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Résumé

This thesis was written in english as one of its examinator is not francophone and in
the spirit of accessibility to the larger number. This choice is possible in accordance with
the internal rules of Doctoral School 397, where the author is registered, with the caveat
that a summary of around 10 page be written in french. Therefore, the following pages
constitute said summary.

Nous avons décidé d’écire cette thèse en anglais car l’un des rapporteurs de cette
thèse n’est pas francophone, mais aussi par soucis d’accessibilité au plus grand nombre.
Ce choix est rendu possible par le règlement de l’école doctorale 397, où l’auteur de cette
thèse est inscrit, sous réserve qu’un résumé d’environs 10 pages soit écrit en français.
C’est ce résumé qui est présenté dans les pages suivantes.

Figure 1: Cycle du carbone geothermique

Le dioxyde de carbone est une molécule dont les effets sur l’atmosphère comme gaz à
effet de serre sont les mieux connus et les plus étudiés. Cependant, cette molécule joue
aussi un rôle très important dans les phénomènes géologiques [1, 2], et notamment dans
le cycle du carbone profond [3] (figure 1). En effet, il se forme dans le manteau supérieur
de la Terre et est l’un des constituants majoritaires des émissions volcaniques, permettant
la ré-introduction en surface du carbone enfouis par la subduction de couches géologiques
contenant des éléments organiques (figure 1). Qui plus est, il a été récemment mis en
évidence que le dioxyde de carbone pouvait se former jusque dans le manteau inférieur, à
des prondeurs situées entre 750 et 1500km sous le niveau de la mer[4, 5]. Cette formation
en profondeur pourrait avoir une influence pour la chimie du manteau inférieur de la Terre,
comme par exemple sur la formation de diamants[4]. La compréhension du comportement
du dioxyde de carbone dans les conditions géothermiques du manteau inférieur revêt donc
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une importance particulière pour la compréhension de ce dernier.

Figure 2: Diagramme de phase du CO2 sous haute pression, établit en suivant [6].
En bleu la ligne de fonte des phases cristallines du CO2 et ligne de transition liquide
moléculaire - liquide polymérique, d’après [7]. En rouge les limites entre les phases IV,V
fluid moléculaire et dissociation du CO2 d’après [8]. En marron les limites entre la phase
V, le fluid moléculaire et la dissociation du CO2 d’après [9]. Les lignes pointillées indiquent
des limites cinétiques entre les phases.

En plus de ces aspects, le dioxyde de carbone a été un des premiers systèmes à être
étudié sous haute pression [10, 11, 12]. En effet, il s’agit d’une molécule simple et abon-
dante dans la nature, et qu’il est assez facile de crystalliser en glace carbonique. Le
dioxyde de carbone a donc été un objet d’étude de choix dans ce domaine de recherche
[13, 14, 15]. Les nombreux travaux ont mis à jour un diagramme de phase haute pres-
sion très riche, contenant cinq phases moléculaires cristallines ( I [11, 16], II [13, 17, 18],
III [14, 16, 19], IV [20, 21, 22, 23], VII [24] ), deux phases polymériques cristallines
( V [25, 26, 27, 28, 29, 30, 31, 32] et VI [27, 33, 34, 35, 36]) ainsi que trois phases
désordonnées: un liquide moléculaire [6, 24], un liquide polymérique [7, 37] et une phase
amorphe polymérique [38, 39, 40] (figure 2).

Si les structures des différentes phases ont longtemps été l’objet de controverses [23,
33, 41, 42], le rapprochement d’approches experimentales et théoriques [6, 38, 43, 44] a
permit d’établir suffisament de consensus pour qu’il soit possible de décrire le diagramme
de phase du dioxyde de carbone sous haute pression, au moins dans les grandes lignes
(figure 2). Ce diagramme peut grossièrement être divisé en deux zones en fonction du
type de structure qu’on y trouve. Dans la région de pression comprise entre 0 et 40 GPa

Mathieu Moog 4 Mémoire de Thèse



Sorbonne Université IMPMC

(figure 2) le CO2 est purement moléculaire. Au-dessus de 40 GPa, le dioxyde de carbone
forme uniquement des phases polymériques, dont les briques de bases dont des unitées
CO3 et CO4 qui constituent des réseaux ou chaines plus ou moins complexes, plutôt que
la molécule de CO2 (figure 2).

En dessous de 10 GPa, la seule phase cristalline stable est la glace carbonique (“dry
ice”) CO2-I [11, 16], qui cohabite avec une phase liquide à plus haute température [45]. En-
tre 10 et 13 GPa, comprimée dans une enclume a diamant, cette phase peut se transformer
en trois phase en fonction de la température: en dessous de 450 K, elle se transforme en
phase III [16], entre 450 et 600 K en phase IV [24] et entre 600 K et 800 K en phase VII
[24] (au-dessus de 800 K elle fond [45]). L’ensemble de ces transitions sont soumises à des
effets d’hysteresis [24], la transition I-III en étant l’exemple le plus important, la phase
III pouvant n’apparâıtre qu’aux alentours de 18GPa sous compression de la phase I, et à
l’inverse cette phase peut rester metastable jusqu’à 5 GPa sous décompression [16].

Figure 3: Phases cristallines du dioxyde de carbone sous haute pression.

La seconde zone moléculaire qui se trouve entre 10 et 40 GPa contient quatre phases
cristallines moléculaires: II, III, IV et VII (figure 2). La phase II est une phase qui
s’obtient à partir de la phase III [18] par recuit au dessus d’une température critique qui
dépends de la pression. La phase IV [23] est une phase exisant au-dessus de 600K (figure
2), qui peut être obtenue en chauffant les phases II et III au dessus de 600 K. La phase
VII quant à elle, ne peut s’obtenir que par compression de la phase I ou de la phase
liquide [45]. En effet, même si sa zone de stabilité est bordée par la phase IV et que sous
compression, on peut observer une transition VII-IV, la transformation IV-VII n’est pas
observée experimentalement [24]. Il est d’ailleurs possible que les phases VII et III, qui
partagent la même structure (à la différence d’un cellule plus allongée selon un axe pour
la phase VII) soient en fait une seule et même structure, bien que leur région de stabilité
soient disjointes [24, 46]. Ces deux structures seraient alors des intermediaires privilégiés
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par des effets cinétiques entre la phase I et les phases II et IV (respectivement). Il est
aussi notable que le comportement du liquide moléculaire évoluait sous compression dans
la zone de pression correspondant à la transition I-III [6], ce qui indique également que la
phase liquide moléculaire aussi peut aussi révéler des comportements variés et changeant
avec les conditions expérimentales.

Au dessus de 40 GPa, les molécules de dioxyde de carbone réagissent pour former
des phases polymérique, avec une pression de transition largement dépendante de la
température. Les phases polymériques crystallines observées sont composées d’unités
tetrahèdriques CO4 [27, 47] reliées entre elles par des liaisons covalentes. À l’heure actuelle
seules deux phases cristallines ont pu être observée experimentalement de façon repro-
ductibles, les phases V [31, 32] et VI [34, 35, 36]. La phase V est une phase généralement
obtenue par chauffe et compression des phases II, III et IV. Une fois formée, la phase
est metastable jusqu’à très basse pression (au moins 5 GPa) [32, 48], et des expériences
récentes ont également pu la retrouver à de très hautes pressions et températures (100
GPa et 25000 K ) [49]. La phase VI elle se forme à partir des phases II et III à plus basse
température que la phase V [33], et plusieurs études théoriques suggèrent une structure
en couche[34, 36]. À plus basse température, la phase III comprimée au dessus de 60 GPa
peut se transformer en phase amorphe [38, 39, 40, 50], aussi appelée a-carbonia, composée
d’un mélange d’unités CO3 et CO4 formant des réseaux complexes. Enfin, au-dessus de
2000 K, trois scénarios sont envisagés: une dissociation du dioxyde de carbone [8, 9] (avec
formation de diamant); une transformation du liquide moléculaire en liquide polymérique
[7]; une soldification de la phase CO2-V [37, 49]. Ces scénarios ne sont pas nécéssairement
mutuellement exclusifs, l’importance des chemins thermodynamiques empruntés pouvant
vraisemblablement avoir une influence sur le comportement obtenu.

Si l’ensemble des structures de ces différentes phases et leur zone de stabilités font
l’objet d’un consensus, il reste que les transitions entre elles et les mécanismes associés
sont toujours assez mal compris. De plus, certaines limites entre les différentes phases
sont déterminées théoriquement en utilisant différences d’enthalpie ou d’energie libres en-
tre les différentes phases [7, 37] et assez peu d’études théoriques se sont penchées sur
les aspects cinétiques de ces transformations (à quelques exceptions près [35, 51] ), qui
peuvent pourtant être important [16]. Ainsi, si la transition entre la phase I et les phase
III et VII sont martensitiques ne requierent qu’une rotation des molécules dans un plan,
les transitions entre les phases II, III et IV ont été assez peu étudiées théoriquement et
leur mécanismes et les aspects cinétiques sous-jacent sont encore mal connus. De même,
la transition entre la phase moléculaire liquide et la potentielle phase liquide polymérique
ou la phase cristalline polymérique V n’a été étudié que du point de vue energétique et
reste très difficile d’accès pour les expériences.

De fait, dans cette thèse nous avons décidé de nous concentrer sur deux régions par-
ticulières du diagramme de phase du dioxyde de carbone:

• dans un premier temps, nous avons étudié la transition de phase entre les phases
liquide moléculaire et liquide polymérique du dioxyde de carbone. Cette transition
intervient dans des conditions de pressions et de température proches de celles du
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géotherme du manteau inférieur et revêt donc un interêt certains pour une meilleure
compréhension du manteau terrestre;

• dans un second temps, nous avons commencé une étude des transtions de phases
entre les différentes phases moléculaires cristallines du dioxyde de carbone, afin de
mieux en comprendre les mécanismes et les effets cinétiques associés.

Le plan de cette thèse est le suivant: dans la partie I, nous présentons l’ensemble
des méthodes de simulations et d’analyse que nous avons utilisées dans l’ensemble de nos
travaux; dans la partie II nous présentons des résultats liées aux deux objectifs de la
thèse; la partie III, quant à elle, présente des résultats de travaux sur des sujets annexes,
réalisés en parallèle. Enfin, nous présentons dans les appendices un ensemble de résultats
d’analyses qui, bien qu’intéréssant, ne présentent pas assez de matière pour être présentés
dans un chapitre à part entière.

Dans un premier temps, nous introduisons donc les méthodes de calculs qui ont permis
la réalisation des simulations que nous avons utilisées pour ce projet. Nous présentons
tout d’abord le principe des calculs ab initio, notamment via la théorie de la fonctionnelle
de la densité électronique. Nous avons choisi ici de présenter ces méthodes de façon brève,
ces éléments étant par ailleurs très bien décrits dans d’autres thèses, notamment celles de
Félix Mouhat [52] et d’Adrien Mafety [53], pour ne citer qu’eux. L’intérêt de ces calculs
est de permettre le calcul de l’énergie (et les propriétés associées) d’un système atomique
en utilisant uniquement les positions des atomes dans une bôıte de simulation au prix d’un
coût numérique relativement modéré. Nous introduisons aussi la dynamique moléculaire,
qui permet d’intégrer les mouvements des atomes afin de calculer des moyennes thermo-
dynamiques et d’observer les mécanismes des réactions chimiques et/ou mécanismes de
transition de phase.

Nous détaillons, dans le chapitre suivant, différentes méthodes permettant de décrire
numériquement un système à l’aide de variables numériques, que nous appellerons de façon
interchangeable descripteurs ou variables collectives. Ces variables sont utilisées soit afin
de permetre l’exploration des paysages d’énergie libre, soit dans l’analyse des données
de simulation. Nous présentons ces variables en deux groupes selon qu’elle décrivent un
système au complet (variables globales) ou un environnement atomique spéficique (vari-
ables locales). Parmi ces variables nous insistons particulièrement sur le vecteur invariant
par permutation (ou PIV [54]) et sur le variables sociales invariantes par permutation (ou
SPRINT [55]) qui seront toutes deux particulièrement utilisées dans cette thèse. Tant
que possible, nous décrivons les aspects computationnels liés à ces variables ainsi que leur
potentielles limitations.

Le troisième chapitre de la partie méthode est dédié aux méthodes d’apprentissage
statistiques ( aussi connues sous le nom de machine learning (ML) ) que nous avons
pu utilisés ou conçues lors de cette thèse. Nous décrivons notamment un ensemble de
méthodes de classification non-supervisées qui seront utilisées par la suite afin de regrouper
des structures similaires en utilisant les variables collectives mentionnées précédemment.
Nous introduisons ensuite les méthodes des états de Markov, qui permettent de modéliser
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l’évolution temporelle de systèmes evoluant entre différents états discrets de façon aléatoire
et sans mémoire et qui sera mise en application pour l’étude de la dynamique chimique
des atomes dans le liquide polymérique haute température par la suite.

Enfin, le dernier chapitre de la partie méthode décrit des méthodes d’exploration de
paysages d’energie libre, que nous divisons en fonction de leur applications: l’analyse des
transformations de la matière avec les méthodes de métadynamique et d’échantillonage
par ombrelles ou bien la recherche de structures stables à partir d’une configuration chim-
ique donnée.

Nous présentons dans le premier chapitre de la partie consacrée aux résultats, ceux
que nous avons obtenues sur le principal sujet de cette thèse: la transition entre une phase
moléculaire liquide et une phase polymérique liquide dans les conditions géothermiques.

Figure 4: Pression en fonction du volume de la bôıte de simulation à 2000, 2500 et 3000
K, avec comparaison avec les résultats obtenus par Boates et al. (2012) [7] à 3000 K.

Afin d’étudier le comportement du liquide dans ces conditions, nous avons utilisé
des simulation de dynamique moléculaire ab initio avec des temps de productions longs
(100ps) afin d’avoir suffisament de données pour avoir un bon echantillonage statistique.
Ce faisant, nous avons étudié le système à des pressions entre 30 et 70 GPa et trois
températures différentes: 2000, 2500 et 3000K.

Nous étudions dans un premier temps l’évolution de la pression exercée sur le système
en fonction du volume de la cellule de simulation (figure 4). Cette relation permet de
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mettre en évidence (figure 4), comme chez Boates et al. [7], un région plateau, qui in-
dique une transition du premier ordre entre les deux phases liquides.

Figure 5: Distribution des valeurs de la distance interatomique et de fonction de localisa-
tion électronique (ELF) au milieu de cette distance. Une liaison atomique est caractérisée
par des valeurs de la ELF supérieures à 0.7 et semble corrélée fortement à des faibles
distances interatomiques.

De façon à analyser en profondeur les méchanismes chimiques se produisant dans le
liquide polymérique, nous avons tout d’abord réalisé un ensemble d’analyses permettant
d’établir la validité de l’utilisation de valeurs seuils sur les distance pour determiner les
liaisons entre atomes de carbone et d’oxygène. Pour ce faire nous utilisons les fonctions
de localisation électroniques (ELF) [56] qui permettent d’obtenir un critère de validation
basée sur la densité électronique (figure 5), ainsi qu’une approche basées sur une méthode
de classification [57] qui apporte un critère statistique prenant en compte l’environnement
local des atomes.

Une fois les valeurs seuils validées, nous pouvons les utiliser pour mettre en évidence
la transition liquide-liquide en calculant la fraction des carbones avec coordinance 2, 3
et 4 voisins en fonction de la température et de la pression. Nous observons que les car-
bones avec deux voisins deviennent soudainement moins nombreux autour de la pression
de transition (située entre 48 et 55GPa en fonction de la température). Cette diminution
correspond à un remplacement des unités CO2 en unités CO3 et CO4, les premiers étant
plus fréquents à 3000K et les second à 2000K, ce qui donne une première indication d’une
différence de comportement entre le fluide polymérique à 2000 et 3000 K.

La différence de coordinance entre les liquides à haute et basse température se reper-
cute aussi sur leurs propriétés dynamiques et structurales. Nous observons, en effet, une
réduction très forte du coefficient de diffusion à basse température, suggérant une possible
amorphisation. De plus, la fonction de corrélation de paire (figure 7) entre les atomes de
carbone et d’oxygène renforce cette interprétation, avec des pics secondaires bien mieux
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Figure 6: Fraction des coordinances des atomes de carbone en fonction de la température
et de la pression. Les carbones avec deux voisins sont en haut, ceux avec trois voisins
sont au milieu et les carbones avec quatre voisins en bas.

définis à 2000 K qu’à 3000 K.

En utilisant la distribution des tailles des molécules, nous observons que le liquide poly-
merise également à des rythmes différents à ces deux températures: la polymérisation est
brusque à 2000K où elle devient totale dès 55 GPa alors qu’elle est très progressive à
3000 K, avec une stabilisation progressive de châınes de tailles intermédiaires et où la
polymérisation ne commence à être totale que vers 65 GPa.

Nous constatons donc deux comportements polymériques très différent en fonction de
la température: un liquide polymérique très réactif à haute température (3000 K) avec
une formation majoritaire d’unités CO3, et un liquide polymérique presque amorphe à
2000 K, dominé par des unités CO4 formant un réseau tridimensionnel complexe.

En analysant le liquide moléculaire, nous avons également mis en évidence un autre
type de comportement fluide: en effet, dans les régions à haute température ( T > 2500K)
et/ou pression ( P > 40 GPa) le liquide moléculaire devient réactif, et on observe la for-
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Figure 7: Fonction de corrélation de paires entre les atomes de carbone et d’oxygène
autour de 55 GPa à 2000, 2500 et 3000 K.

mation régulière de courtes chaines C2O4, formant occasionnellement des dimères qui
permettent des échanges de deux des oxygènes des molécules en intéraction (figure 8).
Ces molécules avaient déjà été observées à 4000K [58], et dans des phases amorphes au-
tour de 150 K[59], mais elles apparâıssent ici fréquemment et semblent caractéristique
d’un comportement liquide particulièrement réactif, tranchant avec la description usuelle
du liquide moléculaire où les dioxyde de carbone n’interargissent entre elles que par des
interactions faibles. Ce comportement est d’autant plus intéréssant qu’il survient dans la
zone de formation potentielle du CO2 en profondeur [4, 5], suggérant que le dioxyde de
carbone pourrait ainsi prendre une part très active à la chimie du manteau inférieur de
la Terre.

Figure 8: Mécanismes de la dimérisation avec échange d’oxygène entre deux molécules de
CO2 avec les isovaleurs de ELF (bleu: 0.8, noir 0.6).
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Nous terminons cette étude sur les liquides polymériques en utilisant des états de
markov [60] afin de modéliser l’évolution des atomes de carbone au cours d’une simu-
lation. En étandant la description du voisinage atomique jusqu’au second voisins, nous
arrivons à établir des états atomiques (la molécule de CO2, unités CO3, CO3-, etc...),
entre lesquels la dynamique des atomes de carbone markovienne. Cette analyse nous
permet d’avoir accès à la dynamique individuelle des atomes, et donc potentiellement à
la réactivité des atomes sur l’ensemble du champ de pression et de température où cette
analyse est appliquable.

Figure 9: Diagramme de phase tel que proposé suite à nos analyses dans la région de
transition entre fluide moléculaire (en haut à gauche) et fluide polymérique (en haut à
droite).

Au final, cette étude a mobilisé des outils d’analyse structurale et dynamique poussés
et a permis la mise en évidence de quatre comportements fluides distincts (figure 9): un
liquide moléculaire simple où les molécules de dioxyde de carbone n’interargissent que par
interactions faibles; un liquide moléculaire réactif avec formation de dimères; un liquide
polymérique dynamique à forte réactivité; un liquide polymérique potentiellement amor-
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phe.

Dans un deuxième chapitre, nous présentons deux études sur les phases cristallines du
dioxyde de carbone: la première consistant en l’utilisation d’une recherche des structures
stables du dioxyde de carbone à haute pression avec la méthode AIRSS [61]; la seconde
en analyse des transitions entre les diffèrentes phases cristallines moléculaires du dioxyde
de carbone et notamment entre la phase I et et la phase III.

L’utilisation méthode de recherche de structure AIRSS au dioxyde de carbon nous a
permis de tester la méthode sur un système présentant un changement important de type
de structure avec la pression, et s’inscrivait dans la logique d’une transmission de con-
naissance sur cette méthode à l’intérieur de l’équipe. À l’exception de la phase CO2-IV
(dont le nombre d’unités CO2 par maille unitaire est trop grand pour que la méthode de
recherche puisse la retrouver à un coût de calcul modéré), nous retrouvons l’ensemble des
structures mentionnées précédement et nous présentons un diagramme de phase à 0 K de
l’ensemble de ces phases basés sur des calculs ab initio.

Nous introduisons une analyse de la transition entre les phases I et III au moyen de
la métadynamique et du vecteur invariant par permutation (PIV) [54]. Nous arrivons
à reproduire les résultats obtenus précedemment par Gimondi et al. [51] en utilisant le
même champ de force.

Nous présentons ensuite, dans une partie liée à des projets satellites, une méthode
pour explorer l’espace des configurations de nano-clusters et de petites molécules de façon
à trouver l’ensemble des structures stables associées à une configuration chimique de
manière non supervisée. Pour ce faire cette méthode se base sur l’utilisation de dynamique
moléculaire ab initio accélérée par métadynamique afin de pousser le système à pousser
le système à évoluer en dehors des configurations déjà explorées. Cette méthode permet
ainsi de visiter progressivement l’ensemble des structures accessibles par le système. Nous
utilisons ensuite un algorithme de classification non-supervisée pour faire une partition de
l’espace des configurations. Les centres de cette partition sont optimisés géométriquement
avec des calculs ab initio poussés et les structures stabilisées constituent les structures
stables détectées.

Nous appliquons cette méthode à des clusters de MoS2 de trois tailles différentes
(Mo2S4, Mo3S6 et Mo4S6) et trouvons un ensemble de plus de cent structures différentes,
dont un grand nombre n’avait pas été reporté précédemment. Pour chacune de ces struc-
tures, nous calculons l’énergie de liaison, la différence d’énergie entre la plus haute orbitale
non-occupée et la plus basse orbitale non-occupée et la magnétisation.

La méthode que nous présentons remplit dès lors ses objectifs, et peut être appliquée
à des systèmes similaires, comme des petits clusters ou des molécules. Elle est cependant
limitée par le coût potentiellement fort des longues trajectoires métadynamiques ab initio,
ce qui la rends difficilement appliquable pour de plus grandes structures. Ce projet a été
réalisé avec la collaboration de Sofiane Schaack, doctorant à l’INSP, et a été soumis dans
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la revue The Journal of Chemical Physics C sous le titre ”Unsupervised computer
exploration of MoS2 nanoclusters: structures, energetics, and electronic prop-
erties”.

Nous présentons ensuite les résultats d’un travail en coopération avec un post-doctorant
de l’équipe, Gabriele Mogni, sur l’accelération de la méthode de recherche AIRSS [61].
Dans ce travail nous montrons qu’il est potentiellement plus rapide de faire un scan
préalable de l’ensemble de l’espace des configurations plutôt que de faire des optimisa-
tions successives à des points aléatoires de l’espace pour récupérer les minimum locaux de
l’espace des configurations. Nous proposons également une méthode permettant d’évaluer
la convergence de la recherche de structure en nous basant sur une méthode de classifica-
tion non-supervisée [62].

Nous présentons en appendice quatre études courtes sur des sujets divers: nous présentons
d’abord des résultats d’une analyse spectroscopique de la phase V et d’une potentielle nou-
velle phase non-moléculaire proposée par Yong et al [48]. Nous présentons ensuite une
continuation de l’étude sur l’utilisation de la valeur de ELF au milieu des distances in-
teratomiques pour déterminer les liaisons marche sur d’autres systèmes que le CO2 avec
une étude sur un système contenant de la glycine solvatée dans de l’eau, en montrant no-
tamment que cette méthode semble être également efficace sur ce système pourtant très
diffèrent. L’appendice suivant présente des tests du vecteur invariant par permutation
qui permettent de montrer qu’il n’existe en pratique pas de grande différence d’énergie
entre deux structures proches dans l’espace du PIV, ce qui valide au moins partiellement
ce descripteur; enfin, nous présentons un courte étude spectroscopique de la phase Ima2
de NH3-H2O, en continuité d’une étude de Adrien Mafety [53].

