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Introduction

Quantum superpositions and non-locality

The theory of quantum mechanics has been one of the most successful in the history of
physics and is at the origin of numerous discoveries, including the Laser, magnetic resonance
imaging (MRI) and the transistor. It retains however, one hundred years after its develop-
ment, an element of mystery for the general public because it introduces a number of laws
that are counter-intuitive. One consequence of these laws, now widespread in popular cul-
ture, is the "Schrödinger’s cat" thought experiment [1]. Its principle is to imagine the effect of
transposing the phenomenon of quantum superposition to the macroscopic world. Quantum
mechanics posits that if a system, for example a particle, can be in two different states, |0〉
and |1〉, nothing forbids the existence of a state |ψ〉, called a superposition and formalized
as the linear combination |ψ〉 ∝ |0〉 + |1〉, that is intermediate between the two. In the case
where the two states correspond to two possible positions for the particle, the superposition
state is said to be delocalized and the phenomenon is called entanglement. A delocalized
particle can only be described as being at two locations at the same time. Imagining quan-
tum superpositions at our scale leads to absurd results, as it is in particular impossible to
encounter a cat both dead and alive simultaneously.

Central to the discussion is what is meant here by "simultaneously". If one were to mea-
sure the position of a delocalized particle, one would find either one or the other location with
some probability. It is therefore tempting to suppose that the superposition state describes
the situation where the particle is indeed either at one position or at the other, but that its
actual position is simply unknown to the scientist; that perhaps other, possibly inaccessible,
factors have influenced the system to lead it into a final set location. This approach was
followed by Einstein, Podolsky and Rosen, who proposed in 1935 [2] that quantum theory
may be incomplete and that introducing independent local factors, called hidden variables,
should explain all experimental observations. We now know that this is not the case. As was
shown by Bell in 1964 [3], it is possible to devise experiments the result of which can rule out
any local description for an entangled state. Such experiments, called Bell non-locality tests,
have been realized under increasingly stringent constraints by Freedman et al. in 1972 [4],
Aspect et al. in 1982 [5], and, as recently as in 2015, in three separate loophole-free experi-
ments [6, 7, 8] in which almost no assumptions on the systems used were made. The results
of these experiments are unequivocal: it is possible to realize systems, called entangled or
non-local, that cannot be described as the sum of their parts but that have to be considered
as a whole, no matter how distant those subsystems may be.
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Distributing quantum information

While it is remarkable that there is an experimental way to prove non-locality, perhaps
even more surprising is that it finds a wide range of applications. In fact, the idea of har-
nessing the potential of entanglement, along with that of quantum superpositions is central
to the rapidly-growing research field of quantum information [9]. The field can be broadly
divided into two main areas: quantum computation and quantum communication. The first
one aims to use quantum features to obtain a computational advantage over classical sys-
tems. Quantum computing introduces a method for storing information different from that
of classical computers. Instead of using bits "0 or 1" as building blocks for operations, it uses
instead quantum superpositions. In the two-dimensional case they are called qu-bits and can
be expressed as "0 and 1", or:

c0 |0〉+ c1 |1〉 . (1)

The use of qu-bits instead of classical bits increases the range of possibilities for computation
and allows to perform some specific tasks much more efficiently. Two famous examples are
Shor’s algorithm [10] which enables quick integer factorization and Grover’s algorithm [11] for
data exploration. The consequences of the quantum advantage are most striking in the case
of Shor’s algorithm. The RSA cryptosystem [12], widely used to secure communications, is
based on the assumption that factorizing integers is a task that becomes exponentially hard
as the size of the integer increases. As it solves the problem in polynomial time, Shor’s algo-
rithm would effectively render RSA encryption useless.

The field of quantum communications, which is the backdrop to this thesis, provides
thankfully an alternative: quantum cryptography protocols that guarantee unconditionally
secure communications. Since its first protocol, BB84, was introduced in 1984 by Bennet
and Brassard [13], great progress has been made and quantum cryptography is now mature
and commercially available. These protocols solve the issue of secure transmission of classical
information. A more general aim of quantum communication is however the distribution of
quantum information [14]. The problem is fundamentally more challenging because quantum
information can only be stored and transmitted using quantum systems. This introduces
several difficulties. First, it is challenging for a system to keep its quantum features for long
durations or when transported over long distances. The sensibility depends on the system or
the feature considered but as a general rule, a quantum system subjected to 50% of trans-
mission loss, or attenuation, will lose its capability to present a quantum advantage. If one
were for example to use light as a carrier for quantum information and send it using the best
optical fibers currently available [15] (presenting losses of 0.14 dB ·km−1), direct propagation
of quantum information would be limited to 20 km. The second difficulty comes from what is
called the no-cloning theorem [9]. This theorem states that it is impossible to create perfect
copies of an unknown quantum state. As classical error-correction codes are based on redun-
dancy, it is necessary to find adaptations in order to implement their quantum equivalent.

The solution to these two issues is to combine classical-information channels with quan-
tum entanglement in a protocol called quantum teleportation [16, 17]. This protocol, instead
of directly transmitting information, creates a quantum link between two parties via entan-
glement. As we have seen, entanglement between two modes leads to correlations between
measurements performed on each mode. These correlations are used, along with a classical
channel, to project quantum information present at one mode of entanglement onto the other
mode. The process respects the non-cloning theorem because the initial quantum state is de-
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stroyed as a result. Its advantage comes from the fact that entanglement can be propagated
over long distances and still be used for quantum teleportation. The first demonstration of
quantum teleportation was done by Bouwmeester et al. in 1997 [18] and since then it has
been realized over increasing distances, most recently over more than 1400 km from ground
to satellite [19].

Quantum teleportation opens the possibility of realizing quantum networks, where dis-
tant parties could share quantum information. As outlined by Kimble in his 2008 paper
The quantum internet [20], its realization over a large scale with various actors interacting
using different systems presents many challenges. This thesis enters in this general context.
Through combining quantum resources of different nature in a hybrid approach, our research
is aimed at studying quantum communication between parties using dissimilar systems.

Optical hybrid quantum information

This thesis work is focused on the use of light for the transfer of quantum information.
Light is the system of choice for quantum communication because it presents limited interac-
tion with external elements, serves as mediator between diverse quantum platforms and can
benefit from a mature infrastructure that includes fibered networks and satellite links.

There are two complementary strategies for optical quantum information, called the
continuous-variable (CV) and discrete-variable (DV) approaches, respectively linked to light’s
wave-like or particle-like features. In the context of qubits, these two approaches lead to differ-
ent kinds of encoding for quantum information. In the discrete-variable encoding, we consider
states involving single-photons and living in a space of finite dimension [21]. One example is
the superposition |ψ〉 = c0 |0〉 + c1 |1〉, where |0〉 is vacuum and |1〉 is a single-photon. The
continuous-variable approach focuses on encoding information using the quadratures (ampli-
tude and phase) of a light field [22]. An example of qubit using continuous-variable encoding
is the superposition of classical (coherent) light fields |α〉 in opposite phases. Being a super-
position of classical states, this type of qubit is sometimes called optical Schrödinger cat state
and is written:

|ψ〉 = c+ |α〉+ c− |−α〉 . (2)

Although the two strategies have developed in parallel, there has been a growing drive in re-
cent years to combine the two in the optical hybrid approach to quantum information [23, 24].
This hybrid approach has led to a number of innovative experiments jointly exploiting the
benefits of DV and CV systems. Examples include the proposal for the teleportation of CV
states using DV resources [25] and the teleportation of DV qubits using a CV method demon-
strated by Takeda et al. in 2013 [26]. We have followed this direction as well in our group,
notably with the implementation of a CV entanglement witness for DV entanglement [27]
and, in parallel to its demonstration by Jeong et al. [28], the realization of hybrid CV-DV
entanglement in 2014 [29].

Placed in this context, this thesis focuses on two main objectives: the realization of
non-locality tests with hybrid entanglement and the implementation of protocols for the
transmission of quantum information between discrete- and continuous-variable encodings.
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Context and outline of the thesis

I joined the group of Julien as an intern in January 2015 and started my PhD in Septem-
ber of that year. Three PhD students in particular had preceded my arrival, Olivier Morin,
Kun Huang and Hanna Le Jeannic with whom I worked during my first two years at the
laboratoire Kastler Brossel (LKB). The two optical parametric oscillators (OPO) used as
sources of CV and DV quantum states had been installed and calibrated by Olivier [30]
and hybrid entanglement had been realized through the combined work of Olivier, Kun and
Hanna [30, 31, 32]. Since its demonstration, many improvements had been realized on the
experiment, and I joined in the -already well-underway- work of characterizing high-efficiency
superconducting nanowire single-photon detectors (SNSPDs) obtained through a partnership
with NIST and JPL. These highly-efficient detectors opened the possibility of implementing
new experiments based on hybrid entanglement. The objective of my thesis was therefore to
look for new protocols and pursue their implementation.

The first protocols we considered were non-locality tests. I realized a theoretical study
aiming at adapting the Clauser-Horne-Shimony-Holt inequality to hybrid entanglement through
a collaboration with Andreas Ketterer [33] from the group of Perola Millman and Thomas
Coudreau and from discussions with Radim Filip. From there, we next considered the im-
plementation of a Einstein-Podolsky-Rosen Steering test in collaboration with Eleni Dia-
manti and Damian Markham from LIP6. My work was to first adapt the Semi-Definite-
Programming framework to the search of steering inequalities using hybrid entanglement.
Along with Hanna and Jérémy Raskop, who was an intern at the time, we then implemented
the protocol. From the measurements obtained, I performed extensive data analysis and
simulations to evaluate the tomographic uncertainties associated to the protocol. In parallel
to the demonstration of steering, we realized as well the protocol for remote state preparation
as was first reported in [32].

In 2017, I was joined by PhD student Tom Darras and postdoctoral fellow Giovanni Guc-
cione and together we worked on the designing and realization of hybrid quantum telepor-
tation. This entailed significant alterations to the setup, requiring notably the introduction
of a 15 m free-space delay line and a reorganization of the light paths. The setup is close to
fully functional and we have already performed some data acquisition. Finally, we worked
on the installation of a new cooling system for our detectors, a cryo-cooler used to reach
temperatures of 1.5 K.

The present manuscript is organized as follows:

• Part I introduces the theoretical and experimental resources used during the course of
this thesis. In Chapter 1, the theoretical concepts for state creation, characterization
and measurement are presented. The second chapter introduces the functioning of
optical parametric oscillators and illustrates their use in protocols for the generation of
DV and CV non-Gaussian states. Finally, in Chapter 3, SNSPDs are introduced and
I report on the quantum efficiency measurements performed as well as on the cooling
systems used to bring them into the superconducting regime.

• Part II introduces hybrid entanglement of light and the non-locality tests considered
and implemented. In Chapter 4, the protocol for the generation of hybrid entanglement
is presented and we report on the experimental remote state preparation of arbitrary
CV-encoded qubits. In Chapter 5, we start by introducing the results of the theoretical
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study on Bell non-locality tests with hybrid entanglement. We then report on the first
demonstration of quantum steering using hybrid entanglement.

• Part III is devoted to the realization of hybrid quantum teleportation. Chapter 6 intro-
duces the concept of quantum teleportation and entanglement swapping and provides
a detailed study of the difference between encoding used for quantum teleportation.
It also presents our implementation for a Bell measurement using jointly photon sub-
traction and homodyne detection and reports on the expected quality of the protocol.
Chapter 7 concludes the manuscript by detailing the setup used, including the opti-
cal delay line which is presented in details. Finally, it provides preliminary results for
entanglement swapping.
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Chapter 1

Tools and formalism

This chapter aims to introduce the theoretical tools necessary to the understanding of
this thesis. As such, it is far from a complete and rigorous introduction to quantum optics as
was developed in many textbooks. It will serve however as an introduction to the discrete-
and continuous-variable approaches to quantum optics in the context of state description
and characterization. We first give some of the results of field quantization and introduce the
density matrix and Wigner function formalisms. We then consider the problem of quantum
measurements, and introduce usual states and operators in quantum optics. We end the
chapter by presenting experimental methods for quantum state characterization.
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1. THE QUANTUM DESCRIPTION OF LIGHT

1 The quantum description of light

The physical description of light was considered settled in the second part of the 19th
century. Following a wave-like formalism for the electromagnetic field, it is at that time
that the famous Maxwell’s equations laid out the rules governing the interaction between
charged particles and fields. This classical approach indeed provided a successful model for
a wide range of experiments, with only a handful of exceptions. It is one of those exceptions
however –the spectrum of blackbody radiation– that was key to the development of quantum
mechanics in the beginning of the 20th century. In 1901, Planck proposed a model that
accurately predicted the experimental measurements by limiting the accessible energy of the
field to a discrete range of values. Einstein later interpreted this model as a particle-like
description of light where the electromagnetic field is carried by photons of a fixed energy
E = hν, with ν the field frequency and h = 6.62 · 10−34J · s the Planck constant.

The particle and wave descriptions were therefore seen to be appropriate in different
contexts, a property called wave-particle duality. A compromise between the two approaches
can be made by quantizing the electromagnetic field, starting from Maxwell’s equations.
Rather than rigorously derive field quantization as was done elsewhere (see for example [34,
35]), we will only review some of the results relevant to this thesis and then present two
methods for quantum optical state representation.

1.1 Field quantization and modes

1.1.1 The discrete-variable approach

The quantum description of light associates to the electric field an operator Ê. This
operator has to be measurable, therefore hermitian, and should be a solution of Maxwell’s
equations. These requirements are met classically for the particular basis of plane waves
of frequency ω and wave vector k. The quantum formalism introduces the creation â and
annihilation â† operators in order to express the electric field as:

Ê(r, t) = E0(âe−i(ωt−k·r) + â†ei(ωt−k·r)). (1.1)

This mode of the electromagnetic field is defined on an Hilbert space H. The operators â
and â† follow the boson commutation rule [â, â†] = 1 and serve to define the photon number
operator N̂ = â†â. This operator has a discrete set of eigenvalues written |n〉, with n a
positive integer, that follow:

N̂ |n〉 = n |n〉 . (1.2)

These eigenvectors are called the Fock states and describe the electromagnetic field populated
by n photons. The application of the creation (respectively annihilation) operator to a Fock
state increases (respectively decreases) by one its population:

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉 . (1.3)

The Fock states form a complete basis for the Hilbert space H and as such any pure quantum
state |ψ〉 spanning H can be written as

|ψ〉 =
∑
n

cn |n〉 . (1.4)
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The Hamiltonian associated to the electromagnetic field is the one of an harmonic oscillator
and can be written as

Ĥ = h̄ω
(
N̂ + 1

2
)
. (1.5)

We recover from this expression the quantization of the energy of the electromagnetic field.
When populated by n photons, the field has an energy

E(n) = h̄ω
(
n+ 1

2
)
. (1.6)

The use of the Fock basis is therefore a discrete approach. We can, as in equation (1.4), write
a quantum state as a superposition of Fock states. It is therefore considered both in terms
of the number of photons it contains and of its energy that can be computed from (1.6).
Expressing a quantum state in these terms is called the discrete variable (DV) approach.

1.1.2 The continuous-variable approach

The electric field, being a wave, can also be described in terms of its amplitude and phase.
In classical optics, one would accordingly use the Fresnel representation to express the field in
terms of its real and imaginary components. There is an equivalent representation in quan-
tum optics, called phase space representation, that is found by introducing the quadrature
operators x̂ and p̂ defined as:

x̂ = σ0(â+ â†)
p̂ = −iσ0(â− â†). (1.7)

The use of the term σ0 in these definitions solves a normalization issue. There are many
conventions for the expression of x̂ and p̂ that depend on the textbook considered (see [30]
for a thorough account on this). Here we define the operators in terms of σ0, which is equal
to the standard deviation of vacuum fluctuations defined as

〈0| x̂2 |0〉 = σ2
0. (1.8)

Using the quadrature operators, we can rewrite expression (1.1) to:

Ê(r, t) = E0
σ0

(x̂ cos(ωt− k · r) + p̂ sin(ωt− k · r)). (1.9)

The quadratures operators are equivalent to the position and momentum operators of an
harmonic oscillator. From the boson commutation rule of the creation and annihilation
operators, we see that x̂ and p̂ do not commute:

[x̂, p̂] = i2σ2
0. (1.10)

As conjugate observables, they follow the Heisenberg inequality:

∆x∆p ≥ σ2
0. (1.11)

As a consequence, one cannot precisely measure both quadratures simultaneously. There
exists a fundamental quantum noise, even for vacuum. Combining x̂ and p̂ in a single notation,
we call field quadrature operator at phase θ the operator:

x̂θ=̂ cos(θ)x̂+ sin(θ)p̂. (1.12)
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1. THE QUANTUM DESCRIPTION OF LIGHT

The quadrature operators have a continuous set of orthonormal eigenvalues, written |x, θ〉,
that verify

x̂θ |x, θ〉 = x |x, θ〉 . (1.13)

They also respect the completeness relation∫
IR
|x, θ〉 〈x, θ| dx = 1̂. (1.14)

A quantum state can be described in terms of its projection on orthogonal quadratures, for
example |x〉 and |p〉 to obtain the wave-function in the phase space:

ψ(x) = 〈x|ψ〉 ψ(p) = 〈p|ψ〉 . (1.15)

The wave-function of a Fock state can be expressed as:

〈n|xθ〉 = einθ
1

(
√

2πσ02nn! )1/2Hn

( x

σ0
√

2

)
e−(x/σ0

√
2)2/2, (1.16)

where Hn is the n-th Hermite polynomial [36]. The wave-functions are directly linked to the
probability distributions of each quadrature P (x) and P (y), called the marginal distributions.
At a given phase they are defined to be

P (xθ) = |ψ(xθ)|2. (1.17)

By combining the marginal distributions of a quantum state, we can recover all of its features.
The description of a quantum state in terms of its quadratures is called the continuous variable
(CV) approach. We can use it however to recover some of the discrete features of the field,
for example its population:

N̂ = 1
4σ2

0
(x̂2 + p̂2 − 2σ2

0). (1.18)

1.1.3 Combining modes

The quantized expressions of equations (1.1) and (1.9) are valid for a single degree of
freedom of a quantum state. In the general case however, light can have several degrees of
freedom, be it polarization, frequency components or spatial modes. In this case, the total
Hilbert space considered is the tensor product of each mode’s Hilbert space:

H = H1 ⊗H2 ⊗H3 ⊗ · · ·. (1.19)

The multi-modal nature of the field would in this case lead to it being expressed in the form

Ê(r, t) =
∑
k

E0,kâke
−i(ωt−k·r) + h.c., (1.20)

where h.c. denotes the hermitian conjugate. As the modes k live in different Hilbert spaces,
they commute:

[âk, â†k′ ] = δ(k, k′) ∀k, k′. (1.21)

The notation of equation (1.20) suggests a discrete sum, which is the case for different polar-
ization or spatial modes for example, but depending on the nature of the modes considered
it can also be a sum over a continuous set. One important example for this thesis is the case
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of temporal modes. We can define creation operators at a specific time t. Written â†(t), this
operator applied to vacuum will lead to the state "single photon at time t". Equivalently,
we can also define x̂(t), i.e. the quadrature operator at time t. From this we can create a
temporal mode f defined as:

x̂f =
∫ ∞
−∞

f(t)x̂(t)dt. (1.22)

The function f(t) is square-integrable such that
∫+∞
−∞ |f(t)|2dt = 1. The time operators respect

the commutation relations:

[â(t), â†(t′)] = δ(t− t′) and [x̂(t), p̂(t′)] = i2σ2
0δ(t− t′). (1.23)

1.2 State representation

Any pure quantum state can be defined by a state vector. One can however encounter
statistical mixtures, i.e. classical superpositions that cannot be accurately described with
a wave-function. The solution is to use the so-called density matrix [37] that can describe
all possible pure quantum states and mixtures using a single formalism. The density matrix
is fundamentally a DV representation and there is an equivalent in the CV approach: the
Wigner function [38]. We now present both formalisms and some of their properties.

1.2.1 Density matrix

The quantum state of a system can always be characterized by a state vector. In a
practical context however, an experimentalist will most often only have access to part of the
total system. Their lack of knowledge can then be modelled by writing the system they have
access to as a statistical mixture of pure states. This means that the observer measures a
number of pure quantum states |ψk〉 each with probability pk, without knowing the reason
for these observed probabilities. The density matrix is used to combine the formalism of pure
states and the possibility of seeing classical superpositions. In the case of a pure state, it is
defined as

ρ̂ = |ψ〉 〈ψ| . (1.24)

In the most general case, we can write any measured quantum state as

ρ̂ =
∑
k

pk |ψk〉 〈ψk| . (1.25)

It can be rewritten on the Fock basis, on which it can present both diagonal terms, called
populations, and cross terms of the form |n〉 〈m| called coherences:

ρ̂ =
∑
n,m

cn,m |n〉 〈m| . (1.26)

The populations give directly the probability of being in a given pure state. The coherences
on the other hand are the terms that reflect the presence of quantum superpositions.

The density matrix has several properties:

• From equation (1.25), as the sum of probabilities is equal to one, we have

Tr(ρ̂) = 1. (1.27)
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1. THE QUANTUM DESCRIPTION OF LIGHT

• Equation (1.25) also ensures that the density matrix is hermitian:

ρ̂† = ρ̂. (1.28)

• The density matrix is diagonalizable and positive semi-definite, i.e. it only possesses
non-negative eigenvalues.

• To compute the expectation value of any operator Â, we take the trace of their product:

〈Â〉 = Tr(Âρ̂). (1.29)

The density matrix is a convenient tool for state characterization as it allows to compute
several key parameters. Some we will consistently use are:

• The state purity. This parameter allows to quantify the distance between the measured
state and a pure state. It is defined as:

P = Tr(ρ̂2) =
∑

p2
k. (1.30)

• The fidelity between two states. In the case where an experiment’s goal is the generation
of a specific target state ρ̂t, the fidelity is used to quantify the distance between the
measured ρ̂ and target density matrix. It is defined in the case of pure states as:

F(ρ̂, ρ̂t) = Tr(ρ̂ρ̂t) = |〈ψ|ψt〉|2. (1.31)

In the general case, it is expressed as [39]:

F(ρ̂, ρ̂t) =
(

Tr
(√√

ρ̂ρ̂t
√
ρ̂
))2

(1.32)

Because of its structure, the density matrix is mostly a DV tool for state representation and
characterization. From equation (1.29) we can see that it can also be used to compute CV
features. One example is the marginal distribution of a given state:

P (xθ) = 〈x, θ| ρ̂ |x, θ〉 . (1.33)

1.2.2 The Wigner function

The phase space wave-functions introduced in equation (1.15) can be jointly used to char-
acterize a quantum state. From them one can indeed compute the marginal distributions of
a state, i.e. the probability of observing a given quadrature result. Much like the density
matrix is a single DV tool containing all the information of a quantum state, the Wigner
function was introduced as a single mathematical object from which all the marginal distri-
butions of the field can be recovered. Although less frequently used than the density matrix,
the Wigner function is a more visual representation of a quantum state. It depicts the effect
of imperfections such as loss or phase noise in a visual way and the formalism it introduces
simplifies their computation.

The Wigner function, written W (x, p), can be defined analogously to a classical phase
space-distribution. It is a function of x and p that cannot be measured directly but its
integration over a single quadrature leads to the marginal distribution on its conjugate:

P (xθ) =
∫
W (xθ, pθ)dpθ. (1.34)
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Unlike a classical probability distribution, it can present negative values. This feature is
fundamentally quantum and leads one to see the Wigner function as a quasi-probability dis-
tribution. From (1.34), we see that, as for the density matrix, all the information contained
in a state is accessible from the Wigner function. Both tools are therefore equivalent, and
are related by the equation:

Wρ̂(x, p) = 1
2πσ2

0

∫
eiyp/σ

2
0 〈x− y| ρ̂ |x+ y〉 dy. (1.35)

The Wigner function is linear with ρ̂. We can therefore reconstruct it using the Fock space
decomposition of a state as in equation (1.26), using

Wρ̂(x, p) =
∑
n,m

cn,mW|n〉〈m|(x, p) (1.36)

and

W|n〉〈m|(x, p) = (−1)m
2πσ2

0

√
m!
n!
(
x−ip
σ0

)n−m
e−(x2+p2)/2σ2

0Ln−mm

(
x2+p2

σ2
0

)
, if n ≥ m. (1.37)

In the case where n < m, we have

W|n〉〈m|(x, p) = W|m〉〈n|(x,−p). (1.38)

Some of its properties will be useful for this thesis:

• The Wigner function of hermitian operators is real over the whole phase space.

• It is normalized to one after integration over x and p:∫∫
IR2

W (x, p)dxdp = 1. (1.39)

• The expectation value of an operator Â is found by integrating the product between the
Wigner functions of the state and of Â. This is a special case of the overlap formula.

〈Â〉 = 4πσ2
0

∫∫
IR2

WÂ(x, p)Wρ̂(x, p)dxdp. (1.40)

• In the case where at least one of two states ρ̂t and ρ is pure, the fidelity between the
two can be computed as:

F(ρ̂, ρ̂t) = Tr(ρ̂ρ̂t) = 4πσ2
0

∫∫
IR2

dxdpWρ̂t(x, p)Wρ̂(x, p). (1.41)

• In some cases, it is useful to express the Wigner function as the expectation value of the
displaced parity operator Π̂(α). This operator is defined as the product of displacement
operators D̂(α) (see section 3) with the parity operator P̂ = eiπN̂ :

D̂P (α) = D̂(α)P̂ D̂(−α). (1.42)

Using the shorthand Wρ̂(α) = Wρ̂(Re(α), Im(α)), we indeed have [40]:

Wρ̂(α) = 1
2πσ2

0
〈ρ̂D̂P (α)〉. (1.43)

Having introduced the formalism for quantum states, we now consider the problem of quan-
tum measurements.
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2 Quantum measurements

It is one of the oddities of quantum mechanics that the theory governing the evolution
of a quantum system cannot be simply used to describe a measurement apparatus. Indeed,
the usual approach is to define quantum measurements in a postulate separate from the
rest of the theory. The difficulty lies in the role of measurements: they provide a link
between a microscopic quantum experiment and a macroscopic classical observer. A fully
quantum description of the process breaks down along the way. Although there is still
ongoing debate about the physical meaning of quantum measurements, we will simply use
the efficient formalism of generalized quantum measurements and positive operator valued
measures (POVM) operationally. We then apply the formalism to the particular examples of
single-photon detection and quadrature measurements.

2.1 Generalized quantum measurements and POVMs

In its simplest form, a measurement is an operation on a quantum state |ψ〉 that leads to
a result directly linked to a physical quantity. The formalism corresponding to this situation
is that of observables: operators Â that present a number of eigenvalues λ corresponding
to possible measurement results and associated orthogonal eigenvectors |ψλ〉 on which the
quantum state is projected after the measurement. Observables are projectors and can be
expressed as

Â =
∑
λ

λ |ψλ〉 〈ψλ| . (1.44)

This model for measurements notably implies that right after the measurement has been
performed, a new measurement will lead to the same result. This formalism however is inap-
propriate for many practical experiments. Let us take for example the case of the detection
of a photon on a screen. After detection, its position has been determined but cannot be
measured again, the photon being destroyed. This is an example of a destructive measure-
ment, a property shared by most of the measurements we consider in this thesis. There are
also other experimental situations where the formalism isn’t appropriate, for instance when
one doesn’t directly measure a physical quantity but aims to distinguish between different
quantum states (see [9] for details).

Generalized measurements address these problems by approaching the concept from the
viewpoint of the results rather than the physical quantity characterized. A general measure-
ment is defined as a set of operators {M̂m}, where m is a measurement outcome, that do not
have to be projectors, orthogonal, or even hermitian. They only satisfy:∑

m

M̂ †mM̂m = 1̂, (1.45)

and are such that the probability of observing the result m is equal to

p(m) = Tr(ρ̂M̂ †mM̂m). (1.46)

Generalized measurements provide an expression for the quantum state obtained after a
measurement. As we have said however, in all of our experiments we are either in the case
where the measurements are destructive or where we don’t worry about the state after they
have been performed. In these cases, it is convenient to completely ignore the effect of the
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measurement on the input state and to use the formalism of positive operator valued measures
(POVM). A POVM {Π̂m} is defined from a general measurement as

Π̂m = M̂ †mM̂m ∀m. (1.47)

POVMs are hermitian but not necessarily projectors or normalized. When the two latter
properties are true, they are identical to observables. From equation (1.45), we have:∑

m

Π̂m = 1̂. (1.48)

And we can compute their expectation value using

p(m) = Tr(ρ̂Π̂m). (1.49)

Notably, POVMs being hermitian, their Wigner function is real and can be used to visually
access some of their properties. We have as well the equation:

p(m) = 4πσ2
0

∫∫
IR2

WΠ̂m(x, p)Wρ̂(x, p)dxdp. (1.50)

Let us consider two examples of POVMs to illustrate their use.

POVM of an on-off detector. The on-off detector model is well suited to describe most
current single-photon detectors and in particular the superconducting nanowire single-photon
detectors (SNSPD) used in our experiment (see chapter 3). The detection of one or more
photons leads to a "click", while no click corresponds to the measurement of vacuum. The
corresponding POVM is therefore the set of two operators:

Π̂no click = |0〉 〈0| and Π̂click = 1̂− |0〉 〈0| . (1.51)

This expression is valid in the case of perfect detectors without losses. The general case can
be found by introducing a model for losses such as the one of section 3.1.3 in the expression
of the detection operator [30].

POVM of a quadrature measurement. As we will see in section 4, quadrature measure-
ments can be performed using homodyne detection. The POVM of a quadrature measurement
at phase θ is in this particular case the continuous set {Π̂x,θ}x such that

Π̂x,θ = |x, θ〉 〈x, θ| ∀x. (1.52)

And indeed this satisfies (1.48). We can also build POVMs from linear combinations of
operators. A relevant example is the case where one considers a special detector that performs
quadrature measurements at phase 0 and "clicks" when it measures a quadrature x between
two values x1 and x2. The corresponding POVM is

Π̂click =
x2∫
x1

|x〉 〈x| dx and Π̂no click = 1̂−
x2∫
x1

|x〉 〈x| dx. (1.53)
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2.2 Conditional preparation of a quantum state

An essential use of the POVM formalism for this thesis is the effect of conditioning on the
result of measurements made on one mode of a bipartite state. Let us consider a two-mode
state ρ̂AB shared by two parties, Alice and Bob, and assume that we perform a measurement
on Alice’s mode. The measurement is modeled by the POVM {Π̂(m)

A }m. If Alice obtains the
outcome m, then Bob’s mode is projected to:

ρ̂
(m)
B = TrA(Π̂(m)

A ρ̂AB)
Tr(Π̂(m)

A ρ̂AB)
. (1.54)

Here we used the notation TrA for the partial trace on mode A. This property can be used to
conditionally prepare specific quantum states. One only needs to wait for the measurement
of m to herald the presence of ρ̂(m)

B . Such a protocol presents the disadvantage of being
probabilistic. With the Wigner formalism we can also write

W
ρ̂

(m)
B

=

∫
AWΠ̂(m)

A
Wρ̂AB∫

ABWΠ̂(m)
A
Wρ̂AB

, (1.55)

where
∫

A symbolizes the partial integration on the phase space of mode A.

In this thesis we report on experiments where we condition on single or multiple on-off
detections and quadrature measurements. The expression of equation (1.55) highlights an
important property of conditional preparation. In order to prepare a state with a negative
Wigner function, either the input two-mode state or the measurement performed needs to
have a negative Wigner function. On-off detection does present negativity of the Wigner
function and can be used to prepare fundamentally quantum states. On the other hand
quadrature conditioning can only lead to positive Wigner functions.

3 The usual suspects in quantum optics

In this section, we present the operators and states that will be most commonly used in
this thesis. We will provide some of their properties and introduce their Wigner functions.
Finally, we will consider two purely quantum features: entanglement and non-Gaussianity.

3.1 Useful states and operators

We detail therein useful quantum states and associated operators.

3.1.1 Fock states

We have already introduced in section 1 the Fock states |n〉 as eigenstates of the photon
number operator. As such, they have a fixed population and form a complete basis, called
the Fock basis. Their Wigner function is given by:

W|n〉〈n|(x, p) = (−1)n
2πσ0

e−(x2+p2)/2σ2
0Ln

(
x2+p2

σ2
0

)
. (1.56)
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|0〉

|1〉

|2〉

|3〉

Figure 1.1: Wigner function of the first four Fock states. All except vacuum present negativity.
In the case of odd states the maximum of negativity is at the center of phase space.

The Wigner function of the first four Fock states is plotted in Figure 1.1. We see that apart
from vacuum, they all present negativity of the Wigner function. In the case of odd Fock
states, the maximum negativity is at the origin of phase space. We indeed have

W|n〉〈n|(0, 0) = (−1)n
2πσ0

. (1.57)

3.1.2 Coherent states and displacement operator

The coherent states are fields that, as vacuum, can be described with a classical phase
distribution and provide a good approximation for what is outputted by a powerful laser
(i.e. populated by more than a few photons). The coherent states are eigenstates of the
annihilation operator.

â |α〉 = α |α〉 . (1.58)
As such they are unaffected by photon subtraction. Their average population is

〈N̂〉 = |α|2. (1.59)
They can be defined from the displacement operator:

D̂(α) = eαâ
†−α?â. (1.60)

The displacement operator is named this way because when applied to vacuum it corresponds
to a translation in phase space by the vector (2σ0 Re(α), 2σ0 Im(α)). All coherent states are
actually displaced vacuum

|α〉 = D̂(α) |0〉 . (1.61)
As a result, their Wigner function is the same as that of vacuum, i.e. a fully symmetric
Gaussian function, but translated in phase space in a direction determined by α. Two close
coherent states will present overlap in their Wigner function. As the function is positive
everywhere, coherent states are not orthogonal

|〈α|β〉|2 = e−|α−β|
2
. (1.62)

They can be used however as a non-orthogonal overcomplete basis as they follow the com-
pleteness relation

1
π

∫
C

|α〉 〈α| d2α = 1̂. (1.63)

Finally, we have the useful relation giving the decomposition of a coherent state on the Fock
basis:

|α〉 = e−|α|
2
∞∑
n=0

αn√
n!
|n〉 . (1.64)

13



3. THE USUAL SUSPECTS IN QUANTUM OPTICS

ρ̂a

a
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ρ̂ηa

a
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|0〉bI

t =
√
η

Figure 1.2: Model for transmission losses. The transmission channel a is coupled to an external
mode b representing the environment using a beam-splitter of transmission t = √η.

3.1.3 Beam-splitter operator and model for transmission losses

The beam-splitter operator provides a quantum model for a beam-splitter, i.e. a device
that couples two optical modes a and b. Its expression is

B̂(θ) = eθ(â
†b̂−âb̂†). (1.65)

The reflection and transmission coefficients are defined from θ as

t = cos θ and r = sin θ. (1.66)

A convenient way to model the effect of the beam-splitter is to look at how the creation
operators are transformed under its application:

â† → tâ† + rb̂†

b̂† → tb̂† − râ†. (1.67)

We now look at a particularly useful example: a model for transmission losses presented in
figure 1.2. We start from a quantum state ρ̂a propagating on a channel a. Losses occur
because the state interacts in a complicated way with the environment. This interaction can
however be approximated by a simple model. A beam-splitter of transmission t = √η couples
mode a with a single external mode b populated by vacuum. The evolution is therefore

ρ̂a ⊗ |0〉 〈0|b −→ B̂η(ρ̂a ⊗ |0〉 〈0|b)B̂†η. (1.68)

In the case of a propagating single photon, we have

â† → √ηâ† +
√

1− ηb̂†. (1.69)

The input state |1〉a therefore becomes

|1〉a −→ |1η〉ab =̂√η |1〉a |0〉b +
√

1− η |0〉a |1〉b . (1.70)

Only mode a is of interest after interaction, we therefore complete the model by tracing out
mode b:

|1η〉a = Trb(|1η〉 〈1η|ab)
|1η〉a = η |1〉 〈1|a + (1− η) |0〉 〈0|a . (1.71)
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0 dB 3 dB 5 dB 8 dB

Figure 1.3: Wigner function of squeezed vacuum states for different squeezing factors.

3.1.4 Squeezed vacuum states

The states we considered so far present the same amount of noise fluctuations no matter
the quadrature considered. In the case of vacuum, we have

∆x = ∆p = σ0. (1.72)

Vacuum fluctuations are as low as the Heisenberg inequality allows. It is possible however
to squeeze vacuum so that one of the quadratures will present fluctuations below the shot
noise, at the expense however of the orthogonal quadrature, characterized as anti-squeezed.
A squeezed vacuum state is characterized by its squeezing factor s, defined as

∆x =
√
sσ0 ∆p = 1√

s
σ0. (1.73)

The Wigner function of squeezed vacuum is accordingly the product of two Gaussian functions
of x and p with different variances:

WSqVac(x, p) = 1
2πσ2

0
e
− x2

2sσ2
0
− sp

2

2σ2
0 . (1.74)

We show in figure (1.3) the Wigner function of several squeezed vacuum states with different
squeezing factors. In this figure and elsewhere, we typically give the squeezing amount in dB:

sdB = −10 log10 s. (1.75)

We can also write squeezed vacuum on the Fock basis

|SV〉 = (1− λ2)1/4
∞∑
n=0

(
2n
n

)1/2(λ
2
)n
|2n〉 . (1.76)

where we introduced
λ = 1− s

1 + s
. (1.77)

Squeezed vacuum is called even because its decomposition is only on even Fock states. The
population of squeezed vacuum increases close to linearly with the squeezing factor

〈N̂〉 = 1
4
(
s+ 1

s
− 2

)
. (1.78)

We can also write the squeezed vacuum state as the result of the application of a single-mode
squeezing operator ŜI(ζ) on vacuum:

|SV〉 = Ŝ(ζ) |0〉 , (1.79)
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|α|2 = 1 |α|2 = 2 |α|2 = 3

|cat−〉

|cat+〉

Figure 1.4: Wigner function of odd and even cat states of varying sizes.

where the squeezing operator is defined as

Ŝ(ζ) = e
ζ
2 (â2−(â†)2). (1.80)

Squeezing by a sdB amount corresponds to ζ such that

ζ = ln 10
20 sdB. (1.81)

Two-mode squeezed vacuum. Two-mode squeezed vacuum is the state obtained when
mixing two single-mode squeezed vacuum states on a balanced beam-splitter. The result is
a linear combination of pairs of identically populated Fock states in two different modes:

|TMSV〉AB = (1− λ2)1/2
∞∑
n=0

λn |n〉A |n〉B . (1.82)

This state will be key to our protocols for Fock state generation. We can define as well a
two-mode squeezing operator such that

|TMSV〉AB = ŜII(ζ) |0〉A |0〉B . (1.83)

This operator has a similar expresssion to the single-mode squeezing operator but uses cre-
ation and annihilation operators of two modes â, â†, and b̂, b̂†:

ŜII(ζ) = e
ζ
2 (âb̂−â†b̂†). (1.84)

3.1.5 Optical Schrödinger cat states

The name of these states is a reference to Schrödinger’s thought experiment [1] where
a macroscopic protagonist –in this case, a cat– would be subjected to the laws of quantum
mechanics. By entangling "its state" with that of a quantum system in superposition, one
would get the absurd result of a cat dead and alive at the same time. In quantum optics, the
coherent states are the closest we have to a classical system. By increasing |α|, one indeed
obtains the macroscopic field at the output of a laser. As a result, we call the superposition
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of two coherent states in opposite phases an optical Schrödinger cat state. The reasoning is
that they are a superposition of two incompatible classical states, that at the limit of |α| � 1
are macroscopic. We define cat states as

|catφ〉 = 1
Nφ

(|α〉+ eiφ |−α〉), (1.85)

with the norm Nφ depending on the phase of the superposition and equal to

Nφ =
√

2(1 + cosφe−2|α|2). (1.86)

In practice, this state is not macroscopic and can be realized optically only for relatively lim-
ited values of |α|. An important feature they need to have however is a small overlap between
|α〉 and |−α〉, which is achieved when |α| > 1. Indeed for |α| = 1, we have |〈α|−α〉|2 ∼ 2·10−2

and for |α| = 2, we have |〈α|−α〉|2 ∼ 3 · 10−4. At smaller values of |α| we talk instead of
Schrödinger kittens.

Two useful examples are the odd and even cat states, |cat−〉 and |cat+〉, which have the
following decomposition on the Fock basis

|cat−〉 = |catπ〉 = 2
N−

e−|α|
2/2

∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1〉

|cat+〉 = |cat0〉 = 2
N+

e−|α|
2/2

∞∑
n=0

α2n√
(2n)!

|2n〉 . (1.87)

The Wigner functions of cats of varying sizes is shown in figure 1.4. For |α|2 > 1 we see
the two Gaussian peaks corresponding to the two coherent states. The difference to a clas-
sical superposition is evident however from the fringes observed close to the origin of phase
space. These fringes are a strong evidence of non-classicality and make these states useful
for quantum protocols.

3.2 (Non-)Gaussianity

As we have mentioned before, the Wigner function can only be called a quasi-probability
distribution because it can present negative values (see [41] for a visual analogy of the phe-
nomenon). Interestingly, it can be shown that this negativity is a requirement for a number
of quantum protocols. In the framework of quantum computing, it is for example neces-
sary to have states or operators whose Wigner function is negative if one wants to perform
an operation that cannot be efficiently modelled classically. Another relevant example for
this thesis is that of entanglement purification which is impossible without negativity of the
Wigner function.

