
HAL Id: tel-02969494
https://theses.hal.science/tel-02969494

Submitted on 16 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cost optimization of business processes based on time
constraints on cloud resources

Rania Ben Halima

To cite this version:
Rania Ben Halima. Cost optimization of business processes based on time constraints on cloud re-
sources. Networking and Internet Architecture [cs.NI]. Institut Polytechnique de Paris, 2020. English.
�NNT : 2020IPPAS014�. �tel-02969494�

https://theses.hal.science/tel-02969494
https://hal.archives-ouvertes.fr

Institut Polytechnique de Paris
91120 Palaiseau, France

3

4

Acknowledgment
First and foremost, I thank God for giving me strength, knowledge, ability and oppor-
tunity to undertake this research work and to continue and complete it satisfactorily.
Without his blessings, this achievement would not have been possible.

I would like to thank all the jury members. I thank Professor Narjès Bellamine
Ben Saoud and Dr Aly Megahed for accepting being my thesis reviewers and for
their attention and thoughtful comments. I also thank Professor Amel Bouzeghoub,
Professor Mohamed Jmaiel, and Professor Karim Bäına for accepting being my thesis
examiners.

I would like to express my appreciation and gratitude to my supervisor Walid
Gaaloul. His valuable advice, patience, enthusiasm and constant support all the time
of research allowed me to acquire new understandings and extend my experiences. He
was not only an advisor but also a good friend. Thank you for your guidance, it has
been a true pleasure and I deeply hope that we can continue our collaboration.

A special gratitude is also due to my co-supervisor Slim Kallel for his great advices
and his guidance. I am thankful for the opportunities he provided, and for having
faith in me. I am deeply grateful for the great deal of time we spent discussing many
technical details of our work together. Special thanks to Dr Kais Klai, Professor
Zakaria Maamar, Dr Mehdi Ahmed-Nacer, and Mme Imen Zouaghi for the beneficial
collaborations we have had.

I am indebted grateful to Professor Carlos Juiz Garcià for his feedbacks and sug-
gestions on my work during my mobility in the University of the Balearic Islands.

I owe my deepest gratitude and warmest affection to the members of the computer
science department of Telecom SudParis. I would like to thank Brigitte Houassine for
her kind help and assistance. A special thank you to my office mates Emna, Souha,
Rami, Hayet, Kunal, Nabila, Ikram, Aicha, and Leila.

A special thank to the RedCAD laboratory members Riadh, Saoussen, Fairouz,
and Feten for all their help and support.

Thanks to my friends especially Ghassen, Maroi, Nada, Hiba, and Haythem
for their emotional support and for all the beautiful moments we shared in France
and Tunisia.

I am forever thankful to my parents: my father Abdellatif, my mother Soumaya,
and my brothers Yessine and Mahdi who were always there for me with encouraging
words whenever I started doubting myself. Your encouragement made me go forward
and made me want to succeed. My warm thanks to my parents-in-law, Taoufik and
Sajia for their love and kindness. I am also grateful to my brother in law Walid, my
sister in law Feten, and their cute children Iyed and Ayoub, my brother in law Wassim,
my sister in law Lilia, and their sweet children Yessmine, Edam, and Mohamed, my
brother in law Amine, my sister in law Molka, and their lovely son Ismaiel. Thank
you so much for having faith in me! You supported me without even you know it.

I express my deepest gratitude to my soul mate and my loving husband Ilyes. His

5

love and encouragement fostered me to concentrate at work. His understanding and
support helped me to get through many difficult times. I hope that my thesis will be
a source of pride for you.

Finally, I dedicate this thesis to my little baby still fetus. I hope that you will be
proud of your mum.

I love you so much.
Rania Ben Halima Kchaou

6

Abstract

Organizations are recently more and more adopting Process-Aware Information Sys-
tems for the management and the execution of their business processes. Motivated by
a high-level performance at deployment and execution while keeping reduced devel-
opment and maintenance costs, organizations have started outsourcing their business
processes using cloud computing resources. Cloud is an increasingly popular com-
puting paradigm that provides on-demand services over the Internet as it reduces
organizations’ needs to plan ahead for provisioning resources. Many cloud providers
offer competitive pricing strategies (e.g., on-demand, reserved, and spot) to accom-
modate users’ changing and last-minute demands.

The design of correct time-aware business processes in cloud resources with re-
spect to temporal constraints has become challenging. Since business processes are
time-constrained and pricing strategies are specified based on temporal constraints,
modeling correct process models is undoubtedly a difficult and an error-prone task.
The resource perspective in business process models is poorly operated in compari-
son to other perspectives such as the control-flow. Although several approaches have
been proposed in the literature, they all targeted cloud resources properties such as
elasticity and shareability rather than pricing strategies, i.e., temporal availabilites.

The optimization of the deployment cost of time-aware business processes in dif-
ferent cloud resources proposed under various pricing strategies becomes a highly
challenging problem. Despite their varieties and benefits to optimize deployment
cost, using pricing strategies can lead to exceeding budget constraints due to inap-
propriate decisions when allocating cloud resources to business processes. Different
proposals have been suggested in the literature to optimize the deployment cost of
business processes. They, however, consider neither the variety of pricing strategies
nor the advanced temporal constraints.

In this thesis, we address the above shortcomings by proposing an approach for
optimizing the deployment cost of business processes in cloud resources based on tem-
poral constraints. We aim to: (i) improve the business processes support of temporal
constraints on activities and cloud resources, as well as pricing strategies and (ii)
provide solutions to minimize the business process deployment cost. To this end, we
propose a formal specification for cloud resources, pricing strategies, and activities’
temporal constraints. This specification is used to formally verify the temporal cor-
rectness of cloud resource allocation in time-aware business processes at design time.
Then, we propose two linear program models, binary linear program and mixed inte-
ger program, to find the optimal deployment cost of time-aware business processes in
cloud resources. To validate our approach, we (i) develop a proof of concepts as an
extension for existing business process modeling tools, and (ii) perform experiments
to validate our approach. Experiments have proven the effectiveness, feasibility, and
scalability of our proposals.

8

List of Publications
Journal Article

1. Rania Ben Halima, Slim Kallel, Walid Gaaloul, Zakaria Maamar and Mohamed
JmaielToward a Correct and Optimal Time-aware Cloud Resource Allocation to
Business Processes, Future Generation Computer Systems, 2019 (to appear).
(Impact factor: 5.768)

2. Rania Ben Halima, Slim Kallel, Mehdi Ahmed Nacer and Walid Gaaloul, Opti-
mal business process deployment cost in cloud resources, The Journal of Super-
computing, 2020 (to appear). (Impact factor: 2.157)

Conference Proceeding

1. Rania Ben Halima, Imen Zouaghi, Slim Kallel, Walid Gaaloul and Mohamed
Jmaiel, Formal Verification of Temporal Constraints and Allocated Cloud Re-
sources in Business Processes, 32nd IEEE International Conference on Ad-
vanced Information Networking and Applications, AINA 2018, Krakow, Poland,
May 16-18, 2018, 952–959 (Ranking: B).

2. Rania Ben Halima, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel, Schedul-
ing Business Process Activities for Time-Aware Cloud Resource Allocation, On
the Move to Meaningful Internet Systems, OTM 2018 Conferences- Confeder-
ated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta,
Malta, October 22-26, 2018, Proceedings, Part I, 445–462 (Ranking: A).

3. Rania Ben Halima, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel, Opti-
mal Cost for Time-Aware Cloud Resource Allocation in Business Process, 2017
IEEE International Conference on Services Computing, SCC 2017, Honolulu,
HI, USA, June 25-30, 2017, 314–321 (Ranking: A).

4. Rania Ben Halima, Slim Kallel, Kais Klai, Walid Gaaloul, and Mohamed Jmaiel,
Formal Verification of Time-Aware Cloud Resource Allocation in Business Pro-
cess, On the Move to Meaningful Internet Systems: OTM 2016 Conferences-
Confederated International Conferences: CoopIS, C&TC, and ODBASE 2016,
Rhodes, Greece, October 24-28, 2016, Proceedings, 400–417 (Ranking: A).

9

10

Table of contents

List of Tables 15

List of Figures 17

Introduction 21

1.1 Research Context . 21

1.2 Objectives and Contributions . 24

1.3 Road Map . 26

2 Preliminaries 27

2.1 Introduction . 27

2.2 Business process . 28

2.2.1 Business process temporal constraints 28

2.2.2 Process Modeling . 29

2.3 Cloud computing . 31

2.3.1 Generalities . 32

2.3.2 Cloud pricing strategies . 33

2.3.3 CloudSim . 35

2.4 Model Driving Engineering . 38

2.5 Formal Verification . 40

2.6 Mathematical Programming . 44

2.6.1 Classification of optimization problems 45

2.6.2 Complexity of optimization problems 45

2.6.3 Optimization problem resolution 45

2.6.4 Linear programming . 47

2.7 Conclusion . 48

3 The Proposed Approach 49

3.1 Introduction . 49

3.2 Motivation and Problems Statement 50

3.2.1 How to support cloud resource allocation in time-aware BP mod-
els? . 50

3.2.2 How to ensure the correctness of time-aware BPs in cloud re-
sources? . 51

3.2.3 How to find the optimal deployment cost of time-aware BPs in
cloud resources? . 52

3.3 Case study . 54

3.4 Proposed Approach . 56

3.4.1 Graphical modeling . 58

11

3.4.2 Verification of the temporal correctness of cloud resources allo-
cation . 58

3.4.3 Optimization of the BP deployment cost 59

3.5 Conclusion . 60

4 State of the Art 61

4.1 Introduction . 61

4.2 Temporal constraints and Cloud resources in BP 62

4.2.1 Formal specification in BP . 62

4.2.1.1 Activity temporal constraints specification 62

4.2.1.2 Resource perspective specification 64

4.2.1.3 Time and resource specification 67

4.2.1.4 Synthesis . 67

4.2.2 Formal verification . 69

4.2.2.1 Formal verification methods 69

4.2.2.2 Structural verification 70

4.2.2.3 Temporal verification 71

4.2.2.4 Resource allocation verification 72

4.2.2.5 Time and resource allocation verification 75

4.2.2.6 Synthesis . 77

4.3 Optimization of resource allocation . 78

4.3.1 Resource allocation . 80

4.3.1.1 Resource assignment 80

4.3.1.2 Resource scheduling 81

4.3.2 Cloud resource allocation . 83

4.3.2.1 Cloud resource assignment 85

4.3.2.2 Cloud resources scheduling 87

4.3.3 Pricing strategies . 90

4.3.4 Synthesis . 91

4.4 Conclusion . 93

5 Supporting Cloud Resources Temporal Constraints in BPs 95

5.1 Introduction . 95

5.2 Graphical Modeling . 96

5.2.1 Formal definitions . 96

5.2.1.1 Cloud resources in BP 97

5.2.1.2 Business process model 98

5.2.2 BPMN extension . 99

5.3 Model transformation . 102

5.3.1 Transformation: from BPMN to timed automata 102

5.3.2 Automatic transformation . 107

5.3.3 UPPAAL Meta-Model . 109

12

5.4 Correctness analysis . 109
5.5 Evaluation . 111

5.5.1 Supporting pricing strategies description 111
5.5.2 BPMN model transformation 112
5.5.3 Checking CTL properties . 115

5.6 Conclusion . 118

6 Optimization of Business Process Deployment Cost in Cloud Re-
sources 121
6.1 Introduction . 121
6.2 Linear optimization . 123

6.2.1 Inputs and decision variables 123
6.2.2 Problem constraints . 124
6.2.3 BLP . 127
6.2.4 MIP . 127

6.3 CloudSim simulation . 128
6.3.1 CloudSim extension . 128
6.3.2 Unified Description Model . 129
6.3.3 Simulation of resource allocation 130

6.4 Evaluation . 131
6.4.1 Case study . 131
6.4.2 Performance Analysis . 132

6.4.2.1 Data inputs . 133
6.4.2.2 Penalties Price Evaluation 133
6.4.2.3 AND Split/Join Constraints 135
6.4.2.4 Temporal Flexibility Constraint 135
6.4.2.5 Deadline Constraint 136

6.4.3 Comparison . 136
6.4.4 Impact of the verification step 138

6.4.4.1 Impact of inputs . 139
6.4.4.2 Impact of correct allocations’ number 140

6.4.5 CloudSim Results . 141
6.5 Conclusion . 143

Conclusion and Future Works 145
7.1 Fulfillment of objectives . 145

7.2 Future Works . 147

Appendices 149

A Implementation frameworks 151

A.1 Eclipse Modeling Framework: EMF . 151
A.2 BPMN2 Modeler palette extension using Graphiti 152

13

B Plug-in creation 155
B.1 Meta-model creation . 155
B.2 Java code generation . 155
B.3 The dependencies of the extension plug-in 157

Bibliography 161

List of Tables

3.1 Process activities’ temporal constraints and needs in cloud resources . 55
3.2 Virtual machine instance properties by pri1=Amazon EC2 55
3.3 Virtual machine instance properties by pri2=Microsoft 55

4.1 Summary of the literature study of perspectives specification in BP . . 68
4.2 Summary of the literature study of verification in BPs 79
4.3 Summary of the literature study of resource allocation optimization . 92
4.4 Summary of the literature study of human allocation optimization . . 93
4.5 Summary of the literature study of cloud resource allocation optimization 94

5.1 Temporal availabilities of cloud resources 98

6.1 Assignment result . 132
6.2 CloudSim cost estimation . 133
6.3 Data Input Ranges . 133

15

List of Figures
1.1 Various pricing strategies to deploy BP model 23
1.2 Temporal verification and optimization in the BP lifecycle (adapted from [1]) 25

2.1 Relative temporal constraints . 30
2.2 Categories of BPMN object elements [2] 31
2.3 BP designed in BPMN . 32
2.4 Conceptual reference model of cloud computing (defined by NIST) [3] 33
2.5 Amazon EC2 pricing strategies [4] . 36
2.6 Basic architecture of Cloudsim [5] . 37
2.7 Overview of ATL transformational approach [6] 40
2.8 Model checking process . 41
2.9 Main elements of a timed automaton for UPPAAL 43

3.1 Verification-related research problem 52
3.2 Optimization related to research problem 53
3.3 Supervision service business process in BPMN 54
3.4 Approach overview . 57

4.1 Time patterns proposed in [7] . 63
4.2 Treatment process [7] . 64
4.3 The Ralph language [8] . 65
4.4 Process of patient examination [8] . 66
4.5 Example process model with deadlock structural conflict [9] 70
4.6 BP model mapped into BPMN model [10] 72
4.7 Process model: Opening a bank account [11] 74
4.8 Static resource analysis approach overview [12] 75
4.9 Priority-based scheduling of process instances under human resource con-

straints [13] . 83
4.10 Resource allocation of publish a book process [14] 84
4.11 Scheduling of a workflow with required resources [15] 88

5.1 The extension of resource element in BPMN 101
5.2 BPMN temporal extension . 101
5.3 Allocation of R1 as an on-demand instance cloud-resource to activity a1 104
5.4 Resource allocation with R1 as spot block to an activity a1 104
5.5 Allocation of R1 as a spot instance with an interruption risk to activity

a1 . 106
5.6 Allocation of R1 as a spot block shared between activities a1 and a9 . 107
5.7 UPPAAL meta-model extension . 110
5.8 Extended BPMN process with BPMN2 modeler 112
5.9 Pricing strategies specification . 112

17

5.10 Pricing strategies specification . 113
5.11 ATL transformation . 114
5.12 Process activities timed automata . 116
5.13 Resources timed automata . 117
5.14 UPPAAL verifier’s outcomes . 118

6.1 Gantt chart of the service supervision process 132
6.2 Penalties prices . 134
6.3 AND Split/Join Variation . 135
6.4 Flexibility Evaluation . 136
6.5 Deadline evaluation . 137
6.6 Approaches Comparison . 138
6.7 Impact of inputs on computation time 140
6.8 Impact of inputs on objective function 140
6.9 Impact of correct allocations’ number 141
6.10 CloudSim Evaluation . 142
6.11 Difference in % between our linear programs and the simulator 142

A.1 Generating Java code from an Ecore model 153
A.2 The BPMN2 Modeler extended palette 153

B.1 Ecore model and the DocumentRoot class 156
B.2 The loaded BPMN meta-model . 157
B.3 Genmodel file and the generated packages 157
B.4 Dependencies required for the plug-in extension 158
B.5 The target runtime element . 158
B.6 The model element . 159

18

19

List of Acronyms

BP Business Process

PAIS Process Aware Information System

BPM Business Process Management

BPMN Business Process Modeling and Notation

ATL ATLAS Transformation Language

BLP Binary Linear Program

MIP Mixed Integer Program

AInT Activities Inflexible Temporal

AFT Activities Flexible Temporal

IT Information Technology

SaaS Service as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

AWS Amazon Web Service

VM Virtual Machine

FCFS First Come First Served

MDE Model Driven Engineering

CTL Computation Tree Logic

GUI Graphical User Interface

TA Timed automata

TD Temporal Dependency

UDM Unified Description Model

20

Introduction

Contents

1.1 Research Context . 21

1.2 Objectives and Contributions . 24

1.3 Road Map . 26

1.1 Research Context

Since the beginning of the nineties, Business Processes (BPs) have gained increased
significance for almost any business. In order to manage and improve the quality
and effectiveness of their operations, organizations have been more and more aligning
their information systems in a process-centered way [16]. Along this trend, Process
Aware Information Systems (PAISs) have emerged to better manage and execute
operational processes involving people, applications, and/or information sources on
the basis of process models [17]. Business Process Management (BPM) are examples
of such systems [1, 18–20].

BP models are the main instrument of BPM. They represent BPs in terms of
activities and their order. Various graphical notations have been proposed for BP
modeling including Business Process Modeling and Notation (BPMN) [21], Event-
driven Process Chain (EPC) [22], Yet Another Workflow Language (YAWL) [23],
UML [24], etc. In fact, process modeling is part of the process design and analysis
phase, which is the initial phase of a BP’s lifecycle in a PAIS [16]. After designing the
BP model, it is important to use verification techniques to analyze it. By doing so,
errors can be detected at an early stage and re-design efforts can be avoided. Then,
once the BP is correctly (re)designed, it is automated into an operational/executable
process to put it into practice. After deploying it on a PAIS, the BP is executed
according to the BP model. In the end, process re-design can be performed to make
improvements that have been identified after the analysis of process execution during
the process diagnosis stage.

The BP field is influenced by a wide range of temporal constraints which rise from
legal, regulatory, and managerial rules. A temporal constraint is a condition to control
the system’s behavior over time. It specifies restrictions that occur across time [25,26].
Consequently, time is a key resource for BPs within organizations and the satisfaction
of temporal constraints such as deadlines is essential for a large set of BPs. Namely,
offering products or services within restrictive deadlines helps organizations to raise
their profits. For example, the aviation industry, the e-health, and the e-banking
processes, are highly dependent on temporal constraints, since the violation of such
constraints may lead to critical situations and could even threaten the safety of the
involved parties [10]. Besides, activities require resource capacities expressed in terms

21

22 Introduction

of memory amount (RAM) and CPU. So, organizations can deploy their BPs in cloud
resources to satisfy activities requirements.

Motivated by the need of adopting flexible and cost effective BPs, organizations
are looking for available services outside of them to quickly adapt to new business
requirements and also reduce process development and maintenance costs. Cloud
computing is recently gaining momentum due to its capability of outsourcing service-
based BPs based on a scalable pay-per-use model. It is an attractive operational
model allowing organizations to reduce upfront investment on Information and Com-
munication Technologies and to tap into hardware and software resources of cloud
providers in return of a fee. The cloud is known for resource elasticity and a pay-per-
use model making it perfect for organizations that witness a surge of activities during
particular periods of the year. For instance, at Christmas of 2017, Amazon.com had
to temporarily cope with 280 millions1 online retail transactions calling for immediate
provisioning of resources that luckily were released once the load went back to normal.

In today’s economic world, attracting and retaining customers constitutes a chal-
lenge. Indeed, many cloud providers offer competitive pricing strategies to accom-
modate users’ changing and last-minute demands. However, this price variation puts
more pressure on cloud providers who, for example, need to ensure resource avail-
ability on a short-notice. Organizations that wrestle with time, like shipping, need
to respond quickly to any unforeseen event and hence, need to be able to call upon
cloud providers anytime. Indeed, cloud computing allows organizations to optimize
their BPs thanks to different techniques like virtualization and load balancing. How-
ever, this optimization should not happen on the expense of, for example, increasing
operation costs [27] and/or violating time constraints. Striking the right balance be-
tween cloud resources’ pricing strategies and BPs’ temporal constraints is one of the
BP designer challenge (Figure 1.1). The prices of cloud resources are variable and
depends on temporal perspectives. Therefore, configuring a real cloud environment
using a wrong estimation can lead to a waste of efforts, time, and money. As a re-
sult, to ensure that a BP is successfully executed, organizations would pay extra fees.
Researchers often rely on simulation tools to model the mechanisms and evaluate
their outputs [28]. That is why, the BP designer needs a cloud simulator in order to
simulate a BP deployment in cloud resources and to get its real cost before deploying
or even purchasing these resources from cloud providers. More precisely, he needs to:
(i) graphically design a BP enriched with temporal constraints and cloud resources
with their pricing strategies, (ii) ensure the temporal correctness of time-aware BPs,
(iii) find the optimal-deployment cost of these BPs, and (iv) simulate the deployment
of these BPs as well.

On the one hand, previous research in the field of BPM focused mainly on ac-
tivities’ temporal constraints [29–31] solely. Moreover, various research studies on
the subject of cloud resource allocation in the BPM context [27,32–34] consider only
resource properties such as elasticity and shareability. In general, extensions of BP

1www.hitwise.com.

Research Context 23

A B C

On-demand

reserved

spot

subscription

pay-as-you-go

per-minute

Figure 1.1: Various pricing strategies to deploy BP model

models with the representation and the definition of activities’ temporal constraints
and cloud resources were proposed in [27,29,30,33,35], separately. Nevertheless, less
attention has been paid to cloud resources’ temporal availability. In consequence,
there is a clear lack of formal and explicit description and representation of pricing
strategies that are specified in a natural language. Therefore, temporal correctness of
cloud resource allocation can not be formally verified. Thus, during BP design and
analysis phases, there is a need to consider not only the satisfaction of activities’ tem-
poral constraints but also the matching between the temporal constraints of activities
and cloud resources.

On the other hand, several research studies focus on the resource allocation man-
agement in the BPM field [8, 27, 36–42], whereas, others deal with optimal cloud
resource assignment or activities’ scheduling in the cloud [14,15,43–58]. In addition,
one key perspective when dealing with BPM is time [30]. However, to the best of
our knowledge, optimizing the deployment cost of time-aware BPs based on pricing
strategies has not been handled, yet. Therefore, before resource purchasing and BP
deployment (i.e., during the implementation phase), there is a need to find the cloud
resource assignment and/or the BP activities scheduling, that provides the optimal
BP deployment cost, in the cloud while considering advanced temporal constraints
and the diversity of pricing strategies. Moreover, in literature, different cloud simula-
tors’ extensions are proposed such as TeachCloud [59], CPEE [60], and CloudExp [61].
To the best of our knowledge, none of the existing cloud simulators can provide an
optimal and real BP deployment costs in cloud resources while taking into consider-
ation various pricing strategies. Considering the importance of cost optimization for
time-aware BPs during the design and analysis phase, proposing an extension to this
phase with BP cost optimization and simulation that also considers various pricing
strategies along with temporal constraints on activities becomes a necessity.

24 Introduction

1.2 Objectives and Contributions

In the light of the aforementioned shortcomings, the core objectives of this thesis are
improving the support of temporal constraints of both activities and cloud
resources, as well as pricing strategies in BPs and providing solutions to
minimize the BP deployment cost. More precisely, our objectives are:

• to offer a modeling graphical tool to model/design graphically time-aware BPs
deployed in cloud resources that are proposed under different pricing strategies;

• to ensure temporal correctness of cloud resource allocation in time-aware BPs;

• to find the resource assignment and/or the BP activities’ scheduling that pro-
vides the optimal BP deployment cost;

• to simulate the best resource allocation to provide a more real BP deploy-
ment cost.

.

Our work aims to achieve our objectives by proposing three contributions. Our
first contribution, comes in two steps: Establishing formal definitions [62] and
proposing BPMN extension [63]. In the first step, we formally define time-aware
BPs, cloud resources, and their pricing strategies. We consider various constraints
related to BPs and cloud resources. In the second step, we extend BPMN to integrate
cloud resource allocations in time-aware BP models. Thus, the BP designer is able
to add cloud resources and their pricing strategies, as well as BP constraints. We
developed a plug-in that takes into account our proposed extension.

A BP designer can still, however, make errors at design time which can lead to
temporal violations at runtime. To deal with this problem, we propose our the sec-
ond contribution, which comprises two steps: Model transformation [62, 64] and
Correctness analysis [62, 64]. In the first step, we develop a set of rules to trans-
form a time-aware BPMN model into a network of timed automata. In the second
step, we formally verify this network against advanced properties known in the com-
munity as liveness, deadlock free, and deadline to check the temporal correctness of
cloud resource allocation in BP. Finally, we implemented our rules to automate the
transformation step using the ATLAS Transformation Language (ATL) as a model
transformation language. We also use UPPAAL for the verification of some advanced
properties [63].

For our third contribution, which also comes in two steps: Linear optimiza-
tion and Simulation. Our aim is to find the optimal BP deployment cost in cloud
resources and to simulate this allocation to have an estimation of its real cost. In
the first step, we formulate our problem as two linear programming models defined
through an objective function subject to a set of constraints. The objective function
seeks to minimize the BP deployment cost. Constraints such as temporal constraints,

Objectives and Contributions 25

Process
design

Process
diagnosis

Process
execution

Process
deployment

Process
optimization

Process
analysis

Resource
allocation

Temporal
checking

Cost
optimization

Thesis scope
Design:

BP modeling
Analysis:
Verification

Optimization:
Assignment
Scheduling
SimulationDesign time

Resource
purchasing and

deployment

Figure 1.2: Temporal verification and optimization in the BP lifecycle
(adapted from [1])

resources constraints, etc, limit the search space and help to converge to an optimal
solution. Both linear programming models, (i.e., Binary Linear Program (BLP) and
Mixed Integer Programming (MIP) models), provide an optimal BP deployment cost.
They take as inputs a BP and a set of cloud resources proposed under various pricing
strategies. If the activities’ temporal constraints are flexible, using our MIP model,
we extract the optimal BP scheduling plan [65,66]. Otherwise, using our BLP model,
we provide the optimal assignment of cloud resources to deploy a BP [64,67]. Due to
the high complexity of linear programs, i.e., NP-hard [68], handling BPs with large
number of activities turned out cumbersome and inefficient. Therefore, to reduce
their complexities, our linear models take as inputs a business process and a set of
possible allocation options verified using our verification steps. Consequently, our ap-
proach is able to deal with business processes composed of large number of activities.
In the second step, we extend the famous cloud simulator provided on the market,
CloudSim [69], to support the simulation of the cloud resources consumed in the BP
model and to compute its cost based on cloud providers APIs. Experiments have
proven the effectiveness, feasibility, and scalability of our proposals.

Figure 1.2 shows the different phases of the cyclic lifecycle of a process model
(design, deployment, execution, diagnosis). It illustrates the scope of this thesis
which includes two stages. First, the process design and analysis phase is extended
with resource and temporal perspectives in order to integrate the formal description
of cloud resources and to prove the temporal correctness of cloud resource allocations.
Second, this phase is enhanced with an optimization phase in order to provide the
optimal BP deployment cost.

26 Introduction

1.3 Road Map

This doctoral thesis is divided into 7 chapters:

• Chapter 2: Preliminaries gives the necessary background information by
introducing BPs, activities temporal constraints, process modeling, cloud com-
puting, model driving engineering, formal verification as well as mathematical
programming.

• Chapter 3: The Proposed Approach starts by presenting the motivation
and problem statement. Next, it presents our motivating example and then our
proposed approach to optimize the BP deployment cost in cloud resources.

• Chapter 4: State of the Art positions our work by reviewing existing works
in the literature related to our research fields.

• Chapter 5: Supporting Cloud Resources Temporal Constraints in
BPs describes our first and second contributions. It presents in detail the 4
steps proposed to integrate the resource allocations time-aware BP models. We
start by the modeling of resource allocation. Next, we present our extension
to BPMN 2.0 notation, namely our BPMN 2 modeler plug-in for BP design.
Then, we present a set of rules, as well as their implementation, which we define
to automatically transform BPMN models into a network of timed autoamta
models. In the fourth step, we rely on the model checking technique to verify
the temporal correctness of our cloud resource allocation in BP.

• Chapter 6: Optimization of BP Deployment Cost in Cloud Resources
presents our third contribution which comprises mathematical formulations and
a CloudSim extension. In this chapter, we evaluate our solutions using experi-
ments to prove their effectiveness, feasibility, and scalability.

• Chapter 7: Conclusion and Future Works concludes this thesis by sum-
marizing the presented contributions and discussing potential future extensions.

Chapter 2

Preliminaries

Contents

2.1 Introduction . 27

2.2 Business process . 28

2.2.1 Business process temporal constraints 28

2.2.2 Process Modeling . 29

2.3 Cloud computing . 31

2.3.1 Generalities . 32

2.3.2 Cloud pricing strategies . 33

2.3.3 CloudSim . 35

2.4 Model Driving Engineering . 38

2.5 Formal Verification . 40

2.6 Mathematical Programming . 44

2.6.1 Classification of optimization problems 45

2.6.2 Complexity of optimization problems 45

2.6.3 Optimization problem resolution 45

2.6.4 Linear programming . 47

2.7 Conclusion . 48

2.1 Introduction

This chapter presents the basic preliminaries and background needed for the un-
derstanding of our contributions described in the remainder of this manuscript. In
Section 2.2 we present BP temporal constraints and modeling language. Next, Sec-
tion 2.3 introduces cloud computing generalities, pricing strategies, and CloudSim
which is the widely used software framework for modeling and simulation of cloud
computing environments. Then, we present in Section 2.4 model driving engineering
method, and in Section 2.5 formal verification technique that we used to transform
BPMN models in order to be verified. Finally, Section 2.6 presents mathematical
programming techniques, especially linear programming models to formulate our op-
timization problems.

27

28 Preliminaries

2.2 Business process

This section presents, first, BP temporal constraints that we consider in our work
(Section 2.2.1). Second, we introduce process modeling languages such as BPMN
utilized to design BPs in our work (Section 2.2.2).

2.2.1 Business process temporal constraints

Both researchers and experts in business administration have long been interested in
specifying the processes of organizations. The aim behind this interest is to under-
stand, analyze, and thus improve such processes [70,71]. The BPs are influenced by a
wide range of temporal constraints, which rise from legal, regulatory, and managerial
rules [30]. Time perspective is a critical dimension to consider as it is closely related
to customer satisfaction and cost reduction. In fact, delivering goods and/or services
on-time raises the customer satisfaction level. Besides, an organization that efficiently
manages time can reduce costs. The temporal constraints need to be viewed from
multiple perspectives namely, the relative and absolute temporal constraints [72] that
can be inflexible (i.e., tied to a specific time point) or flexible [29].

Hereafter, Based on [29–31, 73], we present activities temporal constraints that
we consider in our work. Particularly, we classify temporal constraints into relative
(Figure 2.1) and absolute temporal constraints.

• Relative temporal constraints: refer to activity duration and dependency:

– Duration: defines the completion time of an activity expressed as an in-
terval [MinDaq , MaxDaq]. Let s(a) (resp. e(a)) be the starting (resp.
the ending) time of an activity a. Let MinDaq and MaxDaq be two rel-
ative time values representing respectively the minimum and maximum
durations of a. Duration is defined as follow:

Duration(a,MinDaq ,MaxDaq)
def
= MinDaq ≤ e(a) - s(a) ≤ MaxDaq

For instance, depending on its severity and the patient’s state, activity a
(ovarian cancer surgeries) takes 1 to 10 hours. So, the interval [1h, 10h]
presents the duration of the ovarian cancer surgeries where MinDa=1 hour
and MaxDa=10 hours [7].

– Temporal Dependency (TD): is a relationship between two activities, aq
and al (l 6= q), in which one activity depends on the start or finish of an-
other in order to begin or end [31]. We consider four temporal dependencies
as follow;

∗ Start-To-Finish (SF): al can not finish until aq starts within a time in-
terval

∗ Start-To-Start (SS): al can not begin before aq starts within a time in-
terval

Business process 29

∗ Finish-to-Start (FS): al can not begin before aq ends within a time in-
terval

∗ Finish-To-Finish (FF): al can not finish until aq has finished within a
time interval

For illustration, Finish-to-Start dependency between two activities aq and
al, is defined as follows:

TD(FS,aq,al,Dmin, Dmax)
def
= Dmin ≤ s(al) - e(aq) ≤ Dmax

This definition denotes that al should start its execution no later than
Dmax time units and no earlier than Dmin time units after aq ends. For
instance, the contrast medium has to be accomplished at least 2 hours and
at most 5 hours before the radiological examination takes place. Thus, we
can specify a temporal dependency between activity a1 (contrast medium
completion) and activity a2 (radiological examination) of type TD(FS, a1,
a2, 2h, 3h) [7].

• Absolute temporal constraints: define a punctual temporal structure and
refer to start and finish times of an activity. These temporal constraints can be
inflexible (i.e. tied to specific time point) or flexible [29]. The inflexible tempo-
ral constraints (AInT) are Must Start On (MSO) and Must Finish On (MFO).
They indicate the exact time, in which an activity must be scheduled to begin
or complete. For example, the activity Ship products must start (respectively
finish) at 8pm (respectively at 10pm) [10]. Thus, MSO(Ship products)=8pm
(respectively MFO(Ship products)=10pm. Otherwise, a flexible temporal con-
straint does not specify a specific time point for a process or an activity, but
rather imposes scheduling upper and/or lower bounds [29]. The flexible tempo-
ral constraints (AFT) considered are:

– Start No Earlier Than (SNET), Finish No Earlier Than (FNET): indicate
the earliest possible time that an activity can begin or complete. For
example, the activity a (Receive shipment) has to start (respectively finish)
no earlier than 9am (respectively 10am). So, SNET(a)=9am (respectively
FNET(a)=10am).

– Start No Later Than (SNLT), Finish No Later Than (FNLT): indicate
the latest possible time when this activity is to begin or complete. For
instance, the activity a (Receive shipment) has to start (respectively finish)
no later than 6pm (respectively 9pm). Thus, SNLT(a)=6pm (respectively
FNET(a)=9pm).

2.2.2 Process Modeling

“BPs are what companies do whenever they deliver a service or a product to cus-
tomers” [74].

30 Preliminaries

A

B

C

D

Process Duration

Activity Duration

(a) Duration activity [35]

A

C E

End-Start

D

B

Start-Start

End-End

Start-End

(b) Temporal dependency [35]

Figure 2.1: Relative temporal constraints

The BP modeling refers to creating BP models that describe the behavior of a
BP according to its different perspectives. The first perspective is the control flow
which describes the logical order between the process activities. The second one is
the resource which describes the physical objects and human performers required
to accomplish an activity. Data flow which describes the data exchanged between
activities [75] represents the third perspective. Further, the forth perspective of BP’s
behavior is time which is the key resource for processes within organisations [10]. In
this thesis, we consider three perspectives: control flow, resource, and time.

Multiple graphical process modeling languages have been proposed such as BPMN [21],
EPC [76], YAWL [23], UML [24] activity diagram, etc to design BPs. Despite their
variances in expressiveness and modeling notations, they all share the common con-
cepts of activities, events, gateways, artifacts and resources, as well as relations be-
tween them, such as transition flows [77]. The broadly accepted BP modeling language
is Business Process Model and Notation (BPMN), therefore, we propose to take it as
our stating modeling language [78].

BPMN was first released in 2004 by the Business Process Management Initiative
(BPMI) [21]. It is a standard for BP modeling that permits to create and document
process models. Known as defacto process modeling notation [79], it is widely used in
the industry. Actually, BPMN has been enhanced with executable semantics enabling
the execution of the modeled processes [80].

BPMN offers a rich set of elements that allows to capture various BP perspectives
at different levels of detail. The BPMN elements can be categorized into a core set
which contains the basic elements to model a BP and an extended set which contains
more specialized elements to specify more complex business scenarios [81]. In fact,
as shown in Figure 2.2, BPMN defines various constructs grouped into: Flow objects,
Connecting objects, Swimlanes, and Artifacts. Flow objects are the main graphical
elements to define the behavior of a BP. They include activities, events, and gateways.
An activity is a generic term for work that is performed in a BP. It is a rounded
rectangle with a name that describes the task to perform. The types of activities
are: sub-process and task. An event is something that happens during the process
execution. There exist 3 types of events: Start, Intermediate, and End events which

Cloud computing 31

may be specialized to Message, Error, etc [80]. An event is graphically represented as
a circle. A gateway is used to model the splits and joins in the process model. The
various behaviors in a BP can be represented by three main types that are: AND
(parallel synchronisation), XOR (exclusive choice and merging), and OR (inclusive
choice and merging). Further, in BPMN there exist other specialized gateways such
as event-based gateway, and complex gateways. The latter can be mapped to one of
the three main types OR, AND or XOR. Connecting objects group includes Sequence
flow element used to connect flow objects. In this manner, the order in which the
activities will be executed in a process can be specified.

The Artificats, Swimlanes, and other elements in Connecting objects allow to
model the resource and data perspectives in the process [82]. Swimlanes group in-
cludes Pools and Lanes elements that permit to group a set of activities that are
executed by a specific role. Besides, adding more informations to process model can
be done through Artificats. For instance, Data object element in Artificats can be
connected to activities through Association element in Connecting objects.

Figure 2.2: Categories of BPMN object elements [2]

We present in Figure 2.3 an example of a BP designed in BPMN and composed
of: 3 activities: A, B, and C, and 2 parallel gateways.

2.3 Cloud computing

In this section, we give an overview of cloud computing environment and market.

32 Preliminaries

A

B

C

Figure 2.3: BP designed in BPMN

2.3.1 Generalities

Cloud computing has received a great deal of attention in a short period of time as
an emerging paradigm in Information Technology (IT). It is defined by the National
Institute of Standards and Technology (NIST) as a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services). Those com-
puting resources can be rapidly provisioned and released with minimal management
effort [3]. In fact, it is an attractive operational model for organizations that wish,
among many reasons, to avoid huge upfront investment on IT infrastructure and to
outsource some (sometimes critical) operations to third parties. Cloud is known for
resource elasticity and pay-per-use benefits making it perfect for organizations that
witness intensive activities during particular periods of the year, i.e., before Christ-
mas and Thanksgiving. Such a temporary peak would require rapid availability of
resources that are released once the load returns to normal. Figure 2.4 presents an
overview of cloud computing conceptual reference model defined by NIST. Various ac-
tors (cloud consumer, cloud provider, cloud carrier, cloud auditor, and cloud broker),
activities, and functions in the cloud are included.

Cloud delivers different types of resources between applications at three various
layers offered as services: at the highest layer Service as a Service (SaaS) which refers
to providing the services of applications over the web on as needed basis [83]; the
middle layer Platform-as-a-Service (PaaS) provides an operational platform allowing
customers to manage, develop and execute their applications; and at the bottom layer
Infrastructure-as-a-Service (IaaS) where consumers may access to highly automated
and scalable resources delivered as a service via the Internet [16]. IaaS offers network,
storage, and compute resources. The next section presents cloud providers pricing
strategies under which computing resources are proposed.

Cloud computing 33

Figure 2.4: Conceptual reference model of cloud computing (defined by NIST) [3]

2.3.2 Cloud pricing strategies

Various types of computing resources with different QoS are offered by cloud providers,
specifically IaaS providers, in various pricing strategies. This variety of QoS and pric-
ing strategies also gives a high level of flexibility in resource management and con-
sumption. Cloud resources’ value is determined by cloud providers and is captured
through pricing. Basically, this value embraces the economics and computer science
research area. In fact, some studies handle the pricing issue using economics and
business methods, while some others consider computer science techniques to tackle
economic problems related to pricing. In our work, we focus on cloud resource pricing
as an economic issue for computer science area.

Cloud providers take into consideration some factors to define the cost of the
provided cloud resource. Indeed, the first factor is the cost of the resource in the
data center in which an extra percentage is added to achieve the targeted profit. The
cost of the resource includes the price of the physical machine, maintenance service
cost, and electricity fees. The second factor is the market competition. To remain
in business, cloud providers must be aware of prices for the same services by other
providers in the marketplace and set their prices competitively. Cloud computing
market is moving rapidly towards a highly competitive price [84]. Cloud providers
need to measure the value and satisfaction given to their customers when consuming
their cloud resources. For that, one factor to consider when determining a cloud
resource cost is the value to the customers.

When cloud providers understand the cost of the cloud resource provided, the
cost proposed by competitors for the same resource, and the value perceived for the

34 Preliminaries

customers, it is time to figure out what type of pricing strategy to define [85]. The
most commonly used pricing strategies in cloud markets, especially in IaaS cloud mar-
ketplaces, are on-demand (pay-as-you-go) and subscription-based pricing strategies.

