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Abstract

The renewed importance of decision making under uncertainty in practical applications of
machine learning calls for a re-evaluation of Bayesian inference techniques targeting this
goal in the big data regime. Gaussian processes (GPs) are a fundamental building block
of many probabilistic kernel methods that can be applied in a large variety of modelling
scenarios; however, the computational and storage complexity of GPs presents the primary
barrier to their scaling to large modern datasets.

The contributions presented in this thesis are two-fold. We first tackle the problem of
preserving good predictive performancewhile enabling GPs to be applied to larger datasets
by proposing a novel scheme for accelerating regression and classification by way of pre-
conditioned conjugate gradient. This approach is exact in the limit of iterations, and is
consequently the best alternative to exact GP inference when Cholesky decompositions
are no longer feasible. The presentation of this methodology is complemented by a thor-
ough analysis of how to design and select suitable preconditioners for this purpose. In the
spirit of probabilistic numerics, we also show how the numerical uncertainty introduced
by formulations of GPs relying on approximated linear algebra should be adequately eval-
uated and sensibly incorporated.

The resilient appeal of models relying on Bayesian inference in the advent of compet-
itive deep learning techniques can be attributed to their well-founded quantification of
uncertainty. Bridging the gap between GPs and deep learning techniques remains a per-
tinent research goal, and the second broad contribution of this thesis is to establish and
reinforce the role of GPs, and their deep counterparts (DGPs), in this setting. The AutoGP
model outlined in this thesis sets a new standard for evaluating the performance of GPs
in comparison to deep models, and the results obtained on several benchmark datasets are
considered to be state-of-the-art among competing GP models. Meanwhile, the scarce use
of DGPs within the wider machine learning body can be partly attributed to the fact that
they are still widely regarded as interesting theoretical constructions with limited practical
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appeal. In this thesis, we exploit the connection between neural networks and GPs by way
of random feature expansions to develop a practical and scalable algorithm for learning
DGPs. The proposed DGP model can handle significantly more layers than are usually as-
sumed within the literature on DGPs, while also being scalable to large datasets for which
DGP inference had previously been considered infeasible.



Preface

This thesis gathers, unifies, and extends the work carried out over the duration of the PhD,
with particular emphasis on publications led by myself, but also highlighting co-authored
work carried out in collaboration with others. All work featured here has been published
in established, peer-reviewed conferences, an outline of which is given in this preamble.

Chapter 3 is based entirely upon the work presented in:

Kurt Cutajar, Michael A. Osborne, John P. Cunningham, and Maurizio Filippone. Pre-
conditioning Kernel Matrices. In Proceedings of the 33rd International Conference on Ma-
chine Learning, ICML 2016, New York, USA.

while Chapter 4 expands on:

Jack Fitzsimons, Kurt Cutajar, Michael A. Osborne, Stephen Roberts, and Maurizio Filip-
pone. Bayesian Inference of Log Determinants. In Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia.

The original foundations for this work were conceived by Jack Fitzsimons, but its fruition
was the outcome of close collaboration on aspects related to formulating the methodol-
ogy, designing the experiments, and writing. The sections describing that work follow
the original structure and presentation provided in the paper, but several concepts have
been updated and rewritten in order to clarify the overall exposition. The remainder of the
chapter, including all content related to combining probabilistic numerics with Gaussian
processes, is novel to this manuscript. Chapter 4 also contains a brief mention of:
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Jack Fitzsimons, Diego Granziol, Kurt Cutajar, Michael A. Osborne, Maurizio Filippone,
and Stephen Roberts. Entropic Trace Estimates for Log Determinants. In Machine Learn-
ing and Knowledge Discovery in Databases - European Conference, ECML/PKDD 2017,
Skopje, Macedonia.

but its contributions are not featured here.

Chapter 5 begins with a recap of the work presented in:

Karl Krauth, Edwin V. Bonilla, Kurt Cutajar and Maurizio Filippone. AutoGP: Exploring
the Capabilities and Limitations of Gaussian Process Models. In Proceedings of the 33rd
Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia.

This work started with an investigation I carried out on developing improved leave-one-
out cross-validation objectives for optimising Gaussian processes. Karl Krauth and Edwin
V. Bonilla took charge of extending these ideas in the ensuing collaboration. The brief
exposition of this work is mostly adapted from the paper itself, with some elements being
clarified and rewritten in order to suit the style of this thesis. The bulk of this chapter is
however based on the work presented in:

Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. Random Fea-
ture Expansions for Deep Gaussian Processes. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, Australia.

with some elements taken from the associated workshop submission:

Kurt Cutajar, Edwin V. Bonilla, Pietro Michiardi, and Maurizio Filippone. Accelerating
Deep Gaussian Process Inference with Arc-cosine Kernels. In First Bayesian Deep Learn-
ing workshop in Advances of Neural Information Processing Systems, NeurIPS 2016,
Barcelona, Spain.

Finally, the following work carried out in relation to multi-fidelity modelling was not
included in this thesis in order to preserve the overriding theme of developing scalable
methodologies for Gaussian processes and their deep counterparts:
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Kurt Cutajar, Mark Pullin, Andreas Damianou, Neil Lawrence, and Javier González. Deep
Gaussian Processes forMulti-fidelityModeling. InThird BayesianDeep Learningworkshop
in Advances of Neural Information Processing Systems, NeurIPS 2018, Montreal, Canada.

An extended version of this work is available on arXiv (1903.07320).
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Chapter 1

Uncertainty in Decision Making

The prevalence of machine learning in automating processes and carrying out tasks pre-
viously requiring human expertise has recently been faced with increased scrutiny and
apprehension which is expected to steer the direction in which this field will develop in
the coming years. Whereas groundbreaking innovations such as self-driving cars and au-
tomated medical diagnosis were once greeted as the way of the future (Bimbraw, 2015;
Bostrom, 2014; Frey and Osborne, 2017), heavily-publicised incidents arising from the ap-
plication of machine learning models to such domains have cast a heavy shadow over their
robustness and reliability (Awad et al., 2018; Bonnefon et al., 2016). Although the cause
of such deficiencies can be attributed to several factors, a persistent concern is that ma-
chine learning lacks the generalisation capabilities innate to human reasoning that enable
greater adaptability and flexibility when affronted with a new task or unexpected setting.
This highlights the importance of applying greater caution when relying on the raw out-
comes of such models for critical decision making.

This shift in perspective has sparked a resurgence of interest in probabilistic modelling,
which is inherently intended to capture the uncertainty or lack of knowledge a model
might have about a learned task (Krzywinski and Altman, 2013). Let us consider a prac-
tical example for illustration - assume we are interested in developing a simple binary
classifier for detecting viral infections in blood samples collected from patients, where the
data available for training the model consists of either healthy samples or instances where
the blood cells are already fully infected. In this setting, both a deterministic model and a
probabilistic alternative are likely to make an erroneous prediction when presented with
a blood sample where the virus is benign or still in its early stages. However, although
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both models potentially return an incorrect result, the output obtained from the proba-
bilistic model can be supplemented with an additional measure of the model’s confidence
or uncertainty in the prediction. In this example, high uncertainty estimates accompa-
nying predictions can then be interpreted as an indicator for carrying out more rigorous
tests on the patient or collecting more blood samples for retraining the model. Conversely,
a deterministic classifier will produce a single binary outcome irrespective of how likely
the prediction is to be correct, which may be unsatisfactory for high-risk or safety-critical
applications such as health monitoring.

1.1 Bayesian Modelling

This division between modelling philosophies can often be traced back to the purported
dichotomy between frequentist and Bayesian inference approaches. The frequentist view
constructs a hypothesis relying exclusively on the data available at training time, regard-
less of any prior assumptions on the expected outcomes of the hypothesis. In practice,
using techniques such as bootstrapping (Efron, 1979), predictions having the form of prob-
ability distributions can still be obtained by way of random and repeated treatments of the
available data. However, this is often an ad hoc procedure. On the other hand, a more
principled way of developing probabilistic models relies on Bayesian inference (de Finetti,
1974; Ghahramani, 2013), which is the foundation upon which the methods explored in
this thesis are built. One of the primary motivations for using Bayesian inference is best
described by way of its connection to the principle of Occam’s razor (MacKay, 1991; Ras-
mussen and Ghahramani, 2000). In crude terms, Occam’s razor denotes a preference for
simpler explanations that sufficiently describe observations over more complex alterna-
tives; in machine learning parlance, this can be interpreted as favouring models which
generalise well as opposed to others that overfit the data available at training time. Bayes’
theorem is formally given as

𝑝 (𝜃|𝒟, ℳ𝑖) =
𝑝 (𝒟|𝜃, ℳ𝑖) 𝑝 (𝜃|ℳ𝑖)

𝑝 (𝒟|ℳ𝑖)
, (1.1)

where 𝜃 denotes the parameters characterising a model ℳ𝑖 in a finite set of candidates ℳ,
and 𝒟 is the available data. The distribution 𝑝 (𝜃|ℳ𝑖) represents our prior beliefs on the
values which the model’s parameters are expected to take, while 𝑝 (𝒟|𝜃, ℳ𝑖) measures
the likelihood of observing the available data using the designated model configuration.
Dividing by the model evidence 𝑝 (𝒟|ℳ𝑖), which also serves as a normalising constant,
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Fig. 1.1 Visualisation of the relationship between Occam’s razor and Bayesian modelling.
These plots are adapted from the exposition given in MacKay (2003) and Rasmussen and
Ghahramani (2000).

yields the posterior probability of the parameters 𝜃 by updating our prior assumptions on
what values they should take with the likelihood of generating the observed data.

While fitting the model amounts to identifying the setting of 𝜃 which maximises the
evidence for model ℳ𝑖 (using say maximum a posteriori inference), the relation to Oc-
cam’s razor manifests itself in model selection, whereby the most suitable model in a set of
candidates ℳ must be selected. The evidence for a model ℳ𝑖 (as featured in Equation 1.1)
can be evaluated as

𝑝 (𝒟|ℳ𝑖) = ∫ 𝑝 (𝒟|𝜃, ℳ𝑖) 𝑝 (𝜃|ℳ𝑖) d𝜃, (1.2)

which corresponds to the likelihood of the model fitting the data averaged over every
possible configuration which 𝜃 may take. A common misconception tied to this corre-
spondence is that Bayesian inference relates to Occam’s razor by setting a prior on model
parameters. Conversely, as formulated in Equation 1.2, Occam’s razor is manifested by
way of determining a distribution over datasets, 𝑝 (𝒟|ℳ𝑖), that integrates over all values
that 𝜃 can take for the chosen model configuration. Assume we are given three models
(ℳ1, ℳ2 and ℳ3) having increasing complexity; by virtue of its higher complexity, ℳ3
can better explain a wider range of datasets than ℳ1 or ℳ2. However, given that the
distribution over 𝒟 must always integrate to one, this entails that lower probability must
be assigned to datasets it cannot adequately explain. This concept is illustrated in Fig-
ure 1.1a, which shows how ℳ2 exhibits the best compromise between confidently fitting
the available data and generalisation.
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After selecting ℳ2, let us assume we also identify the parameter setting, 𝜃OPT, which
maximises the posterior probability for the available data; in this case, the marginal likeli-
hood given in Equation 1.2 can be approximated as

𝑝 (𝒟|ℳ2) ≈ 𝑝 (𝒟|𝜃OPT, ℳ2) 𝑝 (𝜃OPT|ℳ2) 𝜎𝜃|𝒟, (1.3)

where 𝜎𝜃|𝒟 denotes the width of the posterior distribution centred at its peak 𝜃OPT. This
is illustrated as 𝑝 (𝜃|𝒟, ℳ2) in Figure 1.1b. Under this interpretation, 𝜎𝜃|𝒟 can be seen
as the posterior uncertainty associated with the identified optimal parameter configura-
tion. Dividing by the uncertainty, 𝜎𝜃 , encoded in the prior distribution over parameters
𝑝 (𝜃|ℳ2) then gives the Occam factor for the given model,

𝑝 (𝜃OPT|ℳ2) 𝜎𝜃|𝒟 =
𝜎𝜃|𝒟
𝜎𝜃

. (1.4)

This denotes the reduction in uncertainty obtained after fitting the model to observed data.
If our a priori assumption is that all settings of 𝜃 are equally likely, multiplying the likeli-
hood term in Equation 1.3 by this ratio thus penalises models which fit the observed data
with high likelihood by way of overfitting. As such, Occam’s razor arises naturally in
Bayesian inference as an implicit means of regularisation which prevents models from be-
coming too complex, and in turn minimises overfitting in favour of better generalisation.

1.2 Gaussian Processes

In the spirit of Bayesian modelling, Gaussian processes (GPs; Rasmussen and Williams,
2006) define a distribution over candidate functions for modelling observed data. The un-
derlying Bayesian framework allows us to encode prior beliefs on the characteristics of the
data being modelled, while also yielding predictions associated by uncertainty estimates
indicating the model’s confidence in its output. The overarching goal of supervised learn-
ing is to construct generalised models for making predictions on previously unseen data.
In general, the choice of functions for representing the data is intrinsically restricted by
the parameters of the selected model. For example, in the case of linear regression, the
range of functions from which the model may be selected are constrained by a predeter-
mined set of basis functions. Similarly, the model capacity of a neural network is largely
determined by the selected configuration of hidden layers and neurons. We refer to these
models as being parametric, whereby the capacity of the model is implicitly linked to the
number of parameters available. These assumptions may prove to be overly restrictive in
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certain cases where more adaptability is required. GPs achieve greater flexibility by impos-
ing a preference bias as opposed to restrictive constraints; although certain models may
be preferred over others, there is no hard restriction on what form the model may take,
hence why GPs are categorised as nonparametric learning techniques. In this respect, al-
though the parametrisation of GPs allows one to access a certain (infinite) set of functions,
preference can be expressed using a prior over candidate functions. Discarding stringent
parametric assumptions in favour of placing a prior probability distribution over a family
of functions allows for greater freedom in representing data dependencies, thus enabling
the construction of better suited models. Just as importantly, this complements the quality
of uncertainty estimates expected from such a model.

Consider a supervised learning problemwhere a set of𝑁 input vectors𝑋 = [x1, … , x𝑁]
⊤

is associated with a set of univariate labels y = [𝑦1, … , 𝑦𝑁]
⊤, where x𝑖 ∈ ℝ𝐷in and 𝑦𝑖 ∈ ℝ.

Formally, GPs are defined as being generalisations of multivariate Gaussian distributions,
which can be regarded as probability distributions over functions whereby function values
associated with any subset of the input domain have a joint Gaussian distribution. From
a generative perspective, observations are modelled via a suitable conditional likelihood
𝑝 (𝑦𝑖|𝑓𝑖) given latent random variables f = [𝑓1, … , 𝑓𝑁]

⊤, where any subset of f is as-
sumed to follow a Gaussian distribution. A GP model is fully determined by its mean and
covariance, where the specification of a kernel function defines the covariance structure
of such random variables,

cov (𝑓 (x𝑖) , 𝑓 (x𝑗)) = 𝑘 (x𝑖, x𝑗|𝜃) . (1.5)

This kernel function is parametrised by a set of covariance parameters, 𝜃, that determine
some of the key characteristics of functions that can be drawn from the GP. A popular
choice of covariance is the radial basis, or exponentiated quadratic, function (henceforth
referred to as RBF). This is defined as

𝑘 (x𝑖, x𝑗|𝜃) = 𝜎2 exp(−1
2 (x𝑖 − x𝑗)

⊤ Λ−1 (x𝑖 − x𝑗)) . (1.6)

For this kernel, 𝜃 comprises themarginal variance of theGP, 𝜎2, whileΛ = diag [𝑙2
1, … , 𝑙2

𝐷in]
gathers the lengthscale parameters along each dimension of the input domain. This inter-
pretation of the lengthscales allows for automatic relevance determination (ARD; MacKay,
1996; Rasmussen and Williams, 2006), whereby relevant features in the data are weighted
by their corresponding lengthscale parameter. This can also be seen as an implicit form of
feature selection.
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1.2.1 Model Selection

Assimilating to the presentation of Bayes’ theorem given in Equation 1.1, the posterior
distribution over the parameters 𝜃 can be formulated as

𝑝 (𝜃|𝑋, y) = 𝑝 (y|f) 𝑝 (f|𝑋,𝜃)
𝑝 (y|𝑋,𝜃) , (1.7)

where 𝑝 (f|𝑋,𝜃) denotes our prior beliefs on the characteristics of functions that can be
drawn from the GP. This is generally encoded in the choice of kernel function and its
hyperparameters; for example, the aforementioned RBF kernel is a reasonable choice when
the function modelling the data is expected to be smooth, whereas the family of Matérn
kernels is better suited when sudden spikes in variance are expected. A comprehensive
discussion on kernel selection and design can be found in Duvenaud (2014). Without loss
of generality, in this thesis we shall assume the prior mean to be zero.

In this setting, the evidence of our model is captured by the marginal likelihood of the
GP. Since a GP defines a distribution over candidate functions, this corresponds to averag-
ing over all possible function values that the elements in f can take. If we assume a Gaus-
sian likelihood with homoscedastic noise variance 𝜆 such that 𝑝 (𝑦𝑖|𝑓𝑖) = 𝒩 (𝑦𝑖|𝑓𝑖, 𝜆),
conjugacy with the prior entails that the marginal likelihood can be analytically evaluated
as

𝑝 (y|𝑋,𝜃) = ∫ 𝑝 (y|f) 𝑝 (f|𝑋,𝜃) df = 𝒩 (0, 𝐾XX + 𝜆𝐼𝑁) , (1.8)

where 𝐾XX is the 𝑁 × 𝑁 symmetric and positive semi-definite matrix evaluated over 𝑋
with elements 𝐾𝑖𝑗 = 𝑘 (x𝑖, x𝑗|𝜃), and 𝐼𝑁 is the 𝑁-dimensional identity matrix. Introduc-
ing the notation 𝐾𝜆 = 𝐾XX + 𝜆𝐼𝑁 , the logarithm of the marginal likelihood becomes

log [𝑝 (y|𝑋,𝜃)] = −1
2 log |𝐾𝜆| − 1

2y
⊤𝐾−1

𝜆 y − 𝑁
2 log 2𝜋. (1.9)

The quadratic form appearing in this expression corresponds to the model fit term of the
GP, advocating parameter settings that fit the data well. On the other hand, tying in with
the principle of Occam’s razor highlighted earlier, the log determinant term penalises
overly complex models that are characterised by kernel matrices which are diagonally
dominant, indicating little interaction between observations. It follows that the optimal
parameters 𝜃OPT are identified by maximising this objective function using iterative gra-
dient ascent.
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(a) Draws from RBF GP prior.
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(b) Draws from Matérn 3/2 GP prior.
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(c) Draws from GP posterior with initial 𝜃.
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(d) Draws from GP posterior with 𝜃OPT.

Fig. 1.2 Illustration of Gaussian process inference. The true function is coloured in black,
while markers denote observed data-points. Dashed red lines indicate the mean prediction
while shaded regions depict the 95% confidence interval.

1.2.2 Predictions

Given that GPs capture distributions over candidate functions, it follows that predictions
obtained from the model can also be a described by a multivariate Gaussian distribution
characterised by its mean and variance, where the latter can be interpreted as the model’s
uncertainty on the prediction. Using standard Gaussian identities, and for a given setting
of 𝜃, the predictive distribution for a test point x⋆ can be evaluated as follows,

𝑝 (𝑓⋆|y, 𝑋, x⋆,𝜃) = ∫ 𝑝 (𝑓⋆|f, 𝑋, x⋆,𝜃) 𝑝 (f|y, 𝑋,𝜃) df = 𝒩 (𝑓⋆|𝜇⋆, Σ⋆) , (1.10)

where
𝜇⋆ = k⊤

⋆𝐾−1
𝜆 y, and (1.11)

Σ⋆ = 𝑘⋆⋆ − k⊤
⋆𝐾−1

𝜆 k⋆. (1.12)
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In the equations above, k⋆ corresponds to the covariance between x⋆ and observed train-
ing data, while 𝑘⋆⋆ denotes the covariance of x⋆ with itself. Once again assuming a Gaus-
sian likelihood with noise variance 𝜆, the prediction 𝑦⋆ is given by

𝑦⋆ ∼ 𝒩 (𝜇⋆, Σ⋆ + 𝜆) . (1.13)

1.2.3 Illustrative Example

For clarity, we provide a simple example for visualising how inference with GPs works in
practice. Before observing any data, the GP prior encodes our beliefs on the properties
of functions we expect to appropriately fit the data. In Figures 1.2a and 1.2b, we illus-
trate functions drawn from two distinct priors, one which is relatively smooth and another
which captures more oscillatory behaviour. While both are indeed valid priors, we select
the first prior as it better reflects the target function’s behaviour.

By way of Bayesian inference, this prior over functions is then updated using the like-
lihood component of our model. The effect of conditioning on observed data-points is
illustrated in Figure 1.2c, which now features functions drawn from the posterior distribu-
tion of the GP. Nonetheless, the fit obtained using the initial set of parameters 𝜃 may not
be the best fit attainable by the model. As evidenced by the superior function draws illus-
trated in Figure 1.2d, maximising the marginal likelihood of the model yields the optimum
configuration of hyperparameters 𝜃OPT.

1.2.4 Non-Gaussian Likelihoods

When the likelihood 𝑝 (𝑦𝑖|𝑓𝑖) is not Gaussian, such as in classification problems, it is no
longer possible to analytically integrate out latent variables. Instead, techniques such as
Gaussian approximations (Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008), and
methods attempting to characterise the full posterior 𝑝 (f,𝜃|y) (Filippone et al., 2013; Mur-
ray et al., 2010) may be required. In order to preserve focus on the methodology being
presented, and unless stated otherwise, the models discussed in this manuscript will ini-
tially be framed in the context of regression problems where observations are assigned a
Gaussian likelihood. Extensions to more involved likelihoods and classification problems
are nevertheless provided for both of the primary contributions covered in this thesis.
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1.3 Gaussian Processes in the Big Data Regime

The success of nonparametric models built around kernels hinges on the adaptation and
optimisation of 𝜃. However, the scalability of these models is predominantly hindered
by linear algebraic operations having large computational complexity. On inspection of
the GP marginal likelihood given in Equation 1.9, we can observe that evaluating this
expression involves the computation of the log determinant of 𝐾𝜆, as well as a quadratic
term involving this same matrix, both of which have time and space complexity of 𝒪 (𝑁3)
and 𝒪 (𝑁2). Computing the log marginal likelihood can be bypassed if we only carry out
gradient-based optimisation. In the regression case, the gradients can be computed as

𝜕 log [𝑝 (y|𝑋,𝜃)]
𝜕𝜃𝑖

= −1
2Tr(𝐾−1

𝜆
𝜕𝐾𝜆
𝜕𝜃𝑖 ) + 1

2y
⊤𝐾−1

𝜆
𝜕𝐾𝜆
𝜕𝜃𝑖

𝐾−1
𝜆 y. (1.14)

Nonetheless, although we indeed avoid computing the log determinant, we are still re-
quired to evaluate other terms involving the inversion of 𝐾𝜆. Factorising the kernel matrix
𝐾𝜆 into 𝐿𝐿⊤ (where 𝐿 is a triangular matrix) using the Cholesky decomposition neces-
sitates 𝒪 (𝑁3) operations. The trace term in the calculation of the gradient also requires
𝒪 (𝑁3) operations, and similar computations are required for computing mean and vari-
ance predictions for test data. As discussed, the likelihood mapping latent function values
to observations may not always be Gaussian either, as will be the case for classification
problems. Under these conditions, inference is no longer analytic and further approxima-
tions must be introduced.

In view of these constraints, GP inference is often too expensive, or even intractable,
when the size of the data exceeds just a few thousand points. Consequently, devising ap-
proaches for enabling scalable GP inference without compromising on accuracy is a recur-
ring theme in the literature. Such approximations were rigorously explored byQuinonero-
Candela and Rasmussen (2005), Snelson and Ghahramani (2007) and Titsias (2009) among
many others, and these developments were recently summarised by Liu et al. (2018). De-
veloping approaches for improving the tractability of GPs while still preserving good pre-
dictive performance serves as the primary motivation for the work undertaken in this
thesis. In particular, the first contribution presented here is posited as a principled ap-
proach for carrying out exact inference on a computational budget without resorting to
traditional model approximations. Contrary to standard techniques for scaling GPs, the
proposed methodology achieves scalability by accelerating the evaluation of computation-
ally expensive algebraic operations using unbiased approximations. More specifically, we
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Fig. 1.3 Visualisation of stochastic process composition in a deep Gaussian process.

develop a suite of preconditioners for kernel matrices which can be combinedwith stochas-
tic trace estimation for accelerating computation in both GP regression and classification
tasks without restricting the overall capacity of the model. This is particularly pertinent
to applications such as medical diagnosis where high precision and well-calibrated uncer-
tainty is essential.

An investigation into the numerical uncertainty introduced by such schemes is also
featured in this thesis, leveraging advances in probabilistic numerics (Hennig et al., 2015)
to give a novel perspective on the sources of uncertainty that must be taken into con-
sideration when working with budget-constrained evidence. We contribute towards the
literature by proposing a probabilistic scheme for estimating the log determinant of large
matrices under a Bayesian framework, and give an exploratory analysis of how this can be
combined with probabilistic linear solvers in order to quantify the uncertainty introduced
by approximating linear algebra in the context of large-scale kernel methods.

1.4 Gaussian Processes in the Deep Learning Landscape

The resilient appeal of Bayesian inference schemes in the advent of competitive deep learn-
ing techniques (Goodfellow et al., 2016; LeCun et al., 2015) can be attributed to their well-
founded quantification of uncertainty. Bridging the gap between GPs and widely-used
deep learning models remains a persistent research goal which also features heavily in
this work. There has been sustained interest in addressing this goal, and contributions
have varied from designing more sophisticated kernels to mimic the behaviour of neural
network architectures (Cho and Saul, 2009; Mairal et al., 2014) to optimising the GP model
with respect to objective functions alternative to the marginal likelihood (Sundararajan
and Keerthi, 2001). In this thesis, we outline an approach for jointly exploring these di-
rections along with developing superior variational approximations to the true posterior
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distribution of the GP. In doing so, we obtain state-of-the-art results for GPs on several
deep learning benchmarks, and provide a new perspective on the range of problems that
can be targeted using GPs.

Appealing to the structure of deep neural networks, the composition of multiple GPs as
a deep Gaussian process (DGP; Damianou and Lawrence, 2013) enables a deep probabilis-
tic nonparametric approach to flexibly tackle complex machine learning problems while
also providing well-calibrated uncertainty quantification. An illustrative example of how
process composition is suitable for modelling complex functions is given in Figure 1.3.
However, although DGPs appear to be best positioned to match the results obtained by
modern neural network architectures, existing inference approaches for DGP models have
limited scalability and are notoriously cumbersome to construct (Bui et al., 2016; Dai et al.,
2016). To this end, another significant contribution of this thesis is the development of a
novel, scalable formulation of DGPs based on random feature expansions that can handle
large-scale problems far beyond the scale of datasets to which GPs, and especially DGPs,
are typically applied. Such a contribution is of great importance for widening the appeal
of DGPs to both researchers in the broader machine learning community and practitioners
alike.

1.5 Outline and Contributions of Thesis

The content of this thesis is organised as follows:

• In Chapter 2, we investigate state-of-the-art techniques for scaling Gaussian pro-
cesses to big datasets, covering three main categories of approximations, namely
inducing point-based, spectral, and structure exploiting approximations. This chap-
ter is intended to equip the reader with the background knowledge required for
apprehending the underlying concepts presented in this thesis, and clarify how our
contributions fit within the landscape of existing research on scalable Gaussian pro-
cess inference;

• Chapter 3 covers the first primary contribution of this thesis, where we present a
thorough investigation of how carefully selected preconditioners may be incorpo-
rated within a scalable approach for both solving kernel machines and learning their
hyperparameters. This allows for exact Gaussian process inference on a computa-
tional budget, which outperforms standard sparse approximations;
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• Themethodology presented in Chapter 3 relies on unbiased approximations to linear
algebra for accelerating inference. However, this introduces an additional degree of
computational (or numerical) uncertainty within the model which is generally ig-
nored due to the difficulty of properly quantifying it. Inspired by recent advances
in the field of probabilistic numerics, in Chapter 4 we propose a novel Bayesian
interpretation for estimating the log determinant of a matrix. Coupling this contri-
bution with contemporaneous work on probabilistic linear solvers, we also present
a preliminary discussion on how to combine these concepts in Gaussian process in-
ference, and provide a cautionary note on how, in spite of their theoretic appeal,
such constructions may not yet be robust enough to meet this goal;

• Chapter 5 starts by briefly describing AutoGP - a model we developed with the pri-
mary intent of exploring the capabilities and limitations of Gaussian process models
in relation to deep learning techniques. This segues into a discussion on how deep
Gaussian processes are a more natural candidate for matching the performance of
neural networks. In a departure from the shallowGaussian processmodels discussed
in the preceding chapters, we then develop a novel formulation of deep Gaussian
processes built upon random feature expansions, and demonstrate how such amodel
leads to considerable performance improvements over pre-existing deep Gaussian
process models;

• Finally, in Chapter 6, we summarise the contributions presented in this thesis and
give an insightful retrospective on the breakneck rate at which this field of study
is progressing. We conclude the thesis by tying this discussion to an outlook on
possible extensions and future work.



Chapter 2

Scalable Gaussian Process Inference

Developing scalable learning models without compromising performance is at the fore-
front of machine learning research. As highlighted in the introduction to this thesis, the
scalability of Gaussian processes is predominantly hindered by linear algebraic operations
with cubic computational complexity, which deters their application to datasets having
more than a few thousand observations. In this chapter, we review the literature on devel-
oping approximations for scalable Gaussian process inference with particular emphasis on
approaches that will feature in subsequent chapters. Although the development of scalable
deep Gaussian processes is also a major contribution of this thesis, we defer the introduc-
tion and discussion of these models to Chapter 5 in order to streamline the presentation
of different models.

2.1 Overview

The success of deep learning in tasks such as image classification, speech recognition, and
other tasks emulating human expertise have shifted the onus to gathering larger datasets
for effectively training such models (LeCun et al., 2015). In contrast, Gaussian processes
(henceforth GPs) are predominantly regarded as data-efficient models which are capable
of yielding sensible predictions even when only few observations are available. Moreover,
their extension to large datasets is heavily burdened by the computational and storage
complexity associated with their formulation, 𝒪 (𝑁3) and 𝒪 (𝑁2) respectively. To this
end, a plethora of approaches have been investigated and developed for circumventing
these constraints with the ultimate goal of applying GPs to larger datasets. This chapter is
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divided into three main sections that each describe a broad category of GP approximations.
Although similar literature reviews, most recently carried out by Liu et al. (2018), have
considered alternative groupings, in this text we opt for the following split:

• Inducing Point Approximations: Arguably the most prevalent in the literature, a
variety of approaches based on inducing points have targeted scalability by way of
approximating either the prior or posterior of the GP model using low-rank formu-
lations of the central 𝑁 × 𝑁 kernel matrix. We start by describing foundational
work carried out by Csató and Opper (2002), Snelson and Ghahramani (2005), and
Quinonero-Candela and Rasmussen (2005), before progressing to the more princi-
pled variational free energy approximation put forward by Titsias (2009) and cham-
pioned byMatthews et al. (2016). A selection of thesemethods reappear in Chapter 3,
where they are reinterpreted as preconditioners for enabling tractable exact GP in-
ference. An introduction to stochastic variational inference for GPs (Hensman et al.,
2013) is also given here;

• Random Feature Approximations: Assimilating to the weight-space view of a GP,
random feature approximations rely on the spectral representation of covariance
functions (Rahimi and Recht, 2008) for scalable kernel learning. These approaches
have markedly different properties from the aforementioned inducing point meth-
ods, and are sometimes criticised for relaxing the true nonparametric form of GP
modelling. In this section, we focus on the sparse spectrum GP (Lázaro-Gredilla
et al., 2010) and its extension (Gal and Turner, 2015), concludingwith a brief overview
of the more recently introduced variational Fourier features (Hensman et al., 2017).
The deep Gaussian process approximation we propose in Chapter 5 leverages ran-
dom feature expansions of kernels for accelerating inference;

• Structure Exploiting Approximations: This final category covers techniques that
exploit problem structure for simplifying computationally expensive linear algebra.
Extending the use of Kronecker products for accelerating GP inference when grid-
structured inputs are available, structured kernel interpolation (Wilson and Nick-
isch, 2015) has became a staple GP approximation which has been extended in sev-
eral complementary directions (Dong et al., 2017; Evans and Nair, 2018; Pleiss et al.,
2018). Structured kernel interpolation also appears as a preconditioner in the next
chapter, while results obtained by deep kernel learning combined with structured
kernel interpolation (Wilson et al., 2016b) are cited as baselines for the methods de-
veloped in Chapter 5.
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2.2 Inducing Point Approximations

An immediate approach for reducing the computational complexity of GP inference and
hyperparameter optimisation involves sub-sampling the available training data and dis-
carding points beyond a chosen threshold. By reducing the size of the training data to
𝑀 ≪ 𝑁 , the computational complexity is also lowered to 𝒪 (𝑀3). Nevertheless, while ef-
fective in its crude simplicity, this approach (known as subset of data) forsakes potentially
important observations in the full training set under the assumption of overall redundancy,
resulting in a model that is likely to be erroneously overconfident in its predictions.