If one looks at the plots we have presented in the preceding section, one may notice that all
the states without negativity of the Wigner function have a Gaussian distribution in phase
space. This is in fact a general result called the Hudson-Piquet theorem [42]. No matter
the pure state considered, its Wigner function is positive everywhere if and only if it is a
Gaussian function. As a result we will tend to divide quantum states and operators in two
categories called Gaussian and non-Gaussian depending on the existence of negative values of
the Wigner function. This characterization is directly linked to the capabilities of a quantum
state and, as the name of our group suggests –"The non-Gaussian team"–, we generally aim
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for the realization of quantum states with negative values of the Wigner function.

Note that although the Hudson-Piquet theorem is true for all pure states, as soon as one
considers experiments, i.e. mixed states, the equivalence breaks down. For example, let us
consider a lossy single photon. The addition of losses means observing a mixed state between
vacuum and single photon. The resulting Wigner function will be the weighted sum of the
Wigner function of both states. As vacuum is Gaussian, there will come a point where no
negativity of the Wigner function is observed, although the state does not follow a Gaussian
distribution. The negativity remains in this case a necessary feature for some protocols so
the effect of losses has to be closely monitored in experiments. In general, as soon as one
observes more than 50% of losses, negativity of the Wigner function cannot be observed.

3.3 Entanglement

Another fundamentally quantum phenomenon will be of particular interest for this the-
sis: entanglement. As was shown for example in the expression of two-mode squeezed vac-
uum (1.82), it is possible to encounter states that are inseparable. This is in opposition to
separable states that can be expressed in the following way:

ρ̂AB =
∑
k

pkρ̂A ⊗ ρ̂B. (1.88)

This equation formalizes the fact that a separable state can be defined as the combination
of one or more subsystems considered independently. An inseparable state is referred to as
entangled, which hints at the fact that it is not possible to consider its two modes separately.
Entanglement and its consequences have been historically hard to accept [2], but is now ex-
perimentally proven and constitutes a key part of many protocols for quantum information
and communication. One consequence of entanglement, non-locality, will be introduced and
developed in Chapter 5 when we consider Bell and quantum steering inequalities. Another
practical protocol using entanglement is quantum teleportation which will be central to chap-
ters 6 and 7.

Here we only provide the expression of a specific quantifier of entanglement, negativity of
entanglement. This figure of merit serves to characterize the quality of protocols where the
generation of entanglement is the goal. It is defined as

N (ρ̂AB) = ||ρ̂
TA
AB|| − 1

2 , (1.89)

where ρ̂TAAB is the partial transpose of ρ̂AB relative to mode A and ||X|| is the trace norm:

||X|| = Tr(
√
X†X). (1.90)

Entanglement negativity is a convex function that increases monotonously with entanglement.
Importantly, it cannot be increased by local operations on a single mode. Even though other
figures of merit exist, N is the one we will most consistently use, except in the cases where
we go further and demonstrate steering inequality violation.
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4 Quantum tomography

We have introduced so far some operators and states that we will be able to perform
and create experimentally. The question remains of how to verify experimentally the quality
of the created states or how to check that the desired operators have indeed been applied.
The solution in our case is to perform state characterization via quantum tomography. The
process of tomography is used in the classical world of medical imaging to obtain an image
of a three-dimensional object from the measurement of its projections on different 2D planes.
In Greek, τoµóς means a cut, which indeed is linked to the process of measuring different
sections of an object to deduce its shape.

In the quantum optical version of tomography, the object we want to reconstruct is the
Wigner function of a state and we do so by measuring its marginal distributions at different
quadratures. There are two steps to this process. First, the measurement of the marginal
distributions is performed using the experimental tool of homodyne detection. Second, from
the set of quadrature measurements obtained, one has to infer the shape of the Wigner
function. This inference is performed by maximizing a parameter called the likelihood. This
parameter is a measure of the probability of getting the experimental results depending on
the state measured.

In this section, we introduce first the principle of a homodyne detector and then the now-
standard method used to recover the Wigner function of the state: the Maximum-Likelihood
optimization process.

4.1 Homodyne detection

Homodyne detection is an interferential method for the measurement of quadratures. The
principle is shown in figure 1.5. The state to characterize is ρ̂s. It interferes with a high-power
field called the local oscillator (LO) on a balanced beam-splitter. The two output-ports of
the beam-splitter are coupled to two photo-diodes, labeled 1 and 2, that record the field’s
power. The measurement is completed by subtracting the photo-currents of the two photo-
diodes which gives a signal proportional to the quadrature of the field at the relative phase
of the LO. To understand the process, we now detail the different steps using the formalism
introduced in section 1.

To recover the operator corresponding to the total measurement, we first consider the
expression of the annihilation operators in the two modes coupled to the photo-diodes, written
â1 and â2. From the expression (1.67), we have

â1 = 1√
2

(âLO + âs)

â2 = 1√
2

(âLO − âs). (1.91)

The photo-currents i on both photo-diodes measure the field’s power and are therefore pro-
portional to the number operator. In consequence, we can write the corresponding operators
Îi as

Î1,2 ∝ â†LOâLO + â†sâs ± â†LOâs ± â†sâLO. (1.92)

And then, subtracting the photo-currents, we have

Î1 − Î2 ∝ â†LOâs + â†sâLO. (1.93)
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Figure 1.5: Setup for homodyne detection. The quantum state to characterize ρ̂s is mixed with
a high-power field called the local oscillator

∣∣αeiθ〉 on a balanced beam-splitter. Two photo-diodes
placed at the output ports of the beam-splitter provide a photo-current proportional to the field’s
power. The subtraction of the two photo-currents is equivalent to a quadrature measurement.

After subtraction, only the interference terms between modes s and LO remain. One simpli-
fication can then be made because the LO is a powerful coherent state

∣∣∣αeiθ〉. This allows
us to make the approximation âLO ≈ αeiθ, from which we get

Î1 − Î2 ∝ αe−iθâs + αeiθâ†s.

Î1 − Î2 ∝ αx̂θ. (1.94)

This simple-in-principle apparatus therefore performs a quadrature measurement, amplified
by the power of the local oscillator. It is the tool of choice for quantum tomography of optical
fields.

4.2 Maximum-Likelihood reconstruction

Several methods for the reconstruction of the quantum state from tomographic measure-
ments have been introduced over the years (see [30]). Since its introduction in 2004 [43] in the
context of quantum optics, the iterative maximum-likelihood (ML) reconstruction method
has however become standard. Some of its advantages include the fact that it forces the result
to be a physical state (meaning in this case that it leads to a density matrix with positive
diagonal elements) and that it has a high accuracy. It also enables the experimentalist to
correct for losses.

Tomographic reconstruction requires accumulation of data. In our context, as homodyne
detection performs x̂θ but destroys the quantum state, it means we have to create the states
we want to characterize a great number of times. Then at each creation we can measure a
different quadrature and from the total data set we can find the most likely state to have led
to all these measurements. The principle of ML is the following.

We have a set of N quadrature measurements {xn, θn}n, where θn is the local oscillator
phase at event n and xn the corresponding measured quadrature value. From this set we
build the likelihood function L(ρ) defined as

L(ρ̂)=̂
N∏
n=1

Tr(ρ̂ |xn, θn〉 〈xn, θn|). (1.95)
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This function is the product of the probabilities of observing each measured POVM |xn, θn〉 〈xn, θn|
when starting from a given state ρ̂.

The ML process is an iterative procedure that will explore different possible quantum
states ρ̂i and find the state ρ̂ML that maximizes L. It requires the experimentalist to choose
the dimension d of the Hilbert space he wants to explore. The algorithm is the following,
starting from a density matrix ρ̂0 = 1

d1, we compute recursively new normalized density
matrices following

ρ̂n+1 ∝ R̂(ρ̂n)ρ̂nR̂(ρ̂n), (1.96)

where the projectors R̂(ρ̂) are defined as

R̂(ρ̂) =
N∑
n=1

|xn, θn〉 〈xn, θn|
Tr(ρ̂ |xn, θn〉 〈xn, θn|)

. (1.97)

Making the assumption that the algorithm converges after a reasonable amount of time, it
has to lead to the state ρ̂ML such that

ρ̂ML ∝ R̂(ρ̂ML)ρ̂MLR̂(ρ̂ML), (1.98)

or, equivalently, such that R̂(ρ̂ML) → 1, meaning that the probability of observing each
measurements approaches 1/N in the case where we explore the complete set of quadratures.
Although strict convergence can be reached only after an infinite number of measurements,
in practice we can efficiently get close to convergence.

Taking losses into account. One advantage of the recursive procedure is that it is pos-
sible to correct for losses directly with the algorithm. How can we justify loss correction?
Typically, the homodyne detection process is imperfect and introduces some losses into the
measured state. As these losses are independent from the state and completely dependent
on our measurement setup, correcting for them gives a fair assumption of the created state.
This is of course something to use conservatively as too much loss correction will lead to over-
estimation of parameters of impact such as Wigner or entanglement negativity. In practice,
we limit ourselves to 15% of correction, an underestimation of the losses introduced by our
experimental homodyne setup.

The procedure for correction is to modify the projectors |xn, θn〉 〈xn, θn| so that they in-
clude the losses, in effect changing the expression of the measurements into lossy quadrature
operators. The exact expressions for the transformation are detailed in [30].

The challenge of error estimation. The process of tomographic reconstruction in gen-
eral presents one great drawback in terms of error estimation. The density matrix or Wigner
function of a quantum state contains all the possible information one can recover from mea-
surements performed on the state. Tomography goes in the opposite direction, as from a
finite number of measurements it aims to deduce the most-likely observed quantum state.
The drawback is that the end result of an experiment is very often a parameter one has to
deduce from the quantum state, for example the negativity of the Wigner function at the
origin, the state population, entanglement negativity... As such, it is very hard to know
the effect a small error in reconstruction will have on the final parameter of impact. When
possible, one should acquire as much data as possible. The accumulation of data over a long
period brings however issues of its own as the natural fluctuations of the experiment will
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result in a degradation of the reconstructed state if we combine data over longer periods.
In the usual experimental cases, we use the threshold of 50000 events for single mode

states and 100000 for two-mode states. These values give us consistent results over different
experiments and lead to reasonable errors in parameters such as negativity of the Wigner
function or negativity of entanglement. In some specific cases however, accumulating this
many events is impossible. The violation of steering inequalities in Chapter 5 is one example,
and we use in that case the method of quantum error bars [44]. The process, as it will be
introduced in that chapter, is very time-consuming and cannot be performed systematically.
Depending on the situation, we will therefore justify the need for such a complete assessment
of uncertainties. In most cases this will not be necessary.

5 Conclusion
In this chapter we have introduced some useful theoretical tools, starting from field quan-

tization to the description of quantum tomography. We have in particular presented the
concepts of non-Gaussian states which are central to this thesis. Most experiments we report
on in this thesis make use of this type of states and operations in various contexts.

Having introduced mostly theoretical aspects, we will now consider the experimental pro-
tocols used for the generation of non-gaussian states. One particular experimental tool is
central to our methods: the optical parametric oscillator. This resource enables the gener-
ation of single-mode and two-mode squeezed vacuum. The next chapter will introduce this
key resource and then report on its use in protocols allowing the creation of discrete- and
continuous-variable states.
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Chapter 2

Generation of non-Gaussian states

In the field of quantum optics, optical parametric oscillators (OPOs) are uniquely useful
experimental tools as they enable the generation of both single- and two-mode squeezed
vacuum states. The quantum correlations that those states exhibit make them reliable sources
of entanglement [45] and they can be used to perform sensitive measurements beyond the
quantum limit [46]. In our experiment, they are key to the creation of non-Gaussian states,
the fundamental resource for many quantum information protocols.

In this chapter, we will present the theory of OPOs and their use for the generation of
both discrete- and continuous-variable states of light. The first protocol we will detail is
the heralding of high-purity single photons. While comparatively simpler, this protocol is a
building block for all the experiments that will be presented in this thesis and makes for a good
introduction to our experimental methods. After extending the protocol to the creation of
higher-dimensional Fock states, we will also present a method for the creation of Schrödinger
kitten states. These first protocols for non-Gaussian state generation are stepping stones to
the creation of hybrid entanglement of light that is central to this thesis work.
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1 Optical parametric oscillators as squeezing resources

The generation of both single and two-mode squeezed vacuum states is at the heart
of our non-Gaussian state creation process. We introduce here the resources that enable
the generation of squeezed vacuum states: optical parametric oscillators (OPO). We will
first quickly introduce the theory of OPOs and then give a detailed presentation of the
specifications of the two specific devices used during the course of this thesis.

1.1 Parametric down-conversion and phase-matching condition

The physical phenomenon central to the behavior of OPOs is spontaneous parametric
down-conversion (SPDC), which requires the use of a non-linear medium presenting a second-
order non-linear susceptibility χ(2). This process consists in the conversion of a pump photon
of frequency ω0 into two photons (signal and idler) of lower frequencies ω1 and ω2. Parametric
down-conversion can be observed if two conditions are met:

• ω0 = ω1 + ω2, required to ensure energy conservation.

• ~k0 = ~k1 +~k2, or equivalently in the case of co-linear fields n(ω0)ω0 = n(ω1)ω1 +n(ω2)ω2.
This is the phase matching condition that maximizes the conversion process efficiency.

Fulfilling both requirements is impossible in a normal dispersive material, as the refractive
index n(ω) increases monotonically with the field frequency ω. Using a birefringent medium
however, there are two possible ways to achieve phase-matching:

• Type-I phase matching: noω0 = neω1 + neω2
The pump is on the ordinary axis, and signal and idler are degenerate in polarization
along the extraordinary axis.

• Type-II phase matching: neω0 = ne/oω1 + no/eω2
The pump is on the extraordinary axis while signal and idler are non-degenerate in
polarization.

In both cases, the SPDC hamiltonian coupling the pump, signal and idler modes can be
expressed as:

H = i
h̄g

2 â†i â
†
sâp + h.c., (2.1)

where âi, âs, and âp are the annihilation operators corresponding to the idler, signal and pump
fields and g is a coupling constant. Under the right conditions, this interaction hamiltonian
can lead to the creation of single- and two-mode squeezed vacuum states. This is done by
having a powerful coherent state |α〉 as an input pump field into the medium. This simplifies
the hamiltonian, using â†p ≈ α, and introducing κ = αg:

H ≈ i h̄κ2 (â†i â†s − âiâs). (2.2)

When signal and idler are degenerate in polarization and frequency, i.e. â =̂ âi = âs, this is the
Hamiltonian that corresponds to the application of the single-mode squeezing operator (1.80):

ŜI(ζ) = e
ζ
2 (â2−(â†)2) = e−i

H
h̄
τ , for ζ = κτ, (2.3)
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where τ is the interaction time.

Using the Heisenberg representation, one can indeed consider the evolution of both the
signal and idler annihilation operators:

ih̄
dâs/i
dt

=
[
H, âs/i

]
. (2.4)

This gives us, for a short interaction time τ :

âs/i(t+ τ) = âs/i(t)− αgτâi/s(t)†, (2.5)

which leads to the time-evolution:

â(t) = â(0) ch(κt)− â†(0) sh(κt). (2.6)

Therefore, after an interaction time τ , the quadratures x̂ and p̂ become:

x̂′ = e−ζ x̂

p̂′ = eζ p̂. (2.7)

We indeed recover the effect of the application of a single-mode squeezing operator with a
squeezing amount of ζ/2. The quadrature x̂ becomes squeezed and p̂ anti-squeezed under
the down conversion process. Initially populating the signal and idler mode by vacuum,
we can therefore obtain single-mode squeezed vacuum with signal and idler degenerate in
polarization.

In the case of non-degenerate signal and idlers, the interaction hamiltonian corresponds
to a two-mode squeezing operator (1.84):

ŜII(ζ) = e
ζ
2 (âiâs−â†i â

†
s). (2.8)

Equation (2.4) is then equivalent to

d(âs + âi)
dt

= −κ2 (â†s + â†i ) (2.9)

To summarize, a single-pass SPDC process corresponds to the application of single or two-
mode squeezing operators, depending on the phase-matching. Type-I phase matching leads to
signal and idler fields degenerate in polarization and frequency. It corresponds in the collinear
case to the application of a single-mode squeezing operator. Type-II phase matching leads
to signal and idler fields degenerate in frequency but not in polarization. It corresponds to a
two-mode squeezing operator.

1.2 Adding a cavity: optical parametric oscillator

It is difficult to observe SPDC because it is very inefficient in typical non-linear media.
One solution to enhance its effect is to place the birefringent medium in a cavity. In that
case, the setup is called an optical parametric oscillator. The cavity helps to increase the
interaction time and the conversion efficiency but also adds some specific properties to the
setup.
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αin

α

âs/i
âLs/i

âins/i

L TR

R for pump
HR for s/i

HR for pump
(1-T) for s/i

g,L

Figure 2.1: Model of an optical parametric oscillator. A non-linear crystal is placed in a cavity.
The pump field αin is sent to the cavity and from SPDC leads to the appearance of signal and idler
fields s and i. The input and output mirrors have different reflection and transmission coefficients for
the three fields. The input mirror is highly reflective (HR) for signal and idler and has a reflection R
for the pump. The output mirror is conversely highly reflective for the pump but has a transmission
T for signal and idlers. We model the intra-cavity losses by a beam-splitter of reflection L coupling
the intra-cavity signal and idlers fields to the environment.

We now give a theoretical model including losses for optical parametric oscillators in
order to give an expression for the time-evolution equations of the intra-cavity fields and
introduce some parameters. In figure 2.1 we show a schematized OPO. The non-linear crystal
characterized by g is of length l, which corresponds to a propagation time L. The pump field
αin leads after down-conversion to the appearance of signal and idler fields s and i. The
cavity mirrors have different reflection and transmission coefficients for ω0 and ω1. The input
mirror has a reflection coefficient R for the pump and is highly reflective for signal and idler
fields. Conversely, the output mirror is highly reflective for the pump and has a transmission
of T for signal and idler fields. We model the intra-cavity losses through a beam-splitter of
reflection L, which couples the modes âs,i to outside modes denoted âLs,i. We also consider
possible input fields coming from the exit mirror âin

s,i.

1.2.1 Oscillation threshold

Using these notations, we compute the time-evolution of annihilation operators inside the
cavity. Using equation (2.5), the annihilation operator after a round-trip of duration τ is
given by:

âs/i(t+ τ) =
√

(1− L)(1− T )(âs/i(t)− |α|gτ ′â†i/s(t)) +
√
LâLs/i +

√
T âin

s/i, (2.10)

with τ ′ the total interaction time equal to 2∗L and |α| the intra-cavity pump field. Assuming
L and T to be small and introducing g′ = gτ ′, we have

âs/i(t+ τ) = (1− L+ T

2 )(âs/i(t)− |α|g′â†i/s(t)) +
√
LâLs/i +

√
T âin

s/i, (2.11)

which leads us to write as a first approximation

dâs/i
dt

= −L+ T

2 âs/i(t) + |α|g′â†i/s(t) +
√
LâLs/i +

√
T âin

s/i. (2.12)
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The first consequence of adding a cavity is therefore the existence of a power threshold
over which we can observe oscillation. Indeed, to have a gain in the cavity, we need to have
|α|g′ − L+T

2 > 0. The pump threshold is equal to:

|αth|2 = (L+ T )2

4(g′)2 . (2.13)

We see that the threshold evolves quadratically with the output mirror transmission. It can
be reduced further if the cavity is resonant for the pump. In that case, we have

|αin
th|2 = (Lp + Tp)2

4Tp
(L+ T )2

4(g′)2 , (2.14)

where Tp = 1 − R is the transmission of the input mirror for the pump, and Lp is the
intra-cavity losses for the pump. In the case of negligible losses for the pump, we have

|αin
th|2 ∝ TpT 2. (2.15)

In all our experiments, we will remain well below the oscillation threshold.

1.2.2 Escape efficiency

An important parameter for OPOs is the escape efficiency which results from the intra-
cavity losses and the output mirror transmission. It gives the probability that down-converted
photons will escape the cavity through the exit mirror [47]. It is defined as

η0 = T

T + L
. (2.16)

The value of the escape efficiency is directly linked to the squeezing amount obtained at the
oscillation threshold smax [30]:

smax = 1− η0. (2.17)

It is therefore the key parameter for the evaluation of the quality of the cavity and can be
measured through squeezing characterization. The escape efficiency is a concrete charac-
terization of the intrinsic losses in the cavity. Indeed, it is directly linked to an essential
parameter for protocols using conditional preparation: the heralding efficiency. Given the
detection of a signal (respectively idler) photon outside of the cavity, the heralding efficiency
is defined as the probability that the idler (respectively signal) photon has escaped the cav-
ity. The heralding efficiency limits the quality of the state generation protocols presented in
sections 2 and 3.

1.3 OPO specifications

We now give details of the OPOs used in our experiments. As in the model of figure 2.1,
our OPOs are made of semi-monolithic cavities. They are pumped by a Nd:YAG laser at
λ0 = 532 nm, which leads to signal and idler fields at λ1 = 1064 nm. The input mirror is di-
rectly coated on the non-linear crystal, has a reflection coefficient R = 95% for the pump and
is highly reflective for signal and idler fields. The output mirror has a radius of curvature of
38 mm, is highly reflective for 532 nm and has a transmission of T = 10% for signal and idler
fields. We use two OPOs of different phase matching. The type-II phase-matched OPO uses
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(a) (b)

(c)

Figure 2.2: Experimental Optical parametric oscillator. (a): Schematics. The temperature of
the non-linear crystal is tuned using a Peltier module. The mirror mount is glued to a PZT stack.
All elements are fixed to a custom Invar base for thermal and mechanical stability. (b): KTP crystal
from Raicol. The anti-reflection coating for 1064 nm was made by Layertech. (c): Photography of
the pumped type-II OPO.

a KTP crystal of dimensions 3x3x10 mm3, while the type-I a PPKTP crystal of dimensions
1x2x10 mm3. Both are made by the company Raicol and their coatings have been realized
by the company Layertech. In figure 2.2 (b) we show a photo of the KTP crystal used for
the type-II OPO.

A detailed schematic of the cavity is shown in figure 2.2 (a). We aim to have resonance
for all signals, i.e. double resonance for the type-I OPO and triple resonance for the type-II
OPO. The output mirror is mounted on a piezo-electric transducer (PZT) in order to achieve
resonance for the pump. A peltier module is used to heat an oven in which the crystal is
lodged. This allows us to control the temperature of the crystal to have resonance of the
idler. The cavity can be made resonant as well for the signal field in the case of the type-II
OPO by tuning the laser frequency. The two OPOs have a bandwidth of 50 MHz and a free
spectral range (FSR) of 4.3 GHz.

We now show the result of squeezing measurements on the type-I OPO made using homo-
dyne detection on the type-I phase matched OPO. When going close to the threshold, we can
reach high levels of squeezing. As shown on figure 2.3(a), we measure 10.5 dB of squeezing
at 5 MHz and at 40 mW of pump power. At this level, the squeezing purity is necessarily
degraded and we indeed see close to 19 dB of anti-squeezing. As explained before, we can
deduce the escape efficiency from this measurement. Accounting for the losses introduced by
the homodyne detection apparatus, we estimate the escape efficiency to be close to η0 = 92%.

Therefore, we have at our disposal two squeezers on the table. We next show how we use
them for the heralding of non-Gaussian states. The type-I OPO allows for the generation of
single-mode squeezed-vacuum and the type-II OPO for the creation of two-mode squeezed
vacuum. As explained in Chapter 1, although fundamentally a non-classical state, squeezed
vacuum is Gaussian. It is by combining it with a non-Gaussian operation–photon detection–
that we are able to create non-Gaussian states that present negative values of the Wigner
function. We will first look at protocols for discrete-variable state generation, and then for
continuous-variable.
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Figure 2.3: Measured squeezing. (a): Squeezing observed at a sideband frequency of 5 MHz when
sweeping the phase of the quadrature measurement over time. We reach 10.5 dB of squeezing and
19 dB of anti-squeezing at a pump power of 40 mW (80% of the threshold). (b): Squeezing and anti-
squeezing measured over the range 0− 5 MHz for a pump power of 5 mW and 40 mW, corresponding
respectively to 3 dB and a maximum of 10.5 dB of measured squeezing.

2 DV state generation: heralding Fock states
The use of spontaneous parametric down-conversion for non-Gaussian state generation

is now well established. In the DV context, the first realization of a localized single-photon
state was made by Hong and Mandel in 1986 [48] and since then there have been several
demonstration of SPDC-based non-Gaussian states. We note in particular the generation of
single- [49, 50] and two-photon Fock states [51]. Following the same principle we present in
this section our protocols and results for the creation of Fock states using a type-II phase
matched OPO. We will see that the large escape efficiency exhibited by our OPOs enables
the generation of very high-purity states.

2.1 Conditional preparation of Fock states

We aim to generate the Fock state |n〉. We use as a resource the type-II OPO pumped
below threshold. We have a two-mode squeezed vacuum state at its output:

|ψ〉AB = (1− λ2)1/2
∞∑
p=0

λp |p〉A |p〉B . (2.18)

The level of pumping has to be chosen low enough that the decomposition of |ψ〉AB on the
Fock state basis sees negligible contributions on the eigen-modes higher than |n〉. Namely,
this means that λ should be chosen such that the output state can be written as

|ψ〉AB ∝ |0〉A |0〉B + λ |1〉A |1〉B + ...+ λn |n〉A |n〉B + o(λn). (2.19)

Here, A and B are the polarization modes corresponding to the ordinary and extraordinary
axes of the non-linear crystal. Because the photons are correlated in pairs, the presence of a
Fock state |n〉 in the polarization mode B can be heralded by the detection of n photons in
polarization mode A. This is done using a polarizing beam-splitter (PBS) to separate the two
polarizations in two spatial modes and then, using photon detectors, wait for the detection
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of n photons in one of the modes. This mode, in which the n-photons are used to herald the
creation of the Fock state, is called the conditioning mode. In the ideal case, this process is
equivalent to the application of operator |n〉 〈n|A on |ψ〉AB.

Although this method is quite efficient for the generation of small Fock states, the re-
quirements for the state generation become more stringent as the target Fock size increases.
The experimental difficulties come from the application of |n〉 〈n| with increasing losses on
the conditioning path. High-efficiency photon-number resolving detectors are not currently
available for our working wavelength of 1064 nm and we use superconducting nanowire single-
photon detectors that are not photon-number resolving (see Chapter 3). The application of
|n〉 〈n| therefore has to be done through splitting the conditioning path into n branches at
the end of which a detector is placed. This process significantly lowers the generation rate
for an increasing number of detections. The presence of losses is problematic as well because
higher Fock contributions will lead to false detection events. As a consequence, the parameter
λ has to be lowered to maintain the purity of the generated state which in turn lowers the
generation rate. Both the transmission losses on the conditioning path and the detectors’
quantum efficiency have this effect and the pumping power has to be adjusted to balance
state purity and heralding rate. In practice, going beyond two-photon Fock states is still too
challenging currently.

2.2 State heralding and temporal modes

The heralding process leads to the generation of states in temporal modes specific to the
experimental implementation. In our case where we continuously pump an OPO, the cavity
bandwidth determines the temporal shape of the generated photon wave-packet. This is due
to the fact that the signal and idler fields can exit the OPO at different times. The temporal
mode of the generated state can be computed as described below.

The lifetime of a down-converted photon in the cavity is directly related to the OPO
bandwidth γ (FWHM). Assuming the SPDC has happened at time t = 0, the probability for
each down-converted photon to remain inside the cavity after time t is [52]:

p(t) = 2πγe−2πγt. (2.20)

Conversely, given the presence of an idler photon at the output of the OPO at time t = 0, the
probability that SPDC happened at time t is equal to p(−t) for negative t and 0 for positive
t. The probability of the signal photon being present at time ts is therefore

p′(ts) =
∫ ti

−∞
p(−t)p(ts − t)dt if ts < 0

p′(ts) =
∫ 0

−∞
p(−t)p(ts − t)dt if ts > 0. (2.21)

We end the integration at min(ts, 0) because the SPDC has necessarily preceded the existence
of either the signal or idler photon. Replacing p(t) by its expression, we obtain

p′(ts) = πγ[e4πγt]min(0,ts)
−∞ e−2πγts ,

and therefore p′(ts) = πγe−2πγ|ts|. (2.22)

The detection of an idler photon in a time interval much smaller than the cavity lifetime
therefore heralds the presence of a signal photon following the probability p′(t). Instead of
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probabilities, and with the Heisenberg representation mindset, we typically consider the effect
in terms of temporal modes. The cavity effect is indeed equivalent to a transformation of the
signal creation operators following:

â†s =
∫ ∞
−∞

f(t)â†s(t)dt. (2.23)

Here f is a weight function over the set of time-dependent creation operators â†(t), called
the temporal mode function of the idler state. The expression of f is directly related to p′ as
|f(t)|2 = p′(t). Indeed, as was shown as well in [53, 30], we have:

f(t) = √πγe−πγ|t|. (2.24)

Any state characterization will necessarily take into account this temporal mode function.
In the case of homodyne detection, this is done by applying the temporal mode directly on
the quadrature measured over time:

x̂f =
∫ +∞

−∞
f(t)x̂(t)dt. (2.25)

The expression of f presented in equation 2.24 is valid for a perfect detection, and an ideal
homodyne detection apparatus. This is of course not the case in practice and the tempo-
ral mode function will change depending on the experimental conditions. Thankfully, it is
possible to infer the temporal mode of the generated state using homodyne detection [54].
This is invaluable as applying the wrong temporal mode on the homodyne data is equivalent
to introducing losses. The procedure for temporal mode inference is explicited in the next
section in an experimental context.

2.3 Single-photon state generation: experimental setup and resources

The single-photon state generation setup presented in figure 2.4 is one of the foundational
protocols for this thesis. As its sub-parts can be found in all the other experiments we will
report on, it represents a good introduction for all the non-Gaussian state generation processes
we will consider. We now introduce separately the different components of the setup.

Pump and seed fields. We use a Diabolo Nd:YAG laser of the brand Innolight that has
two outputs. The first one produces about 300 mW of power in the infrared at 1064 nm.
Some of the infrared light is frequency doubled inside the box to 532 nm and about 600 mW
of green light is available at the second output. This light is used as a pump field to the
OPO. As it comes from the same source, the infrared field is coherent with the signal and
idler fields of the OPO. This field serves several purposes. As a seed beam following the same
path as the pump field it is used for monitoring the OPO resonance condition and to lock
the OPO and filtering cavities. The laser is modulated at 12 MHz in order to implement the
various analog locking mechanisms presented in the next paragraphs. It is also used as a local
oscillator field in the homodyne detection. A mode cleaner placed at the 1064 nm output
serves to filter out unwanted spatial modes. It is locked on resonance via tilt-locking [55].
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Figure 2.4: Experimental setup for heralded generation of single-photons. A type-II OPO
is pumped at 532 nm with a power of 1 mW. At this pumping level, SPDC leads mainly to the
appearance of single-photon pairs non-degenerate in polarization at the output of the OPO. The two
photons are split in two spatial modes using a polarizing beam-splitter. One of its output is coupled
to a conditioning path that applies frequency filtering before sending the photon to a SNSPD. The
photon detection heralds the presence of a single-photon on the other spatial mode. It is characterized
using homodyne detection.

Type-II phase-matched OPO. We use the KTP-based type-II phase-matched OPO de-
scribed in section 1.3. We use 1 mW of pump power to be well below the threshold (estimated
at 80 mW). The OPO is set to be triply resonant for the pump, signal and idler. The tem-
perature of the crystal and the laser frequencies are adjusted manually to have resonance
for the signal and idler fields. The resonance of the pump field is ensured by adjusting the
size of the cavity by moving the PZT-mounted output mirror of the OPO. For that purpose,
we perform Pound-Drever-Hall (PDH) locking [56] with the error signal obtained from the
reflection of the pump field on the OPO.

Conditioning path. In the SPDC process, energy conservation requires that ω0 = ω1 +ω2,
which allows for many possibilities we will label using the parameter ν such that ω1 =
0.5 ∗ ω0 + ν and ω2 = 0.5 ∗ ω0 − ν. In our case we aim to have signal and idler degenerate
in frequency, i.e. to have ν = 0. The OPO cavity already limits the range of accessible
frequencies to a frequency comb with peaks centered on the set {0.5ω0 + p∆}p with p and
integer and ∆ = 4 GHz the free spectral range (FSR) of the OPO. Each peak is as broad
as the OPO bandwidth: 60 MHz. The filtering process is presented in figure 2.5. The first
stage of filtering is made using a Barr Associates interference (IR) filter. It is centered
at 1064 nm and has a bandwidth of 0.5 nm (i.e. 125 GHz). The filter adds losses as the
transmission at 1064 nm is 80% and less than 10−3% outside of the transmission band. The
second stage of filtering is performed using a homemade Fabry-Pérot cavity of bandwidth
350 MHz and of free spectral range 370 GHz. It presents therefore a finesse close to 1000.
The cavity parameters were chosen to have a FSR at least twice as large as the bandwidth
of the IR filter and a bandwidth larger than that of the OPO while narrower than the OPO
FSR. The cavity is made of two mirrors of transmission T = 0.3 %, one flat and one spherical
with a 1 m radius of curvature. The cavity length is close to 200 µm, which is why we refer to
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Figure 2.5: Two-stage frequency filtering (not to scale). The OPO cavity lets through frequencies
distributed in a comb with peaks of 60 MHz bandwidth and a free spectral range (FSR) of 4 GHz. An
interference (IR) filter leaves out all frequencies outside of a 0.5 nm or 126 GHz broad transmission
band. The final filtering is done using a micro-cavity (µCav) of bandwidth 350 MHz and FSR 370 GHz.

it as a micro-cavity. The output of the micro-cavity is coupled to a fiber at the end of which
is placed a high efficiency superconducting nanowire single-photon detector (see chapter 3).
Overall, the conditioning path introduces about 50% of transmission losses.

Digital locking using micro-controllers. The mode cleaner and the OPO cavity are
locked on resonance using analog locking procedures. The locking of the micro-cavity is how-
ever implemented using digital micro-controllers. Digital locking presents several advantages
over its analogue counterpart. It is simpler to implement as it requires less material and
frees one from the need to generate an error signal. It is also more suited for longer exper-
iments as one can program automatic relocking features and peak searching sequences that
are difficult to implement in purely analog systems. The price of implementation of digital
locking has also dropped significantly in recent years with the development of low-cost field
programmable gate arrays (FPGA) and micro-controller units (MCU). We implemented sev-
eral locking procedures on the experiment using two different MCUs: The Analog Devices
ADUC7020 and the Arduino Due boards. Both provide 12-bit analog to digital (ADC) and
digital to analog (DAC) converters, are easy to program and inexpensive. This resolution is
sufficient for the locking of medium finesse cavities and interference fringes [57], and com-
bining several converters enables us to lock reliably the high-finesse micro-cavity (see [32] for
details).

Homodyne detection. The generated state is characterized using a homemade balanced
homodyne detection setup. The two photodiodes used are of the brand Fermionics and
reach quantum efficiencies above 97% at 1064 nm. We use 6 mW of power for the local oscil-
lator which brings us 21 dB above the electronic noise (this is equivalent to 1% of loss). The
monolithic structure of the OPO forces us to add an optical isolator on the path to the homo-
dyne detector. This is because without isolation, some of the local oscillator light is reflected
from the homodyne photodiodes, goes back up the infrared path all the way to the OPO
and then to the conditioning path. As explained elsewhere [30], a weak displacement on the
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conditioning path has for consequence a deformation of the measured marginal distribution.
The optical isolator circumvents the problem but adds transmission losses. Taking this into
account along with the photodiodes efficiency, the electronic noise on the homodyne signal
and the overlap between the local oscillator and the signal beam, we have overall typically
15% of detection losses. Because they are intrinsic to the characterization process and are
well calibrated, we can correct from them in our state tomography to evaluate the proper-
ties of the state before the optical isolator, i.e. as generated and available for subsequent
experiments.

2.4 Single-photon state generation: data acquisition and analysis

Having presented the different devices used for the protocol, we now describe the systems
used for data acquisition. We first introduce the measurement sequence used and then the
acquisition settings.

Measurement sequence. Being of greatly higher power than the generated states, the
seed beam cannot be introduced at the same time as the non-Gaussian states are measured.
We therefore alternate between sampling sequences during which the micro-cavity is actively
locked and the path to the SNSPD is closed, and holding sequences during which the seed
beam is blocked, the cavity is set to hold its length and measurements are taken. Setting a
longer sampling sequence or a shorter holding time increases the overall experimental dura-
tion. It is always desirable to have as short as possible experimental runs because the beams
get misaligned over time and thermal fluctuations on the table will affect many locks as well
as the quality of the triple resonance setting. The holding time has to be smaller than the
typical time of stability of the micro-cavity. The compromise reached is to cycle between
40 ms of sampling time and 60 ms of measurements.

To open and close the seed beam paths, we use Stanford Research Systems (SRS)
SR475 low-noise laser shutters that have a commutation time of 5 ms. A SRS delay generator
DG645 is used to send the appropriate trigger signals to the shutters during the measurement
cycle. Although the shutters are low-noise, there are still some mechanical vibrations that
transfer to the table and that add instabilities. We therefore set them on homemade heavy
mounts put on top of thick Sorbothane layers to improve mechanical isolation.

Data acquisition. All the data acquisition is made using a LeCroy WaveRunner 610Zi
oscilloscope. It has a sampling rate of 20 GHz which allows us to record time evolution
below the nanosecond scale. To each heralding event a voltage pulse is used as a trigger for
recording the homodyne signal. During data analysis, the homodyne signal will have to be
integrated over time following equation 2.24. The cavity bandwidth being γ = 60 MHz, the
values of f can be neglected outside of a 4log(10)/(πγ) ≈ 50 ns window. We record in practice
200 ns of homodyne signal for each heralding event. The heralding rate measured is of the
order of 250 kHz. The data is accumulated for 50000 heralding events which corresponds to
an experimental duration of less than five minutes when taking into account the duration of
data recording as well as the measurement sequence.

Taking into account the temporal mode. As discussed earlier, the photon wave-packet
is distributed in time following a given temporal mode function f . Although we have a
theoretical expression for the expected temporal mode, it is only valid in the perfect case
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Figure 2.6: Temporal mode. Variance of the homodyne signal depending on time for an experi-
mental single-photon state. At t = 0 the single-photon is heralded. This measurement allows us to
center the temporal mode for our analysis of homodyne data.

so it is worthwhile to recover the actual function f experimentally. This can be done by
trying different functions f and try to maximize a relevant quantity. Although many choices
can be made, we use the optimization procedure detailed in [54]. Although an involved
procedure, it broadly amounts to an optimization of f depending on the variance of the
measured quadrature 〈x̂2

f 〉. This makes sense because the variance of the quadrature signal
is greater for a single-photon state than for vacuum: 〈1| x̂2 |1〉 = 3 〈0| x̂2 |0〉 = 3σ2

0; therefore
increasing the measured quadrature variance means getting closer to the state’s temporal
mode.

The difference in variance for vacuum and single photon states enables us as well to find
the center of the temporal mode. In figure 2.6 is plotted the experimental measurement of
〈x2(t)〉 depending on time for a heralded single-photon state. We see a peak that is due to
the variance increase when the single-photon is measured. The center of the peak is used
to adjust electrical delays between trigger and homodyne data recording so as to have the
temporal mode centered on the recorded homodyne signal.

Pre-processed data set. Using the temporal mode function previously evaluated, we can
associate to each heralding event a quadrature value following equation (2.24). There is still
need for normalization of the results however as the quadrature measurement is amplified by
a value depending on the local oscillator power. This is done by measuring the quadrature
value of vacuum in the temporal mode f through making another measurement run where we
simply block the signal path. In practice we acquire 40000 data points for vacuum before each
measurements to compensate for local oscillator power fluctuations. Choosing to normalize
such that vacuum has a variance of one, we finally associate to each heralding event n the
value

〈x̂(n)
f 〉 = 1√

〈x̂2
f 〉|0〉

∫ +∞

−∞
f(t) x(n)(t)dt, (2.26)

where x(n) is the 200 ns-long raw homodyne data corresponding to the heralding event n and
〈x̂2
f 〉|0〉 is the variance of vacuum in the temporal mode f averaged over all vacuum calibration

events.
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Figure 2.7: Heralded single-photon state. (a): Pre-processed quadrature values for all heralding
events. (b): Histogram of quadrature values corresponding to the marginal distribution of the state
averaged over all phases. (c): Wigner function of the reconstructed state corrected for losses. (d):
Photon number distribution with and without correction for detection losses. Before characterization,
we have a state with close to 93% of single-photon component and 5% of vacuum admixture.

In order to perform next the maximum-likelihood state reconstruction process, we as-
sociate to each heralding event a random phase as we assume to have a phase-independent
Fock state. This is for convenience and can only decrease the measured state purity and state
population. The final pre-processed data set is the table {n, 〈x̂(n)

f 〉, θ(n)}n.

State reconstruction. The final step is the reconstruction of the state using Maximum-
Likelihood optimization. From the pre-processed data set, we obtain a density matrix. As for
all tomographic reconstruction methods, we have to make assumptions. Here we assume to
have a state with a low photon number which allows us to keep a short experiment time. For
50000 measurements, we can confidently perform the reconstruction for the space spanned
by Fock states {|0〉 , ..., |6〉}. Separate measurements have been made with more points to
verify that higher Fock states are not populated indeed.