There exist several cloud providers that sell cloud resources, mainly Google Cloud
Platform (GCP) [86], Microsoft Azure [87], and Amazon Web Service (AWS) [4].
GCP tends to have an advantage in storage and network performance. Besides, its
computing cloud service ”Google compute engine” has no service’s termination fees.
Moreover, GCP does not rely on long-term contracts to keep customers. No upfront
costs are required as well. Users do not need to make commitments to get discounts.
However, GCP has the smallest amount of data centers. In addition, computing
resources provided by GCP have better performance and flexibility compared to AWS,
but less resources types variety.

Azure offers good performance and optimal network. But it gives a less specific
selection of resources. Added to that, the primary approach to get discounts on Azure
is that customers must have Microsoft enterprise agreement. Also, if clients want
to work on a platform other than Windows Server operating system (a Microsoft
product), Azure might not be the best solution. AWS is a secure cloud services
platform. It offers products with many options for supporting the existing platforms
(Linux, Windows, etc). Particularly, Amazon Elastic Compute cloud (EC2) is a web
service that provides secure and resizable VMs in cloud [4]. It allows paying only for
capacity that consumers actually use. EC2 has the advantage of auto scaling feature.
It has the facility to change automatically the number of VMs that are running at
peak time. But, AWS is considered complex as it provides various VMs’ types with
several costs. While cloud computing features vary among providers, the challenge
is to supply users with good compute services for reasonable prices. Therefore, each
cloud provider has its own pricing strategy. Indeed, customers pay in function of the
time, quantity, or VM’s instance type they consume. Pricing in the cloud context is
similar to how we pay for utilities like water or electricity since users only pay for the
services they consume. There are multiple pricing strategies for VM instances. We
find that GCP, for example, provides two main strategies. It supplies with on-demand
resources per-minute with a minimum of 10 minutes. It offers also a strategy called
sustained use discounts. This means the longer the period of running an instance by
the clients during each month, the larger the discount they will receive. Microsoft
Azure also provides two main strategies. It charges customers per-minute if they
use the on-demand (pay-as-you-go) strategy. Also, it proposes pre-paid subscription
pricing strategy and gives a 5% discount for a minimum of 6000$ commitment.

Whereas, AWS can charge customers per-hour. AWS instances can be purchased
using three main pricing strategies which are on-demand, reserved, and spot instances.
The latter are detailed in the following. We note that we focus on AWS, because it
continues to lead the market in terms of maturity and offering the widest range of
functionality, VMs, and pricing strategies.

• On-demand: the customer pays an hourly fixed amount with no long-term

Cloud computing 35

commitment. The procured resource capacity can be increased or decreased
depending on the applications’ requirements and the payment is done for the
procured capacity, only [4].
Figure 2.5a shows Amazon EC2 instances and their on-demand strategy cost.
For instance, the on-demand strategy cost of m5.12xlarge is 2.664$.

• Reserved: the customer can make a one-time, upfront payment for a long-
term reservation of a resource capacity and pays a significantly hourly rate for
running capacity instances in the future.
Figure 2.5b shows Amazon EC2 instances and their reserved strategy cost. For
instance, the reserved strategy cost of m5.12xlarge is 1.865$.

• Spot instance: customers bid for unused resource capacities to secure some
spots offered at a spot price [4] and with an interruption risk due to the bidding
process. In response to potential disruptions, Amazon also proposes spot in-
stances with a specified duration (also known as Spot blocks) that are contin-
uously available (from 1 to 6 hours) [62]. Figure 2.5c illustrates an example of
a spot block pricing strategy. The hourly price of m5.12xlarge as a spot block
instance available up to 6 hours is 1.497$. Whereas, Figure 2.5d depicts a spot
instance pricing history presenting the variation of spot price during 1 day. For
example, the spot price of m5.12xlarge from 6pm until 8pm is 0.67$.

2.3.3 CloudSim

Cloud Computing systems are complex and need specific tools to analyze some qual-
ity concerns including resource provisioning, task scheduling, network configuration,
security or virtual machines management. Testing in real world environment is one
technique for evaluating the performances of a system, but it is a costly and time
consuming method [88]. Moreover, the user is not able to access all the systems’s
components that need to be analyzed. But, with a simulation tool, he can focus on
each quality, separately while considering many different scenarios. Cloud simulators
provide a stable, cost-efficient and scalable environment, where tests can be replicated,
repeated and validated by the research community. They empower users to control
all the layers of the cloud system, videlicet the physical resources configuration, the
infrastructure topology, the code middle-ware platform, the cloud application services
and the user workload behavior [89].

CloudSim, the most popular and sophisticated cloud simulator available today,
has been developed in 2010 by the CLOUDS Laboratory at the Computer Science
and Software Engineering Department of Melbourne University (Australia). It is
used in research by several universities and organizations [90]. The simulator enables
modeling of CPU components, RAM, storage, Virtual Machine (VM), host, cloud
broker and data center, as well as VM allocation policy, VM scheduler, dynamic

36 Preliminaries

(a) On-demand strategy

(b) Reserved strategy

(c) Spot blocks strategy

(d) Spot instance strategy

Figure 2.5: Amazon EC2 pricing strategies [4]

Cloud computing 37

workload, etc. CloudSim is open source and has been developed in java programming
language. Moreover, it allows a user to model and simulate all the cloud infrastructure
resources. It also requires much less effort and time to implement applications in
cloud environment.

The CloudSim framework consists of three layers as shown in Figure 2.6 (bottom-
up description):

• The Core Simulation Engine: Queuing and processing of events, manage-
ment of cloud system entities such as host, VMs, brokers, etc.

• CloudSim: Representation of network topology, delay of messages, VM provi-
sioning, CPU, storage and memory allocation, etc.

• User code: Cloud scenarios, user requirements, user Broker, application and
workload configurations, allocation and scheduling policies declarations.

Figure 2.6: Basic architecture of Cloudsim [5]

As shown in Figure 2.6, the main components of CloudSim [89] are: Datacenters,
Hosts, Virtual Machines (VM), Broker, and Cloudlets. Datacenter class models the
core infrastructure level services (hardware, software) offered by resource providers in
the cloud computing environment. The Datacenters encapsulate a set of Hosts and
their resource configurations (memory, cores, capacity, and storage). Furthermore,
every Datacenter component instantiates a generalized resource provisioning compo-
nent that implements a set of policies for allocating bandwidth, memory, and storage
devices. Each Host component can instantiate multiple VMs and allocate cores based
on predefined processor sharing policies. Each VM has an owner, which can submit
Cloudlets to the VM to be executed. The Broker class is responsible for mediating
negotiations between SaaS and cloud providers and such negotiations are driven by
QoS requirements. It acts on behalf of applications. This class must be extended

38 Preliminaries

for evaluating and testing custom brokering policies. The Cloudlet class models (i.e.,
defines specific attributes such as length of instruction, input/output filesize, no of
processor required, etc) the cloud-based application services (program based tasks)
such as content delivery, social networking, etc. CloudSim implements the complexity
of an application in terms of its computational requirements [91].

CloudSim implements different scheduling policies [92] such as:

• SpaceShared: schedules one task on virtual machine at a given instance of a
time and after its completion it schedules another task on virtual machine. This
same policy is used to schedule the virtual machines on the host. This policy
behave same as the first come first serve algorithm (FCFS) [93].

• TimeShared: schedules all tasks on virtual machine at the same time. It
shared the time among all tasks and schedule simultaneously on the virtual
machine. This policy is also used to schedule the virtual machine on the host.
The concept of round-robin (RR) scheduling algorithm [93] is used in this policy

2.4 Model Driving Engineering

This section gives a brief overview of the Model Driven Engineering (MDE) method
used to bridge from timed BP models, expressed in BPMN 2.0, to a formal language
model, expressed in timed automata.

Currently, software systems are evolving. This factor makes development and
maintenance of systems more complex than before. Also, several issues have ap-
peared and enhanced throughout the years such as the increasing complexity of soft-
ware, concerns separations, business separations, multiplicity of needs, and platforms.
Therefore, software no longer concentrates only on the code. As a solution, modeling
in computer science and engineering appeared to master the complexity of software.
A model is a simplified representation of an aspect of the world for a specific purpose.

MDE [94–96] has been used in the development process. MDE is a software de-
velopment methodology that focuses on creating and exploiting domain models. It
aims to raise the level of abstraction in program specification to increase automation
in program development. The idea promoted by MDE is to reuse models at different
levels of abstraction for developing systems. Therefore, by the abstraction of tech-
nologies’ implementation we evolve more easily toward new technologies. Besides, it
increases productivity by maximizing compatibility between systems, simplifying the
design process, and boosting communication between teams working on the system.
Other goal of MDE is the separation of concerns. There are two main concerns: (i)
business concerns that are the core of the application and (ii) implementation plat-
forms. Also, there are several other possible concerns like security, user interface,
quality of service, etc. We argue that each concern is designed by a model. The
integration of these concerns can be whether by transformation, fusion or weaving of
models. To have a better productivity, models have to be well defined by the concept

Model Driving Engineering 39

of meta-model. As a result, they can be manipulated and interpreted using tools
with different meta-models that can be processed simultaneously. Meta-model is a
modeling methodology used in software engineering. It typically defines the language
and processes from which to form a model. Briefly, it is a model of a model. For
example, it can define concretely a modeling language.

An increase of automation in program development is reached by using executable
model transformations. Model transformations are at the heart of MDE, and provide
the essential mechanism for manipulating and transforming models automatically. A
model-to-model transformation is done via transformation rules which describe the
mapping between source model and target model. There are two types of transfor-
mations. First, the endogenous transformation, which is in the same technological
space i.e., the source and target models are conform to the same meta-model. Second,
the exogenous transformation, which takes place between two different technological
spaces i.e. the source and target models are conform to different meta-models. There
exist several model transformation languages. The most popular ones are ATL [97,98]
, QVT [99] and Epsilon [100]. We depict ATLAS Transformation Language (ATL)
since it is the most mature language between the others. ATL is a hybrid model trans-
formation language containing a mixture of declarative and imperative constructs
based on Object Constraint Language (OCL) [101] for writing expressions. However,
the declarative programming style is more recommended. It is sometimes difficult to
provide a complete declarative solution for a given transformational problem. In that
case, developers may resort to the imperative features of the language [98]. Declara-
tive programs are context-independent. They only declare what the ultimate goal is,
but not the intermediary steps to reach that goal. Furthermore, the same program
can be used in different contexts, which is difficult to do with imperative programs
that often depend on the context. An ATL module consists of four main elements
which are header, import, helpers and rules:

• Import: this section is optional and defines the ATL libraries to be imported.

• Header: introduces the name of the module developed and the meta-models in-
volved. The target meta-model declaration is introduced by the create keyword.
The source meta-model is introduced by the keyword from.

• Helpers: are variables or functions used to implement code that can be reused
to avoid code redundancy.

• Transformation rules: describe the transformation and contain OCL expres-
sions. The rules are composed of two parts. The “from” part indicates the
elements of the source model to be transformed. The “to” part contains trans-
formation expressions that indicates the elements of the target model. There
are three different kind of rules which are matched rules, called rules and lazy
rules.

40 Preliminaries

Figure 2.7: Overview of ATL transformational approach [6]

As shown in Figure 2.7, ATL is applied in a transformational pattern [98]. It
provides ways to produce a set of target models from a set of source models. More
specifically, in this pattern, a source model Ma is transformed into a target model Mb.
The transformation is driven by a transformation definition mma2mmb.atl written
in the ATL language [98]. The transformation definition is a model. The source and
target models as well as the transformation definition are conform to their metamodels
respectively MMa, MMb, and ATL. The meta-models are conform to the Meta-Object
Facility (MOF) meta-meta-model [97].

2.5 Formal Verification

Hardware and software are widely used. They are where errors are unacceptable.
Therefore, model verification is necessary to ensure the design correctness at an early
stage. The use of formal verification methods has been considered, for a long time,
very desirable for ensuring the correctness of a system’s design. However, the com-
plexity of these methods made them only accessible to specialists. Thus, they were
only used for very critical systems. With the appearance of model checkers, formal
verification becomes accessible for ”normal” engineers. In fact, formal verification
can be realized with a model checker to verify whether the modeled system satis-
fies some given properties. We note the existence of several model checkers such as
UPPAAL [102,103], TINA [104], ProB [105], etc. The process of model checking is de-
picted in Figure 2.8. It consists of three main steps which are modeling, specification
of properties, and formal verification.

The first step (i.e., (1) in the Figure 2.8) is modeling the system. In order to for-
mally verify a model, it must first be converted into a simpler verifiable format called

Formal Verification 41

Figure 2.8: Model checking process

formal language such as timed automata [106], Petri nets [107], process algebra [108],
Event-B [109], etc.

In our work, we use timed automata language while it offers a formal syntax
and semantics. Furthermore, timed automata are nowadays a widely used modelling
formalism with rich theoretical foundations and a number of developed verification
tools like UPPAAL [110], KRONOS [111], etc. A number of case studies demonstrate
that timed automata are a suitable formalism for modelling systems of industrial sizes
and the tools have already reached a reasonable degree of maturity and efficiency.
A combination of an easily understandable syntax and semantics together with the
support for Clike constructs and data structures (e.g., in the tool UPPAAL) makes
this a widely applicable and successful approach for the modelling and verification of
time dependant systems.

A timed automata is a directed graph where nodes correspond to states (also
called locations) of the system and edges correspond to transitions between these
nodes [112]. In [110], a timed automata is extended with a finite set of real-valued
variables, named clocks, for modeling time passing. A clock is represented as a non-
negative real number. To define conditions over clocks, constraints are used [113].
They permit to reset values of certain clocks to zero. X is a set of non-negative
clocks. A clock constraint, called invariant, is associated with each state. It has to
be satisfied so, that, the system remains in the current state [112]. The transitions
are labelled by both temporal constraints, called guards, and clock variables, and
are synchronized through binary channels. Guards and invariants are conjunctions
of constraints x on v, where x is a clock in X, v ∈ R+, and on ∈ {<,≤,=, >,≥}. A
transition is enabled if the guard is evaluated to true and the source state is active.
Ψ(X) is the set of constraints over X [62].

Definition 2.5.1. A timed automata is a tuple (L, X, l0, Tr, I) where:

• L is a finite set of states,

42 Preliminaries

• X is a finite set of clocks,

• l0 is an initial state,

• Tr v L× Ψ(X)× 2X× L is the set of transitions,

• I: L −→ Ψ(X) is a function that assigns invariants to states.

Definition 2.5.2. A transition is a tuple tr=(l, α,ψ, cl, l’) ∈ Tr where l is a source
state, l’ is a target state, α is a label, ψ is a guard, and cl is a set of clocks to reset.

Consider the timed automaton of Figure 2.9 with one clock t which gets set to
0 each time the system moves from Start to A1 location. The invariant (t ≤ 2)
associated with the location A1 ensures that switch from A1 to End happens within
time 2. Resetting another independent clock y together with the b-labeled switch
from s1 to s2 and checking its value on the d-labeled switch from s3 to s0 ensures
that the delay between b and the following d is always greater than 2. Notice that
in the above example, to constrain the delay between a and c and between b and d
the system does not put any explicit bounds on the time difference between a and
the following b, or c and the following d. This is an important advantage of having
multiple clocks which can be set independently of one another.

Figure 2.9 illustrates the graphical representation of timed automata designed
with UPPAAL. The graph nodes are locations: Start, A1, and End. The edges are
transitions between locations. For instance, the edge between Start and A1 contains
a clock t (initialized to zero) and a synchronization variable of type sender (start!).
Clock reset is called update with UPPAAL. The timed automata contains also an
invariant (t ≤ 2) to specify the requirement that the system can not stay in location
A1 for at most 2 units, and a switch must occur before the invariant is violated.
Whereas, the edge between A1 and End contains a guard (t ≤ 0 & &t ≥ 2) to ensure
that the transition between both locations is enabled only if the clock t is at least 0
unit and at most 2 units. Further, the variable channel done, of type receiver, is used
for synchronization.

The second step (i.e., (2) in Figure 2.8) is properties’ specification that we give
to the model checker using properties’ languages in order to decide whether some
property holds for a timed automaton. The expression of properties in UPPAAL is
by Computation Tree Language (CTL) [114, 115], which is a specification language
for finite state systems. The specific types of properties that can be expressed with
CTL can be classified as:

• Liveness: a specific condition is guaranteed to hold eventually, i.e.,”something
good will happen (eventually)” [116].

Formal Verification 43

t=0

update

Start A1 End

t is a clock

t<=2

done?start! t>=0 && t<=2

synchronisation

invariant

guard

initial
location

location

Figure 2.9: Main elements of a timed automaton for UPPAAL

• Deadlock freeness: ”the system never ends up in a state where it cannot per-
form any action” [117]. So, we verify that the system is deadlock free expressed
using a special state formula proposed by the model checker UPPAAL.

• Deadline: it express the set of states where the corresponding action is ex-
pected to be executed without delay.

UPPAAL is composed of a Graphical User Interface (GUI) for modeling systems and
a model checker engine to verify if the system is correct with respect to a set of
properties. UPPAAL GUI has three types:

• The system editor: allows the user to describe and edit timed automata sys-
tem which consists of global declarations, timed automaton templates, process
assignment, and a system definition section.

• The simulator: allows the user to virtually interact with the system described.
The simulator shows the system state by displaying the states of automata and
the values of variables. It simulates the system to validate that it behaves as
intended and to see how certain states are reachable [110]

• The verifier: accepts the user’s formulated properties to be verified on a par-
ticular timed automata model, and displays the result of verification: true or
false depending on whether the property was satisfied or not.

Third step (i.e., (3) in Figure 2.8) is the verification of the given properties using the
query language for UPPAAL which is a simplified version of CTL. The properties’
checking is searching in automata the locations, paths, and circuits that have the
given characteristics. It generates the space of all possible states and exhaustively
checks the properties that hold the possible dynamic behavior of the model. Each
CTL operator is a pair of symbols. The first member of the pair is either A (along
All paths), or E (there Exists a path). The second member of the pair is one of
the following X (neXt state), G (Globally in the future), F (in a Future state), or U
(Until). The CTL logical operator are ∨, ∧, ¬, and⇒ mean respectively and, or, not,

44 Preliminaries

and imply. Indeed, the CTL formulas, which can be analyzed with UPPAAL, are the
following:

• AG ψ: along All paths the property ψ holds Globally

• EG ψ: there Exists a path where the property ψ holds Globally

• AF ψ: along All paths the property ψ holds at some state in the Future

• EF ψ: there Exists a path where the property ψ holds at some state in the
Future

In UPPAAL, these CTL formulas are implanted as follows:

• A [] ψ: is the implementation in UPPAAL of the formula AG ψ

• A<> ψ: is the implementation in UPPAAL of the formula AF ψ

• E [] ψ: is the implementation in UPPAAL of the formula EG ψ

• E <> ψ: is the implementation in UPPAAL of the formula EF ψ

UPPAAL model checker offers multiple ways to help in the verification of the given
properties. Examples of such ways are counter-example generation and visualization.
In fact, verification step makes sure that the properties are satisfied (the process is
safe, deadlock-free, deadline meet, and locations are reachable). In case that prop-
erties are unsatisfied, a counter-example is given showing under which circumstance
the error can be generated.

2.6 Mathematical Programming

The term “programming” in the context of mathematical programming means plan-
ning activities that consume resources and/or meet requirements. Mathematical pro-
gramming is mostly known as a technique used by decision makers to mathematically
formulate optimization problems and develop optimal values of the decision vari-
ables [118].

Planning and scheduling problems are formulated as mathematical model based
on equalities and inequalities. The solution satisfying all these constraints is con-
sidered as acceptable plan or schedule. Mathematical programming enables us to
formally define optimization problem through variables, objective functions and con-
straints [119].

Mathematical Programming 45

2.6.1 Classification of optimization problems

The classification of optimization problems is defined based on several criteria. The
nature of the objective function and the constraints are an important criteria for
this classification. Optimization problems can be classified into four classes: linear,
nonlinear, quadratic, and geometric programming [120]:

• Linear Programming (LP): In this class, the objective function and the
constraints are linear functions of variables. There exist different class of LP
problems that are grouped based on the decision variables types. We can find In-
teger Linear Programming (ILP), where all variables are integer, Binary Linear
Programming (BLP), where all variables are binary, and Mixed Integer Linear
Programming (MILP) problems, where some variables are integer and others
are binary.

• Nonlinear Programming (NLP): In this class, the objective function and/or
the constraints are/is nonlinear.

• Quadratic Programming (QP): In this problem type, the objective function
is quadratic and the constraints are linear.

• Geometric Programming (GP): In this type of problems, the objective
function and the constraints are expressed as polynomials [121].

Optimization problems can be classified also based on the deterministic nature of the
variables as deterministic and stochastic programming problems [120].

• Deterministic Programming: In this category of problem, all the decision
variables are deterministic. If a model provides always the same output for a
given input, it is considered deterministic.

• Stochastic Programming: When some or all the problem parameters are
stochastic (random or probabilistic) variables.

2.6.2 Complexity of optimization problems

There are mainly two classes of optimization problems: P and NP [68]. P is the class
of problems solvable by algorithms operating within a polynomial time (if it is run
O(nk) steps where k is a constant and n denotes the problem size). NP is the class
of problems solvable by non-deterministic algorithms operating within a polynomial
time. It stands for a non-deterministic polynomial.

2.6.3 Optimization problem resolution

Two different methods can be applied to solve optimization problems, namely: exact
methods and approximate methods.

46 Preliminaries

• Exact methods: are usually used by researchers in case of small instances.
Exact methods find the optimal solution and assess its optimality. There exist
numerous exact methods such as the family of Branch-and-Cut, Branch-and-
Bound, and Cutting planes. Exact methods are known to be time expensive,
so they can not be applied to large NP-hard problems or difficult ones. Among
these methods, we can cite, mainly, the linear programming methods, the gra-
dient descent, etc.
A linear programming method identifies a linear program that models the multi-
criteria problem where the objective function and the constraints are all linear.
Then, this linear program can be solved efficiently by certain algorithms such as:

– Branch-and-Bound: is based on the principle of enumerating the solu-
tion space of a given problem and then choosing the best solution [122].
The enumeration has a tree structure. Each node of the tree separates
the search space into two sub-spaces, until the complete exploration of
the solution space [123]. The Branch-and-Bound algorithm is named also
simplex algorithm.

– Cutting-Plane: its basic idea is to cut off parts of the feasible region of
the linear program relaxation, so that the optimal solution becomes an
extreme point and therefore can be found by the simplex method. It is the
first algorithm developed for integer programming that could be proved
to converge in a finite number of steps. Even though the algorithm is
considered not efficient, it has provided insights into integer programming
that have led to other, more efficient, algorithms [124].

– Branch-and-Cut: is a method of great interest for solving various combina-
torial optimization problems. This method is a result of the integration be-
tween two methods: (i) cutting plane method, and (ii) branch-and-bound
method [125]. The cutting planes lead to a great reduction in the size of
the search tree of a pure branch and bound approach. Therefore, a pure
branch and bound approach can be accelerated by the employment of a
cutting plane scheme [126].

• Approximate methods: are often used when instances become too large
for exact methods. They are based on random and iterative approaches using
heuristics and/or meta-heuristics algorithms to solve optimization problems.
An approximation algorithm is guaranteed to run quickly (in time polynomial
in the input size) and to produce a solution for which the value of the objective
function is quantifiably close to the optimal value.
Heuristics are search methods produced based on human’s intuitive and creative
thinking, and are often useful in local search to find good solutions quickly in
a restricted area. Metaheuristics are higher level heuristics that control the
whole process of search, so that global optimal solutions can be obtained sys-
tematically and efficiently. Although metaheuristics cannot always guarantee to

Mathematical Programming 47

obtain the true global optimal solution, they can provide very good results many
practical problems. They combine exploration and exploitation while looking
for acceptable solutions. Usually, metaheuristics can enhance the computing
power of a computer system greatly without increasing the hardware cost.
Various heursitic and metaheursitcs algorithms were proposed in the literature
such as Simulated Annealing [127], Genetic Algorithm [127], Ant Colony [127],
etc.

2.6.4 Linear programming

In our work, we formulate our optimization problems as linear programming models
known for its simplicity, easy way of understanding, and flexibility to analyze the
problems. Thus, in the following, we focus more on linear programming model.

Linear programming does not have as much history compared with to other
fields of mathematics, largely due to the difficulty in solving most problems without
the aid of computer calculation. One of the first attempts to provide a feasible
solution to linear programming problems was made by Joseph Fourier, who published
a method in 1827. In the present, linear programming is more useful than ever before
for management and logistical challenges due to easy access of large amounts of data.
It should be noted that linear programming optimization problems are NP-hard. So
they require high computational efforts to find out an optimal and even a feasible
solution for large size problems. For that, combining with improved algorithms and
improvements in computing power, linear programming is able to solve larger and
more complicated problems. The primary challenge is accurately modeling applicable
situations and using available data efficiently [128].

The first goal of linear program models is to minimize or maximize a linear func-
tion, called z, which is subject a finite set of linear constraints. The function z is
known as the objective function and is a linear combination of the variables (e1, e2,
..., en) with the general form z=v1e1+v2e2+...+vnen where each v is a constant. The
linear constraints can be either equality constraints or inequality constraints and take
the general form where a and b are constants [128].

a1e1+a2e2+ ... + anen

≥=
≤

 b

A feasible solution is any combination of the variables (e1, e2, ..., en) that satisfies the
constraints, and the set of these n-tuples is known as the feasible region. A problem
which has no solution which satisfies all of the constraints is infeasible [128]. The full
form of the general linear programming problem is as follows

Minimize v1e1+v2e2+ ... + vnen = z

48 Preliminaries

a11e1+a12e2+ ... + a1nen ≥ b1

a21e1+a22e2+ ... + a2nen ≥ b2

...

an1e1+an2e2+ ... + annen ≥ bm

ei ≥ 0, i ∈ 0, 1, ..., n

bi ≥ 0, i ∈ 0, 1, ...,m

Linear program is composed of decision variables that present the quantities to
find. So, they are the unknowns variables of a mathematical programming model.
Generally, they are presented using an algebraic form like e1, e2, ..., en. n presents
the number of decision variables and ei presents the name of the ith variable. The
n-tuple (e1,..., en) satisfying the constraints of a linear program is a feasible solution
of this problem. A solution that maximizes or minimizes the objective function of the
problem is called an optimal solution.

As mentioned in Section 2.6.3, a linear program can be solved using methods
including: Branch-and-Bound, Cutting-Plane, or Branch-and-Cut to converge to an
optimal (exact) solution. However, since it belongs to the NP-hard optimization
problems, it requires high computational efforts to find out an optimal and even a
feasible solution for large size problems. For that, it is often more important to
reduce the search space to avoid waiting for a long time to obtain an approximate
(near optimal) solution.

2.7 Conclusion

This chapter provided the background that helps position our contributions. In fact,
it introduced BP’s temporal constraints that are considered in our work and Busi-
ness Process Modeling Notation (BPMN) as an example of BP modeling language.
Then, we presented cloud computing generalities, pricing strategies, and the most
popular cloud simulator “CloudSim”. Next, we described the MDE methodology
that helps to transform informal BP modeling language BPMN into a formal BP
modeling, i.e., timed automata which has been introduced in Section 2.5. Finally, we
presented optimization problems that we use in our work as mathematical model to
find optimal cost.

Chapter 3

The Proposed Approach

Contents

3.1 Introduction . 49

3.2 Motivation and Problems Statement 50

3.2.1 How to support cloud resource allocation in time-aware BP models? 50

3.2.2 How to ensure the correctness of time-aware BPs in cloud resources? 51

3.2.3 How to find the optimal deployment cost of time-aware BPs in
cloud resources? . 52

3.3 Case study . 54

3.4 Proposed Approach . 56

3.4.1 Graphical modeling . 58

3.4.2 Verification of the temporal correctness of cloud resources allocation 58

3.4.3 Optimization of the BP deployment cost 59

3.5 Conclusion . 60

3.1 Introduction

Time and resource management in organizations aims to reduce cost and maximize
profits. As mentioned in Chapter 2, most of the pricing strategies are defined based
on temporal constraints. Thus, a cloud resource has a limited temporal availability
that restricts the time span allowed for its use at a defined cost. As a result, BP
designers and researchers are seeking, not only to have support of activities’ temporal
constraints, cloud resources, and pricing strategies in current BPM suites, but also to
ensure the temporal correctness of cloud resource allocation in time-aware BP mod-
els. Besides, the variety of cloud resources, pricing strategies, and activities temporal
constraints does not help the BP designer to easily find the optimal BP deployment
cost. For this reason, the BP designer faces many challenges including: (i) the se-
lection of the suitable cloud resource for each activity with the best pricing strategy,
and in case of temporal flexibility (ii) the definition of the start and end times of BP
activities as to match the temporal availability of the less expensive cloud resource.
In other words, it is important to discover the best allocation that minimizes the

49

50 The Proposed Approach

BP deployment cost while respecting a set of constraints such as time. Consequently,
specifying and managing’ activities temporal constraints, cloud resources, and pricing
strategies in the BP field is becoming a hot research topic [27,30–33,48,129].

Despite this interest, no one, to the best of our knowledge, has studied how to sup-
port cloud resources’ temporal constraints in the BPM context. Besides, many efforts
have been made to reduce the BP deployment cost in cloud computing, but currently
none of the existing studies consider the variety of pricing strategies and advanced
temporal constraints to deal with such an issue. On the basis of this challenge, we
proposed an end-to-end approach, composed of three steps: Modeling, Verification,
and Optimization, that aims to minimize the deployment cost of time-aware BPs in
the context of cloud computing while considering different pricing strategies. The
inputs of our approach are (i) a BP with its set of activities’ requirements includ-
ing time, RAM, CPU and (ii) a set of cloud resources delivered from a set of cloud
providers under different pricing strategies. The output of our approach is a correct
cloud resource allocation that optimizes the deployment cost of time-aware BPs.

This chapter is organized as follows. We present our motivation and problem
statement in Section 3.2. Then, we present our case study in Section. 3.3. Next, an
overview of the proposed approach is presented in Section 3.4. Finally, Section 3.5
concludes the chapter.

3.2 Motivation and Problems Statement

Our research work is motivated by the following three main issues: How to support
cloud resource allocation in time-aware BP models?, How to ensure the correctness
of time-aware BPs in cloud resources?, and How to find the optimal deployment cost
of time-aware BPs in the cloud?

3.2.1 How to support cloud resource allocation in time-aware BP mod-
els?

A BP model is a procedural, semi-formal specification of the order in which activities
should be executed to achieve a goal [130, 131]. Some BPs might be subject to some
temporal constraints which can be relative or absolute. Such constraints require a
set of capacities expressed in terms of RAM and CPU. For that, they can consume
cloud resources that are proposed under various pricing strategies defined based on
temporal constraints (e.g. Amazon pricing strategies such as reserved and spot).

As mentioned above, researchers do not focus enough on neither the modeling nor
the graphical design of cloud resources’ temporal constraints. In general, various stud-
ies [10,29–31,35,132] have addressed time in a BPM context by integrating activities’
temporal constraints description, representation, etc. Besides, in those studies, the
authors extended the popular BP modeling standard BPMN to allow the BP designer
to express temporal constraints such as deadlines and activity durations [133]. How-

Motivation and Problems Statement 51

ever, a formal definition and representation of cloud resources’ temporal constraints
is still missing. Although BPMN offers capabilities to specify resource perspective,
it remains very poor and does not allow to specify temporal constraints of cloud
resources related to pricing strategies.

In this thesis, we aim to extend the cloud resource perspective in BPs by consid-
ering cloud resources’ temporal availabilities. Hence, we propose formal definitions
of cloud resources and their pricing strategies in BPs taking into account temporal
constraints. Next, we propose an extension of the BPMN 2.0 meta-model to support
the pricing strategies as well as activities’ temporal constraints. In order to achieve
our goals, we need to answer the following research questions:
RQ1: How to model the cloud resource allocation in time-aware BPs?
RQ2: How to integrate cloud resources’ temporal availabilities, their pricing strate-
gies, and activities temporal constraints in BP models at design time?

3.2.2 How to ensure the correctness of time-aware BPs in cloud
resources?

The deployment of a BP on a cloud infrastructure offers to the BP designer a pool
of cloud resources delivered under competitive pricing strategies defined based on a
temporal perspective. Therefore, the BP designer needs to verify the satisfaction of
the BPs’ time constraints in a cloud context. For instance, cloud resources’ temporal
availabilities may not cover activities’ temporal durations. On one hand, some re-
search studies [27, 32, 34] have addressed the verification of cloud resource allocation
in BPs taking into account cloud resource properties such as elasticity and share-
ability. On the other hand, other studies [30, 31, 73, 134] have addressed the issue of
verification of temporal constraints in BP models. Nevertheless, the formal verifica-
tion of BPs’ temporal constraints with respect to cloud resources’ availabilities has
been overlooked.

Verifying the correctness of cloud resource allocation in time-aware BPs is becom-
ing a challenge. As shown in Figure 3.1, the BP designer models his time-aware BP
model with the required cloud resources. The selected cloud resources can have lim-
ited temporal availabilities related to the selected pricing strategies. Thereby, he
may make errors that might lead to temporal violation and damage the temporal
correctness of the BP execution, especially in case of complex BP models.

The use of formal methods to model BPs and cloud resources can be very useful to
validate and analyze the temporal correctness of cloud resource allocation. Basically,
temporal violations can be detected before the deployment of cloud resources based
on mathematical foundations offered by formal methods.

In this thesis, our objective is to ensure the correctness of a cloud resource allo-
cation to time-aware BPs in order to avoid deadlock at runtime. Towards this end,
we developed a set of rules to automatically transform time-aware BPMN models
into a network of timed automata. Then, we formally verified this network against

52 The Proposed Approach

A

B

C

Is this allocation
temporally correct?

Activity duration

Resource temporal
availability

time

!
Temporal violation

Figure 3.1: Verification-related research problem

advanced properties known in the community as liveness, deadlock free, and deadline.
To achieve this objective, we list the following research questions:
RQ3: How to transform a BP model into a formal language?
RQ4: How to formally verify the cloud resource allocation in time-aware BPs?

3.2.3 How to find the optimal deployment cost of time-aware BPs
in cloud resources?

The use of cloud resources still presents issues related to optimization due to the
variety of pricing strategies and activities requirements. For instance, the BP designer
can select cheaper cloud resources for activities to guarantee a minimal cost. However,
this selection may not satisfy a set of constraints such as time. Besides, he has different
allocation possibilities and does not know which is the best allocation in terms of cost
and constraints satisfaction. Moreover, when the BP has some temporal flexibility,
he can advance or delay the start and end times of activities in order to match the
temporal availability of a cloud resource. But, he may not respect all the constraints.
Figure 3.2 shows the above mentioned problems. In fact, a BP designer chooses a
cloud resource allocation possibility in order to minimize the BP deployment cost. The
selected resource allocation can have a cheaper cost but it violates a set of constraints.
Therefore, before deployment, the BP designer needs to know if his allocation choice
provides the optimal BP deployment cost and satisfies a set of constraints or not. In
other words, he needs to find for each activity the suitable cloud resource with the
best pricing strategy while satisfying constraints such as time, amount of memory,
number of CPUs, etc. Until now, as far as we know, optimizing the deployment cost
of time-aware BPs based on pricing strategies has not been well studied. Mainly,
there exist some studies [132,135,136] on minimizing (non-cloud) resource allocation

Motivation and Problems Statement 53

cost under resource temporal constraints. Nevertheless, as cloud resources are always
available, researchers do not consider temporal availabilites constraints, related to
pricing strategies, to minimize the BP deployment cost in cloud resources.

A

B

C

Does the selected allocation

respect all the constraints?

Legend

ch1: 1st Allocation possibility at a cost c1

ch2: 2nd Allocation possibility at a cost c2

ch3: 3rd Allocation possibility at a cost c3

Which allocation has

the optimal cost?

c1<c2<c3
ch1 vioates temporal constraints !

Error

Figure 3.2: Optimization related to research problem

Resorting to mathematical programming techniques to formulate optimization
problems can be very efficient to find an optimal cost. Mainly, an optimal and correct
allocation can be discovered before deploying or purchasing cloud resources using a
mathematical model defined via an objective function subject to a set of constraints.

In this doctoral research, our purpose is to discuss how the cost of BP deployment
cost can be optimized. To this end, we need to formulate our optimization problem as
a mathematical model by defining an objective function with constraints that would
guide the optimization. To achieve our objective, we state the following research
questions:
RQ5: How to find an optimal allocation of cloud resources to activities in a BPM con-
text?
RQ6: How to determine in which order activities should arrive and leave resources
to minimize the deployment cost?

54 The Proposed Approach

3.3 Case study

We present, in the following, the BP taken from the French Telecommunication op-
erator Orange [27] to illustrate and motivate our approach. It is also used to explain
our approach in the next chapters.

First, we introduce a “service supervision” BP which presents how a customer’s
complaint is addressed in case of a drop in the quality of service. Figure 3.3 is a model
of the supervision process in BPMN 2.0. This BP is triggered when a complaint is
sent by a customer using Get service trouble ticket activity “a1”, after which either
necessary data are retrieved “a2” or the management test is started “a3”. Data
retrieval can be performed automatically “a4” or via a script “a5”. As for the service
test, , it requires both “a6” and “a7”. Finally, by replying to the customer “a8” and
troubleshooting the process “a9”, the process meets its end.

Get service
trouble ticket

(a1)

Retrieve data
(a2)

Start service
management

(a3)

Perform an
automated

retrieval (a4)

Perform a
scripted

retrieval (a5)

Start scripted
service test (a6)

Start automated
service test (a7)

Reply to
customer (a8)

Trouble shoot
the process (a9)

Figure 3.3: Supervision service business process in BPMN

Table 3.1 lists temporal constraints for the “supervision service” BP along with
the capacities required by each activity in this BP, expressed in terms of RAM and
CPU . For instance, the minimum duration for “a2” and “a6”is 2 hours and the
maximum duration is 3 hours. Moreover, the time lag between the end of“a3” end
and the start of “a7” should be between 2 and 5 hours. Also, activities such as
“a2” require resources with 15GB of RAM and 2 CPUs. Besides, some activities are
subject to cancellation penalty prices pq [137, 138] that should be added to the BP’s
deployment cost. For instance, “a1” has a financial penalty cost of 0.7$ in case of its
execution cancellation due to a resource interruption.

Case study 55

T
ab

le
3.

1:
P

ro
ce

ss
ac

ti
v
it

ie
s’

te
m

p
or

al
co

n
st

ra
in

ts
an

d
n

ee
d

s
in

cl
o
u

d
re

so
u

rc
es

A
c
ti

v
it

ie
s

a
1

a
2

a
3

a
4

a
5

a
6

a
7

a
8

a
9

D
u

ra
ti

o
n

s
[1

h
,2

h
]

[2
h

,3
h

]
[1

h
,1

h
]

[1
h

,4
h

]
[1

h
,2

h
]

[2
h

,3
h

]
[1

h
,2

h
]

[1
h

,1
h

]
[1

h
,2

h
]

P
e
n

a
lt

ie
s

in
$

0.
7

0
0

0.
2

0
0

0
0

0

R
A

M
in

G
B

16
15

16
28

16
28

30
15

15

C
P

U
n
u

m
b

e
r

4
2

2
8

4
8

8
2

2

T
ab

le
3.

2:
V

ir
tu

al
m

ac
h

in
e

in
st

an
ce

p
ro

p
er

ti
es

b
y
p
r i

1
=

A
m

a
zo

n
E

C
2

In
st

a
n

c
e
s

R
A

M
(G

B
)

v
C

P
U

O
n

-d
e
m

a
n

d
R

e
se

rv
e
d

(n
o

u
p

fr
on

t)
S

p
o
t

b
lo

ck
S

p
o
t

R
1
=

16
4

0.
21

5$
/h

0.
14

7$
/h

0.
12

9$
/h

[0
h

,1
h

]
0.

04
91

$/
h

[6
p

m
,1

am
(+

1
)
]

m
4.

x
la

rg
e

0.
14

2$
/h

[1
h

,6
h

]
0.

03
86

$/
h

[1
am

,6
p

m
]

R
2
=

15
2

0.
16

6$
/h

0.
10

5$
/h

0.
09

6$
/h

[0
h

,1
h

]
0.

02
25

$/
h

[3
am

,1
0p

m
]

r3
.l

ar
ge

0.
10

2$
/h

[1
h

,6
h

]
0.

03
81

$/
h

[1
0p

m
,3

am
(+

1
)
]

R
3

=
30

8
0.

53
2$

/h
0.

38
0$

/h
0.

29
3$

/h
[0

h
,1

h
]

0.
07

87
$/

h
[1

0a
m

,9
p

m
]

m
3.

2
x
la

rg
e

0.
37

2$
/h

[1
h

,6
h

]
0.

08
63

$/
h

[9
p

m
,1

0a
m

(+
1
)
]

T
ab

le
3.