Dans cette thèse, nous établissons donc les grands traits d’un diagramme de phase
complexe et riche du dioxyde de carbone en conditions extrême. Nous montrons no-
tamment des résultats indiquant l’existence d’un liquide moléculaire réactif dans des
régions d’interêt pour la compréhension du manteau profond. Cette thèse a aussi permis
l’établissement de plusieurs méthodes d’analysis basées sur les descriptions des systèmes,
l’utilisation de critères électroniques mais aussi de méthodes d’apprentissage statistique.
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Introduction

Carbon dioxide is one of the most important chemical species in nowadays life, at the
heart of a massive research effort, particularly in geochemistry[1, 2], atmospheric chem-
istry and climate science, due to its importance in global warming. It is indeed a simple
and abundant molecular system, that can relatively easily crystallize into dry ice CO2-I. It
has also the particular property of interacting mainly through quadrupolar interactions,
which made it a unique toy model to understand the behavior of molecular crystals made
of weakly interacting chemical units.

Of course, even before its impact on climate was widely accepted by the scientific
community[63, 64], CO2 was already the object of extensive research, particularly at high
pressure conditions [10, 11, 12], both, as mentioned above, as an emblematic fundamental
molecular system, and as an important constituent of the Earth interiors, in the fluid
phase and within carbonate minerals.

Figure 10: The deep carbon cycle

Carbon dioxide is in fact present in the Earth mantle [1, 2, 3] and its contribution
to geophysical phenomena such as volcanism and earthquakes has been extensively in-
vestigated [1, 2]. Its presence in the depth of the Earth makes it an important part of
the carbon cycle [3] (figure 6.3). It is formed as the result of various chemical reactions
between the carbonates of the mantle and its constituents; these carbonates themselves
are buried into the mantle through the subduction of crusts containing organic sediments.

22
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Finally, the emission of carbon dioxide through volcanism completes the deep carbon cycle
by releasing CO2 into the atmosphere [3]. Although the presence of carbon dioxide in the
mantle is more generally associated with the upper mantle, it has been recently suggested
that carbon dioxide could form in the depths of the lower mantle through reactions of the
carbonates (such as MgCO3 and CaCO3 ) and SiO2 [4, 5].

In this context, it is not surprising that carbon dioxide has been frequently the object
of intensive studies in the high pressure field [13, 17, 18, 20, 21, 22, 23, 65]. A rich panel of
crystalline phases have been found experimentally, whose structure have remained quite
controversial for at least a decade. Over the years, the combination of experimental and
theoretical work proved complementary [6, 32, 38, 39, 40, 31] and made it possible to
settle most of the debates about crystalline high-pressure carbon dioxide.

Figure 11: High pressure phase diagram of carbon dioxide, using results from [6]. Blue:
melting line of carbon dioxide and transition limit between molecular and polymeric
liquids according to [7]. Red: limits between phase IV, V, molecular fluid and dissociation
of carbon dioxide according to [8]. Brown: limits between phase V, molecular fuid and
carbo dioxide dissociation as reported in [9]. Dotted lines indicate kinetic lines.

To give a broad, general picture of the high pressure phase diagram of CO2, one can
roughly be separate it into two region: the first between 1 and 40 GPa and the other
above 40 GPa ( figure 11). In the 1-40 GPa range, carbon dioxide phases are all molecu-
lar, either crystalline or fluid ( figure 11). It exhibits up to 5 different molecular crystal
phases (labelled CO2-I, II, III, IV, and VII, figure 12 ), while the carbon dioxide fluid
was shown to exhibit two different structural behavior [6]. In particular, in this low-to-
moderate part of the phase diagram, one observes CO2-I up to roughly 12 GPa [11, 16],
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which then transforms upon compression into either CO2-III[16], CO2-VII [24] or CO2-IV
[20, 21, 22, 23] depending on the temperature. Structural similarities between CO2-III
and CO2-VII, despite their relative distance in the phase diagram, have long hinted that
those phases are actually the same, although their respective stability zone are disjoint
[24, 46].

Figure 12: Crystalline phases of high pressure carbon dioxide.

CO2-III and CO2-VII transform into CO2-IV [24] if heated. CO2-II can be obtained
through annealing of CO2-III [17, 18], and it may in turn transform into CO2-IV if heated
[22, 23]. Phases I, VII and IV can be melted into a molecular liquid whose properties
continuously change upon compression, somehow mirroring the transformation of CO2-I
into CO2-III [6]. Although there is a consensus on the structures of all those phases, the
transitions between them are by no means simple, their mechanisms remain elusive, and
frequently affected by important metastability and hysteresis effects.

Above 40 GPa, phases II, III and IV transform into an array of polymeric phases whose
nature depends heavily on the thermodynamic path (figure 12). CO2-III can transform
either into an amorphous phase at low temperature [38, 39, 40], but also upon eating into
either of two polymeric crystal phases, CO2-V [66, 31, 32, 67] and CO2-VI. CO2-II and
-IV have been observed to also transform into CO2-V [8].

The high temperature behavior of carbon dioxide of this part of the phase diagram has
proven more complex to explore for experimentalist and the contributions of theoretical
studies are therefore all the more valuable. At temperatures above 2000 K, experiments
are difficult and their results contradictory: although in two separate instances dissocia-
tion of carbon dioxide was observed [8, 9] at 2000K around 40 GPa, CO2-V was recently
recovered at 100 GPa and 2500 K [49]. On the other hand, theoretical studies focusing
on the compression of the molecular fluid have shown evidences pointing to a first order
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liquid-liquid phase transition into a polymeric fluid with large carbonate chains, and/or
into polymeric crystal phase V [7], while subsequent analysis based on energetics consider-
ations hinted toward solidification into phase V [37]. Interestingly, theoretical calculations
on the high temperature range of the molecular liquid showed evidence of dimerization
[58], indication of an unsuspected reactive behavior of carbon dioxide.

In this work we first investigate carbon dioxide fluids behavior under geological con-
ditions in order to study in details the transformation of the molecular liquid into a
polymeric fluid. In so doing, we use a variety of advanced methods to analyze the system,
including methods based on the Electron Localization Function [56] and Density Peak
Clustering [62] to analyze bonds between atoms, but also Markov State Models[60] to an-
alyze the chemical dynamics of the atoms. The second objective of this work is the analysis
of the phase transitions between molecular phases of carbon dioxide using enhanced sam-
pling methods and advanced descritptors such as the Permutation Invariant Vector (PIV).

Although this thesis is mainly – but not exclusively – devoted to the study of carbon
dioxide at extreme conditions of pressure and temperature, it must be underlined that
our research group has undergone, precisely in the last three years, a significant change
of philosophy and approach in the general study of transformations in condensed matter
and chemical systems. In particular, strong efforts have been devoted to the development
of novel analytical tools, capable to efficiently infer the deep structural and dynamical
properties of a given system from the topological/statistical features of their atomic con-
figurations in space and time. As detailed in chapter 3, those efforts were focused on
clustering methods, data analysis, and machine learning approaches. Although those
tools were decisively useful only in a fraction of the cases, on the understanding of the
behavior of high-pressure CO2, the latter has regularly been for us an ideal “test-bed”,
because of the large accumulated trajectories and data, and of its nature of a homoge-
neous system, but undergoing several modifications.

The plan of this thesis is as follow:

• In the first part of this work, we introduce all the methods that we have used during
the course of this thesis both for calculations and analysis purposes.

• In part II we focus on our results on carbon dioxide, first focusing on the results
obtained on the liquid-liquid phase transition at geological pressure. We provide
evidence for the existence of four distinctive fluid behaviors, all withing the bounds of
the geothermal conditions corresponding to depth where carbon dioxide may form [4,
5]. We then present a series of short work on crystalline molecular phases of carbon
dioxide: we show that the AIRSS methods is able to recover most of the stable
crystal phases of carbon dioxide under high pressure; finally using metadynamics
and the permutation invariant vector, we show encouraging preliminary results for
the study of transitions between molecular phases of CO2 obtaining the transition
between phase I and III at 5GPa and 3000K.

• In part III we describe two satellite projects which we carried out in parallel with
this thesis, using similar tool as in our main work. We first showcase a method to
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explore the configuration space of small molecules and/or clusters using a mix of
metadynamics, unsupervised learning and social collective variables. We show the
effectiveness of the methods on small MoS2 nanoclusters. We then report on par-
ticipation to a joint projet with a former post-doctoral researcher, Gabriele Mogni,
that focused on accelerating a search of structure algorithm, and propose a new
criterion method to test the progress of a structure search method.

• In the appendices we showcase a few interesting small analysis and side projects
that did not show enough results to deserve a separate chapter.

Mathieu Moog 26 Mémoire de Thèse
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Chapter 1

Simulations in condensed matter

Introduction

At the begining of the 20th century, with the emergence of quantum mechanics, one could
hope that the understanding of condensed matter was essentially within reach, as the
fundamental equations that described its behavior were completely known. However, it
turned out that the Schrödinger equation proved to be impossible to solve analytically
for systems more complicated than the hydrogen atom, in a twist reminiscent of the N-
body problem for massive bodies for astrophysics. However, while it proved feasible to
solve numerically the N-body problem without making more approximation to the physi-
cal model, even the numerical resolution of the complete Schrödinger equation is beyond
reach except for some very simple cases.

In this section we introduce a powerful solution to that limitation: ab initio calcula-
tions, which is a large set of frameworks making careful approximations on the original
Schrödinger equation so that its numerical resolution is accessible on modern computers.

1.1 Ab Initio calculations

1.1.1 The Born-Oppenheimer approximation

We start with the original hamiltonian for a system of nN nuclei and ne electrons in
interactions:

H = TN + VN,N + Te + Ve,e + Ve,N (1.1)

Where TN is the nuclear kinetic energy operator:

TN = −~2

2

nN∑
i=1

∇2
i

Mi

(1.2)
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Te is the corresponding electronic kinetic operator:

Te = − ~2

2me

ne∑
j=1

∇2
j (1.3)

Ve,N is the coulomb interaction between nuclei and electrons:

Ve,N = −
nN∑
i=1

ne∑
j=1

Zi e
2

|rj −Ri|
(1.4)

the coulomb interaction between nuclei are represented by VN,N :

VN,N =

nN−1∑
i=1

ne∑
i′=i+1

ZiZi′ e
2

|Ri −R′i|
(1.5)

and the electron-electron coulomb interaction is capture in Ve,e:

Ve,e =
ne−1∑
j=1

ne∑
j′=j+1

e2

|rj − r′j|
(1.6)

In this equations, i and i′ sum over the nuclei, j and j′ sum over the electrons, Mi is
the mass of the ith nuclei and me is the electronic mass.

As we mentioned, although the system’s behavior is in principle fully determined by
this equation, it is in practice not solvable. In order to make predictions for more general
systems, we use the Born-Oppenheimer approximation [68] in which we consider that
the nuclei are much heavier than the electrons and therefore evolve over much longer
timescales. In other words, there is in general little coupling between the behavior of the
electron cloud and the nuclei, and it is reasonable to first solve the behavior of the electron
cloud behavior,assuming the nuclei to be static, and then to compute the energy of the
system by calculating the interactions between the electrons with the nuclei, in order to
finally get the properties of the system.

We can therefore write the total ket of the system |φ(r, R)〉 as a formal product of the
electronic |ψ(r, R)〉 and nuclear |χ(R)〉 ones:

|φ(r, R)〉 = |ψ(r, R)〉 ⊗ |χ(R)〉 (1.7)

with r being the cartesian coordinates of the electrons while R are those of the nuclei.
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Following up on this approximation, we assume that the electron cloud follows the
nuclei adiabatically and we can write an electronic hamiltonian He(R) that depends only
on the positions of the nuclei:

He = VN,N + Te + Ve,e + Ve,N (1.8)

Which we can solve in order to obtain the electronic wavefunctionHe(R)|ψ〉 = Ee(R)|ψ〉
and energy Ee(r) which can then be used in order to solve the nuclear hamiltonian HN :

HN = TN + Ee(R) (1.9)

We will call ab initio or “first principle” calculations all such scheme that solve numer-
ically the electronic part of the Schrödinger equation, as they only require the position of
the nuclei in a system, in order to be able to solve for its electronic density and related
properties. The following section will cover a framework known as density functional
theory that allows this to be done in practice at relatively moderate computational cost.

1.1.2 Density Functional Theory

We will only make a short description the density functional theory in this section, as
the method itself was not at the core of the thesis. The interested reader may find more
information in the theses of Adrien Mafety [53], Félix Mouhat [52] or in the reference
document by Fabio Finocchi [69] which all have been sources of inspiration to write this
section.

1.1.2.1 The theory

In order to solve the electronic hamiltonian (1.8), Density Functional Theory (DFT) takes
a unique approach: instead of the wavefunction, it uses the electronic density as the cen-
tral quantity. The reason behind this is that most of the physical properties that one
can get from the electronic wavefunction can in principle be computed using the elec-
tronic density. Moreover the density is a real scalar field in 3 dimensions whereas the
electronic wavefunction is a 3ne complex field, which means its dimension will increase
with the number of electrons in the system, making it ever more complex to solve. This
elegant approach was proposed in the early 60’s by P. Hohenberg, L.J. Sham and W. Kohn
[70, 71], the latter becoming a Nobel Prize in Chemistry for this scientific contribution.

In the following we will note the electron density as ρ and define it as:

ρ(r) = ne

∫
dr2... drne|ψ(r2, ... , rne)|2 (1.10)
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With ne the number of electrons in the system, and ri denoting the cartesian coordi-
nates of the ith electron.

In order to solve for the ground state electronic density, density functional theory re-
lies on two specific theoretical pieces: the Hohemberg and Kohn Theorem and the Kohn
Sham equation.

The Hohemberg-Kohn Theorem [71] states that there is a one-to-one correspondence
between the ground state hamiltonian and the ground state electronic density1. We can
therefore write the energy as a functional of the electronic density (hence the name of the
method), by taking a clue from ( 1.8):

E[ρ] = T [ρ] + Ee,e[ρ] + Eext (1.11)

where:

• T [ρ] is the kinetic energy functional;

• Ee,e[ρ] is electron-electron interaction functional;

• Eext is “external” potential energy functional that depends only on the position of
the nuclei;

The main issue with this expression is that there is no known analytical form both for
T [ρ] and Ee,e[ρ]. Regardless, from this expression of E[ρ], the Hohenberg-Kohn theorem
states that E[ρ] is minimal when ρ is the actual ground state energy ρ0, which means that
we can use a variational principle to find the ground state energy through the electronic
density:

δ

δn

[
E[ρ(r)]− µ

∫
d3r ρ(r)

]
= 0 (1.12)

where the second term has been introduced to maintain constant the number of elec-
trons in the system, µ being a lagrangian multiplier.

In order to go further, one requires analytical expressions for both T [ρ] and Ee,e, which
is the central point of the Kohn-Sham equation. This method relies on the assumption
that it is always possible to find, for any system composed of many interacting electrons,
a corresponding virtual system of non interacting electrons (that is, where the electron-
electron interaction is mediated by an effective “external“ potential Veff ) with the same
electronic density. That is:

ρ = ne
∑
i=1

|φi(r)|2 (1.13)

1The proof of this theorem may be found either in the original article [71] or in a course notes of F.
Finocchi [69]
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where φi(r) is the wavefunction of the ith virtual electron in the non-interacting system.

Building on this, the kinetic energy functional T [n] may be expressed as that of the
non-interacting system Ts[ρ] whose analytical expression is known. The corresponding
electron-electron density functional may be expressed as a simple coulomb interaction
functional called Hartree term (EH [ρ]) which can also be expressed analytically. Re-
grouping the interaction terms that are not taken into account by those term into a single
term called the exchange and correlation functional Exc[ρ], we finally obtain the first part
of the Kohn-Sham equations:

E[ρ] = Ts[ρ] + EH [ρ] + Exc[ρ] + Eext (1.14)

The Exc[ρ] term therefore regroups all the remaining unknown terms. It is composed
of two kind of contributions: the effects from the quantum particles indistinguishability
and corrections on the kinetic energy due to the interactions between electrons.

For the second part we simply need to write the Schrödinger equations for all the
system of non interacting electrons:[

− ~2

2me

+ Veff (r)

]
φi(r) = εi φi(r) (1.15)

Where i refers to the ith virtual non-interacting electron. In order to determine the
expression of Veff (r) can be derived from E[ρ] as:

Veff (r) = Vext(r) + e2
∫
dr′

ρ(r′)

|r − r′|
+ Vxc(r) (1.16)

where Vxc(r) = δExc
δn

and the second term accounts for electronic repulsion between
the electron and the electron cloud.

All the necessary ingredients are now present, and to solve one just needs to solve
(1.14), (1.16) and (1.13) in a self consistent manner (figure 1.1): starting with a trial den-
sity ρ0(r), one computes the energy using (1.14), which is then used to solve (1.16), from
which a new density is obtained using (1.13) which can be put into (1.16) to get another
energy value. This self consistent-cycle proceeds until the difference between the energy
of two successive cycles is below a user-defined threshold. The ground state density ρ0
and energy E0 can be taken as those of the last iteration.

In general, the method requires a basis-set to be used to represent the wavefunctions
of the virtual electrons. There are two popular sets of basis-set that are currently used:
atom-centered gaussians and plane waves. In general, the gaussian basis-sets are most
common in chemistry and when dealing with molecules (as they are inherently localized,
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Figure 1.1: Illustration of the self consistent cycle of density functional theory

which suits the descriptions of orbitals) while in materials science, the plane wave basis-set
is more commonly used. In this work we exclusively used plane wave basis-sets. Finally,
the expansion of the basis-set is an important parameter for plane wave basis-sets, and it
is generally up to the user to fix a cut-off on that expansion: in the case of plane waves,
it determines how well localized behavior will be taken into account, but once again, it is
in general fixed as a compromise between accuracy and computational cost.

1.1.2.2 Functionals

The one remaining issue is the expression of the exchange and correlation function Exc[ρ]
and that of its functional derivative Vxv[ρ]. Although up to this point the resolution was
general, and required no further approximation, as there is no known expression for those
functionals, some will need to be used to go forward. In essence, there is a very large
range of functionals type but the two most important kinds are the Local Density Ap-
proximation (LDA) and General Gradient Approximation (GGA).

In the LDA supposes that the density is roughly homogeneous and proposes that the
LDA functional form of Exc[ρ] should depend only on the density:
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ELDA
xc [ρ] =

∫
d3r ρ(r)eHEGxc (ρ(r)) (1.17)

where eHEGxc is the exact Exchange and Correlation contribution per electron of the
Homogeneous Electron Gas, which can be calculated through ab initio calculations such
as Quantum Monte Carlo methods that exact but costly.

The main weakness of the method is in its name: it assumes that the density varies
smoothly in space, which may be the case in some materials but is certainly not the
case in molecules for example. It will however be a good model for systems where this
assumptions holds like metals and semi-conductors. Another weakness of the method is
that it does not describe well long range interactions as it is local.

The Generalized Gradient Approximation (GGA) is more complex functional: it uses
as basis the LDA functional but adds a term that accounts for both the local density and
its gradient in order to include the effects of variations of the density . In general the
expression of the GGA functional is:

EGGA
xc = ELDA

xc [ρ] +

∫
d3r eGGAxc (ρ(r),∇ρ(r)) (1.18)

with eGGAxc the exchange-correlation energy per electron in the GGA approximation.
There are several methods to construct this term leading to a host of different GGA func-
tionals. In this work we mainly used GGA-PBE functionals [72], but we occasionally used
GGA-BLYP[73, 74] to check some of our results.

This functional allows DFT to be used on a large spectrum of systems. However, it is
always necessary to be aware of the fact that no functional is exact and of the inherent
limitations of DFT.

In general, for example, DFT poorly accounts for long range interactions such as Van
der Waals, and requires that additional (empirical) elements be added to properly describe
them properly [75]. In the case of high pressure carbon dioxide, the effect of corrections
of DFT functionals to account for Van der Waals interaction has been studied [76] and
has proven to add a small, though non-negligible [18], changes in the overall properties of
the various molecular and polymeric phases.

In the realm of ab initio methods, density functional theory is widely recognized as a
very good compromise between computational cost and accurate description of the elec-
tron cloud. However, despite its relatively efficiency, the method is still expensive, and
scales roughly with the cube of the number of electrons in the system.
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1.1.2.3 Pseudopotentials

Pseudopotentials are an extra layer of approximation on ab initio calculations which re-
lies on the chemical notion that the core-electrons do not contribute significantly to the
chemical behavior of an atom. Although this frozen core approximation does not always
hold, especially at high pressure, it is in most cases a good model and it allows for some
important cost reduction for ab initio calculations by reducing the number of electrons
that need to be taken into account in the system. This is all the more important given
that those electrons tend to be very localized around their nuclei, and would therefore be
particularly costly to describe using plane waves.

In general 2, pseudopotentials are built to reproduce the behavior of the core electrons
using an smooth effective potential up to a cut-off radius rc (the core radius). The poten-
tial does not oscillates in this region, so that it may be built using the minimum number
of plane waves. The rc parameter is by no means general and it is fixed and unique to
each pseudopotential, as usual using a compromise between accuracy and computational
cost.

There are two formules of pseudopotentials in the literature: Norm-conserving pseu-
dopotentials [77], built so that the norm of the virtual wavefunctions are still normalized
despite the use of the pseudopotential (hence their name); Ultrasoft pseudopotentials [78]
on the other hand do not enforce the normalization of the wavefunction and are built in
a way that allows for faster calculations, requiring a much lower cut-off on the expansion
of the basis-set for plane waves. However, in general, the use of these pseudopotentials
are more complex to implement into ab initio codes, which explains why they may not be
used for all purposes despite their reduced computational cost.

1.1.2.4 Forces and pressure

Once an ab initio calculation has converged for a given nuclei configuration {R}, it is
possible to compute the forces acting on atom i using the Hellman-Feynman theorem
[79]:

Fi = −∂E({R})
∂Ri

= −〈ψ| ∂H
∂Ri

|ψ〉 (1.19)

From those forces it is possible to perform a geometry optimization (or relaxation) of the

atomic configuration by using a gradient descent method such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS)[80] or Conjugate-Gradient (CG) algorithm to move the atoms
in such a way as to minimize the norm of the forces acting on the atoms and thus the
energy. Equilibrium is reached whenever a criterion defined by the user is reached between
two successive iterations of the algorithm. This is particularly useful when trying to find
a stable configuration which corresponds to a stable crystal form, for example.

2again, more precision may be found elsewhere [52, 53].
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In general, in condensed matter, those relaxations are performed at a given pressure.
Pressure acts on the simulation box and forces this way, and also affecting the electronic
density in the process. Following [81], one can compute the electronic component of
pressure by first computing the stress tensor which is a 3x3 matrix defined as:

σi,j = − 1

V

∂E

∂εi,j
(1.20)

where i and j are cartesian indices, εi,j is the strain on the simulation box, and V is
its volume. The diagonal term corresponds to compression or dilatation of the box, while
the off-diagonal term relates to its shape deformation.

The pressure is then computed as:

P = −1

3
Tr(σ) (1.21)

This expression does not account for contribution of the temperature (or the move-
ments of atoms) to the pressure. An additional term is therefore necessary whenever one
is studying systems using molecular dynamics (see 1.2).

1.1.3 Electron Localization Function

Although the electronic density of a molecular system may inform about the general
electronic structure of the system, it does not describe very well the localization of the
electrons. This may be an issue if one is studying chemical reactions as the localization
of electrons gives important information about the electron cloud such as the presence of
non-bonding doublets, covalent bonds and the type of bonds, lone pairs, etc...

In order to fix this issue, the electron localization function (ELF) have been proposed
[82] with the explicit purpose of providing an accurate representation of electron localiza-
tion in a system. The first proposition for the expression of the ELF was the following:

ELF (r) =
1

1 +
(
Dσ
D0
σ

)2 (1.22)

Where Dσ and D0
σ are the curvature of the electron pair density for electrons of iden-

tical spin σ for respectively the target system and the homogeneous gas (of same density)
respectively. This approach results in values between 0, which corresponds to region be-
tween two electronic shells (due to the Pauli principle), while values close to 1 correspond
to areas where, if one electron were to be there, no other electron of same spin may be
found, which is caracteristic of lone pairs and bonding pairs. A value of 0.5 corresponds
to a localization identical to the one of the homogeneous gas.
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Figure 1.2: Isovalues surfaces of the Electron Localization Function of two carbon dioxide
molecules. Two isolvalues are pictures here: 0.6 and 0.8

The issue with this definition is that the pair density and its curvature are not well
defined within density functional theory. In order to adapt this method for DFT [56], it
was proposed to change the interpretation of the ELF by taking a different expression for
D [83]:

D =
ne∑
i=1

1

2
(∇φi)2 −

1

8

(∇ρ(r))2

ρ(r)
(1.23)

Where φi are the Kohn-Sham wavefunctions for the virtual non-interacting electrons
when using density functional theory, ρ is the electronic density and ne the number of
electrons in the system. D0 is defined just as the same expression but in the case of the
homogeneus electrong gas, as before.