From the reconstructed states, we give the parameter relevant to the experiment. In the
case of Fock state generation, the purity and photon number populations are the parameters
of interest. As mentioned earlier, the tomographic process introduces losses around 15% that
we can correct for. In practice we give the results both with and without loss correction.

2.5 Single-photon state generation: results

After reconstruction we obtain the results presented in figure 2.7 and published in [58].
Without correction from detection losses, we have less than 20% of vacuum component and
close to 80% population in |1〉. Correcting for detection losses, we know that we are able
to generate a single-photon state with 93% heralding efficiency and 5% vacuum component.
At the heralding rate of 250 kHz enabled by our most recent SNSPD (see chapter 3), we
demonstrate a spectral brightness of 0.6.104 photons/(s.mW.MHz). This result makes our
system one of the brightest parametric down-conversion sources to date [59], due to an intrin-
sic narrow bandwidth combined with the high efficiency of our heralding path. Combining
with the state purity observed, our single-photon source is among the best in the published
literature (see [32] for a comparison with other groups).
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(a)

(b)

Figure 2.8: Heralded two-photon state. (a): Setup: This is the same setup as the one used for
single-photon state generation, with the difference that two detectors are used to perform a double
detection. (b): Quadrature results and photon number populations. We obtain after correction more
than 80% of Fock |2〉 state, 7% of vacuum and close to 10% of single-photon component.

2.6 Two-photon Fock state generation

We also realized the experimental generation of a Fock state |2〉 with a very similar setup,
by conditioning the state generation on a double detection. With our non-photon number
resolving detectors, this was done, as shown in figure 2.8, by splitting the conditioning path
using a fibered beam-splitter and placing one SNSPD at the end of each beam-splitter output.
As explained in section 2.1, because of the losses on the conditioning path we maintain a low
pumping power (∼ 1 mW) to keep the double-click events rare in order to avoid detection
events corresponding to Fock states |3〉 or higher. Additionally, we set a 1 − ns acceptance
window for the time-difference between coincidence clicks on the two detectors. This makes
overall for a lower generation rate of 200 Hz. We obtain however a two-photon state with
80% purity (60% without correction for detection losses) as expected from the more than 90%
escape efficiency of our OPO. This experiment represent the generation of the highest-purity
two-photon states at the highest preparation rate published so far to our knowledge, on par
with the recent demonstration in [60].

37



3. CV STATE GENERATION: HERALDING SCHRÖDINGER KITTEN STATES

0 0.5 1 1.5 2 2.5 3 3.5 4

0.6

0.7

0.8

0.9

1

|α|2

Fi
de

lit
y
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Figure 2.9: Fidelity of photon-subtracted squeezed vacuum states with odd or even cat
states for different sizes |α|2. Full lines: maximum fidelity obtained over all possible squeezing
amounts. Dashed lines: optimal squeezing of the photon-subtracted squeezed-vacuum state depending
on the cat size.

3 CV state generation: heralding Schrödinger kitten states

As is the case for DV state generation, the use of SPDC for CV state engineering has also
become established. The first two implementations were done in 2006 by Ourjoumtsev et al.
in the pulsed regime [61] and Neergaard-Nielsen et al. in the continuous-wave regime [62].
The protocol used is very similar to the one presented in the last section, with the difference
that we start from a type-I OPO still pumped below threshold but at a higher level. We
present in this section the principle of the experiment and our results for the generation of
odd Schrödinger kitten states.

3.1 Principle

Using a type-I phase-matched OPO as an initial resource, it is possible to create, with a
scheme very similar to the one presented in section 2, coherent state superpositions (CSS)
|α〉 ± |−α〉 of size |α|2 ∼ 1. As we have seen in Chapter 1, at this population level, we refer
to this type of states as Schrödinger kitten states. The initial idea for the generation was
introduced by Dakna et al. [63] and draws from the following observation: under the right
conditions, the repeated application of the annihilation operator to squeezed-vacuum leads to
states that present high fidelity with Schödinger kitten states. Mathematically, and without
normalization, we have indeed for lower squeezing amounts and cat sizes:

âŜ |0〉 ≈ |cat−〉
â2Ŝ |0〉 ≈ |cat+〉 . (2.27)

The approximation is valid for specific squeezing amounts and cat sizes that depend on the
state considered. In figure 2.9, we plot in red (respectively violet) the fidelity of an odd
(respectively even) cat state with the state âŜ |0〉 (respectively â2Ŝ |0〉) for the corresponding
optimal squeezing indicated by the dashed curve. One can see that in both cases and up to
|α|2 ≈ 2, we obtain fidelities above 95% with the photon-subtracted cat states for optimal
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(a)

(b) (c)

Figure 2.10: Heralded odd cat state. (a): The setup is similar to the single-photon state gener-
ation. We pump a type-I phase-matched OPO at 5 mW to produce 3 dB of high-purity squeezing at
its output. We then approximate a single-photon detection using a beam-splitter to tap off 3% of the
OPO output and conditioning on photon detection on the tapped path. (b): Photon number popu-
lations. We obtain after correction 10% of vacuum component and we observe significant population
in the odd Fock states |1〉 and |3〉. (c): Wigner function of the measured kitten after correction for
detection loss. We see negativity of the Wigner function at the origin, which is a strong indicator of
non-classicality.

squeezing ranging up to 5 dB. We note that at lower values |α|2 < 1, the state Ŝ |0〉 is a
good approximation as well of even cat states, although higher squeezing is needed. For a
squeezing of 3 dB in particular, while Ŝ |0〉 is close to an even cat state of size |α|2 = 0.4,
âŜ |0〉 has 99.5% fidelity with an odd cat state of size |α|2 = 1.1 and â2Ŝ |0〉 has 98% fidelity
with an even cat state of size |α|2 = 1.2.

We can therefore create odd cat states through a simple adaptation of the single-photon
setup, substituting the type-II phase matched OPO by a type-I and applying a single-photon
detection on the squeezed vacuum output.

3.2 Odd Schrödinger kitten state generation

The experimental apparatus is presented in figure 2.10 and is close to the setup for single-
photon generation with a few differences and add-ons.

Type-I phase-matched OPO and photon subtraction. We use, as described in sec-
tion 1.3, a periodically-poled KTP crystal. The pump power is set to have 3 dB of squeezing
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at the output which corresponds in our case to 5 mW of green power. The cavity is set on
resonance for green light using PDH locking and the temperature is adjusted to have reso-
nance for the degenerate signal and idler fields as well. The photon subtraction is performed
using a high transmission beam-splitter instead of a PBS because signal and idler are degen-
erate. The lower the beam-splitter reflection, the less likely it is that the conditioning event
corresponds to multiple photon subtractions. The caveat is that the count rate will drop in
consequence. The compromise used is to set a reflection R = 3% which corresponds to a
heralding close to 100 kHz.

Phase calibration. Contrary to single-photon states, Schrödinger kitten states are not
phase independent. It is therefore necessary to know the relative phase between the signal
field and the local oscillator used for quadrature measurements. We use for this the seed
beam initially introduced for cavity locking. The local oscillator phase is not locked but
actively sweeped during the experiment by sending a voltage ramp V (t) synchronized with
the sampling and hold sequence to a PZT-mounted mirror placed on the LO path. During
the sampling sequence, interference fringes between the LO and the seed beam are recorded
using the homodyne system and will be used in the data analysis to associate to each voltage
V its corresponding relative phase θ(V ). During the holding sequence the seed beam is
blocked so no fringes are visible but the voltage ramp is still applied to the PZT. The phase
is finally recovered for each heralding event by looking at the voltage value applied at the
time when the detection was made and then registering the corresponding phase. The active
sweep allows us to explore the complete phase space efficiently as the heralding events arrive
at random times.

Data analysis and results. As previously, we pre-process the homodyne signal and as-
sociate to each heralding event the quadrature measurement made in temporal mode f and
the local oscillator phase to obtain the pre-processed data {n, 〈x̂(n)

f 〉, θ(n)}n. A Maximum-
Likelihood optimization then gives us the results presented in figure 2.10 (b),(c). We have
generated a state that has with correction close to 10% vacuum component. We also see
that, apart from vacuum, the populations in odd photon-numbers is larger than in even com-
ponents as expected from the state’s parity. The Wigner function is also negative at the
origin, as always a good indicator of non-classicality. We observe overall 87% fidelity with a
Schrödinger kitten of size |α|2 = 0.9, at a generation rate of 100 kHz.

4 Conclusion
In this chapter, we have introduced optical parametric oscillators and their use in our

experiment for the creation of both discrete- and continuous-variable states of light. The
experimental setups presented are key components for the realization of hybrid entanglement
of light but are also interesting on their own as they allow us to routinely generate high-
quality Fock states and Schrödinger kittens. In Chapter 4, we will motivate the use of hybrid
entanglement of light for the realization of quantum networks and detail the setup used for its
realization. But first, we focus in the next chapter on the superconduction nanowire single-
photon detectors used in our system and on the cooling system used to bring them into the
superconducting regime.
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Chapter 3

Superconducting nanowire
single-photon detectors:
characterization and cooling

A key component for the generation of non-Gaussian states is photon subtraction. Work-
ing at 1064 nm has historically been a disadvantage for its implementation as the quantum
efficiencies of typical single-photon detectors has remained quite low until recently. In the
last five years, however, there has been a lot of technological advances in this area with
the development of superconducting nanowire single-photon detectors (SNSPD) working at
1064 nm. Our group took part in this effort by working jointly with V. Verma and S. W. Nam
from the National Institute of Technology (NIST) and F. Marsili and M. D. Shaw from the
Jet Propulsion Laboratory (JPL). The work our group was focused on was the measurement
of the quantum efficiency of new detectors produced by NIST to help in the improvement
of their design, which now reach quantum efficiencies above 90%. We used in particular
WSi-based detectors in our common 2016 Optics Letters paper [58] for the generation of
high-purity single-photon states. Since then we have tested new MoSi detectors that bring
additional benefits.

In this chapter, we will present the properties of the detectors we currently use. We also
provide details on the new cooling system we have been installing over the course of the
thesis.
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1. SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTORS

1 Superconducting nanowire single-photon detectors

1.1 Principle and advantages

Figure 3.1: Principle of SNSPDs. (a): An impinging single photon creates a local hotspot on
the wire, which is biased by a low amplitude DC current. (b): The current bypasses the hotspot,
leading to an increase in the current density (c) and to a macroscopic resistance. A measurable voltage
difference appears between the SNSDP terminals. After a short duration the temperature decreases
and the hotspot returns to below the critical temperature. Originally published in [64].

The principle of SNSPD is presented in figure 3.1. These detectors are made of a su-
perconducting wire of less than micro-meter thickness and a length of the order of several
micro-meters. It is arranged along a sinuous path, or meander, to form a light-sensitive
area as shown in figure 3.2 (a). The detection of single photons is possible because of the
superconducting nature of the detector at low temperature. If a current flows through the
medium at an amperage higher than a threshold called the switching current Isw, the material
will leave its superconducting state. This property is exploited by applying a current called
bias current to the detector of value just below Isw. As shown in figure 3.1, the material
stays superconducting until a photon arrives at its surface and is absorbed. The energy of
the photon is enough to create a resistive hotspot on the detector’s surface. Because the
current will then bypass the local resistance, there will be an increase in current density. The
small dimensions of the wire ensures the density increase to be significant. This leads to the
appearance of a macroscopic resistance of several kΩ and, in consequence, to a measurable
voltage. The heat then dissipates and the detector returns to its superconducting state in
a time called dead time that depends on the material and during which the detector is not
sensitive to incoming photons. There is therefore a voltage pulse linked to the arrival of the
photon that can reliably be used for triggering.

There are several parameters for which using SNSDPs instead of other single photon
detectors such as Avalanche Photodiodes (APD) or Transition-Edge Sensors (TES) is advan-
tageous. Quantum efficiency (QE) in particular is greatly superior for SNSPDs at 1064 nm
than silicon-based APDs (≈ 2% of QE). It is also greater than InGaAs/InP avalanche pho-
todiodes (up to ∼ 30% at this wavelength) and SNSPDs have the additional advantage of
exhibiting lower dark-count rates, i.e. the rate of pulses corresponding to false events. Ad-
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(a) (b)

Figure 3.2: The detectors from NIST. (a): SEM photograph of the sensitive meander. The
thickness of the wire is equal to 140 nm. (b): Detector mount design. A Zirconia sleeve is set so that
an optical fiber can be directly plugged on one end to couple to the sensitive area. The active area
is of dimensions (16 µm)2, wider than the mode field diameter of a standard mode fiber to allow for
some misalignment. The nanowire is connected to a coaxial connector pin to apply the bias current.

ditionally, the dead-time of SNSPDs is of the order of 10 ns, whereas the duration for TES
is of several µs. For this reason, SNSPDs have now become the detectors of choice in many
laboratories and are being sold by several companies. Our group’s close partnership with
NIST allowed us however to take part in the parameter optimization of detectors at 1064 nm.

1.2 Properties of the detectors from NIST

Our group has been in collaboration with NIST and JPL for several years with the goal of
adapting their highly efficient SNSPDs optimized for 1550 nm [65, 66] to our working wave-
length of 1064 nm. We therefore received several generations of detectors made from wafers
with different parameters. We measured in the lab the quantum efficiency of the detectors
to help decide the parameters for the next iteration. Details of the NIST detectors design
are shown in figure 3.2. The width of the nanowire is equal to 140 nm and the pitch of the
serpentine structure is equal to 245 nm. The sensitive area is mounted on a copper base on
which a zirconia sleeve enables us to directly plug fibers on the device. The large active area
ensures a high coupling from the fiber to the detector without the need for precise alignment.
Two superconducting materials were tested and used: Tungsten silicide (WSi) and, since last
year, Molybdenum silicide (MoSi). Those two materials are amorphous, which is in contrast
with Neobium Nitride (NbN) used in previous generations.

To measure the quantum efficiency of the detectors, we follow the procedure shown in
figure 3.3. We use the power-meter OPHIR PD300-IRG(Vega) to assess the power at the
input of the SNSPD based detection system. It is calibrated for power measurements in the
range 100 pW−10 µW. In contrast, our SNSPDs leave the superconducting state for a power
above ∼ 5 pW. To make a comparison possible we therefore split the input power using a
fibered beam-splitter at one output of which we place the Vega power-meter and attenuate
the other by about 50 dB before sending the power to the SNSPD.

• Step A: The power ratio between the two outputs is measured by using the same power-
meter alternatively on both ends and adjusting the attenuation and the input power to
have ∼ 10 µW at one output and ∼ 1 nW at the other.
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Figure 3.3: Measuring the quantum efficiency of SNSPDs. We use a power-meter well cali-
brated in the 100 pW − 10 µW range. Since the detector is suited for detection in the power range
0.5− 5000 fW, we split the signal into two branches using a fibered beam-splitter and attenuate one
path by around 50 dB. Step A: The attenuation is first calibrated by imputing a power ∼ 10 µW
and measuring the power on both sides using the Vega power-meter. Step B: Quantum efficiency
measurement of the SNSPD. We input a lower power ∼ 0.1 nW and measure the power on the fully
transmitted output with the Vega power-meter and the count rate on the SNSPD at the attenuated
output. Comparing the expected power at the exit of the attenuated path with the count rate of the
SNSPD we recover the system detection efficiency of the SNSPD.

• Step B: We then couple the attenuated output to the SNSPD and place the OPHIR
powermeter at the end of the other output. We then lower the input power to send
∼ 100 pW to the power-meter and ∼ 0.1 pW to the SNSPD. We have a direct evaluation
of the power sent to the SNSPD and can compare with the number of triggering event
obtained.

Note here that we do not measure the quantum efficiency of the detector but rather the
efficiency of the complete line from the input coupler of the fiber connected to the SNSPD to
the number of electrical triggers we effectively obtain on our oscilloscope. We therefore prefer
to talk about system detection efficiency (SDE) i.e. the probability that an input photon
will lead to a measurable pulse which comprises all the losses in the coupling system as well
as the QE of the detector. The overall precision of the measurement is limited mainly by
the precision of the power-meter’s calibration and the non-linear behavior of the attenuators
with varying power. Overall, we estimate the SDE measurement to be precise up to a ∼ 3%
error.

The first material considered is tungsten-silicide (WSi). It is amorphous, presents ad-
vantages for the fabrication of a broad sensitive area and can reach much higher quantum
efficiencies than the previously standard crystalline material NbN. The response of the best
WSi detector we used is shown in figure 3.4 (a), where we plot the system detection effi-
ciencies (SDE) depending on the bias current. As the bias current increases, the detector
becomes more sensitive until it reaches a plateau where the efficiency becomes maximal. Once
the bias current goes above Isw, the detector is no longer sensitive. It is desirable to go as
far as possible in the plateau in practice because in that regime the voltage pulses used for
triggering will be more defined and have a more consistent rising edge. Once we get close
to the switching current, there is however an increase in the rate of dark counts so there is
a balance to reach. The WSi detectors represented a great improvement compared to the
previously standard 30% of QE for typical NbN detectors, allowing us to get more than 90%
of SDE with a dark count rate under 100mHz. This type of detectors enabled us to demon-

44



CHAPTER 3. SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTORS:
CHARACTERIZATION AND COOLING

0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Bias current (µA)

SD
E

WSi

10−2

10−1

100

101

102

103

D
ar

k
co

un
t

ra
te

(H
z)

3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Bias current (µA)

SD
E

MoSi

10−2

10−1

100

101

102

103

D
ar

k
co

un
t

ra
te

(H
z)

(a) (b)

Figure 3.4: Measured system detection efficiency. System detection efficiency (blue) and dark
count rate (red) depending on the bias current for our best WSi (a) and MoSi (b) detectors. We reach
effiencies of 93%±3% for both at 1064 nm. The MoSi detectors are however improved with regards to
the dark count rate which stays below 0.01Hz well after the plateau has been reached, as opposed to
dark counts in the 1Hz range for maximum SDE in the case of WSi. The possibility of going further
in the plateau presents as well benefits for state heralding.

strate the generation of high-purity single-photon states [58] presented in the next chapter.
In the last year, further improvements have been made by NIST through the use of

another material, also amorphous, Molybdenum silicide (MoSi). While they exhibit compa-
rable SDE, these detectors have a much greater switching current and lower dark count rate.
The response of our best MoSi detector is presented in figure 3.4 (b). We reach quantum
efficiencies close to 93% for a dark count rate below the 100 mHz level well into the plateau.
This last generation is therefore perfectly suited for our experiments. The ability to go deeper
in the plateau leads to more defined triggers higher in amplitude which increases the state
generation quality.

2 Cooling system: two methods

The superconducting nanowire single photon detectors need to be maintained at temper-
atures below 2 K to stay in the superconducting regime. Two methods for cooling were used
in this thesis. The first and time-honored one consists in direct dipping into liquid helium,
which presents some inconvenience including degradation of the detectors and is limited to
the use of only two detectors. In consequence, we have been working on a new method. Over
the last two years, we have worked on the installation of a commercial cryocooler made by
the company MyCryoFirm. We will present in this section both methods and the current
issues with the cryocooler.

2.1 First method: Dipping into helium

The apparatus, adapted from a commercial system made by Scontel, is presented in
figure 3.5. This method consists in placing the detectors at the end of a cane surrounded
by a double-wall isolated enclosure. As can be seen in figure 3.5 (a), the detectors have no
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Figure 3.5: Mounting and cooling system with the liquid helium based method. (a):
Mounting of detectors. Up to two SNSPDs can be installed at the end of the cane. Optical (electrical)
connection is made through 1 m long anti-reflexion coated fibers (SMA cables) that circle around the
cane all the way to the top. This allows both electrical and optical noise filtering because of the slow
paced temperature drop when following the cables or fibers. (b): Cooling and measurement system.
The cane is enclosed in a double wall dipstick plunged into a helium dewar. Vacuum pumping leads
to a temperature decrease inside the double-wall. The bias box provides the bias current and routes
the trigger voltage pulses to the experimental oscilloscope.

protective casing. The fibers are plugged directly on the ferule on one end and circle the
cane all the way to the top of the double wall enclosing. SMA electrical connectors allow the
application of the bias current. The double wall is directly dipped in a 60 L dewar of liquid
helium, see figure 3.5 (b). The presence of a thin capillary at the bottom of the enclosure
allows the inflow of helium from the dewar which submerges the detectors. The inside of the
double-wall is then pumped by a Pascal SD series rotary vane pump (Adixen). The resulting
adabiatic relaxation of the gaseous helium in the double wall leads to a drop in temperature
following the Joule-Thompson effect. We can reach with this setup temperatures consistently
under 1.9 K, below the critical temperatures for all detectors considered.

This method gives good results in terms of temperature and noise level when monitoring
the voltage pulses. It has however some drawbacks. The rotary vane pump is rated at 15 hours
of autonomy which limits the possible experimental duration. The double wall dimensions
allow for just two detectors simultaneously which constrains as well the type of states that
can be created. Lastly, the fact that the detectors are not protected can lead to some damage,
in part because of the relative cleanliness of the liquid helium available but also because the
vacuum seal’s imperfections can lead to the formation of ice inside the double wall when we
need to remove the detectors. In consequence, we observe a degradation of the detectors after
repeated use: the anti-reflective coatings on the sensitive surface can become scratched and
the micro-bondings making electrical contact between the detector and the coaxial connector
can break. Although they can be bonded back, the procedure becomes complicated as the
detector’s surface becomes increasingly uneven.

46



CHAPTER 3. SUPERCONDUCTING NANOWIRE SINGLE-PHOTON DETECTORS:
CHARACTERIZATION AND COOLING

(I) Phigh

Plow
D
is
p
la
ce
r

R
ef
ri
g
er
at
or

J (II) Phigh

Plow

D
is
p
la
ce
r

R
ef
ri
g
er
a
to
r

J

(III) Phigh

Plow

D
is
p
la
ce
r

R
ef
ri
g
er
at
or

IJ
N

H

(IV) Phigh

Plow

R
ef
ri
g
er
a
to
r

D
is
p
la
ce
r

N

To compressor
Phigh/low

50K plate

4K screen

4K plate

1K system

(a) (b)

Figure 3.6: Cooling cycle and commercial cold-head. (a): Single stage Gifford-McMahon
cooling cycle. Phigh and Plow are ports linked respectively to the high and low pressure outlets of a
compressor. At the beginning of the cycle and because of the previous step (IV), the refrigerator is
cooler than the input gas. (I): Pressure increase at constant temperature. (II): The displacer is moved
to the top which forces the gas to go through the refrigerator to the lower chamber. The refrigerator
is cooler so the temperature of the gaz lowers at constant pressure. (III): The low pressure port is
open so the gas expands and cools. This is the main cooling part of the cycle. (IV): The displacer
is moved up which forces the cool gas to go through the refrigerator which is cooled in the process.
At its output the gas is close to ambient temperature. Figure (b): 4 K cooling. The commercial
RDK 101-D cold head is operated using the HC-4E2 compressor. The cold head uses two distinct
Gifford-McMahon cycles. The first one cools down the 50 K plate to 50 K, the second one is used to
go down below 4 K. The 4 K plate maintains the 1 K system close to 3 K.

2.2 Second method: Installation of a 1.5 K cryo-cooler

Because of the physical degradation observed on the SNSPD and in order to devise longer
experiments using more detectors, we decided to transition to a cryo-cooler. The objective is
to be able to cool down up to 4 detectors at less than 1.5 K continuously for up to 5 days. The
installation of the whole apparatus started more than one year ago and is still not finished
because the cryo-cooler was custom made for our experiment. Many issues have arisen during
the implementation, among whose the breaking of two connection cables and the failure of
the compressor during the summer of 2017. As of the writing of the manuscript, the setup
is close to operational and some noise characterization of the triggering signals has been
possible to make. The cryo-cooler was built by the company MyCryoFirm and is based
on a commercial two-stage Gifford-McMahon [67] cooler cold head to reach 4 K. The final
temperature of 1.5 K is attained through the adiabatic relaxation of He4 in a pot in contact
with the 4 K plate. We will now present the principle of the Gifford-McMahon process and
then the system used to perform the Helium relaxation and go to 1.5 K.

Reaching 4 K: Two-stage Gifford McMahon cooler
To go down below 4 K, we use the RDK 101-D cold head and the water-cooled HC-4E2 helium
compressors from Sumitomo. The cooling process is based on the Gifford-McMahon (GM)
cooling cycle presented in figure 3.6 (a). Although the process presented is for a single-stage
cooler, the principle is easily extended to the experimentally used two-stage cooling pro-
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Figure 3.7: Cryo-cooler: details. (a): Global setup for the helium circuit. The Helium is initially
kept in a tank placed outside the cryocooler. A scroll pump is used to make the helium circulate
in the circuit, from the tank to the cryocooler. Inside the cryocooler, the helium goes through an
adsorption pump and into a small pot. The Helium will then be liquefied to 1 K. Through the action
of the thermal switch, the coal pump adsorbs the helium vapor, thus cooling down the liquid helium
bath contained in the 1 K pot. It is thermally connected to the 1 K plate on which are placed the
detectors. (b): Science area and detector mounting. The SNSPDs are put in thermal contact with
the 1 K plate. The electrical connections with the outside are placed below the 1 K plate. We use
fibers of 1.2 m and make them circle a few times around the 4 K and 50 K screens before leaving the
cryo-cooler. (c): Outside arrangement. The helium tank is set next to the cryo-cooler and helium is
pumped from the tank towards the 1 K pot using the scroll pump. Vacuum in the enclosure is made
using the turbo pump.
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cess. One only needs to use the gas cooled after the first stage as input to the second stage.
There are four steps in the cooling procedure. The compressor feeds to the top chamber
high pressure gas at ambient temperature. A moving piece called the displacer then moves
up and forces the gas to go through a colder element called the refrigerator. Then, going
back at low pressure, the gas follows an adiabatic relaxation in the lower chamber and drops
in temperature. Finally the displacer forces helium through the refrigerator which is cooled
down. In the next cycle the adiabatic expansion will start at a lower temperature because
the refrigerator is colder, thus driving the gas to low temperatures after many cycles.

In the cold head used and pictured in figure 3.6 (b), the process is done simultaneously
at two different locations. The first one cools helium down to 50 K which is then fed as input
to the second where helium can go below 4 K. This is the two-stage process and is made by
moving the two displacers in unison. Thermal screens isolate both the 50 K and 4 K stages.
As can be seen in figure 3.8, the temperature of 4 K is reached in about 9 hours and the stage
finally stabilizes at 3 K.

Going below 2 K
The working temperature for the detectors is reached through adsorption cooling of helium

liquefied in a small pot in contact with the 4 K stage. The placement of the key components
is presented in figure 3.7 (a) and (c). The helium is initially in a tank placed next to the
cryo-cooler and maintained at a pressure of 800 mbar. A turbo pump drives pressure in the
cryo-cooler enclosure down to 3∗10−7 mbar for thermal isolation. A scroll pumps encourages
the circulation of helium from the tank to the inside of the cryo-cooler. In figure 3.7(a) we
show the path followed by Helium in the 1 K system. Inside the enclosure, the pumped helium
passes through through the adsorption pump then goes into the 1 K pot before leaving. Two
thermal switches can open or close thermal contact between either the adsorption pump or
the sample stage with the 4 K screens. The cooling steps are then the following:

• Pre-cooling: Both thermal switches are closed, the cold-head starts to cool down the
1 K system, gaseous helium is pumped in the pot with the scroll pump.

• Once the system goes under 4.2 K, the adsorption pump thermal switch is opened. The
pump is turned on which leads to degassing of helium. The pressure rises and the gas
condensates in the pot.

• Once most of the helium has liquefied, the sample stage thermal switch is opened and
the one connected to the pump is closed. The adsorption pump bluntly cools down and
adsorbs the helium vapor. This drives down the temperature of the helium bath and
goes below 2 K.

2.3 Cooling sequence and improvements

The temperature of the 1 K and 4 K stages are plotted depending on time in blue and
red in figure 3.8. After 10 hours, they respectively stabilize at 1.34 K and 3 K while the
pressure in the helium tank goes down as more helium is liquefied. The sample stage can
be maintained at working temperature until all the helium in the outside tank has been
consumed. The sample stage can now be maintained below 1.5 K with detectors plugged in
for about 5 days. This represents a good improvement to the previous cooling system as we
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Figure 3.8: Cooling cycle. Red (respectively blue) curve: temperature at the 4 K (respectively
1 K) stage, depending on time. Violet curve: Pressure in the outside Dewar in mbar. When the 4 K
stage reaches its working temperature of 3 K, liquefaction can start in the pot connected to the 1 K
stage. This leads to a drop of pressure in the outside tank. The cold stage reaches 1.34 K after 10
hours. The temperature is maintained until all liquid helium in the 1 K pot has evaporated. The
temperature then rises at a speed that depends on the thermal isolation. We reach close to five days
of autonomy.

can reach lower temperature for more detectors and for longer experimental runs with a lower
risk of damage. There are still some improvements to make with regards to the detectors
mounting on the sample stage. An adaptation is needed in order to accommodate for more
detectors. We also want to improve the mechanical isolation of the cryo-cooler as it leads to
vibrations that need to be minimized.

2.4 Issues remaining

Ultimately, and in spite of these improvements, the two methods have to be compared in
terms of the quality of the triggers obtained from impinging photons. In that regard, the new
cooling system still needs work because we observe higher electrical noise on the triggering
signal. The main noise issue concerns the scroll pump. When functioning, it introduces
a lot of noise as shown in figure 3.9. Even without the scroll-pump, we observe overall a
smaller signal to noise ratio on the triggers with this new apparatus even though the lower
temperature translates to bigger voltage pulses. Work is still being done to improve the
situation, we’ve noticed some grounding issues and cross-talk between the controller cables
and the bias current cables. Working along with MyCryoFirm, we should be able to resolve
these issues in the near future. We are working on a different routing of cables and consider
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Figure 3.9: Scroll pump noise issue. In red is the amplitude noise visible when the scroll pump
is unplugged. In blue, the scroll pump is plugged in. The noise observed is irregular and almost as
high as the triggers.

the implementation of improved shielding.
In the current experimental state however, it is still preferable to use the dipstick with

which we observe better overall state quality. The experiments made in the thesis were
therefore limited to two detectors. As will be seen in chapter 5, it leads to longer experimental
runs in the case of entanglement swapping. As we are confident in the long term viability
of the cryo-cooler, we can expect an improvement in the quality of results and experimental
duration once these problems are solved.

3 Conclusion
In this chapter we have introduced the principle of superconducting nanowire single-

photon detectors and detailed some of their properties. We have also characterized detectors
obtained as part of a collaboration with NIST and JPL. The latest detectors exhibit system
detection efficiencies above 90% and dark count rates below the 100 mHz level. We also
reported on two cooling systems we currently use. The first one, which consists in direct
dipping into helium, enables us to use two detectors at the same time with limited noise but
leads to degradation of the SNSPDs over time. The second method uses a cryocooler and
allows us to use more detectors without risk of damage. There are still some noise issues
however that need to be sorted before we can fully transition to this setup.
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Having presented in this first part the resources available on our system and our methods
for the generation of DV and CV non-Gaussian states, we now come to the description of hy-
brid entanglement of light. In the next chapter, we will present our method for its realization
and present the first hybrid protocol realized during this thesis: the remote preparation of
arbitrary CV qubits from local measurements on the DV mode of our hybrid entangled state.
Finally, in Chapter 5 we consider the implementation of non-locality tests and demonstrate
quantum steering using hybrid entanglement.
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Hybrid entanglement and
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Chapter 4

Hybrid entanglement of light and
remote state preparation

In this chapter, we introduce hybrid entanglement of light between continuous and discrete-
variable states. Its first demonstration was realized in our group in 2014 [29] and it is at the
heart of most experiments performed during this thesis. We will first present some of the ben-
efits of the hybrid approach to quantum information processing and then detail our protocol
for the generation of hybrid entanglement. The procedure combines the resources presented
in chapter 2 and uses two OPOs of different phase-matching. Then we report on the first
protocol using hybrid entanglement we have realized: the remote preparation of arbitrary
CV-encoded qubits. This work was recently published [68]. This protocol is the first step to
more complicated schemes such as the demonstration of quantum steering we will report on
in Chapter 5 and quantum teleportation between discrete and continuous variable encoded
qubits, a necessary tool for the implementation of hybrid quantum networks.

Contents
1 Hybrid entanglement of light . . . . . . . . . . . . . . . . . . . . . 56

1.1 The hybrid context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.2 Definitions and goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
1.3 Generation of hybrid entanglement . . . . . . . . . . . . . . . . . . . 57

2 Remote preparation of arbitrary CV-encoded qubits . . . . . . . 62
2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2 Experimental implementation . . . . . . . . . . . . . . . . . . . . . . 63
2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

55



1. HYBRID ENTANGLEMENT OF LIGHT

1 Hybrid entanglement of light

In this section, we first present the hybrid approach to quantum information processing
and motivate the generation of hybrid entanglement of light. We then detail the protocol
used for its creation and some of the features of the state we obtain experimentally.

1.1 The hybrid context

The term hybrid characterizes any experiment that uses DV and CV resources jointly,
be it states, gates or measurements performed [69]. Fully discrete or continuous variable
protocols present specific advantages and drawbacks [70]. Continuous variable resources al-
low the implementation of deterministic gates [71]. Using homodyne detection, it also allows
unambiguous state characterization that makes use of highly efficient photodetectors. Dis-
crete variable resources allow only probabilistic gates such as photon subtraction but their
implementation is less sensitive to detection loss.

The two state-generation protocols described in Chapter 2 can already be seen as hybrid
experiments. In the case of the Fock state generation, the DV state is characterized using
CV homodyne detection. Schrödinger kitten states on the other hand are an example of
DV qubits encoded on CV coherent states: cα |α〉+ c−α |−α〉. Their generation is dependent
as well on photon-subtraction, an inherently DV process. The difference in encoding leads
to practical advantages as it enables fault tolerant quantum computing [72] using simpler
resources than DV-state encoded qubits when |α| > 1.2 [73] —but with higher sensitivity to
channel loss as a trade-off.

More generally, the hybrid approach was proved fruitful in recent years as many protocols
have been advanced and implemented [24]. Of particular note are the proposed DV telepor-
tation of CV states [25] and the experimentally realized CV teleportation of DV qubits [26].
These two examples highlight the advantages of going hybrid: The former enables teleporta-
tion of CV states with high-fidelities which would be in a CV-only context possible only in the
limit of infinite squeezing and the latter is a first demonstration of the otherwise inaccessible
deterministic teleportation of DV qubits. Other experiments have demonstrated Gaussian
entanglement distillation using single-photon subtraction [74, 75, 76]. In our group we have
used homodyne detection as a CV entanglement witness for DV entanglement [27]. Going
further, we can hope for the implementation of nearly deterministic universal gate operations
thanks to the hybrid approach for α ≈ 1 [77]. It is also useful for quantum computation
protocols using cluster states [78] or following the quantum bus method [79] as well as for
quantum key distribution [80, 81]. Many of the proposed protocols use as key resource what is
the core of this thesis: hybrid entanglement of light. We will now introduce it as an essential
component for the realization of heterogeneous quantum networks.

1.2 Definitions and goals

In the context of quantum networks, the hybrid approach entails communication between
parties working with different encodings as schematized in figure 4.1 (a). Users of CV and
DV resources can interact through the use of hybrid entanglement generated in a central
node. Although many types of hybrid entanglement exist [82], our focus is on two-mode pure
states of the form

|Ψ〉 =
∑
n

|n〉DV |ψn〉CV (4.1)
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(a) (b)

c0 |0〉DV + c1 |1〉DV

|0〉DV |ψ0〉CV + |1〉DV |ψ1〉CV

c0 |ψ1〉CV + c1 |ψ0〉CV

|1〉 〈1|DV

Figure 4.1: The hybrid approach. (a): Hybrid quantum network. The interaction between nodes
based on different encodings, i.e. CV in blue and DV in red, is possible thanks to hybrid entangle-
ment. (b): DV to CV quantum converter. The conversion is done through quantum teleportation by
mixing the DV mode of hybrid entanglement with the qubit to teleport then applying a Bell state
measurement. The qubit information becomes encoded on qumodes |ψ0〉CV and |ψ1〉CV.

where {|n〉DV}n is the complete orthonormal basis for the DV mode and the |ψn〉CV are
infinite-dimensional qumodes. Depending on the setup used by the interacting parties and
the protocol chosen, the router has to adapt its entangled state. The DV eigenstates can be
polarizations |H〉 and |V 〉 or Fock states for example.

Hybrid entangled states are essential to the implementation of hybrid networks as they
allow in particular the realization of quantum teleportation between two encodings. As an
illustration, the principle of a DV to CV quantum converter is shown in figure 4.1 (b).
This protocol allows the conversion of an input DV-encoded qubit c0 |0〉DV + c1 |1〉DV into
a CV-encoded qubit c0 |ψ1〉CV + c1 |ψ0〉CV. This is achieved by the application of a joint
Bell measurement on the DV-encoded qubit and the DV mode of the hybrid entangled state
which then results in the creation of the corresponding CV-encoded qubit (up to a Pauli
operator in the general case). This protocol represents one of our group’s main goals and
we will present in Chapter 6 the progress towards its implementation. It is however just one
example of the possibilities afforded by hybrid entanglement of light and we have performed
several protocols during this thesis. We will report in this chapter on the remote preparation
of arbitrary CV-encoded qubits, in Chapter 5 on the realization of Einstein-Podolsky-Rosen
steering, and finally in Chapter 6 and 7 on preliminary results of entanglement swapping
between encodings.

Before this, we will present the experimental setup used for the generation of hybrid
entanglement of light and the results obtained as published by the group in the 2014 paper
by Morin et al [29].

1.3 Generation of hybrid entanglement

The hybrid-entangled state we can generate with our resources is given by:

|Ψ〉 = 1√
2

( |+〉 |α〉+ eiφ |−〉 |−α〉 ), (4.2)

with |±〉 = 1/
√

2(|0〉±|1〉) two equal-weight qubits in the basis spanned by vacuum and single-
photon Fock states. This state is well suited for the implementation of quantum protocols
with the non-Gaussian resources introduced in Chapter 2 but has some specific advantages
and drawbacks compared to other types of hybrid entanglement. The realization of nearly
deterministic universal gates with hybrid entanglement when using a polarization encoding on
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the DV side |±〉 = |H〉±|V 〉 [77] but is not guaranteed for the state of equation (4.2) as there is
no deterministic and linear way to flip between vacuum and single-photon states. It presents
however the benefit of being more resilient to losses, for example in quantum teleportation
protocols [83] because the DV mode will always remain in the {|0〉 , |1〉} subspace when adding
losses. This loss-resilience is of great interest for our goals of performing proof-of-principle
experiments. The creation of a polarization based hybrid entangled state is however also
among our goals, however it remains a longer term objective as it requires the installation of
a third OPO.

1.3.1 Experimental implementation

The experimental setup is presented in figure 4.2. It combines the two previously-
introduced Fock and cat state generation experiments by joining their conditioning paths
in an indistinguishable fashion so that the heralding click is nonlocal. Namely, the tapped
mode at the output of the type-I phase-matched OPO (OPO I) is mixed with the idler mode
of type-II phase-matched OPO (OPO II) before the filtering and detection is performed. If
the tapped and idler mode are indistinguishable, the detection of a photon can be due either
the presence of a single-photon on the DV mode or a photon-subtracted squeezed vacuum
state on the CV mode. A detection event therefore heralds the state

|Ψ〉 ∝ |0〉DV âŜ |0〉CV + eiφ |1〉DV Ŝ |0〉CV , (4.3)

here â and Ŝ act on the CV mode. As we have seen in Chapter 2, we have âŜ |0〉 ≈ |cat−〉
and Ŝ |0〉 ≈ |cat+〉 for different values of α depending on the squeezing amount. We set the
pump power to have 3 dB of squeezing at the output of OPO I. In these conditions, and as
shown in Figure 2.9, the heralded state has high fidelity with the hybrid state:

|Ψ〉 ∝ |0〉DV |cat−〉CV + eiφ |1〉DV |cat+〉CV . (4.4)

Although the fidelities of the odd and even CV states are highest with state of different size
(|cat−〉 with |α|2 = 1.1 and |cat+〉 with |α|2 = 0.4) we should expect a good fidelity for
both kittens set to |α|2 ≈ 0.8. Then a rotation of the DV basis leads to the expression in
equation 4.2.

Nonlocal conditioning. The main difficulty of implementation is in making the heralding
modes indistinguishable in all degrees of freedom. It is therefore necessary to match the
heralding rates of both OPOs. This is done first by rotating the tapped mode of OPO I into
a horizontal polarization and mixing on a PBS with the vertically polarized idler mode of OPO
II. The mixed mode is then projected using a half wave-plate and PBS on an intermediate
polarization set such that both heralding rates are identical. The lost signal is used for phase
locking on photo-diode P3. It is also required to match the bandwidth of the two OPOs.
Being of similar structure, the cavity lengths of both OPOs are finely adjusted by matching
the temporal modes observed separately.

