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Chapter 1

General introduction The problem that arises in this thesis is the optimisation of the charging scheduling of electric vehicles (EV), which is also known as Electric vehicle charging coordination (EVCC) problem. In the last ten years, we have observed the big jump in the electric vehicle technologies. The battery density increases by 400% in 7 years (2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015) while the cost per kWh is reduced by 73% [START_REF] Cazzola | Global EV outlook 2016 -beyond one million electric cars[END_REF]. As a consequence, the number of electric cars which had been less than a thousand in 2005, attends 1.26 million in 2015 [START_REF] Cazzola | Global EV outlook 2016 -beyond one million electric cars[END_REF]. Electric Vehicles Initiative (EVI) sets an objective of 20 million EV deployed by 2020. In the middle of the ecological This change can reduce the carbon emission and assure the energy security. In addition, stand behind the success of EV deployment is the advantageous governmental policies and the awareness of EV user on the sustainable development. However, EV charging is an enormous power consumption task over an extended period. For single phase charge point, charging rate can vary from 3.3 to 7.4kW for a charging duration from 3 to 6 hours. A three-phase charger can provide from 10 to 22kW for 1 to 3 charging hours [START_REF]Sae charging configurations and ratings terminology[END_REF]. Especially, there is also ultra-fast charge rate with a power of 43kW. Hence, the high penetration of electric vehicles can cause many concerns to the electric grid. Also, the power subscription for individual charge point would be wasteful, since the charging time takes in average 17% of the availability time. In additional, a personal charge point and its electrical cost could be costly for EV user. As a good solution to those issues, a collective and coordinated charging process can stabilise the grid and optimise the charge point productivity, also minimise the electrical cost.

The Park'nPlug company is located in France and provides the corporate EV recharging services and management. In France, the private sector (residential, office parking)

dominates with a share of 85% of the charge points compared to 15% share of the public sector (supermarket, public, highway parking) [START_REF] Cazzola | Global EV outlook 2016 -beyond one million electric cars[END_REF]. The main difference between those two areas is the level of knowledge of the input data. In the private parking, we know all the clients and their past behaviours whereas the information customer of the public sector is entirely unknown. Hence, the optimisation method on the charging scheduling would be completely different while facing each of the two problems. In the limit of this thesis, we tackle exclusively the private sector EV charging coordination. The electric cost is comparable with any other cost in the scheduling problem: it consists of a fix cost and a variable cost. The fixed cost is a monthly subscription and concerns the total bandwidth. Many

French electrical providers propose two pricing plans: whether the energy cost is constant or it consists two sub-plan, the off-peak cost (cheaper) and the on-peak cost (more expensive).

With the first option, the constant price, we have few possibilities to optimise the variable cost. Yet, the second plan requires an optimal usage schedule. One has to face the trade-off between the fixed cost and the variable cost. A narrow power subscription is cheap, however, takes a longer time to charges all the EV which can extend the charging time on the on-peak hours, thus increases the variable cost. So the minimisation of electrical cost should answer to two questions:

1. How much electrical power one should subscribe dedicated to the EV corporate charging to minimise the fixed cost?

2. When should we start the charging procedure to minimise the variable cost.

After answering to those questions, we move to the next phase: the optimisation of the service quality. One should liberate as soon as possible all the charging tasks in the waiting queue, with respect to all the constraints regarding the EV availability on the parking, the daily charging demand and the costumer's departure references.

Contributions

The first contribution of this thesis lays in the creation of a methodology to solve the industrial problem: A classification on the EVCC constraints and the definition of a novel class of the scheduling problem under single additional resource. This class of scheduling problem are expressed in 5 configurations namely ACPF 1/2 and ACPV 1a/1b/2.

The second contribution is the formulation of the EVCC problem. We propose two The third principal contribution consists of two methods of resolution of the EVCC problem. We propose the exact resolution procedure by the Branch-and-Price Algorithm.

We introduce with this approach the tuning up tools and branching strategies. Also, we design a family of constructive heuristic named Layering and Adapting (HLA), based on the Large Neighbour Search and Strip packing principles, which can solve large instances of the problem efficiently in a very short execution time.

The fourth contribution is the conception of a simulation based forecast and an online scheduler to cope with schedule's uncertainties and real-time events. It is suitable for the technical implementation thanks to its reconfigurability and implementability.

Finally, we deploy all the algorithmic research done by creating a stand-alone scheduler software. This software is autonomous and is implemented in a microprocessor which provides the smart charging function for the charge point.

Dissertation contents

In this first chapter, we point out the motivation and the context of the thesis. To provide a theoretical background for our scientific development made in this thesis, we outline in chapter 2 the terminologies and definitions of the scheduling problems under single additional resource, the electric vehicle charging coordination problem and the MILP formulation technique. We review the existed works, identify the key research gap so we can position our research.

To provide the methodology to tackle the problem, in chapter 3, we identify the electric vehicle coordination constraints, according to five sets of constraints. Then we introduce five configurations of the scheduling problems. In the remaining of the chapter, we formulate the most generic configuration of the scheduling class, the ACPV 2 in two MILP formulations: a conjunctive formulation and a disjunctive formulation. To have a more profound knowledge of the problem, we make a convex hull analysis of the two formulations and introduce two valid cuts. We test at the end of the chapter the exact resolution of those two developed models.

Both chapter 4 and chapter 5 are dedicated to the solution procedure of the problem.

In chapter 4, we state that the disjunctive formulation of the problem consists of a block matrix. For that reason, we can apply the Danzig-Wolfe decomposition to partition the formulation. For that reason, we introduce the Branch-and-Price Algorithm as an exact approach to solving the EVCC problem. In search of a faster algorithm to cope with larger size instances, by chapter 5, we design the dedicated Layering and Adapting heuristics to solve the problem. All the resolution methods are tested numerically so that we can investigate their computational strength.

To cope with schedule uncertainties, we first introduce in chapter 6 a simulation based forecast. The forecaster decides how much electrical power one must subscribe at the strategic level. Also, it makes precision on when does one has to start the daily charging procedure. Furthermore, we present the conception of an online scheduler. This conception brings deterministic algorithm to cope with the real-time event by the partial rescheduling policy.

In chapter 7 we make concrete the scientific research into the conception of a deployable stand-alone scheduling software. This software is implemented on the microprocessor at the EV charging management centre of the parking.

At the end of the thesis, we resume the results of our works, hence drawing conclusions. Finally, we can state the perspective and future works as the outlook of this thesis.

Introduction

In this chapter, we present the basic terminologies and definitions for further developments in this thesis. First, we review the electric vehicle charging problem with its general definitions and conceptions. Then, we identify the corresponding field of study, which is the scheduling problem with a single additional resource, to tackle the industrial problematic.

Concrete definitions of the machines, the tasks, and their characteristics help us to state all the explication and explanation made in this thesis. Also, we introduce the optimization criteria in terms of time and resource. An important part of this chapter is dedicated to the reviews and classifications on existed works which underline the major issues. Thereby, we can position our problem with existing works, create the definition of new classes of scheduling problems which can fill those major research gaps.

Electric vehicles charging coordination 2.2.1 Electric vehicles charging terminology

Through this section, we introduce some technical terms and definitions concerning the electric vehicle charging briefly. Regarding the charging infrastructure, an electric vehicle charging station supplies electricity for the charging of electric vehicles. The EV Charging

Station is usually mentioned as an Electric vehicle supply equipment (EVSE). A Charge

Point (CP) controls the power of one or several EVSE. The Central or Back-Office controls the behaviours of the charge points in the parking. The types and designs of the charging central are diverse and correspond to the service company who develops the charging solution. In contrary, the charge point designs are very standard. There are two major protocols to take into consideration: the charging standard which controls the energy loading between the EV charger and the EVSE and the communication protocol between the back-office and the charge point. The simplified charging infrastructure is introduced in figure 2-1. 

Central (Back

Literature reviews and classification

There are two majors approaches to solve the EV coordination problems in the literature that we may define the local approach and the global approach. For the local approach, the solution procedure is implemented locally, usually at the charge point. For every new event, for instance, the end of a charge or a plugging of a newly arrived EV, the charge point will decide what to do next by itself. The decision is often driven by some based-rule, then it is called a "what-if " decision. The method can react quickly to real-time situations thanks to its simplicity. However, because the input problem is not treated globally, the overall scheduling performance is not sufficient. To cope with problems containing temporal constraints, this method could lead to an infeasible solution. Since the solution procedure is based on a little part of the information, then it can be called the implicit method. The majority of the implicit methods are based on the theory of control. Maasmann et al. [START_REF] Maasmann | Charging optimization due to a fuzzy feedback controlled charging algorithm[END_REF] developed a feedback controlled fuzzy algorithm to balance charging power with respect to the user habits i.e. temporal constraints. Also, Faddel et al. [START_REF] Faddel | Fuzzy optimization for the operation of electric vehicle parking lots[END_REF] developed another feedback controlled fuzzy algorithm intended to maximise the total profit: the difference between the income from the selling of electricity to clients and the outcome from the buying of electricity from providers. Using another rule, Al-Awami et al. [4] introduce a charging voltage based controller to reduce the charging rate subject to the end-time of charge reference (i.e.

charging task expected deadline). Álvarez et al. [6] presented four variations of decentralised controller to serve the power balancing objective.

The second major solution procedure for the EVCC problem is the global scheduling method. This approach is called global because it takes the input as a whole. By using this approach, solutions found may have better performances compared to the solution obtained by the local method. The global scheduler can have a greater probability to find feasible solutions, even with temporal constraints and time-dependent resource, compared to the local approach. However, because it has to take the input altogether, this method finds difficulties to deal with uncertainties. Also, the computational time taken to decide is much longer than the time required for a rule-based decision. The global approach can be called sometime the explicit approach. In the limit of this chapter, we try to cite only some relevant works using the EVCC global approach. Concerning the meta-heuristic solution procedure, Alonso et al. [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF] and Lee et al. [START_REF] Lee | Genetic algorithm-based charging task scheduler for electric vehicles in smart transportation[END_REF] developed genetic algorithms to deal with the EVCC problem to minimise the total electric consumption and subscription cost. Pedrasa et al.

[59] use the Particle Swarm Optimisation method to coordinate the EV charging scheduling with others household, optimising the total electric consumption cost. In the same context of the smart home energy management, Adika and Wang [2] introduced a demand side management algorithm, with the objective to flattening the electric power load. Karbasioun et al. [START_REF] Mohammad M Karbasioun | Power strip packing of malleable demands in smart grid[END_REF] introduced a power strip-packing algorithm. This heuristic aims to minimise the power peak. Regarding the stochastic optimisation, Iversen et al. [START_REF] Emil B Iversen | Optimal charging of an electric vehicle using a markov decision process[END_REF] proposed a Markov chain formulation to deal with randomness behaviours of EV client, then propose a stochastic optimisation schedule for the EVCC problem. We resume all the mentioned works in table 2.1.

Scheduling problem with single additional resource 2.3.1 Terminologies and definitions

The EVCC problem is a parallel machine scheduling problem. The charging processes are the tasks and the charge points are the machines. Machine scheduling problems decide the allocation of a set of tasks into a set of machines to optimise (maximisation or [START_REF] Maasmann | Charging optimization due to a fuzzy feedback controlled charging algorithm[END_REF] x [START_REF] Faddel | Fuzzy optimization for the operation of electric vehicle parking lots[END_REF] x

Voltagebased controller [4] x Decentralized controller [6] x Global (explicit) scheduling Genetic algorithm [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF][START_REF] Lee | Genetic algorithm-based charging task scheduler for electric vehicles in smart transportation[END_REF] x Particle swarm optimisation [START_REF] Angelo | Coordinated scheduling of residential distributed energy resources to optimize smart home energy services[END_REF] x Demand side management [2] x Stochastic scheduling [START_REF] Emil B Iversen | Optimal charging of an electric vehicle using a markov decision process[END_REF] x Power strip packing [START_REF] Mohammad M Karbasioun | Power strip packing of malleable demands in smart grid[END_REF] x Table 2.1 -Classification of some EVCC approaches in the literature minimisation) a given objective and subject to a set of constraints. The solution procedure for the problem decides when a job starts and on which machine this job should be executed.

There are many variations of the machine scheduling problem due to the different machine environments, scheduling criterion and additional constraints, as well as the divergence of the objective functions.

Machine environments

One can come up with four major types of machines: single machine, identical machines, related machines and unrelated machines. The single machine scheduling problem is made up of one machine; then the decision is reduced only to when a job can start.

The machines can be identical, i.e. the processing speed of tasks is identical on each machine.

In related machine environment, each machine has a fixed processing speed that is valid for all tasks. The last machine environment is the unrelated machines: the coupling of each pair task-machine creates a different speed. The complexity of unrelated machines problems dominates the related machine's problems, and the complexity of this latter dominates the identical machine's scheduling problem. The standard three-field notations [START_REF] Ronald L Graham | Optimization and approximation in deterministic sequencing and scheduling : a survey[END_REF] denotes the machine environment in the following way:

• 1: single machine Jobs contain different properties and constraints. The first three constraints are precedence constraints, stages constraints and temporal constraints. Precedence constraints restrict jobs to be executed in a precedence order, that indicates each task has a set of predecessors and a set of successors. The starting of a job requires the completion of all its predecessors. This restriction is known commonly in project scheduling problems. Otherwise, jobs are called independent. With stage constraints, jobs have to be processed in multiple machines with respect to an order of stages. Scheduling problems with job stages are called job-shop scheduling problems. Without job stage, jobs are called atomic. Temporal constraints contain release dates, deadlines and due-dates. Any job cannot start before its release date and must end before its deadline (strict deadline). The due date is technically different from the deadline since it is acceptable for a job to finish after its due date. However, the difference between the completion time of a job and its due-date is called the tardiness. Hard time-windows constraints incorporate the release date and strict deadlines. Soft time-windows constraints consist of jobs' release dates and due dates. In this thesis, hard time windows constraints are denoted simply time-window constraints. Also, in the case of jobs having different importance, we denote its significance by a scalable: weight-of-job. Each task also has a measurable processing time. The standard notations of job properties are:

• 𝐶 𝑖 : the completion time of job 𝑖

• 𝑝 𝑖 : the processing time of job 𝑖

• 𝑟 𝑖 : the release date of job 𝑖.

• 𝐶 𝑖 -𝑟 𝑖 : the flow time of job 𝑖

• 𝐶 𝑖 -𝑟 𝑖 -𝑝 𝑖 : the waiting time of job 𝑖

• 𝑑 𝑖 : the deadline (strict) for job 𝑖

• d𝑖 : the due date (no strict) of job 𝑖 • max{𝐶 𝑖 -d𝑖 , 0}: the tardiness of job 𝑖

• 𝑤 𝑖 : the weight of job 𝑖

There are two important properties of jobs that one should take into account: the parallelism and the preemption. If many machines can process a job at a time, the job is then called parallel. The fixed parallelism consist of jobs requiring a constant number of the machines during the entire processing. If the number of machines processing a given job can vary over time, this job is then malleable. Preemption (activity splitting) allows the jobs to be interrupted at a machine and continued on another machine. On the contrary, once the non-preemptive job has started, it cannot be interrupted until it reaches the completion time.

Additional Resources

Besides the machines, which are also the discrete resources, the jobs may also need an additional resource to be processed. Additional resources can be classified according to their divisibility and renewability. Regarding the divisibility, additional resources can be discrete or they can be continuous. The discrete resources are machine resources, human resources... The continuous resource can be the electrical resources, heat flows... Furthermore, a resource is called renewable if it is available for each period with a constant (or variable) amount whereas a non-renewable resource is finite for the whole scheduling horizon. For instance, machine and human are discrete and renewable resources. The investment (money) can be considered as a continuous and non-renewable resource. In some particular cases, resources are both renewable and non-renewable which is called doublyconstrained resources. For instance, the energy stored in a laptop battery is renewable with a fixed maximum power and non-renewable since it has a total limit capacity.

Classically, the processing time of jobs is supposed to be constant, or, to be dependent only to the pairing of machine-task. However, the resource consumption may change the way the processing time of a job behaves. If the resource consumption is a constant, then jobs' processing time is also constant. On the contrary, if the resource consumption of a job is modifiable, then this latter plays an active role in the scheduling problem by adding additional decision variables to the problem.

Controllable processing times

The processing times are controllable when the distribution of resources to jobs can shorten or extend their processing times. In the basic model, the amount of the resources is fixed during the whole job processing. Consider a single resource scheduling problem, let 𝑢 𝑖𝑗 be the resource allocation to job 𝑖 when it is paired with machine 𝑗 (or 𝑢 𝑖 in the case of identical machines). The processing time 𝑝 𝑖𝑗 is calculated by a resource consumption function 𝑓 𝑖𝑗 (𝑢 𝑖𝑗 ). In the majority of the studies of controllable processing time problems, the resource consumption function is a bounded linear function. It is also called compression function, which takes the form:

𝑝 𝑖𝑗 = 𝑓 𝑖𝑗 (𝑢 𝑖𝑗 ) = p𝑖𝑗 -𝑎 𝑖𝑗 𝑢 𝑖𝑗 0 ≤ ū𝑖𝑗 ≤ p𝑖 𝑗/𝑎 𝑖𝑗 (2.1)
In this equation, p𝑖𝑗 is called the compressed processing time (initial processing time) for job 𝑖 on machine 𝑗. ū𝑖𝑗 is the upper bound of the amount resource can allocate to job 𝑖 on machine 𝑗. 𝑎 𝑖𝑗 is a positive linear coefficient denotes the compression rate of the resource. We can find another common resource consumption function which takes the form of a convex function:

𝑝 𝑖𝑗 = 𝑓 𝑖𝑗 (𝑢 𝑖𝑗 ) = (︂ x𝑖𝑗 𝑢 𝑖𝑗 )︂ 𝑘 = (︂ x𝑖 ℎ 𝑖𝑗 𝑢 𝑖𝑗 )︂ 𝑘 (2.2)
Where x𝑖𝑗 is the workload of job 𝑖 on machine 𝑗 and 𝑘 is a positive constant which is less than 1. We denote x𝑖 = x𝑖𝑗 /ℎ 𝑖𝑗 where ℎ 𝑖𝑗 is a positive constant, which stands for the resource consumption efficient of job 𝑖 on machine 𝑗 and x𝑖 is the workload of job 𝑖.

In the case of the identical machine scheduling problems, one can remove the index 𝑗 from the parameters and variables. In the case of the multi-resource allocation problem, one may add the index 𝑙 to the parameters and variables to denote the type of the used resources.

Controllable processing rates

In the controllable processing times problems, we can find that the resource consumption functions are time independent. Conversely, the time-dependent resource consumption function affects the speed of jobs instantaneously. In this kind of scheduling problems, the expected processing time of a job is time-varying. To formulate the processing rate, one defines the processing state of jobs, or simply, the state of jobs. Consider the identical machine environment with the single additional resource, the state of job 𝑖 at time 𝑡 is denoted by 𝑥 𝑖 (𝑡), which is a non-decreasing function of time 𝑡 (we suppose that accumulated state cannot deteriorate). The final state of job 𝑖, or the workload, is denoted by x𝑖 . The comple- tion time of a job 𝑖, which is unknown in advance, then 𝑥 𝑖 (𝐶 𝑖 ) = x𝑖 . The processing rate of job 𝑖 is the derivation of processing state of job 𝑖, which follows the resource consumption function 𝑓 𝑖 (𝑢 𝑖 (𝑡)) [START_REF] Weglarz | Time-Optimal Control of Resource Allocation in a Complex of Operations Framework[END_REF] ẋ𝑖

(𝑡) = 𝑑𝑥 𝑖 (𝑡) 𝑑𝑡 = 𝑓 𝑖 (𝑢 𝑖 (𝑡)) 𝑥 𝑖 (0) = 0 𝑥 𝑖 (𝐶 𝑖 ) = x𝑖 (2.3)
In the time-discrete model, this differential equation becomes a difference equation:

𝑥 𝑖,𝑘+1 -𝑥 𝑖,𝑘 = 𝑓 𝑖 (𝑢 𝑖,𝑘 ) 𝑥 𝑖,0 = 0 𝑥 𝑖,𝐶 𝑖 ≥ x𝑖 (2.4)
The most studied resource consumption is a convex function: 𝑓 𝑖 (𝑢 𝑖 (𝑡)) = ℎ 𝑖 .𝑢 𝑖 (𝑡) 𝑘 with ℎ 𝑖 ∈ (0, 1] and 𝑘 ≥ 1. A special case when 𝑘 = 1 we get the linear bounded resource consumption function. The special case with ℎ 𝑖 = 1 and 𝑘 = 1 defines the cumulative scheduling problem where the state of job is the accumulation of resource upto a given time.

Job scheduling problems

If the number of machines is greater than or equal to the number of jobs, the machine scheduling problem becomes the jobs scheduling problem (i.e. parallel scheduling problem).

With a single additional resource, the way a job consumes a resource formulates three parallel scheduling problems:

Rigid jobs The resource is constantly required to process jobs, this requirement is a parameter of the input problem. Geometrically, jobs are rigid rectangles with given heights. The rigid job scheduling problem is the simplest job scheduling problem in term of complexity. Moldable jobs This type of job also requires a fixed amount of resource to process.

However, unlike the rigid jobs, this amount of resource can be decided by the scheduler.

The moldable jobs scheduling problem is notably close to the controllable processing time scheduling problem with a linear resource consumption function. 

Malleable jobs

∑︀

𝑟 𝑖 -𝑝 𝑖 and ∑︀ d𝑖 are constant. Second, the makespan (𝐶 𝑚𝑎𝑥 ) minimisation, which aims to minimise the completion time of the last job in the system, optimise the production quality.

Criteria set F2: Resource optimisation criteria With reference to the scheduling problem with additional resources, one can first find the resource levelling problem in the majority of the concerning works. Resource levelling tends to minimise the variation of resource consumption over time. Resource levelling also implies to reduce the excessive resource demand (i.e. resource peak). However one may find in some situations that there is a trade-off between the resource peak and the total resource variation sum (the sum of the difference of resource usage between two consecutive periods). Then, there is a basic criterion which minimises only the resource peak, formally defined as the maximum resource consumption of all tasks at a given period. The second common objective is resource consumption cost minimisation. If the resource price is time-dependent, it is crucial also to decide right amount of resources at a given to minimise the overall consumption cost.

Hence, we can derive four classes of optimisation problem:

• Optimise F1 w.r.t. F2: time optimisation problem subject to an upper bound of resource.

• Optimise F2 w.r.t. F1: resource optimisation problem subject to an upper bound of makespan.

• Optimise total cost of F1 and F2: optimise the total cost of time and resource: 𝛼𝐹 1 + 𝛽𝐹 2

• Multi-ojectives optimisation of F1 and F2.

Scheduling problem with additional resource notation

Graham et al. [START_REF] Ronald L Graham | Optimization and approximation in deterministic sequencing and scheduling : a survey[END_REF] introduced a standard three field notation to classify scheduling problem: 𝛼/𝛽/𝛾. The 𝛼 field indicates the machine environment. The 𝛽 field describes the set of job properties and constraints. The 𝛾 field defines the optimisation criteria. To notate the properties of the resource, Blazewicz et al. [START_REF] Jacek Blazewicz | Scheduling subject to resource constraints : classification and complexity[END_REF] introduced an expansion to the 𝛽 field: 𝑟𝑒𝑠𝜆𝜎𝜌. 𝜆 is a positive natural number stands for the number of resources. 𝜎 stands for the upper bound of the total amount of available resource, i.e. resource size. Finally, 𝜌 represents the resource requirement upper limit of the tasks. If any of the three values for 𝜆, 𝜎 and 𝜌 are arbitrary or are considered as an input, we denote this parameter by a dot (•) instead of using a positive number.

To close this subsection, we introduce three types of scheduling problems: deterministic scheduling problem, online scheduling problem and stochastic scheduling problem.

In deterministic scheduling, all the parameters and input of the problem are known before the solution procedure (i.e. all known at time zero). In the online scheduling problem, the inputs of each job 𝑖 are unknown until its release date (i.e. submission overtime scheduling).

The online scheduling has two subclasses; the first one has the job workload or processing time known at submission. The second has the job workload or processing time unknown in advance (i.e. non-clairvoyant scheduling). Regarding the stochastic scheduling problem, we only know the random distributions of job parameters.

Mixed Integer Liner Programming Formulation techniques

This part is dedicated to making a tour of the MILP state-of-the-art formulations techniques. The MILP has become one of the most common way to formulate the scheduling problem. There exist many ways to make a MILP model. The choice of a proper formulation is crucial since it can, indeed, influence the performance of the solver. Vielma [START_REF] Pablo | Mixed integer linear programming formulation techniques[END_REF] reasoned the success of MILP is due to the development of modern linear programming solver and the flexibility of the model itself. He also indicated that the well constructed MILP could boost up the solution procedure of the state-of-the-art solvers. Since most of the solvers are based on the branch-and-bound algorithm, the convex hull of each formulation is decisive to the performance of the solvers. Each formulation modifies the convex hull of the linear programming relaxation (LP-relaxation). The LP-Relaxation of a MILP formulation is a Linear Programming Formulation that replaces any integer constraints of the original MILP formulation to weaker constraints that each integer variable can be real (and can be bounded). Technically, the tighter the hull, the better the formulation. Conventionally, one can say shortly that the formulation is tighter (or stricter) than another one. Also, a good MILP formulation can give a better idea of the solution procedure of the problem.

Hooker [START_REF] Hooker | A principled approach to mixed integer/linear problem formulation[END_REF] introduced a principled approach to MILP modelling. He stated that the MILP modelling consists of an identification of the disjunctive modelling and the knapsack constraints modelling. The author indicated that the disjunctive formulation is often stronger when one compare the performance of this formulation with other counterparts. Technically, disjunction means the union of many little polyhedra, each of those represents a solution possibility. Moreover, the knapsack model is used to express the counting ideas of integer variables which differs from the previous disjunction approach Hooker [START_REF] Hooker | A principled approach to mixed integer/linear problem formulation[END_REF].

MILP Terminology and definition

To understand further presentation of the MILP in this thesis, we would provide some concerned fundamental definitions and terminologies:

MILP problem A mixed integer linear programming problem has the standard form: minimise or maximise 𝑐𝑥 + 𝑑𝑦 

subject to 𝐴𝑥 + 𝐺𝑦 ≤ 𝑏 𝑥 ∈ R 𝑛 and 𝑦 ∈ Q 𝑝 with 𝑐 ∈ R 𝑛 ; 𝑑 ∈ R 𝑝 ; 𝐴 ∈ R 𝑚×𝑛 ; 𝐺 ∈ R 𝑚×𝑝 ; 𝑏 ∈ R 𝑚 (2.

Literature review

We first position our problematic in the context of theoretical scheduling problems.

The EV charging is a resource-consumption task. The operator (machine) is the EVSE.

Hence the machine environment is considered to be identical. Charging tasks require a single additional resource which is electrical power. The amount of energy accumulated at a given time decides the processing time. If the charging power is time-dependent, then the processing rate is controllable, or, the charging tasks are malleable. Otherwise, the controllable processing time should be considered, corresponding to the moldable task scheduling problem. Because of that position of our industrial problematic, we review followingly works concerning the controllable processing time/rate scheduling problem and the parallel tasks scheduling problems, precisely the moldable and malleable tasks scheduling problems. The controllable processing time raised in the practical issue of the allocation of a shared common resource. Let us take a classical example of this type of scheduling problems, Janiak [START_REF] Janiak | Minimization of the blooming mill standstills-mathematical model, suboptimal algorithms[END_REF] investigated the ingot preheating process in steel mill problem. The common shared resource is the gas flow intensity. The more intense the gas flows to a given ingots, the hotter it would be. The increasing on the temperature of the preheated ingot can reduce its processing time in steel mills. The problems were actively studied in the 90s, mainly dedicated to solving heavy industrial problematic and the project scheduling problem with an additional resource [START_REF] Rg Vickson | Two single machine sequencing problems involving controllable job processing times[END_REF]. We can find the continuous mathematical formulation and an exact solution procedure. Nowicki and Zdrzałka [START_REF] Nowicki | A survey of results for sequencing problems with controllable processing times[END_REF] formulate the trade-off between pro-cessing time and resource consumption with compression function (2.1) by the compression cost integrated into the minimisation. Most of the controllable processing time scheduling problem, especially problems with temporal constraints, are NP-Hard [START_REF] Shabtay | A survey of scheduling with controllable processing times[END_REF]. However, when the environment is single machine or tasks are preemptive, the complexity could be solved in a polynomial time.

