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Vision par ordinateur évènementielle couleur : cadriciel, prototype
et applications

Résumé : L’ingénierie neuromorphique aborde de manière bio-inspirée le design des capteurs
et ordinateurs. Elle prône l’imitation du vivant à l’échelle du transistor, afin de rivaliser avec
la robustesse et la faible consommation des systèmes biologiques. Les caméras évènementielles
ont vu le jour dans ce cadre. Elles possèdent des pixels indépendants qui détectent de manière
asynchrone les changements dans leur champ visuel. La sortie du capteur est une séquence
d’évènements épars possédant une grande précision temporelle. Ces propriétés étant mal ex-
ploitées par les algorithmes usuels de vision par ordinateur, un nouveau paradigme encourageant
de petits calculs à chaque évènement a été développé. Cette approche témoigne d’un potentiel à
la fois pour la vision par ordinateur et en tant que modèle biologique.
Le traitement de la couleur par le cerveau est encore mal compris, et les algorithmes de vision par
ordinateur couleur sont peu génériques et coûteux en calcul. Le paradigme évènementiel peut
fournir des solutions originales à ce problème.
Cette thèse explore la vision par ordinateur évènementielle, afin de mieux comprendre notre sys-
tème visuel et identifier des applications. Nous approchons le problème par la couleur, un aspect
peu exploré des capteurs évènementiels. Nous présentons un cadriciel supportant les évènements
couleur, ainsi que deux dispositifs expérimentaux l’utilisant : une caméra couleur évènementielle
et un système pour la psychophysique visuelle destiné à l’étude du temps précis dans le cerveau.
Nous considérons l’application du capteur couleur à la méthode de génie génétique Brainbow, et
présentons un modèle mathématique de cette dernière.

Mots clés : Neuromorphique, évènementiel, vision par ordinateur, couleur, Brainbow

Color event-based computer vision: framework, prototype and
applications

Abstract: Neuromorphic engineering is a bio-inspired approach to sensors and computers de-
sign. It aims to mimic biological systems down to the transistor level, to match their unparalleled
robustness and power efficiency. In this context, event-based vision sensors have been developed.
Unlike conventional cameras, they feature independent pixels which asynchronously generate an
output upon detecting changes in their field of view. The overall output is a sparse sequence of
events with high temporal precision. These properties are not leveraged by conventional com-
puter vision algorithms, thus a new paradigm has been devised. It advocates short calculations
performed on each event to mimic the brain, and shows promise both for computer vision and
as a model of biological vision.
Color processing in the brain is not fully understood, and color computer vision tasks are handled
by ad hoc and computationally expensive algorithms. The event-based paradigm may provide
new and original answers to the problem.
This thesis explores event-based computer vision to improve our understanding of visual percep-
tion and identify potential applications. We approach the issue through color, a mostly unex-
plored aspect of event-based sensors. We introduce a framework supporting color events, as well
as two experimental devices leveraging it: a three-chip event-based camera performing absolute
color measurements, and a visual psychophysics setup to study the role of precise-timing in the
brain. We explore the possibility to apply the color sensor to the genetic engineering Brainbow
method, and present a new mathematical model for the latter.

Keywords : Neuromorphic, event-based, computer vision, color, Brainbow
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Introduction

At the turn of the 17th century, a most peculiar idea was born: the abstract mathematics
of ancient Greeks, “a detached intellectual subject for the connoisseur” (Burton, 2007 [1]),
are the language of our physical universe. This idea is best expressed by Galileo’s famous
sentence “Philosophy is written in this grand book, the universe[. . .]. It is written in
the language of mathematics, and its characters are triangles, circles and other geometric
figures” (Galileo and Drake, 1957 [2]). Together with rigorous experimental validation,
it brought forth a scientific revolution. Over the subsequent centuries, mathematics were
used to describe, understand and predict an increasing number of natural phenomenons,
and applied to increasingly complex machines.

In 1936, Alan Turing introduced a theoretical machine able to compute any sequence
of mathematical operations [3], thus able to interpret and predict natural phenomenons
- very much like human beings. His work on the possibility for machines to “compete
with men in all purely intellectual fields” (Turing, 1950 [4]) paved the way for artificial
intelligence. Since then, machines have beaten top humans at difficult intellectual tasks
such as chess [5] and go [6]. Yet, tasks that come easy to humans have proven unexpectedly
difficult for machines. In particular, having a machine solve vision tasks (locating oneself
in an environment, segmenting and recognizing objects. . . ), once thought to be achievable
within a summer internship [7], remains a challenge more than half a century later.

Despite similar goals, and in some cases abilities, the human brain is very different
from computers. The latter, embodiment of the Universal Turing Machine, perform
deterministic computations with separated memory and processing units. In contrast, our
neurons are responsible for both, and manipulate information stochastically [8]. Likewise,
the sensory systems leveraged by the brain extract and encode information using strategies
and computational structures fundamentally different from their artificial counterparts.

It has been hypothesized that these structural differences are responsible for the poor
performance of computers in dealing with real-world sensory problems, compared to bio-
logical systems. The first research works to structure artificial computers like biological
systems, down to the transistor level, date back to the 1980s [9]. They laid the foun-
dations to neurormorphic engineering, a bio-inspired approach to the design of sensors
and processors [10]. Notable advances include silicon retinas, silicon cochleas, olfactory
sensors [11], and neural processors [12].

The Dynamic Vision Sensor (or DVS) [13] presented in 2008 opened the way for
applications, as the first silicon retina competitive with conventional sensors in terms of
latency, power consumption, dynamic range and ease of use. Unlike conventional artificial
sensors, each pixel of a DVS is asynchronous and independent. Pixels generate an output
- called event - when the luminance in their individual field of view changes beyond a

xi



xii Introduction

fixed threshold. The sensor’s output is a sequence of spatially sparse events which do
not carry absolute luminance information. However, each event is time-stamped with a
precision in the order of a few hundred microseconds.

Conventional computer vision algorithms do not take full advantage of the output of
silicon retinas. The DVS, as well as more recent sensors based on a similar principle,
triggered the development of a new branch in computer vision, referred to as event-based
computer vision. This approach advocates small calculations performed on each event, in
order to leverage the high temporal resolution of the sensor’s data [14] and be compatible
with neuromorphic processors [15]. It aims to outperform conventional computer vision
using simplifying assumptions supported by the fact that the sensor’s temporal resolution
is large compared to the scene’s dynamics. For example, one can assume that objects
move by at most one pixel between two samples, easing tracking calculations [16].

Looking at computer vision under a new paradigm may provide new and original
answers to long-standing problems. One such problem is color: a generic approach to
its many applications [17] has yet to be found, as illustrated by the multiple ad hoc
approaches of pre-deep learning computer vision [18]. Convolutional neural networks
yield a more generic solution to the problem, however they require massive amounts of
data and computational power. Moreover, the role of color is not easy to extract from
their opaque models [19].

Neuromorphic engineering takes inspiration from multiple fields, notably neuroscience,
biology and psychophysics. In turn, advances in engineering enable new experiments in
these fields. Thus, a focus on neuromorphic engineering applications to biology yields a
virtuous circle benefiting both research topics. As regards algorithms design, concrete
applications provide great experimental validation, and help define the solution scope.

This thesis aims to explore neuromorphic event-based computer vision, to improve
our understanding of visual perception and identify possible applications of this new
paradigm. We will approach the issue through color, an aspect of event-driven sensors
that underwent little exploration. The absolute exposure measurements provided by the
Asynchronous Time-based Image Sensors (ATIS) [20] will be leveraged to perform absolute
event-based color measurements. We will present a software framework supporting events
with arbitrary payloads to represent these measurements. An event-based color sensor
will be assembled from three ATIS, and used hand-in-hand with a novel algorithm to solve
segmentation problems. The framework will also be used to build a psychophysics setup
designed to better understand the role and importance of temporal precision in biological
visual systems. The application of the color sensor to biological samples generated by
the genetic engineering method Brainbow [21] will be discussed, and a new mathematical
model of the latter will be introduced.



Chapter I
State of the art

I.1 Color sensing

Primates’ ability to discriminate colors is advantageous for survival [22]. They use it
for long-range detection of edible food in forest environments. This ability is nowadays
exploited by humans to efficiently communicate information: road signs, merchandising
and maps are a few examples. Consequently, machine vision systems meant to interface
with humans or mimic their vision often rely on colors [23]. Applications include, among
others, traffic sign recognition [24], skin detection [25], visual saliency modeling [26] or ve-
hicle color classification [27]. This section gives an overall view of human color perception,
and compares it to state-of-the-art architectures for artificial color sensing.

I.1.1 Human color perception

Photons emitted or reflected by an object are characterized by their distribution of power
over the electromagnetic spectrum (among others things). This distribution lies in an
infinite-dimensional space. The eyes of many animals - including humans - feature several
types of photoreceptors, with distinct spectral sensitivities. The excitation of a photore-
ceptor can be calculated as the product of the power distribution by the energy-based
spectral sensitivity, integrated over the spectrum [28]. The original infinite-dimensional
power distribution is projected on a finite basis: different spectra can have the same
representation in the finite basis. This property, known as metamerism, has notable
consequences in artificial color creation and sensing [29]. Some animals with a single
photo-receptor type (notably cephalopods and color-blind primates) exhibit color percep-
tion. A. L. Stubbs et al. [30] describe a mechanism enabling color sensing using chromatic
blurring.

The human retina contains three types of photoreceptor cells: cones, rods and pho-
tosensitive retinal ganglions. The latter participate in circadian patterns and pupil re-
actions [31], whereas cones and rods are responsible for high precision spatio-temporal
light sensing. Color vision is mostly attributed to cone cells, which exist in three types:
S, M and L. Figure I.1 shows the relative energy-based spectral sensitivity of macaque
photoreceptors, indistinguishable from human ones [32].

The photoreceptor excitation that can be derived from the sensitivity curves, given an
electromagnetic spectrum, is only the first step in color perception. Young–Helmholtz’s

1
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Fig. I.1 Relative energy-based spectral sensitivity characterizes the relative ex-
citation of photoreceptors to specific wavelengths. The curves shown in this
figure were measured on a macaque. Indistinguishable results are obtained with
human subjects [32]. Our photoreceptors are sensitive to overlapping ranges,
notably the M and L cones. The blue, green and red colors were not used to
represent cones on purpose, to avoid the frequent confusion between physical
sensing and color perception. The x axis is linear in wavenumber, hence the
uneven distribution of wavelength ticks. From E. R. Kandell et al. [8]

three-receptor theory (1850) is one of the first attempts to describe color perception as
a physical mechanism, and correctly postulated the existence of cone cells. However,
it wrongfully assumed that color perception resulted from a linear combination of the
cells activity. Hering’s opponent colors theory (1892) described a competing mechanism,
based on four colors (yellow, red, blue and green) arranged in mutually excluding pairs,
and two achromatic colors (black and white). Though experiments proved this theory
wrong [33], or at least incomplete, it remains critical as it brought forth the idea that
color perception is not directly inferred from the photoreceptors’ activity, but emerges
further up in the visual pathway. The three-receptor and opponent theories were recon-
ciled by Schödinger (1925), as two complementary stages of color perception, and further
developed throughout the 20th century.

Color processing starts in the retina, where cone-opponent retinal ganglion cells com-
bine the output of neighboring photoreceptor [34]. There are several types of ganglions,
each performing a specific combination which takes into account the cone cells types and
their relative spatial position. The ganglions’ axons project to the lateral geniculate nu-
cleus, or LGN, which in turn projects to the visual cortex. The role of the LGN in color
processing, beyond relaying information from the eyes to the visual cortex, is not fully
understood [35]. Despite advances in neuroscience, several open questions remain on the
matter of color processing - and ultimately perception - in the visual cortex. Notably,
there is no consensus on the extent to which color and visual shapes are treated sepa-
rately, though the evidence accumulated in recent experiments tips the scale towards an
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sepia

cham
tarsier

eleon
Fig. I.2 Spatial context plays a fundamental role in the way we perceive colors.
In this example, the words sepia and tarsier are written with the same color, as
emphasized by the connector between their i letters. Likewise, cham and eleon
are written with the same shade of orange. Adapted from S. K. Shevell et al. [39]

inextricable link between color and form [36, 37].
Land’s experiments, notably his 1955 demonstrations at the Annual Meeting of the

Optical Society of America, showed the importance of spatial adaptation in color percep-
tion. An example is illustrated figure I.2. These experiments highlighted the shortcomings
of existing theories, and paved the way for Retinex algorithms [38], which aim to mimic
human color perception by modelling the retina, the LGN and the visual cortex.

Most artificial color sensors are based on Young–Helmholtz’s three-receptor theory,
with little on-chip processing beyond demosaicing. This limitation is not surprising,
given that these sensors are meant to capture data for human consumption rather than
to mimic biological systems. Multiple methods to separate color channels were successfully
implemented, and are illustrated in the next section. The color transforms found in the
opponent or Retinex theories, which have applications in color segmentation, are generally
performed outside the sensor (see § I.4).

I.1.2 Artificial color sensing
Color sensors were originally developed for photography: their data was not meant to be
analyzed by a machine, but to be displayed for human consumption. Given our trichro-
matic vision, it is enough for an artificial sensor to capture light in the same manner
our cones cells would, by projecting the electromagnetic spectrum on a three-dimensional
basis.

Screens and light projectors simply needs to emit a superposition of the three captured
colors, a process known as additive mixing. Since this three-channel representation of
color and the original source are metamers, they are identical to the human eye. Physical
substances such as ink do not emit light, but reflect specific wavelengths: red ink absorbs
everything but red light. Thus, mixing red and blue ink results in a black material
absorbing every wavelength. In order to show arbitrary colors to the human eye, the
three colors yellow, magenta and cyan ink must be used instead. They reflect every



4 Chapter I. State of the art

wavelength but those most visible to the S, M and L cones (respectively). A combination
of these colors is called subtractive mixing.

There are several methods to build artificial photoreceptors with spectral sensitivi-
ties similar to our cones. C. Wootton [40] lists three families of methods: multi-pass,
filter arrays and beam splitting. The multi-pass approach was used by the Kinemacolor,
which relied on a spinning wheel with red and green filters and a single strip [41]. Beam
splitting could be found in Technicolor cameras [42], and is still used by 3 CCD chips.
The latter rely on dichroic filters arranged in a prism configuration. Filter arrays, also
known as Bayer filters, consist in a mosaic of blue, green and red filters in front of a
single sensor. Bayer filters come in many variants [43]. They are the most widespread
technology for building color sensors, for they are less bulky than 3 CCD cameras, and
do not suffer from alignment issues. However, they require demosaicing algorithms [44]
and create color artifacts. Color co-site sampling uses both multi-pass and an array of
filters [45], circumventing Bayer filters limits at the expense of frame-rate. The Foveon
sensor [46] combines the benefits of Bayer filters and 3 CCD cameras, thanks to stacked
blue, green and red photoreceptors. The three approaches co-exist today, with on-going
investigations to characterize the benefits - and possible drawbacks - of Foven sensors over
Bayer filters [47]. Figure I.3 illustrates the different color sensor architectures.

Unlike usual color cameras, multispectral sensors do not try to mimic the three hu-
man cones. Instead, they capture multiple spectral bands (between three and several
hundred) [48, 49] as to increase the amount and quality of data gathered from the scene.
Notable applications include space imaging [50] and biology imaging [51]. Multispectral
cameras use the same methods as RGB cameras to separate color components: rotating
wheels [52], Bayer filters [53] or Foveon pixels [54].

In order to be represented mathematically or numerically, colors are expressed in three-
dimensional spaces. Color spaces can be organized in three categories: device-oriented,
user-oriented and device-independent [55]. Device-oriented color spaces are used to com-
municate with sensors, printers or displays. For example, the RGB color space directly
encodes the output of color sensors, the CMY color space represents ink proportions for a
printer, and YUV is used for TV broadcasting. They come in many linear and non-linear
variants to support devices with higher dynamic ranges or color precision. User-oriented
color spaces, such as HSV, are polar coordinate representations of the RGB space. The
conversion from RGB to HSV can be expressed as a sequence of simple geometric trans-
formations. These color spaces were designed for use in color selection tools: specifying a
color using HSV values is more intuitive to humans than specifying it in RGB space [56].
Device-independent spaces, such as CIEL*a*b*, aim for perceptual uniformity: they are
designed so that the Euclidean distance is a good estimate of the perceptual difference
between colors. The transformation from RGB to CIEL*a*b* can be seen as a simple-
to-compute model of human color vision. Perceptually uniform color spaces have many
applications in computer vision. Figure I.4 shows the difference between Euclidean and
perceptual distance in RGB and CIE L*a*b* spaces. Device-independent spaces can be
represented in polar coordinates as well [57]. The relatively recent CIECAM02 color
space, which takes into account stimulus’ surroundings, is a more plausible model of the
human visual cortex than CIE L*a*b* [58].

A new kind of artificial sensors, called silicon retinas, emerged in the 1990s. The next
section outlines a brief history of these sensors, and shows how they lead to event-based
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Fig. I.3 In order to generate data compatible with human vision, color sensors
split light into three components. Existing architectures either use a single chip
and alternate samples over time (mutli-pass) or space (Bayer filter), or use mul-
tiple chips. Foveon sensors use stacked arrays of pixels, with one layer per color
component. Multispectral sensors rely on the same techniques, however they use
more, or different, base colors.
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Fig. I.4 The RGB space (left) is not perceptually uniform. A given Euclidean
distance between two colors can correspond to visually similar colors (a and b)
or very different ones (b and c). The CIEL*a*b* color space (right) is designed
to be perceptually uniform, which simplifies the design of many computer vision
algorithms. The conversion from RGB to CIEL*a*b* requires highly non-linear
transforms which combine the original color channels.

computer vision.

I.2 From the silicon retina to event-based sensors

I.2.1 History
The pixels of conventional digital cameras carry out a simple operation: they integrate
light over fixed time intervals and convert the result to a digital value. Such pixels are
generally implemented using either a charge-coupled device or a transistor [59]. Light
integration is performed by all the pixels at the same time (global shutter) or sequentially
(rolling shutter). In both cases, the integration duration is the same for every pixel. The
sensor output is a spatially dense array of digital values - or frame - representing the
average luminance over the time of integration.

By contrast, the human retina contains complex circuits performing analog operations
on visual data [60]. This inspired the silicon retina, devised in 1989 by M. A. Mahowald
and C. Mead [61]. It contains three major components mimicking biological retinas: a
logarithmic photoreceptor, a local spatio-temporal averaging circuit and a spatial contrast
amplification circuit. The circuits’ calculations are performed directly on the current
output of the photoreceptor, without any conversion. The chip’s output is analog, with
a sequential read-out similar to a rolling shutter. Subsequent sensors expanded on this
principle, with dedicated circuits for edge detection, motion detection [62, 63], velocity
measurement [64] or improved dynamic range [65]. Since these sensors were meant to be
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integrated in fully neuromorphic hardware assemblies [66], with asynchronous and analog
communications between components, little focus was given to digital conversion and
compatibility with conventional computers.

Building fully neuromorphic systems is difficult, because one must simultaneously in-
vent massively parallel analog hardware and novel algorithms [67]. Both are challenging:
the methods resulting from years of research in digital hardware design do not necessarily
apply to analog design, and the mechanisms governing the brain, source of inspiration
for neuromorphic algorithms, are not fully understood yet. In order to separate the two
problems, the research community devised ways to convert the output of silicon reti-
nas to digital data. Thus, the matter of algorithms can be tackled with conventional,
well understood computers, whereas the camera performs analog pre-processing. T. Del-
brück et al. [68, 69] list several major contributions that paved the way for neuromorphic
sensors compatible with digital computers. The introduction of Address-Event Represen-
tation [70] enabled transmission of precise timing information between chips (even over
packet-switched networks, or buses without strong temporal constrains), and became a
de facto standard for neuromorphic hardware. K. Boahen et al. [71] added the artificial
equivalent of biological parallel pathways to silicon retinas, resulting in four distinct out-
put channels: increasing, on, decreasing and off. The sensors introduced between 2003
and 2006 [72, 11] overcame the performance limits and mismatch issues of previous silicon
retinas, and lead to the Dynamic Vision Sensor (or DVS) [13].

The DVS is an event-based sensor: upon meeting a specific condition, its pixels emit
an output transmitted to the computer. The DVS implements the most widespread
type of calculation among event-based sensors, namely brightness change detection. The
pixel’s photodiode output is continuously monitored to detect significant variations. When
the logarithmic luminance changes beyond a fixed threshold, the pixel sends an event
to the computer. This event bundles spatial and temporal information, as well as a
boolean polarity encoding whether the significant change corresponds to an increase or
decrease in brightness. Other sensors implement this behavior: the color DVS [73], the
Asynchronous Time-based Image Sensor (or ATIS) [74] and the Dynamic and Active-
pixel Vision Sensor (or DAVIS) [75]. They are still under active development, with
improved versions featuring lower latency [76], higher sensitivity [77, 78], higher dynamic
range [79], or more pixels [80]. Event-based cameras output their events in the order
they are produced, resulting in a spatially sparse sequence with sub-millisecond precision,
whereas conventional cameras output spatially dense frames. Figure I.5 highlights the
difference between a sequence of frames and a stream of polarity events recorded from
the same scene.

The cDVS and ATIS differ from the DVS by their extended pixel circuits generating
a second type of polarity events, besides change detection. The polarity bit of the sec-
ond event type encodes another visual information. The cDVS triggers such events on
wavelength changes, whereas the ATIS encodes absolute exposure measurements in the
time difference between them. The DAVIS is a hybrid sensor: it features both a DVS-like
circuit and a light integration circuit. The latter produces frames similar to those gener-
ated by a conventional sensor. [81] present another event-based sensor, the CeleX, with a
behavior similar to that of a DVS: events are triggered by brightness changes. However,
output events include an absolute exposure measurement encoded on 9 bits instead of a
binary polarity.
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Fig. I.5 Conventional cameras (top figure) capture dense frames at fixed time
intervals. Event-based cameras (bottom figure) have independent pixels which
asynchronously output information when the luminance in their individual field
of view changes. This sparse representation yields a better temporal resolution
and a smaller bandwidth. Some computer vision tasks, such as moving objects
segmentation, become easier.
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The next section reviews event-based color pixels and sensors. The ATIS, used in this
work to build a color sensor (see chapter III), is given an in-depth description subsec-
tion I.2.3.

I.2.2 Event-based color sensors

Several approaches to color sensing have been considered for neuromorphic sensors. In
an early attempt, K. Shimonomura et al. combined three silicon retinas to build a three-
chip color sensor implementing Land’s Retinex theory [82]. Fu et al. [83] introduced a
Neuromorphic chip performing color disambiguation: local analog processing is used to
determine whether changes detected by the photoreceptors correspond to a variation of
chroma or luminance. Similarly, the cDVS pixel [73] detects both brightness changes,
as would a DVS pixel, and wavelength changes. However, it does not provide absolute
brightness or chroma measurements. This design is also limited by large pixels and poor
color separation, as emphasized by Li et al. [84] who introduced the C-DAVIS sensor.
The latter combines the DAVIS architecture with a Bayer filter RGB sensor, resulting in
an RGBW sensor. The red, green and blue pixels use dedicated photodiodes, whereas
the white channel uses the DVS pixel’s photodiode. This sensor outputs DVS-like events
corresponding to brightness changes and color frames. The Color-DAVIS346 [85] is a
DAVIS camera with improved sensitivity, thanks to back side illumination, and a Bayer
filter. Thus, it outputs color polarity event, which correspond to changes in color channels,
and color frames. A dataset providing recordings of this sensor as well as simulated scenes
was recently presented [86].

I.2.3 Asynchronous Time-based Image Sensor

The Asynchronous Time-based Image Sensor (or ATIS) [74] is an event-based camera. It
features autonomous and asynchronous pixels which generate two types of events, with
two photodiodes per pixel.

The first photodiode is associated with a DVS-like circuit, which outputs polarity
events when the logarithmic luminance changes beyond a fixed threshold. The polarity
bit associated with such events indicates their channel: on if the event was triggered by
a luminance increase, off if it was triggered by a luminance decrease. Upon detecting an
event, pixels communicate with the global arbiter which sends events sequentially to the
outside world, using an AER interface. Details on the arbiter architecture can be found
in K. Boahen’s work [71].