2.2.1 Traditional Approaches

On the other hand, we have an innate preference for methods that do not discard training
data upfront, but rather rely on low-rank decompositions of the full kernel matrix in order
to accelerate computation. Recalling that 𝐾𝜆 = 𝐾XX + 𝜆𝐼𝑁 , we would be interested in
obtaining a rank-𝑀 decomposition such that 𝐾𝜆 ≈ 𝐴NM𝐵MM𝐶MN + 𝜆𝐼𝑁 . Such structure
enables application of the Woodbury inversion lemma for inverting 𝐾𝜆,

𝐾−1
𝜆 ≈ (𝐴NM𝐵MM𝐶MN + 𝜆𝐼𝑁)

−1 = 1
𝜆𝐼𝑁 − 1

𝜆𝐴NM (𝜆𝐵−1
MM + 𝐶MN𝐴NM)

−1 𝐶MN. (2.1)

Bypassing the Cholesky decomposition for inverting 𝐾𝜆 sharply reduces the computa-
tional complexity from 𝒪 (𝑁3) to 𝒪 (𝑀2𝑁). Similarly, the approximated log determinant
can be evaluated as

log |𝐾𝜆| ≈ log |𝐵MM| + log |𝜆𝐵−1
MM + 𝐶MN𝐴NM|. (2.2)

The most faithful low-rank decomposition of the kernel matrix is given by its eigen-
decomposition into 𝑀 eigenvectors, 𝑄NM, and eigenvalues, ΛMM. This corresponds to
𝐾XX ≈ 𝑄NMΛMM𝑄⊤

NM. However, the complexity of computing the eigendecomposition
itself is also 𝒪 (𝑁3), resulting in no computational savings. This exact decomposition can
be avoided by considering the Nyström approximation (Williams et al., 2002; Williams and
Seeger, 2001) instead,

𝐾XX ≈ 𝐾XU𝐾−1
UU𝐾⊤

XU. (2.3)
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In the above, 𝐾UU is computed over a subset 𝑀 ≪ 𝑁 of the training data, which is referred
to as the active set. As shown by Snelson and Ghahramani (2005), this subset of points does
not have to be sampled directly from the original training data as long as they reside in the
same input space, which entails that their location can be optimised during training. These
can thus be referred to as pseudo-inputs, but in this thesis we opt for the more generally
used inducing points to cover both options.

This approximation forms the basis of the fundamental subset of regressors (SOR; Sil-
verman, 1985; Smola and Bartlett, 2001) and deterministic training conditional (DTC; Csató
and Opper, 2002; Seeger et al., 2003) approximations. Due to their similarity, we shall pri-
marily focus on DTC, which improves upon the former by ensuring that the test condi-
tional remains exact and only the training conditional is approximated. This guarantees
that the model variance is less likely to be underestimated than with SOR. Although the
initial presentation of DTC precedes the unifying framework developed by Quinonero-
Candela and Rasmussen (2005), we follow the notation of the latter in order to simplify
exposition. Denoting the inducing variables evaluated at the selected input locations as u,
it is initially assumed that f and f⋆ are conditionally independent given u,

𝑝 (f, f⋆) ≈ 𝑞 (f, f⋆) = ∫ 𝑞 (f⋆|u) 𝑞 (f|u) 𝑝 (u) du, (2.4)

where 𝑝(u) = 𝒩 (0, 𝐾UU). Sparsity is then induced by considering an approximation
𝑞 (f|u) to the conditional 𝑝 (f|u). As its name implies, the DTC approach treats the 𝑀
inducing points as being deterministic, hence the training conditional is

𝑞DTC (f|u) = 𝒩 (f|𝐾XU𝐾−1
UUu, 0) . (2.5)

This allows for the inducing points to be immediately marginalised out of the posterior dis-
tribution, yielding 𝑞DTC (y|u) = 𝒩 (y|𝐾XU𝐾−1

UUu, 𝜆𝐼𝑁). Efficient training and inference is
then achieved by application of the algebraic identities presented in Equations 2.1 and 2.2.
Although this is already a marked improvement over the subset of data approach, treating
inducing points deterministically negatively constrains the model’s flexibility. Further-
more, the distinction between latent function values for training and test points is also
unnatural for GP modelling.

The fully independent training conditional (FITC; Snelson andGhahramani, 2005) builds
upon the assumption of independence across f developed in the DTC approach by intro-
ducing a correction to the prior such that the diagonal elements of the covariance matrix
remain exact,
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𝑝 (f) = 𝒩 (f|0, 𝐾XX + diag [𝐾XX − 𝐾XX]) , (2.6)

where 𝐾XX denotes the Nyström approximation described in Equation 2.3. The training
conditional can thus be updated as

𝑞FITC (f|u) =
𝑁

∏
𝑖=1

𝑝 (𝑓𝑖|u) = 𝒩 (f|𝐾XU𝐾−1
UUu, diag [𝐾XX − 𝐾XX]) . (2.7)

Extending this concept, the partially independent training conditional (PITC; Quinonero-
Candela and Rasmussen, 2005) approximation corrects blocks along the diagonal, intro-
ducing some degree of partitioning in the data. However, the performance improvement
of using PITC over FITC is minor, particularly when the basis functions are local as for
the RBF kernel. Furthermore, an additional pre-processing step is required for clustering
observations into suitable partitions (Snelson and Ghahramani, 2007).

2.2.2 Variational Free Energy Approximation

The approaches considered thus far all rely on approximating the GP prior by some ap-
proximation 𝑞 (f|u). Under this setting, the inducing points take the form of kernel hyper-
parameters to be additionally optimised along with the regular parameters. However, this
treatment is very likely to result in overfitting. More significantly, by altering the prior
we are no longer approximating the exact GP model; on the contrary, the model takes on
a different form altogether. A widely-used approach for enabling tractability in Bayesian
inference involves the use of variational inference techniques (Blei et al., 2017; Jordan et al.,
1999; Zhang et al., 2017). By way of optimisation, the goal of variational inference is to
identify the approximate posterior in a predefined family of probability densities that most
closely matches the true, but computationally intractable, posterior.

The variational free energy (VFE) approximation given by Titsias (2009) targets this
issue by exploiting variational inference in order to approximate the posterior distribution
itself. In particular, the marginal likelihood over y is approximated with 𝑞 (y), and taking
this to be a variational approximation recasts our optimisation problem as minimising the
Kullback-Leibler divergence (𝐷KL; Gray, 1990) between the true and approximate posterior,

argmin
𝑞(f,u)

𝐷KL [𝑞 (f,u) ||𝑝 (f,u|y)] . (2.8)
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For preserving computational efficiency, 𝑞 (f,u) is assumed to factorise as 𝑝 (f|u) 𝑞 (u). Us-
ing Jenson’s inequality, a variational lower bound can then be obtained on the true log
marginal likelihood as follows,

log 𝑝 (y) = log∫ 𝑝 (y|f) 𝑝 (f|u) 𝑝 (u) dfdu

= log∫ 𝑝 (y|f) 𝑝 (f|u) 𝑝 (u) × 𝑞 (f,u)
𝑞 (f,u)dfdu

≥ ∫ 𝑞 (f,u) log 𝑝 (y|f)����𝑝 (f|u)𝑝 (u)
����𝑝 (f|u)𝑞 (u) dfdu

= 𝔼𝑞(f,u) [𝑝 (y|f)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
model fit

− 𝐷KL [𝑞 (u) ||𝑝 (u)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
regularisation

. (2.9)

This is referred to as the evidence lower bound on the marginal likelihood, in which the
first term favours models that properly fit the data, while the subtracted term penalises
models that deviate too far from the prior. One of the most appealing properties of this
formulation is that when all training observations are used as inducing points, the exact
GP model is recovered. This happens because the 𝐷KL term given in Equation 2.8 collapses
to zero when the variational posterior matches the true formulation.

The fundamental differences between FITC and VFE were succinctly detailed and ex-
plored by Bauer et al. (2016). Among other properties, the authors highlight that whereas
FITC is heavily prone to underestimating the noise variance 𝜆 and does not guarantee
superior fits when more inducing points are made available, VFE consistently identifies
good solutions while model fit improves when more inducing points are allocated. On the
downside, however, variational approximations are also more susceptible to get stuck in
local optima, and sensible optimisation strategies must be designed to ensure convergence
to the global optimum. A further theoretical investigation into the connection between
the described variational inducing point framework and divergence measures for stochas-
tic processes was carried out by Matthews et al. (2016), validating the correctness of the
original proposal in Titsias (2009). Finally, recent work by Bui et al. (2017) presents a uni-
fying view of variational approximations under a novel power expectation propagation
framework.
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2.2.3 Stochastic Variational Inference

In spite of the favourable reduction in computational and storage complexity obtained
using either of the aforementioned approximations, 𝒪 (𝑀2𝑁) complexity would still be
unfeasible when the available data runs into hundreds of thousands or even millions of
observations. In view of this requirement, Hensman et al. (2013) leverage the remarkable
success obtained by stochastic optimisation techniques on training deep neural networks
by developing a stochastic variational inference (SVI) framework for GPs. This is reminis-
cent of the work carried out by Hoffman et al. (2013), in which SVI techniques were used
to approximate posterior distributions for a suite of probabilistic models. This concept will
be particularly pertinent to the models discussed in Chapter 5, where the focus is shifted
to scaling GPs and their deep counterparts to truly large datasets in the order of millions
of observations.

At its core, SVI for GPs borrows from the stochastic optimisation techniques employed
for training neural network architectures by enabling the use of mini-batch-based infer-
ence; at every iteration of the optimisation procedure, a stochastic gradient is computed
using a single mini-batch rather than the full dataset. Given that the mini-batch size can
be set to be as small as one, the overall complexity is now independent of the number of
training points 𝑁 , and can be reduced to 𝒪 (𝑀3) per iteration. In VFE, it was possible to
collapse 𝑞 (u) by deriving the optimal variational distribution analytically. Such analytic
tractability is no longer preserved if we only have access to a single mini-batch of the full
data at any given time, and we are instead required to keep an explicit global representa-
tion of the variational approximation of the inducing points, i.e. 𝑞 (u) = 𝒩 (u|𝜇𝜇𝜇,ΣΣΣ), where
𝜇𝜇𝜇 and ΣΣΣ denote mean and covariance parameters to be optimised. If the likelihood is ad-
ditionally assumed to be fully-factorised over the available observations, the lower bound
on the marginal likelihood becomes

ℒVB = 𝑁
|ℐMB| ∑

𝑦𝑖∈ℐMB

log 𝑝 (𝑦𝑖|𝑓𝑖) 𝑝 (𝑓𝑖|u) 𝑞 (u) − 𝐷KL [𝑞 (u) ||𝑝 (u)] , (2.10)

where the mini-batch consists of training observations indexed by ℐMB. While not essen-
tial to the proposed technique, incorporating natural gradients in the optimisation pro-
cedure was shown to yield quicker convergence to an optimal solution. This was also
recently corroborated in work by Salimbeni et al. (2018).
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2.3 Random Features Approximations

The second category of GP approximations considered in this chapter relies on exploiting
the dual interpretation of a kernel by way of random feature maps. The concepts discussed
here are a prerequisite to the material presented later in Chapter 5, where we propose a
novel deep Gaussian processmodel inspired by the approximations featured in this section.

2.3.1 Spectral Representation of Kernels

In demonstrating how inner products of random features can effectively approximate a
wide range of kernels, the seminal work by Rahimi and Recht (2008) is unanimously con-
sidered to be one of the most influential papers published in the previous decade, having
had significant impact on research communities working on kernel-based models such as
support vector machines, kernel ridge regression, and ultimately GPs. Their work is pri-
marily motivated by Bochner’s theorem (Rudin, 1990), which states that any continuous
shift-invariant normalised covariance function 𝑘 (x𝑖, x𝑗) = 𝑘 (x𝑖 − x𝑗) is said to be posi-
tive definite if and only if it can be rewritten as the Fourier transform of some non-negative
measure.

Adapting this theorem to different covariance functions largely depends on the choice
of spectral measure. Denoting spectral frequencies by 𝜔, while assigning 𝜄 = √−1 and a
distance measure 𝛿 = x𝑖 −x𝑗 , the RBF covariance listed in Equation 1.6 can be represented
in the Fourier space as

𝑘 (x𝑖, x𝑗|𝜃) = 𝜎2
∫ 𝑝 (𝜔) 𝑒𝜄𝛿⊤𝜔d𝜔 = 𝜎2𝔼𝑝(𝜔) [𝑒𝜄𝛿⊤𝜔

] , (2.11)

with a corresponding non-negative measure 𝑝(𝜔) = 𝒩 (0, Λ−1) encoding the lengthscale
parameters. By definition, the RBF covariance will always yield non-negative real values;
therefore, the imaginary component can be dropped from the expectation appearing in
Equation 2.11, which is then simplified to 𝔼𝑝(𝜔) [cos (𝛿⊤𝜔)]. The covariance can thus be
approximated by sampling 𝑁RF spectral features from 𝑝 (𝜔) using a Monte Carlo (hence-
forth MC) procedure, such that

𝑘 (x𝑖, x𝑗|𝜃) ≈ 𝜎2

𝑁RF

𝑁RF

∑
𝑟=1

cos (𝛿⊤�̃�𝑟) , (2.12)
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(a) In the limit of infinitely many activation
units, a single-layered neural network can be
made equivalent to a GP.

Φ𝑋 f

Ω w

(b) In the practical setting having a finite
number of activations, a sparse GP approxi-
mation is obtained.

Fig. 2.1 Graphical illustration of the sparse spectrum Gaussian process. The spectral de-
composition of a kernel using random feature maps can be leveraged to develop a sparse
GP model in the weight-space view with lower computational complexity.

where �̃� are samples drawn from 𝑝 (𝜔). In order to recover the inner product representa-
tion of the kernel, i.e. 𝑘 (x𝑖, x𝑗) = 𝜙 (x𝑖)

⊤ 𝜙 (x𝑗), we then set

𝜙 (x) = [cos (x⊤�̃�1) sin (x⊤�̃�1) , … , cos(x
⊤�̃�𝑁RF) sin(x

⊤�̃�𝑁RF)]
⊤
. (2.13)

Defining z (x|𝜔) = [cos (x⊤𝜔) , sin (x⊤𝜔)]
⊤, the MC estimation of the covariance can

hence be summarised as

𝑘 (x𝑖, x𝑗|𝜃) ≈ 𝜎2

𝑁RF

𝑁RF

∑
𝑟=1

z (x𝑖|�̃�𝑟)
⊤ z (x𝑗|�̃�𝑟) . (2.14)

This has an important practical implication as it provides the means to access an approx-
imate explicit representation of the mapping induced by the covariance function that in
the RBF case is known to be infinite dimensional (Shawe-Taylor and Cristianini, 2004).
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2.3.2 Sparse Spectrum Gaussian Processes

In our presentation of GPs thus far, we have adhered to the so-called function-space view
of the model. However, there exists a complementary view that explicitly defines a GP
as a weighted sum of nonlinear basis functions, informally referred to as the weight-space
view (Rasmussen and Williams, 2006). This interpretation is rooted in the analysis of Neal
(1995), who showed that under certain conditions, a one-layered neural network with in-
finitely many activation units is equivalent to a GP. This implies the following representa-
tion,

𝑓 (x) = 1
𝑁H

h (x)⊤ w, (2.15)

whereby basis functions obtained by nonlinear transformations of x using

h (x) = [ℎ1 (x) , … , ℎ𝑁H (x)]
⊤

(2.16)

are linearly combined by a column vector of weights w. By invoking the central limit
theorem, it can be shown that as the number of activation units 𝑁H tends towards infinity,
the joint distribution between any function values obtained from this model increasingly
resembles a Gaussian. A graphical illustration of this architecture is given in Figure 2.1,
which depicts both a neural network with infinite activation units corresponding to an
exact GP (Figure 2.1a), and a more practical GP approximation derived from considering
a finite number of activations (Figure 2.1b). For the time being, the random feature map
Ω can be assumed to be an identity mapping; however, as will be discussed further below,
this has to be chosen more carefully in practice.

This perspective ties in nicely with the kernel approximation given in Equation 2.14
because a suitable spectral representation of a designated kernel can be employed to carry
out GP inference in the weight-space view. As originally presented in Lázaro-Gredilla et al.
(2010), sparsity in a sparse spectrum GP (SSGP) is achieved by setting Ω and the activation
function ℎ (⋅) in such a way as to approximate the behaviour of a stationary kernel. In
particular, transforming 𝑋 using the random feature map Ω will yield a set of random
features, 𝑋Ω, that become basis functions by application of h (⋅). This makes it possible to
reformulate the original inference problem with an explicit finite representation given by
the expansion using random features.
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For the RBF covariance, these are additionally constrained to be Fourier features. Defin-
ing Ω = [�̃�1, … , �̃�𝑁RF], this representation requires the input 𝑋 to be transformed into a
new design matrix as follows,

Φ =
[√

𝜎2

𝑁RF
cos (𝑋Ω) , √

𝜎2

𝑁RF
sin (𝑋Ω)

]
, (2.17)

where sine and cosine operations are applied element-wise to their argument. In this man-
ner, the original GP model is now ‘linearised’ and can be treated as a standard Bayesian
linear model having design matrix Φ. If we consider a set of weights in vector form w, the
latent functions can therefore be expressed as f = Φw. The values of w denote the coeffi-
cients of linear combinations of the random Fourier features to obtain the latent functions
modelling the output labels. As before, we limit the discussion in this section to the univari-
ate output case, but this can easily be extended to multi-output problems by considering a
matrix of weights 𝑊 = [w1, … ,w𝐷out] instead. Analysing the mean and covariance of a
given latent function when any individual weight 𝑤𝑖 is sampled from 𝒩 (𝑤𝑖|0, 1), it can
easily be verified that the prior mean of the latent functions is zero and ΦΦ⊤ ≈ 𝐾XX,

𝔼 [f] = 𝔼 [Φw] = Φ𝔼 [w] = 0, and (2.18)

cov[f] = 𝔼 [Φww⊤Φ⊤] = Φ𝔼 [ww⊤] Φ⊤

= ΦΦ⊤ ≈ 𝐾XX. (2.19)

Although w can generally be sampled from any distribution, the correspondence between
a single-layered neural network with a finite number of activation units and an approxi-
mate GP only holds if these are assumed to follow a Gaussian distribution. If we limit our
discussion to GP regression problems with a Gaussian likelihood, the posterior mean over
w turns out to be the standard regularised least squares estimator. As a result, it is possible
to obtain the posterior over w analytically, and integrate it out when making predictions.

This approximation reduces the original 𝒪 (𝑁3) complexity associated with training
GPs to 𝒪 (𝑁2

RF𝑁), as 𝐾XX is approximated by ΦΦ⊤ having rank 𝑁RF (or 2𝑁RF for the
RBF example). This matches the complexity obtained by the inducing points-based ap-
proximations when 𝑁RF = 𝑀 . On the other hand, a common complaint targeted towards
this approximation is that the choice of how many random features to include must be
manually tuned, going against the fully-nonparametric spirit of a standard GP. One possi-
ble counterargument is that the quality of the kernel approximation is always expected to
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improve as more random features are used, indicating that 𝑁RF should only be bounded by
some computational budget. However, given that the mapping Ω is jointly optimised with
other model parameters with respect to the same non-convex objective function, increased
parametrisation could indeed make it more difficult to converge to the global optimum.

2.3.3 Extending SSGP

Various theoretical and practical aspects of kernel approximation via random features have
been explored since its proposal, including recent works byAvron et al. (2017a), Avron et al.
(2017b) and Rudi and Rosasco (2017), among others. Narrowing down this vast literature
to those directly related to GPs, Gal and Turner (2015) elaborate on the original SSGP
model’s tendency to overfit, and propose a variational inference scheme for integrating
out the random features induced by Ω. The resulting model (VSSGP) is shown to yield
better calibrated uncertainty estimates accompanying predictions, and a procedure for de-
riving the optimal weights analytically is given for the Gaussian likelihood case. Other
approaches incorporating variational inference with the base SSGP model are featured in
Tan et al. (2016) and Hoang et al. (2017).

In spite of the performance improvements obtained using VSSGP, given that the vari-
ational approximation is applied directly to Ω, the model posterior still deviates from the
true posterior of the GP it is approximating. In the spirit of the VFE approximation intro-
duced in Section 2.2.2, the variational Fourier features scheme proposed in Hensman et al.
(2017) is intended to directly approximate the augmented GP posterior, although their ini-
tial analysis is restricted to GPs with covariance belonging to the Matérn family of kernels.
Previous work on incorporating non-stationary spectral kernels in GP regression (Remes
et al., 2017) was also very recently extended to include the aforementioned variational
Fourier features interpretation (Shen et al., 2018). Tangentially, more efficient random
feature maps have also been considered for accelerating computation, such as Fastfood
approximations (Le et al., 2013) and orthogonal random features (Yu et al., 2016).

2.4 Structure Exploiting Approximations

The approximations discussed thus far do not make any assumptions regarding the struc-
ture of the underlying data. However, significant computational savings can be achieved
when observations follow some structure, such as when the input space is a multidimen-
sional grid and observations are equispaced along each individual input dimension. In
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order to extend these benefits to datasets where such structure is not inherently avail-
able, research in this direction has been centred on developing projections onto structured
spaces and other similar schemes. In this section, we give a brief overview of how struc-
ture exploiting approximations based on Kronecker algebra can be used for reducing the
computational complexity of GPs, some aspects of which will be referenced again in sub-
sequent chapters.

2.4.1 Grid-Structured Data

Following the exposition provided in Saatçi (2012) and Gilboa et al. (2013), we shall first
consider datasets where all input points 𝑋 are located on a Cartesian grid such that 𝑋 =
𝑋1×⋯×𝑋𝐷in

, where 𝑋𝑑 is a vector containing all distinct input locations along dimension
𝑑. Each of these may have an arbitrary number of input locations such that 𝑋𝑑 ∈ ℝ𝐺𝑑 ,
where 𝐺𝑑 denotes the size of the input vector for dimension 𝑑. We shall also assume
that the grid is complete, which entails that observations must be available for all 𝑁 grid
locations; it follows that 𝑁 = ∏𝐷in

𝑑=1 𝐺𝑑 . This structure arises naturally in several spatio-
temporal problems such as climate modelling, where the input points generally denote
latitude and longitude coordinates that can be further augmented with some periodically-
spaced time dimension. Multimedia such as images and videos are also likely to inherently
have such structure.

Aside from requiring a complete grid of observations, it must also be possible to de-
compose the designated covariance function into a product over the input dimensions.
Such kernels are referred to as tensor product kernels, and may be formally specified by
𝑘 (x𝑖, x𝑗) = ∏𝐷in

𝑑=1 𝑘𝑑 (𝑥𝑖,𝑑 , 𝑥𝑗,𝑑), where 𝑥𝑖,𝑑 denotes the 𝑑th dimension of x𝑖, while 𝑘𝑑 (⋅, ⋅)
is a positive-definite kernel defined over a single input dimension (hence being scalar). As
an illustrative example, the RBF kernel considered thus far can be interpreted as follows,

𝑘 (x𝑖, x𝑗) = 𝜎2
𝐷in

∏
𝑑=1

exp
⎛
⎜
⎜
⎝
−(𝑥𝑖,𝑑 − 𝑥𝑗,𝑑)

2

2𝑙2
𝑑

⎞
⎟
⎟
⎠
, (2.20)

thus fulfilling the aforementioned requirement. Note that not all kernels can be decom-
posed in this manner, in which case the algebraic speed-up detailed here cannot be directly
exploited.
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2.4.2 Gaussian Process Inference with Kronecker Algebra

TheKronecker product refers to amatrix multiplication operator such that if 𝐴 is an 𝑀 ×𝑁
matrix and 𝐵 has shape 𝑃 ×𝑄, their Kronecker product, denoted by 𝐴⊗𝐵, is an 𝑀𝑃 ×𝑁𝑄
matrix having the following form,

𝐴 ⊗ 𝐵 =
⎡
⎢
⎢
⎢
⎣

𝑎11𝐵 … 𝑎1𝑁𝐵
⋮ ⋱ ⋮

𝑎1𝑁𝐵 … 𝑎𝑀𝑁𝐵

⎤
⎥
⎥
⎥
⎦
. (2.21)

Given a kernel decomposition as exemplified in Equation 2.20, it follows that the full co-
variance matrix for points in the grid can be evaluated as

𝐾XX = 𝐾1 (𝑋1, 𝑋1) × ⋯ × 𝐾𝐷in (𝑋𝐷in
, 𝑋𝐷in) , (2.22)

where 𝐾𝑑 stands for the 𝐺𝑑 × 𝐺𝑑 covariance matrix evaluated over the vector of scalar
input locations for dimension 𝑑. As a result, 𝐾XX can be rewritten using Kronecker product
notation as 𝐾XX = ⨂𝐷in

𝑑=1 𝐾𝑑 .
For brevity, we directly proceed to demonstrate how GP regression may be carried

out for grid inputs having spherical noise that is identical at every input location, and
refer the reader to Saatçi (2012) for more detail on the properties of Kronecker algebra
in this context. Recall that the most computationally expensive operations in standard
GP regression involve solving linear systems with 𝐾𝜆. Although it is possible to express
𝐾−1

XX in the form of a Kronecker product, this is no longer the case when function noise is
included, as is the case for 𝐾𝜆. Instead, the linear system can be approximated using the
following eigendecomposition,

𝐾−1
𝜆 y = Q (ΛΛΛ + 𝜆𝐼𝑁)

−1 Q⊤y, (2.23)

where Q and ΛΛΛ respectively denote the Kronecker products of the eigenvectors and eigen-
values of each covariance block, 𝐾𝑑 , of the full matrix 𝐾XX. This can then be solved effi-
ciently using the following steps,

𝛼 ← kron_mvprod ([𝑄⊤
1 , … , 𝑄⊤

𝐷in] , y) (2.24)

𝛼 ← (ΛΛΛ + 𝜆𝐼𝑁)
−1 𝛼 (2.25)

𝛼 ← kron_mvprod ([𝑄1, … , 𝑄𝐷in] , 𝛼) (2.26)
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where kron_mvprod is a procedure detailed in Saatçi (2012) for efficiently computing
matrix-vector multiplications involving the product of Kronecker matrices with complex-
ity approaching 𝒪 (𝑁). Given thatΛΛΛ is in fact a scalar vector containing the eigenvalues of
the covariance blocks, the inversion operation listed in Equation 2.25 can also be evaluated
with linear complexity. In consequence, full GP inference can be carried out in linear time.
This methodology can be easily extended for efficiently computing the log determinant of
𝐾𝜆, as well as the associated derivatives required for optimising the GP hyperparameters.
As highlighted earlier, the original formulation of this approach (Gilboa et al., 2013) re-
lied on having observations at all possible input locations in the grid, but later extensions
relaxed this condition such that missing observations and incomplete grids were also per-
mitted (Flaxman et al., 2015; Wilson et al., 2014).

2.4.3 Structured Kernel Interpolation

The Kronecker-based methodology presented above does not involve any approximation
whatsoever, and both the training and test conditionals are exact. However, most datasets
will not have such structure upfront, making the application of such techniques fairly lim-
ited. In order to extend these concepts to more general problems, the notion of structured
kernel interpolation (SKI) was brought to the fore in the KISS-GP approximation proposed
by Wilson and Nickisch (2015). This method constrains inducing points to lie on a mul-
tidimensional grid, 𝑈 = 𝑈1 × ⋯ × 𝑈𝐷in

, where once again 𝑈𝑑 is a vector containing all
distinct inducing point locations along dimension 𝑑. Whereas computational gains from
inducing point approximations typically arise from setting 𝑀 ≪ 𝑁 , the computational
levity of operations involving Kronecker algebra entails that a large number of inducing
points can be used as long as they lie on a grid; consequently, 𝑀 ≫ 𝑁 is also feasible
here.

Nevertheless, setting a large 𝑀 could be problematic since approximating 𝐾XX still
involves multiplications with a 𝐾XU matrix. So as to avoid computing 𝐾XU directly, an
𝑁 × 𝑀 interpolating matrix, 𝑊int, is introduced in order to approximate this matrix as

𝐾XU ≈ 𝑊int𝐾UU. (2.27)

Given that 𝑀 is expected to be large, 𝑊int can be set to be very sparse, enabling fast ap-
proximation of 𝐾XU. Wilson and Nickisch (2015) propose to carry out cubic interpolation
on the kernel evaluated on the grid of inducing points, 𝐾UU, such that every row of 𝑊int
only has four non-zero entries. Under this guise, inducing points can be reinterpreted as
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being interpolation points; this view can also be extended to generalise the approaches de-
scribed in Section 2.2, but we shall preserve this distinction in the text. Consequently, a
kernel approximation using SKI can be formulated as

𝐾SKI = 𝑊int𝐾UU𝐾−1
UU𝐾UU𝑊 ⊤

int

= 𝑊int𝐾UU𝑊 ⊤
int. (2.28)

By exploiting the fast Kronecker matrix-vector multiplications introduced in Section 2.4.2,

the overall complexity of this approximation becomes 𝒪 (𝐷in𝑀1+ 1
𝐷in ). Nonetheless, this

approach also introduces additional design choices, such as determining the optimal den-
sity of the interpolation point grid, which require further fine-tuning than the relatively
more straightforward inducing point methods. In general, the grid density is expected to
be heavily dependent on the choice of kernel since more expressive kernels are likely to
require a greater number of interpolation points and less sparse 𝑊int.

Following its original proposition, SKI using Kronecker-based inference has become
a major protagonist in the literature on GP approximation. Notable extensions include
efficient algorithms for approximating the log determinant of a kernel matrix (Dong et al.,
2017) and constant-time predictive distributions (Pleiss et al., 2018). SKI has also recently
been used as a core design element of GPyTorch (Gardner et al., 2018), an open-source
library for developing GPs in PyTorch. More laterally, SKI has also been used for deep
kernel learning whereby GPs stacked upon neural network architectures can be learned
end-to-end in a tractable manner (Wilson et al., 2016a,b). This particular model will feature
again in our discussion on bridging the gap between GPs and deep learning in Chapter 5.

2.5 Conclusion

Developing reliable approximations for Gaussian processes is a multi-faceted challenge
whereby multiple desiderata including accelerating computation, avoiding overfitting, and
retaining model flexibility, must be jointly targeted while balancing all potential trade-offs.
Although effective in their own right, many of the approximations discussed in this chapter
introduce some degree ofmodel approximation that could impair the overall capacity of the
GP. In the next chapter, we will develop a novel methodology for introducing tractability
that directly approximates the involved linear algebraic operations without introducing
any changes to the model itself. By exploiting the techniques introduced in this chapter
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for instead designing preconditioners suitable for kernelmatrices, we put forward a flexible
approach for carrying out exact GP regression and classification on a computational budget
without resorting to traditional approximations.





