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Abstract

In the last twenty years, the modeling of complex systems has become a relevant

domain of study, not only in applied sciences, but also among mathematicians. The

recent improvements in the understanding of interacting particle systems, as well

as the new insights coming from graph theory, allow to mathematically tackle new

exciting problems in the challenging world of complex phenomena.

This thesis addresses a rather general class of interacting particle systems de�ned

on graph sequences. Notably, it focuses on weakly interacting particles described by

di�erential equations, both deterministic and stochastic, where an extra structure

encoding the connections among the particles is present. The mean-�eld hypothesis

under which each particle is connected to all the others and in exactly the same

way, is relaxed to a much more general assumption: the connections between the

particles are supposed to be encoded by a general network, instead of the trivial

complete graph of the mean-�eld case, meaning that a particle is interacting with

another in a way that is proportional to the weight of the edge connecting the twos

in the underlying graph.

Several aspects for this class of models appear to be new in current research

and demand new tools and techniques, but also new insights to unveil how the

complexity behind the underlying network a�ects the particle dynamics.

The present manuscript poses the focus on three main aspects: the relationship

with the mean-�eld behavior, i.e., on which graph sequences the system behavior is

suitably described by the classical mean-�eld limit; the extensions to inhomogeneous

graph sequences and consequent inhomogeneous behaviors; �nally, a �rst study on

the long time dynamics for a particular model of interacting di�usions on graphs.

Keywords: interacting particle systems, interacting di�usions, McKean-Vlasov

equation, interacting oscillators, Kuramoto model, random graphs, graph limits,

random graphons, stochastic di�erential equations, long-time dynamics, mean-�eld

models, pseudo-random graphs, exchangeability
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Résumé

Les systèmes complexes sont devenus un sujet très étudié, non seulement dans

les sciences appliquées, mais aussi en mathématiques. Récemment, de nouveaux ré-

sultats rigoureux ont été établis à propos de l'étude des systèmes de particules et des

graphes aléatoires. Ils ont ainsi ouvert de nouvelles perspectives sur la modélisation

des phénomènes complexes en mathématiques.

Cette thèse porte sur une classe assez large de systèmes de particules qui in-

teragissent entre elles, dé�nis sur des séquences de graphes. En particulier, on se

focalise sur des systèmes d'équations di�érentielles stochastiques et déterministes,

dans lesquels une extra-structure code les connexions entre les di�érentes particules.

La condition classique de champ moyen qui impose que toute unité soit connec-

tée aux autres de la même façon, est relaxée au pro�t d'une hypothèse bien plus

générale : les connexions dans le système sont dé�nies à l'aide d'un réseau com-

plexe, au lieu d'un graphe complet. En d'autres termes, une particule interagit

avec une autre d'une façon proportionnelle au poids de la connexion dans le graphe

sous-jacent.

Plusieurs aspects dans cette classe de modèles se présentent comme nouveaux

dans la recherche actuelle et nécessitent des techniques et outils plus avancés. Des

nouvelles idées sont requises pour dévoiler la complexité intrinsèque de ces systèmes.

Ce travail se focalise sur trois aspects fondamentaux : la relation avec le com-

portement de champ moyen, l'extension aux séquences des graphes inhomogènes et,

pour conclure, l'étude de la dynamique à temps longs d'un modèle de synchronisa-

tion dé�ni sur des graphes.

Mots clés : système de particules interagissant, di�usions avec interaction, équation

McKean-Vlasov, oscillateurs interagissant, modèle de Kuramoto, graphes aléatoires,

limites de graphes, graphons aléatoires, équations stochastiques di�érentielles, dy-

namique à temps longs, modèles à champ moyen, pseudo-random graphes, échange-

abilité
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CHAPTER 1

Introduction

This thesis stems from the interplay between two established theories in mathematics:

weakly interacting particle systems and graph sequences. In the �rst part of the introduc-

tion, we present an overview on some known result for interacting particle systems, focusing on

Law of Large Numbers and Propagation of Chaos properties. We also give the key notions and

tools for the study of (random) graph sequences, mainly addressing the dense regime. Once

these ingredients have been introduced, we are able to de�ne a weakly interacting particle

system on a graph sequence, the main topic of the following chapters.

The second part of the introduction is devoted to the motivations behind the results coming

along with this manuscript and a presentation of the underlying works. The three key aspects

that will be addressed and discussed throughout the thesis are: the relationship with the

classical mean-�eld limit, extensions to inhomogeneous graph sequences and, �nally, the long-

time behavior of a well-known model of interacting oscillators on graphs.

A brief overview on the works within the manuscript, as well as the organization of the

chapters, is given at the end of the introduction.

1. Weakly interacting particle systems

Consider a system of n interacting particles on R, evolving on a �nite time interval [0, T ],

for some arbitrary T > 0. The dynamics of the particles {x̄i,n}i=1,...,n is described by a system

of n coupled stochastic di�erential equations of the following form:dx̄i,nt = F (x̄i,nt )dt+ 1
n

∑n
j=1 Γ(x̄i,nt , x̄

j,n
t )dt+ σ(x̄i,nt )dBi

t,

x̄i,n0 = xi0,
(1.1)

for i = 1, . . . , n and t ∈ [0, T ]. The functions F, Γ and σ are taken to be bounded and

uniformly Lipschitz; the sequence {xi0}i∈N ⊂ R denotes the initial conditions which can be

random or deterministic.

In most instances, we suppose the di�usion coe�cient σ to be constantly equal to one, i.e.,

the particles {x̄i,n}i=1,...,n are driven by a sequence of independent and identically distributed

(IID) Brownian motions, denoted by {Bi}i∈N. Since a few results presented in the sequel hold

true also in the deterministic case, i.e., when σ ≡ 0, or for a non-constant strictly positive

di�usion, we work with the general case.

1



2 1. INTRODUCTION

The Brownian motions are de�ned on a �ltered probability space (Ω,F , {Ft}t≥0,P) and

are adapted to the �ltration F·, which satis�es the usual conditions. Whenever the initial

conditions are random, they are chosen to be independent of the Brownian motions.

Under the previous hypothesis, existence and uniqueness of a strong continuous solution

{x̄i,nt , t ∈ [0, T ]}i=1,...,n to equation (1.1) are a classical result [97]. The space of continuous

functions on [0, T ] with values in R is denoted by C([0, T ],R), the solution {x̄i,n}i=1,...,n to (1.1)

is an element of C([0, T ],Rn).

The statistical information present in (1.1), is encoded in the empirical measure associated

to {x̄i,n}i=1,...,n. This last one is a random element with values in the space of probability

measures on C([0, T ],R), which we denote by P(C([0, T ],R)). The empirical measure µ̄n is

de�ned as

µ̄n :=
1

n

n∑
j=1

δx̄j,n .

In the sequel, we will often consider its time-marginal projection µ̄n· = {µ̄nt }t∈[0,T ], which is

a continuous trajectory with values on the probability measures P(R), i.e., an element of

C([0, T ],P(R)). This last object is equivalently de�ned as

µ̄nt :=
1

n

n∑
j=1

δx̄j,nt
(1.2)

for t ∈ [0, T ]. The precise relation between µ̄n and µ̄n· is discussed in the next subsections.

1.1. The classical mean-�eld limit. One of the key aspects that has made the theory

of weakly interacting particle systems so studied, is the existence of a rather understood limit

description for µ̄n, as the number of particle grows. Notably, when n tends to in�nity it is

possible to characterize the limit of µ̄n, in a suitable topological space, as the unique weak

solution to a certain partial di�erential equation (PDE), usually called McKean-Vlasov or

Fokker-Planck equation, see equation (1.4).

Although proving such convergence may be technical under several aspects � we refer to

Chapter 5 for an exhaustive point of view on this topic � the formal derivation of the PDE

appears to be very simple, provided some con�dence in the fundamental tools of stochastic

calculus. Its derivation goes as follows.

Let f be a smooth function on R. The application of Itô's formula to f(x̄i,nt ) for some �xed

i = 1, . . . , n yields

f(x̄i,nt ) = f(xi0) +

∫ t

0

∂xf(x̄i,ns )dx̄i,ns +
1

2

∫ t

0

∂2
xf(x̄i,ns )d〈x̄i,n〉s.
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Using the explicit expression of dx̄i,ns in equation (1.1), as well as the fact that the quadratic

variation 〈x̄i,n〉t is given by
∫ t

0
σ2(x̄i,ns )ds, one obtains that

f(x̄i,nt ) = f(xi0) +

∫ t

0

[
F (x̄i,ns ) +

1

n

n∑
j=1

Γ(x̄i,ns , x̄
j,n
s )

]
∂xf(x̄i,ns )ds

+
1

2

∫ t

0

σ2(x̄i,ns ) ∂2
xf(x̄i,ns )ds+M i,n

t

where M i,n
t is the martingale formally given by

∫ t
0
σ(x̄i,ns ) ∂xf(x̄i,ns )dBi

s. Summing the last

expression over i and dividing by n, on the left-hand side we recognize the action of the empirical

measure µ̄n onto f at time t, i.e.,

1

n

n∑
j=1

f(x̄i,nt ) = 〈µ̄nt , f〉.

Similarly, we rewrite the right-hand side as

〈µ̄n0 , f〉+

∫ t

0

〈µ̄ns ,
[
F +

1

n

n∑
j=1

Γ(·, x̄j,ns )
]
∂xf + σ2 ∂2

xf〉ds+Mn
t

where Mn
t = 1

n

∑n
i=1M

i,n
t is a again martingale. The Brownian motions {Bi}i∈N are indepen-

dent, hence the quadratic variation of Mn is given by

〈Mn〉t =
1

n

∫ t

0

〈µ̄ns , (σ ∂xf)2〉ds = O

(
t

n

)
,

the last equality holding P-almost surely.

Overall, one obtains that for every positive integer n, the empirical measure µ̄n satis�es the

following equation

〈µ̄nt , f〉 = 〈µ̄n0 , f〉+

∫ t

0

〈µ̄ns , [F + Γ ∗ µ̄ns ] ∂xf + σ2 ∂2
xf〉ds+Mn

t (1.3)

for t ∈ [0, T ] and where we have denoted with ∗ the integration with respect to the second

variable, i.e. (Γ ∗ µ)(x) =
∫

Γ(x, y)µ(dy) for x ∈ R and µ ∈ P(R).

Since the quadratic variation of Mn goes to zero uniformly in t ∈ [0, T ] as n tends to

in�nity, one expects that the limit in probability of µ̄n, whenever it exists, satis�es equation

(1.3) without the noise termMn. In other words, the limit of µ̄n is expected to satisfy the weak

formulation of

∂tµt =
1

2
∂2
x (σ2µt)− ∂x (µt [F + Γ ∗ µt]) (1.4)

provided that µ̄n0 converges, in a sense to be precised, to some µ0 ∈ P(R) being the initial

condition to (1.4).

Remark 1.1. The crucial property that allows to derive (1.4), is the fact that equation (1.3)

is written in closed form with respect to the empirical measure � if one ignores the martingale

term which vanishes as n tends to in�nity. We will see that this property fails in case system
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(1.1) is de�ned on a graph sequence. This will in turn promote the investigation whether a

limit object, written in closed form, does exist or not. We refer to Section 3.

Partial di�erential equations as (1.4) belong to a particular class of non-linear Fokker-

Planck equations which usually goes under the name of McKean-Vlasov equations. Existence

and uniqueness for (1.4), when the initial datum is a probability measure, have been severely

addressed under very general assumptions on F, Γ and σ and, in particular, they hold in our

context, see, e.g., [56, 50]. In the sequel, we will refer to µ, the unique solution to equation

(1.4), as to the mean-�eld limit.

Once the possible limits of µ̄n have been identi�ed and uniqueness is established for equation

(1.4), one way to obtain the weak convergence of {µ̄n}n∈N to µ, is to show that this last sequence

is tight in the space of probability measures P(C([0, T ],R)). This is usually possible at the cost

of requiring a �nite moment condition on the starting measure µ0 or by requiring IID initial

conditions in system (1.1). We refrain from entering into these details, but refer to Chapter 5

where a generous discussion is devoted to this topic.

The precise result on µ̄n, usually known under the name of Law of Large Numbers for

interacting di�usions [80, 88], can be summarized in the following theorem.

Theorem 1.2. Suppose that µ̄n0 weakly converges to some µ0 in P(R) and that µ0 has �nite

second moment. Then, µ̄n weakly converges in probability to µ, solution to equation (1.4), as n

tends to in�nity.

Many results equivalent to Theorem 1.2 are available in literature: the di�erent statements

depend not only on the hypothesis required on system (1.1) but also on the topological space

where the convergence is established. Moreover, it is possible to work in topologies that can

be weaker or stronger than the weak convergence. We refer to [56, 98] for two very di�erent

approaches and again to Chapter 5 for a very weak notion of convergence.

Theorem 1.2 represents a Law of Large Numbers, yet many other results for system (1.1) are

available in the form of Central Limit Theorems or Large Deviation Principles. The complete

literature is di�cult to cite, we refer to [20, 45, 95] for Central Limit Theorems and to

[99, 44, 23, 29] for Large Deviation Principles and to all the references therein. In this

manuscript, we do not address the study of �uctuations, but we will establish a result in the

spirit of Large Deviations in Chapter 2.

1.2. The non-linear process description. Another key property related to weakly in-

teracting particle systems that has allowed a deep understanding of systems such as (1.1), is

the possibility to construct a stochastic process whose time-marginal laws are precisely given

by {µt}t∈[0,T ], solution to equation (1.4).
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The process x = {xt}t∈[0,T ], originally introduced by McKean [81], is de�ned as the solution

to the following non-linear stochastic di�erential equationdxt = F (xt)dt+
∫
R Γ(x, y)µt(dx)dt+ σ(xt)dBt,

µt = L(xt),
(1.5)

for t ∈ [0, T ] and where the initial condition x0 is some random variable with law L(x0) = µ0

and B is a Brownian motion independent of x0.

The precise relation between x solution to (1.5) and µ solution to equation (1.4), is given

in the next theorem.

Theorem 1.3 (Theorem 1.1 of [98]). There exists a unique solution to equation (1.5). If

µ ∈ P(C([0, T ],R)) denotes its law, then its time-marginal projection µ· = {µt}t∈[0,T ], seen as

an element of C([0, T ],P(R)), solves the weak formulation of equation (1.4).

The duality between µ and µ· � and the one between x and µ· � will follow us throughout

many parts of the manuscript. It is the same duality that exists between µ̄n ∈ P(C([0, T ],R))

and µ̄n· ∈ C([0, T ],P(R)), recall the de�nition in (1.2). Depending on the context, it will be

more suitable to work in one space, and its consequent topology, or in the other.

1.3. The coupling method and propagation of chaos. Starting from the well-known

work of Sznitman on propagation of chaos [98], many subsequent papers on interacting particles

(see [85, 83] and references therein) have been using the so-called coupling method as technique

to show the proximity of system (1.1) to n independent copies of the non-linear process (1.5)

and, in particular, a Law of Large Numbers equivalent to Theorem 1.2.

The method consists in coupling the trajectories of system (1.1), to n IID copies of the non-

linear process solving (1.5) by choosing the initial conditions to be independent and identically

distributed. The coupling is then made by taking the same Brownian motions and the same

initial conditions for both systems. Under the only hypothesis of boundness and uniformly

Lipschitz continuity on the coe�cients in equation (1.1), it is possible to prove that the two

systems are close trajectory per trajectory. This in turn implies the convergence of the empirical

measure µ̄n to the solution to the McKean-Vlasov equation (1.4).

On the one hand, the coupling method is extremely powerful since it asks very little on

the dynamics and require no �nite moment on µ0. On the other hand, it forces to assume

independent and identically distributed initial conditions. This requirement is far from being

innocent � as stressed by Sznitman himself in [98, Remark 1.3] � and it will be a crucial point of

investigation in our �rst attempts to the study of interacting particles on graphs. As explained

in Subsection 4.1, there are situations in which we do not want to assume IID initial conditions

since, e.g., they can hide relevant properties of the underlying graph sequence as connectedness.

This point of view, originally presented in [36], is further tackled in Chapter 2.
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The original idea of considering a chaotic initial datum stems from Boltzmann equation

and notably by the works of the physicists Ka£ and McKean [63, 81]. Suppose that at time 0

the particles are independent and identically distributed, one is interested in understanding if

the initial chaoticity can be propagated in time, eventually by taking a system with more and

more particles. Indeed, the interaction between two particles in the �nite system is weak � of

order O(n−1) � and it is plausible to prove that the statistical dependence between them goes

to zero as the size of the system grows � at least up to some �nite time. This argument can

be obviously extended to any �nite number of particles and yields the propagation of chaos

related to their joint distribution.

The work of Sznitman [98] puts on a mathematical basis the propagation of chaos concepts

coming from the insights originally given by Ka£ and McKean. Even though very little progress

has been achieved in the case of Boltzmann equation (see, e.g., [83] and references therein),

this strategy has proven to be well suited for other general stochastic mean-�eld systems as the

ones considered here.

In [98], it is proven the following result on the joint law of particles solving (1.1).

Theorem 1.4. Suppose that {xi0}i∈N is a sequence of independent and identically distributed

random variables with law µ0. Then µ̄
n weakly converges in probability to µ, the law of x solving

equation (1.5). Furthermore, for every k ∈ N it holds that

lim
n→∞

L
(
x1,n, . . . , xk,n

)
=

k∏
j=1

L(x) =
k∏
j=1

µ. (1.6)

Remark 1.5. An important consequence of taking independent and identically distributed

initial conditions is the exchangeability property of system (1.1) � or symmetry, as expressed

in [98]. Under such assumption, the particles in (1.1) are exchangeable random variables and

their joint law is thus invariant under permutation of the labels. In particular,

L
(
x1,n, . . . , xk,n

)
= L

(
xσ(1),n, . . . , xσ(k),n

)
for every 2 ≤ k ≤ n and every σ permutation on k elements.

Exchangeability turns out to be a crucial property when studying the convergence of em-

pirical measures for systems de�ned on exchangeable graph sequences. For these sequences, a

notion of limit is given by graphon theory � that we recall in the next section � and an explicit

description exists.

We refer to Subsections 4.1 and 4.2 for a more detailed viewpoint on both limitations and

bene�ts of taking IID initial conditions. In Chapter 3, the exchangeability property coming

from the coupling method and exchangeable random graphs is fully exploited by means of graph

limits theory. A propagation of chaos result in the spirit of Theorem 1.4 is also established.
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2. Graph sequences and graphons

In the last twenty years, there has been a great interest in graph theory and notably con-

cerning suitable notions of convergence. Several attempts [74, 16] have been made to �nd

a unifying theory of convergence for general (possibly random) graph sequences. Despite the

recent progress [16, 17, 18], the two extremal regimes, represented by dense and sparse graphs

respectively, require di�erent mathematical tools and seem to provide diverse, although com-

plementary, descriptions.

This manuscript does not investigate the sparse regime � we refer to the only two references

available so far [91, 70] and to the perspectives presented in Chapter 6. Nonetheless, it

addresses intermediate regimes between the dense case, where the connections are in magnitude

equal to the square of the number of particles, and very diluted graph sequences, where almost

every site has a diverging number of connections, this divergence being possibly very slow.

The following subsections present the general notation for graph sequences used throughout

the manuscript. We also give a fair introduction to the results and insights of graph limits

theory which will be used in many parts of the manuscript. For instance, Chapter 3 adopts

many of the ingredients recalled here.

We work with both random and deterministic graph sequences. We point out that through-

out this thesis, a sequence of graphs will always be considered convergent in the sense of graph

limits theory [73, 74].

2.1. A general graph sequence and dilution parameters. A general graph sequence

is denoted by ξ = {ξ(n)}n∈N. For every n ∈ N, ξ(n) represents a directed graph (V (n), E(n))

where V (n) denotes the vertex set, always composed of n vertices labeled from 1 to n, and

E(n) ⊂ V (n) × V (n) represents the edge set. Particle i ∈ V (n) points to particle j ∈ V (n) if and

only if the couple (i, j) belongs to E(n).

We always consider labeled graph sequences and denote the labels by the letters i, j and k.

The notation [n] := {1, . . . , n} is often adopted, so that V (n) = [n] for every n ∈ N.

The adjacency matrix of a graph ξ(n) is denoted by ξ(n) itself and it is given by the n × n
square matrix {ξ(n)

ij }i,j∈[n], where ξ
(n)
ij is a binary variable for all i, j = 1, . . . , n and takes value

1 whenever i points to j and 0 otherwise. From the adjacency matrix ξ(n), the edge set can be

coherently de�ned by

E(n) =
{

(i, j) ∈ V (n) × V (n) : ξ
(n)
ij 6= 0

}
.

Occasionally, we will consider multigraphs, i.e., allowing for multiedges between vertices,

with consequent notation ξ
(n)
ij ∈ {0, 1, 2, . . . } and ignoring the edge set E(n). In the whole

manuscript, sel�oops do not play any relevant role and can be ignored: we may set ξ(n)
ii = 0 for

every n ∈ N, i ∈ [n] and any graph sequence.

Whenever the graph sequences ξ is random, we denote its probability measure by P. In most

instances, we will suppose the randomness present in the graph sequences to be independent
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of the one in the initial conditions � and always independent of the Brownian motions � so

that we will actually work with P×P. However, there are cases in which the initial conditions

may be taken dependent of the graph structure and we will use P to denote the conditional

probability with respect to P.

The most common example of random graph sequence is given by Erd®s-Rényi random

graphs. A possible de�nition is given in the next example.

Symmetric Erd®s-Rényi random graphs. For n ∈ N, let pn ∈ [0, 1]. De�ne ξ(n) by

ξ
(n)
ij ∼ Ber(pn), independently for 1 ≤ i < j ≤ n,

meaning that ξ(n)
ij is a Bernoulli random variables of parameter pn. If we set ξ

(n)
ji = ξ

(n)
ij for every

i, j ∈ [n], this means that particle i is connected to particle j with probability pn. In particular,

{ξ(n)
ij }1≤i<j≤n are IID random variables. We say that ξ(n) is a symmetric Erd®s-Rényi random

graph with parameter pn and, more generally, that ξ = {ξ(n)}n∈N is a sequence of symmetric

Erd®s-Rényi random graphs with parameters {pn}n∈N.
We will see that such sequence is highly homogeneous, see the next Remark 2.1. An equiv-

alent construction by means of W -random graphs is given in the next subsection. �

For a general random graph sequence ξ = {ξ(n)}n∈N, we say that ξ is symmetric, corre-

sponding to undirected graphs, when for every n and P-almost surely

ξ
(n)
ij = ξ

(n)
ji , 1 ≤ i < j ≤ n.

Furthermore, we say that ξ = {ξ(n)}n∈N is

• dense, when the expected number of edges is of order n2, i.e.,

E
[∣∣E(n)

∣∣] = Θ(n2);

• sparse, when the expected number of edges is sublinear in n, i.e.,

E
[∣∣E(n)

∣∣] = O(n).

• in the intermediate regime if there exists a sequence {pn}n∈N ⊂ (0, 1] such that

lim
n→∞

E
[∣∣E(n)

∣∣]
n2pn

= p, (1.7)

for some p ∈ (0, 1]. The coe�cient pn is called the dilution parameter associated to

ξ(n). In the literature, it is sometime referred to as the sparsity parameter.

Observe that dense and sparse graph sequences are apriori included in the intermediate regime

since no conditions are required on the asymptotic of pn. To a dense sequence it usually

corresponds pn = O(1) and pn = O(n−1) to a sparse sequence. In other words, the dilution

parameter pn represents the average edge density in the graph ξ(n) and, equivalently, npn
represents the degree of a vertex taken uniformly at random in the vertex set V (n). For instance,

a sequence which is neither dense nor sparse, is in the intermediate regime if the average mean
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degree satis�es 1 � npn � n in the limit for large n. In the sequel, we will exclude sparse

graph sequences when considering the intermediate regimes.

Focusing on equation (1.7), one can always take p = 1, e.g., by taking pn = 1
n2 E

∣∣E(n)
∣∣ for

every n. However, an arbitrary p ∈ (0, 1] turns out to more suitable when the graph sequence

is dense. In this last case, we take pn ≡ 1 and p represents the limit average degree density.

It is not di�cult to see that a sequence of Erd®s-Rényi random graphs with parameters

{pn}n∈N satis�es equation (1.7) with the same choice of dilution parameters and with p = 1.

We usually consider graph sequences where the degrees have all the same magnitude with

respect to the number of vertices. However, this condition can be relaxed by means of a suitable

renormalization of the interaction between the particles. We have preferred to keep the key

ideas as clear as possible, and to present further generalizations as possible developments of

the presented works. We refer to the perspectives proposed in Chapter 6.

Remark 2.1. Throughout the manuscript, we often use the notion of homogeneous and

inhomogeneous for a general graph sequence. We keep in mind that the property of being

homogeneous is related to having good mixing properties, as the one later expressed in (1.14),

and to the notion of mean-�eld limit, recall equation (1.4). Loosely speaking, the most homo-

geneous graph sequence consists of complete graphs, these last ones being the graphs on which

system (1.1) is implicitly de�ned for every n.

In the next subsection we will see how it is possible to characterize a notion of inhomogeneity

by means of graph limits theory. We refer to Remark 3.1.

2.2. Graphons. A general graph theory with a notion of convergence that is coherent with

most of the graph parameters � clique size, perfect matchings, spectrum, etc. � is available for

dense graphs starting from the seminal work of Lovász and Szegedi [74]. Whether this theory,

also known as graphon theory, is intrinsically related to weakly interacting particle systems,

has been a constant debate during the last few years. As it will be clear in Chapter 3, graph

limits theory is strictly related to the convergence of empirical measures for particle systems

on graphs.

We present here a few ingredients that will be useful throughout our analysis and refer to

Chapter 3 and the complete monograph [73] for further information. The reader who is familiar

with the graphon framework can skip this subsection.

There are many equivalent ways to introduce the notion of graph convergence and the

corresponding graph limits, known in the literature as graphons. Since we do not need all the

details coming from the original de�nition of graph homomorphisms, we rather give a few key

concepts from the analytic viewpoint, the one we will mostly adopt.

The major di�erence with respect to the previous subsection is given by the fact that we

are now focusing on dense symmetric graph sequences and always assuming pn ≡ 1. We are not

interested in pushing the graph analysis close to the sparse regime, but rather in understanding

how the degree distribution among the vertices a�ects the particle dynamics. In this sense,
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Figure 1.1. An adjacency matrix and its pixel picture. Image from [73, Chapter 1].

what interests us � and a substantial part of graph limits theory � is a theory for describing

the underlying structure of a graph sequence and de�ning a suitable notion of inhomogeneity.

Consider a deterministic graph sequence {ξ(n)}n∈N. In order to understand the inhomo-

geneity present in ξ(n) and to give a meaning to limn ξ
(n), we �rst need to cast the underlying

structure present in ξ(n) to an object that we can compare for di�erent graphs and somewhat

independent of the number of vertices. This is usually done by extracting the pixel picture.

The main idea is to represent the adjacency matrix of a �nite graph ξ with n vertices,

as a black and white grid composed of n2 pixels of the same size, scaled in the unit square

[0, 1] × [0, 1] ⊂ R2. By coloring the pixel corresponding to the i-th row and j-th column of

the grid if and only if ξij = 1, we end up with a {0, 1}-valued function with domain [0, 1]2. In

other words, to every �nite graph ξ with n vertices, we can associate a symmetric measurable

function Wξ : [0, 1]2 → {0, 1} de�ned by

Wξ(x, y) :=
n∑

i,j=1

ξij 1{ i−1
n
<x≤ i

n}(x)1{ j−1
n
<x≤ j

n}(y), for x, y ∈ [0, 1]. (1.8)

See Figure 1.1 for a concrete example. Such a function is said to be a step-graphon and belongs

to the general space

W0 = {W : [0, 1]2 → [0, 1] : measurable and symmetric}

usually called the space of labeled graphons. We recall that a function W : [0, 1]2 → [0, 1] is

symmetric if is such that W (x, y) = W (y, x) for almost every (a.e.) x and y in [0, 1]. Observe

that we tacitly consider two functions in W0 to be equal if the set where they di�er is of

Lebesgue measure zero.

De�ne the space of kernels byW = {W : [0, 1]2 → R : bounded, measurable and symmetric}.
Clearly, a labeled graphon is a kernel and W0 ⊂ W . We now de�ne a distance on W .
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For every two kernels W,V ∈ W , let

d�(W,V ) := max
S,T⊂[0,1]

∣∣∣∣∫
S×T

(W (x, y)− V (x, y)) dx dy

∣∣∣∣ (1.9)

where the maximum is taken over all measurable subsets S and T of [0, 1]. Observe that the

right-hand side of (1.9) de�nes a norm ‖·‖� on W � usually called the cut-norm � so that

d�(W,V ) = ‖W − V ‖� and (W , ‖·‖�) is a normed space.

We can now measure the distance between two graphs by comparing their distance as step-

graphons in W0 ⊂ W , i.e., if ξ and ξ′ are two graphs, then we set d�(ξ, ξ′) := d�(Wξ,Wξ′).

Loosely speaking, Wξ contains some structure of ξ that we can compare with the one of other

graphs. Nonetheless, Wξ depends on the particular labeling of ξ and, if ξ′ is a relabeling of ξ,

then the associated step-graphons Wξ and Wξ′ do not necessarily coincide. Although ξ and ξ′

are equal as unlabeled graphs, their d�-distance is, in general, greater than zero.

Remark 2.2. The notion of structure we are thinking of is independent of how the vertices

are ordered and, in particular, it has to be invariant under relabeling. Even if at a �rst sight

this may seem poor at an abstract level � where the labels might be important � we will see

in Chapter 3 that this notion is very natural. For instance, when we consider objects which

are invariant under permutations, as joint distributions of exchangeable particles and empirical

measures, it is the proper notion of graph structure to be taken.

A way to overcome the label dependency inWξ, is to consider a suitable equivalence relation

on the space W . Consider the cut-distance de�ned as

δ�(W,V ) := min
ϕ∈S[0,1]

d�(W,V ϕ), (1.10)

where the minimum ranges over S[0,1] the space of invertible measure preserving maps from

[0, 1] into itself and where V ϕ(x, y) := V (ϕ(x), ϕ(y)) for a.e. x, y ∈ [0, 1]. Observe that an

element in S[0,1] represents a relabeling of the interval [0, 1].

Clearly, if one de�nes δ�(ξ, ξ′) := δ�(Wξ,Wξ′) for every two graphs ξ and ξ′, then δ�(ξ, ξ′) =

0 whenever ξ′ is a relabeling of ξ. It is readily not the only case when this happens since the

space S[0,1] is much bigger than �nite permutations. More generally, we say that two graphs

are equal in structure if their δ�-distance is zero.

It turns out that this notion is appropriate and allows to describe all the possible graph

limits. Observe that two graphs do not need to have the same number of vertices to be equal

in structure, e.g., complete graphs have d�-distance (and thus cut-distance) equal to zero no

matter the number of nodes. See also the example in Figure 1.2.

The quotient space W̃0 obtained fromW0 by identifying two elements with δ�-distance zero

is called the space of unlabeled graphons1 and represents all the possible graph limits. Indeed,

1Or, simply, the space of graphons. In order to avoid any possible confusion, we always explicit whether a
graphon is labeled or unlabeled.
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Figure 1.2. The graphon in the picture represents a graph with two, disjoint
and fully connected components. It is also the step-graphon associated to the
graph with two vertices connected by a single link and no self-loop.

a sequence of graphs {ξ(n)}n∈N is said to be convergent if there exists W ∈ W̃0 such that

lim
n→∞

δ�(Wξ(n) ,W ) = 0. (1.11)

A well-known result of graph limits theory says that (W̃0, δ�) is a compact metric space. In

particular, we can de�ne the notion of convergence in probability � and, more generally, in

distribution � for a random graph sequence, see, e.g., [14]. The convergence expressed in

(1.11), as other equivalent de�nitions, is a crucial notion that will be exploited in Chapter 3.

We end up this brief introduction with an important example that shows how it is possible to

construct an exchangeable random graph with a prescribed structure and an arbitrary number

of nodes.

W-random graphs. Let W be a graphon in W0 and {U i}i∈N a sequence of IID uniform

random variables. For every n ∈ N, de�ne the random graph ξ(n) by

ξ(n) ∼ Ber
(
W (U i, U j)

)
, independently for 1 ≤ i < j ≤ n. (1.12)

Set ξ(n)
ji = ξ

(n)
ij for every i, j = 1, . . . , n. For every n ∈ N, the graph ξ(n) is called W -random

graph. If W is not constantly zero, this gives rise to a dense symmetric graph sequence.

Observe that the underlying structure of ξ(n) does not depend on the equivalence class of W in

W̃0. Namely, if ξ̄(n) is another realization from some W̄ in the class of W , then [73, Exercice

10.20]

δ�(ξ(n), ξ̄(n)) ≤ 22 log−1 n, with probability at least 1− 21−n.

In particular, it is well-known that the sequence ξ(n) converges P-almost surely toW in W̃0. �

Observe that W -random graphs generalize the de�nition of symmetric Erd®s-Rényi random

graphs by allowing for a di�erent probability for every link in the graph. In particular, the

Erd®s-Rényi case is recovered by taking a constant W .
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Remark 2.3. We are now able to de�ne a notion of homogeneity. A sequence of graphs is

said to be homogeneous whenever it converges to a deterministic constant graphon, and inhomo-

geneous when it is not the case. The previous example provides a way to construct homogeneous

sequences by simply considering W -random graphs with a constant W . In particular, this im-

plies that Erd®s-Rényi random graphs are homogeneous, as well as the complete graph2. In

the literature, a sequence which converges to a constant graphon is known as pseudo-random

graph sequence or quasirandom graph sequence. It has many equivalent characterization, see

the original work [28] and the recent result [5]. With a slight abuse of notation, we use the

adjective pseudo-random for random graph sequences as well.

3. Interacting particles on graphs

Let {ξ(n)}n∈N be a graph sequence which admits the dilution parameters {pn}n∈N ⊂ [0, 1],

recall de�nition (1.7). For every n ∈ N, a weakly interacting particle system on the graph ξ(n)

is given by the solution to the following system on Rn:

dxi,nt = F (xi,nt )dt+
1

n

n∑
j=1

ξ
(n)
ij

pn
Γ(xi,nt , x

j,n
t )dt+ σ(xi,nt )dBi

t, (1.13)

for i = 1, . . . , n and t ∈ [0, T ]. The functions F, Γ and σ are the same as the ones in equation

(1.1), as well as the initial conditions and Brownian motions.

The crucial di�erence with (1.1) is represented by the weights {ξ(n)
ij /pn}j=1,...,n appearing in

the interaction term. For some i = 1, . . . , n, particle i is not interacting with all the others as

before, but only with the fraction of them given by {j = 1, . . . , n : ξ
(n)
ij 6= 0}. In other words,

each particle is represented in ξ(n) by a vertex and its dynamics in (1.13) is in�uenced only by

the particles at which it is pointing to in the underlying graph. In case ξ(n) is symmetric, the

interaction in the dynamics is mutual.

Observe that whenever ξ(n)
ij = 0 = ξ

(n)
ji , particles i and j are not directly interacting with

each other but, if they belong to the same connected component in ξ(n), they are still dependent

(in probabilistic sense) of one another.

3.1. Relation with the mean-�eld model. In equation (1.13), one can recover the

mean-�eld case (1.1) by taking ξ(n) to be the complete graph for each n and the dilution

parameter pn constantly equal to 1. As for the mean-�eld case, one is interested in studying

the empirical measure associated to system (1.13). We now denote it by

µn :=
1

n

n∑
j=1

δxj,n .

We want to investigate the possible limits of µn, if any exists, as n tends to in�nity. Recall that

the empirical measure of the mean-�eld case (1.1), converges to the mean-�eld limit µ, solution

to equation (1.4).

2which is again a W -random graph with graphon W constantly equal to 1.
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Contrary to the derivation of equation (1.4), one is faced with the lack of a closed form for

µn. Indeed, proceeding as in Subsection 1.1 yields the following expression for µn

〈µnt , f〉 = 〈µn0 , f〉+

∫ t

0

〈µns , F ∂xf + σ2 ∂2
xf〉ds+

∫ t

0

1

n2

n∑
i,j=1

ξ(n)

pn
Γ(xi,ns , x

j,n
s )ds+Mn

s .

One can observe that the previous equation can be rewritten as

〈µnt , f〉 = mean-�eld equation +

∫ t

0

1

n2

n∑
i,j=1

(
ξ(n)

pn
− 1

)
Γ(xi,ns , x

j,n
s )ds

where mean-�eld equation stands for the equation satis�ed by 〈µ̄nt , f〉. A �rst step in under-

standing for which sequences ξ(n), the empirical measure converges to the mean-�eld limit µ,

can be made by studying the term∫ t

0

1

n2

n∑
i,j=1

(
ξ(n)

pn
− 1

)
Γ(xi,ns , x

j,n
s )ds.

If it goes to zero uniformly in t ∈ [0, T ] as n tends to in�nity, then the limit of µn satis�es

the McKean-Vlasov equation (1.4), i.e., we expect µn to converge to the mean-�eld limit µ.

However, all the particles are dependent on the graph ξ(n) and it is not clear how to control

such perturbation.

A part of the literature has focused on methods to decouple the dynamics of the particles

from the graph structure. In particular, the �rst results look for homogeneity conditions on the

sequence {ξ(n)}n∈N, to show that quantities such as

1

n2

n∑
i,j=1

(
ξ(n)

pn
− 1

)
cij (1.14)

converge to zero for a suitable class of coe�cients cij, possibly independent of {ξ(n)}n∈N.
Depending on the setting one is working with, the methods to tackle expressions as (1.14)

vary as well: we refer to Chapters 2 and 4 for two explicit, and rather di�erent, techniques.

Subsection 4.1 underlines how the initial conditions can strongly in�uence the choice of a

suitable decoupling method.

Remark 3.1. On the one hand, the previous strategy yields the mean-�eld limit (1.4)

whenever the graph sequence is in some sense homogeneous, i.e., such that quantities as (1.14)

converge to zero for a large class of coe�cients cij. On the other hand, it does not help in

understanding whether a di�erent limit exists for a general � possibly inhomogeneous � graph

sequence. This last issue is tackled in the next subsection and further discussed in Subsection

4.2. In Chapters 3 and 4, we will see that the notion of homogeneity given in Remark 2.3, is

equivalent to requiring (1.14) to go to zero for a precise choice of the coe�cients cij.

3.2. Inhomogeneous behaviors. Some progress in the direction of inhomogeneous graph

sequences has been made in [6, 27, 77, 90]. These works consider graph sequences which
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converge � in a topology that depends case by case � to labeled deterministic graphons and

show that the empirical measure µn is suitably described, as n tends to in�nity, by an object

depending on the corresponding graph limit.

We brie�y present the inhomogeneous non-linear process proposed in the cited works and

the main ideas behind its derivation. This description will be addressed in Subsection 4.2 and

represents the main object of study in Chapter 3.

Fix a labeled graphon W . For n ∈ N and i = 1, . . . , n, we represent particle i in system

(1.13) as a small interval in [0, 1] of length 1/n, i.e., by
(
(i− 1)/n, i/n

]
⊂ [0, 1]. The n particles

cover the unit interval and maintain the same ordering. In the limit for n which tends to

in�nity, the length of each interval shortens and the number of particles grows: we end up by

associating to every particle a label, i.e., some x ∈ [0, 1], instead of an index i ∈ N. We will

often call the unit interval [0, 1], the space of labels.

