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Résumé 
L’optimisation est un processus intéressant pour la conception en général et la 

conception architecturale en particulier. Il existe de nombreux outils d’optimisation de 
conception générative en architecture. Cependant, ces outils ne sont pas très utilisés par les 
architectes. La conception architecturale pose des problèmes mal structurés; la créativité et 
l’interprétation des concepteurs sont essentielles pour résoudre ces problèmes. Donc en 
architecture, l’acceptabilité des solutions par les concepteurs est aussi importante que 
l’optimalité numérique de leurs performances. Or, bien que les préférences des concepteurs 
sont cruciales pour l’acceptabilité, les outils existants ne les intègrent pas dans le processus 
d’optimisation. Le maque d’implication possible pour le concepteur lors de l’utilisation des 
outils est une cause majeure de la réticence des architectes à utiliser ces outils. Cette thèse vise 
à définir un ensemble de recommandations qui aident les développeurs à proposer des systèmes 
d’aide à la décision plus attractifs pour les architectes, car permettant une plus grande 
intégration du concepteur dans le processus d’optimisation et donc une plus grande implication 
lors de l’utilisation de ces outils. 

Pour définir l’ensemble des recommandations, la recherche a commencé par explorer 
différents processus de conception. A partir de cette exploration, un cadre de conception basé 
sur quatre modèles Morphogenèse, Observation, Interprétation, Agrégation, MOIA est défini. 
Ensuite, les typologies d’outils utilisées par les architectes sont explorées. En outre, les 
“workflows” d’optimisation de conception générative les plus connus sont étudiés, en utilisant 
MOIA comme référence. Ensuite, la recherche adopte une approche expérimentale portant sur 
l’acceptabilité des concepteurs. Cinq expériences différentes sont réalisées. Deux des 
expériences comparent différents “workflows” d’optimisation de conception générative 
existants en utilisant l’acceptabilité des concepteurs comme référence. Les trois autres 
expériences comparent les différentes fonctions d’agrégation en utilisant le jugement des 
concepteurs comme référence. Ces fonctions sont la fonction de Pareto, Maximin, Derringer & 
Suich. 

Les résultats de ces expériences peuvent être résumés en quatre points. Premièrement, 
la programmation visuelle est recommandée pour les futurs outils d’optimisation générative. 
La programmation visuelle aide l’architecte à décrire des modèles paramétriques sophistiqués 
sans codage. En effet, les concepteurs, en général, ne sont pas formés à coder. Deuxièmement, 
l’aspect graphique de l’outil peut fortement influencer la décision du concepteur. Les 
performances des solutions doivent être présentées graphiquement aux concepteurs et la 
méthode de représentation doit dépendre du nombre d’objectifs. Troisièmement, l’utilisation 
d’un algorithme d’optimisation interactif qui permet aux concepteurs de sélectionner la 
solution en fonction de leur jugement subjectif de la forme peut augmenter l’acceptabilité des 
“workflows”. Quatrièmement, la disponibilité des informations est la clé pour définir la 
fonction d’agrégation adaptée. L’interprétation requise pour les différentes fonctions 
d’agrégation n’est pas toujours la même. Lorsque les informations nécessaires sont disponibles, 
les fonctions cardinales à forte néguentropie sont préférées aux fonctions ordinales à faible 
néguentropie. 

les outils d’optimisation de conception générative existants doivent être davantage 
attractifs pour les architectes. La recherche adopte une approche expérimentale basée sur 
l’acceptabilité des concepteurs. La méthodologie développée dans cette recherche a permis de 
définir un ensemble de recommandations visant à réaliser des outils plus attractifs pour les 
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concepteurs, favorisant ainsi la pratique de l’optimisation lors des processus de conception. La 
recommandation se concentre sur le fait d’offrir la possibilité aux concepteurs d’être plus 
impliqués dans le processus. 

 

Mots-clés : acceptabilité, prise de décision, désirabilité, conception générative, optimisation 
de la conception multi-objectifs  
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Résumé substantiel 
Nous passons la majeure partie de notre vie dans nos bâtiments. Dans tout bâtiment, le 

confort des utilisateurs est donc prioritaire. Le secteur du bâtiment consomme une quantité 
considérable d'énergie et de ressources. L'optimisation des performances de nos bâtiments est 
alors cruciale. Bien que l'optimisation soit populaire parmi les ingénieurs, elle l'est moins chez 
les concepteurs en général, et plus spécifiquement, les architectes. De nos jours, de nombreux 
systèmes pouvant aider les concepteurs à optimiser existent. Cependant, ces outils sont faits 
pour observer le comportement des solutions candidates sans pouvoir les générer. 
Dernièrement, quelques outils numériques d'optimisation de la conception dotés de capacités 
génératives ont été introduits. Cependant, ces outils ne sont pas très utilisés par les architectes, 
car ils ne se sentent pas impliqués dans le processus d'optimisation. La collaboration faible ou 
déséquilibrée entre l'architecte et l'ordinateur dans ces outils est un problème important. 

Pour résoudre ce problème, il était essentiel de revoir le processus de conception du 
point de vue des architectes. L’analyse des principes et des phases du processus de conception 
a permis de développer un cadre pour l'optimisation générative de la conception. Le cadre 
proposé est itératif et basé sur quatre modèles : les modèles de Morphogenèse, d’ Observation, 
d’ Interprétation et d’Agrégation (MOIA). Le cadre MOIA intègre l’évaluation par les 
concepteurs dans le processus d'optimisation. Dans un premier temps, le modèle de 
morphogenèse utilise un ensemble aléatoire de variables de conception pour définir un 
ensemble aléatoire de solutions candidates. Ensuite, le modèle d'observation observe le 
comportement de ces solutions candidates, ce qui se traduit par un ensemble de variables 
d'observation. Ensuite, le modèle d'interprétation interprète les variables d'observation en 
variables d'interprétation. Plus tard, le modèle d'agrégation classe les solutions en fonction des 
variables d'interprétation. Enfin, le modèle de morphogenèse utilise un algorithme 
d'optimisation globale pour faire évoluer un nouvel ensemble de variables de conception. Un 
seuil peut être utilisé pour définir la fin de l'itération. 

En MOIA, les concepteurs peuvent exprimer leurs préférences concernant les critères 
et les objectifs à l'intérieur des modèles d'interprétation et d'agrégation. De nombreuses 
interprétations et fonctions d'agrégation existent. En fonction des types d'informations qu'elles 
utilisent, ces fonctions sont divisées en deux catégories : ordinales et cardinales. Les 
informations ordinales sont basées sur les rangs. Les informations cardinales sont basées sur 
des valeurs. À partir des informations cardinales, nous pouvons déduire les informations 
ordinales, mais l’inverse est impossible. Pour évaluer la valeur d'une information, nous 
utilisons le concept de néguentropie,  opposé de l'entropie, qui correspond au caractère aléatoire 
de l'information. En diminuant le caractère aléatoire de l'information, nous augmentons sa 
néguentropie et donc sa valeur. Les fonctions cardinales sont plus élevées que les fonctions 
ordinales en néguentropie, et donc elles ont plus de valeur. En effet, les informations ordinales 
peuvent être trompeuses. 

La caractéristique commune à la plupart des outils d'optimisation multi-objectifs 
contemporains est qu'ils utilisent la fonction de Pareto pour améliorer les compromis entre les 
objectifs. Cette fonction est ordinale et transfère les variables d'observation cardinales en 
informations ordinales. Parce que nous ne pouvons pas appliquer d'opérations mathématiques 
aux informations ordinales, nous ne pouvons donc pas calculer un objectif global à partir de 
nombreux critères et objectifs. En conséquence, nous nous retrouvons avec de nombreux 
objectifs et la fonction peut considérer différentes solutions avec des variables d'observation 
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distinctes comme également optimales. De plus, il peut considérer comme optimale une 
solution irrationnelle pour les experts en conception. La fonction de Pareto classe les solutions 
en deux catégories, non dominées (optimales) et dominées (non optimales). Par conséquent, il 
peut être considéré comme un filtre à faible efficacité. 

Par rapport à la fonction de Pareto, les fonctions cardinales riches en néguentropie sont 
reconnues comme un filtre puissant. Les fonctions d'agrégation de Maximin et Derringer & 
Suich ont un potentiel élevé pour remplacer la fonction de Pareto. Cependant, ces fonctions 
nécessitent l'utilisation d'une fonction d'interprétation de l'opportunité : une fonction de 
désirabilité. Il s’agit d’une fonction de valeur qui transfère les variables d'observation basées 
sur différentes échelles en variables d'interprétation basées sur une échelle de satisfaction 
unifiée comprise entre zéro et une Les variables d’interprétation représentent le niveau de 
satisfaction des objectifs en fonction des préférences des concepteurs. La fonction d'agrégation 
proposée classe les solutions en fonction de ces variables. 

La fonction d'agrégation Maximin sous-estime les solutions qui atteignent de très 
faibles niveaux de satisfaction d'au moins un objectif. Il peut être considéré comme un principe 
de précaution qui évite les solutions extrêmement dangereuses. Cependant, Maximin est une 
fonction non compensatoire. En utilisant Maximin, les concepteurs peuvent exprimer leurs 
préférences des critères dans le modèle d'interprétation en utilisant une fonction de désirabilité. 
La fonction d'agrégation de Derringer & Suich est supérieure à Maximin en néguentropie, et 
elle est compensatoire. Dans cette fonction, les concepteurs peuvent exprimer leurs préférences 
pour les critères du modèle d'interprétation en utilisant une fonction de désirabilité. En outre, 
ils peuvent exprimer leurs préférences en termes d’objectifs en leur permettant d'attribuer des 
poids différents à ces derniers. 

Les problèmes de conception sont des problèmes mal structurés; leur structure manque 
de définition. La résolution de ces problèmes implique un jugement subjectif, difficile à traiter 
et non réductible à la logique mathématique pure. D'après l’évaluation faite pardes concepteurs, 
les solutions optimales ne sont pas nécessairement acceptables, du point de vue des perceptions 
humaines. Pour évaluer l'acceptabilité, les concepteurs doivent être au centre du raisonnement 
et de l’évaluation. A l’opposé, l'optimalité indique les mesures de performance et utilise une 
logique mathématique pour calculer les objectifs numériques. Dans la conception, 
l'acceptabilité et l'optimalité sont essentielles. En permettant aux concepteurs d'exprimer leurs 
préférences à l'intérieur du processus d'optimisation, MOIA peut approcher l'acceptimalité 
(acceptabilité et optimalité). Le développement de systèmes d'aide à la décision basés sur 
l'acceptimalité peut attirer plus de concepteurs car l'acceptabilité des solutions est accrue. 

Il est crucial d'explorer les outils populaires parmi les architectes en tenant compte du 
MOIA. Sur la base de cette exploration, quatre typologies d'outils différents pouvant aider les 
modèles de MOIA ont été définies. La première typologie est celle des outils d'observation. 
Ces outils sont essentiels pour le modèle d'observation car ils permettent d'évaluer le 
comportement des solutions candidates. La deuxième typologie est celle des outils de 
modélisation paramétrique. Ces outils nous permettent de définir un modèle avec des 
contraintes. Les contraintes connectent les pièces du modèle. Ainsi, nous pouvons changer le 
modèle entier en changeant une partie de celui-ci. La troisième typologie est la modélisation 
algorithmique, qui peut être considérée comme une modélisation paramétrique avancée. Dans 
cette typologie, nous définissons un modèle paramétrique à l'aide d'algorithmes. Étant donné 
que la plupart des concepteurs ne sont pas formés pour utiliser la programmation textuelle, de 
nombreux outils de modélisation algorithmique pour les concepteurs utilisent la 
programmation visuelle, qui est relativement facile à utiliser et offre toutefois des capacités 
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élevées. La quatrième typologie correspond aux outils de conception générative, qui 
manipulent généralement le modèle paramétrique pour générer des solutions. En conception 
générative, les outils génératifs sont connectés à un modèle paramétrique, à des outils 
d'observation et à des algorithmes d'optimisation. De cette exploration, nous pouvons conclure 
que les systèmes basés sur la conception générative sont les plus proches du cadre MOIA. 

L'exploration des “workflows” de conception générative contemporaine est vitale car 
elle permet une meilleure compréhension des outils. Six “workflows”  de conception générative 
différents ont été largement explorés. Alors que certains de ces “workflows”  sont basés sur un 
seul outil, d'autres consistent à utiliser plusieurs outils. Sur la base de cette exploration, quatre 
“workflows”  différents ont été définis comme les plus proches de MOIA. Ces “workflows”  
partagent un cadre similaire. Ils commencent par proposer un ensemble aléatoire de solutions 
candidates. Ensuite, ils observent le comportement des solutions candidates. Puis, ils les 
classent en utilisant la fonction de Pareto. Enfin, ils utilisent un algorithme évolutif pour faire 
évoluer un nouvel ensemble de solutions optimisées. Cependant, ces “workflows”  peuvent 
approcher l'optimalité mais pas l'acceptimalité. 

La thèse entend proposer un ensemble de recommandations pouvant accroître 
l'interaction entre les concepteurs et les machines. En développant un système d'aide à la 
décision basé sur ces recommandations, nous pouvons approcher l'acceptimalité. Il est souhaité 
que ces systèmes puissent encourager un plus grand nombre de concepteurs à adopter 
l'optimisation, procédure particulièrement éfficace. La recherche adopte une approche 
expérimentale pour étudier l'acceptabilité des concepteurs, en mettant en œuvre cinq 
expériences différentes. Les deux premières expériences se concentrent sur la comparaison de 
l'acceptabilité des différents outils de conception générative et des flux de travail à partir des 
évaluations faites par les concepteurs. Les trois autres expériences se concentrent sur 
l'acceptabilité des solutions, en étudiant trois fonctions d'agrégation différentes également à 
partir des évaluations faites par les concepteurs. 

La première expérience compare l'acceptabilité pour les utilisateurs de deux 
“workflows”  d'optimisation de conception générative différents. Le premier “workflow”  est 
basé sur l'utilisation de la programmation visuelle. Le “workflow”  observe les solutions 
candidates (des solutions aléatoires sont utilisées pour la première itération), puis il utilise un 
algorithme évolutif pour faire évoluer un nouvel ensemble de solutions candidates basé sur la 
classification des solutions candidates par fonction de Pareto. L’outil génératif de ce 
“workflow”  présente graphiquement les solutions basées sur la classification des fonctions de 
Pareto. Le deuxième “workflow” est basé sur l'utilisation d'EcoGen ©, un outil de 
programmation non visuel pour générer des formes modulaires optimisées. Cet outil utilise un 
algorithme évolutif interactif. Il permet à l'utilisateur de sélectionner des solutions candidates 
en fonction de son évaluation subjective. Les résultats montrent que, d'une manière générale, 
les concepteurs trouvent le “workflow”  qui utilise la programmation visuelle plus acceptable. 
Cependant, en ce qui concerne l'interface, les participants préfèrent EcoGen ©, qui présente les 
solutions regroupant les modèles dans une grille, et qui leur permet de choisir parmi ces 
solutions. 

Pour compléter la première expérience, la deuxième expérience se concentre sur la 
programmation visuelle. Cette expérience compare deux outils génératifs différents pour la 
programmation visuelle. Le premier outil est basé sur la représentation graphique des solutions 
basées sur la fonction de Pareto, qui a été utilisée dans le test précédent. Le second est basé sur 
l'utilisation d'un algorithme évolutif interactif avec une interface similaire à EcoGen ©. Les 
résultats montrent que l'outil qui utilise un algorithme interactif est plus acceptable. Ce résultat 
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est donc opposé à ceux du test précédent. Ainsi, lors du premier test, les participants ont sous-
estimé l'algorithme interactif car il n'utilise pas de programmation visuelle. Cependant, les 
participants estiment que l’outil qui présente la fonction de Pareto peut produire de meilleurs 
résultats. En conclusion, la combinaison des deux approches dans la programmation visuelle 
peut augmenter l'acceptabilité des outils d'optimisation générative. 

La troisième expérience étudie les deux fonctions d'agrégation qui peuvent remplacer 
la fonction de Pareto. Pour la première fonction, qui est la fonction de Derringer & Suich, nous 
avons tester si le concept d'attribution de poids convient aux concepteurs et s'ils sont capables 
d'attribuer des poids cohérents. Dans ce test, les participants ont été invités à attribuer des poids 
à cinq objectifs dans quatre scénarios. Les réponses ont montré une grande variété de 
pondérations entre les différents scénarios et l'objectif. Cela reflète le besoin élevé de pondérer 
les objectifs. Dans un second temps, les participants ont été invités à attribuer des poids à cinq 
objectifs par paires pour un seul scénario afin d'évaluer leur cohérence. Les résultats montrent 
que, en général, les concepteurs étaient incohérents. Pour la deuxième fonction, Maximin, nous 
avons tester si son principe convient aux concepteurs. Tout d'abord, un ensemble de dix formes 
analysées sur la base de deux objectifs contraires est présenté. Les concepteurs ont dû 
sélectionner une forme qui optimise les objectifs. Ensuite, une représentation graphique des 
solutions basées sur la fonction de Pareto est présentée, et ils ont dû sélectionner à nouveau une 
forme. La majorité des participants a changé de sélection entre les deux phases de test. Ils ont 
décalé leur sélection pour correspondre au classement Maximin. 

La quatrième expérience vise à comparer la fonction de Pareto et la fonction de 
Maximin à partir des évaluations faites par les concepteurs. L'expérience observe également 
l'influence de la disponibilité des informations sur l’évaluation des concepteurs. Six tests ont 
été effectués dans cette expérience permettant aux participants de classer un ensemble de sept 
solutions en fonction de deux objectifs. Ce sont deux ensembles de solutions présentés selon 
trois niveaux d’information qui ont été ainsi évalués. Le niveau d’information le plus bas 
correspondà la présentation d’un nuage de points, représentant sur un graphique les 
performances des solutions en fonction des objectifs. Le deuxième  niveau présente en plus du 
nuage de points des informations numériques qui décrivent les bâtiments et leur contexte,. 
Enfin, le troisième présente les informations des niveau précédents, ainsi que des modèles 3D 
des solutions accompagnés de leurs performances en fonction des objectifs. Les résultats 
montrent que Maximin peut entraîner une classification qui est plus acceptable pour les 
concepteurs si elle est comparée à la classification dérivée de la fonction de Pareto. Ils montrent 
également que les informations supplémentaires autres que le nuage de points n’ont pas 
influencé de manière significative le jugement des concepteurs. 

L'ensemble des solutions utilisées dans l'expérience précédente conduit à une 
classification similaire si nous utilisons Maximin ou Derringer & Suich (poids égaux). La 
cinquième expérience vise à comparer les fonctions de Maximin et de Derringer & Suich à 
partir des évaluations faites par les concepteurs. Les participants à cette expérience ont été 
invités à classer deux ensembles différents de solutions en fonction de deux objectifs pour le 
premier ensemble et de cinq objectifs pour le second. Pour le premier ensemble, un nuage de 
points, les valeurs numériques, comprises entre zéro et un, du niveau de satisfaction des 
objectives et un diagramme de coordonnées parallèles représentant les performances des 
solutions ont été présentés. De plus, l'emplacement et le type de bâtiment ont été spécifiés. Pour 
le second ensemble, seules les valeurs numériques qui représentent le niveau de satisfaction 
des objectifs et un diagramme de coordonnées qui représentent les performances de la solution 
ont été présentés. Il ressort des résultats que l'augmentation du nombre d'objectifs incite les 
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concepteurs à compenser. L’écart entre la classification des participants et Derringer & Suich 
(poids égaux) était inférieur à l’écart entre la classification de Maximin et les participants. 
Cependant, lorsque seulement deux objectifs étaient visés et que le nuage de points était 
présenté, la classification des participants était plus proche de celle de Maximin que de celle 
de Derringer & Suich (poids égaux). 

Sur la base de ces cinq expériences, un ensemble de quatre recommandations pouvant 
augmenter l'interaction entre le concepteur et l’outil numérique dans les systèmes d'aide à la 
décision pour la conception est proposé. D’abord, l'utilisation d'une conception générative 
basée sur une programmation visuelle est fortement recommandée. Deuxièmement, l'utilisation 
d'un algorithme interactif peut augmenter l'acceptabilité des outils car elle augmente 
l'interaction avec les utilisateurs. Troisièmement, l'aspect visuel de l'interface est importante. 
Cela comprend la présentation des modèles volumétriques de la solution et la représentation 
graphique des performances des solutions (par exemple, nuage de points ou coordonnées 
parallèles). Enfin, les systèmes doivent pouvoir utiliser différentes fonctions d'agrégation en 
fonction de la disponibilité des informations. Si les informations nécessaires pour utiliser une 
fonction de désirabilité sont disponibles et que les pondérations des objectifs sont décidables, 
nous pouvons utiliser la fonction de Derringer & Suich. Si les poids des objectifs ne sont pas 
décidables, mais que les informations nécessaires pour utiliser une fonction de désirabilité sont 
disponibles, nous pouvons utiliser Maximin ou Derringer & Suich (poids égaux). Dans le cas 
où le concepteur dispose de peu d’informations, nous pouvons utiliser la fonction de Pareto, et 
contrairement aux deux autres fonctions, nous ne pouvons pas atteindre l'acceptimalité. À 
l'avenir, nous pouvons relier les systèmes qui adoptent ces recommandations à l'apprentissage 
automatique. 
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Abstract 
Optimization is a profitable behavior for design in general and architectural design in 

specific. Many generative design optimization tools do exist. However, these tools are not 
widely used among architects. Design problems are ill-structured problems; designers’ 
creativity and interpretation are essential for solving these problems. In design, designers’ 
acceptability of the solutions is as important as the numerical optimality of their performance. 
The existing tools do not integrate designers’ preferences inside the optimization process; 
designers’ preferences are crucial for acceptability. The unbalance collaboration between the 
tools, and the designer is a major cause of the reluctance of architects from using these tools. 
The dissertation aims to define a set of recommendations that helps developers to introduce 
decision support systems that attract more architects by improving the collaboration between 
the designers and the tools. 

To define the set of recommendations, the research started by exploring different design 
processes. Based on this exploration, a design framework based on four models 
Morphogenesis, Observation, Interpretation, Aggregation (MOIA) is defined. Next, the tool 
typologies the architects use are explored. Additionally, the popular generative design 
optimization workflows are investigated by using MOIA as a reference. Then, the research 
adopts an experimental approach based on designers’ acceptability. Five different experiments 
are performed. Two of the experiments compare different existing generative design 
optimization workflows by using designers’ acceptability as a reference. The other three 
experiments compare different aggregation functions by using designers’ judgment as a 
benchmark. These functions are Pareto’s function, Maximin, and Derringer & Suich’s. 

The results of these experiments can be concluded in four points. First, visual 
programming is recommended for future generative optimization tools. Visual programming 
helps the architect describe sophisticated parametric models without coding; designers, in 
general, are not trained to code. Second, the graphical aspect of the tool can immensely 
influence the decision of the designer. The performance of the solutions must be graphically 
presented to the designers; the representation method must respond to the number of objectives. 
Third, using an interactive optimization algorithm that allows the designers to select the 
solution based on their subjective judgment of the form can increase the acceptability of the 
workflows. Fourth, the availability of information is the key to define the accessible 
aggregation function. We usually use the aggregation function that integrates more of the 
available information; this information includes designers’ preferences, which help to approach 
acceptability. 

The existing generative design optimization tools need to attract more architects. The 
research adopts an experimental approach based on designers’ acceptability. The methodology 
helped the research define a set of recommendations that can help future tools attract more 
designers to optimize. The recommendation mainly focuses on enhancing the collaboration 
between the tools and the designers.  

 

Keywords:  acceptability, decision-making, design optimization, desirability, Generative 
Design.  
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Substantial summary 
We spend most of our lives in our buildings. In any building, users’ comfort is in high 

priority. The building sector consumes a considerable amount of energy, and it significantly 
consumes our resources. Optimizing the performance of our buildings is crucial. While 
optimization is popular among engineers, it is less popular among designers in general, and 
more specifically, architects. Nowadays, many systems that can help designers to optimize do 
exist.  However, these tools are made for observing the behavior of the candidate solutions 
without being able to generate any solutions. Lately, few design optimization digital tools with 
generative capabilities were introduced. However, these tools are not widely used among 
architects. These tools do not engage them in the optimization process. The weak or unbalanced 
collaboration between the architect and the computer in these tools is a significant problem. 

To solve this problem, it is was essential to review the design process from the 
architects’ point of view. Reviewing the principles and activities of the design process helped 
to develop a framework for generative design optimization. The proposed framework is 
iterative and based on four models Morphogenesis, Observation, Interpretation, Aggregation 
(MOIA). MOIA framework integrates designers’ judgment inside the optimization process. At 
first, the Morphogenesis model uses a set of random values of design variables to define a set 
of candidate solutions. Next, the Observation model observes the behavior of these candidate 
solutions, which results in a set of observation variables. Then, the Interpretation model 
interprets the observation variables into interpretation variables. Later on, the Aggregation 
model classifies the solutions based on the interpretation variables. Finally, the Morphogenesis 
model uses a global optimization algorithm to evolve a new set of design variables. A threshold 
can be used to define the end of the iteration. 

In MOIA, the designers can express their preferences of the criteria and the objectives 
inside the Interpretation and Aggregation models. Many interpretations and aggregation 
functions do exist. Based on the types of information they use, these functions are divided into 
two categories ordinal and cardinal. The ordinal information is based on ranks. The cardinal 
information is based on values. From the cardinal information, we can infer the ordinal 
information. However, it is not possible to infer the carinal information from the ordinal 
information. The cardinal information is more valuable than the ordinal information. To assess 
the worthiness of information, we use the concept of negentropy. The information negentropy 
is the opposite of information entropy, which corresponds to the randomness of information. 
By decreasing the randomness of information, we increase its negentropy and thus its value. 
The cardinal functions are higher than the ordinal functions in negentropy, and thus they are 
more valuable. The ordinal information can be misleading. 

The shared characteristic among most of the contemporary multi-objective optimization 
tools is that they use Pareto’s function to improve tradeoffs among the objectives. This function 
is ordinal, and it transfers the valuable cardinal observation variables into ordinal information. 
Because we cannot apply mathematical operations to ordinal information, thus we cannot 
compute a global objective from many criteria and objectives. As a result, we end up with many 
objectives. Consequently, the function may consider different solutions with distinct 
observation variables as equally optimum. Moreover, it can consider a solution that is irrational 
for design experts as optimum. Pareto’s function classifies the solutions into two categories, 
non-dominated (optimum) and dominated (not optimum). Hence, it can be regarded as a low-
efficiency filter. 
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In comparison to Pareto’s function, the high in negentropy cardinal functions are 
recognized as a strong filter. Maximin and Derringer & Suich’s aggregation functions have a 
high potential to replace Pareto’s function. However, these functions require the use of a 
desirability interpretation function. A desirability function is a value function that transfers the 
observation variables based on different scales into interpretation variables based on a unified 
scale of satisfaction ranging between zero and one. The interpretation variables represent the 
level of satisfaction on the objectives based on designers’ preferences. The proposed 
aggregation function classifies the solutions based on the interpretation variables. 

Maximin aggregation function underestimates the solutions which attain very low 
levels of satisfaction of at least one objective. It can be regarded as a precautionary principle 
that avoids extreme unsafe solutions. However, Maximin is a non-compensatory function. By 
using Maximin, the designers can express his preferences of the criteria in the Interpretation 
model by using a desirability function. Derringer & Suich’s aggregation function is higher than 
Maximin in negentropy, and it is compensatory. In this function, the designers can express their 
preference of the criteria within the Interpretation model by using a desirability function. Also, 
designers can express their preferences of the objectives by using allowing them to assign 
different weights to the objectives. 

Design problems are ill-structured problems; their structure lacks some definition. 
Solving these problems involves subjective judgment, which is difficult to process and non-
reducible to pure mathematical logic. Based on the designers’ judgment, the optimum solutions 
are not necessarily acceptable. The acceptability concerns human perceptions. To assess 
acceptability, the designers must be the center of reasoning and judgment. Optimality indicates 
the performance measurements, and it uses mathematical logic to compute the numerical 
objectives. In design, both acceptability and optimality are essential. By allowing the designers 
to express their preferences inside the optimization process, MOIA can approach acceptimality 
(acceptability and optimality). Developing decision support systems based on acceptimality 
can attract more designers as it can increase the acceptability of the solutions. 

Exploring popular tools among architects by taking MOIA into consideration is crucial. 
Based on this exploration, four different tools typology that can help the models of MOIA were 
defined. The first typology is observation tools. These tools are essential for the Observation 
model as they can assess the behavior of the candidate solutions. The second typology is 
parametric modeling tools. These tools allow us to define a model with constraints. The 
constraints connect the model parts. Thus, we can change the whole model by changing part of 
it. The third typology is algorithmic modeling. This can be regarded as advanced parametric 
modeling. In this typology, we define a parametric model by using algorithms. Because most 
of the designers are not trained to use textual programming, many of the algorithmic modeling 
tools for designers use visual programming, which is relatively easy to use and still provides 
high capabilities. The fourth typology is a generative design tool. These tools usually 
manipulate the parametric model to generate solutions. In generative design, we connected the 
generative tools to a parametric model, observation tools, and optimization algorithms. From 
this exploration, we can conclude that the systems based on generative design are the closest 
to MOIA. 

Exploring the contemporary generative design workflows is vital as it allows for a better 
understanding of the tools. Six different generative design workflows were extensively 
explored. While some of these workflows are based on one tool, some others consist of using 
multiple tools. Based on this exploration, four different workflows were defined as the closest 
to MOIA. These workflows share a similar framework. They start by proposing a set of 
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candidate solutions. Then, they observe the behavior of the candidate solutions. Next, they use 
Pareto’s function to classify the solutions. Finally, they use an evolutionary algorithm to evolve 
a new set of optimized solutions. However, these workflows can approach optimality but not 
acceptimality. 

The dissertation intends to propose a set of recommendations that can increase the 
interaction between the designers and the machines. By developing a decision support system 
based on these recommendations, we can approach accptimality. It is expected that these 
systems can attract more designers to adopt the profitable behavior of optimization. The 
research adopts an experimental approach to investigate designers’ acceptability. Five different 
experiments were performed. The first two experiments focus on comparing designers’ 
acceptability of different generative design tools and workflows by using designers’ judgment 
as a reference. The other three experiments focus on the acceptability of the solutions. It 
investigates three different aggregation functions by using designers’ judgment as a 
benchmark. 

The first experiment compares users’ acceptability of two different generative design 
optimization workflows. The first workflow is based on using visual programming. The 
workflow observes the candidate solutions (random values are used for the first iteration), then 
it uses an evolutionary algorithm to evolve a new set of candidate solutions based on classifying 
the candidate solutions by Pareto’s function. The generative tool of this workflow graphically 
represents the solutions based on Pareto’s function classification. The second workflow is 
based on using EcoGen©, a non-visual programming tool for generating optimized modular 
forms. This tool uses an interactive evolutionary algorithm. It allows the user to select 
candidate solutions based on their subjective judgment. The results show that, in general, the 
designers’ acceptability is leaning toward the workflow that uses visual programming. 
However, when it comes to the interface, the participants prefer EcoGen©, which represents 
the solutions massing models in a grid, and it allows them to select from these solutions. 

To complement the first experiment, the second experiment focuses on visual 
programming. This experiment compares two different generative tools for visual 
programming. The first tool is based on graphically representing the solutions based on 
Pareto’s function, which was used in the previous test. The other is based on using an 
interactive evolutionary algorithm with an interface similar to EcoGen©. The results show that 
the tool that uses an interactive algorithm is more acceptable than the other tool. This result is 
the opposite of the previous test. Thus, in the first test, the participants underestimated the 
interactive algorithm because it does not use visual programming. However, the participants of 
the experiment think the tool that presents the Pareto’s’ function can produce better results. In 
conclusion, combining both approaches in visual programming can increase the acceptability 
of the generative optimization tools.  

The third experiment investigates the two aggregation functions that can alternate 
Pareto’s function. For the first function, which is Derringer & Suich’s function, we need to test 
if the concept of assigning weights appeals to the designers’ and if they are capable of assigning 
consistent weights. In this test, the participants were asked to assign weights for five objectives 
in four scenarios. The answers showed a wide variety of weights between the different 
scenarios and the objective. This reflects the high need for weighting the objectives. After,  the 
participants were asked to assign weights for five objectives in pairwise for one scenario to 
evaluate their consistency. The results show that, in general, the designers’ were inconsistent. 
For the second function, Maximin, we need to test if its principle appeals to the designers. First, 
a set of ten forms analyzed based on two contrary objectives is presented. The designers have 
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to select one form that optimizes the objectives. Then, a graphical representation of the 
solutions based on Pareto’s’ function is presented, and they have to select one form again. The 
majority of the participants changed their selection. They shifted their selection to match 
Maximin classification. 