The Discrete-Continuous Scheduling Problem

Relating to the controllable processing rate, a specific class of the problem is defined and called Discrete-Continuous scheduling problem (DCSP). The DCSP problem is formally defined by [START_REF] Weglarz | Time-Optimal Control of Resource Allocation in a Complex of Operations Framework[END_REF], consisting of the programming of 𝑛 tasks to 𝑚 identical machines with a divisible and renewable resource. The term discrete comes from the machine's environment, and the term continuous originates from the property of the additional resource. According to our knowledge, this is the most generic and structured formulation so far to model the processing speed by resource consumption function. Nonetheless, the DCSP gained less attention in nearly two decades, until the beginning of the 2000s, when the energy reasoning, power-aware scheduling and the parallel computing both became serious issues. Since then, many works have been done regarding the convex and no greater than linear resource consumption function of job 𝑖 takes the form 𝑓 𝑖 = ℎ 𝑖 𝑢

1/𝑎 𝑖

with 𝑎 is positive constant and ℎ 𝑖 is a linear coefficient, often called resource consumption efficiency. The DSCP problem with temporal constraint and non-preemptive tasks is NP-Hard [START_REF] Jozefowska | A heuristic approach to allocating the continuous resource in discrete -continuous scheduling problems to minimize the makespan[END_REF]. Gorczyca and Janiak [START_REF] Gorczyca | Resource level minimization in the discretecontinuous scheduling[END_REF] studied the specific DCSP problem named 𝑃 𝑈 𝑚𝑎𝑥 which minimise the resource peak on an upper bound of makespan (problem optimising F2 w.r.t. F1). They proposed five optimal properties; among them, one valuable property on the optimal allocation of resource given the jobs sequence. In agreement with this properties, they establish an exact resolution and an approximative approach to solving the problem.

Regarding the second problem to optimise time criteria with respect to a resource upper bound (problem optimising F1 w.r.t. F2), the majority of related works on finding an exact resolution method relaxed the jobs' time-window constraints. The time criteria F1 is common to minimise 𝐶 𝑚𝑎𝑥 and the resource criteria F2 is limited by a constant upper bound (constant resource bandwidth). The exact approach is constructed by two sub-problem proposed by Józefowska and Weglarz [START_REF] Józefowska | On a methodology for discrete-continuous scheduling[END_REF]. The first sub-problem is to build a job sequence called potentially optimal set (POS). Each POS is a set of feasible sequences of jobs which contain at least one sequence appearing in the optimal solution. Since the cardinality of POS grows exponentially with the number of jobs, it is hard to enumerate all the job sequence. Hence, researchers introduced many approximate methods to solve this subproblem. Jozefowska et al. [START_REF] Jozefowska | Local search metaheuristics for discrete -continuous scheduling problems[END_REF] developed three metaheuristics to cope with the sequencing problem: the tabu search, the simulated annealing and the genetic algorithm.

During the statistical test, the tabu search method out-performed the others two approaches.

Hence, many further works concentration on exploiting this approach for the sequencing problem [START_REF] Józefowska | Tabu list management methods for a discrete-continuous scheduling problem[END_REF][START_REF] Jozefowska | A Performance Analysis of Tabu Search for Discrete-Continuous Scheduling Problems[END_REF][START_REF] Waligóra | Tabu search for discrete-continuous scheduling problems with heuristic continuous resource allocation[END_REF][START_REF] Xu | A tabu-search algorithm for scheduling jobs with controllable processing times on a single machine to meet due-dates[END_REF]. Since the optimal resource allocation for each sequence is NP-Hard, semi-optimal scheduling is solved by heuristic introduce by Jozefowska et al. [START_REF] Jozefowska | A heuristic approach to allocating the continuous resource in discrete -continuous scheduling problems to minimize the makespan[END_REF], Waligóra [START_REF] Waligóra | Heuristic approaches to discrete-continuous project scheduling problems to minimize the makespan[END_REF]. Gorczyca and Janiak [START_REF] Gorczyca | Resource level minimization in the discretecontinuous scheduling[END_REF] proposed an exact approach and two heuristics to deal with the makespan optimisation F1 w.r.t. F2; jobs have to be preprocessed then their ready times is dynamic. Later, with the same problem, Gorczyca et al. [START_REF] Gorczyca | Makespan optimization in a single-machine scheduling problem with dynamic job ready times-Complexity and algorithms[END_REF] introduced the approach to solving the F2 w.r.t F1 resource levelling problem. In this work, the authors introduce a dynamic programming model. To cope with recent issues concerning the energy reasoning problem, Różycki and Węglarz [START_REF] Różycki | Power-aware scheduling of preemptable jobs on identical parallel processors to meet deadlines[END_REF] proposed a general method to deal with the preemptive jobs having deadlines. In a more recent work, Rozycki and Weglarz [START_REF] Rozycki | Solving a power-aware scheduling problem by grouping jobs with the same processing characteristic[END_REF] accelerated the solution procedure by grouping power consumption jobs having the same characteristics.

Brinkmann et al. [START_REF] Brinkmann | Scheduling Shared Continuous Resources on Many-cores[END_REF] researched the parallel computing problem with continuously shared resources on many cores. All the works concerning the DSCP suppose that the total available resource is constant.

Parallel task scheduling problem (PTSP)

Initially, the parallel scheduling problem regards jobs which can be processed at the same time on more than one machine. The more machines process job at a time, the faster the job can finish. In the point of view of scheduling with an additional resource, machines (or operators) are a discrete and renewable resource. When the number of machines becomes vast, this latter can be seen as a continuous resource. Concerning the rigid job scheduling problem, Cieliebak et al. [START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF] addressed the issue of scheduling with release date and deadline on a minimum number of machines. The objective of this problem is equivalent to the resource levelling in the case the additional resource is continuous. The authors proposed a basic heuristic named Greedy Best Fit with the conception of the "shiftable interval". The idea of the heuristic is to avoid greedily to create new resource peak while scheduling each task. The work is very inspiring, notably to our problem. The main research gaps are that the authors do not fully take into account of the sequencing of jobs and the variation of the resource. Concerning the moldable task scheduling problem, Blazewicz et al. [START_REF] Blazewicz | Berth and quay crane allocation : a moldable task scheduling model[END_REF] have done a research about the famous berth and quay crane allocation problem. Since the research of Blazewicz et al. [START_REF] Blazewicz | Berth and quay crane allocation : a moldable task scheduling model[END_REF] was based on their previous work on the DSCP, then the resource is upper bounded and the time windows constraints were ignored. The objective is also to minimise the makespan. Both the rigid and moldable jobs are typically non-preemptive.

Regarding the malleable jobs, one has to take into consideration the preemption of jobs.

This constraint is very crucial since it decides the complexity of the problem. A scheduling without time-windows constraints and preemptive jobs usually can be solved in polynomial times [START_REF] Blazewicz | Preemptable malleable task scheduling problem[END_REF]. The nature of the malleable jobs is to take advantage of the available resource to speed up and complete the task as soon as possible. Then, in many works, the objective of the scheduling is to avail as much as possible the resource and optimise the production, problem optimising F1 w.r.t. F2. Based again on DSCP, Blazewicz et al. [START_REF] Blazewicz | Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan[END_REF] introduced an exact method to solve the malleable task scheduling problem to minimise the makespan.

Newly, Beaumont and Marchal [START_REF] Beaumont | A normal form for scheduling work preserving malleable tasks and its applications[END_REF] developed a normal form for the preemptive tasks to minimise the weighted mean completion time. The property was later formulated in [START_REF] Beaumont | Minimizing weighted mean completion time for malleable tasks scheduling[END_REF].

The authors stated that an optimal resource allocation for each job this problem in nondecreasing in the case of the constant total available resource. Jansen and Zhang [START_REF] Jansen | Scheduling malleable tasks with precedence constraints[END_REF] address the same problem, yet taking into account of the precedence constraints. Karbasioun et al. [START_REF] Mohammad M Karbasioun | Power strip packing of malleable demands in smart grid[END_REF] addressed the energy reasoning problem with malleable consumption tasks.

Cumulative Scheduling Problems (CSP)

While the DSCP and the PTSP cope with continuous time problems, Baptiste et al.

[7] dealt with the discrete time problem. The discrete time model gives us the advantage to introduce the time-varying resources, yet it increases at the same time the computational effort. The scheduling problem of Baptiste et al. [START_REF] Baptiste | Satisfiability tests and time-bound adjustmentsfor cumulative scheduling problems[END_REF] considered both the release date and deadline for the tasks. The problem studied is a special case of the malleable task scheduling problem where the tasks are non-preemptive, and the additional resource is single and continuous. The variation of the resource overtimes even causes the feasibility test problem to be NP-Hard to solve. To cope with this problem, Carlier and Pinson [START_REF] Carlier | Jackson's pseudo-preemptive schedule and cumulative scheduling problems[END_REF] introduced an adjustment of heads algorithm based on Jackson's pseudo-preemptive scheduling. We resume in table 2.2 the classification of the concerned works in this subsection with their corresponding constraints and objective, as well as the solution procedure.

Research positioning

The existed works on the EVCC resumed in table 2.1 underline a lack of the resolution methods with the time criteria optimisation. Furthermore, a complete and global scheduling which considers all the possible constraints has not been developed yet. In section 2.4, despite a significant number of a study done on the field, there is still a void on the regarding of time-varying resource constraint. Also, according to our knowledge, there are no problem, said generic and complete, which takes into account of all the following constraints: the temporal restriction of the task, the time-dependent/constant resource profile, the semicontinuous task's resource consumption. To fill the research gap, we tackle in this thesis a class of scheduling problems with additional resources with time criteria optimisation (total weighted completion times). Also, the problem takes into consideration the timedependent resource profile and the time availability of jobs. Furthermore, jobs' resource consumption can be constant or variable. Hence, we will present in the next chapter the formal definition of this class of problems. An exact solution approach and an approximative solution approach to solving the most general problem in the class will be mentioned after that.

Conclusion

In this chapter, we studied the state-of-the-art of different subjects and themes that will be developed in the thesis. First, we presented the fundamental definitions and terminologies of the EVCC problem, then the scheduling problem with the additional resource; then 

Introduction

In the previous chapter, we have pointed out the necessity of defining a new class of scheduling problems. This demand is due to the lack of a complete and generic scheduling problems with single additional resource, while this resource availability can be constant or varying over time. Also, this problem has to consider all the possible constraints on the temporal availability of tasks and the way that the tasks consume the resource (moldable or malleable task)... This is the reason why in this chapter, we define firstly a new class of scheduling problems, which we name EVCC configurations. This section starts with a review on the EVCC constraints and its classification. Therefore, we present the two major derived classes of the problem according to each set of specific constraints, namely ACPF and ACPV. Since the second problem is the most generic and complete one, we decided to study the mathematical formulations of this later. We dedicated a part of this chapter to notate and study the complexity of the problem. The two formulations, one cumulative and one disjunctive, are studied in two aspects: the polytopes analysis and the computational analysis. We conclude the chapter by the numerical tests of those two formulations.

EVCC problem classification

With the literature review in the last chapter, one may find the two main disadvantages of the global EVCC approaches. The first one is the lack of temporal constraints and the time criteria optimisation. The temporal constraints assure the satisfaction of the client and the time criteria optimisation such as the total completion time minimization that could privilege the optimisation of the quality of charging service. The second study gap of the global approaches is the lack of effective solution procedures. Furthermore, a generic model that can cope with different problems with similar constraints is still a void. Given that our industrial objective is to develop a charging solution for the residential charging service, we have two top priorities. The first priority is the feasibility of the planning according to the user behaviour, including the temporal constraints of the parking, the leaving time and the daily energy demand. The second priority is to assure the quality of the service. Therefore, every EV has to be completely charged as soon as possible. Then, the choice of using the global approach is the good research axe. To fill in the research void of this method, we would like to formulate a family of EVCC configurations with specific given constraints and properties. With that kind of classification, one can decide which researching works can be used to solve each specific problem.

EVCC constraints

First, we identify three groups of constraints of the EVCC issues: the human constraints, the technical limitations and the system capacity (or resource availability) constraints. Their segregation is shown in figure 3-1. System capacity constraints The first and also critical group of constraints is called System capacity constraints. The system capacity is the total power available for the recharging of parked EV fleet. We also denote the total available electrical power as Power Bandwidth (or Power Strip), which help us to figure out the problem geometrically as a packing problem. The power bandwidth is equivalent to the size of the single additional resource in the theoretical scheduling problem. It is worth precision that the electric power is a continuous and renewable resource. There is two profiles of power bandwidth: the timeconstant (or time independent/constant) power bandwidth profile and the time-varying (or time dependent) power bandwidth profile. The time-constant power profile is well documented in the literature, yet the counterpart is rarely mentioned. We denote a dedicated parking as a parking which is only dedicated to the charging of the EV fleet. Analogy, we denote a shared parking as a parking where the charging power is shared with other electric equipment such as the conventional ventilators or the elevators. The shared parking is very common in the professional sector where the electricity for the EV charging in the office parking is shared with industrial machines or at least computers and office devices [START_REF]Real-World Charging Behavior at the Workplace. Plug-in Electric Vehicle Consumer Usage Study[END_REF].

Those two constraints are crucial not only because they change the complexity of the problem, but they also modify the way the problem can be formulated. A constant size resource problem can accept continuous time formulation whereas the time-dependent only accept continuous time formulation in the case of the resource availability is a smooth function of time. However, this assumption is ideal because, in most of the cases, the time-dependent resource fluctuates randomly. In the latter case, one should formulate the fluctuation of the resource size by a discrete time formulation.

Technical constraints

The charging rate of the EV depends on the charging standard between the EVSE and the charger as we have mentioned earlier in this section. There are many charging standards, in each standard one can also find several modes and types [START_REF] Yilmaz | Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles[END_REF].

To formulate a general and adaptive mathematical formulation, we classify the charging rate into three groups: fixed rate (constant rate), semi-continuous rate and continuous rate. To explain those constraints, we introduce some notations: let the charging job indexed by 𝑖, If at a given interval 𝑘, and the charging task has started to process:

the
𝑢 𝑖𝑘 ∈ [ū 𝑖 , 𝑢 𝑖 ]
the charging rate is called semi-continuous or continuous depending on the lower bound ū𝑖 . If ū𝑖 > 0 then the charging rate is called semi-continuous and the charging task is non-preemptive. On the contrary, If ū𝑖 = 0 then the charging rate is called continuous, the charging task is then preemptive.

User behaviour constraints The user behaviours consist of the parking time (or plugging time) and the departure time (or unplugging time). The plugging time is equivalent to the release date of the charging task and the unplugging time corresponds to its deadline. The behaviours of EV user defines the temporal constraints of the EVCC problem.

In addition, the load demand varies with the behaviours, which is proportional to the daily travelled distance. This conduct consists the workload of the charging task. There are many ways that those constraints can be embedded in the problem. In a stochastic environment, the parking time and the daily demand can be formulated by random distribution. Usually, the unplugging times are parameters of the problem which can be decided by EV user before the charging scheduling. In the deterministic environment, the charger communicates with the charge point about its energy requirement, and the EV user fixed the charging starting time before the coordination is taking place.

ACPF-ACPV configurations

The segregation of the charging rate defines our two major configurations Charging algorithm with fixed power (ACPF) and Charging algorithm with variable power (ACPV).

In both of the settings, the user behaviours set of constraints is the same; the different sub-configurations are created due to the existence of other restrictions.

ACPF configurations The name of the configuration is based on the French acronym Algorithme de Charge de Puissance Fixe which means Charging Algorithm with Fixed Power.

Initially, the name was created for only one algorithm. In the same way, ACPV is also initially created as a name of an algorithm. However, when the research has grown, we found that the problem ACPF is actually a set of configurations that can be treated by many different algorithms that we will present in the following chapters. Respecting the standard that had been defined earlier for the industrial implementation, we kept on naming the two configurations ACPF and ACPV. The ACPV configuration corresponds to the EVCC constraint (4) in figure 3-1 where the charging rate is constant. The sub-configurations of ACPF: ACPF 1 and ACPF 2 correspond to the power bandwidth profile. Precisely, the constant power bandwidth defines the ACPF 1, and the time-dependent power profile defines the ACPF2. The complexity of the ACPF 1 is the same as the complexity nature of the rigid jobs scheduling problem with time windows constraints, and it is proven to be NP-Hard to find feasible solutions [START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF] and the makespan minimisation [START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF]. For the ACPF 2, there is no available research on the domain. However, adding the variation of the resource cannot make any problem simpler, the ACPF 2 is at least NP-Hard for the feasibility test and the makespan minimisation.

ACPV configurations The name of the configuration is based on the French acronym Algorithme de Charge de Puissance Variable which mean Charging Algorithm with Varying Power. The ACPV configuration corresponds to the constraints ( 5) and ( 6) in figure 3-1 with the charging rate are continuous and semi-continuous. With the constant power bandwidth, we have the ACPV 1 and with the time-varying power bandwidth, we have the configuration ACPV 2. Concerning the ACPV 1, we distinguish two sub configurations, ACPV 1a, which corresponds to the continuous charging rate, and ACPV 1b, which corresponds to the continuous charging rate. The ACPV 1a is the only configuration that can be solved in a polynomial time for the feasibility test problem. Regarding the ACPV 2, we tend to make the most general configuration, so the charging rate is semi-continuous and the time-dependent power profile. The complexity of the feasibility test of ACPV 1b and ACPV 2 are both NP-Hard. For time-criteria optimisation problem, both the configurations are NP-Hard in strong sense. The ACPV 2 is the most general configuration because other configurations can be deduced from ACPV 2 by relaxing one or many constraints of ACPV 2.

In table 3.1, we resume the configuration with their respecting set of constraints.

Beforehand, the complexity of each optimisation is cited. We also introduce the relevant work that can be based to solve each configuration in the last column. More details on the proof of complexity of each configuration will be detailed in the following chapters. Figure 

Notation and complexity

We use the three field notation introduced by Graham et al. [START_REF] Ronald L Graham | Optimization and approximation in deterministic sequencing and scheduling : a survey[END_REF] accompanied by the expansion of the additional resource [START_REF] Jacek Blazewicz | Scheduling subject to resource constraints : classification and complexity[END_REF] (see 2.3.3 for more details) to denote our problem. The machine environment is the identical parallel machines. Tasks have release dates and deadlines. There is only one additional resource and the resource consumption function is linear due to the accumulation of electrical power, which could be detailed later on the formulation explication. The total power is varying over times and denoted by 𝑈 𝑘 with 𝑘 indexing the time's intervals. The problem notation is thus

𝑃 𝑚 |𝑟𝑒𝑠1 ˙˙, 𝑙𝑖𝑛, ∑︀ 𝑢 𝑖,𝑘 ≤ 𝑈 𝑘 , 𝑟 𝑖 , 𝑑 𝑖 | ∑︀ 𝑤 𝑖 𝐶 𝑖 .
Regarding the complexity, Yalaoui and Chu [START_REF] Yalaoui | Parallel machine scheduling to minimize total tardiness[END_REF] pointed out that the parallel machine scheduling problem with release date and total completion times is NP-Hard. Furthermore, if the objective is to minimise total weighted completion times, the problem is NP-Hard in strong sense [START_REF] Nessah | A branch-and-bound algorithm to minimize total weighted completion time on identical parallel machines with job release dates[END_REF]. Jedrzejowicz and Skakovski [START_REF] Jedrzejowicz | Island-based Differential Evolution Algorithm for the Discrete-continuous Scheduling with Continuous Resource Discretisation[END_REF] prove that the discrete continuous scheduling problem is at least NP-Hard because the existence of the additional resource cannot make the problem any simpler than classical parallel machine scheduling problem.

The ACPV 2 configuration takes into account both the time-windows constraints and the time-dependent resource size. It is thus more general than the DSCP. Hence, it is at least NP-Hard in the strong sense.

MILP formulation

The ACPV 2 problem consists of the time-dependent power bandwidth profile. 

State of jobs

The state of a job 𝑖 at a decision time 𝑘 is given by 𝑥 𝑖,𝑘 , which can be considered as the measure of the processed portion of work up to the end of the interval 𝑘 during the processing of job 𝑖. A job is supposed to be completed at the beginning of intervals 𝐶 𝑖 (unknown in advance). Therefore 𝑥 𝑖,𝐶 𝑖 = ̃︀ 𝑥 𝑖 where ̃︀ 𝑥 𝑖 stands for the workload (or processing demand), which is the desired final state of job 𝑖.

The processing rate of job 𝑖 is described by the difference equation (3.1) which is a transformation of the differential equation introduced by Weglarz [START_REF] Weglarz | Time-Optimal Control of Resource Allocation in a Complex of Operations Framework[END_REF] ẋ𝑖,𝑘 = 𝑥 𝑖,(𝑘+1) -𝑥 𝑖,𝑘 Δ𝑡 = 𝑓 𝑖 (𝑢 𝑖,𝑘 ) ∀𝑘 = 1, ..., 𝐻 𝑥 𝑖0 = 0

(3.1)
Where 𝑓 𝑖 is called the processing rate function taking linear form 𝑓 𝑖 (𝑢 𝑖,𝑘 ) = ℎ 𝑖 .𝑢 𝑖,𝑘 with ℎ 𝑖 ∈ (0, 1] is the resource consumption efficiency of job 𝑖. Thus, the workload of job 𝑖 can be formulated as shown in (3.2).

︀ 𝑥 𝑖 = 𝐶 𝑖 ∑︁ 𝑘=0 𝑓 𝑖 (𝑢 𝑖,𝑘 ).Δ𝑡 = 𝐶 𝑖 ∑︁ 𝑘=0 𝑢 𝑖,𝑘 .ℎ 𝑖 .Δ𝑡 (3.2)
Let 𝑥 * 𝑖 denote the real processing demand of job 𝑖: (equation 3.3)

𝑥 * 𝑖 = ̃︀ 𝑥 𝑖 ℎ 𝑖 = 𝐶 𝑖 ∑︁ 𝑘=0 𝑢 𝑖,𝑘 .Δ𝑡 (3.3)
Without any loss of the generality, we suppose that Δ𝑡 = 1. Hence the state of job is:

𝑥 𝑖,𝑘 = 𝑥 𝑖,𝑘-1 + 𝑢 𝑖,𝑘-1 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 : 𝑘 ≥ 1 (3.4) 𝑥 𝑖,0 = 0; 𝑢 𝑖,0 = 0∀𝑖 ∈ 𝒥 (3.5)
Job resource constraints At any time interval, the total resource all jobs consume cannot exceed the total available resource.

𝑛 ∑︁ 𝑖=1 𝑢 𝑖,𝑘 ≤ 𝑈 𝑘 ∀𝑘 = 1, ..., 𝐻 (3.6) 
The resource consumption is bounded then: 𝑢 𝑖,𝑘 ∈ [𝑢 𝑖 , ū𝑖 ] ∪ {0}. Precisely, 𝑢 𝑖,𝑘 = 0 when a job is not in process at time 𝑘. In the opposite case, 𝑢 𝑖 ≤ 𝑢 𝑖,𝑘 ≤ ū𝑖 . We would recall that the lower bound 𝑢 𝑖 is critical for the complexity of the problem. If 𝑢 𝑖 = 0 then the resource consumption of job 𝑖 is continuous, hence the job is preemtive. Otherwise the resource consumption of job 𝑖 is semi-continuous and the job is non-preemptive.

Supposing that ℎ 𝑖 = 1 in the example in figure 3 

𝑒 𝑖 = 𝑟 𝑖 + ⌈ x𝑖 ū𝑖 ⌉; 𝑙 𝑖 = 𝑑 𝑖 -⌈ x𝑖 ū𝑖 ⌉ ∀𝑖 ∈ 𝒥 (3.7)
Therefore, the starting time of a job 𝑖 ∈ 𝒥 is bounded in [𝑟 𝑖 , 𝑙 𝑖 ] and the completion

time of this job is bounded in [𝑒 𝑖 , 𝑑 𝑖 ].
Objective function ACPV 2 aims to maximize the quality of the charging service. Therefore, we set the general objective function as the total weighted completion time minimisation

∑︀ 𝑖∈𝒥 𝑤 𝑖 𝐶 𝑖 .
To resume, we introduce the following variables and parameters.

Variables

• 𝑥 𝑖,𝑘 : State of job 𝑖 at decision time 𝑘

• 𝑢 𝑖,𝑘 : Amount of resource continuously allocated to job 𝑖 during interval 𝑘

Data parameters

• 𝒥 the set of jobs

• 𝒯 the set of time interval

• 𝐻: scheduling horizon 

Cumulative formulation

The idea that differs the two formulations is the way we formulate the processing and the completion of the jobs. In the cumulative formulation, the processing of job 𝑖 is 

𝐶 𝑖 = 𝐻 - 𝐻 ∑︁ 𝑘=0 𝑐 𝑖,𝑘 + 1 (3.8) 
The total weighted completion time of 𝑛 jobs is therefore:

∑︁ 𝑖∈𝒥 𝑤 𝑖 𝐶 𝑖 = ∑︁ 𝑖∈𝒥 𝑤 𝑖 (𝐻 + 1 - ∑︁ 𝑘∈𝒯 𝑐 𝑖,𝑘 ) = ∑︁ 𝑖∈𝒥 𝑤 𝑖 (𝐻 + 1) - ∑︁ 𝑖∈𝒥 ∑︁ 𝑘∈𝒯 𝑤 𝑖 𝑐 𝑖,𝑘 (3.9) 
Thus, for the first model we introduce the following variables:

• 𝑥 𝑖,𝑘 state of job 𝑖 ∈ 𝒥 at time 𝑘 ∈ 𝒯 Non-preemption constraints Since a job has started to process and does not reach the final state, it cannot be interupted:

𝑦 𝑖,𝑘 ≥ 𝑦 𝑖,𝑘-1 -𝑐 𝑖,𝑘 (3.14) 
𝑦 𝑖,𝑘 ≤ 1 -𝑐 𝑖,𝑘 (3.15) 
The constraints can be explained fully by the truth table 3.2. An example is shown on figure 3456. 

𝑦 𝑖,𝑘 ≥ 0 (or -1) 𝑦 𝑖,𝑘 ≤ 0 𝑦 𝑖,𝑘 must be 0 𝑘 | | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 7 | | 2 𝐶 𝑖 = 6
𝑦 𝑖,𝑘 = 1 -0 = 1.
In the other case, if job 𝑖 has not started to process at time 𝑘 yet so 𝜏 1 ≤ 𝑘 : 𝛼 𝑖,𝜏 1 = 1

and 𝜏 2 ≤ 𝑘 : 𝛽 𝑖,𝜏 2 = 1 since the job has not been started yet so it cannot be ended neither.

Thus, by (3.20) 𝑦 𝑖,𝑘 = 0 -0 = 0.

Otherwise, job 𝑖 has already completed at time 𝑘 so ∃𝜏 1 ≤ 𝑘 : 𝛼 𝑖,𝜏 1 = 1 and ∃𝜏 2 ≤ 𝑘 : 𝛽 𝑖,𝜏 2 = 1 since the starting time and the completion have happened already before 𝑘.

Therefore by (3.20) 𝑦 𝑖,𝑘 = 1 -1 = 0.

