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Foreword

The subject of this dissertation is selection and aggregation of estimators, using
the hold-out, also known as simple validation, and its aggregated version, called
aggregated hold-out. The thesis includes articles that have been submitted to a
journal (Chapters[3land [4)) and additional work that has not yet been made public
(Chapters [5| and @ Chapter |3| is joint work with my advisors, Sylvain Arlot and
Matthieu Lerasle, while all other chapters are my own work. For the submitted
material, I am still awaiting an answer from the publishers.
The contents of this thesis are laid out as follows.

e Chapter [2| is the Introduction. It presents the topic of this thesis, gives a
state-of-the-art and situates the results of the thesis in their scientific context.

e Chapter (1] is a somewhat shorter introduction in French, more focused on
the contents of the thesis.

e Chapter [3| consists of the article [73], which studies the hold-out and aggre-
gated hold-out applied to kernel (RKHS) methods. It also contains a general
definition of aggregated hold-out (Agghoo) and general theorems (Theorems
13.7.2] and [3.7.3)) that are used throughout the manuscript.

Chapter {4 consists of the article [72]. It studies the hold-out (and Agghoo)
applied to sparse linear regression with a robust loss function.

Chapter 9| is a detailed asymptotic analysis of the hold-out risk estimator
applied to Fourier series estimators in least-squares regression.

In the same setting as chapter [5] chapter [6] contains a precise analysis of the
risks of the hold-out and its aggregated version (Agghoo).

Chapter [7] concludes the thesis and gives some perspectives for future work
on the hold-out and Agghoo.

The dependencies between the chapters are as follows. Chapter[3|states two general
theorems (Theorems [3.7.2 and |3.7.3)) that are used throughout the thesis. Apart




ii FOREWORD

from these theorems, Chapters [3]and [4 can be read independently from each other
and from Chapters[§land [6] In contrast, chapter [0 uses the notation, assumptions
and the main Theorem of Chapter 5 as well as some other results proved in
Chapter 5] The two chapters should therefore be read in succession.
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Chapter 1

Introduction et résumé (en Frangais)

Les statistiques paramétriques élémentaires sont concues pour traiter des situations
ol un modéle connu, de dimension finie, est donné et ou la taille de ’échantillon
statistique est suffisamment grande pour qu’on puisse la considérer comme infinie
(cadre asymptotique).

Les développements de 'informatique et la prolifération des données ont aug-
menté les possibilités et les ambitions des statistiques et ont conduit les statisti-
ciens a considérer des problémes plus généraux. Des problémes de régression oti,
par exemple, il n’y a pas de "vrai modéle" unique et ou la fonction de régression
doit étre cherchée dans une classe de fonctions vérifiant seulement certaines condi-
tions de régularité (régression non-paramétrique), ou des problémes de régression
linéaire ou le nombre de coordonnées n’est pas négligeable par rapport a la taille
de I’échantillon (statistiques en grande dimension), si bien qu’il est impossible de
faire de l'inférence statistique sur le modéle complet (de grande dimension ou de
dimension infinie).

Ces situations obligent le statisticien & trouver un compromis entre la général-
ité du modéle statistique et la difficulté d’estimer ses parameétres. L’espoir est
qu'un modéle simple suffise & décrire la réalité en premiére approximation, de
sorte qu’'une estimation statistique précise soit possible. Comme la complexité
requise est inconnue en général, une pratique répandue consiste a introduire une
famille de modéles de tailles et complexités variées. Le statisticien doit alors choisir
un modeéle, ou estimateur dans cette famille, de facon a s’adapter au mieux a la
complexité intrinseque du probléme.

Pour des familles de modeéles spécifiques, il est possible d’utiliser des méthodes
ad-hoc reposant sur des calculs théoriques. Cependant, il y a des cas ou cette
approche ne fonctionne pas, soit parce que les calculs théoriques requis ne sont
pas faisables, soit parce qu’ils font intervenir des quantités dépendant de la loi
inconnue des données, telles que le niveau de bruit. Il est donc important de dis-
poser de méthodes "boite noire" qui ne nécessitent aucune information a priori,
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ni sur la loi des données, ni méme sur la famille d’estimateurs. De telles méth-
odes se fondent généralement sur la "validation", c’est-a-dire qu’elles réservent
une partie de 1’échantillon a ’estimation du risque des estimateurs afin d’accéder
a une évaluation indépendante de leur risque. Ces estimées du risque peuvent
étre utilisées soit pour sélectionner un seul estimateur de la famille - souvent en
minimisant le risque estimé - soit pour pondérer les différents estimateurs au sein
d’une combinaison convexe.

Dans cette thése, j’étudie une méthode (Agghoo) qui combine des éléments
des deux approches. La subdivision des données en deux échantillons est faite
plusieurs fois. Chaque fois, I’échantillon de validation est utilisé pour estimer le
risque et sélectionner un estimateurs, entrainé sur les données restantes. A la fin,
les différents estimateurs correspondant aux différentes subdivisions sont agrégés.

1.1 Cadre de ’apprentissage statistique

En statistique, il est trés fréquent que I'on définisse des fonctions de risque afin
de mesurer la qualité d'un estimateur. En conséquence, de nombreux problémes
statistiques peuvent s’exprimer comme la minimisation d’une fonction de risque
sur un certain ensemble S.

Agghoo, a l'instar de la validation croisée, s’applique aux problémes de min-
imisation de risque pour lesquels le risque R($) d'un estimateur § peut s’exprimer
comme une espérance Py(s) = Ez[v(8, Z)], ot 7 est une fonction de contraste con-
nue, Z suit la loi inconnue P et est indépendante de §. Ce cadre inclus la régression
et la classification. En régression, S est un espace de fonctions mesurables réelles,
Z = (X,Y)ouY est une variable aléatoire réelle et v(¢, (z,y)) = p(y —t(z)), pour
une fonction ¢ - souvent convexe - telle que p(0) = 0. En classification, S est un
ensemble de fonctions mesurables & valeur dans un ensemble fini ) de labels, les
données sont des couples (X,Y) on Y € ) est un label, et la fonction de contraste
Y(t, (z,y)) = Iiz)»y indique une erreur dans la classification de x par la fonction
t, par rapport au label observé y.

Quand le risque provient d’un probléme d’estimation, et qu’il mesure & quel
point 5 s’approche d’un parameétre s de la loi sous-jacente P, le risque doit logique-
ment étre positif et atteindre un minimum de 0 en la cible s. Il n’est parfois pas
possible de trouver une fonction de contraste v telle que Py(t) = R(t), mais seule-
ment telle que Pv(t) = R(t) + P~(s), ou P~(s) est une constante non-nulle qui
dépend uniquement de s et P, si bien qu’il est équivalent de minimiser R ou P(t).
R s’exprime alors comme 1 excés de risque relatif & 'optimum s:

U(s,t) = Py(t) — Py(s) = Py(t) — argmin P~(¢).

t'eS
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Un exemple de ce cas de figure est 1’ estimation de densité L?. Dans ce probléme,
on observe des variables aléatoires i.i.d (Z;)1<;<, distribuées selon une loi P ayant
pour densité s par rapport & une mesure connue 4 (souvent la mesure de Lebesgue),
et I'objectif est de construire un estimateur § approchant s au sens de la distance
. . . 2 PP 2

L? au carré, R(5) = |5 — SQHLQ(#). En2 définissant (¢, Z) = |2|tHL2(#) — 2t(Z), on
Obtlel"lt ]E[")/(t, Z)] = Ht— SHLQ(M) - HS”LQ(/,L) et K(S,t) : Ht — S”LQ(M). '

L’intérét du formalisme présenté ci-dessus est qu’il permet de définir naturelle-
ment une large gamme d’estimateurs aux propriétés intéressantes. Supposons que

I'on dispose d’un échantillon Z;,..., 7, de loi P. Comme le risque de t € S
s’exprime comme lespérance Py(t) = Ez[y(t,Z)], il peut étre estimé par la
moyenne

Part) =+ 3740, 20).

Le but étant de minimiser le risque P~y(t), une idée naturelle est de remplacer le
risque Py par son approximation P,y et de minimiser cet estimateur empirique
du risque (minimisation du risque empirique). Dans le cadre non-paramétrique de
I’apprentissage statistique, la classe S est trop grande pour que cette stratégie soit
valable telle quelle: en régression par exemple, il existe une infinité de fonctions
mesurables qui reproduisent exactement les données (t(X;) = Y;) et ont donc un
risque empirique nul: il est alors impossible de dire quoi que ce soit des valeurs de
t(z) pour x n’appartenant pas a I’ensemble fini X, ..., X,.

Une option consiste & remplacer ’ensemble & par un sous-ensemble m appelé
modéle, sur lequel la minimisation du risque empirique fonctionne: on obtient un
estimateur

$m = argmin P,y(t).
tem
Par exemple, en régression des moindres carrés, m est généralement un espace
vectoriel de fonctions, telles que des fonctions constantes par morceaux (régresso-
grames) ou polynomiales par morceaux, des ondelettes ou d’autres espaces clas-
siques utilisés pour I'approximation de fonctions.

Une deuxiéme facon d’adapter la minimisation du risque empirique au cadre
non-paramétrique est de pénaliser les éléments ¢ trop grands ou trop complexes,
en utilisant une pénalité (). Pour tout A > 0, on obtient un estimateur

§y = argmin { P,y (t) + \Q(¢)} .

teS

A est appelé parameétre de régularisation. Un exemple important de ce type de
méthode est celui des méthodes a noyaur, ot la pénalité est Q(t) = ||t||5,, pour un
espace de Hilbert a noyau reproduisant H (voir Scholkopf et Smola [95]).
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Les deux méthodes soulévent des problémes similaires. Quelle doit étre la taille
du modéle m ou du paramétre de régularisation \? Dans le cas des modéles, le
risque de l'estimateur §,, dépend de deux facteurs: 'erreur d’approximation in-
duite par la restriction de Py de § a m, et I erreur d’estimation due a I'estimation
du risque P~ par le risque empirique P, sur le modéle m. Plus le modéle m est
grand, plus U'erreur d’approzimation sera faible, mais plus I'erreur d’estimation
risque d’étre importante: on parle de compromis biais variance. Pour un ERM
pénalisé, choisir A trop grand biaise trop ’estimation en faveur des petites valeurs
de Q(t), Perreur d’approximation argmin, P(t) + AS2(t) — argmin, P~(t') devient
trop grande. Pour les méthodes a noyaux, s, — 0 quand A — 4oc0. En revanche,
prendre A = 0 redonne I’ERM sur tout I’ensemble S, qui ne converge pas. Pour que
I’erreur d’approximation et l'erreur d’estimation convergent simultanément vers 0,
il faut donc choisir une suite de modeéles m de taille croissante, ou une suite de
parameétres de régularisation qui tend vers 0, mais pas trop vite. Pour cette raison,
les statisticiens considérent généralement des familles de pénalités (AQ2) =g ou de
modeles m € M. Etant donné un tel ensemble d’estimateurs, le choix optimal du
paramétre de régularisation ou du modeéle dépend de la "complexité" de la cible s,
et notamment des considérations suivantes: quelle est la qualité de I’approximation
de s par les modéles m? Quelle est la taille de Q(s)? Le probléme devient alors de
construire un estimateur § qui fasse aussi bien que le choix optimal théorique du
modeéle m ou du parameétre de régularisation A (inconnu, car dépendant de P).

Dans un cadre asymptotique, ce critére peut étre formalisé par I’équation

{(s, 8)
inf,en 0(s, $m)
ot — désigne une notion de convergence classique (LP, convergence en probabilité,
presque stirement, etc), une propriété appelée "consistence pour la sélection de

modeéles". Dans un cadre non-asymptotique, un objectif typique est de démontrer
des inégalités d’oracle de la forme générale:

— 1,

El(s,s) < CE [ in/{/1 6(5,§m)} + 1y, (1.1)

me

ou C est une constante et r,, un terme de reste "petit" (dans I'idéal négligeable par
rapport aux autres termes de 1’équation). L’estimateur S5, qui réalise I'infimum
dans I'équation (|1.1)) est appelé oracle. C’est le meilleur estimateur dans la famille

(ém)mEM

1.2 Hold-out

Afin de construire un estimateur § qui vérifie une inégalité d’oracle, une premiére
catégorie de méthodes consiste & estimer le mieux possible le risque des estima-
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teurs §,, afin de sélectionner I'un d’entre eux dont le risque estimé est minimal:
c’est la sélection de modéles. L’estimateur du risque empirique sur 1’échantillon
d’entrainement ne peut pas étre utilisé, car il est beaucoup trop biaisé: en effet,
dans le cas des pénalités, il est facile de voir que minimiser le risque empirique par
rapport a A revient en fait a sélectionner la plus petite valeur de A. Si un échantil-
lon de validation Z,...,Z,, est donné, et qu’il est indépendant des estimateurs
Sm, le risque des §,, peut tout simplement étre estimé par la moyenne empirique,
comme dans la définition de 'ERM:

Cet estimateur est lui, sans biais. Il est alors possible de choisir un modéle m par
minimisation du risque empirique sur I'ensemble {5, : m € M}.

A défaut d’'un échantillon de validation, il est possible de subdiviser I’échantillon
donné en un sous-échantillon d’entrainement et un sous-échantillon de validation,
et de procéder comme ci-dessus, avec des estimateurs entrainés sur une partie des
données seulement: c’est le hold-out. Plus précisément, pour tout sous-ensemble
T C {1,...,n} , soit DI = (Z;)ier le sous-échantillon correspondant. Etant
donnée une famille d’estimateurs (8,,)mem, le risque de 8,,(DI) peut étre estimé
par

HOr (m) = n%m Z 'Y(ém(Dg)» Zi)'

On sélectionne alors 'estimateur dont le risque estimé est le plus faible, ce qui
donne:

fro(M, D,) = 8mp (DY), ot iy € argmin HO7 (m) .
meM

Cette méthode fournit un estimateur sans biais du risque qui ne nécessite aucune
connaissance a priori sur la loi P ou sur les estimateurs §,,, mais au prix d’une
détérioration de la performance des estimateurs §,, (car ils sont entrainés sur un
échantillon de taille réduite). Comme HOr (-) estime le risque des §,,(DI) et
non des §,,(D,,), il est plus naturel de comparer £(s, Aj}}o) a inf,,ea £(s, 8, (D))
plutdt qu’a inf,,e g €8, $(Dy)), chose qui ne peut étre faite sans des hypotheéses
de stabilité supplémentaire sur les estimateurs §,, [60]. Pour cette raison, les
inégalités d’oracle générales pour le hold-out sont du type

E [e(s,jf}w)] < CE [ﬁigy(s,émw,{)) . (1.2)
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1.2.1 Théorie existante

Si la fonction de contraste v est bornée, I'inégalité de Hoeffding implique que

sup |HOr (m) — Py(8,,)| = O ( M) ;

meM n — ’T‘

on peut donc aisément montrer que le hold-out vérifie une inégalité d’oracle(l.2avec

constante C' = 1 et terme de reste r, = O ( %) Cette inégalité d’oracle
n’est pas optimale, parce que le terme de reste n’est pas toujours négligeable: si

par exemple v représente la perte des moindres carrés en régression, la vitesse de
convergence paramétrique est de O (%) et non O (\%)

Massart [76, Corollaire 8.8] a montré que 'on pouvait améliorer ce résultat en
supposant que la variance de HOr (m) est majorée par une fonction de I'excés de

risque. Plus précisément, 1’hypothése de marge affirme qu’il existe une fonction
décroissante w telle que @ décroit (sous-linéaire) et
2
Vm,m' € M,Varg (Y(8m, Z) — (8, Z)) < <w( 0(s,8m)) +w(+/ (s, §m/))>
(1.3)
Sous cette condition, Massart |76, Corollaire 8.8 montre que le hold-out vérifie une
inégalité d’oracle [1.2] avec un terme de reste qui est proportionnel, a des termes
logarithmiques prés, a la solution de I’équation

w(u) = /n — |T|u?.

1.2.2 Contributions a la théorie générale du hold-out

Dans le Théoréme du Chapitre [3] de cette thése, j’étend le résultat de Mas-
sart en affaiblissant ses hypothéses de deux maniéres différentes. Premiérement,
je montre qu’on peut remplacer la majoration uniforme de + par une seconde
hypothése de marge, de la forme

17 (ms ) =G, oo < w2 (VS 8m)) + wa(VE(S, 8mr))-

Cela permet a la norme uniforme ||y(5,,, -)||,, de dépendre de m € M et du cardinal
n_de I’échantillon. Deuxiémement, je montre que, dans I’hypothése de marge
, I’hypothése que # est décroissante peut étre remplacée par I’hypothése que

% est bornée, au prix de quelques complications supplémentaires. En effet,
I’hypothése w®) pe permet que d’obtenir une inégalité d’oracle valable avec grande

probabilité 1 — # (par exemple), tandis que pour controler 'espérance, il faut que
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I’hypothése de Massart soit vérifiée pour une autre fonction w’. Un terme correctif
d’ordre deux, dépendant de w’, apparait donc dans 'inégalité d’oracle.

L’intérét de ces changements est qu’ils permettent d’étendre la théorie générale
du hold-out a de fonctions de contraste non-bornées ~, en particulier en régression.
En régression, v(Sm, (z,y)) = ¢(y — Sm(z)), ol ¢ est généralement convexe et non-
bornée sur R: par exemple, ¢(x) = ? (moindres carrés) ou ¢(z) = |z| (régression
L'). Dans ces cas, (5, (x,y)) et généralement non-bornée & moins que Y € L* et
que ||5,,]| . < A pour une certaine constante A. Choisir §,, uniformément bornée
n’est pas pratique car la fonction de régression s peut ne pas étre bornée et, méme
si elle I’est, sa norme ||s||__ est inconnue en général. |,,|| , doit donc dépendre de
m et/ou n afin d’obtenir un estimateur consistant dans ce cas. Si |5,/ n’est pas
uniformément bornée, alors I'hypothése de marge n’est en général pas vérifiée
pour une fonction w telle que @ décroit. En effet, Var (v(5,,, Z) — v(5m, Z)) est
une fonction quadratique de (s, Z), tandis que £(s, $,,) = Py(8m) — Py(s) est
une fonction linéaire de v($,,, Z). Dans le cas non-borné, il faut donc permettre
a w de croitre aussi vite que x — 22 pour qu'une hypothése de marge soit
vérifiée: c’est ce que fait le Théoréme de cette these. Ce théoréme s’applique
notamment aux méthodes a noyaux avec fonction de perte Lipschitz (présentées
en section [1.7.1)) et en régression parcimonieuse avec perte Huber (cadre présenté
en section |1.7.2]).

1.3 Validation croisée

Bien que le hold-out se préte bien a I’étude théorique, deux inconvénients limitent
son utilisation pratique. Premiérement, il y a la nécessité de soustraire une certaine
quantité de données a l’échantillon d’entrainement, ce qui dégrade en général la
performance des estimateurs. Deuxiémement, il faut choisir arbitrairement un
sous-ensemble d’entrainement 7' parmis les indices {1,...,n} des données. Pour
un cardinal fixé |T'| = ny, le choix de 7" n’a aucune influence sur la loi de HOr (m)
ni sur celle de f;}}o, on peut donc supposer qu’il s’agit d’une variable aléatoire
uniformément distribuée dans 'ensemble {T" C {1,...,n} : |T| = n;}: le choix de
T est donc purement une source de bruit. La variance induite a des chances d’étre
particuliérement forte quand les estimateurs §,, sont instables (c’est a dire quand
une légére modification de ’échantillon d’entrainement provoque un changement
important de 'estimateur).

Pour réduire cette variance, une pratique courante consiste & moyenner plusieurs
estimateurs de risque HOT;m correspondant a des sous-ensembles 7} différents:
cela s’appelle la validation croisée. Les méthodes de validation croisée modernes
ont été introduites par Stone [98] et Geisser [45]. Soit [n] = {1,...,n} et soit
T = (I})1<j<v une suite finie de sous-ensembles de [n] (souvent, mais pas tou-
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jours, de méme cardinal n;). Geisser [45] défini I'estimateur par validation croisée
du risque de l'estimateur s, par

OV (m) = % > HO, (m).

Cette définition comprend le leave-one-out (T = ([n]\Jj)1<j<n), la validation croisée
Monte Carlo ((7})i<j<v i.i.d uniformes parmis les sous-ensembles de cardinal n;)
ou la validation croisée V-fold (7" = ([n]\I;)1<j<v pour une partition (/;)i<j<y de
[n] en sous-ensembles de cardinal n/V'), parmis les méthodes les plus classiques. Le
lecteur intéressé trouvera une présentation plus détaillée des différentes méthodes
de validation croisée dans I'article bibliographique d’Arlot et Celisse [3]. On voit
donc que la validation croisée permet d’utiliser des échantillons d’entrainement plus
grands que pour le hold-out: en effet, dans le cas du hold-out, il serait absurde de
n’utiliser qu’une donnée pour la validation (|7}| = n — 1), mais cela se fait dans le
cas de la validation croisée (leave one out).

Quand la validation croisée est utilisée pour sélectionner un estimateur, on
choisit le paramétre (ou modeéle) minimisant le risque estimé,

m € argmin C'Vr(m).
meM

Pour construire I'estimateur final, plusieurs options existent: la plus standard, en
pratique en tous cas, est d’utiliser §;(D,,), estimateur entrainé sur toutes les
données. D’autres variantes sont parfois considérées pour les besoins de la théorie.

L’article [3] présente les principaux résultats théoriques connus sur la validation
croisée, avant 2010. Pour une variante adaptée, des inégalités d’oracle générales
semblables & celles de Massart pour le hold-out [76] ont été démontrées par Van
der Waart et al [105]. A ma connaissance, aucun résultat comparable n’existe pour
la validation croisée standard $;(D,,).

1.4 Agrégation de modéles et d’hyperparameétres

Les méthodes définies jusqu’ici cherchent toutes a identifier un seul bon estimateur
parmis les (8,,)merm. Comme le but est de se comparer au meilleur des §,,, un
tel procédé semble naturel; cependant, rien n’oblige a se restreindre a ce type
d’estimateurs. A la différence des méthodes de sélection, les méthodes d’ agrégation
considérent des estimateurs qui sont des sommes pondérées des (S,,)ment, i.€

§=) Wmbm, (1.4)

meM
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ott les coefficients (W, )mesm € RM dépendent en général des données. On parle
d’agrégation convexe quand les poids sont positifs et ont pour somme 1, et d’agrégation
linéaire quand aucune contrainte n’est imposée. Pour que I’équation ait un
sens, il faut que les §,, appartiennent & un espace vectoriel (pour l’agrégation
linéaire) ou & un ensemble convexe (dans le cas de 'agrégation convexe), ce qui
est une premiére différence par rapport aux méthodes de sélection. De plus, pour
que l'agrégation convexe soit pertinente, il vaut mieux que le risque soit convexe,
puisque cela garantit que pour toute combinaison convexe Zme M WinSms

Pry <Z wm§m> < 0 Py(3n).

meM meM

Si cette inégalité n’est pas satisfaite, cela signifie qu’il est préférable de tirer au
hasard 'un des 7 selon la loi (W,)mem plutdét que de former la combinaison
convexe » . WmSm,. Ainsi, dans le cas non-convexe, il se peut que la sélection
d’un estimateur soit préférable a I'agrégation.

L’hypothése de convexité du risque est vérifiée en régression et en estimation de
densité, pour la plupart des fonctions de perte utilisées, ainsi qu’en classification
(cas des relazations convezes du risque 0—1 [10]). L’agrégation peut alors améliorer
les performances de fagon importante, puisque le minimum de P~ sur ’enveloppe
convexe des §,, peut étre bien inférieur & min,,c g Py(Sp)-

Méme sans aucune hypothése de ce type, 'agrégation a un intérét. En effet, en
estimation de densité [117, 28] et en régression [116] [29], Yang et Catoni ont con-
struit des méthodes d’agrégation qui vérifient une inégalité d’oracle avec constante

C =1 et terme de reste O <%ﬂfw|> , ce qui est optimal [102], et meilleur que ce que

pourrait faire une méthode de sélection [29] [57]. Ces méthodes reposent, comme
le hold-out, sur la subdivision de I’échantillon en sous-échantillon d’entrainement
et sous-échantillon de validation, utilisé dans ce cas pour construire les coefficients
Wy,. Ces coefficients w,, sont fonction décroissante du risque empirique de §,, sur
I’échantillon de validation: ainsi, I’essentiel de la masse de la loi m — w,, est con-
centré la ou le risque est petit. Un inconvénient de ces méthodes d’agrégation est
qu’en dehors de I'estimation de densité, elles ont des paramétres libres qui doivent
étre fixés en utilisant des connaissances a priori sur la loi P, afin que les inégalités
d’oracle optimales soient bien vérifiées.

Dans ’ensemble, ce type d’agrégation reste assez proche de la sélection de mod-
éles en terme de méthodes et d’objectifs, ainsi que pour les garanties théoriques.
Tous deux sont congus pour étre appliqués a de bonnes familles d’estimateurs,
telles que dans toute situation, au moins I'un des estimateurs ait de bonnes per-
formances. C’est pourquoi l'inégalité d’oracle [1.2] est un critére pertinent.
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1.5 Agrégation randomisée

Le probléme est différent quand ’agrégation est appliquée a de mauvais estima-
teurs. Dans ce cas, il n’est pas suffisant d’atteindre la performance de 'oracle -
du meilleur de ces mauvais estimateurs. On espére en fait que 'agrégat sera bien
meilleur que n’importe lequel des estimateurs, pris individuellement.

Une raison possible pour qu’'un estimateur ait un risque élevé est qu’il soit
instable ou, autrement dit, qu’il ait une variance élevée par rapport a I’échantillon
d’entrainement. Breiman [22] suggére de réduire cette variance en agrégeant les
estimateurs 3(D;, ) ...5(Dj, 5), obtenus par évaluation successive de 8, sur des
échantillons Dy, ; modifiés aléatoirement.

Plus précisément, Breiman suggére de tirer uniformément, indépendemment et
avec remplacement des données de 1’échantillon D,,, formant ainsi le rééchantil-
lon D} = (Xp,...,Xr,), ot (I;)i1<j<n sont des indices i.i.d, uniformes dans [n].
L’estimateur baggé 5°%9 est alors

5" = E.[3(D})] = E[3(Dy,)| Da).

Comme cet estimateur est difficile a calculer en général, on lui substitue souvent
son approximation par la méthode de Monte Carlo,

1 B
~ba A *
SBg = E Z S(Dn,j)7

ot les rééchantillons (D, ;)1<j<p sont indépendants conditionnellement a D,,.

Une autre variante du bagging est le subagging [25], qui consiste a former
des sous-échantillons par tirage aléatoire sans remplacement, ce qui donne DY =
{(Xi)ier, }, ot les T} sont des sous-ensembles i.i.d de cardinal fixé n, < n. L’estimateur
"subaggé" est alors

asub __ 1

=3 3(DL).
J

M=

1

Le (su)bagging est particuliérement intéressant quand il est appliqué a des
estimateurs peu réguliers, commes les arbres ou les réseaux de neurone. Appliqué
aux arbres CART, le bagging peut réduire la variance et le risque d’un facteur
constant (Biithlmann et Yu [25]). Appliqué a l'estimateur du plus proche voisin
(1—=NN), il le rend consistant [I3], et le fait méme converger a la vitesse optimale
[14].

Le bagging fonctionne en introduisant de ’aléas dans 1’échantillon, par rapport
auquel 'estimateur est instable, puis en agrégeant le résultat. Plus généralement,
on peut envisager d’introduire de 1’aléatoire dans d’autres éléments instables d’'un
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algorithme statistique, pour ensuite 'agréger. En particulier, plusieurs auteurs
ont suggéré d’'introduire de I’aléas dans la construction des arbres CART, une idée
dont la réalisation la plus célébre est la méthode des foréts aléatoires de Breiman
[23]. Les foréts aléatoires fonctionnent trés bien en pratique, au point qu’elles
sont considérées comme une des meilleurs méthodes "boite noire" et généraliste
en apprentissage machine [12].

1.6 Agrégation d’hold-out

Les résultats théoriques et pratiques sur l'agrégation randomisée montrent qu’il
est possible de rendre performants des estimateurs instables comme les arbres, la
méthode du plus proche voisin ou les régressogrammes en introduisant de ’aléatoire
dans leur construction et en les agrégeant. Dans le cadre de la sélection de modéles,
on peut envisager d’appliquer cette méthode au hold-out, habituellement négligé
en raison de son instabilité. L’instabilité du hold-out est due en partie au choix
arbitraire d’un sous-ensemble 7' C [n], utilisé pour subdiviser I’échantillon. Il est
donc possible de réduire la variance du hold-out en agrégeant plusieurs estimateurs
hold-out correspondant a des choix différents du parameétre 7.
Plus précisément, 'agrégation d’hold-out consiste a calculer un estimateur

1 v

~ o

Tg = _V E ij
j:l

pour une certaine famille 7 = (7})1<j<y de sous-ensembles de [n], indépendants de
I’échantillon D,,. Comme pour 'agrégation d’estimateurs plus généralement, cette
définition suppose que les estimateurs appartiennent a un espace vectoriel, ce qui
est le cas quand S est constitué de fonctions a valeur réelle (cas de la régression
et de l'estimation de densité). Dans cette thése, je ne considére que des familles
T contenant des sous-ensembles T; de méme cardinal n,, puisque cela garantit par
I'inégalité de Jensen que le risque de fA;g est inférieur & celui du hold-out, pour
une taille donnée n; = |7T}| de I’échantillon d’entrainement Dy (voir plus loin).
Comme pour la validation-croisée, il y a plusieurs fagons de générer une famille de
sous-ensembles 7. Par analogie avec la validation croisée, on parlera d’ "Agghoo
V-fold" quand 7 = ([n]\I;)1<j<v, ot les sous-ensembles de validation (I;)1<j<v
sont disjoints et de méme cardinal n/V. On parlera d" Agghoo Monte-Carlo"
quand la famille 7 est constituée de sous-ensembles aléatoires i.i.d 7; de méme
taille ny, tirés sans remise dans [n].

L’agrégation d’hold-out ressemble par certains aspects a la validation croisée,
a l'agrégation pour la sélection de modeles et a I'agrégation randomisée. Agghoo
agrége plusieurs estimateurs hold-out en variant le sous-ensemble T' utilisé pour



12 CHAPTER 1. INTRODUCTION ET RESUME (EN FRANCAIS)

subdiviser ’échantillon, a I'instar de la validation croisée. Comme les méthodes
d’agrégation pour la sélection de modeéles, Agghoo agrége plusieurs estimateurs
différents appartenant a une famille donnée ($,,)merm, et accorde un poids plus
gra?d aux estimateurs ayant un risque empirique faible sur un sous-échantillon

ng. Enfin, Agghoo Monte Carlo s’obtient en randomisant le paramétre 7" du
hold-out et en agrégeant le résultat. De plus, tout come le subagging, Agghoo
agrége des estimateurs qui ont été entrainés sur des sous-échantillons distincts
Dy

Des méthodes ressemblant plus ou moins & Agghoo ont déja été proposées [59,
114] [51), 87, 58] .La méthode étudiée dans cette thése se distingue par la généralité
de sa définition, due en partie au fait que ce sont les estimateurs §,,, et non les
paramétres m, qui sont agrégés, contrairement a [59, [51]. Ainsi, Agghoo ne dépend
que de I'ensemble d’estimateurs {$,, : m € M} et non de la paramétrisation m —
Sm, ce qui évite des ambiguités quand plusieurs paramétrisations sont d’utilisation
courante (cas des méthodes a noyaux, notamment [95]).

L’intérét pour Agghoo est motivé par ses bonnes performances en pratique,
remarquées notamment par [107] et [54]. Les simulations menées au cours de cette
thése montrent que Agghoo peut se révéler meilleure que la validation croisée en
application aux méthodes & noyaux en régression (Chapitre 1, Figure 7 au Lasso
(Chapitre , Figures , et aux séries trigonométriques en estimation de
densité (Figure . Dans plusieurs de ces simulations, Agghoo s’est méme révélée
capable de faire mieux que 'oracle de sélection.

Sur le plan théorique, Agghoo se distingue par sa stireté: tant que le risque Py
est convexe, Agghoo fait toujours mieux que le hold-out, par I'inégalité de Jensen:

<o EVjE Py =B [Py()] . )

=1

E

1 Vv
P (v i)
j=1

Une telle garantie n’existe pas pour les méthodes fondées sur 'agrégation
d’hyperparamétres: en effet, la convexité de P~ n’implique pas celle de A —
P~(8)), qui est en général beaucoup plus compliquée a établir, car elle dépend a
la fois de la famille d’estimateur s, et (potentiellement) des données.

Une conséquence de l'inégalité est que Agghoo vérifie les mémes inégal-
ités d’oracle que le hold-out, tant que le risque P~y est convexe. En particulier,
I” inégalité d’oracle générale du Chapitre |3 décrite en section [1.2.2] implique di-
rectement un résultat similaire pour Agghoo. Le Théoréme énonce l'inégalité
d’oracle résultante. Ces Théorémes suggérent que Agghoo, comme le hold-out, se
comporte bien dans des situations variées.
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1.7 Contributions: inégalités d’oracle pour le hold-
out et Agghoo dans des cadres spécifiques

Comme une théorie générale existe, on peut penser qu’Agghoo et le hold-out font
aussi bien que l'oracle en général. Cependant, les Théorémes et ne
permettent pas une telle interprétation. En effet,ces théorémes généraux ne nous
disent pas si une condition de marge est vérifiée dans une situation donnée
et si oui, pour quelle fonction w. Sans connaitre la fonction w, il est difficile de
savoir si le terme de reste r,, dans I'inégalité d’oracle est oui ou non négligeable par
rapport au risque de l'oracle. Afin d’identifier des hypothéses plus claires et plus
intuitives que l'inégalité de marge générale et pour calculer explicitement le
terme de reste r,, il est nécessaire de considérer des cas particuliers. C’est ce qui
est fait dans les chapitres 3 et [4 de cette thése. Comme expliqué en section la
théorie classique fondée sur des hypothéses de marge avec x — # décroissante ne
s’applique pas en général aux fonctions de perte non-bornées: c’est donc pour de
tels probléemes que les techniques développées dans cette thése trouvent leur champ
d’application le plus intéressant. Ainsi, dans les chapitres [3] et [4, on s’intérésse a
des familles d’estimateurs non-bornés en régression et classification, pour lesquelles
la théorie classique ne s’applique pas. Plus précisément, le chapitre |3| a pour sujet
les méthodes a noyaux avec fonction de perte Lipschitz, tandis que le chapitre [4] se
situe dans le cadre de la régression linéaire parcimonieuse, avec fonction de perte
Huber.

1.7.1 Contributions: hold-out appliqué aux méthodes a noy-
aux

Les méthodes a noyauxr sont des méthodes de minimisation du risque empirique
pénalisé pour lesquelles la pénalité Q(t) = Ht||3{, ol H||3{ désigne la norme d’un
espace de Hilbert a noyau reproduisant (RKHS) H. Un RKHS H est un espace
de Hilbert de fonctions réelles sur un ensemble X" associé de facon unique a toute
fonction symétrique définie positive K sur X (le noyau). Si S est un ensemble de
fonctions mesurables X — R (cas de la régression ou des relazations convezes de
la classification), on peut définir, pour tout noyau K (ou RKHS H), la méthode a
noyau associée:

8y = argmin { P,y(t) + A Ht”i} .
teH

La méthode & noyau a donc un parametre de régularisation A. Je renvoie le
lecteur au livre de Scholkopf et Smola [95] pour plus d’information sur les méthodes
a noyau.

Dans le chapitre [3] on considére des fonctions de perte vy qui s’expriment sous
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la forme (¢, (x,y)) = ¢(t(z),y) pour une fonction ¢ qui est Lipschitz et convexe
en son premier argument. Cela inclut la régression (c(t(x),y) = ¢(y — t(x))) ainsi
que les relazations convexes du probléme de classification (c(t(x),y) = ¢(yt(z))),
du moment que ¢ est Lipschitz et convexe. En régression, on peut notamment
citer la perte L', ¢(x) = |z| et en classification, la perte charniére ¢(u) = (1 —u),,
utilisée dans les machines a vecteur de support.

Le chapitre [3] écrit en collaboration avec mes directeurs de thése Sylvain Ar-
lot et Matthieu Lerasle, énonce et démontre une inégalité d’oracle pour le hold-
out appliqué au choix du parameétre de régularisation A des méthodes a noyaux
(Théoréme [3.4.3). Nos hypothéses sont de deux types: une hypothése de marge
('hypotheése SC, ) utile en général, et des hypothéses spécifiques qui permettent
de gérer I'absence de borne uniforme sur le risque. Dans le cas de la perte L1,
nous montrons que I’hypothése SC,, peut étre déduite d'un cas particulier des
conditions énoncés par Steinwart [97] dans son analyse de I’hypothése de marge
pour la perte L'. Ces conditions ne dépendent que de la loi conditionnelle de Y
sachant X au voisinage de s(X), elles sont donc sans rapport avec la question
des bornes uniformes sur le risque (¢, (x,y)), sur s ou sur les estimateurs §,.
Les hypotheéses spécifiques aux méthodes & noyaux sont que le noyau est unifor-
mément borné (|| K|, < +00) et que le parameétre de régularisation est borné
inférieurement par une valeur A,,(n) > 0. Le terme de reste de 'inégalité d’oracle
, Tn, fait intervenir les constantes p, v de I'hypothése de marge, ainsi que A,,(n)
et ||K||.. Le Théoreme [3.4.3 permet de démontrer que le hold-out converge a la
"bonne" vitesse pour certaines des vitesses de convergence obtenues dans [40] pour
le noyau gaussien (K (x,z’) = e‘”””‘xl”Z), a ceci prés que nous ne considérons que
le choix du parameétre de régularisation A et pas celui du paramétre v du noyau
RBF gaussien.

A ma connaissance, il s’agit de la premiére inégalité d’oracle pour le hold-out
appliqué aux méthodes & noyaux. Le choix du paramétre A de ces méthodes a bien
été traité par Eberts et Steinwart [40] , mais pour utiliser la théorie classique du
hold-out, ils ont en fait modifié les estimateurs & noyaux afin de les rendre bornés,
en les tronquant, c’est a dire en considérant a la place de §,,

Truncy(8y) = max (min (5, M), —M)

pour une constante M > 0. Cette opération peut se justifier si un majorant de
||s]|, est connu, mais si jamais M < ||s||_, 'opération de troncature risque fort
d’empécher les estimateurs s, de converger vers l'optimum s. En tous cas, elle ne
semble pas étre utilisée en pratique.
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1.7.2 Régression parcimonieuse

Dans le chapitre , j’étudie le hold-out (et Agghoo) appliqués a des familles
d’estimateurs affines x +— ¢y + (0, ) qui ne dépendent que d’un petit nombre
de variables x; (parsimonie). Plus précisément, on suppose que

il =[5 0} <, i

i.e que les vecteurs 0, ont moins de k composantes non-nulles. Le risque des
estimateurs est évalué en utilisant la fonction de perte Huber, une fonction de
perte Lipschitz classique en régression robuste [55].

L’entier k£ mesure donc la complexité des estimateurs 0. Des méthodes de ré-
gression parcimonieuse telles que la régression [° (ou sélection de modéle compléte),
forward stepwise [52], Section 3.3] et LARS [42] donnent naturellement lieu a des
estimateurs qui vérifient I’équation , car ces méthodes ajoutent les variables

une a une (HémH est monotone par rapport au paramétre m de ces méthodes). 11
0

est aussi possible d’extraire des estimateurs vérifiant (1.6)) du "chemin de régular-
isation" (8))aso du Lasso [99], comme l'ont suggéré Zou et al [120].
Dans ce cadre, je démontre que le hold-out vérifie une inégalité d’oracle de

type (1.2) avec constante C' > 1 et terme de reste r, = O <biﬂ>, ou K désigne

le nombre d’estimateurs et n, désigne le cardinal de I’échantillon de validation
(n, = |T°|). Sin, est d’ordre n, ce terme de reste est plus petit que les vitesses
de convergence théoriques en régression parcimonieuse |15, 90]. Le risque du hold-
out est donc du bon ordre de grandeur: il s’adapte aux vitesses de convergence
théoriques.

Les estimateurs 6}, et les variables prédictives X sont supposés bornés, mais pas
uniformément: il est seulement supposé que || X[ ;~ et [|6x]| sont majorées par
une fonction polynoémiale de n, la taille de I’échantillon. Cette hypothése est donc
peu contraignante. L’absence de borne uniforme est gérée grace a une hypothése
d’équivalence des normes L> et L? de la forme

v0,[10lly < 2K = [[{0, X}l < r(n,n0) [0, X2, (1.7)

pour une constante x(n,n,) telle que k(n,n,) = O gﬂ) quand n, — 4o00.

Le chapitre [4| contient deux exemples qui montrent que 1’équation est vérifice
sous des hypothéses raisonnables.

L’inégalité d’oracle (Théoréme est obtenue sous des hypothéses parti-
culiérement faibles, en particulier en ce qui concerne les bornes sur ||6x| et X.
Concernant le Lasso, des résultats ont été obtenus sous des hypothéses faibles par
Chetverikhov, Liao et Chernozhukov [33] (en particulier, sans supposer de bornes
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sur 0),), mais il ne s'agit pas d’inégalités d’oracle: [33] montre "seulement" que
le hold-out converge a la bonne vitesse théorique (vitesse minimax) sous des hy-
pothéses de parsimonie. Cela ne garantit pas que le hold-out s’adapte a d’autres
types d’hypotheése et a d’autres vitesses de convergence.

Pour ce qui est des inégalités d’oracle, Lecué et Mitchell [69] en démontrent
pour le hold-out appliqué au Lasso, mais ils supposent que les vecteurs ék sont
uniformément bornés dans ¢ (et ils doivent modifier I'algorithme du Lasso pour
cela). Wegkamp [114] démontre une inégalité d’oracle générale en régression L2,
sans supposer que les estimateurs sont bornés. Néanmoins, il suppose que les
estimateurs §;, vérifient une inégalité L* — L? de la forme

/(ék —s)*dPx < R/(§k — 5)%dP, (1.8)

pour une constante R > 0, ce qui implique en fait une borne sur les estimateurs
Sg. En effet, I'inégalité n’est pas homogeéne, contrairement a 'inégalité ,
elle ne peut donc pas étre vérifiée pour des éléments arbitrairement grands d’un
espace vectoriel de fonctions. L’inégalité appliquée & 8 : @ — G + (Op, )
o

En dehors de I'étude théorique du hold-out, des hypothéses d’équivalence des
normes ont été utilisées récemment pour étudier la minimisation du risque em-
pirique en régression L? [7, 81| ainsi que ses concurrentes "robustes" [7], 66]. Sig-
nalons en particulier I'article [7], qui utilise une hypothése de la forme

implique donc une borne sur

[t < & 10 22y

pour toute fonction t appartenant au modéle m sur lequel le risque doit étre min-
imisé. Ces hypothéses sont en général plus contraignantes que (|1.7)), car le rapport
des deux normes est supposé uniformément borné, tandis que 1’équation (1.7 per-

Ny
logn*

met a la constante x(n,n,) de croitre en fonction de n, a la vitesse

1.8 Etude détaillée du hold-out et de Agghoo

Des inégalités d’oracle montrent que Agghoo et le hold-out sont de bonnes méth-
odes de sélection de modéle en théorie, dans la mesure ou leur performance est
proche de celle du meilleur estimateur donné (1’oracle). Cependant, d’autres méth-
odes, comme la validation croisée, vérifient aussi des inégalités d’oracle. Ces ré-
sultats ne peuvent donc pas nous dire lesquelles de ces méthodes fonctionnent le
mieux dans une situation donnée. De plus, les résultats des simulations menées au
cours de cette thése, qui montrent que Agghoo peut parfois faire mieux que 'oracle
de sélection de modéle, ne peuvent pas étre expliqués par une inégalité d’oracle
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avec constante C' > 1 et terme de reste r, > 0. L’intérét pour Agghoo est
motivé en grande partie par de telles simultations, ot Agghoo se montre clairement
supérieure aux méthodes de sélection de modeéles telles que la validation croisée.
Pour des raisons pratiques aussi bien que théoriques, il serait intéressant de savoir
dans quels cas ce phénomeéne se produit, et pour quelles valeurs des paramétres
d’Agghoo. Cela permettrait de faire le bon choix entre Agghoo et ses concurrentes
dans les applications, et de bien calibrer les paramétres d’Agghoo lorsque cette
méthode est utilisée. D’un point de vue plus théorique, une réponse a de telles
questions nous renseignerait sur le comportement du hold-out et de 'agrégation
d’hyperparamétres.

Dans les Chapitres [p] et [6] de cette thése, je méne a bien une analyse précise du
hold-out et de Agghoo, afin de répondre a ces questions dans un cas particulier,
celui de I'estimation de densité L? par des séries de Fourier empiriques. Plus pré-
cisément, j’étudie I'estimation de densité L? d’une fonction de densité symmétrique
s € L*([0;1]) a laide des estimateurs

k
Se="1+4>_ Pule))es, (1.9)
j=1
ol p; = v/2cos(27j-) est la base des fonctions cosinus. Ce cadre a été choisi

afin de réaliser un compromis entre la difficulté technique de son étude et son
intérét théorique et pratique. L’estimateur par séries de Fourier est certainement
utilisable en pratique, et d'un point de vue théorique, il s’adapte a toutes les classes
de régularité Holder /Sobolev, du moins pour les fonctions de densité périodiques.
Par ailleurs, la structure algébrique des polyndémes trigonométriques et la simplicité
de la formule définissant les estimateurs §; rendent ’analyse théorique plus
facile, ce qui permet d’étre plus précis dans les résultats.

Pour faciliter 'analyse théorique, je fais quelques hypotheéses sur les coefficients
de Fourier 6; de s sur la base des cosinus. La premiere de ces hypotheéses est que la
suite 67 est décroissante: cela garantit la convexité du risque moyen E [[|8, — SH2}
en fonction du paramétre k. En particulier, I'unicité du minimum k, est garantie
si la suite QJQ- est strictement décroissante. L’interprétation qualitative des autres
hypothéses est que la suite 9]2- décroit polynémialement et ne "saute" pas de fagcon
trop brutale - il n’y a pas de chute soudaine ou la suite décroit soudain trés
rapidement. Ces hypothéses sont faites a la fois dans le chapitre 5| et dans le
chapitre [6]

Pour comprendre le comportement du hold-out et de Agghoo, la premiére étape
est d’analyser I'estimateur hold-out du risque HO7 (m) dont le hold-out calcule le
minimum. Le chapitre 5] est consacré a la construction d’une approximation en loi
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de cet estimateur empirique du risque au voisinage du "vrai" minimum,

ki(ny) = argininE (136 (Dy,) — 5H2} :

Les outils habituels de I’analyse asymptotique sont inadaptés ici car le processus
dont il s’agit (une fois centré et mis & 1’échelle) ne converge pas, et a défaut de
limite, il faut avoir recours a une approximation du processus pour chaque valeur
de n, la taille de I’échantillon. Je construis cette suite d’approximations en utilisant
le théoréme de Komlos-Major-Tusnady pour se ramener & un processus Gaussien,
que j’approxime ensuite par un autre processus Gaussien ayant une fonction de
variance-covariance proche. La bonne approximation se trouve étre la somme d une
fonction convexe f, et d’'un mouvement brownien bilatére changé de temps W, .
Comme il ne semble pas y avoir de formule simple pour f, et g,, je démontre des
minorations et majorations des incréments de ces fonctions qui se révélent utiles
dans le chapitre [6]

Dans le chapitre [6] je meéne a bien une analyse précise du risque du hold-out
et de Agghoo. D’abord, en utilisant le Théoréme du chapitre [3| je démontre
que le hold-out vérifie une inégalité d’oracle préliminaire, ce qui implique que le
parameétre k sélectionné par le hold-out se trouve avec grande probabilité dans une
région de l'espace des paramétres N ou l'estimateur du risque hold-out est bien
approximé par le processus construit au chapitre [5| précédent. Deuxiémement,
en utilisant des techniques introduites par Leandro R. Pimentel [88] , je montre
que l'approximation de I'estimateur hold-out du risque construite au Chapitre
conduit & une approximation (en loi) k> de son argmin k le parameétre sélectionné
par le hold-out. Au premier ordre, les risques d’Agghoo et du hold-out s’expriment
a l'aide de la fonction de répartition de k. En utilisant ces formules, je calcule
une approximation au premier ordre du risque du hold-out, de la forme

E [H§k(Dm) — SHQ} = or(ng) + r, + o(ry),

ou or(n;) désigne le risque de 'oracle entrainé sur un échantillon de taille n, =
n — n, (Théoréme [6.4.3). Je montre aussi que le risque de Agghoo vérifie une
inégalité de la forme

e 7~

Le risque de Agghoo est majoré par la somme de deux termes: le risque du hold-
out, or(ny) 4+ ry, et un terme négatif d, provenant de I'agrégation. En général, d,,
est toujours supérieur a cr,, pour une constante ¢ indépendante de n, de sorte qu’
Agghoo réduit au moins le terme de reste r,, d’un facteur constant.

Sous des hypothéses supplémentaires sur s, il est possible d’aller plus loin.
Dans une derniére partie (Section , je montre que si QJQ- décroit a une vitesse

2
} L or(ng) +r, —d, + o(d,).
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polynomiale fixe, 9? ~ ¢j~ %, alors le risque d’Agghoo peut étre inférieur a celui de

I’'oracle, le rapport entre les deux pouvant descendre jusqu’a une constante p < 1
dans l'asymptotique. Je définis des intervalles de valeurs du parameétre 7, = 7 de
Agghoo sur lesquels ce phénoméne se produit.