3:
V

ir
tu

al
m

ac
h

in
e

in
st

an
ce

p
ro

p
er

ti
es

b
y
p
r i

2
=

M
ic

ro
so

ft

In
st

a
n

c
e
s

R
A

M
(G

B
)

v
C

P
U

N
u

m
b

e
r

O
n

-d
e
m

a
n

d
(c

i2
1
)

R
4
=

A
2
m

v
2

16
2

0.
12

8$
/h

R
5
=

D
4

v
2

28
8

0.
38

7$
/h

56 The Proposed Approach

On one hand, the BP designer has different resource allocation options. For in-
stance, while R1 satisfies the resource requirements of “a1” and “a9” in terms of RAM
and CPU, it can be assigned to both of activities as a spot block available for 1 hour
up to 6 hours at a cost of 0.142$/h. However, “a9” would not be correctly performed.
Indeed, the temporal availability of R1 does not cover the duration of the time lag
between the start time of a1 and the end time of a9 (i.e., 2h+3h+4h+2h=11h >
6h). Besides, since R2 satisfies the capacity requirements of ‘a2”, the BP designer
can allocate it as a spot instance that is available from 3 a.m to 10 p.m at a cost of
0.0225$/h to perform a2. If the BP starts at 6 p.m, so, “a2” may start at 8 p.m and
finish at 11 p.m. As a result, the selected pricing strategy for R2, assigned to “a2”,
is not appropriate, i.e., 11 p.m /∈ [3 a.m, 10 p.m]. Unfortunately, the choices of the
BP designer can lead to a temporal violation. For this reason, he needs to avoid the
mismatch between temporal constraints of both activities and cloud resources.

On the other hand, the BP designer has as objective to allocate the suitable cloud
resource for each activity at a minimal cost. For that, he can assign, for example, R1

and R4 for “a2” , “a3”, “a8” and “a9” since they satisfy both their requested amount
of RAM and CPU. Besides, a cloud resource has more than one price depending on
its temporal availability [63]. Thus, an activity can consume one cloud resource under
various pricing strategies that can be temporally available. In addition, the activities’
temporal constraints can be flexible. Therefore, the BP designer can specify the start
and end times of BP activities to overlap with temporal availabilities of cheaper cloud
resources. For instance, “a2” can start at 8 am and finish at 11 a.m so it consumes R1

as a spot instance available from 1 am until 6 p.m. It can, however, also start at
8 p.m and finish at 11 p.m. Thus, it consumes R1 as a spot block. Consequently,
there are various options of resource assignment and scheduling. We can conclude
that it is hard to find (i) the suitable cloud resource to allocate for each activity, (ii)
the best pricing strategy for each cloud resource, especially for activities subject to
cancellation penalties prices, and (iii) the optimal scheduling plan of a BP in case of
flexible temporal constraints.

3.4 Proposed Approach

In this section, we present an overview of our end-to-end approach (Figure 3.4) for
a correct cloud resource allocation that provides the optimal BP deployment cost.
It takes as inputs a BP, activities temporal constraints, cloud resources, and pricing
strategies. Three main contributions define our proposed approach: Graphical Mod-
eling, Verification and Optimization. In the modeling step, the BP designer is able to
design his BP enriched with cloud resources and temporal aspects. This is ensured by
extending BPMN meta-model with cloud resources, pricing strategies, and temporal
constraints. So, the BP designer will have a BP modeled in BPMN and enriched with
activities temporal constraints, cloud resources, and their pricing strategies.

On the one hand, the BP designer may have erroneous allocations which lead

Proposed Approach 57

Graphical
Modeling

Assignement
BLP

Temporal
Veri cation

Schedeling
MIP

PriceCloudSim
Simulation

Enrished
BP

Correct
BP

Optimal
Schedeling

Optimal
assignement

Real
Cost

Correct

Non Correct

Temporal
exibility

Temporal
in exibility

1 - Modeling 2 - Veri cation 3 - Optimisation

No solution

No solution

Figure 3.4: Approach overview

to runtime errors if left untreated at design-time. Therefore, we propose a formal
verification step to avoid such issue. While BPMN is a semi-formal language, we
propose to transform the extended BP models, designed in BPMN, into a formal
language to formally verify the temporal correctness of a cloud resource allocation.
Thus, if the temporal constraints are satisfied, the BP designer will have a correct BP
modeled in BPMN. Otherwise, he should try another resource allocation and verify
its temporal correctness.

On the other hand, the BP designer can not easily find the optimal BP deployment
cost, because of the variety of activities requirements, cloud resources, and pricing
strategies options. Namely, he has different allocation possibilities and each one
provides a different BP deployment cost. To this end, we formalize the optimization
problem as linear programming models to minimize the deployment cost of time-aware
BPs. More precisely, we offer two solutions. The first one is an assignment approach
and the second is a scheduling approach used when activities temporal constraints
are flexible. Linear programming models are known with the need of long time to
obtain optimal solution for problem with large size problems. As a result, we extend
our optimization approach to deal with more complex and “large” BPs.

The price of cloud resources is variable and depends on temporal perspective such
as spot instance. So, configuring a real cloud environment using a wrong estimation
can lead to waste of efforts, time, and money. Thereby, to ensure that the BP is
successfully executed organizations would pay extra fees. To overcome this challenge,
researchers often rely on simulation tools to model the mechanisms and evaluate
their outputs [28]. That is why, the BP designer needs a cloud simulator in order to
simulate a BP deployment in cloud resources and to get its real cost. For that, we
rely on an existing cloud simulator to simulate the optimal BP deployment in cloud
resources and to provide its real cost.

58 The Proposed Approach

3.4.1 Graphical modeling

In this section, we present our first contribution defined based on two steps: a model-
ing step and a BPMN extension step. As noted before, the resource perspective lacks
a formal and unified description. Compared to other perspectives such as the control-
flow and the organizational perspective, it reminds poorly operated. Some research
efforts are made for the enhancement of the resource description in BPM [8,139,140].
There exists also previous works on the formal specification of activities temporal
constraints [10, 30, 31]. However, enhancing the cloud resource description is still
poorly managed due to the lack of a formal definition of pricing strategies, that are
specified in natural language. To deal with such issue, we define a formal model of a
BP enriched with temporal constraints, cloud resources, as well as pricing strategies.
Namely, we define first, a formal model of BP that is subject to some temporal con-
straints that could be either relative or absolute. Then, we define formally a cloud
resource and its pricing strategy specified based on temporal constraints. Next, we
move to the BPMN extension step. BPMN is the broadly accepted BP modeling lan-
guage and it offers a better understanding and shareabality of BP models. Further,
BP designers know very well this modeling language. So, we propose to take it as our
stating modeling language, then to extend it to support our proposed model of cloud
resources and pricing strategies. The aim of this BPMN extension is to help the BP
designer to model his BPMN process enriched with cloud resources and temporal con-
straints in order to allocate correctly and cost-effectively the required cloud resources.
We implement our approach as an Eclipse plugin which is an extension of BPMN 2
modeler [141] to offer to the BP designer a graphical modeling tool supporting the
temporal constraints of cloud resources and activities as well as pricing strategies1.

3.4.2 Verification of the temporal correctness of cloud resources al-
location

In this section, we give an overview of our second contribution: the verification which
is composed of two steps: Model transformation and Correctness analysis. To avoid
the design errors such as temporal violation, there is a need to use formal meth-
ods to verify the correctness of cloud resource allocation in time-aware BP. Formal
methods have proved their usefulness in the design of correct systems (e.g. timed
automata [106], Petri nets [107], process algebra [108], Event-B [109], etc.). They
promote the use of mathematical foundations and formal logic to specify and reason
about system properties. So, adopting formal methods to formally specify a cloud
resource allocation in time-aware BPs can be very effective to validate and check tem-
poral constraints before deploying or even purchasing resources from cloud providers.
While BPMN is a semi-formal language we transform the extended BP designed in
BPMN into timed automata as a formal language.

1http://www-inf.it-sudparis.eu/SIMBAD/tools/BPMN4CP

Proposed Approach 59

As reported in Section 2.1, timed automata is a suitable formalism for modelling
and verifying time dependant systems. Besides, using timed automata allows us to
analyze properties of our model using UPPAAL [102]. Thus, we define a set of trans-
formation rules to generate from the extended BPMN model into a (network) timed
automata model. These models are respectively conform to BPMN and UPPAAL
meta-models. Nevertheless, the BP designer can have a limited knowledge about for-
mal methods and languages, especially timed automata, so he can often make errors
at the moment of manual transformation from BPMN models into timed automata
models. Many research approaches have been proposed for generating formal models
exploiting model-driven principles and techniques. Besides the advantage of con-
ceptual simplicity, MDE leads to clear architecture, efficient implementation, high
scalability and good flexibility. Thus, we resort to MDE-based model-to-model trans-
formation language to conduct an automatic transformation to help the BP designer
to provide a network of timed automata. More precisely, we implement our transfor-
mation rules using ATL, the widely adopted language for model transformation [142].
As a result, a BP, designed in BPMN, deployed in cloud resources purchased based on
various pricing strategies, can be transformed automatically into a network of timed
automata models.

Turning now to the correctness analysis step. Towards this end, the network of
timed automata atomically generated is formally verified against advanced proper-
ties such as liveness, deadlock-freeness, and deadline using the model checking tool
UPPAAL. The objective is to verify that there is a matching between the temporal
constraints of both activities and cloud resources, so that allocating cloud resources
to time-aware BPs is correct.

3.4.3 Optimization of the BP deployment cost

We present in this section our third contribution detailed in Chapter 6. Basically, we
define our optimization problem using mathematical formulation. Indeed, we offer
two solutions to optimize the deployment cost of the BP designed in the modeling
step. Based on activities’ temporal constraints flexibility, we propose a Mixed Integer
Programming (MIP) model that provides an optimal execution plan for BP activities
that can be optimally executed using cloud resources. Otherwise, if activities temporal
constraints are not flexible, we propose a Binary Linear Program (BLP) that selects
for each activity the suitable cloud resource, cloud provider, and pricing strategy. BLP
and MIP models are defined through an objective function that minimizes the BP
deployment cost under a set of constraints. In this work, we provide exact solutions
and violating one of these constraints is not tolerated. Thus, if one constraint is not
satisfied, so BLP and/or MIP do not have any solution. Therefore, the BP designer
goes back to the modeling step. In summary, we help him to reduce the cost BP
deployment while respecting a set of constraints such as activities requirements and
resources constraints.

60 The Proposed Approach

It is worth noting that linear programming optimization problems are NP-hard [143].
Hence, they require high computational efforts to find out an optimal and even a fea-
sible solution for large size problems. For that, it is often more important to reduce
the search space to avoid waiting for a long time to obtain the optimal solution. To
deal with more complex and large BPs, before moving to the optimization step, we
check in our verification approach the temporal correctness of cloud resource allo-
cation in time-aware BPs. Then, we take as inputs for our linear programs: (i) a
BP and (ii) only a set of cloud resources and pricing strategies that ensure correct
resource allocations. In this manner, the size of the optimization problem is reduced
and so the response time of our linear programs is reduced. Consequently, our linear
programs converge in a short time to the optimal solution [144].

Cloud resources price is variable and timed constrained (e.g., spot instance). Thus,
to avoid wasting time, effort, and money to purchase and configure a real cloud
environment, we complete our approach with a simulation step to simulate the optimal
BP deployment and to provide an estimation of its real cost. More pricesly, we
extend CloudSim [66], EPriceCloudSim [145] that supports AWS pricing strategies,
to simulate a time-aware BP deployed in cloud resources. EPriceCloudSim takes as
inputs a unified description model specified as an XML document composed of BP
activities, temporal constraints, cloud resources, and pricing strategies selected using
our BLP and MIP models. Thus, based on cloud providers’ APIs, it gives the real
cost of BP deployment.

3.5 Conclusion

In this chapter, we gave an overview of our proposed approach for correct cloud
resource allocation that provides the optimal depoyment cost of time-aware BP. First,
we presented our motivation and related problems. Second, a real use case from France
Telecom Orange labs is presented as a case study. Then, we presented the different
contributions composing our approach. Next chapter is devoted to give more details
about existing works related to our research field.

Chapter 4

State of the Art

Contents

4.1 Introduction . 61

4.2 Temporal constraints and Cloud resources in BP 62

4.2.1 Formal specification in BP . 62

4.2.2 Formal verification . 69

4.3 Optimization of resource allocation 78

4.3.1 Resource allocation . 80

4.3.2 Cloud resource allocation . 83

4.3.3 Pricing strategies . 90

4.3.4 Synthesis . 91

4.4 Conclusion . 93

4.1 Introduction

In Chapter 1, we introduced our research problem concerning the verification and
optimization of time-aware cloud resource allocation in BPs. In this Chapter, we
review the literature for the relevant state-of-the-art works corresponding to our re-
search problem. The latter are: (1) how to formally specify cloud resources’ temporal
constraints in BP models? (see Section 4.2.1), (2) how to formally verify the temporal
correctness of cloud resource allocation in timed-aware BPs? (see Section 4.2.2), and
(3) how to optimize the deployment cost of BPs in cloud resources? (see Section 4.3).
It helps us to position our work among other works in the literature and assists us to
justify our problem statement by comparing and contrasting the existing works with
our contribution. Finally, in Section 4.4, we conclude this Chapter. Furthermore, at
the end of each section, we provide a synthesis comparing the current research works
and their shortcomings with our work, which help us to clearly position and motivate
this thesis work.

61

62 State of the Art

4.2 Temporal constraints and Cloud resources in BP

In the literature, several existing works have viewed the domain of BPM from differ-
ent perspectives, i.e., the control-flow perspective, the data perspective, the artifact
perspective, or the resource perspective. Among them, the control flow perspective
has been widely researched as it helps to streamline the temporal aspect of the BPs,
which is important for timely execution of the processes that are based on certain
Service Level Agreement (SLA). Further, to be cost-effective and gain competitive
advantage, it is critical for an organization to properly manage its resources, i.e.,
both humans and machines/non-human (automation intensive processes). While the
(cloud) resources perspective in BPM has been an area of interest for quite some
time, most of the work has been focused on the cloud resource properties such as
shareability, elasticity [27, 33]. Further, cloud resources are considered always avail-
able. In other words, there is a lack of work done on the modeling and management
of cloud resources with limited temporal availabilities in the BPM lifecycle. Thus,
this thesis project is motivated towards handling the issues related to management of
cloud resources’ temporal availabilities in the BPM domain.

4.2.1 Formal specification in BP

This section presents some existing works related to formal specification of activ-
ity temporal constraints (Section 4.2.1.1) and resource perspective such as human,
machines, and cloud resources in BPM context (see Section 4.2.1.2).

4.2.1.1 Activity temporal constraints specification

Various researchers have tackled the temporal dimension in BP [7, 29–31, 146–150].
For instance, Arévalo et al. [147] suggested a model-driven approach to extend BPMN
metamodel in order to support time perspective. Thus, they defined a time rule
taxonomy in most BPs that can be applied with current BPMN 2.0 standard in a
declarative way.

D. Gagné et al. [29] extended BPMN with temporal dimension. Nevertheless,
they did not propose a formal specification. Moreover, authors in [30, 31] have con-
centrated on the issue of the formal specification of temporal constraints related to
BP activities: relative and absolute constraints. Those authors proposed not only a
formal specification but also a set of time decorators in BPMN.

Besides, Lanz et al. [35] suggested 10 time patterns to foster the comparison of
existing PAISs with respect to their ability to deal with temporal aspects. Figure 4.1
summarizes the proposed time patterns. As shown in Figure 4.1, authors identified 4
distinct categories based on their semantics . Particularly, the time patterns constitute
solutions for representing commonly occurring temporal constraints in PAISs. Pattern
Category I (Durations and Time Lags) provides support for expressing durations of
different process granularities (i.e., activities, activity sets, processes, or sets of process

Temporal constraints and Cloud resources in BP 63

instances) as well as time lags between activities or – more generally – between process
events (e.g. milestones). Pattern Category II (Restricting Execution Times) allows
specifying constraints regarding possible execution times of single activities or entire
processes (e.g., activity deadlines). Category III (Variability) provides support for
expressing time-based variability during process execution (e.g., varying control-flow
depending on temporal aspects). Finally, Category IV (Recurrent Process Elements)
comprises patterns for expressing temporal constraints in connection with recurrent
activities or process fragments (e.g., cyclic flows and periodicity) [35]. Figure 4.2
presents an example of a BP extended with time patterns. Then, Lanz et al. [146]
proposed a formal semantics of time patterns in order to avoid ambiguities and to
ease their use as well as their implementation. Further, to enable pattern use in
a wide range of process modeling languages and pattern integration with existing
PAISs, this semantics is expressed independently from any particular process meta
model. Altogether, the presented pattern formalization will foster the integration of
the temporal perspective in PAISs. Nevertheless, in our work, we consider temporal
constraints not only for BP activities but also for cloud resources. Moreover, we
propose an approach to formally verify the temporal correctness of cloud resource
allocation in a time-aware BP.

Figure 4.1: Time patterns proposed in [7]

Time modeling and management in the clinical workflow domain has been widely
investigated by Combi et al. [148–150]. In [148], the authors proposed a general con-
ceptual workflow model considering both activities and their temporal constraints.
Among the proposed temporal constructs, we can notice: the duration (activity du-
ration) and delays (edge duration), the relative constraints, the absolute constraints,

64 State of the Art

Figure 4.2: Treatment process [7]

and the periodic constraints. Based on these constructs, the authors developed a
tool named Temporal Workflow Analyzer (TWA) to support workflow modeling at
workflow design time.

However such approaches, working on the specification of activities temporal con-
straints, lack considering resource perspective. Therefore, to cope with this research
gap our work is motivated to consider resource, more specifically cloud resources, and
to ensure their specification enriched with temporal availabilities in time-aware BP.

4.2.1.2 Resource perspective specification

In the literature, various authors focused on the specification of resource perspective
in BPM such as [8, 38–42]. For example, Cabanillas et al. [8, 38, 39] represented the
importance of resource management in BPs and the need for evolution of PAIS into
Process and Resource-Aware Information System (PRAIS). More precisely, Caban-
illas et al. [8] proposed RALph (Resource Assignment Language graph), which is a
graphical notation for human resource assignments in BPs that derives its formal se-
mantics from Resource Assignment Language (RAL) [151]. As shown in Figure 4.3,
the RALph notation proposes four types of resource entities: Organizational Unit, Po-
sitions, Person, and Roles. Next, it defines the Capability entities, which are persons
having a specific capability. It has several Connectors (similar to control flow con-
nectors), which are used to express the resource assignment. In RALph, the authors
also considered the resource dependencies and the resource-activity dependency. Fig-
ure 4.4 illustrates a process of patient examination (Figure 4.4(a)) and the application
of the RALph language to the patient examination process (Figure 4.4(b)). More-

Temporal constraints and Cloud resources in BP 65

Figure 4.3: The Ralph language [8]

over, in [40], authors extended BPMN 2.0 meta-model to support the modeling and
visualization of resource perspective requirements. It considers three aspects of the
resource perspective: resource structure, authorization, and work distribution. We
notice that the authors’ main focus is on human as well as their behavior. However,
they do not neither enable cloud resources’ representation nor consider verification.
Besides, an explicit support of cloud resource temporal availability is missing. In
contrast, our work integrates cloud resources and their pricing strategies and seeks
for checking the temporal correctness of cloud resource resource allocation.

Russel et al. [41] proposed the Workflow Resource Patterns (WRPs) to support
the representation of a resource along with its utilization in a workflow. They grouped
these patterns into different categories such as creation patterns, push patterns, pull
patterns, detour patterns, etc. For instance, in the creation pattern, they have a
Role-Based Allocation pattern (Pattern R-RBA), which helps to specify constraints
(at design time) wherein only a resource belonging to a specific role can execute a
specific task. In another work, Russel et al. [42] evaluated the BPEL4People and
WS-HumanTask extensions to WS-BPEL 2.0 based on the WRPs.

All the aforementioned works consider resources such as human and machines but
neglect cloud resources. In the following, we present some existing works dealing with
cloud resource management [27, 33, 152, 153]. For example, Hachicha et al. [33] pro-
posed an extension to BPMN meta-model to optimally manage resources deployed
in the cloud through resource constraints verification. They aim to formalize the
consumed cloud resources using a shared knowledge base. Therefore, authors pro-
posed a semantic framework for resource-aware BP development in the cloud. The
same authors in [152] proposed process configuration concepts for cloud computing
in BPMN. More precisely, they defined an approach for modeling configurable pro-

66 State of the Art

Figure 4.4: Process of patient examination [8]

cesses with configurable cloud resource allocation operators. In this manner, the
BP’s designer explicitly model resource allocation alternatives in multi-tenant pro-
cess models including elasticity and shareability. However, temporal perspective for
cloud resources is not studied.

Few authors suggested formal specification of cloud resources in BPMN. Ben
Fraj et al. [153] presented a model-driven approach for the specification and the
execution of cloud workflow applications composed from cloud services. The approach
shows also how the proposed modelling constructs are applied to model and represent
a flexible workflow from cloud services specified by BPMN to its running platform by
BPEL4WS. Boubaker et al. [27], intended to offer a formal definition of the resource
perspective in BPs to ensure correct and optimal cloud resource allocation in BP
modeling. Literally, this work proposes a formalism based on Event-B to specify

Temporal constraints and Cloud resources in BP 67

cloud resource allocation policies in BP models. The model, in this work, considers
different cloud properties such as elasticity and shareability. Though, authors [27] do
not consider the temporal constraints.

4.2.1.3 Time and resource specification

Several research works focused on the specification of both: time and resource per-
spectives in BPM domain [154–157]. For example, Wang et al. [155] proposed a
modeling approach for a kind of workflow constrained by resources and non deter-
mined time using Petri net. Watahiki et al. [154] extended BPMN to handle temporal,
concurrency and resource constraints. However, the scope of this paper is limited to
a small subset of BPMN elements. Added to that, the extension proposed in this
work grants specifying temporal constraints related to only one activity within the
BP model and does not consider advanced temporal constraints related to a set of
activities like temporal dependency. Ogata et al. [156] described how to specify For-
mal Time and Resource-Sensitive simple BP (Formal TR-SBP) in Maude [158] and
Alloy [159] specification languages. Whereas, Cheikhrouhou et al. [157] proposed
a formal specification of time-aware BPs and their allocated cloud resources using
Timed Petri Nets (TPN).

4.2.1.4 Synthesis

Table 4.1 summarizes existing approaches, presented above, discussing the specifica-
tion of process perspectives such as time, resource, etc. The approaches are classified
based on criteria relevant to our work: (1) control-flow perspective, (2) activities tem-
poral constraints, (3) resource, (4) formal, and (5) modeling language. In Table 4.1,
we use the following nomenclature: ”+” to depict that the approaches satisfy the
corresponding criteria, ”-” to depict that they do not satisfy the corresponding crite-
ria. Overall, these approaches take into account the control-flow perspective, wherein
some of them consider activity temporal constraints and/or resource perspective in
BPs and propose formal specifications. These approaches extend the concepts from
the BPM domain to include the definition and representation of human/machine re-
source behavior [8, 38–40, 154, 155, 160–162], which is needed to optimally manage
the human/machines resources involved in the processes. There is a need for such
approaches as domain specific processes (e.g. health care) involving human/machines
are scarce and costly. However, our work mainly focused on modeling and formally
specifying cloud resources (and their temporal availabilities) into BPs. The current
approaches in the literature from the context of inclusion of cloud computing do-
main in the BPM domain were discussed in detail in Section 4.2.1.2 of this chapter.
Most of the approaches [32, 33] extended the BPs with cloud resources while consid-
ering elasticity and shareability properties. Others [152] integrate the cloud resource
perspective in configurable BPs and offer a graphical tool to model various resource

68 State of the Art

T
a
b

le
4
.1

:
S

u
m

m
ary

of
th

e
literatu

re
stu

d
y

of
p

ersp
ectives

sp
ecifi

cation
in

B
P

W
o
rk

C
o
n
tro

l-fl
o
w

A
c
tiv

itie
s

te
m

p
o
ra

l
R

e
so

u
rc

e
F
o
rm

a
l

M
o
d

e
lin

g

p
e
rsp

e
c
tiv

e
c
o
n

stra
in

ts
H

u
m

a
n

M
a
ch

in
e

C
lo

u
d

la
n

g
u

a
g
e

[29,147]
+

+
-

-
-

-
B

P
M

N

[7,30,31,146]
+

+
-

-
-

+
B

P
M

N

[8,38,39]
+

-
+

-
-

+
R

alp
h

[40]
+

-
+

-
-

-
B

P
M

N

[154]
+

+
+

+
-

-
B

P
M

N

[155,160–162]
+

+
+

+
-

+
P

etri
n

ets

[33,152,153]
+

-
-

-
+

-
B

P
M

N

[32]
+

-
-

-
+

+
B

P
M

N

[157]
+

+
-

-
+

+
P

etri
N

ets

O
u

r
ap

p
roach

+
+

-
-

+
+

B
P

M
N

Temporal constraints and Cloud resources in BP 69

allocation alternatives in multi-tenant process models. But, the proposed approaches
failed to address cloud resources constraints such as temporal availabilities which has
been only studied in [157]. Finally, we observe from Table 4.1 that BPMN is the most
used modeling language.

Unlike the researches detailed above, in this thesis, we formalize cloud resources
and integrate pricing strategies properties such as temporal constraints with BP con-
cepts such as activities temporal constraints. First, we defined pricing strategies
proposed by cloud providers and specified based on temporal constraints as detailed
in Section 2.4.2. The formal model proposed in this thesis work is used to specify
the cloud resources and BPM concepts in the process models developed graphically.
Further, we propose a BPMN extension to support our proposed formal model which
can help a BP designer to model a time-aware BP deployed in cloud resources offering
different pricing strategies.

4.2.2 Formal verification

In this Section, we give an overview of formal verification methods used in BPM
context. For that, we present, first, formal verification methods (Section 4.2.2.1)
and existing works related to three aspects of process models verification: structural
(Section 4.2.2.2), temporal (Section 4.2.2.3), and resource (Section 4.2.2.4).

4.2.2.1 Formal verification methods

The process verification is the task of determining and checking whether it exhibits
erroneous behaviors. This refers to process correctness checking. Hence, the verifica-
tion could be applied at design time in order to detect possible errors, and if so, the
model should be modified before execution. The validation aims at checking whether
the system actually behaves as expected or not. The later is context dependent and
can only be applied with knowledge of the intended BP. Since PAIS rely on process
models for organization’s work execution, careful verification and validation of pro-
cess models at design time can greatly improve the reliability and efficiency of such
systems. Therefore, there have been many efforts to achieve that by defining formal
semantics of process models and applied various logics and formal methods [16]. The
most widely used process modeling languages do not have formal semantics, notably
EPC [22], BPMN [21], UML activity diagram [24]. Therefore, these modeling tech-
niques need to be mapped into formal models in order to be verified, e.g., [163–165].

Many existing approaches used simple languages such as workflow graph model [166].
Further, Petri Net formalism was widely explored due to its understandable and
graphical notation as well as well-defined semantics. More specifically, the Workflow
nets [162,167] are its most notably sub-class, that were used as intermediate formal-
ism to verify and analyze workflows/BPs, e.g., [76, 168, 169]. In the literature, some
authors [170, 171] relied on process algebra (i.e., π calculus [172]) and event calcu-
lus [173] to formally verify BPs. Model checking techniques were used in [174,175] to
show BPs’ consistency through the automatic verification of basic requirements such

70 State of the Art

as the termination and reachability of states. It is noteworthy that timed automata,
due to its formal syntax and semantics, has been largely adopted to formally model
BPs that will be analyzed using model checking tools [176–179]. For this reason, we
use in our work timed automata to formally specify and verify that a cloud resource
allocation is temporally correct.

4.2.2.2 Structural verification

The structure of a process model defines activities’ order in a model, and the objective
of verifying this structure is to verify the structural correctness of a process (workflow)
specification. Such verification is usually based on an extension of a kind of formal
method, for example, directed graph, temporal logic, or Petri Net [180]. For instance,
Sadiq and Orlowska [9] employed directed graphs to specify a process and to verify
its structural correctness through analyzing this directed graph. Some structural con-
flicts, such as deadlock (Figure 4.5(c)) or lack of synchronization, can be identified in
the process specification [180]. Indeed, joining exclusive choice paths with a synchro-
nizer results into a deadlock conflict. A deadlock at a synchronizer structure blocks
the continuation of a workflow path since one or more of the preceding transitions of
the synchronizer are not triggered.

Figure 4.5: Example process model with deadlock structural conflict [9]

Besides, Greco et al. [181] relied on temporal logic to describe workflows mapped
onto logic expressions which are analyzed to verify the structural correctness of the
specification. Van der Aalst [182], Van der Aalst and Hofstede [183], and Lee and
Lai [184] used Petri Net to map processes in order to verify the structural correctness
of a process specification.

Temporal constraints and Cloud resources in BP 71

We notice, from the presented proposals, that authors focus on structural veri-
fication in BPM context. However, they do neither verify temporal consistency nor
resource allocation correctness. In contrast, our work deal with the temporal verifi-
cation of resource allocation in time-aware BPs.

4.2.2.3 Temporal verification

Dealing with time and time constraints is crucial in designing and managing business
and science processes [180]. As a result, time management should be considered as a
fundamental part of BPM systems [185,186]. Various research works have tackled the
issue of temporal constraints verification such as [30, 73, 134, 148–150, 187–198]. For
example, Eder et al. [187] specified a timed workflow graph by defining the earliest
start time and latest end time for each activity node.

Marjonvic et al. [188] defined a temporal duration for each individual activity and
proposed verification algorithms to check the temporal requirements and inconsis-
tencies. In another work, Marjonvic et al. [189] suggested a graphical and a formal
model for absolute temporal constraints. Further, they proposed a dynamic verifica-
tion mechanism. Zhuge et al. [190] introduced an approach to verify the consistency
of temporal constraints at build time and runtime in BPM context. Bettini et al. [194]
focused on temporal workflow models and used Temporal Constraint with Granular-
ity (TCG) to model the control flow and temporal constraints. Also, in this work,
authors proposed temporal constraints reasoning and management tool that check
the consistency of complex temporal requirements.

Various authors utilized formal methods to check process temporal correctness.
Cheikhrouhou et al. [30, 73] proposed a set of rules to transform BPs modeled in
BPMN language and enriched with relative and absolute temporal constraints into
timed automata models. Figure 4.6(b) depicts the timed automata resulting from
the application of the authors’ algorithm, named From Timed Process to Timed Au-
tomata, for the Shipper process (Figure 4.6(a)). Then, using the model checking tools
(UPPAAL), authors verified the satisfaction of some CTL properties in order to ver-
ify the temporal consistency of BPs. Morales et al. [196] presented an approach to
transform BPMN models into timed automata models based on model checking ver-
ification mechanism. Zhao et el. [199] focused on specification and verification of the
temporal constraints of the service-based BP model based on timed automata models.

Adam et al. [192] used Petri nets to specify temporal constraints in workflow
and check the temporal feasibility at build-time. Further, Huai et al. [134] verified
the BPMN models using timed Petri Nets. Basically, they analyzed the process
structure such as deadlock and tested if there is a conflict between the model temporal
constraints. To do that, they defined the Petri net reachability graph. They used
also a time choreography verification algorithm to check time conflicts. Besides,
Wong et al. [193] presented an approach that uses a timed semantic function which

72 State of the Art

Figure 4.6: BP model mapped into BPMN model [10]

takes as input a diagram describing a collaboration. Then, the function provides
a communicating sequential processes modeling the time behavior of the diagram.
Using the Failures-Divergence Refinement [200] system, some properties are verified.

Yang et al. [195] proposed to model timed service BP using Petri net. More
precisely, they developed a framework to model a service BP composed of a service
model extended with temporal specifications. Next, they generated automatically
timed properties in the form of temporal logic formulae to verify the temporal cor-
rectness. Additionally, taking Petri nets as models, Ling and Schmidt [201] provided
a time interval extension of workflow nets to support the modeling and analyzing of
time constraints in workflow systems. They putted more emphasis on checking the
soundness of workflow process definitions, but they considered very few time con-
straints.

However such approaches, addressing the verification of activities temporal con-
straints, lack considering resource perspective. Thus, to address this research gap
our work is motivated to integrate resources, more specifically cloud resources, and
to guarantee the resource allocation correctness in time-aware BPs.

4.2.2.4 Resource allocation verification

Resource management has been widely investigated [202–205]. Indeed, authors in-
troduced different extensions of workflow nets to take into account resources. Be-
sides, they studied also the problem of soundness criteria to prove the decidability of
workflow nets. For instance, Bashkin et al. [202] modeled workflow using Resource-
Constrained Workflow Nets (RCWFnets) and presented an algorithm that computes

Temporal constraints and Cloud resources in BP 73

minimal sound resource. Whereas, in [203,204], authors defined a more general class of
RCWFnets considering, first, that resources are available initially and after terminat-
ing all cases. Second, they also require that for any reachable marking, the number of
available resources does not override the number of initially available resources [202].

Human resources are crucial in BPM as they are responsible for process execu-
tion or supervision [206]. That is why, there are several works that manage correctly
human resource allocation [11, 12, 161, 207] For instance, Li et al. [161] presented an
analysis approach to verify the human resource consistency of workflow specifica-
tion. Wang et al. [207] proposed a formal approach for the modelling and analysis of
emergency response processes, which has taken human resources into consideration.

Other authors focus not only on the specification but also on the verification of
human resources in BPM context [11, 12]. Netjes et al. [11] developed a model for
the analysis of resource-constrained processes and the process alternatives. They pro-
posed an abstraction of a BP consisting of a process structure formed by activities in
sequence or parallel, a generic resource module and a method to allocate resources.
For the modeling and analysis of resource-constrained processes, Netjes et al. [11]
used Colored Petri Net (CPN) [208] tools that provides support for the construc-
tion, simulation and performance analysis of high-level Petri Nets [11]. Figure 4.7
shows an example process that is modeled using the developed CPN model. This
example process deals with the opening of a bank account. When a registration for
a bank account is received the data is entered into the system. Secondly, the bank
account is initiated and finally a letter is sent to the customer. The process model
is built with three task building blocks and the resource module. Besides, Shin et
al. [12] proposed a static approach for resource analysis. As can be seen in Fig-
ure 4.8, the approach extends the Trace Flow Graph (TFG) Translator and Resource
Constraint FSM Translator components to generate the inputs to the Finite State
Verifier (FLAVERS). The TFG extensions have the effect of augmenting this graph
with the representations of resource allocation events and resource utilization policies
in addition to the TFG’s existing specifications of activities and artifact flows. Aug-
mentations to the Resource Constraint FSM Translator convert the various resource
policy specifications into constraint FSMs that are used to exclude infeasible resource
allocation behaviors from the analysis search space.

There exist previous researchers that consider cloud services such as [209–212].
Indeed, Klai and Ochi [211] used Symbolic Observation Graphs (SOG) to abstract
cloud services and check the correction of their composition with respect to event-and
state-based LTL formulae (Hybrid LTL). Rezaee et al. [212] proposed the Fuzzy In-
ference Cloud Service (FICS) modeled using the CSP process algebra and introduced
four formal verification tests to allow strict analysis of certain behavioral disciplines
in the FICS. Zhou et al. [209] proposed a method for modeling and verification of
resource provisioning as a service in the cloud. To this end, they presented the
framework of resource provisioning as a service and the behaviors of its participants.
Then, they resorted to UPPAAL to model client, service manager (including alloca-

74 State of the Art

Figure 4.7: Process model: Opening a bank account [11]

tor, finish monitor, and time monitor), and resource service, respectively. Finally,
Zhou et al. [209] defined some consistency properties that a service scenario needs
to satisfy and formally verify. As a result, they can check the satisfaction of this
properties using UPPAAL model checker. The aforementioned approaches proposed
formal models of cloud services that present a good basis for further analysis and
verification, contributing to the improvement of security and quality of service.

Several studies have been carried out on the formal modeling and analysis of
cloud properties such as elasticity [210, 213, 214]. Gambi et al. [214] adopted the
state transition systems to formalize cloud-based systems while taking into account
elasticity properties. This formalization is then used to automatically generate load
test cases focusing on elastic behavior of elastic systems. Elasticity is verified by
ensuring that, for each scaling up, there should correspond a scaling down. Berasni
et al. [210] adopted a temporal logic called CLTLt(D) (Timed Constraint LTL) to
formalize the elastic behavior of cloud-based systems. They formalized properties
related to horizontal elasticity, resource management, and quality of service QoS.
Then, they proposed to check whether these properties hold or not during execution
of a cloud-based system. Authors in [213] used bigraphical reactive systems (BRS)
for specifying both structural and behavioral aspects of elastic cloud-based systems.
Then, they used Maude’s model-checking invariants technique to simulate and verify
the elasticity property by ensuring that the cloud system scale up/down when needed.
While, the aforementioned approaches [210,213,214] considers the elasticity properties

Temporal constraints and Cloud resources in BP 75

Figure 4.8: Static resource analysis approach overview [12]

of resources or services in cloud-based systems, they do not take into account the
process perspective.

Some recent works tackled the problem of cloud resource allocation in BPs [27,
32, 34, 215]. Boubaker et al. [27], using the Event-B formal specification, verified the
consistency of cloud resource allocation for process modeling at design time. Besides,
they checked the allocation correctness according to users’ demands and resource
properties. Likewise, the same authors in [32, 215] verified the correctness of cloud
resource allocation in BPs considering properties such as elasticity and shareability.
Garfatta et al. [34] rely on Coloured Petri net formalism to model formally the cloud
resource perspective in BP taken into consideration their properties such as verti-
cal/horizontal elasticity. So, the BP designer can model correct resource allocations
in BPs to avoid runtime errors.

Even so, we observe that the main focus on resource allocation verification take
into account various resource constraints such as number, availability, concurrency,
etc. Moreover, approaches addressing the verification of cloud resource allocation do
not consider temporal availabilities constraints. In contrast, our work extends cloud
resources with temporal perspective and verifies the temporal correctness of cloud
resource allocation in BPM context.

4.2.2.5 Time and resource allocation verification

Many attempts have been made [132,154,155,216–219] with the purpose of ensuring
a correct resource allocation in a timed-constrained workflow. Hsu et al. [216] con-
structed an incremental methodology that aims to analyze the resource consistency
and temporal constraints after each edit unit defined on a workflow specification.
The methodology introduces several algorithms for general and temporal analyses.
The output returned right away can improve the judgment and thus the speed and
quality on designing. Arévalo et al. [219] proposed an MDE-based approach to gener-
ate BPMN models from legacy information systems considering time constraints and

76 State of the Art

resource allocation rules.

Some authors resorted to formal methods to check the correctness of workflow/BP
under temporal and resource constraints [132, 154, 155,217, 218]. For instance, Wang
et al. [155] presented an approach for the analysis of concurrent workflows under re-
source constraints and non determined time based on Petri nets. With the obtained
R/NT WF Net model and its reachability graph, they analyzed the timing factors
influencing the implementation of the whole workflow, presented the methods to ver-
ify the risks of all implementation cases, and founded the best implementation case
for the workflow. Zeng et al. [218] proposed a resource conflict detection approach
and removal strategy for emergency response processes constrained by resources and
time. Based on the RT ERP Net, the earliest time to start each activity and the
ideal execution time of the process can be obtained. Authors utilized the conflict
detection algorithms and a priority-activity-first resolution strategy to detect and re-
move the resource conflicts in the process. In this way, real execution time for each
activity is obtained and a conflict-free RT ERP Net is constructed by adding vir-
tual activities [218]. Zhong et al. [217] discussed the analysis on resource constraints
of concurrent workflows. For that, they defined the Time Constraint Workflow Net
and mapped the workflow concepts onto this net to model workflow. Then, Zhong
et al. [217] identified the problem of resource constraints in WfMS. After that, they
proposed corresponding analysis method with pseudocode algorithm to check the re-
source consistency for concurrent workflows. Furthermore, they suggested several
ways to remove potential resource conflicts from workflow model.

Watahiki et al. [154] proposed an extension to BPMN in order to support tempo-
ral, concurrency, and resource constraints. Moreover, they generated automatically
from the extended BPMN models, timed automata models based on their mapping
rules. The aim of the approach is to check deadlocks and bottlenecks. Besides, based
on a sprouting graph of TWF-nets, Du et al. [132] have presented a dynamic check-
ing approach of temporal constraints for concurrent workflow processes with resource
constraints. They used UPPAAL to verify the correctness of the proposed approach,
and they also used a concrete example to prove the usability and scalability of the ap-
proach.

We mention that several works deal with formal verification of cloud resource al-
location in timed-constrained BPs [157,220–225]. Massive parallel business workflows
running in the cloud are prone to temporal violations (namely intermediate runtime
delays) due to various reasons such as service performance fluctuation and resource
conflicts [224]. Thus, authors in [224] presented a propagation-aware temporal verifi-
cation strategy for parallel business cloud workflows. More precisely, they proposed
to analyze the effect of time delay propagation in cloud workflow systems. Then, they
presented a novel temporal verification strategy based on a new propagation-aware
throughput consistency model which includes the propagation effect. Next, Luo et
al. [223] developed the idea of ”adaptiveness” in their design strategy in order to detect
temporal violations and to achieve on-time completion of time-aware business cloud

Temporal constraints and Cloud resources in BP 77

workflows. So, they presented an adaptive temporal checkpoint selection strategy.
Besides, they proposed a strategy to handle the temporal violation. This strategy
can determine the required lifecycle of cloud services. Besides, Wang et al. [225]
proposed a new sliding-window based checkpoint selection strategy for detecting tem-
poral violations. Indeed, the strategy selects the next observation time interval based
on the overall temporal consistency state at last checkpoint. The method will stay
fixed observation time interval for next checkpoint when a temporal insistence state is
detected. Otherwise, next observation time interval along the execution timeline will
be enlarged. All the aforementioned works presented focus on temporal violations for
parallel business workflows running in cloud caused by various reasons such as service
performance fluctuation and resource conflicts. However, they did not consider that
cloud resources have limited temporal availabilities.