Chapter 3

Preconditioning Kernel Matrices

As the need for large-scale kernel machines grows, much work has been directed towards
scaling such models to larger datasets. At the core of most kernel machines is the need
to solve linear systems involving the matrix 𝐾𝜆. However, given that the dimensionality
of 𝐾𝜆 grows with the number of data-points, 𝑁 , a fundamental computational bottle-
neck exists: storing 𝐾𝜆 has 𝒪 (𝑁2) complexity, while solving a linear system with 𝐾𝜆 is
𝒪 (𝑁3). In this chapter, we describe a scalable approach to both solving kernel machines
and learning their hyperparameters 𝜃. In particular, we champion the use of precondi-
tioned conjugate gradient solvers for Gaussian processes, and develop a broad range of
preconditioners which are especially useful for evaluating linear systems involving kernel
matrices. We show that this approach is exact in the limit of iterations and outperforms
widely-used GP approximations for a given computational budget. The content of this
chapter is predominantly based on the principal outcomes of the work presented in Cuta-
jar et al. (2016).

3.1 Overview

The success of nonparametric models based on kernels hinges on the successful adapta-
tion of kernel hyperparameters 𝜃, and the motivation for preconditioning begins with an
inspection of the log marginal likelihood of GP models having a prior 𝒩 (f|0, 𝐾XX). For
GPs with a Gaussian likelihood on observations, 𝑦𝑖 ∼ 𝒩 (𝑦𝑖|𝑓𝑖, 𝜆), we can derive analytic
forms for both the marginal likelihood,
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log [𝑝 (y|𝑋,𝜃)] = −1
2 log |𝐾𝜆| − 1

2y
⊤𝐾−1

𝜆 y − 𝑁
2 log 2𝜋, (3.1)

and its derivatives,

𝜕 log [𝑝 (y|𝑋,𝜃)]
𝜕𝜃𝑖

= −1
2Tr(𝐾−1

𝜆
𝜕𝐾𝜆
𝜕𝜃𝑖 ) + 1

2y
⊤𝐾−1

𝜆
𝜕𝐾𝜆
𝜕𝜃𝑖

𝐾−1
𝜆 y, (3.2)

where 𝐾𝜆 = 𝐾XX + 𝜆𝐼𝑁 . The traditional approach for evaluating these expressions in-
volves factorising the kernel matrix 𝐾𝜆 using the Cholesky decomposition (Benoît, 1924),
which costs 𝒪 (𝑁3) operations. After that, all other operations cost 𝒪 (𝑁2) except for the
trace term appearing in the gradient, which once again requires 𝒪 (𝑁3) operations. Com-
putations involving 𝐾−1

𝜆 also reappear in the evaluation of mean and variance predictions
for test data, where a different linear system must be solved for computing the variance at
every test point.

This approach is not viable for large 𝑁 and, consequently, many approaches have
been proposed to cheaply approximate these computations, leading to sub-optimal values
for 𝜃OPT and approximate predictions. A thorough overview of such approximations was
provided in the previous chapter; here we investigate the possibility of avoiding approxi-
mations altogether by arguing that for parameter optimisation it is sufficient to obtain an
unbiased estimate of the gradient detailed in Equation 3.2. In particular, when such an es-
timate is available, it is possible to employ stochastic gradient optimisation techniques that
have strong theoretical guarantees (Robbins and Monro, 1951). The problematic terms in
Equation 3.2 are the solution of the linear system 𝐾−1

𝜆 y and the trace term; in this chapter,
we make use of stochastic linear algebra for obtaining an unbiased approximation of the
trace term as follows,

Tr(𝐾−1
𝜆

𝜕𝐾𝜆
𝜕𝜃𝑖 ) ≈ 1

𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝐾−1
𝜆

𝜕𝐾𝜆
𝜕𝜃𝑖

r(𝑖), (3.3)

where the 𝑁r vectors r(𝑖) have components drawn from a predetermined probability distri-
bution. This result indicates that all it takes to calculate stochastic gradients is the ability
to efficiently solve linear systems. A more general overview of stochastic trace estimation
and how it relates to this work is given in Section 3.2 of this chapter.

A common way to tackle the scalability of training GPs thus involves using the con-
jugate gradient algorithm (Hestenes and Stiefel, 1952) to solve linear systems, which re-
lieves the constraints on both storage (the kernel matrix need not be stored) and compu-
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tation (both stochastic gradients and parallelisation can be exploited). Even so, conjugate
gradient is not without its issues since the conditioning of kernel matrices is often such
that conjugate gradient solvers will have poor convergence in practice. A well-known ap-
proach for improving the conditioning of a matrix, which in turn accelerates convergence,
is preconditioning (Kaasschieter, 1988). This involves the introduction of a matrix precon-
ditioner, 𝑃 , which should be chosen in such a way that 𝑃 −1𝐾𝜆 approximates the identity
matrix, 𝐼𝑁 . In this chapter, we apply a broad range of kernel matrix approximations as
preconditioners for enabling faster GP training and inference. This allows us to exploit the
important developments of approximate kernel machines to accelerate the exact compu-
tation that preconditioned conjugate gradient offers. In particular, we extend stochastic
gradient learning for GPs (Anitescu et al., 2012; Filippone and Engler, 2015) by developing
an unbiased estimate of the gradient for the log marginal likelihood. We make the first use
of preconditioning for GP classification, and evaluate the effectiveness of our proposal over
a range of problems having varying size and dimensionality. Because preconditioned con-
jugate gradient is exact in the limit of iterations (unlike most approximate techniques), we
demonstrate a trade-off between accuracy and computational efficiency that outperforms
standard approximation and factorisation approaches.

3.2 Randomised Linear Algebra

As alluded to in the prelude to this chapter, our proposal relies on recasting complex alge-
braic operations required for GP training and inference in terms of linear systems, which
we can then solve efficiently using a principled preconditioning scheme. In Equation 3.3,
we demonstrated how this can be achieved by approximating the trace term appearing
in the evaluation of gradients using stochastic trace estimation. The foremost appeal of
approximations based on randomised linear algebra is that we can obtain unbiased es-
timates for algebraic terms that would otherwise be prohibitively expensive to compute
when handling large datasets. Whereas computing the trace of a general matrix 𝐴 is sim-
ple (by summing all entries on the diagonal), computing the trace of some transformation
of 𝐴, denoted by 𝜌 (𝐴), could be problematic if we would like to avoid computation or
storage of the resulting matrix. For example, directly computing the trace term shown
on the left of Equation 3.3 would require us to invert 𝐾𝜆 explicitly; conversely, using the
stochastic approximation given in that same equation we can avoid this computation by
solving 𝑁r linear systems instead.
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3.2.1 Stochastic Trace Estimation

Stochastic trace estimation (STE; Avron and Toledo, 2011) builds a Monte Carlo estimate
of the trace of some transformed matrix 𝜌 (𝐴) by multiplying it by a set of probing vectors
r,

Tr (𝜌 (𝐴)) ≈ 1
𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝜌 (𝐴) r(𝑖), (3.4)

such that the expectation of r(𝑖)r(𝑖)⊤ is the identity, i.e. 𝔼 [r
(𝑖)r(𝑖)⊤

] = 𝐼𝑁 . It can easily be
verified that the estimated trace of 𝜌 (𝐴) is unbiased by exploiting the cyclical property of
the trace operator in the expectation of Tr(r

(𝑖)⊤𝜌 (𝐴) r(𝑖)
).

There are several candidate approaches for how to sample the probing vectors. The
most straightforward approach involves sampling from columns of the identity matrix;
however, due to poor expected sampling variance, this is not widely used in the litera-
ture. On the other hand, the Gaussian estimator involves sampling from vectors on the
unit hypersphere, which significantly reduces the sample variance, but requires more ran-
dom bits to generate each sample. A major progression for STE was the introduction of
Hutchinson’s method, which samples each element as a Bernoulli random variable requir-
ing only a linear number of random bits, while also further reducing the sample variance.
A more recent approach involves sampling from sets of mutually unbiased bases (MUBs;
Fitzsimons et al., 2018), in which only a logarithmic number of bits are necessary.

In this chapter, we shall carry out STE using Hutchinson’s estimator, whereby the
probing vectors r are drawn from a Rademacher distribution where the values are either
-1 or 1 with equal probability. The Bayesian log determinant approximation presented in
Chapter 4 is also inspired by the concepts introduced in this section.

3.3 Iterative Methods

Iterative solver methods (Axelsson, 1994; Saad, 2003) present a practical means for solv-
ing linear systems involving large matrices without resorting to cumbersome Cholesky
decompositions. Given a linear system 𝐴z = b, the solution z⋆ is derived by sequentially
updating an initial estimate z0 until either a budget of permitted iterations is exhausted, or
more generally the norm of the residual, ‖𝐴z𝑡 − b‖, meets some stopping criteria, where
z𝑡 denotes the estimated solution at iteration 𝑡. An appealing aspect of such techniques
is that most solvers are proven to converge to the true solution in the limit of iterations,
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and tighter convergence bounds for a finite number of iterations can often be analytically
derived. On the downside however, the rate of convergence is very closely linked to the
conditioning of matrix 𝐴, 𝜅 (𝐴), which is measured as the ratio of the largest eigenvalue
to the smallest. When this is large, the slower rate of convergence may outweigh the
improvements expected from such solvers vis-a-vis Cholesky decomposition.

3.3.1 Conjugate Gradient

The conjugate gradient solver (CG; Hestenes and Stiefel, 1952) is a landmark algorithm for
solving linear systems. As the name implies, the search direction at every iteration of the
procedure is set to be mutually orthogonal to the preceding directions, guaranteeing faster
convergence than steepest gradient descent. In particular, an initial estimate z0, which can
be set to a vector of zeros, is updated at every iteration as follows,

z𝑡+1 = z𝑡 + 𝛼𝑡s𝑡, (3.5)

where 𝛼𝑡 denotes the length of the step to take in the search direction given by s𝑡 at iteration
𝑡. The former is computed as

𝛼𝑡 =
r⊤

𝑡 r𝑡
s⊤

𝑡 𝐴s𝑡
, (3.6)

which relies on the updated residual r𝑡+1 = r𝑡 − 𝛼𝑡𝐴s𝑡. Meanwhile, the conjugate search
direction s𝑡 is computed as follows,

s𝑡+1 = r𝑡+1 +
r⊤

𝑡+1r𝑡+1

r⊤
𝑡 r𝑡

s𝑡. (3.7)

The most expensive operation at each iteration is the matrix-vector multiplication appear-
ing in the calculation of 𝛼𝑡 and r𝑡+1. As a result, the overall complexity of CG becomes
𝒪 (𝑁2𝑇 ) where 𝑇 here denotes the total number of iterations. Due to conjugacy be-
tween search directions, CG is in theory expected to converge after at most 𝑁 iterations.
However, in view of the difficulty in guaranteeing sufficient numerical precision, CG can
potentially take much longer to converge in practice, resulting in a more costly procedure
than computing the actual Cholesky decomposition of the matrix. Convergence is largely
dependent on the spectrum or conditioning of the designated matrix, and an estimate of
the condition number is usually a good indicator of the expected suitability of using CG.
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In spite of these caveats, a key advantage of CG over Cholesky is that since the pre-
dominant matrix only ever appears in a matrix-vector multiplication, it never has to be
computed directly in its entirety, which lifts an important constraint on space complexity.
Another point in favour of CG is that matrix-vector products can be more easily paral-
lelised. Pseudocode for carrying out CG is provided in Appendix A.

3.3.2 Preconditioned Conjugate Gradient

In view of the aforementioned risk of CG converging in 𝑁 or more iterations, a well-
established technique for accelerating convergence involves the use of preconditioning
(PCG; Kaasschieter, 1988). This mechanism relies on the introduction of a preconditioning
matrix 𝑃 that transforms the original system by the preconditioned alternative

𝑃 −1𝐴z = 𝑃 −1b, (3.8)

in such a way that convergence is improved over plain CG. This follows from the fact that
if the conditioning of 𝑃 −1𝐴 is lower than that of 𝐴, then 𝑇 ≪ 𝑁 , giving PCG a notable
speed-up compared to carrying out CG on the original linear system.

While the procedure for carrying out PCG (Algorithm 1) bears a strong resemblance
to CG, a core difference is that computing the step length 𝛼 and search direction s𝑡+1 must
now be adapted to incorporate the effect of 𝑃 , yielding

𝛼𝑡 =
r⊤

𝑡 𝑃 −1r𝑡
s⊤

𝑡 𝐴s𝑡
, and (3.9)

s𝑡+1 = 𝑃 −1r𝑡+1 +
r⊤

𝑡+1𝑃 −1r𝑡+1

r⊤
𝑡 𝑃 −1r𝑡

s𝑡. (3.10)

The key computation in both of the above terms is the linear system 𝑃 −1r. Given that
𝑃 is itself an 𝑁 × 𝑁 matrix, this could obviously be troublesome unless 𝑃 −1 can also be
computed efficiently. To this end, devising suitable preconditioners for kernelmatrices that
closely approximate 𝐾𝜆 while remaining easy to invert is one of the primary contributions
of this chapter. Otherwise, an inner CG loop will be required to solve the newly introduced
linear system at every outer PCG iteration, which can turn out to be very inefficient. An
illustrative comparison of the aforementioned iterative solvers is given in Figure 3.1.1

1Plots inspired by http://ikuz.eu/2015/04/15/the-concept-of-conjugate-gradient-descent-in-python.

http://ikuz.eu/2015/04/15/the-concept-of-conjugate-gradient-descent-in-python
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Fig. 3.1 Illustrative example showing how preconditioning enables quicker convergence to
the solution z⋆ than CG. Nonetheless, CG is still more efficient than plain steepest descent.

Algorithm 1 Preconditioned CG Algorithm, adapted from Golub and Van Loan (1996)
Require: Matrix 𝐴, preconditioner 𝑃 , vector b, convergence threshold 𝜀, initial estimate

z0, maximum number of iterations T
r0 = b − 𝐴z0; p0 = 𝑃 −1r0; s0 = p0
for 𝑡 = 0 : 𝑇 do

𝛼𝑡 = r⊤
𝑡 p𝑡

s⊤
𝑡 𝐴s𝑡z𝑡+1 = z𝑡 + 𝛼𝑡s𝑡

r𝑡+1 = r𝑡 − 𝛼𝑡𝐴s𝑡
if ‖r𝑡+1‖ < 𝜀 then

return z𝑡+1
end if
p𝑡+1 = 𝑃 −1r𝑡+1

𝛽𝑡 = p⊤
𝑡+1r𝑡+1
p⊤

𝑡 r𝑡
s𝑡+1 = p𝑡+1 + 𝛽𝑡s𝑡

end for
return z𝑡+1
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3.4 Design and Selection of Preconditioners

The advantages of using PCG over plain CG hinge on the adequacy of the preconditioning
matrix 𝑃 for improving the conditioning of a designated linear system, which in the case
of GPs should be chosen in such a way that 𝑃 −1𝐾𝜆 approximates the identity matrix 𝐼𝑁 .
Intuitively, this can be immediately obtained by setting 𝑃 = 𝐾𝜆; however, given that at
each iteration of PCG we are required to solve a different linear system involving 𝑃 , this
choice would be no easier than solving the original system. Thus, we must choose 𝑃 in
such a way that it approximates 𝐾𝜆 as closely as possible while also being easy to invert.

Inspired by the GP approximations detailed in Chapter 2, and extending the work by
Davies (2014), here we present an assortment of kernel preconditioners for 𝐾𝜆. To avoid
repetition, we refer the reader to Chapter 2 for more context on how these preconditioners
arise from the literature on sparse GP approximations; in this section we directly discuss
how they may be exploited for the purpose of preconditioning. Unless stated otherwise,
we shall consider standard left preconditioning whereby the original problem of solving
𝐾𝜆z = v is transformed by applying the preconditioner to both sides of this equation. The
linear system to be solved may thus be expressed as 𝑃 −1𝐾𝜆z = 𝑃 −1v.

3.4.1 Low-rank Preconditioners

The Nyström method was originally proposed to approximate the eigendecomposition of
kernel matrices (Williams and Seeger, 2001), and offers a simple means of obtaining a low-
rank approximation of 𝐾XX. This method selects a subset of 𝑀 ≪ 𝑁 inducing points that
are intended for approximating the spectrum of 𝐾XX, and the resulting approximation is
given by

𝐾XX = 𝐾XU𝐾−1
UU𝐾⊤

XU, (3.11)

where 𝐾UU denotes the evaluation of the kernel function over the inducing points, and
𝐾XU is the covariance between the full training data and the inducing points. The resulting
preconditioner 𝑃NYS = 𝐾XX+𝜆𝐼𝑁 can be inverted using the matrix inversion lemma, such
that

𝑃 −1
NYSv = 1

𝜆 [𝐼𝑁 − 𝐾XU (𝐾UU + 𝐾⊤
XU𝐾XU)

−1 𝐾⊤
XU] v, (3.12)

where the inversion operation has 𝒪 (𝑀3) complexity.
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Fully and Partially Independent Training Conditional

The use of inducing points for approximating a GP kernel has also been utilised in the
fully and partially independent training conditional approaches (FITC and PITC respec-
tively) for scaling GP regression (Quinonero-Candela and Rasmussen, 2005; Snelson and
Ghahramani, 2007). In the former case, the prior covariance of the approximation leads to
a preconditioner having the following form,

𝑃FITC = 𝐾XX + diag(𝐾XX − 𝐾XX) + 𝜆𝐼𝑁 . (3.13)

As its name implies, this formulation entails that the latent variables associated with the
inducing points are taken to be completely conditionally independent. On the other hand,
PITC entails that although inducing points assigned to a designated partition or block are
conditionally independent on each other, there is no dependence between points placed in
different blocks. This gives rise to the following alternative preconditioner,

𝑃PITC = 𝐾XX + bldiag(𝐾XX − 𝐾XX) + 𝜆𝐼𝑁 . (3.14)

For 𝑃FITC, the diagonal resulting from the training conditional can be added to the sim-
ilarly diagonal noise matrix, and the inversion lemma can be invoked as for the Nyström
preconditioner. Meanwhile for 𝑃PITC, the function noise 𝜆 can be added to the block di-
agonal matrix which can then be inverted block by block. The inversion then proceeds as
before, where the inverted block diagonal matrix replaces 𝜆𝐼𝑁 in the original formulation.

3.4.2 Approximate Factorisation of Kernel Matrices

The following group of preconditioners gathers approximations to 𝐾XX that factorise as
𝐾XX = ΦΦ⊤, where Φ is a low-rank 𝑁 × 𝑀 matrix. Here we shall consider different
ways of determining Φ such that 𝑃 can be inverted at a lower cost than the original kernel
matrix 𝐾𝜆. Once again, this enables us to employ the matrix inversion lemma, and express
the solution to the linear system as

𝑃 −1v = (ΦΦ⊤ + 𝜆𝐼𝑁)
−1 v = 1

𝜆 [𝐼𝑁 − Φ (𝐼𝑀 + Φ⊤Φ)
−1 Φ⊤

] v. (3.15)

We now review a selection of methods that approximate the kernel matrix 𝐾𝜆 in this form.
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Spectral Approximation

The spectral approach uses random features for deriving a sparse approximation of a kernel
(Rahimi and Recht, 2008). This was extended to GP regression by Lázaro-Gredilla et al.
(2010), and relies on the assumption that stationary kernel functions can be represented as
the Fourier transform of non-negative measures. As such, individual elements of 𝐾XX can
be approximated as follows,

𝑘 (x𝑖, x𝑗|𝜃) ≈ 𝜎2

𝑁RF

𝑁RF

∑
𝑟=1

z (x𝑖|�̃�𝑟)
⊤ z (x𝑗|�̃�𝑟) , (3.16)

where z (x|�̃�) = [cos (x⊤�̃�) , sin (x⊤�̃�)]
⊤ and �̃� denotes spectral points (or frequencies)

that in the case of the RBF kernel can be sampled from 𝒩 (0, Λ−1). As before, Λ here
encodes the ARD lengthscale parameters [𝑙2

1, … , 𝑙2
𝐷in]. The corresponding preconditioner,

𝑃RF, can then be obtained by setting Φ to be an 𝑁 × 2𝑁RF matrix where each row takes
the following form,

𝜙 (x) = [cos (x⊤�̃�1) sin (x⊤�̃�1) , … , cos(x
⊤�̃�𝑁RF) sin(x

⊤�̃�𝑁RF)] . (3.17)

To the best of our knowledge, this is the first time such an approximation has been con-
sidered for the purpose of preconditioning.

Partial SVD

Another factorisation approach we consider is the partial singular value decomposition
method (SVD; Golub and Van Loan, 1996). SVD factorises the original kernel matrix 𝐾XX
into 𝑈Λ𝑈 ⊤, where 𝑈 is a unitary matrix and Λ is a diagonal matrix of singular values.
𝑃SVD can thus be constructed by setting Φ = 𝑈√Λ. Given that full SVD also has 𝒪 (𝑁3)
complexity, we shall here consider a variation of this technique known as randomised
truncated SVD (Halko et al., 2011), which constructs an approximate low-rank factorisation
of 𝐾XX using random sampling to accelerate computation.

Structured Kernel Interpolation

Structured kernel interpolation (SKI; Wilson et al., 2014; Wilson and Nickisch, 2015) is
a kernel approximation technique that exploits the benefits of Kronecker algebra without
imposing any requirements on the structure of the training data. In particular, a covariance
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matrix 𝐾UU is constructed over a grid of inducing points where 𝑀 may even be greater
than 𝑁 . Instead of computing 𝐾XU directly, this matrix is approximated by 𝑊int𝐾UU,
where 𝑊int is a sparse 𝑁 × 𝑀 interpolation matrix for approximating 𝐾XU by assigning
weights to the elements of 𝐾UU. In this manner, a preconditioner exploiting Kronecker
algebra can be constructed as

𝑃SKI = 𝑊int𝐾UU𝐾−1
UU𝐾UU𝑊 ⊤

int + 𝜆𝐼𝑁

= 𝑊int𝐾UU𝑊 ⊤
int + 𝜆𝐼𝑁 . (3.18)

Recall that in the case of other preconditioners, the Woodbury inversion lemma is
effective because the preconditioners are designed to have low-rank structure, entailing
that the most expensive operation is the inversion of an 𝑀 × 𝑀 matrix, with 𝑀 ≪ 𝑁 .
However, this no longer holds for 𝑃SKI; in this case, the matrix 𝐾UU that is implicitly
constructed using the Kronecker product can be quite large, possibly even larger than 𝐾𝜆.
This is necessary in order to construct a grid of inducing points that is fine-grained enough
to enable effective interpolation. Nonetheless, if we apply Woodbury to 𝑃SKI, we would
be required to directly compute (𝐾−1

UU + 𝑊 ⊤
int𝑊int)

−1, where the addition of 𝑊 ⊤
int𝑊int no

longer permits us to exploit the Kronecker structure of 𝐾UU in the inversion. Instead,
we are required to solve the inner linear system 𝑃 −1

SKIv using CG, and this will have to be
done for every iteration of PCG. Although the computational complexity of matrix-vector
multiplications within the CG loop will be nearly linear given the structure of 𝑃SKI, the
number of iterations required to solve such inner linear systems can be very large for badly
conditioned matrices, thus diminishing the overall benefits of preconditioning.

3.4.3 Other Approaches

Block Jacobi

An alternative to using inducing points involves constructing local GPs over segments
of the original training data (Snelson and Ghahramani, 2007). An example of such an
approach is the Block Jacobi approximation, which only considers a block diagonal of 𝐾XX
while discarding all other elements in the kernel matrix. In this manner, covariance is only
expressed for points within the same block, and a preconditioner can be formed as

𝑃BLD = bldiag (𝐾𝜆) = bldiag (𝐾XX) + 𝜆𝐼𝑁 . (3.19)
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Computing the inverse of this preconditioner is computationally cheap as it will also be
block diagonal. However, given that a substantial amount of information contained in the
original matrix is ignored, this choice is an intrinsically crude approach.

Regularisation

An appealing feature shared by the preconditioners discussed thus far (aside from SKI) is
that their structure enables us to directly solve 𝑃 −1v in an efficient manner. An alternative
preconditioning technique involves adding positive regularisation, 𝛿, to the original kernel
matrix (Srinivasan et al., 2014), such that

𝑃REG = 𝐾𝜆 + 𝛿𝐼𝑁 . (3.20)

This follows from the fact that adding further noise to the diagonal of 𝐾𝜆 makes it bet-
ter conditioned - the condition number is expected to decrease further as 𝛿 increases.
Nonetheless, for the purpose of preconditioning, this parameter cannot be set too large
since it must still be tuned in such a way that 𝑃REG remains a sensible approximation to
𝐾𝜆.

Given that it is not possible to evaluate 𝑃 −1
REGv analytically, the resulting inner linear

system is solved yet again using CG, such that a linear system of equations is solved for
every outer iteration of the PCG algorithm. Due to the potential loss of accuracy incurred
while solving the inner linear system, a variation of standard PCG referred to as flexible
PCG (Notay, 2000) is used instead. Using this approach, a re-orthogonalisation step is
introduced at every iteration such that the search directions remain orthogonal even when
the inner system is not solved to high precision. This is also done for 𝑃SKI.

3.5 Comparison of Preconditioners

We now provide an empirical evaluation of the preconditioners introduced in the previous
section, whose properties are summarised in Table 3.1. In particular, we consider three
regression datasets from the UCI repository (Asuncion and Newman, 2007), namely the
Concrete dataset (𝑁 = 1030, 𝐷in = 8), the Powerplant dataset (𝑁 = 9568, 𝐷in = 4) and
the Protein dataset (𝑁 = 45730, 𝐷in = 9). In particular, we evaluate the convergence in
solving 𝐾𝜆z = y using iterative methods, where y denotes the set of univariate labels
of the designated dataset, and 𝐾𝜆 is constructed over the input data 𝑋 using different
configurations of kernel parameters. With this experiment, we aim to assess the quality of
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different preconditioners based on how many matrix-vector products they require, which
for most approaches corresponds to the number of iterations taken by PCG to converge.
The convergence threshold is set to 𝜀2 = 𝑁 ⋅10−10 so as to roughly accept an average error
of 10−5 on each element of the solution.

For every variation, we configure the preconditioners so as to have a complexity lower
than the 𝒪 (𝑁2) cost associated with matrix-vector multiplications; by doing so, we can
assume that the latter computations are the dominant cost for large 𝑁 . In particular, for
low-rank Nyström-based preconditioners, i.e. 𝑃NYS, 𝑃FITC and 𝑃PITC, we set 𝑀 = √𝑁
so that when we invert the preconditioner using the matrix inversion lemma, the cost is
in 𝒪 (𝑀3) = 𝒪 (𝑁

3
2 ). Similarly, for the spectral preconditioner 𝑃RF, we use 𝑀 = √𝑁

random features, which will then be doubled to 2𝑀 for using the RBF kernel. For 𝑃SKI,
we take an equal number of elements on the grid for each dimension; under this assump-

tion, Kronecker products have 𝒪 (𝐷in𝑁
𝐷in+1

𝐷in ) complexity (Gilboa et al., 2013), and we set

the size of the grid such that the complexity of applying the preconditioner also matches
𝒪 (𝑁

3
2 ). Finally, for 𝑃REG, each iteration needed to apply the preconditioner in the in-

ner CG loop requires one matrix-vector multiplication, and we add this to the outer tally
of PCG iterations. For this preconditioner, we add a diagonal offset 𝛿 to the original ma-

Table 3.1 Summary of proposed preconditioners and their associated inversion strategy.

Preconditioner Formulation Strategy

𝑃NYS 𝐾XU𝐾−1
UU𝐾⊤

XU + 𝜆𝐼𝑁 Woodbury

𝑃FITC 𝐾XU𝐾−1
UU𝐾⊤

XU + diag (𝐾XX − 𝐾XU𝐾−1
UU𝐾⊤

XU) + 𝜆𝐼𝑁 Woodbury

𝑃PITC 𝐾XU𝐾−1
UU𝐾⊤

XU + bldiag (𝐾XX − 𝐾XU𝐾−1
UU𝐾⊤

XU) + 𝜆𝐼𝑁 Woodbury

𝑃RF 𝑃𝑖𝑗 = 𝜎2

𝑁RF
∑𝑁RF

𝑟=1 cos [�̃�
⊤
𝑟 (x𝑖 − x𝑗)] + 𝜆 Woodbury

𝑃SVD 𝐾UU = 𝑈Λ𝑈 ⊤ ⇒ 𝑈[⋅∶𝑀]Λ[∶𝑀,∶𝑀]𝑈
⊤
[⋅,∶𝑀] + 𝜆𝐼𝑁 Woodbury

𝑃BLD bldiag (𝐾XX) + 𝜆𝐼𝑁 Block Inverse

𝑃SKI 𝑊int𝐾UU𝑊 ⊤
int + 𝜆𝐼𝑁 (where 𝐾UU is Kronecker) Inner CG

𝑃REG 𝐾XX + 𝜆𝐼𝑁 + 𝛿𝐼𝑁 Inner CG
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trix that is equivalent to two orders of magnitude greater than 𝜆. In general, although
the asymptotic complexity of PCG is indeed no different from that of CG, we emphasise
that experiencing a two-fold or five-fold (in some cases even an order of magnitude) im-
provement can be substantial when CG takes very long to converge or the dataset is very
large.

We focus on an isotropic variant of the RBF kernel in Equation 1.6, in which a single
lengthscale 𝑙 is shared across dimensions, fixing the marginal variance 𝜎2 to one, and
adding noise 𝜆 on the diagonal. For this analysis, we construct different kernels by varying
the lengthscale parameter 𝑙 and the noise variance 𝜆 in log10 scale. Results for the three
selected datasets are illustrated in Figures 3.2, 3.3, and 3.4 respectively. The top part of
each figure shows the number of iterations required for plain CG to converge, where we
have capped the number of iterations to 100,000. Meanwhile, the bottom part of the figure
represents the improvement offered by various preconditioners, measured as

log10 (
𝑁PCG iterations
𝑁CG iterations ) . (3.21)

When both CG and PCG fail to converge within the upper bound, the improvement will
be marked as 0, i.e. neither a gain or loss for the given budget of iterations.

Analysis

The results obtained across all datasets indicate that the low-rank preconditioners achieve
notable reduction in the number of iterations required for convergence, and all approaches
work best when the lengthscale is longer, characterising smoother processes. In contrast,
preconditioning seems to be less effective when the lengthscale is shorter, corresponding
to a kernel matrix that is more sparse. However, for instances yielding positive results,
the improvement is often in the range of an order of magnitude, which is substantial when
a large number of iterations is required by CG. The results also confirm that, as alluded
to in the previous section, 𝑃BLD is generally a poor preconditioner, particularly when the
corresponding kernel matrix is dense. The only minor improvements were obtained when
CG itself converges quickly, in which case preconditioning serves very little purpose either
way.

Employing 𝑃REG with flexible conjugate gradient does not appear to be effective in
any case, particularly due to the substantial amount of iterations required for solving an
inner linear system at every iteration of PCG. This implies that introducing small jitter to
the diagonal does not necessarily make the system much easier to solve, while adding an
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Fig. 3.2 Comparison of preconditioners for different settings of kernel parameters applied
to the Concrete dataset. The lengthscale 𝑙 and the noise variance 𝜆 are shown on the x-
and y-axes respectively. The top figure indicates the number of iterations required to solve
the corresponding linear system using CG, whilst the bottom part of the figure shows the
rate of improvement (negative - blue) or degradation (positive - red) achieved by using
PCG to solve the same linear system. Parameters and results are reported in log10.
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Fig. 3.3 Comparison of preconditioners for the Powerplant dataset.
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Fig. 3.4 Comparison of preconditioners for the Protein dataset.
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overly large offset would negatively impact the convergence of the outer algorithm. Tun-
ing this parameter could potentially result in slightly better results; however, preliminary
experiments carried out in this regard yielded only minor improvement.

