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Abstract

In the last twenty years, the modeling of complex systems has become a relevant
domain of study, not only in applied sciences, but also among mathematicians. The
recent improvements in the understanding of interacting particle systems, as well
as the new insights coming from graph theory, allow to mathematically tackle new
exciting problems in the challenging world of complex phenomena.

This thesis addresses a rather general class of interacting particle systems defined
on graph sequences. Notably, it focuses on weakly interacting particles described by
differential equations, both deterministic and stochastic, where an extra structure
encoding the connections among the particles is present. The mean-field hypothesis
under which each particle is connected to all the others and in exactly the same
way, is relaxed to a much more general assumption: the connections between the
particles are supposed to be encoded by a general network, instead of the trivial
complete graph of the mean-field case, meaning that a particle is interacting with
another in a way that is proportional to the weight of the edge connecting the twos
in the underlying graph.

Several aspects for this class of models appear to be new in current research
and demand new tools and techniques, but also new insights to unveil how the
complexity behind the underlying network affects the particle dynamics.

The present manuscript poses the focus on three main aspects: the relationship
with the mean-field behavior, i.e., on which graph sequences the system behavior is
suitably described by the classical mean-field limit; the extensions to inhomogeneous
graph sequences and consequent inhomogeneous behaviors; finally, a first study on

the long time dynamics for a particular model of interacting diffusions on graphs.

Keywords: interacting particle systems, interacting diffusions, McKean-Vlasov
equation, interacting oscillators, Kuramoto model, random graphs, graph limits,
random graphons, stochastic differential equations, long-time dynamics, mean-field

models, pseudo-random graphs, exchangeability
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Résumé

Les systémes complexes sont devenus un sujet trés étudié, non seulement dans
les sciences appliquées, mais aussi en mathématiques. Récemment, de nouveaux ré-
sultats rigoureux ont été établis a propos de I'étude des systémes de particules et des
graphes aléatoires. Ils ont ainsi ouvert de nouvelles perspectives sur la modélisation
des phénomeénes complexes en mathématiques.

Cette thése porte sur une classe assez large de systémes de particules qui in-
teragissent entre elles, définis sur des séquences de graphes. En particulier, on se
focalise sur des systémes d’équations différentielles stochastiques et déterministes,
dans lesquels une extra-structure code les connexions entre les différentes particules.
La condition classique de champ moyen qui impose que toute unité soit connec-
tée aux autres de la méme facon, est relaxée au profit d’'une hypothése bien plus
générale : les connexions dans le systéme sont définies a l'aide d’un réseau com-
plexe, au lieu d’'un graphe complet. FEn d’autres termes, une particule interagit
avec une autre d’une fagon proportionnelle au poids de la connexion dans le graphe
sous-jacent.

Plusieurs aspects dans cette classe de modéles se présentent comme nouveaux
dans la recherche actuelle et nécessitent des techniques et outils plus avancés. Des
nouvelles idées sont requises pour dévoiler la complexité intrinséque de ces systémes.

Ce travail se focalise sur trois aspects fondamentaux : la relation avec le com-
portement de champ moyen, ’extension aux séquences des graphes inhomogénes et,
pour conclure, I'étude de la dynamique & temps longs d’un modéle de synchronisa-

tion défini sur des graphes.

Mots clés : systéme de particules interagissant, diffusions avec interaction, équation
McKean-Vlasov, oscillateurs interagissant, modéle de Kuramoto, graphes aléatoires,
limites de graphes, graphons aléatoires, équations stochastiques différentielles, dy-
namique a temps longs, modéles & champ moyen, pseudo-random graphes, échange-
abilité
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CHAPTER 1

Introduction

This thesis stems from the interplay between two established theories in mathematics:
weakly interacting particle systems and graph sequences. In the first part of the introduc-
tion, we present an overview on some known result for interacting particle systems, focusing on
Law of Large Numbers and Propagation of Chaos properties. We also give the key notions and
tools for the study of (random) graph sequences, mainly addressing the dense regime. Once
these ingredients have been introduced, we are able to define a weakly interacting particle
system on a graph sequence, the main topic of the following chapters.

The second part of the introduction is devoted to the motivations behind the results coming
along with this manuscript and a presentation of the underlying works. The three key aspects
that will be addressed and discussed throughout the thesis are: the relationship with the
classical mean-field limit, extensions to inhomogeneous graph sequences and, finally, the long-

time behavior of a well-known model of interacting oscillators on graphs.

A brief overview on the works within the manuscript, as well as the organization of the

chapters, is given at the end of the introduction.

1. Weakly interacting particle systems

Consider a system of n interacting particles on R, evolving on a finite time interval [0, 77,
for some arbitrary 7' > 0. The dynamics of the particles {f’”}lzln is described by a system

of n coupled stochastic differential equations of the following form:

dzy" = F(z;")dt+ L 3°0  T(z", 2")dt + o(z;")d B},

_i,n i

xo - xo,

(1.1)

for i = 1,...,n and t € [0,7]. The functions F, ' and o are taken to be bounded and
uniformly Lipschitz; the sequence {z}}ien C R denotes the initial conditions which can be
random or deterministic.

In most instances, we suppose the diffusion coefficient o to be constantly equal to one, i.e.,
the particles {i’i’”}izlwn are driven by a sequence of independent and identically distributed
(IID) Brownian motions, denoted by {B’};en. Since a few results presented in the sequel hold
true also in the deterministic case, i.e., when ¢ = 0, or for a non-constant strictly positive

diffusion, we work with the general case.



2 1. INTRODUCTION

The Brownian motions are defined on a filtered probability space (2, F,{F:}i>0, P) and
are adapted to the filtration F., which satisfies the usual conditions. Whenever the initial
conditions are random, they are chosen to be independent of the Brownian motions.

Under the previous hypothesis, existence and uniqueness of a strong continuous solution
{zi™, t € [0,T)}i=1....n to equation (1.1) are a classical result [97]. The space of continuous
functions on [0, T] with values in R is denoted by C([0, T],R), the solution {z*"},—; ., to (1.1)
is an element of C([0,T],R™).