Whereas, Cheikhrouhou et al. [157] proposed an approach that aims at assisting
BP designers to identify necessary cloud resources with respect to temporal and fi-
nancial restrictions on BPs. The former minimizes the search time for cloud resources
while the latter minimizes the cost of leasing these resources. For that, Cheikhrouhou
et al. [157] proposed a formal specification of such BPs and their allocated cloud
resources using Timed Petri Nets (TPN). They provided, also, an automatic trans-
formation of cloud resources, according to their pricing strategies, into Timed Petri
Nets. Finally, they proposed a formal verification step that checks BP correctness
along with meeting deadlines. The authors’ approach was inspired by our contribu-
tion. Specifically, Cheikhrouhou et al. [157] followed our steps to verify the temporal
correctness of a cloud resource allocation in a time-aware BP. However, they used
TPN in order to check other properties.

4.2.2.6 Synthesis

Table 4.2 lists the approaches, detailed in Section 4.2.2, focusing on formal verifica-
tion in BPM domain. We classify those works based on different criteria such as:
(1) control-flow perspective, (2) activities temporal constraints, (3) resources, (4) re-
sources temporal constraints, (4) formal language, and (6) Technique. In Table 4.2,
we use the following nomenclature: “+” to depict that the approaches satisfy the cor-
responding criteria, “-” to depict that they do not satisfy the corresponding criteria,
“+/-” to depict that the approaches partially satisfy the corresponding criteria.

As reported in Section 4.2.2, most of the approaches detailed above focused on
control-flow perspective. Time perspective is partially handled by some approaches as
visible in Table 4.2. Moreover, resource perspective has gaining much attention while
they are crucial in BPM and responsible for process execution. For instance, human
and machine resources have been widely investigated [11, 132, 154, 154, 155, 161, 188,
190,216,217,226]. Most of the authors studied the verification of resource allocation
in BPs under various resource constraints such as number, availability, concurrency,
etc. Further, few studies have been published considering not only the verification

78 State of the Art

of resource allocation correctness but also the verification of temporal consistency of
constrained BPs [132,154,155,217,218]. But, in the current state-of-the-art, there is
a lack of work tackling the cloud resource temporal availability for time-aware BPs.
Thus, to deal with this research gap it is necessary to consider temporal constraints of
both: activities and cloud resources to ensure a correct resource allocation in a time-
aware BPs. The verification step was performed by various techniques (formal/not
formal) such as algorithms, timed automata, Petri nets, etc. Most of studies rely on
formal techniques in order to ensure a correct execution of processes under various
constraints such as time, resource, etc.

Contrary and/on complementary to above, our work is focused on formally verify-
ing the matching between cloud resources and activities temporal constraints in BPs.
For instance, we propose to transform time-aware BP, deployed in cloud resources
and modeled using BPMN, into a formal model, timed automata. The generated
models will be the inputs to a model checking tool to verify the satisfaction of some
properties which can help the designer to ensure a temporal correct cloud resource
allocation in time-aware BPs.

4.3 Optimization of resource allocation

In literature, several existing works have been suggested in the context of optimizing
resource allocation execution cost [44, 52, 53, 58, 227–229], execution time [52, 53, 55,
58, 230], energy consumption [51], etc. Among them, the execution cost has been
widely researched as it helps to reduce fees, which is important for organizations to
satisfy their clients and maximize their profits. Thus, organisations need to properly
manage their resources to be cost-effective and gain competitive advantage, i.e., both
humans and machines/non-human (automation intensive tasks).

This section helps us to position our work among existing works in the context
of optimizing resource allocation’s cost, especially in the context of BPM and cloud
domains. While optimizing cloud resources allocation in BPM has been an area of
interest for quite some time, most of the work has been focused on assignment and/or
scheduling of resources while considering various constraints such as deadline, budget,
penalty cost, etc. In other words, there is a lack of work done on the optimization
of cloud resources in BPM context while considering advanced temporal constraints,
resource availabilities, etc. This is due to the fact that BP have just simple temporal
constraints such as duration and cloud resources are considered always available and
there is a lack of formal modeling of pricing strategies. So, this thesis project is
motivated towards handling the issues related to minimizing the deployment cost of
time-aware BP’s in cloud resources proposed under various pricing strategies.

To understand the existing gaps, we review the current approaches that deal with
resource management and optimization in BPM context, especially cloud resources.
For simplicity, we divide them into the following: (1) existing approaches for optimiz-
ing allocation of resources in Section 4.3.1, (2) existing approaches for cloud resources

Optimization of resource allocation 79

T
ab

le
4.

2:
S

u
m

m
ar

y
of

th
e

li
te

ra
tu

re
st

u
d

y
of

ve
ri

fi
ca

ti
on

in
B

P
s

W
o
rk

C
o
n
tr

o
l-

fl
o
w

p
e
rs

p
e
c
ti

v
e

A
c
ti

v
it

ie
s

te
m

p
o
ra

l
c
o
n

st
ra

in
ts

R
e
so

u
rc

e
R

e
so

u
rc

e
te

m
p

o
ra

l
c
o
n

st
ra

in
ts

F
o
rm

a
l

M
o
d

e
li

n
g

la
n

g
u

a
g
e

H
u

m
a
n

M
a
ch

in
e
s

C
lo

u
d

[1
8
8,

19
0]

+
+

+
/-

-
-

-
-

A
lg

or
it

h
m

s

[1
87

]
+

+
/-

-
-

-
-

-
T

im
ed

gr
ap

h

[1
34

,1
92

,1
95

,
19

7,
19

8,
20

1]
+

+
/-

-
-

-
-

+
P

et
ri

n
et

[3
0,

31
,1

96
]

+
+

-
-

-
-

+
T

im
ed

au
to

m
a
ta

[1
2,

20
5,

20
7]

+
+

-
-

-
-

+
T

im
ed

au
to

m
a
ta

[1
54

]
+

-
+

-
-

+
-

A
lg

or
it

h
m

s

[1
1,

16
1]

+
-

+
+

-
+

+
P

et
ri

n
et

s

[2
1
6,

22
6]

+
+

/-
+

-
-

-
-

A
lg

or
it

h
m

[1
5
5,

21
7]

+
+

/-
-

+
-

-
-

A
lg

or
it

h
m

[1
3
2,

15
4]

+
+

/-
+

+
-

-
-

T
im

ed
au

to
m

a
ta

[2
7,

32
,2

15
]

+
-

-
-

+
-

+
E

ve
n
t-

B

[3
4]

+
-

-
-

+
-

+
C

ol
ou

re
d

P
et

ri
n

et

[2
23

–2
25

]
+

+
/-

-
-

+
-

-
A

lg
or

it
h

m

[2
11

]
-

-
-

-
+

-
+

S
O

G

[2
12

]
-

-
-

-
+

-
+

P
ro

ce
ss

al
ge

b
ra

[2
09

]
-

-
-

-
+

-
+

T
im

ed
au

to
m

a
ta

[2
10

]
-

-
-

-
+

-
+

C
L
T

L

[2
13

]
-

-
-

-
+

-
+

M
au

d
es

[2
14

]
-

-
-

-
+

-
+

S
ta

te
tr

an
si

ti
o
n

sy
st

em
s

[1
57

]
+

+
-

-
+

+
+

T
im

ed
P

et
ri

N
et

O
u

r
ap

p
ro

ac
h

+
+

-
-

+
+

+
B

P
M

N

80 State of the Art

allocation in time-aware BPs in Section 4.3.2.

It is important to note that, in the field of resource allocation, the optimization
problem has been studied as an assignment, and/or a scheduling issues. Some authors
consider that there is no difference between them. Whereas others consider that
resource assignment is deciding which of several resource will perform which of several
activities. But, activities scheduling is the act of deciding at what time an activity
is performed [231]. Thus, we divide the detailed approaches based on problem type:
assignment or scheduling.

4.3.1 Resource allocation

This section presents some existing works that concentrated on resource allocation
management and optimization in BPM context [43, 44, 227, 228, 232]. Indeed, some
of those works proposed approaches to optimally assign resources in a cost-effective
manner. For instance, the appropriate selection of human resources is critical as
various factors such as workload or skills have an impact on work performance [227].

4.3.1.1 Resource assignment

An entropy-based reinforcement learning approach for the optimization of cycle time
in BPM with the aim of minimizing resource allocation through workload balancing
is suggested in [43]. The idea of entropy work lists is inspired by the fact that similar
tasks may have some subtasks in common, i.e., accessing locally close archive files for
human resource or loading identical files into ram for machine resource. Therefore,
minimizing the entropy of work lists associated with each resource leads to reduce the
processing time of rather consecutive similar tasks [43]. Using Hidden Markov Model
(HMM), Yang et al. [44] described complicated relationships among employees which
are ignored by previous approaches. Further, they proposed an optimal approach
named Staff Assignment based on Hidden Markov Models (SAHMM) to allocate the
most proficient set of employees for a whole BP based on workflow event logs. Zhao et
al. [228] presented a resource allocation method considering the resource coordination,
the interval between adjacent activities, and distinguishing turnaround time between
different resources from event logs. The experiments show that the proposed method
can effectively optimize the resource allocation.

Corominas et al. [233] dealt with the assignment of tasks to the members of the
multi-functional staff (each worker is able to perform a given subset of types of tasks)
of a work centre, during each period (e.g. 1 h) into which the planning horizon (e.g.
1 shift or 1 week) can be divided. For each type of task to perform, all workers who
can perform the task do so at equal worker efficiencies. There are constraints that, if
possible, should be respected. The objective is that the percentage of working time
dedicated by each worker to each type of task be as close as possible to reference
values. The problem is modelled as a sequence of assignments, in which appropriate
values for the cost matrix depend on the results of the previous assignments. The

Optimization of resource allocation 81

obtained results are satisfactory: the solutions meet the constraints, the scheduled
percentages steadily approach reference values and the calculation times are very
short. Therefore, the work presented constitutes a potential tool for assigning tasks
to multi-functional workers in the service industry.

The work presented in [50] addressed the problem of resource allocation for BPs.
To this end, authors proposed an approach that would improve the process structure
based on resource allocation requirements such that the overall cost was minimized
while meeting the process execution time requirement. The structure of a BP was
modeled as a Direct Acyclic Graph (DAG). They applied a basic allocation strategy
to minimize the overall cost without considering the time limit. Then, an adjust-
ment strategy was applied to adjust the allocation scheme to ensure that the overall
execution time of the process did not exceed the time limit.

We note that most of the aforementioned studies proposed approaches to optimally
assign (human/machine) resources to perform activities under a set of constraints such
as: time. However, they did not focus on cloud resources consumed to run a time-
aware BP. Though, in our work, we propose an assignment method that, under a set
of constraints, selects for each BP activity the suitable cloud resource, cloud provider,
and the best pricing strategy. In consequence, we provide an optimal deployment cost
of a time-aware BP.

4.3.1.2 Resource scheduling

Several studies have been carried out on tasks scheduling with the aim of reducing
resource allocation cost [13,14,135,136,234–236]. In one hand, some authors focused
on optimizing resource allocation to perform independent activities such as [135,136,
234, 235]. For instance, Afilal et al. [135] proposed a mixed integer programming
model and a key performance indicator based heuristic to find a feasible solution that
respect different constraints relative to labor regulations and a constraint relative to
multiple sites, balance the workload over employees and minimize overload hours.
Al Yakoob et al. [136] modeled the problem of employees allocation to gas stations
owned by the Kuwait National Petroleum Corporation (KNPC), as a mixed-integer
program. Next, due to the problem complexity, a two-stage approach is proposed,
where the first stage assigns employees to stations, and the second stage specifies shifts
and off-days for each employee. The two-stage approach provides daily schedules for
employees for a given time horizon in a timely fashion, taking into consideration the
employees’ expressed preferences.

Due to a nursing shortage as well as a misdistribution and poor utilization of
nurses in many countries worldwide, policy makers demand that Decision Support
Systems (DSS) better allocate scarce human resources. That is why, Gutjahr et
al. [234] developed a meta-heuristic (MH) approach to the dynamic assignment of
pool nurses to hospital departments in a web-based, flexible assignment system for a
regional decision maker. Compared to the traditional nurse scheduling literature, the

82 State of the Art

authors’ non-cyclic approach is also characterized by the flexible setting of problem
parameters such as nurses’ and hospitals’ preferences, number of shift types, length
and overlapping of shifts, substitutability of nurses, as well as weights for the com-
ponents of the cost function under consideration of different working regulations for
each of nurse.

The construction of a timetable that satisfies all operational rules and needs in
an academic institution, while at the same time fulfills as many of the wishes and
requirements of the staff and the students, is an important but extremely difficult
task for the staff involved. But, in recent years, changes occur more frequently and
patching of what has been developed historically is not always the best policy. Thus,
Daskalaki et al. [235] presented a new Integer Programming (IP) formulation of a
timetabling problem as it appears in many universities, adding however many features
that may be distinct in Engineering Schools of Greek universities.

In the other hand, other authors dealt with optimal scheduling in the context of
BPM such as [13,14,236]. One of the scheduling problems addressed in the literature
is employee scheduling which require novel mathematical models and algorithms to
deal with the specific nature and size of the problem. To this end, Ismaili et al. [13]
introduced a two-phase approach to ensure an effective scheduling in the case of
critical tasks that must be executed by human resources (Figure 4.9). The first phase
represents a solution for event priority determination to ensure an effective instance
scheduling in BP. This solution is based on the analysis of historical data from past
BP execution using unsupervised machine learning algorithms for clustering, in order
to manage the priority of several events that launch BP instances. The second phase
is about resource allocation. In fact, the problem of scheduling in BPs, has several
constraints at the same time such as resource availability and reliability, and time.
As this problem is considered as an optimization problem, Ismaili et al. proposed a
genetic algorithm to solve it in order to achieve an effective matching between the
most critical process instance and the most available human resource.

Havur et al. [14] introduced a novel approach for automatically allocating re-
sources to process activities in a time optimal way that is designed while considering
concurrent process instances or loops in BPs . To do that, they represented the re-
source allocation problem in Answer Set Programming (ASP), which allows us to
model the problem in an extensible, modular, and thus maintainable way, and which
is supported by various efficient solvers. Figure 4.10(a) illustrates a BP model that
specifies the process of publishing a book. The input of the program encoded in ASP
is: (i) three different instances i1, i2, i3 of the timed Petri net, whose starting times
are defined as t0i1=0, t0i2=6 and t0i3=11, respectively; (ii) the organisational model
and optional activity times for resources and roles as shown in Figure 4.10(b), and
(iii) role-activity relation. The computed optimal resource allocation is visualised in
Figure 4.10(c). The allocation periods are depicted as coloured rectangles with a tag
on it. Each tag has three parts: an initial with the initials of a resource, a short
version of the allocated activity name and a subscript representing the instance ID.

Optimization of resource allocation 83

Figure 4.9: Priority-based scheduling of process instances under human resource con-
straints [13]

Xu et al. [236] investigated how to plan resources for a BP optimally, in aspect of
meeting process requirements and rational utilisation of resources. Also, the proposed
approach can provide information to organisation for decision making and negotiation
with customer in order to better use resources. When a massive number of instances
are given, both inter and intra instance dependencies are considered in the planning of
each batch of instances to be executed in parallel. As the problem is computationally
hard [237], a set of heuristic rules were designed, and two strategies based on these
heuristic rules were proposed and compared.

However, such approaches, addressing resource scheduling, lack considering cloud
resources which is not helping in addressing the optimization of time-aware BP de-
ployment cost in cloud environment. Furthermore, since we are in a cloud setting,
pricing strategies are recommended to be taken into consideration to minimize the
organizations spending on IT infrastructure. Hence their use enables significant cost
reductions. In our work, we aim at developing a scheduling method, that provides
an optimal execution plan for BP activities in order to be optimally executed using
cloud resources.

4.3.2 Cloud resource allocation

Due to the shortcomings in the aforementioned approaches to allocate and manage
efficiently cloud resources in BPs (see Section 4.3.1), there has been a tremendous
growth on the research for integrating cloud resource perspective into the BPM do-
main [46, 51, 53, 56, 58, 238–241]. Many researchers have put forth the importance
of research in the direction of optimizing cloud resource allocation cost in the BPM
domain, which is mutually beneficial to both domains. A number of surveys have
been proposed to conduct extensive reviews to investigate and analyze the relevant

84 State of the Art

Figure 4.10: Resource allocation of publish a book process [14]

approaches in the context of optimal cloud resource allocation cost, time, energy,
etc [238, 240, 242–247]. While optimizing cloud resources cost to deploy BPs (work-
flows) has been an area of interest for quite some time, most of the work has been
focused on assignment and scheduling algorithms to minimize execution cost such as
[52, 58, 248–251], and/or task makespan such as [52, 58, 249, 252]. However, most of
the authors considered that a single cloud resource has a single hourly cost and tasks
have not advanced temporal constraints such as temporal dependency. Thus, this the-
sis project is motivated towards handling the issues related to the variety of pricing
strategies and the complexity of activities’ temporal constraints in BPM and cloud
computing domains. In other words, it is motivated towards assigning cloud resources
to activities or scheduling activities to match cloud resources’ temporal constraints
while satisfying a set of constraints.

Optimization of resource allocation 85

To understand the existing gaps, we review the current approaches that enable
the optimization of cloud resource allocation cost in time-aware BPs. For simplicity,
we divide them into the following: (1) existing approaches for assignment of cloud re-
sources in BPs in Section 4.3.2.1, (2) existing approaches for scheduling BP’ activities
in BPs in Section 4.3.2.2 and (iii) existing approaches for cloud resource allocation in
Section 4.3.2.3.

4.3.2.1 Cloud resource assignment

In the literature, a number of works have been suggested for cloud resource assign-
ment [45, 48, 49, 51]. Besides, there is a considerable amount of literature on maxi-
mizing cloud providers profits such as [47, 253–258]. Some studies have modeled the
migration to cloud problem as an optimization problem to find the best deployment of
software components on cloud platforms. For instance, Megahed et al. [253] proposed
an approach based on an integer linear programming model to optimize the cost a
cloud solution, from the service provider’s point of view. The aim is to discover the
solution with minimum cost that satisfies a set of constraints including client require-
ments and cloud offering constraints. Moreover, Megahed et al. [254] proposed a novel
approach to find the optimal number of instances that are consumed at each time pe-
riod to answer the incoming queries. Towards this end, they started by learning from
the historical behavior of the system in order to predict the probability distributions
of the unknown data. Next, they modeled a stochastic program that optimizes the
aforementioned trade-off and outputs the optimal provisioning plan. We note that, in
this work [254], authors took into consideration the random number of query arrivals
that was neglected in the state of the art.

Zhao et al. [258] presented online VM placement algorithms to increase cloud
provider’s revenue by reducing SLA violation cost. First-Fit and Harmonic algorithms
are devised without considering VM migrations, while Least-Reliable-First (LRF) and
Decreased-Density-Greedy (DDG) are devised for VM migration considering VM mi-
grations. Ebadifard et al. [47] extended a recent heuristic algorithm called Black hole
Optimization (BHO) and presented a multi objective method for workflow application
based on Pareto optimizer algorithm. The proposed method considered not only user
requirements but also the interests of service providers. Zaman et al. [255], Pandya et
al. [256], and Calinescu et al. [259] addressed the issue of dynamic provisioning of VM
instances in clouds to generate higher profit by considering various parameters like
QoS, cost, time consumption, carbon effect. Besides, Zhang et al. [257] designed a
truthful and efficient online VM auctions where cloud users bid for resources into the
future for tailor-made VMs with different running durations, targeting social welfare
maximization and cloud provider’s profit maximization. For that, authors consid-
ered server costs in their auction model, and handled the resulting significantly more
challenging mechanism design by leveraging a set of latest novel primal-dual online
optimization and randomized reduction techniques.

86 State of the Art

Other authors focused on minimizing cloud consumers fees [45, 48, 49, 51, 229,
230, 260, 261]. In one hand, various approaches have been put forward to optimize
cloud resources assignment cost to perform independent activities [229,230,260,261].
For example, Han et al. [229] have argued that on-demand scaling of cloud appli-
cations raises new challenges for delivering cost efficient services. They proposed a
cost-sensitive elastic scaling approach which lowers resource allocation costs by de-
tecting the bottlenecks in a class of multi-tier applications and accordingly scales
resources up or down only at these points. Besides, they presented the design and
implementation of an intelligent platform based on their scaling approach to achieve
cost-effective elasticity.

The objective of Kessaci et al. [230] is to minimize the prices of VM instances and
their response time in order to give the best quality of service (QoS) to the clients
by reaching their satisfaction rate while providing an interesting profit for the cloud
broker. Indeed, they proposed a multi-objective genetic algorithm for cloud brokering
(MOGA-CB). It provides a set of Pareto optimal assignments by dispatching the
client’s virtual machines (VM) requests over the best combination of instances with
the minimum cost and response time. This approach uses information provided by the
infrastructure service provider (e.g. Amazon) to retrieve the prices of those instances
and their different performances to reach its objectives. MOGACB makes this possible
by its capacity as a metaheuristic, to explore a wide range of potential solutions to
the problem.

Saber et al. [260] defined a multi-objective VM reassignment problem for hy-
brid and decentralised data centres. They proposed H2-D2, a solution that uses a
multi-layer architecture and a metaheuristic algorithm to suggest reassignment so-
lutions that are evaluated by the various hosting departments (according to their
preferences). Tordsson et al. [261] proposed an architecture for cloud brokering and
multi-cloud VM management. They also described algorithms for optimized place-
ment of applications in multi-cloud environments. The placement model incorporates
price and performance, as well as constraints in terms of hardware configuration, load
balancing, etc.

In the other hand, several research works [45, 46, 48, 262] focus on optimizing
the cost of cloud resources leased to deploy BPs/workflows. For instance, using
agent-based systems to simulate processes’ enactment, Labba et al. [262] suggested a
novel adaptive resource allocation approach for estimating and optimizing the final
deployment costs. Besides, the authors extended the Pairwise-Movement Fiduccia-
Mattheyses (E-PMFM) partitioning algorithm to deal with the services’ QoS changes
and to dynamically adapt the initial deployment. The experimental results demon-
strate the efficiency of E-PMFM algorithm and show that the deployment costs are
sensitive to the initial deployment and the used partitioning algorithm. Rekik et
al. [45] defined an approach for generating an optimal process variant deployment
into a cloud federation. Given (i) a configurable process model with its set of allowed
configurations and non-functional requirements for a specific business context and

Optimization of resource allocation 87

(ii) a cloud federation environment with its constraints and resources’ properties, the
proposed approach provides the process variant having the optimal deployment under
the aforementioned constraints. To do so, authors adopted a (0-1) linear program-
ming optimization strategy, with a quadratic objective function (i.e., minimizing the
total execution cost which is equivalent to minimizing the resources allocation and
the inter/intra resources communication) and the above mentioned disjunctive con-
straints. Moreover, Rosinosky et al. [46] presented an Integer Linear Programming
(ILP) model and a genetic algorithm that aims at finding the best allocation strategy
while limiting the number of migrations per tenant.

Fakhfakh et al. [48] proposed an algorithm composed of three stages. In the first
stage, the number and the type of VMs associated to each task are determined. The
goal is to minimize the execution cost, while meeting a user specified deadline. Then,
based first stage results, they applied an adjustment process that reduces the wasted
time fractions produced by the assignment step. It consists in consolidating tasks
in the same VM instance. Afterwards, they extended their algorithm to take into
account the dynamic changes of workflow.

Other authors focused on optimizing other parameters such as energy [51] and se-
curity level [49]. Goettelmann et al. [49] suggested an algorithm for deploying BPs on
different cloud platforms under security constraints. The main idea was to split a BP
into sub-processes and deploy them in different clouds to meet security requirements.
A security level was assigned to each BP task describing its security requirements,
and arbitrary security levels were assigned to cloud providers. The algorithm would
select the suitable cloud providers which offered the minimum communication costs
between the derived sub-processes. Whereas, Chen et al. [51] proposed an available
budget preassignment method to reduce the energy consumption. In this step, each
task selects the combination assignment of VM and frequency that has the minimum
energy consumption while satisfying the cost budget of the task.

Contrary to above, our work is concentrated on assigning optimally cloud resources
to BP activities under various constraints, from the cloud consumer point of view.
To this end, we propose a BLP that assigns for each activity the suitable cloud
resource and the best pricing strategy in order to minimize BP’s deployment cost
while respecting a set of requirements such as time, penalty, RAM, vCPU, etc.

4.3.2.2 Cloud resources scheduling

The task scheduling problem in distributed computing systems is an NP-hard op-
timization problem which plays an important role in optimizing cloud utilization.
It also effects on QoS in the cloud environment by optimizing service cost and ser-
vice response time [263]. Various authors concentrate on BP/workflow scheduling
algorithms in cloud environments [15, 46, 52–58]. Besides, a considerable amount of
surveys have been proposed to conduct extensive reviews to study and analyze the
relevant approaches in the context of scheduling BPs/workflows in cloud environment

88 State of the Art

such as [238,240,247].

Pandey et al. [15] presented a scheduling heuristic based on Particle Swarm Op-
timization (PSO). They used heuristics to minimize the total cost of execution of
application workflows on cloud computing environments. They obtained the total
cost of execution by varying the communication cost between resources and the ex-
ecution cost of compute resources. They compared the results obtained by their
heuristic against Best Resource Selection (BRS) heuristic. Pandey et al. [15] founded
that PSO based task-resource mapping can achieve at least three times cost savings
as compared to BRS based mapping for their application workflow. In addition, PSO
balances the load on compute resources by distributing tasks to available resources.
Figure 4.11 presents an example of a workflow composed of five tasks with a set
of compute resources (PC1, PC2, PC3) interconnected with varying bandwidth and
having its own storage unit (S1, S2, S3) (Figure 4.11(a)) and its sample particle (Fig-
ure 4.11(b)). The heuristic proposed is generic as it can be used for any number
of tasks and resources by simply increasing the dimension of the particles and the
number of resources, respectively.

Figure 4.11: Scheduling of a workflow with required resources [15]

Su et al. [54] presented a cost-efficient task-scheduling algorithm using two heuris-
tic strategies. The first strategy dynamically maps tasks to the most cost-efficient
VMs based on the concept of Pareto dominance. The second strategy, a complement
to the first strategy, reduces the monetary costs of non-critical tasks. Zeng et al. [55]
addressed the problem of scheduling Many Tasks Workflow (MTW) application on

Optimization of resource allocation 89

clouds. They presented a budget-conscious scheduling algorithms, which is cared
by both cloud service providers and users. Towards this end, they proposed a bud-
get conscious scheduler that is shown to improve the overall makespan and resource
utilization of MTW applications in cloud.

Several algorithms have been proposed for workflow scheduling, but most of them
fail to incorporate the key features of cloud like heterogeneous resources, pay-per-
usage model, and elasticity along with the QoS requirements. Kaur et al. [57] proposed
a hybrid genetic algorithm which uses the Predict Earliest Finish Time (PEFT) to
generate a schedule as a seed with the aim to minimize cost while keeping execution
time below the given deadline. A good seed helps to accelerate the process of obtaining
an optimal solution. The algorithm is simulated on WorkflowSim and is evaluated
using various scientific realistic workflows of different sizes.

Visheratin et al. [56] dealt with scheduling scientific workflows in heterogeneous
cloud-based computational environment. They considered the main features of IaaS
providers, like wide variety of offered computational services and pay-as-you-go price
model with time periods of charge. More specifically, Visheratin et al. [56] proposed
an heuristic algorithm, named Levelwise Deadline Distributed Linewise Scheduling
(LDD-LS), for scheduling workflows in hard-deadline constrained clouds. After, they
combined LDD-LS with the implementation of IC-PCP algorithm to initialize their
proposed metaheuristic algorithm called Cloud Deadline Coevolutional Genetic Al-
gorithm (CDCGA).

Zhou et al. [58] tackled the problem of determining the tasks execution order,
task-to-VM allocation, and VM type assignment. The goal of the work is to design
algorithms that optimize execution cost and makespan for workflows scheduled in
hybrid clouds. To this end, they formulated 2 workflows scheduling problems. The
first is a single-objective optimization problem that aims to minimize execution cost
under deadline constraint. The second is a multi-objective optimization problem that
attempts to minimize execution cost and makespan simultaneously. To solve these
two problems, authors designed two GA-based heuristic algorithms. Precisely, they
proposed a single-objective workflow scheduling optimization approach called DCOH
(Deadline-constrained Cost Optimization for Hybrid clouds) for minimizing the mon-
etary cost of scheduling workflows under deadline constraint. Based on DCOH, they
further proposed a multi-objective workflow scheduling optimization approach, called
MOH (Multi-objective Optimization for Hybrid clouds), to optimize makespan and
cost of scheduling workflows simultaneously.

As mentioned in [53], nowadays scientists and companies are confronted with mul-
tiple competing goals such as makespan in high-performance computing and economic
cost in clouds that have to be simultaneously optimised. In contrast to the most ex-
isting approaches that aggregate all objectives in a single function, Durillo et al. [53]
proposed a new method called MultiObjective Heterogeneous Earliest Finish Time
(MOHEFT) as an extension to the well-known HEFT [264] monoobjective workflow
scheduling algorithm. Thus, authors offered a method for optimizing the makespan

90 State of the Art

and economic cost of running workflow applications in an Amazon-based commercial
cloud. Tan et al. [52] developed specific scheduling strategies to effectively optimize
time, cost, and trust factors in enterprise systems. More precisely, they designed
cloud service selection algorithms to form optimum workflow application while meet-
ing different constraints from users. In order to address the problem of workflows
in an optimal and reliable way, a timed workflow model is proposed to meet the
requirements of enterprise system integration.

Even so, we observe a clear missing of the consideration of the variety of pricing
strategies of cloud resources to propose a scheduling plan, that provides the optimal
deployment cost of a time-aware BP. Though, in our work, we optimize the BP deploy-
ment cost while taking into account different pricing strategies (on-demand,reserved,
spot), various cloud providers, and the BP constraints (time, capacity).

4.3.3 Pricing strategies

Several works have been done for pricing strategies in the IT service market [265–270].
For example, Gajananan et al. [266] extended their work [265] by proposing a top-
down pricing approach of IT service deals. More specifically, in [265], based on both
market and historical data, the proposed algorithm estimates the prices of the highest
level of services included in a solution. Nevertheless, in [266], authors suggested a
new pricing approach that determines the price points of new complex deals using
the secondary service level. The new approach automatically generates the expected
input at lower level from the input for the highest level of the services of the deals
to be priced. Consistent with the findings in [265], the experimental results, done by
Gajananan et al. [266], have shown that using historical data is more accurate than
using market data to estimate the prices for many services.

Basu et al. [267] developed optimal pricing strategies for a typical cloud service
provider. To this end, they modeled the utility of a customer of cloud services as
a function of a set of parameters which positively and negatively effect the utility
of a end user. Moreover, they explored two pricing plans: usage based and fixed
fee plan and determined the conditions under which end users would select one plan
over another. Finally, they discussed the significance of these conditions for cloud
service providers.

Ibrahim et al. [268] studied the pricing fairness on the pay-as-you-go charging,
and then introduced the pay-as-you-consume strategy to resolve the unfairness in the
current pay-as-you-go pricing scheme. While the pay-as-you-consume strategy seem-
ingly reduces the cloud providers’ profit, it urges providers to improve their system
design and optimization to provide good services and to gain competitive advantages.
They have demonstrated that the predication of the proposed strategy can achieve
up to 90% accuracy regardless the VM consolidations or the I/O workloads.

Arshad et al. [269] proposed a literature review of different pricing scheme with
respect to their advantages, limitations, and possible future directions, especially for

Optimization of resource allocation 91

vendors to seek new research directions in dynamic pricing schemes. Besides, Samimi
et al. [270] provided a comparative review of grid and cloud computing economic and
pricing strategies from which appropriate tariffs and charging strategies can be chosen
to meet particular business objectives. More precisely, authors gave the basic core
principles and a comparative review of the latest and most appropriate economic and
pricing strategies applicable to grid and cloud computing in order to propose better
models for the future.

However, in the analyzed papers, we did not find any work that provides a tool that
allows the users to analyze dynamically the resources and services costs. Only recently,
Alves et al. [271] have proposed an extension of CloudSim (called CMCloudSim)
features to model and simulate the cost of cloud resources from Amazon, Google, and
Microsoft Azure. The proposed extension retrieves the cost from the website of these
providers. This extension does not support the different pricing strategies of Amazon
(i.e., on-demand, reserved instances, spot blocks, and spot instances). It focuses only
on the on-demand strategy.

Also, various research studies have been addressing the topic related to the deploy-
ment of BPs in cloud environments. In [272, 273], the authors discussed the benefits
and drawbacks of blending BPM and cloud computing. To the best of our knowledge,
except the extension proposed in [274], there is no work done around the simulation
of cloud resources allocated for a BP. In [274], the authors proposed an extension of
CloudSim to simulate the performance in terms of time and cost of the allocated cloud
resources. Nevertheless, the extension does not support the temporal constraints and
simulation of cloud tasks based on the BP control-flow.

Unlike the researches detailed above, in this thesis, we propose an extension of
the famous cloud simulator provided in the market, CloudSim [69], to assist the BP
designer to simulate a cloud resource allocation and to have an estimation of its
real cost. This extension is related to the capability to simulate the cloud resources
consumed in the BP model.

4.3.4 Synthesis

Table 4.3 summarizes some existing approaches related to resource allocation op-
timization in the literature based on the criteria relevant to our work. Many of
these approaches take into account the resource perspective in BP, wherein some of
them consider only the human resource perspective in the BPM domain. We cluster
the above-mentioned approaches based on the criteria important to our thesis: (1)
control-flow perspective, (2) resource, (3) assignment, (4) scheduling, and (5) tech-
nique. In Table 3.3, we use the following nomenclature: ”+” to depict that the
approaches satisfy the corresponding criteria, ”-” to depict that they do not satisfy
the corresponding criteria, ”+/-” to depict that the approaches partially satisfy the
corresponding criteria.

As visible from Table 4.3, the majority of the approaches presented focus on

92 State of the Art

Table 4.3: Summary of the literature study of resource allocation optimization

Work Control-flow
perspective

Resource Assignment Scheduling Technique

[43] + human + - Algorithm

[44] + human + - SAHMM

[228,233] - human + - Algorithms

[14] + human - + ASP

[234] - human - + MH Algorithm

[135,136,235] - human - + Integer program

[45,46] + cloud + - Linear program

[47–49,51,262] + cloud + - Algorithms

[229,255,256,
259]

- cloud + - Algorithms

[253] - cloud + - Integer linear
program

[254] - cloud - - Stochastic
program

[52–55] + cloud - + Algorithms

[15,56] + cloud - + Heuristic
algorithms

[57,58] + cloud - + Genetic
algorithms

Our approach + cloud + + Linear program

optimizing resource allocation in BPM context [14,15,43–49,51–58]. A lot of interest
is given for human resources while they are crucial in BPM as they are responsible for
process execution or supervision [206]. Thus, there is a need for such approaches as
domain-specific processes (e.g. health care) involving humans are scarce and costly.
However, our work is mainly focused on optimizing cloud resources into BPs.

Other approaches focus on cloud resources in BPM domain. This is because cloud
computing becomes an interesting infrastructure for enterprises that are migrating all
or some of their process activities into cloud. Besides, we note that authors propose
to find an optimal resource assignment [43–49,51,229,233,253,255,256,258,259,262]
or an optimal scheduling [14, 15, 52–58, 135, 136, 234, 235] using various techniques
such as algorithms (genetic/ heuristic), programming models (linear/integer). Those
approaches are categorized into four different viewpoints as seen in Table 4.5: (1) an
approach considering resource temporal availabilities [57], (2) approaches considering
pricing strategies to reduce process deployment costs [48, 54, 56, 58], (3) approaches
considering activities temporal constraints [53]. Overall, the work on optimizing cloud
resources in BPM context propose assignment or scheduling methods.

Each optimization problem has a specific set of constraints such as budget con-
straint, makespan constraint, temporal constraints, resource temporal availabilities,

Conclusion 93

Table 4.4: Summary of the literature study of human allocation optimization

Work Control-
flow

perspective

Activities
temporal

constraints

Resource
temporal

availabilities

[13, 228] + +/- +

[14,43] + +/- -

[50] + - -

[135,136,233,235] - +/- +

[234] - - +

etc. So, in Table 4.4 we cluster the approaches that study optimization of human
resource allocation and in Table 4.5 we cluster the approaches that study optimiza-
tion of cloud resource allocation. In Table 4.4, the approaches are classified based on
three criteria: (1) control-flow perspective, (2) activities temporal constraints, and (3)
resource temporal availabilities. Whereas, in Table 4.5 the approaches are classified
based on four criteria: (1) control-flow perspective, (2) activities temporal constraints,
(3) resource temporal availabilities, (4) pricing strategies, and (5) Simulation tool. As
visible in Table 4.3, some of the authors work on process perspective. Further, most
of the authors take into consideration human resource temporal availabilities. The
majority of these authors suggest that activities have some temporal constraints such
as duration. But, in Table 4.5, authors working on cloud computing concentrate on
BPM domain where BP are timed-aware. But, cloud resource temporal availabilities
is taken into account by few authors. Overall, the works involve pricing strategies
but the majority consider only pay-as-you-go strategy. Besides, cloud resources are
considered always avaiblable and dot not have temporal constraints. Further, few au-
thors use simulation tools such as WorkflowSim and CloudSim to simulate the cloud
resource allocation in order to validate the proposed approaches. Authors do not
specify advanced temporal constraints for activities such as temporal dependency.
Contrary to above, our work is focused on optimizing cloud resource allocation cost
under constraints such as control-flow perspective, activities temporal constraints,
resource temporal availabilities and pricing strategies constraints. Moreover, com-
pared to the proposed extension for cloud simulators presented in Section 4.3.3, in
our work, we extend CloudSim to support the temporal constraints, pricing strategies,
and simulation of cloud tasks based on the BP control-flow.

4.4 Conclusion

In this chapter, we presented the current state-of-the-art with respect to our research
problems detailed in Chapter 1. We reviewed approaches in the literature for develop-
ing cloud-aware BPs, i.e., specification, verification and optimization of cloud resource
allocation in BP models. To this end, we divide the related work based on our re-

94 State of the Art

Table 4.5: Summary of the literature study of cloud resource allocation optimization

Work Control-
flow

perspective

Activities
temporal

constraints

Resource
temporal

availabilities

Pricing
strategies

Simulation
tool

[57] + +/- + + +
WorkflowSim

[48,54] + +/- - + +
CloudSim

[56,58] + +/- - + -

[53] + +/- - - -

[46, 47,52] + +/- - - -

[45, 49,262] + - - - -

Our approach + + + + +
CloudSim

search questions into two main groups: (1) supporting the cloud resources’ temporal
constraints in BP, and (2) optimization of BP deployment cost in cloud resources. In
the first group, we reviewed the approaches available in the literature from the fol-
lowing perspective: (1) formal specification in BP models, and (2) formal verification
in BP models. In the second group, we studied and reviewed the approaches from the
following perspective: (1) human resource allocation, and (2) cloud resources alloca-
tion. We evaluate and compare the existing approaches to understand the missing
parts of the approaches in the state-of-the-art, which are (1) lack of support of cloud
in time-aware BPs, especially temporal constraints, (2) lack of optimizing time-aware
BP deployed in cloud resources offered in various pricing strategies.

To bridge the above-mentioned research gap, we describe our contribution in the
following chapters. In Chapter 5, we detail our first contribution towards supporting
cloud resources’ temporal constraints in BPs that enables the formalization, modeling,
and verification of time-aware cloud resource allocation in BPs. In Chapter 6, we
tackle the issues related to the optimization of time-aware cloud resource allocation
in BPs, as the current state-of-the-art does not support it.

Chapter 5

Supporting Cloud Resources
Temporal Constraints in BPs

Contents

5.1 Introduction . 95

5.2 Graphical Modeling . 96

5.2.1 Formal definitions . 96

5.2.2 BPMN extension . 99

5.3 Model transformation . 102

5.3.1 Transformation: from BPMN to timed automata 102

5.3.2 Automatic transformation . 107

5.3.3 UPPAAL Meta-Model . 109

5.4 Correctness analysis . 109

5.5 Evaluation . 111

5.5.1 Supporting pricing strategies description 111

5.5.2 BPMN model transformation . 112

5.5.3 Checking CTL properties . 115

5.6 Conclusion . 118

5.1 Introduction

In this chapter, we present our approach for correct cloud resource allocation in time-
aware BPs. As mentioned in Chapter 2, pricing strategies are defined based on tem-
poral constraints. Moreover, the organisations’ BPs are time constrained. Further, to
be performed, activities may consume cloud resources proposed under various pricing
strategies. But, to correctly utilize them the temporal constraints of cloud resources
should match the temporal constraints of BP activities. For instance, if the resource
temporal availability [62] does not cover the activity temporal duration this may lead
to a deadlock. Therefore, organizations need to design their BP models enriched with

95

96 Supporting Cloud Resources Temporal Constraints in BPs

both control flow and resource temporal constraints specifications using a formal lan-
guage. Thus, they can formally check the matching between temporal constraints of
both: activities and cloud resources to ensure that BPs can be correctly performed.