In the resulting in�nite system, the particles associated to x and y in [0, 1] are connected with

probability W (x, y). In this sense, the function W : [0, 1]2 → [0, 1] represents the connection

structure of an in�nite particle system indexed by [0, 1]. Observe that the unit interval [0, 1]

and a step-graphon can represent a �nite number of particles on a labeled graph: in this case,

we use the n sub-intervals in [0, 1] previously de�ned, and the step graphon associated to the

labeled graph � recall de�nition (1.8) � to represent the interactions among them.

The previous procedure describes the interaction of a (possibly in�nite) system of particles,

we now see how to de�ne a dynamics on it. As n tends to in�nity, we are able to guess the limit

of equation (1.13), provided that the asymptotic of ξ(n) is suitably captured by the graphon W .

Suppose that ξ(n) is a W -random graph, recall the de�nition (1.12). The n particles

{xi,n}i=1,...,n solves system (1.13), which is now given by

dxi,nt = F (xi,nt )dt+
1

n

n∑
j=1

W (Ui, Uj) Γ(xi,nt , x
j,n
t )dt+ σ(xi,nt )dBi

t, i = 1, . . . , n

where {U i}i∈N is an IID sequence of uniform random variables in [0, 1]. As n tends to in�nity,

this leads to the collection of non-linear processes {θx}x∈[0,1] which solve

dθxt = F (θxt )dt+

∫
[0,1]

W (x, y)

∫
R

Γ(θxt , θ
′)µyt (dθ

′) dy dt+ σ(θt)dB
x
t , x ∈ [0, 1] (1.15)

where µxt is the law of θx at time t ∈ [0, T ]. The initial conditions in equation (1.15) are given

by an in�nite vector {θx0}x∈[0,1] where θx0 follows some law µx0 ∈ P(R), for every x ∈ [0, 1].

Observe that
∫

[0,1]
µx0dx = µ0 is equal to the weak limit of µn0 . The sequence {Bx}x∈[0,1] consists

of IID Brownian motions independent of the initial conditions. We point out that the label x

in equation (1.15) has no physical meaning and there is no dynamics along it.
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Existence and uniqueness for equation (1.15) can be obtained by extending known tech-

niques to take the label variable x into account and with no assumption on W but measurabil-

ity. We refer to [6, 79] and to Chapter 3 where a non-linear Fokker-Planck equation associated

to the law of the process (1.15) is explicitly derived.

Under suitable hypothesis on the initial conditions and the regularity of W , the works

[6, 27, 77, 90] prove that, if the sequence of graphs {ξ(n)}n∈N converges � in some sense

depending case by case � to the labeled graphon W , then the empirical measure µn converges

to the probability measure

µ̄ =

∫
[0,1]

µx dx, (1.16)

where µx is the law of θx solving (1.15) for x ∈ [0, 1].

The collection {θx}x∈[0,1] describes a possible inhomogeneous behavior for the asymptotic

of system (1.13), recall Remark 1.1 and Remark 3.1. Nonetheless, we emphasize that the cited

results are far from giving a satisfactory description of (1.13) for a general sequence ξ(n), and do

not completely exploit the properties of (1.15). For instance, even though the limit µ̄ in (1.16)

is independent of the labeling of {θx} � and thus of the equivalence class of W in W̃0 � existing

results do not address this important aspect. Furthermore, some regularity is demanded on W

with the consequent di�culty to work in W̃0. These issues are discussed in Subsection 4.2.

4. Motivations

This section presents the motivations behind the results coming along with this manuscript.

4.1. The role of initial conditions. We want to emphasize how little innocent the as-

sumption of IID initial conditions can be, in the context of particle systems on graph sequences.

Consider the following theorem taken from [36], where the authors pointed out the issue for

the �rst time.

Theorem 4.1 (Theorem 1.1 and Corollary 1.2 of [36]). Consider system (1.13) with inde-

pendent and identically distributed initial conditions sampled from µ0. Suppose that the graph

sequence {ξ(n)}n∈N and the dilution parameter pn satisfy

lim
n→∞

sup
i=1,...,n

∣∣∣∣∣ 1n
n∑
j=1

ξ
(n)
ij

pn
− 1

∣∣∣∣∣ = 0 (1.17)

and

lim
n→∞

npn =∞. (1.18)

Then the empirical measure µn of (1.13) weakly converges in probability to µ solution to equation

(1.4), as n tends to in�nity.

We �rst observe that conditions (1.17) and (1.18) mean that ξ(n) is in an intermediate

regime and has a diverging number of connections per site. More precisely, a graph sequence

satis�es equation (1.17) if and only if the normalized degree density of each vertex, given by
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1
n

∑
j ξ

(n)
ij /pn for vertex i, converges to 1 as n tends to in�nity. In other words, condition (1.17)

is a homogeneity requirement on the sequence ξ(n) that addresses the degree density in the

limit for n which tends to in�nity. Roughly speaking, Theorem 4.1 says that the empirical

measure µn converges to the mean �eld limit µ whenever the underlying graph sequence is in

the intermediate regime and each vertex has precisely npn connections as n tends to in�nity.

Consider the sequence of graphs where two vertices are connected if and only if their labels

have the same parity. This sequence satis�es equation (1.17) with pn ≡ 1/2 and, for every

n ∈ N, it is made of two complete graphs with no edge in common. In particular, this shows

that condition (1.17) does not require the graph ξ(n) to be connected. However, Theorem 4.1

implies that system (1.13) de�ned on such sequence behaves as the mean-�eld system (1.1).

How can a system on a disconnected graph behave like the one on a fully connected component?

The apparent contradiction is explained if one observes that, by taking independent and

identically distributed initial conditions, the joint law of the system (1.13) is the same in each

connected component. Hence, the law of the empirical measure µn cannot distinguish the

di�erent components in the graph and the limit of µn does not depend on the connectedness of

the underlying sequence.

As explicitly written in [36], the result of Theorem 4.1 is unsatisfactory with regards to

applications and hides many of the graph properties related to the sequence ξ(n). In particular,

it leaves the reader with the following unsolved3 issues:

(1) Is it possible to prove a Law of Large Numbers similar to Theorem 4.1 without asking

a chaotic initial datum? For which graph sequences?

(2) Which homogeneity condition on the graph sequence {ξ(n)}n∈N can replace equation

(1.17) for general initial conditions?

The joint work with Helge Dietert and Giambattista Giacomin [31], presented in Chapter

2, partially answers the �rst question. By focusing on general Erd®s-Rényi random graph

sequences in the intermediate regimes, we are able to prove that the empirical measure of

system (1.13) converges to the mean-�eld limit for almost every realization. We only require

the weak convergence of µn0 to µ0 and a mild condition on the divergence of the average mean

degree in ξ(n). Overall, we show that Erd®s-Rényi random graphs are highly homogeneous and

yield the mean-�eld limit for (1.13).

The second question is completely solved in the case of dense graph sequences and interacting

oscillators, in the joint work with Gianmarco Bet and Francesca Nardi [11], see Chapter 3. The

work [30], presented in Chapter 4, partially answers (2) for graph sequences in the intermediate

regimes, but it concerns the Kuramoto model only.

3It appears that all the results in the literature on stochastic interacting particles on graphs, with the exception
of [30, 31], require independent initial conditions.
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The cited works [11, 30] exploit distances in the space of graphons and show that the

homogeneous condition sought in (2) coincide with the notion of homogeneous graph sequence

given in Remark 2.3.

4.2. Inhomogeneous behavior versus mean-�eld behavior. In Subsection 3.2, we

have seen that a description for µn in the case of an inhomogeneous graph sequence is available.

Namely, it is given by extending the classical non-linear process (1.5) to a collection of processes

indexed by [0, 1] and coupled by means of a labeled graphon W , recall equation (1.15). We

have also pointed out that the limit measure µ̄ de�ned by (1.16) exists for every W ∈ W0 and

is independent of the particular labeling of {θx}x∈[0,1]. In other words, although existing proofs

seem to require regular labeled graphons, the limit description depends on the equivalent class

ofW in W̃0 only, i.e., on an unlabeled graphon. Furthermore, the graph convergence considered

in [6, 27, 77, 82, 90] is always required to be in stronger topologies than the one in W̃0.

Consider a sequence ξ(n) that converges in W̃0 to some graphon W . We want to understand

the following issues:

(1) Is it possible to prove that the empirical measure µn converges to µ̄?

(2) For whichW , is the limit of µn mean-�eld for n which tends to in�nity? More precisely,

under which hypothesis on the sequence {ξ(n)}n∈N, µn is approximately described by

the mean-�eld limit µ solving equation (1.4) as n diverges?

(3) What can be said if ξ(n) is a random sequence which converges, e.g., in probability, to

a random W ∈ W̃0?

Suppose that we can positively answer to (1). As we will see in Chapter 3, µ̄ solves the weak

formulation of the following Fokker-Planck equation weighted by the graphon W

∂tµ̄t(θ) =
1

2
∂2
θ (σ2(θ)µ̄t(θ))− ∂θ (F (θ)µ̄t(θ))

− ∂θ
[∫

[0,1]2
W (x, y)µxt (θ)

∫
R

Γ(θ, θ′)µyt (θ
′)dθ′ dy dx

]
.

(1.19)

In particular, equation (1.19) is � formally! � the mean-�eld limit (1.4), if and only if W is

constant4. This seems to answer (2): only homogeneous graph sequences, as in Remark 3.1,

yield the mean-�eld limit. However, even though the equations satis�ed by µ and µ̄ are formally

di�erent, this does not mean that µ and µ̄ are di�erent as probability measures.

Within this perspective, question (2) should be reformulated as:

(2*) For which graphons are µ̄ and µ close as probability measures?

A satisfactory understanding of the solutions to equation (1.19) is missing. In particular, we

cannot apriori exclude the possibility that two di�erent unlabeled graphons yield two solutions

to (1.19) which are close as probability measures � and one can probably build up a model

with this property. Nonetheless, we expect that if two graphons are close in the cut-distance,

4the classical mean-�eld limit is obtained for W ≡ 1, but whenever W ≡ p ∈ [0, 1] it su�ces to multiply by p
the interaction in system (1.1) to get (1.19).
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then the two solutions to equation (1.19) are close in a suitable topology. Pushing the analysis

further, we could try to understand whether there exists a metric DT on P(C([0, T ],R)), such

that the map

Ψ : (W̃0, δ�)→ (P(C([0, T ],R)), DT )

W 7→ µ̄ solution to (1.19)
(1.20)

is continuous and, hence, partially answering to (2*).

In the case of interacting oscillators, i.e., particles de�ned on the one-dimensional torus

rather than R, we can give a positive answer to (1) and we are able to exhibit a nice control

on (1.19). Notably, we prove that the map Ψ in (1.20) is Hölder-continuous with respect to

a natural distance in P(C([0, T ],R)), i.e., to the Wasserstein metric. As a byproduct, we can

estimate the distance between µ̄ and µ, by estimating the distance between W and a constant

graphon in W̃0. More generally, we show that if two graphons are close in the cut-distance, the

resulting particle system behaviors will be similar as the size of the systems tends to in�nity.

Observe that if the map (1.20) is continuous, it is possible to work with random elements

in W̃0 and their push-forward in P(C([0, T ],R)), DT ). Notably, we can tackle the issue raised

in (3). By extending the classical graph convergence to the convergence in probability in

W̃0, the limit description (1.19) is allowed to depend on a random graphon W . This setting

appears to be new in the literature and demands for further investigations. For instance, the

previous question (2*) needs to be formulated once again and it is not apriori clear which notion

of mean-�eld approximation should be taken into account. This issue, together with related

consequences, represents the main object of study in Chapter 3.

4.3. Long-time dynamics. The long-time dynamics associated to an interacting particle

system is one of the most interesting domains of current research. It can be hardly predicted by

numerical simulations, yet it seems crucial to explain macroscopic phenomena appearing due

to the �niteness of real-world systems.

To the author's knowledge, very little is known concerning the long-time behavior of in-

teracting particles described by stochastic di�erential equations and only two results [10, 78],

along with [30] presented in Chapter 4 are available. The cited works address the long-time dy-

namics of a well-known model for describing synchronization phenomena, the Kuramoto model

[68, 69, 96, 71].

The Kuramoto model is a system of n interacting particles on the n-dimensional torus

Tn := (R/2πZ)n where each oscillator is rotating at some speed and is attracted by the others.

Depending on a parameter which regulates the coupling strength, the model can show both

synchronized states and incoherent behaviors.

The original Kuramoto model [68, 69] is deterministic and each particle comes into the

dynamics with a natural frequency at which it would oscillate if no interaction were present.

We consider here the stochastic version without the natural frequencies, see [9, 10, 51].
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Let {θi,n}i=1,...,n be the family of oscillators which satisfydθi,nt = K
n

∑n
j=1 sin(θj,nt − θ

i,n
t )dt+ dBi

t, t > 0,

θi,n0 = θi0, i = 1, . . . , n.
(1.21)

The positive constant K ≥ 0 represents the coupling strength among the particles. The se-

quence {θi0}i∈N ⊂ T denotes again the initial conditions.

A rather complete understanding of the McKean-Vlasov equation corresponding to the

mean-�eld limit of system (1.21) is given in [51] for all values of K. It is well known that a

phase transition appears at the critical value Kc = 1. Notably, whenever K > Kc a continuous

compact manifold of stationary synchronized solutions appears. When K < Kc there is a

unique stable stationary solution that is given by 1/2π, i.e., particles tend to be uniformly

spread around the torus.

From the general theory of weakly interacting particles, the PDE approximation is known to

be valid on a �nite time interval, in our case represented by [0, T ]. If the initial empirical measure

converges fast enough, the closeness between the particle system and the PDE can be pushed

up to times T which can slowly diverge with the size of the system n, e.g., T = Tn = O(log n).

Very little is known on longer time scales, see [10] and references therein.

A substantial progress in this direction is made in [10] for the Kuramoto model (1.21) in

the supercritical case K > Kc. The authors show that the mean-�eld approximation given by

the PDE is lost on time scales diverging faster than the logarithm, i.e., Tn � log(n). Notably,

on the linear time scale Tn = n, the empirical measure is shown to perform a Brownian motion

around the manifold of synchronized solutions � and a similar characterization is shown to hold

for any polynomial time in n. This behavior is in sharp contrast with the solution prescribed

by the PDE, which is stuck at a stationary synchronized solution.

When one considers system (1.21) on a graph sequence, it is natural to believe that the

resulting long-time dynamics will not be a�ected if a few connections among the particles are

removed, e.g., on an Erd®s-Rényi graph sequence with p close to 1. However, the long-time

dynamics on graphs is challenging under several aspects. Namely:

(1) Already dropping a few links among the particles breaks the mean-�eld structure and

makes the classical arguments useless as already discussed in Section 3;

(2) One cannot use a coupling argument with the corresponding non-linear process, since

on diverging time scales the proximity to the PDE is lost;

(3) The correlations arising from the graph structure need to be controlled for long time

scales and no apriori estimate is available.

In Chapter 4, we show that the empirical measure of system (1.21) stays close to the � even-

tually trivial � manifold of stationary solutions for almost exponential time scales, both in

the subcritical and in the supercritical case. The graph sequence needs to satisfy a suitable

deterministic equation, in the spirit of Remark 2.3, which is written by means of the cut-norm
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(1.9). Notably, the homogeneity condition on the graph sequence is equivalent to requiring

pseudo-random graphs with a diverging average degree. For instance, it is shown to be satis�ed

by almost every sequence of Erd®s-Rényi random graphs in the intermediate regimes, i.e., with

parameters {pn}n∈N such that npn →∞.

This result, presented in [30], is possible by directly studying the equation satis�ed by the

empirical measure and without using any coupling on the single trajectories, as pointed out

in (2). The derivation of such equation reminds of the one presented in Subsection 3.1, yet it

makes sense in a much more general space, i.e., a Hilbert space. The issue raised in (3) is tackled

by a detailed study of the dynamics around the stationary solutions: only by exploiting the

contractive properties of the linearized operators it is possible to control the graph perturbation

up to very long-times.

4.4. A n-dependent equation for the empirical measure. Consider equation (1.1)

with σ ≡ 0, i.e., a deterministic system of weakly interacting particles. It is well known

[87, 20, 41] that, with the only hypothesis of the weak convergence of µn0 , the empirical

measure µ̄n weakly converges to the solution of the Vlasov equation, i.e., equation (1.4) without

the di�usive term. To the author's knowledge, this result is missing in the stochastic framework

where a �nite moment condition on µ0, or chaotic initial data in (1.1), is always required to

show this same convergence.

In collaboration with Florian Bechtold [8], we have investigated whether a similar result

holds in the case σ ≡ 1. Under the only hypothesis of the convergence of µn0 , we show that the

weak convergence of µ̄n to the solution of equation (1.4), can be established in a suitable class of

Hilbert spaces. This is possible by giving a meaning to the stochastic term in the n-dependent

equation satis�ed by the empirical measure, recall equation (1.3), and by using the properties

of the heat semigroup. Indeed, equation (1.3) can be rewritten by means of Duamel's formula

as

〈µ̄nt , h〉 = 〈Stµ̄n0 , h〉+ 〈
∫ t

0

St−s∂x [(F + Γ ∗ µ̄ns ) µ̄ns ] ds , h〉+ 〈wnt , h〉

where h is an element of a Hilbert space H and 〈·, ·〉 represents the action of the dual space

of H on H itself. The operator (St)t∈[0,T ] represents the analytic semigroup associated to the

Laplacian operator and wn is the noise term coming from the martingale Mn in equation (1.3).

It turns out that the noise perturbation wn can be de�ned as a stochastic convolution

[32, 54, 100]. A uniform bound in n is hard to establish due to the loss of the martingale

property and represents the hardest challenge for what we aim at. With the help of rough

path theory and maximal inequalities for self-normalized processes, we are able to obtain a

satisfactory control on wn which is the novel ingredient for obtaining the convergence of µn to

the McKean-Vlasov solution µ. The details are covered in Chapter 5.
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5. Overview of the results and general organization

This manuscript addresses the limit behavior of weakly interacting particle systems on

homogeneous and inhomogeneous graph sequences (Chapters 2 and 3 respectively), as well as

the long-time behavior of the Kuramoto model on pseudo-random graph sequences (Chapter

4). In addition, it investigates the classical Law of Large Numbers for interacting di�usions

under very weak assumptions on the initial conditions (Chapter 5).

In Chapter 2 we consider a general system of interacting particles on R on a sequence

of Erd®s-Rényi random graphs in the intermediate regimes. We show that, under the only

assumption of the weak convergence of the empirical measure at time 0, the system satis�es

the same Law of Large Numbers and Large Deviation Principle of its mean-�eld analogous.

Every graph sequence with average degree diverging faster than the logarithm scale satis�es

our assumptions.

Chapter 3 focuses on interacting oscillators and dense graph sequences. By means of the

coupling method and by exploiting the exchangeability coming from graph limits theory, it is

possible to show a Law of Large Numbers for very general graph sequences. The limit describing

the system behavior is described by a non-linear process depending only on the graph limit, i.e.,

by an unlabeled random graphon. A comparison with the mean-�eld behavior is also discussed

as well as a Propagation of Chaos result. It based on the joint work with Gianmarco Bet and

Francesca Nardi [11].

Chapter 4 addresses the long-time behavior of the Kuramoto model on graph sequences

presented in [30]. Under a deterministic condition on the graph sequence, it is possible to

control the macroscopic behavior of the system up to almost exponential time scales, both

in the subcritical and supercritical regime. It turns out that such condition is equivalent to

requiring the graph sequences to be made of pseudo-random graphs with a possibly very slow

diverging average degree, i.e., it su�ces that npn diverges as n tends to in�nity.

Chapter 5 establishes a Law of Large Numbers for a class of interacting di�usions on Rd. The

accent is posed on the initial conditions which need to satisfy a milder assumption compared to

ones required in the existing literature. Namely, the weak convergence of the empirical measure

at time 0 su�ces. It exploits rough path theory, semigroup operators and maximal inequalities

for self-normalized stochastic processes. It is based on a joint work with Florian Bechtold [8].

Finally, Chapter 6 presents a very brief overview on the open questions and important issues

related to the aforementioned results.



CHAPTER 2

Interacting di�usions on Erd®s-Rényi random graphs

This chapter presents the result of the joint work with Helge Dietert and Giambattista

Giacomin [31].

1. Introduction

1.1. Basic notations, the models and a �rst look at the main question. Large

systems of interacting di�usions with mean �eld type interactions have been an important re-

search topic in the mathematical community at least since the 60's. The program of identifying

the emerging behavior for n → ∞, where n is the number of interacting units, has been fully

developed under suitable regularity and boundedness assumptions on the coe�cients de�ning

the system. In particular, Law of Large Numbers, Central Limit Theorems and Large Devi-

ation Principles have been established (see for example [98, 85, 99, 34, 23]). A number of

important issues remain unsolved, like the generalization to singular interactions (e.g. [61])

or understanding the delicate issue of considering at the same time large n and large time

(e.g. [78]). But another direction in which mathematical results are still very limited is about

relaxing the complete graph assumption for the interaction network � complete graph is just a

di�erent wording for mean �eld � and going towards more heterogeneous interaction networks.

This is an issue that emerges in plenty of applied disciplines and giving a proper account of

the available literature would be a daunting task: so we limit ourselves to signaling the recent

survey [94] which contains an extended literature.

We are therefore going to study the emerging behavior of interacting di�usion models when,

like in complete graphs, every unit interacts with a diverging number of other units. The

interaction network is described as a random graph, notably of Erd®s-Rényi (ER) type; so we

start with the basic notions on graphs.

Let ξ(n) = {ξ(n)
i,j }i,j∈{1,...,n} denote the adjacency matrix of a graph

(
V (n), E(n)

)
with n vertices

(ξ(n) will also denote the graph itself):

V (n) := {1, . . . , n} and E(n) :=
{

(i, j) ∈ V (n) × V (n) : ξ
(n)
i,j = 1

}
. (2.1)

We consider sequences of asymmetric ER random graphs with self loops with probabilities

pn ∈ (0, 1) for n = 2, 3, . . .. More precisely, we just assume that {ξ(n)
i,j }i,j∈{1,...,n} are Independent

Identically Distributed (IID) Bernoulli random variables of parameter pn (with notation B(pn)).

The arguments are easily adapted to the case in which ξ(n)
j,j = 0 for every j and the results are

unchanged.

23
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Even if these graphs are not coupled for di�erent values of n, it is practical to work with only

one probability space and to couple these adjacency matrices (or random graphs). For example

one can start from a sequence {Uk}k∈N of IID U(0, 1) variables and de�ne ξ(n)
i,j = 1Uk(i,j)<pn ,

with k an arbitrary bijection from N2 to N. The law of the graph is denoted by P, with E
the corresponding expectation, and we will just write P(dξ)-a.s. meaning �almost surely in the

realization of {ξ(n)}n=2,3,...".

Given a realization of ξ(n), consider the n-dimensional di�usion θnt := {θi,nt }i=1,...,n which

solves for every i

dθi,nt = F
(
θi,nt
)
dt+

1

n

n∑
j=1

ξ
(n)
i,j

pn
Γ
(
θi,nt , θj,nt

)
dt+ σ

(
θi,nt
)
dBi

t, (2.2)

where {Bi
·}i∈N are independent standard Brownian motions (whose law is denoted by P) and

independent also of ξ(n) (so, we are e�ectively working with P⊗P). For simplicity, we consider

only deterministic initial conditions; but the results apply to random initial conditions once

they are taken independent of Brownian motions and of ξ. Moreover, assume that:

(1) F , Γ and σ are real valued (uniformly) Lipschitz functions: the corresponding Lipschitz

constants are denoted by LF , LΓ and Lσ;

(2) Γ is bounded, in particular ‖Γ‖∞ := supx,y∈R |Γ(x, y)| <∞;

(3) σ− ≤ σ(·) ≤ σ+ with σ± two positive constants (non degenerate di�usion). If σ(·) is a
constant, we include the case σ(·) ≡ 0.

Fix T > 0, the law of the n trajectories {θnt }t∈[0,T ] for the quenched system is denoted by

Pξ
n, i.e. P

ξ
n ∈ P (C0([0, T ];Rn)), and the associated empirical measure at time t by {µnt }t∈[0,T ],

i.e.

µnt : =
1

n

n∑
j=1

δθj,nt
∈ P (R) . (2.3)

P (R) denotes the set of probability measures over (R,B(R)) equipped with the (metrizable)

topology of weak convergence: i.e., if µn ∈ P (R) for every n, then limn µn = µ ∈ P (R) if∫
h(x)µn(dx) →

∫
h(x)µ(dx) as n ↑ ∞ for every h(·) continuous and bounded function. Note

that since ξ is random, µnt is a random variable taking values in P (R), equipped with the

σ-algebra of its Borel subsets.

The solution {θi,nt }i=1,...,n is going to be tightly linked with {θ̄i,nt }i=1,...,n which solves

dθ̄i,nt = F
(
θ̄i,nt
)
dt+

1

n

n∑
j=1

Γ
(
θ̄i,nt , θ̄j,nt

)
dt+ σ

(
θ̄i,nt
)
dBi

t. (2.4)

The law of {θ̄nt }t∈[0,T ] is denoted by Pn. Moreover µ̄nt : = (1/n)
∑n

j=1 δθ̄j,nt
. Often (2.4) is called

annealed system: of course (2.4) is obtained from (2.2) by taking the expectation of the drift

with respect to P.
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If the empirical measure of the initial conditions converges to a probability µ0, i.e.

lim
n→∞

µ̄n0 = µ0 ∈ P (R) , (2.5)

and if
∫
R x

2µ0(dx) < ∞, then it is well known that, for every t > 0, µ̄nt weakly converges

in P (R) to µt, the unique weak solution of the following McKean-Vlasov (or Fokker-Planck)

equation

∂tµt(θ) =
1

2
∂2
θ

(
σ2(θ)µt(θ)

)
− ∂θ (µt(θ)F (θ))− ∂θ

(
µt(θ)

∫
R

Γ(θ, θ′)µt(dθ
′)

)
. (2.6)

The slightly stronger result that is proven is in fact: for every T > 0, if one considers µn· as

an element of C0([0, T ];P(R)) (a complete separable metric space), then limn µ
n
· = µ· (P-a.s.

when σ is non degenerate). The notion of weak solution µ· ∈ C0([0, T ];P(R)) to (2.6), which

can be found for example in [56], is strictly related to the nonlinear di�usion formulation: the

stochastic process {ϕt}t∈[0,T ] that solvesdϕt = F (ϕt ) dt+
∫

Γ (ϕt, ϕ) νt (dϕ) dt+ σ (ϕt) dBt ,

νt = Law(ϕt) , for all t ∈ [0, T ] ,
(2.7)

with initial condition which is a square integrable random variable independent of the standard

Brownian motion B·. Existence and uniqueness for this atypical stochastic di�erential equation

is not obvious at all, but it is by now well known that if ν0 = µ0, then the unique ν· ∈
C0([0, T ];P(R)) such that νt is the law of ϕt for all t ∈ [0, T ], is the unique weak solution of

(2.6), i.e. νt = µt for all t ∈ [0, T ]. The literature on the results that we have just mentioned

is vast, see e.g. [88, 98, 85, 56] for the non degenerate di�usion case and [41, 87] for the

σ(·) ≡ 0 case; in this last case there is no need to assume that
∫
R x

2µ0(dx) <∞.

In the sequel, we will also work with probabilities in P (C0([0, T ];R)), that is considering

the law of {ϕt}t∈[0,T ] seen as a random trajectory on the path space C0([0, T ];R), rather than

its time marginals µt ∈ P(R).

Remark 1.1. Observe that knowing the law of (2.7) gives more information than the

solution µ· of the McKean-Vlasov equation (2.6). Indeed, call Pϕ the law of {ϕt}t∈[0,T ], then Pϕ
is an element of P (C([0, T ];R)), whereas µ· ∈ C0([0, T ];P(R)). It is straighforward to obtain

µt from Pϕ by just observing

µt(·) = Pϕ ◦ π−1
t (·), (2.8)

where πt : C([0, T ];R) → R is the canonical projection at time t. Observe that a reverse

statement is not always possible: µ· alone does not allow to compute multidimensional time

marginals like P(ϕs ∈ A,ϕt ∈ B), for s, t ∈ [0, T ] and A,B ⊂ R. Existence, uniqueness and

well-posedness of the problem for Pϕ can be found in [85] and references therein.

1.2. Aim of the paper. Informally stated, our aim is to study the proximity of µn· and

µ̄n· , for n large. Since µ̄n· approaches the solution of the McKean-Vlasov equation (2.6), this
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turns out to be studying the proximity of µn· and the solution of the McKean-Vlasov equation.

This of course requires (at least) the assumption that

lim
n→∞

µn0 = µ0 . (2.9)

A result of this type has been already achieved: in the case σ(·) ≡ σ ≥ 0, [36] proved a

LLN for the trajectories of (2.2) where ξ(n) is a (deterministic) sequence of graphs such that

lim
n→∞

sup
i∈{1,...,n}

∣∣∣∣∣ 1n
n∑
j=1

ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ = 0 , (2.10)

and with IID initial conditions (chaotic initial datum), that is θj,n0 = θj0 for every n and every

j = 1, . . . , n where{
θj0
}
j∈N is a typical realization of an IID sequence of variables with law µ0 . (2.11)

Under conditions (2.10) and (2.11), it is proved that limn µ
n
· = µ· in P-probability. We recall

that, as stated right after (2.2), {θj0}j∈N is independent of the driving Brownians and of the

graph ξ.

This seems at �rst rather satisfactory. However in [36] it is discussed at length how this

result in reality is, on one hand, surprising and, on the other, that it does not really solve the

problem. This can be understood by considering that the homogeneous degree condition (2.10)

is P (dξ)-a.s. veri�ed for ER type graphs when lim infn npn/ log n is larger than a well-chosen

constant (see Proposition 1.3 in [36]). But the class of graphs satisfying (2.10) goes well beyond

ER graphs: in particular, it is straightforward to construct graphs with an arbitrary number

of connected components that satisfy (2.10), see the following remark.

Remark 1.2. (2.9) and (2.10) are not su�cient to obtain a result in the direction we are

aiming at. In fact, if ξ(n) is the graph in which two vertices are connected if and only if they

have the same parity (which corresponds to limn pn = 1/2), then, as long as µ0 is not the

uniform measure, one can easily arrange the initial condition in order to have di�erent limit

distributions on even and odd sites, or no limit at all. Thus, as n→∞, the evolution will not

be described by (2.6).

In a nutshell, the results in [36] are obtained under a weak assumption on the graph, but

under strong assumptions on the initial condition. And this to the point of obtaining a result

that is troublesome: a system with plenty of disconnected components behaves essentially like a

totally connected one! Of course the solution of this apparent paradox is in the chaotic character

of the initial condition that leads to a homogeneous and identical behavior of the initial datum

on all components, and the fact that chaos propagates at least on a �nite time horizon (see [36]

for more on this issue). But there is no reason to expect mean �eld type behavior, assuming

only (2.10) on the graph, without a strong statistical homogeneity assumption on the initial

datum, as argued in Remark 1.2.



2. MAIN RESULTS 27

The aim of this paper is to attack the problem assuming only the convergence of the em-

pirical measure of the initial datum, that is (2.9), but assuming that the graph is of ER type.

Otherwise said, we want to make a minimal assumption on the initial condition and we try to

exploity the chaoticity of the graph to achieve the result. We will attack the problem from more

then one perspective, not only the direct LLN angle of attack, but also from the Large Devi-

ations (LD) perspective. The vast literature related to our results is presented and discussed

after the statements.

2. Main results

Let us denote dbL(·, ·) the bounded Lipschitz distance which endows the weak convergence

topology on P(R) (this choice is somewhat arbitrary: other distances can be used, for example

the Wasserstein one, see [41]). By this we mean that dbL(µ, ν) = suph
∣∣∫ hdµ− ∫ hdν∣∣, where

the supremum is taken over h : R→ [0, 1] such that |h(x)− h(y)| ≤ |x− y|.
We are now ready to state the LLN. Recall that µn· is a random element of C0([0, T ];P(R))

and that µ·, a non random element of C0([0, T ];P(R)), is the unique weak solution of the

McKean-Vlasov equation (2.6).

Theorem 2.1. Assume that the initial datum is deterministic, that it satis�es (2.9) and, if

σ(·) 6≡ 0, that it satis�es also that
∫
R x

2µ0(dx) <∞. Make the hypothesis that pn satis�es

lim inf
n→∞

pnn

log n
> 0 , (2.12)

and either that 0 < σ− ≤ σ(·) ≤ σ+ <∞ or σ(·) ≡ 0. Then P⊗ P-a.s. we have that

lim
n→∞

µn· = µ· in C0([0, T ];P(R)). (2.13)

The requirement of deterministic initial data is easily lifted to IID initial conditions un-

der the assumption that they are independent of the graph (and, of course, of the driving

Brownians).

From the viewpoint of the proof, Theorem 2.1 may be viewed as two di�erent statements.

• in the case of σ(·) ≡ σ ∈ [0,∞), the proof follows by coupling the system on the ER

graph and the system on the complete graph;

• in the case of 0 < σ− ≤ σ(·) ≤ σ+ <∞, the result is a corollary of a Large Deviation

Principle (LDP) stating that, at the Large Deviations (LD) level, the system on ER

graph and the complete graph system are indistinguishable, see Theorem 2.2.

In the next subsection we present the result related to Large Deviations.

2.1. The Large Deviation Principle. Stating the LDP needs some preparation on the

general LD approach (classical references are for example [38, 39, 42]).

Given a complete, separable metric space χ, a rate function I is a lower semicontinuous

mapping I : χ→ [0,∞] such that each level set Kl = {x ∈ χ : I(x) ≤ l} is compact for all l ≥ 0
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(sometimes I is called a good rate function). Given {Pn}n∈N a sequence of probability measures

on χ associated with its Borel σ-�eld, we say that Pn satis�es a LDP (on χ) with rate function

I if for every measurable set A ⊂ χ

− inf
x∈A◦

I(x) ≤ lim inf
n→∞

1
n

logPn (A◦) ≤ lim sup
n→∞

1
n

logPn
(
Ā
)
≤ − inf

x∈Ā
I(x), (2.14)

where A◦ is the interior of A and Ā is its closure.

Let us now recall that (2.4), or equivalently (2.2) on a complete graph, satis�es a LDP, we

refer to Theorem 3.1 in [23]. We choose to state the LDP for the empirical law of the process,

that is for

Ln :=
1

n

n∑
j=1

δθ̄j,n· ∈ P
(
C0([0, T ];R)

)
, (2.15)

but other LDP are possible. Namely, Theorem 5.1 in [34] gives a LDP for the empirical measure

µ̄n· seen as an element of C0 ([0, T ];P(R)) (recall (2.8)), yet our result includes this case. In

Remark 1.1 we have pointed out the continuity of the projection πt and how to pass from Pn

to µn· ∈ C0([0, T ];P(R)), therefore a corollary of a LDP for L̄n is a LDP on C0([0, T ];P(R)) for

the law of µ̄n· with LD functional given by the contraction principle: see for example [33, 76]

for the mathematical procedure and [34] for an explicit form of the LD functional in the full

generality.

We set χ = P (C0([0, T ];R)); since C0([0, T ];R) is a metric space, χ is a complete, separable

metric space once equipped (among various possibilities) with the bounded Lipschitz distance.

De�ne the probability measure P n on χ by setting P n(·) := P(Ln ∈ ·), of course χ equipped

with the σ-algebra of its Borel subsets, then, by Theorem 3.1 in [23], P n satis�es a LDP whose

rate function concentrates on ν ∈ χ such that ν· = ν ◦ π−1
· ∈ C0([0, T ];P(R)) is solution of the

McKean-Vlasov equation (2.6).

We are now ready to state the main result of this subsection. For every realization of the

graph ξ de�ne the probability P ξ
n on χ, by setting P ξ

n (·) := P (Ln ∈ ·), where Ln(·) is de�ned

as in (2.15), but replacing θ̄j,n· with θj,n· . In particular, P ξ
n is the empirical measure of the

trajectories θj,n· solving (2.2).

Theorem 2.2. Assume that σ− > 0. If ξ is an ER graph that satis�es (2.12) and if

the initial datum satis�es (2.9) and
∫
x2µ0(dx) < ∞, then P ξ

n satis�es the same LDP of Pn

P(dξ)-a.s..

2.2. A look at the literature. We recall that for interacting particle systems on the

complete graph, i.e. (2.4), many results on the LLN are available and many of them, as [36],

include propagation of chaos properties. However, as already mentioned, propagation of chaos

results are very demanding on the initial condition.

The literature is vast and di�cult to be properly cited: we mention the seminal contribution

[81] and we mention again [88, 98, 85, 56], that are also useful source of more references
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and that are not limited to propagation of chaos results, in the sense that also the case of

deterministic initial data is treated. For the σ(·) ≡ 0 case, we mention the important original

contributions [41, 87] that gave origin to a vast literature that goes beyond our purposes.

Large deviation properties for mean �eld di�usions have been studied in the seminal work

by Dawson and Gärtner [34], but also in [39, 44, 76] in the so called gradient case. In [23]

the problem is attacked in great generality using an approach based on weak convergence and

control theory.

The LLN case has already been adressed in the literature, even if few results seem to have

been proven so far. As mentioned, [36] proves a LLN for µn· requiring the initial datum to be

a product measure: the case σ(·) ≡ σ ≥ 0 is considered. In the same spirit, from the initial

datum viewpoint, but for a time-varying graph and for multi-type processes, there is the work

of [13]. It is important to mention at this stage that in [13] the interaction is renormalized

by the number of neighbors of each site i: we normalize instead by the expected number of

neighbors.

Turning to LD results, the recent work of [90] extends the LDP for Hamiltonian systems

in random media, presented in [33], to (sparse) random interactions which include symmetric

ER random graphs. The convergence of the empirical measure is shown under the assumption

limn npn = ∞, without requiring any log divergence. However, they still focus on IID initial

conditions and constant di�usion term σ(·) ≡ 1.

Focusing on the case σ(·) ≡ 0, we mention the contributions:

• in [21] one �nds the stability analysis for the stationary state of an ordinary di�erential

equations system with ER interacting network, requiring a logarithmic divergence of

pnn;

• in [27] the Kuramoto model, i.e. Γ(x, y) = sin(x − y) and F (·) is a random constant

(natural frequencies), is studied with an interaction network that is given by a graphon:

this leads to a more general limit equation, but their approach includes the case of ER

graphs (in this case the graphon is trivial) with pn that tends to a positive constant. In

[82] the case of sparse graphs is considered: for ER graphs the condition is limn pn
√
n =

∞.

In many of the papers we cite, notably [36, 33, 76, 27, 82], another source of randomness

is allowed: for example, in the Kuramoto model this corresponds to the important feature

that each oscillator has a priori its own oscillation frequency and, more generally, with this

extra source of randomness we can model systems in which the interacting di�usions (or units,

agents,. . .) are not identical. This source of randomness is chosen independently of the graph

and of the dynamical noise. All the results we have presented generalize easily to this case, but

at the expense of heavier notations and heavier expressions. We have chosen not to treat this

case for sake of conciseness and readability.
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The rest of the paper is devoted to the proofs. Section 3 contains the proof of Theorem 2.1

in the case of constant (possibly degenerate) di�usion coe�cient. Section 4 contains the proof

of Theorem 2.2.

3. Proof: The Law of Large Numbers

This section is devoted to the proof of Theorem 2.1 in the case σ(·) ≡ σ ∈ [0,∞): we

recall that the case of non trivial and non degenerate di�usion is a corollary of the LDP

(Theorem 2.2). We start with two preliminary lemmas that will be used for Proposition 3.3,

from which Theorem 2.1 follows.