Furthermore, the completion time of a job is now formulated as shown in equation (3.21). Non-preemption constraints Since jobs are non-preemptive, only one start and one end are permitted for each job's processing. Furthermore, the finishing time must be after the starting time. Thus, the set of constraints is given by

𝐶 𝑖 = ∑︁ 𝑘∈𝒯 (𝑘𝛽 𝑖,𝑘 ) ∀𝑖 ∈ 𝒥
𝑙 𝑖 ∑︁ 𝑘=𝑟 𝑖 𝛼 𝑖,𝑘 = 1 ∀𝑖 ∈ 𝒥 (3.26) 𝑑 𝑖 ∑︁ 𝑘=𝑒 𝑖 𝛽 𝑖,𝑘 = 1 ∀𝑖 ∈ 𝒥 (3.27) (3.28)
With those constraints, one can find that there always one possibility for an element in 𝛼 or 𝛽 to be one. Therefore, the formulation is called disjunctive. formulation is stronger, since the constraints (3.14) is also a very strong constraint that reduces the searching space for 𝑃 -𝐶𝑚𝑙. We notice that the formulation can be even stronger with a simple cut:

𝛽 𝑖,𝑘 + 𝛼 𝑖,𝑘 ≤ 1 𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑟 𝑖 , ..., 𝑑 𝑖 } (3.34)
Property 2. Cut (3.34) is a valid cut Proof. This cut restricts that at any instance, the starting and completion of job cannot happen in the same time. We prove the validity of this cut by contradiction. Supposing

that at time 𝑘 ′ : 𝛼 𝑖,𝑘 ′ = 𝛽 𝑖,𝑘 ′ = 1 then 𝛼 𝑖,𝑘 = 𝛽 𝑖,𝑘 = 0 for all 𝑘 ̸ = 𝑘 ′ then ∑︀ 𝑘 𝜏 =0 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ) = 0
for all 𝑘 ∈ {𝑟 𝑖 , . . . , 𝑑 𝑖 }. For that reason, the resource consumption is zero hence job cannot be completed, it is contradicted to the supposition that job is completed at 𝑘 ′ . The set of instances is generated in the following way. The first step is the input 

𝑎 = ⌊1.2 × 𝑝 𝑎𝑣𝑔 𝑖 ⌋; 𝑏 = ⌈1.7 × 𝑝 𝑎𝑣𝑔 𝑖 ⌉ 𝑑 𝑖 None 𝑑 𝑖 = 𝑟 𝑖 + 𝑤𝑖𝑛𝑇 𝑖𝑚𝑒 𝑖 ℎ 𝑖 Uniform 𝑎 = 0.7; 𝑏 = 0.9 𝑈 𝑘 Uniform 𝑏 = ∑︀ 𝑛 𝑖=1 𝑢 𝑎𝑣𝑔 𝑖 ; 𝑎 = 0.6 × 𝑏 x𝑖 None x𝑖 = 𝑢 𝑎𝑣𝑔 𝑖 × 𝑝 𝑎𝑣𝑔 𝑖 × ℎ 𝑖

Numerical experiments

Experimentation settings In this section, we tend to observe the empirical behaviour of the MILP formulations to solving the ACPV 2 problem. We generate random instances according to the protocol presented previously. The number of tasks is accordingly 10, 15, Notations For each test, we log the executing time (𝑇 𝑖𝑚𝑒), the number of nodes solved (#𝑁 𝑜𝑑𝑒𝑠) and the MILP-Gap (𝑀 𝐼𝑃 𝐺𝑎𝑝). As we have mentioned earlier in the chapter, the solver uses the branch and bound algorithm to solve the model. The MILP Gap is calculated by the fraction of the difference between the incumbent upper bound and the incumbent lower bound with the upper bound: 𝑀 𝐼𝑃 𝐺𝑎𝑝 = 𝑈 𝐵˘𝐿𝐵 𝑈 𝐵 . If the 𝑀 𝐼𝑃 𝐺𝑎𝑝 is zero, then the solution found is optimal. To have a better vision of the time spent on each instance, we normalised the difference in terms of time between the five models by the notation 𝐵𝑇 𝐺𝑎𝑝, Result interpretation Table 3.4 shows the results of numerical tests in terms of the execution times. Table 3.5 lists the number of nodes executed and the MILP-Gap of the tests. First, one can find the limit of finding an optimal solution within 1800 seconds, with the inputs that have a size 𝑛𝐻 ≤ 2500. 𝐵𝑇 𝐺𝑎𝑝 is better.

which
In terms of execution times, the four disjunctive models distinctly out-perform the cumulative model. In small and medium instances (𝑛 < 30 and 𝐻 < 150) the 𝑃 -𝐷𝑗𝑠 is at least two times faster than the 𝑃 -𝐶𝑚𝑙. This result confirms the convex analysis we have made earlier, that the disjunctive formulation is theoretically tighter than its counterpart.

Observing the four variations of the disjunctive formulations: with two cuts, with cut 1, with cut 2 and without a cut, one can see the 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡2 is the most effective to This observation underlines the fact that, adding many cuts does not necessarily improve the Branch-and-Bound performance. Adding cut is a trade-off for the resolution time: in one hand, it removes integer infeasibility, then the branching is faster; on the other hand, at each node, it takes longer time to solve the sub problem [START_REF] Klotz | Practical guidelines for solving difficult mixed integer linear programs[END_REF].

The 𝑃 -𝐶𝑚𝑙 solves all the instances with the least number of nodes generated.

Observing the MILP-Gap behaviours, one can find that it yields the best MILP-Gap. Furthermore, the number of nodes is smallest when the instances are solved by 𝑃 -𝐶𝑚𝑙. It suggests that because the formulation is less tight than the disjunctive formulation, the time stay at each node is longer, but it has the chance to find better bound. Regarding the disjunctive formulations, the 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡1 and the 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡2 have the least number of nodes created in a small instance while the disjunctive formulation without any cut yields a small number of nodes set up in large instances.

Conclusion

In this chapter, we defined a new class of scheduling problems, under the name of ACPF and ACPV. Along with the classes are the classification of specific set of constraints which are the system capacity constraints, the technical constraints and the human behaviours constraints, into each configuration. The most important constraints is the technical constraints on the charging rate, which consists of the fixed and the semi-continuous rate.

The former founded the ACPF problem and the latter founded the ACPV problem.

In the second part of the chapter, we take a closer look on the most generic problem, the ACPV 2. This problem was proved to be NP-Hard in the strong sense. This problem is the central of the study of our thesis. We use two different techniques to construct those formulations, one with cumulative constraints and the other with disjunctive constraints.

We analyse the polytopes description of each formulation. The disjunctive formulation gives a tighter description of the problem compared to the cumulative formulation. To conduct the numerical tests, we introduce a new test protocol with an adhoc random instance generator.

The numerical results confirm our observation on the LP-relaxation analysis where the 𝑃 -𝐷𝑗𝑠 outperforms the 𝑃 -𝐶𝑚𝑙 formulation.

The formulations studied in this chapter are limited to the ACPV problem, but since this problem is the most generic one, when fixing parameters to constant values one can obtain the other configuration. For example, by fixing ū𝑖 = 𝑢 𝑖 = 𝑢 𝑜 𝑖 one can get the constant resource consumption, the ACPF configuration. For the next two chapters, we tend to resolve the problem more effectively. We start with an exact resolution method: a Branchand-Price algorithm. Thence, to have a faster resolution time, we design a constructive heuristic, served as a good approximative solution procedure.

A part of the work done in this chapter is subject to one publication [START_REF] Nguyen | Solving a malleable jobs scheduling problem to minimize total weighted completion times by mixed integer linear programming models[END_REF]. 

Introduction

In this chapter, we present the Branch-and-Price technique to solve the ACPV 2 problem. The ACPV 2 require a significant number of decision variables when the size of the problem dilates, especially in the dimension of the scheduling horizon. Thus, the Branchand-Price, which has proven to be more successful in solving huge MILP problem [START_REF] Barnhart | Branch-and-price : Column generation for solving huge integer programs[END_REF], is a suitable choice to tackle our problem. Also, the ACPV 2 problem has a decomposable nature.

Most of the constraints (time-windows, resource demand, resource consumptions. . . ) concentrate on the local problem, which means that those constraints only restrict specific jobs.

There are only one global constraint which is the resource availability that aggregates all the local problems. This chapter begins with a preliminary (section 4.2) which provides some basic theoretical background and the principles of the Columns Generation algorithm and the Branch-and-Price framework. Then, we introduce in details the entire branch-and-price algorithm designed to solve the ACPV 2 problem (section 4.3 and section 4.4). In section 4.5 we conduct numerical tests to compare the performances of the different branching strategies for the branch-and-price and investigate the behaviours of the algorithm. Section 4.6 concludes the chapter with a brief resume and perspectives.

Preliminaries

Column generation

The column generation is an efficient algorithm to solve large LP problems. In LP problems, an optimal solution encounters in practice many non-basic variables (zero elements). Larger LP are sparser with zero elements [START_REF] Richard | A computational study of dantzig-wolfe decomposition[END_REF]. The column generation tends then to generate only variables that can probably improve the quality of the solution. A column is a set of basic variables. Supposing that the optimisation problem is the minimisation one, the variables can improve the solution quality is the one that yields the most negative cost We tend to introduce a matrix representation of the local constraints to form local sub-problems. Since our LP problem is sparse because of the time-window constraints, we define some reduced row vectors, which are taken from the original row vectors of the decision variables with reduced lengths to remove zero elements.

Let 𝑙 𝑖 = 𝑑 𝑖 -𝑟 𝑖 for all 𝑖 ∈ 𝒥 we define: The coefficient matrices are defined as follows:

• 𝑢 ′ 𝑖 ∈ R 𝑙 𝑖 : 𝑢 ′ 𝑖 = {𝑢 𝑖,
• 𝐽 𝑛,𝑚 is a 𝑛 × 𝑚 unit matrix.

• Δ 𝑙 𝑖 is a lower-unit-triangular matrix with size 𝑙 𝑖 × 𝑙 𝑖 : Δ 𝑖,𝑗 = 1 if 𝑖 ≤ 𝑗, = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

𝑢 𝑖 Δ 𝑙 𝑖 (𝛼 𝑖 -𝛽 𝑖 ) 𝑇 -𝑢 𝑖 + 𝑠 2 𝑖 = 0 (4.20) 𝑢 𝑖 -ū𝑖 𝐽 1,𝑙 𝑖 + 𝑠 3 𝑖 = 0 (4.21) 
with 𝑠 * 𝑖 ∈ R 𝑙 𝑖 + and 𝛿 𝑖 ≥ 0.

Convexification approach

Classically there are two approaches to formulating the Master Problem by decomposed patterns which are discretization [START_REF] Vanderbeck | On dantzig-wolfe decomposition in integer programming and ways to perform branching in a branch-and-price algorithm[END_REF] and convexification [START_REF] Desrosiers | A Primer in Column Generation[END_REF][START_REF] Gamrath | Generic branch-cut-and-price[END_REF]. Since LCi is Minkowski representable, the convexification approach gives us the chance to fully combine two or more compatible columns to create a new feasible resource allocation. We chose this approach to formulate the master problem. Two columns are said to be compatible if they have the same vector 𝛼 and 𝛽 (same integral solution). The convexification of those two compatible patterns would never violate the resource utilization semi-continuous constraint.

In the contrary, the solution will be infeasible and unacceptable.

Let us take a simple example to illustrate that characteristic: Let column 3 be the convex combination of column 1 and column 2. If those columns are not compatible, 𝛼 1 ̸ = 𝛼 2 and/or 𝛽 1 ̸ = 𝛽 2 , the combination they give to 𝛼 3 and/or 𝛽 3 will be the same as resource allocation 1 or 2 (𝜆 1 = 1 or 𝜆 2 = 1) to assure the feasibility. Otherwise, when they are compatible, 𝑢 3 = 𝜆 1 𝑢 1 + 𝜆 2 𝑢 2 will be bounded exactly in semi-continuous state: whereas 𝑢 1 𝑘 = 0, 𝑢 2 𝑘 will be also zero due to compatibility, and when 𝑢 For all 𝜔 / ∈ Ω ′ 𝑖 : 𝜆 𝑖𝜔 = 0, 𝑖 = 1, . . . , 𝑛. There is a very useful property of the solution found by restricted problem proven by Feillet [START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF] which can be rewritten corresponding to our notation as follows.

Property 5. [START_REF] Feillet | A tutorial on column generation and branch-and-price for vehicle routing problems[END_REF] Let Ω ′ be a subset of Ω and (𝜋 * , 𝜑 * ) be the optimal solution of 𝐷(Ω ′ ). If

(𝜋 * , 𝜑 * ) is feasible for 𝐷(Ω), (𝜋 * , 𝜑 * ) is optimal for 𝐷(Ω)

The pricing problem

The pricing problem is introduced to price out all possible columns to decide which one can enter the basis for the next iteration of the column generation algorithm. One can deduce the reduced cost of each resource allocation by DLP: Where 𝜋 * and 𝜑 * 𝑖 is the actual optimal solution of D(Ω ′ ).

There is an interesting interpretation of this pricing problem. Since 𝜋 * < 0 and according to (4.36), the most negative values of 𝜋 * are likely to be concentrated on time intervals which have little 𝑈 𝑘 to maximize the objective value of the dual problem. Those are intervals where resource bottlenecks are situated. Given that 𝜑 * 𝑖 is a constant, to minimize 𝑐 * 𝑖 one has to, on one hand, reduce the weighted completion time 𝑦 𝜔𝑖 (or it can be any resource allocation costs in general). In the other hand this resource allocation probably has to take the least possible support 𝑢 𝜔 𝑖 at the most negative 𝑈 𝑘 . It makes a compromise between the reduced cost gained and the engagement in resource bottleneck when choosing a resource allocation: either we can reduce the objective value, or we should avoid using too much resource in the bottleneck.

The branching scheme

At the starting node, one initiates a feasible solution to the RMP problem by using a heuristic. The relaxation of this RMP is solved, then the dual of the LP relaxation is used to price out all the sub-problems. If column(s) with negative cost(s) is(are) found, the one(s)

with most negative cost(s) will be chosen to enter the basis. Otherwise, if the optimal of the relaxation RMP is integral, then it is also optimal for the MP and the algorithm stops. In the last case, if the solution of the relaxation is not integral, and no column can be added, one has to branch the tree for new nodes. The column generation iterates again at each new node.

There are many branching strategies which are elaborated in the literature for the integer programming problem [START_REF] Vanderbeck | Branching in branch-and-price : a generic scheme[END_REF] such as branching on a single/many variable(s) or branching Node 0 by adding constraints to master/pricing problem(s). Since our MIP is a mixed 0-1 integer programming problem and the master problem is formulated in convexification approach, it would be recommended [START_REF] Achterberg | Branching rules revisited[END_REF][START_REF] Barnhart | Branch-and-price : Column generation for solving huge integer programs[END_REF][START_REF] Vanderbeck | Branching in branch-and-price : a generic scheme[END_REF] to branch directly on the disjunction of binary variables.

𝑆 1 ∈ [1, 3] 𝐶 1 ∈ [4, 6] 𝐶 1 ∈ [6, 10] 𝑆 2 ∈ [2, 3] 𝑆 2 ∈ [4, 5] 𝑆 1 ∈ [4, 7]
Node creation: Most(Least) Flexible SOS1 branching Given that the binary variables of each local model belong to special ordered set 1 (SOS1, i.e. at most one variable on the set can be non-zero), so according to [START_REF] Jeff | A computational study of search strategies for mixed integer programming[END_REF] we can branch this latter into two subsets, only one can contain the non-zero variable. This division triggers two questions when dealing with our binary variable: (1) since the original problem contains 𝑛 SOS1 sets (according to each variables row) which one should be chosen first and (2) when a row is chosen, how can one chose the pivot to divide the set into two subsets. To answer those two questions, we subsequently introduce the Most(Least) Flexible SOS1 branching (MFlex and LFlex ) nodes creation strategy.

Since the time-windows are constrained by binary variables 𝛼 and 𝛽 then the branching scheme is proposed in a way that the most/least flexible job's time windows would be dichotomized to form a binary tree. An illustration is shown in figure 4-2 for the MFlex strategy.

The choosing of pivot to create new sub-intervals in the illustration is simply a median of the parent node available starting/completion interval. Wolsey [START_REF] Wolsey | Integer programming[END_REF] states that it would be even better if the pivot were chosen in a way that the sums of fractional variables are half-and-half on each sub-set: for Pruning due to integrality found If an integral solution is found, then we update the incumbent, this node is then pruned because, according to Property 4., this solution is optimal for the branch starting from this node.

Branching Otherwise branch for two new nodes according to Most(Least) Flexible SOS1 branching.

Node selection We propose two tree-search strategies: Best LP Bound first (BLF) and Best Projection first (BPF) [START_REF] Achterberg | Branching rules revisited[END_REF]. In the former, the new node selected to create the child is the one with least LP bound. In the case of equality, the one with deeper level has priority (Depth-First orientation). In this approach, the projection of a node is calculated as follows:

• Sum of fractionalities 𝑠 𝑖 = ∑︀ 𝑗 𝑚𝑖𝑛(𝑓 𝑗 , 1 -𝑓 𝑗 ) for 𝑓 𝑗 the fractional value of the current binary variable. The sum of fractionalities of the parent node is noted 𝑠 0 . 

Computational implementation 4.4.1 Pricing problem dual bound for earlier termination

To tighten the lower bound at each node, we apply the pricing dual bound introduced by Vanderbeck and Wolsey [START_REF] Vanderbeck | An exact algorithm for IP column generation[END_REF] for an early termination of column generation iteration to avoid the tailing off effect, also for an early pruning in the branch-and-bound tree.

𝐿𝐵 𝑅𝑀 𝑃 = 𝑧 * 𝑅𝑀 𝑃 + ∑︁ 𝑖 * ∈𝒥 * 𝑐 * 𝜔𝑖 * (4.43) 
Where 𝑧 * 𝑅𝑀 𝑃 is the actual LP-relaxed objective value of the restricted master problem (RMP), 𝑐 * 𝜔𝑖 * is the reduced cost of newest columns entering the basis during the pricing phase where 𝒥 * is the set of sub-problems giving negative reduced cost. This bound avoids adding columns which do not improve the relaxation's bound by stopping column generation procedure when ⌈𝐿𝐵 𝑅𝑀 𝑃 ⌉ = ⌈𝐿𝐵⌉. In the case when column generation is executed on a node, if ⌈𝐿𝐵 𝑅𝑀 𝑃 ⌉ ≥ 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡, then it can be pruned.

Branching restriction enforcing on master and pricing problem

To tune-up the pricing phase at each node, variables in the pricing problem will be fixed according to time-window limitation of a node. The resolution of the master problem 

Initial solutions

As proven in the last chapter, the ACPV 2 problem is NP-Hard in strong sense.

Furthermore, the problem to find a feasible solution for a given instance of ACPV 2 is already NP-Hard. We propose a resource levelling algorithm to find the first solution. To begin, we present the Power peak minimisation (MinPeak) problem.

The MinPeak problem The input of the MinPeak problem consists of a set of scheduled tasks with their resource allocation and the task 𝑖 to be scheduled. The objective of the scheduling is to minimise the power peak created by this new task. Let us consider a imaginary task, constructed by a reversed power bandwidth. The resource allocation of the imaginary task 𝑂 is defined by 𝑢 0 ∈ ℛ 𝐻 + , which is mathematically defined as: 𝑢 0,𝑘 = max 

Numerical results

The Branh-and-Price algorithm is coded in C++ with CPLEX 12 API. The random instances generator is implemented on Matlab 2009. Tests are conducted on a Linux computer with CPU Intel Core i5 3.20GHz with 4GB RAM. We test the Branch-and-Price Algorithm with the same set of tests in chapter 3, section 3.5.2. Each instance is tested on 4 branching schemes, corresponding to the combination of two pairs of node selection: Best LP Bound First and Best Projection First, and of node creation: Most Flexible (MFlex) and Least Flexible (LFlex) SOS1 branching. With each attempt, the CPU ticks time in seconds(#CPU ), number of total nodes (#Nodes ) and the number of total nodes to reach optimal solution (#toOpt ) is tracked. In the case that no optimal solution is found due to time-out, #toOpt denotes the numbers of nodes to reach the best solution. To track the near-optimal trap, we log the number of nodes until the tree reaches the solution with a gap no greater than 1% (#to1% ). The gap is calculated as 𝑔𝑎𝑝 = 𝑧 𝐼𝑃 -𝑧 𝐿𝑃 𝑧 𝐼𝑃 where 𝑧 𝐼𝑃 is the best integral solution found and 𝑧 𝐿𝑃 is the least LP bound in all nodes. Execution time limit is set to 1800s. time and optimal is critical. In both of the searching strategies, the LFlex shows overly bad performances. While taking a closer look on SOS1 Branching, in some job configurations, the pivot is always situated at the top of the set where 𝛼 1 > 0.5 or 𝛽 1 > 0.5. This phenomena slows down the changing of LP Bound then the branching process is trapped on branching in less insignificant intervals. With our observations, a re-ordering of binary variables according to fractional values in non-decreasing order would help to avoid this branching trap. Other observation, the larger is the test instance; the better the LP Bound which can be found after the column generation at root node. This makes the Best-Bound Search more confused since the changing of nodes causes a very less significant difference in the LP bound. It implies another way of qualifying node based on variables would be more helpful (such as best projection). This observation justifies the fact that for large instances, BProj gives better performances.

Compared to the results of the best method found in section 3.5.2, the BLP-MFlex reduces the solving time 15% to 20%.

Conclusion

This chapter presented the Branch-and-Price Algorithm to solve the ACPV 2 problem. The problem formulation is proven to be bounded and convex, which works well with the Danzig-Wolfe decomposition. The column generation algorithm approaches the problem in the convexification technique. We analyse both the primal and the dual problem. Hence we can define the pricing problem to find the new columns.

We proposed in this chapter the dual bound to stabilise the column generation at each node, which yields a good effect during the numerical tests. Concerning the branchand-bound tree, we proposed a new branching strategy dedicated to the SOS1 set where our binary variable belongs. The numerical results underline a high sensibility of the algorithm to the branching strategy. Our BLP-MFlex branching strategy yields an excellent performance during the tests.

The work done in this chapter is subject to one publication [START_REF] Nguyen | A branch-and-price approach to solving a discrete malleable jobs scheduling problem with time-varying resource constraints[END_REF].

Chapter 5

Approximate solution approach:

Heuristics HLA

Introduction and motivation

The ACPV 2 is NP-Hard in the strong sense. Then it is hard to find exact solutions for large size instances in a reasonable time. Also, the industrial problematic requires a quick response for real life cases. A well-constructed heuristic could resolve this problem by finding a good solution more quickly: the solving time for the industrial application is demanded to be less than 20 seconds for a large parking (50 to 100) EV. Also, it could help to find an initial solution for other exact methods, especially the column generation presented in chapter 4. In addition, due to industrial demand, we cannot implement the solver CPLEX into the commercial scheduler, hence the construction of a heuristic is critical.

The EV charging scheduling problem consists of two main processes: the sequencing of jobs into the waiting queue and the allocation of the resource to each task. Local search can be a good approach to sequencing jobs. However, one cannot efficiently define a good neighbour for the continuous resource allocation. Hence, the resource allocation procedure has a more constructive nature; then the local search may not be a wise choice. This observation leads to an idea of combining a constructive method with a local search to cope with the problem. One can find two stand-out approaches in the literature that construct the solution procedure with this idea. Feo and Resende [START_REF] Thomas | Greedy randomized adaptive search procedures[END_REF] introduce the conception of a GRASP (Greedy Randomized Adaptive Search Procedures). A GRASP is a multi-start heuristic. It iteratively constructs an initial solution and uses the local search to improve the quality of this latter. At every iteration, the last initial solution is completely destroyed and rebuilt a new one. The construction phase consists of a greedy constructive heuristic:

the solution is constructed element-by-element in a greedy way. This phase is probabilistic because the candidate chosen is random. In the second step, the local search tends to improve the quality of the initial solution. At each iteration, only the best solution is tracked as the incumbent. There are no repair or recycle of any solution found in the previous iterations. The GRASP has proven many advantages: it is based on a simple structure and efficient to solve huge problems. Also, the construction of a greedy heuristic is handy. Nonetheless, it wastes all the solutions found on the previous iterations because the solution destruction is total. In the case when first solutions are already hard to find, it would be very costly in terms of computational effort of the heuristic. Because of that reason, the same solution could repeatedly be found in different iterations. Thus it comes to the concept of an iterative partial destruction and reconstruction to limit those advantages which inspire Pisinger and Ropke [START_REF] Pisinger | Large neighborhood search[END_REF] to introduce the LNS (Large Neighbour Search) approach. The LNS creates an initial solution, then for each iteration, the LNS randomly destroys only a part of the original solution and rebuild this destroyed part. The main point of that method is that one can implement different methods of destruction as well as different methods of solution reconstitution. In this point of view, the LNS is also a GRASP approach, but more configurable and adaptive. This approach inspires our heuristics introduced in this chapter.

Global procedure

This section introduces the global procedure of the heuristic HLA (Heuristic of Layering and Adapting). The HLA has many configurable versions, yet all of those contain two main phases: The construction of the first feasible solution, that we call Layering, and the solution polishing phase, that we call Adapting. As we learned in chapter 2, the feasible test of the ACPV 2 is already NP-Hard. Repeated constructions of the feasible solution are computationally expensive and wasteful. That is the reason why we use the LNS approach for our heuristic. The feasible solution is then constructed only once. At every iteration of the improvement phase, it will be partially destroyed and reconstituted. The Layering heuristic used to construct the first feasible solution for ACPV 2 is a randomised greedy constructive heuristic. The Layering heuristic is limited by a time-out while its computational time does not reach the time out and the feasible solution has not been found yet, the heuristic keeps on generating a random sequence, and according to that sequence, jobs are "cut" and "layered". If the Layering heuristic reaches its time-out without any feasible solution, the input problem is considered to be heuristically infeasible. 

Initial solution construction phase

We find the inspiration to develop the feasible-solution-construction heuristic in the works related to strip packing problems. In a geometrical point of view, tasks to be scheduled on the power bandwidth is comparable to the flexible items with constant surfaces that enter a strip. In the quest of a greedy heuristic for strip packing problems, one can find many bestfit algorithms for the strip packing problems Imahori and Yagiura [START_REF] Imahori | The best-fit heuristic for the rectangular strip packing problem : An efficient implementation and the worst-case approximation ratio[END_REF]. Conventionally, a best-fit heuristic for a feasible solution without any further objective function try is analogous with an online packing problem. Since we do not know what happens next, we try to pack the item in the position that causes the least overlap possible. Concretely, every item entering the strip and being packed in the way that it could leave the largest room possible for the following item. However, the strip packing algorithms have three main disadvantages while facing the ACPV 2 problem. First, they do not take into consideration the time-windows constraints, i.e. packing item is free to move anywhere in the strip. Second, they suppose the strip has uniform height whereas the ACPV 2 has a varying power bandwidth. Third, the packing items usually take geometrical form (spare, rectangle, triangle, circle) when in fact, the charging task in ACPV 2 is flexible (semi-malleable). To resolve the first concern, Cieliebak et al. [START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF] introduced a greedy constructive heuristic to scheduling tasks on a minimal number of machines. In this work, tasks have release dates and deadlines, and it requires a fixed number of machine to process. Cieliebak et al. [START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF] introduce the concept of the shiftable interval to deal with the time-windows constraints. We adapt this concept and modify the original Greedy Best-Fit to build up resource to the ACPV 2 tasks. Before detailing the Greedy Best-Fit algorithm, we introduce the conception of an Initial Resource Consumption. It is also a key element to resolve the varying power-profile concern.

Initial resource consumption: A reversed power bandwidth

The original Greedy Best Fit algorithm can solve only instances with constant availability of machine /resource. To deal with the variation of the total resource, we present the notation of Initial Resource Consumption. This initial resource consumption can be considered as an upside-down version of 𝑈 𝑘 , noted by 𝑈 𝐼 = {𝑈 𝐼 0 , ..., 𝑈 𝐼 𝐻 }, which is mathematically defined as:

𝑈 𝐼 𝑘 = max 𝑡=0..𝐻 𝑈 𝑡 -𝑈 𝑘 = 𝑈 𝑚𝑎𝑥 -𝑈 𝑘 𝑘 = 0, ..., 𝐻 (5.1) 
To facilitate the presentation of the algorithms, a simple example is given throughout this chapter. In this example, we consider a scheduling problem with 5 jobs and 10 intervals long scheduling horizon whose details are shown in table 5.1 and table 5.2.

Figures 5-2a shows the time-dependent power-profile while figure 5-2b changes this latter into the intial resource consumption, which are comparable to an imaginary task already scheduled. With that initial resource consumption, the total available resource of 

Greedy Best Fit

Shiftable interval The key of the GBF algorithm is the aggregation of job's availability and its resource consumption which is introduced under the name of "Shiftable interval".

Each task is an imaginary piston, with two ends limited by the release date and the deadline.