The fourth experiment aims to compare Pareto’s function and Maximin function by 
using the designers’ judgment as a benchmark. The experiment also observes the influence of 
information availability on designers’ judgment. Six tests were performed in this experiment. 
In each test, the participants must classify a set of seven solutions to satisfy two objectives. The 
first three tests use one set of design solutions. The other test uses another set. Each of the three 
tests for each set of solutions provides the participants with different information. The first 
provide them with a scatterplot that represents the performance of the solutions graphically 
based on the objectives. The second present numerical information that describes the designs 
and its context, in addition to the scatterplot. The third presents all the previous information, 
plus analyzed massing models that represent the solutions and their performance based on the 
objectives. The results show that Maximin can result in a classification that is more acceptable 
by the designers’ if compared to the classification derived from Pareto’s function. It also shows 
that the additional information other than the scatterplot did not significantly influence 
designers’ judgment. 

The set of solutions used in the previous experiment result in a similar classification if 
we used Maximin or Derringer & Suich’s (equal weights). The fifth experiment aims to 
compare Maximin and Derringer & Suich’s (equal weights) functions by using designers’ 
judgment as a benchmark. The participants of this experiment were asked to classify two 
different sets of solutions. The classification must satisfy two objectives for the first set and 
five objectives for the second set. For the first set, the numerical values of the satisfaction level 
ranging between zero and one were presented. Also, a scatterplot and a parallel coordinate chart 
that represents the performance of the solutions were presented. Additionally, the location and 
type of building were specified. For the second set, only the numerical values that represent 
the satisfaction level of the objectives and a parallel coordinate that represent the performance 
of the solution were presented. It seems from the results that increasing the number of 
objectives encourages the designers to compensate. The deviation between the classification of 
the participants and Derringer & Suich’s (equal weights) was lower than the deviation between 
the classification of Maximin and the participants. However, when only two objectives were 
involved, and the scatterplot was presented, the deviation between the classification of the 
participants’ and Maximin was lower than the deviation between the classification of Derringer 
& Suich’s (equal weights) and the participants. 

Based on these five experiments, a set of four recommendations that can increase the 
interaction between the designer and the computer in the design decision support systems are 
proposed. At first, using a generative design based on visual programming is highly 
recommended. Secondly, using an interactive algorithm can increase the acceptability of the 
tools as it increases the interaction with the users. Third, the visual aspect of the interface is 
critical. This includes presenting the massing models of the solution and the graphical 
representation of the performance of the solutions (e.x. scatterplot or parallel coordinate). 
Finally, the systems must be able to use different aggregation functions based on information 
availability. If the necessary information to use a desirability function is available, and 
objectives weights are decidable, we can use Derringer & Suich’s function. If the weights of 
the objectives are non-decidable, but the necessary information to use a desirability function is 
available, we can use Maximin or Derringer & Suich’s (equal weights). In the case of 
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information scarcity, we can use Pareto’s function, and in contrast to the two other functions, 
we cannot achieve acceptimality. In the future, we can link the systems that adopt these 
recommendations to machine learning. 
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Introduction 
“We must develop as quickly as possible technologies that make possible a direct 

connection between brain and computer, so that artificial brains contribute to human 
intelligence rather than opposing it.” (Hawking, 2001) 

Since the beginning of humanity, many machines were created to help humans. 
Tracking the history of these machines can show us how much they affected human’s lifestyle. 
Archeologists found many pieces of evidence of tools created and used by prehistoric hunter-
gatherer humans. 

The agricultural revolution changed the human model of life. In contrast to a hunter-
gatherer life that relays on foraging, the farmers settled on their farms to grow the crops. This 
revolution led to a surplus of food, allowing part of the community to focus on new professions. 
Many of these professions introduced new technologies and created many machines that 
optimized agricultural production and gradually fulfilled human ambitions and needs in all 
domains of life. 

In the 18th century, the industrial revolution began; it was a big turn in machine 
development. In the beginning, the machines gradually replaced the animals in transportation 
and then in many hardworking tasks. Eventually, the machines started to replace unskilled 
laborers pushing the new generation to improve their qualifications. Later, the improvement of 
the machines led to partially replacing skilled laborers; many professions have disappeared 
while new professions were introduced. 

Eventually, the invention of the computer was a big move that changed the history of 
the machine. The concept of Artificial Intelligence (AI) and information technology started 
growing very fast since then, allowing the machine to replace more jobs done by humans. In 
his book “Deep Thinking”, Kasparov said: “The machines have finally come for the white 
collared, the college graduates, the decision makers”(Kasparov & Greengard, 2017). Markoff 
supports Kasparov’s observation; he stated, “We have centuries of experience with machines 
such as the backhoe and steam shovel, both of which replace physical labor. Smart machines 
that displace white-collar workers and intellectual labor, however, are a new 
phenomenon.”(Markoff, 2015). Some people are afraid of this replacement. 

However, another group of people believes that this is a positive change, as it gives 
humans more time and reasons to upgrade their life. Kasparov explained that “Machines that 
replace physical labor have allowed us to focus more on what makes us human: our minds. 
Intelligent machines will continue that process, taking over the more menial aspects of 
cognition and elevating our mental lives toward creativity, curiosity, beauty, and joy. These are 
what truly make us human, not any particular activity or skill like swinging a hammer or even 
playing chess”(Kasparov & Greengard, 2017). Indeed, we should understand that we are not 
in competition versus our machines, we compete and challenge ourselves. We must always 
remember that we made them, and their success is our success. 

Kasparov assigns a chapter of his book that focuses on the collaboration between the 
human and the machines called “Human Plus Machine.”(Kasparov & Greengard, 2017). In 
this chapter, he said, “As the curtain fell on decade of human versus machine competition, it 
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was time for human plus machine collaboration to take center stage. To put it more succinctly, 
if you can’t beat ‘em, join ‘em….” and continuing “The phrase “human plus machine” can 
apply to any use of technology since early man bashed something with a rock” (Kasparov & 
Greengard, 2017). The points of strength and weaknesses between humans and machines are 
different “it was easier to build a robot to go to the moon than to build one that could drive by 
itself in rush-hour traffic.”(Markoff, 2015). The human can benefit from the machines, while 
the machines can learn from humans. As time goes by, these machines will perform more tasks 
based on that learning, allowing humans to explore new things. 

Today, many companies have started to focus on Intelligence Augmentation (IA), 
which was introduced by Engelbart (Engelbart, 1962). For example, “The Toyota shift toward 
a more cooperative relationship between human and robot might alternatively suggest a new 
focus on technology for augmenting humans rather than displacing them.”(Markoff, 2015). In 
contrast to the Artificial Intelligence (AI) which was introduced by McCarthy in 1955 
(McCarthy, J., Minsky, M., Rochester, N., Shannon, 1955; Nilsson, 2010), which is an 
independent technology, IA aims to augment the human’s intelligence toward improving 
human’s decision-making capability.  

After decades of testing and comparing decision-making capabilities of both humans 
and machines Kasparov made a conclusion called “Kasparov’s Law” which states  “weak 
human + machine + better process was superior to a strong computer alone and, more 
remarkably, superior to a strong human + machine + inferior process”(Kasparov & 
Greengard, 2017).  Developing a better process that focuses on the integration between the 
machine and humans is highly recommended to improve decision-making. The process is a 
primary key to consider for developing decision support systems.  

Research problem 

As Churchill once said, “We shape our buildings; thereafter they shape us.”(Churchill, 
1943). There are no doubts that the design of our buildings have a significant impact on us, our 
resources, and the environment. The International Energy Agency highlights that “the global 
buildings sector is responsible for 30% of final energy consumption and more than 55% of 
global electricity demand. Progress towards sustainable buildings is advancing, but 
improvements are still not keeping up with a growing buildings sector and rising demand for 
energy services. The buildings and buildings construction sectors combined are responsible for 
36% of global final energy consumption and nearly 40% of total direct and indirect CO2 
emissions. Energy demand from buildings and buildings construction continues to rise, driven 
by improved access to energy in developing countries, greater ownership and use of energy-
consuming devices, and rapid growth in global buildings floor area, at nearly 3% per year. 
This growth overwhelms the improvements in global buildings final energy intensity per unit of 
floor area, which has only fallen by 1.3% per year. As a result, in recent years the global use 
of energy in buildings has grown by 1% per year, the global use of electricity in buildings has 
grown by 2.5% per year, and the global buildings-related CO2 emissions continue to rise by 
nearly 1% per year.” (IEA, 2017). All these facts made it imperative to improve the 
performance of our buildings. At the same time, we must maintain users’ comfort and the 
functionality of the design.  

Designing a building is a complex task to accomplish with multiple dimensions and 
different objectives. Hence, it is essential to provide the designers with a robust decision 
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support system. Implementing an optimization approach in the architectural design process can 
significantly improve design outcomes. 

Today, many tools and workflows are developed to help the designers in optimizing 
their designs. However, most of these tools are only able to evaluate the solutions made by the 
designers without suggesting any reliable solutions or improvement that optimizes the design; 
Lawson highlights “Modern Building science techniques have generally only provided 
methods of predicting how well a design solution will work. They are simply tools of evaluation 
and give no help at all with synthesis. Daylight protractors, heat loss or solar gain calculations 
do not tell the architect how to design the window but simply how to assess the performance of 
an already designed window.”(Lawson, 2005). Only a few tools that can help to generate 
optimized solutions exist; these tools are relatively new and not mature enough. 

The existed generative design optimization digital tools for designers are still not widely 
accepted and consequently not commonly used among the architects. Howarth states, “There’s 
a risk that designers will feel threatened by removing a large part of the creative process from 
their work – simply left to choose between a set of options each time.”(Howarth, 2017). These 
tools are not engaging the designer in the optimization process. The weak or unbalanced 
collaboration between the designer and the computer in design optimization generative tools is 
a real problem that results in designers’ reluctance to use these workflows.   

Research objectives 

Users’ acceptability is a significant factor in the success of almost any product or 
service. Since the computer was introduced, software developers were aware of this 
importance. There is a need for developing a new model of design optimization generative 
workflow based on the designer’s acceptability to attract more architects willing to optimize 
their designs. This research focuses on two different aspects of acceptability, one related to the 
tools and the other to the solutions. The acceptability of the tools refers to the workflow, user 
interface, and computation time. The acceptability of the solutions refers to the results and, 
therefore, to the design solutions on their own. 

The lack of balanced interaction between the designers and the computer in the existing 
design optimization generative tools, and thus the workflows, motivated this research. In order 
to overcome this problem, the dissertation aims to help software developers produce a new 
generation of tools that attract more building designers to the world of optimization by 
increasing the acceptability of the optimized design solutions generated by the digital 
workflows. 

The research must provide software developers and designers with a set of 
recommendations that can increase the acceptability of the optimized solutions. These 
recommendations must include an algorithm that helps the designers to produce acceptable 
optimized solutions taking into account the designer’s logic. Three objectives are defined to 
guide the research: 

• Investigating literature related to design processes, design optimization, and 
existing relative tools and workflows to improve the understanding of the existing 
design optimization systems. 
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• Define a reliable design framework that can integrate the designers’ preferences 
inside the process of optimization to produce acceptable optimized solutions. 

• Provide the software developers with a set of recommendations that can increase 
designers’ acceptability by providing a balanced relationship between the designers 
and the tools in early stages of the design process (conceptual design); “In the early 
stages of the design process, decisions taken can impact up to 70% of the life-cycle costs” 
(Quirante, Sebastian, & Ledoux, 2013; Zablit & Zimmer, 2001). 

Research methodology 

Behind each successful software, usually, there are a vast number of programmers, 
scientists, and researchers working to improve users’ acceptability. Investigating user’s 
acceptability is essential during and before the software development. It helps to outline the 
model of the software to match users’ preferences based on their feedback. “It would be highly 
beneficial if information systems developers could verify requirements by predicting workplace 
acceptance of a new system based on user evaluations of its specifications measured during 
the earliest stages of the development project, ideally before building a working 
prototype.”(Davis & Venkatesh, 2004).  

The research approach is mainly experimental based on reviewing the literature of 
design process, optimization methods, tools available on the market, and different workflows 
based on these tools and methods. Two methods are proposed to investigate the user’s 
acceptability. Each method consists of a series of experiments. 

The first method focuses on the acceptability of design optimization generative tools. 
The method tests and compares different design optimization generative workflows by inviting 
a panel of experts to try these tools and then collecting their feedback. The second method 
focuses on the acceptability of the solutions by testing different aggregation functions on a 
panel of experts. The aggregation functions are of great importance in the field of optimization. 
They classify the solutions based on their satisfaction with the design objectives. The results 
of these methods are then used to describe a new framework able to supervise the definition of 
acceptable design optimization generative tools for architects. 

Research significance  

The research develops an original ontological framework of design optimization tools 
for architects. An ontology is “A set of concepts and categories in a subject area or domain 
that shows their properties and the relations between them.” (Lexico, 2020b), and a framework 
is “A basic structure underlying a system, concept, or text” (Lexico, 2020a). An ontological 
framework is a basic structure underlying a system or concept that defines the properties of its 
parts or subconcepts and relations between them. 

The proposed framework and the applied methodology defines a set of 
recommendations. The recommendations improve the interaction between the designers and 
optimization tools, which likely increases designers’ acceptability of optimization tools. 
Consequently, it is expected that more architects will adopt optimization in their work. Using 
optimization tools are incredibly profitable, as design optimization can decrease the negative 
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impact on the environment and enhance the economic efficiency of the different structures. 
The computer-based optimization tools can enhance human capabilities. 

Overview of dissertation 

The dissertation consists of seven chapters. Figure 1 explains the structure of the 
research. In the following, a brief of each chapter is presented: 

• Chapter 1 (Design Process): This chapter focuses on the design process by studying its 
principles. Then, it investigates the different activities that make it up by reviewing 
different models. 

• Chapter 2 (Optimality and acceptability): This chapter introduces an ontological framework 
for design optimization. Many approaches for the framework models are investigated and 
criticized. Finally, the chapter explains the concepts of optimality and acceptability and 
why they are essential in design. 

• Chapter 3 (Software typologies): This chapter explores the different software typologies in 
the market that commonly used by architects. This chapter helps to determine the 
typologies that are more suitable for generative design optimization. 

• Chapter 4 (Decision support workflows): In this chapter, different design optimization 
generative workflows are reviewed. 

• Chapter 5 (Tools and workflows): This chapter investigates designers’ acceptability of 
different tools and workflows. The adopted methodology consists of different experiments 
that compare different workflows and use a variety of software. 

• Chapter 6 (Aggregation for acceptimality): This chapter investigates designers’ 
acceptability of the solutions. The adopted methodology consists of different experiments 
that test different aggregation functions. 

• Chapter 7 (Conclusion): This chapter provides the designers and the developer with a list 
of recommendations. The proposed recommendations aim to improve designers’ 
acceptability generative design optimization tools. Also, it concludes the main ideas and 
the results of the dissertation. Additionally, it defines the planned future work. 
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Figure 1: The structure of the research 
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CHAPTER  1 Design Process 

 “A profound design process eventually makes the patron, the architect, and every 
occasional visitor in the building a slightly better human being” Juhani Pallasmaa, 1936 
(S.Dushkes, 2012). 

In some contexts, the term design can represent the actions of design. In other situations, 
it can represent the result of the design actions (the design itself). Ching defines design as “To 
conceive, contrive, or devise the form and structure of a building or other construction.”(Ching, 
1995) This definition shows that together, design as actions and, as results, explain the word 
design; “To conceive, contrive, devise” represents the actions of design. The rest represents the 
results. Gero and Kannengiesser clarify “the term “designing” is used to signify the act and the 
term “design” is used to signify the result of designing.”(J. S. Gero & Kannengiesser, 2014) 

The term “design process” refers to the design as actions; it explains how we design. 
According to Ching, the design process is “A purposeful activity aimed at devising a plan for 
changing an existing situation into a future preferred state.”(Ching, 1995) This definition is a 
detailed version of the part of Ching’s definition of design that represents design as actions. It 
is essential to understand that “Design is fundamentally about problem-solving”(Makstutis, 
2018). In design, we solve problems by using a design process. 

 “At an off-site for Apple Computer’s Creative Services department, Tim Brennan began 
a presentation of his group’s work by showing this model. “Here’s how we work”, he said, 
“Somebody calls up with a project; we do some stuff; and the money follows.” (see Figure 2) 
(Dubberly, 2004). Brennan’s model is a good example that can represent that “Creativity can 
appear mysterious to the uninitiated, and is not easily explained or taught”(Smith, Albert C, 
Smith, 2015). Design activities involve high creativity. 

 

Figure 2: Brennan’s working diagram (Dubberly, 2004) 

Niemeyer (1907-2012) describe, “I pick up my pen. It flows. A building appears. There 
it is. There is nothing more to say.” (Niemeyer, n.d.) While the previous phrase might appear 
ambiguous, especially for non-designers. It can be much clear if we consider it as a process; “I 
pick up my pen” represents design inputs, this also can include all the previous activities which 
include gathering the required data, “It flows” represents design process, “A building appears” 
represents design output. The same logic can interpret Brennan’s model; “Somebody calls up 
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with a project” represents design input, “we do some stuff” represents design process, “and the 
money follows.” represents design output.  

Whether it is the diagram of Brennan or the quote of Niemeyer, it is essential to clarify 
the design process. “because of its non-linear process, design can be considered ambiguous. 
Assignments will be ambiguous. Advice will be ambiguous. Professors will be ambiguous. While 
a designer can use ambiguity to help with the development of conceptual ideas, design also 
implies a certain precision, so that it is not removed from the realities of life. In other words, it 
is your responsibility to engage this ambiguity and make the project clear”(Smith, Albert C, 
Smith, 2015)  

According to Ching, a process is “A systematic series of actions or operations leading 
or directed to a particular end.”(Ching, 1995) the design process uses inputs and produces 
output. Figure 3, which is inspired by Brennan’s model, adapts it to the previous analysis 
vocabularies. Figure 4, concludes the previous arguments and can be used as a foundation that 
we can proceed from to build a clear understanding of the design process. 

 

Figure 3: Input and output in the design 

 

 

Figure 4: Design process, input, and output (Dubberly, 2004) 

This chapter investigates the design process at two different levels. Initially, it discusses 
its principles. Next, it discusses its different activities. Understanding the design process is 
essential as it explains the broad context of the research. 

1.1 Design Process principles 

In order to understand the design process, it is essential to outline its principles. Lawson 
(Lawson, 2005) defined six principles that describe the attributes of any design process. This 
part intends to present and discuss these principles. 
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1.1.1 “The design process is endless”: 

“Since design problem defy comprehensive description and offer an inexhaustible 
number of solutions the design process cannot have a finite and identifiable end. The designer’s 
job is never really done and it is probably always possible to do better. In this sense designing 
is quite unlike puzzling. The solver of puzzles such as crosswords or mathematical problems 
can often recognize a correct answer and knows when the task is complete, but not so the 
designer. Identifying the end of design process requires experience and judgment.” (Lawson, 
2005). This argument illustrates how design is an endless process. However, the definition of 
the term process suggests that any process has a particular end (Ching, 1995). The only way to 
interpret this conflict is to admit that the design process is iterative; it is a process that repeats 
itself until the result is satisfying, which defines the end (see Figure 5). 

Many designers support this argument. Parker asserts, Design is an iterative process. 
One idea often builds on another.” (Parker, n.d.) This explains not only that the design is an 
iterative process, but also it is evolutionary. In his book “Designing Architecture: the elements 
of the process” , Pressman supports Parker’s assertation, “Forced to find the objective in 
process, I would characterize it as iterative, requiring successive loops, each of which produces 
more information and resolution than the previous one.”(Pressman, 2012). Jabi also agreed that 
the design process is iterative; he says: “The architectural design process is almost always 
iterative.” (Jabi, 2013) 

Makstutis believes “perhaps the most important characteristic of design is that it is 
iterative. This means that design does not happen once, and then we move on to something else. 
Rather design is a cyclical activity that takes place again and again.”(Makstutis, 2018). He 
also points out that “The iterative nature of design means that it can be used to revise and 
improve the outcome. If design in architecture happened only once, there would be no 
opportunity to adjust and enhance a proposition before construction began. Without the 
iterative process, our world would be much less enjoyable and less efficient.”(Makstutis, 2018). 
Smith and Smith explain, “Design concerns imagining the future and visualizing things that 
have not been seen before. It is a non-linear process, as it tends to move forward and backward 
between topics.”(Smith, Albert C, Smith, 2015) 

 

Figure 5: Iterative design process 

In the design process, the word end is not exact. It is a decision that involves subjective 
judgment influenced by many factors. “It no longer seems worth the effort of going further 
because the chances of significantly improving on the solution seem small. This does not mean 
that the designer is necessarily pleased with the solution, but perhaps unsatisfactory as it might 
be it represents the best that can be done. Time, money and information are often major limiting 
factors in design and a shortage of any of these essential resources can result in what the 
designer may feel to be  frustratingly early end to the design process”(Lawson, 2005). To end 
the iteration of a design process, we can define a threshold.  
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1.1.2 “There is no infallibly correct process”: 

Lawson affirms, “there is no absolute correct process”(Lawson, 2005). He states, 
“Much though some early writers on design methodology may have wished it, there is no 
infallibly good way of designing.” (Lawson, 2005) Makstutis states that “Every architect or 
designer will have a different way of generating ideas, but the stages of the design process 
generally follow a similar pattern”(Makstutis, 2018). He affirms, “There is no right way to 
design. There is no single process that will lead to a successful project. Each individual, and 
each team, involved in a project will have a different way of working, a different way of 
designing” (Makstutis, 2018) Hence, we can infer that in design we need a flexible model that 
can adapt to different problems “Controlling and varying the design process is one of the most 
important skills a designer must develop.”(Lawson, 2005) 

However, Gero and Kannengiesser propose the following axiom “The foundations of 
designing are independent of the designer, their situation and what is being designed.”(J. S. 
Gero & Kannengiesser, 2014). Based on this axiom, they also proposed two hypotheses about 
representing design and designing, which says, “All the designs could be represented in a 
uniform way, and all designing could be represented in a uniform way.”(J. S. Gero & 
Kannengiesser, 2014). The design framework (design process model) must be broad and 
flexible to adapt to different contexts. Based on one framework, we can define many design 
processes. 

1.1.3 “The process involves finding as well as solving problems”: 

The design process links the problem and the solution through the analysis and the 
synthesis. “It is central to modern thinking about design that problems and solutions are seen 
as emerging together, rather than one following logically upon the other.”(Lawson, 2005). 
According to Alexander, “The form is the solution to the problem; the context defines the 
problem.”(Alexander, 1964). Understanding the relationship between the problem and the 
solution is essential. Piotrowski explains, “Your work as an interior designer involves defining 
and analyzing the problem regardless of its scope. Complex projects naturally involve a greater 
list of tasks. Your design work also involves solving the problem by determining a course of 
action to complete the project. In design problem solving, these two critical activities are called 
analysis and synthesis.”(Piotrowski, 2011).  

Lawson notes, “often the problem may not even be fully understood without some 
acceptable solution to illustrate it. In fact, clients often find it easier to describe their problems 
by referring to existing solutions which they know of” (Lawson, 2005). Analyzing the problem 
and the solution together helps to redefine the problem, the solution, or both. 

The designers typically have no or limited control over the context. However, the 
designers’ capabilities to understand and analyze the context are crucial. On the other hand, the 
designers have high control over the form. The context adds restrictions on the form and thus 
the designers “The context is that part of the world which puts demands on this form; anything 
in the world that makes demands of the form is context. Fitness is a relation of mutual 
acceptability between these two. In a problem of design we want to satisfy the mutual demands 
which the two make on one another. We want to put the context and the form into effortless 
contact or frictionless coexistence.”(Alexander, 1964). The relation between the problem and 
the solution is commingled, the iterative nature of the design process increases this 
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commingling. The design process model should be flexible to work with different design 
problems, which are defined by different contexts to find design solutions. 

1.1.4 “Design inevitably involves subjective value judgment”: 

The design often tackles many problems at the same time. However, “Questions about 
which are the most important problems, and which solutions most successfully resolve those 
problems are often value-laden. Answers to such questions, which designers must give, are 
therefore frequently subjective.”(Lawson, 2005). Subjective judgments are always part of the 
design. Makstutis asserts, “The notion of ‘good design’ is very subjective: what one person 
thinks of as ‘good,’ another may find disappointing. For this reason, rather than considering 
how design maybe ‘good,’ we may consider how design creates ‘value.’”(Makstutis, 2018). 

However, “Unlike the artist, the designer is not free to concentrate exclusively on those 
issues which seem most interesting. Clearly one of the central skills in design is the ability 
rapidly to become fascinated by problems previously unheard of.”(Lawson, 2005) In contrast 
to pure art, which is mainly subjective, the design includes objectivity. The design process is 
combinatorial; it involves subjective judgment and objective modeling.  

1.1.5 “Design is a prescriptive activity”: 

In design, we can prescribe many design solutions that solve one problem. “One of the 
popular models for the design process to be found in the literature on design methodology is 
that of scientific method. Problems of science however do not fit the description of design 
problems outlined above and, consequently, the process of science and design cannot usefully 
be considered as analogous. The most important, obvious and fundamental difference is that 
design is essentially prescriptive whereas science is predominantly descriptive. Designers do 
not aim to deal with questions of what is, how and why but, rather, with what might be, could 
be, and should be. While scientists may help us to understand the present and predict the future, 
designers may be seen to prescribe and create the future, and thus their process deserves not 
just ethical but also moral scrutiny”(Lawson, 2005) 

Gero and Kannengiesser find that “Design appeared to present problems for scientific 
research in that the results of the acts of designing were always unique and therefore there 
would be no regularity.”(J. S. Gero & Kannengiesser, 2014) In contrast to scientific 
methodologies, the design process is uncertain; thus, not descriptive; instead, it is uncertain and 
prescriptive. 

1.1.6 “Designers work in the context of a need for action”: 

In design, decision-making is central. “Design is not an end itself. The whole point of 
the design process is that it will result in some action to change the environment in some way, 
whether by the formulation of policies or the construction of buildings. Decisions cannot be 
avoided or even delayed without the likelihood of unfortunate consequences.”(Lawson, 2005)  

In design, important decisions must be taken during a relatively short time.  “Not only 
must designers face up all the problems which emerge they must also do so in limited 
time.”(Lawson, 2005) Time is a significant limitation for the designer, especially if we 
consider the responsibilities that face architects and the enormous consequences of the design 
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decisions. “Architects are charged with great responsibility. The work they undertake leads to 
results that are complex and expensive. Even a small project may require the coordination of 
many different people, materials and processes, and take a long time. A large building project 
may take years to complete. The amount of money required may run into many millions (or 
even billions). Small projects (such as houses or residential extensions) may cost less but their 
importance, for the clients, will be of the highest order. For these reasons, it is impossible for 
a builder or team of contractors simply to start work  without some kind of plan that provides 
a clear direction for the project and the various people involved.”(Makstutis, 2018)  

The efficient design process usually integrates decision support systems; the design 
process model should have the ability to adopt these systems. “Design is often a matter of 
compromise decisions made on the basis of inadequate information. Unfortunately for the 
designer such decisions often appear in concrete form for all to see and few critics are likely 
to excuse mistakes or failures on the grounds of insufficient information. Designers, unlike 
scientists, do not seem to have the right to be wrong. While we accept that disproved theory 
may have helped science to advance, we rarely acknowledge the similar contribution made by 
mistake design.” (Lawson, 2005)  

1.2 Design Process activities 

The design process consists of activities usually ruled by these principles (see 1.1). 
These activities are the steps of the design process. This section intends to investigate the 
activities of the design process by exploring different design process models. From 
understanding these models, it is possible to develop essential knowledge of the design process. 

1.2.1 Koberg and Bagnall model 

In 1976 Koberg and Bagnall compared many approaches for solving different problems 
(Koberg, Don, Bagnall, 1972). The aim was to find a basic abstraction or common dominators. 
They found two primary stages are necessary, analysis and synthesis (Dubberly, 2004). 
Applying their conclusion to the previous model (see Figure 5) (1.1.1) results in the process 
presented in Figure 6. This model is fundamental for problem-solving in general. However, we 
need a more specific model that adapts this model to real design problems. 

 

Figure 6: A design process model based on Koberg and Bagnall (Dubberly, 2004; Koberg, Don, Bagnall, 1972) 

1.2.2 Lawson’s model 

Lawson presented a template to explain the design process (see Figure 7). In his version, 
the design is about solving problems. Consequently, his model is similar to the model of Koberg 
and Bagnall (Koberg, Don, Bagnall, 1972) (1.2.1). The model uses “problem” and “solution” 
to describe the input and output. However, the model introduces a new step between “analysis” 
and “synthesis”, which is “evaluation.” Figure 8 link lawson’s model to the previous model. 
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Figure 7: Lawson’s model of the design process (Lawson, 2005) 

 

Figure 8: The design process based according to Lawson (Lawson, 2005) 

According to Lawson, the Design Process demonstrates a negotiation between design 
problems and design solutions; they reflect each other (Lawson, 2005). He highlights that the 
analysis, synthesis, and evaluation are involved in this negotiation, but between these three 
activities, no start or endpoint can be defined, and no direction of flow is specified (Lawson, 
2005). The process can start with a problem or a solution. We cannot assume that the process 
always starts from a problem; sometimes, the problem is determined from an existing solution.  

1.2.3 Generative design model 

Vernacular architecture evolved over centuries, which may be considered a cumulative 
optimization process. Lawson wonders, “How could a few hours or days of effort on the part 
of a designer place the results of centuries of adaptation and evolution embodied in the 
vernacular product?”(Lawson, 2005). This evolutionary quality is crucial for the design. The 
design optimization process is a series of actions that aim to find the best possible design. 
Generative design, based on the coupling of evaluation and evolution, it is widely used in the 
domain of design. Based on this evaluation, the process then evolves towards better solutions. 
Generative design is fundamental for design optimization. 

 “Various generative form-finding techniques existed in architecture long before the 
digital revolution. At the start of the twentieth century, many visionary architects, engineers and 
designers, such as Frederick Kiesler and Frei Otto, were applying design methods that were 
very similar to today’s new computational approach.”(Agkathidis, 2015). While the generative 
design is not necessarily based on digital computational design, many designers link them. 
Because this digital approach makes the process efficient and effective, nowadays, almost every 
designer who adopts the generative design uses this computational approach. 
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Based on this digital approach, Walmsley and Villaggi define, “Generative Design is a 
framework for combining digital computation and human creativity to achieve results that 
would not otherwise be possible.”(Villaggi & Walmsley, 2018). They described a design 
process model based on the generative design approach that starts with gathering data and ends 
by selecting the solution (see Figure 9) (Villaggi & Walmsley, 2018). Between the start and the 
end, they described an iterative process. This iterative process begins by generating solutions, 
then, evaluating them. After, the process evolves towards new design solutions. The new 
generations resulting from this evolution should result in better values in the evaluation. They 
described this framework as “a flexible and scalable framework. It can be applied to a wide 
range of design problems and scales: from industrial components all the way to buildings and 
cities.”(Villaggi & Walmsley, 2018). 

 

Figure 9: The generative design model (Villaggi & Walmsley, 2018) 

A simple comparison between this model and Lawson’s model (see Figure 8), show that 
they are somehow related. However, the flow in the generative design model is defined in a 
way that facilitates digital automation; it always iterates toward one direction.   

The first step in the Walmsley and Villaggi iterative process “generate” is related to the 
design variables, which are values that must be determined at every iteration. The design 
variables define the information necessary to characterize a design solution. In the second step, 
“evaluate”, we must observe the behavior of the solutions, and, as a result, we get a set of 
observation variables that describes the performance of the solutions. Each set of observation 
variables represents the performance of one generated solution characterized by a set of design 
variables. During the third step, “evolve”, the process uses all the available data to evolve a new 
set of design variables.  

1.2.4 Function-Behaviour-Structure (FBS) Ontology 

The Function-Behaviour-Structure (FBS) is a design ontology developed between 1984-
1986 by Gero and published in a paper (J. Gero, 1990). Before FBS in the 1980s, many 
approaches based on the division of the design and the way it worked were proposed; “Structure 
(S) for the design and Behaviour (B) for how it worked or performed. Many of these approaches 
used the term Function (F) to mean the intended behaviour of the design and as a consequence 
conflated Function and Behaviour and failed the no-overlap requirement.”(J. S. Gero & 
Kannengiesser, 2014). In 1993 the modern idea of an ontology developed by Gruber (Gruber, 
1993). The concept of FBS framework becomes an ontology because “The notion of a 
foundational framework for the field of design mapped well onto the notion of an ontology since 
they both referred to the meta-level knowledge of a field.”(J. S. Gero & Kannengiesser, 2014).  