To address the above challenges, our goal is to define a formal model of a BP en-
riched with temporal constraints, cloud resources, and pricing strategies. The aim of
this formal specification is to avoid temporal conflicts. In fact, formal languages have
shown their usefulness in the modeling of correct systems (e.g.timed automata [106],
Petri nets [107], process algebra [108], Event-B [109], etc). The specification and
reasoning about system properties is ensured by the mathematical foundations and
formal logic. But, BP designers may do not have a strong background in formal lan-
guages and do not master well verification tools. Therefore, we rely on the broadly
accepted BP modeling language, BPMN, and we take it as our stating modeling lan-
guage and we extend it to describe cloud resources and their pricing strategies. While
BPMN is a semi-formal language we transform the extended BP models, designed in
BPMN, into a network of timed automata in order to verify the temporal correctness
of resource allocation.

Concretely, first, we propose a model of cloud resource allocation in time-aware
BP. Second, taking the advantage of its extensibility, we propose an extension to
BPMN to integrate the cloud resource allocation in time-aware BP models. Second,
we propose a set of transformations rules that we implemented based on MDE, to gen-
erate automatically from BPMN extended models a network of timed automata [106].
The latter will be the inputs to the model checker UPPAAL to formally verify the
non-conflict between temporal constraints of both activities and cloud resources. Our
approach is implemented as an Eclipse plug-in and evaluated using a real case study
from France Telecom Orange labs.

The contributions presented in this Chapter were published in [62–64]. The re-
mainder of this Chapter is organized as follows: We start by presenting our graphical
modeling step in Section 5.2.1. Then, we explain our verification step in Section 5.4.
Next, we depict the evaluation of our approach in Section 5.5. Finally, we present
our conclusion in Section 5.6.

5.2 Graphical Modeling

We detail in this section our first contribution. Namely, we start by presenting our
proposed formal definitions. Then, we move to detail our BPMN extension.

5.2.1 Formal definitions

In this section, we present our proposal to formally define cloud resources, their
pricing strategies, as well as activities’ temporal constraints. We start by presenting
a formalization of cloud resources (Section 5.2.1.1) and BP model (Section 5.2.1.2).
Then, we explain our BPMN extension (Section 5.2.2).

Graphical Modeling 97

5.2.1.1 Cloud resources in BP

Cloud computing is known for ∗aaS model with focus here on computing resources
exposed as part of the Infrastructure-as-a-Service (IaaS) model for not increasing the
complexity of the cloud resource management. A computing resource has a unique
identifier and predefined capacities. We formally define a cloud resource as follows
(see Definition 5.2.1):

Definition 5.2.1. A cloud resource is a couple (id, Cap) where:

• id is a unique identifier;

• Cap defines a resource’ capacities in terms of memory amount and virtual core
number, Cap=(RAM, vCPU) ∈ N× N.

Various efforts are made for the enhancement of cloud resource description in
BPM [33,139,140]. However, the cloud resource description remains poorly operated
due to the lack of a formal definition of pricing strategies that are specified in natural
languages. So, in the following, we present a formal definition of a cloud resource
pricing strategy (see Definition 5.2.2).

Definition 5.2.2. A cloud resource pricing strategy is a triple st=(type,TC,c) where:

• type is a type of strategy;

• TC is the temporal availability of a price that the strategy st imposes;

• c is a unit hourly cost that the strategy st proposes, c ∈ R.

As described in Chapter 2, a cloud resource has a limited temporal availability
which restricts the time span allowed for using a cloud resource R at a defined price.
Temporal availabilities over a cloud resource’s pricing strategy are of 2 types:

• Relative temporal constraints specify a time interval [MinAvR, MaxAvR] in
which a resource is available at a certain price; 1 ≤MinAvR ≤MaxAvR.

• Absolute temporal constraints specify the start and finish times of a resource
availability at a certain price. Those constraints could be specialized into: Start
Using No Earlier Than (SUNET (R)), Finish Using No Earlier Than (FUNET (R)),
Start Using No Later Than (SUNLT (R)), and Finish Using No Later Than (FUNLT (R)).

As mentioned in Section 2.3.2, we consider 4 pricing strategies: on-demand, re-
served, spot instance and spot block. We present in Table 5.1 which temporal spec-
ification can be used in each pricing strategy. While, reserved and spot block are
continuously available for a specified temporal duration, so they can be described
with MinAvR and MaxAvR (i.e., relative). Otherwise, to specify a spot instance,
that has an interruption risk, SUNET , and FUNET (i.e., absolute) can be used.

98 Supporting Cloud Resources Temporal Constraints in BPs

Table 5.1: Temporal availabilities of cloud resources

Relative Absolute

MinAvR MaxAvR SUNET FUNET

On-demand

Reserved + +

Spot instance + +

Spot block + +

However, on-demand instances are always available, so we do not need to specify a
temporal constraint for cloud resources.

Table 3.2 (resp., Table 3.3) presents a set of Amazon (resp., Microsoft) cloud
resources (R={R1, R2, R3, R4, R5}). Their operating system is Linux and availability
time zone is us-east-a1. In our current work, we assume that the size of transferred
data between cloud resources is not considered and is left as future work.

Amazon EC2 offers different instance types with different computing capacities
((vCPU) and (RAM)) and grouped into instance families. For instance, R3 =
m3.2xlarge corresponds to an Amazon computing resource of type m3. The lat-
ter belongs to general purpose instance family that provides a balance of compute
and memory resources, and can be used for a variety of workloads [4]. Still in Ta-
ble 3.2, the unit hourly price of R3 as spot instance is equal to c313=0.372$/h. As a
result, R3 is temporally available for a minimum duration MinAvR3 of 1 hour and a
maximum duration MaxAvR3 of 6 hours (i.e., st313=(spot, [1h,6h], 0.372$/h)).

5.2.1.2 Business process model

A BP consists of a set of activities A (where A = {aq : q ∈ {1, · · · , z}}) that are
performed in coordination in an organizational and technical environment to jointly
achieve business goals [275]. It happens that a BP is subject to some temporal
constraints which can be relative or absolute. For more details about temporal con-
straints, we refer readers to [31]. Activities are also subject to financial penalties
price [137,138] when they are canceled due to resource interruption.

Definition 5.2.3. Business process model is a tuple (N, E, F, ReqA, PenA) where:

• N is the set of nodes that correspond to activities A, gateways G, and events Ev,
i.e., N={A ∪ G ∪ Ev};

• E ⊆N × N is the set of edges;

• F : A −→ T is a function that assigns temporal constraints T to activities A;

• ReqA is the set of activities requesting cloud resources;

Graphical Modeling 99

• PenA is the set of financial penalties that are subject to when activities are
canceled due to the interruption of a resource leased as a spot instance.

For example, Figure 3.3 presents the service supervision BP of France Telecom/O-
range. Table 3.1 shows its activities temporal constraints, capacity requirements, and
financial penalties prices.

Definition 5.2.4. An activity a is a tuple (temp, res, type) where:

• temp is a set of temporal constraints which can be temporal duration, depen-
dency, and/or absolute temporal constraints;

• res is the resource allocated;

• type is the pricing strategy type.

For instance, a1=({Duration((a1, 1, 2)}, R1, on-demand) in the “supervision pro-
cess” BP means that a1 has a temporal constraint expressed in term of minimum and
maximum duration. Besides, it consumes R1 as an on-demand instance.

In [276], authors proposed a survey of time-related aspects of process models.
They identified the existing approaches that specify and verify temporal constraints
and enhance the time dimension in the BPM field. Some approaches opted for mod-
eling time using graphs while others used formal specification languages and algebras
(e.g., Linear Temporal Logic [277], Allen’s algebra [29], and time petri nets [278])
for specifying and verifying time-based BP models. Based on this research work, we
compare our time representation to Allen’s algebra. When using Allen’s algebra, we
identified that the BP designer can not specify that a BP activity should be exe-
cuted with respect to a specific time nor a date. So, compared to Allen’s algebra, we
can represent and specify absolute temporal constraints including MSO/MFO (Must
Start/Finish On a defined date), SNLT/FNLT (Start/Finish No Earlier Than). These
constraints mean that a BP activity should be executed in a defined date.

5.2.2 BPMN extension

We move now to the BPMN extension step. The BPMN notation is extensively used
in the BPM community for BP modeling [80]. BPMN 2.0 is its latest version. It has
several concepts including resource perspective. However, it does not support cloud
resource temporal availabilities related to pricing strategies and advanced temporal
constraints for BP activities.

Based on our model (Section 5.2.1), we propose two main extensions (Figure 5.1
and Figure 5.8). The first proposed extension (Figure 5.1) is with cloud resources
(particularly VMs) and their pricing strategies. The second proposed extension (Fig-
ure 5.8) is with temporal constraints related to BP activities. We notify that the
classes in grey color are the BPMN 2.0 predefined meta-classes. The classes in white

100 Supporting Cloud Resources Temporal Constraints in BPs

color are new meta-classes extending BPMN. We propose for cloud resource exten-
sion, an extension meta-class “ResourceExtension” to the BPMN meta-class “Re-
source” [21]. A resource extension can be a VM (VirtualMachine). A VM can be
related to four main types of pricing strategies which are on-demand, reserved, spot
block, and spot instance. As we mentioned in Chapter 2 , each pricing strategy has a
cloud resource’s temporal availability [62]. The reserved pricing strategy and the spot
block require relative temporal constraints. It is expressed by MinAvR and MaxAvR
(refer respectively to the Minimum and Maximum Resource temporal Availability)
(Section 5.2.1.1). Moreover, the reserved pricing strategy is characterized by paying
in advance for an instance, reserving it for 1 or 3-year period. The payment can
be with different options [4]: All-upfront, partial-upfront, or no-upfront depicted by
PaymentOption as an enumeration class. Otherwise, the spot instance has absolute
temporal constraints which are SUNET and FUNET (Section 5.2.1.1). However, for
on-demand, we do not need to specify temporal constraints for cloud resources.

Based on [29–31, 73], we propose activities’ temporal constraints extension such
as Duration, MSO, MFO, SNLT and FNLT (respectively Must Start/Finish On,
Start/Finish No Later Than) (Section 2.2). To define the latter constraints, we pro-
pose a meta-class extension called “ExtensionEventDefinition” to the existing BPMN
meta-class “EventDefinition”. An extension meta-class called “ExtensionFlowEle-
ment” extends “FlowElement” BPMN metaclass to define the temporal dependency
constraint. In addition, we extend the BPMN Process meta-class with an extension
meta-class called “ProcessExtension” in order to define “ProcessStartTime” meta-
class. Above all, we propose a meta-class extension “ExtensionCloudTask” to exhibit
our extension to the BPMN meta-class “Task”. This extension shows that the Task
flow requires a cloud resource with a chosen pricing strategy.

Listing 5.1: An excerpt of the xsd document to extend BPMN

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <xs:schema xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
3 <xs:element name=”ResourceTimeExtension”>
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element name=”Pricing Strategy” type=”Pricing Strategy”/>
7 <xs:element name=”Resource”>
8 ...
9 </xs:element>

10 <xs:element name=”ResourceExtension” type=”ResourceExtension”/>
11 <xs:element name=”VirtualMachine”>
12 <xs:complexType>
13 <xs:complexContent>
14 <xs:extension base=”ResourceExtension”>
15 ...
16 <xs:attribute name=”price” type=”xs:float”>
17 </xs:attribute>
18 </xs:extension>
19 </xs:complexContent>
20 </xs:complexType>
21 </xs:element>
22 ...

Graphical Modeling 101

Figure 5.1: The extension of resource element in BPMN

Figure 5.2: BPMN temporal extension

102 Supporting Cloud Resources Temporal Constraints in BPs

23 <xs:element name=”SpotBlock”>
24 <xs:complexType>
25 <xs:complexContent>
26 <xs:extension base=”Pricing Strategy”>
27 <xs:attribute name=”hourlyspotprice” type=”xs:double”>
28 </xs:attribute>
29 <xs:attribute name=”MinAvR” type=”xs:string”>
30 </xs:attribute>
31 <xs:attribute name=”MaxAvR” type=”xs:string”>
32 </xs:attribute>
33 </xs:extension>
34 </xs:complexContent>
35 </xs:complexType>
36 </xs:element>
37 ...
38 </xs:sequence>
39 </xs:complexType>
40 </xs:element>
41 <xs:complexType name=”Pricing Strategy”>
42 <xs:attribute name=”Name” type=”xs:string”>
43 </xs:attribute>
44 </xs:complexType>
45 <xs:complexType name=”ResourceExtension”>
46 </xs:complexType>
47 ...
48 </xs:schema>

The class diagram shown in Figure 5.1 is translated to an xsd document as shown
in Listing 5.1. The “VirtualMachine” element (Line 11) has a complex type “Re-
sourceExtension”. So, it will have all the attributes and structure of “ResourceEx-
tension” but with additional attributes such as price. Besides, the “SpotBlock” has
a complex type that extends the type “PricingStrategy”, and adds to it attributes
including “hourlyspotprice”, “MinAvR”, “MaxAvR”. This xsd extension is imported
in the xsd of BPMN 2.0.

5.3 Model transformation

In this section, we detail our transformation step. We start by presenting how we
transform BPMN to timed automata model. Then, we present how we automate our
transformation step.

5.3.1 Transformation: from BPMN to timed automata

Turning now to the transformation step. To this end, we present in this section a
set of rules to automatically transform time-aware BPMN models into a network of
timed automata. To this end, we present namely our transformation rules, then the
automatic transformation step, and finally a description of the UPPAAL meta-model.

We recall that our BPMN process model consists of activities that are subject to
temporal constraints and consume cloud resources. We developed a set of transfor-
mation rules that take as an inputs a BP’s activities along with the cloud resources

Model transformation 103

they consume and produce as an output a network of timed automata depending on
these resources’ pricing strategies.

A network of timed automata consists of: (i) the BP’s timed automata with focus
on its activities’ states and temporal constraints and (ii) the cloud resources’ set of
timed automata that these activities will consume. The synchronisation of BP-related
and resource-related timed automata is achieved using binary channels.

To begin with, let’s consider an activity a that consumes a cloud resource r.
Because of this resource’s pricing strategies, we identify four consumption cases: on-
demand instance, reserved or spot blocks, spot instance, and shareable instance. The
last case is used for a spot block instance that has a fixed shareable capacity. We
also consider that although our BPs could be subject to temporal dependency and
absolute temporal constraints, we only look into duration constraints.

For more details about how other constraints are handled, readers are referred
to [30].

• On-demand instance: When a is defined as ({Duration(a,MinDa,MaxDa)},
R, on-demand), a is transformed into two timed automata, TAa and TArd. On
the one hand, TAa, represents the activity’s timed automata and consists of
three locations: aReady, aWorking, and aFinish. aReady means that a is ready
for execution, aWorking means that a is running and consumes R as an on-
demand instance, and aFinish means that a has executed successfully allowing to
free R. The transition from aReady to aWorking initializes a clock t to zero. And,
the transition from aWorking to aFinish takes a guard to control the activity’s
temporal duration.
Formally, see Definition 2.5.1, TAa is a tuple L={aReady, aWorking, aFinish},
l0 = aReady, X = t, I(aReady)=∅, I(aWorking)={t ≤ MaxDa}, I(aFinish)=∅,
and Tr= {(aReady, start!, t = 0, ∅, aWorking), (aWorking, done?, t ≥ MinDa

&& t ≤MaxDa, aFinish)}.
On the other hand, TArd consists of three locations: Idle, Inuse, and Used.
Idle means that R is available but not-assigned, yet; Inuse means that R is
assigned to a and is in-use; and, Used means that R was consumed in the past
by a and now is free.
Formally, see Definition 2.5.1, TArd is a tuple L={Idle, Inuse, Used}, X = ∅,
l0=Idle, I(Idle)=∅, I(Inuse)=∅, I(Used)=∅, and Tr={(Idle, start?, ∅, Inuse),
(Inuse, done!, ∅, Used)}.
For illustration purposes, we consider a1=({Duration((a1, 1, 2)}, R1, on-demand)
in the “supervision process” BP. a1 is transformed into two timed automata:
TAa is shown in Figure 5.3a and TArd is shown in Figure 5.3b. a1 can start
consuming R1 only if the clock t is less than 2 (i.e., defined as an invariant)
and will execute successfully only if its temporal duration is met (i.e., defined
as a guard).

• Reserved or Spot blocks: When a is defined as ({Duration(a, MinDa,

104 Supporting Cloud Resources Temporal Constraints in BPs

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

t = 0

start!

t ≥ 1 && t ≤ 2

done?

(a) TAad of activity a1

Idle Inuse

.

U

Used

start? done!

(b) TArd of R1 as an on-demand instance

Figure 5.3: Allocation of R1 as an on-demand instance cloud-resource to activity a1

MaxDa)}, R, reserved) or ({Duration(a, MinDa, MaxDa)}, R, spot blocks)
it is transformed into two timed automata, TAar and TArr. TAar and TAad

are similar. Further, TArd and TArr have the same formalism in terms of lo-
cations, transitions, clock, guard, and invariant. This is due to the fact that
a cloud resource consumed as on-demand, reserved or spot blocks, is not sub-
ject to any interruption once it becomes consumed. Thus, the resource’s timed
automata, TArr, consists of the same three locations as TArd: Idle, Inuse,
and Used. But, they are different in terms of transitions since R can have
temporal duration. As a result, we assign a clock x to the transitions between
{Idle, Inuse} and {Inuse, Used} to specify the minimum (MinAvR) and max-
imum (MaxAvR) durations of R’s temporal availability.
Formally, see Definition 2.5.1, TArr is a tuple where L={Idle, Inuse, Used},
X = {x}, l0=Idle, I(Idle)=∅, I(Inuse)=∅, I(Used)=∅, and Tr={(Idle, start?,
{x= MinAvR}, Inuse), (Inuse, done!, {x= MaxAvR}, Used)}.
For illustration, we refer to our case study where Figure 5.4a, same as Fig-
ure 5.3a, presents a1’s timed automata TAar, and Figure 5.4b presents R1’s
timed automata TArr. When R1 takes on Inuse state, the clock x is initialized
to 1. If it is initialized to 6 that is the maximum duration, then the resource is
considered as used and no longer available.

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

t = 0

start!

t ≥ 1 && t ≤ 2

done?

(a) TAar of activity a1
Idle Inuse

U

Used

x = 1

start?

x = 6

done!

(b) TArr of R1 as a spot block

Figure 5.4: Resource allocation with R1 as spot block to an activity a1

• Spot instance When a is defined as ({Duration(a,MinDa,MaxDa)}, R, spot
instance), a is transformed into two timed automata TAaa and TAra. It is worth

Model transformation 105

noting that R here can be interrupted while it is under use. On the one hand,
TAaa is the activity’s timed automata. So, activity a would be blocked. That
is why we add a fourth state, aBlocked, reached when the resource R becomes
interrupted. Defining a Boolean variable e is required to verify if an external
event has happened (i.e., another customer proposes a higher bid price and takes
resource R). Thereby, transiting from aWorking to aBlocked is enabled only if the
guard indicating the interruption is true.
Formally, see Definition 2.5.1, TAaa is a tuple where L={aReady, aWorking,
aBlocked, aFinish}, l0=aReady, X = {x}, I(aReady)=∅, I(aWorking)={x≤MaxDa},
I(aBlocked)=∅, I(aFinish=∅, E={(aReady, start!, x = 0, ∅, aWorking), (aWorking,
done?, e == true, aBlocked), (aWorking, done?, x ≥ MinDa && x ≤ MaxDa,
aFinish)}.
On the other hand, TAra is composed of four states: Idle, Inuse, Used, and
Interrupted. If the spot price becomes greater than the bid price, R will be
interrupted. In this case, the transition from Inuse to Interrupted is enabled.
So we use a Boolean variable e to control the interruption. Moreover, to satisfy
the absolute constraint over R, we initialize x to zero and take it as a timed
reference to subsequently specify that exactly FUNET − SUNET hours must
separate the starting and finishing availability times of the resource. Therefore,
to transition from Inuse to Used, we update x based on the difference between
FUNET and SUNET .
Formally, see Definition 2.5.1, TAra is a tuple where L={Idle, Inuse, Interrupted,
Used}, l0=Idle, X = {x}, I(Idle) = ∅, I(Inuse)=∅, I(Interrupted)=∅,
I(Used)=∅, and Tr={(Idle, start?, {x=0}, Inuse), (Inuse, done!, {x=FUNET -
SUNET}, Used), (Inuse, e == true, ∅, Interrupted)}.
For illustration purposes, we consider that a1=({Duration((a1, 1, 2)}, R1, spot
instance) in the “supervision process” BP. Figure 5.6 presents the transforma-
tion output of a1. Figure 5.5a is different from Figure 5.4b; a1Blocked

location is
reached when R1 is interrupted (i.e., defined as a guard). The timed automata
of R1 is illustrated in Figure 5.5b. When R1 is in state Inuse the clock x, taken
as a time reference, is initialized to zero. Then, it is initialized to 10 if its finish
availability time is reached. The Boolean variable e is “true” to indicate that
resource R1 is interrupted (i.e., defined as a guard).

• Shareable instance: Let consider a set of activities Ash={am, where m ∈
{1 . . . z}} defined as am ({Duration(am, MinDam , MaxDam)}, R, reserved) or
({Duration(am, MinDam , MaxDam)}, R, spot blocks) that consume the same
resource R as reserved or spot blocks instance but not at the same time. They
are transformed into z + 1 timed-automata, TAash1 , TAash2 , . . . , TAashm . . . ,
TAashz and TArsh. On the one hand, TAashm (where m ∈ {1 . . . z}) present the
timed automata of each activity am. All the TAashm have the same formalisms
in terms of locations, transitions, clocks, guards and invariants. Every TAashm

106 Supporting Cloud Resources Temporal Constraints in BPs

a1 Ready a1 Working

t ≤ 2

U

a1 Finish

U

a1 Blocked

t = 0

start!

t ≥ 1 && t ≤ 2

done?

done? e == true

(a) TAaa of a activity a1

Idle Inuse

U

Used

U

Interrepted

x = 0

start?

x = 10

done!

e == true

(b) TAra of R1 as a spot instance

Figure 5.5: Allocation of R1 as a spot instance with an interruption risk to activity
a1

has five locations: amReady
, amWorking

, amFinish
, amsuccess and amfailure

. Three
locations: amReady

, amWorking
, and amFinish

are similar to TAa’s locations. But,
amfailure

is reached if the number of activities consuming resource R is greater
than its defined capacity (share variable). Otherwise, each activity am is exe-
cuted successfully (amsuccess).

Formally, see Definition 2.5.1, TAashm is a tuple where L={amReady
, amWorking

,
amFinish

, amsuccess , amfailure
}, l0=amReady

, X={x}, I(amReady
)=∅, I(amWorking

)={x
¿= MaxDam}, I(amsuccess)=∅, I(amFinish

)=∅, I(amfailure
)=∅, Tr={(amReady

,
startm!, x = 0, ∅, amWorking

), (amWorking
, donem?, x ≥ MinDam && x ≤

MaxDam , amFinish
), (amFinish

, ∅, ∅, share >= 0, amsuccess), (amFinish
, ∅, ∅,

share <= −1, amfailure
)}.

On the other hand, TArsh is the timed automata of the shared resource as a
reserved or spot block instance. It is composed of z + 4 locations: Available,
Idle, Inuse, z Usedm (where m ∈ {1 . . . z}), and Unavailable. Idle and Inuse
locations are similar to the ones in TAar, whereas Available means that the
resource starts to be available, Usedm is reached when R is used by the mth
activity, and Unavailable means that R can not be used.

Formally, see Definition 2.5.1, TArsh is a tuple where L=Available, Idle, Inuse,
Usedm (where m ∈ {1 . . . z}), Unavailable, l0=Available, I(Available)=∅,
I(Idle)=∅, I(Inuse)=∅, I(Usedm)=∅, I(Unavailable)=∅ and Tr={(Available,
start?, Idle),(Idle, startm?, x=MinAvR, share−−, Inuse), (Inuse, donem!,
x <= MaxAvR, Usedm), (Usedm, startm+1?, share − −, Inuse), (Usedm,
done!, x=MaxAvR, Unavailable)}.
For illustration purposes, we consider that a1=({Duration((a1, 1, 2)}, R1, spot
blocks) and a9=({Duration((a9, 1, 2)}, R1, spot blocks) in the “supervision pro-
cess” BP. Figure 5.6a presents an excerpt of the supervision process. It shows

Model transformation 107

the transformation output of a1 and a9. Both activities reach the successful
locations if the resource is shared successfully (share ≥ 0). Otherwise, the
failure locations are reached. The timed automata of the shareable resource
R1 is shown in Figure 5.6b. The variable share is used to check if R1 can be
consumed anymore by other activities. It is decremented each time it is used
by a new activity.

SProcess a1 Ready a1 Working

t1 ≤ 2

U

a1 Finish

U

a1 Failure

U

a1 Success

.

U

a9 Ready

a9 Working

t9 ≤ 2

U

a9 Finish

U

a9 Failure

U

a9 Success

U

EProcess

t0 = 0, start! t1 = 0, start1! t1 ≥ 1 && t1 ≤ 2

done1?

share ≤ 0

share ≥ 0

t9 = 0, start9!

t9 ≥ 1 && t9 ≤ 2

done9?

share ≥ 0

share ≤ −1

done?

(a) An excerpt of the supervision BP timed automata: TAash

Available

U

Idle Inuse

Used1

Used2

U

Unavailable

start? x1 = 1, start1?

done1!

share−−, start9?

done9!

share−−

x1 = 6, done!

(b) TArsh of R1 shareable as a spot blocks

Figure 5.6: Allocation of R1 as a spot block shared between activities a1 and a9

5.3.2 Automatic transformation

BPMN processes enriched with pricing strategies help the BP designer to easily al-
locate cloud resources. However, it may lead to temporal violation in some cases.
Therefore, we resort to MDE-based model-to-model transformation language ATL

108 Supporting Cloud Resources Temporal Constraints in BPs

which is enough mature and reliable to accomplish transformations required in our
work. We present one example of ATL code in Listing 5.2. It is an excerpt that shows
how we implement the transformation rule of an activity consuming R as a spot block.
Figure 5.13d depicts the generated model. Line 2 shows the source element of the
BPMN model. Lines 4-7 depict how Idle state is created. Similarly, we create Inuse
and Used states [63]. Moreover, we present how the transitions are created in Lines
9-25. For instance, Lines 9-16 depict how the transition from Idle location to Inuse
location. Lines 18-25 present how the transition from Inuse location to Used location.
Lines 27-33 depict how the full timed automata of strategy spot block is composed.

Listing 5.2: ATL code to transform a spot block pricing strategy into timed automata

1 rule spotBlock {
2 from spotBL: BPMN!ExtensionAttributeValue (..)
3 to
4 idleLocation:uppaal!Location(
5 id <−’id’ + thisModule.getcounterSpotblocks()
6 name <−thisModule.NewName(’Idle),
7 initLocation: uppaal!Init (ref <−idleLocation.id),...
8

9 transitionIdleInuse: uppaal!Transition (
10 source <− thisModule.SourceTransition(idleLocation),
11 target <− thisModule.TargetTransition(inUseLocation),
12 label <− thisModule.synchronisation(’start?’),
13 label <− spotBL.taskConfig.parameterspotBlock −>
14 collect(e |if e.Shared=false then
15 thisModule.assignmentVM(’x=’ + e.MinAvR)
16 else OclUndefined endif),
17

18 transitionInuseUsed: uppaal!Transition (
19 source <−thisModule.SourceTransition(inUseLocation),
20 target <−thisModule.TargetTransition(usedLocation),
21 label <−thisModule.synchronisation(’done!’),
22 label <− spotBL.taskConfig.parameterspotBlock −>
23 collect(e |if e.Shared = false then
24 thisModule.assignmentVM(’x=’ + e.MaxAvR)
25 else OclUndefined endif),
26

27 templateSpotblocks: uppaal!Template (
28 name <− templateNameSpotblocks,
29 location <− idleLocation,...
30 transition <− transitionIdleInuse,...
31 init <− initLocation),

Correctness analysis 109

32 templateNameSpotblokcs: uppaal!Name (
33 value <− ’templateSpotBlock’)}

The output of our automatic transformation is a network of timed automata. So,
BP’s designers can check at design time the temporal correctness of cloud resource
allocation in BPs without carrying on the prone task of manually generating timed
automata model.

5.3.3 UPPAAL Meta-Model

To conduct the model-to-model transformation, it is crucial to present UPPAAL meta-
model. But, a standardized meta-model for UPPAAL is still not available. Even the
one proposed in [279] is of high complexity and can not cover our needs. There-
fore, we propose the meta-model depicted in Figure 5.7 that shows clearly UPPAAL
meta-classes and structures. In UPPAAL meta-model, “Nta” is the root meta-class.
It is composed of one or more Templates. In “Nta” meta-class, there is one occur-
rence of system attribute that is used to declare template instantiations and to list
one or more processes composed into a system. In “Nta”, we find also declaration
attribute to define global declarations of templates’ elements. Otherwise, the decla-
ration attribute that exists in “Template” meta-class is to declare local declarations
of a template. These attributes are helpful to declare the different process elements
such as synchronization channels, clocks, variables, etc. A template is where a timed
automata process is drawn. Each “Template” contains locations linked with transi-
tions. Each “Transition” is composed of one “Source” and one “Target” location by
referencing the location’s id. A location can be “Urgent” if necessary. Added to that,
every “Location” and “Transition” are composed of a name and one or more “Label”
which define any condition related to the temporal constraints. Each occurrence of
“Label” meta-class has a value and a kind that can be guard, assignment, invariant, or
synchronization. Moreover, “Template” meta-class is composed of zero or one “Init”
meta-class which references the initial “Location” id. We mention that there exist
x and y attributes in “Location”, “Transition”, “Label”, and “Name” meta-classes.
In fact, these attributes refer to the position of the corresponding element on the
drawing canvas of UPPAAL.

5.4 Correctness analysis

After transforming a BPMN process model into timed automata model, we proceed
with the correctness analysis of these automata. The correctness analysis step pro-
vides a model checking method to detect probable temporal violations between allo-
cated cloud resources and BP’s activities. Thus, it enables the BP designer to react
to them predictively. The proposed BP verification goes far beyond the simple verifi-
cation of the structural properties of the model (e.g. deadlock). Precisely, it enables

110 Supporting Cloud Resources Temporal Constraints in BPs

F
igu

re
5.7:

U
P

P
A

A
L

m
eta-m

o
d
el

ex
ten

sion

Evaluation 111

the verification of the advanced temporal constraints and temporal availabilities of
cloud resources. We use UPPAAL to check if some properties are satisfied or not,
which serves for the verification step after designing the BP. Thus, we help the BP
designer to verify the BP temporal correctness of cloud resource allocation. To this
end, we check the satisfaction or not of a set of properties such as:

• Deadlock freeness: to verify that the system is deadlock free.

• Liveness: to verify that an activity consuming a resource will eventually reach
the state finish successfully.

• Deadline: to verify that the deadline is met.

5.5 Evaluation

Let’s consider again the service supervision BP from Orange France Telecom process
presented in Section 3.3. Activities have temporal constraints and require computing
resources. To evaluate our approach, we assume that a1 and a9 consume R1 as a spot
block, a2 consumes R2 as a spot instance, a3 consumes R1 as on-demand instance,
a4 consumes R3 as a spot instance, a5 consumes R1 as a spot instance, a6 consumes
R5 as an on-demand instance, a7 consumes R3 as an on-demand instance, and a8

consumes R2 as spot block.

5.5.1 Supporting pricing strategies description

We have developed a plug-in as a proof of concept to take into account the modeling
of time-aware BP deployed in clod resources proposed under various pricing strate-
gies. This plug-in is an extension of BPMN 2 modeler [141] which is an open source
graphical modeling plug-in for BPM supporting the BPMN 2.0 standard on Eclipse,
the most widely used integrated development environment. More details about the
framework implementation and the plugin are presented in Annexes A and B, respec-
tively

The BP designer uses the extended tool palette to draw the BP (Figure 3.3).
He can define activities’ temporal constraints as well as cloud resources and pricing
strategies. As shown in Figure 5.8 (label 1), the palette is extended with a cate-
gory Task+CloudResources in which we find an extended Task which highlights that
the task flow requires a cloud resource. Besides, the palette is extended with rela-
tive temporal constraints category which contains temporal dependency and duration
constraints in order to decorate activities. We also extend the palette with absolute
temporal constraints Category in which we find MSO, MFO, SNLT, and FNLT.

A BP activity consumes a cloud resource with different pricing strategies as shown
in the motivating example (Section 3.3); e.g. a2 consumes R2 as a spot instance.
As mentioned before, cloud providers offer various pricing strategies under which

112 Supporting Cloud Resources Temporal Constraints in BPs

Figure 5.8: Extended BPMN process with BPMN2 modeler

Figure 5.9: Pricing strategies specification

resources can be acquired and their allocation costs can be determined. To specify
these relations, the BP designer selects the drawing canvas (label 2) in order to display
the property view encompassing the set of cloud pricing strategies. Each strategy is
in a separate tab as shown in Figure 5.9 (e.g. label 3.1 and 3.2). Once the designer
chooses the appropriate pricing strategy, a list and detail widget appear with several
control button (mainly add, remove, and edit the selected list item) (label 3).

To assign a pricing strategy, the BP designer should select the activity and press
on the “VirtualMachine” property tab. Thus, a small window will appear displaying
sections of each pricing strategy and a button under each one to assign a pricing
strategy to this activity. The created strategies are added in a combo box in order to
assign it to the activity. We give the example of activity a1 in Figure. 5.10.

5.5.2 BPMN model transformation

After modeling graphically the BP in BPMN, it is important to transform it into timed
automata. For that, we run our implemented transformation rules. To this end, the
BP designer should define a name for the configuration, BPMN and UPPAAL meta-
models as well as the source BPMN model and the name of the timed automata
for UPPAAL (Figure 5.11). When he runs the transformation rules implemented

Evaluation 113

Figure 5.10: Pricing strategies specification

with ATL, an XML file will be generated as an output. Our transformation rules
are correct-by-construction since they are neither ambiguous nor conflicting. The
generated network of timed automata that the transformation produces are well-
formed. These automata networks are consistent with timed-automata meta-model.
In addition, the transformation is complete since each element (e.g., activity, gateway,
and event) in a time-aware BP, as a source model, has a corresponding element (e.g.,
state, transition, and guard) in the timed automata, as a target model. An excerpt
from this XML file is presented in Listing 5.3. In fact, it shows excerpts of template
for the timed automata of BP activities “ProcessActivity” (Lines 2-43) and template
for spot block strategy “R2SpotBlock” (Line 45-70). Each template is composed of
locations, transitions, labels, etc.

Listing 5.3: Excerpt from the generated XML file: timed automata for UPPAAL

1 <nta xmlns=”flat−1 2.dtd”>
2 <template>
3 <name>Process Activity</name>
4 <location id=”id0”>
5 <name>a1 Failure</name>
6 </location>
7 <location id=”id2”>
8 <name>EProcess</name>
9 <urgent/>

10 </location>
11 <location id=”id27”>
12 <name>a1 Success</name>
13 </location>
14 <location id=”id28”>
15 <name>a1 Finish</name>
16 <urgent/>
17 </location>
18 <location id=”id29”>
19 <name>a1 Working</name>
20 <label kind=”invariant”>t1>=2</label>
21 </location>

114 Supporting Cloud Resources Temporal Constraints in BPs

Figure 5.11: ATL transformation

22 <location id=”id30”>
23 <name>a1 Ready</name>
24 </location>
25 <location id=”id31”>
26 <name>SProcess</name>
27 </location>
28 <init ref=”id31”/>
29 ...
30 <transition>
31 <source ref=”id29”/>
32 <target ref=”id28”/>
33 <label kind=”guard”>t1>=1 && t1<=2</label>
34 <label kind=”synchronisation”>done1?</label>
35 </transition>
36 <transition>
37 <source ref=”id30”/>
38 <target ref=”id29”/>
39 <label kind=”synchronisation”>start1!</label>
40 <label kind=”assignment”>t1=0</label>
41 </transition>
42 ...
43 </template>
44 ...
45 <template>
46 <name>R2 SpotBlock</name>
47 <location id=”id41”>
48 <name>Inuse</name>

Evaluation 115

49 </location>
50 <location id=”id42”>
51 <name>Used</name>
52 <urgent/>
53 </location>
54 <location id=”id43”>
55 <name>Idle</name>
56 </location>
57 <init ref=”id43”/>
58 <transition>
59 <source ref=”id41”/>
60 <target ref=”id42”/>
61 <label kind=”synchronisation”>done8!</label>
62 <label kind=”assignment”>x2=6</label>
63 </transition>
64 <transition>
65 <source ref=”id43”/>
66 <target ref=”id41”/>
67 <label kind=”synchronisation”>start8?</label>
68 <label kind=”assignment”>x2=1</label>
69 </transition>
70 </template>
71 </nta>

The BP designer can open this file with UPPAAL model checker to see the generated
templates drawn as timed automata (Figures 5.12 and 5.13). Thus, he can proceed
to the formal verification of this generated model and check the satisfaction of several
properties using CTL formulas.

5.5.3 Checking CTL properties

Model checking is a widely used technique to verify BP models against a wide range
of temporal constraints [73]. Our verification approach formally checks the matching
between temporal constraints of both activities and cloud resources. In this context,
we use UPPAAL for this matching. The BP and cloud resource allocation are modeled
as a network of timed automata of : (i) ProcessActivities (activity-timed automata,
Figure 5.12) and (ii) Resource (resource-timed automata, Figure 5.13), respectively.
Figure 5.12 and Figure 5.13 are composed of locations presenting the activities/re-
source states, clocks updated in some transitions, guards to control the satisfaction
of temporal constraints, invariants to specify the temporal requirement that the sys-
tem can not stay in a location, and channels variable to ensure the synchronization
between both timed automata. For instance, a2 can start consuming R2 only if the
clock t2 is less than 3 (i.e., defined as an invariant) and will execute successfully only
if its temporal duration is met (i.e., defined as a guard). a2Blocked

location is reached
when R2 is interrupted (i.e., defined as a guard). The timed automata of R2 as spot
instance is illustrated in Figure 5.13e. When R2 is in state Inuse the clock x28, taken
as a time reference, is initialized to zero. Then, it is initialized to 18 if its finish avail-
ability time is reached. The Boolean variable e2 is “true” to indicate that resource
R2 is interrupted (i.e., defined as a guard). The variables start2 and done2 ensure

116 Supporting Cloud Resources Temporal Constraints in BPs

SProcess

a1 Ready a1 Working

t1 ≤ 2

U

a1 Finish

U

a1 Failure

U

a1 Success OR Split1

a2 Ready a3 Ready

a2 Working

t2 ≤ 3

U

a2 Blocked

U

a2 Finish

OR Split2

a4 Ready a5 Ready

a4 Working

t4 ≤ 4

U

a4 Blocked

U

a4 Finish

a5 Working

t5 ≤ 2

U

a5 Blocked

U

a5 Finish

a3 Working

t3 ≤ 1

U

a3 Finish

AND Split1

AND Working1

t6 ≤ 3

AND Finish1

OR Join2

OR Join1AND Split2AND Working2

t8 ≤ 2

U

AND Finish2

U

AND Success2

U

AND Failure2

U

EProcess

t0 = 0, start!

t1 = 0, start! t1 ≥ 1 && t1 ≤ 2

share ≤ −1

share ≥ 0

t2 = 0, start2!

t2 ≥ 2 && t1 ≤ 3, done2?

e2 == true

done2?

t4 = 0, start4!

t4 ≥ 1 && t4 ≤ 4, done4?

t5 = 0, start5!

t5 ≥ 1 && t5 ≤ 2, done5?

e4 == true

done5?

e5 == true

done4?

t3 = 0, start3!

t3 ≥ 1 && t3 ≤ 1, done3?

t333 = 0

t6 = 0, start6! start7!

t333 ≥ 2 & &t333 ≤ 5

t6 ≥ 1 && t6 ≤ 3

done6? done7?

t8 = 0

start8! start9!

t8 ≥ 1 & &t8 ≤ 2

done8? done9?

share ≥ 0

share ≤ −1done?

Figure 5.12: Process activities timed automata

Evaluation 117

Idle Inuse

U

Used

start3? done3!

(a) Timed automata of R1 as an on-
demand instance

Idle Inuse

U

Used

start6? done6!

(b) Timed automata of R5 as an on-
demand instance

Idle Inuse

U

Used

start7? done7!

(c) Timed automata of R3 as an on-
demand instance

Idle Inuse

U

Used

x2 = 1

start8?

x2 = 6

done8!