The diameter of the piston represents its resource consumption. Each position of the piston corresponds to a placement of task. Formally defined, a shiftable interval is a n-tuple Let Ω denote the set of scheduled jobs, which includes imaginary task representing the Initial Resource Consumption 𝑈 𝐼 . Let 𝑈 Ω be the allocation of resource assigned to all those jobs. The height of an interval is the peak of resource utilisation of the jobs in Ω plus the resource utilisation of job 𝑖. For a job 𝑖, the algorithm calculates for every placement the maximum height inside the shiftable interval. From the subset of placements which lead to the lowest height, we chose the one staying in this lowest height in the least duration.

𝐽 𝑖 = ⟨𝑟 𝑖 ,
Complexity Without loss of generality, let us assume that 𝜑 𝑚𝑎𝑥 𝑖 = 𝐻/𝑐; 𝑐 > 0, then the GBF(𝑖) algorithm can be computed in 𝑂(𝜑 𝑚𝑎𝑥 𝑖 2 ) = 𝑂(𝐻 2 ). By this complexity, one can note that, the algorithm works faster with stricter time-windows constraints.

We illustrate the algorithm with job 𝑖 having a given resource allocation 𝑢 𝑜 𝑖 in a simple example.

Figure 5-4 shows three possible placements for job 𝑖. One can find that place place- 

{︃ ℎ 𝑚𝑎𝑥 [𝜑 𝑖 ] = ℎ * Σ[𝜑 𝑖 ] = Σ * Ω Set of scheduled tasks r i d i h 1 h 2 h 3 Φ 1 Φ 2=0 Φ 3
Figure 5-4 -Maximum resource heights created by three placements of job 𝑖 ment 𝜑 1 has the biggest resource height, then this placement is totally not "best-fit". Both placements with 𝜑 2 and 𝜑 3 yield the minimal of all the maximal resource height (minimax resource height). Hence, to decide which placement is the best-fit one, we have to examine the resource height accumulation Σ(𝜑). 

Guillotine Cut and Layering

Throughout empirical experiments, we observe that when the power bandwidth fluctuates sharply, it is harder to find feasible solutions. Given that the jobs' resource allocation is semi-continuous, we come to an idea that one can apply guillotine cut to flatten the resource allocation. The basic of this cut is to make the power bandwidth left as uniform as possible to avoid with a greater probability the resource consumption overlap, or we call this phenomenal simply resource bottleneck. Result: After-cut allocation û𝑖 , job's cut portion 𝑥 ′

𝑖 𝑔𝑐𝑢𝑡 1 = min 𝑘∈⟨𝛼 ′ 𝑖 ,𝛽 ′ 𝑖 ⟩ 𝑈 Ω [𝑘] + 𝑢 𝑖,𝑘 ; 𝑔𝑐𝑢𝑡 2 = max 𝑘∈⟨𝛼 ′ 𝑖 ,𝛽 ′ 𝑖 ⟩ 𝑈 Ω [𝑘] + 𝑢 𝑚𝑖𝑛 𝑖 ; 𝑐𝑢𝑡𝑃 𝑜𝑖𝑛𝑡 = 𝑚𝑎𝑥{𝑔𝑐𝑢𝑡 1 , 𝑔𝑐𝑢𝑡 2 }; ∀𝑘 ∈ ⟨𝛼 ′ 𝑖 , 𝛽 ′ 𝑖 ⟩ : 𝑐𝑢𝑡 [𝑘] = max{0, 𝑈 Ω [𝑘] + 𝑢 𝑖,𝑘 -𝑐𝑢𝑡𝑃 𝑜𝑖𝑛𝑡}; 𝑥 ′ 𝑖 = ∑︀ 𝑘∈⟨𝛼 𝑖 ,𝛽 𝑖 ⟩ 𝑐𝑢𝑡 [𝑘]; ∀𝑘 ∈ ⟨𝛼 𝑖 , 𝛽 𝑖 ⟩ : û𝑖,𝑘 = 𝑢 𝑖,𝑘 -𝑐𝑢𝑡[𝑘];
To explain the algorithm, the guillotine cut 𝑔𝑐𝑢𝑡 1 is the minimum resource height over the newly allocation of resource with job 𝑖. The guillotine cut 𝑔𝑐𝑢𝑡 2 is the maximum height of the allocation of resource without job 𝑖 over the spanning interval, plus the job's minimum resource allocation allowed. One can find that 𝑔𝑐𝑢𝑡 1 is more radical than 𝑔𝑐𝑢𝑡 2 . However, 𝑔𝑐𝑢𝑡 2 assures the validity of the semi-continuous constraint of task resource consumption.

It keep the resource allocation from going lower than 𝑢 𝑖 . The final guillotine cut is the maximum of those previously found guillotine cuts. Figure 5-8 illustrates the two guillotine cuts.

There are two observations concerning the cutting process: Observation 1 After each cut, the new cut portion should be smaller or equal to the previous one. If the new cut portion is as big as the old one, the result will be unchanged.

Thus, this latter turns into the stop condition of the guillotine cutting iterations.

Observation 2 Since tasks are non-preemptive, from the second GBF placement, with

each shiftable interval 𝐽 𝑖 = ⟨𝑟 𝑖 , 𝑑 𝑖 , 𝑝 𝑖 ⟩, a placement 𝒫 𝜑 𝑖 is valid only if 𝑟 𝑖 + 𝜑 𝑖 ≤ 𝛽 ′ 𝑖 and 𝑟 𝑖 + 𝜑 𝑖 + 𝑝 𝑖 ≥ 𝛼 ′ 𝑖 .
Observation 3 The main challenge for the reallocation of resource after a cut is the task's semi-continous resource consumption and non-preemtive constraints. That is the reason why we introduce the conception of the spanning interval. if the greedy best fit happens outside the actual spanning interval of job, the minimum resource allocation is bounded as ū𝑖 .

Otherwise, there exist no such bound is the allocation is happened to be inside the actual spanning interval.

According to the three observations mentioned above, the greedy best fit algorithm combined with cutting process of a job can be described in algorithm 5. Then the overall layering and cutting process is described in algorithm 6.

Complexity Since algorithm 5 can be implemented in time 𝑂(𝐻 2 ), algorithm 6 can be computed in 𝑂(𝑛𝐻 2 ).

Illustrative example

To illustrate the resource allocations layering process, the previously introduced example is taken.

First the resource allotted to job 1 is planned by the 𝐺𝐵𝐹 algorithm. This allocation of resource is shown in figure 567. for

𝑝 ′ 𝑖 = 𝑝 𝑚𝑎𝑥 𝑖 down to 𝑝 𝑚𝑖𝑛 𝑖 do 𝛿 = 𝑥 ′ 𝑖 /𝑝 ′ 𝑖 ; if 𝛿 ≥ 𝑢 𝑚𝑖𝑛 𝑖 then 𝑟 ′ 𝑖 = max{𝑟 𝑖 , 𝛼 ′ 𝑖 -𝑝 ′ 𝑖 }; 𝑑 ′ 𝑖 = min{𝑑 𝑖 , 𝛽 ′ 𝑖 + 𝑝 ′ 𝑖 };
else Placing cut portion into the strip by using algorithm 5;

𝑟 ′ 𝑖 = 𝛼 ′ 𝑖 ; 𝑑 ′ 𝑖 = 𝛽 ′ 𝑖 ; end 𝐺𝐵𝐹 (𝑟 ′ 𝑖 , 𝑑 ′ 𝑖 ,
Find cut portion using algorithm 4;

𝑛𝑒𝑤𝑃 𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑥 ′ 𝑖 ; end end In the same way, job 2's resource allocation is initially found by 𝐺𝐵𝐹 algorithm, then being cut by 𝑔𝑐𝑢𝑡 2 (see figure [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF][6][START_REF] Baptiste | Satisfiability tests and time-bound adjustmentsfor cumulative scheduling problems[END_REF][START_REF] Barnhart | Branch-and-price : Column generation for solving huge integer programs[END_REF][START_REF] Beaumont | A normal form for scheduling work preserving malleable tasks and its applications[END_REF][START_REF] Beaumont | Minimizing weighted mean completion time for malleable tasks scheduling[END_REF][START_REF] Jacek Blazewicz | Scheduling subject to resource constraints : classification and complexity[END_REF]. Figure 5-12 shows the reallocation of cut resource of job 2. The cutting process then stops because there are no more resource left to cut.

Figure 5-13 shows the initial result of 𝐺𝐵𝐹 on job 3. In the first cutting attempt, the 𝑔𝑐𝑢𝑡 2 is chosen then figure 5-14 shows the resource reallocation after this cut. At this time, In the same way of layering and cutting, the resource allocation of job 4 and job 5 are placed into the strip, which lead to the initial layered solution in figure 5678910111213141516.

The combination of jobs time-availability constraint and the variation of the total available resource cause the feasibility test NP-Hard [START_REF] Hartmann | A survey of variants and extensions of the resourceconstrained project scheduling problem[END_REF]. An instance which can be solved by the Layering process is called heuristically feasible. On the contrary, it is heuristically 

Solution improvement phase

This section proposes three large-neigbour search methods to improve the initial solution found by the Layering heuristic. This phase is called "Adapting", as the part of the HLA: Heuristic of Resource layering and Adapting due to the initial conception of the second phase is to adapt the job's resource consumption to the power bandwidth variation, which is not really closed to the final conception of the heuristic. However, with respect to the naming of the heuristic, and to facilitate the industrial documentation, we decided not to change the name of the solution improvement phase. 

Greedy occupation heuristic

The objective of the layering process is to flatten the resource peak. Hence it leaves a lot of available resources. The greedy occupation heuristic tries to make the most of the resource left to attribute to jobs, in other to accelerate the completion times. The greedy occupation process in a nutshell: the heuristic scans every time interval, if there is an Remark Let the number of pairs 𝑛𝑃 𝑎𝑖𝑟𝑠 = 𝑐𝑛; 𝑐 > 0. The greedy positioning can be implemented in time 𝑂(𝐻). Thus, algorithm 9 can be implemented in time 𝑂(𝑛𝐻).

Rectangular-form shuffle The Retangular-form shuffle has the same destruction mechanism with the free-form shuffle algorithm. However, the reconstruction of tasks form of moldable resource allocation, i.e. tasks have to consume constant resource. That comes the name of the method, because the packing item is considered to be rectangle. Since all the components have been introduced, we would insist on the basic differences between two versions of the HLA heuristic we will test on the numerical experimentation section: the HLA-RAG and HLA-ARG. In the former version of the heuristic, HLA-RAG, the solution is polished in the following order: Rectangular-form shuffle, Greedy occupation, and Free-form shuffle. In the latter version, HLA-ARG, this order is changed to:

Greedy Occupation first, then Rectangular-form shuffle and Free-form shuffle. By the sake of simplicity, in the illustrative example, we take into account only the HLA-RAG version.

Illustrative example

Let us continue to illustrate with the previous described example in the last section.

After having the initial solution (see figure [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF][6][START_REF] Baptiste | Satisfiability tests and time-bound adjustmentsfor cumulative scheduling problems[END_REF][START_REF] Barnhart | Branch-and-price : Column generation for solving huge integer programs[END_REF][START_REF] Beaumont | A normal form for scheduling work preserving malleable tasks and its applications[END_REF][START_REF] Beaumont | Minimizing weighted mean completion time for malleable tasks scheduling[END_REF][START_REF] Jacek Blazewicz | Scheduling subject to resource constraints : classification and complexity[END_REF][START_REF] Blazewicz | Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan[END_REF][START_REF] Blazewicz | Preemptable malleable task scheduling problem[END_REF][START_REF] Blazewicz | Berth and quay crane allocation : a moldable task scheduling model[END_REF][START_REF] Brinkmann | Scheduling Shared Continuous Resources on Many-cores[END_REF][START_REF] Carlier | Jackson's pseudo-preemptive schedule and cumulative scheduling problems[END_REF], jobs' resource allocation will be re-assigned in a rectangular form and also aiming to finish as soon as possible by Rectangular-form shuffle.

In order to make the most of the resource left to finish all the jobs sooner, the last solution shown in figure 5-17 will be introduced in Greedy Occupation process which result is shown in figure 5-18. According to this result, 2 more units of times are minimized for job 4 in the objective function.

Finally, aiming to find any other jobs' combinations should lead to better solution, a Greedy shuffle in free-form is carried out. Comparing to the best solution found so far (Fig. [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF][6][START_REF] Baptiste | Satisfiability tests and time-bound adjustmentsfor cumulative scheduling problems[END_REF][START_REF] Barnhart | Branch-and-price : Column generation for solving huge integer programs[END_REF][START_REF] Beaumont | A normal form for scheduling work preserving malleable tasks and its applications[END_REF][START_REF] Beaumont | Minimizing weighted mean completion time for malleable tasks scheduling[END_REF][START_REF] Jacek Blazewicz | Scheduling subject to resource constraints : classification and complexity[END_REF][START_REF] Blazewicz | Scheduling Malleable Tasks on Parallel Processors to Minimize the Makespan[END_REF][START_REF] Blazewicz | Preemptable malleable task scheduling problem[END_REF][START_REF] Blazewicz | Berth and quay crane allocation : a moldable task scheduling model[END_REF][START_REF] Brinkmann | Scheduling Shared Continuous Resources on Many-cores[END_REF][START_REF] Carlier | Jackson's pseudo-preemptive schedule and cumulative scheduling problems[END_REF][START_REF] Cazzola | Global EV outlook 2016 -beyond one million electric cars[END_REF][START_REF] Cieliebak | Scheduling with release times and deadlines on a minimum number of machines[END_REF], this new solution (Fig. 5678910111213141516171819) having job 2 finished -4 intervals earlier while having job 4 finished 2 intervals later. In brief, 2 unit of times is minimized in total for the Heuristic parameters tuning There are two principal parameters for the HLA heuristic: the time-out (noted 𝑡𝑖𝑚𝑒𝑂𝑢𝑡) for layering process and the number of shuffle-pair for the greedy shuffle (noted 𝑛𝑃 𝑎𝑖𝑟𝑠). Due to our industrial requirement introduced in our study case, for a parking of 30 EV to be scheduled in a horizon of 12 hours, discretized to 5 minutes per decision interval, 12.60/5 = 144 ≃ 150, we have to find a feasible solution within 20 seconds. Unless, the parking will be operated in fail-safe mode. Since the layering and cut should be calculated in time 𝑂(𝑛𝐻 2 ), we fix the 𝑡𝑖𝑚𝑒𝑂𝑢𝑡 = 𝑛𝐻 2 33750 . For 𝑛 = 30, 𝐻 = 150 then 𝑡𝑖𝑚𝑒𝑂𝑢𝑡 = 20 seconds. the 𝑛𝑃 𝑎𝑖𝑟𝑠 is fixed to 𝑛 2 to assure the diversity of the greedy Experimentation setting There are generally two groups of instances to be tested in this section. The first group is called small instances group where 𝑛 ∈ {10, 20} and 𝐻 ∈ {40, 60, 80}. The other one is called large instances group where 𝑛 ∈ {50, 100, 150, 200} and 𝐻 ∈ {100, 150, 200} 1 . For each pair of 𝑛 and 𝐻, we generate two random instances.

The HLA-ARG and HLA-RAG repeatedly solve each instance 100 times to track the best objective value and execution time found, also the average and worst one. This statistical results help us to observe and understand the behavior of HLA heuristic since its components are based on randomness. The test protocol was the same as the one described in section 3.5.1.

As far as we know, there are no algorithms to cope with the considered problem.

The variation of the total available resource causes the decision problem to find whether it is feasible or not to be NP-Hard. For that reason, it is almost impossible to adapt another heuristics on the literature to solve our problem. Hence, we introduce simply the greedy algorithm based on shortest-processing-time (SPT) rule and earliest-due-date rule (EDD) [START_REF] Nessah | An exact method for Pm/sds, ri/𝜎ni[END_REF]. Finally, the CPLEX solving time-out is set to 1800 seconds.

We introduce in the following list the notations used in the result tables of the computational tests

• 𝑂𝑏𝑗𝑉 𝑎𝑙 the objective value of solution found by the tested methods. For the heuristic, there are also the 𝐵𝑒𝑠𝑡 -the best objective value, 𝐴𝑉 𝐺 and 𝑊 𝑜𝑟𝑠𝑡 the average and the worst value of 100 solving attempts.

• 𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒 the execution times measured in second of each method. HLA heuristic also have 𝐵𝑒𝑠𝑡, 𝐴𝑉 𝐺 and 𝑊 𝑜𝑟𝑠𝑡 values.

• 𝐺𝑎𝑝 is the gap (measured in percentage) between the objective found by heuristics and CPLEX. 𝐺𝑎𝑝 = 𝑂𝑏𝑗𝑉 𝑎𝑙 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 -𝑂𝑏𝑗𝑉 𝑎𝑙 𝐶𝑃 𝐿𝐸𝑋 max{𝑂𝑏𝑗𝑉 𝑎𝑙 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 ;𝑂𝑏𝑗𝑉 𝑎𝑙 𝐶𝑃 𝐿𝐸𝑋 }

• 𝑛𝑜𝐼𝑛𝑡 denotes a status where CPLEX can not find an integral for the input instance, yet the input instance is proven to be feasible. In this case, the 𝑂𝑏𝑗𝑉 𝑎𝑙 𝐶𝑃 𝐿𝐸𝑋 corresponding to this instance takes value infinity. If the heuristic can find a feasible solution in this case then 𝐺𝑎𝑝 = 0%.

• 𝑛𝑜𝑆𝑜𝑙 indicates that the heuristic(s) can not find a feasible solution for the given instance. In this case, the 𝐺𝑎𝑝 = 100%.

1 All the input data and solutions found by solver CPLEX and HLA-RAG, HLA-ARG can be found at the link: http://losi.utt.fr/_resources/documents/ TestInstance_Results_NNQ_Paper2015.zip Results on objective values found by heuristic (HLA-RAG, HLA-ARG, EDD and SPT) are shown in table 5.4. For ease of reading, best values found by heuristic(s) are in bold, objective value found by CPLEX are in italic. The rates of finding feasible solutions of EDD and SPT are small, accordingly 33% for EDD and 10% for SPT. This failure in finding feasible solutions can be explained by the NP-Hard nature of the feasibility test.

CPLEX successfully finds integral solutions (with time limited to 1800s) in 57% of the tested instances, in which 15% of the solutions found are optimal. By contrary, HLA heuristics yield a 100% rate of finding feasible solution.

Figure 5-20 plots the evaluation of the best, the average and the worst 𝐺𝑎𝑝 found by 123 By the average 𝐺𝑎𝑝 found, one can conclude that both HLA heuristic perform well with the two sets of tests. In detail, one can find that the HLA-RAG shows slightly better solutions in the best and average cases while HLA-ARG maintains better the worst 𝐺𝑎𝑝. HLA-RAG also keeps a stricter margin between the best case and the worst case, hence it is more stable in terms of solution qualification.

The execution times resulted from each test are shown in table 5.5. For the ease of reading, best solving times of heuristic(s) are in bold, 𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒 of CPLEX are in italic.

Thanks to the simplicity of implementation, EDD and SPT yields the best results in terms of execution time when it can find a feasible solution. The CPLEX works at its best in small instances where 𝑛 ≤ 20 and 𝐻 ≤ 80. The 𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒 of CPLEX escalates quickly on medium and large instances yet it still hard to find a feasible solution. The execution time of both HLA heuristics displayed in figure 5-21 is proportional with 𝑛𝐻 2 which corresponds to the theoretical complexity calculation. In the largest instances, 𝑛 = 200 and 𝐻 = 200, HLA-RAG takes less than two minutes to find final solution while HLA-ARG takes less than 2.7 minutes. The execution times of both the heuristics to find final solutions is quick compared to the instance size to deal. The gap between the best and the worst time found for each instance is relatively small, thus both of the two HLA versions are stable in terms of execution time. For more detail, HLA-RAG outperforms HLA-ARG by having in average shorter execution times for both of the tested sets. For small instances, the difference between the best and the worst 𝐺𝑎𝑝 is relatively big but the 𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒𝑠 is really small. If the real-life implementation of the heuristic allows a larger execution time, one can profit from the time left to repeat HLA for more than one run, hence the probability of finding the best 𝐺𝑎𝑝 solution is high. For instance, in our industrial implementation, the time limit is 20 seconds than we can have around 100 runs for each input instance with real-life input 𝑛 = 25 𝐻 = 48.

In the actual industrial case, the heuristic has proven a reasonably good performance. Specifically, according to the implementation tests of HLA-RAG dealing with our latest industrial problems containing up to 25 jobs in a 12-hours-scheduling scheme, each interval lasts 15 minutes (48 intervals in total), the average derivation found between the solutions obtained by HLA-RAG and optimal solution resulted from CPLEX is 1.7% while the execution time-out of the heuristic is set to 20 seconds.

Conclusion

In this chapter, we introduced a family of constructive heuristics to deal with the ACPV problem. The strip packing problems inspires the heuristics. Based on the Large Neighbour Search principles, we have developed one solution construction method with three solution improvements methods. During the statistical test, the solution construction phase proved very efficient to find the first feasible solution. Also, the strip packing approach and constructive way of establishing the solution makes this heuristic extremely flexible:

One can add or remove the time-window constraints, add more restrictions to the resource consumption to the heuristic. We also introduced three LNS methods: Greedy Occupation, Free-form shuffle and Rectangular form shuffle. We conducted numerical tests to compare the two versions of the heuristic, distinguished by the orders of the methods applied to the solution improvement phase. Those two versions work well with the proposed problem, proving an adamant computational advantage in terms of execution time. The HLA-RAG heuristic yielded the best results over most of the tested instances.

We have now efficient deterministic scheduling algorithms. In the next chapter, we present how a deterministic algorithm can be apply to cope with the uncertainties of real-life scheduling problems. We use a predictive-reactive scheduling framework to cope with the forecasting problem and the online scheduling.

The work done in this chapter is subject to one publication [START_REF] Nguyen | Total completion time minimization for machine scheduling problem under time windows constraints with jobs' linear processing rate function[END_REF].

Introduction

After analysing, formulating and developing solution procedure for the problem, one would raise a question: How to implement all of the latter to the industrial application?

For that reason, we introduce in this chapter a predictive-reactive rescheduling method to incorporate the algorithmic research to the technical implementation of a forecast model and an online scheduling.

As we know in the first chapter, a corporate electric vehicle charging management tends to minimise the cost and maximise the service quality. To do that, we identify three decision levels that should be made.

At installation: How much total power does one have to subscribe from the electrical supplier? This decision is a trade-off between the fixed cost of power subscription and the service level. The more bandwidth is allocated monthly, the more costly the annual or monthly subscription cost. For instance, the EDF supplier in France costs around 500 euros for the annual subscription of a power 24 kVA compared to 700 euros per year for 36 kVA. [START_REF]Price list of electricity supply offer[END_REF].

At daily operation: On which schedule baseline can the on-line management depend on for the day-to-day operation? With a fixed power bandwidth, one has to define a good schedule start time to assure the service level. In France, overnight charging scheme usually starts at 10 PM and ends at 6 AM to profit the off-peak low electric cost. In some days, due to heavy charging demands, one has to decide to start the procedure earlier.

Online scheduling: Facing with certain controllable activity (charging takes longer than predicted, charging power is lower than provided power. . . ) or uncertainties (car arriving late in the parking, unplugging before end of charge. . . ), how can the management central react and update a new schedule?

Hence, we construct a rescheduling method based on the predictive-reactive manufacturing to deal with the three decision levels that we may note: long term, short term and operational.

This chapter will be segregated in 4 parts. First, we introduce the problem and the need for an aid decision tool. Preliminaries on the remanufacturing help us to introduce some basic conceptions on section 6.2. We start with the study case and a simple version of the HLA to cope with the ACPF problem (moldable charging task). Then, in section 6.4 we introduce the simulation based forecast, which would respond to the two first concerns in the long term and short term decisions. Section 6.5 outlines the online scheduling method of the problem. At the end of the chapter, we draw conclusions on the simulation based forecast and the online scheduler.

Preliminaries

Since the 90s, many studies have discussed many fragments of the idea of a predictivereactive remanufacturing. However, there exist no official or standard definition and classification. According to our knowledge Vieira et al. [START_REF] Guilherme | Rescheduling manufacturing systems : a framework of strategies, policies, and methods[END_REF] were the first to address the conception of a re-manufacturing method systematically. Later, Van de Vonder et al. [START_REF] Van De Vonder | A classification of predictive-reactive project scheduling procedures[END_REF] discussed in more details the project scheduling procedure under the optic of the predictive-reactive rescheduling. First, we would mention some definitions and notations concerning the method.

Terminologies

Rescheduling: The process of adapting or updating the actual production schedule in order to respond or adapt to changes or disruption in the real time event.

Rescheduling environment: the characteristic of the set of jobs should be scheduled.

Rescheduling strategy: Decision that one should regenerate the schedule or not.

Rescheduling policy (method): the description of how and when the schedule is regenerated.

Disturbance: An unexpected event that does not correspond to the actual schedule.

Baseline schedule: Any feasible solution of the deterministic schedule problem input.

Decision maker: A person, or a stand-alone scheduler, which decision what is the concrete reaction/respond for each action/event caught by the system. This decision can be an reallocation of resource, a start or a stop of a task execution.

Rescheduling methodology

We would cite some definitions and classifications done by Vieira et al. [START_REF] Guilherme | Rescheduling manufacturing systems : a framework of strategies, policies, and methods[END_REF] to introduce the conception of the rescheduling framework. As we have mentioned in the previous part of the section, a scheduling framework includes an environment, strategies and policies.

Concerning the rescheduling environment, if the set of jobs is finite then it is called static.

Otherwise, it is called dynamic. In the case of static rescheduling environment, if all the information about jobs to schedule is given then we make the plan in the deterministic environment. If we have to cope with some level of uncertainties, then the scheduling environment is then stochastic.

Regarding the rescheduling strategies, if there a no schedule baseline, hence there are no updating of the baseline, the immediate task is dynamically put in the system. In that case, the rescheduling strategy is called dynamic, which uses dispatching rules or controltheoretic. The dynamic rescheduling strategy is comparable to the implicit optimisation approach that we introduced in chapter 2 because it does not create production schedules.

Otherwise, if the rescheduling strategy is made up of a baseline and a procedure of baseline updating, it is then called predictive-reactive. The updating of the baseline schedule can be periodic or event-driven. A periodic policy updates the schedule baseline at a regular interval. Hence this policy is not suitable for online scheduling. For that reason, one also considers the event-driven policy: the schedule baseline will be changed at every new event that had not been taken into account.

The rescheduling consists of two main methods: schedule generation and schedule repair. To cope with uncertainties, one has two choices: whether we generate a robust schedule, which can be understood as a feasible schedule with adjustment to deal with disruptions; or we reschedule each time we face unexpected events, which is called schedule repair. The schedule reparation can be complete, which change all the allocation of tasks already started and tasks in the waiting queue, or partial, which reschedule only tasks have not started yet. There also exists the right-shift/left-shift schedule reparation. The overall predictive-reactive rescheduling can be resumed in figure 6-2. Each real life event has a double usage: it enriches the database and triggers the on-line reactive rescheduling module. An optimal power bandwidth is chosen as detailed in the previous section for the long-term schedule baseline. Every day, the database will extract a small number of events (from 14 to 25 events) to estimate the parameter of the customer behaviours random distribution, as well as estimate the parameter of the daily demand. Thence, the scheduling length variation simulator gives us the relation between the probability to have a feasible planning with the earlier shift. An earlier starting time would be made at the 

The power and cost trade-off

The industrial problem tackled in this thesis consist of a scheduling problem with a finite set of charging tasks. We know the list of clients in the parking, and all of their past behaviours stored in the database. Every day, each customer comes home and plugs his/her EV to the charge point at random hours. The daily charging energy demand is also random, and depends on the distance travelled that day. However, the expected departure of the car is made by the client throughout the platform web. Hence the stochastic elements of the schedule consisting of the arrival (plugging times) and the daily energy demand of each EV.

The rescheduling environment is then static and stochastic.

Regarding the scheduling strategy, we have to make a short-term and a long-term decisions: the power subscribed for the parking and the daily starting time of the scheduling.

In figure 6-3, the power subscription is big enough to let the whole charging schedule fit in the off-peak hours. It leads to an expensive fixed cost (power subscription cost) but a minimal variable cost (the electrical usage only in off-peak hours). On the contrary, In figure 6-4, the subscription cost is cut by 2 through the reduction of the power bandwidth.

