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A new class of “high throughput”
biomedical devices (...) routinely produce
hypothesis-testing data for thousands of
cases at once. This is not at all the situation
envisioned in the classical frequentist test-
ing theory of Neyman, Pearson, and Fisher.

— Bradley Efron, Large-Scale Inference: Empirical
Bayes Methods for Estimation, Testing, and

Prediction. Cambridge University Press, 2012.

- Where would you like to live?
- I’d like to live in Theory because “In

theory, it works”.

— Anonymous quote
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vos côtés. Merci aussi à Benjamin, Guillermo, Magali et Marie d’avoir embarqué avec nous
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Chapter 1

Introduction and overview

This chapter provides a brief account of my scientific path, followed by context and mo-
tivation for the research described in this manuscript. After a description of the recent
transition from hypothesis-driven to data-driven research, we introduce specific types of ge-
nomic data and associated biomedical questions, which will serve as a basis for the leading
applications in this document. Next, we highlight some challenges and opportunities raised
by the analysis of such of high-throughput genomic data. Finally, we give an overview of
the contributions described in this document.
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1.1 Foreword: scientific path . . . . . . . . . . . . . . . . . . . . . . 2
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1.3 Instances of biomedical questions . . . . . . . . . . . . . . . . . 3

1.4 Statistical challenges and opportunities . . . . . . . . . . . . . 5

1.5 Overview of contributions . . . . . . . . . . . . . . . . . . . . . 7
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1.1 Foreword: scientific path

My first professional experience was a one-year internship at Crédit Lyonnais in the Groupe
de Recherche Opérationnelle (2000-2001), where I enjoyed being involved in methodological
research projects while being in contact with their application [R2]. However, this was also
the exciting period where the human genome was first sequenced and I decided to dive into
the domain of statistics applied to genomics. For my masters thesis project in 2003 I had the
opportunity to work with bacterial sequences at the Statistique et Génome lab headed by
Bernard Prum in Évry [R1]. After graduating from ENSAE (2003) I obtained a 18 month
position as a research engineer in biostatistics in the Bioinformatics group at Institut Curie,
which had just been created by Emmanuel Barillot. This experience convinced me of the
richness of the statistical questions raised by genomic data analysis. I decided to start a
PhD in Statistics (2004-2008; co-supervised by Stéphane Boucheron at Université Paris 7
and Emmanuel Barillot at Institut Curie) in order to find an appropriate balance between
theory and application. I was lucky enough to maintain this balance by being hired as a
post doc in Terry Speed’s group at the Statistics Department of UC Berkeley (2008-2010).
When I got back to France I had the opportunity to join the Statistique et Génome lab in
Évry for a one-year postdoc. In 2011, I obtained a tenured researcher position at CNRS,
and stayed in Évry for five more years. I moved to Toulouse in 2016 where I joined the
Institut de Mathématiques de Toulouse.

1.2 From hypothesis-driven to data-driven research

The number and size of available data sets of different types is both a consequence and
a cause of scientific and technological breakthroughs. For example, the completion of the
human genome sequencing in 2003 by an international consortium triggered the development
of high-throughput molecular profiling technologies: microarrays, followed by massively
parallel sequencing of group of cells (“bulk” sequencing), and now of individual cells (“single-
cell” sequencing); see [35] for a review of sequencing technologies. An emblematic example
of large-scale initiative to produce molecular data is the Cancer Genome Atlas (TCGA)
project from the US National Cancer Institute. Quoting the web page of TCGA1,

The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, mo-
lecularly characterized over 20,000 primary cancer and matched normal samples
spanning 33 cancer types. (...) TCGA generated over 2.5 petabytes of genomic,
epigenomic, transcriptomic, and proteomic data. The data, which has already
lead to improvements in our ability to diagnose, treat, and prevent cancer, will
remain publicly available for anyone in the research community to use.

This “data deluge” has been accompanied by a shift from hypothesis-driven research to
data-driven research. The classical statistical approach to data analysis starts by defining
a scientific hypothesis, collecting data, and performing inference. In contrast, the current
practice in genomics starts by data collection and tends to become technology- or data-
driven. Hypotheses are then defined based on this data, and inference is performed on these
hypotheses2. An important consequence of this change of paradigm is the need for dedicated
statistical methods. This point is illustrated in the next sections for the particular case of
genomic data.

1Source: https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/

tcga, retrieved on October 8, 2019.
2See e.g. the discussion Collect Data First, Ask Questions Later from the podcast “The Effort Report”.
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1.3 Instances of biomedical questions

In this section we introduce three biomedical contexts and questions, together with associ-
ated genomic data. We describe some of the statistical questions raised by the analysis of
these data. The leading applications considered in this document will be related to these
questions.

1.3.1 Differential expression studies

Differential gene expression studies in cancerology aim at identifying genes whose mean
activity differs significantly between two (or more) cancer populations. The activity of a
gene is obtained by gene expression measurements from individuals of these populations.
These measurements are typically assessed by microarray or sequencing experiments, in
which millions of features are collected and summarized in thousands of gene expression
measurements. In this document, we specifically consider a Leukemia data set studied in
[91]. It consists of expression measurements for 12, 625 genes for biological samples from 79
individuals with B-cell acute lymphoblastic leukemia (ALL) [133]. 37 of these individuals
harbor a specific mutation called BCR/ABL. The goal of this study is to understand the
molecular differences at the gene expression level between the mutated and non-mutated
individuals in the population3. Perhaps the most basic question to ask is: for which genes is
there a difference in the mean expression level of the mutated and non-mutated population?
This question can be addressed, after relevant data preprocessing, by performing a statistical
test of equality in means for each gene, and to derive a list of “differentially expressed” genes
(DEG) as those passing some significance threshold. This is a typical example of multiple
testing situation, which requires the definition of dedicated risk measures and associated
methods to control these risks.

Other challenges raised by the analysis of gene expression data in cancer samples include
the discovery of new cancer subtypes, or the prediction of clinical phenotypes such as survival
or the severity of the disease. In statistical terms, these biomedical questions can be cast as
problems of unsupervised or supervised classification, or prediction.

1.3.2 DNA copy number studies

Each normal human cell has 23 pairs of chromosomes. For each of them, one chromosome
has been inherited from each biological parent. Tumor cells harbor numerous structural al-
terations of their DNA including point mutations, translocations, small insertion or deletion
events, larger scale copy number changes, or amplifications. Figure 1.1 illustrates the effect
of some of these events in the lung tumor cell line NCI-H1395-4W. The left panel shows
copy number changes at the scale of the entire genome for one particular cell, while the right
panel shows copy number changes at the level of one single chromosome for a large number
of cells4. In these cells, chromosome 5 has four copies in the first 50 Mb and three copies in
the rest of the chromosome.

Such copy number alterations can affect genes and regulatory transcripts, which may
result in major cellular modifications and are associated with diagnostic and prognostic
factors [165, 82]. An important issue in cancer research is to therefore to estimate the un-
derlying copy number state (to be defined more formally in Chapter 9) at each position along
the genome of a tumor sample. Microarray and sequencing-based technologies have been
used in the last two decades to quantify copy numbers at a large number of genomic loci
[102, 168]. For instance, the copy number profile in Figure 1.1 was obtained from Affymetrix
Genome-Wide Human SNP 6.0 Arrays, which contain more than 1.8 million genomic mark-
ers. In contrast to these “bulk” technologies which provide genomic information averaged

3This data set will be used in Chapters 2, 5 and 8.
4These data will be used in Chapter 9
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Tumor Karyotype Chromosome 5

Figure 1.1: DNA copy numbers for the lung tumor cell line NCI-H1395-4W. Left: karyotype.
Right: DNA copy number profile of Chromosome 5.

over all cells in a sample, single-cell sequencing technologies have been developed in the last
few years to provide genomic information at the level of individual cells [33].

The analysis of DNA copy number data involves several steps. First, these data have to
be preprocessed/normalized in order to make data points comparable across loci and possibly
across samples. Then, they are segmented into regions of constant DNA copy number state,
and these copy number states are labelled (“called”) in a biologically-meaningful manner
(e.g. normal, loss of one copy, etc). As for gene expression data, DNA copy number
data also raise unsupervised and supervised classification questions, before or after
segmentation.

1.3.3 Genome-Wide Association Studies

Genome-Wide Association Studies (GWAS) aim at identifying genomic markers associated
with a phenotype of interest. This phenotype may be binary in the case of case-control
studies, or continuous (e.g. the date of disease onset). In Chapter 10 we consider a GWA
study with 615 patients infected by Human Immunodeficiency Viruses (HIV). One of the
goal of this study was to detect genetic factors that influence the plasma viral load, that is,
the level of HIV RNA in the patients blood. For each patient, more than 300, 000 genetic
markers were assessed by an Illumina genotyping microarray experiment.

Like for differential expression analyses, state-of-the-art approaches start by testing the
univariate association between each marker’s genotype and the phenotype, and retaining the
most significant markers using a multiple testing correction. This list is then interpreted at
the genome scale using a Manhattan plot (as in Fig. 1.2, left panel, which is reproduced from
[103, Figure 1]), where the (− log-transformed) p-values of the markers are plotted against
their genomic position in order to identify which genome regions show an enrichment in
significantly associated markers. The right panel in Fig. 1.2 (which is reproduced from
[103, Figure 1]) shows a measure of statistical dependence (called linkage disequilibrium,
LD) between pairs of genomic markers, together with relevant genomic annotation.

Other types of genomic information that can be assessed via high-throughput genomic
experiments include:

• DNA methylation, a chemical transformation of one of the four letters of the DNA
alphabet that can alter the expression of neighbor genes [27];

• the interaction between a protein of interest and genomic regions, which can be quan-
tified by Chromatin Immuno-Precipitation (ChIP) [37];

• the intensity of physical interaction between two genomic regions, which can be quan-
tified by Chromosome conformation capture techniques such as 3C, 4C, or Hi-C [72]
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Figure 1.2: Example of a Manhattan plot (left panel) and a linkage disequilibrium plot
(right panel) obtained from a GWA study on HIV. Credits: [103, Figure 1 and 2].

1.4 Statistical challenges and opportunities

At first glance, the above-described biomedical questions can be cast as classical statistical
problems of testing, prediction, unsupervised and supervised classification, or segmentation.
However, genomic data have specificities that imply that classical statistical tools can gen-
erally not be readily applied to them, thus requiring new statistical developments. We refer
to [42, Chapter 1] for a detailed typology of genomic data. In this section, we focus on
specific features of these data – namely, their high-dimensionality, sparsity, heterogeneity
and structuration – and try to analyze some of the challenges and opportunities raised by
each of these features for statisticians.

1.4.1 High-dimensionality and sparsity

The number p of variables (genes, loci) is typically of the order of 103 to 106, that is,
several orders of magnitude larger than the number n of observations (biological samples,
patients), which generally ranges from 1 to 103. It is also generally the case that these data
are sparse, in the sense that only a small (unknown) number of (unknown) variables or of
combinations of variables actually contain signal. This high-dimensional setting is in sharp
contrast with the classical statistical setting where we generally have n � p and always
n > p. As a consequence, even the most basic statistical tools like linear regression, or
statistical tests have to be revisited to cope with this context. High-dimensionality is not
specific to the field of genomic data, as it is the consequence of the general sophistication of
data acquisition technologies not only in biomedical sciences (genomic and imaging data),
but also in other fields such as physics, environmental sciences, economy, finance, to name
but a few. A number of mathematical, statistical and computational tools dedicated to high-
dimensional data have been developed in the past 20-25 years. Two emblematic examples
of these developments are the Least Absolute Shrinkage and Selection Operator (lasso) for
penalized regression and variable selection [172] and the False Discovery Rate (FDR) for
multiple testing [173]5.

A possibly distinctive feature of genomic data compared to other data types is that each
new technological advance results in a increase of one to several orders of magnitude for
p, but with n typically remaining constant or even getting temporary smaller because of

5According to scholar.google.com these papers have been cited 60,000 and 30,000 times, respectively, as
of December 2019. Both are among the most cited statistics paper, and Yoav Benjamini has been awarded
the 2019 Karl Pearson Prize from the International Statistics Institute for the FDR paper.
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the prohibitive cost of new technologies. Moreover, the increase in the number of measured
variables is unfortunately accompanied by an increasingly lower signal to noise ratio for each
measurement. This can be illustrated with the example of sequencing technologies (from
bulk to single cell sequencing) getting at the same time wider (larger p), sparser and noisier,
see e.g. [83] whose provocative title is: “Sequencing technology does not eliminate biological
variability”.

Curse or blessing? The high-dimensional nature of genomic data is considered as a bless-
ing by biomedical scientists (following the possibly misleading argument that “more data”
implies “more knowledge”), and as a curse by mathematicians as nicely explained and illus-
trated in [46, Chapter 1] from several standpoints. In particular, n points in p-dimensional
space with p � n are typically isolated. This makes the notion of “neighborhood”, which
is fundamental in classical statistical inference, essentially useless in this setting. Moreover,
the number of candidate models to explain a given phenomenon increases exponentially with
the number of parameters of this model, which is typically indexed by p.

Fortunately, the sparsity of genomic data may also be seen as a blessing, because it
implies that the biological signal is concentrated in a much lower-dimensional space than
the p-dimensional observation space. For example, a typical assumption in prediction or
variable selection tasks is that only a small number of variables, or of groups of variables,
are actually relevant. Such assumptions are the basis of the methods recently developed for
high-dimensional (genomic) data analysis. They are also assumptions under which statistical
guarantees for such methods and efficient algorithms can be obtained, see e.g. [98, 46].

1.4.2 Heterogeneity and structure

In the classical statistical framework, inference is generally performed on a single n×p table.
By heterogeneous, we mean the situation where several levels of biological information are
available for the same set of observations. For example, a tumor biopsy can be analyzed
to study mutations, DNA copy numbers, DNA methylation, gene or protein expression, or
gene regulation. Moreover, these genomic data can also be complemented by other data
types such as imaging data (e.g. phenotyping experiments, or histology) or clinical data
coming from electronic health records (EHR). This setting is called multi-view data in the
machine learning literature, see e.g. [71] for a survey.

Moreover, the measured variables are often structured, that is, linked by networks, by
similarity relationships, or simply by a natural ordering along a chromosome. This may be
illustrated by the above examples: in differential expression studies, sets of genes can be co-
differentially expressed because they belong to the same gene network or pathway; in DNA
copy number studies, neighboring loci on a chromosome are expected to have identical copy
number state (as in Figure 1.1, right); in GWAS, a SNPs can have its genotype associated
to a phenotype because its belongs to the same block of LD (see Figure 1.2) as a causal
SNP.

Curse or blessing? The above-described characteristics of genomic data represent a chal-
lenge for the statistician, because standard statistical tools are likely not to be suited to
address a new biomedical question, and because devising a tailored method requires some
basic understanding of the question at hand. I believe that a relevant way to tackle this
complexity is precisely to take advantage of the heterogeneity and structuration of genomic
data by considering them as constraints that alleviate the curse of dimensionality, and guide
statistical methods toward solutions that are more plausible from a biological standpoint.
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1.5 Overview of contributions

In the above-described context, my research objective has been to contribute to the devel-
opment, mathematical study, and practical application in interdisciplinary research projects
of statistical tools that take advantage of the complexity and structure of genomic data. My
contributions generally result of the quest for an acceptable trade-off between mathematical
rigor, computational efficiency, and biological interpretability. It is often the case that the
intersection between what is mathematically justified, algorithmically feasible, and biologi-
cally interpretable is empty for a given problem. In such situations, I strive to make one or
more of these three sets bigger, or the gap between these objectives smaller. Depending on
the scientific question and the state of the art for a given problem, my contributions can be
of different types:

• proposing new statistical methods, associated algorithms and their implementation

• establishing statistical properties for new or existing methods

• evaluating the statistical and computational performance of new or existing methods

Organization of the manuscript. The remainder of this manuscript is organized in two
main parts.

Part I summarizes my contributions to the field of multiple testing, and post-selection or
post hoc inference. After an introduction to multiple testing (Chapter 2), I describe
my contributions to the asymptotic properties of FDR controlling procedures (Chapter
3), to FDR thresholding for classification under sparsity assumptions (Chapter 4) and
to post hoc inference (Chapter 5)

Part II gathers my other contributions to statistical inference for genomic data. As ex-
plained in a short introductory chapter (Chapter 6), which can be categorized in two
broad themes:

• Inference from heterogeneous genomic data, where inference is performed by com-
bining several data types, either corresponding to the same observations (Chap-
ter 7) or to the same variables (Chapter 8);

• Inference from ordered genomic data, where one of the main statistical challenges
is to segment a genome (or more precisely each of its chromosomes) into successive
homogeneous regions. This is tackled via segmentation methods for DNA copy
numbers (Chapter 9) and by constrained clustering methods for GWAS and Hi-C
studies (Chapter 10).

Finally, some directions for future research are discussed in Chapter 11.
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Part I

From multiple testing to post
hoc inference
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Chapter 2

Introduction to multiple testing

Significance testing was introduced in the early 1900s with the works of Fisher, Neyman and
Pearson. The examples of differential expression analyses and GWAS taken in Chapter 1
require thousands to millions of statistical tests to be performed simultaneously. In such
situations, it is desirable to control a global risk measure associated to the entire set of
tested hypotheses. Large-scale multiple testing is concerned with the definition of such
risk measures, the formalization of mathematical assumptions under which these risks are
effectively controlled, and the construction of dedicated algorithms (called multiple testing
procedures). This chapter provides an overview of large-scale multiple testing theory, with
emphasis on concepts that will be useful to the reader for the next chapters of this part.
This chapter draws from several reference books or surveys on multiple testing [54, 59, 60,
86, 128].

Remark: Throughout this part, the number of hypotheses tested is denoted by m whereas
in Part II the number of variables will be denoted by p.

Contents
2.1 Statistical setting . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Family-Wise Error Rate control . . . . . . . . . . . . . . . . . . 15

2.3 False Discovery Rate control . . . . . . . . . . . . . . . . . . . . 18

2.4 From selective inference to simultaneous inference . . . . . . 21

2.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.1 Statistical setting

We consider an observation x ∈ X , that is, a realization of a random variable X valued
in a measurable space (X ,X). Our statistical model is a family P of candidate probability
distributions for the true distribution P of X on (X ,X). Given a subset P0 of P, we
consider the null hypothesis H0 : P ∈ P0. The corresponding alternative hypothesis is
H1 = P ∈ P \ P0 unless otherwise noted. Given an observation x ∈ X , we aim at deciding
whether P is compatible with the null hypothesis, that is, whether P ∈ P0. In order to do
so, following e.g. [156], we define a p-value as a random variable p(X) on [0, 1] satisfying1:

∀P ∈ P0,∀u ∈ [0, 1], P(p(X) ≤ u) ≤ u . (2.1)

By construction, the p-value p(x) is a quantitative measure of how unlikely observation x is
if H0 is true. This measure can be used to take a decision as to whether H0 is true or not.
Given α ∈ [0, 1], a test of level α “rejects” H0 if and only if p(x) ≤ α. In order to compare
the decision of rejection/acceptance of the null hypothesis to the truth, we introduce the
classical vocabulary of true/false positive/negative in Table 2.1.

H0 not rejected H0 rejected
H0 true true negative false positive
H0 false false negative true positive

Table 2.1: Qualification of the four possible outcomes of a statistical test.

2.1.1 Multiple testing setting

For m ∈ N, we consider a collection of subsets P0,i of P and the associated null hypotheses:
H0,i : P ∈ P0,i indexed by Nm = {1, . . . ,m}. The corresponding alternative hypotheses
are H1,i = P ∈ P \ H0,i. each i ∈ Nm. From the collection H = (H0,i)i∈Nm , we define a
m-dimensional parameter of interest: (θi(P))i∈Nm , where θi(P) = 1 {P ∈ H0,i} for i ∈ Nm.
The sets of true null hypotheses and true alternative hypotheses are denoted by H0(P) and
H1(P), respectively. When non ambiguous, we omit P in the notation and write θi, H0 and
H1 for simplicity. We let m0(m) =

∑
i∈Nm(1−θi) = |H0| and m1(m) =

∑
i∈Nm θi = |H1| be

the number of true null hypotheses and of true alternative hypotheses, respectively. Finally,
π0(m) = m0(m)/m is the proportion of true null hypotheses.

Location model. We introduce a standard location model which will be used several
times for illustration:

Xi = µi + εi, i ∈ Nm , (2.2)

where the εi are identically distributed, with a common marginal distribution that is as-
sumed to be continuous, and the location parameter µi is null if and only if θi = 0. A
location model is characterized by the distribution of the test statistics conditionally on
θi = 0. The most common instances of location models are the Gaussian and Laplace
(double exponential) models. Both are particular instances of the Subbotin location model,
where the density of the test statistics conditionally on θi = 0 is given by the ζ-Subbotin
density:

d(x) = (Lζ)
−1e−|x|

ζ/ζ , with Lζ =

∫ +∞

−∞
e−|x|

ζ/ζdx = 2Γ(1/ζ)ζ1/ζ−1 , (2.3)

for ζ ≥ 1. The Gaussian and Laplace models correspond to ζ = 2 and ζ = 1, respectively.
In Section 4 we will also consider scaling models based on the Subbotin density.

1For notation simplicity, we also follow [156] in using the same letter P for probability measures on the
observation space (X ,X) and on the implicitly defined domain of definition of X.
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Multiple testing procedures. We define a multiple testing procedure as a mapping
from an observation X to a subset of Nm, corresponding to a set Rm of rejected hypotheses.
For notation simplicity we will identify a multiple testing procedure with the associated
rejection set Rm. We denote by |Rm| the corresponding number of rejections, and often
omit the subscript m when m is fixed. We assume to be given a set of p-values associated to
H0,i for each i ∈ Nm, that is, that there exists a random variable pi(X) on [0, 1] satisfying:

∀P ∈ P0,i, ∀u ∈ [0, 1],P(pi(X) ≤ u) ≤ u . (2.4)

We consider multiple testing procedures that reject the hypotheses whose p-value is less than
a (possibly random and data-driven) threshold. Such p-value thresholding-based multiple
testing procedures (or thresholding procedures for short) may be written as

Rm = {i ∈ Nm, pi ≤ t̂m} ,

where t̂m is called the threshold of the multiple testing procedure. More precisely, we
consider three classes of procedures. In “single-step” procedures, the rejection of a given
hypothesis does not depend on the rejection of other hypotheses. In contrast, “step-up” and
“step-down” procedures are part of the broader class of stepwise multiple testing procedures,
where the rejection of a given hypothesis may depend on the rejection of other hypotheses.
Let us denote by (p(1) ≤ p(2) ≤ . . . ≤ p(m)) the ordered p-values.

Definition 2.1 (Step-up and step-down multiple testing procedures). Let c = (ci)i∈Nm be
a non-decreasing set of values in [0, 1].

• The step-up procedure with critical values c is the procedure with threshold t̂ = cι̂↑(c),
where

ι̂↑(c) = max
{
i ∈ Nm, p(i) ≤ ci

}
. (2.5)

• The step-down procedure with critical values c is the procedure with threshold t̂ = cι̂↓(c),
where

ι̂↓(c) = max
{
i ∈ Nm,∀j ≤ i, p(j) ≤ cj

}
. (2.6)

The threshold of a step-down procedure is the first crossing point between the ordered
p-values and c, while the threshold of a step-up procedure is the last such crossing point.
By definition, for a fixed family of critical values c, the associated step-up procedure rejects
at least as many hypotheses than the associated step-down procedure.

2.1.2 Multiple testing risks

The (unobserved) number of false positives of a multiple testing procedure is |Rm ∩ H0|,
which implicitly depends on the distribution P of X through H0. Historically, the first risk
measure considered in a multiple testing context is the Family-Wise Error Rate (FWER).
It is defined as the probability of (at least) one false rejection:

FWERP(Rm) = P(|Rm ∩H0| > 0) .

A natural generalization is k-FWERP(Rm) = P(|Rm∩H0| ≥ k) which allows at most k false
rejections. A multiple testing procedure Rm is said to control k-FWER (strongly) at level
α ∈ [0, 1] if k-FWERP(Rm) ≤ α for all P ∈ P. A much less demanding criterion called weak
k-FWER control consists in ensuring that k-FWERP(Rm) ≤ α for all P ∈ ∩i∈NmP0,i. In
other words, a weak k-FWER controlling procedure simply corresponds to a test of level α
of the global null hypothesis ∩i∈NmH0,i. Here, we focus on strong control. Another quantity
of interest is the False Discovery Proportion (FDP), which is defined as the fraction of true
null hypotheses among those rejected:

FDPP(Rm) =
|Rm ∩H0|
|Rm| ∨ 1

.
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As the FDP is a random quantity, one possibility to define an associated risk is to focus on
its expectation under P, which is known as the False Discovery Rate (FDR), or its quantiles
under P (see the FDX below). The FDR is defined by

FDRP(Rm) = E
[
|Rm ∩H0|
|Rm| ∨ 1

]
,

and a multiple testing procedure Rm is said to control FDR (strongly) at level α ∈ [0, 1] if
FDRP(Rm) ≤ α for all P ∈ P. A related quantity is the positive FDR [154], defined by

pFDRP(Rm) = E
[
|Rm ∩H0|
|Rm|

∣∣∣|Rm| > 0

]
.

Finally, we also define the False Discovery Exceedance [125] as the tail probability of the
FDP for a given q ∈ [0, 1]:

FDX(Rm) = P
[
|Rm ∩H0|
|Rm| ∨ 1

≥ q
]
.

Naturally, (strong) pFDR and FDX control can be defined similarly as for FDR.

2.1.3 Assumptions on the joint p-value distribution

We consider several types of assumptions on the joint distribution of the p-value family
(or, equivalently, on the set P of possible distributions for P). We introduce the notation
pA = (pi)i∈A for A ⊂ Nm. Two extreme distributional assumptions are general dependence,
where the p-value distribution is let arbitrary, and independence:

pH(P) is a family of mutually independent variables (indep)

Remark 2.2. As the statistical risks defined above only focus on type I errors (false positives),
any result stated below under (indep) is also valid under the weaker assumption that pH0(P)

is a family of mutually independent variables, and is also independent from pH1(P). In
practice, H0 is unknown so we chose to use Assumption (indep) for simplicity.

Assumption (indep) is useful in theory because it simplifies the statistical study of mul-
tiple testing risks, but it is unrealistic in applications. A weaker assumption is Positive
regression dependency on a subset of hypotheses (PRDS)2. The set S ⊂ [0, 1]m is non-
decreasing if for all (q, q′) ∈ ([0, 1]m)2 such that ∀i ∈ Nm, qi ≤ q′i, we have: q ∈ S implies
q′ ∈ S. We assume that the p-value family is PRDS on the subset H0(P) of true null
hypotheses, that is:{

for any i0 ∈ H0(P) and any non-decreasing set S ⊂ [0, 1]m,

the function u 7→ P((pi)i∈Nm ∈ S|pi0 ≤ u) is non-decreasing
(PRDS(H0))

Assumption (PRDS(H0)) is weaker than independence, and it is considered as realistic in
genomics [60], although it is generally not possible to check whether it holds for a particular
application. A classical example of PRDS distribution of the p-value family is the following
equi-correlated model:

Example 2.7. The test statistics are multivariate Gaussian, with a covariance matrix whose
non-diagonal entries are all equal to ρ ∈ [0, 1].

2The results stated in this chapter under PRDS in fact hold for a slightly larger class of distribution
called weak PDRS. We refer to [54] for references on this distinction, which is not essential for our purpose.
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More generally, Assumption (PRDS(H0)) holds whenever the test statistics are multivari-
ate Gaussian, with a covariance matrix Σ whose entries are all non-negative. Example 2.7
will be used repeatedly for illustration in this part.

The main reason for the popularity of the PRDS assumption in multiple testing is that
the Simes inequality [179] is valid under this assumption. We recall this inequality, to-
gether with Hommel’s inequality [181], a more conservative inequality valid under general
dependence. We denote by p(1:I) ≤ · · · ≤ p(|I|:I) the ordered p-values of I.

Proposition 2.3 (Simes and Hommel’s inequalities). We have:

P
(
∃i ∈ H0 : p(i:H0) ≤

αi

m

)
≤ α|H0|

m
c(m) , (2.8)

in the two following cases:

• c(m) = 1 and the p-value family satisfies (PRDS(H0)) (Simes’ inequality);

• c(m) = C(m) :=
∑m
i=1 1/i (Hommel’s inequality).

Moreover (2.8) is an equality (with c(m) = 1) when the pi, i ∈ H0(P ), are i.i.d. U(0, 1).