Phase locking and monitoring. The matching of both heralding modes will only lead
to a mixed state if the relative phase between the two is not fixed at each realization. It is
therefore locked using the interference fringes between the two seed beams. We choose to
lock to a relative phase φ = π. The state characterization is done as usual using homodyne
detection. In this case it is necessary to monitor the phase of both modes. The lock at
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Figure 4.2: Experimental setup for hybrid entanglement generation. Two OPOs of type-I
(OPO I) and type-II (OPO II) phase matching are pumped well below threshold. OPO I produces
3 dB of squeezed vacuum at its output and OPO II sees the creation of pairs of single photon. The
idler mode of OPO II is mixed with 3% of tapped signal from the output of OPO I before sent on
the conditioning path. The mixed mode is then filtered in frequency using a Fabry-Pérot cavity and
an IR filter before being fiber-coupled to a SNSPD. The two heralding modes are indistinguishable
through fine tuning of both OPOs’ bandwidth and the balancing of their respective heralding rates.
The creation of the same state at every heralding click is ensured by phase locking between the two
conditioning paths at P3. The detection of a single photon can therefore herald the creation of either
a CV or DV state thus generating hybrid entanglement.

P3 allows us fix the relative phase between the two-modes and perform two-mode state
reconstruction.

Data set and state reconstruction. We record for each heralding event the homodyne
data on both modes and apply the temporal mode function on and normalize to the variance
of vacuum each raw signal to obtain quadrature results. We acquire 100 000 data events
labeled by n to obtain the pre-processed table {n, 〈x̂(n)

I,f 〉, 〈x̂
(n)
II,f 〉, θ

(n)
I , θ

(n)
II }n, where n is the

heralding event’s number. Where the subscripts I and II refer to the mode on which was
made the quadrature measurement at the corresponding local oscillator phase. The state
reconstruction is done using the usual Maximum-Likelihood optimization but for a two-mode
state. We set the optimization for the Hilbert space spanned by {|0〉 , ... |6〉} for the DV mode
and {|0〉 , ... |10〉} for the CV mode, well beyond the subspace we expect to be populated. We
also give result both with and without correction for detection losses which is fixed at 15% on
both modes. At the end of the reconstruction we obtain a 77-by-77 two-mode density matrix
that can be analyzed.
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Figure 4.3: Experimental results. Panels (a) and (b): Wigner functions of the reduced density
matrices 〈i| ρ̂ |j〉DV with i, j ∈ {0, 1}. The coherence terms i 6= j lead to complex values of the Wigner
function so we plot the real and imaginary part of 〈0| ρ̂ |1〉DV respectively in the top and bottom
square. The results are presented with no correction in panel (a), with correction for 15% detection
loss in (b). (c): Results in the rotated {|+〉 , |−〉} basis corrected for detection loss.

1.3.2 Results

Symmetric case. The Wigner function of the entangled state is four-dimensional which
makes it complicated to represent it on a 2D plane. The 77-by-77 density matrix formalism
does not provide immediate insight on the state created as well. We therefore present results:
we show the Wigner functions of the single-mode density matrices obtained by projecting the
DV mode on the Fock basis 〈i| ρ̂ |j〉, with i, j ∈ {0, 1}. This is valid if the higher dimensional
modes on the DV side are not populated. As they account for less than 2% of the total trace,
the experimental data is accurately represented.

In figure 4.3 (a), we show the results without correction for detection loss. The diagonal
projections indeed correspond to even and odd cat states. The Wigner function of the odd
cat state is negative at the origin of phase space as expected with W (0, 0) = −0.053. We
also note the presence of non-negligible coherence terms which is consistent with a measured
entanglement negativity (see chapter 1) of N = 0.27. Next we consider the state when
corrected for 15% of transmission loss in figure 4.3 (b). We see a stronger negativity of the
Wigner function for the odd cat state W (0, 0) = −0.169 and measure a strong entanglement
negativity N = 0.38, to be compared to N0 = 0.5 which is the maximum value that can be
reached theoretically. The panel (c) of figure 4.3 finally presents the corrected results in the
qubit basis {|+〉 , |−〉}. We see overall a fidelity of 77% with the target state of equation (4.2)
for φ = π and α = |0.9|. This experiment was the first published demonstration of hybrid
entanglement of light [29].

Asymmetric case. The maximally entangled state is obtained by matching the heralding
rates of both OPOs. It will however be useful in some protocols such as remote state prepa-
ration and quantum steering to have an asymmetric hybrid state to compensate for other
experimental biases. By rotating the projecting half-wave plate, we can adjust the heralding
rates and create the state

|Ψ〉 =
√
R |0〉DV |cat−〉CV + eiφ

√
1−R |1〉DV |cat+〉CV , (4.5)
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N

N = 0.350.260.02 0.16 0.03N = 0.38

Figure 4.4: Asymmetric states and entanglement negativity. Hybrid state and negativity of
entanglement depending on the heralding rate bias. By rotating the mixing half-wave plate, we can
go from fully separable |1〉 |cat+〉 on the left to the maximally entangled hybrid state and then back to
fully separable |0〉 |cat−〉 on the right. The corresponding entanglement negativities are shown below
the plots

where the probability of having the heralding click coming from OPO I is R/(1 − R) times
as big as the probability of it coming from OPO II. As shown in figure 4.4, we can vary from
maximally entangled hybrid state to fully separable single photon or odd cat state by varying
the angle of the mixing wave plate.

This hybrid resource is the foundation for most protocols we report on in this thesis. The
first one we will present is the remote preparation of arbitrary CV-qubits. It is a natural
extension of our experiment in that it is linked to the representations we use to show our
hybrid entangled state. One can see from the figure 4.3 that if we perform local projections
on |0〉, |1〉, or |±〉 on the DV side, we generate remotely on the CV mode respectively odd or
even cat states and coherent states. Extending the concept, it is possible to project on any
qubit on the DV mode to remotely prepare any CV-encoded qubit.
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2 Remote preparation of arbitrary CV-encoded qubits

In this section we report on the first protocol we implemented using hybrid entanglement
and that was recently published in [68]: the remote preparation of arbitrary CV-encoded
qubits. Harnessing hybrid entanglement allows us to go further than what was possible using
our protocol for Schrödinger kitten state generation because it enables the remote creation
of any superposition of |α〉 and |−α〉 rather than evenly-weighted states. After a quick
presentation of remote state preparation and its uses, we will detail our implementation and
the results we have obtained.

2.1 Principle

2.1.1 Context

The most versatile method for the transmission of quantum information in a network is
quantum teleportation which allows the transfer of an unknown quantum state to a distant
party [16]. As presented earlier (see figure 4.1 (b)), it requires the application of local Bell
measurements jointly on one mode of an entangled resource and on the state to be transferred
to retrieve the input state on the other entangled mode. The initial state is recovered —up to
a Pauli operator that depends on the result of the Bell measurement. It is therefore necessary
to send classical information to the teleported mode so as to know which operator to apply
to complete the teleportation process. In practice, two bits of classical information need to
be transferred to the distant party to fully recover the unknown quantum state.

In contrast, remote state preparation (RSP) refers to a different type of protocol for the
transfer of quantum information in which the sender has complete knowledge of the state
to be be communicated. It presents the advantage of requiring the transmission of less clas-
sical information than quantum teleportation [84], in practice one classical bit to recover
a pure qubit [85, 86, 87]. RSP finds a variety of applications, ranging from long-distance
quantum communication to loss-tolerant quantum-enhanced metrology [88]. In recent years,
a number of optical demonstrations have been realized in DV and CV systems. Remote
state preparations of polarization qubits were demonstrated based on polarization entangle-
ment [89, 90, 91]. Transfer of single-photon and vacuum superpositions was also achieved
based on single-photon entanglement [92] and continuous-variable RSP was demonstrated us-
ing Einstein-Podolsky-Rosen entangled beams [93, 94, 95]. These works were also extended
to the preparation of multiqubit states [96, 97].

2.1.2 The hybrid approach

As our implementation is the first RSP demonstration in an hybrid DV-CV context, we
will present the principle starting from ideal hybrid entanglement. Alice and Bob are two
parties sharing the hybrid-entangled state |Ψ〉 of equation (4.2). In our case Alice, which has
access to the DV mode (labeled A) of |Ψ〉, aims to remotely prepare arbitrary CV encoded
qubits c+ |α〉+ c− |−α〉 on Bob’s CV mode (labeled B). To that end she locally performs the
projective measurement Π̂A(θ, φ) = |π(θ, φ)〉 〈π(θ, φ)|A, with

|π(θ, φ)〉A = cos(θ) |0〉A + eiφ sin(θ) |1〉A . (4.6)

62



CHAPTER 4. HYBRID ENTANGLEMENT OF LIGHT AND REMOTE STATE PREPARATION

This results in the preparation on the CV mode of the state

ρ̂(θ, φ) = TrA(Π̂A(θ, φ) |Ψ〉 〈Ψ|)
Tr(Π̂A(θ, φ) |Ψ〉 〈Ψ|)

, (4.7)

which gives us

ρ̂(θ, φ) ∝TrA

((
|π(θ, φ)〉 〈π(θ, φ)|A ⊗ 1B

)
×
(
|0〉 〈0|A |cat−〉 〈cat−|B

+ |0〉 〈0|A |cat+〉 〈cat−|B + (|0〉 〈1|A |cat−〉 〈cat+|B + h.c.)
))
, (4.8)

and finally

ρ̂(θ, φ) = cos2 θ |cat−〉 〈cat−|+ sin2 θ |cat+〉 〈cat+|

+ 1
2 sin 2θ(eiφ |cat−〉 〈cat+|+ e−iφ |cat+〉 〈cat−| ). (4.9)

In the case of big cat states |cat±〉 ∝ |α〉 ± |−α〉 with |α| � 1, we can rewrite equation (4.9)
in the coherent-state basis as

ρ̂(θ, φ) ∝ (1 + sin 2θ cosφ) |α〉 〈α|+ (1− sin 2θ cosφ) |−α〉 〈−α|
+
(
(cos 2θ + i sin 2θ sinφ) |α〉 〈−α|+ h.c.

)
. (4.10)

With the right choice of θ and φ, we can therefore prepare in the limit of |α| � 1 any CV-
encoded qubit at the distant CV node. This protocol is a good example of the benefits of using
hybrid entanglement. In the case of a polarization encoded hybrid state, it is straightforward
to apply the operators Π̂(θ, φ) with linear optical components [89]. It is a bit more difficult
in our case but still advantageous as compared to other schemes for CV-encoded qubits
generation as they require several conditioning measurements [98].

2.2 Experimental implementation

The experimental setup is presented in figure 4.5 (a). Starting from a hybrid-entangled
state, we can approximate the operators Π̂(θ, φ) using quadrature measurements done via
homodyne detection on the DV mode. The operator is performed by conditioning, i.e. the
measurement of appropriate quadrature values heralds the application of Π̂(θ, φ).

Conditioning on homodyne detection. To understand the general idea of this method,
the marginal distributions of the quadrature corresponding to the single-photon and vacuum
states are plotted in figure 4.5(b) in the ideal case. The measurement of a quadrature outcome
equal to zero on Alice’s side has to come from the vacuum component and will therefore
project Bob’s state onto the state |cat−〉. Similarly, a large value quadrature result, which
most likely comes from the single-photon component, will project Bob’s state onto the state
|cat+〉. By choosing a given phase φ and a quadrature value Q, Alice can then remotely
prepare any superposition of the form c+|cat+〉+ eiϕc−|cat−〉. In the ideal case and large |α|
values, a quadrature measurement equal to +1 projects the state onto the equally-weighted
superposition |cat+〉+|cat−〉 ∼ |α〉, i.e., a coherent state. The remote preparation is therefore
probabilistic, but heralded, as the right state is created only when the right result is obtained.
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(a)
(b)

(c)

Figure 4.5: Remote preparation of CV-encoded qubits using hybrid entanglement.
(a): Experimental setup. Alice and Bob located at two distant nodes share an entangled state
|0〉A|cat−〉B + |1〉A|cat+〉B . Conditional on a specific quadrature measurement via homodyne de-
tection, Alice remotely prepares any arbitrary superposition c+|cat+〉 + eiϕc−|cat−〉 on Bob’s node.
The measured quadrature is chosen by locking the local oscillator phase on a value φ and the prepa-
ration is heralded by the occurrence of a preselected value Q within an acceptance window of width
∆ (typically taken equal to 20% of the shot noise value). The prepared state is characterized by
homodyne detection, with an overall efficiency η = 85%. (b) Marginal distributions of vacuum and
single-photon states. (c) Theoretical fidelity of the remotely prepared state with different targeted
superpositions as a function of the quadrature value Q, with φ = 0 and |α|= 0.7.

The classical piece of information that Alice needs to send to Bob is therefore whether or not
the event is to be kept.

The superposition coefficients can be calculated as follows. The measurement imple-
mented by Alice can be written in the form of the quadrature operator Q̂φ = X̂ cosφ+P̂ sinφ
where X̂ and P̂ denote the canonical position and momentum observables. The measurement
of a quadrature value Q projects the entangled state onto a quadrature eigenstate 〈Qφ|:

|Φ〉B ∝ 〈Qφ|Ψ〉AB = 〈Qφ|0〉A|cat−〉B + 〈Qφ|1〉A|cat+〉B (4.11)

with

〈Qφ|0〉A = 1
(2π)1/4 e

−Q2/4 and 〈Qφ|1〉A = Qeiφ

(2π)1/4 e
−Q2/4.

The remotely prepared state on Bob’s side can finally be written after normalization as:

|Φ〉B = 1√
1 +Q2

(
|cat−〉+Qeiφ|cat+〉

)
. (4.12)

By associating with equation (4.9), we see that with a chosen quadrature value Q following
Q = tan2 θ and a local oscillator phase φ, we recover the operator Π̂(θ, φ). Figure 4.5(c)
provides the expected fidelities to different targeted states as a function of the measured
quadrature value Q. For this calculation, we consider our experimental case for which the
mean photon number is limited due to the initial approximation in the entangled state gener-
ation. The fidelities are calculated for |α|= 0.7. As a result, for instance at Q = 0, the fidelity
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(a) (b)

Figure 4.6: Fidelity of the prepared states with the experimental imperfections. (a): The-
oretical fidelity as a function of the efficiency of the heralding homodyne detection. (b): Theoretical
fidelity as a function of the window width ∆. The normalization is such that the variance of vacuum
is σv = 1.

of the prepared state to |cat−〉 is equal to 95%. For other values of Q, all superposition can
be generated, and the measurement angle φ comes into play. In particular, for Q = ±1.14
and φ = 0, one can obtain the coherent state |±α〉. This conditioning value |Q| is slightly
larger than 1 due to the limited size |α|2.

Impact of losses and conditioning window. Experimentally, two parameters can lead
to a reduction of fidelity [93]. The first one is the finite efficiency of the detection used for
heralding, as shown in figure 4.6 (a). We see that the effect varies depending on the state one
wishes to generate, the odd cat state is more sensitive to losses than the even cat state. This
is because the former corresponds to a conditioning on vacuum and therefore is triggered
in the case where the DV mode was initially populated by a single photon then lost in the
environment. The latter will also be impacted but less significantly. The main effect of losses
for this state is a drop in preparation rate as less events will be registered as positive. This
in turn leads to a decrease in fidelity because the vacuum component will rise and there is a
non-zero probability to obtain higher quadrature values when vacuum is measured. Alice can
however adjust her conditioning choice Q so as to maintain good state fidelity with increased
losses at the cost of a lower preparation rate.

The second parameter is the acceptance window in quadrature values. Indeed, to have a
non-zero preparation rate, we condition not on a precise Q value but on a range of quadrature
values q ∈ [Q−∆/2, Q+ ∆/2]. This leads to a loss of fidelity on the state generation as we
herald

ρ̂ ∝
∫ Q+∆/2

Q−∆/2
dqTrA(|qeiφ〉〈qe−iφ|Ψ〉 〈Ψ|). (4.13)

The selection width ∆ results in a trade-off between preparation rate and fidelity. However,
the reduction in fidelity is only of second order with the width (see figure 4.6 (b)). This enables
us to take ∆ equal to 20% of the shot noise value. For such a selection band, centered for
instance in Q=0, the success rate is around 5% while the fidelity is only decreased by a few
percents.
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Conditioning and state reconstruction. The homodyne conditioning is performed on
the DV side by an active locking of the local oscillator (LO) relative phase desired. The locking
is digital and performed using Arduino DUE microcontrollers. To prepare a larger range of
CV-encoded qubits, we aim to lock the LO phase at many values. This is achieved by sweeping
the LO phase during the sampling sequence fast enough to see a complete interference fringe
with the seed beam on the homodyne signal then actively lock at the target power. The
initial sweeping serves as calibration to recover the maximum and minimum of intensity and
adjust the target intensity accordingly. It is necessary because of misalignment and thermal
fluctuations that lead to changes of fringe visibility. During the holding sequence, the piezo-
transducers are kept fixed as in previous setups. We estimate the phase noise to be below
3%.

To verify the quality of the prepared states, we also perform homodyne detection on the
CV mode. At a given LO phase, many states can be prepared depending on the quadrature
results obtained. The conditioning is applied after all homodyne data on both sides has
been acquired. We acquire around 106 heralding events for each phase φ which leads to
the pre-conditioned and pre-processed data {n, 〈x̂(n)

I,f 〉, 〈x̂
(n)
II,f 〉, θ

(n)
I , φ

(n)
II }n. We then keep only

the events where 〈x̂(n)
II,f 〉 ∈ [Q−∆/2, Q+ ∆/2] and perform single-mode tomography on the

conditioned data which typically comprises 40000 events depending on the state prepared.
Some of the experimental results for the preparation of different states therefore come from
the same initial data run. The difference to the ideal experiment is only practical, one could
send for example the CV mode in a delay line for long enough to get the quadrature results
on the DV mode and decide to let it be sent or not.

2.3 Results

We come to the experimental results. A set of remotely-prepared states are presented in
Fig. 4.7, inserted in a Bloch sphere where the poles are defined by the orthogonal states |cat+〉
and |cat−〉, with |α|= 0.7. In order to graphically represent the states, for each prepared state
ρ̂exp we determine the maximal fidelity with the state cos(φ/2)|cat+〉 + eiϕ sin(φ/2)|cat−〉
and obtain thereby the spherical coordinates {φ, ϕ}. The distance d to the center scales
with the purity of the state, d =

√
2Tr[ρ̂2

exp]− 1. Each prepared state is represented by a
number located in the sphere at the corresponding distance from the center d and we give
next to it the corresponding experimental Wigner function. Table 4.1 gives a summary of
the conditioning parameters used to prepare these states and the fidelity with the targeted
state to be transferred. As these results show, our procedure enables the remote preparation
of arbitrary CV qubits with a large fidelity to the target states. Fidelities above 80% are
obtained, except for the state numbered 2, i.e., for a |cat−〉 target. As we explained earlier,
this reduced fidelity is generally true for states lying closer to the south pole. We note
also that the states numbered 3 and 4 are close to coherent states with opposite phase, as
expected. However, they are not exactly lying on the sphere equator but slightly out of this
plane due to the limited mean photon number |α|2< 1. This smaller value of α also explains
the small dip in values close to the origin of phase space.

We now investigate in more detail the control of the prepared superpositions as a function
of the conditioning parameters. Figure 4.8 provides projections of the Bloch sphere along two
planes, i.e., XZ and XY. Rotation of the states in these planes are controlled by independent
parameters, namely the quadrature value Q and the phase θ, respectively. In figure (a), we
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Figure 4.7: Remotely prepared states represented on a Bloch sphere and associated
Wigner functions. The poles are the two orthogonal states |cat+〉 and |cat−〉, with |α|= 0.7.
The results are corrected for the η = 85% detection efficiency.

# Target Q, θ F|α|=0.7 Rate

1 |Cat+〉 |Q|≥ 2, θ = 0 86% 13.8 kHz

2 |Cat−〉 Q = 0, θ = 0 65% 9.6 kHz

3 |α〉 Q = 1.14, θ = 0 85% 9.4 kHz

4 |−α〉 Q = −1.14, θ = 0 85% 9.4 kHz

5 |α〉+ i|−α〉 Q = −1.14, θ = π/2 81% 9.4 kHz

6 |α〉 − i|−α〉 Q = 1.14, θ = π/2 80% 9.4 kHz

Table 4.1: Features of the remotely prepared states. Summary of the prepared states
corresponding to each point on Fig. 4.7. The targeted states appear in the second column as
well as the experimental fidelities F for |α|= 0.7. Q and θ correspond to the quadrature value
in unit of shot noise and to the local oscillator phase. For the points 2 to 6, the acceptance
window ∆ is equal to 0.2. The error bar on the fidelity is ±3%. The last column provides
the heralding rate.

can see the change of the weight of the superposition. We plot the Wigner function of several
prepared states, each reconstructed from 40000 separate quadrature measurements. We can
go from an odd cat state (number #2) to an even cat state (number #1) with intermediate
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Figure 4.8: Exploring the Bloch sphere. Control of the remotely-prepared superposition
via tuning of (a) the selected quadrature value Q and (b) the local oscillator phase θ. The left
figures provide the location of the prepared states projected onto the XZ and XY plane of the
Bloch sphere respectively. The rows show the evolution of the associated Wigner functions
when the conditioning parameter is tuned. We note that the sign flip of Q is equivalent to a π
phase shift. The results are corrected for the η = 85% detection efficiency and reconstructed
from 40 000 samples.

superpositions between the two all at a fixed relative phase θ = 0. In figure (b), we stay close
to the equator of the Bloch sphere by fixing Q = 1.14 and then modify the local oscillator
phase. This allows us to create a balanced superposition between even and odd cat states at
different relative phases. We see indeed a rotation of the states from number #4 to number
#6 which illustrates the quantum state engineering capability in phase space offered by our
scheme.

3 Conclusion
In this chapter, we presented hybrid entanglement of light and the first protocol making

use of it: the remote preparation of any CV-encoded qubit by performing local measurements
on the DV mode. The performance is limited by the losses we introduce on the DV mode
which are mostly due to the presence of the optical isolator. Future implementations, with for
example a bow-tie OPO cavity, could significantly lower those losses and increase the fidelity
of the prepared states with their respective target. This first hybrid-entanglement-based
protocol being successful, we can now explore more advanced schemes. The strong negativity
of entanglement measured and the RSP capability first led us to probe the nonlocal properties
of our resource. In the next chapter we present a theoretical study for the implementation of
Bell tests and our experimental demonstration of quantum steering with hybrid entanglement.
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Chapter 5

Non-locality tests on hybrid
entanglement

The realization of remote state preparation of arbitrary CV-qubits is a clear manifestation
of the robust entanglement present in our hybrid entangled resource. In this chapter, we
address the possibility of performing non-locality tests with this hybrid state.

First, we give the account of a theoretical study of the possibility of implementing Bell
tests with our setup. To that end, several approaches are considered, and we conclude on
the loss-requirements for the violation of Bell inequalities in a hybrid context. We then
consider the intermediate scenario of quantum steering. The main result of the chapter is
the success in demonstrating Einstein-Podolsky-Rosen steering for the first time using hybrid
entanglement, a result that has been published in [99]. We present the experimental setup
used for this demonstration as well as a detailed account of the computation of error bars
associated to the measurement. We finally find our state to be distant from the local bound
by more than five standard deviations.
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CHAPTER 5. NON-LOCALITY TESTS ON HYBRID ENTANGLEMENT

1 Entanglement and non-locality

The existence of entangled states has for consequence a counter-intuitive phenomenon.
As described by Einstein, Podolsky and Rosen in 1935 [2], in the case where an entangled
state is shared by two arbitrarily distant nodes, the results of measurements made by one of
the parties will be strongly correlated with the result of future measurements performed on
the other mode. This situation is possible in classical physics if there exists a prior history
shared by the two parties, which may be unknown, but that has a causal influence on the
results of measurements made on the two modes. In quantum theory however, although all
the information about an entangled state is contained in its density matrix, the latter does
not determine the outcome of local measurements on its subsystems. This led the authors
of [2] to assume quantum theory to require a more complete description.

This property is however now well-accepted and has been demonstrated in numerous
experiments. We note in particular the first observation of a Bell inequality violation by
Freedman et al. [4], the first demonstration ruling out the locality loophole by Aspect et
al. [5] and the three loophole-free experiments published in 2015 [6, 7, 8]. In this section,
we first introduce the concept of non-locality and then detail some of the practical uses of
non-local states.

1.1 Bell non-local states

We define here non-locality using the approach and the formalism outlined in [100]. A Bell
test [3] can be described as follows. We consider two systems having previously interacted
and measured by two observers Alice and Bob. To do so, they perform measurements, labeled
x for Alice and y for Bob that lead to some outcomes denoted respectively a and b. After
enough measurements, they can reconstruct separately the conditional probabilities p(a|x)
and p(b|y), while by comparing their results they can compute the distributions p(ab|xy).
In the case where they observe p(ab|xy) 6= p(a|x)p(b|y), a classical, meaning here local,
explanation entails the existence of a set of parameters λ that have influenced both systems
during their interaction. These so-called hidden variables condition the results of Alice and
Bob’s measurements prior to their implementation. A local model for the situation can
therefore be written as:

p(ab|xy) =
∫

Λ
dλp(a|xλ)p(b|yλ)q(λ), (5.1)

where we integrate over the set Λ of hidden variables that condition the observer’s measure-
ments. These variables are not necessarily constant throughout the experiment and is taken
into account by introducing the probability distribution q(λ).

Any quantum state that follows equation (5.1) is compatible with a local description.
Quantum theory allows however the existence of experiments for which a local description is
impossible [100]. These scenarios, i.e. successful Bell tests, involve the use of states called
non-local. The original Bell test consisted in Alice and Bob measuring correlations on sub-
parts of a pure entangled state through two possible measurements each, respectively xi and
yj with i, j ∈ {0, 1}. The results of their measurements ai and bj would then be assigned to
two possible values: ai, bj ∈ {+1,−1}. One can show [101], that assuming equation (5.1) to
be true leads to the Clauser-Horne-Shimony-Holt inequality:

B = |〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉 − 〈a1b1〉|≤ 2. (5.2)
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This inequality is however not verified in general for quantum states where the upper
limit becomes 2

√
2 [100]. Any entangled state for which one can perform measuremements

violating equation (5.2) is non-local.

1.2 Non-locality of entangled states

As defined in Chapter 1, a bipartite state ρ̂ spanning the Hilbert space H is entangled if
it is impossible to write it as a linear combination of tensor products of states belonging to
parties Alice (A) and Bob (B):

ρ̂ 6=
∑
k

pkρ̂
k
A ⊗ ρ̂kB. (5.3)

Entanglement and non-locality are closely related concepts. We can first see this by comput-
ing the conditional probabilities p(ab|x̂ŷ) for a separable state:

p(ab|x̂ŷ) = Tr(ρ̂x̂⊗ ŷ)
=
∑
k

pkTr(ρ̂kAx̂)Tr(ρ̂kB ŷ)

=
∑
k

pkp(a|x̂, k)p(b|ŷ, k). (5.4)

As the conditional probability can be written in the form of equation (5.1), we conclude that
it is possible to obtain non-local correlations from measurements on a quantum state only if
it is entangled.

A question that is still open is whether the reverse is true. It has been demonstrated
that all pure entangled states are non-local [102, 103, 104]. The question is more complicated
however for mixed states. For instance, there exists a class of mixed entangled states, called
the Werner states [105], that admit a local model for any possible local measurements. This
does not fully settle the question however as one can reveal the non-local features of a quantum
states through different strategies. One is to perform entanglement distillation and it was
conjectured by Peres [106] in 1999 that undistillable bibartite entangled states admit a local
model. However this was disproven more recently [107, 108] and it is possible that in fact
every entangled state can be revealed non-local through more elaborate strategies (See [100]
for the description of non-locality subgroups corresponding to different strategies).

1.3 Non-locality in practice: Device independence

Although the link between entanglement and non-locality has yet to be fully characterized,
the practical realization of key quantum protocols between untrusted parties has been so far
proven to be secure only through the use of non-local states. These include random number
generators and quantum key distribution (QKD). To see the added value of non-locality, it
is interesting to look at the differences between two early QKD protocols: BB84 and E91.
The first one was introduced in 1984 by Bennet and Brassard [13], was garanteed secure
because of the non-cloning theorem and was later extended to the use of entanglement [109].
The second protocol, detailed by Ekert in 1991 [110], uses a maximally entangled state and
its success is ensured by the violation of a CHSH inequality. Initially, this second protocol
was intended to be a more practical implementation of QKD as it would rely on similar
setups used for Bell violation. The answer of Bennet and Brassard was to update BB84 to
a version relying on entanglement without needing a Bell inequality violation. This protocol
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was proven as secure as E91 if one assumes perfect control of the experiment, i.e. if all its
components have been characterized and are trusted.

The fundamental advantage of Ekert’s protocol is therefore that one does not need to
make any assumption on the measurements implemented. Security is ensured by looking
at correlations between the results of measurements no matter what is actually performed.
This frees one of the necessity of having characterized perfectly both his setup and the
one of the party with whom he wants to share a key. This was explicited first in [111,
112] under the name self-testing and is now called device independence (DI). Later, device
independent protocols for quantum key distribution (DIQKD) were introduced that rely only
on the no-signaling assumption, i.e. the assumption that Alice has no way of knowing which
measurements was chosen by Bob and vice versa [113, 114]. Similar development has been
made towards protocols for DI random number generation [115].

2 Towards device-independent use of hybrid entanglement of
light

We have seen that proving an entangled state to be non-local demonstrates its usefulness
for a wider range of protocols. In particular, it opens the possibility of implementing fully
device-independent and secure quantum communication channels. In the context of quantum
networks where untrusted actors using different encodings interact, it is worthwhile to study
the non-local features of hybrid entanglement.

In this section we study the requirements for the realization of a Bell test with our hybrid
resource. In the context of the CHSH inequality, we consider and compare a number of
strategies for the demonstration of its non-local nature.

2.1 Framework of the study: Adapting the CHSH inequality to hybrid
entanglement

The Bell tests we considere are in the framework of the CHSH inequality. As seen in
section 1.1, in this scenario two measurements are performed on each mode, leading to two
possible results to which we associate the values ±1. Originally, the CHSH inequality was
applied to two-dimensional DV states such as entangled spin or polarization qubits for ex-
ample. In that case, the POVMs associated to Alice and Bob’s measurements span the Pauli
operator basis. Meaning one could write with no loss of generality the CHSH inequality as

B = |〈σ̂a0 ⊗ σ̂b0〉+ 〈σ̂a1 ⊗ σ̂b0〉+ 〈σ̂a0 ⊗ σ̂b1〉 − 〈σ̂a1 ⊗ σ̂b1〉| ≤ 2, (5.5)

where the ai and bj are 3-dimensional vectors and σ̂x = x · (σ̂X , σ̂Y , σ̂Z). In the rest of the
section, we are looking to adapt the inequality to hybrid entanglement. To do so we consider
several different operators on the DV and CV modes as a number of possible Bell tests. In
an experimental context, we compare in particular their resilience to losses. We outline the
impact the choice of encoding made for the DV mode has on the ease of implementation of
Bell tests and then consider various operators on the CV mode.

2.2 Loss-tolerance of a Bell test

Managing losses is crucial to an experimental demonstration of non-locality. The goal of
our study is therefore to compute the loss-requirements in the system for a successful Bell
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violation. In effect, we compare different strategies in terms of the maximum amount of losses
we can add to the system before the Bell test fails.

We have seen in previous chapters one principal source of loss for our state: the η0 ≈ 90%
escape efficiency of the OPOs. The parameter chosen for our plots is the overall efficiency
η defined as the product of the efficiency on both modes ηo = ηCVηDV, where ηDV (ηCV ) is
the transmission efficiency on the DV(CV) mode. In the experimental context we have in
the best case an overall efficiency ηo = η2

0 ≈ 81%. The overall efficiency needs however to
include as well the losses introduced by the imperfect measurements performed. For example
and as we show in Section 2.3, the implementation of a Pauli operator using homodyne
detection has to take into account the ηHD = 15% detection losses of the experimental setup.
When considering the results of the study, one therefore has to add the losses inherent to
his measurement’s implementation. There is a theoretical loss threshold for all two-mode
experiments under which the CHSH inequality cannot be violated. The lowest efficiency
allowing for any implementation of the CHSH test a Bell violation is η̃i = 2/3 on each mode
i ∈ {1, 2} (i.e. a global efficiency of η̃o = η̃1η̃2 = 4/9) in a symmetric (or close to symmetric
case) [116]. Lower thresholds can be reached only for very asymmetric cases where one
measurement has a close to perfect implementation, a situation out of reach for us.

2.3 Implementing Pauli operators on the DV mode depending on the en-
coding

Our goal is to adapt the CHSH inequality to hybrid entanglement and in particular to
our specific implementation to see the loss-requirements for our system. As presented in
Chapter 4, we currently use the photon-number encoding {|0〉 , |1〉} on the DV mode and the
squeezing encoding {Ŝ |0〉 , âŜ |0〉} on the CV mode. Note however that there are other possi-
ble choices and, notably, one of the goals of our group is to realize hybrid entanglement using
the polarization encoding {|H〉 , |V 〉} on the DV mode. Although we give a comprehensive
account of the differences between encodings in Chapter 6 (Section 1.2), the change relevant
to the context of the CHSH inequality is the implementation of Pauli operators on the DV
mode. To keep our study more general and valid for the future implementation of hybrid
entanglement, we outline the difference between the two encodings here and will consider
perfect Pauli operators in the remainder of the section.

While it is possible to perform all Pauli operators in the polarization encoding using
polarizing beam-splitters and single-photon detectors, in the photon-number basis it is only
possible to approximate σ̂X and σ̂Y when using linear systems. One possible method is to
perform homodyne measurements at phase φ and then sign-binning the result. This approx-
imates the Pauli operator σ̂(φ) = cos(φ)σ̂X + sin(φ)σ̂Y . Indeed, if we consider the Fock state
decomposition of the corresponding measurement π̂(φ):

〈n| π̂(φ) |m〉 = 〈n| (
∫ +∞

0
|xφ〉 〈xφ| dx−

∫ 0

−∞
|xφ〉 〈xφ| dx) |m〉

=
∫ +∞

0
eiφ(n−m)ψn(x)ψ∗m(x)dx−

∫ 0

−∞
eiφ(n−m)ψn(x)ψ∗m(x)dx

=
√

2
π
〈n| σ̂(φ) |m〉 ∀n,m ∈ {0, 1}. (5.6)

Even in the case of a lossless homodyne detector, this is an approximation because of the pref-
actor

√
2/π. The probability of performing the right operator is equal to 1/2(1 +

√
2 ∗ η/π),
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State

|ψ〉
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|α〉
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D̂(α)
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Figure 5.1: Displaced parity measurement. The state to measure |ψ〉 is mixed mith a coherent
state |α〉 on a beam-splitter. Then, a photon-number resolving detector measures the parity of the
mixed field.

with η the homodyne efficiency [117]. There is therefore an intrinsic drawback to the use of
the photon-number encoding on the DV mode for Bell tests: A realistic implementation of a
Pauli measurements will introduce additional losses when compared to hybrid entanglement
with polarization encoding. As said earlier and for generality, our study is in the case of
perfect Pauli measurements on the DV mode. When using the photon-number encoding, one
needs to include additional losses to recover the loss-resilience of the Bell test.

Keeping this in mind, we now consider the CV mode. As it populates a greater Hilbert
space than the DV mode, we need to look for different observables. Those can be either
extensions of the Pauli formalism to higher dimensions or linked to the phase-space repre-
sentations. In the following, we consider several of these operators as a number of possible
strategies.

2.4 Comparing strategies: using different observables on the CV mode

We now consider several Bell tests devised for high-dimensional systems in order to find
the most suitable one for our experiment. The following work was realized in collaboration
with the group of Thomas Coudreau and Perola Milman from the university Paris Diderot and
in particular with Andreas Ketterer whose doctoral thesis [33] provides important theoretical
details along with simulations using displaced parity measurements on the CV mode. What
we detail here extends the simulations performed therein from the target hybrid state |+〉 |α〉+
|−〉 |−α〉 to the one experimentally implemented Ŝ |0〉 |1〉+eiπâŜ |0〉 |0〉. We also add the study
of other observables based on displacements and imperfect detectors.

2.4.1 First test: the Wigner function as an observable

Historically and to the best of our knowledge, Banaszek and Wódkiewicz [118] were the
first to outline a link between phase-space distribution and non-locality. Considering the
expression of the Wigner function as a displaced parity operator as seen in Chapter 1, they
showed that one can devise an experimental setup for measuring one point of the Wigner
function. As shown in figure 5.1, the setup consists in applying a displacement to the incoming
field and then, using a photon number sensitive detector, in measuring the photon number
parity of the resulting field.
The POVM corresponding to this measurement is the displaced parity operator:
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Figure 5.2: Loss-tolerance using displaced-parity operators. Expected Bell parameter value
depending on the global efficiency for a hybrid state with 3 dB of squeezing using displaced-parity
operators. Full lines: maximum value of the Bell parameter. Dashed lines: optimum displacement
amplitude |β| when applying operator D̂(β)P̂ D̂(−β) on the CV mode. On the DV mode we apply
either of the operators σ̂Z and σ̂X . On the CV mode we choose between operators Π̂(β) and Π̂(−β),
with |β| given by the dashed curve. The corresponding Bell inequality is violated starting from a
global efficiency ηo = 83%.

Π̂(α) = D̂(α)P̂ D̂(−α). (5.7)

As we have seen in equation (1.43) of Chapter 1, this operator is proportional to the Wigner
function at the point in phase space (x, p) as, using the notation Wρ̂(x, p) = Wρ̂(α = x+ ip),
we have

Wρ̂(α) = 1
2πσ2

0
Tr
(
ρ̂D̂(α)P̂ D̂(−α)

)
(5.8)

Therefore, as generalized in [119], one can test the non locality of a two mode state using the
following CHSH inequality:

B = |〈Π̂(α)⊗ Π̂(β)〉+ 〈Π̂(α′)⊗ Π̂(β)〉+ 〈Π̂(α)⊗ Π̂(β′)〉 − 〈Π̂(α′)⊗ Π̂(β′)〉| ≤ 2, (5.9)

or equivalently, using the shorthand W (α = xα+ ipα, β = xβ + ipβ) for the two-mode Wigner
function W (xα, pα, xβ, pβ),

B(α, α′, β, β′) = 4π2σ4
0|W (α, β) +W (α′, β) +W (α, β′)−W (α′, β′)| ≤ 2. (5.10)

From there a straightforward hybridization of inequalities (5.5) and (5.10) is the following
hybrid CHSH inequality:

B(a0,a1, β, β
′) = |〈σ̂a0 ⊗ Π̂(β)〉+ 〈σ̂a0 ⊗ Π̂(β′)〉+ 〈σ̂a1 ⊗ Π̂(β)〉 − 〈σ̂a1 ⊗ Π̂(β′)〉| ≤ 2, (5.11)

where we apply Pauli operators on the DV mode and displaced-parity operator on the CV
mode. We now consider the effect of losses on the possibility of observing a Bell inequality
violation.

In figure 5.2, we plot the maximum violation attainable for a theoretical hybrid-entangled
state, depending on the global efficiency ηo = ηDV ηCV . We consider the symmetric case
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Figure 5.3: Loss-tolerance using displaced-detection operators. Expected Bell parameter
value depending on the global efficiency for a hybrid state with 3 dB of squeezing using displaced-
detection measurements. Full lines: maximum value of the Bell parameter. Dashed lines: Optimum
displacement amplitude |β| when applying operator M̂(β) on the CV mode. On the DV mode we
apply either of the operators σ̂Z and σ̂X . On the CV mode we choose between operators M̂(β) and
M̂(−β), with |β| given by the dashed curve. The corresponding Bell inequality is violated starting
from global efficiency ηo = 63%.

ηDV = ηCV . We see that the minimum global efficiency needed for a violation is around
ηo = 83%. At maximum efficiency, the Bell parameter reaches B = 2.44, below the quantum
limit of 2

√
2. Although our initial optimization was made over all possible (a0,a1, β, β′), we

find that the particular combination {a0 = (0, 0, 1),a1 = (1, 0, 0), β = r, β′ = reiπ} gives
us the maximum attainable value of B for all efficiencies, up to an adjustment of the norm
r = |β|= |β′|. The dashed plot gives the value of this optimal norm at each particular global
efficiency value ηo. Those values range between r = 0.48 at low efficiency and r = 0.3 for
perfect transmission. These results are in good agreement with the calculations performed by
Andreas Ketterer as part of our collaboration and detailed in [33]. The slight difference can
be explained by the use of a squeezing encoding for the CV mode in our case. The threshold
for global efficiency using the displaced-parity operators is therefore quite high as it is above
the best-case-scenario efficiency of our setup η2

0 = 81%. This first strategy is therefore not
suited to our system and we need to consider alternatives.

2.4.2 Adaptation: displaced-detection measurements

Implementing the parity operator is challenging using most current single-photon detec-
tors, including our SNSPDs as they are not photon-number resolving. An adaptation of
the measurement in figure 5.1 to realistic detectors would therefore need to rule out any
parity measurement. The alternative we consider is to condition not on the parity of the
photon-number measured but on whether or not photons have been detected. One assigns
for example the result −1 to the detection of one or more photons and +1 to the alternative.
The operator associated to the latter case being the projector |α〉 〈α|, one can write the for-
mer measurement as Id−|α〉 〈α|. The overall POVM is thereforeM(α) = 2 |α〉 〈α|−Id. This
approach was introduced in [120] for α = 1, in effect implementing σ̂X for a 2D DV state ,
then generalized in [117] to different α values and Hilbert spaces of greater dimension and
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finally used in [121] for an experimental demonstration of EPR steering. In the context of
a two-mode squeezed state, these operators M̂(α) have been shown to be very loss-tolerant
as they reach the minimum efficiency threshold η̃ for all symmetric apparatuses [122]. This
promising result led us to do the same study of loss-tolerance using these observables in a
hybrid context. We plot in figure 5.3 the maximum value of B attainable for a hybrid state
with 3 dB of squeezing depending on the overall efficiency ηo.