The first term on the right hand side is the kinetic energy of the electrons while the
term on the right is known as the Weizsacker kinetic energy density [84]. This term is
exactly equal to the density of the systems if it were made of bosons, which can occupy
the same quantum state while being in the same point in space. This implies that in
places where the electronic localization will be high, this term will be roughly equal to
the kinetic energy, and the resulting value of D will be 0, resulting in a value of 1 for the
ELF. The ELF therefore measures of the excess kinetic energy density due to the effect
of the Pauli principle.

As one can see on figure 1.2, the electron localization function has high values in
the middle of a covalent bond, but it also shows high electronic localization around the
oxygen atoms in shapes that can be associated with to the two non-bonding doublets
typical of oxygen atoms. It therefore gives a chemically intuitive picture of the electronic
cloud whuc can provides precious insight to understand the transformation occurring in
atomistic simulations.
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The ELF has been used in many different context to describe the electronic cloud: in
order to give information on the various stages of bonding in small molecules such as H2

and N2 [85], or the polymerization of carbon dioxide [47, 85] but also providing insight
allowing the characterization of the hydrogen [86, 87] and covalent bonds [88, 89, 90].

1.1.4 Force fields

Although ab initio calculations are very precise, they also tend to be computationally
expensive, especially for large systems. It is for example not feasible to use ab initio cal-
culations to simulate even small proteins in water. In order to simulate those systems, an
alternative approach is necessary: that is were force fields come in. The aim of force fields
is to provide simple functionals forms representing the interactions between atoms in such
a way that it reproduces the results from ab initio calculations or experiments. Examples
of such expression for the potential include the celebrated Lennard Jones potential [91],
which can be used to represent long range interactions such as Van der Waals:

V (r) = 4 ε

((
r0
r

)12

−
(
r0
r

)6
)

(1.24)

z where r0 and ε are parameters that can be fixed by the user to reproduce the desired

interactions between atoms.

This kind of approach can yield good results when the force field is constructed prop-
erly but suffers from a lack of transferability and flexibility to adapt to changing behavior,
for example high pressure polymerization in the case of CO2. Constraints on the angles or
lengths in molecules may be added to the force field, in order to freeze degrees of freedom
that are thought not to come into play in the transformations one is seeking to observe for
example. In this study we used such a force field for the study of the transitions between
the various molecular phases of carbon dioxide[92]: the force field is composed of only
a Coulomb and Van der Waals contributions and with a restriction on the length and
linearity of the CO2 molecules as we are more interested in the weak interactions between
molecules than in the internal modifications of carbon dioxide molecule itself.

Another approach is to use polynomial expansions methods in order to fit as much
as possible the target potential energy surface. This kind of approaches has been shown
to work well even for very complex system[93, 94], but they require a very large dataset
of ab initio calculations (and the more precise the better) in order to give satisfying results.

Finally, with the avent of neural networks in the recents years, several propositions
were made to train such networks to reproduce results from ab initio calculations and
therefore act as force fields. This approach attenuates the need to find a good analyti-
cal form to represent the interaction by using the universal approximators[95] nature of
the neural networks. Those approaches showed interesting results in their attempt to
reproduce the PES of various systems, showing promise for future application[95, 96].
Meanwhile, some approaches successfully used machine learning techniques to bypass
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entirely the Kohn-Sham equation[97]. Obviously, both of those methods require large
amount of data to yield efficient results.

Overall, all force fields, regardless of their construction methods, are not transferable
and correctly reproduce only behaviors on which they were trained. They also require
large datasets of ab initio calculations to be parametrized. However they prove necessary
when one wants to simulate systems on scales (spatial or temporal) that are beyond the
reach of ab initio calculations.

Finally, it should be emphasize that they are very much garbage in, garbage out, and
will exhibit the same defaults than that of the simulation on which they were trained:
even the most precise force field trained on DFT data will still have the issues of DFT.

1.2 Molecular Dynamics

1.2.1 The general principle

In this section we present molecular dynamics which allows the calculations of thermo-
dynamical equilibrium properties of a system using time averages of those properties.
Indeed, assuming an observable A, we can write the time average A as:

〈A〉T =
1

T

∫ T

0

A(t) dt (1.25)

While the average value of a thermodynamical can be computed, noting q the coordi-
nates of the system and p its momenta, as :

〈A〉 =

∫
ρ(p,q) A(p,q) dp dq (1.26)

where ρ(p,q) is a probability density associated with the position and momenta. If
the dynamics is ergodic, the two approaches are equivalent. In other words, it is equiva-
lent to sample phase space to get the average value of an observable and to use molecular
dynamics to evaluate over long periods of time the average value of the same observable.
As the latter is generally easier to carry out, it may be preferred in some cases.

In order to compute this time evolution of the system, one simply needs to compute
the evolution of the nuclei in time, using the forces from either a force field or ab initio
calculations and by treating the nuclei as classical particles, calculate their evolution using
classical mechanics. In the cases where ab initio calculations are used, this methods is
called ab initio molecular dynamics (AIMD) while if force fields are used, it is designated
as classical molecular dynamics (CMD)3

3This approach holds as long as the quantum nature of the nuclei can safely be neglected. In cases
where it can’t (low temperature systems with light atoms), one needs to resort to more involved methods
such as Quantum Thermal Bath or Path Integral Molecular Dynamics.
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Sorbonne Université IMPMC

In order to integrate the behavior of atoms using molecular dynamics, one starts from
an initial configuration of nuclei R(t) and their velocities Ṙ and mass M , and applies
Newton’s second law of classical mechanics:

Mi
d2Ri(t)

dt2
= Fi(t) (1.27)

for each of the nuclei i of the system. On then chooses a small time increment δt and
apply the Taylor expansion to R(t) to obtain the configuration at the next infinitesimal
step of the simulation R(t+ dt):

Ri(t+ δt) = Ri(t) + Ṙi dt+
R̈i

2
dt2 +O(δt3) = Ri(t) + Ṙ dt+

1

2

Fi(t)

Mi

dt2 +O(δt3) (1.28)

From that point on, given that we have two successive step of simulation, we can use
the Verlet algorithm [98] to solve the movements of the atoms for the rest of the simulation
time:

Ri(t+ δ t) = 2Ri(t)−Ri(t − δt) +
Fi
Mi

δt2 + O(δt4) (1.29)

Ṙi(t + dt) =
Ri(t + δt)−Ri(t − δt)

2
+ O(δt2) (1.30)

The important parameter here is the timestep δt, that should not be chosen too small
so as to limit the numerical errors, but also not too large that the simulation loses its
accuracy. In general, the timestep is taken between 0.5 femtosecond (fs) to 2 fs, depending
on the constituents of the system. The initial velocities of the nuclei are chosen following
a Maxwell-Boltzman distribution centered around the target temperature for the system.

On a technical note, if one uses a force fields that imposes constraints on the bonds
and/or angles of molecules, the integration algorithm must be modified to dynamically
maintain those constraint. In this work, we used the LINCS [99] algorithm as imple-
mented in the GROMACS software [100] in order to do so. More information may be
found on how those algorithm either in the GROMACS manual or in [101].

1.2.2 Temperature and Pressure

The “instantaneous” temperature can be computed from the results of a molecular dy-
namics simulations, using the equipartition theorem as:

T (t) =
1

3 kbN

N∑
i=1

mi
˙Ri(t)

2
(1.31)
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Where N is the number of nuclei, Ṙi and mi the velocities and mass of the ith nuclei
respectively. However, the actual termperature is computed through time averages of this
“instantaneous” temperature:

〈T 〉 =
1

N δt

N∑
i=0

T (i δt) (1.32)

Depending on the statistical ensemble one wants to simulate, it might be desirable
to use a thermostat to actively maintain the temperature at a target value. There are
several possible alternatives, some using the rescaling of velocities in order to generate
a distribution whose average is the target temperature such as the Berendsen [102] and
velocity rescaling temperature algorithm [103] implemented in GROMACS [100] while the
Nose-Hoover algorithm [104, 105, 106] introduces fictious masses in order to generate the
proper velocity distribution.

In order to compute the pressure, one uses the virial theorem, and we find, for classical
MD:

P =
N kb T

V
+

1

3V

N∑
i=1

Fi ·Ri (1.33)

Where Fi,j is the forces that acts on atom i from j and Ri,j is the vector from i to
j. The first term is the dynamical contribution of the pressure, while the second is the
equivalent to the one displayed in (1.21), related to the stress of the simulation cell.

In the same way as for the temperature, it is possible to maintain the pressure close to
a target value during a molecular dynamics simulation using barostat algorithm [107, 108]
however, this implies to accept that the volume of the box evolves in time, which has been
used as a good way to find new crystal structures.

When using a thermostat and or a barostat, it is a good practice to use a short simu-
lation (a few ps in ab initio molecular dynamics, a few ns in classical molecular dynamics
) to let the system equilibrate and reach the target temperature and/or pressure before
actually starting a production simulation where results can be obtained.
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Chapter 2

Topological based descriptor of the
structure for physical systems

Introduction

In this chapter we introduce variables that aims at describing a system based on its topol-
ogy, which we will use extensively in this thesis both to classify structures based on their
similarity and in the context of enhanced sampling methods to enable the exploration of
the energy landscape as described by those variables.

There are two different types of descriptors:

• variables that describe the system as a whole, which we will refer to as global de-
scriptors, aiming at describing systems as a whole. They are generally associated
with the study of the transformations of matter but are also used when classifiy-
ing structures or materials. Examples of such descriptors include the adjacency
matrix-based variables such as the Social PeRmutation INvarianT (SPRINT)[55],
Permutation Invariant Vectors (PIV)[54] or Coulomb Matrix[109].

• descriptor that capture the topology of individual subsets of systems such as atoms
in a molecular systems for example. Those variables are referred to as local descrip-
tors. Examples include the Symmetry functions used by Behler and Parrinello[95]
or the Smooth Overlap of Atomic Positions (SOAP)[110].

2.1 Global variables

In this section we describe collective variables that depict the whole system at once. Global
descriptors are used to quantify the distances, according to some metric, between two sys-
tems and to measure the amount of transformation required to go from one structure to
the other. Applications of those variables include use as collective variable for enhanced
sampling methods, classification of structures (crystals, molecules) and machine learning
schemes.
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There are two main symmetries that those descriptors must enforce : the invariance by
translation of the whole system and the invariance by permutation of atoms of the same
type (one can add in the case of molecules at least, invariance by rotation of the whole
system). The most complicated symmetry to implement in practise is the permutation
invariance as it implies the loss of some local information about the system.

All of the methods described below make use of a distance matrix, M , which is a matrix
where each row and column correspond to a specific atom, and where each component
corresponds to the distance between the row atom and column one : Mi,j = di,j (with di,j
the distance between atom and j).

2.1.1 Social PeRmutation INvarianT coordinates

The Social PeRmutation INvarianT coordinates (SPRINT)[55] make use of graph theory[111]
to describe the system by making an analogy between the network of interaction in a given
structure and an adjacency matrix A. In graph theory, the coefficient of the adjacency
matrix gives the connection between edges of a graph: if Ai,j = 1, it means that edges i
and j are connected while they are not if Ai,j = 0. When continuous values in between 0
and 1 are allowed, they gives an indication on the ”strength” of the connection between
edges.

In order to build the adjacency matrix of a structure, one starts from the the distance
matrix M and then applies a sigmoid function σ (also called switching function in the
litterature) to all the distances. If several chemical species are present, one can use a
different σ for each pair or specie. The parametrization of the switching function is left at
the discretion of the user, as it allows one to choose what are the ranges of interactomic
distances of interest depending on the situation. A common choice however is to associate
a value of 1 or 0.9 to the first shell of atoms and a value around 0.3 for the second shell.
Once the switching functions have been applied, one has the adjacency matrix A.

In general, the shape of the sigmoid function used for the normalization of the distances
is the following:

σ(di,j) =
1− (

di,j
d0

)n

1− (
di,j
d0

)m
(2.1)

where d0 roughly corresponds to the bonding threshold and the values of n and m are
used to control the smoothness of the sigmoid function. For obvious reasons, the user may
define different sigmoids for each of pair of types of atoms in the simulation to account
for the various kinds of interactions that can take place.

The only requirement on the smoothness on the switching function for the construc-
tion of the SPRINT collective variable is that the network associated with the matrix A
needs to be connected: there should be a path from any point of the graph to any other
following the connections (even weak) between the edges. This is equivalent to say that
the network should not be composed of two disconnected networks. This requirement is
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Figure 2.1: Illustration of the construction of the SPRINT collective variables

necessary for the Perron-Frobenius theorem to apply.

When this condition is met, the matrix is symmetric, non-negative and its associated
graph being connected, the Perron-Frobenius theorem applies, implying the following
properties about the largest modulus eigenvalue λmax and the associated eigenvector νmax

:

• λmax contains information about the network as a whole: it is comprised between
the average and maximum coordination number in the system, and it increases with
growing number of bonds in the system.

• νmaxi , the ith component of νmax, holds information about both the short and long
range topology of atom i 1.

The SPRINT variables are then constructed by using λmax, associated eigenvector
components νmax,sortedi which are sorted from smaller to larger to enforce permutation
symmetry:

Si =
√
N λmax νmax,sortedi (2.2)

1In particular, for any walk of length M on the graph, we have the following relation: νmaxi =
1

(λmax)M

∑N
j a

M
ij ν

max
j where aMij is the number of walks of length M connecting atoms i and j

Mathieu Moog 44 Mémoire de Thèse



Sorbonne Université IMPMC

where N is the number of atoms in the system, resulting in one collective variable per
atom in the system combining both information about the connectivity of the system as a
whole and the one of each atom. It is possible to compare two structures using SPRINT
by simply computing the Euclian distance between two structures.

The combination of local and global information about each atom is sufficient to pro-
vide insights about its “social” network , through a more elegant way than for example,
the coordination number.

The SPRINT coordinates have the interesting properties that each of its Si is re-
lated to a specific kind of topological environment: if two Si have the same values, it is
highly likely that the associated atoms have the same local topology. Therefore, highly
symmetrical systems or systems composed of similarly chemical units will have a large
number of Si degeneracies. On the opposite side, disordered systems will show highly
different Si values. This property makes it possible to extract some information about
system using the time evolution of the Si, even if the spanned space has a high dimension.

One should note, however, that the diagonalization implies both some part of loss
of information and a large computation time, making those variables improper for very
large systems. It also suffers from the fact that it does not account for any angle-related
changes and is therefore not suited to study systems for which the transformations are
mainly small changes in distances and angles with little bonding change. It would be for
example problematic to use the SPRINT coordinates for the moleclar crystalline phases
of carbon dioxide, where most of the transformation occur through change in relative
orientation of CO2 molecules.

The SPRINT variables have mainly been used for two applications: classifications
of structures (molecules or materials) and exploration of configuration spaces using en-
hanced sampling methods[55]. Notably they were used for both purposes in a this work
in a project unrelated to the thesis matter: the exploration of the configuration space of
small MoS2 clusters (see 7).

An implementation of the SPRINT collective variable can be found in PLUMED[112]
for enhanced sampling and configuration space exploration purposes and in the piv clustering
code [54] for clustering ones.

2.1.2 Permutation Invariant Vector

Although SPRINT coordinates are very effective in their own rights, they have important
limitations, and are not necessarily suited to describe the transition of bulk materials as
those of molecular crystal phases of CO2. An alternative is the Permutation Invariant
Vector (PIV) [54], which is a very general and robust collective variable.

In order to build the PIV (figure 2.2), one starts on the same premise as the SPRINT
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coordinates with the adjacency matrix A: we also start from the distance matrix and use
a switching function δ to normalize the distances between 0 and 1 and obtain a normalized
matrix. Here, again, the switching function should be defined as very smooth, to account
for the long range topology around each atom.

Figure 2.2: Illustration of the construction of the Permutation Invariant Vector

From the adjacency matrix A we extract the diagonal superior matrix (as the matrix
is symmetric and the lower half is redundant) and separate it into blocks for each pairs of
chemical species in the system. Each of the resulting blocks are then sorted and the set
of blocks concatenated to build the PIV (figure 2.2). This resulting vector is very large:
N(N−1)

2
elements in all with N the number of atoms in the cell. In effect, the elements of

the PIV vector are written as:

vα,βi,j = cα,β σ

((
V

V0

)3/2

||Rα
i −R

β
j ||

)
(2.3)

Where α and β relates to the chemical species, i and j relate to the atom index with
i < j, V and V0 are the volume of the simulation box and a reference volume respec-
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tively. Rα
i and Rβ

i are the cartesian positions of atoms i and j of chemical specie α and
β, respectively. σ is a sigmoid as used in the SPRINT coordinates and cα,β is a scalar
that allows one to scale the relevance of specific specie-specie interactions (for example,
if the interaction between oxygen and carbon is not as important as the one between car-
bon atoms, one could set cC,C = 1.2 and cO,C = cC,O = 0.8). The volume rescaling term(
V
V0

)3/2
is used in order to be able to compare systems that have largely different volumes.

As for SPRINT, the topological distance between structures or phases is computed by
calculating the Euclidian distance between the PIV vectors associated with each structure.

In practice, computing PIV using this method becomes unfeasible for systems larger
than a few hundred atoms,due to the potentially very large amount of sorting required
on very large vectors. In applications where numerical efficiency is important, PIV is
therefore computed slightly differently:

• The matrix M is divided into the type specific blocks as described above.

• The user chooses a precision on the value of the switching function. For each block
a histogram with boxes of width corresponding to that precision are created: if the
precision is set to 1000, the boxes will have a size of 0.001.

• The values of the σ(di,j) are used to fill the histograms for each types.

• The PIV is built with an integer vector built using the histograms of each blocks:
the number of components for each integers is the number in the corresponding
histogram box.

• Distance between PIV is computed using the Euclidian distance between the integer
vectors of each structure, each element multiplied by the precision.

The main advantage of this method is that the sorting is done through the use of
histogram and is therefore extremely fast and easily parallelizable, making efficient use
of recent multi-core architectures of CPUs. However, even with this implementation, the
vector size remains huge and the metric may not be appropriate for very large systems.

This metric contains a huge amount of information on the system’s structure and,
when the switching functions parameters are chosen appropriately, yields very little de-
generacy, except the ones due to the limitation of using only distances as mentioned
above. A proper choice of the parameters of the switching functions is important and can
be tweaked by the user to include the range of distances relevant to the target transfor-
mations and if necessary ignore distances that are not relevant (like the intramolecular
distances in a classical model where they are fixed). Once again, one may chose different
sigmoid functions for each of the blocks, in order to account for different characteristic
distances.

The main drawback of PIV is its size, making it relatively expensive to compute for
large systems. Indeed, it is a very high dimension vector: N(N+1)

2
dimensions (with N
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different atoms in the cell). In some cases the user may chose not to count types of atoms
that are not relevant to the target transformations, which will speed the calculation by
reducing the dimension of the PIV. This high dimensionality makes it also very difficult
to visualize the PIV.

It should be noted that the sorting operation reduces the the generality of the met-
ric as it is theoretically possible to construct pairs of structures that have an identical
PIV[110] although they are different. Those structures are sufficiently very rare however
and can be safely ignored in most practical uses.

This metric is rarely used in enhanced sampling by itself (due to its very high di-
mension) but more commonly within the Path Collective Variable (see below) to observe
the transition between two or more structures. It was for example used with success to
study the various phase transition in water ice under high pressure and navigate its phase
diagram[113]. Interestingly, by projecting the PIV distances into a 2D plan it is often
possible to get a topological map of the structures that bears a stricking ressemblance to
the phase diagram[113].

The PIV metric is available in the PLUMED[112] plugin for enhanced methods and
data analysis (through the driver), and the piv clustering[54] for clustering.

2.1.3 Path Collective Variables

The Path Collective Variables (PathCV) are a special kind of descriptors best suited for
enhanced sampling purposes: they were built in order to study specifically the transition
from a given structure to another. They require the use of a function that is able, given
two structures A and B, to return a topological distance, which we will note DA,B. If one
is studying the transition from a given state A to another state B and the simulation is
currently in state X(t), the two PathCV variables are defined as:

S =
1e−λDA,X(t) + 2e−λDB,X(t)

e−λDA,X(t) + e−λDB,X(t)
(2.4)

Z = −1

λ
log
(
e−λDA,X(t) + e−λDB,X(t)

)
(2.5)

S is related to the relative proximity of the structure X to structure A and B: if S is
closer to 1, the phase is topologically closer to phase A while if it is closer to 2, it is closer
to B. In practise, however, one uses the value of λ to place the reference structures in
S = 1.1 and S = 1.9 so that the system can evolve around the position of A and B, to do
so one sets λ = 2.3

DA,B
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The Z variable measures the cumulative distance of structure X(t) to both A and B:
the larger the value of Z, the larger the distance of X(t) to A and B. This variable allows
the system to evolve away (or closer to) the target phases without specifically moving
closer to any of the two phases, and is used to avoid forcing the system to move directly
from one state to another, potentially exploring (using metadynamics (see 4.1.1) for exam-
ple) easier path that are not direct in the space of the underlying collective variable space.

If one wants to include specific transitions through specific intermediary structures, it
possible to use more than two structures. Denoting Ti the ith reference state, and given
N the number of reference structures, the variables can then be written as:

S =

∑N
i=1 i e

−λDTi,X(t)∑N
i=1 e

−λDTi,X(t)
(2.6)

Z = −1

λ
log

 N∑
i=1

e−λDTi,X(t)

 (2.7)

Those variables are mainly used in either exploration or analysis of free energy land-
scape and have been used successfully in many different cases, ranging from biochemistry
and pre-biotic chemistry [114, 115, 116] to phase transition in water ice [113] and are
widely used within the PHYSIX team. In the present work they were used in the explo-
ration of the phase transition between molecular crystals of carbon dioxide (see 6.2).

2.2 Local Descriptors

In this section we will describe a few variables that aim at describing the local environ-
ment around atoms, which can be useful for data analysis: either to determine the type of
atomic behavior that exists in the system or how they evolve in time and in many other
ways. This kind of descriptor is also used in order to relate local environments to the
atomic energy through machine learning algorithms.

We note that it is generally possible to describe a whole of a system using a set of
local descriptors, thus using a set of descriptors as global descriptor. The set should then
be organized so that different atomic types are separated and permutation invariance is
enforced. However, it is likely that the resulting descriptors may be overwhelmingly large
and contain redundant information.

To begin with, one of the most simple way to describe the local chemical topology
of an atom is the coordination number of a given atom for every type in the system, as
it gives a first, coarse, description of its local environment. In practice, one can easily
compute this for any atom i using:
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Ci
k =

∑
j 6=i

H(dc − di,j) (2.8)

with H(x) is the Heavyside function, dc a cut-off value that determines the maximum
interatomic distance below which atoms are considered bonded, di,j the distance between
atom i and j, k relates to the type of atoms considered.

The set Ci = {Ci
1, ...C

i
N} where N is the number of species in the system can be

used as the first coarse descriptor of a local environment. In order to have more insight,
several such sets with various cut-off values may be used to give additional information.
It is also possible to use a smoother function instead of the Heavyside function: one can
use a sigmoid function as in the SPRINT or PIV case or example.

This first shell local descriptor is relatively efficient to describe roughly the environe-
ment of atoms, it is not without its issues. The determination and use of cut-off distances
can be limiting in some cases where the actual bonding depends on more than just the
interatomic distance between atoms. This can be the case when the chemical state of
each atoms has to be considered, or when thermal fluctuations cause the atoms to move
around the cut-off distances frequently, leading to a spurious “flickering” of the bonding
signal.

An alternative descriptor consists in using the sets of sorted distances to the N first
nearest neighbors, N being a number chosen as the maximum number of atoms can be
covalently bonded to (or direct interaction with) a central particle. Again, a more pre-
cise information can be obtained if those sets are computed separately for each chemical
species present in the simulation.

This set Dk = {di,1, di,2, ..., di,N} (with k refering to the target type as before) is also
effecive in describing the local neighborhood and is less affected by flickering than the
previous set, especially if N is chosen large enough.

In this work we used this metric when the determination of the coordination of carbon
and oxygen atoms proved difficult, as basis for an unsupervised learning methods (see
3.2.3) to determine the coordination number of carbon atoms.