Power subscribed

Off-peak hours On-peak hours The variable cost is increased since we have to start the schedule earlier in the on-peak hours pricing plan to assure the feasibility of the planning. For that reason, a good baseline schedule is required. Hence, the scheduling strategy should be reactive-predictive. Normally, a private sector parking contains no more than 30 EV. Given the computational strength of our heuristic, the scheduling problem for a 12h time horizon could be done in less than half a second so it can cope with the on-line event with a reasonably quick response time.

Hence, the rescheduling methods should be schedule reparation, driven by new events.

The simulation based forecast

We present the simulating protocol in two aspects: variation of the power bandwidth and variation of the scheduling length. The statistical results of the two simulators are used to define an optimal power bandwidth and a standard schedule horizon. In addition, during the operation, once the parameters for random generator change according to the new trend of real-life data, schedule baseline can be built to guide the on-line management.

For instance, if the baseline states that the current power bandwidth is not enough for all EV to be fully charged in the given time horizon, the whole operation can be started earlier.

This framework is resumed in figure 6-5.
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Limited number of real-life events Extended number of simulated events to test more variations The cost of utilization of the power bandwidth U With the off-peak overnight charging scenario, the using cost of the power bandwidth can be classified onto two costs.

The first one is the annual fixed cost of power subscription. The second one is the penalty cost if the charging has to start earlier than off-peak periods. The following equation describes in details those two kinds of costs:

𝑧(𝑈 ) = 𝑓 0 (𝑈 ) + 𝑃 𝐵𝑊 (𝑥 > 𝑈 ).𝑓 𝑝 (𝑈 ) (6.1)

Fixed power bandwidth simulator

The reversed GBF algorithm With a fixed power bandwidth, the problem of finding the optimal starting time of the charging procedure is comparable to the problem of makespan optimisation. First, we reverse the time horizon and the time-windows constraints of all the task: the deadline becomes the release date, and the release date becomes the deadline.

We execute the greedy best-fit algorithm to find a feasible solution and dichotomise the scheduling horizon. If the optimal schedule length is less than the off-peak hours' duration, then we do not need to left shift the starting time of the charging procedure. Otherwise, the left-shift is equal to the difference between the optimal schedule length and the off-peak duration.

Algorithm 11: Reversed GBF the fixed-time horizon simulator is on figures 6-9 and 6-10. Figure 6789shows the density of the maximum total charging power occurrences over 10000 random instances. Figure 6-10 states the distribution cumulative function 𝐹 𝐵𝑊 and its distribution fit counterpart.

According to the histogram, we can estimate that the total power usage follows a normal distribution whose mean is 16.7 kW (about 14.2% of the sum of all charging power, i.e. the diversity factor of electrical use) and its standard deviation is 5.6 kW. Finding the optimal total power bandwidth: Let the subscription fee per kW be equal to 19.5 euros, the difference price to pay for the standard and the off-peak tariff is 0.029 per kWh [START_REF]Price list of electricity supply offer[END_REF]. The optimized bandwidth to reserve according to (6.1) and (6.2) is 19.5

kW, with an expected daily earlier starting time of 1h. The power BW chosen is equivalent to 11% of the total 177.6kW charging power of all EV.

The required power bandwidth and the expected earlier shift behaviors according to random data: Given the specific configuration of the case study: gamma distribution random demands, normal distribution arrival time and fixed common departure, one can see specific behaviors of the power bandwidth and the expected earlier shift. The power bandwidth required for a feasible schedule within the off-peak hours follows the normal distribution with adequacy. The fitted function 𝐹 𝐸 (𝑈 ) = 14𝑒 -0.125𝑈 of the expected earlier shift reflects confidently the data. According to those statistical results, the behaviors of the system can be predicted at any power bandwidth rate. For example, in this case, to cover 99% of the schedule feasibility over a large number of charging events, one has to choose a power bandwidth greater or equal to 41.6 kW. At that rate, the expected earlier shift to assure a 100% feasibility is 4.6 minutes. According to that analysis, the EV charging planner can make more sophisticated decision in the case of multi-criteria has to be taken into account.

a task in a higher position on the static list arrives. This policy is called preemptive static list. If the task is non-preemptive, then the scheduler will wait until the job having priority arrives at the system. This policy is called non-preemptive static list.

In the dynamic decision policy, the schedule baseline will be updated each time the scheduler get newly available information. For that reason, it requires a fast algorithm to keep up with the on-line event. If the tasks are preemptive, the whole schedule will be recalculated completely each time the system encounter a new event. On the contrary, is the tasks are non-preemptive, only the tasks which are available in the systems, yet, have not started are involved in the rescheduling. Hence we call this policy the partial rescheduling.

We classify those policies in Table 6.2. 𝑖 has not arrived on the system yet, the system will put the machine in idle to wait for the job.

This policy is called partial rescheduling.

Only the tasks which have not been scheduled yet are rescheduled. Once a job has been started, it would have the priority to end before the decision maker schedules others.

Preemptive tasks

This is a no-wait policy when a job has a higher priority in the list has not arrived in the system, the next job can be executed instead. However, as soon as the privileged job arrives, this executing job must be interrupted to make a place for the privileged one and then resumes to process later.

This policy is called complete rescheduling. All the tasks are rescheduled every time the decision maker has new information; he can interrupt processing tasks if necessary.

Reactive rescheduling

Since the tasks are non-preemptive, then the schedule reparation should be partial.

Only jobs in the waiting queue are about to be rescheduled, the tasks which have already In this chapter, we provide the method to implement the efficient deterministic algorithms developed in the previous chapters to the real-life problem. The scheduler has two main components: the forecast (proactive) schedule and the reactive rescheduling. In the first part of the chapter, we presented the theoretical background of the method. Then, we introduced the conception of the simulation based forecast model. This forecast model can take advantage of the given degree of knowledge we get from the database: the past behaviours and demand of the EV customers on the parking. Hence, with the random distribution of the two possible disturbances on the arrival times and the daily electrical demand of the battery, the simulation based helps us to observe the randomness behaviours of the total power demand for the charging process with a given deterministic scheduling algorithm. Thence, with that stochastic property, one can estimate the total charging power to subscribe for the parking and the daily starting time of the charging procedure.

The rest of this chapter was dedicated to the presentation of the online scheduling policy. Taking into account the characteristic of the charging task and the performance of our scheduling algorithm, we developed a partial rescheduling policy for the online scheduler.

While the new information reveals in time, the scheduling algorithm must incorporate in permanent with new changes and update the rescheduling partially. It, at the turn, avoids changing the task currently in charge (non-preemption) and takes those scheduled tasks as the constraints of the new EVCC scheduling.

In the next chapter, we will introduce the implemented software which concretises the conception developed in this chapter.

The work done in this chapter is subject to two publications [START_REF] Nguyen | Reactive rescheduling method for electric vehicles charging in dedicated residential zone parking[END_REF][START_REF] Nguyen | Predictive baseline schedule for electrical vehicles charging in dedicated residential zone parking[END_REF].

Chapter 7

Software implementation 7.1 Introduction

This chapter is dedicated to introduce overall the stand-alone scheduler software implemented on the parking charging back office. The thesis has started with an industrial problem; hence it should be finalised with an industrial implementation. Concretely, a scheduler software has been developed. In this chapter, we present first the overall condition of the electric charging service solution at Park'nPlug. Then, we introduce the definition of the necessary components of the solution. After that, we present the software design. At the end of the chapter, we conclude on the implementation and discuss our future developments.

The EV charging management description

The charging management has two parts: the parking (local management) and the information system (global management). We present first the principal components of the local management:

The NEMO box is the Back Office of the parking. It collects information from watt meter and EVSE, giving the command to each charge point about the authorisation/interruption of charging and changing the allocation of electrical power... Flows B The flow of stocking events. For each charging transaction, the NEMO stocks all the logs (arrival times, charging duration, charging demand...) on its database. The Simulation-based forecast (MOD-PREV) can request information from this database to make decisions and predictions.

Flows C Forecast flow tells the back office when to start the charging process, and estimate values for the schedulers.

Flows D Algorithm flow gives the scheduler and the forecaster the suitable optimisation from its database. For example, the forecaster may request the reversed GBF while the scheduler requires the HLA.

Flows E Solution request flow: the NEMO request new algorithm from the Algorithm Box to respond to the new situation. This request is stocked first in the MCU to avoid overloading the calculation of the BA.

Flows F Solution respond flow: the BA responds the new solution for the NEMO. The CMU also manages this flow.

Flows G EVSE control flows: the NEMO controls the EVSE using this communication channel.

The PA is created to assure at the same time a good and flexible rescheduling system with a tight synchronisation to the electronic components managed by the GO. The synchronisation between the GO and the BA is driven by the CMU, detailed in figure 7-3. For every unexpected event captured, if the BA is not actually busy, it requests the new updating on the schedule. Otherwise, it stacks all the changes and then send new information as soon as the BA becomes available.

One can see that Flow A triggers the scheduling. Hence, by analysing the information of the sensors (watt meters, charge points, badge reader...) the real-time event management finds a suitable event defined in the EventList (table 7.1 and table 7.2) to send to the GO.

The GO stocks new developments in the database throughout the Flow B, then in the same time, the MOD-PREV sends new estimation for the scheduler by using flow C. In the same time, if the NEMO does not have an available scenario to respond to this new event, it has to use the Flow E to demand a new schedule from the BA. The BA then responds with anew solution through the Flow F. After having the new scenario; the NEMO would control the EVSE according to this new schedule. 

Conclusion et Perspectives

In for the EV charging management of the private parking. To take the lead in the novel technology, a research of a "Smart Charging" can assure an optimal schedule and an autonomous functionality which also are the objectives of the research of this thesis.

We resume the contributions made throughout this thesis as follows:

• First, the state-of-the-art pointed out the research gap on a scheduling problem, where the tasks are malleable (or semi-malleable) with the consideration of a time-varying resource profile. By that analysis, we can po-sition our research in this thesis to fill the specific gap. The methodology was appropriate which can provide us with a solid base for all the developments. The definition of the new problem class, with the identification of the EVCC constraints, tackle the real-life problem directly. Also, five configurations: ACPF 1/2 and ACPV 1a/1b/2 helps us to classify the existed industrial problem. The complexity analysis of each problem according to the standard optimisation objective suggests the suitable solving method corresponding to each configuration.

• With a scientific approach, we analysed different techniques to formulate the ACPV 2, the most generic and challenging problem to solve among the five configurations. The two chosen techniques were to formulate the problem in a conjunctive (𝑃 -𝐶𝑚𝑙) and a disjunctive (𝑃 -𝐷𝑠𝑗) ways. A full analysis on the convex hull and the LP-relaxation leads to the introduction of the two cuts for the 𝑃 -𝐷𝑠𝑗. The numerical tests verified our theoretical analysis on the two formulations and stated the strongest formulation is the 𝑃 -𝐷𝑠𝑗 with a single cut 1.

• Since the 𝑃 -𝐷𝑠𝑗 formulation is in a block matrix structure, it helps us to decompose the problem by the Danzig-Wolfe principles. This decomposition resulted in the construction of the Branch-and-Price Algorithm to solve the problem. The numerical tests proved that the strength of the algorithm relies very much on good branching strategies. Also, the Branchand-Price based on the column generation algorithm, so, it requires proper stabilisation techniques. We provided an efficient branching policy for SOS1 variables and apply the novel dual bound to stabilise the column generation procedure. In search of a faster resolution method, a family of constructive heuristics is presented. The heuristic is proven to be dedicated to the ACPV 2 problem. It proves an excellent performance and rapid response to the real-life size problem.

• By the end of this thesis, we design a predictive-reactive rescheduling method that can cope with uncertainty and real-time event. By that mean, one can bridge all the theoretical work into an implementable application.

The simulation based forecast (predictive scheduling) helps to stabilise the electrical grid by reducing the diversity factor of the charging parking to less than 20% according to our case study. It also optimises the power usage cost by deciding a good power subscription for the parking and daily starting time for the charging procedure. The predictive-reactive scheduling is concretised by a deployment of a stand-alone scheduler software. The structure of the software is designed to be compatible with the existed hardware and software condition of the company and prove a smart-charging function to the charge point. This software is a competitive advantage for the company, where we were one of the first in France to provide an EV smart charging service.

Before ending this dissertation, we would state our perspectives, point-by-point according to each contribution.

First, the study of the formulation should include a more general case, where the tasks are permitted to have a fixed 𝑘 interruptions. This formulation would improve the objective value while maintaining an acceptable margin of battery lifecycle security.

Second, a diving heuristic should be designed to make the branch-and-price algorithm Third, the actual HLA is till based on elements consisting of randomness. We are currently researching for an adaptive search method, which can improve the efficiency of each shaking (destroy and construction) of the solution. Also, the complexity of the HLA depends greatly on the complexity of the GBF (the initial solution construction phase).

Hence, a more efficient restricted search would reduce the searching space of the GBF.

Fourth, we consider the construction of a robust scheduling problem, since the random distributions of the inputs are known.

Finally, an improved version of the current software which can consider more sophisticated events is also a future work.

A x [START_REF] Faddel | Fuzzy optimization for the operation of electric vehicle parking lots[END_REF] x Contrôleur basé sur la tension [4] x Contrôleur décentralisé [6] x

Ordonnancement global Algorithme génétique [START_REF] Alonso | Optimal charging scheduling of electric vehicles in smart grids by heuristic algorithms[END_REF][START_REF] Lee | Genetic algorithm-based charging task scheduler for electric vehicles in smart transportation[END_REF] x Optimisation des essaims de particules [START_REF] Angelo | Coordinated scheduling of residential distributed energy resources to optimize smart home energy services[END_REF] x Gestion de la demande [2] x Ordonnancement stochastiqueg [START_REF] Emil B Iversen | Optimal charging of an electric vehicle using a markov decision process[END_REF] x Emballage de la bande d'alimentation [START_REF] Mohammad M Karbasioun | Power strip packing of malleable demands in smart grid[END_REF] x • 𝐻 : horizon de planification.

• ū𝑖 et 𝑢 𝑖 : capacité maximale et minimale du montant des ressources consommable du travail 𝑖

• 𝑟 𝑖 : temps de libération du travail 𝑖.

• 𝑑 𝑖 : date limite du travail 𝑖.

• 𝑒 𝑖 : début du temps d'achèvement du travail 𝑖.

• 𝑙 𝑖 : dernier début du travail 𝑖.

• ℎ 𝑖 : l'efficacité de chargement des ressources du travail 𝑖.

• x𝑖 : demande de ressources du travail 𝑖.

• 𝑥 * 𝑖 : demande de ressources normalisée du travail 𝑖.

A. Troisièmement, les HLA sont basés sur des éléments consistant en des caractères aléatoires. Nous recherchons actuellement une méthode de recherche adaptative qui peut améliorer l'efficacité de chaque secousse (destruction et construction) de la solution. En outre, la complexité de HLA dépend beaucoup de la complexité de GBF (la phase initiale de la construction de la solution). Par conséquent, une recherche restreinte plus efficace réduirait l'espace de recherche de GBF.

Quatrièmement, nous considérons la construction d'un problème de planification robuste, car les distributions aléatoires des entrées sont connues.

Enfin, une version améliorée du logiciel actuel qui peut considérer des événements plus sophistiqués sont également nos travaux futurs. Les travaux réalisés dans cette thèse sont sujets à plusieurs publications : [START_REF] Nguyen | Solving a malleable jobs scheduling problem to minimize total weighted completion times by mixed integer linear programming models[END_REF], [START_REF] Nguyen | Total completion time minimization for machine scheduling problem under time windows constraints with jobs' linear processing rate function[END_REF], [START_REF] Nguyen | A branch-and-price approach to solving a discrete malleable jobs scheduling problem with time-varying resource constraints[END_REF], [START_REF] Nguyen | Predictive baseline schedule for electrical vehicles charging in dedicated residential zone parking[END_REF], [START_REF] Nguyen | Electrical vehicle charging coordination algorithms framework[END_REF] 
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 1 Figure 1-1 -An EV charging parking illustration. Source: ParknPlug
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 12 Figure 1-2 -An EV in charge. Source: ParknPlug
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 21 Figure 2-1 -The simplified EV charging infrastructure
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 22 Figure 2-2 -Comparison of three types of parallel jobs

  Unlike the other two first types of jobs which have static resource allocation, malleable jobs can have dynamic resource allocation. Malleable jobs adapt the resource consumption at each decision interval according to the changing of the total available amount of resource. Jobs are flexible. Hence the decision of resources allocated to them should make at each interval.2.3.2 Optimisation criteriaCriteria set F1: Time optimisation criteria With reference to the machine parallel scheduling problem, the two known optimisation criteria are total completion time minimisation and makespan minimisation. First, the total completion times minimisation denoted by ∑︀ (𝐶 𝑖 ) optimise the service quality. This criterion can also be expressed as mean flowtime minimisation 1 𝑛 ∑︀ 𝑛 𝑖=1 (𝐶 𝑖 -𝑟 𝑖 ) to underline its user-benefit orientation. In the case of jobs (users) having different degrees of importance or benefits, one can minimise the total weighted completion time ∑︀ (𝑤 𝑖 𝐶 𝑖 ). There are some variations of this criterion which are commonly researched such as total waiting time minimisation ∑︀ (𝐶 𝑖 -𝑝 𝑖 -𝑟 𝑖 ), total tardiness minimisation ∑︀ (max{𝐶 𝑖 -d𝑖 , 0}). If the processing time is fixed and the release dates and the due dates are non-arbitrary parameters, those two minimisation criteria are equivalent to the total completion time minimisation since
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 31 Figure 3-1 -A classification of EVCC constraints
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 232 Figure 3-2 -Illustrations of 5 EVCC configurations with corresponding possible solutions
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 33334 Figure 3-3 -A resource allocation example of job 𝑖

•

  ū𝑖 and 𝑢 𝑖 : maximal and minimal capacity of resource amount consumable of job 𝑖 • 𝑟 𝑖 : release time of job 𝑖 • 𝑑 𝑖 : deadline of job 𝑖 • 𝑒 𝑖 : earliest completion time of job 𝑖 • 𝑙 𝑖 : latest starting time of job 𝑖 • ℎ 𝑖 : resource loading efficiency of job 𝑖 • x𝑖 : resource demand of job 𝑖 • 𝑥 * 𝑖 : normalised resource demand of job 𝑖 In the next two subsections, we study the formulation of the processing indicator, the completion indicator and the semi-continuous resource consumption of jobs. Hence, we introduce two formulations named cumulative formulation and disjunctive formulation.
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 3 Figure 3-5 illustrates the constraints and the resource allocations of the ACPV 2 problem.

Figure 3 - 5 -

 35 Figure 3-5 -The illustration of the ACPV 2 problem
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 2137 Figure 3-7 -Decision variables 𝛼 𝑖,𝑘 and 𝛽 𝑖,𝑘 with the processing of job 𝑖

  Figures 3-8 and 3-9 show the feasible region of the variables 𝑦, 𝑐 and 𝛼, 𝛽 on the LP-Relaxation of the 𝑃 -𝐶𝑚𝑙 and 𝑃 -𝐷𝑠𝑗.
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 38393 Figure 3-8 -The dashed zone is the feasible region of variables 𝑦 and 𝑐 in the LP-Relaxation of 𝑃 -𝐶𝑚𝑙
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 3310 Figure 3-11 shows polyhedron representing the feasible space of the LP relaxation of the combination of constraints (3.26) and (3.29). One can notice the cut (3.29) alone is equivalent to constraint (3.14)
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 3 Figure 3-12 illustrates the searching space reduction of 𝑃 -𝐷𝑠𝑗 due to (3.34).
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 311312 Figure 3-11 -The feasible space of the LP-Relaxation of 𝑃 -𝐷𝑠𝑗 taken from constraints (3.26) and (3.29)

  ; 𝜎 = 0.3𝑦 𝑢 𝑖 Normal 𝑦 = 12; 𝜎 = 0.3𝑦 ū𝑖 Normal 𝑦 = 180; 𝜎 = 0.4𝑦 𝑝 𝑎𝑣𝑔 𝑖 Discrete uniform 𝑎 = ⌊0.4 × 𝐻⌋; 𝑏 = ⌈0.7 × 𝐻⌉ 𝑟 𝑖 Uniform 𝑎 = 0; 𝑏 = ⌈0.4 × 𝐻⌉ 𝑤𝑖𝑛𝑇 𝑖𝑚𝑒 𝑖 Discrete uniform

20 and 30 .

 30 Corresponding to each number of tasks, we generate six instances with increasing size 𝐻 ∈ {20, 40, 60, 80, 100, 150, 200}. The instances with increasing sizes are chosen only to test the limit of the solving of the MILP by solver CPLEX. We implement the random generator in Matlab 2009. There are five different models which consist of two principal formulations 𝑃 -𝐶𝑚𝑙 and 𝑃 -𝐷𝑗𝑠 with all cut includes. Also, there are three variations of 𝑃 -𝐷𝑗𝑠: the disjunctive formulation with Cut 1 (Cut (3.29)), with Cut 2 (Cut (3.34))and without any cut which are accordingly noted 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡1, 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡2 and 𝑃 -𝐷𝑗𝑠 -𝑛𝑜𝐶𝑢𝑡. We use IBM ILOG CPLEX 12.6 solver to solve the MILP models. The machine used to execute all the tests has a CPU Intel Core i5 3.20 GHz with 8GB RAM, running Linux Ubuntu 14.04. We limit the execution times of CPLEX to 1800s.

  Largest case can be solved to optimality of 𝑛 = 10 is 𝐻 = 200, of 𝑛 = 15 is 𝐻 = 150, 𝑛 = 20. Except for the case of 𝑛 = 30 then the largest instance solved to optimality has 𝐻 = 200. All the models have a rate of finding optimality 24/32 except the 𝑃 -𝐷𝑗𝑠 -𝐶2, which has a slightly better performance with a rate of 25/32.

Figure 3 -

 3 14 plots the evolution of the Best Time Gap with the increasing of scheduling horizon. Please note that when being compared, the method yields smaller

  𝐵𝑇 𝐺𝑎𝑝 results when 𝑛 = 30

Figure 3 -

 3 Figure 3-14 -𝐵𝑇 𝐺𝑎𝑝 found by 5 formulations throughout different problem sizes 𝑛.

  to the problem. The column generation is a decentralised decision process; it consists of two problems: the sub-problem and the master problem. Alternately, the master problem is a representation of the original problem through the combination of columns. It thus has the same objective function. The technique of decomposing the linear problem into combinations of columns and resolving its associated variables is called Dantzig-Wolfe decomposition[START_REF] Richard | A computational study of dantzig-wolfe decomposition[END_REF][START_REF] Vanderbeck | A generic view of dantzig-wolfe decomposition in mixed integer programming[END_REF]. The subproblem is defined to find new columns. The objective function of the subproblem is the reduced cost derived from the dual solution found from the Master Problem.The Column generation requires at least a feasible initial solution (a set of feasible columns) for the Master Problem to start its first iteration. If we did not have this information, we could not process to find the dual solution then it is unable to find new columns. At each iteration, the master problem is solved, then the new dual prices would be obtained from this later to form the objective function of the subproblem. The subproblem solves the subproblem with the set of local constraints, trying to find the solution which reduces the most the dual prices. If such solution is found, and it can give the objective a negative value (negative reduced cost) this solution can enter the basis since it also reduces the objective of the master problem. There is two common strategies of adding a new column(s) to the basis: one can add only the best one, i.e. the column resulting the most negative cost, or one can add a set of columns giving the negative cost. After adding the new column(s) to the pool, one can resolve the Master Problem, then generate new dual prices for the subproblem to find more columns. The algorithm repeats until the subproblem cannot find any more columns with negative cost. The linear programming problem is then solved to optimality.
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 441 Figure 4-1 illustrates the overall Column Generation Algorithm.

( 4 .

 4 [START_REF] Janiak | Minimization of the blooming mill standstills-mathematical model, suboptimal algorithms[END_REF] and(4.37). The objective function is in minimizing sense, so the new columns wanting to enter the basis must have the most negative reduced cost coefficient to improve the objective value. For each pricing problem 𝑖 we have to find a resource allocation 𝜔 ∈ Ω 𝑖 ∖Ω ′ 𝑖 such as: Minimize 𝑐 * 𝑖 = 𝑦 𝜔𝑖 -𝑢 𝜔 𝑖 𝜋 * -𝜑 *
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 42 Figure 4-2 -A branching example
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 43 Figure 4-3 -The generic branching strategy for the ACPV 2 problem

1

 1 𝑡=0...𝐻 𝑈 𝑡 -𝑈 𝑘 = 𝑈 𝑚𝑎𝑥 -𝑈 𝑘 𝑘 = 0, ..., 𝐻 (4.44) Let 𝒥 ′ be the set of scheduled tasks. The MinPeak MILP problem is expressed as The resource levelling algorithm starts with a generation of a random jobs queue. It extracts then each job in the queue and schedule this job by solving the MinPeak MILP. The algorithm 2 details the overall process Algorithm 2: Resource Levelling algorithm Initialisation: Generate new random queue 𝒬; foreach Job 𝑖 ∈ 𝒬 do Solving MinPeak(𝑖); if 𝑧 ≤ 𝑈 𝑚𝑎𝑥 then Add 𝑢 𝑖 to 𝒥 ′ Test instances generation Data on the release dates of jobs, the deadlines, and workload, as well as the resource consumption upper-bound and lower-bound, is generated based on the random distribution parameters' database of our study case. More details on the random generation can be found in Chapter 3.

  Figure 5-1 -Heuristic HLA
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 5253 Figure 5-2 -The initial resource consumption explication
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 525556 Figure 5-5 -Resource height accumulation of second placement 𝜑 2

Algorithm 5 :

 5 After-cut resource reallocation (ACRR) Data: After-cut allocation û𝑖 , job's cut portion 𝑥 ′ 𝑖 , 𝑈 Ω , spanning interval [𝛼 ′ 𝑖 , 𝛽 ′ 𝑖 ] Result: New resource allocation 𝑢 𝑖 𝑝 𝑚𝑎𝑥 𝑖 = 𝑑 𝑖 -𝑟 𝑖 ;

Figure 5 -

 5 Figure 5-8 shows the two possible guillotine cuts for the intitial resource allocation of job 1. To avoid processing interruption, we chose to guillotine the resource allocation by𝑔𝑐𝑢𝑡 2 .