The second photodiode and its circuit perform absolute exposure measurements. The
measurements are event-based: upon detecting a change, the first circuit (DVS-like) trig-
gers the second circuit (only for its pixel), which starts integrating light received by its
photodiode. The time-to-first-spike scheme [87] is used to encode the luminance infor-
mation. A first event is emitted when the integration begins, and a second event when
the circuit’s capacitor reaches a specific threshold. With every detection, three events are
typically generated by an ATIS: a polarity event (either on or off ), a first threshold cross-
ing event shortly after, and a second threshold crossing at the end of integration. The
absolute luminance is proportional to the inverse of the time difference between the two
threshold crossings. Integration restarts if a new change is detected by the first circuit.
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The polarity bit of threshold crossing events indicates whether they correspond to the
beginning or the end of integration. This approach has two benefits: it yields a very high
dynamic range for luminance measurements (143 dB), and it encodes them with spikes,
like change detections.

The asynchronous, clock-less ATIS is connected to an FPGA responsible for times-
tamping events and preparing packets for USB transfer. The two components (sensor
and FPGA) form a complete USB camera which exists in two versions: the Opal Kelly
ATIS, based on an Opal Kelly XEM6010 board (Spartan-6 FPGA, USB 2.0, 128 MiB
RAM used for events buffering), and the CCam ATIS, based on a custom board designed
by Prophesee (Artix-7 FPGA, USB 3.0, no RAM). The overall ATIS principle and the
camera’s output are illustrated figure I.6.

Event-based sensors are not the only silicon retina offspring designed to communi-
cate with conventional computers [88]. Other approaches include pulse-modulation imag-
ing [89] and smart vision chips [90, 91, 92, 93]. Such sensors generally output dense frames,
and are therefore compatible with conventional computer vision algorithms. Event-based
sensors, on the other hand, generate a fundamentally different spare sequence which calls
for different computational strategies [68].

I.3 Event-based computer vision

I.3.1 Algorithms

There are three approaches to information extraction from the output of event-based
cameras. The first one consists in generating spatially dense frames from the sensor
output in a way that preserves temporal resolution. The frames can then be fed to
conventional computer vision algorithms [94, 95]. The second approach advocates short
calculations triggered by each event, and requires a rethink of computer vision from the
ground up [14, 16, 96, 97, 98, 99]. By matching the sensor data format, this approach
benefits from the sensor advantages, notably resemblance to biological signals, low latency
and data compression. Lakshmi et al. [99] surveyed event-based algorithms for computer
vision, and organized them in three categories: object detection and recognition, object
tracking, and localization and mapping. Spiking neural networks fit the constraints of the
second approach, and several event-based computer vision algorithms were implemented
on neural simulators [15, 100, 101, 102]. The third approach mixes frames and events,
and is well suited to hybrid sensors such as the DAVIS [103, 104, 105, 106].

Given the issues arising from the Von Neumman architecture of modern comput-
ers [107], dedicated hardware seems required for event-based vision systems to match the
performance of their biological counterparts. Nevertheless, microprocessors remain the
de facto standard to perform general-purpose computations. They benefit from years
of research and development, making them cost-effective, computationally-efficient, and
user-friendly. As such, they are great tools for algorithms prototyping and early applica-
tions of event-based sensors. S. Furber [108] envisions heterogeneity in future processors:
general-purpose cores will work together with dedicated hardware accelerators. Under
this assumption, a framework targeting CPUs is not a mere temporary solution waiting
to be replaced by neural networks, but a decision support tool. It provides a baseline for
algorithms power consumption and computational cost, against which implementations
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Fig. I.6 The ATIS is an asynchronous, event-based camera with independent
pixels. This figures illustrates the behaviour of a single pixel. When the loga-
rithm of the luminance captured by the pixel crosses a threshold, light integration
for the pixel starts. The exposure measurement’s duration is proportional to the
inverse of the luminance, and is notified by two events called threshold crossings:
the first one is sent when the integration begins, the second one when it ends.
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running on dedicated hardware can be compared. Thus, the accelerators can be chosen
based on the gain they yield for tasks deemed important. A framework designed for
CPUs must provide fast implementations in order to be an effective baseline. Moreover,
its syntax should reflect the constrains of hardware dedicated to event-based calculations,
to ease comparisons and facilitate algorithms ports from one platform to the other.

I.3.2 Frameworks

A software framework provides a collection of operators and a way to assemble them to
build complex algorithms. We consider three types of frameworks related to event-based
computer vision. First, we present frameworks for conventional computer vision and their
limits when working with event-based data. Then, we examine event-based programming,
showing how its concepts apply to event-based computer vision, even though existing
frameworks were designed under constraints so different from event-based sensors that
they cannot be used directly. Finally, we review frameworks dedicated to event-based
computer vision.

The applications of linear algebra to a wide variety of science and engineering fields
triggered, early in computer science history, the development of efficient libraries to com-
pute matrix operations [109]. Conventional computer vision libraries use matrices to
represent frames, allowing algorithms to be expressed as a sequence of operations on
dense data [110, 111, 112]. Dynamic, high-level languages can often be used to specify
the operators order. The overhead incurred by the dynamic language is negligible when
compared to the matrix operations. The latter are optimized by the underlying linear
algebra library, yielding a development tool both efficient and user-friendly. Event-based
computer vision is a different story. Small computations are carried out with each incom-
ing event, and the cost of the glue between operators stops being negligible. Hence, the
very structure of the libraries designed for conventional computer vision is incompatible
with events, besides dealing with dense frames instead of sparse events.

Unlike event-based computer vision, event-driven programming languages and frame-
works are not new: Visual Basic dates back to the 1990s. Among the concepts developed
for event-driven programming, the event handler pattern and the observer pattern [113]
are natural choices to represent event-based algorithms and event-based cameras. Reac-
tive programming [114], devised has a refinement over event-driven programming, intro-
duced new abstractions to avoid state-full event-handlers and explicit time management.
However, the neurons we aim at mimicking are state-full (the reaction to an input spike
- for example, an output spike - depends on the current membrane potential), and fine
control over time management is a needed feature for real-time systems. Hence, we
choose to design our framework using event-driven rather than reactive concepts. Mod-
ern event-driven frameworks have notable applications in graphical user interfaces and
web servers [115], where events represent user interactions and HTTP requests, respec-
tively. The number of events per second reached in these applications is very small when
compared to event-based cameras. On the one hand, a user clicking or typing does not
generate much more than tens to hundreds of events per second [116], and a large website
such as Twitter handles about six thousands requests per second on average [117]. On
the other hand, an ATIS moving in a natural environment generates about one million
events per second, with peaks reaching next to ten million events per second. The rel-
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atively small number of events the existing frameworks were designed to handle makes
their design incompatible with event-based computer vision. For example, Javascript
event handlers can be attached or detached at run-time, greatly improving flexibility at
the cost of a small computational overhead whenever an event is dispatched.

All the frameworks dedicated to event-based computer vision circumvent the afore-
mentioned problem using event buffers transmitted from operator to operator. The buffers
typically contain a few thousand events spread over a few thousand microseconds. A typ-
ical operator loops over the buffer and applies some function on each event. The operator
output consists in one or several new event buffers, looped over by subsequent operators.
The sequence is dynamically defined at run-time, incurring a computational overhead.
However, this cost is paid with every buffer instead of every event, becoming negligible as
is the case with conventional computer vision frameworks. The first event-based computer
vision framework, jAER [118], was designed for the DVS and is written in Java. Subse-
quent cameras and their increased event throughput triggered the development of C and
C++ frameworks: cAER [119], recently re-factored and renamed Dynamic Vision [120]
(both from iniVation), kAER1 (from Prophesee) and event-driven YARP [121] (developed
for the iCub). Table I.1 highlights the design differences between these frameworks. The
table also includes tarsier, the computation component of the framework presented chap-
ter II. Unlike the other frameworks, it assembles operators at compile-time, suppressing
the need for buffers between components, even though event buffers are still used to
communicate with cameras or the file system.

Even though a few event-based sensors capture color information, very little research
has been carried out on color event-driven algorithm. However, a wide variety of conven-
tional computer vision approaches tackle the problem of color.

I.4 Color computer vision

The first computer vision algorithms for color images were designed as extensions to ex-
isting algorithms for brightness - or grey levels - images [122]. They generally involved
a coordinate transformation step to separate luminance and chroma, in order to build
features invariant to illuminance [123]. Color computer vision co-existed for decades with
brightness computer vision, motivated by humans’ ability to segment color-less images
and the higher computational cost of color algorithms. Moreover, given the digital rep-
resentation of color as three brightness layers, it is tempting to reduce color to three
independent brightness problems. In the early 2010s, fully automated color segmentation
remained challenging, with ad hoc techniques required to solve many problems despite
the considerable amount of research that had been carried out [18]. The methods for
color video segmentation relied on a model describing tracked objects: superpixels [124],
graphs [125, 126, 127] or local classifiers [128, 129]. These methods yield robust and
accurate results, but require heavy computations. Other methods rely on clustering tech-
niques, especially Mean Shift derivatives, to segment colors [130, 131]. The results quality
and very high computational costs drove research on speed optimization and complexity

1kAER 0.6, used in this work, is the lastest version developed by our laboratory and licensed to
Prophesee. Newer versions are now developed and maintained by Prophesee and the source codes are for
internal use only, hence their performances are not assessed in this work.
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name open
source

operators
connection dependencies communication

and execution event types

tarsier
(this
work)

yes
compile-time,
C++ tem-
plates

-
event-wise
function calls,
single thread

template
event types,
contiguous
memory

cAER yes run-time,
XML

Boost,
libpng,
libusb, libuv

event buffers,
single thread

hard-coded
event types,
contiguous
memory

kAER no run-time,
C++ / Python

Boost,
OpenCV,
Python, Qt

event buffers,
constant time
intervals,
single thread

hard-coded
event types,
contiguous
memory

event-
driven
YARP

yes run-time,
C++ / XML libace

IP packets,
multiple pro-
grams

polymorphic
event types,
non-
contiguous
memory

Dynamic
Vision
System

yes run-time,
XML

Boost,
libusb,
OpenCV,
OpenSSL

event buffers,
multiple
threads

hard-coded
event types,
contiguous
memory

Table I.1: Various C/C++ frameworks provide tools to build event-based algorithms.
Despite an identical goal and programming language, they are build upon very differ-
ent design decisions. Differences impact users’ interaction with the framework and the
performance of algorithms implementations.

reduction through structuring of the feature space [132, 133, 134], dynamic bandwidth
selection [135] or kernel choice improvements [136]. Despite these optimizations, the large
computation costs prevent their use for real-time or low-power applications.

The methods presented so far rely mostly on hand-crafted features. The first use
of backpropagation to perform supervised learning in convolutional neural networks (or
CNNs), started a revolution in computer vision in 2010 [137]. Even though the method
was not new [138], the training of networks with many layers had become possible thanks
to efficient GPU implementations. This approach outperforms hand-crafted algorithms
on many computer vision tasks [139, 140]. CNNs hidden layers represent the original
image in spaces with a large number of dimensions. Thus, using color images instead
of grey level ones has negligible impact on performance. However, since color improves
results in some cases, it is almost always used by CNNs. Every aspect of color processing
(coordinate transformation, edge detection. . . ) is expressed as a sequence of convolutions.
The associated kernels, which are learned from labelled data, are remarkably similar to
the receptive fields of neurons found in the human brain [141]. The trained convolutional
kernels of AlexNet [142] are illustrated figure I.7.
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Fig. I.7 Convolutional neural networks express every computer vision operation
as a sequence of convolutions, including color coordinate transformations. The
kernel shown in this figure are used by the first layer of the AlexNet algorithm,
and were trained on the ImageNet dataset. They are remarkably similar to the
recepteive fields of neurons in the human retina and visual cortex. From A.
Krizhevsky et al. [142]

In many ways, today’s event-based computer vision is similar to conventional com-
puter vision in the 1980s. Most algorithms are hand-crafted, and very few are designed to
manipulate color data [86]. Nevertheless, event-based computer vision has many features
that may prove essential to computer vision tasks on embedded system. As a matter
of fact, CNNs are much less energy efficient than biological systems, and require large
amounts of dense data, which becomes extremely redundant in the case of videos. Neuro-
morphic sensors, on the other hand, produce sparse events which carry both spatial and
temporal information. This property may be critical for efficient video labelling, where
both time and space matter. Moreover, they can help solve challenging computer vision
problems in complex or unconventional scenes. Such scenes can notably be found when
recording biological samples.

I.5 Biology applications
Research in biology is essential to neuromorphic engineering. Even though existing knowl-
edge on the retina and the brain is already a source of inspiration for chip design, there
is still much we do not know about the structure of neural circuits and the mechanisms
driving them. A deeper understanding may prove necessary to the design of efficient
neuromorphic chips. Nevertheless, current chips can participate in biological research,
notably to confront theories drawn from observation, often in laboratory settings, to
devices built from scratch and used in real-world experiments [143].

Neuromorphic engineering also contributes to biology by taking part in experiments.
As a matter of fact, neuromorphic sensors outperform conventional cameras in terms of
dynamic range, speed and computational requirements, which benefit biological experi-
ments relying on image acquisition and analysis. They have been considered for calcium-
sensitive fluorescence [144], characterized by large difference of luminance between active
cells and their background, and quick activity variations. Event-based cameras meet both
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Fig. I.8 This reconstructed image shows a brain sample of a mouse genetically
modified using the Brainbow method. The latter relies on transgenes coding
for fluorescent proteins to facilitate neurons segmentation. The gene expression
varies widely between neurons, resulting in large luminance variations. The
high dynamic range of event-based cameras may be a key advantage to improve
Brainbow data acquisition. From T. Weissman et al. [149]

requirements.
Since neuromorphic sensors aim to mimic their biological counterparts, they are more

likely to successfully communicate with the brain. Hence, prosthesis provide another bio-
logical application to event-based sensors. The low power consumption of the latter makes
them well suited to embedded devices, and the spikes they generate resemble the physical
signals expected by biological neurons. Prosthesis using neuromorphic sensors include
neural interfaces for spike recording and neuron stimulation [145], sensory substitution
using haptic feedback [146], and bionic vision restoration [147, 148].

Brainbow is a bio-engineering method used for neural lineage tracing and neurons
segmentation [21]. It relies on multiple transgenes coding for fluorescent proteins. Brain
samples created with the method exhibit multiple colors when lit with specific sources, as
shown figure I.8. Like calcium-sensitive fluorescence, the Brainbow method may benefit
from neuromorphic sensors. We provide an in-depth literature review on this method and
considerations on its association with color event-based sensors in chapter V.



Chapter II

Sepia, Tarsier and Chameleon: a mod-
ular framework for event-based com-
puter vision

II.1 Introduction

A software framework for event-based computer vision, besides providing guidelines for
the design of algorithms, helps to create and distribute efficient implementations. Thus,
it is integral to the study of color event-based algorithms and their applications. In order
to support color sensors, a framework must be able to represent color events, and must
support the synchronization of multiple sensors in the case of a three-chip setup. Existing
frameworks for event-based computer vision, such as cAER and kAER, were designed to
handle polarity events generated by a DVS or an ATIS. Both rely on dedicated buffers,
resulting in an efficient but not easily extensible implementation. In order to synchronize
sensors and manipulate absolute color events - that is, events bundling absolute red, green
and blue luminance measurements - one must develop non-trivial extensions to these
frameworks. Therefore, it is interesting to design a new framework easing the creation
of new event types. Moreover, drastic structural changes can help improve the efficiency,
expressiveness and portability of existing solutions. This chapter presents the framework
we designed, which features support for color events and the ATIS.

The frameworks components are presented in the order they intervene in a pipeline,
starting with an overall view (§ II.2). We introduce event-driven programming concepts
and shows how they apply to event-based computer vision (§ II.3), followed by a brief
description of sepia, the component implementing functions to read and write event files.
§ II.4 presents the design and implementation of tarsier, a collection of event-based al-
gorithms. Benchmarks are used to compare its performance with existing event-based
computer vision frameworks (§ II.5). § II.6 describes chameleon, a collection of Qt com-
ponents to display events on a conventional screen. The implementation of drivers to com-
municate with event-based cameras, non-feed-forward architectures and considerations on
parallelism are exposed (§ II.7), before discussing future work and our conclusions (§ II.8).

17
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Fig. II.1 The framework presented in this paper is a collection of three indepen-
dent components: sepia (file IO), tarsier (event-based algorithms) and chameleon
(displays). Each component is hosted on its own repository, and serves a specific
goal. This graph shows the three components, their external dependencies, and
other repositories dependent on the framework. The event_stream component
(purple) is not a library but a file format specification, detailed Appendix A.
The components shown in green have no external dependencies but the C++
Standard Template Library.

II.2 Framework overview

The framework presented in this work supports Linux, macOS and Windows. It is or-
ganized in independent components, named after animals with unusual eyes. They work
together by following the same conventions, even though they have no explicit link. This
structure, illustrated in figure II.1, reduces to a minimum the external dependencies of
each component, and promotes modularity. In particular, several components solely re-
quire a C++ compiler, facilitating code sharing between various machines and operating
systems, and usage with other libraries. The framework’s three major components are
sepia (file I/O), tarsier (algorithms) and chameleon (display). Since these components
are independent, one may use any of them without the others. For example, sepia can be
used to read and write event files on an operating system lacking Qt support.

The framework’s libraries are header-only: they require neither pre-compilation nor
system-wide installation, and several versions of the library can co-exist on the same
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machine without interfering. Bundling dependencies with algorithms makes projects more
likely to keep working over long periods of time without active support, which we believe
is a critical factor for research. Moreover, an algorithm and all its dependencies can be
shipped in a single zip file, making code easy to share as the supplementary material of a
publication (as illustrated by this paper’s supplementary material). Header-only libraries
also simplify MSVC support for Windows [150], removing the need for GCC ports such
as MinGW.

All the code is open-source, and hosted on our GitHub page1. Each framework com-
ponent is hosted on a distinct repository, and documented in the associated Wiki page.
More importantly, the tutorials repository provides step-by-step tutorials and commented
examples to build event-driven applications with the framework.

II.3 Event-driven programming

II.3.1 A generic event-based algorithm

The object-oriented observer pattern consist in two constructs: an observable and an event
handler. The former dispatches events at arbitrary times, whereas the latter responds to
each event with an action. This pattern provides a natural model for an event-based
camera (observable) and an algorithm (event handler). It extends to neuron models (for
example, integrate-and-fire), though implementing complex networks with feedback and
delays - which can change the events order in time - is not straightforward (§ II.7 provides
considerations on this topic). Algorithm 1 gives a generic expression of an event-based
algorithm under this paradigm.

A framework reflecting this theoretical expression facilitates algorithms implementa-
tion. A function (in the programming sense) which takes an event as sole parameter and
returns nothing has a syntax close to algorithm 1. Such a function has to mutate a state
to do something useful, thus it is not a function in the mathematical sense (it is non-pure).

Algorithm 1: A generic event-based algorithm, or event handler
initialize the state
on event do

instructions mutating the state
end

II.3.2 C++ implementation

The typical C++ implementation of the observer pattern relies on dynamic polymor-
phism: the event handler inherits a generic class, and the observable holds a pointer to
an instance of this class. This approach creates overhead for two reasons. On the one
hand, every call to an event handler requires a vtable lookup and an extra dereferencing.
On the other, the compiler is given less information to optimize the program.

1https://github.com/neuromorphic-paris

https://github.com/neuromorphic-paris
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#include "sepia.hpp"
#include <iostream>

void handle_event(sepia::dvs_event dvs_event) {
    std::cout << (dvs_event.is_increase ? "+" : "-");
}

int main() {
    sepia::join_observable<sepia::type::dvs>(
        sepia::filename_to_ifstream("input.es"),
        handle_event);
    return 0;
}

Fig. II.2 This code snippet is the “hello world” program of the sepia library.
The function handle_event prints a plus sign in the terminal on luminance in-
crease events, and a minus sign on luminance decrease events. The main program
creates an observable from a file, with the handle_event function as event han-
dler. This program, provided in supplementary materials, only needs the sepia
library in its directory to be compiled on any machine.

Existing frameworks (cAER, kAER, event-driven YARP and Dynamic Vision System)
solve this issue using buffers: events are handled thousands at a time, reducing overhead
proportionally. In return, user-written handlers (called modules in cAER, Dynamic Vi-
sion System and event-driven YARP, and filters in kAER) have to loop over buffers of
events. Manipulating buffers, though good for performance, may foster practices that
deepen the gap with neuromorphic hardware: using events ahead in the buffer to improve
performance, as they are “already there”, and viewing the events as pieces of data rather
than function calls. The former makes the conversion to neuromorphic hardware harder
(the algorithm uses future events, increasing memory usage and latency waiting for them),
while the latter strips away the event meaning (a model of a hardware spike).

The presented framework relies on static polymorphism, using templates [151]: the
event handler is bound to the observable during compilation. This approach does not
incur an overhead with every event, therefore buffers are not needed. The algorithm is
specified by a loop-free function, illustrated in figure II.2. We want to emphasize that the
code presented in this figure is a complete program, which can be compiled without prior
libraries installation. The function handle_event modifies the state of the std::cout
object, captured implicitly as a global variable. Events are read from the file "input.es",
which uses the Event Stream encoding (see the appendix A).

The sepia header used in this example implements file IO in the framework, and can
be extended to communicate with cameras (§ II.7). Even though it relies on buffers,
similarly to the other C++ frameworks, the event loop is hidden from the user. This is
meant to reconcile two somewhat paradoxical objectives: provide a fast implementation
on CPUs, which work best with bulk data, and encourage an algorithm design likely to
translate to highly distributed neuromorphic systems with fine-grained calculations.

Static polymorphism is implemented in sepia using the same approach as the C++
Standard Template Library (see, for example, the compare function of the std::sort algo-
rithm). Besides being efficient, it allows compile-type, type-safe “duck typing”: the code
will compile as long as the syntax handle_event(event) is valid. Notably, handle_event
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#include "sepia.hpp"
#include <iostream> 
   
int main() {
    auto previous_t = 0ull;
    auto activity = 0.0f;
    sepia::join_observable<sepia::type::dvs>(
        sepia::filename_to_ifstream("input.es"),
        [&](sepia::dvs_event dvs_event) {
            activity *= std::exp((dvs_event.t - previous_t) / -1000.0f); 
            activity += 1.0f;
            previous_t = dvs_event.t;
        });
    std::cout << activity << std::endl;
    return 0;
} 

Fig. II.3 Unlike figure II.2, this program uses a lambda function to implement
an event handler. Lambda functions can be declared inside the main function,
keeping the global scope clean. This event handler implements a leaky neuron
to compute the activity. The latter is printed once all the event from the source
file "input.es" have been processed.

can be a function, a lambda function or an object with an overloaded call operator.
Lambda functions are great to quickly prototype an event-driven algorithm, as shown fig-
ure II.3. This second example is a standalone, dependency-free program as well. The state
variables previous_t and activity are captured by reference in the lambda function.
The latter implements a sensor-wide “leaky integrate” neuron to estimate the activity,
printed after processing all the input file’s events.

The sepia::join_observable function blocks until all the events are processed, pre-
venting other routines (notably Graphical User Interfaces) from running. Under the hood,
it uses the GUI-compatible sepia::make_observable function, which dispatches events
on another thread. In turn, this function constructs a sepia::observable object. The
latter’s constructor cannot be called directly, because C++ does not allow class template
deduction from a constructor (until C++ 17). Thanks to the make function, the event
handler type does not have to be explicitly specified. However, the event handler must
be statically specified - not unlike connections in a neural network. Changing the event
handler at run-time requires an explicit if-else block within the handler.

Both the sepia::join_observable and sepia::make_observable functions require
a template parameter: the expected event type. The event handlers signature is check at
compile-time, whereas the file events type is checked at run-time (each Event Stream file
contains a single type of events).

The event handlers presented thus far have several shortcomings: they use global
variables, can be used only with specific event types, and cannot be easily used from
other algorithms. The tarsier library tackles these issues.

II.4 Building blocks

Basic blocks that can be assembled into complex algorithms are the central feature of
a framework for computer vision. They reduce development time and foster code reuse:
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components debugged and optimized by an individual benefit the community.

II.4.1 Partial event handlers

In order to represent a building block for event-based algorithms, we introduce the concept
of partial event handler, illustrated by the algorithm 2. A partial event handler is triggered
by each event, similarly to the complete event handler defined subsection II.3.1. However,
instead of consuming the event, the partial event handler performs a calculation, then
conditionally triggers a second handler.

