Caractérisation électrique et optoélectronique de nouveaux matériaux et composants photovoltaïques à partir de techniques AFM - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Electric and optoelectronic characterization of novel photovoltaic materials and device at the nanoscale by AFM

Caractérisation électrique et optoélectronique de nouveaux matériaux et composants photovoltaïques à partir de techniques AFM

Résumé

This thesis focuses on the characterisation of electrical properties of photovoltaic devices by using two scanning probe techniques: conductive atomic force microscopy (c-AFM) and Kelvin probe force microscopy (KPFM). It starts with a study on crystalline silicon (c-Si), and in particular the influence of surface states on the KPFM measurement. The latter was performed in the dark and under light to extract the surface photovoltage (SPV). This study was completed by numerical simulations that allow to extract surface state densities. A second study was focused on nanowire PV devices. These were PIN radial junctions based on hydrogenated amorphous silicon deposited on highly doped c-Si nanowires. We have shown that on nanowire devices that are covered with ITO,SPV measurements could mirror the value of open-circuit voltage (Voc), while the same measurements performed on single nanowires without ITO top coverage are strongly affected by the shadowing of the AFM tip and by the surface states of the amorphous silicon layer. Finally, we were interested in passivating contacts for c-Si solar cells and analysed poly-Si/SiOx/c-Si structures. When the SiOx interlayer is absent, the KPFM scans exhibit very homogeneous surface potential while numerous areas (with diameter less than 1 micron) of lower surface potential are revealed, when the SiOx buffer layer is introduced. These results seem compatible with the presence of nanometric structural inhomogeneities (pinholes) in the SiOx layer that were revealed by other studies.
Cette thèse s’intéresse à la caractérisation des propriétés électriques des dispositifs photovoltaïques (PV) par deux techniques de microscopie à sonde locale : la microscopie à force atomique à pointe conductrice (c-AFM) et la microscopie à sonde de Kelvin (KPFM). Elle commence par une étude sur le silicium cristallin, et plus spécifiquement sur l’influence des états de surface sur la mesure KPFM. Cette dernière a été réalisée à l’obscurité et sous éclairement dans le but d’extraire le photovoltage de surface (SPV). Cette étude expérimentale a été complétée avec de la simulation numérique. Dans une deuxième étude nous avons caractérisé des dispositifs PV à nanofils. Il s’agit de jonctions radiales PIN en silicium amorphe hydrogéné réalisées sur des nanofils de silicium cristallin fortement dopé qui ont été étudiées par KPFM et SPV. Nous avons ainsi pu montrer que sur des dispositifs à nanofils recouverts d’ITO, la mesure de SPV permet de mesurer la tension de circuit-ouvert (Voc). Cette même mesure appliquée sur des nanofils uniques (sans contact ITO en face avant) est fortement influencée par l’ombrage de la pointe AFM et par les états de surface de la couche en silicium amorphe. Enfin nous nous sommes intéressés aux contacts passivants (poly-Si/SiOx/c-Si). Les caractérisations KPFM ont révélé des cartographies de potentiel de surface très homogènes en l’absence de la couche enterrée de SiOx, alors que de nombreuses zones de diamètre inférieur au micron présentent des valeurs de potentiel de surface plus faibles lorsque la couche de SiOx est incorporée dans la structure. Ces résultats semblent compatibles avec la présence d’inhomogénéités structurelles de taille nanométrique (pinholes) dans la couche de SiOx.
Fichier principal
Vignette du fichier
89479_MARCHAT_2020_archivage.pdf (6.07 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02967791 , version 1 (15-10-2020)

Identifiants

  • HAL Id : tel-02967791 , version 1

Citer

Clément Marchat. Caractérisation électrique et optoélectronique de nouveaux matériaux et composants photovoltaïques à partir de techniques AFM. Micro et nanotechnologies/Microélectronique. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASS094⟩. ⟨tel-02967791⟩
328 Consultations
372 Téléchargements

Partager

Gmail Facebook X LinkedIn More