Finally, the results for 𝑃SKI are similarly discouraging at face value. When the matrix
𝐾𝜆 is very badly conditioned, an excessive number of iterations for solving an inner linear
system are required at every outer iteration of PCG. This greatly increases the duration of
solving such systems, and as a result, this method was not included in the comparison for
the Protein dataset, where it was evident from the outset that using such a preconditioner
would not yield satisfactory improvement. Notwithstanding that these experiments depict
a negative view of SKI preconditioning, it must be said that we assumed a fairly simplis-
tic interpolation procedure in our experiments, where each data point was mapped to the
nearest grid location. The size of the constructed grid is also hindered considerably by the
constraint imposed by our upper bound on complexity. Conversely, more sophisticated in-
terpolation strategies and grid design procedures could possibly speed up the convergence
of CG for the inner systems. In line with this thought, however, one could argue that the
preconditioner would no longer be straightforward to construct, which goes against our
innate preference towards easily derived preconditioners.

3.6 Gaussian Processes on a Computational Budget

The primary objective of the work presented in this chapter is to reformulate the imple-
mentation of GPs in such a way that preconditioning can be effectively exploited to carry
out exact training and inference on a computational budget. Although we have so far lim-
ited our discussion to regression problems, the methodology proposed here can also be
extended to problems where the likelihood is non-Gaussian, thus broadening the scope of
our contribution to classification tasks. In this section, we briefly demonstrate how pre-
conditioning can be used for such problems, and evaluate the effectiveness of the proposed
preconditioned GP methodology in comparison to commonly-used GP approximations for
both regression and classification.

3.6.1 Preconditioning for GP Classification

In Section 1.2.4 of Chapter 1, we indicated that analytic tractability may not be preserved
when the likelihood is no longer Gaussian. Among the various schemes to recover tractabil-
ity in the case ofmodels with a non-Gaussian likelihood, we choose the Laplace approxima-
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tion as it can be formulated in a manner that falls back on the solution of linear systems.
In particular, the Laplace approximation targets the mode of the true, albeit intractable,
posterior by way of the Newton-Raphson method. For convenience, we assume that the
likelihood factorises across all observations, such that 𝑝 (y|f) = ∏𝑁

𝑖=1 𝑝 (𝑦𝑖|𝑓𝑖), and we
consider a probit likelihood having the form

𝑝 (𝑦𝑖|𝑓𝑖) = Φ (𝑦𝑖𝑓𝑖) , (3.22)

where Φ (⋅) denotes the cumulative density function of the Gaussian distribution. As be-
fore, the latent variables f are assigned a GP prior with zero mean, f ∼ 𝒩 (0, 𝐾XX).

For a given setting of hyperparameters 𝜃, we define the logarithm of the posterior
density over f as

Ψ (f) = log [𝑝 (y|f)] + log [𝑝 (f|𝜃)] − 𝑁
2 log (2𝜋) . (3.23)

Performing a Laplace approximation on this expression amounts to defining an approxi-
mate Gaussian distribution 𝑞 (f|y,𝜃) = 𝒩 (f| ̂f, Σ̂ΣΣ) such that

̂f = argmax
f

Ψ (f) , and (3.24)

Σ̂ΣΣ−1 = −∇f∇fΨ ( ̂f) . (3.25)

Given that an analytic solution for the maximisation problem displayed in Equation 3.24
is not available, an iterative procedure based on the Newton-Raphson method is then em-
ployed in order to identify the posterior mode ̂f. At every iteration, an initial estimate is
sequentially updated as

f new = f − (∇f∇fΨ (f))
−1 ∇fΨ (f) , (3.26)

until convergence. The gradient and the Hessian of the log of the target density can then
be evaluated as

∇fΨ (f) = ∇f log [𝑝 (y|f)] − 𝐾−1
XXf, and (3.27)

∇f∇fΨ (f) = ∇f∇f log [𝑝 (y|f)] − 𝐾−1
XX = −𝑊 − 𝐾−1

XX, (3.28)
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where we have defined 𝑊 = −∇f∇f log [𝑝 (y|f)]. Given our assumption that the likelihood
factorises over observations, 𝑊 is known to be a diagonal matrix. Standard algebraic
manipulation then leads to

f new = (𝐾−1
XX + 𝑊 )

−1
(𝑊 f + ∇f log [𝑝 (y|f)]) , (3.29)

which can be further rewritten using the matrix inversion lemma as follows,

(𝐾−1
XX + 𝑊 )

−1 = 𝐾XX − 𝐾XX√𝑊 𝐵−1√𝑊 𝐾XX, where (3.30)

𝐵 = 𝐼𝑁 + √𝑊 𝐾XX√𝑊 . (3.31)

Consequently, at every iteration, f new can be reformulated as

f new = (𝐾XX − 𝐾XX√𝑊 𝐵−1√𝑊 𝐾XX) (𝑊 f + ∇f log [𝑝 (y|f)]) . (3.32)

If we additionally define b = (𝑊 f + ∇f log [𝑝 (y|f)]), the above expression can be rewrit-
ten as

f new = 𝐾XX (b − √𝑊 𝐵−1√𝑊 𝐾XXb) , (3.33)

and at convergence, we will be left with the following linear system to be solved,

a = 𝐾−1
XX

̂f = (b − √𝑊 𝐵−1√𝑊 𝐾XXb) . (3.34)

Evaluating the featured calculations from right to left, we can observe that in order
to complete a Newton-Raphson update, the most expensive operations involved are (i)
the matrix-vector multiplication 𝐾XXb, (ii) solving a linear system involving 𝐵, and (iii)
carrying out another matrix-vector multiplication involving 𝐾XX and the vector in the
parenthesis. Evaluating b and performing any multiplications of √𝑊 with vectors costs
𝒪 (𝑁), and all these operations can be carried out without ever having to store 𝐾XX or any
other 𝑁 ×𝑁 matrix in its entirety. The use of CG for computing the Laplace approximation
has been proposed elsewhere (Flaxman et al., 2015), but we make the first use of precon-
ditioning and stochastic gradient estimation within this approach to compute stochastic
gradients for non-conjugate GP models.
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Stochastic Gradients for the Laplace Approximation

The Laplace approximation yields the mode ̂f of the posterior over latent variables, and
offers an approximate log marginal likelihood having the following form,

log [ ̂𝑝 (y|𝜃, 𝑋)] = −1
2 log |𝐵| − 1

2
̂f⊤𝐾−1

XX
̂f + log [𝑝 (y| ̂f)] . (3.35)

In this exposition, we shall repeatedly make use of the following two identities in order to
retain analytic tractability in the proposed methodology,

log |𝐵| = log |𝐼𝑁 + √𝑊 𝐾XX√𝑊 | = log |𝐼𝑁 + 𝐾XX𝑊 |, and (3.36)

(𝐼𝑁 + 𝐾XX𝑊 )
−1 = √𝑊

−1
𝐵−1√𝑊 . (3.37)

The gradient of the log marginal likelihood with respect to the kernel parameters 𝜃 re-
quires differentiating both the terms that explicitly depend on 𝜃, and also those that only
implicitly depend on it. The latter arises because a change in the parameters also brings
about a change in ̂f. We thus obtain

𝜕 log [ ̂𝑝 (y|𝜃)]
𝜕𝜃𝑖

= − 1
2Tr(𝐵−1 𝜕𝐵

𝜕𝜃𝑖 )

+ 1
2

̂f⊤𝐾−1
XX

𝜕𝐾XX
𝜕𝜃𝑖

𝐾−1
XX

̂f

+ [∇ ̂f log [ ̂𝑝 (y|𝜃)]]
⊤ 𝜕 ̂f

𝜕𝜃𝑖
. (3.38)

Similar to the regression set-up, the trace term appearing in the derivative cannot be com-
puted exactly for large 𝑁 , so we propose a stochastic estimate as follows,

− 1
2Tr(𝐵−1 𝜕𝐵

𝜕𝜃𝑖 ) ≈ − 1
2𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝐵−1 𝜕𝐵
𝜕𝜃𝑖

r(𝑖). (3.39)

By observing that the derivative of 𝐵 is √𝑊 𝜕𝐾XX
𝜕𝜃𝑖

√𝑊 , the above simplifies to

− 1
2𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝐵−1√𝑊 𝜕𝐾XX
𝜕𝜃𝑖

√𝑊 r(𝑖), (3.40)
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highlighting that we are now required to solve 𝑁r linear systems involving 𝐵 instead.
Meanwhile, the second term of Equation 3.38 contains the linear system 𝐾−1

XX
̂f, which cor-

responds to the term a (Equation 3.34) obtained during the Laplace approximation itself.
On the other hand, the last (implicit) term appearing in the expression of the gradient

can first be simplified by observing that

log [ ̂𝑝 (y|𝜃)] = Ψ ( ̂f) − 1
2 log |𝐵|, (3.41)

and that the derivative of the first term with respect to ̂f is zero since this maximises Ψ ( ̂f).
We therefore have that

[∇ ̂f log [ ̂𝑝 (y|𝜃)]]
⊤ 𝜕 ̂f

𝜕𝜃𝑖
= −1

2 [∇ ̂f log |𝐵|]
⊤ 𝜕 ̂f

𝜕𝜃𝑖
. (3.42)

The components of [∇ ̂f log |𝐵|] can be obtained by considering the identity given in Equa-
tion 3.36, such that differentiating log |𝐵| with respect to the components of ̂f becomes

𝜕 log |𝐼𝑁 + 𝐾XX𝑊 |
𝜕 ( ̂f)𝑗

= Tr
((𝐼𝑁 + 𝐾XX𝑊 )

−1 𝐾XX
𝜕𝑊

𝜕 ( ̂f)𝑗 )
. (3.43)

We can rewrite this by gathering 𝐾XX inside the inverse itself, where this term cancels out
due to the inversion of the matrix product,

𝜕 log |𝐼𝑁 + 𝐾XX𝑊 |
𝜕 ( ̂f)𝑗

= Tr
((𝐾−1

XX + 𝑊 )
−1 𝜕𝑊

𝜕 ( ̂f)𝑗 )
. (3.44)

The resulting trace term contains the inverse of the same matrix required in the Newton-
Raphson iterations of the Laplace approximation, while the matrix 𝜕𝑊

𝜕( ̂f)𝑗
is zero everywhere

except on the 𝑗th diagonal element, where it takes the value

𝜕𝑊
𝜕 ( ̂f)𝑗

=
𝜕3 log [𝑝 (y| ̂f)]

𝜕 ( ̂f)
3
𝑗

. (3.45)

In this manner, it is possible to simplify the trace term as the product between the 𝑗th

diagonal element of (𝐾−1
XX + 𝑊 )

−1 and the above expression. Bearing in mind that we are
required to evaluate 𝑁 of these quantities, we could define

𝐷 = diag [diag [(𝐾−1
XX + 𝑊 )

−1
]] , and (3.46)
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(d)𝑗 =
𝜕3 log [𝑝 (y| ̂f)]

𝜕 ( ̂f)
3
𝑗

, (3.47)

while rewriting

− 1
2 [∇ ̂f log |𝐵|] = −1

2𝐷d. (3.48)

This is the standard way of computing the gradient of the approximate log marginal
likelihood derived using the Laplace approximation (Rasmussen andWilliams, 2006). How-
ever, such an approach would be expensive to compute exactly for large 𝑁 , as this would
first require inverting (𝐾−1

XX + 𝑊 ) before computing its diagonal. Using the matrix inver-
sion lemma would not simplify things either, since there would still be the inverse of 𝐵
left to compute explicitly. We therefore aim for a stochastic estimate of this term starting
from

𝜕 log |𝐼𝑁 + 𝐾XX𝑊 |
𝜕 ( ̂f)𝑗

= Tr
((𝐾−1

XX + 𝑊 )
−1 𝜕𝑊

𝜕 ( ̂f)𝑗 )

= Tr
((𝐾−1

XX + 𝑊 )
−1 𝜕𝑊

𝜕 ( ̂f)𝑗
𝔼 [rr⊤])

, (3.49)

where we once again introduce random probing vectors rwith the property 𝔼 [rr⊤] = 𝐼𝑁 .
It follows from the cyclical property of the trace that an unbiased estimate of the trace for
each component of ̂f can be computed as

[
𝜕 log |𝐼𝑁 + 𝐾XX𝑊 |

𝜕 ( ̂f)𝑗 ]
≈ (ũ)𝑗 = 1

𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤
(𝐾−1

XX + 𝑊 )
−1 𝜕𝑊

𝜕 ( ̂f)𝑗
r(𝑖), (3.50)

which entails solving 𝑁r linear systems involving the matrix 𝐵,

(𝐾−1
XX + 𝑊 )

−1 r(𝑖) = 𝐾XX (r
(𝑖) − √𝑊 𝐵−1√𝑊 𝐾XXr(𝑖)

) . (3.51)

The derivative of ̂f with respect to 𝜃𝑖 can then be obtained by differentiating the ex-
pression ̂f = 𝐾XX∇ ̂f log [𝑝 (y| ̂f)], which is given by

𝜕 ̂f
𝜕𝜃𝑖

= 𝜕𝐾XX
𝜕𝜃𝑖

∇ ̂f log [𝑝 (y| ̂f)] + 𝐾XX∇ ̂f∇ ̂f log [𝑝 (y| ̂f)]
𝜕 ̂f
𝜕𝜃𝑖

. (3.52)
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Given that ∇ ̂f∇ ̂f log [𝑝 (y| ̂f)] = −𝑊 , we can reorganise the above equation such that

(𝐼𝑁 + 𝐾XX𝑊 )
𝜕 ̂f
𝜕𝜃𝑖

= 𝜕𝐾XX
𝜕𝜃𝑖

∇ ̂f log [𝑝 (y| ̂f)] , (3.53)

which yields

𝜕 ̂f
𝜕𝜃𝑖

= (𝐼𝑁 + 𝐾XX𝑊 )
−1 𝜕𝐾XX

𝜕𝜃𝑖
∇ ̂f log [𝑝 (y| ̂f)] . (3.54)

Finally, the unbiased estimate of the implicit term in the gradient of the approximate log
marginal likelihood becomes

− 1
2 ũ

⊤ (𝐼𝑁 + 𝐾XX𝑊 )
−1 𝜕𝐾XX

𝜕𝜃𝑖
∇ ̂f log [𝑝 (y| ̂f)] . (3.55)

Rewriting the inverse appearing in the expression above in terms of 𝐵 gives

− 1
2 ũ

⊤√𝑊
−1

𝐵−1√𝑊 𝜕𝐾XX
𝜕𝜃𝑖

∇ ̂f log [𝑝 (y| ̂f)] , (3.56)

and after assembling all terms back together, the stochastic approximation of the gradient
presented in Equation 3.38 can be derived as

𝜕 log [ ̂𝑝 (y|𝜃)]
𝜕𝜃𝑖

≈ − 1
2𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝐵−1√𝑊 𝜕𝐾XX
𝜕𝜃𝑖

√𝑊 r(𝑖)

+ 1
2a

⊤ 𝜕𝐾XX
𝜕𝜃𝑖

a

− 1
2 ũ

⊤√𝑊
−1

𝐵−1√𝑊 𝜕𝐾XX
𝜕𝜃𝑖

∇ ̂f log [𝑝 (y| ̂f)] . (3.57)

Predictions

To obtain an approximate predictive distribution conditioned on a given setting of hyper-
parameters 𝜃, we can compute

𝑝 (𝑦⋆|y,𝜃) = ∫ 𝑝 (𝑦⋆|𝑓⋆) 𝑝 (𝑓⋆|f,𝜃) 𝑞 (f|y,𝜃) d𝑓⋆df. (3.58)

Given the properties of multivariate normal variables, 𝑓⋆ is distributed as 𝒩 (𝑓⋆|𝜇⋆, Σ⋆),
with 𝜇⋆ = k⊤

⋆𝐾−1
XXf and Σ⋆ = 𝑘⋆⋆ − k⊤

⋆𝐾−1
XXk⋆. Approximating 𝑝 (f|y,𝜃) with a Gaussian
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𝑞 (f|y,𝜃) makes it possible to analytically perform integration with respect to f in Equa-
tion 3.58. In particular, the integration yields 𝒩 (𝑓⋆|𝑚⋆, 𝑠2

⋆) with

𝑚⋆ = k⊤
⋆𝐾−1

XX
̂f, and (3.59)

𝑠2
⋆ = 𝑘⋆⋆ − k⊤

⋆ (𝐾XX + 𝑊 −1)
−1 k⋆. (3.60)

These quantities can then be rewritten as 𝑚⋆ = k⊤
⋆a and 𝑠2

⋆ = 𝑘⋆⋆ − k⊤
⋆√𝑊 𝐵−1√𝑊 k⋆;

this shows that the mean is cheap to predict, whereas the associated variance requires
solving yet another linear system involving 𝐵 for each test point. The univariate inte-
gration with respect to 𝑓⋆ follows exactly in the the case of a probit likelihood, as it is a
convolution of a Gaussian and a cumulative Gaussian,

∫ 𝑝 (𝑦⋆|𝑓⋆) 𝒩 (𝑓⋆|𝑚⋆, 𝑠2
⋆) d𝑓⋆ = Φ

⎛
⎜
⎜
⎝

𝑚⋆

√1 + 𝑠2
⋆

⎞
⎟
⎟
⎠
. (3.61)

3.6.2 Experimental Evaluation

In order to validate the effectiveness of our proposal, we empirically report on the gener-
alisation ability of the proposed methodology as a function of the time taken to optimise
parameters 𝜃 and compute predictions. In particular, for each of the methods featured in
our comparison, we iteratively run the optimisation of kernel parameters for a set number
of iterations and predict on unseen data, continually assessing how the predictive perfor-
mance progresses over time for different methods. The analysis provided here is inspired
by Chalupka et al. (2013), although we do not propose an approximate method to learn GP
kernel parameters; instead, we put forward a means of accelerating the optimisation of 𝜃
without any approximation2. Given the predictive mean and variance of 𝑁⋆ test points,
denoted as 𝜇⋆,𝑖 and 𝑠2

⋆,𝑖 for the 𝑖th test point, we report two error metrics, namely the root
mean squared error (RMSE),

RMSE =
√

1
𝑁⋆

(𝜇⋆,𝑖 − 𝑦⋆,𝑖)
2, (3.62)

along with the mean negative log likelihood (MNLL) on the test data,
2The one proviso to this statement is that, for non-Gaussian likelihoods, stochastic gradients target the

approximate log marginal likelihood obtained by the Laplace approximation.



3.6 Gaussian Processes on a Computational Budget 55

MNLL = − 1
𝑁⋆

𝑁⋆

∑
𝑖=1

log [𝑝 (𝑦⋆,𝑖|𝜇⋆,𝑖, 𝑠2
⋆,𝑖)] , (3.63)

where 𝑦⋆,𝑖 denotes the true label of the corresponding test point. For classification prob-
lems, we report the error rate (ERR) of the classifier instead of the RMSE,

ERR = 1 − 1
𝑁⋆

𝑁⋆

∑
𝑖=1

𝑟 , where 𝑟 =
⎧⎪
⎨
⎪⎩

1, if prediction is correct

0, otherwise
. (3.64)

Experimental Set-up

We make use of stochastic gradients for GP models to optimise kernel hyperparameters
using ADAGRAD (Duchi et al., 2011), a stochastic optimisation algorithm having a single
step-size parameter. For the purpose of this experiment, we do not attempt to optimise this
parameter since this would introduce additional computation. Nonetheless, our experience
with training GP models using this procedure suggests that this parameter setting is not
critical and we arbitrarily set the step-size to one across all experiments.

We carry out our evaluation over six datasets, three of which are regression problems,
while the remaining are binary classification tasks. All results for regression and clas-
sification are shown in Figures 3.5 and 3.6 respectively. In the plots, PCG and CG refer
to stochastic gradient optimisation of kernel parameters using ADAGRAD, where linear
systems are solved with PCG and CG respectively. In view of the results obtained in our
comparison of preconditioners, as well as its appealing ease-of-construction, we decide
to proceed with the Nyström preconditioner 𝑃NYS. We construct the preconditioner with
𝑀 = 4√𝑁 points randomly selected from the input data at each iteration, such that the
overall complexity of the PCG method matches plain CG. For these methods, stochastic
estimates of trace terms are carried out using 𝑁r = 4 random vectors. The baseline CHOL
method refers to the optimisation of kernel parameters using the standard L-BFGS algo-
rithm, where the exact log marginal likelihood and its gradients are calculated using the
full Cholesky decomposition of 𝐾𝜆 (and also 𝐵 for classification).

Alongside these approaches for optimising kernel hyperparameters in an exact man-
ner, we also compare against the performance of several approximate GPmethods. For this
experiment, we compare against three inducing point approximations found in the soft-
ware package GPstuff (Vanhatalo et al., 2013), namely the fully and partially independent
training conditional approaches (FITC, PITC), and the sparse variational GP (VFE). Details
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Fig. 3.5 Progression of RMSE and MNLL on held-out test data over time. The regression
datasets considered have the following properties: Concrete (𝑁 = 1030, 𝐷in = 8), Power-
plant (𝑁 = 9568, 𝐷in = 4), Protein (𝑁 = 45730, 𝐷in = 9).
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Fig. 3.6 Progression of ERR and MNLL on held-out test data over time. The classification
datasets considered have the following properties: Credit (𝑁 = 1000, 𝐷in = 24), Spam
(𝑁 = 4601, 𝐷in = 57), EEG (𝑁 = 14979, 𝐷in = 14).
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on all three approximations can be found in Chapter 2. All of the competing methods are
initialised from the same set of kernel parameters, and the curves are averaged over 5 folds
(this is reduced to 3 for the larger Protein and EEG datasets). For the sake of integrity, we
ran each method in the comparison individually on a workstation having an Intel Xeon
E5-2630 CPU with 16 cores and 128GB RAM. We also ensured that all methods reported
in the comparison utilised optimised linear algebra packages and routines exploiting the
multicore architecture. This diligence for ensuring fairness reinforces our assumption that
the timings are not affected by external factors other than the actual implementation of
the algorithms.

Analysis

For the reported experiments, it was possible to store the kernel matrix 𝐾𝜆 in memory
for all datasets, making it possible to compare the competing methods against a baseline
GPwhere computations use Cholesky decompositions. We stress that iterative approaches
based on CG and PCG can be implemented without the need to store the full kernel matrix,
whereas this is not possible for approaches that attempt to factorise 𝐾𝜆 exactly. It is also
worth noting that for the CG and PCG approaches, calculating the log likelihood on test
data entails solving one linear system for each test point; this clearly penalises the speed
of these methods for the chosen experimental set-up whereby predictions are carried out
every fixed number of iterations.

The results give credence to our intuition that although GP approximations quickly
converge to a sensible solution, they also tend to plateau at inferior solutions to those ob-
tained using Cholesky-based training and inference. Conversely, the performance of CG
and PCG is directly comparable to the results obtained with Cholesky, while also requir-
ing less time to converge to an optimal solution. The benefits of using PCG over CG are
especially significant for the two larger datasets (Protein and EEG), where any improve-
ment in the convergence rate of solving the involved linear systems has a markedly more
pronounced effect on training time.

3.7 Conclusion

The computational and storage complexity of GPs presents the primary barrier to their
scaling to large modern datasets. In this chapter we provided a comprehensive discussion
of preconditioning kernel matrices, beyond existing work, and definitively illustrated that
preconditioning accelerates learning in GPs without resorting to explicit approximations.
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This scheme permits the use of any likelihood that factorises over observations, allowing us
to tackle both regression and classification problems. We have shown robust performance
improvements in both accuracy and computational cost over a selection of widely-used
approximate methods for training GPs; notably, our proposal is exact in the limit of it-
erations. We have also demonstrated that the use of PCG is competitive with Cholesky
decomposition for modestly-sized datasets where computation of Cholesky factors is still
tractable. When the available data and consequently the kernel matrix grow large enough,
Cholesky factorisation becomes unfeasible, positioning PCG as the best suited alternative.





Chapter 4

Towards a Probabilistic Numerics
Interpretation of Gaussian Processes

Careful attention to numerical properties is essential when scaling machine learning algo-
rithms to large datasets. In spite of the appealing uncertainty quantification inherent to
Gaussian process inference, the computational or numerical uncertainty associated with
these models has been largely unaccounted for in the literature. This is particularly perti-
nent to methodologies such as that presented in the previous chapter, where it would be
desirable to capture the uncertainty tied to the approximated algebraic operations. As a
step forward in the direction of incorporating probabilistic numerics with Gaussian pro-
cesses, we reinterpret the problem of estimating the log determinant of large matrices as
a Bayesian inference problem, yielding approximations to this term accompanied by un-
certainty estimates. In conjunction with parallel work on designing probabilistic solvers
for linear systems, this equips us with the necessary tools for recasting all linear algebraic
operations appearing in Gaussian process inference and training as probabilistic agents.
Nonetheless, we show that in spite of their theoretic appeal, state-of-the-art probabilistic
numerical methods may not yet be sufficiently robust for fully-realising this concept. The
first part of this chapter is adapted from joint work published in Fitzsimons et al. (2017a),
while the discussion on applying probabilistic numerics to Gaussian processes is novel to
this manuscript and serves as a rallying cry for future work in this direction.
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4.1 Overview

Capturing model uncertainty is a core aspect of several machine learning algorithms,
ranging from Bayesian neural networks (Neal, 1995) to probabilistic support vector ma-
chines (Platt, 1999). Such models are particularly suited to applications of high risk, where
well-calibrated confidence measures accompanying predictions are instrumental for de-
cision making. Aside from the uncertainty inherent to the model itself, computational
limitations such as machine precision and algebraic approximations could also affect the
reliability of a model’s output. However, exhaustively identifying such factors can be ex-
tremely challenging, and is further hindered by the difficulty in sensibly isolating and
quantifying their impact (if any) on predictive performance.

In the previous chapter, we proposed an alternative GP formulation that solves lin-
ear systems involving kernel matrices with PCG in order to accelerate training and infer-
ence. Using this framework, only the underlying algebraic operations are approximated,
allowing for the GP model to remain ‘exact’ in the limit of unconstrained computational
budgets. Nonetheless, guarantees on exactness only hold in theory (Golub and Van Loan,
1996); in practice, the quality of the approximated terms will be largely dependent on
the allocated computational budget. This introduces an additional source of numerical (or
computational) uncertainty within the model that is generally unaccounted for during the
optimisation phase, and also when making predictions.

It follows that the overall uncertainty of GPs can be significantly underestimated if
these additional sources of uncertainty are ignored. In view of the aforementioned diffi-
culty in assessing the quality of approximated algebraic operations, probabilistic numer-
ics (Hennig et al., 2015) is an emerging field of study that relies on casting linear algebraic
operations as inference problems in such a way that uncertainty estimates can be returned
along with the approximated solutions. Of particular interest to our set-up, probabilistic
interpretations of linear solvers have recently appeared under various guises (Bartels et al.,
2018; Cockayne et al., 2018; Hennig, 2015). To complement this work, and by virtue of the
necessity to compute log determinants appearing in the marginal likelihood of a GP, we
contribute to the existing literature on probabilistic numerics by proposing an approxi-
mation to the log determinant of large matrices that blends different elements from the
literature under a Bayesian framework. In particular, we combine prior knowledge in the
form of bounds from matrix theory and evidence derived from stochastic trace estimation
to obtain budget-constrained probabilistic estimates for the log determinant.
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The overarching goal of developing such Bayesian interpretations of linear algebra is
to fuse them within more complex pipelined procedures and learning models. Coupled
with existing work on probabilistic linear solvers, the proposed Bayesian log determinant
approximation enables us to evaluate all algebraic operations involved in GP training and
inference under a probabilistic numerics framework. The implication for GPs is that this
gives us the means to obtain a distribution over the marginal likelihood and GP predic-
tions, and we would like to carry out quadrature over samples of this distribution in or-
der to obtain an approximation for the mean and variance of those terms. In broad terms,
this amounts to introducing second-order probabilities (Ekenberg andThorbiörnson, 2001),
which can be explained as the probability of a secondary probability distribution being
correct if certain information was available; in the context of probabilistic numerics, this
corresponds to the probability of the secondary distribution being true if all algebraic op-
erations were assigned an unbounded computational budget. However, although these
methods work well in isolation when applied to sparse, well-conditioned matrices, this
does not immediately extend to the dense, poorly-conditioned kernel matrices prevalent
in the GP setting. In this light, we conclude this chapter with a cautionary note on how fur-
ther work on these fundamental ‘building blocks’ is required before they can be effectively
coupled with existing GP methodologies.

4.2 Bayesian Inference of Log Determinants

Classical linear algebra is generally viewed as a set of deterministic procedures yielding
single, definitive solutions. While this holds true for most exact evaluations in the limit
of unbounded computation, approximations for enabling tractability indirectly introduce
a measure of approximation quality that is roughly determined by the budget allocated
to the computation. With reference to conjugate gradient, the solution obtained after 𝑡
iterations is expected to be less accurate than that obtained after 𝑡 + 1 iterations, but how
can one decide at run-time whether 𝑡 iterations are sufficient or more should be carried
out? Intuitively, it would be desirable to obtain a probability measure over the space of
all possible solutions that serves as an indicator of the approximated solution’s quality.
Designing algorithms for effectively capturing such numerical uncertainty is the primary
motivation of probabilistic numerics (Hennig et al., 2015), in which numerical computa-
tions are reinterpreted using probabilistic inference. More specifically, partial information
collected during the approximation algorithm is combined with prior assumptions on the
expected solution in order to derive a posterior distribution for the final objective. Tak-
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ing numerical integration as an illustrative example, where the final objective is given by
the integral ∫ 𝑓(𝑥)𝑝 (𝑥) d𝑥, the latent function becomes the integrand 𝑓 while the partial
information corresponds to evaluations of the integrand denoted by 𝑓(𝑥). In this section,
we discuss a novel scheme that employs techniques inspired by probabilistic numerics to
infer the log determinant of large matrices under a Bayesian framework.

4.2.1 Partial Observations by way of Stochastic Trace Estimation

In the previous chapter, we illustrated how stochastic trace estimation (STE) can be ex-
ploited for obtaining unbiased estimates of Tr (𝜌 (𝐴)), where 𝜌 (⋅) is some transformation
applied to 𝐴. This approximation takes the form

Tr (𝜌 (𝐴)) ≈ 1
𝑁r

𝑁r

∑
𝑖=1

r(𝑖)⊤𝜌 (𝐴) r(𝑖), (4.1)

where r(𝑖) are probing vectors sampled from a suitable estimator; in this chapter, we shall
consider the Gaussian estimator whereby the 𝑁r probing vectors are sampled from an
independently and identically distributed zero-mean and unit variance Gaussian distribu-
tion. Its use in estimating the log determinant of a matrix follows from the relationship
between the log determinant of 𝐴 and the corresponding trace of the log-matrix,

log |𝐴| = Tr (log (𝐴)) . (4.2)

Provided that log (𝐴) can be properly computed, the log determinant of 𝐴 can then be
approximated by estimating the trace using STE. However, directly evaluating log (𝐴) is
generally infeasible, and alternative workarounds are necessary.

Given that we are primarily interested in developing a technique that is suitable for
approximating log determinants appearing in the marginal likelihood of a GP, we predom-
inantly consider covariance matrices having the form of a Gram matrix 𝐾 . Let us assume
that 𝐾 has been normalised such that the maximum eigenvalue is less than or equal to one,
𝜆0 ≤ 1, where an upper bound on the largest eigenvalue can be estimated using Gersh-
gorin intervals (Gershgorin, 1931). Given that kernel matrices are positive semi-definite,
we also know that the smallest eigenvalue is bounded by zero, and hence 𝜆𝑁 ≥ 0. Moti-
vated by the identity presented in Equation 4.2, the Taylor series expansion can then be
employed for evaluating the log determinant of matrices having eigenvalues bounded in
this domain. In particular, this approach relies on the following identity,
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log (𝐼𝑁 − 𝐴) = −
∞

∑
𝑠=1

𝐴𝑠

𝑠 . (4.3)

Naturally, the infinite summation cannot be computed in finite time, but we can approxi-
mate this term by computing a truncated series expanded up to order 𝑀 instead. As the
trace of matrices is additive, we thus obtain

Tr (log (𝐼𝑁 − 𝐴)) ≈ −
𝑀

∑
𝑠=1

Tr (𝐴𝑠)
𝑠 . (4.4)

STE can then be invoked for efficiently approximating Tr (𝐴𝑠), which in this case amounts
to recursively applying 𝑀 repeatedmatrix-vector multiplications of 𝐴 by a random vector;
each matrix-vector multiplication has 𝒪 (𝑁2) complexity. For computing Tr (log (𝐾)), we
simply set 𝐴 = 𝐼𝑁 − 𝐾 . Such use of stochastic trace estimates in conjunction with the
Taylor approximation for approximating the log determinant of a symmetric positive semi-
definite matrix was explored in Boutsidis et al. (2017).