Algorithm 2: A partial event handler
initialize the state
on event do

instructions mutating the state
if condition then

trigger another event handler with a new event
end

end

Using functions to represent handlers, we denote f∗ a partial event handler. Since
f∗ generates events, it is an observable for a complete event handler g. Binding g to f∗
yields the complete event handler fg. When called, it performs the calculations associated
with f∗, then calls g. Any number of partial event handlers can be chained to build an
algorithm, as long as the last handler is complete. For example, with g∗ now a partial
event handler, and h a complete event handler, one can build the pipeline fgh

. For each
child, its direct parent is an observable generating events. For each parent, its child is a
complete event handler (gh is a complete event handler and a child for f∗). The syntax
can be extended to partial event handlers generating multiple event types: f∗,∗ is a partial
event handler with two observable types.

A more common approach to defining algorithms consists in specifying inputs and
outputs for each block. However, since a partial event handler conditionally generates
(possibly) multiple event types, a generic output is a list of pairs {event, boolean} rep-
resenting optional objects2. Each boolean determines whether the event it is associated
with was indeed generated. The program assembling the pipeline would contain a com-
plex sequence of function calls and nested if-else statements to propagate only events that
were actually generated. Nested observables yield a syntax both easier to read and more
closely related to the event-driven nature of the algorithm.

fgh
is written f → g → h in figures to avoid nested indices. Complex pipelines,

including merging and feedback, are discussed § II.7.

2Using C++ STL primitives, the output’s type would be std::tuple<std::pair<event_type_0,
bool>, std::pair<event_type_1, bool>, ...>. With the C++ 17 standard,
std::optional<event_type> can be used instead of pairs.
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#include "mask_isolated.hpp"
#include "mirror_x.hpp"
#include "sepia.hpp"
#include "shift_y.hpp"
#include <iostream>

int main() {
    const auto header = sepia::read_header(sepia::filename_to_ifstream("input.es"));
    sepia::join_observable<sepia::type::dvs>(
        sepia::filename_to_ifstream("input.es"),
        tarsier::make_mask_isolated<sepia::dvs_event>(
            header.width,
            header.height,
            1e3,
            tarsier::make_mirror_x<sepia::dvs_event>(
                header.width,
                tarsier::make_shift_y<sepia::dvs_event>(
                    header.height,
                    10,
                    [](sepia::dvs_event dvs_event) {
                        std::cout << (dvs_event.is_increase ? "+" : "-");
                    }))));
    return 0;
}

Fig. II.4 This program uses both sepia and tarsier. It can be compiled on
any computer without installing external libraries. The pipeline is implemented
as a sequence of nested partial event handlers. tarsier::mask_isolated
removes noisy events, tarsier::mirror_x inverts the x coordinate and
tarsier::shift_y shifts the y coordinate by a fixed offset. Events outside
the original window after shifting are not propagated.

II.4.2 tarsier implementation

The framework’s tarsier library is a collection of partial event handlers implemented in
C++. Each handler is declared and defined in a single header file: only the included ones
are compiled with the program. This organization makes the code resilient to compati-
bility errors in unused handlers.

The partial handlers are implemented as classes with an overloaded call operator.
The children handlers types are templated. In order to allow type deduction, each class is
associated with a make function: the partial event handler f∗ is associated with make_f .
For any complete event handler g, make_f(g) := fg. Pipelines are built by nesting
make functions: make_f(make_g(h)) = fgh

. Unlike event handlers, the high-order
make functions are pure. Most of them take extra parameters to customize partial event
handlers. For example, tarsier::make_mask_isolated, which builds a partial event
handler propagating only events with spatio-temporal neighbors, takes a sensor width
and height and a time window as parameters. Figure II.4 shows a simple tarsier pipeline,
bound to a sepia observable.

The tarsier and sepia libraries are compatible even though they are not explicitly
related. Every partial event handler provided by tarsier uses template event types, be-
sides template event handlers parameters. The event type has to be specified explicitly
(sepia::dvs_event in figure II.4), and must have a minimal set of public members which
depends on the event handler (often x, y and t). A C++ struct with at least these three
fields meets the requirements of most tarsier handlers. Users can define custom types
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to best represent the events output by their algorithms (flow events, activity events, line
events, time surfaces. . . ), or to customize the events payload (with a camera index for
stereo-vision, sparse-coding labels. . . ).

This implementation has several benefits. Since the pipeline is assembled statically,
type checks are performed by the compiler. Missing event fields and incompatible ob-
servable / event handler bindings are detected during compilation, and meaningful errors
are returned (in contrast with run-time segfaults). Moreover, an event loaded from disk
or sent by a camera, with a specific type, can be used directly without an extra copy to
a buffer holding events with another type. Since the compiler manipulates a completely
specified pipeline, it can perform more powerful code optimizations. Finally, since static
event handler calls have no run-time overhead, events buffers can be traversed depth-
first instead of breadth-first (figure II.12). This operation ordering reduces the pipeline
latency, as observed in § II.5.

II.5 Comparative benchmarks

Event-based computer vision shows promise for real-time sensing on robots [152]. If a
CPU is used to run computer vision algorithms on a robot, the code efficiency can make
the difference between a real time and non real time system. Performance is also essential
to make realistic comparisons of conventional hardware and neuromorphic hardware, or
to compare two event-based CPU algorithms. Even though the average number of op-
erations per event gives an estimation of an algorithm complexity, it does not account
for compiler optimizations, memory IO or processor optimizations (branch predicting,
cache. . . ). Hence, accurate speed comparisons require a comparison of implementations,
whose result depends on the quality of the implementations.

The efficiency of an implementation depends on many parameters, including the al-
gorithm itself, the choice of programming language, the use of suitable programming
primitives, and the properties of the framework. We aim to compare the contribution
of the latter among frameworks designed for event-based computer vision. We restrict
this comparison to frameworks written in C/C++, to avoid comparing languages rather
than frameworks. The compared algorithms are given the same implementation in each
framework, thus observed differences can only be attributed to frameworks properties.

The present benchmarks focus on event processing: the tarsier library is compared
to its counterparts in cAER, kAER and event-driven YARP. The other frameworks com-
ponents (file IO, camera drivers and display) are not considered. Moreover, we were not
able to include Dynamic Vision Systems in the benchmarks: its current implementation
uses multiple threads and circular FIFOs between modules. Modules running faster than
their children overflow the FIFO, resulting in silent event loss. Though not critical for
real-time applications, this loss biases benchmark results and prevents graceful program
termination, which depends on exact event counting. Nevertheless, since the structural
design choices of Dynamic Vision Systems are similar to those of cAER, we expect com-
parable results. The code used to run the benchmarks is available online3. This resource
also illustrates the implementation of the same algorithms in various frameworks.

Before each benchmark, we load a specific stream of events in memory. The events
3https://github.com/neuromorphic-paris/frameworks_benchmarks

https://github.com/neuromorphic-paris/frameworks_benchmarks
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are organized in packets of up to 5000 events and up to 10 ms (a new packet is created as
soon as either condition is met), as to mimic the typical output of a camera. We consider
two performance indicators. The duration experiment measures the total time it takes to
read the packets from memory, run an algorithm and write the result back to memory. It
indicates how complex a real-time algorithm can be. The latency experiment measures the
time elapsed between the moment a packet is available and the moment results are written
to memory. A packet is made available when the wall clock time goes past the timestamp
of its last event. A busy-wait loop is used to wait for the wall clock time if the framework
is ready to handle a packet before the latter is available. This mechanism simulates the
output of an actual event-based camera while avoiding putting processes to sleep, which
is a source of non-deterministic variations in the measured latency. The packets contain
sepia::dvs_event objects, chosen as a neutral type for all the frameworks. Event type
conversions, if needed, are taken into account in the performance measurement. This
choice is not an unfair advantage to tarsier, since its handlers are compatible with any
event type (including the types provided by sepia). The events dispatched from one
partial event handler to the next are framework-dependent. However, to avoid uneven
memory writes, the output events are converted to a common type before being pushed
to a pre-allocated vector. To make sure that the output is not skipped by the compiler
as an optimization, we calculate the MurmurHash3 [153] of each output field once the
algorithm completed. The resulting values are controlled for each benchmark run, and
guarantee that each implementation calculates the same thing.

The benchmarks use five distinct algorithms (p1 to p5) described figures II.5 and II.6.
Each pipeline is assembled from one or several of the following partial event handlers:

• select_rectangle only propagates events within a centered 100× 100 pixels win-
dow.

• split only propagates events representing a luminance increase.

• mask_isolated only propagates event with spatio-temporal neighbors.

• compute_flow calculates the optical flow.

• compute_activity calculate the pixel-wise activity. The activity decays exponen-
tially over time, and increases with each event.

We use three event streams, listed in table II.1 and available in the benchmarks’
repository. These streams contain polarity events recorded by an ATIS, in both controlled
and natural environments. The duration experiment is run one hundred times for each
combination {stream, pipeline, framework}, and the delay experiment ten times. Each
delay task generates many samples, whereas each duration task yields a single value.
All 6600 tasks are shuffled, to avoid possible biases, and run sequentially on a computer
running Ubuntu 16.04 LTS with an Intel Core i7-6700 CPU @ 3.40GHz CPU and a 16 GB
Hynix/Hyundai DDR4 RAM @ 2.4 GHz. The code is compiled with GCC 5.5, C++11
and the -O3 optimization level.
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Fig. II.5 We implement the same partial event handlers in each framework in
order to compare them. We consider five pipelines and three event streams. The
total time it takes to handle every event from the input stream is measured one
hundred times for each condition. We attribute the better performance of tarsier
to static polymorphism, which yields a program with fewer memory operations.
The poor performance of event-driven YARP can be attributed to non-contiguous
memory storage.
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stream
name description duration (s) event rate (s−1)

squares
artificial scene,
moving geometric shapes,
fixed sensor

9.50 2.83e5

street

natural scene,
moving pedestrians and
cars,
fixed sensor

50.6 3.17e5

car natural scene,
sensor inside a moving car 69.6 9.56e5

Table II.1: We use three event streams recorded by an ATIS to perform benchmarks. The
streams were chosen for their different conditions (artificial and natural scenes, fixed and
moving sensor) and average event rates.

II.5.1 Duration

The duration benchmark results are illustrated in figure II.5. The approach presented in
this paper yields the smallest duration on all the pipelines and event streams considered.
This improvement over state-of-the-art frameworks can notably be attributed to a reduced
number of memory reads and writes, thanks to the template event types.

The performance of event-driven YARP is substantially worst than the performance
of the other frameworks. This gap is most likely related to the non-contiguous buffers
used by this framework. Others use either hard-coded event types (cAER, kAER) or
template event types (tarsier) to leverage contiguous memory.

The pipeline p3 contains more operations than p2. Yet, the p3 tarsier implementa-
tions has a smaller duration than p2 (the effect is most visible with the street stream).
The compute_activity event handler does not utilize the visual speed calculated by
compute_flow, only the flow events’ timestamp and position. Therefore, the flow compu-
tation can be skipped without changing the algorithm outcome. In the case of frameworks
with modules assembled at run-time, the compiler cannot make this simplifying assump-
tion. We believe this behavior can improve the performance of complex pipelines, where
finding redundant or unused calculations manually can prove difficult.

II.5.2 Latency

The latency benchmark results are illustrated in figure II.6. Wall clock time is measured
with microsecond precision for each input packet and each output event. Latency samples
are calculated by subtracting the wall clock time of output events and that of their input
packet. In some cases, the latency is zero, meaning that the actual elapsed wall clock
time is smaller than the measurements’ precision. To allow representation on a log-scale,
we round up null latency samples to 0.5 µs.

The relative standard deviation is much higher for the latency benchmark than the
duration one. As a matter of fact, measured values are much smaller: durations are
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Fig. II.6 Low-latency is an important feature of event-based cameras, and there-
fore event-based frameworks. We measure the time elapsed between the moment
a buffer is available and the moment associated output events are produced
by the pipeline. Events that are not propagated by the pipeline (for example,
removed noise) are not taken into account. For each condition, latency is mea-
sured for each output event over ten runs of the whole stream. We attribute
the better performance of tarsier to depth-first traversal. kAER under-performs
in this benchmark since it constrains buffers duration, unlike the camera model
assumed in the benchmarks: the resulting buffer reorganization increases delays.
This benchmark’s relative variations are larger than the duration benchmark’s
variations. The same time measurement functions are used, however durations
are order of magnitude larger than latencies.
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in the order of seconds, whereas latencies are on the order of microseconds. Thus, ev-
ery small non-time-deterministic operation (memory operations, CPU prediction, kernel
preemption. . . ) has, relatively, more impact.

The kAER framework yields substantially larger latencies than the other frameworks.
Since it enforces buffers with a constant duration, latency increases when the buffers
provided by the camera use a different, possibly variable, duration.

The framework presented in this paper outperforms the others in this benchmark
as well. Low-latency can be a major benefit for robots or closed-loop systems. The
performance gain is a consequence of buffer depth-first traversal and the reduced number
of memory operations, since inter-handler communication is not implemented with buffers.
The latency reduction improves with the duration of the algorithm when comparing tarsier
and cAER, as illustrated in figure II.7 (top graph).

However, the latency variance is larger for tarsier than cAER, and increases with the
pipeline duration as well. This is another consequence of depth-first traversal: the first
event in the input buffer is handled as soon as the packet is available, and therefore has a
small latency. In contrast, the last event in the buffer waits for all the other events to be
handled, resulting in a much larger latency. This phenomenon does not exist with cAER
since the whole packet is processed by each module sequentially: events with the same
input packet exit the pipeline at the same time.

The latency used so far takes only the framework into account. The first event of each
buffer is also the one that waited the most in the camera while the input buffer was being
filled. If we neglect the USB transfer duration, we can define the total latency associated
with an event as the sum of the framework latency and the timestamp difference between
the last event in the packet and the considered event. The total latency as well as its
variance are both smaller for tarsier when compared with cAER, since the packetization
effect is counterbalanced by the depth-first traversal. Both the framework latency and
total latency densities are illustrated in figure II.7 (bottom graphs).

II.6 Event displays

Conventional screens display frames at fixed time intervals4. In order to display events,
one has to perform a conversion. Most frameworks rely on fixed time windows: a frame
pixel is colored in white if it was the source of a luminance increase event during the
associated time interval, in black if the luminance decreased, and in grey if nothing
happened. This approach does not account for the high temporal resolution of the signal.
Another method relies on time decays [154, 155]: the frame pixel i is given the color
ci = 1

2

(
1 + δi · exp

(
− t−ti

τ

))
. t is the current timestamp. ti is the timestamp of the most

recent event generated by the pixel i. δi = 1 if the last event generated by i corresponds
to a luminance increase, and −1 otherwise. τ is a fixed decay. Figure II.8 illustrates the
difference between the two methods, highlighting the benefits of exponential decays.

The full-frame decay rule requires an exponential calculation on every event for every
pixel (for an ATIS, 72960 pixels a million times per second), which is both unrealistic

4Recent screens compatible with Nvidia’s G-Sync technology can display frames at varying time inter-
vals, narrowing the gap between frames and events. Exponential decays can be used to convert events to
frames compatible with such screens.
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Fig. II.7 The graphs presented in this figure take a closer look at the latency
created by tarsier and cAER for the car stream. In the top graph, latency is
plotted as a function of pipeline duration when run with tarsier (arbitrarily cho-
sen as a complexity indicator). tariser has a smaller median density, but a larger
variance. The density probability for the most complex pipeline is plotted in
the middle and bottom graphs (blue and green). It accounts only for framework
latency (as does the first graph). Adding the latency caused by packetization in
the camera (before the USB transfer) yields the total latency. The depth-first
traversal leveraged by tarsier better counterbalances packetization, resulting in
both a lower total latency and a smaller variance.
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Fig. II.8 This figures compares two strategies to convert events to frames for
display. The time window approach (left) degrades temporal information: the
still frames do not hold enough information to determine the geometric shapes
motions (top row) or the relative speed of the car and the pedestrian (bottom
row). The exponential decay approach (right) represents temporal information
with grey levels. It is computationally more expensive than the time window
approach, but can be easily implemented on a GPU to relieve the CPU.
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and unnecessary, since the typical display features a 50 Hz refresh rate. Instead, one can
calculate the decays only when a frame is about to be rendered, and use the GPU available
on most machines to do so. GPUs are designed to run massively parallel calculations with
every frame, thus are well suited to this task.

The chameleon library provides [156] components to build event displays. The com-
ponents are independent and header-only. Unlike sepia and tarsier, chameleon cannot be
used without Qt 5. In return, the event displays can easily be integrated into complex
user interfaces. The chameleon::dvs_display implements the full-frame decay method
mentioned previously. This component assumes two threads: an event loop (for example,
a sepia observable followed by a tarsier pipeline) and a render loop. The loops communi-
cate using a shared memory with one cell per pixel, where the last timestamp and polarity
of each event is stored. When a new frame is about to be rendered, the shared memory
is sent to an OpenGL program to compute each pixel’s time decay. The shared memory
is accessed millions of times per second by the event loop. Usual mutexes can cause
non-negligible overhead, since they rely on system calls. The chameleon implementation
uses spin-lock mutexes instead (essentially busy-wait loops with atomic variables), at the
cost of increased CPU usage. To minimize the strain on the event loop, the render loop
first creates a local copy of the shared memory, then releases the mutex, and finally com-
municates with the GPU. This mechanism is illustrated in figure II.9. Figure II.10 gives
an overview of an application build with the three major components of the framework,
with a focus on thread management. This application’s code is available in the tutorials
repository.

The proposed approach does not rely on pre-defined frame boundaries: the frame-
rate matches the display rate regardless the event loop speed. Consequently, the visual
animation remains smooth even if the event pipeline is slower than real time. A smooth
slow-motion display can be created by artificially slowing down the event loop.

The colors used by the DVS display can be customized: the ci value is then used
as a weight parameter for mixing the colors. Transparent colors can be used, enabling
display overlays for cameras generating multiple stream types (such as the ATIS or the
DAVIS). Other notable components provided by chameleon include a vector field display
(well-suited to flow events), a blob display, a time delta display (to represent the absolute
exposure measurements of an ATIS), and a screen-shot component to easily create frame-
based videos. These components use template event types, similarly to tarsier event
handlers, and the type requirements follow the same conventions. The displays coordi-
nates system follows the usual mathematical convention, with the origin located at the
screen’s lower-left pixel. The usual computer vision convention (origin at the upper-left
pixel) is not used as it is a result of the matrix representation of frames, which event-based
algorithms aim to avoid.

II.7 Framework extensions

II.7.1 Camera drivers

Since most event-based cameras feature a USB interface, their drivers can be devised as
user-space programs atop a third-party library overseeing the USB communication. To
keep the codebase modular and minimize dependencies, each camera interface is held in
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Fig. II.9 In order to convert events to frames, one has to reconcile the very
different rates of the event loop (about 1 MHz) and the display loop (often 50 Hz).
We use a shared memory the size of the sensor, protected by thread-safe locks. On
each event, the first thread (blue) overwrites former events with the same spatial
coordinates. Every time a frame is about to be rendered, the display loop (green)
copies the shared memory to RAM and releases the lock, then communicates
with the GPU. The memory-to-memory copy minimizes lock ownership, to avoid
blocking the event loop. The lock, acquired with every event, is implemented as
a spin-lock mutex.

a distinct repository extending the sepia library.
As of now, the following cameras are supported:

• DVS 128. We re-implemented the libcaer interface to provide out-of-the-box MSVC
support.

• ATIS (Opal Kelly board). This extension depends on the non-free Opal Kelly Front
Panel library.

• ATIS (CCam 3). This camera has the same pixels and arbiter as the Opal Kelly
ATIS, however it features a custom FPGA and a USB 3 interface. It was designed
by Prophesee.

• DAVIS 240C. We re-implemented the libcaer interface for this sensor as well.

Event-based cameras have internal buffers to store events while waiting for a USB trans-
fer. A camera generating events at a faster rate than what the computer program can
handle ends up filling its internal buffers to capacity. At this points, camera either drop
new events or shuts down. To circumvent this issue, each sepia extension uses an extra
thread to communicate with the camera, independently of the event loop executing the
algorithm. The two threads communicate with a thread-safe circular FIFO. An overall
view of the threads of an application using a sepia extension, tarsier and chameleon is
given figure II.11. The circular FIFO implementation is provided by sepia.
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Fig. II.10 This figure provides an overall view of the threads in an ATIS event
stream viewer application using sepia, tarsier and chameleon. The application
reads an Event Stream file and displays it as frames. The observable constructor
(respectively destructor) creates (respectively joins) the event loop thread, in
accordance with the RAII (Resource acquisition is initialization) philosophy of
C++. The push inter-thread messages rely on the mechanism illustrated in
figure II.9, whereas the stop signal is implemented as an atomic boolean. The
code for this application can be found in the tutorials repository.
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Fig. II.11 This figure provides an overall view of the threads in an ATIS camera
viewer application using opal_kelly_atis_sepia, tarsier and chameleon. The
application listens to a camera and displays the generated events as frames.
It encompasses the application illustrated in figure II.10. The extra thread is
used to communicate with the camera as fast as possible even when the event
loop is busy. The two threads communicate through a thread-safe FIFO buffer
implemented in sepia. The Opal Kelly Front Panel library does not provide a
poll function, hence the explicit sleep step in the graph. However, this function
is used by sepia extensions based on libusb, resulting in reduced CPU usage.
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Multiple parameters can be specified to configure an event-based camera, such as the
operating mode or the current biases. JSON files are used by sepia extensions to specify
the configuration. The sepia header implements a JSON parser and validator to load
configuration files and warn users in case of syntax errors or unknown parameters.

II.7.2 Complex pipelines

The present framework is designed to implement feed-forward pipelines, with optional
splits. Most partial event handlers can be represented with populations of neurons, as they
perform small calculations with each input. Thus, event-based pipelines can be translated
to neuromorphic hardware, though a method to actually perform the conversion has yet
to be devised.

However, not all neural networks can be represented with event handlers. Notably,
neurons with second order dynamics and synapses with delays dispatch events that are not
an immediate response to an input spike. The present framework - and, more generally,
purely event-based algorithms - cannot implement such models. To use complex neurons
to process the output of a camera, one needs to leverage frameworks designed to implement
neural networks. The present framework can, in this case, be used to communicate with
sensors, perform low-level processing and send events to the neural network.

Nevertheless, two types of architectures more complex than feed-forward pipelines can
be implemented in our framework: streams merging and feedback loops. Even though
they still impose more constraints than generic spiking neural networks, they allow for the
efficient implementation of algorithms on a CPU without the need for another framework.

Streams merging has the following generic structure:

A

B
C

A, B are partial event handlers, and C is a complete event handler. This structure
appears when merging the results of several calculations with a common origin. For
example, one may split a stream of polarity events to compute two optical flows (one
per polarity) and merge them to calculate an overall flow. A and B run sequentially
in this scenario, therefore events are dispatched to C in the order of their timestamps.
This scenario can be implemented by constructing C before the pipeline. The partial
event handlers A and B are both given a reference to C as complete event handler. The
std::reference_wrapper class can be used to prevent template deduction to a non-
reference type, which would trigger a copy.

The merge operation can also arise from the use of multiple sensors, for example for
stereo-vision or audio-video fusion. In this case A and B run in parallel, on different
threads. Given the non-deterministic scheduling of most operating systems, C must re-
order the events dispatched by its observables before handling them. This operation is
implemented by the partial event handler tarsier::merge, compatible with an arbitrary
number of observables.

A simple feedback loop can be modelled as:
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A B

A and B are both partial event handlers. This structure can be useful for flow control
or learning. The feedback operation can be executed at various moments in the lifecycle
of an algorithm: after processing a batch of data, immediately after each event and after
each event with a delay. The implementation of the second and third approaches is not
straightforward with existing packet-based frameworks. The whole packet has already
been processed by A when the first event is processed by B, preventing the associated
feedback from affecting the next events. The second approach can be implemented in
tarsier using variables shared between A and B. Before handling an event, A reads from
the variables and processes the event accordingly. After handling an event, B writes
to the variables. Since an event is completely handled before the next is considered,
modifications of the shared variables caused by the event n will be available to event
n + 1. The third approach - adding delays to the feedback - can be implemented by
combining the second approach and a merge structure.

II.7.3 Parallelism

The application illustrated in figure II.11 relies on multiple threads, and can take advan-
tage of CPUs with a few cores. However, the sequential strategy presented so far does
not harness the full potential of many-cores architectures.