The statistical information present in (1.1), is encoded in the empirical measure associated
to {z%"},=1. n. This last one is a random element with values in the space of probability
measures on C([0,7],R), which we denote by P(C(]0,7],R)). The empirical measure " is

defined as
1 n
Ian = ﬁ Zl 5fj,n.
J:

In the sequel, we will often consider its time-marginal projection i = {fif };co,r), which is
a continuous trajectory with values on the probability measures P(R), i.e., an element of
C([0,T],P(R)). This last object is equivalently defined as

.1
ay = Z(sz,n (1.2)
7j=1

n

for t € [0, T]. The precise relation between "™ and " is discussed in the next subsections.

1.1. The classical mean-field limit. One of the key aspects that has made the theory
of weakly interacting particle systems so studied, is the existence of a rather understood limit
description for ", as the number of particle grows. Notably, when n tends to infinity it is
possible to characterize the limit of ", in a suitable topological space, as the unique weak
solution to a certain partial differential equation (PDE), usually called McKean-Vlasov or
Fokker-Planck equation, see equation (1.4).

Although proving such convergence may be technical under several aspects — we refer to
Chapter 5 for an exhaustive point of view on this topic — the formal derivation of the PDE
appears to be very simple, provided some confidence in the fundamental tools of stochastic

calculus. Its derivation goes as follows.

Let f be a smooth function on R. The application of Itd’s formula to f(Z/™) for some fixed

t=1,...,n yields

A = fai)+ [ oua@ma +5 [ o).
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’L’I’L

Using the explicit expression of dx in equation (1.1), as well as the fact that the quadratic

variation (z%"), is given by fo z%")ds, one obtains that
i1 En Lzt 2™y | 0, f(zh™)ds
n = s s €z S

1 ! ln 'Ln ln
+§/0 ( )an( )ds + M,

F@") = fxh) + /0 t

where M;™ is the martingale formally given by fo o) 0, f(z4")dB:. Summing the last
expression over ¢ and dividing by n, on the left-hand side we recognize the action of the empirical

measure 1" onto f at time ¢, i.e.,

_Zf ”t?f)'

Similarly, we rewrite the right-hand side as
(i, [)+ / g s [F+ ZF ") } Ouf + 0202 f)ds + M}

where M = 15" M}™ is a again martingale. The Brownian motions {B'};cy are indepen-

dent, hence the quadratic variation of M" is given by

=1 [ s =o (L),

the last equality holding P-almost surely.
Overall, one obtains that for every positive integer n, the empirical measure ™ satisfies the

following equation

(ay, )= (mg, f)+ /0 (B2, [F 4T pl] 0, f + 0202 f)ds + M} (1.3)

for t € [0,7] and Where we have denoted with * the integration with respect to the second
variable, i.e. (I« p)(z) = [T'(z,y) p(dy) for z € R and p € P(R).

Since the quadratlc variation of M"™ goes to zero uniformly in ¢ € [0,7] as n tends to
infinity, one expects that the limit in probability of ", whenever it exists, satisfies equation
(1.3) without the noise term M™. In other words, the limit of 1" is expected to satisfy the weak

formulation of

%85 (0% 1s) — B (pe [F + T puy)) (1.4)

provided that [ converges, in a sense to be precised, to some pg € P(R) being the initial
condition to (1.4).

Oppry =

REMARK 1.1. The crucial property that allows to derive (1.4), is the fact that equation (1.3)
is written in closed form with respect to the empirical measure — if one ignores the martingale

term which vanishes as n tends to infinity. We will see that this property fails in case system
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(1.1) is defined on a graph sequence. This will in turn promote the investigation whether a

limit object, written in closed form, does exist or not. We refer to Section 3.

Partial differential equations as (1.4) belong to a particular class of non-linear Fokker-
Planck equations which usually goes under the name of McKean-Vlasov equations. Existence
and uniqueness for (1.4), when the initial datum is a probability measure, have been severely
addressed under very general assumptions on F, I' and ¢ and, in particular, they hold in our
context, see, e.g., [56, 50]. In the sequel, we will refer to u, the unique solution to equation
(1.4), as to the mean-field limit.

Once the possible limits of 1™ have been identified and uniqueness is established for equation
(1.4), one way to obtain the weak convergence of {fi" },en to 4, is to show that this last sequence
is tight in the space of probability measures P(C([0,T],R)). This is usually possible at the cost
of requiring a finite moment condition on the starting measure p or by requiring IID initial
conditions in system (1.1). We refrain from entering into these details, but refer to Chapter 5

where a generous discussion is devoted to this topic.

The precise result on ", usually known under the name of Law of Large Numbers for

interacting diffusions [80, 88|, can be summarized in the following theorem.

THEOREM 1.2. Suppose that i} weakly converges to some g in P(R) and that gy has finite
second moment. Then, i weakly converges in probability to u, solution to equation (1.4), asn

tends to infinity.

Many results equivalent to Theorem 1.2 are available in literature: the different statements
depend not only on the hypothesis required on system (1.1) but also on the topological space
where the convergence is established. Moreover, it is possible to work in topologies that can
be weaker or stronger than the weak convergence. We refer to |56, 98| for two very different
approaches and again to Chapter 5 for a very weak notion of convergence.

Theorem 1.2 represents a Law of Large Numbers, yet many other results for system (1.1) are
available in the form of Central Limit Theorems or Large Deviation Principles. The complete
literature is difficult to cite, we refer to [20, 45, 95| for Central Limit Theorems and to
[99, 44, 23, 29| for Large Deviation Principles and to all the references therein. In this
manuscript, we do not address the study of fluctuations, but we will establish a result in the

spirit of Large Deviations in Chapter 2.

1.2. The non-linear process description. Another key property related to weakly in-
teracting particle systems that has allowed a deep understanding of systems such as (1.1), is
the possibility to construct a stochastic process whose time-marginal laws are precisely given

by {1 }teo,r), solution to equation (1.4).
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The process © = {x; }4e(o,r), originally introduced by McKean [81], is defined as the solution
to the following non-linear stochastic differential equation

dzy = F(w)dt + [ T(2,y) p(da)dt + o (z,)dB;, (1.5)

for t € [0,7] and where the initial condition z( is some random variable with law L(xq) = po

and B is a Brownian motion independent of x.