Finally, it is possible to regroup both descriptions to have information about the first
two shells of atomic neighbors around a given atom i by computing, for each of the N
first neighbor of type k, their own coordination number, andd then sorting the resulting
set of second shell coordinations to enforce permutation invariance. An illustration of the
resulting states is visible in figure 2.3.

For example, if one consider only carbon and oxygen bonding, and chose to care for the
fist 5 neighbors of carbon atoms, the CO2 molecule will be described by the set [1,1,0,0,0],
as the carbon atom will have only two oxygen neighbor, each with one neighbor (the
target carbon atom).
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Figure 2.3: Example of carbon structures described with the second-shell local descriptor.
Twofold coordinations in the blue rectangle, threefold coordinated carbon in the green
rectangle and the orange rectangle contains fourfold coordinated carbon. The color of
the circle around each structure relates to the presence (red) or absence (green) of charge
in the structure. Carbon atoms are in black, oxygen in red, white atoms can be either
carbon or oxygen.

Those second-shell local descriptors will be used to identify the various chemical states
of carbon atoms in the Markov Model approach that we will use to gain insight on the
complex chemistry of the highly relactive polymeric liquid.
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Chapter 3

Statistical Learning Methods

3.1 Introduction

In this chapter we present various methods that aims at using statistical learning methods
to extract information either about data sets through unsupervised learning or through
time series with the Markov State Models.

We will use the unsupervised learning methods in practise in order to compare and
classify structures in our projets related to search of structures and or exploration of free
energy landscape. They will also allow us to analyze the local topology of atoms in the
case of the liquid-liquid phase transition of carbon dioxide under extreme conditions.

Finally the Markov State Model will be used in order to analyze the time evolution
of atomic states occuring in the polymeric liquid at high temperature in order to gain
insight about the chemistry of said fluid.

3.2 Unsupervised Learning

Unsupervised learning is a class of methods that aims at learning information from a data
set, without any external information about it. This kind of algorithm can be used for di-
mension reduction ( with methods such as Principle Component Analysis (PCA) [117] or
Singular Value Decomposition (SVD) [118]) or Classification (also called clustering) [119].

In this section we will focus on clustering, and more precisely on classification and
tesselation of data sets. The aim of a classfication algorithm is to group together data
points that are part of the same ”structure” in space: given a set of spheres in space,
an efficient classification algorithm should be able to group together all points related to
the same circle. This is useful when one is trying to identify commonalities between data
points, and to identify underlying similarities through statistical methdos.

A second application of clustering algorithms is tesselation - which is the process of
dividing space into small elements much like tiles on a pavement. This is useful when one
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is trying to reconstruct shapes out of points clouds, but also generally when dealing with
large datasets, as using the cluster centers - that represents their local environement - of
the tesselation may be easier than dealing with the whole set of points.

We present three different algorithm in this section: k-menoid/medoid [120, 121, 122],
Daura’s algorithm [123] and density peak clustering [62].

3.2.1 K-medoid algorithm

The K-medoid[120, 121, 122] is a very popular method to divide a data set into a user-
defined number of groups which will optimize the partition using a cost-minimization
process, where the cost is assigned to a given configuration of k clusters and correspond-
ing data point affectation.

The main algorithm used in k-medoid clustering is the Partition Around Medoid
(PAM) can be summed up as follow: one starts with a given configuration of k clus-
ter centers, and the corresponding affectation of points and cost. Then, for each cluster
center, the algorithm checks if replacing it with any other point that is not a cluster cen-
ter lowers the cost. If it does, the new point becomes a cluster center in its place. This
operation is repeated as long as the overall cost decreases.

Figure 3.1: Examples of classification using k-menoid algorithm, in a case where the
classification is efficient (left) and in a case where it fails (right)

The scaling cost of the method is relatively poor, at best scaling as N2 with N the
number of points in the data set. A faster alternative consists in simply checking the
points within the original clusters, however, it severely reduces the ability to find the
global minimum corresponding to the best partition. Indeed, points cannot be exchanged
between clusters and therefore the algorithm explores a smaller search space.

There are four crucial points with this methods: the choice of a cost function, that
of the assignment process for the points, the number of cluster center k and the original
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seeding[120].

There are several choices for the cost function but the most commonly used is the
sum of euclidian distances of all points to their respective cluster center. This has the
advantage that it can be computed very efficiently, however it will inevitably favor a
Voronoi-like partition of space.

The easiest method for assigning points to a cluster is to assign each point to the group
of the closest cluster center, however this partition will also produce a hyper-spheric divi-
sion of space around the cluster centers, which may or may not be the desired objective.

The number of cluster center is probable the most critical parameter of the algorithm.
In order to choose it properly, it is a good practise, in the absence of prior information
about the number of cluster one should require, the best way is to test several values
and to analyze the variations of the classification with different values of k. Finally, the
seeding of the original points is very important as it can decrease significantly the number
of steps necessary for the convergence[120].

Figure 3.2: Example of space tesselation using k-medoid algorithm in 2D for
k={5,10,20,100}

In general, it is not possible to determine that the final configuration corresponds
to the optimal partitioning, therefore it is good practise to repeat the algorithm several
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times whilst bookkeeping the best configuration and the associated cost, in order to see
if a better configuration emerges.

In general, k-medoid is not a very effective classification tool (figure 3.1). It may work
efficiently when clusters have similar sizes and shapes and share little overlap but in most
cases it will not be able to actually recognise the underlying structures of the distribution
of points. However it is an very useful tool to produce a tessellation of space (figure 3.2
) with a given number of clusters as it will create clusters or roughly similar shapes and
sizes in a very systematic way.

The algorithm is very popular and almost all machine learning libraries have an im-
plementation of the method[124]. We also note that the piv clustering[54] code provides
an implementation for partition of structures using the PIV metric.

3.2.2 Daura’s Clustering Algorithm

Daura’s clustering algorithm [123] is an algorithm that aims at making a simple partition
of a given point cloud, based on the density of the point cloud. It was used originally to
identify several protein configuration from a molecular dynamics simulation. The algo-
rithm requires a single parameter which is the cut-off distance dc that determines whether
or not two atoms are neighbors.

Daura’s algorithm consists in identifying the point with the highest number of neigh-
bors within a given radius dc as cluster center, and assigning to its cluster all its neighbors.
By repeating this step until all points are assigned to a specific cluster one end up with
a classification of the point cloud.

In order to be efficient in terms of classification, this method requires that the data set
is (hyper-)spheric shape. It is likely to fail in other, more complicated geometries, except
if clusters are widely separated and dc is chosen appropriately. It is possible to transform
dc into a vector dc so that the radius describes an elliptic shape rather than a spherical
one, but it remains that more exotic shapes (such as concentric rings) will likely cause
the algorithm to fail for classification.

Much like k-medoid, this algorithm is not very efficient for partition of abstract
datasets, although it may work in some cases (figure 3.3). It requires specific type of
structures and a properly chosen vale of dc so that the partition proposed by the system
makes sense. Indeed, a larger value may be too large may hinge on nearby cluster, poten-
tially affecting their cluster center, while a dc value too low may results in the creation of
very small clusters in between or at the edges of other clusters, especially when the density
varies widely. Further, due to the importance of dc, the target clusters should roughly be
of the same size (or well separated), as if the variation on the size of the cluster is too wide,
it becomes impossible to choose a dc value that will allow one to reliably assign the points.

Another application of the method is the tessellation of space (figure ??), much like
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Figure 3.3: Examples of classification using Daura’s algorithm, in a case where the clas-
sification is efficient (left) and in a case where it fails (right)

the k-menoid/medoid algorithm. The difference will be that the clusters will be spheric in
this case and that one can chose precisely the maximum size of the unit volume/surface
using the dc parameter. If one wishes to make elements of roughly equal sizes, it is then
necessary to use a relatively small dc with regard to the dispersion of the point cloud in
space in order. As before, it is recommended to test the clustering by variation of the
value of dc, and it is also important that the space is properly sampled to get an effective
tessellation, as all points will be affected to the nearest cluster centers, which in turn
is necessarily a data point. As Daura’s algorithm is deterministic, it is also possible to
check the quality of the sampling by evaluating the number and position of the cluster
centers for increasing number of points, which is yet another possible application of this
clustering algorithm.

Finally a last technical drawback of the method is that it tends to create clusters of
very small sizes (even containing single points) with points being at the edges of space or
between clusters. In general, it is relatively easy to find those clusters afterword, due to
their very low sizes, and potentially to reassign the points to other clusters.

This algorithm is notably implemented in the code piv clustering [54], much like k-
means and was used notably in the course of this work to clusterize the trajectory from
metadynamics simulations of MoS2 nanoclusters (see 7) and in the context of the classifi-
cation of structures in the project of improving the ab initio search of structure methods
(see 8).

3.2.3 Density Peak Clustering

Density Peak Clustering (DPC) is a robust clustering algorithm proposed in 2012 [62] that
aims at classifying data points based on their density, which is defined, like in Daura’s
algorithm, as the number of points within a cut-off distance.

The method relies on the expectation that density cluster centers should be character-
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Figure 3.4: Example of space tesselation using Daura’s algorithm in 2D for
dc={0.1,0.05,0.01,0.005}

ized by a high local density and by a large distance to the nearest points of higher density
(as their immediate neighborhood should have a lower one).

Figure 3.5: Example of a distribution of points (left) and the associated decision diagram
for various dc parameters (right)

In order to identify the cluster center the algorithm is made up of three successive
steps. First, the local density ( ρ ) is computed for each point in the data-set, along with
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the distance to its nearest higher density point (δ). Once this is done, one analyzes the
plot of δ as a function of ρ , refered to as the decision diagram [62]. In this plot, the
cluster centers should stand out as point with both high ρ and δ. Finally the points are
affected iteratively to the cluster center of their nearest neighbor of higher density starting
with the higher density points. This affectation process allows one to capture generally
complex geometries[62].

Figure 3.6: Examples of classification using Density Peak Clustering algorithm, in a case
where the classification is efficient (left) and in a case where it fails (right)

There is therefore three main parameters for the algorithm: first dc, then ρ and δ.
A proper choice of those parameter is necessary as they determines the efficiency of the
clustering and.

We will first focus on the computation of the value of the local density ρ, as δ depends
on it. In the original paper [62], it was proposed to use the number of points within a
given radius dc of each points. This method has two main drawback: it is expensive to
compute as it scales in N2 with N the number of points in the system. Second, this makes
the results of the method potentially highly dependant on the choice of dc. This last part
can be somehow alleviated by defining ρ for each by data point as:

ρi =
N∑
j 6=i

e−(
dij
dc

)2 (3.1)

This definition of ρ is smoother and captures contributions from several shells of neigh-
bors around each point. However it does not removes the efficiency dependency on dc.
Prior statistical knowledge about the distributions of distances may be useful to deter-
mine an appropriate value of dc

Once the value of ρ are known, calculating δ is straightforward. In some cases, a slight
twist to the standard method may proves useful to help sort out the cluster centers. This
twist consist in computing the distance to the nearest neighbor point of higher density
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that is not within dn of a higher density point, allowing the value of δ to be computed
with regard to the nearest cluster center instead of the first point within the cluster that
happens to have a higher density. Although this may not always be possible or straigh-
forward, it increases the value of δ for cluster centers, especially in the case where two
clusters are relatively close to each other. In general, it makes sense to use dn = dc, but
using two different values may be better in some cases.

Finally, the user can identify the cluster centers on the decision diagram. The stan-
dard practice is to define minimum values of ρ and δ which serves as cut-off to delimit
the cluster centers in the decision diagram. There is no general method in order to do
so, therefore it is good practise to try several minimum values of ρ and δ to check the
resulting classifications.

In general this algorithm proves robust and able to classify data sets forming many
different shapes[62] (figure ??), with relatively little human intervention. However it is
not perfect and may fail in some cases. The algorithm proved popular and has been
adapted to a large variety of applications[125, 126, 127], and many improvements of the
algorithm have been proposed for various purposes[128, 129].

3.2.3.1 Finding local minima using DPC

The general spirit of DPC may also be used to find minimum in a sampled space by solely
using the points that have been evaluated. This method that we believe is original, relies
on the notion that there a local maximum (or minimum) of a function is characterized
roughly by the same properties as ta local density cluster center: the only difference in
this case is that the density is not computed through the number of neighbor but using
the functional form of the function that one seeks the minimum or maximum of.

As far as we are aware, this approach has not been proposed before and although not
foolproof, constitutes an interesting although modest contribution of the authors of this
work to the litterature. This method was successfuly used in a project on the boosting of
a search of (crystal) structure method (see 8) .

In order to find the minimum (or maximum ) of a given function set using DPC the
recipe we propose is as follow:

• 1 - Randomly sample the landscape and compute for each point its value, which
will be used as the its density ρ of DPC.

• 2 - Compute the δ as one would normally do in DPC ( with the nearest point of
lower ρ if one is looking for a minimum) . It is also possible to use the same trick
as mentioned in the DPC method to allow δ values to relate to the distance to the
nearest point with lower ρ (respecitively hgiher point) that is not within a given
radius of another point of lower ρ (respectively higher) density, in order to have an
easier identification of minimum.
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• 3 - Draw the the decision diagram, the local minima/maxima should stand out as
outliers, much in the same way as in DPC with significantly lower ρ and high δ

• 4 - Add more points to the sampling and check that the positions of the minimum do
not move significantly in the decision diagram, once the space start to be completely
sampled, the points should converge to a specific position.

The advantage of the method is not necessarily in its efficiency as it may be easier and
faster to make a large amount of steepest gradient descent in the landscape to identify
local minima in many case. However it has the benefit of being a global method where
the whole of the space is considered at once when assessing which points are minimum,
allowing one to potentially eliminate shallow minimum that may exist around the global
minimum. It also has the advantage to provide an convergence criterion for the explo-
ration. Finally in cases where it is not possible to compute more in point than there
already is in the landscape, it may be used to identify the minimum and get a picture of
the landscape (although it is still highly dependant on a good sampling of the landscape
to be effective).

Although the results we obtained with this method are very encouraging, the method
is not foolproof: it may fail in cases where a golf hole-like minimum exists (that is a mini-
mum with a very narrow well), and/or in cases where the overlap between wells is strong.
In a general fashion, the method requires the ability to sample efficiently the whole of the
space one wants to explore, which is not always practical.

3.3 Markov State Models

In this part we introduce the some basic elements of the Markov State Models (MSM), we
refer the reader to the following reference [130, 131] for more detailed approach on the
matter.

A Markov state model is a way to mathematically represent a system that is evolving
randomly in a set of states without memory: the probability to move from any state i to
another state j, Pi,j does not depend on the history of states that was previously visited
by the system. If we note the fact that the system is in state i at time t as Si(t) we can
write:

P (Si(t)|Sj(t− dt)|Sk(t− 2 dt) | ... |Sl(t−N dt)) = P (Si(t)|Sj(t− dt)) (3.2)

No matter what states i, j,k and l are.

A markov state model is defined by the following elements:

• A set of states S = {S1 ... SN} which the system will evolve in

• A transition matrix mathbfT that holds the probability to go from any state i to
any state j in the corresponding Tij
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• A set of prior π = {π1, ... πN} that are the probability for the system to start in a
given state i.

This type of systems were used successfully in to recover informations about the ki-
netics of proteins [60, 132]. In the context of this work, we will use them to analyze the
kinetics of atomic states, in order to gain information about the chemistry of our systems,
more specifically in the case of the polymeric liquid phase of carbon dioxide.

In practice we will be interested to analyze the evolution of atoms within a simula-
tion cell, which we will observe through a sequence of states E, previously constructed
using local descriptors (see 2.2) by assuming that this evolution can be described using a
Markov State Model.

In order to be able to have use this description, one must first describe the transition
matrix Ti,j. This can be done by first defining χ(S1, S2) functions that returns 1 if S1

and S2 are the same state and 0 otherwise. The expression of the elements of T is then
[60, 132] :

Ti,j(τ) =

∑M−τ
i=1 χ(E(t), Si) χ(E(t+ τ), Sj)∑M−τ
i=1 χ(E(t), Si) χ(E(t), Si)

(3.3)

Which is equivalent to compute the fraction of states that at where in state i at time
t and had transited to state j at t+ τ , over the whole set of possible transition.

From this point, one can check whether or not the system is markovian by checking
that the following equation holds [60, 132]:

Ti,j(τ) =
N∑
k=1

Ti,k(τ/2)Tk,j(τ/2)w (3.4)

That is the probability for the system to evolve from state i to state j in a given
time t is equal to the sum of probability for every ”trajectory” that fulfill those boundary
conditions.

If a system is indeed Markovian, one can use the Markov chain properties to compute
interesting quantities related to the kinetics such as the lifetimes of the various states and
the mean first passage time starting from any state i to state j.
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Chapter 4

Free energy landscapes exploration

Introduction

In this section we will cover a group of methods that are used to explore the a free en-
ergy landscape associated with a system of a given chemical composition. In general free
energy landscape are (very) high dimensional spaces that can be widely different depend-
ing on the system: liquids are expected to present a large number of shallow wells lying
close to each other while the landscape relative to crystals are expected to present few
very large wells corresponding to the most stable structures, with small local minimum
corresponding to various metastable states closely related to them.

In general the dimension of the energy landscape is unknown but is expected to be
large and which makes it impractical to sample efficiently using brute force sampling. Fur-
ther, at least when dealing with condensed matter systems, the potentially large height
of the free energy barriers makes it impractical for molecular dynamics to be used as an
exploration method as the simulation time necessary to overcome those barrier is much
too large with the practical simulation timescale currently available.

It is therefore necessary to use clever methods in order to be able to sample the free
energy landscape. In order to do so, several methods have been established, although
their basic methodology varies considerably depending on their objective. Here we will
focus on two such applications:

• Search of structures algorithms where the goal is to identify as many of the
stable configuration for a given configuration (in general at specific pressure con-
ditions) in the energy landscape. Here, most of them methods will be based on
geometric relaxation and on sampling the landscape at 0K.

• Enhanced sampling methods which aims at observing the transformation be-
tween different states, and potentially reconstruct the energy landscape related to
the transformation. Here the methods will be used in tandem with molecular dy-
namics in order to either be able to explore or sample more efficiently the landscape.
They will also involve the collective variables presented in (2.1).
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4.1 Enhanced Sampling Methods

Introduction

Enhanced sampling methods generally aim at exploring the transition between the var-
ious local minimum rather than explore space itself. They are used in conjunction with
molecular dynamics to help the simulation overcome free energy barrier that are much
larger than the kinetic energy of the system. In those case, the transition from one state
to the other is a rare event, and would be difficult to observe in molecular dynamics as it
would require large simulation time.

Those methods make use of the global descriptors introduced in (2.1) to represent the
free energy landscape. Indeed, as the hearth of methods that we describe here is either to
push the system away from explored configuration (metadynamics[133]), or restrain the
system around a given one ( umbrella sampling) it is necessary to be able to represent
the structure and more importantly, to compute distances between configurations.

An effective choice of collective variable is therefore necessary, not only in term of
ability to differentiate the various configurations but also in terms of numerical efficiency:
indeed, both types of methods that we describe here are notoriously expensive in terms
of calculation time.

We will mainly focus here on the description of two methods: metadynamics and um-
brella sampling, but the range of methods in this field is rather large and allow one to cover
a wide range of applications. Metadynamics is mainly used in order to explore a land-
scape by progressively pushing the system out of the explored configurations. Umbrella
sampling, on the other hand, is generally used to reconstruct the free energy landscape.

4.1.1 Metadynamics

Metadynamics is a technique that aims at accelerating the landscape exploration of molec-
ular dynamics by addind fictious repulsive potentials Vb around explore structure, forcing
the system out of explored configurations (which corresponds to free energy wells) as il-
lustrated in figure 4.1.

In practise, small gaussians repulsive contributions are added each Nbias step of the
molecular dynamics simulation to Vb, which in turns ends up filling up the free energy
wells in which the system originally was, thus allowing it to progressively overcome even
large energy barrier and explore other free energy wells.

In order to be able to define the explored configurations, one needs to make use of the
collective variables defined in (2.1). Once a proper descriptor has been chosen, the gaus-
sian bias contributions are then added progressively around the position of the system in
collective variable space every t. Therefore the artificial potential felt by the system at
time t will therefore be:
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Figure 4.1: Illustration of the principle of metadynamics: the well in A is progressively
filled up with fictitious potential until the system reaches well B. Numbers indicate the
number of metasteps used to fill the free energy well up to the corresponding level.In cyan
the trajectory of an unbiased molecular dynamics simulation for comparison.

Vb(S, t) =
t∑

t′=0

Ae
(S(x(t))−S(x(t′))2

2σ (4.1)

with Vb the fictitious potential, A the amplitude of the gaussian deposition, S(x(t))
some collective variable and σ the spread of the repulsive gaussian potential in the space
spanned by the S collective variable.

It is worth noting that the quality of the exploration depends critically on the effi-
ciency of the descriptor: a descriptor that with high dimension for example is not suitable
as it would take too long for the potential bias to fill free energy wells in large dimensions.

Once the exploration of the system has finished, it is possible to reconstruct the free
energy landscape by using the value of Vb much like a cast a mould [134, 135, 136, 137, 138].
For this method to provide a faithful portrayal of the FES, the metadynamics must con-
verged - which correspond to a state where the algorithm has filled all the free energy
wells and explore freely the FES. In practise, however, convergence does not necessarily
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happens easily (it at all) and reconstructing the free energy landscape requires that the
bias potential was put in sufficiently small increments so that the precision on the recon-
struction is correct.

The user is free to choose the values of amplitude of the gaussians (A), the width of
the gaussian in descriptor space (σ) and the regularity of the deposition of the bias poten-
tial. In general, larger values of A and σ will result in faster exploration but the precision
on the sampling of the landscape will be lower, while reducing those values increase the
required length of the simulation to observe the transitions but increase the precision for
the reconstruction of the FES.

In the spirit of accurate representation of the landscape, well-tempered metadynamics[139]
proposes, roughly, to use metadynamics with a progressively decreasing amplitude of gaus-
sian fictitious potential, in order to help with the convergence of the system. This method
requires some knowledge of the free energy landscape however to be use accurately.

Metadynamics has also been used as a purely exploratory method in order to identify
new stable structures or phases, both in classical[55] and ab initio calculations [108]. The
main drawback here is that metadynamics relies in essence on long molecular dynamics
and the ability to explore unknown configuration space with this methods depends criti-
cally on the ability to compute long molecular dynamics calculations on the system at a
reasonable cost.

Finally, it is important to note that metadynamics comes with a potentially large
increase in computation time (and reduced simulation scaling) from the computation of
the collective variables at every step: indeed, even if the potential is added only every
Nstep, the bias potential is effective on every step, and therefore (at least in theory) the
collective variable must be computed at every step, potentially implying a large computa-
tion cost when it is computationally demanding (like PIV for example).Furthermore forces
must also be computed in the collective variable space, which can be tricky and expensive.
This can be somehow alleviated by only recomputing the collective variable every N steps,
however, one needs to be careful that this value is not too large as to generate large errors.

Overall metadynamics is a powerful and somewhat popular algorithm due to its sim-
plicity and efficiency. Its theoretical basis have been largely commented and studied along
with its convergence properties[134, 135, 136, 137, 138]. It proved efficient on a number of
different systems, targeting a wide range of transformation of matter [113, 55, 116] and in
the case of both ab initio and classical molecular dynamics. In this work we used meta-
dynamics to analyze the phase transition of molecular crystal phases of carbon dioxide
(see 6.2) but also as a method to explore configuration space of small nanocluster (see 7).

An open-source implementation of metadynamics is available with the PLUMED
plugin[112], that can be used with a large number of software, both for classical and
ab initio molecular dynamics.
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4.2 Umbrella sampling

Umbrella sampling[140] is a method designed to sample a specific area of the free energy
landscape, in the space of a specified collective variable. The general idea is to define a
potential bias of the form:

V (x) =
k

2
(S(x)− S0)

2 (4.2)

with a value of k relatively large (and chosen as a function of the temperature) that
will force the system to stay with a given radius of the S0. This potential is referred to
as an umbrella (in reference to its shape).

Figure 4.2: Illustration of the principle of umbrella sampling. In light green, a single
umbrella, with the corresponding trajectory in dark green. The equivalent free molecular
dynamics trajectory is shown in blue for comparison.

The resulting trajectory allows to have a good sampling of the small area where the
system was allowed to evolve in. However, in order to choose properly the values of S0

a first hand knowledge of the free energy landscape is necessary, which is why in general
umbrella sampling is used in coordination with other enhanced sampling method, and
often times metadynamics.