The creation of parallel tasks and inter-task communication have a cost. An appli-
cation using multiple tasks must reach a compromise on grain size [157]. A large grain
size yields less overhead, whereas a small grain size fully utilizes the CPU capabilities.
The atomic tasks of an event-based pipeline are its partial event handlers. Larger grain
sizes can be obtained by combining several partial handlers into a single task. The tasks
represented figure II.12 can be combined either vertically (one thread per event) or hor-
izontally. The former requires inter-thread communication with every partial handler
to ensure sequentiality, cancelling the benefits of parallelism, whereas the latter corre-
sponds to the buffer-based approach of event-driven YARP and Dynamic Vision System.
Consequently, latency increases with the grain size.

Parallelism can be beneficial when high latency is not critical and a high through-
put is required. However, implementing parallelism efficiently is not straightforward: to
avoid FIFO overflows between modules, possibly complex flow control algorithms must be
implemented. High-quality libraries provide high-level tools to build parallel algorithms,
such as Intel Threading Building Block’s flow graph [158]. The partial event handlers
provided by tarsier can be integrated with such tools. Thus, one can implement an algo-
rithm once and use it with either a low-latency tarsier pipeline or a high-throughput flow
graph. An example integration of a partial event handler in a class manipulating buffers
is given in the tutorials repository. This approach can also help integrating tarsier with
other event-based frameworks, in order to use existing drivers and viewers.
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Fig. II.12 The 3× n operations associated with a sequence of three event han-
dlers f , g and h and a buffer of n events ei, i ∈ [0. . n− 1] can be performed
in two orders: breadth first and depth first. An implementation relying on dy-
namic polymorphic incurs an overhead for every distinct function call, and must
therefore use the breadth first approach (left). Depth first yields lower laten-
cies, but requires static polymorphism: the pipeline must be assembled during
compilation (right).

II.8 Conclusion and discussion

We have presented a modular framework for event-based computer vision with three major
components: sepia, tarsier and chameleon. The components, though designed to work
together, have no explicit relationship, thus minimizing the external dependencies of each
component. Moreover, each component can easily be replaced with other libraries.

The presented framework hides buffers from the user, serving our goal: encouraging
functional, event-based semantics likely to translate to neuromorphic hardware while pro-
viding an efficient implementation on CPUs. Benchmarks show an increased throughput
and a reduced latency compared to state-of-the-art frameworks for event-based computer
vision. Using contiguous memory to store events is crucial to performance. Moreover,
assembling pipelines before compilation reduces latency and improves throughput, thanks
to better compiler optimizations and fewer memory operations. The common practice of
hard-coding simple operations (mirroring the stream, removing noise. . . ) in file readers
to reduce latency is no longer required with static polymorphism, yielding a cleaner, more
generic codebase.

The benchmarks compare performance with pipelines of varying complexity. How-
ever, all the considered experiments use simple pipelines (without merges or loops), focus
solely on the algorithm performance (the performance of IO and display operations is not
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evaluated), and run in real-time on the test machine. In a future work, we plan to devise
new benchmarks to cover more use-cases. Moreover, adding more measurements, such as
power consumption, will enable comparisons with neuromorphic hardware.

Assembling a pipeline before compiling requires meta-programming - that is, another
programming language to generate the actual code. The framework presented in this
work uses C++ template meta-programming, since this language is supported by every
standard-compliant compiler. Nevertheless, it can be unsettling to new users, and makes
the creation of wrappers in high-level languages, such as Python, difficult. A high-level
language or graphical user interface must bundle a C++ compiler to generate tarsier
pipelines. Nevertheless, the framework modular structure and its independence from
third-party libraries make it a good candidate for a common low-level library to multiple
high-level interfaces. It can notably be integrated with native Android applications, or
used to speed up Python modules.

The observer pattern used by the framework naturally models event-based cameras
and algorithms. However, this pattern can lead to the problem known as callback hell:
deeply nested statements make the code hard to read. Languages such as Javascript
have solved this problem with the async/await construct. This construct is available in
C++, but is not compatible with the template deduction mechanism leveraged by the
framework.

The current implementation of partial event handlers relies on make functions. These
functions wrap the handlers constructors to enable template deduction. The C++17
standard allows template deduction from the constructor of a class, making the make
functions unnecessary. The upcoming Debian 10 and macOS 10.15 operating systems
will provide full support for this standard with their default libraries, allowing a major
framework update.

The framework supports arbitrary event types and provides constructs to merge the
output of several cameras. Thanks to both these features, it can be leveraged in the design
of a three-chip event based camera to capture color events. The next chapter introduces
a working prototype, and presents tracking algorithms that rely on color events.
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Chapter III
Event-Based Color Segmentation With
a High Dynamic Range Sensor

III.1 Introduction

Conventional computer vision approaches to color segmentation in videos can be organized
in two categories: pre-deep learning and post-deep learning. The large number of pre-deep
learning approaches [18] shows that they do not solve the problem generically. On the
other hand, post-deep learning algorithms segment video with generic structures [141],
however they require tremendous amounts of data and computational power, making
them impractical on embedded systems. Moreover, the algorithms from both categories
were originally developed on static frames, then extended to videos.

The benefits of event-based cameras make them well-suited candidates to overcome
existing limitations in automated color segmentation: they are power efficient, and they
generate sparse events which bundle spatial and temporal information. This property
makes it possible to solve computer vision problems such as stereo-vision [159, 160], optical
flow [161] or tracking [162] in an efficient and robust manner. Moreover, the cameras’ high
temporal resolution allows for simplifying assumptions, with complex behaviors emerging
from simple, high-speed algorithms.

Most event-based cameras generate polarity events mimicking spikes in the ON and
OFF visual system pathways. These events do not encode absolute luminance informa-
tion. The luminance or color measurements of the DAVIS are performed in a frame-based
fashion, therefore they do not benefit from the event-based approach’s advantages. By
contrast, the ATIS [163] provides event-based absolute luminance measurements, thanks
to pixels that combine an asynchronous change detection circuit and a separate expo-
sure measurement circuit. This chapter presents a functional event-based color sensor
assembled from three ATIS, illustrated figure III.1, and its application for segmenting
colored objects with simple processing techniques requiring little computation power.
The absolute luminance information allows for a robust and computationally cheap color
segmentation based on clustering, unlike change detectors which need to rely on edges de-
tection. We evaluate the sensor’s ability to track colored shapes, using a real-time on-line
algorithm. Thanks to the nature of the data generated by event-based cameras, track-
ing can be implemented with a moving mean algorithm [164], which requires very little

41
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Fig. III.1 The three-chip event-based camera is an assembly of three ATIS
cameras (left). The cameras share the same field of view. Reconstructed color
events can be visualized as a spatio-temporal point-cloud (right). There are as
many color points in the four frames (far right) as in the whole point cloud.

computational power. More complex and robust methods have been devised [16, 165] for
more demanding applications.

III.2 Material & Methods

III.2.1 Three-chip event-based camera

We build an event-based color sensor as an association of three ATIS cameras acquiring
red, green and blue light exposures. The sensor captures light through a hot mirror
reflecting infra-red light. A beam splitter directs photons with wavelengths larger than
605 nm towards the red sensor. The other photons are reflected towards a second beam
splitter, which directs photons with wavelengths smaller than 505 nm towards the blue
sensor. The remaining photons are directed towards the green sensor. Before hitting
the red, green and blue sensors, photons cross band-pass filters which mimic the filtering
functions of conventional Bayer matrices’ pixels. Each sensor uses a C-mount objective, as
the sensors dimensions prevent using a common objective placed behind the hot-mirror.
Figure III.2 illustrates the assembly.

III.2.2 Color events

In order to account for the mechanical imperfections of the prototype, a spatial calibra-
tion step is required to make sure that the color sensor’s cameras share the same field of
view. We capture a checker board with the sensor before each recording, and compute
the homography linking the green and blue cameras to the red one. The homography
is computed by determining the direct linear transformation on normalized points [166],
which were extracted from a reconstructed image of the checker board using corner detec-
tion and structure recovery [167]. This spatial calibration is valid only for objects within
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Fig. III.2 Our three-chip event-based camera uses dichroic filters to split the
light beam and ATIS cameras to record the scene as events. We use an objective
for each camera instead of a single one in order to reduce the flange distance
(constrained by the sensors’ size).

the checker board’s plan. However, we observe a good pixel matching for objects in other
plans as well, as the fields of view differences are small compared to the pixels size.

Therefore, the red sensor’s pixel with index i has the same field of view as the green
and blue sensors’ pixels with index i. We call pixel with index i of the color sensor the
virtual pixel combining the red, green and blue pixels with index i. The signal captured
by this pixel can be modeled as a continuous R3 function si of the time t:

si : R→ R3

t 7→ (r, g, b)
(III.1)

where r, g and b are the red, green and blue components intensities of the signal. i, the
pixel’s index, is in the range [1, n], where n is the sensor’s number of pixels. We want the
color sensor to generate events ei,t defined by the tuple of attributes:

ei,t = (i, t, r, g, b) (III.2)

Assuming an initial value si (t0) = (r0, g0, b0), the pixel with index i’s first event should
be generated at the time t1 such that si (t1) = (r1, g1, b1) and the distance in R3 between
(r0, g0, b0) and (r1, g1, b1) is larger than a tunable threshold. The distance function should
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Fig. III.3 Events generated by the color sensor’s three cameras’ pixel i are
merged to generate color events. Every time an exposure measurement is gener-
ated by one of the ATIS cameras, it is stored in memory. Then, a color event is
dispatched using the current memory value.

not be the euclidean distance in order to mimic human perception, which is highly non-
linear in RGB space [168].

The ATIS-based three-chip camera’s pixels do not yield the si signal directly. Instead,
the camera associated with each color component generates an independent stream of
events. Since ATIS cameras yield exposure measurements with a delay inversely propor-
tional to the measured exposure, it is not possible to detect temporally coinciding events
to generate color events. Therefore, we associate each color sensor’s virtual pixel with a
memory space storing the three color components. Every time an event is generated by
one of the color component cameras, the memory is updated and a color event based on
the current memory value is dispatched. This mechanism is illustrated figure III.3.

III.2.3 Color model

We consider color object tracking as a first practical application of the event-based color
sensor. Given a pre-determined set of uniformly colored objects, we want to determine
the position of each object in an scene at every moment. We use a two-step approach :
first, we build a statistical color signature for each object using a labelled scene. Then,
events from an unknown scene are matched against the statistical models and associated
with the closest signature.

In order to reduce the required amount of computation for each event, we reduce
the problem’s dimensionality by converting color events from the RGB space to the
CIEL*a*b* space. We use only the a* and b* components of the latter. For each ob-
ject, we gather events from the labelled scene and project them to the a*b* plane of
the CIEL*a*b* space. We use a bivariate normal distribution as a statistical model for
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describing these points.
Converting events from the RGB space to the CIEL*a*b* space requires a color cali-

bration step. ATIS cameras send exposures as a pair of threshold-crossing events to the
computer. The actual exposure is - as a first approximation - proportional to the inverse
of the time difference between the two thresholds-crossing events. We use a Macbeth
ColorChecker to evaluate the required proportionality factor between the time difference
inverse and red, green and blue components in RGB space. We observe that the expected
red, green and blue values given by the Macbeth ColorChecker as functions of the mea-
sured inverse threshold-crossing time differences are well described by affine functions, as
shown figure III.4. The need for affine functions instead of linear functions can be at-
tributed to the sensor imperfections, including the pixels’ dark current. We calculate the
affine regression by minimizing the mean squared error for each color component. This
method yields good results for displaying the sensor’s measurements using an RGB screen.
Estimated red, green and blue components can be used to determine the CIEL*a*b* color
components using several non-linear relations [169].

However, when using this model to convert the measured colors to the CIEL*a*b*
space, we observe a poor fit with the values given by the Macbeth ColorChecker. The
difference can be attributed to the uncorrelated regression applied to each component and
the ATIS cameras’ noise. Therefore, we use the Nelder-Mead simplex algorithm [170] to
optimize the six parameters of the three color components’ affine regressions. We mini-
mize the distances between the expected colors given by the Macbeth ColorChecker and
the measured points in CIEL*a*b* space. Since the CIEL*a*b* space is perceptually
uniform, this method yields the best compromise for converting the measured Macbeth
ColorChecker’s colors to the CIEL*a*b* space with regards to human perception. Fig-
ure III.4 shows the two methods results.

III.2.4 Signatures
We consider the sequence S of n color events associated with a uniformly colored object:

S = ((ik, tk, rk, gk, bk) , k ∈ J0, n− 1K) (III.3)

We define Sab as the sequence of pairs (a, b) obtained by converting each color event from
the sequence S to the CIEL*a*b* space:

Sab = ((ak, bk) , k ∈ J0, n− 1K) (III.4)

We call signature of the considered object the bivariate normal distribution N (µ,Σ)
estimated from the Sab sequence:

µ =
(
µa
µb

)
= 1
n

n−1∑
k=0

(
ak
bk

)

Σ =
(
σ2
a σab

σab σ2
b

)

= 1
n− 1

n−1∑
k=0

((
ak
bk

)
− µ

)((
ak
bk

)
− µ

)T

(III.5)
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The mean distance of the measured points to their expected position in the CIEL*a*b* space as a fraction of the 
largest distance between two colors is plotted for each tile.
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Measurements of a ColorChecker’s tiles are plotted against the expected RGB components. Affine functions appear 
as a good fit to model the transformations. We consider two methods to determine the functions’ parameters : mean-

squared errors minimization (red) and mean CIEL*a*b* distances minimization (green).

Points represent the sensor’s measurements converted to calibrated RGB colors with each model, then converted to 
the CIEL*a*b* space. Cubes represent the tiles’ expected colors’ positions given by the ColorChecker.

Fig. III.4 Converting the sensor’s color events to the CIEL*a*b* space requires
a transformation model. We use a Macbeth ColorChecker to compare the ex-
pected color values with the measured time differences. We consider two strate-
gies for finding our model’s parameters : mean squared error (red) and non-linear
optimisation to minimise the distance between expected and measured colors in
the CIEL*a*b* space (green). The latter yields a better fit for blue and purple
colors in the a*b* plane. On the a*b* plane figures, squares represent the ex-
pected colors and circles represent the mean measured value. The represented
Macbeth ColorCheckers were captured by our sensor.



III.2 Material & Methods 47

The experiment presented figure III.5 illustrates the method to determine the signature
of actual objects. Five colored wooden pieces placed on a white background are recorded.
Even though the scene is static, the ATIS cameras’ noise triggers exposure measurements
which are converted to color events. We associate a pixel set - or mask - to each wooden
piece. The color events generated by this pixel set make up the S sequence used to fit a
signature. The color signature for the background is evaluated as well.

III.2.5 Tracking

After determining the five wooden pieces’ signatures, we consider a scene with the same
pieces moving. Let X be the continuous bivariate random variable which associates each
color event with its a* and b* components:

X :
(
N,R+,R3

)
→ R2

ei,t 7→
(
a
b

) (III.6)

We note x =
(
a
b

)
a color event’s a* and b* components.

Writing Oj for the probabilistic event “the color event was generated by the object
j”, the Bayes’ theorem yields the probability that the object j generated the considered
color event:

P (Oj | X = x) =
fOj (x)P (Oj)

m−1∑
j=0

fOk
(x)P (Ok)

(III.7)

fOj is the probability density function of the bivariate normal distribution associated
with the object j, and m is the number of objects.

The color event is associated with the object with the largest probability to be the
source of the event. Assuming an identical probability P (Oj) = 1

m for each object to
generate an event (six in the wooden pieces example, background included), we simply
need to find the index j maximizing fOj (x), given by:

fOj (x) = 1
2π |Σj |

e−
1
2 (x−µj)TΣ−1

j (x−µj) (III.8)

where µj and Σj are the object j’ signature’ mean and covariance matrix.
In order to track the objects, we use a moving mean algorithm. Each object is given a

center pj =
(
xj
yj

)
, where xj and yj are the object’s mean coordinates in the screen refer-

ential. When an event ei,t is generated, the mean associated with the object minimizing
expression III.8 is updated. The new mean p′j is calculated from the previous mean and
the event as:

p′j = λpj + (1− λ) xi (III.9)

where xi is the coordinates in the screen referential of the pixel which generated the event.
λ is an inertia parameter ranging from zero to one. λ is generally given a value close to
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b*

a*

Fig. III.5 In order to build color signatures for a set of wooden pieces, we
accumulate noise-generated events from a static scene. We use the resulting
image to build a mask labelling a specific piece (here, the orange one). All the
color events associated with the mask’s pixels are converted to the CIEL*a*b*
space and projected on the a*b* plane. The projected points are used to estimate
a bivariate normal distribution, which we call the signature. The bottom diagram
shows 95% confidence ellipses of the wooden pieces’ signatures in the a*b* plane.
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(
1− 10−3). The larger λ, the more robust to noise the tracking. However, large λ values
yield more latency and deteriorate the algorithm’s ability to account for small variations.

We take into account the camera noise with a spatio-temporal activity filter. Once
an event is associated with an object, we count the number of prior events associated
with the same object that were generated less than one second before in a six-by-six
square window around the event’s position. Only events with at least thirty neighbors
in this spatio-temporal window are taken into account for updating the object’s mean
position. Increasing the required count decreases the number of false positive events,
while increasing the number of false negative events.

III.3 Results

We applied the color tracking algorithm to three experiments. Videos illustrating the as-
sociated results are provided as supplementary materials. The first experiment is recorded
under laboratory-controlled conditions. Five colored wooden pieces are placed on a ro-
tating surface captured with a static sensor. Figure III.6 shows the results compared
to the ground truth, evaluated with a contour tracing algorithm [171]. The objects and
their centers are identified on images reconstructed from the color camera’s events. For
each event, we calculate the distance between the associated object’s estimated mean and
its ground truth. The mean distance is given for each object as a fraction of the yellow
object’s trajectory’s radius. We are able to estimate the objects trajectories using only
color data. The moving mean algorithm’s λ parameter is identical for all the objects,
empirically set to

(
1− 10−3). A compromise must be reached between noise robustness

and accuracy. Reducing the parameter’s value would improve results for the purple object
while degrading the results for the green one.

The second experiment consists of a moving camera in an urban scene containing
a red road sign and a green pharmacy neon light. The corresponding color signatures
are learnt from an initialization step. The latter uses data from a one-second sequence
taking place before the experiment’s recording. Figure III.7 illustrates the associated color
reconstruction process. Due to the scene’s high dynamic range, the linear color model
yields little detail in the dark areas of reconstructed frames. Therefore, we generate color
frames for display purposes by applying a logarithmic tone-mapping on each channel
independently. This operation yields incorrect colors, but shows much more detail in
dark areas. The tracking algorithm is not influenced by this operation since it uses colors
calculated by the linear model, as presented in our methodology.

The third experiment takes place in an urban scene as well. It consists of two pedes-
trian wearing colored sweaters walking in front of the sensor. Figure III.8 shows the
segmented events for both urban experiments, while figure III.9 compares the estimated
trajectories with the ground truth. The latter is computed with the contour tracing algo-
rithm provided by S. Suzuki et al. [171] as well. We remind the reader that this technique
exploits shape rather than color: spatial constrains yield more robust results, but require
a more complex algorithm. The estimated mean position lags behind the ground truth,
which is a consequence of the moving mean algorithm. In order to assess the dynamics of
our results, we compensate the lag for the road signs experiment and shift the position’s
reference for the pedestrians one. Table III.1 summarizes the mean errors and standard
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Mean error on blue position estimation: 1.6 %

Images reconstructed from the color camera’ events over time

Mean error on green position estimation: 3.3 %

Mean error on purple position estimation: 10 %

Mean error on orange position estimation: 4.7 %

Mean error on yellow position estimation: 19 %

Fig. III.6 Tracking of five wooden pieces in rotation motion. Figures show the
pieces motions estimated with our method (colored trajectories) and the ground
truth (grey trajectories) for a whole rotation. The mean error for each object
is the average distance between the estimated object’s mean position and the
ground truth as a ratio of the yellow object’s trajectory’s radius. The observed
errors derive from the compromise between noise robustness and accuracy im-
posed by the moving mean algorithm.
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Fig. III.7 The figure’s top row shows reconstructed frames from events acquired
by each sensor of the three-chip event-based camera. The grey levels are tone-
mapped with a logarithmic function in order to be displayed on a regular screen.
The bottom-left frames are reconstructed with the linear color model presented
in the methodology. The colors are properly reconstructed, but very little detail
is left in dark areas. The bottom-right frames use the channels’ logarithmic tone-
mappings as their color channel, yielding incorrect colors but much more details
in dark areas.

deviations along the x and y axis for both urban scenes. We observe degraded perfor-
mances for objects near the sensor’s edges, which can be attributed to sensor limits. On
the one hand, the ATIS camera used in the assembly lacks sensitivity to blue wavelengths,
which is reflected by longer integration times for this component. This leads to times-
tamp differences between channels, which result in incorrect color reconstructions. On
the other hand, our prototype three-chip color camera exhibits optical aberrations which
degrade the signal near the edges.

III.4 Discussion

The event-based three-chip color camera is the first working prototype of an event-based
sensor able to acquire absolute color information: the sensor generates packets of data
carrying the luminance value integrated over a small time interval. By contrast, the
event-based color pixel designed six years ago [73] and the DVS camera with a Bayer
matrix built in early 2017 [172] can only detect color variations: they send the same
message regardless the variation magnitude, and require heavy calculations to retrieve
the absolute luminance. Even though our prototype is still at an early stage, we manage
to track colored objects in several scenes, using only the color information generated by
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Fig. III.8 We consider two outdoors scenes to assess the tracking algorithm
performance: a moving camera acquiring a red road sign and a green pharmacy
sign (top), and a static camera recording pedestrians wearing colored sweaters
(bottom). The color signatures for the objects are calculated from similar scenes.
The point clouds show color events where fO is larger than 10−5 for one of the
objects. These events are used to update the estimated center of the associated
object with a moving mean algorithm where λ = 1 − 10−3. The tracked object
are framed on the reconstructed frames for better visualization.
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Fig. III.9 We compare the estimated position of the tracked objects with the
ground truth along the x and y axis as functions of time for the road signs exper-
iment (top) and the pedestrians experiment (bottom). The events’ timestamps
are corrected to account for the delay induced by the mean-shift algorithm, ef-
fectively comparing dynamics rather than absolute values. Tracking is degraded
near the edges, especially for the red stop sign (top, x axis, after 3.6 seconds),
which is a consequence of our prototype’s optical aberrations. Since the pedes-
trians move along the x axis, motion along the y axis is relatively small, making
the noise appear stronger.

Object
Mean error (pixels)

x y
Green sign 2.18 1.30
Red sign 18.4 2.09

Orange sweater 14.5 4.58
Brown sweater 11.9 6.20

Table III.1: The mean error between the estimated position and the ground truth is
evaluated for each tracked object in the outdoor scenes. The larger errors along the x
axis for three out of four object can be attributed to the optical aberration near the
sensors’ edges.
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the sensor. Thanks to the capture of absolute luminance, very little computational power
is required to label the events. Therefore, the algorithm is a good candidate for the
first stage of a complex chain of computations achieving a higher level task. It proves
that color information alone is enough to achieve tracking with event-based cameras.
The advantages of the event-based color sensor presented in this work over frame-based
color cameras are similar to the advantages of grey event-based sensors over grey frame-
based sensors: carrying out part of the computation on the sensor yields a natural data
compression, with an increased temporal resolution. Both greatly reduce the required
amount of computation for the processor. However, a proper use of the generated data
requires a re-design of most computer vision algorithms.

The presented prototype can find applications in embedded systems. When low la-
tency and low power consumption are required - as an example, with drones - conventional
vision sensors show limits which can be overcome with event-based cameras. Fast color
segmentation on a drone can be useful for several tasks, such as target detection and
tracking or environment mapping. Moreover, the high dynamic range of the ATIS cam-
era tackles the luminance adaptation issue, particularly troublesome for self-driving cars.
Color makes road sign segmentation and recognition much easier on such systems.

The use of spatial information is out of the scope of this work. However, it should
allow for a more robust algorithm thanks to data fusion, and is considered as this work
continuation. We also identify several areas of improvement for the sensor that would
benefit the algorithm’s results. These improvements require hardware development. On
the one hand, one of the event-based three-chip color sensor’s weaknesses is its lack of
sensitivity to short wavelengths. This limitation is shared by most silicon-based photo-
detectors, but is aggravated by the ATIS’s low sensitivity to low light. Therefore, better
results would be achieved with increased sensitivity. On the other hand, the three-chip
architecture raises several issues: the resulting sensor is cumbersome, the chips must be
temporally synchronized, and a custom optical system is required to align the fields of
view, causing distortions and reducing the optical throughput. Having a single array of
pixels would address all these issues, but requires designing a chip from the ground up.