The FBS ontology defined as “a design ontology that describes all designed things, or 
artefacts, irrespective of the specific discipline of designing. Its three fundamental constructs – 
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Function (F), Behaviour (B) and Structure (S)”(J. S. Gero & Kannengiesser, 2014). It is 
essential to understand these three constructs, “The Function is the teleology of the artefact” 
for example, to provide safety, comfort, and affordability (J. S. Gero & Kannengiesser, 2014). 
“Behaviour is defined as the artefact’s attributes that can be derived from its structure” for 
example, strength & weight, heat absorption, and cost (J. S. Gero & Kannengiesser, 2014). 
“Structure is defined as its components and their relationships” for example, geometrically 
interconnected walls, floors, roof, windows, doors, pipes, and electrical systems (J. S. Gero & 
Kannengiesser, 2014). “The FBS Framework (J. Gero, 1990) is an extension of the FBS 
ontology to represent the process of designing as a set of transformations between function, 
behaviour and structure.”(J. S. Gero & Kannengiesser, 2014). In the FBS framework, there are 
eight fundamental transformations presented in Figure 10 and listed as: 

1. Formulation (R → F, and F → Be) 
2. Synthesis (Be → S) 
3. Analysis (S → Bs) 
4. Evaluation (Be ↔ Bs) 
5. Documentation (S → D) 
6. Reformulation type 1 (S → S’)  
7. Reformulation type 2 (S → Be) 
8. Reformulation type 3 (S → F (via Be)) 

 

Figure 10: FBS Ontology framework (J. S. Gero & Kannengiesser, 2004, 2014) 

“The FBS framework represents the beginnings of a theory of designing, through its 
ability to describe any instance of designing irrespectively of the specific domain of design or 
the specific methods used.”(J. S. Gero & Kannengiesser, 2014). FBS helps to understand the 
components of the design process models presented earlier in this section. FBS ontology and 
framework has a strong ability to explain the terminologies used in the design process such as 
synthesis, analysis, evaluation. Below is a list of definition for the terminologies used in FBS 
(see Figure 10) defined by Gero and Kannengiesser (J. S. Gero & Kannengiesser, 2004): 

• Formulation (process 1) transforms the design requirements, expressed in function (F), into 
behaviour (Be) that is expected to enable this function. 
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• Synthesis (process 2) transforms the expected behaviour (Be) into a solution structure (S) 
that is intended to exhibit this desired behaviour. 

• Analysis (process 3) derives the ‘actual’ behaviour (Bs) from the synthesized structure (S). 

• Evaluation (process 4) compares the behaviour derived from structure (Bs) with the 
expected behaviour to prepare the decision if the design solution is to be accepted. 

• Documentation (process 5) produces the design description (D) for constructing or 
manufacturing the product. 

• Reformulation type 1 (process 6) addresses changes in the design state space in terms of 
structure variables or ranges of values for them if the actual behaviour is evaluated to be 
unsatisfactory. 

• Reformulation type 2 (process 7) addresses changes in the design state space in terms of 
behaviour variables or ranges of values for them if the actual behaviour is evaluated to be 
unsatisfactory. 

• Reformulation type 3 (process 8) addresses changes in the design state space in terms of 
function variables or ranges of values for them if the actual behaviour is evaluated to be 
unsatisfactory. 

1.2.5 Observation, Interpretation, and Aggregation (OIA) 

Design optimization seeks to compute the solutions with the most favorable design 
objectives values. Therefore, it is vital to use a mathematical structure that links the design 
variables x, which characterizes the solutions to the design objectives. Collignan (Collignan, 
2011) and Quirante (Quirante, 2012) presented a framework for design optimization based on 
the combination of three models, which are, Observation model μ, Interpretation model δ, and 
Aggregation model ζ (OIA). The purpose of OIA is “to support the decision-making process to 
guide designer toward the selection of the best design solutions.”(Quirante, 2012). OIA 
combines all of the design objectives into a Global Desirability Index (GDI), which is then 
linked to x (see Figure 11). 

 

Figure 11: OIA model (Quirante, 2012) 

In OIA, the Observation model µ observes the behavior of each candidate solution 
characterized by a unique set of design variables x. The observation results are sets of 
observation variables y. According to Quirante, “Observation variables y are quantitative 
measures of system effectiveness, performance or technical attributes (mass, cost, efficiency, 
temperature).”(Quirante, 2012). 
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Next, the Interpretation model δ transfers the set of observation variables y, which is 
based on different scales, into a set of interpretation variables z “which can be regarded as 
individual preferences set on the design criteria.”(Quirante, 2012) that uses a unified scale. 
“Design criteria are physical or technical requirements that design solutions must satisfy to be 
considered as acceptable. They are equality or inequality relations between “observation 
variables” and a set of threshold values.” (Quirante, 2012) 

The Aggregation model ζ aggregates z according to the Design Objectives into multiple 
Design Objective Indices DOI; “Design objectives (or goals) are task specific requirements, or 
desired performance characteristics, that the system should meet.”(Quirante, 2012). Finally, 
the model aggregates the DOI into a Global Objective Index (GDI). Using OIA, we search for 
the design variables x values that maximize the GDI; the maximum GDI represents the most 
favorable design objectives (Eq. 1) (see Figure 11). 

y= μ(x) 
z= δ(y) 
DOI=φ2(z) 
 
φ1οφ2 =ζ 
 
GDI= ζ ο δ ο μ (x) 

(Eq. 1) 

OIA is a framework to clarify the design optimization process; it helps us avoid 
confusion. It is noticeable that this framework can be easily mapped on to the FBS ontology of 
(see Figure 12). 

 

Figure 12: The connection between OIA (Collignan, 2011; Quirante, 2012) and FBS ontology (J. Gero, 1990; J. S. 
Gero & Kannengiesser, 2004, 2014) 

 

1.3 Towards a new  framework 

By reviewing the principles of the design process and after investigating its activities by 
reviewing different processes, we can conclude that the generative design model provides a 
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simple system. It can adapt to automate digital tools to generate design solutions. However, this 
model lacks detailed definitions. FBS and OIA provide detailed definitions of design activities. 
Combining FBS and OIA with the concept of generative design can emerge a well defined 
generative design framework. The emerged framework can be a good base for developing new 
systems for design optimization.
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CHAPTER  2 Optimality & Acceptability 

“True optimization is the revolutionary contribution of modern research to decision processes.” 
(Dantzig, n.d.) 

Optimization is “an act, process, or methodology of making something (such as a 
design, system, or decision) as fully perfect, functional, or effective as possible.” (Merriam-
Webster, 2020). The process of design optimization is a series of actions that aim to find the 
best possible design solution. From a biological evolution point of view, the best possible 
solution is called the fittest, and in optimization, it is called the optimum. To achieve optimality 
in design, we use different mathematical approaches based on numerical computing of different 
variables. 

Lawson highlights, “Design problems are often both multi-dimensional and highly 
interactive.”(Lawson, 2005). Nagy explains, “we can think of the dimensions of any system as 
its ‘degrees of freedom’, which define the realm of possibilities within the system. Similarly we 
can think of any design as a complex system delineated by every decision or choice that must 
be made during its design.”(Nagy, 2017). These dimensions, which are regarded as the degree 
of freedom, are the design variables x. However, the increasing dimensions are known as the 
“curse of dimensionality” (Bellman, 1961). 

The ultimate goal of design optimization is to maximize the satisfaction of many criteria 
and the objectives together. “Very rarely does any part of a designed thing serve only one 
purpose.”(Lawson, 2005). Optimizing a physical system such as a building consists of 
computing the optimum of a complex system that usually takes into account many different 
physical behaviors. In the design optimization process, we search for the values of x that 
characterize the solution, which performs the observation variables y that maximize the 
satisfaction of the criteria and the objectives. 

In contrast to a local optimum, the global optimum represents the true optimum in the 
particular context of most design activity. Figure 13 shows that local minima can be closer to 
the global maximum than some local maxima and vice versa. Computing local optima in this 
context have no significance, “Finding with certainty the global optimum is a laudable goal 
for any design study.”(Papalambros & Douglass, 2017). To compute the global optimum, we 
can use Global Optimization Algorithms (GOA). 
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Figure 13: Global optimum and local optimum 

FBS ontology, along with its framework (J. Gero, 1990; J. S. Gero & Kannengiesser, 
2004, 2014) (see 1.2.4), and OIA framework (Collignan, 2011; Quirante, 2012) (see 1.2.5), 
which is an implementation of FBS, helps to expand our understanding of the design 
optimization process. Using these frameworks to describe the design process, clarifies the link 
between x on one side and the criteria and the objectives on the other side. 

In OIA, the criteria and objectives are defined inside the process. OIA (Collignan, 2011; 
Quirante, 2012) (see 1.2.4) describes the design criteria within the Interpretation model (δ) and 
the design objectives in the Aggregation model (ζ) (Collignan, 2011; Quirante, 2012). The 
Interpretation model (δ) interprets the observation variables y, which are computed from x into 
interpretation variables z by allowing the designers to express their preferences of the criteria. 
The Aggregation model (ζ) aggregate z into multiple Design Objective Indices DOI.  The 
model then uses these DOI to compute a Global desirability Index GDI; this model also allows 
the designers to express their preferences. By linking x and GDI, OIA evolves design variables 
values with observation variables values that are better according to the criteria and the 
objectives.  

Based on OIA, Figure 14 proposes a design framework that is linked to FBS ontology. 
The proposed framework consists of design inputs, iterative design optimization, and design 
output. The iterative design optimization is the core of the proposed framework, and it consists 
of four models Morphogenesis, Observation, Interpretation, and Aggregation; this can be 
regarded as Morphogenesis plus OIA (MOIA). Generation and evaluation are the two main 
activities that describe MOIA; the morphogenesis model performs the generation, while the 
other models (OIA) perform the evaluation. In MOIA, the iterative design optimization initially 
starts by using a set of random values for x variables. Then as by using the models of OIA, it 
computes the GDI. Based on MOIA, the Interpretation model and the Aggregation model can 
take into account human preferences (see Figure 14).  Finally, the Morphogenesis model links 
the values of x to GDI to evolve new x values by using GOA. The process is iterative. Hence, 
a threshold must be used to end it, which results in design output. 
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Figure 14: MOIA design framework 

Different classifications are used to describe MOIA (see Figure 14). The first 
classification includes “Generation” and “Evaluation”, which is mentioned earlier. The second 
classification is the “Genotype”, which represents the genes and the “Phenotype”, which 
represents the physical world. Nagy explains, “An organism’s genotype is it’s DNA, which 
encodes all the information that makes the organism unique, and guides it’s development over 
the course of it’s life. The phenotype is the physical expression of the organism, and is influenced 
both by its genotype, as well as interaction with the environment over the course of its 
life.”(Nagy, 2017). 

This chapter intends to investigate MOIA by explaining its models, exploring, and 
criticizing different approaches for its models. Initially, the observation model (μ) is explained. 
Next, the Interpretation model (δ) is investigated, which is then followed by an investigation of 
the Aggregation model (ζ). Finally, the Morphogenesis model is investigated. 

2.1 Observation 

In MOIA, each candidate solution is characterized by different values of the design 
variables x. To initiate the MOIA process, first, we use a set of random values for x, later the 
GOA evolves x. The Observation model (μ) uses a design scenario to compute the observation 
variables y of the candidate solutions (Quirante, 2012). The design scenario includes all the 
information related to the context of the design, such as the environmental data, urban form, 
building code, etc. On the other hand, y describes how the candidate solutions perform in the 
scenario, the physical and the economic performances are two different examples of the 
observation variables. “A set of observation variables (y) are computed from a set of design 
variables values (x). The union of every design variable value domain forms the design space 
Ω to be explored.”(Quirante et al., 2013) (see (Eq. 2)).  

𝐲𝐲 = µ(x), x ∈ Ω (Eq. 2) 
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2.2 Interpretation 

In MOIA, the Interpretation model (δ) transfers the observation variables y, which uses 
different scales, into interpretation variables z that uses a unified scale. Lawson states, “If we 
imagine that we want to assess a number of design solutions so that we can put them in order 
of preference we would need to begin by assessing each design against each of the criteria and 
then somehow combining these assessments.”(Lawson, 2005). He affirms, “Because in design 
there are often so many variables which cannot be measured on the same scale, values 
judgments seem inescapable”(Lawson, 2005). A value judgment is “An assessment of 
something as good or bad in terms of one’s standards or priorities.”(Lexico Dictionary, 2020) 
An interpretation variable z represents the degree of satisfaction for each criterion in the range 
[0 (non-satisfaction) to 1 (ideal satisfaction). To compute an interpretation variable values zi, 
we assess the relative observation variable values yi against the relative design criterion through 
an interpretation function. These interpretation variables z are essential to aggregate the criteria 
and the objectives later in the Aggregation model (ζ).  

Starting from a Pseudo-function, we can describe many interpretation functions; these 
functions are ordinal functions or cardinal functions (see Figure 17). A Pseudo-function 
indicates the required maximization of yi. Indeed the Pseudo-function is not a real function 
because it does not contain quantitative information; there is no need for control points to map 
its curve on the space (yi, zi). 

Understanding the difference between cardinal and ordinal information is critical to 
understand these functions. The cardinal information is based on real values, whereas the 
ordinal information is based on ranking. It is noticeable that ordinal ranking can be derived 
from cardinal evaluations and not the opposite. 

The cardinal interpretation functions are derived from the values of y, whereas the 
ordinal interpretation functions are derived from the ranking of the y values. Table 1 shows an 
example of a comparison between the two types of information. Based on the cardinal 
information, solution C can be regarded as a poor solution. However, based on the ordinal 
information, solution C may appear as a good solution, since it seems to be a good compromise 
between solution A and solution B.  

 Cardinal (Values) Ordinal (Ranking) 
 y1 y2 y1 y2 
Solution A 1.00 0.50 1st 3rd 
Solution B 0.50 1.00 3rd 1st 
Solution C 0.51 0.51 2nd 2nd 

Table 1: Comparison between the ordinal and the cardinal information 

The ordinal information is less valuable than the cardinal information, it can be 
misleading. To assess the worthiness of information, we use the negentropy concept; the more 
valuable the information, the higher the negentropy is. The information negentropy is the 
opposite of information entropy, which corresponds to the randomness of information 
(Shannon, 1948). Figure 15 helps to simplify the concept of negentropy. The figure three bytes 
each consists of eight bits. Each bit can either equal to one or zero. However, if the information 
of one bit is not defined, a random value “R” which equals to one or zero is used. Increasing 
the bits with defined values leads to increasing the negentropy of the information. 
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Figure 15: The concept of information negentropy 

Therefore, the ordinal functions are considered as lower in negentropy in comparison to 
the cardinal functions; the lowest cardinal function in negentropy is higher than the highest 
ordinal function in negentropy. The number of control points or parameters used to 
parameterize a function determines the amount of information required to define it. This amount 
of information determines the level of negentropy. The higher the amount of information, the 
higher the level of negentropy. 

In ordinal functions, each solution is linked to its rank (ri), which ranged between 1 (high 
satisfaction),  and “n” (low satisfaction). The Linear-rank function is the most basic ordinal 
function. It assigns the value one to the rank one and the value zero to the rank “n.” This function 
is very basic, and it does not require control points or parameters to be defined in the space (ri, 
zi); ri is the solution’s rank, and zi is the level of satisfaction. The Power-rank function is the 
most complex ordinal function. It defines a power curve from three control points defined by 
rank 1, ri

mid, and “n” plus their corresponding values, which are zi
-, zi

mid, and zi
+. Therefore, this 

function requires the definition of four parameters. 

In comparison to the ordinal functions, the cardinal functions such as the Simon’s 
satisficing (satisfying & sufficient) (H. A. Simon, 1956), Derringer & Suich (Derringer & 
Suich, 1980), Harrington’s (Harrington, 1965) and “arctan soft” functions help to save the 
valuable information contained in the observed variables y. These functions use the cardinal 
values of y, and no ranking is required. In the following, the cardinal functions are discussed. 

From a mathematical point of view, a criterion is a condition used in a mathematical 
operation to test the observation variable value (yi) and assess a satisfaction level (zi). In pure 
mathematics, the criteria are strict; the level of satisfaction is only 1 (satisfied) or 0 (not 
satisfied). For example, to determine even numbers, the criterion divides the number by two if 
the remainder = 0 then the number is even, and the criterion is satisfied (the satisfaction level=1) 
if the remainder ≠ 0 then the number is odd and the criterion is not satisfied (the satisfaction 
level=0). Classical mathematics is not ambiguous; it is not possible to have satisfaction levels 
between 0 and 1. 

Figure 16 demonstrates the criteria strictness in mathematics. The figure illustrates the 
mathematical criterion (cost  ≤ 100 $). According to this criterion, if (cost  ≤ 100 $), then the 
criterion is satisfied, and the satisfaction level is equal to 1, but if (cost > 100 $), then the 
criterion is not satisfied, and the satisfaction level is equal to 0. As a consequence, all the yi that 
satisfy the criterion are equal, it has the same zi, and all the solutions with yi that do not satisfy 
the criteria have the same zi. The mathematical function represented in Figure 16 can be 
referenced to the Satisficing interpretation function, which is defined by Simon (H. A. Simon, 
1956). Simon’s function is the simplest interpretation cardinal function; it uses a fixed 
Satisficing (H. A. Simon, 1956) parameter (see Figure 16 and Figure 17). 
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Figure 16: Example of a criterion in mathematics (Simon’s Satisficing function) (H. A. Simon, 1956)  

Using a strict function with only one control point for defining a criterion, such as 
Simon’s function, is suitable for the purely mathematical problems. In contrast, by its very 
nature, design, problems are soft, and a minor violation of the criteria and objectives is 
acceptable. “What a designer really needs is to have some feel for the meaning behind the 
numbers rather than precise methods of calculating them. As a designer you need to know the 
kind of changes can be made to the design which are most likely to improve it when measured 
against the criteria. It is thus more a matter of strategic decisions rather than careful 
calculations.”(Lawson, 2005)  

The word desirability consists of two parts desir-ability, which means the ability to 
desire or “the quality, fact, or degree of being desirable”(Merriam-Webster, 2019b). The 
desirability function is a mathematical value function that aims to interpret the design criteria, 
which is expressed by the designer and represents his preferences of the values of y into the 
mathematical field. These functions are cardinal. Quirante defines “Desirability functions are 
value functions which express the level of satisfaction of designers for attributes values 
according to the design requirements and his expectations.”(Quirante, 2012), he explains, 
“Desirability is a preference measurement which reflects the level of satisfaction achieved by 
design alternatives’ properties according to designers’ point of view.”(Quirante, 2012) Lee, 
Geong, and Kim explained, “The desirability function approach converts each response 
variable to an individual desirability function. The individual desirability function can be 
viewed as the decision maker’s utility function ranging from 0 to 1.”(Lee, Jeong, & Kim, 2018). 
Harrington’s function (Harrington, 1965), Derringer & Suich’s desirability function (Derringer 
& Suich, 1980), and “arctan” soft function are three different types of desirability function. 

Figure 17 graphically represents the different aggregation functions discussed 
previously. The figure classifies the functions based on the negentropy of information. It also 
classifies them based on the type of information (ordinal, cardinal). For each function, the figure 
specifies the number of control points and the number of parameters it uses. 
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Figure 17: Graphical representation of some of the most significant interpretation functions of satisfaction 
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2.2.1 Harrington’s desirability functions 

In 1965, Harrington presented the desirability functions for the first time (Harrington, 
1965). Two different categories of Harrington’s functions are available one-sided and two-
sided, which are both continuous. 

The one-sided formulation offers two different versions. Each version serves a different 
purpose (Eq. 3). The first version is for minimization; the lower the observed value yi, the higher 
the level of desirability zi. The other version is for maximization; the higher the observed value 
yi, the higher the level of desirability zi. 

dH(yi) = exp�−exp(β + α. yi)� 
 
Where: 

if (AC > SL (minimization))

⎩
⎨

⎧ α =
ln �ln�dH(AC)�/ln�dH(SL)��

AC − SL
β = ln �−ln�dH(SL)�� − α × SL       

 

 

if (SL > AC (maximization))

⎩
⎨

⎧ α =
ln �ln�dH(SL)�/ln�dH(AC)��

SL − AC
β = ln �−ln�dH(SL)�� − α × SL       

 

(Eq. 3)  

Where the Absolute Constraint (AC) is “bounds correspond to strict satisfaction of 
design criteria”(Quirante, 2012), and the Soft Limit (SL) is “bounds related to the flexibility 
of design requirements”(Quirante, 2012). By comparing AC and SL on the observation axis, in 
minimization problems, AC > SL, while in maximization AC<SL (see Figure 18). By 
comparing AC and SL on the scale of desirability dH(AC) < dH(SL) for both versions. For 
instance, dH(AC) = 0.01, dH(SL) = 0.99, the designers can use any values between zero and one 
to according thier intentions and design requirements. 
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Figure 18: Graphical representation Harrington’s one-sided desirability functions 

The two-sided formulation targets particular values yi; “closer to a particular target value is 
better” (Quirante, 2012) This formulation requires four parameters (ACL) lower Absolute 
Constraint, (SLL) lower Soft Limit, (SLU) upper Soft Limit and (ACU) upper absolute constraint. 
Generally, we express Harrington’s two-sided as (Eq. 4) (see Figure 19): 

dH(yi) = exp �− �
2yi − (U + L)

U − L
�
n

� 

Where: 

n =
ln �−ln �dH(SL)��

ln ��2(SLL)− (U + L)
U − L ��

 

U=(ACU + SLU)/2 

L=(ACL+ SLL)/2 

 

With: (SLL - ACL) = (ACU  - SLU) 

And: ACU > SLU > SLL > ACL 

(Eq. 4) 
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Figure 19: graphical representation of Harrington’s two-sided desirability function 

Harrington’s desirability functions are beneficial for interpreting yi. The AC allows 
defining a point where the desirability level decreases dramatically (exponentially of an 
exponential). Minor violation of AC results in different low desirability levels; not all the 
solutions that violate the AC are equally desirable. On the other hand, the SL provides a point 
where the desirability values change softly toward complete desirability. However, this function 
can result in zi values so close to zero that they are equal to zero in the floating-point number 
space of a computer, which can negatively affect the aggregation. 

2.2.2 Derringer & Suich’s desirability functions 

In 1980, Derringer & Suich (Derringer & Suich, 1980) introduced a modified version 
of Harrington’s desirability functions. Two different formulations of this function do exist, one-
sided and two-sided. They are piecewise-defined and continuous. 

The one-sided formulation offers two different versions. The first version is for 
minimization (Eq. 5); the lower the observed value yi, the higher the level of the desirability zi. 
The other is for maximization (Eq. 6); the higher the observed value yi, the higher the level of 
the desirability zi. 

dD (yi) = �

1                                  yi ≤ L                                                   

�
U − yi
U − L

�
c

                L < yi < U      with       c ∈ ℝ+
∗            

0                                  yi ≥ U                                                   

 (Eq. 5) 

dD (yi) = �

1                                  yi ≥ U                                                   

�
yi − L
U − L

�
c

                L < yi < U      with       c ∈ ℝ+
∗            

0                                  yi ≤ L                                                   

 (Eq. 6) 
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The two yi that defines the bounds are the Upper bound (U) and the Lower bound (L); 
L < U. The level of desirability is described as the following for minimization dD(L) > dD(U) 
and dD(yi≤ L) = 1, dD(yi ≥ U)=0, while for maximization problem dD(L) < dD(U) and dD(yi ≤ L) 
= 0, dD(yi ≥ U)=1. The parameter (c) allows adjusting the variations of desirability between the 
two bounds, changing the value of the parameter c changes the function’s slope; consequently, 
it allows the function to match the preferences of the designer. (Quirante, 2012) (see Figure 20). 

 

Figure 20: Graphical representation of Derringer & Suich’s one-sided desirability functions 

In the two-sided formulation (Eq. 7), two parameters that define the Lower bound (L) 
and the Upper bound (U) are required. Also, a third parameter that defines the Targeted value 
(T) is needed. Additionally, there are two other parameters (c, u) for adjusting the function’s 
slope, one for each side of T (see Figure 21).  

dD (yi) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0                                          yi ≤ L

�
yi − L
T − L

�
c

                  L < yi ≤ T

�
yi − U
T − U

�
u

                 T < yi < U

0                                          yi ≥ U

         c ∈ ℝ+
∗ , u ∈ ℝ+

∗  (Eq. 7) 
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Figure 21: Graphical representation of Derringer & Suich’s two-sided desirability function 

Derringer & Suich’s desirability functions interpret the observed values yi, which violate 
L or U as equally desirable; the function cannot differentiate the level of desirability when L or 
U is violated. For any solution where y ≥ U the dD(yi) = 1. For any solutions where yi ≤ L the 
dD(yi)=0, in the aggregation. We may need an aggregation function that avoids transferring 
extreme values of yi to a satisfaction value equal to zero. 

2.2.3 The “arctan soft” desirability function 

We proposed to use the “arctan soft” desirability function (darctan) (see Eq. 8). This 
function is both continuous and derivable everywhere in the real number space such as the 
Harrington’s function. However, it is much softer than the Harrington’s function which is 
computed from the exponential function of an exponential function. The function can be used 
for both maximization and minimization. The two acceptability thresholds that define the 
bounds in this function are yi

+ and yi
-. The designer has to assign the interpretation value zi

+ 
(darctan(yi

+)) for which represents the level of satisfaction of yi
+. Figure 22 demonstrates a 

graphical representation of this function.  
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zi = darctan(yi) =
1
π

× arctan�tan��zi+ −
1
2
� × π� × �

yi − �(yi+ + yi−)/2�
yi+ − �(yi+ + yi−)/2�

��+
1
2

 

Where: 

For Maximization 

zi+ = The desirability of yi+ =  darctan(yi+)                                                0.5 <  zi+ < 1 

For Minimization 

zi+ = The desirability of yi+ =  darctan(yi+)                                                0 <  zi+ < 0.5 

(Eq. 8) 

 

Figure 22: Graphical representation of  arctan soft desirability function 

Even if the observed values yi violate the requirements, the solution can still be 
acceptable, and the desirability values zi never equals to zero (0 < zi ≤ 1). In addition, the 
function can differentiate the level of desirability from values that violate the limits. This 
function is suitable for interpreting the values of observational variables in design problems. 

2.3 Aggregation 

“Architecture is made up of choices. Beautiful buildings block the view. Elegant, thin 
façades waste of energy. Pleasantly enclosed spaces prevent people from taking the shortest 
way through. Monumental buildings diminish their surroundings. It’s not easy to choose. A 
checklist can never weigh the options for you; only experience can do that” (Waern & 
Windgardh, 2015) 

The Aggregation model (ζ) classifies the candidate solutions according to the design 
objectives. According to MOIA, the model aggregates the interpretation variables z (multi-
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criteria) into multiple Design Objective Indices DOI (multi-objective). Finally, from all the 
DOI, this model computes the Global Desirability Index GDI (single-objective). Later, the 
Morphogenesis model generates new values of x that maximize the GDI by using GOA. 

Starting from a Pseudo-function, we can define two different types of aggregation 
functions ordinal and cardinal (see Figure 23). The ordinal aggregation functions do not 
combine criteria and the objectives into a single objective GDI as MOIA suggests; it is not 
possible to perform mathematical operations on ordinal information. Consequently, these 
ordinal functions are multi-objective and can result in many solutions that are equally optimized 
based on different objectives. When using an ordinal aggregation function, there is no need to 
interpret the observed variables y. On the other hand, the cardinal aggregation functions can 
combine the criteria and objectives into a single objective GDI, as MOIA suggests. These 
functions aggregate interpretation variables z resulting from an interpretation function; it is not 
possible to directly use the observed variables y. Ordinal aggregation functions are considered 
weakly negentropic, while cardinal aggregation functions are considered strongly negentropic. 

The choice of an aggregation function is a decisive choice. This section intends to 
investigate three different aggregation functions. The first is Pareto’s aggregation function, 
which is ordinal in nature. The second is the Maximin aggregation function, which is cardinal. 
The third is the Derringer & Suich’s aggregation function, which is cardinal. While Pareto’s 
function is low in negentropy, the two other functions are high in negentropy (see Figure 23). 
The figure graphically demonstrates each of the three aggregation functions intended to be 
discussed in this section. The figure also defines the basic requirements for precisely defining 
each of the three functions. At the end of this section, an additional function introduced by Scott 
& Antonson (Scott & Antonsson, 1998) that links the three aggregation functions is presented 
to show the continuity between the three functions. 
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Figure 23: Graphical representation of mentioned aggregation functions 

2.3.1 Pareto’s function 

In 1881 at King’s College, Edgeworth described the optimization problem by saying, 
“If we are optimizing a problem with two objectives. It is required to find a point such that, in 
whatever direction we take an infinitely small step, Objective (1) and Objective (2) do not 
increase together, but that, while one increases, the other decreases.”(Edgeworth, 1881) In 
1893, this concept was expanded by Pareto. He describes, “The optimum allocation of the 
resources of a society is not attained so long as it is possible to make at least one individual 
better off in his own estimation while keeping others as well off as before in their own 
estimation.”(Pareto, 1896). 

Today, this definition of Pareto’s method leads to improve trade-offs among several 
objectives. For the sake of homogeneity, simplicity, and coherence with other functions, 
Pareto’s method is introduced as an aggregation function. This function can also be called  
Chebyshev scalarizing function (Giagkiozis & Fleming, 2015). Based on Pareto’s function, the 
optimal solutions are called non-dominated or non-inferior solutions (Lobato & Steffen, 2017). 
Pareto’s function is used as a decision-making logic that allows the computer to classify the 
different design variables x based on the observation variables y, which are pure objective 
performance; no interpretation of these values is required. Marsault highlights that “most of the 
multi-objective evolutionary algorithms have a shared characteristic: they manipulate a 
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(Pareto front).” (Marsault, 2018) Pareto’s function is considered as the classical function and 
is used by the available multi-objective design optimization tools in the market. 

Figure 24, from A to D, displays a geometrical explanation of Pareto’s function 
classification process among a finite set of solutions. For the sake of simplicity, this geometrical 
interpretation is performed on a two objective problem. Both indicators of the objectives must 
be minimized in the proposed problem. Pareto’s function classification divides the solutions 
into two categories of solutions, which are “non-dominated/optimum” and “dominated/non-
optimum” (see Figure 24 A). One solution dominates another, only if it achieves a better rank 
in all the objectives involved in the design. The set of non-dominated solutions can be linked 
together to form the Pareto front, namely a polyline fitting the external part of the solution set 
(see Figure 24 B). According to Pareto’s function, these non-dominated solutions are the 
optimum solutions; all the solutions which belong to the Pareto front are equally optimum.  

A solution belonging to the non-dominated category may eliminate many other 
dominated solutions. From a geometrical point of view, this means that one single solution, 
which is S2, dominates any solution belonging to the grey rectangle presented in Figure 24-C. 
By intersecting the rectangles defined by every non-dominated solution, several non-dominated 
solutions may dominate the same solution (see Figure 24 D). While the non-dominated 
solutions are classified as the optimum, two different methods can be used to classify the 
dominated solutions. One method is to count the solutions that dominate each solution; the less 
is the solutions that dominate a solution, the better is the class of this solution. The other method 
is to ignore the non-dominated solutions and apply Pareto’s function to the rest of the solutions; 
this can be repeated to create multiple fronts; each represents one class. 

 

Figure 24: Geometrical explanation of the Pareto classification process 
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Using Pareto’s function can result in different problems. As a first point, the Pareto front 
usually includes numerous solutions with different x values and different y values that are 
considered equally optimum. Figure 25 shows the classification of a set of candidate solutions 
compared to a single solution S1 based on Pareto’s function. The solutions are divided into three 
zones. Any solution in “Zone A” dominates S1, any solution in “Zone B” is equal to S1, and any 
solution belongs to “Zone C” is dominated by S1. If no solutions in Zone A exist, Pareto’s 
function conder S1 as non-dominated solutions. Pareto’s function does not consider some 
concepts that can foster some solutions by regarding an objective as more important than 
another. Hence, solutions must be post-treated to select the best ones, which can make the 
process very inefficient and confusing. To avoid confusion, humans tend to compare design 
solutions by introducing concepts such as risk in their reasoning. 