Lemma 3.1. Let K > 2. For all n ∈ N, it holds

P

(
n∑
j=1

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ ≥ Kn

)
≤ exp

(
− 3(K − 2)2

6 + 2(K − 2)
pnn

)
. (2.16)

In particular, under hypothesis (2.12) and setting C := lim infn→∞
pnn
logn
∈ (0,∞], we have that,

if K > KC := 2 + 2
3C

+
√

4
9C2 + 4

C
, then P(dξ)-a.s. there exists n0 = n0(ξ) < ∞ such that for

n ≥ n0

max

(
sup

i=1,...,n

n∑
j=1

∣∣∣∣∣ξ
(n)
j,i

pn
− 1

∣∣∣∣∣ , sup
i=1,...,n

n∑
j=1

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣
)
≤ Kn . (2.17)

Proof. We use Bernstein's inequality (see for example Corollary 2.11 in [19]) which says

that if X1, . . . , Xn are independent zero-mean random variables such that |Xj| ≤M a.s. for all

j, then for all t ≥ 0

P

(
n∑
j=1

Xj > t

)
≤ exp

{
−

1
2
t2∑n

j=1 E[X2
j ] + 1

3
Mt

}
.

Set Xj =

∣∣∣∣ ξ(n)
i,j

pn
− 1

∣∣∣∣− 2(1− pn). Xj is a zero-mean random variable and we can bound

P

(
n∑
j=1

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ ≥ Kn

)
≤ P

(
n∑
j=1

Xj ≥ (K − 2)n

)
. (2.18)

We have |Xj| ≤ max(1/pn−3+2pn, 2pn−1) ≤ 1/pn =: M and E[X2
j ]−1/pn = −5+8pn−4p2

n ≤
−1, so E[X2

j ] ≤ 1/pn and Bernstein's inequality together with an union bound show that

P

(
sup

i=1,...,n

n∑
j=1

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ ≥ Kn

)
≤ n exp

(
− 3(K − 2)2

6 + 2(K − 2)
pnn

)
. (2.19)

The proof is now completed with some elementary computations and by applying the Borel-

Cantelli Lemma. �
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Lemma 3.2. Assume (2.12) and let

∆i(s) :=

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
i,j

pn
− 1

)
Γ
(
θ̄i,ns , θ̄j,ns

)∣∣∣∣∣
2

, for every s ∈ [0, T ]. (2.20)

Then, for every realization of the Brownian motions, it holds that

lim
n→∞

∫ T

0

1

n

n∑
i=1

∆i(s)ds = 0, P(dξ)-a.s.. (2.21)

Proof. First, we rewrite
∫ T

0
∆i(s)ds as∫ T

0

∆i(s)ds =
1

(npn)2

n∑
j,k=1

ξ̂i,j ξ̂i,kdijk, (2.22)

where we have dropped the superscript (n), the dependency on T and we have introduced the

notations

ξ̂i,j := ξ
(n)
i,j − pn and dijk :=

∫ T

0

[
Γ
(
θ̄i,ns , θ̄j,ns

)
Γ
(
θ̄i,ns , θ̄k,ns

)]
ds . (2.23)

Observe that ξ̂i,j are centered random variables and |dijk| ≤ T ‖Γ‖2
∞ =: d?.

Let δn be a sequence of positive numbers such that (recall (2.12))

δn �
1

pnn
and lim

n→∞
δn = 0. (2.24)

Let Ωn be the set

Ωn :=

{
ξ :

1

(npn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kdijk > δnn

}
, (2.25)

We want to show that ∑
n∈N

P (Ωn) <∞. (2.26)

Let K > 2 and consider the events

An =
n⋃
i=1

An,i with An,i =

{
ξ(n) :

∑
j

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ > Kn.

}
. (2.27)

We use

P (Ωn) ≤ P
(

Ωn ∩ A{n
)

+ P (An) . (2.28)

and Lemma 3.1 ensures that choosing K > KC(> 2) we have∑
n∈N

P(An) <∞, (2.29)
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so that one is left with proving that
∑

n∈N P
(
Ωn ∩ A{n

)
< ∞. By Markov's inequality applied

to P
(
· |A{n

)
we see that

P(Ωn ∩ A{n) ≤ exp

(
−nδn + logE

[
1A{

n
exp

(
1

(npn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kdijk

)])
. (2.30)

Given (2.24), it su�ces to show that

logE

[
1A{

n
exp

(
1

(npn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kdijk

)]
= n O

(
1

pnn

)
= O

(
1

pn

)
. (2.31)

We exploit the independence w.r.t. i:

E

[
1A{

n
exp

(
1

(npn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kdijk

)]
=
∏
i

E

[
1A{

n,i
exp

(
1

(npn)2

n∑
j,k=1

ξ̂i,j ξ̂i,kdijk

)]
, (2.32)

and use the inequality exp(x) ≤ 1 + |x| exp |x| which holds for all x ∈ R, together with Cauchy-

Schwarz and obtain

E

[
1A{

n,i
exp

(
1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

)]
≤

1 + E

[
1A{

n,i

∣∣∣∣∣ 1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

∣∣∣∣∣ exp

(∣∣∣∣∣ 1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

∣∣∣∣∣
)]
≤

1 + E

( 1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

)2
1/2

E

[
1A{

n,i
exp

(
2

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

)]1/2

.

(2.33)

Under the condition that we are in A{n,i, it holds that∣∣∣∣∣ 2

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

∣∣∣∣∣ ≤ 2K2d? (2.34)

so that the exponential expectation can be bounded as exp {2K2d?}. Estimating the moment

expectation leads to

E

( 1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

)2
 =

1

(npn)4

∑
j,k,p,q

E
[
ξ̂i,j ξ̂i,kξ̂i,pξ̂i,q

]
dijkdipq ≤ (2.35)

≤ d2
?

(npn)4

[
npn + 3(npn)2

]
≤ 4d2

?

(npn)2
. (2.36)

From (2.33), we get

E

[
1A{

n,i
exp

(
1

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kdijk

)]
≤ 1 +

2d?
npn

exp
{

2K2d?
}
. (2.37)
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Putting everything back in (2.32), one obtains

E

[
1A{

n
exp

(
1

(npn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kdijk

)]
≤ exp

{
2d?
pn

exp
{

2K2d?
}}

, (2.38)

which gives (2.31). �

We are now ready for

Proposition 3.3. If (2.12) holds, then for all T > 0,

lim
n→∞

1

n

n∑
i=1

sup
t∈[0,T ]

∣∣θi,nt − θ̄i,nt ∣∣2 = 0, P⊗ P-a.s.. (2.39)

Proof. For i ∈ {1, . . . , n}, consider∣∣θi,nt − θ̄i,nt ∣∣2 =

2

∫ t

0

(
θi,ns − θ̄i,ns

)(
F
(
θi,ns
)
− F

(
θ̄i,ns
)

+
1

n

n∑
j=1

[
ξ

(n)
i,j

pn
Γ
(
θi,ns , θj,ns

)
− Γ

(
θ̄i,ns , θ̄j,ns

)])
ds ≤

2LF

∫ t

0

∣∣θi,ns − θ̄i,ns ∣∣2 ds+ 2LΓ
1

n

n∑
j=1

ξ
(n)
i,j

pn

∫ t

0

(∣∣θi,ns − θ̄i,ns ∣∣+
∣∣θj,ns − θ̄j,ns ∣∣) ∣∣θi,ns − θ̄i,ns ∣∣ ds

+ 2

∫ t

0

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
i,j

pn
− 1

)
Γ
(
θ̄i,ns , θ̄j,ns

)∣∣∣∣∣ ∣∣θi,ns − θ̄i,ns ∣∣ ds, (2.40)

which gives∣∣θi,nt − θ̄i,nt ∣∣2 ≤
(2LF + 1)

∫ t

0

∣∣θi,ns − θ̄i,ns ∣∣2 ds+ LΓ
1

n

n∑
j=1

ξ
(n)
i,j

pn

∫ t

0

[
3
∣∣θi,ns − θ̄i,ns ∣∣2 +

∣∣θj,ns − θ̄j,ns ∣∣2] ds
+

∫ t

0

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
i,j

pn
− 1

)
Γ
(
θ̄i,ns , θ̄j,ns

)∣∣∣∣∣
2

ds. (2.41)

Summing over i and dividing by n, one obtains

1

n

n∑
i=1

∣∣θi,nt − θ̄i,nt ∣∣2 ≤
≤

(
2LF + 1 + LΓ sup

i=1,...,n

n∑
j=1

3ξ
(n)
i,j + ξ

(n)
j,i

npn

)∫ t

0

1

n

n∑
i=1

∣∣θi,ns − θ̄i,ns ∣∣2 ds
+

1

n

n∑
i=1

∫ t

0

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
i,j

pn
− 1

)
Γ
(
θ̄i,ns , θ̄j,ns

)∣∣∣∣∣
2

ds. (2.42)
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In order to bound
∑n

j=1

3ξ
(n)
i,j +ξ

(n)
j,i

npn
for all i = 1, . . . , n, we choose K > KC and use Lemma 3.1

to obtain that

sup
i=1,...,n

n∑
j=1

3ξ
(n)
i,j + ξ

(n)
j,i

npn
≤ 4 + 4K , (2.43)

P(dξ)-a.s.. The application of Gronwall lemma to

Sn(t) =
1

n

n∑
i=1

∣∣θi,nt − θ̄i,nt ∣∣2 , (2.44)

leads to

Sn(t) ≤
∫ t

0

exp {G(t− s)}

(
1

n

n∑
i=1

∆i(s)

)
ds, (2.45)

with G = 2LF + 1 + (4 + 4K)LΓ > 0 and ∆i(s) de�ned in (2.20). Therefore

sup
t∈[0,T ]

Sn(t) ≤ exp {GT}
∫ T

0

1

n

n∑
i=1

∆i(s)ds. (2.46)

The last estimate is true for all realizations of the Brownian motions. Taking the limit for n

which tends to ∞ and integrating the RHS of (2.46), �rst with respect to P (recall Lemma

3.2), completes the proof of Proposition 3.3. �

Proof of Theorem 2.1. Since we already know that µ̄n· converges P-a.s. to µ· in C
0([0, T ];P(R))

(see Theorem 1.6 in [56]), it su�ces to show that

lim
n→∞

sup
0≤t≤T

dbL (µnt , µ̄
n
t ) = 0, P⊗ P-a.s.. (2.47)

For every f : R→ [0, 1] 1-Lipschitz function, we have∣∣∣∣∫
R
f(θ) (µnt − µ̄nt ) (dθ)

∣∣∣∣ =

∣∣∣∣∣ 1
n

n∑
i=1

f(θi,nt )− f(θ̄i,nt )

∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣θi,nt − θ̄i,nt ∣∣ . (2.48)

In particular,

sup
0≤t≤T

dbL (µnt , µ̄
n
t ) ≤

√√√√ 1

n

n∑
i=1

sup
0≤t≤T

∣∣θi,nt − θ̄i,nt ∣∣2. (2.49)

The proof follows from Proposition 3.3. �

4. Proof: Large Deviation Principle

The proof of Theorem 2.2 relies on two results that contain most of the work. We �rst prove

Theorem 2.2 assuming these two results, and prove them right after.
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Proof of Theorem 2.2. Observe that we can write (2.2) as

dθi,nt = F
(
θi,nt
)
dt+

1

n

n∑
j=1

Γ
(
θi,nt , θj,nt

)
dt+ σ

(
θi,nt
)
ci (θ

n
t ) dt+ σ

(
θi,nt
)
dBi

t, (2.50)

with

ci (θ
n
t ) :=

1

nσ
(
θi,nt
) n∑
j=1

(
ξ

(n)
i,j

pn
− 1

)
Γ
(
θi,nt , θj,nt

)
. (2.51)

Recall that Pξ
n, respectively Pn, is the law of the trajectories {θi,nt }i=1,...,n; t∈[0,T ], respectively

the law of {θ̄i,nt }i=1,...,n; t∈[0,T ]. The Radon-Nikodym derivative dPξ
n/dPn is exp(Mn

T −〈Mn〉T/2)

with

Mn
T =

n∑
i=1

∫ T

0

ci(θ
n
t )dθi,nt and 〈Mn〉T =

n∑
i=1

∫ T

0

c2
i (θ

n
t )dt . (2.52)

The following lemma is given for every realization of ξ(n) and it has a deterministic nature.

Recall that χ = P (C0([0, T ];R)) and Ln de�ned in (2.15). Then P n(·) := P(Ln ∈ ·) is the

law of the empirical process associated to (2.4) and P ξ
n(·) := P(Ln ∈ ·) is the one associated to

(2.2), P n and P ξ
n are probabilities on χ.

Lemma 4.1. Suppose P n (·) satis�es a LDP on χ with rate function I. If, for every C ∈ R,

lim
n→∞

1

n
logEn [exp {C〈Mn〉T}] = 0, (2.53)

then P ξ
n (·) satis�es a LDP on χ with the same rate function as P n.

Since we want the LDP to hold P(dξ)-a.s., we need to show that condition (2.53) holds in

this sense. To this aim, we rede�ne the sets Ωn given in (2.25), as

Ωn :=

{
ξ :

1

n
logEn [exp {Cn〈Mn〉T}] > δn

}
, (2.54)

where δn and 1/Cn tend to zero: they have to do so in a slow way and arbitrarily slow will do

for us (explicit choices will be given at the end of the proof).

We need also

Ω∗ =

{
ξ : there exists n0 s.t.

1

n
logEn [exp {Cn〈Mn〉T}] ≤ δn for every n ≥ n0

}
. (2.55)

Lemma 4.2. Assuming (2.12) we have that P (Ω∗) = 1.

One readily sees that Lemma 4.2 provides the missing ingredient and the proof of Theo-

rem 2.2 is complete. �

Proof of Lemma 4.1. Recall (2.50)-(2.52). We have to show that (2.14) holds. Consider A a

measurable set and recall that A◦ is the interior of A and Ā is its closure.
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Let p, q > 1 such that 1
p

+ 1
q

= 1. Then

P ξ
n (A◦) = Pξ

n

(
{µnt }t∈[0,T ] ∈ A

◦
)

= En

[
1{{µnt }t∈[0,T ]∈A◦} exp

{
Mn

T − 1
2
〈Mn〉T

}]
(2.56)

and Hölder inequality gives

P ξ
n (A◦) ≥

(
P n (A◦)

)p(
En

[
exp

{
−q
p
Mn

T −
1

2

q

p
〈Mn〉T

}])− p
q

. (2.57)

Now observe that Cauchy-Schwarz inequality together with the fact that an exponential mar-

tingale has expectation less or equal to 1 (see Theorem 5.2 in [60]) imply

En

[
exp

{
−q
p
Mn

T −
1

2

q

p
〈Mn〉T

}]
≤ En

[
exp

{(
2q2

p2 +
q

p

)
〈Mn〉T

}] 1
2

. (2.58)

Hence

P ξ
n (A◦) ≥

(
P n (A◦)

)p(
En

[
exp

{(
2q2

p2 −
q

p

)
〈Mn〉T

}])− p
2q

. (2.59)

In particular, one obtains

lim inf
n→∞

1
n

logP ξ
n (A◦) ≥ −p inf

x∈A◦
I(x)− p

2q
lim inf
n→∞

1

n
logEn [exp {C〈Mn〉T}] , (2.60)

with C =
(

2q2

p2 − q
p

)
. By hypothesis the second term on the right is zero and since

lim inf
n→∞

1
n

logP ξ
n (A◦) ≥ −p inf

x∈A◦
I(x), (2.61)

is true for all p > 1, the lower bound in (2.14) is established.

The upper bound is almost the same: let p, q > 1 be such that 1
p

+ 1
q

= 1. Similarly

P ξ
n

(
Ā
)
≤
(
P n

(
Ā
)) 1

p

(
En

[
exp

{
qMn

T −
1

2
q〈Mn〉T

}]) 1
q

, (2.62)

and, using the properties of exponential martingales as in (2.58), one gets

P ξ
n

(
Ā
)
≤
(
P n

(
Ā
)) 1

p
(
En

[
exp

{
(2q2 − q)〈Mn〉T

}]) 1
2q . (2.63)

Finally, the desired inequality reads

lim sup
n→∞

1
n

logP ξ
n

(
Ā
)
≤ −1

p
inf
x∈Ā

I(x) +
1

2p
lim inf
n→∞

1

n
logEn [exp {C〈Mn〉T}] , (2.64)

with C = 2q2 − q. And we conclude as before. �

Proof of Lemma 4.2. We want to show that∑
n∈N

P (Ωn) <∞. (2.65)
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As in the proof of Lemma 3.2, let K > 2 and consider the events An de�ned in (2.27),

An =
n⋃
i=1

An,i with An,i =

{
ξ(n) :

∑
j

∣∣∣∣∣ξ
(n)
i,j

pn
− 1

∣∣∣∣∣ > Kn.

}
.

Following the proof of Lemma 3.1, we use P (Ωn) ≤ P
(
Ωn ∩ A{n

)
+ P (An) and (2.29), i.e.∑

n∈N P(An) <∞, so that one is left with proving that
∑

n∈N P
(
Ωn ∩ A{n

)
<∞.

By Markov's inequality applied to P
(
· |A{n

)
we see that

P(Ωn ∩ A{n) ≤ exp
(
−nδn + logEE[1A{

n
exp(Cn〈Mn〉T )]

)
. (2.66)

so it su�ces to show that

logEE[1A{
n

exp(Cn〈Mn〉T )] = o(nδn) . (2.67)

To lighten the notation we go back to using the centered random variables ξ̂i,j := ξ
(n)
i,j − pn

(cf. (2.23)). With these notations, 〈Mn〉T can be rewritten as

〈Mn〉T =
1

(pnn)2

n∑
i,j,k=1

ξ̂i,j ξ̂i,kcijk, (2.68)

where

cijk =

∫ T

0

1

σ2
(
θi,nt
)Γ
(
θi,nt , θj,nt

)
Γ
(
θi,nt , θk,nt

)
dt. (2.69)

Observe that |cijk| ≤ c? given the boundness of Γ and the conditions on σ.

The estimation of (2.67) is exactly the same as in (2.31), where dijk are replaced by Cncijk
(and d? by Cnc?). Following the same strategy, we get∏

i

E

[
1A{

n,i
exp

(
Cn

(npn)2

∑
j,k

ξ̂i,j ξ̂i,kcijk

)]
≤
(

1 +
2Cn
npn

exp
{

2CnK
2c?
})n

. (2.70)

Therefore

logEE
[
1A{

n
exp (Cn〈Mn〉T )

]
≤ 2Cn

pn
exp

{
2CnK

2c?
}
. (2.71)

Which gives (2.67) when Cn = o(log(npn)) and 1
δn

= o
(

npn
exp{cCn}

)
with c > 2K2c?: choose, for

example, Cn =
√

log(npn) and δn = 1√
npn

. �





CHAPTER 3

Weakly interacting oscillators on dense random graphs

This chapter presents the joint work with Gianmarco Bet and Francesca Nardi [11].

1. Introduction, organization and set-up

In the last twenty years there has been a growing interest in complex networks and inho-

mogeneous particle systems. The classical mean-�eld framework (e.g., [88, 98]) in which the

particles are all connected with each other, has been extended to include interactions described

by general networks. In these more general models, the interaction between two particles de-

pends on the weight of the edge connecting the two in the underlying network, see, e.g., [4, 94].

The �rst mathematically rigorous results appeared only recently [13, 36]. They consider

weakly interacting particle systems de�ned on certain graph sequences. They show that, under

suitable conditions on the degrees, the system converges to the classical mean-�eld behavior in

the limit as the number of particles tends to in�nity. However, these works leave several relevant

questions unanswered: is it possible to characterize the graph sequences for which the system

converges to the mean-�eld limit? How sensitive are the dynamics to the degree inhomogeneity

in the underlying graph? How does the graph structure a�ect the long-time behavior? See also

[30, 31, 77].

We address these questions by considering a system of weakly interacting oscillators, i.e.,

functions taking values in the one-dimensional torus. The interactions between the particles are

encoded in a general random graph sequence, meaning that two particles are interacting if and

only if they are connected in the underlying graph. Our main object of study is the empirical

measure associated to these systems. We rely on the recent graphon theory for the notion of

graph convergence and graph limit. Graphons, a generalization of dense graph sequences, have

proven to be useful in a variety of contexts, from extremal graph theory to statistical mechanics

(see the monograph [73]). Recently, they have also been employed in mean-�eld games theory,

see [24, 25] and references therein.

The main result of this work is a Law of Large Numbers for the empirical measure. More

precisely, if the underlying graph sequence converges to some (possibly random) graphon, then

we characterize the limit of the empirical measure as the solution to a non-linear Fokker-Planck

equation suitably weighted by the corresponding graph limit. We do not impose any regularity

condition on the graph sequence, which can be deterministic or random, nor on the limiting

graphon, which can also be random. Notably, our analysis includes pseudo-random graphs (see,

e.g., [5, 28]) and exchangeable random graphs (see, e.g., [40]).

39
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As a byproduct, we present a characterization of deterministic and random graph sequences

for which the behavior of the empirical measure is approximately mean-�eld. Furthermore, we

show that the map associating to each graphon the solution to the corresponding Fokker-Planck

equation is Hölder-continuous. The continuity is obtained with respect to the cut-distance on

the space of graphons and a classical Wasserstein distance on the space of trajectories.

Weakly interacting particle systems on graph sequences converging to graphons have already

been considered in a series of works, both in the stochastic setting [6, 77, 90] and in the

deterministic one [27, 82]. However, all the models proposed so far are based on labeled

graphons and do not address the graph convergence in the natural topology of graph limits

theory. Existing proofs always work under somewhat stringent regularity assumptions on the

limiting graphon, which in any case has to be deterministic, and they are not able to deal with

general graph sequences as we do.

Our work stems from the fact that the empirical measure of a particle system is invariant

under relabeling of the particles and, thus, that its law should depend on an unlabeled graphon.

In fact, unlabeled graphons represent a building block of graph limits theory and are formally

obtained as certain equivalence classes of labeled graphons. They are, in general, very irregular

objects so that one of the main di�culties towards our result is to deal with functions that

are only measurable. By taking independent and identically distributed initial conditions, we

are able to exploit the symmetry property of the system together with the key ingredients of

graphon theory, i.e., exchangeability and random sampling, and to obtain a convergence result

in the natural space of graph limits. To our knowledge, the results presented here appear

to be the �rst in the literature to tackle interacting particle systems on unlabeled graphons.

Moreover, we are also able to include the case of random graphons, an aspect that has never

been addressed so far.

Finally, whenever exchangeable graphs are considered, we establish a propagation of chaos

result. The non-linear process that describes the behavior of a tagged particle is written down

explicitly and compared with the existing characterization present in the literature.

1.1. A look at the literature. Weakly interacting particle systems on graphs have �rst

been studied in [13, 36], where the convergence to the classical mean-�eld system is shown under

some homogeneity property of the degrees and under independence of the initial conditions.

The work [31] addresses sequences of Erd®s-Rényi random graphs and establishes a Law of

Large Numbers and a Large Deviation Principle by only assuming that the initial empirical

measure converges weakly.

The works [6, 77, 90] deal with more general sequences of graphs and take into account

a few notions coming from graph limits theory. Namely, [90] establishes a Large Deviation

Principle for the empirical measure of weakly interacting particles on W -random graphs, see

(3.13) for the precise de�nition. The works [6, 77] present Law of Large Numbers results and
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consider converging graph sequences in the space of labeled graphons, although with respect to

di�erent metrics and including unbounded graphons.

For deterministic particle systems, Medvedev and coauthors consider the Kuramoto model

on a variety of graph sequences arising from labeled graphons, we refer to [27, 82] and references

therein.

To the authors' knowledge, the only work addressing the long-time behavior of interacting

particle systems on graphs is given by [30], where the Kuramoto model de�ned on pseudo-

random graphs is shown to be close to the mean-�eld behavior on long time scales. See Sub-

section 2.3 for more on pseudo-random graph sequences.

Recently mean-�eld game theoretical models de�ned on graphons have been proposed, we

refer to [24, 25] and references therein.

Most of the cited works consider both the dense regime (the number of edges is roughly

proportional to the square of the number n of vertices) as well as intermediate regimes between

sparse and dense (the number of edges grows strictly faster than n but not necessarily as fast

as n2). Although the results in [6, 27, 77, 82, 90] allow for random graph sequences, it is

always assumed that the limiting graphon is deterministic.

1.2. Organization. We now present the set-up and notation used, and recall the distances

between probability measures that will be used in the sequel.

In Section 2 we de�ne the interacting particle system and the associated non-linear process.

Existence, uniqueness and stability results for the non-linear process are presented right-after,

see Propositions 2.1 and 2.2. Our main result, Theorem 2.3, is given in Subsection 2.2. Ex-

changeable random graphs are then discussed together with a propagation of chaos result; see

Corollary 2.6 and Proposition 2.7 respectively. Subsection 2.3 is devoted to the comparison with

the classical mean-�eld behavior and to illustrate a few important consequences of Theorem

2.3; the discussion is supported by two explanatory examples.

In Section 3 we focus on the non-linear process. In particular, we discuss its relationship

with other characterizations already known in the literature. The proofs of Propositions 2.1

and 2.2 are given in Subsection 3.4.

Section 4 contains the proof of Theorem 2.3. Finally, in Appendix 3.A we collect the

most important known results on graphons and we derive a characterization of convergence in

probability for random graph sequences.

1.3. Setting and notations. We consider particle dynamics occurring on a �nite time

interval, say [0, T ], which we �x once and for all. We work on the �ltered probability space

(Ω,F , {Ft}t∈[0,T ], P ), where {F·} is a �ltration satisfying the usual conditions. All Brownian

motions that we consider later on are adapted to {Ft}t≥0 and are independent of the other

random variables.

We use two di�erent notations for expressing conditional probabilities: the one referring

to Brownian motions and initial conditions is denoted by P, its expectation by E; the one
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referring to the randomness in the graph sequences, and/or in its limit object, is denoted by P,
its expectation by E. When not explicitly written, if a result holds in P-probability, it means

that it holds P-a.s., and viceversa.

The interval I := [0, 1] represents the space of (continuous) labels. The oscillators are

functions with values in the one-dimensional torus T := R/(2πZ), so that their trajectories

are random variables de�ned on the space of continuous functions with values in T, i.e., on
C([0, T ],T), endowed with the supremum norm.

For two probability measures µ̄, ν̄ ∈ P(C([0, T ],T)), we de�ne their distance by

DT (µ̄, ν̄) := inf
m∈γ(µ̄,ν̄)

{∫
sup
t∈[0,T ]

|xt − yt|2m(dx, dy)

}1/2

, (3.1)

where γ(µ̄, ν̄) is the space of probability measures on C([0, T ],T)×C([0, T ],T) with �rst marginal

equal to µ̄ and second marginal equal to ν̄. This de�nition coincides with the 2-Wasserstein

distance between probability measures. The right-hand side of (3.1) can be rewritten as

DT (µ̄, ν̄) = inf
X,Y

{
E

[
sup
t∈[0,T ]

|Xt − Yt|2
]

: L(X) = µ̄, L(Y ) = ν̄

}1/2

(3.2)

where the in�mum is taken on all random variables X and Y with values in C([0, T ],T) and

law L equal to µ̄ and ν̄ respectively. From (3.1) we obtain that for every s ∈ [0, T ]

sup
f

∣∣∣∣∫
T
f(θ) µ̄s(dθ)−

∫
T
f(θ) ν̄s(dθ)

∣∣∣∣ ≤ Ds(µ̄, ν̄), (3.3)

where the supremum is taken over all Lipschitz functions from T to R. Observe that these

de�nitions make sense also with T = 0 and C([0, T ],T) replaced by T.
For a brief overview of the theory of graphons and graph limits, we refer to Appendix 3.A.

We follow the notation of [73], the notions of labeled and unlabeled graphs are taken from [40],

as well as the notion of convergence in probability for a sequence of random graphs. Note that

a sequence of graphs will always be considered convergent in the sense of graph limits. We

emphasize that what is usually referred to in the literature as graphon is referred to here as a

labeled graphon, and its equivalence class, i.e., an unlabeled graphon in the notation of [73], is

simply referred to as graphon.

The various constants throughout the paper are always denoted by C or C ′ and may vary

from line to line. An explicit dependence on a parameter α will be denoted by Cα.

2. The models and main results

2.1. The models. We introduce the two main models: a weakly interacting particle system

(3.4) and a non-linear process (3.6).

2.1.1. Weakly interacting oscillators on graphs. Let {ξ(n)}n∈N be a sequence of undirected,

labeled graphs. For n ∈ N, the adjacency matrix of ξ(n) is given by the n × n symmetric
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matrix {ξ(n)
ij }i,j=1,...,n where ξ(n)

ij takes value 1 whenever the vertices i and j are connected and

0 otherwise.

Let {θi,n}i=1,...,n be the family of oscillators on Tn that satisfydθi,nt = F (θi,nt )dt+ 1
n

∑n
j=1 ξ

(n)
ij Γ(θi,nt , θj,nt )dt+ dBi

t, 0 < t < T,

θi,n0 = θi0, i ∈ {1, . . . , n},
(3.4)

where F and Γ are bounded uniformly Lipschitz functions and {Bi}i∈N a sequence of indepen-

dent and identically distributed (IID) Brownian motions on T. The initial conditions {θi0}i∈N
are IID random variables sampled from some probability distribution µ̄0 ∈ P(T) which is �xed

once for all.

We are interested in studying the empirical measure associated to (3.4). This is de�ned as

the (random) probability measure on T such that

µnt :=
1

n

n∑
j=1

δθj,nt
, (3.5)

for every t ∈ [0, T ].

Many interesting examples of interacting oscillators such as the Kuramoto model, the plane

rotator model and other generalizations �t this framework, see e.g., [36, �1.2], [5] and Subsection

2.3.

2.1.2. The non-linear process. The results of this subsection are proven in Section 3, to-

gether with the comparison to other existing formulations in the literature. The graphon

framework is brie�y recalled in Appendix 3.A.

Fix a graphon W ∈ W̃0 and a uniform random variable U on I. Consider the solution

θ = {θt}t∈[0,T ] to the following system θt = θ0 +
∫ t

0
F (θs)ds+

∫ t
0

∫
I
W (U, y)

∫
T Γ(θs, θ)µ

y
s(dθ)dy ds+Bt,

µyt = L(θt|U = y), for y ∈ I, t ∈ [0, T ],
(3.6)

where L(θ0) = µ̄0 and B is a Brownian motion independent of the previous sequence {Bi}i∈N.
We take U to be independent of all the randomness in the system and, in particular, of the

initial condition θ0.

The next proposition establishes the existence of the solution to equation (3.6) and its

uniqueness. In Section 3, we prove the well-posedness of equation (3.6) with respect to W , i.e.,

the law of θ does not depend on the representative of W in the space of labeled graphons W0,

see Remark 3.4.

Proposition 2.1. For every uniform random variable U on I independent from all other

randomness, there exists a unique solution to (3.6). If µ̄ ∈ C([0, T ],P(T)) denotes its law and

µx the law of θ conditioned on U = x, then µ̄ solves the following non-linear Fokker-Planck
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equation in the weak sense

∂tµ̄t(θ) =
1

2
∂2
θ µ̄t(θ)− ∂θ [µ̄t(θ)F (θ)]− ∂θ

[∫
I×I

W (x, y)µxt (θ)

∫
T

Γ(θ, θ̃)µyt (dθ̃)dy dx

]
(3.7)

with initial condition µ̄0 ∈ P(T).

Recall that δ� de�nes a metric in the space of graphons W̃0, see (3.84). We have the

following Hölder continuity result for µ̄ with respect to W .

Proposition 2.2. Assume that Γ ∈ C1+ε(T2) for some ε > 0. There exists a positive

constant C such that, if µ̄W and µ̄V denote the laws of the solutions to equation (3.6) associated

with graphons W and V respectively, then

DT (µ̄W , µ̄V ) ≤ C δ�(W,V )1/2. (3.8)

The proof is postponed to Section 3.4. Note that taking the p-Wasserstein distance in (3.1)

for p ≥ 1 leads to a Hölder exponent as large as 1/p.

Propositions 2.1 and 2.2 imply that the following mapping is continuous:

Ψ : (W̃0, δ�)→ (C([0, T ],P(T)), DT )

W 7→ µ̄W ,
(3.9)

where µ̄W is the law of θ solving equation (3.6) with graphon W .

In particular, for every random variable W in W̃0 � which is well de�ned since (W̃0, δ�) is

a compact metric space � it corresponds a random variable µ̄W with values in C([0, T ],P(T)),

i.e., for almost every ω ∈ Ω, µ̄W (ω) = µ̄W (ω).

2.2. Convergence of empirical measures. We are now able to present our main result.

Afterwards, we present an application to exchangeable random graphs and a propagation of

chaos result.

Theorem 2.3. Let {ξ(n)}n∈N be a sequence of random graphs. Assume that there exists a

random variable W in W̃0 to which ξ(n) converges in P-probability, or equivalently such that

lim
n→∞

E
[
δ�
(
ξ(n),W

)]
= 0. (3.10)

If the initial conditions {θi0}i∈N are independent of {ξ(n)}n∈N, then

µn −→ µ̄, in P× P-probability, as n→∞, (3.11)

where the convergence is in P(C([0, T ],T))) and µ̄ is a random variable depending only on the

randomness of W , i.e., for almost every ω ∈ Ω, µ̄(ω) solves equation (3.7) starting from µ̄0,

with graphon W (ω).

Condition (3.10) extends the convergence of graph sequences to the convergence in proba-

bility in W̃0. In particular, Theorem 2.3 also holds in case the graphs are deterministic or take
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values in [0, 1] rather than {0, 1}. The equivalence between condition (3.10) and the convergence

in probability for random graph sequences is proven in Lemma 3.A.2.

One may wonder if the convergence of µn holds under weaker conditions on the initial

data: to the authors' knowledge, exchangeability is a necessary requirement so as to deal with

unlabeled graphons; we refer to Section 3 for more on this aspect.

Looking at the proof of Theorem 2.3, we remark that, if the graphon W is deterministic,

the initial conditions {θi0}i∈N can depend on the graph sequence {ξ(n)}n∈N. In other words,

Theorem 2.5 remains true if one requires {θi0}i∈N to be independent of the randomness in W

but not necessary on the whole sequence {ξ(n)}n∈N. The relationship between the randomness

left in W and the one present in ξ(n) is further discussed in Subsection 2.3.

2.2.1. Applications to exchangeable graphs. Recall that an exchangeable random graph ξ =

{ξij}i,j∈N (see [73]) is a in�nite array of binary random variables, such that

P (ξij = eij, 1 ≤ i, j ≤ n) = P
(
ξij = eσ(i)σ(j), 1 ≤ i, j ≤ n

)
(3.12)

for all n ∈ N, all permutations σ on n elements and all eij ∈ {0, 1}. This de�nition coincides

with the de�nition of jointly exchangeable binary random variables, see [40].

Remark 2.4. Any �nite deterministic graph ξ leads to an exchangeable random graph by

performing a uniform random sampling on its associated graphon Wξ, see (3.82) and [73, �10].

More generally, for W ∈ W̃0 one may construct an exchangeable random graph ξW , usually

called W -random graph, de�ned for i and j in N by

ξWij = W (Ui, Uj), (3.13)

where {Ui}i∈N is a sequence of IID uniform random variables on I. The next theorem shows

that the converse statement is also true: every exchangeable random graph can be obtained in

this way, provided that W is random.

The characterization of exchangeable random graphs is a consequence of the works of

Hoover, Aldous and Kallenberg; see [40] and references therein. We recall their main result

here.

Theorem 2.5 ([40, Theorem 5.3] and [73, Theorem 11.52]). Let ξ = {ξij}i,j∈N be an

exchangeable random graph. Then, ξ is a W -random graph for some random W ∈ W̃0.

Moreover, let ξ(n) := {ξij}i,j=1,...,n for every n ∈ N. It holds that

ξ(n) −→ W P-a.s. in W̃0, (3.14)

as n→∞.

We are now ready to state the main corollary of Theorem 2.3, which deals with exchangeable

random graphs.
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Corollary 2.6. Let ξ = {ξij}i,j∈N be an exchangeable random graph and let W be the limit

of ξ(n) := {ξij}i,j=1,...,n in the sense of Theorem 2.5. Assume that the initial conditions {θi0}i∈N
are independent of {ξ(n)}n∈N, then

µn −→ µ̄, in P× P-probability, as n→∞, (3.15)

where µ̄ is the solution to (3.7) starting from µ̄0 with graphon W .

2.2.2. Propagation of Chaos. Whenever ξ = {ξ(n)}n∈N is a sequence of exchangeable graphs1,

the particles {θi,n}i=1,...,n are exchangeable as well and, in particular, their joint distribution is

symmetric, i.e., invariant under permutation of the labels. A classical result by Sznitman [98,

Proposition 2.2] is that the Law of Large Numbers for the empirical measure of a symmetric

joint distribution of particles is equivalent to the propagation of chaos property.

From equation (3.11), we can thus deduce a propagation of chaos statement for the particle

system (3.4). This is illustrated in the next proposition.

Proposition 2.7. If ξ = {ξ(n)}n∈N is a sequence of exchangeable graphs, then for every

k ∈ N,

lim
n→∞

L(θ1,n, . . . , θk,n) =
k∏
i=1

L(θ) =
k∏
i=1

µ̄. (3.16)

We omit the proof of Proposition 2.7.

2.3. Mean-�eld behavior and two explanatory examples. Theorem 2.3 allows for a

better understanding of the relationship between random graph sequences and the behavior of

the empirical measure. More precisely:

(1) It highlights the di�erence between the randomness present in the graph ξ(n) for every

n ∈ N and the one left in the limit W ;

(2) It presents a new class of random Fokker-Planck equations as possible limit descriptions

for the empirical measure µn.

As a byproduct, it allows to derive a precise characterization of the graph sequences for which

the empirical measure limit is mean-�eld. Let us recall what we mean by mean-�eld limit and

�rst discuss this last issue; we then address (1) and (2) with the help of two examples.

Consider system (3.4) on a sequence of complete graphs, i.e., ξ(n)
ij ≡ 1 for every i, j and n.

It is well known (e.g., [88, 98]) that the empirical measure µn converges to the mean-�eld limit

ρ ∈ C([0, T ],P(T)), de�ned as the unique solution to the following McKean-Vlasov equation:

∂tρt(θ) =
1

2
∂2
θρt(θ)− ∂θ [ρt(θ)F (θ)]− p ∂θ

[
ρt(θ)

∫
T

Γ(θ, θ̃) ρt(dθ̃)

]
, (3.17)

1i.e. for each n ∈ N the random variables {ξ(n)ij }i,j=1,...,n are exchangeable. Observe that ξ is not necessarily an

exchangeable random graph as in (3.12).
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with initial condition µ̄0 and p = 1. Existence and uniqueness for the solution to (3.17) hold

under our assumptions on F, Γ and µ̄0, see e.g., [88, 98].

Suppose that the graph sequence is converging to a deterministic limit; the case of a random

limit is discussed after the next example. Theorem 2.3 implies that for every sequence {ξ(n)}n∈N
which converges to some �at graphonW ≡ p ∈ [0, 1], the empirical measure µn satis�es equation

(3.17) with corresponding p. Since the convergence of ξ(n) to a non-constant graphon gives rise

to equation (3.7), which is � at least formally � di�erent from (3.17), we conclude that the

limit of µn is mean-�eld if and only if the sequence ξ(n) converges to a constant graphon. The

graphs with such asymptotic behavior are known in the literature as pseudo-random graphs,

see [5, 28] and [73, �11.8.1].

We now address the issues (1) and (2) with two explanatory examples. The mean-�eld

comparison when the graph limit is random is discussed after the �rst example.