Assuming the design of a new chip, it would be interesting to consider the following
problem. Both the sensor presented in this work and the existing event-based color sensors
digitize the analog light signal into events for each channel independently. Processing is
then performed on the generated events, including color merging. The parallel drawn
with the human eye for such sensors [163] ignores part of the eye complexity, including
data passed between pixels through the horizontal cells. This data appears to be analog
rather than digital. Implementing such a data transfer in the next generation of color
neuromorphic vision sensors may be the key to acquiring color information efficiently.
It may also help overcoming the following paradox in computer vision: for segmenting
natural scenes, color, though helpful, provides a generally small advantage [173]. However,
it requires dealing with three times as much data. Assuming an access to the extra power
required to deal with this data, one is generally better off with a more complex algorithm
working on grey levels. Merging colors on the analog level may help reducing the amount
of generated data without tainting its quality.

The methods developed to explore event-based color vision can benefit systems be-
yond the scope of cameras, for they make it possible to manipulate arbitrary event types
and communicate with multiple sensors. The field of visual psychophysics, which aims
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to quantify the relationship between stimulus and perception, relies on a wide range of
sensors: eye trackers, electroencephalogram and response buttons are a few examples.
These sensors’ output can be represented as precisely timestamped events, thus a psy-
chophysics platform can be seen as an assembly of event-based sensors. Moreover, novel
psychophysics results can serve neuromorphic engineering, as the latter draws inspiration
from our understanding of biological systems. The next chapter presents a setup designed
to study the role and importance of precise timing in primates’ visual system.
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Chapter IV
An event-based setup for high-speed
visual psychophysics

IV.1 Introduction

Several recent neuroscience and psychophysics works suggest than the human visual sys-
tem operates with a much higher temporal precision than once thought. Notably, humans
are sensitive to flicker at 500 Hz [174], spikes in the optical nerve have a millisecond tem-
poral accuracy [175], and eye microsaccades can be as short as 6 ms [176]. The possible
role of precise timing in the human visual system - and, more generally, in the human
brain - is critical to the design of neuromorphic devices and algorithms, notably since it
is one of the most distinguishing features of event-based cameras.

High-framerate visual psychophysics experiments require a high-speed display device,
precise sensors and precise synchronization. Such experiments have only recently become
possible with off-the-shelf components, thanks to novel digital display technologies and
eye trackers, both operating at frequencies in the order of the kHz. Nevertheless, easy-to-
use software to run psychophysics experiments, for example EventIDE [177], are design
for usual screens operating at 60 Hz or 120 Hz. Such software is executed on non-real-
time operating systems, with the underlying assumption that the timing errors caused by
the computer are negligible compared to the time precision required by the experiment.
As a matter of fact, the timing errors reach a maximum of 5 ms (see subsection IV.2.1),
whereas the time between two 60 Hz frames is 16.7 ms. However, such timing errors are
large compared to the millisecond precision found in the optical nerve, and required for
high-framerate psychophysics. This problem can be solved with the same approach used
in event-based computer vision: smart sensors detect events in the signal they measure
and precisely timestamp them, while high-level algorithms run on conventional computers.
A framework with arbitrary event types and sensors fusion capabilities is required for this
task, since each sensor taking part in the experiment will generate a very specific data
type.

This chapter presents the application of our event-based framework to a high-framerate
psychophysics platform. This resulting device is a 19× 24× 9 cm box, shown figure IV.1,
containing a 1440 Hz binary projector, an embedded computer and a dedicated micro-
controller for high temporal resolution user inputs detection. A two-buttons response box

57
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is associated with the system. Facilities are provided to synchronize and communicate
with a 500 Hz eye tracker. The box’s schematics and code are both open-source and freely
available online. Off-the-shelf components are used, resulting in a low-cost and easy to
replicate solution.

IV.1.1 Existing high-frame-rate displays

Several novel display technologies have been used for high-speed visual psychophysics.
L. Sawides et al. [178] used Texas Instruments’ DMD technology to display stimuli at
22 700 Hz, but limited to 100 frames long binary patterns at a time. The vision re-
search projector ProPixx, also based on the DMD technology, allows continuous display
of 1440 Hz greyscale patterns. However, this solution is significantly more expensive than
the standalone chip. CH. Poth et al. [179] explored Nvidia’s G-Sync technology as a
means to present stimuli with high temporal resolution, below 1 ms. As far as frame-rate
is concerned, this approach is limited by a minimum presentation duration imposed by
the monitor. Only presentations lasting for at least the minimum duration (at best 4 ms,
depending on the monitor), can then be controlled with a sub-millisecond precision.

IV.1.2 Similar setups

Psychophysics setups based on DMD devices [180, 181] effectively result in open and low-
cost ProPixx-like solutions. Nevertheless, these setups require both time and expertise
to be replicated and validated, and rely on hard-to-reproduce dedicated hardware. In
contrast, 60 Hz experiments benefit from consumer monitors and accessible frameworks
in multiple programming languages, including Python1, JavaScript2 and Matlab3.

IV.1.3 Components

The box’s projector is a DLP Lightcrafter 3000, developed by Texas Instruments. In order
to circumvent the diamond-shaped pattern of this device, the projector is tilted by 45
degrees, resulting in a 343× 342 display. Rather than using a real-time operating system,
for which some hardware do not have support, the box is based on a pair of computers
with specific roles. The first one, a Jetson TX1 board, runs a non-time-deterministic
operating system (Ubuntu 16.04 LTS) and manages heavy-calculation tasks, notably video
decoding. The second computer is a Teensy 3.5 board running a single program - ours
- with interrupts to precisely (down to 1 µs in most cases) timestamp subject’s inputs,
DMD frames and eye tracker samples. This hybrid solution benefits from the many tools
developed for these two specific use cases. We characterize the device temporal precision
using an external photo-diode and oscilloscope.

1https://www.psychopy.org
2https://github.com/psychopy/psychojs
3http://psychtoolbox.org

https://www.psychopy.org
https://github.com/psychopy/psychojs
http://psychtoolbox.org
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Livetrack 500 Hz 
eye tracker

display screen chin rest
Hibiscus boxresponse box

Fig. IV.1 This figure shows the setup described and characterized in this work.
The Hibiscus box, shown in green, contains a DLP Lightcrafter projector, a Jet-
son TX1 board and a Teensy 3.5 board. The response box, part of the presented
solution, is shown in red. The complete setup makes use of a 500 Hz Livetrack
eye tracker, held with optics assembly parts instead of the provided base as to
not obscure the projector.
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background task
sched_min_
granularity

_ns
median delay peak delay

none 8000 µs 81 µs 3993 µs
800 µs 53 µs 3043 µs

stress-ng
–cpu 4

8000 µs 76 µs 4042 µs
800 µs 57 µs 3950 µs

Table IV.1: In order to estimate the real-time capabilities of the Jetson TX1 board’s
pins, we perform the following experiment. A Teensy 3.5 sends a signal to an input pin
of the Jetson TX1. Upon detection by a program running on the Jetson TX1, an output
pin connected back to the Teensy 3.5 is triggered. The latter can measure the delay
between the signals sent and received. The experiment is performed with and without
a calculation-heacy task running in the background (namely, stress-ng –cpu 4). Two
values are considered for the kernel’s sched_min_granularity_ns parameter: the default
8000 µs and 800 µs. The program is run with a -20 niceness for each combination of
conditions. A signal is sent every 100 ms, for 100 s. We observe no effect of the kernel
parameter change, and, a reduced latency under stress. Non-negligible latency peaks
appear with every set of conditions, preventing the use of the Jetson TX1 as sole machine.

IV.2 Preliminary considerations

IV.2.1 Precise synchronization

Common operating systems (including Linux based operating systems, Windows and
macOS) are not real-time, in the sense that a specific task is not guaranteed to complete
in a determined amount of time. This behaviour is a feature: preventing CPU context
switches increases overall throughput. However, when it comes to precisely timing user
inputs, non real-time operating systems induce noise, as the task responsible for measuring
time when an input is detected may be delayed by the kernel. The actual delay can reach
several milliseconds [182], which is not negligible in kilohertz psychophysics. We perform
a similar experiment using a Jetson TX1 board’s pins. We reach similar conclusions
regarding delays, as shown table IV.1.

Real-time operating systems, on the other hand, give strong guarantees regarding
task completion. However, such technologies are generally proprietary: the only real-time
operating system supporting the Jetson TX1 is RedHawk Linux4. Other limits include
reduced throughput and longer software development times.

We therefore elect a hybrid solution. The Jetson TX1 is associated with a Teensy 3.5
board responsible for timestamping user inputs. The latter’s time precision is estimated
in section IV.4. This solution provides real-time timestamping while relying on open,
well-known systems with a broad community of users.

4A list of the distributions compatible with the Jetson is available at https://elinux.org/Jetson_
TK1#Linux_distributions_running_on_Tegra, and details on the real-time operating system Redhawk
can be found at https://www.concurrent-rt.com/products/redhawk-linux

https://elinux.org/Jetson_TK1#Linux_distributions_running_on_Tegra
https://elinux.org/Jetson_TK1#Linux_distributions_running_on_Tegra
https://www.concurrent-rt.com/products/redhawk-linux
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IV.2.2 1440 Hz display

Digital Micromirror Device, or DMD, is a proprietary technology by Texas Instruments.
It consists in an array of small mirrors tilted by micro-electrical-mechanical systems
(MEMS). DMDs can be used as video projectors by shining a powerful light source on
the mirrors. Each mirror will either redirect the light to a screen or to a light absorber,
depending on its tilt angle.

Digital displays refresh rates used to be limited by the pixels’ response time (sev-
eral milliseconds for liquid-crystal displays). Novel pixel types, such as micromirrors or
light-emitting diodes, have much smaller response times: 16 µsand a few tens of nanosec-
onds, respectively. Given this tremendous improvement, the limiting factor becomes the
bandwidth of the cable used to carry video data from the computer to the digital display.

The DLP Lightcrafter 3000, developed by Texas Instruments, is built upon a 608×684
mirrors DMD. It features a 1440 Hz binary pattern display mode. The limited bandwidth
problem is circumvented as follows: the computer hosting the video sends 60 Hz RGB888
frames over HDMI, as it would with a usual screen, however each frame’s 3× 8 bit planes
are interpreted as a moving binary pattern rather than color depths (hence the 3×8×24 =
1440 Hz frame-rate). Even though any DMD projector has the theoretical ability to
switch its mirrors at 1440 Hz, the DLP Lightcrafter 3000 is, to our knowledge, the least
expensive light projector providing this feature without requiring the development of
custom electronics. A similar driving principle could be applied to LED displays. To our
knowledge, however, such devices are not yet available as off-the-shelf components.

The DLP Lightcrafter 3000 ’s pixels follow a diamond pattern, which can be visualized
figure IV.2. This pixel arrangement may have an impact on perception, making the
comparison with experiments using square pixels more complex. Therefore, we tilt the
projector at a 45 degrees angle counter-clockwise along its axis, revealing a rectangular
array of 343 × 342 pixels. The figure IV.2 shows the portion of the projector actually
used by our method, as well as the image sent by the computer over HDMI, which
accounts for the diamond pattern’s coordinate scheme. The pixel of the 343× 342 frame
with coordinates (x, y) (where (0, 0) is the top left corner) must have, in the 608 × 684
frame sent by the computer, the coordinates (x′, y′) are given by x′ = 133 +

⌊
x+y

2

⌋
and

y′ = 342− x+ y, where b c is the floor function. The x offset, 133, is chosen as to center
the tilted area. Similar equations can be derived for other shape factors. The chosen
shape factor maximizes the number of pixels inside the tilted frame.

The 1440 Hz frames projected by the DLP Lightcrafter 3000 have uneven, but deter-
ministic, durations. They follow a pattern repeated every 24 frames, with the following
properties:

• the frames 1 to 22 and 24 of each pattern last λ
1440 s, instead of the expected 1

1440 s
duration

• the frame 23 (second before last) of each pattern lasts 24−23λ
1440

We estimate λ = 0.979 from a measured 23rd frame duration of 1030 µs. If deemed rele-
vant, these variations can be accounted for in the psychophysics experiments performed
with the device.
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Fig. IV.2 The DLP Lightcrafter 3000’s pixels are arranged in a diamond pat-
tern, shown by the top picture (on a smaller array for readability purposes). The
colored pixels illustrate the coordinate scheme: the blue pixels’ x coordinate is
5, and the yellow pixels’ y coordinate is 7. The top left pixel has coordinates
(0, 0), and the green pixel has coordinates (5, 7). The middle picture shows the
rotated area actually used by our method, which has square pixels. The green
pixel has coordinates (3, 2) in the rotated frame reference. The bottom picture
shows the rotated area inside the frame sent by the computer. The distortion is
a result of the DLP’s diamond pattern coordinate scheme.



IV.2 Preliminary considerations 63

IV.2.3 Encoding stimuli

The method presented in this work assumes that stimuli are generated before the exper-
iment and stored on a hard drive. The stored frames have (608, 684) pixels, in order to
match the format expected by the DLP Lightcrafter 3000. Alternatively, one could store
frames with 343 × 342 pixels and calculate the expected frame at run time. However,
this approach would require more processing power, and leads to a loss of generality, as
a pipeline reading (608, 684) frames can drive a non-tilted device.

Raw 608 × 684 RGB888 frames at 60 Hz occupy about 599 MB of memory for each
second of video. Stimuli longer than a few seconds do not fit in most computers’ RAM,
and as such must be read from disk in real time. Video encoding algorithms are needed
to meet this constraint.

Video encoding algorithms are generally lossy: they exploit the fact that well-chosen,
irreversible changes in the original data can greatly reduce the encoded media size, while
having little to no impact on the human perception of the decoded media. However, in our
specific case, the data’s bit planes sent to the projector do not encode colors, as assumed by
encoding algorithms, but temporal patterns. As an example, changing a red channel byte
with the value 011111112, representing the decimal value 127, to 100000002, representing
the decimal value 128, does not have a huge perceptual impact. If this operation helps to
reduce the overall encoded media size, it is an acceptable lossy irreversible change. Yet,
the same byte interpreted as a binary pattern yields an almost-always on pixel in the first
case, and an almost-always off pixel in the second. It follows that lossy algorithms cannot
be used to encode the data expected by the DLP Lightcrafter 3000 in 1440 Hz binary
pattern mode, because they are likely to massively degrade the media.

State-of-the-art encoding algorithms include H.265 and VP9 [183], with lossy and
lossless variants. However, hardware support for these algorithms remains scarce. As
an example, the Jetson TX1 used in this work does not support hardware-accelerated
decoding for either format. Instead, our processing pipeline relies on the H.264 encoding
algorithm, which features lossless encoding and is hardware-accelerated on many platform,
including the Jetson TX1. Note, however, that the Raspberry Pi, a smaller and less
expensive embedded computer, does not provide hardware acceleration for lossless videos
(though full HD lossy H.264 can be decoded in real time).

Despite being supported by the Jetson TX1, decoding lossless H.264 data is not
straightforward for two reasons. First, H.264 expects Y*UV data (in contrast with
RGB888 data). The conversion from RGB to Y*UV and back, though mathematically
reversible, is not lossless for 8 bits integers. Secondly, the Jetson only support lossless
decoding for chroma subsampled H.264 videos, which contain half as many bytes as their
fully sampled counterparts for a given resolution (4:2:0 chroma subsampling). We solve
both problems by writing (without conversion) each RGB888 frame into a twice as wide
Y*UV420p frame. Unlike Y*UV420p, RGB888 channels are interleaved. We introduce a
custom deinterleaving scheme: R and G channels are written over Y*, and the B channel is
written over U and V (alternating with each line). This strategy is illustrated figure IV.3,
and yields better compression relatively to direct memory copy of the interleaved RGB
frame into the Y*UV one, as shown table IV.2. Moreover, it has a beneficial side-effect:
the custom encoded Y*UV420p is close to the original video, even when decoded as if it
were a standard Y*UV420p-encoded stream, allowing easy stimuli identification using a
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Fig. IV.3 In order to lossessly compress RGB888 frames with H.264, we convert
them to Y*UV420p. The left column shows the RGB888 bytes of a 3× 4 pixels
frame. The three channels are interleaved in memory. The middle column shows
the Y*UV420p bytes of a 6 × 4 frame. The total number of bytes is identical
for both encodings despite a different frame size, as Y*UV420p includes chroma
subsampling. The right column shows the proposed method to write the RGB
bytes inside the Y*UV frame.

standard video player (despite erroneous colors, since the bit planes represent patterns
and not colors). An example is given figure IV.4.

IV.3 The box and code

IV.3.1 The box assembly

A detail of the box’s components is shown figure IV.5. The black ABS plastic box is a
24× 19× 9 cm electronic project box. It is 4 mm thick. The other mechanical parts are
3D-printed PLA. 3D models of these parts can be downloaded for free from the project’s
Github page. Assembly requires plastic cutting to create windows in the box for the focus
wheel and the front ports. The components are held with M2 and M3 bolts. Visible 3D-
printed parts are painted black to reduce their salience during psychophysics experiments.
On top of easing transport and reducing electronics wear over time, the box occults the
light emitted by the multiple blinking LEDs of the Jetson TX1, the Teensy 3.5 and the
DLP Lightcrafter 3000. The USB hub breakout board is extracted from an off-the-shelf
USB hub. The custom 5 V power supply board features two Austin MiniLynx chips to
power the DLP Lightcrafter 3000 and the USB hub. Each Austin MiniLynx is associated
with a potentiometer to configure its output tension. A third pair is visible figure IV.5,
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frame rate coherence direct copy
encoded size

interleaved
encoded size ratio

60 Hz
50 % 15.8 MB 4.4 MB 3.59
30 % 17.9 MB 5.8 MB 3.09
10 % 17.2 MB 5.9 MB 2.92

1440 Hz
50 % 18.5 MB 12.2 MB 1.52
30 % 21.9 MB 13.3 MB 1.65
10 % 26.1 MB 14.9 MB 1.75

Table IV.2: This table compares two possible lossless RGB888 to Y*UV420p conversions
and their impact on H.264 encoding. Psychopy’s DotStim function is used to generate
stimuli with different frame-rates and coherence values, with constant speed and duration.
The non-encoded stream is 374 MB large. The direct copy yields a Y*UV420p stream
very different from usual videos, degrading the encoding algorithm performance when
compared to our custom deinterleaving algorithm. The smaller the coherence, the more
information is stored in the file (the video is harder to predict), hence the increasing
encoded media size. Similarly, the higher the frame-rate, the farther the generated stream
is to usual videos, since bit planes represent motion and not color.

Fig. IV.4 This figure illustrates the different transformations applied to the
intended stimulus (top left square and its detail below) before H.264 compression.
First, 1440 Hz frames are packed as the bit-planes of a 60 Hz color video (rectangle
with a black background and its detail on the left, second from the bottom). The
color channels are then interleaved, as shown figure IV.3, resulting in a twice-
as-wide color video stream (rectangle with a green background, its detail on the
left, first from the bottom). When opened with a conventional video player,
the stimulus appears as seen on the right. Even though its spatial features are
degraded and its colors are incorrect, it can help identify the stimulus file.



66 Chapter IV. Psychophysics setup

added during assembly to accommodate for a potential extra device. Since all the pins
of the Teensy 3.5 are interrupt-capable, the jack and BNC wires can be connected to any
GPIO. The jack wires are pulled up to 5 V by 4.6 kΩ resistors.

IV.3.2 Synchronizing components

The Teensy 3.5 ’s clock is chosen as the reference to timestamp events. User inputs trans-
mitted by the response box are directly detected as interrupts on the Teensy 3.5 pins,
as shown figure IV.6. Likewise, the DLP Lightcrafter 3000 ’s frames are precisely times-
tamped by the reference clock. Once timestamped, the events can be safely transmitted
with non-time-deterministic protocols (USB and non-real-time operating system) to the
Jetson TX1 for further processing and logging. See section IV.4 for an estimation of the
precision offered by the Teensy 3.5 ’s interrupts.

Detecting the DMD trigger’s pulses is not sufficient to properly synchronize the dis-
played stimulus with user inputs. As a matter of fact, this trigger does not transmit a
frame identifier, hence only the Jetson TX1, which drives the HDMI transmission, knows
which frame is being displayed. Explicitly synchronizing the Teensy 3.5 and Jetson TX1
clocks, though possible using a time synchronization algorithm [184], is hard to validate
using our specific hardware (since the Jetson TX1 ’s outputs are known to induce random
delays, see IV.1). Instead, we exploit a defect of the DLP Lightcrafter 3000 : the inter-
frame time is slightly longer once every twenty-four 1440 Hz frames, on the boundary
of every 60 Hz RGB888 frame read from HDMI. Upon detection of this longer frame, a
USB message is sent to the Jetson TX1, which associates the label of the previous HDMI
frame with the precise timestamp provided by the Teensy 3.5. This protocol, illustrated
figure IV.7, can be checked for consistency at run-time, thus validating the synchroniza-
tion and allowing errors detection. The two-frames offset which appears in the protocol
accounts for the GPU double-buffering and the DLP Lightcrafter 3000 behaviour5, each
inducing a one-frame delay. A quantification of the errors for a typical psychophysics
experiment is given in section IV.4, with a consideration of its implications.

The Livetrack eye tracker communicates data over USB at 500 Hz, using its own clock
to timestamp eye samples. The state of the Livetrack’s digital inputs (including a BNC
port) are provided with each sample. In order to estimate the Livetrack’s samples times
with respect to our reference clock (the Teensy 3.5 ’s), we periodically change the logical
state of the BNC port. The switching times are driven and precisely timestamped by
the Teensy 3.5, and reflected in the USB packets transmitted by the Livetrack. Upon
detection by the Jetson TX1, a USB command is sent to the Teensy 3.5 to trigger a
new BNC logical change. This mechanism, illustrated figure IV.8 , makes it possible to
associate each timestamped logical change with one - and only one - Livetrack sample. The
whole cycle takes about 25 ms. Samples in-between BNC logical changes are timestamped
using a linear regression based on the Livetrack’s timestamps. Under the assumption that
the BNC logical changes happen randomly during the Livetrack 2 ms inter-sample, the
Teensy 3.5 provided timestamps are matched with Livetrack timestamps offset by 1 ms
on average. This is taken into account in the linear regression to provide an unbiased
estimator.

5http://www.ti.com/lit/ug/dlpu006e/dlpu006e.pdf

http://www.ti.com/lit/ug/dlpu006e/dlpu006e.pdf
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Fig. IV.5 The Hibiscus assembly extends the Hummingbird assembly with a
real-time micro-controller and an embedded GPU, providing an all-in-one device
for displaying kilohertz stimuli and recording subjects’ responses. The included
Jetson TX1 development board (10) decodes H.264 frames displayed at 1440 Hz
by the DMD Lightcrafter connected over HDMI (9). External events are times-
tamped with a microsecond precision thanks to the embedded Teensy 3.5 board
(7). The front direct digital ports (2 and 3) make it possible to connect and
synchronize external devices, such as a two-buttons remote for decision-making
experiments, and a Livetrack eye tracker. The ethernet (4) and USB (5) hubs
are connected to the Jetson, and are used for remote control and Livetrack
communication, respectively. The Jetson board is directly powered by the in-
put (1), whereas the other components use dedicated 5 V power regulators (8).
The stereo jack’s signal lines are connected to pull-up resistors and the Teensy’s
GPIOs. The focus wheel (6) provides a precise control over the Lightcrafter’s
focal length.
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Fig. IV.6 The Hibiscus box is powered by a single 12 V, 60 W source. The
setup connections can be organized in two categories. The USB and ethernet
connections (shown in blue), which have non-deterministic trip times, transmit
non-time-precise information. Such data is timestamped before transmission by
the reference clock (the Teensy 3.5 clock), allowing delayed transmission without
precision loss. The transmissions shown in red feature synchronization mecha-
nisms (HDMI), or are simple wires transmitting pulses (all the triggers). The
start trigger is responsible for booting the Jetson TX1 on power up.
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Fig. IV.7 All the subject inputs and the frames timings are recorded by a
single reference clock - the Teensy 3.5’s clock. This dedicated micro-controller
is responsible for precisely timestamping the inputs and sending them to the
Jetson TX1 for further processing. The Teensy 3.5 does not know which frame
is associated with a given DMD trigger rising edge. In order to avoid explicit
clock synchronization, a labelling packet is sent to the Jetson TX1 at each 60 Hz
frame boundary. Assuming short enough USB delays, precise timestamps can
be associated with frame indices by the Jetson TX1. Both the Teensy 3.5 and
Jetson TX1 keep track of the current frame index, allowing to detect and correct
synchronization errors. This scheme requires at least one USB packet to be
transmitted in less than 8 ms. This condition is actually met by most packets.