We indeed observe a greater loss-tolerance than with the previous displaced-parity mea-
surements as one can see a violation with a global efficiency as low as ηo = 63%. We find
optimal settings analogous to the displaced-parity method: {a0 = (0, 0, 1),a1 = (1, 0, 0), β =
r, β′ = reiπ} with slightly different suitable values of r = |β|. This represents a great im-
provement over the previous method but this still represents a challenging demonstration
well above the theoretical bound η̃o = 45%.

We now consider two other strategies following a different approach. Instead of finding
high-dimensional operators to apply on the complete CV subspace, we project the CV mode
onto a two-dimensional space.

2.4.3 Third method: mapping on generators of the CV subspace

We know that Pauli operators are well suited for a discrete-variable CHSH inequality
violation. Using them one can maximally violate Bell inequalities and they constitute, along
with the identity operator, a basis for all 2D observables. In this subsection and as our next
approach, we’ll look at analogous operators that span the infinite-dimensional CV space that
have similar properties and that can be implemented as the previously considered observables.

The idea is to restrict the CV mode to a subspace spanned by two infinite-dimensional
states. These two generators should be chosen such that most of the features of the CV
mode are kept when projecting on the subspace. In short we want to map our CV mode
and operators on a 2D basis formed by two CV vectors: {|0CV 〉 , |1CV 〉}. Ideally, one would
need to have |0CV 〉 and |1CV 〉 strictly or close to orthogonal. Then we can build on this basis
Pauli-type operators:

Σ̂I = |0CV 〉 〈0CV |+ |1CV 〉 〈1CV | ,
Σ̂z = |0CV 〉 〈0CV | − |1CV 〉 〈1CV | ,
Σ̂x = |0CV 〉 〈1CV |+ |1CV 〉 〈0CV | ,
Σ̂y = −i |0CV 〉 〈1CV |+ i |1CV 〉 〈0CV | . (5.12)

For coherent states superpositions, the basis to consider is {|0CV 〉 = |β〉 , |1CV 〉 = |−β〉}. In
this case, |β〉 and |−β〉 are not strictly orthogonal but this issue can be alleviated by going to
higher values of |β|. This particular case is well suited to experimental implementation as it
is possible to measure the corresponding operators of equation 5.12 by combining displaced-
parity measurements. This approach was used in particular in [123] to demonstrate a Bell
inequality violation with entanglement between an artificial atom and a cat state. If we look
at the expression of Π̂(α) on the CV basis {|β〉 , |−β〉}:

〈β| Π̂(α) |β〉 = 〈β − α|α− β〉
〈β| Π̂(α) |−β〉 = e2(αβ∗−α∗β) 〈α|−α〉 . (5.13)
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Figure 5.4: Loss-tolerance using mapping on coherent state basis. Full line: expected Bell
parameter value depending on the global efficiency for a hybrid state with 3 dB of squeezing using a
mapping to a coherent states basis. Dashed line: optimum coherent state amplitude |β| for the CV
basis. On the DV mode we apply either of the operators σ̂Z and σ̂X . On the CV mode we choose
between operators Σ̂βx and Σ̂βy , with |β| given by the dashed curve. The corresponding Bell inequality
is violated starting from global efficiency of ηo = 62%.

As a consequence, on the subspace spanned by {|β〉 , |−β〉}, we have [123]:

Σ̂I ≈ Π̂(β) + Π̂(−β)
Σ̂x ≈ Π̂(0)

Σ̂y ≈ Π̂( iπ8β )

Σ̂z ≈ Π̂(β)− Π̂(−β) (5.14)

Because Pauli operators are generators of a 2D basis, one can measure any operator
on the CV subspace spanned by {|β〉 , |−β〉} by combining displaced parity measurements.
There is however the caveat that they therefore cannot all be implemented in a single shot
measurement using this method. Indeed, in the case of Σ̂I and Σ̂z it is necessary to combine
the result of multiple measurements. This rules out a loophole free demonstration of Bell
non-locality.

Under this basis, we can compute new expectation values for the Bell parameter B, as
shown in figure 5.4. This leads us however to a narrow improvement on the previous method
as in this case a violation is possible starting from ηo = 62%. The underwhelming improve-
ment from the displaced detection method can be explained by the way we implement cat
states experimentally i.e. using squeezed vacuum and photon subtractions. Ŝ |0〉 and âŜ |0〉
are close to unity fidelity for s = 3 dB with coherent state superpositions of different sizes
|α|. Fidelity between Ŝ |0〉 and |cat+〉 is maximal for |α+| ≈ 0.6 while it is for |α−| ≈ 1 that
âŜ |0〉 and |cat−〉 are the closest. Any basis {|β〉 , |−β〉} will therefore be inadequate for a
simultaneous mapping of Ŝ |0〉 and âŜ |0〉. This argument is underpinned by the fact that
the optimum values of |β| found are close to 0.8, i.e. around halfway between |α+| and |α−|.

The next step is therefore to adapt the operators of equation 5.12 to our implementation
of CSS and use the basis {|0CV 〉 = Ŝ |0〉 , |1CV 〉 = sh(ζ)−1âŜ |0〉}. No matter the squeezing
amount applied, the basis is orthonormal. The results are shown in figure 5.5.
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With this method, we can hope to reach a Bell violation for global efficiencies as low as

Figure 5.5: Loss-tolerance using mapping on squeezed-states basis. Full line: expected Bell
parameter value depending on the global efficiency for a single-click hybrid state with 3dB of squeezing
using a mapping to a squeezed states basis. Dashed line: optimum squeezing in dB to apply for the
CV basis measurement. On the DV mode we apply either of the operators σ̂Z and σ̂X . On the CV
mode we choose between operators Σ̂sx and Σ̂sy, with sdB the optimal amount of squeezing given by
the dashed line. The corresponding Bell inequality is violated starting from global efficiency of close
to ηo = 54% for both the symmetric and asymmetric cases.

ηo = 54%. However we leave open the question whether this can be implemented experimen-
tally or not. The mismatch between |α+| and |α−|– the size of coherent state superpositions
our implemented "cat" states are closest in fidelity to– is at the origin of the problem. While
we can approximate Σ̂s

z and Σ̂s
I , defined as Ŝ |0〉 〈0| Ŝ† ± sh(ζ)−1âŜ |0〉 〈0| Ŝ†â† well with:

Σ̂s
z ≈ Π̂(α+) + Π̂(−α+)− Π̂(α−)− Π̂(−α−) + 2Π̂(0)

Σ̂s
I ≈ Π̂(α+) + Π̂(−α+) + Π̂(α−) + Π̂(−α−), (5.15)

displaced parity measurements seem insufficient to approximate Σ̂s
x and Σ̂s

y, because they
involve the measurement of |α+〉 〈α−|. Displaced detection measurements fall short as well
on this as we haven’t found a way to improve on single shot measurements through the com-
bination of 2 or more observables. This result is an example of the drawbacks of using the
squeezing encoding instead of the coherent state basis for the CV mode. The implementation
of some measurements is more challenging because of the difference of population between
the two eigenstates of the basis.

We now come to the last strategy considered: the use of pseudo-spin operators. This
method also provides a mapping onto a two-dimensional subspace, although without a pro-
jective operation. Although there are to our knowledge no easy way to implement this last
strategy, it gives us the minimum efficiency threshold for Bell inequality violation using hybrid
entanglement.

2.4.4 Minimal bound for loss-resilience: using pseudo-spin operators

The underlying idea of the Pauli-type CV operators introduced previously is that we
consider only the projection of the CV mode onto a 2 dimensional subspace, spanned by
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Figure 5.6: Loss-tolerance for all methods. Expected Bell parameter value depending on the
global efficiency for a hybrid state with 3 dB of squeezing using all methods. Pseudo-spin operators
and mapping to a squeezing basis lead to the most tolerant Bell tests. On the DV part, we implement
Pauli operators σ̂x and σ̂z.

coherent states. This is in effect a mapping of our CV mode onto a lower dimension subspace
but with the problem that we use only part of the two-mode state for the search of non-local
features, which may not be optimal. A more general alternative is the use of pseudo-spin
operators [124], an extension of Pauli operators to dimensions higher than 2. They are
expressed as:

Ŝx =
∞∑
n=0

(|2n〉 〈2n+ 1|+ |2n+ 1〉 〈2n|)

Ŝy =
∞∑
n=0

(−i |2n〉 〈2n+ 1|+ i |2n+ 1〉 〈2n|)

Ŝz =
∞∑
n=0

(−1)n |n〉 〈n| . (5.16)

These operators follow the Pauli matrix algebra and can be used to map a CV mode onto
the 2D density matrix [125]:

ρ2 = 1
2(Id+ σ̂S(ρCV )), (5.17)

where S is the vector with components (S)i(ρCV ) = Tr(ρCV Ŝi). Tracing the product of ρCV
with any linear combination ∑i ciŜi amounts to measuring ∑i ciσ̂i on ρ2. Indeed we have:

Tr(σ̂iρ2) =
∑
j

Tr(ρCVŜi)Tr(
1
2 σ̂iσ̂j)

= Tr(ρCVŜi)Tr(
1
2 σ̂

2
i )

= Tr(ρCVŜi). (5.18)

Therefore, any pseudo-spin measurement on ρCV is equivalent to a Pauli measurement on the
corresponding 2D density matrix ρ2(ρCV). The interesting thing is that one can devise a local

81



2. TOWARDS DEVICE-INDEPENDENT USE OF HYBRID ENTANGLEMENT OF LIGHT

CV measurement Min. efficiency Implementation

Displaced-parity (DP) 83% Requires photon-number resolving detectors

Displaced-detection (DD) 63% Works with on-off detectors

{|α〉 , |−α〉} map 62% Combined DP measurements

{Ŝ |0〉 , âŜ |0〉} map 54% —

{âŜ |0〉 , â2Ŝ |0〉} map 54% Approximately with combined DP measurements.

Pseudo-spin 54% —

Table 5.1: Comparison of all methods. Loss-resilience and requirements for the implementation
of different strategies for Bell inequality violation.

and unconditional Hamiltonian for the mapping ρCV → ρ2(ρCV) which has for consequence
that ρDV ⊗ρ2(ρCV) must present the same non-local properties as ρDV ⊗ρCV [125]. As Pauli
operators, along with the identity operator, form a complete basis for the 2D space, we arrive
at the conclusion that by using the pseudo-spin basis we should be at the limit of what can
be achieved with a CHSH inequality applied to our hybrid state. To our knowledge, there is
no easy way to implement the mapping Hamiltonian but we can use this to look at how far
from the limit we are when using the previous methods.

In figure 5.6 we give the results for this method and compare them to the previously
considered strategies. We find the same threshold than for the mapping on a squeezing basis.

2.5 Comparison of all methods and conclusion

We compare all methods in Figure 5.6 and Table 5.1. The most loss-resilient strategy is the
projection on a squeezing mapping. However, as we have seen, the Pauli-type operators can
be reliably implemented only if the two eigenstates of the basis have a similar population. We
therefore do not provide a strategy for mapping on the {Ŝ |0〉 , âŜ |0〉} but we can approximate
the projection on the {âŜ |0〉 , â2Ŝ |0〉} basis by combining displaced-parity measurements.
Starting from our experimental hybrid-entangled state, the best compromise is therefore the
displaced-detection method. In this case a minimum of 63% overall efficiency is required
and there is no need for photon-number resolving detectors. This condition is however too
challenging to fulfill experimentally at the current stage. The use of a polarization-based
hybrid entanglement would make the demonstration more accessible. Indeed in that case,
the implementation of Pauli operators on the DV mode could then be made in a more efficient
manner.

In the meantime, we consider an intermediate test of non-locality: Einstein-Podolsky-
Rosen (EPR) steering. In the next section we present the principle of EPR steering and
report on its experimental demonstration with hybrid entanglement of light.
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3 Einstein-Podolsky-Rosen steering with hybrid entanglement
The difficulty of implementing true device independent (DI) protocols led to the develop-

ment of intermediate scenarios. In the context of QKD for example, one intermediate use case
would consist in the transfer of a secret key between two nodes, one of them fully characterized
and the other untrusted. This type of protocol is called one-sided device independent (1SDI)
and is useful in a number of contexts including random number generators [126, 127], en-
tanglement estimation [128], and entanglement verification for quantum networks [129, 130].
Similar to how the realization of a Bell test certifies device independence, there exists a class
of protocols for 1SDI certification, called steering tests. In this section, we first introduce
the principle of quantum steering and then we report on its demonstration using hybrid
entanglement.

3.1 Einstein-Podolsky-Rosen steering

The term of quantum steering was coined by Schrödinger in his answer [131] to the EPR
paradox introduced in [2]. While Einstein, Podolsky and Rosen proposed the introduction
of local hidden variables (LHV) as a resolution to the supposed incompleteness of quantum
mechanics, Schrödinger believed that the wavefunction provides a complete description of
a local system. In his view, it was incomplete only when describing delocalized entangled
states. In the context of 1SDI protocols, we will consider EPR steering as a test of the validity
of a local model as introduced in [132].

3.1.1 Local hidden state model

In a steering scenario, Alice and Bob share an entangled state and Alice, who cannot be
trusted, has to convince Bob that she can remotely steer his system. To this end she performs
one out of a set ofmA measurements labeled θ, which yields a result a from a set of oA possible
outcomes. This information is then sent to Bob. Depending on the measurement and its
result, Bob’s system is projected to the state ρ̂a|θ with probability p(a|θ). Whether steering
is observed or not will be determined by the information contained in the set {p(a|θ), ρ̂a|θ}a,θ
obtained after repeated measurements. Equivalently, we consider the set of unnormalized
states {σ̂a|θ}a,θ, called assemblage, defined by σ̂a|θ = p(a|θ)ρ̂a|θ.

One property required for all admissible assemblages is the non-signaling condition. It
aims to ensure that Bob cannot have any knowledge of Alice’s measurement choice beforehand
to avoid the possibility of supraluminal communications. In our context it means that the
mixed state Bob observes without any information coming from Alice should be independent
from θ: ∑

a

σ̂a|θ =
∑
a

σ̂a|θ′ ∀θ, θ′. (5.19)

The steering test is successful if the assemblage measured by Bob couldn’t have been
obtained by a local hidden state (LHS) model. Such a model, sketched in figure 5.7, supposes
that Bob receives a local quantum state ρ̂λ while Alice receives a related piece of classical
information λ that will determine the result a of her measurement θ according to a probability
p(a|θ, λ). In the general case, we have a set of possible λ distributed according to probability
distribution µ(λ). An assemblage {σ̂a|θ} following an LHS model satisfies

σ̂a|θ =
∫
dλµ(λ)p(a|θ, λ)ρ̂λ ∀ a, θ. (5.20)
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Alice

I
{λ, ρ̂λ}
µ(λ)

λ

|Ψ〉

Bob

I
ρ̂λ

Figure 5.7: Local hidden state model. Correlations between the measurements made by Alice
and the state measured by Bob are explained by Alice receiving a classical piece of information λ
when Bob receives the state ρλ. The possible λ follow the probability distribution µ(λ).

To know if steering has indeed occured, Bob therefore has to perform tomographic mea-
surements on his local state. After the measurements have been performed, Alice will send
the complete history of her measurement choices and results from which Bob will split his
data accordingly and reconstruct his assemblage. Crucially, and because Bob’s measurements
are trusted, he can take into account the losses introduced by his system and correct for them.
Then is left the task of checking for a possible LHS model for the experimental assemblage.

3.1.2 Expressing the local hidden state model as a semi-definite program

Checking an assemblage against any LHS representation is hard in the general case [133],
but it is possible to simplify the problem when the number of measurements and outputs made
by Alice is finite. The idea is to rewrite p(a|θ, λ) using deterministic probability distributions.
These distributions are defined using a set of functions λ′ that assign to each measurement
θ ∈ {1, ...,mA} a fixed result a ∈ {1, ..., oA}. There are omA

A possible such λ′, each associated
to a list of outcomes {aλ′θ=1, a

λ′
θ=2..., a

λ′
θ=mA

}. For every measurement made by Alice and its
result, there exists a corresponding λ′. The conditional probability p(a|θ, λ) can be written
using these functions:

p(a|θ, λ) =
∑
λ′

p(λ′|λ)δa,λ′(θ), (5.21)

keeping only the λ′ for which λ′(θ) = a. The δa,λ′(θ) are deterministic probability distributions
equal to one if a = λ′(θ) and otherwise equal to zero. The advantage of this formulation is
that all the δa,λ′(θ) are fixed, only p(λ|λ′) is undetermined. Injecting the expression (5.21) in
the LHS model (5.20), we obtain

σ̂a|θ =
∑
λ′

∫
dλµ(λ)p(λ′|λ)δa,λ′(θ)ρ̂λ

σ̂a|θ =
∑
λ′

δa,λ′(θ)σ̂λ′ ,

σ̂a|θ =
∑
λ′

a=λ′(θ)

σ̂λ′ , (5.22)
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where we define σ̂λ′ =
∫
dλµ(λ)p(λ′|λ)ρ̂λ. In consequence, all σ̂λ′ are positive and that∑

λ′ Tr(σ̂λ′) = 1.
We therefore find that an assemblage following a LHS representation has to admit the

expression (5.22), with the condition that the {σλ′} are positive. It is actually always possible
to find an expression in the form of (5.22) if we accept {σλ′} that are negative [133]. The
possibility of having a LHS model depends therefore only on the sign of the maximum value µ
for which we can find a set {σλ′} that verifies (5.22) and σλ′ ≥ µ∗Id for all λ′. If µ is negative,
no LHS model can account for the experiments results. The problem of searching for the
maximum value of µ is in this context a particular instance of a general class of problems
called semi-definite programs (SDP) that are well-known and can be solved in polynomial
time [134]. The corresponding SDP formulation is:

given {σ̂a|θ}a,θ, {δa,λ′(θ)}λ′
max
{σ̂λ′}

µ

s.t.
∑
λ′

δa,λ′(θ)σ̂λ′ = σ̂a|θ ∀a, θ,

σ̂λ′ ≥ µ ∗ Id ∀λ′. (5.23)

The process can be described as: Given a set of conditioned states σ̂a|θ and all possible
measurements θ and associated outcomes a, find the maximum value µ such that {σ̂a|θ}
verifies equation (5.22). Obtaining a negative µ is impossible if there exists a LHS model,
therefore if the result of the program is a negative number, a local description is ruled out
and quantum steering is demonstrated. In the experimental context, SDP gives us a practical
way, using existing libraries such as the one given in [133], to solve the problem of checking
whether a LHS model can explain the measured assemblage.

3.1.3 From SDP to steering inequalities

The reformulation of a steering test as a SDP is convenient in an operational context but
one can approach it differently to see the connection between Bell tests and quantum steering.
Similar to how the violation of a Bell inequality proves a state to be Bell non-local, there
exists inequalities that are respected for all LHS models. These are called steering inequalities,
and can be found through the following re-expression of the SDP in equation (5.23). Let us
consider a set of positive operators {F̂a|θ}a,θ and suppose we have a LHS model for the
assemblage {σ̂a|θ}. Then let us apply each operator to the corresponding state and sum over
all a and θ. We obtain the following quantity:

S =̂ tr
(∑
a,θ

F̂a,θσ̂a|θ
)

S = tr
( ∑
a,θ,λ′

F̂a,θδa,λ′(θ)σ̂λ′
)
. (5.24)

All {F̂a|θ} being positive, in the case where a LHS model is valid, we have

S = tr
(∑
a,θ

F̂a,θσ̂a|θ
)
≥ 0. (5.25)

This is an example of a steering inequality, the violation of which therefore demonstrates the
observation of EPR steering. This is linked to SDPs as it can be shown [133] that SDP (5.23)
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is equivalent to the following program:

given {σ̂a|θ}a,θ, {δa,λ′(θ)}λ′
min
{F̂a|θ}

S = tr (
∑
a,θ

σ̂a|θF̂a|θ)

s.t.
∑
a,θ

F̂a|θδa,λ′(θ) ≥ 0 ∀λ′,

tr (
∑
a,θ,λ′

F̂a|θδa,λ′(θ)) = 1. (5.26)

The SDP can therefore be seen as an optimization process over all possible {F̂a|θ}, i.e. steering
inequalities, in order to find the minimum value Smin. If Smin is negative, the steering test
is successful. The first condition ensures the positivity of S for LHS model compatible
assemblages while the second normalization amounts to a scaling condition that allows one
to compare between different steering inequalities.

Semi-definite programming allows the exploration of a much wider range of inequalities
than we have considered for Bell tests. That being said, it is still necessary to find the
appropriate measurements on Alice’s mode independently. Indeed, the SDP only extracts
the most suitable set of operators to apply on Bob’s conditional states. We now present the
experiment realized for the violation of a steering inequality using hybrid entanglement.

3.2 Performing EPR steering with our hybrid state

In this section, we first present the protocol used for quantum steering with hybrid entan-
glement, motivate some of the experimental settings and give the expected steering inequality
violation. We then provide details on the experimental implementation and present the mea-
sured assemblage.

3.2.1 The setup

In the context of this experiment, and for generality, we start from asymetric hybrid
entanglement, i.e. we assume that Alice and Bob share the hybrid non-maximally-entangled
optical state |Ψ〉AB

|Ψ〉AB =
√
R |0〉A|Cat−〉B −

√
1−R |1〉A|Cat+〉B , (5.27)

where R can be tuned by adjusting the heralding rates of both OPOs. The setup chosen is
shown in figure 5.8. The measuremens performed on the DV mode are the Pauli operator
approximations π̂(θ) introduced in section 2.3: Quadrature measurements followed by sign-
binning of the result. We therefore have a ∈ {+,−}. Bob separately performs tomographic
measurements by recording the relative phase of his local oscillator and the quadrature value
obtained at each event #N . Having no information from Alice for this particular event, Bob
cannot see the effect of her measurements yet. It is only after associating Alice’s observations
{θ, a}N to the corresponding heralding events that he is able to split his data into 2mA sub-
sets. He can then reconstruct the states {ρa|θ}a,θ and obtain the assemblage {σa|θ}a,θ. EPR
steering is demonstrated if the assemblage is impossible to describe with a LHS model, in
which case Bob will be convinced and the test successful. In a loophole-free steering experi-
ment, Alice’s measurements need to be randomly chosen at a late enough time so that there
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Figure 5.8: Steering scenario with hybrid CV-DV entanglement of light. (a) The two-mode
hybrid entangled state is shared between Alice, who cannot be trusted, and Bob. On the DV mode,
Alice locally performs quadrature measurements using homodyne detection at different phases θ of
her local oscillator (LO) and registers the sign-binned measurement result a = ±. She then sends the
information to Bob, who uses it to sort his own quadrature measurements depending on the phase
choice and sign result {θ, a}. (b) Via quantum state tomography, Bob is able to reconstruct each
conditional state ρa|θ and the associated Wigner functions. As detailed in the text, he obtains the
assemblage {σa|θ}a,θ and tests it against any LHS model to prove that EPR steering has occurred.

can be no causal link between her measurement results and that of Bob. We chose not to
follow these requirements in our implementation as implementing a sufficient time-separation
between both modes would entail adding a significant amount of transmission losses. Indeed,
changing Alice’s measurement means going from one LO phase to another, a transition that
follows the response time of our piezo-transducers. Being free from this requirement, we
perform Alice’s measurements in sequence. A consequence of this implementation is that
the non-signaling condition is not necessarily respected and will have to be checked. Note
however that, because we keep all quadrature measurement results, we are not subject to the
detection loophole.

We now consider the expression of Bob’s assemblage to see how the measurement settings
can be tuned to get the best possible steering demonstration. The two possible condition-
ning for each of Alice’s measurements M̂+

θ and M̂−θ corresponding to a positive or negative
quadrature measurement defined as:

M̂+
θ =

∫ +∞

0

∣∣∣qeiθ〉〈qe−iθ∣∣∣ dq
M̂−θ =

∫ 0

−∞

∣∣∣qeiθ〉〈qe−iθ∣∣∣ dq. (5.28)
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Following equation (1.54) of chapter 1, the corresponding conditional states are defined by

ρa|θ = TrA(M̂a
θ |Ψ〉 〈Ψ|AB)

Tr(M̂a
θ |Ψ〉 〈Ψ|AB)

, (5.29)

which gives

ρa|θ ∝ a R
∫ a∞

0
dq|〈0|q〉|2 |Cat−〉 〈Cat−|+ a (1−R)

∫ a∞

0
dq|〈1|q〉|2 |Cat+〉 〈Cat+|

+ a
√
R(1−R)(eiθ

∫ a∞

0
dq 〈1|q〉 〈q|0〉 |Cat−〉 〈Cat+|+ h.c.). (5.30)

|〈0|q〉|2 and |〈1|q〉|2 are even functions of q normalized to an integration over {−∞,+∞} so
we have

a

∫ a∞

0
dq|〈0|q〉|2 = a

∫ a∞

0
dq|〈1|q〉|2 = 0.5. (5.31)

The odd integral can be evaluated to

a

∫ a∞

0
dq 〈1|q〉 〈q|0〉 = 1√

2πσ0
√

2
a

∫ a∞

0
dq2qe−( q√

2σ0
)2

=
√

1
2πa

∫ a∞

0
2ue−u2

du, where u = q√
2σ0

=
√

1
2π . (5.32)

We finally obtain the following expression for Bob’s assemblage:

σ̂a|θ =p(a|θ)(R |Cat−〉〈Cat−|+ (1−R) |Cat+〉〈Cat+|

+a
√

2R(1−R)/π(eiθ |Cat−〉 〈Cat+|+ e−iθ |Cat+〉 〈Cat−|)), (5.33)

where p(a|θ) = 1/2 for all a and θ as positive and negative quadrature measurements are
equally likely.

To implement the best possible steering test, we did simulations using the Matlab imple-
mentation of a SDP tailored for steering tests supplied in [133] to determine what parameters
to use. We first consider the optimum number of measurements Alice needs to perform and
then the impact of losses and state asymmetry on the value of S.

3.2.2 Experimental imperfections: transmission loss and phase noise

As seen in section 2, we have to consider transmission losses on Alice’s and Bob’s mode,
respectively denoted as ηA and ηB. The escape efficiency of both OPOs is estimated to be
90%, which directly translates to 10% of intrinsic loss on both modes. Additionally, the
homodyne detection setups introduce overall 15% of detection loss. The asymmetry of the
steering scenario has however for consequence that these losses will not have the same impact
for the two parties. Indeed in the steering context, because Bob trusts his apparatus, he
can correct for these 15% detection losses when performing the tomographic reconstruction
of his assemblage. On the other hand, no assumption can be made with regards to Alice’s
measurements, meaning that a similar correction process is not acceptable.

The second imperfection we take into account in the model is phase noise. This is done by
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Figure 5.9: Expected maximum steering inequality violation. (a) Left: maximum violation
depending on the number of measurements mA performed by Alice, calculated at the optimal ratio
R. Right: expected violation as a function of R for mA = 6. In both panels the overall efficiencies
are assumed to be ηB = 90% for Bob and ηA = 75% for Alice. (b) Maximum violation as a function
of Alice’s efficiency ηA for mA = 6, ηB = 90%, and R = 0.37. The red dot indicates the maximal
violation possible in our experimental conditions.

modeling each conditional state σ̂a|θ as a mixture of conditional states of phases distributed
as a Gaussian centered on θ with a standard deviation of δθ of 3◦, mirroring the observed
standard deviation of phases during the acquisition:

σ̂′a|θ = 1√
2πδθ

∫ +∞

−∞
σ̂a|θ′e

− (θ−θ′)2

2δ2
θ dθ′. (5.34)

Having established the model for the expected assemblage, we now use the SDP to see if
steering is achievable.

3.2.3 Choosing the experimental settings

We first consider the number mA of measurements performed by Alice. The left panel of
Fig. 5.9 (a) shows the largest violation as a function of mA when maximizing over all possible
R. In our experimental conditions, one can see that a steering inequality violation is possible
starting from three measurements. More measurements translate to a larger theoretical
violation, with diminishing returns. Implementing a greater number of measurements leads
however to issues because of the experimental fluctuations. As all different measurements are
taken in sequence, we aim to combine data from independent runs made at different times.
We have to keep the overall experimental duration as short as possible to respect the non-
signaling condition. The compromise chosen is to perform a set of mA = 6 measurements.
The variation of Smin as a function of R for mA = 6 is then given on the right panel of
Fig. 5.9(a). Because of the asymmetry in transmission losses for the CV and DV modes,
equal balance between the two heralding rates is not optimal and the best violation is found
for an unbalanced ratio R = 0.37.

89



3. EINSTEIN-PODOLSKY-ROSEN STEERING WITH HYBRID ENTANGLEMENT

|1〉
|0〉

〈1|

〈0|

Figure 5.10: Asymmetric hybrid state. Wigner function for the asymmetric state with R = 0.36
corrected for detection losses on both modes. Its negativity of entanglement is N = 0.28.

For these parameters, Figure 5.9(b) finally presents the best violation attainable depending
on the transmission efficiency on Alice’s side, which is not possible to correct for. One can
see that our demonstration of EPR steering is challenging since it requires a transmission
efficiency on Alice’s mode higher than ηA = 65%. In the experimental conditions ηA ≈ 75%,
a steering violation can be expected.

3.2.4 Generation of the asymmetric hybrid state and steered assemblage

We generated the hybrid entangled state aiming for R = 0.37, in line with our simulation
for optimal violation by tuning the ratio between the heralding rates of both modes. The state,
which was heralded at a rate of 200 kHz, was first checked using the homodyne setups available
on both the CV and DV modes, and the two-mode Wigner function was reconstructed using a
MaxLik algorithm. Overall, including experiment reset, the whole data set has been captured
in a couple-hour span. The single-mode Wigner functions of the four projections on the DV
mode 〈i| ρAB |j〉 with i, j ∈ {0, 1} are plotted in Fig. 5.10. We find that higher-photon-number
components in the DV mode are limited to 2% and the measured asymmetry is R = 0.364.
The entanglement negativity reaches N = 0.28 ± 0.01 when corrected for detection losses.
This value is lower than the negativity of entanglement obtained for a symmetric hybrid state
N ≈ 0.38 but as we have seen in figure 5.9, the asymmetry comes from the possibility of
correcting for losses on Bob’s mode.

Having characterizing the hybrid state, we then performed the steering test with mA = 6
measurements made in sequence by Alice, corresponding to 6 values of her LO’s relative
phase θ = n× π

6 with n ∈ [0, 5]. We accumulated 120000 quadrature measurements on Bob’s
side for each value θ. Through a Maximum Likelihood optimization, we then reconstructed
the complete assemblage {σa|θ}a,θ. The experimental Wigner functions of each normalized
subset of the assemblage are displayed in Fig. 5.11. The unconditioned state is shown at the
center, σ̂θ = ∑

a σ̂a|θ. The Wigner functions of the 12 conditional states are displayed along
the perimeter of the disc, at the angle and in the half space respectively corresponding to
Alice’s choice θ and result a = ±. Depending on Alice’s measurements, Bob’s conditional
state rotates around the phase-space origin.The non-signaling condition ∑a σa|θ = ∑

a σa|θ′
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Figure 5.11: Experimental steered states. The Wigner function of Bob’s unconditioned state is
shown at the center of the disk. When Alice makes measurement θ ∈ {n.π6 } and gets result a = ±,
Bob’s state is projected to the corresponding ρa|θ. The associated Wigner function is displayed at the
angle θ and in the half-space corresponding to a. The steering resulting from Alice’s measurements
translates into a rotation of Bob’s state around the phase-space origin.

for all θ, θ′ needs to be checked here. We find an average fidelity between unconditioned
states F(σθ, σθ′) = 99.7 ± 0.1%, within the bounds of the typical uncertainties associated
with a MaxLik reconstruction.

We therefore have a clear visual representation of the impact of Alice’s measurements. We
can now confront this assemblage to a steering inequality to see whether the test is successful.

3.3 Finding the best inequality for our experimental assemblage

Our goal is to find the optimal steering inequality, meaning the best set of operators
{F̂ opta|θ } for our experimental data run. The most straightforward way to do so would be to
input our experimental assemblage directly in the SDP and obtain from it {F̂ opta|θ }. This is
however impossible in our case because of the slight deviation we have from the non-signaling
condition. The optimum operators found by the SDP in this case are unphysical. They
exploit the tiny differences between σ+|θ and σ−|θ’s higher-dimensional components to give
unbounded steering violations. In consequence, even close to identical states would see very
different values of S for these operators, thereby proving their unphysical nature.

The alternative we followed is schematized in figure 5.12 and consists in building an
assemblage σ̂th

a|θ as close as possible to the experimental one σ̂exp
a|θ but still verifying the non-

signaling condition. Then apply the SDP to this assemblage and use the output optimum
operators on the experimental assemblage to see whether steering has occurred. The valid-
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Figure 5.12: Finding steering inequalities. Scheme to get the optimal steering inequality for the
experimental assemblage. Full lines represent processes that lead with certainty to the optimal result,
whereas dashed lines stand for processes that may be suboptimal. As the experimental assemblage
{σexp

a|θ } presents a slight deviation from the non-signaling condition, it cannot be directly used in
a SDP. We therefore build a theoretical assemblage {σth

a|θ} following equation (5.33) and optimize
parameters such as squeezing amount, asymmetry and losses to get as close as possible to {σexp

a|θ }
while preserving the non-signaling condition. We model the process as a search for the maximum of
a function F(σ, σ′) which outputs a general parameter evaluating how close σ and σ′ are. We then
perform SDP on the theoretical assemblage maximizing F to obtain the optimal steering inequality
associated to the operators {F̂ th

a|θ}. These operators are then applied to the experimental assemblage
to find the experimental steering parameter Sexp

min. Note that the function F can be the fidelity but
not necessarily; it is judged only on the value of Sexp

min at the end of the global process, and therefore
may be dependent on σ̂exp

a|θ .

ity of the F̂a|θ is ensured by the non-signaling condition and verified by the stability of the
value of S when applying the operators to the experimental assemblage with the addition
of variable small noise. Actually finding the set of σ̂th

a|θ that will lead to the minimum value
of Sexp

min is tricky because neither higher average fidelities with the experimental conditional
states nor lower Sth

min values ensure lower Sexp
min. This two-step process also prevents us from

concluding that the best operators found are the optimal ones.
Iterative trials finally led to a set of operators that result in a negative Sexp

min. We limited
ourselves to an assemblage following the expected structure of equation (5.33) and optimiz-
ing on parameters such as experimental losses, squeezing and asymmetry. The most suitable
theoretical assemblage found does not correspond however to the expected states and the
operators {F̂ th

a|θ} differ from the operators found in the previous simulations for our experi-
mental model. The {F̂ th

a|θ} are the optimal operators for a non-signaling assemblage with an
asymmetry of R = 0.24 (instead of 0.37) and a squeezing before losses of 2.7 dB (instead of
3 dB), although with accurate losses ηA = 0.75 and ηB = 0.89. Whether this deviation from
the actual assemblage is due to the suboptimal processes in our derivation of the operators or
due to other types of losses we failed to take into account remains to be determined. Although
our model is imperfect, the difference is too big to be solely due to a mischaracterization of
our apparatus.

In the end, we obtain a maximum steering inequality violation of Sexp
min = −0.00755 for

a set of operators that when applied to their source non-signaling assemblage give the re-
sult Sth

min = −0.011. Both results are below the expected violation S ≈ −0.018 found in
section 3.2.3, which indicates that the process of finding the optimal operators can be sig-
nificantly improved. The steering test can however only be successful after evaluating the
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associated error bar. We now present the method we followed to evaluate the uncertainties
associated to the tomographic reconstruction.

3.4 Evaluating the error bars for our steering test

In this section, we will detail some of the calculations made in order to evaluate the un-
certainties associated to our steering test. Because the steering parameter Sexp

min is obtained
through a multi-stage process, as opposed to being directly measured, we have to be partic-
ularly careful with regards to error propagation.

The main error source to consider here is the tomographic reconstruction of the assem-
blage {σ̂a|θ}, which results from the combination of 12 Maximum-Likelihood (ML) optimiza-
tion processes. Each ML process is irreversible and in effect destroys a lot of the available
information contained in the complete set of quadrature measurements. We will describe
two approaches we followed to estimate the uncertainties associated to the ML process: the
frequently used Bootstrap method, and then an application of the so-called quantum error
bars method recently proposed in [44].

3.4.1 Notations and error sources to consider

As Alice’s measurements are not trusted, we do not need to consider imperfections in her
implementation as it will only change the set of operators {F̂a|θ} we will use in our steering
test. On Bob’s side, it is the tomographic reconstruction process that has to be evaluated.

After his quadrature measurements, Bob obtains a data set for each experimental run.
It consists of quadrature measurements at given local oscillator phases φ: {qφ, φ}a|θNa|θ , with
Na|θ the number of measurement events from which will be reconstructed the corresponding
conditional state, which we will denote as ρ̂ML

a|θ to highlight the fact that it is obtained after
a ML optimization. At this step, errors in the evaluation of φ and, to a lesser extent, of qφ
can arise. We suppose however that those errors will never improve the steering violation
observed with our assemblage. In the case of φ, they will instead introduce more phase noise
while errors on qφ are linked to the centering of the temporal mode and will be equivalent to
additional transmission losses. This supposition is validated by experimental observations: a
more accurate phase fitting process led to a significant increase of the measured violation.

On the other hand, the MaxLik reconstruction can lead to an over-estimation of the
steering violation. A first reason for this is that it outputs the density matrix most susceptible
to have lead to the observation of the set {qφ, φ}a|θNa|θ , ρ̂

ML
a|θ , not the "actual" experimental

state ρ̂0
a|θ. One therefore has to evaluate the chance that the measurement of {qφ, φ}a|θNa|θ is

an unlikely event, i.e. how different can ρ̂ML
a|θ and ρ̂0

a|θ realistically be. A second reason is that
we use loss correction during the ML process for 15% of transmission loss. This can lead to
an overestimation of |Sexp

min|.
In consequence, it is necessary to evaluate the uncertainties associated to the MaxLik

optimization. To that end, we present two different methods considered. We first consider
the parametric bootstrap method, which is often used for practical error estimation (for
example in the steering test reported on in [135]), and then follow a more accurate –but
also more time-consuming– method recently introduced in [44]: the derivation of so-called
quantum error bars.
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Figure 5.13: Parametric bootstrap method. Full lines represent the irreversible process of
Maximum-Likelihood optimization while dashed lines stand for processes that can be optimized: sim-
ulation and data sampling. We start from the set of homodyne measurements {qφ, φ}a|θNa|θ

and perform
MaxLik optimization to get the state ρ̂ML

a|θ most likely to have led to these results. From this state,
we generate a set of NMat simulated measurements ({qφ, φ}a|θ (j)

Na|θ
)j . Each simulated measurement set

has the same size as the experimental data {qφ, φ}a|θNa|θ
. We then perform MaxLik optimization on

each simulated data set to recover NMat simulated assemblages. We complete the process by ran-
domly sampling NMC sets of 12 σsim

a|θ to compute NMC steering parameter values S(j). The standard
deviation of the final set is used to assess the tomographic uncertainties.

3.4.2 Error bar estimation using the parametric bootstrap method

Principle The first process we consider is a parametric Bootstrap method [136]. The
advantages it presents are speed of computation and simplicity. The principle is shown in
the diagram of figure 5.13. We construct from ρ̂ML

a|θ (itself reconstructed from {qφ, φ}a|θNa|θ)
many measurement sets ({qφ, φ}a|θ (j)

Na|θ
)j , with j varying from 1 to NMat the total number of

sets built. Then, combining 12 assemblage members chosen randomly from all sets for all a
and θ we obtain an ensemble of assemblages {σ̂sim

a|θ }k corresponding to Skmin, with k varying
from 1 to NMC, the number of sampled steering parameter values. Building a histogram of
Smin values, denoted as HNMC,NMat

S , finally enables us to evaluate the standard deviation
associated to the ML reconstruction.

The bootstrap method is parametric in that it is a resampling of the initial data set
{qφ, φ}a|θNa|θ biased by ρ̂ML

a|θ . The method depends strongly on the first maximum-likelihood
process and therefore doesn’t take into account the possibility of having made an outlier
measurement. It means that although it will give a reasonably accurate value of standard
deviation, the mean value Smin can be far off. Because of the quick computational time, it
was done first however to get an idea of the quality of our violation.

Simulation of quadrature measurements The quadrature measurement simulation
consists in the generation of quadratures randomly with the weight of the probability distri-
bution P (q, φ) computed from ρ̂ML

a|θ . To do so we divide the (q, φ) space in a grid of dimensions
Dφ ∗Dq. We then assign numbers to each of these subdivisions so that N(q; ; q + dq, φ; ;φ+
dφ) = P (q, φ)∗Ntot, where Ntot is a parameter tuning the discretisation of P (q, φ). Any num-
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Smin

Figure 5.14: Results using the Bootstrap method. Histogram of the steering parameter values
using the parametric Bootstrap method. We use a sample of NMC = 107 points out of a set of
NMat = 12 ∗ 2 ∗ 104 density matrices. We obtain a Gaussian distribution centered on S = −0.00691
with a standard deviation σ = 0.00144.

ber between 1 andNtot will therefore correspond to a given subdivision. The mapping between
the number and the subdivision is surjective but not injective, the divisions corresponding to
the most probable quadrature measurements being the ones that have the biggest number of
preimages. We therefore choose a random number between 1 and Ntot, find the associated
subdivision and choose a random quadrature measurement (qj , φj) ∈ [q; ; q + dq, φ; ;φ+ dφ].
We repeat this process Na|θ times for each conditional state to have as many simulated mea-
surements as we had experimentally. In practice we had converging results well before settling
to our final choice of Dφ = Dq = 3000 and Ntot = 109.