The quality of this approximation is closely related to two main factors. Firstly, in spite
of returning an unbiased approximation, STE itself induces some degree of error given that
only a finite number of probing vectors are used. Secondly, given that the approximation
detailed above relies on an infinite summation of the Taylor series, the implied trunca-
tion may also impact the overall quality. In the absence of additive diagonal noise, the
smallest eigenvalue of covariance matrices tends to be very small, which entails that 𝐴𝑠

decays slowly as 𝑠 tends towards infinity. Consequently, standard Taylor approximations
to the log determinant of covariance matrices can be fairly unreliable, even when exact
evaluations of Tr (𝐴𝑠) are available. To this end, our probabilistic interpretation exploits
possibly noisy approximations of Tr (𝐴𝑠) in order to make a more informed prediction
with associated uncertainty for the infinite expansion detailed in Equation 4.3.

4.2.2 The Probabilistic Numerics Approach

Probabilistic numerical algorithms are generally composed of three primary components,
namely an appropriate latent function, partial or noisy observations, and a final objec-
tive. For the purpose of estimating the log determinant, the latent function corresponds
to the eigenvalue distribution of 𝐴, the available data corresponds to noisy observations
of Tr (𝐴𝑠) computed using STE, while the objective is log |𝐴| by way of the Taylor expan-
sion given in Equation 4.3. Although the Taylor approximation to the log determinant is
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perhaps not regarded as the best possible approach, we demonstrate that the intermediate
trace terms obtained when raising 𝐴 to higher powers may prove to be informative if these
are considered to be noisy observations within a probabilistic model. Under a Bayesian
framework, our proposed algorithm will thus yield both the expected approximation as
well as the variance tied to the prediction.

Raw Moment Observations

Our proposal for approximating the log determinant of a matrix draws from the relation
between raw moments of the eigenvalue distribution and the trace of matrices raised to
higher powers, which additionally allows us to exploit STE.The rawmoments of a random
variable are evaluated by raising the variable to higher integer powers. Given that a func-
tion applied to a matrix is directly propagated to its eigenvalues, in the case of higher order
matrices this corresponds to raising the eigenvalues to the same power. For example, the
𝑠th raw moment, R𝑠, of the distribution over eigenvalues for an 𝑁-dimensional matrix 𝐴
can be computed as the mean eigenvalue of the matrix raised to the corresponding power,

R𝑠 [𝑝 (𝜆)] = 1
𝑁

𝑁

∑
𝑖=1

𝜆𝑠
𝑖 , (4.5)

where 𝜆𝑖 denotes the 𝑖th eigenvalue of the matrix. The first raw moments are trivial to
compute; denoting the expectation of the 𝑠th raw moment as 𝔼 [𝜆𝑠], we have that 𝔼 [𝜆0] =
1, 𝔼 [𝜆1] = 1

𝑁Tr (𝐴) and 𝔼 [𝜆2] = 1
𝑁 ∑𝑖,𝑗 𝐴2

𝑖,𝑗 . More generally, we can express the 𝑠th raw
moment as 𝔼 [𝜆𝑠] = 1

𝑁Tr (𝐴𝑠), which can in turn be estimated using STE.
In view of the above, we can reformulate the log determinant approximation presented

in Equation 4.2 in terms of the eigenvalues of 𝐴 using the following derivation,

log |𝐴| =
𝑁

∑
𝑖=1

log(𝜆𝑖) = 𝑁 ⋅ 𝔼 [log (𝜆)] ≈ 𝑁 ∫ log (𝜆) 𝑝 (𝜆) d𝜆, (4.6)

where the approximation is introduced due to the estimation of 𝑝 (𝜆). Assume that the
eigenvalues are independent and identically distributed randomvariables drawn from 𝑝 (𝜆).
Due to our constraints on the largest and smallest eigenvalues, this probability distribution
is restricted to the domain [0, 1]. In this setting, we have that Tr (𝐴) = 𝑁 ⋅ 𝔼 [𝜆], and more
generally

Tr (𝐴𝑠) = 𝑁 ⋅ R𝑠 [𝑝 (𝜆)] . (4.7)
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Moreover, since the eigenvalues are assumed to lie between 0 and 1, the raw moments can
be directly computed as

R𝑠 [𝑝 (𝜆)] = ∫
1

0
𝜆𝑠𝑝 (𝜆) d𝜆. (4.8)

The latter formulation is particularly of interest because if a GP prior is placed over 𝑝 (𝜆),
then the required integrals may be solved analytically using Bayesian quadrature. We
will next demonstrate how noisy observations of Tr (𝐴𝑠) corresponding to raw moments
R𝑠 [𝑝 (𝜆)] can be exploited in order to then make a prediction for ∑∞

𝑠=1
R𝑠[𝑝(𝜆)]

𝑠 , from which
the log determinant of 𝐴 can then be derived as defined in Equation 4.3.

BayesianQuadrature

Bayesian quadrature (BQ; O’Hagan, 1991) is a well-studied procedure for performing in-
tegration of functions where analytic integration is intractable or even unavailable. As its
name implies, BQ extends regular quadrature by instead returning a posterior distribution
over the integral being computed. Although the scope of BQ varies between applications,
in this chapter we limit our discussion to the setting where a GP prior is placed on the
integrand 𝑓 such that

𝑍 = ∫ 𝜋(𝑥)𝑓(𝑥)d𝑥, (4.9)

where 𝜋(𝑥) is a knownmeasure with respect to which the integration is carried out. Recall
that in our set-up, we would like to integrate over the eigenvalue distribution of matrix
𝐴 in order to estimate the expectation of log (𝜆), from which we can then obtain log |𝐴|.
For enabling analytic tractability, the measure 𝜋(𝑥) generally takes the form of a standard
Gaussian distribution; however, analytic solutions may also be derived when this takes the
form of a mixture of Gaussians or polynomial. In fact, for our approximation, this measure
will take the form of the polynomial 𝜆𝑠 associated with the raw moments of eigenvalues.

A full discussion of BQ may be found in O’Hagan (1991) and Rasmussen and Ghahra-
mani (2002); for the scope of this thesis, we simply restate the following expressions,
adapted from Huszar and Duvenaud (2012), for computing mean and variance predictions
of 𝑍 under a BQ framework,
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𝔼 [𝑍] = 𝔼 [∫ 𝜋(𝑥)𝑓(𝑥)d𝑥]

= ∬ 𝜋(𝑥)𝑓(𝑥)𝑝 (𝑓(𝑥)|𝑓 (𝑋)) d𝑥d𝑓

= ∫ 𝜋(𝑥)𝑓(𝑥)d𝑥

= [∫ 𝜋(𝑥)𝑘 (𝑥, 𝑋) d𝑥]
⊤

𝐾(𝑋, 𝑋)−1𝑓 (𝑋) , (4.10)

𝕍 [𝑍] = [∬ 𝜋(𝑥)𝑘 (𝑥, 𝑥) 𝜋(𝑥)d𝑥d𝑥] −

[∫ 𝜋(𝑥)𝑘 (𝑥, 𝑋) d𝑥]
⊤

𝐾 (𝑋, 𝑋)−1
[∫ 𝜋(𝑥)𝑘 (𝑥, 𝑋) d𝑥] , (4.11)

where 𝑓(𝑋) denotes available observations at input locations 𝑋, and 𝑓(𝑥) denotes the
posterior of 𝑓 at 𝑥. The key terms in the above equations are the expressions for computing
covariances involving integrals,

𝑘 (∫ 𝜋(𝑥) ⋅ d𝑥, 𝑥′
) = ∫ 𝜋(𝑥)𝑘 (𝑥, 𝑥′) d𝑥, and (4.12)

𝑘 (∫ 𝜋(𝑥) ⋅ d𝑥, ∫ 𝜋(𝑥′) ⋅ d𝑥′
) = ∬ 𝜋(𝑥)𝑘 (𝑥, 𝑥′) 𝜋(𝑥′)d𝑥d𝑥′, (4.13)

which, as we discuss next, are generally intractable unless the choice of kernel yields an-
alytic solutions.

4.2.3 Inference on the Log Determinant

In our proposal, we place a GP prior on the distribution of eigenvalues 𝑝 (𝜆), and condition
this GP on observations having the form ⟨R𝑠 [𝑝 (𝜆)] , 1

𝑁Tr (𝐴𝑠)⟩, where Tr (𝐴𝑠) is approx-
imated using STE for 𝑠 > 2. For notational convenience, we henceforth denote R𝑠 [𝑝 (𝜆)]
as R𝑠

𝜆. Following the definition of raw moments given in Equation 4.8, computing the
covariance between raw moments requires us to integrate the kernel with respect to the
corresponding polynomials in 𝜆,
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𝑘 (R
𝑠
𝜆,R𝑠′

𝜆′) = ∫
1

0 ∫
1

0
𝜆𝑠𝑘 (𝜆, 𝜆′) 𝜆′𝑠′

d𝜆d𝜆′. (4.14)

Given that we intend to use the GP to make a prediction for log (𝜆), we are also required
to compute integrals of the form

𝑘 (log (𝜆) ,R𝑠′
𝜆′) = ∫

1

0 ∫
1

0
log (𝜆) 𝑘 (𝜆, 𝜆′) 𝜆′𝑠′

d𝜆d𝜆′, and (4.15)

𝑘 (log (𝜆) , log (𝜆′)) = ∫
1

0 ∫
1

0
log (𝜆) 𝑘 (𝜆, 𝜆′) log (𝜆′) d𝜆d𝜆′. (4.16)

Using the identity presented in Equation 4.3, these two covariances can be more practically
formulated in terms of raw moments,

𝑘
(

∞

∑
𝑠=1

R𝑠
𝜆

𝑠 ,R𝑠′
𝜆′)

and 𝑘
(

∞

∑
𝑠=1

R𝑠
𝜆

𝑠 ,
∞

∑
𝑠′=1

R𝑠′
𝜆′

𝑠′ )
.

The covariance expressed in Equation 4.14 is required to compute entries of the 𝑀 × 𝑀
matrix evaluated on the 𝑀 exact or stochastic (for 𝑠 > 2) observations of Tr (𝐴𝑠). On
the other hand, Equations 4.15 and 4.16 are necessary for evaluating the k⋆ and 𝑘⋆⋆ terms
appearing when making predictions, as was previously shown in Equations 4.10 and 4.11.

In general, the integrals introduced above cannot be computed analytically, and it is
necessary to develop custom kernels having an analytic form allowing for efficient com-
putation. To this purpose, in this section we describe a histogram kernel for computing the
indicated covariances between raw moments and ultimately log (𝜆) itself. Subsequently,
we demonstrate how the inclusion of a prior mean on the GP used to model 𝑝 (𝜆), as well
as truncation by way of theoretic bounds on the log determinant, can be exploited for im-
proving our approximation. We conclude this section by summarising the steps involved
in estimating log determinants using this methodology, and comment about its computa-
tional complexity.

Histogram Kernel

To enable analytic tractability, we develop a histogram kernel resembling a piecewise con-
stant kernel, that is computed as

𝑘 (𝑥, 𝑥′) =
𝑚−1

∑
𝑗=0

ℋ (
𝑗
𝑚, 𝑗 + 1

𝑚 , 𝑥, 𝑥′
) , (4.17)
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where

ℋ (
𝑗
𝑚, 𝑗 + 1

𝑚 , 𝑥, 𝑥′
) =

⎧⎪
⎨
⎪⎩

1 𝑥, 𝑥′ ∈ [
𝑗
𝑚 , 𝑗+1

𝑚 ]
0 otherwise

. (4.18)

In the above, 𝑚 denotes the number of bins in the range [0, 1] (implying bin size of 1
𝑚 ),

while 𝑗 indexes these bins. The covariance between a raw moment and definite eigenvalue
can then be evaluated as

𝑘 (R𝑠
𝜆, 𝜆′) = ∫

1

0
𝜆𝑠𝑘 (𝜆, 𝜆′) d𝜆

= 1
𝑠 + 1 ((

𝑗 + 1
𝑚 )

𝑠+1
− (

𝑗
𝑚)

𝑠+1

)
, (4.19)

when 𝜆′ lies in the interval [
𝑗
𝑚 , 𝑗+1

𝑚 ]. Extending this to the covariance function between
raw moments yields

𝑘 (R
𝑠
𝜆,R𝑠′

𝜆′) = ∫
1

0 ∫
1

0
𝜆𝑠𝑘 (𝜆, 𝜆′) 𝜆′𝑠′

d𝜆d𝜆′

=
𝑚−1

∑
𝑗=0

∏
̄𝑠∈(𝑠,𝑠′)

1
̄𝑠 + 1 ((

𝑗 + 1
𝑚 )

̄𝑠+1
− (

𝑗
𝑚)

̄𝑠+1

)
. (4.20)

This formulation of a kernel between noisy observations of raw moments compactly
allows us to perform inference over 𝑝 (𝜆). However, the ultimate goal is to predict log |𝐴|
by way of ∑∞

𝑠=1
Tr(𝐴𝑠)

𝑠 . Although this seemingly requires a more complex set of kernel
expressions, by extracting the implied infinite summations from the kernel function, we
can also obtain the following closed form solutions for these terms,
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𝑘
(

∞

∑
𝑠=1

R𝑠
𝜆

𝑠 ,R𝑠′
𝜆′)

=
∞

∑
𝑠=1

1
𝑠 𝑘 (R

𝑠
𝜆,R𝑠′

𝜆′)

=
𝑚−1

∑
𝑗=0

1
𝑠′ + 1 ((

𝑗 + 1
𝑚 )

𝑠′+1
− (

𝑗
𝑚)

𝑠′+1

)
×

∞

∑
𝑠=1 (

1
𝑠 (𝑠 + 1) (

𝑗 + 1
𝑚 )

𝑠+1
− (

𝑗
𝑚)

𝑠+1

)

=
𝑚−1

∑
𝑗=0

1
𝑠′ + 1 ((

𝑗 + 1
𝑚 )

𝑠′+1
− (

𝑗
𝑚)

𝑠′+1

) (𝑆 (
𝑗 + 1

𝑚 ) − 𝑆 (
𝑗
𝑚)) ,

(4.21)

and

𝑘
(

∞

∑
𝑠=1

R𝑠
𝜆

𝑠 ,
∞

∑
𝑠′=1

R𝑠′
𝜆′

𝑠′ )
=

∞

∑
𝑠′=1

1
𝑠′ 𝑘

(

∞

∑
𝑠=1

R𝑠
𝜆

𝑠 ,R𝑠′
𝜆′)

=
𝑚−1

∑
𝑗=0 (𝑆 (

𝑗 + 1
𝑚 ) − 𝑆 (

𝑗
𝑚))

2
, (4.22)

where 𝑆 (𝛼) = ∑∞
𝑠=1

𝛼𝑠+1

𝑠(𝑠+1) . When 0 < 𝛼 < 1, this can conveniently be evaluated exactly
as

𝑆 (𝛼) = 𝛼 + (1 − 𝛼) log (1 − 𝛼) . (4.23)

The derivations presented above enable us to compute the log determinant approxima-
tion, and its associated variance, by replacing Equations 4.21 and 4.22 in the formulations
given in Equations 4.10 and 4.11 respectively. The entries of 𝐾(𝑋, 𝑋) are evaluated using
the covariance between raw moments given in Equation 4.20.

Incorporating a Prior Mean Function

While GPs, and in this case BQ, can be formulated with a zero-mean prior without loss of
generality, setting a mean function is useful for incorporating additional prior information
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on the distribution being modelled. If 𝑝 (𝜆) is constructed as the summation of a constant
mean function, 𝑔 (𝜆), and a GP, 𝑓(𝜆), for modelling the residual, we obtain

𝑝 (𝜆) = 𝑔 (𝜆) + 𝑓 (𝜆) , (4.24)

and the previously derived moment observations may be decomposed into

∫ 𝜆𝑠𝑝 (𝜆) d𝜆 = ∫ 𝜆𝑠𝑔 (𝜆) d𝜆 + ∫ 𝜆𝑠𝑓 (𝜆) d𝜆. (4.25)

Given that 𝜆 is constrained to lie between 0 and 1, here it makes sense to set a beta
distribution as the prior mean. This has two convenient properties: firstly, it is fully spec-
ified by the mean and variance of the distribution, which can be computed using the trace
and Frobenius norm of the matrix; secondly, the 𝑠th raw moment of a Beta distribution
parametrised by 𝛼 and 𝛽 is given by

R𝑠 [𝑔 (𝜆)] = 𝛼 + 𝑠
𝛼 + 𝛽 + 𝑠 , (4.26)

which is straightforward to compute. Furthermore, using known identities, we can imme-
diately derive the prior on log (𝜆) itself as

𝔼 [log (𝑔 (𝜆))] = 𝜓 (𝛼) − 𝜓 (𝛼 + 𝛽) , (4.27)

where 𝜓 (⋅) is the digamma function. This can then be added to the posterior expectation
of the log determinant which is computed as in Equation 4.10.

The GP prior being proposed for modelling the density of eigenvalues does not guaran-
tee a strictly positive function, and consequently there may be prior mass placed on neg-
ative functions that do not constitute valid densities. To this end, including a prior beta
distribution has the additional benefit of shifting the probabilitymass of the GP towards the
positive domain. Coupling the aforementioned prior with the raw moment observations
used for training the model generally circumvents issues arising from this misspecification
in practice.

Incorporating Bounds on the Log Determinant

Borrowing from the literature on bounds for the log determinant of matrices (Golub and
Van Loan, 1996), we can exploit such upper and lower bounds to truncate the resulting
predictive distribution to the relevant domain, which should additionally provide greater
stability in the occurrence of predictions which are very incorrect. Given upper and lower
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bounds respectively denoted by 𝑈B and 𝐿B, the posterior predictive distributionwithmean
and variance 𝜇 and 𝜎2 can be truncated as

𝜇T = 𝜇 + 𝜙 (𝑎) − 𝜙 (𝑏)
Φ (𝑏) − Φ (𝑎)𝜎, and (4.28)

𝜎2T = 𝜎2
[

1 + 𝑎𝜙 (𝑎) − 𝑏𝜙 (𝑏)
Φ (𝑏) − Φ (𝑎) − (

𝜙 (𝑎) − 𝜙 (𝑏)
Φ (𝑏) − Φ (𝑎))

2

]
, (4.29)

where 𝑎 = 𝐿B−𝜇
𝜎 , 𝑏 = 𝑈B−𝜇

𝜎 , while𝜙 (⋅) andΦ (⋅) respectively denote the probability density
and the cumulative distribution functions of the Gaussian distribution.

These additional constraints can also be propagated to the hyperparameter optimisa-
tion procedure by incorporating them into the likelihood function via the product rule,
resulting in the following truncated marginal likelihood,

ℒTML = ℒML + log(Φ (
𝑈B − 𝜇

𝜎 ) − Φ (
𝐿B − 𝜇

𝜎 )) . (4.30)

Let 𝐴 be an 𝑁 × 𝑁 symmetric positive definite matrix, where 𝜇1 = Tr (𝐴), 𝜇2 = ‖𝐴‖2
𝐹 and

𝜆𝑖 (𝐴) ∈ [𝜆L, 𝜆U] with 𝜆L > 0. The bounds on the trace of the log determinant for such a
matrix are given by

[
log (𝜆L)
log (𝑡) ]

⊤

[
𝜆L 𝑡
𝜆2
L 𝑡2 ]

−1

[
𝜇1
𝜇2 ]

≤ Tr (log |𝐴|) ≤
[

log (𝜆U)
log ( ̄𝑡) ]

⊤

[
𝜆U ̄𝑡
𝜆2
U ̄𝑡2 ]

−1

[
𝜇1
𝜇2 ]

(4.31)
where,

𝑡 = 𝜆L ⋅ 𝜇1 − 𝜇2
𝜆L ⋅ 𝑁 − 𝜇1

, and (4.32)

̄𝑡 = 𝜆U ⋅ 𝜇1 − 𝜇2
𝜆U ⋅ 𝑁 − 𝜇1

. (4.33)

This procedure necessitates first estimating bounds on the maximum and minimum eigen-
values of the matrix, and we do so using Gershgorin intervals (Gershgorin, 1931). The
bounds on the log determinant itself can then be easily computed given that both the trace
and Frobenius norm can be computed exactly.
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Algorithm 2 A probabilistic numerics approach for estimating log determinants

Input: Positive semi-definite matrix 𝐴, histogram kernel 𝑘 (⋅, ⋅) with initial parameters 𝜃,
expansion order 𝑀 , and random probing vectors r

Output: Truncated posterior mean 𝜇T, and uncertainty 𝜎2
T

1: 𝐴 ← normalise (𝐴)
2: 𝐿B, 𝑈B ← getBounds (𝐴)
3: for 𝑖 ← 1 to 𝑀 do
4: y𝑖 ← STE (𝐴, 𝑖, r)
5: end for
6: for 𝑖 ← 1 to 𝑀 do
7: for 𝑗 ← 1 to 𝑀 do
8: 𝐾𝑖𝑗 ← 𝑘 (R

𝑖
𝜆,R𝑗

𝜆;𝜃)
9: end for

10: end for
11: 𝜃OPT, 𝐾XX ← tuneKernel (𝐾XX, y, [𝐿B, 𝑈B])
12: for 𝑖 ← 1 to 𝑀 do
13: k⋆𝑖 ← 𝑘 (log (𝜆) ,R𝑖

𝜆;𝜃OPT)
14: end for
15: 𝑘⋆⋆ ← 𝑘 (log (𝜆) , log (𝜆) ;𝜃OPT)
16: 𝜇, 𝜎2 ← gpPred (y, 𝐾XX,k⋆, 𝑘⋆⋆)
17: 𝜇T, 𝜎2T ← truncate(𝜇, 𝜎2, [𝐿B, 𝑈B])

4.2.4 Algorithm Complexity and Recap

Due to its cubic complexity, GP inference is typically considered detrimental to the scala-
bility of a model. However, in our formulation, the GP is only built upon the noisy obser-
vations of Tr (𝐴𝑠), which rarely exceed few tens of points. As a result, given that we can
assume this to be orders of magnitude smaller than the dimensionality 𝑁 of the matrix 𝐴,
the computational complexity is dominated by the matrix-vector multiplications involved
in STE, i.e. 𝒪 (𝑁2) for dense matrices.

The steps involved in the procedure described within this section are unified and sum-
marised as pseudocode in Algorithm 2. The input matrix 𝐴 is first normalised by using
Gershgorin intervals to find the largest eigenvalue (line 1), while the expected bounds on
the log determinant (line 2) are calculated using the derivation detailed in Equation 4.31.
The noisy approximations of Tr (𝐴𝑠) up to expansion order 𝑀 (lines 3-5), denoted here
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as y, are then obtained by way of STE as described in Section 4.2.1. We can then place a
GP prior on these observations, where the entries of the kernel matrix are computed using
Equation 4.20 (lines 6-10). Subsequently, the kernel parameters are tuned by optimising
the model with respect to the marginal likelihood (line 11), as indicated in the previous
subsection.

Recall that we ultimately seek to make a prediction for the infinite Taylor approxima-
tion, and hence the exact log determinant. To this end, we must compute the covariance
between log (𝜆) and the observed raw moments, given by k⋆ (lines 12-14), as well as the
self-covariance 𝑘⋆⋆ (line 15) using Equations 4.21 and 4.22 respectively. The posterior
mean and variance (line 16) may then be evaluated by completing Equations 4.10 and 4.11.
As outlined in Equations 4.28 and 4.29, the resulting posterior distribution can then be
truncated using the derived bounds in order to obtain the final approximation of the log
determinant and its uncertainty (line 17).

4.3 Evaluation

In this section, we proceed to validate the effectiveness of our proposal and demonstrate
how the appeal of this formulation extends beyond its intrinsic novelty, whereby its per-
formance is shown to be directly comparable to the standard Taylor approximation upon
which this method is based. We set up a variety of experiments for assessing the proposed
model’s performance, including both synthetically-constructed and real matrices. In view
of the model’s probabilistic formulation, we also include an additional experiment for as-
sessing the quality of uncertainty estimates returned by the model. We shall henceforth
refer to the standard approximation presented here as BILD, and the truncated variation as
BILDT. We conclude this section by briefly mentioning an alternative novel approximation
to the log determinant of large matrices that showcases similarly good performance, albeit
without the desirable uncertainty measures returned by BILD.

4.3.1 Synthetically-constructed Matrices

In the previous chapter, we observed how the suitability of preconditioning for solving
linear systems is closely tied to the conditioning of the involved matrix. Similarly, the
quality of the log determinant approximation proposed here is intrinsically linked to the
decay rate of the matrix’s eigenvalues; this was also reported in other work on approxi-
mating log determinants (Ubaru et al., 2017). We investigate this characteristic by setting
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Fig. 4.1 Comparison of log determinant approximations over six synthetically-constructed
matrices with different eigenvalue decay rates.
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Fig. 4.2 Log determinant approximations compared on a variety of UFL Sparse datasets.
For each dataset, the matrix was raised up to powers of 5, 10, 15, 20, 25, and 30 (left to
right) using STE. This corresponds to the number of MVMs carried out by each method.

up an experiment whereby a selection of matrices with varying eigenspectra are syntheti-
cally constructed. Each matrix is built using a Gaussian kernel evaluated over 1,000 input
points. Additionally, we verify the performance of each technique when assigned an in-
creasing allowance of matrix vector multiplications (MVMs), which roughly corresponds
to the computational budget allocated to each method.

The outcome of this experiment is visualised in Figure 4.1. The top half of this figure
illustrates the eigenvalue decay rates for the six constructed matrices, where the decay rate
becomes progressively larger. In the corresponding comparison between methods shown
in the lower half of the figure, we can see that for matrices having slowly-decaying eigen-
values, the standard Taylor approximation fares quite poorly. The truncated version of our
model, BILDT, is particularly effective when the bounds are tighter, as evidenced for the
eigs-6 example having a rapid eigenvalue decay rate. On the downside, we must also point
out that the performance does not seem to be greatly affected by the allowance of MVMs;
as we shall elaborate further on, this is not ideal as we would prefer the performance to
consistently improve when the method is assigned a greater computational budget.
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4.3.2 UFL Sparse Datasets

Themethod we proposed is amenable to any positive semi-definite matrix whose eigenval-
ues are normalised to lie between 0 and 1. To this end, we extend the previous experimental
set-up to a selection of real, sparse matrices obtained from the SuiteSparse Matrix Collec-
tion (Davis and Hu, 2011). Note that the dimensionality of the largest matrix is over a
million, for which computing the exact log determinant using the Cholesky decomposi-
tion is intractable. Following Ubaru et al. (2017), we plot the relative error with respect
to the true values of the log determinant reported in Boutsidis et al. (2017), and compare
the three approaches to this baseline. The results for this experiment are shown in Figure
4.2.1 Once again, the estimates obtained using our Bayesian approach achieve comparable
accuracy to the Taylor approximation, but as in the previous experiment, we also observe
that there is no guaranteed increase in the quality of the approximation when more MVMs
are assigned. The benefit of incorporating bounds is also negligible in this set-up. Further-
more, as alluded to in Section 4.2.1, the Taylor approximation is not necessarily the best
available means of estimating the log determinant of a large matrix. In this experiment,
we highlight this point by also including results obtained by a more recent alternative ap-
proach relying on stochastic Lanczos quadrature (SLQ; Ubaru et al., 2017), and another
using Chebyshev polynomial expansions (Han et al., 2015). The latter approaches yield
superior results in nearly all reported problem settings, which accentuates the accuracy
trade-off incurred by our proposal.

4.3.3 UncertaintyQuantification

Beyond its predictive performance, the defining feature of our proposal is its ability to
quantify the uncertainty of the predicted log determinant, which can be interpreted as an
indicator of approximation quality. This feature is unique to our approximation which to
date, and to the best of our knowledge, remains the only Bayesian approach for estimating
the log determinant of a large matrix. In order to verify the correctness of uncertainty
estimates returned by our model, we reconsider the predictions evaluated for the previous
experiment on datasets obtained from the SuiteSparseMatrix Collection. More specifically,
we report the ratio of the absolute error to the predicted standard deviation; for the latter
to be meaningful, or at least well-calibrated, we would expect the error to lie within only

1Due to an error in our original implementation of Chebyshev and SLQ for this comparison, an ear-
lier version of this figure appearing in Fitzsimons et al. (2017a) understated the superior performance of
the aforementioned techniques. On the contrary, the updated results shown in Figure 4.2 corroborate the
improvements in performance expected of these methods.
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Fig. 4.3Quality of uncertainty quantification of log determinant estimates on UFL datasets,
measured as the ratio of the absolute error to the predicted standard deviation. As before,
results are shown for increasing computational budgets (MVMs). The absolute error fell
outside two standard deviations of the prediction in only one of 24 trials.

a few multiples of the standard deviation. As evidenced in Figure 4.3, the absolute error
is bounded by at most twice the predicted standard deviation in all but one case. This
corroborates the suitability of our method for not just yielding sensible point estimates
of the log determinant, but rather a posterior distribution over candidate solutions. This
is particularly pertinent to set-ups where this approximation appears as a component in a
computational pipeline in which uncertainty must be effectively propagated from one step
to the next.

4.3.4 Alternative Approximation using Maximum Entropy

Inspired by the probabilistic interpretation of estimating log determinants described in
this chapter, in follow-up work (Fitzsimons et al., 2017b) we developed an alternative ap-
proximation that is instead rooted in information theory. In particular, we exploit the
relationship between STE and the moments of a matrix’s eigenspectrum by treating these
estimates as moment constraints on the probability distribution of eigenvalues. This is
achieved by maximising the entropy of the probability density 𝑝 (𝜆) with respect to the
estimated moment constraints. Delving into the detail of this methodology is beyond the
scope of this thesis; however, this formulation makes different prior assumptions to BILD
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that enable it to perform better than the latter on selected benchmark examples. Nonethe-
less, that method does not yield uncertainty estimates, which was conversely the defining
characteristic and primary motivation for developing BILD.

4.4 Linking Probabilistic Numerics to Gaussian Processes

In Chapter 3, we demonstrated how GP training and inference can be scaled to large
datasets by approximating linear algebraic operations given some budget constraints. Al-
though such schemes are effective for enabling tractability, they also introduce an addi-
tional source of computational uncertainty that is not accounted for in the uncertainties
obtained from the model. In this section, we put forward our ideology that casting linear
algebraic operations as inference problems is a natural strategy for sensibly quantifying
the numerical uncertainty inherent to algebraic approximations used to accelerate ‘exact’
GPs. Complementary to our Bayesian approach for estimating log determinants, we start
by outlining recent work on developing probabilistic algorithms for solving linear systems.
We then combine both techniques to show how these are sufficient for characterising the
uncertainty appearing in the algebra of GPs. Although this section is primarily intended to
establish the foundations for future work, we conclude this chapter with a brief discussion
on how the suite of tools currently available for carrying out probabilistic numerics may
not yet be robust enough to unreservedly handle such tasks.

4.4.1 Probabilistic Linear Solvers

In the spirit of solving linear systems given a restricted computational budget, probabilistic
linear solvers are intended to capture the reliability of an approximate, budget-constrained
solution by returning a probability distribution over the approximation. More specifically,
a probabilistic iterative linear solver should encode the reduction in uncertainty of ap-
proximate solutions obtained in subsequent iterations of the algorithm by reflecting the
contraction in the span of possible solutions following each iteration.