In particular, the right-hand side of (2.8) is upper bounded by αc(m). The family of
thresholds (αi/m)1≤i≤m is called the Simes threshold family. The factor C(m) is of the
order of log(m) and quantifies “the price to pay” for allowing for general dependence. The
last statement in the above Proposition illustrates the sharpness of the Simes inequality, in
the sense that they cannot be uniformly improved on the class of PRDS distribution. The
same holds for Hommel’s and for arbitrary distributions, respectively3. The Simes inequality
will is also the fundamental ingredient of the original post hoc procedures proposed by [81],
as will be discussed in Section 5.

2.2 Family-Wise Error Rate control

FWER control under general dependence can be obtained using a simple union bound
argument, which is sometimes referred to as the Bonferroni inequality. For any I ⊂ Nm and
any t > 0,

P (∃i ∈ I, pi ≤ t) ≤
∑
i∈I

P (pi ≤ t) ≤ t|I| (2.9)

where the last inequality follows from the p-value property. Applying this inequality with
I = H0 and t = α/m ensures that

P (∃i ∈ H0, pi ≤ α/m) ≤ m0

m
α ≤ α (2.10)

The left-hand side is the FWER of the Bonferroni procedure with threshold tBonf = α/m.
Equation 2.10 demonstrates that the Bonferroni procedure controls FWER under general
dependence, but also that it is conservative, in the sense that it controls FWER at level π0α
for a target level α. Therefore, it is possible to obtain more powerful FWER controlling
procedures by bridging the gap between π0α and α. The (Bonferroni-)Holm procedure
[182] is a stepwise modification of the Bonferroni procedure which also controls FWER
under general dependence, but possibly with an increased number of rejections. The Holm
procedure is defined as the step-down procedure with critical values:

ci =
α

m− (i− 1)
, i ∈ Nm . (2.11)

3However, both of them can also be seen as conservative, as discussed and illustrated in Section 5.4.
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Another way to construct FWER controlling procedures that are less conservative than
the Bonferroni procedure is to make dependency assumptions on the family of p-values. For
completeness we mention that under independence, FWER is controlled by the Šidák pro-
cedure [191], whose threshold is defined as tSidak = 1− (1−α)1/m. Because 1− (1−α)1/m ≥
α/m, the Šidák procedure is less conservative than the Bonferroni procedure. However,
when m is large, both thresholds are equivalent when α/m is small, so the Šidák procedure
may only improve the number of rejections marginally, at the price of a much narrower ap-
plicability. Under (PRDS(H0)), the FWER is controlled by the step-up procedure with the
same critical values as the Holm procedure (2.11), which is called the Hochberg procedure.
The decreased conservativeness of the Hochberg procedure compared to the Holm procedure
comes at the price of a narrower applicability.

2.2.1 Connection to closed testing

The Holm and Hochberg procedures can be derived from a general method for obtaining
FWER control, known as closed testing [186]. This method can also be viewed as the
basis of the post hoc procedures proposed by [81], that inspired our work [J2] described
in Section 5. Closed testing focuses on the larger multiple testing problem of testing all
possible intersections of null hypotheses. Formally, let us define the closure of the family of
hypotheses H = (H0,i)i∈Nm as the set H̄ = (HI)I⊂Nm,I 6=∅, where HI denotes the intersection
hypothesis associated with I:

HI =
⋂
i∈I

H0,i .

We denote for short by N̄m = P(Nm) \ {∅} the set of all non empty subsets of Nm. The set
of true null intersection hypotheses is then H̄0 =

{
I ∈ N̄m, HI is true

}
. Since H{i} = H0,i

for all i, we can write4 H ⊂ H̄ and H0 ⊂ H̄0 ⊂ P(H0). Assume that a test φI ∈ {0, 1} of
HI is available for any possible intersection hypothesis I, where φI = 1 if and only if HI is
rejected. Such a test is called a local test of HI . The closed testing procedure associated
to the collection (φI)I∈N̄m is a multiple testing procedure (of size

∣∣N̄m∣∣ = 2m − 1 instead of
|Nm| = m) for the closure H̄, which rejects

R̄ =
{
I ∈ N̄m,∀J ⊃ I, φJ = 1

}
. (2.12)

A fundamental property of closed testing is given in the next Proposition.

Proposition 2.4. If for all I ∈ N̄m, the local test φI is a test of level α of HI , then the
closed testing procedure associated to the collection (φI)I∈N̄m controls FWER in H̄ at level
α, that is,

P
(∣∣R̄ ∩ H̄0

∣∣ > 0
)
≤ α

As H ⊂ H̄, R̄∩H can be seen as a multiple testing procedure for H. By Proposition 2.4,
this procedure controls FWER (in H) at level α. To see why Proposition 2.4 holds, simply
note that as H0 ∈ N̄m, φH0

is an α-level test of HH0
. Therefore, there exists an event of

probability larger than 1−α under which HH0 is not rejected by the closed testing procedure.
Under this event, any true null intersection hypothesis, which is by definition a subset of
H0, is also not rejected by the closed testing procedure.

The closed testing method thus provides an elegant and generic construction of FWER-
controlling procedures, where the properties of the procedure are inherited from the prop-
erties of the local tests. Closed testing can itself be seen as a consequence of the sequential
rejection principle [93], which provides generic sufficient conditions to build stepwise FWER
controlling procedures. A caveat to the practical application of closed testing is that it im-
plies testing all 2m − 1 possible non-empty intersections between m hypotheses. However,
depending on the form of the local test, it may be possible to avoid testing all 2m − 1
hypotheses explicitly. This is the case in the procedures listed in the next paragraph.

4Formally we should write ∀i ∈ H, {i} ∈ H̄ but we identify i with {i} in order to alleviate notation.
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The closed testing principle may be used to recover some of the procedures described
above. First, the Holm procedure coincides with the closed testing procedure associated
with local Bonferroni tests, which are defined by φI = 1 {∀i ∈ I, pi ≤ α/|I|} for the null
hypothesis HI . These local tests are of level α under general dependence by (2.9), so the
closed testing principle ensures that the Holm procedure controls FWER under general
dependence. Similarly, the Hochberg procedure can be seen as a closed testing procedure
associated with local Simes tests, which are defined by φI = 1

{
∀i ∈ I, p(i) ≤ αi/|I|

}
. These

tests are of level α under (PRDS(H0)) by (2.8), so the closed testing principle ensures that
the Hochberg procedure controls FWER under (PRDS(H0))5. The procedures described in
this section are summarized in Table 2.2. Although the Holm procedure is always at least
as powerful as the Bonferroni procedure, the latter is much more widely used, for example
in bio-medical applications.

Setting Procedures
General dependence Bonferroni � Holm
PRDS(H0) Hochberg � Hommel
indep Šidák

Table 2.2: Summary of FWER-controlling procedures

2.2.2 Adaptivity to dependence via randomization

The above-defined FWER controlling procedures rely on one of the assumptions on the
joint distribution of the p-values formulated in Section 2.1.3, namely general dependence,
(PRDS(H0)) or (indep). By construction, these procedures are not adaptive to the depen-
dency structure at hand in a specific context. To illustrate this point let us reformulate the
FWER of a thresholding procedure R = {i ∈ Nm, pi ≤ t̂}:

FWERP(R) = P
(
∃i ∈ H0(P), pi ≤ t̂

)
= P

(
inf

i∈H0(P)
pi ≤ t̂

)
.

Denoting by qα(A) the (1 − α)-quantile of the distribution of inf{pi : i ∈ A}, an optimal
choice is t̂ = qα(H0(P)). Using this formulation, the above-described FWER-controlling
procedures provide lower bounds for this quantile under specific dependency assumptions.
Rather than making such assumptions, Westfall and Young [174] proposed to use procedures
based on permutation, called minP and maxT, to build adaptive bounds for qα(Nm), where
qα(Nm) ≤ qα(H0(P)). They also introduced step-down versions of these procedures.

Romano and Wolf [140] introduced a randomization assumption under which these pro-
cedures are proved to control FWER, bypassing the need for a technical condition called
subset pivotality as in the original results of Westfall and Young [174]. Here, we use a recent
formulation of this randomization assumption due to Hemerik and Goeman [18], which is
slightly weaker than the assumption of Romano and Wolf [140]. Specifically, we assume
that there exists a finite group of transformations G acting onto the observation space X ,
is such a way that the joint distribution of the transformed null p-values is invariant under
the action of any g ∈ G. Formally,

∀P ∈ P, ∀g ∈ G, (pH0
(g′.X))g′∈G ∼ (pH0

(g′.g.X))g′∈G , (Rand)

where g.X denotes X that has been transformed by g. We refer to [18] for examples of
situations where (Rand) holds. Examples based on sign-flipping in the location model (2.2)
and permutation testing for two-sample tests are given in Section 5.

5The closed testing principle may also be used to prove the FWER control of the Hommel procedure [177]
under (PRDS(H0)). This procedure is slightly more powerful but also more complicated to define than the
Hochberg procedure, see [59, Definition 5.4].
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2.2.3 Extension to k-FWER control

We refer to [86, 137] for a survey of k-FWER controlling procedures. In particular, [137]
provides single step and step-down generalizations of the adaptive FWER controlling proce-
dures under (Rand) to k-FWER control. Here, we simply note that a natural generalization
of the Bonferroni procedure to k-FWER control may be obtained by elementary arguments.
Indeed, the k-FWER of the procedure with threshold t may be written as

P

(∑
i∈H0

1 {pi ≤ t} ≥ k

)
≤ k−1E

(∑
i∈H0

1 {pi ≤ t}

)
= k−1

∑
i∈H0

P (pi ≤ t)

≤ |H0|
k

t ,

where the first inequality holds by Markov’s inequality, and the last inequality holds by the
definition of the p-values. Therefore, the “Generalized Bonferroni” procedure with threshold
tk−Bonf = αk/m controls k-FWER under general dependence. Similar to the improvement
of the Bonferroni procedure for FWER control by the Holm procedure, it is possible to
obtain a more powerful k-FWER controlling procedure by building a step-down procedure
with critical values:

αk

m− (i− k)1 {i > k}
.

Just as for FWER control, the threshold of this procedure depends on the p-values, contrary
to the deterministic threshold of the generalized Bonferroni procedure.

2.3 False Discovery Rate control

2.3.1 FDR control by the BH procedure

Benjamini and Hochberg [173] have proposed to use the step-up procedure associated
with the Simes critical values (αi/m)1≤i≤m in order to control FDR. The threshold of
the Benjamini-Hochberg procedure at level α (or BH(α)) is thus defined as t̂BH(α) =
αι̂BH(α)/m, where

ι̂BH(α) = max

{
i ∈ Nm, p(i) ≤

αi

m

}
. (2.13)

The BH procedure controls FDR at level α under independence [173]. Benjamini and
Yekutieli [161] later proved that the BH(α) procedure controls FDR at level π0α under
(PRDS(H0)), which is a much weaker assumption than (indep). Moreover, the BH(α/C(m))
procedure controls FDR at level π0α under general dependence [161], where C(m) is Hom-
mel’s correction factor for dependence defined in Proposition 2.3. This procedure is called
the BY procedure at level α. Although the BH procedure is based on Simes critical values,
the results obtained in [161] are not a consequence of the Simes inequality. Sarkar et al.
[108] noted that the validity of the Simes inequality is in fact a necessary condition for the
BH procedure to control FDR.

2.3.2 Estimation of the proportion of true null hypotheses

The FWER control by the Bonferroni procedure and the control offered by the Simes or
Hommel inequalities are based on the behavior on the true null hypotheses, and therefore
imply the unknown factor π0. Similarly, the FDR control provided by the BH procedure
at the target level α is conservative by a factor π0 ≤ 1. Several procedures have been
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proposed to fill the “conservativeness gap” between FDR control at π0α and α. Such
procedures incorporate an explicit or implicit estimation of the proportion π0 of true null
hypotheses [123, 97, 149, 151, 160]. One important class of such procedures is plug-in
procedures, which apply the BH procedure at level α/π̂0, where π̂0 is an estimator of π0.
We give the definition of one of the most widely used estimator of π0 in applications is the
Storey-λ estimator [151, 160]:

π̂0(λ) =
1 + 1/m− Ĝm(λ)

1− λ
. (2.14)

The FDR control of plug-in procedures such as the Storey-λ typically only holds under
(indep). Some asymptotic properties of such plug-in procedures under (indep) are studied
in Section 3.

2.3.3 FDR control vs FWER control

As the FDP is between 0 and 1, we have FDR = E(FDP) ≤ P(FDP > 0) = FWER.
Therefore, any procedure controlling FWER at a given level also controls FDR at the same
level. In the multiple testing literature, FDR controlling procedures are often said to be
“more powerful” than FWER controlling procedures, because FDR controlling procedures
generally reject more hypotheses than FWER controlling procedures. As an illustration,
for the Leukemia study described in Chapter 1, 20 genes are called differentially expressed
at a FWER level of 0.05 (Bonferroni, Holm, Hochberg and Hommel procedures produced
the same results for this data set); 163 genes (including these 20) are called differentially
expressed at a FDR level of 0.05 by the BH procedure, 30 of them being also rejected by
the BY procedure at the same level.

We believe that the above interpretation in terms of “power” is quite misleading, because
it does not make sense to compare the number of rejections (or power) of two statistical
procedures that aim at controlling different type I error risks. By design, FWER control
is adapted to confirmatory analyses, where a statement on the rejected hypotheses needs
to be made with high probability, whereas FDR control has been developed for exploratory
analyses, where a statement in expectation is acceptable.

Perhaps surprisingly, it may be the case that a FWER controlling procedure rejects more
hypotheses than a FDR controlling procedure. As noted by [60], in the very sparse situation
where the expected number of false null hypotheses is o(log(m)), the Bonferroni (or Holm)
procedure may reject more hypotheses than the BY procedure, because the log(m) first
critical values of the BY procedure are smaller than the Bonferroni threshold α/m. In this
extreme example, if one is not willing to make any assumption on the dependency within
the p-value family, it may make sense to use the Bonferroni (or Holm) procedure rather
than the BY procedure in order to control FDR. This example is mainly an illustration of
the conservativeness of the BY procedure, which is seldom used in practice.

2.3.4 FDR control vs FDX control

The great popularity of FDR control and of the BH procedure in particular can probably
be explained in part by the fact that the FDP is an appealing and intuitive quantity. An
obvious caveat from the statistical perspective is that controlling FDR = E(FDP) does
not tell much about the distribution of the underlying FDP. Here we illustrate this point
numerically in the model of Example 2.7. One simulation run consists in m = 1, 000 null
hypotheses distributed as Gaussian equi-correlated with a given correlation ρ. Among those,
m1 = 200 (corresponding to π0 = 0.8) are true alternatives, with marginal distribution
N (2, 1) while the other m0 = 800 are true nulls with marginal distribution N (0, 1). For
each ρ ∈ {0, 0.1, 0.2, 0.3, 0.4}, we have performed B = 1, 000 simulation runs, and apply
the BH procedure at level α = 0.25. The results are summarized in Figure 2.1, where the
empirical distribution of the FDP actually achieved on the B replications is represented as
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a “violin plot”, ie a mirrored and rotated kernel density plot. The empirical FDR achieved
is represented by a triangle, and the median FDP by a diamond. The oracle BH procedure
at level α under independence (ρ = 0) achieves a FDR of π0α = 0.2, which is represented
by a dashed horizontal line.
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Figure 2.1: FDR control is not FDP control.

As expected in this PRDS setting, FDR is controlled in all situations by the BH proce-
dure. When ρ = 0 (independence), the distribution of the FDP of the BH procedure has a
Gaussian-like distribution centered at π0α and well-concentrated6. In this regime, forgetting
the random nature of the FDP of the BH procedure is not too problematic, as most of the
mass is below the target level α. However, for larger values of ρ the FDP of the BH pro-
cedure has a strikingly different empirical distribution. First, FDR control is conservative,
in the sense that the FDR achieved is substantially below π0α = 0.2, and the distribution
of the FDP is heavily shifted toward smaller values. More problematic is the influence of ρ
on the dispersion of the FDP achieved by the BH(0.25) procedure: for ρ > 0 the range of
the FDP achieved by the BH(0.25) procedure is pretty much the entire [0, 1] interval, with
more than 20% of replications having a FDP larger than α = 0.25. In such a situation of
positively dependent tests, which is expected to be common in applications, we believe that
FDR control is not very helpful, and can be misleading. Indeed, most practitioners assume
that FDR ≤ α guarantees that the proportion of false positives in their particular experi-
ment is no more than α. This experiment shows that this may be far from true, even under
moderate positive dependence. Although illustrated with the BH procedure for simplicity,
this limitation is intrinsic to FDR control, and not specific of a particular FDR controlling
procedure.

From this perspective, it seems that a more sensible objective than FDR control would be
to control the FDX, that is, quantiles of the FDP instead of only controlling its expectation.
A straightforward way to formalize the connection between FDR and FDP control has been
proposed by [137]: by Markov’s inequality, for any q ∈ (0, 1),

FDX ≤ FDR(R)/q (2.15)

6Chapter 3 provides theoretical results supporting this observation.
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As a consequence, any FDR controlling procedure can be turned in a FDX-controlling
procedure. For example, under Assumption PRDS(H0), the BH procedure at level qα
yields FDR ≤ qπ0α ≤ qα, so that

FDX
(
RBH(qα))

)
≤ α .

This simple remark is interesting in that it explicitly provides a quantification of the price
to pay for moving from the control of FDR, the expected FDP, to the control of the corre-
sponding tail probability: specifically, for the FDP to be less than some q with probability
greater than 1 − α, one needs to apply the FDR controlling procedure at the smaller level
qα. We believe this type of statement to be much more informative than FDR control.
However, it is also more demanding, in the sense that qα will typically be very small if one
desires a guarantee with small FDP (small q) and high-confidence (small α). Continuing
the example of DGE studies, taking α = 0.1 and q = 0.5, we can guarantee that

FDX(RBH(0.05) ≥ 0.5) ≤ 0.1,

that is, with 90% confidence, the FDP among the 163 genes selected by the BH(0.05)
procedure is less than 1/2. Or, taking q = 0.1 and α = 0.5, we can guarantee that

FDX(RBH(0.05)) ≥ 0.1) ≤ 0.5 .

That is, the median FDP of the 163 genes selected by the BH(0.05) procedure is less than
1/10. Another approach to FDX control is to simply “augment” the set R of rejections of
a FWER controlling procedure by any set A of hypotheses whose cardinality is such that
|A|/(|A|+ |R|) ≤ q [152]. Related works on the construction of confidence envelopes for the
FDP process [149, 125, 3] are discussed in the next section.

2.4 From selective inference to simultaneous inference

In this section, we take one step back and look at existing methods in terms of their ability
to address the problem of data snooping, in a multiple testing context (Section 2.4.1) and for
linear models (Section 2.4.2). In both cases, we distinguish two broad types of approaches
pertaining to selective inference, which is described by [56] as “the assessment of significance
and effect sizes from a dataset after mining the same data to find these associations” and
to simultaneous inference in the sense of [196], that is, inference valid for any possible look
at the data.

2.4.1 Post hoc inference via multiple testing

As noted by Goeman and Solari [81] and more recently by Katsevich and Ramdas [3], con-
trolling multiple testing risks such as FDR – and even FDX – provides statistical guarantees
on a specific set of hypotheses selected by the procedure. Therefore, there is a substantial
gap between the statistical guarantees provided by state-of-the-art multiple testing proce-
dures and the actual needs of practitioners. To illustrate this important point, let us go
back to our example of differential expression analyses. The state-of-the-art approach to
this problem consists in performing one statistical test of no difference between means for
each gene, and to derive a list R of “significant” genes according to a multiple testing cri-
terion, usually the FDR. This list is then typically refined and/or interpreted using prior
knowledge on the problem at hand. For example, as smaller effects are generally of a less
relevant from a biological perspective, a typical practice is then to only retain those genes
whose “fold change” (that is, the ratio of mean expression levels between the two groups)
exceeds a prescribed level [153]. Another example is to retain only those genes that belong
to a specific biological pathway of interest.
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In the above examples, multiple testing procedures provide no statistical guarantee as to
the number or proportion of false positives in these user-refined gene lists. This illustrates
a gap between theory and practice: multiple testing procedures have been built as tools
for statistical inference, but they are commonly used as tools for exploratory data analysis
(EDA) tools. From a statistician’s perspective, these examples are instances of data snoop-
ing, which is inherent to current data-driven research. The statistical community should
not only warn investigators about the caveats of this type of practice, but also develop
inference methods dedicated to this new paradigm. Two recent research areas have been
developed within the multiple testing community: False Coverage Rate (FCR) control in the
framework of selective inference, and post hoc inference in the framework of simultaneous
inference.

The False Coverage Rate (FCR) is a multiple testing criterion inspired by FDR, but
specifically dedicated to inference on confidence intervals for selected parameters [132]. The
FCR is defined as the average proportion of covering intervals among those selected. Ben-
jamini and Yekutieli [132] introduced a generic procedure controlling FCR under (indep)
or (PRDS(H0)). This procedure consists in adjusting the level of each selected marginal
confidence interval by a scaling factor depending on the selection. Importantly, it can be
applied to any selection rule. This work has then been generalized to the case where families
of hypotheses are selected, instead of individual ones [57].

An important contribution to the field of simultaneous inference is the work of Goeman
and Solari [81] to construct procedures that provide confidence statements for the number (or
proportion) of false positives in such arbitrary, possibly data-driven subsets of hypotheses.
Formally, the aim is to find a functional Vα satisfying

P
(
∀S ⊂ Nm, |S ∩H0(P )| ≤ Vα(S)

)
≥ 1− α , (PHα)

The bound Vα(S) is an (1− α)-upper confidence bound on the number of false positives in
S. The aim formalized in (PHα) can be equivalently formulated in terms of a 1 − α lower
confidence bound on the number of true positives in S; we focus on Vα for conciseness. A
bound Vα satisfying (PHα) is called a post hoc bound Goeman and Solari [81], as the set
of selected hypotheses may be defined by an investigator after “seeing the data”. An earlier
contribution in this direction is the work of Genovese and Wasserman [125], where it was
noted that a bound satisfying (PHα) could be derived from a multiple testing procedure
controlling k-FWER. The derivation of confidence envelopes for the process (FDP(t), t ∈
[0, 1]) under (indep) [149, 138, 3] or arbitrary dependence [129] is also related to post hoc
inference, because these envelopes are uniform in t. A more precise comparison between
these approaches is given in Chapter 5.

General post hoc bounds have been obtained by Goeman and Solari [81] using a construc-
tion based on closed testing. This construction takes advantage of so-called non-consonant
rejections in the closed testing procedure. It inherits the elegance and genericity of closed
testing, but also its heavy computational complexity (see Section 2.2.1). To address this
issue, Goeman and Solari [81] have introduced computational shortcuts to obtain a compu-
tationally efficient post-hoc procedure in the particular case of Simes local tests, thus under
Assumption (PRDS(H0)).

2.4.2 Inference after model selection

In this section we follow the notation of [65] and focus on the case of a linear model of the
form

y = µ+ ε , (2.16)

where y is a n-dimensional observation, µ a fixed vector in Rn and ε ∼ N (0, σIn). We
consider a n× p fixed design matrix X, whose columns correspond to explanatory variables
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for µ. It is not necessarily assumed that there exists β ∈ Rp such that Xβ = µ. A
model corresponds to a subset of selected variables in {1, . . . , p}. For a fixed model M ⊂
{1, . . . , p}, assuming that X>MXM is invertible, we define βM = X†Mµ as the target of

inference, where X†M = (X>MXM )−1X>M . The ordinary least-squares (OLS) estimate of βM
is β̂M = X†My. By definition, β̂M is an unbiased estimator of βM . We use the “full model
indexing” convention defined in [65]: for j ∈M , we denote by j ·M ∈ {1, . . . , |M |}) the rank

of j in M , and βj·M = E(β̂j·M ) is the coordinate of the vector βM corresponding to the j-th

predictor in X. A candidate confidence interval on βj·M , centered at β̂M , is denoted by:

CIj·M (K) =
[
β̂j·M ±Kσ̂ ‖vj·M‖

]
, (2.17)

where v>j·M is the (j · M)-th row of X†M , which is such that β̂j·M = v>j·My. Here, σ̂ is

assumed to be an estimator of σ that is independent of the estimates β̂j·M for all M , and
such that σ̂2 ∼ σ2χ2

r/r some r > 0, as discussed e.g. in [65]. Let K = tr,1−α/2 be the
1−α/2 quantile of Student’s t-distribution with r degrees of freedom. Then CIj·M (K) is a
valid (1− α)-confidence interval on βj·M , in the sense that

P (βj·M ∈ CIj·M (K)) ≥ 1− α .

In practice however, the model M is not fixed, as it is typically the result M̂ of a
data-dependent selection step. This extra layer of randomness implies that CI

j·M̂ (K) is

not a valid (1 − α)-confidence interval anymore. Constructing valid inference after model
selection is recognized as a difficult problem, see e.g. [47, 107, 126, 127, 136]. The numerous
contributions to this problem can be categorized into sample splitting, inference conditional
on model selection, and inference uniformly over all model selections.

Sample splitting : single sample splitting consists in using part of the data for model
selection, and the rest for inference. This idea is probably the oldest method for
inference after model selection [187, 176]. More recently, this idea has been extended
to high-dimensional contexts (see e.g. [58, 45, 5]). In order to address the fact that the
results depend on the split, multi-sample splitting methods [99] have been proposed,
that consist in successively applying single sample splitting to B different splits, and
then aggregating the resulting p-values. An intrinsic limitation of this kind of methods
is the loss of power inherent to splitting.

Inference conditional on model selection : in the context of penalized linear regres-
sion, an asymptotic “covariance test” has been introduced by Lockhart, Taylor, Tib-
shirani, and Tibshirani [61]. For each k along the regularization path of the lasso [172],
it tests for signal evidence in the kth predictor in the model, conditionally on the event
that k − 1 predictors are already present in the model.

This theory has been extended an consolidated, notably with a test for more generic
sequential selection rules [40], a non-asymptotic “spacing test” [39], and a test allows
inference to be made at any fixed value of the regularization parameter [36] among
other contributions. The power of (a studentized version of) the spacing test is also
studied in [14]. By construction, the resulting confidence intervals are conditional on
the outcome of a model selection step of the form CI

j·M̂ (K), and satisfy guarantees
of the form:

P
(
βj·M ∈ CIj·M̂ (K)|M = M̂

)
≥ 1− α .

A recent simulation-based study suggests that the expected length of the associated
confidence intervals is typically large and can even be infinite [21].

Inference uniformly over all model selections : the post hoc adjustment method of
Scheffé [196] yields confidence intervals for predictors that are valid for all possible
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model selections in low-dimensional linear models. This method was introduced in the
specific context of analysis of variance (ANOVA) for group mean comparison [196],
which can be cast as a specific linear model (2.16). Scheffé’s method consists in finding
a constant K such that the associated confidence intervals (2.17) are simultaneously
valid for all possible contrasts involving group means7. [196]’s method can be seen as
a method to control the FWER, where individual tests would correspond to (infinitely
many) contrasts. This method is known as “post hoc analysis” and the type of guar-
antee it provides is very similar in spirit to the post hoc goals of Section 2.4.1, hence
the name “post hoc inference” coined by [81] for the latter approach.

Elaborating on this idea of casting the problem of inference after model selection as a
problem of simultaneous inference, Berk, Brown, Buja, Zhang, Zhao, et al. [65] have
proposed so-called Post-Selection Inference (PoSI) confidence intervals of the form
(2.17), which are simultaneously valid for all possible model selections, that is,

P (∀M ∈M,∀j ∈M,βj·M ∈ CIj·M (K)) ≥ 1− α ,

whereM denotes the set of all possible models, corresponding to all 2p−1 non-empty
subsets of {1, . . . , p}. The corresponding constant K is called the PoSI constant. It
depends on the design matrix, which makes the associated confidence possibly sharper
than the ones obtained by the Scheffé method, but also much more computationally
demanding. Extensions to this work have removed the Gaussian homoscedasticity as-
sumption [2] and generalized PoSI inference to the problem of prediction after model
selection [1]. Using a reduction of the PoSI problem to a simultaneous inference prob-
lem, Kuchibhotla, Brown, Buja, Cai, George, and Zhao [4] have recently introduced
confidence intervals of the following form:

CI∗M =
{
θ ∈ R|M |,

∥∥∥Σ̂M (β̂M − θ)
∥∥∥
∞
≤ Cxy(α) + Cxx(α) ‖θ‖1

}
,

where Σ̂M = n−1X>MXM is the empirical covariance matrix associated with the
submodel indexed by M and Cxy(α) and Cxx(α) denote (1 − α) joint quantiles of∥∥n−1(

∑n
i=1XiYi − E(XiYi))

∥∥
∞ and

∥∥n−1(
∑n
i=1X

>
i Xi − E(X>i Xi))

∥∥
∞. These confi-

dence intervals enjoy the desired uniform coverage property:

P (∀M ∈M, βM ∈ CI∗M ) ≥ 1− α .