IV.3.3 Code structure

All the code needed to use the box can be downloaded for free on the project’s Github
pages6. The code is organized in two modules. The first one, Hummingbird, can be used
with a DLP Lightcrafter 3000 and any computer. It provides tools to generate binary
patterns and play them over HDMI at 1440 Hz. The second module, called Hibiscus, is
built on top of Hummingbird. It supplements the latter with tools to run psychophysics
experiments, and implements the synchronization mechanisms presented in section IV.3.2
(including the communication with the Livetrack and the Teensy 3.5 ). An open-source
implementation of the Livetrack n-point calibration algorithm, compatible with the tilted
display, is provided as well. Both modules expose command-line programs to use their
features, and header-only C++ code to include them in other projects.

6https://github.com/neuromorphic-paris/hibiscus and https://github.com/
neuromorphic-paris/hummingbird

https://github.com/neuromorphic-paris/hibiscus
https://github.com/neuromorphic-paris/hummingbird
https://github.com/neuromorphic-paris/hummingbird
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Fig. IV.8 The Livetrack uses its own clock to timestamp data. In order to
convert these timestamps to the Teensy 3.5’s clock referential, messages are
exchange in a cycle. The Teensy 3.5 uses its clock to precisely measure time
and changes at the same time the logical level of the BNC trigger. The precise
timestamp is sent to the Jetson TX1. The Livetrack provides samples of the
trigger synchronously with eye-tracking data, at 500 Hz. The Jetson TX1 detects
changes between consecutive data reports, and receives timestamps from the
Teensy 3.5. When both information have been received, the Livetrack timestamp
can be associated with a Teensy 3.5 timestamp. The Jetson TX1 completes
the cycle by requiring a new change from the Teensy 3.5. Changes happen
approximately every 25 ms. Livetrack samples between matched timestamps are
converted to the Teensy 3.5’s clock referential using a linear regression.

a) Generating stimuli

The figure IV.9 gives an overview of the functions used to generate a 1440 Hz stimulus.
The listed .hpp files reside in the Hummingbird git repository. rotate.hpp implements the
rotation presented in section IV.2.3 and deinterleave.hpp the strategy for lossless H.264
compression from the same section. The hummingbird.py python module implements the
same functions using numpy, and can be integrated in a Psychopy script, to use the latter
for stimuli generation. Both the C++ and python programs rely on the external tool
FFmpeg [185] for the toolchain’s most complex step, namely encoding the Y*UV420p
stream to H.264. The generate toolchain output is an H.264 encoded MP4 file ready for
use by the play toolchain.

b) Playing stimuli

The figure IV.10 illustrates the functions used to play a stimulus encoded by the generate
toolchain. decoder.hpp relies on the Gstreamer library [186], which provide hardware-
accelerated and software implementations of the H.264 decoding algorithm. Thanks to this
library, the toolchain is efficient when hosted by the Jetson TX1 while being compatible
with most desktop computers, regardless their hardware. The libav library [187] provides
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Fig. IV.9 The generate toolchain contains tools to encode a visual stimulus
in a format compatible with the play toolchain. It provides two variants: a
C++ implementation that can be used from other programs, and a Python
implementation compatible with Psychopy (where the latter is used to create
the input binary frames). Both variants are open-source and documented on
the project’s Github page. This toolchain does not feature real-time features:
stimuli must be encoded before running the experiment.
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similar features on most platforms, but support is not as good on the Jetson TX1.
We do not use the Gstreamer library to display frames, even though it is one of its

features. Instead, the decoded Y*UV420p are extracted from the Gstreamer pipeline,
processed using the interleave.hpp function (inverse of the deinterleave.hpp one) and sent
to the HDMI output using the GLFW library [188] and the GPU. This choice is motivated
by several elements. First, it is easier to extract frames from a Gstreamer pipeline than
to create a custom Gstreamer filter, which would be required to implement the interleave
step, because Gstreamer relies on the non-standard GObject system. Secondly, this gives
the toolchain a lot of flexibility regarding buffering. The play program uses buffers of sixty
frames, meaning that sixty frames are decoded and stored in memory before starting the
video. Buffering increases the delay before starting a stimulus but reduces the risk to
miss frames, which is vital for fine control over the experiments’ conditions. Finally, the
GLFW library features an easy way to configure the GPU’s gamma ramp, responsible
for color correction of the output frames. Similarly to the reason why lossy encoding
must be avoided with media destined to the DLP Lightcrafter 3000 in 1440 Hz mode,
a non-identity gamma correction - default for most operating systems - will drastically
change the nature of the binary patterns.

c) Running experiments

The Hibiscus module includes Hummingbird as a git submodule. It bundles C++ header-
only files completing the features needed for psychophysics experiments. Two command-
line programs, which use the C++ code, are provided. The first one estimates a Live-
track calibration using n known points (n defaults to 9) projected using the tilted DLP
Lightcrafter 3000. The homography converting Livetrack coordinates to screen coordi-
nates is calculated using the singular value decomposition method followed by a Nelder-
Mead optimization using the projection errors’ maximum as heuristic. The second pro-
gram records user input (response box and eye tracker data) from an arbitrarily long
sequence of stimuli. The record program includes sources synchronization, and expresses
the eye tracker data in screen coordinates using the calibration. The output file, en-
coded using the Event Stream file format specification (see Appendix A), is ready for
data interpretation. It provides a single, time-consistent sequence of multiplexed events.

The Teensy 3.5 firmware is written using the Arduino software with the Teensyduino
extension. timestamping is implemented with an interrupt for each event source (left and
right buttons of the response box and the DMD trigger). Each interrupt-handling code
fills a 256 bits circular FIFO emptied by the main loop. The circular FIFO implementa-
tion uses a volatile head index updated by the interrupt, and a non-volatile tail index
managed by the main loop.

Hibiscus provides detailed instruction to install the software and its dependencies on
out-of-the-box Jetson TX1 and Teensy 3.5 boards.

IV.4 Validation experiments
We perform several experiments to validate the hypothesis supporting our device, and
characterize the achieved timestamp precision. The experiments use the following external
devices:
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Fig. IV.10 The play toolchain uses the output from the generate toolchain. It
provides C++ header-only implementations and a program for playing stim-
uli using a DLP Lightcrafter 3000. If available, a hardware-accelerated H.264
decoding algorithm is used by the underlying Gstreamer library. The code is
open-source and documented on the project’s Github page.

• a Keysight InfiniiVision DSO-X 3024T oscilloscope with a 200 MHz bandwidth and
up to 5 billion samples per second

• a Hameg HM8131-2 15 MHz function generator, with less than 25 ns of jitter, and
a 100 ppm (parts per million) frequency variation (the latter is a rough estimate
accounting for the device age)

• a Texas Instruments OPT101 photodiode and amplifier with a 14 kHz bandwidth

IV.4.1 Validating the DLP Lightcrafter 3000 driver
The generate and play toolchains presented in this work are very sensitive to lossy en-
coding or color corrections, because the bit planes sent to the DLP Lightcrafter 3000 are
not interpreted as colors. In order to make sure that the system displays the expected
stimuli time-wise, we use the the generate pipeline to create a spatially uniform stimulus.
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Fig. IV.11 The DLP Lightcrafter 3000 interprets bit planes as binary patterns.
In order to ensure that the correct bit planes are sent over HDMI (without color
correction), we project a spatially uniform video onto a photodiode connected
to an oscilloscope. Each frame’s active bits form a Golomb ruler, avoiding shift
invariances. The penultimate bit does not match the ruler pattern. It is set to
one to illustrate a DLP Lightcrafter 3000 defect: 1440 Hz frames have uneven
durations.

Pixels are switched on and off in a 24 frames Golomb ruler pattern displayed at 1440 Hz,
illustrated figure IV.11. The DLP Lightcrafter 3000 projector lights up a photodiode
connected to an oscilloscope. The pattern is chosen as to not be shift-invariant, reducing
the risk to mistakenly obtain the correct result. Notably, bytes are not read by the DLP
Lightcrafter 3000 in the usual RGB order. A good input and output match is achieved
using the correction motivated by the defect described in section IV.2.2. This defect is
characterized by 23 out of 24 frames being 2.1 % too short, and 1 out 24 frames being 48
% too long. We observe the expected timings - with microsecond precision - for off-to-on
transitions. However, on-to-off transitions are always 25 µs late, or 3.6 % of the average
frame duration.

IV.4.2 Validating the timestamps precision

Every user input is precisely timestamped using the Teensy 3.5 clock, either directly (left
and right response box buttons, DMD trigger) or through an implicit synchronization
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mechanism (frames labels, eye tracker samples). To estimate the timestamping accuracy,
we send a square signal to one of the Teensy 3.5 ’s inputs, as illustrated by the left plots
shown figure IV.12. The rising edges of the square signal are detected with interrupts
and timestamped. We observe the evolution of two quantities with respect to the signal
frequency. First, the number of missed samples is estimated by calculating the time
difference between the generated timestamps. Secondly, for successfully acquired samples,
we calculate the absolute time difference between the theoretical rising time of the square
signal and the obtained timestamp. The Teensy 3.5 and function generator clocks are
assumed monotonic but of imprecise frequencies: they have a distinct time reference and
tend to drift over time. The 100 ppm variation of the function generator clock’s frequency
can cause a drift up to 100 µs every second for a 1 MHz signal. Hence, timestamp errors
are estimated after using a linear regression to convert the function generator times to
the Teensy 3.5 clock referential. We observe a sudden increase in the number of missed
samples when reaching about 400000 interrupts per second.

Interrupts are handled sequentially by the Teensy 3.5. Therefore, the errors are maxi-
mized by events arriving exactly at the same time. To quantify the timestamping accuracy
with such events, we connect the function generator output to three independent Teensy
3.5 pins, each triggering a distinct interrupt. The same quantities as in the one interrupt
case are measured. We observe a similar increase at 400000 interrupts per second, reached
with a 130 kHz signal (since each rising edge triggers three interrupts). timestamps errors
stay under 10 µs for frequencies below 100 kHz. A typical use of out box generates about
1440 interrupts per second, and rarely two interrupts at once. Thus, the timestamping is
always accurate to 10 µs, and generally accurate down to 1 µs.

Similarly to function generator, the Teensy 3.5 clock drifts over time (about 20 ppm).
This defect does not impact comparative studies, but makes inter-studies comparison
more difficult (as if each study had its own definition of the second, with subtle varia-
tions between studies). Long experiments where a high time accuracy matter must take
this defect into account by estimating their hardware-specific drift with respect to the
experiment’s temperature conditions.

The synchronization with the Livetrack does not use interrupts, but a time measure
followed by a digital write in the Teensy 3.5 ’s program main loop. This pair of instructions
may be separated by several processor cycles, but the time delta remains negligible when
compared to the errors induced by the Livetrack’s 2 ms gap between samples. Complex
synchronization algorithm using multiple round-trip estimates could provide a synchro-
nization precision below the sample gap, but cannot account for the unknown jitter of
the samples. More information on the undisclosed Livetrack architecture is needed for
meaningful improvements.

IV.4.3 Determining the parameters for frame labelling

Frame labelling cannot be handled by the Teensy 3.5 because the DMD trigger does not
provide a frame index. The implicit synchronization mechanism presented section IV.3.2
solves this issue, but relies on an unknown integer frame delay. In order to estimate this
delay, we project a 1 Hz, spatially uniform binary pattern onto a photodiode. The wiring
used by this experiment is illustrated figure IV.13. We compare the timestamps of the
DMD trigger rising edges with the timestamps of the photodiode rising edges, in order to
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Fig. IV.12 Precise timing relies only on the Teensy 3.5’s clock, defined as ref-
erence. When an electronic interrupt is triggered by a user inputs or the DLP
Lightcrafter 3000, a timestamp is generated and pushed to a FIFO, waiting for
USB transmission. In order to estimate the resulting precision, we send a square
signal of varying frequency to a Teensy 3.5 pin. The time delta between times-
tamps provides an estimation of the number of missed rising edges, shown by
the top-left plot. The bottom-left plot shows the acquired samples’ jitter as a
function of frequency. The right column illustrates a similar experiment, where
the squared signal is recorded by three independent pins. This unfavourable case
comes with an increased jitter, as only a single interrupt can be handled at once.
In both cases, we observe a major drop in performance around 400000 interrupts
per second. However, the intended use of the box yields only about 1440 inter-
rupts per second, and rarely more than one at a time. timestamp errors stay
well below 10 µs under these conditions.
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find out which trigger rising edge is associated with a specific frame index. The small time
difference between the timestamps allows us to undoubtedly associate each photodiode
rising edge with one - and only one - DMD trigger rising edge.

The DMD rising edges are always timestamped 2 µs to 3 µs after the photodiode’s,
leading to the conclusion that this time difference is a systematic DLP Lightcrafter 3000
error, rather than a jitter induced by the interrupt-based timestamping. However, this
error is in the order of magnitude of the device time accuracy, and can therefore be
ignored.

IV.4.4 Estimating the number of missed frames

Sending frames over HDMI to the DLP Lightcrafter 3000 is handled by the Jetson TX1,
which does not host a real-time operating system. The thread responsible for sending
frames to the GPU at 60 Hz may be preempted by the kernel at the wrong time. If it
happens, the GPU sends the same frame twice to DLP Lightcrafter 3000. The associated
24-frames pattern is projected twice, resulting in an unexpected motion. We call this de-
fect missed frame. It can be detected thanks to the synchronization mechanism illustrated
figure IV.7. In order to estimate its frequency of occurrence, we simulate the conditions
of a psychophysics experiment. We use a sequence of two hundred clips generated with
Psychopy’s DotStim stimulus. Each clip is separated in three phases of varying duration:
fixation, incoherent phase and coherent phase. An example is illustrated figure IV.14. In
the original experiment, the subject is expected to press the response box’s buttons when
the coherent phase starts. To simulate the different outcomes (button pressed during
any of the phases, or not pressed at all) without the need for human subjects, we draw
a random number in the range [1. . 100] with each Livetrack synchronization message -
once every 25 ms. If the drawn number is one, we trigger a button press. This simple im-
plementation results in a random event with the cumulative distribution function shown
figure IV.14.

We run the sequence of two hundred clips five times. Since button presses stop the
current clip and start the next one, each run takes a variable time, close to ten minutes.
Table IV.3 shows the number of frames actually displayed in each run, and the number of
detected synchronization issues. Each synchronization issue impacts 24 1440 Hz frames.
We assume that any clip during which a synchronization issue occurred needs to be
removed from the analysis. Some issues happen in pairs, and generally characterize a late
USB packet rather than a missed frame: the associated clip was displayed as expected,
and can be kept in the analysis. Nevertheless, such clips are counted as impacted in the
results presented table IV.3. We observe a low - though non-zero - number of issues.

IV.5 Discussion
The box presented in this works bundles a projector, a computer with an embedded GPU
and a real-time microprocessor. Unlike existing solutions, it does not require electronics
development and does not rely on expensive components. Replicating this work requires
soldering resistors, printing 3D components and cutting plastic. The tools and expertise
to perform these operations, if not found in the research team, may be found in most fab
labs. One can also avoid assembly altogether by powering the components individually.
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Fig. IV.13 The DMD trigger tells the Teensy 3.5 when frames are displayed,
but not which frame is being displayed. The Jetson TX1 knows when the func-
tion swap_buffers returns in the Teensy 3.5’s clock referential, thanks to the
mechanism illustrated figure IV.7. However, the frame is actually displayed by
the DLP Lightcrfater 3000 after a specific integer number of frames. In order
to estimate this delay, we project a spatially uniform 1 Hz onto a photodiode.
The Teensy 3.5’s interrupts are used to compare the arrival times of the DMD
trigger and photodiode rising edges. The photodiode’s rising edges match the
DMD trigger’s with a 3 microsecond precision. The time delta is almost con-
stant, and the photodiode’s interrupt is always trigger before the DMD trigger’s.
Therefore, we can label specific DMD trigger rising edges and match them with
a frame index, since we know which frame in the stimulus corresponds to a light
increase. The measured frame delay is two.
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Fig. IV.14 In order to evaluate the box behaviour under realistic conditions,
we simulate an actual psychophysics experiment. The generated stimulus, which
consists in moving dots, has three phases shown in the first row. In order to
represent motion, several frames are superimposed with a time decay for each
phase. Responses of human subjects are roughly approximated with a random
draw at fixed time intervals, resulting in the cumulative distribution shown in
the second row.

trial 1440 Hz
frames

unsynchro-
nized 60 Hz

frames

1440 Hz
frames

impacted

clips
impacted

1 686016 5 0.02 % 1.5 %
2 701904 0 0 % 0 %
3 723744 0 0 % 0 %
4 727728 1 0.003 % 0.5 %
5 719928 2 0.007 % 1.0 %

mean 711864 1.6 0.006 % 0.6 %

Table IV.3: The stimulus illustrated figure IV.14 is used to generate two hundred clips.
The clips are associated in a sequence repeated over five trials, with random button pushes
simulating a human subject. We calculate the number of unsynchronized frames, and,
assuming that a missed frame invalidates the stimulus in which it occurred, the number
of clips lost due to the system limits. For the intended use (many repetitions of short
clips), the average loss rate is acceptable.
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However, this would result in a less stable, bulkier experimental setup. Such setups,
or experiments which do not require precisely-timed recordings, still need custom parts
to tilt the DLP Lightcrafter 3000 at a 45 degrees angle and precisely move its focus.
Appendix B presents a 3D printed kit fulfilling this need. The parts are compatible with
metric optical tables, and feature a wheel to control the projector’s focal length.

The introduced code toolchains assume an offline stimulus generation. A real-time,
configurable generator could be beneficial in several situations. The development of novel
stimuli would be easier, allowing a shorter iterative design cycle. Moreover, the possibility
of experiments where feedback is used to adjust the stimulus arises. Even though real-time
stimulus generation is possible with the considered hardware, usual stimulus generators
are not optimized for the frames expected by the DLP Lightcrafter 3000 in 1440 Hz mode,
and fall short of running in real-time. Consequently, the code generating the stimulus
must be written from scratch in a "low-level" (C++ rather than Python) programming
language, which is both time-consuming and of uncertain outcome: if the stimulus requires
to much computation, off-line pre-processing may still be needed.

The projector used in this work was chosen as the least expensive solution to display
1440 Hz frames. Less expensive DMD-based projectors from Texas Instruments7 do not
feature the required HDMI to binary pattern operating mode. More expensive projec-
tors8 provide the needed features, and avoid the need for the 45 degrees tilt workaround
since they have a usual, non-diamond pixel pattern. This work’s other considerations, in
particular encoding and synchronization, are still relevant.

Displays’ maximum frame rate used to be limited by the pixels response time. Novel
technologies, such as DMDs and LEDs, have response times so small that the limiting
factor for high-speed screens becomes the computer-to-display communication bandwidth,
and the computer’s capacity to generate frames. The DLP Lightcrafter 3000 circumvents
this limit by interpreting color depth as binary patterns, giving up color for speed. A
similar technique could be applied to LED screens. With the long-term goal of building
a display indistinguishable from a real scene by the human eye, the maximum frame-rate
we are sensitive to has major consequences in technology design. The faster the frame-
rate, the fewer pixels change with each frame, and the more full frames of information
are redundant. Alternatives to the usual, well-established pipeline (GPU connected to
a display with a fixed frame-rate) become competitive. They range from the variable
frame-rate used by Nvidia’s Gsync technology, to the "frames interpreted as temporal
patterns" technique implemented by the DLP Lightcrafter 3000, to a hypothetical fully
asynchronous event-based display.

Other research fields than psychophysics can benefit from neuromorphic engineering
methods and devices. chapter III presented a three-chip event-based camera and a color
segmentation algorithm. The next chapter discusses the application of this sensor to
Brainbow [21], a bio-engineering method generating complex fluorescent neuron samples
that represent a challenge for conventional segmentation algorithms.

7http://www.ti.com/lit/ug/dlpu049c/dlpu049c.pdf
8http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf

http://www.ti.com/lit/ug/dlpu049c/dlpu049c.pdf
http://www.ti.com/lit/ug/dlpu011f/dlpu011f.pdf


Chapter V
A Markov chain model for Brainbow

V.1 Introduction

Brainbow [21] uses bio-engineering to insert specific transgenes in mice DNA. The modified
mice are bred to produce genetically modified specimens with a replica of the transgene
of interest in every cell. At an arbitrary time during the bred specimens’ development, a
chain of chemical processes called Cre-lox recombinations is externally triggered. These
chemical reactions mutate the inserted transgenes, converting them to new DNA arrange-
ments randomly drawn from a finite set, which depends on the arrangement of lox sites.
The arrangements obtained at the end of the chain of reactions are called outcomes. In
the case of Brainbow, the transgenes are chosen so that each outcome expresses a dif-
ferent gene producing fluorescent proteins sensitive to a specific wavelength. Since each
cell is randomly assigned an outcome, it will be randomly sensitive to one among several
wavelength, resulting in multicolored brain samples such has the one shown figure I.8.

By artificially creating DNA differentiation from a genetic code identical in every cell,
Brainbow helps with neural images segmentation and DNA barcoding [189]. Moreover,
since the process can be triggered during development, it is possible to randomly assign
outcomes to individual progenitors instead of neurons. Since progenitors pass on their
DNA to the neurons they produce, cells with a common progenitor will express the same
fluorescent proteins, and have the same color in the nervous system. This property can
be used to advance our understanding of development, and explore the relation between
neural development (how the brain grows) and the connectome (the map of neural con-
nections).

Automated segmentation of Brainbow images remains a challenge for conventional
computer vision: the solutions provided by pre-deep learning methods are not very ro-
bust, whereas deep learning approaches require large amounts of labelled data. The new
approach to segmentation made possible by color event-based sensors is promising to
solve the problem, all the more so as the amount of fluorescent proteins varies from neu-
ron to neuron, thus a high dynamic range sensor improves the quality of captured data.
However, while Brainbow samples - like other biological samples - deteriorate when lit
with strong light sources, the ATIS used in our color camera has little sensitivity un-
der low-light conditions. The measurements we performed on Brainbow samples with an
ATIS did not result in a satisfactory outcome. Recent works tackled low-light sensitivity

81
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in event-based cameras [172, 190], however these methods have yet to be extended to
event-based cameras with absolute luminance measurement capabilities.

The process associated with a large chain of Cre-lox recombinations is complex. The
hand-crafted transgenes leveraged by Brainbow have a small number of lox sites, by lack
of a mathematical model to predict the outcomes of more complex transgenes. Yet,
the latter would yield more balanced color distributions and enable the expression of
more colors. Assuming sensitive enough event-based cameras, transgenes’ complexity may
become the limiting factor in improving Brainbow. To prepare the ground for future event-
based cameras, this chapter presents a new mathematical model to predict the outcomes
distribution of a Cre-lox transgene - that is, the different states of the DNA sequence
after a specific number of Cre-lox recombinations, and their probability of occurrence.
We use this model to predict the outcomes of every possible transgene containing up to
nine lox sites and four lox types, yielding a database that can be searched for transgenes
with specific properties. Both the simulation code and the database will be made freely
available online.

A lox site is a non-symmetric 34 base pairs DNA segment. Two lox sites in presence
of Cre recombinase form a chemical complex which reroutes DNA. If both sites have the
same orientation, the DNA portion between the sites is irreversibly excised. Otherwise,
the DNA portion between the sites is inverted. A new reaction between the two same
sites would revert the DNA segment to its initial orientation. The inversion and exci-
sion mechanisms are illustrated figure V.1. When more than two lox sites appear in a
DNA segment, the presence of Cre recombinase triggers a sequence of recombinations.
Several lox sites types that cannot recombine have been identified and synthesized. Dif-
ferent sequences of recombinations applied to the same transgene can yield distinct DNA
segments. For example, the Brainbow 2.1 transgene, illustrated figure V.2, has four out-
comes. An outcome is determined by the recombinations order, which changes randomly
between cells.