Results For each set {a, θ}, we simulated 20000 matrices. We then computed 107 values
of S randomly choosing assemblages through the set of 12 ∗ 2 ∗ 104 density matrices. The
results are shown in figure 5.14. We obtain S = −0.00691 ± 0.00144 which corresponds to
a violation of 4.8σ. With these settings, and in the condition that we trust the bootstrap
method, we have a steering violation at a distance close to five standard deviation from the
local bound. Interestingly, the average value is not the one of the experimental data, i.e.
the result obtained when applying the operators F̂a|θ on {ρ̂ML

a|θ } which is SML
min = −0.00755.

The validity of only considering 12 ∗ 2 ∗ 104 density matrices and a number of samples of
NMC = 107 is developed in appendix 5A.

This first result is a very strong indicator of the success of our steering test. As we see
from figure 5.13 however, it introduces many times the MaxLik procedure which is inherently
irreversible. For this reason, it is worthwhile to consider a different method: the computation
of so-called quantum error bars.
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3.4.3 The metropolis-hastings method: quantum error bars

As shown in section 3.4.2, the bootstrap method we used includes many iterations of the
maximum-likelihood algorithm. The ML process can cause issues in cases where the number
of measurements is insufficient. Those include the impossibility of constructing confidence
regions because the most likely state found can be at the border of physical states, see [137]
for a discussion on these issue. The question is whether or not we have enough measurements
to be confident in the repeated use of ML. Because the density matrix contains all possible
information about a state, it is impossible to say a priori whether enough information has
been accumulated for a particular measurement, be it negativity of the Wigner function or,
in our case, the value of Smin. For most state characterization made in this thesis, we had
confidence enough in the results, because of their consistency over repeated experiments but
also because they involve ML at most once. In the case of steering, we found it worthwhile to
use a recently introduced [44] method for uncertainty estimation called quantum error bars.

Principle The idea behind the method is to keep the likelihood function L in use as long as
possible during the error estimation process as it contains all the information obtained from
our measurements. From the set of quadrature measurements made, we write the likelihood
function of each conditional state using the corresponding set of operators {M (k)

a|θ }Na|θ :

La|θ(ρ̂) =
Na|θ∏
k=1

Tr(M (k)
a|θ ρ̂). (5.35)

Keeping the likelihood function, we will not only consider the most likely matrix ρ̂ML but also
density matrices for which the likelihood function is close to maximum. The objective is to
find the probability distribution µ(Smin) of parameter Smin. To do so, we compute separately
the probability distributions associated to the measurement of each operator F̂a|θ as this can
only lead to an overestimation of uncertainties. This is done by integrating the values of
fa|θ(ρ)=̂p(a|θ) tr(F̂a|θρ̂) over a large range of density matrices ρ̂, using the likelihood function
La|θ as bias:

µ(fa|θ) ∝
∫
La|θ(ρ̂)δ(fa|θ(ρ̂)− fa|θ)dρ̂ (5.36)

Here the likelihood La|θ is no longer viewed as a function but as a distribution La|θ(ρ̂)dρ̂.
This is done by multiplying it by a prior distribution π(ρ)dρ. This prior distribution rep-
resents the knowledge we have of our state prior to the experiment. In the context of the
steering test we consider, we chose a fully indifferent prior, i.e., we make no prior assumption
on the states observed and postulate π(ρ̂)dρ̂ = 1

cdρ̂, with c a normalizing factor such that∫ 1
cL(ρ̂)dρ̂ = 1. The challenging part in the computation of µ(fa|θ) is actually finding the

normalization constant c. The difficulty is avoided by the use of a Metropolis-Hastings (MH)
algorithm to reconstruct µ(fa|θ).

The MH algorithm amounts to a random walk in state space biased by the likelihood
function to obtain a set of density matrices {ρ̂i}. At every step, a candidate density matrix
ρc is chosen according to a jump distribution Q(ρ̂c|ρ̂i) centered on ρi. Whether ρ̂c will be
kept depends on its likelihood. The iterative process is the following:
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Figure 5.15: Results using the quantum error bar method. Histogram of the steering param-
eter values using the Metropolis-Hastings method. We use a sample of NMC = 5 ∗ 108 points out of a
set of NMat = 12 ∗ 104 density matrices. The dashed lines correspond to one standard deviation from
the average histogram. We measure a separation to the local bound of −5.48σ ± 0.18σ.

Given ρ̂i,

• Choose randomly a candidate density matrix ρ̂c according to Q(ρ̂c|ρ̂i)

• Compute a = La|θ(ρ̂c)
La|θ(ρ̂i) .

• If a > 1, then ρ̂i+1 = ρ̂c.

• Else, set ρ̂i+1 = ρ̂c with probability a and ρ̂i+1 = ρ̂i with probability 1− a

After a great number of iterations where the values fa|θ(ρi) are recorded, the distribution
obtained will converge to a distribution µ̃(fa|θ) directly related to µ(fa|θ). The difference
between the two distributions is due to the MH process and can be corrected for. In our case
however, because we combine twelve of these µ̃(fa|θ), their respective skewing will compensate
one-another and, as detailed in appendix 5D, we found this last process unnecessary. Other
bias sources have been considered as well, as discussed in appendices 5A and 5B.

Results and comparison with BootStrapping. We chose a gaussian jump distribution
Q(ρ̂c|ρ̂i) with a standard deviation adjusted during the exploration so that we would observe
a jump close to 23% of the time, the ideal value to efficiently explore the state space [138].
Recording one out of a thousand density matrices during the iterative process, we obtained
NMat = 104 matrices for each conditional state. From them, we computed 5.108 Smin values
whose histogram is shown in figure 5.15. This is exactly the distribution µ(S) described in
[44]. It should be a skewed gaussian function, the skewing being due to the exploration process
induced by the Metropolis Hastings algorithm but the skewing is not noticeable and a sec-
ondary source of error in our final histogram, (see Appendix 5D). The final fitting of our data
is a gaussian of mean x0 = −0.00992±0.00010 and standard deviation σ = 0.00181±0.00004,
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Figure 5.16: Histogram of the steering parameter values for 5.108 points out of a set of 12 ∗ 2 ∗ 104

density matrices using the bootstrap method (in red) and using a set of 12∗104 density matrices using
the quantum error bar approach (in green).

which gives a separation to the local bound of −5.48σ ± 0.18σ.
Comparing now to the BootStrap process in 5.16 we see that we have both a higher

violation and a larger standard deviation using the second method of quantum error bars.
Interestingly neither of the two method is centered on the S value of the initial ρML

a|θ assem-
blage, which was Sexp

min = −0.00755. However we are closer in the case of the MH method to
the violation we expected for the theoretical non-signalling assemblage closest to our experi-
mental data: Sth

min = −0.01103. The MH procedure outputs an ensemble of density matrices
for which the steering test result is the one of a non-local assemblage. Note that one could
apply to each density matrix a different steering inequality and get an increased violation.
This is however very time consuming and the distance to the local bound we observe is enough
that this was not deemed necessary.

Overall, we are confident in the observation of EPR-Steering at more than 5σ as seen
when using the Metropolis-Hastings method. The bootsrap method is known to be not fully
accurate [44] especially in our case where we made the weak hypothesis of having ρML as
a root matrix. This result represents a clear demonstration of EPR steering and a robust
entanglement certification with one untrusted party.

4 Conclusion

In this chapter, we have evaluated the non-local features of hybrid entanglement. We
first started with a study of the loss-requirements for the realization of a Bell test using
several different strategies. We find the implementation of a Bell test challenging with our
current implementation of hybrid entanglement using photon-number encoding on the DV
mode. The planned generation of hybrid entanglement with polarization encoding would
however make the demonstration accessible. We then considered the intermediate scenario
of quantum steering and we report on the violation of a steering inequality by more than five
standard deviations, for the first time using hybrid entanglement.

The demonstration of EPR steering with optical hybrid entanglement proves its usefulness
for a wider range of quantum information protocols. It opens in particular the possibility of
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realizing one-sided device independent protocols. These would be particularly useful in the
context of heterogeneous quantum networks where disparate physical platforms and encoding
would interact at different levels of trust. It encourages us as well to try and implement other
protocols. In the next two chapters we present the current progress towards the realization
of one of the group’s long-standing objective: hybrid quantum teleportation.
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5 Appendix

5A. Adjusting the number of matrices NMat and the number of samples NMC
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Figure 5.17: (a): Mean value of S for histograms of NMC points. (b): Mean value of separation to the
local bound in terms of standard deviations for histograms of NMC points. In both cases NMat = 104

and we computed 30 histograms for each NMC.

This appendix gives some details on the sampling process used in the methods for error
estimation. Two parameters have to be chosen such that convergence is observed, NMat and
NMC. The first one refers in the case of bootstrapping to the number of simulated quadrature
measurement sets and the second one in both cases to the number of samples taken to build
the final histogram. We demonstrate their effect in the context of bootstrapping, keeping in
mind that the conclusions for NMC will be valid for both methods.

In the end we want to have a probability distribution of S, but since we generate density
matrices and then compute the associated steering value, we have to choose two parameters:
NMat the number of each density matrix (so we have up to N12

Mat possible assemblages) and
NMC the number of values Sj we compute to construct an histogram of violationsHNMC,NMat

S .
One can see NMat as an indicator of the size of the space we are exploring to find a NMC
points error distribution. To accurately recover the actual error distribution associated to
the MaxLik reconstruction, both numbers should be as high as possible. However, for com-
putational reasons, we limited NMat to the order of 104. This gives us a great number of
possible permutations but one has to check that we are well beyond a point of convergence
for the obtained values of S and associated histograms HNMC,104

S .

The first thing we check is the number of points NMC in our histogram we need to have
to accurately represent the steering parameter distribution of our set of 12 ∗NMat matrices.
In Fig. 5.17 (a) we looked at the influence of the number of points in histograms of S on
their mean value. Each point corresponds to the mean value of an histogram H

NMC,104

S , we
did 30 histograms for each value NMC. Fig. 5.17 (b) presents the same results but looking at
the distance to the local bound in terms of standard deviations. One can see that for values
of NMC above 106 the HNMC,104

S will give consistent results.
We conclude from this that 106 S values chosen randomly is a sufficient sampling of our set
of 12 ∗ 104 matrices constructed through the Monte-Carlo simulation. That being said, we
also have to check the validity of considering only 12 ∗ 104 matrices. In Fig. 5.18, we do
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Figure 5.18: (a): Mean value of S for histograms of NMat points. (b): Mean value of separation
to the local bound in terms of standard deviations for histograms of NMat points. In both cases
NMC = 106 and we computed 30 histograms for each NMat.
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Figure 5.19: (a): Mean value of S for histograms of NMat points for two sets of global size 12 ∗ 104.
(b): Mean value of separation to the local bound in terms of standard deviations for histograms of
NMat points for two sets of global size 12 ∗ 104. In both cases NMC = 106 and we computed 30
histograms for each NMat of each set.

the same study by fixing the value of NMC to 106 and then investigating the consistency of
histogram results depending on the size of the space we are exploring through the variation
of NMat. Note that for each point we are constructing HNMC,NMat

S from the set {n} of values
respecting {n} ∈ [nr;nr +NMat( mod 104)] with nr a random integer between 1 and 104.

We seem to reach convergence at around NMat ≈ 5 ∗ 103 but we have to keep in mind
that we are bound by the global set of matrices of size 12 ∗ 104. This mainly means that a
set of 12 ∗ 5 ∗ 103 matrices is a good sampling of the space spanned by the whole 12 ∗ 104 set.
Here we are really limited to the computation time of all these matrices but we decided to
compute 104 additional ones to obtain two different spaces of size 12 ∗ 104 and compare the
previous analysis in both cases. The results are plotted in Fig. 5.19.

Although there is a visible difference when looking at the absolute Smin value, taking into
account the standard deviation shows that the distance to the local bound of the two sets
are for our practical purpose identical.
This concludes our study of the appropriate number of density matrices to reach convergence

101



5. APPENDIX

0 2 4 6 8

0.5

1

1.5

2

2.5

3

3.5

·10−5

Binning level l

Er
ro
r
es
tim

at
e

∆
(l

)

Nc = 1000
Nc = 40

Figure 5.20: Binning analysis of fa|θ(ρ) averaged over a and θ for two data sets of size
M = 10000 with different sample rejection rates Nc. We can see that convergence is reached
only for the sample build with Nc = 1000 for a binning level l ≥ 5. This data allows the
computation of the integrated auto-correlation time of each data set A(0)

a|θ as the error bars
on µ(fa|θ).

of results when reconstructing density matrices through a parametric bootstrap process. With
the setting of NMat = 104 and NMC = 106 we feel that the errors still left on this distance to
the local bound estimation are linked more to the validity of realising a parametric bootstrap
than to the limited number of iterations we are bound to do.

5B. Sample correlation in the Metropolis-Hastings exploration

As the MH algorithm is an iterative process, correlations between samples have to be
taken into account and in our case keeping only one out of Nc = 1000 values of fa|θ(ρi) and
accumulating M = 10000 samples was enough to circumvent their effect. This was verified
by computing the sample set’s integrated autocorrelation time τA [139]. This parameter
indicates the distance between two uncorrelated samples in the data set and can be computed
through a binning analysis. This process consists in creating, from the original data set
A

(0)
a|θ = {fa|θ(ρi)}i≤M , several binned series by averaging consecutive entries following:

A
(l)
a|θ = 1

2{A
(l−1)
a|θ,2i−1 +A

(l−1)
a|θ,2i}i≤M/2l . (5.37)

For each of these A(l)
a|θ we can then compute the error estimate ∆(l)

a|θ =
√
V ar(A(l)

a|θ) ∗ 2l/M .
To show the effect of Nc, we compared two data sets of size M = 10000 constructed inde-
pendently with parameters Nc = 40 and Nc = 1000. We denote as ∆(l) the average over θ
and a of ∆(l)

a|θ. In Fig. 5.20 we show the evolution of ∆(l) with l for both sets. Only the
second set sees convergence for l ≥ 5 which ensures the sampling to be adequate and allows
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Figure 5.21: Histogram of the steering parameter values for N = 5 × 108 points out of two data
sets of size M = 104 computed with parameters Nc = 40 in red and Nc = 1000 in green. The area
delimited by dashed lines encompass possible histograms at less than one standard deviation from
the average. The green histogram is the final evaluation of the error bars associated to the steering
inequality violation. We observe a distance to the local bound of more than 5 standard deviations.

us to compute τA = 1
2((∆(∞)

∆(0) )2 − 1) ≈ 0.65. This means the sample neighbours are typically
uncorrelated on average for all θ and a. The histogram H(fa|θ,M) obtained from the data
set A(0)

a|θ is therefore a valid evaluation of µ(fa|θ) up to a deviation that can be computed using
τa|θ. Considering the histogram as the data set {pn, In}, with pn the normalized number of
values fa|θ comprised in the interval In, the error on each pn is estimated by

δa|θ(n) =
√

pn − p2
n

M/(1 + 2τa|θ)− 1 .

By summing random members of all A(0)
a|θ data sets N times we then obtained AS , our

final set of S values. To ensure an accurate sampling of our data, we chose N = 5 ∗ 108 and
were then able to compute the corresponding histogram H(S, N). As S(ρ) = ∑

fa|θ(ρ), the
error on each point of H(S, N) was evaluated to be

δ(n) =
√√√√ 1

122
∑
a,θ

δa|θ(n)2.

Using this information, H(S, N) is shown in green in Fig. 5.21 along with the sets {pn ±
δ(n)/2, In} that bound the area containing µ(S) with a confidence of one standard deviation.
As a comparison, the same evaluation was done using Nc = 40 and is shown in red. The
results for both independent sets are compatible and show the relevance of moving to a higher
sample rejection rate for a more precise evaluation of our error bars. A numerical fitting of
µ(S) shows good agreement with a gaussian distribution so no deskewing procedure [44] was
found necessary. As a result the standard deviation of our data set AS is a direct evaluation of
the errors associated to our MaxLik reconstruction. The final fitting of our data is a gaussian
of mean x0 = −0.00992± 0.00010 and standard deviation σ = 0.00181± 0.00004, which gives
a separation to the local bound of −5.48σ ± 0.18σ.
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Figure 5.22: Exploration of the likelihood space of ρ̂exp−|0 starting from ρ̂ML
−|0 for 50 different beginnings

of the Metropolis-Hastings algorithm. The thermalization is considered to be reached after 1250
iterations.

5C. Thermalization

In order to consider relevant density matrices in our final error estimation we need to
wait for the computation to thermalize, that is to reach an area where the likelihood is not
negligible. One might think that starting from ρML would ensure that we are in the right zone
of the likelihood space from the beginning. This is however not the case as we are performing
a biased random walk in a likelihood space of high dimension. The function computing the
number of ρn at a given likelihood distance from ρ̂ML, N(L), therefore increases sharply
with L, so much so that the algorithm will thermalize quite far from ρ̂ML. This is visible
in figure 5.22 where are shown 50 different iterations of the Metropolis-Hastings Algorithm
starting from ρ̂ML with the same jump probability up to 2000 steps. The algorithm will
drift away from ρ̂ML in any direction but will settle in a zone at log-likelihood distance
of around ∆λ = −2∆ln(L) ≈ 100. In terms of probability this means that the states in
the area are much less likely to have been observed than ρ̂ML as the ratio of likelihood is
L(ρ̂n)/L(ρ̂ML) ≈ e−50. This gives an idea of the very sharp increase of N(L): because we are
staying in this region a balance is reached between the density of states and the probability to
observe them. On a given experimental data set, this ∆λ is constant no matter the number
of measurements performed (although λ(ρ̂ML) changes) so we are inclined to think that it is
direcly linked to N(L).
From this plot we decided to set the thermalization waiting time as Nθ = 1250.

After thermalization we will stay in a region of space at a distance ∆λ from ρ̂ML. We can
therefore worry that it will take a huge amount of time to explore the space as we are on a
hypersphere of radius ∆λ whose size we ignore. This wouldn’t be too much of a problem if
the function we actually want to compute S were not too dependent on the direction in the
likelihood space but it is possible that it changes dramatically depending on the direction
we left ρML. To check this we looked at the values of the steering parameter after n steps
0.5 tr(F̂−|0ρ̂i) for 50 iterations of the algorithm as is presented in figure 5.23. For the case
of ρexp

−|0 there doesn’t seem to be any difference on the explorations of the values of Smin
no matter which direction we drift to. We observe this as well for the other subsets of the
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Figure 5.23: Values of 0.5 tr(F̂−|0ρ̂i) after n steps of the Metropolis-Hastings algorithm starting from
ρ̂ML for 50 iterations of the algorithm.

assemblage, so this will not affect our final result.
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5D. Skewing of the probability distribution

The MH algorithm introduces some deformation of the measured function µ as a result
of a competition between the exponential decrease of the likelihood function which we want
to fit and the ever increasing density of states away from ρ̂ML. We have to check if the model
developped in [44] describes well our results. This can help to precise our model but also is
a good indicator of the validity of the whole MaxLik processs as it would be very unlikely
to observe data in agreement with the model if ρ̂ML were close to the boundary of physical
states for example.
First we considered the fitting of a single subset 0.5 tr(F̂a|θρ̂i). In figure 5.24 we plotted the
values corresponding to the state θ = π/6 and a = −. In red we can see the full fitting
according to the model developped in [44] which is in quite good agreement. Of course we
pay here for the size of our data set limited to 104 for computational reasons so this fitting is
not perfect, but we can also see the corresponding deskewed gaussian in green and it is quite
close to our full model fit.

Figure 5.24: Fitting of the histogram obtained through the MH algorithm. Left: logarithmic plot,
right regular scaling. In red is the complete fitting model and in green the corresponding deskewed
gaussian.

The results are similar for all measurement choices and results so we logically find in
figure 5.25 that the full fitting is a narrow improvement over a gaussian fit when considering
the final steering parameter.

Figure 5.25: Fitting of the histogram obtained through the MH algorithm for the full steering
parameter. Left: logarithmic plot, right regular scaling. In red is the complete fitting model and in
green the corresponding deskewed gaussian.
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In the end the combination of all the subsets of the assemblage does not need any adjust-
ment in the fitting. It may be because the skewing averages out when combining all subsets
or that we don’t have enough points in our histogram for each subset to effectively fit the
data.
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In part II, we have introduced hybrid entanglement of light, presented different methods
for non-locality tests and reported on a protocol for the remote preparation of arbitrary CV
qubits. A central result is the demonstration of a steering inequality violation which proves
our hybrid resource suitable for use in one-sided device independent protocols. Having char-
acterized hybrid entanglement, we now consider its use for quantum teleportation between
DV and CV encodings. In Chapter 6 we provide some insights into the protocol considered
and detail the differences between possible implementations. Finally in Chapter 7 we present
the current experimental setup to be used for the realization of quantum teleportation from
DV to CV encoding and report on preliminary result giving us confidence in the future success
of the experiment.
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Hybrid quantum teleportation
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Chapter 6

Hybrid quantum teleportation:
Principle and model

We now come to the final protocol considered in this manuscript: quantum teleportation
between CV and DV encodings. This experiment has been a goal of the group for several
years now, and we started its implementation in the last year of my thesis. It represents
a significant step-up in complexity from the previous protocols because it requires multiple
heralding events: three separate detection events and one homodyne conditioning. In this
chapter, we first present the principle and motivations behind quantum teleportation. We
then introduce a new method for the realization of a Bell measurement that combines DV and
CV resources and present its benefits and drawbacks. We conclude by a theoretical account
of the expected results of a quantum teleportation protocol using our resources.
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1. QUANTUM TELEPORTATION

1 Quantum teleportation

Quantum teleportation (QT) is one of the most versatile and prevalent uses of entangle-
ment and an example of a quantum protocol in which a purely non-classical feature, insepa-
rability, is a necessary requirement. As opposed to remote state preparation, QT allows the
transfer of an unknown quantum state between two nodes sharing entanglement, using only
a classical communication channel. Given the infinite number of measurements necessary to
characterize a quantum state, the fact that only two-bits of classical information are sufficient
for recovering the initial state is the reason for the protocol’s name which draws from popular
science fiction. The quantum information was not physically transported between the two
nodes using either a classical or a quantum causal channel, hence the name teleportation.
Note that the same cannot be said for RSP protocols as once one of the parties knows the
state to be transferred, a finite amount of classical information could allow the receiver to
generate independently the desired output. In the case of a qubit for example, once the basis
is known, only 2 parameters are sufficient to perfectly describe the state

Since proposed in 1993 by Bennet et al. [16], QT has become a staple of quantum informa-
tion protocols and has been shown to be crucial to the development of many technologies. In
quantum computing schemes, QT allows for straightforward and practical universal quantum
computation [140] and one-way computing using cluster-states [141]. In the field of quantum
communication, it enables the creation of quantum repeaters [142] necessary for long distance
communication and the realization of scalable quantum networks [20].

1.1 Principle and definitions

1.1.1 Qubit teleportation

The most general principle of quantum teleportation is shown in figure 6.1 (a). Two
parties Alice and Bob share an entangled state |Ψ〉AB. An unknown quantum state |ψin〉C
is sent to Alice who performs a joint Bell measurement between her mode A and mode C.
The result of the measurement is then sent to Bob who applies accordingly an operator Û
on his mode to recover the input state |ψin〉B. Although this scheme can work in higher
dimensions or using CV entanglement, we explain the principle in the case of DV qubits in
two dimensions, without specifying the continuous or discrete nature of the encoding used
for generality. The entangled state is written

|Ψ〉AB = 1√
2

(|0〉A |1〉B + |1〉A |0〉B), (6.1)

where {|0〉 , |1〉} is the basis of the Hilbert space and can stand for DV-encoded (on a po-
larization or Fock basis for example) or equivalently CV-encoded qubits (for example on
states |±α〉 or |cat±〉). The input state is a qubit |ψin〉C = c0 |0〉C + eiφc1 |1〉C so the global
three-mode system is given by

|Ψ〉ABC = 1√
2

(c0 |0〉C + eiφc1 |1〉C)⊗ (|0〉A |1〉B + |1〉A |0〉B). (6.2)
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Figure 6.1: Principle of two quantum teleportation protocols. (a): Active teleportation.
Alice and Bob are two parties that have access to one mode (respectively A and B) of an entangled
state |Ψ〉AB and can be arbitrarily distant from each-other. Using this resource they will teleport
an unknown state |ψin〉C propagating on mode C and given to Alice. To do so, she performs a Bell
measurement on the two modes A and C and then transmits the result to Bob through a classical
channel. Depending on the information received, Bob performs an operation U on his mode and
recovers the initial state |ψin〉B. (b): Entanglement swapping. Here the input mode C is entangled
with another mode D. The application of a Bell measurement on A and C leads to entanglement
between modes D and B even though they have never directly interacted.

One can rewrite the system in terms of the Bell states on mode C and A
∣∣∣Ψ(±)

〉
CA

and∣∣∣Φ(±)
〉

CA
introduced in Chapter 1:

|Ψ〉ABC =1
2

( ∣∣∣Ψ(−)
〉

CA
⊗ (c0 |0〉B − eiφc1 |1〉B)

+
∣∣∣Ψ(+)

〉
CA
⊗ (c0 |0〉B + eiφc1 |1〉B)

+
∣∣∣Φ(−)

〉
CA
⊗ (−eiφc1 |0〉B + c0 |1〉B)

+
∣∣∣Φ(+)

〉
CA
⊗ (eiφc1 |0〉B + c0 |1〉B)

)
. (6.3)

We notice that this is the sum, up to Pauli operators, of tensor products between the input
state and each Bell state. We can indeed write, with the notation |ψin〉B = c0 |0〉B +c1eiφ |1〉B,

|Ψ〉ABC =1
2

( ∣∣∣Ψ(−)
〉

CA
⊗ σ̂Z |ψin〉B +

∣∣∣Ψ(+)
〉

CA
⊗ |ψin〉B

+ e−iπ/2
∣∣∣Φ(−)

〉
CA
⊗ σ̂Y |ψin〉B +

∣∣∣Φ(+)
〉

CA
⊗ σ̂X |ψin〉B

)
. (6.4)

The strategy becomes clear from expression 6.4. Alice performs a Bell measurement leading
to either of the POVMs

∣∣∣Ψ(±)
〉〈

Ψ(±)
∣∣∣
CA

and
∣∣∣Φ(±)

〉〈
Φ(±)

∣∣∣
CA

which projects Bob’s mode
into Û |ψin〉B, with Û a Pauli operator depending on the Bell measurement. Alice therefore
tells him using the classical channel which Bell operator was measured and Bob applies the
corresponding Û to its mode to recover |ψin〉B.
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From this ideal protocol, we introduce some definitions to distinguish between different
possible implementations:

• If Alice performs a complete Bell measurement, i.e. all possible Bell projections can be
performed, the protocol is deterministic as opposed to probabilistic in the inverse case.

• If the Pauli operator is applied by Bob in real time, the protocol is called active, whereas
if it is applied a posteriori or not at all it is passive.

1.1.2 Entanglement swapping

A particular case of quantum teleportation where the mode to be teleported is part of an
entangled state is especially relevant for this thesis. This situation, first explicitly formalized
in [143], is called entanglement swapping (ES) and presented in figure 6.1 (b). Starting from
two entangled states |Ψ1〉AB and |Ψ2〉CD, Alice applies a joint Bell measurement between the
two modes A and C. This entangles the two remaining modes B and D even though they
have never directly interacted. Using the same reasoning as before, and in the case where
|Ψ〉ABCD =

∣∣∣Ψ(−)
〉

AB
⊗
∣∣∣Ψ(−)

〉
CD

, we have

|Ψ〉ABCD = −1
2

( ∣∣∣Ψ(−)
〉
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〉
BD
−
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〉
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−
∣∣∣Φ(−)

〉
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⊗
∣∣∣Φ(−)

〉
BD

+
∣∣∣Φ(+)

〉
AC
⊗
∣∣∣Φ(+)

〉
BD

)
. (6.5)

Similarly to before, the modes B and D are initially uncorrelated. After Bell measurements
have been applied however, they become entangled. Classical information on which measure-
ment has been applied needs to be transmitted to modes B and D however to make further
operations –for example teleportation between the two remaining modes. Discrete-variable
entanglement swapping enables entanglement between parties distant from each other further
than would be possible by directly propagating an entangled state. For this reason it is key
to the realization of several technologies for long distance quantum communications such as
quantum repeaters [142] or quantum relays [144].

1.1.3 Thresholds for successful teleportation protocols

In any practical implementation of QT, the teleported state will differ from the one
sent. As there exist different protocols able to approximate the input qubit, a successful
teleportation protocol should lead to an ouptut state so close to the input qubit that QT is
advantageous compared to other possible methods. Traditionally, the fidelity between the two
states is used as figure-of-merit for the protocol. As the QT protocol works for an unknown
quantum state, the fidelity to consider is the average for all possible input quantum states,
i.e. for pure states:

F =
∫
ψin
|〈ψin|ψout(ψin)〉|2dψin, (6.6)

with |ψout(ψin)〉 the output state created depending on the input state |ψin〉. As all input
states cannot be tested experimentally, one either measures the output fidelity for an ensem-
ble of input states accurately representing all possible qubits (typically all mutually unbiased
basis states of the Bloch sphere) or performs the integration over the ensemble the protocol
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has been tested on.
The threshold for certification of QT depends on the experiment and the competing pro-

tocols considered. The usual threshold considered is the one of classical teleportation (CT).
In such a protocol, Alice makes a measurement of the input state |ψin〉 and sends the re-
trieved information to Bob using the classical channel so that Bob creates an output state
accordingly. For a qubit, the most information one can retrieve on average with a single
measurement of the input state leads to an average fidelity of F = 2/3 [145]. This is the
fidelity threshold typically used in practice.

A more stringent threshold for a successful QT rules out other quantum protocols where
the input qubit may not have destroyed. An example is the following protocol: Alice creates
a copy of the input qubit as faithfully as possible and then performs QT on the copy using the
entangled state she shares with Bob. Quantum cloning machines [146] allow the realization
of copies of quantum states with a higher fidelity than is possible using CT (In the case of
qubits, one can go as high as F = 5/6). It is therefore possible for Bob to receive a quantum
state presenting a fidelity with the input qubit above the classical threshold all while Alice has
retained the original quantum state. This scenario is sometimes called a quantum fax [147]
and depending on the experimentalist’s goals, one may want to rule out this situation by
going above the quantum cloning limit. This ensures Bob obtains the best copy of the input
state.

One should also note that, as fidelity evaluation is a measurement that destroys part of
the available information, other figures of merit can be used to rule out a classical protocol.
In fact, similarly to the case of quantum steering, semi-definite programs can be used to
certify the teleportation as being quantum [148]. This is the least stringent requirement
and is in fact equivalent to demonstrating the existence of entanglement between Alice and
Bob. Finally, in the case of entanglement swapping, the feature of interest is the generation of
entanglement between the two output modes even though they have never directly interacted.
It is therefore natural to consider entanglement negativity as a figure of merit as it proves
the presence of entanglement between the two output modes.

1.2 Encoding choice

The teleportation process we presented is valid for various types of encoding. Depending
on the encoding used however, the implementation of quantum teleportation will present
specific differences with the ideal deterministic active protocol. We therefore present the
advantages and drawbacks of choosing one of several encodings that are directly related to our
experiment. First, among DV encodings, there are differences between dual-rail encoding (for
example on a polarization basis {|H〉 , |V 〉}), and single-rail encoding (e.g. vacuum and single
photon {|0〉 , |1〉}). With CV encoding we also distinguish the coherent-state basis {|α〉 , |−α〉}
and the squeezed basis {Ŝ |0〉 , âŜ |0〉}. The different properties we consider when comparing
encodings are: completeness of the Bell measurement (deterministic or probabilistic), the
possibility of implementing the Pauli operator (active or passive), the robustness of the
protocol with regards to decoherence, the attainable fidelities and the corresponding classical
fidelity bound.

Polarization encoding {|H〉 , |V 〉}. It is possible to perform the two Bell measurements∣∣∣Ψ(±)
〉
using a 50:50 beam-splitter, two polarizing beam-splitters (PBS) and single-photon
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Figure 6.2: Classical bound of fidelity when using a coherent-state basis depending on the
size of |α|. For |α| > 1, we recover the limit for an orthogonal basis. As |α| goes to zero, the states
are closer to vacuum and harder to discriminate which can be exploited in a classical teleportation
scenario.

detectors (not necessarily photon-number resolving) [149]. However, the two other Bell mea-
surements are not accessible with linear optics [150]. This makes the QT protocol inherently
probabilistic. The application of the Pauli operators on the other hand can be performed
easily using dephasing ans PBSs. As we use an orthonormal encoding basis, the maximum
fidelity achievable through classical teleportation is Fcl = 2/3.

Vacuum and single-photon encoding {|0〉 , |1〉}. This encoding suffers from the same
issue as the previous one regarding completeness of the Bell measurement, only

∣∣∣Ψ(±)
〉
are

theoretically accessible using a 50:50 BS and photon-number resolving detectors. In the
absence of this last resource, they can be approximated –as we will see in section 2.2– using
a single-photon detector and an homodyne-detection setup. This encoding presents another
issue as it is difficult to implement σ̂X and σ̂Y because it requires a flip from vacuum to single
photon which cannot be performed with linear systems. It does however present an advantage
in terms of fidelity. The classical bound is still limited to Fcl = 2/3 but teleportation to qubits
in this basis is known to be more resilient to losses [83].

Coherent-state encoding {|α〉 , |−α〉}. The main advantage of this CV encoding is that
it enables the implementation of complete Bell measurements for all values of |α| [151].
We will show the reasoning here in the case where |α|� 1 and considering the Bell state∣∣∣Ψ(+)

〉
∝ |α〉A |−α〉C + |−α〉A |α〉C. The measurement can be performed by first mixing the

two modes on a 50:50 beam splitter. This leads to the unnormalized state:

∣∣∣Ψ(+)
〉

AC
BS−→|α− α〉A |2α〉C + |−α+ α〉A |−2α〉C
= |0〉A

∣∣∣cat2α+
〉

C
, (6.7)
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Encoding Bell measurement State recovery Fcl Losses

{|H〉 , |V 〉} 50%, probabilistic 100%, active 2/3 Sensitive

{|0〉 , |1〉} 50%, probabilistic σ̂Z , incomplete 2/3 Resilient

{|α〉 , |−α〉}, |α| <∼ 1 100%, deterministic σ̂X , σ̂Y , incomplete > 2/3 Less sensitive

{|α〉 , |−α〉}, |α| � 1 100%, deterministic 100%, active ∼ 2/3 More sensitive

{Ŝ |0〉 , âŜ |0〉} Low fidelity σ̂X , σ̂Y , incomplete 2/3 Less sensitive

{âŜ |0〉 , â2Ŝ |0〉} ∼ 100%, deterministic σ̂X , σ̂Y , incomplete 2/3 Less sensitive

Table 6.1: Features of the best possible qubit quantum teleportation protocols depending on the
encoding used. In column Bell measurement, we give the proportion of measurements that can be
performed with linear systems. In State recovery, we detail which Pauli operators can be implemented
in the same context. The threshold given is the one corresponding to classical teleportation protocols.
Finally, in the last column we qualify the resilience to losses of the created qubits. Except for the
limit case of coherent-state encoding at |α| � 1, protocols limited to a single encoding can be either
deterministic or active but not both.

with
∣∣∣catβ±〉C

∝ |β〉C ± |−β〉C. Both the A and C mode are populated by even parity states.
The same calculation for the other Bell states gives∣∣∣Ψ(−)

〉
AC

BS−→|0〉A
∣∣∣cat2α-

〉
C∣∣∣Φ(±)

〉
AC

BS−→
∣∣∣cat2α∓ 〉A

|0〉C . (6.8)

With two parity resolving detectors on mode A and C, it is therefore possible to discriminate
between all Bell operators. Contrary to the polarization encoding however, it is not easy to
implement the σ̂Z operator, although it can be approximated with a displacement but only
at high values of |α| [151].
In terms of fidelity, the classical bound is strictly higher than 2/3 (see [152]) because the
basis is not orthonormal |〈α|−α〉 |6= 0, but as α → ∞ it converges to 2/3. The dependency
of Fcl on |α| is shown in figure 6.2.

Squeezing encoding {Ŝ |0〉 , âŜ |0〉} and {âŜ |0〉 , â2Ŝ |0〉}. As we have seen states of the
form ânŜ |0〉 present good fidelity with cat states at low values of |α|. Their use as a basis for
qubit encoding does not however present the same properties than the coherent-state basis
in the general case. This is most evident in the case of encoding on {Ŝ |0〉 , âŜ |0〉}. As seen
in Chapter 2 (figure 2.9), the two states are close to cat states of different sizes we note |α+|
and |α−| (at 3 dB, |α+|∼ 0.6 and |α−|∼ 1.0). In that case, we consider Bell states of the
form ∣∣∣Ψ(±)

〉
∝ Ŝ |0〉A âŜ |0〉C ± âŜ |0〉A Ŝ |0〉C
∝∼ (|α+〉+ |α+〉)(|α−〉 − |α−〉)± (|α−〉 − |α−〉)(|α+〉+ |α+〉), (6.9)

and ∣∣∣Φ(±)
〉
∝∼ (|α+〉+ |α+〉)(|α+〉+ |α+〉)± (|α−〉 − |α−〉)(|α−〉 − |α−〉), (6.10)
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Using the same reasoning as in equation (6.7), mixing the two-modes of
∣∣∣Φ(±)

〉
on a 50:50

beam splitter leads to∣∣∣Φ(±)
〉 BS−→ (

∣∣∣cat2α+
+

〉
A
±
∣∣∣cat2α−+

〉
A

) |0〉C + |0〉A (
∣∣∣cat2α+

+
〉

C
±
∣∣∣cat2α−+

〉
C

). (6.11)

In the case where α+ = α− the application of an Hadamard gate on each mode will allow one
to discriminate both operators using parity-sensitive detectors. However in the general case
the two Bell states cannot be perfectly discriminated. The distance to the perfect implemen-
tation of the Bell measurement depends on |α+ − α−|. The same conclusion can be reached
for

∣∣∣Ψ(±)
〉
. The two encodings are therefore not equal, it is hard to perform a complete

Bell measurement with {Ŝ |0〉 , âŜ |0〉} but, because in this case |α−|∼ 1.0 and |α+|∼ 1.1, the
encoding {âŜ |0〉 , â2Ŝ |0〉} allows for deterministic teleportation with good fidelity. The dif-
ference with the coherent state encoding is also visible with regards to fidelity. The classical
bound for fidelity is Fcl = 2/3 in this case because the basis is orthonormal.

We summarize these features in table 6.1, with the addition of a characterization of the
sensitivity of qubits to transmission losses or decoherence. Their influence is typically linked
to the population number of the states considered, at greater values of |α| the state will be
more sensitive to losses. The effect is not only due to the encoding chosen at the output, but
in the case of hybrid teleportation between encodings, it also depends on the encoding used
at the input mode. We therefore only give a rough idea of the effects which are fully detailed
in [152, 83].

Overall, only the case of a coherent-state basis encoding at high values of |α| can be
used both as input and output encoding and still lead to a deterministic active teleportation
protocol, other encodings require a tradeoff in the implementation of QT. Note however that
if we allow for additional complexities in the systems considered, there are some methods
to improve on the results presented in table 6.1. Examples include encoding the qubit on
multiple degrees of freedom [153], the use of additional ancillary qubits [154] or using a CV
entangled resource [26] in order to perform a near complete Bell measurement with a DV
encoding.

1.3 Previous implementations and state of the art

There have been many experiments demonstrating qubit quantum teleportation in differ-
ent contexts. Tin this section, we detail some of the relevant experiments for our study.

1.3.1 Quantum teleportation protocols with fixed encoding

With DV encoding, the first demonstration was by Bouwmeester et al. in 1997 using
polarization qubits [18]. In the following year, the first deterministic [153] and the first active
protocols [155] were implemented. Teleportation using vacuum and single-photon states as
basis was realized a bit later [156]. Teleportation using the coherent state encoding was pro-
posed in 2001 [157] and has not been fully implemented yet. A close protocol –equivalent to
QT at vanishing losses–, tele-amplification, was however realized more recently [158]. Since
these proof-of-concept experiments, much progress has been made and teleportation proto-
cols have now been realized over practical distances ranging up to 143 km on earth [159] and
recently 1400 km from ground to satellite [19].
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From the different features of CV and DV encodings presented in table 6.1, hybrid entan-
glement seems to be an appropriate resource for the implementation of a fully deterministic
and active protocol by joining their benefits. Such a protocol, introduced and theoretically
studied in [152], would perform the deterministic teleportation of coherent-state qubits onto
a polarization encoding. Beyond these ideal properties, hybrid quantum teleportation would
be very useful even in an imperfect implementation as a conversion process between two
opposing encodings, a process impossible to implement otherwise. In that context the tele-
portation from a photonic qubit on a coherent-state basis presents the advantage of leading
to higher fidelities more efficiently [160] and is directly accessible using our hybrid resource.