When compared to the original PoSI intervals, these confidence intervals enjoy two
remarkable properties: they have a much reduced computational cost of O(p2), and
their volume scales with the size of the selected model and not with the largest possible
model size considered.

2.5 Contributions

In the next chapters of this part, we describe several contributions to the multiple testing
and post hoc inference literature:

• Chapter 3 is motivated by the frequent misinterpretation of FDR controlling pro-
cedures in (genomic) applications as “controlling FDP”, which is not a well-defined
property as the FDP is a random variable. This chapter is a synthesis of my contri-
butions [J24] and [J13], which were done during my PhD thesis and my post-doc.

7In the context of analysis of variance Scheffé [194], a contrast is simply a linear combination of the group
means such that the coefficients of the combination sum to 0. This naturally covers the test for equality of
means of two subgroups.
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• Chapter 4 is a synthesis of a joint work Etienne Roquain [J17]] in the framework of
classification in sparse high-dimensional models, toward the characterization of the
asymptotic properties of FDR controlling procedures viewed as binary classification
procedures.

• Chapter 5 describes our contributions to the field of post hoc inference. The con-
tributions described in this chapter [J2, J3, P1] were made in collaboration with
Gilles Blanchard and Etienne Roquain in the context of the JCJC ANR project
SansSouci (2016-2020). The works described in the last section were performed by
Guillermo Durand during the last year of his PhD thesis [31]. All of the proce-
dures described in this chapter are implemented in the R package sansSouci [S1],
which is available from https://github.com/pneuvial/sanssouci and described at
https://pneuvial.github.io/sanssouci.

Before describing these contributions, we briefly mention a contribution to the PoSI lit-
erature introduced in Section 2.4.2, which is not described in the rest of this document.
Let us denote by K(X,M) the PoSI constant associated with n × p design matrix X,
where M denotes the set of all 2p − 1 non-empty submodels of {1, . . . , p}. As mentioned
in Section 2.4.2, the computation of K(X,M) for a generic X is a priori of exponential
complexity as it involves a maximization over all possible submodels M ∈ M. This mo-
tivates attempts to find upper bounds on the PoSI constant. If X is orthogonal, then
K(X,M) = Ω(

√
log(p)) [65]. Moreover, it was shown in an intermediary version of [64]

using a cardinality-based argument that the PoSI constant restricted to the set Ms of s-
sparse models satisfies K(X,Ms) = O(

√
s log(p/s)), with no assumption on the design

X. In Bachoc, Blanchard, and Neuvial [J6], we have proposed a new upper bound on
K(X,Ms) in the case of design matrices satisfying a Restricted Isometry Property (RIP)
condition. This upper bound is an explicit function of the RIP constant δ of the design
matrix, and it can be seen as an interpolation between the orthogonal setting and the
generic sparse setting. In particular, when X is such that δ → 0, our results imply that
K(X,Ms) = O(

√
log(p) + δ

√
s log(p/s)). This corresponds to the intuition that for such

design matrices, any subset of s columns of X is “approximately orthogonal”. Moreover,
we have shown that this upper bound is asymptotically optimal in many settings by con-
structing a matching lower bound.
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Chapter 3

Asymptotics of FDR controlling
procedures

We introduce a mathematical formalism to study the concentration of the FDP around the
FDR asymptotically as the number of hypotheses tested tends to infinity. This formalism
is applied to derive central limit theorems for the FDP of a wide class of FDR controlling
procedures including the BH procedures and π0-adaptive procedures. This chapter is a
synthesis of my contributions [J24] and [J13], which has required the adaptation of the
original results of [J24] to the “random effects setting” used in [J13]. Moreover, I have
chosen to focus here on the results of [J24] obtained for plug-in procedures, because the
procedures studied in [J13] also fall into this category. I have also added a section dedicated
to FDR control under dependency.

References:

[J13] P. Neuvial. “Asymptotic Results on Adaptive False Discovery Rate Controlling Pro-
cedures Based on Kernel Estimators”. Journal of Machine Learning Research 14
(2013), pp. 1423–1459

[J24] P. Neuvial. “Asymptotic properties of false discovery rate controlling procedures
under independence”. Electron. J. Statist. 2 (2008). With corrigendum in EJS
2009(3):1083, pp. 1065–1110
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3.1 FDP as a stochastic process of a random threshold

3.1.1 Random effects setting

In the setting defined in Chapter 2, the collection H of hypotheses is deterministic and
the p-values (pi)i∈Nm are such that pi ∼ U [0, 1] when θi = 0. During my PhD thesis, I
studied the asymptotic properties of FDR controlling procedures in this setting [T1, J24].
In this chapter however, we consider the “random effects” setting introduced by [162]. This
setting, also known as the two-group mixture model, has been widely used in the multiple
testing literature, see, e.g., [115, 149, 154], which makes it easier to replace my contri-
butions in the context of this literature. In the present chapter, H = (H0,i, i ∈ Nm) is
a sequence of random indicators, independently and identically distributed as B(1 − π0),
where π0 ∈ (0, 1). Conditional on H, the p-values satisfy pi|θi ∼ Gθi , where Gθi denotes the
cumulative distribution function of the p-values under θi. Thus the p-values are indepen-
dently, identically distributed as G = π0G0 + (1 − π0)G1, and m0(m) follows the binomial
distribution Bin(m,π0). We make the following assumptions on the conditional distributions
of the p-values: G0 is uniform (that is, G0(u) = u for any u ∈ [0, 1]), and G1 is concave.
This last assumption is quite natural because the concavity of G1 is equivalent to the fact
that the likelihood ratios of the test statistics under the null versus under the alternative is
non-decreasing. We refer to [J13, section 2.1] for a discussion on this assumption.

We consider an asymptotic setting where m→ +∞. Therefore, in this chapter the phrase
“multiple testing procedure” refers to a collection R = (Rm)m∈N of rejection sets Rm rather
than a single one as in chapter 2. Consequently, a thresholding procedure is here defined
by a collection t̂ = (t̂m)m≥1 of thresholds such that for all m ∈ N, Rm = {i ∈ Nm, pi ≤ t̂m}.
Following [149], we note that the False Discovery Proportion can be viewed as a stochastic

process. Let Ĝ0,m and Ĝ1,m denote the (unobserved) empirical cumulative distribution
function of the p-values under the null and alternative hypotheses:{

Ĝ0,m(t) = m0(m)−1
∑m
i=1(1− θi)1 {pi ≤ t}

Ĝ1,m(t) = (m−m0(m))−1
∑m
i=1 θi1 {pi ≤ t}

.

With this notation, and letting π0,m = m0(m)/m, Ĝm = π0,mĜ0,m + (1− π0,m)Ĝ1,m is the
(observable) empirical cumulative distribution function of the p-values. Moreover, for any

t ∈ [0, 1], |Rm(t)| =
∑m
i=1 1 {pi ≤ t} = Ĝm(t) and |Rm(t) ∩H0| =

∑m
i=1(1− θi)1 {pi ≤ t} =

π0,mĜ0,m(t), so that

FDPm(t) =
π0,mĜ0,m(t)

Ĝm(t) ∨ 1
m

(3.1)

is the False Discovery Proportion achieved at the deterministic threshold t. The asymptotic
properties of the stochastic process (FDPm(t))0≤t≤1 were analyzed by Genovese and Wasser-
man [149]. The FDR achieved at threshold t, FDRm(t) = E (FDPm(t)), may be written as
FDRm(t) = p(t) (1− (1−G(t))m), where p(t) = π0,mt/G(t) is the positive False Discovery
Rate at t defined above in (2.1.2). Using the functional Delta method [169], they proved
that the FDPm process converges to pFDR at a rate m−1/2, and built confidence envelopes
for the FDP process using this result. However, this result is not sufficient to characterize
the behavior of the FDP actually achieved by a given multiple testing procedure, that is,
by the random variable FDPm(t̂m). We are interested in the asymptotic behavior of this
variable and, in particular, its fluctuations around the asymptotic FDR achieved by the
procedure with threshold t̂m.

Following [149], we note that the threshold t̂BH(α) of the BH procedure defined in Sec-
tion 2.3 may also be written as

t̂BH(α) = sup
{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
. (3.2)
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Figure 3.1: Dual interpretations of the BH threshold. Left: ordered p-values; right: empirical
cumulative distribution function of the p-values.

Therefore, defining

U(F, α) = sup{u ∈ [0, 1], F (u) ≥ u/α} , (3.3)

we have t̂BH(α) = U(Ĝm, α). Figure 3.1 illustrates the duality between the classical defini-
tion of the BH procedure, and its interpretation using threshold functions. Following [96],
u 7→ u/α is called the rejection curve of the BH procedure (also known as the Simes line
[179]).

3.1.2 Two types of plug-in procedures

The plug-in procedures introduced in Chapter 2 are a class of procedures that aim at fill-
ing the “conservativeness gap” between the level π0α, which is the FDR control actually
provided by the BH procedure, and the target FDR level α. Plug-in procedures mimic the
Oracle BH(α/π0) procedure by applying the BH procedure at level α/π̂0, where π̂0 is an
estimator of π0. Therefore, the threshold of such procedures may be written as

t̂m(α) = U(Ĝm, α/π̂0) . (3.4)

We consider two types of such estimators of π0: estimators that are based on the empirical
cumulative distribution function Ĝm of the p-values, and estimators that are based on the
estimation of the density g(1) of the p-values at 1. We begin with the Storey-λ procedure
introduced in Section 2.3. The threshold of this procedure may be written as

t̂0,λm (α) = U
(
Ĝm, α/Πλ(Ĝm)

)
, (3.5)

where Πλ : F 7→ (1− F (λ))/(1− λ) only depends on λ1. More generally, we define plug-in
procedures of order 0 (PI-0) as those whose threshold can be written as

t̂0m(α) = U
(
Ĝm, α/Π(Ĝm)

)
. (3.6)

for a given Π : D[0, 1] → [0, 1], where D[0, 1] is the set of càdlàg functions on [0, 1], that
is, the set of all real-valued functions on [0, 1] that are right-continuous at each point of

1The exact translation of the definition in (2.14) incorporates an additional 1/m term in the numerator
of Πλ. This term is required to ensure finite sample FDR control, but the two associated FDR controlling
procedures are asymptotically equivalent, in a sense formally defined in [J24].
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[0, 1) and have left limits in each point of (0, 1]. In particular, the BH procedure can be
viewed as a PI-0 procedure with a constant Π = 1. The BKY procedure [123] is another
example of PI-0 procedure studied in [J24]. One limitation of PI-0 estimators in general and
the Storey-λ estimator in particular, is that these estimators are generally not consistent
estimators of π0. For λ ∈ (0, 1), the expectation of the Storey-λ estimator is

Πλ(G) = π0 + (1− π0)
1−G1(λ)

1− λ
, (3.7)

As G1 is concave, Πλ(G) is a non-increasing function of λ, which is therefore lower-bounded
by π0 = π0 + (1 − π0)g1(1) = g(1). Therefore, estimators of g(1) are relevant candidates
to estimate π0. The second class of estimators considered here is a general class of kernel
estimators of g(1) = π0, which we have introduced in [J13].

Definition 3.1.

1. A kernel of order ` ∈ N is a function K : R→ R such that the functions u 7→ ujK(u)
are integrable for any j = 0 . . . `, and satisfy

∫
RK = 1, and

∫
R u

jK(u)du = 0 for
j = 1 . . . `.

2. The kernel estimator of a density g at x0 based on m independent, identically dis-
tributed observations x1, . . . xm from g is defined by

ĝm(x0) =
1

mh

m∑
i=1

K

(
xi − x0

h

)
,

where h > 0 is called the bandwidth of the estimator, and K is a kernel.

The threshold of the corresponding FDR controlling procedures may be written as

t̂1m(α) = U
(
Ĝm, α/ĝm(1)

)
. (3.8)

We call procedures whose threshold can be written as (3.8) plug-in procedures of order 1

(PI-1), because their threshold depends on the observations through both Ĝm and ĝm(1),
where g is the derivative (of order 1) of G. Note that Storey’s estimator may technically be
viewed as a kernel estimator of order 0, with kernel function K(t) = 1 {[−1, 0]} (t).

3.1.3 Criticality

The notion of criticality has been introduced by [115] in the context of the BH procedure.
It is necessary to define this notion here because it is tightly connected to the asymptotic
properties of FDR controlling procedures. Letting α? = limu→0 u/G(u), if α < α?, the
number of discoveries made by the BH procedure is stochastically bounded as the number of
tested hypotheses increases. Conversely, if α > α?, the proportion of discoveries converges in
probability to a positive value. This property is quite intuitive when we recall that according
to (3.2), the threshold of the BH procedure is the largest right-crossing point between the

empirical cumulative distribution function Ĝm of the p-values and the line with slope 1/α.
An illustration of the critical value of the BH procedure in the Laplace two-sided model is
given in the right panel of Figure 3.2. The line y = x/α? corresponds to the tangent to G at
the origin. For α < α?, the BH(α) procedure asymptotically makes no rejections as G does
not cross the Simes line y = x/α in the interior of the interval [0, 1]. For α > α?, the BH(α)
asymptotically rejects all the p-values less than τ?, where G(τ?) = τ?/α. The critical value
α? only depends on the distribution function G of the p-values.

Chi and Tan [101] demonstrated that this property is not specific to the BH procedure.
For any multiple testing procedure, for α < α? := π0α

?, there exists a positive constant c(α)
such that almost surely, for m large enough, the events {|Rm∩H0|/|Rm| ≤ α} and {|Rm| ≥
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Figure 3.2: Critical value of the BH procedure: illustration of the results of [115] in the
Gaussian (left; no criticality, α? = 0) and Laplace/double exponential (right: criticality;
α? > 0) location models.

c(α) logm} are incompatible [101, proof of Proposition 3.2]. This restriction is intrinsic to
the multiple testing problem, in the sense that it holds regardless of the considered multiple
testing procedure. The bound α? can be interpreted as the critical value of the above-
mentioned Oracle BH procedure. Obviously, when α? = 0, there is no criticality, e.g. the
BH procedure has positive asymptotic power for any α > 0. For instance, this is the case
in the Gaussian location model, but not in the Laplace location model, as illustrated in
Figure 3.2. More examples of critical and non-critical distributional settings can be found
in [J13, Section 5].

The critical value of a generic multiple testing procedure may be defined as the largest
target FDR level for which the corresponding asymptotic power is null [J13, Definition 11].
The following Lemma gives a lower bound on the critical value of plug-in procedures.

Lemma 3.2 (Criticality of plug-in procedures [J13]). Let αm be a sequence of (possibly data-
dependent) levels that converges in probability to α∞ ∈ (0, 1) as m→ +∞. If α∞ < α?, then
the threshold t̂m(αm) of the BH(αm) procedure converges in probability to 0 as m → +∞.
If the convergence of αm to α∞ holds almost surely, then the convergence of t̂m(αm) to 0
holds almost surely as well.

This property holds in particular for both PI-0 and PI-1 procedures. In the next sections,
we give results specific to each type of procedure.

3.2 Results for PI-0 procedures

The asymptotic distribution of the FDP of a wide class of procedures including PI-0 proce-
dures has been obtained in [J24] in the original setting of Benjamini and Hochberg [173]. A
fundamental result to derive such asymptotic distributions is given in the next Theorem.

Theorem 3.3 (Adapted from [J24]). Consider a multiple testing procedure with threshold
function T . Assume that:

(i) T (G) > 0, and is Hadamard-differentiable2 at G;

2Here, we consider Hadamard-differentiability on the set of càdlàg functions on [0,1], tangentially to the
set of continuous functions on [0, 1]. We refer to [169] for a formal definition of Hadamard differentiability.
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(ii) (π0,mĜ0,m, (1− π0,m)Ĝ1,m) converges in distribution to (π0G0, (1− π0)G1) at rate rm
as m→ +∞, where rm → 0;

Then the FDP of the procedure, FDPm(T (Ĝm)), converges in distribution to π0τ
?/G(τ?) at

rate rm as m→ +∞.

The limit distribution is an explicit function of the limit distribution Z of (π0,mĜ0,m, (1−
π0,m)Ĝ1,m) and the Hadamard derivative at G taken at Z [J24, Theorem 3.2]. The proof
relies on the functional Delta method [169]. The interest of this result is that it breaks down
the asymptotic analysis of the FDP of a multiple testing procedure with threshold function
T into (i) the Hadamard differentiability of the mapping T , which only depends on the
procedure, and (ii) the asymptotic behavior of the empirical distribution functions of the
p-values, which only depends on the model assumptions. We will go back to this modularity
in Section 3.4.

In particular, as for (ii), (π0,mĜ0,m, (1− π0,m)Ĝ1,m) classically satisfies a Donsker-type
theorem (with rm = m−1/2) in the random effects setting, as noted by [149, Theorem 4.1].
Moreover, in the case of a PI-0 procedure associated to Π, (i) holds as soon as Π is it-
self Hadamard-differentiable at G, tangentially to C[0, 1], and satisfies α > Π(G)α? [J24,
Proposition 7.11 and Corollary 7.12]. Under these assumptions, Theorem 3.3 yields the con-
vergence in distribution as m → +∞ of

√
m
(
FDPm(t̂0m(α))− π0α/Π(G)

)
, where t̂0m(α) =

U(Ĝm, α/Π(Ĝm)) is the threshold of the PI-0 procedure associated to Π. The Hadamard-
differentiability of Π is a technical condition which is typically verified for classical PI-0
procedures such as the Storey-λ procedure or the BKY procedure. The important assump-
tion is the condition: α > Π(G)α?. Recalling that by the definition of Π, the PI-0 procedure

consists in applying the BH procedure at level αm = α/Π(Ĝm), the above result combined
with Lemma 3.2 implies that Π(G)α? is the critical value of the PI-0 procedure associated
to Π.

As both the BH and the Storey-λ procedures can be viewed as PI-0 procedures, the
asymptotic distribution of the FDP of these procedures are obtained below as consequences
of [J24, Theorem 4.12]; these results were also stated in the Appendix of [J13].

Corollary 3.4 (BH procedure – adapted from [J24]). Let t̂m(α) = U(Ĝm, α) denote the
threshold of the BH(α) procedure, and t∞(α) = U(G,α). For any α ≥ α?, we have

√
m
(
FDPm(t̂m(α))− π0α

)
 N

(
0, (π0α)2

(
1

π0t∞(α)
− 1

))
(3.9)

This central limit theorem provides a theoretical explanation for the Gaussian shape of
the empirical distribution of the FDP observed in the numerical experiments reported in
Section 2.3.4 the particular case of independence (corresponding to ρ = 0 in the Gaussian
equi-correlated model of Example 2.7).

Corollary 3.5 (Storey-λ procedure – adapted from [J24]). For any λ ∈ [0, 1), and α ∈
[0, 1], let Πλ : F 7→ (1− F (λ))/(1− λ). Let t̂0,λm (α) = U(Ĝm, α/Π(Ĝm)) be the threshold of
the Storey-λ procedure at level α, and tλ∞(α) = U(G,α/Π(G)). Then, for any α > Πλ(G)α?,
we have:

√
m
(
FDPm(t̂0,λm (α))− π0α/Πλ(G)

)
 N

(
0, σ2

λ

)
, (3.10)

where

σ2
λ =

(
π0α

Πλ(G)

)2{
1

π0tλ∞(α)
+ 2

tλ∞(α) ∧ λ
tλ∞(α)(1−G(λ))

− 1

1−G(λ)

}
Note that Corollary 3.5 with λ = 0 recovers Corollary 3.4. Moreover, the asymptotic

properties of the BH Oracle procedure can be obtained by applying Corollary 3.4 at level
α/π0.
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3.3 Results for PI-1 procedures

Corollary 3.5 establishes that the FDP of the Storey-λ procedure converges in distribution
at the parametric rate m−1/2 to π0α/Πλ(G). As noted above, we have Πλ(G) > g(1) ≥ π0.
In this section, we show that PI-1 procedures, which are based on estimators of g(1), may
provide an asymptotic FDP control closer to the target FDR level α. However, this tighter
control comes at the price of slower convergence rates for the FDP. Indeed, PI-0 estimators
involve estimators of π0 that depend on the observations only through Ĝm, and therefore
achieve parametric convergence rates. Conversely, PI-1 estimators involve estimators of π0

that rely on the estimation of g(1), and such estimators are known to yield non-parametric
convergence rates that depend on the regularity of g at 1. For a kernel estimator of g(1),
the convergence rate is typically of m−k/(2k+1) when g is k times differentiable at 1 [100].
We state in Proposition 3.6 the asymptotic properties of a particular kernel estimator: the
Storey-λ estimator with λ = 1 − hm tending to 1 as m → +∞. This estimator is denoted
by π̂0,m(1− hm).

Proposition 3.6 (Asymptotic properties of π̂0,m(1 − hm) — [J13]). Assume that g is k
times differentiable at 1 for k ≥ 1, with g(l)(1) = 0 for 1 ≤ l < k.

1. If g(k)(1) 6= 0, then the asymptotically optimal bandwidth for π̂0,m(1 − hm) in terms
of Mean Squared Error (MSE) is of order m−1/(2k+1), and the corresponding MSE is
of order m−2k/(2k+1).

2. Let ηm be any sequence such that ηm → 0 and mk/(2k+1)ηm → +∞ as m → +∞.
Then, letting hm(k) = m−1/(2k+1)η2

m, we have, as m→ +∞:

mk/(2k+1)ηm (π̂0,m(1− hm(k))− g(1)) N (0, g(1)) (3.11)

This result cannot be derived from classical results on kernel estimators (e.g. [100]) as
such results typically require that the order of the kernel matches the regularity k of the
density, whereas the kernel of Storey’s estimator, K(t) = 1 {[−1, 0]} (t), is of order 0. The
proof is based on a formulation of π̂0,m(1−hm) as a sum of m independent random variables
that satisfy the Lindeberg-Feller conditions for the Central Limit Theorem [180].

In order to derive the asymptotic distribution of the FDP of PI-1 procedures, we begin
by stating a slightly more general result which holds for any plug-in procedure of the form
BH(α/π̂0,m), where π̂0,m is a generic estimator of π0 whose convergence rate is slower than
m−1/2.

Theorem 3.7 (Plug-in procedures with non-parametric rates — [J13]). Let π̂0,m be an
estimator of π0 whose asymptotic distribution is given by√

mhm (π̂0,m − π0,∞) N (0, s2
0)

for some s0, with hm = o(1/ log logm) and mhm → +∞ as m→ +∞. Denote by t̂m(α) the
threshold of the associated plug-in procedure. Then, for any α > π0,∞α

?, The asymptotic
distribution of the FDP achieved by the BH(α/π̂0,m) procedure is given by

√
mhm

(
FDPm(t̂m(α))− π0α

π0,∞

)
 N

0,

(
π0αs0

π2
0,∞

)2
 .

Corollary 3.8 (Asymptotic distribution of the FDP of PI-1 procedures [J13]). Assume that
g is k times differentiable at 1 for k ≥ 1. Define hm(k) = m−1/(2k+1)η2

m, where ηm → 0
and mk/(2k+1)ηm → +∞ as m→ +∞. Denote by π̂k0,m one of the following two estimators
of π0:

• Storey’s estimator π̂Sto
0,m(1−hm(k)); in this case, it is further assumed that g(l)(1) = 0

for 1 ≤ l < k;
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• A kernel estimator of g(1) associated with a kth order kernel with bandwidth hm(k).

Then α?0 = g(1)α?BH is the critical value of the BH(α/π̂k0,m) procedure, and for any α > α?0,

mk/(2k+1)ηm

(
FDPm(τ̂0

m(α))− π0α

g(1)

)
 N

(
0,
π2

0α
2

g(1)3

)
.

3.4 Extensions to other dependency settings

The results obtained in [J24] give a characterization of the asymptotic distribution of the
FDP actually achieved by a wide class of multiple testing procedures. In particular, these
results make it possible to go beyond FDR control by constructing asymptotic confidence
intervals for FDPm(t̂m). The obtained central limit theorems are stated here in the random
effects setting of [162], and in [J24] in the original setting of [173]. In both cases, the null
hypotheses are assumed to be independent, which is a strong assumption, as discussed in
Chapter 2. By Theorem 3.3, the results stated above for the BH and PI(0) procedures may be

extended to any multiple testing setting where the asymptotic distribution of (π0,mĜ0,m, (1−
π0,m)Ĝ1,m) is characterized. For example, Wu [114, Theorem 1] obtained a functional central

limit theorem for (π0,mĜ0,m, (1−π0,m)Ĝ1,m) under the assumption that H is stationary and
π0,m itself satisfies a central limit theorem [114, Condition 1]. These assumptions cover the
case of Ising models in Z2.

Two other examples of uses of this formalism to obtain asymptotic results under depen-
dence are Delattre and Roquain [80, 30]. Delattre and Roquain [80] consider the Gaussian
ρm-equi-correlated model introduced in Example 2.7, additionally assuming that the equi-
correlation parameter ρm satisfies ρm → 0 as m→ +∞. In this model, the empirical process
(Ĝ0,m, Ĝ1,m) can be shown to converge in distribution at rate rm = min(m, 1/ρm)−1/2[80,
Lemma 3.3]. This rate is different from the standard convergence rate m−1/2 holding under
independence. A consequence of the results obtained in [J24, J13] is that the FDP of the
BH procedure converges to the corresponding false discovery rate (FDR) at the same rate
min(m, 1/ρm)−1/2 [80, Theorem 2.1]. Using our above-described formalism, the same con-
vergence rates could also be obtained for all of the procedures studied in [J24], including
PI(0) procedures.

Delattre and Roquain [30] have obtained a functional central limit theorem for the pro-

cess (π0,mĜ0,m, (1 − π0,m)Ĝ1,m) under a more general dependency model, where the test
statistics are Gaussian, with a covariance matrix Γ(m) asymptotically lying in a neighbor-
hood of the identity matrix Im

3. The convergence rate of (π0,mĜ0,m, (1−π0,m)Ĝ1,m) natu-
rally depends on the rate at which the elements of Γ(m) vanish. Interestingly, the asymptotic
distribution of the FDP of the BH procedure cannot be deduced directly from the results
of [J24] because the joint convergence of (π0,mĜ0,m, (1 − π0,m)Ĝ1,m) is required. Delattre
and Roquain [30] have cleverly noted that the Hadamard derivative of the functional Ψ such

that FDPm(t̂) = Ψ(π0,mĜ0,m, (1 − π0,m)Ĝ1,m) at (π0G0, (1 − π0)G1) only depends on the
first of its two coordinates. This property makes it possible to extend the original result of
[J24] by deriving the asymptotic distribution of FDP of the BH procedure from only the

marginal convergence of Ĝ0,m and Ĝ1,m. To our knowledge however, the result obtained
in Delattre and Roquain [30] cannot be extended to PI(0) procedures because the above
property of the mapping Ψ is specific to the BH procedures. Indeed, our calculations show
that for PI(0) procedures, the Hadamard derivative is given by

α
H0

T (G)
− α Π̇G(H0 +H1)

Π(G)
,

where the second term (induced by the estimation of π0) does depend on both H0 and H1.

3We refer to the “vanish-second-order” condition in [30] for a formal definition of this condition.
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Chapter 4

FDR thresholding for
classification under sparsity

Albeit motivated by pure testing considerations, the BH procedure has been shown to enjoy
remarkable properties as an estimation procedure in Gaussian location [122] and Laplace
scaling [124] problems. More specifically, it turns out to be adaptive to the amount of
signal contained in the data, which has been referred to as “adaptation to unknown spar-
sity”. More recently, Bogdan, Chakrabarti, Frommlet, and Ghosh [78] have studied FDR
thresholding with respect to the mis-classification risk, and proved that FDR thresholding
is asymptotically optimal (as the number m of tests goes to infinity) with respect to that
risk in the case of a Gaussian scaling model. A natural question is whether this asymptotic
optimality is specific to the Gaussian scaling model or whether it also holds in more general
settings. We have generalized and extended the work of [78] by studying the asymptotic
properties of the BH procedure with respect to the mis-classification risk in more general
models that encompass Subbotin location and scale models.

References:

[J17] P. Neuvial and E. Roquain. “On false discovery rate thresholding for classification
under sparsity”. Annals of Statistics 40.5 (2012), pp. 2572–2600
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4.1 Settings

4.1.1 Random effects model

We consider the random effects model described in Section 3.1, with additional assump-
tions on the distribution of the test statistics. In particular, we study the specific case of
Subbotin location and scale models where the density d of the test statistics conditionally

on θi = 0 is the ζ-Subbotin density defined in Section 2.1.1: d(x) = (Lζ)
−1e−|x|

ζ/ζ , for
ζ ≥ 1, where the normalization constant Lζ is defined in Equation (2.3). The density of
the test statistics conditionally on θi = 1 is either a shift or a scaling of d. In the Sub-
botin location model, we have d1,m(x) = d(x−µm), for some (unknown) location parameter
µm > 0. The corresponding p-values are obtained using the transformation pi = D(Xi),
and the cumulative distribution function of the p-values conditionally on θi = 1 is given by

G1,m(t) = D(D
−1

(t)− µm). In the Subbotin scale model, we have d1,m(x) = d(x/σm)/σm,
for some (unknown) scale parameter σm > 1, and the p-values are obtained as pi = 2D(|Xi|),
which yields G1,m(t) = 2D(D

−1
(t/2)/σm). This setting covers the Gaussian location model

studied in [122] and the Laplace scale model studied in [124] for estimation, and the Gaussian
scale model studied in [78] for classification.