A very recent paper covering and extending such methods (Bartels et al., 2018) dis-
tinguishes between two principal categories of inference strategies, namely matrix-based
and solution-based inference. Foundational work presented in Hennig (2015) falls into the
former category; in particular, given a linear system of the form 𝐴z = v, inference is car-
ried out explicitly on 𝐴−1, implying a prior and posterior distribution over all 𝑁2 elements
of the matrix. This requirement could very easily lead to intractability, which is why the
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prior and resulting posterior are designed in such a way that cumbersome algebraic op-
erations can be accelerated through the use of Kronecker algebra. Assuming a flattened
representation of 𝐴−1 denoted by ⃖⃖⃖⃖⃖⃗𝐴−1, the proposed prior takes the form

𝑝 (⃖⃖⃖⃖⃖⃗𝐴−1) = 𝒩 (
⃖⃖⃖⃖⃖⃗𝐴−1

0 , Σ0 ⊗ 𝑊0) , (4.34)

where Σ0 and 𝑊0 are intended to respectively capture the dependencies between columns
and rows of 𝐴−1. In this setting, the partial observations at iteration 𝑡 + 1 take the form
of 𝐴𝑆𝑡, where 𝑆𝑡 is an 𝑁 × 𝑡 matrix constructed by horizontally stacking the 𝑡 preceding
search directions. The posterior over the solution to the linear system itself, z⋆, can then
be analytically derived using Gaussian identities.

On the other hand, and as the name implies, solution-based inference relates to pro-
cedures in which inference is carried out directly on the solution to the linear system,
z⋆. In this regard, the Bayesian conjugate gradient approach (BCG; Cockayne et al., 2018)
requires a prior of the form

𝑝 (z) = 𝒩 (z0, Σ0) . (4.35)

Here z0 can be initialised to a vector of zeros, while Σ0 denotes the prior covariance among
entries of z. In this set-up, the partial observations at each iteration now take the simpli-
fied form of 𝑆⊤

𝑡 v. This approach is intrinsically more appealing given that the ultimate
objective z⋆ is being modelled directly. However, since the matrix-based approach yields
a posterior solution to the intermediate term 𝐴−1, there is greater scope for reusing this
result in other computations beyond just the linear system being solved. In the context of
GPs, this is particularly pertinent to computing the variance of predictions on test data,
where a linear system involving the samematrix must be solved for every test point. In the
remainder of this chapter tying to GPs, we limit our discussion to solving linear systems
using either the matrix-based approach of Hennig (2015) or BCG; the Bayesian precondi-
tioning scheme devised in Bartels et al. (2018) is also of direct interest to this work, but
was published too recently to be properly considered in this thesis.

4.4.2 Application to Gaussian Processes

Consider the log marginal likelihood of a standard GP,

log [𝑝 (y|𝑋,𝜃)] = −1
2 log |𝐾𝜆| − 1

2y
⊤𝐾−1

𝜆 y − 𝑁
2 log 2𝜋. (4.36)
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For very large 𝑁 , we could approximate the computation of the log determinant and the
linear system appearing in this expression using standard algebraic approximations. How-
ever, if we instead approximate these terms using the Bayesian approaches detailed in this
chapter, we can obtain a distribution over the log marginal likelihood that accounts for the
potential numerical uncertainty introduced by way of algebraic approximation. Assuming
the approximated solutions for the log determinant log |𝐾𝜆| and quadratic form y⊤𝐾−1

𝜆 y to
be 𝒩 (𝜇LD, 𝜎2

LD) and 𝒩 (𝜇LS, 𝜎2
LS) respectively, this gives us a probabilistic distribution

over the log marginal likelihood that can be computed as

𝑝 (ℒML) = 𝒩 (−1
2𝜇LD − 1

2𝜇LS − 𝑁
2 log 2𝜋, 𝜎2

LD + 𝜎2
LS) . (4.37)

Similar equations can be derived for the gradients of ℒML, which as shown in Chapter 3
can be expressed exclusively in terms of linear systems that can be solved with a proba-
bilistic linear solver. This also extends to inference with GPs, whereby predictions should
also consider the numerical uncertainty introduced by approximating the solution of the
required linear systems. Introducing 𝜇LSM and 𝜎2

LSM to denote the mean and variance of
solving k⊤

⋆𝐾−1
𝜆 y, as well as 𝜇LSV and 𝜎2

LSV for k⊤
⋆𝐾−1

𝜆 k⋆, for a single test point x⋆ we
obtain

𝑦⋆ ∼ 𝒩 (𝜇LSM, 𝑘⋆⋆ − 𝜇LSV + 𝜎2
LSV + 𝜎2

LSM + 𝜆) , (4.38)

where the key quantity of interest is the inflated variance including numerical uncertainty.
Although formulating these expressions as probability distributions is not the norm in

existing GP methodologies, we foresee several applications where such a shift in perspec-
tive may be warranted:

• Outlier and Change-point Detection

Well-calibrated uncertainty estimation is essential when GPs are applied to prob-
lems such as novelty and anomaly detection, where action is taken when the un-
certainty for a prediction exceeds a predetermined threshold. This is particularly
pertinent to engineering applications such as vehicular design, for which domain-
specific quantification of computational uncertainty has been considered in various
forms (Petrone, 2011). Precisely quantifying all possible sources of uncertainty is
also highly sought after in financial modelling and time-series forecasting (Roberts
et al., 2013), where risk should never be underestimated.

• Multi-fidelity Bayesian Optimisation
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Wu and Frazier (2017) propose a multi-fidelity Bayesian optimisation procedure,
based on earlierwork (Wu et al., 2017) incorporating gradient information in Bayesian
optimisation procedures, that additionally handles potentially noisy objective func-
tions and derivatives. However, in spite of the framework’s capacity to handle un-
certain quantities, the authors struggle to give practical examples where this may
arise, and consequently restrict their analysis to problemswith synthetically injected
noise. On the other hand, if we consider the formulation of the GP marginal likeli-
hood given in Equation 4.37, along with its similarly uncertain gradients, this serves
as an interesting case study in which the fidelity measure corresponds to the com-
putational budget assigned to evaluating the objective function (in this case the log
marginal likelihood) and the uncertainty tied to its evaluation.

• Pipelined Decision Making

As highlighted by Hennig et al. (2015) in their comprehensive introduction to proba-
bilistic numerical methods, quantifying the uncertainty associatedwith approximate
computation is particularly important when GPs appear in an iterative procedure
or computational pipeline. One such application is experimental design (Morris,
2004), whereby correctly evaluating the underlying GP model’s uncertainty is cru-
cial for selecting sample points at each iteration which best exploit the exploration-
exploitation trade-off.

As an aside, it is worth mentioning that advances in the quantification of numerical uncer-
tainty must be complemented by also developing more flexible frameworks for effectively
ingesting this additional information and adapting computation accordingly.

4.4.3 Beyond Theoretic Appeal - A Cautionary Note

The aforementioned use-cases are indicative of the applications where GPs augmented
with probabilistic numerics can be put to good use. However, the success of such schemes
depends entirely on the quality of the underlying Bayesian algebraic approximations. If
either the reliability of predictions is inconsistent or the associated numerical uncertainty
is badly calibrated, then incorporating probabilistic numerics is more likely to thwart a
decision making procedure than enhance it.

Although probabilistic numerical methods have been shown to perform adeptly on
well-conditioned, predominantly sparse matrices, their application to GPs presents two
major challenges. Firstly, in order to capture sensible correlation between data, kernel
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(a) Matrix-based inference from Hennig (2015).
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(b) Solution-based inference from Cockayne et al. (2018) with prior Σ0 = 𝐼𝑁 .
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(c) Solution-based inference from Cockayne et al. (2018) with prior Σ0 = 𝑃 −1.

Fig. 4.4 Evaluation of probabilistic linear solvers for kernel matrices. The plots show the
norm of the error (in log scale) at every step of the iterative algorithm. The evaluation is
carried out for the Concrete dataset (𝑁 = 1030, 𝐷in = 8).
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(a) Matrix-based inference from Hennig (2015).

0 1000 2000 3000 4000 5000
Iteration, t

−20

0

‖z
?

-
z t
‖

Lengthscale = 0.5

0 1000 2000 3000 4000 5000
Iteration, t

−20

0
‖z

?
-

z t
‖

Lengthscale = 1

0 1000 2000 3000 4000 5000
Iteration, t

−10

0

10

‖z
?

-
z t
‖

Lengthscale = 5

0 1000 2000 3000 4000 5000
Iteration, t

−10

0

10

‖z
?

-
z t
‖

Lengthscale = 10

BCG CG

(b) Solution-based inference from Cockayne et al. (2018) with prior Σ0 = 𝐼𝑁 .
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(c) Solution-based inference from Cockayne et al. (2018) with prior Σ0 = 𝑃 −1.

Fig. 4.5 Evaluation of probabilistic linear solvers for kernel matrices. The plots show the
norm of the error (in log scale) at every step of the iterative algorithm. The evaluation is
carried out for the White Wine dataset (𝑁 = 4898, 𝐷in = 11).
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(a) Uncertainty quality of solution-based inference with prior Σ0 = 𝐼𝑁 .
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(b) Uncertainty quality of solution-based inference with prior Σ0 = 𝑃 −1.

Fig. 4.6 Evaluation of uncertainty obtained from probabilistic linear solvers for kernel ma-
trices evaluated over the White Wine dataset. We plot the summation of variances across
the diagonal of the posterior covariance, Tr (Σ𝑡), normalised by the trace of the prior co-
variance 𝐼𝑁 or 𝑃 −1. This is repeated for the Concrete dataset in Appendix B, yielding
similar results.

matrices are often dense and likely to be badly conditioned. The iterative nature of GP
parameter optimisation necessitates that these algorithms must be applied to a different
kernel matrix or linear system at every iteration, and probabilistic numerical methods can
be particularly unreliable when the kernel is constructed using extreme parameter values.
Secondly, although these methods are generally evaluated over small matrices with dimen-
sionality in the order of hundreds, the notion of carrying out GP inference on a budget is
mostly pertinent to datasets having thousands or even millions of data-points. In the re-
mainder of this section, we shift our discussion to the first requirement, and illustrate how
state-of-the-art probabilistic numerical methods currently perform in this regard.
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In our evaluation, we consider the Concrete dataset (𝑁=1030, 𝐷in=8) and the White
Wine dataset (𝑁=4898, 𝐷in=11) from the UCI dataset repository (Asuncion and Newman,
2007), and compare the aforementioned probabilistic linear solvers to regular CG for a
selection of kernel constructions. More specifically, we vary the lengthscale of the RBF
covariance in the range [0.5, 1, 5, 10] and plot the norm of the error (in log scale) at every
step of the iterative algorithm. We set the variance to one, and add diagonal noise (fixed
at 0.001) to the resulting covariance matrices. The linear systems to be solved are of the
form 𝐾𝜆z = y.

For BCG we investigate two priors: one is simply 𝒩 (0, 𝐼𝑁), while the other is a pre-
conditioned prior of the form 𝒩 (0, 𝑃 −1), where we set 𝑃 to be a Nyström preconditioner
constructed with 𝑀=√𝑁 inducing points. Given that convergence for the linear system
solved by BCG is bounded by the condition number 𝜅 (𝐾𝑇

𝜆 𝐾𝜆), Cockayne et al. (2018)
suggest a preconditioner prior covariance having the form (𝑃 𝑇 𝑃 )

−1. However, in our
evaluation we observed that the results were more stable when Σ0 is set to 𝑃 −1; this more
closely resembles the hypothetical Σ0 = 𝐾−1

𝜆 prior explored in that same work.
The results are plotted in Figures 4.4 and 4.5, from which it can be immediately ob-

served that the matrix-based inference approach fails to converge as well as CG, and in-
stead plateaus at inferior optimal solutions. Our personal implementation of the algorithm
is also sometimes prone to instability, as witnessed for the set-up with the kernel having
the largest lengthscale. On the contrary, both variations of BCG consistently converge to
the optimal solution at a rate that is even sometimes faster than regular CG. Nonetheless,
using the implementation provided by the authors2, in our evaluation we observed that
numerical instability could result in the algorithm breaking down in multiple instances.
In our evaluation, we compensate for this issue by only plotting the results up until the
instability occurs, after which we report the optimal result up to that iteration until ter-
mination. This issue occurs despite using batch-normalised search directions, which are
expected to improve the stability of the approximation.

Meanwhile, in Figure 4.6 we verify the quality of the uncertainty estimates obtained
from BCG for the same executions illustrated in Figures 4.5b and 4.5c respectively (the
evaluation is repeated for the Concrete dataset in Appendix B). In particular, we plot the
summation of variances along the diagonal of the posterior covariance, Tr (Σ𝑡), normalised
by the trace of the prior covariance 𝐼𝑁 or𝑃 −1. Disappointingly, the decrease in uncertainty
is exactly linear when the prior covariance is set as the identity matrix, and very little
change is observed when this is updated to 𝑃 −1. Since the reduction of uncertainty is

2https://github.com/jcockayne/bcg

https://github.com/jcockayne/bcg
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directly proportional to the number of iterations elapsed, such uncertainty yields very little
(if any) additional information in a decision making procedure. These findings corroborate
the similarly wary analysis provided in Bartels and Hennig (2016) and Bartels et al. (2018)
regarding the uncertainty of probabilistic linear solvers.

Similar problems were also observed for BILD, whereby the log determinant approxi-
mation tends be very inaccurate when the matrix is badly conditioned. This can be partly
attributed to the Taylor approximation of the log determinant upon which BILD is based,
since similar behaviour was also observed for that technique in our comparison of log de-
terminant approximations. This problem also extends to the quantification of uncertainty,
which can at times be orders of magnitude larger than the error. Of greater concern, un-
like the results shown for probabilistic solvers in Figures 4.4, 4.5 and 4.6, the quality of the
prediction and associated uncertainty does not always improve when allocated a greater
computational budget (this is made apparent in Figures 4.2 and 4.3).

At a glance, this discussion paints a tepid outlook for the widespread application of
probabilistic numerics to kernel-based learning models. However, this is an evolving field
that has attracted great interest and attention in recent years, andwe envisage that ongoing
effort to improve the performance and robustness of fundamental probabilistic numerical
algorithms could lead to more promising outcomes in the near future. It is also worth
noting that in this chapter, we have restricted our discussion to procedures falling directly
under the umbrella of Bayesian probabilistic numerics; however, future work in the di-
rection of quantifying the reliability of algebraic approximations could widen the scope
of this discussion to more general probabilistic interpretations of linear algebra to similar
effect.

4.5 Conclusion

We opened this chapter by describing a novel Bayesian framework for approximating log
determinants. In particular, our approach enables the log determinant of large matrices
to be inferred from noisy observations of raw moments obtained using stochastic trace
estimation. By modelling the underlying eigenvalue distribution using a GP, a posterior
estimate for the log determinant can then be computed using Bayesian quadrature. Our
experiments indicate that the results are not always directly comparable to state-of-the-
art methods, but our proposal instead enables the quantification of uncertainty associated
with the approximation. More significantly, this work contributes towards a larger shift in
perspective of reinterpreting linear algebra as inference problems, with particular empha-
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sis on their application to Gaussian processes. However, although probabilistic numerical
methods are theoretically appealing and indeed work well for a variety of problem set-
tings, this is still a developing field of study. As discussed in the remainder of the chapter,
it is difficult to tackle more applied problems involving probabilistic numerics until the
foundations are made more robust. Nonetheless, our work remains an important step for-
ward in the direction of fully characterising the computational uncertainty associated with
approximating large-scale kernel-based methods.





Chapter 5

Bridging the Gap between Gaussian
Processes and Deep Learning

Our discussion on scalable Gaussian processes has thus far been limited to comparisons
against other GP approximations for medium-sized datasets. However, real-world data
poses a greater challenge with regards to requiring both superior modelling flexibility and
also better scalability to truly large datasets. In this chapter, we broaden the scope of our
evaluation to consider the role and significance of GPs in the context of more widely-used
deep learning methods. Building upon the content presented thus far, we now shift our
attention to how GP training and inference can be adapted to the big data regime. We
start by presenting AutoGP, a model developed in collaboration with Krauth et al. (2017)
having the primary intent of fully exploring the capabilities and limitations of GPs with
application to traditional deep learning problems. Although such approaches have made
great strides in the direction of ‘modernising’ GPs, deep Gaussian processes (DGPs) are
a more natural candidate for emulating the behaviour of widespread deep learning tech-
niques. Based on the work presented in Cutajar et al. (2017), in this chapter we introduce
a novel formulation of DGPs based on random feature expansions that we train using
stochastic variational inference. This yields a practical learning framework which signif-
icantly advances the state-of-the-art in inference for DGPs, while also enabling accurate
quantification of uncertainty.
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5.1 Overview

TheGP approximations considered so far in this thesis are well-suited to datasets with tens
of thousands of observations, but may not be ideal when millions or even billions of data-
points are available. Similarly, standard GP kernels such as RBF andMatérn are insufficient
for capturing the complex covariance between many real-world observations, motivating
the development of GP models that allow for the implicit construction and composition of
more complex kernels. The models presented in this chapter are intended to embody these
desiderata.

Stochastic variational inference for GPs (Hensman et al., 2013), which we covered in
Section 2.2.3 of Chapter 2, yields an immediate means for scaling computation to truly
large datasets. In particular, assuming a likelihood that is fully-factorised over observa-
tions, and using a global variational approximation of the inducing points, the GP model
can be trained using mini-batch-based stochastic optimisation. The largest dataset consid-
ered in its original presentation had 800,000 observations, but the analysis was limited to
regression problems. This was later extended to classification problems in Hensman et al.
(2015b), where the performance of the proposed contribution was evaluated by reinter-
preting the large-scale experiment in the aforementioned work as a binary classification
problem. Multi-class classification problems such asMNIST (LeCun and Cortes, 2010) were
also investigated in that work, with the obtained results being considered state-of-the-art
for GPs at the time, albeit using a standard RBF kernel with a single lengthscale parame-
ter shared across all input dimensions. Follow-up work in Hensman et al. (2015a) further
improved the performance of this approach by introducing a non-Gaussian variational
approximation that utilises Markov chain Monte Carlo (MCMC) for sampling from the
variational posterior.

An alternative category of approximations relies on treating the conditional likelihood
as a black-box function (Dezfouli and Bonilla, 2015; Ranganath et al., 2014). This implies
that detailed knowledge of its implementation or gradients are not required as long as
they can be sampled efficiently, and is tied to an underlying preference for variational ap-
proximations over MCMC sampling; this reinforces the assertion that optimisation is an
easier problem than integration. Whereas variational approximations typically necessitate
model-specific formulations, the use of black-box likelihoods widely broadens the gener-
ality of such methods. Bonilla et al. (2016) demonstrate the effectiveness of this approach
on both multi-output regression tasks with complex likelihoods, such as Gaussian process
regression networks (Wilson et al., 2012), as well as large-scale classification problems.
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The application of GPs to large datasets must also be complemented with kernels that
can capture more complex interactions between data-points. Several independent works
have addressed this requirement, which include the introduction of spectral mixture ker-
nels (Wilson and Adams, 2013), arc-cosine kernels emulating the computation of multi-
layer neural networks (Cho and Saul, 2009), and convolutional kernels (Mairal et al., 2014).
Of particular interest has been the renewed popularity of deep kernel learning (Wilson
et al., 2016a), whereby the inputs to a kernel are first transformed using a deterministic
or non-deterministic warping scheme. Key applications of deep kernel learning in image
classification tasks employ convolutional neural networks (CNNs; LeCun et al., 2015) in
order to obtain a sensible transformation of the data that can then be pipelined as input
to a standard GP (or any GP approximation). This was also recently applied to time se-
ries data (Al-Shedivat et al., 2017), whereby an LSTM is used to obtain a deterministic
transformation of the inputs that is able to capture long term dependencies between ob-
servations. In order to remain tractable when applied to large datasets, a variation referred
to as stochastic variational deep kernel learning (SV-DKL; Wilson et al., 2016b) was intro-
duced for scaling up such architectures to datasets having millions of observations. Apart
from enabling the use of mini-batches, the scalability of this approach also relies heavily
on the Kronecker-based structured kernel interpolation scheme discussed in Section 2.4 of
Chapter 2.

All of the aforementioned works are unified by the overarching goal of improving the
performance of GPs to match the results obtained by deep learning techniques. In this
chapter, we first present AutoGP - a state-of-the-art GP model intended to directly com-
pete with the benchmark results obtained by deep learning techniques on both regression
and classification tasks. Jointly addressing aspects such as automated variational inference
and employing a leave-one-out-based objective function for hyperparameter learning re-
sults in an augmented GP model that successfully emulates the primary achievements of
deep learning techniques. AutoGP outperforms all preceding GP models on the MNIST
benchmark, and its noteworthy scalability is showcased by applying it to the MNIST-8M
dataset (Loosli et al., 2007), which artificially extends the MNIST dataset to 8.1 million
training points by pseudo-randomly transforming the original training set of 60,000 im-
ages.

Although AutoGP makes great strides towards bridging the gap between GPs and deep
learning techniques, the compositional structure of deep Gaussian processes (DGPs; Dami-
anou and Lawrence, 2013) presents a more intuitive approach to achieve this goal. More
generally, the composition of multiple GPs as a DGP enables a deep probabilistic non-
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parametric approach to flexibly tackle complex machine learning problems with sound
quantification of uncertainty. Because of their probabilistic formulation, it is reasonable
to approach the learning of DGPs through Bayesian inference; however, the application
of such techniques to learn DGPs leads to various forms of intractability. A number of
contributions have been proposed to recover tractability (Bui et al., 2016; Dai et al., 2016;
Hensman and Lawrence, 2014), but even among these works, there does not seem to be
a singular approach that is truly applicable to large-scale problems and tractable beyond
just a handful of hidden layers.

In this light, we develop a practical learning framework for DGP models that signif-
icantly improves the state-of-the-art on those aspects. In particular, our proposal intro-
duces two sources of approximation to recover tractability, while (i) scaling to large-scale
problems; (ii) being able to work with moderately deep architectures, and (iii) accurately
quantifying uncertainty. The first is a model approximation whereby the GPs at all layers
are approximated using random feature expansions (Lázaro-Gredilla et al., 2010; Rahimi
and Recht, 2008), while the second approximation relies upon stochastic variational infer-
ence to retain a probabilistic and scalable treatment of the approximate DGP model. In
this chapter, we demonstrate how the resulting DGP model can handle significantly more
layers than are usually assumed within the literature on DGPs, while also being scalable
to large datasets for which DGP inference had previously been computationally infea-
sible. More significantly, we show that the model consistently outperforms competing
techniques both in terms of convergence speed and predictive performance.

5.2 Exploring the Capabilities and Limitations of Gaussian

Processes with AutoGP

Given their impressive performance on machine learning and pattern recognition tasks,
deep learning techniques have attracted a considerable deal of attention in several applied
domains such as computer vision and natural processing; see e.g., LeCun et al. (2015) and
references therein. Application-specific kernels such as those presented in Mairal et al.
(2014) indicate that kernel-based methods can be successfully adapted to deliver compara-
ble results to established deep learning techniques, but the jury is still out as towhether GPs
can more generally compete with their flexibility and superior predictive performance. In
this section, we report on this goal by summarising the primary contributions and results
obtained by AutoGP, a model developed for the purpose of investigating three complemen-



5.2 Exploring the Capabilities and Limitations of GPs with AutoGP 95

tary directions for improving the performance of GPs, namely (i) scalable and statistically
efficient inference; (ii) flexible kernels; and (iii) objective functions for hyperparameter
learning alternative to the marginal likelihood. Given that the centrepiece of this chapter
will be our work on developing scalable DGPs, we limit the discussion of this work in this
thesis to briefly explaining the primary outcomes of this study, with particular emphasis
on the aspects shared with the DGP approximation.

5.2.1 Automated Variational Inference

The first aspect targeted by AutoGP is the quality of the approximate GP posterior, where
we build our construction upon the variational free energy model (VFE) presented in Tit-
sias (2009) (see Section 2.2.2 of Chapter 2 for more details), where the approximate joint
posterior is given by

𝑞 (f|u) = 𝑝 (f|u) 𝑞 (u) . (5.1)

As before, u denotes the 𝑀 inducing points for introducing sparsity in the model. In order
to cater for multi-output regression or multi-class classification, we extend the original
presentation of 𝑞 (u) to introduce 𝑄 latent functions in the GP, such that

𝑞 (u) =
𝐾

∑
𝑘=1

𝜋𝑘

𝑄

∏
𝑗=1

𝒩 (𝜇⋅𝑗 ;m𝑘𝑗 , 𝑆𝑘𝑗) . (5.2)

The number of latent functions, 𝑄, is typically set to match the output dimensionality of
the data, 𝐷out. In the above,m and 𝑆 denote the parameters of the 𝐾 ×𝑄 variational distri-
butions to be learned during the optimisation procedure. In a slight variation on the stan-
dard definition of 𝑞 (u), the variational posterior is reinterpreted as a mixture-of-Gaussians
weighted by 𝜋𝑘, which is intended to introduce greater flexibility in the posterior. Mean-
while, the conditional 𝑝 (f|u) is defined as

𝑝 (f|u) =
𝑄

∏
𝑗=1

𝒩 (f⋅𝑗 ;𝜇𝜇𝜇𝑗 , 𝐾𝑗) , (5.3)

where

𝜇𝜇𝜇𝑗 = 𝐴𝑗u⋅𝑗 , and (5.4)

𝐾𝑗 = 𝐾 (𝑗)
XX − 𝐴𝑗𝐾 (𝑗)

UX, (5.5)
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with 𝐴𝑗 = 𝐾 (𝑗)
XU (𝐾 (𝑗)

UU)
−1

.
In a similar procedure to that described for VFE in Chapter 2, the variational mixture-

of-Gaussians posterior yields an evidence lower bound, ℒELBO, on the true marginal like-
lihood,

ℒELBO =
𝑁

∑
𝑖=1

𝐾

∑
𝑘=1

𝜋𝑘𝔼𝑞𝑘(𝑖)(f𝑖⋅) [log 𝑝 (𝑦𝑖|f𝑖⋅)] − 𝐷KL [𝑞 (u) ||𝑝 (u)] , (5.6)

where 𝐷KL [𝑞(⋅) || 𝑝(⋅)] once again denotes the Kullback-Leibler divergence between two
distributions.

The Reparameterisation Trick

Computing ℒELBO involves estimating the expectation appearing in the likelihood term;
hence, the gradients of this bound must also be estimated when optimising model param-
eters. Approaches that assume black-box likelihoods are known to yield estimates of the
gradients having very high variance; this could negatively impact the convergence rate
of the optimisation procedure unless a very large number of samples is used, which itself
incurs a different penalty on performance. This problem is exacerbated when complex like-
lihoods such as Gaussian process regression networks (Wilson et al., 2012) are employed.

A landmark paper by Kingma andWelling (2014) addresses this issue through the use of
a so-called reparameterisation trick that can significantly clamp variance in the estimation
of gradients. Given a random variable 𝑥 conditioned on some parameter 𝜃, this trick allows
for rewriting 𝑥 as a function of another random variable, 𝜀, that is itself not conditioned
on 𝜃. Taking 𝑥 to be a random variable drawn from 𝒩 (𝜇, 𝜎2), this implies rewriting 𝑥 as

𝑥 = 𝜇 + 𝜀𝜎2, (5.7)

with 𝜀 ∼ 𝒩 (0, 1). In doing so, the gradients may be estimated by simply drawing univari-
ate Gaussian samples in a Monte Carlo (MC) procedure. This formulation permits the use
of automatic differentiation techniques (Baydin et al., 2017), which lifts the requirement of
having to manually implement derivates for the target objective function.

In our set-up, this entails that the individual expectations in Equation 5.6 can each be
estimated by taking samples (indexed by 𝑠) of

𝑓 𝑘,𝑠
𝑖𝑗 = 𝑏𝑘𝑖𝑗 + 𝜀𝑠

𝑘𝑖𝑗𝜎𝑘𝑖𝑗 , (5.8)



5.2 Exploring the Capabilities and Limitations of GPs with AutoGP 97

for 𝑗 = 1 … 𝑄, where every 𝜀𝑠
𝑘𝑖𝑗 is sampled from 𝒩 (0, 1). In the above,

𝑏𝑘𝑖𝑗 = a⊤
𝑗𝑖m𝑘𝑗 , and (5.9)

𝜎2
𝑘𝑖𝑗 = [𝐾𝑗]𝑖,𝑖

+ a⊤
𝑗𝑖𝑆𝑘𝑗a𝑗𝑖, (5.10)

where a⊤
𝑗𝑖 = [𝐴𝑗]∶,𝑖 denotes the 𝑀-dimensional vector corresponding to the 𝑖th column of

𝐴𝑗 , while [𝐾𝑗]𝑖,𝑖
denotes the 𝑖th diagonal entry of 𝐾𝑗 . Denoting the number of MC samples

as 𝑁s, the estimated likelihood of the 𝑖th sample can be expressed as

ℒ𝑖
ELL = 1

𝑁s

𝐾

∑
𝑘=1

𝜋𝑘

𝑁s

∑
𝑠=1

log 𝑝 (y𝑖|f 𝑘,𝑠
𝑖 ) , (5.11)

which is amenable to mini-batch-based optimisation. Another key property of AutoGP is
that contrary to other models using the reparameterisation trick (Dai et al., 2016; Kingma
and Welling, 2014), the posterior over latent functions remains fully correlated. This is
given by

𝑞 (f) =
𝐾

∑
𝑘=1

𝜋𝑘

𝑄

∏
𝑗=1

𝒩 (f⋅𝑗 ;b𝑘𝑗 ,ΣΣΣ𝑘𝑗) , (5.12)

where

b𝑘𝑗 = 𝐴𝑗m𝑘𝑗 , and (5.13)

ΣΣΣ𝑘𝑗 = 𝐾𝑗 + 𝐴𝑗𝑆𝑘𝑗𝐴⊤
𝑗 . (5.14)

Following Dezfouli and Bonilla (2015), this entails that the reparameterisation trick can
be exploited for estimating ℒELBO using univariate samples while still retaining a full ap-
proximate posterior. This had previously only been investigated for GP models having
a single latent function and corresponding Gaussian posterior (Nickisch and Rasmussen,
2008; Opper and Archambeau, 2009).

5.2.2 Flexible Kernel Design

Although kernel design is instrumental to the usefulness of GPswhen applied to real-world
problems, many practitioners often default to using a standard isotropic RBF kernel with
heavy smoothness assumptions. The use of automatic relevance determination (ARD; see
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Chapter 1) by assigning a separate lengthscale to each dimension can trivially increase flex-
ibility in a straightforward manner. Even so, the implied computational overhead entails
that such a scheme is not commonly applied to large datasets possibly having an equally
large input dimensionality. Conversely, the possibility of using automatic differentiation
within AutoGP allows for ARD to be exploited with only minor computational overhead.

A more general and expressive set of covariance functions is the family of arc-cosine
kernels, which are recursively constructed with the primary intention of emulating the
compositional structure of a deep neural network. An arc-cosine kernel of degree 𝑑 and
indexed by depth 𝑙 is recursively defined as

𝑘(𝑙+1)
𝑑 (x𝑖, x𝑗) = 1

𝜋 [𝑘(𝑙)
𝑑 (x𝑖, x𝑖) 𝑘(𝑙)

𝑑 (x𝑗 , x𝑗)]
𝑑/2

𝐽𝑑 (𝜙(𝑙)
𝑑 ) , (5.15)

where the kernel at depth 𝑙 = 1 is 𝑘(1)
𝑑 (x𝑖, x𝑗) = 1

𝜋 ‖x𝑖‖𝑑‖x𝑗‖𝑑𝐽𝑑 (𝜙), and the angle corre-
sponding to degree 𝑑 and depth 𝑙 is given by

𝜙(𝑙)
𝑑 = cos−1

(𝑘(𝑙)
𝑑 (x𝑖, x𝑗) (𝑘(𝑙)

𝑑 (x𝑖, x𝑖) 𝑘(𝑙)
𝑑 (x𝑗 , x𝑗))

−1/2

) . (5.16)

All of the angular dependencies are then modelled with the function

𝐽𝑑 (𝜙) = (−1)𝑑 (sin𝜙)2𝑑+1
(

1
sin𝜙

𝜕
𝜕𝜙)

𝑑

(
𝜋 − 𝜙
sin𝜙 ) , (5.17)

with the base angle defined as 𝜙 = cos−1
(

x𝑖⋅x𝑗
‖x𝑖‖‖x𝑗‖). Later on, in our discussion on DGP

approximations, we will show that the first order arc-cosine kernel can also be handily
approximated using rectified linear units.