1.3.2 Current progress towards teleportation between encodings

Two recent experiments in particular explore QT between two different encodings. The
first one considers teleportation from a CV qubit to a {|0〉 , |1〉} basis [161] and the second one
from polarization to CV encoding [162]. Although they represent a good step in the direction
of hybrid QT, their implementation introduced approximations that should be alleviated to
go beyond their proof-of-concept status. As our goals are closely related to these experiments,
we will now expand on the compromises they introduce in order to see what can be improved
upon in our implementation.

• In the first experiment, the hybrid state is generated using a similar method to ours
and as such uses the {Ŝ |0〉 , âŜ |0〉} encoding, albeit with a squeezing of 1.56 dB. This
encoding is closest to {

∣∣catα+
+
〉
, |catα−- 〉} with |α+| = 0.42 and |α-| = 0.72. At these

amplitude levels, the population of squeezed vacuum is close to zero and âŜ |0〉 has a
higher although low single-photon component. The Bell measurement of [151] can in
that case be adapted and implemented using only a single photon detector instead of
parity-sensitive detectors. The Bell measurement therefore presents the disadvantage
of being only valid in the limit of low amplitudes and the scheme cannot be extended to
a practical context. Furthermore, the quality of the teleportation depends on the state
to teleport. Another strong compromise is made for the qubit prepared as an input odd
cat state is simulated by a low amplitude coherent state.

• In the second experiment, one Bell measurements out of four is performed on the DV
encoding and the protocol is extendable to a coherent-state basis of greater population.
An issue however is that the inherent low count rate of their generation limits their
acquisition to 1500 events overall. Given that the state characterization is done by
correcting for more than 50% of detection losses, the derivation of the fidelity is very
prone to errors, all the more so that it is inferred from a set of measured values on an
incomplete ensemble of input states using an approximate model. We also note that in
this experiment even though entanglement swapping is mentioned as an interpretation,
it is performed only once the final entangled DV mode is measured. This therefore does
not constitute a proper ES experiment as the final entanglement is destroyed as soon
as it is heralded.

Overall, the main issues in these experiments that should be solved for a practical QT protocol
are the lack of scalability to a coherent state basis of higher population for the first one and
the acquisition of a small number of data points for the second one. In the former experiment,
entanglement swapping was also not demonstrated in an operational manner. Finally, and
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seeing the large amount of loss correction applied, a study of uncertainties associated to the
tomographic reconstruction would be of interest.

1.4 Our goal for hybrid quantum teleportation

Our goal is to perform both qubit quantum teleportation and entanglement swapping
using our hybrid state. We therefore have two possibilities for hybrid teleportation using our
system. Teleportation from {|0〉 , |1〉} to {Ŝ |0〉 , âŜ |0〉} or in the reverse direction. As we aim
for scalability, the implementation of a Bell measurement on the CV mode is out of reach
without parity-sensitive photon detectors. We decided in consequence to perform the Bell
measurement on the DV mode to teleport towards a CV encoding. This protocol has not
been performed yet by other groups and allows us to increase the amount of squeezing used so
as to have a greater count rate. In that setting, the protocol presents the disadvantage that
it cannot be performed deterministically or actively. As said earlier it is still of interest on
its own as a converter between encodings and could find uses in practical quantum protocols.
The fidelity bound that needs to be reached will be in this case Fcl = 2/3 as shown in
table 6.1.
As mentioned earlier, entanglement swapping was never realized with a hybrid entangled
state. Performing, as for qubit QT, the Bell measurement on the DV modes of two different
entangled states leaves us with several possibilities to explore:

• Swapping between two hybrid entangled states to entangle two CV modes, a process
which we describe with the notation

CV∞DV⊗DV∞CV −→ CV∞CV. (6.12)

• Swapping between an hybrid entangled state and DV entanglement to remotely prepare
hybrid entanglement:

CV∞DV⊗DV∞DV −→ CV∞DV. (6.13)

Both of these cases can be realized with our experimental setup. However, for practical rea-
sons we will present in Chapter 7, the latter case is easier to perform and will be our first
experiment of entanglement swapping. As for qubit QT, the protocol cannot be deterministic
and as a first try will not be active either. In both situations, the quality of implementation
will be assessed from measurements of negativity of entanglement for both the input states
and the generated entangled state.

Having established the goals and the corresponding figures-of-merit for our experiment, we
now present the protocol used, starting with the implementation of a partial Bell measurement
on the photonic encoding.

2 Bell measurement
In this section, we present the method used to perform the Bell measurement and study

the influence of some experimental parameters on the quality of its implementation. Finally
we give an estimation of the expected values of the figures-of-merit appropriate to qubit QT
and entanglement swapping in a practical experiment.
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2.1 Mixing CV and single-rail DV modes

We implement a Bell measurement on the DV mode which needs to discriminate with
certainty some Bell states from the others. To see the process, we adapt the expression of the
system for qubit QT shown in equation (6.2) to the hybrid context with encodings {|0〉 , |1〉}
for modes A and C and {|cat+〉 , |cat-〉} for mode B:

|Ψ〉ABC = 1√
2

(c0 |0〉C + eiφc1 |1〉C)⊗ (|0〉A |cat-〉B + |1〉A |cat+〉B). (6.14)

This can be rewritten, as in equation (6.3), as

|Ψ〉ABC =1
2

( ∣∣∣Ψ(−)
〉

CA
⊗ (c0 |cat+〉B − eiφc1 |cat-〉B)

+
∣∣∣Ψ(+)

〉
CA
⊗ (c0 |cat+〉B + eiφc1 |cat-〉B)

+
∣∣∣Φ(−)

〉
CA
⊗ (−eiφc1 |cat+〉B + c0 |cat-〉B)

+
∣∣∣Φ(+)

〉
CA
⊗ (eiφc1 |cat+〉B + c0 |cat-〉B)

)
. (6.15)

To differentiate Bell states, we first mix modes A and C on a balanced beam-splitter. This
leads to the transformation

â† 50:50−−−→ 1√
2

(â† + ĉ†)

ĉ† 50:50−−−→ 1√
2

(ĉ† − â†). (6.16)

Where â† and ĉ† are the creation operators for modes A and C respectively. Applied to the
Bell states, this gives us∣∣∣Ψ(−)

〉
CA

50:50−−−→ |0〉C |1〉A∣∣∣Ψ(+)
〉

CA
50:50−−−→ |1〉C |0〉A∣∣∣Φ(−)

〉
CA

50:50−−−→ 1√
2

(
|0〉C |0〉A + 1√

2
(|0〉C |2〉A − |2〉C |0〉A)

)
∣∣∣Φ(+)

〉
CA

50:50−−−→ 1√
2

(
|0〉C |0〉A + 1√

2
(|2〉C |0〉A − |0〉C |2〉A)

)
. (6.17)

If one can perform the operators |1〉 〈1|C or |1〉 〈1|A, it is possible to discriminate
∣∣∣Ψ(−)

〉
CA

and
∣∣∣Ψ(+)

〉
CA

from all other Bell states. Note also that, as expected, there is no way to

discriminate
∣∣∣Φ(−)

〉
CA

and
∣∣∣Φ(+)

〉
CA

from all other Bell states, even with the use of photon-
number resolving detectors on both modes.

The use of parity-sensitive photo-detectors on modes A and C would complete the Bell
measurement as the detection of an odd population in either mode heralds the corresponding
Bell operation. As these are not available in our system, we use a different method that
can approximate the operation by using both a single-photon detector and an homodyne-
detection system. Additionally, we choose to perform only one of the two available Bell

121



2. BELL MEASUREMENT

|Ψ〉CD

|Ψ〉BA

|Ψ〉BD

50:50

R

|q| < ∆
2

Figure 6.3: Bell measurement in the context of entanglement swapping. The two modes A
and C are first mixed on a 50:50 beamsplitter. Then a beamsplitter of low reflectivity R � 1 taps
part of one of the output ports of the balanced beamsplitter and sends it to a SNSPD. The detection
of a single photon heralds the presence of either vacuum or single photon in the untapped mode. An
homodyne detection serves to discriminate both cases by performing quadrature measurements. The
Bell measurement is completed by conditioning on the measurement of quadratures close to zero, i.e.
following |q| < ∆/2 with ∆ small compared to the variance of vacuum.

measurements by monitoring the output of mode C to perform
∣∣∣Ψ(+)

〉
CA

. This decreases the
success probability of the protocol from 50% to 25% but we will show it necessary for our
practical implementation. Monitoring mode C rather than A presents the benefit of removing
the requirement of applying an operator on the CV mode to retrieve the original qubit.

2.2 Experimental implementation of the Bell measurement

The process is shown in figure 6.3 in the particular case of entanglement swapping. The
Bell measurement is successful if we rule out the presence of |0〉C or |2〉C. Vacuum is first
ruled out by inserting a beam splitter and conditioning on the detection of at least a photon
on the reflected mode using a SNSPD. The insurance that the click was not due to a double
detection is given by the low reflectivity of the beam-splitter. As was done at the output
of OPO I, this operation approximates the application of operator â on mode C. From this
step, Bell state

∣∣∣Ψ(−)
〉

CA
is ruled out, and the system can be described by

|Ψ〉ABC ∝ |0〉C |0〉A ⊗ (c0 |cat+〉B + eiφc1 |cat-〉B)

−1
2 |1〉C |0〉A ⊗ (−eiφc1 |cat+〉B + c0 |cat-〉B)

+1
2 |1〉C |0〉A ⊗ (eiφc1 |cat+〉B + c0 |cat-〉B). (6.18)

As was done for remote state preparation, the homodyne detection is then used to condition
on |0〉C. The detection of a quadrature measurement result q close to zero being more likely
for vacuum than for a single photon, waiting for such an event biases the state teleported in
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mode B towards the target c0 |cat+〉B + eiφc1 |cat-〉B. In the case of entanglement swapping,
the same reasoning can be applied starting from equation (6.5) and we recover the entangled
state

∣∣∣Ψ(+)
〉

BD
. In the perfect case of vanishing reflectivity R and selection window width ∆,

the Bell measurement is exactly performed. As for remote state preparation, we need to make
compromises in order to have a significant count rate. In the next subsections, we consider
the impact R and ∆ have on the Bell measurement fidelity, the fidelity of the teleported state
with the target and the negativity of entanglement in the case of entanglement swapping.

2.2.1 Bell measurement fidelity

The fidelity between the measurement shown in figure 6.3 and the ideal Bell measurement
depends on several parameters: first on the reflectivity of the tapping beam splitter R and
the width of the selection window on the homodyne signal ∆ but also on the losses on mode
C and, importantly, on the input state. To show this, we now detail the calculations in the
imperfect case. We start by combining equations (6.4) and (6.17) and keep only the relevant
terms where mode C is populated by either |1〉 or |2〉 to obtain

|Ψ〉ABC =1
2

(
|1〉C |0〉A ⊗ |ψin〉B + 1

2 |2〉C |0〉A ⊗ (iσ̂Y |ψin〉B + σ̂X |ψin〉B)
)
. (6.19)

With |ψin〉B = c0 |cat+〉B + eiφc1 |cat-〉B and σ̂X , σ̂Y the Pauli operators in the basis {|cat+〉B , |cat-〉B},
we have

iσ̂Y |ψin〉B + σ̂X |ψin〉B = 2eiφc1 |cat+〉B , (6.20)
and therefore

|Ψ〉ABC = 1
2(|1〉C |0〉A ⊗ |ψin〉B + eiφc1 |2〉C |0〉A ⊗ |cat+〉B). (6.21)

Now we introduce the beamsplitter coupling mode C with a new mode D. We label its
transmission and reflection factors t and r such that |r|2 = R and |t|2 = 1−R. We apply the
beamsplitter transformation c† → tc† + rd† to obtain

|Ψ〉ABCD = 1
2

(
(t |1〉C |0〉D + r |0〉C |1〉D)⊗ |0〉A |ψin〉B

+ eiφc1(t2 |2〉C |0〉D + r2 |0〉C |2〉D +
√

2tr |1〉C |1〉D)⊗ |0〉A |cat+〉B
)
. (6.22)

Then, we apply a detection event on the SNSPD on mode D and trace out on mode A. This
leads to the density matrix ρBC equal to

ρBC =
TrA,D(∑

n≥1
|n〉 〈n|D |Ψ〉 〈Ψ|ABCD)

Tr(∑
n≥1
|n〉 〈n|D |Ψ〉 〈Ψ|ABCD) . (6.23)

We obtain

ρBC ∝ |0〉 〈0|C |ψin〉 〈ψin|B + c2
1
(
2t2 |1〉 〈1|C + r2 |0〉 〈0|C

)
|cat+〉 〈cat+|B

+ c1t
√

2
(
e−iφ |0〉 〈1|C |ψin〉 〈cat+|B + eiφ |1〉 〈0|C |cat+〉 〈ψin|B

)
. (6.24)

We see here the effect of the detection. At small r, all the non-negligible terms left are
incompatible with the presence of vacuum in mode C except the first term which corresponds
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Figure 6.4: Probability of performing the right Bell measurement depending on the width of
the selection window ∆ used for the homodyne conditioning and on the beam splitter reflectivity R.
As the probability depends on transmission losses and on the coefficients of input qubit c0 |0〉+ c1 |1〉,
we plot the measurement fidelity depending on the experimental parameters for three values of c1
without losses in (a) and for the experimentally relevant 15% of losses introduced by the homodyne
detection system in (b). ∆ is normalized to the variance of vacuum.

to a successful teleportation. If R is too big however, there is no way to discriminate between
the first and third terms of equation (6.24) through measurements on mode C.

The final step is homodyne conditioning that can be computed as was done for RSP and
quantum steering. The operator corresponding to the selection of quadratures |q| ≤ ∆/2 is

M̂ =
∫ ∆

2

−∆
2

|q〉 〈q| dq. (6.25)

Applied to the state given in equation (6.24), we finally obtain the expression of the teleported
state after the measurement:

ρ ∝ A∆
00 |ψin〉 〈ψin|B + c2

1
(
2 ∗ (1−R)A∆

11 +RA∆
00
)
|cat+〉 〈cat+|B , (6.26)

where we used the notation

A∆
ij =

∫ ∆
2

−∆
2

〈i|q〉 〈q|j〉 dq (6.27)

and noticed that A∆
10 = A∆

01 = 0 for all ∆. It is also possible to include the losses before
the homodyne detection to get the most general result. As usual, we model the losses by a

124



CHAPTER 6. HYBRID QUANTUM TELEPORTATION: PRINCIPLE AND MODEL

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

|c1|2

F B
el

l

∆ = 0.2σ0
∆ = 0.5σ0
∆ = σ0

R = 10%

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

|c1|2

F B
el

l

R = 10%
R = 20%
R = 30%

∆ = 0.2σ0

(a) (b)

Figure 6.5: Fidelity of the Bell measurement depending on |c1|2. Full lines: no losses, dashed
lines: 15% transmission loss. In figure (a), the evolution is plotted for a fixed value of reflectivity
R = 10% and different values of ∆ and in figure (b) ∆ is fixed to 20% of the variance of vacuum σ0
and we show the influence of changes in R.

beam-splitter of transmission η coupling mode C with another mode that is then traced out.
This gives us the final expression:

ρ ∝ A∆
00 |ψin〉 〈ψin|B + c2

1
(
2(1−R)(ηA∆

11 + (1− η)A∆
00) +RA∆

00
)
|cat+〉 〈cat+|B . (6.28)

The quality of the Bell measurement depends therefore on the ratio A∆
00/A

∆
11, R and η as

expected. We also notice the main difference between the measurement and the ideal Bell
operator: its quality depends on the state to teleport as is visible through the presence of c2

1.
Unsurprisingly, the requirements for a good teleportation of vacuum are not severe.

The effect of experimental parameters on the quality of the Bell measurement can be
visualized first in the loss-less case in figure 6.4(a). We plot the fidelity FBell between the
measurement performed and the ideal Bell measurements depending on R and ∆ for different
values of coefficients c1. We see that the fidelity drops when c1 increases, as expected. With-
out loss and for R < 15%, the fidelity depends more strongly on ∆ than R but is quite high
for all values of c1, and is greater than 90% for R = 10% and a conditioning window as narrow
as the one used for RSP, i.e. 20% times the variance of vacuum. Next, in figure 6.4(b), we
show the same plots when accounting for the experimental 15% additional losses introduced
on the homodyne detection path. We see that this effect is the strongest and significantly
lowers the measurement fidelity. It remains however greater than 75% for all c1 using as
before R = 10% and ∆ = 0.2σ0. The fact that the Bell measurement quality depends on the
qubit being sent is also shown in figure 6.5 where the Bell measurement is shown depending
on c1 for different values of ∆ and R. These plots confirm the stronger dependence on ∆ than
on R for FBell and the strong impact of losses on the homodyne detection. For ∆ = 0.2σ0,
the fidelity remains higher than 90% for all qubits for R as big as 30% without losses. In the
case of 15% loss the fidelity drops below 50% for |c1|2 = 0.4 for ∆ = 0.2σ0 and R = 10%.

In summary, we conclude from these simulations that the fidelity of the Bell measurement
presents the disadvantage of being qubit dependent. This issue is however alleviated at the
limit of lower ∆ and R, the former being the parameter having the most impact. Losses also
have a significant impact on FBell and an appropriate implementation will lower the value of
∆ depending on the losses considered. Note that the effect is not as problematic in terms
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Figure 6.6: Fidelity of the teleported state with the target CV qubit depending on
experimental conditions. (a): State fidelity depending on ∆ and R for |c1|2 = 0.5 and 15%
transmission loss. (b): State fidelity depending on |c1|2 for a fixed value of reflectivity R = 10% and
different values of ∆. Full lines: no losses, dashed lines: 15% transmission loss.

of count rate as could be expected at first glance. Indeed, the presence of losses leads to
an increase of the number of quadrature measurements close to zero as the vacuum compo-
nent increases. Lowering the size of ∆ is a strategy that amounts in effect to discriminating
between vacuum and lossy single-photons (rather than between |0〉 and |1〉) which leads to
a similar count rate with or without losses when the effect is exactly compensated. These
results show the interest of using dual-rail encoding for the DV mode instead of single-rail. In
the case of polarization encoding for example, the Bell measurement fidelity is independent
from c1 and can be very close to one. That being said, choosing the lowest possible ∆ and R
in our implementation can bring us close to this ideal situation.

What is missing from these simulations is how the Bell measurement fidelity value trans-
lates in terms of the final parameters of interest: state fidelity and negativity of entanglement.
This is the subject of the next two subsections.

2.2.2 State fidelity

In the case of qubit teleportation the final parameter of interest is the fidelity of the
teleported state with the target CV qubit:

F = 〈ψin| ρ |ψin〉B . (6.29)

This fidelity is different from FBell because the state teleported when the wrong Bell mea-
surement is performed is not orthogonal to the target state:

|〈ψin|cat+〉B|2 = 1− c2
1. (6.30)

From equation (6.28) we can compute the state fidelity:

F = A∆
00 + c2

1(1− c2
1)(2(1−R)(ηA∆

11 + (1− η)A∆
00) +RA∆

00)
A∆

00 + c2
1(2(1−R)(ηA∆

11 + (1− η)A∆
00) +RA∆

00)
. (6.31)

This expression is close to the Bell state fidelity but gives higher values for qubits of lower
c1. The precise effect of each parameter can be seen in figure 6.6 where we plot in (a) F
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depending on ∆ and R for |c1|2 = 0.5 and in (b) depending of |c1|2 for different values of ∆
at R = 10%. The range of values spanned by F is the same as for FBell but the state fidelity
remains higher for lower values of c1. In the particular case of ∆ = 0.2σ0 and R = 10%, F is
above 90% for |c1|2 ≤ 0.6 which is to compare with the limit of |c1|2 ≤ 0.4 for FBell.

Following the same reasoning as in [161, 162], this model for losses is useful to infer the
fidelity of the teleportation protocol averaged over all c1 even when tested for a sub-ensemble
of input qubits. To do so, one has to measure the experimental fidelity for an as-large-as-
possible set of different input qubits and then compute the average for the model best-fitting
the experimental data.

2.2.3 Negativity of entanglement for entanglement swapping

In the case of entanglement swapping, the final expression of the teleported entanglement
can be computed using the same procedure as for qubit teleportation. We show the calculation
in the case of equation (6.13) where the input entangled state is DV∞DV and not necessarily
balanced, meaning we use as initial four-dimensional state:

|Ψ〉ABCD =
∣∣∣Ψ(+)

〉
AB
⊗ (c0 |0〉C |1〉D + c1e

iφ |1〉C |0〉D), (6.32)

with
∣∣∣Ψ(+)

〉
AB

the usual hybrid entanglement. This state can be rewritten as

|Ψ〉ABCD =1
2

( ∣∣∣Ψ(−)
〉

CA
⊗ (c0 |cat+〉B |1〉D − eiφc1 |cat-〉B |0〉D)

+
∣∣∣Ψ(+)

〉
CA
⊗ (c0 |cat+〉B |1〉D + eiφc1 |cat-〉B |0〉D)

+
∣∣∣Φ(−)

〉
CA
⊗ (−eiφc1 |cat+〉B |0〉D + c0 |cat-〉B |1〉D)

+
∣∣∣Φ(+)

〉
CA
⊗ (eiφc1 |cat+〉B |0〉D + c0 |cat-〉B |1〉D)

)
. (6.33)

From this expression and as before, we have the relevant terms after mixing modes A and C:

|Ψ〉ABCD =1
2

(
|1〉C |0〉A ⊗ |ψin〉BD + 1

2 |2〉C |0〉A ⊗ (iσ̂BY |ψin〉BD + σ̂BX |ψin〉BD)
)
. (6.34)

Here we use the notation |ψin〉BD = c0 |cat+〉B |1〉D +eiφc1 |cat-〉B |0〉D and as before the Pauli
operators σ̂BX and σ̂BY are applied on mode B. In this case the entangled state corresponding
to the wrong Bell measurements is

iσ̂BY |ψin〉B + σ̂BX |ψin〉B = 2eiφc1 |cat+〉B |0〉D . (6.35)

From then, the exact same reasoning as the one used for qubit QT leads us to the expression
of the teleported entanglement in the case of losses:

ρ ∝A∆
00 |ψin〉 〈ψin|BD

+ c2
1
(
2(1−R)(ηA∆

11 + (1− η)A∆
00) +RA∆

00
)
|cat+, 0〉 〈cat+, 0|BD . (6.36)

From equation (6.36) we see that the negativity of entanglement N will be below the one
presented by the initial entangled state, the second term of the equation corresponds to
losses directly added onto the teleported entanglement. We remark that, as the lossy term
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Figure 6.7: Entanglement negativity of the swapped state depending on c1 for different condi-
tioning windows ∆ and R = 10%. Full lines: No losses, dashed lines: 15% of detection losses. Figure
(a): In the case of a perfect hybrid entangled state with N = 0.5 and a loss-less DV∞DV entangled
state. Figure (b): Starting from the experimental hybrid entangled state with N = 0.38 and a perfect
DV entangled state mixed with 20% of vacuum. In all cases, starting from a perfectly balanced DV en-
tangled state |c1|2 = 0.5 doesn’t lead to the highest possible negativity on the swapped entanglement.
Applying a bias enables one to compensate for the imperfections introduced by the approximate Bell
measurement. We see in (a) that even starting from two maximally entangled states, we cannot reach
maximum N on the teleported states and we are limited to N = 0.47 without losses and N = 0.37
with losses for ∆ = 0.2σ0. Starting from the experimental hybrid entanglement in (b) we can reach
N = 0.4 without loss and N = 0.32 with 15% losses. Note that in both cases, even without condition-
ing on the homodyne, the detection of a photon is enough to generate entanglement although with a
value of negativity roughly half of what can be achieved when performing the homodyne conditioning.

depends on c1, starting with the maximally entangled balanced state c1 = 1/
√

2 doesn’t
necessarily lead to the state with the highest N after swapping. The dependence can be seen
in figure 6.7. In figure (a) we show the value of N on the swapped entanglement in the case
of a maximally entangled hybrid state depending on c1 and in figure (b) the same evolution
in the case where we start with the experimental hybrid entanglement with N = 0.38 and a
DV entangled state mixed with 20% of vacuum. In this more realistic case, we can expect to
reach quite high values of negativity, up to N = 0.32 when accounting for the losses on the
homodyne detection path. The observation of negativity is overall quite forgiving in terms
of Bell measurement quality. Even without any conditioning on the homodyne detection, we
can still reach N = 0.15.

2.2.4 Entanglement purification

A particular use of entanglement swapping is entanglement purification. If the Bell mea-
surement performed has a good fidelity with the ideal Bell measurement, it is possible to
increase the amount of entanglement above that of the input state or even above the negativ-
ity of both initial entangled states. Achieving this increase of negativity is a strong indicator
of quality for any ES protocol. In our experimental conditions, it is challenging to reach this
regime as can be seen in figure 6.8. In the figure we show the negativity of the swapped state
depending on the negativity of the input DV state and for the experimental hybrid entangled
state with NCV∞DV = 0.38. Without losses on the homodyne detection both regimes where
we have N greater than for the input state (shaded in green) or greater than for the input and
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Figure 6.8: Entanglement negativity after swapping depending on the negativity of the initial
DV-entangled state NDV∞DV for different values of ∆ and for the experimental hybrid state presenting
NCV∞DV = 0.38 and R = 10%. Full lines: no loss, dashed lines: 15% losses on the homodyne
detection. Depending on the initial conditions, it is possible to obtain a final state presenting a
negativity greater than NDV∞DV. For example at ∆ = 0.2σ0 and without loss, this case corresponds
to the green area. As shown by the dashed line, this situation is possible even with a lossy homodyne
detection for NDV∞DV < 0.3. In that case, swapping lead to a purification of the input entanglement.
In the perfect case without losses, it is even possible to obtain a higher negativity than that of both
the input state and the hybrid entanglement used. This corresponds to the yellow area. Because
of the 15% detection loss induced by the homodyne detection, this case is impossible to achieve
experimentally. Finally we plot the negativity of the input state after propagation in a commercial
optical fiber for 15km. This distance of 15km corresponds to the ≈ 50% losses separating the CV
and DV modes of the hybrid-entangled state (assuming 0.2 dB/km loss). When N is above that line,
swapping is beneficial compared to a direct propagation of the input state. This is the case for most
input entangled states in the case of ∆ < 1.

hybrid-entangled states (shaded in yellow) are accessible. However, the 15% losses introduced
by the homodyne limit the possibilities as shown by the dashed green line. In that case it
is still possible to improve on the input entanglement but not on both. For input entangled
states with lower NDV∞DV, our scheme both purifies and converts the entanglement from
DV∞DV to CV∞DV.

Once we consider the effective distance between the CV and DV modes of hybrid entan-
glement, the protocol appears even more advantageous. Indeed, as we have seen there are
losses on the conditioning mode used to herald hybrid entanglement. These losses, which
are due to frequency filtering and coupling to the heralding SNSPD are close to 30% which
roughly corresponds to 7.5 km of transmission through a commercial optical fiber. These
losses mainly have an impact on the rate of generation of the hybrid state (there is only a
marginal impact on the quality of the state because the number of false positive increases
relatively to good events). From that viewpoint the CV and DV modes of entanglement can
be considered to be 15 km distant from each other (the distance is doubled because losses
have to be counted both for the CV and DV conditioning paths). From this we conclude

129



3. CONCLUSION

that the swapping protocol is advantageous if it leads to a better negativity than what would
have been reached by a direct propagation for 15 km of one mode of the input entanglement.
This limit is plotted as well in figure 6.8 and we see that for all input qubits the negativity
reached is well above that threshold if ∆ ≤ 0.5σ0.

A realistic entanglement swapping experiment would therefore allow the purification of
entanglement when compared to a direct transmission even in our hybrid case. This is pos-
sible because of the nature of the Bell measurement used. As it is done by conditioning on
measurement results, it trades efficiency for entanglement quality. This feature is the reason
why quantum repeaters can work, the combination of several ES operations allows a linear
decrease of entanglement instead of the exponential decrease when using direct transmis-
sion [163].

3 Conclusion
In this chapter, we have introduced the principle of quantum teleportation and presented

the advantages and drawbacks presented by different encoding basis for its implementation.
We have also motivated the realization of hybrid quantum teleportation and presented a
protocol for teleportation from a DV photon-number basis to a CV coherent-state encoding.
A theoretical study leads us to conclude that a hybrid implementation of QT is possible
with our resources. In the case of qubit quantum teleportation, this protocol should lead
to fidelities above the classical limit. Entanglement swapping can also be performed and
would realistically lead to a swapped state presenting entanglement negativity greater than
achievable through direct transmission. In the next Chapter we will present the progress
made towards the realization of both protocols and some preliminary results for entanglement
swapping.
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Chapter 7

Experimental implementation of
hybrid quantum teleportation

In this chapter, we present the complete experimental setup for hybrid quantum telepor-
tation that was built during the course of this thesis. We have seen how to generate hybrid
entanglement in Chapter 4 and the previous chapter detailed how the Bell measurement can
be implemented. The last remaining component for a practical demonstration of quantum
teleportation is the generation of the input state. All the resources necessary to its creation
have been presented in prior chapters and are available for our experiment. We could indeed
complete the protocol by adding more OPOs, SNSPDs and homodyne detection systems on
the table. We followed however a different approach and installed a new resource: an optical
delay line. This delay line allows us to use the same OPOs both for the generation of the
input state and of hybrid entanglement by letting the input state propagate into the delay
line before mixing it with an hybrid-entangled state generated at a later time.

We will first present the complete setup for hybrid QT and then give details on the delay
line’s implementation and features. We conclude the chapter by reporting on encouraging
preliminary results for hybrid entanglement swapping.
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CHAPTER 7. EXPERIMENTAL IMPLEMENTATION OF HYBRID QUANTUM
TELEPORTATION

1 Complete setup for hybrid quantum teleportation
Our complete protocol is in two stages. The first one is the creation of the input state,

either a photon-number qubit or DV∞DV entanglement, in a delay line. The second stage
is the teleportation protocol presented last chapter. In this section we give details on the
complete protocol, starting with the method used for the consecutive generation of single-
photon states and hybrid entanglement.

1.1 Consecutive creation of a single photon and hybrid entanglement using
the same source

Our goal is to first herald the presence of a single photon on the DV mode at time t1 and
then to create hybrid entanglement at a later time t2. As shown in figure 7.1, this can be done
using two SNSPDs placed at the output ports of a beam-splitter coupling both conditioning
paths. One of these detector will herald the creation of hybrid entanglement while the other
will herald the presence of a single-photon on the DV mode. This is possible because the rate
of detection of parametric down-conversion events coming from OPO II is in practice much
greater than for OPO I. This means that when mixing on the beam splitter the two condi-
tioning paths, balancing the two rates at one of its output will lead to a strong imbalance at
the other output. As the imbalance is in favor of OPO II, detecting PDC events at this other
port most likely corresponds to the presence of single photons.

Let us look at a particular example. We write the PDC rates for OPO I and OPO II
respectively RI and RII. At the typical pumping power of 1mW for OPO II and 5mW of
pumping power for OPO I and when tapping 3% off its output, we have RII/RI ≈ 3. The
balanced hybrid entangled state is created by mixing both conditioning paths on a beam-
splitter of reflectivity R0. At the end of one of the beam splitter output is the SNSPD that
serves to herald hybrid entanglement. The maximally entangled state is heralded on this
detector when photons detected are equally likely to have come from both OPOs. With
the arrangement shown in figure 7.1, this is achieved in the condition that the beam-splitter
reflectivity follows

R0 = RI
RI +RII

. (7.1)

At the other output port the ratio between the number of clicks coming from OPO II and
that of OPO I, which we write NII/I, is equal to

NII/I = 1−R
R

RII
RI

(7.2)

Combining this with equation (7.1), we find that

NII/I = (RII
RI

)2. (7.3)

In the case where RII/RI = 3, we obtain NII/I = 9, meaning that, if we consider only the DV
mode, the state heralded when we observe a detection at this output port is

ρDV = 0.9 |1〉 〈1|DV + 0.1 |0〉 〈0|DV . (7.4)

We obtain a mixed state with 90% of single-photon component. This is in the ideal case
but, even starting from our experimental high-purity single photons, we manage to recover
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|Ψ〉Hyb

|1〉|1〉
R0

t1

t2

t1

t2

Figure 7.1: Consecutive generation of single-photon and hybrid entanglement. The beam-
splitter joining the two conditioning paths is imbalanced and has a reflectivity R0. This imbalance,
along with the different heralding rates of both OPOs, allows the configuration where events detected
on the SNSPD on the right or equally likely to come from both OPOs while photons detected by the
SNSPD on top are most likely to come from OPO II. At time t1, we herald a single photon on the
DV mode via a click on the top detector and at time t2 the second detector heralds the creation of
hybrid entanglement.

a state with a 84% single-photon component. This is already a very good single-photon but
if necessary it can be made purer by tuning RI and RII. This can be done by adjusting the
pump power on both OPOs or by tuning the tapping percentage at the output of OPO I.
This setup is therefore very close to having two independent sources of hybrid entanglement
and single-photon states, at different times, with no compromise in terms of count rate for
hybrid entanglement.

The ideal strategy for QT is to first herald a single-photon and from it manufacture the
input state for teleportation which is then stored. The second step is to wait for a click
heralding hybrid entanglement to retrieve the input state after which quantum teleportation
can finally be performed. These steps are difficult to implement with this setup because the
DV mode of hybrid entanglement is the same as the mode on which the single-photon can
be created. The solution is to use the same beam splitter to create the input state, to send
that input state to a delay line and then to perform the Bell measurement for QT.

1.2 Protocol for quantum teleportation

We now present the complete strategy for hybrid teleportation. It combines the method
we just presented for the generation in sequence of a single-photon state and then hybrid
entanglement with the method for Bell measurement detailed in section 2.2. The only thing
missing is the generation of the input state and how to store until it can be teleported. The
experimental setup is shown in figure 7.2. It presents the addition of a delay line coupled to
the DV mode by a 50 : 50 beam-splitter. This delay line is used for storage of the input state
which will then be teleported.

There are several steps to the teleportation protocol that we now show. We first explain
the protocol in the case of qubit QT and then we will present what adjustments are necessary
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Figure 7.2: Full setup for hybrid qubit quantum teleportation and entanglement swap-
ping. The exact protocol for teleportation is presented step-by-step in figure 7.3. The two OPOs
are used both for the generation of hybrid entanglement and the input state, at different times. The
added feature is a delay line coupled to the DV mode by a balanced beam-splitter. This delay line is
used to store the input qubit and send it back to the same beam-splitter to be teleported.

for entanglement swapping.

1.2.1 Qubit quantum teleportation

The step-by-step protocol is shown in figure 7.3. There are four steps overall for the
realization of QT. The first two are necessary for the creation of the input qubit and its
storage in a delay line. The final two steps consist in the hybrid teleportation protocol we
presented earlier.

Generation of the input qubit The method is shown in figures 7.3 (a) and 7.3 (b). The
first step shown in (a) consists in heralding a single photon on mode A at time t = 0 following
the method presented in section 1.1 and send it to a 50 : 50 beam-splitter used to couple
mode A with another mode C. This generates DV∞DV entanglement between modes A and
C, thus creating the state ∣∣∣Ψ(+)

〉
CA

= |0〉C |1〉A + |1〉C |0〉A . (7.5)

From this DV-entanglement, the input qubit can be created by remote state preparation.
This is shown in figure 7.3 (b). As in Chapter 4, once the mode A of the DV entanglement
reaches the homodyne detection at time t = tHD, we condition on the observation of a given
quadrature result q and lock the local oscillator phase to a value φ. This leads to the remote
preparation of the qubit

|ψin〉C = |1〉C + qeiφ |0〉C . (7.6)

Storage of the qubit in a delay line The input qubit is sent on a delay line and returned
to the other input of the balanced beam-splitter. The teleportation process can continue if
hybrid entanglement is heralded at the exact moment where the qubit finishes its propagation
through the delay line (see figure 7.3 (c)). We note the time of propagation through the delay
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(a) t = 0 : Single-photon creation

• A click from the top SNSPD
heralds the presence of a single-
photon on the DV mode A.

• The photon is then split on
a balanced beam-splitter cou-
pling mode C to the DV mode.
DV entanglement

∣∣Ψ(+)
〉

CA
=

|0〉C |1〉A + |1〉C |0〉A is created.

A

C

A

50%

∣∣Ψ(+)
〉

CA

|1〉A

J

(b) tHD : RSP, qubit in delay line

• Mode A of the DV entanglement
is measured on the homodyne
detection.

• RSP is performed using the ho-
modyne locked at phase φ. Con-
ditioning on measurement q pre-
pares the input qubit |1〉C +
qeiφ |0〉C. The qubit is sent in the
delay line.

q|1〉C + qeiφ |0〉C

φ
A

C

JI

I

J

(c) tDL : Start of teleportation

• Hybrid entanglement is heralded
using the second SNSPD.

• The qubit finishes propagating
through the delay line and is
ready to be teleported.

B

A

C |1〉C + qeiφ |0〉C

|0〉A |cat−〉B + |1〉A |cat+〉B

I

(d) tDL + tBell : Bell measurement

• The Bell measurement is com-
pleted by a local subtraction and
homodyne conditioning.

• The input qubit is teleported
to the CV mode: |cat−〉B +
qeiφ |cat+〉BR = 10%

|q| < ∆
2

|cat−〉B + qeiφ |cat+〉B

φ

N

Figure 7.3: Detailed protocol for QT using the delay line. (a) and (b) lead to the creation
and storage of the DV qubit. (c) and (d) correspond to its teleportation on a CV encoding.
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line tDL. Our use of the delay line is quite close to the setup introduced in two recent paper
by Bouillard et. al [164] and Takeda et. al [165]. Their implementations add the possibility
of storing quantum states in the loop for several passes which gives more flexibility to their
resources. Our particular protocol doesn’t fundamentally require this capability.

Qubit Quantum teleportation Finally we arrive in figure 7.3 (c) at the starting point
for hybrid quantum teleportation. The qubit and hybrid entanglement (HE) are mixed on
the 50 : 50 beam-splitter. The phase of the delay line has to be locked to maintain a
constant dephasing between the two inputs, this is done uzing a PZT on the final mirror of
the delay line. Then in figure 7.3 (d) the teleportation is completed. We use a beam-splitter
of reflectivity R = 10% and wait for a detection on the reflected mode. This approximates
the application of the annihilation operator. Then we condition on the measurement of
quadratures close to zero |q| ≤ ∆/2. The combination of the two operations is close to the
application of operator |1〉 〈1|C, i.e. the projector corresponding to the Bell measurement∣∣∣Ψ(+)

〉
. The input qubit is directly teleported on the CV encoding without the need for the

application of a Pauli operator on the CV mode.

1.2.2 Entanglement swapping

The protocol for entanglement swapping is very close to the one used for qubit QT and
uses the same setup. The first step is identical to the one realized in figure 7.3 (a) and leads to
the creation of DV-entanglement. This is the input state that will be swapped. The second
step in figure 7.3 (b) is therefore not performed. Instead, the homodyne detection serves
to perform quantum tomography on one half of the input state. Accordingly, we sweep the
local oscillator phase instead of locking it. The other mode of DV entanglement propagates
through the delay line and the rest of the protocol is identical to that of figure 7.3. The
difference with the ideal entanglement swapping protocol is that the swapped DV mode is
measured –and destroyed– before the Bell measurement is performed. The correlations are
still present between the final hybrid entanglement but it cannot be further propagated and
used in other protocol without changes to the setup. This is however only a practical issue
and simple changes to the setup would solve this problem. A possible solution is to introduce
a variable transmissivity beam splitter on mode A that would be used in place of the second
step shown figure 7.3 (b) to fully reflect mode A of the DV entanglement. During the time
of propagation in the delay line, it would then be switched to full transmission to complete
the protocol. The one implemented in [165] can be switched in 10 ns from T = 0 to T = 1,
which is well below our value for tDL (see 2.1.1).

2 Adding a delay line

Although the delay line was introduced as a short term solution for the realization of
quantum teleportation, it represents a promising enhancement of our setup. For example,it
opens the possibility of realizing protocols using time-bin entanglement. We therefore devote
a section to a presentation of some of its features and study in particular the effect of trans-
mission losses, first in the continuous pumping regime and then in the context of quantum
teleportation. We finally present in details our experimental implementation and characterize
its transmission loss and stability.
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2.1 Parameters of the delay line

The introduction of a delay line in the setup leads to some modifications in the protocol.
In the particular case of entanglement swapping, we’ve seen that it limits the use of the
swapped DV mode for further experiments. In this section we consider the limitations it
imposes on the quality of the input states we can create. We start by detailing the design
constraints on the delay line and then assess the quality of the input states that can be
generated for ES and qubit QT. We then conclude on the advantages of the method when
compared to using coherent states as input.

2.1.1 Length of the delay line

The length of the delay line is constrained because of the temporal modes of the input
qubit and hybrid entanglement. Indeed, as we have seen in chapter 2, the detection of a click
at time t = 0 is correlated to the presence of a single photon at any given time t′ around t = 0,
most likely in the range −20 ns ≤ t′ ≤ 20 ns. The same is true for hybrid entanglement. We
wait for two heraldings in sequence at time t = 0 and tDL. The Bell measurement comprises
a detection event that has to be made at t = tDL + tBell, where tBell is the time it takes for a
photon heralded at t = 0 to go straight through the balanced beam-splitter and all the way to
be detected for the Bell measurement. If tDL is smaller than or comparable to 20 ns, a click
observed at that time could have originated from the mixing of hybrid entanglement with the
input qubit as expected. It could however as well have happened if HE was created first. In
that case its DV mode would have propagated through the delay line and then would have
been mixed with the single photon created later. Although this process still corresponds to
a Bell measurement between a qubit and hybrid entanglement, it leads to losses for several
reasons. First, the DV mode of HE goes through 50% of transmission loss because of the
balanced beam-splitter, and second, the qubit in question is a single photon which limits the
range of qubits to teleport.