 

Figure 25: The relation between the solutions according to Pareto’s function 

As a second point, the Pareto front usually contains solutions that may seem irrational 
to humans and more especially to human experts of design. For example, Figure 26-A displays 
solution S5, which is dominated by the solution S2 and non-dominated by solution S4. Due to 
its position on the front, S4 may be regarded as an extreme solution since its performance score 
is very low, according to objective 2 and very high, according to objective 1. Concomitantly S5 
seems to be a balanced solution as its performance scores are proportionate, as can be seen in 
Figure 26-B. Human reasoning often counterbalances the concepts of domination and 
equilibrium, and S5 may be regarded as a more acceptable solution than S4 (see Figure 26-C). 
If solution S2 never existed, such as presented in Figure 26-D, then S5 would be considered as 
non-dominated based on Pareto’s function, this makes S5 equal to S4. However, Pareto’s 
function is of major interest in the context of information scarcity. 
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Figure 26: Elimination issue of Pareto’s function 

2.3.2 Maximin aggregation function 

Maximum of Minimum (Maximin) is an aggregation function introduced by Kim and 
Lin in the design domain (Kim & Lin, 2006) (Eq. 9). Maximin is based on a compromisation 
logic. This function underestimates the solutions, which attain very low levels of satisfaction 
for at least one objective. Maximin can be regarded as a precautionary principle that avoids 
extreme and unsafe solutions. 

𝜁𝜁(𝐳𝐳) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑧𝑧𝑖𝑖))                                                       (Eq. 9) 

For a better understanding of the function, Figure 27 graphically explains the 
classification carried out by the function. Figure 27-A shows that the function works as if a 
square started to grow from the ideal point, and the first solution encountered by the square is 
classed 1st, and the second is classed 2nd and so on; the last solution “n” encounters the square 
which ranks “nth.” In Figure 27-B, the same Pareto front presented earlier (see Figure 26-A 
(2.3.1)) can be seen. In contrast to Pareto’s function, Maximin function reduces the frontier to 
a single solution, namely S3. As Maximin uses cardinal information, it is possible to aggregate 
the different objectives into a single objective GDI. In Figure 27-C the solutions S4 and S5, 
which presented before (see Figure 26-C (2.3.1)) are classified by Maximin function, in contrast 
to Pareto’s function classification, Maximin can differentiate them. 



Optimality & Acceptability 

43 

 

 

Figure 27: Graphical explanation of Maximin aggregation function (Kim & Lin, 2006) 

Figure 28 explains how Maximin function aggregates the solutions. The function first 
determines the minimum zi for each solution; zi computed from yi via a desirability function. In 
the figure, the solid gray lines link the solutions to these minimum values. For each solution, 
the minimum zi is its GDI, and the higher is zi value, the better the solution.  

 

Figure 28: Graphical representation of Maximin classification process 

However, in some situations, as shown in Figure 29, Maximin classification can be 
irrational for designers du to the position of the solutions. According to Maximin, S2 is better 
than S1. In this example, S1 obtains a high level of satisfaction in relation to objective 1, while 
S2 obtains a very low level of satisfaction in relation to the same objective. On the other hand, 
S1 obtains a very low level of satisfaction in relation to objective 2, while S2 obtains a very 
low but slightly better level of satisfaction than S1 in relation to the same objective. As a result, 
S1 may seem a more rational solution to designers if compared to S2, which is the opposite of 
Maximin classification. This happens because Maximin is non-compensatory. 
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Figure 29: Location Issue of Maximin 

Figure 30 represents the classification of an infinite set of candidate solutions compared 
to a single solution S1 based on Maximin function. According to Maximin, any solution belongs 
to “Zone A” dominates S1, any solution belongs to “Zone B” is dominated by S1. However, any 
solution on the dotted line has shared the same class with S1. However, the situation where 
more than one solution shares the same class is relatively rare because Maximin uses cardinal 
information. 

 

Figure 30: The relation between the solutions in Maximin 

Maximin is low in computational cost; thus, it is suitable when a fast decision is 
required. Although Maximin does not require assigning weights, it requires using a desirability 
function. Because Maximin aggregation function does not require assigning weights, it is not 
capable of distinguishing the level of importance for the different objectives. Using this function 
allows the designers to express their preferences in the interpretation model but not in the 
aggregation model.  

2.3.3 Derringer & Suich’s aggregation function 

Derringer & Suich’s aggregation function (Derringer & Suich, 1980) (Eq. 10) entails 
assigning different weights to the different design objectives. This concept seems appealing for 
many designers because “The various criteria of performance are not likely to be equally 
important, so some weighting system is needed”(Lawson, 2005). While Pareto’s function does 
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not consider any human preference and Maximin involves human preference within the 
interpretation model, this function considers human preference within the interpretation and the 
aggregation models of MOIA. 

ζ(𝐳𝐳) = �(z𝑖𝑖)ω𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

ζ(𝐳𝐳) =  (z1)ω1 ∙ (z2)ω2 ∙ (z3)ω3 … (zn)ω𝑛𝑛 
 

Where: ω𝑖𝑖 are the weight of the objectives or criteria 

And: z𝑖𝑖 are the performance values of the objectives or criteria 

 

And: ∑ω𝑖𝑖 = 100% 

And: 0% ≤ ω𝑖𝑖  ≤ 100% 

(Eq. 10) 

Table 2 demonstrates how Derringer & Suich’s aggregation function works. The table 
compares seven different candidate solutions against two different objectives. In the used 
example, the assigned weight for Objective 1 is 60%, and the assigned weight for Objective 2 
is 40%. The table also shows why using an interpretation function that can result in zi = 0 is not 
suitable when we use this aggregation function; all the solutions that include at least one zi = 0 
are equal no matter what are the other zi values (GDI=0) (see Table 2 (solutions A, and B)). 

Solution Objective-1 (w=60%) Objective-2 (w=40%) ζ(z)=(GDI) (see Eq.11) Ranking 
Solution A 1.00 0.00 1.000.6  ∙ 0.000.4=0.00 6th 
Solution B 0.00 1.00 0.000.6  ∙ 1.000.4=0.00 6th 
Solution C 0.75 0.75 0.750.6  ∙ 0.750.4=0.75 2nd 
Solution D 0.50 0.50 0.500.6  ∙ 0.500.4=0.50 3rd 
Solution E 0.80 1.00 0.800.6  ∙ 1.000.4=0.87 1st 
Solution F 0.90 0.10 0.900.6  ∙ 0.100.4=0.37 4th 
Solution G 0.10 0.90 0.100.6  ∙ 0.900.4=0.24 5th 

Table 2: An example that demonstrates Derringer & Suich’s aggregation function 

Figure 31 uses the solutions presented in Table 2 to illustrate how Derringer & Suich’s 
aggregation function works; the solutions A and B are not used because they include at least 
one value where zi = 0. Derringer & Suich’s aggregation sets the desirability of the solutions 
on a logarithmic scale. To aggregate the solutions a preference line that starts from the center 
(the ideal) with a slope that represents the relative weight of the importance of the objectives. 
For the example presented in the figure (θ=90/(60+40)×60=54°, β=90/(60+40)×40=36°) and 
with an infinite length. Then, from each solution, a perpendicular line to the preference line is 
generated; this can be described as a projection of the solutions on the preference line. The 
intersection point between each of the perpendicular lines and the preference line represents the 
level of preference of the solution; the closer is the intersection point to the center (the ideal), 
the higher the satisfaction of the solution. 
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Figure 31: Graphical representation of Derringer & Suich aggregation function classification 

To compare Derringer & Suich’s function to the other aggregation functions presented 
earlier, Figure 32 graphically represents Derringer & Suich’s aggregation function 
classification on a linear scale (non-logarithmic). In this example, equal weight for the 
objectives is used to simplify the concept. Each of the presented curves represents one GDI 
value; the solutions belonging to one curve share the same GDI. However, It is extremely rare 
to find different solutions with the same GDI; this function is excellent in differentiating the 
solutions’ classes. In contrast to Maximin function, this function is compensatory. 

 

Figure 32: Graphical representation of Derringer & Suich aggregation on a linear scale 

Figure 33 represents the relation between the solutions in this function by comparing a 
single solution S1 to a set of infinite solutions; to simplify the idea, the figure uses equal 
objective weights. According to this function, any solution in “Zone A” dominates S1, any 
solution in “Zone B” is dominated by S1. However, any solution on the dotted line has an equal 
GDI to S1. As mentioned earlier, having different solutions that are equally optimum is 
extremely rare because Derringer & Suich’s aggregation uses weighted cardinal information to 
find a single objective (GDI). 
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Figure 33: The relation between the solutions in Derringer & Suich’s aggregation function 

Derringer & Suich’s aggregation function is the highest in negentropy compared to the 
other aggregation functions presented earlier. This function allows the designers to express their 
preferences in the aggregation model. Also, because it uses z values resulting from a desirability 
function, the designers can express their preference in the interpretation. The main difficulty 
facing Derringer & Suich’s aggregation function is that the designer needs to assign weights 
for the different objectives, which can be tricky. The modeling cost is higher in this function 
compared to the other aggregation functions presented earlier. 

2.3.4 Scott & Antonsson function 

Scott & Antonsson (Collignan, 2011; Quirante, 2012; Scott & Antonsson, 1998, 1999) 
have presented a function that helps to link different aggregation functions. The function shows 
the continuity between Pareto’s, Maximin, and Derringer & Suich’s functions by only changing 
one value (s) (Eq. 11). The different values of (s) change this function to one of the three 
mentioned aggregation functions. 
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ζ(𝐳𝐳) = ��ωi (yi)s�
1 s�

 

 

With,   ωi = weight 

Case (1): Pareto’s function  (ωi = 1); not sensitive to weight 

Case (2): Maximin function (ωi = 1); not sensitive to weight 

Case (3): Derringer & Suich’s function (ωi ∈ ℝ+
∗ ) 

 

And  yi=Observation value 

 

The value of (s) is related to the aggregation function: 

Case (1): Pareto’s function    (s = +∞) 

Case (2): Maximin function (s = −∞) 

Case (3): Derringer & Suich’s function (s = 0) 

(Eq. 11) 

Figure 34 connects the different values of (s) to the different aggregation functions (Quirante, 
2012; Scott & Antonsson, 1998, 1999). Using (s) value bigger than zero is not appropriate for 
the design. Thus, Pareto’s aggregation function is not suitable for design. The figure also shows 
that increasing the value of (s) increases the compensation of the function. Consequently, 
Maximin faces some difficulties because the value of (s) is extremely low (−∞). Hence, we 
can infer that Derringer & Suich’s aggregation is more suitable for the design than the two other 
functions. However, Derringer & Suich’s aggregation requires more information (weight), 
which increases the modeling cost. 

 

Figure 34: Comparison between different values of (s) in Scott and Antonson function (Collignan, 2011; Quirante, 
2012; Scott & Antonsson, 1998, 1999) 
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2.4 Morphogenesis 

In biology, the genome is encoded in the chromosomes as DNA, which nucleotides (A, 
T, G, C). In MOIA, we can link design variables x to the DNA and the values of x to the DNA 
nucleotides. The different values of x distinguish each individual from its population. In nature, 
the Morphogenesis transforms the genotype to phenotype. Österlund defines “Natural 
morphogenesis is a process of evolutionary development and growth that causes an organism 
to develop its shape through the interaction of system-intrinsic capacities and external 
environmental forces”(Österlund, 2010) In MOIA, the Morphogenesis is a process that 
computes (evolves) sets of x values that characterize candidate solutions which maximize the 
GDI. In MOIA, to evolve new x values, the Morphogenesis model links x to the GDI through 
a Morphogenesis algorithm. To initiate the iteration, MOIA uses random x values. 

The Morphogenesis algorithms are either gradient or non-gradient based optimization 
algorithm. The gradient-based algorithms require the calculation of derivatives. It’s not the case 
for non-gradient algorithms, which are more flexible. Gradient algorithms are efficient for 
finding local optima, whereas non-gradient algorithms are generally used to compute the global 
optimum of a problem (Papalambros & Douglass, 2017). “When the problem has continuously 
differentiable functions, a gradient-based method is the right solution choice. If derivatives are 
not available, non-gradient methods are the only recourse.”(Papalambros & Douglass, 2017) 
However, the computing cost of the non-gradient algorithm is generally high compared to 
gradient ones (Papalambros & Douglass, 2017). In MOIA, the Morphogenesis algorithm is 
usually a non-gradient GOA.  

For design problems, metaheuristics approaches can be very effective since design 
problems are uncertain. “In fact, due to the high complexity and difficulty of optimization 
problems under uncertainty, often classical approaches (that guarantee to find the optimal 
solution) are feasible only for small size instance of the problems, and they could require a lot 
of computational effort. In contrast, approaches based on metaheuristics are capable of finding 
good and sometimes optimal solutions to problem instances of realistic size, in a generally 
smaller computation time.”(Bianchi, Dorigo, Gambardella, & Gutjahr, 2009). 

According to Sorensen and Glover (Sörensen & Glover, 2013). “A metaheuristic is a 
high-level problem-independent algorithmic framework that provides a set of guidelines or 
strategies to develop heuristic optimization algorithms. The term is also used to refer to a 
problem-specific implementation of a heuristic optimization algorithm according to the 
guidelines expressed in such a framework.”(Sörensen, Sevaux, & Glover, 2018). Moreover, 
according to Osman and Laporte, “A metaheuristic is formally defined as an iterative 
generation process which guides a subordinate heuristic by combining intelligently different 
concepts for exploring and exploiting the search space, learning strategies are used to structure 
information in order to find efficiently near-optimal solutions.”(Osman & Laporte, 1996). 

Many metaheuristic algorithms have been developed to tackle optimization complex 
problems under uncertainty “Nearly all metaheuristic algorithms share the same following 
characteristics: they are nature-inspired.”(Cheng & Prayogo, 2014). Agarwal and Mehta state 
that the Nature-Inspired Algorithm (NIA) “are mainly categorized into evolutionary algorithms 
and swarm intelligence “based algorithms.”(Agarwal & Mehta, 2014). 

The Evolutionary algorithms (EAs) category includes any algorithm inspired by the 
evolution in nature, (e.g., Genetic algorithms (GA), Immune algorithm, Differential evolution, 

https://en.wikipedia.org/wiki/Chromosome
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etc.). One of the most popular algorithms used in design optimization is GA; these algorithms 
mimic species evolution by natural selection. GA is robust and commonly used for design 
optimization, which means that it is reliable for solving a wide range of problems. GA is the 
most representative algorithm of the evolutionary type. Many versions of GA are available; one 
example of these versions is the EpiGenetic Algorithm (EGA); it adapts the concept of 
epigenetics to the GA(Birogul, 2016). Hassan and Cohanim say, “The GA and its many versions 
have been popular in academia and the industry mainly because of its intuitiveness, ease of 
implementation, and the ability to effectively solve highly nonlinear, mixed integer optimization 
problems that are typical of complex engineering systems.” (Hassan et al., 2004).  

In GA to evolve the set of genes, three operators called selection, crossover, and 
mutation are applied to the population through an iterative process. The selection operator 
selects solutions based on their satisfaction with the criteria and the objectives; in MOIA, we 
use GDI. The crossover operator evolves the characteristics of the individuals by mixing the 
DNA nucleotides of the genes; in MOIA, we use the values of x. The evolved individuals 
nevertheless preserve the genes of the original generation. The mutation adds random 
characteristics to some of the genes, making it possible to explore entirely new solutions. 
Knowing that these specific genes are not necessarily present in the initial population, this 
exploration procedure makes it possible to find the global optimum of the design problem. 

The designing activity must achieve an appropriate balance between exploitation 
(selection and crossing) and exploration (mutation).  “Intense exploration does not give optimal 
solution while deep exploitation traps an algorithm in local optima.”(Agarwal & Mehta, 2014). 
These steps evolve a set of globally optimized genes. 

Papalambros and Douglass describe that “Genetic algorithms offer several advantages 
because they are versatile, require no mathematical knowledge, and are easy to program. There 
is a variety of different crossover and mutation operators that can be chosen, as well as a variety 
of different methods for parent selection.”(Papalambros & Douglass, 2017). However, “The 
drawback of the GA is its expensive computational cost.”(Hassan et al., 2004). 

The Swarm intelligence (SI) is another category of GOA (e.g., particle swarm, ant 
colony, artificial bee colony, and bacterial foraging algorithms, etc.) The algorithms belonging 
to this category are designed to “optimize the certain problem by mimicking the collective 
behavior of natural swarms.”(Agarwal & Mehta, 2014). 

In 1995, Eberhart and Kennedy introduced the Particle Swarm Optimization (PSO) 
algorithm (Kennedy & Eberhart, 1995), which has proven to be very efficient for the global 
optimization of particular types of problems. PSO can converge very quickly and may require 
relatively little computational time compared to GA. “PSO uses the analogy of social 
interactions among particles in nature, such as insects or birds, to search for optimal 
solutions.”(Papalambros & Douglass, 2017). 

PSO can be described as a network of particles acting together. Each solution 
corresponds to a particle in which direction and velocity are computed from the PSO algorithm. 
The interaction between particles is based on mechanisms that are not operators but determine 
the velocity of the particles from inertia and attraction towards the most performant positions 
inside the design search space. The particles move inside the search space until the solutions 
are fixed to one particular point, which is the global optimum. “Particle swarm optimization is 
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an extremely wimple algorithm that seems to be effective for optimizing a wide range of 
functions.”(Kennedy & Eberhart, 1995). 

Both GA and PSO are heuristic population-based search methods. Papalambros and 
Douglass distinguish the difference between PSO and GA “The algorithm is similar to GA in 
that a population of samples together determines the search directions for the next iteration. 
However, samples in PSO follow trajectories, whereas those in GA jump in the design 
space.”(Papalambros & Douglass, 2017). GA and PSO are two of the most popular heuristic 
non-gradient GOA. However, many other heuristics non-gradient GOA can be used to compute 
the global optimum of a design problem. 

2.5 Optimality and acceptability 

Simon (Herbert A. Simon, 1973) defines design problems as ill-structured problems; the 
structure of design problems lacks some definitions. Solving these problems involves subjective 
judgments and objective knowledge of the problem characteristics. Subjective judgment is 
difficult to process and is non-reducible to pure mathematical logic. In many cases, optimum 
design solutions can be less acceptable than some other candidate solutions based on the 
designer’s subjective judgment. Optimality and acceptability are two different notions. 

Optimality reflects the performance measurements and concerns the computation of 
numerical objectives based on mathematical logic. Hence, optimization alone is not enough to 
determine the preferred design solutions from the designers’ points of view. The acceptability, 
on the other hand, concerns human perceptions. To assess design acceptability, the designer’s 
preference should be the center of reasoning and judgment. The word acceptability consists of 
two parts accept-ability, which means the ability to accept or “capable or worthy of being 
accepted”(Merriam-Webster, 2019a). Through the acceptability, it is possible to process 
subjective judgments. 

It is crucial to state that the successful design process has to consider both the optimality 
and acceptability. In design, decision-making is the bridge linking optimality and acceptability. 
Numerical optimization supports the reasoning process of the designer’s preferences. In design, 
we compute optimality and ensure acceptability. The integration between optimality and 
acceptability in the design process builds a computational path that leads to optimal and 
acceptable solutions. However, integrating optimality and acceptability requires a deep 
understanding of the design process. 

Throughout history, humans developed numerous decision support systems. The first 
ones developed and used were graphical; geographical maps are an example of these tools. 
However, these systems are non-autonomous. Eventually, humans developed different 
mechanical decision support systems; these were the first autonomous decision support 
systems. Since then, humans searched for faster, more responsive, less bulky, flatter, lighter, 
more stealthy, cheaper, more upgradable, more accessible, more understandable, and more 
intelligent autonomous decision support systems. After discovering electricity, many electrical 
decision support systems were invented. Later, many electronic decision support systems were 
introduced and are still widely used. Nowadays, Artificial Intelligence AI allowed us to develop 
advanced decision support systems that can compete with the human brain in many fields. AI 
can help us solve a wide variety of complex problems. 
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Design problems are ill-structured. Thus, humans must be inside the definition of the 
problem’s structure (Herbert A. Simon, 1973). Using a closed and completely autonomous 
decision support system to solve ill-structured problems based on Artificial Intelligence AI is 
ineffective as it is independent of humans; no human is inside the definition of the problem’s 
structure. The concept of Intelligence Augmentation IA is a more suitable approach for solving 
ill-structured problems as it puts humans inside the definition. In design, we need decision 
support systems based on IA.   

MOIA framework is both a design approach and a modeling method that allows us to 
put the human inside the definition of design problem structure. MOIA intrinsically carries out 
an IA approach. It is suitable for developing decision support systems related to design 
problems. MOIA is capable of integrating both optimality and acceptability by allowing 
designers to express their preferences inside the design optimization process. Such systems can 
increase the probability of generating solutions that are optimized mathematically and are 
accepted by humans. 

In MOIA, the integration between optimality and acceptability takes place in the 
Interpretation model (δ) and the Aggregation model (ζ). Using interpretation and aggregation 
functions that are high in negentropy in these models can enhance the integration of the 
acceptability within the optimization process. Moreover, it can preserve the valuable 
information resulting from the observation model and thus can derive precise results. However, 
these functions, which are high in negentropy, require more information, which increases the 
cost of modeling. 

I recommend developing decision support systems for design based on acceptimality 
(acceptability and optimality). A deep understanding of MOIA and the possible approaches for 
its models are incredibly vital for such development as it provides a design approach based on 
acceptimality. MOIA can provide a new paradigm for developing decision support systems 
adapted to design problems. Developing such systems can improve design outcomes and can 
attract more designers’ to optimize.
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CHAPTER  3 Software typologies 

“Give ordinary people the right tools, and they will design and build the most extraordinary 
things.” (Gershenfeld, n.d.) 

To proceed with a design process, the designers usually use different workflows. 
According to the Merriam-Webster dictionary, a workflow is “the sequence of steps involved 
in moving from the beginning to the end of a working process”(Merriam-Webster, 2019c). To 
be more specific, a workflow here is “how digital tools have been adopted by architects and 
engineers and merged with building delivery methods”(Garber, 2017) The designer can use 
different tools to complete one workflow. 

In the mid of the 20th century, the computer was introduced to the world of design. Two 
decades later, the commercial use of computers in design started. The term Computer-Aided 
Design (CAD) is used to describe this new paradigm. Since then, CAD has tremendously 
improved; many software-based tools are developed for designers. 

There is no doubt that CAD helped the designers to work much faster and more 
accurately than before. It made the design industry more efficient. Many repetitive and time-
consuming jobs in the design industry were improved or replaced by the computer. 
Consequently, the designers gained more time to focus on design decisions. Most of the 
available CAD tools are made for drawing production and not for design decisions. 
Consequently, some designers prefer to call CAD Computer-Aided Drawings or Computer 
Aided Drafting. Only a few tools in the market are developed to serve design decisions. 

Nowadays, most of the tools used by architects are computer-based. This chapter 
explores the popular typologies of these typologies, and it also links them to MOIA. This 
exploration is vital as it helps determine the tools that can support the design decision. Later, 
this will allow us to define, study, and evaluate different decision support workflows for design. 

3.1 Drafting software 

Drafting software is the firstborn CAD typology in the market. These tools helped the 
designer to draft much more accurately and faster. The tools belong to this typology, such as 
the early versions of AutoCAD® uses lines and points as drawing on papers. However, these 
lines and points do not contain any information more than its geometrical and graphical 
characteristics. The software that belongs to this typology is not capable of collecting the 
necessary information needed to run analyses that insight design decisions. Hence, they do not 
support design decision-making. In other words, the drafting tools do not serve MOIA models. 
Nowadays, it is rare to find software that only serves two-dimensional drafting, as most of these 
tools were upgraded to include three-dimensional capabilities. 

Kensek and Nobel explain, “Early CAD was essentially divorced from building 
analysis, and CAD was frequently employed by a separate technical team within the firm. 
Sharing even basic CAD data was initially difficult, and the pace of CAD adoption in 
professional practice was slow. Architects could integrate CAD into the workflow without 
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significantly improving the way consultant, clients, and contractors worked. The decision to 
adopt CAD usually involved discussions of drafting speed, ease of making updates, and limited 
benefits that might accrue with enhanced accuracy. In later incarnations of CAD, three-
dimensional computing added capabilities, including visualization and clash-detection.” 
(Kensek & Noble, 2014)  

3.2 Massing software 

Massing software typology focuses on 3D modeling. In the market, there are several 
massing software developed to aid designers, engineers, and artists. Some of these tools, such 
as AutoCAD®, are upgraded from 2D drafting tools to include 3D modeling capabilities. Some 
of the massing tools include additional capabilities such as rendering, animation, and virtual 
reality, which makes these tools excellent for presentation. 

There are three main categories of massing modeling. Each category is based on 
different techniques. These categories are polygon mesh modeling, non-uniform rational B-
spline (NURBS) modeling, and subdivision modeling (see Figure 35).  

 

 

Figure 35: The types of massing modeling techniques (Autodesk Inc, 2018) 

3.2.1 Polygon mesh modeling 

Polygon mesh modeling uses a group of flat polygons to represent the mass surface; the 
polygons are usually three-sided (triangles) or four-sided (quadrilaterals). The more polygons 
we use, the more accurate the model is, and the more massive the file size is (see Figure 36). 
Polygon mesh modeling is unsuitable for smooth surfaces. It cannot create a real smooth 
surface. However, this modeling technique is relatively easy to create, and control, which makes 
it perfect when high accuracy is not required, and quick calculations are needed, such as in 
video games.  

 

Figure 36: The relation of the surface divisions counts and the smoothness of the mass 
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3.2.2 NURBS modeling 

In contrast to polygon mesh modeling, NURBS models are based on curves defined 
mathematically. Thus, it constructs smooth and accurate models. It is suitable for engineering, 
product design, and any other purpose where precision is needed. Rhinoceros® (see Figure 37) 
is one of the most popular NURBS modeling software among architects nowadays. 

 

Figure 37: sphere based on NURBS modeling 

3.2.3 Subdivision modeling 

Subdivision modeling has the characteristics of both polygon mesh and NURBS 
modeling. “Like NURBS surfaces, subdivision surfaces are capable of producing smooth 
organic forms and can be shaped using relatively few control vertices. Like polygon surfaces, 
subdivision surfaces allow you to extrude specific areas and create detail in your surfaces when 
it is required.” (Autodesk Inc, 2010a). This technique allows the user to control the levels of 
details and the smoothness of the surface by controlling the number of surface divisions (see 
Figure 38). It is relatively easy to create and control a subdivision model. Subdivision modeling 
is widely used in the film making industry because of its characteristics. 

 

Figure 38: level of details in Subdivision (Autodesk Inc, 2010b) 

In conclusion, the massing software typology mainly models three-dimensional masses. 
These masses contain only the geometrical and graphical information of the model parts. Thus, 
the tools belonging to this category are not prepared for performing physical and functional 
analysis to evaluate the design. Furthermore, in these models, there are no constraints that link 
the parts of the models. Using massing software does not serve any of MOIA models. 
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3.3 Rendering software 

Rendering software is mainly developed for creating realistic images or videos of the 
final design. Some of these tools are stand-alone and can exchange information with the 
modeling tools through exporting and importing. However, some rendering software is plugins 
for modeling tools. These tools are usually used after the definition of the final design. The 
tools of this typology do not serve any of MOIA models.  

3.4 Graphics software 

Graphics are vital to express ideas in design. The designers use graphics tools in almost 
every single project. Graphics software is separated into two different categories, raster graphics 
editors and vector graphics editors. 

3.4.1 Raster graphics editor 

This category is mainly made for editing images. Raster editors divide the image into 
small squares that are equal in size; each square is called a pixel. Every single pixel is made of 
one-color fill and no outline. The resolution of the raster image relays on the number of pixels 
in the image area; the more the pixels in the area, the smaller the size of the pixel, and the higher 
the resolution. Thus, increasing the size of an image can lead to undesired pixelization. Many 
raster file formats are available in the market, for example (PNG, JPEG, TIFF, and GIF). 

3.4.2 Vector graphics editor 

This category is mainly used for diagraming, illustration, typography, and layout design. 
The main advantage of vector graphics is that the drawings contain mathematical information. 
Thus, it allows the user to control the drawing efficiently and precisely in the coordinate system. 
In contrast to the raster graphics editors, which based on pixels, the user can enlarge the 
drawings without compromising the resolution (see Figure 39). There are many vector file 
formats, for example (PDF, EPS, WMF, VML, and SVG). Lately, some vector software started 
adopting some of the raster software features, and some raster software started adopting vector 
features.  

 

Figure 39: Pixelization; the enlarged curve on the left represents Raster the other represents Vector 

Both raster and vector graphics are mainly made for producing and editing graphics, 
including photo editing, typography, and drawings. It is clear that graphics software is not made 
for design decision making. These tools are not capable of serving any of MOIA models, and 
they mainly serve presentation purposes. 
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3.5 Observation software 

During the past decades, many observation software was developed for Architecture, 
Engineering, and Construction (AEC) Industry. The software that belongs to this typology helps 
to assess the performance of the candidate design solutions. It provides the decision-maker with 
valuable feedback. Observation is essential for design decision support systems; using these 
tools is essential for the Observation model of MOIA. 

For a long time, integrating observation in designer’s workflows, which mainly focuses 
on modeling, formed a challenge for both the developers and the users. During the last few 
years, software developers started to focus on solving this problem by integrating observation 
tools within the modeling tools. For example, in 2015, Autodesk Ecotect®, which is a software 
for observation, was discontinued. At the same time, Insight®, a new observation tool 
integrated into Autodesk Revit®, was introduced. Ecotect® case represents a new direction 
adopted by the developers. They seek to embed the observation tools in parametric modeling 
such as Building Information Modeling (BIM) platforms; parametric modeling is discussed 
next. Kensek and Noble emphasize that “BIM is engaging design analytics in ways that allow 
architects to make far better performance-based decisions.”(Kensek & Noble, 2014). 

Building Information Modeling (BIM) is defined by the National Building Information 
Modeling Standard (NBIMS) as “a digital representation of physical and functional 
characteristics of a facility. A BIM is a shared knowledge resource for information about a 
facility forming a reliable basis for decisions during its life-cycle; defined as existing from 
earliest conception to demolition. A basic premise of BIM is collaboration by different 
stakeholders at different phases of the life cycle of a facility to insert, extract, update or modify 
information in the BIM to support and reflect the roles of that stakeholder.”(National Institute 
of Building Sciences, n.d.). Figure 40 presents the BIM Process. 

 

Figure 40: BIM process (Narke, n.d.) 
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3.6 Parametric Modeling 

“Design is change. Parametric modeling represents change. It is an old idea, indeed 
one of the very first ideas in computer-aided design.” (Woodbury, Yüce Gün, Peters, & 
Sheikholeslami, 2010). In parametric modeling, the model’s parts are related to each other; 
changing one part affects the other part. “Parametric modeling is a general methodology for 
defining models with constraints and variable parameters” (Chuck Eastman, Teicholz Paul, 
Sacks Rafael, 2011). Compared to traditional modeling, change is easy in Parametric modeling 
because of the relations between the model’s parts. It allows the designer to explore many 
design options easily.  

Whitehead states: “Parametrics is more about an attitude of mind than any particular 
software application. It has its roots in mechanical design, as such, for architects it is borrowed 
thought and technology” (Woodbury et al., 2010). The conventional mediums of design are 
paper, pencil, and eraser. We use these tools to add or erase marks. The designers shifted to 
CAD, but the main idea of adding and erasing marks remained the same in non-parametric tools 
(Woodbury et al., 2010). However, “Parametric Modeling (also known as constraint modeling) 
introduces a fundamental change: “marks”, that is, parts of a design, relate and change 
together in a coordinated way. No longer must designers simply add and erase. They now add, 
erase, relate and repair.” (Woodbury et al., 2010). 

The concept of parametric modeling has been adopted in many design disciplines “In 
some design disciplines, like mechanical engineering, they are now the normal medium for 
work. In others such as architecture, their substantial effects started only about the year 2000” 
(Woodbury et al., 2010). Nowadays, BIM platforms are one of the most popular parametric 
modeling tools among building designers. “Technologies, that allow users to produce building 
models that consist of parametric objects are considered BIM authoring tools”(Chuck Eastman, 
Teicholz Paul, Sacks Rafael, 2011).  