5.2.3 Leave-One-Out Learning

The final aspect of GP modelling considered in our assessment is whether the marginal
likelihood of the model is always the best criteria for model selection. From a Bayesian
standpoint, the marginal likelihood is a sensible objective function as it implicitly enforces
the principle of Occam’s razor that we highlighted in the introduction to this thesis. How-
ever, although this is a reasonable choice in most cases, there may be instances where
other alternative objective functions may be more appropriate. In their discussion on
hyperparameter optimisation for GPs, Rasmussen and Williams (2006) briefly note that
the leave-one-out (LOO) cross-validation objective function is particularly better suited
when the model is misspecified (Wahba, 1990). The appeal of using a LOO objective is
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also pertinent to classification problems where lower error rates and well-calibrated pre-
dictive probabilities are especially prized. Several works have considered replacing the
marginal likelihood with a LOO cross-validation objective, including Sundararajan and
Keerthi (2001), Sundararajan and Keerthi (2012) and Vehtari et al. (2016). However, these
works generally struggle to make a strong enough case for selecting LOO learning over
standard approaches, and the proposed methodologies do not scale to very large datasets.

To this end, we focus on the average leave-one-out predictive probability for hyper-
parameter learning in the proposed variational framework as an alternative to optimising
the marginal likelihood. This objective function is obtained by excluding one data-point
from the training set and computing its log predictive probability when training on the
remaining data-points. By virtue of the formulation of LOO strategies, the final objective
is then computed by taking an average of the results for all individual data-points. This
naïvely implies training 𝑁 different models, each time leaving out a single point; however,
using the AutoGP framework, this can be computed without having to explicitly train 𝑁
models. Instead, the leave-one-out objective function can be expressed as

ℒLOO (𝜃) ≈ − 1
𝑁

𝑁

∑
𝑖=1

log∫
𝑞 (f𝑖⋅|𝑋, y, 𝜃)

𝑝 (y𝑖|f𝑖⋅)
df𝑖⋅, (5.18)

where the aforementioned simplification stems from using the variational marginal poste-
rior 𝑞 (f𝑖⋅|𝑋, y,𝜃) instead of the true marginal posterior 𝑝 (y𝑖|f𝑖⋅) for the 𝑖th data-point. We
also note that we have made explicit the dependency of the posterior on all the data. As
for the marginal likelihood term given in Equation 5.6, the individual expectations appear-
ing in the expression above can also be estimated using MC sampling, while the additive
structure once again permits the use of mini-batches.

Although this targets the kernel hyperparameters of the model, we are still required
to optimise the remaining variational parameters appearing in the model approximation.
This calls for an alternating optimisation scheme whereby we first estimate the approxi-
mate posterior 𝑞 (f𝑖⋅|𝑋, y,𝜃) through optimisation of ℒELBO, and then learn the hyperpa-
rameters via optimisation of ℒLOO. Mini-batch-based stochastic gradient optimisation can
be used in both cases, thus preserving the scalability expected of this model.

5.2.4 Summary of Results

All of the aforementioned aspects can be teased apart in order to assess their individual
contribution towards improving GP performance, and this was indeed among the primary
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motivations for the work undertaken in Krauth et al. (2017). However, given that this
section is predominantly intended as a precursor to the presentation of deep Gaussian
processes, we shall only briefly restate the principal results obtained by the AutoGP model
combining all of the elements discussed above in comparison to deep learning benchmarks.

Arguably themostwidely-usedmulti-class classification benchmark, theMNIST dataset
(LeCun and Cortes, 2010) is a collection of images of handwritten digits with a fixed divi-
sion of 60,000 training and 10,000 test points. Using 1,000 inducing points, an RBF kernel
with ARD, as well as the alternating optimisation scheme mentioned above, AutoGP at-
tains an error rate of 1.55% and a mean negative log likelihood (MNLL) of 0.061. These
results outperform the work of Hensman et al. (2015a), Gal et al. (2014), and Bonilla et al.
(2016), which respectively report optimal error rates of 1.96%, 5.95% and 2.74%. Prior to
our work, these were previously considered to be the state-of-the-art results obtained us-
ing GPs for this dataset. Even so, these results are still not directly comparable to top-tier
performance obtained by alternative models beyond simply GPs. Notably, at the time of
the paper’s publication, convolutional neural networks based on the architecture outlined
in Simard et al. (2003) could already achieve an error rate of 1.19% without carrying out
any pre-processing before training. Notwithstanding, this still shows that GPs can perform
comparably to non-Bayesian methods with the additional benefit of also providing better-
calibrated uncertainty estimates. As highlighted in the introduction to this thesis and also
recent work (Kendall and Gal, 2017), constructingmodels that returnwell-calibrated poste-
rior distributions in image classification tasks is imperative for their application to domains
such as self-driving cars.

The MNIST-8M dataset (Loosli et al., 2007) artificially extends the MNIST dataset to 8.1
million training points, but retains the original test set. At the time AutoGP was intro-
duced, and to the best of our knowledge, no other GP model had been applied to such a
large multi-class classification problem. Using a similar set-up as described for MNIST, we
report an error rate of 0.89% and an MNLL of 0.033, breaking the 1% error rate barrier for
GP models. This confirms that AutoGP is able to perform competitively with deep archi-
tectures when some form of pre-processing is applied to the original dataset. Henao and
Winther (2012) report similar performance on MNIST using an augmented active set and
a 9th degree polynomial kernel.

Application tomore complex classification tasks inspires less confidence, however. The
Rectangles-Image dataset is a binary classification task created for the explicit purpose of
comparing shallow models and deep learning architectures, whereby the labels indicate
whether a rectangle in the image has larger width or height. Here, AutoGP obtains a mini-
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Table 5.1 Summary of optimal results obtained by AutoGP on benchmark classification
tasks.

Dataset Error Rate MNLL
MNIST 1.55% 0.061
MNIST-8M 0.89% 0.033
Rectangles-Image 24.06% 0.485
CIFAR10 44.95% 1.333

mum error rate of 23.6% using 1,000 inducing points, which is well below the performance
of deep architectures such as deep trans-layer autoencoder networks, 13.01% (Zhu et al.,
2015), and invariant scattering convolutional networks, 8.01% (Bruna and Mallat, 2013).
More discouragingly, we only obtain an error rate of 44.95% on CIFAR10, another com-
monly used image classification benchmark. This is a far cry from the error rates obtained
by state-of-the-art deep learning techniques, which are frequently below 10%. The results
obtained by AutoGP on the four benchmark datasets highlighted in this section are sum-
marised in Table 5.1.

5.3 Deep Gaussian Processes

In Section 5.2.2, we commented on how deep kernels such as the arc-cosine kernel can
be employed within standard GPs for the purpose of mimicking the computation of a
deep neural network. However, this does not constitute proper function composition. On
the other hand, the composition of multiple GPs as a single deep Gaussian process (DGP;
Damianou and Lawrence, 2013) yields a deep probabilistic nonparametric model that more
closely resembles the structure of other established deep learning models. From a gener-
ative perspective, DGPs transform inputs using a cascade of GPs such that the output of
each layer of GPs forms the input to the GPs at the next layer, effectively implementing a
deep probabilistic model for compositions of functions (Duvenaud et al., 2014; Neal, 1995).

Gaussian process composition was originally explored under the guise of hierarchical
GP latent variable models (Lawrence and Moore, 2007) for the purpose of modelling dy-
namical systems with emphasis on human motion capture data, but DGPs were first rigor-
ously formalised in the seminal work by Damianou and Lawrence (2013). In DGP models,
the mapping between inputs and outputs is expressed as the composition of functions

f (x) = (f (𝐿) ∘ … ∘ f (𝑙) ∘ … ∘ f (1)) (x) , (5.19)
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where f (𝑙) denotes the latent variables at layer 𝑙, and each of the 𝐿 layers is composed
of a possibly transformed multivariate GP. In their presentation of DGPs, Bui et al. (2016)
highlight two main arguments in favour of using DGPs instead of regular (henceforth
shallow) GPs. The first point is based on the assertion that the effectiveness of GPs is tied
to the suitability of the chosen kernel for capturing sensible correlations between data-
points. One could argue that given a sufficiently expressive kernel, there would be no
need for the composition of functions characterising DGPs. Nevertheless, in the absence
of highly-specialised domain experts, consistently constructing reliably good kernels is not
a straightforward task. On the other hand, even though standard kernels may be used for
the GPs at each layer, the structure of DGPs implicitly involves nonlinear transformations
as well as expanding/reducing the dimensionality of inputs from one layer to the next, en-
abling the automatic construction of a more flexible model with greater representational
capacity. Such composition also introduces non-stationarity in the model without explic-
itly using non-stationary kernels, which is the second most appealing quality of using
DGPs.

However, although DGPs are attractive from a theoretical standpoint, inference is ex-
tremely challenging. Let us denote the set of latent variables at layer 𝑙 by 𝐹 (𝑙), and the con-
ditional likelihood by 𝑝 (𝑌 |𝐹 (𝐿)). Learning and making predictions with DGPs requires
solving integrals that are generally intractable; for example, computing the marginal like-
lihood to optimise covariance parameters 𝜃(𝑙) at all layers entails solving

𝑝 (𝑌 |𝑋,𝜃) = ∫ 𝑝 (𝑌 |𝐹 (𝐿)) 𝑝 (𝐹 (𝐿)|𝐹 (𝐿−1),𝜃(𝐿−1))

× ⋯ × 𝑝 (𝐹 (1)|𝑋,𝜃(0)) d𝐹 (𝐿) … d𝐹 (1).
(5.20)

This cannot be solved analytically and mandates the use of approximations in order to
recover tractability. In this chapter, we introduce a novel approximation to DGPs that en-
ables the application of DGPs to both regression and multi-class classification tasks having
millions of observations, and consider set-ups with up to 30 hidden layers. This is well be-
yond the scale of datasets and architectures previously considered feasible for DGPs.

5.3.1 Preceding Work on Approximating DGPs

The first formulation of DGPs by Damianou and Lawrence (2013) relied on a variational
inference scheme for propagating uncertainty across layers, along with inducing points at
each layer in order to preserve tractability. The resulting model has the flavour of a mean-
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field variational approximation since it assumes independence both between and across
layers, which on the downside is likely to result in an oversimplification of the true DGP
posterior. This approximation has a computational complexity of 𝒪 (𝑀2𝐿𝑁). Given that
the complexity only scales linearly with 𝐿, this encourages the increase of representational
complexity to be achieved by way of adding more layers rather than using more inducing
points at each layer. The storage requirements of the model, 𝒪 (𝑁𝐿 + 𝑀2𝐿), can be very
restrictive however, and presents a major bottleneck to scalability. In fact, the evaluation of
the original formulation of DGPs was limited to regression problems having few hundreds
of observations at most.

An extension to the original DGP model put forward by Dai et al. (2016) borrows from
the literature on autoencoders (Kingma and Welling, 2014; Rezende et al., 2014) to develop
a variational auto-encoded model whereby a recognition model is employed for constrain-
ing the variational posterior distribution of the latent variables. Although the model is
applicable to both supervised and unsupervised learning problems, that work is primarily
targeted towards investigating the latter by way of data imputation tasks, while only small
regression datasets are considered once again.

On the other hand, the DGP approximation developed by Bui et al. (2016) is targeted
towards supervised learning problems with particular emphasis on regression tasks. Con-
trary to the variational approximations detailed above, the proposed model relies on an
expectation propagation scheme (EP; Minka, 2001) for estimating the marginal likelihood
of a DGP.The requiredmoment-matching is then carried out using nested assumed density
filtering (Hernández-Lobato and Adams, 2015). This approach has similar time complex-
ity to the original DGP framework, but lightens the memory requirement to 𝒪 (𝑀2𝐿).
On a suite of regression problems, this approach outperforms both standard DGP ap-
proaches as well as a variation of Bayesian neural nets adapted with the reparameteri-
sation trick (Kingma and Welling, 2014), hybrid Monte Carlo (Neal, 1992) and stochastic
gradient Langevin dynamics (Welling and Teh, 2011). Even so, the experimental evalua-
tion does not clearly compare the speed of the proposed method to competing techniques,
while preliminary results on binary classification tasks indicate that the model does not
perform as well on such problems. Nonetheless, given its superior predictive performance
and amenability to mini-batch-based hyperparameter optimisation, we select this model
as the primary DGP baseline against which to compare our proposal.



104 Bridging the Gap between Gaussian Processes and Deep Learning

5.4 Practical Learning of Deep Gaussian Processes

via Random Features

As highlighted in the previous section, existing inference approaches for DGPmodels have
limited scalability and are notoriously cumbersome to construct. In this chapter, we de-
velop a practical learning framework for training DGP models that significantly improves
upon the state-of-the-art on those aspects. We show that random feature expansions for
DGP models yield Bayesian neural networks (BNNs; Neal, 1995) with low-rank weight
matrices, and the expansion of different covariance functions results in differing network
activation functions, namely trigonometric for the RBF kernel and rectified linear unit
(ReLU) functions for the arc-cosine covariance. In order to retain a probabilistic treatment
of the model when scaling to large datasets, we employ stochastic variational inference
techniques. In particular, we adapt the work on variational inference for neural networks
and variational auto-encoders (Graves, 2011; Kingma andWelling, 2014) using mini-batch-
based stochastic gradient optimisation, which can exploit GPU and distributed computing
frameworks. In this respect, we can view the probabilistic treatment of DGPs approximated
through random feature expansions as a means to specify sensible and interpretable pri-
ors for BNNs. Furthermore, unlike popular inducing point approximations for DGPs, the
resulting learning framework does not involve any matrix decompositions in the size of
the number of inducing points, but only matrix products.

5.4.1 Random Feature Expansions for Gaussian Processes

We start by describing how random feature expansions can be used to approximate the co-
variance of a shallow GP model. An in-depth introduction to kernel expansion via random
features has already been provided in Section 2.3 of Chapter 2, with particular emphasis
on the RBF kernel. Here we shall briefly recap this result, and additionally show how the
arc-cosine covariance may also be expressed in a similar manner. We also give a brief
overview of how recent advances have also made it possible to incorporate nonstationary
covariances in this framework, although we do not delve into this aspect in our evaluation.
For the sake of clarity, we initially present the covariances without any explicit scaling of
the features or the covariance itself. After explaining the random feature expansion as-
sociated with each covariance, we then generalise these results in the context of DGPs to
include scaling the covariances by a factor 𝜎2, as well as feature scaling for ARD.
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RBF Covariance

Ignoring hyperparameters, recall that the RBF covariance function can be expressed as

𝑘RBF (x𝑖, x𝑗) = exp [−1
2 (x𝑖 − x𝑗)

⊤
(x𝑖 − x𝑗)] . (5.21)

Appealing to Bochner’s theorem, any continuous shift-invariant normalised covariance
function 𝑘 (x𝑖, x𝑗) = 𝑘 (x𝑖 − x𝑗) is positive definite if and only if it can be rewritten as the
Fourier transform of a non-negative measure 𝑝 (𝜔) (Rahimi and Recht, 2008). Denoting
the spectral frequencies by 𝜔, while assigning 𝜄 = √−1 and 𝛿 = x𝑖 − x𝑗 , the covariance in
Equation 5.21 can be expressed as

𝑘RBF (x𝑖, x𝑗) = ∫ 𝑝 (𝜔) exp (𝜄𝛿⊤𝜔) d𝜔, (5.22)

with a corresponding non-negative measure 𝑝 (𝜔) = 𝒩 (0, 𝐼). Because the covariance
function and the non-negativemeasure are real, we can drop the unnecessary complex part
of the argument, keeping cos (𝛿⊤𝜔) = cos((x𝑖 − x𝑗)

⊤ 𝜔) that can in turn be rewritten as

[cos (x⊤
𝑖 𝜔) cos(x

⊤
𝑗 𝜔) + sin (x⊤

𝑖 𝜔) sin(x
⊤
𝑗 𝜔)].

The importance of the expansion above is that it allows us to interpret the covariance
function as an expectation that can be estimated using MC sampling. Defining z (x|𝜔) =
[cos (x⊤𝜔) , sin (x⊤𝜔)]

⊤, the covariance function can therefore be unbiasedly approxi-
mated as

𝑘RBF (x𝑖, x𝑗) ≈ 1
𝑁RF

𝑁RF

∑
𝑟=1

z (x𝑖|�̃�𝑟)
⊤ z (x𝑗|�̃�𝑟) , (5.23)

with 𝑁RF random samples �̃� sampled from 𝑝 (𝜔). As discussed in Chapter 2, the sparse
spectrum GP approximation investigated by Lázaro-Gredilla et al. (2010) is based on this
spectral representation of the RBF kernel.

Arc-cosine Covariance

We now consider the arc-cosine covariance function introduced in Section 5.2.2 of this
chapter, which for order 𝑑 and 𝑙 = 1 is given by

𝑘𝑑
ARC (x𝑖, x𝑗) = 1

𝜋 (‖x𝑖‖‖x𝑗‖)
𝑑 𝐽𝑑 (

cos−1
(

x⊤
𝑖 x𝑗

‖x𝑖‖‖x𝑗‖))
, (5.24)

where we have defined
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𝐽𝑑 (𝛼) = (−1)𝑑 (sin 𝛼)2𝑑+1
(

1
sin 𝛼

𝜕
𝜕𝛼 )

𝑑
(

𝜋 − 𝛼
sin 𝛼 ) . (5.25)

Let ℋ (⋅) be the Heaviside function; following Cho and Saul (2009), an integral represen-
tation of this covariance is given by

𝑘𝑑
ARC (x𝑖, x𝑗) = 2 ∫ℋ (𝜔⊤x𝑖) (𝜔⊤x𝑖)

𝑑 ℋ (𝜔⊤x𝑗) (𝜔⊤x𝑗)
𝑑

× 𝒩 (𝜔|0, 𝐼) d𝜔.
(5.26)

This integral formulation immediately suggests a random feature approximation for the
arc-cosine covariance in Equation 5.24, noting that it can be seen as an expectation of the
product of the same function applied to the inputs to the covariance. As before, this results
in an approximate explicit representation of themapping inducing the covariance function.
Interestingly, for the arc-cosine covariance of order 𝑑 = 1, this yields an approximation
based on the popular rectified linear unit (ReLU) functions, which are widely-used for
constructing neural networks. We note that for the arc-cosine covariance with degree
𝑑 = 0, the resulting Heaviside activations are unsuitable for our inference scheme given
that they systematically yield zero gradients.

Nonstationary Covariance Functions

In our presentation of GPs thus far, we have predominantly assumed the chosen kernel to
be stationary, i.e. the covariance function relies on the distance between inputs rather than
their actual location. However, in applications such as geostatistics and time series fore-
casting, the absolute location of the inputs to the covariance should also be incorporated
in the kernel function. Whereas Bochner’s theorem (see Section 2.3.1 in Chapter 2) applies
to stationary kernels, there has been an ongoing effort to generalise these results to cover
nonstationary behaviour. Preliminary work by Kom Samo and Roberts (2015) explored the
theoretical implications this entails, and presented a more general flexible representation
of nonstationary kernels using random features. Subsequent work by Remes et al. (2017)
tailored these ideas to the GP regression setting, with particular emphasis on a nonsta-
tionary variation of the spectral mixture kernel originally proposed by Wilson and Adams
(2013). Similar constructions with emphasis on Gaussian process regression have also re-
cently been investigated by Ton et al. (2018). We do not follow up on this particular family
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𝜃(0) 𝜃(1)

Φ(0)𝑋 𝐹 (1) Φ(1) 𝐹 (2) 𝑌

Ω(0) 𝑊 (0) Ω(1) 𝑊 (1)

Fig. 5.1 The proposed DGP approximation. At each hidden layer GPs are replaced by
their two-part weight-space approximation. The random features Φ(𝑙) are obtained us-
ing a weight matrix Ω(𝑙). This is followed by a linear transformation parameterised by
weights 𝑊 (𝑙). The prior over Ω(𝑙) is determined by the covariance parameters 𝜃(𝑙) of the
original GPs.

of kernels in this thesis; however, this should be an interesting avenue for future work to
develop further using the foundations established here.

5.4.2 Extension to Deep Gaussian Processes

We now present a novel approximate formulation of DGPs which, as we illustrate in the
subsequent experimental evaluation, leads to a practical learning algorithm for these deep
probabilistic nonparametric models. In particular, we propose to employ a random fea-
ture expansion at each layer, and in doing so we obtain an approximation to the original
DGP model as a deep neural network. An overview of this architecture is illustrated in
Figure 5.1.

Let us assume that the GPs have zero mean, and define 𝐹 (0) = 𝑋. We also assume that
the GP covariances at each layer are parametrised through a set of parameters 𝜃(𝑙). The
parameter set 𝜃(𝑙) comprises the layer-wise GP marginal variances (𝜎2)

(𝑙) and lengthscale
parameters

Λ(𝑙) = diag
[(𝑙2

1)
(𝑙) , … , (𝑙2

𝐷(𝑙)
𝐹 )

(𝑙)

]
. (5.27)
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Considering a DGP with RBF covariances, taking a weight-space view (see Chapter 2, Sec-
tion 2.3) of the GPs at each layer, and extending the results of the previous section, we
have that

Φ(𝑙)
RBF =

√√√
⎷

(𝜎2)
(𝑙)

𝑁 (𝑙)
RF

[cos (𝐹 (𝑙)Ω(𝑙)) , sin (𝐹 (𝑙)Ω(𝑙))] , (5.28)

and 𝐹 (𝑙+1) = Φ(𝑙)
RBF𝑊 (𝑙). At each layer, the priors over the random weights are 𝑝 (Ω(𝑙)

⋅𝑗 ) =

𝒩 (0, (Λ(𝑙))
−1

) and (𝑊 (𝑙)) = 𝒩 (0, 𝐼𝐷(𝑙+1)
𝐹 ). Each matrix Ω(𝑙) has dimensionality 𝐷(𝑙)

𝐹 ×
𝑁 (𝑙)

RF. On the other hand, the weight matrices 𝑊 (𝑙) have dimensions 2𝑁 (𝑙)
RF × 𝐷(𝑙+1)

𝐹 for
weighing the sine and cosine random features, with the constraint that 𝐷(𝐿)

𝐹 = 𝐷out.
Similarly, considering a DGP with arc-cosine covariances of order 𝑑 = 1, the applica-

tion of the random feature approximation leads to an architecture with ReLU activations,

Φ(𝑙)
ARC =

√√√
⎷

2 (𝜎2)
(𝑙)

𝑁 (𝑙)
RF

max (0, 𝐹 (𝑙)Ω(𝑙)) , (5.29)

with Ω(𝑙)
⋅𝑗 ∼ 𝒩 (0, (Λ(𝑙))

−1
), which are cheaper to evaluate and differentiate than the

trigonometric functions required for RBF. As in that case, we can also allow the covariance
and the features to be scaled by (𝜎2)

(𝑙) and Λ(𝑙) respectively. The dimensions of the weight
matrices Ω(𝑙) are the same as in the RBF case, but the dimensions of the 𝑊 (𝑙) matrices are
reduced to 𝑁 (𝑙)

RF × 𝐷(𝑙+1)
𝐹 .

5.4.3 Network Architecture with Low-rank Weights

Our formulation of an approximate DGP using random feature expansions reveals a close
connection to deep neural networks (DNNs). In our formulation, the design matrices at
each layer are Φ(𝑙+1) = 𝛾 (Φ(𝑙)𝑊 (𝑙)Ω(𝑙+1)), where 𝛾 (⋅) denotes the element-wise applica-
tion of covariance-dependent functions, i.e. sine and cosine for RBF, and ReLU for the first
order arc-cosine kernel. Instead, for a regular DNN, the design matrices are computed as
Φ(𝑙+1) = 𝑔 (Φ(𝑙)Ω(𝑙)), where 𝑔 (⋅) is a so-called activation function. From a probabilistic
standpoint, we can thus interpret our approximate DGP model as a DNN with specific
Gaussian priors over the Ω(𝑙) weights controlled by the covariance parameters 𝜃(𝑙), and
standard Gaussian priors over the 𝑊 (𝑙) weights. Covariance parameters act as hyper-
priors over the weights Ω(𝑙), and the objective is to optimise these during training.
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Another observation about the resulting DGP approximation is that, for a given layer
𝑙, the transformations given by 𝑊 (𝑙) and Ω(𝑙+1) are both linear. If we collapsed the two
transformations into a single one, by introducing weights Ξ(𝑙) = 𝑊 (𝑙)Ω(𝑙+1), we would
have to learn 𝒪 (𝑁 (𝑙)

RF × 𝑁 (𝑙+1)
RF ) weights at each layer, which is considerably more expen-

sive than learning the two separate sets of weights. As a result, we can view the proposed
approximate DGP model as a means of imposing low-rank structure on the weights of the
architecture, which is a form of regularisation that is frequently cited in the literature of
DNNs (Denil et al., 2013; Sainath et al., 2013). This low-rank structure of DGPs was also
noted by Duvenaud (2014) and Damianou (2015).

The connection between DGPs and DNNs has been pointed out in several papers, such
as Neal (1995) and Duvenaud et al. (2014), where the pathologies that may arise in such
deep models are investigated. Dropout is another technique intended to speed up training
and improve regularisation in neural networks that has recently been linked to variational
inference (Gal and Ghahramani, 2016) by way of MC sampling. The additional links intro-
duced in that work in relation to DGPs shall be highlighted later in this chapter.

5.4.4 Stochastic Variational Inference for Deep Gaussian Processes

In order to keep the notation uncluttered, let Θ be the collection of all covariance param-
eters 𝜃(𝑙) at all layers. We shall first consider the setting of a DGP with fixed spectral
frequencies Ω(𝑙) collected into Ω, and let W be the collection of the weight matrices 𝑊 (𝑙)

at all layers. For W, we have a product of standard normal priors stemming from the ap-
proximation of the GPs at each layer, 𝑝 (W) = ∏𝐿

𝑙=1 𝑝 (𝑊 (𝑙)), and we propose to treat 𝑊
using variational inference following Graves (2011) and Kingma and Welling (2014), while
optimising all covariance parameters Θ. For ease of exposition, we initially consider Ω to
be fixed here, but will discuss alternative ways to treat this set of parameters in the next
section.

Themarginal likelihood 𝑝 (𝑌 |𝑋,W,Ω,Θ) involves intractable integrals, but we can ob-
tain a tractable lower bound using variational inference and applying Jenson’s inequality.
Defining ℰ = 𝔼𝑞(W) log [𝑝 (𝑌 |𝑋,W,Ω,Θ)], we obtain
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log[𝑝(𝑌 |𝑋,Ω,Θ)] = log [∫ 𝑝(𝑌 |𝑋,W,Ω,Θ)𝑝(W)dW]

= log [∫
𝑝(𝑌 |𝑋,W,Ω,Θ)𝑝(W)

𝑞(W) 𝑞(W)dW]

= log [𝔼𝑞(W)
𝑝(𝑌 |𝑋,W,Ω,Θ)𝑝(W)

𝑞(W) ]

≥ 𝔼𝑞(W) (log [
𝑝(𝑌 |𝑋,W,Ω,Θ)𝑝(W)

𝑞(W) ])

= 𝔼𝑞(W) (log[𝑝(𝑌 |𝑋,W,Ω,Θ)]) + 𝔼𝑞(W) (log [
𝑝(W)
𝑞(W)])

= ℰ − 𝐷KL [𝑞(W)||𝑝(W)] , (5.30)

where 𝑞 (W) acts as a variational approximation to the posterior over all the weights
𝑝 (W|𝑌 , 𝑋,Ω,Θ).

We are interested in optimising 𝑞 (W), i.e. finding an optimal approximate distribu-
tion over the parameters according to the bound given in Equation 5.30. As with previous
mentions of the evidence lower bound on the marginal likelihood in this thesis, the first
term can be interpreted as a model fit term whereas the second can be seen as regularisa-
tion. In the case of a Gaussian distribution 𝑞 (W), it is possible to compute the 𝐷KL term
analytically. More specifically, given two Gaussian distributions 𝑝1 (𝑥) = 𝒩 (𝜇1, 𝜎2

1) and
𝑝2 (𝑥) = 𝒩 (𝜇2, 𝜎2

2), the KL divergence between them is given by

𝐷KL [𝑝1 (𝑥) ‖𝑝2 (𝑥)] = 1
2 [

log
(

𝜎2
2

𝜎2
1 )

− 1 +
𝜎2

1
𝜎2

2
+

(𝜇1 − 𝜇2)2

𝜎2
2 ]

. (5.31)

To guarantee tractability, we shall consider a mean-field variational approximation that
factorises across both layers and weights,

𝑞 (W) = ∏
𝑖𝑗𝑙

𝑞 (𝑊 (𝑙)
𝑖𝑗 ) = ∏

𝑖𝑗𝑙
𝒩 (𝑚(𝑙)

𝑖𝑗 , (𝑠2)
(𝑙)
𝑖𝑗 ) . (5.32)

The variational parameters are themean and variance of each of the approximating factors,
i.e. 𝑚(𝑙)

𝑖𝑗 and (𝑠2)
(𝑙)
𝑖𝑗 , and we aim to optimise the lower bound with respect to these as well

as all covariance parameters grouped in Θ.
However, the ℰ term will still have to be approximated regardless. In the case of a

likelihood that factorises across observations, an interesting feature of this expression of
the lower bound is that it is amenable to fast stochastic optimisation. In particular, we
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derive a doubly-stochastic approximation of the expectation in the lower bound as follows.
First, ℰ can be rewritten as a sum over the input points, which allows us to estimate it in
an unbiased fashion using mini-batches, each time selecting 𝑀 points indexed by ℐMB,

ℰ ≈ 𝑁
𝑀 ∑

𝑖∈ℐMB

𝔼𝑞(W) (log [𝑝(y𝑖|x𝑖,W,Ω,Θ)]) . (5.33)

Subsequently, each of the elements of the sum can be estimated using 𝑁s MC samples,
yielding

ℰ ≈ 𝑁
𝑀 ∑

𝑖∈ℐMB

1
𝑁s

𝑁s

∑
𝑠=1

log [𝑝(y𝑖|x𝑖, W̃𝑠,Ω,Θ)] , (5.34)

with W̃𝑠 ∼ 𝑞 (W). In order to facilitate the optimisation, we once again invoke the repa-
rameterisation trick (Kingma and Welling, 2014) for rewriting the weights as follows,

(𝑊 (𝑙)
𝑠 )𝑖𝑗

= 𝑚(𝑙)
𝑖𝑗 + 𝜀(𝑙)

𝑠𝑖𝑗𝑠(𝑙)
𝑖𝑗 . (5.35)

By differentiating the lower bound with respect toΘ and the mean and variance of the
approximate posterior overW, we obtain an unbiased estimate of the gradient for the lower
bound. The reparameterisation trick ensures that the randomness in the computation of
the expectation is fixed when applying stochastic gradient ascent moves to the parameters
of 𝑞(W) andΘ (Kingma andWelling, 2014). Automatic differentiation tools then enable us
to compute stochastic gradients automatically, which is why we opted to implement our
model in TensorFlow (Abadi et al., 2015).