2.3.1. Example I: W -random graphs. Fix p ∈ (0, 1) and let g be a random variable on (0, 1)

with mean
√
p and distribution function given by Fg. Let {gi}i∈N be a sequence of IID copies

of g. Conditionally on {gi}i∈N, ξ(n)
ij is de�ned as

ξ
(n)
ij ∼ Ber(gigj), independently for each 1 ≤ i < j ≤ n. (3.18)

The graph ξ(n) is the dense analogue of the inhomogeneous random graph, also known as rank-1

model, see e.g., [12, 15]. In this model, gi corresponds to the weight associated with particle

i and, loosely speaking, the closer gi is to 1, the more connections particle i forms. We expect

that assigning di�erent distributions to g leads to di�erent behaviors for the empirical measure

(3.5).

The construction made in (3.18) returns a binary array {ξ(n)
ij }i,j=1,...,n of exchangeable ran-

dom variables. In particular, they all have the same expected value E[ξ
(n)
ij ] = p, for every

distinct pair of i and j. We are interested in comparing the empirical measure of system (3.4)

de�ned on the graph (3.18), to the one of the corresponding annealed system. This last one is

obtained from (3.4) by replacing ξ(n)
ij with their expected values, i.e., it is given by the solution

to

dθi,nt = F (θi,nt )dt+
p

n

n∑
j=1

Γ(θi,nt , θj,nt )dt+ dBi
t, (3.19)

for which the asymptotic behavior is known to be the mean-�eld limit (3.17).

Perhaps surprisingly, the behavior of system (1.13) on the graph sequence (3.18) is formally

described in the limit by (3.19) only when g is deterministic and g =
√
p. Recall the de�nition

of W -random graph given in (3.13): we see that ξ(n) is a Wg-random graph with

Wg(x, y) = F−1
g (x)F−1

g (y), for x, y ∈ I, (3.20)

where F−1
g is the pseudo inverse of Fg. In particular, the P-a.s. limit of ξ(n) is given by Wg

and thus the limit of µn by the solution to equation (3.7) with W = Wg. Theorem 2.3 and
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Proposition 2.2 imply that the empirical measure of the system associated to ξ(n) is arbitrarily

close to the mean-�eld limit of the annealed system (3.19) if Wg is arbitrarily close to the

constant graphon p in the cut-distance, i.e., if Var[g] � 1. In this case, {ξ(n)}n∈N is close

to an Erd®s-Rényi graph sequence, for which the mean-�eld behavior is already known, see

[31]. We point out that we are not able to say whether two di�erent graphons can lead to two

solutions which are close as probability measures. This aspect may be model-dependent and

needs further developments.

Finally, observe that by choosing a suitable deterministic sequence of the weights {gi}i∈[n],

e.g., gi = F−1
g (i/n) for i ∈ [n], would lead to a random graph ξ(n) which is not exchangeable.

In particular, E[ξ
(n)
ij ] is not constant and changes for every i and j. Nonetheless, the sequence

ξ(n) still converges2 to the same limit Wg.

This example illustrates how the randomness related to the exchangeability in the sequence

ξ(n) is lost in the limit of µn, as it is lost in the graph limit Wg. In this sense, adding ex-

changeability to system (3.4) does not yield any averaging property on the empirical measure

µn. Moreover, adding the extra randomness through Bernoulli random variables in (3.18) does

not alter this fact. In other words, taking ξ(n)
ij = gigj ∈ [0, 1] yields yet again the same limit for

µn. �

Until now, we have focused on deterministic limits for the sequence ξ(n). Observe that a

characterization of the exchangeable random graphs with such behavior is given in [40]; see

also [73, �11.5]. We now address the case when the limit W is random and the relationship

with the mean-�eld limit ρ given in (3.17). One might be led to conjecture that it is possible

to recover the mean-�eld behavior by, e.g., averaging the limit dynamics with respect to the

randomness in W . In the next example, we formulate this remark in a rigorous way. We show

that this is in general not possible, although it may lead to a new class of asymptotic behaviors

which are interesting on their own, as pointed out in (2).

2.3.2. Example II: random mean-�eld behavior. Consider the growing preferential attach-

ment graph ξpa constructed iteratively as follows; see also [73, Example 11.44]. Begin with a

single node and, assuming that at the n-th step there are already n nodes, create a new node

with label n+ 1 and connect it to each node i ∈ {1, . . . , n} with probability (dn(i) + 1)/(n+ 1)

where dn(i) is the degree of node i at step n and each connection is made independently of the

others. Denote the corresponding random graph by ξ(n+1)
pa .

Roughly speaking, the behavior of ξpa depends crucially on the �rst steps of the construc-

tion and it stabilizes to a homogeneous structure as n grows. This is illustrated in the next

proposition.

Proposition 2.8 ([73, Proposition 11.45]). With probability 1, the sequence {ξ(n)
pa }n∈N con-

verges to a random constant graphon.

2P-a.s. in the realization of the Bernoulli random variables and possibly at the cost of requiring some regularity
on Wg, see [?, �11.4].
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Consider a particle system de�ned on the graph sequence {ξ(n)
pa }n∈N, then the empirical

measure converges to the solution of equation (3.17) with a random p. In other words, µn

converges to a random mean-�eld limit.

Integrating (3.17) with respect to this randomness and denoting E[ρt] by ρ̄t for every t ∈
[0, T ], we obtain that ρ̄ ∈ C([0, T ],P(T)) satis�es

∂tρ̄t(θ) =
1

2
∂2
θ ρ̄t(θ)− ∂θ [ρ̄t(θ)F (θ)]− ∂θ

[
E
[
p ρt(θ)

∫
T

Γ(θ, θ̃)ρt(dθ̃)
]]
, (3.21)

for t ∈ [0, T ]. Note that (3.21) is not written in closed form because of the third term on the

right-hand side which is not linear in ρ and p. In this sense, ρ̄ does not formally satis�es the

mean-�eld limit, i.e., it is not a solution to (3.17) with some deterministic p ∈ [0, 1].

To have an intuitive understanding of what ρ̄ may look like, consider the stochastic Ku-

ramoto model without natural frequencies [9, 30] de�ned on the sequence ξ(n)
pa . The model is

de�ned as the solution to

dθi,nt =
K

n

n∑
j=1

ξ
(n)
ij sin(θj,nt − θ

i,n
t )dt+ dBi

t, (3.22)

for i = 1, . . . , n and t ∈ [0, T ]. It corresponds to (3.4) with the choices F ≡ 0 and Γ(θ, ψ) =

−K sin(θ − ψ). An application of Theorem 2.3 and Proposition 2.8 implies that the empirical

measure of (3.22) converges to the solution of

∂tρt(θ) =
1

2
∂2
θρt(θ) + pK∂θ[ρt(θ)(sin ∗ρt)(θ)], (3.23)

where ∗ stands for the convolution operator.

It is well-known that equation (3.23) undergoes a phase transition as the coupling strength

pK crosses the critical threshold pK = 1. Hence, the phase transition for this model occurs

at a random critical threshold. Depending on the sampled value of p, one obtains stable

synchronous solutions in the supercritical regime (pK > 1), or uniformly distributed oscillators

on T (0 ≤ pK < 1). The solution to equation (3.23) can be written down explicitly (see again

[9, 30]) and, integrating over the randomness of p, gives a superposition of synchronous and

asynchronous states which, in general, is not a mean-�eld solution, i.e., it does not solve (3.23)

for some �xed p ∈ [0, 1]. �

3. The non-linear process

We introduce a non-linear process (3.33) which has already been considered in the literature

[6, 27, 77, 79, 90] as the natural candidate in case the particles in (3.4) are not exchangeable

and their labels are �xed from the initial condition. This process is interesting for studying the

evolution of a tagged particle with a speci�c pro�le of connections, as stressed in [77].
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Contrary to our setting, some regularity in the � now labeled � graphon is usually assumed to

show the convergence of the empirical measure (3.5). We will exploit (3.33) to better understand

(3.6) and to establish existence and uniqueness.

Before introducing (3.33), we de�ne some other tools for dealing with empirical measures

and graphons. Notably, we introduce an equivalence relation between probability measures

on I × T inspired by graph limits theory, see (3.29). This will allow us to prove Proposition

2.2, where we establish that the empirical measure is Hölder continuous with respect to the

underlying graphon.

3.1. Distances between probability measures. Let MT be the space of probability

measures on I × C([0, T ],T) with �rst marginal equal to the Lebesgue measure λ on I, i.e.,

MT := {µ ∈ P(I × C([0, T ],T)) : p1 ◦ µ = λ} , (3.24)

where p1 is the projection map associated to the �rst coordinate. For µ ∈ MT the following

decomposition holds

µ(dx, dθ) = µx(dθ)λ(dx), x ∈ I, (3.25)

where µx ∈ P(C([0, T ],T)) for almost every x ∈ I. From now on, we denote the Lebesgue

measure λ(dx) on I simply by dx.

For µ, ν ∈MT , de�ne their distance by

dT (µ, ν) :=

(∫
I

D2
T (µx, νx)dx

)1/2

. (3.26)

Remark 3.1. Observe that the previous de�nitions make sense also with T = 0 and

C([0, T ],T) replaced by T. In particular, M0 is the space of probability measures on I × T
with �rst marginal equal to the Lebesgue measure λ on I, i.e.

M0 = {µ0 ∈ P(I × T) : p1 ◦ µ0 = λ} , (3.27)

and

d0(µ0, ν0) =

(∫
I

D2
0(µx0 , ν

x
0 ) dx

)1/2

, for µ0, ν0 ∈M0. (3.28)

Inspired by the graphon framework, one can de�ne the following relation of equivalence on

MT (the case T = 0 is analogous): for µ, ν ∈MT

µ ∼ ν i� there exists ϕ ∈ SI such that µx = νϕ(x), x-a.s.. (3.29)

Endow the quotient spaceMT/ ∼ with the induced distance given by

d̃T (µ, ν) := inf
ϕ∈SI

dT (µ, νϕ), (3.30)

where we have used the notation νϕ = {νϕ(x)}x∈I .
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Observe that if µ ∼ ν, then µ̄ =
∫
I
µxdx =

∫
I
νϕ(x)dx =

∫
I
νxdx = ν̄. In particular, for

every ϕ ∈ SI
D2
T (µ̄, ν̄) = D2

T (µ̄, ν̄ϕ) ≤
∫
I

D2
T (µx, νϕ(x))dx = d2

T (µ, νϕ). (3.31)

By taking the in�mum with respect to ϕ ∈ SI , we obtain

DT (µ̄, ν̄) ≤ d̃T (µ, ν). (3.32)

3.2. The non-linear process with �xed labels. Fix a labeled graphon W ∈ W0 to-

gether with an initial condition µ0 ∈ M0. Consider the process θ = {θx}x∈I that solves the

system θxt = θx0 +
∫ t

0
F (θxs )ds+

∫ t
0

∫
I
W (x, y)

∫
T Γ(θxs , θ)µ

y
s(dθ)dy ds+Bx

t ,

µxt = L(θxt ), for x ∈ I, t ∈ [0, T ],
(3.33)

where {θx0}x∈I is a random vector such that L(θx0) = µx0 for x ∈ I and {Bx}x∈I a sequence of

IID Brownian motions independent of {θx0}x∈I .
The following proposition shows existence and uniqueness for the solution of (3.33). The

proof follows a classical argument by Sznitman [98] and is postponed to Section 3.3.

Proposition 3.2. There exists a unique solution θ = {θx}x∈I to (3.33). The law νx ∈
C([0, T ],P(T)) of θx for x ∈ I satis�es the following non-linear Fokker-Planck equation in the

weak sense

∂tµ
x
t (θ) =

1

2
∂2
θµ

x
t (θ)− ∂θ [µxt (θ)F (θ)]− ∂θ

[
µxt (θ)

∫
I

W (x, y)

∫
T

Γ(θ, θ′)µyt (dθ
′)dy

]
(3.34)

with initial condition µx0 ∈ P(T).

The process {θx}x∈I is indexed by the space of labels I. For two di�erent labels x and y in

I, the behavior of particles θx and θy may vary depending on their connection pro�le encoded

in W and the two marginals µx and µy may vary as well. Similar results in di�erent settings

have already been shown in [6, 24, 77, 79, 90].

It is interesting to know that the law µ = {µx}x∈I ∈ MT is continuous with respect to

the cut-norm (or equivalently in d�-distance) in W0, as already remarked in [6, Theorem 2.1]

for much more general systems than the ones we consider here. Exploiting the compactness

of T and some extra regularity of Γ, we are able to prove that the map W 7→ µW is Hölder-

continuous, as shown in the next proposition.

Proposition 3.3. Suppose that Γ ∈ C1+ε(T2) for some ε > 0. There exists a positive

constant C such that, if µW and µV denote the laws of the solutions to (3.33) with W ∈ W0

and V ∈ W0 respectively, then

dT (µW , µV ) ≤ C ‖W − V ‖1/2
� . (3.35)
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The proof is again postponed to Subsection 3.3. As for Proposition 2.2, di�erent p-

Wasserstein metrics for p ≥ 1 yield a Hölder exponent as large as 1/p.

3.2.1. Relationship with the non-linear process (3.6). Consider a probability distribution

µ0 ∈ M0 such that
∫
I
µx0 dx = µ̄0. The solution to (3.7) is given by µ̄ =

∫
I
µx dx, where

µx is the law of θx solving (3.33) with initial condition µx0 and labeled graphon W . In other

words, θ has the same law of θU solution to (3.33), where U is a uniform random variable in I

independent of the other randomness in the system. As the following remark shows, the law µ̄

of θ does not depend neither on the representative W , nor on µ0.

Remark 3.4. Let ϕ ∈ SI , i.e., ϕ is an invertible measure preserving map from I to itself,

and ν = {νx}x∈I the law of {θϕ(x)}x∈I solving (3.33). By a change of variable, θϕ(x) solves

θ
ϕ(x)
t = θ

ϕ(x)
0 +

∫ t

0

F (θϕ(x)
s )ds+

∫ t

0

∫
I

W (ϕ(x), ϕ(y))

∫
T

Γ(θϕ(x)
s , θ)µϕ(y)

s (dθ)dy ds+B
ϕ(x)
t (3.36)

and can be rewritten with V = Wϕ and ψx = θϕ(x) as

ψxt = θ
ϕ(x)
0 +

∫ t

0

F (ψxs )ds+

∫ t

0

∫
I

V (x, y)

∫
T

Γ(ψxs , θ)ν
y
s (dθ)dy ds+B

ϕ(x)
t , (3.37)

which has the same law as (3.33) with labeled graphon V and initial conditions {θϕ(x)}x∈I .
Observe that the laws ν and µ associated to (3.37) and (3.33) respectively, di�er only in the

labeling of the vertices but their distance inMT is not negligible due to the initial conditions

and the fact that ‖W − V ‖� = ‖W −Wϕ‖� is, in general, di�erent from zero. However, if one

looks at µ̄ =
∫
I
µx dx and ν̄ =

∫
I
νx dx, they coincide as probability measures in the sense that

DT (µ̄, ν̄) = 0. In particular, the law of the solution to equation (3.6) is also equivalent to ψU ,

where ψx solves (3.37), and U is uniformly distributed on I.

3.3. Proofs for the non-linear process (3.33) with �xed labels.

Proof of Proposition 3.2. The proof follows a classical argument given in [98, Lemma

1.3]. Consider ν ∈MT and {θx,ν}x∈I solving

θx,νt = θx0 +

∫ t

0

F (θx,νs ) ds+

∫ t

0

∫
I

W (x, y)

∫
T

Γ(θx,νs , θ)νys (dθ) dy ds+Bx
t , (3.38)

where the initial conditions and the Brownian motions are the same of (3.33). Since F and Γ

are bounded Lipschitz functions, there exists a unique solution to (3.38), which we denote by

Φ(ν) ∈MT . Thus, the map

Φ : (MT , dT )→ (MT , dT )

ν → Φ(ν)
(3.39)

is well de�ned. A solution to (3.33) is a �xed point of Φ and any �xed point of Φ is a solution

to (3.33).



3. THE NON-LINEAR PROCESS 53

For µ, ν ∈MT , consider the processes θx,µ and θx,ν , with x ∈ I. We estimate their distance

as

|θx,µt − θ
x,ν
t |

2 ≤ C

∫ t

0

|F (θx,µs )− F (θx,νs )|2 ds

+ C

∫ t

0

∣∣∣∣∫
I

W (x, y)

(∫
T

Γ(θx,µs , θ)µys(dθ)−
∫
T

Γ(θx,νs , θ)νys (dθ)

)
dy

∣∣∣∣2 ds
Adding and subtracting in the second integral the quantity Γ(θx,µs , θ)νys (dθ) and using that

F and Γ are Lipschitz-continuous functions and that F, Γ and W are bounded, we get

≤ C

∫ t

0

|θx,µs − θx,νs |
2 ds+ C

∫ t

0

∫
I

∣∣∣∣∫
T

Γ(θx,µs , θ) [µys − νys ] (dθ)

∣∣∣∣2 dy ds, (3.40)

From (3.3) we obtain ∣∣∣∣∫
T

Γ(θx,µs , θ) (µys − νys ) (dθ)

∣∣∣∣ ≤ Ds(µ
y, νy) (3.41)

from which, using (3.26), we deduce

|θx,µt − θ
x,ν
t |

2 ≤ C

∫ t

0

|θx,µs − θx,νs |
2 ds+ C

∫ t

0

d2
s(µ, ν) ds. (3.42)

The de�nition of DT (3.2) and an application of Gronwall's lemma lead to

d2
T (Φ(µ),Φ(ν)) ≤

∫
I

E

[
sup
t∈[0,T ]

|θx,µt − θ
x,ν
t |

2

]
dx ≤ C

∫ T

0

d2
s(µ, ν) ds. (3.43)

From the last relation we obtain the uniqueness of solutions to (3.33).

We prove that a solution exists by iterating (3.43). Indeed, for k ≥ 1 and µ ∈MT , one gets

d2
T (Φk+1(µ),Φk(µ)) ≤ CkT

k

k!

∫ T

0

d2
t (Φ(µ), µ) dt. (3.44)

In particular, {Φk(µ)}k∈N is a Cauchy sequence for k large enough, and its limit is the �xed

point of Φ. Note that dt(Φ(µ), µ) <∞ since we are working on the compact space T.

For the second part of Proposition 3.2, apply Itô's formula to f(θxt ) with f ∈ C∞0 to get

f(θxt ) = f(θx0) +
1

2

∫ t

0

∂2
θf(θxs ) ds+

∫ t

0

∂θf(θxs )F (θxs ) ds

+

∫ t

0

∂θf(θxs )

[∫
I

W (x, y)

∫
T

Γ(θxs , θ)µ
y
s(dθ)dy

]
ds+

∫ t

0

∂θf(θxs ) dBx
s .

(3.45)

Integrating with respect to P yields the weak formulation of (3.34). �

Next we move to the proof of Proposition 3.3.

Proof of Proposition 3.3. Let {θx,W}x∈I and {θx,V }x∈I be the two non-linear processes
associated to W and V respectively. We compare the two solutions: as done in the proof of

Proposition 3.2, by adding and subtracting in the integrals the term W (x, y)Γ(θx,Vr , θ)(µy,Wr −
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µy,Vr ) we get ∣∣θx,Ws − θx,Vs
∣∣2 ≤ C

∫ s

0

∣∣F (θx,Wr )− F (θx,Vr )
∣∣2 dr

+ C

∫ s

0

∣∣∣∣∫
I

W (x, y)

∫
T
(Γ(θx,Wr , θ)− Γ(θx,Vr , θ))µy,Wr (dθ) dy

∣∣∣∣2 dr
+ C

∫ s

0

∣∣∣∣∫
I

W (x, y)

∫
T

Γ(θx,Vr , θ)(µy,Wr − µy,Vr )(dθ) dy

∣∣∣∣2 dr
+ C

∫ s

0

∣∣∣∣∫
I

(W (x, y)− V (x, y))

∫
T

Γ(θx,Vr , θ)µy,Vr (dθ) dy

∣∣∣∣2 dr.
(3.46)

Using that F and Γ are Lipschitz-continuous functions and that F, Γ and W are bounded, we

get ∣∣θx,Ws − θx,Vs
∣∣2 ≤ C

∫ s

0

∣∣θx,Wr − θx,Vr
∣∣2 dr + C

∫ s

0

d2
r(µ

W , µV ) dr

+

∫ s

0

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vr (dθ)

)
dy

∣∣∣∣2 dr. (3.47)

After taking the supremum over s ∈ [0, t], the expectation E and integrating with respect to

x ∈ I, we are able to apply Gronwall's lemma as in (3.43) to get

d2
t (µ

W , µV ) ≤
∫
I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θx,Vs
∣∣2] dx ≤ C

(∫ t

0

d2
s(µ

W , µV ) ds+G
)
, (3.48)

where G is given by

G =

∫ t

0

E

[∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vs (dθ)

)
dy

∣∣∣∣2 dx
]
ds. (3.49)

Applying Gronwall's inequality to (3.48) yields

d2
t (µ

W , µV ) ≤ CG. (3.50)

The proof is concluded provided that G ≤ C ′ ‖W − V ‖�, for some constant C ′ > 0.

Observe that Γ can be written in Fourier series, i.e.

Γ(θ, ψ) =
∑
k,l∈Z

Γkl e
ikθeilψ, θ, ψ ∈ T, (3.51)

where Γkl =
∫
T2 Γ(θ, ψ)ei(kθ+lψ)dθdψ. Since Γ ∈ C1+ε, classical results on the asymptotic of

Fourier series [64, pp. 24-26] imply that

CΓ :=
∑
k,l∈Z

(kl)1+ε |Γkl|2 <∞. (3.52)
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Plugging this expression into (3.49), we obtain that∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T

Γ(θx,Vs , θ)µy,Vs (dθ)

)
dy

∣∣∣∣2 dx
=

∫
I

∣∣∣∣∣∑
kl

Γkl e
ikθx,Vs

∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣∣
2

dx.

(3.53)

Multiplying and dividing by (kl)(1+ε)/2 one is left with

≤
∫
I

∣∣∣∣∣∑
kl

(
(kl)(1+ε)/2Γkl e

ikθx,Vs
)

(
(kl)−(1+ε)/2

∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

) ∣∣∣∣∣
2

dx.

≤CΓ

∑
kl

(kl)−1−ε
∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣2 dx
(3.54)

where in the second step we have applied Cauchy-Schwartz inequality and (3.52). Using that

W and V are bounded, as well as the fact that∣∣∣∣∫
I

(W (x, y)− V (x, y))

(∫
T
eilθµy,Vs (dθ)

)
dy

∣∣∣∣ ≤ 1, (3.55)

we conclude

G ≤ C sup
‖a‖∞,‖b‖∞≤1

∫
I

∣∣∣∣∫
I

(W (x, y)− V (x, y)) (a(y) + ib(y)) dy

∣∣∣∣ dx
≤ C ‖W − V ‖∞→1 .

(3.56)

Since the norm ‖ · ‖∞→1 is equivalent to the cut-norm (3.80), the proof is concluded. �

3.4. Proofs for the non-linear process (3.6).

Proof of Proposition 2.1. The �rst part follows directly from Proposition 3.2 and Re-

mark 3.4. The proof of (3.7) is similar to the proof of (3.34), but note that we are now

integrating with respect to the randomness in U as well. �

Proof of Proposition 2.2. Let θU,W and θU,V be the two solutions to (3.6) associated

to W and V respectively, coupled by taking the same uniform random variable U . Let µx,W

and µx,V represent the laws of θU,W and θU,V conditioned on U = x, for x ∈ I.
Consider ϕ ∈ SI an invertible measure preserving map. Recall that θϕ(U),V also satis�es

equation (3.6) with V ϕ, see Remark 3.4. We compare the trajectories θU,W and θϕ(U),V .

Consider the di�erence between the equations satis�ed by θU,W and θϕ(U),V , add and subtract

the term W (U, y)Γ(θ
ϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r ) to obtain that



56 3. WEAKLY INTERACTING OSCILLATORS ON DENSE RANDOM GRAPHS

∣∣θU,Ws − θϕ(U),V
s

∣∣2 ≤ C

∫ s

0

∣∣F (θU,Wr )− F (θϕ(U),V
r )

∣∣2 dr
+ C

∫ s

0

∣∣∣∣∫
I

W (U, y)

∫
T

(
Γ(θϕ(U),W

r , θ)− Γ(θϕ(U),V
r , θ)

)
µϕ(y),W
r (dθ) dy

∣∣∣∣2 dr
+ C

∫ s

0

∣∣∣∣∫
I

W (U, y)

∫
T

Γ(θϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r )(dθ) dy

∣∣∣∣2 dr
+ C

∫ s

0

∣∣∣∣∫
I

(W (U, y)− V ϕ(U, y))

∫
T

Γ(θϕ(U),V
r , θ)µϕ(y),V

r (dθ) dy

∣∣∣∣2 dr.
(3.57)

The �rst two integrals on the r.h.s. are bounded by C
∫ s

0

∣∣∣θU,Wr − θϕ(U),V
r

∣∣∣2 dr, using that F and

Γ are Lipschitz-continuous. While the third integral in the r.h.s. can be estimated using (3.3)

and the fact that 0 ≤ W ≤ 1. Thus we get∣∣∣∣∫
I

W (U, y)

∫
T

Γ(θϕ(U),V
r , θ)(µy,Wr − µϕ(y),V

r )(dθ) dy

∣∣∣∣2
≤
∫
I

D2
r(µ

y,W , µϕ(y),V ) dy = d2
r

(
µW , (µV )ϕ

)
,

(3.58)

where we have used the notation (µV )ϕ for {µϕ(y),V }y∈I .
Taking the supremum over s ∈ [0, t] and the expectation with respect to the Brownian

motions, the initial conditions and the random variable U , we obtain∫
I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θϕ(x),V
s

∣∣2] dx ≤C ∫ t

0

∫
I

E

[
sup
r∈[0,s]

∣∣θx,Wr − θϕ(x),V
r

∣∣2] dx ds
+ C

∫ t

0

d2
s

(
µW , (µV )ϕ

)
ds+ CG,

(3.59)

where G is given by

G =

∫ t

0

E

[∫
I

∣∣∣∣∫
I

(W (x, y)− V ϕ(x, y))

∫
T

Γ(θϕ(x),V
s , θ)µϕ(y),V

s (dθ)dy

∣∣∣∣2 dx
]
ds. (3.60)

In the proof of Proposition 3.3 we proved the following estimates:

d2
t

(
µW , (µV )ϕ

)
≤
∫
I

E

[
sup
s∈[0,t]

∣∣θx,Ws − θϕ(x),V
s

∣∣2] dx,
G ≤ C ′ ‖W − V ϕ‖� , for some C ′ > 0.

(3.61)

Applying these bounds to (3.59) and using Gronwall's inequality twice as in the previous proof,

yields

d2
t

(
µW , (µV )ϕ

)
≤ C ‖W − V ϕ‖� . (3.62)
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By taking the in�mum with respect to ϕ ∈ SI and recalling the de�nition of the cut-distance

(3.84) together with (3.32), we obtain

Dt(µ̄
W , µ̄V ) ≤ d̃t

(
µW , µV

)
≤ C δ�(W,V )1/2. (3.63)

The proof is concluded. �

4. Proof of Theorem 2.3

In order to prove Theorem 2.3, we couple the system (3.4) to a sequence of identically

distributed copies of the non-linear process θ, which is obtained by sampling {Ui}i∈N IID uniform

random variables and choosing the same initial conditions and Brownian motions of (3.4).

For every i ∈ N, denote these copies by θi = θ(Ui). In particular, θi is de�ned as the solution

for t ∈ [0, T ] to

θit = θi0 +

∫ t

0

F (θis)ds+

∫ t

0

∫
I

W (Ui, y)

∫
T

Γ(θis, θ)µ
y
s(dθ)dy ds+Bi

t. (3.64)

Observe that {θi}i∈N is an exchangeable sequence and, in particular, that the variables θi are

independent random variables when conditioned on the randomness of W .

Before the proof of Theorem 2.3, we give a trajectorial estimate.

Lemma 4.1. Under the hypothesis of Theorem 2.3, it holds that

lim
n→∞

E× E

[
1

n

n∑
i=1

sup
t∈[0,T ]

∣∣θi,nt − θit∣∣2
]

= 0. (3.65)

Proof. As done before, we compare the trajectories θi,n and θi, by studying the equation

satis�ed by |θi,ns − θis|
2, recall (3.4) and (3.64). Add and subtract in the integrals the term(

ξ
(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r) so as to get

∣∣θi,ns − θis∣∣2 ≤ C

∫ s

0

∣∣F (θi,nr )− F (θir)
∣∣2 dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

ξ
(n)
ij

(
Γ(θi,nr , θj,nr )− Γ(θir, θ

j
r)
)∣∣∣∣∣

2

dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r)

∣∣∣∣∣
2

dr

+ C

∫ s

0

∣∣∣∣∣ 1n
n∑
j=1

W (Ui, Uj)Γ(θir, θ
j
r)−

∫
I

W (Ii, y)

∫
T

Γ(θir, θ)µ
y
r(dθ) dy

∣∣∣∣∣
2

dr.

(3.66)
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We now use the Lipschitz property of Γ and F , sum over i and take the supremum over s ∈ [0, t],

together with the expectation E× E, which we just write E for simplicity,

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θi,ns − θis∣∣2
]
≤ C

∫ t

0

E

[
1

n

n∑
i=1

sup
q∈[0,r]

∣∣θi,nq − θiq∣∣2
]
dr

+ C

∫ t

0

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θir, θ

j
r)

∣∣∣∣∣
2
 dr

+ C

∫ t

0

1

n

n∑
i=1

E

∣∣∣∣∣ 1n
n∑
j=1

W (Ui, Uj)Γ(θir, θ
j
r)−

∫
I

W (Ui, y)

∫
T

Γ(θir, θ)µ
y
r(dθ) dy

∣∣∣∣∣
2
 dr.

(3.67)

Observe that the last term is bounded by a constant divided by n since by taking the conditional

expectation with respect to θj and U j, one obtains

E
[
W (Ui, Uj)Γ(θis, θ

j
s)
]

=

∫
I

W (Ui, y)

∫
T

Γ(θis, θ)µ
y
s(dθ) dy (3.68)

and, conditionally on W , the random variables {θi}i∈N are IID.

Turning to the second term, we will prove that

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θis, θ

j
s)

∣∣∣∣∣
2
 ≤ C E

[
δ�(ξ(n),W (n))

]
+ o(1), (3.69)

where W (n) := {W (Ui, Uj)}i,j=1,...,n is a W -random graph with n vertices, see (3.13). This,

together with a Gronwall argument implies that

E

[
1

n

n∑
i=1

sup
s∈[0,t]

∣∣θi,nt − θit∣∣2
]
≤ C E

[
δ�(ξ(n),W (n))

]
+ o(1) (3.70)

and the claim follows by taking the limit for n which tends to in�nity and the fact that W (n)

converges P-a.s. to W , recall Theorem 2.5.

Turning to (3.69), we use an argument similar to (3.49)�(3.52). Recall that since Γ ∈ C1+ε,

it admits a Fourier series (3.51) with coe�cients Γkl such that∑
k,l∈Z

(kl)1+ε|Γkl|2 <∞.
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Plugging its Fourier expression in the left-hand side of (3.69), multiplying and dividing by

(kl)(1+ε)/2, we get

E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
Γ(θis, θ

j
s)

∣∣∣∣∣
2


= E

 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)∑
k,l

Γkle
iθiskeiθ

j
sl

∣∣∣∣∣
2


≤ CE

∑
k,l

(kl)−1−ε 1

n

n∑
i=1

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
eiθ

i
skeiθ

j
sl

∣∣∣∣∣
2
 ,

(3.71)

where we have used Cauchy-Schwartz inequality as in the proof of Proposition 2.2. Observe

that
∑

kl(kl)
−1−ε is convergent and that

∣∣∣eiθisk∣∣∣ ≤ 1 for all k and s: we can thus bound P-a.s.

the previous term by

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
sitj

∣∣∣∣∣
]
. (3.72)

Recall that W (n) = {W (Ui, Uj)}i,j=1,...,n is a W -random graph with n vertices. Since the

particles {θi}i∈N are exchangeable, every computation done so far holds no matter the order of

{θi}i=1,...,n and, in particular, of {U i}i=1,...,n. In particular, the last inequality holds for every

relabeling of W (n).

From the de�nition of δ̂� (3.83), one can thus take the labeling of {Ui}i=1,...,n for every

n ∈ N, such that

E

[
sup

si,tj∈{±1}

∣∣∣∣∣ 1

n2

n∑
i,j=1

(
ξ

(n)
ij −W (Ui, Uj)

)
sitj

∣∣∣∣∣
]

= E
[
δ̂�(ξ(n),W (n))

]
. (3.73)

Using the asymptotic equivalence of δ̂� with δ�, see Remark 3.A.1, the claim is proved and the

proof is concluded. �

Proof of Theorem 2.3. The equivalence between the convergence in P-probability of

ξ(n) and equation (3.14) is proven in Lemma 3.A.2. We turn to the proof of the convergence of

µn.

It is well known that the bounded Lipschitz distance, recall (3.3), metricizes the weak

convergence and de�nes a distance between probability measures. In particular, in order to

show that µn converges in P× P-probability to µ̄ in P(C([0, T ],R)), it is enough to prove that

lim
n→∞

E× E

[∫
f(θ)µn(dθ)−

∫
f(θ)µ̄(dθ)

]
= 0, (3.74)

for every f bounded and Lipschitz function with values in C([0, T ],R).
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Using the fact that µ̄ is the law of {θi}i∈N (recall (3.64)), it is enough to show that

lim
n→∞

1

n

n∑
j=1

E× E
[∣∣f(θj,n)− f(θj)

∣∣] = 0. (3.75)

This is implied by the fact that f is Lipschitz and by Jensen's inequality. Indeed,

1

n

n∑
j=1

E× E
[∣∣f(θj,n)− f(θj)

∣∣] ≤ E× E

[
1

n

n∑
j=1

sup
t∈[0,T ]

∣∣θj,nt − θjt ∣∣2
]1/2

, (3.76)

which goes to zero as n→∞ by Lemma 4.1. �

3.A. Graph convergence and random graphons

3.A.1. Distance between �nite graphs. We denote [n] := {1, . . . , n} for n ∈ N. Let

ξ be a labeled graph on n vertices. With an abuse of notation, we let ξ denote its adjacency

matrix as well, i.e., ξ = {ξij}i,j∈[n]. We consider simple undirected graphs so that ξij = ξji and

ξii = 0 for all 1 ≤ i ≤ j ≤ n.

Let A = {Aij}i,j∈[n] be a n× n real matrix. The cut-norm of A is de�ned as

‖A‖� :=
1

n2
max
S,T⊂[n]

∣∣∣∣∣ ∑
i∈S,j∈T

Aij

∣∣∣∣∣ . (3.77)

It is well-known that this norm is equivalent to the l∞ → l1 norm [3]

‖A‖∞→1 := sup
si,tj∈{±1}

n∑
i,j=1

Aijsitj. (3.78)

For two labeled graphs ξ and ξ′ on the same set of vertices, we de�ne the distance d� as

d�(ξ, ξ′) := ‖ξ − ξ′‖� . (3.79)

3.A.2. Labeled and unlabeled graphons. Recall that I = [0, 1] and let W := {W :

I2 → R bounded symmetric and measurable} be the space of kernels, we tacitly consider two

kernels to be equal if and only if the subset of I2 where they di�er has Lebesgue measure 0.

A labeled graphon is a kernel W such that 0 ≤ W ≤ 1. Let W0 denote the space of labeled

graphons. The cut-norm of W ∈ W is de�ned as

‖W‖� := max
S,T⊂I

∣∣∣∣∫
S×T

W (x, y)dxdy

∣∣∣∣ (3.80)

where the maximum is taken over all measurable subsets S and T of I. It is well known that

‖W‖� is equivalent to the norm of W seen as an operator from L∞(I)→ L1(I) [73, Theorem

8.11]. This is de�ned as

‖W‖∞→1 := sup
‖g‖∞≤1

‖Wg‖1 , (3.81)

where (Wg)(x) :=
∫
I
W (x, y)g(y)dy for x ∈ I and g ∈ L∞(I).
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The metric induced by ‖·‖�, or equivalently by ‖·‖∞→1, in the space of labeled graphons

W0 is again denoted by d�(·, ·). De�nitions (3.77) and (3.80) are consistent in the sense that to

each labeled graph ξ is associated a labeled graphon Wξ ∈ W0 such that ‖ξ‖� = ‖Wξ‖�. The
labeled graphon Wξ is usually de�ned a.e. as

Wξ(x, y) =
n∑

i,j=1

ξij 1[ i−1
n
, i
n

)×[ j−1
n

j
n

)(x, y), for x, y ∈ I. (3.82)

Note thatWξ depends on the labeling of ξ. Indeed, di�erent labelings of ξ yield graphs which

have large d�-distance in general. This motivates the de�nition of the so-called cut-distance.

For two labeled graphs ξ, ξ′ with the same number of nodes, the cut-distance is de�ned as

δ̂�(ξ, ξ′) := min
ξ̂′

d�(ξ, ξ̂′), (3.83)

where the minimum ranges over all labelings of ξ′. The cut-distance is also de�ned for graphons

as follows. For two labeled graphons W,V ∈ W0, their cut-distance is

δ�(W,V ) := min
ϕ∈SI

d�(W,V ϕ), (3.84)

where the minimum ranges over SI the space of invertible measure preserving maps from I into

itself and where V ϕ(x, y) := V (ϕ(x), ϕ(y)) for x, y ∈ I.

Remark 3.A.1. There are at least two ways to compare the graphs ξ, ξ′ as unlabeled objects:

either by directly computing their distance δ̂� or by computing the distance δ� betweenWξ and

Wξ′ . These turn out to be equivalent as the number of vertices tends to in�nity [73, Theorem

9.29]. Formally, for every two graphs ξ, ξ′ on n vertices, it holds that

δ�(Wξ,Wξ′) ≤ δ̂�(ξ, ξ′) ≤ δ�(Wξ,Wξ′) +
17√
log n

. (3.85)

We always write δ�(ξ, ξ′) := δ�(Wξ,Wξ′).

Contrary to d�, the cut-distance δ� is a pseudometric onW0 since the distance between two

di�erent labeled graphons can be zero. This leads to the de�nition of the unlabeled graphon W̃

associated toW . For a labeled graphonW , W̃ is de�ned as the equivalence class ofW including

all V ∈ W0 such that δ�(W,V ) = 0. For notation's sake, we drop both the superscript and the

adjective unlabeled when the context is clear. The quotient space obtained in such a way is

denoted by W̃0 and we refer to it as the space of graphons. A celebrated result of graph limits

theory is that (W̃0, δ�) is a compact metric space [73, Theorem 9.23].

We are not going into the details of graph convergence for which we refer to the exhaustive

reference [73]. We only recall that a sequence of graphs {ξ(n)}n∈N converges to the graphon

W ∈ W̃0 if and only if δ�(Wξ(n) ,W ) → 0 as n → ∞ [73, Theorem 11.22]). We refer to the

following subsection for a characterization of the convergence in probability.

3.A.3. Convergence in probability. The characterization of the convergence in distri-

bution for a sequence of graphs has been originally given in [40]. We give here a useful notion
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of convergence in W̃0 by means of the cut-distance δ�, which is equivalent to the convergence

in probability for graph sequences.

Lemma 3.A.2. Assume that {ξ(n)}n∈N is a sequence of random graphs and W a random

graphon in W̃0. Then, ξ(n) converges in P-probability to W if and only if (3.10) holds, i.e., if

and only if

lim
n→∞

E
[
δ�
(
ξ(n),W

)]
= 0.

Proof. Recall that (W̃0, δ�) is a compact metric space, so that the convergence of ξ(n) in

probability is equivalent to

∀ε > 0, lim
n→∞

P
(
δ�(ξ(n),W ) > ε

)
= 0. (3.86)

Observe that the sequence of positive real random variables {δ�(ξ(n),W )}n∈N is uniformly

bounded by 1. Equation (3.86) is then equivalent to the convergence in L1, i.e., equivalent to

(3.10). �



CHAPTER 4

Long time dynamics for interacting oscillators

This chapter is based on [30].