1.9 Conclusion

Cette thése démontre que le hold-out et sa version agrégée vérifient une inégalité
d’oracle générale (le Théoreme [B.7.3)). Ce Théoréme général a été appliqué dans
deux contextes, les méthodes & noyaux et la régression parcimonieuse, ou il donne
de nouvelles majorations du risque du hold-out (et d’Agghoo). Enfin, une étude
détaillée de I'agrégation d’hold-out a été menée dans le cadre de I'estimation de
densité L? par des séries trigonométriques. Cette étude montre qu’en fonction du
choix de ses paramétres, Agghoo peut avoir de meilleures performances que 'oracle
entrainé sur un échantillon de taille n;, ou méme que l'oracle entrainé sur toutes
les données, avec un gain allant jusqu’a un facteur constant par rapport a 'oracle.
Dans tous les cas, Agghoo améliore au moins le terme de reste dans I'inégalité
d’oracle, par rapport au hold-out.

Cette thése ouvre un certain nombre de perspectives qui sont présentées plus
en détails dans le chapitre [7]

Inégalités d’oracles pour le hold-out Concernant les inégalités d’oracles sur
le hold-out, on remarque que la démonstration des résultats du chapitre |4 repose
essentiellement sur trois hypothéses:

e Une inégalité entre les normes L™ et L?
e Une majoration de ||v(8m, )|/, polynomiale en n

e Une condition de forte convexité locale sur I'exces de risque, du type £(s,t) >
1|t — s||* pour t tel que ||t — || <3 (11,0 > 0).

Cela suggére que des inégalités d’oracle semblables a celles du chapitre 4] peuvent
étre démontrées dans tous les cas ol ces trois hypothéses sont vérifiées.

Minimisation du risque empirique Conditionnellement a 1’échantillon d’entrainement
DT le hold-out minimise le risque empirique sur Uensemble 3,,(DT). 1l est donc
vraisemblable que les techniques développées dans la thése pour étudier le hold-
out puissent aussi s’appliquer plus généralement a la minimisation du risque em-
pirique. Cela nécessite de remplacer | M|, le nombres d’estimateurs considérés,
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par des quantités permettant de maitriser les processus empiriques sur des ensem-
bles infinis, telles que I’entropie & crochet, ’entropie de Rademacher ou encore la
dimension de Vapnik-Chervonenkis.

Agghoo Dans cette thése, j’ai réussi a mettre en évidence les effets de I’agrégation
dans le cas particulier d’estimateurs par séries trigonométriques, en densité L2. 11
est naturel de se demander si il est possible de dégager de cette étude des principes
généraux régissant le comportement de 1’agrégation d’hold-out, du moins en esti-
mation de densité L2

Dans le chapitre 6, on constate que plus le risque est "plat" au voisinage de
son optimum, plus I'agrégation améliore le hold-out. Un objectif pour de futures
recherches serait de formaliser cette condition a 'aide de la géométrie de 1'espace
L?(P) auquel appartiennent les estimateurs.

Alternatives & Agghoo Dans le chapitre 6, pour garantir un gain d’un fac-
teur constant par rapport a l'oracle, il est nécessaire de choisir les parameétres
d’Agghoo de facon optimale. Il semble que si ses paramétres sont mals choisis,
Agghoo n’agrége pas toujours suffisamment d’estimateurs différents: les estima-
teurs hold-out restent trop proches de l'oracle, ce qui limite I'effet de ’agrégation.
On aimerait disposer d’une méthode capable de donner par elle méme une taille
optimale & ’ensemble d’estimateurs qu’elle agrége. Cet objectif peut se formaliser
en introduisant une famille croissante d’ensembles d’estimateurs et en se com-
parant, non au meilleur estimateur individuel, mais au meilleur agrégat parmis la
famille d’ensembles. Le probléme est alors de définir une méthode statistique dont
le risque est semblable a celui du meilleur agrégat.



Chapter 2

Introduction

Elementary parametric statistics typically deals with situations in which there is
a single known, finite-dimensional model and the amount of data is large enough
to make an asymptotic analysis possible.

Developments in computer technology and the proliferation of data has in-
creased the ambitions and the capacities of statistics and led statisticians to con-
sider more general problems. Examples include regression problems where there
is no single "true model" and the regression function must instead be sought in
some large class of smooth functions (nonparametric statistics), or linear regres-
sion problems where the number of covariates is not small compared to the sample
size (high-dimensional statistics), so that inference over the whole model is incon-
sistent.

These situations confront statisticians with a tradeoff between generality of
the model and feasibility of estimation within it. The hope is that some simple
enough model will turn out to be adequate to describe reality, so that accurate
estimation is possible. As the required complexity is typically unknown, a standard
practice is to introduce collections of models of various sizes and complexities. The
statistician is then left with the problem of correctly choosing a model, or estimator
within these collections, so as to adapt to the intrinsic complexity of the problem.

For specific model collections, it is possible to develop ad-hoc methods using
theoretical calculations. However, there are many cases where this approach is
impractical, either because the requisite calculations are intractable or because
it requires some distribution-dependent quantities (such as the noise level) to be
known a priori. It is therefore important to have "black box" procedures that
do not require any information about the distribution of the data or the model
collection. Such procedures are generally based on validation, i.e, witholding part
of the data from the estimators to provide an independent assessment of their
performance. These risk estimates can be used either to select a single estimator
from the collection — usually by minimizing a risk estimate — or they can be

21
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used to construct weights in order to form a convex combination (aggregate) of the
estimators.

In this thesis, I study a procedure (Agghoo) which mixes elements of both
approaches. Data splitting is performed several times. Each time, the validation
sample is used to estimate the risk and select an estimator trained on the rest
of the data. At the end, the various estimators corresponding to the different
subdivisions are aggregated.

2.1 Statistical learning setting

In statistics, it is very frequent to define risk-functionals to measure the quality of
estimators. As a result, many statistical problems are equivalent to minimizing a
risk functional over some set S.

Agghoo, like cross-validation, applies to such risk-minimization problems where
the risk R(S) of an estimator § can be expressed as an expectation Pvy(s) :=
Ez[v(8, Z)], where 7 is a known contrast function, Z follows the unknown distri-
bution P and is independent from S.

When the risk arises from an estimation problem, where it measures how well s
estimates a distribution-dependent parameter s, the risk R should be non-negative
and reach a minimum of 0 at the target value s. However, sometimes it is impossi-
ble to find a fixed contrast function 7 such that Pv(t) = R(t), but only such that
P~(t) = R(t) + P~(s), where Py(s) is a non-zero constant depending only on s
and P, so that minimizing R is entirely equivalent to minimizing Pv(¢). R can
then be expressed as the excess risk relative to the optimum s:

U(s,t) = Py(t) — Py(s) = P(t) — argmin P~(¢).

t'eS

A statistical problem which can be formulated in this way is least-squares den-
sity estimation. In this problem, we are given data Z; distributed according to
an unknown density s with respect to a known measure p (usually the Lebesgue
measure), and the goal is to construct a good approximation § of s in terms of
the (squared) L? distance, R(8) = [|5 — sHig(u). Setting (¢, Z;) = HtHig(u) —2t(Z;)
yields E[y(t, Z;)] = ||t — 3||2L2(u) - ||3||i2(u) and {(s,t) = ||t — S”i2(u)~

In other cases, the statistical problem is directly one of risk minimization,
with a given contrast function . This notably includes the prediction problem of
statistical learning, in which the data consist of pairs Z; = (X;,Y;) and the goal
is to predict the variable of interest Y using a function ¢ of X, on an independent
copy Z = (X,Y). The discrepancy between the prediction ¢(X) and the observed
value Y is then measured using some function (¢, (X,Y)) = d(¢(X),Y), and the
goal is to minimize E[d(¢(X),Y)]. Here, s € argmin, g Py(t) denotes the optimal
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predictor that could be used if P were known, called the Bayes predictor and
((s,t) = P~(t) — Pvy(s) measures the performance of a given predictor ¢ relative
to this benchmark.

In both examples, the same risk-minimization formalism can be used. This
formalism is interesting because it naturally gives rise to a large class of estimators.
Assume that an i.i.d sample 71, ..., Z, with distribution P is available. Since the
risk of ¢ can be expressed as an expectation over the data E[y(t, Z)], it can be
estimated in a natural way by

Parlt) =+ Yt 2).

If instead of a parameter ¢ we have an estimator ¢, the same method applies so
long as the data Z; used to estimate the risk is independent from the data used to
compute the estimator .

Since the goal of estimation is to minimize the risk, a natural idea is then to
compute

§ = argmin P,7(t)
tes

as an estimator for s € argmin, g P7(t), a strategy known as empirical risk mini-
mization (ERM). Empirical risk minimization typically works well in a parametric
setting, when § is finite-dimensional (finite linear dimension in regression, or finite
"Vapnik dimension" in classification [38, Chapter 12]). However, in a statistical
learning setting, since generally no a priori information is available about the dis-
tribution of (X,Y), S is generally a very large class of functions. Some functions
in this class reproduce the data exactly and hence have an empirical risk of zero,
so they cannot be distinguished using the empirical-risk minimization rule. As a
result, ERM over the whole set S is inconsistent. Statisticians have used two main
approaches to turn ERM into a consistent procedure. The first is to restrict ERM
to a smaller subset m of S, called a model, yielding;:

Sm = argmin P,7(t).
tem

In least-squares regression for example, m is typically a vector-space of functions,
such as piecewise constant functions (yielding regressograms), piecewise polyno-
mial functions, wavelets or other classical spaces used in function approximation.

The other way to adapt the ERM to the non-parametric setting is to penalize
excessively large or complex predictors ¢, using a penalty function (t). For any
A > 0, this yields the estimator

$y = argmin {P,y(t) + A\Q(¢)},

tes
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where A is called a regularization parameter. An important class of penalized
empirical-risk minimizers are built from positive definite kernels. Suppose that
the parameter s of interest is a function s : = — R, which is the case in regression
and density estimation, as well as with convex relaxations of the classification
problem. Then, given a positive definite function K : Zx = — R called the kernel,
a reproducing kernel Hilbert space H of functions = — R can be defined (I refer
the reader to the book by Scholkopf and Smola [95] for more details). The kernel
estimators corresponding to the loss function v and kernel K are the penalized
empirical risk minimizers:

1 5
Sy = — t, Z; A . 2.1
3x argmm{nZv(, )+ A ||H} (2.1)

teM Py

This paradigm includes support vector machines (SVM) [95, Chapter 7|, support
vector regression (SVR) [95 Chapter 9], kernel ridge regression and in particular,
smoothing splines [I08]. Another example of a penalty is Q((,-)) = ||0]|» in linear
regression (the Lasso, introduced by Tibshirani [99]).

Both approaches raise similar questions. How large should the regularization
parameter or the model be? In the model-based approach, if m is too small, the
minimum of P~ over m will be far from the global optimum; there will be a finite,
positive gap

argmin { Py(t) — Pv(s)}.
tem
On the other hand, an excessively large model m may make the ERM inconsistent:
S, may be far from the true minimum of the risk over m, i.e

E | Py(8,,) — argmin P~y(t)

tem

may be large. For penalized ERM, choosing A too large will lead to an estimator
that is excessively biased towards a "simple" and "small" estimator. For the
RKHS and Lasso penalties, §, — 0 as A — 4+00. On the other hand, taking A =0
results in the unpenalized ERM, which is inconsistent. Thus, choosing correctly
the model or regularization parameter is of crucial importance. Consistency in the
nonparametric setting requires the model to grow, or the regularization parameter
to decrease with the sample size, but not too fast. For this reason, statisticians
generally consider families of penalties (A2)y~o and collections of models m € M
instead of single penalties or models. For example, in least-squares regression,
given an ordered orthonormal basis (¢;);en of L?(11), such as the trigonometric
basis, one can form the models my, = ((¢;)1<;j<k) generated by the k first elements
of the basis. Given such a collection, the optimal choice of regularization parameter
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or model will depend on the "complexity" of the unknown parameter s: how well
can s be approximated by the models under consideration? How small is Q(s)?

Theory can shed some light on the issue. For example, in least-squares density
estimation on the torus, given models m;, formed from the trigonometric basis as
above, it is classical that if the true density s has r square-integrable derivatives,
choosing k of order nTlﬂ, where n is the sample size, leads to a convergence
rate of n~ 71 in the L? norm [T09] [49], which is optimal in the minimax sense.
However, as s is unknown, so are its smoothness properties. The question is then
to achieve the correct minimax convergence rate n~H without knowing r, a
property known as adaptivity. Given a known collection of convergence rates, such
as the above, it may be possible to estimate the relevant parameter (here, r) and
to use a "plug-in" estimator (replacing r by its estimated value in the theoretical
formula nﬁ) In general however, the performance of the best estimator in
the collection may depend on more subtle properties of s than its smoothness,
properties which may not be fully understood theoretically. In that case, a general
way to guarantee adaptivity with respect to s is to construct an estimator s and
show that it performs as well as any of those in the collection. There are many
ways to formalize this. From an asymptotic viewpoint, one may require that

((s, 3)
inf,,en 08, Sm)

— 1,

where — denotes a classical notion of convergence (LP, convergence in probability,
almost surely, etc), a property known as asymptotic optimality. From a non-
asymptotic viewpoint, a typical goal is to prove oracle inequalities of the general
form:

E[((s, §)] < CE { inf e(s,gm)] + 7, (2.2)

where C' is a constant and r, is a "small" remainder term. Such an inequality
automatically guarantees adaptation to any convergence rate slower than r,, the
remainder term. The estimator §j;, realizing the infimum in equation , if it
exists, is called the oracle: it is the best estimator in the collection. If C'=1 and
r,, is negligible with respect to the risk of the oracle, the oracle inequality is said
to be optimal: it shows that asymptotically, the expected risk of § is the same as
that of the best estimator in the collection. The oracle inequality can be weakened
somewhat by placing the expectation inside the inf,,c 4, or it can be strengthened
by replacing the expectations with deviations bounds: many variants are possible.
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2.2 Model selection

In order to construct an estimator § that satisfies an oracle inequality, a first class
of methods proceed by estimating the risk of the estimators (8, )menm (01 (8x)r=0),
and selecting one of them with low estimated risk: this is called model selection.
It a walidation sample Zy,...,Z,, is available, and it is independent from the
estimators §,,, then the risk of the §,, can simply be evaluated using the empirical
mean, as in the definition of the ERM:

. 1 <& .
)%n—Z’}/(Sm,Z)
V=1

This estimator is unbiased and consistent (at least in the asymptotic where n, —
+oo while holding §,, fixed). It is then possible to select a model m by empirical
risk minimization on the collection (S, )mer. What if there is no validation sam-
ple? The empirical risk P,7(3,,) cannot be used, as it is heavily biased; indeed, in
the penalty case, it is easy to see that minimizing the empirical risk over A simply
results in selecting the smallest allowed value of A. In some cases, it is possible to
calculate theoretically a deterministic correction pen(m) (usually a function of the
model dimension), so that P,v(5,,) + pen(m) becomes a good risk estimator. Two
famous examples are Akaike’s AIC [I] and Mallows’ C,, [74] . An overview of the
classical methods can be found in [16] and more involved theory in Massart [76].
A weakness of this approach is that it lacks generality: Mallows’ theory is specific
to linear estimators in least-squares regression, whereas AIC relies on the concept
of linear dimension, which may be inappropriate for penalty-based methods or in
classification. For example, Kearns et al [61] showed that no penalty based on
the dimension alone could lead to a universally consistent procedure in classifi-
cation. Moreover, the theoretical penalties generally involve nuisance parameters
that have to be estimated, such as the variance. This means that often, a second
estimator selection procedure is used to calibrate this unknown constant.

2.3 Hold-out

A simpler approach is to form a validation sample out of the available data, sacri-
ficing some performance (by training the estimators on a reduced dataset) in order
to gain a distribution-free, unbiased risk estimator. More precisely, given a subset
T C {1...n}, let DI = (Z,);er denote the corresponding subsample. Given a
collection (8,,)menm of estimators, the risk of §,,(DZ) can be estimated empirically

by
HOz (m) |T| ZV Z;).
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Then, selecting the estimator with the lowest estimated risk yields:

Fho(M, Dy) = 4, (DY), where 1y € argmin HO7 (m) .
meM

Considering HO7 (m) as a biased estimator of Pv(S,,(D,)) instead of an unbi-
ased estimator of Pv(3,,(DT)) leads to the slightly different result §,,.(D,): the
standard terminology does not distinguish between these two procedures (for ex-
ample, the survey article [3] defines the hold-out estimator of the risk, but does
not explicitly specify how the final estimator is constructed). While in practice,
Sy (D) might be better, as it is evaluated on more data, very little can be said
about its risk in general, when the estimators s,, are arbitrary. On the other hand,
the risk of f}° is well-estimated by HO7 (rr), with only a moderate bias if M is
not too big. For this reason, the theoretical literature on the hold-out, discussed
below, has mostly focused on f*°, and so will I. For similar reasons, f;/*° can only
be compared to inf,,ca £(8, 3m(DT)) in general, not to inf,,caq (s, 3m(Dy)). The
two can only be related under some stability conditions on the estimators §,, [60].
Thus, for the hold-out, potential general oracle inequalities are of the form:

E [z(s, fTO)] < CE [ inf €(s,§m(Df))} . (2.3)

2.3.1 Existing theory

Because HOr (m) is an empirical average, if the data is i.i.d and 7 is uniformly
bounded, Hoeffding’s inequality implies that, with high probability,

. log(|M
sup [HOr(m) — Pvy(8,,)| = O log(IM]) : (2.4)
meM n-— |T‘
As a result, one can easily show that
: - log(IM])
/\hO < T g

This oracle inequality is not always optimal, because the remainder term is not
always negligible: for example, if 7 is the square loss of regression, then the para-

metric convergence rate is O(), not (’)(\/iﬁ) and many non-parametric classes

also have worst-case convergence rates faster than \/LE (for example, a— Holder

functions with a > 1).
Massart showed that one can improve the oracle inequality (2.5)) by assuming
in addition that the variance of HO7 (m) is bounded by a function of the excess
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risk of §,, [76, Corollary 8.8]. More precisely, this margin assumption states that
there exists a non-decreasing, sublinear function w such that

Vi, € M, Vaxz (18 2) (3, 2)) < (w(V/TG 50) + (/05 30)) )

(2.6)
As a result, minimizing the risk ¢(s,t), as the hold-out attempts to do, simultane-
ously reduces the variance: this results in a smaller remainder term than suggested
by the uniform bound . Thus, Massart [76] proved that under the margin as-
sumption, the hold-out satisfies an oracle inequality with a remainder term
r, which can be bounded, up to log terms, by the solution of the equation

w(u) = /n — |T|u?.

2.3.2 Contributions to the general theory of the hold-out

In Chapter |3, Theorem [3.7.2] of this thesis, I extend Massart’s result in two ways.
First, I show that the uniform boundedness assumption on v can be relaxed to a
second margin assumption, of the form:

17 (ms ) = 7B, oo < w2 (VS 8m)) + wa(VE(s, $mr))-

This allows the uniform norm ||y($y,,-)||,, to depend on m € M and on the
sample size n. Secondly, I show that, in the margin assumption , the sublinear
function w can be replaced with a subquadratic function w, with some caveats.
These caveats are that only assuming w subquadratic leads only to an oracle
inequality valid with high probability 1 — n—lz (for example), while controlling the
expectation requires Massart’s original assumption to hold for some other function
w’', leading to a second order correction.

The significance of these changes is to provide better theoretical support for
the application of the hold-out to unbounded loss-functions 7, most particularly in
regression. In regression, v(8,,, (z,y)) = ¢(y — $,n(z)) where ¢ is typically convex
and unbounded on R: for example, ¢(x) = z* (least-squares) or ¢(z) = |z| (least-
absolute deviations). In that case, ¥($,, (x,y)) is generally unbounded unless Y €
L> and ||5,,||,, < A for some constant A. Choosing §,, uniformly bounded a priori
is impractical since the regression function s might be unbounded, and even if it is
bounded, |s||, is generally unknown. Having [/3,,]| ., depend on m and n is nec-
essary to obtain a consistent estimator in this case. Now, if the norms ||y(8,, )|l
are not uniformly bounded, then the margin assumption generally cannot
hold for a fixed sublinear function w. This is because Var (y(8,,, Z) — (8, Z))
is a quadratic function of v(8,,, Z), whereas ((s, $,,) = Pvy(5,) — Py(s) is a linear
function of v(8,,, Z). Extending the margin assumption to subquadratic w allows
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to resolve this difficulty. Applications include kernel methods with Lipschitz loss
functions (discussed in section [2.9.2)) and sparse linear regression with the Huber

loss (discussed in section [2.9.2).

2.4 Cross-validation

Though the hold-out lends itself well to theoretical investigation, two drawbacks
have limited its use in practice. Firstly, there is the need to remove sufficient data
from the training set, which typically reduces the performance of the estimators.
Secondly, the hold-out requires the choice of a training subset T out of the full
dataset {1...n}. For a given cardinality |T'| = n;, the choice of T does not affect
the distribution of HOr (m) or f}lo, so we can equivalently assume that it is random
and uniformly distributed on the set {T" C {1...n} : |T| = n;}. This shows that
T' is a source of variability for f;° which affects simultaneously the risk estimator
HO7 (m) and the 8,,(DZL). This variability is likely to be particularly strong when
the estimators §,, are unstable (i.e, when a small change in the input sample results
in a big change in their output) [37] [60].

To reduce this variability, practitioners often resort to averaging HOr(m) over
several splits of the data in order to obtain a more stable risk estimator, a strategy
known as cross-validation. Modern cross-validation procedures were first intro-
duced by Stone [98] and Geisser [45]. Let [n] denote the set {1,...,n}. Let
T = (T})1<j<v be a finite sequence of subsets of [n] (usually, but not necessarily,
of the same size n;). Geisser [45] defines the general CV risk estimator

CVir(m) = % > HOx, ().

This includes the leave-one out procedure (7 = ([n]\7)1<j<n), Monte-Carlo CV
((T})1<j<v 1.i.d uniform among subsets of size n;) or V-fold CV (T = ([n]\;)1<j<v
for a partition (I;)1<j<v of [n] into subsets of cardinality n/V’), among the most
classical CV procedures. A more detailed description of existing CV procedures
can be found in the survey by Arlot and Celisse [3]. When used for model selection,
the cross-validation procedure is to select m$¥ € argmin, ¢\, CV7(m), as with most
methods that use risk estimation. For building a final estimator from %, there are
several options. Unlike with the hold-out, there is no distinguished training set (all
setsin 7T are "equal"), so the final estimator usually respects this symmetry. By far
the most standard choice, certainly in practice, is to take ff-v = §m%y(Dn), which
has the advantage of yielding an estimator trained on the whole sample. Because
CV estimates the risk of estimators trained on subsamples T" € T, the theoretical
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literature sometimes discusses other estimators built from the (3¢ (D}\))7er, such
as the bagged variant |—71.‘ > orer Smer (DY) [69)].

Like the hold-out, CV procedures must remove some data from the training
set in order to perform risk estimation. However, CV procedures typically require
far less data to be set aside for validation compared to the hold out. As a result,
estimators can almost be trained with the full dataset. A striking example of
this difference is that while the "leave-1-out hold-out" (|7'| = n — 1) is obviously
absurd, leave-1-out cross-validation (|T;| = n—1) is a classical, respected procedure
which works quite well in practice [3]. Because of this, one might expect cross-
validation to satisfy oracle inequalities with respect to the full data oracle
instead of equations of the type in which the oracle is trained on a sample
of size ny < n. However, no result of this type has been stated in full generality,
presumably because relating 3,,(DI) to ,,(D,,) requires non-trivial assumptions
of "algorithmic stability" on §,,, even when |T'| =n — 1.

Instead, van der Vaart, Dudoit and van der Laan [105] have proved a general
oracle inequality very similar to that of Massart for the hold-out ([0, Corollary
8.8]), discussed above. Their upper bound is an inequality of the form ([2.3)) with
an adjustable constant C' > 1 and a remainder term r,, that is finite if and only if
a margin hypothesis holds with w(u) = cu?, for some 6 € [0;1]. Because of
the generality of the setting they consider, their upper bound applies, not to the
risk of the more common CV procedure f7' = S0, but to the quantity

1 & . 4
v > Py (8me (D))
i=1

which can be seen as the risk of the estimator $cv (DI7), where J is an auxiliary
random variable distributed uniformly among 1,...,V. More recently, Lecué and
Mitchell [69] have proved a similar oracle inequality to [I05] under slightly different
margin and moment assumptions. Like van der Vaart et al, Lecué and Mitchell
build their alternative CV procedure from the §(D,{j). However, instead of selecting
a random subset 7y among the given collection (7} )1<;<v, they consider the bagged

variant:
1%
1

under the assumption that the risk Py is convex, and the asymmetric choice
Smer(DFY), Ty = {1,..., Y=in} for V—fold CV. Lecué¢ and Mitchell also discuss a
general hypothesis under which the normal CV procedure 3;,c0(Dy,) satisfies the
same oracle inequality as their variants.

As in Massart’s oracle inequality for the hold-out [76], these oracle inequalities
log | M|

have remainder terms r, of order when the margin hypothesis holds for a
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linear function w(u) = cu, where n, = n — |T| denotes the size of the validation
sample DI°. Because 7, depends on n,, not on n, these results are uninformative
when applied to leave-one-out or leave-p-out cross-validation, for which n, = 1 and
n, = p, respectively. According to Kearns and Ron [60], similarly general results on
the leave-one-out would require an additional assumption of "algorithmic stability"
on the estimators §,,.

2.5 Model and hyperparameter aggregation

The methods discussed thus far all seek to identify one good estimator among
the collection (8,,)mem. Since the aim is to perform as well as the best estima-
tor among the given collection, this is quite a natural idea; however, there is no
obligation to restrict oneself to such estimators. Instead, aggregation procedures
consider estimators that are weighted sums of the (8,,)menm, i.€

§= tmbm (2.7)

with data-dependent weights (0, )mem € RM. One speaks of convex aggregation
when the weights are required to be non-negative and sum to 1, and of linear
aggregation when no constraint is imposed on the weights [6, Chapter 3|.

In order for formula to make sense, the §,, should belong to a vector space
(for linear aggregation) or to a convex set (for convex aggregation). Moreover,
for convex aggregation to be appropriate, the risk should be convex, since this
guarantees that for any convex combination Zme M WinSm,

Pry (Z wm§m> < 0 Py(3n).

meM meM

If this inequality is not satisfied, this means that drawing one m at random accord-
ing to the distribution (w,,)menr is preferable to forming the convex combination
Y mem Wmdm. Hence, in the non-convex case, model selection may be preferable
to aggregation. Settings where the risk P~y is convex and estimators 3, belong to
a vector space include regression and density estimation, for most commonly used
loss functions, and also convex relaxations of the classification problem, which are
commonly used in practice. Aggregation can potentially lead to large improve-
ments in such cases because the convex hull or linear span of (8,,)mer i @ much
larger set than (8,,)mer, hence the optimal aggregate may perform much better
than the best §,,. However, this improvement does not come for free in general:
with the larger space comes a correspondingly larger difficulty of estimating the op-
timal convex aggregate, compared to the optimal §,,. Tsybakov [102] showed that
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if the best §,, is replaced by the best convex combination in the oracle inequality

7 then the remainder term r,, is necessarily of order %
where n, denotes the size of the validation sample. As faster convergence rates
are achieved over many smooth non-parametric classes, trying to perform optimal
aggregation may be unnecessary or even detrimental, especially if the estimators
in the collection are known to perform well and converge fast.

However, aggregation may be of interest even when the aim is to match the
performance of the best §,, (model selection oracle), instead of the best convex
combination. In density estimation, Catoni [28] and Yang [117] independently
proposed the "progressive mixture rule" and showed that it satisfies an oracle in-

equality (2.3) with optimal constant C' = 1 and remainder term O (M) By

)

in the worst case,

Tsybakov [102], this remainder term is optimal in the worst case. The progressive
mixture rule was extended to least-squares regression by Yang [116] and Catoni
[29], and a generalized version called "mirror averaging" was later defined by Ju-
ditsky, Rigollet and Tsybakov [57], who gave sufficient conditions on a general
loss function v to obtain an optimal oracle inequality. Given a validation sample
(Zy...Z,,), this general procedure builds weights w,, according to the formula:

) 1 o~ exp(=BP(5m))

o 2 S e (BB (5) (28)
k
where  Pyy(t) = %Zw, ;). (2.9)

The weights w,, are exponentially decreasing functions of the empirical risks
Piy(81), so as expected, most of the weight is located where the risk is small.

Compared to model selection methods which use the same validation sample,
mirror averaging and progressive mixture rules satisfy sharper oracle inequalities:
indeed, Catoni [29] and Juditsky et al [57] remark that no selection algorithm can
attain the optimal log | M] convergence rate for the remainder term r, in an oracle
inequality with Sptimal constant C' = 1. However, these procedures rely,
like the hold-out, on splitting the data between a training sample and a valida-
tion sample, with the same disadvantages compared to model selection methods
which use the whole data for training. Moreover, outside density estimation, these
aggregation procedures have free parameters which must be set based on a priori
knowledge about the data distribution in order to obtain the desired optimality
properties. For example, in least-squares regression, Juditsky et al [57] assume that
there are known upper bounds on the exponential moments of the noise Y — s(X)
and on the uniform norm of the regression function s.

Overall, this type of aggregation remains quite similar to model selection in
its methods and goals, as well as its theoretical guarantees. Both are designed
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for ensembles where one of the estimators will perform well in any given situation
— in particular, collections that are adaptive to classical non-parametric classes.
This is why the oracle is the benchmark. In both cases, the idea is to identify one
or a few very good estimators among a given collection — either by choosing one
or by weighting estimators according to their empirical risk.

2.6 Randomized aggregation

A different problem occurs when aggregation is applied to weak estimators. In
that case, matching the performance of the oracle is insufficient. Instead, the
hope is that combining an ensemble of individually poor estimators may yield an
aggregate that is (much) better than all of them.

One cause of poor performance of an estimator §(D,,) is instability or, in other
words, high variance with respect to the training data D,,. Breiman [22] suggested
that this variance might be reduced by aggregating an ensemble (D, ;) ... 5(D;, )
formed by evaluating § over different perturbations of the initial sample D,. More
precisely, Breiman suggested resampling uniformly and with replacement from
D,,, forming the resamples D! = (X,,...,Xy,), where ([;)1<j<n are i.i.d indices,
uniform over [n]. The bagged estimator §°% is then the uniform aggregate over
these resamples, i.e

9 = B, [3(D73)] = E[3(D3)| D,

n

As this estimator is typically difficult to compute, it is often replaced with the
Monte-Carlo approximation

where the (D} ;)i1<j<p are resamples drawn independently from D,,, conditionally
on D,. An alternative is subagging [25], i.e drawing subsamples without replace-
ment, yielding Dy = {(Xi)ier, }, where Tj are i.i.d subsets of some size n; < n.
The subagged estimator is then

B
Asub 2 § DT

Initial theoretical work on bagging (Friedman and Hall [44], Buja and Stuetzle
[26]) focused on cases where the estimator § has a Taylor expansion with respect to
the empirical distribution P,, making exact computations possible. These authors
showed that under this assumption, bagging has second-order effects only. It can
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decrease variance and mean-squared error under some conditions, while generally
increasing squared bias. However, the main interest in bagging lies in its appli-
cation to less regular estimators, such as trees or neural networks, where greater
improvements may be possible. Biithlmann and Yu [25] showed that bagging can
reduce variance and mean-squared error by a constant factor when applied to
discontinuous estimators, namely thresholded least-squares estimators and CART
trees of bounded depth (a type of regressogram). More surprisingly, bagging can
turn inconsistent estimators into consistent ones: Biau and Devroye [13] showed
the consistency of the subagged nearest-neighbour estimator in regression, when
the size of the subsamples is chosen appropriately. Biau and Guyader [14] went on
to prove that this estimator in fact converges at the optimal rate, at least when the
size of the subsamples is optimally chosen. Thus, there is theoretical support for
Breiman’s heuristic that bagging leads to improvements for unstable estimators.
Bagging works by randomizing the sample with respect to which s is unstable, and
aggregating the results.

More generally, one might consider randomizing and aggregating other unsta-
ble components of a statistical algorithm. In particular, several authors suggested
randomizing the construction of CART trees, culminating in the seminal paper by
Breiman [23], which introduced the random forest method. Random forests, which
combine bagging with randomized tree construction, have been very successful in
practice, to the point that they are considered one of the best "black box", gen-
eralist machine learning methods [12]. Theoretical results show that aggregation
of trees can bring substantial improvements over single trees. Arlot and Genuer
[4] showed that for a variety of randomized trees, aggregation increases the rate of
convergence compared to single trees.

2.7 Aggregated hold-out

2.7.1 Description of the procedure

Basic idea The literature on randomized aggregation dramatically illustrates
how basic estimators such as trees, nearest neighbour or regular regressograms can
be turned into high-performance estimators, by being randomized and aggregated.
In the context of model selection, this suggests that the simple hold-out, neglected
in practice on account of its instability, might in fact be turned into an efficient
aggregation method for model selection. The instability of the hold-out is partly
due to its dependence on a free parameter, the subset T' C [n] which is used to
split the data into a training sample (D) and a validation sample. Randomizing
this parameter and aggregating may serve to reduce the variance and expected
risk of the hold-out.
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Reducing the risk If the data are i.i.d and T is fixed (or independent from
the sample D,,), the distribution of the hold-out estimator f%‘o only depends on T’
through its cardinality. As a result, aggregating hold-out estimators /}‘9, for some
collection of subsets (7} ...7Ty) with the same cardinality |7;| = n, is bound to
reduce the risk compared to a single estimator, as long as the risk Pv(+) is convex.
Assuming that it is, Jensen’s inequality implies that for a collection (7} ...Ty)

such that |T1| = ... = |T,,| = ns
1V

m (e i)
=1

Definitions The above considerations lead to the definition of aggregated hold-
out (Agghoo) as a procedure which computes an estimator of the form

v

< %ZE [PA(FE)| =E [Py (2.10)

j=1

1V
:VZJ?Th
j=1

for some collection T = (7})1<j<v of subsets of [n], independent from the sample
D,,. In this thesis, I only consider collections 7T consisting of subsets T} of equal
cardinality n;, as this ensures that ‘}?;?,g improves on the hold-out for a given size
ny = |T}| of the training sample Dy . As for cross-validation, there are several ways
to generate a collection of subsets 7. By analogy with cross-validation, the term
"V-fold Agghoo" is used when 7 = ([n]\I;)i1<j<v, where the validation subsets
(I;)1<j<v are disjoint and of equal cardinality n — n;. "Monte-Carlo Agghoo"
refers to collections 7 made of independent random subsets 7} of the same size
ng, drawn uniformly from [n].

Links between Agghoo, aggregation and cross-validation Aggregated hold-
out combines elements of cross-validation, model selection aggregation, and bag-
ging / randomized aggregation. Agghoo aggregates hold-out estimators and does
so by varying the subset T used to split the sample, just like cross-validation.
Like model-selection aggregation, Agghoo aggregates several different estimators
from a given collection ($,,)mer , and puts greater weight on estimators with low

empirical risk on some validation sample D, . Finally, Agghoo can be obtained
by randomizing the parameter T' of the hold-out, and aggregating the resulting
ensemble. Moreover, just like subagging, Agghoo aggregates estimators that have
been trained on different subsamples D)’ .
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2.7.2 Agghoo in context
Agghoo and similar methods in the litterature

Agghoo and related methods have already been proposed in specific contexts and
in applications. In an article on the hold-out in least-squares regression, Wegkamp
[114] suggested aggregating the hold-out as a sure way to decrease its risk, by
Jensen’s inequality. Jung and Hu [59] proposed the use of "K-fold averaging
cross-validation" (AKCV) in three settings: model selection for least-squares linear
regression, selection of the Lasso regularization parameter and selection of the
regularization parameter for cubic splines. In model selection, AKCV averages
the regression coefficients Bm obtained by least-squares regression on the model
m, while Agghoo averages the predictors X Bm: by linearity, these two methods
are equivalent. On the other hand, for the penalized estimators (§))xso, Jung
and Hu advocate for averaging the hyperparameter A rather than the estimator
Sx. Apart from this difference, the structure of their algorithm is identical to
K-fold Agghoo, involving multiple uses of the hold-out over different folds 7. A
similar "parameter aggregation" idea was proposed by Hall and Robinson [51] in
the context of kernel density estimation. They proposed (su)bagging the kernel
bandwith Acy obtained by minimization of the C'V' criterion, and multiplying the
result by a deterministic factor to correct for the bias. Since CV is bagged, rather
than the hold-out, their method is more computationally intensive than the hold-
out; it also bags a more stable estimator (CV), which may be less advantageous
according to the "randomized aggregation" philosophy. Petersen et al [87] also
studied bagged cross-validation, applied in this case to CART trees parametrized
by their depth. Bagged cross-validation was considered as one of four alternatives.
Unlike Hall and Robinson [51], Petersen et al [87] applied bagging to the final
estimators, not to the hyperparameters chosen by CV, which makes their version
of "bagged cross-validation" much more similar to Agghoo. A fourth combination
of aggregation and cross-validation, "Efficient K-fold cross-validation" (EKCV)
was proposed by Jung [58]. EKCV is a weighted aggregation scheme similar to
those discussed in Section [2.5] except that it uses K-fold cross-validation instead
of a validation sample to estimate the risk of the given estimators.

Agghoo has also been discussed in an applied setting, by Varoquaux et al [107]
and Hoyos-Idrobo et al [54], both for neuroimaging. Hoyos-Idrobo et al proposed
an algorithm for sparse logistic regression which combines clustering, subsampling
and the Lasso penalty. They use the hold-out to select the Lasso parameter within
each fold and aggregate the results, in the same spirit as Agghoo, though the inter-
mediate use of clustering makes it hard to see whether their algorithm is an exact
application of Agghoo. Varoquaux et al [107] investigate Agghoo in a method-
ological paper which compares different parameter tuning strategies for SVM or
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logistic regression with an ¢! or ¢ penalty. They consider "CV -+ averaging" as
an alternative to cross-validation, which they define as follows: "we select for each
split the model that minimizes the corresponding test error and average the models
across splits". Depending on what is meant by "averaging the models", this could
refer to Agghoo — in any case, the concept is very similar.

Comparison between Agghoo and similar procedures

As shown above, there are many ways to combine cross-validation with aggrega-
tion. Agghoo stands out because of the simplicity and generality of its definition.
Compared to AKCV, EKCV and other methods which average hyperparameters
instead of estimators, Agghoo only requires specification of a risk function v and a
collection of estimators ($,,)mer- In contrast, aggregating hyperparameters only
makes sense if the set M is convex — which is not the case when the parameter m
is a set (as in model selection) or an integer (as in k—nearest neighbours, for ex-
ample). Moreover, hyperparameter aggregation depends on the specific indexation
of the set {$,, : m € M}, whereas Agghoo does not. This may be a source of am-
biguity when several parametrizations are possible, as for penalty-based methods
$y = argmin,cp {P,y(t) + AQ(¢)}, which often have an alternative "constrained
formulation"
Sc = argmin P,v(t),
te E:Q(t)<C

as well as Lagrangian dual problems. For example, support-vector machines can be
parametrized either by the regularization parameter A or by a constraint parameter
C' (see [95]). Agghoo will yield the same result whatever the parametrization —
at least if it is performed over the whole regularization path (§,) >0 — whereas
hyperparameter aggregation requires the user to choose whether to average A or C'.
Compared to bagged cross-validation defined by Petersen et al [87], Agghoo is less
computationally expensive, since it performs only a single fold of cross-validation
on each bagging subsample. Moreover, as it aggregates the hold-out, which is less
stable than cross-validation, Breiman’s heuristic for bagging [23] suggests that it
may yield greater improvements.

In practice, the performance of Agghoo and similar methods has generally
been good. Jung and Hu [59] found lower risks for AKCV compared to K-fold CV
(with the same K) in all the settings which they considered (model selection for
linear regression, the Lasso and smoothing splines). Varoquaux et al [107] found
that "CV + averaging" performs well in terms of prediction error, especially in
sparse models and when overall prediction accuracy is poor. They also noted that
averaging provides a noticeable improvement in stability compared to ordinary
cross-validation. My simulations in the sparse-regression setting (Chapter [4l) con-
firm these findings: Agghoo can perform significantly better than cross-validation,
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and its advantage is greatest when overall prediction accuracy is low. Petersen et
al [87] provide a more negative assessment: they conclude that it is better to first
bag CART trees, then select their depth by cross-validation, rather than to bag
the cross-validation procedure itself. Their explanation is that bagging changes
the bias-variance tradeoff between different depths, leading to a suboptimal choice
of depth if cross-validation is used on non-bagged trees.

This conclusion assumes that bagging is the main factor driving performance.
While this seems to be the case for CART trees (at least in the simulations of [87]),
in general, Agghoo does not just aggregate single estimators §m(DT:Cj) trained on
different datasets, but different estimators §mj(D,,7:j). Hence, bagging is not the
only factor affecting its performance, there is also aggregation over different hy-
perparameters 7;. If the estimators §,,(D,) are stable as functions of the data
D,,, but unstable with respect to their parameter m, then the gains due to aggre-
gating different estimators §,, may significantly outweigh the benefits of bagging.
This aggregation of different estimators s A is also a potential advantage of Ag-

ghoo compared to methods which aggregate different hyperparameters S\j. By
definition, the output of such a method belongs to the original collection (5y)x>o,
whereas the output of Agghoo belongs to its convex envelope. Thus, a method
based on hyperparameter averaging can never outperform the model selection or-
acle argminge s .\~oy Py(t), whereas this is possible for Agghoo.
For example, consider the problem of estimating a density s € L?*([0;1]) that
1

is symmetric (s(3 + z) = s(3 — «)) using empirical orthogonal projections on the

cosine basis ¢;(x) = v/2 cos(2mjx). The estimators,

k
S(Dn) = 14> (Papi)e;,  1<k<n,
j=1

are linear with respect to the empirical distribution P,, so bagging has no effect: at
best, it recovers the original estimator trained on the full dataset. Thus, Petersen
et al’s proposal of cross-validating bagged estimators [87] is equivalent in this case
to ordinary cross-validation. Moreover, as the parameter is an integer, averaging
it is impossible, and if an ad-hoc aggregation method is chosen (for example,
taking the median), it will necessarily choose one element of the original collection
(8% )1<hksn-

On the other hand, Agghoo constructs an average of the §;, which can poten-
tially perform better than any of them. In least-squares density estimation, the
following simulation shows that this can indeed happen. An i.i.d sample of size
n = 1000 was generated according to the density s(z) = gﬂmf%\ <1 and Monte-Carlo
Agghoo and CV were applied to the collection (8y)1<k<n, With different parameters
7= " and V' (the number of splits used).
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Risk of Agghoo and CV
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Figure 2.1: Performance of Agghoo and CV in density estimation using trigono-
metric series. Agghoo in black, CV in blue, oracle in red.
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Figure [2.1/shows the average (squared) L? risks obtained over 1000 repetitions.
The red line represents the average risk of the oracle. For large enough V' and
a range of values of 7, Agghoo performs significantly better than the oracle (at
7 = 0.8, the gap is about 4.5 standard deviations). The simulations I conducted
during this thesis show that this happens also with the Lasso (Chapter [4)).

This property is not universal, however. In Chapter [4 I show through a sim-
ulation that when there is a low-dimensional true model in sparse regression with
the Lasso, Agghoo may be inferior to cross-validation. In general, what can be
said about Agghoo is that it is safe in the sense that by equation (2.10)), it always
improves on the hold-out when the risk measure P~ is convex, a property which
holds for many classical statistical problems, including least-squares regression,
quantile regression, least-squares density estimation, and many others. There is
no equivalent guarantee for cross-validation or for hyperparameter averaging, to
the best of my knowledge. For the same convexity argument to apply to hyperpa-
rameter averaging, the function A — P~($,) would have to be convex, a property
which depends on the collection §, and potentially also on the distribution P and
the sample D,,.

2.7.3 Contributions: oracle inequalities for Agghoo

General theory Because Agghoo’s performance is always better than that of
the hold-out, in the convex setting, any oracle inequality satisfied by the hold-out is
also satisfied by its aggregated version. In particular, the general oracle inequalities
described in paragraph also apply to Agghoo, which suggests that Agghoo,
like the hold-out, behaves well in a wide variety of contexts. Theorem of
Chapter 3| states such a general result, following from the corresponding Theorem
[3.7.2 for the hold-out.

From general theory to its applications Since a general theory exists, one
might hope to show that Agghoo and the hold-out perform almost as well as the
oracle in general. However, the general theorems do not tell us whether the margin
assumption holds in a given setting and if so, for which function w. Without
knowing the function w, it is also hard to know whether the remainder term r,, in
the oracle inequality is large or small. In order to work out more intuitive and ex-
plicit conditions under which a margin hypothesis holds, and in order to explicitly
compute the remainder term 7, and verify that it is negligible, it is necessary to
consider more particular settings in which more is known about the risk function
~ and the collection of estimators. In this thesis, I focused on two such settings:
kernel methods (as defined in equation (2.1))) with a Lipschitz-continuous loss func-
tion (Chapter [3)), and selection of the "sparsity" of sparse estimators in regression
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with the Huber loss (Chapter . These are two settings in which the applica-
tion of Theorem of Chapter [3| allows a significant improvement compared to
previously known results on the hold-out and cross-validation. In the following
three sections, I discuss how the results of Chapters [3| and {4] of this thesis com-
pare to the literature in three main problems of statistical learning: classification,
regression and density estimation. As argued in paragraph [2.3.2] methods based
on traditional margin hypotheses have trouble dealing with unbounded losses: it
is therefore in such settings that the techniques developed in this thesis may yield
improvements. Thus, a major factor in this discussion will be the boundedness or
unboundedness of the risk in various settings.

2.8 Hold-out and Agghoo in classification

2.8.1 Setting

In classification, the aim is typically to minimize the probability of misclassification
of the label Y € {1... M} by a classifier t : £ — {0,..., M —1} given input X € Z,
that is, to minimize P(¢(X) # Y) on a new, independent observation (X,Y). If
t = §,, is an estimator, this measures the generalization ability of the classification
rule §,,. This risk corresponds to the loss function (¢, (x,y)) = Ly, which is
uniformly bounded. I will focus here on the case M = 2 (binary classification),
which is simpler.

2.8.2 Hold-out

For the loss function v(¢, (z,v)) = Ly)x, of binary classification, the general mar-
gin hypothesis turns out to be related to similar assumptions introduced to
study empirical risk minimization, and also called "margin hypotheses". The most
well-known among those are Tsybakov’s margin assumption [103]:

vh>0, P([E[Y|X]-1i|<h)<Cn’ (2.11)

for some constants C', f > 0, and Massart’s margin assumption (Massart and
Nédélec [TT]):
P (|E[Y|X] - 1| <h) =0,

for some h > 0.
Under one of these two assumptions, equation (2.6) holds for a function w :
x — Ca% for some constants C' > 0 and 6 € (0;1]. Hence, Massart’s Theorem

[76, Corollary 8.8 applies, as x wl@) g non-increasing and v is bounded. The

optimality of the remainder term r, given by the application of [76, Corollary
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8.8| is less obvious. However, because the margin assumption plays a similar role
in the study of empirical risk minimization as it does in the study of the hold-
out, Blanchard and Massart [18] argue that 7, is typically much smaller than
the risk of an empirical risk minimizer §,, over a finite-dimensional model m,
hence smaller than the risk of the oracle in model selection. Moreover, results of
Lecué [67] show that the hold-out satisfies an oracle inequality with minimax-
optimal remainder term r,, under the Tsybakov margin assumption . Thus, in
classification, the hold-out is nearly optimal, at least up to the difference between
estimators §,, trained on samples of size n and n;, = ™n < n.

2.8.3 Contributions: aggregating the hold-out
Majhoo

Aggregated hold-out does not apply directly to classification, as averaging makes
no sense over a finite set of labels. However, it is common practice to use majority
voting between classifiers instead of averaging to perform aggregation in classifi-
cation (this is used, in particular, by random forests). In Chapter [3, I consider
the possibility of aggregating the hold-out by majority voting among classifiers.
Together with Sylvain Arlot and Matthieu Lerasle, we show that when hold-out
classifiers are aggregated using a majority vote (a variant of Agghoo that is called
"Majhoo"), the excess risk {(s,-) increases at most by a constant factor, equal to
the number of classes (Proposition [3.10.1)). This means that Majhoo, the analogue
of Agghoo, shares the good properties of the hold-out — at least in terms of rate
of convergence — despite the risk not being convex. More precisely, we prove that
Majhoo satisfies an oracle inequality (Theorem under the Tsybakov margin
assumption (2.11)), with leading constant 3. The factor C' > 2 which appears in
the oracle inequality is the price to pay for the lack of convexity of the 0 — 1 loss.

How Agghoo applies to classification

Majhoo is not necessarily the only way to aggregate the hold-out in classification.
Because the 0 — 1 loss is very difficult to optimize in practice, it is frequent to
introduce a surrogate loss v,(t, (x,y)) = ¢(yt(z)), where ¢ is a convex function,
and t is a real-valued function. Note that for the surrogate problem, the labels
are {—1;1} rather than {0;1}, and the sign of ¢ predicts the label y € {—1;1}.
Provided the surrogate loss is calibrated for classification, the minimizer of the
risk E[p(Yt(X))] leads to a Bayes optimal classifier, and there is a quantitative
relationship between the excess risk ¢,(t) with respect to 7, and the excess risk
with respect to the 0 — 1 loss [10].