In most cases, one would therefore have a rough map of the free energy landscape
of interest in the collective variable space, then use a tesselation of this space into small
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fragments, and put an umbrella at the center of each fragment. Once all the umbrella
have converged, the free energy landscape can be computed using the weighted histogram
analysis method (WHAM)[141, 142, 143, 144, 145] .

Much like metadynamics, it is important to note that in general this procedure is
more expensive than a simple molecular dynamics simulation, and in general, one of the
downside of the method is that such a precise sampling of a free energy landscape, even
only limited to two dimension is relatively expensive and should be done carefully.

4.3 Search of Structures

One of the main application of ab initio calculation is the use of its ability to predict the
properties of material using very little input from the user. It is therefore no wonder that
ever since they become computationally cheap enough to be run on local workstation,
they were used to look for new and exotic materials, potentially with specific properties,
in order to guide the experiments. In the high pressure field, they are extensively used
both to look for new materials and to compare with present experimental data, in order
to provide additional insights on the properties of structures.

Although nowadays relatively cheap, ab initio calculations do suffer from the shear
dimensionality of configuration spaces, and their exploration tend to be computationnaly
expensive, even for simple material, thus requiring specific algorithms in order to achieve
this goal. Several methods were proposed over the years, some based on random sampling
of the configuration space [61], others based on evolutionary algorithm [146, 147].

Here we present one such method that was devised for finding local minimum in such
high dimensional spaces: the Ab Initio Random Searching of Structure. We note that,
although we focus on search of structure at 0K, some exploration methods such as bassin-
hopping[148, 149] and metadynamics [108, 150] can also be used to search for new stable
structures at finite temperature.

4.3.1 Ab Initio Random Searching of Structures

The author is highly endebted to Adrien Mafety, a former PhD student in the PHYSIX
team, for introducing him to the method and providing practical advice on how to use the
associated software. The following presentation is inspired by his work[53].

Ab Initio Random Searching of Structure[61] (AIRSS) is in essence a very simple
method. Starting from an initial guess of the target pressure and a given approximate
volume of the crystal cell V0, and the number of atoms of each atomic type, it consists in
repeating a large number of time the following recipe:

• Build a random cell by randomizing cell parameters so that the total volume is
within 5% of V0. Boxes that are too skewed are discarded.
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• Randomly put the atoms in the box (with a safety radius around each atom to avoid
obviously problematic proximity between atoms).

• Run an ab initio relaxation of the system (which can be tuned to be complete or
partial)

This procedure is stopped whenever the user is satisfied with the number of generated
candidate structures. The obtained structures are then sorted by increasing energy, and
the lowest lying structure are kept. In practise, one tends to keep the structure within a
few eV of the lowest lying structure.

Duplicate structures are then eliminated, for example using their symmetry with the
findsym[151] code and energy (or the PIV metric[55]). The remaining structures are then
considered viable candidate structures, and one can proceed to further analysis.

The validity of the method rests on the fact that by taking enough random configu-
rations and relaxing them, we are in effect sampling the configuration space and finding
progressively all the minimum. The efficiency of the method relies on the assumption that
all or at least the deepest minimum have an large enough attractive well around them
that with a reasonable number of point, at least one ra dom structure will find itself in
each of them. Although there is not clear theoretical evidence suggesting the validity of
the method, it has proven successful in general and even when it fails to find to find some
minimum, it is efficient to recover at least a couple of stable structures.

On the other side, the method has drawbacks: the cost of the method may fluctuate
widely depending on shear luck and the individual cost of a single relaxation. As men-
tioned above the efficiency will largely depend on how efficient the random sampling is at
finding all the various wells, but it also depends on the distance of the original random
structure to the center of the well. Indeed, the cost of a single relaxation (and of that of
an SCF) may vary depending on the initial configuration.

Furthermore, in the specific cases of narrow potential wells, the chances of finding
said minimum randomly are slim. This point is amplified by the fact that the method is
impeded by the scaling of DFT, which depends on the number of electrons. This means
that the cost of the search will be prohibitive for system more than a few tens of atoms,
even more so if the atoms have large Z. The method is also slightly at a disadvantage when
dealing with a system where very competitive minimum have widely different density, as
the method actively discourage this, as not imposing limits on the volume or imposing
too loose ones would imply the exploration of a much too wide configuration space. It is
also likely that system that tend to converge slowly (typically for magnetic materials), the
cost of the method will also prove prohibitive due to the potential large computational
cost of the relaxation.

In order to mitigate the cost of the method, several modifications where proposed.
The most common one is to do a two-step search where the relaxation are first restricted
to a small number of relaxation steps instead of targeting the fully relaxed structure. The
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best structures are then kept, the duplicates discarded, and the remaining structures are
relaxed to full equilibrium. This method diminishes overall cost by (potentially drasti-
cally) diminishing the cost of the most repeated operation. It is also noteworthy that
by adjusting properly the V0 value, large improvement on the cost of the search can be
obtained. Finally the method can be tweaked if one is looking at molecular crystals in
particular by randomizing not the position of atoms directly, but position and orientation
of molecules in the simulation box instead.

The method has been successfully applied to a wide range of materials including car-
bon under TPa pressures [152], TPa phases of water ice[153] and solid hydrogen [154].

During the course of this work, a project within the PHYSIX team was dedicated to
try and make improvement on the search of structure method (see 8) and AIRSS was also
used briefly at the very beginning of this thesis on crystalline phases of carbon dioxide
(see 6.1).
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Chapter 5

Liquid phase transformations

5.1 Context

We will report our work the transformation of carbon dioxide molecular liquid under the
geological conditions of the lower mantle of Earth, more precisely we will focus on the
range of pressure between 25 and 70GPa and 2000 and 3000 K. As mentionned above,
understanding of the transformation and chemistry of carbon dioxide under those condi-
tions is important for their implications on the properties of the mantle, notably for the
formation of diamond [4, 5].

This region of the phase diagram coincide with the polymerization of carbon dioxide
into polymeric phase at lower temperature and therefore we expect a similar behavior for
the molecular fluid in this range. The low temperature molecular liquid was investigated
mostly investigated in relation with the melting curve of the various molecular crystals of
carbon dioxide [45, 45], although a mixed experiment and theory approach showed that it
did transform continuously under compression, mimicking low temperature transforma-
tions of the crystal phase [6]. In this fluid both experiments and theory [6, 45, 45] suggest
that molecules of CO2 behave in much the same way as in the molecualr crystal phases :
they interact through long range interactions ( quadrupolar and Van der Waals) and the
molecules are linear, with little bending of the molecule.

At higher temperature, running experiments proved more complicated and the few
that managed to reach those extreme conditions indicated that CO2 actually dissociated
above 2000K [8, 9], although those results could have been skewed by interactions between
the heating apparatus and the CO2 sample, as experiments simulating Earth’s lower man-
tle showed formation of carbon dioxide [155, 4, 5]. This hypothesis was recently reinforced
by experiments showing that crystalline polymeric CO2-V remains stable at 2000 K and
100 GPa [49]. In this context, where experiments are difficult to carry out, ab initio
calculations are traditionnaly valued and two back-to-back theorerical investigations were
performed on the high temperature behavior of the carbon dioxide liquid.

The first of those studies [7] showed through the use of AIMD calculations that the
molecular fluid polymerizes into a polymeric fluid through a first-order liquid-liquid phase
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transition [7]. This transition was characterized by a drop of twofold coordinated carbons,
replaced by threefold coordinated and fourfold coordinated carbons. The first-order na-
ture of the transition was evidenced by a plateau region in the P(V) relation[7]. This
study also showed evidence that carbon dioxide did not phase separate at least up to
3000 K.

The second theoretical investigation focused on the analysis of the stability of phases
IV, V and polymeric liquid near the geotherm[37]. Using AIMD and thermodynamical
integration, it showed that CO2-V was the most stable phase in much of the pressure-
temperature range where the polymeric liquid phase was observed in the previous paper[7]
and most importantly, in the range corresponding to geothermal conditions.

Although this study provides insight into the general behavior of geothermal carbon
dioxide, we argue that energetic consideration do not take into consideration the kinetic
or hysteresis effects. An important and relavant example is the theoretical prediction that
CO2-V is predicted by DFT to be the most stable phase for carbon dioxide as early as
20 GPa on the basis of 0 K relaxations, while it has only been observed over 40 GPa
in practise. We therefore argue that analyzing the mechanisms of the transformations
from the molecular liquid to the polymeric phases in order ot have the full picture of the
behavior of carbon dioxide in geothermal conditions.

In this chapter, we will therefore study the transformations from the molecular to the
polymeric liquid around the geothermal conditions using long AIMD simulation. Our
objective is to provide additionnal information about the structural and dynamic aspects
of the transformations occuring in these experimental conditions. In order to do so, we
ran 100ps long ab initio molecular dynamics simulation in over 50 different simulations
scattered on the whole range of pressure and temperature of interest. We will also closely
analyze the behavior of the molecular liquid, as it was shown in [58] that carbon dioxide
may form C2O4 dimers at slightly higher temperature (4000 K) than the ones we study,
which may be indicative of of a different, more reactive, fluid than the one that has been
studied until then.

5.2 Computational methods

We carried out ab initio molecular dynamics simulations, using the DFT level of theory
with PBE functionals [72] and Martins-Troullier pseudopotentials [156]. We performed
the simulations in the NVT ensemble, in a box using 32 molecules (96 atoms) and a Nose-
Hoover algorithm to maintain temperature which frequency was set up at 2500cm−1.
Pressure was determined by the choice of a proper box volume. The cut-off for the wave-
function was put at 120 Ry, after convergence tests in the most extreme condition ( 65
GPa and 3000 K ).

The electronic convergence criterion was put at 10−5 Ry, and we chose a timestep of
1fs for all calculations (although some preliminary work was done using 0.5fs timestep).
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The analysis of the simulation was done using a stride of 5fs. We let the simulation run
for at least 10ps to equilibrate and ran production calculations for 100 ps.

In order to properly sample the pressure-temperature range of interest, we ran simu-
lations at three different temperatures and 17 different volumes - each corresponding to
a different pressure. All simulations started from the structures of the crystalline CO2-I
phase. We used long thermalization of 10ps for equilibration, although longer thermal-
ization times (up to 15ps) to insure proper thermalization in some specific cases.

5.3 Pressure-Volume relationship

As our calculations were done in the NVT ensemble, we computed the pressure for each
simulation in order to choose proper volumes. As one the distinctive signs of the first
order nature of the liquid-liquid phase transition in [7] was the existence of an abrupt
change in the slope of the PT (V ) relationship, we used this equation in order to have
compare our results to the ones from this work.

The resulting P (V )T for each temperature of the study is shown in Figure 5.1 along
with the one computed in [7] at 3000K. As in this study, we observe an abrupt change of
slope, likely marking the transition between the two fluids. However while [7] locates it
around 48 GPa, we find three different transition pressures: 48GPa at 2000K, 52GPa at
2500K and 56GPa at 3000K.

The difference between those results likely stems from different methodologies to ini-
tialize the simulation and/or from the length of the simulation. Indeed, in both study,
the number of molecules, size of the box, and type of functionals (PBE) are identical
but simulation times are much shorter in [7]: 2.5ps of thermalization followed by 10ps of
simulation while this studies . It is also unknown how the simulations boxes were built
in [7] which may also have an important impact the results.

5.4 Analysis of chemical bonds

In order to conduct a structural analysis of the molecules in the system it proved necessary
to find an efficient definition of the bonds between atoms. The common practise is to
use the first minimum of the partial pair correlation function as cut-off and this approach
is reasonable in most cases [67]. However as we were dealing with a complicated system
under extreme conditions we decided to investigate whether the high temperature-induced
fluctuations would be sufficiently significant, and therefore test the validity of the use of
cut-offs.

In order to illustrate the issue linked with high temperqture, we show in Figures 5.2
the distribution of distances of the first four oxygen to carbon atoms. We chose to com-
pute those distribution on the most extreme conditions ( 65G GPa 3000 K ) in order to
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Figure 5.1: Pressure-Volume relationship at three different temperatures ( 2000K, 2500K,
3000K ), along with the results obtained by Boates et al. (2012) [7]

better show the situation.

As can be expected, we find that the first two nearest oxygen to carbon atoms are
within a given radius of the carbon atom. The situation becomes more complicated for
the third and fourth nearest oxygen to a carbon atoms: we observe in both cases two
main peaks (for each distribution), the first one - below 1.75Å - corresponds to bonded
oxygens, while the second peak corresponds to non-bonded atoms. This indicates that
the polymerization will form CO3 and CO4 atoms. The potential issue is that there is a
significant overlap between the two distributions which implies that the use of a cut-off
will create to type of errors: some atoms that are bonded will be counted as not-bonded
when thermal fluctuations pull them apart at a distance longer than the cut-off; atoms
that are not bonded but merely colliding will be counted as bonded if they get within a
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Figure 5.2: Distribution of the distance of the four closest oxygens to carbon atomsin the
polymeric conditions (65 GPa and 3000 K )

distance smaller than the cut-off value.

In Figure 5.3, wee see a similar situation for the distribution of distances of first carbon
atoms to carbon atoms. In this case the bonded peak is much smaller, indicating that
C-C bonds will be rare. As the height of the bonded peak is comparable to that of the
overlap between it and the non-bonded one, the choice of the cut-off may largely impact
the number of C-C bonds that will be counted. We note however, that the main peak
mosty remains still close to the center carbon, indicating that although the carbon atoms
may not be directly connected, it is likely that they have at least one oxygen atom in
common.

Finally, the partial pair correlation function related to the O-O distances clearly indi-
cates that there is no O-O bond, and therefore we can ignore the cases of O-O bonding
for the rest of the analysis of the liquid phases.

The next step to asses the validity of cut-offs would be to count the number of errors
that one would make for a given cut-off using a reference method that would be reliable
enough to be used as truth value. However, there is no perfect indicator to determine
whether or not two atoms are bonded.

We therefore decided to use two different methods each relying on different principle.
First we used a criterion based on the Electronic Localization function (see 1.1.3) which
makes use of the very accurate precision of the ab initio calculation. We then used a
method based on Density Peak Clustering (cf 3.2.3) to determine the coordination num-
ber of carbon atoms, and therefore the existence of bonds, making use of our large data
sets.
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Figure 5.3: Distribution of the distance of the nearest carbon to carbon atoms in the
polymeric conditions (65 GPa and 3000 K ). The bonded peak is barely visible between
1.2 and 1.3 Å.

Figure 5.4: Partial pair correlation function for the O-O distances.

5.4.1 ELF in the middle

The first approach makes uses of the Electron Localization Function (see1.1.3). The ap-
peal here is that it provide an electronic criterion to determine bonding. In order to
construct our criterion we first looked at the values of the ELF along the path from each
carbon atom to each of its bonded counterpart ( using the distribution of Figure 5.2 to
consider atoms separated by distances within the bonded peak). The results are shown
in Figure 5.5 for atoms of carbon and oxygen closer than 1.75Å from each other.

In order to proceed we computed the ELF for 1000 frames of simulation at the most
extreme conditions (65 GPa, 3000 K) using CPMD[157]. We obtained a 60x60x60 grid for
a cubic cell of side 8.82Å, providing a precisin of 0.174Å in each direction. As mentionned
previously, there is no O-O bond in our simulations, but we also did not find any C-C
bond in the 1000 frames that were selected for analysis with ELF therefore we will focus

Mathieu Moog 76 Mémoire de Thèse
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Figure 5.5: Heatmap of the value electron localization function along the (normalized)
distance between carbon (located in 0) and oxygen (located in 1) atoms that are closer
than 1.75Å from each other

on C-O bonds in our analysis.

In figure 5.5 a clear maximum value of the ELF value exists almost in the middle of the
distance between the carbon and oxygen atoms. This indicates an increased localization
of electrons at the same place, which fits nicely with the concept of a covalent bonding.
Interestingly, the maximum is slightly displaced toward the oxygen, which is likely due to
the fact that oxygen is more electronegative than the carbon and in average pulling the
covalent bond closer to it.

Although we have indentified a common behavior of the ELF along the distance for
bonded atoms, we wanted to check the behavior of this metric in the cases of non-bonded
ones. To do so, we carried out the same analysis with atoms further than 2.0Å to each
other, insuring that they would not be bonded (figure 5.6) .

As expected, a different behavior emerges here: the distribution shows two peaks of
the ELF along the distance, one close to each atom, and a local minimum appears where
a maximum was observed in the bonded case. Here, it does seem that the electrons are
localized around their respective atoms. Interestingly, we see that the first peak, around
the carbon atom is much lower than the second one, related to the oxygen atom.

Although we did not find any C-C bond, we decided to check whether the same
general behavior is observed for non-bonded carbon-carbon first neighbors as in the C-O
case (figure 5.7).
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Figure 5.6: Heatmap of the ELF along the (normalized) distance between carbon and
oxygen atoms more than 2.0Å away from each other. Carbon is in 0 and oxygen in 1.

Figure 5.7: Electron Localization along the distance between two carbon atoms more than
2.0Å away from each other

The results here (figure 5.8 are more complex than in the C-O bond: although we do
have a similar trend of two clearly established peaks close to each atoms, in the inter-
mediary region, two distinct behavior can be observed: we can either have the same low
ELF value minimum (ELF∼0.15) or a high ELF value minimum (ELF∼0.6) which seem
to match neither a bonding state nor a complete non-bonding one.
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As carbon atoms are relatively far from each other in the simulation associated with
those results (more than 2Å away) we thought that this effect might be due to the presence
of a shared oxygen atom between the two carbons. In order to check this, we repeated
the analysis, selecting only the cases where two carbon shared a common oxygen atom
(figure 5.8).

Figure 5.8: Electron Localization along the distance between carbon atomsthat share an
oxygen as neighbor. Distances are takent between 2.0 and 2.8Å

The results (figure 5.8) confirm the hypothesis as we clearly see the expected behavior:
two peaks, one for each atoms and a high value ELF (∼ 0.6) minimum close to the middle
of the C-C (normalized) distance. The conclusion here is that it is likely that the ELF
related to the orbital of the shared oxygen atom somewhat extend up to the middle of the
C-C distance. The conclusion here is that although the ELF behavior along the distance
from one atom to another may yield clues about their bonding state, this information
will also be affected by the local environement, which therefore should also be taken into
consideration.

The conclusion we drew from thos results is that it seems that it is possible to deter-
mine whether or not carbon and oxygen atoms are bonded using the ELF value in the
middle of the C-O distance. From the previous results, it seemed that using a cut-off
value of 0.75 on the value of the ELF at the middle point between atoms may be used
effectively to determine whether a covalent bond existed between the two. In the rest of
this work, we will refer to this method as the ELF in the middle method, as a short hand.

In order to test the validity of the use of cut-off, we computed the distribution of the
ELF in the middle point of C-O distances for distances between 1.0 and 2.5Å ( figure
5.9). The results shows encouraging results as we see that most of values of ELF supe-
rior to 0.75 tends for distances between 1 and 1.75 Å. In general, the graph reflects the
same kind of information as the distance distribution 5.2: two regions are well defined
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Figure 5.9: Electron Localization Function in the middle of C-O interatomic distances as
a function of the distance1 (for distances below 2.5Å). Top: distances between 0.8 and
2.5Å. Bottom: between 1.5 and 2.1 Å

corresponding to bonded ( distancesd < 1.6 Å and ELF > 0.75 ) and non-bonded states
( distancesd > 2.0 Å and ELF < 0.4 ), while in between a intermediary, more difficult
region to define exists.

Using the ELF cut-off of 0.75 as truth value to determine bonding, we find that using
a cut-off of 1.75Å results in 6.22% of errors, with 0.03% coming from missing bonds that
exists and 6.18% by predicting bonds that do not exists. We consider that this value is
low enough that the cut-off may be used at least for general structural considerations,
but it may require more advanced methods to understand aspects based on the dynamics
or kinetic aspects of the system such as lifetimes of molecules.

5.4.2 Unsupervised learning

Although the ELF in the middle method provides a good criterion for bonding, as we
saw in the case of C-C interactions, it can be affected by the environment of the atoms.
In this section we show a method that aims at determining bonding between atoms by
specifically accounting for their environment.

The idea is the following: one can describe roughly the local environment of an atom
by using the sorted distances of its N first neighbors of a given type as described in (2.2).
As we know that we do not have C-C or O-O bond, we decided to focus on the first 5
oxygen neighbor of carbon atoms in order to do so.

Using this description of each atoms, we used Density Peak Clustering ( 3.2.3 ) to
group together carbons with similar environment. In order to compare two carbon atoms,
we took the Euclidian distance of vector so created. That is, for two carbon i and j, their
distance vi,j was defined as:
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vi,j =

√√√√ 4∑
k=1

(di,k − dj,k)2 (5.1)

where di,k is the distance of carbon i to its kth first oxygen neighbor. We tested the
DPC algorithm for various values of the dc parameters (cf. 3.2.3) to check the validity
of the classification and we used the same data set than the one used in the ELF in the
middle case, in order to be able to compare the two results.

Figure 5.10: Distances to the third and fourth oxygen atom for all carbon atoms in a 1000
step trajectory colored by their label affected by the DPC algorithm.

The result of this analysis is shown in figure 5.10. We see that DPC finds three
different clusters, one for each of the coordination number observed for carbon in those
experimental conditions (2,3 and 4).

We observe that cluster 2 gathers carbons that have both most of their 3rd and 4th

carbon atoms at distances above 1.75Å and therefore will be associated with carbons
with a coordination number of 2. Cluster 1 on the other hand, regroups carbons that are
likely bonded to their 3rd nearest oxygen atom but not their 4th nearest. Finally, cluster
3 contains carbon that are likely bonded to their four first nearests oxygen atoms.

Once trained, the clustering algorithm may be used to predict the coordination num-
ber of a carbon atom by assigning it to a given cluster based on its distances with the
carbons from the training set. From the coordination number it is easy to go back to the
bonds that a given carbon atom has with its neighbor, and as the system contains only
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C-O bonds, to the bonds of all the system (assuming that if an atom has a coordination
number of 3, it is bonded to its three closest neighbors). Although the procedure should
be repeated on a different set featuring C-C bonds if one wants to be able to predict the
correct coordination number in simulations where those bonds appear.

The interest of using this metric is that it relies on the statistical distributions of the
four first distances of oxygen for each carbon in the data set and therefore takes into
account the local environment to regroup similar atoms and makes use of the amount of
data provided in order to do so.

Using the results of this method as truth value, we can also compute the errors that
would result from using a cut-off to determine bonding. In this case, for a cut-off at
1.75Å, we get an error of 3.75%, 1.93% coming from counting bonds that do not exist
while 1.18% come from not counting bonds that do. Overall, we see that the cut-off here
is a very good match and works relatively well. This results also confirms that taking into
account local environment only marginally improves on the simple use of single distances
to determine bonding.

5.4.3 Combining ELF and unsupervised learning

Finally, we show that we can combine both methods can be combined together to take
into account both the local geometry and an electronic criterion. In order to do so, we
can first simply plot the ELF value at the middle point as a function of the distances
between carbon atoms and their nearest oxygen neighbor .

Figure 5.11: Electron Localization along the distance between carbon and oxygen atoms

In the figure 5.11, we focus on the ELF value of carbon atoms with their third clos-
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est oxygen neighbor, which we compare the its distances to the second and third carbon
atom. We see that globally the value of the ELF at the middle point between atoms
mostly varies with the distance to the third oxygen neighbor, however the influence of
the distance to the second nearest carbon atom is visible. Therefore, in this case, it does
seem that a cut-off that depends not only on the distance between the carbon and the
third closest oxygen atom but also slightly on the distance with its second nearest oxygen
will be necessary.

Figure 5.12: Electron Localization Function in the middle of the bond between carbon
atoms and their fourth nearest oxygen as a function of the distances between the carbon
atoms and their third and fourth nearest oxygen

As for the ELF values in the middle of a carbon atoms and their fourth nearest neigh-
bor (figure 5.12) we see that it does seem to depend only on the distance between those
atoms. This seem to indicate that the use of a cut-off using only the distance between
carbon and fourth nearest oxygen is likely to be efficient if the cut-off if chosen properly.
Overall both figure 5.11 and figure 5.12 validate the use of single cut-off to determine
bonds between carbon and oxygen atoms.

Finally we used the Density Peak Clustering algorithm directly on the values of the
ELF at the middle point between carbon atoms and their first four nearest oxygen 5.13.
In this case as well it is possible to identify the three coordination number for carbon
atoms (2,3,4 neighbors), and DPC is able to indentify them for any reasonable choice of
dc (see 3.2.3).