1. Introduction

1.1. Synchronization of mean �eld systems on graphs. In recent years, synchro-

nization of complex networks has become a very important topic for explaining real world

phenomena. While in the physics literature the analysis has been pushed quite far and several

extended reviews are available (e.g. [43, 94]), from a mathematical point of view these studies

and the associated numerical simulations, can be regarded more as heuristic arguments than

conclusive proofs.

The mathematical community has started working on particle systems on (random) graphs

from the statistical mechanics point of view in the equilibrium regime and, with respect to the

graph setting, assuming a locally tree-like structure (e.g [37]). Only in the last few years the

attention has been focused on the dynamics of weakly interacting particles, tackling mean �eld

systems on graphs, and their relationship with the corresponding thermodynamical limit (e.g.

[13, 36]). These results, and the one presented here, are obtained for graphs in an intermediate

regime between the sparse and the dense case, i.e. if Gn has n vertices and npn represents the

average number of edges, then 1� npn ≤ n. In the case of sparse graphs, i.e. npn = O(1), the

limiting system seems to show a di�erent phenomenology ([70, 91]).

Today, many results on the behavior of the empirical measure of such systems are available

([13, 31, 36, 77, 90]), but there is no agreement on the weakest hypothesis the class of graphs

should satisfy in order to obtain the classical mean �eld limit. It turns out that, depending

on the setting one is considering, i.e. the normalization chosen in the interaction and/or the

hypothesis on the initial data, di�erent requirements on the graph may be asked.

To the author's knowledge, there exists no result on the longtime dynamics of a system de-

�ned on a sequence of graphs and the question whether the network is in�uencing the dynamics

on long time scales, is still open and very much awaited with regards to applications.

In this work, we attack these issues by considering a well known model of synchronization

de�ned on a sequence of graphs: we consider the Kuramoto model (e.g. [1]) for which an

extensive literature is available and many tools have now been developed ([9, 10, 51]). For the

sake of clarity, we study the model without the natural frequencies but our techniques apply

as well in the quenched setting. We look for a result of mean �eld type with the minimal

hypothesis on the initial conditions, i.e. the weak convergence of the empirical measure only,

63
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and by proposing a (deterministic) condition on the sequence of graphs which is shown to be

satis�ed by a large class of homogeneous graphs, including Erd®s-Rényi random graphs with

diverging average degree.

Finally, we show that the condition on the graph is not only su�cient for the system to

converge to the mean �eld limit on bounded time intervals, but also that it is enough to study

it on longer time scales. Namely, we push our analysis to the Large Deviation barrier of

exponential time scales showing that, if the system synchronizes, then it keeps synchronized

for long times.

1.2. The model. For each n ∈ N, let ξ(n) be the adjacency matrix of a graph (V (n), E(n))

with n vertices:

V (n) = {1, . . . , n} , E(n) =
{

(i, j) ∈ V (n) × V (n) : ξ
(n)
ij ≥ 1

}
. (4.1)

We consider both directed and undirected graphs as well as multigraphs so that ξ(n)
ij can take

values in {1, . . . , n} and not need to be equal to ξ(n)
ji . We denote the corresponding (multi)graph

by ξ(n) itself. Together with ξ(n), we consider a dilution parameter pn ∈ (0, 1] representing the

average density of neighbors per site. The two quantities will be coupled so that it is useful

to think of them as one single object, we refer to Subsection 1.4 for the precise condition we

require on it.

Given
(
ξ(n), pn

)
, let {θi,n· }i=1,...,n be the family of oscillators on Tn := (R/2πZ)n, which

satisfy: dθi,nt = 1
npn

∑n
j=1 ξ

(n)
ij J(θi,nt − θ

j,n
t )dt+ dBi

t, for t > 0,

θi,n0 = θi0, for i ∈ {1, . . . , n},
(4.2)

where J(·) = −K sin(·) with K ≥ 0. Denote by P the law induced by {Bi
·}i∈N which are

independent and identically distributed (IID) Brownian motions on T and by {θi0}i∈N the initial

conditions. We consider both deterministic and random initial data and, whenever they are

random, they have to be independent of the Brownian motions.

If {ξ(n)
ij }ij are symmetric, i.e. ξ(n)

ij = ξ
(n)
ji for 1 ≤ i < j ≤ n, then the model is reversible

(e.g. [9]) with respect to the probability measure on Tn given by

π(n)(dθ) =
1

Z(n)
exp

(
−K
n

n∑
i,j=1

ξ
(n)
ij cos(θi − θj)

)
λn(dθ), (4.3)

where Z(n) is the normalizing constant and λn the uniform probability measure on Tn.

The main quantity of interest in system (4.2) is the empirical measure µnt associated to

{θi,nt }i=1,...,n and it is de�ned for all t ≥ 0 by

µnt :=
1

n

n∑
j=1

δθj,nt
∈ P(T), (4.4)

the space of probability measure on the torus being denoted by P(T).
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1.3. The reversible Kuramoto model and its mean �eld limit. When ξ(n)
ij = 1 for

1 ≤ i, j ≤ n and pn ≡ 1 for all n ∈ N, i.e. ξ(n) is the complete graph, system (4.2) becomes:dθ̄i,nt = (J ∗ µ̄nt )(θ̄i,nt )dt+ dBi
t, for t > 0,

θ̄i,n0 = θi0, for i ∈ {1, . . . , n},
(4.5)

where µ̄nt := 1
n

∑n
j=1 δθ̄j,nn is the associated empirical measure and ∗ stands for the convolution.

We refer to (4.5) as the reversible Kuramoto model (e.g. [9]).

It is well known (e.g. [9, Proposition 3.1]) that for all �xed time T , µ̄nt∈[0,T ] seen as a

continuous function over P(T), weakly converges in C0([0, T ],P(T)) to a deterministic limit

µ· ∈ C0([0, T ],P(T)) that is solution to the following partial di�erential equation (PDE):∂tµt(θ) = 1
2
∂2
θµt(θ)− ∂θ[µt(θ)(J ∗ µt)(θ)], for θ ∈ T, 0 < t ≤ T,

µt t=0 = µ0,
(4.6)

provided that µn0 weakly converges to µ0 in P(T). If µ0 does not have a density, than (4.6) has

to be intended in the weak sense; however the regularity properties of the Laplacian operator

make µt smooth for all t > 0 (see again [9, Proposition 3.1]). Equation (4.6) is often called

McKean-Vlasov or Fokker-Planck equation and we refer to its solution µ· as to the mean �eld

limit of the di�usions solving (4.5).

We recall here the most important results on (4.6), without giving any proof but referring

to [51] (and references therein) where a complete analysis of the global dynamics is presented.

As for the mean �eld limit of the classical Kuramoto model, (4.6) is known to admit a phase

transition depending on the coupling strength K: in the subcritical regime, for 0 ≤ K < Kc :=

1, the particles behave as they were independently distributed on the circle; in the supercritical

regime, for K > 1, they tend to synchronize around the same phase. We do not consider the

critical case K = 1, since it does not add anything to the purpose of this work.

More precisely, in the subcritical regime there is a unique stationary solution which corre-

sponds to the incoherent state 1
2π
, the uniform measure on the torus (see [51, Proposition 4.1]).

It is globally attractive and the linear operator around it has negative spectrum bounded away

from zero: we will make use of this property showing that the �uctuations given by the graph

structure are controlled for uniformly in time, whereas the random �uctuations given by the

Brownian motions are not and will make the system escape from 1/2π after some (very long)

time, i.e. a Large Deviation phenomenon.

In the supercritical regime, when K > 1, there is a manifold of stable stationary solutions

corresponding to the synchronous states of the oscillators {θi,n· }i=1,...,n (see [51, Subsection 4.3]

and [9]). Up to a rotation, all stable stationary solutions of (4.6) are given by

q(θ) =
exp{2Kr cos(θ)}

Z
, (4.7)
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where Z is the normalizing constant and r = r(K) is the unique solution in (0, 1) of a �xed

point equation r = Ψ(2Kr), see [9] for a explicit formula of Ψ. The parameter r is often referred

to as the degree of synchronization of the system: r close to 0 indicates that the particles are

scattered around the circle, r close to 1 that they are almost fully synchronized. We just recall

that whenever K < 1, the �xed point equation has a unique solution r = 0, which in (4.7) boils

down to the uniform measure 1/2π, and whenever K > 1 the value r = 0 is still a solution but

the corresponding measures solving (4.6) are unstable so that we will not consider them.

Let K > 1 and 0 < r < 1. Observe that system (4.5) (and also (4.2)) is invariant under

rotations, this property is maintained in the limit (4.6) and the manifold of stationary solutions

M can be described as

M = {qψ : qψ(·) = q(· − ψ), ψ ∈ T} . (4.8)

It is possible to show that, unless one starts from the unstable manifold

U =

{
µ ∈ P(T) :

∫
T

exp(iθ)µ(dθ) = 0

}
, (4.9)

the measure µt solution to (4.6) converges to some qψ ∈ M as t tends to in�nity, the phase

ψ ∈ T depending only on µ0. Since each q ∈ M is a stationary solution, the dynamics of µt is

fully characterized for all times t.

1.4. The graph's perspective. The aim of this work is to investigate the weakest as-

sumptions on the sequences ξ =
{
ξ(n)
}
n∈N and {pn}n∈N, such that the long time behavior of

(4.2) is well understood: in other words, whenever system (4.2) is comparable to (4.5) or to

the mean �eld limit (4.6), under a proper scale between size of the system n and some horizon

time Tn.

The normalization sequence pn has to be chosen such that the interaction term in (4.2)

makes sense. At least, this requires the assumption that the quantity

1

npn

n∑
j=1

ξ
(n)
ij (4.10)

is of order one, for almost each vertex i in the graph.

Remark 1.1. Observe that whenever (4.10) converges to zero or diverges, one should look

for a di�erent normalization in order to obtain a proper limit. A control on (4.10) is thus

required to exclude degenerate cases, yet it cannot be su�cient for our purpose: whenever one

considers a graph composed of two (or more) highly connected components, the degree of each

vertex can be correctly de�ned, but one cannot expect the convergence of the empirical measure

since the behavior on each component may di�er, depending on the initial conditions! We refer

to [31, Remark 1.2] and [36, Remark 1.4] for concrete examples and a precise analysis from

this perspective, see also Remark 2.2 in the next section.
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For n ∈ N, de�ne the normalized adjacency matrix P (n) = {P (n)
ij }i,j=1,...,n by

P
(n)
ij :=

ξ
(n)
ij

pn
, for i, j = 1, . . . , n. (4.11)

Recall that we do not assume any symmetry on ξ(n) and that it can also represent a multigraph.

De�ne 1(n) as the adjacency matrix associated to the classical mean �eld model, i.e. 1
(n)
ij = 1

for i, j = 1, . . . , n. One would like to compare P (n) to 1(n).

It turns out that a su�cient condition for what we aim at, is given by a control on the

di�erence between P (n) and 1(n) through the l∞ → l1 norm. This norm is de�ned for a matrix

G = {Gij}i,j=1,...,n as

‖G‖∞→1 := sup
‖s‖∞≤1

‖Gs‖1 = sup
s,t∈{−1,1}n

Gst> = sup
si,tj∈{−1,1}

n∑
i,j=1

Gijsitj. (4.12)

It has received a lot of attention in the last years: it appears in many applications in computer

science (e.g. [57]) and it has been shown to be very useful in graphs concentration (e.g.

[55, 72, 89]). Part of this success is because of the equivalence to the cut-norm (e.g. [3]) and,

as already remarked in [55, 90], of Grothendieck's Inequality, which is recalled hereafter.

Theorem 1.2 (Grothendieck's inequality, [93, Theorem 2.4]). Let {aij}i,j=1,...,n be a n× n
real matrix such that for all si, tj ∈ {−1, 1}

n∑
i,j=1

aijsitj ≤ 1. (4.13)

Then, there exists an universal constant KR > 0, such that for every Hilbert space (H, 〈·, ·〉H)

and for all Si and Tj in the unit ball of H

n∑
i,j=1

aij〈Si, Tj〉H ≤ KR. (4.14)

It is indeed thanks to this inequality that l∞ → l1 norm turns out to be the natural choice

for our setting: an important part of the proof (Lemmas 3.2 and 4.3) consists in showing that

the �uctuations due to the graph structure can be described by expressions like (4.14), and

thus controlled by ‖·‖∞→1.

From now on, the only condition we require on
(
ξ(n), pn

)
n∈N is to satisfy:∥∥P (n) − 1(n)

∥∥
∞→1

= o(n2), (4.15)

or, in other words,

lim
n→∞

sup
si,tj∈{−1,1}

1

n2

n∑
i,j=1

(
ξ

(n)
ij

pn
− 1

)
sitj = 0. (4.16)

In Proposition 4.A.3 it is shown that Erd®s-Rényi random graphs with parameter pn satisfy

condition (4.16) almost surely, provided that npn ↑ ∞. We also provide a class of deterministic
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graphs, Ramanujan graphs, that satis�es (4.16) (see Proposition 4.A.6) and give some link with

the theory of graphons.

Appendix 4.A presents such results and includes remarks on the relationship between con-

dition (4.16), the degree condition (4.10) and the connectivity of {ξ(n)}n∈N.

1.5. Set-up and notations. The closeness between µnt and µt is studied through a norm

which controls the bounded Lipschitz (or 1-Wasserstein) distance between probability measures,

in an appropriate class of weighted Hilbert spaces H−1,w. This class is de�ned as follows.

Denote by C1
0(T) the space of C1 functions on the torus with zero mean and consider

L2
0 =

{
f ∈ L2(T) :

∫
T
f = 0

}
, (4.17)

with canonical scalar product (u, v) :=
∫
T uv, for u, v ∈ L

2
0. Let w ∈ C1(T, (0,∞)) and V be the

closure of C1
0(T) with respect to the norm ‖ϕ‖H1,1/w

=
√∫

T
(ϕ′)2

w
for ϕ ∈ C1

0(T). It is easy to see

that V is continuously and densely injected in L2
0 (thanks to the compactness of T and Poincaré

inequality). Moreover, one can de�ne an inner product on V which makes it an Hilbert space

H1,1/w := (V, 〈·, ·〉H1,1/w
) where 〈ϕ, ψ〉H1,1/w

=
∫
T
ϕ′ψ′

w
for all ϕ, ψ ∈ C1

0(T). The dual space of

H1,1/w is denoted by H−1,w. Observe that if u, v ∈ L2
0 and v ∈ H1,1/w, then u ∈ H−1,w and

u(v) := 〈u, v〉−1,1 = (u, v), (4.18)

where 〈·, ·〉−1,1 denotes the action of H−1,w on H1,1/w, we omit the weight w.

The action of a probability measure µ on a test function h is denoted by 〈µ, h〉 =
∫
hdµ: of

course whenever u and v are regular enough, one has u(v) = 〈u, v〉−1,1 = 〈u, v〉 = (u, v), where

we have abused of notation, denoting the density of a probability measure by the probability

measure itself.

Finally, observe that di�erent weights w give equivalent norms so that whenever the geom-

etry of the space is not important, we consider the case w ≡ 1 and simply note ‖·‖−1. More

information about the construction of H−1,ω are given in Appendix 4.B.

Hereafter we drop the dependency on T, i.e. we write C1
0 instead of C1

0(T) and so on for the

other spaces and integrals.

2. Main results

We present the results in three consecutive subsections: we start by the �nite time behavior,

then pass to the supercritical regime and, �nally, the subcritical case.

In all results, the convergence of empirical measures is stated in the norm ‖·‖−1. It is

not di�cult to see that the di�erence of two probability measures belongs to H−1 and that

the distance induced on P(T) controls the bounded Lipschitz distance (or, equivalently, the

1-Wasserstein distance). These details are covered in Appendix 4.B.

Recall that throughout the paper, we only require
(
ξ(n), pn

)
n∈N to satisfy condition (4.16)

and µ0 ∈ P(T), no independence between µn0 and ξ(n) is demanded.
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2.1. The �nite time behavior. We give the result and then comment it.

Theorem 2.1. Let K ≥ 0. Suppose that for all ε0 > 0

lim
n→∞

P
(
‖µn0 − µ0‖−1 ≤ ε0

)
= 1. (4.19)

Then, for every �xed time T > 0 and for every ε > 0

lim
n→∞

P

(
sup
t∈[0,T ]

‖µnt − µt‖−1 ≤ ε

)
= 1. (4.20)

The �nite time behavior of weakly interacting particle systems on graphs is already known

under suitable hypothesis on the initial conditions and on the graph sequence, we refer to

Subsection 2.5 for a comprehensive literature on the subject. We decide to present Theorem

2.1 because, contrary to all the previous results, it does not require any independence between

initial conditions and (the realization of) the sequence of graphs. In particular, even if one

accurately assigns the initial conditions for each vertex, the mixing properties of the graph will

shu�e all the information and make the empirical measure converge, losing any memory of the

initial coupling. This property is crucial for studying the longtime behavior as pointed out in

the next subsections.

Observe that Theorem 2.1 implies the existence of a unique giant component in {ξ(n)}n∈N,
as pointed out in the next remark.

Remark 2.2. The result is independent ofK. First observe that this implies the uniqueness

of a giant component: if there are two, then one can accurately prepare the initial conditions

so to obtain di�erent behaviors on the twos and loose the proximity to (4.6). Secondly, with

the same argument one deduces that the size of the giant component is asymptotically n, i.e.

all but o(n) vertices are connected. Finally, the existence comes from the fact that the system

cannot synchronize on components of size o(n), no matter the value of K. Lemma 4.A.2 shows

that condition (4.10) indeed implies the existence of a giant component of size asymptotically

n.

2.2. Long time behavior in the supercritical regime. In the supercritical regime, we

suppose to be already close to the manifold M at time 0. However, since we do not assume any

independence between graph and initial data, this hypothesis can be weakened by requiring

the initial condition µ0 to be in the domain of attraction of M , i.e. µ0 ∈ P(T) \ U , and using

Theorem 2.1. One can then start after some time T with initial condition given now by µnT
(and dependent on the graph!): if T is big enough, than µnT will be close to M . Observe that

the choice of T depends only on how close to M µt has to be, it thus depends only on µ0.

Before stating the theorem, we de�ne the distance of a probability measure from M . For

µ ∈ P(T), let

dist(µ,M) := inf
ν∈M
‖µ− ν‖−1 . (4.21)
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We are ready for the main result of this section.

Theorem 2.3. Let K > 1. Suppose there exists ψ ∈ T such that for every ε0 > 0

lim
n→∞

P
(
‖µn0 − qψ‖−1 ≤ ε0

)
= 1. (4.22)

Then, for every positive sequence {Tn}n∈N such that Tn = exp(o(n)), and for all ε > 0 small

enough

lim
n→∞

P

(
sup

t∈[0,Tn]

dist(µnt ,M) ≤ ε

)
= 1. (4.23)

Theorem 2.3 implies the proximity of the empirical measure to the manifold of solutions

of the McKean-Vlasov equation (4.6) for almost exponential times. On this time scale, Large

Deviation phenomena take control of the �nite system (e.g. [34, 48, 92]) making it escape

from the stationary solutions.

Observe that we do not prove the closeness to the mean �eld limit µ·. Indeed, it is by now

well known that, on longtime scales, the mean �eld limit is not a faithful description of the

�nite system of n di�usions. In other words, the behavior of µnTn highly depends on the scale

of time Tn under consideration, whereas the dynamics of µt is deterministic and completely

known for large t, i.e. it sticks to qψ.

In [10], a deep analysis of the longtime dynamics for the classical mean �eld system (4.5) is

presented. Namely, it is shown that µt solution to the PDE (4.6) is a reasonable approximation

of µ̄nt for time scales of order O(log n). On times proportional to n, the dynamics of the empirical

measure can be coupled to a Brownian motion onM with a non trivial di�usion coe�cient that

can be explicitly computed (see [10, Theorem 1.1]). Whereas the PDE prescribes the system

to stay synchronized on a �xed phase, the noise induced by the Brownian motions makes this

phase oscillate and it turns out that the oscillations become signi�cant on times proportional

to the size of the system n.

We do not show this property, yet extend the closeness toM for exponential times, whereas

in [10] this is shown up to polynomial times.

Theorem 2.3, as Theorem 2.1, does not depend on the speed of convergence of the condition

on the graph (4.16). The escaping time is indeed only due to the stochastic nature of the

system, given by the Brownian motions, and it cannot be improved as explained above. The

reason why one can control the perturbation induced by the graph structure for long times is

somehow hidden in the martingale properties of µn· and in the fact that we do not really analyze

the dynamics near M (which can, a priori, depend on the graph). We refer to the proof of

the subcritical regime for a clear control on the perturbations given by the graph, through the

exponential stability of the stationary solution.

2.3. Longtime behavior in the subcritical regime. The subcritical regime is somehow

easier than the supercritical regime since there is an unique stable stationary solution. We de-

cide to include this case �rstly because, to the author's knowledge, it is missing in the literature
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and, secondly, because the proof enlightens some aspects hidden in the supercritical regime. As

a byproduct, we obtain the equivalent of maximal inequalities for Ornstein-Uhlenbeck processes

in in�nite dimensional Hilbert spaces, see Corollary 2.5.

Theorem 2.4. Let 0 ≤ K < 1. Suppose that condition (4.19) holds, i.e. for all ε0 > 0

lim
n→∞

P
(
‖µn0 − µ0‖−1 ≤ ε0

)
= 1. (4.24)

Then, for every positive sequence {Tn}n∈N such that Tn = exp(o(n)), and for all ε > 0 small

enough

lim
n→∞

P

(
sup

t∈[0,Tn]

‖µnt − µt‖−1 ≤ ε

)
= 1. (4.25)

Observe that, since µ· converges as t tends to in�nity to 1/2π for all initial conditions µ0,

then Theorem 2.4 implies the proximity of µnt to the stable solution up to exponential times.

Of independent interest, we present a corollary of Theorem 2.4 in the limit case K = 0.

This result seems to be well known, yet the author was unable to �nd it elsewhere.

Corollary 2.5. Let µn· be the empirical measure of n independent Brownian motions

{Bj,n
· }j=1,...,n on T with initial conditions {θi0}1≤i≤n satisfying (4.19). Then, there exist C > 0

and T0 > 0 such that for all T > T0, the following maximal inequality holds:

E

[
sup

t∈[T0,T ]

∥∥∥∥µnt − 1

2π

∥∥∥∥2

−1

]
≤ C

log(1 + T − T0)

n
. (4.26)

Corollary 2.5 shows a maximal inequality for the empirical measure of n independent Brow-

nian motions on the torus, establishing the SPDE version of the result for Ornstein-Uhlenbeck

processes presented in [52] for stochastic ordinary di�erential equations.

Observe that if the initial conditions and the graph are exchangeable (not necessarily inde-

pendent), then Corollary 2.5 and a classical result by Sznitman ([98, Proposition 2.2]) imply

the creation of chaos for all times Tn = o(exp(n)).

2.4. Organization of the paper. This section ends presenting the existing literature and

giving an outline of the proof for the three theorems.

Sections 3, 4 and 5 concern the proofs of the three results. In particular, Section 3 is devoted

to the long time dynamics close toM , it starts from the derivation of a mild formulation for the

empirical measure, then proceeds with the control on the graph and the noise, and it ends with

the proof of Theorem 2.3. Section 4 concerns the subcritical regime where a di�erent control

on the perturbations is given. Finally, Section 5 proves Theorem 2.1 by using slight variations

of the previous techniques.

Appendix 4.A gives a few examples of graph sequences that satisfy condition (4.16), to-

gether with remarks on the degrees and connectivity of such sequences. Appendix 4.B contains

information about the Hilbert spaces H−1,ω and the linear operator Lψ.
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2.5. A glance at the existing literature. The results presented here are at a crossroads

of two di�erent research areas: the long time dynamics of stochastic di�erential equations and

the role of a network in a mean �eld model.

Concerning the long time behavior of weakly interacting particle systems, Theorems 2.3 and

2.4 can be seen as a complement to the previous results presented in [10], �lling the gap of the

exponential time scale which has not been addressed so far. To the author's knowledge, they

also represent the �rst equivalent, in in�nite dimensional Hilbert spaces, to the famous result

for stochastic ordinary di�erential equations in Rd by Friedlin and Wentzell ([48]).

Looking at variations on the same model, the behavior of the classical Kuramoto model with

intrinsic frequencies has been studied in [78], showing that the longtime dynamics is indeed

dependent on the quenched setting given by the frequencies. A macroscopic constant speed in

the phase appears on time scales of order O(
√
n), making the e�ects of the noise vanish. The

results and the techniques presented here should be easily adaptable to this case showing the

proximity to the manifold of solutions for long times, yet losing the precise characterization of

the motion on M for which a deeper analysis is needed.

The Kuramoto model is an example of system which admits more than one stable stationary

solution, a continuous manifold as already precised, and that's one of the reasons why it shows

a rich phenomenology depending on the time scale under consideration. For similar results

on di�erent models, one has to dip in the context of stochastic partial di�erential equations

(SPDEs) with vanishing noise. Since the aim of this work is more oriented on the e�ects of the

network rather than the longtime dynamics of SPDEs, the author refers to the bibliography in

[10, 78] for a more comprehensive discussion.

Turning to interacting particle systems on graphs, the subject has become an interesting

topic in the mathematical community given the several applications to complex systems, in

particular regarding the Kuramoto model and synchronization phenomena (e.g. [1, 94]), yet

it has always been addressed on a �nite time scale or up to times slowly diverging on n, i.e.

Tn = O(log n).

The �rst articles [13, 36] attack the problem under a propagation of chaos viewpoint,

requiring independent and identically distributed initial conditions and also independent of the

realization of the graph. In this setting, the condition on the graph boils down to a condition

on the degrees only so that very general graphs are allowed (see again [36, Remark 1.4] and [31,

Remark 1.2]). Regarding more inhomogeneous settings, [77] extends [36] to graphons and [90]

presents a Large Deviation result again in the graphon setting. Observe that [90] already makes

use of Grothendieck's inequality and the norm ‖·‖∞→1 to control the graphs �uctuations. Up

to now, the only result not assuming independence in the initial data is given by [31], where

general systems of interacting particles are de�ned on Erd®s-Rényi random graphs and the

empirical measure is shown to satisfy a Law of Large Number and a Large Deviation principle,

implying the convergence to the respective mean �eld limit.
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In the deterministic setting, the Kuramoto model has been studied on di�erent networks

with various hypothesis on the initial conditions, we refer to [27, 82] and references therein.

In all the cited works, the condition on the normalization pn is slightly stronger, or equiva-

lent, to the one required in (4.16), see in particular Propositions 4.A.4 and 4.A.6 in Appendix

4.A. If npn is not diverging as n tends to in�nity, i.e. the case of sparse graphs, the limiting

behavior of the empirical measure seems to be rather di�erent from the mean �eld limit, see

[70, 91].

2.6. Outline of the proofs. The three theorems are proven in a similar way and the main

ingredients are given by

(1) An equation written in mild form satis�ed by µn· for each n ∈ N;
(2) The control on the perturbations given by the graph structure through Grothendieck's

Inequality;

(3) The control on the random perturbations given by the Brownian motions through

maximal inequalities for self-normalized processes.

The mild formulation will be di�erent in all the three cases and will depend on the linear

dynamics around M or 1/2π or on the properties of µt. In Section 3, we give a full derivation

of the stochastic partial di�erential equation satis�ed by µnt − qψ in a neighborhood of M .

The control on the graph will also depend whether there is a strong contraction given by the

dynamics, or not. Whenever the evolution is contracting in all direction, as in the subcritical

case around 1/2π, these perturbations can be controlled uniformly in time, we refer to Lemma

4.3 for a precise statement.

A �ne control on the random perturbations turns out to be rather delicate and one has to

exploit all the properties associated to the Hilbert structure as well as the ones associated to the

linear dynamics around the stationary solutions to get the job done. We give two independent

explicit proofs:

• Around M , we study the noise using of a strong result on self-normalized martingales

([35]);

• Around 1/2π, we extend a result on maximal inequalities for Ornstein-Uhlenbeck pro-

cesses ([52]), to an in�nite dimensional setting.

Once the perturbations are controlled, a Gronwall-like lemma is used to bound the di�erence

between µn· and the relative target. In the supercritical case, we need to set up an (easy) iterative

scheme in order to estimate the distance between µn· and M on bounded time intervals, and

then make use of the martingale property of system (4.2) to extend the result up to almost

exponential times; in the subcritical case, the result is directly obtained by the bound on the

noise, the graph perturbations are indeed controlled for all times.
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3. Longtime dynamics close to M

In a neighborhood of M , one can exploit the properties of the linear dynamics around qψ.

For u ∈ L2
0, let

Lψu := 1
2
∂2
θu− ∂θ [u(J ∗ qψ) + qψ(J ∗ u)] , (4.27)

be the linear operator at qψ, its domain is given by D(Lψ) = {u ∈ C2(T),
∫
T u(θ)dθ = 0}. The

operator Lψ is self-adjoint in H−1,1/qψ and its adjoint L∗ψ in L2
0 has the following expression

L∗ψu = 1
2
∂2
θu+ (J ∗ qψ)∂θu− (J ∗ qψ ∂θu)−

∫
T
(J ∗ qψ ∂θu), (4.28)

and domain D(L∗ψ) = D(Lψ).

We recall here the most important properties of Lψ, referring to Appendix 4.B for more

informations. The linear operator −Lψ has compact resolvent and its spectrum lies in [0,∞):

the smallest eigenvalue λ0 := 0, associated to the eigenfunction ∂θqψ, is isolated from the rest of

the spectrum. In particular, this implies thatH−1 can be decomposed into a direct sum Tψ⊕Nψ,

where Tψ = Span(∂θqψ); we denote by P 0
ψ the projection on Tψ along Nψ and P s

ψ = 1 − P 0
ψ.

Observe that both P 0
ψ and P s

ψ commute with Lψ (e.g. [58]).

Let {λ0 < λ1 ≤ . . . } ⊂ [0,∞) denote the set of eigenvalues and let {eψl }l=0,1,... be the

correspondent set of eigenfunctions, normalized in H−1,1/qψ , i.e.

− Lψeψl = λle
ψ
l , for l = 0, 1, . . . . (4.29)

Observe that eψl ∈ C∞(T). Moreover, the eigenvalues do not depend on the phase ψ, whereas

the eigenfunctions do in a rather simple way given by the rotation symmetry of the system, i.e.

eψl (·) = eθl (·+ ψ − θ), for l = 0, 1, . . . . (4.30)

As a matter of fact, we will study the system only around some qψ. The dual eigenfunctions f
ψ
l

associated to L∗ψ will play an important role for studying the noise perturbation, their properties

are studied in Proposition 4.B.3.

From the previous properties one deduces that Lψ (respectively L∗ψ) generates a strong

continuous semigroup on H−1 (resp. H1) that we denote by etLψ (resp. etL
∗
ψ). These semigroups

have many properties that we will recall and use throughout this section, see Proposition 4.B.2

for a general statement.

A �nal remark: we use the letter C for all the constants even if they are possibly di�erent,

the value of C can change from one line to another if the constant is replaced by another

constant and the context is clear.

3.1. The mild formulation around qψ ∈ M . As shown in [10], µ̄n· satis�es a SPDE

written in mild form once it is close to M ; in this subsection we extend this formulation to µnt .

Let νn· := µn· − qψ, then
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Proposition 3.1. The process νnt ∈ H−1 satis�es the following stochastic partial di�erential

equation in C0 ([0, T ], H−1):

νnt = etLψνn0 −
∫ t

0

e(t−s)Lψ∂θ [νns (J ∗ νns )] ds− gnt + znt , (4.31)

where

gnt =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds, (4.32)

and znt ∈ H−1 is de�ned for h ∈ H1 by

〈znt , h〉−1,1 =
1

n

n∑
j=1

∫ t

0

[
∂θe

(t−s)L∗ψh
]

(θj,ns )dBj
s . (4.33)

Proof. Let F = Ft(θ) ∈ C1,2 ([0,∞)× T), with
∫
Ft = 0 for all t ≥ 0. For some t ≥ 0, an

application of Ito formula, together with the de�nition of L∗ψ gives

〈µnt − qψ, Ft〉 = 〈µn0 − qψ, F0〉+

∫ t

0

〈µns − qψ, ∂sFs + L∗ψFs〉ds+

+

∫ t

0

〈(µns − qψ)(J ∗ (µns − qψ)), ∂θFs〉ds+Gn
t (F ) + Zn

t (F ),

(4.34)

where

Gn
t (F ) =

1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
J(θi,ns − θj,ns )∂θFs(θ

i,n
s )ds,

Zn
t (F ) =

1

n

n∑
j=1

∫ t

0

∂θFs(θ
j,n
s )dBj

s .

(4.35)

The properties of etL
∗
ψ , see Proposition 4.B.2, assure that the function

F = Fs(θ) = e(t−s)L∗ψh(θ), for some h ∈ C2(T),

∫
h = 0, (4.36)

is C1,2([0, t]× T). But then ∂sFs = −L∗ψFs and one obtains

〈νnt , Ft〉 = 〈νn0 , e
tL∗ψh〉+

∫ t

0

〈νns (J ∗ νns ), ∂θe
(t−s)L∗ψh〉ds+ gnt (h) + znt (h), (4.37)

where we have used the de�nition of νnt and the notations

gnt (h) =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
J(θi,ns − θj,ns )

[
∂θe

(t−s)L∗ψh
]

(θi,ns )ds, (4.38)

znt (h) =
1

n

n∑
j=1

∫ t

0

[
∂θe

(t−s)L∗ψh
]

(θj,ns )dBj
s . (4.39)

We aim at proving that (4.37) is the weak formulation of the mild equation (4.31) in H−1.
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Let {νl}l≥1 ⊂ L2
0 such that νl

l↑∞−−→ νn0 in H−1. Then, for h ∈ C2

〈νl, etL
∗
ψh〉−1,1 =

(
νl, e

tL∗ψh
)

=
(
etLψνl, h

)
= 〈etLψνl, h〉−1,1. (4.40)

By continuity of the operators, etLψνl converges in H−1 to etLψνn0 as l ↑ ∞. Taking the limit

for l ↑ ∞ in both sides of (4.40), we deduce

〈νn0 , e
tL∗ψh〉−1,1 = 〈etLψνn0 , h〉−1,1. (4.41)

We now focus on

ωns := νns (J ∗ νns ). (4.42)

Consider {νs,l}l≥1 ⊂ L2
0 which converges to νns in H−1 as l ↑ ∞, and de�ne

ωs,l := νs,l(J ∗ νns ). (4.43)

For any l ≥ 1, it holds

〈ωs,l, ∂θe(t−s)L∗ψh〉−1,1 =
(
ωs,l, ∂θe

(t−s)L∗ψh
)

=

= −
(
e(t−s)Lψ∂θ ωs,l, h

)
= −〈e(t−s)Lψ∂θ ωs,l, h〉−1,1.

(4.44)

Using the properties of the semigroup one obtains∣∣〈e(t−s)Lψ∂θ(ωs,l − ωns ), h〉−1,1

∣∣ ≤ ‖h‖1

∥∥e(t−s)Lψ∂θ(ωs,l − ωns )
∥∥
−1
≤

≤ ‖h‖1

C√
t− s

‖∂θ(ωs,l − ωns )‖−2 = ‖h‖1

C√
t− s

‖ωs,l − ωns ‖−1 ,
(4.45)

which implies ∥∥e(t−s)Lψ∂θ(ωs,l − ωns )
∥∥
−1
≤ C√

t− s
‖ωs,l − ωns ‖−1 . (4.46)

Since h is regular and ωs,l
l↑∞−−→ ωns in H−1, this implies

〈ωns , ∂θe
(t−s)L∗ψh〉−1,1 = −〈e(t−s)Lψ∂θ ω

n
s , h〉−1,1. (4.47)

We now observe from (4.46) that∥∥e(t−s)Lψ∂θω
n
s

∥∥
−1
≤ C√

t− s
(4.48)

thus the integral in (4.31) ∫ t

0

e(t−s)Lψ∂θ [νns (J ∗ νns )] ds (4.49)

is almost surely �nite. Using [101, Theorem 1, p.133], we deduce that (4.49) makes sense as a

Bochner integral in H−1. The continuity is a direct consequence of the continuity of etLψ .
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Assume that gnt (h) = 〈gnt , h〉−1,1 and znt (h) = 〈znt , h〉−1,1 are well de�ned and continuous

with respect to t for all h ∈ H1; we have shown that

〈νnt , h〉−1,1 = 〈etLψνn0 , h〉−1,1+

− 〈
∫ t

0

e(t−s)Lψ∂θ [νns (J ∗ νns )] ds, h〉−1,1 − 〈gnt , h〉−1,1 + 〈znt , h〉−1,1.
(4.50)

Since (4.50) holds for all h ∈ H1, the identity (4.31) follows. All elements in (4.31) take values

in C0([0, T ], H−1) and the proof is then concluded modulo regularity and wellposedness of gn·
and zn· . We refer to Lemma 3.2 and Lemma 3.3 which are presented in the next subsection. �

3.2. Control on the perturbations. Two kinds of perturbations are present in the SPDE

(4.31): zn· given by the stochastic nature of the system and gn· given by the presence of a network

structure. In this subsection, we exhibit the control over the two perturbations. Observe that

all the estimates are independent of ψ.

We start with the control on the graph structure, which uses Grothendieck's Inequality

presented in Theorem 1.2.

Lemma 3.2 (Wellposedness and bounds on gnt ). For n ∈ N and t ≥ 0, let gnt be given by

gnt =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds. (4.51)

Then

(1) gn ∈ C0([0,∞), H−1). In particular, for every h ∈ H1 and t ≥ 0

gnt (h) = − 1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
J(θi,ns − θj,ns )

[
∂θe

(t−s)L∗ψh
]

(θi,ns )ds. (4.52)

(2) There exists D > 0 such that

‖gnt ‖−1 ≤ D
√
t

∥∥P (n) − 1(n)
∥∥
∞→1

n2
, for all t ≥ 0. (4.53)

Proof. Fix n large. Consider {φl}l≥1 ⊂ C∞ such that φl ≥ 0, φl(θ) = 0 for θ ∈ [1/l, 2π −
1/l],

∫
φl = 1 for every l ≥ 1 and liml→∞

∫
Fφl = F (0) for every F ∈ C0. For i = 1, . . . , n,

de�ne

φis,l := φl ∗ δθi,ns . (4.54)
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We start by establishing (4.52). For each h ∈ C2

〈 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
φis,l(J ∗ δθj,ns ), ∂θe

(t−s)L∗ψh〉−1,1 =

=

(
1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
φis,l(J ∗ δθj,ns ), ∂θe

(t−s)L∗ψh

)
=

= −

(
1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
φis,l(J ∗ δθj,ns )

]
, h

)
=

= −〈 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
φis,l(J ∗ δθj,ns )

]
, h〉−1,1

(4.55)

But 1
n2

∑n
i,j=1

(
ξij
pn
− 1
)
φis,l(J ∗ δθj,ns ) converges to 1

n2

∑n
i,j=1

(
ξij
pn
− 1
)
δθi,ns (J ∗ δθj,ns ) since∥∥∥∥∥ 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)(
φis,l − δθi,ns

)
(J ∗ δθj,ns )

∥∥∥∥∥
−1

≤ 1

pn
sup

i=1,...,n

∥∥∥φis,l − δθi,ns ∥∥∥−1
, (4.56)

which tends to zero as l tends to in�nity.