Because the functions ¢ used in the surrogate problem are real-valued, they
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can be averaged. Thus, given real-valued estimators §,,, one can apply Agghoo to
the 5,,, measuring the risk with the surrogate loss v, and aggregating by averag-
ing. Because the surrogate loss 7, is convex, Jensen’s inequality (equation ([2.10))
applies and Agghoo improves the performance of the hold-out (as measured by
the surrogate loss). One could also consider using the hold-out with 0 — 1 loss to
select m, and aggregating the §,, by averaging. However it is better for theoretical
purposes at least to consistently apply Agghoo: if the hold-out uses the 0 — 1
loss, the surrogate risk of f}‘o is not controlled by the oracle inequalities described
in paragraph [2.3.2] which assume that the same contrast function used by the
hold-out to estimate risk is used to assess its performance theoretically.

2.8.4 Contributions: Agghoo and the hold-out with unbounded
contrasts

Unbounded contrasts in classification

Assume that the loss function v, is used for risk estimation. A difference with the
original classification problem is that the contrast v4 is unbounded. A bounded
contrast can be recovered by restricting the predictors ¢t to taking values in some
bounded interval [—1; 1], for example by truncation, that is, replacing any predictor
t with £ = max(—1,min(¢,1)). Moreover, when the minimizer of E[¢p(Y#(X))] is
a function s : X — [—1;1], as in the case of the hinge loss [95, Table 12.1],
truncation always improves performance: E[¢(YZ(X))] < E[¢(Yt(X))]. However,
such truncation may be undesirable for computational reasons, notably because
it is non-linear. There are also contrasts, such as the logistic loss, for which
the optimal predictor s is not bounded independently of the distribution P [95]
Table 12.1], in which case truncation may degrade performance according to the
surrogate loss (but not the 0 — 1 loss). If truncation is not performed, then the
contrast 74 is unbounded. Paragraph[2.3.2]argues that for unbounded contrasts, no
margin hypothesis can hold for a function w satisfying Massart’s assumption
that @ is non-increasing.

SVMs

An important class of methods using surrogate losses in classification are the SVM
classifiers and, more generally, kernel methods in the sense of equation using
as loss function a surrogate classification loss 74 (the classical SVMs correspond
to the hinge loss ¢(u) = (1 — u);). Most functions ¢ used for this purpose are
Lipschitz: this includes the hinge loss, logistic loss and also the Huber loss of
classification [95, Table 12.1]. For such loss functions, Chapter[3of this thesis states
and proves oracle inequalities that do not require the predictors §, to be uniformly
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bounded: thus, truncation is not necessary. Instead of uniform boundedness, the
results of Chapter |3|assume that the regularization parameter A\ has a lower bound
Am(n), which is allowed to tend to 0. Chapter |3|in fact studies kernel methods in
general, not just in the classification setting. Regression is its main focus, since it
is in regression that unboundedness is most important. Hence, I will discuss the
results of Chapter [3]in some more detail in Section below.

2.9 Hold-out and Agghoo in regression

In regression, the aim is to predict a real variable Y € R using covariates X € X
and predictive functions, or predictors ¢t : X — R. The residual y —t(x) is the gap
between the prediction #(x) and the observation y. Risk is usually measured using
a non-negative, convex function of the residual (¢, (z,y)) = ¢(y — t(z)). This
includes the square loss ¢(x) = z? of least-squares regression, as well as Lipschitz
losses used in robust regression, such as the L' loss or absolute value ¢(z) = |z| of

least-absolute deviations and the Huber loss ¢, : x +— ‘%2]1|$|<C +c (x — g)

2.9.1 State-of-the-art: hold-out in bounded regression

Though in regression the risk is generally unbounded, there are situations in which
the variable Y is known to be bounded: for example, the statistician may choose to
replace an unbounded variable Z with Y = g(Z) for some function g : R — [0; 1].
In this case, it makes sense to only consider predictors ¢ that also range in [0; 1],
since any other predictor ¢ can be improved by replacing it with max(0, min(¢, 1)).

Bounded least-squares regression

In bounded, least-squares regression where it is assumed that the variable Y and
the predictors ¢ all take value in the interval [0; 1], as noted by Massart [76], the
margin assumption (2.6 holds with linear w, because of the inequality:

2 2
E[((V = t(X))? = (v = 2(X)))"] <21tz = til}agx) < 2 (2 = sll 2y + 12 = sl )

which implies that (2.6 holds with w(u) = V2u. As a result, Massart’s oracle
inequality for the hold-out [76, Corollary 8.8] applies and yields a remainder term
r, = QO <%Ml> in the oracle inequality (2.3)), where n, < n denotes the size of the

validation sample. A very similar result was proved directly by Gyorfi et al in 2002
[48, Chapter 7|. Gyorfi et al [48, Chapter 7| show that this oracle inequality can be
used to construct adaptive estimators with respect to non-parametric classes: in
this non-parametric context, the remainder term r, = %i\/ll is negligible. Thus,
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the hold-out yields an optimal oracle inequality in a non-parametric setting. The
oracle inequality of van der Vaart et al [105] yields a similar result for cross-
validation, albeit for a non-standard form of CV where the final estimator is not
retrained on the whole sample (see section for more details). For the leave-one
out, Gyorfi et al [48, Chapter 8] prove that CV satisfies oracle inequalities when
applied to kernel and nearest-neighbour estimators. These two classes of estimators
share the property of being bounded by max;<;<, |Y;|, so they are indeed uniformly
bounded when Y € L*. For both types of estimators, [48, Chapter 8| states oracle

log | M|

inequalities with remainder term r, = O -

), which is larger than for the

hold-out when n, is of order n. In the case of kernel estimators, [48, Chapter §]
also proves an oracle inequality with remainder term % Compared to previous
oracle inequalities, n appears in the remainder term instead of n, and estimators
are trained on samples of size n — 1, which is an improvement, but the dependency

on | M| is significantly worse.

Bounded regression with Lipschitz loss functions

For L—Lipschitz functions ¢, the boundedness of Y is not necessary to the appli-
cation of |76, Corollary 8.8|, since for any predictors t1, t5,

|6(y — t1(2)) — ¢y — t2(2))| < Llta(x) — t2(z)],

which does not depend on y. Hence, if the predictors ¢ are bounded (for example
if they take value in [—1;1]), the loss function « : (¢, (z,y)) — ¢(y — t(x)) can be
replaced by the bounded loss function (¢, (z,y)) — ¢(y — t(x)) — ¢(y — to(x)) for
the purpose of theoretical analysis: this does not change s or ¢(s,t), nor does it
affect any algorithm based on empirical risk minimization, such as the hold-out.
Considering now the margin assumption, the Lipschitz property of ¢ implies that
for any r € [0; 2]

Var (¢(Y = 11(X)) = (Y — t2(X))) < L? ||ty — tall 7o) < L2 [t — o]l 227 12 = a7
so that to prove a margin hypothesis (22.6)), it is enough to show that

Us,t) > k||t — |7t (2.12)
for some r,60,k > 0, a self-calibration inequality in the terminology of Steinwart
[97]. Steinwart [97] gives conditions on the distribution of X under which a self-
calibration inequality holds for the "pinball loss" of quantile regression — in
particular, for the absolute value loss of median regression. Eberts and Steinwart
[40] later used this analysis to derive convergence rates for the family $, , of kernel
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methods using the pinball loss and a Gaussian kernel with parameter . To enforce
boundedness, they "truncate" the estimators 5, at some level M > 0, where the
"truncation" operation replaces a given function ¢ with

Truncy(t) : x — min(max(t(x), —M), M). (2.13)

They showed that the hold-out can be used to obtain an adaptive estimator with
respect to their rates. As in classification, the margin assumption plays a similar
role in the analysis of the (penalized) empirical risk minimizer and in that of the
hold-out, which explains why the hold-out yields an adaptive estimator.

2.9.2 Unbounded regression

If the estimators (8,;)meam are unbounded, then the contrast v(S,,, (z,y)) will
also be unbounded in general, for both the least-squares loss and Lipschitz losses,
even if the variable Y € L. One solution to recover a bounded problem is
to truncate the estimators as in equation ([2.13). Truncation makes sense when
the target regression function s is known to be bounded by some fixed constant
M > 0. However, this is typically not the case. If ||s|| is unknown and a
constant M < |[/s||,, is chosen, truncating the estimators 5, at level M will in
general make them inconsistent. Moreover, truncation does not appear to be used
in practice. In practice, CV is often applied to collections of estimators that are
not uniformly bounded in general, even if Y is, such as least-squares estimators on
linear models. Thus, there is reason to consider unbounded regression as a subject
of theoretical research. However, the considerations of paragraph [2.3.2] as well
as the inconsistency of some least-squares estimators [48, Chapter 10, Problem
10.3| suggest that oracle inequalities for the hold-out may not straightforwardly
generalize to the unbounded setting. Accordingly, efforts to relax the constraints
of the bounded regression setting have focused on specific collections of estimators
of practical interest.

Contributions in kernel regression

The standard kernel methods (equation (2.1))) a priori lead to unbounded esti-
mators, which is why Eberts and Steinwart [40] used truncation. However, the
hold-out and cross-validation still seem to be the standard approach to selecting
their parameter \ in practice [52, Section 12.3.8]. This suggests that truncation
and the corresponding boundedness might be unnecessary to obtain oracle inequal-
ities in this case.

However, if the estimators Sy are unbounded, assuming that ¢ is Lipschitz, a
margin hypothesis of the form cannot hold with a sublinear function w, since
Var (p(Y — t1(X)) — ¢(Y — t5(X))) is of order [[t; — ta||7» (quadratic), whereas
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U(s,t1) + (s, t2) is of order |[t; — s||;1 + [[t2 — s||;: (linear). In particular, |76,
Corollary 8.8] cannot be applied. The general oracle inequality proved in this
thesis (Chapter , Theorem is potentially interesting in this situation, since
it allows to make use of margin conditions with super-linear functions w.

In joint work with Sylvain Arlot and Matthieu Lerasle, we applied our gen-
eral Theorem on Agghoo to the case of kernel estimators with a Lipschitz
loss function, and proved an oracle inequality of the form (Theorem of
Chapter . These are the first results relaxing the boundedness assumption for
kernel methods, to the best of my knowledge. Our result applies to the standard
kernel estimator parametrized by A, as in equation (2.1)), unlike Eberts and Stein-
wart [40] who considered truncated estimators Truncy($y). Our hypotheses can
be divided conceptually into two parts: a generalized margin hypothesis (called
hypothesis SC,,), and extra assumptions needed to handle the unbounded case.
In the case of the L' loss ¢(u) = |u|, we show that hypothesis SC,,, follows from a
special case of the conditions considered by Steinwart [97] in his analysis of mar-
gin hypotheses for the L' loss. These conditions depend only on the behaviour of
the conditional distribution of Y given X in the vicinity of s(X), hence they are
completely orthogonal to the question of boundedness of s, or of the estimators
5x. The extra assumptions which we need in the unbounded case, relative to the
bounded one, state that there is a lower bound on the regularization parameter
A, of the form A > \,,(n), and that the kernel K is bounded: [|K||_ < 4o0. The
remainder term 7, in our oracle inequality depends on \,,. When the size of the
validation sample n, is of order n, that is, n, = (1 — 7)n, taking A,, as small as %
yields r, = O(\/ia), up to logn terms. This is sufficient to yield adaptation to some
range of convergence rates among those obtained by [40] for the Gaussian kernel,
with the caveat that we only consider selection of A, not of the kernel bandwidth v.

State-of-the-art on cross-validation: the Lasso

In contrast to kernel methods, the (unmodified) Lasso has been a focus of re-
cent research on cross-validation. The Lasso denotes a penalized empirical risk
minimizer over a linear model, with square loss and ¢! penalty, or in other words,

n d
- 1
0, € argmin {Z Z(YZ — (0, X;))* + )\Z |(9j\} :
j=1

d
fcR =1

This estimator is a priori unbounded, since no constraint is imposed on 6. The
Lasso is used in situations where it is infeasible to directly estimate the regression
coefficient 0, = argmingcgs E[(Y — (0, X))?] by linear least-squares, typically be-
cause the dimension d is too big (high-dimensional setting). Interest in the Lasso
comes from the fact that if 6, is sparse, i.e if it has only s, < n non-zero entries,
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then the risk of the Lasso may be much less than that of the least-squares esti-
mator over R? — provided ) is well chosen. It can be as small as S*l%l under
some conditions on X [I5], which is the minimax rate of convergence under the
sparsity assumption ||0,[|, < s. [90]. Attaining these rates requires choosing A as a
function of the noise variance [15], which is unknown. In practice, cross-validation
is typically used in order to choose A as well as possible. For example, the R imple-
mentations of the Lasso (glmnet, lars) all propose cross-validation as a subroutine
to automatically choose A. Theoretical work on the cross-validated Lasso has fo-
cused on proving that it adapts to the theoretical risk estimates, i.e that the same
bounds apply to the Lasso as to the theoretically chosen A, based on knowledge of
the noise variance. In 2013, Homrighausen and MacDonald [53] proved that the
cross-validated Lasso converges at the fast rate S*l%l up to log terms, albeit under

. : 1
some rather restrictive assumptions on A (A > ¢ %l for some constant ¢) and

on the distribution: truth of the model (i.e E[Y|X] = (6., X)), Gaussian noise,
and a diagonal-dominant covariance matrix E[X X7]. In 2015, Chetverikhov, Liao
and Chernozhukov [33] proved a similar result under less restrictive assumptions.
They required in particular a lower bound on the eigenvalues of submatrices of
the variance-covariance matrix E[X X7]. These results have the common property
that they require very little in the way of boundedness assumptions on the predic-
tors « — (A, x): in the first case, [53] only requires coordinatewise boundedness
of X whereas [33] only requires boundedness of ||X||,.c = maxi<;j<q|X;| in some
L7 space, not in L. On the other hand, they show adaptation only to a fixed
theoretical rate of convergence, whereas an oracle inequality implies adaptation to
whatever rate the optimal Lasso estimator happens to converge at in any given
situation.

State-of-the-art on cross-validation for selecting among linear models

Linear model selection in regression deals with collections of estimators composed
of empirical risk minimizers §,, over vector spaces of functions m € M called
models. Unlike kernel and nearest-neigbour regressors, discussed earlier, least-
squares estimators over linear models may be unbounded even when the data Y
is bounded [48, Chapter 10]. Therefore, even the case of bounded Y data is a
non-trivial extension of the bounded regression setting of paragraph [2.9.1]

In the least-squares setting, Navarro and Saumard [83] proved oracle inequali-
ties for model selection of a certain kind of model, which possesses a "strongly lo-
calized basis". Their results apply to the standard form of V-fold cross-validation,
as well as to the bias-corrected "V-fold penalization" method introduced by Arlot
[2]. The oracle inequalities hold with high probability, instead of in expectation,

and have a negligible remainder term r, = O (@) Like [105] and results for
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the hold-out, their oracle involves estimators trained on a sample of size n; = %n

instead of the whole sample. They assume uniform boundedness of Y and of the
"true" projections $,, of s on the model m in L?(P), but not uniform boundedness
of the estimators §,, themselve. As a result, they can use the standard least-squares
estimators §,, and do not have to modify them to make them bounded.

In the case of the hold-out, boundedness assumptions were further relaxed by
Wegkamp [114] for selection of general estimators in least-squares regression, with
a focus on model selection. He considers the additive regression model, in which
Y; = s(X;) + &, for i.i.d noise variables ¢;, independent from X;. Wegkamp makes
weak moment assumptions on the noise ||g;]|;, < 7, (for p > 2), and obtains
a remainder term r,, which depends polynomially on | M|, instead of the log | M|
dependency in results which make stronger, exponential moment assumptions on €.
Wegkamp assumes that ||s — ,,||, < B but notes that his results hold under the
weaker assumption that

/(gm —s5)'dPy < R/(ém — 5)%dPx, (2.14)

where Px denotes the distribution of X. This assumption is closely related to
margin hypotheses, by the following argument. For any point (z,y) and any
(m,m’) € M,

(= m(@))* = (= 30 (2)))” = (B(@) = 80 (2))* (2 = Spu() — Sy (2))*,

Let (X,Y) ~ P be a new observation independent from the estimators §,,. Sup-
pose that Y = s(X) + ¢ for a centred variable ¢ independent from X, then as-
sumption (2.15)) implies that, for some constant ,

P (y(m) = Y(3m))* < HELE) 1 = ol + P (50 = 500)*(25 = S0 = 300)?]
< B[ 1t — a2y + 4 (13m = sllfary + 5 = 5134

2 2
< (BB + #R) (It = sl + It = sy )

thus equation (2.6) holds with w(u) = /8E[e?] + kRu. Equation ({2.14)) suffers

from two problems. First, it depends on the unknown regression function s, which
makes the assumption hard to verify. Secondly, it is inhomogeneous: the left-
hand side grows like a fourth power of s,, — s, while the right-hand side grows
quadratically. This means that equation (2.14)) cannot hold with §,, an arbitrary
large element of a vector space m: like other margin assumptions used in the
literature, it implicitly imposes a boundedness constraint, albeit around s rather
than 0. A homogeneous version of would take the form

180 = sy < # 180 — sl (2.15)
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for some constant k.

Such an L* — L? norm inequality was used by Audibert and Catoni [7] to prove
risk bounds for a robust risk-minimization procedure. Other norm inequalities
have been used to study risk-minimization methods in the unbounded setting.
Such inequalities have the general form

vt € m, ||t||Lt1(X) Sk ||t||Lz7(X) J (2.16)

where ¢ > p, m is the model on which the risk is to be minimized, and « is treated
as a constant (at least in the examples below). L? — L! (¢ = 2, p = 1) inequalities
appear in the work of Lecué and Lerasle [68] on median of means estimators. For
the empirical risk minimizer (i.e least-squares), Mendelson [81I] used the "small
ball assumption", which is equivalent to an L? — L' norm inequality [68], while
Audibert and Catoni [7] used an L™ — L? inequality (¢ = +o0, p = 2).

This raises the question of whether similar hypotheses might yield oracle in-
equalities for the hold-out, which is also an empirical risk minimizer (on the col-
lection of functions 8,,(DL),enm)-

Contributions: Agghoo and the hold-out applied to sparse linear pre-
dictors in robust regression

In chapter[4] I investigate the application of the hold-out and Agghoo to collections
of linear regression estimators = — ¢y + (0%, ) which are sparse in the sense that

il = [ 40} < o

i.e the coefficients 65 have less than k non-zero components. The risk of the
estimators is assessed using the Huber loss, a classic Lipschitz loss function used
for robust regression [55].

The integer k parametrizes the complexity of the estimators 0,. Estimators
satisfying equation (2.17)) arise naturally from sparse regression methods such as
best-subset, forward stepwise [52], Section 3.3| and LARS [42] (which add variables
one by one). They can also be extracted from the regularization path of the
Lasso, as suggested by Zou et al [120]. Compared to linear model selection, the
estimators are allowed to range over the whole, high-dimensional space R? (instead
of a subspace m); compared with the standard Lasso, the difference is that the 0y,
are assumed to have a fixed degree of sparsity (less than k non-zero coefficients).

In this setting, I prove that the hold-out satisfies an oracle inequality of type

logn

- > , Where
v

(2.3]), with a leading constant C' > 1 and a remainder term r, = O <
n, denotes the size of the validation sample. If n, is of order n, this remainder

term is smaller than the convergence rates of sparse regression, discussed in the
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section[2.9.2] This implies that the hold-out is adaptive with respect to these rates.
Only a weak, non-uniform boundedness assumption is made: the estimators 6, and
the covariates X are assumed to be bounded by some polynomial in the sample
size n. Similarly to the RKHS case (section , a distributional assumption
is also needed, which depends only on the conditional distribution of the noise
Y — s(X) given X, and not on the estimators §,,. Finally, the unboundedness of
the estimators is dealt with through a norm inequality of the form

v0,[10llp < 2K = [[{0, X) oo < r(n,m0) [[(6, X2, (2.18)

Ny
logn

for some constant x(n,n,) such that x(n,n,) = O as n, — +o00. Com-

pared to the norm hypothesis made by [114] in model selection, this inequality does
not depend on the unknown regression function s and it is homogeneous, mean-
ing that it may hold over entire vector spaces (which is what is required here).
Compared to the homogeneous norm-inequalities discussed in section m,
equation ([2.18)) corresponds to the case ¢ = 400, p = 2, like the hypothesis made
in Audibert and Catoni [7]. An important difference with the norm inequalities of
section is that equation allows the constant x = k(n) to grow with n at

_n_
logn

In Chapter [4 I give two examples where equation (2.18)) holds under reasonable
conditions.

rate (assuming that n, is of order n), instead of treating x like a constant.

Conclusion: contributions to the theory of the hold-out in regression
The theoretical contributions of Chapters |3 and 4] of this thesis improve previously
known oracle inequalities for the hold-out in regression by relaxing boundedness
assumptions on the estimators. In the RKHS case, this does away with truncation
of the estimators, so that the new oracle inequality holds for the standard RKHS
method (as used in practice), rather than a modified version. For sparse estimators,
in comparison to previously known oracle inequalities, my results combine weaker
assumptions on the covariate X and weaker bounds on the estimators 6, for a
similar conclusion: an oracle inequality of type with a negligible remainder
term. This provides better theoretical justification for the use of the hold-out and
of Agghoo in regression.

2.10 Hold-out, cross-validation and Agghoo in L?
density estimation

Given a sample 71, ..., Z, drawn from an unknown measure P, L?-density estima-
tion is concerned with estimation of the density s of P with respect to a reference
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measure 4, where the quality of an estimate ¢ is measured by ||t — S“iQ( .- This can

be formulated as a risk-minimization problem, since for v(t, 2) = ||t”iz(#) —2t(z)
and Z ~ P,

It = sl1Z2(y = Bz[1(t, 2)] = Ez[y(s, 2)] = (s, 1),

2.10.1 State of the art: cross-validation in least-squares den-
sity estimation

The least-squares setting has the particularity that the function ¢ need not be
bounded for a margin hypothesis to hold. If it is assumed that the underlying
density s is uniformly bounded (||s||, < 4+00), then for all functions (¢4, 2),

Var (41(2) = t2(2)) < /(tl(Z) — t2(2))*s(2)dpu(2)
< lsllog Mtx = t21l72,

2
< lslloe (Mer = sl 2y + l1t2 = sl 2 )

This is a margin hypothesis of the form (2.6) with w(u) = /||| u, and it holds
without any assumption on the functions ¢,t;. However, the contrast v(t,z) =
||t||i2(u) — 2t(z) remains unbounded whenever ¢ is unbounded. Nevertheless, for
important classes of (unbounded) estimators, cross-validation has been proved to
satisfy oracle inequalities. Dalelane [35] showed that leave-one-out cross-validation
satisfies an oracle inequality when used to select the bandwidth of a kernel density
estimator. For selection of empirical risk minimizers on linear models, Celisse [30]
proved that leave-p-out cross-validation satisfies an oracle inequality. Arlot and
Lerasle [5] proved similar results for other cross-validation procedures, including V—
fold and Monte-Carlo cross-validation. Their oracle inequalities are of type (2 ,
with an oracle trained on the whole sample and a remainder term r, = O (log")
Both make an assumption similar to equation (2.18), namely that for all models
m with orthogonal basis (¢;)jea(m);

sup |t =1 Y & <V

tem:||t] 2 <1 eatm)
0.)
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2.10.2 Contributions: applications of Theorem to least-
squares density estimation

Chapters [5] and [6] study hold-out and Agghoo applied to least-squares density
estimation in L?([0; 1]) using the empirical Fourier series estimators

k

$0(Dn) = 14> Py,

Jj=1

where 1 : © — V2 cos(2mjz). The methods developed in Chapter (3| of this thesis
(Theorem also apply in this setting. In chapter [6 Theorem is used to
derive a precise oracle inequality for the hold-out (Theorem which plays an
important role in the proof of the other results of that chapter. This result cannot
be derived from the more general results of section [2.10.1] That it nonetheless can
be proved using Theorem illustrates the flexibility of the general result.

2.11 Contributions on the hold-out and Agghoo:
beyond oracle inequalities

Oracle inequalities show that Agghoo and the hold-out are good model selection
procedures in theory, in that they perform almost as well as the best estimator in
the given collection. However, other procedures, such as cross-validation, satisfy
similar bounds, so these results cannot tell us which of the two methods performs
better in a given situation. Moreover, the results of my simulations (Figure ,
sections and , in which Agghoo sometimes performs better than the
model selection oracle, cannot be explained by an oracle inequality with
constant C' > 1 and remainder term 7, > 0. The interest in Agghoo is driven in
large part because of such simulation results, where Agghoo clearly outperforms
model selection methods such as cross-validation. For practical as well as for
theoretical reasons, it would be interesting to know when such situations occur, and
for which values of Agghoo’s parameter. This would allow practitioners to make
the right choice between Agghoo and its alternatives, and to correctly calibrate
Agghoo’s parameters. From a more theoretical perspective, an answer to such
questions would shed light on the behaviour of the hold-out and of hyperparameter
aggregation.

In Chapters 5] and [6] of this thesis, I develop a very precise analysis of the hold-
out and of Agghoo in order to answer such questions in a specific setting, namely
least-squares density estimation using empirical Fourier series. More precisely, I
study L? density estimation of a symmetric density function s € L?([0;1])
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using the estimators
k

$:(Dn) =14 ) Pu(g))e;,

J=1

where ¢; = v/2cos(2mj-) is the cosine basis. The choice of this setting is mo-
tivated by a trade-off between its interest to theoreticians and practitioners and
the technical difficulty of its study. The Fourier series estimator is certainly us-
able in practice, and from a theoretical viewpoint, it adapts to the whole scale of
Holder /Sobolev spaces on the torus. On the other hand, the algebraic structure of
the trigonometric polynomials and the simple formula available for the estimators
makes theoretical analysis easier, which allows for more accurate results. More-
over, Figure suggests that Agghoo can indeed outperform the oracle in this
setting.

To facilitate theoretical analysis, I make some assumptions on the Fourier co-
efficients 6, of s on the cosine basis. The first hypothesis is that 9? should be a

non-increasing sequence: this guarantees that the (expected) risk E[||$, — s||*] is
a convex function of the parameter £k, and that it has a unique minimum k,. The
other assumptions state roughly that the sequence (9]2 decreases polynomially and
that it does not "jump" — there are no sudden drops where it suddenly decreases
very fast. Chapters [5] and [f] share these assumptions.

To understand the behaviour of the hold-out and of Agghoo, the first step is to
analyze the hold-out estimator of the risk, which the hold-out minimizes. Chap-
ter 5| is dedicated to constructing a distributional approximation of this empirical
risk estimator in the vicinity of the "true" optimum,

ki(ng) = argllgninIE [18k(Dn,) — s||2} :

The usual tools of asymptotic analysis turn out not to be adapted here, because
the relevant process (suitably centered and scaled) does not converge to a limit,
and what is needed instead is an approximation for each sample size n. I construct
the approximating sequence using the Komlos-Major-Tusnady theorem of strong
approximation [62] [63] to obtain a Gaussian process, which I then approximate by
another Gaussian process with a similar variance-covariance kernel. The correct
approximation turns out to be the sum of a convex function f,, and a two-sided
Brownian motion changed in time W, . Since there does not seem to be a simple
formula for f,, and g,, I instead prove some lower bounds and upper bounds on
their increments, which are useful for Chapter [6]

In Chapter [6] I carry out a precise analysis of the risk of Agghoo and the
hold-out. First, using Theorem of Chapter [3] I prove a preliminary oracle
inequality for the hold-out, which shows that the parameter k selected by the
hold-out is located in a region of the parameter space N where the hold-out risk
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estimator is well-approximated by the process constructed in Chapter 5} Sec-
ondly, using techniques developed by Leandro R. Pimentel [88], T show that the
approximation of the hold-out risk estimator constructed in Chapter [l leads to a
(distributional) approximation ko of its argmin, the parameter k selected by the
hold-out. The risks of Agghoo and of the hold-out can be expressed using the
distribution function of k. Using this, I prove a first-order approximation for the
risk of the hold-out,

E [[I5;(Dn,) = slI*] = or(ne) +1a + o(ra),

where or(n;) denotes the risk of the oracle trained on a sample of size n; = n —n,
(Theorem [6.4.3). I also show that Agghoo’s risk satisfies an inequality of the form

e 7~

The risk of Agghoo is bounded by two terms: the risk of the hold-out, or(n;) + r,,
and a negative term d, resulting from aggregation. In general, d,, is always bigger
than cr,, for some constant ¢ independent of n, so Agghoo at least reduces the
remainder term r, by a constant factor. However, more is true if more assumptions
are made on s. In a last part (Section , I show that if 67 decreases at a fixed
polynomial rate, 0]2- ~ ¢j~—%, then Agghoo’s risk can be smaller than the oracle, by
as much as a constant factor. I give bounds on the values of Agghoo’s parameter
7, = -+ for which this occurs.

] or(ng) + 1y — dy + o(dy,).






Chapter 3

Aggregated Hold-out

Keywords: cross-validation, aggregation, bagging, hyperparameter selection, reg-
ularized kernel regression

3.1 Introduction

The problem of choosing from data among a family of learning rules is central to
machine learning. There is typically a variety of rules which can be applied to a
given problem —for instance, support vector machines, neural networks or random
forests. Moreover, most machine learning rules depend on hyperparameters which
have a strong impact on the final performance of the algorithm. For instance,
k-nearest-neighbors rules [11] depend on the number k of neighbors. A second
example, among many others, is given by regularized empirical risk minimization
rules, such as support vector machines [96] or the Lasso [99, 24], which all depend
on some regularization parameter. A related problem is model selection [27, [76],
where one has to choose among a family of candidate models.

In supervised learning, cross-validation (CV) is a general, efficient and classical
answer to the problem of selecting a learning rule [3]. It relies on the idea of
splitting data into a training sample —used for training a predictor with each rule
in competition— and a validation sample —used for assessing the performance of
each predictor. This leads to an estimator of the risk —the hold-out estimator
when data are split once, the CV estimator when an average is taken over several
data splits—, which can be minimized for selecting among a family of competing
rules.

A completely different strategy, called aggregation, is to combine the predic-
tors obtained with all candidates [84, [118] [103]. Aggregation is the key step of
ensemble methods [39], among which we can mention bagging [22], AdaBoost [43]
and random forests |23, 12]. A major interest of aggregation is that it builds a

57
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learning rule that may not belong to the family of rules in competition. Therefore,
it sometimes has a smaller risk than the best of all rules [93], Table 1|. In contrast,
cross-validation, which selects only one candidate, cannot outperform the best rule
in the family.

Aggregated hold-out (Agghoo) This paper studies a procedure mixing cross-
validation and aggregation ideas, that we call aggregated hold-out (Agghoo). Data
are split several times; for each split, the hold-out selects one predictor; then, the
predictors obtained with the different splits are aggregated. A formal definition
is provided in Section [3.3] This procedure is as general as cross-validation and it
has roughly the same computational cost (see Section . Agghoo is already
popular among practicioners, and has appeared in the neuro-imaging literature
[54, 107] under the name “CV + averaging”. Yet, to the best of our knowledge,
existing experimental studies do not give any indication on how to choose Agghoo’s
parameters. No general mathematical definition has been provided, so it is unclear
how to generalize Agghoo beyond a given article’s setting. Theoretical guarantees
on Agghoo have not been established yet, to the best of our knowledge. The closest
results we found study other procedures, called ACV [59], EKCV [58], or “bagged
cross-validation” [5I], and they do not prove oracle inequalities. We explain in
Section why Agghoo should be preferred to these procedures in the general
prediction setting.

Because of the aggregation step, Agghoo is an ensemble method, and like bag-
ging, it combines resampling with aggregation. The application of bagging to the
hold-out was first suggested by Breiman [22] as a way to combine pruning and bag-
ging of CART trees. The combination of bagging and cross-validation has been
studied numerically by [87]. A major difference with Agghoo is that the training
and validation samples are not independent with bagging, which uses sampling
with replacement. If the bootstrap is replaced by subsampling, bagging becomes
subagging [25], and its combination with cross-validation yields a procedure much
closer to Agghoo, but still different, see Section [3.3.2] Overall, previous results on
bagging or subagging do not apply to Agghoo; new developments are required.

Contributions In this article, Agghoo’s performance is studied both theoreti-
cally and experimentally. We consider Agghoo from a prediction point of view.
Performance is measured by a risk functional. On the theoretical side, the aim
is to show that the risk of Agghoo’s final predictor is as low as the risk of the
optimal rule among the given collection. This is known as an oracle inequality. By
a convexity argument, Agghoo always improves on the hold-out, provided that the
risk is convex. Hence, Agghoo can safely replace the hold-out in any application
where this hypothesis holds true. Another consequence is that oracle inequalities
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for Agghoo can be deduced from oracle inequalities for the hold-out.

This kind of result on the hold-out has already appeared in the literature: for
example, Massart [76, Corollary 8.8| proves a general theorem under an abstract
noise assumption; more explicit results have been obtained in specific settings
such as least-squares regression [48, Theorem 7.1] or maximum-likelihood density
estimation |76, Theorem 8.9]. A review on cross-validation —which includes the
hold-out— can be found in [3].

Most existing theoretical guarantees on the hold-out have a limitation: they
assume that the loss function is uniformly bounded. In regression, the variable Y
and the regressors are also usually assumed to be bounded, which excludes some
standard least-squares estimators. Even when the boundedness assumption holds
true, constants arising from general bounds may be of the wrong order of magni-
tude, leading to vacuous results. By replacing uniform supremum bounds by local
ones, we are able to relax these hypotheses in a general setting (Theorem .
This enables us to prove an oracle inequality for the hold-out and Agghoo in
regularized kernel regression with a general Lipschitz loss (Theorem . This
oracle inequality allows for instance to recover state-of-the-art convergence rates
in median regression without knowing the regularity of the regression function
(adaptivity), both in the general case and, for small enough regularity, also in the
specific setting of [40]. To illustrate the implications of Theorem [3.4.3} we also
apply it to e-regression (Corollary . To the best of our knowledge, all these
oracle inequalities are new, even for the hold-out.

A limitation of Agghoo is that it does not cover settings where averaging does
not make sense, such as classification. In classification with the 0-1 loss, the
natural way to aggregate classifiers is to take a majority vote among them. This
yields a procedure which we call Majhoo. Using existing theory for the hold-out
in classification, we prove that Majhoo satisfies a general, margin-adaptive oracle
inequality (Theorem under Tsybakov’s margin assumption [75].

All our oracle inequalities are valid for any number of training and test subsets,
provided that they have the same size and that the splits are made independently
of the data. Qualitatively, since bagging and subagging are well-known for their
stabilizing effects [22, [25], we can expect Agghoo to behave similarly. In particular,
aggregating over a large number of splits should improve much the prediction
performance of CV when the hold-out selected predictor is unstable.

For further insights into Agghoo and Majhoo, we conduct in Section a
numerical study on simulated datasets. Its results confirm our intuition: in all
settings considered, Agghoo and Majhoo actually perform much better than the
hold-out, and even better than CV, provided their parameters are well-chosen.
When choosing the number of neighbors for k-nearest neighbors, the prediction
performance of Majhoo is much better than the one of CV, which illustrates the
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strong interest of using Agghoo/Majhoo when learning rules are “unstable”. In
support vector regression, Agghoo can sometimes perform better than the oracle,
while matching its performance on average. This improvement is made possible
by aggregation. Based upon our experiments, we also give in Section some
guidelines for choosing Agghoo’s parameters: the training set size and the number
of data splits.

The remaining of the article is structured as follows. In Section 2, we introduce
the general statistical setting. In Section 3, we give a formal definition of Agghoo.
In Section 4, we state the main theoretical results. In Section 5, we present our
numerical experiments and discuss the results. Finally, in Section 6, we draw some
qualitative conclusions about Agghoo. The proofs are postponed to the Appendix.

3.2 Setting and Definitions

We consider a general statistical learning setting, following the book by Massart

I76].

3.2.1 Risk minimization

The goal is to minimize over a set S a risk functional £ : S — R U {+o0}. The
set S may be infinite dimensional for non-parametric problems. Assume that £
attains its minimum over S at a point s, called a Bayes element. Then the ezcess
risk of any t € S is the nonnegative quantity

Us,t) = L(t) — L(s) .

Suppose that the risk can be written as an expectation over an unknown probability
distribution:

L(t)=E[y(t9)] ,

for a contrast function v : S x = — R and a random variable ¢ with values in some
set = and unknown distribution P, such that

vVt €S, Ee =+ (¢, &) is P-measurable .

The statistical learning problem is to use data D, = {i,...,&,}, where &, ..., &,
are independent and identically distributed (i.i.d.), with common distribution P,
to find an approximate minimizer for £. The quality of this approximation is
measured by the excess risk.
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3.2.2 Examples

Supervised learning aims at predicting a quantity of interest Y € ) using ex-
planatory variables X € X. The statistician observes pairs (X1, Y1), ... (X, Y,),
so that Z = X x ), and seeks a predictor in S = {t : X — Y : t measurable}.
The contrast function is defined by (¢, (x,y)) = g(t(x),y) for some loss function
g:YxY — R. Here, g(v/, y) measures the loss incurred by predicting ¢ instead of
the observed value y. Two classical supervised learning problems are classification
and regression, which we detail below.

Example 3.2.1 (Classification) In classification Y belongs to a finite set of la-
bels Y = {0,...,M}. We wish to correctly label any new data point X, and the
risk 1s the probability of error:

Vt €8, L(t)=P(HX)#Y) ,

which corresponds to the loss function g(y',y) = I{y' # y}. Classification with
convez losses (such as the hinge loss or logistic loss) can also be described using

the formalism of Section [3.2.1]

Example 3.2.2 (Regression) In regression we wish to predict a continuous vari-
able Y € Y = R The error made by predicting y' instead of y is measured by
the loss function defined by g(v/',y) = o(||y — y||) where ¢ : R, — R, is nonde-
creasing and convex. Some typical choices are ¢(x) = x* (least squares), ¢(x) = x
(median regression) or ¢(x) = (|x| —¢), (Vapnik’s e-insensitive loss, leading to
e-regression). The risk is given by

£ty =E[o(IlY - 01| -

If ¢ is strictly convex, the minimizer of L over S is a unique function, up to
modification on a set of probability 0 under the distribution of X.

In some applications, such as robust regression, it is of interest to define s and
{(s,t) even when ¢(||Y||) ¢ L'. This is possible for Lipschitz contrasts, by the
following remark.

Remark 3.2.1 When ¢ is conver and increasing (as in Example|3.2.2), and also
Lipschitz-continuous, it is always possible to define

s argmin B[o(IY — ul) — (V1) | X =] .
ue
When s € L'(X), it is a Bayes element for the loss function g(y',y) = ¢(|ly’ — yl|)—

d(|lyl). Whenever ¢(||Y]|) € L', this loss yields the same Bayes element and ex-
cess risk as in Example 2.2.
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This small adjustment to the general definition allows to consider Example
when ¢(||Y — s(X)||) is not integrable, for example when Y = s(X)+n, where 7 is
independent from X and follows a multivariate Cauchy distribution with location
parameter 0.

Some density estimation problems, such as maximum likelihood or least-squares
density estimation, also fit the formalism of Section [3.2.1] see [76].

3.2.3 Learning rules and estimator ensembles

Statistical procedures use data to compute an element of S which approximately
minimizes £. Since Agghoo uses subsampling, we require learning rules to accept
as input datasets of any size. Therefore, we define a learning rule to be a function
which maps any dataset to an element of S.

Definition 3.2.1 A dataset D,, of length n is a finite i.i.d sequence (&)i1<i<n Of
Z-valued random variables with common distribution P.
A learning rule A is a measurable function]

A:GE”%S.
n=1

In the risk minimization setting, A should be chosen so as to minimize £(A(D,,)).

A generic situation is when a family (A, )menm of learning rules is given, so that
we have to select one of them (estimator selection), or to combine their outputs
(estimator aggregation). For instance, when X is a metric space, we can consider
the family (AYN);>1 of nearest-neighbors classifiers —where k is the number of
neighbors—, or, for a given kernel on X, the family (ASY™)\cpo,100) Of support
vector machine classifiers —where A is the regularization parameter. Not all rules
in such families perform well on a given dataset. Bad rules should be avoided
when selecting the hyperparameter, or be given small weights if the outputs are
combined in a weighted average. This requires a data-adaptive procedure, as the
right choice of rule in general depends on the unknown distribution P.

Aggregation and parameter selection methods aim to resolve this problem, as
described in the next section.

'For any n,

(€I:n7 f) = W(A(fl:n)’ 6)

is assumed to be measurable (with respect to the product o-algebra on Z"+1).

{E"XE SR
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3.3 Cross-Validation and Aggregated Hold-Out (Ag-
ghoo)

This section recalls the definition of cross-validation for estimator selection, and

introduces a new procedure called aggregated hold-out (Agghoo). For more details

and references on cross-validation, we refer the reader to the survey by Arlot and
Celisse [3].

3.3.1 Background: cross-validation

Cross-validation uses subsampling and the empirical risk. We introduce first some
notation.

Definition 3.3.1 (Empirical risk) For any dataset D,, = (&)1<i<n and any t €
S, the empirical risk of t over D,, is defined by

Pnly(t ) = %Z’Y(tvfz) :

For any nonempty subset T C {1,...,n}, let also
D,:C = (&)ier
be the subsample of D,, indexed by T, and define the associated empirical risk by
1
VEES,  Pl(t) = > v(tE) -
U=
The most classical estimator selection procedure is to hold out some data to cal-
culate the empirical risk of each estimator, and then select the estimator with the

lowest empirical risk. This ensures that the data used to evaluate the risk are
independent from the training data used to compute the learning rules.

Definition 3.3.2 (Hold-out) For any dataset D,, and any subsetT C {1,...,n},
the associated hold-out risk estimator of a learning rule A is defined by

HOr (A, D,) = P, v (A(Dy), )
Given a collection of learning rules (Am)mem, the hold-out procedure selects

T?L%O(Dn) € argmin HOr (A, D,)
meM

measurably with respect to D,,. The overall learning rule is then given by

fTO(<Am)m€M7 Dn) = Am%O(Dn)(D77;> :
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Hold-out depends on the arbitrary choice of a training set 7', and is known
to be quite unstable, despite its good theoretical properties [70, Section 8.5.1].
Therefore, practicioners often prefer to use cross-validation instead, which consid-
ers several training sets.

Definition 3.3.3 (Cross-validation) Let D,, denote a dataset. Let T denote a
collection of nonempty subsets of {1,...,n}. The associated cross-validation risk
estimator of a learning rule A is defined by

OV (A, D,,) > HOr (A, D,).

TeT

!TI
The cross-validation procedure then selects

me (D) € argern/vi[n CVr(Am, Dy) .

The final predictor obtained through this procedure is
7C’V(<Am)m€./\/l7 ) AAC” (Dn) (D ) :

Depending on how 7 is chosen, this can lead to leave-one-out, leave-p-out, V-
fold cross-validation or Monte-Carlo cross-validation, among others [3]. In the
following, we omit some of the arguments A, D, which appear in Definitions
13.3.2| and [3.3.3] when they are clear from context. For example, we often write
HOr (A), ﬁzr_}ﬁ",fT instead of HO7 (A, D,,) , m(D,), f£°((Am)mem, Dy) (respec-
tively).

3.3.2 Aggregated hold-out (Agghoo) estimators

In this paper, we study another way to improve on the stability of hold-out selec-
tion, by aggregating the predictors ]?Tho obtained by the hold-out procedure applied
repeatedly with different training sets '€ 7. When S is convex (e.g., regression),
aggregated hold-out (Agghoo) consists in averaging them.

Definition 3.3.4 (Agghoo) Assume that S is a convex set. Let (Ay)mem de-
note a collection of learning rules, D,, a dataset, and T a collection of subsets of
{1,...,n}. Using the notation of Deﬁm’tion the associated Agghoo estimator
is defined by

f;g((Am)mEMa |7—‘ Z fTO m meMyDn) .

TeT
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In the classification framework, as seen in Example [(3.2.1, S = {f : X —
{0,..., M}} which is not convex. However, there is still a natural way to aggregate
several classifiers, by taking a majority vote.

Definition 3.3.5 (Majhoo) Let Y = {0,..., M} be the set of labels. Given a
collection of learning rules (Ap)mem, a dataset D, and a collection T of sub-
sets of {1,...,n}, the majority hold-out (Maghoo) classifier is any measurable
A?"((Am)meM,Dn) : X — Y such that, using the notation f}m introduced in

Definition [3.3.3, for all x € X,

?V((Am)mef\/ly Dn) (x) € argrr;}ax‘ {T eT ‘ fTO((Am)m€M7 Dn) (Zlf) = .]} ) .
j€

In most situations, it is clear how hold-out rules should be aggregated and there is

no ambiguity in discussing hold-out aggregation. However, there is an important

exception where both Agghoo and Majhoo can be used.

Remark 3.3.1 (Two options for binary classification) In binary classifica-
tion (Ezample with M = 2), it is classical to consider classifiers of the
form Lo where f € Seony = {f : X = R} aims at minimizing a surrogate convex
risk associated with the 10sS Geonw = (¥, y) — O[(2y — 1)(2y — 1)] with ¢ : R - R
conver [20]. Then, given a family of Scony-valued learning rules (Am)me./\/l’ one
can either apply Agghoo to the surrogate problem and get

I

P75 ((Am) et Dn )20

or apply Majhoo to the binary classification problem and get

R ((HAm(-)>0>m€M> Dn)

In the rest of this section, we focus on Agghoo, though much of the following
discussion applies also to Majhoo.

Compared to cross-validation rules (Definition , Agghoo reverses the or-
der between aggregation (majority vote or averaging) and minimization of the
risk estimator: instead of averaging hold-out risk estimators before selecting the
hyperparameter, the selection step is made first to produce hold-out predictors

(AY}}O)T T (given by Definition [3.3.2)) and then an average is taken.

Related procedures To the best of our knowledge, Agghoo has not been stud-
ied theoretically before, though it is used in applications [54} [107], under the name
“CV + averaging” in [107]. According to [107], Agghoo is commonly used by the
machine learning community thanks to the Scikit-learn library [86].
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A closely related procedure is “ K-fold averaging cross-validation” (ACV), pro-
posed by [59] for linear regression. With our general notation, ACV corresponds to
averaging the Aﬁ ( n), which are “retrained” on the whole dataset, while Agghoo
averages the Agr (DT). An advantage of averaging the rules A (DT) is that
they have been selected for their good performance on the validation set 7€ un-
like the Agr ( ) whose performance has not been assessed on independent data.
Furthermore similarly to bagging, using several distinct training sets may result in
improvements for unstable methods through a reduction in variance. Note finally
that the theoretical results of [59] on ACV are limited to a specific setting, and
much weaker than an oracle inequality.

A second family of related procedures is averaging the chosen parameters
(T%%O)TGT, contrary to Agghoo which averages the chosen prediction rules. This
leads to different procedures for learning rules that are not linear functions of
their parameters. This idea has been put forward under the name “bagged cross-
validation” (BCV) [5I] —with numerical and theoretical results in the case of
bandwidth choice in kernel density estimation—, and under the name “efficient K-
fold cross-validation” (EKCV) [58] for the choice of a regularization parameter in
high-dimensional regression —with numerical results only. Unlike Agghoo, which
only depends on the set {A,, | m € M} of learning rules, EKCV and BCV depend
on the parametrization m +— A,,. Sometimes, the most natural parametrization
does not allow the use of such procedures: for example, model dimensions are
integers, and averaging them does not make sense. In contrast, in regression, it is
always possible to average the real-valued functions A,,(D,,) € S.

Even when all procedures are applicable, averaging rules is generally safer than
averaging hyperparameters. Often in regression, the risk £ is known to be convex
over S, so given tq,...,ty €S,

c (%Zt) < %Zﬁ(ti) :

i=1

Hence, averaging regressors (Agghoo) always improves performance compared to
selecting a single ¢; at random (hold-out). On the other hand, if (¢p)sco is a family
of elements of S parametrized by a convex set ©, there is no guarantee in general
that the function 0 — L(ty) is convex over ©. So, for some 6;,...,0y € O, it may
happen that

1 |4
L(tysr,a) > 2 Lita)
i=1

In such a case, it is better to choose one parameter at random (hold-out) than to
average them (EKCV or BCV).
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A third family of related procedures is bagging or subagging applied to hold-out
selection D,, +— f}lo((Am)me M, Dr). The bagging case has been studied numeri-
cally by [87], but clearly differs from Agghoo since it relies on bootstrap resamples,
in which the original data can appear several times. Subagging —which is not ex-
plicitly studied in the literature, to the best of our knowledge— is closer to Agghoo,
but there is still a slight difference. When applying subagging to the hold-out, the
sample is divided into three parts: the training part of the bagging subsample,
the validation part of the bagging subsample, and the data not in the bagging
subsample. With Agghoo, the sample is only divided into two parts.

3.3.3 Computational complexity

In general, for a given value of V' = |T|, both Agghoo (fﬁg) and CV (ffv) must
compute V' hold-out risk estimators over all values of m € M. Let C,,(M, ng,ny)
be the average computational complexity of the hold-out, with a training dataset
of size n; and validation dataset of size n,. Then the overall complexity of risk
estimation is of order V' x Cy,(M, ny, n,) for both Agghoo and CV. Next, CV must
average V' risk vectors of length |[M| and find a single minimum, while Agghoo
computes V minima over m € M; these operations have similar complexity, of
order V' x |M|. Thus, computing the ensemble aggregated by Agghoo takes about
as much time as selecting a learning rule using cross-validation.