Figure 5 -

 5 Figure 5-9 shows the resource reallocation of job 1 after being cut. The dash line represents the previous job's resource allocation. This figure also shows that 𝑔𝑐𝑢𝑡 2 can still be applied to lowering the resource peak.
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 157 Figure 5-7 -Resource allocation of job 1 being planned by 𝐺𝐵𝐹 algorithm.
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 585 Figure 5-8 -Guillotine cuts of job 1: Initial iteration
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 592510 Figure 5-9 -Job 1's after-cut resource reallocation: First iteration
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 2511512 Figure 5-11 -Resource allocation of job 2 found by 𝐺𝐵𝐹 and guillotine cut 𝑔𝑐𝑢𝑡 2
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 513514 Figure 5-13 -Job 3's resource allocation found by 𝐺𝐵 and guillotine cuts
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 515516 Figure 5-15 -Job 3's resource allocation: last cut

Algorithm 10 :

 10 Rectangular-form shuffle algorithm Data: Actual resource allocation matrix 𝑢, maximum number of randoms pairs 𝑛𝑃 𝑎𝑖𝑟𝑠 Result: New resource allocation 𝑢 initialization; 𝑃 𝑎𝑖𝑟𝑒𝑑 𝑖,𝑗 = 𝑓 𝑎𝑙𝑠𝑒 ∀𝑖, 𝑗 ∈ [𝑛]; for 𝑝𝑎𝑖𝑟 = 1 to 𝑛𝑃 𝑎𝑖𝑟𝑠 do Creating randomly jobs 𝑖 and 𝑗; foreach job 𝑧 in {𝑖, 𝑗} do 𝑝 𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑑 ′ 𝑧 -𝑟 ′ 𝑧 , 𝑥 * 𝑧 𝑢 𝑚𝑖𝑛 𝑧 Δ𝑡 }; 𝑝 𝑚𝑖𝑛 = 𝑥 * 𝑧 𝑢 𝑚𝑎𝑥 𝑧 ; 𝑝 𝑖 = 𝑝 𝑚𝑎𝑥 ; 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑓 𝑎𝑙𝑠𝑒; repeat Constructing shiftable interval 𝐽 𝑖 = ⟨𝑟 𝑖 , 𝑑 𝑖 , 𝑝 𝑖 ⟩; for 𝜑 𝑖 = 0..𝜑 𝑚𝑎𝑥 do if ∃𝒫 𝜑 𝑖 then 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒; 𝜑 * = 𝜑 𝑖 ; 𝑝 * 𝑖 = 𝑝 𝑖 ; Exit For ; end end 𝑝 𝑖 = 𝑝 𝑖 -1 ; until 𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = 𝑡𝑟𝑢𝑒; end if Better solution found then Incumbent = New solution; end Remark Let the number of pairs 𝑛𝑃 𝑎𝑖𝑟𝑠 = 𝑐𝑛; 𝑐 > 0. The positioning of each shiftable interval can be implemented in time 𝑂(𝐻 2 ). Thus, algorithm 10 can be implemented in time 𝑂(𝑛𝐻 2 ).
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 1517 Figure 5-17 -Solution after Rectangular-form shuffle procedure
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 518519 Figure 5-18 -Solution after Greedy Occupation procedure

  HLA-ARG Test set #2
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 520 Figure 5-20 -𝐺𝑎𝑝 found by HLA throughout different problem sizes 𝑛𝐻 2 . The horizontal axes are in logarithmic scale.
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 6 Figure 6-1 -The rescheduling framework classification
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 62 Figure 6-2 -Overall description of Predictive-reactive rescheduling
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 63 Figure 6-3 -A big power subscribed let the scheduling be completely on the off-peak hours
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 64 Figure 6-4 -An earlier schedule start (left-shift) for small power subscribed
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 65 Figure 6-5 -The simulation based forecast

  else 𝐿𝐵 := 𝐼𝐵; end end Power bandwidth usage cost estimation To estimate the usage cost 𝑈 of the power subscription, one has to define the penalty function 𝑓 𝑝 (𝑈 ). In this paper, we consider the penalty cost as the electrical consumption before the off-peak hours. 𝑓 𝑝 (𝑈 ) = 𝑈 E 𝑈 [Δ𝑆𝑡](𝑐 𝑝𝑒𝑎𝑘 -𝑐 𝑜𝑓 𝑓 -𝑝𝑒𝑎𝑘 ) = 𝐹 𝐸 (𝑈 )𝑈 Δ𝑐 (6.2) (a) Histogram with gamma distribution (𝛼 = 4.5; 𝛽 = 1442) for the daily consumption over 125 charging events. (b) Histogram with normal distribution (𝜇 = 17.5ℎ; 𝜎 = 0.8ℎ) for the daily arrival times over 125 charging events.
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 68 Figure 6-8 -Histogram of customer behaviour to justify the choice of random distributions on arrival times and charging demands.
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 69610 Figure 6-9 -Histogram of the maximum total charging power of 30 EV resulted from 10000 tests
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 611 Figure 6-11 -Expected shift (h) to start before off-peak hours to assure feasibility according to power bandwidth used (𝑛 𝐸𝑉 = 30 and 𝑛 𝑡𝑒𝑠𝑡𝑠 = 10000)
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 613 Figure 6-13 -The online schedule policy in example
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 772 Figure 7-2 details the information flows between the components.
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 73 Figure 7-3 -The CMU description

  the context of the sustainable development and the utilisation of clean energy, the research on the electric vehicle technologies has gained much attention. More than ever, we face a rapid growth in the sale of electric vehicles. Hence, the research on the management of the charging of the EV carries a great importance. By the same reason, the optimisation of the EV coordination is in constant development and concurrence. In the middle of the current global research wave, this thesis tends to propose a measured solution for the EV charging coordination problem within the specific context of France. The work done in this thesis is the fruit of an Industrial Convention with the partnership of the company Park'nPlug based on Rosières-près-Troyes, France and the Laboratory of Industrial System Optimisation of UTT, France. This company provides the solution

  being more dedicated to the scheduling problem. The branch-and-price are generic; we could modify the local constraints without re-designing a new algorithm. So, a faster Branch-and-Price should open more possibility to solve many different derivative problems from the ACPV 2.

. 1

 1 Introduction generales A.1.1 Motivation et contexte industriel Ce travail de thèse a été réalisé dans le cadre des Conventions industrielles de formation par recherche (CIFRE) avec la coopération entre le Laboratoire d'optimisation du système industriel (LOSI) et l'entreprise Park'nPlug. Il est donc important de souligner le contexte industriel qui motive et oriente dans le même temps le centre d'études au cours de cette thèse. Le problème posé dans cette thèse est l'optimisation de la planification de recharges des VE, qui est également connu sous le nom de problème CRVE. Au cours des dix dernières années, nous avons observé un grand bon technologique des véhicules électriques. La densité de la batterie augmente de 400 % en 7 ans (2008-2015) alors que le coût par kWh est réduit de 73 % [17]. En conséquence, le nombre de voitures électriques, inférieures à mille en 2005, s'élève à 1,26 million en 2015 [17]. L'initiative Véhicules électriques (EVI) définit un objectif de 20 millions de VE déployés d'ici à 2020. Au milieu de la crise écologique et énergétique, un changement des véhicules à énergie fossile vers des véhicules électriques devient une solution durable permettant de réduire les émissions de carbone et d'assurer la sécurité énergétique. Ainsi, supporter le succès du déploiement VE c'est la politique avantageuse des gouvernements et la prise de conscience de l'utilisateur de VE sur le développement durable.Toutefois, la charge de VE est une énorme tâche de consommation d'énergie sur une période prolongée. Pour le PDC monophasé, la puissance nécessaire peut varier de 3,3 à 7,4 kW pour une durée de charge totale de 3 à 6 heures. Un chargeur triphasé peut quant à lui fournir de 10 à 22kW pour 1 à 3 heures de charge[START_REF]Sae charging configurations and ratings terminology[END_REF]. Surtout, il existe également un mode de charge ultra-rapide avec une puissance de 43kW. Par conséquent, la forte pénétration des véhicules électriques peut causer de nombreuses préoccupations au réseau électrique. En plus, l'abonnement de puissance pour le PDC individuel serait un gaspillage, car le temps de chargement prend en moyenne 17 % du temps de disponibilité. Un PDC personnel et son coût électrique pourraient être coûteux pour l'utilisateur du VE. En tant que bonne solution à ces problèmes, un processus de recharge collectif et coordonné peut stabiliser la grille et optimiser la productivité des points de charge, en minimisant également le coût électrique.La société Park'nPlug, située en France, fournit les services et la gestion de recharge
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 1 Figure A-1 -Une illustration de stationnement des VE en charge. Source : ParknPlug
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 2 Figure A-2 -Un VE en charge. Source : ParknPlug
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 10 Figure A-10 -Description du simulateur d'horizon temporel fixe
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 11 Figure A-11 -L'histogramme de la puissance de charge totale maximale de 30 VE résulte de 10000 tests
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 12 Figure A-12 -La fonction cumulative de probabilité correspondante 𝐹 𝐵𝑊 et sa répartition correspond à l'équivalent
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	Abreviations
	𝑃 -𝐶𝑚𝑙 Conjunctive MILP formulation.
	𝑃 -𝐷𝑠𝑗 Disjunction MILP formulation.
	ACPF Charging algorithm with fixed power.
	ACPV Charging algorithm with variable power.
	EV Electric Vehicle.
	EVCC Electric vehicle charging coordination.
	EVSE Electric vehicle supply equipment.
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[START_REF] Achterberg | Branching rules revisited[END_REF] 

Classification de certaines approches CRVE dans la littérature . . . . . . . . . GBF Greedy Best Fit algorithm. HLA Heuristic of Layering and Adapting. MILP Mixed Integer Linear Programming. MinPeak Power peak minimisation.

  Polyhedron Is the set {𝑥|𝐴𝑥 ≤ 𝑏} for a matrix 𝐴 ∈ R 𝑚×𝑛 , 𝑏 ∈ R 𝑚 and 𝑥 ∈ R 𝑛 . A

	Feasible region of MILP The set S of feasible region of the MILP is defined by 𝑆 :=
	𝑃 ∩ Z 𝑛 + × R 𝑝 +
	The convex hull of MILP the convex hull of the MILP is noted 𝑐𝑜𝑛𝑣(𝑆) which is the
	smallest convex set containing S.
	Special Ordered Sets of type 1 (SOS1) are a set of binary variables, at most one of
	which can take the one value, the others are strictly being zero. If 𝑥 = {𝑥 1 , . . . , 𝑥 𝑛 } is a
	SOS1 then	∑︀ 𝑛 𝑖=1 𝑥 𝑖 = 1 and 𝑥 𝑖 ∈ {0, 1} ∀𝑖
		5)
	LP-relaxation of a MILP The LP-relaxed problem takes the form of the original MILP,
	with variable 𝑦 restricted by a weaker constraint where y is a positive real variable 𝑃 =
	(𝑥, 𝑦) ∈ R 𝑛 + × R 𝑝 + : 𝐴𝑥 + 𝐺𝑦 ≤ 𝑏.
	bounded polyhedron is called polytope.

  scheduling horizon is divided into 𝐻 intervals indexed by 𝑘. The charging rate of job 𝑖 at interval 𝑘 is noted by 𝑢 𝑖𝑘 . Charging rate of job 𝑖 is bounded by ū𝑖 and 𝑢 𝑖 . If charging rate can only be fixed at the beginning of the charging process by a value 𝑢 0 𝑖 ∈ [ū 𝑖 , 𝑢 𝑖 ] then it is called fixed charging rate. With the parallel task problem notation, charging task with fixed rate can be considered to be moldable. In a special setting where ū𝑖 = 𝑢 𝑖 the charging task is then rigid.

  The time-varying power profile has at each time interval a different continuous value of the total available power. Because of this profile, the time formulation of the problem has to be discrete. The scheduling horizon contains 𝐻 time intervals (or decision intervals) indexed by 𝑘. The decision of ACPV 2 is expressed in two aspects: time decision and resource allocation. Concretely, for each job, one has to decide when can it start and end; at every interval, how many resources can this job consume. For that reason, if one wish to formulate the problem by the linear programming formulation, this latter should take the form of a

Mixed Integer Linear Program with the time-indexed formulation.

We use a standard approach to formulate the ACPV 2 problem. Given a set of 𝑛 jobs, 𝐽 = {𝐽 1 , 𝐽 2 , . . . , 𝐽 𝑛 } to be scheduled on a scheduling horizon of 𝐻 decision intervals, each of them lasts Δ𝑡 units of time. The notation 𝑘 ∈ {0, ..., 𝐻} indexes each decision interval (see figure

. Each job has a release date 𝑟 𝑖 when it arrives into the system, and a deadline 𝑑 𝑖 , when it has to leave: 𝑟 𝑖 ∈ {0, ..., 𝐻} and 𝑑 𝑖 ∈ {0, ..., 𝐻}. Between two interval times [𝑘, 𝑘 + 1] the processing of job 𝑖 takes continuously an amount of resource decided by 𝑢 𝑖,𝑘 . The total available resource at time interval 𝑘 is 𝑈 𝑘 .

  Semi-continuous resource consumption constraints When a job is processing at time 𝑘 the resource allotted to it must less than ū𝑖 and greater than 𝑢 𝑖 . Otherwise, there is zero consumption.

	(3.11)

• 𝑢 𝑖,𝑘 decision variable of the amount of resource job 𝑖 ∈ 𝒥 consumes at time 𝑘 ∈ 𝒯 • 𝑐 𝑖,𝑘 completion indication variables, 1 if job 𝑖 ∈ 𝒥 already completed at time 𝑘 ∈ 𝒯 , 0 otherwise. • 𝑦 𝑖,𝑘 processing state indication variables, 1 if job 𝑖 ∈ 𝒥 is processing at time 𝑘 ∈ 𝒯 , 0 otherwise. Time-window constraints This constraint forces the processing of jobs to be between the release date and the deadline: 𝑦 𝑖,𝑘 = 0 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 ∖ {𝑟 𝑖 , ..., 𝑑 𝑖 } (3.10) 𝑦 𝑖,𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑟 𝑖 , ..., 𝑑 𝑖 } 𝑢 𝑖,𝑘 ≤ ū𝑖 .𝑦 𝑖,𝑘 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑟 𝑖 , ..., 𝑑 𝑖 } (3.12) 𝑢 𝑖,𝑘 ≥ 𝑢 𝑖 .𝑦 𝑖,𝑘 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑟 𝑖 , ..., 𝑑 𝑖 } (3.13)
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				2 -Constraints (3.14) and (3.15) explication
	States			𝑦 𝑖,𝑘-1 𝑐 𝑖,𝑘	(3.14)	(3.15)	Consequence
	Job has not started earlier	0	0	𝑦 𝑖,𝑘 ≥ 0	𝑦 𝑖,𝑘 ≤ 1	𝑦 𝑖,𝑘 is free to be 1 or 0
	Job	has	started				𝑦 𝑖,𝑘 must be 1, job is
	earlier but it has not	1	0	𝑦 𝑖,𝑘 ≥ 1	𝑦 𝑖,𝑘 ≤ 1	forced to continue on
	completed yet				processing
	Job has been already			
	completed in this in-	0 or 1	1	
	terval					

  Figure 3-6 -Decision variable 𝑦 𝑖,𝑘 and 𝑐 𝑖,𝑘Completion state There is one constraint left to model the completion state of a job. 𝛼 𝑖,𝑘 job's starting state variables, 1 if job 𝑖 ∈ 𝒥 starts to process at time 𝑘 ∈ 𝒯 , 0 otherwise. • 𝛽 𝑖,𝑘 job's finishing state variables, 1 if job 𝑖 ∈ 𝒥 finishes at time 𝑘 ∈ 𝒯 , 0 otherwise. Remark 1. For each 𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 , the variable 𝑦 𝑖,𝑘 in cumulative model is equivalent to

	𝑦 𝑖			
	1			
	𝑐 𝑖			
	1			
	Scheduling horizon	
		𝑘		
	𝑦 𝑖,𝑘 =	∑︁	(𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 )	(3.20)
		𝜏 =0		
	This will be:			
	𝑥 (3.19)
	s.t. (3.4 -3.6)			
	(3.10 -3.18)			
	3.4.2 Disjunctive formulation			

* 𝑖 𝑐 𝑖,𝑘 ≤ 𝑥 𝑖,𝑘 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 (3.16) 𝑐 𝑖,𝑘 = 0 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 : 𝑘 < 𝑒 𝑖 (3.17) 𝑐 𝑖,𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 : 𝑘 ≥ 𝑒 𝑖 (3.18) In equation (3.16) the completion indicator can be written as: 𝑐 𝑖,𝑘 ≤ 𝑥 𝑖,𝑘 𝑥 * 𝑖 . Then is can be turn to "1" only if the state of job is greater than or equal to the workload of job 𝑖. Furthermore, the completion indicator is forced to be zero before the earliest completion time. The cumulative model formulation: P-Cml Minimize ∑︁ 𝑖∈𝒥 𝑤 𝑖 (𝐻 + 1) -∑︁ 𝑖∈𝒥 ∑︁ 𝑘∈𝒯 𝑤 𝑖 𝑐 𝑖,𝑘 Regarding the disjunctive formulation, we model the start and completion state of job directly by disjunctive binary variables. Those disjunctive variables belong to the SOS1 as we mentioned earlier in the beginning of the chapter. • Proof. If job 𝑖 is being executed at time 𝑘 so ∃𝜏 1 ≤ 𝑘 : 𝛼 𝑖,𝜏 1 = 1 and 𝜏 2 ≤ 𝑘 : 𝛽 𝑖,𝜏 2 = 1 since the processing time has to be between starting time and completion time. Thus ∑︀ 𝑘 𝜏 =0 𝛼 𝑖,𝜏 = 1 and ∑︀ 𝑘 𝜏 =0 𝛽 𝑖,𝜏 = 0 so by (3.20)

  𝑖𝛼 𝑖,𝜏 , 𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑒 𝑖 , ..., 𝑑 𝑖 } ∑︀ 𝑘 𝜏 =𝑒 𝑖 𝛼 𝑖,𝜏 , 𝑖 ∈ 𝒥 , 𝑘 ∈ {𝑒 𝑖 , ..., 𝑑 𝑖 } is a valid cut Proof. This cut naturally restricts 𝛽 𝑖,𝑘 to trigger only if there exists another 𝛼 𝑖,𝜏 that is triggered where 𝜏 < 𝑘. It is valid since: (i) ∑︀ 𝑑 𝑖 𝑟 𝑖 𝛽 𝑖,𝑘 = ∑︀ 𝑑 𝑖 𝑘=𝑟 𝑖 𝛼 𝑖,𝑘 = 1 ≤ ∑︀ 𝑑 𝑖 𝑘=𝑟 𝑖 ∑︀ 𝑘 𝜏 =𝑑 𝑖 𝛼 𝑖,𝜏 = ∑︀ 𝑑 𝑖 𝑘=𝑟 𝑖 (𝑑 𝑖 -𝑘)𝛼 𝑖,𝑘 is valid and (ii) ∑︀ 𝑘 𝜏 =𝑟 𝑖 (𝛼 𝑖,𝜏 -∑︀ 𝜏 𝑡=𝑟 𝑖 𝛼 𝑖,𝑡 ) = ∑︀ 𝑘 𝜏 =𝑟 𝑖 (𝜏 + 1 -𝑘)𝛼 𝑖,𝑘 ≤ 0. Then ∑︀ 𝑘 𝜏 =𝑟 𝑖 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ) ≥ 0 ≥ ∑︀ 𝑘 𝜏 =𝑟 𝑖 (𝛼 𝑖,𝜏 -∑︀ 𝜏 𝑡=𝑟 𝑖 𝛼 𝑖,𝑡 ) is also valid. One can see that the difference between the two formulations is marked by the constraints (3.14), (3.15) vs (3.26), (3.27) and (3.29). Let us take an example to draw the feasible region of the LP-relaxation problems bounded by those constraints. We consider a scheduling problem with 𝐻 = 2 and 𝑛 = 1.

	3.4.3 LP-Relaxation analysis				
					(3.29)
	Property 1. Cut 𝛽 𝑖,𝑘 ≤				
					(3.32)
	The disjunctive model formulation: P-Dsj		
	Minimize	∑︁	∑︁	(𝑤 𝑖 .𝑘.𝛽 𝑖,𝑘 )	(3.33)
		𝑖∈𝒥	𝑘∈𝒯		
	s.t. (3.4 -3.6)	
		(3.22 -3.32)	

To reinforce the problem we introduce a cut:

𝛽 𝑖,𝑘 ≤ 𝑘 ∑︁ 𝜏 =𝑒

Resource consumption constraint

With remark 1, resource consumption constraints can be re-written as follows: 𝑢 𝑖,𝑘 ≤ ū𝑖 𝑘 ∑︁ 𝜏 =0 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ) ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 (3.30) 𝑢 𝑖,𝑘 ≥ 𝑢 𝑖 𝑘 ∑︁ 𝜏 =0 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ) ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯 (3.31) Task completion constraints The variable 𝛽 𝑖,𝑘 can only turn to 1 only if 𝑥 𝑖,𝑘 ≥ x𝑖 at a time 𝑘. 𝛽 𝑖,𝑘 .x 𝑖 ≤ 𝑥 𝑖,𝑘 ∀𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒯
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 3 Release time 𝑟 𝑖 is generated from 0 to 40% of the scheduling horizon and the time windows size 𝑤𝑖𝑛𝑇 𝑖𝑚𝑒 𝑖 of each job is generated from 120% to 170% of its average processing times With that generated 𝑤𝑖𝑛𝑇 𝑖𝑚𝑒 𝑖 , 𝑑 𝑖 can be generated by summing the release date and the length of window time. Finally, the total available resource amount at every moment 𝑈 𝑘 is created from 60% to 100% of the sum of all the average resource consumption of all jobs. The detailed parameters of random laws used to generate all the mentioned values can be found in table 3.3. 3 -Random distributions parameters of generated elements for test instances

						𝑟 𝑖
	ū𝑖 , 𝑢 𝑖	𝑝 𝑎𝑣𝑔 𝑖	(ref )	𝑤𝑖𝑛𝑇 𝑖𝑚𝑒𝑠 𝑖 (ref )	𝑑 𝑖
	𝑢 𝑎𝑣𝑔 𝑖	(ref )	x𝑖	ℎ 𝑖
	𝑈 𝑘			
			Figure 3-13 -Test instance generation

of the number of jobs 𝑛 and the number of decision intervals 𝐻. Then job's release date, deadline, workload and resource consumption capacities will be randomly generated by the order given in figure

3

-13. In this chart, elements which aren't pointed by an arrow will have values generated randomly and independently while the other elements have values generated based on the values of the elements in the sources of arrows pointing to them. For each job 𝑖, maximum and minimum resource consumption capacities (ū 𝑖 and 𝑢 𝑖 ) are generated randomly by normal distribution (see table

3

.3). To generate the workload (processing demand x𝑖 ) and to establish a time windows for job 𝑖, referencing elements which are average resource amount allocation 𝑢 𝑎𝑣𝑔 𝑖 and average processing time 𝑝 𝑎𝑣𝑔 𝑖 are created as reference points whose values are taken randomly according to normal and uniform law according to table 3.3. Resource consumption efficiency ℎ 𝑖 value is generated randomly between 0.7 and 0.9. Hence, the processing demand x𝑖 is generated by the product of 𝑢 𝑎𝑣𝑔 𝑖 , 𝑝 𝑎𝑣𝑔 𝑖 and ℎ 𝑖 .

  means Best Time Gap. For each test, let 𝑇 𝑖 be the execution time of model 𝑖. The time gap of each MILP Model is get by: 𝐵𝑇 𝐺𝑎𝑝 𝑖 = 𝑇 𝑖 -min 𝑖 𝑇 𝑖 𝑇 𝑖 . For example, if 𝐵𝑇 𝐺𝑎𝑝 𝑖 = 300% the formulation 𝑖 takes 3 times longer to solve the same problem, compared to the fastest resolution time formulation. Obviously, when a method has the 𝐵𝑇 𝐺𝑎𝑝 = 0% at a given instance, it yields the best resolution time. To track more easily the results, we make the smallest values found by each category of the test in bold, and the largest values in italic. For all the tests which are solved to an optimal solution by all the five models, for each number of tasks 𝑛, the 𝑆𝑢𝑚𝑂𝑝𝑡 line sums all the values resulted from those tests corresponding to each number of tasks 𝑛. The 𝑇 𝑜𝑡𝑎𝑙𝑂𝑝𝑡 line sums all the value resulted from tests solved to optimality by all models.
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			4 -Solving times and best solving times gap resulted from different formulations
	n	H	P-Cml Time BTGap Time BTGap Time BTGap Time BTGap Time BTGap P-Djs P-Djs-C1 P-Djs-C2 P-Djs-noCut
		20 40 60 80 100 208.1 0.1 1.9 16.9 24.0 150 42.6 200 73.7	21% 20% 95% 189% 567% 173% 111%	0.1 2.3 9.1 9.5 39.0 30.9 46.5	0% 46% 5% 15% 25% 98% 33%	0.1 1.9 8.7 9.9 31.2 26.3 70.6	21% 20% 0% 20% 0% 69% 102%	0.1 1.6 9.8 8.3 33.0 15.6 38.5	0% 0% 13% 0% 6% 0% 10%	0.2 4.2 170% 100% 10.4 19% 9.6 16% 62.6 101% 18.5 18% 34.9 0%
	SumOpt 367.2	244%	137.3	28%	148.7	39%	106.9	0% 140.3	31%
		20 40 60 80 100 150 200 1800.2 0.1 0.8 12.4 56.9 46.2 351.6	0% 35% 103% 160% 92% 15% 0%	0.1 0.9 9.6 52.8 57.9 499.7 1802.4	0% 38% 57% 142% 140% 63% 0% 1801.8 0.1 0.8 9.9 50.8 39.2 306.1	0% 25% 62% 132% 63% 0% 437.9 0.2 0.6 6.1 21.9 33.3 0% 1800.1	132% 0% 0% 0% 38% 43% 0% 1800.1 1.0 0.8 6.2 48.0 24.1 509.0	931% 35% 2% 120% 0% 66% 0%
	SumOpt 468.0	15%	621.0	53%	406.9	0% 500.0	23%	589.1	45%
		20 40 60 80 100 150 1800.1 0.5 6.2 20.3 35.3 173.0 200 1800.3	30% 36% 165% 63% 25% 0% 1801.3 1.0 5.4 8.2 21.7 171.8 14% 1800.1	169% 19% 7% 0% 24% 0% 14%	1.0 6.3 8.5 50.0 180.8 1801.7 1583.8	165% 39% 11% 130% 31% 0% 1801.7 1.0 4.6 7.7 31.5 138.6 0% 1800.1	178% 0% 0% 45% 0% 231.0 0.4 4.8 7.9 29.7 0% 1801.1 14% 1800.1	0% 6% 3% 37% 67% 0% 14%
	SumOpt 235.3	28%	208.1	14%	246.6	35%	183.3	0% 273.7	49%
		20 40 60 80 100 150 1800.2 1.3 47.3 21.1 20.4 272.6 200 1800.1	76% 114% 65% 30% 59% 0% 1800.1 0.7 39.1 12.8 21.5 190.1 0% 1800.1	1.1 22.1 0% 13.1 0% 77% 37% 19.4 11% 238.5 0% 1804.4 0% 1800.1	51% 0% 3% 24% 39% 0% 1800.1 1.1 37.5 13.9 25.1 296.2 0% 1801.3	47% 70% 8% 60% 72% 171.8 1.1 26.6 14.6 15.7 0% 1802.6 0% 1804.7	44% 20% 15% 0% 0% 0% 0%
	SumOpt 362.7	58%	264.2	15%	294.2	28%	373.8	63% 229.8	0%
	TotalOpt 1433.3	31%	1230.5	12%	1096.4	0% 1164.0	6%	1232.9	12%
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 3 5 -Number of nodes and MILP-Gap resulted from different formulations

	n H	P-Cml #Nodes MIPGap #Nodes MIPGap #Nodes MIPGap #Nodes MIPGap #Nodes MIPGap P-Djs P-Djs-C1 P-Djs-C2 P-Djs-noCut
	10	20 40 60 80 100 150 200	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0 3104 6109 4508 24631 19770 28228	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0 2533 6739 5094 19286 14015 29297	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0 2939 9857 4300 17403 7553 19601	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%	0 4156 9147 4099 30396 10705 15908	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
	15	20 40 60 80 100 150 200	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.10E+05 0 1258 10839 35106 29661 0.75% 2.14E+05	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.33E+05 0 1239 10115 43955 24835 4.76% 1.56E+05	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.56E+05 98 706 4012 18208 28643 5.74% 2.28E+05	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.89E+05 0 906 7845 37855 13672 0.78% 3.82E+05	0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.95%
	20	20 40 60 80 100 150 200	0.00% 0.00% 0.00% 0.00% 0.00% 0.23% 3.31E+05 0 2852 4110 13978 70156 0.25% 4.00E+05	0.00% 0.00% 0.00% 0.00% 0.00% 1.55% 0.06%	0 4060 3793 27758 89844 2.24E+05 4.60E+05	0.00% 0.00% 0.00% 0.00% 0.00% 2.41% 0.00% 4.00E+05 0 3911 3551 23566 58177 2.60E+05	0.00% 0.00% 0.00% 0.00% 0.00% 3.11% 2.86E+05 110 2868 4287 19317 89465 0.10% 3.39E+05	0.00% 0.00% 0.00% 0.00% 0.00% 1.49% 0.14%
	30	20 40 60 80 100 150 200	0.00% 0.00% 0.00% 0.00% 0.00% 0.91% 1.64E+05 468 25106 5020 6304 60720 0.10% 1.53E+05	0.00% 0.00% 0.00% 0.00% 0.00% 1.07E+05 241 17491 3295 6038 3.60% 1.14E+05 0.52% 1.52E+05	0.00% 0.00% 0.00% 0.00% 0.00% 1.42E+05 222 27544 7848 9816 3.27% 94667 0.19% 2.13E+05	0.00% 0.00% 0.00% 0.00% 0.00% 5.17% 1.28E+05 435 24301 5107 3816 50512 0.80% 1.89E+05	0.00% 0.00% 0.00% 0.00% 0.00% 2.73% 1.14%

deal with 𝑛 = 10 and 𝑛 = 15. The 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡1 deals best with instances where 𝑛 = 15 and the 𝑃 -𝐷𝑗𝑠 -𝑛𝑜𝐶𝑢𝑡 deals best with large instances where 𝑛 = 30. Overall, the 𝑃 -𝐷𝑗𝑠 -𝐶𝑢𝑡 -1 claims the best position in terms of the total solving times to find optimality. The disjunctive formulation with Cut 2 takes the second position with little difference of 6% longer. With all cut of without cut, the two variations have the same total solving, which are both 12% longer than the best. The cumulative formulation is the worst in terms of resolution time, with a total resolution time being 31% longer than the best time.
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  In section 3, we have developed and examined two MILP models which are called 𝑃 -𝐶𝑚𝑙 and𝑃 -𝐷𝑗𝑠. Numerical tests have shown that the former model 𝑃 -𝐶𝑚𝑙 were empirically out-performed by the latter𝑃 -𝐷𝑗𝑠. The 𝑃 -𝐶𝑚𝑙 model is bounded mixed integer representable in Jeroslow's sense since it is the feasible set of continuous variable (jobs' resource allocation) and 0-1 variables (jobs' processing/completion indicators). Moreover, 𝛼 𝑖,𝑘 , 𝛽 𝑖,𝑘 ∈ {0, 1} ∀𝑖, 𝑘 ) state that each job has to start and end once. Constraint(4.4) specifies the upper bound of job 𝑖 while constraint (4.5) ensures the resource consumption is above the lower bound during the processing of the job (for more details on the processing state of a job see[START_REF] Nguyen | Solving a malleable jobs scheduling problem to minimize total weighted completion times by mixed integer linear programming models[END_REF]). All jobs have to be completed by accumulating enough resource by(4.6) during their corresponding time-window. At each time, the total amount the resource allotted to jobs has to be less than or equal to the system's availability 𝑈 𝑘 (4.7). The binary constraint of 𝛼 and 𝛽 is stated at (4.8).