Thanks to the properties of the semigroup, the same holds true for

1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[(
φis,l − δθi,ns

)
(J ∗ δθj,ns )

]
; (4.57)

indeed, by Proposition 4.B.2,∥∥∥∥∥ 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[(
φis,l − δθi,ns

)
(J ∗ δθj,ns )

]∥∥∥∥∥
−1

≤

≤ C

pn
√
t− s

sup
i=1,...,n

∥∥∥φis,l − δθi,ns ∥∥∥−1
.

(4.58)

A similar argument shows that∥∥∥∥∥ 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
δθi,ns (J ∗ δθj,ns )

]∥∥∥∥∥
−1

≤ C

pn
√
t− s

, (4.59)

which, in turn, implies that

1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds (4.60)

is almost surely �nite and continuous with respect to t. We deduce (4.52).
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For the second part (4.53), observe that

〈 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)Lψ∂θ

[
δθi,ns (J ∗ δθj,ns )

]
, h〉−1,1 =

= − 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
〈δθi,ns , (J ∗ δθj,ns )∂θe

(t−s)L∗ψh〉−1,1.

(4.61)

We claim that this last term can be controlled by
∥∥P (n) − 1(n)

∥∥
∞→1

through Grothendieck's

inequality. By choosing H = H−1 and

aij =
(
ξij
pn
− 1
)
,

Si = δθi,ns ,

Tj =

√
t− s
C

(
J ∗ δθj,ns

)
∂θe

(t−s)L∗ψ
h

‖h‖1

,

(4.62)

Theorem 1.2 allows us to bound the expression in (4.61) by

KR
C√
t− s

‖h‖1

∥∥P (n) − 1(n)
∥∥
∞→1

n2
. (4.63)

This shows that

‖gnt ‖−1 ≤ KRC

∥∥P (n) − 1(n)
∥∥
∞→1

n2

∫ t

0

1√
t− s

ds = D
√
t

∥∥P (n) − 1(n)
∥∥
∞→1

n2
, (4.64)

where D := KRC/2 > 0. The proof is concluded. �

We now turn to the stochastic term zn· in (4.31). Recall that L∗ψ is diagonal in the basis

{fψl }l≥0 of H1,qψ , with eigenvalues denoted by {λl}λ≥0, see Proposition 4.B.3. We precisely

analyze zn· through its coe�cients in the orthonormal basis given by L∗ψ.

Lemma 3.3 (Wellposedness and bounds on znt ). For n ∈ N and t > 0, let znt be de�ned by

znt =
∑
l≥1

〈znt , e
ψ
l 〉H−1,1/qψ

eψl . (4.65)

Then

(1) zn· ∈ C0([0,∞), H−1) almost surely. In particular, for every h ∈ H1

znt (h) =
1

n

n∑
j=1

∫ t

0

[
∂θe

(t−s)L∗ψh
]

(θj,ns )dBj
s . (4.66)

(2) For every T > 0, there exists a constant Z = Z(T ) > 0, such that for n large enough

it holds that

∀η > 0, P

(
sup
t∈[0,T ]

‖znt ‖−1 > η

)
≤ exp

{
−Znη2

}
. (4.67)
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Proof. We start by observing that the de�nition of znt in the basis of H−1,1/qψ , coincides

with the one give in the mild formulation. For h =
∑

l≥0〈h, f
ψ
l 〉H1,qψ

fψl , one obtains

〈znt , h〉−1,1 =
∑
l≥0

〈znt , e
ψ
l 〉H−1,1/qψ

〈h, fψl 〉H1,qψ
=

=
∑
l≥0

znt (fψl )〈h, fψl 〉H1,qψ
= znt (h),

(4.68)

where we have used the properties of eψl and fψl , see Proposition 4.B.3.

Before proving (i), we prove (ii) and this will imply the existence of a continuous version of

zn· almost surely.

Concerning (ii), we start by observing that

‖znt ‖−1,1/qψ
=
∑
l≥0

∣∣∣znt (fψl )
∣∣∣2 . (4.69)

Let l ≥ 1 and consider znt (fψl ), by the de�nition of fψl and the properties of the semigroup, one

gets

znt (fψl ) =
1

n

n∑
j=1

∫ t

0

[
∂θe

(t−s)L∗ψfψl

]
(θj,ns )dBj

s =
1

n

n∑
j=1

∫ t

0

e−(t−s)λl
[
∂θf

ψ
l

]
(θj,ns )dBj

s . (4.70)

Set c = supl≥0

∣∣∣∂θfψl ∣∣∣ <∞, see Proposition 4.B.3. We rewrite the last expression as

znt (fψl ) =
ce−tλl√

2λln
At, (4.71)

where At is a continuous martingale given by

At =

√
2λl
c2n

n∑
j=1

∫ t

0

esλl
[
∂θf

ψ
l

]
(θj,ns )dBj

s (4.72)

and quadratic variation bounded by

〈A〉t =
2λl
c2n

n∑
j=1

∫ t

0

e2sλl
[
∂θf

ψ
l

]2

(θj,ns )ds ≤ 2λl

∫ t

0

e2λlsds ≤ e2tλl − 1. (4.73)

From (4.71) and (4.73), one deduces that znt (fψl ) is a self normalized process. For estimating

P

(
supt∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 > η

)
, we can this use the following result

Theorem 3.4 ([35, Theorem 4.1 and the following remark]). Let T > 0, α ∈ (0, 1
2
) and

(At)t∈[0,T ] be a martingale with A0 = 0. There exists C > 0, depending only on α, such that

E

[
sup
t∈[0,T ]

exp

{
αA2

t

〈A〉t log log (〈A〉t ∨ e2)

}]
≤ C. (4.74)
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By standard computations, we obtain

P

(
sup
t∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 > η

)
= P

(
sup
t∈[0,T ]

e−2tλlA2
t >

2λln

c2
η

)
=

= P

(
sup
t∈[0,T ]

A2
t

4e2tλl log(2 + 2Tλl)
>

λln

2c2 log(2 + 2Tλl)
η

)
≤

≤ E

[
sup
t∈[0,T ]

exp

{
A2
t

4e2tλl log(2 + 2Tλl)

}]
exp

{
− λln

2c2 log(2 + 2Tλl)
η

}
.

(4.75)

We now use the fact that

α := sup
t∈[0,T ]

〈A〉t log log(〈A〉t ∨ e2)

4e2tλl log(2 + 2Tλl)
≤ 1

4
, for all l ≥ 1, (4.76)

and, by Theorem 3.4, we obtain that there exists C > 0, independent of T, n and l, such that

P

(
sup
t∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 > η

)
≤ C exp

{
− λln

c2 log(2 + 2Tλl)
η

}
. (4.77)

The case l = 0 is somehow easier since

znt (fψ0 ) =
1

n

n∑
j=1

∫ t

0

[
∂θf

ψ
0

]
(θj,ns )dBj

s (4.78)

is a standard martingale with bounded quadratic variation: one can use Theorem 3.4 or, more

simply, exponential estimates and Doob's inequality to obtain that there exists c0 > 0 (depend-

ing on T ) such that for all η > 0

P

(
sup
t∈[0,T ]

∣∣∣znt (fψ0 )
∣∣∣2 > η

)
≤ c0 exp{−c0nη}. (4.79)

The last part of the proof consists in exploiting the exponential inequalities (4.77) and

(4.79), and to transfer them to supt∈[0,T ] ‖znt ‖
2
−1. For this purpose, let S > 0 be de�ned by

S :=

(∑
l≥0

1

(1 + l)4/3

)−1

. (4.80)

For some η > 0, it holds that

P

(
sup
t∈[0,T ]

‖znt ‖−1,1/qψ
> η

)
≤ P

(∑
l≥0

sup
t∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 > η2

)
≤

≤
∑
l≥0

P

(
sup
t∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 > S

(1 + l)4/3
η2

)
≤

≤ c0 exp{−c0S nη
2}+ C

∑
l≥1

exp

{
−S
c2

λl
log(2 + 2Tλl)(1 + l)4/3

nη2

}
.

(4.81)
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Now we use the fact that λl = Θ(l2) as l tends to in�nity, see Proposition 4.B.3. In particular,

there exists L > 0, depending on T , such that

P

(
sup
t∈[0,T ]

‖znt ‖−1,1/qψ
> η

)
≤ c0 exp{−c0S nη

2}+

+CL exp

{
− S

c2 log(2 + 2TλL)
nη2

}
+ C

∑
l>L

exp

{
−S
c2

√
l nη2

}
.

(4.82)

Observing that
∫∞

1
e−
√
xndx = 2(n+1)

n2 e−n, taking n large enough and Z an suitable constant

depending on c0, S, L and C, the proof of (ii) is concluded.

Back to (i), observe that for s, t ∈ [0, T ] and for some k ≥ 1

‖znt − zns ‖
2
−1 ≤

k∑
l=0

∣∣∣znt (fψl )− zns (fψl )
∣∣∣2 + 2

∑
l>k

sup
t∈[0,T ]

∣∣∣znt (fψl )
∣∣∣2 . (4.83)

The �rst term can be make small by using the continuity of znt (el); for the second one, observe

that we have just proven that E
[∑

l≥1 supt∈[0,T ] |znt (el)|2
]
< ∞. This implies that there exists

a subsequence {km}m∈N such that
∑

l>km
supt∈[0,T ] |znt (el)|2 tends to 0 almost surely as m tends

to in�nity. The almost sure continuity in (4.83) is then established by choosing s and t close

enough and k large enough.

�

3.3. Proof of Theorem 2.3. Recall that µn0 converges in H−1 to qψ ∈ M . Next lemma

assures that the projection of µn0 on M is well de�ned for n big enough.

Lemma 3.5. [78, Lemma 2.8] There exists σ > 0 such that for all µ ∈ H−1 such that

dist(µ,M) ≤ σ, there exists a unique phase ψ := projM(µ) ∈ T such that P 0
ψ(µ − qψ) = 0 and

the mapping µ 7→ projM(µ) is C∞.

Let ψn = projM(µn0 ). Fix ε > 0, we place ourselves in

An1 = {‖µn0 − qψn‖−1 ≤ ε/2}. (4.84)

Denote by dnt the distance between µnt and M , i.e.

dnt := dist(µnt ,M). (4.85)

We want to prove that µnt stays close to M for long times. Let T > 0, N ∈ N and de�ne

Ti = iT, for i = 0, . . . , N. (4.86)

If, for N = Nn = o(exp(n)), we show that

lim
n→∞

P

(
sup

t∈[0,TNn ]

dnt ≤ ε

)
= 1, (4.87)

then we are done. For sake of notation, we just employ N .
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For 0 ≤ a < b <∞, de�ne the events

En(a, b) =

{
max

{
2dna , 2dnb , sup

t∈(a,b)

dnt

}
≤ ε

}
, (4.88)

clearly

P

(
sup

t∈[0,TN ]

dnt ≤ ε

)
≥ P (En(0, TN)) . (4.89)

The Markov property of system (4.2) implies that

P (En(0, TN)) ≥P
(
En(0, TN)

∣∣En(0, TN−1)
)
P (En(0, TN−1)) =

=P (En(0, T ))P (En(0, TN−1)) ≥ P (En(0, T ))N .
(4.90)

Let's then focus on the bounded interval of time [0, T ] and consider νn· = µn· − qψn , which
satis�es the stochastic partial di�erential equation (4.31). Taking the norm in H−1 on both

sides of (4.31) and using the properties of the semigroup together with the fact that (e.g. [10,

Lemma 7.3])

‖∂θ(µ(J ∗ ν))‖−2 ≤ C ‖µ‖−1 ‖ν‖−1 , for all µ, ν ∈ H−1, (4.91)

one is left with (with a new constant C)

‖νnt ‖−1 ≤
∥∥etLψnνn0 ∥∥−1

+

∫ t

0

C√
t− s

‖νns ‖
2
−1 ds+ ‖gnt ‖−1 + ‖znt ‖−1 . (4.92)

By taking ε small enough, one can apply a Gronwall-type inequality (similar to Lemma 4.B.4)

that leads to (recall (4.84) and the fact that the semigroup is continuous)

sup
t∈[0,T ]

‖νnt ‖−1 ≤
2

3
ε+ sup

t∈[0,T ]

‖gnt ‖−1 + sup
t∈[0,T ]

‖znt ‖−1 . (4.93)

For η > 0, de�ne An2 (η) = {supt∈[0,T ] ‖znt ‖−1 ≤ η}. If n is large enough, Lemma 3.2 assures that

supt∈[0,T ] ‖gnt ‖−1 is arbitrarily small a.s., and, placing ourselves in An2 (ε/10), one obtains

sup
t∈[0,T ]

‖νnt ‖−1 ≤
2

3
ε+

1

5
ε ≤ ε. (4.94)

Plugging this estimate in (4.92) for t = T , observing that P 0
ψnν

n
0 = 0 by construction so that∥∥etLψnνn0 ∥∥−1

≤ Ce−λ1t/2 ‖νn0 ‖−1 (e.g. [78, Proposition B.6]), one obtains

‖νnT‖−1 ≤ e−λ1T/2
ε

2
+ ε

(
ε

∫ T

0

C√
T − s

ds

)
+
ε

5
, (4.95)

choosing T and ε such that

T ≥ 2

λ1

log(5),

ε ≤ 1

20C
√
T
,

(4.96)
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one �nally gets

‖νnT‖−1 ≤
ε

2
. (4.97)

Since dnt ≤ ‖νnt ‖−1 for all t ≥ 0, we have then proven that An2 (ε/10) ⊂ En(0, T ). In particular,

P

(
sup

t∈[0,TN ]

dnt ≤ ε

)
≥ P (En(0, T ))N ≥

(
1−P

(
An2 (ε/10){

))N
. (4.98)

We can than use the estimate (4.67) in Lemma 3.3 to get

P
(
An2 (ε/10){

)
= P

(
sup
t∈[0,T ]

‖znt ‖−1 >
ε

10

)
≤ exp

{
− Z

100
nε2

}
. (4.99)

Putting all together, one is left with

P

(
sup

t∈[0,TN ]

dnt ≤ ε

)
≥
(

1−P
(
An2 (ε/10){

))N
≥
(

1− exp

{
− Z

100
nε2

})N
= exp

{
N log

[
1− exp

(
− Z

100
nε2

)]}
≥ exp

{
−3

2
N exp

(
− Z

100
nε2

)}
,

(4.100)

where we have used that log(1 − x) ≥ −3/2x for 0 ≤ x ≤ 1/2. But the right hand side of

(4.100) tends to 1 for all N = Nn = o(exp(n)) and the proof is concluded.

4. Longtime behavior around 1/2π

In this section we will suppose that the �nite time behavior is already known, so that for

n large enough, µnt is very close to µt; thus, for a large T0, µT0 will be very close to 1/2π and

so will be for µnT0
. At the end of the day, we may suppose that we are starting close to 1/2π.

Since we are not assuming any independence between initial conditions and graph, instead of

proving Theorem 2.4, we rather prove the following Proposition.

Proposition 4.1. If for every ε0 > 0

lim
n→∞

P
(∥∥µn0 − 1

2π

∥∥
−1
≤ ε0

)
= 1. (4.101)

Then, there exists A > 0 such that for every positive increasing sequence {Tn}n∈N such that

Tn = exp(o(n)) and for all 0 < ε < A, it holds

lim
n→∞

P

(
sup

t∈[0,Tn]

∥∥µnt − 1
2π

∥∥
−1
≤ ε

)
= 1. (4.102)

The end of the section is thus devoted to prove Proposition 4.1.

4.1. A mild formulation around 1/2π. We place ourselves aroud the stationary solution
1

2π
. The system evolution is captured by the linear dynamics around 1

2π
and the corresponding

linear operator L2π is given by

L2πu := 1
2
∂2
θu− 1

2π
(∂θJ) ∗ u, for u ∈ C2(T),

∫
T
u(θ)dθ = 0. (4.103)
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The adjoint L∗2π of L2π in L2
0 has the following expression

L∗2πu = 1
2
∂2
θu− 1

2π
J ∗ (∂θu), (4.104)

and domain D(L∗2π) = D(L2π). These operators are diagonal in the Fourier basis {el}l≥1, with

eigenvalues denoted by {λ2π
l }l≥1. The spectrum is negative and bounded away from 0, let

γK = λ2π
1 = 1−K

2
> 0 denote the spectral gap. The operator L2π (resp. L∗2π) de�nes an analytic

semigroup etL2π (resp. etL
∗
2π) with the following property:∥∥etL2πu

∥∥
−1
≤ C

e−γt/2√
t
‖u‖−2 , for some C > 0, (4.105)

for all γ ∈ [0, γK), all t > 0 and u ∈ H−1. We will not prove (4.105) but refer to Appendix 4.B

for similar estimates.

De�ne νnt := µnt − 1
2π
. As done in Section 3, we derive a mild formulation for νn· . We omit

the proof.

Proposition 4.2. The process νnt ∈ H−1 satis�es the following stochastic partial di�erential

equation in C ([0, T ], H−1):

νnt = etL2πνn0 −
∫ t

0

e(t−s)L2π∂θ [νns (J ∗ νns )] ds− gnt + znt , (4.106)

where

gnt =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s)L2π∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds, (4.107)

and znt ∈ H−1 is de�ned for h ∈ H1 by

〈znt , h〉−1,1 =
1

n

n∑
j=1

∫ t

0

∂θe
(t−s)L∗2πh(θj,ns )dBj

s . (4.108)

4.2. Control on the perturbations. Contrary to the supercritical case, the operator

L2π is contracting along all direction or, in other words, all its eigenvalues are negative. This

property gives a stronger control on gn· and zn· , as shown in the next Lemmas.

Lemma 4.3 (Wellposedness and bounds on gnt ). For n ∈ N and t ≥ 0, let gnt be given by

gnt =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s)L2π∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds. (4.109)

Then

(1) gn ∈ C0([0,∞), H−1). In particular, for every h ∈ H1 and t ≥ 0

gnt (h) = − 1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
J(θi,ns − θj,ns )∂θe

(t−s)L∗2πh(θi,ns )ds. (4.110)
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(2) There exists D > 0, independent of t, such that

‖gnt ‖−1 ≤ D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
, for all t ≥ 0. (4.111)

Proof. We only prove (ii). Observe that, as in (4.61),

〈 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
e(t−s)L2π∂θ

[
δθi,ns (J ∗ δθj,ns )

]
, h〉−1,1 =

= − 1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
〈δθi,ns , (J ∗ δθj,ns )∂θe

(t−s)L∗2πh〉−1,1.

(4.112)

Applying Theorem 1.2, this time with

aij =
(
ξij
pn
− 1
)
,

Si = δθi,ns ,

Tj =

√
t− s

Ce−γ(t−s)

(
J ∗ δθj,ns

)
∂θe

(t−s)L∗2π
h

‖h‖1

,

(4.113)

allows us to bound the expression in (4.112) by

KR
Ce−γ(t−s)
√
t− s

‖h‖1

∥∥P (n) − 1(n)
∥∥
∞→1

n2
. (4.114)

This shows that

‖gnt ‖−1 ≤ KRC

∥∥P (n) − 1(n)
∥∥
∞→1

n2

∫ t

0

e−γ(t−s)
√
t− s

ds ≤ D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
, (4.115)

where D := KRC
∫∞

0
e−γs√
s
ds > 0 since the integral converges. The proof is concluded. �

We now turn to the stochastic term znt in (4.106). Recall that L2π is diagonal in the Fourier

basis {el}l≥1 of H−1, with eigenvalues denoted by λ2π
l . Then

Lemma 4.4 (Wellposedness and bounds on znt ). For n ∈ N and t > 0, let znt be de�ned by

znt =
∑
l≥1

〈znt , el〉H−1 el, (4.116)

where

〈znt , el〉H−1 = znt

(
eil·

l

)
=
i

n

n∑
j=1

∫ t

0

e(t−s)λ2π
l eilθ

j,n
s dBj

s . (4.117)

Then

(1) zn ∈ C0([0,∞), H−1) almost surely.

(2) There exists C > 0 independent of n, such that for all T > 0

E

[
sup
t∈[0,T ]

‖znt ‖
2
−1

]
≤ C

log(1 + 2γKT )

n
. (4.118)
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(3) For every positive increasing sequence {Tn}n∈N such that Tn = exp(o(n)) and for all

η > 0, it holds

lim
n→∞

P

(
sup

t∈[0,Tn]

‖znt ‖−1 ≤ η

)
= 1. (4.119)

Proof. We only prove (ii). For l ≥ 1, let xlt :=
√

2λ2π
l n e

λ2π
l t
∣∣znt (eil·)

∣∣. In particular

xlt =

∣∣∣∣∣
√

2λ2π
l√
n

n∑
j=1

∫ t

0

esλ
2π
l eilθ

j,n
s dBj

s

∣∣∣∣∣ =
∣∣alt + i blt

∣∣ , (4.120)

where al and bl are two continuous real valued martingales. Let 〈xl〉t = 〈al〉t + 〈bl〉t where 〈al〉t
and 〈bl〉t are the quadratic variations of alt and blt respectively, then

〈xl〉t =
2λ2π

l

n

n∑
j=1

∫ t

0

e2sλ2π
l (cos2 + sin2)(lθj,ns )ds = e2λ2π

l t − 1. (4.121)

We now use

Lemma 4.5. Let Yt = At + i Bt, where At and Bt are continuous real valued martingales.

De�ne Xt = |Yt| and 〈X〉t = 〈A〉t + 〈B〉t, where 〈A〉t and 〈B〉t are the quadratic variations of

A and B respectively. Then, there exists C > 0 such that, for all T > 0,

E

[
sup
t∈[0,T ]

X2
t

1 + 〈X〉t

]
≤ C log(1 + log(1 + 〈X〉t)). (4.122)

The proof of Lemma 4.5 is presented at the end of the section. By choosing Xt = xlt, At = alt
and Bt = blt, one obtains that, for T > 0,

E

[
sup
t∈[0,T ]

|znt (el)|2
]

=
1

2λ2π
l n

E

[
sup
t∈[0,T ]

(xlt)
2

1 + 〈xl〉t

]
≤ C

2λ2π
l n

log(1 + 2λ2π
l T ). (4.123)

It remains to observe that

E

[
sup
t∈[0,T ]

‖znt ‖
2
−1

]
≤ E

[∑
l≥1

sup
t∈[0,T ]

|znt (el)|2
]
≤ C

∑
l≥1

1

2λ2π
l n

log(1 + 2λ2π
l T ). (4.124)

The conclusion holds by factorizing the �rst term of the sum and modifying the constant C

accordingly: observe that
∑

l≥1 supT≥1
log(1+2λ2π

l T )

λ2π
l log(1+2λ2π

1 T )
<∞.

The proof is concluded modulo Lemma 4.5, proven hereafter. �

Proof of Lemma 4.5. Recall that At is a martingale, in particular a slight variation of

[52, Corollary 2.8] implies that there exists D > 0 such that

E

[
sup
t∈[0,T ]

A2
t

1 + 〈A〉t

]
≤ D log(1 + log(1 + 〈A〉t)). (4.125)
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Thus, one can develop

E

[
sup
t∈[0,T ]

X2
t

1 + 〈X〉t

]
≤ E

[
sup
t∈[0,T ]

A2
t

1 + 〈A〉t

]
+ E

[
sup
t∈[0,T ]

B2
t

1 + 〈B〉t

]
≤

≤D log(1 + log(1 + 〈A〉t)) +D log(1 + log(1 + 〈B〉t)) ≤

≤2D log(1 + log(1 + 〈X〉t)),

(4.126)

and the proof is done by taking C = 2D. �

4.3. Proof of Proposition 4.1. Fix ε > 0. From Proposition 4.2 we know that νnt :=

µnt − 1
2π

satis�es

νnt = etL2πνn0 −
∫ t

0

e(t−s)L2π∂θ [νns (J ∗ νnt )] ds− gnt + znt . (4.127)

Taking the norm and using the properties of etL2π , together with the estimate (4.91), for all

0 < γ < γK one obtains

‖νnt ‖−1 ≤ ‖ν
n
0 ‖−1 + C

∫ t

0

e−γ(t−s)
√
t− s

‖νns ‖
2
−1 ds+ ‖gnt ‖−1 + ‖znt ‖−1 . (4.128)

Thanks to the contractive properties of L2π, there exists D > 0 (Lemma 4.3) such that

sup
t≥0
‖gnt ‖−1 < D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
. (4.129)

De�ne now Bn
1 (ε0) = {‖νn0 ‖ ≤ ε0} and Bn

2 (η) = {supt∈[0,Tn] ‖znt ‖−1 ≤ η}. On Bn
1 (ε/3)∩Bn

2 (ε/4)

and for n large enough, we can apply Lemma 4.B.4 with

δ =
ε

3
, T = Tn,

f(t) = ‖νnt ‖−1 ,

g(t) = ‖gnt ‖−1 + ‖znt ‖−1 ,

(4.130)

and obtain

sup
t∈[0,Tn]

‖νnt ‖−1 ≤ ε. (4.131)

The proof is concluded since by hypothesis P(Bn
1 ) → 1 and Lemma 4.4 implies that

P(Bn
2 )→ 1 as n tends to in�nity.

5. Finite time behavior

The aim of this section is to study the closeness of µn· to µ· on bounded time interval.

Proof of Theorem 2.1. Fix ε > 0 and T > 0. It is not di�cult to see that µn· − µ·

satis�es again a mild equation in C0([0, T ], H−1), which is given by

µnt − µt = et
∆
2 (µn0 − µ0)−

∫ t

0

e(t−s) ∆
2 ∂θ [µns (J ∗ µns )− µs(J ∗ µs)] ds− gnt + znt , (4.132)
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where

gnt =
1

n2

n∑
i,j=1

∫ t

0

(
ξij
pn
− 1

)
e(t−s) ∆

2 ∂θ

[
δθi,ns (J ∗ δθj,ns )

]
ds, (4.133)

and znt is denoted for h ∈ H1 by

znt (h) =
1

n

n∑
j=1

∫ t

0

∂θe
(t−s) ∆

2 h(θj,ns )dBj
s . (4.134)

Observe that we are using the Laplacian operator which is very similar to L2π except for the

�rst eigenvalue that is now given by −(1 − K)/2. We will thus use all the results about L2π

and its semigroup to control zn· and gn· .

Taking the H−1 norm in (4.132) and applying (4.91), one is left with

‖µnt − µt‖−1 ≤ ‖µ
n
0 − µ0‖−1 +

∫ t

0

C√
t−s ‖µ

n
s − µs‖−1 ds+ ‖gnt ‖−1 + ‖znt ‖−1 . (4.135)

The term involving the graph gnt can be controlled again by
∥∥P (n) − 1(n)

∥∥
∞→1

: minor modi�-

cations to Lemma 4.3 show that there exists D > 0 such that

sup
t∈[0,T ]

‖gnt ‖−1 ≤ D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
. (4.136)

For the initial conditions and the stochastic part znt , de�ne the two sets:

Cn
1 = Cn

1 (ε0) =
{
‖µn0 − µ0‖−1 ≤ ε0

}
;

Cn
2 = Cn

2 (T, η) =

{
sup
t∈[0,T ]

‖znt ‖−1 ≤ η

}
.

(4.137)

On Cn
1 ∩ Cn

2 , one obtains

‖µnt − µt‖−1 ≤ ε0 +

∫ t

0

C√
t−s ‖µ

n
s − µs‖−1 ds+D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
+ η. (4.138)

Gronwall-Henry's inequality ([58, Lemma 7.1.1 and Exercice 1]) leads to

sup
t∈[0,T ]

‖µnt − µt‖−1 ≤ 2

(
ε0 +D

∥∥P (n) − 1(n)
∥∥
∞→1

n2
+ η

)
eaT , (4.139)

where a is independent of n, ε0 and η. Considering ε0 and η small enough and n large enough,

the proof is concluded modulo showing that

lim
n→∞

P (Cn
1 ∩ Cn

2 ) = 1. (4.140)

From the hypothesis on the intial condition (4.19), it is clear that for all ε0 one has P (Cn
1 (ε0))→

1 as n tends to in�nity. The same conclusion holds for Cn
2 by slightly modifying the proof of

Lemma 4.4. The proof is concluded. �
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4.A. Graphs

4.A.1. General properties of the graphs under consideration. We observe that

condition (4.16) implies a weak form of degree homogeneity (recall (4.10)):

Lemma 4.A.1. Suppose that (4.16) holds. Let δ > 0, de�ne

Iδn :=

{
i ∈ {1, . . . , n} : lim

n→∞

∣∣∣∣∣ 1n
n∑
j=1

ξ
(n)
ij

pn
− 1

∣∣∣∣∣ ≥ δ

}
. (4.141)

Then |Iδn| = o(n).

Proof. Suppose that limn→∞
|In|
n

= c for some c > 0. Then

sup
si,tj∈{±1}

1

n2

n∑
i,j=1

(
ξ

(n)
ij

pn
− 1

)
sitj ≥ sup

si∈{±1}

1

n

n∑
i=1

[
1

n

n∑
j=1

(
ξ

(n)
ij

pn
− 1

)]
si ≥

≥ 1

n

∑
i∈In

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij

pn
− 1

)∣∣∣∣∣ ≥ |In|n inf
i∈In

∣∣∣∣∣ 1n
n∑
j=1

(
ξ

(n)
ij

pn
− 1

)∣∣∣∣∣ .
(4.142)

This last term does not go to zero as n tends to in�nity, against (4.16). �

It also implies the existence of an unique giant component.

Lemma 4.A.2. Suppose that (4.16) holds. Then, there exists a unique sequence of connected

components {C(n)} in {ξ(n)} and limn→∞
∣∣C(n)

∣∣ /n = 1.

Proof. We prove the uniqueness �rst. Suppose that for every n there exist C(n)
1 and C(n)

2

distinct connected components of ξ(n) such that
∣∣∣C(n)
i

∣∣∣ = ni = Θ(n) for i = 1, 2. Without loss

of generality, one can suppose C(n)
1 consisting in the �rst n1 vertices of ξ(n) and C(n)

2 in the

following n2.

Using the equivalence of l∞ → l1 norm with the cut-norm (e.g. [3]), one obtains

‖Pn − 1n‖∞→1 ≥ sup
xi,yj∈{0,1}

∣∣∣∣∣
n∑

i,j=1

(
ξij
pn
− 1

)
xiyj

∣∣∣∣∣ ≥ ∑
1≤i≤n1

n1≤j≤n2−n1

1 = n1n2 = Θ(n2). (4.143)

For the existence, suppose the connected components of ξ(n) are ordered from the biggest one

in size (the �rst n1 vertices) to the smallest one (the last vertices). Take the �rst m components

such that |C1 ∪ · · · ∪ Cm| ≥ n/4. One easily sees that |C1 ∪ · · · ∪ Cm| ≤ n/2. Applying the same

reasoning of before with 1 ≤ i ≤ n/4 and n/2 ≤ j ≤ n, the proof is concluded. �

4.A.2. Examples of graph sequences. We exhibit two classes of graphs, a random and

a deterministic one, that satisfy assumption (4.16). The only hypothesis required on pn is

equivalent to asking that the mean degree per site diverges as n tends to in�nity, i.e. npn ↑ ∞.
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4.A.2.1. Erd®s-Rényi random graphs. As mentioned in the introduction, ‖·‖∞→1 has been

found very useful for random graph concentration and this is indeed the case of ER graphs (e.g.

[55]). We recall the de�nition and give the result.

For every n ∈ N, let {ξ(n)
ij }1≤i 6=j≤n be IID Bernoulli random variables with parameter pn,

P denoting the associated probability. For every i, ξ(n)
ii is set equal to 0, i.e. self loop are not

admitted.

Lemma 4.A.3. Assume that

lim
n→∞

npn =∞. (4.144)

There exists n0 ∈ N such that

P

(
sup
si,tj

1

n2

n∑
i,j=1

(
ξij
pn
− 1
)
sitj ≥

2
√
npn

)
≤ e−2n, for all n ≥ n0. (4.145)

Proof. The proof is just an union bound and an application of Bernstein's inequality.

Indeed,

P

(
sup
si,tj

1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
sitj ≥

δ
√
npn

)
≤
∑
si,tj

P

(
1

n2

n∑
i,j=1

(
ξij
pn
− 1

)
sitj ≥

δ
√
npn

)
. (4.146)

Bernstein's inequality ([19, Corollary 2.11]) says that if X1, . . . , Xn are independent zero-

mean random variables such that |Xj| ≤M a.s. for all j, then for all t ≥ 0

P

(
n∑
j=1

Xj > t

)
≤ exp

{
− t2

2
∑n

j=1 E[X2
j ] + 2

3
Mt

}
.

Let Xk(i,j) =
sitj
n2pn

(ξij − pn) with k some bijection from {1, . . . , n}2 to {1, . . . , n2}. Then |Xk| ≤
1

n2pn
and E [X2

k ] ≤ 2
n4 . For n large enough, we thus obtain

P

(
n2∑
k=1

Xk ≥
δ
√
npn

)
≤ exp

{
− nδ2

4pn + 2
3

δ√
npn

}
≤ exp

{
−nδ2

}
. (4.147)

The proof is concluded observing that the sum in (4.146) consists in 4n elements and choosing

δ = 2. �

We thus have

Proposition 4.A.4. Given (4.144), ER graphs satisfy condition (4.16) P-almost surely.

Proof. It su�ces to apply Borel-Cantelli lemma to (4.145). �

Similarly one can prove that symmetric ER random graphs satisfy (4.16) a.s..

Ramanujan graphs. Let d = 2, 3, . . . , consider a d-regular graph, i.e. graph where each

vertex has exactly d neighbors. We start recalling a well-known result
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Lemma 4.A.5 (Expander mixing lemma). Let G be a d-regular random graph (G denoting

the adjacency matrix itself), it holds

1

n2

∥∥n
d
G− 1(n)

∥∥
∞→1

≤ 4
λ(d)

d
, (4.148)

where λ(d) is the second biggest eigenvalue (in absolute value) associated to G.

Proof. The proof is classical but it is in general formulated in terms of the cut-norm (e.g.

[59]). One easily sees that the cut-norm is equivalent (paying a factor 4, e.g. [3]) to the l∞ → l1

norm. �

Ramanujan graphs are d-regular graphs such that λ(d) ≤ 2
√
d− 1, they are very well known

for their expander properties (e.g. [59]). Condition (4.16) holds whenever dn diverges; indeed

Proposition 4.A.6. Let dn = npn. Suppose that (4.144) holds, i.e.

lim
n→∞

dn =∞. (4.149)

Then, every sequence of Ramanujan graphs satis�es condition (4.16).

Proof. Rewriting (4.148) in terms of pn, it becomes

1

n2

∥∥∥ Gpn − 1(n)
∥∥∥
∞→1

≤ 8
√
npn

. (4.150)

The proof is concluded taking the limit for n which tends to in�nity. �

4.A.3. Links with graphons. The norm ‖·‖∞→1 is strictly related to the canonical dis-

tance dW on the space of (sparse) graphons W (e.g. [17]). In fact, whenever ξ(n)/pn is (a

realization of) a graphon W (n), condition (4.16) is implied by the convergence of W (n) to the

constant graphon W ≡ 1 in W . One can then consider system (4.2) on a sequence of (sparse)

graphons and require, instead of condition (4.16), the convergence inW to the constant graphon.

We have decided not to add another level of complexity in order to keep the results as clear

as possible, but everything could be reformulated within this more general framework and the

proofs would basically not change.

4.B. H−1 and Semigroups

4.B.1. On the relationship between H−1 and P(T). Consider H1 := H1,1, its dual

space, denoted by H−1, can be described through the Fourier orthonormal basis {el}l≥1, where

el(θ) = leilθ. With this characterization one easily obtains that P(T)− 1
2π
⊂ H−1. Indeed, for

µ ∈ P(T),∥∥∥∥µ− 1

2π

∥∥∥∥
−1

=

√∑
l≥1

∣∣〈µ, leil·〉H−1

∣∣2 =

√∑
l≥1

1

l2
|〈µ, eil·〉|2 ≤

√∑
l≥1

1

l2
<∞. (4.151)

In particular, the di�erence between two probability measures belongs to H−1.
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Observe now that H−1 induces a distance on P(T) which controls the bounded-Lipschitz

distance dbL, i.e. for all µ, ν ∈ P(T)

dbL(µ, ν) = sup
‖f‖

bL
=1

∫
f (dµ− dν) ≤ sup

h∈C1
0 ,‖h‖1=1

∫
h (dµ− dν) =

= sup
h∈C1

0 ,‖h‖1=1

∫
h′ (U − V) = sup

‖h‖1=1

〈µ− ν, h〉−1,1 =

= ‖µ− ν‖−1 .

(4.152)

Where we have used the density of C1
0 in H1, and denoted by U and V the primitives of µ and

ν respectively.

4.B.2. On the weighted Hilbert space H−1,ω. Recall that, one has this sequence of

continuous and dense inclusions:

H1,1/ω ⊂ L2
0 = L2

0
∗ ⊂ H∗1 =: H−1,ω, (4.153)

where we have chosen the canonical identi�cation for L2
0. We can explicit the isometry between

H1,1/ω to H−1,ω. Consider the operator

Aω : C∞(T)→ C∞(T)

f 7→ −∂θ
(
ω−1 ∂θf

) (4.154)

It is known [22, pag. 82] that Aω(H1,1/ω) is dense in H−1,ω and the injection is continuous.

This allows considering H1,1/ω as a subset of H−1,ω by identifying u and Aωu.

The inner product in H−1,ω, dual to the one in H1,1/w, is given by

〈u, v〉H−1,w =

∫
w UV , (4.155)

where U and V are primitive of u and v respectively, such that
∫
w U = 0 =

∫
w V (e.g. [9,

Subsection 2.2]). Then, for f, g ∈ C∞, it holds

〈Aωf, Aωg〉−1,ω =

∫
ω−1f ′g′ = 〈f, g〉1,1/ω. (4.156)

4.B.3. The linear operators Lψ and L
∗
ψ and their semigroups. This subsection recalls

the known results on Lψ, its dual L∗ψ and the associated semigroups etLψ and etL
∗
ψ .

We start with the spectral properties of Lψ.

Proposition 4.B.1. The operator Lψ (resp. L∗ψ) is essentially self-adjoint with compact

resolvent in H−1,1/q (resp. H1,q). Its spectrum is pure point and lies in (−∞,−λ1]∪{0}, where
λ1 > 0 and 0 is a simple eigenvalue of Lψ with eigenvector ∂θqψ.

Moreover, both L2π and L∗2π generate a C0 semigroup t 7→ etLψ (resp. t 7→ etL
∗
ψ) in L2

0 and

etL
∗
ψ =

(
etLψ

)∗
.
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Proof. The result about Lψ is given in [9]. Observe that, due to the isometry (4.154)

between H−1,1/qψ and H1,qψ , L
∗
ψ = A−1

1/qψ
LψA1/qψ and it has thus the same spectral properties

of Lψ.

From the spectral properties of Lψ and L∗ψ, one deduces that the two operators are sectorial

(and with dense domain in H−1), standard techniques assure the existence of the analytic

semigroup (e.g. [58]). �

An accurate analysis of the semigroup has already been established in [10] by means of

interpolating norms and Fourier decomposition. We recall here the most important properties.

We will use the space H−2, de�ned in an analogous way of H−1.

Proposition 4.B.2 ([10, Lemma 7.2]). For all t > 0, the operator etLψ extends to a bounded

operator from H−2 to H−1 and there exists C > 0 such that for all u ∈ H−2∥∥etLψu∥∥−1
≤ C

(
1 +

1√
t

)
‖u‖−2 . (4.157)

Moreover, for all ε ∈ (0, 1/2), δ ≥ 0 and all u ∈ H−1∥∥e(t+δ)Lψu− etLψu
∥∥
−1
≤ Cδε

(
1 +

1

t1/2+ε

)
‖u‖−2 . (4.158)

By duality, observe that for all h ∈ H1∥∥etL∗ψh∥∥
2
≤ C

(
1 +

1√
t

)
‖h‖1 . (4.159)

We end this subsection with an useful result on the eigenvalues and eigenfunctions associated

to Lψ, recall (4.29).