If now we were to plot the same point with the same affectation but in the distance
space (figure 5.14) we see results that are closer to those obtained by using DPC on the
distances rather than those obtained solely with the value of the ELF in the middle of
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Figure 5.13: Electron Localization along the distance between carbon and oxygen atoms

Figure 5.14: Electron Localization along the distance between carbon and oxygen atoms

distances. In general the disagreements mainly seem to occur within the intermediate
region and are relatively minor.

In this section we have therefore shown that regardless of the method one uses to
determine bonding, the use of cut-offs is legitimate, at least for structural analysis, and
results in relatively low (∼ 5%) percentage of errors. From this point on, we will therefore
use a cut-off dcut = 1.75Å to proceed for the structural analysis.
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It is likely however, that the dynamics of the atoms in the system, that is, their evo-
lution from one chemical state to another may not be portrayed accurately enough by
cut-offs (due to the systematic errors and the flickering phenomenom, where atoms may
move back and forth around the cut-off value) and we will likely need to use more involved
methods to do so.

Although it is likely that the systematic use of either of the two methods ( clustering
or ELF in the middle ) would have resulted in a more accurate portrayal of the chemical
structures in the system, however both methods turned out to require long analysis time1

and we therefore thought that they would be excessive with regard to the correction that
they brought.

We also carried out similar ELF in the middle analysis on a prebiotic chemistry sys-
tem, provided by a post-doctoral research of the team, Andrea Perez-Villa, with similarly
interesting results (see ??).

5.5 Coordination numbers

Using the cut-off determined above, we can easily compute the coordination fraction of
carbon and oxygen atoms, in order to gain some information about the transformation, in
the same spirit as [7]. As we have noted above, we expect only to have twofold, threefold
and fourfold coordinated carbons and we have therefore we focused solely on those (figure
5.15). We did note however, a suttle rise of carbon with only one oxygen neighbors at the
highest temperature and pressure, but the fraction remains extremely small ( less than
0.1% at 3000 K and 65 GPa).

The main element that is readily available is the decrease of twofold coordinated car-
bons (C2) with increasing pressure (figure 5.15). However, contrary to what was previously
reported [7], the decrease seem to occur in two steps: first a slow decrease that is highly
temperature dependant and start at pressures as low as 25 GPa at 3000 K, followed by
a faster one around 48 GPa at 2000 K and 56GPa at 3000K (figure 5.15). The general
trend is in agreement with the results of Boates et al [7], except for the shift in pressure
discussed in 5.3.

The first and very progressive decline of C2 (occuring mainly in the 20-48GPa range
at 2000K, up to 55GPa at 3000K) is attributed to the formation of short-lived C2O4 or
C3O6 molecules, which is favored both by increasing temperature and pressure. Although
this was also observed in [7], it is slightly more pronounced in our case. We note that
this results matches the observation of dimerization of carbon dioxide at high tempera-
ture [58], or in an amorphous phase around 150K [59], where similar small chains where

1In the case of ELF, it also would have required to redo most of the calculations to compute the ELF,
which would have been extremely costly, both in termes of computation time but also problematic in
terms of storage.
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Figure 5.15: Coordination fraction of twofold (top), threefold (center) and fourfold (bot-
tom) coordinated carbon as a function of the temperature and pressure.

observed. The fact that those molecules are short lived yet still significantly affect the
average number of C2 in the simulation indicates that they from relatively frequently.
This finding may indicate that the molecular fluid close to the transition (and at high
temperature in general) is more reactive than previously reported.
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The second and sharpest drop was previously interpreted as the signal of the transition
between the molecular and polymeric regime [7]. Our data concur with this explanation
as this diminution corresponds to a strong increase first of threefold (C3) coordinated car-
bons, folowed in a second step by fourfold (C4) coordinated ones. Both steps are highly
temperature dependant: at 2000 K and 60 GPa the first step is already passed and C4

are more common than C3 while at 3000 K and 60 GPa the first step is still underway
and C2 are still more frequent that C3 and C4 combined.

Interestingly, it is likely that the behavior at 2000 K and 3000 K may be largely
different as the former seems to indicate a very fast transition to a polymeric liquid domi-
nated with C4 carbons while at 3000 K the polymeric liquid is dominated with C3 carbons.

This consideration is further confirmed when considering the fraction of oxygen with
two covalent bonds (O2) as in figure ??. Where we see an important rise in O2 at the
molecular-polymeric transition pressure, especially important at 2000K. We note that at
56GPa and 2000K, 80% of the oxygens have two neighbors, indicating that the underly-
ing network is almost completely connected. At 3000K however, the fraction of O2 barely
reaches 50% at 62 GPa, which indicates a looser network.

Figure 5.16: Coordination fraction of oxygen with two neighbors over the pressure-
temperature range for the liquid-liquid transition

All things considered, by considering the coordination number of oxygen and carbon
we identify clearly three fluid behavior: the standard molecular fluid at low temperature
and pressure, a molecular liquid where there is a formation of small reactive chains and
a polymeric liquid that appears from a rapid diminution of CO2 units in the system,
potentially with different behavior at high and low temperature. We expect the reactive
molecular liquid to occur mainly between 20 and 45 GPa - although we expect that at
2000 K, the behavior actually appear over 35 GPa - and the polymeric liquid appears over
48GPa, although this transition pressure is highly temperature dependant.
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5.6 Reactive molecular fluid

In order to study the molecular liquid region where there is a formation of short chains,
we first verified that the formation of the chains were not an artefact due to the cut-off.
We used the ELF to study the formation, life and decay of an identified C2O4 dimer and
C3O6 trimer and looked for evidence of bond creation/destrution. Doing so, we were able
to identify a dimerization mechanism shown in figure 5.17 for C2O4 dimer and confirm
the existence of bonds in the C3O6 trimer (figure 5.18).

Figure 5.17: Dimerization mechanism with ELF isovalues (0.6 in ble and 0.8 in grey)

Almost all short chains that formed during the simulations were intermediate states
of the dimerization process (TS1 and TS2 in figure 5.17). The dimer proper was found
to be up to four times less frequent and the trimer was exceptionnaly rare, except in the
40-48GPa region. Interestingly, the trimer does not seem to form from an incomplete
dimer but by simultaneous assembling of three molecules within 10fs. We note that the
dimers could allow for the exchange of oxygen between the original CO2 molecules.

In order to compute the limit of this reactive molecular liquid, we computed the
fraction of carbons that are part of C2O4 chains over the pressure-temperature range of
interest (20-45GPa, see figure 5.19). Interestingly it seemed, that even at pressures as low
as 25GPa, the fraction was on the order of 1% both at 2500 and 3000 K below 25GPa.
We note that this number was not reached at 2000K before 40 GPa. Overall, the phe-
nomenom increases with both pressure and temperature.

This is particularly interesting as it was previously suggested that the C2O4 dimers
may actually hinder polymerization [58] and even be a precursor to dissociation [7]. How-
ever, the fact that pressure also increases suggests otherwise. Furthermore, we note that
many dimer-like units where observed in the complex chains of the polymeric fluid at
3000K, casting more doubt about this hypothesis.

It is likely however, that those small structures are a sign of the weakening of the
C-O double bond and a change in the behaviors of CO2 molecules, from purely long
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Figure 5.18: C3O6 cyclic trimer with ELF isovalues (0.8 in blue, 0.6 in grey)

Figure 5.19: Fraction of carbon atoms belonging to C2O4 chains during a simulation as a
function of the pressure and temperature

range interactions to a reactive behavior. Those reactions, depending on the experimen-
tal conditions, may push the system into either dissociation ( at high temperature ) or
polymerization (high pressure).

Experimentally, those results may be confirmed by experiments through raman spec-
troscopy: indeed, according to [58], the C2O4 dimer has an raman activity around 2300cm−1,
although we note that as none of the observed events had a lifetime over 1ps, it is likely
that the signal may be difficult to detect experimentally.

The potential existence of a reactive molecular phase is of particular interest for ge-
ological application as it seems that its domain interesects the geotherm in the 40-45
GPa region at 2000 K. Those experimental conditions corresponding to the depth where
recents experimental studies suggest that CO2 may form [4, 5] from interactions between
carbonates and SiO2. This would imply that the formed CO2 would be under a reactive
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liquid form that would react very quickly with its surrounding environment and therefore
play a role in the chemistry of the lower mantle.

5.7 Polymeric liquids

As shown in (5.5), the polymeric liquid forms from the molecular fluid above 48 GPa and
is characterized by the formation of CO3 or CO4 units, which form complex polymeric
chains. To characterize the progressive formation of those chains with increasing pressure,
we computed the distribution of the sizes of molecules at 2000 K, as in figure 5.20.

Figure 5.20: Distribution of the size of molecules at 2000 K at 44, 47 and 48 GPa.

In figure 5.20, which shows the evolution of the distribution of molecule size (in atoms)
as a function of the pressure at 2000 K, we see that the transition between a molecular
liquid, with marginal formation of small chains such as C2O4 and C3O6, to a polymeric
liquid, which is characterized by long chains, happens very quickly between 44 GPa and
47 GPa. Indeed, although at 44 GPa, there is only a very small amount of C2O4 molecules
and an overwhelming fraction of CO2 molecule (figure 5.20), we see that at 47GPa, the
system has already transited to a system where long chains containing between 7 and
14 CO2 units are stable, while the CO2 fraction dropped below 60% (figure 5.20). At
48 GPa, this fraction drops to 40% and the large molecules are now between 21 and 78
atoms long (figure ??). At 58 GPa the system is already fully polymerized, as is evident
by the very low fraction of CO2 molecules (below 5%), and the molecules that are most
present are composed of 27 to 32 CO2 units (figure 5.20).

This evolution (figure 5.20) indicates a very fast polymerization and the formation
of large molecules that, according to the results of figure 5.15, are mostly composed of
CO4 tetrahedra, which is confirmed by visual observation of the trajectory, where the
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formation of a relatively stable three-dimensional network is observed.

Figure 5.21: Distribution of the size of molecules at 3000 K at 44, 47 and 48 GPa.

On this other hand, we have a slower polymerization at 3000K (figure 5.20). The aver-
age size of the molecules increases progressively between 40 and 65GPa (figure 5.20). At
that pressure, although we observe the formation of large chains, we have not yet reached
a fully polymeric liquid (figure 5.20). Furthermore, the spread of the size distribution, in
this case, is still relatively wide and the fraction of CO2 units decreases more slowly than
at 2000K (figure 5.20).

We explain this by the nature of the polymeric liquid, which at this experimental con-
ditions, is observed to be highly dynamic and where CO2 molecules are being exchanged
between the various large molecules (or between different part of the same molecule) to
stabilize their unstable ends which often feature likely unstable COO units.

The distribution of molecular sizes (figure 5.20) is coherent with both the observed
behavior of the liquid and with the fraction of carbon coordination fractions. The high
and low-temperature liquids indeed seem to exhibit different behavior between a stable
three-dimensional network that forms quickly from the molecular fluid to a complex sys-
tem of large molecular chains at high temperatures.

Those observations are confirmed by the partial pair correlation functions at 2000,
25000 and 3000 K (between carbon and oxygen atoms) as shown in figure 5.22. In this
figure, we see that the first peak is composed of two contributions: one for the CO3 units
and one for the CO4 ones. The CO3 contribution is the one corresponding to distances
around 1.2 angströms while the CO4 contribution corresponds to the peak around 1.4
angströms. Indeed, we expect at least some CO3 units to still contain double C-O bonds,
while CO4 units should exclusively contain longer single bonds. We observe that the
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contribution of CO3 units is much stronger than the CO4 one at 3000K, the latter being
almost negligible in comparison. At 2000 K however, the situation is reversed: the CO3

contribution is visible but weak compared to the CO4 one. Furthermore, the secondary
peaks of the pair correlation function are much more defined at 2000 K than at 3000 K.
This indicates that the overall structure of the network formed at 2000 K is much more
stable than at 3000 K, which coincides with direct observation of the simulation.

Figure 5.22: Pair correlation function of carbon and oxygen

To confirm the observation of low diffusion in the low-temperature polymeric liquid,
we computed the diffusion coefficient over the whole pressure-temperature range (figure
5.22) using the mean square distance (MSD). We observe a general diminution of the
diffusion coefficient with increasing pressure and an increase with temperature. We also
see a drop of the value of the diffusion coefficient at 2000 K, to the point where the diffu-
sion coefficient is almost 0 above 50 GPa. This marked drop is likely an indication of an
amorphization of the polymeric liquid into an amorphous polymeric liquid. Interestingly,
all results about the 2000 K liquid bear a strong similarity with the low-temperature
amorphous phase of carbon dioxide observed in [59] via compression of CO2-III.

We also computed the difference between the MSD of the oxygen and carbon atoms
(figure ??, in order to check that the mechanism of diffusion of both type of atoms where
the same. The results (figure ??) shows that in the molecular liquid, the oxygen have
a somewhat higher diffusion than carbon atoms, likely due to the possibility to rotate
around the central carbon atom, however this difference quickly becomes constant. On
the other hand, we see that at 2000 K and 58 GPa, corresponding to the amorphous
phase, there is no difference in the diffusion of carbon and oxygen, as can be expected as
we observe almost no movement of atoms in this system. At 3000 K and 58 GPa, how-
ever, we see that oxygen atoms diffuse faster than oxygen, and that this difference in MSD
steadily increases with time. This is likely due to a relatively large number of exchange
of oxygen during the association/dissociation of CO2 units from the larger molecules.
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Figure 5.23: Diffusion coefficient of oxygen atoms as a function of pressure and tempera-
ture

Figure 5.24: Difference of the mean square distance of carbon and oxygen atoms in the
molecular, amorphous and polymeric liquid regimes

5.8 Chemical dynamics of the fluids

In order to analyze in more details the chemical reactions at play in the liquid, we used
the second layer local descriptor (see 2.2). This allowed us to have a more comprehen-
sive picture of the chemistry of the system than the coordination number of the high
temperature polymeric liquid (65 GPa - 3000 K ).

Although this description gives more details abot the general vicinity of an atom,
the problem of the cut-off is amplified: indeed, the potential error on the cut-off will be
present not only for the first but also for the second layer, and therefore, the error on the
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bonds largely propages here and may create spurious results.

Assuming that this descriptor is valid, we can compute the fraction of carbon of all
carbon state as in figure 5.25 and identify the states that are most present. In the case of
figure 5.25, we see that the three most represented states are the one that are expected
to be neutral, including the CO2 molecule that is still largely present (21.5%).

Figure 5.25: Second layer descriptors applied carbon atoms at 65 GPa and 3000 K, with
their fraction of presence. Green circle indicate neutral states while red circles indicate
charged states. States who were present for less than 0.1% of the whole simulation were
discarded.

In order to analyze the chemical dynamics of the polymeric liquid, we needed to use a
method that could somehow allow us to move past the issue of the flickering. One of the
methods that presented to us was to implement a method similar than the one presented
in [132, 60] mostly to study proteins: the Markov State Model approach.

However, here, instead of modelling the behavior of a whole protein using this ap-
proach, we aim at understanding the local evolution of atomic states. Therefore, instead
of defining the states as different protein conformation, we used different atomic config-
urations (or states) instead. The approach, however is very similar: as we already have
defined the states, we only need to compute the transition rates using (3.3). The main dif-
ference being that we do not compute the states by using clustering, but start from a given
set that we postulate from chemical intuition. In order to check the validity of the Markov
model, we can use (3.4), to test whether or not the Chapman-Kolmogorov equation holds.

As we can see in figure 5.26 the Chapman-Kolmogorov test seems indeed to mostly
hold, at least in most cases. This implies that the system, at least at the atomic level, can
be described as memoryless, and that we can use all the properties of Markov chains to
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Figure 5.26: Chapman-Kolmogorov test for some of the transition rates of the carbon
atoms. The CK in the legend indicates that the transition rate was calculated using the
right hand side of 3.4.

compute various kinetic properties, for example the lifetime of the chains, which proved
very difficult to do using standard methods, as the flickering of atoms around cut-off
values strongly diminished their computed lifetimes (even after smoothing). Here, as the
rates are composed using correlation functions, the flickering issue is mostly evacuated.

We do note however, that the Chapman-Kolmogorov equation does not hold all over
the pressure range: it notably fails in the amorphous case and in some of the P-T simu-
lations in the abrupt polymerization zone.

As this approach was developped relatively late we chose to focus less on the lifetimes
of the molecules than on a (simpler) analysis of the transition rates between atomic states.
Indeed, those transition rates allow us to gain important insight into the chemistry of the
polymeric liquid.

In figure 5.27, we observe the isolated states and their transitions rates relative to the
other states in the polymeric liquid at 3000 K and 65 GPa. We can first report that the
charged states will have very short lifespans as their self-transition rates are low: between
7% and 18%, which implies that they are mostly intermediate states between the neutral
states. Second, we see that the carbon dioxide molecules remains relatively stable, as it
has the highest self-transition rates of the states (71%). Finally, the neutral threefold
coordinated carbon is clearly the main chemical element of the liquid, as not only is it
the most frequent (figure 5.25) it is also the state where most charged states will decay

Mathieu Moog 95 Mémoire de Thèse
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Figure 5.27: Dynamics of the carbon states at 65 GPa et 3000 K as seen by the Markov
State Models. The percentages are the transition rates, computed using (3.3) with τ =
50fs. Configurations likely to bear a charge are indicated by red circle, while neutral
states are in green circles. Transitions rates below 4% and states representing less than
1% of the total are not shown. The 180◦arrows indicate the self-transition rates, the rates
are written close to the emitting state.

to (all transition rates values from charged states to this state are on the order of 50%),
and it also seems to allow the transition between the twofold coordinated states and the
fourfold coordinated ones.

To conclude, the use of Markov State Models applied to atomic models in conjunction
with the second layer descriptor seems to provide very interesting informations about the
chemical behavior of the polymeric liquid. Although much work remains to fully exploit
this new approach, those results are very much encouraging and can readily be applied
over the pressure-temperature range where the system is markovian.

5.9 Conclusion

In this work we provide a full characterization of the behavior of carbon dioxide fluids in
geological conditions. We put forward evidence of four distinctive fluid behavior: a stan-
dard molecular liquid, a reactive molecular liquid with formation of dimers and trimers,
a highly reactive polymeric liquid and a amorphous-like liquid. Most of those behavior
intersect the geotherm at one point or another, which suggest important consequences
on the participation of carbon dioxide in the chemical activity and transport properties
of the mantle. We show in figure 5.28 the final phase diagram that can be extrapolated
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from our data.

We note that, due to the similarity between the amorphous phase and the one observed
at low temperature through compression, it is likely that CO2-V, a crystalline polymeric
phase, may form instead in experiments, given that CO2-V seems kinetically favored at
high temperature in experiments compared to this phase.

Figure 5.28: Propose phase diagram of CO2 in geothermal conditions, with snapshot of
simulation in the molecular (top left) and polymeric (top right) conditions. Black dots
indicates the points where simulations were run. We use the frequency of C2O4 over 1.5%
to mark the limit between molecular and reactive molecular liquid phases, the drop in C2

carbons to mark the polymerization region, and the drop of the diffusion coefficient to
mark the limit of Phase V.

The reactive molecular phase is of particular interest as it appears in conditions cor-
responding to the depth of Earth where carbon dioxide could form [4, 5], suggesting that
the molecule may play an important role in the chemistry of the lower mantle.
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Finally, we suggest that calculations with larger simulations box and in a less restric-
tive statistical ensemble (NPT) and larger simulations boxes may be necessary to fully
study the free energy barrier between the liquid(s) phases and the polymeric ones. How-
ever, our calculations remain the most comprehensie study in this P-T region of high
pressure carbon dioxide fluids and represented a significant computational cost.

Future works may leverage the amount of data generated during this work in order to
construct efficient force fields that could be used to study more extensively the free energy
landscape associated with the transformation between the molecular liquid and both the
polymeric liquid and CO2-V, which would be of high interest for geology.
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Chapter 6

Crystallines phases

Introduction

As mentionned in the introduction, the molecular phases of carbon dioxide have been ex-
tensively studied both experimentally and theoretically [13, 17, 18, 20, 21, 22, 23, 65]. If
the structures of the various phases are nowadays more or less consensual, the transitions
mechanisms between those phases remain obscure.

In this small chapter we first show the results of our work on the transformations of
the molecular crystal phases of carbon dioxide under high pressure. First we carried out
a study of the various phase using ab initio, then we focus on the transition between the
various molecular phases.

Although most of the phases were known before this work, we use the AIRSS method
(see 4.3.1) to search the stable structure of carbon dioxide in the 0-80 GPa range. The
objective was twofold: first to test the effectiveness of the method on a material that
polymerizes at high pressure but it was also the occasion of a transfert of knowledge be-
tween an PhD student about to defend (Adrien Mafety) and a future PhD student (the
author), so that the team did not lose this experience.

We then present the begining of our work on the phase transition of carbon dioxide.
We used classical molecular dynamics based on a forced field that proved successful in
previous works [51]. We use the metadynamics[133] method in order to explore the free
energy landscape (see 4.1.1), using as collective variable the the Path Collective Variable
(cf. 2.1.3) with the Permutation Invariant Vector (see 2.1.2) as internal descriptor.

6.1 AIRSS applied to CO2

We started our work on the crystalline structure by using the AIRSS method (see 4.3.1)
in order to check whether the method allowed to recover the known crystalline structures
of carbon dioxide as shown in figure 6.1. The objective of this work was to recover as
much as possible of those phases using a moderate computational cost, as it was mostly
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a training exercice to learn the method.

Figure 6.1: Crystalline phases of high pressure carbon dioxide

We launched AIRSS searches at three different pressures: 1, 5, 30 and 80 GPa, using
the procedure in (4.3.1) to recover both molecular and polymeric crystal phases of carbon
dioxide. For each pressure, we used two types of boxes containg either 2 or 4 CO2 units.
We did not include larger search boxes due to the potential high computation cost and
therefore could not hope to find CO2-IV whose convetional cell contains 24 CO2 units.
Each search was given 24h on 48 CPU cores to run, and generated between 300 and 1800
structures dependending on the pressure and number of CO2 units.

The relaxations for the search of structure were carried out using ab initio calculations
at the DFT level of theory with the CASTEP [158] code and Vanderbilt [78] pseudopo-
tentials using 500 Ry for the cut-off for the kinetic energy of the electronic density. We
then recovered the 10 most stable structures, after removing duplicates (using findsym
[151] ) and further relaxed the ten remaining structures using CASTEP [158].

At 0GPa and 5GPa we found the two structures reported for phase II (P42/mnm and
Pnnm) along with phase III (Cmca) and we did not find any non-molecular phase. Phase
I (Pa-3) was not found in the original search but we were able to recover it by restricting
the search to cubic cell.

At 30GPa we found a mix of polymeric and molecular phase, with crystalline poly-
meric phase CO2-V (I42d) as the most stable phase overall. At 80 GPa we found phase
CO2-V as the most stable phase and layered P-4m2 - one of the candidate structure for
CO2-VI - as a metastable candidate with close enthalpy. Although an alternative struc-
ture for phase VI, a layered structure (P42/nmc) - identical to P-4m2 except for the fac
that the orientation of the tetrahedra are rotated from one layer to the next by 90◦ along
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Figure 6.2: Enthalpy (by formula unit and relative to CO2-I) of all CO2 found with
AIRSS, focusing on the molecular structure.

the axis perpendicular to the layer axis - has been predicted as more stable than the
P-4m2 [34, 36]. we used the P-4m2 as reference to illustrate phase CO2as both structures
where proposed for phase VI and we could not recover the P42/nmc layered structure
with AIRSS. Interestingly in the theoretical work [34], P-4m2 formed from both phase
II and III while P42/nmc formed from III and IV, while using metadynamics [35], only
P4m2 was found upon compression of phase II. It is therefore likely that both phases could
form, depending on the themodynamical path. We indicate that both structure have a
very similar IR spectrum [36], which imply that only X-ray diffraction experiments would
allow to differentiate which of the two structures is formed.

All the structures corresponding to reported phases were then relaxed between 1 and
50GPa1 in order to get the 0 K theoretical phase diagram of high pressure carbon dioxide
(figure 6.2) using quantum espresso[178].

Between 0 and 10 GPAa, as expected, phase I is the most stable structure, however
we found that CO2-II is more stable than phase III although in experiments, CO2-I forms
phase III under compression instead of phase I. Here we find that CO2 become than phase
I around 10GPa while phase III becomes energetically favored around 18 GPa only. The
discrepancy can partially be ascribed to the martensitic nature of the transition between
phae I and III, which is therefore kinetically favored to the I-II transition and therefore
explains that CO2-III forms preferentially from phase Ixs.