	4.3 The branch and price algorithm ∑︁ 𝑢 𝑖,𝑘 ≥ x𝑖 , 𝑖 ∈ 𝒥		(4.6)
	𝑘∈𝒦 𝑖				
	4.3.1 Decomposition methods ∑︁				(4.7)
						(4.8)
	4.3.2 MILP formulation			
	Constraints (4.2) and (4.3				
	Original formulation OF			
		Minimize	𝑓 (𝐶) =	∑︁	𝑤 𝑖 𝐶 𝑖	(4.1)
				𝑖∈𝒥	
		subject to			
	𝑑 𝑖				
	∑︁	𝛽 𝑖,𝑘 = 1, 𝑖 ∈ 𝒥				(4.2)
	𝑘=𝑒 𝑖				
	𝑙 𝑖				
	∑︁	𝛼 𝑖,𝑘 = 1, 𝑖 ∈ 𝒥				(4.3)
	𝑘=𝑟 𝑖				
		𝑢 𝑖,𝑘 ≤ ū𝑖			

the𝑃 -𝐷𝑗𝑠 is another representation of the problem by disjunctive constraints (𝛼 𝑖,𝑘 ∈ 0, 1 and

∑︀

𝑘 𝛼 𝑖,𝑘 = 1, id. for variable 𝛽) for each job's sub-problem. First, the𝑃 -𝐷𝑗𝑠 can exploit possible bounds according to

[START_REF] Nguyen | Solving a malleable jobs scheduling problem to minimize total weighted completion times by mixed integer linear programming models[END_REF]

. Second, the feasible region of𝑃 -𝐷𝑗𝑠 is a convex hull formulation of 𝑃 -𝐶𝑚𝑙 according to Jeroslow's theorem

[START_REF] Hooker | A principled approach to mixed integer/linear problem formulation[END_REF]

. For these reasons, we choose to formulate our problem by a more compact formulation of𝑃 -𝐷𝑗𝑠. 𝑘 ∑︁ 𝜏 =𝑟 𝑖 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ), 𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒦 𝑖 (4.4) 𝑢 𝑖,𝑘 ≥ 𝑢 𝑖 𝑘 ∑︁ 𝜏 =𝑟 𝑖 (𝛼 𝑖,𝜏 -𝛽 𝑖,𝜏 ), 𝑖 ∈ 𝒥 , 𝑘 ∈ 𝒦 𝑖 (4.5) 𝑖∈𝒥 𝑢 𝑖,𝑘 ≤ 𝑈 𝑘 , 𝑘 ∈ 𝒦 4.3.3 Local sub-problem formulation By observing the OF, one can group the set of constraints into local and global. Constraints (4.2)-(4.6) restrict only the value of the row vectors 𝑢 𝑖 , 𝛼 𝑖 and 𝛽 𝑖 , so they correspond to the local constraints group. All the column vectors of 𝑢 are dependent on the last constraint (4.7) so it is called the global or linking constraint.

  𝑟 𝑖 , 𝑢 𝑖,𝑟 𝑖 +1 , . . . , 𝑢 𝑖,𝑑 𝑖 }. • 𝛼 ′ 𝑖 ∈ {0, 1} 𝑙 𝑖 : 𝛼 ′ 𝑖 = {𝛼 𝑖,𝑟 𝑖 , 𝛼 𝑖,𝑟 𝑖 +1 , . . . , 𝛼 𝑖,𝑑 𝑖 }. • 𝛽 ′ 𝑖 ∈ {0, 1} 𝑙 𝑖 : 𝛽 ′ 𝑖 = {𝛽 𝑖,𝑟 𝑖 , 𝛽 𝑖,𝑟 𝑖 +1 , . . . , 𝛽 𝑖,𝑑 𝑖 }. 𝐶 𝑖 can be written as 𝐶 𝑖= 𝑟 𝑖 + ∑︀ 𝑙 𝑖 -1 𝑘=0 𝑘𝛽 ′ 𝑖,𝑘 = 𝑟 𝑖 + 𝐶 ′ 𝑖 .Since 𝑓 is a linear function so 𝑓 (𝐶) = 𝑓 (𝑟 + 𝐶 ′ ) = 𝑓 (𝑟) + 𝑓 (𝐶 ′ ). So the minimization of 𝑓 (𝐶) is equivalent to the minimization of 𝑓 (𝐶 ′ ) when 𝑓 (𝑟) is a constant. Hence, the use of the reduced row vectors does not change the generality of our problem. For the sake of written simplicity, those reduced row vectors are called 𝑢 𝑖 , 𝛼 𝑖 and 𝛽 𝑖 when there is no ambiguity.For the 𝑖 𝑡ℎ row we can define a local sub-problem as follows:Local sub-problem formulation for row 𝑖 𝑡ℎ LCi 𝐽 1,𝑙 𝑖 𝛼 𝑇 𝑖 = 1

		(4.9)
	𝐽 1,𝑙 𝑖 𝛽 𝑇 𝑖 = 1	(4.10)
	𝛽 𝑇 𝑖 ≤ Δ 𝑙 𝑖 𝛼 𝑇 𝑖	(4.11)
	𝐽 1,𝑙 𝑖 𝑢 𝑇 𝑖 ≥ x𝑖	(4.12)

By definition 𝐶 𝑖 = ∑︀ 𝐻 𝑘=0 𝑘𝛽 𝑖,𝑘 𝑖 ∈ 𝒥 and 𝛽 𝑖,𝑘 = 0 ∀𝑘 / ∈ {𝑟 𝑖 , . . . , 𝑑 𝑖 }. 𝑢 𝑖 ≥ 𝑢 𝑖 Δ 𝑙 𝑖 (𝛼 𝑖 -𝛽 𝑖 ) 𝑇 (4.13) 𝑢 𝑖 ≤ ū𝑖 𝐽 1,𝑙 𝑖 (4.14) 𝛼 𝑖 , 𝛽 𝑖 ∈ {0, 1} 𝑙 𝑖 (4.15)

  Property 3. The feasible region of LCi is bounded. Proof. Since the feasible region of LCi is a subset of the region created by (4.13)-(4.15) which is bounded, then LCi is bounded. Property 4. The feasible region bounded by the convex hull of LCi is Minskowki representable.Proof. Let us consider a region LCi' being a relaxed region of LCi without constraints(4.11) and the semi-continuous constraint (4.13) becomes 𝑢 𝑖 ≥ 0. This LCi' can be transformed into Minkowski representation since the matrix formulation of constraint (4.13)-(4.15) is a unit diagonal matrix with rank 3𝑙 𝑖 equal to the number of the variables, being in 𝑙 𝑖 first rows of 𝐴 𝐿𝐶 𝑖 and forming 3𝑙 𝑖 linearly independent column on the matrix formulation 𝐴 𝐿𝐶 𝑖 , so 𝑟𝑎𝑛𝑘(𝐴 𝐿𝐶 𝑖 ) = 3𝑙 𝑖 [see[START_REF] Richard | A computational study of dantzig-wolfe decomposition[END_REF] theorem 9]. The feasible region of LCi is a subset of the region created by convex hull of LCi' is henceforth Minkowski representable. Now one can reduce 𝐿𝐶𝑖 into standard LP form by adding some slack variables. Standard LP local sub-problem formulation for row 𝑖 𝑡ℎ SLCi

	𝐽 1,𝑙 𝑖 𝛼 𝑇 𝑖 -1 = 0	(4.16)
	𝐽 1,𝑙 𝑖 𝛽 𝑇 𝑖 -1 = 0	(4.17)
	𝛽 𝑇 𝑖 -Δ 𝑙 𝑖 𝛼 𝑇 𝑖 + 𝑠 1 𝑖 = 0	(4.18)

x𝑖 -𝐽 1,𝑙 𝑖 𝑢 𝑇 𝑖 + 𝛿 𝑖 = 0 (4.19)

  1 𝑘 ∈ [ū, 𝑢] then 𝑢 2 𝑘 ∈ [ū, 𝑢]. 𝜆 1 + 𝜆 2 = 1 (convexification constraints) 𝑢 3 𝑘 ∈ [ū, 𝑢] ∪ 0 is then a feasible resource allocation. Let Ω 𝑖 be the set of all extreme points of the feasible region created by LCi. Let 𝑥 𝜔 𝑖 = (𝑢 𝜔 𝑖 , 𝛼 𝜔 𝑖 , 𝛽 𝜔 𝑖 ) be an extreme point of Ω 𝑖 . The cost of this allocation to the original problem can be expressed as 𝑦 𝜔 𝑖 = 𝑓 (𝐶 𝜔 𝑖 ) + 𝑓 (𝑟 𝑖 ) with 𝐶 𝜔 𝑖 = ∑︀ 𝑙 𝑖 -1 𝑘=0 𝑤 𝑖 𝑘𝛽 𝜔 𝑖,𝑘 Hence, LCi can be expressed as a convex combination: .3.5 Linear relaxation of the master problem Once the integer constraints (4.15) are relaxed, one can eliminate the link between 𝛼, 𝛽 and 𝜆 ( ∑︀ 𝜔∈Ω 𝑖 𝜆 𝑖𝜔 = 1 and 𝛼 𝜔 𝑖 ∈ {0, 1} are eliminated so 𝛼 𝑖 = ∑︀ 𝜔∈Ω 𝑖 𝜆 𝑖𝜔 𝛼 𝜔 𝑖 ≤ 1). The LP relaxation of the master problem can be expressed as MLP: 𝑖 ∈ 𝒥 . This change does not lose the generality of MLP since all solutions with ∑︀ 𝜔∈Ω 𝑖 𝜆 𝑖𝜔 > 1 𝑖 ∈ 𝒥 are not optimal for the minimization problem.Since it is impossible to enumerate explicitly all the columns in Ω 𝑖 , 𝑖 = 1, . . . , 𝑛 due to its exponential size, we define a restricted set of Ω 𝑖 which is noted Ω ′ 𝑖 , 𝑖 = 1, . . . , 𝑛, then the restricted master problem is defined as follows MLP(Ω ′ ).

						𝜑 𝑖 > 0, 𝑖 ∈ 𝒥
	Minimize 4.3.6 Restricted master problem 𝑧 = ∑︁ 𝑖∈𝒥	∑︁ 𝜔∈Ω 𝑖	𝜆 𝑖𝜔 𝑦 𝜔 𝑖	(4.28)
	subject to			∑︁	∑︁	𝜆 𝑖𝜔 𝑢 𝜔 𝑖 ≤ 𝑈	(4.29)
				𝑖∈𝒥	𝜔∈Ω 𝑖
						∑︁ 𝜔∈Ω 𝑖	𝜆 𝑖𝜔 = 1	𝑖 ∈ 𝒥 𝑖 . The restricted set (4.30)
	𝜆 𝑖 ≥ 0 is thus created with a reasonable size to contain only significant columns that improve the (4.31) 𝑖 ∈ 𝒥
	objective value of the Master Problem. The restricted problem is enlarged by adding more
	columns at the pricing phase.				
	Alternatively, more simply				
	Minimize subject to Let Ω ′ 𝑖 ⊂ Ω Minimize	𝑧 = 𝑧 =	𝑢 𝑖 = ∑︁ 𝑖∈𝒥 𝜆 𝑖 𝑦 𝑖 ∑︁ ∑︁ ∑︁ ∑︁ 𝜆 𝑖𝜔 𝑦 𝜔 𝜆 𝑖𝜔 𝑢 𝜔 𝑖 𝑖	(4.22) (4.32) (4.33) (4.38)
				𝑖∈𝒥	𝜔∈Ω 𝑖 𝜔∈Ω ′ 𝑖
	subject to			𝛼 𝑖 = 1𝜆 𝑖 = 1 ∑︁ 𝜆 𝑖𝜔 𝛼 𝜔 𝑖 ∑︁ ∑︁ 𝜆 𝑖𝜔 𝑢 𝜔 𝑖 ≤ 𝑈	𝑖 ∈ 𝒥	(4.23) (4.34) (4.39)
				𝑖∈𝒥	𝜔∈Ω 𝑖 𝜆 𝑖 ≥ 0 𝜔∈Ω ′ 𝑖	𝑖 ∈ 𝒥	(4.35)
				𝛽 𝑖 =	∑︁ ∑︁	𝜆 𝑖𝜔 𝛽 𝜔 𝑖 𝜆 𝑖𝜔 = 1	𝑖 ∈ 𝒥	(4.24) (4.40)
						𝜔∈Ω 𝑖 𝜔∈Ω ′ 𝑖
		∑︁	𝜆 𝑖𝜔 = 1	𝜆 𝑖 ≥ 0	𝑖 ∈ 𝒥	(4.25) (4.41)
		𝜔∈Ω 𝑖			
	Let (𝜋, 𝜑) be the pair of dual variables vectors corresponding respectively to the
	total resource availability constraints (or system capacity constraints) (4.29) and convexity
	constraints (4.30) of MLP, so 𝜋 ∈ R 𝐻 -and 𝜑 ∈ R 𝑛 + . The dual program of MLP, noted DLP,
	is explicitly deduced from MLP formulation as follows.
	Maximize					𝑧 𝐷 = 𝑈 𝜋 +	∑︁	𝜑 𝑖	(4.36)
						𝑖∈𝒥
	subject to				𝑢 𝜔 𝑖 𝜋 + 𝜑 𝑖 ≤ 𝑦 𝜔𝑖 , 𝑖 ∈ 𝒥 , 𝜔 ∈ Ω 𝑖	(4.37)
						𝜋 𝑘 ≤ 0, 𝑘 ∈ 𝒦

Since

𝜆 𝑖𝜔 ≥ 0 𝜔 ∈ Ω 𝑖 (4.26) 𝛼 𝑖 , 𝛽 𝑖 ∈ {0, 1} 𝑙 𝑖 (4.27) With cost 𝑦 𝑖 = ∑︀ 𝜔∈Ω 𝑖 𝜆 𝑖𝜔 𝑦 𝜔 𝑖 . 4𝑖∈𝒥 𝜆 𝑖 𝑢 𝑖 ≤ 𝑈 𝜆 𝑖 , 𝑦 𝑖 ∈ R |Ω 𝑖 | + 𝑢 𝑖 ∈ R |Ω 𝑖 |×𝐻 +

To find the right sign for dual variables, we change the constraint (4.30) to ∑︀ 𝜔∈Ω 𝑖 𝜆 𝑖𝜔 ≥ 1

  ∑︀ 𝑘 𝑘=1 𝛼 𝑘 = 1 for all 𝛼 𝑘 ∈ 𝑆; the division of 𝑆 in to 𝑆 1 and 𝑆 2 is defined by 𝑆 1 : ∑︀ 𝜅 𝑘=1 𝛼 𝑘 = 1 and 𝑆 2 : ∑︀ 𝑘 𝑘=𝜅+1 𝛼 𝑘 = 1. The pivot 𝜅 is defined as 𝜅 = 𝑚𝑖𝑛{𝑡 : ∑︀ 𝑡 𝑘=1 𝛼 𝑘 ≥ 1/2}. This scheme also helps to avoid a symmetrical tree because the fractional value changes with each parent node to create child nodes. Algorithm 1: Most(Least) Flexible SOS1 branching if Found most(least) flexible interval 𝑆 * 𝑖 ∈ [𝑠 𝑎 , 𝑠 𝑏 ] (or : 𝐶 * 𝑖 ∈ [𝐶 𝑎 , 𝐶 𝑏 ]) with 𝑠 𝑏 -𝑠 𝑎 > 0 then Create node 𝑆 1 𝑖 ∈ [𝑠 𝑎 , 𝜅] and 𝑆 2 𝑖 ∈ [𝜅 + 1, 𝑠 𝑏 ]; Or 𝐶 1 𝑖 ∈ [𝐶 𝑎 , 𝜅] and 𝐶 2 𝑖 ∈ [𝜅 + 1, 𝐶 𝑏 ];

	𝜅 = 𝑚𝑖𝑛{𝑡 : Or 𝜅 = 𝑚𝑖𝑛{𝑡 : ∑︀ 𝑡 𝑘=𝑠𝑎 𝛼 𝑘 ≥ 1/2}; ∑︀ 𝑡 𝑘=𝐶𝑎 𝛽 𝑘 ≥ 1/2};
	else
	No child added
	end
	At each node, after the column generation phase, a decision will be taken according
	to 4 rules in the following order:

Pruning due to infeasibility If the Restricted Master Problem is infeasible with the new time-window restriction added on a node then this node will be pruned.

Pruning due to Bound If LP bound of the Restricted Master Problem recently solved on a node is bigger than incumbent solution ⌈𝑧 𝑅𝑀 𝑃 ⌉ ≥ 𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡 then this node will be pruned.

•

  The LP bound of RMP on node 𝑧 𝑖 𝑢 • The global (best) LP bound 𝑧 𝐿 • The actual best integral bound 𝑧 𝐼𝑃 Hence, the estimated projection value at node 𝑖 is defined by 𝐸 𝑖 = 𝑧 𝑖 𝑢 + (𝑧 𝐼𝑃 -𝑧 𝐿 ) 𝑠 𝑖 𝑠 0 . The best estimated projection selects node at 𝑎𝑟𝑔𝑚𝑖𝑛{𝐸 𝑖 }.

Table 4 .

 4 1 and table 4.2 show respectively the results found by the LFlex branching strategy and the MFlex branching strategy.

			Table 4.1 -Numerical tests results of LFlex branching strategy	
	n H	Best LP-Bound Selection #to1% #toOpt #nodes #CPU gap% #to1% #toOpt #nodes #CPU gap Best Projection Selection
		20	15	21	228	0,2	0,0%	10	10	10	0,2	0,0%
		40	730	1474	1520	4,1	0,0%	319	1420	1596	4,7	0,0%
		60	2105	4115	4785	15,7	0,0%	951	4978	5593	18,8	0,0%
	10	80	471	4151	4279	17,5	0,0%	1121	1808	3617	25,8	0,0%
		100	5082	13278	16393	77,3	0,0%	3090	9440	17165	63,0	0,0%
		150	2716	3717	7148	58,7	0,0%	3240	6481	9530	71,6	0,0%
		200	5142	9712	19043	134,8	0,0%	3814	13260	18164	153,2	0,0%
		20	120	120	120	1,5	0,0%	134	156	176	0,3	0,0%
		40	353	623	929	2,1	0,0%	375	992	1103	2,1	0,0%
		60	2376	5653	8193	14,2	0,0%	3035	3763	6069	29,0	0,0%
	15	80	10220	29010	32966	128,0	0,0%	4712	16197	29450	86,9	0,0%
		100	7152	14464	15894	107,9	0,0%	5235	12328	16888	116,1	0,0%
		150	9171	64199	70548	419,4	0,0%	30349	66289	79866	379,6	0,0%
		200	31673	93802	121820	1800,0	5,9%	55866	57006	114011	1800,0	7,1%
		20	20	360	1200	2,0	0,0%	34	55	72	1,4	0,0%
		40	1296	3024	3086	9,9	0,0%	345	2381	3451	18,0	0,0%
		60	385	2426	2959	22,5	0,0%	1502	2904	3338	18,8	0,0%
	20	80	5013	13368	23872	92,0	0,0%	4053	12158	20263	120,5	0,0%
		100	7610	34590	69180	444,9	0,0%	20215	64688	80860	457,5	0,0%
		150	68028	104659	174431	1800,0	2,9%	48438	119821	127469	1800,0	1,6%
		200	139653	170012	303593	1800,0	3,8%	47839	157869	239195	1800,0	2.9%
		20	38	84	140	1,3	0,0%	38	113	164	2,7	0,0%
		40	3806	11299	11894	37,8	0,0%	2886	9524	9620	33,4	0,0%
		60	878	2210	2834	32,9	0,0%	684	2009	2208	38,7	0,0%
	30	80	1153	4210	5012	51,9	0,0%	2194	2910	4770	40,4	0,0%
		100	24826	40843	80085	653,4	0,0%	16145	59968	76882	636,7	0,0%
		150	23454	45291	80876	1800,0	2,0%	18453	41691	68346	1800,0	4,5%
		200	46651	64856	113783	1800,0	3,0%	25032	78100	100129	1800,0	4.55%
		In most of the tested instances, the branching configuration MFlex out-performs other
	configurations. The first integral solutions can be found relatively rapid by the branch-and-
	price. During the surveillance of numerical tests, in most of the large examples, once can
	notice that it would take a relatively short time to find near optimal solutions. It is quick
	to find 𝑔𝑎𝑝 < 1%, even 𝑔𝑎𝑝 < 0.3% in the majority of the cases on both of the Best-Search-
	First and Best-Projection-First approaches. On the other hand, BLP-MFlex tends to find
	good first solutions (which have 𝑔𝑎𝑝 ≤ 1%) more quickly in large scale instances. Those
	solutions are already useful in industrial applications where the trade-off between execution

Table 5 .

 5 1 -Properties of jobs used in example Job 𝑖 𝑟 𝑖 𝑑 𝑖 𝑢 𝑖 ū𝑖 x𝑖 ℎ 𝑖

			1	1	9	2	11	25	0.9		
			2	2	10	2	13	20	0.8		
			3	3	10	1	6	23	0.8		
			4	2	9	2	12	30	0.7		
			5	1	8	2	8	23	0.8		
	Table 5.2 -Total resource amount available in example
	𝑘	1	2	3	4	5	6	7	8	9	10
	𝑈 𝑘 18 20 22 19 23 21 24 16 17 18

each interval is now considered constant and equal to 𝑈 𝑚𝑎𝑥 .

  𝑑 𝑖 , 𝑝 𝑖 , 𝑢 𝑜 𝑖 ⟩, which is described according to figure5-3where 𝑝 𝑖 = ⌈The idea of the GBF algorithm is to schedule without creating any new resource peak, which means the maximums total resource consumption all over the scheduling horizon. In the case that we obligate to create a new resource peak, the job's placement should be where the newly created peak is minimal. For our problem, we introduce the conception of the moldable shiftable interval, which means the shiftable interval with modulable height 𝑢 𝑜 𝑖 . To create the least resource peak, the initial 𝑢 𝑜 -𝑖 takes values of the smallest possible resource

		𝑥 * 𝑖 𝑢 𝑜 𝑖	⌉ and 𝑢 𝑖,𝑘 =
	⎧ ⎨	𝑢 𝑜
	⎩	

𝑖 if 𝑘 ∈ {𝑟 𝑖 + 𝜑 𝑖 , ..., 𝑟 𝑖 + 𝜑 𝑖 + 𝑝 𝑖 } 0 otherwise . 𝜑 𝑖 is called the slack and 𝜑 𝑚𝑎𝑥 𝑖 = 𝑑 𝑖 -𝑝 𝑖 -𝑟 𝑖 is the maximum slack in the interval. With each 𝜑 𝑖 , we have a placement of resource allocation vector, noted 𝒫 𝜑 𝑖 . consumption 𝑢 𝑜 𝑖 = 𝑚𝑎𝑥{𝑢 𝑚𝑖𝑛 𝑖 , 𝑥 * 𝑖 (𝑑 𝑖 -𝑟 𝑖 ) } where 𝑥 * 𝑖 (𝑑 𝑖 -𝑟 𝑖 ) is the smallest resource consumption

  Algorithm 3: Greedy Best Fit algorithm Data: Shiftable interval 𝐽 𝑖 = ⟨𝑟 𝑖 , 𝑑 𝑖 , 𝑝 𝑖 ⟩ Result: Best placement 𝒫 𝜑 * 𝑑 𝑖 -𝑟 𝑖 -𝑝 𝑖 ; for 𝜑 𝑖 = 0..𝜑 𝑚𝑎𝑥 𝑖 do ℎ 𝑚𝑎𝑥 [𝜑 𝑖 ] = max 𝑘∈⟨𝑟 𝑖 +𝜑 𝑖 ,𝑟 𝑖 +𝜑 𝑖 +𝑝 𝑖 ⟩ {𝑈 Ω [𝑘] + 𝑢 𝑖,𝑘 }; Σ [𝜑 𝑖 ] = ∑︀ 𝑘 ∈⟨𝑟 𝑖 +𝜑 𝑖 ,𝑟 𝑖 +𝜑 𝑖 +𝑝 𝑖 ⟩ 𝑈 Ω [𝑘] + 𝑢 𝑖,𝑘 ; end ℎ * = min 𝜑 𝑖 =0..𝜑 𝑚𝑎𝑥 𝑖 ℎ 𝑚𝑎𝑥 [𝜑 𝑖 ]; Σ * = min 𝜑 𝑖 =0..𝜑 𝑚𝑎𝑥 𝑖 {Σ[𝜑 𝑖 ]|ℎ 𝑚𝑎𝑥 [𝜑 𝑖 ] = ℎ * };

	𝜑 𝑚𝑎𝑥 𝑖 = 𝜑 * 𝑖 = min 𝜑 𝑖 =0..𝜑 𝑚𝑎𝑥 𝑖	𝑖 𝜑 𝑖 wherether

  Each guillotine cut tentative reduces the actual minimax resource height ℎ * of the packing item (i.e. resource allocation for a given job). During this layering and cutting process, the temporal starting time of job is noted 𝛼 ′ 𝑖 and the temporal completion time of job is noted 𝛽 ′ 𝑖 . The interval [𝛼 ′ 𝑖 , 𝛽 ′ 𝑖 ] is called the spanning interval of job 𝑖. Algorithm 4 finds the cut point of an given job's resource allocation. For the notation, let û𝑖,𝑘 be the remained resource allocation of job 𝑖 after the latest cut and let 𝑥 ′

	𝑖 be the surface of the
	job's cut portion.

Algorithm 4: Guillotine Cut finder Data: 𝑢 𝑖,𝑘 , 𝑈 Ω and spanning interval [𝛼 ′ 𝑖 , 𝛽 ′ 𝑖 ]

  Guillotine Cut and Layering Algorithm (GC&L) Data: Set 𝑄 of 𝑛 ordered jobs Result: Initial resource allocation 𝑈 𝐼 of 𝑛 jobs foreach 𝑖 ∈ 𝑄 do 𝛼 𝑖 = 𝑟 𝑖 ; 𝛽 𝑖 = 𝑑 𝑖 ;

	𝛿, 𝑝 ′ 𝑖 ); if New best-fit allocation found then
	Update 𝑢 𝑖 end
	end
	Algorithm 6: 𝑥 ′ 𝑖 = 𝑥 * 𝑖 ; while 𝑛𝑒𝑤𝑃 𝑜𝑟𝑡𝑖𝑜𝑛 < 𝑜𝑙𝑑𝑃 𝑜𝑟𝑡𝑖𝑜𝑛 do

𝑜𝑙𝑑𝑃 𝑜𝑟𝑡𝑖𝑜𝑛 = 𝑛𝑒𝑤𝑃 𝑜𝑟𝑡𝑖𝑜𝑛;
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 5 3 -Summary of three LNS methods

	Heuristics	Destructions	Constructions
	Greedy Ocupation (A) Least demand removal Greedy resource allocation:
			task using resource as much as
	Free-form shuffle (G)	𝑘-random selection	possible to complete as soon as possible
	Rectangular-form		Greedy moldable ressource al-
	shuffle (R)		location:	job having constant
			amount of resource during its
			whole processing times

Table 5 .