(d) Timed automata of R2 as spot block
Idle Inuse

U

Used

U

Interrupted

x28 = 0

start2?

x28 = 18

done2!

e2 == true

(e) Timed automata of R2 as a spot instance

Idle Inuse

U

Used

U

Interrupted

x4 = 0

start4?

x4 = 11

done4!

e4 == true

(f) Timed automata of R3 as a spot instance

Idle Inuse

U

Used

U

Interrupted

x5 = 0

start5?

x5 = 17

done5!

e5 == true

(g) Timed automata of R1 as a spot instance

Available

U

Idle Inuse

Used1

Used2

U

Unavailable

start? x1 = 1

start1

done1!

share−−
start9?

done9!

share−−

x1 = 6

done!

(h) TArsh of R1 shareable as a spot blocks

Figure 5.13: Resources timed automata

the synchronization between both timed automata.
Assuming the network of timed automata (Figures 5.12 and 5.13), we use a rich

set of CTL formulae to verify some properties such as:

1. Deadlock: A[] not deadlock: the process is deadlock free.

2. Liveness: E<>(ProcessActivities.ANDWorking2 and R2.Inuse → ProcessAc-
tivities.ANDFinish2): if a8 is consuming R2 which is still available then even-

118 Supporting Cloud Resources Temporal Constraints in BPs

tually a8 will finish successfully its execution.

3. Deadline: A[](ProcessActivities.EProcess imply t0<=23): the process should
reach the EProcess state before 23 hours to ensure that its deadline is met.

Activity timed automata, resource timed automata, and formulae are submitted to
UPPAAL.

Figure 5.14: UPPAAL verifier’s outcomes

Figure 5.14 illustrates UPPAAL verifier window. It shows the verification results
of the previous properties. The green light means that the property is satisfied. The
red light indicates that the property is unsatisfied. The verification results show that
the corresponding resource allocation is not correct, i.e., the process is live, but it is
not deadlock free, and does not meet its deadline. Indeed, only the liveness property
is satisfied since a8 is able to finish successfully its execution (i.e., the process can
reach ANDFinish2 state). The process is not always deadlock free due to the fact
some activities such as a2, a4, and a5, can be blocked due to the interruption of
resources consumed as spot instances.

The results provided from UPPAAL demonstrate the usefulness of our solution.
Indeed, it helps the BP designer to detect temporal violations resulting from the
mismatching between temporal constraints of both activities and cloud resources.

5.6 Conclusion

In this chapter, we answered the two questions mentioned in our thesis problematic
(see Section 3.2) which are: How to support cloud resource allocation in time-aware
BP models?, and How to ensure the correctness of time-aware BPs in cloud resources?.

To support cloud resource allocation in time-aware BP models, we proposed a
modeling of cloud resources, pricing strategies, as well as time-aware BP. We pre-
sented thereafter a BPMN compliant extension to support our proposed model. We
particularly presented how the cloud pricing strategies can be specified at design time,
through temporal constraints.

To ensure the correctness of time-aware BPs in cloud resources, we propose a set
of transformation rules that we implemented using ATL to ensure an automatic gen-
eration of timed automata. Consequently, we formally verify the respect of activities’

Conclusion 119

temporal constraints and cloud resources using model checking. We implemented our
approach through a proof of concept demonstrating the feasibility of our proposals.

We note that a set of possible resource allocation options can be provided using our
proposed verification step. Each correct allocation provides a different cost. Thus, it
is important to find the resource allocation that provides the minimal BP deployment
cost. For that, in the following Chapter, we will present our optimization approach
to provide the allocation that minimizes the BP deployment cost.

120 Supporting Cloud Resources Temporal Constraints in BPs

Chapter 6

Optimization of Business
Process Deployment Cost in

Cloud Resources

Contents

6.1 Introduction . 121

6.2 Linear optimization . 123

6.2.1 Inputs and decision variables . 123

6.2.2 Problem constraints . 124

6.2.3 BLP . 127

6.2.4 MIP . 127

6.3 CloudSim simulation . 128

6.3.1 CloudSim extension . 128

6.3.2 Unified Description Model . 129

6.3.3 Simulation of resource allocation 130

6.4 Evaluation . 131

6.4.1 Case study . 131

6.4.2 Performance Analysis . 132

6.4.3 Comparison . 136

6.4.4 Impact of the verification step . 138

6.4.5 CloudSim Results . 141

6.5 Conclusion . 143

6.1 Introduction

In this chapter, we present our third contribution that has as objective optimizing
BP deployment cost in cloud resources. As mentioned in Chapter 2, cloud providers
are diversifying their pricing strategies, specified based on temporal constraints, to

121

122 Optimization of Business Process Deployment Cost in Cloud Resources

attract more clients and reduce their unused resources’ expenditure. So, to mini-
mize enterprises’ spending based on less expensive pricing strategies, BPs need to be
correctly executed to avoid any temporal violation that could engender serious conse-
quences. Indeed, on-time delivery of goods or services has a direct impact on customer
satisfaction. Furthermore, time management is often a very effective cost reduction
strategy for organizations [30]. To deal with such issue, the BP designer can resort
to our extended version of BPMN, then to our second contribution to ensure the
temporal correctness of the resource allocation. After modeling the BP and verifying
the non-conflict between temporal constraints (Chapter 5), one of the BP designer
challenge is to select for each activity the suitable cloud resource and the best pricing
strategy without any constraint violation. In other words, it is important to discover
an optimal BP deployment cost while respecting a set of constraints such as time,
capacities, etc. However, the variety of cloud resources, pricing strategies, and activ-
ities requirements does not help the BP designer to find an optimal BP deployment
cost. Some research works have been made in the context of resource allocation in the
BPM field [32, 62, 154, 218]. Whereas, others dealt with optimal resource assignment
and activities’ scheduling in cloud [15,49,56,57,280,281]. However, they consider the
variety of neither pricing strategies nor advanced temporal constraints.

Cloud resources price is variable and timed constrained (e.g., AWS EC2 spot
instance). So, the BP designer can waste time, money, and efforts to configure a real
cloud environment based on wrong estimations. Therefore, an organization may pay
extra fees to deploy its BP correctly. To deal with such issues, researchers often use a
simulation tool to model the mechanisms and evaluate the results [28]. To this end,
the BP designer needs a cloud simulator that simulates an optimal resource allocation
and provides its real cost. In literature, different cloud simulators’ extensions are
proposed such as TeachCloud [59], CPEE [60], and CloudExp [61]. But, to the best
of our knowledge, existing cloud simulators do not provide the optimal and the real
BP deployment cost in cloud resources while taking into consideration the variety of
pricing strategies.

To overcome the challenges mentioned above, we propose our third contribution
composed of two steps: Linear optimization and CloudSim extension. In the first
step, we propose an approach that offers two methods to assist the BP designer to find
the optimal BP deployment cost. More specifically, we propose, first, a Binary Linear
Program (BLP) to provide an assignment method in order to select the suitable cloud
resource, cloud provider, and pricing strategy that satisfy activities requirements and
resource constraints. Second, in the case of temporal flexibility, we propose a Mixed
Integer Programming (MIP) to provide a scheduling method in order to find the
start and end times of BP activities to overlap with the temporal availabilities of
cloud resources. In the second step, we extend the famous cloud simulator provided
in the market, CloudSim [69], to assist the BP designer to simulate a cloud resource
allocation in a time-aware BP and to have an estimation of its real cost. This extension
is related to the capability to simulate the cloud resources consumed in the BP model.

Linear optimization 123

We combine the proposed extension with an existing one [145] that supports pricing
strategies to compute the BP deployment cost and then deduce its real cost.

The contributions presented in this chapter were published in [64–67].
The remainder of this chapter is organized as follows: Section 6.2 details our

linear optimization step. Section 6.3 gives an overview about of our simulation step.
Computational results are presented in Section 6.4. Finally, Section 6.5 presents our
conclusion.

6.2 Linear optimization

In this section, we detailed how the cost of the BP deployment cost is optimized. To
this end, we resort to mathematical formulation: BLP and MIP models to define an
objective function and constraints that would guide the optimization. Both models
are known for their simplicity, flexibility, and extensive modeling capability [282].
We introduce, first, some assumptions and notations to facilitate the mathematical
formulation. With no loss of generality, we consider that the BP model has just AND
branching and all the activities require cloud resources to be performed. Moreover, we
consider that MaxDaq=dq and Dmax=du. We assume also that the size of transferred
data between cloud resources is not considered and is left as future work. Finally, we
assume that the cloud resources are not shareable.

6.2.1 Inputs and decision variables

To begin with, we assume the availability of several cloud resources that satisfy ac-
tivities’ requests of these resources. BLP and MIP take as inputs: A a set of BP
activities, R a set of cloud resources, Pr a set of cloud providers, and St a set of pric-
ing strategies. The set of activities’ temporal constraints TA includes flexible AFT
and inflexible AInT temporal constraints.

The following are the inputs of our BLP and MIP:

• Set of process activities A={aq : ∀q ∈ {1, · · · , z}}, set of activities’ requested
capacities ReqA = {reqaq : ∀q ∈ {1, · · · , z}}, and set of activities’ temporal
constraints TA={Taq : ∀q ∈ {1, · · · , z}}={AFT ∪AInT};

• Set of cloud resources R = {Ri,∀i ∈ {1, · · · , n}};

• Set of cloud providers Pri = {prij ,∀j ∈ {1, · · · , p}} and set of pricing strategies
Stij = {stijk,∀k ∈ {1, · · · , s}} for each provider prij .

In the following, we present the decision variables:

• Xijkq ∈ {0, 1} is the decision variable that assigns a suitable cloud resource,
cloud provider, and pricing strategy to an activity. It indicates if activity aq
consumes a resource Ri ∈ R that a provider prij offers according to a strategy k.
It is used in both linear models.

124 Optimization of Business Process Deployment Cost in Cloud Resources

• Vq ∈ {0, 1} is a binary decision variable that indicates if activity aq uses a spot
instance and its penalty price is not null. It is used in both linear models.

• Saq (respectively Faq) is a decision variable of type integer used to determine the
start (respectively finish) time of each activity aq ∈ A. Saq and Faq represent
the flexible absolute temporal constraints of aq. They are used only in the
MIP model.

6.2.2 Problem constraints

The various constraints of the optimization problems are presented below. To explain
more each constraint, we use examples from the BP presented in Section 3.3. But,
we consider that the BP has only AND Branching type (parallel gateway), i.e., used
to model situations where more than one path is executed in parallel and all paths
are always executed. It should be noted that, we can also rely on the approach
of La Rosa et al. [283, 284] which proposes to map the BP model with ORSplit or
XORSplit into various variants with the sequential flow and/or ANDSplit. Therefore,
we can, first, generate all the possible process model variants. Second, we can apply
our approach for each process variant, separately, even though the process model has
different gateways types: AND, OR, XOR.

1. Execution constraints on activities: Equations (6.1) and (6.2) guarantee
that the resources’ capacities in terms of processing and memory should satisfy
activities’ requirements.

n∑
i=1

p∑
j=1

s∑
k=1

min(RAMi)Xijkq ≥ RAMaq , ∀q ∈ {1, · · · , z} (6.1)

n∑
i=1

p∑
j=1

s∑
k=1

min(vCPUi)Xijkq ≥ CPUaq ,∀q ∈ {1, · · · , z} (6.2)

For instance, activity a1 can be performed by a resource Ri that can satisfy its
requirements. Indeed, the minimal RAMi and vCPUi of the selected Ri should
be equal or grater to RAMa1 and CPUa1 (Equations (6.1) and (6.2)).

2. Temporal constraints on activities: To avoid the violation of BP temporal
constraints, we used the following four constraints. For instance, the start time
(Sal) should be after the finish time (Faq) of all its predecessors (Equation (6.3)).
We use Equation (6.4) to ensure the respect of inflexible temporal constraints.
Equation 6.3 ensures that each activity’s start time (Saq) is after the maximum
end-time (Fao) of all this activity’s predecessors. The time lag between the start
and end times founded by our MIP for each activity should respect its temporal

Linear optimization 125

durations (Equation (6.5)). Finally, we use Equation (6.6) to respect the BP
deadline t.

max(Fao) + TD(FS, ao, aq, du, du) ≤ Saq , ∀aq, ao ∈ A, o < q (6.3)

Saq == MSOaq & Faq == MFOaq ,∀q ∈ {1, · · · , z} (6.4)

0 ≤ Faq − Saq ≤ dq, ∀q ∈ {1, · · · , z} (6.5)

Saq ≥ 0 & Saq ≤ t & Faq ≥ 0 & Faq ≤ t,∀q ∈ {1, · · · , z} (6.6)

In Section 3.3, a2 and a3 are the successors of a1. So, both activities should start
after the end of a1, i.e, Fa1 ≤ Sa2 and Fa1 ≤ Sa3 (Equation (6.3)). Besides, let
us consider that a1 and a4 have inflexible temporal constraints (MSOa1=8am
and MFOa4=5pm) that should be respected then Sa1 = MSOa1=8am and
Fa4 = MFOa4=5pm (Equation (6.4)). Further, while the duration of activity
a2 is d2=3 hours then the time lag between its start time Sa2 and its finish
time Fa2 shall be between d2 (Equation (6.5)). Finally, the BP has a deadline
constraint t=24. Therefore, all the start and finish times of BP activities should
be included in the temporal interval [0,24] (Equation (6.6)).

3. Temporal constraints on pricing strategies: Equations (6.7) and (6.8)
ensure that the temporal duration of a cloud resource Ri should be greater or
equal to the temporal duration of the activity requiring it. Moreover, Ri should
be available from the start until the end times of the activity consuming it
(Equations (6.9), (6.10)).

n∑
i=1

p∑
j=1

s∑
k=1

MinAvRiXijkq ≥ dq,∀q ∈ {1, · · · , z} (6.7)

n∑
i=1

p∑
j=1

s∑
k=1

MaxAvRiXijkq ≥ dq, ∀q ∈ {1, · · · , z} (6.8)

n∑
i=1

p∑
j=1

s∑
k=1

SUNET (Ri)Xijkq ≤ Saq ,∀q ∈ {1, · · · , z} (6.9)

n∑
i=1

p∑
j=1

s∑
k=1

FUNET (Ri)Xijkq ≥ Faq ,∀q ∈ {1, · · · , z} (6.10)

Each activity has temporal constraints that should meet the temporal con-
straints of pricing strategies (Equations (6.7) and (6.8)). For instance, MaxDa1=d1=2 hours
is the maximum duration of a1. Ri is a spot block can be assigned to a1.
Thus, MinAvRi ≥ d1 and MaxAvRi ≥ d1. When defining activities start
and end times, one has to select the resource, the provider, and the pricing

126 Optimization of Business Process Deployment Cost in Cloud Resources

strategy having the cheapest cost while ensuring the respect of pricing strate-
gies constraints. For example, R1 from pr11 in strategy st114=(spot, [1am,
6pm], 0.0386$) will be allocated for a1, then Sa1 ≥ SUNET (R1) = 1am and
Fa1 ≤ FUNET (R1) = 6pm (Equations(6.9) and (6.10)).

4. Constraint interruption: This constraint is used to ensure the addition of
the penalty price when the selected instance has an interruption risk (i.e., spot
instance strk = 1).

n∑
i=1

p∑
j=1

s∑
k=1

Xijkqstrk = Vq where pq > 0 and strk = 1,∀q ∈ {1, · · · , z} (6.11)

The BP presented as a motivating example in Section 3.3 has some activities
subject to financial penalties price when they are canceled due to resource in-
terruption. For example, activity a4 penalty cost is equal to p4=0.2$. Thus, if
a4 consumes a cloud resource as a spot instance, (Equation (6.11)) so p4 should
be added to the process total cost.

5. Assignment Constraint: Equation (6.12) ensures that one resource offered
by one cloud provider under one pricing strategy is used by one activity.

z∑
q=1

Xijkq = 1,∀i ∈ {1, · · · , n},∀j ∈ {1, · · · , p},∀k ∈ {1, · · · , s} (6.12)

6. Placement constraint: This constraint is used to guarantee that each activity
consumes only one resource proposed by one cloud provider under a specific
pricing strategy.

n∑
i=1

p∑
j=1

s∑
k=1

Xijkq = 1,∀q ∈ {1, · · · , z} (6.13)

For instance, a1 can use only one cloud resource R1 from pr11=Amazon under
st113=spot strategy. This R1 performs only a1 then X1131=1 (Equations (6.13)
and (6.12)).

7. Binary constraints: to ensure that our linear models are binary, we impose
that the decision variables should be either 0 or 1 (Equations 6.14 and and
6.15).

Xijkq ∈ {0, 1}, ∀q ∈ {1, · · · , z}, i ∈ {1, · · · , n}, j ∈ {1, · · · , p}, k ∈ {1, · · · , s}
(6.14)

Vq ∈ {0, 1}, ∀q ∈ {1, · · · , z} (6.15)

Linear optimization 127

The total execution cost C (Equation (6.16)) includes two terms. The first is the sum
of resources allocation costs in order to execute the BP. The allocation cost is given

C =
n∑

i=1

p∑
j=1

s∑
k=1

z∑
q=1

dqcijkXijkq +
z∑

q=1

pqVq (6.16)

by the multiplication of the execution time of the activity dq by the Ri utilization
cost. The price of resource Ri is the hourly unit strategy price cijk (Definition 5.2.2)
proposed by a provider prij . The second term is the penalty price pq values added
when activities subject to financial penalties are performed by spot instances.

MinC (6.17)

The objective function (Equation (6.17)) of the model minimizes the BP deploy-
ment cost in cloud resources. Each linear model is subject to a set of constraints
presented above.

6.2.3 BLP

Using our BLP model, the objective function (Equation (6.17)), subject to the con-
straints (Equations (6.1)-(6.3), and (6.7)-(6.15)), seeks to: (i) select for each activity
the cloud resource that has the required capacities and (ii) select the suitable pricing
strategy for each cloud resource. More precisely, it selects resources that respect the
constraints in order to find the best resource assignment that achieves the minimal
total BP deployment cost. Consequently, each activity will consume the resource
that satisfies its requirements in terms of RAM and processing. Moreover, the pricing
strategy selected for each resource should respect activities temporal constraints and
would have an impact on the BP deployment cost. In fact, assigning a cloud resource
as a spot instance (i.e has an interruption risk) to an activity subject to financial
penalty price will lead to increase the total cost. Thus, the addition of penalty price
should be reduced to optimize the BP deployment cost. It should be noted that, in
our BLP model, Saq and Faq are not decision variables but they are considered as
inputs. They specify the start and end times of each activity aq.

6.2.4 MIP

We define our MIP model based on an extension to the constraints of our BLP model.
Indeed, to define our MIP, we add for our BLP Equations (6.4), (6.6), and (6.5) to
ensure that the scheduling solution respects the temporal constraints of activities.
Similarly to our BLP, the objective function of our MIP (Equation (6.17)), attempts
to: (i) select for each activity the cloud resource that has the needed capacities and
(ii) select the suitable pricing strategy for each cloud resource and in case of temporal
flexibility. However, it differs from the objective function of our BLP in two important

128 Optimization of Business Process Deployment Cost in Cloud Resources

ways. First, it is subject to (Equations 6.3-6.14), and second it attempts also to
(iii) define the start and end times of each BP activity to overlap with the cheaper
pricing strategies temporal constraints. More specifically, it provides the optimal total
deployment cost by selecting resources that satisfy the constraints and determining
activities’ start and end times to find the best scheduling. So, the scheduling execution
plan defines for each activity its temporal execution period and the cloud resource that
satisfies its requirements in terms of RAM and processing. Moreover, as mentioned
in the previous section, our objective is to minimize the penalty price added in case
of a resource interruption due to the spot instance biding process. Thus, we need to
avoid the selection of resource with an interruption risk for activities subject to high
financial penalties prices.

6.3 CloudSim simulation

Testing in real world environment is one technique for evaluating the performances of
a system. However, cloud resources price is variable and timed constrained (e.g., spot
instance), so this technique becomes more expensive and time consuming method.
Thus, with a simulation tool, the BP designer can consider many different scenarios
and get a more real cost. In this section, we describe our Simulation step using
CloudSim. We describe, first, how CloudSim has been extended. Second, we give
a description of the Unified Description Model. Third, we detail how to simulate
the cloud resources consumed in a time-aware BP model in order to deduce the real
deployment cost using the CloudSim extension [66].

6.3.1 CloudSim extension

In Occiware project1, in which Telecom SudParis is partner, a CloudSim extension,
PriceCloudSim [145], was proposed to support the pricing strategies of Amazon
Web Services (AWS). PriceCloudSim proposes four different prices for each allocated
resource based on on-demand, reserved, and spot block, and spot instance strategies.
The cost estimation is done based on three phases. First, the cloud architect models
graphically the cloud configurations using the simulation designer, which is a graphical
toolkit that helps the architect to easily define the input of the simulator. Second,
PriceCloudSim simulates the cloud configuration to estimate the execution time of
each cloudlet (i.e., cloud activity). Third, PriceCloudSim uses the AWS API to
retrieve the real price with the different strategies of the resources required for the
time estimated. PriceCloudSim proposes the same prices given by AWS calculator2,
which is a useful tool that estimates the cost of cloud resources before the deployment
and determines the best and worst-case scenarios.

1https://www.occiware.org/
2http://aws.amazon.com/calculator

CloudSim simulation 129

However, PriceCloudSim [145] and also AWS calculator did not support the
simulation of cloud resource allocation in the context of time-aware BPs. To fill this
gap, we extend PriceCloudSim [66] in order to simulate the execution of all activities
based on the BP control-flow. Each BP activity is considered as an application
(Cloudlet in CloudSim) being hosted in the virtual machine and all VMs are deployed
in the same Host. Three cases are identified:

1. Sequential activities: the execution of one activity follows the execution of an-
other activity. This pattern is represented in CloudSim by SpaceShare policy
(see Section 2.3.3).

2. Conditional branching : only the branches that satisfy the predetermined criteria
are executed. Depending on the number of branches chosen, this pattern can
be represented in CloudSim by TimeShare or SpaceShare policies.

3. Concurrent branching : all activities in the same branch are executed concur-
rently. This pattern is represented in CloudSim by TimeShare policy (see Sec-
tion 2.3.3.

The BP activities are constrained by relative and absolute temporal constraints.
For that, we extend PriceCloudSim to respect the defined constraints when simu-
lating the allocation of cloud resources. That means that each activity that requires
cloud resources needs to be executed at a specific time or during a time interval.
The BP, the execution time of each activity, and the allocated cloud resources are
defined in the UDM as presented in Section 6.3.2. This UDM is parsed to create a BP
instance. This instance along with its allocated resources are then simulated in the
PriceCloudSim. To support the temporal constraints, CloudSim Cloudlet and Bro-
ker classes (see Section 2.3.3) has been extended. The Cloudlet class is extended by
new attributes (such as startTime and endTime attributes) and methods for choosing
the ideal moment of the Cloudlet execution. While, the Broker class is extended by
delaying the simulation time of the current activity, from the previous one.

6.3.2 Unified Description Model

The creation of tests on real infrastructure involving frequent changes is a time con-
suming task. Thus, to bridge this gap, we propose an UDM that allows to explicitly
model the cloud resources, pricing strategies, and activities temporal constraints in
context of time-aware BP. In this section, we present the UDM which describes the
BP control-flow, its requirements and the allocated cloud resources. The UDM is
defined as an XML document and it is composed of a set of tasks and resources.
Listing 6.1 shows an extract of the UDM model of the BP presented in Figure. 3.3.

The Tasks correspond to the activities of the BP. Each activity has a set of
attributes, temporal dependencies with other activities, and the required cloud re-
sources. The attributes identify and describe the temporal duration. The temporal

130 Optimization of Business Process Deployment Cost in Cloud Resources

dependencies express the relationship between the activities through an operator. The
resource identifies the cloud resource needed by the activity. For instance, lines 4-10
in Listing 6.1 depict that the task a1 starts at 2017-06-02 14:08:09. The minimum
duration is 1 hour and the maximum duration is 2 hours. During this time, this task
requires VM1 as a resource. When a1 was finished, both a2 and a3 start in parallel.

The Resources describe the set of resources used by the CloudSim tool. In this
paper, we consider only the computing (i.e., virtual machine) resources. However,
other resources can be attached to tasks such as storage and network. For instance,
lines 19 in Listing 6.1 shows the definition of the resource VM1 and its characteristics.
The type of this VM is x.large (the number of the virtual CPU is 4 and the memory
amount is 16 GB) and its operating system is Linux. The proposed price is defined
using on-demand pricing strategy and it is located on North of Virginia.

Listing 6.1: Unified Description Model based on Figure. 3.3

1 <?xml version=”1.0” encoding=”UTF−8”?>
2 <Process>
3 <Tasks>
4 <Task id=”1” minDur=”1” maxDur=”2” StartTime=”2017−06−02 14:08:09” endTime=”

2017−06−02 14:08:09” length=”10000”>
5 <attachedTo op=”Parallel”>
6 <target id=”2” startAfter=”2” />
7 <target id=”3” startAfter=”3” />
8 </attachedTo>
9 <Resource>VM 1</Resource>

10 </Task>
11 <Task id=”2” minDur=”2” maxDur=”3” StartTime=”2017−06−02 14:09:29” endTime=”

2017−06−02 14:08:09” length=”10”>
12 <attachedTo op=”Sequentiel”>
13 <target id=”4” startAfter=”2” />
14 </attachedTo>
15 <Resource>VM 2</Resource>
16 </Task>
17
18 <Tasks>
19 <Resources>
20 <Resource id=”VM 1” name=”VM” type=”xlarge” location=”US East (N. Virginia)” strategy=”on

−demand” os=”Linux” dcpu=”4” memory=”16”/>
21 <Resource id=”VM 2” name=”VM” type=”xlarge” location=”US East (N. Virginia)” strategy=”

Reserved” os=”Linux” dcpu=”2” memory=”15”/>
22 ...
23 </Resources>
24 </Process>

6.3.3 Simulation of resource allocation

In this doctoral research, we take as inputs: the time-aware BP, and the cloud re-
sources and pricing strategies selected using our BLP and MIP models. Then, we use
our Eclipse-plugin (Chapter 5) to design those inputs as a BPMN model in order to
obtain the UDM file, i.e., XML document. The latter contains the BP control-flow,
requirements, and the allocated cloud resources. Then, using the temporal constraint

Evaluation 131

defined in this UDM and the pricing strategies defined in EPriceCloudSim, we sim-
ulate a cloud resource allocation in a time-aware BP to estimate the real cost of the
BP deployment.

6.4 Evaluation

In this section, we evaluate our proposal for optimal BP deployment cost in cloud
resources to demonstrate its effectiveness, feasibility, performance, and scalability.
We first evaluate the feasibility through a case study. Second, we study the impact
of different parameters such as penalties price, process structure variation, inflexible
temporal constraints, and deadline constraints (Equation (6.4)). Third, we compare
the results given by our assignment solution (BLP), our scheduling solution (MIP),
and our simulation step. Thus, using the extension of CloudSim simulator to support
pricing strategies (on-demand, reserved, spot instance, and spot block), proposed
in [285], we simulate the resource allocations provided by our BLP and MIP models to
compute the BP deployment costs using updated cost values. Moreover, we compare
the performance of our solutions against a resource allocation method. In the end,
we demonstrate the scalability of our proposal through studying the impact of our
verification step. For the evaluation, we implemented the proposed linear models
using IBM-ILOG Cplex Optimization Studio V12.6.3 on a laptop with a 64-bit Intel
Core 2.3 GHz CPU, 6 Go RAM, and Windows 10 as OS.

6.4.1 Case study

The section below evaluates the feasibility of our proposals. To this end, we take as
inputs: the “service supervision” BP (Section 3.3) with only AND Branching types,
and the set of cloud resources presented in Tables 3.2 and 3.3. Further, we assume
that the BP has only AND Branching type and must start at 00 am and must finish
on the same day. As was mentioned in Section 6.2.2, using the approach of La Rosa
et al. [283, 284], we can map the BP model with ORSplit or XORSplits into various
variants with the sequential flow and/or ANDSplit. Then, we can apply our approach
for each process variant, separately, even though the BP model has different gateways
types: AND, OR, XOR.

We present in Table 6.1 the assignment and the BP deployment cost provided
through our BLP model which selects for each activity a cloud resource and a pricing
strategy. For instance, a1 starts at 00 am and consumes R1Spot. The objective
function value is 4.016$.

We present in Figure. 6.1 the scheduling plan of the BP (Figure. 3.3) presented as a
motivating example. The execution periods are depicted as green rectangles with a tag
on it defining the activity name and the allocated resource is mentioned in red colour.
The objective function provided by our MIP model is 3.45$. While Table 6.2 presents

132 Optimization of Business Process Deployment Cost in Cloud Resources

Table 6.1: Assignment result

Activities Start time Finish time Instance

a1 00am 2am R1SpotBl

a2 2am 5am R2SpotBl

a3 2am 3am R1Res

a4 5am 9am R3SpotBl

a5 6am 8am R1Spot

a6 3am 6am R5

a7 3am 4am R3Res

a8 9am 10am R4

a9 9am 11am R2Spot

Objective function 4.016$

the activities execution order and the price of each allocated resource. The cost
estimated by the extended CloudSim tool is about 3.81$.

Figure 6.1: Gantt chart of the service supervision process

We note that our MIP gives a cheaper cost compared to BLP and CloudSim values.
Whereas, we note that our MIP gives greater end time value (4 pm). This is because
some temporal constraints of the BP are flexible and can be delayed or advanced.
We conclude that the temporal flexibility helps to reduce the BP deployment cost.
Indeed, advancing or delaying the start and/or end times of activities to overlap with
resources’ temporal availabilities saves up to 14%.

6.4.2 Performance Analysis

In this section, we begin by presenting the data inputs used in our evaluation. Then,
we examine the impact of penalties prices, then AND Split/Join, after the tempo-
ral flexibility, and finally the deadline constraints on the objective function and the
computation time of our linear models.

Evaluation 133

Table 6.2: CloudSim cost estimation

Activities RAM vCPU Instances Strategy Price

a1 16GB 4 t2.xlarge Spot [0.0557, 0,1114]$

a3 17GB 2 m2.xlarge Reserved (No Upfront) 0.1110$

a2 15GB 2 r3.large SpotNo 0.0323$

a6 30GB 8 m3.2xlarge Spot [0,2468, 0,3702]$

a7 30GB 8 m3.2xlarge Reserved (No Upfront) 0.3800$

a5 16GB 4 t2.xlarge SpotNo 0.0557$

a4 30GB 8 m3.2xlarge SpotNo 0.1238$

a8 15GB 2 DC4s (Microsoft) On-demand 0.3950$

a9 15GB 2 m2.xlarge Spot [0.0245, 0,049]$

Table 6.3: Data Input Ranges

Information Type Range

Providers’ number integer [1, · · · , 2]

Amazon strategies’ number integer [1, · · · , 4]

Microsoft strategies’ number integer 1

vCPU number integer [2, · · · , 8]

RAM amount double [15, · · · , 64]

Compute price double [0.01$, · · · , 0.532$]

Requirement in CPU integer [2, · · · , 8]

Requirement in RAM double [15, · · · , 64]

Activities’ number integer [2, · · · , 90]

Activities’ durations integer [1, · · · , 5]

Penalty cost double [0$, · · · , 1$]

6.4.2.1 Data inputs

Our work is motivated through a real use case from France Telecom/Orange labs. In
fact, we did not find a real dataset available to use as input to evaluate our proposal.
This is due to the fact that organizations consider mostly such datasets, enriched with
cloud resources and pricing informations, as confidential and can not be shared with
others. Thus, we relied on our use case requirement values to define the ranges bounds
for synthetic datasets generation. In other words, the lower and higher bounds are
specified based on real data. For this reason, the data inputs, used in our work, are
defined randomly from the real ranges values presented in Table 6.3. For instance,
the number of providers should be in (1,2).

6.4.2.2 Penalties Price Evaluation

To reduce the penalties prices due to the interruption risk of critical activities, we
use the penalty constraint (Equation (6.11)). As a result, penalty prices may have

134 Optimization of Business Process Deployment Cost in Cloud Resources

an important impact on the BP deployment cost. Thus, we compare the values of
the objective function and the computation times of our BLP and MIP models when:
(i) all penalty prices are null and (ii) some activities penalty prices are not null. For
this end, we modify the number of BP activities and cloud resources proposed by
providers under various pricing strategies.

0

10

20

30

40

50

5 10 20 40 80

C
os

t i
n

$

Activities Number

BLP (p_q>0) BLP (p_q=0)

(a) BLP’s objective function

0
5

10
15
20
25
30
35
40

5 10 20 40 80

C
os

t i
n

$
Activities Number

MIP (p_q>0) MIP (p_q=0)

(b) MIP’s objective function

(c) BLP’s computation time (d) MIP’s computation time

Figure 6.2: Penalties prices

From data shown in Figure 6.2, it is apparent that the objective function and
the computation time values are greater when activities have penalty prices for both
models (BLP and MIP).

This result may be explained by the fact that the penalty price constraint limits
the search space and gives higher values. First, avoiding the selection of instances
with an interruption risk for critical activities may lead to select a more expensive
resource (i.e., without an interruption risk). Thus, the BP deployment cost is more
expensive. Besides, providing the optimal solution takes more time while penalty
constraint (Equation (6.11)) restricts more the search space. Consequently, both,
objective function and computation time, values increase when some activities have
penalties prices. It can, therefore, be assumed that an organization can save up to
20% in BP deployment cost and can reduce up to 22% in computation time to obtain

Evaluation 135

the optimal solution when activities penalty prices are null.

6.4.2.3 AND Split/Join Constraints

The BP structure is one of the factors that may have an impact on BP’s deployment
cost. In this work, we assume that a BP has only ANDSplit branching. Therefore, we
vary the number of this branching type on the BP models to evaluate the objective
function values provided by both linear models (BLP and MIP).

Figure. 6.3 shows the results obtained from ANDSplit branching variation. We
notice that the BP deployment cost is greater when AND ’s number is lesser. In
general, therefore, it seems that the parallelism helps to reduce the objective function
value. More precisely, the parallelism gives more flexibility for the selection of cloud
resources. Indeed, it permits to modify the execution order of some activities to be
performed at a cheaper cost. Consequently, we conclude that the BP deployment cost
depends on its structure.

0
5

10
15
20
25
30
35
40

5 10 20 40 80

C
os

t i
n

$

Activities Number

0 AND 4 AND 8 AND 16 AND

(a) BLP’s objective function

0

10

20

30

40

50

5 10 20 40 80

C
os

t i
n

$

Activities Number

0 AND 4 AND 8 AND 16 AND

(b) MIP’s objective function

Figure 6.3: AND Split/Join Variation

6.4.2.4 Temporal Flexibility Constraint

One of the important factors in our work is temporal flexibility that should be con-
sidered to decide which linear model may be used to find an optimal BP deployment
cost. The rate of temporal flexibility may have an impact on the MIP objective func-
tion value. For this purpose, we vary the rate of temporal flexibility and we evaluate
the outputs of our MIP.

From the graph below (Figure. 6.4) we can see that the objective function value
increases when the rate of inflexible temporal constraints increases. More specifically,
the highest value is obtained when the rate of flexible temporal constraints is 25%.
Namely, when 75% of start and finish times of activities are fixed, our MIP does not

136 Optimization of Business Process Deployment Cost in Cloud Resources

have a large flexibility to provide optimal and cheaper BP’s scheduling. This led to
increase the BP deployment cost while those temporal constraints should be respected.
Namely, the presented analysis raises the possibility that the temporal flexibility rate
helps to minimize the BP deployment cost.

0

10

20

30

40

50

5 10 20 40 80

C
os

t i
n

$

Activities Number

100% Flexibility 75% Flexibility

50% Flexibility 25% Flexibility

Figure 6.4: Flexibility Evaluation

6.4.2.5 Deadline Constraint

In our MIP, we use a deadline constraint (Equation (6.6)) to limit the activities start
and end times. Thus, we intend to investigate the objective function and computation
time values when this constraint is removed. For that, we compare the results provided
by our MIP model with and without deadline constraint.

As shown in Figure. 6.5a, we can notice that the objective function provided
by our MIP model is higher under deadline constraint. In Figure. 6.5b, we present
only the computation time values when our MIP model is subject to the deadline
constraint. By contrast, the computation times have high values (high number of
hours) when the deadline constraint is removed. As a result, the computation time
is considered as a good indicator of the importance of Equation (6.6). A possible
explanation for both results might be that the deadline constraint restricts the search
domain of our MIP model. As a result, the deadline constraint gives higher values in
a limited computation time. Finally, we conclude that the deadline constraint may
help our MIP model to reduce its computation time to provide optimal solutions.

6.4.3 Comparison

In this experiment, we make, first, a comparison between our optimization meth-
ods. Second, we compare both of them to another method which is a priority-based

Evaluation 137

0
5

10
15
20
25
30
35
40
45

5 10 20 40 80

C
os

t i
n

$

Activities Number

MIP with deadlineMIP without deadline

(a) MIP’s objective function (b) MIP’s computation time

Figure 6.5: Deadline evaluation

scheduling algorithm (“Priority+FCFS” [93]). There exist different research works
that focused on optimizing different parameters such as energy, security, cost, etc
in the cloud computing context. Some of these works used well-known scheduling
algorithms such as First Come First Served (FCFS) to evaluate their proposed ap-
proaches. FCFS is a simple scheduling algorithm that automatically executes queued
requests and processes in order of their arrival. So, the authors adapted FCFS to
their context to evaluate the comparability. Moreover, to the best of our knowledge,
there is no work done around the optimization of the deployment cost of a time-aware
BP in cloud resources based on pricing strategies. Consequently, it is not feasible to
compare between other existing works and our new approach. Therefore, we adapt
FCFS to our context to evaluate our approach.

The priority scheduling algorithm is a non-preemptive algorithm and one of the
most common scheduling algorithms. Its basic idea is straightforward: a priority
is assigned for each activity. Activity with the highest priority is to be executed
first and so on. Equal-Priority activities are scheduled in First Come First Served
(FCFS) order [93]. Priority can be decided based on different factors such as memory
requirements, time requirements or any other resource requirement. In our case,
priority is based on the process control flow. In other words, the highest priority is
given to the first activity and the lowest one is given to the last activity. We assign,
in the decreasing priority order, for each activity only one instance that respects its
different requirements and has the cheapest cost. For example, an activity a is the
first activity (i.e, has the highest priority) in the process, needs an amount of RAM
and vCPU capacities, has a MinDa and MaxDa and a penalty cost not null. This
activity will take the less expensive resource R, without an interruption risk, that
respects its required capacities and temporal constraints. We note that each instance

138 Optimization of Business Process Deployment Cost in Cloud Resources

is assigned to only one activity

0

10

20

30

40

50

60

5 10 20 40 80

C
os

t i
n

$

Activities Number

Our MIP Our BLP FCFS

Figure 6.6: Approaches Comparison

It can be seen from the data in Figure. 6.6 that our BLP model provides the
optimal BP deployment cost but less values are provided by our MIP model. This
result may be explained by the fact that temporal flexibility helps to minimize the BP
deployment cost. More specifically, matching activities’ temporal constraints to cloud
resources’ temporal constraints allow to select cheaper cloud resources to perform
activities. Otherwise, “Priority+FCFS” scheduling algorithm performs worse than
our optimization methods. It tends to select less-expensive resources based on the
arrival time of each activity while respecting its required capacities and temporal
constraints. A possible explanation for this might be that the scheduling of BP’s
activities is done before the cloud resource allocation. However, using our MIP model
we define simultaneously the scheduling plan and the selection of cloud resources and
pricing strategies. In the end, we note that our MIP model saves up to 40% in-process
cost in comparison with both methods.

6.4.4 Impact of the verification step

We note that linear programming optimization problems are NP- hard [143]. So they
require high computational efforts to find out an optimal and even a feasible solution
for large size problems. For that, it is often more important to reduce the search space
to avoid waiting for a long time to obtain the optimal solution. To this end, to deal
with more complex and large BPs, before moving to the optimization step, we check
in our verification approach the temporal correctness of cloud resource allocation in
time-aware BPs. Then, we take as inputs for our linear models (BLP and MIP)
models: (i) a BP and (ii) only the set of cloud resources and pricing strategies that

Evaluation 139

ensure cloud resource allocations are temporally correct. In this manner, the size
of the optimization problem is reduced and so the computation times of our linear
models (BLP and MIP) are reduced. Consequently, our linear models may converge in
a short time to an optimal solution [144]. For that, we vary the optimization problem
size to compare between the values of computation time and objective function when
the inputs of our linear models (BLP and MIP) are a BP, and (i) a set of cloud
resources and their pricing strategies (BLP and MIP without verification), or (ii) a
set of possible allocation options that are verified as per Section 5.4 (BLP and MIP
with verification).

To this end, this Section is devoted to study the impact of the verification step.
We evaluate, first, the impact of our model’s inputs, and second the impact of correct
allocations’ number on the objective function and on the computation time values.

6.4.4.1 Impact of inputs

In Figure 6.7a and Figure 6.7b, we respectively present the computation time’s and
objective function’s values of our BLP and MIP models. On the one hand, as expected,
the results show that the computation time of both linear models has low values (about
30 seconds) in case of BPs with a small number of activities (under 200) compared to
values (high number of hours) in case of BPs with a large number of activities. We
also note that taking as input correct allocations, in both cases, helps to converge in
a limited time (under 1 hour) to optimal solutions thanks to a restricted search space.
More precisely, an organization can reduce up to 85% in computation time to obtain
the optimal solution. This observation may support the hypothesis that minimizing
the problem size can lead to minimizing the waiting time to reach an optimal solution.