A potential difference occurs when evaluating Agghoo and CV on new data. If
there is no fast way to perform aggregation at training time, it is always possible
to evaluate each predictor in the ensemble on the new data, and to average the
results; then, Agghoo is slower than CV by a factor of order V' at test time.

3.4 Theoretical results

The purpose of Agghoo is to construct an estimator whose risk is as small as
possible, compared to the (unknown) best rule in the class (A;;)menm. This is
guaranteed theoretically by proving “oracle inequalities” of the form

E[((s, [2#)] < CE[ inf ﬁ(s,Am(Dn))] Yen (3.1)

with €, negligible compared to the oracle excess risk E[inf,,c €(s, A (Dp,))] and
C close to 1. Equation then implies that Agghoo performs as well as the
best choice of m € M, up to the constant C'. In the following, we actually prove
slightly weaker inequalities that are more natural in our setting.

By definition, Agghoo is an average of predictors chosen by hold-out over the
collection (A;)mem - Therefore, when the risk is convex, an oracle inequality
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(3.1) can be deduced from an oracle inequality for the hold-out, provided that
there exists an integer n; € {1,...,n — 1} such that

T is independent from D, and VI'eT, |T|=n:. (3.2)

We make this assumption in the rest of the article. Most cross-validation methods
satisfy hypothesis , including leave-p-out, V-fold cross-validation (with n —
ny = n, = n/V) and Monte-Carlo cross-validation [3].

In the remainder of this section, we introduce the RKHS setting of interest, and
prove an oracle inequality for Agghoo without changing the standard estimators
or requiring Y to be bounded.

3.4.1 Agghoo in regularized kernel regression

Kernel methods such as support vector machines, kernel least squares or e-regression
use a kernel function to map the data X; into an infinite-dimensional function
space, more specifically a reproducing kernel Hilbert space (RKHS) [95] 06]. We
consider in this section regularized empirical risk minimization using a training
loss function ¢, with a penalty proportional to the square norm of the RKHS, to
solve the supervised learning problem (defined in Section 2.2) with loss function g.
Hence, the contrast v can be written v(¢, (x,y)) = g(t(x),y) := (g o t)(z,y). We
assume that ¢ and ¢ are convex in their first argument.

Definition 3.4.1 (Regularized kernel estimator) Letc¢: R xR — R be con-
vex in its first argument, and let K : X x X — R be a positive-definite kernel
function. Given A > 0 and training data (X;,Y;)1<i<n,, define the reqularized ker-
nel estimator as

Ax\(D,,) = argmin {Pm(c ot)+ A Ht||§_[} ,
teH

where H is the reproducing kernel Hilbert space induced by K. By the representer
theorem, A, can be computed explicitly:

AN(Dy,) (@) = > 00K (X5, ) where
j=1

5/\ = argmin {ni ic (i QjK(Xj7XZ-),Y;) + )\iiﬁiejK(Xi,Xj)}
ti=1 \j=1

feR™ i=1 j=1
(3.3)

The loss function ¢ is used to measure the accuracy of the fit on the training data:
for example, taking ¢ : (u,y) — (1 — uy); (the hinge loss) in Definition [3.4.1]
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corresponds to SVM. The loss function g used for risk evaluation may or may not
be equal to c¢. For example, in classification, the 0-1 loss often cannot be used
for training for computational reasons, hence a surrogate convex loss, such as the
hinge loss, is used instead (see Remark [3.3.1)), but there is no reason to use the
hinge loss for risk estimation and hyperparameter selection.

In Definition , the hyperparameter of interest is A (we assume that K is
fixed). We show below some guarantees on Agghoo’s performance when it is ap-
plied to a finite subfamily (Aj),c, of the one defined by Definition . We first
state some useful assumptions.

Hypothesis Compc(g,¢): L. :t — P(cot) and £, have a common minimum s €
argmin, g L.(t)Nargmin, g L,(t) and forany ¢t € S, L.(t)—L.(s) < C [L,(t) — Ly(s)].

Note that Comp;(g,c) is always satisfied when g = ¢. When ¢g # ¢, some hy-
pothesis relating ¢ and g is necessary anyway for Definition [3.4.1] to be of interest,
if only to ensure consistency (asymptotic minimization of the risk) for some se-
quence of hyperparameters (\,)nen-

In addition, some information about the evaluation loss ¢ helps to obtain an
oracle inequality (3.1) with a smaller remainder term ¢,.

Hypothesis SC,,: Let {x(u) = Elg(u,Y)|X] — inf,er E[g(v,Y)|X]. The triple
(g9, X,Y) satisfies SC,, if and only if, for any u,v € R,

E[(9(u,Y) = g(v,Y))*|X] < [pV (v]u — v])] [€x () + £x(v)]. (3.4)

For example, in the case of median regression, that is, g(u,y) = |u—y|, hypothesis
SC,,, holds whenever there is a uniform lower bound on the concentration of Y
around s(X), as shown by the following proposition.

Proposition 3.4.2 Let g(u,y) = |u — y| for all u,y € R. For any x € X, let F,
be the conditional cumulative distribution function of Y knowing X = x. Assume
that, for any x € X, F, is continuous with a unique median s(x) and that there
exists a(x) > 0,b(x) > 0 such that

VueR, |F(u)— Fx(s(x))‘ > a(z) [\u — ()| A b(:c)} . (3.5)

For instance, this holds true if % > a(2)jy—s(z)|<b(z) for every x € X. Let
Ay = ;Iel'jf({a(x)} and  fy, = ;g{{a(l’)b(m)} :

If ay > 0 and p,, > 0, then (g, X,Y) satisfies SC 4 2 .

am’ pm
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Proposition is proved in Appendix We can now state our first main
result.

Theorem 3.4.3 Let A C R be a finite grid. Using the notation of Defini-

tion let J/C;a-g be the output of Agghoo, applied to the collection (Ayx)rea given
by Definition[3.4.1 Assume that Ay, = min A > 0 and £ = sup,c» K(z,2) < 400.
Assume that Compc(g,c) holds for a constant C' > 0 and that (g, X,Y) satisfies
SC,, with constants p > 0,v > 0. Assume that ¢ and g are convexr and Lips-
chitz in their first argument, with Lipschitz constant less than L. Assume also that
ny = 100 and 3 < |A| < ev™. Then, for any 0 € (0;1],

(1—0)E [z(s, Aﬁg)] <(1+ Q)E[miﬂ(sa AA@m))]

A€

log (ny|Al) ) log” (n,|Al) ; log? (nU|A|)} (3.6)

18
+ maX{ p env » V1 03Amn% y U2 QAm’n/,U\/n_t

where by, by do not depend on n,,ng, Ay, or 0 but only on k, L,v and C.

Theorem [3.4.3]is proved in Appendix [3.§ as a consequence of a result valid in the
general framework of Section @ (Theorem . It shows that f* satisfies
an oracle inequality of the form (3.1)), with A,(D,,) instead of A,(D,) on the
right-hand side of the inequality. The fact that D,,, appears in the bound instead
of D, is a limitation of our result, but it is natural since predictors aggregated by
Agghoo are only trained on part of the data. In most cases, it can be expected
that (s, Ax(Dy,)) is close to £(s, Ax(D,)) whenever ™ is close to 1.

The assumption that K is bounded is mild. For instance, popular kernels such
as Gaussian kernels, (z,2’) — exp[— ||z — 2/||* /(2h?)] for some h > 0, or Laplace
kernels, (z,2') — exp(— ||x — 2’|| /h) for some h > 0, are bounded by x = 1.

Taking |7| = 1 in Theorem vields a new oracle inequality for the hold-
out. Oracle inequalities for the hold-out have already been proved in a variety
of settings (see [3] for a review), and used to obtain adaptive rates in regularized
kernel regression [96]. However, this work has mostly been accomplished under
the assumption that the contrast v (Ax(D,),(X,Y)) is bounded uniformly (in
n, D, and A € A) by a constant. If this constant increases with n, bounds
obtained in this manner may worsen considerably. As many “natural” regression
procedures —including regularized kernel regression (Definition — fail to
satisfy such bounds, some theoreticians introduce “truncated” versions of standard
procedures [96], but truncation has no basis in practice. Theorem avoids
these complications.

In order to be satisfactory, Theorem [3.4.3| should prove that Agghoo performs
asymptotically as well as the best choice of A € A, at least for reasonable choices
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of A. This is the case whenever the maximum in Equation is negligible
with respect to the oracle excess risk E[minyea £(s, Ax(Dy,))] as n — +oo. This
depends on the range [\,,; +00) in which the hold out is allowed to search for the
optimal A\. On the one hand, it is desirable that this interval be wide enough to
contain the true optimal value. On the other hand, if )\,, = 0, then inequality
becomes vacuous. We now provide precise examples where Theorem
applies with a remainder term in Equation that is negligible relative to the
oracle excess risk.

Take the example of median regression, in which c(u,y) = g(u,y) = |u — y|.
Then Comp;(g, c) holds trivially. Make also the same assumptions as in Proposi-
tion [3.4.2, which ensures that SC,, holds for some finite values of p and v. Theo-
rem [3.4.3| therefore applies as long as the kernel K is bounded and A,, > 0. Choose
ny, = ny = 5 and A of cardinality at most polynomial in n (which is sufficient in
theory and in practice). Then [96, Theorem 9.6] proves the consistency of A, (D,,)
as n — 400, provided that A\Zn — +o0. This suggests choosing A, = 1/,/n, in
which case the remainder term of Equation is of order (logn)3/?/n, which is
negligible relative to nonparametric convergence rates in median regression.

In order to have a more precise idea of the order of magnitude of the oracle
excess risk, let us consider median regression with a Gaussian kernel. Under some
assumptions, one of which coincides with Proposition [40, Corollary 4.12]
shows that taking A, = < leads to rates of order n~2+d, where d € N is the
dimension of X and o > 0 is the smoothness of s. Therefore, taking A\, =
1/n; in Theorem , the remainder term of Equation is at most of order
(logn)3/2/\/n, hence negligible relative to the above risk rates as soon as 2a < d.

Theorem [3.4.3| can handle situations where g is different from the training loss
¢, provided that Comp(g,c) holds true. Such situations arise for instance in the
case of support vector regression [95, Chapter 9|, which uses for training Vapnik’s
e-insensitive loss ¢?*(u,y) = (Ju — y| — €);. This loss depends on a parameter
g, the choice of which is usually motivated by a tradeoff between sparsity and
prediction accuracy [95]. Therefore, some other loss is typically used to measure
predictive performance, independently of €. We state one possible application of

Theorem to this case, as a corollary.

Corollary 3.4.4 (e-regression) Letc = ¢ : (u,y) — (ly—u|—¢)y be Vapnik’s
e-insensitive loss and assume that the evaluation loss is g = cg’” : (u,y) — |u—y|.
Assume that for every x the conditional distribution of Y given X = x has a

unimodal density with respect to the Lebesgue measure, symmetric around its mode.
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Introduce the robust noise parameter:

3
o = sup « inf yER‘P(YégAX:x)}—
TEX 4

_sup{yER‘P(YémX:x)g—}} o

Then, applying Agghoo to a finite subfamily (Ax)xea of the rules given by Defini-
tion with ¢ = ¢P* and a kernel K such that | K| < 1 yields the following
oracle inequality. Assuming n, > 100 and 3 < |A| < evV™, for any 6 € (0;1],

(L= 0 [t(s,F7%)] < 1+ 0 [in (5, Ax(Dw)]

A€

log(n,|Al)  log?(ny|Al)  log? (n,|A)
+max{720 on, , by Py , by Ot/ ,

where by and by are absolute constants.

Corollary is proved in Appendix [3.9.2]

When € = 0, e-regression becomes median regression, which is discussed above.
The oracle inequality of Corollary is then the same as that given by Theo-
rem [3.4.3 and Proposition [3.4.2] Assumptions of unimodality and symmetry allow
to give more explicit values of a,, and pu,, in terms of . When ¢ > 0, the uni-
modality and symmetry assumptions are used to prove hypothesis Compc(g, c).

3.4.2 Classification

Loss functions are not all convex. When convexity fails, the aggregation procedure
should be revised.

In classification, Majhoo is a possible solution (see Deﬁnition. By Propo-
sition in Appendix majority voting satisfies a kind of “convexity in-
equality” with respect to the 01 loss; as a result, oracle inequalities for the hold-out
imply oracle inequalities for majhoo.

Hold-out for binary classification with 0-1 loss has been studied by Massart
[76]. In that work, Massart makes an assumption which is closely related to margin
hypotheses, such as the Tsybakov noise condition [75] which we consider here. This
approach allows to derive the following theorem.

Theorem 3.4.5 Consider the classification setting described in Example
with M = 2 classes (binary classification). Let (An)mem be a collection of learn-
ing rules and T a collection of training sets satisfying assumption (3.2)).
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Assume that there ezists f > 0 and r > 1 such that for & = (X,Y) with
distribution P,
Vh > 0, P(|2n(X) — 1| < h) < rh” (MA)

where n(X) :=P(Y = 1|X). Then, we have

E[Z(s, A%nv)] < 3E | inf (s, A, (Dy,)) | + 29rF+2 1(;%1(6|M|) .
meM nz@

Theorem is proved in Appendix . It shows that ﬁ‘—nv, like fﬁg, satisfies
an oracle inequality of the form (3.1)) with Ay (D,,) instead of Ax(D,,). Tsybakov’s
noise condition only depends on the distribution of (X,Y") and not on the
collection of learning rules. It is a standard hypothesis in classification, under
which “fast” learning rates —faster than n~'/2— are attainable [I03]. In contrast
with the results of Section [3.4.1] that are valid for various losses but only for a spe-
cific type of learning rule, Theorem holds true for any family of classification
rules.

The constant 3 in front of the oracle excess risk can be replaced by any constant
larger than 2, at the price of increasing the constant in the remainder term, as can
be seen from the proof (in Appendix . However, our approach cannot yield
a constant lower than 2, because we use Proposition [3.10.1| instead of a convexity
argument, since the 0-1 loss is not convex.

3.5 Numerical experiments

This section investigates how Agghoo and Majhoo’s performance vary with their
parameters V' and 7 = ™, and how it compares to CV’s performance at a similar

computational cost —that is, for the same values of V' and 7. Two settings are
considered, corresponding to Corollary and Theorem [3.4.5

3.5.1 ce-regression

Consider the collection (Ay)rea of regularized kernel estimators (see Definition|3.4.1))
with loss function ¢*(u,y) = (Ju — y| — €)+ and Gaussian kernel K(x,z’) =

exp[—(x — 2')?/(2h?)] over X = R.

Experimental procedure Agghoo and CV training sets T" € T are chosen in-
dependently and uniformly among the subsets of {1,...,n} with cardinality |7n],
for different values of 7 and V' = |T|; hence, CV corresponds to what is usually
called “Monte-Carlo CV” [3]. Each algorithm is run on 1000 independent samples
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Figure 3.1: Performance of Agghoo and CV for e-regression in setup 1

of size n = 500, and independent test samples of size 1000 are used for estimating
the excess risks £(s, f75), (s, f&) and the oracle excess risk infyea £(s, Ax(Dy))-
The risks (and excess risks) are evaluated using the L' loss g(u,y) = |u — y|. Ex-
pectations of these quantities are estimated by taking an average over the 1000
samples; we also compute standard deviations for these estimates, which are not
displayed, since they are sufficiently small to ensure that visible "gaps" on the
graph are statistically significant.

Agghoo and CV are applied to (Ay),, over the grid A = {525(;; |0 <j <17},
corresponding to the grid {2P |0 < j < 17} over the "cost" parameter C' = 2/\1%
of the R implementation "svm" from package e1071.

Experimental setup 1 Data (X1,Y7),...,(X,,Y,) are independent, with X; ~
N(0,72), Y; = s(X;) + Z;, with Z; ~ N(0,1/4) independent from X;. The regres-
sion function is s :  — € the kernel parameter is h = % and the threshold

2
for the e-insensitive loss is € = }L.
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Results in setup 1 are shown on Figure 3.1l The performance of Agghoo
strongly depends on both 7 and V. For a fixed 7, increasing V significantly
decreases the risk of the resulting estimator. This is not surprising and confirms
that considering several data splits is always useful.

Most of the improvement occurs between V' =1 and V' = 5, and taking V' much
larger seems useless —at least for 7 > 0.5—, a behavior previously observed for
CV [5]. For a fixed V, the risk strongly decreases when 7 increases from 0.1 to 0.5,
decreases slowly over the interval [0.5,0.8] and seems to rise for 7 > 0.8. It seems
that 7 € [0.6,0.9] yields the best performance, while taking 7 close to 0 should
clearly be avoided (at least for V' < 10). Taking V large enough, say V = 10,
makes the choice of 7 less crucial: a large region of values of 7 yield (almost)
optimal performance. We do not know whether taking V' larger can make the
performance of Agghoo with 7 < 0.4 close to the optimum.

As a function of 7, the risk of CV behaves quite differently from Agghoo’s.
The performance does not degrade significantly when 7 is small. The optimum is
located around 7 = 0.1, but the risk curve is so flat that there is no perceptible
difference between the values of 7 € [0.1,0.4]. In any case, the optimum is much
smaller than for Agghoo. A possible explanation is that the regressors produced
by cross-validation are all trained on the whole sample, so that 7 only impacts risk
estimation. Furthermore, additional simulations show, as expected, that higher
values of 7 (7 = 0.8 or 7 = 0.9) improve risk estimation while degrading the
hyperparameter selection performance. Compared to Agghoo, CV’s performance
depends much less on V': only V' = 2 appears to be significantly worse than V' > 5.

Let us now compare Agghoo and CV. For small values of 7 (7 < 0.5), Agghoo
generally performs much worse than CV for all values of V. In the case of the
hold-out, this is unsurprising as the hold-out estimator is then trained on a much
smaller sample than the CV estimator. Clearly, aggregation does not sufficiently
compensate for this, at least for V' < 10. On the other hand, for 7 € [0.6,0.9],
Agghoo with V' = 10 approximately matches CV’s performance. The risks of the
two methods are indistinguishable for V' = 10,7 = 0.8.

The regression function e®®) of setup 1 is very smooth (analytic) and bounded.
Combined with a one-dimensional variable X and gaussian noise, this yields a
comparatively "easy" non-parametric regression problem. Aggregation may prove
more useful in harder problems where s is less smooth and the dimension is higher.
To test this, we carry out a second simulation.

Experimental setup 2 Data (X,Y)),...,(X,,Y,) are independent, with X; €
R? X; ~ Cauchy(0,1)%%Y; = s(X;) + Z;, with Z; ~ N(0,1/4) independent from

2sin(z1z2)
z3+x3 )

the kernel parameter is h = % and the threshold for the e-insensitive loss is ¢ = i.

X;. The regression function is defined almost everywhere by s(z1,x2) =
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Figure 3.2: Performance of Agghoo and CV for e-regression in setup 2

This regression function is less regular than in the previous setup, since it has a
discontinuity at (0,0) € R2.

Results in setup 2 are shown on figure The qualitative conclusions about
the behaviour of Agghoo and CV, taken separately, are mostly the same as in
setup 1, with the exception that CV now shows the expected increase in risk for
the smallest values of 7.

The main difference with setup 1 is that Agghoo performs much better relative
to CV and the oracle. For V = 10 and 7 € [0.4,0.9], Agghoo outperforms CV
by a significant margin; for V' = 10 and 7 € [0.6,0.8], Agghoo even matches the
oracle’s performance, up to statistical measurement error.

Part of the explanation is that, on a given dataset, Agghoo can perform better
than the oracle using aggregation whereas CV, as a parameter selection method,
naturally cannot. Indeed, for a randomly drawn dataset in setup 2, this situation
can be observed to occur quite regularly.

Overall, if the computational cost of V' = 10 data splits is not prohibitive,
Agghoo with optimized parameters (V = 10, 7 € [0.6,0.8]) clearly improves over
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CV with optimized parameters (V' = 10, 7 € [0.5,0.7]). The same holds with
V' = 5. This advocates for the use of Agghoo instead of CV, unless we have to
take V' < 5 for computational reasons.

Computational complexity By Equation , regularized kernel regressors
can be represented linearly by vectors of length n;, therefore the aggregation step
can be performed at training time by averaging these vectors. The complexity of
this aggregation is at most O(V x n;). In general, this is negligible relative to the
cost of computing the hold-out, as simply computing the kernel matrix requires
nt(n: + 1)/2 kernel evaluations. Therefore, the aggregation step does not affect
much the computational complexity of Agghoo, so the conclusion of Section [3.3.3]
that Agghoo and CV have similar complexity applies in the present setting.
Evaluating Agghoo and CV on new data x € X also takes the same time in
general, as both are computed by evaluating the expression Z;”:l 0, K(X;, ) with

a pre-computed value of 6. A potential difference occurs when the 6, —given by
Definition [3.4.1, Equation (3.3)— are sparse: aggregation increases the number of
non-zero coefficients, so evaluating fﬁg on new data can be slower than evaluating
fff-v if the implementation is designed to take advantage of sparsity.

3.5.2 k-nearest neighbors classification

Consider the collection (AEN) k>1,k odd Of nearest-neighbors classifiers —assuming
k is odd to avoid ties— on the following binary classification problem.

Experimental setup Data (X1,Y7),...,(X,,Y,) are independent, with X; uni-
formly distributed over X = [0,1]? and

]P><Yi=1|xi):0(w)

where Yu,v € R, o(u) = - and  g(u,v) = e O Ly ?

b= 1.18 and A = 0.05. The Bayes classifier is s : > I(;)>; and the Bayes risk,
computed numerically using the scipy.integrate python library, is approximately
equal to 0.242. Majhoo (the classification version of Agghoo, see Definition
and CV are used with the collection (ANN)g=1 & 0aa and “Monte Carlo” training sets
as in Section [3.5.1] An experimental procedure similar to the one of Section [3.5.1]
is used to evaluate the performance of Agghoo and to compare it with Monte-Carlo
cross-validation. Standard deviations of the excess risk were computed; they are
smaller than 3.6% of the estimated value.
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Figure 3.3: Classification performance of Majhoo and CV for the k-NN family



3.6. DISCUSSION 79

Results are shown on Figure . They are similar to the regression case (see
Section , with a few differences. First, Agghoo does not perform better than
the oracle. In fact, all methods considered here remain far from the oracle, which
has an excess risk around 0.0034 + 0.0004; both Agghoo and CV have excess risks
at least 4 times larger. Second, risk curves as a function of 7 for Agghoo are almost
U-shaped, with a significant rise of the risk for 7 > 0.6. Therefore, less data is
needed for training, compared to Section The optimal value of 7 here is 0.6,
at least for some values of V| up to statistical error. Third, the performance of
CV as a function of 7 has a similar U-shape, which makes the comparison between
Agghoo and CV easier. For a given 7, Agghoo performs significantly better if
V' > 10, while CV performs significantly better if V' = 2; the difference is mild for
V =5.

Computational complexity As said in Section [3.3.3] the complexity of com-
puting the optimal parameters for CV (1%39 ) is the same as for Majhoo ((/%%")TeT).
Here, there is no simple way to represent the aggregated estimator, so aggregation
may have to be performed at test time. In that case, the complexity of evaluat-
ing Majhoo on new data is roughly V' times greater than for CV, as explained in

Section for Agghoo.

3.6 Discussion

Theoretical and numerical results of the paper show that Agghoo can be used safely
in RKHS regression, at least when its parameters are properly chosen; V' > 10 and
7 = 0.8 seem to be safe choices. A variant, Majhoo, can be used in supervised
classification with the 0-1 loss, with a general guarantee on its performance (The-
orem [3.4.5). Experiments show that Agghoo actually performs much better than
what the upper bounds of Section suggest, with a significant improvement
over cross-validation except when V' < 5 splits are used. Proving theoretically
that Agghoo can improve over CV is an open problem that deserves future works.

Since Agghoo and CV have the same training computational cost for fixed
(V,7), Agghoo —with properly chosen parameters V, 7— should be preferred to
CV, unless aggregation is undesirable for some other reason, such as interpretabil-
ity of the predictors, or computational complexity at test time.

Our results can be extended in several ways. First, our theoretical bounds
directly apply to subagging hold-out, which also averages several hold-out selected
estimators. The difference is that, in subagging, the training set size is n—p—q and
the validation set size is ¢, for some ¢ € {1,...,n—p—1}, leading to slightly worse
bounds than those we obtained for Agghoo (at least if E [((s, A,,(D,))] decreases
with n). The difference should not be large in practice, if ¢ is well chosen.
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Oracle inequalities can also be obtained for Agghoo in other settings, as a
consequence of our general theorems [3.7.2) and [3.7.3] in Appendix [3.7]

3.7 General Theorems

We need the following hypothesis, defined for two functions w; : R, — Ry,
i € {1;2} and a family (¢,,)mem € SM.

Hypothesis H (w1, ws, (tm)mem): wi and wy are non-decreasing, and for any (m,m’) €
M?, some ¢, € R exists such that, for all k > 2,

P (12 (t) = 1(twr) — ") < K[ (VT 1)) + 00/ )|
< (VI 1) + wa (VI 0a)) |

This hypothesis is similar to those used by Massart [76] to study the hold-out and
empirical risk minimizers. However, unlike [76], we intend to go beyond the setting
of bounded risks.

We also need the following definition.

Definition 3.7.1 Letw : R,y - R, andr € R,. Let
§(w,r) =inf {6 > 0:Vz > 0, w(z) < ra’},
with the convention inf () = +oo.

Remark 3.7.1 e Ifr>0 and x — @ is nonincreasing, then §(w,r) is the

unique solution to the equation @ =rx.

e r+— §(w,r) is nonincreasing.

1

o Ifw(z) =ca’ forc>0 and B € [0;2), then 6(w,r) = (£)>7.

3.7.1 Theorem statements

We can now state two general theorems from which we deduce all the theoretical
results of the paper. The first theorem is a general oracle inequality for the hold-
out.

Theorem 3.7.2 Let (t,,)mem be a finite collection in'S, and

m € argmin P, y(t,, ) -
meM
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Assume that H(wq,wsa, (tym)mer) holds true. Let x > 0. Then, with probability
larger than 1 —e™*, for any 6 € (0;1], we have

0 n
_ ) < i 2 2o
(1—0)L(s,tm) < (140) min U(s,tm) + V206 (wl, X log\./\/l|)
62 62 n
52 v ). .
T3 <w2’ 1 x+log|/\/l|) (3:8)
If in addition, the two functions x +— ij(w), 7 = 1,2, are nonincreasing, then for
any x > 0, with probability larger than 1 —e™*, for all 8 € (0;1], we have
2 1
(1= 0)f(s.t) < (14 6) i (5. 8) + 22n, i) |0+ 28D
1 2
+ 02 (ws, ny) {(9 + W} (3.10)

Using Theorem [3.7.2], we prove the following general oracle inequality for Ag-
ghoo.

Theorem 3.7.3 Assume that the hyperparameter space S is convexr and that the
risk L is convex. Let (Am)mem be a finite collection of learning rules of size | M| >
3. Let f;g be an Agghoo estimator, according to Definition with T satisfying
assumption . Assume that w1, W2 are D,,-measurable random functions
such that almost surely, H(@l,l,@m, (Am(Dnt))meM) holds true. Assume also

that fori € {1,2}, v — w is non-increasing. Then for any 6 € (0; 1],
(1= OE[((s,F7)] < (14008 | min (6. An(D,0) | + Fa0) (301

where Ry(60) = Ry 1(0) + Ry 2(6) with

) <9+ 2(1+1;>g|/\/l|)> B[ (@0, v)]

2(1 + log|M|) + log®| M|

Rya(6) = (9 + . ) E[6%(@1,m0) | -

Now, for any D,,-measurable functions Wy and Wy such that assumption
H (s, Wa2, (Am(Dn,))mem) holds true almost surely, and any x > 0, 0 €
(0; 1], we have

(1-0)E [z(s, f;g)] <(1+0)E [%14 0(s, Am(Dnt))} + Ry(0) (3.12)
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where RQ(Q) = RQJ(Q) + RQ,Q(G) + R2’3(0) + R274(€) U/Zth

0 n
Ry 1(0) = V20E [6 (wm’ 2 x+10g’M|)] ,

62 R 02 Ty
Ry2(0) = S E {52 272’Zx+Tg|M!)} ’

and R274<0) =

3.7.2 Proof of Theorem 3.7.2

We start by proving three lemmas.
Lemma 3.7.4 Let w be a non-decreasing function on Ry. Let r > 0. Then
Vu = 0,w(u) < r(u* Ve (w,r)) ,
where §(w,r) is given by Definition [3.7.1]
Proof If u > §(w,r), by Definition [3.7.1]
w(u) < ru’.
If u < é(w,r), since w is non-decreasing, for all v > d(w, r),
w(u) < wv) < rv’.
By taking the infimum over v, we recover w(u) < rdé(w,r)?. |

Lemma 3.7.5 Let w be a nondecreasing function such that x — w@) s nonin-

creasing over (0;4+00). Let a € Ry and b € (0;+00). For any 6 e (0;1] and
u =0,
0

%w(\/ﬂ) < §[u+52(w,b)} +

a’6%(w, b)
—

Proof Since w is nondecreasing,
w(vu) < wy/u+0*(w,b))

i Pl b)w( u+52(w,b)).

u+ 0%(w, b)
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Since ) g nonincreasing and d(w, b) > 0,

< Vu+ 0%(w,b)bd(w, b) by Definition [3.7.1}
Therefore, using the inequality vVab < ga + %, valid for any a > 0,6 > 0,

a*6(w, b)?
—

a

(V) < /a2 (u+6(w,0)%)5(w, b < F(u+6(w,b)*) +

[\CRIANAY

Lemma 3.7.6 Letn, € N*. Let M be a finite set and let (t,,)mer € SM. Assume
that there exists p € [0;1/|M]) and a function R : (0;1] — Ry such that for any
m,m’ in M, with probability greater than 1 — p,

Vo€ (0;1],  (Pu, — P)y(tm, ) — (b, )] < OL(s,tm) + 0L(s, try) + R(0) .
Then for m € argmin,, . \s Pn,V(tm, ), with probability greater than 1 — | M|p,
Vo € (0; 1], (1 —=0)(s,tm) < (1+6) errg/r& U(s,tm) + R(0) .
Proof Let m. € argmin, . PY(tm,-). Then for any m € M, with probability
greater than 1 — p,
V0 € (0;1], (P, = P)Y(tm., ) = Y(tm, )] < OU(s, tm.) + 0L(s, tm) + R(0).
So by the union bound, with probability greater than 1 — |M|p,
VO € (0;1],Ym € M, (Pn, — P)[y(tm., ) — V(tm, )] < OL(s,tm.) + 00(s, 1) + R(6).
On that event, for all 6 € (0;1],
Py(tm, ) = Po,v(tm, ) + (P — P, )y(ta, )
< Py ) + (P = Bo)y (s )

= Py(tm., ) + (P = Bo) [yt ) = (e, )]
< Py(tm,, ) + 00(s, tm.) + 00(s, tm) + R(6).
)

Substracting the Bayes risk Pv(s,-) on both sides, we get with probability greater

than 1 — |[M|p, for all 0 € (0;1],

(s tm) < U(s,tm,) + 00(s,t.) + 00(s,tm) + R(0),
that is, (1 — 0)(s,tz) < (1+6) mlj{l/l U(s,ty) + R(0).
me
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|
We now prove Theorem [3.7.2, Let (m,m') € M? be fixed. Let
o i=w (s, ty)) +w £(s,tm)),
(VT B) + un (s 1) o1

and = wa(\U(s,tm)) +wa(A/L(S, tm)) -
By hypothesis H(wl, wo, (tm)meM),
3¢ m such that VE > 2, P (y(t,,-) — y(tw, ) — cm,m/)k < klo?cb=2 . (3.14)
For all y > 0, let Q,(m,m’) be the event on which

(an - P) [V(tma ) - V(tm’y )] < i—yO' + % . (315)

By Bernstein’s inequality, P(Qy(m, m’)) >1—eY.

Let ¢ = ‘ /HTgIMI By Lemma |3.7.4 with r = ¢,

o = wi(\/U(s, ty))Fwi(VE(s, t)) < q (U(s,tm) V6> (w1, q) + (s, tw) V 8% (w1, q)) -
Set y = = + log| M| in (3.15). Then

2y \/2(:E+10g]/\/l\)
\| =0 = o
N Ny

2(x + log| M Ty
<\/< g (05 1) V %001, 605, 8) v 8201, 0)
0 0 n
< , 2 R — . )
\ﬂ(as,tm)w(s,tm)ma (w1,2 x+log\./\/l\)) (3.16)

As for the second term of (3.15)), by Lemma with r = ¢%, we have
c = wy(\VA(s, tm))Fwa(\/L(5, tm)) < ¢° (E(s,tm) V 82 (wg, @) 4 (8, tmr) V 02 (ws, 2)) )

Recall that ¢ is shorthand for g‘ /#&Ml. Therefore:

y _ x+ log|M]|6? Ny ) ) )
- < - E 7tm 5 ) f 7tm 5 ,q
Cnv Ny 4 x + log| M| ( (5:tm) V 0%(w2, ¢7) + (s )V O (wa,g ))

(E(s, tm) V 0% (wa, ¢%) + £(8, ) V 6% (wo, 2))

0? n
2 v
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Since \/g+;11 < 1 and 0 € (0;1], plugging (3.16) and (3.17) in (3.15) yields, on
the event Qg y10g04/(m, m’), for all § € (0;1],

B N ' 2 Q e
(P, = P)[Y(tms ) = Yt )] < O(L(8, ) + £(5,tmr)) + V200 (wl’ 2\ + log| M|
92 9 62 Ny

0" ) 1
2?0 ( " J:+log|./\/l|> 19

Suppose now that x wj—(w) is nonincreasing for j € {1;2}. Let 6 € [0;1]. Let

y > 0. By Lemma Wlth a = +/2y and b = \/n,,

s \fwl VTs,t) + n (/2

26( m) + E(st )+ 0% (wr, /) [0+%y] . (3.19)

By Lemma |3.7.5| with a =y and b =n

A <w2( (5, L)) + wo( E(s,tmf)))

nU nU
0

2
< 55(3, tm) + gé(s, tr) + 0% (wa, 1) {9 + %} : (3.20)

Plugging (3.19) and (3.20)) in (3.15)) yields, on the event Q,(m,m'), for all § € (0; 1],
(B, = P)[y(tm, ) = (v, )]

<005, tn) + 0U(5, L) + 0%(wn, y/707) {9 N %@/] (g {9 ., y_j (32

7

By (3.18)), Lemma [3.7.6 applies with p = ri and

M|

0 n 02 62 n
_ 2 v Z 52 v
R(6) = V265 <w1, x +log|/\/l|) 50 (w2’ 4 x +10g|/\/l|)

This yields (3.8]). By (3.21)), Lemma applies with p = e™¥ and
1
R(0) =0 [67 + 03] + i 2967 + y263] .

Setting y = log| M| + x yields (3.10). [
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3.7.3 Proof of Theorem [3.7.3

We start by proving two lemmas.

Lemma 3.7.7 Let f € L'(R,,e *dz) be a non-negative, non-decreasing function
such that lim f(x) = 4o00. Let X be a random variable such that

r—r+00
Ve e Ry, P(X > f(z)) <e™® .

Then
+o00o

E[X] < f(z)e™®dx .

0

Proof Let g € L'(R,,e ®dz) be a non-decreasing, differentiable function such
that ¢ > f. Then

E[X] < /+OOIP’[X > t)dt
0g(O) —+00
_ / PIX > f]dt + / PIX > g(x)l¢(z)da
0 . 0
< ¢(0) —|—/ e "¢ (z)dx since g = f
" o0
90+ @ + [ Tl

+o00
= / e “g(x)dx .
0

It remains to show that g can approximate f in L!(I,s0e ®dz). Let K be a nonneg-
ative smooth function vanishing outside [—1; 1], normalized such that [ K (t)dt =

1. Let ¢ > 0. Define
/f <x e ) dt (3.22)
/f:z;+€—t ()dt (3.23)
By (:22), f. is smooth. By (3:23), f. is nondecreasing, moreover
f-(z) — f(z) = é/[f(ms—t) — f(a)] K (é) dt since/K =1
—l/wvm+e—w—f@ﬂK(f

) dt since K (u) =0 when |u| > 1
e/ . €

> 0 since f is nondecreasing and K > 0 .
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Thus f. > f. Finally, by Jensen’s inequality and Fubini’s theorem,

Jit) - sl <t [ 5 (4) [ire -0 - e
<sup [ 154 7) - fa)le e

|T|<2e

which converges to 0 when ¢ — 0 since f € L'(R,, e *dz). |

We use the following additional notation:

Definition 3.7.8 Let g be the function defined by

1
V(0,y,p.q) € (0;1) xRS, ¢(0,y,p,q) =0[p+q|+ 7 [2yp + y%q]

This function satisfies the following properties.

Lemma 3.7.9 Let g be the function given in Definition . For any 0 € [0;1]
and any u>0,p > 0,q = 0,

u [T - 2(L+u 2+ 2u + u?
e/ 9(0,y,p,q)e ydy=(9+ <6 ))p+(9—l—T)q.

Proof of Lemma [3.7.9]
Using the formulas

+oo +oo
/ e "dr = e_“,/ ze *dr = (1 +u)e™™,

+o0
/ e dr = (u® +2u +2)e " |

we get:

+oo 2
e“/ 9(0,y,p,q)e ¥dy = 0p +q] + 5(1 +u)p+ (u® +2u+ 2)%

2(1 2+ 2u + u?
=<9+ ( ;_u)>p+<9+$)q.
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We can now proceed with the proof of Theorem B.7.3 Let 0 € (0;1] be ﬁxed

Let (f°)r<r be the individual hold out estimators, so that f.2% = % Srer 11O
By convexity of the risk functional £, we have

It follows by substracting L(s ) that:
(s (s
NP
Since the data are i.i.d, by assumption (3.2)), all f}‘o have the same distribution.
Let Ty = {1,...,n:}, so that DIt = D,,,. Taking expectations yields
Ele(s, f7°)] < E[e(s, fr)] - (3.24)

Since H (1,1, W2, (Am(Dy, )mer)) holds, we can apply Theorem condition-
ally on D,,, with t,, = A,,(D,,).

Proof of (3.11)) For i € {1;2}, let 3\172- = §(@1,4,1/Ny'). Let g be given in Defi-
nition [3.7.8] By Theorem [3.7.2] Equation (3.10)), for any z > 0, with probability
greater than 1 —e™%,

(1= 0)0(s, f£°) < (1+0) min (s, t) + g (6, 2 + loglM|,82,,0%,) . (3.25)

As g is nondecreasing in its second variable, Lemma [3.7.7 applied to the random
variable (1 — 0){(s, f£°) yields:

+oo
(1-0)E [ﬁ(s,fo)!Dﬂ < (146) n%%g(s,tm)+AgMg(e,y,%7173?72)e—(y—10gM)dy _

Lemma [3.7.9] yields
2(1+1
(1—0)E [z(s,fjgoﬂp,ﬂ < (1+46) min ((s, t) + <9+ 1+ Og’MD) 5,

0
2

N (9+ 2(1 —I—log|/\/(lg|) + log |M|) 6_»12’2 |

Taking expectations with respect to DI* = D,,, |
2 (1 + log| M

(1-0)E [Z(s,leo)] < (1+ O [min £(s, An(Dy,)] + (9+ ( +;g| D)E[Zﬁl}

2 (1 + log| M) + log*|M

i (g 20D MY 5

Equation (3.11]) then follows from Equation (3.24)).
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Proof of (3.12) Fix x> 0. For i € {1;2}, let d,; = § <w2za (3\/ ;U—HZ;M/H) > '

By Theorem [3.7.2] Equation (3.8), with probability larger than 1 —e™?,

(92
(1= 0)0(s, J£7) < (14 6) min €(s, 1) + V2052 | + 38372 . (3.26)

Combining (3.25) and (3.26)), for any z > 0, with probability larger than 1 —e™?,

02
(1= 0)t(s, J£7) < (1+6) min €(s, t) + V2003, + 5055 + Lizag (6, 2 + logl M|, 0% 1,57 ) -

By Lemma [3.7.7]

02
(1= O)F [0(s, )| DI] < (1+0) min €(s, ) + V2033, + 32,

400
+ / 9(0,y,0%,,0%,) e wlesMDqy
o-+log| M|

By Lemma |3.7.9, it follows that

92

(1= O)F [0(s, )| DI'] < (1+0) min. €(s, ) + V2683, + =32,
2(1 1

g <9+ ( —l—x—l— og| M]) )

1,1

(x + log| M|)? )

2(1 l
+e 7 <9+ Q+o+ og|M]9 01 -

Taking expectations with respect to DI and using inequality (3.24]) yields Equa-

tion (3.12)) of Theorem [3.7.3| [

3.8 RKHS regression: proof of Theorem 3.4.3

In the following, for any g : R x R — R and ¢t : X — R, the function (z,y) —
g(t(z),y) is denoted by g o t.

3.8.1 Preliminary results

Remark first that the RKHS norm dominates the supremum norm:
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Lemma 3.8.1 If k = sup, K(z,x) < 400 then for anyt € H,

1t < Vel -

Proof By definition of an RKHS, Vt € H,Vx € X, (t, K(z,-))3 = t(z). It follows
that, for any t € H,

[£]1%, = sup t(x)* = sup(t, K (x,))3,

< HtH?H sup K (z, z).

Using standard arguments, the following deviation inequality can be derived.

Proposition 3.8.2 Let ‘H denote a RKHS with bounded kernel K : X x X — R.
Let k = sup, K(z,x) and h : R* — R be Lipschitz in its first argument with
Lipschitz constant L. For any t € H and r > 0, denote

By(t,r)y={t' e H|||t' —t],, <7} .
Let tg € H. Then for any probability measure P on X X R and any y > 0,
®n T\/E —
P sup (P, —P)(hoti—hoty) 222+ +/2y)L—=| <e™¥ .
(tl,tz)GB'H(to,T)Q \/ﬁ

Proof Let D, = (X, Y;),,, be a dataset drawn from P. Let (0;)1<i<n be i.i.d
Rademacher variables independent from D,,. Denote by R,,(F) = E [sup reF Ly o f(Xi)]
the Rademacher complexity of a class F of real valued functions.

By Lemma 7 for any (tlatZ) € B'H(t07 T>27
[hoti —hotoll, < Lty — tall o < L{lt1 —toll o + [It2 — toll ] < 2Lv/kr .

By symmetry under exchange of ¢; and t,, notice that

1 n
Rn ({h0t1 —h0t2|(t1,t2) € B’;.[(t(),’l")Q}) = sup E ZO'Z'(}ZO'[J:[ —hOt2)<X7,)
) i=1

(t1,t2)€Bx (to,r)?

By the bounded difference inequality and [20], Theorem 3.2, it follows that for any
y > 0, with probability greater than 1 —e™Y,

2
sup (P,—P)(hoti—hoty) < 2R, ({h oty — hots|(t1,t2) € Byl(to,r)*})+2Lry/ Y
n

(t1 ,tz)EBH (to,’r)2
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Moreover,

Rn ({h o tl —ho tgl(tl, t2) € BH(to, 7’)2})
< R,({hot|t € By(to,r)}) + Ro({—hot|t € By(to,7)})
< 2LR,,(By(tg,7))by the contraction lemma (relevant version: [80], Theorem 7),

2
2LR,,(By(0,7)) (by translation invariance).

Finally, by a classical computation (see for example [20], Section 4.1.2),

R, ({h oty — hoty|(ty,ta) € BH(tO,T)Q})

7/' n
<2L-E K(X;, X,
- ; (Xi, X;)

< 2Lr

The proof of Theorem also uses the following peeling lemma.

Lemma 3.8.3 Let (Z,)uer be a stochastic process and d : T — Ry be a function.
Let a > 0 and b € (0;2] and assume that

14+ 4/b
Vroy =2 0,P| sup Z, =71  Vhlaty) <e™ . (3.27)
weT:d(u)<r \/ﬁ

Then, for any 0 € (0; +00),

2+ b[1.1+2(a+y)]
on

P|3u€T,Z, > 0d*(u) +

<e™ .

Proof Let z > 0. Let n € (1;2], j, € N* and yo € R be absolute constants that
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will be determined later. Then

]I{ Z, 1+\/Ty}

225 d?(u) + x2 > r\/n

<]1{ Zu 1+ a+y}

sup >
ueT:d(u)<z d2( )_’_1‘2 I’\/_

+°OH{ Ly 1+\/ a—l—y}

+

sup
oo ueTmiz<d(w)<nitia d*(u) + x? > N
1
<1 sup _g/ +y/bla+y)
weT:d(u)<e T .T\/_
++OO]I sup Zu 1"’\/ a—l—y
= |wermiacaweyire (1 +7%7)2? o a/n
<1 sup  Z. >:U(1+vb(a+y))
~ u =
u€T:d(u)<z \/ﬁ
+o0
z(1+v/b(a+y))
+ >y I sup Zy > (1+ 7721) ‘ (3.28)

Notice that:
(1+7? 1+” a+y _ T 11+ Vb(aty)
n T]]+1 \/_
- ]Hl—l—\/ a+zj

where:
1 /n¥+1 n¥ + 1 2
23:5( nit -l P bla+y)| —a
L[ +1 LT +1\’ : 2j j
/E[nj+1 —1} +<7Ij+1 Y sincea > 0and n? +1>n _

Taking expectations in (3.28) and using hypothesis (3.27]), we obtain:

Z., 1 b .
g e VIR S
wer d*(u) + x? x\/n =
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So for any y = yo ,

Zy, 1+ /b
]P[sup + (a+1y)

uweT d ('U/) -+ .’L'Q / :U\/_

Now, we have

exp (yo — 772(j_1)y0)

(3.30)
Let u denote the sequence u; = exp (yo _ n?(j—l)yo)' Then for j > j,,,
log uj1 —logu; = 1129 Vo — n*yo
= y0<1 n ) (J-1)
yo(1 — n*)n*Um=Y since n > 1 .
Thus, |
V) 2 Jm, Ujp1 < Ujexp (—yo(UQ _ 1)772(]m—1))
Therefore, we have
V20, U, < U, exp (—jyo(n’ — Dn*Un)
and
S -1
Z uy < g, [1 = exp (—go(n? — Do)
J=Jm
It follows from (3.29)) and (3.30) that for any y > yo, since b < 2
v Zu L+/bla+y)
e’IP |sup 5 > >
u d (u) +x I\/_
U + 1P (0P
ex — n26m—1)
3 (yo : yO) (3.31)

T=exp (—yo(? — DP0D)



94 CHAPTER 3. AGGREGATED HOLD-OUT

On the other hand, when y < vy, trivially,

]P’[ Zy, >1+\/b(a+y)

sup <1 < ee™,

u d2(’U/)+$2 - SL’\/H

Taking n = 1.18,j,, = 10,99 = 0.52, the right-hand side of (3.31]) evaluates to
1.6765 < 1.7 whereas e¥ < 1.683 < 1.7. It follows that for all y > 0,

P lsy Zy < 1+ /bla+y)
P x\/n

w d2(u) +2? 7 <L7e? (3.32)

Now take z = y/ety) ”H\b/(gm with 8 > 0. We can rewrite:

P |sup Zu >1+~b(a—|—y) =P HUET,LZQ
w d*(u) + 22 z\/n | d*(u) + 22

=P |JueT, Z, > 0d*(u) + % (1 + \/b(a+y)>2}

r 2 1 2b(a+y)
On

>P|JueT, Z, > 0d*(u) +

It follows from Equation ({3.32]), with y replaced by y + 0.55, that

2+ b(1.1+2(a +7v))

P|3ueT, Z, > 0d
uel, (u) + o

} < 1.7e7 9%V

<e V.

We need two other technical lemmas in the proof of Theorem [3.4.3|

Lemma 3.8.4 For any nonnegative, continuous convex function h over a Hilbert
space H, and any X\ € R, , the elements of the reqularization path,

ty = argmin {h(t) + A [[t[5,}
teM

satisfy, for any (A, p) € R? such that 0 < A < p,

2 2 2
1Ex = tullz < tallz = [1Eulls,
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Proof By [9, Theorem 2.11], ¢, exists for any A € R, . Moreover, it is unique
by strong convexity of ||||i For a closed convex set C C H, let II; denote the

orthogonal projection onto C.
Let ;1 > 0. The set {t : h(t) < h(t,)} is closed by continuity of h and convex

by convexity of h. Moreover, for any ¢ € H such that h(t) < h(t,),

2 2
plltllzy < Ptu) = R(E) + ][ty
< ||tH3r[ by definition of ¢, .

Therefore, ¢, = Hpny<ne,)3(0). Let A € (0; 1), By definition of ¢y, 1,

h(tu) 2 h(tk) 2
—= 4+ ||t < + ||t
P (L b P 115
h(ty) 2 11
- / - ) h
3 + [[tall5 + P (tx)
h(t 11

<

ot + (- 5) e

which implies (u=' — A)A(t,) < (™' — A1A(ty) and thus h(ty) < h(t,) since
A < p. For a projection I, it is well known that:

Vi€ H, V' €C,(t —Te(t),He(t) — )y =0 .

>

Choosing C = {t : h(t) < h(t,)},t' =ty € C,t = 0 yields (—t,,t, — t\)n = 0.
Therefore
2 2
el = [t 4 (Ex = 2 [l3,
2 2
= [tllyg + l1Ex = Eullz, + 2(00 tx = tu)a

2 2
= ”tuHH + Ht)\ - tu”y .