The precise relation between x solution to (1.5) and p solution to equation (1.4), is given

in the next theorem.

THEOREM 1.3 (Theorem 1.1 of |98]). There exists a unique solution to equation (1.5). If
p € P(C([0,T],R)) denotes its law, then its time-marginal projection j. = {i e, seen as
an element of C([0,T], P(R)), solves the weak formulation of equation (1.4).

The duality between p and p. — and the one between x and p. — will follow us throughout
many parts of the manuscript. It is the same duality that exists between " € P(C([0,T],R))
and g" € C([0,7],P(R)), recall the definition in (1.2). Depending on the context, it will be

more suitable to work in one space, and its consequent topology, or in the other.

1.3. The coupling method and propagation of chaos. Starting from the well-known
work of Sznitman on propagation of chaos [98], many subsequent papers on interacting particles
(see |85, 83| and references therein) have been using the so-called coupling method as technique
to show the proximity of system (1.1) to n independent copies of the non-linear process (1.5)

and, in particular, a Law of Large Numbers equivalent to Theorem 1.2.

The method consists in coupling the trajectories of system (1.1), to n IID copies of the non-
linear process solving (1.5) by choosing the initial conditions to be independent and identically
distributed. The coupling is then made by taking the same Brownian motions and the same
initial conditions for both systems. Under the only hypothesis of boundness and uniformly
Lipschitz continuity on the coefficients in equation (1.1), it is possible to prove that the two
systems are close trajectory per trajectory. This in turn implies the convergence of the empirical
measure 1" to the solution to the McKean-Vlasov equation (1.4).

On the one hand, the coupling method is extremely powerful since it asks very little on
the dynamics and require no finite moment on py. On the other hand, it forces to assume
independent and identically distributed initial conditions. This requirement is far from being
innocent — as stressed by Sznitman himself in [98, Remark 1.3] — and it will be a crucial point of
investigation in our first attempts to the study of interacting particles on graphs. As explained
in Subsection 4.1, there are situations in which we do not want to assume IID initial conditions
since, e.g., they can hide relevant properties of the underlying graph sequence as connectedness.
This point of view, originally presented in [36], is further tackled in Chapter 2.
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The original idea of considering a chaotic initial datum stems from Boltzmann equation
and notably by the works of the physicists Ka¢ and McKean [63, 81]. Suppose that at time 0
the particles are independent and identically distributed, one is interested in understanding if
the initial chaoticity can be propagated in time, eventually by taking a system with more and
more particles. Indeed, the interaction between two particles in the finite system is weak — of
order O(n~!) — and it is plausible to prove that the statistical dependence between them goes
to zero as the size of the system grows — at least up to some finite time. This argument can
be obviously extended to any finite number of particles and yields the propagation of chaos
related to their joint distribution.

The work of Sznitman [98] puts on a mathematical basis the propagation of chaos concepts
coming from the insights originally given by Ka¢ and McKean. Even though very little progress
has been achieved in the case of Boltzmann equation (see, e.g., [83] and references therein),
this strategy has proven to be well suited for other general stochastic mean-field systems as the

ones considered here.

In [98], it is proven the following result on the joint law of particles solving (1.1).

THEOREM 1.4. Suppose that {z}}icn is a sequence of independent and identically distributed
random variables with law pg. Then p" weakly converges in probability to u, the law of x solving
equation (1.5). Furthermore, for every k € N it holds that

: 1,n kny _ —
Jingoﬁ(x L2 HL’(:}:) H,u. (1.6)

REMARK 1.5. An important consequence of taking independent and identically distributed
initial conditions is the exchangeability property of system (1.1) — or symmetry, as expressed
in [98]. Under such assumption, the particles in (1.1) are exchangeable random variables and

their joint law is thus invariant under permutation of the labels. In particular,
L (:vl’”, o ,xk’”) =L (m”(l)’", o ,:c"(k)’”)

for every 2 < k < n and every ¢ permutation on k elements.

Exchangeability turns out to be a crucial property when studying the convergence of em-
pirical measures for systems defined on exchangeable graph sequences. For these sequences, a
notion of limit is given by graphon theory — that we recall in the next section — and an explicit
description exists.

We refer to Subsections 4.1 and 4.2 for a more detailed viewpoint on both limitations and
benefits of taking IID initial conditions. In Chapter 3, the exchangeability property coming
from the coupling method and exchangeable random graphs is fully exploited by means of graph

limits theory. A propagation of chaos result in the spirit of Theorem 1.4 is also established.



2. GRAPH SEQUENCES AND GRAPHONS 7
2. Graph sequences and graphons

In the last twenty years, there has been a great interest in graph theory and notably con-
cerning suitable notions of convergence. Several attempts |74, 16| have been made to find
a unifying theory of convergence for general (possibly random) graph sequences. Despite the
recent progress [16, 17, 18], the two extremal regimes, represented by dense and sparse graphs
respectively, require different mathematical tools and seem to provide diverse, although com-
plementary, descriptions.

This manuscript does not investigate the sparse regime — we refer to the only two references
available so far [91, 70| and to the perspectives presented in Chapter 6. Nonetheless, it
addresses intermediate regimes between the dense case, where the connections are in magnitude
equal to the square of the number of particles, and very diluted graph sequences, where almost

every site has a diverging number of connections, this divergence being possibly very slow.

The following subsections present the general notation for graph sequences used throughout
the manuscript. We also give a fair introduction to the results and insights of graph limits
theory which will be used in many parts of the manuscript. For instance, Chapter 3 adopts
many of the ingredients recalled here.

We work with both random and deterministic graph sequences. We point out that through-
out this thesis, a sequence of graphs will always be considered convergent in the sense of graph
limits theory [73, 74].

2.1. A general graph sequence and dilution parameters. A general graph sequence
is denoted by & = {¢M}, cy. For every n € N, ¢™ represents a directed graph (V(™, E™)
where V(" denotes the vertex set, always composed of n vertices labeled from 1 to n, and
E™ c V) x V™ represents the edge set. Particle i € V™ points to particle j € V™ if and
only if the couple (i, j) belongs to E™.