On the other hand, the results revealed that the objective function values are
always high if we take as input correct allocations (verification step). This is due
to a restricted search space. But, if we take as input all cloud resources (without
verification step) we notice that the objective function values are less thanks to the
large variety of cloud resources proposed in various pricing strategies. Namely, an
organization can save up to 8% in the BP deployment cost (i.e., objective function)
when enlarging the search space (without verification step). In general, therefore, it
seems that the restriction of the search space may cause the raise of the objective
function value.

The results provided from our BLP and MIP models show the effectiveness of our
solutions. In fact, taken together, these results suggest that our approach helps the
designers to optimize the costs of BP deployment in cloud resources. Even in case
of space restriction (with verification) for BPs with a large number of activities, the
rate of increase of the objective function is quite small (up to 8%) compared to the
rate of decrease of the computation time (up to 85%).

140 Optimization of Business Process Deployment Cost in Cloud Resources

0
500

1000
1500
2000
2500
3000
3500
4000

5 10 20 40 80 200 400 800 1000

Ti
m

e
R

es
po

ns
e

in
 s

ec
on

ds

Activities Number

BLP without verification BLP with verification

(a) BLP (b) MIP

Figure 6.7: Impact of inputs on computation time

0
50

100
150
200
250
300
350
400

5 10 20 40 80 200 400 800 1000

C
os

t i
n

$

Activities Number

BLP without verification BLP with verification

(a) BLP

0

50

100

150

200

250

300

350

5 10 20 40 80 200 400 800 1000

C
os

t i
n

$

Activities Number

MIP without verification MIP with verification

(b) MIP

Figure 6.8: Impact of inputs on objective function

6.4.4.2 Impact of correct allocations’ number

The number of correct allocations ca is one of the factors that can impact both: the
BP deployment cost and the computation time of our linear models. Thus, we take
randomly a set of ca correct allocations. Then, we vary ca to analyze the values of
the computation time and the objective function of our BLP and MIP. So, we take as
inputs: (i) a BP of 200 activities and (ii) a set of correct allocations ca. The results are
reported in Figure 6.9a and Figure 6.9b. As shown in Figure 6.9a, the BP deployment
cost is always less expensive when ca is higher while the search space is larger and
so there are more choices. This may be explained by the fact that each set of correct
allocations may not provide the optimal BP deployment costs. Indeed, considering a
large set of inputs raises the probability to encounter cheaper costs. In contrast, from

Evaluation 141

Figure 6.9b, it can be seen that following the increase of ca, a significant increase in
the computation time was recorded. Mainly, the high value of ca helps to reduce the
objective function but it raises the computation time of our linear models. It can
therefore be assumed that the number of correct allocations has a significant impact
on BP deployment cost and the computation time of our linear models.

0
10
20
30
40
50
60
70
80
90

10 30 60 90

C
os

t i
n

$

Correct Allocation Number

BLP MIP

(a) Objective function (b) Computation time

Figure 6.9: Impact of correct allocations’ number

6.4.5 CloudSim Results

In this section, we present tests and evaluations that we undertook to quantify the
efficiency of CloudSim in modeling and simulating the cloud computing environment.
To this end, we rely on CloudSim framework [89] to simulate a cloud environment. So,
we take as inputs the UDM file describing: (i) the relationships between activities, (ii)
their requirements (time, RAM, vCPU, etc), (iii) the selected cloud resources, and (iv)
the pricing strategies that are selected to perform activities. Next, using the extended
CloudSim, we simulate the BP execution in order to evaluate the difference between
the cost values provided by our proposals and the cost computed using the simulator.

Figure. 6.10 illustrates the experimental results provided. It is apparent from those
graphs that the results given by our BLP and MIP models are sometimes lesser and
sometimes greater than the results given by the simulator. This difference is owing
to costs values updated and extracted from Amazon API. We use Equations (6.18)
and (6.19) to compute the difference in percentage between the cost values given by
our linear models and the simulator. For instance, p1 (respectively p2) presents in
percentage the difference between CloudSim value obsimul and our BLP’s (respectively
our MIP’s) obBLP (respectively obMIP) objective function value.

142 Optimization of Business Process Deployment Cost in Cloud Resources

0
5

10
15
20
25
30
35
40
45

5 10 20 40 80

C
os

t i
n

$

Activities Number

Our BLP BLP Simulation

(a) BLP

0
5

10
15
20
25
30
35
40
45

5 10 20 40 80

C
os

t i
n

$

Activities Number

Our MIP MIP Simulation

(b) MIP

Figure 6.10: CloudSim Evaluation

p1 = |1− obBLP

obsimul
| × 100 (6.18)

p2 = |1− obMIP

obsimul
| × 100 (6.19)

Based on both equations (6.18) and (6.19), we observe in Figure 6.11 that, overall,
p1 and p2 values are under 13%. These results are likely to be related to the cost
updating as a consequence of, especially, the bidding process for spot instance. In
contrast, the most obvious finding to emerge from the simulation is that our linear
models give efficient results and its margin of error is quite small.

Figure 6.11: Difference in % between our linear programs and the simulator

Conclusion 143

6.5 Conclusion

In this chapter, we answered the questions mentioned in our thesis problematic (see
Section 3.2) which is: How to find the optimal deployment cost of a time-aware BPs
in cloud resources?.

To find an optimal BP’s deployment cost in cloud resources, we model our opti-
mization problem using mathematical formulations. More precisely, we propose two
linear models: a BLP and MIP that are composed of an objective function and a
set of constraints. The objective function reduces the BP deployment cost under
various constraints such as activities requirements, resource constraints, etc. Our
models take as inputs a time-aware BP and a set of cloud resources proposed under
different pricing strategies. If activities temporal constraints are flexible, we provide
the best scheduling plan using our MIP model. Otherwise, the best assignment of
cloud resources is provided using our BLP model. Moreover, we propose a CloudSim
extension to enable the BP designers to analyze the cost for the best deployment sce-
nario. The experimental results show the feasibility, effectiveness, and performance
of our proposals.

144 Optimization of Business Process Deployment Cost in Cloud Resources

Conclusion and Future Works
G

The research problem of our thesis has been expressed by this question: How to
optimize the BP deployment cost in cloud resources based on temporal constraints?
We presented in details, in previous chapters, our solutions to answer the raised
question. In this Chapter, we first summary our work in Section 7.1 then we present
the future work in Section 7.2.

7.1 Fulfillment of objectives

Considerable attention have been paid to PAISs in order to better manage and exe-
cute operational processes involving people, applications, and/or information sources
on the basis of BP models [17]. An example of such systems is BPM. Its main in-
strument are BP models that represent BPs in terms of activities and their orders.
Besides, the BP field is influenced by a wide range of temporal constraints such as
durations, temporal dependency, etc. The satisfaction of those temporal constraints
is fundamental to avoid critical situations and guarantees the safety of the involved
parties. Further, organizations need to minimize their upfront investment on IT
infrastructure. Therefore, they choose to outsource some operations to cloud com-
puting due to its resource elasticity and pay-per-use benefits. Many cloud providers
offer different pricing strategies (e.g., on-demand, reserved, and spot), defined based
on temporal constraint, to accommodate users’ changing and last-minute demands.
In such environment, organizations need to support large amount of activities’ tem-
poral constraints and cloud resources having limited temporal availabilities proposed
under various pricing strategies. Besides, they need to optimize the BP’s deployment
cost in cloud computing. Not only supporting the resource allocation in such BP
models has been an interesting topic over the last years. But also optimization of the
BP deployment cost in cloud resources constitutes an appealing challenge.

Many researches have been involved in both academics and industry. They differ-
ently address these challenges. On the one hand, several researches working on the
resource perspective in BP models have been proposed. They suggest to support the
resource perspective by extending process modeling languages. They provide formal
definitions for the allocated resources. Nevertheless, such approaches only take into
account objects and especially human resources and only few ones do consider the
particular resource type that are cloud resources without considering their limited
temporal availabilties. On the other hand, many researches working on optimization
of the BP’s deployment cost in cloud resources have been defined. They propose
various approaches to minimize the BP’s deployment cost in cloud computing. How-
ever, such proposals lack of considering advanced BP’s temporal constraints as well
as various pricing strategies to optimize BP’s deployment cost.

145

146 Conclusion and Future Works

To address these challenges, we proposed in this thesis an end-to-end approach,
composed of three contributions, for supporting the design and optimization of cloud
resource allocation in time-aware BP.

In the first contribution, we propose to integrate cloud resources’ temporal con-
straints in BP. To this end, we define two steps to assist the BP’s designer to model
and graphically design his BP enriched with cloud resources and temporal aspects.
To this end, we propose a formal model of a BP enriched with temporal constraints,
cloud resources, as well as pricing strategies. Then, we propose a BPMN extension
to support our proposed model. So, we offer for BP designer a tool to add cloud
resources, pricing strategies, and BP constraints. We have developed a plug-in as a
proof of concept to take into account our proposal to support cloud resources, pricing
strategies, as well as activities’ temporal constraints.

In the second contribution, we propose to formally verify at design time the tem-
poral correctness of the cloud resource allocation in time-aware BP designed using
our first contribution. Therefore, we define two steps to avoid the design errors such
as temporal violation. For this reason, we define a set of rules to transform BPMN
models into a network of timed automata models as a step towards a formal veri-
fication of the temporal correctness. Moreover, we implemented our transformation
rules to automatically generate timed automata models used as inputs for the model
checking tool to verify the satisfaction of some CTL properties such as liveness.

In the third contribution, we propose to find the optimal BP’s deployment cost in
cloud resources. Towards this end, we define two steps to assist the BP designer to find
the resource assignment and/or the BP activities’ scheduling that provides the optimal
BP deployment cost and to simulate the best resource allocation to provide a more
real BP deployment cost. More precisely, we model our optimization problem as two
linear program models: a Binary Linear Program (BLP) and a Mixed Integer Program
(MIP). The latter are composed of an objective function and a set of constraints. The
objective function opts to reduce the BP’s deployment cost under various constraints
such as activities requirements, resource constraints, etc. Our models take as inputs a
time-aware BP and a set of cloud resources proposed under different pricing strategies.
If activities temporal constraints are flexible, we provide the best scheduling plan
using our MIP that minimizes the BP deployment cost. Else, the best assignment of
cloud resources is provided using our BLP that minimizes also the BP deployment
cost. After the linear optimization step, we have proposed a simulation step through
the extension of CloudSim [69] to enable the BP designer to analyze the cost for the
best deployment scenario. As mentioned in Chapter 2, linear programming models
have high complexity in case of a BP with a large number of activities. Therefore, to
reduce the problem complexity, we resort to our verification step in order to verify the
temporal correctness of a set of cloud resource allocations. Thus, we take as inputs
a BP with a set of correct ones. Based on the results from our experimentation, the
effectiveness, feasibility, and scalability are demonstrated.

Future Works 147

7.2 Future Works

Our work clearly has some limitations. First, it only studied a subset of BPMN
constructs. In particular, we did not consider BPMN’s loop structure and data flow
behaviours. For the sake of completeness, a natural extension to our approach would
be to investigate these constructs in the proposed approach. Consequently, consid-
ering temporal data correlated with temporal constraints of activities and resource
constraints is our next target.

Second, in our work, we focus only on computing resources exposed as part of
the Infrastructure-as-a-Service (IaaS) model and additional networking and database
costs are out of the scope of our work. So, we plan to improve the quantity of our
work by enriching it with cloud resource types such as storage and network. This will
increase the expressiveness of our approach. Moreover, we plan to extend our work
by considering Fog and IoT resources. Indeed, this was the subject of an Erasmus+
mobility in the University of the Balearic Islands. During this internship, first, we
studied existing works related to the pricing strategies of Fog and IoT resources.
Then, we started to extend our proposals with Fog and IoT resources. Currently, we
are evaluating our new approach.

Moreover, regarding our first contribution presented in Chapter 5, we aim shortly
to verify the semantic correctness of the transformation rules: The generated timed
automata should preserve semantic properties like termination (i.e., transformations
should always lead to a result) and confluence (i.e., result should be unique). Be-
sides, the scope of our approach is limited to verify the temporal correctness without
detecting the errors. For overcoming this limitation, we see significant potential in
following the temporal verification BP by an error detection approach, which presents
a step toward achieving a conflict-free resource allocation in time-aware BP model.
It would be interesting to also support error correction, following the error detection.
As eventual error correction, we can notice the modification of the duration of some
activities, the change of the overall BP structure, the substitution of some activities
arriving at the modification of some cloud resources, or even their pricing strategies.

Regarding our second contribution presented in Chapter 6, at medium term, we
aim at further evaluating our proposal by comparing it to recent approaches proposed
in the area of our research such as [58,286]. Besides, in our current work, we assume
that a BP has only AND branching and a cloud resource can not be shareable. There-
fore, we plan to consider other branching types: OR and XOR. Moreover, we assume
that MaxDa=daq and Dmax=Dmin=du. Thus, we aim to evaluate our proposals
while considering different temporal durations and dependencies values. Further, we
intend to deal with cloud resources shareability. Future work should also take into
account data transfer cost. The latter are considered null in our current research
since we assume that cloud resources are in the same availability zone. Moreover,
until now we assumed that the spot price is not full dynamic and is known at the
BP design time. Thus, we intend to study deeply the dynamic fluctuation of the spot

148 Conclusion and Future Works

instance cost and to analyze the impact of this aspect on resource allocation and BP’s
deployment cost at runtime.

As research on cloud resources’ management in BPM still at its beginning stage,
we could follow other new perspectives. For instance, at long term, we aim at ex-
tending our approach to take into account the PaaS and SaaS resources. Further, we
intend to deal with configurable BP models. More specifically, we are planning to
propose an approach for supporting and optimizing configurable resource allocation
in configurable BP models while considering the variety of pricing strategies.

Appendices

149

Appendix A

Implementation frameworks
Over the years, using frameworks is evolving. It becomes crucial in software and
model engineering. In fact, it is helpful in developing softwares, tools and plug-
ins better and faster. In our case, the use of frameworks is very beneficial because
it provides a conceptual guide to utilize effective implementation options. In this
section, we depict the frameworks involved in the plug-in’s implementation. More
precisely, our work is implemented as a plug-in for Eclipse and it allows designers to
easily include the needed temporal constraints, pricing strategies, and resources in
their BPs. The aim of this BPMN extension is to help BP designer to allocate cloud
resources adequately and profitably. To achieve this goal, we extended the existing
tool, BPMN2 Modeler [141]. In fact, the Eclipse BPMN2 Modeler is a graphical
modeling tool for authoring BPs that allows creation and modification of BPMN
diagrams. This tool is built on Eclipse Graphiti [100] and uses the BPMN 2.0 EMF
metamodel which is developed within the Eclipse Model Development Tools project1.
Therefore, we will give an overview about EMF and the eclipse Graphiti.

A.1 Eclipse Modeling Framework: EMF

The most widely used MDE platform is EMF [100]. It is an open source project, a
modeling framework for Eclipse and code generation facility for building tools and
other applications based on a structured data model, integrated in Eclipse. We use
EMF when we have structured data-model in Eclipse application which might get
stored, displayed, and modified in a user interface. Since we need to extend the
BPMN2 model, we will have to create our own EMF model. In fact, it boosts the
Java programming productivity, application compatibility, and integration. The EMF
is also needed in model-to-model transformations, and provides tools and runtime
support to produce from a model specification described in XMI, a set of Java classes
for the model. It provides also a set of adapter classes, that allow viewing and editing
the model. Besides, models in EMF can be defined in different ways such as Java
Interfaces, UML class diagrams, XML Schema, etc. It is indeed a stable standard
for many model related technologies. Ecore is the core meta-model at the heart of
EMF. It allows expressing meta-models by leveraging its constructs. These constructs,

1https://www.eclipse.org/graphiti/

151

152 Implementation frameworks

always prefixed by an “E” are EPackage, EAttribute, EClass, EReference, etc. EMF
fundamental components on Eclipse are2:

• EMF: The core modeling framework including a meta-model Ecore for describ-
ing models and runtime support for the models.

• EMF.Edit: is a framework that includes generic reusable classes for building
editors for EMF models. It provides content and label provider classes, property
source support, and other convenience classes.

• EMF.Codegen: The EMF code generation facility is capable of generating ev-
erything needed to build a complete editor for an EMF model. It includes a
Graphical User Interface from which generation options can be specified, and
generators can be invoked. The generation facility leverages Java Development
Tooling component of Eclipse. Three levels of code generation are supported:

– Model: provides Java interfaces and implementation classes for all the
classes in the model as well as a factory and package implementation class.

– Adapters: generates implementation classes (called Item Providers) that
adapt the model classes for editing and display.

– Editor: produces a properly structured editor that conforms to the recom-
mended style for Eclipse EMF model editors and serves as a starting point
from which to start customizing.

The generator supports regeneration of code while preserving user modifications.
As shown in Figure. A.1, model is created and defined in the Ecore format, which
is basically a subset of UML Class diagrams. Then, from an Ecore model3, we can
generate Java code.

A.2 BPMN2 Modeler palette extension using Graphiti

After extending the BPMN 2.0 meta-model using EMF, each meta-class is associated
with a class that defines the corresponding graphical shape using Graphiti. In fact,
Eclipse provides a modeling infrastructure evolving around EMF that offers graphical
representations and editing possibilities.

More specifically, Graphiti is an Eclipse graphics framework that facilitates build-
ing graphical editors with little coding. It helps to describe the different graphical
forms. The Graphiti project has main objectives such as providing plain Java Ap-
plication Programming Interface for building graphical tools, and all the features
expected to a graphical editor, including Drag-and-drop support, tool palette, etc.
Besides, providing the required documentation and tutorials to develop a new editor

2https://www.eclipse.org/
3https://mickael-baron.fr/modeling/

BPMN2 Modeler palette extension using Graphiti 153

Figure A.1: Generating Java code from an Ecore model

simply because it is already implemented in the Framework. Also, helping the engi-
neer to implement custom features such as non-standard behaviors while developing
an Eclipse plug-in. So, a Java code is generated with the help of the EMF framework
in order to finalize the creation of the plug-in.

Consequently, the BPMN2 Modeler palette is extended to include the required
BPMN constructs for drawing the temporal constraints of the BP (i.e. Duration,
Temporal Dependency, etc) and the activities that consume cloud resources. To easily
use this palette, we classify them by categories such as Task+CloudResource, Tempo-
ralDependency, Duration and Absolute Temporal constraints as shown in Figure A.2.

Figure A.2: The BPMN2 Modeler extended palette

154 Implementation frameworks

Appendix B

Plug-in creation
Based on the BPMN 2.0 meta-model extension, we present our Eclipse plug-in. In
fact, it contains the definition of pricing strategies, cloud resources as well as activities’
temporal constraints. The latter will be added to the BPMN2 modeler editor and
expressed in BPMN meta-model with EMF. Indeed, for each meta-class in the meta-
model, a Java class is generated and associated to it. These Java classes define its
graphical representation via Graphiti. The plug-in is described in a XML file, called
plugin.xml. To develop this plug-in, we essentially need to create the meta-model
to define the extension elements. Then, there exist several other steps that we will
depict as we go along.

B.1 Meta-model creation

Meta-models can be specified in different ways: XML Schema Definition (XSD),
UML, Ecore models etc. In our work, we use Ecore as shown in Figure B.1. Since we
need to extend the BPMN 2.0 meta-model, we start by creating the new EMF model
file (MyModel.ecore). We define the namespace URI that identifies the model and
the target runtime. In fact, the extension model requires a DocumentRoot class. It
presents the root element referencing all other classes through a composition link. In
addition, EMF offers the functionality of loading the BPMN meta-model as shown
in Figure B.2. Thus, we can use the needed BPMN predefined meta-classes as super
classes of our extension’s classes (depicted in Figure B.1).

B.2 Java code generation

EMF boosts the productivity and saves time since it offers an automatic code gen-
eration. In fact, the model have to be translated into Java code dedicated to create
instances of the model that we specified with ecore. The code generation requires the
creation of an EMF generator model called genmodel. This model is also an EMF
model. It contains only information for generation and that could not be integrated
in the model such as the Path generation, package, prefix. Therefore, we create the
EMF generator model MyModel.genmodel from MyModel.ecore. Henceforth, we can

155

156 Plug-in creation

Figure B.1: Ecore model and the DocumentRoot class

generate Java code since .genmodel file contains additional information for the code
generation as well as the control parameter about how the code should be generated.

As shown in Figure B.3, we also need to reference BPMN 2.0 models. Thus,
we right-click on the root node of the MyModel.genmodel file and select Generate
Model Code. This creates the Java implementation of the EMF model in the current
project. An Ecore class (i.e. an Eclass) actually corresponds to two things in Java:
an interface and a corresponding implementation class. Doing the step above, EMF
generates four different packages.

1. The first one has the name of the plug-in. It contains the Activator class which
is loaded when the plug-in is activated. Also, it contains the Graphiti classes of
the extension’s elements.

2. The second contains the Interfaces of meta-classes.

3. The third one (with .impl suffix) contains concrete implementation of the inter-
faces defined in the second package.

4. The fourth one (with .util suffix) contains the AdapterFactory and other utility
classes.

The dependencies of the extension plug-in 157

Figure B.2: The loaded BPMN meta-model

Figure B.3: Genmodel file and the generated packages

B.3 The dependencies of the extension plug-in

The plug-in extension needs several dependencies as shown in Figure B.4. In fact,
they are a list of plug-ins that are required for the operation of our plug-in. They
are defined in the plug-in manifest file plugin.xml that describes how the plug-in
extends the platform, what extensions it publishes itself, and how it implements its
functionality. It also helps the Eclipse runtime to activate the plug-in.

Each extension plug-in needs a runtime element for its identification and unique-
ness. So, our plug-in will not be confusing with other plug-ins. Indeed, the BPMN2
Runtime Extension is the core element of a BPMN2 Plug-in extension. Thus, we
create a new class MyRuntimeExtension that implements IBpmn2RuntimeExtension
predefined Interface (from org.eclipse.bpmn2.modeler.core dependency). This class is

158 Plug-in creation

Figure B.4: Dependencies required for the plug-in extension

used by the editor to identify BPMN resources that our extension can handle.

We create the runtime element then we relate it to the MyRuntimeExtension class.
It is the target runtime extension point to define our plugin.xml. We clarify this point
in Figure B.5 by showing runtime extension element details as well as an excerpt from
the plugin.xml file.

Figure B.5: The target runtime element

We can test our plug-in as an Eclipse application from the plugin.xml Editor. We
create a new empty project in the runtime workspace and open the project properties
dialog (right-click on the project name and select Properties from the context menu).
We should see the section BPMN2 with a Target Runtime selector. Our new Run-
time Extension BPMN2CLOUD RESOURCE EXTENSION should be listed there
as shown in Figure B.5.

In addition, we have to define an extension model element which makes our exten-
sion model known to the editor. First, it has to match the namespace URI we defined

The dependencies of the extension plug-in 159

in the Ecore file. Second, it must describe the corresponding ResourceFactory MyMod-
elResourceFactoryImpl.java class that extends BPMN2ModelerResourceFacoryImpl
which comes from the org.eclipse.bpmn2.modeler.core dependency as shown in Fig-
ure B.6.

Figure B.6: The model element

160 Plug-in creation

Bibliography
[1] Weske Mathias. Business process management: Concepts, languages, architec-

tures 2nd ed., xv, 403 p. 300 illus. hardcover isbn 978-3-642-28615-5mcleod,
raymond and schell, george p. 2008 management information systems, upper
saddle river new jersey 07458, 2012.

[2] Ayodeji Adesina and Derek Molloy. A business process management based
virtual learning environment-customised learning paths. In CSEDU (1), pages
365–368, 2011.

[3] Peter Mell and Tim Grance. The nist definition of cloud computing. Technical
report, National Institute of Standards and Technology, 2011.

[4] Amazon ec2. https://aws.amazon.com/ec2/, (Mai 20, 2017).

[5] MOHIT KUMAR, Kalka Dubey, and s Sharma. Job Scheduling Algorithm in
Cloud Environment Considering the Priority and Cost of Job, pages 313–320.
04 2017.

[6] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages
128–138. Springer, 2005.

[7] Andreas Lanz, Barbara Weber, and Manfred Reichert. Time patterns for
process-aware information systems. Requirements Engineering, 19(2):113–141,
2014.

[8] Cristina Cabanillas, David Knuplesch, Manuel Resinas, Manfred Reichert, Jan
Mendling, and Antonio Ruiz-Cortés. Ralph: a graphical notation for resource
assignments in business processes. In International Conference on Advanced
Information Systems Engineering, pages 53–68, 2015.

[9] Wasim Sadiq and Maria E Orlowska. Analyzing process models using graph
reduction techniques. Information systems, 25(2):117–134, 2000.

[10] Saoussen Cheikhrouhou. Specification and Verification of Temporal Constraints
in Inter-Organisational Business Processes. PhD thesis, University of Sfax,
Tunisia, 2014.

[11] Mariska Netjes, Wil MP van der Aalst, and Hajo A Reijers. Analysis of resource-
constrained processes with colored petri nets. In Sixth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, volume 576, pages
251–266. series DAIMI, 2005.

161

162 Bibliography

[12] Seung Yeob Shin, Yuriy Brun, and Leon J Osterweil. Specification and analysis
of human-intensive system resource-utilization policies. In 2016 IEEE/ACM In-
ternational Workshop on Software Engineering in Healthcare Systems (SEHS),
pages 8–14. IEEE, 2016.

[13] Abir Ismaili-Alaoui, Khalid Benali, Karim Bäına, and Jamal Bäına. Business
process instances scheduling with human resources based on event priority de-
termination. In International Conference on Big Data, Cloud and Applications,
pages 118–130. Springer, 2018.

[14] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Auto-
mated resource allocation in business processes with answer set programming.
In International Conference on Business Process Management, pages 191–203.
Springer, 2016.

[15] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A
particle swarm optimization-based heuristic for scheduling workflow applica-
tions in cloud computing environments. In 2010 24th IEEE international con-
ference on advanced information networking and applications, pages 400–407.
IEEE, 2010.

[16] Souha Boubaker. Formal verification of business process configuration in the
Cloud. (Vérification formelle de la configuration des processus métiers dans le
Cloud). PhD thesis, University of Paris-Saclay, France, 2018.

[17] Hongyan Ma. Process-aware information systems: Bridging people and software
through process technology. Journal of the American Society for Information
Science and Technology, 58(3):455–456, 2007.

[18] Diimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of
workflow management: From process modeling to workflow automation infras-
tructure. Distributed and parallel Databases, 3(2):119–153, 1995.

[19] Howard Smith and Peter Fingar. Business process management: the third wave,
volume 1. Meghan-Kiffer Press Tampa, FL, 2003.

[20] Wil Van Der Aalst, Kees Max Van Hee, and Kees van Hee. Workflow manage-
ment: models, methods, and systems. MIT press, 2004.

[21] Omg. business process model and notation (bpmn) 2.0. http://www.omg.org/
spec/BPMN/2.0/.

[22] August-Wilhelm Scheer. ARIS—vom Geschäftsprozess zum Anwendungssystem.
Springer-Verlag, 2013.

[23] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. Yawl: yet another
workflow language. Information systems, 30(4):245–275, 2005.

Bibliography 163

[24] v2.3 omg. unified modelling language. https://www.omg.org/spec/UML/2.3.

[25] Daniel J Clancy and Benjamin J Kuipers. Qualitative simulation as a
temporally-extended constraint satisfaction problem. In AAAI/IAAI, pages
240–247, 1998.

[26] Bilal Kanso and Safouan Taha. Temporal constraint support for ocl. In Interna-
tional Conference on Software Language Engineering, pages 83–103. Springer,
2012.

[27] Souha Boubaker, Walid Gaaloul, Mohamed Graiet, and Nejib Ben Hadj-
Alouane. Event-b based approach for verifying cloud resource allocation in
business process. In Proceedings of the IEEE International Conference on Ser-
vices Computing, pages 538–545, New York City, NY, USA, 2015.

[28] Wang Long, Lan Yuqing, and Xia Qingxin. Using cloudsim to model and simu-
late cloud computing environment. In 2013 Ninth International Conference on
Computational Intelligence and Security, pages 323–328. IEEE, 2013.

[29] Denis Gagné and André Trudel. Time-bpmn. In Commerce and Enterprise
Computing, 2009. CEC’09. IEEE Conference on, pages 361–367. IEEE, 2009.

[30] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed
Jmaiel. Enhancing formal specification and verification of temporal constraints
in business processes. In Services Computing (SCC), 2014.

[31] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed
Jmaiel. Toward a time-centric modeling of business processes in BPMN 2.0. In
The 15th International Conference on Information Integration and Web-based
Applications & Services, page 154, 2013.

[32] S. Boubaker, A. Mammar, M. Graiet, and W. Gaaloul. Formal verification of
cloud resource allocation in business processes using event-b. In 2016 IEEE
30th International Conference AINA, pages 746–753, 2016.

[33] Emna Hachicha and Walid Gaaloul. Towards resource-aware business process
development in the cloud. In Advanced Information Networking and Applica-
tions (AINA), 2015 IEEE, pages 761–768, 2015.

[34] Ikram Garfatta, Kais Klai, Mohamed Graiet, and Walid Gaaloul. Formal mod-
elling and verification of cloud resource allocation in business processes. In Pro-
ceedings of the Confederated International Conferences On the Move to Mean-
ingful Internet Systems, pages 552–567. Springer, 2018.

[35] Andreas Lanz, Jens Kolb, and Manfred Reichert. Enabling personalized process
schedules with time-aware process views. In Advanced Information Systems
Engineering Workshops, pages 205–216. Springer, 2013.

164 Bibliography

[36] Fairouz Fakhfakh, Hatem Hadj Kacem, Ahmed Hadj Kacem, and Faten
Fakhfakh. Preserving the correctness of dynamic workflows within a cloud
environment. Procedia Computer Science, 126:1541–1550, 2018.

[37] Zhengxing Huang, Wil MP van der Aalst, Xudong Lu, and Huilong Duan. Re-
inforcement learning based resource allocation in business process management.
Data & Knowledge Engineering, 70(1):127–145, 2011.

[38] Cristina Cabanillas. Process-and resource-aware information systems. In 2016
IEEE 20th International Enterprise Distributed Object Computing Conference
(EDOC), pages 1–10. IEEE, 2016.

[39] Cristina Cabanillas, Alex Norta, Manuel Resinas, Jan Mendling, and Antonio
Ruiz-Cortés. Towards process-aware cross-organizational human resource man-
agement. In Enterprise, Business-Process and Information Systems Modeling,
pages 79–93. Springer, 2014.

[40] Luis Jesús Ramón Stroppi, Omar Chiotti, and Pablo David Villarreal. A bpmn
2.0 extension to define the resource perspective of business process models. In
XIV Congreso Iberoamericano en Software Engineering, 2011.

[41] Nick Russell, Wil MP van der Aalst, Arthur HM Ter Hofstede, and David
Edmond. Workflow resource patterns: Identification, representation and tool
support. In International Conference on Advanced Information Systems Engi-
neering, pages 216–232. Springer, 2005.

[42] Nick Russell and Wil MP van der Aalst. Evaluation of the bpel4people and ws-
humantask extensions to ws-bpel 2.0 using the workflow resource patterns. Bpm
center report, Department of Technology Management, Eindhoven University of
Technology GPO Box, 513:142, 2007.

[43] Iman Firouzian, Morteza Zahedi, and Hamid Hassanpour. Cycle time optimiza-
tion of processes using an entropy-based learning for task allocation. Interna-
tional Journal of Engineering, 32(8):1090–1100, 2019.

[44] Hedong Yang, Chaokun Wang, Yingbo Liu, and Jianmin Wang. An optimal ap-
proach for workflow staff assignment based on hidden markov models. In OTM
Confederated International Conferences” On the Move to Meaningful Internet
Systems”, pages 24–26. Springer, 2008.

[45] Molka Rekik, Khouloud Boukadi, Nour Assy, Walid Gaaloul, and Hanêne Ben-
Abdallah. A linear program for optimal configurable business processes de-
ployment into cloud federation. In Services Computing (SCC), 2016 IEEE
International Conference on, pages 34–41. IEEE, 2016.

Bibliography 165

[46] Guillaume Rosinosky, Samir Youcef, and Francois Charoy. A genetic algorithm
for cost-aware business processes execution in the cloud. In International Con-
ference on Service-Oriented Computing, pages 198–212. Springer, 2018.

[47] Fatemeh Ebadifard and Seyed Morteza Babamir. Optimizing multi objective
based workflow scheduling in cloud computing using black hole algorithm. In
2017 3th International Conference on Web Research (ICWR), pages 102–108.
IEEE, 2017.

[48] Fairouz Fakhfakh, Hatem Hadj Kacem, and Ahmed Hadj Kacem. A provision-
ing approach of cloud resources for dynamic workflows. In Cloud Computing
(CLOUD), 2015 IEEE 8th International Conference on, pages 469–476. IEEE,
2015.

[49] Elio Goettelmann, Walid Fdhila, and Claude Godart. Partitioning and cloud
deployment of composite web services under security constraints. In Cloud
Engineering (IC2E), 2013 IEEE International Conference on, pages 193–200.
IEEE, 2013.

[50] Jiajie Xu, Chengfei Liu, Xiaohui Zhao, and Zhiming Ding. Incorporating struc-
tural improvement into resource allocation for business process execution plan-
ning. Concurrency and Computation: Practice and Experience, 25(3):427–442,
2013.

[51] Yuekun Chen, Guoqi Xie, and Renfa Li. Reducing energy consumption with cost
budget using available budget preassignment in heterogeneous cloud computing
systems. IEEE Access, 6:20572–20583, 2018.

[52] WenAn Tan, Yong Sun, Ling Xia Li, GuangZhen Lu, and Tong Wang. A trust
service-oriented scheduling model for workflow applications in cloud computing.
IEEE Systems Journal, 8(3):868–878, 2013.

[53] Juan J Durillo and Radu Prodan. Multi-objective workflow scheduling in ama-
zon ec2. Cluster computing, 17(2):169–189, 2014.

[54] Sen Su, Jian Li, Qingjia Huang, Xiao Huang, Kai Shuang, and Jie Wang. Cost-
efficient task scheduling for executing large programs in the cloud. Parallel
Computing, 39(4-5):177–188, 2013.

[55] Lingfang Zeng, Bharadwaj Veeravalli, and Xiaorong Li. Scalestar: Budget con-
scious scheduling precedence-constrained many-task workflow applications in
cloud. In 2012 IEEE 26th International Conference on Advanced Information
Networking and Applications, pages 534–541. IEEE, 2012.

[56] Alexander A Visheratin, Mikhail Melnik, and Denis Nasonov. Workflow schedul-
ing algorithms for hard-deadline constrained cloud environments. Procedia
Computer Science, 80:2098–2106, 2016.

166 Bibliography

[57] Gursleen Kaur and Mala Kalra. Deadline constrained scheduling of scientific
workflows on cloud using hybrid genetic algorithm. In 2017 7th International
Conference on Cloud Computing, Data Science & Engineering-Confluence,
pages 276–280. IEEE, 2017.

[58] Junlong Zhou, Tian Wang, Peijin Cong, Pingping Lu, Tongquan Wei, and Ming-
song Chen. Cost and makespan-aware workflow scheduling in hybrid clouds.
Journal of Systems Architecture, page 101631, 2019.

[59] Yaser Jararweh, Zakarea Alshara, Moath Jarrah, Mazen Kharbutli, and Mo-
hammad Noraden Alsaleh. Teachcloud: a cloud computing educational toolkit.
International Journal of Cloud Computing, 2(2/3):237–257, 2013.

[60] Juergen Mangler and Stefanie Rinderle-Ma. CPEE - cloud process execution
engine. In Proceedings of the BPM Demo Sessions, co-located with the 12th
International Conference on Business Process Management, page 51, 2014.

[61] Yaser Jararweh, Moath Jarrah, Mazen Kharbutli, Zakarea Alshara, Mo-
hammed Noraden Alsaleh, and Mahmoud Al-Ayyoub. Cloudexp: A comprehen-
sive cloud computing experimental framework. Simulation Modelling Practice
and Theory, 49:180–192, 2014.

[62] Rania Ben Halima, Slim Kallel, Kais Klai, Walid Gaaloul, and Mohamed Jmaiel.
Formal verification of time-aware cloud resource allocation in business process.
In OTM Confederated International Conferences” On the Move to Meaningful
Internet Systems”, pages 400–417, 2016.

[63] Rania Ben Halima, Imen Zouaghi, Slim Kallel, Walid Gaaloul, and Mohamed
Jmaiel. Formal verification of temporal constraints and allocated cloud resources
in business processes. In Advanced Information Networking and Applications
(AINA), 2018 IEEE 32th International Conference on, 2018 (to appear).

[64] Rania Ben Halima, Slim Kallel, Walid Gaaloul, Zakaria Maamar, and Mohamed
Jmaiel. Toward a correct and optimal time-aware cloud resource allocation to
business processes. Future Generation Computer Systems, 2019 (submitted).

[65] Rania Ben Halima, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel. Schedul-
ing business process activities for time-aware cloud resource allocation. In On
the Move to Meaningful Internet Systems. OTM 2018 Conferences - Confeder-
ated International Conferences: CoopIS, C&TC, and ODBASE 2018, Valletta,
Malta, October 22-26, 2018, Proceedings, Part I, pages 445–462, 2018.

[66] Rania Ben Halima, Slim Kallel, Mehdi Ahmed Nacer, and Walid Gaaloul. Op-
timal business process deployment cost in cloud resources. Journal of Super-
computing (2020)., 2020.

Bibliography 167

[67] Rania Ben Halima, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel. Opti-
mal cost for time-aware cloud resource allocation in business process. In 2017
IEEE International Conference on Services Computing, SCC 2017, Honolulu,
HI, USA, June 25-30, 2017, pages 314–321, 2017.

[68] Daniel Pierre Bovet, Pierluigi Crescenzi, and D Bovet. Introduction to the
Theory of Complexity. Prentice Hall London, 1994.

[69] Rodrigo N Calheiros, Rajiv Ranjan, César AF De Rose, and Rajkumar Buyya.
Cloudsim: A novel framework for modeling and simulation of cloud computing
infrastructures and services. arXiv preprint arXiv:0903.2525, 2009.

[70] Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Éric Lefebvre, Lamia Elabed,
and Ghizlane El Boussaidi. Business process modeling languages: Sorting
through the alphabet soup. ACM Computing Surveys (CSUR), 43(1):4, 2010.

[71] Jan Recker. Opportunities and constraints: the current struggle with bpmn.
Business Process Management Journal, 16(1):181–201, 2010.

[72] Henrik Bohnenkamp and Axel Belinfante. Timed testing with torx. In Inter-
national Symposium on Formal Methods, pages 173–188. Springer, 2005.

[73] Saoussen Cheikhrouhou, Slim Kallel, and Mohamed Jmaiel. Toward a verifica-
tion of time-centric business process models. In 2014 IEEE 23rd International
WETICE, pages 326–331, 2014.

[74] Monika Weidmann, Falko Kötter, Maximilien Kintz, Daniel Schleicher, Ralph
Mietzner, and Frank Leymann. Adaptive business process modeling in the
internet of services (abis). In Proceedings of the Sixth International Conference
on Internet and Web Applications and Services (ICIW), 2011.

[75] Wil MP van Der Aalst. Workflow patterns. Encyclopedia of Database Systems,
pages 3557–3558, 2009.

[76] Boudewijn F van Dongen, Wil MP Van der Aalst, and Henricus MW Ver-
beek. Verification of epcs: Using reduction rules and petri nets. In Interna-
tional Conference on Advanced Information Systems Engineering, pages 372–
386. Springer, 2005.

[77] Anton JMM Weijters and Wil MP Van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integrated Computer-Aided
Engineering, 10(2):151–162, 2003.

[78] Rania Ben Halima, Imen Zouaghi, Slim Kallel, Walid Gaaloul, and Mohamed
Jmaiel. Formal verification of temporal constraints and allocated cloud resources
in business processes. In 32nd IEEE International Conference on Advanced

168 Bibliography

Information Networking and Applications, AINA 2018, Krakow, Poland, May
16-18, 2018, pages 952–959, 2018.

[79] Ludmila Penicina. Towards the mapping of multidimensional bpmn models to
process definition standards. Scientific Journal of Riga Technical University.
Computer Sciences, 41(1):76–83, 2010.

[80] Emna Hachicha Belghith. Supporting cloud resource allocation in configurable
business process models. (Supporter l’allocation des ressources cloud dans les
processus métiers configurables). PhD thesis, University of Paris-Saclay, France,
2017.

[81] Michael Zur Muehlen and Jan Recker. How much language is enough? theo-
retical and practical use of the business process modeling notation. In Seminal
Contributions to Information Systems Engineering, pages 429–443. Springer,
2013.

[82] Nour Assy. Automated support of the variability in configurable process models.
(Automatiser le support de la variabilité dans les modèles de processus config-
urables). PhD thesis, University of Paris-Saclay, France, 2015.