We also found that polymeric phase V is more stable than all molecular crystal phase

1We relaxed the structures at every GPa between 1 and 10 GPa, then every 10 GPa between 10 and
50 GPa
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as early as 18 GPa, although the experimental phase transition is observed at 40 GPa
above 1000K and around 60 GPa at ambiant temperature (figure 11). We expect that this
is due to the large free energy barrier between the molecular and polymeric phases, which
make it difficult for the system to polymerize. This is likely as phase V can be recovered
at pressures as low as down to 1-2 GPa [32, 48], showing the importance of metastability
effects in the transition from molecular to polymeric (and vice versa) system in CO2.

In conclusion, we showed that AIRSS is able to recover most of the stable structures
known for CO2 at a moderate computational cost. We also were able to recompute the
0K phase diagram of carbon dioxide between 0 and 50 GPa for the found structures. Al-
though those results were not new, and similar phase diagram had already been obtained,
the results still confirm the ability of AIRSS which even with limited computation time
is able to recover most of the stable structures of carbon dioxide.

6.2 Transitions between molecular phases

6.2.1 Context

Recently, Gimondi et al. (2017)[51] used well tempered metadynamics[139] and analysis
in order to study the I-III phase transition, with classical molecular dynamics and rigid
CO2 molecules. Using the λ collective variables introduced in the method section, they
were able to show clearly defined free energy wells for both phases, but the commitor
analysis showed that this 2D projection was insufficient to understand the completely
characterize the transition. However, The addition of the anisotropy, as defined by the
ratio of the longest to the shortest cell length allowed the identification of a reliable tran-
sition pathway candidate, and to get a quantified value for the I-III phase transition. This
work also found that packing faults CO2-I like structures (Idef) may be more stable than
pristine phase I, especially around the transition pressure. This study found a I-III tran-
sition, which is much less than the reported experimental pressure (10-12GPa, but with
significant hysteresis depending on the transition path), but in accordance to previous
study done using static CO2 molecules.

6.2.1.1 Computational details

We used classical molecular dynamics we used the same the three-site Trasnferable Po-
tential for Phase Equilibria (TraPPE) as [51]: the CO2 molecule was taken as rigid, with
the C-O bond fixed at 1.16Å, and two types of interactions were used: Coulomb and Van
der Waals using the same parameters as in [51]. We used boxes with 864 CO2 molecules,
that is 2592 atoms in total, as a compromise between the precision of the calculations and
their costs.

As mentioned above we used the Path Collective Variable with Permutation Invariant
Vector (2.1.2) as underlying descriptor. We used only the oxygen atoms in the construc-
tion of the collective variable in order to limit the cost of calculation, the carbon atoms
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giving only redundant informationsabout the structure. We used a switching function of
the same shape as presented in (2.1.1) and chose the parameters (n=5, m=10, r0=5Å)
after checking the swithching function with regard to the pair correlation function. This
choice of parameters results in a very smooth switching function able to take into account
the second shell of molecules around the oxygen atom (figure 6.3).

Figure 6.3: Switching function and O-O pair correlation function

All calculations were carried out using GROMACS[100], in the NPT ensemble us-
ing the velocity-rescale thermostat, with a time parameter fixed at 1ps. We also used
a Berendsen [102] barostat with a time parameter at 10ps and a timestep of 0.5fs. The
LINCS [99] algorithm to maintain the rigidity of the CO2 molecule.

6.2.2 Results

In order to prepare the simulations cell, we equilibrated all phases using 5 ns equilibra-
tion simulations every 5 GPa between 1 GPa and 35 GPa both, at 300 K and 600 K
still in the NPT ensemble and starting from either the structures obtained in the AIRSS
search or [159]. Using the relaxed structure, we computed the PIV distances between all
the phases, and we builty a topological map in PIV space of the various phases (figure ??).

The idea of the topological map is to project all structures as point in a plan so that
all the distances between the points in the plane structures is equal to the actual distances
between the corresponding phases. Interestingly we see some ressemblances between the
topological map and the phase diagram of carbon dioxide: we at least expect that the
distances between phases should somehow mirror their ability to transform into one an-
other in experiments. We do find encouraging results in figure 6.4 with phase I be far
from both phases II and IV, with III in the middle of the path between them. This is
nicely relatable to the fact that phases III and VII which share the same structure act
as intermediary in between phase I and phases II and IV. We do find that phase I and
the molecular fluid seem to be far from each other, however, this is likely due to the fact
that the chosen liquid phase was equilibrated at 10GPa, where it is most closely related
t phases IV and VII[6].
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Figure 6.4: Topological map of the molecular crystals phases in PIV space (distances are
normalized with respect to the largest one).

We then focused on the transition between phases I and III, which was already ex-
plored by [51] with the same force field at 350K. We expected this transformation to be
relatively easy to observe as it requires relatively small topological changes. In order to
do that, we started a molecular dynamics simulation accelerated by metadynamics using
the equilibrated phase I at 5GPa and 300K as initial position. We used the equilibrated
phase I and III at the same conditions as references. We used gaussians of 5 kJ.mol−1

and width of 0.01 in the S variable and 0.1 on the Z variable which were added every 500
steps. We used a 0.005fs as in the equilibrations. The temperature and pressure were
maintained at 300 K and 5 GPa, using the same algorithm as in the equilibration as well.

Using this set up, we were able to observe the transition from phase I to phase III
in a relatively small amount of computation time (less than 1ns of simulation), and the
return from phase III to phase I was oberved after a much longer time (∼ 10ns). Using
the coarse results of the exploration of the landscape by the metadynamics, we managed
to reconstruct the free energy landscape (figure 6.5). Comparing the height of the barrier
and the difference in energy between the two phase we observe the same results as [51]: we
find a barrier of ∼1200 kJ.mol−1 between phase I and III, and a difference in free energy
around 800kJ.mol−1. However, we find the transition between I and III in a relatively
straightforward way by simple elongation of the cell along the c-axis and a rotation of
CO2 molecules into a plane and found no evidence of the deffected phase I that was found
by [51], although we cannot exclude that it was not due to the limite simulation time that
we used for this simulation.

Although we were able to repeat the experience at the same temperature and pressure
as [51], we found that at 400 K and above, the simulation would invariably lead the trans-
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Figure 6.5: Free energy landscape of the I-II energy landscape. Phase I is in S=1.1,Z=0
and phase III in S=1.9,Z=0.

form into the molecular liquid phase, even using repulsive bias to avoid this situation.
We found similar sitations when studying the transitions between phase I and phaes II
and IV: in both cases, we managed to observe the transition to phase III at 300K, but
not the transition from phase I to the target phases, nor did we observe a III-II or III-IV
transition. At higher temperature, all transformation lead to the liquid phase, and the
same was observed at all temperature when studying the II-IV transition.

Overall it does seem that the force field is probably the limiting factor. Indeed, al-
though it is relatively accurate to describe the structures of the various phases[6], it seems
to be much less accurate when computing the difference in energy between phases: indeed,
we found that it predicted CO2-II and IV less stable than CO2 over the whole 0-30 GPa
range at 0K, but also more stable than CO2-I up to 0.5 GPa, which is more problematic.
However we cannot exclude that some issues with the metadynamics simulation or col-
lective variable definition may not also be at fault.

6.2.3 Conclusion

Although we only managed to reproduce the results by [51] in so far as we observed the
transition at 300K and 5GPa between phase I and III, it is enough to show that the
combined use of PathCV and PIV is able to efficiently explore the transitions between
bulk structures in CO2, as it was for water [113]. In general our results are in agreement
with those of [51], although it seems that we were not able to find the deffected phases
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proposed in this study.

Although those results are encouraging, more work can be done to further exploit this
method, even with potential limitations of the force field. The FES in the I-III transition
should be more rigorously explored using umbrella sampling for example, and it should
also be worthwhile to compute the height of the barrier between phase I and III as a
function of the pressure.

Finally a methodical analysis of the force field accuracy seems to be needed to go
forward. In this case, as in the case of the liquid-liquid transition.
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Chapter 7

Unsupervised explorations of
configurational space applied to
MoS2 clusters

This project was a follow-up of the work accomplished during a master student project,
in collaboration with a fellow graduate student Sofiance Schaack. The project’s objective
shifted progressively during its progress and it resulted in a paper untitled ”Unsupervised
computer exploration of MoS2 nanoclusters: structures, energetics, and elec-
tronic properties” that is currently submitted to The Journal of Physical Chemistry
C.

7.1 Introduction

In recent years molybdenum-sulfide materials have been widely studied for a variety of
applications, ranging from hydrodesulfurization to transistors. In particular those mate-
rial can form interesting nanostructures with potential exotic properties such as inorganic
fullerenes and nanoplatelets that have either been synthesized or are highly sought after.
This is a strong motivation to study for the formation mechanism of MonS2n nanostruc-
tures, which may help gain insight into the formation of the larger forms, as well as provide
information about the relationship between the configurations and their properties.
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MonS2n clusters where regularly studied in closely with WnO2n clusters due to their
strong chemical similarities. Both of those type of cluster have been the focused of both
experimental [160, 161] and theoretical [162, 163, 164, 165, 166, 167, 168, 169, 170, 171,
172, 173, 173, 174, 175] studies in the past, focusing on the energy stability of the form and
through the investigation of several stochiometries ”magic clusters” ( clusters forms that
are much more stable than their counterpart) where found. Interestingly, their structure
seemed to suggest that those configurations tended to favor over-saturation of sulfur and
monolayer like forms as opposed to 3D arrangements[176] like core-shell structures.

In most previous theoretical studies used methods based on enumeration of chemically
intuitive geometries, using heuristic arguments or similar structures as that of the bulk.
This kind of approach risks missing structure as it lacks objectivity and transferability to
other system with different atomic species, for example. As mentioned in (4.3), the need
for an effective and unbiased search method to search for stable configurations is well ap-
preciated in the condensed matter community[146, 61] in general and in the nanostructure
field in particular [177]. In this respect, two recent studies used evolutionary algorithms
to explore the configuration space of MoS2 [175] (although the search was supplemented
in this case by human-provided structures ex post) and WS2 clusters [174].

In order to supplement this information we present in this project a new exploration
method and apply it to small MoS2 cluster of three different sizes (Mo2S4,Mo3S6,Mo4S8).
Our alternative searching method uses a combination of ab initio molecular dynamics, en-
hanced sampling methods ( metadynamics ) and topological collective variable (SPRINT)
that captures the topological environment of the system along with clustering technique
( using Daura’s Algorithm (3.2.2)).

7.2 Exploration methodology

The method that we used in this project to identify stable clusters can be divided in 6
steps:

• 1 : Sample the configuration space with metadynamics

• 2 : Identify candidate structures

• 3 : Initial relaxation of candidate structures

• 4 : Remove duplicate structures

• 5 : Relax candidate structures

• 6 : Computate of electronic/vibrational/other properties (optional)

The first step is generally the most expensive: configuration spaces tend to be high
dimension landscapes which makes them complicated to explore, and even more so to
sample. Metadynamics can overcome this issue, provided that the time needed to over-
come the various barriers between the configurations is not too high. This tend not to
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be true for bulk materials but it tends to be the case for small clusters, where the com-
putation cost of a single step is small even in an ab initio setting. Another advantage of
metadynamics is that, contrary to many other methods, space is explored progressively
which in turns implies that the the mechanisms of the transitions may be recovered from
the trajectory, or at the very least from subsequent simulations which will benefit from
the data acquired by metadynamics.

It is also important to mention that metadynamics require efficient collective variables
in order to be productive. Such collective variables should properly captures the differ-
ences between various configurations that can be explored by the system. The technique
also needs to be well calibrated, as seen in 4.1.1.

The second step consists in choosing proper candidates that might relax into stable
configurations so as to recover all possible stable configurations (or as many as possible)
and to have the fewer amount of duplicates. For this work, we have essentially used two
different methods that we will detail here.

At the beginning of the project we decided to use a method solely based on the results
of metadynamics. Here the identification of candidate forms relies on the variations of
the bias potential:, as metadynamics fills up free energy wells, we expect that the bias
”felt” by the system increases as the observed configuration have already been explored.
However, when the system falls into another unexplored well, the bias should significantly
drop1. Those drop therefore can be used as a good signal that a new configuration is being
explored. It should be noted that the height of the drop does not accurately represent
the height of the energy barrier between two successive states.

Another effective signal that we used to determine stable configurations is that while
the system stays stuck in a given potential well, the collective variables should do not
significantly, as the system’s configuration does not evolve much (assuming that the col-
lective variables are effective). Therefore, the relative temporal stability of the collective
variables may be used as another sign of stability of a configuration while large variations
of the collective variables are associated with transition states. In practise we used both
this input and that of the drop of the bias potential to determine candidate structures.

Although this method seem appealing and the selection criteria may seem pragmatic,
the application of the method is however, quite costly in human time. The method reqires
that the whole trajectory be manually analyzed, which is fast when only a few wells are
found, however, in practise we found that there could be a huge number of drops in a
single metadynamics simulation, which made it impractical. As we cold not find a way
to automatize this analysis we therefore looked for an alternative.

The second method takes another wholly different approach to the previous one: the
idea here is less to identify potential stable structures, but to provide an efficient tessella-

1In some cases, especially after long simulations, wells may be filled without being explored due to
the spread of the gaussians
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tion of the explored space loosely based on the local explored point density. In our case,
we used Daura’s clustering (cf 3.2.2) algorithm in order to do so. As the metadynamics
will result in higher density of points in the region where deep free energy wells were
observed, corresponding to stable structures, the tessellation should roughly be able to
follow the landscape and the cluster center can then be used as candidate structure for
relaxation. In order to do so, the dc parameter needed to be adjusted so that to limit
the number of duplicates (and therefore useless relaxations) but also not large enough as
to lose potential candidates. The advantage of this approach is that it requires relatively
little intervention from the user while still being effective.

Once candidate structures have been chosen, we used a two step geometric relaxation.
The purpose of this two step optimization is to save time as the first relaxation is coarse
and threfore fast, and aims at roughly finding the nearest well, while the second step is
here to fully equilibrate the remaining structures and is more expensive and more precise.

This two step process, although not necessary, has the advantage to cut down on com-
putation time as structures that may originally look different may fall inside the same well
and be caught as duplicate at an earlier point. It is also possible to automatize the search
for duplicates by discarding all structures which distances in collective variable space and
difference in energy are both below user-defined cut-offs. Once the final relaxation step
is completed, it is finally possible to compute the properties of the system.

7.3 Computation details

In order to explore the configuration space ab initio molecular dynamics calculations ac-
celerated with metadynamics [133], at the DFT level of theory. We ran several simulations
for each of the three distinct MonS2n configurations (n = 2, n = 3, n = 4 ) of interest.
We ran at least five different simulation per cluster size, aiming for simulations longer
than 100ps. Originally, we used the Quantum Espresso code [178], but as the scaling was
not satisfying for the ab initio molecular dynamics/metadynamics part, we switched to
the CPMD[157] code. In this chapter we only present the results obtained with CPMD.
Metadynamics algorithm was implemented through the PLUMED[112] plugin, using in
both cases version 1.3.

The simulations were done in the Born-Oppenheimer approximation[68] with a timestep
of 1fs, the cut-off for the wavefunction was put at 120Ry and we used a convergence
criterion of 10−5Ry for the self-consistent cycles. We used Perdew-Burke-Ernwerhof
(PBE)[179] functionnals employing Goedecker-Teter-Hutter[180, 181] pseudopotentials to
describe core electrons. Although several box sizes were tried, our results were obtained
with cubic cells of 12Å side. Temperature was maintained around 600K using a Nose-
Hoover thermostat with a cut-off frequency of 1500cm−1.

The total trajectory lengths for each cluster size are: 250ps for Mo2S4, 900ps for Mo3S6

and 1200ps for Mo4S8, amounting to a total simulation time of 2.35ns. Note that several
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calculations did not reach the 100ps objective because the calculations stopped because
the calculations stoppped (in general the system either dissociated or the configuration
obtained was too high in energy to be solved by the software). The resulting trajectories
were kept and a new calculation was in this case re-launched from the final configuration
(or in some cases, a configuration obtained a few steps prior), with all bias removed.

For the metadynamics part of the calculations we used the SPRINT[55] collective vari-
ables (cf 2.1.1) using the following switching function:

σ(di,j) =
1−

(
dij
d0

)n
1−

(
dij
d0

)m (7.1)

The parameters of the switching function were estimated using the pair correlation
function for each cluster size. This pair correlation function was obtained through a 2ps
ab initio molecular dynamics simulation without bias.

For all cluster size we chose the following values: d0 = 4.5Å, n=8, m=24, so that
the network would account at least for the second shell neighbors. We fixed the height
of the gaussian potential bias as H = 0.04eV, the width as σ = 0.7, the gaussians were
deposited every 10fs. Those parameters were chosen using small test runs, insuring a
good compromise between exploration speed and stability of the simulation.

All the obtained trajectories were concatenated for each system size to obtain a final
meta-trajectories (lengths are given above). Daura’s algorithm was then used on each
of the meta-trajectory in order to get a tesselation of the collective variable space using
the piv clustering code[54]. Due to memory limitation inherent to the implementation,
we divided each meta-trajectory into smaller size samples of 250ps. The choice of the dc
parameters was made so that a few hundred of cluster centers emerged per cluster size. In
order to account for the increase of dimensionality of the CV space with size, the values
of dc were increased for larger system sizes: dc = 0.3 for Mo2S4, dc = 0.6 for Mo3S6 and
dc = 1.2 for Mo4S8. The cluster centers were then used as potential stable structures and
relaxed.

The candidates structures were first in a two step method as described above, and the
duplicates where filtered out of the remaining structures based on structural and energy
similarity. A second, more stringent relaxation step was then done, in order to fully equi-
librate all structures, so as to be able to compute electronic or vibrationnal properties if
need be.

Both relaxations were run with the Quantum Espresso code [178], using ab initio calcu-
lations at the DFT level of theory and Perdew-Burke-Ernwerhof (PBE)[179] functionnals
and Rappe-Rabe-Kaxiras-Joannopoulos ultrasoft pseudopotentials[182] in cubic box of 15
Å side. For the first relaxation, we used a cut-off of 60Ry on the kinetic energy for the
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wavefunction and 720Ry, while we used a cut-off of 120Ry for the wavefunction and 1440
for the density for the secondary relaxation. In both cases we used a convergence criterion
of 10−3 a.u. on the forces to obtain the final geometries. Spin polarization effects were
taken into effect only in the last relaxation, in order to compute magnetization of the
clusters. In order to compute the binding energy, single SCF were run for a single atom
of Mo and S in the same conditions as the secondary relaxation, in order to compute the
energy of isolated Mo and S atoms in a box of 15Å.

7.4 Results and discussion

Following this method we identified 109 stable clusters: 14 structures for Mo2S4, 27 for
Mo3S6 and 68 for Mo4S8. For each of the clusters we computed the binding energy (BE),
Highest Occupied Molecular Orbital -Lowest Unoccupied Molecular Orbital energy gap
(HOMO-LUMO gap) and magnetization (µB). In the context of this work, the binding
energy (BE) was defined as follow:

BE =
nE(Mo) + 2nE(S)− E(MonS2n)

3n
(7.2)

Where E(Mo) and E(S) are the energy of the isolated Mo and S atoms, respectively,
and E(MonS2n) is the energy of the relaxed cluster. This is strictly equivalent to study
the stability of the cluster with regard to a fully dissociated system, and is most widely
value used to compare the energies of clusters in the literature as it allows to compare the
energies of configurations of different sizes.

We used this metric to sort the clusters energetically in each cluster size so that for
each size n, we identify them as n.rankn. For example the 5th most stable structures of
Mo3S6 size is referred as 3.5. For each size, the eight most stable structures and their
properties ( BE, HOMO-LUMO gap, and magnetization µB) are presented in figure 7.2.

The observations of the most stable structures the results found in previous works
[175]: for n = 3 and n = 4, the most stable candidate has the form of the 1T monolayer
phase of MoS2. We further observe a clear tendency to form platelets instead of core-shell
structures.

We also find several structures similar to those predicted using an evolutionary algo-
rithm on WS2 clusters[174] and we are able to recover all previously predicted structures
of the litterature [175]. We signal on figure 7.2 the structures that were previously found
using colored circles: green for structures found in studies where MoS2 structures were
the focus and orange in the case of WS2 clusters. Blue circles indicate the presence of a
bulk-like structure.

In addition to the eight most stable structures we also present in figure 7.2 several
motifs that are shared by many of the stable configurations (indicated by colored squares
in the same figure):

Mathieu Moog 113 Mémoire de Thèse
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• an Mo centered tetrahedron (blue square)

• a five member ring with three Mo atoms (two of them bonded), two S atoms and
an capping S atom (violet square)

• an 3 or 4 member ring of Mo atoms (green square)

We also showcase several interesting, albeit less stable, forms in figure 7.2 that stand
out from the others by their symmetry or specific shapes. Notably we observe:

• two very symmetrical structures (2.10 and 3.10 )

• a ring-like structure (2.13 )

• the begining of a 1D structure (3.10 )

• an S-S-S chain on an otherwise stable structure (4.20 )

• a platelet-like structure that does not match the proposed structure of the monolayer
phases 1H nor 1T (4.21 )

Another interesting aspect is the evolution of the energy as a function of the size of the
forms as presented in figure 7.1. The main aspect that is visible is that globally, the larger
structures tend to be more stable than their smaller counterpart. We also note that the
most stable structure of Mo3S6 is separated by a relatively large BE gap (0.1eV) to the
next most stable cluster (the same difference is of 0.028 for Mo2S4 and 0.017 for Mo4S8).
The same type of gaps between successive structures is however observed in Mo2S4.

Figure 7.1: Evolution of the binding energy (in eV) of the most stable configuration
with increasing size (in MoS2 units) in red, along with the binding energies of all stable
structures (blue).

It is not generally straightforward to compare our results with published results as
various functionals and/or optimization scheme were used. We do observe however that
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our ranking matches those presented in [175]. The single exception occurs for two struc-
ture whose BE difference is very small (0.02eV) and is thus more likely due to the use of
the differences in computation scheme mentioned above.

We observe the same kind of results while comparing the HOMO-LUMO gap and
magnetization of all clusters. We find a good general agreement with other publications
when determining whether or not structures are magnetic or non-magnetic, but we find
different values of magnetization. The same kind of agreement is found for the HOMO-
LUMO gaps, where we have a general agreement in the order of magnitude, but where
large variations are observed in the difference between our results and those of other stud-
ies. Both of those properties being highly dependant on the description of the electronic
structure those discrepancies are expected due to the fact that different ab initio schemes
have been used.

We note that DFT corresponds here to a good compromise between precision and
computational cost for the exploration and geometry optimization, to uncover the sta-
ble structures. However, if one is interested in the electronic properties, it is likely that
a much more demanding computation method (such as RPA, Coupled Clusters, etc...)
should be used.

7.5 Conclusion

Although the method that we propose here is very promising and yielded interesting re-
sults, it is i,portant to point out some limitations and areas where further work may be
necessary. The main cost of the method comes from the metadynamic. This means that
the main computation limitation is the ability to carry out ab initio molecular dynamics
simulations long enough to allows if not all then most of the configuration space to be
explored. The scaling of the method is therefore very much that of DFT and this means
that it is highly dependant on both the system’s size (in terms of electrons) and that
of the cell. It is also necessary to point out that the size of the configuration space to
explore should increase with the size of the system, although the exact scaling is not easily
computable.

Despite the aforementioned limitation, in this project we have showcased an effective
exploration method combining ab initio calculations, enhanced sampling and clustering
algorithms . We demonstrated the effectiveness of this method on MonS2n nanoclusters:
we were able to not only recover all previously found structures but also to find new ones
without making any guess as to the structures of the stable forms. We find excellent
agreement with those of a similar study using evolutionary algorithm [174].

In terms of the cluster themselves, further work may be done by analyzing the various
transitions between stable structures, especially close-lying ones that are near the mini-
mum of energy. More involved calculations may also be performed in order to get more
precise values for the electronic properties such as the HOMO-LUMO gap and magneti-
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zation.
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Figure 7.2: Most stable configurations and associated binding energy, HOMO-LUMO
gap and magnetization (n=2:top-left; n=3:top-right and n=4:bottom-left), and less sta-
ble but nevertheless interesting structures found for all sizes (bottom center, along with
their physical properties). The bottom-right part lists the recurrent motifs and the color/-
type code indicating the presence of the motifs and/or whether or not the corresponding
structure was already found in a previous work.
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Chapter 8

Boosting Ab Initio Random
Searching of Structures

This project was conducted by Gabriele Mogni and supervised by F. Pietrucci. The
author contributed to the project as advisor mostly on the use of the AIRSS method, ran
some of the calculations and by proposing a convergence criterion (see below) for the ex-
ploration method. This projects has lead to a paper that is currently being written and
tentatively untitled: Understanding the topology of energy landscapes explored
by crystal structure prediction algorithms.