Lemma 3.8.5 Let (b,c) € RZ and l,.(x) = bx + ¢. Let & be given by Defini-
tion|3.7.1. For any r € Ry,

v’ 2c
2
) (lb’c,r) < 7“_2 + ? . (333)
For (a,b,c) € R3, let gopo(x) = ax V [br® + ch]%. For anyr € R,
2 2 2 12
9 a b*  2c a b*  2c
0 (ga,b,car) < 7'_2 Vv |:F + 7'_2:| < 7'_2 ﬁ ﬁ . (334)
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Proof Since z — @ is nonincreasing, we have by Remark |3.7.1}

bd(lb,c, 7”) +c= T(SZ(lb,c, 7“), i.e

b6 (I,
52 (lpe, ) — bolye,r) ¢ -0 .
r r
Hence 0(ly.,7) = & + %\/% + 2. Thus

2 v¥oooc b 2
Flyer) <2 S +-—S+- | <5+ —.
(e 7) <4r2+47’2+7’> 217

This proves (3.33). For any x > 0, g.p.(z) < ra? is equivalent to

ar < ra’ (3.35)
and bx® + cx? < r2at . (3.36)

Eq. (3.35) is equivalent to x > 2. On the other hand,

<

1
2 2c¢]2
x > [7*_4 + ﬁ} - > 5(lb,c,r2) by (3.33])
= bz + ¢ < r’z® by Definition [3.7.1]

— (3.36).

Therefore, whenever

Sy bQ+2c%
x - _ Gy b)
r rd 2

it holds that gop.(z) < rz?. (3.34) follows by Definition [3.7.1] |

3.8.2 Uniform control on the empirical process

From now on until the end of the proof, the notation and hypotheses of Theo-

rem are used. Recall also the notation g ot : (z,y) — ¢g(t(x),y), for any
g:RxR —-Randt: X — R. Fix a training set D,,,. Start with the following
definition.

Definition 3.8.6 Forty,ty € H, let

d(ti,tz) = mint; — sx[ly, + ([t —tally (3.37)
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where sy = argmin,, {P(cot) + A ||t||3d} Furthermore, let

~ )\mnt )\m 2
= P, — P)(cot; —coty) — “2d(ty,t ,
7= g% s {(P = Pleots —con) ~ a1}
so that
Am 32k L%y
V(b1 ta) € HE, (o, = P)(eoti — coty) < Shd(t 1) + ;n Y (3.38)
m!lt

We then have the following bounds on 7.
Claim 3.8.6.1 For allx > 0,

P(y>26+1loglAl+2) <e™ .
In particular, E[y] < 4 + log|A|.

Proof Let (t,t3) € H be such that d(t;,t2) < r. Let A € A be such that
lt1 = sally + It — t2ll;, < r. By the triangle inequality, ¢1,t, € B(sy,r). Hence
sup {(P,, — P)(cot; —coty)} < max sup (P, — P)(cot;—cots).
(t1,t2):d(ty t2)<r AEA (1 t5)EB(s5,r)2
(3.39)
From Proposition and the union bound, it follows that, for any x > 0,

P [max sup (P, — P)(coty —coty) > (2 +1/2(z + log|A| ) L—] e ",

AEA (41 15)€B(sx,r)?

It follows by Equation (3.39)) that, for all x > 0,

x+loglAl\ r B
P Sup — P)(coty —coty) > 1_|_\/7 <o
le i ta)<r 4Lf< fleoh —cot) ( > ) U

By Lemma [3.8.3| with § = 82%, a = log|A|, b = %, with probability larger than
1—e™,

Am 2.6 log|A
V(ty,t2), (P, — P)(cot; —coty) < Td(tbtz)Z +32L2K( + 2+ log| |>

)\mnt
On the same event, § < 2.6 + x + log|A| by Definition [3.8.6]
Therefore, by Lemmam E[y] < 3.6 + log|A|. |

Definition [3.8.6 and Proposition [3.8.6.1] together imply a uniform control on the
empirical process thanks to the drift term \,,d(t;,t2)?, whereas Proposition [3.8.6.2
only gave a bound on an RKHS ball of fixed radius.
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3.8.3 Verifying the assumptions of Theorem

Theorem is a consequence of Theorem m For all A € A, let 1), =
Ay(Dn,), where A, is given by Definition [3.4.1] To verify the assumptions of
Theorem adequate functions (@; ;) jjef1,232 must be found such that for
ie{l;2}, H (1/171-71, W; 2, (f,\),\eA) holds almost surely . This is the purpose of this
section.

The core of the proof of Theorem [3.4.3|lies in the following deterministic claim.

Claim 3.8.6.2 For all A\, € A such that A\ <

kC 5 Ky
A A—e( t,) +96L e

Proof Let (\,u) € A? with A\ < u. Let s, be as in Definition [3.8.6 “ Equa-
tion (3.37). By convexity of ¢, the function t — P(cot) + u ||t||H is p-strongly
convex. Since s, is its optimum, we get

vt € H, Plcot) + ptllz = Pleosy) + ullsully +pllt = sully, -
Hence, taking ¢t = %\w

2
| SMHH

< pf
2
< P(e Ot +/~LHtuHH P(cosu) = pllsully,
P, (Cot "‘,U”t Pnt(cosu)_MHSuHi["‘(P_Pm)(co%\u_cosu)'

Am HtAu - Su”j{

NH”H

By Definition
Pnt(COt +/“LHtMH'H nt(COS#)—I—MHS“”H

Hence )\mHt sNHH (P — P,,)(cot, —cosﬂ) (P,, — P)(cos, —cot,). Now
take t; = s, and ty = tu in Equation (3 of Definition to get

Ao ([t = Su”j{ < )\_md(suy ty)® +32L% —— 0

2 )\mnt
A ~ 2 KY
= 5 s —tulls + 32L2m :
Therefore, R
5 — s[5, < 64L2 AZ’;t (3.40)
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Now HtA —t#HH can be bounded as follows. Since t — P, (cot) + )\HtH?{ is
\-strongly convex and %, is its optimum,

2
”tA uHH

)‘mHtAA_tAu”i A
P,, (cotu) — P, (coty)+ A HtﬂHH — A ||t,\HH )

<
<

By Lemma [3.8.4| with h(t) = P,,(cot), ||tA,\ —tAMHi < ||tA,\||i - H%\#Hi Hence

< Po(coty) = Pulcot)

= P(cot,) — P(coty) + (P, — P) [co%\u—co%\)\}

< P(cot,) —I?iélp(cot)—t—(Pm — P) [co%\u —cotA,\]
€

()‘ + )‘ ”t/\ - tuHH

< Cl(s,t,) + (P, — P) [co t,—co tA,\} by hypothesis Compc(g,c) .

By Definition m, Equation (3.38) with ¢; = ?M and ty = 1y,

JU JUNS W PO 7

(Am +A) Ht/\ - tu”i < Cl(s, 1) + 9 [”tu - SMHH - Ht/\ - t#H’H}2 + 32[’2)\%—%%
2

L\/Ykx KY

< OHeT)+ 2[ EVTE g, |+

by equation ((3.40)).
For any (a,b), (a +b)? < 2a® + 20?, hence

KY
/\mnt '

At M) [[Br = B[, < Clls. B) + % {128L2/\';m +2i - u“j{] + 3217

This yields:

~ o~ 2 Ky
MJEx = ul|;, < Cl(s, L) + 96L2)\mnt
and finally, since A > \,,;:
~ 2 Cls,1) Ry
[Ex =[5, < - £ +96L2m.
Now, by Lemma [3.8.1}
B~ Bl < 1B =Bl
2/\

KC'
< S2u(s,T,) + 9622

)\m K )\fnnt ’
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This proves Claim [3.8.6.2 |
Using hypothesis SC,, —Equation (3.4)—, a refined bound can be obtained
on P [(go%\)\ —gozﬂ)ﬂ.

Claim 3.8.6.3 For any (\, p) € A?,

P[(Qom—got)] @B< E(S,t,\> +w3< )
@B(@Q:mw{pﬁ, V%\/fx +10vL \\//__ }

Proof By hypothesis SC,, —Equation (3.4)— with u = th(X) and v = 1,(X),
E[(gotx—go)* (X, Y)IX] < [pV (M[I(X) = 4] [Ex (X)) + x (E.(X))]
< [ov (I~ BlL)] [ExB00) + Ex ux))]

where (x(u) = E[g(u, Y)|X] — min,er E[g(v,Y)|X]. Integrating this inequality
with respect to X, it follows that,

where

Pl(goty—go8,)| <oV (v [ =Bl )] [ €0 50) + €051,

Assume without loss of generality that A < p. By Claim [3

P[(got,\—got (p\/l/[\/iy/ u) +10 m\/_]>[(s t,\)—i-ﬁ(s,tl)}

<max{p[as,a)H(s,m],y e AT ARRY A
+10L:\/\/:[ a)+e(s@)u}. (3.41)

Using the inequality ab < % + %q with Holder conjugates p =3, ¢ = %, we have:

05,5005, B) + /05, T) g% U(s,E,) ge( B0 4/ Us,5)
<§{ 0(s,t2) +1/L(s,,) } (3.42)
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Claim [3.8.6.3| then follows from inequalities (3.41) and ([3.42)) using the elementary
inequality (a+0b) V (c+d) <aVc+bVd. [

As g is L-Lipschitz in its first argument, it follows from Claim |3.8.6.2| that for
all A, p € Ast. A< p,

”9 oty —g O?MHOO S L ”?A _tAuHoo
wC n 2 KT
Ly/ )\m\/é(s,tu) HI0L}

< Wy ( é(s,tAM)) + W ( f(s,%\,\)) , (3.43)

Dalz) = L\/; +5L2 *;\\//__ (3.44)

If follows that for all k > 2

where

P [(g oty —gofu)k} < Hgoa _QO?MHI;

< [@A< g(s,t])) +@A< é(s,t})ﬂk .

This proves that hypothesis H ({J A, W a, (B)re A), as defined in Appendix , holds
true.
It follows from Claim [3.8.6.3] and Equation (3.43)) that, for all £ > 2

Pllgot = gobl] < llgot —go bl P (o). Y) — 9(E.(X). V)]
< [@A< (5.5 + 0 ( e<s,?u))}k_2
x {@B( e(s,a))+w3( z(s@))r ;

which proves that H (@B, Wa, (tA,\) Ae A) holds true.

3.8.4 Conclusion of the proof
We have proved that H (g, w4, (%\A)AGA) and H (@A, Wy, (tA,\))\eA) hold, where wg

is defined in Proposition|3.8.6.3|and w4 in Equation - Moreover, x w“‘(x) is
nonincreasing. Therefore, Theorem [3.7.3|applies with w1 = Wy, W) 2 = Wa, wz 1=
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Wp, Wey = Wa, = logn, and it remains to bound the remainder terms (Rs;)1<i<4
of Equation (3.12). For each ¢, we bound R ;(f) by an absolute constant times
maX{Tl (‘9>a TQ(H)a T3<9)}7 where

6p log(n,|Al)

B0 = 106 6m,
2 log’(ny|A])
TQ(Q) = (V V L) KJCW
_ log? (n,[A]

Summing up these bounds yields Theorem [3.4.3|

Bound on Rs;(0) = \/_QE[ (vaQMH

Recall that wg(x)? := max {px /Ea® + 10vL H\/\; }
By Equation (3.34]) in Lemma|3.8.5with a = /p, b = o 3/ 5% KO o= 101/L;\/\},

log(n.|A)]” log(ny|[ANN/G

log(n,|Al) 0%n, 0\ SR> W
(3.45)
Therefore,
log(n,|A log(n,|A)]? log(n,|A])] /E[T
; on, 03\, 2 O/

By Proposition [3.8.6.1}, E[g] < 4 + log|A|. Since n, > 100 > ¢*, E[g] < log(n,|A]).
As a result,

2 3
log(n|Al) 2 log(n,|A])] [log(n,|A])]2
——————= + 42 = 1 1M4vlr—--—-""

on, + 420 G3\,n? + v O/ T0

1007} (6) + 42T5(6) + 114T3(6)
256 x max {T1(6), To(0), T5(0)} .

RQJ (9) é 6p

<
<
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Bound on RQQ(H) = %E |:62 (@A, %log(zzv\\))}

Recall that by definition, wa(x) = L %w + 52 w7 (Equation ([3.44))). By

N/
Equation (3.33) in Lemma [3.8.5| with b = L, /% and ¢ = 5L> /\Z{%, we have
> n log®(n,|Al) [log(n,|A)] /5
0 | Wy, ————= | <16L*°kC—F—5= +40L? . (3.46
(wA’ 4 log(nv]A\)) " O4\,,n? i " 02X/t (3.46)

As E[y] < log(n,|A]) by Proposition [3.8.6.1} it follows that

log®(n[Al) | ;> 1og® (nu]A])
orn? +20L*k Ntto it

80T5(0) + 200T5(0)

28 x max {T1(0),T2(0),T3(6)} since 6 € (0;1] .

RQ’Q (8) < 8L2I<LC

<
<

2[1+10g(/A)]

Bound on R,3(0) = % (9 + T) E [52 (@A, \/n_v)}

By Equation (3.33)) in Lemma |3.8.5| with b = L %, c=5L7 /\';\\//_?Tt,

C 10/1\/?
20~ <72 2 . ‘
0% (Wa,/ny) < L o + L N (3.47)

As 0 € (0;1] and n, > 100263, we have9+% < % < 2logm Yence

0
2(1+log(|A])) _ 2log(n,[Al)

0 < . 3.48
+ 7 7 (3.48)
Therefore,
21 A 10k+/E[y]
R23(0) < Og<nv| |) L2 KO +L2 K [y]
’ On, ATy AmA/ T
Since E[y] < log(n,|A|) by Proposition [3.8.6.1]
L%kC log? (11| A])
0) <21 oA + 20L% Kk —————
R2,3( ) Og(n‘ |>8Amn% + 0 Iie}\mnvm
262 20
< ——Th(0) + —=T3(0
st a0 B

< 0.4T5(0) + 2T5(0) since n, > 100 and |A| > 2
<24 % maX{TI,TQ,Tg} .



104 CHAPTER 3. AGGREGATED HOLD-OUT

O, O, 2 o~ ~
Bound on Ry (f) = % (9 N 2[1+1 g(IAI;] +log (A)) E [52(UJA,7%)}

R/ Y
AmA/1t?

By Equation (3.33)) in Lemma |3.8.5| with b = L %, c=5L>

KC 106/
<L L? : 3.49
Amn?2 + Ao/ Tl ( )
Since 6 € [0;1], n, > 100 and |A| > 2, we have log(n,|A]) > log(200) > 5 and

2[1 +log(JAD] _ 2log(n,[A)

0% (Wa,my)

0+ 7 < 7 by equation (3.48])
< 21og”(n,|A|) ‘
56

Hence, by Equation ({3.49)),

1, 41log*(n,|A 106+/E[y]
R24(9) g ) Og (n@'| ‘) L2 'K‘:C +L2 K [y]
’ on, Amn2 AmNy/ Tt

Since E[y] < log(n,|Al),

5
L2I{O + 14L2/{10g2 (nU|A’)

R2,4(0) < 17410g2(nv|A|)0>\ n3 0)\ n2\/n_t

2
< L4 0y + 141080 1

Ty Ty

Since n, > 100 and |A| < eV™, we have log(Z“‘AD < logén”)—l—log(zﬁ) < 1og1(01(;)0)+% <
0.15 and so

Ry.4(0) < 0.014T5(6) + 2.1T5(6)
2.

<
< 2.2 x max{T1(0),T2(0),T5(0)} .

Conclusion

Summing up the above inequalities, we get that for every 6 € (0; 1],

RQ(@) — R271((9) —f— RQQ(Q) + R273(0) + R2’4(0)
< 289 max{T} (), T»(6), T5(6)} .

Equation (3.12) in Theorem thus yields
(1-0)Els, ) < (1+0)E [rgl (s, A\(Dp,))] + 289 max{T3 (6), T2(6), Ty(0)}

which proves Theorem with b = 289(v V L)*kC and by = 289L(v V L)k. W
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3.9 Proof of Proposition and Corollary (3.4.4

Let us start by two useful lemmas.

Lemma 3.9.1 If Y is a convex, Lipschitz-continuous, and even function, and 'Y
is a random variable with a non-atomic distribution, the function

R:u—E[p(u—-Y)]

is convex and differentiable with derivative R'(u) = E[¢'(u —Y')]. Moreover, if Y
is symmetric around q, i.e (¢ —Y) ~ (Y —q), then R reaches a minimum at q.

Proof First, remark that R is convex by convexity of 1. Let u € R. For h # 0,

let k(h,Y) = w(“Jrh_Y,)L_w(“_Y) . Let A be the set on which v is non-differentiable.

Since v is convex, A is at most countable. By definition, k(h,Y") — P'(u—-Y)
—

whenever u — Y ¢ A, that is to say ¥ ¢ u — A. Since Y is non-atomic, P(Y ¢

u — A) = 1. Moreover, since 1 is Lipschitz, there exists a constant L such that

Vh # 0, |k(h,Y)| < L. Therefore, by the dominated convergence theorem,

R(u+ h})L — R(u) _ Elk(h,Y)] — B[/ (u —Y)] .

Thus, R is differentiable and for all u € R, R'(u) = E[¢)'(u — Y)].
Moreover, we have

= —E[J(Y — q)] since ¢/(—z) = —1)(z) on R\A
— —E[¢/(q—Y)] since (Y —q) ~ (g=Y) ,

which implies that R'(¢) = 0. Hence, R reaches a minimum at ¢ since R is convex.
|

Lemma 3.9.2 Let g : R — R be a differentiable convex function that reaches a
minimum at u, € R. If there exists ,0 such that

Vu € [ux — 5 u, + 9], g (w)] = elu —u,| (3.50)

then for all (u,v) € R?,

(=P < [ 2y (Su ol )| ot + o) - 20001
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Proof By integrating Equation (3.50)),

Yu € [u, — §;u, + 6], (g(u) — g(us)) = =(u —u,)? . (3.51)

DO | ™

Let

() = < [o(u +0) — g(u)] [u— ] (3.52)

By convexity of g, for any u > u,+d, g(u)—g(u,) = h(u). Hence by Equation (3.51)
with u = u, + 0 and Equation (3.52)),

1 )
YVu = ue + 9, g(u) — glus) > 5252[u —u,| = %[u — Uy . (3.53)
The same argument applies to the convex function g(—-) with minimum —u,,
which yields
o
Vu e R |lu—u. 20 = g(u) — g(u.) > 6E|u—u*| . (3.54)

Let (u,v) € R?. Assume without loss of generality that |u — u,| > |v — .| If
|u — u,| < d then by Equation (3.51)),
(u—v)2 < 2[u — u*f +2[v — u*}z
4
< . [g(w) + g(v) — 29(u)] . (3.55)

Otherwise, by Equation (3.54)),

(u— )" < |u—|[Ju—u.| + v — ]
< 2lu — v|ju — .|
< S u— o] [g(w) — g(u.)]
< Sl —vllg(w) + g(v) —2g(w.)] - (3.56)

3.9.1 Proof of Proposition |3.4.2

Now, we can prove Proposition [3.4.2l Let R, : u — [|u — y|dF,(y). By
Lemma with ¢ = | - |, for all v € R,

R.(v) = / =Ly + Lo_ys0] dF2(y)
= F,(v) — [1 — Fx(v)}
— 2[F,(v) — Fu(s(x))
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since by definition, F,(s(z)) =
b(x); s(x) + b(z)],

Hence by hypothesis (3.5)), for all u € [s(x) —

R, (u)] > 2a(z)|u — s(z)].
Therefore by Lemma , for all z € X and (u,v) € R?,
(s v s ) )+ o) = 2 o)

< (i % (im — v|)) [R.(u) + Ry (v) — 2R, (s(z))] .

am Hm

(u—v)?

N

Since g : (u,y) — |u — y|, it follows by taking x = X that

(0. Y) =901 < (=0 < (v (=) ) [t + 050,

which implies hypothesis SC a4 . [ |

am’ pm

3.9.2 Proof of Corollary
Corollary [3.4.4) is a consequence of Theorem [3.4.3] Let us check that its assump-

tions are satisfied.

Compatibility hypothesis (Comp;(c’”, ¢#%)) Fix x € X and let p,, F} be the
pdf and cdf corresponding to the distribution Y given X = z. By assumption, p,
is symmetric; s(z) can be chosen equal to the center of symmetry (recall that the
contrast function here is (¢, (z,y)) = ¢ (t(x),y) = |t(z) — y|, so any conditional
median is a possible value for s(z)). Let

5:c U'—)/ eps u ypx dy—/% )dy ’ (357>

where 1.(z) = (]z| —¢€)4 for any z € R. Lemma C.1 applies, since p, is symmetric
by assumption and 1), is even, convex and 1-Lipschitz.
Hence for any ¢ > 0, R., has a minimum at s(z) and is differentiable, with

/1/) )dy — / [_Hu—y<—€ + Hu—y?s]pm(y>dy
(u—e)—[1—F(ute)] . (3.58)

Therefore, for any € > 0 and u € R,

R;x(u) — R&x(u) = /06 [—pe(u —1t) + pe(u+t)]dt . (3.59)
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Now, assume that u > s(z). By symmetry of p, around s(z), for all ¢ > 0,

Pa(u— 1) = pa(s(x) + (v — s(x) — 1))
= pa(s(x) + |u—s(x) —t|) . (3.60)
Since p, is unimodal, its mode is s(x) and p, is non-increasing on [s(x); +00). It
follows from Equation (3.60]) that for all u > s(x) and ¢t > 0,
Pe(u—1) = pi(s(x) + Ju—s(x)| + 1)
= ps(u+1). (3.61)
Therefore, by Eq. (3.59) and (3.61)), for all u > s(z) and € > 0, R, ,(u) < R . (u).
By integration, this implies that for all u > s(x),
R..(u) — R..(s(z)) < Rox(u) — Ro.(s(z)) . (3.62)

By Equation and symmetry of p,, R., and R, are symmetric around
s(x), hence inequality is also valid when u < s(z). Taking x = X, u =
t(X) and integrating, we get Loers (1) — Leers(s) < Leers (t) — Leers (s) which proves
Comp (¢, cP®).

Hypothesis SC,, 3 We first compute a lower bound on Ry ,.

Let g,1 = sup{y|Fu(y) < 3} and ¢, 3 = inf{y|F.(y) > }. By continuity
of F,, Fm(qm’%) = I and Fx(qz%) = 2 Let o(z) = Q2 — Q1> Which is the
smallest determination of the interquartile range. By symmetry of p, around s(z),

%[qx% + q%%} = s(z), therefore Q2 = s(z) + @ and ¢, 1 = s(z) — %m)

For any u € [s(m) — @; s(x) + @], by symmetry of p, around s(z),

s(z)+|u—s(x)|
IFy(u) — Fy(s(2))] = / 2p.(v)dv

s(x)+|u—s(z)
= |u— ||u—s ‘/ pr(v)dv

Since p, is non-increasing on [s(x); +00) and |u — s(z)| < %,

(\]

s(@)+ %5
|Fx(u) — Fo(s(2))]| = [u— s(z) —/ 2p,(v)dv

Hence, by Proposition [3.4.2| with a(x) = ﬁ and b(x) = ( L (g, X,Y) satisfies
hypothesis SCy, s.
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Conclusion To conclude, we apply Theorem with k = 1,C =1,L =1
(since ¢” and c¢® are 1-Lipschitz), p = 40 and v = 8. Since constants by, by
of Theorem |3.4.3| only depend on k, L,C,v and all these parameters have now
received explicit values, the constants b;, by are now absolute.

3.10 Classification: proof of Theorem [3.4.5

In the proof of Theorem we used convexity of the risk to show that the risk
of the average was less than the average of the risk. A property of this type also
holds in the setting of classification, with the average replaced by the majority
vote.

Proposition 3.10.1 In the classification classification —see Example|3.2.1|—, let
(f1)1<l<v denote a ﬁmte family of functions X — y and let fm” be some majomty

vote rule: Yz € X, f™(x) € argmax,cy|{i € [V]: f, fi(x) = m}|. Then,
-~ M < ~ 2 & ~
s J™) <7D Us ) and L") <7 > L)

Proof For any y € Y, define 1, : © — P[Y = y|X = z]. Then, for any f € S,
L(f) = E[1 = nyx)(X)] hence s(X) € argmax,c,1,(X) and

s, f) = B[ max, (X) = n700(X)| = E[ne0(X) = nge (X)] -

yeY

We now fix some z € X and define C,(y) = {i € [V] : A( ) = y} and C,
maxyey |C(y)|. Since C;M > 3 ), [C.(y)| = V, it holds C, > V/M. On the

other hand, by definition of f™,

% .

. A
i=1 ~-

=0

Integrating over = (with respect to the distribution of X) yields the first bound.

For the second bound, fix z € X and define C,(y) and C, as above. Let
y € Y be such that fm"(a:) Z# y. Since y occurs less often than fm"(x) among
fl(x), ..., Jv(x), we have |C,(y)| < V/2. Therefore,

14
1 V—ICwl 1
v Z%mm - Vv Z 5

=1
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Thus

14
. 1 1
@) 2y = 5D L > 5 -
i=1

Hence, for any y € ),

2 14
L f @y S 77 Z D}
Taking expectations with respect to (z,y) yields C(fm") <2Vt Zz/zl E(ﬁ) |

We can now proceed with the proof of Theorem [3.4.5]
Proof The proof relies on a result by |76, Eq. (8.60), which is itself a consequence
of Corollary 8.8], which holds true as soon as

2
YVt € S, Var(]l{t(X)#y} — H{S(X)?gy}) g [’LU( ﬁ(s,t))} (363)

for some nonnegative and nondecreasing continuous function w on R*, such that
x — w(x)/x is nonincreasing on (0, +00) and w(l) > 1.

Let us first prove that assumption holds true. On one hand, since Y =
{0,1}, for any t € S,

Var (L xyzvy — Isxozry) < ElTpxosry — Loz )
= Elpoo2s001) = E[JH(X) — s(X)]] . (3.64)

On the other hand, since we consider binary classification with the 0-1 loss, for
any t € S and h > 0,

((s,t) = E[|2n(X) — 1] - [¢(X) — s(X)]] by [38, Theorem 2.2]
> hE[|t(X) — s(X)[Tgj2nx) -1
> hE[[t(X) — s(X)] — Lyjpx)—11<h}] since ||t — s <1
> hE[[t(X) — s(X)|] — ra”*! by (MA).

This lower bound is maximized by taking

R - s
h_h*'_< r(8+1) > ’

(
which belongs to [0, 1] since 7 > 1 and E[[¢(X X)|] < 1. Thus, we obtain

B ﬁ
B 1E[|t(X) = s(X)l] = (B + 1)B+D/Br1/5

K(S,t) > h, ]EUt(X) _ S(X)”(’BJrl)/’B
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hence Eq. (3.64)) leads to

+1 _B_ 1 _B_
Var(]I{t(X)?gy} — I[{s(X)yéY}) < E[lt(X) — S(X)H < %7’54—15(8,@54—1 < 2Tﬁ+1£(5,t)ﬁ+1 )

8 1 .
/riuptt and r; = 2rf+1, which

Therefore, Eq. (3.63)) holds true with w(u) =
), Eq. (8.60)], for any 6 € (0, 1),

statisfies the required conditions. So, by [76

1+6 | T 52
1—6 égﬁg(s’Am(Dn))ﬂ y

1
E[((s, f7°) | D}] < [29 + log(e| M) (5 + 9_1)}
(3.65)
where 6, is the positive solution of the fixed-point equation w(d,) = /n,02, that
is 62 = (ry/ nv)%. Taking expectations with respect to the training data DI, we
obtain
< 1+0

B[(s, 1) < g5 |, (o An(D) | +

2r 72 20 + log(e| M) (3+0671)

10 2]
nJt?

Under assumptions (3.2), E[{(s, /;t‘o)} and E[L( AThO)} do not depend on 7" € T
(they only depend on T through its cardinality n;).

Now, by Proposition [3.10.1| applied to (f}‘o)TeT,

E[f(s, f2)] < 2E[f(s, f2°)] < 210 {

} 4r7+7 20 + log(elM]) (L +671)
1-6 '

Taking 6 = 1/5 leads to the result. |






Chapter 4

Aggregated hold out for sparse
linear regression with a robust loss
function

4.1 Introduction

From the statistical learning point of view, linear regression is a risk-minimization
problem wherein the aim is to minimize the average prediction error ¢(Y — 67 X)
on a new, independent data-point (X,Y’), as measured by a loss function ¢.
When ¢(x) = 22, this yields classical least-squares regression; however, Lipschitz-
continuous loss functions have better robustness properties and are therefore pre-
ferred in the presence of heavy-tailed noise, since they require fewer moment as-
sumptions on Y [34, 56]. In general, substracting the risk of the (distribution-
dependent) optimal predictor yields a measure of performance for estimators,
called the excess risk, which coincides with the L? norm in the least-squares case.

In the high-dimensional setting, where X € R? with potentially d >> n,
minimizing the risk over all s is impossible; some assumptions must be made.
A popular approach is to suppose that only a small number k, of covariates are
relevant to the prediction of Y, so that # may be sought among the sparse vectors
with less than k, non-zero components. Estimators which target such problems
include the Lasso and its variants, LARS, stagewise regression and the classical
greedy procedures of stepwise regression. In the robust setting, variants of the
Lasso with robust loss functions have been investigated by a number of authors
[641, 1), 132, [T11].

Such methods generally introduce a free hyperparameter that regulates the
"sparsity" of the estimator; sometimes this is directly the number of non-zero
components, as in stepwise procedures, sometimes not, as in the Lasso. In any

113
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case, the user is left with the problem of calibrating this hyperparameter.

Several goals are conceivable for a hyperparameter selection method, such as
support recovery or estimation of a "true" underlying regression coefficient. From
a prediction perspective, hyperparameters should be chosen so as to minimize the
risk, and a good method should approach this minimum. As a consequence, the
proposed data-driven choice of hyperparameter should allow the estimator to attain
all known convergence rates without any a priori knowledge, effectively adapting
to the difficulty of the problem.

For the Lasso and some variants, such as the fused Lasso, Zou, Wang, Tib-
shirani and coauthors have proposed [120] and investigated [110, T0I] a method
based on Mallow’s C,, and estimation of the "degrees of freedom of the Lasso".
However, consistency of this method has only been proven [110] in an asymptotic
where the dimension is fixed while n grows, hence not the setting considered here.
Moreover, the method depends on specific properties of the Lasso, and may not
be readily applicable to other sparse regression procedures.

A much more widely applicable procedure is to choose the hyperparameter by
cross-validation. For the Lasso, this approach has been recommended by Tibshi-
rani [99], van de Geer and Lederer [104] and Greenshtein [47], among many others.
More generally, cross-validation is the default method for calibrating hyperparam-
eters in practice. For exemple, R implementations of the elastic net (package glm-
net), LARS (package lars) and the huberized lasso (package hqreg) all incorporate
a cross-validation subroutine to automatically choose the hyperparameter.

Theoretically, cross-validation has been shown to perform well in a variety of
settings [3]. For cross-validation with one split, also known as the hold-out, and for
a bagged variant of v-fold cross-validation [69], some general oracle inequalities are
available in least squares regression [76, Corollary 8.8 [114] [69]. However, they
rely on uniform boundedness assumptions on the estimators which may not hold in
high-dimensional linear regression. For the more popular V-fold procedure, results
are only available in specific settings. Of particular interest here is the article
[83] which proves oracle inequalities for linear model selection in least squares
regression, since linear model selection is very similar to sparse regression (the
main difference being that in sparse regression, the "models" are not fixed a priori
but depend on the data). This suggests that similar results could hold for sparse
regression.

However, in the case of the Lasso at least, no such theoretical guarantees exist,
to the best of my knowledge. Some oracle inequalities [69, 82] and also fast rates
[53, Theorem 1| have been obtained, but only under very strong assumptions: [69]
assumes that X is log-concave, [82] that X is a gaussian vector, and [53, Theorem
1| assumes that there is a true model and that the variance-covariance matrix is
diagonal dominant. In contrast, there are also theorems [31] 33| [53 Theorem 2]
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which make much weaker distributional assumptions but only prove convergence of

the risk at the "slow" rate O(4/2%2) or slower. Though this rate is minimax [31],

a hyperparameter selection method should adapt also to the favorable cases where
the Lasso converges faster; these results do not show that CV has this property.

Thus, the theoretical justification for the use of standard CV in sparse regres-
sion is somewhat lacking. In fact, two of the articles mentioned above do not study
standard CV applied to the Lasso but introduce a variant; a bagged CV in [69] and
the aggregation of two hold-out predictors in [31]. In practice too, there is reason
to consider alternatives to CV-based hyperparameter selection in sparse regres-
sion: sparse estimators are unstable, and selecting only one estimator can result
in arbitrarily ignoring certain variables among a correlated group with similar pre-
dictive power [I15]. For the Lasso, these difficulties have motivated researchers to
introduce several aggregation schemes, such as the Bolasso [§], stability selection
[79], the lasso-zero [36] and the random lasso [112], which are shown to have some
better properties than the standard Lasso.

Since aggregating the Lasso seems to be advantageous, it seems logical to con-
sider aggregation rather than cross-validation to handle the free hyperparameters.
In this article, I consider the application to sparse regression of the aggregated
hold-out procedure. Aggregated hold-out (agghoo) is a general aggregation method
which mixes cross-validation with bagging. It is an alternative to cross-validation,
with a comparable level of generality. In a previous article with Sylvain Arlot
and Matthieu Lerasle (Chapter |3), we formally defined and studied Agghoo, and
showed empirically that it can improve on cross-validation when calibrating the
level of regularization for kernel regression. Though we came up with the name and
the general mathematical definition, Agghoo has already appeared in the applied
litterature in combination with sparse regression procedures [54], among others
[107], under the name "CV + averaging" in this case.

In the present article, the aim is to study the application of Agghoo to sparse
regression with a robust loss function. Theoretically, assuming an L> — L? norm
inequality to hold on the set of sparse linear predictors, it is proven that Agghoo
satisfies an asymptotically optimal oracle inequality. This result applies also to
cross-validation with one split (the so-called hold-out), yielding a new oracle in-
equality which allows norms of the sparse linear predictors to grow polynomially
with the sample size. Empirically, Agghoo is compared to cross-validation in a
number of simulations, which investigate the impact of correlations in the design
matrix and sparsity of the ground truth on the performance of aggregated hold-
out and cross-validation. Agghoo appears to perform better than cross-validation
when the number of non-zero coefficients to be estimated is not much smaller than
the sample size. The presence of confounders correlated to the predictive variables
also favours Agghoo relative to cross-validation.
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4.2 Setting and Definitions

The problem of non-parametric regression is to infer a predictor ¢ : X — R from
a dataset (X;,Y;)1<icn of pairs, where X; € X and Y; € R. The pairs will be
assumed to be i.i.d, with joint distribution P. The prediction error made at a point
(z,y) € X xR is measured using a non-negative function of the residual ¢(y—t(x)).
The global performance of a predictor is assessed on a new, independent data point
(X,Y) drawn from the same distribution P using the risk £(t) = E[¢(Y — ¢(X))].
The optimal predictors s are characterized by s(z) € argmin, E[¢p(Y — u)|X = z]
a.s. The risk of any optimal predictor is (in general) a non-zero quantity which
characterizes the intrinsic amount of “noise” in Y unaccounted for by the knowledge
of X. A predictor ¢t can be compared with this benchmark by using the excess risk
U(s,t) = L(t) — L(s). Taking ¢(x) = x? yields the usual least-squares regression,
where s(z) = E[Y|X = z] and {(s,t) = ||s — tHig(X). However, the least-squares
approach is known to suffer from a lack of robustness. For this reason, in the field
of robust statistics, a number of alternative loss functions are used. One popular
choice was introduced by Huber [55].

Definition 4.2.1 Letc > 0. Huber’s loss function is ¢.(u) = %HWKC—FC (Ju| = £) Luse-

When ¢ — +o00, ¢. converges to the least-squares loss. When ¢ — 0, %gbc
converges to the absolute value loss * — |z| of median regression. Thus, the ¢
parameter allows a trade-off between robustness and approximation of the least
squares loss.

The rest of the article will focus on sparse linear regression with the loss function
¢c. Thus, notations s, £(s,t) and L are to be understood with respect to ¢..

4.2.1 Sparse linear regression

With finite data, it is impossible to solve the optimization problem min £(t)
over the set of all predictors t. Some modeling assumptions must be made to
make the problem tractable. A popular approach is to build a finite set of
features (¢j(X))i1<j<q and consider predictors that are linear in these features:
30 € R4, Vr € X t(z) = Z}i:l ;1;(x). This is equivalent to replacing X € &
with X = (1;(X))1<j<a € R? and regressing Y on X. For theoretical purposes,
it is thus equivalent to assume that X = R? for some d and predictors are linear:
t(x) =0Tz,

As the aim is to reduce the average prediction error L(t), a logical way to
choose 0 is by empirical risk minimization:

0cRd

. 1 <
0 in — (Y — 07 X;).
Eargmmn;gb( )



4.2. SETTING AND DEFINITIONS 117

Empirical risk minimization works well when d << n but will lead to overfitting
in large dimensions [I06]. Sparse regression attempts instead to locate a “good”
subset of variables in order to optimize risk for a given model dimension. Lasso
penalization [99] is now a standard method of achieving sparsity. The specific
version of the Lasso which we consider here is given by the following Definition.

Definition 4.2.2 Let n € N and let D, = (X;,Y:)1<i<n be a dataset such that
X; € R and Y; € R for all i € [|1;n|] and some d € N. Let ¢, be the Huber loss
defined in Definition[{.2.1. For any X > 0, let

R 1

n

C(\) = argmin — Z ¢.(Yi—q—0"X;) + X||0]], and
(@.0)€RHL:[|6]|, <ne T 57
R 1 &
(4(A),0(\)) € argmin g+ < 0, =Y " X; >|. (4.1)
(@.6)eC(V) {r

Now let R
AN)(Dy) sz — g(\) + 0Nz,

The restriction [|f]]; < n® ensures that the solution does not become too large
when the design matrix is ill-conditioned. It can be seen that the effect of this
restriction is, potentially, to truncate the Lasso solution path at the value of A\ at
which the bound is attained (i.e, (-) becomes constant for smaller values of \).
Without this, the ¢! norm of Lasso solutions is upper bounded by the minimal
¢* norm 7 of an empirical risk minimizer on the whole set of variables. Hence,
if 7 < n®, Definition 4.2.2| coincides with the huberized lasso along the whole
regularization path. In the least squares case, [53| discuss conditions under which
17]] 1 < n1, which ensures that for o > T, 7 < n® with high probability. It seems
reasonable to expect a similar result to hold true in the case of the huberized lasso.
However, rather than make further technical assumptions on the design to make
sure of this, it seems simpler to introduce this slight modification to the standard
definition of the huberized lasso, which may even be statistically beneficial, since
it diminishes the variance by restricting the hypothesis space.

A suitable choice of a should guarantee that an optimal excess risk E [£(s, ¢ + (0, -

can be obtained for some 6 such that ||0||, < n®. For example, if the features X
form an orthonormal set and Y € L?, then the least-squares optimal coefficient 0,

belongs to {0 16l < A /IE[YZ]}. Assume that only sparse predictors 67, with less

than n non-zero components, are considered. Since for such 6, ||0], < /n 0],
it is reasonable to restrict the optimization to the set {6 : ||f||, < n*} for some
o> 1

The intercept ¢ is left unpenalized in definition [4.2.2] as is usually the case in
practice [119]. Equation is a tiebreaking rule which is required for the proof
to work.
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4.2.2 Hyperparameter tuning

The zero-norm of a vector 6 is the integer ||0]|, = |{¢ : §; # 0}|. Many sparse
estimators, such as best subset or forward stagewise, are directly parametrized by
their desired zero-norm, which must be chosen by the practitioner. It controls the
“complexity” of the estimator, and hence the bias-variance tradeoff. In the case of
the standard Lasso (Definition with ¢(x) = x?), Zou, Hastie and Tibshirani

[120] showed that

the estimator A(\). As a consequence, [120] suggests reparametrizing the lasso by
its zero-norm. Applying their definition to the present setting yields the following.

’é(/\) H is an unbiased estimator of the “degrees of freedom” of

Definition 4.2.3 For any dataset D,,, let (g, é) be given by Deﬁmtion equa-
tion (4.1) . Let M € N and (Am)1<m<nm be the finite decreasing sequence at which
the sets {i : O(\); # 0} change. Let \g = +00. For any k € N let

et = max {m € NJ[[60w) |, =k}
with the convention max( = 0. Let then
An(D,) = A ()\m> (D,.). (4.2)

More generally, consider sequences (A), oy of linear regression estimators Ay :
D, — (:C — Ge(D,) + (0x(D,,), x)), such that the following hypothesis holds.

Hypothesis 4.2.1 For any n € N, let D, ~ P®" denote a dataset of size n.
Assume that

0r(D,)|| <k.

1. Almost surely, for all k € [|1;n]],
0

A

2. There exist L, « such that Vn € N, E [SUPlgkgn 0r(D,,)

] < Ln“.
1

3. For all k € [|1;n]], ge(D,) € argminqu(Dmék(Dn)) ‘q + (0k(Dy), = >0 Xi)

where Q(Dn, f) = argmin, g % S b (Yi—(0,X;) —q).

These hypotheses hold for the reparametrized Lasso given by definition and
M.2.3] by construction.

Moreover, Condition 1 is naturally satisfied by such sparse regression methods
as forward stepwise and best subset. Condition 2 can be enforced by restricting
the set of 6s over which the optimization is conducted, similarly to Definition 4.2.2
Condition 3 states that the intercept ¢ is chosen by empirical risk minimization,
with a specific tie-breaking rule in case the minimum is not unique.
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4.2.3 Aggregated hold out applied to the zero-norm param-
eter

The tuning of the zero-norm k is important to ensure good prediction performance
by optimizing the bias-variance tradeoff. For the Lasso and other methods based
on empirical risk minimization, such as forward stepwise, there is little interest
in considering values of k > n, since n non-zero coefficients suffice for perfect
interpolation of the (Xj,Y;) and yield an empirical risk of 0. Practicioners may
also want to impose additional limitations on the zero-norm in order to reduce the
computational load or improve interpretability. For this reason, we consider the
problem of selecting the zero-norm among the K, first values, where K,, < n. This
article investigates the use of Agghoo in this context, as an alternative to cross-
validation. Agghoo is a general hyperparameter aggregation method which was
defined in Chapter (3, in a general statistical learning context. Let us briefly recall
its definition in the present setting. For a more detailed introductory discussion
of this procedure, we refer the reader to Chapter |3 Bl To simplify notations, fix a
collection (qk,ék)1<k<K of linear regression estimators. First, we need to define
hold-out selection of the zero-norm parameter.

Definition 4.2.4 Let D, = (X;,Y})1<i<n be a dataset. For any T C {1,...,n},
denote DI = (X;,Y;)icr. Let then

kr(D,) = min argmin — |T P Zgzﬁc ( i — ap(DY) — (ék(Dg),Xl>> :

1<k<K

Using the hyperparameter I%T(Dn) together with the dataset DI to train a linear
regressor yields the hold-out predictor

f1°(Dn) 1z — (jng(Dn)(Dg) + <9ET(Dn)<D3;)7 ).
Aggregation of hold-out predictors is performed in the following manner.
Definition 4.2.5 Let T C P ({1,...,n}). Let:

‘gag |T|Z€kT n)

TeT

TeT

The Agghoo predictor is the linear regressor:

F2(D,) = ¢29 + (0%, z).
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Thus, Agghoo also yields a linear predictor, which means that it can be effi-
ciently evaluated on new data. If the QkT( D) have similar support, (9 72 will also
be sparse: this will happen if the hold-out reliably identifies a true model On
the other hand, if the supports have little overlap, the Agghoo coefficient will lose
sparsity, but it can be expected to be more stable and to perform better.

The linear regressors x — g;,. (. (DT )—i—(éng( b, (D1), ) aggregated by Agghoo
are only trained on part of the data. This subsampling (typically) decreases the
performance of each individual estimator, but combined with aggregation, it may
stabilize an unstable procedure and improve its performance, similarly to bagging.

An alternative would be to retrain each regressor on the whole data-set D,,,
yielding the following procedure, which we call "Aggregated cross-validation" (Agecv).

Definition 4.2.6 Let T C P ({1,...,n}). Let:

acv _ |7—| Z kT(Dn

TeT
/‘aCU
ar = Zq n
|T| TeT br(on)

The Agcv predictor is the linear regressor:
faCV( ) T % d%l_cv <9(ICU >

Agghoo is easier to study theoretically than Agcv due to the conditional inde-
pendence: (ék (DI )) 1 kr(D,) ‘DZ . For this reason, the theoretical section

1<k<nt

will focus on Agghoo, while in the simulation study, both Agghoo and Agcv will
be considered.

4.3 Theoretical results

Let n € Nand D,, = (X}, Y;)1<i<n denote an i.i.d dataset with common distribution
P. In this section, we make the following assumption on 7: there is an integer
ny < n such that

Tcl{Tc{l,. .. ,n}: |7 =n}

4.3
T independent from D, (4.3)

Independence of T from D,, ensures that for T € T, DI is also iid with distribu-
tion P. The assumption that 7 contain sets of equal size ensures that the pairs
cj,;T(Dn)(Dg),ékT(Dn)(DZ) are equidistributed for 7' € 7. Most of the data par-
titioning procedures used for cross-validation satisfy hypothesis (£.3)), including
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leave-p-out, V-fold cross-validation (with n —n; = n, = n/V) and Monte-Carlo
cross-validation [3].

In the following, we will use the notion of support of a random variable, for
which we introduce the following definition.

Definition 4.3.1 Let X be a random variable belonging to R? for some d € N.
Then the support of X 1is

supp(X) = {x € R : Ve > 0,P(||]z — X|| < &) > 0}.
The support is closed and has full measure: P(X € supp(X)) = 1.

When Agghoo is used on a collection (Ay)1<k<x of linear regression estimators
satisfying Hypothesis (4.2.1]), such as the Lasso parametrized by the number of
non-zero coefficients, as in Definition [£.2.3] the following Theorem applies.

Theorem 4.3.2 Let X € R? and Y € R be random variables with joint distribu-
tion P. Let D, = (X;,Yi)1<icn ~ P®" be a dataset of size n. Let n, = n — ny,
where ny 1s given by assumption .

Assume that for some function s minimizing the risk Elp.(Y — s(X))], there
exists 7 > 0 such that almost surely,

Py —s(X) <

X] >0 (4.4)

Let X = X — E[X] and let supp(X) be its support (in the sense of Definition
- Let R = sup,cquppx) 12l For any K € {1,...,n:}, let

K(K) — sup ||<X’U>||L°<>

d . 45
w0 ulo<ei [[{X,0)]] 2 o

If by > 1 and K € {1,...,n:} are such that

n Ty
K)< o/, 4.6
K(K) 8\ 8by log n; (4.6)

applying Agghoo to a collection (Ay)1<k<x of linear regression estimators which
satisfies hypothesis (4.2.1)) yields the following oracle inequality.

1.
For any 0 € [\/_bT)’l ,

(1—9)1&[6(3,?;%)} < (1+0)E[ min_ (s, Ay(Dn,)) | +2460,

clogny cK 16KLR
1<k<K NN,

02b 02by—
n, ° om0

(4.7)
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Theorem is proved in appendix [£.6] It is, to the best of my knowledge,
the first theoretical guarantee on hyperparameter selection for the huberized Lasso.
Theorem {4.3.2| compares the excess risk of Agghoo to that of the best linear pre-
dictor in the collection Ag(D,, ), trained on a subset of the data of size n;. That n,
appears in the oracle instead of n is a limitation, but it is logical, since estimators
aggregated by Agghoo are only trained on samples of size n;. Typically, the excess
risk increases at most by a constant factor when a dataset of size n is replaced by
a subset of size 7n, and this constant tends to 1 as 7 — 1. This allows to take n,
of order n (n, = (1 — 7)n), while losing only a constant factor in the oracle term.

Taking |7| = 1 in Theorem yields an oracle inequality for the hold-out,
which is also cross-validation with one split. Compared to previously known oracle
inequalities for the hold-out, Theorem [£.3.2] distinguishes itself by only requiring
some polynomial upper bound on |||, X » instead of a uniform upper
bound on some norm independent of n. Indeed, the prevailing approach to proving
oracle inequalities for the hold-out (applied to the Lasso by Lecué [69]) uses a
margin assumption which requires a uniform upper bound on the loss function
[69, Assumption (A)], leading to a bound on (6, X). Theorem @ relaxes this
constraint by exploiting an L> — L? norm inequality (equation(4.6)).

In order to fulfill its purpose, Theorem [£.3.2] should imply that Agghoo per-
forms as well as the best of the sparse estimators Ay (D,,), at least asymptotically.
Here, we are interested in the high-dimensional, non-parametric case where the
dimension grows with the amount of data n as a power of n. More precisely,
consider a sequence of problems (Y, 1,(Xy)) where Xg € X and ¢, : X — R,
where d,, > n? for some 8 > 0. Assume that R = 1, which can be achieved by
renormalizing ¥, - as long as [|¢,(Xo)|| oz~ grows at most polynomially in n, this
simply yields an increase in L and «. If additionally, equation ({4.6} . ) holds with

bp > a + 1, choosing 6 € (, / 1;};"‘ 1) yields a remainder term of order O(loi”) in

equation . By comparison, in the least squares setting the minimax excess risk
for sparse regression with k, predictive covariates among a total of d,, is of order
knlognﬁ [I13]. For large ¢, the huber loss approximates the least squares loss,
so it is reasonable to expect this lower bound to apply also in huber regression.
Assuming that the minimax is attained, the remainder term of equation (4.7) is
negligible compared to the oracle whenever k, — 400, i.e when the problem is

non-parametric.