We always consider labeled graph sequences and denote the labels by the letters ¢, 7 and k.
The notation [n] := {1,...,n} is often adopted, so that V() = [n] for every n € N.

The adjacency matrix of a graph €™ is denoted by ¢ itself and it is given by the n x n
square matrix {fi(;l)}i,je[n], where fi(;l) is a binary variable for all 7, j = 1,...,n and takes value
1 whenever ¢ points to j and 0 otherwise. From the adjacency matrix £, the edge set can be
coherently defined by

E™ — {(@', ) eV x VO ;g o}.

Occasionally, we will consider multigraphs, i.e., allowing for multiedges between vertices,
with consequent notation 51-(;-1) € {0,1,2,...} and ignoring the edge set E™. In the whole
manuscript, selfloops do not play any relevant role and can be ignored: we may set 51(1" ) =0 for

every n € N, i € [n| and any graph sequence.

Whenever the graph sequences £ is random, we denote its probability measure by P. In most

instances, we will suppose the randomness present in the graph sequences to be independent
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of the one in the initial conditions — and always independent of the Brownian motions — so
that we will actually work with P x IP. However, there are cases in which the initial conditions
may be taken dependent of the graph structure and we will use P to denote the conditional
probability with respect to P.

The most common example of random graph sequence is given by Erdds-Rényi random

graphs. A possible definition is given in the next example.
Symmetric Erdds-Rényi random graphs. For n € N, let p,, € [0, 1]. Define £ by

52(]”) ~ Ber(p,), independently for 1 <i < j <n,

meaning that 52?;“‘) is a Bernoulli random variables of parameter p,,. If we set & J(:L) = fi(;) for every

i,j € [n], this means that particle ¢ is connected to particle j with probability p,. In particular,
{gz-(;L)}lgi<j§n are 1ID random variables. We say that £ is a symmetric Erdds-Rényi random
graph with parameter p, and, more generally, that & = {¢™},cy is a sequence of symmetric
Erdés-Rényi random graphs with parameters {p, }nen-

We will see that such sequence is highly homogeneous, see the next Remark 2.1. An equiv-

alent construction by means of W-random graphs is given in the next subsection. U

For a general random graph sequence £ = {5(”)}n€N, we say that & is symmetric, corre-

sponding to undirected graphs, when for every n and P-almost surely

(n) _ ¢(n) : :
§i =&, 1<i<j<n.
Furthermore, we say that & = {£¢M™}, oy is

e dense, when the expected number of edges is of order n?, i.e.,
E HE(”)H = 0O(n?);
e sparse, when the expected number of edges is sublinear in n, i.e.,
E [|E™|] = O(n).
e in the intermediate regime if there exists a sequence {p, }neny C (0, 1] such that

_E[|E™]]
o P (1)
for some p € (0,1]. The coefficient p,, is called the dilution parameter associated to

€™ In the literature, it is sometime referred to as the sparsity parameter.

Observe that dense and sparse graph sequences are apriori included in the intermediate regime
since no conditions are required on the asymptotic of p,. To a dense sequence it usually
corresponds p, = O(1) and p, = O(n™!) to a sparse sequence. In other words, the dilution
parameter p, represents the average edge density in the graph £ and, equivalently, np,
represents the degree of a vertex taken uniformly at random in the vertex set 1. For instance,

a sequence which is neither dense nor sparse, is in the intermediate regime if the average mean
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degree satisfies 1 < np, < n in the limit for large n. In the sequel, we will exclude sparse
graph sequences when considering the intermediate regimes.

Focusing on equation (1.7), one can always take p = 1, e.g., by taking p, = # E ‘E(">| for
every n. However, an arbitrary p € (0, 1] turns out to more suitable when the graph sequence
is dense. In this last case, we take p, = 1 and p represents the limit average degree density.

It is not difficult to see that a sequence of Erdés-Rényi random graphs with parameters

{Pn }nen satisfies equation (1.7) with the same choice of dilution parameters and with p = 1.

We usually consider graph sequences where the degrees have all the same magnitude with
respect to the number of vertices. However, this condition can be relaxed by means of a suitable
renormalization of the interaction between the particles. We have preferred to keep the key
ideas as clear as possible, and to present further generalizations as possible developments of

the presented works. We refer to the perspectives proposed in Chapter 6.

REMARK 2.1. Throughout the manuscript, we often use the notion of homogeneous and
inhomogeneous for a general graph sequence. We keep in mind that the property of being
homogeneous is related to having good mixing properties, as the one later expressed in (1.14),
and to the notion of mean-field limit, recall equation (1.4). Loosely speaking, the most homo-
geneous graph sequence consists of complete graphs, these last ones being the graphs on which
system (1.1) is implicitly defined for every n.

In the next subsection we will see how it is possible to characterize a notion of inhomogeneity
by means of graph limits theory. We refer to Remark 3.1.

2.2. Graphons. A general graph theory with a notion of convergence that is coherent with
most of the graph parameters — clique size, perfect matchings, spectrum, etc. — is available for
dense graphs starting from the seminal work of Lovasz and Szegedi [74]|. Whether this theory,
also known as graphon theory, is intrinsically related to weakly interacting particle systems,
has been a constant debate during the last few years. As it will be clear in Chapter 3, graph
limits theory is strictly related to the convergence of empirical measures for particle systems
on graphs.

We present here a few ingredients that will be useful throughout our analysis and refer to
Chapter 3 and the complete monograph [73] for further information. The reader who is familiar

with the graphon framework can skip this subsection.

There are many equivalent ways to introduce the notion of graph convergence and the
corresponding graph limits, known in the literature as graphons. Since we do not need all the
details coming from the original definition of graph homomorphisms, we rather give a few key
concepts from the analytic viewpoint, the one we will mostly adopt.

The major difference with respect to the previous subsection is given by the fact that we
are now focusing on dense symmetric graph sequences and always assuming p,, = 1. We are not
interested in pushing the graph analysis close to the sparse regime, but rather in understanding

how the degree distribution among the vertices affects the particle dynamics. In this sense,
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FIGURE 1.1. An adjacency matrix and its pixel picture. Image from [73, Chapter 1].

what interests us — and a substantial part of graph limits theory — is a theory for describing

the underlying structure of a graph sequence and defining a suitable notion of inhomogeneity.

