Yet, most of the existing re-documenting approaches do not perform
a strict reverse-documenting process to re-document architectures "as they are implemented" and perform re-engineering by
clustering code into new components. Thus, this thesis proposes a framework for re-documentating architectures as they
have been designed and implemented to provide a support for analyzing architectural decisions. This re-documentation is
performed from the analysis of both object-oriented code and project deployment descriptors. The re-documentation process
targets the Dedal architecture language which is especially tailored for managing and driving software evolution. Another
highly important aspect of software documentation relates to the way concepts are versioned. Indeed, in many approaches
and actual version control systems such as GitHub, files are versioned in an agnostic manner. This way of versioning keeps
track of any file history. However, no information can be provided on the nature of the new version, and especially regard-
ing software backward-compatibility with previous versions. This thesis thus proposes a formal way to version software
architectures, based on the use of the Dedal architecture description language which provides a set of formal properties. It
enables to automatically analyze versions in terms of substitutability, version propagation and proposes an automatic way
for incrementing version tags so that their semantics corrrespond to actual evolution impact. By proposing such a formal ap-
proach, this thesis intends to prevent software drift and erosion. This thesis also proposes an empirical study, to validate our
approach named ARIANE, based on both re-documenting and versioning processes on numerous versions on an enterprise
project taken from GitHub.

	Abstract
	Remerciements
	Introduction
	General context of component-based software engineering
	Documenting and versioning component-based software architectures issues
	Thesis proposal and contribution
	Outline of the thesis

	Context and motivations
	Component-based software engineering
	Component-based software life-cycle
	Summary

	Component-based software architectures
	Basic concepts in software architecture
	Architecture modeling
	Architecture evolution
	Architecture analysis

	The Dedal architecture model
	The Dedal abstract architecture specification level
	The Dedal concrete architecture configuration level
	The Dedal instantiated architecture assembly level
	Dedal formal rules

	Motivations for re-documenting and versioning architectures
	Conclusion

	State of the art
	Study on component-based software architecture versioning
	Versioning components
	Model evolution and versioning
	Versioning component-based software architectures
	Discussion

	Architecture evolution approaches
	C2/C2-SADEL
	Darwin
	Wright/Dynamic Wright
	ArchWare
	xADL
	Mae
	SOFA 2.0
	Synthesis and comparison

	Retrieving architecture documentation and software maintainability
	Software re-documentation approaches
	Software architecture reconstruction approaches

	Conclusion

	Re-documenting component-based software architectures
	Process overview
	Inputs
	Process
	Output

	Re-documenting architectures
	SpringDSL, a DSL for mapping Spring Concepts
	Model to model transformation: from descriptor model to partial Dedal architecture model
	Extracting information from the object-oriented code
	Re-documenting Assembly
	Re-documenting Configuration from Assembly
	Re-documenting Specification

	Generalization
	Discussion
	Algorithm

	Conclusion

	Versioning component-based software architectures
	Semantics in versioning
	Definitions and notations
	Traditional versioning
	Problems of current version management systems
	Substitutability-based versioning

	Identification of architectural changes, version characterization
	Identifying and categorizing component-based architecture changes
	Version meta-model
	Three-leveled version meta-model

	Predicting version propagation
	Typology of architectural change impact
	Change impact analysis

	Example of three-leveled architecture versioning
	Conclusion

	Case study and implementation
	Implementation of re-documentation and versioning approaches
	Overview of DedalStudio
	Implementation of the re-documentation module

	Implementation of architecture versioning
	Experimentation and evaluation
	Case study: Broadleaf Commerce
	Experimentation

	Conclusion

	Conclusion and Perspectives
	Contributions
	Software re-documentation contributions
	Software architecture versioning contributions

	Limitations and perspectives
	Software re-documentation perspectives
	Software architecture versioning perspectives
	Experimental perspectives

	XText-based Spring implementation
	SpringToDedal QVTo transformation
	Re-documentation algorithm
	Papers and tools
	Released tools
	Published papers

	Résumé en français
	Bibliography