4.1.2 Classification risk

We are interested in classification rules that predict the labels (θi)i∈Nm from the sample of
test statistics (Xi)i∈Nm . We define the classification risk of such a rule as the expected
proportion of misclassified items. In our setting where the distribution of the Xi under
the null distribution is known, a classification procedure can be identified with a threshold
t̂m ∈ [0, 1], that is, a measurable function of the p-value family (pi, i ∈ {1, ...,m}). The
corresponding procedure chooses label 1 whenever the p-value is smaller than t̂m. The
corresponding classification risk may be written in terms of p-values:

Rcm(t̂m) = m−1
m∑
i=1

P(pi ≤ t̂m, θi = 0) +m−1
m∑
i=1

P(pi > t̂m, θi = 1)

In particular, for a deterministic threshold tm ∈ [0, 1], we have Rcm(tm) = π0,mtm+π1,m(1−
G1,m(tm)). Classically, the rule minimizing Rcm corresponds to the threshold tBm = f−1

m (τm),
where τm = π0,m/(1−π0,m) is called the mixture parameter of the model. This rule is called
the Bayes rule. It depends on the unknown value of the model parameters. Our goal is to
find a classification rule whose risk is “comparable” to Rcm(tBm), in the following sense. A
classification rule is said to be asymptotically optimal at rate rm = o(1) if and only if there
exists D > 0 such that for large m,

Rcm(t̂m)−Rcm(tBm) ≤ D ×Rcm(tBm)× rm . (4.1)

4.1.3 Power of the Bayes rule under sparsity

Following [78, 122, 124], we consider a sparse situation, in the sense that τm → +∞ as
m→ +∞. Typically, we consider scenarios where τm = mβ , with 0 < β ≤ 1. To compensate
for this weakening of the signal, the distance between distribution of the test statistics under
the alternative is allowed to grow as m→ +∞, in such a way that µm → +∞ and σm → +∞
in the location and scale models, respectively. Formally, we make the general assumption
that the power Cm = G1,m(tBm) of the Bayes rule is bounded away from 0 and 1. This
assumption makes the classification problem “just solvable” under the sparsity constraint.
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4.2 Asymptotic optimality of FDR thresholding

Although we are not directly interested in the control of the FDR or the FDP in this chapter,
the BH procedure can be viewed as a classification rule with threshold t̂m = t̂BH

m (α). We
have proved in [J17] that there exists a choice of the target level αm, such that the BH
procedure at level αm is asymptotically optimal (with an explicit rate) in terms of the
above classification risk. Our analysis of the risk of the BH procedure relies on two key
elements: a finite sample Oracle inequality on the excess risk of the BH procedure [J17,
Corollary 4.3], and an argument of concentration of the threshold of the BH procedure at
level αm. We give a short explanation of the second argument. As already noted above,

we have t̂BH
m (α) = sup

{
u ∈ [0, 1], Ĝm(u) ≥ u/α

}
(3.2). Therefore, the threshold of the BH

procedure at level αm is close to the threshold of its deterministic counterpart where Ĝm is
replaced by G:

t?m(α) = sup {u ∈ [0, 1], G(u) ≥ u/α} .

The classification procedure with threshold t?m(α) controls the pFDR. This suggests that a
relevant choice for the target (p)FDR level is the level αoptm satisfying

t?m(αoptm ) = tBm (4.2)

The main result can be stated as follows for the location and scale models with Subbotin
distribution:

Theorem 4.1 ([J17], Corollary 4.4). Take ζ > 1, γ = 1 − ζ−1 for the location case and
ζ ≥ 1, γ = 1 for the scale case. Consider a ζ-Subbotin density (2.3) in the sparsity regime
τm = mβ, 0 < β ≤ 1 and assume that Cm is bounded away from 0 and 1. Letting rm =
αm + (log(α−1

m /(logm)γ))+/(logm)γ , the following holds:

(i) The pFDR threshold t?m(αm) is asymptotically optimal if and only if

αm → 0 and logαm = o ((logm)γ) , (4.3)

in which case it is asymptotically optimal at rate rm .

(ii) The FDR threshold t̂FDRm at a level αm satisfying (4.3) is asymptotically optimal at
rate rm.

(iii) Choosing αm ∝ 1/(logm)γ , pFDR and FDR thresholding are both asymptotically op-
timal at rate rm = 1/(logm)γ .

When applied to the Gaussian scale model, Theorem 4.1 recovers the asymptotic opti-
mality results obtained by [78], and extends these results by providing explicit convergence
rates. Moreover, our result shows that these theoretical properties are not specific to the
Gaussian scale model, but carry over to Subbotin location and scale models. These models
include the Gaussian location model studied in [122], and the Laplace scale model studied
in [124]. Theorem 4.1 suggests an asymptotic choice of αm ∝ 1/(logm)γ for FDR thresh-
olding, but does not prescribe an explicit value for αm for a given m. However the level
satisfying (4.2) may be explicitly written as a function of the model parameters:

αoptm = (1 +m−βCm/G
−1
1,m(Cm))−1 . (4.4)

Therefore, one possible choice for αm in a given model is αm = αoptm (β0, C0), where (β0, C0)
is an a priori value for the unknown model parameters (β,Cm).
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4.3 Numerical experiments

We report the results of some of the numerical experiments performed in [J17] the Gaussian
location model in order to illustrate the adaptation to unknown sparsity by the FDR classi-
fication rule, and to discuss the relevance of the choice of αm proposed above. We quantify
the quality of a thresholding procedure using the relative excess risk

Em(t̂) = (Rcm(t̂)−Rcm(tBm))/Rcm(tBm).

Figure 4.1 compares the relative excess risks of the Bayes procedure and the BH procedure
for several choices of αm in the Gaussian location model. For each procedure (in rows)
and each value of m (in columns), the behavior of the relative excess risk is studied as the
(unknown) true model parameters (β,Cm) vary in [0, 1]× [0, 1]. The threshold of the Bayes
procedure depends on the model parameters (β,Cm); the results reported in the first row
“Bayes0” correspond to the choice (β,Cm) = (β0, C0). For FDR thresholding, we report the
results for the choice αm = αoptm (β0, C0). The values for β0 and C0 are arbitrarily chosen as
the midpoints of the corresponding intervals, i.e. (β0, C0) = (1/2, 1/2).

Bayes0 performs well when the sparsity parameter β is correctly specified, and its per-
formance is fairly robust to Cm. However, it performs poorly when β is misspecified, and
increasingly so as m increases. The results is markedly different for FDR: FDR threshold-
ing is less adaptive to Cm than Bayes0, but much more adaptive to the sparsity parameter
β, as illustrated by the fact that the configurations with low relative excess risk span the
whole range of β. For FDR thresholding at αm = αoptm (β0, C0), the fraction of configura-
tions (β,Cm) for which Em ≤ 0.1 increases as m increases. This illustrates the asymptotic
optimality of FDR thresholding for classification under sparsity in the Gaussian location
model. Similar conclusions hold for the Gaussian scale and the Laplace scale models, see
the Supplementary Materials of [J17]).

Figure 4.1: Adaptation to sparsity by FDR thresholding in the Gaussian location model.
relative excess risks Em for various thresholding procedures (rows) and different values of
m (columns). In each panel, the corresponding risk is plotted as a function of β ∈ [0, 1]
(horizontal axis) and Cm ∈ [0, 1] (vertical axis). Colors range from white (low risk) to dark
red (high risk), as indicated by the color bar at the bottom. Black lines represent the level
set Em = 0.1. The point (β,Cm) = (β0, C0) is marked by “+”. We chose β0 = 1/2 and
C0 = 1/2. See main text for details.
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4.4 Extensions

We have also shown in the Supplementary Materials of [J17] that these results can be ex-
tended to a more general model where the density of the test statistics under the alternative
is log-concave. Following our work [J17], several papers have studied the performance of the
BH procedure for classification under sparsity in other settings. In Frommlet and Bogdan
[66], the test statistics are independently and identically distributed as a mixture between
N (0, 1) (corresponding to a null hypothesis) and a convolution between a measure ν and
the N (0, σ2/n) distribution (corresponding to the alternative distribution), with a known
σ2. Other contributions have studied monotone polynomial tail distributions including the
Student’s t, Pareto, and Inverse Gamma distributions [70, 6, 55]1. Another interesting con-
tribution in the same area of research is [34], where the Gaussian scale models with so-called
one-group shrinkage priors. In all these contributions, the authors establish the asymptotic
optimality of the BH procedure (without studying the convergence rates).

1Two of these manuscripts seem to have merged into the third one [55].
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Chapter 5

Post hoc inference via multiple
testing

We introduce a generic framework to perform simultaneous inference, based on the control
of a risk called the Joint Error Rate. This framework provides a unified view of post hoc
inference methods. We propose two types of JER controlling procedures: procedures that
are valid under arbitrary dependence under a randomization assumption, and procedures
that are valid under independence but dedicated to the case of locally-structured signals.
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Goeman and Solari [81] have introduced the appealing notion of post hoc inference as
a means to close the gap between the exploratory nature of data-driven research, and to
address the relative inflexibility and difficulty of interpretation of the control of classical
multiple testing risks such as the FDR. We refer so Section 2.3.4 and Figure 2.1 for an
illustration of the latter point. Their proposed procedure rely on the availability of (i) a
valid local test for all possible intersection hypotheses, and (ii) a computational shortcut to
bypass the exponential complexity of the calculation of the bound.

In this chapter, we propose another construction of post hoc inference procedures, where
the post hoc guarantee is obtained, by interpolation, from the control of a new multiple
testing risk called the Joint Error Rate (JER). After taking a closer look at the construction
by Goeman and Solari [81] in Section 5.1, we introduce the notion of JER and its properties
regarding post hoc inference (Section 5.2), and make a number of connections with previous
approaches. In Section 5.4 we introduce a relatively generic way to obtain sharp JER control
by adapting to the unknown dependency in the data. We have tried in this presentation to
emphasize the ideas and practical implications of the results of [J2]. Finally, in Section 5.5
we describe an extension of this work to the specific case of structured hypotheses (e.g. in
time or space)

5.1 State of the art and motivation

To motivate this chapter, we go back to the example of differential gene expression analysis
of leukemia samples, introduced in Chapter 1. The state-of-the-art approach to this problem
consists in performing one statistical test of no difference between means for each gene, and
to derive a list of “significant” genes according to a multiple testing criterion, usually the
FDR. As argued in Section 2.4.1, a common practice in the biomedical literature is then
to only retain those genes whose “fold change” (that is, the ratio of mean expression levels
between the two groups) exceeds a prescribed level [153]. This is illustrated by Figure 5.1,
where each gene is represented as a point in the (log(fold change), − log(p)) plan. This
representation is called a “volcano plot” in the biomedical literature. In this example, 163
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Figure 5.1: Volcano plot.

genes were selected by the BH procedure at level 0.05. 151 of these 163 genes have an
absolute log fold change larger than 0.3, but because FDR is an expected proportion, it
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is not stable by selection, so that we have no statistical guarantee on these 151 genes.
Following [81], our goal in this chapter is to provide statistical guarantees on such user-
defined selections, in the form of (PHα), which was already stated in Section 2.4.1.

P
(
∀S ⊂ Nm, |S ∩H0(P )| ≤ Vα(S)

)
≥ 1− α . (PHα)

We recall that for P ∈ P, H0(P ) denotes the set of (indices of) true null hypotheses satisfied
by P , that is, H0(P ) = {i ∈ Nm : P ∈ H0,i}, and H1(P ) = Nm \H0(P ). In words, Vα(S) is
an (1− α)-upper confidence bound on the number of false positives in S. Using the closed
testing machinery, Goeman and Solari [81] have proposed a generic bound:

V GS
α (S) = max

J 6⊂Rct
|S ∩ J | = max

{
|I| : I ⊂ S, I /∈ Rct

}
(5.1)

where the second equality holds because Rct (the set of intersection hypotheses rejected by
the closed testing procedure, defined in (2.12)) is stable by the superset operation. This
bound exploits non-consonant rejections of the closed testing procedure. A non-consonant
rejection is a subset I ⊂ Nm such that HI is rejected by closed testing, but no elementary
hypothesis Hi = H0,i for i ∈ I is rejected by closed testing. Non-consonant rejections are a
waste from the FWER control perspective, because FWER control only retains elementary
hypotheses, that is, elements of Rct∩H. However, they can be useful for post hoc inference,
as we now illustrate by reproducing Figure 1 of [81] in Figure 5.2, with m = 3 and where
the hypotheses rejected by the local test are crossed. In this particular example, all of
the hypotheses rejected by the local test are also rejected by the closed testing procedure.
The rejection of H{2,3} = H0,2 ∩ H0,3 is non-consonant, because neither H{2} = H0,2 or
H{3} = H0,3 is rejected by the closed testing procedure. The bound V GS

α tells us not only
that V GS

α ({1}) = 0 (which we already knew from the classical FWER control), but also that
V GS
α ({2, 3}) = 1, that is, at least H2 or H3 is a true positive.

Figure 5.2: [81, Figure 1]: “Intersection hypotheses formed by elementary hypotheses H1,
H2 and H3. Rejected hypotheses have been marked with a cross. The rejection of H2 ∩H3

is a non-consonant rejection.”

Goeman and Solari [81] have introduced shortcuts to obtain a computationally efficient
post-hoc procedure in the particular case of Simes local tests, thus valid under Assumption
(PRDS(H0)). An improved shortcut in linearithmic time (that is, O(m log(m))) complexity
has recently been proposed [22]. This shortcut is exact, i.e. its output is the bound (5.1)
and not an upper bound of it.

Figure 5.3 illustrates the application of this shortcut with α = 0.1. In the left plot, this
bound is applied to the set of 151 genes previously selected, and also to the two subsets
consisting of genes with positive and negative log fold change. Note that this application to
three sets is perfectly valid, because the bound in (5.8) is post hoc, ie it holds jointly an all
sets of genes of interest. With probability larger than 0.9, we have the following guarantees:
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79 of the 151 genes are truly differentially expressed; among the subset of 27 genes which
are more expressed in BCR/ABL samples, at least 1 is a true discovery, while among the
complementary subset of 123 genes which are less expressed in BCR/ABL samples, at least
62 are true discoveries.
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Figure 5.3: Left: volcano plot using post hoc inference; right: corresponding FDP confidence
envelope.

The right plot of Figure 5.3 illustrates the use of this shortcut to build a (1 − α)-level
confidence envelope for the FDP among the most significant items. For example, we are
90% confident that the FDP of the 163 genes that were selected by the BH procedure at
level 0.05 is less than 0.48. This statement can be obtained to the one that we obtained
directly from FDX control (as a simple by-product of Markov’s inequality) in Section 2.3.4,
that is, FDX(RBH(0.05) ≥ 0.5) ≤ 0.1. The fundamental difference is that post hoc bounds
yield confidence statements on arbitrary subsets of Nm, not only S = RBH(0.05).

5.2 Joint Error Rate

5.2.1 Definition and properties

Our proposed construction of post hoc inference procedures relies on a risk measure that we
term Joint (Family-Wise) Error Rate (JER). In this section we give the definition of this
risk measure and explain how in can be used to build post hoc confidence bounds.

Definition 5.1. Consider a family R = (Rk, ζk)k∈NK , for some integer K ≥ 1, with Rk ⊂
Nm and ζk ∈ N. We define the Joint Family-Wise Error Rate (JER) of R as

JER(R) = P
(
∃k ∈ NK , |Rk ∩H0| > ζk

)
(5.2)

The family R is said to control JER at level α ∈ [0, 1] if:

P
(
∀k ∈ NK , |Rk ∩H0| ≤ ζk

)
≥ 1− α. (5.3)

In the above definition, we allow R to be a data-dependent family with Rk(X), ζk(X),
but omit the dependence in X to ease notation. If we denote by A(R) = {A ⊂ Nm :
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∀k, |Rk ∩A| ≤ ζk}, then the functional V ∗R defined by

V ∗R(S) = max{|S ∩A| : A ∈ A(R)} , S ⊂ Nm (5.4)

satisfies (PHα) under (5.3). Moreover, it is optimal in the sense that it is the smallest upper
bound on |S∩H0| which is valid for any S under (5.3), because H0 could be any subset A of
Nm satisfying ∀k, |Rk ∩ A| ≤ ζk. However, it can be shown that the problem of computing
V ∗R(S) given an arbitrary reference family R and S ⊂ Nm , is NP-hard [J2, Proposition 2.3].
To overcome this computational complexity, we introduce the following coarser bound:

V R(S) = |S| ∧ min
k∈NK

|S ∩Rck|+ ζk , S ⊂ Nm . (5.5)

It is easy to see that V R satisfies (PHα) when R controls JER. Indeed, we note that on
the event of probability greater than 1 − α on which (5.3) holds, we have for any k ∈ NK
and any S ⊂ Nm,

|S ∩H0| = |S ∩Rck ∩H0|+ |S ∩Rk ∩H0|
≤ |S ∩Rck| + |Rk ∩H0|
≤ |S ∩Rck| + ζk ,

where we have used (5.3) in the last inequality. Proposition 5.2 below formalizes the general
link between JER control and the associated post hoc bounds:

Proposition 5.2 ([J2]). Let α ∈ [0, 1]. The family R controls JER at level α if and only if
V R or V ∗R satisfies (PHα).

5.2.2 Connection to confidence envelopes and FDX control

The JER framework makes it possible to draw interesting connections with the concepts on
confidence envelopes [149, 125, 129, 130], and closed testing [81]. Some of these connections
are also made in a recent paper by Katsevich and Ramdas [3]. This point is developed in
detail in Section S-1 of the supplement of the paper [J2]. Here, we only summarize the main
points regarding these connections.

Confidence envelopes and quantile bounding functions. Uniform upper confidence
bounds on the empirical distribution function of null p-values are deduced by [149, 129, 130,
3] from probabilistic guarantees of the form

P
(
∀t ∈ [0, 1] : |H0 ∩ R̃t| ≤ B(t)

)
≥ 1− α ,

where R̃t = {i : pi ≤ t} denotes a p-value level set. The above guarantee assumption can be
interpreted as a specific JER control, and the bounds derived in [130] can be obtained by
V in (5.5) under natural assumptions.

Augmentation. Augmentation procedures [125] are based on the control of the k-FWER
on a specific set Rk, and an interpolation from this control to all possible rejection sets.
The augmentation bound of [125] may be written as V aug(S) = min(|S ∩Rck|+ (k− 1), |S|).
This is a particular case of the bound V in (5.5), when the reference family only consists of
a single element (Rk, ζk = k − 1). As noted by [125], the augmentation approach of [152]
can itself be seen as the particular case when k = 1. Therefore, the bound V in (5.5) can
be seen as an extension of the augmentation principle.
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Inversion and closed testing. Inversion procedures [125] are based on family of local
tests for all intersection hypotheses, which also form the basis over which [81] is built. The
generic post hoc bound obtained in [81] is in fact equivalent to the inversion bound that
can be derived from Genovese and Wasserman [125, Equation (10)], even though the latter
relies only on local intersection tests, and not on closed testing.

Moreover, the inversion procedure of [125] can be seen as a particular case of the bound
V ∗, for the choice ζk = |Rk| − 1 which corresponds to a FWER guarantee in each Rk
provided by local intersection tests. Conversely, JER control based on a reference family
can be embedded as a particular case of the local intersection test framework, by defining the
local test of an intersection hypothesis HI as φI = 0 if and only if ∀k ∈ NK , |Rk ∩ I| ≤ ζk.

To summarize these connections, with the formalism of JER control, the inversion pro-
cedure of [125], and therefore the post hoc bound of Goeman and Solari [81], can be seen
as a particular case of the bound V ∗, while the bound V can be seen as an extension of the
augmentation principle [125].

Structural assumption on the reference family

In the next sections we further study JER control, under additional assumptions on the
reference family R:

• in Sections 5.3 and 5.4, we make two further assumptions: (i) ζk = k − 1, (ii) R is
nested, in the sense that for any k ≤ k′, Rk ⊂ Rk′ . In this case, it can be shown
[J2, Proposition 2.5] that V R coincides with the optimal bound V ∗R. In the light of
the above connections, this property can be seen as an extension of the equivalence
between inversion and augmentation procedures stated in [125, Theorem 5].

• In Section 5.5 we take a drastically different point of view in order to address the case
where the hypotheses are linearly ordered (e.g. in time or space). We assume that the
(Rk) are given and deterministic, and that any two elements of the reference family
are either disjoint or nested. The corresponding ζk are then random and have to be
calibrated from the data in order for (5.3) to be satisfied.

5.3 JER control via Simes inequality

We assume in this section that R is nested. Under this assumption, it can be shown that
the bounds V and V ∗ coincide, i.e. that the bound V is optimal. Moreover, we assume that
ζk = k − 1. In this setting, it is natural to consider thresholding-based reference families
based on p-value level sets, that is, families of the form

Rk = {i ∈ Nm : pi ≤ tk} , k ∈ {1, . . . ,K}, (5.6)

where tk ∈ R, 1 ≤ k ≤ K. In view of Proposition 5.2, the main challenge in order to
obtain post hoc bounds is to identify a suitable reference family R that controls JER at
some prescribed level α.

5.3.1 Obtaining Simes’ shortcut by a particular JER control

JER control is related to p(k:H0), the k-th smallest value in the set {pi, i ∈ H0(P )}:

JER(R) = P
(
∃k = 1, . . . ,K ∧m0, p(k:H0) ≤ tk

)
. (5.7)

The most natural example of a thresholding reference family is the Simes threshold
family, defined by Rk(α) = {i ∈ Nm : pi ≤ αk/m} and ζk = k−1 for k ∈ Nm (here, K = m).
A straightforward consequence of the Simes and Hommel inequalities (Proposition 2.3)

46



is that the Simes family controls JER at level α under (PRDS(H0)), while the Hommel
family Rk(α/C(m)) controls JER at level α under general dependence. We recall that
C(m) =

∑
i∈Nm i

−1. The corresponding post hoc bound according to (5.5) is given by

V R(α)(S) = |S| ∧ min
1≤k≤|S|

{∑
i∈S

1

{
pi >

αk

m

}
+ k − 1

}
(5.8)

for α ∈ (0, 1) and S ⊂ Nm. Proposition 5.2 entails the following result:

Corollary 5.3. For any α ∈ (0, 1),

1. V R(α) satisfies (PHα) under PRDS(H0);

2. V R(α/C(m)) satisfies (PHα) under general dependence.

This result illustrates the potential of JER control as a generic device to obtain post hoc
bounds: we have obtained an easy-to-compute post-hoc bound as an elementary consequence
of the Simes-Hommel inequality. It turns out that the bound (5.8) is the bound obtained
by the Simes shortcut in [81]. We refer to [J2, Section S-1.4] for a proof.

In our construction, the problem of finding a JER controlling family replaces the two-
step construction of [81]: (i) find a valid (and usually computationally prohibitive) post hoc
bound under a specific probabilistic assumption, and (ii) identify shortcuts to calculate this
bound efficiently. We find the formulation (5.8) to be simple and natural: for each k, adding
k− 1 to the number of p-values in S larger than αk/m (i.e., not rejected by the generalized
Bonferroni procedure for k-FWER control) is a natural upper bound on the number of false
positives in S.

5.3.2 Limitations of Simes-based post hoc bounds

We report a small simulation study in the same Gaussian ρ-equi-correlated model as in
Section 2.3.4, which illustrates the possible conservativeness of the Simes inequality. We
consider a “white” setting, that is, all null hypotheses are true, |H0| = m = 1, 000. In
Table 5.1, we quantify the conservativeness of the Simes inequality as the ratio of its size
(that is, the level actually achieved by the left-hand side in inequality (2.8)) to the target
level α. Here, the size is estimated from 1, 000 replications. The fact that the size is very
close to the target level for ρ = 0 illustrates the sharpness of the Simes inequality under
independence. However, for ρ = 0.4, the achieved level is only 42% of the target level.
Similarly, the Hommel inequality is sharp in the sense that there exists a worst-case p-value

Equi-correlation level: ρ 0 0.1 0.2 0.4 0.8
Size (achieved level) 0.99 0.85 0.72 0.42 0.39

Table 5.1: Conservativeness of Simes inequality in the Gaussian equi-correlated model. Here,
|H0| = m = 1, 000 and α = 0.2.

distribution such that it is an equality, but it is typically quite conservative when applied
to a specific p-value distribution. By construction, the bounds obtained in Corollary 5.3
inherit the properties of the Simes and Hommel inequalities. In particular, the Simes bound
(5.8) is sharp under independence and conservative under (PRDS(H0)).

Instead of assuming a specific dependency setting, we propose in the next section a
construction of JER controlling families (and associated post hoc bounds) that take into
account the dependency between the tested hypotheses. This idea can be seen as a general-
ization of the notion of adaptivity to dependence by randomization for FWER control, that
we reviewed in Section 2.2.2.
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5.4 Adaptive JER control from a reference family

As in the preceding section, we assume in this section that R is nested, with ζk = k − 1,
and we consider thresholding-based reference families.

5.4.1 General construction

We consider a reference family R(λ) of the form (5.6), based on thresholds tk(λ), 1 ≤ k ≤ K,
for some functions tk : λ ∈ [0, 1] 7→ tk(λ). Our goal is to choose λ = λ(α) in such a way
that JER control (5.3) is satisfied. For example, in the above simulation example, we would
like when ρ = 0.4 to use the Simes reference family with λ(α) = α/0.42, even if the data-
generating model was unknown.

Definition 5.4 (Threshold template). A template is a family of functions tk(λ), λ ∈ [0, 1],
k ∈ NK , such that K ∈ Nm and for all k ∈ NK , tk(0) = 0 and tk(·) is non-decreasing and
left-continuous on [0, 1]. The parameter K is called the size of the template.

A template can be seen as a spectrum of curves, parametrized by λ. The theoretical
results below are given in terms of a generic, fixed template tk(λ), λ ∈ [0, 1], k ∈ NK .
When λ is fixed, we refer to tk(λ), k ∈ NK , as thresholds. In our examples and numerical
illustrations we will work with the following two templates:

• Linear template: tk(λ) = λk/m, t−1
k (y) = ym/k;

• Beta template: tk(λ) =λ-quantile of β(k,m− k+ 1), t−1
k (y) = P(β(k,m− k+ 1) ≤ y).

An illustration for these templates is provided in Figure 5.4.
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Figure 5.4: Curves k 7→ tk(λ) for a wide range of λ values. Left: linear template. Right:
beta template.

Definition 5.5 (λ-calibration). Given a threshold template tk(λ), λ ∈ [0, 1], 1 ≤ k ≤ K, a
functional λ(α,A), α ∈ (0, 1), A ⊂ Nm, is called a λ-calibration if it is non-increasing in A
and satisfies: ∀α ∈ (0, 1), JER(R(λ(α,H0))) ≤ α.

The question of how to associate a valid λ-calibration to a given template is addressed
in the next section. Given such a valid λ-calibration, λ(α,H0) is still not accessible because
H0 is unknown. However, as λ is non-decreasing in A, we have that λ(α,H0) ≥ λ(α,Nm),
so that JER(R(λ(α,Nm))) ≤ α as well. Therefore, the template tk(λ(α,Nm)) already
gives us an operative reference family for JER control. In order to overcome the possible
conservativeness this template due to the fact that H0 ( Nm, we define the following step-
down procedure:
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Algorithm 1 General step-down algorithm

j ← 0
A(0) ← Nm
repeat

j ← j + 1
λj ← λ(α,A(j−1))
A(j) ← {i ∈ Nm : pi(X) ≥ t1(λj)}

until A(j) = A(j−1)

return Â = A(j)

By construction, this algorithm leads to a tighter JER control than its single-step version
based on tk(λ(α,H)). The proof that it yields JER control at the target level α can be
obtained using the classical step-down methodology laid down by [141].