BIM platforms such as Revit® and ArchiCAD® are growing very fast. Indeed, they are 
the building industry standard. Kensek and Noble highlights, “much more so than CAD, BIM 
is revolutionizing the way the building partners practice and document their work, even 
changing the nature of the design process.” (Kensek & Noble, 2014). By adopting BIM, the 
building industry became more efficient, “when adopted well, BIM facilitates a more integrated 
design and construction process that results in better quality buildings at lower cost and 
reduced project duration.”(Chuck Eastman, Teicholz Paul, Sacks Rafael, 2011) 

Figure 41 presents the interface of Revit® to illustrates the concept of parametric 
modeling. The figure shows a list of variable parameters (type properties) of a door. The 
variable parameters of the door are connected to the variable parameters of the wall. In this 
example, by changing the width of the door, the wall opening will adapt to fit the new width. If 
we increased the thickness of the wall, the thickness of the door frame would adapt to the new 
wall thickness. This happens because of the constraints that define the relationship between the 
parameters of the door and the wall. 
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Figure 41: controlling the model’s properties through its parameters in Revit® 

Parametric modeling is highly beneficial for MOIA as it allows us to define the design 
variables x in the Morphogenesis model. Parametric modeling facilitates exploring more 
options by manipulating x. In conventional modeling, the model’s parts are not connected, and 
exploration is challenging. Some parametric tools can observe design solutions. These tools 
usually allow the designer to define the design scenario, which is essential for the Observation 
model of MOIA. 

However, defining a model with a complex set of constraints and variable parameters is 
complicated and sometimes limited. Another method that allows us to construct and control 
such complex relations between the model parts are required. To solve this problem, we use 
algorithmic modeling, which is an advanced parametric modeling technique. It allows us to 
define parametric models through algorithms. In what follows, the main features of algorithmic 
modeling are discussed.  

3.7 Algorithmic Modeling 

Algorithmic Modeling is significant for building a sophisticated structure of connections 
between model parts. However, in computers, we write algorithms through a programming 
language. The designers are not programmers “It is well-known that conventional programming 
languages are difficult to learn and use, requiring skills that many people do not have”(Lewis 
& Olson, 1987). However, to make programming accessible for designers, we can use visual 
programming. “It seems clear that a more visual style of programming could be easier to 
understand and generate for humans, especially for non-programmers or novice 
programmers”(Myers, 1990). Visual Programming (VP) tools can help the designers to define 
complex parametric models. 

Software developers have introduced many VP tools for designers; during the last few 
years, those tools became quite popular among architects. “In recent years many software 
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houses have developed visual tools in order to make scripting more accessible to users with 
little to no programming skills.”(Tedeschi et al., 2014). VP allows the designers to build 
algorithms by graphically connecting pre-made basic formulas. These tools contain most of the 
mathematical operations needed. Many formulas can be easily installed as a plugin. Mixing VP 
with textual programming is possible in these tools. The result of the algorithm implemented in 
these tools can appear directly as a 3D digital model. 

Two of the most popular VP tools among architects nowadays are Grasshopper® and 
Dynamo®. Grasshopper® (Figure 42) is a VP environment originally made for Rhinoceros®; 
thus, they can easily exchange information. A very diverse library of plugins supporting 
Grasshopper® is available. On the other side, Dynamo® (Figure 43) is a VP plugin for Revit®. 
However, a standalone version of the tool is available. Dynamo® can use the information 
contained in the BIM models of Revit®. Dynamo® enhances the parametric capabilities of 
Revit®. These tools usually integrate limitless observation tools and methods, which can give 
insight to the decision-maker. VP is excellent for defining the design variables x and the design 
scenario in both the Morphogenesis and the Observation models of MOIA. 

 

Figure 42: Grasshopper® algorithm developed to control the radius of many circles based on their distance from 
a point. 
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Figure 43: Dynamo® algorithm that controls a vast number of hexagonal units 

3.8 Generative Design 

In parametric and algorithmic modeling, the designer defines the design model via a set 
of design variables x and constraints. Based on parametric modeling, the generative tools 
manipulate the variables with respect to the constraints to generate many design options from 
one model. However, randomly manipulating x values is inefficient. Hence, combining 
observation tools and generative parametric modeling is essential. The observation tools 
compute the observation variables y of each version of the design (candidate solution 
characterized by x). Both x and y are then used to guide the evolution towards better design 
solutions. This process is the core concept of generative design (see 1.2.3). 

This combination that can generate optimized design solutions is essential for the design 
form-finding process. Indeed, “They shift the emphasis from (form-making) to (form-
finding)”(Agkathidis, 2015). These tools are designed to help the design decision, they are 
recognized as decision support systems. “Computational tools have introduced innovative 
form-finding techniques, revolutionizing architectural design and production”(Agkathidis, 
2015). However, only recently, a few numbers of workflows adopting this approach were 
introduced to the market. These workflows are still limited and not widely used among 
architects. It seems that the workflows based on generative design are the closest existing 
workflows to serve MOIA models.
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CHAPTER  4 Decision support workflows 

“Design is nothing if not decision making.” (Petroski, n.d.) 

Using design frameworks such as MOIA provides us with better design outcomes. To 
execute such frameworks for approaching specific problems, we use workflows. The design 
frameworks are broad and can be used to approach various problems in different design 
disciplines. In contrast, a workflow is a detailed executive plan of a design framework to 
approach specific tasks in a particular design discipline. In one workflow, many tools can be 
involved. “Since, in architecture, the design process is not confined to a single stage of a 
project, an architect will probably use many different tools to achieve the necessary work for 
each phase. There are some architects who, based on their approach to design, spend a great 
deal of the design process using computer software, but their actual process (the steps or stages) 
may seem very similar to that of an architect who sketches and draws using traditional tools. 
What we must recognize is that the design process is not specific to the tools that are used, but 
to the architect approach.”(Makstutis, 2018) 

While sometimes a single tool seems useless, within a workflow, it can be significant. 
Reviewing each tool independently can be misleading. However, reviewing the tools within the 
context of the workflow is more useful. Based on MOIA and after extensive exploration of 
many design processes and tools typologies, this chapter intends to investigate different 
decision support workflows for architects. The selected workflows are capable of generating 
design options, evaluating them, and evolving better options based on this observation 
autonomously. Additionally, the chosen workflows are capable of helping architects during the 
early stages of the design process. 

4.1 Workflow 1 

Workflow 1 consists of using Grasshopper® and its generative evolutionary solver 
Galapagos©. It allows the designers to define design variables x and design scenarios, which 
represent the observation variables y. Many observation tools are available for Grasshopper®. 
Some of these tools can interpret the observed values. However, this interpretation is usually 
strict; (0 (not satisfied), 1(satisfied)) or (-1(not satisfied), 0(satisfied), 1(not satisfied)). This 
interpretation is not suitable for high in negentropy aggregation functions. 

Galapagos© evolves the design variables x by linking it to the satisfaction level of a 
single objective. It seeks to evolve the fitness landscape toward optimizing a single objective 
by using EA (see Figure 44). The fitness landscape consists of all the observed candidate 
solutions.  Rutten explains, “The term “Evolutionary Computing” may very well be widely 
known at this point in time, but they are still very much a programmer’s tool. ‘By programmers 
for programmers’ if you will. The applications out there that apply evolutionary logic are either 
aimed at solving specific problems, or they are generic libraries that allow other programmers 
to piggyback along. It is my hope that Galapagos will provide a generic platform for the 
application of Evolutionary Algorithms to be used on a wide variety of problems by non-
programmers.”(Rutten, 2011). However, this workflow does not involve any methods to 
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compute this single objective from different fitness (observation variables). In architectural 
design, several fitnesses are usually involved. 

 

Figure 44: Different generations of fitness landscape in evolutionary solvers (Rutten, 2011) 

Figure 45 shows the interface of Galapagos©. Figure 46 demonstrates the results of two 
tests performed to optimize the location of the building (A) regarding solar gain based on this 
workflow. In the figure, the example on the left minimizes solar gain, and the example on the 
right maximizes it. Because this workflow uses Grasshopper®, thus, the designer can watch the 
form of each solution in Rhinoceros®. 

   

Figure 45: Galapagos© interface; left (option panel), right (solver panel) 
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Figure 46: Optimizing the position of a building “A” based on observing the solar gain; left (minimization, right 
(Maximization). 

 

4.2 Workflow 2 

Workflow 2 consists of using Grasshopper® VP and its multi-objective optimization 
tool Octopus©. Vierlinger defines, “Octopus is a plug-in for applying evolutionary principles 
to parametric design and problem-solving. It allows the search for many goals at once, 
producing a range of optimized trade-off solutions between the extremes of each goal.”(Vier, 
2019). He explains, “Octopus introduces multiple fitness values to the optimization. The best 
trade-offs between those objectives are searched, producing a set of possible optimum solutions 
that ideally reach from one extreme trade-off to the other.”(Vier, 2019). Octopus© generates 
solutions by respecting the constraints and manipulating the design variables x, which is 
predefined by the designer in Grasshopper®. Then, each candidate solution is observed by using 
one of the many tools and methods available in Grasshopper®. Finally, Octopus© uses Pareto’s 
function (see 2.3.1) to aggregate the solutions based on the observed variables y (Vierlinger, 
2013). This process is iterative and autonomous. 

Octopus© uses a 3D coordinate system to visually represent the candidate solutions’ 
classification (Vierlinger, 2013) (see Figure 47). Each of the three axes represents one 
observation variable. Every candidate solution is represented in the coordinate system by a 
point. It is possible to replace the points with the forms of solutions. By default, the points use 
color code ranging between light green and dark red to indicate the solution class; dark red 
represents non-dominated “Pareto front” solutions. In addition to the solutions’ position within 
the scatterplot, the user can use sizes and colors to represents the objectives. Octopus© allows 
the user to isolate the elite solutions and non-dominated solutions. It also can represent the 
solutions in a multi-axis parallel coordinates view. 

Building “A” 
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Figure 47: Octopus© user interface 

Using a parallel coordinate for Grasshopper®, such as Design-Explorer© (see Figure 
48), is useful to filter the candidate solutions in this workflow. “Parallel coordinates is a 
general-purpose visual multidimensional coordinate system.”(Inselberg, 2009). The parallel 
coordinates are a robust method for exploring, sorting, and filtering a large number of solutions 
based on the defined design variables x and observation variables y. While the scatterplot can 
represent up to three variables, parallel coordinates allow to represent an unlimited number of 
variables visually. It can filter the candidate solutions very efficiently. However, if only three 
or fewer objectives are involved, the scatterplot can be more informative, “Despite the 
popularity, the parallel coordinates plot is not as straightforward as the scatterplot in 
presenting the information contained in a solution set. Due to mapping multi-dimensional data 
onto a lower 2D space, the loss of information is inevitable.”(Li, Zhen, & Yao, 2017) 

 

Figure 48: Design-Explorer© page (Tomasetti, 2017) 
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4.3 Workflow 3 

Workflow 3 consists of using Grasshopper® VP to define the design variables x and 
observation variables y. Then we use Biomorpher© to evolve new x values. Harding describes 
Biomorpher© as; “Interactive Evolutionary Algorithms for Rhino Grasshopper.”(Harding, 
n.d.-a). He explains, “As opposed to setting objective functions (As with Galapagos for 
example), Interactive Evolutionary Algorithms (IEAs) allow designers to engage with the 
process of evolutionary development itself. This creates an involved experience, helping to 
explore the wide combinatorial space of parametric models without always knowing where you 
are headed.”(Harding, n.d.-a). 

In Biomorpher©, four different types of inputs from Grasshopper® are used (genome, 
geometry, performance, initial population). The genome is the design variables x. The geometry 
is the candidate solutions’ 3D forms. The performance is the observation variables y; it is 
computed from assessing the solutions based on the fitnesses by using one or more of the 
observations approaches available in Grasshopper®. Finally, the initial population is an 
optional input that can be used to start the generative process with non-random values of x. 

In this workflow, the designer first defines the variable parameters, constraints, and 
scenarios in Grasshopper®. Then, in  Biomorpher©, the user defines the population size and 
the mutation probability (see Figure 49) to compute the first generation (see Figure 50). Once 
the first generation is computed, the designer can define a target (no optimization, maximize, 
minimize) (Figure 50) to evolve the solutions. On top of each evolved solution, circles that 
represent the satisfaction level of each objective are presented (see Figure 50). The user can 
select the preferred candidate solutions to direct the next generations; Biomorpher© use IEAs. 
This process can be repeated for evolving many generations. Eventually, the user can select 
parents from different generations to evolve new solutions (see Figure 51). 

 

Figure 49: Population in Biomorpher©, each circle represents a cluster of similar solutions 
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Figure 50: Candidate solutions in Biomorpher© 

 

 

Figure 51: Different generations in Biomorpher© 

To classify the candidate solutions, fitness ranging from (0.0 to 1.0) is assigned for each 
phenotype (Harding, n.d.-b). The fitness is then used in a roulette wheel selection (fitness 
proportionate selection) (Goldberg, 1989; Harding, n.d.-b) to evolve new solutions. Elitism is 
not used in this process. According to Harding, to compute these values, Biomorpher© uses a 
process that consists of several steps (Harding, n.d.-b): 
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1. All fitnesses are reset to zero. 
2. If a manual selection is made (i.e., the tickbox checked), then all designs in that 

cluster will have fitness set to 1.0 regardless of performance-based fitness. They 
can go no higher. 

3. If no performance-based criterion is specified, go to selection. 
4. If one performance-based criteria is specified, then normalise performance 

values for the whole population and assign this as the fitness. If fitness is 
already 1.0 (due to manual selection) then do nothing. Note that if you are 
minimizing a performance value, we normalize and take 1-x of course. 

5. If two or more performance-based criteria are used, then simply normalise 
performance values, sum these and divide by the number of criteria. 

This classification method can result in solutions that are inferior in performance 
because the selection in IEA allows the user to select solutions based on subjective opinions 
and not only based on the performance. Harding clarifies, “this is different to typical multi-
objective optimization methods in that you could in theory evolve something that is poorly 
performing for all performance-based objectives (i.e., nowhere near a Pareto front), simply 
because you like the look of it.” (Harding, n.d.-b). 

4.4 Workflow 4 

Workflow 4 consists of using Dynamo® VP and its generative tool, Refinery®. 
Dynamo® allows the designers to construct parametric models defined by design variables x 
and design constraints. It also allows the designer to use many observation tools and methods. 
Once the designer defines x and the scenario, Refinery® is used to evolve a new solution by 
linking design variables x values to the design variables y values. Refinery® can optimize 
multi-objective based on many fitnesses simultaneously. It classifies the solutions based on 
Pareto’s function according to the observation variables y. 

Refinery® allows the designers to choose from four different generation methods 
(optimize, cross product, randomize, like this). The tools offer three different options to regard 
the observation variables (ignore, maximize, minimize). Before the generative process starts, 
the user must specify the population size, the number of generations, and seed value to control 
the randomization. Once all these choices are assigned, Refinery® can start evolving design 
options. 

Figure 52 presents the interface of Refinery®. On the left side of the interface, a list of 
the different studies is located. On the right side, a group of thumbnails that represent the 
generated solution is located. On top of the thumbnails, a scatterplot represents the solution’s 
performance. The user can choose one objective for each of the plot’s two axes. The user can 
easily change the objectives represented in each axis to compare the solutions based on different 
objectives. The position of the solutions within the scatterplot is not the only option to compare 
the solution visually. The user can use color and size to illustrate the performance of the 
objectives. Eventually, the user can use a parallel coordinate in Refinery® to filter the results 
(see Figure 53).  
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Figure 52: Refinery® interface (A) scatterplot (Walmsley, n.d.) 

 

Figure 53: Refinery® interface (B) parallel coordinate (Walmsley, n.d.) 
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4.5 Workflow 5 

Workflow 5 consists of using Dynamo® VP and its generative optimization tool 
Optimo®. Dynamo® allows the designer to define design variables x and constraints. It also 
allows the designer to use many observation tools and methods. Once the designer defines the 
parametric model and the scenario, Optimo© is used to generate new solutions by evolving the 
values of x by linking the original x to y. Optimo© can optimize multi-objective based on many 
finesses simultaneously. Optimo© classifies the solutions via Pareto’s function according to the 
observation variables y. “Optimo - a BIM-based multi-objective optimization tool - was 
developed to enable rapid building performance optimization in the process of design. Optimo 
is an open-source application for parametrically interacting with BIM models for design 
optimization. Optimo provides the option to optimize multiple objective functions with respect 
to multiple parameters and works based on the Nondominated Sorting Genetic Algorithm-II 
(NSGA-II) (Deb et al., 2002)” (Deb, Pratap, Agarwal, & Meyarivan, 2002; Rahmani ASL, 
2015). It is recommended by Rahmani, the developer of the tool, to use an interactive parallel 
coordinate to narrow the options “Visualizing the results in an interactive parallel coordinates 
plot allows the various iterations to be evaluated by the designer. “ (Rahmani ASL, 2015).  

 

Figure 54: Optimo© structure (Rahmani ASL, 2015) 

4.6 Workflow 6 

In this workflow, we use EcoGen© to generate optimized modular buildings. In his 
book, Marsault, the researcher at MAP-Aria based in Lyon and the leading developer of 
EcoGen©, defines “EcoGen is a software wizard for architectural eco-design, a source of 
proposals and analytical data, assisting the designer in the creation phase. Its components are 
designed to reduce the disconnect between the post-design creation and optimization phases by 
means of a continuous and gradual process.”(Marsault, 2018). 

EcoGen© helps the architects and urban designers during the early stage of the design 
process to find ecologically optimized modular building’s forms. It uses a genetic algorithm to 
generate modular solutions that respond to predefined objectives. “EcoGen belongs to the 
family of generative software tools based on population evolution. Its principle is to iteratively 
generate a number of solutions, using two engines: one morphological, the other genetic. Some 
solutions, deemed effective, are crossed with each other and/or mutated to generate new ones, 
which will then be assessed based on certain criteria chosen at the outset by the user and, of 
course, modified depending on the results obtained.” (Marsault, 2018). 
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The software uses Pareto’s function to classify the candidate solutions based on their 
performance. Therefore, EcoGen© is capable of optimization multi-objective simultaneously. 
“Each time EcoGen is launched for the same initial site and program data, the random 
generator is initialized with a different value. This makes it possible to obtain an approximation 
of the Pareto front in just a few runs via various convergence trajectories and therefore to 
temporarily.”(Marsault, 2018). 

 To initiate the generative process of EcoGen© (v2.1), the user must specify some 
settings. First, the user must identify the objectives fitnesses intended to be optimized. 
Currently, four different objectives are available (compacity, heating, solar gain, daylight 
factor). However, two other objectives are under development (life cycle cost, economic cost). 
Additionally, the user must specify the percentage of the different program types (bright, blind, 
luminous). This helps evaluate heating, solar gain, and daylight factor accurately. The user must 
also specify the voxel size (width, length, height), number of floors, targeted floor area, and 
tolerance limit for the targeted area. The user can also specify the number of steps (generations). 
Once all this information is specified, the user can run the calculation. 

According to the developer, “EcoGen attempts to achieve two objectives permanently: 
searching through a vast number of diversified solutions and, at the same time, increasing the 
efficacy of the families of solutions that seem best adapted to the situation”(Marsault, 2018). 
Once the candidate solutions are computed, the user can specify the ones that reflect his 
personal preference. The preferred candidate solutions help to orient the evolution; EcoGen© 
uses an Interactive Genetic Algorithm (IGA). “EcoGen can work in autonomous mode (without 
human intervention, except for pause or stop), and, ultimately, propose a list of optimized 
solutions for the program and criteria selected by the user. However, it can also work in assisted 
mode (interactive). In this case, each time the partial results are consulted, the user can tell it 
which solution/s of those displayed he is interested in, depending on subjective criteria 
(morphological, esthetic) or objective criteria (efficiency-based, constructive, functional), and 
thus guide evolution in one or more preferred directions.” (Marsault, 2018) 

Figure 55 demonstrates the main interface of EcoGen©. Figure 56 shows the perspective 
mode of EcoGen©. In this mode, the designer can explore each candidate solution separately 
within its context from different angles. Moreover, in this mode, the values of the observation 
variables y are presented numerically. 
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Figure 55: EcoGen© (version 2.1) user interface 

 

Figure 56: EcoGen© (version 2.1) perspective mode 
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Compared to other workflows presented earlier and based on VP, EcoGen© is fast and 
easy to use. However, In EcoGen©, the significant part of x and y is predefined. It always 
generates modular form based on random identical voxels. The observation is limited to only 
four predefined performance fitness (six in the future). Compared to the workflows that are 
based on using VP, this can be a significant disadvantage as it limits the role of the designers 
during structuring the problem, which can restrict their creativity. 

4.7 Acceptimality and decision support systems 

In this chapter, different decision support workflows for designers have been reviewed. 
Linking these workflows to MOIA helps to identify the difficulties they face, which prevents 
them from achieving acceptimality. 

Workflow 1 is only capable of approaching design problems with a single objective. In 
design, to use a single objective, this objective must be global. This workflow does not propose 
any method to compute a global objective from many observation variables y. For example, in 
MOIA, the GDI is a global objective computed from multiple DOI and criteria. 

The main difficulty of Workflow 3 is that it does not adopt a reliable method to approach 
optimality. Therefore, it can result in solutions that are inferior in performance. Furthermore,  
there is no reliable interpretation method the designer can use to express his personal preference 
of the criteria and the objectives. However, this workflow adopts a remarkable approach for 
selection that increases the interaction between the tools and the designer. In MOIA, the 
selection occurs within the Morphogenesis model. 

Workflows 2, 4, 5, and 6 use a similar approach. Thus, they share similar difficulties. 
These workflows use EA to generate solutions; workflow 6 uses interactive IEA. Then, they 
observe the generated candidate solutions. Next, they use Pareto’s function to aggregate the 
observed solutions. Based on the aggregation, EA is used to evolve new solutions. These 
workflows are the closest to MOIA among the discussed workflows. However, they focus on 
approaching optimality and not acceptimality. 

Figure 57 represents the framework adopted by Workflows 2, 4, 5, and 6. Comparing 
this framework to MOIA (see Figure 14 (Chapter 2)) is essential to understand the difficulties 
that confront these workflows. From this comparison, we can recognize that this framework 
does not allow the designer to express his preference in the optimization process. Consequently, 
these workflows cannot approach acceptimality. This problem occurs because these workflows 
use Pareto’s function. This function is ordinal and low in negentropy, as mentioned before. 
Consequently, it does not allow the designer to express his personal preference for the 
objectives. Furthermore, it classifies the solutions based on the observation variables y without 
interpretation; the designer is not allowed to express his preference of the criteria. 
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Figure 57: The design framework adopted by Workflows 2, 4, 5, 6 

Replacing Pareto’s function with other aggregation functions that allow the designer to 
express his preferences can result in decision support systems for approaching acceptimality. 
The high in negentropy cardinal functions such as Maximin or Derringer & Suich’s aggregation 
functions can be a suitable alternative to Pareto’s function. Investigating the different 
aggregation functions is highly recommended. Such investigations can help in developing 
decision support systems based on acceptimality. 

 As mentioned before, Workflows 2, 4, 5, and 6 share the same framework. However, 
based on the tools’ typologies they use, they are divided into two categories. The first category 
includes Workflows 2, 4, and 5 and is based on VP, and it uses GA. The second category is 
Workflow 6, this workflow is not based on VP, and it uses an IGA. Comparing these categories 
is also recommended.
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CHAPTER  5 Tools and workflows 

“If we knew what it was we were doing, it would not be called research, would it?” (Einstein, 
n.d.) 

The support systems available in the market for multi-objective design optimization are 
mainly adopting a similar approach based on generative design. They usually start from a set 
of candidate solutions based on random values. Then, they observe these candidate solutions. 
Next, they use Pareto’s function to classify the solutions based on design objectives. Finally, 
an optimization algorithm is used to evolve new solutions. In chapter 4, four different 
workflows adopting this approach are presented (Workflows 2, 4, 5, and 6). However, these 
workflows are not identical as they are based on different tools. As mentioned earlier, we can 
separate these workflows into two different categories. One category is based on VP and uses 
GA (EA) (Workflows 2, 4, and 5); the other category is based on non-VP and uses IGA (IEA) 
(Workflow 6). In this chapter, we adopt an experimental approach to compare designers’ 
acceptability of these workflows based on the tools types and the interface they use. 

5.1 Experiment 1: comparing workflow 2 and 6 

This experiment intends to study and compare users’ acceptability of the two different 
categories, presented before. The aim is to study the acceptability of the workflows based on 
user experience by comparing Workflow 2 and Workflow 6.  

5.1.1 Methodology 

Samples of architects and engineers, from the domain of building design, are invited to 
participate in a work session that explores both categories represented by Workflow 2 and 
Workflow 6. The work session is divided into four consecutive parts, presentation, time of 
guided manipulation, time of autonomous manipulation, and an individual questionnaire. The 
work session is performed four times at different dates with different groups. 

5.1.1.1 Presentation 

The work session starts with a presentation consisting of two parts. The first part the 
presentation discussed the idea of “building lifecycle,” which includes planning, construction, 
and operation concepts; designing is part of the planning stage. Next, an example of an 
architectural design process stage was presented, followed by introducing design optimization 
in the early stage of the design process (see Figure 58). The presentation highlighted the 
importance of design optimization during the early stage of the design process, which is the 
concern of this work session. Decisions at this stage of the design process profoundly impact 
the characteristics of the design solutions. 
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Figure 58: Design optimization in the early stage of the design process 

Then, a video of conceptual examples of optimization case studies (Upgreengrade 
Team, 2016) was presented to present the idea of design optimization. The examples included 
a set of simple architectural design optimization problems. Each problem was based on one of 
the following objectives: 

• minimize the distance of a building to a group of buildings,  

• optimize the location of a building to maximize the shadow received from the 
surroundings,  

• optimize the location of a building based on radiation analysis,  

• optimize the form of a building based on radiation analysis. 

All these examples have been solved with Grasshopper® and Galapagos© and 
Ladybug© tools. Afterward, London city hall (Foster and Partners, 2002) was presented as a 
case study of an optimized building to present the importance of multi-response optimization 
in architectural design (see Figure 59). According to the designer, there were two main 
objectives involved in the optimization of the form “minimizing the surface area exposed to 
direct sunlight” and “provide shading for the naturally ventilated offices”(Foster and Partners, 
2002). Then Pareto’s function (see 2.3.1) was explained to the participants by using different 
methods. First, a graphical explanation that demonstrates Pareto’s function in a simple situation 
with two design objectives was presented. Second, a numerical explanation of Pareto’s function 
by comparing four different solutions regarding three different objectives was presented.  
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Figure 59: London city hall (Foster and Partners, 2002) 

The second part of the presentation focuses on presenting Workflow 2 (see 4.2) and 
Workflow 6 (see 4.6) to the participants. First some generative multi-objective design 
optimization tools are mentioned (EcoGen©, Optimo©, Octopus©, Biomorpher©) and 
classified to VP based and non-VP based tools. For Workflow 2, the presentation introduces 
the concept of VP, which is then followed by a tour of the Grasshopper® user interface to show 
how it works and its capabilities. Next, a list of Grasshopper® plug-ins is presented to show the 
extended capabilities of the software. This includes Octopus© (see 4.2), Biomorpher© (see 
4.3), Design Explorer© (see 4.2), Ladybug©, and Honeybee©; the last two are tools for 
environmental observation. For Workflow 6, the presentation defines EcoGen©, how it works, 
its capabilities through a tour of its user interface. 

5.1.1.2 Guided manipulation 

After the presentation, a guided manipulation of both EcoGen© and Grasshopper® was 
performed to familiarize the participants with the tools. First, the participants followed a guide 
for using EcoGen©. The guided manipulation taught the participants how to start EcoGen©, 
how to manipulate its parameters, and how to evolve solutions. They were also guided to use 
the interactive selection of the phenotypes to orient the evolution. Finally, the participants were 
guided to explore and navigate the solutions. 

Next, the participants followed a guided manipulation of Grasshopper®. The 
manipulation began by explaining how to start Grasshopper®. A series of steps were used to 
demonstrate the complexity that can be reached by using Grasshopper®. The participants were 
guided to construct and manipulate a single point, then, to construct another point and use both 
points to create a parametric line. Next, The participants were guided to build a grid of points 
and an “A” point isolated from this grid. Each point that belongs to the grid was used as a center 
for constructing a circle. Based on the distance between the point “A” and the center of each 
circle, the radius dimensions of the circle were assigned. As a result, the closer the circle is to 
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point “A”, the smaller it is. After, the participants were guided to replace the circles with spheres 
(see Figure 60). Subsequently, they were guided to optimize the position of point “A” in order 
to maximize the total volume of the spheres and to minimize the total distances between the 
centers and the point “A” by using Octopus©; the interface of Octopus© was explained during 
this process. 

 

Figure 60: A parametric grid of spheres, sized based on distance 

5.1.1.3 Autonomous manipulation 

During the autonomous manipulation, the participants were asked to generate an 
optimized modular building by using both workflows (2 and 6). First, they were asked to use 
EcoGen© v 2.0 (the latest version at this moment) to generate an optimized modular building 
form (see Figure 61). The participants had the possibility to manipulate the parameters of 
EcoGen© and to select the preferred solutions. The participants were encouraged to use all the 
available objectives at the experiment time, compacity, solar gain, and heating; these were the 
objectives available in EcoGen©. 

 

Figure 61: Examples of solutions created by EcoGen© 

Second, the participants were asked to use Grasshopper® and Octopus© to generate an 
optimized modular building form. For this part of the experiment, a Grasshopper® algorithm 
was predeveloped for the participants. The algorithm generates modular three-dimensional 
grids consisting of voxels (see Figure 62 and Figure 63) by using a set of variables (see Table 
3). 
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Figure 62: Example of a solution created by the predeveloped algorithm 

 

Figure 63: Massing model of a design solution generated by the predeveloped algorithm  
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 Variable name Variable function 

1 Shuffle function changes the positions of the voxels (voxel’s presence or absence in 
each cell of the three-dimensional grid) 

2 Building area width defines the land lot width 
3 Building area length defines the land lot length 
4 Building area origin x defines the x value of the land lot origin point 
5 Building area origin y defines the y value of the land lot origin point 
6 Building area orientation controls the orientation of the land lot  
7 Unit width controls the width of the modules (the basic voxel) 
8 Unit length controls the length of the modules (the basic voxel) 
9 Unit height controls the height of the modules (the basic voxel) 
10 Number of levels specifies the maximum number of floors allowed 
11 Program area defines the total area of the required interior program 
12 Form orientation controls the orientation of the forms 
13 Courtyard width defines the width of a rectangular courtyard  
14 Courtyard length defines the length of a rectangular courtyard 
15 Courtyard origin x defines the x value of a rectangular courtyard origin point 
16 Courtyard area origin y defines the y value of a rectangular courtyard origin point 

Table 3: Experiment 1, the list of variables used in the Grasshopper® predeveloped algorithm 

The algorithm is prepared to observe three different fitness: (1) the compacity of the 
form (maximize), which corresponds to the ratio between the form’s surface of the envelope 
and the total surface of the floors, (2) the solar gain during the summer period (minimize), and 
(3) the solar gain during the winter period (maximize). The algorithm uses Octopus© to 
optimize the solutions. For observing solar gain, the algorithm uses Ladybug©; “Ladybug 
performs detailed analysis of climate data to produce customized, interactive visualizations for 
environmentally-informed design.”(Ladybug Tools Team, 2020). For imitating EcoGen©, the 
algorithm prepared to generate a variety of modular forms by autonomously manipulating the 
“form orientation,” and the “shuffle function” (see Table 3).  

Many tests were performed before the experiment to confirm the reliability and 
flexibility of the algorithm. A real case study was selected to test and demonstrate the abilities 
of the algorithm. A small U-shape house designed by the Baytikool team (BaityKool team, 
2018) (see Figure 64) for Solar Decathlon Middle East 2018 competition in Dubai (“Solar 
Decathlon Middle East,” n.d.) was used for that purpose. The test used the house as a unit 
(voxel). The goal was to find the positions and the orientation of a group of units to create an 
optimized modular collective housing based on the three objectives defined in the algorithm. 
The Baitykool team was asked to select between two design approaches, low-rise with a two-
stories limit or mid-rise with twelve-stories limit. The design team decided to focus on the low-
rise approach. 
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Figure 64: Baytikool, Solar Decathlon Middle East 2018 competition in Dubai (BaityKool team, 2018) 

The chosen approach was then used to test the algorithm. A suitable neighborhood was 
selected, modeled, and imported into the algorithm (see Figure 65). The way to define modules 
free areas was explained to the participants. These areas can be used for creating spaces for 
transportation, public spaces, services, etc. They can also be used for avoiding existing 
structures or landscapes on the site. 