Now if for any n, assumption (4.6 holds with X = ¢,,(X,) and by = by, —
+00, then Theorem [4£.3.2] yields an asymptotically optimal oracle inequality. More

precisely, applying Theorem @.3.2| with by = bg,, = b1, A (for which assump-

1+
tion (4.6) also holds) and 6 = 6,, = 1+a = A1 yields a bounded term in the square
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brackets of equation (4.7). Moreover, 0,,by,, < v/k,,. This implies that

lim sup E[f(s, fﬁg)}

<1
no B [mingcger,, (s, Ae(Da,)]

since @ = o (E|minir<x,, £(s, Ax(Dn,))
To summarize, Theorem proves an asymptotically optimal oracle inequal-
ity whenever

e Equation (4.4)) holds.

o ||[|¥n(X0)|| ol ~ grows at most polynomially in 7.

logn
-

e The problem is non-parametric, i.e the risk converges slower than
e For any by > 1, equation (4.6]) holds for all n large enough.

Equation is specific to the Huber loss: it requires the conditional distri-
bution of the residual Y — s(x) to put sufficient mass in a region where the huber
function is quadratic. If Y = s¢(Xo) + o , with ¢ independent of Xj and if ¢, is
injective, then s(X) = so(Xo) and 1 depends only on ¢, o and the distribution of €.
In particular, it is constant with respect to n. Moreover, if the Huber parameter
c is proportional to o, then 7 is independent also of ¢ and the remainder term of
equation (4.7)) is proportional to o2, as in least-squares regression. Injectivity of
¥, will typically hold for nonparametric function bases (trigonometric, splines of
degree greater than 1) as soon as n is large enough.

The norm inequality (Equation (4.6))) requires more clarification. It is worth
giving some background on such hypotheses, which are relatively classical in the
model selection litterature. They were introduced by Birgé and Massart in the
context of least-squares density estimation [17, Section 3.1|, where loosely speak-
ing, it is assumed that x(K) = O(VK). A similar assumption was made by
Arlot and Lerasle [5, Section 3.3, hypothesis (H1)| to prove oracle inequalities for
cross-validation, also in least squares density estimation. In the regression set-
ting, [83] proves an oracle inequality for cross-validation based on the assumption
that the models have a "strongly localized basis", which implies in particular that
k(K) = O(VK) when the model collection consists of all {(0, (X;)ier) : 0 € R}
for I C [|1;n]].

These assumptions have been shown to hold for several standard model collec-
tions. In particular, in the regression setting, [94, Lemma 7| implies that linear
models m consisting of piecewise-polynomial functions on an interval partition
(£i)1<i<a satisty ||| oo ) < C\/3||-HL2(X), provided that min; P(X € I;) > § for
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some constant a and that the distribution of X has a lower-bounded density with
respect to the Lebesgue measure.

The assumption differs from its analogs in the model selection litterature
in two ways: first, because of the sparse variable selection setting, the "models"
which give rise to £(K) are the {(0, (X;)ics) : 6 € R} for I C [|1;d|] of cardinality
|I| = K. Second, because an additional intercept term is included, the feature
vector X has to be replaced by its centered version X in the definition of x(K).

We give below two simple examples where the hypotheses of Theorem [£.6) hold.
In the case where the variables are independent and binary valued, we have the
following.

Corollary 4.3.3 Let X = (X1,..., X))
0;

random variables with parameters p; € |

2K
K(K) < . )
min; <<, pi(1 — p;)

Corollary is proved in appendix In the setting it describes, As-
sumption is equivalent to choosing K of order logtnt or less, provided that the
classes are well-balanced (p; € [e,1 — €]).

Despite the fact that Theorem [4.3.2]is formulated in the setting of sparse linear
regression, it can also be applied to other regression problems, such as adaptive
piecewise constant regression. In that case, the equivalent of the zero-norm of a
vector is the number of discontinuities of a piecewise constant function, as can be
seen from the following definition.

where the X; are independent Bernoulli
1] Then

Definition 4.3.4 Let (I;)1<j<a denote a partition of R into disjoint intervals, in-
dexed such that Vj,sup I; = inf [;11. For any u € RY, let t, = Zj u;ll;;. Then the

number of jumps of the piecewise constant function t, is

k(u) = [{7 € (1 d]] - uja # ug}l,

and we say that t, has k jumps if and only if k(u) = k. Let (j,(u))o<r<k(w) denote
the ordered sequence of jump indices, i.e (jr(u))i<r<k(u) S increasing, jo(u) = 0
and

{7l <r <k(u)} = {7 € [[5d]] - ujn # uj}

For any r < k(u), let A.(u) = UZ;(;)_I(U)HQ be the largest intervals on which t,, is

constant. Let D,, = (U;,Y;)1<i<n denote a dataset, with U; € R and Y; € R.
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Let now (ly)o<k<d—1 denote a sequence of estimators such that ty(D,,) has k
Jumps, and such that its coefficients iy, ; are obtained by empirical risk minimiza-

tion on the minimal partition (A, (Ux))1<r<k, i-€ U € C’t(Dn, Uy) where

~

Cy(Dp,u) = {u’ s.t. k(u') =k and Vr € [|1; k], (W) = jr(u)
and uj (. € argmin Z b.(Y; — q)},
q€R :X;€A-(u)
Assume also that the following tie-breaking rule applies:

Z Pn(]j)uj :

j=1

Uy € argmin
u€C4(Dn, i)

(4.8)

Estimators 4 which meet definition [4.3.4] can be obtained by a variety of model
selection methods, including wavelet thresholding, empirical risk minimization over
the set {u : k(u) = k} [65] and the fused lasso [100] or total variation penalties
[92, [19] (if the penalty is used only for estimating the change points).

Applied to such estimators, Theorem [4.3.2] allows to prove the following.

Proposition 4.3.5 Consider the problem of tuning k so as to minimize the risk
of the one-dimensional regression problem: E[¢.(Y —t,(U))], where U is a random
variable with distribution P. Assume that

Va, P [|Y o (7)] < g ’X - x} >, (4.9)

where u, € argmin, s E [¢.(Y —t,(X))]. Using the notations of definition
assume that:

1536 log® n,
: Z— 5
I<j<d 17Ty

(4.10)

Then, assuming that ny > n,,

1 -~ 1
1— E[Mu,ag}g 1 E | inf £4(t.. .t
( legnt> (b0 7°) ( i legnt) Lg’“lgd (t. k(Dnt))]

clog? ny [c+3—c 4E“Y|q. (4.11)

+ - -
N1y Uz Ty

+ 72

Proposition [4.3.5 is proved in appendix [£.7.2] The specific setting of Proposi-
tion [4.3.5| allows to state a fairly explicit oracle inequality for Agghoo under few
conditions. Assuming as before that n; and n, are both of order n, the remainder

3
term in equation (4.3.5)) is of order log%. This is negligible compared to the min-
imax rates achievable under regularity assumptions (eg. Holder or Besov balls),
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which are of order n=® with a € (0; %} Hence, Proposition shows that Ag-
ghoo adapts to the unknown level of regularity, achieving the correct convergence
rate.

Three assumptions are made to obtain this oracle inequality. The distributional
assumption on the residuals (equation (4.9))) is identical to the one made in The-
orem [£.3.2] and has already been discussed. The moment condition E[|Y|] < +oo,
without which inequality becomes vacuous, is self-explanatory.

Finally, hypothesis requires that the intervals of the partition contain at
least st x log® n, points, on average. This is a mild requirement, since partitions
finer than this cannot be expected to perform well anyway due to high variance of
the empirical average.

Though hypothesis involves the unknown distribution P, Bernstein’s
inequality shows that if mini;<q P, (;) > C;%g:v”t, where C' > 1536 and P,
denotes the empirical measure on a sample of size n;, then equation holds
with high probability. Thus, provided a lower bound on 7 is known, it is possible
to guarante empirically that holds, with a high degree of confidence.

4.3.1 Effect of V
The upper bound given by Theorem only depends on 7 through n, and n;.
The purpose of this section is to show that for a given value of n,, increasing

V' = |T| cannot increase the risk. This is proved in the case of monte carlo subset
generation defined below.

Definition 4.3.6 For T € [%, 1} and V € N*, let T%7 be generated independently
of the data D,, by drawing V elements independently and uniformly in the set

{T clinf]: [T = [rn]}.
For fixed 7, the excess risk of Agghoo is a non-increasing function of V.

Proposition 4.3.7 Let U <V be two non-zero integers. Let T € [%, 1]. Then:

-~

E [é(s, fiavc)} <E [e(s, Ag%)] .



4.4. SIMULATION STUDY 127

Proof Let (T});—

-----

For any I € Z, (T})ie; ~ T77 and is independent of D,,, therefore %Zle s %o ~

Aff-:gU This yields the result. [

It can be seen from the proof that the proposition also holds for Agcv. There-
fore, increasing V' can only improve the performance of these methods. On the
other hand, no such theoretical result is known for CV, even though increasing the
number of CV splits (for given 7) almost always improves performance in practice.

4.4 Simulation study

This section focuses on hyperparameter selection for the Lasso with Huber loss,
either using a fixed grid or using the reparametrization from Definition [{.2.3
The methods considered for this task are Aggregated hold-out given by Definition
[4.2.5 Aggregated cross-validation given by Definition and standard cross-
validation. In all cases, the subsamples are generated independently from the data
and uniformly among subsets of a given size 7n, as in Definition [£.3.6, Thus, all
three methods share the same two hyperparameters: 7, the fraction of data used
for training the Lasso, and V', the number of subsets used by the method.

For the huberized Lasso with a fixed grid, the hqreg raw function from the R
package hqreg is used with a fixed grid designed to emulate the default choice: a
geometrically decreasing sequence of length 100, with maximum value \,,,, and
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minimum value \,,;, = 0.05\,,,4.. The fixed value of \,,,, is obtained by averag-
ing the (data-dependent) default value chosen by hqreg raw over 10 independent
datasets. To compute the reparametrization given by Definition [£.2.3] T imple-
mented the LARS-based algorithm described by Rosset and Zhu [91], which allows
to compute the whole regularization path.

[.i.d training samples of size n = 100 are generated according to a distribution
(X,Y), where X € R% and Y = wl'X + ¢, with ¢ independent from X. To
illustrate the robustness of the estimators, Cauchy noise is used: € ~ Cauchy(0, o).
The performance of Agghoo and cross-validation may depend on the presence of
correlations between the covariates X and the sparsity of the ground truth w,. To
investigate these effects, three parametric families of distribution are considered
for X, in sections 4.4.1} [4.4.2] and [4.4.3]

The risk of each method is evaluated on an independent training set of size 500,
and results are averaged over 1000 repetitions of the simulation. More precisely,
1000 training sets D; of size n = 100 are generated, along with 1000 test sets
(Xi,, Y/ )1<i<s00, each of size 500. For each simulation j and any learning rule
A,y among the six obtained by combining Agghoo, monte carlo CV and AGCV
with either a fixed grid or the zero-norm parametrization, the average excess risk

500

Ri(A,7,V) = 5—(1)0 Z (b (Vi = Arv (D) (X7 ;) — b (Vi — s(Xi ;)]

=1

is computed on the test set for all valuesof V' € {1,2,5,10} and 7 € {ﬁ 1<i< 9}.

4.4.1 Experimental setup 1

X is generated using the formula X; = m ijl u;—;Z;, where Z; are indepen-
2

. . _ 2.3322 .
dent standard Gaussian random variables, u; = Ij;j<core™ 200 and cor € N is a

parameter regulating the strength of the correlations. The regression coefficient
has a support of size r = 3 % k drawn at random from [|1;1000|], and is defined
by w, j = y 4(j), Where g is a uniform random permutation, u,; =bif 1 < j <k
and u,; = % if 2k + 1 < j < 3k, with b calibrated so that ||Xw.|[;. = 1. The
noise parameter is ¢ = 0.08, while the huber loss parameter c is set to 2 — a sub-
optimal choice in this setting, but convenient for computing the huberized Lasso
regularization path.

Choice of 7 parameter For all methods, in most cases the optimal value of 7
is 0.8 or 0.9, similarly to what was observed in the rkhs case, where 7 = 0.8 was
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recommended. Table 1 displays the quantity

Mean [(Rj(A, V) — Ri(A, ., V))lgjgmoo]

G(A,T,V) = - -
Sd [(Rj (A, 7,V)—Rj(A, T, V))1<j<1000]

)

where Sd denotes the (empirical) standard deviation and 7. the optimal choice of
T, Tw = aIgMiN_c (o1 o9y Mean |:<Rj(A7 T, V))lgjgl()oo] . Thus, values of G(A, 7, V)
bigger than a few units suggest that 7 is suboptimal to a statistically significant

degree. When 7. = 0.9, é’(A, 0.8,V) is displayed in black on table 1. When 7, =
0.8, G(A,0.9,V) is displayed in blue on table 1. Exceptions where 7, ¢ {0.8,0.9}

are highlighted in red, with the value min (G’(A, 0.8, V), G(A, 0.9, V))

Most of the exceptions 7, ¢ {0.8,0.9} occur on the column r = 150, cor = 1,
while most of the others are of low statistical significance, with values less than 1.1
on the fourth column (r = 60 and cor = 1). Thus, table 1 confirms the claim that
7. € {0.8,0.9} for all methods, in most cases. For grid agghoo, 0—norm agghoo,
grid agev and V' > 5, 7, € {0.8,0.9} for all simulations. Comparing now 7 = 0.8
and 7 = 0.9, grid agghoo and 0—norm agghoo with V' > 5 show a clear pattern:
7 = 0.9 is better or as good as 7 = 0.8 in all cases except r = 150, cor = 1 where
7 = 0.8 is significantly better. For other methods, results are not so clear and the
difference in risk between the two values of 7 is often insignificant.

Choice of V' For all methods considered, performance is expected to improve
when V' is increased, but by how much? If the performance increase is too slight,
it may not be worth the additional computational cost. In figure 1, the mean
excess risk for the optimal value of 7 is displayed as a function of V', with error
bars corresponding to one standard deviation. The scale used for the vertical axis
in each graph is the average excess risk of the oracle with respect to the fixed grid
over the \ parameter. Quantifying performance as a percentage of the oracle risk,
when cor = 15, Agghoo improves by roughly 20% from V' =1 to V = 2, by roughly
10% from V =2 to V =5 and by a few percent more from V =5 to V = 10. CV
with the standard grid behaves similarly in these two simulations, while CV with
the zero-norm parametrization shows much less improvement when V' is increased.
Thus, taking V' > 5 is advantageous, but there are clearly diminishing returns to
choosing V' much larger than this. For CV with the zero-norm parametrization,
V = 2 seems sufficient in these simulations .

Comparison between methods From figure 1, it appears that grid agev is a
very poor choice, being worse than both grid agghoo and grid cv for all values of
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V when r = 150, cor = 15, and being the worst of all the methods for V' > 2 when
r = 24, as well as highly unstable, as the size of the error bars clearly shows.

Interestingly, 0—norm agcv behaves much better, being the second best method
when cor = 1, and very close to the best when r = 24 and cor = 15.

Generally speaking, of the two types of parametrization of the Lasso, the zero-
norm parametrization appears to perform better than the standard grid when
correlations are small (cor = 1), while the performance is significantly worse when
r = 150 and cor = 15.

Comparing now Agghoo and CV, Agghoo appears to be better than CV when
V' > 2 in situations where 7 is larger (r = 150). This seems to hold for both the
standard parametrization (grid agghoo) and the zero-norm one (0—norm agghoo).
The relation is reversed for small r, with CV performing better than Agghoo for
all values of V' when r = 24.

Further studies The previous simulations suggest that Agghoo performs better
than CV in the case of high intrinsic dimension. However, the effect of correlations
is unclear. Experimental setup 1 mixes different types of correlations: correlations
between predictive variables, correlations between predictive and non-predictive
variables, and correlations among non-predictive variables. It is possible that one
type of correlation favours Agghoo while another favours CV.

To gain a more accurate idea of when Agghoo is advantageous over CV, two
more settings are studied, considering separately correlations among predictive
variables, and between predictive and non-predictive variables. Since previous
simulations showed that 7 = 0.8,0.9 and V' = 10 were the optimal parameters,
only those parameters will be considered in the following.

Since the choice of lasso parametrization did not seem to affect the relative
performance of Agghoo and CV, we only consider the standard parametrization, as
it is more popular and also easier to use in our simulations. Agcv is not considered
either, since it was discovered to be unreliable in previous simulations.

4.4.2 Experimental setup 2: correlations between predictive
and noise variables

Let r be the number of predictive variables and let each predictive covariate
have s "noise" covariates which are correlated with it at level p = 0.8. As-
sume that rs < d, where d is the total number of variables. Let (Z?)1<icr,
(Z; j)h1<i<ra<i<s and (Wi )1<k<d—rs be independent standard gaussian variables. For
any j € [|0 : 7 —1|] and any i € [|1;s]], let Z;,4; = \/@on ++/0.2Z;; and for

rs < i < d, let X; = W,_,,. For the regression coefficient, choose w, = i XSS‘T ,
Lo
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Performance of Agghoo and CV relative to the oracle
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Figure 4.2: Relative risk in experimental setup 2 (section |4.4.2))

where u = (Ijj—1)Lj<rs)1<j<a- Let then Y be distributed conditionnally on X as
Cauchy((w,, X),0.3). The loss function used here is ¢, with ¢ = 2.

Results Figure[d.2]shows a bar plot of the average excess risk of CV and Agghoo
as a fraction of the average risk of the oracle. 90 % error bars were estimated using
asymptotic theory. Parameters used for Agghoo and CV were 7 = 0.9 and V = 10
(7 = 0.8 yields similar result).

Overall, Agghoo’s risk relative to the oracle significantly decreases as the zero-
norm of w, increases from r = 10 to r = 50 , as was observed in section . For
r = 25 and r = 50 separately, the risk relative to the oracle significantly decreases
as s increases from 2 to 10. For r = 10, this trend is unclear due to the random
eITors.

In contrast, CV’s performance relative to the oracle shows no clear trend either



4.4. SIMULATION STUDY 133

as a function of r or as as function of s, and could be constant when taking error
bars into accounts.

As a result of these trends, Agghoo performs significantly worse than CV for
r = 10 and significantly better when r = 50, especially when s > 5. When r = 25,
CV performs significantly better than Agghoo for s = 2 and s = 5 and they
perform similarly when s = 10 and s = 20.

4.4.3 Experimental setup 3: correlations between predictive
variables

We consider now predictive covariates which are correlated between them, and
independent from the unpredictive covariates. As above, let r denote the number
of predictive variables and p > 0 be the level of correlations. Let Zy, (Z;)1<i<r
and (W;)1<i<a—r be standard Gaussian random variables. The random variable
X is then defined by X; = \/pZo + /1 —pZ; for 1 < i < r and X; = W;_, for
r+1 <t < d. Asin section the regression coefficient w, is a constant vector
of the form H;’;ﬁﬂ, where this time u = (l1<i<r);c;q-

Y is distributed conditionnally on X as Cauchy(({X, w,),0.3) and the loss func-
tion used is the Huber loss ¢s.

Results Figure[d.3]shows a barplot generated in the same way as in section[4.4.2]
Parameters used for Agghoo and CV were V = 10 and 7 = 0.8, which is optimal
in this case for both Agghoo and CV.

As in previous simulations, Agghoo’s performance relative to the oracle im-
proves significantly when the intrinsic dimension r grows from 25 to 200, for a
given value of p. The decrease in relative risk is faster for small values of p. As
a result, Agghoo performs best, relative to the oracle, when p = 0.2 for r = 200,
whereas best performance seems to occur at p = 0.5 for smaller values of r, up to
random errors.

For cross-validation, the relative risk seems more or less unaffected by the
dimension r, but shows an increasing trend as a function of p for all values of r.

As a result, Agghoo performs better than CV for r» = 200 and for » = 100 and
p =0.2,0.5. For r = 200 and p = 0.2, Agghoo even performs significantly better
than the oracle! This is possible, since the Agghoo regression coefficient é%g does
not itself belong to the Lasso regularization path.
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Figure 4.3: Relative risk in experimental setup 3 (section |4.4.3))
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r =150 | r =60 r =24
method Vi1, 1 |15 1 |15 1
1 grid agghoo 1122 27130 27,05 5.6
2 grid agghoo 2125 21131 14,10 79
3 grid agghoo 5 125 6835 06]06 11.9
4 grid agghoo 10107 7237 11|45 16.7
5 grid cv 1110 39|16 01|12 15
6 grid cv 2108 50126 0514 1.1
7 grid cv 5114 28|15 0805 3.7
8 grid cv 10120 26{29 11|16 59
9 grid agev 1110 39116 01|12 15
10 grid agev 2103 20114 19]03 08
11 grid agev 5 103 22105 07]05 1.1
12 grid agev 10105 04100 0308 1.0
13 0—norm agghoo | 1 | 1.3 41|20 03|05 56
14 O0—norm agghoo | 2 [ 3.0 14|32 13|19 92
15 O—norm agghoo | 5 | 4.0 6.7 |51 3.3 |40 13.7
16 O0—norm agghoo | 10 | 46 7.3 |70 3.7|5.2 185
17 O0—norm cv 1 143 94143 11|20 39
18 O—norm cv 2 (19 72118 44|48 27
19 O0—norm cv 5127 5324 33|15 0.7
20 O—norm cv 1016.1 46|54 35|06 0.1
21 O—norm agev 1143 94143 11120 39
22  0—norm agcv 2119 58|24 45|59 3.5
23  O0—norm agcv 5 121 19]1.0 40|57 3.7
24 O0—norm agcv 10145 1033 36|73 39

135

Table 4.1: G(A,7,V) for sub-optimal 7 € {0.8,0.9} and various distributions.
Colours show optimal 7,: blue for 7, = 0.8, black for 0.9, red when 7, ¢ {0.8,0.9}.
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4.5 Conclusion

Aggregated hold-out (Agghoo) satisfies an oracle inequality (Theorem in
sparse linear regression with the huber loss. This oracle inequality is asymptotically
optimal in the non-parametric case where the intrinsic dimension tends to —+oo
with the sample size n, provided that an L>(X) — L?*(X) norm inequality holds
on the set of sparse linear predictors, where X is the random vector of covariates.
When X is a vector of independent Bernoulli variables, this condition amounts to
restricting the zero-norm of the coefficients to be less than a constant times %.
Theorem also applies to adaptive piecewise constant regression, yielding an
oracle inequality in that setting (Proposition .

When Monte-Carlo subsampling is used (Definition , Agghoo has two
parameters, 7 and V. Theoretically, it is shown that Agghoo’s performance always
improves when V' grows for a fixed 7. Simulations show a large improvement from
V =1 to V =5 in some cases, but diminishing returns for V' > 5. With respect
to 7, simulations show that 7 = 0.8 or 7 = 0.9 is optimal or near optimal in most
cases. In particular, a default choice of V' = 10, 7 = 0.8 seems reasonable.

Compared to cross-validation with the same number of splits V', simulations
show that Agghoo performs better when the intrinsic dimension r is large enough
(r = 150 in section [£.4.1] » = 50 in section and 7 = 100 in for n =100
observations and d = 1000 covariates. Correlations between predictive and non-
predictive covariates, which increase the number of covariates correlated with the
response Y, clearly favour Agghoo relative to CV and the oracle, whereas the effect
of correlations between predictive covariates is ambiguous.

4.6 Proof of Theorem 4.3.2

The idea is to apply Theorem of Chapter (3| using suitable functions (w; ;) j)e(1;2y2-

Fix a dataset D,,, K € {1,...,n;} and for any k € [|1; K[]?, let ty = Ap(Dy,)
z = Go(Dy,) + (0(Dy,), ). More precisely, to apply Theorem of Chapter
one must show 1nequahties of the form H(wy, ws, (fk)lgkgK): for all r > 2,

B([6.({(X) ~ ¥) = 6u(i00) = V) = e |") < [ (s, 00)) + a5, 2]
x[wQ( E(s,fk))+w2( E(s,fz))yi
(4.12)

where wy, ws are non-decreasing functions. Since ¢, is Lipschitz, it is enough to

control ka — 1 and ka — by functions of £(s, ;) and £(s, ;).

(P lz2x)

Y
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L (X)

First, let us bound the supremum norm by the L? norm.

Claim 4.6.0.1 For any k € {1,..., K}, recall that t, = Ap(D,,). Then:

V(k, ) e{l,..., K o S V2R(E) [l — 4

a.s. .

HL?(X)
Proof Let X be independent from D,, and observe that for any k,
t(X) = b + 0L (X — EX),

where by, = qr + égEX (using the notations of hypothesis . Hence,

~

Ee(X) = G(X)]] oo < [0 — buf + H(ék — )7 (X - EX)H

Lo

By hypothesis [4.2.1} ||ék“0 = k. Thus, if K > max(k,1), Hék — élH <k+1<2K.
0
The definition of x (equation (4.5])) implies that

[E(X) = (X[ oo < 1Bk — bi] + (K H(ék - 0)"(x - BX)|
< w(K) [|z§k A H (G — )7 (X — EX)‘ , } (k(K) > 1 by definition)
< V2K(K \/|bk—bl|2+H (0 — 0)7(X — EX)’LZ

= V2r(K) ||t

( >_tl HL?'

A uniform bound on the supremum norm is also required.

Definition 4.6.1 Let

E— 1l

3 = max
7= ke

(X)
E[5] can be bounded as follows.

Claim 4.6.1.1 The § of deﬁmtion is such that

E[3] < 8LRn®
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Proof Let (k, l) € [|1;n¢|]2. Defining X; = X, — 13" | X; and changing variables
in hypothesis 1| from (q,0) to (b =q+ < 0, % Yo X >, 6’), we can rewrite

£y(x) = be(Dy) + 6,(Dy)" <x -2 3 XZ->

where

be(D,) €  argmin  |b|
beQ’ (D 0k (Dn))

Q(Dn,Q)—argmln—Z¢c< ; b—QTX)

beR

Therefore, differentiating with respect to b,

—§:¢ —6ix;) =o0.

Assume by contradiction that
b > 0,Vi € [|1;n], by + b+ 0L X, < b + 07X, (4.13)

Let b be such that (.13 holds. Then by monotony of ¢., for all € in [0; 2],

2

§:¢ —0{ X,)

Z¢ — by — e~ 0[ X))
Zcp bk—g LX)
qu bl+g—6TX)
Z¢ — b +e—07'X;)

§j¢ -0/ X)

=0.
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It follows that

n

Veelo Z¢> (Yi—by—e—0I'X;) = ;Z¢;(E—Bl+s—éf)~(i)20. (4.14)

i=1

By integration, this implies that for all £ € [0; 2],

(b +2) € Q' (D Bu(D) ) (4.15)
(b~ ) € Q' (D, i(Dn)) (4.16)
If b; > 0, then for small enough €, (4.16)) contradicts the minimality of |l;l| On
the other hand, if b; < 0, then averaging (4.13) over ¢ € {1,...,n} yields
b, +b < by < 0.

Then for ¢ € [0; 3], (4.15)) contradicts the minimality of |bg|. Thus, (£.13) leads to
a contradiction. Let 4 be such that by 4+ 67 X; > b, + ] X;. Then

El—[;kg(ék—él)szi\ max ‘Hk—el X‘

,,,,,

Exchanging k£ and [ yields
|Bl—i)k| 12112}5 ‘ Hk—Hl) )N(Z}

Therefore, for any k, [,

||£k_£l”Loo(X)<|(;l_6k|+ sup |(9k—91 I——ZX

z€supp(X)
<2 sup 9 (x — = Xi)
z€supp(X) ( o Z
<oli-dl, swp  Jo-vl

(x,y)€supp(X)?

< 4H9Ak - ézul sup ||z — EX|

z€supp(X)
<8 sup ||6k|| sup |z — EX]|,
1<k<ng z€supp(X)
Thus, by definition 4.6.1, § < 8SUP) < pen, O SUD, csupp() |17l oo
Hence, by hypothesis 4.2.1]
E[3] < 8LRn®.
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4.6.2 Proving hypotheses H (wi,l,wm, (fk)KKK)
The following lemma will be useful.
Lemma 4.6.2 Let r, s, x be positive real numbers. Let
Ls(@) ={v €Ry 1 v < (rVsv/v)z}
and h,s(x) = (\/rz) V sz?. Then for all x,y >0,
sup Lo (v + ) < (hrs (V) + hes (V1))

Proof Let v € I, (x). Then if s/v < r, by definition of I, s(z), v < rz. Otherwise
sy/v > r. Therefore by definition of I, ;(x),

In all cases, v < (rz) V s®z?. Therefore,

\/sup I s(x+y) < ( r(x + y)) Vs(z+y) < (Vrz) Vsz+ (ry) V sy,
using the elementary inequalities:

Y(x,y,a,b) € Ri’r,

Vit+ty<vVr+y
(x+y)V(e+b)<zVa+yVd

We now relate the L? norm to the excess risk in the following Proposition.

Proposition 4.6.3 Let (X,Y) € X xR be random variables. Let ¢. be the Huber
loss with parameter ¢ > 0. Assume that there exists n > 0 such that almost
everywhere,

P ()Y —s(X)| < 5IX) >0
Then for any measurable functions (fy, f2) : X — R,

9 4c
= Flliy < o [0V 2IF = lliwgo] s )+ s 2] (417)
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Proof Recall that
2

xr C
¢C<:L‘) = Eﬂmgc -+ c(]x\ — 5)]1\90|>C'

In the rest of the proof, for any x € X, let {x(u) = E [¢p.(Y — u) — ¢.(Y)| X = z].
Let s : o — argmin, g {x(u); s is a risk minimizer. Then ¢/ (z) = sgn(z)(|z| A ¢)
and ¢ (x) = [;<.. By differentiating under the expectation, for any u such that
u—s(@)| < 5,
lo(u) = OE [¢e(Y — u) = 6.(Y)|X = 1]
=E[p (Y —u)|X =]
=P[|Y —u| < ¢|X =1]

>P[|Y —s(z)| + |u—s(x)| < c|X = 1]
>P )Y - s(2) < 5IX = 2]
=

Since s(z) is a local minimum, it follows that, for any u € [s(z) — £;s(z) + £],
|6 (u)] = [, (u) — £, (s())]
/ 0 (t)dt
s(z)
=z nu — s()]
By lemma of Chapter , it follows that for any (u,v) € R?,

4 8
(u—v)* < <E v (a]u - v[)) (Cx(u) 4+ lx(v) — 20x(s(x))) . (4.18)
Now using equation (4.18)) with u = f1(X), v = fo(X), x = X and taking expec-
tations, we have:

Ellfr = fall ) < % [CV 2([f1 - fQHLOO(X):| [€(s, f1) + (s, f2)] - (4.19)

~

We are now ready to obtain functions (w; ;). )e{1;2y2 such that H (wi,l, W; 2, (tk)lgkg[()
holds. In the following, fix K € [|1;n:|] and write k = k(K) for short.
By Proposition 4.6.3], for all (k,1) € [|1; K%,

C2 tk —tl

b < [V @l )] [ B s B0] . 420
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Hence, by claim [4.6.0.1}, for all (k,1) € [|1; K|]?,

ty — 1

4 A . .
2 iz(X) < ?C [c V (2v2k |t — tlHLQ(X))] [0(s, &) + £(s, 1))] (4.21)

By lemma {.6.2| with v = ¢ ||t — {; iQ(X), r= % and s = 8‘{?”“,
) 2
At — 1 L2x) S (wA( 0(s,ty)) + wal é(s,tl))> : (4.22)
where
2 8v2
Walz) = (—Cx) Y BV2h (4.23)
V1 U
Now,
N ~ 112 ~ ~ 12
c |lte = tlHLOO(X) < 267 ||d — tlHLQ(X)
8ck? - R . R .
< 7 [c Vv 2|tk — tlHLOO(X):| [(s, ) + £(s,1;)] by Proposition [4.6.3
By lemma [4.6.2] with v = 2 ka — 4 iN(X)’ 5= 16:2, r= %,
) 2
C2 tk —tl Lo (X) < (UAJQ,Q< K(S,tk)) +7i)2,2< K(S,tk))) (424)
where
2cV/2 1652
Woo(x) = C\/_K:U V= 2k, (4.25)
Vi U

Because the Huber loss ¢, is c—Lipschitz,

Yu,v € ]Rd, |0 (Y —u) — ¢ (Y —v)| < clu — v

Therefore by (4.22) and (4.24)),

k—2
L“(X))

<(@A( (s, 1)) + wa( E(s,{l)))2

E [ (6ey = (X)) = 6e(Y = 2(X))*] < ([l =172 ) (e [l =

 (VBwalyis i) + Vi as,gl)))“
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which proves H (@A, V2K 4, (fk)1<k<K)- Now going back to equation (4.17)), by
Definition [4.6.1],

. . 4e A
|t = &35, < . [cvzﬁ] [0(s, ) + (s, )]
2
<(e<€@&»+wa aamﬁ (4.26)
where
wp(z) Ev? 2LB x (4.27)
B G 7
Moreover,

< 2R ”tk - tAl”i?(X)

< 2/{2 ('LZ}B< E(S,fk)) +UA}B(\/£ S tl ) by -

A~ a2
c? ”t‘C — b L (X)

Therefore, by ,
PhE) =y (@) <E [ (8uY = 1000) = 6oy = £(X))*] |6y = 1:()) = 6y = 4(X)]|},”

9 A 112
S (C LQ(X)) (C

g(mB( (s,11.)) + wp( E(S,lfz)))2

~ ~

ly — 1t

L°°(X)>

k—2
X (\/5/431213( E(S,fk))‘{'ﬁ/f’d)g( E(S,Lfl))) ,
which proves H (wB, V2kip, (fk)KKK).

4.6.3 Conclusion of the proof

We have proved that H (@B, V2kip, (fk)lgkg[() and H (’JJA, V260 4, (tAk)KKK)
hold, where wpg is given by equation and w4 is defined by equation (4.23]).
It remains to apply Theorem of Chapter [3]and to express the remainder term
as a simple function of ¢, n,,ns, k, L, R, K and . We recall here the definition of
the operator 0 used in the statement of that theorem.

Definition 4.6.4 For any function h : R, — R, and any & > 0, let

§(h,&) =inf{x € Ry : Vu > z, h(u) < &u?}.
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The following lemma will facilitate the computation of d(wa, -).

Lemma 4.6.5 Letr > 0,5 > 0 and h,4(x) = (y/rx) V sz®>. Then §(h,, &) < oo if
and only if £ > s and then 6(h,s, &) = %

Proof To find §(h, s, &), notice that given the definition of §(h, s, ), the condition
s < £ is obviously necessary for the infimum to be finite. Assume now that £ > s.
For any u > Y=, then £u? > /ru as well as £u® > su? (since we assumed & > s),

therefore £u? > h,. s(u). Thus by definition, 6(h,.s, &) < \/TF (in particular, d(hy.s, &)
is finite). Furthermore, by definition of 6(h,.s, &), v7(hys, &) < E5(hy.s,&)?, that
is 8(hys, &) = % n

The following claim can now be proved.

Claim 4.6.5.1 If K € [|1;n]] and b > 1 are such that

U
R(K) < g /Sb oo IC (4.28)

then applying Agghoo to the collection (Ak)lgkgK yields the following oracle in-
equality.

(1= O)E[((s, 125)] < (1+ O)E[ min ((s, )] + 2460

1<k<K NNy

clog K ¢+ 2LRn}
¢t e

Proof Theorem of Chapter I applies with w1 = Wp, W12 = \/_lin, Wo, =
WA, Wao = \/_I{UJA, r = (6?0 — 1)log K and it remains to bound the remainder
terms (R2;)1<i<a- Now assume that equation (4.28] - holds.

Bound on Ry ;(0) = V20E {52 (ﬁiA, %, / —gzb’f’;’gK)}

By (4.23), we can apply lemma |4.6.5 with s = @, r =22 and &=

blogK
By (4.28),
8 Ny
§ nfﬁ Mgk~ °
It follows by lemma [4.6.5] that
5 (o TNy _2c [4b logK
P\ ablogK ) T
Hence,
4c? 4blog K 2log K
Ro1(6) < V2 0~ CTOBR L o3ept 8 (4.29)

Ny 11y
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Bound on R,5(f) = %E [(52 (x/ﬁmijA, %MW)}
By (4.23)), we can apply lemma 4.6.5| with s = %, r =85 and € =
By (4.28) and since n < 1,

_ 16k? . 161n* n, e
o 1 644blogK T 4blogK

Therefore

0% n, 2¢v/2k 4blog K
< by 1 /
(\/_HwAa 4 02b10gK) \/ﬁ Ty y emma

nblog K K

/
N |

Hence, since 0,1 € [0; 1],

0% c® nblog K . b c*log K

Ry5(0) < < 4.30
220) < 57, 8 n, (4.30)
Bound on R; 3(6’) = ﬁ (9 + M) E [6%(dp, /1) ]
By (4.27 - x — Y22 is constant and, in particular, non-increasing. Therefore,
) (wB, \ /nv) is the umque nonnegative solution to the equation
2 2cf3
Wp(z) = \/Nr® <= v 2B T = \/n,T’.
Vi U
It follows that
2 208\ 1
O(wp,\/ny) = | —= V24— . (4.31)
(05, Vi) = | = ol By
and
4% 8B\ 1
82 (g, \/ny) = | — VvV — | —
(5, /) ( noo )n
V20
_ eV (4.32)
My

As n; > 3, we can assume that K > 3, hence log K > 1 and

2(1+log K) o 5log K
0 A

0+
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Since 0 > \/LE’ % < 0b and therefore

2(1 +log K
0+ % < 50blog K. (4.33)
By equations (4.32) and ({4.33]),
clog K c+2E B
Ry 5(0) < 200b o KQQb[l ] (4.34)

Bound on R274(0) = K92b - <Q + 1+logf§)+log K) E [52(\/51'{@3,7%)]
52(\/5/-%113 B\ /nv) is the unique nonnegative solution to the equation

2 23
V2kihp(x) = /ipr? <= v 2ch V2kx = nya?,

Vv n

(\/_KJU)B,TM; ( _B 2
\/ n Ty

sl /_m /
g bnvlogK( 28 ) by (.23 .

Since n < 1 and b > 1, it follows that

which yields

nc \/205
v _— 4.35
(V2. m) S G e i (4.35)

(4.36)

< 0b,

By equation (4.33]), and since %

2(1 +log K) +log® K

7 < 50blog K + 6blog® K

< 66b log2 K since K > 3.
Therefore, since b > 1 and 7 € [0; 1],

60 clog K ¢+ 2E[3] _ 30b clog K ¢ + 2E[f]
64 n, K1 T 32 pn, K1

Ry 4(0) < (4.37)
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Conclusion Summing up equations (4.29), (4.30), (4.34) and (4.37), Theorem
of Chapter [3 implies that assuming equation (4.28) holds for K, for all

1.
VRS 75,1},

(1—0)E[((s, £2%)] < (14+-0)E[ min_£(s, {;)]+240b

1<k<K NNy

. (4.38)

clog K ¢+ 2E[A]
[C + K 0%b-1

It follows by claim [4.6.1.1] that

(1= O)E[((s, £25)] < (14 O)E[ min_£(s, i),)] + 246b

1<k<K NNy

clog K ¢+ 16LRng
¢ K 0%b-1

Let K satisfy assumption (4.6) from Theorem {4.3.2, Take now b = by llzgg

Then equation (4.28)) holds for this value of b. Moreover, since K < ny, by > b and

therefore 6 € [\/l_b? 1] — e [\/ig, 1] Thus, claim |4.6.5.1| implies that for any

1},

1 .
96|:\/_b>0’

— ras i 3
(1-0)E[l(s, f7*)] < (1+9)]E[1I<1}€1<HK€(5,tk)]—1—2401)0 o

clogn, [ cK  16KLR
c+

+
2 2hn—
71? bo 71? bo—a

This proves Theorem [4.3.2]

4.7 Applications of Theorem 4.3.2

4.7.1 Proof of corollary [4.3.3

Let z € supp(X—EX). Let # € R? be such that ||0]|, < 2K and let I = {7 : 6, # 0}.
For all i € [|1;p|], 7; € [-1; 1], hence

=1 el
SNOBEN I
el i€l
< V2K > 62 (4.39)
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On the other hand, let X; = X; — EX;. Then by independence of the X;,
P \? p
(Z 9;@;) = 0Var(X;)
i=1 i=1
= Z ‘92pz z

> min {p;(1 Z 07 (4.40)

1<i<p
el

Combining inequalities (4.39) and - 4.40)) yields
Zexl \\/ 2R E [(0, X)?].

miny <i<p pi(l - pi)
4.7.2 Proof of Proposition 4.3.5

sup
z€supp(X—EX)

We associate to the original piecewise constant regression problem an ordinary
sparse regression problem. Define the linear operator

SR — R?
j
(%;)1<j<a = <Z sz)
=1 1<j<d
and:
AR — R
(z5)1<j<a = (25 — 2j-1)22) -

Fo any k € [[1;d]], let also B} = Uj_,J;. Then t, has k jumps if and only if
|A(u)|ly = k, moreover we have the representation:

d
te=wl+> Au);lg,. (4.41)
Equivalently,
d
tsaw = > wlg, (4.42)
j=1

It follows that the original jump detection problem is equivalent to a sparse regres-
sion problem with covariate vector X; = (]IE].(Ui))2 <j<d’ where the non-penalized
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intercept corresponds to the component u; of the original problem. The set
of X —measurable functions coincides with the set of linear functions on the fi-
nite set supp(X), hence a Bayes estimator is s : & — u,1 + (A(uy),x)), where
u, = argming s B [¢.(Y — t,(X)]. Let 6 = A(@k) be the sparse estimator asso-
ciated to uy. This allows to apply Theorem 2|, provided that (Qk)1<k<d satisfies
also the two last points of hypothesis Let us now prove this. Write 0. G,
for 0x(Dy,), uk(Dy,) to simplify notatlon Usmg the notation of Definition IZ_LIL?)_TL
we have:

P

HHkHI - HA ||1 Z ‘ukjr (i) uk]'r 1(uk)| 22 ‘ukjr (tg)

Hence, by the triangular inequality,

k
0| <2 i Vil 4+ [Yi — it )
H Hin — i:Xiren,i{l(ak)’ [+ b i)

Using the inequality |z| < ¢ + 1¢c(z) yields

~

k
<2 min |Y| +c+ qf)c( i — U an))

Oy ‘
1 -0 l:XiGAr(
k
<QZC‘|’ Z Vil + ¢C< i u]r(uk))
r=0 :X; €A (Tg)
Hence, by Definition [4.3.4
4 1
<2 : - -
<2y et Yil + =6 (V)
r=0 i X €A (1)

< 2ke+4) |V,

i=1
It follows that

E[ sup ‘

1<k<d—-1

é’“H ] < 2de + 4n,E[Y ), (4.43)
1
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so since d < n, < ng, the second point of hypothesis is satisfied with a =1
and L = 2c + 4E[|Y]]. Let u € R For any y € R, by convexity of ¢.,

1< 1<
y € argmin — > ¢o(Y; — 1, (U;) — q) <= - > o (Yi—y—t(U;) =0
=1 i=1

geR T =
1 n d
= - > ¢l (1@- — Y —uy — ZA(u)j]IEj(Ui)> =0
i=1 j=2

1 n
= u+y€ argmin—Zgbc(Yi—x— (A(u), X)).
v M

Hence, using the notations of hypothesis 4.2.1| for any u € R¢,

geR n —

Q((Xi,yi)lgigm A(u)) = w; + argmin 1 Z@(Yi —t,(Ui) — q)- (4.44)
=1

By Definition iy, € Cy(Dy,, i), therefore

Zqzsz(n — ta,(U)))

i:XiEAT»(’llk)

k

S>> (Y- tuga)
r=1

07

therefore 0 € argmin, g = > 7" | ¢(Y; — tq,(U;) — q) by convexity of ¢.. Hence,
by equation (£.44), i1 € Q((Xi, Yi)icicn, k). Let now ) € Q((Xi, Yi)i<icn, 1),
and let y = u} — g ;. Assume by contradiction that (uy ; + y)lgjgd ¢ ét(Dn, y,).
Then there exists | € [|1; k|| such that

Z (bc (K - ﬁk,jl(ﬁk) - y) > Z (bc (K - ak:]l(ﬂk)) )

i:XieAl(ﬁk) i:XieAl(ﬁk)

while for all r # [, since by assumption iy € C’t(Dn, Uy),

Y b Vit —y) = Y e (Yi—tuya) -

i:XiEAr(ka) i:XiGAr(ﬁk)
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It follows that:

Z Ge(Yi — ta,(Ui) —y) = Z Z de (Vi — Uk, ay) — V)
i=1 - 2

Yet by equation (4.44)), y € argmin g % oy (Vi — ta, (U;) — q), which yields a
contradiction. Therefore, (dx; +y), ;4 € Cy(Dn, tiy,).

Thus,

n d

N 1 X
= |Uga + Y+ o Z Z Aty )1, (U;)

i=1 j=2

1 n
=|y+ o Ztﬂk(Ui)
=1
d
=D Pull)) [ + 9]
j=1
d
> Pl

J=1

WV
W

by Definition 4.3.4) equation (4.8))

R
= |4 0 —E X;
Uk,l"’(kan )

i=1

This shows that the linear regressor D,, — = — U1 + (A(tx), z) satisfies also the
last point of hypothesis [£.2.1]

It remains to check the assumptions of Theorem [£.3.2 We first remark that
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R < sup,ep max; [Ig, (z) — P(E;)| < 1. We now bound x(K). For any € R,
d —
> 0 Xy = Z 0, (I, (U) — P(Ey))
=k
= Z Or Z Lizk (I, (U) — P(I))
-y (z ) 610 1)
j=1 =

Thus, for any § € RY (X, 6) is in span (]I[J.(U))1<j<d (

belong to this space). Now, for any Z = Z;.lzl 2l (U) € span (]I[j(U))
assumption (4.10]) of Proposition [4.3.5

Zz

constant functions also

by

1gj<d’

1
\/m1n1<J<d P(I )

12, < max || <

This yields x(d) < 1/%. Let by = 3logn,, then k(d) < —’Lglognt Lu —
2\ soiesyy, - Finally, applymg Theorem 4.3.2|with K = d, R =1, L = 2c+4E|[|Y],

a = 1 (by equation ([4.43)), by = 3logn, and 6 = \/W yields equation (4.11]),
proving Proposition [4.3.5

| 7P 2
1) </———E[Z
(L) 1536 log® n, 2]

1
2 .



Chapter 5

A detailed analysis of Agghoo:
asymptotic approximation of the
hold-out risk estimator

5.1 Introduction

In the previous chapters, we have shown oracle inequalities which certify that the
hold-out procedure performs, asymptotically, as well as the best estimators in the
given collection. However, these were only upper bounds and we did not have
access to the actual order of magnitude of the gap between the risk of the hold-out
estimator and the oracle. Moreover, these results made no difference between hold-
out and its aggregated version, hence they cannot explain why Agghoo sometimes
perform much better than the hold-out or even cross-validation in practice.

In this chapter and the next, we will conduct a detailed study of hold-out
and aggregation of hold-outs in a particular setting where it is possible to be
more accurate. This setting is that of L? density estimation, with the collection
of estimators given by empirical orthogonal projection on a trigonometric basis,
indexed by the number of basis functions used; see Section

The basic unit of hold-out aggregation is the individual hold-out estimator
it aggregates. The starting point for a detailed study of hold-out aggregation
is therefore a detailed study of the individual hold-out estimator. The hold-out
procedure itself consists of three steps: risk estimation, selection of a parameter and
calculation of the final estimator. The analysis of the hold-out procedure therefore
starts with a detailed study of the hold-out risk estimator as a random process. The
purpose of this chapter is to show that the hold-out process, properly renormalized,
can be asymptotically approximated by a simpler continuous process.

As in any asymptotic study, the choice of the scale to normalize the hold-out

153
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process is crucial to get an interesting limit. From the point of view of studying the
hold-out procedure, the point is to obtain an approximation of the risk estimator
in the neighborhood of the optimal parameter k. (which the hold-out secks to
estimate), at the scale of k— k., where k denotes the parameter chosen by hold-
out, i.e the minimizer of the hold-out risk estimator. Since the analysis of the
risk-estimator precedes that of its minimizer l%, the correct scaling will have to be
guessed, based on heuristic arguments. The results of the next chapter will prove
that this guess is correct.

At the relevant scale, we show that the hold-out process behaves as the sum
of a convex function f,, and a Brownian motion changed in time W, . The ap-
proximating process depends on n (this is not a limit), but several inequalities
on f, and g, show that the approximating process does not become trivial when
n tends to +o0o. This process is independent from the training data constituting
the "training sample" of the hold-out. The interest of this result from the point
of view of studying the hold-out procedure is that it allows to make use of the
abundant theory available on Brownian motion in order to study the parameter
selection step. It is thus an indispensable prerequisite for demonstrating oracle
inequalities for the hold-out and for hold-out aggregation, which is the subject of
the next chapter.

5.2 L? density estimation

Let s € L*([0;1]) be a probability density function. Given a sample Xi,..., X,
drawn according to the density s, the L? density estimation problem consists in
constructing an estimator 5, that approaches s in terms of the L? norm.

Although it is not obvious at first glance (this is not true for the other L?
norms), this non-parametric density estimation problem can be reformulated as a
risk minimization problem, with a contrast function: v(t, z) = ||¢||* — 2¢(x), which
yields the risk E[y(t, X)] = [[t|* =2 [ s(x)t(z)dz = ||t — || —||s]|. Tt follows that
s is indeed the minimizer of the risk corresponding to the + contrast function, and
furthermore

Us,t) = It — sIP°.

This problem therefore falls within the theoretical framework of Chapter [3], section
Therefore, it is possible to use hold-out or aggregated hold-out to select among
a collection of estimators.