5.4.2 Randomization-based JER control under general dependence

In [J2] we provide valid λ-calibrations both for the case where the observation follows a
translation model with known dependence, and for the case of general dependence under
the randomization assumption (Rand) introduced in Section 2.2. Here, we focus on the
second case, which is more practically relevant. Under (Rand), there exists a group G of
transformations acting on the observation set in such a way that the joint distribution of the
transformed null p-values is invariant under the action of any element of G. This assumption
is satisfied1 in particular in two important settings:

• location models of the form (2.2) with symmetric noise distribution: G = {−1, 1}n is
the group of signs, which acts on the observation set by the element-wise product;

• two-sample multiple testing problems: G is the symmetric group of order n (where n
is the sample size as in the Leukemia study), which acts on the observation set by
permutation of the sample labels. This is the case in the differential gene expression
study that we have been using as a working example throughout this part.

Given a G satisfying (Rand), we consider a (random) B−tuple (g1, g2, . . . , gB) of G
(for some B ≥ 2), where g1 is the identity element of G and g2, . . . , gB have been drawn
(independently of the other variables) as i.i.d. variables, each being uniformly distributed
on G. Let us consider a deterministic template tk(·), 1 ≤ k ≤ K, and, for short, denote for
all A ⊂ Nm,

Ψ(X,A) = min
1≤k≤K∧|A|

{
t−1
k

(
p(k:A)(X)

)}
.

Now introduce the (data-dependent) functional

λ(α,A) = max

{
λ ≥ 0 : B−1

B∑
j=1

1 {Ψ(gj .X,A) < λ} ≤ α
}
. (5.9)

In practice, we can compute this functional easily as λ(α,A) = Ψ(bαBc+1) where Ψ(1) ≤
Ψ(2) ≤ · · · ≤ Ψ(B) denote the ordered sample (Ψ(gj .X,A), 1 ≤ j ≤ B). We have the

following result, where Â denotes the output of Algorithm 5.4.1.

Theorem 5.6 (λ-calibration for unknown dependence). Consider any p-value family sat-
isfying (Rand), a deterministic template and the associated reference family R(λ). Then
the (data-dependent) functional λ(·, ·) defined by (5.9) is a λ-calibration in the sense of

Definition 5.5, and both R(λ(α,Nm)) and R(λ(α, Â)) control the JER at level α.

1See [J2, Section 2.1 and Appendix S-4] for proofs.
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A related idea has been proposed independently by Hemerik, Solari, and Goeman [7] to
build confidence envelopes for the False Discovery Proportion. To illustrate Theorem 5.6,
we report (in Section 5.4.3) numerical experiments in a Gaussian location model where we
use sign-flipping-based λ-calibration, and (in Section 5.4.4) the results of permutation-based
λ-calibration in two-sample testing for the Leukemia data set.

5.4.3 Numerical experiments

We report experiments performed with the linear template in the two-sided Gaussian loca-
tion model under equi-correlation, in the case of an unknown dependence. We let n be the
sample size. The observations (Xi,j)i∈Nm ∈ Rm, j ∈ Nn are distributed as ρ-equi-correlated,
and the test statistics for i ∈ Nm is defined as T (Xi,j , 1 ≤ j ≤ n) = n−1/2

∑n
j=1Xi,j . We use

sign-flipping to approximate the joint distribution of the test statistics under the null hypoth-
esis. Specifically, the sign-flipped observation associated to a vector of signs s ∈ {−1, 1}n is
defined as

(s.X)i,j = sjXi,j , i ∈ Nm, j ∈ Nn.

The location parameter is set to µi = n−1/2µ 1 {i ∈ H1}, where µ > 0 quantifies the
signal-to-noise ratio. In Figure 5.5, the target JER level α and the level π0α are repre-
sented by horizontal lines. Each color corresponds to a different λ-calibration (or absence
of calibration for the Simes reference family):
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Figure 5.5: JER control based on the linear template for equi-correlated test statistics:
λ-calibration by sign-flipping in the location model.

The JER is controlled at the target level α in all situations, as expected from Theorem 5.6.
Oracle calibration yields exact JER control, up to sampling fluctuations. As discussed above,
the Simes reference family with parameter α yields JER equal to π0α under independence
(ρ = 0), while it is more conservative under positive dependence ρ > 0. Single-step λ-
calibration addresses this conservativeness by adapting to the (unknown) dependence: it
yields JER control at π0α in all settings considered. Finally, as the signal-to-noise ratio
µ gets larger, the step-down λ-calibration yields a JER closer to the nominal level α in
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non-sparse situations (π0 ∈ {0.8, 0.9}). In a sparse situation (π0 = 0.99), corresponding to
m1 = 10 true alternative hypotheses, the single-step procedure is already quite sharp and
essentially indistinguishable from its Oracle counterpart, so this setting has been omitted
from Figure 5.5.

5.4.4 Illustration on the Leukemia data set

Figure 5.6 compares confidence envelopes obtained from the Simes reference family (long-
dashed purple curve), to the permutation-based λ-calibration derived from Theorem 5.6
using B = 1, 000 permutation of the sample labels for the linear template with K = m
(dashed red curve) and the beta template with K = 50 (solid green curve). Note that
Assumption (Rand) holds in this two-sample framework.

While (1 − α)-lower confidence bounds on the number of true positives of the form{(
k, |Sk| − V (Sk)

)
: k ∈ Nm

}
are displayed in the left panel, (1−α)-upper confidence bounds

on the proportion of false positives
{(
k, V (Sk)/ |Sk|

)
: k ∈ Nm

}
are shown in the right panel.

The vertical line in Figure 5.6 corresponds to the 163 genes selected by the BH procedure
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Figure 5.6: Confidence bounds on the number of true positives (left) and on the proportion
of false positives (right) for several reference families: Simes reference family (long-dashed
purple curve), linear template after λ-calibration (dashed red curve), and beta template
after λ-calibration (solid green curve).

at level 5%. The Simes bound ensures that the FDP of this subset is not larger than
0.48. As noted above concerning the BH procedure, we have a priori no guarantee that this
bound is valid, because such multiple two-sample testing situations have not been shown to
satisfy the PRDS assumption under which the Simes inequality is valid2. In contrast, the λ-
calibrated bounds built by permutation are by construction valid here. Moreover, both are
much sharper than the Simes bound while the λ-calibrated bound using the linear template
is twice smaller, ensuring FDP< 0.23, and even smaller for the beta template with K = 50.
The bound obtained by λ-calibration of the linear template is uniformly sharper that the
original Simes bound (5.8), which corresponds to λ = α. This illustrates the adaptivity to
dependence achieved by λ-calibration. The bound obtained from the beta template is less
sharp for p-value level sets Sk of cardinal less than k = 120, and then sharper. This is
consistent with the shape of the threshold functions displayed in Figure 5.4.

To further illustrate the power of λ-calibration to obtain adaptivity to dependence in the
classical problem of differential expression studies, Figure 5.7 illustrates the application of
the bound derived from the linear template with (single-step) λ-calibration using B = 1, 000

2In this particular case, λ-calibration with the linear template yields λ(α) > α, which a posteriori implies
that the Simes inequality was indeed valid.
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random permutations, with α = 0.1 (that is, the same bound as the dashed red line in
Figure 5.6). Again, the obtained guarantees are substantially more informative than the
ones obtained from the Simes reference family with no λ-calibration (left plot of Figure 5.3).
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Figure 5.7: Volcano plot using adaptive post hoc inference.

5.5 Spatially-structured hypotheses

In this section we describe a recent work [J3] that illustrates the flexibility of the JER
framework introduced in Section 5.2. This contribution stems from a use-case described in
[50]. This paper focuses on applications where the hypotheses (H0,i)1≤i≤m to be tested are
linearly ordered (e.g. in time or space). In such situations, of particular interest are interval
hypotheses, that is, intersection hypotheses of the form Hi:j =

⋃
i≤k≤j H0,k. A natural

idea in the JER framework is to include such sets in the reference family, in order for the
associated post hoc bounds to be particularly sharp on such sets. These candidate sets are
deterministic and given a priori. The corresponding (possibly random) ζi:j achieving JER
control have to be calibrated from the data or from probabilistic inequalities. This is in
sharp contrast to Sections 5.3 and 5.4, where the ζk are deterministic and given a priori,
while the Rk are random, and chosen in such a way that JER is controlled. The JER
framework described in Section 5.2 accommodates both settings.

5.5.1 Theoretical results

A convenient assumption to accommodate the case of linearly ordered hypotheses is that
the reference family satisfies a forest assumption, that is, that any two elements of {Rk}k∈K
are either disjoint or nested:

Definition 5.7. A reference family R = (Rk, ζk)k∈K is said to have a forest structure if
following property is satisfied:

∀k, k′ ∈ K, Rk ∩Rk′ ∈ {Rk, Rk′ ,∅}, (Forest)
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If a reference family satisfies (Forest), it can be shown that there exists a partition of the
original hypotheses into interval hypotheses called leaves, such that each element of the
reference family may be written as the disjoint union of consecutive leaves [J3, Lemma 5].

When the reference family is not nested, we do not necessarily have V ∗ = V . In partic-
ular, under (Forest), the bound V may not adequately capture the hierarchical structure of
the forest. A natural extension of V to the non-nested case is given by the bounds:

Ṽ qR(S) = min
Q⊂K,|Q|≤q

(∑
k∈Q

ζk ∧ |S ∩Rk|+
∣∣∣∣S \ ⋃

k∈Q

Rk

∣∣∣∣
)
, 1 ≤ q ≤ K, S ⊂ Nm . (5.10)

By construction, we have Ṽ 1
R = V , Ṽ qR is non-increasing in q, and Ṽ qR ≤ V ∗. The main result

of [J3] (Theorem 3.6) is that under (Forest), we have

V ∗ = Ṽ `R ,

where ` is the number of leaves in a partition associated to the reference family. The proof
of this result is constructive and therefore provides an algorithm to calculate V ∗. The
complexity of the computation of V ∗(S) for a given S with this algorithm is in O(dm),
where d is the depth of the forest. The above construction is generic and yields post hoc
bounds tailored to the Forest structure as soon as the reference family controls JER. In
particular, this is the case as soon as for each k ∈ NK

P
(
|Rk ∩H0| > ζk

)
< α/K,

that is, as soon as ζk is an over-estimator of the proportion of true null hypotheses in Rk at
level α/K. A simple way to achieve this without any dependence assumption is to calibrate
ζk using a Bonferroni test, i.e. to choose

ζk =
∑
i∈Rk

1

{
pi >

α

K |Rk|

}
.

While this calibration can be improved by using a Holm-Bonferroni test instead of a Bon-
ferroni test, we can expect the associated post hoc bounds to be conservative because ζk is
deducted from a FWER control on the hypotheses in Rk, which is more demanding than
the mere estimation of the number of true nulls in Rk.

In [J3], we consider an alternative calibration where ζk is given by a procedure to directly
estimate the H0 ∪RK . Specifically, we use an estimator inspired by the Storey-λ estimator
(2.14). Formally, we define

ζk = |Rk| ∧ min
t∈[0,1)

⌊
C

2(1− t)
+

(
C2

4(1− t)2
+

∑
i∈Rk 1{pi > t}

1− t

)1/2
⌋2

, k ∈ K, (5.11)

where C =
√

1
2 log

(
K
α

)
. The [195] inequality with the optimal constant of [175] yields that

the associated reference family controls JER under (indep) [J3, Proposition 4.1].

5.5.2 Application to the Leukemia data set

We illustrate these results with a preliminary application of the above bounds to the
Leukemia data set. Our biological motivation is the fact that gene expression activity
can be clustered along the genome. The m individual hypotheses are naturally partitioned
into 23 subsets, each corresponding to a given chromosome. Within each chromosome, we
consider sets of s = 10 successive genes. Hence, we focus on a reference family with the
following elements

Rc,k = {(k − 1)s+ 1, . . . ,min(ks,mc)}, k ∈ NKc , c ∈ {1, . . . , 23},
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where, in chromosome c, mc denotes the number of genes, Kc = dmc/se the number of
corresponding regions. In addition, for each (c, k) we obtain ζc,k(X) by (5.11), with Rk =
Rc,k and α = αc/Kc. This choice accounts for a union bound over all chromosomes. In this
genomic example, (indep) may not hold, so we have no formal guarantee that this bound
is valid. Therefore, the results obtained below are merely illustrative of the approach and
may not have biological relevance.

We report the results for chromosome c = 19, which contains mc = 626 genes. In
this particular case, we obtain trivial bounds ζc,k(X) = |Rc,k| for all k ∈ NKc . However,
non-trivial bounds can be obtained by enriching the reference family by recursive binary
aggregation of the neighboring Rc,k, as described in detail in [J3]. The total number of
elements in the enriched family is less than 2Kc. In our example, it turns out that (5.10)
combined with (5.11) yields 6 true discoveries in the interval R17:24 and 1 true discovery in
the interval R53:54, where we have denoted

Ru:v =
⋃

u≤k≤v

Rc,k.

This is illustrated by Figure 5.8 where the individual p-values are displayed (on the − log10

scale) as a function of their order on chromosome 19. The sets R17:24 and R53:54 are
highlighted in orange, with the corresponding number of true discoveries marked in each
region. We obtain a non-trivial bound not because of the large effect of any individual

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

0 100 200 300 400 500 600

0
1

2
3

4

Gene order on chromosome 19

−
lo

g 1
0(p

)

16

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●
●

●
●
●
●●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●●

●
●

●

●

●

●

●
●

●

Figure 5.8: Evidence of locally-structured signal on chromosome 19 detected by the bound
(5.11).

gene, but because of the presence of sufficiently many moderate effects. In particular, in the
rightmost orange region in Figure 5.8, the distribution of − log10(p) is shifted away from
0 when compared to the rest of chromosome 19. In comparison, we obtain trivial bounds
V R(R53:54) = |R53:54| = 2s and V R(R17:24) = |R17:24| = 8s from (5.5) both for the linear or
the beta template. These numerical results illustrate the interest of these bounds tailored
to situations where the signal is expected to be spatially structured.
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Part II

Inference from heterogeneous
and ordered genomic data
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Chapter 6

Overview of contributions

This introductory chapter provides an overview of the contributions detailed in Chapters 7
to 10 and their scientific context. We also provide a short description of contributions that
are not detailed further in this part. As announced in Chapter 1, these contributions can
be categorized in two broad themes.

• Inference from heterogeneous genomic data: by “heterogeneous”, we mean that several
levels of biological information are available for the same variables (typically, genes).
We focus on the question of identifying relevant features in situations where the sam-
pling units are the same across levels of information or where prior knowledge on the
dependency between variables is available in the form of gene networks;

• Inference from ordered genomic data: in this case, an important challenge is to sum-
marize the data locally into biologically meaningful units. This can be addressed
by segmenting a genome (or more precisely each of its chromosomes) into successive
homogeneous regions.

A guiding principle for my research has been to try to take advantage of these data charac-
teristics in order to build relevant trade-offs between biological interpretation and statistical
and computational performance.

Remark: Throughout this part, the number of variables is denoted by p, whereas the
number of hypotheses tested was denoted by m in Part I.

6.1 Inference from heterogeneous genomic data

6.1.1 Association between different levels of biological information

We focus on the case where different levels of biological information are observed for the
same variables (e.g., genes) and the same observations (e.g. biological samples, or patients).
For instance, within the Cancer Genome Atlas (TCGA) project, molecular profiling of each
cancer sample is typically performed at least at 3 different biological levels: DNA copy
numbers, DNA methylation, and gene expression. After summarizing each of these types
of information at the gene scale (an important bioinformatic issue which is not covered in
this document except in Section 9.2 for DNA copy numbers), the data is in the form of a
3 × n × p-dimensional array, where n is the number of observations and p the number of
genes. A natural question in this setting is to identify variables for which the different levels
of biological information are associated, in a statistical sense yet to be defined more formally
for a specific biomedical question.

In Chapter 7, we tackle the question of identifying genes whose DNA copy number
is associated with their expression level, accounting for DNA methylation. The approach
proposed in that chapter is a marginal (i.e., gene by gene) feature selection method, which
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explicitly exploits some of the possible links between these levels of biological information.
This approach provides statistical guarantees on the obtained estimates [J14, J8, S5]. This
work was initiated while I was a post doc at UC Berkeley, jointly with Antoine Chambaz,
then a visiting professor in the Biostatistics Department in the group of Mark van der Laan.
It stems from the theory of Targeted Minimal Loss Estimation (TMLE), which has been
initiated by van der Laan and Rubin [131].

6.1.2 Incorporating prior knowledge in the form of networks

Genes operate not individually but jointly via biological interaction networks, which are
partly known. In order to better understand the mechanisms of cancer development, as
well as the response of cancer cells to treatments, biomedical scientists need mathematical
tools that exploit this knowledge of functional links between genes. Below we describe two
contributions in this field. Only the first one is detailed in a specific chapter.

Chapter 8: Statistical tests on graphs [J16, S6]. One of the most classical application
of multiple testing to genomics is the search for differentially expressed genes, as illustrated in
Part I. Besides gene expression data, we have at our disposal prior knowledge on functional
links between genes, for example via gene regulation networks. However, most existing
methods either rely on marginal (that is, gene by gene) tests of differential expression,
or reduce the biological information at hand to unstructured gene lists, disregarding the
network information. In Chapter 8 we describe a method to perform multivariate tests of
differential expression on graphs [J16, S6]. This method relies on a dimension reduction
of gene expression data driven by the graph topology. This work was done while I was a
post-doc at Berkeley, in collaboration with Laurent Jacob (also a post-doc at Berkeley at
that time) and Sandrine Dudoit.

Identification of deregulated genes and potential regulators [J10, C1]. The
mechanisms of regulation of normal cells are known to be altered in cancer cells. We have
proposed a method to identify transcription factors involved in such gene deregulations [C1].
Transcription factors (TFs) are proteins that control or regulate gene expression, that is,
the transcription of DNA into RNA. As any other protein, TFs are coded by genes, which
justifies using their expression to quantify their activity. The method proposed in [C1] con-
sists in three steps. First, a reference gene regulatory network that connects transcription
factors to their downstream targets is inferred from gene expression data in a steady (or
normal) state. This was done by adapting of the LICORN method [J25]1. In a second step,
the behavior of genes in tumor samples is then compared to this reference network in order
to detect deregulated target genes [J10], as detailed in the next paragraph. Finally, the
ability of each transcription factor to explain these deregulations is quantified via a linear
model. The performance of this three-step strategy has been illustrated by numerical ex-
periments on a TGCA breast cancer data set. These experiments show that the information
about deregulation is complementary to the expression data, as the combination of the two
improves the performance of the supervised classification of cancer samples.

The second step relies on a statistical method to identify deregulated genes from a
reference regulation network, and gene expression data [J10]. We have proposed a model
based on a regulatory process in which all genes are allowed to be deregulated, and the
hidden variables correspond to the status (under/over/normally expressed) of the genes.
The model parameters are estimated via a tailored Expectation-Maximization (EM) [185]
algorithm. The resulting method infers posterior probabilities of gene deregulation for each
(gene, observation) pair, whereas more classical approaches only produce a gene deregulation
score common to all observations. This distinctive feature, which is relevant to biologists,

1LICORN has been developed by Mohamed Elati, and I participated to this development during my PhD
thesis.
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comes at the price of a more tricky model inference step, due to the large number of possible
states for the latent variables. This difficulty is bypassed by taking advantage of the fact that
the Maximization (M) step of the EM algorithm only requires the marginal distributions of
the latent variables to be known. We have shown by factorizing the model likelihood that
these marginal distributions may be estimated at the Expectation (E) step of the EM by
an algorithm of “Belief Propagation” [155].

This work was done in the context of a collaboration with former colleagues at Évry:
Julien Chiquet and Etienne Birmelé at LaMME for the statistical aspects, and Mohamed
Elati (Institute of Systems & Synthetic Biology, iSSB). This collaboration started with the
support of CNRS (PEPS BMI 2013, PI Etienne Birmelé), and continued thanks to the
support of an INSERM grant (2015-2019, PI Mohamed Elati) called LIONS for “Large-
scale Integrative approach to unravel the complex relationships between differentiatiON
and tumorigenesiS”. The work was mainly carried out by Thomas Picchetti [J10] during his
PhD thesis and then by Magali Champion during her post-doc [C1].

6.2 Inference from ordered genomic data

Genetic information is coded in long strings of DNA organized in chromosomes. High-
throughput sequencing such as RNAseq, DNAseq, ChipSeq and Hi-C makes it possible to
study biological phenomena along the entire genome at a very high resolution [52]. In
most cases, neighboring positions are expected to be statistically dependent. Using this a
priori information is one way of addressing the complexity of genome-wide analyses. For
instance, it is common practice to partition each chromosome into regions, because such
regions hopefully correspond to biological relevant or interpretable units (such as genes or
binding sites) and because statistical modelling and inference are simplified at the scale of
an individual region. In simple cases, such regions are given (for example genes in gene
expression analyses). However, in more complex cases as in Chapters 9 and 10, the regions
of interest are unknown and need to be learned from the data.

Recovering the “best” partition of p loci for a given number of classes is a segmentation
problem, also known as “multiple change point problem”. Such segmentation problems are
combinatorial in nature, as the number of possible segmentations of p loci for K change
points (or breakpoints) for a given K = 1 . . . p − 1 is

(
p−1
K

)
= O(pK). When K = o(p),

the best segmentation for all k = 1, . . . ,K in terms of `2 loss can be recovered efficiently in
quadratic time and space complexity using dynamic programming. However, this complexity
is typically too large for genomic applications, where p ∼ 104−106. Therefore, an important
challenge is to build statistically sound methods with sufficiently low algorithmic complexity
and that provides biologically interpretable results.

Chapter 9: Statistical inference from DNA copy number data. The simplest
scenario where the signals to be segmented are piecewise-constant is described in Chapter
9, which is dedicated to the analysis of DNA copy numbers in cancer studies. In this
case, segmentation can be cast as a least squares minimization problem [139, 67]. I have
started working on the statistical analysis of DNA copy numbers in cancers before my PhD
thesis, when I got hired as a research engineer at the Curie Institute. At that time and
during my PhD thesis, I developed data normalization methods [J28, S7], contributed to
the development of data analysis pipelines [J27, s6], visualization methods [J26, s5] and to
a review of clustering methods [J12]. I also worked on the development of a method to
distinguish new primary tumors from true recurrences on the basis of copy-number profiles
from a patient suffering from a second breast cancer [J23]. Copy numbers turned out to
also have a central part in my postdoc with Terry Speed at UC Berkeley, thanks to a
long-standing collaboration with Henrik Bengtsson (now an Associate Professor at UCSF).
Together we developed a normalization method [J21, s3], and contributed to the development
of another one [J18, s2] as well as segmentation method [J19, s1]. We also coauthored a
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book chapter on the statistical analysis of DNA copy numbers [B1], and participated to
larger research projects in the context of the Cancer Genome Atlas project (TCGA) that
funded my post doc [J20, J22, J15] I have continued working on this topic since I came
back to France [J11, S4, S2], in particular with Guillem Rigaill and during the PhD thesis
of Morgane Pierre-Jean (2013-2016) [38], which I co-supervised with Catherine Matias.

Chapter 9 presents some statistical insights I gained from working with DNA copy num-
ber data. It is mostly written as a review chapter, with contributions posterior to my PhD
thesis mentioned along the way in varying levels of detail: normalization methods in Sec-
tion 9.2, a review of segmentation method in Section 9.3, and a performance evaluation
framework in Section 9.4. Several software contributions are also highlighted.

Chapter 10: Adjacency-constrained clustering for Hi-C and GWAS. This chapter
tackles the more general situation of data described via a similarity measure, as in the case
for linkage disequilibrium in GWAS, and contact maps in Hi-C studies. The segmentation
problem consists in finding a common partition of rows and columns of a matrix of similarity
between objects, such that the signal is mostly concentrated in the diagonal blocks resulting
from the partition. This type of segmentation problems can be tackled by kernel-based
segmentation methods [118, 29]. However, the quadratic time complexity of these methods
cannot be improved without making additional assumptions on the kernel [16]. Indeed,
for a generic kernel, even computing the loss (e.g., the least square error) of any given
segmentation into a fixed number of segments has a computational cost of O(p2).

Chapter 10 summarizes a series of works initiated by the PhD thesis of Alia Dehman
(2012-2015) [44], which I co-supervised with Christophe Ambroise. Motivated by the idea
of taking into account the structure induced by linkage disequilibrium (LD) in GWAS, this
thesis lead to the development of a method to detect blocks of LD associated to a given
phenotype [J9] (Section 10.4). An important component of this method is an algorithm
called adjclust dedicated to the above-described problem of segmenting a similarity matrix
(Section 10.3), and its application to the detection of LD blocks. Since I moved to Toulouse
in 2016, we started with Nathalie Vialaneix (INRA MIA-Toulouse) to work on the problem of
detecting Topologically Associated Domains (TAD) from Hi-C data, for which this algorithm
is also relevant [J5, S3]. This collaboration was supported by a grant from the Mission
for Interdisciplinarity (MITI) at CNRS (SCALES project, 2017-2019). A major difference
between GWAS and Hi-C from a statistical perspective is that while the LD similarity is a
kernel, it is not necessarily the case for Hi-C similarity matrices, possibly leading to reversals
in the constrained HAC. This point, which is briefly mentioned in Section 10.2 has been
studied by Nathanaël Randriamihamison [J1] during the first year (2018-2019) of his PhD
thesis. This thesis is co-supervised by Nathalie Vialaneix, Marie Chavent (Université de
Bordeaux and Inria) and myself and funded by a joint INRA/Inria doctoral program.
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Chapter 7

Targeted minimal loss
estimation

Looking for genes whose DNA copy number is “associated with” their expression level
in a cancer study can help pinpoint candidates implied in the disease and enhance our
understanding of its molecular bases. Genomic covariates may play an important role in
the biological process and should therefore be taken into account. For instance, DNA
methylation is known to regulate gene expression. To quantify the association between
DNA copy number and expression, accounting for such relevant genomic covariates, we
propose to define a new parameter of interest, and build a method to infer it upon the
targeted minimum loss-based inference principle (TMLE).

Considering associations between DNA copy numbers and expression levels in genes
is not new [159, 113, 90, 87, 84]. In contrast to these earlier contributions, ours does
explicitly exploit that DNA copy number measurements feature both a reference level and
a continuum of other levels, instead of discretizing them or considering them as purely
continuous. Moreover, we naturally handle multi-dimensional, continuous covariates without
discretization. We do not need to assume that they are normally distributed, nor that their
true effect of DNA copy number on gene expression is linear.

References:

[J8] A. Chambaz and P. Neuvial. “tmle.npvi: targeted, integrative search of associations
between DNA copy number and gene expression, accounting for DNA methylation”.
Bioinformatics 31.18 (2015), pp. 3054–6

[J14] A. Chambaz, P. Neuvial, and M. J. van der Laan. “Estimation of a Non-Parametric
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[S5] A. Chambaz and P. Neuvial. Targeted Learning of a Non-Parametric Variable Impor-
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7.1 Defining the parameter of interest

Let O = (W,X, Y ) be a generic observation, where W , X and Y are respectively the
covariates (e.g., DNA methylation), DNA copy number and expression of a gene of interest
in a randomly picked biological sample. Let x0 be a reference value for X, corresponding
to the normal state of 2 DNA copies. We assume that the probability to observe X = x0

is bounded away from 0 and 1. We assume without loss of generality that x0 = 0. In the
absence of additional solid knowledge regarding the law of O, we decide to focus on the
following non-parametric variable importance measure Ψ. It is a mapping from M, the set
of all laws compatible with the definition of O, to R given by

Ψ(P ) = arg min
β∈R

EP
{

(Y − EP (Y |X = 0,W )− βX)
2
}
. (7.1)

This parameter is a measure of the importance of X relative to Y , accounting for W . More-
over, it is a non-parametric measure as it is defined regardless of a semi-parametric model of
the form Y = β(X−x0)+η(W )+U , with unspecified η and U such that EP (U |X,W ) = 0).
Therefore, the parameter of interest, Ψ(P0), is universally defined no matter what properties
the unknown true data-generating distribution P0 enjoys, or does not enjoy.

Interpretation in terms of risk excess. For all P ∈ M, Ψ(P ) may alternatively be
written [J14, Proposition 1] as:

Ψ(P ) =
EP {X(θ(P )(X,W )− θ(P )(0,W ))}

EP {X2}
, (7.2)

where θ(P )(X,W ) = EP (Y |X,W ). Therefore, the functional Ψ may be interpreted as
a generalization of the notion of risk excess to a continuous X. Indeed, when X ∈
{0, 1}, we have Ψ(P ) = EP {(θ(P )(x1,W ) − θ(P )(0,W ))h(P )(W )}, where h(P )(W ) =
P (X = x1|W )/EP {X2}. That is, Ψ(P ) is a weighted version of the classical risk excess:
EP {θ(P )(x1,W )− θ(P )(0,W )}, where the weights are given by h.