 

Figure 65: Optimized collective housing based on Baitykool unit 

The tests showed that the algorithm is flexible and reliable, and it can be used for the 
experiments. The algorithm appears to improve the control of the variables of the different 
solutions. However, the main disadvantage is relative to the computation convergence times, 
which are high in comparison with EcoGen©. By autonomously testing both workflows based 
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on EcoGen© and the predeveloped algorithm for Grasshopper®. The participants were able to 
give their opinions by responding to a questionnaire. 

5.1.1.4 Questionnaire 

A digital questionnaire was given to each participant to collect their feedback (see 
Appendix I). The questionnaire was divided into four different sections. The first section 
compares both workflows. The second section collects the participants’ opinions of the used 
tools in general. The third section collects basic information about the participants’ background 
and skills. The final section collects general personal information about the participants. 

5.1.2 Participants 

The total number of participants in the experiment was 11 persons (see Appendix I). 
36.4 % are specialized in architecture, while 63.6 % are engineers specialized in buildings 
design. Students represent 63.6% of the participants, professionals represent 27.3 %, and only 
9.1 % are university professors. In terms of age, 54.5 % are between 20-29 years old, and 27.3% 
are between 30-39 years old, while 9.1% are between 40-49, and 9.1 % are 50 years old or 
above. Having the majority of participants younger designers is positive for this experiment 
since the younger designers are more familiar with the digital tools in general. However, the 
majority of participants indicated that they had no or low experience in programming or visual 
programming (see Table 4), which is excellent for more neutral judgment. Most of the 
participants were not familiar with using multi-objective design optimization methods (Figure 
66). This is also positive for the experiment because it aims to encourage those designers who 
are not familiar with optimization to optimize.  

Level of skill Programming skills Visual programming skills 
0//1 18.2 % 27.3 % 
1/10 9.1 % 36.4 % 
2/10 18.2 % 9.1 % 
3/10 9.1 % 0.00 % 
4/10 9.1 % 9.1 % 
5/10 18.2 % 18.2 % 
6/10 0.00 % 0.00 % 
7/10 9.1 % 0.00 % 
8/10 0.00 % 0.00 % 
9/10 9.10 % 0.00 % 
10/10 0.00 % 0.00 % 

Table 4: Experiment 1, participants experience in programming 
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Figure 66: Experiment 1, participants experience in multi-objective design optimization 

5.1.3 Results 

To compare both workflows, the participants answered a list of questions based on their 
experience during the work session (see Appendix I). Each question allows the user to select 
between two answers; each answer represents one workflow. Table 5 presents all the questions 
used for the comparison, and it also demonstrates the statistics of the participants’ answers. The 
questions were targeting five different points. The first two questions concern the design 
process. Questions 3 and 4 focus on the tools’ ability to involve designers’ creativity. Questions 
5 and 6 represent performance optimization. Questions 7 and 8  focus on the tool interface. 
Finally, the last question compares the participants’ general preferences. By observing these 
results, it was clear that the participants prefer Workflow 2 (Grasshopper® & Octopus©) over 
Workflow 6 (EcoGen©). However, for the interface, they appreciated a little more Workflow 
6 over Workflow 2. 

 Question Workflow 2 Workflow 6 
1 Which workflow do you think can help you to find design solutions? 72.7 % 27.3 % 
2 Which workflow is more suitable for your design process? 72.7 % 27.3 % 
3 In which workflow do you feel more involved in the design? 81.8 % 18.2 % 
4 Which workflow stimulates your creativity more? 81.8 % 18.2 % 
5 Which workflow do you prefer to filter the results? 63.6 % 36.4 % 
6 Which workflow do you believe helps produce better results? 90.9 % 9.1 % 
7 Which workflow is easier to understand? 27.3 % 72.7 % 
8 Which user interface do you prefer? 45.5 % 54.5 % 
9 Which workflow do you prefer? 100 % 0.00 % 

Table 5: Experiment 1, comparison between Grasshopper® and EcoGen© 

The second group of questions was focused on more general comments regarding the 
presented tools (see Appendix I). Table 6 presents all the questions used for these general 
questions, and it also demonstrates the statistics of the participants’ answers. These questions 
are separated into four groups. Questions 1 and 2 focus on the designers’ opinions of the 
generative multi-objective design optimization tools in general. It is clear that the majority of 
the participants are willing to use these tools for their academic work. However, slightly more 
than half of them are not sure about using it in their professional work; the rest of them are 
willing to use these tools. Questions 3 to 6 focuses on the designers’ opinions of VP. The 
answers showed highly favorable opinions toward VP. Questions 7 through 10 focus on the 
designers’ opinions of EcoGen©. For these questions, the answers varied. About half of the 
designers find this tool suitable and want to know more about it. However, overall, not many 

Never; 72,70%

Rarely; 9,10%

Sometimes; 9,10%

Usually; 9,10% Always; 0,00%



Abdulaziz Afandi – University of Bordeaux 

84 

 

participants are considering using it in the future. Finally, the majority of the participants prefer 
EcoGen© as a plug-in for Grasshopper®.  

 

 Question Yes No Maybe 

1 If you are a student, do you consider using these tools in your 
schoolwork? 57.1 % 28.6 % 14.3 % 

2 Do you consider using these tools in your professional work? 45.5 % 0.00 % 54.5 % 
3 Do you think that visual programming is suitable for architects? 100 % 0.00 % 0.00 % 

4 If you are a student, do you consider using visual programming in your 
future schoolwork?  57.1 % 28.6 % 14.3 % 

5 Do you consider using visual programming in your future professional 
work? 45.5 % 0.00 % 54.5 % 

6 Do you wish to learn more about visual programming? 100 % 0.00 % 0.00 % 
7 Do you think that EcoGen© is suitable for architects? 54.5 % 18.2 % 27.3 % 

8 If you are a student, do you consider using EcoGen© in your future 
schoolwork? 14.3 % 57.1 % 28.6 % 

9 Do you consider using EcoGen© in your future professional work? 27.3 % 36.4 % 36.4 % 
10 Do you wish to learn more about EcoGen©? 54.5 % 27.3 % 18.2 % 
11 Do you prefer if EcoGen© became a plugin for Grasshopper®? 63.6 % 9.1 % 27.3 % 

Table 6: Experiment 1, general feedback about the tools 

In general, the results show a certain homogeneity of the answers regardless of the 
characteristics of the participants and their skills. The feedback demonstrates that Workflow 2, 
which, based on VP, is more acceptable for the participants in comparison to Workflow 6, 
which based on EcoGen©. However, this acceptability is ambiguous because the designers 
preferred the interface of EcoGen©. It will be necessary to complement this experiment with 
another one in order to understand the preferences of the designers better. The additional 
experiment must compare the workflow 2, which is preferred by the designer to another 
workflow based on VP based on an interface similar to EcoGen©. This will improve our 
investigations. 

5.2 Experiment 2: Design optimization in visual programming 

Both Biomorpher© and Octopus© are two different multi-fitness evolutionary solvers 
for Grasshopper®. On one side, Octopus© interface is based on graphically representing the 
Pareto front (see 4.2). On the other side, similarly to EcoGen©, Biomorpher© interface is based 
on presenting the 3D massing of the candidate solutions (see Figure 67). Both Biomorpher© 
and EcoGen© use IEA; they allow to select the solution based on their personal preferences. 
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Figure 67: The interfaces of EcoGen© (left), and Biomorpher© (right) 

Comparing Workflow 2 (see 4.2), which is based on Octopus© and Workflow 3 (see 
4.3), which is based on Biomorpher©, can help us to focus the investigation and understand the 
results of Experiment 1. The fact that Octopus© and Biomorpher© are both based on VP helps 
to neutralize many of the dispersive factors. However, in contrast to Octopus© and EcoGen©, 
Biomorpher© does not use Pareto’s function. This experiment intends to focus the participants’ 
attention on the interface and the selection method. Therefore, in this experiment, Octopus© 
and Biomorpher© are introduced as two evolutionary tools for Grasshopper ® based on 
Pareto’s function with different interfaces and mechanisms (interactive, non-interactive). 

5.2.1 Methodology 

Samples of architects and engineers from the domain of building design were invited to 
participate in a work session that explores both workflows. Each work session was divided into 
four consecutive parts. These parts correspond to a presentation, time of guided manipulation, 
time of autonomous manipulation, and an individual questionnaire. The work session was 
performed four times at different dates with different groups. 

5.2.1.1 Presentation 

The presentation is divided into three parts. The first part is identical to the first part of 
the presentation presented in Experiment 1 (see 5.1.1.1). The second part of the presentation 
focuses on the VP. A tour of the user interface of Grasshopper® was performed to explain the 
concept of VP. Next, a list of Grasshopper® plug-ins was presented to show the extended 
capabilities of the software; this includes Octopus© (see 4.2), Biomorpher© (see 4.3), Design-
Explorer© (see 4.2), Ladybug©, and Honeybee©. 

The third part of the presentation focuses on explaining the user interface of both 
Octopus© and Biomorpher© in detail. It is important to emphasize that the experiment aims to 
compare the acceptability based on the experience of the users of these tools and not the actual 
performance of the solutions they evolve. Both plug-ins are introduced as two multi-objective 
optimization tools that use a similar aggregation method and different interfaces or algorithms 
(GA Octopus© and IEA for Biomorpher©); in reality, these tools use different aggregation 
methods (see 4.2, 4.3). This strategy increases the focus on comparing the interfaces by 
neutralizing the aggregation method. 
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5.2.1.2 Guided manipulation 

After the presentation, the participants followed a guided manipulation of 
Grasshopper®. The same procedure used to guide the participants to manipulate Grasshopper® 
in Experiment 1 is used (see 5.1.1.2). However, in this experiment, the participants were guided 
to optimize the position of point “A” to maximize the total volume of the spheres and to 
minimize the total distances between the centers of the spheres and the point “A” by using both 
Octopus© and Biomorpher© (see Figure 60 (5.1.1.2)). 

5.2.1.3 Autonomous manipulation 

For the autonomous manipulation time, the predeveloped algorithm presented and tested 
in  Experiment 1 (see 5.1.1.3) is used to test both Octopus© and Biomorpher©; this will keep 
the link between both experiments. The algorithm was explained to the participants, and they 
were asked to manipulate the variables for a better understanding of the algorithm. Finally, the 
participants were asked to generate optimized modular forms by using the algorithm with 
Octopus© and then with Biomorpher©. Three objectives were defined for the experiment, to 
minimize the form compacity, solar gain in summer, and to maximize the solar gain in winter. 

5.2.1.4 Questionnaire 

A questionnaire was given to the participants to collect their feedback. The 
questionnaire is divided into four different sections. The first section compares both workflows. 
The second section collects the opinions of the participants about the VP in general. The third 
section collects basic information about the participants’ background and skills in multi-
objective design optimization and programming. The final section collects basic personal 
information about the participants. 

5.2.2 Participants 

The total number of participants is 13 persons, 46.2% are engineers specialized in 
buildings design, 46.2% are architects, and 7.7% are architects/engineers. Students represent 
69.2%, professors are 7.7%, professionals are 15.4%, and finally, 7.7% is 
professor/professional. In terms of age, 20-29 years old represent 84.6% of the participants, and 
only 15.4% are 30 years old or older. Most of the participants indicated that they had no or low 
experience in programming or VP (see Table 7). The majority of the participants never used 
multi-objective design optimization (see Figure 68). 
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Level of skill Programming skills Visual programming skills 
0/10 38.5 % 61.54% 
1/10 0.00 % 0.00% 
2/10 7.7 % 15.4 % 
3/10 7.7 % 15.4 % 
4/10 23.1 % 0.00 % 
5/10 7.7 % 7.7 % 
6/10 0.00 % 0.00% 
7/10 7.7 % 0.00% 
8/10 0.00% 0.00% 
9/10 7.7 % 0.00% 
10/10 0.00 % 0.00% 

Table 7: Experiment 2, participants’ experience in programming 

 

Figure 68: Experiment 2, participants’ experience in multi-objective design optimization 

5.2.3 Results 

To compare both tools, the participants responded to a list of questions based on their 
experience during the work session. Each question allows the user to select between two 
answers, and each answer represents one of the tested tools. Table 8 presents all the questions 
used for the comparison, and it also demonstrates the statistics of the participants’ answers. The 
questions are targeting five different points. The first two questions concern the design process. 
Questions 3 and 4 focus on the tool’s ability to involve the designers’ creativity. Questions 5 
and 6 concern performance optimization. Questions 7 to 9 focus on the user interface. Finally, 
the last question compares the participants’ general preferences of both tools. 

 Question Octopus© Biomorpher© 

1 Which tool do you think can help you to find design solutions in 
different situations? 46.2 % 53.8 % 

2 Which tool is more suitable for your design process? 30.8 % 69.2 % 
3 In which tool do you feel more involved in the design? 15.4 % 84.6 % 
4 Which tool stimulates your creativity more? 15.4 % 84.6% 
5 Which tool do you prefer to filter the results? 76.9 % 23.1 % 
6 Which tool do you believe helps produce better results? 69.2 % 30.8 % 
7 Which tool is easier to understand? 15.4 % 84.6 % 
8 Which tool is more interesting to you? 53.8 % 46.2 % 
9 Which interface do you prefer? 30.8 % 69.2 % 
10 Which tool do you prefer? 38.5 % 61.5 % 

Table 8: Experiment 2, comparison between Biomorpher© and Octopus© 

Never; 69,2%

Rearly; 7,7%

Sometimes; 7,7%

Usually; 7,7%

Always; 7,7%
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Observing the results from Table 8 shows that each tool has its strength. Regarding the 
first two parts design process and involving designers’ creativity, the participants preferred 
Biomorpher©. According to the participants, Biomorpher© is more visual and interactive. They 
consider that Biomorpher© involves them and stimulates their creativity more than Octopus©. 
However, those who prefer Octopus© find the scatterplot based on Pareto’s function very useful 
as it allows them to compare the solutions easily. Interestingly two-thirds of those who preferred 
Octopus© have a background in architecture. In Experiment 1, most of the participants 
preferred Workflow 2, which uses Octopus© over Workflow 6, which uses EcoGen© and an 
interface similar to Biomorpher©. However, in Experiment 2, the participants prefer 
Biomorpher© over Octopus©. From that, we can infer that in Experiment 1, the participants 
chose Workflow 2 because it uses VP and not because of Octopus© interface. Once an IEA 
approach with a visual interface similar to EcoGen© interface was introduced to VP, the 
participants preferred it. 

Regarding the performance optimization, the participants prefer Octopus© over 
Biomorpher©. No matter if we use VP or non-VP approach, the participants trust Octopus© 
over Biomorpher© and EcoGen©. The participants find Octopus© more informative as it 
graphically represents the performance of the solutions based on Pareto’s function. This 
interface style decreases the confusion and allows for comparing the candidate solutions easily. 
Furthermore, the participants believe that because Octopus© involves less human subjective 
judgment, the chances of finding optimized solutions are higher. 

Regarding the interface and based on the participants’ comments, the majority of the 
participants preferred Biomorpher© because the interface is more visual and interactive. 
However, slightly more than half of the participants find Octopus© more interesting. By 
comparing the results of the two experiments concerning the interface, we can see that it doesn’t 
matter if we use VP or not. The participants prefer the interface style of Biomorpher© and 
EcoGen© over the Octopus© interface style. 

Finally, the participants prefer using Biomorpher© over Octopus©. Comparing this 
result to the results of Experiment 1, where all the participants preferred Workflow 2 over 
Workflow 6 can help us to infer two points. First, the designers prefer to define the structure of 
the problem in VP. Second, the designers prefer the interface style of Biomorpher© and 
EcoGen© approach the solutions; these two interfaces are similar.  

The second group of questions focuses on more general feedback about VP  (see Table 
9). Questions 1 and 2 concentrates on the tools used during the work session in general. The 
rest of the questions concern VP in general. The results show that the majority of the designers 
are willing to use these tools for their professional work. In general, VP is highly acceptable 
among designers. 
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 Question Yes No Maybe 

1 If you are a student, do you consider using these tools in your 
schoolwork? 55.6 % 0.00 % 44.4 % 

2 Do you consider using these tools in your professional work? 53.8 % 7.7 % 38.5 % 
3 Do you think that visual programming is suitable for architects? 84.6 % 7.7 % 7.7 % 

4 If you are a student, do you consider using visual programming in your 
future schoolwork? 66.7 % 7.7 % 33.3 % 

5 Do you consider using visual programming in your future professional 
work? 61.5 % 7.7 % 30.8 % 

6 Do you wish to learn more about visual programming? 84.6 % 7.7 % 7.7 % 

Table 9: Experiment 2, general feedback about the tools 

In general, the results of experiment 2 show a certain homogeneity of the answers 
regardless of the characteristics of the participants and their skills. The results demonstrate that 
the participants prefer to use the interface of Biomorpher© interface rather than Octopus©. 
However, the designers find Octopus© is more reliable for optimization. Therefore, developing 
tools based on VP that are a middle way between Biomorpher© and Octopus© has a high 
potential to be accepted by designers. 

5.3 Interactive Visual Programming 

From the results of experiments 1 and 2, we can conclude that the decision support 
workflows based on VP have high potential to be accepted among the designers. To generate 
optimized solutions, parametric modeling is of high interest. Programming is a high-end tool 
for Parametric modeling. However, textual programming is non-accessible for most of the 
designers. Using VP allows designers to describe sophisticated parametric models. 

The interaction between the tool and the designer is essential to achieve acceptability 
and, thus, acceptimality. This interaction can increase the acceptability of the tools. From the 
results, we can infer tow points that can enhance this interaction. Firstly, using an interactive 
optimization algorithm such as IEA allows the designers to guide the optimization process 
based on their subjective judgment. Secondly, the graphical aspects of the tool are crucial as 
they insight the selection of designers. From the experiments, two graphical qualities are crucial 
for the tools. First, the graphical representation of the performances of the candidate solutions 
is crucial. This can increase the confidence of the designers. It provides them with vital 
information about the candidate solutions. Using a scatterplot such as the used in Octopus© is 
a good example of how to represent the performance of the solutions. It allows the designer to 
compare the solutions. Second, it is imperative to present the massing model of the candidate 
solutions. This allows the designers to explore the solutions, which is essential for forming a 
personal judgment of the solution. 

Refinery® (see 4.4) meets most of the points discussed above. However, Refinery® 
does not use an interactive algorithm. Unfortunately, when these experiments were performed, 
Refinery® did not exist. Experiment 2 was published in IBPSA 2018 conference (Afandi, 
Barlet, Sebastian, Bruneau, & Marsault, 2018). 



 

90 

 

CHAPTER  6 Aggregation for acceptimality 

“The problem with digital architecture is that an algorithm can produce endless variations, so 
an architect has many choices.” (Eisenman, n.d.) 

This chapter presents different experiments that test different aggregation functions, 
which can potentially replace Pareto’s function (see 2.3.1) in the context of design optimization. 
These aggregation functions are Maximin (see 2.3.2) and Derringer & Suich’s function (see 
2.3.3). The experiments aim to link the functions to designers’ acceptability. In contrast to 
Pareto’s function, Maximin and Derringer & Suich’s are cardinal and high in negentropy. These 
functions take into account designers’ acceptability in the optimization process by allowing 
designers to express their preferences in the interpretation model of MOIA (see chapter 2). 
Furthermore, Derringer & Suich’s function allows the designers to assign different weights to 
the design objectives in the aggregation model of MOIA. Thus, each function classifies the 
solutions differently. Figure 69 represents the three functions graphically.  

                     

 

Figure 69: Graphical representation of Pareto’s, Maximin, Derringer & Suich’s aggregation functions 

One of the challenging problems of design is language development for form definition. 
This problem raises the question of creating grammars of form that are consistent with the needs 
of designers (Garcia, 2017). Mainly for economic factors, architects often use forms made of 
simple primary volumes. These forms are usually simpler and cheaper to construct in 
comparison to rounded or streamlined ones. The simple primary forms are also consistent and 
relatively inexpensive when we apply the physical analysis of performances during the early 
stages of the design process. The human brain can envisage these forms quickly. The 
experiments of this chapter use form grammar that results in design solutions consisting of 
identical voxels clustered in a three-dimensional grid. The use of modular forms to study the 
relationship between numerical optimality and human acceptability is more effective than the 
use of complex forms because the complexity of the forms could complicate our study of 
acceptability. It also links the experiments of this chapter to the ones of the previous one. 
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6.1 Experiment 3 

Experiment 3 investigates both Maximin and Derringer & Suich’s aggregation functions 
on a panel of experts. The aim is to compare these functions to designers’ judgments. 

6.1.1 Procedure 

A group of participants was invited to a work session. The work session started with a 
presentation that is identical to the first part of the presentation presented in Experiment 1 (see 
5.1.1.1). The aim is to prepare the participants with the basic knowledge required to complete 
the experiment. It is essential to avoid presenting Maximin or Derringer & Suich’s aggregation 
functions to keep the participants spontaneous in their judgment. Finally, two tests that seek to 
investigate the functions based on designers’ judgments are performed. 

6.1.1.1 Testing of Derringer & Suich’s aggregation function 

The test is performed during the work session, and it aims to measure two different 
aspects related to Derringer & Suich’s aggregation function (see Appendix III). It first sets out 
to observe and measure whether the architects need to make use of objective weighting for 
conveying design objectives. The second aspect concerns the measurement of the consistency 
of the objective weighting values of the designers. 

The participants were asked to place themselves in the situation of working in the early 
stage of the design process of four office buildings. Each building was positioned in a different 
climate zone; each zone corresponds to one particular scenario. The first zone is an extremely 
hot climate (Dubai, United Arab Emirates), the second is a moderate climate (San Diego, United 
States of America), the third is an extremely cold climate, (Yakutsk, Russia) and the fourth is a 
contrasted climate which is hot in summer and cold in winter (Shanghai, China). For each 
location, the participants received the information of the monthly average high temperature, the 
monthly average low temperature, and the monthly sunshine hours. Five different objectives to 
optimize were considered (see Appendix III): 

• Objective 1: Maximize the compacity of the building form. 

• Objective 2: Maximize the direct sunlight. 

• Objective 3: Maximize natural lighting, which includes indirect sunlight. 

• Objective 4: Minimize heating energy consumption. 

• Objective 5: Minimize cooling energy consumption. 

To test both aspects, the participants were asked to set weights for the different 
objectives presented above without further details on the concept of importance or precise 
meaning of the term optimization. The participants’ appreciation must remain spontaneous.  

For the first aspect of the test, The participants must evaluate the weight of the five 
objectives for each scenario. Based on Derringer & Suich’s aggregation, each scenario needs 
five relative weights ranging between 0% and 100% for each objective. The sum of the weights 
of all the objectives together for each scenario should equal 100%. In this part of the test, the 
weight evaluation is non-redundant. The non-redundant evaluation of the weights means that 
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for each scenario, the participants assign a weight for each objective by directly deciding its 
value (see Appendix III). We can link the high variation of weights to the high need for using 
the concept of assigning weights for design objectives, which is the core principle of Derringer 
& Suichs’ aggregation function. 

For the second aspect of the test, the focus was on only one scenario, which was the case 
of the extremely hot climate (Dubai, United Arab Emirates). The evaluation of consistency can 
be performed by using the Analytic Hierarchy Process (AHP) introduced by Saaty (Saaty, 2013; 
Saaty & Vargas, 2000). In this method, the decision-maker has to evaluate the different 
objectives in a pairwise comparison. In contrast to the previous evaluation, the pairwise 
comparison is redundant because we evaluate each objective more than one time by pairing it 
with the other objectives. The number of the pairwise combination is “(n²-n)/2” where n is the 
number of objectives; in this case ((52-5)/2)=10 combinations. For each comparison, the 
weighting is based on a scale that consists of 9 possible choices (see Figure 70). The middle of 
the scale means that both objectives are equally important. Each participant should fill all the 
possible matches of pairwise objectives.  

 

Figure 70: Examples of different pairwise comparison scales 

The scale-based evaluation (see Appendix III) then has to be filled into a judgment 
matrix (see Table 10). The dark grey cells in the matrix are always neutral and equal to the 
middle of the scale because it compares each objective to itself. The values in the light grey 
cells are always the opposite values of the values in white cells. 

 Objective 1 Objective 2 Objective 3 
Objective 1 1 1/9 1/7 
Objective 2 9 1 5 
Objective 3 7 1/5 1 

Table 10: An example of the Judgment matrix 

The matrix is then used to calculate the consistency ratio. If “n” is the number of 
objectives and “λmax” is the maximal eigenvalue, the consistency ratio is computed from (Eq. 
12) (Saaty, 2013; Saaty & Vargas, 2000). According to Saaty, for responses to be considered 
highly consistent, the consistency ratio must be less than 10% (Saaty & Vargas, 2000). 

Consistency Ratio =  
λmax − n

RI × (n − 1) 

With, 

RI = random index (see Table 11) 

(Eq. 12) 
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.51 1.54 1.56 1.57 1.58 

Table 11: The random index values according to AHP (Saaty, 2013; Saaty & Vargas, 2000) 

6.1.1.2 Test of Maximin aggregation function 

The test aims to investigate two different ideas. Firstly, we want to observe how far the 
scatterplot, which represents the Pareto front graphically, affects the architects’ decision. 
Secondly, we want to compare participants’ judgment to both Pareto’s function and Maximin 
functions. 

The participants were asked to imagine themself in the early stage of designing a mixed-
use building (offices, residential, commercial) in a mixed climate, hot summer, cold winter 
(Shanghai, China). The participants were given the monthly average high temperature, monthly 
average low temperature, and monthly sunshine hours. The building is modular, and the size of 
one module is (Width = 6m, Length = 8m, Hight = 4m). The total area of the program is 12000 
m2. The lot area is 8000 m2. The building has three stories at maximum. A courtyard 25 m × 30 
m in the middle of the building was required as a part of the design. The objective was to 
maximize solar gain in winter and minimize solar gain in summer (see Appendix III). 

For the first aspect of the test, a list of 10 different generated forms was shown to the 
participants (see Figure 71); each form represents one solution (see Appendix III). The forms 
were generated by using the predeveloped Grasshopper® algorithm for Experiment 1 (see 
5.1.1.3). All of the generated solutions belong to the Pareto front. However, the participants 
have no access to the Pareto front or to the scatterplot that represents the performance of the 
solution graphically. Each form represents the solar gain in (KWh/m2) by using a color scheme 
in both summer and winter. The participants must select only one form that they prefer. After, 
the scatterplot that presents the ten solutions, including Pareto’s front (see Figure 72), was given 
to the participants. Again, the participants must select only one form. The aim is to observe if 
the scatterplot, which represents the solutions and compares them based on their performance 
visually, will affect the designers’ decisions. For the second aspect, the final selection of the 
participants was compared to Maximin classification of the solutions. 

 

Figure 71: Experiment 3, an example of the used Solutions  
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Figure 72: Experiment 3, scatterplot, including Pareto front for the solutions 1 to 10. 

6.1.2 Participants 

The total number of participants of Experiment 3 was 32 persons; about 87.5% of the 
participants were between 20-29 years old (see Table 12). Table 13 demonstrates the specialty 
and professional status of the participants. Finally, Table 14 shows the frequency of using multi-
objective optimization by the participants in their work. 

Age group Count Percentage 
20-24 18 56% 
25-29 8 25% 
30-34 2 6% 
35-39 1 3% 
40-44 2 6% 
45-49 1 3% 

Table 12: Experiment 3, Participants’ age groups 

 

Categories Count Percentage 
Student/Architecture 24 75 % 
Student/Engineering 2 6 % 
Student/(Architecture/Engineering) 2 6 % 
Professional/Architecture 2 6 % 
(Professor/Professional)/(Architecture/Engineering) 1 3 % 
Professor/Architecture 1 3 % 

Table 13: Experiment 3, Participants’ specialty and professional status  
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Frequency Count Percentage 
Never 16 52 % 
Rarely 10 32 % 
Sometimes 5 16 % 
Usually 0 0 % 
Always 0 0 % 

Table 14: Experiment 3, Frequency of using multi-objective design optimization by the participants. 

6.1.3 Results 

6.1.3.1 Results of Derringer & Suich’s aggregation function test 

Comparing the five different objectives weights for each of the four scenarios shows a 
variation in the objectives’ weights for each scenario. Tracking each objective in each scenario 
also shows a wide range of weights, which means that the different scenarios and the different 
objectives alter the weights (see Figure 73). Thus, we can infer that building designers tend to 
use different weights for different objectives. The weights in this analysis were computed from 
the average of participants’ non-redundant evaluation (see 6.1.1.1).  

 

Figure 73: Experiment 3, average weights resulting from the non-redundant evaluation 

In this experiment, it is clear that the location significantly affected the judgment of the 
participants. For example, Dubai climate is extremely hot in summer (41°C on average in July 
and August), and the temperature is relatively high in winter (above 23°C). The sunshine hours 
are long (250 to 340 hours per month). As a result, on average, the participants evaluated the 
heating load and the direct sunlight to low importance (4% and 8%), and the cooling load to 
high importance (46%). In contrast, these objectives are highly important for the scenario of 
Yakutsk, Russia, as it is an extremely cold climate. 

However, it is likely that participants do not differentiate between the satisfaction of 
objectives and criticality. Satisfaction refers to the level, as a physical quantity, it leads to 
satisfaction (is this level relatively high or low?). Criticality concerns the difficulties or the 
negative consequences to achieve satisfaction (is the satisfaction achievement problematic?). 
For the scenario of Dubai, the cooling load objective, the level of satisfaction, and the criticality 
are both high. Because of the high average temperatures, the energy consumption for cooling 
is high; the electricity is becoming more and more expensive in the city. Other solutions that 
reduce energy demand can be used. These solutions can lower the cooling load, such as 
improving the insulation of the buildings. 
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Based on the average responses of the participants, Figure 74 compares the weight 
values derived from both the non-redundant evaluation (see Figure 73) and the redundant 
pairwise comparison for the case of Dubai. Unexpectedly, despite the fact that the participants 
have different points of view, both evaluations resulted in very close values for the objective 
weights. 

 

Figure 74: Experiment 3, average weights values derived from the non-redundant, and the redundant (pairwise) 
comparison for the five objectives involved in the case of Dubai. 

However, the previous results of the non-redundant evaluation are not enough to assess 
consistency. The redundant pairwise comparison (see 6.1.1.1) of each participant can be 
consistent or inconsistent. Figure 75 demonstrates the consistency ratios calculated from the 
pairwise comparison by using the AHP (Saaty, 2013; Saaty & Vargas, 2000) consistency 
analysis for each participant. Based on the figure, 22% of the participants attained a consistency 
ratio lower than 10%, which is regarded by Saaty (Saaty, 2013; Saaty & Vargas, 2000) as 
acceptable; in the figure, the green columns represent those participants. From a more accurate 
observation of the participants’ responses, we regard deviation values lower than 30% as low 
values. 19% of the participants attained a consistency ratio higher than 30%; in the figure, the 
red columns correspond to those participants. These are regarded as random evaluations. 59% 
of the participants are in between very low and acceptable consistency. The average responses 
of the pairwise redundant evaluation are similar to the direct non-redundant evaluation, which 
is regarded as entirely consistent. However, the consistency ratio of the separate responses is 
low, according to AHP (Saaty, 2013; Saaty & Vargas, 2000). 

 

Figure 75: Experiment 3, consistency ratios of participants’ evaluation of the objectives based on the pairwise 
comparison  

These results highlight the consequences of using weighting aggregation functions for 
generative design applications; the consistency of the designers is low. One solution to resolve 
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this issue is to infer the set of every possible consistent series of weights from participant’s 
responses; thus, the outcome of the weighting process is a set of series of weights rather than a 
single series of weights. The set of design solutions computed from the set of series would then 
be a set of clusters of solutions. However, this mathematical approach is expected to increase 
the obstacle of understanding the results of the design. It will also affect the designers’ 
judgment. Investigating this approach is part of our perspectives research. 

In conclusion, weight-based aggregation is required among the building’s designers. 
Derringer & Suich’s aggregation function can increase designers’ satisfaction by increasing 
their role in decision-making in the optimization process. In a situation where fast design 
decision is required, the decision-maker has a high chance to be inconsistent with evaluating 
objectives weights. It is highly suggested to adopt methods that help the designer to be more 
consistent in evaluating the weight of the design objectives. The pairwise comparison based on 
the AHP method can be used for that purpose; the consistency ratio can be a warning indicator. 

6.1.3.2 Results of Maximin aggregation function test 

After each participant selected one solution before and after seeing Pareto front, 75% of 
the participants changed their decision (Figure 76). 67% of the people who did change after the 
Pareto front was presented moved to Solution (5), which is ranked first by Maximin. In the final 
selection, 16 participants who represent 50% of the participants selected Solution (5). Most of 
them explained that the reason for changing to Solution (5) was that this solution could 
compromise between summer and winter. The second most selected solution was Solution (4) 
with 25%, and the third selected solution is Solution (6), with almost 19%, which again matches 
Maximin function classification logic. In their response, the participants who selected the 
Solutions (4) or (6) explained that they wanted to compromise, but they believed that one of the 
objectives was more important than the other because Solution (4) is better in summer than 
Solution (6) and vice versa. Solutions (4, 5, 6), which represents 30% of the options were 
selected by 89% of the participants. 