Here we will consider as a family of non-parametric estimators the empirical
orthogonal series estimators [41], Section 3.1 on a trigonometric basis. To ease the
presentation, we consider only cosine functions, which is equivalent to assuming

1

that s is symmetrical with respect to 3. This restriction is of no fundamental



5.3. RISK ESTIMATION FOR THE HOLD-OUT 155

importance — it is reasonable to conjecture that the results remain valid with the
complete trigonometric basis.

For every j € N*, let ¢; : © +— v/2cos(2mjx) and let ¢y : © — 1. The collection
(¥j)jen is an orthonormal basis of the subset of L?([0;1]) of functions symmetrical
with respect to %

Let D, = (X3, ..., X,,) be a sample. For any n € N and any 7' C {1,...,n}, we
will denote, for any real valued measurable function t,

PI(t) = g S HX).

Consider the estimators defined as follows.

Definition 5.2.1 For allk € N and all T C {1,...,n},
k
SE=>_ Pl
=0

where 1o = 1 and for all j > 1, () = v/2cos(2mjz).

The estimators §; are empirical risk minimizers on the models

k
Ek = {Z’l}]w] NS RkJrl} .

J=0

The problem of parameter choice k is therefore a problem of model selection within
the model collection (E}y)r>o. Here, the models are nested, meaning E; C Fj for
every k < K.

5.3 Risk estimation for the hold-out

The larger k is, the better the approximation of s by the functions of Ej, but the
more difficult it is to estimate the best approximation to s within E). The choice
of k is therefore subject to a bias-variance trade-off which, if properly carried out,
allows adaptation to the smoothness of s, simultaneously reaching the minimax
risk on Lipschitz spaces of periodic functions [41l, Chapter 7|.

Since the risk, except for a constant, is expressed as the expectation of a con-

trast function
~ ~ ~ 2 2
Py(s0)] == Ex [v(55, X)] = |55 —s||” = lIslI”,

it can be estimated by hold-out as in the previous chapters.
This is the subject of the following definition.
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Definition 5.3.1 Let D,, be an i.i.d sample drawn from the distribution s(z)dz.
Let ny € {1,...,n —1}. Let T C {l..n} be a subset with cardinality |T| = n,.
Then, for all k € N, we define the hold-out estimator of the risk of 5, with training
sample indices T by

AT (|2 N
HOr (k) = |5 || — 2P (31).

The hold-out risk estimator depends on the choice of a subset T of {1,... ,n},
but its distribution depends only on the cardinality of that subsample. The precise
choice of a subset T of cardinality n; will therefore play no role in the sequel. We
will therefore denote by T" any subset of {1,...,n} of cardinality n,.

HO7 (+) is indeed an estimator since the norm ||-|| is computed with respect to
a known dominating measure (in this case the Lebesgue measure) and so does not
depend on the distribution of X. Moreover,

HO7 (k) = [|3% — s[|" — 2(PT" — P)(s]) -

the hold-out risk estimator can be expressed as the sum of the excess risk and a
centered empirical process.

As a result, HOr (k) is an unbiased, consistent estimator of H§£ - SHQ, which

: . 2 ... . .
approximates Hsf — SH within an error of order \/n%m, by a variance calculation.

Since the purpose of the hold-out procedure is to select the parameter &, we want to
understand the behavior of HO7 (+) around its optimum % and where that optimum
lies with high probability. The consistency and unbiasedness of HO7 (k) suggest

that & should be "close" to argming H?;Z — SH2, the true optimal parameter.

Under a few conditions, it is possible to give a simple, deterministic approxi-
mant for this optimal parameter. More precisely, let n,(n) be a sequence of integers
such that, for alln € N, 1 < ny(n) < n, and define n,(n) = n—ny(n). In the follow-
ing, we shall denote n, = n,(n) and n, = n,(n) for a generic value of n. Whenever
n, ny, ny appear in the same expression, it will be understood that n; = n,(n) and
ny, = ny(n) =n —n(n).

For any j € N, let 6; = (s,1;) denote the Fourier coefficients of s on the
cosine basis. Suppose that the squared Fourier coefficients 9? form a non-increasing
sequence. The expected L? risk can be approximated as follows (see also claim

5.4.3.1):

2k <
§;‘:—3H ~—+ Z 0?-.

ny )
j=k+1

This leads to the following definition.
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Definition 5.3.2 For alln € N, let
9 1
ki(n) =max{keN: 0 > —
n
400 k’
— 2
and or(n)—é&g{é Hj—i-ﬁ}.
j=k+1

Equivalently,

+o0
k.(n) = max argmin { Z 0]2- + E}
n

kNS5

+oo
and or(n) = Z 49?—#
n

j=ke(n)+1

k.«(n;) and or(n;) are thus, approximately, the minimizer and the minimum in k&
of the L? risk of the estimators 7, which explains the name or(n;) (oracle). Thus,
it is to be expected that the minimizer of the hold-out risk estimator lies close to
k.«(ng) = ki(n;). For this reason, k.(n;) will be the most relevant value of k, in the
following, and we will often omit the argument n;, with the understanding that
kv = ki(ny).

Assuming to simplify that %k, minimizes the L? risk,

HO7 (k) — HO7 (ki (ny)) =

~ 2
s — s

St = sl” = 2B = P)GE = 3L0)
(5.1)
is the sum of a non-negative term (the excess risk) and a centered empirical process.
Both tend to 0 as k tends to k.. The relevant scale at which to study the hold-out
procedure, which minimizes HOp (k), is the scale of the fluctuations k — k,(n;)
of the argmin k of HO7 (k). Since the asymptotic study of HOy (-) precedes that
of l%, the correct scaling must be guessed in this chapter, and the correctness of
this guess will follow from the results of the following chapter. The guess is made

based on the following heuristic:

The correct scaling A for |k — k.| is such that the excess risk Héf*iA - st —
55— SH2 and the centered empirical process 2(P!" — P)(5L .o — 51.) have the
same order of magnitude.

The justification for this heuristic is that in order for the inequality HOr (k) <
HO7r (k.) to hold, as it does for k, 2{(PnTC — P)(sf — ,§£)} must be greater than

T
Sk -

2
S ‘2 — || —s|| . Consider the following generic scaled and centered
k*(nt)
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hold-out process:

1

R (HO7 (ky + @A) — HO7 (ki(ny))) =

~T 2
Sketar — 3” -

| =

(ST RPN

~T 2

(ch - P)(ég*—&-aA - '§Z*(nt))7

(5.2)

where o € {% : k € N} and A, e are values which may depend on s,n and n;.
The relative size of the excess risk and the empirical process in depends on
A. If the excess risk is much larger than the empirical process in equation ,
then the scaled process is asymptotically deterministic, conditionally on DI (the
excess risk depends only on DI). In contrast, if the centered empirical process is
dominant in equation , then the scaled hold-out is asymptotically a centered
process. Thus, choosing A based on the heuristic means rescaling the hold-out
process such that it is neither deterministic (conditionally on DI') nor zero-mean,
or in other words, so that its bias is of the same order of magnitude as its standard
deviation. e should then be chosen so that bias and standard deviation both remain
of order 1, in order to avoid divergence of the scaled process or convergence to 0
(which would be uninformative). The appropriate choice of A, e is given in the
following Definition.

Definition 5.3.3 For alln € N, let

111
Ay(s,n,n) = max {l eN: Hi*(nt)ﬂ > {1 —y/= ntn ﬁ] _}
— Iyt

111
A,y(s,n¢,n) = min {l €{0,... ki(n)}: Hi*(nt),l > [1 + 7 _} _}

A(s,ne,n) = max (Ag(s, g, n), Ag(s,ng,n))

A
E(smm) = 2L
t
E(s,ng,n
e(s,nt,n) = %
— Ny

Definition also introduces the quantity £(s,n;,n). This quantity appears
often in the proofs, so it is helpful to have notation for it; it will play a much more
significant role in the study of Aggregated hold-out, in the following chapter. It
can be interpreted as the order of magnitude of the fluctuations in the variance

term,
E|

st sl —E[lIst. - )] -
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and the bias term,

kVk.
|PGE) —s|” = ||PGL) = s||” = —sign(k — k) > 0
j=k«Nk+1

of the estimators 8}, for k — k, "of order" A (in a sense to be made precise later).
As the sequence n;(n) and the density s are considered to be fixed once and
for all, the notation A(s,ny,n), E(s,n,n),e(s,ny, n) will frequently be replaced by
the abbreviations A, £, e.
Definition [5.3.3] does not make clear how large A, € and e are. Their order of
magnitude may depend on the sequence (#;);en of Fourier coeflicients of s as well
as on ny(n). However, the following inequalities always hold.

Lemma 5.3.4 For any density s such that the sequence 032- = (s,9;)* is non-
increasing,

Az (5.3)

n — ng
o ! (5.4)

n — ng
¢ = ! (5.5)

n — ng
e< & (5.6)

1

E < 2or(ny) + — (5.7)

This lemma is proved in section [5.4.1] The following two examples show that
in extreme cases, lemma may be optimal, at least up to constants.

Two examples

e Let ny(n) and u, be two integer sequences, such that "t(") — 1, u, — +00

and u, < \Qf for all n. Assume also that ** = o(“”t) Let forall j e N

1ﬁj:0
6]2-’71 = = 1f 1 <7< uy,

2]nt lfj > u?’lt + ]'7

(5.8)

correspondlng for example to the pdf s, = 1 + Zu"t \ /nit@/zj. Remark that

equation (5.8)) implies that k.(n;) = u,,. Then as n — 400, E(sp, 4, n) ~
%’Z’ﬁ) ~ or(nt) and "It = o(or(ny)), so e(sy,ng,n) = o(E(sy, ng,n)).
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—. Let n4(n) be a sequence of integers such that

e Forall j € N, let 0; = 3

@ — 1. Then by Lemma/|6.6.2, A > 2=, but as 9 " = o (1 — 1+nl,nt ),
nt
it follows that A(s,n,n) ~ -, hence
1
E(s,mum) ~ e

(n—mnyng n—mny

As a result, £(s,ny,n) ~ e(s,ny,n), and this for any sequence ny(n) such
that n,(n) ~ n.

Now that A, e are defined, the hold-out process can be rescaled as in equation
(5.3.5). More precisely, the rescaled hold-out process is given by Definition
below.

Definition 5.3.5 For all j € [—k.;+00[NZ, let

~ ] 1
fre (%) =~ (HOr (k. + j) ~ HOr (k).
in other words (by deﬁmtionm)

gho () 2 1
R (A) e (
ks« (nt)

The R" function is extended by linear interpolation to all a € [T3 +00 [

~T 2
Skitj — SH

. 2 e . .
SL=s") =S (PF = P) (5L, = 51)

The extension of R" by linear interpolation simplifies its approximation by a
continuous process. Notice that any minimizer of R on the grid + ([—k.(n,); +00[NZ)

remains a minimizer of R on the interval [_IC*T(W); 400 [ In particular, this ap-

plies to the hold-out parameter obtained by minimisation of the hold-out risk
estimator.

The process R can be expressed as the sum of the standardized excess risk
£
4

Though the excess risk is a priori random (it depends on D), the proof will show
that it concentrates around a deterministic function f,,, depending on n, which is

given by definition below.

T 2 T 2 ‘s . 2 (pT© oT oT
Skutj — SH — |8k, — sH > and a centered empirical process: 2 (PI" — P) (sk*ﬂ — 5.

Definition 5.3.6 Forallk € N, let R(k) = ;;OZH 07. Extend R to Ry by linear

interpolation:

VeeR,,R(x)= 1+ |z] —x)R(|z]) + (z — |z])R(|x] + 1).
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fni] — k*(m); +oo[— Ry is now defined by:

A

1 aA
fula) = . (R(k:*(nt) + aA) — R(ki«(ny)) + n_) : (5.9)

t

Thus, for all k € N, k # k.(n;),
k\/k*(nt)
k— k*(nt) 2 1
ef, (T) = Y- = (5.10)
J=EAk«(ng)+1

It is clear by equation (5.10) that f, reaches its minimum at 0, moreover the

assumption that the sequence (6?);cy is non-increasing implies that f, is convex.

J
In particular, f, is non-increasing on | — %; 0] and non-decreasing on [0; +00].

Moreover, the definition of A and e (Definition [5.3.3]) implies the following bounds

on the increments of f,:

Lemma 5.3.7 For any oy, a9 € R such that ajae > 0 and |ag| > |aq| > 1,

falaz) = fnlar) = |as| = |oa].
In particular, since f,(0) =0, for all « € R,
fula) = (Ja| = 1);.
Moreover, using the notation from Definition |5.5.

o [f A=Ay then for any ai,as € [0;1] such that a; < aa, fn(ag) — folar) <
Oy — (7.

o IfA= Ay, then for any ai, as € [—1;0] such that oy < ag, fo(ar)—fulag) <
Oy — (7.

This lemma is proved in section It guarantees that f,, remains in a sense of
"finite order" and "non zero" as n — +o0o, which means that f,, remains uniformly
bounded on [—1; 0] or on [0; 1], and is lower-bounded on R by the non-zero function
(el — 1), A

The following theorem shows that the process R"(-) can be approximated in
a neighbourhood of 0 by the sum of f,, and a time-changed Brownian motion.

Theorem 5.3.8 Assume that the pdf s is such that the sequence (9?-)jeN 1S non-

increasing, where 0; = (s,1;) are the Fourier coefficients of s. Assume that the
sequence (Hf)jeN and the numbers ng, n satisfy the following conditions.



162 CHAPTER 5. A DETAILED ANALYSIS OF AGGHOO I

H1. There exists constants ¢; = 0 and 6, = 0 such that for allk € N, ZJ et J 2L
.

H2. There exists constants co > 0, py = 0 such that for all k € N, j k+1 (9]2 >
o
%P1

H3. There exists constants cz3 > 0, d > 0 such that for all k > 1

2 2
Orihir = 3o

HJ. There exists a constant 83 > 0 such that n —n, < n'=%.

H5. There exists a constant 64 > 0 such that n, =n —n; > ni+os,

Let T C {1...n} be a subset of cardinality ny and let k. = ki(n¢). For all x > 0,
let

a; = min{L : j € {—k.(ny),...,0}, fu(L) < z}
b, =max{L :j €N, f,(L) < 93}

Then, there exists a non-decreasing function g, : [—=x* halme) ;+oo[— R and for any
x > 0, there exists a two-sided Brownian motion (W, )te[a%bz independent from DI

such that, with probability greater than 1 — %,

E

u€|aq;by]

ap #4600 (.0 W] [BF] € st ebcn, o

where uy > 0 and kg = 0 are two constants which depend only on 01, 0,04, p1 and
c1,Ca, 01, c3, respectively. Moreover, g, and W can be chosen so as to satisfy the
following conditions.

1. g,(0) =0, Wy =0,

2. g, increases on its domain [_Tk*; +oo[

3. SUPagfain] [9n(@)] < 20 5]l (1 4 )

_ 2
4 (o, @) € [R5 400[7, |gn(on) = gn(aa)] = 4]fs|* |on — avl.
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5. For all (a1, a3) € [_Tk*;qLoo [2 such that o < ag <0 or 0 < oy < ap,

8|ls
n02) = n(0) <~ ) ()] + (8 sl + 4 15I°) fo — ).
(n—mny)e
(5.12)
In particular, as (n —ny)e > 1 by lemma and f, is non-decreasing on

R+7

o If (o1, 02) €RZ, |gn(an) — gn(an)| < (8|5l +4|5]1%) oz — e

o If (ag,9) € [‘T]“*;O}Z,
|9 (@2) —gn(01)] < 81slloo [ fula2) = falan) [+ (8 lIs]l oo + 4 [I[I*) laz—au].

This theorem is proved in section 5.4l It shows that the renormalized hold-out pro-
cess R can be approximated by the sum of a convex function f,, and a Brownian
motion changed in time Wy, . f, and g, depend on n, and n, but not on the data
(they are deterministic functions), while W depends on the data only through the
test sample DT°. In particular, in this asymptotic, k" doesn’t depend on DT, the
training data.

Convergence occurs on an interval [a,;b,], where a, < 0, b, > 0. Remark
first that for all z > 1, max(—a,,b,) > 1 since by lemma [5.3.7, we either have
0< f,<1lon|[0;1] (when A =Ay) or 0 < f, <1lon[-1;0] (when A =Ay). In
particular, the length of the interval |a,;b,] is lower-bounded by 1 for all > 1,
equation ([5.11]) is thus non-trivial. Figure gives an illustration of the situation
for x = 25 and

h:aH{ e —1ifa<0

8,1 8,3
T+ 35 fa>0

T8axifaa>0
gn - O — .
7.8c0 — 3fn(a) if <0

(which satisfy the properties of lemma and Theorem when ||s]|* < 1.2
and |s||, < 1.5).

Figure suggests that for large z, /g, and hence W, become negligible
compared to f, outside the interval [a,,b,]. This intuition can be theoretically
justified: if @ € £Z does not belong to [ag;b,], then f,(a) > z by definition
of a,,b,, while on the other hand, by equation , there exists a constant k,
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NI

------ +
& _ w;/f’_”
- x=25
""" axybx
29 & i
o
o —]
i

Figure 5.1: A plot of f,, W, on [a,;b,], for z =25, g, : a — 7.8a — 3 f,(a)L<o.

depending only on ||s]| ? such that

s 18]

v Var(Wy, (o)) < vV gn ()
fal@) 7 fala )

o Vihala) | +/rlal

S fulor ) )

By lemma [5.3.7, f,(a) > (Ja| — 1), therefore |a| < 2f,(a) whenever f,(a) > 1,
i.e for a ¢ [a; 1] ThlS y1elds

Ve > 1, Va € %Z\[%; bsl, ‘ Var g" \/> 2w \/_(1\/4;\/_)

Hence, for sufficiently large x, the random term W, becomes negligible relative
to the deterministic f,, outside the interval [a,;b,]. The proof of Theorem in
the following chapter shows that a relation similar to Var(W,,) < kf,, — a margin
condition — holds for the hold-out process RM. Thus, R" becomes equivalent
to the rescaled excess risk, hence to f, (by the results of Section , when
fn is large enough. As a result, Theorem of Chapter [6.6.5| shows that the
minimizer of R" belongs to an interval [a,, ; by, ] with high probability, where
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_ fn
— 0> At oologo)
e (lof-1),

n
¥ - o— 4|ls|Pa

T T T T T

-1 0 1 2 3

Figure 5.2: A plot of f,, gn on [ag; bg] with upper and lower bounds, for ||s|* = 1.2.

is of order log® n. This justifies restricting the study of R to intervals [a,; b,] for
x > 0. Note that Theorem [5.3.8| is non-asymptotic, so it can be applied with a
sequence x,, — +00.

Since f,(a) = (|a] — 1), the interval [a,;b,| has length O(zx), which is equiv-
alent to an interval of length ~ A for the original parameter k = k, + aA of the
hold-out risk estimator HOr (k).

Furthermore, as illustrated on Figure[5.2] f, is uniformly upper-bounded either
on [—1;0] or on [0;1], while by equation (), |g,| is lower-bounded on [—1; —0.2] U
[0,2;1] by a strictly positive constant independent from n.

It follows that the random processe f,, — Wy, remains random and bounded as
n — +00, at least on an interval of fixed length. This justifies the scaling used in
the definition of Rh.

Theorem is valid under some assumptions on the Fourier coefficients 6,
of s. The main one is that the sequence 49]2- should be non-increasing: this hypoth-
esis is equivalent to the convexity of f,, which approximates the excess risk. It
guarantees that the set of "almost optimal" parameters k (i.e the level sets of the
risk function) are intervals. This avoids situations where the hold-out "jumps"
between two widely separated regions. However, it seems likely that these desir-
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able effects of the hypothesis can be retained under weaker conditions. As the
process Rh"(a) consists of sums Z;?*ZJ{O‘A, it is probably sufficient to replace the
hypotheses on the individual coefficients 9? with hypotheses bearing on local aver-
ages 0;2 = ﬁ iig‘_’lmn 62, at some scale m,, << A. Depending on the scale m,,
the hypothesis that a smoothed sequence 9_]2 is non-decreasing may be quite plau-
sible, considering the fact that the Fourier coefficients tend to 0 at a prescribed

rate for sufficiently smooth functions s.

The other assumptions on s (Hypotheses , (H2), (H3|)) basically mean
that the Fourier coefficients of s on the cosine basis decrease polynomially. For
example, they are satisfied if there are two strictly positive constants u, L and a
constant S > 1, such that

“+o00
VEeN,pk™ < Y 02 < Lk

J
j=k+1

More precisely, hypotheses [H2] and [HI] require that the remainder of the Fourier

series lies between two polynomial sequences ;%2 and =%;. The upper bound
corresponds to a smoothness assumption on s of the type s € H?, B > 1, where
HP? is a Sobolev space. It implies in particular that (k.(n;) < n,) is satisfied for all
sufficiently large n; (thus also for all large enough n). The lower bound arises from
the fact that if the 032- decrease too fast, k.(n;) grows to infinity at a very slow rate,
and can even remain bounded if s is a trigonometric polynomial, which implies
that the Brownian process is not a satisfactory approximation to the empirical
process (PT* — P)(51 — &) for k = O(k,).

Hypothesis means that the sequence (9]2- cannot decrease too abruptly, ex-
cluding in particular a locally exponential decrease such as 67 ., = 277w, for
j e A{l,...,elogk,} and k, — +oo. It is satisfied by polynomially decreasing
sequences, 9? = kj?, with & = 1, but also by sequences 9?- = kexp(—j%), as
long as o < 1. Locally, 0? can thus decrease much faster than its global rate of
convergence (which is polynomial).

Hypotheses and are of a different kind since they do not bear on s, but
on the parameter n; which is chosen by the statistician. One should therefore check
that these assumptions are compatible with practical applications of the hold-out.
The oracle inequalities of [5] show that the risk of the hold-out in model selection
for L? density estimation is of order wor(n) + %. If or(n;) decreases in n,

with rate nia (av < 1), which is the case under assumption [H1} n —n; can be chosen
t
within the interval [%nlza' 2] —so that assumptions and are satisfied—

12
without changing the order of magnitude of the risk.
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5.4 Proofs

In this section, the term constant means a function of ||s|_ , ||s||* and the constants
1, Co, 01, 02,03, 04, p1 which appear in the hypotheses of Theorem [5.3.8] Note that
by hypothesis 161,1 , Is]l. , Is||* are finite and can be bounded by functions
of ¢1,01. The letter u will denote strictly positive constants that only depend on
1,02, 03, 04, p1 (they will generally appear as exponents of %) The letter x denotes
a non-negative constant. The notation n, = n — n,; will also be used frequently.

5.4.1 Preliminary results

The results of this section are independent from the rest. They will be used in
the rest of the proof of Theorem [5.3.8] as well as in the Appendix. Let’s start by
proving some basic properties of a,, b, and f,, that will be used repeatedly in the
main proofs.

Proof of lemma [5.3.4]

e By definition and non-negativity of 0?, nftm \/;Td < 1, therefore A > Ay >

Nt
n—mnmg "

o £=5L>_1

n

_ & 1 1
¢ = \/n—nt > \/(n—nt)2 T on—ng”
% =&\ F =/ (n—n)E > 1.

By definition, A, < k.. Thus ﬁ—f < B L or(ny). Moreover,

nte

— ] | RetA +oo
A, [1_ t ]—g Y #< Y 6 <orn).
n=neVAal e 5 =kt
Thus
nor(ng) = Ag — i Ay
n — 1y
1 1
= Ad . e - _Ad
2n—n; 2
1 1
= _Ad S ne
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It follows that

1
Ay < 2ngor(ng) + ,
n—mnyg
so since L — 1
n—mn¢s Nt n—mng
A 1
— < 2or(ny) + ,
Tt n—mng

which proves the result.

Proof of lemma

fn is continuous and piecewise linear by definition [5.3.6] f, is convex because the

sequence 92 is non-increasing by assumption. Let j € Z and « € } L.ixd [ be two

numbers. By definition, f, is linear on the interval } L. le [, in partlcular fn is

differentiable on this interval and

A1l 5
= [n—t - 91@*+j+1} : (5.13)

Because the sequence 67 is non-increasing, it follows from the definition of k. (n)

that f, is increasing on ] %, 1 [ if j > 0 and non-decreasing if j < 0. This implies

that f, reaches its mimmum at k.(n). If @ > 1, then j = [aA] > A, therefore
by definition of Ay < A,

In the same way, if @ < —1, then j +1 = [aA] < —A < —Ay, so

fila) < é {i - Qi*Al

e [N
A ¢ 1 1

eV n—nVAn

< -1

Furthermore,
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o If A = Ay, then for all @ € [0;1], j +1 = [aA] < A = Ay, therefore by
definition of Ay,

o If A=Ay, then for all @ € [-1;0], j = |@A] > —A = —A,, therefore by
definition of A, and since the sequence (912) jen 1s non-increasing,

All
frla) > - [n—t - 913:*—A+1:|
S A U 1 1
eV n—n VAN
> —1.

By continuity of f,, this proves the lemma.

Properties of the interval [a,;b,]
Lemma 5.4.1 Let a,, b, be as defined in Theoren5.3.8 Then for all z > 0,

by —az] <2(1+x)
kxtbz A
>0 <a(l+a)E.

kitazA

Proof Either b, < 1, or b, > 1 and by lemma fn(bz) = b, — 1 which implies
that b, < fn(by)+1 < xz+1. In all cases, b, < z+1. In the same way, a, > —1—uz.
Thus b, — a, < 2(1 + x). Moreover,

kx+be A kstby A

kitaz A kitazA T i
< e[fn(ax) + fn(bJJ)] + [bx - ax]g
< 2xe+2[1+4 2] €.

Since ¢ < € by lemma [5.3.4]
>0 < (4w +2)E.

k* +a(tA
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This proves lemma |5.4.1] [ |

We now introduce some notation which will be used in the remainder of this
chapter.

Definition 5.4.2 Let an i.i.d sample D,, be given, with distribution P and pdf s
on [0;1]. For all j € N and any T C {1,...,n}, let

0; = Py = (s,45)
07 = P (;).
This notation will be used very often in the remainder of the chapter.

The hold-out risk estimator can be expressed as the sum of two terms. Defini-
tion below gives a name to each of these terms.

Definition 5.4.3 For all j € [—k.(n;); +00[NZ, let
| 5
L) =~ T s[").

¢
The function L is extended to the interval [— (Am) +oo[ by linear interpolation.
Let Z be the random function defined for all j € [ "‘) ;+oo[NZ by

i\ 2 e A .
2(%) =2 -p) (- oh)

T

+j SH2

and extended by linear interpolation to the interval [—k*g”);—i-oo[, so that for all
o, R (a) = L(a) — Z,.

Thus, L is the rescaled excess risk, and Z is a centered empirical process. These
two terms will be approximated separately.

5.4.2 Approximation of the excess risk

Let x > 0 be fixed for the entirety of this section. We now prove the following
claim.

Claim 5.4.3.1 Let L be the function introduced in definition and f, be
giwven by definition [5.5.6. There exists a constant k, such that, with probability
greater than 1 — #,

>

sup |L(a) — fo(a)| < k1 (1 4 2)[log(2 + x)* + log® n]n_mi“(%%).

a€lag;ba]
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Proof Let j € {a,A,...,b,A}. Since § = Z] L PR, —ZJ ) ij,

kot (5)+

57 —SH2:sgn(j) Z <éf—9i>2—022.

i=k«+(j)—+1

T+y 3H2

It is known [5, Lemma 14| [70, Proposition 6.3] that the process

Esd-(4)+ ksd(5)+

S (r-a) = S (- Py

i=k«+(j)—+1 i=k«+(j)—+1

concentrates around its expectation, so that

ke+(J) kx(5)

S (r-e) ey Y
) - ’ ' ) - ne o
i=ke+(j)-+1 i=ke+(j)-+1

Furthermore, by lemma in the appendix, Var(t;) ~ 1, therefore

kv t(7)+ N 2 |J|
3 (93“ . 91.) ~ YL
) ; Uz
i=kiA4(5) - +1

More precisely, proposition [5.5.3| in the appendix and a union bound show that,
with probability greater than 1 — n—lg, for any j € Z N [a,A;b, A

kat(i)+ . 9 |j| o g
Z (@T - 91’) — 2 < ki (3logn 4 log((by — ag)A))*n~ mint: g)ze,
i=kut () - +1 T
Let r, = r1(3logn + log((b, — %)A))Qn_mm(%’%) Then for any j > 1,
2 k*+.7 k*+] 2
AT 9 o
R D SR S (ei -5,
i=k«+1 i=ks«+1
k«+j
- S L
1y
i=ks«+1
k3 .
1 J
= - _? Ly
> | ] L
i=k«+1
J
efn (A) n€.
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On this same event, for any j € {—k.(n;),...,—1},
9 9 k* k'* . 2
A L A D D Y (93’_@.)
i—k*—‘rj—i-l i=kutj+1
_ g2 |J| il
> SN
1=k«+j+1
ks :
1
= Z {92 - —] + %rne
i=kitj+1 h

_ VAW
=ef, (A) + Arne.

Thus, since f,, and R are linear between the points of %Z,

I* -

1
La) — == ‘ T
aes[;lml;)bx” (@) = fnle)] ¢ asAS)<h.A [85es =

< max(|ag|, [bo])rn

st —s[|” — efu (4)]

By lemma [5.4.1} max(|az|,|bz]) < by —a, < 2(1 4 z) so

max(|az|, [be)rm < 2(1 + 2)k1 (3log n + log(2(1 + 2)) + log A)2n~min(iz3)

1 53)

<
< (1 + z)[log(2 + )% 4 log? n)n~ (5%
for some constant k, since by lemma and hypothesis (H5) of Theorem [5.3.8]

A:ntg

< 2ngor(nyg) + ne

n — 1Nt

) 1
2(|Isll” = 1)ng + nf.

This proves claim [5.4.3.1 |
We will now seek to approximate the process Z given by definition [5.4.3]

5.4.3 Strong approximation of the hold-out process

Let us start by showing that the empirical process Z (definition [5.4.3|) can be
approximated by a gaussian process, uniformly on [a,;b.]. This is the purpose of
the following result, which will be proven in this section.



5.4. PROOFS 173

Claim 5.4.3.2 Let Z be the process given by definition [5.4.3  There exists a
gaussian process (Zé)ae[az by With the same variance-covariance function as Z:
for any (on, o) € [ag;b,)?, Cov(Z ,ZL)) = Cov(Za,, Za,) and such that for all

1)

n > 1, for all x > 0, with probability greater than 1 —e Y,

E| sup |Z,— Z}] D,{] < ks(e)(T+y)(1 +x)%n’%4.
a€lagz;bz]
Furthermore, Z' can be expressed as Z' = H(Z,v), with v a uniform random

variable independent from D,, and H a measurable function on C([0;1],R).

Let n, = [T = n—|T| =n—n;. Let F:a — [ s(t)dt be the cumula-
tive distribution function of the given X;. Let Fpc : o — n—lv Z%T Ix,<. be the
empirical cumulative distribution function of the sample DI°. By the Komlos-
Major-Tusnady approximation theorem [62, Theorem 3|, there exist a universal
constant C' and a standard Brownian bridge process Bpe such that for all y > 0,
with probability greater than 1 — e™¥, HBTC o F'— \/ny(Fre — H C(log"“+y)
(remark that since F' is continuous, F'(X;) ~ U([0;1]), which means that the result
for general F' follows from the result for the uniform distribution). Furthermore,
Bre can always be realized as a measurable function of DI° and an auxiliary, uni-
formly distributed random variable v: Bpe = H(DI" v), with v independant from
D,,. Let BT® be obtained in this way. From Bre o F', one can define an operator
on the Sobolev space W!(R):

Definition 5.4.4 For any function f such that f' € L'([0;1]), let

Gre(p) == [ 1'@Br(F@).

Gre "approximates" the empirical process /n,(PI"— P) on the space W!. Lemma
below gives a bound on the error made with this approximation.

Lemma 5.4.5 For any function f such that f' € L'([0;1]),

|Gre(f) = V/no(Py" = P)(f)| < 1 Bre = /o (Fre = )l 1] -

Furthermore, for all functions f,g such that f', g € L*([0;1]),

Cov(Gre(f), Gre(9)) = PLfg]—PIf]Plg] = Cov (vn.(P,” — P)(f).v/n,(P,” = P)(9))
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Proof Let f be a function such that f’ € L'([0;1]). Then
(PT" — / fd(PT —
~ [ - s - p)
1 1
_ /0 /0 L, f/(8)dt d(Fype — F)(x)
= [ roEr - o)
_ /0 P OFre — P8 (5.14)
Il follows that for all functions f such that f' € L'([0;1]),
‘GTC( V1 PTC ’ =

< Hf ”Ll([(];l]) |1Bre o F' = /ny(Fre = F)|
By definition, it is clear that E[Gr<(f)] = 0. Thus,

Cov (Gre(f),Gre(g)) = E[Gre(f)Gre(g)]

x| / / ) (0) B (F () Br-(F(0)

- / / £()g ()[F(u) A F@)[1 = F(u) v F(v)]dudv

nv FTC —F> _BTC OF](t)dt‘

‘/ / F'(w)g (v) (Elxculxes] — Ely<iJE[Lx<,))

= [ [ s @B - P - R
= Cov (v, (P = P)(f),v/nuo(PI" — P)(g)) by equation (5.14)
|

Let the process Z' be defined for all j € {a,A,...,b,A} by

J
7 (%) = gameCr Gy =30).

Z' is extended to the interval [a,;b,] by linear interpolation, as for Z. By lemma
5.4.5] the variance-covariance function of Z' conincides with that of Z at the
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pomts ,J € ZNJazA;b,Al, and this property extends by bilinearity to the whole

1nterval [az; be]. Furthermore,
sup |Z)—Z, )< max |7 ERN Z J
“ A A

as<a<by JEELN|ax;be]
< ny(F, —F X max i sin(i-
<— (Fou = Pl %, i, | 3 i)
1 kestbe A
<—= — Vu(F, = F)| % PR (D%
M i=kstag A+1
By construction, the process Bre o F' — \/n,(F,,, — F) is independent from DT As
a result,
2
E| sup |Z)— Z,||Dy| < E [||Bre o F — \/n,(F,, — F
az@zbzl o 1D, e [l Br (Fa, = Pl
kartbe A s
< (ke +0,0) | Y (9;)
1=ks«+taz A+1
ks by A
2C'log n, 2 ) - 2
S ER(hbA) | Y 2 +2(0-6)
v j=kstazA+1

(5.15)

By proposition [5.5.3], there exists an event E1(y) of probability greater than 1—e™¥
such that, for all D! € F;(y),

kx+be A

R 2 A :
S (07-6) <P —al> + b —a)llogn + P Be(n),
j=k«tasA+1 !

therefore by lemma and equation (5.15)), for all D! € F,(y),

E[ sup \chy—Za\

az<asby

Dﬂ < (ks + b, A)2v1 + xM

Ty

X [2\/E + v2r1(logn 4+ y)n~ min(y5,3) /e | .

Since ¢ < &£ and n— min( g5, %) logn — 0, there exists therefore a constant x such
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that for all DI € E(y) :

E[ sup |Z— Z,||D X (ky + b A) (1 + y) /(1 + 2)E

az<a<by,

f} < ﬁlog Ny
Ty
log n,
Vi
By lemma [5.3.4) £ < 2or(n;) + % therefore A < 2n4or(ny) + 7+ and by definition
of or, ki(n t) = nt’;—t < ngor(ny) thereforZe —k*;%A < (2b, + 1)”%’5) + ni% By
hypothesis of Theorem , ny = N3t so
k. + b, A b,
BB (o, el Lo
\/n_v n§+*4 n74
Moreover, by hypothesis of Theorem m ] = +1 9]2 < 3245 therefore

X (ke +0:0) 1 +y)v/(I+x)e.  (5.16)

c1 k x cf”l
or(ng) < ]?g%\{n R " 2916r>1f1 x2+51 + - < 3—313i ;
1y
whence (since ¢; > 1) nior(ng) < 3(clnt)ﬁ. It follows that:
ki + b A = b, 1
log n+— < 3(2b, + 1)¢; ™" log nn~% + #. (5.17)
\/ Ty ntT

10%4” =0 (n’%>, by equations (5.16)), (5.17) and lemma |5.4.1], there exists a

n?2
constant x(c;) such that for any n, with probability greater than 1 —e Y,

E[ sup |2 — n} <k(1+y)(1+2)in 7

az<ashy,

5.4.4 Approximation of the covariance function

We will now seek to approximate the process Z! given by claim [5.4.3.2] by a time-
changed Wiener process. To this end, we first approximate the variance-covariance
function of Z! (which is the same as that of Z).

Claim 5.4.5.1 There exists a function g, satisfying the hypotheses of Theorem
[5.3.8 and a constant us > 0 such that, for all x > 0, with probability greater than
1— 1

J1 J2 Ty j

(j1 Jz)é?O,.}ib A}2 }C V( (Al) 4 (A2) D ) min (Qn ( .
I J2 Ty i

(jhjz)er?ai)i ,,,,, 0}2 ’COV (Z ( ) ’Z ( ) ‘D ) max (gn (A
max ‘COV(Z<j1)7Z
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We introduce the following definition.

Definition 5.4.6 Let (W;)ier be a two-sided Wiener process such that Wy = 0.
For any function g : I — R, where I is an interval containing 0, let K(g) : I* - R
be defined for any (s,t) € I* by

g(s At) if (s,t) € (INTR,)?
K(g)(s,t) = —g(sVit)if(s,t) e (INR_)? (5.18)
0 else .

For all j € Z N [a,A; b, A], by definition of Z:

, 0if 5 =0,
] 2 c c
2(%) =3 Er=P) (L =)= (- DS it >
2(PT P) Zz*k*-l—j—i-l sz if 7 <0
(5.19)
In other words, for all j € Z N [a,A; b, A,
j 9 ket (s
2(%) =i’ o7 (PT° — P) (1)
i=kx—(j)-+1

Let n, = |T°| = n — n;. Thus, for any (j1,j2) € {a.A,...,b,A}* and any variable
X with distribution s(x)dx,

A kat(31)+ kat(32)+

Cov(Z(3).2(2)1D7) = sen(i)sgnlie) s D S e

1=k« —(J1)=+1 ta=ks—(j2)-+1

x Cov (1, (X), Vi, (X))

Let us now introduce the following definition.

Definition 5.4.7 Let (my, ma, m3) € N3 be three integers. Let may < Mgy < M)
be their non-decreasing rearrangement. Define Ep, mym, = 0 if may = ma)
m2) = My3) and

m(2) mM(3)

Em1,m2,m3 = Z Z 0171 Q}; COV ¢j1 (X)7 COV(@DJQ (X)) (520>

Ji=m(1y+1 ja=m(g)+1

if my < Mgy < My3) -
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Let n, = n — n;. The covariance can be broken down as follows: If 0 < j; < 7o,
conditionally on DI

) )

ks+j1 k72

= Y Y 080 Cov(ay, (X), v, (X)).

i1=ks«+1ia= k*+]1+1

If 71 < j2 <0, symetrically,

cov (2 (%) 2 (%) 101) - V<Z<JA>)

4
- > Z 61,07, Cov (1, (X), 4, (X)).
to=kx+j2+1li1=ki+j1+1

Finally, if j; < 0 < ja,

kx ks +]2

: 4
cov (2(%).2(£)0) = =5 33 AR Covtun (). ()

t1=ks+j1+1i2=ks+1

It follows from the previous equations that for any (ky, ko) € N2,

Var(Z (k) 4 4250k if k< k) < by

b — k. by — k. : et
COV<Z< 3 )’Z<2A ))Z AT i Ry < B <y
Var(Z (%)) + 475555 if by < ky < ki,

(5.21)

Let I,J C {a,A,...,b,A}. Assuming concentration around the expectation yields

SN 70T Cov(wi(X), 15(X) ~ D> 60:8; Cov((X), 1;(X))

iel jeJ ieI jeJ
+ = ZZCOV (i (X), 13 (X))2.
el jeJ

Moreover, for any (i, i) € N2,
i (X)), (X) = 2 c08(2i17X) cos(2iam X ) = cos (2(i1 + i2)mX) +cos(2(i; —iz)7X)

and by definition, for all i € N*, ¢, = \/icos(QmX) while ¥y = 1 = cos(0Omzx). As

a result, ¥y, (X)), (X) = w”“?(X):Lg‘” 2109 4 1 £y and

6i1+’ig + (1 - 5i17i2
V2 V2

COV(wZ& (X)a ¢i2 (X)) = + 5i1,i2) 9|i2*i1| - 9i19i2'
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By assumption, the sequence || tends to 0 with a polynomial rate of convergence,
hence for sequences i; ~ iy tending to +o00, 0, _;, dominates 6; 6;, and 0;, 1;,.
Heuristically, it can thus be expected that

SN 6707 Cov(y ~> ) 00, < — ”+5u) 0l

i€l jeJ el jeJ

+ZZ( — ”+6w) 0%

i€l jed

This leads to the following proposition, the rigourous proof of which can be found
in the appendix (proposition |5.5.6]).

Proposition 5.4.8 Let P be the probability measure with pdf s on [0;1], let 6; =
(s,;) = P(v;) and assume that the coefficients 0; satisfy the hypotheses of Theo-
rem|5.5.8. Let 07 = PT4p;. Let I 12 C {ko+a,A, ... k. +b,A} be two intervals.
Then the statistics

UI;,I,f = Z ZGTQT wﬂ/h P%’ij]

iel} jeI?

can be approrimated in the following way: there exists two constants k4 and ug > 0
such that, with probability greater than 1 —e™Y,

U12:1M+<1—L)Z ZZ@@@ + ZZ@
LR 9, /2 ] li—Jl

ieIinI? zeI; jerz zeI; jer?
+ ky(y + logn)*(1 4+ z)n "2&.

It is now possible to show that the terms Ey, , , which appear in equation ([5.21)
are negligible compared to £. That is the point of the following claim.

Claim 5.4.8.1 Under the assumptions of Theorem there exists constants
k7 = 0 anduy > 0 such that for alln € N, z > 0 and (my, ma, m3) € {a.A, ... bA}?
such that m; < mgy < mg,

mo ms3
DD 030,00y < sr(1+2)nME (5.22)
Ji=mi1+1 jo=mo+1
ma

ni Z Z 0|J1 J2| (1—1—1‘)2 e (5.23)

t ji=mi+1 jo=mao+1

and moreover, for all x > 0, with probability greater than 1 —e™Y, for any integers
(my,ma,m3) € {a,A, ..., byA}3,

| By mams | < k(1 + x)*(y +logn)*n "¢&. (5.24)
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Proof Assume without loss of generality that m; < ms < ms3. We start by
proving equation ([5.22)). First, changing variables from 71,75 to ¢ = ji, 7 = jo — J1
yields

mo ms3 m2
E E le 9j2 ‘9|j1 —jo| — E 0, E Hi>m1+1]1i+7"<m3 0i0; v+
Ji=mi+1 jo=mo+1 reN i=mo+1—7r

maA(ms—r)

< %Z’er‘ Z 92+92+r

r<To i=(mo+1—r)V(m1+1)
1 ma ms
SOUID TS S
r>70 j1=m1+1 J2=ma+1
maA(ma—r)
16]],1 B

< 2 ma 92 >
<SS max ) + 0

i*(m2+1—7‘)v(m1+1)

+5 Z|9| Z 6k+z

r>r0 i=a,A+1

By claim [5.5.5.1|in appendix, for any k € {m;+1,...,mg} C {a,A+1,...,b,A},
02 < r3(1 + z)?n~"2¢, therefore

ma ms3 bz A
16]] uzy L
Z Z 0j19j29‘j1,j2| < 7o 2é1 "{3(1 + x)QTL e+ § Z |9T| Z 01%*-%-1“

j1=mi+1 je=mo+1 r>1Q i=az A+1

By hypothesis [HI] of Theorem [5.3.8]

—+o00 “+o00 +oo c 26 5

2 1 1 5

DI Y DB Y, — <5
i>ro+1 j=ro+1 \ i=j i (=12 1

Thus, by lemma [5.4.1],

0] 1
S > 0 < M 1 2 B a e 525)

Jji=mi+1 jo=ma+1

2ug 2ug ( )

Let ro = [n7%1] < 2n7%1 and u = &

240, > (0. For all n > 2,

ma2

> Y < s sE|aroe 5a0)

Jji=mi+1 jo=ma+1
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which proves equation (5.22)).
Moreover,

m2

> Z 07 = 02 {j1 s (mi+ 1< ji <ma) A(ma+ 1< gy +1 < mg)}|

ji=m1+1 jo=mo+1 reN

< 293 [(m3 —my) Ar]

reN
7’028 + m3—m1 292
r>ro
<o lls? + (be — an)A D 62
r>r0
C1

<o sl 4201+ 0) A
0

by hypothesis of Theorem and lemma m Let now ry = (Aﬂ. Since
A > 1, it follows that:

Z Z 0\]1 —Jal <

]1 =m1+1 jo=mo+1

1

AL L

Ljsl? + 2601 +.2)2 (&) F

nyg

win

“A” ei(1+2)E(A)

<RIl +2a(40)] 0y

On the other hand, A > % by hypothesis of Theorem There
: 2
exists therefore k(cq, ||s||”) such that, for any n,

Wi

m2

1 25
~ > Z 0% iy < K(1+2)n" 3 &, (5.27)

t Ji=mi+1 jo=mao+1

which proves equation ((5.23). Since for all z > 0, (b,—a,) < 2(1+2)A < k(1+x)n,
by proposition and a union bound, there exists an event A of probability
greater than 1 —e™¥ and a constant  such that, if a, < m; < my < m3 < b, then

| Evny gy | = f Z Z 0303001501 + 5~ Z Z i (5.28)

Jji=mi+1 je=ma+1 ]1 mi+1 jo=ma+1
+h(y +log(2 + x) + logn)*(1 + 2)n ™" €.



182 CHAPTER 5. A DETAILED ANALYSIS OF AGGHOO I

From equations ((5.28)), (5.26|) and (5.27)), equation ([5.24)) follows with u4 = min <U3, %, gir—lffl).
|

Let then ¢° : [’K*;jtoo[ — R be defined first for all « € {% :jeN-— k*} by

Vo € {% (7 + ki) € N} , 9 (a) = sgn(a)Var(Z,), (5.29)

then for all a € [_ﬁ*;jtoo[ by linear interpolation (hence in general, ¢°(a) #
Var(Z,)). Let K(g%) be given by definition [5.4.6, then by equation (5.21)) and

claim [5.4.8.1) with probability greater than 1 —e™Y, for any x > 0,

N 2\ _ g (o0 0t 52
o (#(3) #(3)) -x(#23)

&
< 4kr(142)* + (y + log n)Qn_“47
Ty

max
(j1,d2)€{azA,....bx A}2

(5.30)

< 4k7(1+ 2)%(y + logn)*n 4.

Moreover, for any j € Z N [a,A; b, Al], by definition of Z,

Fx+(5)+ ket (5)+

, J J 4 a1 51 [ i tis
sgn(7)g? (Z) = Var (Z (Z)) e Z Z 059?2[ 3

i1=ka—(j)—+1 ig=hs—(j) = +1

# () = 00s]
(5.31)

Moreover, since ¢? = £,

4 1) 4 1j5A
nye22n;  nye22An,
J
— 9L
nye2 A
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Thus, by proposition with probability greater than 1 —e ¥,

i\ ol 4 1) &
N 0 2
— =2+ —|1-—= 0;
wine () e ) 3
i=k«—(j)—
4 Ext(5)+ kat(5)+ 9‘. al
S T
YT =k —(5) - +1 ia=ke—(j) - +1
41 kedt(4)+ ket(5)+
2
NETE oD DD DR e
i1=kx—(J)—+1i2=ks—(j) - +1
+ 4ky(y + logn)?(1 + x)n~". (5.32)

Let g& be defined for all o = 4,5 € Z N [—k.(n;); +00) by

Eat(i)+ Eet(i)+

. j 4 9|i1*i2|
Sgn(])Q}z (Z) = nye2 Z Z 61’1‘91'2 \/5

i1=ks—(j)=+1io=kse—(5)—+1

A 1 Ext()+
(1= = 0?2
v () X d

k*+(j)+ k*+(.7)
4 1-— (52 i
= — E 61'197;2 (7212 + 5i17i2) 0|i1—2‘2‘7
i1=ks—(j)—+1 i2=k«—(j)—+1

(5.33)

and for all a € [ '+oo[ by linear mterpolatlon
We will now apply lemma [5.5.8 to gi. Let z > 0 and (ki, ko) € {ki +
azA, ... k. + b, A} be such that ky < k. Thus:

® Ifk* § k’l,

by — ki, ki — k. 4 [ & & 16,
gi( A )_9711( A >:nve2(z Zeiej Tj""ém’ 01i—j|

i=ky+1 j=ke+1

- i Z 0,0 ( — ”+5w)9,z ﬂ)

i=k«+1 j=ks«+1

:nUQQ(Z Z 0:0; ( — ZJ"{'(Sw)ell jl

) k‘1+1] k1+1

J
i= kl"l‘l.] k*“l‘l \/_>
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By lemma in appendix,

ko o ko
) ( %) by < sl S 02

i=k1+1 j=k1+1 i=k1+1

Thus by equation ((5.22)) from claim [5.4.8.1

g (laxke) — gl (lizk) < 4 sl Z 0 4+ (1 + 2)n _u44\/§€
nve i=k1+1 nye
44/2
gn (%5) = 00 (5) = —re(L+2)'n ™ n\/e;g

k‘ — k‘ ]f — ]{7 4 1-— 5 ;
1 2 * 1 1 * z : 2 : 7,7
gn ( ) B gn ( A ) ?7,1)92 ( 91(9] <TQ i 5i7j) (9'1 d

i—kH—l Jj=k1+1

_ Z Z 0.0, ( ”+6i,j> 9|z-—j>

i=ko+1 j=ko+1

= nve2< > Z 0,0, ( i +5z‘,j) O1i—j

i=k14+1 j=Fk1+1

) ks
+2 3 Y 00]9" 9').