7.2 Targeted Minimal Loss Estimation

General principle. As Ψ is known, a substitution estimator ψn = Ψ(Pn) may be derived
from any estimator Pn of the law P0 of the observations. We propose to construct one such
estimator by relying on the theory of Targeted Minimal Loss Estimation (TMLE), which is
described in detail in [88, 24]. This theory offers a generic principle of iterative estimation
which may be summarized as follows. The first step consists in building a substitution
estimator ψ0

n = Ψ(P 0
n) from an initial estimator P 0

n of P0. The estimator ψ0
n is then used

to build an updated estimator of P0, denoted by P 1
n , which itself induces an update of the

substitution estimator: ψ1
n = Ψ(P 1

n).
The updating step is at the core of the TMLE approach. It relies on the notion of efficient

influence curve, which is pivotal in semi-parametric estimation [170]. It can be shown that
the parameter Ψ defined in (7.1) is pathwise differentiable: for every P ∈ M, there exists
a function ∇ΨP of O such that for any bounded s : O 7→ s(O) and all |ε| < ‖s‖−1

∞ , if we
characterize Pε ∈M by setting dPε/dP = 1 + εs then

Ψ(Pε) = Ψ(P ) + εEP {∇ΨP (O)s(O)}+ o(ε).

The map∇Ψ is called the efficient influence curve of Ψ. Informally, and as it names suggests,
∇ΨP quantifies the influence of the law P on the estimation of the parameter of interest, and
indicates in which direction an estimator of P should be refined in order for the quadratic
error of the associated substitution estimator to be improved.
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Algorithm. A closed-form expression of ∇Ψ can be derived [J14, Proposition 1] for the
parameter Ψ defined in (7.1). The expression of ∇Ψ involves finite- and infinite-dimensional
features of P , notably including:

θP (X,W ) = EP (Y |X,W )

gP (W ) = P (X = 0|W )

µP (W ) = EP (X|W )

σ2
P = EP {X2}

.

Moreover, it can be shown that ∇Ψ is double-robust, in the sense that for any (P, P ′) ∈M2,
we have Ψ(P ′) = Ψ(P ) as soon as either (µ(P ′) = µ(P ) and g(P ′) = g(P )) or θ(P ′)(0, ·) =
θ(P )(0, ·).

Let us assume that we observe n independent random variables O1, . . . , On drawn from
P0. By (7.2), building an initial substitution estimator Ψ(P 0

n) of Ψ(P0) requires the estima-
tion of θP0

, of σ2
P0

, and of the marginal distribution of (W,X) under P0. It can be shown
that the latter can itself be obtained from estimates of gP0

and µP0
, and the marginal

distribution of W under P 0
n , which itself is simply estimated by its empirical counterpart.

Therefore, using Monte-Carlo estimation, we can obtain an initial estimator of Ψ(P 0
n) from

initial estimates (θ0
n, g

0
n, µ

0
n, σ

0
n).

The kth update step (for k ≥ 0) consists in estimating the efficient influence curve ∇ΨPkn

based on the features θkn, µkn, gkn and σkn. This estimation step defines a one-dimensional
model {P kn (ε) : |ε| < ‖s‖−1

∞ } ⊂ M by setting dP kn (ε)/dP kn = 1 + εs with s = ∇ΨPkn
.

This model is called a fluctuation of the law P kn . An updated estimator of P0 is then
defined by P k+1

n = P kn (εkn), where εkn is the maximum likelihood estimator of the fluctuation
model. Finally, updated estimations of the features and of the parameter: ψk+1

n are obtained
similarly to the initialization step, i.e. via Monte-Carlo estimation of the marginal law of
(X,W ). The series of updates is interrupted if the total variation distance dTV (P kn , P

k+1
n ),

|Ψ(P kn ) − Ψ(P k+1
n )|, or |

∑n
i=1∇ΨPkn

(Oi)| is small. Finally, the TMLE ψ∗n is defined as

ψ∗n = limk→∞ ψkn, assuming that the limit exists, or more generally as ψknn for a conveniently
chosen sequence {kn}n≥0.

This estimation method has been implemented in the R package tmle.npvi [S5] which
is available from CRAN1. The implementation is described in detail in [J8]. This implemen-
tation incorporates estimators of the features (θ, g, µ, σ) based on classical generalized linear
models, as well as estimators relying on super-learning, a generic method of aggregation of
estimators proposed by [120].

7.3 Inference

Convergence of the iterative procedure. Lemmas 3 and 4 in [J14] ensure that if the
sequence (parametrized by the iteration index k) Pn∇Ψ(P kn )2 is bounded away from 0, then
the above iterative procedure converges, in the sense that the sequence (εkn)k>0 tends to 0.
If moreover the series

∑
k |εkn| is convergent, then the sequence of estimators ψkn = Ψ(P kn )

is also convergent.

Asymptotic properties of the proposed estimator. The TMLE is consistent as
soon as the estimators of the features θ, µ, σ and g are convergent, and that one of the
estimator of θ(0, ·) or the estimators of µ and of g is consistent [J14, Proposition 2]. This
remarkable property is inherited from the double robustness of the efficient influence curve
∇Ψ, combined with the fact that the TMLE solves the efficient influence curve equation
(i.e., Pn∇Ψ(P knn ) ≈ 0). The TMLE satisfies a central limit theorem [J14, Proposition 3]

1http://cran.r-project.org/package=tmle.npvi
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under additional conditions on the convergence rates of these features:

√
n(ψ∗n −Ψ(P0)) N (0,VarP0

(∇Ψ(P0)(O))) (7.3)

Again thanks to the double-robustness of ∇Ψ, the fact that either the estimator of θ or
both the estimators of µ and σ2 converge at rate n−1/2 is sufficient to guarantee the asymp-
totic normality of the TMLE. Finally, if the estimators of all features are consistent, then
the TMLE is asymptotically efficient, and we can construct an estimate of its asymptotic
variance.

Contrast to NP estimation. An obvious substitution estimator of Ψ(P0) is

ψNP
n = arg min

β∈R
EPn

{(
θ̂n(X,W )− θ̂n(x0,W )− β(X − x0)

)2
}
,

an expression derived from (7.1) by substituting the empirical measure Pn for P0 and the

Nadaraya-Watson estimator θ̂n(X,W ) of EP0(Y |X,W ) for it. Under regularity conditions

of order ` on the true conditional expectation, the optimal bandwidth hn for θ̂n satisfies
hn = cn−1/(2`+d) where d = 2 is the dimension of (X,W ) [100]. Now it is possible to
characterize a P0 ∈ M such that EP0{ψNP

n − Ψ(P0)} = c′h`n + o(hn). In particular, ψNP
n

cannot achieve
√
n-consistency under that P0. We see that ψNP

n suffers from the fact that

the bias-variance trade-off, which is at the core of the construction of θ̂n, is optimized
for the sake of estimating the infinite-dimensional parameter EP0(Y |X,W ) whereas we are
eventually interested in estimating the one-dimensional parameter Ψ(P0).

7.4 Simulations

Because association patterns between copy number, expression and methylation are gener-
ally non-linear, setting up a realistic simulation model is a difficult task. We design here
a simulation strategy based on perturbations of real observed data structures. Specifically,
we focus on the gene EGFR in a glioblastoma multiforme (GBM) data set from The Can-
cer Genome Atlas (TCGA) project [116, 111]. This gene is known to be altered in GBM.
Figure 7.1(a) represents W = DNA methylation, X = DNA copy number, and Y = gene
expression data for one particular gene, EGFR, which is known to be altered in GBM. For this
gene, the association between copy number and expression is non-linear, and high methyla-
tion levels are associated with low expression levels.

Our simulation strategy implements the following constraints:

• There are generally up to three copy number classes: normal regions, and regions of
copy number gains and losses;

• In normal regions, expression is negatively correlated with methylation;

• In regions of copy number alteration, copy number and expression are positively cor-
related.

Figure 7.1(b) summarizes a simulation run with n = 200 independent copies of the
synthetic observed data structure based on two specific GBM samples for the EGFR gene.
Such a simulation study provides an arguably realistic use case where closed-form expressions
for the features of interest θ(P ), µ(P ), g(P ), and σ2(P ) can be derived, and the value of
Ψ(P ) can be estimated accurately. We estimated this value by ψB(P ) using B = 105 Monte-
Carlo samples. Gray rectangles represent 95%-accuracy intervals [ψB(P )±ξ0.975sB(P )/

√
n]

and [ψB(P ) ± ξ0.975sB(P )/
√
B] for the true parameter Ψ(P ) based on n observed data

structures (light gray) and B = 105 observed data structures (dark gray). Here, ξa is the
1− a quantile of the standard Gaussian distribution, and sB(P ) = VarPB (∇Ψ(P )(O)) is a
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(a) real dataset (b) simulated dataset
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Figure 7.1: Illustrating DNA methylation, DNA copy number, and gene expression data. In
both graphics, we represent kernel density estimates (diagonal panels), pairwise plots (lower
panels), and report the pairwise Pearson correlation coefficients (upper panels). (a). Real
dataset corresponding to the EGFR gene in 187 GBM tumor samples. For 130 among the
187 samples, only DNA copy number and gene expression data were available (circles in
lower middle plot). (b). Simulated dataset consisting of n = 200 independent copies of the
synthetic observed data structure described in the main text. Note that the constant OX2
is added to each value of X so that graphics corresponding to real and simulated data can
be more easily compared.

Monte-Carlo estimator of the asymptotic variance appearing in (7.3), which can be formed
because ∇Ψ(P )(O) is available in closed form in our simulation (see [J14, Lemma 7]).

For each of B′ = 103 simulation runs, we record the parameter estimate obtained af-
ter k iterations of the TMLE procedure: ψkn,b = Ψ(P kn,b), 1 ≤ b ≤ B′. The results of this
simulation are summarized by Figure 7.2 in the case where the features are learned using
algorithms based on generalized linear models. This figure provides the empirical distribu-
tion of the parameter estimate across the B′ simulation runs. These results illustrate some
of the fundamental characteristics of the TMLE estimator and related confidence intervals:

Convergence and robustness. The substantial bias in the initial estimation is dimin-
ished (if not perfectly corrected) at the first updating step of the TMLE procedure,
illustrating the robustness of the targeted estimator. The empirical distributions of
{ψkn,b : b ≤ B′} for k = 1, 2, 3 are not (visually) markedly different, an empirical
indication that the TMLE procedure converges quickly.

Asymptotic normality, and coverage. The asymptotic normality of the TMLE esti-
mator was confirmed by Lilliefors and Kolmogorov-Smirnov tests. We used the asymp-
totic variance estimate (skn,b)

2 = VarPn,b ∇Ψ(P kn,b)(O) to form confidence intervals.

Contrary to s2
B above, which requires the knowledge of the simulation parameters,

this estimator can be obtained only based on the n observations. While our theoret-
ical results do not guarantee that it is safe to estimate the limit variance by (skn,b)

2,
the associated confidence intervals provide empirical coverage close to the nominal
coverage.
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Figure 7.2: Empirical distribution of {ψkn,b : b ≤ B′} based on n = 200 independent observed
data structures for k = 0 (initial estimator) and k iterations of the updating procedure
(k = 1, 2, 3), as obtained from B′ = 103 independent replications of the simulation study.
Gray rectangles represent 95%-accuracy intervals for the true parameter based on n observed
data structures (light gray) and B = 105 observed data structures (dark gray).

7.5 An application to TCGA data

As an illustration, we study a breast cancer data set from The Cancer Genome Atlas (TCGA)
Network [76]. We downloaded DNA methylation (W ), DNA copy number (X), and expres-
sion (Y ) of 11,314 genes for n = 463 patients2. The dimension of W is the number of CpG
loci in the gene’s promoter region, which can vary from one gene to another. Conveniently,
our implementation handles multi-dimensional covariates.

In order to quantify the influence of DNA methylation on the strength of association
between DNA copy number and gene expression in this data set, we compare our proposed
non-parametric variable importance measure Ψ(P ) to its counterpart neglecting W . The
latter is a different mapping from M to R given by

F(P ) = arg min
β∈R

EP
{

(Y − βX)
2
}

=
EP {XY }
EP {X2}

.

A natural estimator of F(P ) is given by fn =
∑n
i=1XiYi/

∑n
i=1X

2
i . Our theoretical results

show that (fn, ψn) satisfies a central limit theorem. Furthermore, it is possible to estimate
the corresponding asymptotic covariance matrix, hence the asymptotic variances of ψn and
of (ψn − fn).

We have performed the bilateral test of “Ψ(P ) = F(P )” against “Ψ(P ) 6= F(P )” for
each of the 10,246 genes without missing data. Figure 7.3 presents the (− log10) p-values of
this test against the gene’s position. A pattern emerges of regions featuring very small p-
values, among which chromosomes 1q, 8, 16q. The pattern is not correlated to the marginal

2The data are available from the TCGA at: https://tcga-data.nci.nih.gov/docs/publications/brca 2012.
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Figure 7.3: Each dot corresponds to the genomic position and (− log10) p-value of “Ψ(P ) =
F(P )” against “Ψ(P ) 6= F(P )” for one of the 10,246 genes without missing data. The
chromosomes are delimited by vertical grey lines. The background image represents, gene
by gene, the proportions of the 463 samples for which X < 0 (blue), X > 0 (red), and X = 0
(white).

distribution of X, represented in the background. We also compute the partial correlation
of X and Y given W for each gene (not shown). No pattern emerges. This suggests that
the approach we propose may be useful to identify novel regions worthy of interest.

For this data set, the typical run time of the method for a single gene with the default
options of the package is 10 seconds on a standard laptop. Obviously, this analysis can be
parallelized very easily, as each gene is treated independently of all the other ones.
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Chapter 8

Graph-structured two sample
tests

In this chapter we consider multivariate two-sample tests of means, where the location shift
between the two populations is expected to be related to a known graph structure. An
important application of such tests is the detection of differentially expressed genes between
two patient populations, as shifts in expression levels are expected to be coherent with the
structure of graphs reflecting gene properties such as biological process, molecular function,
regulation, or metabolism. For a fixed graph of interest, we demonstrate that accounting for
graph structure can yield more powerful tests under the assumption of smooth distribution
shift on the graph. We also investigate the identification of non-homogeneous subgraphs
of a given large graph, which poses both computational and multiple hypothesis testing
problems.
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8.1 The two-sample Hotelling test for multivariate data

Most approaches to the joint analysis of gene expression data and gene graph data involve
two distinct steps. Firstly, tests of differential expression are performed separately for each
gene. Then, these univariate (gene-level) testing results are extended to the level of gene
sets, e.g., by assessing the over-representation of DE genes in each set based on p-values
for Fisher’s exact test1 (or a χ2 approximation thereof) adjusted for multiple testing [146]
or based on permutation adjusted p-values for weighted Kolmogorov-Smirnov-like statis-
tics [142].

There are two major caveats to this general two-step approach:

• The first step is based on marginal tests of association between one gene and class
labels, so the information of the joint distribution of gene expression across genes is
lost for the second step;

• The sampling units for the tests in the second step are the genes (instead of the obser-
vations/patients), which are expected to have strongly correlated expression measures.
As noted by [117], this renders the interpretation of the tests at the second step prob-
lematic and may lead to a large loss of power or Type I error control when sets of
genes have correlated expression.

The first point is illustrated by Figure 8.1 where the gene expression levels of two genes
(PIAS2 and UBE2C) are displayed for the 79 samples of the Leukemia data set. Although
neither of these genes is differentially expressed (the p-value of the t-test for differential
expression of PIAS2 and UBE2C are 0.11 and 0.12, respectively , the pair (PIAS2, UBE2C)
can be called differentially expressed using a bi-variate Hotelling test (as formally defined
below) with p-value 0.023.

5

6

7

8

5.0 5.5 6.0 6.5 7.0
PIAS2

U
B

E
2C

class

BCR/ABL

NEG

Figure 8.1: Expression measurements of the PIAS2 and UBE2C genes in two patient popu-
lations (BCR/ABL and NEG) from the Leukemia data set. The marginal distributions are
similar across groups for its genes, but the scatter plot reveals differential expression in two
dimensions.

1Sometimes referred to as hypergeometric test in the bioinformatics literature.
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This example suggests that direct multivariate differential expression testing of gene sets
could be more appropriate than posterior aggregation of marginal gene-level tests. We now
give the definition of Hotelling’s T 2-test, the most classical multivariate test of location
shift. Let us consider random samples (x1) and (x2) of size n1 and n2 drawn from two
p-dimensional Gaussian distributions, N (µi,Σ), i = 1, 2. Assuming that p < n1 + n2 − 1
and Σ is invertible, Hotelling’s T 2-test statistic is defined by

T 2 =
n1n2

n1 + n2
(x̄1 − x̄2)>Σ̂−1(x̄1 − x̄2),

where x̄i, i = 1, 2 denote the sample means, and Σ̂ the pooled sample covariance matrix.
Up to the scaling factor n1n2/(n1 + n2), it corresponds to the squared Mahalanobis norm
(∆2(x, S) = x>S−1x) of the sample mean shift x̄1−x̄2 associated to the empirical covariance
matrix Σ̂). Under the null hypothesis H0 : µ1 = µ2 of equal means, NT 2 follows a (central)
F -distribution F0(p, n1 + n2 − p − 1), where N = n1+n2−p−1

(n1+n2−2)p . In general, NT 2 follows a

non-central F -distribution F ( n1n2

n1+n2
∆2(δ,Σ); p, n1 + n2 − p − 1), where the non-centrality

parameter is, up to the same scaling factor as above, the Mahalanobis norm of the mean shift
δ = µ2−µ1. We refer to ∆2(δ,Σ) as the distribution shift. In the remainder of this chapter,
unless otherwise specified, T 2-statistics are assumed to follow the nominal F -distribution,
e.g., for critical value and power calculations.

Hotelling’s test is known to be uniformly most powerful invariant for multivariate nor-
mal distributions against global-shift alternatives. However, it is not directly applicable to
multivariate differential expression testing of gene sets, for two main reasons:

• first, the typical size of gene sets is of the same order as the typical sample size (dozens
of genes/samples). Hotelling’s test it is only defined when p < n1 + n2 − 1 and Σ is
invertible. Even under these conditions, its power naturally decreases as p increases
due to the increasingly poor conditioning of Σ̂−1 [171]. It is expected that genes from
a particular gene set will have correlated expression levels. Continuing the example of
Figure 8.1, the total expression level of the two genes (PIAS2 + UBE2C) has a much
more significant association to the class labels (t-test p-value equal to 0.006) than the
pair (PIAS2, UBE2C)

• second, such direct multivariate tests on unstructured gene sets do not take advan-
tage of information on gene regulation or other relevant biological properties. An
increasing number of regulation networks are becoming available, e.g., Gene Ontology
(GO; http://www.geneontology.org), Kyoto Encyclopedia of Genes and Genomes
(KEGG; http://www.genome.jp/kegg) or NCI Pathway Integration Database (NCI
graphs; http://pid.nci.nih.gov). Such networks specify, for example, which genes
activate or inhibit the expression of other genes. If it is known that a particular gene
in a tested gene set activates the expression of another, then one expects the two genes
to have coherent (differential) expression patterns, e.g., higher expression of the first
gene in resistant patients should be accompanied by higher expression of the second
gene in these patients.

In the next sections, we propose multivariate test statistics for identifying differential
expression patterns (or, more generally, shifts in distribution) that are coherent with a
given graph structure. In a nutshell, we propose to take advantage of the prior information
encoded in gene networks or pathways to perform graph-structured dimension reduction,
combined with a multivariate test in the low-dimensional space. The example of Figure 8.1
suggests that projecting the two-dimensional data (PIAS2, UBE2C) in the one-dimensional
space (PIAS2 + UBE2C) may lead to increased differential expression power.
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8.2 Graph-structured dimension reduction

Let us consider a network of p genes, represented by a graph G = (V, E), with |V| = p nodes
and edge set E . Let δ ∈ Rp denote the mean shift, i.e., the vector of differences in mean
expression measures for these p genes between the two populations of interest. Suppose
we expect the shift δ to be coherent with the graph G, in the sense that it has low energy
EG(δ) for a particular energy function EG defined on G. Then, we wish to build a space of
lower dimension k � p capturing most of the low energy functions. To this end, we start by
finding the function that has the lowest possible energy, then the function that has lowest
possible energy in the orthogonal space of the first one, up to the kth function with lowest
energy in the orthogonal subspace of the first k − 1 functions. That is, for each i ≤ k, we
define

ui =

 arg min
f∈Rp

EG(f)

such that ui ⊥ uj , j < i.
(8.1)

If EG is a positive semi-definite quadratic form EG(δ) = δ>QGδ, for some positive semi-
definite matrix QG = UΛU>, where U is an orthogonal matrix and Λ a diagonal matrix with
elements λi, i = 1, . . . , p, then the solution to Equation (8.1) is given by the k eigenvectors
of QG corresponding to the smallest k eigenvalues. It is easy to check that these eigenvalues
are the energies of the corresponding functions ui, i.e., EG(ui) = λi.

Any positive semi-definite matrix can be chosen for QG , with different choices of QG
leading to different notions of coherence of the expression shift with the network. A classical
choice is the graph Laplacian L. Suppose G is an undirected graph with adjacency matrix A,
with aij = 1 if and only if (i, j) ∈ E and aij = 0 otherwise, and degree matrix D = Diag (A1),
where 1 is a unit column-vector, Diag(x) is the diagonal matrix with diagonal x for any
vector x, and Dii = di. The Laplacian matrix of G is then typically defined as L = D−A or
Lnorm = I −D− 1

2AD−
1
2 for the normalized version, leading to energies

∑
(ij)∈E (δi − δj)2

and
∑

(i,j)∈E
(
δi/
√
di − δj/

√
dj
)2

, respectively. Note that, in this case, the Laplacian matrix
L, energy E, and basis functions ui extend the classical Fourier analysis of functions on
Euclidean spaces to functions on graphs, by transferring the notions of Laplace operator,
Dirichlet energy, and Fourier basis, respectively [166].

In the specific case of gene regulation networks, it may be relevant to model negative
associations between genes by considering a signed version of the adjacency matrix, where
aij = 1 if gene i activates gene j, and −1 if it inhibits gene j. A signed version of the
graph Laplacian is then Lsign = D − A, where D = Diag (|A|1) is the degree matrix and
|A| denotes the entry-wise absolute value of A. Note that the signed Laplacian is always
positive definite, see e.g. [32, Chapter 5]. As an example, let us consider a simple four-node
graph whose signed adjacency matrix is given by

A =


0 1 0 0
1 0 1 −1
0 1 0 0
0 −1 0 0

 , (8.2)

The eigenvectors of the corresponding signed Laplacian are represented in Figure 8.2. Fol-
lowing our principle to build a lower dimension space, we use the first few eigenvectors of QG
to obtain orthonormal functions with low energy. The first eigenvector, corresponding to the
smallest energy (eigenvalue of zero), can be viewed as a “constant” function on the graph:
its absolute value is identical for all nodes, but nodes connected by an edge with negative
weight take on values of opposite sign. By contrast, the last eigenvector, corresponding to
the highest energy, is such that nodes connected by positive edges take on values of opposite
sign and nodes connected by negative edges take on values of the same sign.

Figure 8.3 illustrates the projection of two vectors onto the first two dimensions of the
graph decomposition. The first vector is smooth along the graph, in the sense that its
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Figure 8.2: Eigenvectors of the graph with adjacency matrix defined in (8.2).

entries are more coherent with the graph structure. This is reflected by the magnitude of
the coefficients of Therefore, it is essentially preserved by the projection in the first two
dimensions. Conversely, the second vector is not smooth along the graph, so it is not
preserved by the projection.

Smooth shift Non-smooth shift
Original vector 2d projection Original vector 2d projection

(1.45, -0.04, -0.21, 0.20) (1.45, -0.04, 0, 0) (0.2, -0.41, +0.42, 1.16) (0.2, -0.41, 0, 0)

Figure 8.3: Example of projection of two vectors along first two dimensions of the graph
with adjacency matrix defined in (8.2). Left: a smooth vector along the graph; right: a
non-smooth vector along the graph. Bottom: coefficients of the eigen decomposition of each
vector.

While we have introduced the idea in the context of gene regulation networks and test-
ing for differential expression, the same dimensionality reduction principle applies to any
multivariate testing problem for which the variables have a known structure, as represented
by a graph.

8.3 Graph-structured two-sample tests

In the remainder of this chapter, we denote by f̃ = U>f the coefficients of a vector f ∈ R|V|

after projection on a basis U (typically the eigenvectors of a QG matrix).
For any orthonormal basis U and, in particular, for our graph-based basis, direct calcu-

lation shows that

T 2 = T̃ 2 ∆
=

n1n2

n1 + n2
(x̄1 − x̄2)>U

(
U>Σ̂U

)−1

U>(x̄1 − x̄2),

i.e., the statistic T 2 in the original space and the statistic T̃ 2 in the new graph-based space
are identical. More generally, for k ≤ p, the statistic in the original space after filtering out
dimensions above k is the same as the statistic T̃ 2

k restricted to the first k coefficients in the
new space defined by U :

T̃ 2
k

∆
=

n1n2

n1 + n2
(x̄1 − x̄2)>U[k]

(
U>[k]Σ̂U[k]

)−1

U>[k](x̄1 − x̄2)

=
n1n2

n1 + n2
(x̄1 − x̄2)>U1kU

>
(
U1kU

>Σ̂U1kU
>
)+

U1kU
>(x̄1 − x̄2),
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where A+ denotes the generalized inverse of a matrix A, the p × k matrix U[k] denotes
the restriction of U to its first k columns, and 1k is a p × p diagonal matrix, with ith
diagonal element equal to one if i ≤ k and zero otherwise. Note that, as retaining the first
k dimensions corresponds to a non-invertible transformation, this filtering indeed has an
effect on the test statistic, that is, we have T̃ 2

k 6= T̃ 2 in general. Lemma 1 stated below
shows that gains in power can be achieved by filtering, under the assumption of a smooth
shift along the graph. We let δ̃ = U>δ and Σ̃ = U>ΣU denote, respectively, the mean shift

and covariance matrix in the new space. Given k ≤ p, let ∆2
k(δ,Σ) = δ>[k]

(
Σ[k]

)−1
δ[k] denote

the distribution shift restricted to the first k dimensions of δ and Σ, i.e., based on only the
first k elements of δ, (δi : i ≤ k), and the first k × k diagonal block of Σ, (σij : i, j ≤ k).

Lemma 8.1. For any level α and any 1 < l ≤ p− k, there exists η(α, k, l) > 0 such that

∆2
k+l(δ̃, Σ̃)−∆2

k(δ̃, Σ̃) < η(α, k, l)⇒ βα,k(∆2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)),

where βα,k(∆2) is the power of Hotelling’s T 2-test at level α in dimension k for a distribution
shift ∆2, according to the nominal F -distribution F ( n1n2

n1+n2
∆2; k, n1 + n2 − k − 1).

Under the assumption that the distribution shift is smooth, i.e., lies mostly in the first
few graph-based coefficients, so that ∆2

k(δ̃, Σ̃) is nearly maximal for a small value of k,
Lemma 1 states that performing Hotelling’s test in the new space restricted to its first k
components yields more power than testing in the entire new space. Equivalently, the test
is more powerful in the original space after filtering than in the original unfiltered space.
The increase in shift η(α, k, l) required to maintain power when increasing dimension can
be evaluated numerically for any (α, k, l). Note that this result holds because retaining the
first k new components is a non-invertible transformation.

Corollary 8.2 states that if the distribution shift lies in the first k new coefficients, then
testing in this subspace yields strictly more power than using additional coefficients:

Corollary 8.2. If ∀ 1 < l ≤ p− k, ∆2
k(δ̃, Σ̃) = ∆2

k+l(δ̃, Σ̃), then

βα,k(∆2
k(δ̃, Σ̃)) > βα,k+l(∆

2
k+l(δ̃, Σ̃)).

In particular, if there exists k < p such that δ̃j = 0 ∀ j > k (i.e., the mean shift is

smooth) and Σ̃ is block-diagonal such that σ̃ij = 0 ∀ i < k, j > k, then gains in power are
obtained by testing in the first k new components. Although non-necessary, this condition
is plausible when the mean shift lies at the beginning of the spectrum (i.e., has low energy),
as the coefficients which do not contain the shift are not expected to be correlated with
the ones that do contain it. Figure 8.4 illustrates, under different settings, the increase in
distribution shift necessary to maintain a given power level against the number of added
coefficients. Under the assumption of block-diagonal covariance, it is also possible to directly
relate the energy of the mean shift vector to the gain in power, see Corollary 2 in [J16,
Supplement A].