Former studies on many-lox transgenes rely on discrete time Monte-Carlo simula-
tions to predict the considered transgene’s outcomes and probabilities [189, 191, 192].
This approach has two shortcomings: it does not account for the variation of the over-
all recombination rate as a function of the number of lox pairs, and it only yields an
approximated estimation of the stationary distribution (the outcomes probabilities after
an infinite time). Y. Wei et al. [193] proposed a formal model, and used it to identify
configurations propitious for cellular barcoding. They mathematically demonstrate their
model for shufflons - transgenes with only inversions - under reasonable assumptions.
In order to extend the model to excisions, they assume that the latter’s dynamics are
slow compared to inversions. This is a strong assumption, provided that excisions and
inversions are consequences of the same chemical reaction. In particular, it can lead to
important errors in the estimation of the probabilities of occurrence for transgenes with
both excisions and inversions. However, such transgenes are extensively used by Brain-
bow [194], and in Polylox transgenes [195, 191]. Moreover, this model does not apply to
transgenes containing multiple incompatible lox sites types.

The model presented is this work is based on the same assumptions as Y. Wei et al.,
but accounts for excisions without assuming slow dynamics compared to inversions, and
applies to transgenes with several lox sites types. It can take into account a minimum
recombination distance, in order to model the recombination probability variation with



V.2 Methodology 83

lox lox

DNA strand

Cre Cre

Cre-lox excision

lox lox

DNA strand

Cre Cre

Cre-lox inversion

1

2

3

Fig. V.1 The initial configurations for Cre-lox inversion (left) and Cre-lox exci-
sion (right) are shown (1). The DNA strand between the two sites may contain
lox sites that will be impacted by the transformation. Cre proteins create a com-
plex between the lox sites, re-routing the original DNA. The chemical reaction is
identical for both mechanisms (excision and inversion). Only the sites’ relative
orientation impacts the result (2). After the transformation, the DNA strand
between the lox sites is inverted if they had distinct orientations, and forms a
detached loop if they had the same orientation (3). The inversion mechanism is
reversible, whereas the excision is not. This work assumes a first order chemical
reaction for Cre-lox recombinations, with a constant rate λ.

respect to the distance between sites. In order to identify optimal transgenes for various
applications, we provide a database containing every possible transgene with up to nine lox
sites and four lox sites types, and their outcomes’ distribution calculated with the model.
This database assumes that there is no minimal distance for recombination. We provide
a second database, which assumes a minimum distance of 82 base pairs between sites to
allow recombination. It contains every possible transgene with up to seven lox sites, three
lox types and each relevant combination of lengths for the DNA strands between lox sites.
Both databases can be searched to find the transgenes best suited to a given application
by calculating a score function on each of their entries.

V.2 Methodology
Cre-lox recombinations applications require transgenes with specific properties. As an
example, Brainbow is likely to yield better results with transgenes whose outcomes are
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Fig. V.2 The Brainbow 2.1 transgene (top line) contains four lox sites and two
genes expressing different fluorescent proteins (blue and red). Depending on
which excision happens first, a neuron will be left with either the blue or the red
gene, and express only one type of fluorescent proteins (bottom lines).

irreversible and equiprobable. In order to identify well suited transgenes, we use a two-
steps approach. First, we provide a method to determine a DNA strand’s outcomes and
calculate their probability of occurrence, or weights. Then, we apply this method to every
lox configuration that can be generated from a given set of lox sites, and find among them
the most relevant to the task of interest.

V.2.1 Markov process

We assume that any pair of compatible lox sites has a constant recombination rate λ,
meaning that its probability to recombine over a small time window ∆t is equal to λ ·∆t.
This hypothesis implies that transgenes containing lox sites have no memory: the recom-
bination probabilities of a transgene’s lox sites pairs do not depend on the recombinations
that led to said transgene. The minimum recombination distance is accounted for sec-
tion V.3.2. Under this assumption, the different DNA strands derived from an initial
one can be represented as the n states of a continuous-time Markov process. The latter’s
infinitesimal generator A is the n× n matrix with elements Aij , (i, j) ∈ J1, nK2 given by:

Aij =

1− ∑
k 6=i

Aik if i = j,

λrij otherwise.
(V.1)

rij is the number of distinct Cre-lox recombinations (excisions or inversions) turning the
strand i into the strand j. rij is often either 0 or 1. As an example, the Brainbow-2.1
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Fig. V.3 The table on the left lists the Brainbow-2.1 transgene’s recombined
forms. The initial state has index 1. The graph on the right illustrates the
Markov process derived from the Cre-lox recombinations. Bi-directional blue
arrows represent inversions, whereas red arrows represent excisions.

transgene has the infinitesimal generator:

α λ λ 0 0 0 0 λ λ 0 λ 0
λ α 0 λ 0 λ 0 0 λ 0 0 λ
λ 0 α λ 0 0 λ 0 0 λ λ 0
0 λ λ α λ 0 0 0 0 λ 0 λ
0 0 0 λ α λ λ 0 λ 0 λ 0
0 λ 0 0 λ α 0 λ 0 λ λ 0
0 0 λ 0 λ 0 α λ λ 0 0 λ
λ 0 0 0 0 λ λ α 0 λ 0 λ

β λ

λ β
0

0
β λ

0
λ β


α = −5λ and β = −λ are used here to improve readability.

The Markov process’ states distribution is defined as the probability of each strand,
and changes over time. The initial distribution is such that the initial transgene has
probability 1, and all the derived strands have probability 0.

V.2.2 Absorbing sets
Stopping Cre-lox reactions when reaching an arbitrary progression is not easy: the re-
action may not begin at the same moment in every cell, and late recombinations can
be triggered by leftover recombinase. A simple solution consists in assuming an excess
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recombinase, and wait for a long time. These conditions are described by the limiting
distribution of the Markov process built from a Cre-lox transgene. The latter is defined
as the states’ probability distribution after an infinite amount of time.

Reibman et al. [196] introduced a numerical method to calculate the Markov process’s
states’ distribution after an arbitrary, but finite, amount of time. Using this method to
calculate the limiting distribution requires an infinite amount of matrix multiplications.
Instead, in order to determine the limiting distribution associated with a given transgene,
we leverage absorbing sets. An absorbing set S is a set of states with the following
properties:

• for any two states s1, s2 ∈ S2, there is a sequence of inversions turning s1 into s2.

• for any state s ∈ S, s cannot be excised.

As an example, the Brainbow-2.1 transgene has two absorbing sets: {9, 10} and {11, 12}.
States that are not part of an absorbing set are called transient.

Since all the states of an absorbing set communicate (directly or not), the Markov pro-
cess formed by its strands is irreducible, therefore ergodic (as a continuous-time Markov
process). As such, its limiting distribution is equal to its stationary distribution, and is
unique. Moreover, since every transition within the set is an inversion, its infinitesimal
generator is symmetrical. The uniform distribution is a stationary distribution for a sym-
metrical generator [197]. Therefore, it is the unique limiting distribution of any absorbing
set.

In other words, there is an equal probability to observe each state of an absorbing set
after a large number of recombinations, regardless the initial distribution.

V.2.3 Reduction to an absorbing process
The states of any Markov process built from a Cre-lox transgene can be re-ordered so
that absorbing sets’ states have consecutive indices. The process’s infinitesimal generator
A can then be written as:

A =



T R

A1
A2 0

0
0 . . .

Ak


(V.2)

T is a t× t matrix, where t is the process’s number of transient states. k is the number
of absorbing sets, and the matrix Ai, i ∈ J1, kK is the infinitesimal generator associated
with the absorbing set i. R is a t× (n− t) matrix, where n is the total number of states.

Such a Markov process’s limiting distribution exists and is a stationary distribu-
tion [198], regardless the initial states’ distribution. Let π be such a distribution. It
can be expressed as:

π = (0t p1π1 . . . pkπk) (V.3)

0t is the null vector with t components. πi, i ∈ J1, kK is the limiting distribution for the
Markov processes associated with the infinitesimal generators Ai. As shown previously,
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they are uniform distributions. pi, i ∈ J1, kK, are scalar coefficients which depend on the
initial states’ distribution, and sum to one. Therefore, the limiting probability ps for a
state s in the absorbing set i is given by:

ps = pi
|Ai|

(V.4)

|Ai| is the number of states in the absorbing set i.
In order to calculate the pi coefficients, we build a new Markov process, called reduced,

with states S? according to the following rules:

• For any state s ∈ S, s ∈ S? if and only if s is transient.

• Each absorbing set of S is associated with a single state of S?. This state has no
outgoing transitions, and is said to be absorbing.

• The transition rate from a transient state to another is identical in S and S?.

• The transition rate from a transient state st to an absorbing state sa in S? is equal to
the sum of the transitions rates from st to each state of the absorbing set associated
with sa in S.

These rules can be understood as the merging of each absorbing set to a single state.
As an example, the reduced Markov process for the Brainbow-2.1 transgene has states
S? = {1, 2, 3, 4, 5, 6, 7, 8, 1?, 2?}, illustrated figure V.4. The states 1? and 2? are associated
with the absorbing sets {9, 10} and {11, 12} of the original Markov process, respectively.
The reduced process has the infinitesimal generator:

α λ λ 0 0 0 0 λ λ λ
λ α 0 λ 0 λ 0 0 λ λ
λ 0 α λ 0 0 λ 0 λ λ
0 λ λ α λ 0 0 0 λ λ
0 0 0 λ α λ λ 0 λ λ
0 λ 0 0 λ α 0 λ λ λ
0 0 λ 0 λ 0 α λ λ λ
λ 0 0 0 0 λ λ α λ λ

0


α = −5λ is used here to improve clarity.

By construction, the reduced process is absorbing. Its infinitesimal generator A? is:

A? =
(
T R?

0 0

)
(V.5)

R? can be computed from R. The process’s limiting distribution π? can be expressed as:

π? = (0t p1 . . . pk) (V.6)

The pi coefficients are the same as the coefficients appearing in the original Markov
process’ limiting distribution. Since the reduced Markov process S? is absorbing, it has
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Fig. V.4 The table on the left lists the reduced Brainbow-2.1 transgene’s states.
The states 1? and 2? correspond to the absorbing sets of the original process.
The graph on the right shows the resulting Markov process, which is absorbing.
Bi-directional blue arrows represent inversions, whereas red arrows represent
excisions.

an identical stationary distribution as its associated embedded Markov chain. The latter
is defined as the discrete-time Markov chain with transition matrix P ?

e given by [199]:

P ?
e =

(
Te R?e
0 I

)
(V.7)

Te = I−D−1T and R?e = −D−1R?. D is a t×t matrix with elements Dij , (i, j) ∈ J1, nK2

given by:

Dij =
{
Tij if i = j,
0 otherwise.

(V.8)

Interestingly, Te and R?e do not depend on λ. As an example, the embedded Markov
chain for the Brainbow-2.1 transgene has the transition matrix:

0 1/5 1/5 0 0 0 0 1/5 1/5 1/5
1/5 0 0 1/5 0 1/5 0 0 1/5 1/5
1/5 0 0 1/5 0 0 1/5 0 1/5 1/5
0 1/5 1/5 0 1/5 0 0 0 1/5 1/5
0 0 0 1/5 0 1/5 1/5 0 1/5 1/5
0 1/5 0 0 1/5 0 0 1/5 1/5 1/5
0 0 1/5 0 1/5 0 0 1/5 1/5 1/5

1/5 0 0 0 0 1/5 1/5 0 1/5 1/5
1 0

0
0 1
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The absorbing states distribution (p0 . . . pk) can be calculated from the initial tran-
sient states distribution πt, which is a t-components vector, with the relationship [200]:

(p0 . . . pk) = πt (I − Te)−1R?e (V.9)

V.2.4 Algorithm
From the foregoing, we devise the following strategy to find the limiting distribution of a
Cre-lox transgene:

1. Build the Markov process associated with the transgene. A detailed algorithm to
build this process is given appendix C.1. The reaction rate λ can be given an
arbitrary, non-null value.

2. Determine the process’s absorbing sets. If there is a single absorbing set, the limiting
distribution is the uniform distribution over this set, and the strategy ends here.

3. Build the reduced Markov process by merging the absorbing sets. A detailed algo-
rithm to build the reduced process is given appendix C.2.

4. Calculate the embedded chain’s transition matrix.

5. Calculate the absorbing states distribution, with an initial transient states distribu-
tion equal to one for the transgene of interest, and null for the others.

6. The limiting probability of each transgene in an absorbing set is given by the cor-
responding state’s limiting probability divided by the number of transgenes in the
set.

As an example, the Brainbow-2.1 transgene absorbing states’ distribution is (0.5, 0.5).
Therefore, the transgene has an equal probability to turn into any of the states 9, 10, 11
and 12 after a large number of recombinations.

V.3 Database

V.3.1 Every possible transgene
We aim to find optimal Cre-lox transgenes for several applications, such as barcoding or
stochastic gene activation. These application require either a large number of outcomes,
or outcomes with specific properties: an equiprobable distribution, being irreversible, a
different left-most element for each outcome... For a given application, it is easy to assign
a score to a transgene once its outcomes’ distribution is known. The optimal transgene has
the largest score. Usual optimization techniques require a score function which is regular
in the transgene space: two similar transgenes (with respect to a given metric) should have
similar scores. Unfortunately, similar transgenes with respect to usual metrics, such as
the Levenshtein distance, can have very different scores. As an example, the Brainbow-2.1
transgene, well suited for Brainbow applications, would be given a good score. However,
changing the orientation of its latest lox site yields a transgene with a single outcome
with a single lox site, and thus a bad score.
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Since finding a distance function with the expected regularity properties is not easy,
we cannot apply efficient optimization techniques such as gradient descent, the Nelder-
Mead method or the Broyden-Fletcher-Goldfarb-Shanno algorithm. Instead, we generate
every possible transgene with less than a given number of lox sites, and calculate the
score function for each of them. This solution requires much more computational power,
however it works in spite of the bad properties of the transgenes’ space. In order to
reduce computation costs, we first generate a common database containing every possible
transgene and their outcomes’ distribution, determined with the method from section V.2.
Finding an optimal transgene for a problem can be reduced to the calculation of each
database entry’s score, which generally requires significantly less computation than the
database generation.

We apply the following steps to generate every possible transgene:

1. For each number of lox sites, we determine the possible repartitions of each incom-
patible lox types. A repartition is interesting if there are at least two lox sites of
each type, so that recombinations may happen. Since the lox types are assumed
equivalent, the number of elements always decreases with the type index. An algo-
rithm to generate the repartitions associated with an arbitrary number of lox sites
is described appendix C.3.

2. For each repartition, we determine each unique sites permutation. This is achieved
by looping over the permutations in lexicographic order, since computing the next
lexicographic permutation of a character chain is implemented by many program-
ming libraries.

3. For each permutation, we compute every possible lox sites orientations. A trans-
gene with n lox sites has 2n possible orientations. They are given by the binary
representations of each integer i in the range J0, 2n − 1K. We assign a left direction
to the site with index k if the bit of i with index k is zero, and a right direction
otherwise. We filter out transgenes with a first and last sites of identical type and
orientation, as they yield a single outcome made of a single lox site.

4. The second and third steps generate redundant transgenes when two types are
assigned an identical number of sites. We add a normalization step to filter out
such transgenes. The normalization algorithm is described appendix C.4. A given
transgene must be normalized with this algorithm to be searched in the database.

The sites repartition, number of generated transgenes and number of normalized trans-
genes in the database are illustrated V.5.

V.3.2 Minimum recombination distance

Up to this point, we considered that any pair of compatible lox sites was able to recombine.
However, since the DNA molecule is not infinitely flexible, a minimum distance between
sites is required for a recombination to take place [201]. Moreover, the recombination
probability slowly decreases with distance [202]. As a first approximation, we consider that
a pair of lox sites has a constant recombination rate λ if the distance between the sites is
larger than 82 base-pairs, and zero otherwise. The results presented section V.2 still hold,
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Fig. V.5 We generate each interesting repartition for different number of lox
sites (left). A repartition is interesting if there are at least two sites of each
assigned type (top right). A recursive algorithm to generate the repartitions
for an arbitrary number of sites is given appendix C.3. The number of possible
transgenes grows exponentially with the number of sites (bottom right).

but the graph associated with the Markov process has fewer edges: some recombinations
are forbidden, because the distance between the sites involved is too small. Nevertheless,
the outcomes’ distribution can be calculated with the same algorithm.

The lengths of the DNA strands separating the lox sites impact the nature of the
outcomes and their distribution. Therefore, an exhaustive database of transgenes and
their outcomes which takes into account a minimum recombination distance needs to
contain an entry for each possible lengths assignment for each transgene. Under our
assumption that the recombination rate is constant when the distance between sites is
larger than the minimum distance, there is no need to consider lengths over the minimum
distance for DNA strands between sites. The number of distinct lengths assignments
grows quickly with the number of lox sites: with a 82 base-pairs minimum distance, a
6-sites transgene has 5 strands between sites, thus 825 ≈ 4× 109 lengths assignments.

In order to reduce the combinatory complexity while considering every distinct lengths
assignment, we define a set of inequalities to represent recombinations tipping points. As
an example, let l1 s1 l2 s2 l3 s3 l4 s4 l5 be a generic 6-sites transgene. li, i ∈ J1, 5K
are lox sites with arbitrary types and orientations, and sj , j ∈ J1, 4K are DNA strands
with arbitrary lengths. We call dj the length of sj . By evaluating the distances between
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sites pairs, we obtain a series of constrains for recombination. l1 and l2 can recombine
if d1 ≥ 82. l1 and l3 can recombine if d1 + 34 + d2 ≥ 82. l1 and l4 can recombine if
d1 + 34 + d2 + 34 + d3 ≥ 82. l1 and l5 can always recombine, since the cumulated length
of three lox sites is larger than 82 base-pairs.

Applying the same reasoning to each site, pair and triplet of non-lox element of the
generic 6-sites transgene yields the set of inequalities shown figure V.6. If two lengths
assignments respect the same constrains, then the model will predict the same outcomes’
distribution for both assignments. Therefore, it is enough to consider each constrains
assignment to study each lengths assignment. For a 6-sites transgene, there are 14 in-
equalities, thus 214 = 16384 constrains assignments, far less than the number of lengths
assignments. Moreover, some constrains assignments yield incompatible inequalities. As
an example, d1 ≥ 82 is not compatible with d1 + d2 < 48. Therefore, we determine
which constrains assignments are valid for each number of lox sites before building a
second database. Integer solutions can be found by expressing the inequalities system
as an Integer Linear Programming problem, which can be solved using one of the many
methods available [203]. We observe that only a fraction of the possible systems have
solutions. The number of possible and solvable systems for each number of lox sites are
listed figure V.6.

The second database generation follows the same steps as the first one. An extra
step is added after transgene normalization: for each normalized transgene, DNA strands
between lox sites are assigned the lengths associated with each solvable system.

V.4 Results

V.4.1 Experimental validation

Our model’s demonstration depends on hypothesis which are known to be approximations.
In order to estimate the impact of the approximations on the model’s predictions, we
proceed with experimental validations. For Brainbow transgenes, the model predicts the
same outcomes and distributions as existing methods: all the outcomes of these transgenes
are equiprobable. This prediction is compatible with experimental observations [204].

Pei et al. [191] performed experimental measurements on Polylox transgenes, but ob-
serve a substantial difference between the theoretical number of outcomes and the number
observed experimentally. We use a Markov process to simulate the temporal evolution of
the outcomes’ distribution. Results are illustrated figure V.7. Rather than specifying an
arbitrary numeric value for λ, we calculate the distribution as a function of λt. This sub-
stitution removes the distribution’s dependency to λ. Even though the Polylox cassette
has a large number of derived strands, their distribution is far from uniform. In order
to compare distributions with different number of outcomes and different probabilities,
we use the true diversity with exponent 1, which can be calculated as the exponential
of the Shannon entropy [205]. The true diversity can be interpreted as the number of
equiprobable outcomes that would yield an identical entropy. The Polylox true diversity
peaks shortly after the beginning of the reaction, as the distribution fills the many derived
transgenes, but quickly converges with time to about 9 equivalent equiprobable outcomes.
Even at its peak, the true diversity is far from the total 1866890 derived strands.
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Fig. V.6 In order to account for the minimum recombination distance of lox
pairs, we generate a second database. Unlike the first database, it considers
transgenes with inter-lox distances small enough to prevent some of the recom-
binations. Therefore, the passive elements’ length impacts the nature of the
outcomes and their distribution. To find optimal transgenes, we generate every
length assignment yielding a unique set of enabled and disabled lox recombina-
tions, expressed as a system of inequalities (top left). Only a small portion of
the systems can be solved (bottom). Nevertheless, since the number of solvable
systems multiplies the number of transgenes, the second database is much larger
than the first (top right).
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Fig. V.7 The Polylox cassette introduced by Pei et al. [191] is designed for
genetic barcoding: it aims to minimize collisions, hence its many outcomes
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shows the evolution of the outcomes’ distribution over time (top), and the evo-
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(2.0
λ ), the true diversity is close to 9: despite a large number of outcomes, there

is a substantial collision risk for the Polylox cassette.
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V.4.2 Database generation and analysis

The number of entries in the database grows exponentially with the number of lox sites.
More lox sites correspond to larger Markov processes on average, resulting in longer and
more memory-consuming weight calculations. Using a computer with a 500 GB RAM,
we were able to calculate the outcomes’ distribution of every transgene with up to nine
lox sites and up to four lox sites types, without taking the minimum recombination
distance into consideration. The generated data is held in the first database. In the
second database, since each transgene is replicated numerous times to account for lengths
assignments, we were able to generate every distribution for transgenes with up to seven
lox sites and up to three lox sites types.

The database is designed to be searched using score functions. A score function as-
signs a numerical value to each transgene, with the highest value corresponding to the
transgene best suited to a specific biological application. In order to provide insight on
the contents of the database, we consider four relatively generic score functions: number
of outcomes, true diversity, number of outcomes (all irreversible), true diversity (all out-
comes irreversible). The first function associates a transgene with its number of outcome,
whereas the second associates it with the true diversity of its outcomes’ distribution.
Their irreversible variants return the same values, except for transgenes with at least one
reversible outcome, for which the score is zero.

Figure V.8 shows the maximum value of the four score functions for each number
of lox sites and each number of lox sites types in the database. Both the number of
combinations in the original transgene and the number of excisions decrease with the
number of types. A compromise has to be reach to maximize outcomes, as the number of
outcomes increases with the number of combinations but decreases with the number of
excisions. The compromise shifts towards more types as the number of sites grows, or if
only transgenes with irreversible outcomes are considered. The optimal number of types
for a given number of sites is identical with respect to the number of outcomes and true
diversity score functions.

Figure V.9 shows the same score functions as figure V.8 applied to the second database,
which takes minimum recombination distances into account. The number of excisions does
not increase when fewer types are used, since excisions can be prevented with well-chosen
inter-site distances: single-type transgenes outperform transgenes with multiple types
in the second database. For the same reason, using distances makes generating many
irreversible outcomes easier.

V.5 Conclusion and discussion

This work introduced a novel model for Cre-lox recombinations. Unlike existing ap-
proaches, it does not rely on brute-force simulations, and does not assume that the dy-
namics of excisions are slow compared to the dynamics of inversions. This model is
validated against existing biological experiments. We use its predictive capabilities to
fill exhaustive databases of transgenes with up to four lox sites types and nine lox sites.
The overall analysis of the databases’ content gives insight on the relationship between a
transgene’s composition and the properties of its outcomes.

Our model is based on two hypothesis: Cre-lox recombinations are first order chemical
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Fig. V.8 We search the first database (which does not assume a minimum re-
combination distance) to find the transgenes with the largest number of out-
comes. We retain one transgene for each number of lox sites (two to nine) and
number of lox types (one to four). The four graphs correspond to four sets
of constraints on the outcomes and their distribution, which are related to the
constraints of real world problems.

reactions, and a transgene does not bear any mark of its past mutations. These hypothesis
are required to model the derived transgenes as the states of a Markov process. The first
hypothesis is consistent with experimental observations [206]. The second hypothesis,
on the other hand, is not easy to validate directly: memory effects could arise from
phenomenons that cannot be easily measured, such as DNA folding or non-uniform Cre
distribution in space. Nevertheless, the experimental validation of our model’s results
can be seen as an indirect validation of this hypothesis. A third hypothesis is added to
generate the second database, which accounts for a minimum recombination distance. We
assume that the recombination rate is constant if the inter-lox distance is larger than 82
base pairs, and zero otherwise. Further experiments have to be performed to quantify
errors caused by this simplifying assumption.