Interestingly, even without the two previous issues, this would still lead to losses because
the qubit and HE go through different input ports of the beam-splitter than in the normal
protocol. As a consequence, from equation (6.17) we see that the Bell measurement we
perform is

∣∣∣Ψ(-)
〉
instead of

∣∣∣Ψ(+)
〉
. We have interference between the two possible paths

followed by the qubit and HE which is equivalent to losses.
In the end we chose to build a delay line of 15 m, which corresponds to tDL = 50 ns. This

also allows us to discriminate during the Bell measurement between the right sequence and
all other possible paths such as multiple passes through the delay line for the qubit or for
hybrid entanglement.

2.1.2 Characterizing the losses: continuous wave regime

The transmission losses in the delay line will directly impact on the quality of the input
state. Here, we study the behavior of the delay line in the continuous regime in order to
characterize its losses. The next section will look at the effect of these losses on the quantum
input. The model used is presented in figure 7.4 (a). The delay line configuration resembles
a Sagnac interferometer where two ports of the beam-splitter have been exchanged. In this
configuration, there is only one direction of propagation for the light inside the delay line
which can be considered to be a cavity. As presented in the figure, we model the losses by
a beam-splitter of transmission η. At stability we have the system of equations linking the
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Figure 7.4: Lossy delay line. (a): Model. Losses are represented by a beam splitter of transmission
η. (b): Transmission depending on the phase for different values of intra-cavity loss 1− η.

field amplitudes involved αi:

α3 = 1√
2

(α1 + α2)

α4 = 1√
2

(α1 − α2)

α2 = √ηeiφα3, (7.7)

where φ is the phase acquired after one pass through the delay line. Solving the system leads
to the expression of the internal field’s amplitude:

α2
α1

=
√
ηeiφ√

2−√ηeiφ
.. (7.8)

From this we can compute the expression of the power inside the cavity
I2
I1

= |α2
α1
|2 = η

(
√

2−√ηcos(φ))2 + ηsin2(φ)
. (7.9)

And we get at the output:

α4
α1

= 1−√2ηeiφ√
2−√ηeiφ

T =̂I4
I1

= (1−√2ηcos(φ))2 + 2ηsin2(φ)
(
√

2−√ηcos(φ))2 + ηsin2(φ)
. (7.10)

The evolution of the transmission T with the phase is presented in figure 7.4 (b) for different
values of η. We have a transmission T of 100% at all phases in the ideal case but with
intra-cavity losses, T drops the most for φ = 2πn, with n ∈ N. It is possible to phase-lock
the delay line only in the presence of small losses.

This behavior allows us to estimate the delay line losses by simply monitoring the power
transmitted while sweeping the cavity. Note that, in the experimental context, the losses do
not depend on the phase of the delay line. Indeed, we are heralding a quantum state with
a narrower temporal mode than the delay line length and therefore are not in a continuous
regime where interferences would arise when recombining the input field with itself.
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Figure 7.5: Negativity of entanglement for the input DV∞DV state depending on the reflec-
tivity R of the tapping beam-splitter in the Bell measurement. (a): Evolution depending on the value
of NII/I. Full lines: no losses on the delay line, dashed lines: 90% transmission on the delay line.
At the typical value of NII/I = 9, we are close to the maximum possible negativity given the escape
efficiency of OPO II. (b): Evolution for different values of transmission in the delay line.

2.2 Quality of the input and teleported states

We have seen that our implementation of the QT protocol has two main differences with
the ideal protocol presented in section 2.2: First, the use of the same OPOs for the generation
of hybrid entanglement and the input state, and second the delay line. These two differences
have a direct impact on the quality of the input state created. We now apply the results of
subsections 2.2.2 and 2.2.3 to our implementation to evaluate the quality of the input state
depending on two new parameters: The ratio NII/I of heralding rates from OPO II and OPO
I, and the losses 1− η in the delay line. Overall this leads to four parameters when consider-
ing, for the Bell measurement, the reflectivity of the tapping beam-splitter R and the width
of the conditioning window on the homodyne detection ∆.

The expression of the single photon state generated is, following the reasoning in sec-
tion 1.1:

ρ ∝ NII/I |1〉 〈1|+ |0〉 〈0| . (7.11)

To this we must add the losses due to the limited escape efficiency of OPO II η0 ≈ 0.9. This
corresponds to the state

ρ ∝ 0.9NII/I |1〉 〈1|+ (1 + 0.1NII/I) |0〉 〈0| . (7.12)

After the 50 : 50 beam-splitter, we obtain the normalized DV-entangled state before propa-
gation in the delay line:

ρCA = 1
NII/I + 1(0.9NII/I

∣∣∣Ψ(+)
〉〈

Ψ(+)
∣∣∣
CA

+ (1 + 0.1NII/I) |00〉 〈00|CA). (7.13)

140



CHAPTER 7. EXPERIMENTAL IMPLEMENTATION OF HYBRID QUANTUM
TELEPORTATION

After propagation of mode C over the delay line with losses 1− η, we get:

ρCA = 1
NII/I + 1

(0.9NII/I
2 ( |01〉 〈01|CA + η |10〉 〈10|CA +√η(|01〉 〈10|CA + h.c.))

+ (1 + 0.1NII/I + (1− η)
0.9NII/I

2 ) |00〉 〈00|CA

)
. (7.14)

From then, the quality of the Bell measurement comes into play. We proceed to compute the
expression of the input states first for entanglement swapping, and then for qubit QT.

Entanglement swapping For entanglement swapping, the value of the reflectivity R of the
beam splitter on mode A will add

√
1−R worth of losses. Although we typically account for

detection losses, these cannot be corrected for as they are inherent to our system and, unless
we modify the setup to add for example a variable transmissivity beam-splitter on mode A
as proposed earlier, we consider them to be part of the created DV-entanglement. We can
still correct for the 15% losses used for the state characterization however. In consequence,
the input state for entanglement swapping can finally be written:

ρCA = 1
NII/I + 1

(0.9NII/I
2 ((1−R) |01〉 〈01|CA + η |10〉 〈10|CA

+
√

(1−R)η(|01〉 〈10|CA + h.c.))

+(1 + 0.1NII/I +
0.9NII/I

2 (1− η +R)) |00〉 〈00|CA

)
. (7.15)

Although R only had a marginal effect in terms of the quality of the Bell measurement, it
has a larger impact in terms of the accessible negativity of entanglement for the input state.
We plot in figure 7.5 the negativity of the input state depending on R for different values of
NII/I and losses on the delay line. Overall the effect of both these parameters is quite limited
compared to the initial loss of negativity due to the escape efficiency of the OPO. As long as
η ≤ 90% and R ≤ 10% we have an input entanglement of negativity N ≥ 0.27, quite close to
the best possible value with 90% of escape efficiency N = 0.35. Comparing to figure 6.7, we
should be able to reach a regime where the negativity of the teleported entanglement is higher
than the input if ∆ ≤ 0.2σv and well above the negativity of the input state propagated over
15 km of fiber.

Qubit quantum teleportation Finally, for qubit quantum teleportation, we perform
remote state preparation on the state in equation (7.15) to obtain the input qubit. As we
did in Chapter 4, we get a good approximation of the remotely prepared state by assuming
a conditioning on value q i.e. a very narrow conditioning window. Then, using 〈q|1〉 =
qeiφ 〈q|0〉, we can obtain the prepared state:

ρC ∝
0.9NII/I

2 ((1−R)q2 |0〉 〈0|C + η |1〉 〈1|C + q
√

(1−R)η(eiφ |0〉 〈1|C + h.c.))

+(1 + 0.1NII/I +
0.9NII/I

2 (1− η +R)) |0〉 〈0|C . (7.16)

To see the quality of the input qubit created, we plot in figure 7.6 the size |c1|2 of the
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Figure 7.6: Size and fidelity of the input state remotely prepared by conditioning on q with
the target qubit. Full lines: Value of |c1|2 of the target qubit closest in fidelity to the prepared state.
Dashed lines: Corresponding fidelity between the prepared state and target qubit. (a): Evolution for
different values of R and for η = 90%. We get very little difference in terms of accessible qubit size
for different values of R below 10%. (b): Evolution for different values of η. The losses in the delay
line have a large impact for the preparation of states with higher population. The fidelity with the
target state doesn’t change much depending on η however. In both plots, when keeping states with
fidelities above 80%, the two parameters have a narrow impact. Overall, it is possible to prepare with
good fidelity only qubits where |c1|2 ≤ 0.3.

target state closest in fidelity to the prepared state depending on q for different values of R
and η. We show as well the fidelity between the two in dashed lines. All plots assume the
15% detection losses in the homodyne detection. We see that the escape efficiency and the
homodyne losses are the limiting parameters that most restrict the accessible input qubits. In
effect, when considering only states with fidelities above 80% with the target, the parameters
of R and η have only a limited impact on the size and quality of the states we can prepare.
Overall, we can create good qubits of size |c1|2 ≥ 0.3 with a fidelity above 85% for R ≤ 10%
and η ≥ 90%. With a perfect delay line, we can create reliably states with |c1|2 ≥ 0.4.

From these result, we can emphasise the benefits of using our method. Many quantum
teleportation protocols are tested experimentally using coherent states as input qubits, for
example in [161]. One may therefore question the benefits of using our more complicated
setup for the preparation of the input qubits instead. The advantage of our method is that
the input qubit will be limited to the {|0〉 , |1〉} subspace no matter the conditioning. The
same cannot be said for coherent states for which, even at low values of |α|2, terms outside
of {|0〉 , |1〉} will have a non-negligible contribution. As soon as |α|2 ≥ 0.2 for example, the
coherence terms |〈0|α〉 〈α|2〉| ≥ 0.1. The problem in that case is that the Bell measurement
will be degraded as terms proportional to |3〉 will be added to equation (6.22) and the results
obtained will undermine the actual quality of the setup. It is possible to test reliably the
system only at lower values of |α|. Limiting ourselves to |α|2 ≤ 0.2, means creating with good
fidelity qubits with a maximal size of |c1|2 ≈ 0.15. We see that with our method, we can
explore a significantly larger range of input states, in realistic conditions with |c1|2 > 0.3.

In conclusion to this section, we have seen that the quality of the input states we can
create depends on the losses introduced by the delay line. In a realistic context however,
the escape efficiency and the losses on the homodyne characterization are large enough that
improving the quality of the delay line beyond ∼ 85−90% of losses will lead to small returns.
We now present our experimental implementation of the delay line.
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2.3 Experimental delay line

OPO II

50:50

Figure 7.7: Light path of the delay line on the optical table. It passes through 15 independent
mirrors, 4 lenses, 5 wave-plates and two polarizing beam-splitters. Its total optical length is 14.1m,
which corresponds to a propagation time tDL = 47 ns. We estimate 1−η = 10% of transmission losses
and, when locked, a phase noise under 0.15 rad of standard deviation.

We now present the features of our experimental delay line. As we have seen it needs
to introduce a delay significantly longer than 20 ns. We chose to make it close to 15 m
long, which corresponds to tDL = 50ns. To limit losses, phase instability, and polarization
instability, we decided to set it up in a free-space configuration. It is possible to obtain high
transmission free-space delay lines by using only two mirrors as in [164, 165]. However, while
having low losses is crucial to both these papers, we’ve seen in the previous section that the
effect of transmission losses is secondary to that of escape efficiency and homodyne detection
loss for our experiment. In consequence, we have built a very simple delay line made of
standard independent mirrors set in an approximate spiral spread over the optical table. The
light’s path can be seen in the picture of figure 7.7. This span over the opposite corners of
the optical table minimizes the number of mirrors used and therefore the losses, but it leads
to increased instability.
We now report on measurements made to assess the transmission losses and phase stability
of the delay line. In the case of transmission loss, we propose two distinct measurements,
first in the continuous wave regime and then at the single photon level. We will see that the
results are slightly different and conclude for the QT protocol.

2.4 Losses and phase stability of the delay line

The transmission of the delay line (DL) as a function of phase delay can be seen in
figure 7.8 (a). We recover the expected behavior shown in figure 7.4 (b) and we have a good
fit with a theoretical delay line with 10% intra-cavity losses. Next we consider its phase
stability. The delay line has to be locked at a fixed phase that will be the relative phase
between the input state and the DV mode of hybrid entanglement. We lock the phase by
using a method similar to Hansch-Couillaud [166] locking. We place a half-wave plate in
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Figure 7.8: Transmission and phase lock of the delay line. (a): Transmission depending on
the phase. We have the expected behavior of lower transmission at phases φ = 2nπ. A good fit
is obtained with the theoretical curve for 90% of transmission. We also show in dashed lines the
theoretical behavior for η = 90 ± 2%. All theoretical curves are normalized to get a maximum of 1.
(b): Stability of the lock over 10 min. Some perturbations arise but the system quickly returns to the
lock value. Overall we have about 0.15 rad or 10 degrees of standard deviation. The grey curve only
serves as a visual aid to see the scale of the fringes.

the cavity turned at a small angle as compared to full transmission. It introduces a small
orthogonal polarization component which will interfere with the input orthogonal field. We
use this interference to build an error signal used to lock the phase via a standard analogue
PID method. The quality of the locking is assessed in figure 7.8 (b). Here we evaluate the
end impact on the phase of the input qubit. We directly monitor the interference between the
local oscillator of the homodyne detection and the seed beam. When the delay line is locked,
sweeping the phase leads to the interference fringe in gray. When locking additionally the
local oscillator relative phase, we obtain the blue curve. The locking is maintained here for
10 min but is representative of the stability over longer periods. This plot therefore combines
two locks and is a measurement of the phase stability of the input qubit. As the locking is
made on phase π for the DL, a small variation of intensity leads to a significant change in
phase. We measure a standard deviation close to 10 degrees for the phase of the qubit. The
delay line can therefore be reliably locked at least with the same stability. We also note a
quick return to the locking value after a perturbation.

2.5 Single photon through the delay line

In the previous section, we have measured the transmission losses in the delay line. One
aspect of the setup that we have not yet characterized is the mode matching between the local
oscillator and delay line modes. The homodyne detection is set experimentally to have optimal
matching between the optical mode going straight through the balanced beam-splitter. It
is therefore possible that the other mode, coupled to the homodyne detector on reflection
is matched differently. In the context of QT, this would mean that the input state and the
DV mode of hybrid entanglement have a different matching to the homodyne detection. As
the Bell measurement includes homodyne conditioning, this can degrade the quality of the
protocol.

This coupling is challenging to measure in the continuous wave regime because there is
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Figure 7.9: Quadrature variance of a single photon through the delay line. (a): Variance of
the field quadrature depending on time after heralding a photon at time t = 0. We see several peaks
corresponding to the direct transmission of the photon, detection after one pass through the delay
line, and detection after two passes. The corresponding events can be discriminated thanks to the
measured 47 ns it takes for a run through the delay line. (b): Ratio of consecutive peaks depending
on the losses on the delay line and the input qubit c1. All values are for homodyne losses of 15%.

no configuration in which we can observe interferences involving only the input mode and the
local oscillator. It can be done however at the single-photon level by monitoring the variance
of the homodyne signal. This is shown in figure 7.9 (a). We herald a single photon at time
t = 0 and observe a peak labeled #1 with the corresponding Lorentzian temporal mode at
that time. There are however other peaks that we call echoes and that correspond to the
cases where the heralded single photon went through the delay line before impinging on the
homodyne detector. We label the first two echo peaks #1′ and #1′′ and the are as expected
close to 50 ns and 100 ns away from peak #1. We have tDL = 47.3 ns. We see that the delay
line is long enough to separate the temporal modes corresponding to a different number of
passes before detection.

In a first approximation, the relative size between consecutive peaks is governed by the
transmission losses 1− η in the delay line. We note the ratio between the height of the first
and of the second peak R0. Starting from a pure single photon at the output of OPO-II, we
have:

R0 =
∫
q2|η2 〈1|q〉+ (2− η + η

2 ) 〈0|q〉|2dq − 4σ2
0∫

q2|〈1|q〉+ 〈0|q〉|2dq − 4σ2
0

. (7.17)

One can show that this equation is also valid in the case of an imperfect single photon as
written in equation (7.11) and independent from the homodyne losses. The evolution is plot-
ted in red in figure 7.9 (b). In the case of η = 90%, we expect to have R0 = 0.45. We see
experimentally a different result as we have R0,exp = 0.4. As explained before, this difference
probably results from asymmetric matching to the homodyne. We can model this by intro-
ducing a new parameter defined from the coupling losses 1 − ηHD between the DV mode of
hybrid entanglement and the homodyne detector. This parameter, written η′HD , is defined
as the matching between the local oscillator and the input state modes. The yellow curve of
figure 7.9 (b) corresponds to asymmetric losses η′HD = 0.9 ∗ ηHD and is consistent with the
measured ratio R0,xp = 0.4 for η = 90%.

This difference in matching will lead to a degradation of the Bell measurement. As we
condition on quadrature results close to zero, homodyne losses lead to a worse discrimination
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between vacuum and single-photons. As the losses are asymmetric depending on the mode,
the conditioning will be slightly biased towards the DV mode of entanglement. That being
said, we expect the effect to be minimal or on the same level that the presence of two-photon
components in the DV mode.

In this section, we have presented a theoretical model and experimental details for the
delay line. We have shown in particular that, being longer than the temporal modes of the
photons, it allows us to associate to particular times t the path followed by our quantum
states. In the context of quantum teleportation, this ensures that the input qubit and hybrid
entanglement are heralded consecutively. In the next section, we report on preliminary results
for hybrid QT in the context of entanglement swapping.

3 Hybrid entanglement swapping: Preliminary results

In this section, we report on our first results for hybrid quantum teleportation, in the
context of entanglement swapping. The current status of the cryo-cooler led us to temporarily
adapt the setup to the use of two detectors instead of three. This leads to some changes in the
quality of the protocol that we report on. One consequence is a decrease of the experiment’s
count rate which is significantly smaller than in other setups considered so far. In consequence
we need to accumulate more data in order to give conclusive results. These first results are
however consistent with a successful quantum teleportation protocol. We first characterize
experimentally the input DV∞DV state and then detail the data analysis process and the
effect of some parameter choices.

3.1 Input DV∞DV entanglement

Our first result is an experimental characterization of the input state. In the case of
entanglement swapping, this is DV∞DV entanglement. This state was created and measured
in an experiment separate from the teleportation protocol. The setup used is the same as in
figure 7.2 with the difference that the delay line is not closed. Instead, we installed a third
homodyne detection at its end. The input state is created by heralding a single photon and we
perform quantum tomography on both output modes of the beam-splitter. We characterize
the input state in the conditions of the QT experiment: We start from the mixed single
photon of equation (7.4), and have the tapping beam splitter used for the Bell measurement
on the DV mode of hybrid entanglement. This leads to an additional 10% of losses before
homodyne tomography.

We have accumulated overall 100 000 events and the corresponding Wigner function is
presented in figure 7.10 without correction for detection losses. We recover the expected
DV∞DV entanglement with losses. In the 〈0| ρ̂ |0〉 projection, we see a lossy single-photon
state with a visible dip but no negativity of the Wigner function. In the 〈1| ρ̂ |1〉 projection
we recover vacuum. Finally we see the presence of coherence terms. We measure a negativity
of entanglement of N = 0.08. According to figure 6.7, this is in the regime where the
entanglement swapping protocol should lead to a swapped state with a higher negativity
than through direct transmission.
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Figure 7.10: Input DV∞DV entanglement. Wigner functions of the projection on the DV mode
of the input state recovered from 100000 events. We measure a negativity of entanglement N = 0.08
without correction from detection losses.

3.2 Using two detectors, time filtering

The results we present in this section have been obtained by using just two detectors
instead of the three required by the ideal setup shown in figure 7.2, and that we plan to
implement once the cryo-cooler is fully operational. The setup adapted to the use of two
SNSPDs is shown in figure 7.11. We use the same detector, called SNSPD 1, for the heralding
of a single photon (HSP) and for the Bell detection. This is done by mixing the heralding and
subtraction paths using a beam-splitter of reflectivity R2. In the teleportation protocol, the
time difference between the Bell detection click and the single-photon heralding is tDL ≈ 50 ns.
This duration is too short for our purpose of using in sequence the SNSPD for the two clicks as
it has a dead time of the order of 100 ns. In consequence, we introduce a fibered optical delay
on the subtraction path ∆tBell ≈ 150 ns. The rest of the protocol is identical to figure 7.2,
the other detector, SNSPD 2, is used to herald hybrid entanglement.

One issue that arises with this setup is the problem of coincidental clicks. Fixing the Bell
detection event at time t = 0, the targeted sequence is:

• t = −∆tBell − tDL : Heralded single photon on SNSPD 1.

• t = −∆tBell : Heralded hybrid entanglement on SNSPD 2.

• t = 0 : Bell detection on SNSPD 1.

Because we mix the HSP and Bell detection paths, it is not possible to distinguish this target
sequence to the case where we have a two clicks coming from the heralding path at times
t = −∆tBell − tDL and t = 0. Thankfully, this is in principle not a problem because the
HSP and Bell detection clicks are correlated. To see this, let us assume we herald a pure
single-photon at time t = 0. The photon will have a 50% chance to go through the balanced
beam splitter, then with a probability R it will be sent to the subtraction path and finally
with probability R2 detected by the SNSPD at time ∆tBell. We therefore have an overall
conditional probability:

p(Bell@∆tBell|HSP@0) = 1
2RR2. (7.18)
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Figure 7.11: Setup with two detectors. We use the same detector for the heralding of the single
photon (HSP) and the Bell detection (Bell). To do so, the heralding and detection paths are mixed
using a beam-splitter with a coefficient of reflection R2. The dead time of the SNSPD is to the
order of 100 ns. As we want to condition on two detection event in sequence, it is necessary to delay
the subtraction click. We introduce a fiber delay on the subtraction mode ∆tBell ≈ 150 ns. This
setup works only because a Bell detection event at time t = 0 is correlated with a HSP click at time
t = −∆tBell so the targeted sequence is more likely than two coincidental clicks.

In the target sequence, we want the photon to propagate through the delay line of transmission
η before being detected at time ∆tBell + tDL. We therefore have

p(Bell@∆tBell + tDL|HSP@0) = 1
4ηRR2. (7.19)

The hybrid click is also correlated to the subtraction click. We can similarly compute the
corresponding conditional probability, starting from the fact that if we have a hybrid click,
we have a 50% chance to have a single photon on the DV mode. We get in the end

p(Bell@∆tBell|Hybrid@0) = 1
4RR2. (7.20)

To take advantage of these correlations, we perform a conditioning on the timing of the clicks.
This is done by triggering on three detection events, fixing the Bell measurement click at time
t = 0. Then, we keep only clicks on SNSPD 1 and SNSPD 2 at the corresponding times t1
and t2 if they are in a given window of width ∆τ around the target time:

−∆tBell − tDL −
∆τ
2 ≤ t1 ≤ −∆tBell − tDL + ∆τ

2
−tDL −

∆τ
2 ≤ t2 ≤ −tDL + ∆τ

2 . (7.21)

The protocol with two detectors is equivalent to the ideal setup with three detectors if the
probabilities (7.19) and (7.20) are much greater than the probability of having a coincidental
click in the window ∆τ . This latter probability is, using the heralding rate from OPO II,

p(HSP@t1|HSP@0) = R0(1−R2)RII∆τ. (7.22)

Taking into account the temporal mode f(t), we finally get the necessary condition for a
successful protocol:

ηRR2
4R0(1−R2)RII

∫+∆τ/2
−∆τ/2 |f(t)|2dt

∆τ � 1 (7.23)
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In the usual experimental conditions where RII ≈ 300 kHz and RI ≈ 100 kHz we have, from
equation (7.1), R0 = 75%. Choosing a window as wide as the temporal mode ∆τ = 20 ns,
we also have

∫+∆τ/2
−∆τ/2 |f(t)|2dt = 99%. We finally get, with R2 = 50%, R = 10% and η = 90%

ηRR2
4R0(1−R2)RII

∫+∆τ/2
−∆τ/2 |f(t)|2dt

∆τ ≈ 5. (7.24)

We are 5 times more likely to observe the right sequence of events than coincidental clicks in
these conditions. This bias can be increased further by changing the value of R2, in practice
we set R2 = 60%, and the size ∆τ . It is preferable to set the conditioning window to be much
narrower than the temporal mode. At vanishing ∆τ we improve significantly the chance of
selecting the right sequence but we increase dramatically the experimental duration. A good
compromise is setting ∆τ = 5 ns. We then get

ηRR2
4R0(1−R2)RII

∫+∆τ/2
−∆τ/2 |f(t)|2dt

∆τ ≈ 20. (7.25)

Note that, here, we have not taken into account all the experimental imperfections, for
example the escape efficiency of the OPO is missing. In practice we can always adjust the
parameters R2 and R, as well as the pumping power applied to the OPOs to get in the right
situation. In any case, this ratio has to be monitored as triggering on the wrong events
amounts to adding losses.

3.3 Experimental settings and count rate

As can be expected from the protocol, this experiment has a very small count rate when
compared to others presented in this thesis. Indeed, we combine two-clicks for the genera-
tion of a single photon and hybrid state, then an additional click for the Bell measurement
and finally homodyne conditioning. Bringing everything together, the count rate depends
on several parameters. Some have to be set during the data acquisition while others can be
adjusted during the analysis. The former include the pumping power of both OPOs (and
their ratio NII/I), the beam splitter reflectivity at the output of OPO I, and the reflectivity
R of the tapping beam splitter for detection 3. As we are still in preliminary measurements,
we adjust some parameters at the cost of state quality to have a reasonable count rate. First
we increase the pumping power on both OPOs. We set respectively 20 mW and 5 mW of
pump power at OPO I and OPO II. This leads to 5 dB of squeezing for the cat state gen-
eration and we keep the same reflectivity of 3% on the tapping mode. This increases the
count rate but leads to a diminution of state purity. The five-fold increase on OPO II will
lead to an increase of two-photon components that can potentially degrade the quality of the
Bell measurement. We therefore have to monitor the weight of the higher Fock states in the
final density matrix obtained. To preserve the quality of the Bell measurement, we kept a
reasonably low reflectivity R = 10% for the Bell detection.

As we can apply the time filtering after the data acquisition, we first accumulate three
click events happening in a wide time window of 250 ns. This is done by setting the triggers
to have the Bell detection click at time t3 = 0 and recording data when we happen to have
prior detection events at times t1 and t2 such that −250 ns ≤ t1,2 ≤ 0. With these settings,
we record triple coincidental events at a rate close to 50Hz.

This gives us a large amount of data from which we can check the presence of corre-
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Figure 7.12: Correlated detection events. Histogram of detection times observed at the two
detectors for state heralding given that we have a click at time t = 0 at the Bell measurement. Every
registered event corresponds to a detection at time t = 0 on the Bell measurement and two prior
independent detections at time −250ns ≤ t ≤ 0 on SNSPD 1 and 2 corresponding to the heralding
respectively of a single photon, and of hybrid entanglement. We see that a detection during the
Bell measurement is strongly correlated with the heralding of photons at SNSPD 1 and hybrid states
at SNSPD 2 at some specific times. The relative size of the peaks and the noise floor are due to
many parameters including losses in the delay line and the trigger pulses shapes. The shaded peaks
correspond to the target protocol.

lations between clicks. In figure 7.12, we present histograms of detection times for a data
set of 400 000 events. We indeed see that fixing the Bell measurement click at time t3 = 0
favors specific times t1 and t2. In figure (a), we show the histogram for SNSPD 1 where we
removed the triggers at time t3 = 0. We see two main peaks that follow the temporal mode
distribution. The peak at time t1 = −∆tBell corresponds to the case where the heralded single
photon went straight through the balanced beam splitter before being detected. The shaded
peak is the one of interest for the protocol and is at time t1 = −∆tBell − tDL. It corresponds
to the single photon having gone through the delay line once before being detected at the
Bell measurement. In figure (b), we also see two peaks corresponding to the case where the
hybrid is heralded at t2 = −∆tBell, and a smaller peak corresponding to the peak having gone
through the delay line before detection. Note that the relative size of the peaks is due to our
triggering setup on this oscilloscope. Through the addition of cable delays, we are actually set
to trigger only on events such that −215 ns ≤ t1 ≤ 0 and −165 ns ≤ t2 ≤ 0. In consequence,
we see a drop in the number of events at these times. The fact that we still record events at
times prior is due to the irregular down slope of the SNSPD detection pulse that can lead to
a trigger inside the selection window. This down slope also explains the general shape of the
noise floor for SNSPD 1. As we wait for consecutive clicks on that detector, the closer the
two detection events, the smaller the second pulse, and the probability of having coincidental
events decreases.

Although the peaks are well defined, the noise floor is higher than expected. Among our
setting choices, it is most likely due to the increase of pumping power on the OPO II. The
shaded peaks are a little more than twice the height of the noise floor. This means that we
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have close to 50% of wrong events on which we condition. Some experimental adjustments
would improve the situation, by changing R2, or R for example, or even by adding shutters on
the heralding and subtraction paths. However, going to the setup with three detectors as we
intend to do will completely remove this issue. Furthermore, this will eliminate the need for
the beam-splitter R2 and lead to a four-fold speedup of the experiment. Our current priority
is to gain some insight into the protocol’s functioning by completing the Bell measurement
on our preliminary data set.

3.4 Effect of time filtering

Figure 7.12 obtained in the experimental conditions, is already a good indication that
the protocol functions. The Bell-measurement click on which we trigger is correlated with
the generation of a single photon and hybrid entanglement at privileged time. The effect
of filtering on times t1 and t2 has on the measured variance scans on the two homodyne
detections is shown in figure 7.13. These plots help to understand the different steps of the
protocol and reveal some issues in our implementation, so we describe them in detail.

• In the top row, we see the initial variance scan without filtering and with t3 set at time
t3 = 0. Peak #1 and the associated echos through the delay line #1′, #1′′, and so
on are due to the use of a single SNSPD for the heralding of a single photon and final
subtraction. Without filtering the most likely reason for these peaks is single-photon
heralding at time t1 = 0. We have seen that the state heralded is mostly single-photon
mixed with hybrid entanglement. For this reason we see a peak on both homodynes, but
the strongest is seen on homodyne 2. A successful filtering should remove these peaks
as they do not correspond to the right sequence of operations. The interesting data lies
in times occurring before these peaks. The increase of variance over the one of vacuum
is due to the fact that we heralded both single-photons and hybrid entanglement at
negative times. As the precise moment of their creation is not set, there is an averaging
effect and we don’t see any well-defined peak, the signal is scrambled.

• Then, in the second row we have applied the time filtering, i.e. we’ve kept events in
the shaded areas of figure 7.12. The plots correspond to ∆τ = 12ns. Let’s look first
at homodyne 1. Peak #1 is significantly reduced and a sharp peak #2 has appeared,
centered at time −∆tBell. This peak is the variance of the CV mode of hybrid entangle-
ment. We also see a small peak labeled #3 that is due to the imperfect single-photon
heralding as was peak #1 before filtering. This plot is in agreement with what we
expect, and the size of peaks #1 and #3 can be reduced by changing the value of NI/II.

• Finally, in figure (d), we see the effect of filtering on homodyne 2. Peak #3 is due
to the heralding of the single photon close to time −∆tBell − tDL. Peak #2 results
from two scenarios: the detection of the heralded single photon after one pass through
the delay line or the DV mode of hybrid entanglement: This is a requirement for the
teleportation protocol, both situations should be indistinguishable. The fact that this
peak is as tall as #3 is an indicator of the relative probabilities of the two scenarios.
Indeed, the echo peak #3′ (which is the same as peak #2) is about half as tall as #3
and so is the DV mode of hybrid entanglement. These peaks are expected and suggest
the success of the protocol. However the fact that we have a peak #1 of comparable
size is an issue. This means, as we had expected from figure 7.12, that we have the
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Figure 7.13: Time filtering. Variance of quadratures at the ouput of OPO I and OPO II before
and after time filtering on a subset of 8 · 105 samples taken in one afternoon. Peaks #1 and the
associated delay line echoes #1(n) are due to the temporary setup with only two detectors and should
disappear in the final protocol. Figure (a) and (b): Before filtering, the generation of single-photons
and hybrid entanglement could have happened at any negative time starting from −200ns. As a result
the variance is increased from vacuum but averaged over all possible times. Figures (c) and (d): After
filtering. Peak #3: heralding of single photon. Peak #2: Hybrid entanglement created and echo of the
single photon on the DV mode. Homodyne conditioning on peak #2 on the DV mode will complete
the teleportation protocol.

same probability of completing the Bell measurement at time t3 = 0 and of having
an independent single-photon generation at that time. This is due exclusively to the
use of a single detector for events t1 and t3 and will be solved with the setup using 3
detectors. In the meantime we can add an homodyne condtioning operation on this
peak, i.e. condition on zero to remove the inappropriate events. With the number of
measurements we currently have, this is not yet possible.

We therefore observe the expected features of a successful teleportation protocol, with some
issues that are due to our temporary setup. What is left is homodyne conditioning on peak
#3 of figure (d) to complete the Bell measurement. At the current stage, we need to acquire
more data before performing that last step. Applying a suitable filtering window ∆τ = 5 ns,
we have only about 500 events before the final homodyne conditioning. Overall these results
are encouraging and will be very useful to choose the experimental parameters for the future
experiment with three detectors.

3.5 Outlook: Qubit Quantum teleportation

Only one change to the setup has to be realized to perform qubit QT: remote state
preparation of the input qubit. This means locking the homodyne phase at the desired qubit
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relative phase and then see the effect of different conditionings on peak #3 of figure 7.13,
i.e. when preparing different input qubits. This protocol will be even more time consuming
because of this additional conditioning and the necessity of testing several qubit phases.
With our temporary system, it is out of reach but with the use of a third detector it may be
achieved in the near future. In parallel to this study, we are also in the very early stages of
the addition of a new type-II OPO. This would allow us to start from a polarization qubit
and then perhaps aim for a fully deterministic and active protocol.

4 Conclusion
In this chapter, we have presented a protocol for hybrid quantum teleportation using

the same initial resources to create the input state and perform teleportation. Key to this
protocol is a delay line that is used to propagate the input state before performing the Bell
measurement. We have described some of the key features of our experimental delay line and
made a theoretical study of its effect on the protocol. Finally we presented some preliminary
results in the context of entanglement swapping. We have shown that we are able to create the
input DV∞DV entangled state and the behavior of the system is consistent with a successful
protocol. The addition of a third detector should enable us to complete the experiment,
which would represent a significant stepping stone towards the realization of scalable hybrid
quantum networks.
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Conclusion

In this work, we have presented new protocols following an hybrid continuous- and
discrete-variable approach to quantum communication. We first reported on methods for
the generation of high-purity single-mode non-Gaussian states such as single-photons and
Schödinger cat states. To that end, we presented in details key experimental resources, includ-
ing optical parametric oscillators with high escape efficiency and superconducting nanowire
single-photon detectors. We reported in particular on the installation of a new cryo-cooler
used to bring these detectors into the superconducting regime and on the quantum efficiency
characterization we performed. This study proved the highly-efficient nature of these detec-
tors as we measured more than 90% system detection efficiency in the best cases.

We then presented the protocol used for the generation of hybrid entanglement of light.
This resource, that links continuous- and discrete-variable encodings, opens the possibility of
realizing quantum networks joining parties using dissimilar systems. It is with that mindset
that we then explored a number of novel protocols exploiting hybrid entanglement. The
first we reported on was the remote preparation of arbitrary CV-qubits by performing homo-
dyne measurements on the DV mode of hybrid entanglement [68]. This first hybrid protocol
having illustrated the usefulness of our entangled resource for quantum communication, we
then tested its non-local features in order to evaluate its potential for either fully or one-
sided device independent protocols. We reported first on a study of the loss-requirements for
the experimental measurement of a Bell inequality violation. In this study, we considered
a number of strategies in the particular framework of the CHSH inequality. We find that
the demonstration is experimentally very challenging but may be accessible with a change of
encoding on the DV mode, i.e. through the implementation of a polarization-based hybrid
entangled state. From there, we turned to the intermediate challenge of Einstein-Podolsky-
Rosen steering. We report first on the use of semi-definite-programming tools for the search
of optimal steering inequalities for the hybrid resource. We then implemented the steering
test using homodyne conditioning on the DV mode to steer the CV mode into an assemblage
of 12 different states. We find that the influence measured cannot be explained by local mod-
els and we violate an optimal steering inequality by more than five standard-deviations [99].

Finally, in the last part of this manuscript, we reported on the current progress made
towards the realization of hybrid quantum teleportation from DV to CV encoding. As the
hybrid approach increases the range of accessible encodings, we first presented the protocols
of qubit quantum teleportation and entanglement swapping and outlined the consequences
of using different encodings in that context. We also reported on a new method for the im-
plementation of a Bell measurement that combines single-photon subtraction and homodyne
conditioning. The features of the method were presented and we find that the demonstration
of quantum teleportation should be feasible with our system. The last chapter addresses the
current implementation and gives preliminary results for entanglement swapping. We pre-
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sented the experimental protocol in details and the delay line used in for the generation of the
input state and hybrid entanglement in sequence with the same resources. Our preliminary
results give us confidence in the future success of the experiment. Some adjustments such as
the addition of a third detectors will make its implementation more efficient and of greater
quality.

Perspectives

The short term perspective for the experiment is the realization of hybrid quantum tele-
portation in the ideal case. This will require finalizing the installation of the cryo-cooler
which will enable us to use three detectors simultaneously and should dramatically increase
the experiment’s count rate and quality. In the longer term, we are currently working on
the installation of a third optical parametric oscillator. This is in the hopes of implement-
ing polarization-based hybrid entanglement following the protocol presented in [167]. This
would open a number of new possibilities, as it would allow the implementation of a fully
deterministic and active teleportation protocol from CV to DV. This demonstration would
be facilitated as well by the addition of a local subtraction at the exit of OPO-I as we have
done in the past [31, 32]. This would enable us to use the encoding {âŜ |0〉 , â2Ŝ |0〉} on the
CV mode which is close, up to a Hadamard gate, to the ideal CV encoding {|α〉 , |−α〉}.

The addition of the delay line opens as well a number of possibilities, notably the explo-
ration of time-bin encoding. A first implementation could be an adaptation of the protocol
of entanglement swapping, starting with two hybrid DV∞CV entangled states, that would
enable us to realize time-bin entanglement of the nature |cat+〉t |cat−〉t′ + |cat−〉t |cat+〉t′ .
This new class of protocols may be suited as well for the realization of new non-locality tests.

Another general direction to pursue would be the realization of verified protocols. These
combine in the same experiments quantum information protocols, such as quantum key dis-
tribution [80] or quantum computation [168, 169], with non-locality tests in order to verify
that the operations have been performed by untrusted parties. This principle may be for
example applied to our system, thus allowing us to perform verified quantum teleportation.
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Sujet : Tests de non-localité et protocoles de communication
quantique utilisant l’intrication hybride optique

Résumé : Cette thèse est centrée sur la réalisation de protocoles d’information quantique util-
isant conjointement les approches à variables discrètes et à variables continues de l’information
quantique optique. Nous détaillons tout d’abord les protocoles utilisés pour la génération d’états
hautement non classiques tels que les photons uniques, les chats de Schrödinger optiques et enfin
l’intrication hybride entre variables discrètes et continues. Nous évaluons le potentiel de cette
resource innovante en détaillant son utilisation dans un certain nombre de protocoles. Nous com-
mençons par envisager la réalisation de tests de Bell utilisant l’intrication hybride et rapportons
l’observation experimentale d’une violation d’inégalité de Steering, pour la première fois dans
un contexte hybride. Enfin, nous détaillons l’état d’avancement de l’installation d’une nouvelle
expérience de téléportation quantique entre variables discrètes et variables continues. Nos résul-
tats prouvent l’intérêt de suivre une approche hybride et permettent d’envisager la réalisation de
réseaux d’information quantique hybrides liant des systèmes de différentes natures.

Mots clés : Optique quantique, information quantique hybride, chats de Schrödinger, photon
unique, intrication, téléportation quantique, tests de non-localité

Subject : Non-locality tests and quantum communication protocols
using hybrid entanglement of light

Abstract: There are two traditionally-separated approaches to optical quantum information:
the continuous- and discrete-variable strategies respectively linked to the wave-like and particle-
like nature of light. This thesis work is focused on the novel hybrid approach aiming to join
the capabilities of both strategies into single systems. Using hybrid methods, we report on the
use of optical parametric oscillators and superconducting-nanowire single-photon detectors to
generate highly non-classical non-Gaussian states such as high-purity single-photons, Schrödinger
cat states and finally hybrid entanglement of light between continuous- and discrete-variable
encoding. The potential of this resource is studied in a number of protocols. We first consider
non-locality tests with hybrid entanglement such as Bell inequality violation and experimentally
demonstrate the violation of Einstein-Podolsky-Rosen steering inequalities. We finally report on
the progress made towards the implementation of a new setup for the demonstration of hybrid
quantum teleportation between continuous and discrete-variable encodings. Our demonstrations
prove the versatility of this hybrid resource and open the possibility of implementing scalable
quantum networks linking systems of dissimilar nature.

Keywords : Quantum optics, hybrid quantum information, Schrödinger cat states, photon,
entanglement, quantum teleportation, non-locality tests
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