8.4 Numerical experiments

The empirical performance of the graph-structured test has been assessed in numerical
experiments where the distribution shift ∆2 satisfies the above-defined smoothness assump-
tions. More specifically, we assume that this shift lies in the first k0-dimensional eigen space
of the graph. As expected in this favorable setting, Figure 8.5 shows (in the case of a block
diagonal covariance structure and for k0 = 3) that our proposed T 2-statistic in the first k0

graph-based coefficients (dashed red lines) compares favorably to several alternatives: the
standard Hotelling T 2-statistic in the original space and T 2-statistic in the first k0 princi-
pal components (left panel), the statistics of [171] (BS), [92] (CQ), and [109] (SD) (middle
panel), and the Adaptive Neyman statistics of [167] (right panel).
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Figure 8.4: Left: Increase in distribution shift required for Hotelling’s T 2-test to maintain
a given power when increasing the number of tested new coefficients: ∆2

k+l − ∆2
k vs. l

such that βα,k+l(∆
2
k+l) = βα,k(∆2

k). Power βα,k+l(∆
2
k+l) computed under the non-central

F -distribution F
(
n1n2

n1+n2
∆2
k+l; k + l, n1 + n2 − (k + l)− 1

)
, for n1 = n2 = 100 observations,

k = 5, and α = 10−2. Each line corresponds to the fixed shift ∆2
k and power βα,k(∆2

k) pair
indicated in the legend. Right: Zoom on the first 30 dimensions.
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Figure 8.5: Synthetic data: Receiver Operating Characteristic (ROC) curves for the detec-
tion of a smooth shift under block-diagonal covariance structure.

Further numerical experiments reported in [J16] quantify empirically the robustness of
our proposed method to a possible mis-specification of k0 (as k0 is typically unknown in
practice), and to a possible mis-specification of the graph, where the graph used to perform
dimension reduction and testing is a noisy version of the graph used for data generation.

8.5 Differential subgraph discovery

The methods described in this chapter are designed to test the differential expression of
known graphs. An important related question is whether we can identify non-homogeneous
subgraphs of a known graph. This poses a huge combinatorial problem even for moderately
large graphs, as the number of (connected) subgraphs of size k of a graph of size p can be
exponential in p and k. Exhaustive search is therefore not feasible in practice, especially for
differential expression on gene networks, where p is typically in the dozens or hundreds of
genes. To address this bottleneck, we describe in [J16] a branch and bound type algorithm
which makes it possible to avoid testing all possible subgraphs. This algorithm relies on a
pruning strategy based on an upper bound on the value of the test statistic for any sub-
graph containing a given set of nodes [J16, Supplement A, Lemma 2]. Two variants of this
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algorithm are proposed: an exact one, and a quicker, approximate one. The approximation
in the latter consists in focusing on the subgraphs whose sample mean shift in the first k
components in the graph space has a sufficiently large Euclidean norm. Just like for vol-
cano plots, this approximation is justified in practice by the fact that significant subgraphs
corresponding to small mean shifts are typically less relevant from a biological perspective.
Finally, we have devised a strategy based on class label permutations to estimate the ex-
pected number of type I errors and thereby account for the multiple testing situation created
by testing a large number of subgraphs.
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Chapter 9

Statistical inference from DNA
copy number data

After a brief description of DNA copy number signals, this chapter reviews some statistical
insights gained from working with DNA copy number data. We highlight the importance of
data pre-processing, computational and statistical trade-offs for the design of segmentation
methods, and the importance of performance evaluation and benchmarking studies in this
context.
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9.1 Copy-number signals

As noted in Section 1.3, an important issue in cancer research is to estimate the underlying
copy number state at each position along the genome of a tumor sample. Formally, we
define the copy number state of a tumor at a given genomic locus j as a pair of non-negative
numbers (γ

j
, γj), where γ

j
≤ γj , which are respectively the smaller and the larger of the

two parental copy numbers at this locus. Figure 9.1 illustrates the most common copy
number states observed in cancer samples: normal, that is one copy from each parent (1,1),
gain (1,2), deletion (0,1), copy-neutral LOH1 (0,2). By definition we have γ

j
≤ γj , and

Figure 9.1: Illustration of the main DNA copy-number states in three cancer samples:
normal, gain, deletion, copy-neutral LOH. Illustration by Henrik Bengtsson.

γj = γ
j

+γj is the total copy number. The quantities γ
j

and γj are called minor and major

copy numbers, respectively. Note that γ
j
, γj , and γj need not be whole numbers, especially

because of the possible presence of normal cells in the tumor sample.

Minor and major copy numbers are not directly observed from genotyping microarray
or sequencing assays, but they can be estimated from the data collected by these assays.
These data can be summarized by a pair of vectors (θAj , θ

B
j )j where the index j refers to a

genomic position along a chromosome. In Figure 9.1 four such positions are represented by
horizontal segments. These positions correspond to (bi-allelic) Single Nucleotide Polymor-
phisms (SNPs), that is, genomic positions where the DNA sequence varies at a substantial
rate across individuals of some population. For most SNPs only two letters (out of {A, C,
G, T} ) variants are observed. These versions of the genetic sequence are called alleles and
arbitrarily denoted by A and B in Figure 9.1. The values θAj and θBj correspond to the
signal intensity for allele A and B at SNP j.

9.2 Preprocessing: allelic ratio normalization

These “raw” signals have to be preprocessed (or “normalized”) in order to make them
comparable (i) across samples for each locus, and (ii) across loci for each sample. While
(i) is a common issue in all genomic analyses, we focus here on (ii), which is particularly
crucial for copy-number data, where the locus of a given sample have to be segmented into
genomic regions.

1Loss of heterozygosity (LOH) is the loss of the contribution of one parent in a genomic region. It includes
the case of a deletion, but also of copy-neutral LOH, corresponding to two copies from the same parent.

78



The TCGA project of molecular characterization of cancers has performed thousands
of DNA copy number experiments for which both tumor sample and a normal sample (e.g.
blood cells) from the same individual are available. For a given individual, we are therefore
observing at each locus j (θAij , θ

B
ij), where i ∈ {N,T} for the normal and the tumor sample,

respectively. Let us define θij = θAij + θBij , and βij = θBij/θij . The copy number data for one
such tumor/normal pair are generally summarized using

• total copy numbers in the tumor sample: cj = 2θTj/θNj ;

• allelic ratios (a.k.a. allele B fraction) in the normal sample: bNj = θBNj/θNj ;

• allelic ratios in the tumor sample: bTj = θBTj/θTj .

Note that in the above definition of cj , the total intensity θTj at locus j in the tumor sample
is scaled by the corresponding quantity in the matching normal sample. The goal of this
normalization is to correct for systematic and locus-specific biases in these intensities. These
signals are displayed in the first three rows of Figure 9.2 for Chromosome 2 (left) and Chro-
mosome 10 (right) of one TCGA ovarian cancer sample. The last row of Figure 9.2 displays

Figure 9.2: Copy-number signals in two genomic regions (left and right columns). Orange
box: allelic signals after Tumorboost normalization (last row) have a much higher signal to
noise ratio than before Tumorboost normalization (third row).

the tumor allelic ratios after processing by the TumorBoost normalization method that we
developed [J21, s3] in the context of the Aroma Project. As illustrated by the comparison
between the (c) and (d) panels and between the (g) and (h) panels, this method provides a
substantial denoising of the input data, with changes in the allelic ratio distribution being
much more visible after normalization. The method takes advantage of two observations.
First, the variability of allelic ratios at a given position is systematic, i.e. highly reproducible
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between the tumor and the paired normal sample. Second, one expects the true allelic ratios
to be either 0, 1/2 or 1 in the normal samples. Therefore, the difference between the normal
allelic ratio and the expected true one at a given locus provides a good estimate of the noise
in the tumor allelic ratio, which can then be subtracted to estimate the tumor allelic ratio.

We have extended this method to the case where no paired normal is available in a
collaboration with researchers at the University of Navarra [J18, s2]. We also stress the
importance of the choice of a reference to estimated total copy numbers in this unpaired
case, as illustrated in [B1]. While the methods described in this section are very simple from
a mathematical point of view, their impact in the quality of the data is of major importance
for downstream statistical analyses and results interpretation.

9.3 Detecting change points from copy-number signals

9.3.1 Copy numbers as a two-dimensional piecewise constant signal

The left panels of Figure 9.3 illustrate the fact that total DNA copy numbers (c) are piecewise
constant while allelic ratios (b) can display several modes in a given region. The panel (d)
at the bottom right displays the decrease in heterozygosity (also called mirrored B allele
fraction [110]). It is a symmetrized version of b: d = |b−1/2| where only heterozygous SNPs
(black dots) are displayed, because they carry all the information regarding copy number
changes. Both c and d can be modeled as piecewise constant, and classical segmentation
methods to detect a change in the mean of a signal can be used to perform segmentation
on these signals.

Preprocessed signals Preprocessed and transformed signals

⇒

Figure 9.3: Copy-number profile of a tumor sample. Top: total copy numbers (c): the same
panel is displayed twice. Bottom: allelic ratios (b) on the left, and decrease in heterozygosity
(d) on the right. Red vertical bars indicate the presence of change points. Gray and black
dots correspond to SNP that were called homozygous and heterozygous, respectively, in a
paired normal sample.

Importantly, Figure 9.3 also illustrates the fact that change points occur at the same
position in both signal dimensions. This is the case because changes in one of the parental
copy numbers induce changes in both c and b (or d). In order to maximize the power of
a change point detection method, it makes sense to require that a method can be applied
jointly (rather than independently) to the two dimensions of the signals.

The problem of inferring the location of DNA copy number changes (also called copy-
number change points) from locus-level estimates is an instance of the widely-studied change-
point detection problem. Two main statistical models have been used to model DNA copy
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number changes: change-point models and Hidden Markov Models (HMM). Before focusing
on change point models, we give a brief overview of HMM. HMM assume that observed
copy numbers at the locus level are emitted by an underlying Markov chain according to
a small number of hidden true copy number states. HMM naturally incorporate and take
advantage of the fact that different segments can have the same true copy number. Several
HMM-based methods have been proposed for segmenting total copy numbers [148, 105,
106]. These methods mainly differ in the assumptions that are made for the dynamics of
the underlying Markov chain, and the approaches used for the estimation of the hidden
states. Extensions of HMM to two-dimensional signals have also been proposed [79].

We refer to [23] for a more comprehensive review on the general problem of change-point
detection, which also covers the known statistical guarantees for the different methods. In
the rest of this section we review change point models in the light of their application to
copy number data. This section is adapted and updated from [B1]. In particular, we are
interested in two key aspects:

• trade-offs between statistical accuracy and computational efficiency: sub-quadratic
complexity in time or space is necessary for an algorithm to be applicable to copy
number data;

• applicability to the joint segmentation of two-dimensional piecewise constant signals
(c, d) which was not addressed in [B1].

9.3.2 A change-point model

A simple model for the observed DNA copy numbers c is:

cj = γj + εj , 1 ≤ j ≤ p (9.1)

where the errors (εj)1≤j≤p are iid and the vector γ of true copy numbers is are assumed to
be piecewise constant. For simplicity of exposition, (9.1) is formulated in terms of total copy
numbers, but extending this model to two dimensions ((c, d) or c, c) is straightforward. The
main difficulty with the two-dimensional version is of computational nature, as explained
below.

We consider here the problem of minimizing the `2 loss, both for simplicity and for its
relevance to DNA copy number segmentation. More general loss functions can be considered,
see e.g. [53] which addresses the problem of minimizing the cost of a segmentation under
the assumption that the cost is segment-additive. Under the `2 loss, our goal is to solve the
following optimization problem:

min
γ

p∑
j=1

(cj − γj)2
s.t. ‖Dγ‖0 ≤ K (9.2)

where Dγ = (γj+1 − γj)1≤j≤p is the vector of first order differences associated to the true
copy numbers γ, and ‖ · ‖0 is the `0 norm, that is, the number of non-null entries. The
constraint ‖Dγ‖0 ≤ K encodes the fact that γ is piecewise constant, with at most K
change points. Note that if we assume that the errors are Gaussian and homoscedastic,
i.e. εj ∼ N (0, σ2), then maximizing the likelihood of the model (9.1) for a given number
of change points K is equivalent to solving the optimization problem (9.2). Also, under
this assumption, given change point locations, the optimal value of the true copy number
between two change points is the average observed copy number in this region. Therefore,
for a given K, solving (9.2) reduces to the combinatorial problem of finding the best possible
change point locations according to (9.2). In practice, we are thus faced with two problems:

Combinatorial problem: (9.2) is non-convex, and the number of admissible change point
locations is

(
K
p−1

)
, that is, O(pK), so an exhaustive search of the best partition is prac-

tically infeasible in the case where p is large. This problem is discussed in Section 9.3.3;
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Model selection problem: K is usually not known. As the segmentation models are
nested with respect to K, the objective function in (9.2) is non-increasing in K. This
model fit term has to be compensated by a penalty term that is increasing with the
model size K:

min
γ

p∑
j=1

(cj − γj)2
+ pen(K) . (9.3)

A variety of penalties have been proposed for the change point problem, see e.g. [23]
for a general review and [68] for a focus on model section for DNA copy number
change point detection. Formally, when the penalty is linear in K, 9.3 can be seen as
the (Lagrangian) dual problem of (9.2). This is often the case, e.g. for the classical
Akaike Information Criterion (AIC, [190]) or Bayesian Information Criterion (BIC,
[184]).

9.3.3 Estimation of change point locations

The main difficulty to address the computational problem of estimating the change point
locations is to find an appropriate balance between computational complexity, and statistical
accuracy. We are interested in applications where K is of the order of 10 to 100, and p of
the order of 105 to 106. In such situations, a quadratic time or space complexity is already
prohibitive. We review three types of approaches that we find both relevant to the biological
problem, and statistically sound, and then discuss how these approaches may be combined.

Exact solutions. By taking advantage of the additivity of the objective function in the
segments, it is possible to use a dynamic programming strategy to reduce the complexity
of an exhaustive search from O(pK) to O(K·p2) [139], at the price of increasing the space
complexity from O(1) to O(p2). This algorithm recovers the entire sequence of optimal
segmentations in k segments for all k ≤ K, and it can be extended two multi-dimensional
signals. However, a quadratic time and space complexity may be too high for recent mi-
croarray or sequencing copy number data. A pruned dynamic programming algorithm with
linear space complexity has been proposed, that recovers the set of solutions faster [53]. In
particular, although the worst case time complexity of the pDPA algorithm is still O(K·p2),
in practical situations it is almost linear in p. A related algorithm called PELT [73] provides
the solution to the dual problem (9.3) with linear penalty pen(K) = λK in a linear time
for a fixed value of λ. Although it does not provide the entire path of solutions (like pDPA
does), it can be extended to multi-dimensional signals (unlike pDPA).

Binary segmentation. A widely used approach in various types of applications is binary
segmentation [188], which recursively looks for the best partition of the data into two seg-
ments. This greedy algorithm has a very low (linear) time complexity of O(p logK). It has
been adapted to the problem of copy-number segmentation by looking for the best partition
in three segments at each step, with the constraint that the two extreme segments have the
same true copy number [150]. This method is called Circular Binary Segmentation (CBS).
The depth of the recursion is determined by the estimated significance of the change points,
which implicitly determines K. The original algorithm is quadratic in time due to the fast
that two segment boundaries are looked for at each step. However, a pruned version which
is also almost linear in time has been proposed [121]. We have proposed an extension of this
method to the problem of segmenting both c and d [J19, s1]. It consists in a conditional
segmentation method, where (i) each chromosome is segmented by CBS using the c statistic,
and (ii) each segment is segmented by CBS using the d statistic. This extension inherits the
quasi-linear complexity or CBS.

Convex relaxations. A classical approach in statistical machine learning is to replace a
non-convex optimization problem with an approximate, but convex version of the problem,
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which can therefore be solved efficiently. Problem (9.2) can be convexified by replacing the
`0 constraint on the number of change points by a `1 constraint. An adaptation of the fused
lasso [144] has been proposed [112], which solves the constrained optimization problem

min
γ

p∑
j=1

(cj − γj)2
s.t. ‖Dγ‖1 ≤ v and ‖γ − 2‖1 ≤ u . (9.4)

The optimization problem (9.4) incorporates both a total variation constraint, that is, a
constraint on the `1 norm of the jumps in γ, and sparsity constraint on γ−2, enforcing that
most loci correspond to the normal copy number state. The complexity of the algorithm
proposed in [112] is (at best) O(p2), which as already discussed can be prohibitive for recent
data sets. The second method [94] only keeps the total variation constraint, i.e. it simply
convexifies ‖Dγ‖0 in (9.2) into ‖Dγ‖1. This optimization problem can be written as a
Lasso-type regression problem via the change of variable δ = Dγ. Therefore be solved in
O(p·K2) using a Least Angle Regression (LARS) algorithm [147] to select the first K change
points. An extension of this method to multi-dimensional signals into group-fused LARS
has been proposed by [95, 77], which inherits the linear complexity of the original method.

Combining approximate and exact methods. We also mention an interesting two-
step strategy that consists in

1. performing a fast (yet approximate) search of K candidate change points, e.g. using
binary segmentation or total variation penalty;

2. running dynamic programming only on this reduced set of candidates.

This two-step strategy can improve the exploration of all possible segmentations, while
maintaining a low computational complexity. Indeed, when K � p, the computational
cost of the second step (O(K3)) can be negligible compared to the initial search. Such
strategies have been proposed by [104] for binary segmentation, and by [94] for the total
variation penalty. Importantly, this two-step approach can be used for the joint segmentation
of multi-dimensional signals. These methods are implemented in the R jointseg [S2]
which is available from CRAN2: in particular, the group-fused LARS method of [95, 77]
has been ported from Matlab to R, the CART/binary segmentation method of [104] has
been implemented. The fast univariate implementation of pDPA [53] is also available in
jointseg.

9.4 Performance evaluation

It is often the case that in absence of rich enough gold standard data sets, the numerical
performance of statistical methods is assessed using unrealistic simulation studies, or based
on small real data analyses with limited ground truth available. We have designed and
implemented a framework to generate realistic DNA copy number profiles of cancer samples
with known truth [J11, S4], that aims at combining the advantages and bypass some of
the limitations of previous approaches [145, 75, 135, 67]. In this section we describe this
framework, and demonstrate how it can be applied to compare copy number segmentation
methods.

9.4.1 Genomic regions with known copy-number state

Figure 9.4 displays microarray copy-number profiles (c, b) for two chromosomes (in columns)
in two samples (in rows) from the tumor cell line H1395, whose karyotype is displayed
in Figure 1.1. These samples are part of a dilution series [85] available from the Gene

2http://cran.r-project.org/package=jointseg
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Expression Omnibus (GEO, [157]). In this series, the cell line H1395 is mixed with a
matched blood sample with several mixture proportions: 0, 30, 50 70 and 100% tumor cells.
Only the last two mixture proportions are shown in Figure 9.4. The regions highlighted in
purple were manually labelled as corresponding to two different copy number states (gain
and loss of one DNA copy). Importantly, the labelling was performed on the 100% tumor
sample where the signal to noise ratio is higher, but it is valid as well for the 70% tumor
sample (and for the lower ones), where the signal to noise ratio is weaker. The regions
highlighted in purple are then extracted and serve as a basis for a resampling-based data
generation framework. These annotated data sets are available in the R package acnr [S4]
which is available from CRAN3.

Figure 9.4: (c, b) signals for two annotated regions from tumor cell line NCI-H1395-4W.
Left: gain on chromosome 5; right: loss on chromosome 6. Top: sample with pure tumor;
Bottom: sample with a mixture of 70% tumor cells and 30% normal cells.

9.4.2 Generating copy number profiles with known truth

A synthetic copy-number profile of length n with K change points can be generated in two
steps from the annotated data described above:

generation of truth: K change point positions (drawn uniformly out of the n−1 possible
intervals between two successive loci), and K + 1 copy-number state labels for all
K+1 regions between two consecutive change points, drawn from those of the existing
annotated regions;

generation of signal: a n × 3 matrix of total copy numbers (c), allelic ratios (b), and
genotypes. For each region of size nR between two change points, we sample nR
data points from real copy-number data (such at the one displayed in Figure 9.1)
corresponding to this type of region.

Using this framework, a variety of synthetic copy-number profiles can be generated.
Figure 9.5 displays examples of four such profiles, which were generated from the same

3http://cran.r-project.org/package=acnr
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“truth” (change point position and region labels) as in Figure 9.3 with different tumor cell
fractions (in rows), and from different annotated data sets (in column; the first column uses
the data set described above, and displayed in Figure 9.4). Two attractive features of this

Figure 9.5: Synthetic copy-number profiles that generated from the same “truth” as in
Figure 9.3. Each block of two plots corresponds to total copy numbers (c) and allelic ratios
(b) for one particular combination of fraction of tumor cells (in rows) and data set (in
columns). Red vertical lines represent change points. Heterozygous SNPs are colored in
black, and homozygous SNPs in gray.

framework are the following:

• the distribution of copy number data in a given region matches a distribution actually
observed in real data; therefore it does not rely on any probabilistic model assumption;

• the signal to noise ratio of these profiles can be tuned via the fraction of tumor cells,
which has a clear biological interpretation.

9.4.3 Application to the joint segmentation of copy number profiles

In Section 9.3 we reviewed methods to segment copy number profiles with a focus on three
main criteria: whether an algorithm solves the optimization problem (9.2) exactly or approx-
imately, whether its time and space complexity is linear, quadratic, or worse, and whether
it can be extended to two-dimensional signals (such as the ones displayed in Figure 9.3).
To complement this theoretical review, we empirically compare the performance of some of
these algorithms on synthetic data generated as described in the preceding subsection.

Several measures can be defined to assess the performance of segmentation methods,
see e.g. [23, Section 3]. Here we focus on how well true change points are recovered,
by casting the problem of change point detection as a binary classification problem. We
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define the number of true positives (TP) as the number of true change points for which at
least one change point is detected closer than a given tolerance parameter. The number of
false positives FP is FP = P-TP, where P is the total number of detected change points.
With these definitions we are able for each method to plot a ROC curve parametrized by
the number of change point found by the method. Figure 9.6 (left panel) summarizes the
results obtained for a scenario with the HCC1395 breast cancer cell line, n = 5000, K = 5,
and a tolerance of one data point on each side of the change points. One sample from
this scenario is represented in the right part of Figure 9.6. The relatively small number of

Figure 9.6: Comparing the accuracy of change point detection of different change point
methods. Left: ROC curves; right: an example of sample illustrating the simulation sce-
nario. 2d methods are in solid lines, 1d methods are in dashed lines.

data points (n = 5, 000) was chosen in order for the dynamic programming (DP) approach
to be applicable on the two-dimensional data (c, d), where it is quadratic as explained in
Section 9.3.3. The methods compared are dynamic programming (DP, [139, 53]), (recursive)
binary segmentation followed by dynamic programming (RBS + DP, [104]), circular binary
segmentation (CBS [121] and PSCBS [J19]), and total variation penalty (LARS [94] and
group-fused LARS [77]). For all these methods, we compared the 1d-segmentation of total
copy numbers (c) alone to the 2d segmentation of (c, d). The main observations that may
be drawn from these experiments are the following:

• The true positive rate seems to be bounded away from 1, meaning that on average,
only 4 of the 5 segments could be identified.

• Most 2d methods (DP, RBS, CBS) generally perform better than their 1d counterpart,
although 2d-DP is outperformed by 1d-DP at a high specificity (ie for a low number
of false positives);

• The fact that the 2d total variation (GFLars) performs worse than is 1d counterpart
(Lars) is an artifact of the implementation: in the implementation the data points for
which one of the dimensions of the signal is missing are not considered, resulting in a
substantial loss of power. Indeed, in this application only SNPs that were heterozygous
in the germline have non-missing signals for d, and these SNP typically represent less
than one third of the total number of SNPs.

• Although DP is the only method that exactly minimizes the objective function, it
is not necessary the best performer. In the example of Figure 9.6 the 2d-RBS+DP
method clearly outperforms DP at high specificities.
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The above results illustrate the type of evaluation that can be performed using this
framework. A general conclusion of this performance assessment is that no single method
performs always better than the other ones. In particular, some methods are more robust
than others to a decreasing tumor fraction, and the performance of the methods may also
differ across types of change points (i.e. between a normal region and a region of gain).

An important point from a statistician’s perspective is that most of the above obser-
vations would most probably not have been made if the performance of the methods had
been assessed by classical simulations based on a probabilistic model for the noise. In par-
ticular, one would expect DP to have better statistical performance than its competitors,
because it solves the original optimization problem (9.2) and not a relaxation. However, the
statistical justification of considering this optimization problem relies on an assumption of
homoskedastic Gaussian noise, which may not be appropriate for these data.

87





Chapter 10

Adjacency-constrained
clustering

In the context of Genome Wide Association Studies (GWAS), region-scale approaches taking
haplotype blocks into account can result in substantial statistical gains [158]. Hi-C studies
[72] have demonstrated the existence of topological domains, which are megabase-sized
local chromatin interaction domains correlating with regions of the genome that constrain
the spread of heterochromatin. Both contexts raise the natural question of segmenting
similarity matrices, either in the form of linkage disequilibrium (LD) matrices or of Hi-C
contact maps.

In this chapter we study a particular segmentation method, hierarchical agglomera-
tive clustering (HAC) with adjacency constraints. After defining the method and studying
its conditions of applicability, we describe a quasi-linear algorithm to perform adjacency-
constrained HAC under an additional assumption derived from the biological context. Fi-
nally we describe how this method can be applied to GWAS studies, and combined with
group lasso regression to detect LD blocks associated to a given phenotype.
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10.1 HAC and adjacency-constrained HAC

HAC was initially described by Ward [193] for data in Rd. Let Ω := {x1, · · · , xp} be a set
of p objects to be clustered, with xi ∈ Rd for i = 1, . . . , d. A cluster is a subset of Ω. The
degree of inhomogeneity of a cluster G ⊂ Ω is quantified by the inertia (also known as Error
Sum of Squares, ESS):

I(G) =
∑
i∈G
‖xi − x̄G‖2 , (10.1)

where ‖ · ‖ is the Euclidean norm in Rd, x̄G = |G|−1∑
i∈G xi is the center of gravity of

G and |G| denotes the cardinal of G. The loss of information when merging two disjoint
clusters G and G′ into G ∪G′ is quantified by :

δ(G,G′) := I(G ∪G′)− I(G)− I(G′). (10.2)

The quantity δ is known as Ward’s linkage and it is equal to the variation of within-cluster
inertia (also called within-cluster sum of squares) after merging two clusters. It also corre-
sponds to a scaled version of the squared distance between centers of gravity:

δ(G,G′) =
|G||G′|
|G|+ |G′|

‖x̄G − x̄G′‖2. (10.3)

The HAC algorithm is described in Algorithm 2. Starting from the trivial partition
P1 = {{x1}, {x2}, · · · , {xp}} with p singletons, the HAC algorithm creates a sequence of
partitions by successively merging the two clusters whose linkage δ is the smallest, until all
objects have been merged into a single cluster.

Algorithm 2 (Contiguity-constrained) Hierarchical Agglomerative Clustering (HAC)

1: Initialization: P1 = {{x1}, {x2}, · · · , {xp}}
2: for t = 1 to p− 1 do
3: Compute all pairwise linkage values between (contiguous) clusters of the current

partition Pt
4: Merge the two (contiguous) clusters with minimal linkage value to obtain the next

partition Pt+1

5: end for
6: return {P1,P2, . . . ,Pp}

Contiguity-constrained HAC is a simple modification of Algorithm 2, where only clusters
that are adjacent are candidate mergers, as indicated by the word “contiguous” in line 3
and 4. The idea of incorporating such constraints was previously mentioned by Lebart [183]
to incorporate geographical (two-dimensional) constraints to cluster socio-economic data,
and by [74] to cluster functional Magnetic Resonance Imaging (fMRI) data into contiguous
(three-dimensional) brain regions.

While contiguity-constrained HAC can be defined for any symmetric relation indicating
which pairs of objects are considered as “contiguous”, we focus in this chapter on the specific
case of adjacency-constrained clustering. That is, we assume that the objects to cluster are
ordered along a line, and only allow for adjacent objects or clusters of objects to be merged.
This particular case has been studied by Grimm [178], and an R package implementing this
algorithm, rioja [20], has been developed1.

Formulation using pairwise Euclidean distances. The inertia of a cluster may be
expressed only in function of sums of the entries of the pairwise distances (‖xi − xj‖, 1 ≤

1available on CRAN at https://cran.r-project.org/package=rioja.
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i, j ≤ p):

I(G) =
∆(G,G)

2|G|
, (10.4)

where ∆ is defined by ∆(G,G′) =
∑
xi∈G,xi′∈G′ ‖xi − xj‖2 for any clusters G and G′.