Consider a deterministic graph sequence {£(},cn. In order to understand the inhomo-
geneity present in €™ and to give a meaning to lim, £, we first need to cast the underlying
structure present in £ to an object that we can compare for different graphs and somewhat
independent of the number of vertices. This is usually done by extracting the pizel picture.

The main idea is to represent the adjacency matrix of a finite graph £ with n vertices,
as a black and white grid composed of n? pixels of the same size, scaled in the unit square
[0,1] x [0,1] € R2. By coloring the pixel corresponding to the i-th row and j-th column of
the grid if and only if &; = 1, we end up with a {0, 1}-valued function with domain [0,1]%. In
other words, to every finite graph £ with n vertices, we can associate a symmetric measurable
function W : [0,1]* — {0,1} defined by

We(z,y) == Z &ij 1{%@3%}@) 1{%<$§%}(y), for z,y € [0, 1]. (1.8)
ij=1
See Figure 1.1 for a concrete example. Such a function is said to be a step-graphon and belongs

to the general space
Wy = {W :[0,1]* — [0, 1] : measurable and symmetric}

usually called the space of labeled graphons. We recall that a function W : [0,1]> — [0,1] is
symmetric if is such that W(z,y) = W(y, z) for almost every (a.e.) z and y in [0, 1]. Observe
that we tacitly consider two functions in W, to be equal if the set where they differ is of
Lebesgue measure zero.

Define the space of kernels by W = {W : [0,1]> — R : bounded, measurable and symmetric}.
Clearly, a labeled graphon is a kernel and W, C WW. We now define a distance on W.
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For every two kernels W,V € W, let

do(W,V) := max

S,17C[0,1]

/5 (W) = Vi) dady (1.9)

where the maximum is taken over all measurable subsets S and T of [0, 1]. Observe that the
right-hand side of (1.9) defines a norm ||-||5 on W — usually called the cut-norm — so that
do(W,V) = ||W = V|5 and OV, ||-||g) is a normed space.

We can now measure the distance between two graphs by comparing their distance as step-
graphons in Wy, C W, i.e., if £ and £ are two graphs, then we set dg(€,€') = da(We, We ).
Loosely speaking, W, contains some structure of £ that we can compare with the one of other
graphs. Nonetheless, W, depends on the particular labeling of £ and, if £’ is a relabeling of &,
then the associated step-graphons W and W do not necessarily coincide. Although ¢ and &'

are equal as unlabeled graphs, their dg-distance is, in general, greater than zero.

REMARK 2.2. The notion of structure we are thinking of is independent of how the vertices
are ordered and, in particular, it has to be invariant under relabeling. Even if at a first sight
this may seem poor at an abstract level — where the labels might be important — we will see
in Chapter 3 that this notion is very natural. For instance, when we consider objects which
are invariant under permutations, as joint distributions of exchangeable particles and empirical

measures, it is the proper notion of graph structure to be taken.

A way to overcome the label dependency in W, is to consider a suitable equivalence relation

on the space W. Consider the cut-distance defined as
(W, V) := min dp(W,V¥), (1.10)
¢€S[01)

where the minimum ranges over Sjo the space of invertible measure preserving maps from
[0,1] into itself and where V¥(x,y) := V(po(x),¢(y)) for a.e. x,y € [0,1]. Observe that an
element in Sy ] represents a relabeling of the interval [0, 1].

Clearly, if one defines 05(, £') := dn(We, W) for every two graphs £ and &', then 65(&,¢') =
0 whenever ¢’ is a relabeling of £. It is readily not the only case when this happens since the
space Sjo) is much bigger than finite permutations. More generally, we say that two graphs
are equal in structure if their dg-distance is zero.

It turns out that this notion is appropriate and allows to describe all the possible graph
limits. Observe that two graphs do not need to have the same number of vertices to be equal
in structure, e.g., complete graphs have dp-distance (and thus cut-distance) equal to zero no

matter the number of nodes. See also the example in Figure 1.2.
The quotient space WO obtained from W, by identifying two elements with dg-distance zero

is called the space of unlabeled graphons' and represents all the possible graph limits. Indeed,

LOr, simply, the space of graphons. In order to avoid any possible confusion, we always explicit whether a
graphon is labeled or unlabeled.
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FIGURE 1.2. The graphon in the picture represents a graph with two, disjoint
and fully connected components. It is also the step-graphon associated to the
graph with two vertices connected by a single link and no self-loop.

a sequence of graphs {5(”)}neN is said to be convergent if there exists W € Wo such that

lim (W, W) = 0. (1.11)

n—oo

A well-known result of graph limits theory says that (WO, dp) is a compact metric space. In
particular, we can define the notion of convergence in probability — and, more generally, in
distribution — for a random graph sequence, see, e.g., |14|. The convergence expressed in
(1.11), as other equivalent definitions, is a crucial notion that will be exploited in Chapter 3.
We end up this brief introduction with an important example that shows how it is possible to
construct an exchangeable random graph with a prescribed structure and an arbitrary number

of nodes.

W-random graphs. Let W be a graphon in W, and {U'};cy a sequence of IID uniform
random variables. For every n € N, define the random graph £ by

£ ~ Ber (W(U',U7)), independently for 1 <i < j <n. (1.12)

Set §j(»?) = §Z-(;L) for every i,5 = 1,...,n. For every n € N, the graph £ is called W -random
graph. If W is not constantly zero, this gives rise to a dense symmetric graph sequence.
Observe that the underlying structure of £ does not depend on the equivalence class of W in
Wo. Namely, if €™ is another realization from some W in the class of W, then [73, Exercice
10.20]

oo(€™, €M) < 221og™' n, with probability at least 1 — 2!,

In particular, it is well-known that the sequence £ converges P-almost surely to W in )7\70. O
Observe that W-random graphs generalize the definition of symmetric Erd§s-Rényi random

graphs by allowing for a different probability for every link in the graph. In particular, the

Erdés-Rényi case is recovered by taking a constant .
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REMARK 2.3. We are now able to define a notion of homogeneity. A sequence of graphs is
said to be homogeneous whenever it converges to a deterministic constant graphon, and inhomo-
geneous when it is not the case. The previous example provides a way to construct homogeneous
sequences by simply considering W-random graphs with a constant . In particular, this im-
plies that Erdds-Rényi random graphs are homogeneous, as well as the complete graph?. In
the literature, a sequence which converges to a constant graphon is known as pseudo-random
graph sequence or quasirandom graph sequence. It has many equivalent characterization, see
the original work [28] and the recent result [5]. With a slight abuse of notation, we use the

adjective pseudo-random for random graph sequences as well.