 5 4 -Objective values of solutions found by heuristics: HLA-RAG, HLA-ARG, EDD, SPT and by solver CPLEX.

	n H #	HLA -RAG Best Average Worst Best Average Worst HLA -ARG	CPLEX EDD SPT
		40	236 230	240.91 234.14	248 238	240 234	248.7 237.42	258 239	230 227	noSol 245	noSol noSol
	10	60	353 354	360.44 363.74	381 383	360 360	364.72 368.39	370 385	342 348	noSol 420	noSol noSol
		80	419 401	425.62 406.84	444 421	426 402	430.49 418.32	437 423	415 398	472 440	499 440
		40	422 423	429.27 426.98	443 435	425 429	433.7 433.97	441 439	411 415	455 443	noSol noSol
	20	60	663 635	673.26 639.28	702 649	675 638	687.32 642.22	700 647	647 628	755 noSol	noSol noSol
		80	958 856	968.6 866.55	987 881	977 850	993.55 861.9	1003 879	941 830	noSol 903	noSol 953
		100	2684 2699.5 2727 2933 2952.7 2973	2686 2931 2945.7 2959 2700.7 2722	2639 noInt	noSol noSol	noSol noSol
	50	150	4353 4394.3 4433 4123 4135.9 4150 4161 4390	4403 4192.7	4420 4215	4304 4062	noSol 4348	noSol noSol
		200	4916 4930.4 4950 4991 5553 5581.8 5626 5550	5007.3 5591.6	5021 5619	4877 noInt	5146 noSol	noSol noSol
		100	6209 6242.3 6271 6253 5819 5835.2 5876 5789	6312 5815.6 5837 6390	noInt 5695	noSol noSol	noSol noSol
	100	150	8466 8491.1 8528 8127 8156 8182 8220 8486	8504.4 8246.4	8524 8265	noInt noInt	noSol noSol	noSol noSol
		200	12129 11748 11794 11840 11838 12161 12238 12106 12155 12193 noInt noSol noSol 11875 11913 noInt noSol noSol
		100	8929 8371 8419.3 8485 8969.1 9014	8928 8957.9 8998 8412 8441.3 8484	noInt noInt	noSol noSol	noSol noSol
	150	150	12792 12850 12905 12834 13387 13427 13469 13449	12919 13496	12966 13561	noInt noInt	noSol noSol	noSol noSol
		200	17629 16486	17694 16505 16531 16446 16530 17762 17614 17687 17743 noInt noSol noSol 16581 noInt noSol noSol
		100	11553 11571 11598 11586 11618 11653 11669 11516 11554 11573 noInt noSol noSol 11629 11659 noSol noSol noInt
	200	150	15756 15791 15832 15842 17678 17701 17746 17762	15887 17799	15946 17845	noInt noInt	noSol noSol	noSol noSol
		200	21870 23935 24007 24045 24016 21893 21936 21755 21837 21884 noInt noSol noSol 24128 24287 noInt noSol noSol
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 5 5 -𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒 of heuristics: HLA-RAG, HLA-ARG, EDD, SPT and of solver Figure 5-21 -Average 𝐶𝑃 𝑈 𝑇 𝑖𝑚𝑒 throughout different problem sizes 𝑛𝐻 2two HLA: HLA-RAG and HLA-ARG throughout the tested instances according to its size 𝑛𝐻 2 . The 𝐺𝑎𝑝 of EDD and SPT are not displayed due to two reasons: the simplicity of presentation and the small rate of feasibility of EDD and SPT. With data in table 5.4 one can calculate the 𝐺𝑎𝑝 of EDD and SPT which generally varies between 10% to 18%. The 𝐺𝑎𝑝 found by both of the HLA heuristics decrease over the problem size in terms of 𝑛𝐻 2 .

	CPLEX.										
	n H #	HLA -RAG Best Average Worst Best Average Worst HLA -ARG	CPLEX EDD SPT
		40	1 2	0.08 0.07	0.08 0.07	0.15 0.08	0.07 0.07	0.08 0.07	0.08 0.07	11.81 1.2	noSol 0.002 noSol noSol
	10	60	1 2	0.13 0.14	0.15 0.16	0.17 0.19	0.14 0.16	0.15 0.17	0.17 0.17	56.77 34.5	noSol 0.003	noSol noSol
		80	1 2	0.21 0.15	0.22 0.16	0.25 0.19	0.24 0.15	0.25 0.16	0.36 0.19	13.47 14.73	0.003 0.003 0.004 0.004
		40	1 2	0.19 0.19	0.20 0.20	0.22 0.21	0.17 0.18	0.18 0.19	0.21 0.20	25.75 10.16	0.004 noSol 0.007 noSol
	20	60	1 2	0.34 0.27	0.36 0.28	0.41 0.29	0.37 0.25	0.40 0.26	0.42 0.28	221.98 2.13	0.007 noSol noSol noSol
		80	1 2	0.59 0.53	0.66 0.56	0.73 0.64	0.79 0.56	0.81 0.60	0.91 0.84	1666.7 1074	noSol 0.009	noSol 0.008
			1 2	2.62 2.63	2.66 2.75	2.73 2.93	2.68 3.11	2.84 3.45	2.97 3.85	648.83 1800.1	noSol noSol	noSol noSol
	50		1 2	4.63 4.23	5.01 4.44	5.38 4.70	5.37 6.46	6.15 6.87	6.92 7.07	1800.1 1800.2	noSol 0.007 noSol noSol
			1 2	6.55 6.75	6.65 7.05	6.85 7.44 11.26 7.48	7.78 12.48	8.18 13.12	1800.1 1800.2	0.01 noSol noSol noSol
			1 2	8.77 6.44	9.24 6.92	9.98 12.55 7.26 8.31	13.93 9.11	15.37 9.97	1800.8 1800.2	noSol noSol	noSol noSol
	100		1 2	11.46 12.06 11.08 11.52	12.72 18.21 11.94 17.18	20.31 19.27	22.15 21.03	1800.2 1800.3	noSol noSol	noSol noSol
			1 2	19.82 21.65 18.85 20.10	24.58 28.51 21.12 35.01	33.53 37.54	39.65 40.18	1800.3 1800.6	noSol noSol	noSol noSol
			1 2	17.73 19.17 14.83 15.64	21.08 25.40 17.07 19.24	27.54 20.86	29.67 21.73	1804.7 1800.2	noSol noSol	noSol noSol
	150		1 2	26.17 27.57 26.20 28.00	28.61 55.69 30.22 41.90	59.62 50.08	61.49 57.03	1800.3 1800.4	noSol noSol	noSol noSol
			1 2	41.58 44.91 29.29 29.99	49.56 72.66 30.91 43.12	80.71 50.12	86.18 55.09	1800.7 1800.5	noSol noSol	noSol noSol
			1 2	27.18 27.91 27.50 28.76	29.83 35.56 30.16 40.08	39.12 41.46	43.25 43.36	1800.3 1801.2	noSol noSol	noSol noSol
	200		1 2	42.35 44.49 43.36 45.35	47.26 70.75 49.04 65.69	75.60 73.15	80.15 80.70	1800.5 1800.6	noSol noSol	noSol noSol
			1 2	64.74 66.45 93.22 101.01 108.15 146.89 157.50 169.92 1800.7 noSol noSol 68.12 123.48 136.93 151.12 1804.5 noSol noSol

  Reverse the time horizon; foreach Job 𝑖 do Swap 𝑟 𝑖 and 𝑑 𝑖

	end	
	while 𝑈 𝐵 > 𝐿𝐵 do
	𝐼𝐵 := ⌊ 𝑈 𝐵+𝐿𝐵 2	⌋;
	Execute Greedy Best Fit with time horizon limited to 𝐼𝐵 ;
	if Feasible solution found then
	Save new solution;
	𝑈 𝐵 := 𝐼𝐵;	
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		1 -Customer random behavior parameters: input for simulators
	ID	Energy demand dis-tribution: Gamma 𝛼 𝛽	Arrival time distri-bution: Normal Mean Stddv	Eff. (%)	Power (W)
	1	3.296	1772.90	18.59	1.41	81
	2	3.454	1270.39	17.95	1.17	90
	3	3.880	1743.37	18.12	1.16	83
	4	3.814	1944.83	17.38	0.81	86
	5	4.466	986.27	17.56	1.64	90
	6	4.192	1319.90	17.62	1.11	93
	7	3.440	1203.53	18.03	0.85	82
	8	3.224	1016.03	17.61	1.80	94
	9	4.225	1438.34	17.91	1.07	91
	10	4.084	1015.97	17.07	0.90	87
	11	4.396	1947.71	17.59	1.04	86
	12	3.663	1441.30	17.45	0.78	86
	13	3.457	1527.13	17.22	0.66	86
	14	4.136	2023.02	17.85	2.34	88
	15	3.668	1829.92	17.78	1.94	88
	16	3.855	1523.35	17.71	1.32	92
	17	3.322	1294.26	17.29	0.60	95
	18	4.457	1874.11	18.04	0.78	90
	19	3.892	1005.26	17.81	1.09	86
	20	3.282	1166.49	17.61	1.54	91
	21	3.843	1254.73	17.71	0.56	88
	22	3.432	1756.49	17.62	0.10	82
	23	4.304	1574.67	17.16	0.51	92
	24	4.388	1634.55	17.61	1.33	89
	25	3.919	1224.01	17.44	1.36	88
	26	3.577	1126.58	17.40	1.38	90
	27	4.492	1204.59	17.35	1.11	89
	28	4.054	1038.78	17.54	1.26	83
	29	3.350	1892.72	17.09	0.96	87
	30	3.430	1920.24	17.99	1.57	87
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				2 -The decision making policies in resume
		Static list		Dynamic
		The decision maker schedules all the jobs at time zero, then the priorities of execution of the jobs are fixed in a static list.	Every time there exist a new inform-ation; decision maker may recalcu-late the schedule and reorder the task
		In	this	policy,	the	scheduling
		baseline is unchanged during the
	tasks preemtive Non-	execution. For example: if a job 𝑖

has the priority to be executed, but
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 7 1 presents a partial EventsList of the NEMO.

	Event Capture	GO		BA
		changes	Stacking	Caculation
				Caculation
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	1 -Event definitions

Table A .

 A 1 -Classification de certaines approches CRVE dans la littérature Nous reprenons tous les travaux concernés dans le tableau A.1. A.2.3 Problème de planification avec une ressource supplémentaire unique A.2.4 La revue de littérature Nous reprenons dans table A.2 la classification des travaux concernés dans cette section avec leurs contraintes et objectifs correspondants, ainsi que la procédure de solution.

	Approche	Méthode	Travaux	Ressource constante	Ressource variable	Temps d'arrivée	Date limite	Objective
	Problème d'ordo. discret-continu	Recherche tabou Programmation dynamique et	[78] [65]	x x				Minimisation makespan Somme des temps de de présences pon-
		heuristique						dérée
								Le nombre pon-
								déré	d'emplois
		Algorithme du temps polynomial	[67]	x			x	tardifs / makes-pan / coûts totaux
								de consommation
								de ressources.
	Problème de plani-fication cumula-tive	Algorithmes d'ajustement temporel Réglages des têtes (planification pseudo-préemptive de	[7] [16]	x x		x x	x	Tests de satisfac-tion Minimisation de makespan
		Jackson)						
	Problème d'ordo. des rigide tâches	L'algorithme Greedy Best Fit	[18]	x				Minimiser nombre de chines	le ma-
	Problème d'ordo. moulable de tâche	Algorithme sous-optimal	[14]	x				Minimisation makespan	de
	Problème d'ordo. de tâche malléable	Classe dominante de planification Algorithme d'emballage des	[64] [13]	x x				Temps d'achalandage total pondéré Minimisation de makespan
		rectangles						

Table A .

 A 2 -Classification de certaines approches en vedette sur le problème de planification théorique sous contrainte de ressource A.3 Classification des problèmes CRVE et Formulation mathématique A.3.1 Classification des problèmes CRVE En passant en revue la littérature, on peut trouver les deux principaux inconvénients des approches globale pour résoudre le problème de CRVE. Le premier est le manque de contraintes temporelles et l'optimisation des critères de temps. Le deuxième écart d'étude des approches mondiales est l'absence de méthode de résolution rapide. En outre, il manque un modèle générique qui peut faire face à différents problèmes avec des contraintes similaires. Étant donné que notre objectif industriel est de développer une solution de recharge pour le domaine résidentiel, nous avons deux priorités. La première est la faisabilité de la planification du comportement des utilisateurs, y compris les contraintes temporelles de stationnement et de temps de départ, ainsi que la demande quotidienne d'énergie. La deuxième priorité est d'assurer la qualité de service ; alors tous les VE doivent être complètement chargés dès que possible. Ensuite, le choix d'utilisation de l'approche globale est la meilleure axe de recherche. Pour compléter le résultat de recherche de cette méthode, nous souhaitons formuler une famille de configurations CRVE avec des contraintes et des propriétés particulières. Avec ce type de classification, on peut décider quels travaux de recherche peuvent être utilisés pour résoudre spécifiquement chaque problème.Dans le tableau A.3, nous représentons différentes configurations avec leurs contraintes respectives. Au préalable, la complexité de chaque optimisation est citée. Nous présentons dans la dernière colonne les travaux qui peuvent être utilisés pour résoudre chaque configuration. Plus de détails sur la preuve de la complexité de chaque configuration seront précisés dans les chapitres suivants.A.3.2 Formulation de PLNEMLe problème ACPV 2 consiste en un profil de bande passante de puissance dépendant du temps. Le profil de puissance variable dans le temps à chaque intervalle de temps une valeur continue différente de la puissance totale disponible. En raison de ce profil, la formu-• 𝒯 intervalle de temps

  3.3 Formulation cumulative (conjonctive)L'idée qui diffère des deux formulations est la façon dont nous formulons le traitement et l'achèvement des travaux. Dans la formulation cumulative, le traitement du travail 𝑖 est noté par 𝑦 𝑖,𝑘 . 𝑦 𝑖,𝑘 = 1 si le travail 𝑖 est en cours de traitement au temps k, sinon, 𝑦 𝑖,𝑘 = 0. condition d'achèvement du travail est contrôlée par la variable binaire 𝑐 𝑖,𝑘 qui tourne à 1 seulement si le travail 𝑖 a déjà atteint son état final au début de l'intervalle 𝑘 𝑥 𝑖,𝑘 ≥ x𝑖 ; Sinon 𝑐 𝑖,𝑘 = 0. Avec cette variable donnée, le temps d'achèvement de la tâche 𝑖 est :𝐶 𝑖 = 𝐻 -Stratégies de branchementAu noeud de départ, on initie une solution possible au problème de RMP en utilisant une heuristique. La relaxation de ce RMP est résolue, puis le double de la relaxation LP est utilisé pour évaluer tous les sous-problèmes. Si la (les) colonne(s) avec coût(s) négatif(s) est(sont) trouvé(s), le ou les coûts les plus négatifs seront choisis pour entrer en fonction.Sinon, si l'optimum de relaxation RMP est intégral, il est également optimal pour le MP et l'algorithme s'arrête. Dans le dernier cas, si la solution de relaxation n'est pas intégrale, et aucune colonne ne peut être ajoutée, il faut brancher l'arbre pour de nouveaux noeuds. La génération de la colonne itère de nouveau à chaque nouveau noeud. Branchement sur la flexibilité de l'ensemble SOS1 Étant donné que les fenêtres de temps sont contraintes par les variables binaires 𝛼 et 𝛽, le schéma de dérivation est proposé de manière à ce que les fenêtres de temps du travail les plus flexible (MFlex) / les moins flexibles (LFlex) soient dichotomisées pour former un arbre binaire. Une illustration est donnée en figure A-7 pour la stratégie MFlex.Figure A-7 -Un exemple de branchementAlgorithm 12: Branchement sur la flexibilité de l'ensemble SOS1 if Pouvoir trouver le plus (moins) intervalle flexible 𝑆 * 𝑖 ∈ [𝑠 𝑎 , 𝑠 𝑏 ] (ou 𝐶 * 𝑖 ∈ [𝐶 𝑎 , 𝐶 𝑏 ]) avec 𝑠 𝑏 -𝑠 𝑎 > 0 then 𝜅 = 𝑚𝑖𝑛{𝑡 : ∑︀ 𝑡 𝑘=𝑠𝑎 𝛼 𝑘 ≥ 1/2}; Ou 𝜅 = 𝑚𝑖𝑛{𝑡 : ∑︀ 𝑡 𝑘=𝐶𝑎 𝛽 𝑘 ≥ 1/2}; Créer noeud 𝑆 1 𝑖 ∈ [𝑠 𝑎 , 𝜅] et 𝑆 2 𝑖 ∈ [𝜅 + 1, 𝑠 𝑏 ]; Ou 𝐶 1 𝑖 ∈ [𝐶 𝑎 , 𝜅] et 𝐶 2 𝑖 ∈ [𝜅 + 1, 𝐶 𝑏 ];

	La 𝐻 ∑︁ 𝑘=0 Plus de noeud enfant à créer Le temps total d'achèvement pondéré de 𝑛 tâches est donc 𝑐 𝑖,𝑘 + 1 Input: Paramètres des distributions aléatoires Générer des scénarios aléatoires d'Ordonnancement Algorithme GBF Ajouter la puissance statistique Non A.4.4 else minimale pour assurer la faisabilité dans le résultat Nombre suffisant de scénarios? Arrêter Oui	(A.1)
	end											
	∑︁	𝑤 𝑖 𝐶 𝑖 =	∑︁	𝑤 𝑖 (𝐻 + 1 -	∑︁	𝑐 𝑖,𝑘 ) =	∑︁	𝑤 𝑖 (𝐻 + 1) -	∑︁	∑︁	𝑤 𝑖 𝑐 𝑖,𝑘	(A.2)
	𝑖∈𝒥		𝑖∈𝒥		𝑘∈𝒯		𝑖∈𝒥		𝑖∈𝒥	𝑘∈𝒯		

Noeud 0

𝑆 1 ∈ [1, 3] 𝐶 1 ∈ [4, 6] 𝐶 1 ∈ [6, 10] 𝑆 2 ∈ [2, 3] 𝑆 2 ∈ [4, 5] 𝑆 1 ∈ [4, 7]

A chaque noeud, après la phase de génération de colonne, une décision sera prise selon

A.2. L'état de l'artLes travaux existants sur CRVE ont repris dans le tableau A.2 soulignent l'absence de méthodes de résolution avec l'optimisation des critères de temps. En outre, une planification complète et globale qui considère toutes les contraintes possibles n'a pas encore été développée. Il existe encore un vide concernant la contrainte de ressources variant dans le temps. De plus, selon notre connaissance, il n'y a pas de problème générique et complet, qui tienne compte de toutes les contraintes suivantes : la restriction temporelle de la tâche, le profil de ressources dépendant du temps / constant, la consommation de ressources de la tâche semi-continue. Par conséquent, nous positionnons nos recherches pour combler cette lacune essentielle dans la littérature.

available amount of unallocated resource then the heuristic will distribute greedily to jobs.

The Greedy Occupation is based on LNS principle. While there is unconsumed resource left at time 𝑘, the tasks with least demand x𝑖 * and starts to process at 𝑘 will be removed from power-strip. Task 𝑖 * will be repackaged greedily into the strip by algorithm 7. The construction of job 𝑖 * by algorithm 7 always leads to a feasible solution, since the worst case is already the previous task's resource allocation before removal. end end Remark At each iteration of 𝑘, the algorithm has to sort the queued involved jobs, algorithm 8 can be computed in time average 𝑂(𝐻.𝑛𝑙𝑜𝑔𝑛)

Shuffle heuristics

We introduce two more LNS methods to improve the initial solution named Freeform shuffle and Rectangular-form shuffle. Those two heuristics are classified as "shuffle" heuristic because of their methods of solution destruction. The idea of a shuffle procedure comes from the notation of the k-exchange of very large scale neighbour search [START_REF] Ravindra K Ahuja | A survey of very large-scale neighborhood search techniques[END_REF]. In our heuristic, the k-exchange is implemented as r-random destructions and reconstitutions. Different than the Greedy Occupation which destroys only one job at a time, the shuffle heuristics aim to a more radical approach. At each iteration, the shuffle process decides to destroy 𝑘 randomly chosen jobs in the power strip. Then, the heuristic repacks those jobs into the trip by two ways: greedy resource consumption or moldable resource consumption. To avoid that the heuristic being over-parameterized, we fixed the k-exchange to be 2-exchanges. The heuristic will destroy and reconstitute jobs pair by pair.

Free-form shuffle As an input, given a number of randoms pairs of jobs, noted 𝑛𝑃 𝑎𝑖𝑟𝑠.

For each pair, jobs will be removed from the power strip and then it tries to re-enter the power strip by the Greedy resource consumption (algorithm 7). The algorithm is detailed in 9. Any better feasible solution found during the shake becomes new incumbent. • 𝑃 𝐵𝑊 (𝑥 > 𝑈 ) is the probability the total bandwidth subscribed 𝑈 cannot satisfy all charging demand within off-peak hours; i.e. the probability of the required power bandwidth to assure feasibility is greater than the subscribed power 𝑈 .

• 𝑓 0 (𝑈 ) is the fixed cost of power subscription 𝑈 which is usually linear: 𝑓 0 (𝑈 ) = 𝑈 ×𝑐 0 , 𝑐 0 is the subscription cost per KVA.

• 𝑓 𝑝 (𝑈 ) is the penalty cost while using total power 𝑈 due to earlier start before off-peak hours to satisfy all energy demands.

Optimal power subscription should minimize the cost 𝑈 * = arg min 𝑢 (𝑧(𝑈 )).

Fixed time-horizon simulator

To find the probability 𝑃 𝐵𝑊 (𝑥 > 𝑈 ) one should conduct the fixed time-horizon simulator. As being named, this simulator uses the Greedy Best Fit algorithm in the assumption that the time-horizon is limited during the off-peak hours. The GBF tends to minimize as much as possible the maximum power used for each random instance. All the result of the maximum power used in each instance will be tracked. The statistical result would help us to estimate the distribution of the maximum total bandwidth used. Thus, one can define 𝑃 𝐵𝑊 (𝑥 > 𝑈 ) = 1 -𝐹 𝐵𝑊 (𝑈 ), where 𝐹 𝐵𝑊 (𝑈 ) is the probability cumulative function of maximum total power used. The overall procedure is presented in figure 6-6.

Input: Random parameters

Generate new random scenario

Greedy Best Fit Add minimum required charging power to assure feasible schedule to result array Where E 𝑈 [Δ𝑆𝑡] is the expected duration of the charging operation before the off-peak hours (i.e Δ𝑆𝑡) when the total bandwidth is 𝑈 . Δ𝑐 is the difference of price per kW between peak and off-peak hours. For the sake of simplicity, we note 𝐹 𝐸 (𝑈 ) = E 𝑈 [Δ𝑆𝑡]. Hence the fixed power simulator has a double usage. In strategical level, it can find the value of 𝑓 𝐸 (𝑈 ) among varying 𝑈 to decide the optimal 𝑈 * at the parking installation. At daily operational level, if we limit the real-life data into the most recent events, the parameters for random generator would change so the simulator can compute the expected scheduling length for the next charging operation. Thus, one can decide whether the charging operation has to be shifted earlier or not. The overall procedure is shown in figure 67. The previous section helps us to answer to the two decisions about the power subscription and the daily starting time of the charging procedure. However, the execution of the charging coordination is subject to more uncertainty: the random plugging times of the user and the daily load demand. In this section, we would present how one can deal with those unpredictable events while assuring the performance of the schedule (the total weighted completion time minimisation). First, we introduce briefly the online scheduling.

Sufficient random scenarios generated? Exit

The online scheduling problem is a particular type of scheduling problem when the available information (problem input) becomes available continuously with time. The scheduling algorithm can only calculate a solution with this limited given amount of information, then updates the solution each time it gets new data. The way the scheduling algorithm update the existed solution denotes its decision making policy. Since an online scheduling often required a rapid response for each new information, the scheduling algorithm implemented with the online scheduler should be a fast one. Any deterministic algorithm can serve as the solution procedure for the online schedule problem.

The decision making policies

There exist many policies to face the uncertainties. However, we try to group the decision-making policies into four categories based on the work of Pinedo [60]. The tasks are whether preemptive of non-preemptive. Also, there are two manners to update the baseline schedule: static list and dynamic.

In the static list decision policy, one calculates the schedule baseline only once, at time zero. Then, according to the schedule, one can create a priority list, called static list.

Every time a task is completed, the next task will be executed next according to that static list. However, what happens if the task on top of priority queue has not arrived in the system yet? If tasks are preemptive, then an available task in the system which has the most priority can start without waiting. The scheduler will interrupt these tasks as soon as started keep on charging, and being a constraint for the schedule update. The detailed procedure is displayed on figure 6-12. The online scheduler starts at the "time-zero" decided by the simulation based forecast. Then, it schedules the jobs already available in the system (plugged EV). The charge point executes the resource allocation according to the schedule, and wait for new events. For each new event, the scheduler modifies the set 𝐽 ′ of available jobs in the system and the set Ω of executing jobs. According to the partial rescheduling policy, the deterministic algorithm then schedules the new input The Keyboard and Badge reader identifies the client of the parking. This authentication gives the NEMO information about the customer hence can bill the charging cost properly.

The EVSE supplies the power to the EV charger.

The watt meter which measures the power of each EVSE. It connects directly to the NEMO Box to provide real-time information about the charging power.

The electric supplier watt meter measures in real-time the power bandwidth of the total available power dedicated to the charging procedure. It also communicates in permanent with the NEMO.

The relay is used to control the EVSE: turn on or turn off an EVSE. Furthermore, it can control the power flow to each EVSE.

The modem permits the NEMO to communicate with the server, hence bridging the local to the global management.

In the global management (the information system), we have a management server which communicates with the NEMO box. This server collects information and data on the local parking to let the administrator keep track of any remote events. It also visualises the data for the customers and let the clients, in their turn, sending their request, for example, an immature interruption or fixing another departure time. Figure 7-1 provide more details on the local and the global management of the parking.

Software design

Given a limited bandwidth of communication between the NEMO box and the server, the algorithm has to be implemented locally, on the microprocessor of the NEMO Box. This microprocessor is a Raspberry Pi 2 Model B having 900MHz quad-core ARM Cortex-A7

CPU and 1GB RAM. First, we define the components used in the software implementation:

Operational Management (GO) The management software of the NEMO Box Non-préemption • 𝛼 𝑖,𝑘 état de commencement, 1 si tâche 𝑖 ∈ 𝒥 commence à traiter à l'heure 𝑘 ∈ 𝒯 , 0 sinon.

• 𝛽 𝑖,𝑘 état de complétion, 1 si tâche 𝑖 ∈ 𝒥 se termine à l'heure 𝑘 ∈ 𝒯 , 0 sinon. 

Donc

A.4.5 Bornes duales pour stabiliser la génération de colonne

Pour resserrer la limite inférieure de chaque noeud, nous appliquons la borne duale [START_REF] Vanderbeck | An exact algorithm for IP column generation[END_REF] pour une terminaison anticipée de l'itération de la génération de colonne pour éviter l'effet de rétention, et pour un élagage précoce dans l'arbre dérivé et relié .

Où 𝑧 * 𝑅𝑀 𝑃 est la valeur réelle LP-détendue de l'objectif du problème maître restreint, 𝑐 * Tout d'abord, l'étude de la formulation devrait inclure un cas plus général, où les tâches sont autorisées à avoir des interruptions fixes de 𝑘. Cette formulation améliorerait la valeur objective tout en maintenant une marge de sécurité acceptable pour la batterie.