Moreover, Ward’s linkage between any two clusters G and G′ may be itself be written in
function of these pairwise distances:

δ(G,G′) =
1

2

(
∆(G ∪G′, G ∪G′)

|G ∪G′|
− ∆(G,G)

|G|
− ∆(G′, G′)

|G′|

)
. (10.5)

10.2 Extensions to possibly non-Euclidean settings

The HAC algorithm of Ward [193] has been designed to cluster elements of Rd. In this
chapter, we focus on the situation where the objects to be clustered are indirectly described
by a matrix of pairwise similarities S = (sij)i,j=1,...,p. The motivation of this section is an
important difference between GWAS and Hi-C from a statistical perspective. While the LD
(r2) similarity is a kernel (as explained below in Section 10.4), it is not necessarily the case
for Hi-C similarity matrices, possibly leading to reversals in dendrograms obtained from
constrained HAC as studied in detail in [J1].

Kernels. If S is positive definite, the theory of Reproducing Kernel Hilbert Spaces [197]
implies that the data can be embedded in an implicit Hilbert space. This allows to define the
inertia of a cluster, and consequently to formulate Ward’s linkage between any two clusters
in terms of the similarity using the so-called “kernel trick”: ∀C, C ′ ⊂ {1, . . . , p},

δ(C,C ′) =
S(C)

|C|
+
S(C ′)

|C ′|
− S(C ∪ C ′)
|C ∪ C ′|

, (10.6)

where S(C) =
∑

(i,j)∈C2 sij only depends on S and not on the embedding. This expression
shows that Ward’s Linkage also has a natural interpretation as the decrease in average intra-
cluster similarity after merging two clusters. Equation (10.6) is derived from (10.3) using
the formalism of kernels in Section S1.1 of the Supplementary material of [J5]. Another
way to prove it is to use Equation (10.5) with the distance associated to S by the kernel
mapping, d2

ij = sii + sjj − 2sij , and noticing that the diagonal terms cancel out.

Similarities. An extension of this approach to the case of a general (that is, possibly non-
positive definite) similarity matrix has been studied by Miyamoto, Abe, Endo, and Takeshita
[51]. Noting that (i) for a large enough λ, the matrix Sλ = S + λIp is positive definite and
that (ii) Ward’s linkage associated to Sλ is simply given by δλ(C,C ′) = δ(C,C ′)+λ, applying
Ward’s HAC to S and Sλ yields the exact same hierarchy, only shifting the linkage values by
+λ [51, Theorem 1]. This result, which a fortiori holds for adjacency-constrained Ward’s
HAC, justifies the use of Equation (10.6) in the case of a general similarity matrix.

Dissimilarities. For completeness, we also describe a generic construction of HAC for
arbitrary dissimilarity data, proposed by [17]. This construction is based on an analogy
between distance and dissimilarity. If the p objects are described by a dissimilarity matrix
D, that is, a matrix satisfying: for all i, j ∈ {1, . . . , p}, dij ≥ 0; dii = 0; dij = dji, then
one can simply define the inertia of a cluster by (10.4), with (sums of squared) distances
replaced by (sums of squared) dissimilarities. The corresponding HAC is then formally
obtained as the output of Algorithm 2. This construction generalizes the (less intrinsic)
one proposed by [143] and, later, [28], for specific dissimilarities: in those papers, instead of
starting from Equation (10.4), the linkage between two clusters is defined by a reformulation
of (10.5) using the fact that ∆(G ∪G′, G ∪G′) = ∆(G,G) + ∆(G′, G′) + 2∆(G,G′).
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10.3 Fast segmentation of a band similarity matrix

When the p objects to be clustered belong to Rd, with d < p, the computation of Ward’s
linkage between two clusters can be done in O(d) by exploiting its explicit alternative for-
mulation as the distance between centers of gravity (10.3). In such cases, it is possible
to obtain unconstrained HAC in O(p2 log2 p) in time [164], and lower complexities could
possibly be achieved for adjacency-constrained HAC. However, we focus in this chapter in
the situation where the input objects are represented by pairwise similarities. In such cases
there is generally no explicit or finite-dimensional representation of the centers of gravity,
and the time complexity of adjacency-constrained HAC is intrinsically quadratic in p be-
cause all of the p2 similarities are used to compute all of the required linkage values required
by Algorithm 2. This is the case for the implementation of adjacency-constrained HAD
provided in the CRAN/R package rioja [20].

Band similarity assumption. In applications where adjacency-constrained clustering is
relevant, such as Hi-C and GWAS data analysis, this quadratic time complexity is a major
practical bottleneck because p is typically of the order of 104 to 105 for each chromosome.
Fortunately, in such applications it also makes sense to assume that the similarity between
physically distant objects is small. Specifically, we assume that S is a band matrix of
bandwidth h + 1, where h ∈ {1 . . . p}: sij = 0 for |i − j| ≥ h. This assumption is not
restrictive, as it is always fulfilled for h = p. However, we will be mostly interested in the
case where h� p.

We now describe an algorithm proposed in [J5] to perform adjacency-constrained HAC
under this assumption. This algorithm relies on (i) constant-time calculation of each of
the Ward linkages involved in Algorithm 2 using Equation (10.6), and (ii) storage of the
candidate fusions in a min-heap.

Ward’s linkage as a function of pre-calculated sums. We have shown in [J5] that
the sum of all similarities in any cluster C = {i, . . . , j − 1} of size k = j − i can easily be
obtained from sums of elements in the first min(h, k) sub-diagonals of S:

Lemma 10.1. For 1 ≤ r, l ≤ p, let P (r, l) =
∑
{sij : 1 ≤ i, j ≤ r, |i− j| < l} and

P̄ (r, l) = P (p+ 1− r, l). Letting hk := min(h, k), we have

P (j, hk) + P̄ (i, hk) = S(C) + P (p, hk) . (10.7)

P (p, hk) is the “full” pencil of bandwidth hk (which also corresponds to P̄ (1, hk)).
Lemma 10.1 is illustrated in Figure 10.1, with r ∈ {i, j}, for l = k ≤ h in the left panel,
and l = h ≤ k in the right panel. In both panels, P (j,min(h, k)) is the sum of elements in
the yellow and green regions, while P̄ (i,min(h, k)) is the sum of elements in the green and
blue regions. Because P and P̄ are sums of elements in pencil-shaped areas, we call P (r, l)
a forward pencil and P̄ (r, l) a backward pencil.

Lemma 10.1 makes it possible to compute δ(C,C ′) in constant time from the pencil sums
using Equation (10.6). By construction, all the bandwidths of the pencils involved are less
than h. Therefore, only pencils P (r, l) and P̄ (r, l) with 1 ≤ r ≤ p and 1 ≤ l ≤ h have to be
pre-computed, so that the total number of pencils to compute and store is less than 2ph.
These computations can be performed recursively in a O(ph) time complexity.

Storing candidate fusions in a min-heap. Iteration t of Algorithm 2 consists in finding
the minimum of p− t elements, corresponding to the candidate fusions between the p− t+1
clusters in Ct−1, and merging the corresponding clusters. Storing the candidate fusions in
an unordered array and calculating the minimum at each step would mean a quadratic time
complexity. One intuitive strategy would be to make use of the fact that all but 2 to 3
candidate fusions at step t are still candidate fusions at step t − 1. However, maintaining
a totally-ordered list of candidate fusions is not efficient because the cost of deleting and
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Figure 10.1: Example of forward pencils (in yellow and green) and backward pencils (in
green and blue), and illustration of Equation (10.7) for cluster C = {i, . . . , j − 1}. Left:
cluster smaller than bandwidth (k ≤ h); right: cluster larger than bandwidth k ≥ h.

inserting an element in an ordered list is linear in p, again leading to a quadratic time
complexity. Instead, we propose to store the candidate fusions in a partially-ordered data
structure called a min heap [192]. This type of structure achieves an appropriate trade-off
between the cost of maintaining the structure and the cost of finding the minimum element
at each iteration.

A min heap is a binary tree such that the value of each node is smaller than the value
of its two children. The advantage of this structure is that all the operations required in
Algorithm 2 to create and maintain the list of candidate fusions can be done in O(log p). A
detailed description of the algorithm, which is implemented in the adjclust package [S3],
is given in [J5].

10.4 Application to Genome-Wide Association Studies

As explained in Chapter 1, genome-Wide Association Studies (GWAS) aim at identifying
markers associated with a phenotype of interest. Given that an individual’s genotype is
characterized by millions of markers (known as SNPs) this approach yields a large multiple
testing problem. Due to recombination phenomena, the hypotheses corresponding to SNPs
that are close to each other along the genome are statistically dependent. This dependence
is usually quantified by the linkage disequilibrium (LD), as displayed in the right panel of
Figure 1.2. A widely used measure of LD in the context of GWAS is the r2 coefficient, which
can be estimated directly from genotypes measured by genotyping array or sequencing data
using standard methods [43]. The similarity S = (r2

ij)i,j induced by LD can be shown to be

a kernel [J5, Supplementary Materials]2.
In this section, we show how the above-described algorithm for adjacency-constrained

clustering may be used in this context. In Subsection 10.4.1 we illustrate the relevance of
the band similarity assumption introduced above, and the computational gains offered by
the algorithm. In Subsection 10.4.2 we show how this algorithm can be used to perform
tests of association at the level of LD blocks instead of SNPs. The numerical experiments
below have been performed on a SNP dataset coming from a GWA study on HIV [103]
mentioned in Chapter 1.

2The proof is a consequence of the fact that r2 can be formulated as the squared correlation between
(latent) variables that depend on haplotypes.
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10.4.1 Linkage disequilibrium block inference in GWAS

We used genotype data corresponding to five chromosomes that span the typical number of
SNPs per chromosome observed on the 317k Illumina genotyping microarray (5, 000 ≤ p ≤
25, 000).

Quality of the band approximation. We compared the dendrogram obtained with
h < p to the reference dendrogram obtained with the full bandwidth (h = p) by recording
the index t of the last clustering step (among p−1) for which all the preceding fusions in the
two dendrograms are identical. The quantity t/(p−1) can then be interpreted as a measure
of similarity between dendrograms, ranging from 0 (the first fusions are different) to 1 (the
dendrograms are identical). Figure 10.2 (left) displays the evolution of t/(p−1) for different
values of h for the five chromosomes considered here. For example, for all five chromosomes,

Figure 10.2: Left: quality of the band approximation as a function of the bandwidth h
for five different chromosomes. Right: computation times versus p for LD matrices, and
clustering with rioja and adjclust.

at h = 1000, the dendrograms differ from the reference dendrogram only in the last 0.5% of
the clustering step. We obtained similar results when using other criteria for evaluating the
quality of the band approximation, including Baker’s Gamma correlation coefficient [189],
which corresponds to the Spearman correlation between the ranks of fusion between all
pairs of objects. Importantly, the influence of the bandwidth parameter is the same across
chromosomes, that is, across values of p. Therefore, it makes sense to assume that h does
not depend on p and that the time and space complexity of our proposed algorithm, which
depends on h, is indeed quasi-linear in p.

Scalability and computation times. Figure 10.2 displays the computation time for the
LD matrix (dotted lines) and for the adjacency-constrained HAC with respect to the size
of the chromosome (x axis), both for rioja (dashed line) and adjclust (solid lines). As
expected, the computation time for rioja did not depend on the bandwidth h, so we only
represented h = p. For adjclust, the results for varying bandwidths are represented by
different colors.

First, the computation times of rioja are several orders of magnitude larger than those
of adjclust, even when h = p where both methods implement the exact same algorithm.
As expected, the complexity of adjclust with h = p is quadratic in p, while it is essentially
linear in p for fixed values of h < p. For large values of p the gain of the band approximation
is substantial. We also note that regardless of the value of h, the total time needed for the
clustering is of the order of (and generally lower than) the time needed for the computation
of the LD. This implies that runnning the adjclust algorithm in this case comes essentially
for free from a computational point of view.
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10.4.2 Block-wise GWAS

To overcome the intrinsic limitations of classical Genome-wide association studies (GWAS)
involving univariate tests between statistically dependent markers, we have proposed in [J9]
the following approach: (i) infer LD blocks using adjclust, (ii) estimate the number of LD
blocks using a model selection criterion based on the Gap statistic [163], and (iii) perform
Group Lasso regression to identify which of the inferred LD blocks are associated with the
response.

We have investigated numerically the efficiency of this approach compared to state-of-
the art regression methods: haplotype association tests, single marker analyses, and Lasso
and Elastic-Net regressions. Our numerical experiments show that the proposed method
outperforms state-of-the-art approaches (the haplotype association module of the PLINK
genome association analysis tool [119], single marker analyses and Lasso and Elastic-Net
regressions) as soon as the number of causal SNPs within a LD block exceeds 2. This
method has also been applied to the analysis of the HIV data set introduced in Chapter 1,
where one goal is to identify LD blocks associated to the viral load (that is, the abundance
of the virus in blood cells). This is illustrated by Figure 10.3, where a small part of the LD
similarity matrix is displayed together with the results of the proposed method (left panel)
and PLINK (right panel). The region displayed corresponds to 68 contiguous markers
located in the major histocompatibility complex (MHC), of which 8 (marked with a red
star *) had previously been identified as (marginally) associated to the viral load [103]. The
proposed method (Figure 10.3, left plot) is able to identify LD blocks (delimited with a red
contour line) larger than PLINK.

Figure 10.3: A linkage disequilibrium (r2) plot with the inferred block structures (black
and red contour lines) for a set of 68 contiguous SNPs located on the MHC region. Left:
within the structure inferred by the proposed method, the blocks selected by the Group
Lasso are delimited with a red contour line. The SNPs selected by single marker analysis
are plotted with a red star (*), and the SNPs missed by Lasso with a blue dash (-). Right:
within the structure inferred by the haplotype association method, the blocks selected by
the competing method are delimited with a red contour line.
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Chapter 11

Directions for future research

The previous chapters summarize some attempts to address the complexity of genomic
data by considering their sparsity, heterogeneity and structure as constraints that alleviate
the curse of dimensionality, and guide statistical methods toward solutions that are more
plausible from a biological standpoint. My recent research contributions, particularly in the
context of the SCALES project (2017-2019) funded by the CNRS MITI and the SansSouci
project (2016-2020) funded by ANR have also raised a number of new research questions,
that cover a broad spectrum from theory to applications. In this chapter we describe
some research directions toward exploiting the multiscale nature of biological problems, and
providing inferential guarantees for exploratory findings. We will pay particular attention
to the evaluation of the statistical and computational “price to pay” for accounting for these
important features.

Some open questions in the field of post hoc inference are discussed in Section 11.1. In
Section 11.2 specific methodological challenges for inference for signals that are structured
along the genome or in three dimensions are described. Section 11.3 is an opening to broader
scientific challenges which I consider to be of primary importance, especially in the context
of interdisciplinary research.
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11.1 Emerging challenges in post hoc inference

11.1.1 Improved post hoc bounds

New JER controlling procedures. The generic framework based on JER control intro-
duced in Section 5 makes it possible to construct several post hoc bounds based on different
reference families. One natural extension is to look for new probabilistic inequalities that
yield JER control, or to extend the validity of existing one. In particular, it is conjectured
in the multiple testing field that the Simes inequality holds for Gaussian tests statistics with
arbitrary covariance matrix. If this conjecture was proved, then the validity of the Simes
post hoc bound would be automatically extended as well. Another interesting research di-
rection is to obtain JER control for dependent tests by building reference families based on
harmonic mean p-values [13].

Aggregation of reference families. Bounds based on distinct reference families may
perform differently on different subsets of selected hypotheses. For example, Figure 5.6
in Chapter 5, suggests (consistently with our theoretical results) that the Linear bound
performs better than the Beta bound for smaller subsets, and worse for larger subsets.
Similar observations have been made in the case of locally-structured hypotheses [J3]. An
interesting perspective is to use aggregation techniques to build bounds performing almost
as well as the best possible bound for any size or shape of subset.

11.1.2 Toward Post Selection Inference and online multiple testing

Connection to post selection inference. The post hoc bounds originally proposed
by [81] and our JER-based bounds [J2] intrinsically rely on testing marginal hypotheses.
Valid inference methods for multiple regression after arbitrary model selection have been
proposed by [65, 2]. These methods involve inflating standard confidence intervals by a
constant factor called “Post Selection Inference (PoSI) constant”. However, this approach
cannot be used in high-dimensional settings due to the exponential time complexity (in the
number p of variables) required to calculate the PoSI constant for a given design matrix.
Kuchibhotla, Brown, Buja, Cai, George, and Zhao [4] have recently introduced confidence
intervals enjoying two remarkable properties: they have a much reduced computational cost
of O(p2), and their volume scales with the size of the selected model and not with the largest
possible model size considered. An important perspective is to derive post hoc bounds from
[4], and to compare these bounds to our “marginal” bounds.

Post hoc bounds for online tests. Online multiple testing consists in performing se-
quence of tests, when the number of tests is unknown an possibly infinite. Motivated by
applications to A/B testing, much progress has been recently made for online FDR and
FDP control, see [19] and the works of Aaditya Ramdas on the subject, e.g. [3, 10]). A
natural question is the construction of online post hoc bounds.

11.2 Inference for structured signals

The problem of differential analysis along the genome has been studied for DNA methylation
data [63] and ChIP seq data [62] among other types of genomic data. Just like differential
expression analyses, the goal is to identify genomic features whose “activity” is significantly
different between two biological or clinical conditions, based on the observation of several
activity profiles. However, one is generally more interested in detecting differentially active
regions (differentially methylated regions, or differentially bound regions in the above two
examples) than differentially active individual loci. The main statistical difficulty is that
the candidate regions are not known a priori and thus have to be constructed from the
data. We are interested in two specific practical instances of such structured differential
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analysis problems. The first one is the case of differential DNA copy number analysis in
cancers between cancer subtypes. The second one is differential analysis of Hi-C contact
maps. For the latter, at least two “regional” scales should be considered, which are known as
Topologically Associated Domains (TAD) and A/B compartments. These scales correspond
to two levels of chromosomal organization that can be detected from Hi-C contact maps
from a single DNA sample [72].

In both contexts, it is possible to first perform differential analysis at the most local
level, using methods derived from differential expression studies proposed in [63, 62, 49],
and then to aggregate this information into a regional signal. Using the strategy outlined
in [J3] it is possible to derive post hoc bounds for any candidate region. Depending on
the constraints on the shape of the regions of interest, finding efficient ways of scanning all
relevant regions raises interesting computational challenges.

From a statistical perspective, following the argument developed in Chapter 8 to moti-
vate the method proposed in [J16], aggregating marginal tests can be under-powered com-
pared to performing multivariate tests. An additional difficulty in the above applications is
that contrary to the case of differential expression of pathways, the regions of interest are
generally not known in advance. Accounting for this feature will rely on testing strategies
tailored to each problem. For differential copy number analysis, one direction to investigate
consists in fitting a Hidden Markov Model in order to obtain locus-level probabilities of
differential expression that account for spatial dependence, and to derive a tailored JER
control. Another relevant direction consist in first performing a joint segmentation of the
genome as in Chapter 9, and then design tailored tests of differential copy number analysis of
such data-driven segments. For differential Hi-C analysis, one possibility is to elaborate on
the TAD detection method presented in Chapter 10. We expect that these methodological
developments will also raise interesting statistical and computational challenges.

11.3 Broader scientific challenges

In this section I discuss broader scientific challenges that I believe as a statistician to be fun-
damental for the research community to work in a sound and efficient manner. While I will
certainly not solve these challenges by myself, I hope to be able to make some contributions
to some of the points they raise in future years.

11.3.1 Interdisciplinarity: methods to connect theory and practice

An important context element for method development in genomic data analysis is the
rapid evolution of genomic assays, which has several consequences for statisticians. First,
the increasing complexity of these assays makes it difficult for non-specialists to gain enough
understanding to propose relevant models for statistical and experimental variability. Then,
the number of proposed bioinformatic methods makes it difficult to identify state-of-the-
art methods, and the fact that these methods are typically pipelines made of several tools
hampers the statistical understanding of the strengths and weaknesses of such methods.
Finally, and as a result, the time needed to finely address the statistical issues raised by the
analysis of a given technology can be much longer than the half-life of this technology. Thus,
the breadth of the interface between biology/genomics applications and statistical theory is
expanding. An important point for future years is the ability for the scientific community
to strengthen the links between theory and applications.

My personal experience is that it is difficult to foster scientific interactions between
biology and mathematics (or even biology and statistics) at a macroscopic scale. I have found
it more effective and more stimulating to organize seminars, reading groups or workshops
dedicated to the statistical, bioinformatic and biological challenges raised by the analysis of
one particular type of data, or one particular biological question. In the context of the PhD
thesis of Nathanaël Randriamihamison on Hi-C data analysis, we have created in 2018 in
Toulouse a very active reading group called chrocogen (for chromatin Conformation and gene
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expression), which gathers statisticians, biostatisticians, bioinformaticians and biologists.
We have also organized a successful workshop on Hi-C data analysis in December 2019.

11.3.2 Reproducible research and performance evaluation

Reproducible research and the role of statisticians. The ability to reproduce or
replicate scientific experiments is at the very core of the scientific method. Almost fifteen
years ago, a paper raised awareness by claiming that an important proportion of published
biomedical studies could not be replicated [134]. This issue is not specific to biomedical
sciences1. While the actual proportion of “wrong” papers in the scientific literature can
be discussed (see e.g. [48, 69]), there is consensus that this proportion is unacceptably
large. Most results in biomedical studies are obtained from some data analysis. A first and
obvious necessary condition for reproducing such computational results is the presence of
all the required data and code. A number of journals now favor methods reproducibility
by imposing to publish code and data allowing to reproduce the results of a paper; see
also the special collection “Challenges in irreproducible research” from the Nature journals.
The question of “reproducibility” of research findings has several important aspects from a
statistician’s perspective:

1. Part of non-reproducibility can simply be attributed to the fact that a number of
studies still disregard or poorly address the issue of selection or multiple testing.
Even when all of the hypotheses tested are explicitly reported in a study, it is not
uncommon that only those whose p-value is less than 0.05 are retained and mentioned
in the abstract. This issue can readily be addressed by “classical” multiple testing
procedures, and it is worrisome that not all scientific journals seem to be able to catch
these errors before publication.

2. Scientific results may be non-reproducible because of selection biases in the study,
such as silently adding/removing some cases in a study, reporting only the results
of one particular combination of method and tuning parameters whereas many such
combinations have also been tried. This issue of fishing for significance can partly
be addressed by pre-registration of the methods to be used: such practices are highly
relevant to confirmatory analyses, clinical trials, but less so in exploratory contexts.
We believe that developments in post hoc inference could help address this issue.

3. Similar issues can be found in the statistical methodology literature itself. In papers
presenting new statistical methods, it is not uncommon that the performance of several
methods are tested on several synthetic or experimental data sets and/or performance
criteria, but only a subset including those favoring the method proposed by the authors
of the paper are reported. This issue has been studied in depth in [41], and practical
guidelines for benchmarking studies have been proposed in [11].

Importance of performance evaluation in scientific literature. The bias in the
methodological literature discussed in the last item partly comes from the current publica-
tion system itself. Indeed, in order for a statistical method to be published, most journals
require evidence of the superiority of this method on existing ones in simulations or data
set analyses, which encourages the above-discussed selective reporting of numerical experi-
ments. This lack of objectivity is problematic per se (leading for example to very contrasted
performance assessments for a given method in different papers), but also because the liter-
ature on statistical methods often provides only limited insight into when and why a given
method is appropriate or not, whereas these questions are actually those that contribute to
a global understanding and improvement of the available methods.

While the need for neutral comparison studies (also known as benchmarking studies) is
widely acknowledged by us as statisticians, it is not always (or even often not) applied in our

1“Is There a Reproducibility Crisis in Science?”. Nature Video, Scientific American. 28 May 2016.
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own methods publications, as noted in [26]. The question of designing such benchmarking
studies in several fields has itself become a subject of research, see e.g. [15, 8, 9, 11] for
recent contributions and the STRATOS Initiative2 in clinical biostatistics. Some statistical
journals including Briefings in Bioinformatics or Genome Biology explicitly welcome neutral
comparison studies. These stimulating questions provide food for thought for building novel
forms of scientific publications that could be specifically designed for these types of studies.

11.3.3 Toward truly applicable methods

Although the applied statistics community has made tremendous efforts to make newly
developed methods available for the bioinformatics or biology community, I believe that
there is still much room for improvement in this direction, and that such improvement is
crucial to consolidate the links between theory and applications.

R packages. The past decades have undergone massive developments of open-source im-
plementations of data analysis methods, especially in R and python. The current standard
for the implementation of statistical methods is in the form of R packages. From a statisti-
cian’s perspective, there is a clear tension between the collective interest of putting together
and maintaining well-documented packages, and the corresponding individual time require-
ments – in particular, the more a package is used, the more costly it is to maintain it. As
a result, the sweet spot for developers of statistical methods is currently to put together a
(github) repository where their code is available, generally in the form of an R package3.
However, an important caveat of this package-centered model is that several (and possibly
dozens of) packages using different inputs and outputs can be devoted to similar statistical
problems. This makes it difficult for end users to know which implementation to use for a
particular task4.

The computational statistics community should continue to foster the development of
open-source implementations of new statistical methods. The scikit-learn Python library
for machine learning is based on a different model, relying on a growing user and developer
community to contribute to the code and documentation of a single module, which is a
well-recognized entry point. This project has recently been awarded a prestigious prize
from the Académie des Sciences, but it has required a huge time investment from the main
contributors 5. The time saved (collectively) by having a readily usable implementation of
recent statistical methods is invaluable, not only for potential users, but also for developers
of competing methods. I believe that it is important for the efficiency and quality of current
and future scientific research to increase the (individual) support and recognition of this
type of contributions.

Interactive visualization and inference. Interactive graphical user interfaces (GUI)
are an important tool for the diffusion of statistical methods toward end users with little or
no programming skills. Post hoc inference methods play particularly nicely with interactive
visualization tools because these methods by construction allow the user to perform data

2STRATOS stands for STRengthening Analytical Thinking for Observational Studies, see http://www.

stratos-initiative.org/.
3This is a clear improvement with respect to the standards of 10-15 years ago, where implementations

were generally “available upon request” to the authors. This progress is a consequence of (i) the more
and more frequent requirements of journals to make code truly available, (ii) the development of efficient
packages for package development [12], testing [89], and documentation [25], and (iii) the recognition of R
packages as a contribution in the applied statistic community, which can even lead to dedicated publications
[J8].

4To address this difficulty, the Comprehensive R Archive Network (CRAN) offers Task Views, which give
a list of packages (curated by specialists) pertaining to a given topic. For example, the recent task view
on missing data lists more than 130 CRAN packages related to this particular topic. Also, the developers
of Bioconductor packages, which are specifically dedicated to computational biology, are encouraged to use
standard methods and classes.

5See the blog post Getting a big scientific prize for open-source software by Gaël Varoquaux.
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snooping without compromising the statistical guarantees offered by the methods, thereby
making statistical analysis truly interactive. The development of such tools has been made
easier for R users with the advent of Shiny Applications. For example, we have quickly
developed a proof of concept application as a supplementary material for the book chapter
[P1], in order to illustrate the interest of post hoc bounds for localized signals6. I plan to
make future contributions available in the form of such applications, in particular for the
interactive visualization and analysis of DNA copy number profiles in cancers, and for the
differential analysis of Hi-C data. Finally, such developments are a not only a way to bridge
the gap between theory and practice: developing such applications together with end users
can also yield a better understanding of which type of signal is relevant, therefore possibly
opening the way for new statistical developments to specifically detect this particular type
of signal.

6This app is available at https://pneuvial.shinyapps.io/posthoc-bounds_ordered-hypotheses/.
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son, R. Rosenquist, M. Höglund, A. Borg, and M. Ringnér. “Segmentation-based
detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole
genome SNP arrays.” Genome biology 9.9 (Jan. 2008), R136. issn: 1465-6914 (cit. on
p. 80).

[111] The Cancer Genome Atlas (TGCA) research Network. “Comprehensive genomic
characterization defines human glioblastoma genes and core pathways”. Nature 455
(2008), pp. 1061–1068 (cit. on p. 64).

[112] R. Tibshirani and P. Wang. “Spatial smoothing and hot spot detection for CGH data
using the fused lasso”. Biostatistics 9.1 (2008), pp. 18–29 (cit. on p. 83).

[113] W. N. van Wieringen and M. A. van de Wiel. “Nonparametric Testing for DNA Copy
Number Induced Differential mRNA Gene Expression”. Biometrics 5.1 (Mar. 2008),
pp. 19–29 (cit. on p. 61).

[114] W. B. Wu. “On false discovery control under dependence”. Ann. Statist. 36.1 (2008),
pp. 364–380 (cit. on p. 34).

[115] Z. Chi. “On the performance of FDR control: constraints and a partial solution”.
The Annals of Statistics 35.4 (2007), pp. 1409–1431 (cit. on pp. 28, 30, 31).

[116] F. S. Collins and A. D. Barker. “Mapping the cancer genome”. Scientific American
296.3 (Mar. 2007), pp. 50–57 (cit. on p. 64).
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