3. Interacting particles on graphs

Let {£™1,cn be a graph sequence which admits the dilution parameters {p, }nen C [0, 1],
recall definition (1.7). For every n € N, a weakly interacting particle system on the graph ¢

is given by the solution to the following system on R™:

n_ ¢(n)
day™ = F(ap™)dt + =) S p (i )t (2t B (1.13)
n < pn
fori=1,...,n and ¢t € [0, T]. The functions F, I" and o are the same as the ones in equation

(1.1), as well as the initial conditions and Brownian motions.

The crucial difference with (1.1) is represented by the weights {fi(f) /Pn}j=1...n appearing in
the interaction term. For some ¢ = 1,... n, particle ¢ is not interacting with all the others as
before, but only with the fraction of them given by {j =1,...,n : fgl) # 0}. In other words,
each particle is represented in ¢™ by a vertex and its dynamics in (1.13) is influenced only by
the particles at which it is pointing to in the underlying graph. In case £ is symmetric, the
interaction in the dynamics is mutual.

Observe that whenever 52-(;7) =0= §§?)7 particles ¢ and j are not directly interacting with
each other but, if they belong to the same connected component in €™, they are still dependent

(in probabilistic sense) of one another.

3.1. Relation with the mean-field model. In equation (1.13), one can recover the
mean-field case (1.1) by taking £ to be the complete graph for each n and the dilution
parameter p, constantly equal to 1. As for the mean-field case, one is interested in studying

the empirical measure associated to system (1.13). We now denote it by

L e
1 .—n;&cm.

We want to investigate the possible limits of y”, if any exists, as n tends to infinity. Recall that
the empirical measure of the mean-field case (1.1), converges to the mean-field limit p, solution

to equation (1.4).

2which is again a W-random graph with graphon W constantly equal to 1.
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Contrary to the derivation of equation (1.4), one is faced with the lack of a closed form for

™. Indeed, proceeding as in Subsection 1.1 yields the following expression for u"

t t ] I N ,
Wt )= P [ oot ds e ST S Sr i altds 4 .
0 0 n

ij=1
One can observe that the previous equation can be rewritten as

£m) o
(— - 1) D(ay™ a2™)ds

t 1 n
(uy", f) = mean-field equation —|—/0 - Z P

ij=1
where mean-field equation stands for the equation satisfied by (ay, f). A first step in under-

standing for which sequences £, the empirical measure converges to the mean-field limit ,

£ , .
(— — 1) C(xy", 22™)ds.
Pn

If it goes to zero uniformly in ¢t € [0,7] as n tends to infinity, then the limit of p™ satisfies

can be made by studying the term

t1
[y

1,j=1

the McKean-Vlasov equation (1.4), i.e., we expect p™ to converge to the mean-field limit .
However, all the particles are dependent on the graph £ and it is not clear how to control
such perturbation.

A part of the literature has focused on methods to decouple the dynamics of the particles
from the graph structure. In particular, the first results look for homogeneity conditions on the
sequence {1}, cn, to show that quantities such as

2
n
=1 S P

converge to zero for a suitable class of coefficients ¢;;, possibly independent of {61 en.
Depending on the setting one is working with, the methods to tackle expressions as (1.14)

vary as well: we refer to Chapters 2 and 4 for two explicit, and rather different, techniques.

Subsection 4.1 underlines how the initial conditions can strongly influence the choice of a

suitable decoupling method.

REMARK 3.1. On the one hand, the previous strategy yields the mean-field limit (1.4)
whenever the graph sequence is in some sense homogeneous, i.e., such that quantities as (1.14)
converge to zero for a large class of coefficients ¢;;. On the other hand, it does not help in
understanding whether a different limit exists for a general — possibly inhomogeneous — graph
sequence. This last issue is tackled in the next subsection and further discussed in Subsection
4.2. In Chapters 3 and 4, we will see that the notion of homogeneity given in Remark 2.3, is

equivalent to requiring (1.14) to go to zero for a precise choice of the coefficients ¢;;.

3.2. Inhomogeneous behaviors. Some progress in the direction of inhomogeneous graph

sequences has been made in |6, 27, 77, 90|. These works consider graph sequences which
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converge — in a topology that depends case by case — to labeled deterministic graphons and
show that the empirical measure p™ is suitably described, as n tends to infinity, by an object
depending on the corresponding graph limit.

We briefly present the inhomogeneous non-linear process proposed in the cited works and
the main ideas behind its derivation. This description will be addressed in Subsection 4.2 and

represents the main object of study in Chapter 3.

Fix a labeled graphon W. For n € N and ¢« = 1,...,n, we represent particle ¢ in system
(1.13) as a small interval in [0, 1] of length 1/n, i.e., by ((i —1)/n,i/n] C [0,1]. The n particles
cover the unit interval and maintain the same ordering. In the limit for n which tends to
infinity, the length of each interval shortens and the number of particles grows: we end up by
associating to every particle a label, i.e., some = € [0, 1], instead of an index i € N. We will
often call the unit interval [0, 1], the space of labels.

In the resulting infinite system, the particles associated to x and y in [0, 1] are connected with
probability W (z,y). In this sense, the function W : [0,1]> — [0, 1] represents the connection
structure of an infinite particle system indexed by [0,1]. Observe that the unit interval [0, 1]
and a step-graphon can represent a finite number of particles on a labeled graph: in this case,
we use the n sub-intervals in [0, 1] previously defined, and the step graphon associated to the

labeled graph — recall definition (1.8) — to represent the interactions among them.