Proposition 4.B.3. There exists C > 1 such that for all l ∈ N

l2

C
≤ λl ≤ Cl2. (4.160)

Let fψl = A−1
1/qψ

eψl , then f
ψ
l is an eigenfunction of L∗ψ associated to −λl and

sup
l∈N

∥∥∥∂θfψl ∥∥∥∞ <∞. (4.161)

Proof. The �rst part is covered in [10, Remark 8.3] and the second one in [10, Corollary

8.6]. �

4.B.4. Analytical estimate. A variation on Gronwall Lemma.

Lemma 4.B.4. Let T > 0, γ ≥ 0. Let f : [0, T ] → [0,∞) be a continuous function and

g : [0, T ]→ [0,∞) be such that for all 0 ≤ t ≤ T

f(t) ≤ f(0) +

∫ t

0

e−γ(t−s)
√
t− s

f 2(s)ds+ g(t). (4.162)
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There exists A > 0, which depends on T only if γ = 0, such that for all 0 < δ < A and if

f(0) < δ, supt∈[0,T ] g(t) < δ, then

sup
t∈[0,T ]

f(t) ≤ 3δ. (4.163)

Proof. Consider the set O = {t : f(t) ≤ 3δ} ⊂ [0, T ]. Since f is continuous and f(0) ≤ δ,

O is a non-empty open set in [0, T ]. Suppose that sup(O) = u < T ; we show that u ∈ O, which
implies O = [0, T ].

Consider

f(u) =f(0) +

∫ u

0

e−γ(u−s)
√
u− s

f 2(s)ds+ g(u) ≤

≤2δ + δ

(
9δ

∫ u

0

e−γ(u−s)
√
u− s

ds

)
≤ 3δ,

(4.164)

where the last inequality holds for all δ ≤ A :=
(

9
∫∞

0
e−γs√
s
ds
)−1

whenever γ > 0 or for all

δ ≤ 1
18
√
T
in case γ = 0. Thus u ∈ O and the proof is concluded. �





CHAPTER 5

A Law of Large Numbers via a mild formulation

This chapter is based on the joint work with Florian Bechtold [8].

1. Introduction

The theory of weakly interacting particle systems has received great attention in the last

�fty years. On the one hand, its mathematical tractability has allowed to obtain a deep un-

derstanding of the behavior of the empirical measure for such systems: law of large numbers

[88, 29], �uctuations and central limit theorems [99, 45], large deviations [44, 56] and propa-

gation of chaos properties [98] are by now established. On the other hand, the theory of weakly

interacting particles enters in several areas of applied mathematics such as mean-�eld games

or �nance models [25], making it an area of active research.

Depending on the context of application, several results are available. The class of mean-

�eld systems under the name of weakly interacting particles is rather large and models may

substantially vary from one another depending on the regularity of the coe�cients or the noise.

This richness in models is re�ected in a variety of di�erent techniques implemented in their

study (see e.g. [29, 88, 98] for three very di�erent approaches).

If one focuses on models where the interaction function is regular enough, e.g. bounded

and globally Lipschitz, one of the aspects that has not been completely investigated so far,

concerns the initial condition. To the authors' knowledge, most of known results require a

�nite moment condition in order to prove tightness properties of the general sequence (e.g.

[56]) or to apply a �xed-point argument in a suitable topological space (e.g. [29]). The only

exceptions are given by [98, 99], although they require independent and identically distributed

(IID) initial conditions. We want to point out that existence of a solution to the limiting

system, a non-linear partial di�erential equation (PDE) known as Fokker-Planck or McKean-

Vlasov equation, does not require any �nite moment condition on the initial measure, see e.g.

[98, Theorem 1.1]. Furthermore, whenever the particle system is deterministic, there is no need

to assume independence (or any �nite moment) for this same convergence, e.g. [41, 87].

We present a result in the spirit of the law of large numbers, without requiring any as-

sumption on the initial conditions but the convergence of the associated empirical measure.

Our main idea consists in exploiting a mild formulation associated to the stochastic partial

di�erential equation satis�ed by the empirical measure for a �xed (�nite!) population. The

main di�culty is giving a meaning to the noise term appearing in such formulation: exploiting

the regularizing properties of the semigroup generated by the Laplacian in two di�erent ways,

97
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using rough paths theory and maximal inequalities for self normalized processes respectively,

we are able to adequately control it. By taking the limit for the size of the population which

tends to in�nity, the stochastic term vanishes and the limiting measure satis�es the well-known

McKean-Vlasov equation.

1.1. Organization. The paper is organized as follows. In the rest of this section we present

the model, known results and introduce the set-up in which the evolution of the empirical

measure is studied along with notation used.

In Section 2 we give the de�nition of our notion of solution as well as a corresponding

uniqueness statement. The law of large numbers, Theorem 2.3, is presented right after; the

section ends with a discussion, the strategy of the proof and the existing literature.

The noise perturbation mentioned in the introduction is tackled in Section 3 where rough

paths techniques and maximal inequalities for self-normalized processes are exploited. The

proof of Theorem 2.3 is given at the end of this section.

Appendix A recalls general properties of analytic semigroups; Appendix B provides an

extension of Gubinelli's theory for rough integration to our setting.

1.2. The model and known results. Consider
(
Ω,F , (Ft)t≥0 ,P

)
a �ltered probability

space, the �ltration satisfying the usual conditions. Fix d ∈ N, let (Bi)i∈N be a sequence of IID

Rd-valued Brownian motions adapted to the �ltration (Ft)t≥0.

Fix n ∈ N and T > 0 a �nite time horizon. Let Γ : Rd × Rd → Rd be a bounded Lipschitz

function, and (xi,n)1≤i≤n the unique strong solution todxi,nt = 1
n

∑n
j=1 Γ(xi,nt , x

j,n
t )dt+ dBi

t, t ∈ (0, T ),

xi,n0 = xi0, for 1 ≤ i ≤ n.
(5.1)

The initial conditions are denoted by the sequence (xi0)i∈N ⊂ Rd, whenever they are random

they are taken independent of the Brownian motions. Existence and uniqueness for (5.1) is a

classical result, e.g. [97].

The main quantity of interest in system (5.1) is the empirical measure νn = (νnt )t∈[0,T ],

de�ned for t ∈ [0, T ] as the probability measure on Rd such that

νnt :=
1

n

n∑
j=1

δxj,nt
∈ P(Rd). (5.2)

Observe that νn is apriori a probability measure on the continuous trajectories with values in

Rd, i.e. νn ∈ P(C([0, T ],Rd)), however in many instances we rather consider its projection

(νnt )t∈[0,T ] ∈ C([0, T ],P(Rd)) as continuous function over the probability measures on Rd. This

last object does not carry the information of the time dependencies between time marginals,

but is in our case more suitable when studying (5.1) in the limit for n which tends to in�nity.

1.2.1. Known results. Fix a probability measure ν0 ∈ P(Rd). Whenever (xi0)i∈N are taken

either to be IID random variables sampled from ν0, or such that νn0 weakly converges to ν0 with
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some p ≥ 1 �nite moment, it is well known (e.g. [98, Theorem 1.4] and [29, Theorem 3.1])

that νn converges (in a precise sense depending on the setting) to the solution of the following

PDE, known as non-linear Fokker-Planck (or McKean-Vlasov) equation∂tνt = 1
2
∆νt − div[νt(Γ ∗ νt)], for t ∈ (0, T ),

ν t=0 = ν0,
(5.3)

where ∗ denotes the integration with respect to the second argument, i.e. for µ ∈ P(Rd)

(Γ ∗ µ)(x) =

∫
Rd

Γ(x, y)µ(dy), x ∈ Rd.

Remark 1.1. Observe that requiring IID initial conditions is not an innocent assumption

as they are, in particular, exchangeable, see [98, �I.2] for more on this perspective. From an

applied viewpoint, independence is often a hypothesis that we do not want to assume, see e.g.

[36, Example II].

A solution to (5.3) is linked with the following non-linear process:xt = x0 +
∫ t

0

∫
Rd Γ(xs, y) νs(dy)ds+Bt,

νt = Law (xt),
(5.4)

where B is a Brownian motion independent of (Bi)i∈N and x0. It is well-known that ν =

(νt)t∈[0,T ] is a solution to (5.3) if and only if the non-linear process (xt)t∈[0,T ] in (5.4) exists and

is such that Law (xt) = νt for every t ∈ [0, T ].

In particular, we have to following theorem.

Theorem 1.2 ([98, Theorem 1.1]). Suppose Γ is bounded and Lipschitz and x0 is a random

variable with law ν0 ∈ P(Rd). Then, system (5.4) has a unique solution (xt)t∈[0,T ].

Moreover, if ν = (νt)t∈[0,T ] is the law of (xt)t∈[0,T ], then ν ∈ C([0, T ],P(Rd)) and it solves

the McKean-Vlasov equation (5.3) in the weak sense.

1.3. Set-up and notations. Let Wm,p = Wm,p(Rd) be the standard Sobolev space with

m ∈ N and p ∈ [1,∞). Classical results as [2, Theorem 4.12] assure that

Wm,p
0 (Rd) = Wm,p(Rd) ⊂ Cb(Rd) whenever mp > d, (5.5)

where Cb(Rd) is the space of continuous bounded functions on Rd. The space Wm,p
0 (Rd) is the

closure of C∞0 (Rd), i.e., the space of smooth functions with compact support, with respect to

the norm

‖ϕ‖Wm,p :=

 ∑
0≤|α|≤m

∫
Rd
|∂αϕ(x)|p dx

p

, ϕ ∈ C∞0 (Rd),

where α = (α1, . . . , αd) with |α| = α1 + · · ·+ αd and ∂α = (∂x1)α1 (∂x2)α2 ...(∂xd)
αd .
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Fix p = 2 and m > d/2, we consider the Hilbert space Hm := Wm,2(Rd), with norm

denoted by ‖·‖m and its dual space H−m := (Hm)∗ with the standard dual norm de�ned by

‖µ‖−m := sup‖h‖m≤1〈µ, h〉−m,m. The action the action of H−m on Hm is denoted by 〈·, ·〉−m,m.
By duality, if follows from (5.5) that

P(Rd) ⊂ Cb(Rd)∗ ⊂ H−m.

We denote by (·, ·)m the scalar product in Hm and by 〈·, ·〉 the natural action of a probability

measure on test functions, i.e., for ν ∈ P(Rd) and a smooth function h, we write 〈ν, h〉 =∫
Rd h(x)ν(dx). We often abuse of notation denoting the density of a probability measure by

the probability measure itself.

Let ν ∈ P(Rd), and thus ν ∈ H−m, and let ν̃ ∈ Hm be its Riesz representative, then we

have for any h ∈ Hm

〈ν, h〉 = ν(h) = (ν̃, h)m = 〈ν, h〉−m,m
and therefore

|〈ν, h〉| ≤ ‖ν‖−m ‖h‖m .

In particular

sup
‖h‖m≤1

〈ν, h〉 = ‖ν‖−m .

If (µn)n∈N is a sequence of probability measures which weakly converges to some µ ∈ P(Rd),

we use the notation µn ⇀ µ. For weak convergence and weak-*-convergence of a sequence

(xn)n ⊂ X to some x ∈ X, X being a Banach space, we use the standard notations xn ⇀ x

and xn
∗
⇀ x respectively.

As introduced in [86], we will use ‖·‖−m as distance between probability measures and our

results will be expressed with respect to this topology.

The various constants in the paper will always be denoted by C or Cα to emphasize the

dependence on some parameter α. Their value may change from line to line.

2. Main result

Before stating the main result, we give the de�nition of weak-mild solution to (5.3) in the

Hilbert space Hm. We denote by S = (St)t∈[0,T ] the analytic semigroup generated by ∆
2
on Hm,

see Appendix A for general properties of S.

Definition 2.1 (m-weak-mild solutions to McKean-Vlasov PDEs). Let ν0 be an element

in H−m. We call ν ∈ L∞([0, T ], H−m) an m-weak-mild solution to the problem (5.3), if for

every h ∈ Hm and t ∈ [0, T ], it holds

〈νt, h〉−m,m = 〈ν0, Sth〉−m,m +

∫ t

0

〈νs, (∇St−sh)(Γ ∗ νs)〉−m,mds. (5.6)

If Γ is su�ciently regular, uniqueness is a consequence of Gronwall's Lemma.
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Proposition 2.2 (Uniqueness). Suppose that Γ(·x, ·y) ∈ Hm
y W

m,∞
x , i.e.

‖Γ(·x, ·y)‖Hm
y W

m,∞
x

= max
|β|≤m

∥∥∥∥∥∥
∑
|α|≤m

∫
Rd

(
∂βx∂

α
y Γ(x, y)

)2
dy

∥∥∥∥∥∥
L∞x

<∞. (5.7)

Then, m-weak mild solutions to (5.3) are unique.

Proof. Suppose ν, ρ ∈ L∞([0, T ], H−m) are two m-weak mild solutions. Then, taking the

di�erence between the two equations (5.6), one obtains that for every h ∈ Hm

〈νt − ρt, h〉−m,m =

∫ t

0

〈νs − ρs, (∇St−sh)(Γ ∗ νs)〉−m,mds+

+

∫ t

0

〈ρs, (∇St−sh)(Γ ∗ (νs − ρs))〉−m,mds.

In particular,

‖νt − ρt‖−m ≤
∫ t

0

‖νs − ρs‖−m ‖(∇St−sh)(Γ ∗ νs)‖m ds+

+

∫ t

0

‖ρs‖−m ‖(∇St−sh)(Γ ∗ (νs − ρs))‖m ds.

Observe that, for µ ∈ H−m it holds that

‖(∇St−sh)(Γ ∗ µ)‖m ≤ ‖∇St−sh‖m ‖Γ ∗ µ‖Wm,∞ ≤

≤ C√
t− s

‖h‖m ‖µ‖−m ‖Γ(·x, ·y)‖Hm
y W

m,∞
x

,
(5.8)

where we have used the properties of the semigroup. Using the continuous embedding of P(Rd)

into H−m, we conclude that there exists a (new) constant C > 0:

‖νt − ρt‖−m ≤ C ‖Γ(·x, ·y)‖Hm
y W

m,∞
x

∫ t

0

1√
t− s

‖νs − ρs‖−m ds.

A Gronwall-like lemma yields the proof. �

We are ready to state the main result.

Theorem 2.3. Assume m > d/2 + 3 and Γ(·x, ·y) ∈ Hm
y W

m,∞
x . If ν0 ∈ H−m, then there

exists ν ∈ L∞([0, T ], H−m), unique m-weak-mild solution to (5.6). Suppose that the initial

empirical measure associated to the particle system (5.1) is such that

νn0 ⇀ ν0 in H−m

in probability. Then, the empirical measure νn of (5.1) satis�es

νn
∗
⇀ ν in L∞([0, T ], H−m)

in probability.
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Moreover, if ν0 ∈ P(Rd), then ν is the unique weak solution of the McKean-Vlasov equation

(5.3) and, in particular, ν ∈ C([0, T ],P(Rd)).

2.1. Discussion. Theorem 2.3 shows a law of large numbers in L∞([0, T ], H−m) by directly

studying the evolution of the empirical measure. Contrary to most of the existing proofs in

the literature, it does not establish any trajectorial estimates on system (5.1) and does not

invoke propagation of chaos techniques, as, e.g., in [83, 98]. This allows to deal with very

general initial data: the weak convergence of (νn0 )n∈N in H−m � which is implied by the weak

convergence in P(Rd) � su�ces.

Working in H−m for m > d/2 assures a bound on ‖ν‖−m which is uniform in ν ∈ P(Rd)

thanks to the continuous embedding of P(Rd) in H−m and the duality properties of probability

measures, see Lemma 5.A.2. By exploiting the equation satis�ed by νn, we are able to establish

a compactness property for (νn)n∈N, usually hard to obtain in P(Rd), and which represents our

main tool for obtaining the existence both of the limit solution and of a convergent subsequence.

Weak-mild solutions make sense for any m > d/2, yet we have to require the stronger

condition m > d/2+3 in order to give a pathwise meaning to the stochastic term present in the

dynamics. This implies that Γ is C3. In this last case, it is already known that a weak solution

to the McKean-Vlasov equation (5.3) exists for any initial probability measure ν0. Since weak

solutions are weak-mild solutions, as we will show in the sequel, a byproduct of our main result

is the uniqueness of (weak) solutions to equation (5.3).

The particle system (5.1) represents an interaction setting where no transport is present in

the dynamics. We have decided not to include other terms so as to keep the underlying ideas

and techniques as clear as possible. However, all our arguments readily extend to the more

general case of interacting particles given by

dxi,nt = F (xi,nt )dt+
1

n

n∑
j=1

Γ(xi,nt , x
j,n
t )dt+ dBi

t, (5.9)

provided that F ∈ Hm.

Finally, we point out that the need of rather high regularity in Γ (and F ) is an intrinsic

requirement of rough paths theory and not of the particular class of models we are working with.

In particular, proving Theorem 2.3 independently of rough paths arguments would likely yield

less restrictive regularity constraints on Γ. On the other hand, rough paths theory allows to

give a pathwise de�nition of the stochastic partial di�erential equation satis�ed by the empirical

measure. Such viewpoint appears to be new in the literature. Moreover, the proposed strategy

represents an application to the algebraic integration with respect to semigroups, presented in

[54], that can be interesting on its own.

2.2. Comparison with the existing literature. Proving a law of large numbers by

directly studying the empirical measure and not the single trajectories is the classical approach

in the deterministic setting [87, 41], i.e., when no Brownian motions are acting on system
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(5.1). In the case of interacting di�usions, the idea of studying the equation satis�ed by the

empirical measure for a �xed n, comes from the two articles [10, 78] and the recent [30], where

a weak-mild formulation is derived and carefully studied. Contrary to our case, in [10, 30, 78]

the particles live in the one dimensional torus which considerably simpli�es the analysis; we

refer to Remark 3.5.

A Hilbertian approach for particle systems has already been discussed in [45], where it is

used to study the �uctuations of the empirical measure around the McKean-Vlasov limit.

However, [45] does not make use of the theory of semigroups but instead requires strong

hypothesis on the initial conditions which have to be IID and with �nite (4d + 1)-moment

(see [45, �3]). The evolution of the empirical measure (5.2) is then studied in weighted Hilbert

spaces (or, more precisely, in spaces of Bessel potentials) so as to fully exploit the properties of

mass concentration given by the condition on the moments. Observe that we are not able to

present a �uctuation result, given the lack of a suitable uniform estimate on the noise term.

Studying the action of an analytic semigroup in the evolution of an interacting particle

system has been recently proposed in similar settings; we refer to [46, 47] and references

therein. This method is referred to as the semigroup approach. We want to stress that the

cited works deal with smooth molli�ed empirical measures and work in a weaker topology (with

respect to the time variable) than the one of Theorem 2.3.

The strategies developed in [84, 83, 65], and further applied in the case of mean-�eld

games in [25], study the evolution of the joint law of system (5.1) and take a more abstract

viewpoint. In particular, they study the system dynamics at the level of the �ows and not

directly addressing the empirical measure.

Finally, observe that under a suitable change of the time-scale, the n-dependent SPDE

satis�ed by the empirical measure (5.2) is the mild formulation of the Dean-Kawasaki equation

[66, Theorem 1] and [67].

2.3. Strategy of the proof. Using Itô's formula, we derive an equation satis�ed by νn

for every �xed n ∈ N, which turns out to be the McKean-Vlasov PDE perturbed by some noise

wn, see Lemma 3.1. This equation makes sense in L∞([0, T ], H−m) and in this space we study

the convergence of (νn)n∈N.

The main challenge towards the proof of Theorem 2.3 is giving a meaning to wn and suitably

controlling it. We �rst give a pathwise de�nition of such term through rough paths theory, see

Lemma 3.2, referring to Appendix 5.B for a suitable theory of rough integration in our setting.

This in turn will allow to show that (νn)n∈N is uniformly bounded in L∞([0, T ], H−m) and

extract a weak-* converging subsequence, see Lemma 3.8.

To show that a converging subsequence satis�es the weak-mild solution (5.6) in the limit,

as shown in Lemma 3.9, we need a further step: the pointwise estimate of wn(h), for a �xed

h ∈ Hm. Using a suitable decomposition of the semigroup and a maximal inequality for self-

normalized processes, we are able to prove that wn(h) converges to zero in probability as n
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diverges, see Lemma 3.6. If on the one hand the rough paths bound cannot take advantage

of the statistical independence of the Brownian motions and thus, cannot be improved in n,

on the other hand the probability estimate does not su�ce to de�ne wn as an element of

L∞([0, T ], H−m). We refer to Subsection 3.2 and Remark 3.7 for more on this aspect.

The uniqueness of weak-mild solution, Proposition 2.2, is the last ingredient to obtain that

any convergent subsequence of (νn)n∈N admits a further subsequence that converges P-a.s. to

the same ν satisfying (5.6). This is equivalent to the weak-* convergence in probability to the

weak-mild solution ν.

3. Proofs

We start by giving the n-dependent stochastic equation satis�ed by the empirical measure

for each n ∈ N. We then move to the control on the noise term and, �nally, the proof of

Theorem 2.3.

3.1. A weak-mild formulation satis�ed by the empirical measure. Recall that

(St)t∈[0,T ] denotes the semigroup generated by ∆
2
on Hm.

Lemma 3.1. Assume m > d/2 + 2. The empirical measure (5.2) associated to the particle

systems (5.1) satis�es for every h ∈ Hm and t ∈ [0, T ]

〈νnt , h〉−m,m = 〈νn0 , Sth〉−m,m +

∫ t

0

〈νns , (∇St−sh)(Γ ∗ νns )〉−m,mds+ wnt (h), P-a.s., (5.10)

where

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns ) · dBj
s . (5.11)

Proof. Fix t ∈ [0, T ] and h ∈ Hm, by (5.5) h is C2(Rd). For s < t, applying Itô's formula

onto the test function ϕ(x, s) = (St−sh)(x), we obtain

h(xi,nt ) =(Sth)(xi,n0 ) +
1

n

n∑
j=1

∫ t

0

(∇St−sh)(xi,ns )Γ(xi,ns , x
j,n
s )ds

+

∫ t

0

(∇St−sh)(xj,ns ) · dBj
s .

Summing over all particles and dividing by 1/n, the claim is proved modulo well-posedness of

the noise term wn which is presented in the following subsection. �

3.2. Controlling the noise term. The aim of this subsection is to control the noise term

wn appearing in the weak-mild formulation (5.10) for the empirical measure. We start by giving

a pathwise de�nition of the integral (5.11), i.e. for any ω ∈ A ⊂ Ω where P(A) = 1 and any

h ∈ Hm we de�ne

wnt (h)(ω) =

(
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns ) · dBj
s

)
(ω),
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which in turn allows to de�ne wn as an element of L∞([0, T ], H−m), via an inequality of the

form

sup
‖h‖m=1

|wnt (h)(ω)| ≤ CT (ω)

for ω ∈ A, see Lemma 3.2. For this purpose, we extend Gubinelli's theory for rough integration

(see [53] and [54, �3 and 4 ]) to our setting, see Appendix 5.B for notations and precise results

on this extension.

A probabilistic estimate is then given, exploiting the independence of the Brownian motions;

Lemma 3.6 shows that

E

[
sup
t∈[0,T ]

|wnt (h)|2
]
≤ C

n
‖h‖2

m , h ∈ Hm.

This estimate will allow us to prove the convergence of (5.10) to (5.6) for every �xed h ∈ Hm,

see Lemma 3.9.

3.2.1. Pathwise de�nition via rough paths theory for semigroup functionals. We start by

observing that the noise term wnt (h) in (5.11) is neither a stochastic convolution that could be

treated using a maximal inequality in Hilbert spaces (e.g. [32, �6.4] and [7] in the context of

an unbounded di�usion operator), nor a classical controlled rough path integral (e.g. [49]) as

the integrand depends on the upper integration limit.

We combine the strategies in [54, 53] so to de�ne wnt (h) in a pathwise sense. Note that our

setting is di�erent from [54], where an in�nite dimensional theory à la Da Prato-Zabczyk is

constructed, while we are interested in �nite dimensional stochastic integrals over functionals

of such objects. Our construction is nonetheless similar to [54]: we �x the Itô-rough path lift

associated to Brownian motion and extend the algebraic integration in [54] to our setting of

semigroup functionals. This extension is presented in detail in Appendix B, where the main

ingredient, the Sewing lemma, is proven. Before stating Lemma 3.2, we present in a heuristic

fashion the main ideas towards a rough path construction of (5.11).

Note that it su�ces to de�ne integrals of the form∫ t

s

∇St−uf(xu) · dBu (5.12)

in a pathwise sense for a class of su�ciently regular functions f and where (xu)u is an Rd-valued

process controlled by the Brownian motion (Bu)u, such that

xt − xs = Bt −Bs +O(|t− s|), for s, t ∈ [0, T ], P-a.s.. (5.13)

Recall that in the classical setting of rough paths theory, one has for s ≤ t∫ t

s

f(xu)dBu = f(xs)Bts + (Dxf)(xu)Bts +Rts
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where we have used the notation Bts := Bt −Bs as well as

Bts :=

∫ t

s

Bus ⊗ dBu, t ≥ s ∈ [0, T ].

In particular, Ats := f(xs)Bts + (Dxf)(xu)Bts is a germ and, thanks to (5.13), Rts = o(|t− s|)
is a remainder in the terminology of [53]. In the same spirit of [53], we rewrite the left hand

side of this expression as ∫ t

s

f(xu)dBu = [δI]ts = It − Is

where

It =

∫ t

0

f(xu)dBu.

We are thus left with

[δI]ts = Ats +Rts. (5.14)

Recall that Gubinelli's Sewing Lemma formulates precise conditions under which a given germ

A gives rise to a unique remainder term Rts = o(|t− s|) and such that I can be obtained as

It := lim
|P[0,t]|↓0

∑
[u,v]∈P[0,t]

Avu.

If one tries to follow a similar approach for the quantity of interest (5.12), a canonical candidate

for local approximations to (5.12) would be∫ t

s

(∇St−uf)(xu)dBu = (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts +Rts.

However, notice that if we were to set

It(f) :=

∫ t

0

(∇St−uf)(xu)dBu

then, we would obtain

[δI(f)]ts = It(f)− Is(f) =

∫ t

0

(∇St−uf)(xu)dBu +

∫ s

0

(∇Ss−u(St−s − Id)f)(xu)dBu

=

∫ t

s

(∇St−uf)(xu)dBu + Is((St−s − Id)f)

6=
∫ t

s

(∇St−uf)(xu)dBu,

in contrast to the above setting, meaning the standard approach of [53] fails. If one de�nes,

following Gubinelli and Tindel [54, p.16], the operator φ via

[φI(f)]ts = Is((St−s − Id)f)

as well as the operator δ̂ via

[δ̂I(f)]ts = [δI(f)]ts − [φI(f)]ts,
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the desired relationship is recovered, indeed

[δ̂I(f)]ts =

∫ t

s

(∇St−uf)(xu)dBu

= (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts +Rts.

The idea is hence to change the cochain complex in [53] and to consider a perturbed version

of it associated to the operator δ̂, this is done in Lemma 5.B.1. Lemma 5.B.2 proves a Sewing

Lemma in this modi�ed setting, which in turn allows to construct the above remainder Rts.

The germ will therefore be

[Af ]ts = (∇St−sf)(xs)Bts + (D∇St−sf)(xs)Bts.

For 0 = t0 < · · · < tn+1 = t, note that due to

It(f) =

∫ t

0

(∇St−uf)(xu)dBu

=
n∑
k=0

∫ tk+1

tk

(∇St−uf)(xu)dBu

=
n∑
k=0

∫ tk+1

tk

(∇Stk+1−u(St−tk+1
f))(xu)dBu

=
n∑
k=0

[A(St−tk+1
f)]tk+1tk +

n∑
k=0

Rtk+1tk ,

the correct way of sewing together the germs is given by

It(f) = lim
n→∞

n∑
k=0

[A(St−tk+1
f)]tk+1tk ,

which is re�ected in equation (5.31) in Corollary 5.B.3. In particular, note that this Corollary

comes with the stability estimate (5.30) which allows to eventually deduce the �rst crucial

estimate (5.15) on the noise term, as shown in the next Lemma.

Lemma 3.2. Suppose m > d/2 + 3. For every α ∈ (1/3, 1/2), there exists a positive random

constant C = Cα that is �nite P-a.s.(and of �nite moments for all orders) such that P-a.s.

|wnt (h)| ≤ Cα(1 + t)3α ‖h‖m (5.15)

for any t ≥ 0 and h ∈ Hm.

Proof. We follow the notations of Appendix 5.B. Fix α ∈ (1/3, 1/2) and recall that (B,B)

is the Itô rough path lift, with

Bts :=

∫ t

s

Bus ⊗ dBu, t, s ∈ [0, T ],

where Bus := Bu −Bs. Note that the above stochastic integral is understood in the Itô sense.
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We use Lemma 5.B.3 to de�ne the Itô integral (5.12). This in turn will imply the well-

posedness of wnt (h) with the choice f = h, x = xi,n and B = Bi for i = 1, . . . , n. Indeed, xi,n is

controlled by Bi (recall (5.1) and the fact that Γ is bounded), and thus

|wnt (h)| ≤ 1

n

n∑
i=1

∣∣∣∣∫ t

0

(∇St−sh)(xi,ns )dBi
s

∣∣∣∣ ≤ Cα(1 + t)3α ‖h‖m .

De�ne the operator A acting on f ∈ Hm into C(∆2,R) via

[Af ]ts := (∇St−sf)(xs) ·Bts + (Dx∇St−sf)(xs) · Bts,

where Dx denotes the Jacobian in Rd and · the scalar product between tensors of the same

dimension. In the sequel, we adopt the following shorter notation

[Af ]ts := ∇StsfsBts +Dx∇Stsfs Bts.

As in classical rough paths theory [Af ]ts is not a 1-increment (i.e. a di�erence as Bts) but

a continuous function of the two variables s and t. In particular A ∈ D2, i.e. A is a linear

operator from the Banach space Hm to C2.

One can actually prove that A ∈ Dα
2 : for 0 ≤ s ≤ t ≤ T and f ∈ Hm

|[Af ]ts| ≤ ‖∇Stsf‖∞ |Bts|+ ‖Dx∇Stsf‖∞ |Bts| ≤ Cα ‖f‖m |t− s|
α ,

where Cα = Cα(ω) depends on the α-Hölder norm of B(ω) and B(ω) and we have used the

properties of S, see Lemma 5.A.1. Note in particular that Cα < ∞, P-a.s. and that Cα has

�nite moments of all orders.

Recall the de�nition of δ̂ (Lemma 5.B.1), in order to apply Lemma 5.B.2 and Corollary

5.B.3 we need to show that δ̂A ∈ D1+
3 . Let f ∈ Hm and s < u < t, one has

[δ̂Af ]tus = [δAf ]tus − [φAf ]tus = [Af ]ts − [Af ]tu − [Af ]us − [A(St· − Id)f ]us =

= [Af ]ts − [Af ]tu − [ASt·f ]us.

Observe that thanks to the properties of the semigroup

[ASt·f ]us = ∇SusStufsBus +Dx∇SusStufs Bus = ∇StsfsBus +Dx∇Stsfs Bus.

In particular, using Chen's relation

Bts = Bus + Btu +Btu ⊗Bus

we obtain

[δ̂Af ]tus = ∇StsfsBtu −∇StufuBtu +Dx∇Stsfs (Bts − Bus)−Dx∇Stufu Btu =

= (∇Stsfs −∇Stufu)Btu +Dx(∇Stsfs −∇Stufu)Btu +DxStsfsBtu ⊗Bus.
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We rewrite everything as the sum of four terms

[δ̂Af ]tus = ∇(Sts − Stu)fuBtu +Dx∇(Sts − Stu)fu Btu+

+(Dx∇Stsfs −Dx∇Stsfu)Btu + (∇Stsfs −∇Stsfu +Dx∇StsfsBus)Btu

= : A1 + A2 + A3 + A4.

For A1 we obtain

|∇(Sts − Stu)fuBtu| ≤ ‖∇(Sts − Stu)fu‖∞ |Btu| ≤ Cα ‖f‖m |t− u|
α |u− s| ,

where Cα = Cα(ω) depends on the α-Hölder norm of B(ω) and we have used the properties of

S, see Lemma 5.A.1. Note in particular that Cα < ∞, P-a.s. and that Cα has �nite moments

of all orders. Similarly, for A2 (with a di�erent Cα)

|Dx∇(Sts − Stu)fu Btu| ≤ Cα ‖f‖m |t− u|
2α |u− s|1/2 .

Observe now that, since f ∈ C3
b , the function Dx∇Stsf is Lipschitz uniformly in s and t, from

which we extract that

|(Dx∇Stsfs −Dx∇Stsfu)Btu| ≤ Cα ‖f‖m |xs − xu| |t− u|
2α

≤ Cα ‖f‖m |t− u|
2α |u− s|α .

Using (5.13), we recognize in A4 the Taylor expansion of ∇Stsf around xs, i.e.

|∇Stsfu −∇Stsfu −Dx∇StsfsBus| ≤

≤ |∇Stsfu −∇Stsfu −Dx∇Stsfs xus|+ c |Dx∇Stufs| |u− s| ≤

≤ c ‖f‖m |xus|
2 + c ‖f‖m |u− s| ≤ c ‖f‖m |u− s|

2α .

We conclude that ∣∣A4
∣∣ ≤ Cα ‖f‖m |t− u|

α |u− s|2α .

Putting the four estimates together, we have just shown δ̂A ∈ D1+
3 and, in particular, that∥∥∥δ̂A∥∥∥

D3α
3

≤ Cα

for some Cα which is �nite P-a.s. and admits moments of all orders. By Corollary 5.B.3, we

know that there exists I ∈ D1 such that

[δ̂If ]ts = lim
|Pn[s,t]|→0

∑
[u,v]∈Pn[s,t]

[ASt·f ]vu

is well de�ned. For 0 ≤ s ≤ t ≤ T , se set∫ t

s

∇St−uf(xu) · dBu := [δ̂If ]ts.
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Again Corollary 5.B.3 assures that there exists a (new) constant Cα, depending on the norm

of A in Dα
2 and the norm of δ̂A in D3α

3 , such that∣∣∣∣∫ t

0

∇St−uf(xu) · dBu

∣∣∣∣ ≤ Cα ‖f‖m (1 + t)3α.

The proof is concluded. �

3.2.2. Controlling wnt (h) via a maximal inequality for self-normalized processes. The aim of

this subsection is to give a probabilistic bound on

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns )dBj
s

by exploiting the independence of the Brownian motions (we have removed the product symbol

· for the sake of notation).

Observe that if wnt (h) didn't involve a convolution with the semigroup S, wnt (h) would be a

standard martingale and classical estimates like the Burkholder-Davis-Gundy inequality could

be used to establish the desired bound. While the convolution with the semigroup S destroys

the martingale property, wnt (h) is still closely related to maximal inequalities for self-normalized

martingales for which the following �ne estimate due to Graversen and Peskir [52] is available.

Lemma 3.3 ([52, Corollary 2.8] and [62, Corollary 2.4]). Let (Mt)t∈[0,T ] be a continuous

local martingale. There exists a universal constant C such that

E

[
sup
t∈[0,τ ]

|Mt|2

1 + 〈M〉t

]
≤ C E [ log(1 + log(1 + 〈M〉τ )) ]

for every stopping time τ ≤ T .

Observe that this result is a consequence of more general bounds on self-normalized processes

of the formXt = At/Bt (e.g. [35]), where in this case At = Mt is a martingale and B2
t−1 = 〈M〉t

its quadratic variation.

Let us illustrate in the following example how this interpretation can be used to directly

obtain a bound on

vt =
1

n

n∑
j=1

∫ t

0

e−a(t−s)dBj
s , a > 0,

which could be seen as a most simple toy model for wnt (h).

Example 3.4. Let (Bj)j≤n be independent Brownian motions on a common �ltered prob-

ability space (Ω,F , (F)t)t,P). For a > 0, let (Xj)j≤n be the following associated familiy of

Ornstein Uhlenbeck processes:

Xj
t :=

∫ t

0

e−a(t−s)dBj
s , t ∈ [0, T ]
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and consider the quantity

vt :=
1

n

n∑
j=1

Xj
t .

We remark that we may rewrite

n∑
j=1

Xj
t =

√
n

2a
e−at

(
n∑
j=1

√
2a

n

∫ t

0

easdBj
s

)
=:

√
n

2a
e−atMt.

Notice that M is a martingale of quadratic variation

〈M〉t = (e2at − 1)

and therefore, by Lemma 3.3, we conclude that

E

[
sup
t∈[0,T ]

|vt|2
]

=
1

2na
E

[
sup
t∈[0,T ]

|e−atMt|2
]

=
1

2na
E

[
sup
t∈[0,T ]

|Mt|2

1 + 〈M〉t

]

≤ C
1

2na
log (1 + 2aT ).

Note that we crucially exploited the splitting e−a(t−s) = e−ateas, which is not available in

the semigroup setting we are concerned with. Intending to employ such a step suggests to pass

by a functional calculus for the semigroup, which we brie�y discuss next.

Recall that an analytic semigroup is a bounded linear operator that can be expressed by

means of a Dunford integral (e.g. [58, 75] and Appendix 5.A). The integral representation of

S is given for every t ∈ [0, T ] by

St =
1

2πi

∫
γr,η

etλR(λ, ∆
2

)dλ, (5.16)

where R(λ, ∆
2

) = (λId− ∆
2

)−1 denotes the resolvent of ∆
2
and where, for r > 0 and η ∈ (π/2, π),

γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg λ| ≤ η, |λ| = r}, oriented
counterclockwise.

Plugging (5.16) into the expression of wnt (h) yields

wnt (h) =
1

2πin

n∑
j=1

∫ t

0

∫
γr,η

e(t−s)λ [∇R(λ, ∆
2

)h
]

(xj,ns )dλdBj
s ,

splitting the complex integral into three real integrals parametrizing γr,η, and then using sto-

chastic Fubini, one is left with expressions similar to

1

2πin

n∑
j=1

∫ t

0

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s , ρ > r,
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which remind us of 1-dimensional self-normalized martingale for every ρ, similar to the process

(vt)t considered in Example 3.4.

It remains to establish a suitable bound on the expression[
∇R(ρeiη, ∆

2
)h
]

(xj,ns )

and to ensure that this bound is integrable for ρ ∈ (r,∞), see Lemma 5.A.3.

Putting all the above considerations together with care, one obtains a maximal inequality

for wnt (h) that we present in Lemma 3.6.

Remark 3.5. A similar control has already been used in [30, Lemma 3.3], see also [10, �3.1]

and [78, �4] for an estimate using the Rodemich-Garsia-Rumsey lemma. However, in all these

cases the particles are living in the one dimensional torus, making the (still highly technical)

noise analysis considerably simpler due to the decomposition in Fourier series.