[83] Azzam Sleit, Nada Misk, Fatima Badwan, and Tawfiq Khalil. Cloud computing
challenges with emphasis on amazon ec2 and windows azure. International
Journal of Computer Networks & Communications, 5(5):35, 2013.

[84] Adel Nadjaran Toosi. On the Economics of Infrastructure as a Service Cloud
Providers: Pricing, Markets and Profit Maximization. PhD thesis, University
of Melbourne, Department of Computing and Information Systems, 2014.

[85] Adel Nadjaran Toosi. On the Economics of Infrastructure as a Service Cloud
Providers: Pricing, Markets, and Profit Maximization. PhD thesis, UNIVER-
SITY OF MELBOURNE, Australia, 2014.

[86] Online. Google cloud. https://cloud.google.com/.

[87] Online. Microsoft azure. https://azure.microsoft.com/en-us/.

[88] Seung-Hwan Lim, Bikash Sharma, Gunwoo Nam, Eun Kyoung Kim, and
Chita R Das. Mdcsim: A multi-tier data center simulation, platform. In 2009
IEEE International Conference on Cluster Computing and Workshops, pages
1–9. IEEE, 2009.

[89] Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and
Rajkumar Buyya. Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms.
Software: Practice and experience, 41(1):23–50, 2011.

Bibliography 169

[90] Baptiste Louis, Karan Mitra, Saguna Saguna, and Christer Åhlund.
Cloudsimdisk: Energy-aware storage simulation in cloudsim. In 2015
IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC), pages 11–15. IEEE, 2015.

[91] Soumya Ray and Ajanta De Sarkar. Execution analysis of load balancing al-
gorithms in cloud computing environment. International Journal on Cloud
Computing: Services and Architecture (IJCCSA), 2(5):1–13, 2012.

[92] Harmanbir Singh Sidhu et al. Comparative analysis of scheduling algorithms of
cloudsim in cloud computing. International Journal of Computer Applications,
975:8887, 2014.

[93] Pinal Salot. A survey of various scheduling algorithm in cloud computing en-
vironment. International Journal of Research in Engineering and Technology,
2(2):131–135, 2013.

[94] Robert France and Bernhard Rumpe. Model-driven development of complex
software: A research roadmap. In 2007 Future of Software Engineering, pages
37–54. IEEE Computer Society, 2007.

[95] Stuart Kent. Model driven engineering. In International Conference on Inte-
grated Formal Methods, pages 286–298. Springer, 2002.

[96] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[97] Freddy Allilaire, Jean Bézivin, Frédéric Jouault, and Ivan Kurtev. Atl-eclipse
support for model transformation. In Proceedings of the Eclipse Technology
eXchange workshop (eTX) at the ECOOP 2006 Conference, Nantes, France,
volume 66. Citeseer, 2006.

[98] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Interna-
tional Conference on Model Driven Engineering Languages and Systems, pages
128–138. Springer, 2005.

[99] OMG. Meta object facility (mof) 2.0 query/view/ transformation specification.
Technical report, Object Management Group, Inc., 2011.

[100] Kolovos Dimitris, Rose Louis, Garćıa-Domı́nguez Antonio, and Paige Richard.
The epsilon book. Eclipse, 2018.

[101] OMG. Object constraint language version 2.4. Technical report, Object Man-
agement Group, Inc., 2014.

170 Bibliography

[102] Gerd Behrmann, Alexandre David, and Kim G Larsen. A tutorial on uppaal.
In Formal methods for the design of real-time systems, pages 200–236. Springer,
2004.

[103] Online. UPPAAL. http://www.uppaal.org/, June 02, 2015.

[104] Bernard Berthomieu and Francois Vernadat. Time petri nets analysis with tina.
In QEST, volume 6, pages 123–124, 2006.

[105] Michael Leuschel and Michael Butler. Prob: A model checker for b. In In-
ternational Symposium of Formal Methods Europe, pages 855–874. Springer,
2003.

[106] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical com-
puter science, 126(2):183–235, 1994.

[107] Carl Adam Petri. Communication with automata. Technical report, Rome Air
Development Center, 1966.

[108] Jos CM Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131–146, 2005.

[109] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

[110] Gerd Behrmann, Alexandre David, and Kim Larsen. A tutorial on uppaal.
Formal methods for the design of real-time systems, pages 33–35, 2004.

[111] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis,
and Sergio Yovine. Kronos: A model-checking tool for real-time systems. In In-
ternational Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pages 298–302. Springer, 1998.

[112] Guillaume Hutzler, Hanna Klaudel, and Dong Yue Wang. Towards timed au-
tomata and multi-agent systems. In International Workshop on Formal Ap-
proaches to Agent-Based Systems, pages 161–172. Springer, 2004.

[113] Timed automata. https://www.win.tue.nl/, (Mai 06, 2019).

[114] Thomas A Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Sym-
bolic model checking for real-time systems. Information and computation,
111(2):193–244, 1994.

[115] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchroniza-
tion skeletons using branching time temporal logic. In Workshop on Logic of
Programs, pages 52–71. Springer, 1981.

Bibliography 171

[116] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE trans-
actions on software engineering, pages 125–143, 1977.

[117] Wan Fokkink, Allard Kakebeen, and Jun Pang. Adapting the uppaal model
of a distributed lift system. In International Conference on Fundamentals of
Software Engineering, pages 81–97. Springer, 2007.

[118] Davoud Mougouei. A mathematical programming approach to considering value
dependencies in software requirement selection, 2018.

[119] Kamil Figiela. Optimization of Resource Allocation on the Cloud. PhD thesis,
AGH University of Science and Technology, Poland, 2013.

[120] Singiresu S. Rao. Engineering Optimization: Theory and Practice. John Wiley
and Sons, 2009.

[121] Leila Hadded. Optimization of autonomic resources for the management of
service-based business processes in the Cloud. (Optimisation des ressources au-
tonomiques pour la gestion des processus métier à base de services dans le
Cloud). PhD thesis, University of Paris-Saclay, France, 2018.

[122] AH Land and AG Doig. An automatic method of solving discrete programming
problems. econometrica. v28. 1960.

[123] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani.
Algorithms. McGraw-Hill Higher Education New York, 2008.

[124] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N Natraj. Gomory cuts
revisited. Operations Research Letters, 19(1):1–9, 1996.

[125] Panos M Pardalos and Mauricio GC Resende. Handbook of applied optimiza-
tion. 2002.

[126] Harlan Crowder, Ellis L Johnson, and Manfred Padberg. Solving large-scale
zero-one linear programming problems. Operations Research, 31(5):803–834,
1983.

[127] Krasimira Genova and Vassil Guliashki. Linear integer programming methods
and approaches–a survey. Journal of Cybernetics and Information Technologies,
11(1), 2011.

[128] Jason Lee. Network optimization using linear programming and regression.
Master’s thesis, Robert D. Clark Honors College, 2016.

[129] T. Mastelic, W. Fdhila, I. Brandic, and S. Rinderle-Ma. Predicting resource
allocation and costs for business processes in the cloud. In 2015 IEEE World
Congress on Services, pages 47–54, June 2015.

172 Bibliography

[130] Arthur HM ter Hofstede, Wil MP van der Aalst, Michael Adams, and Nick
Russell. Modern Business Process Automation: YAWL and its support environ-
ment. Springer Science & Business Media, 2009.

[131] Mathias Weske. Business process management: concepts, languages, architec-
tures. Springer Publishing Company, Incorporated, 2010.

[132] YanHua Du, PengCheng Xiong, YuShun Fan, and Xitong Li. Dynamic checking
and solution to temporal violations in concurrent workflow processes. IEEE
Transactions on Systems, Man, and Cybernetics, 41:1166–1181, 2011.

[133] Emanuele De Angelis, Fabio Fioravanti, Maria Chiara Meo, Alberto Pettorossi,
and Maurizio Proietti. Verifying controllability of time-aware business processes.
In International Joint Conference on Rules and Reasoning, pages 103–118, 2017.

[134] Wenjia Huai, Xudong Liu, and Hailong Sun. Towards trustworthy composite
service through business process model verification. In Ubiquitous Intelligence &
Computing and 7th International Conference on Autonomic & Trusted Comput-
ing (UIC/ATC), 2010 7th International Conference on, pages 422–427. IEEE,
2010.

[135] Mohamed Afilal, Hicham Chehade, and Farouk Yalaoui. The human resources
assignment with multiple sites problem. International Journal of Modeling and
Optimization, 5(2):155, 2015.

[136] Salem M Al-Yakoob and Hanif D Sherali. Mixed-integer programming models
for an employee scheduling problem with multiple shifts and work locations.
Annals of Operations Research, 155(1):119–142, 2007.

[137] C Mas Machuca, Jiajia Chen, and Lena Wosinska. Pon protection architec-
tures achieving total cost reduction. In Asia Communications and Photonics
Conference and Exhibition, pages 707–708. IEEE, 2010.

[138] Mengshi Lu, Lun Ran, and Zuo-Jun Max Shen. Reliable facility location design
under uncertain correlated disruptions. Manufacturing & Service Operations
Management, 17(4):445–455, 2015.

[139] Luis Jesús Ramón Stroppi, Omar Chiotti, and Pablo David Villarreal. Extended
resource perspective support for bpmn and bpel. In CIbSE, pages 56–69, 2012.

[140] Jianrui Wang and Akhil Kumar. A framework for document-driven workflow
systems. Business Process Management, 3649:285–301, 2005.

[141] Online. BPMN2 Modeler. https://www.eclipse.org/bpmn2-modeler/.

Bibliography 173

[142] Parastoo Mohagheghi, Wasif Gilani, Alin Stefanescu, Miguel A Fernandez,
Bjørn Nordmoen, and Mathias Fritzsche. Where does model-driven engineering
help? experiences from three industrial cases. Software & Systems Modeling,
12(3):619–639, 2013.

[143] Günther R Raidl and Jakob Puchinger. Combining (integer) linear program-
ming techniques and metaheuristics for combinatorial optimization. In Hybrid
metaheuristics, pages 31–62. Springer, 2008.

[144] M. Laguna and J. Marklund. Business Process Modeling, Simulation and De-
sign. CRC Press, 2013.

[145] Mehdi Ahmed-Nacer, Slim Kallel, Faiez Zalila, Philippe Merle, and Walid Gal-
loul. Model driven simulation of elastic occi cloud resources. Technical report,
Telecom SudParis, France, 2019.

[146] Andreas Lanz, Manfred Reichert, and Barbara Weber. A formal semantics of
time patterns for process-aware information systems. Technical report, Univer-
sität Ulm, 2013.

[147] Carlos Arévalo, MJ Escalona, I Ramos, and M Domı́nguez-Muñoz. A meta-
model to integrate business processes time perspective in bpmn 2.0. Information
and Software Technology, 77:17–33, 2016.

[148] Carlo Combi, Matteo Gozzi, Jose M Juarez, Barbara Oliboni, and Giuseppe
Pozzi. Conceptual modeling of temporal clinical workflows. In 14th Inter-
national Symposium on Temporal Representation and Reasoning (TIME’07),
pages 70–81. IEEE, 2007.

[149] Carlo Combi and Roberto Posenato. Controllability in temporal conceptual
workflow schemata. In International Conference on Business Process Manage-
ment, pages 64–79. Springer, 2009.

[150] Carlo Combi and Roberto Posenato. Towards temporal controllabilities for
workflow schemata. In 2010 17th International Symposium on Temporal Rep-
resentation and Reasoning, pages 129–136. IEEE, 2010.

[151] Cristina Cabanillas, Manuel Resinas, Adela del Ŕıo-Ortega, and Antonio Ruiz-
Cortés. Specification and automated design-time analysis of the business process
human resource perspective. Information Systems, 52:55–82, 2015.

[152] Emna Hachicha, Nour Assy, Walid Gaaloul, and Jan Mendling. A configurable
resource allocation for multi-tenant process development in the cloud. In In-
ternational Conference on Advanced Information Systems Engineering, pages
558–574. Springer, 2016.

174 Bibliography

[153] Imen Ben Fraj, Yousra Bendaly Hlaoui, and Leila Jemni Ben Ayed. A speci-
fication and execution approach of flexible cloud service workflow based on a
meta model transformation. In ICEIS (2), pages 467–473, 2017.

[154] Kenji Watahiki, Fuyuki Ishikawa, and Kunihiko Hiraishi. Formal verification of
business processes with temporal and resource constraints. In Systems, Man,
and Cybernetics (SMC), pages 1173–1180, 2011.

[155] Huaiqing Wang and Qingtian Zeng. Modeling and analysis for workflow con-
strained by resources and nondetermined time: An approach based on petri
nets. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 38(4):802–817, 2008.

[156] Kazuhiro Ogata, Thapana Chaimanont, and Min Zhang. Formal modeling and
analysis of time-and resource-sensitive simple business processes. Journal of
Information Security and Applications, 31:23–40, 2016.

[157] Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel, and Zakaria Maamar.
Formal specification and verification of cloud resource allocation using timed
petri-nets. In International Conference on Model and Data Engineering, pages
40–49. Springer, 2018.

[158] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-
Oliet, José Meseguer, and Carolyn Talcott. All about maude-a high-performance
logical framework: how to specify, program and verify systems in rewriting logic.
Springer-Verlag, 2007.

[159] Daniel Jackson. Software abstraction (revised edition), 2012.

[160] JianQiang Li, YuShun Fan, and MengChu Zhou. Timing constraint work-
flow nets for workflow analysis. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 33(2):179–193, 2003.

[161] JianQiang Li, YuShun Fan, and MengChu Zhou. Performance modeling and
analysis of workflow. IEEE Transactions on Systems, Man, and Cybernetics-
Part A: Systems and Humans, 34(2):229–242, 2004.

[162] Wil MP Van der Aalst. The application of petri nets to workflow management.
Journal of circuits, systems, and computers, 8(01):21–66, 1998.

[163] Boudewijn F van Dongen, Monique H Jansen-Vullers, HMW Verbeek, and
Wil MP van der Aalst. Verification of the sap reference models using epc reduc-
tion, state-space analysis, and invariants. Computers in Industry, 58(6):578–
601, 2007.

Bibliography 175

[164] BF Van Dongen, Jan Mendling, and WMP Van Der Aalst. Structural patterns
for soundness of business process models. In 2006 10th IEEE International
Enterprise Distributed Object Computing Conference (EDOC’06), pages 116–
128. IEEE, 2006.

[165] Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and analysis
of business process models in bpmn. Information and Software technology,
50(12):1281–1294, 2008.

[166] Wasim Sadiq and Maria E Orlowska. On correctness issues in conceptual mod-
eling of workflows. In Proceedings of the European conference on information
systems, pages 1–22, Cork, Ireland, 1997.

[167] Wil MP Van der Aalst. Verification of workflow nets. In International Confer-
ence on Application and Theory of Petri Nets, pages 407–426. Springer, 1997.

[168] Moe Thandar Wynn, HMW Verbeek, Wil MP van der Aalst, Arthur HM ter
Hofstede, and David Edmond. Business process verification–finally a reality!
Business Process Management Journal, 15(1):74–92, 2009.

[169] Yaqiong He, Guanjun Liu, Dongming Xiang, Jiaquan Sun, Chungang Yan, and
Changjun Jiang. Verifying the correctness of workflow systems based on work-
flow net with data constraints. IEEE Access, 6:11412–11423, 2018.

[170] Frank Puhlmann and Mathias Weske. Using the π-calculus for formalizing work-
flow patterns. In International Conference on Business Process Management,
pages 153–168. Springer, 2005.

[171] Walid Gaaloul, Sami Bhiri, and Mohsen Rouached. Event-based design and
runtime verification of composite service transactional behavior. IEEE trans-
actions on services computing, 3(1):32–45, 2010.

[172] Robin Milner. Communicating and mobile systems: the pi calculus. Cambridge
university press, 1999.

[173] Robert Kowalski and Marek Sergot. A logic-based calculus of events. In Foun-
dations of knowledge base management, pages 23–55. Springer, 1989.

[174] Kais Klai, Samir Tata, and Jörg Desel. Symbolic abstraction and deadlock-
freeness verification of inter-enterprise processes. In International Conference
on Business Process Management, pages 294–309. Springer, 2009.

[175] Jana Koehler, Giuliano Tirenni, and Santhosh Kumaran. From business process
model to consistent implementation: A case for formal verification methods.
In Proceedings. Sixth International Enterprise Distributed Object Computing,
pages 96–106. IEEE, 2002.

176 Bibliography

[176] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web
services. In Proceedings of the 13th international conference on World Wide
Web, pages 621–630. ACM, 2004.

[177] José Luis Dı́az, Joaqúın Entrialgo, Manuel Garćıa, Javier Garćıa, and
Daniel Fernando Garćıa. Optimal allocation of virtual machines in multi-cloud
environments with reserved and on-demand pricing. Future Generation Com-
puter Systems, 71:129–144, 2017.

[178] Jin Song Dong, Yang Liu, Jun Sun, and Xian Zhang. Verification of computa-
tion orchestration via timed automata. In International Conference on Formal
Engineering Methods, pages 226–245. Springer, 2006.

[179] Erich Mikk, Yassine Lakhnech, Michael Siegel, and Gerard J Holzmann. Imple-
menting statecharts in promela/spin. In Proceedings. 2nd IEEE Workshop on
Industrial Strength Formal Specification Techniques, pages 90–101. IEEE, 1998.

[180] Qingtian Zeng, Huaiqing Wang, Dongming Xu, Hua Duan, and Yanbo Han.
Conflict detection and resolution for workflows constrained by resources and
non-determined durations. Journal of Systems and Software, 81(9):1491–1504,
2008.

[181] Gianluigi Greco, Antonella Guzzo, and Domenico Saccà. A logic-based for-
malism to model and analyze workflow executions. In Johann Eder and Tat-
jana Welzer, editors, Proceedings of the 15th Conference on Advanced Informa-
tion Systems Engineering, volume 74 of CEUR Workshop Proceedings, Klagen-
furt/Velden, Austria, 2003. CEUR-WS.org.

[182] Wil MP Van Der Aalst. Three good reasons for using a petri-net-based workflow
management system. In Information and Process Integration in Enterprises,
pages 161–182. Springer, 1998.

[183] Wil MP Van Der Aalst and Arthur HM Ter Hofstede. Verification of workflow
task structures: A petri-net-baset approach. Information systems, 25(1):43–69,
2000.

[184] Jonathan Lee and Lein F Lai. A high-level petri nets-based approach to verify-
ing task structures. IEEE Transactions on Knowledge and Data Engineering,
14(2):316–335, 2002.

[185] Volker Gruhn and Ralf Laue. Using timed model checking for verifying work-
flows. Computer Supported Activity Coordination, 2005:75–88, 2005.

[186] Elisabetta De Maria, Angelo Montanari, and Marco Zantoni. An automaton-
based approach to the verification of timed workflow schemas. In Thirteenth In-
ternational Symposium on Temporal Representation and Reasoning (TIME’06),
pages 87–94. IEEE, 2006.

Bibliography 177

[187] Johann Eder, Euthimios Panagos, and Michael Rabinovich. Time constraints
in workflow systems. In Advanced information systems engineering, pages 286–
300. Springer, 1999.

[188] Olivera Marjanovic and Maria E Orlowska. On modeling and verification of tem-
poral constraints in production workflows. Knowledge and Information Systems,
1(2):157–192, 1999.

[189] Olivera Marjanovic. Dynamic verification of temporal constraints in production
workflows. In Proceedings 11th Australasian Database Conference. ADC 2000
(Cat. No. PR00528), pages 74–81. IEEE, 2000.

[190] Hai Zhuge, To-yat Cheung, and Hung-Keng Pung. A timed workflow process
model. Journal of Systems and Software, 55(3):231–243, 2001.

[191] Hai Zhuge. Component-based workflow systems development. Decision Support
Systems, 35(4):517–536, 2003.

[192] Nabil R Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and
analysis of workflows using petri nets. Journal of Intelligent Information Sys-
tems, 10(2):131–158, 1998.

[193] Peter YH Wong and Jeremy Gibbons. A relative timed semantics for bpmn.
Electronic Notes in Theoretical Computer Science, 229(2):59–75, 2009.

[194] Claudio Bettini, X Sean Wang, and Sushil Jajodia. Temporal reasoning in
workflow systems. Distributed and Parallel Databases, 11(3):269–306, 2002.

[195] Xiaoxian Yang, Tao Yu, and Huahu Xu. A novel framework of using petri net
to timed service business process modeling. International Journal of Software
Engineering and Knowledge Engineering, 26(04):633–652, 2016.

[196] Luis E Mendoza Morales, Carlos Monsalve, and Mónica Villavicencio. Formal
verification of business processes as timed automata. In 2017 12th Iberian Con-
ference on Information Systems and Technologies (CISTI), pages 1–6. IEEE,
2017.

[197] Sara Rachidi, Edouard Leclercq, Yoann Pigné, and Dimitri Lefebvre. Pn mod-
eling of discrete event systems with temporal constraints. In 2017 21st Interna-
tional Conference on System Theory, Control and Computing (ICSTCC), pages
70–75. IEEE, 2017.

[198] José Luis Pereira and João Varajão. The temporal dimension of business
processes-dealing with time constraints. Procedia computer science, 121:1034–
1038, 2017.

178 Bibliography

[199] Deng Zhao, Walid Gaaloul, Wenbo Zhang, Chunsheng Zhu, and Zhangbing
Zhou. Formal verification of temporal constraints for mobile service-based busi-
ness process models. IEEE Access, 6:59843–59852, 2018.

[200] FDR2 User Manual. Failures-divergence refinement.

[201] Sea Ling and H. Schmidt. Time petri nets for workflow modelling and analy-
sis. In Smc 2000 conference proceedings. 2000 ieee international conference on
systems, man and cybernetics. ’cybernetics evolving to systems, humans, orga-
nizations, and their complex interactions’ (cat. no.0, volume 4, pages 3039–3044
vol.4, Oct 2000.

[202] Vladimir A Bashkin and Irina A Lomazova. Soundness of workflow nets with
an unbounded resource is decidable. In PNSE+ ModPE, pages 61–75, 2013.

[203] Kees Van Hee, Alexander Serebrenik, Natalia Sidorova, and Marc Voorhoeve.
Soundness of resource-constrained workflow nets. In International Conference
on Application and Theory of Petri Nets, pages 250–267. Springer, 2005.

[204] Natalia Sidorova and Christian Stahl. Soundness for resource-constrained work-
flow nets is decidable. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 43(3):724–729, 2012.

[205] Vladimir A Bashkin and Irina A Lomazova. Resource equivalence in work-
flow nets. Proc. of Concurrency, Specification and Programming (CS&P’2006).
Humboldt Universitat zu Berlin, 1:80–91, 2006.

[206] Giray Havur, Cristina Cabanillas, Jan Mendling, and Axel Polleres. Resource
allocation with dependencies in business process management systems. In In-
ternational Conference on Business Process Management, pages 3–19. Springer,
2016.

[207] Jiacun Wang, William Tepfenhart, and Daniela Rosca. Emergency response
workflow resource requirements modeling and analysis. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(3):270–
283, 2009.

[208] Lars M Kristensen, Soren Christensen, and Kurt Jensen. The practitioner’s
guide to coloured petri nets. International Journal on Software Tools for Tech-
nology Transfer (STTT), 2(2):98–132, 1998.

[209] Wenbo Zhou, Lei Liu, Shuai Lü, and Peng Zhang. Toward formal modeling
and verification of resource provisioning as a service in cloud. IEEE Access,
7:26721–26730, 2019.

Bibliography 179

[210] Marcello M Bersani, Domenico Bianculli, Schahram Dustdar, Alessio Gambi,
Carlo Ghezzi, and Srdan Krstić. Towards the formalization of properties of
cloud-based elastic systems. In Proceedings of the 6th International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, pages 38–47.
ACM, 2014.

[211] Kais Klai and Hanen Ochi. Model checking of composite cloud services. In
2016 IEEE International Conference on Web Services (ICWS), pages 356–363.
IEEE, 2016.

[212] Ali Rezaee, Amir Masoud Rahmani, Ali Movaghar, and Mohammad Tesh-
nehlab. Formal process algebraic modeling, verification, and analysis of an ab-
stract fuzzy inference cloud service. The Journal of Supercomputing, 67(2):345–
383, 2014.

[213] Hamza Sahli, Faiza Belala, and Chafia Bouanaka. A brs-based approach to
model and verify cloud systems elasticity. Procedia Computer Science, 68:29–
41, 2015.

[214] Alessio Gambi, Antonio Filieri, and Schahram Dustdar. Iterative test suites
refinement for elastic computing systems. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 635–638. ACM, 2013.

[215] Mohamed Graiet, Amel Mammar, Souha Boubaker, and Walid Gaaloul. To-
wards correct cloud resource allocation in business processes. IEEE Transac-
tions on Services Computing, 10(1):23–36, 2016.

[216] Hwai-jung Hsu and Feng-jian Wang. An incremental analysis for resource con-
flicts to workflow specifications. Journal of Systems and Software, 81(10):1770–
1783, 2008.

[217] Jingfu Zhong and Binheng Song. Verification of resource constraints for concur-
rent workflows. In Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC’05), pages 8–pp. IEEE, 2005.

[218] Qingtian Zeng, Cong Liu, and Hua Duan. Resource conflict detection and
removal strategy for nondeterministic emergency response processes using petri
nets. Enterprise Information Systems, 10(7):729–750, 2016.

[219] Carlos Arévalo Maldonado, Isabel Ramos Román, and Maŕıa José
Escalona Cuaresma. Discovering business models for software process
management-an approach for integrating time and resource perspectives from
legacy information systems. In Proceedings of the 17th International Conference
on Enterprise Information Systems, pages 353–359, 2015.

180 Bibliography

[220] Fairouz Fakhfakh. A refinement-based approach for verifying dynamic changes
on time-aware processes. Procedia Computer Science, 159:1489–1498, 2019.

[221] Fairouz Fakhfakh, Hatem Hadj Kacem, and Ahmed Hadj Kacem. Towards a
formal approach for verifying dynamic workflows in the cloud. In European,
Mediterranean, and Middle Eastern Conference on Information Systems, pages
144–157. Springer, 2018.

[222] Fairouz Fakhfakh, Hatem Hadj Kacem, and Ahmed Hadj Kacem. Dealing with
structural changes on provisioning resources for deadline-constrained workflow.
The Journal of Supercomputing, 73(7):2896–2918, 2017.

[223] Haoyu Luo, Xiao Liu, Jin Liu, Bo Han, and Yun Yang. Adaptive temporal
verification and violation handling for time-constrained business cloud work-
flows. In International Conference on Service-Oriented Computing, pages 90–99.
Springer, 2018.

[224] Haoyu Luo, Xiao Liu, Jin Liu, and Yun Yang. Propagation-aware temporal
verification for parallel business cloud workflows. In 2017 IEEE International
Conference on Web Services (ICWS), pages 106–113. IEEE, 2017.

[225] Yeguo Wang, Rongbin Xu, Futian Wang, Haoyu Luo, Menglong Wang, and
Xiao Liu. Sliding-window based propagation-aware temporal verification for
monitoring parallel cloud business workflows. In 2018 IEEE 22nd International
Conference on Computer Supported Cooperative Work in Design ((CSCWD)),
pages 449–454. IEEE, 2018.

[226] QingTian Zeng, FaMing Lu, Cong Liu, Hua Duan, and ChangHong Zhou. Mod-
eling and verification for cross-department collaborative business processes us-
ing extended petri nets. IEEE Transactions on Systems, Man, and Cybernetics:
Systems, 45(2):349–362, 2015.

[227] Cristina Cabanillas, José Maŕıa Garćıa, Manuel Resinas, David Ruiz, Jan
Mendling, and Antonio Ruiz-Cortés. Priority-based human resource alloca-
tion in business processes. In International Conference on Service-Oriented
Computing, pages 374–388. Springer, 2013.

[228] Weidong Zhao, Liu Yang, Haitao Liu, and Ran Wu. The optimization of resource
allocation based on process mining. In International Conference on Intelligent
Computing, pages 341–353. Springer, 2015.

[229] Rui Han, Moustafa M Ghanem, Li Guo, Yike Guo, and Michelle Osmond.
Enabling cost-aware and adaptive elasticity of multi-tier cloud applications.
Future Generation Computer Systems, 32:82–98, 2014.

Bibliography 181

[230] Yacine Kessaci, Nouredine Melab, and El-Ghazali Talbi. A pareto-based genetic
algorithm for optimized assignment of vm requests on a cloud brokering environ-
ment. In 2013 IEEE congress on evolutionary computation, pages 2496–2503.
IEEE, 2013.

[231] Justin Patrick Jackson. Constrained Task Assignment and Scheduling on Net-
works of Arbitrary Topology. PhD thesis, University of Michigan, 2012.

[232] Subodha Kumar, Kaushik Dutta, and Vijay Mookerjee. Maximizing business
value by optimal assignment of jobs to resources in grid computing. European
Journal of Operational Research, 194(3):856–872, 2009.

[233] Albert Corominas, Rafael Pastor, and Ericka Rodŕıguez. Rotational allocation
of tasks to multifunctional workers in a service industry. International Journal
of Production Economics, 103(1):3–9, 2006.

[234] Walter J Gutjahr and Marion S Rauner. An aco algorithm for a dynamic re-
gional nurse-scheduling problem in austria. Computers & Operations Research,
34(3):642–666, 2007.

[235] Sophia Daskalaki, Theodore Birbas, and Efthymios Housos. An integer pro-
gramming formulation for a case study in university timetabling. European
Journal of Operational Research, 153(1):117–135, 2004.

[236] Jiajie Xu, Chengfei Liu, and Xiaohui Zhao. Resource planning for massive
number of process instances. In OTM Confederated International Conferences”
On the Move to Meaningful Internet Systems”, pages 219–236. Springer, 2009.

[237] Jia Yu, Rajkumar Buyya, and Chen Khong Tham. Cost-based scheduling of sci-
entific workflow applications on utility grids. In First International Conference
on e-Science and Grid Computing (e-Science’05), pages 8–pp. Ieee, 2005.

[238] Ehab Nabiel Alkhanak, Sai Peck Lee, and Saif Ur Rehman Khan. Cost-aware
challenges for workflow scheduling approaches in cloud computing environ-
ments: Taxonomy and opportunities. Future Generation Computer Systems,
50:3–21, 2015.

[239] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick HJ Epema. Deadline-
constrained workflow scheduling algorithms for infrastructure as a service
clouds. Future Generation Computer Systems, 29(1):158–169, 2013.

[240] AR Arunarani, D Manjula, and Vijayan Sugumaran. Task scheduling techniques
in cloud computing: A literature survey. Future Generation Computer Systems,
91:407–415, 2019.

182 Bibliography

[241] Xiumin Zhou, Gongxuan Zhang, Jin Sun, Junlong Zhou, Tongquan Wei, and
Shiyan Hu. Minimizing cost and makespan for workflow scheduling in cloud
using fuzzy dominance sort based heft. Future Generation Computer Systems,
93:278–289, 2019.

[242] Yongkui Liu, Lihui Wang, Xi Vincent Wang, Xun Xu, and Lin Zhang. Schedul-
ing in cloud manufacturing: state-of-the-art and research challenges. Interna-
tional Journal of Production Research, 57(15-16):4854–4879, 2019.

[243] B Muni Lavanya and C Shoba Bindu. Systematic literature review on resource
allocation and resource scheduling in cloud computing. International Journal
of Advanced Information Technology (IJAIT) Vol, 6:2231–1920, 2016.

[244] P.J. Assudani and Satheesh Abimannan. Cost efficient resource scheduling in
cloud computing: a survey. International Journal of Engineering and Technol-
ogy(UAE), 7:38–43, 10 2018.

[245] Om Sangwan and Monika Dhanda. Qos based scheduling techniques in cloud
computing: Systematic review. International Journal of Computer Science and
Information Security, 07 2019.

[246] Shweta Varshney and Sarvpal Singh. A survey on resource scheduling algorithms
in cloud computing. International Journal of Applied Engineering Research,
13(9):6839–6845, 2018.

[247] Long Thai, Blesson Varghese, and Adam Barker. A survey and taxonomy of
resource optimisation for executing bag-of-task applications on public clouds.
Future Generation Computer Systems, 82:1–11, 2018.

[248] Maria Alejandra Rodriguez and Rajkumar Buyya. Deadline based resource
provisioning and scheduling algorithm for scientific workflows on clouds. IEEE
Transactions on Cloud Computing, 2(2):222–235, 2014.

[249] Mohsen Amini Salehi and Rajkumar Buyya. Adapting market-oriented schedul-
ing policies for cloud computing. In International Conference on Algorithms and
Architectures for Parallel Processing, pages 351–362. Springer, 2010.

[250] Saeid Abrishami and Mahmoud Naghibzadeh. Deadline-constrained workflow
scheduling in software as a service cloud. Scientia Iranica, 19(3):680–689, 2012.

[251] Ulrich Lampe, Melanie Siebenhaar, Ronny Hans, Dieter Schuller, and Ralf
Steinmetz. Let the clouds compute: cost-efficient workload distribution in in-
frastructure clouds. In International Conference on Grid Economics and Busi-
ness Models, pages 91–101. Springer, 2012.

Bibliography 183

[252] Arkaitz Ruiz-Alvarez and Marty Humphrey. Toward optimal resource provi-
sioning for cloud mapreduce and hybrid cloud applications. In Proceedings of
the 2014 IEEE/ACM International Symposium on Big Data Computing, pages
74–82. IEEE Computer Society, 2014.

[253] Aly Megahed, Ahmed Nazeem, Peifeng Yin, Samir Tata, Hamid Reza Motahari
Nezhad, and Taiga Nakamura. Optimizing cloud solutioning design. Future
Generation Computer Systems, 91:86–95, 2019.

[254] Aly Megahed, Mohamed Mohamed, and Samir Tata. A stochastic optimization
approach for cloud elasticity. In 2017 IEEE 10th International Conference on
Cloud Computing (CLOUD), pages 456–463. IEEE, 2017.

[255] Sharrukh Zaman and Daniel Grosu. A combinatorial auction-based mechanism
for dynamic vm provisioning and allocation in clouds. IEEE Transactions on
Cloud Computing, 1(2):129–141, 2013.

[256] Pratik P Pandya and Hitesh A Bheda. Dynamic resource allocation techniques
in cloud computing. International journal of advance research in computer
science and management studies, 2(1), 2014.

[257] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis Lau. Online
auctions in iaas clouds: Welfare and profit maximization with server costs. ACM
SIGMETRICS Performance Evaluation Review, 43(1):3–15, 2015.

[258] Laiping Zhao, Liangfu Lu, Zhou Jin, and Ce Yu. Online virtual machine place-
ment for increasing cloud provider’s revenue. IEEE Transactions on Services
Computing, 10(2):273–285, 2015.

[259] Gruia Calinescu, Amit Chakrabarti, Howard Karloff, and Yuval Rabani. An
improved approximation algorithm for resource allocation. ACM Transactions
on Algorithms (TALG), 7(4):48, 2011.

[260] Takfarinas Saber, James Thorburn, Liam Murphy, and Anthony Ventresque.
Vm reassignment in hybrid clouds for large decentralised companies: A multi-
objective challenge. Future Generation Computer Systems, 79:751–764, 2018.

[261] Johan Tordsson, Rubén S Montero, Rafael Moreno-Vozmediano, and Igna-
cio M Llorente. Cloud brokering mechanisms for optimized placement of vir-
tual machines across multiple providers. Future generation computer systems,
28(2):358–367, 2012.

[262] Chahrazed Labba, Nour Assy, Narjès Bellamine Ben Saoud, and Walid Gaaloul.
Adaptive deployment of service-based processes into cloud federations. In Inter-
national Conference on Web Information Systems Engineering, pages 275–289.
Springer, 2017.

184 Bibliography

[263] Fahimeh Ramezani, Jie Lu, and Farookh Hussain. Task scheduling optimization
in cloud computing applying multi-objective particle swarm optimization. In In-
ternational Conference on Service-oriented computing, pages 237–251. Springer,
2013.

[264] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. Performance-effective and
low-complexity task scheduling for heterogeneous computing. IEEE transac-
tions on parallel and distributed systems, 13(3):260–274, 2002.

[265] Aly Megahed, Kugamoorthy Gajananan, Mari Abe, Shun Jiang, Mark Smith,
and Taiga Nakamura. Pricing it services deals: A more agile top-down approach.
In International Conference on Service-Oriented Computing, pages 461–473.
Springer, 2015.

[266] Kugamoorthy Gajananan, Aly Megahed, Mari Abe, Taiga Nakamura, and Mark
Smith. A top-down pricing algorithm for it service contracts using lower level
service data. In 2016 IEEE international conference on services computing
(SCC), pages 720–727. IEEE, 2016.

[267] Sumanta Basu, Soumyakanti Chakraborty, and Megha Sharma. Pricing cloud
services—the impact of broadband quality. Omega, 50:96–114, 2015.

[268] Shadi Ibrahim, Bingsheng He, and Hai Jin. Towards pay-as-you-consume cloud
computing. In Proceedings of the IEEE International Conference on Services
Computing, pages 370–377. IEEE Computer Society, 2011.

[269] Sahar Arshad, Saeed Ullah, Shoab Ahmed Khan, M. Daud Awan, and M. Sikan-
dar Hayat Khayal. A survey of cloud computing variable pricing models. In
Proceedings of the 10th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering, pages 27–32. SciTePress, 2015.

[270] Parnia Samimi and Ahmed Patel. Review of pricing models for grid & cloud
computing. In Proceedings of the IEEE Symposium on Computers & Informat-
ics, pages 634–639. IEEE, 2011.

[271] Diego Cardoso Alves, Bruno Guazzelli Batista, Dionisio Machado Leite Filho,
Maycon Leone Maciel Peixoto, Stephan Reiff-Marganiec, and Bruno Tardiole
Kuehne. CM cloud simulator: A cost model simulator module for cloudsim.
In Proceedings of the IEEE World Congress on Services, pages 99–102. IEEE
Computer Society, 2016.

[272] Evert Duipmans. Business process management in the cloud: business process
as a service (BPaaS). PhD thesis, University of Twente, 2012.

[273] MingXue Wang, Kosala Yapa Bandara, and Claus Pahl. Process as a service dis-
tributed multi-tenant policy-based process runtime governance. In Proceedings

Bibliography 185

of the IEEE International Conference on Services Computing, pages 578–585.
IEEE, 2010.

[274] Mehdi Ahmed-Nacer, Kunal Suri, Mohamed Sellami, and Walid Gaaloul. Sim-
ulation of configurable resource allocation for cloud-based business processes.
In Proceedings of the IEEE International Conference on Services Computing,
pages 305–313. IEEE, 2017.

[275] Mathias Weske. Business process management architectures. In Business Pro-
cess Management, pages 333–371. Springer, 2012.

[276] Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed
Jmaiel. The temporal perspective in business process modeling: a survey and
research challenges. Service Oriented Computing and Applications, 9(1):75–85,
2015.

[277] Maja Pesic, M. H. Schonenberg, Natalia Sidorova, and Wil M. P. van der Aalst.
Constraint-based workflow models: Change made easy. In Robert Meersman
and Zahir Tari, editors, Proceedings of the International Conferences on the
Move to Meaningful Internet Systems, volume 4803 of Lecture Notes in Com-
puter Science, pages 77–94. Springer, 2007.

[278] Wenjia Huai, Xudong Liu, and Hailong Sun. Towards trustworthy composite
service through business process model verification. In Proceedings of the 2010
7th International Conference on Ubiquitous Intelligence and Computing and 7th
International Conference on Autonomic & Trusted Computing, pages 422–427.
IEEE Computer Society, 2010.

[279] Waheed Ahmad, Robert de Groote, Philip K. F. Hölzenspies, Mariëlle Stoelinga,
and Jaco van de Pol. Resource-constrained optimal scheduling of synchronous
dataflow graphs via timed automata. In 14th International Conference on Appli-
cation of Concurrency to System Design, ACSD 2014, Tunis La Marsa, Tunisia,
June 23-27, 2014, pages 72–81, 2014.

[280] Qiang Li and Yike Guo. Optimization of resource scheduling in cloud com-
puting. In International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2010.

[281] Menglan Hu, Jun Luo, and Bharadwaj Veeravalli. Optimal provisioning for
scheduling divisible loads with reserved cloud resources. In 18th IEEE Interna-
tional Conference on Networks, pages 204–209. IEEE, 2012.

[282] Daniel Solow. Linear and nonlinear programming. Wiley Encyclopedia of Com-
puter Science and Engineering, 2007.

186 Bibliography

[283] Marcello La Rosa, Wil MP Van Der Aalst, Marlon Dumas, and Fredrik P
Milani. Business process variability modeling: A survey. ACM Computing
Surveys (CSUR), 50(1):1–45, 2017.

[284] Marcello La Rosa, Petia Wohed, Jan Mendling, Arthur HM Ter Hofstede,
Hajo A Reijers, and Wil MP van der Aalst. Managing process model com-
plexity via abstract syntax modifications. IEEE Transactions on Industrial
Informatics, 7(4):614–629, 2011.

[285] Occiware. https://www.occiware.org/, (Mai 20, 2019).

[286] Gifty Gupta and Neeraj Mangla. Workflow scheduling in cloud computing.
Journal of Computational and Theoretical Nanoscience, 16(9):3965–3968, 2019.