The previous procedure describes the interaction of a (possibly infinite) system of particles,
we now see how to define a dynamics on it. As n tends to infinity, we are able to guess the limit
of equation (1.13), provided that the asymptotic of £ is suitably captured by the graphon W.

Suppose that ¢™ is a W-random graph, recall the definition (1.12). The n particles

{a*"},_1. . solves system (1.13), which is now given by

A , 1 <& A , . A
day™ = F(z")dt+ =Y WU, U) D(ay", 2l")dt + o(z")dB], i=1,....n
n
j=1
where {U'};cy is an TID sequence of uniform random variables in [0,1]. As n tends to infinity,

this leads to the collection of non-linear processes {6”},¢jo,1) which solve

d6* = F(67)dt + xw%m/r@wmmwmmm+de£ zel0,1]  (1.15)
[0,1] R

where pf is the law of 6% at time ¢ € [0,7]. The initial conditions in equation (1.15) are given
by an infinite vector {0F}.cp,1) where 6§ follows some law uj € P(R), for every z € [0,1].
Observe that f[071] pgda = po is equal to the weak limit of . The sequence {B”},c[o,1) consists
of ITD Brownian motions independent of the initial conditions. We point out that the label x

in equation (1.15) has no physical meaning and there is no dynamics along it.
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Existence and uniqueness for equation (1.15) can be obtained by extending known tech-
niques to take the label variable x into account and with no assumption on W but measurabil-
ity. We refer to [6, 79| and to Chapter 3 where a non-linear Fokker-Planck equation associated
to the law of the process (1.15) is explicitly derived.

Under suitable hypothesis on the initial conditions and the regularity of W, the works
[6, 27, 77, 90| prove that, if the sequence of graphs {¢™},cy converges — in some sense
depending case by case — to the labeled graphon W, then the empirical measure p" converges

to the probability measure
i :/ pu* de, (1.16)
[0,1]
where p® is the law of 6% solving (1.15) for z € [0,1].

The collection {6”},c[0,1] describes a possible inhomogeneous behavior for the asymptotic
of system (1.13), recall Remark 1.1 and Remark 3.1. Nonetheless, we emphasize that the cited
results are far from giving a satisfactory description of (1.13) for a general sequence ™, and do
not completely exploit the properties of (1.15). For instance, even though the limit i in (1.16)
is independent of the labeling of {#*} — and thus of the equivalence class of W in W — existing
results do not address this important aspect. Furthermore, some regularity is demanded on W

with the consequent difficulty to work in Wo. These issues are discussed in Subsection 4.2.

4. Motivations
This section presents the motivations behind the results coming along with this manuscript.

4.1. The role of initial conditions. We want to emphasize how little innocent the as-
sumption of IID initial conditions can be, in the context of particle systems on graph sequences.
Consider the following theorem taken from [36], where the authors pointed out the issue for
the first time.

THEOREM 4.1 (Theorem 1.1 and Corollary 1.2 of [36]). Consider system (1.13) with inde-
pendent and identically distributed initial conditions sampled from pg. Suppose that the graph

sequence {€™}en and the dilution parameter p, satisfy

1 & 5,(7.‘)
lim su — Yo _1|=0 1.17
n—00 i:1,P,n n ]ZI Pn ( )
and
lim np,, = occ. (1.18)
n—oo

Then the empirical measure p™ of (1.13) weakly converges in probability to pu solution to equation
(1.4), as n tends to infinity.

We first observe that conditions (1.17) and (1.18) mean that (™ is in an intermediate
regime and has a diverging number of connections per site. More precisely, a graph sequence

satisfies equation (1.17) if and only if the normalized degree density of each vertex, given by
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1 > 52-(;1)/19” for vertex 4, converges to 1 as n tends to infinity. In other words, condition (1.17)
is a homogeneity requirement on the sequence £ that addresses the degree density in the
limit for n which tends to infinity. Roughly speaking, Theorem 4.1 says that the empirical
measure u" converges to the mean field limit p whenever the underlying graph sequence is in
the intermediate regime and each vertex has precisely np, connections as n tends to infinity.
Consider the sequence of graphs where two vertices are connected if and only if their labels
have the same parity. This sequence satisfies equation (1.17) with p, = 1/2 and, for every
n € N, it is made of two complete graphs with no edge in common. In particular, this shows
that condition (1.17) does not require the graph ¢™ to be connected. However, Theorem 4.1
implies that system (1.13) defined on such sequence behaves as the mean-field system (1.1).
How can a system on a disconnected graph behave like the one on a fully connected component?
The apparent contradiction is explained if one observes that, by taking independent and
identically distributed initial conditions, the joint law of the system (1.13) is the same in each
connected component. Hence, the law of the empirical measure p" cannot distinguish the
different components in the graph and the limit of 14" does not depend on the connectedness of

the underlying sequence.

As explicitly written in |36], the result of Theorem 4.1 is unsatisfactory with regards to
applications and hides many of the graph properties related to the sequence ¢™. In particular,

it leaves the reader with the following unsolved? issues:

(1) Is it possible to prove a Law of Large Numbers similar to Theorem 4.1 without asking
a chaotic initial datum? For which graph sequences?
(2) Which homogeneity condition on the graph sequence {£(™},cy can replace equation

(1.17) for general initial conditions?

The joint work with Helge Dietert and Giambattista Giacomin [31], presented in Chapter
2, partially answers the first question. By focusing on general Erdés-Rényi random graph
sequences in the intermediate regimes, we are able to prove that the empirical measure of
system (1.13) converges to the mean-field limit for almost every realization. We only require
the weak convergence of ug to pp and a mild condition on the divergence of the average mean
degree in €™ . Overall, we show that Erdés-Rényi random graphs are highly homogeneous and
yield the mean-field limit for (1.13).

The second question is completely solved in the case of dense graph sequences and interacting
oscillators, in the joint work with Gianmarco Bet and Francesca Nardi [11], see Chapter 3. The
work [30], presented in Chapter 4, partially answers (2) for graph sequences in the intermediate

regimes, but it concerns the Kuramoto model only.