Lemma 3.6. Assume m > d/2. There exists a constant C ≥ 1, independent of n and

h ∈ Hm, such that for every h ∈ Hm

E

[
sup
t∈[0,T ]

|wnt (h)|2
]
≤ C

n
‖h‖2

m . (5.17)

Proof. Let h ∈ Hm and γr,η be the curve in (5.16) with η ∈ (π/2, π) and r > 0. Since

the real values of η and r are not crucial for the proof, we may suppose r > 1. Using the

decomposition of S we obtain:

wnt (h) =
1

n

n∑
j=1

∫ t

0

[∇St−sh] (xj,ns )dBj
s =

=
1

2πin

n∑
j=1

∫ t

0

[
∇
∫
γr,η

e(t−s)λR(λ, ∆
2

)hdλ

]
(xj,ns )dBj

s =

=
1

2πin

n∑
j=1

∫ t

0

∫
γr,η

e(t−s)λ [∇R(λ, ∆
2

)h
]

(xj,ns )dλdBj
s =

= Z1
t (h) + Z2

t (h) + Z3
t (h),

where in the third step we have used that ∇ is a closed linear operator on D(∆
2

) and with

Z1
t (h) :=

1

2πin

n∑
j=1

∫ t

0

∫ ∞
r

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdρdBj
s ,

Z2
t (h) :=

1

2πin

n∑
j=1

∫ t

0

∫ η

−η
e(t−s)reiα [∇R(reiα, ∆

2
)h
]

(xj,ns )ireiαdαdBj
s ,

Z3
t (h) := − 1

2πin

n∑
j=1

∫ t

0

∫ ∞
r

e(t−s)ρe−iη [∇R(ρe−iη, ∆
2

)h
]

(xj,ns )e−iηdρdBj
s .

(5.18)
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Using the classical estimate (a+ b+ c)2 ≤ 3(a2 + b2 + c2), it follows that

|wnt (h)|2 ≤ 3
[∣∣Z1

t (h)
∣∣2 +

∣∣Z2
t (h)

∣∣2 +
∣∣Z3

t (h)
∣∣2] .

We focus on Z1
t (h), but similar estimates for Z2

t (h) and Z2
t (h) follow in exactly the same way.

Fix ε > 0 small, the stochastic Fubini theorem (e.g. [32, �4.5]) and Cauchy-Schwartz

inequality imply that

∣∣Z1
t (h)

∣∣2 =

∣∣∣∣∣
∫ ∞
r

[∫ t

0

ρ
1+ε

2

2πin

n∑
j=1

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s

]
dρ

ρ
1+ε

2

∣∣∣∣∣
2

≤

≤ C

∫ ∞
r

∣∣∣∣∣
∫ t

0

1

n

n∑
j=1

e(t−s)ρeiη [∇R(ρeiη, ∆
2

)h
]

(xj,ns )eiηdBj
s

∣∣∣∣∣
2

ρ1+εdρ

=
C

n2

∫ ∞
r

e−2tρ(− cos η)

∣∣∣∣∣∣∣∣∣∣
∫ t

0

n∑
j=1

e−sρe
iη [∇R(ρeiη, ∆

2
)h
]

(xj,ns )dBj
s︸ ︷︷ ︸

=:Mt

∣∣∣∣∣∣∣∣∣∣

2

ρ1+εdρ

where C = 1
4π2

∫∞
r

dρ
ρ1+ε .

We introduce the continuous martingale Xε,ρ
· (h) de�ned for t ≥ 0 by

Xε,ρ
t (h) := ρ1/2+ε

√
−2ρ cos η

‖h‖2
m n

Mt,

so to obtain ∣∣Z1
t (h)

∣∣2 ≤ C

−2n cos η
‖h‖2

m

∫ ∞
r

e2tρ cos η |Xε,ρ
t (h)|2 dρ

ρ1+ε

≤ C

n
‖h‖2

m

∫ ∞
r

e2tρ cos η |Xε,ρ
t (h)|2 dρ

ρ1+ε
.

where we absorbed the factor (−2 cos η)−1 in the unessential constant C.

We compute the quadratic variation of Xε,ρ
t (h):

〈Xε,ρ(h)〉t = ρ1+2ε (−2ρ cos η)

‖h‖2
m n

n∑
j=1

∫ t

0

e−2sρ cos η
[
∇R(ρeiη, ∆

2
)h
]2

(xj,ns )ds.

Lemma 5.A.2 assures that for every ε such that 0 < 2ε < (m− d/2)∧ 1, P(Rd) is continuously

embedded in H−m+2ε, in particular∣∣∣ [∇R(ρeiη, ∆
2

)h
]
(xj,ns )

∣∣∣ =
∣∣∣〈δxj,ns , ∇R(ρeiη, ∆

2
)h〉−m,m

∣∣∣ =

=
∣∣∣〈δxj,ns ,∇R(ρeiη, ∆

2
)h〉−m+2ε,m−2ε

∣∣∣ ≤
≤
∥∥∥δxj,ns ∥∥∥−m+2ε

∥∥∇R(ρeiη, ∆
2

)h
∥∥
m−2ε

≤ C
‖h‖m
ρ1/2+ε

,

(5.19)
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where we have exploited the properties of the resolvent operator R, see Lemma 5.A.3.

Thus, the quadratic variation of Xε,ρ
t (h) is bounded P-a.s. by

〈Xε,ρ(h)〉t ≤ C(−2ρ cos η)

∫ t

0

e−2sρ cos ηds = C
(
e−2tρ cos η − 1

)
. (5.20)

Observe then

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] ≤ C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

e2tρ cos η |Xε,ρ
t (h)|2

]
dρ
ρ1+ε

≤

≤ C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

(
sup
t∈[0,T ]

1 + 〈Xε,ρ(h)〉t
e−2tρ cos η

)]
dρ
ρ1+ε

.

The term supt∈[0,T ]
1+〈Xε,ρ(h)〉t
e−2tρ cos η is bounded using (5.20) by a constant, wherefore we are left with

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] ≤ C

n
‖h‖2

m

∫ ∞
r

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

]
dρ
ρ1+ε

.

We now invoke Lemma 3.3, which in conjunction with (5.20) allows to deduce that

E

[
sup
t∈[0,T ]

|Xε,ρ
t (h)|2

1 + 〈Xε,ρ(h)〉t

]
≤ C E [log (1 + log (1 + 〈Xε,ρ(h)〉T ))]

≤ CE [log (1− 2Tρ cos η + log(C))]

where in the last inequality, we have bounded the constant C appearing in (5.20) by max{1, C}.
Further modifying C accordingly, we are thus left with

E

[
sup
t∈[0,T ]

∣∣Z1
t (h)

∣∣2] ≤ C

n
‖h‖2

m

∫ ∞
r

log(1− 2Tρ cos η + log(C))
dρ
ρ1+ε

≤ C

n
‖h‖2

m .

Concerning Z3
t (h), computations are the same if one replaces η by −η. Concerning Z2

t (h),

computations are easier since there is no a priori diverging integral to deal with and we omit

the proof. The overall bound on wnt (h) is thus obtained by summing the three estimates and

choosing the constant C accordingly. �

Remark 3.7. Note that Lemma 3.6 implies by Jensen's inequality the following bound

E

[
sup
t∈[0,T ]

|wnt (h)|

]
≤ C√

n
‖h‖m ,

which is sharper in n with respect to (5.15), but in a weaker topology. One could ask if it is

possible to establish a similar O(1/
√
n) bound for

E

[
sup
t∈[0,T ]

‖wnt ‖−m

]
= E

[
sup
t∈[0,T ]

sup
‖h‖m≤1

|wnt (h)|

]
.
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Such a bound cannot be obtained by rough paths theory and a full probabilistic proof, which

takes the independence between the Brownian motions into account, is desirable. To the au-

thors' knowledge, this has been established only in the case of interacting oscillators; we refer

to the noise term analysis in [10, 30, 78].

3.3. Proving Theorem 2.3. The proof of Theorem 2.3 consists in two steps: using

the pathwise bound on wn, Lemma 3.8 shows that we can extract from (νn)n∈N a weak-

*-convergence subsequence; then, by exploiting the probability bound on wnt (h) for a �xed

h ∈ Hm, we identify through Lemma 3.9 the limit with a solution to (5.6).

3.3.1. Extraction of a weak-*-convergent subsequence. The main result of this subsection is

given by the next lemma.

Lemma 3.8. The sequence (νn)n∈N is uniformly bounded in L∞([0, T ], H−m) and thus admits

a subsequence that converges weak-* to some ν ∈ H−m, P-a.s..

Proof. It su�ces to show that (νn)n∈N is uniformly bounded in L∞([0, T ], H−m) P-a.s., an
application of Banach-Alaoglu yields the existence of a convergent subsequence.

Exploiting the mild formulation in Lemma 3.1 and the bound on wnt (h) in Lemma 3.2 for

some α ∈ (1/3, 1/2), one obtains that

‖νnt ‖−m ≤ ‖ν
n
0 ‖−m +

∫ t

0

‖νns ‖−m sup
‖h‖m≤1

‖(∇St−sh)(Γ ∗ νns )‖m ds+ ‖wnt ‖−m

≤ ‖νn0 ‖−m +

∫ t

0

C√
t− s

‖νns ‖−m ds+ Cα(1 + t)3α,

where we have exploited the properties of the semigroup and the bound already used in (5.8).

A Gronwall-like argument implies the existence of a constant a independent of n and T such

that

sup
t∈[0,T ]

‖νnt ‖−m ≤ 2
(
‖νn0 ‖−m + Cα(1 + T )3α

)√
Tea

√
T .

In particular, using Lemma 5.A.2, we conclude

sup
n∈N

sup
t∈[0,T ]

‖νnt ‖−m ≤ Cα,T .

�

We move to the identi�cation of the limit ν ∈ L∞([0, T ], H−m).

3.3.2. The limit coincides with an m-weak-mild solution. We prove that any possible limit

of (νn)n∈N is a weak-mild solution (5.6). Given the uniqueness of (5.6), this implies the weak-*

convergence in L∞([0, T ], H−m) of (νn)n∈N to the element ν given in Lemma 3.8.
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Lemma 3.9. Let (νn)n∈N be converging weak-* to some ν̄ ∈ L∞([0, T ], H−m) P-a.s. along a

subsequence that we denote by (νnk)k∈N. Then ν̄ satis�es (5.6), i.e.

〈ν̄t, h〉−m,m = 〈ν̄0, Sth〉−m,m +

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds,

meaning ν̄ is an m-weak-mild solution to (5.3).

Proof. Recall that for every n, νn solves the mild formulation (5.10), i.e. for t ∈ [0, T ]

〈νnt , h〉−m,m = 〈νn0 , Sth〉−m,m +

∫ t

0

〈νns , (∇St−sh)(Γ ∗ νns )〉−m,mds+ wnt (h).

By hypothesis we have that for every t ∈ [0, T ] and h ∈ Hm

lim
k→∞
〈νnkt , h〉−m,m = 〈ν̄t, h〉−m,m, P-a.s..

In particular, this is true for (νnk0 )k since Sth ∈ Hm. Furthermore, Lemma 3.6 implies that

lim
k→∞

wnkt (h) = 0, in P-probability

and thus in particular the convergence holds P-a.s. along a sub-subsequence (nkj)j. Thus, it

remains to show that P-a.s.

lim
j→∞

∫ t

0

〈ν
nkj
s , (∇St−sh)(Γ ∗ ν

nkj
s )〉−m,mds =

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds. (5.21)

For better readability and lighter notation, we will not distinguish between n and nkj in the

following, understanding that we continue to work on the sub-subsequence. Consider then

〈ν̄ns , (∇St−sh)(Γ ∗ ν̄ns )〉−m,m − 〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,m =

= 〈ν̄ns − ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,m + 〈ν̄ns , (∇St−sh)(Γ ∗ (ν̄ns − ν̄s))〉−m,m.

Using again (5.8), it is easy to see that P-a.s.

1[0,t](s)(∇St−sh)(Γ ∗ νs) ∈ L1([0, T ], Hm)

wherefore it is indeed an element of the predual to L∞([0, T ], H−m) and thus by weak-* con-

vergence in this space, we have∫ T

0

〈νns − νs,1[0,t](s)(∇St−sh)(Γ ∗ νs)〉ds =

∫ t

0

〈νns − νs, (∇St−sh)(Γ ∗ νs)〉ds→ 0.

For the second term, note that

〈ν̄ns , (∇St−sh)(Γ ∗ (ν̄ns − ν̄s))〉−m,m =

= 〈ν̄ns − ν̄s, 〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, ·))〉−m,m〉−m,m
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and that the function

y 7→ 〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, y))〉−m,m =

=
1

n

n∑
j=1

(∇St−sh(xj,ns )) · (Γ(xj,ns , y))

is in Hm for every s ∈ [0, t], since Γ(x, ·) ∈ Hm for a.e. x ∈ Rd, recall (5.7). Namely,∥∥∥∥∥ 1

n

n∑
j=1

(∇St−sh(xj,ns )) · (Γ(xj,ns , ·))

∥∥∥∥∥
m

≤ ‖∇St−sh‖∞ ‖Γ‖Hm
y L
∞
x

≤ C
‖h‖m√
t− s

‖Γ‖Hm
y W

m,∞
x

.

We conclude that

1[0,t]〈ν̄ns (dx), (∇St−sh)(x)(Γ(x, ·))〉−m,m ∈ L1([0, T ], Hm)

and in particular∫ T

0

〈ν̄ns − ν̄s, 〈ν̄ns (dx),1[0,t](s) (∇St−sh)(x) · (Γ(x, ·))〉−m,m〉−m,mds→ 0.

This establishes (5.21).

Overall, we have thus shown that any subsequence of (νn)n converges along some further

subsequence P-a.s. weak* in L∞([0, T ], H−m), the limit ν̄ satisfying for every h ∈ Hm the

equation

〈ν̄t, h〉−m,m = 〈ν̄0, Sth〉−m,m +

∫ t

0

〈ν̄s, (∇St−sh)(Γ ∗ ν̄s)〉−m,mds,

meaning that ν̄ is indeed an m-weak-mild solution. �

3.3.3. Proof of Theorem 2.3. In order to show that νn
∗
⇀ ν in L∞([0, T ], H−m) in probability,

we show that any subsequence (νnk)k admits a further subsequence that converges P-a.s. in

weak-* topology of L∞([0, T ], H−m) to ν.

Let (νnk)k be hence a subsequence. By assumption of the Theorem, Lemmas 3.6 and 3.8,

we �nd a further subsequence (νnkj )j, along which

w
nkj
t (h)→ 0 ∀h ∈ Hm

〈ν
nkj
0 , h〉 → 〈ν0, h〉 ∀h ∈ Hm

νnkj
∗
⇀ ν̄ in L∞([0, T ], H−m)

(5.22)

P-a.s., where the limit ν̄ ∈ L∞([0, T ], H−m) may apriori depend on the subsequence chosen.

Notice however that due to Lemma 3.9, any such limit is a m-weak-mild solution to (5.3). By

the uniqueness result of Proposition 2.2, we conclude that the limit ν̄ = ν must be the same

for any subsequence chosen.
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The �rst part of the Theorem is proved. Note that apriori, our limit ν is only a distribution

in H−m at each �xed timepoint.

Suppose ν0 ∈ P(Rd). In order to show that νt is actually a probability measure for each

t ∈ [0, T ], we observe that a weak solution µ ∈ C([0, T ],P(Rd)) to (5.3) (which exists due to

Theorem 1.2) is a weak-mild solution (5.6).

Indeed, let µ = (µt)t∈[0,T ] ∈ C([0, T ],P(Rd)) be a weak solution to (5.3). As done in Lemma

3.1, one can show that for every f ∈ C∞0 and t ∈ [0, T ]

〈µt, f〉−m,m = 〈µ0, Stf〉−m,m +

∫ t

0

〈µs, (∇St−sf) · (Γ ∗ µs)〉−m,mds (5.23)

holds. Note that by standard approximation, (5.23) holds also for f ∈ Hm ⊂ C3
b , meaning that

µ is indeed a weak-mild solution. By the uniqueness statement of Proposition 2.2 we conclude

µ = ν and thus in particular ν ∈ C([0, T ],P(Rd)). This concludes the second part and thus

the entire proof of the Theorem.

5.A. Hilbert spaces and semigroups

5.A.0.1. The Laplacian semigroup. The following de�nitions are taken from [58, 75]. For

the sake of notation, we focus on ∆, the standard Laplacian on L2(Rd), instead of ∆
2
. We can

consider the part of ∆ on (the complexi�cation e.g. [75, Appendix A] of) Hm:

∆ : D(∆) ⊂ Hm −→ Hm.

It is not di�cult to see that Hm+2 ⊂ D(∆), where the inclusion is dense, and that ∆ is a

sectorial operator with spectrum given by (−∞, 0]. In particular, it generates an analytic

strongly continuous semigroup denoted for all t ≥ 0 by St; recall that S0 := Id is the identity

operator.

We represent S for t ∈ [0, T ] as the following Dunford integral

St =
1

2πi

∫
γr,η

etλR(λ,∆)dλ,

where R(λ,∆) = (λId−∆)−1 denotes the resolvent of ∆ and where, for r > 0 and η ∈ (π/2, π),

γr,η is the curve {λ ∈ C : |arg λ| = η, |λ| ≥ r} ∪ {λ ∈ C : |arg λ| ≤ η, |λ| = r}, oriented
counterclockwise.

Observe that γr,η is contained in the resolvent set of ∆, i.e. γr,η ⊂ ρ(∆), and that, for all

regular values λ ∈ ρ(∆), R(λ,∆) is a bounded linear operator on Hm.
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When computing the semigroup against a function h through (5.16), we use the following

decomposition into three real integrals:

Sth =
1

2πi

∫
γr,η

etλR(λ,∆)hdλ =
1

2πi

[∫ ∞
r

etρe
iη

R(ρeiη,∆)eiηdρ+

+

∫ η

−η
etr(cosα+i sinα)R(reiα,∆)ireiαdα−

∫ ∞
r

etρe
−iη
R(ρe−iη,∆)e−iηdρ

]
.

(5.24)

The section ends with some estimates concerning the regularity of S.

Lemma 5.A.1. Assume m > d/2 + 3. Let (St)t≤T be the heat semigroup acting on Hm. For

f ∈ Hm, it holds that

‖∇(St − Id)f‖∞ ≤
√
t
∥∥D2f

∥∥
∞ ≤ C

√
t ‖f‖m ,

‖∇(St − Id)f‖∞ ≤
1

2
t
∥∥D3f

∥∥
∞ ≤

C

2
t ‖f‖m ,

where D2 is the Hessian and D3 the tensor with third-order derivatives. In particular

‖∇(St − Ss)f‖∞ ≤
√
|t− s|

∥∥D2f
∥∥
∞ ≤ C

√
|t− s| ‖f‖m ,

‖∇(St − Ss)f‖∞ ≤
1

2
|t− s|

∥∥D3f
∥∥
∞ ≤

C

2
|t− s| ‖f‖m .

Proof. We calculate explicitly

|∇(St − Id)f(x)| =
∣∣∣∣∫

Rd

1

(2πt)d/2
e−
|y|2
2t (∇f(x− y)−∇f(x))dy

∣∣∣∣
=

∣∣∣∣∫
Rd

1

(2πt)d/2
e−
|y|2
2t

(
∇f(x− y)−∇f(x) +

1

2
(−y)T (D2∇f)(x)

)
dy

∣∣∣∣
≤1

2

∥∥D3f
∥∥
∞

∫
Rd

1

(2πt)d/2
e−
|y|2
2t |y|2dy

=
1

2

∥∥D3f
∥∥
∞ t

where we exploited the asymmetry of the �rst Taylor component. The �rst statement follows

from a similar consideration, considering an order one Taylor expansion of ∇f(x − y) around

x instead of an order two Taylor expansion. The proof follows by Sobolev's embeddings. �

5.A.0.2. The Hilbert space Hs. It is useful to give an explicit de�nition of Hm through the

Fourier transform (e.g. [2, 7.62]). Let s > 0, de�ne (Hs, ‖·‖s) by

Hs =

{
u ∈ L2(Rd) :

∫
Rd

(1 + |ξ|2)s |F(u)(ξ)|2 dξ <∞
}
,

‖u‖2
s =

∫
Rd

(1 + |ξ|2)s |F(u)(ξ)|2 dξ.
(5.25)

Whenever s is an integer, it is well known that this de�nition coincides with the standard

de�nition of the Sobolev space W s,2(Rd).



120 5. A LAW OF LARGE NUMBERS VIA A MILD FORMULATION

The next lemma extends the embedding (5.5) to Hs and its relationship with the space of

probability measures.

Lemma 5.A.2. For all s > d/2, one has the following continuous embedding

Hs ⊂ Cb(Rd). (5.26)

Moreover, there exists C > 0 (depending on s only) such that

sup
µ∈P(Rd)

‖µ‖−s ≤ C. (5.27)

Proof. The continuous embedding (5.26) is a consequence of the embedding of Besov

spaces into the space of continuous bounded functions (e.g. [2, Theorem 7.34]) and the fact

that they coincide with Hs for a particular choice of the indices.

Turning to (5.27), let µ ∈ P(Rd), then

‖µ‖−s = sup
h∈Hs

〈µ, h〉−s,s
‖h‖s

= sup
h∈Hs

〈µ, h〉
‖h‖s

≤ sup
h∈Hs

‖h‖∞
‖h‖s

≤ C,

where C is the norm of the identity operator between Hs and Cb(Rd). �

5.A.0.3. Fractional operators on Hs. We have the following lemma.

Lemma 5.A.3. Let λ = ρeiη ∈ ρ(∆) and suppose ρ > 1. There exists a positive constant

C = Cη such that for every ε ∈ (0, 1/2)∥∥∇R(ρeiη,∆)h
∥∥2

m−2ε
≤ Cη

‖h‖2
m

ρ1+2ε
, h ∈ Hm. (5.28)

Proof. Exploiting the Fourier multipliers associated to ∇ and R, one obtains∥∥∇R(ρeiη,∆)h
∥∥2

m−2ε
=

∫
Rd

(1 + |ξ|2)m−2ε
∣∣F(∇R(ρeiη,∆)h)(ξ)

∣∣2 dξ ≤
≤
∫
Rd

(1 + |ξ|2)m−2ε |F(h)(ξ)|2
∣∣∣∣ ξ

ρeiη + |ξ|2

∣∣∣∣2 dξ ≤
≤
∫
Rd

(1 + |ξ|2)m |F(h)(ξ)|2 |ξ|2

|ρeiη + |ξ|2|2
1

(1 + |ξ|2)2ε
dξ.

Since we are assuming ρ > 1, we have that

|ξ|2

|ρeiη + |ξ|2|2
1

(1 + |ξ|2)2ε
≤ (ρ+ |ξ|2)1−2ε

|ρeiη + |ξ|2|2
≤ Cη

1

(ρ+ |ξ|2)1+2ε ≤ Cη
1

ρ1+2ε
,

with Cη = (supx≥0(1 + x)/|eiη + x|)2 <∞ since η 6= π. �
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5.B. Rough integration associated to semigroup functionals

Wemostly follow [54] and use very similar notations. Let k ≥ 1 and ∆k be the k-dimensional

simplex given by

∆k = {t1, . . . , tk ∈ [0, T ] : T ≥ t1 ≥ t2 ≥ · · · ≥ tk ≥ 0} .

Let Ck = C(∆k;R) and W a Banach space with a strongly continuous semigroup (St)t∈[0,T ]

acting on it. De�ne Dk as the space of linear operators from W to Ck. Furthermore, let

D∗ =
⋃
k≥1Dk and de�ne the following operators on D∗:

δ : Dk → Dk+1, φ : Dk → Dk+1, k ≥ 1.

For A ∈ Dk and f ∈ W , they are de�ned as

[δAf ]t1...tk+1
=

k+1∑
i=1

(−1)i+1 [Af ]t1...�ti...tk+1
,

[φAf ]t1...tk+1
= [A(St1t2 − Id)f ]t2...tk+1

,

where ��ti means that the argument ti is omitted and St1t2 stands for St1−t2 .

We are ready for the �rst lemma.

Lemma 5.B.1. Let δ̂ := δ − φ. Then (D∗, δ̂) is an acyclic cochain complex. In particular

Ker δ̂ Dk+1
= Im δ̂ Dk , for any k ≥ 1.

Proof. The proof mimics [54, Proposition 3.1]. We only mention that for proving Ker δ̂ Dk+1
⊂

Im δ̂ Dk , a possible choice for A ∈ Ker δ̂ Dk+1
is given by B ∈ Dk de�ned as

[Bf ]t1...tk = (−1)k+1 [Af ]t1...tk0 , f ∈ W.

�

We now introduce some analytical assumptions on the previous function spaces. We start

with a Hölder-like norm on Ck for k = 2, 3. For µ > 0 and g ∈ C2, de�ne

‖g‖µ := sup
t,s∈∆2

|gts|
|t− s|µ

,

and consequently

Cµ
2 :=

{
g ∈ C2 ; ‖g‖µ <∞

}
.

For γ, ρ > 0 and g ∈ C3, de�ne

‖g‖γ,ρ := sup
t,u,s∈∆3

|gtus|
|t− u|µ |u− s|ρ

and

‖g‖µ := inf

{∑
i

‖gi‖ρi,µ−ρi ; g =
∑
i

gi , 0 < ρi < µ

}
,
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where the in�mum is taken on all sequences (gi) ⊂ C3 such that g =
∑

i gi and ρi ∈ (0, µ).

Again, ‖·‖µ de�nes a norm on C3 and we denote the induced subspace by

Cµ
3 :=

{
g ∈ C3 ; ‖g‖µ <∞

}
.

With these de�nitions in mind, let

Dµ
k := L(W,Cµ

k ), D1+
k :=

⋃
µ>1

Dµ
k , k = 2, 3.

The space L(W,Cµ
k ) is the space of linear bounded operators from W to Cµ

k equipped with its

corresponding operator norm, i.e.

‖A‖Dµk := sup
‖f‖W≤1

‖Af‖µ , f ∈ Dµ
k .

The main tool for constructing the pathwise integral associated to semigroup functionals is

given by the next lemma and the following corollary. We use the notation δ̂(Dk) := Im δ̂ Dk for

k ≥ 1.

Lemma 5.B.2 (Sewing). There exists a unique linear operator

Λ : D1+
3 ∩ δ̂(D2)→ D1+

2

such that

δ̂Λ = Id D1+
3 ∩ δ̂(D2).

Moreover, if η > 1 then Λ is a continuous operator from Dη
3 ∩ δ̂(D2) to Dη

2 , i.e. there exists a

constant C = Cη > 0 such that

‖ΛA‖η ≤ Cη ‖A‖η , A ∈ Dη
3 ∩ δ̂(D2). (5.29)

Proof. Concerning uniqueness, let Λ̃ be another map satisfying the conditions stated in

the Lemma. Then for A ∈ D1+
3 ∩ δ̂D2 we have

δ̂(Λ̃A− ΛA) = A− A = 0

hence Q := Λ̃A − ΛA ∈ Ker(δ̂) ∩D2. By Lemma 5.B.1 there exists q ∈ D1 such that Q = δ̂q.

Note that for any partition Pn([s, t]) = (ti)0≤i≤n+1 of the interval [s, t] ⊂ [0, T ] such that t0 = s

and tn+1 = t, we have the following telescopic sum expansion
n∑
i=0

[δ̂qStti+1
f ]ti+1ti =

n∑
i=0

[qStti+1
f ]ti+1

− [qStti+1
]ti − [qStti+1

(Sti+1ti − Id)f ]ti

=
n∑
i=0

[qStti+1
f ]ti+1

− [qSttif ]ti

= [qf ]t − [qStsf ]s

= [δ̂qf ]ts
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for any f ∈ W . We conclude

[Qf ]ts = [δ̂qf ]ts =
n∑
i=0

[δ̂qStti+1
f ]ti+1ti =

n∑
i=0

[QStti+1
f ]ti+1ti .

Letting Pn([s, t]) be for example be the dyadic partition, one obtains for Q ∈ Dγ
2 , with γ > 1,

the estimate

|[QStti+1
f ]ti+1ti | ≤ 2−nγ

∥∥QStti+1
f
∥∥
γ
|t− s|γ ≤ 2−nγ ‖Q‖Dγ2 ‖f‖W |t− s|

γ

where we exploited that S is a contraction semigroup. Returning to the telescope sum, we

obtain

|[Qf ]ts| ≤ 2n(1−γ) ‖Q‖Dγ2 ‖f‖W |t− s|
γ.

By passing to the limit for n which tends to in�nity, we conclude that for any f ∈ W and any

[s, t] ⊂ [0, T ]

[Qf ]ts = 0

yielding Q = 0, i.e. ΛA = Λ̃A for any A ∈ D1+
3 ∩ δ̂(D2), concluding uniqueness.

Towards existence, let A ∈ D1+
3 ∩ δ̂(D2), i.e. there exist a B ∈ D2 and η > 1 such that

δ̂B = A ∈ Dη
3 . Let (rnk )0≤k≤2n be the dyadic partition of [s, t]. We set, following [54]

Mn : D1+
3 ∩ δ̂(D2)→ D1+

2

δ̂B 7→Mnδ̂B

where

[(Mnδ̂B)f ]ts := [B(f)]ts −
2n−1∑
k=0

[B(Strnk+1
f)]rnk+1r

n
k
.

Note in particular that [Mnδ̂f ]ts = 0. We show that (Mnδ̂B)n is Cauchy in Dη
2 . Note that

[(Mnδ̂B)f ]ts − [(Mn+1δ̂B)f ]ts =

=
2n−1∑
k=0

[B(Strn2k+2
f)]rn2k+2r

n
2k
− [B(Strn2k+2

f)]rn2k+2r
n
2k+1
− [B(Strn2k+1

f)]rn2k+1r
n
2k

=
2n−1∑
k=0

[δB(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k
−

2n−1∑
k=0

[φB(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k

=
2n−1∑
k=0

[δ̂B(Strn2k+2
f)]rn2k+2r

n
2k+1r

n
2k
≤ (t− s)η

2n−1∑
k=0

∥∥∥δ̂B(Strn2k+2
f)
∥∥∥
η

2−nη

≤(t− s)η
∥∥∥δ̂B∥∥∥

Dη3

‖f‖W 2−n(η−1)

From which we deduce that (Mnδ̂B)n∈N is a Cauchy sequence in Dη
2 , indeed∥∥∥Mnδ̂B −Mn+1δ̂B

∥∥∥
Dη2

≤
∥∥∥δ̂B∥∥∥

Dη3

2−n(η−1).
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Let Λδ̂B ∈ Dη
2 be its limit. By a telescope argument∥∥∥Mnδ̂B
∥∥∥
Dη2

=

∥∥∥∥∥
n−1∑
k=0

Mkδ̂B −Mk+1δ̂B

∥∥∥∥∥
Dη2

≤
n−1∑
k=0

2−k(η−1)
∥∥∥δ̂B∥∥∥

Dη3

≤ Cη

∥∥∥δ̂B∥∥∥
Dη3

from which we obtain (5.29) using to weak-*-lower semicontinuity of the norm. One can prove

that the limit does not depend on the particular sequence, see [54, Proposition 2.3].

Finally, let u = 2m for some m ∈ 0, . . . , n and note that

[(δ̂Mnδ̂B)f ]tus = [(Mnδ̂B)f ]ts − [(Mnδ̂B)f ]tu − [(Mnδ̂B)f ]us − [(Mnδ̂B(Stu − Id))f ]us

= [Bf ]ts − [Bf ]tu − [BStuf ]us +
2n−1∑
k=0

[B(Strnk+1
f)]rnk+1r

n
k

−
2n−1∑
k=2m

[B(Strnk+1
f)]rnk+1r

n
k
−

2m−1∑
k=0

[B(Surnk+1
Stuf)]rnk+1r

n
k

= [Bf ]ts − [Bf ]tu − [BStuf ]us

= [δ̂Bf ]sut

from which we recover, in the limit n→∞, that δ̂Λ = Id D1+
3 ∩ δ̂(D2). �

Corollary 5.B.3. Suppose that A ∈ D2 is such that δ̂A ∈ D1+
3 . Then there exists I ∈ D1

such that

δ̂I =
(
Id− Λδ̂

)
A,

i.e. for every f ∈ W and (t, s) ∈ ∆2,
[
δ̂If
]
ts

= [Af ]ts −
[
Λδ̂Af

]
ts
. In particular, if A ∈ Dµ

2

with µ > 0 and δ̂A ∈ Dη
3 with η > 1, then for every f ∈ W∣∣∣[δ̂If ]ts

∣∣∣ ≤ (‖A‖Dµ2 (t− s)µ +
∥∥∥δ̂A∥∥∥

Dη3

(t− s)η
)
‖f‖W . (5.30)

Finally [
δ̂If
]
ts

= lim
|P[s,t]|↓0

∑
[v,u]∈P[s,t]

[AStuf ]uv , (5.31)

where the limit is over any partition of [s, t] whose mesh tends to zero.

Proof. The proof is an easy application of the Sewing Lemma and the properties of (D∗, δ̂).

Indeed, observe that δ̂(Af −Λδ̂Af) = 0 for any f ∈ W , which means that A−Λδ̂A ∈ Ker δ̂ D2 ,

and thus there exists I ∈ D1 such that δ̂I = A− Λδ̂A.
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The estimate (5.30) follows from (5.29). Concerning (5.31), observe that for a partition

|P [s, t]|, using the properties of δ̂, one obtains∑
[v,u]∈P[s,t]

[AStuf ]uv =
∑

[v,u]∈P[s,t]

[
δ̂IStuf

]
uv

+
[
Λδ̂AStuf

]
uv

=

=
[
δ̂If
]
ts

+
∑

[v,u]∈P[s,t]

[
Λδ̂AStuf

]
uv
.

By taking the limit for the mesh which tends to zero and using the fact that Λδ̂A ∈ D1+
2 , the

last sum converges to zero. �





CHAPTER 6

Perspectives

We shortly list some consequences and open questions arising from the previous chapters.

1. From dense graph sequences to the sparse regime

In Chapters 2 and 4, the convergence to the classical mean-�eld behavior is shown not only

for dense graph sequences, but also for the intermediate regimes, recall de�nition (1.7). Under a

suitable normalization of the interaction � represented by the dilution parameter pn � it appears

that what really a�ects the behavior of the empirical measure is the degree inhomogeneity, as

de�ned in Remark 2.3.

Moreover, most of the works addressing the graphon setting [6, 27, 77, 82, 90] deal with

sequences in the intermediate regimes and not with the dense case only. Namely, the de�nition

ofW -random graph (1.12) can be easily extended to graphs with an arbitrary diverging average

degree. Indeed, for every n one can take

ξ
(n)
ij ∼ Ber (pnW (Ui, Uj)) independently for 1 ≤ i < j ≤ n,

where {pn}n∈N is a sequence of dilution parameters. It is not di�cult to see that the sequence

ξ(n) is in the intermediate regime and has mean average degree given by npn. We refer to

[16] where this was introduced for the �rst time, and where it is shown that ξ(n), suitably

normalized, converges to W .

Even though a general result for particle systems on sequences in the intermediate regimes

is missing, the cited results prove that whenever the graph limit is regular enough, the limit

behavior is independent of the magnitude of npn, provided that npn diverges. In other words,

the sparse regime appears to represent the real threshold with regards to the degree asymptotic.

Particle systems on sparse graph sequences show a macroscopic behavior not readily cap-

tured by the mean-�eld approximation, no matter the homogeneity of the underlying graph.

This framework represents an interesting domain for future investigations; we refer to the only

two works available [91, 70] so far.

2. Irregular graphons and random graphons

To the author's knowledge, the joint work with Gianmarco Bet and Francesca Nardi [11]

represents the �rst work in the literature tackling interacting particle systems and random

unlabeled graphons.
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An unlabeled graphon can be a very irregular function given that the only requirements are

measurability and symmetry. For instance, Chapter 3 leaves the following issues open:

• What is the limit behavior of the empirical measure on a strongly irregular graphon?

• Is there any key property related to the graph limit that allows to derive some macro-

scopic property for the particle system, e.g., existence and uniqueness of a stable

stationary solution?

• Do random graphons � and random Fokker-Planck equations � provide an interesting

framework with regards to applications?

The study of neural �eld equations may shed some light on these aspects; see [26], [77, �2.8]

and references therein for some progress in this direction.

3. Unbounded graphons

The classical graphon theory, eventually extended to include graphs in the intermediate

regimes [16], has proven to be the right framework to study the convergence of empirical

measures in mean-�eld systems. However, it comes with a strong limitation with regards to

applications: it describes graph sequences where each portion of vertices has roughly the same

edge density � which, following the previous notation, is given by pn. In other words, a graph

sequence converging to a non-zero graphon has most of the degrees on the same scale as the

size of the graph grows.

The graph limit framework does not cover many interesting cases where di�erent densities

appear within the same sequence as, e.g., in scale-free graphs. In this last example, a part of

the vertices can have a density which scales as n−α, with α ≥ 0, and others with density which

scales as n−β for β > α. Such sequences are only trivially included in the graphon theory:

if one renormalizes the degrees by the largest one, this usually yields a graph limit which is

constantly equal to zero.

A substantial progress has been made by Borgs and coauthors in the two works [17, 18].

They put the basis for a theory of Lp-graphons � in contrast to the classical theory for which

p = ∞ � and establish a notion of convergence for unbounded graphons in the intermediate

regimes. In our notation, they establish a theory for kernels which are Lp-integrable on [0, 1]2.

The most common example is probably given by the kernelW (x, y) = (xy)−α, where 0 < α < 1,

and which leads to a random graph sequence where the degrees follow a power law distribution.

A way to include Lp-graphons in the analysis of (1.13), is made by renormalizing each

particle with a di�erent dilution parameter. This means considering the following class of

systems:

dx̄i,nt = F (x̄i,nt )dt+
1

n

n∑
j=1

ξ
(n)
ij

pi,n
Γ(x̄i,nt , x̄

j,n
t )dt+ σ(x̄i,nt )dBi

t, (6.1)

where pi,n represents the dilution parameter for particle i, for i = 1, . . . , n. As already stressed

in [77, �2.7] and in [82, �3], the right quantity to look at in (6.1) is not given by the graph
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sequence ξ(n), but by the normalized variables

ξ̄
(n)
ij =

ξ
(n)
ij

pi,n
, i, j = 1, . . . , n.

The entries ξ̄(n)
ij no longer represent an undirected dense graph but form a matrix with real non-

negative values. The underlying graph ξ(n) is now allowed to have vertices with out-degree1 of

di�erent magnitudes, yet, by properly renormalizing the interaction, the limit is again given by

a graphon. In other words, even if the starting graph sequence would lead to an Lp-kernel, the

renormalization yields a graphon as n tends to in�nity. In conclusion, although equation (6.1)

allows to include a larger class of graphs, it does not necessarily provide any new asymptotic

behavior of the empirical measure if the graph limit remains a graphon.

Extending the previous results to include kernels in the limit is challenging under several

aspects. For instance, the analysis of the non-linear process (1.15) on kernels is already prob-

lematic, as stressed in [77]. A suitable framework for particle systems on unbounded graphons

represents another direction towards new exciting results.

4. Long-time dynamics and uniform propagation of chaos

The approach given in Chapter 5 represents a complementary technique to the study of

weakly interacting particle systems. Directly tackling the equation satis�ed by the empirical

measure, provides an useful tool for the study of the associated long-time dynamics, as perfectly

illustrated in Chapter 4 and in the articles [10, 78].

We imagine that this approach can also be helpful for uniform in time propagation of chaos

estimates, see, e.g., [83, 84]. Propagation of chaos has only been touched across Chapter 4 but

can be easily derived under suitable assumptions on the initial data and the graph sequence.

Moreover, we believe that our method can be extended to systems as

dxi,nt = F (xi,nt )dt+
1

n

n∑
j=1

Γ(xi,nt , x
j,n
t )dt+ σ1(xi,nt )dBi

t + σ2(xi,nt )dBt (6.2)

where σ1 and σ2 are suitable functions and B is a Brownian motion independent of {Bi}i∈N.
In other words, we would like to include multiplicative and common noise.

1In a directed graph ξ of n vertices, we can de�ne the out-degree of vertex i ∈ {1, . . . , n} as
∑n

j=1 ξij . Observe

that the normalization in ξ̄(n) leads to a matrix which is no longer symmetric.
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