 

Figure 76: Experiment 3, comparison of participants’ selections before and after presenting the Pareto front 

In conclusion, Maximin resulted in a classification that is similar to the classification of 
the participants. Figure 77 shows the classifications based on the participants’ responses after 
they saw the Pareto’s front. Also, it presents the classification of the solutions based on 
Maximin aggregation function. The figure helps to observe the difference between the three 
classifications (Maximin, Pareto’s function, the participants). With this figure, it is clear that 
the participants’ classification matches Maximin classification. However, Maximin 
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classification method was not presented to the participants; they adopted the approach of 
Maximin spontaneously. 

 

Figure 77: Experiment 3, comparison of Pareto front, Maximin, and participants’ selections 

These are remarkable results because they emphasize the limits of Pareto’s aggregation 
function. As presented earlier, Maximin function uses a precautionary principle, and the 
participants seem to accept this principle spontaneously. However, it is evident that the 
designers need to see the scatterplot, including the Pareto front, to adopt the precautionary 
principle. The most reasonable justification is that, before presenting the scatterplot, the 
participants’ were confused by the type of available information. By seeing the scatterplot, 
including the Pareto front, the information was organized, which allowed the participants to 
exploit it. This can be linked to particular cognitive biases. 

As Pareto’s aggregation function is widely used in many scientific domains related to 
optimization, these results lead to significant consequences. Pareto’s function may result in 
unacceptable design solutions. However, Pareto’s function classification can help in organizing 
the solutions. Pareto’s function classification is calculable from a simple ordinal classification 
of the design solutions according to each design criterion. Though, Pareto’s function is often 
ineffective as it may classify many solutions at the same level (many solutions can belong to 
the Pareto front). Hence, it can be regarded as a low-efficiency filter. When the number of 
solutions that belong to the Pareto front is high, Pareto’s classification may become not very 
helpful for designers.  

6.2 Experiment 4 

From analyzing different aggregation functions (see 2.3), it seems that information 
availability is critical for classifying a set of solutions. Each function uses different information 
related to its negentropy. A function cannot benefit from the information that exceeds its 
capacity, and cannot operate with less than the information it requires. In contrast, humans are 
more flexible; they can adapt to the available information. Experiment 4 intends to study the 
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influence of information availability on designers’ judgment. It also intends to compare the 
classification resulting from Pareto’s function to the classification of Maximin function by 
using designers’ judgment as a benchmark. The experiment performs the investigation on two 
sets of solutions, each presented on a scatterplot. Each plot is used to test three different levels 
of information availability; low (scatterplot), Medium (scatterplot and numerical data), High 
(scatterplot, numerical data, 3D analyzed forms). 

6.2.1 Procedure 

Six online-based tests were prepared and sent to groups of building designers. Half of 
the tests use the set of solutions presented in Scatterplot 1 (see Figure 78). The other half of the 
tests uses the set of solutions presented in Scatterplot 2 (see Figure 79). Each scatterplot 
represents two objectives. The first objective is concerned with maximizing the solar gain 
during the wintertime. The second objective is concerned with minimizing solar gain during 
the summertime. For each scatterplot, each of the three tests presents different levels of 
information (see Table 15) to the participants. In each test, the participants were asked to rank 
the seven-candidate solutions (A, B, C, D, E, F, G) aiming to optimize the objectives (see 
Appendix IV). Each candidate represents a different proposal for mixed-use buildings (office, 
residential, commercial) in a mixed climate, which is hot in summer and cold in winter 
(Shanghai, China).  

 

Figure 78: Experiment 4, Scatterplot 1  
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Figure 79: Experiment 4, Scatterplot 2 
 

Level of information Scatterplot Building Description* Analyzed 3D Forms** 
Low ✔ ✖ ✖ 

Medium ✔ ✔ ✖ 

High ✔ ✔ ✔ 

Table 15: Experiment 4, the different level of information 

* Building description includes numerical information about the building and its 
location. The following list demonstrates this information: 

• The building is modular, the module size is: (Width=6m, Length=8m, Hight=4m). 
• The required interior area is 12000 m2. 
• The land lot size is 8000 m2 (W=80m, L=100m). 
• The maximum number of levels allowed is three stories. 
• A (25m X 30m) courtyard is required in the center of the building. 
• The monthly average low temperature of Shanghai, China (see Appendix IV)  
• The monthly average high temperature of Shanghai, China (see Appendix IV) 
• The monthly sunshine hours of Shanghai, China were (presented in the test) 

** Figure 80 shows an example of the analyzed 3D forms. The analysis represents the 
performance of one solution in regard to the objectives. The color code is used to represent the 
amount of solar radiation the building receives. 
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Figure 80: Experiment 4, an example of the used solutions, the form on the left represents summer objective, 
and the other represents winter objective. 

6.2.2 Participants 

In this part, the information about the participants of each of the six tests is presented. 

6.2.2.1 Scatterplot 1 with a low level of information 

The total number of participants in this test was 124 persons. Table 16 demonstrate the 
participants’ Category/Speciality. Table 17 shows how frequent the participants use multi-
objective design optimization in their work. 

Category/Speciality Count Percentage 
Student/Architecture 50 40.3% 
Student/Engneering 6 4.8% 
Professional/Architecture 39 31.5% 
Professional/Engineering 7 5.6% 
Professor/Architecture 14 11.3% 
Professor/Engineering 4 3.2% 
Professor, Professional/Architecture 2 1.6% 
Professor, Professional/Architecture, Engineering 1 0.8% 
Professional/Real-estate developer 1 0.8% 

Table 16: Experiment 4, Scatterplot 1, low level of information participants categories/specialty 

 

Frequency Count Percentage 
Never 35 28.2% 
Rarely 19 15.3% 
Sometimes 33 26.6% 
Usually 29 23.4% 
Always 8 6.5% 

Table 17: Experiment 4, Scatterplot 1, low level of information, frequency of using multi-objective design 
Optimization 

6.2.2.2 Scatterplot 1 with a medium level of information 

The total number of participants in this test was 23 persons. Table 18 demonstrates the 
participants’ Category/Speciality. Table 19 shows how frequent the participants use multi-
objective design optimization in their work. 



Abdulaziz Afandi – University of Bordeaux 

102 

 

Category /Speciality Count Percentage 
Student/Architecture 14 60.9% 
Student/Engneering 3 13% 
Professor/Architecture 1 4.3% 
Professor/Engineering 3 13% 
Professor, Professional/Architecture 1 4.3% 
Professor, Professional/Architecture, Engineering 1 4.3% 

Table 18: Experiment 4, Scatterplot 1, medium level of information participants categories/specialty 

 

Frequency Count Percentage 
Never 2 8.7% 
Rarely 4 17.4% 
Sometimes 9 39.1% 
Usually 7 30.4% 
Always 1 4.3% 

Table 19: Experiment 4, Scatterplot 1, medium level of information, frequency of using multi-objective design 
Optimization 

6.2.2.3 Scatterplot 1 with a high level of information 

The total number of participants in this test was 21 persons. Table 20 demonstrate the 
participants’ Category/Speciality. Table 21 shows how frequently the participants use multi-
objective design optimization in their work. 

Category/Speciality Count Percentage 
Student/Architecture 13 61.9% 
Student/Engneering 2 9.5% 
Professional/Architecture 1 4.8% 
Professor/Architecture 2 9.5% 
Professor/Engineering 2 9.5% 
Professor, Professional/Architecture 1 4.8% 

Table 20: Experiment 4, Scatterplot 1, high level of information participants categories/specialty 

 

Frequency Count Percentage 
Never 4 19% 
Rarely 3 14.3% 
Sometimes 7 33.3% 
Usually 5 23.8% 
Always 2 9.5% 

Table 21: Experiment 4, Scatterplot 1, high level of information, frequency of using multi-objective design 
Optimization 

6.2.2.4 Scatterplot 2 with a low level of information 

The participants of this test are the same participants of scatterplot 1 with a medium 
level of information (see 6.2.2.2). 
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6.2.2.5 Scatterplot 2 with a medium level of information 

The participants of this test are the same participants of scatterplot 1 with a high level 
of information (see 6.2.2.3). 

6.2.2.6 Scatterplot 2 with a high level of information 

The total number of participants in this test was 39 persons. Table 22 demonstrate the 
participants’ Category/Speciality. Table 23 shows how frequently the participants use multi-
objective design optimization in their work. 

Category/Speciality Count Percentage 
Student/Architecture 27 2.6% 
Student/Engneering 4 10.3% 
Professional/Architecture 2 5.1% 
Professor/Architecture 1 2.6% 
Professor/Engineering 3 7.7% 
Professor, Professional/Architecture 1 2.6% 
Professor, Professional/Architecture, Engineering 1 2.6% 

Table 22: Experiment 4, Scatterplot 2, high level of information participants categories/specialty 

 

Frequency Count Percentage 
Never 9 23.1% 
Rarely 5 12.8% 
Sometimes 11 28.2% 
Usually 11 28.2% 
Always 3 7.7% 

Table 23: Experiment 4,  Scatterplot 2, high level of information, frequency of using multi-objective design 
Optimization 

6.2.3 Results 

The data collected from each test are analyzed to investigate two different issues. Firstly, 
to observe if the different levels of information significantly affect the decisions of the 
designers. Secondly, to compare the classification of Maximin functions from one side to 
Pareto’s function from the other side based by linking them to designers’ classification.  

6.2.3.1 Scatterplot 1 

Before presenting the designers’ point of view, it is vital to present the classification of 
the solutions of Scatterplot 1 derived from Pareto’s function and Maximin (see Table 24); both 
classification methods of Pareto’s function which were presented earlier (see 2.3.1) result in 
identical classification for the solutions of Scatterplot 1. 
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Solution Pareto’s function Maximin 
Solution A 1 (Pareto front) 7 
Solution B 6 5 
Solution C 5 2 
Solution D 6 4 
Solution E 1 (Pareto front) 1 (The best among the population) 
Solution F 1 (Pareto front) 3 
Solution G 1 (Pareto front) 6 

Table 24: Experiment 4, Scatterplot 1 solutions’ classification based on Pareto’s function and  Maximin function 

Figure 81 to Figure 83 shows the responses of the participants for the three tests of 
Scatterplot 1; each figure represents a different level of information (see Table 15 (6.2.1)). From 
the figures, it is clear that the dominant solution for every class is identical to Maximin 
classification, which is E > C > F > D > B > G > A (E ranked 1st, A Ranked 7th) for the three 
tests. The average classification of the three tests based on Scatterplot 1 is also E > C > F > D 
> B > G > A (E ranked 1st, A Ranked 7th). This average classification is calculated based on a 
point system consisting of four steps; the system averages the solutions by taking into account 
the ranks of the solutions. First, for each solution, the participants’ selection for every class is 
counted; this must be repeated for the three tests. Second, the average of the participants count 
for each solution is computed for each class. Third, for each solution, the average of each class 
is multiplied by ((solutions’ count + 1) − the class rank). Fourth, the multiplication results of 
all the classes for each solution are averaged. The result represents the points of the solutions, 
which then are used to classify them. In general, the participants’ classification is similar to 
Maximin function classification and distinct from Pareto’s function classification. 

 

Figure 81: Experiment 4, participants’ responses of Scatterplot 1 with a low level of information test 

 

Figure 82: Experiment 4, participants’ responses of Scatterplot 1 with a medium level of information test 
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Figure 83: Experiment 4, participants’ responses of Scatterplot 1 with a high level of information test 

Figure 84 to Figure 90 compare designers’ classification for each solution resulting from 
the three tests of Scatterplot 1. Each figure observes one solution when a different level of 
information was given. From the figures, it is clear that the different levels of information have 
no significant impact on designers’ decisions when faced with Scatterplot 1, except for solution 
B, which slightly changed more than the other, but still, these changes are not drastic. 

 

Figure 84: Experiment 4, Scatterplot 1, Solution A, participants’ classification when faced with different 
information 

 

Figure 85: Experiment 4, Scatterplot 1, Solution B, participants’ classification when faced with different 
information 
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Figure 86: Experiment 4, Scatterplot 1, Solution C, participants’ classification when faced with different 
information 

 

Figure 87: Experiment 4, Scatterplot 1, Solution D, participants’ classification when faced with different 
information 

 

Figure 88: Experiment 4, Scatterplot 1, Solution E, participants classification when faced with different 
information 
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Figure 89: Experiment 4, Scatterplot 1, Solution F, participants’ classification when faced with different 
information 

 

Figure 90: Experiment 4, Scatterplot 1, Solution G, participants’ classification when faced with different 
information 

The previous analysis, which is based on using a scoring system to calculate the average 
classification of the participants’ is not enough. By using the average, the answers may 
compensate each other, which can be misleading. Another analysis of the deviation between 
the classification derived from each function and the classification of each participant separately 
is required. Figure 91 to Figure 93 demonstrates these deviations for Scatterplot 1; each figure 
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difference for each function. In the figures, we can see that the difference between Pareto’s 
function classification and participants’ classification is far; in some responses further than the 
benchmark, some relative deviations are over 100%. Maximin classification is closer to the 
classification of the participants. 
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Figure 91: Experiment 4, Scatterplot 1, low level of information, the relative deviation between different 
aggregation functions and designers’ classification 

 

Figure 92: Experiment 4, Scatterplot 1, medium level of information, the relative deviation between different 
aggregation functions and designers’ classification 

 

Figure 93: Experiment 4, Scatterplot 1, high level of information, the relative deviation between different 
aggregation functions and designers’ classification 

From a more accurate observation of the participants’ responses, we regard deviation 
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regarded as low in deviation, for Pareto’s function classification, 0% of the participants have a 
deviation lower than 20%. In fact, for the classification derived from Pareto’s function, the 
majority of deviation values are around 100%. Thus, we can infer that a non-negligible amount 
of the participants adopt the use of Maximin aggregation function spontaneously. 
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that the weights of the objectives are equal. Hence, another experiment that compares these two 

0%

20%

40%

60%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% 220%

Pa
rt

ic
ip

an
ts

 (%
)

Relative Deviation (%)

Pareto Maximin

0%

20%

40%

60%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% 220%

Pa
rt

ic
ip

an
ts

 (%
)

Relative Deviation (%)

Pareto Maximin

0%

20%

40%

60%

0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% 220%

Pa
rt

ic
ip

an
ts

 (%
)

Relative Deviation (%)

Pareto Maximin



Aggregation for acceptimality 

109 

 

aggregation functions by using designers’ classification as a benchmark is required. Though the 
figures show that the majority of the participants recommend classifications that we are unable 
to interpret, since the information and the proposed process are straightforward, we can assume 
that the responses are not misled. Most likely, those participants used an approach based on 
their own experience in a further creative manner compared to the other participants. 

6.2.3.2 Scatterplot 2 

As in Scatterplot 1, before presenting designers’ classification, it is essential to present 
the classification of the solutions of Scatterplot 2 based on the different aggregation functions 
(see Table 25); both classification methods of Pareto’s function which was presented earlier 
(see 2.3.1) results in identical classification for the solutions of Scatterplot 2. 

Solution Pareto Maximin, Derringer & Suich (equal weights) 
Solution A 1 (Pareto front) 7 
Solution B 1 (Pareto front) 5 
Solution C 6 2 
Solution D 6 4 
Solution E 1 (Pareto front) 1 (the best among the population) 
Solution F 1 (Pareto front) 3 
Solution G 1 (Pareto front) 6 

Table 25: Experiment 4, Scatterplot 2 solutions’ classification based on Pareto’s function and  Maximin function 

Figure 94 to Figure 96 shows the responses of the participants of scatterplot 2; each figure 
represents a different level of information (see Table 15 (6.2.1)). We can observe that the 
dominant solution for every rank is identical to Maximin classification, which is E > C > F > D 
> B > G > A (E ranked 1st, A Ranked 7th) (see Table 25). The average classification of the 
participants is calculated by following the same point system used for Scatterplot 1 (see 6.2.3.1). 
The average classification of the three tests of Scatterplot 2 is also E > C > F > D > B > G > A 
(E ranked 1st, A Ranked 7th). The participants’ classification is similar to Maximin function 
classification and distinct from Pareto’s function classification. 

 

Figure 94: Experiment 4, participants’ responses of Scatterplot 2 with a low level of information test 
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Figure 95: Experiment 4, participants’ responses of Scatterplot 2 with a medium level of information test 

 

Figure 96: Experiment 4, participants’ responses of Scatterplot 2 with a high level of information test 

Figure 97 to Figure 103 compare designers’ classification for each solution resulting 
from the three tests of Scatterplot 2. Each figure observes one solution when a different level 
of information was given. From the figures, it is clear that the different level of information has 
no significant impact on designers decisions when faced with Scatterplot 2, including for 
solution B. 

 

Figure 97: Experiment 4, Scatterplot 2, Solution A, participants’ classification when faced with different 
information 
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Figure 98: Experiment 4, Scatterplot 2, Solution B, participants’ classification when faced with different 
information 

 

Figure 99: Experiment 4, Scatterplot 2, Solution C, participants’ classification when faced with different 
information 

 

Figure 100: Experiment 4, Scatterplot 2, Solution D, participants’ classification when faced with different 
information 
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Figure 101: Experiment 4, Scatterplot 2, Solution E, participants’ classification when faced with different 
information 

 

Figure 102: Experiment 4, Scatterplot 2, Solution F, participants’ classification when faced with different 
information 

 

Figure 103: Experiment 4, Scatterplot 2, Solution G, participants’ classification when faced with different 
information 
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The deviation is calculated by following the same steps used to calculate the deviation for 
Scatterplot 1 (see 6.2.3.1). In the figures, we can see that the difference between Pareto’s 
function classification and participants’ classification is far; in some responses further than the 
benchmark, some relative deviations are over 100%. 
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Figure 104: Experiment 4, Scatterplot 2, low level of information, the relative deviation between different 
aggregation functions and designers’ classification 

 

Figure 105: Experiment 4, Scatterplot 2, medium level of information, the relative deviation between different 
aggregation functions and designers’ classification 

 

Figure 106: Experiment 4, Scatterplot 2, high level of information, the relative deviation between different 
aggregation functions and designers’ classification 
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deviation. However, for Pareto’s function, 0% have a deviation lower than 20%; this is similar 
to what has been observed in Scatterplot 1. Furthermore, as in Scatterplot 1 for the classification 
derived from Pareto’s function, the majority of deviation values are over 100%. Therefore, it 
can be concluded that a significant group of the participants is spontaneously adopting Maximin 
aggregation function. 
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However, similar to Scatterplot 1, for the set of solutions presented in Scatterplot 2, we 
can derive the same classification resulted from Maximin by using Derringer & Suich’s 
aggregation function if we assume that the objectives share identical weights. Therefore, an 
additional experiment that compares both functions by using designers’ classification as 
benchmarks is needed. Though, like Scatterplot 1, most of the participants adopt classifications 
that we are unable to interpret. Given That the proposed process and the involved information 
are simple, it is reasonable to assume the responses are not misleading. Compared to the other 
participants, those participants probably adopted an approach based on their own experience in 
a further creative way. 

From the results, we can conclude the classification resulting from the high in 
negentropy aggregation functions “Maximin function or Derringer & Suich’s function (equal 
objectives weights)” are relatively close to designers’ classification in comparison to the 
classification resulting from the low in negentropy function “Pareto’s function.” It is highly 
recommended to use these high in negentropy functions when the available information is 
sufficient. Another experiment that compares the classification of Maximin function and 
Derringer & Suich’s function (equal objectives weights) to designers’ classification is required. 
However, if scarcity of information is the case, then Pareto’s function can be used. The results 
also show that giving information more than scatterplot, building type, and location did not 
significantly influence designers’ decisions. From Experiments 1 and 2, we can say that the 
graphical representation of the solution’s performance profoundly influences the designers’ 
judgment. This type of representation organizes the information and facilitate comparing the 
candidate solutions. 

6.3 Experiment 5  

The previous experiment finds that designers’ reasoning is relatively close to Maximin. 
However, the set of solutions used for Experiment 4 results in identical classification when 
Maximin or Derringer & Suich’s aggregation functions (equal weights) are used. Therefore, 
another experiment that compares these two functions is critical. This experiment might 
improve our understanding of the designers’ reasoning. Experiment 5 intends to perform a 
comparison of these two functions. Figure 107 represents the difference between the 
classification of both functions. The figure shows two solutions “S1” and “S2”. According to 
Maximin function, “S2” is better than “S1”, while based on Derringer & Suich’s function (equal 
weights), “S1” is better than “S2”. According to these differences, the experiment must use sets 
of solutions that result in different classification when aggregated by each of the two functions. 
The solutions of these sets must be classified by buildings designers to provide a benchmark 
for the comparison. 
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Figure 107: Comparing the classification of Maximin and Derringer & Suich (equal weights) 

It is worth noting that if reliable objectives weights are available, then the Derringer & 
Suich’s aggregation function must be the designers’ choice. However, if reliable objectives 
weights are not available, then Maximin or Derringer & Suich’s function (equal weights) or 
Maximin can be used. By using these two functions, the designer can express his preference 
only within the Interpretation model of MOIA. In that case, the main difference between both 
functions is that Maximin is non-compensatory, and it avoids extreme interpretation variables 
z, while Derringer & Suich’s function (equal weights) is compensatory. 

6.3.1 Procedure 

The participants were invited to complete two online-based tests (see Appendix V). In 
each test, they were asked to classify a set of five solutions (A, B, C, D, E). In the first test (see 
Appendix V), the participants must classify the solutions to satisfy two objectives. The 
objectives are related to solar gain in summer and winter. Each solution represents a design 
alternative of a building in a mixed climate that is hot in summer and cold in winter (Shanghai, 
China). The solutions’ satisfaction of the objectives were presented to the participants (see 
Table 26); 1 means complete satisfaction, and 0 means no satisfaction. Also, a scatterplot 
(Figure 108) and a parallel coordinate (Figure 109) were provided to represent the solutions’ 
satisfaction of the objectives graphically. The classification of the participants will serve as a 
benchmark to compare the classification of the same set of solutions resulting from the two 
aggregation functions. 

Solution Summer objective level of satisfaction Winter objective level of satisfaction 
Solution A 0,9 0,45 
Solution B 0,5 0,5 
Solution C 0,8 0,25 
Solution D 0,4 0,6 
Solution E 0,35 0,95 

Table 26: Experiment 5, test 1, solutions’ satisfaction of the objectives 
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Figure 108: Experiment 5, test 1, a scatterplot represents solutions’ satisfaction of the objectives 

 

Figure 109: Experiment 5, Test 1, a parallel coordinate represents solutions’ satisfaction of the objectives 

For the second test (see Appendix V), the participants must classify the solutions to 
satisfy four objectives. In contrast to the previous test, in this test, the objectives, climate, and 
location are not specified. The absence of these essential information will lead the participants 
to assume that these objectives are equal, which helps to neutralize the weight factor; it is 
evident that when weights are not equal, and the information is accessible, Derringer & Suich’s 
function is suitable. The solutions’ satisfaction of the objectives are presented to the participants 
(see Table 27); 1 is complete satisfaction, and 0 is no satisfaction. Since the scatterplot cannot 
represent more than three dimensions, a parallel coordinate (Figure 110) was used to represents 
the solutions’ satisfaction of the objectives graphically to the participants. The classification of 
the participants will serve as a benchmark to compare the classification of the same set of 
solutions when aggregated from the two functions. 
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Solution Objective 1 Objective 2 Objective 3 Objective 4 
Solution A 1 1 1 0,3 
Solution B 0,5 0,5 0,5 0,5 
Solution C 0,4 0,4 0,4 0,4 
Solution D 0,9 0,9 0,2 0,7 
Solution E 0,2 0,2 0,5 0,4 

Table 27: Experiment 5, test 2, solutions’ satisfaction of the objectives 

 

Figure 110: Experiment 5, test 2, a parallel coordinate represents solutions’ satisfaction of the objectives 

6.3.2 Participants 

The total number of participants was 51 persons. Table 28 demonstrates the participants’ 
Speciality/Category. Most of the participants have a background in architecture. All the 
participants of these experiments work in building design. Table 29 shows how frequently the 
participants use multi-objective design optimization in their work. 

Specialty/Category Count Percentage 
Architect/Student 14 27% 
Architect/Professional 20 39% 
Architect/Professor 8 16% 
Engineer/Student 3 6% 
Engineer/Professional 4 8% 
Engineer/Professor 2 4% 

Table 28: Experiment 5, participants’ specialty/categories  
 

Frequency  Count Percentage 
Never  11 22% 
Rarely  9 18% 
Sometimes  11 22% 
Usually  12 24% 
Always  8 16% 

Table 29: Experiment 5, participants’ frequency of using multi-objective design optimization 
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6.3.3 Results 

Table 30 presents the classification of the solutions of test 1 of experiment 5 (see Table 
26, Figure 108, Figure 109 (6.3.1)) of both aggregation functions, namely Maximin and 
Deringer & Suich’s function (equal weights). The classification of Pareto’s function is also 
presented to link the experiment to the previous ones.  

Solution Maximin  Derringer & Suich (equal weights) Pareto’s function 
Solution A 2 1 1 
Solution B 1 3 1 
Solution C 5 5 5 
Solution D 3 4 1 
Solution E 4 2 1 

Table 30: Experiment 5, test 1, solutions classification based on three aggregation functions 

Figure 111 shows the responses of the participants for the first test of experiment 5. As 
can be seen in the figure, the dominant solutions of each class is A > B > B, C > D > E (A is 
the dominant of the 1st class, E is the dominant of the 5th class). The average classification of is 
A > B > D > C > E (A ranked 1st, E ranked 5th). This average classification is calculated based 
on the point system used in experiment 4 (see 6.2.3.1). 

 

Figure 111: Experiment 5, test 1, participants’ responses 

By comparing the average classification resulting from the participants to the 
classification resulting from the two functions, we can observe the following. In both the 
average classification of the participants and of Derringer & Suich’s (equal weights), Solution 
A is at the highest class. For the rest of the solutions, Derringer & Suich’s present a similar 
classification to the participants, the only difference is that Solution E is shifted to be in the 
second class (see Figure 112). 
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Figure 112: A comparison between the classification  based on participants’ average and Derringer & Suich’s 
function (Experiment 5, test 1) 

Maximin also shares some similarities with the classification of the participants. The 
main difference is that compared to participants’ average classification, Maximin switches the 
first two solutions and the last two solutions (see Figure 113). Hence, the participants’ 
classification is mixed, and it does not entirely follow these functions. However, both functions 
are closer to the participants’ classification average if compared to Pareto’s function 
classification (see Table 30) 

 

Figure 113: A comparison between the classification  based on participants’ average and Maximin function 
(Experiment 5, test 1) 

The previous analysis, which is based on scoring to calculate the average classification, 
is not enough. Another analysis of the deviation between the classification of both functions 
and the classification of each participant is required. Figure 114 demonstrates the deviations 
between the classifications of participants and the functions. To compute the deviation, we must 
assign a number to represent each solution (A=1, B=2, C=3, D=4, E=5). Then we used the same 
method presented in Experiment 4 (see 6.2.3.1). In the figure, we can see that the individuals’ 
responses are closer to Maximin in comparison to Derringer & Suich’s function. 

 

Figure 114: Experiment 5, test 1 the relative deviation between different aggregation functions and designers’ 
classification 

Table 31 presents the classification of the solutions of the second test of experiment 5 
(see Table 27, Figure 110 (6.3.1)) of both aggregation functions, namely Maximin and Deringer 
& Suich’s function (equal weights). The classification of Pareto’s function is also presented to 
link the experiment to the previous ones.  
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Solution Maximin Derringer & Suich (equal weights) Pareto’s function 
Solution A 3 1 1 
Solution B 1 3 1 
Solution C 2 4 5 
Solution D 4 2 1 
Solution E 4 5 1 

Table 31: Experiment 5, test 2, solutions classification based on three aggregation functions 

Figure 115 shows the responses of the participants for the second test of experiment 5. 
As can be seen in the figure, the dominant solutions of each class is A > B > C > D > E (A is 
the dominant of the 1st class, E is the dominant of the 5th class). The average classification is B 
> A > C > D > E (B ranked 1st, E Ranked 5th). This average classification is calculated based 
on the point system used in experiment 4 (see 6.2.3.1). 

 

Figure 115: Experiment 5, test 2, participants’ responses 

By comparing the average classification resulting from the participants to the 
classification resulting from the two functions, we can realize the following. Both the 
participants’ average and Maximin classified Solution B at the highest class (see Figure 116) 
However, Derringer & Suich’s function (equal weights) classify Solution A as the highest, 
which matches the dominant solution of first-class based on participants’ responses (see Figure 
117). However, Maximin considers solutions D and E as equal solutions. Finally, we can realize 
that for the participants and both functions, Solution E is in the lowest class (see Figure 116, 
Figure 117) according to Pareto’s function, Solution E belongs to Pareto front. Similar to the 
first test of this experiment, both functions are resulting in a classification that is closer to 
participants' judgment in comparison to Pareto’s function (see Table 31). 

 

Figure 116: A comparison between the classification  based on participants’ average and Maximin function 
(Experiment 5, test 2) 

0
5

10
15
20
25
30
35
40

1st 2nd 3rd 4th 5th

Pa
rt

ic
ip

an
ts

 (%
)

Rank

Solution A Solution B Solution C Solution D Solution E



Aggregation for acceptimality 

121 

 

 

Figure 117: A comparison between the classification  based on participants’ average and Derringer & Suich’s 
function (Experiment 5, test 2) 

As in the previous test, to compute the deviation, we must assign a number to represent 
each solution (A=1, B=2, C=3, D=4, E=5). Then we used the same method presented in 
Experiment 4 (see 6.2.3.1). Figure 118 demonstrates the deviations of both functions. In the 
figure, we can see that the individuals’ responses are slightly closer to Derringer & Suich’s 
function (equal weights) than Maximin. This is expected and justified because many objectives 
are involved, and Derringer & Suich’s is compensatory while Maximin is not. The absence of 
the scatterplot in this test may also affect the designer judgment; the location of the solution is 
not presented visually, and the participants relied more on the numbers, which might lead them 
to compensate. According to Experiment 3 (see 6.1.3.2), the presence of the scatterplot that 
represents can lead the designers to adopt a classification logic that is similar to Maximin; this 
was tested based on the situations of two objectives.  

 

 

Figure 118: Experiment 5, test 2 the relative deviation between different aggregation functions and designers’ 
classification 

6.4 Information availability and acceptimality 

To achieve acceptimality in MOIA the selecting the aggregation function is a crucial 
decision. Generally, the higher the negentropy of the function, the more likely it helps us 
approach acceptimality. Here we encounter two problems. From one side, the low in negentropy 
aggregation function may result in unacceptable solutions or low informative data. From the 
other side, the high in negentropy aggregation functions need additional information. From the 
experiments presented in this chapter and based on MOIA, three different information scenarios 
can decide which aggregation function can be used. 

Scenario one, if the essential information for the interpretation based on desirability 
functions is available (see 2.2), and the weights of the objectives are decidable and consistent, 
then Derringer & Suich’s aggregation function is appropriate. Unfortunately, the chance of 
inconsistency in evaluating the weights is high among the designers. However, a methodology 
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such as the pairwise comparison based on AHP can be used to provide the designer with 
feedback. It can detect if the weights are consistent or inconsistent. 

Scenario two, if the essential information for the interpretation based on desirability 
functions is available (see 2.2), but the weights of the objectives are undecidable or inconsistent, 
then Maximin or Derringer & Suich’s (equal weights) aggregation functions can be used. If 
avoiding extreme interpretation variables is a priority, then the non-compensatory approach of 
Maximin is appropriate. If the designer prefers to compensate between the objectives, then 
Derringer & Suich’s (equal weights) is appropriate. Increasing objectives can increase the 
designers' desire to compensate. 