31t appears that all the results in the literature on stochastic interacting particles on graphs, with the exception
of [30, 31], require independent initial conditions.
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The cited works [11, 30| exploit distances in the space of graphons and show that the
homogeneous condition sought in (2) coincide with the notion of homogeneous graph sequence

given in Remark 2.3.

4.2. Inhomogeneous behavior versus mean-field behavior. In Subsection 3.2, we
have seen that a description for 4" in the case of an inhomogeneous graph sequence is available.
Namely, it is given by extending the classical non-linear process (1.5) to a collection of processes
indexed by [0,1] and coupled by means of a labeled graphon W, recall equation (1.15). We
have also pointed out that the limit measure fi defined by (1.16) exists for every W € W, and
is independent of the particular labeling of {6#”},¢(0,1). In other words, although existing proofs
seem to require regular labeled graphons, the limit description depends on the equivalent class
of Win WO only, i.e., on an unlabeled graphon. Furthermore, the graph convergence considered

in [6, 27, 77, 82, 90| is always required to be in stronger topologies than the one in Wo.

Consider a sequence £ that converges in )7\70 to some graphon W. We want to understand

the following issues:

(1) Is it possible to prove that the empirical measure u" converges to i?
(2) For which W, is the limit of " mean-field for n which tends to infinity? More precisely,

n

under which hypothesis on the sequence {f(”)}neN, u" is approximately described by
the mean-field limit p solving equation (1.4) as n diverges?
(3) What can be said if £ is a random sequence which converges, e.g., in probability, to

a random W € WO?

Suppose that we can positively answer to (1). As we will see in Chapter 3, i solves the weak

formulation of the following Fokker-Planck equation weighted by the graphon W

0(0) = 5 23 (0% (0)7(0)) — 0 (F(0)7(0)
(1.19)
o [ W) / D(6, 0l (6)d0' dy e |

In particular, equation (1.19) is — formally! — the mean-field limit (1.4), if and only if W is
constant®. This seems to answer (2): only homogeneous graph sequences, as in Remark 3.1,
yield the mean-field limit. However, even though the equations satisfied by p and i are formally
different, this does not mean that 1 and i are different as probability measures.

Within this perspective, question (2) should be reformulated as:

(2*) For which graphons are ji and p close as probability measures?
A satisfactory understanding of the solutions to equation (1.19) is missing. In particular, we
cannot apriori exclude the possibility that two different unlabeled graphons yield two solutions

to (1.19) which are close as probability measures — and one can probably build up a model

with this property. Nonetheless, we expect that if two graphons are close in the cut-distance,

4the classical mean-field limit is obtained for W = 1, but whenever W = p € [0, 1] it suffices to multiply by p
the interaction in system (1.1) to get (1.19).
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then the two solutions to equation (1.19) are close in a suitable topology. Pushing the analysis
further, we could try to understand whether there exists a metric Dy on P(C([0,T],R)), such
that the map

v (WOa 55) - (P<C([07T]>R))7DT)

(1.20)
W — [ solution to (1.19)

is continuous and, hence, partially answering to (2%).

In the case of interacting oscillators, i.e., particles defined on the one-dimensional torus
rather than R, we can give a positive answer to (1) and we are able to exhibit a nice control
on (1.19). Notably, we prove that the map ¥ in (1.20) is Holder-continuous with respect to
a natural distance in P(C([0,T],R)), i.e., to the Wasserstein metric. As a byproduct, we can
estimate the distance between i and p, by estimating the distance between W and a constant
graphon in WO. More generally, we show that if two graphons are close in the cut-distance, the

resulting particle system behaviors will be similar as the size of the systems tends to infinity.

Observe that if the map (1.20) is continuous, it is possible to work with random elements
in Wy and their push-forward in P(C([0,T],R)), Dy). Notably, we can tackle the issue raised
in (3). By extending the classical graph convergence to the convergence in probability in
W()7 the limit description (1.19) is allowed to depend on a random graphon W. This setting
appears to be new in the literature and demands for further investigations. For instance, the
previous question (2*) needs to be formulated once again and it is not apriori clear which notion
of mean-field approximation should be taken into account. This issue, together with related

consequences, represents the main object of study in Chapter 3.

4.3. Long-time dynamics. The long-time dynamics associated to an interacting particle
system is one of the most interesting domains of current research. It can be hardly predicted by
numerical simulations, yet it seems crucial to explain macroscopic phenomena appearing due
to the finiteness of real-world systems.

To the author’s knowledge, very little is known concerning the long-time behavior of in-
teracting particles described by stochastic differential equations and only two results {10, 78],
along with [30] presented in Chapter 4 are available. The cited works address the long-time dy-
namics of a well-known model for describing synchronization phenomena, the Kuramoto model
|68, 69, 96, 71].

The Kuramoto model is a system of n interacting particles on the n-dimensional torus
T™ := (R/27Z)" where each oscillator is rotating at some speed and is attracted by the others.
Depending on a parameter which regulates the coupling strength, the model can show both
synchronized states and incoherent behaviors.

The original Kuramoto model [68, 69| is deterministic and each particle comes into the
dynamics with a natural frequency at which it would oscillate if no interaction were present.

We consider here the stochastic version without the natural frequencies, see [9, 10, 51].
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Let {0°"}i—1.., be the family of oscillators which satisfy

dg;" = K37 sin(6" - 6;")dt +dBj, >0,

. A (1.21)
o = 0}, i=1,...,n.

The positive constant K > 0 represents the coupling strength among the particles. The se-
quence {0 }ien C T denotes again the initial conditions.

A rather complete understanding of the McKean-Vlasov equation corresponding to the
mean-field limit of system (1.21) is given in [51] for all values of K. It is well known that a
phase transition appears at the critical value K. = 1. Notably, whenever K > K. a continuous
compact manifold of stationary synchronized solutions appears. When K < K. there is a
unique stable stationary solution that is given by 1/27, i.e., particles tend to be uniformly
spread around the torus.

From the general theory of weakly interacting particles, the PDE approximation is known to
be valid on a finite time interval, in our case represented by [0, T']. If the initial empirical measure
converges fast enough, the closeness between the particle system and the PDE can be pushed
up to times 7" which can slowly diverge with the size of the system n, e.g., T =T, = O(logn).
Very little is known on longer 