5.4.5 Treatment of Spectral Frequencies

So far, we have assumed the spectral frequencies Ω to be sampled from the prior and
fixed throughout, whereby we employ the reparameterisation trick to obtain Ω(𝑙)

𝑖𝑗 = 𝜇(𝑙)
𝑖𝑗 +

𝜀(𝑙)
𝑠𝑖𝑗 (𝛽2)

(𝑙)
𝑖𝑗 , with 𝜇(𝑙)

𝑖𝑗 and (𝛽2)
(𝑙)
𝑖𝑗 determined by the prior 𝑝 (Ω(𝑙)

⋅𝑗 ) = 𝒩 (0, (Λ(𝑙))
−1

). We

then draw the 𝑁s 𝜀(𝑙)
𝑠𝑖𝑗 elements and fix them from the outset, such that the covariance

parameters Θ can be optimised along with 𝑞 (W). We refer to this variant as prior-fixed.
Inspired by previous work on random feature expansions for GPs, e.g. Lázaro-Gredilla

et al. (2010) and Gal and Turner (2015), we can think of alternative ways to treat these
parameters. In particular, we study a variational treatment for Ω; defining Ψ = [W,Ω],
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Fig. 5.2 Performance of different strategies for dealing with Ω as a function of the number
of random features. These can be fixed (prior-fixed), or treated variationally (with fixed
randomness var-fixed or resampled at each iteration var-resampled).

we can derive an alternate lower bound to the one presented in Equation 5.30 such that

log [𝑝 (𝑌 |𝑋,Ψ,Θ)] ≥ 𝔼𝑞(Ψ) (log [𝑝 (𝑌 |𝑋,Ψ,Θ)]) − 𝐷KL [𝑞(Ψ)||𝑝(Ψ|Θ)] . (5.36)

Once again assuming a factorised prior over all frequencies results in

𝑝 (Ψ|𝜃) =
𝐿−1

∏
𝑙=0

𝑝 (Ω(𝑙)|𝜃(𝑙)) 𝑝 (𝑊 (𝑙)) ≈ ∏
𝑖𝑗𝑙

𝑞 (Ω(𝑙)
𝑖𝑗 ) ∏

𝑖𝑗𝑙
𝑞 (𝑊 (𝑙)

𝑖𝑗 ) . (5.37)

When being variational about Ω, we introduce an approximate posterior 𝑞(Ω) which also
has a factorised form. We use the reparameterisation trick once again, but Ω are now
sampled from the posterior, which in general has different mean and variances to the prior.
We report two variations of this treatment, namely var-fixed and var-resampled. In var-
fixed, we fix 𝜀(𝑙)

𝑠𝑖𝑗 in computing Ω when training the model, whereas in var-resampled
we resample these at each iteration. We note that one can also be variational aboutΘ, but
do not investigate this option here.

In Figure 5.2, we illustrate the differences between the strategies discussed in this sec-
tion, i.e. fixing the spectral frequencies Ω or treating them variationally. We report the
accuracy of a one-layer DGP with RBF covariances with respect to the number of ran-
dom features on one of the datasets that we consider in the experiments section (EEG).
For prior-fixed, more random features result in a better approximation of the GP pri-



5.5 Experimental Evaluation 113

ors at each layer, and this results in better generalisation. When we resample Ω from
the approximate posterior (var-resampled), we notice that the model quickly struggles
with the optimisation as the number of random features increases. We attribute this to the
fact that the factorised form of the posterior over Ω and W is unable to capture posterior
correlations between the coefficients for the random features and the weights of the cor-
responding linearised model. Being deterministic about the way spectral frequencies are
computed (var-fixed) offers the best performance among the three learning strategies,
and this is what we employ throughout the remainder of this chapter.

5.4.6 Computational Complexity

When estimating the lower bound, the most computationally expensive operations are
matrix multiplications performed at each layer, specifically 𝐹 (𝑙)Ω(𝑙) and Φ(𝑙)𝑊 (𝑙). Recall-
ing that this matrix product is done for samples from the posterior over W (and also
Ω when treated variationally) and given the mini-batch formulation, the former costs
𝒪 (𝑁s𝑀𝐷(𝑙)

𝐹 𝑁 (𝑙)
RF), while the latter costs 𝒪 (𝑁s𝑀𝑁 (𝑙)

RF𝐷(𝑙+1)
𝐹 ).

Due to the interpretation using random feature expansions combined with stochastic
variational inference, the resulting algorithm does not involve any Cholesky decomposi-
tions. This is in sharp contrast with stochastic variational inference using inducing-point
approximations (see e.g. Bui et al., 2016; Dai et al., 2016), where such operations could sig-
nificantly limit the number of inducing points that can be employed. The computational
speed-up resulting from bypassing Cholesky decompositions will be further emphasised
in the next section.

5.5 Experimental Evaluation

We evaluate our model by comparing it against relevant alternatives for both regression
and classification tasks, and assess its performance when applied to large-scale datasets.
We also investigate the extent to which such deep compositions continue to yield good
performance when the number of hidden layers is significantly increased.

5.5.1 Model Comparison

We primarily compare our model to state-of-the-art DGPs constructed using an expec-
tation propagation framework (DGP-EP; Bui et al., 2016). The comparison originally in-
cluded results for the variational auto-encoded DGP by Dai et al. (2016), but the results
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obtained using the available code were not competitive with DGP-EP and we thus decided
to exclude them from the figures. We also omitted DGP training using sequential infer-
ence (Wang et al., 2016) since the performance reported in the paper is inferior to more
recent approaches. In order to present our results in a wider context, and demonstrate that
DGPs indeed lead to better quantification of uncertainty, we also compare against DNNs
trained using dropout. Finally, to substantiate the benefits of using deep models, we set the
shallow sparse variational GP (Hensman et al., 2015a) implemented in GPflow (Matthews
et al., 2017) as the baseline against which all other models are compared.

We use the same experimental set-up for both regression and classification tasks us-
ing datasets obtained from the UCI dataset repository (Asuncion and Newman, 2007) for
models having one and two hidden layers. The specific configurations for each model are
detailed below:

• DGP-RBF, DGP-ARC : In the proposed DGP with an RBF kernel, we use 100 ran-
dom features at every hidden layer to construct a multivariate GP with 𝐷(𝑙)

𝐹 = 3, and
set the batch size to 𝑀 = 200. We initially only use a single MC sample to kick-
start the optimisation procedure, but this is then increased to 100 samples halfway
through the allocated optimisation time in order to ensure better convergence and
stability. We employ the Adam optimiser (Kingma and Ba, 2015) with a learning
rate of 0.01, and in order to stabilise the optimisation procedure, we fix the param-
eters Θ for 12,000 iterations before jointly optimising all parameters. As discussed
in Section 5.4.5, Ω are optimised variationally with fixed randomness unless stated
otherwise. The same set-up is used for DGP-ARC, the variation of our model imple-
menting the arc-cosine kernel;

• DGP-EP 1: For this technique, we use the same architecture and optimiser as for
DGP-RBF and DGP-ARC, a batch size of 200, and 100 inducing points at each layer.
For the classification case, we use 100 samples for approximating the Softmax like-
lihood;

• DNN : We construct a DNN configured with a dropout rate of 0.5 at each hidden
layer so as to provide regularisation during training. In order to preserve a degree
of fairness, we set the number of weights to be optimised so as to match those in the
DGP-RBF and DGP-ARC models when the random features are assumed to be fixed.

1Code obtained from: https://github.com/thangbui/deepGP_approxEP

https://github.com/thangbui/deepGP_approxEP
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Fig. 5.3 Progression of error rate (RMSE in the regression case) and MNLL over time for
competing models. Results are shown for configurations having 1 hidden layer.

We assess the performance of each model using the error rate (or RMSE in the regression
case) and mean negative log likelihood (MNLL) on withheld test data. The experiments
were launched on single nodes of a cluster of Intel Xeon E5-2630 CPUs having 32 cores
and 128GB RAM, and the results are averaged over 3 folds for every dataset.
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Fig. 5.4 Progression of error rate (RMSE in the regression case) and MNLL over time for
competing models. Results are shown for configurations having 2 hidden layers.
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Figure 5.3 shows that DGP-RBF and DGP-ARC consistently outperform competing
techniques both in terms of convergence speed and predictive accuracy. This is partic-
ularly significant for larger datasets where other techniques take considerably longer to
converge to a reasonable error rate, although DGP-EP converges to superior MNLL for the
Protein dataset. The results are also competitive (and often superior) to those obtained by
the variational GP (VAR-GP) presented in Hensman et al. (2015a). It is striking to see how
inferior the uncertainty quantification obtained for the DNN (which is inherently limited
to the classification case, so no MNLL reported on regression datasets) is in comparison
to DGPs, despite the error rate being comparable. This further reinforces the underlying
theme of the thesis whereby we champion the use of Bayesian machine learning models
over other approaches.

By virtue of its higher dimensionality, larger configurations were used for MNIST. For
DGP-RBF and DGP-ARC, we use 500 random features, 50 GPs in the hidden layers, batch
size of 1000, Adam with a 0.001 learning rate, and fix Θ for 12, 000 iterations. Similarly
for DGP-EP, we use 500 inducing points, with the only difference being a slightly smaller
batch size to cater for issues with memory requirements. Following Simard et al. (2003), we
employ 800 hidden units at each layer of the DNN. The DGP-RBF model peaks at 98.04%
and 97.93% accuracy for one and two hidden layers respectively. It was observed that
the model performance degrades noticeably when more than 2 hidden layers are used
(without feeding forward the inputs). This is in line with what is reported in the literature
on DNNs (Duvenaud et al., 2014; Neal, 1995). By simply re-introducing the original inputs
in the hidden layer, the accuracy improves to 98.2% for the one hidden layer case.

Recent experiments on MNIST using a variational GP with MCMC report overall accu-
racy of 98.04% (Hensman et al., 2015a), while the AutoGP architecture presented earlier in
this chapter has been shown to give 98.45% accuracy. Using a finer-tuned configuration,
DNNs can reportedly obtain 98.4% accuracy (Simard et al., 2003), whereas 98.6% has been
reported for SVMs (Schölkopf, 1997). In view of this wider scope of inference techniques, it
can be confirmed that the results obtained using the proposed architecture are comparable
to the state-of-the-art, even if further extensions may be required for consistently obtain-
ing a proper edge. Note that this comparison focuses on approaches that do not carry out
any preprocessing on the data, and excludes convolutional neural nets.

5.5.2 Large-scale Datasets

One of the defining characteristics of this DGP model is the ability to scale up to large
datasets without compromising on performance and accuracy in quantifying uncertainty.
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Table 5.2 Performance of our DGP proposal on large-scale datasets.

Dataset
Accuracy

RBF ARC
MNLL

RBF ARC

MNIST-8M 99.14% 99.04% 0.0454 0.0465
Airline 78.55% 72.76% 0.4583 0.5335

As a demonstrative example, we evaluate our model on two large-scale problems beyond
the scale to which GPs and especially DGPs are typically applied.

We first consider MNIST-8M, which artificially extends the original MNIST dataset to
over 8 million observations. We trained this model using the same configuration described
for standard MNIST, and obtained 99.14% accuracy on the test set using one hidden layer.
Given the size of this dataset, there are only few reported results for other GP models;
as noted in Section 5.2.4, 99.11% accuracy can be obtained with the AutoGP framework,
which is comparable to the result obtained by this DGP model.

Meanwhile, the Airline dataset contains flight information for over 5 million flights in
the US between January and April 2008. Following the procedure described in Hensman
et al. (2013) and Wilson et al. (2016b), we use this 8-dimensional dataset for classification,
where the task is to determine whether a flight has been delayed or not. We generate the
test set using the scripts provided in Wilson et al. (2016b), where 100,000 data-points are
held out for testing. Our DGP models are constructed using 100 random features at each
layer, and set the dimensionality at each layer to 𝐷(𝑙)

𝐹 = 3. As shown in Table 5.2, ourmodel
works significantly better when the RBF kernel is employed. In addition, the results are
also directly comparable to those obtained byWilson et al. (2016b), which reports accuracy
and MNLL of 78.1% and 0.457, respectively. These results give further credence to the
tractability, scalability, and robustness of the proposed model.

5.5.3 Model Depth

In this final part of the experiments, we assess the scalability of our model with respect
to additional hidden layers in the constructed model. In particular, we reconsider the Air-
line dataset introduced in the previous section and evaluate the performance of DGP-RBF
models constructed using up to 30 layers. In order to cater for the increased depth in the
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Fig. 5.5 Left and centre - Performance of our model on the Airline dataset as a function of
time for different depths. Deeper models (10, 20 layers) can outperform shallow architec-
tures after convergence. The baseline (SV-DKL) is taken from Wilson et al. (2016b). Right
- The box plot of the negative evidence lower bound (estimated over 100 mini-batches of
size 50,000) confirms this is a suitable objective for model selection.

model, we feed-forward the original input to each hidden layer, as suggested in Duvenaud
et al. (2014) for avoiding pathologies.

Figure 5.5 reports the progression of error rate and MNLL over time for models con-
structed with an increasing number of hidden layers, using the results listed in Wilson
et al. (2016b) as a baseline (reportedly obtained in about three hours). As expected, our
DGP model takes longer to train as the number of layers increases. However, the model
converges to an optimal state for every setting in less than a couple of hours, with an im-
provement being noted in the case of 10 and 20 layers over the shallower 2-layer model.
The box-plot within the same figure confirms that the negative evidence lower bound eval-
uated on the training data is a suitable objective for carrying out model selection.

5.5.4 Distributed Implementation

This model is also easily amenable to a distributed implementation using asynchronous
distributed stochastic gradient descent (Chilimbi et al., 2014). Our setting, based on the
parameter server framework (Li et al., 2014) implemented in TensorFlow, includes one or
more parameter servers and a number of workers. The latter proceed asynchronously us-
ing randomly selected batches of data; they fetch fresh model parameters from the param-
eter server, compute the gradients of the lower bound with respect to these parameters,
and push those gradients back to the parameter server, which in turn updates the global
representation of the model accordingly. Given that workers compute gradients and send
updates to the parameter server asynchronously, the discrepancy between the model used
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Fig. 5.6 Comparison of training time and error rate for asynchronous DGP-RBF with 2
parameter servers, and alternative settings having 1, 5 and 10 workers respectively.

to compute gradients and the local model can degrade training quality. This is exacerbated
by having a large number of asynchronous workers, as noted in Chen et al. (2016).

We carry out a preliminary investigation into the viability of this training approach.
In particular, we focus our evaluation on the MNIST dataset, and study how training time
and error rate evolve in relation to the number of workers introduced in our set-up. The
parameters for the model are identical to those reported for the previous experiments,
except that we fix the number of MC samples to one throughout. We report the results
in Figure 5.6. As expected, the training time decreases in proportion to the number of
workers, albeit sub-linearly, but the error rate remains largely unchanged when varying
the number of workers. When using a single parameter server, we noticed that increasing
the number of workers led to lower gains in execution speed, and the behaviour of the
error rate over iterations was more erratic than in the case of two parameter servers. We
attribute these effects to the greater overheads on the communication cost when using a
single parameter server, as well as the more involved coordination of multiple workers.
The work in Chen et al. (2016) corroborates our findings, and motivates further work in
the direction of alleviating this issue.

5.6 Impact and Extensions

When they were first published, both the AutoGP framework (Krauth et al., 2017) and the
proposed DGP approximation (Cutajar et al., 2017) were key to showcasing how GPs and
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DGPs can be adapted to the large-scale and very complex tasks to which machine learning
is now being applied. Whereas GPs were once deemed unfit to compete with state-of-
the-art deep learning techniques, these works contributed towards a broader shift in per-
spective regarding the capabilities and limitations of GPs. In fact, the results obtained by
AutoGP for image classification datasets are often included as benchmarks against which
more specialised models such as convolutional GPs (van der Wilk et al., 2017) and their
deep counterparts (Blomqvist et al., 2018) are compared.

Ensuing work by Salimbeni and Deisenroth (2017) on the topic of scaling DGPs intro-
duced an alternative approximation based on the variational inducing points framework.
This work matches the scalability of our random-features approach, while also leverag-
ing the alternative properties associated with approximations based on inducing points.
In a landmark experiment for DGPs, a distributed variation of their model constructed
similarly to the set-up described in Section 5.5.4 was evaluated on a dataset having over
a billion data-points. There has also been renewed interest in investigating the connec-
tion between neural network architectures and (deep) GPs. Prior to our contribution, in
an appendix to their work on interpreting dropout as a Bayesian approximation, Gal and
Ghahramani (2016) illustrated how MC dropout results in the construction of a Bayesian
neural network that is equivalent to a DGP having an arbitrary kernel constructed via
network weights. Other recent works expanding on this connection include Louizos and
Welling (2016), Matthews et al. (2018), and Lee et al. (2018).

The DGP approximation based on random feature expansions presented in this chapter
has itself also served as either the basis or a major point of reference for several extensions
and applications of scalable DGPs. These include adaptation to variational auto-encoders
for novelty detection (Domingues et al., 2018), recurrent modelling (Föll et al., 2017), prob-
lems with constrained function dynamics (Lorenzi and Filippone, 2018), and application to
neuroimaging (Nader et al., 2018).

5.7 Conclusion

In this chapter, we expanded our view of GPs to frame them within the wider landscape
of deep leaning methods. This had implications on both the degree of scalability expected
of the GP approximations investigated in this setting, as well as their overall modelling
capacity and flexibility. By way of our presentation of the AutoGP framework, we have
jointly investigated three complementary areas of research within the GP community, and
demonstrated how unifying these directions of improvement enables GPs to perform com-
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petitively with more widely-used neural network architectures. The results obtained with
this approach also emphasise how the application of GPs to truly large datasets is no longer
an insuperable task, but should motivate further work on improving the quality of models
targeting this goal. More significantly, in this chapter we proposed a novel formulation of
DGPs that is not only faster, but also frequently outperforms related state-of-the-art meth-
ods. The evaluation and results obtained for both the Airline dataset and the MNIST-8M
digit recognition problem are particularly impressive since such large datasets had previ-
ously been considered to be beyond the computational scope of DGPs. We perceive this
to be a considerable step forward in the direction of igniting more interest and encourag-
ing the widespread use of DGPs by both practitioners and the broader machine learning
community.



Chapter 6

Conclusion

The models and techniques presented in this thesis are unified by the overarching goal
of adapting Gaussian processes and their deep counterparts to the requirements and con-
straints posed by large datasets and complex problems in the big data regime. We conclude
this thesis by summarising the principal themes and contributions presented in the pre-
ceding chapters, with particular emphasis on their significance in the context of comple-
mentary work in this direction of research. This is followed by a brief outlook on possible
avenues for future work where we indicate how one might go about achieving these ob-
jectives. Finally, we close with an introspective commentary on the unprecedented rate
at which machine learning is developing, highlighting the potential pitfalls that research
carried out at such an accelerated pace is susceptible to.

6.1 Themes and Contributions

In this thesis, we primarily investigated the following themes in relation to Gaussian pro-
cesses:

• Exact inference on a computational budget [Chapter 3]

Developing scalable approximations for Gaussian process models has been a long-
standing research topic for which several techniques and methodologies have been
developed. In spite of their success in handling the intractability associated with
GPs, such approximations often imply making changes to the original model, and
trade off superior computational speed-up with poorer predictive performance. In
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Chapter 3, we presented an interpretation of GP regression and classification that
exploits accelerated solutions to linear systems obtained by way of preconditioned
conjugate gradient in order carry out exact GP inference on a computational budget.
Contrary to traditional sparse GP approximations, this approach achieves tractabil-
ity by developing unbiased estimates of the computationally expensive algebraic
computations that pose a bottleneck to scalability; in the limit of unbounded com-
putational resources, the results obtained using such a formulation will be exact.
Our experimental evaluation indicates that GP inference enhanced with precondi-
tioning improves upon the predictive performance of commonly-used approxima-
tions, while also circumventing the computational and storage intractabilities as-
sociated with carrying out Cholesky decompositions of large matrices. Only very
recently, Wang et al. (2019) have also shown how preconditioning can be exploited in
a scheme for training exact GPs on datasets having over a million data-points. This
is a breakthrough result for GPs which gives further credence to the methodology
we proposed and advocated for in this thesis.

• Numerical uncertainty in algebraic approximation [Chapter 4]

Although approximations in the vein of the aforementioned preconditioning scheme
are particularly appealing under the assumption of unrestricted computational bud-
gets, such methodologies must always be considered in light of the potential loss of
precision arising from estimating algebraic operations. In the spirit of probabilistic
numerics, in Chapter 4 we explored the possibility of quantifying the computational
uncertainty associated with such approximations when featured in GP inference and
training. We contributed towards this goal by developing a Bayesian approach for
approximating the log determinant of large matrices; this contribution extends be-
yond GPs and also has scope in other domains where estimating the log determinant
of large matrices is required. Nonetheless, in spite of the strong motivation for in-
corporating probabilistic numerics in the deployment of GPs, the results presented
in this thesis indicate that the state-of-the-art in this field may not yet be sufficiently
robust for attaining such a complex goal.

• Adaptability to the big data regime [Chapter 5]

Whereas most GP approximations are primarily intended for medium-sized datasets,
the majority of deep learning techniques are directly applicable to datasets having
millions or even billions of data-points. The AutoGP model affronts this goal by
jointly exploring three complementary features of GPs that improve their competi-
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tiveness with widely-used deep learning models. In particular, AutoGP combines a
superior variational approximation of the posterior, flexible kernel design, and opti-
misation with respect to a leave-one-out objective, in order to obtain state-of-the-art
results for GPs on benchmark datasets such asMNIST.The performance of themodel
was also evaluated on a multi-class classification dataset having over 8 million ob-
servations, which is far beyond the scale for which GP inference had previously been
considered feasible.

• Probabilistic deep learning [Chapter 5]

The final contribution presented in this thesis was a novel DGP approximation that
overcomes the issues and limitations that had previously hindered the application
of DGPs to larger datasets. Our proposition employs random feature expansions at
each layer of the DGP in order to obtain a model architecture that closely resembles
a deep neural network. Aside from being faster than other DGP approximations,
our proposal consistently performs better than competing techniques, and improves
upon a shallow GP baseline. By demonstrating that DGPs can be applied to very
large datasets, and showing how the architecture of such models can extend beyond
just a few layers, we have in turn widened the scope and variety of problems to
which such models can be applied.

6.2 Future Work

Beyond the extensive discussion featured in this thesis, the themes explored in this body
of work not only motivate immediate extensions for improvement, but also set the foun-
dations for broader long-term objectives. In this section, we expand upon the directions
for future work which we believe to be particularly pertinent to ongoing developments in
both the theoretical and practical aspects of machine learning using GPs. We partition this
discussion into the overarching themes of (i) carrying out GP inference and training on a
computational budget; and (ii) reinforcing the position of DGPs in relation to other deep
learning techniques.

6.2.1 GP Inference on a Budget

The use of preconditioning for accelerating GP inference has recently been used in GPy-
Torch (Gardner et al., 2018), an open-source library for constructing GPs developed in
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PyTorch (Paszke et al., 2017). This is combined with a black-box matrix-matrix multiplica-
tion algorithm which lowers the asymptotic complexity of the associated iterative solvers
from 𝒪 (𝑁3) to 𝒪 (𝑁2). However, the authors limit their discussion to a generic precondi-
tioner that does not necessarily capture the inherent structure expected of kernel matrices;
this encourages a more in-depth investigation into whether the suite of preconditioners
developed in Chapter 3 could be suitable for use within this framework. The theory de-
veloped in Geoga et al. (2018) for using hierarchical matrices to speed up computation of
both the GP marginal likelihood and its derivatives should also be considered for not only
developing new preconditioners, but also as an alternative GP formulation.

Quantifying the numerical uncertainty associated with approximating linear algebra
also remains an important topic for future work to develop. As illustrated by the results
presented in Chapter 4, there is certainly more work to be done for improving both the
approximation quality and uncertainty calibration of probabilistic numerical linear solvers
and the Bayesian log determinant estimation presented in this thesis. In a departure from
the Bayesian perspective we have advocated for in this thesis, a sensible progression in
this regard would be to additionally consider alternative probabilistic, but not necessarily
Bayesian, interpretations of linear algebra, as found in Boutsidis et al. (2017) and Ubaru
et al. (2017), for which a measure of confidence accompanying the approximation can also
be derived. An insightful analysis contemplating the suitability of Bayesian inference for
carrying out linear algebra was very recently presented in Briol et al. (2018).

6.2.2 GPs as an alternative to Neural Networks

There are several immediate extensions that can be considered for the DGP approximation
presented in Chapter 5. The first involves introducing the local reparameterisation trick
developed in Kingma et al. (2015), which is intended to further reduce uncertainty in the
estimation of gradients as well as accelerate overall computation. Superior initialisation
strategies should also be considered in order to improve the stability of optimising the
model. The results obtained on higher-dimensional datasets also strongly suggest that ap-
proximations such as Fastfood (Le et al., 2013) and orthogonal random features (Yu et al.,
2016) could be instrumental in the interest of usingmore random features in their construc-
tion. The notion of using low-precision representations of random features, as featured in
Zhang et al. (2018), could also improve speed while simultaneously permitting the use of
more random features. On another note, incorporating convolutional structure to emulate
the architectures explored in van der Wilk et al. (2017), Kumar et al. (2018), and Blomqvist
et al. (2018) is essential for obtaining superior performance on complex image classification
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tasks such as CIFAR and ImageNet, where the proposed model currently falters. Finally,
the continued resilience of Monte Carlo dropout (Gal and Ghahramani, 2016) in the advent
of alternative formulations of Bayesian neural networks also encourages their connection
to GPs, and especially DGPs, to be explored further.

While the concepts introduced in this thesis are agnostic to specific datasets or applica-
tions, the experimental evaluation for both AutoGP and the proposed DGP approximation
are heavily influenced by the classification benchmarks prevalent in the deep learning
community. Exploring alternative problems would not only inspire and reveal different
modelling requirements than those we are accustomed to, but also further broaden the
scope and appeal of DGPs to researchers and practitioners alike. As a motivating example,
in Cutajar et al. (2018) we demonstrate how DGPs can be interpreted for the purpose of
multi-fidelity modelling, whereby DGP layers are treated as fidelity levels, and a varia-
tional inference scheme is used to propagate uncertainty across them. The utility of DGPs
in view of their theoretical properties was recently rigorously studied in Dunlop et al.
(2018), which should serve as a guide for future work in this domain.

6.3 This ain’t Science, it’s an Arms Race1

Twenty years ago, the late Prof. Sir David MacKay concluded a general introduction to GPs
with a discussion on how such methods compare to neural networks, posing the memo-
rable questions “Have we thrown the baby out with the baby water? How can Gaussian
processes possibly replace neural networks? What is going on?” (MacKay, 1998). This com-
mentary was ahead of its time in the way it predicted how the rigid assumptions charac-
terising GPs could prevent them from properly matching the performance of more flexible
deep learning techniques. In essence, much of recent work published in relation to GPs,
including the models introduced in the latter parts of this thesis, has predominantly in-
volved playing ‘catch-up’ with more advanced deep learning techniques by reinterpreting
those models with a Bayesian perspective.

In many ways, this urgency to compete with deep learning techniques is also reflec-
tive of the overall state of machine learning research. At the time of its publication, the
work presented in Chapter 3 was prized for applying GPs to datasets with tens of thou-
sands of observations without relying on traditional approximations. This was in line with
the long-standing belief that GPs are primarily data-efficient models intended for tasks re-
quiring high precision or having considerable risk. Conversely, the models presented in

1The title of this section is a play on the hit song “This Ain’t a Scene, it’s an Arms Race”.
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Chapter 5were developed in response to concerns that GPswere no longer appealing in the
advent of more competitive neural network architectures. Indeed, our work convincingly
demonstrates that the connections between GPs and neural networks are key to mod-
ernising GPs; in a first for GPs and especially DGPs, we showed how the proposed model
architectures can be applied to complex multi-class classification problems having over 8
million data-points. Notwithstanding, in less than a year after both works were published,
the application of GPs to massive datasets has already become a de facto accomplishment,
and attention has instead been diverted towards directly competing with more advanced
deep learning methods through incorporating convolutions, recurrent structure, and the
list goes on.

In a twist on the quoted remarks setting the tone for this conclusion, we opine that
beyond fuelling the ongoing ‘arms race’ to outperform existing deep learning techniques
on problems where such methods already work well, ongoing and future work on GPs
should be steered more towards problems where deep learning models currently face a
greater hurdle. Alongside probabilistic numerics, whichwas directly featured in this thesis,
we believe that GPs will also play an important role in emerging fields such as interpretable
machine learning (Lipton, 2018) and data-efficient reinforcement learning (Kamthe and
Deisenroth, 2018), among others.
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Appendix A

Conjugate Gradient Algorithm

One of the primary contributions of this thesis involves the design and selection of precon-
ditioners which are well suited to kernel matrices in order to accelerate GP training and
inference by way of preconditioned conjugate gradient. In our evaluation, we consistently
assessed the effectiveness of the proposed methodology using plain conjugate gradient as
a baseline over which performance improvements should be measured. A description of
the motivation and purpose of conjugate gradient is already given in Chapter 3, and here
we supplement that commentary by providing the full pseudocode for this algorithm.
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Algorithm 3 Conjugate Gradient Algorithm, adapted from Golub and Van Loan (1996)
Input: Matrix 𝐴, vector b, convergence threshold 𝜀, initial estimate z0, maximum number

of iterations T
r0 = b − 𝐴z0; s0 = r0
for 𝑡 = 0 : 𝑇 do

𝛼𝑡 = r⊤
𝑡 r𝑡

s⊤
𝑡 𝐴s𝑡z𝑡+1 = z𝑡 + 𝛼𝑡s𝑡

r𝑡+1 = r𝑡 − 𝛼𝑡𝐴s𝑡
if ‖r𝑡+1‖ < 𝜀 then

return z𝑡+1
end if
𝛽𝑡 = r⊤

𝑡+1r𝑡+1
r⊤

𝑡 r𝑡
s𝑡+1 = r𝑡+1 + 𝛽𝑡s𝑡

end for
return z𝑡+1



Appendix B

Continuation of Probabilistic Numerics
Evaluation

In Section 4.4.3 of Chapter 4, we investigated the suitability of probabilistic linear solvers
for estimating the solution of linear systems involving kernel matrices constructed using
a variety of parameter settings. Following up on the assessment of the uncertainty of BCG
for the White Wine dataset, in Figure B.1 we present the results for the same experiment
carried out using the Concrete dataset instead. The results mirror those obtained for the
other dataset, whereby the decrease in uncertainty relative to the prior is linear in the
number of iterations; as before, these results would be difficult to incorporate effectively
within a pipelined probabilistic numerics scheme.



146 Continuation of Probabilistic Numerics Evaluation

0 200 400 600 800 1000
Iteration, t

0.0

0.5

1.0

T
r(

Σ
t)

/
T

r(
Σ

0)

Lengthscale = 0.5

0 200 400 600 800 1000
Iteration, t

0.0

0.5

1.0

T
r(

Σ
t)

/
T

r(
Σ

0)

Lengthscale = 1

0 200 400 600 800 1000
Iteration, t

0.0

0.5

1.0

T
r(

Σ
t)

/
T

r(
Σ

0)

Lengthscale = 5

0 200 400 600 800 1000
Iteration, t

0.0

0.5

1.0

T
r(

Σ
t)

/
T

r(
Σ

0)

Lengthscale = 10

(a) Uncertainty quality of solution-based inference with prior Σ0 = 𝐼𝑁 .
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(b) Uncertainty quality of solution-based inference with prior Σ0 = 𝑃 −1.

Fig. B.1 Evaluation of uncertainty obtained from probabilistic linear solvers for kernel ma-
trices evaluated over the Concrete dataset. We plot the summation of variances across the
diagonal of the posterior covariance, Tr (Σ𝑡), normalised by the trace of the prior covari-
ance 𝐼𝑁 or 𝑃 −1.



Appendix C

Further DGP Experiments

In Section 5.4.5 of Chapter 5, we outlined the different strategies for treating the random
mappings Ω in our DGP approximation. In particular, we distinguished between fixing
them or treating them variationally, where we observed that the constructed DGP model
appears to work best when these are treated variationally while fixing the randomness in
their computation throughout the learning process (var-fixed). In Figures C.1 and C.2,
we compare the three proposed approaches on the complete set of datasets reported in the
main document for one and two hidden layers, respectively. Once again, we confirm that
the performance obtained using the var-fixed strategy yields consistently better results
than the alternatives. This is especially pertinent to the classification datasets, where the
obtained error rate is markedly superior. However, the variation of the model constructed
with the arc-cosine kernel and optimised using var-fixed appears to be susceptible to
some overfitting for higher dimensional datasets (Spam and MNIST), which is expected
given that we are optimising several covariance parameters (ARD). This motivates the in-
clusion of a variational interpretation of the hyperparameters Θ as future work.
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Fig. C.1 Progression of error rate (RMSE in the regression case) and MNLL over time for
different optimisation strategies of the DGP-ARC and DGP-RBFmodels. Results are shown
for configurations having 1 hidden layer.
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Fig. C.2 Progression of error rate (RMSE in the regression case) and MNLL over time for
different optimisation strategies of the DGP-ARC and DGP-RBFmodels. Results are shown
for configurations with 2 hidden layers.
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