8.1 Context

As mentioned in 4.3.1, there is currently a lot of scientific effort invested in the elaboration
of structure search algorithm. The Ab initio Random Structure Searching (AIRSS) [61]
is one of the most famous method that was created for this very purpose. This method
(which has been described in 4.3.1), although very efficient, suffer from a number of
drawbacks:

• Poor scaling: the method scales relatively poorly with the size of the system, as
it relies on the ability to perform a large number of geometric relaxation with ab
initio calculation. As this type of calculations scale with the number of electrons,
the cost of the method makes it impracticality for systems larger than a few atoms
per unit cell, especially if the atoms have large atomic number. This is amplified
by the dimensional scaling of the configuration space with the number of atoms,
implying that not only are the unit calculations more expensive but one needs of
much more of them to recover a large number of stable configuration as the system
grows.

• Absence of stopping criterion: the method does not provide a clear criterion
to stop the search. Indeed, the proposed method proposes to stop when the user
deems that a large enough number of structures have been relaxed.

The aim of the project was therefore to improve on both of the limitation, using the
case of high pressure silicon phases (around 1GPa) as a test case. This test system pre-
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sented the advantage to be relatively simple in terms of number of atoms (one type of
atoms, few atoms necessary) and has been extensively studied, which allows us to have
some reference points [61, ?, ?].

8.2 Preliminary analysis

In order to study the effectiveness of AIRSS, we started by generating 20.0000 struc-
tures containing 4 atoms of Si in a cell whose volume was fixed either around 60Å or
80Å, in order to have some enough data to compute statistics about the method. The
structures were relaxed using the quantum espresso software[178] system ).We used PBE
functionnals[72] and Ultrasoft Vanderbilt pseudopotentials[183], the cut-off for the kinetic
energy of the wavefunction was put at 150eV and k-point spacing of 0.03Å−1. All struc-
tures were then optimized at a simulated pressure of 1GPa.

An overview of the results of the relaxation is presented in figure 8.1 where we show
the distribution of the structure as a function of the volumes of the relaxed structures as a
function of their enthalpy. The range of volumes for the stable phases is large as indicated
in previous work[61], some phases having very similar volumes :simple hexagonal, beta-tin
and Imma around 60Å3; while other have widely different volumes: cubic diamond around
80Å3 and I4/mmm around 85Å3 (figure 8.1). The range of energies is also very large with
a difference of 0.6 eV between the most stable structure (cubic-diamond) and that of
the highest energy structure associated with a target phase (Imma) (figure 8.1). We
also observe that the Imma phase has an interesting distribution of the volumes ranging
from 80Å3 for the most energetic one to just under 60Å3 for the most stable one (figure 8.1.

We first tried to see if there was underlying information about the underlying FES in
the topology of the random structures. In order to do so, we computed the probability
that a given structure relaxing into a given Si4 polymorph is neighbor to another structure
relaxing to the same polymorph within a given distance in PIV (cf 2.1.2) space for 5000
randomly chosen structures out of the original 20000 set of randomized structures. In or-
der to have proper values of distances, we used 3x3x3 supercells of the orignal randomized
structures, and we repeated the analysis for 4 of the 5 polymorphs of interest.

For the computation of PIV we used a switching function of the form:

σ(di,j) =
1−

(
di,j
d0

)n
1−

(
di,j
d0

)m (8.1)

where di,j is the distance between atoms i and j, d0, n and m are free parameters
allowing to tweak the range of distances of interest. In our case, we chose d0 = 4Å,
n = 4 and m = 8, corresponding to a switching function capturing the at least the second
nearest neighbor layer of atoms for each atoms.
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Figure 8.1: Enthalpy per atom in eV as a function of the volume for each relaxed structures
found using the AIRSS method. The corresponding values of the energy in temperature
are shown on the left y-axis in K. The number in the parenthesis relates to the number
of structures that relaxed into the target phases.

The results show that when no relaxation is done, there is in fact very little infor-
mation that is contained in the topology of the system. However, we see that even with
short relaxations, we start to see important correlation between the structures, although
this varies widely from one structure to the next.

The main point to take from this results is that the structural properties alone of
the initia configuration does not contain any clue about the underlying energy landscape.
However, we are only using half of the available information: indeed, whenever we gener-
ate a given configuration we can compute its energy as well, which when combined with
the topological distances between phase may yield more results. We tested this hypothesis
by computing the distance PIV of every structure to the lowest energy ones as a function
of the difference in energy between them (figure 8.3).

In figure 8.3 we see the progressive sampling of structures, from 5k structures in the
top panel to 20k in the bottom one, and we see that some sort of tail emerges, point-
ing towards the origin. This tail indicates that at 20K structures, the energy well of
the cubic-diamond phase (that is, the structure associated with the lowest energy in the
sampling) starts to be sampled with many different structures (figure Ṫhe existence of
this tail may be used as a visual criterion that the configuration space is correctly sam-
pled, and so to provide a stopping criterion assessing that the landscape has been explored.
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Figure 8.2: Fraction of structures within a given PIV radius of a structure that relax into
the target phase. The progress of the relax is measured on a scale of the maximum of 50
step of relaxation that were allowed (20% means 10 relax step).

What is more, this results seems to indicate that by simply evaluating the energy of
the initial structure and the distances between them in PIV space, it might be possible
to drastically reduce the number of relaxation necessary to find the relevant (meta)stable
structures, therefore adressing the first limitation of AIRSS. Indeed, using only local eval-
uation of the energy, it seems to be possible to find at least some stable structure and to
sample the landscape. As those evaluations are exptected to be cheaper than geometry
optimization, this may cut computational cost significantly.

The second limitation of AIRSS was the stopping criterion indicating that the explo-
ration had converged. In principle it is impossible to know when all minimum have been
found, however it may be possible to find a weaker criterion assessing that the method
has arrived to the point where it finds only structures that have already been found. The
tail in figure 8.3 could be used as such a criterion but it is mostly a visual one and can
be complicated to use.

In order to overcome this, we propose to use the variation of the Density Peak Cluster-
ing (cf 3.2.3) The idea here is to use the energy (ρ) as the density in the original algorithm,

Mathieu Moog 121 Mémoire de Thèse
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Figure 8.3: PIV distance to the most stable structure as a function of the difference of
energy with the most stable structure, for three sets of random structures: 1000 structures
(top), 5000 structures (center), 20.000 structures (bottom). The colors corresponds to the
final structure that the random structure relaxes to: green for simple hexagonal, red for
cubic diamond , blue for Imma , orange for beta-tin , black for I4mmm . Grey dots
correspond to points that relaxes to phases other than the five main reported phases.
The range of energy has been cut to contain only structure within 0.5eV from the most
stable one.

and distance to the closest point of higher density (δ) by the PIV distance to the closest
point of lower energy.

In doing so, and following the same procedure as described in (3.2.3) to find extremum
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Sorbonne Université IMPMC

in sampled landscape, it should be possible to identify the stable candidate structures.
However, and more to the point, one can imagine that the decision diagram of this method
should progressively converge as the more and more structures are added corresponding
to sampling of the configuration space.

Figure 8.4: Decision diagram related to the progressive sampling of the configurations
space of Si crystals: for each of the 1000 best structures for each of the set of 1000,5000
and 20000 structures, the difference of enthalpy with regard to most stable structure for
each stable structure is shown as a function of the PIV distance to the nearest structure
(in terms of PIV space) of lower enthalpy

In this regard, we show in figure 8.4 that we find that the decision diagram inded
seems to converge. This is a good sign that this diagram may be used as a stopping
criterion. Although not all stable phases were found systematically found by the Density
Peak Clustering method, the convergence criterion still worked even in those cases.

In conclusion, we therefore have of two methods that could adress of limitations of the
AIRSS and we therefore can propose a modified version of the AIRSS that we will call
AIRSS-Boost.

8.3 AIRSS-Boost methodology

Using the conclusion of the preliminary analysis, we can combine the elements of sampling
and the decision diagram-based convergence criterion to implement a modified AIRSS
algorithm that can be summed up as follows:
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• Generate a large amount of initial configurations (∼ at least several hundreds) and
evaluate their enthalpy.

• Compute the decision diagram of the set

• Repeat step 1 and 2, until the position of the cluster centers in 2 converges.

• Remove potential duplicate structures, keep only the structures within a given en-
ergy range of the most stable one

• Relax of the remaining structures

• Computation of the material properties of interest

From that point, the main question that remains is the potential gain in computa-
tional cost of the method compared to standard AIRSS. Indeed, it is still possible that
scanning properly the phase diagram may prove to costly, especially in high dimension
space, while random structure relaxation may require less simulation to converge.

8.4 Comparative results

In order to compare the efficiency of both methods, we computed the probability for each
method to have found 4 of the target structures (one of the stable configuration was ig-
nored as it was found to be very difficult to find) for a given amount of computing hours.
The resulting graphs are shown in figure 8.5 where the both methods are compared for
three different number of initial configurations for AIRSS-boost: 5000,10000 and 20000.

The probability here is computed by evaluating the average frequency that a given
AIRSS/AIRSS-boost method would have found all structures for the given amount of
computing hours.

From figure 8.5 it seems that the methods start fairly even in terms of results for 5000
initial structures but that by increasing the number of initial structures in the sampling,
the AIRSS-boost method gains a significant advantage over the standard AIRSS method,
by a factor of 2 in terms of computing hours. An alternative AIRSS-boost methods, where
the Daura algorithm was used in order to select the potential candidate structures is also
used, but its results are at least equivalent, if not worse than that of the AIRSS-boost
method.

8.5 Conclusion

Although most of the results that we obtain seem very encouraging, there is still much
room for progress. First, the issue of the scaling of the method is not solved by the
method, indeed, as the number of ab initio increases, the poor scaling of this kind of
calculations for heavy atoms or in the cases where magnetism is present may still heavily
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Figure 8.5: Probability that the four target structures are found as a function of the
computing hours for AIRSS, AIRSS-boost (A) and AIRSS-boost with Daura Clustering
(E) for three different amount of initial configurations. The initial cost of the scanning is
indicated by dotted lines.

impact the cost of the method. Second, as mentioned before, this method may not be
efficient in cases where the energy landscape contains a large amount of wells with small
spatial extent, which would make them complicated to spot by the random sampling.

It is therefore important to test this method on a more complex (and/or heavy) sys-
tem, and compare the results with the standard method of AIRSS. Regardless, the results

Mathieu Moog 125 Mémoire de Thèse
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contained within this project shade new light on AIRSS and on its efficiency which should,
if nothing else, at least contribute to a better understanding and use of this method. Fur-
ther, a stopping criterion is established that can be used on either methods, proposing a
solution to one of the two main issues reported at the beginning of the project.
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Conclusion

This work focused on the transformation of carbon dioxide under extreme pressure (be-
tween 1 and 70GPa), corresponding to those of the lower mantle of Earth. We mostly
focused on the progressive transformation of the molecular liquid into a polymeric liquid
under geological conditions. We show that the polymerization of the molecular liquid
results in two different polymeric fluid behaviors, one highly reactive, one amorphous-
like. In addition, we show that the molecular liquid transforms progressively into a highly
reactive liquid molecular liquid, that forms in conditions where carbon dioxide is likely to
form in the lower mantle.

We also present two satellite projects focused on the creation or refinement of meth-
ods of search of structures, the first on nanoclusters of MoS2, the second focusing on bulk
material with the example of high pressure silicon. Both of those methods show great
promise for future applications.

Apart from those applications, one the most important aspects of this work (in terms
of time allocated to it) was the developpement of methods for analyzing the local envi-
ronement of atoms. We introduced new methods in order to analyze the bonds between
atoms using the Electron Localization Function, that prove extremely useful to provide
an criterion based on the density to check wether or not bsome atoms are bonded. Those
methods may also be viewed as potential starting ground for electronic-based collective
variables for ab initio simulations: indeed, it seems feasible from this work to build a
contact matrix containing ELF information rather than about distances between atoms.
We also showed that clustering algorithm may be applied to specific local descriptor to
divide them intro groups based on their local topology. Finally we point out that using
both ELF and clustering may be another good starting point to build better analysis tool.

We also present a first succesfull application of the Markov State Model to the kinetics
of atomic states, giving us important clues about the chemistry of the polymeric fluid.
The results of this methods are very promising. Other applications of Markov Models
that can be proposed from this study include the use of Hidden Markov State Models to
also analyze the bonds in a system, using the large amount of statistics to guess the most
likely sequence of bonding states corresponding to the observed distances.

Overall, we presented in this work the results of three years of work, focusing mainly
on the transformation of carbon dioxide at high pressure and high temperature, but also
on many satellite projects(some of which are presented in the appendices), which are
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1 all linked together by the conception of methods to analyze the behavior of complex
molecular systems and the exploration of high dimensional landscapes associated with
their configuration space.

1almost
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Appendix A

Polymeric Crystalline phase V

Figure A.1: Structures of phase I42d and Pna21

In 2016, Yong et al[48] used ab initio molecular dynamics accelerated by metadynamics
in order to explore the landscape in the high pressure conditions where CO2-V was found
stable and propose alternative structure for phase V than the one currently accepted as
best candidate [32]. In order to do so, they launched ab initio molecular dynamics calcu-
lations accelerated by metadynamics from the mechanically unstable structure originally
proposed as a candidate for phase CO2-V by Yoo et co-workers [25, 26], using a similar
metadynamics algorithm as [59] which used the cell parameters as main collective variable.

From those calculation they found a new non-molecular and stable crystal phase, that
they compared with the experimental X-ray diffraction results of CO2-V. In order to put
to the test the new structure as a candidate for CO2-V we computed its raman spectrum,
along with that of the commonly accepted I-42d structure. The configurations were first
relaxed using the quantum expresso[178] code pw.x, and we then computed the raman
spectrum from the resulting structures using the ph.x and dynmat.x codes of the same
software.

Interestingly, the structure Pna21 would not automatically relax into the rapported
structure unless we restricted the relaxation to orthorombic symmetries. Indeed, it would
otherwise results in a slightly more stable structure featuring a slightly non-orthorombic
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cell.

Once properly optimized at 40 and 50 GPa and we were able to compute the spectrum
of both phases at those two different pressure. We report the results in figure A.2 for the
50GPa ca1se.

Figure A.2: Experimental spectrum from CO2-V compared with theoretical predictions
for structures I-42d and Pna21. Figure extracted from[184]

The resulting spectra seem to indicate that phase Pna21 does not faithfully reproduce
the results, predicting many peaks that do not appear in the experimental spectrum, while
I-42d seems to reproduce the experimental data. This piece of evidence, compounded with
other remarks resulted in a comment[184] on the original paper [48] written by F. Datchi.

An answer was given to the comment[185], proposing a shifted spectrum for phase
Pna21 (that still did not account for the experimental spectrum) and precised that the
proposed phase Pna21 was not actually proposed as a candidate for CO2-V but as a can-
didate for another extended stable phase for high pressure CO2-V.
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Appendix B

ELF in the middle: Application to
Glycine solvated in H2O

??
Here we present an small extension of our work similar to that presented in 5, in the

analysis of the bonds in the system using the value at the middle of the distance between
two atoms to determine whether or not they were bonded. We apply the same method-
ology on a system with a more atomic types, containg not only carbon and oxygen but
also nitrogen and hydrogen.

We used data from a very short simulation of a glycine in water, computed by An-
drea Perez-Villa during the course of her work in the team on pre-biotic chemistry. The
software used was CPMD[157] both for the short trajectory and the ELF. The system
contains an intermediate state to the formation of glycine from CH3-NH2 (methylamine),
a CO2 molecule and 80 water molecules.

The results of the analysis of O-H, C-O, C-N, N-O bonds are visible in Figure B.1.
As the system does not evolve a lot during the very short trajectory, not much bonding
change happends, however, there are still some point of notes.

On the O-H density, we can clearly differentiate between bonded hydrogen (d <
1.2Å)and non-bonded hydrogen (d > 2.5Å ), and although the ELF still is able to in-
dicate a clear difference between bonded (ELF > 0.5) and non-bonded state (ELF < 0.4),
the difference between the two states seem much less clear on the extreme than what was
found in CO2. Furthermore a middle region between 1.5Å and 2.5Å appears, although
it is much less clear than the two others. Its ELF values are relatively high, or at least
higher than those of the non-bonded states: 0.2<ELF<0.8 and it seems to indicate some
sort of intermediary bonding state. It is very likely that this region signals hydrogen
bonding, due to those characteristics. This analysis is the also true for the N-H bonds,
where the same intermediary region appears.

For both C-N and C-O bonding, we mainly see the bonding states, but we do see that
they are both also signaled with high value of the ELF (ELF > 0.5) although, we do see
that the spread of ELF may not allow the ELF as the only criterion for bonding. As it

132



Sorbonne Université IMPMC

Figure B.1: Heatmap detailing the distribution of ELF value in the middle of the bond
between various types of atom as a function of the distance between those atoms: O-H
(top-left), C-O (top-right), C-N (bottom-left), N-H (bottom-right)

stands, and given our results for CO2, there are two explination that are not mutually
exclusive: the limited meshing of the ELF implies that we may miss the exact middle
point, and in so-doing have a lower value than that of the actual middle point if it would
have been sampled; the middle point value of the ELF between two atoms does may
not contain enough the information about the bonding state, the maximum being shifted
closer the either of the O or N atoms.
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Appendix C

Test of the Permutation Invariant
Vector (PIV)

During the course of this thesis we wondered if we could find a way to test the validity
of a collective variable using the results from molecular dynamics simulation. One of the
answer that we found was inspired by the analysis done in 8, to analyze the distribution
of points in a plane with the differences in energy on the one hand and PIV distance on
the other.

The rationale is the following: if the metric is valid, for small PIV distances (that is
structures that should be very similar) there should not be very large difference in energy
between the structures. We also would assume that this difference in energy should in-
crease if not linearly at least smoothly with the PIV distance between structures.

In order to test the Permutation Invariant Vector with this method we computed the
PIV distances between all pairs of structures (using piv clustering [54]) in two different
ab initio molecular dynamics simulations of liquid CO2. Those simulation are a good test
as they present two type of very different behavior: a molecular liquid on the one hand
and a polymeric liquid on the other. Further, as PIV is reputed to be more efficient when
long range environment is taken into account those systems being small (the simulation
box is cubic with sides of less than 10Å long) also constitute very difficult case for the
metric.

In C.1, the results show the results of the analysis for various parameters of the
switching function:

σ(di,j) =
1−

(
di,j
d0

)n
1−

(
di,j
d0

)m (C.1)

We see that we see that the metric work particularly well in the molecular liquid
case, where the maximum energy difference increases almost linearly with increasing PIV
distance, at least in the case of moderate PIV distances. The results are still overall good
in the case of the polymeric liquid, although the increase seem much more abrupt than
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Figure C.1: PIV distance between all pairs of structure as a function of their difference
in energy (in eV/CO2). Top in the molecular case (3000K,∼ 30GPa), bottom in the
polymeric case (3000K,∼ 70GPa)

in the molecular case. Another conclusion is that at least in the molecular case, a proper
choice of the switching functions parameters is very important in order to obtain good
results.
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Appendix D

NH3-H2O Ima2 under high pressure

This project is a follow-up on Adrien Mafety’s PhD thesis, which focused on the study of
ammonia and water mixes under very high pressure (40-150GPa). Although we reintro-
duce some context, we redirect the reader to his thesis [53] or the one of Jean-Antoine
Queyroux [186] for an experimental point of view of the same systems.

In this project we studied a specific phase made of a mixed molecular ice of NH3-
H2O. This kind of system is of high interest in the experimental high pressure field as
such mixed crystals may be found on planet-like bodies such as Titan [187] and Encelade
[188]. Therefore understanding the structure and properties of those phases may prove
invaluable in order to further our knowledge of those celestial bodies.

In this small chapter, we focus exclusively on a theoretically predicted phase Ima2.
This phase, which is visible in figure D.1 was obtained by Adrien Mafety through the use
of AIRSS (cf. 4.3.1), and it was predicted to be the most stable phase of the mix above
50GPa at 0K.

This phase exhibit an interesting structure where H2O molecules are arranged so that
they form a zig-zag line, with hydrogen almost shared between two successive oxygen.
During the course of [53] it was found that the O-H-O distance would symmetrize start-
ing at 80GPa. This symmetrization is of high interest as it may lead to exotic properties.
The objective of this projet was therefore to study this symmetrization in order to find
spectroscopic markers of this transition that could be observed experimentally.

In order to do so we relaxed the Ima2 structures at pressures ranging from 50 to
125GPa using the pw.x code in the Quantum Espresso [178] and then the infrared and
Raman spectrum using the ph.x and dynmat.x codes of the same software. The calcula-
tions were made at the DFT level of theory using PBE functionnals and Vanderbilt[183]
pseudopotentials from the Quantum Espresso pseudpotential library[178], the electronic
convergence threshold was put at 10−12, and we used a cut-off on the kinetic energy of
100 Ry for the wavefunction and 800 Ry for the electronic density. The results are shown
in Figures D.2 and D.3.

In order to analyze the signature modes of the symmetrization, we tracked the resulting
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Figure D.1: View of the NH3-H2O Ima2 crystal phase. Oxygen are red, hydrogen are
cyan, nitrogen are violet
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Figure D.2: Infrared spectrum of the NH3H2O Ima2 phase as a function of the pressure
(GPa)
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Figure D.3: Raman spectrum as a function of the pressure in GPa. The signature modes
of the transition are colored for the non-symmetric phase (green) and symmetric phase
(orange and red)

modes and found one mode that disapeared with the simmetryzation (green in D.3) and
three other that appeared with it. Interestingly, all three modes that appear with the
symmetrization share the common feature of vibrations on the O-H-O line: the oxygen
atoms vibrate perpendicular to the H-O-H plane, alternating direction along the line as
in figure D.4.

Another potential interesting aspects is the evoltion of the frequency of the modes of
the structure with increasing pressure, as in figure D.5. Aside from the apparition and
disapearing of the signature mode we do not find in the raman spectrum, any change of
slope in the modes, which could be used as a signature of the transition.

The infrared spectrum does not give much information about the transition, contrary
to the raman spectrum. The one exception being a change of slope in the dispersion rela-
tion of a stretching mode (see Figure D.6) at the transition pressure for a specific mode.

We therefore find specific vibrational signals that identify the symmetrization of the
Ima2 phase, that can be experimentally measurable. Although theoretical calculations
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Figure D.4: Visualisation of the signature mode (k ∼ 600 cm−1 ) of the transition in the
raman spectrum. Oxygen atoms are in red, nitrogen are violet and hydrogen cyan. The
green arrow represent the forces.

Figure D.5: Frequency of the Raman modes of Ima2 in the 0-1200 cm−1 region as a
function of the pressure.

predict that the Ima2 phase is the most stable structure over 50GPa for NH3-H2O crystals,
no experiments have currently been able to find any experimental evidence of its existence.
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Université, Sep. 2018. [En ligne]. Disponible: https://tel.archives-ouvertes.fr/tel-02137552

[53] A. Mafety, “Ab initio study of fluorinated and monohydrated ammonia ices under
extreme thermodynamic conditions,” Theses, Université Pierre et Marie Curie - Paris VI,
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[150] J. Schlitter, M. Engels, and P. Krüger, “Targeted molecular dynamics: a new approach for
searching pathways of conformational transitions,” Journal of molecular graphics, vol. 12,
no. 2, pp. 84–89, 1994.

[151] H. T. Stokes and D. M. Hatch, “Findsym: program for identifying the space-group sym-
metry of a crystal,” Journal of Applied Crystallography, vol. 38, no. 1, pp. 237–238, 2005.

[152] M. Martinez-Canales, C. J. Pickard, and R. J. Needs, “Thermodynamically stable phases
of carbon at multiterapascal pressures,” Physical review letters, vol. 108, no. 4, p. 045704,
2012.

[153] C. J. Pickard, M. Martinez-Canales, and R. J. Needs, “Decomposition and terapascal
phases of water ice,” Physical review letters, vol. 110, no. 24, p. 245701, 2013.

[154] ——, “Density functional theory study of phase iv of solid hydrogen,” p. 214114, 2012.

Mathieu Moog 150 Mémoire de Thèse
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