The existing experiments used to validate the model rely on relatively simple Cre-lox
transgenes. Future work will be conducted to assess the predictive capabilities of the
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Fig. V.9 We search the second database (which accounts for a minimum recom-
bination distance, and contains every possible passive elements’ length reparti-
tion) with the same method used to search the first one. However, the second
database only contains transgenes with two to seven sites, and one to three
types. The number of outcomes that can be obtained when accounting for re-
combination distances much larger regardless the constraints on the outcomes.
Nevertheless, it assumes that the passive elements’ number of base pairs can be
chosen arbitrarily.
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model, by performing experiments on novel and more complex transgenes found using
the database.

Markov processes have been extensively studied, and a wide variety of tools and
methods can used to extract information from a model. For example, it is possible to
compute the expected time before absorption, that is the average time before a transgene
is mutated to an outcome. The variance on the expected time to absorption or the
probability to visit a specific state can be calculated as well. For complex chains, the
sparse matrix inversion used to calculate the outcomes’ distribution requires very large
amounts of memory and computational power. The Markov Chain Monte-Carlo method,
another result of the theoretical work on Markov processes, provides an estimate of the
results with smaller computational requirements.

This work approaches the problem of transgene design with a brute-force strategy,
as usual string metrics, such as the Levenshtein distance, yield little regularity for the
considered score functions. Though this approach produces results, it scales poorly to
longer transgenes. Additional research is needed to better understand the transgenes
space’ topology, which is required to identify optimal transgenes with a large number of
lox sites.



Chapter VI
Discussion

VI.1 Conclusion

This thesis set out to explore neuromorphic approaches to algorithms and vision sen-
sors design, and their potential applications to biology. It lead to the development of
methods, tools and devices contributing to neuromorphic engineering, with applications
in psychophysics and biology. We introduced a software framework to implement event-
based computer vision algorithms, since existing solutions could not be easily extended to
handle events with arbitrary types. Two experimental devices leveraging the framework
were developed: a three-chip event-based color camera and a psychophysics setup. Both
devices feature a high temporal resolution inspired by precise-timing biological models.
The results obtained with the color sensor show promise to automate the segmentation
of biological samples. Within this context, we formulated a mathematical model for the
biological engineering method Brainbow.

The presented framework leverages event-driven programming constructs, resulting
in better algorithms semantics. Performance is measured with comparative benchmarks
involving every other C/C++ framework for event-based computer vision. These bench-
marks, to our knowledge the first of their kind, make it possible to quantify the role of
software design choices in implementation performance. Moreover, they show that the
presented framework outperforms other solutions in both speed and latency. The effi-
ciency and speed of CPU implementations is important to neuromorphic engineering for
two reasons. On the one hand, they provide a fair comparison to neuromorphic hard-
ware, essential to estimate possible gains in power consumption and speed. On the other
hand, they enable applications of neuromorphic sensors using conventional, widespread
hardware.

Unlike other event-based color sensors, the camera presented in this work can per-
form event-driven absolute color measurements. We demonstrate its operation with an
application to object tracking using only color cues and a simple event-driven algorithm.
If performing absolute measurements yields good results, it also increases latency. § VI.4
questions the necessity of such measurements and proposes directions for future event-
based color sensors.

Visual psychophysics help to pinpoint important features of the human visual sys-
tem. This information plays a major role in the design of neuromorphic systems, notably
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cameras. In turn, neuromorphic engineering methods can improve psychophysics setups,
enabling novel experiments. The high-speed setup developed in this thesis is structured
like an event-based vision system, with two machines: a real-time computer responsible for
assigning precise timestamps to events and a non-real-time computer running algorithms.
Recent works have shown that the human eye is sensitive to frequencies much larger than
60 Hz [174], the usual estimate for the flicker fusion rate. Our setup will be used to study
the relationship between framerate and perception in primates. Conventional cameras
cannot capture information faster than a few hundred hertz in real-time (very high-speed
cameras are expensive and cannot record for an extended period of time). Showing that
higher frequencies are used by biological systems, and improve their reliability, is a strong
argument in favor of event-driven cameras.

Since neuromorphic engineering draws its inspiration from neuroscience and biology,
its contributions to these research fields leads to synergies. Among biological methods
that rely on engineering, Brainbow faces specific challenges: the images it generates have
a high dynamic range, and are difficult to segment automatically. Event-driven cameras
and algorithms are good candidates to overcome these issues, in view of the cameras’ high
dynamic range and the algorithms’ unique approach to computer vision. The limited
sensitivity of the ATIS in low light conditions prevented us from using our three-chip,
event-based camera on Brainbow samples. Nevertheless, we formulated a mathematical
model that will help identify novel transgenes to improve the method’s performance,
thus preparing the ground for novel event-based sensors with higher sensitivity. Future
experiments will use Brainbow to study the retina, extending our understanding of its
development and underlying mechanisms. The new knowledge may, in turn, result in
advances in silicon retina design.

VI.2 Neuromorphic engineering: build brains to understand them

Neuromorphic engineering aims to build computers and sensory systems mimicking their
biological counterparts, down to the transistor level. This approach has two goals: to
understand brains by trying to build them, and to copy what nature came up with to
improve technology.

Neuroscience aims to describe and understand the brain, however several shortcomings
of its observational approach have been recently stressed. Notably, it has been shown that
current neuroscience methods fail to provide a complete explanation of a CPU [207], even
though they are able to extract valuable information. Elowitz et al. [208] argue that
biologists and engineers have complementary approaches, as the former try to reverse
engineer biological systems, whereas the latter aim to build them. The comment regards
biological engineering, however it can be extended to neuromorphic engineering. The idea
that, through building, neuromorphic engineering acts as explanatory neuroscience can be
traced backed to the early days of the field [209]. The psychophysics setup presented in this
thesis falls within this context. Algorithms for event-based cameras are an operational
model for the processing of data with a high temporal resolution, such as the signals
generated by the human eye, and motivated novel research to understand our visual
system.

Neuromorphic engineering also aims to improve technology, noting the high perfor-
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mance of biological systems compared to their artificial counterparts in terms of robust-
ness and power consumption. The camera and framework introduced in this thesis are
examples of this approach. Besides continuing advances in neuroscience and VLSI design,
neuromorphic engineering benefits from a favourable context: the slowdown of Moore’s
law is an opportunity for new approaches to computation [210]. Neuromorphic engineer-
ing’s potential to surpass the conventional approaches to computer design and artificial
intelligence attracted the interest of large industrial companies: IBM and Intel both
developed neuromorphic chips. Moreover, numerous startups arose from neuromorphic
engineering, perpetuating Carver Mead’s approach to research [211].

VI.3 Neuromorphic or event-based?

Neuromorphic engineering is a form of bioinspiration: nature is used as a source of inspi-
ration to invent and improve technology. Bioinspired methods and techniques do not aim
to perfectly replicate biology, but to understand and harness the underlying principles
brought into play by nature. Thus, research fields with an interest aligned with that of
biology can drift away and follow their own path. For example, perceptrons or convolu-
tional neural networks, originally based on simple, rate-based neuron models, have grown
to a research field of their own. Neuron layers in these models are nowadays abstracted as
tensor operations and non-linear transforms, while novel biological experiments question
rate models.

The neuromorphic silicon retinas were primarily designed as electronic models of the
eye. However, the addition of arbiters and USB connectors, in the late 2000s, made
them compatible with CPUs and lead to event-based cameras. Ongoing investigations
aim to identify event-based algorithms to process the data generated by these cameras.
One can wonder if event-based computer vision should try to closely mimic biological
systems, or evolve on its own as an engineering method. The framework presented in this
work achieves a compromise: biological systems are used as an overall guideline rather
than a strong constraint. Notably, event-based calculations are encouraged, for they
should translate to future neuromorphic hardware while yielding good performance on
conventional architectures. The resulting methods, besides a model for the human visual
system, represent a whole new approach to computer vision, with two notable features.

The first feature - and most surprising with regard to conventional computer vision - is
the algorithms’ increasing robustness with speed. Conventional computer vision applied
to videos generally requires a trade-off between speed and robustness. The latter can be
increased at the expense of simplicity, thus algorithms have to be executed at a reduced
framerate if data is to be processed in real-time. On the other hand, the high temporal
resolution of event-based data enables powerful simplifying assumptions. For example, a
tracking algorithm may assume that objects move at most by one pixel between samples.
The resulting algorithm is not only robust; it also features a very low latency, and requires
little computational power. In this regard, events can be seen as a means to an end - data
compression in order to go fast - rather than a fundamental calculation needed to extract
information.

The second distinguishing feature of event-driven algorithms is the fundamentally
spatio-temporal signal they leverage. Conventional video computer vision algorithms use
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spatial algorithms designed for static images on every frame: time is treated as an ex-
tension to space. Event-driven algorithms can naturally express spatio-temporal features
using a three-dimensional point cloud to represent data, with two space dimensions and
one time dimension. The algorithms introduced in this thesis to manipulate color events
extend this representation to six dimensions: the three aforementioned, and three color
dimensions. Even though only two color dimensions are used in our work, in order to
demonstrate the possibility to track an object with only color cues, it paves the way for
color-spatio-temporal features. It may be possible to link such extractors to the recent
observations of the human visual cortex that show an inextricable link between color and
form processing [36].

VI.4 Absolute color measurements

The relationship between human color sensing - based on three cone photoreceptors -
and human color perception is not simple. The transformation from red, green and blue
components to perceptually uniform color spaces, such as CIEL*a*b*, relies on absolute
measurements. DVS-like event-based cameras do not provide absolute measurements,
thus it is not possible to capture colors with a three-chip DVS or a Bayer DVS in a way
that is consistent with human vision. The ATIS used in this work integrates luminance
upon detecting a change, providing event-based absolute measurements at the expanse of
latency.

Humans’ ability to differentiate colors decreases with spatial distance [212]. This
property of our visual system is compatible with local color processing circuits identified
in the retina. It is possible that most of the color information sent to the brain by the
retina corresponds to detections of pre-processed spatial color contrast. The first silicon
retina, as well as most silicon retinas invented in the 1990s and 2000s, detect spatial
contrast using resistive layers. This is true of silicon retinas designed for robust color
detection as well [82]. If research on spatial silicon retinas continues today, little focus is
given to algorithms dedicated to process their output. Neuromorphic algorithms running
on CPUs generally target temporal-contrast sensors [213] - such as the DVS or ATIS -
for they are more widespread, less noisy, and easier to interfaces with. The wide variety
of spatial-contrast sensors, often built in very limited series, complicates the estimation
of their contribution to computer vision compared to temporal-contrast detectors. Even
though many event-based pixels have been designed - including pixels performing color
transformations, such as the cDVS ’s pixels - only a handful have been upgraded to full-
fledged cameras, for this process is both expensive and time consuming.

VI.5 Simulation

Neuromorphic engineering aims to develop both novel hardware and novel algorithms.
Since both tasks are complex, hybrid approaches have been encouraged to separate the
problems: analog neuromorphic sensors are associated with conventional digital comput-
ers. The development of such systems has been mostly driven by sensor availability:
event-based algorithms are based on the premise that visual information is acquired by
existing sensors. Yet, the analog-to-digital conversions performed by vision sensors, frame-
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based and event-based alike, are neither equivalent nor reversible. Different silicon retinas
generate fundamentally different digital information, with a major impact on the associ-
ated algorithms’ performance and complexity. Novel, original silicon retinas may see the
light of day by driving their development from a computer vision perspective, to meet
the needs of algorithms. However, this strategy has undergone little exploration, in part
because analog hardware development is complex and expensive.

We argue that the simulation of silicon retinas can provide new and original answers
to the problem. Simulations are used extensively in biology and neuroscience to model
the retina [214], with applications to silicon retinas design [215]. They also play a key
role in neuromorphic hardware development to predict an electronic circuit’s behaviour,
though caution is advised in the analysis of their results [216]. Higher level simulations
help study existing neuromorphic cameras, using computer-generated imagery [217] or
high-speed frame-based cameras [218]. Even though they require large amounts of com-
putational power, they provide great flexibility: sensors with arbitrary spatial and tem-
poral resolution can be emulated. Different sensing strategies (such as frame-based and
event-based) can be emulated with the same visual scene, enabling rigorous comparisons.
Moreover, artificial frames generated from a 3D model come with a perfect ground truth,
extremely valuable to algorithms benchmarks. Little research has been carried out on the
use of high-level simulation to explore new camera designs. In a future work, we plan to
explore computer-vision-driven sensors simulations, in order to identify analog operations
that serve digital algorithms. The results may be used as a guideline to develop new
event-based silicon retinas.
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Appendix A
Event Stream file format

A.1 Containers

Multiple file formats co-exist to represent events generated by a camera. This appendix
presents considerations to improve over these formats, and makes the first step in the
suggested direction with a novel specification. This specification is used by the sepia
library.

The C++ frameworks mentioned in this paper use the dat file format (kAER) or
the aerdat format (jAER, cAER and Dynamic Vision Systems). The dat format has no
official specification, and thus is hard to use without Prophesee’s proprietary libraries. The
aerdat fornat uses packets mixing frames and events, reflecting the output format of the
DAVIS. Packets make the generation of artificial data more complex, since encapsulation
in packets of arbitrary length is mandatory. Moreover, the format does not benefit from
state-of-the-art frame-based encoding schemes, such as HEVC or VP9 [219].

Conventional multimedia files use containers, defined as a format wrapper holding
common meta-data (title, author, creation date. . . ) and encapsulating data streams.
Each stream is encoded in a data format describing a specific type of information. This
organization is modular and simplifies the design of data formats, as they do not need to
account for meta-data.

A container for event-based data would wrap - among others - streams of visual events,
IMU events, cochlea events and frames. The latter would take advantage of existing
formats for frame-based data. Potential compression algorithms for event streams would
progressively replace current events encoding without changing the container format.

We introduce a simple, well-defined data format called Event Stream, with extension
.es. The format encodes only visual events, without packets. It cannot encode meta-data,
apart from information required for proper decoding and processing (namely, the format
version and the sensor width and height). Even though this data format can be used
alone, it is meant to be included in a container format (which does not exist yet).

A.2 Event Stream

The data associated with a visual event can be represented as a tuple (x, y, t, p), where x
and y are the pixel coordinates, t is the timestamp (generally expressed in microseconds)
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and p is the polarity. The latter has an arbitrary size in the general case, and is a boolean
for DVS-like polarity events.

Since the events are ordered, t increases from one event to the next, often by a small
value. This property is leveraged by the aerdat format: the timestamp is encoded rela-
tively to the packet beginning, reducing the number of bits required to encode it. Using
a similar approach, a packet-free scheme can be devised:

• An event is encoded by k timestamp bits and 33 payload bits (16 bits for x, 16 bits
for y and 1 bit for the polarity). Only timestamps in the range J0, 2k − 2K are used.

• The special value 2k − 1 encodes a timestamp overflow: the decoding program
must increment by 2k − 1 an offset variable initialized to zero and added to every
timestamp. The 33 payload bits are not included in this case.

We refer to this scheme as absolute encoding. A variant, called relative encoding, consists
in encoding each timestamps relatively to the previous one. The offset variable must
be incremented with every event. Relative timestamp overflows are handled similarly to
absolute timestamp overflows.

The throughput of the absolute and relative encoding schemes depends on k and
the event stream content. Figure A.1 (top) shows the throughput of various streams
as a function of k. The previously described car and street streams (table II.1), as
well as the initial second of the street stream, are used. The beginning of the street
stream contains very little activity (the average even rate is 22.2× 103 s−1), illustrating the
schemes behaviour in this situation. The minimum throughput is obtained for surprisingly
small values of k. Notably, the optimal value for k is one for the car stream. With this
k, both schemes are identical and are equivalent to writing a binary one every time
the clock advances by one microsecond, and a zero followed by the payload for each
event. The performance variation between schemes is small compared to the throughput.
Nevertheless, the relative scheme outperforms the absolute one. The difference increases
with the activity, yielding a better compression when it is most needed.

The absolute encoding is sensitive to bit errors: they can create non-monotonic times-
tamps, thus negative time deltas. The latter are used in many algorithms, and negative
values generally result in unexpected behaviors. Bit errors are less serious for the relative
encoding: they result in small time distortions. Consequently, the Event Stream format
specification is based on the relative scheme.

The schemes considered so far use a non-round number of bytes to encode each event.
This approach complicates the implementation, since bytes are the fundamental type of
most operating systems. Therefore, the Event Stream specification uses k = 7 (even
though it is not the optimal value for high-activity streams) so that each event is encoded
on 5 bytes. Offsets are encoded on one byte. The last bit is used to differentiate overflow
bytes and reset bytes. The latter must be sent periodically if the encoding is used in a
noisy environment. Upon reception, they reset the state machine illustrated figure A.2.

The Event Stream specification also supports ATIS events, color events and generic
events (with an arbitrary payload associated with each timestamp). It is designed to be
extended.
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Fig. A.1 The top graph plots the throughput (the number of bits required
to encode the stream) as a function of the number of bits used to encode the
timestamp. The absolute scheme is represented with circles, and the relative
scheme with crosses. The bottom graph shows the throughput difference between
schemes.
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idle

reset

overflowbyte 0

byte 1

byte 2

byte 3

byte 4

1111111 - ? - - - - - - - 0 ?

read byte

read byte

read byte

read byte

read byte

Fig. A.2 This state machine describes the Event Stream specification for DVS-
like events. The format is designed for file IO, but can be used over any serial
communication channel, such as USB.



Appendix B
3D printed parts for psychophysics

The code presented chapter IV and hosted in the Hummingbird repository is only con-
cerned with the DLP Lightcrafter 3000. Experiments for which the other aspects of
Hibiscus are not relevant need either a simple way to tilt the projector, or a basis to
build an alternative box. The mechanical parts presented figure B.1, meant to be 3D
printed, constitute a simplified version of the box presented in this work. The stand part
is compatible with metric optical tables. The elbow part is a structural reinforcement to
prevent heat-related distortions of PLA parts.

stand

elbow slider

chassis

x2 M3 40 mm screw
x1 M3 30 mm screw
x3 M3 16 mm screw
x7 M3 nyloc nuts
x2 M3 nuts
x1 M3 washer

wheel

Fig. B.1 The kit illustrated in this figure is a simplified version of the box
presented in this box. It is intended for projects where a precisely timed response
is not needed, or as a basis for an alternative box assembly. The parts designs
are freely available online, and can be manufactured with most consumer 3D
printers.
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Appendix C
Cre-lox algorithms

C.1 Building a transgene’s Markov process
In order to build a transgene’s Markov process, we first introduce the build-inversion-set
function. Two transgenes are in the same inversion set if there is at least one sequence
of inversions turning the first one into the second. The edges used by the algorithm are
tuples of three elements: a source node, a target node and a weight.

The function inversions (respectively excisions) generates the set of transgenes ob-
tained from every possible inversion (respectively excision) of the transgene passed as
argument. The function insert-or-sum adds the edge given as second argument to the set
given as first argument. If an edge with the same source and target is already in the set,
the weights are summed. The function pop removes one of the given set’s elements and
returns it.

The build-process function generating a transgene’s Markov process can be expressed
using the function build-inversion-set.

C.2 Reducing a process
The Markov process associated with a transgene can be reduced by merging the absorbing
sets into absorbing states. The reduce-process function takes as input the output of the
build-process function described appendix C.1.

The function insert-or-sum is defined as in appendix C.1. The function absorbing-set-
to-node associates each absorbing set from the original Markov process to a node of the
reduced Markov process. The function node-to-absorbing-set associates each absorbing
node of the original process with its absorbing set.

C.3 Generating repartitions
The repartition function generates possible types repartitions from a number of lox sites
and a number of lox sites types. A repartition assigns a number of elements to each type.
This function is used by by the database generation process, and takes part in determining
every possible transgene with a given number of sites. The function concatenate creates
a new ordered list by appending the elements of its second argument to the first.
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Function build_inversion_set(transgene)
nodes ← {transgene}
edges ← {}
external_nodes ← {}
external_edges ← {}
transgenes_to_handle ← {transgene}
while transgenes_to_handle 6= ∅ do

transgene ← pop(transgenes_to_handle)
number_of_recombinations ← 0
foreach inverted_transgene of inversions(transgene) do

number_of_recombinations ← number_of_recombinations + 1
if inverted_transgene /∈ nodes then

transgenes_to_handle
← transgenes_to_handle ∪ {inverted_transgene}

end
nodes ← nodes ∪ {inverted_transgene}
insert_or_sum(edges, (transgene, inverted_transgene, 1))

end
foreach excised_transgene of excisions(transgene) do

number_of_recombinations ← number_of_recombinations + 1
external_nodes ← external_nodes ∪ {excised_transgene}
insert_or_sum(edges, (transgene, excised_transgene, 1))

end
divide the edges’ weights by number_of_recombinations

end
return (nodes, edges, external_nodes, external_edges)

C.4 Normalizing a transgene
The database generation process yields transgenes with the same Markov processes,
though their sites are different. The following normalization process merges such trans-
genes to reduce the number of required outcomes’ distributions calculations to generate
an exhaustive database.

1. We generate a copy of the transgene by reading it backwards (the sites positions
and directions are inverted).

2. For both the original transgene and the backwards copy, we rename and re-orient
the elements so that the types appear in order and so that the first site of a type is
right-oriented.

3. Among the two renamed transgenes, the one that comes first with respect to the
lexicographic order is the normalized version of the initial transgene.

As an example, the transgene J B C C I becomes J B B C I when read backwards
(DNA strands bewteen lox sites are omitted, as they do not take part in the normalization
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Function build_process(transgene)
process_nodes ← {transgene}
process_edges ← ∅
absorbing_sets ← ∅
transgenes_to_handle ← {transgene}
handled_Transgenes ← {transgene}
while transgenes_to_handle 6= ∅ do

transgene ← pop(transgenes_to_handle)
if transgene ∈ handled_transgenes then

continue
end
(nodes, edges, external_nodes, external_edges)←
build_inversion_set(transgene)
process_nodes ← process_nodes ∪ nodes
process_edges ← process_edges ∪ edges
handled_Transgenes ← handled_Transgenes ∪ nodes
if external_nodes = ∅ then

absorbing_sets ← absorbing_sets ∪ {nodes}
else

transgenes_to_handle
← transgenes_to_handle ∪ (external_nodes \ process_nodes)
process_nodes ← process_nodes ∪ external_nodes
process_edges ← process_edges ∪ external_edges

end
end
return (process_nodes, process_edges, absorbing_sets)

process). Assuming that B has a type index smaller than I, the renamed and reoriented
versions of these transgenes are B IJJ C and B IIJ C. Since B IIJ C comes before
B IJJ C in lexicographic order, the normalized version of J BCC I is B IIJ C.
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Function reduce_process(process_nodes, process_edges, absorbing_sets)
absorbing_nodes ← ⋃

set ∈ absorbing_sets
set

nodes ← process_nodes \ absorbing_nodes
foreach set of absorbing_sets do

nodes ← nodes ∪ {absorbing_set_to_node(set)}
end
edges ← ∅
foreach edge of process_edges do

if edge.source /∈ absorbing_nodes then
if edge.target ∈ absorbing_nodes then

target_absorbing_set ← node_to_absorbing_set(edge.target)
new_edge_target ←
absorbing_set_to_node(target_absorbing_set)
insert_or_sum(edges,
(edge.source,new_edge_target, edge.weight))

else
edges ← edges ∪ {edge}

end
end

end
return (nodes, edges)
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Function repartitions(number_of_lox_sites, number_of_lox_sites_types,
minimum_sites_by_type = 2)
if number_of_lox_sites_types × minimum_sites_by_type >
number_of_lox_sites then
return ∅

end
if number_of_lox_sites_types = 1 then

return {[number_of_lox_sites]}
end
cumulated_repartitions ← ∅
pivot ← minimum_sites_by_type
loop

number_of_lox_sites_left ← number_of_lox_sites− pivot
number_of_types_left ← number_of_lox_sites_types− 1
subrepartitions ← repartitions(number_of_lox_sites_left,
number_of_types_left, pivot)
if subrepartitions = ∅ then

break
end
foreach subrepartition of subrepartitions do

subrepartition ← concatenate(subrepartition, [pivot])
cumulated_repartitions ← cumulated_repartitions ∪{subrepartition}

end
pivot ← pivot + 1

end
return cumulated_repartitions
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