Scenario three, if the essential information for the interpretation based on desirability 
functions is not available (see 2.2). Then Pareto’s function is the left option. Scenario one and 
two allow MOIA to achieve acceptability by adopting high in negentropy functions. If scenario 
three is the situation, then classical multi-objective optimization is the only choice, and MOIA 
cannot achieve acceptimality. In this case, the designers have to work on the solutions manually 
after the aggregation is done.
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CHAPTER  7 Conclusion 

“It is comparatively easy to make computers exhibit adult level performance on intelligence 
tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old 
when it comes to perception and mobility.” (Moravec, 1988) 

7.1 Recommendations 

The dissertation adopted five different experiments to define a set of recommendations. 
The recommendations aim to help the designers and the developers to develop a new generation 
of decision support systems for designers in general and architects in particular. These systems 
should increase the acceptability of the process and the solutions, and thus of the decision 
support systems. Consequently, it can attract more designers to adopt the profitable behavior 
of optimization. Furthermore, the new systems allow the designer to approach acceptimality. 
These experiments are divided into two categories. The first two experiments investigated 
different design optimization workflows based on different digital tools. The other three 
experiments investigated different aggregation functions. Based on MOIA and from the results 
of these experiments, a set of four recommendations are proposed.  

7.1.1 Generative visual programming 

To generate design solutions, we usually use generative design tools based on 
parametric modeling. The parts of these models are connected by a set of constraints. 
Algorithmic modeling can be described as advanced parametric modeling. It offers high control 
of the model’s parts and the constraints. To define an algorithm, we use programming. 
However, the classical textual programming is not accessible for designers in general and 
architects in specific as it requires extensive training. Visual Programming (VP) is a relatively 
new programming approach, and it is accessible to designers as it is relatively simple. The first 
two experiments of the dissertation show that VP is highly accepted among designers. It is 
highly recommended for future developments to adopt a VP approach. 

7.1.2 Interactive algorithm 

From the first two experiments, it was clear that using an interactive algorithm such as 
IEA can increase the users’ acceptability of the tools. By using these algorithms, the designer 
can express his preference in the selection stage during the Morphogenesis model of MOIA. 
These algorithms allow the designers to judge the solutions based on their subjective opinions. 
As a result, the systems that use these algorithms can increase the acceptability of the solutions. 
However, this might negatively affect the optimality of the solution. The designer can decide 
when to use this option and when not to use it. Usually, if no selection are made by the designer, 
the interactive algorithm performs as a non-interactive algorithm. It is recommended that future 
developments of design tools and workflows use an interactive algorithm. 
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7.1.3 Visual interface 

The interface of the tools can profoundly affect designers’ acceptability of the tools. 
From the results of Experiments 1, 2, and 3, we can infer that the graphical representation of 
the solutions and their performance can strongly influence designers’ judgment. First, it is 
highly recommended to use graphical representations that represent the performance of all the 
solutions simultaneously. The number of objectives can define possible types of graphical 
representation. For two objective problems, a two-dimensional scatterplot or a parallel 
coordinate can be used (see Figure 119). For three objective problems, a three-dimensional 
scatterplot or a parallel coordinate can be used (see Figure 119). If four or more objectives are 
involved, a parallel coordinate can be used (see Figure 119). However, the two-dimensional 
and the three-dimensional scatterplots can represent more than two or three objectives by using 
scales of colors, opacity, sizes to the solutions to represent the additional objectives. Second, it 
is highly recommended to show the 3D masses of the candidate solutions. This allows the 
designers to explore the solutions, which is essential for the selection stage within the 
Morphogenesis model of MOIA, especially if an interactive algorithm is used.   

 

Figure 119: Different graphical representation of the information 

7.1.4 Adapting to different information 

Most of the contemporary design optimization digital systems use Pareto’s function to 
trade off the objectives. Pareto’s function is low in negentropy, and it uses the rank of the 
observed variables to classify the solutions. The ordinal information that Pareto’s function uses 
do not allow us to apply mathematical operations to compute a global objective. When 
additional information such as cardinal values is available, Pareto’s function cannot benefit 
from the surplus of information. Based on the results of the last three experiments, other 
functions that are regarded as high in negentropy cardinal can be used to benefit from the 
additional information. It is highly recommended to allow the designers to select between 
different functions to adapt to the availability of the information. The algorithm presented in 
Figure 120 demonstrates how the systems must adapt to information available based on MOIA. 
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Figure 120: A recommended algorithm based on MOIA that respond to information availability 
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7.2 Conclusion 

We spend most of our lives in our buildings. The building sector consumes more than 
half of the electricity that we produce and about one-third of the total energy.  The performance 
of our buildings is significant. Design optimization allows the designer to find solutions with 
the best possible performance. However, a limited number of architects use the existing design 
optimization tools. 

For a long time, design problems were recognized as ill-defined problems. They lack 
the precise and objective knowledge in their definitions. Also, they are considered vague and 
partly formalized. Furthermore, they involve subjectivity and objectivity. The interpretation 
and creativity of designers are required to solve such problems. To specify the required 
elements for the definition of the design process, experienced humans must use concepts such 
as goals, objective, criterion, importance, etc. these concepts are features of intentionality. 

In design, the solutions should be optimal from a numerical point of view and 
acceptable by the designers. Both acceptability and optimality are essential, and they lead to 
acceptimality. However, the tools in the market are not well prepared to successfully integrate 
designers’ acceptability and performance optimality. They do not consider designers’ 
preferences of the criteria or the objectives inside the optimization process. Consequently, the 
solutions resulting from these tools are not necessarily acceptable by the designers. 

The unbalanced collaboration between the designers and the tools can be the central 
cause of architects’ reluctance to use these tools. The dissertation proposed a set of 
recommendations that can help the developers to create a new generation of design 
optimization tools that potentially can attract more designers. The recommendations aim to 
enhance the collaboration between the tools and the designers. 

The research began by exploring many design processes. From this exploration, a 
design framework based on four models Morphogenesis, Observation, Interpretation, and 
Aggregation (MOIA), is proposed. MOIA allows integrating designers’ preferences within the 
process of optimization. In MOIA, the designers’ can express their preferences of the criteria 
and the objectives within the Interpretation model and the Aggregation model. By using an 
interactive algorithm, MOIA can also allow the designers to express his preference within the 
selection stage of the Morphogenesis model; some of the existing tools already offer this 
option. 

The main common characteristic among the generative multi-objective design 
optimization tools is that they use Pareto’s function to classify the solution. This function does 
not consider human preferences. Other functions that consider human preferences must be used 
to approach acceptimality. Two aggregation functions that can consider human preferences and 
can alternate Pareto’s function are proposed. These aggregation functions are Maximin and 
Derringer & Suich’s function. These functions are cardinal and high in negentropy. These 
functions mainly combine the design objectives into a GDI, which regarded as a global 
objective. 

Maximin aggregate the solutions based on compromisation logic. It adopts a 
precautionary principle that evades extreme and unsafe solutions. Derringer & Suich’s 
aggregation entails assigning weights to designs’ objectives. In contrast to Pareto’s function, 
these functions use information resulting from a desirability interpretation function, which 
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considers human preferences within the Interpretation model of MOIA. Additionally, 
Derringer & Suich’s aggregation function considers human preferences within the Aggregation 
models of MOIA by allowing the designers to assign weights.  

It is crucial to investigate the classification resulting from the different aggregation 
functions by using designers’ classification as a benchmark. However, it was vital to investigate 
the generative design optimization workflows, which are used by the architects first. The 
workflows and the tools involved in them can influence designers’ acceptability. Both the 
acceptability of the workflows and the solutions are vital and relative. 

The dissertation adopted an experimental approach to evaluate the different workflows 
and different aggregation functions. For that, five different experiments are performed 
throughout this research. The first two experiments compare different generative design 
optimization workflows by using designers’ judgment as a reference. The other three 
experiments compared different aggregation functions by using designers’ judgment as a 
benchmark. 

By comparing the different workflows, it was clear that the VP is suitable for future 
tools. VP is highly accepted among the designers. Furthermore, it was evident that using an 
interactive optimization algorithm can increase the acceptability of the tools as it allows the 
designers’ to express their subjective judgment in the selection stage of the Morphogenesis 
model of MOIA. Allowing the designers to explore the massing of the solutions visually can 
increase the overall acceptability of the tools. It is essential for the selection stage when an 
interactive optimization algorithm is used. 

By comparing the different aggregation functions, it was clear that the high in 
negentropy functions that allow the designers to express their preferences can increase the 
acceptability of the solutions. If the required information is available, using the high in 
negentropy aggregation functions such as Maximin or Derringer & Suich’s are more likely to 
be used as it results in a classification that is closer to designers’ classification. 

Based on the experiments, four different recommendations are proposed. The 
recommendations aim to enhance the collaboration between the designers and the tools. These 
recommendations suggest using VP as a base for the new tools. Additionally, it recommends 
using an interactive algorithm that allows the designers to express their subjective judgment of 
the forms during the selection stage of the Morphogenesis model. Also, it recommends using 
graphical representations that represent the performance of the candidate solution 
simultaneously. This can be extremely important as it insight designers’ decisions during the 
selection. Finally, the used aggregation function must respond to information availability. 
Following these recommendations can increase the chance of attracting more designers to 
adopt the profitable behavior of optimization. It allows the designers to approach acceptimality.  

7.3 Future work 

At present, a set of generative tools and workflows based on the presented 
recommendations are under development. A series of experiments that use designers’ judgment 
as a benchmark must be applied to observe the acceptability of the solutions resulting from 
these tools. Moreover, the performance and the acceptability of the solutions resulting from 
these tools must be compared to other solutions resulting from the classical generative 
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optimization tools and the solutions resulting when no generative tools are used. The 
experiments should also observe designers’ acceptability of the developed workflow process 
and tools interface. The proposed experiments are crucial to develop reliable systems. 

The proposed systems are based on approaching acceptimality by using MOIA. They 
are recognized as Intelligence Augmentation IA systems. Adopting these systems increases the 
interaction between humans and the machine in the field of design. In the future, we can link 
these systems to machine learning. “Adoption of machine learning-powered systems can more 
rapidly increase if they are designed in a user-oriented way where the goal is to empower the 
human users rather than to replace them.” (Kane, 2019). Integrating machine learning in the 
proposed systems can improve the interaction between the designers and the computer. 
Consequently, the computer augments the capabilities of the designers to approach optimality, 
and the designers help the computer to improve its capabilities in approaching acceptability. 
“By using an intelligence augmentation (IA) approach, where the technology seeks to empower 
and complement people’s innate skills, a huge amount of value can be brought both to people’s 
personal lives and to the enterprise, with the machine learning capabilities that exist today.” 
(Kane, 2019). In the future, these systems can propose different solutions for a problem based 
on a period of interaction with a specific designer or a particular school of thought. It is highly 
recommended to start another research that focuses on integrating machine learning into the 
proposed system. The research can consist of a team that includes architects, engineers, and 
programmers. 
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Appendicies 
Appendix I: Experiment 1 
A. Workflows comparison (*required): 

Question 1*: Which workflow do you think can help you to find design solutions? 
o Grasshopper® 
o EcoGen© 

             Question 2: Why? ------------------------------------------------------------------------------- 

Question 3*: Which workflow is more suitable for your design process? 
o Grasshopper® 
o EcoGen© 

Question 4: Why? ------------------------------------------------------------------------------- 

Question 5*: In which workflow do you feel more involved in the design? 
o Grasshopper® 
o EcoGen© 

Question 6: Why? ------------------------------------------------------------------------------- 

Question 7*: Which workflow stimulates your creativity more? 
o Grasshopper® 
o EcoGen© 

Question 8: Why? ------------------------------------------------------------------------------- 

Question 9*: Which workflow do you prefer to filter the results? 
o Grasshopper® 
o EcoGen© 

Question 10: Why? ------------------------------------------------------------------------------- 

Question 11*: Which workflow do you believe helps produce better results? 
o Grasshopper® 
o EcoGen© 

Question 12: Why? ------------------------------------------------------------------------------- 

Question 13*: Which workflow is easier to understand? 
o Grasshopper® 
o EcoGen© 

Question 14: Why? ------------------------------------------------------------------------------- 

Question 15*: Which user interface do you prefer? 
o Grasshopper® 
o EcoGen© 

Question 16: Why? ------------------------------------------------------------------------------- 

Question 17*: Which workflow do you prefer? 
o Grasshopper® 
o EcoGen© 

Question 18: Why? ------------------------------------------------------------------------------- 

Question 19*: What are the cons and pros of each tool? ------------------------------------ 
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B. General feedback about the tools (*required): 
Question 20*: If you are a student, do you consider using these tools in your schoolwork? 

o Yes 
o No 
o Maybe 
o I am not a student 

Question 21*: Do you consider using these tools in your professional work? 
o Yes 
o No 
o Maybe 

Question 22*: Do you think that visual programming is suitable for architects? 
o Yes 
o No 
o Maybe 

Question 23*: If you are a student, do you consider using visual programming in your future 
schoolwork? 

o Yes 
o No 
o Maybe 
o I am not a student 

Question 24*: Do you consider using visual programming in your future professional work? 
o Yes 
o No 
o Maybe 

Question 25*: Do you wish to learn more about visual programming? 
o Yes 
o No 
o Maybe 

Question 26*: Do you think that EcoGen© is suitable for architects? 
o Yes 
o No 
o Maybe 

Question 27*: If you are a student, do you consider using EcoGen© in your future schoolwork? 
o Yes 
o No 
o Maybe 
o I am not a student 

Question 28*: Do you consider using EcoGen© in your future professional work? 
o Yes 
o No 
o Maybe 

Question 29*: Do you wish to learn more about EcoGen©? 
o Yes 
o No 
o Maybe 
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Question 30*: Do you prefer if EcoGen© became a plugin for Grasshopper®? 
o Yes 
o No 
o Maybe 

Question 31: Do you have any comments? ---------------------------------------------------- 
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C. Background and experience (*required): 
Question 32*: Do you have any experience in programming? (e.g., C#, PythonTM, VB, etc.), (0 
= I have no experience, 10= I am an expert) 

0            2            3            4            5            6            7            8            9            10 

Question 33*: Do you have any experience in visual programming? (e.g., Grasshopper, 
Dynamo, Generative Components, etc.), (0 = I have no experience, 10= I am an expert) 

0            2            3            4            5            6            7            8            9            10 

Question 34*: Do you use any of the tools on the list? (check all that apply) 
□ Grasshopper® 
□ Design Explorer© 
□ Dynamo® 
□ Project Fractal® 
□ Generative Components® 
□ EcoGen© 
□ I do not use any of these tools 

Question 35*: Do you use multi-objective design optimization in your work? 
o Never 
o Rarely 
o Sometimes 
o Usually 
o Always 

Question 36*: What are the tools that you use for multi-objective design optimization? (check 
all that apply) 

□ I don't do any multi-objective design optimization  
□ Octoput© 
□ Biomorpher© 
□ Optimo© 
□ EcoGen© 
□ Other ---------------------------- 
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D. Personal information (*required): 
Question 36: Your email address? -------------------------------------------------------------- 

Question 37: Your name? ------------------------------------------------------------------------ 

Question 38: Your family name? --------------------------------------------------------------- 

Question 39*: Your Age? (--) 

Question 40*: You are? 
□ Student 
□ Professional 
□ Other ---------------------------- 

Question 41*: What is your major? 
□ Architect 
□ Engineer 
□ Other ------------------------- 
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Appendix II: Experiment 2 
A. Workflows comparison (*required): 

Question 1*: Which tool do you think can help you to find design solutions in different situations? 
o Octopus© 
o Biomorpher© 

             Question 2: Why? --------------------------------------------------------------------------------------- 

Question 3*: Which tool is more suitable for your design process? 
o Octopus© 
o Biomorpher© 

Question 4: Why? --------------------------------------------------------------------------------------- 

Question 5*: In which tool do you feel more involved in the design? 
o Octopus© 
o Biomorpher© 

Question 6: Why? --------------------------------------------------------------------------------------- 

Question 7*: Which tool stimulates your creativity more? 
o Octopus© 
o Biomorpher© 

Question 8: Why? --------------------------------------------------------------------------------------- 

Question 9*: Which tool do you prefer to filter the results? 
o Octopus© 
o Biomorpher© 

Question 10: Why? ------------------------------------------------------------------------------------- 

Question 11*: Which tool do you believe helps produce better results? 
o Octopus© 
o Biomorpher© 

Question 12: Why? ------------------------------------------------------------------------------------- 

Question 13*: Which tool is easier to understand? 
o Octopus© 
o Biomorpher© 

Question 14: Why? ------------------------------------------------------------------------------------- 

Question 15*: Which tool is more interesting to you? 
o Octopus© 
o Biomorpher© 

Question 16: Why? ------------------------------------------------------------------------------------- 

Question 17*: Which interface do you prefer? 
o Octopus© 
o Biomorpher© 

Question 18: Why? ------------------------------------------------------------------------------------- 

Question 19*: Which tool do you prefer? 

Question 20: Why? ------------------------------------------------------------------------------------- 

Question 21*: What are the cons and pros of each tool? ------------------------------------------ 
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B. General feedback about the tools (*required): 
Question 20*: If you are a student, do you consider using these tools in your schoolwork? 

o Yes 
o No 
o Maybe 
o I am not a student 

Question 21*: Do you consider using these tools in your professional work? 
o Yes 
o No 
o Maybe 

Question 22*: Do you think that visual programming is suitable for architects? 
o Yes 
o No 
o Maybe 

Question 23*: If you are a student, do you consider using visual programming in your future 
schoolwork? 

o Yes 
o No 
o Maybe 
o I am not a student 

Question 24*: Do you consider using visual programming in your future professional work? 
o Yes 
o No 
o Maybe 

Question 25*: Do you wish to learn more about visual programming? 
o Yes 
o No 
o Maybe 

Question 26: Do you have any comments? ---------------------------------------------------------- 
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C. Background and experience (*required): 
Question 27*: Do you have any experience in programming? (e.g., C#, PythonTM, VB, etc.),     
(0 = I have no experience, 10= I am an expert) 

0            2            3            4            5            6            7            8            9            10 

Question 28*: Do you have any experience in visual programming? (e.g., Grasshopper®, 
Dynamo®, Generative Components®, etc.), (0 = I have no experience, 10= I am an expert) 

0            2            3            4            5            6            7            8            9            10 

Question 29*: Do you use any of the tools on the list? (check all that apply) 
□ Grasshopper® 
□ Design Explorer© 
□ Dynamo® 
□ Project Fractal® 
□ Generative Components® 
□ I do not use any of these tools 

Question 30*: Do you use multi-objective design optimization in your work? 
o Never 
o Rarely 
o Sometimes 
o Usually 
o Always 

Question 31*: What are the tools that you use for multi-objective design optimization? (check 
all that apply) 

□ I don't do any multi-objective design optimization  
□ Octoput© 
□ Biomorpher© 
□ Optimo© 
□ Other ---------------------------- 
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D. Personal information (*required): 
Question 32: Your email address? -------------------------------------------------------------- 

Question 33: Your name? ------------------------------------------------------------------------ 

Question 34: Your family name? --------------------------------------------------------------- 

Question 35*: Your Age? (--) 

Question 36*: You are? 
□ Student 
□ Professional 
□ Other ---------------------------- 

Question 37*: What is your major? 
□ Architect 
□ Engineer 
□ Other ------------------------- 
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Appendix III: Experiment 3 
A. Test of Derringer & Suich’s aggregation function (*required) 

You are in the early stage of designing four office buildings, each in different place. 

Location 1: Extremely hot climate (Dubai, United Arab Emirates). 

 Month Average High Average Low Sunshine hours 
January 23.6°C 14.2°C 254.2 h 
February 25.4°C 15.3°C 229.6 h 
March 28.2°C 17.5°C 254.2 h 
April 33°C 21°C 294.0 h 
May 37.6°C 24.9°C 344.1 h 
June 38.7°C 27.2°C 342.0 h 
July 40.8°C 30.2°C 322.4 h 
August 41°C 30.2°C 316.2 h 
September 39°C 27.7°C 309.0 h 
October 35.6°C 24.3°C 303.8 h 
November 30.3°C 20°C 285.0 h 
December 26.2°C 16.2°C 254.2 h 

Climate data (Dubai, United Arab Emirates) 

Location 2: Moderate climate (San Diego, United States). 

 Month Average High Average Low Sunshine hours 
January 19°C 10°C 217.0 h 
February 19°C 11°C 224.0 h 
March 19°C 12°C 248.0 h 
April 20°C 13°C 240.8 h 
May 21°C 15°C 248.0 h 
June 22°C 17°C 240.8 h 
July 24°C 19°C 310.0 h 
August 25°C 20°C 279.0 h 
September 25°C 19°C 270.0 h 
October 23°C 16°C 248.0 h 
November 21°C 12°C 240.0 h 
December 19°C 10°C 248.0 h 

Climate data (San Diego, United States) 
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Location 3: Extremely cold climate (Yakutsk, Russia). 

 Month Average High Average Low Sunshine hours 
January -35.1°C -41.5°C 18.6 h 
February -28.6°C -38.2°C 98.0 h 
March -12.3°C -27.4°C 232.5 h 
April 1.7°C -11.8°C 273.0 h 
May 13.2°C 1°C 303.8 h 
June 22.4°C 9.3°C 333.0 h 
July 25.5°C 12.7°C 347.2 h 
August 21.5°C 8.9°C 272.8 h 
September 11.5°C 1.2°C 174.0 h 
October -3.6°C -12.2°C 105.7 h 
November -23.1°C -31°C 60.0 h 
December -34.3°C -40.4°C 9.3 h 

Climate data (Yakutsk, Russia) 

Location 4: Mixed climate “hot summer, cold winter” (Shanghai, China). 

 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

Climate data (Shanghai, China) 

You need to optimize five different objectives: 

• Objective 1: Form compacity “Maximize”: Optimize this objective should increase form 

compacity. 

• Objective 2: Direct sunlight “Maximize”: Optimize this objective should increase direct 

sunlight that reaches the building, “If this objective weight = 0 it means direct sunlight has no 

importance, for example; a building with no potential of receiving direct sunlight is acceptable” 

• Objective 3: Natural lighting “Maximize”: Optimize this objective should increase natural 

lighting (indirect sunlight) that reach the building, “If this objective weight = 0 it means natural 

lighting has no importance, for example; a building with no natural lighting at all is acceptable 

the result can be a building with no windows” 

• Objective 4: Heating load “Minimize”: Optimize this objective should decrease the building 

heating energy consumption 
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• Objective 5: Cooling load “Minimize”: Optimize this objective should decrease the building 

heating energy consumption 

Question 1*: Read the notes below then complete the table: 

• For each location indicate the weight of each objective. 

• The more weight an objective has the more important it is (0%=Not important, 100%=The only 
important). 

• For each location, the sum of objectives weights should equal 100%. 

Objective  Location 1 Location 2 Location 3 Location 4 

Objective 1 (maximize)     

Objective 2 (maximize)     

Objective 3 (maximize)     

Objective 4 (minimize)     

Objective 5 (minimize)     

Total 100% 100% 100% 100% 

Question 2*: For the case of the office building in Dubai, compare the objectives two by two in terms 
of importance based on the following scales (0 means that the two objectives are of equal importance). 
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B. Test of Maximin aggregation function (*required) 
 
You are in the early stage of designing a mixed-use building (office, residential, commercial) in a Mixed 
climate “hot summer, cold winter” (Shanghai, China). 
 

 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

Climate data (Shanghai, China) 

• The building is modular and the size of one module is (width=6m, Length=8m, Hight=4m). 
• The total area of the program is 12000m2. 
• The lot area is (width 80m X length 100m) 8000 m2. 
• The building has only 3 stories. 
• A (25m X30m) courtyard is required in the middle of the building. 
 
The following solutions represents ten candidates of the discribed building: 

 

Solution 1  
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Solution 2 

 

Solution 3 

 

Solution 4  

 

Solution 5  
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Solution 6 

 

Solution 7 

 

Solution 8 

 

Solution 9 
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Solution 10 

Question 3*: From the list of the solutions please select only one solution that you prefer more 
than the others, the objective is to maximize solar gain in winter and minimize solar gain in 
summer: 

Please select the number of the solution: 1-2-3-4-5-6-7-8-9-10 
Please explain why you did choose this solution? 
 
………………………………………………………………………………………………… 
 
Question 4*: Please answer the previous question again, this time an extra piece of information 
will be given to you: 
 
Please select a solution number: 1-2-3-4-5-6-7-8-9-10 
Please explain why you did choose this form? 

 
………………………………………………………………………………………………… 

 
The extra piece of information is the follwing scatterplot, it present Pareto front of the solutions. 
All of the solutions are non-dominated (see the figure below). 
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C. Personal information (*required): 
Question 5*: Do you use multi-objective design optimization in your work? 

o Never 
o Rarely 
o Sometimes 
o Usually 
o Always 

Question 6*: Your Age? (--) 

Question 7*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  
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Appendix IV: Experiment 4 

This Experiment consist of different tests each test is performed with different group of 
participants 

1. Scatterplot 1 with a low level of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
o Never 
o Rarely 
o Sometimes 
o Usually 
o Always 

B. Solutions ranking (*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 
Here is a solar gain  graph that represents the performance of the candidate solutions in summer and 
in winter 
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A scatterplot that represents the solutions  

 
Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 

Please, select only one circle for each solution 

 

 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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2. Scatterplot 1 with a medium level of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
o Never 
o Rarely 
o Sometimes 
o Usually 
o Always 

 
B. Solutions ranking (*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 

• The building is modular, the module size is: (Width=6m, Length=8m, Hight=4m). 
 

• The required program is 12000 m2. 
 

• The land lot size is 8000 m2 (W=80m, L=100m). 
 

• The maximum number of levels allowed is 3 stories. 
 

• A (25m X 30m) courtyard is required in the center of the building. 
 
You have the climate data of shanghai and a solar gain performance graph (scatterplot) that represents 
seven candidate design solutions. 
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 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

 
 
Here is a solar gain graph that represents the performance of the solutions in summer and in winter 
 

 

A scatterplot that represents the solutions  

Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 

Please, select only one circle for each solution 
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 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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3. Scatterplot 1 with a high level of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
C. Never 
D. Rarely 
E. Sometimes 
F. Usually 
G. Always 

 
B. Solutions ranking(*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 

• The building is modular, the module size is: (Width=6m, Length=8m, Hight=4m). 
 

• The required program is 12000 m2. 
 

• The land lot size is 8000 m2 (W=80m, L=100m). 
 

• The maximum number of levels allowed is 3 stories. 
 

• A (25m X 30m) courtyard is required in the center of the building. 
 
You have the climate data of shanghai and a solar gain performance graph (scatterplot) that represents 
seven candidate design solutions. 
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 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

 

 

Solution A 

 

Solution B 
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Solution C  

 

Solution D  

 

Solution E  
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Solution F  

 

Solution G  

 
Here is a solar gain  graph that represents the performance of the solutions in summer and in winter 

 

A scatterplot that represents the solutions  
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Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 

Please, select only one circle for each solution 

 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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4. Scatterplot 2 with a low medium of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
C. Never 
D. Rarely 
E. Sometimes 
F. Usually 
G. Always 

 
B. Solutions ranking(*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 
 
Here is a solar gain  graph that represents the performance of the candidate solutions in summer and 
in winter 
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A scatterplot that represents the solutions  

Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 

 

Please, select only one circle for each solution 

 

 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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5. Scatterplot 2 a with a high level of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
C. Never 
D. Rarely 
E. Sometimes 
F. Usually 
G. Always 

 
B. Solutions ranking(*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 

• The building is modular, the module size is: (Width=6m, Length=8m, Hight=4m). 
 

• The required program is 12000 m2. 
 

• The land lot size is 8000 m2 (W=80m, L=100m). 
 

• The maximum number of levels allowed is 3 stories. 
 

• A (25m X 30m) courtyard is required in the center of the building. 
 
You have the climate data of shanghai and a solar gain performance graph (scatterplot) that represents 
seven candidate design solutions. 
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 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

 
 
Here is a solar gain  graph that represents the performance of the solutions in summer and in winter 

 

A scatterplot that represents the solutions  

Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 

 

Please, select only one circle for each solution 
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 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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6. Scatterplot 2 with low level of information: 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
C. Never 
D. Rarely 
E. Sometimes 
F. Usually 
G. Always 

 
B. Solutions ranking(*required): 
Please read the information then answer the question: 

 
You are at the early stage of designing a mixed-use building (office, residential, commercial) in a 
mixed climate (hot summer, cold winter-Shanghai, China). 
 

• The building is modular, the module size is: (Width=6m, Length=8m, Hight=4m). 
 

• The required program is 12000 m2. 
 

• The land lot size is 8000 m2 (W=80m, L=100m). 
 

• The maximum number of levels allowed is 3 stories. 
 

• A (25m X 30m) courtyard is required in the center of the building. 
 
You have the climate data of shanghai, solar gain analysis for 7 candidate design solutions, and a solar 
gain performance graph (scatterplot). 
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 Month Average High Average Low Sunshine hours 
January 8.1°C 2.1°C 114.3 h 
February 10.1°C 3.7°C 119.9 h 
March 13.8°C 6.9°C 128.5 h 
April 19.5°C 11.9°C 148.5 h 
May 24.8°C 17.3°C 169.8 h 
June 27.8°C 21.7°C 130.9 h 
July 32.2°C 25.8°C 190.8 h 
August 31.5°C 25.8°C 185.7 h 
September 27.9°C 22.4°C 167.5 h 
October 22.9°C 16.8°C 161.4 h 
November 17.3°C 10.6°C 131.1 h 
December 11.1°C 4.7°C 127.4 h 

 

 

Solution A 

 

Solution B 
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Solution C  

 

Solution D  

 

Solution E  
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Solution F  

 

Solution G  

Here is a solar gain  graph that represents the performance of the solutions in summer and in winter 

 

A scatterplot that represents the solutions  

Question 4*: We want to maximize the solar gain in winter and to minimize the solar gain in 
summer. Please rank the solutions according to your preference, "1st Place" represents the 
best while "7th Place" represents the worst. 
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Please, select only one circle for each solution 

 Solution 
A 

Solution 
B 

Solution 
C 

Solution 
D 

Solution 
E 

Solution 
F 

Solution 
G 

1st place ° ° ° ° ° ° ° 
2nd place ° ° ° ° ° ° ° 
3rd place ° ° ° ° ° ° ° 
4th place ° ° ° ° ° ° ° 
5th place ° ° ° ° ° ° ° 
6th place ° ° ° ° ° ° ° 
7th place ° ° ° ° ° ° ° 
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Appendix V: Experiment 5 
A. Personal information (*required): 

Question 1*: Is your work related to buildings design? 
o Yes 
o No 

Question 2*: You are? 
o Student (Architecture) 
o Student (Engineering) 
o Professor (Architecture) 
o Professor (Engineering) 
o Professional (Architecture) 
o Professional (Engineering) 
o Other -------------------------  

Question 3*: Do you use multi-objective design optimization in your work? 
C. Never 
D. Rarely 
E. Sometimes 
F. Usually 
G. Always 
H.  

B. Two objectives test (*required): 

Question 1*: Based on the table and the figures below, Rank the solutions (A, B, C, D, E). 1st 
place represents the best while 5th represent the worst. The goal is to optimize the solar gain in 
summer and winter for a building in a mixed climate that is hot in summer & cold in winter 
(Shanghai, China). 1=High Satisfaction 0=Low Satisfaction. 
 
  Summer Objective level of satisfaction Winter Objective level of satisfaction 
Solution A 0,9 0,45 
Solution B 0,5 0,5 
Solution C 0,8 0,25 
Solution D 0,4 0,6 
Solution E 0,35 0,95 

The level of satisfaction of the solutions 
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A parallel coordinate that represents the solutions satisfaction of the objectives 

 

 

A scatterplot that represents the solutions satisfaction of the objectives 

 

Please, select only one circle for each solution 

 Solution A Solution B Solution C Solution D Solution E 

1st place ° ° ° ° ° 

2nd place ° ° ° ° ° 

3rd place ° ° ° ° ° 

4th place ° ° ° ° ° 

5th place ° ° ° ° ° 
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C. Three objectives test (*required): 

Question 2*: Based on the table and the figure below, Rank the solutions (A, B, C, D, 
E). 1st place represents the best while 5th represent the worst. The goal is to optimize4 
objectives that are equally important for the design (1=High Satisfaction, 0=Low 
Satisfaction) 

Solution Objective 1 Objective 2 Objective 3 Objective 4 
Solution A 1 1 1 0,3 
Solution B 0,5 0,5 0,5 0,5 
Solution C 0,4 0,4 0,4 0,4 
Solution D 0,9 0,9 0,2 0,7 
Solution E 0,2 0,2 0,5 0,4 

The level of satisfaction of the solutions 

 

 

A parallel coordinate represents solutions’ satisfaction of the objectives 

 

Please, select only one circle for each solution 
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 Solution A Solution B Solution C Solution D Solution E 

1st place ° ° ° ° ° 

2nd place ° ° ° ° ° 

3rd place ° ° ° ° ° 

4th place ° ° ° ° ° 

5th place ° ° ° ° ° 
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