1= k1+1] ko+1

In the same way, by lemma and equation ((5.22)) from claim [5.4.8.1}

4 2
g (i) _ g () < Al ZQQH (a2

n (25%) = g (B5) = —rr(1 + $>2”u3i_

o If £y <k < ko,
In (55) = gn (B5™) = g (B5™) = 94(0) + 9a(0) — g, (MF™)
therefore by the two previous cases,

82

—¢£.
7,02

Z 0% + k(1 +2)*n ™

i=k1+1

0 < g, (25™) —gn (B5™) <
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By definition ¢* = £ therefore for any = > 0 and (j1, j2) € [a.4;b,A]* such
that j1 < jo,

, . 4
—4V2k7(142)*n ™" < gt (2)—gn (%) < H ”OO Z 07 ., +8V2k7(1+2)?n ",

i=j1+1

(5.34)
Moreover, for any ji, jo such that 0 < j; < jo, 9,3*+ji < n% hence
j2 k*+j2 . .
1. J2—n A
Islle D2 Ghi<lsloe D 167 = —1+ = lsll —
. X ! ng s
i=j1+1 J=k«+j1+1

= —||sl. e[fn (%) — fn (‘%)] 422 ;jl Is|| & (5.35)

For j1, jo such that j; < ja <0, eiﬁji Z n% hence

J2 ki+g2 1 j j
2 — J1
Islle > Oipi<llslle D> 65—+ I8lloe —
. . . g A
i=j1+1 J=ks«+j1+1

el (B) - (2N 2L e G30)

By equations (5.34), (5.35)) and (5.35)), it follows that, for any (ji, j2) € ([az2; b, AlN

2

z)*,

i (%) - (5) <l [ (2) - 0 (B)] # a0
(5.37)

To extend the lower bound given by equation ([5.34]), notice that for any
(a1, an) € [ag;b,]? such that a; < o,

I 8V2ka (1 +
A
;jl + 8\/5)%7(1 +

x>2n7u4

x)’n ",

o if [A| = |aA] < ag < ay < [a;A]+1, by linearity of g} on [|a; A; [a1 A+

U st > [ (2800) (18]

e otherwise, |[ayA|+1 < [azA |, therefore by linearity of (u,v) — gl (u)—g.}(v)
on 3 [lanAJ; [and] + 1] % allazAls [aaA] + 1],

ga(a2) = gala) > min{gh(u) — gh(v)

LOCQAJ LOQAJ + 1} % {LOQAJ7 LOélAJ + 1

(wo) e {=X=—% x

)
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In all cases,

gnl0a)—gn(on) > —max{ {qn <‘Z> — gn <‘%>} S e () € {and .,bzA}2} .
(5.38)

Thus by equation (5.34)), for any = > 0:
Y(ay, as) € [am; bo)% an < s = gl(an)—gl(on) > =4V 267 (1+2)?n7". (5.39)

By the same argument applied to the function

@ ghte) + 42 o) — )

which is piecewise linear on the partition {[% JT[ JjedaA, ..., bmA}}, equa-
tion ((5.37)) extends to [a,;b,] for any = > 0:

V(o) € [as:b.J% gh(0n) — g ) < A, 00) — fua)] +4 sl a2 — ]

+ 8\/557(1 + x)*n ",
(5.40)

Let g4 : o = infer, b, >0 8\/§m7(1 +x)*n~%. The function g4 is non-decreasing by
definition, and £4(0) > 8k7n~"4 > 0. Furthermore, by equations ({5.39) and (/5.40)),
V(Oél,a/g) < Ri,al < ayg —

—ea(a2) < gp(az) — gnlar) < [fn(Oél) falaa)] +4s]| [z — aa] + ea(a).

In this situation, lemma apphes with g = g, he = =8|s]| fu + 85|l Id
and € = 2¢,4. It guarantees existence of a non-decreasing function 972L, LRy — Ry
such that g7 , (0) =0,
o 194(0) = g2, (@)
a€Ry 2e4(cv)
and for all aq, as such that a; < am,

51l
[ fu(er) = fal@2)] + 8 sll; a2 — n]
Symetrically, let &, : a — infcr, . 0,50 $V2k7(1 + 2)?*n ™%, defined on [0; k*gjt)]
g 1s non- decreasing by definition. Furthermore, ¢,(0) > 8x7n""* > 0. By equa-

tions and ( -,

V(al,az) ERY o <y = —g4(a2) < gp(—01) — go(—0w)

3l )~ fcan)

Ty€
+4|lsll [az — ar] + g4 (2).

<6

92 () — g2, (1) < 8
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In this situation, lemma applies with g = —gp(—-), he = 8||s|| fu(—") +
8|lsll, Id, & = 2¢,4. It guarantees existence of a function g2 _ : [0; M} — R4

A
such that g2 (0) =0,
| = gu(—a) — g ()]
sup

e o) %)

and for any aq, as such that a; < ao,

I8l

Ny

<6

gr_(az) —gi _(a1) <8 [fr(=a2) = fu(—a1)] + 8|5l [a2 — au].

Let then g; : @ = gz . (@)laz0 — g5 —(—a)laco and (@) = e4(@)lazo +e4(—a) <o,
which yields
and

o, a2) € B g (0n)—g(on) < 8L (00) )48 ] foa—an]. (5.42)

92— gn

<6 5.41
5 (5.41)

o0

By definition of ¢, for any # > 0 and any « € [a,, b,], e(a) < 8v2k7(1 4 z)>n ",
hence

V& > 0,V € [ag; by, |92 (a) — gL (a)| < 96V 2k7(1 + x)2n 744, (5.43)
Let then:
go: s g2(a) + 45| a. (5.44)

Since g2 is non-decreasing, g, (avs)—gn (1) > 4 ||s|* [ee—a], which proves equation

of Theorem Moreover, equation (5.42)) yields equation (5.12)) of Theorem
b33
Let now x > 0 be fixed until the end of this section. By definition of g}

(equation (5.33)), equations (5.32), (5.43) and since the functions g% and a

4 H$H2 « are piecewise linear on the partition ([%; % Da A<j<byA—1) with proba-
bility greater than 1 —e™Y,
190 — gnl| . < |l — g2l + Faly +1ogn)* (1 + z)n "
. ket(3)+ ket(i)+ 2 .
sgn(j) 4 2 (4]]s]I” —2)/
+ aIArg?ézA nye2 2n; Z , Z 9'”‘”' A
11=k*+(3)—+1 12:k*+(])—+1
4 1 ket (i) + kot () + ’]‘
< - 2 2_ 1) M
X awAnglgagbwA TLU€2 2”1& Z Z 9|z1—z2| 4 (HSH 2) A

i1 =kt () - +1 ia=ku+(j)—+1
+ 96V 2k7(1 + )20 + ky(y + logn)?(1 4 z)n ™", (5.45)
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It remains to bound the max. By parity in j of the sum, one can assume 0 < 7 <
max(|a,|, |b:])A instead of a, A < j < b, Al]. Let therefore j € {0, ..., max(|a,|, |b.|) A},
then

LS S - LS cicis <
b =kt 1 in—ky 1 tren+
gl 1 io(' )67 (5.46)
S —r ) .
27175 ng " J +Yr

Furthermore, for all ry € N*,

“+oo

Y= = (sl - 292 G- -

r=1
<Oy 02
e Z r %1
b -
<l 2 e ) x 5,
by hypothesis of Theorem m By setting ro = [(A)3] < 2(A)3 (car A > 1),
it follows that

“+o00

! Y=t = (sl - )

n
trl

(A)3

< [2]s)1* + ex max(|ay|, [b.])]

< 2 5] + 2¢1 (1 + )] (A)_%S by lemma |5.4.1}

Let # = f(cy, ||s]]). Since by hypothesis [H4| of Theorem [5.3.8, A > 1= > n%,
1 +o0o ) sy
ntZ(J—T)Jr@ ——(H I =1 < k(1 +a)n~ €.

r=1

By equation ([5.46)) and since nit = %S, for any j € [0; max(|ag|, |b.|)A].

1 ks+j kx+j . 1
2
2_nt Z Z e\h —ig| (HSH - §> &l <

i1=k«+1i0=ki+1

k(14 2)n"%E.

By equation ([5.45) and since nf@ = 1, it follows that, with probability greater
than 1 —e™Y,

|gn — gnHoo < 96V 267 (1 4+ )0 + ky(y + logn)(1 + 2)n ™" + 4k (1 + z)n =%,
(5.47)
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Let k = 96v/2k7 4 k4 + 4k and us = min(uy, us, d3), it then follows from definition
of K that with probability greater than 1 — e,

1K (gn) — K(gn)|| . <95 = gnll,, < w1+ 2)*(y +logn)*n=.

By equation ([5.30)), it follows that that, with probability greater than 1 —e~¥, for
any (jlan) € {CLIA, CI be}Qa

cov (2(%).2(2)) - Kt (B2 )| < denl1 42200 + oo

+ k(1 + 2)*(y + logn)*n~"
< k(14 2)*(y +logn)*n "
(5.48)
by setting kK = k + 4r7 and since u; < uz. Claim follows by setting

y = 2logn. It remains to upper bound g, on [a,;b,] in order to check equation
of Theorem [5.3.8] This is the subject of the following lemma.

Lemma 5.4.9 For any a € R,
|gn ()] < 20 5[] fula) +12]|s]|, < max (40 [s]|, fola), 24 s]l.c) -
In particular, for all x > 0, max(|gn(az)], |gn(bs)]) < 20 ||s]|, (1 + ).

Proof Since ||s|| > s[> > 1 and nye < 1 by lemma m, point [5| of Theorem
5.3.8] which we already proved implies that for any a € R,

|gn(@))] < 8[8]l o fula) +12][s]| |al.
If |a] < 1, then
|9n(@))] < 8 I8l [fula)] +12][s]], < max (16 |[s]| fu(@), 24 5] )
else |fn(a) — fu(1)] = |a] — 1, therefore |o| < f.(a) + 1, which yields

|9n () < 20 [|slq fu(@) +12][s]] o < max (40 [[s]| fu(a), 24 [Is]lo) -
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5.4.5 Construction of a Wiener process W such that W o g,
approximates 7

Let E be the event of probability greater than 1— on which the equations of claim

5.4.5.1] are satisfied. Let z > 0. Given DT e E, Z1 is a piecewise linear gaussian
process on the partition ([£; %[)QIA@@IA, such that for any j € {a,A, ..., b,A},

(1 12)2?(%-).(.@ A)? |COV <Z (jZl) Z (%)) — K(gn) (jZl? jzl)} < re(l+ x)QIOgQ(m?_us’)
5.49

where K (g,) is given by definition[5.4.6] Since g, is non-decreasing, K(g,)(s,t) =
Cov(Wy, (s, Wy, t)) for any two-sided Wiener process W on R such that W, = 0.
In particular, K(g,) is a positive-definite function. Furthermore, by definition,
V(ay, ag) € [ag;b]?,

K(gn) (a1, a1) + K(gn)(az, ag) — 2K (gn) (1, a2) = [gn(a2) — gn(a1)|-
Moreover, for all j € {a,A, ..., b,A — 1}, since nye < 1,

: 12
‘gn<]%l) gn(%” <8 sl ]fn(]T) — (%)| + ”AHOO by equations ([5.44) and (j.42)

< 8y Jsll (1+ @)™ + 125, —
<8k |8l (L +2)*n 7" +12]s]| n_‘si”t by hypothesis .
Finally, by lemma and since g, is non-decreasing,
sup  K'(gn)(cv; @) < max(|gn(az)l, |9.(b2)]) < 20]s]l, (1 + ).

Oée[aaﬁb:c]

™ by claim [5.5.5.1

In this situation, proposition in the appendix (applied to Y = Z!, Kx =
K(g,) with h = g,) guarantees the existence of a continuous gaussian process
Z*(DF), with variance-covariance function K (g,) and such that for some constant
k and for u = min(us, ug, d3),

VDT € E\E| sup |Z'(t) — Z2(t)||DT| < k(1 +2)5log3(n) x n™12.  (5.50)

ap <t<by

Since the conditional distribution of Z2(DT) given DI is entirely determined by
the function g, which does not depend on DT Z? is independent from DZ. In
particular, Z? can be naturally extended to DI ¢ E. Moreover, since g,, increases,
W = Z%0g; ! is a continuous, centered gaussian process with covariance function

sAtIf0<s,t
Cov(Zs, Z) = K(g2)(9, ' (5), 9, (1) = —(s V1) if 5,¢ <O (5.51)
0 else ,
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it is therefore a two-sided Wiener process on [g,(a.); gn(b:)] taking value 0 at 0.
W can be extended to R by placing independent Wiener processes W,, Wy on its
left and on its right, by the equations W (u) = W(gn(as)) + W,(u) — Wy(gn(az))
for u < a,, W(u) = W(gn(bs)) + Wa(u) — Wa(gn (b)) for u > b,. Thus, by claim

5.4.3.2| and equation (5.50]), with probability greater than 1 — 2

E| sup rZ<t>—Wgn<t>HDﬂ =E{ sup rZ<t>—Z2<t>HDZ;]

Gy <t<by Ay <t<by

N

E[ sup \Zl(t)—Z(t)llDf] +E{ sup IZl(t)—Wgne)HDf}
Az <t<by Az <t<by

7 2 _ug 3 4
k(14 2)s log3(n)n™ 2 + ks(cy)(1 4 2logn)(1 4+ x)2n~3

<
<k(l4+2)in

for all u < min (%,%,% %) and a constant x(u). Finally, by claim [5.4.3.1]

127120 127 3
with probability greater than 1 — n%,

sup ‘]‘?ho( = [fala) = gn(a)]

ae[az§bz]

< sup [L(a) = fula)[+ sup [Z(a) = Wy, ()]

ae[azﬂ)z} ae[az§bz]
2 2 — min(L,%3)
< K11+ 2)[log”(n) + log®(2 + z)]n 1202
+r(1+z)2n "
3
3

for all u; < min (%, 1 %, %4) and a constant k. This proves Theorem

5.5 Appendix

Lemma 5.5.1 Let X be a random variable belonging to [—1; 1], with pdf s. For
all j €N, let 0; = (s,v;). Then

Var (i;(X)) —» 1

j—+oo
“+oo
Vko <k, Z!VW% =1 <101l =Y (s, 5)
J=ko Jj=0
Proof E[y;(X fo i(x)s(x)dx = 6;. Moreover Vi(X)? = 2cos?(2mjX) =

1+ cos(2mj X), therefore Val"(COS(ﬂ'jX)) =1+ 7 — 67, therefore since |6;| < V2,
Var(cos(iX)) — 11 < [V3 - 1| 101 < 16,1 .
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Lemma 5.5.2 Let f : Ry — R, be a function, g,h : Ry — R be two non-
increasing functions. Then

inf {f(z) +g(@) + h@)} < inf {f(@)+g(a)}+ inf {f(x) +hia)}.

zeER

Proof Let 0 > 0. Let x, be such that f(z,) + g(x,) < d +inf,er, {f(z) + g(x)}.
Let zp, be such that f(xp,)+h(x)) < infier, {f(z) + h(z)}+d. Let z, = max(zy, xp).
If x, = x4, then

fl) +g(e) + ha.) < inf {(F(@) +g(x)} +6+ h.)
< xlexﬂléi {f(z) +g(x)} + d + h(xp) by monotony of h
< inf {f(2) + g(@)} +6+ flan) + han)
< of {f(z) +g(@)} + inf {f(x)+h()}+20

Symetrically, if z, = xp, then f(x,) + g(z.) + h(z.) < infier, {f(z) +9g(x)} +
infer, {f(x) 4+ h(x)} +20. As a result,
(@) 9() + (@)} < ) + (e + hw) < nf {(2) +9(2)

+ xlerg+ {f(x) + h(z)} + 20.

Since no assumptions were made about ¢ > 0, lemma [5.5.2] is proved. [ |

Proposition 5.5.3 With the hypotheses and notations above, for any integers
ko < k, with probability greater than 1 —e™Y:

k

Z (é]T o 9]')2 . ‘k - k0|

n
j=ko+1 t

0| 1 k—k k—k
Ol oo [ VIR ekl

5
un n ntZ

In particular, there exists a constant k1 = ki(||s||,c1, |0]|,1) such that for any
aq,an such that (aq A, ae) € N2 and a1 < o, with probability greater than
1—eY,

kstoao A

- k—k
) OIRGET

n
j:k*+a1A ¢

1 33

< mi(ag—an)[log nty)? xn~ ™G22 e(n). (5.52)
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Proof Let (ko,k) € N? be such that ky < k. The proof rests on lemma 14
of Arlot and Lerasle [5] applied to S,, = (¥ko+1,---,%k). Let us compute b, =

k [~k
SUPyeRrlk—kol:[|u||<1 Zj:ko u;;(r) < sup, Zj:ko %2(95) < |k — kol and

k
Z Var(%'(X)) = |k_ k0| 4 Hiﬂ

j=ko+1 t

(by lemma/5.5.1)). Furthermore, Dy < v/2|k— kol since ¢; = v/2 cos(275-) : [0;1] —
[—v/2;v/2]. By [5, lemma 14], with probability greater than 1 —e~¥, for any € > 0,

k
i _pgy2_ DPr| o D I5lloc log 2 +y] | |k — kol[logn + y]?
Y -6 - —|<e— — .
j=ko+1 ™ T (e A1)y (e N1)3n]
Let e1 = \/W A1 . If ey =1, then |k — ko| < [|s]|,, (y + logn) therefore
|k kol 4 . lIsllo[lognty] l[]l oo (y+1og m) lk—ko| | lIsllollognty]
Utk (glAf)nt Y < (14k) Zt 8% . Ife; < 1, then ey nto +x (a/\f)m y
(1+r)/[Isll. (v + logn)—”:t_kol. In all cases, if k > ko,
k—k s logn + k— k

ny " (e1 A 1)ny Ny

Let &9 Vlog"J“ AL TIf Vy+1°g" > 1 = ey, then gyliokol 4 jlb—holllogn iyl

ng (e2A1)3n?
vy IOg”|k | ks ko“fijlognp (14 K)(y + logn)* Bl 1 2 = YEEpER < 1,
n; n}

then

3
k—k k — kol|l k — ko k—k 4
62| ol . | ol[log n + ) \/m| ’+ﬁ(y+1ogn) 2| ol ny

Ty (E /\1)3nt nt TL% <y+10gn)%
k—k
< (1+/<;)\/y+logn‘ z 0|.
ny

In all cases,

|k — kol

B
4
Ty

€2|k:—k0|+ |k — ko|[logn + y]?

5.54
ny (g9 A 1)3n2 (5:54)

< (1+K)(y + logn)?
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By lemma [5.5.2]

DR

n
=ko+1 t

D 1
g [P sl llogn
€20 Ty (6 A l)nt

. Dy, |k — kol|[logn + y]?
f _r
* =0 {8 ng e (e N1)3n2
k—Fk 1 k—Fk
N I e R L
g (51 A 1)nt g

o = Rollogn 4y 611

(g9 A 1)3n7 Tl 82)n—t

|k — kol
Uz
k—k 21161 1
+(1+/€)(y+logn)2| 0| + H H€7

3 n
n; t

by equations (5.53)), (5.54)). In conclusion, on an event E, of probability greater
than 1 —e™Y,

< (T+ k) |Islly (y +logn)

k k
5 k — kol 5 Dy, [10lln
6 _ g2 0(<( g _ g2 — 2| 10lle
\2;<] D M DR R
Jj=ko+1 Jj=ko+1
31/,
< 2P (14 8) sl (y + log )
t
VIk—k k—k
¢ n;;

If kg = ke + a1 A and k = k. + a2\, then by hypothesis [H4] of Theorem [5.3.8]
k—k

Vs
t

A I n— ng _53
e — =+ g — oy ¢ < Vas —an 2e.
U Uz

(5.56)
Furthermore,

|k — Kol £

= (a2 —an)—

ny
E V/n,&
= (042 - 061) n_

1
n;

v/ 2nyor(n:) + 1

< (Ozg — al)e E t) .
4

Ty

B
4
Ty
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5.5. APPENDIX
2nf+751 By hypothesis of Theorem

Let ky = [nf”l] so that n3+61 <k
< = 157 therefore

2
5.3.8] ] k+1 93
1
375
a ko a kho a2 24a
= k2+51 Ny = 3+25 n = 3+25 '
1 n o n o

or(ny) < inf T
1464

1+ 2nor(ng) < (5+ 2¢1)n, ™", hence

Thus 1 + 2n,0r(n;)
1461
6126,

k—k n
% < (g — a)en/5 + 2¢, T
ny ny
< ((1/2—041)\/5—{—26171;ﬁe
212
(5.57)

< (OCQ —Oél>\/5+201 L .
niz

10]],s n7%. Equation (5.52)) follows
|

ny ||9||g1 HQH

Finally, Hill‘l = "
£33, ¢:58) and i

from equations

Lemma 5.5.4 Let (c; ;) jene be real coefficients. Let Iy, I, C N be two finite sets
Let (0;)jen be a sequence. Let C' = max {supiel1 ZjeIQ |cij], SuPer, zjeh |Cw|}

2
)gﬁZﬁ
ISP

Then
Z%Z%@

iely VISP

}

and

20520

C' max {
icly j€el>

Z Z Giﬁjci,j <

i€ly jela
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Proof Let C; =3}, [cij|. Then

Z(Zc”> Z(ﬁ( ) " sgn(ery) |c”|9>

i€l; \j€l2 el jGIQ

< Z Z | J\H by Jensen’s inequality

i€l j€12

< (maxc) 0 Sl

JEl2 i€ly
<CPy 6

JjEl2

This proves the first equation. Furthermore,

6? + 02
DD O < D)~ e
i€l jelz i€l jelz
1 1
=52 0D legl+ 5D 07 ) e
i€lh jel> jel> i€l
< C'max {293,29]2} ,
icely j€l>
which proves the second equation. [ |

Lemma 5.5.5 Under the assumptions of Theorem there exists a constant
k(c1,c2) > 0 such that for any x > 0,

K _2
ko +a,A > ———n"".
(1+x)e
Proof By hypothesis [H2] of Theorem [5.3.8]

+oo

co(ke + a,A)™7 < Z 0]2.
Jj=k«tazA+1
ks
Y {62——]+\ax18+ Z 0
j=kstazA+1 j=ki+1

< efy(ag) + |az|E + or(ny). (5.58)
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By definition, f,(a,) < x and by lemma | |a.| < 2(1 4 ). Furthermore, by
lemma [5.3. 4L e < & < 20r(ny) + — Smce by hypothesis of Theorem W,

n, > n3o, it follows that: £ < 20r(nt) + —+—. Equation (5.58) thus yields

eolky + a, D)7 < 6(1 4+ 2) {or(nt) + é} |

ns

On the other hand, by hypothesis [HI] of Theorem [5.3.8],

It follows finally that, for some constant x(cy, ca),
ko
kv + azA > ——n, "™

(I+az)m

Claim 5.5.5.1 Let us = min (%, 53>. Let x be a non-negative real number. Let

Az, by be such that a, < 0 < b, and max(f,(ay), fn(bs)) < x. Assume also that
a,A—1> _Tk*. There exists a constant k3 > 0 such that for all j € [azA; by A+1],

[fo (%) = Fu (55| < Rs(1 4 2)"n 7 (5.59)
Or.+; < rs(1+2)°n""e (5.60)
Proof By hypothesisof Theorem [5.3.8} for all k& > 1, 9k+k52 csb? s, Thus,
for all k > 1 and any j € [k — k%; k + k°2],
1 07 1
max <9k, ) < max (—J, —)
ng c3’ ny
1 1 1
A 7 S (5.61)
C3My C3 L%

Let k € [k.+a,A; k. +b,A+1]. Assume without loss of generality (up to a change
in the constant k3) that > 1. Thus by lemma [5.3.7, max(—a,, b,) > 1.

e If [b,| > 1, then two cases can be distinguished.
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— Ik <ki+ %5, then k+ k2 A S < ko+ A < ke + b, A, therefore by
definition of a,, b,,

kwtbz A k+k%2 A2
~ 2 1 5 1
21’6 2 e[fn<aa:) + fn(b:c)] - ' Z Hj - n_t 2 Z ej - n—t .
J=kstazA+1 j=k+1

— I ke+ %5 <k<k +bA+1, then k — k® A 5 > k., therefore

ky«+bg A

k—1
1 1
2we > ) 0——= D 07— —|.
. U i
j=kitaz A+l j=k—k02nS

e If |a,| > 1, then we likewise consider two possibilities.

—Ifk >k — 2, then k — k2 A2 >k, — A > k. + a,A, therefore by
definition of a,, b,,

ky«+bg A

1 1
R S R P SR )

J=ki+az A+1 t j=k—k%27% !

— Ifk<k,—2 then k+ k% A 2 < k,, therefore
~ * 2 2 *9
kxtbs A 1 k+k52 /\% 1
2 2

e S - ds S ek

j=ks+azA41 ¢ j=k+1 t

In all cases, by equation ((5.61)),

A 1 Al 2
(k52 A 5) max (9,%, —) < k2 A alta + _xe’

Ny 2 c3nyg C3

in other words

1 1+e¢ 2x ¢
max 0,3, — ] < + s + — x-
n Cany c3 ko2 A 5

Furthermore, by hypothesis [H4| of Theorem [5.3.8) A > -2t— > n%, and by lemma
B.5.5

269
l{?62 2 (k?* + (IZA)(S2 > L%nfpl .
(1+z)m

Let uy = min (%, 53> Since 05 < pp, there exists therefore a constant x such that

1
max (9,%, —) < K(1+2)*n 2.

Uz
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In conclusion, for all j € {a,A, ... bA+ 1},

1
013*+j < max (Qz*ﬂ-, n—t> < k(1 +2)*n "2

1 1
[ (4) ~ Fu (5] = H162s, ]

Uz

1 1
< -max (02 . —
emx(k*ﬂ nt)

< K(1+2)*n .

This proves claim [5.5.5.1] |

Proposition 5.5.6 Let P be the probability measure with pdf s on [0;1]. Let
0; = (s,v;) = P(¢;) and 92 = 92 and assume that they satisfy the hypotheses of

Theorem |5.3.8. Let QJT = PT¢]. Let I}, 12 C {ku + az A+ 1,... ke + b, A} be two
intervals. Then the statistics

Up e = 30 20707 (P (i) — PUsPY|

iel}l jel?

can be approximated in the following way. There exists two constants k4 and uz > 0
such that, with probability greater than 1 —e™Y,

U12:1M+<1—i)2 ZZ@@@ + 5= ZZ@
=5, NG li—Jl li—Jl

iellnI? 61,1 jel? zel,i jel?

+ k4(y +logn)*(1 + 2)n “3€.

Proof First, by lemma [5.4.1],

N\
[]:

max Z 62, Z 0?

ielp  jel? J=kstazA+1

07 <4(1+2)E. (5.62)

Let ¢;; = %3 (1:/5%”' +015)0)i—j) — 0:0;. Up 2 can be expressed as the sum of 4
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terms: Up 2 = Vi + Vo + V3 + Vi + V5 + Vi, where
— 5
= 6 { s+ 4 0i)O)ij) — 0i0;
zel,i jer; \/§
P)D i) 0ici

iell  jel?

—P)Y Wy Y bici;

jerr el
— P)i0i—)
Vi= \/—;:%JGXI; J J
1 A
Vs = (1 — —) oF — 0
G Z (5 =)

iel} jel?
The first term is
vlz( > >0+ 22999\”|+2260 [Z—*J—@iej].
611012 ze[éjefz ZEI,% ]EI2
For all i € I},

0;
Z';'ﬂeum Sl

jeI? jZkstaz A+1
Furthermore, for all £ > 2, by hypothesis [HI] of Theorem [5.3.8

> 161 <

>k =) el U D) 0

Since k, + a; A\ > LLnfTl by lemma [5.5.5 there is a constant x(cy,c) such

(1+4x) 1
that
6, | + )%
Z'\/tf' 10,0165 < ﬁ. (5.64)
JEI} nf”l

|91+j| + 16;]|6,|. Thus, by lemma [5.5.4}

The same argument applies to ), I

DD 005 [0 — 0:8)] < WD )% D20+ 0

. . 3
i€l jEI} nt”l iel} jer?
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By equation ([5.62)), it follows that for a certain constant x(cy, cz),

S
N {’*J—ee} %f;

i€l} jeI? nt3p1
Thus
1 +5
V1=< ) Y ooy 2299% L ”) e (5.65)

iE€IlnI? 2611]612 fpl

Bernstein’s inequality applies to V5 and V3. By symmetry, let us only consider V5.
Its variance satisfies the following inequality.

2

Doy ey | <lsllo||D_vi Y 05cs;

iel}  jel? iell  jel?

sl D [ D b5

iel} \jel?

Let us now apply lemma m For all i € I},

D leisl < \/—Z|‘91+J|+\/—Z|0\Z il 161 1651

JeI? jeI? jeI? JeI?
< (va+swial) ol
ieN reN
< 3101

In the same way, for all j € 12, Zzep cij| <316]|,:, hence by lemmaw

Sy e | <3100, sl Y 6

iell  jel? jer?

< 12(10]| 1 |Is]lo (1 + 2)€ by equation (5.62).  (5.66)

As for the upper bound on the uniform norm, it follows from lemma [5.5.4) and the
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elementary upper bound ||¢;]|., < v/2 that

sup E Vi E Ojcij| < E E 0;ci sup E Vi
veR \ien! jer? ierl \jer? iel}

<300l (/2101 D62
jeI?

<3101 V2(be — an) AVA(L + 2)E
< k(1 + 2)VAE by lemma m, (5.67)

for some constant x = £(||6]/,.). By Bernstein’s inequality, there exists an event
FEs(y) € R™ with probability P(DI € Ey(y)) > 1 — e™¥ such that, for any D! €
Ex(y),

2
|V2|<\/n:3j Var [ Y iy 0jc; +3—nt82ﬂ€ 21/)1 )D_bici

el jel? jel?

1+2)8 &
< /24100 sl 208 Y4 40 VRE by 650). (5D,
t t
Setting x = max (/24 [|0[|, [|s]|., §), it follows that on E(y),
[Va| < kY 1+x,/ e+/<:y +:1:,/ eVE.

€ is uniformly bounded: & < Y7, 62 + - <1+ || 1> <1+ |s||,. Furthermore,

by hypothesis of Theorem |5.3.8 [r = I < n—%, Thus, there exists a
constant x(]|0]],: , ||s]|,,) such that, on Es(y),

Vo] < wy(1 + 2)n~ Pe. (5.68)

Symmetrically, there exists an event E3(y) of probability greater than 1—e~¥, such
that for any DI € F3(y),

Vsl < my(1+ 2)n~ Pe. (5.69)

Now consider V,. This term can be expressed as a finite sum of sums of squares:
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Vi= \/‘ Z Z (P" — P)ihi(P" — P)thiys 0y,

TEZL 611 —r)
f St Y [(PT = P)(Wi+ )]~ [(PT = P)(i — tus)]
reZ ielin(I?—r)

Let Jo={j € N: |{] is even} and J; = {j € N: |£] is odd}. Thus

Vi= 4\/—2 7| Z 25 ¢z+€¢z+r) ]Ill( )]Il,f(i"i_r)'

re’ (z,e)e{0;1}x{-1;1} jeJ2

For any fixed r # 0, (z,¢) € {0;1} x{—1;1}, \%(@bmts@/}iw)i@ is an orthonor-
mal collection of functions, since for any (i, j) € JZ,

<Y+ Vi, ¥y + EVjpr > =<y, > HE < i, 0 > FE <y Vi >+ < iy, Y >
= 20; 5 + & < VYipr, 05 > +e <Yy, >
= 20;; puisque 7,5 € J,and i + 71,5 +r € Ji_..

5, Lemma 14] applied to Sy, = ((¢i + ¥itr)icsnnnrz) for all (z,¢) € {0;1} x
{=1;1} ,r € {—n4,...,n:} and a union bound yield an event E4(y) of probability
P(DI € Ei(y)) > 1 — e7¥ such that, for some absolute constant » and for all
DI € Ey(y), (z,¢) € {0;1} x {—1;1} and r € Z,

Y PP e = (0 S [Var() + Varie,)

t
ieJ.NItN({I2—r ieJ.NItNIZ—r
k k k k

log(1 1
+2€COV(¢i>wi+r)}+ HSHOO[Og( +T)+ Ognt+y]

Mil[log(1 +r) + logn, +yJ*
(6 A1)3n?

By summing on (7, z,¢) € Z x {0;1} x {—1;1} and since [|¢;||, < /2, it follows
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that for all DI € E4(y),

0y, 1 <& 6,
W—n—tz il Z Ciitr| = V4—n—t Z \|/§| Z Ci i+r

reZ zel,gm(l,gfr) r=—ny ielinIz—r)
\/— Sl D [Var(d) + Var(yi,)]
rez ielln(IZ—r)
Z !9|r|| 15|, [logn;log(1+7) + y]
ez (6 VAN l)nt
0,, I} 1 log(1 2
+“Z|H| | 3| [log ns + ogg ;LT)HJ]
= (0 A1)3n;

By hypothesis [H1] |6;] < \F , hence the sum Zrez |0)(| log(1 + r)? converges to
it

a finite value [|0]], 1,2 Moreover, by lemma , I < (by — ap)A < 2(1+ 2)A,
hence

6. 5 Isllo [1+ 9]
Vi n_z 52 Crr| SO0l (1) m At 2060 2%,
t ez zel,iﬂ(l,ffr) t t
Al + y)?
+ 85(1 + x) HQHI,log2 m
t

There exists therefore a constant #([|0]], ,,,2) such that, for all D} € Ey(y),

0, | 1 2
Vi _Z - Z Cijitr| S m6(1+x)5+w+ﬁ(1+x)wg.

3
t ez zeléﬂ(lzfr) (5 A 1)nt (5 A 1) i
N 3
Let now § = max { 1= t”f N E} By hypothesmof Theorem [5.3.8|, ”;Z“ <n%,
1
1

nt Ny

therefore 0 < n_min(1’63>5. Moreover, £ > ni therefore %m < <M> R

5
n-iE. Finally, since 6 > n T and ne = g, 53%” < on~iE. Since 03 < 1, there

exists therefore a constant s such that for all DT € E4(y),

Vi — 220‘1 j1¢ii| < k(1 + x)[logng + y)*n~ P (5.70)

icl} jel?

nt\/_
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Moreover, since ¢; ; = 0\’75 + (17§’j + 5@',1') 0)i—;) — 0;0; and 6y = 1,
0)i- g\ 1 O
il — (e =) =
Ly, oy Lo )l iy st
zel,i jer? iellni? i€ll jel?
PN 9 LI e
zel,i jeI? 61,13612
Since for all j € N, |6, < 1
ZZQIZ il ( 1>|f%ﬁ]13| 122%14 <2 <Z"9|>
i iel} jer? V2 nt\/i " iell jer? 2 reN
<22 L g2,
Ny TNy
<20l n e
(5.71)

since £ > L and > n~%, by hypothesisof Theorem (5.3.8 From equations
(5.70) and (5.71)), it follows that, for some constant (|||,

Jlog? />
v, (1 )'Ilmp ZZ@ k(1+2)[logne+y)Pn~FE. (5.72)
41—\ 1= il < x)|logn;+vy i &, (5.
V2 nV/2 Qnt S li—j] t
V5 can be expressed as
1 . 2
V"’:(l_ﬁ> 3 (ejT—ej) ,
JEIINI?

therefore by proposition there exists an event Fs(y) of probability greater
than 1 — e™¥ such that for all DT € E5(y),

= 1 1 1 2 7min(%,%3)
Vs = (1_E> Z n_ti(l_ﬁ) k1(by — ay)[logn + y|*n 12:2 )e(n)

ieliNI?

It follows by lemma that on Es(y),

1 |[,iﬂ[,3| 133
Ve — (1 — — | Z2—E <4k (1 + 2)[logn + —min(13,3 ) e (n). 5.73
i (1-5) o (1 +2)llogn + ). (673)
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Finally, V5 can be bounde in the following manner.

1 T _ p\2,),. T _ pP\2,),. |9i+j‘ ’ ]
o g P - PP (P Py |2l oo,

_ 1 T py 63| 1 T _ py2 16451
=5 - prn 3 Bl oo + 5 o - proy [Pl iy

i€l} jeI? jeI? i€l}

Thus, by equation (5.64)),

Vs < K% X 1z:(PT — P)%; + % Z(PT — P)*;

e 2
oo i} JEIR}
o1
(1+a2)% ’“*Z“’” T\’
< /1—671 X Gj — 9]' . (574)
n3e j=kstasA+1

t

By proposition|5.5.3| there exists an event Fg(y) of probability greater than 1—e™¥,
such that for any DI € Eg(y),

ks4bz A . ) B
Z <0;T - Qj) < (bg; - agg)g —+ lil(bx — az)(y + 1Og n)Qn— Inln(ﬁ7
j=ks«tazA+1

w‘ﬁ'

Je

< 2max(k,1)(by — az)(y + logn)*E
< 8max(ry, 1)(1 + 2)(y + logn)*E by lemma [5.4.1]
It follows by equation ((5.74]) that on Fg(y), for a certain constant x(k1,d1, ¢1, Ke),

51

]2(1 + I)mg

Vs < K[y +logn - (5.75)
31
ny
Combining equations (5.65)), (5.68)), (5.69), (5.72)), (5.73]), (5.75) on the event
NY_, F;(log 6 + y) yields the result. |

Lemma 5.5.7 Let s € L*([0;1]) be a probability density function. For all j € N,
let 0; = (s,%;), where Yo(z) = 1 and ¢;(x) = v/2cos(2jmx) for all j € N*. Then
for any finite set I C N and for all functions u € RY,

0 S utinti) (12 4 6) o < il o ut

icl jeI il
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Proof Let X ~ s be a random variable with distribution s(x)dz on [0;1]. For

any x € R, and any i # j,

Yiyj + Yy
y N 0; j+9i_j . .

If i # j, then Cov(¢y(X), (X)) = % — 0,0, If i = j, Var(,(X)) =

1+ f} — 602 Letue R keNandt,= > icr W()Yiqk, then

— 0 j Oy jvor
Var(t,(X Z Z {(Tj + 5i,j) 0)i—j) + J:;% — 6i+k6j+k:|

i€l jel

Yi(x)j(x) = 2 cos(2imz) cos(2jmx) = cos(2(i+j)mx)+cos(2(i—j)mx) =

Furthermore, lim,, ., ¢, = 0, hence

_y
kgrfoo Var(t,(X Z Z ( NG + 5@]’) 0)i—j|-

el jel

It immediately follows that >, >~ . u(i)u(j) (1_\/6%“ + 51-,]-) 0)i—j) = 0. Moreover,
for all £ € N,

Thus

5% uliuli) (22 b ) i < sl

el jel el

Lemma 5.5.8 Let ¢ : Ry — Ry be a non-decreasing function such that €(0) > 0
and hy : Ry — Ry be a continuous, non-decreasing function. Let gy : Ry — R be
a continuous function such that, for any s <'t,

—e(max(s, 1)) < go(t) — go(s) < max{hy(t) = hy(s), e(max(s,1))}.
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Assume that €(0) > 0. Then there exists a continuous, non-decreasing function
g: Ry — Ry such that go(0) = g(0),

Vr,y,[9(y) — g(@)] < [hy(y) — hy(2)].

Proof Assume to begin with that ¢ is right-continuous. Let » > 0,6 > 0. We
define by induction a sequence (x;);eny and a function g on [z;;z;41]. Let g = 0
and g(xg) = go(xg). For any i € N, assuming z; and g(x;) have been defined, let

MH <6,
8 o0

and moreover

xip = inf {x >z go(x) = go(wy) + 2e(x;) or e(x) > ge(xl)}

g(w:) if e(zip1) = Se(ws)

golrie)=90(wi) 1 () — h. (x;)] otherwise.

Y e]xi;xi+1],9($) = {
g(CCZ) h+(xi+1)—h+($i)
(5.76)

If z;,1 = 400, the above definitions still make sense and the induction stops.
Notice first that for any = € [z;; zi41], go(z) — go(x;) < [hy(z) — hy(z;)] Ve(z) <
[hi(x) — he(x;)] V 3e(z;). Thus,by continuity of go,

3
9o(@ir1) = go(2) < [P (i) = ho(20)] V Se(@i).
By assumption, ¢ is right-continuous, therefore if £(2;11) < 2£(x;), it must be that
inf{z > x; : e(x) > 3e(x;)} > x;11. Then by definition of z;;1 and continuity of
90, 9o(xir1) = golx;) + 2¢(x;), therefore
3
2e(:) = go(@ir1) = go(wi) < [P (wirn) — ho ()] V e (i),

which implies that

0 < 2e(2;) = go(@it1) — go(wi) < [hs (@) — by (2)]. (5.77)

This proves that g is well defined. ¢ is non-decreasing and continuous since h has
these properties. If e(z;41) < %e(xi), then the previous equation implies that

Vi e N,V(z,y) €l zia], 2 <y = g(y) — g(z) < hy(y) — he(2),

else g is constant on |x;; z;11] and the above equation is trivially true. Hence, since
g, h, are non-decreasing and continuous,

V(z,y) eR,x <y = g(y) — g(x) < hy(y) — hy().
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We will now prove by induction that for all i € N*|
0 < golz;) — g(z;) < de(xy). (5.78)

Base case: This equation is true for ¢ = 1 since xy = 0 and ¢(0) = go(0) = 0,
therefore by definition of g,z1, 0 < g(x1) < go(z1) < 2e(xo) < 2e(xy).

Inductive step: Assume that equation is true for some ¢ € N. Then by
definition of z;,, and g,

o If e(zit1) 2 %5(5’57;)7 then g(z;11) = g(x;) therefore go(zi41) — g(2it1) =
go(ziy1) — go(zi) + go(z;) — g(x;). By the induction hypothesis and the defi-
nition of x;,1,

2
0 < go(wir1) — 9(i1) < 2e(x;) + 4e(z;) <6 X 58(%“) < 4e(@iv),

which proves equation (5.78]) for i + 1.

e Otherwise, by definition of g, g(z;4+1) = g(x:) + [go(%i+1) — go(x;)] therefore
by the induction hypothesis and since ¢ is non-decreasing,

0 < go(@iv1) — (i) = go(@;) — g(x;) < de(w;) < de(@irq).
This proves equation (5.78]) for 7 4 1.

By induction, equation ([5.78) is therefore true for all i € N (such that z; < +00).
Let now ¢ € N and = €|z;; x;41]. By definition of g,

9(x:) < g(z) < g(@i) + (90(wis1) — go(@i))+-
By equation (5.78]) and definition of x;,1,
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It has been proved that for all 7+ € N such that x; is finite,
V €]zi; vil, |9(x) — go(2)| < 6e().

It must now be proved that lim,, , . x, = +00. Since € is non-decreasing and
right-continuous, by definition of z,, go(zni1) = go(xn) + 2e(x,) = go(zn) +
2¢(0) or e(wn41) > 3e(x,). Since €(0) > 0 by assumption, this implies that
max(go,€)(z,) — —+oo. The function max(go,e) is non-decreasing, thus it is
bounded on every interval of the form [0; x], which implies that z, — +o00. This
proves the proposition under the assumption that ¢ is right-continuous.

In the general case, let ey : z +— inf,.,e(y), which is non-decreasing and
right-continuous. Since ¢ is non-decreasing, €, > ¢, therefore the assumptions of
the proposition hold with ¢, instead of €. By the right-continuous case of the
proposition, which we already proved, there exists a non-decreasing function g

such that ”%H < 6 and

Vr,y,2 <y = g(y) — g(x) < hy(y) — hy(z).

Let = > 0. By continuity of g, g,

9(x) — go(x)] < sup [g(y) — go(y)| < supbey(y) = 6sup inf (y’) < 6¢(x).
y<z y<x y<z Y >Y

This proves the proposition in the general case.

Proposition 5.5.9 Let ([x;;2:41])1<icar—1 be a partition of the interval [a;b]. Let
Yi{ar,...,zm} — R be such that (Y(x;)), ;) 15 a zero-mean gaussian vector.
Abusing notation, we also denote by Y the extension of Y to [a;b] by linear in-
terpolation. Let Ky : [a;b]> — R be the variance-covariance function of Y. Let
h: [a;b] — R be a continuous, increasing function and let Kx : [a;b]> — R be a
positive semi-definite function such that:

V(s,t) € [a;b)?, |Kx(s,s) + Kx(t,t) — 2Kx(s,t)] < |h(s) — h(t)|.
Assume that there exists constants L > 0 and € € [0;1] such that:
° supte[a;b} KX(t,t) < L

o Foranyie{l,...,.M — 1}, h(z;11) — h(x;)

N

3

o max(; jeq1,.. v} | Kx(wi,25) — Ky (2, 2;)| <e.
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There exists a universal constant k and a measurable function f : C([a;b],R) —
C([a; b],R) such that for all random variables v ~ U([0; 1]) independent from Y,
X = f(Y,v) is a zero-mean gaussian process with variance-covariance function
Kx and moreover,

E {sup | X — Y;:q < ky/ (1 + L)log M [(h(b) — h(a)) V 1]5ﬁ.

a<t<b
Proof We assume without loss of generality that h(b) — h(a) > 1. We shall
moreover use the following notation. For A, B two symmetric matrices, A < B
means that B — A is positive definite. ||A||Op denotes the matrix operator norm

corresponding to the euclidean norm, ie [[A[[,, = sup,,, <1 [4z|. We will need
the following lemmas:

Lemma 5.5.10 For all A € R™™, ||All,, < mmaxi; j<m [Aij]-

Proof Let v € R™ be such that > v? = 1. By the Cauchy-Schwartz inequality,

i=1 "

m m 2 m m
2 2 2 2
|Av||” = E A v | < E E Ai;<m max Aj
i=1 \j=1 i=1 j=1 77
This is true for any v, which proves lemma [5.5.10] [

Lemma [5.5.11] below is a special case of Mc-Carthy’s trace inequality ([78],
Lemma 2.6).

Lemma 5.5.11 Let A, B be two symmetric, positive semi-definite matrices, then

Tr(vVA+ B) < Tr(vVA) + Tr{(VB).

The hypotheses imply that h is bijective from [a; b] to [h(a); h(b)]. Let m € N.
For all j € {1,...,m}, let

t; = max {x,|z e{l,...,M},h(x;) < h(a) + Tjn;—ll[h(b) - h(a)]} : (5.79)

Let Kx, = (KX(ti’tJ'))Ki,jgm and Ky, = (KY(ti’tj))Ki,jgm' The Wasser-
stein distance between two gaussian vectors is known [85]: there exists a coupling

X™, Y™ of the distributions N (0, Kx ) and A (0, Ky,,,) such that:

> (X -y’

=1

1 1 1
E =Tr (KX,m + KY,m - 2(K)2(,mKY7mK)2(,m) 2> :
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Thus

[N

KymK 3+ K3 (Kym — Kxm) K2,

|
XNMM—‘

2
KX,m m

1 1
=< KX By %+ [ Ky — Kxml| o, Kxm-
By lemma [5.5.11},

1 11 | 1
Tr(Kxn) < T (K Ky E)* ) + 1yim = Kxnll2, T (K5,)
By the same argument (exchangeing X and Y),
Tr(Kyim) < Tr (K2 Kxnb7,) 7 ) + 1Ky = Kol T (K2,,)

It follows that

m

S - Ty

i=1

1 1
E < By = Koanll, T (K + K7 )

1
<m? | Kym — Kxmll2 (\/ Tr(Kxm) + \V Tr(Kva))
<m? || Ky — Kxnll2, m? hax { Kx(ti, t:) + 4/ KY(twtj)}
<i,j<m

< 2myeVI? +e. (5.80)

By the transfer principle (Kallenberg, Theorem 5.10), there exists f; such that
for all uniform random variables variables 4 independent from Y, (f( m f/m) ~
(fl(ym’ V1)7Ym)'

Let X, be a gaussian process with variance-covariance function Kx. Let Wy =
Xooh™t. For any (s,t) € [h(a); h(D)]?, Wy(t) — Wy(s) is a centred gaussian random
variable, hence for all » > 0, there exists a universal constant C'(r) such that

E [(Wo(t) — Wo(s))"] < C(r)E [(Wo(t) — Wo(s))?] ®
< C) (Kx (1 (0),h71 ) + Kx (k™ (s),h7(5))

2K (hY(s), h’l(t))) :
< C(r)|t — s|2.

By the Kolmogorov continuity theorem [89, Chapter 1, Theorem 2.1, applied

to T Wo(h(a)+(h(b)—h(a))x
V/h(b)—h(a)

for any 6 € [0;1), and all (s,t) € [h(a); h(D)]?

(Sup rw1<t>—wl<s>\)”] < (h(b) ~ h(a))3
(h(®) = h(a))""{

), there exists a continuous version W; of Wy such that

E

B(8,r) < +oo,

3=

)

N

ot —sf(G7)
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where B(6,r) is a universal constant. Let X; = Wj o h, which is still a gaussian
process, with variance-covariance function Kx. Then, for any (s,t) € [a;b]?,

E

X0 - Xi(s)] ) BB < o
(iljélt) ho —h(s)]e(é‘”) ] < [h(b) — h(a)]z2B(0,r) < +oc. (5.81)

The C([a;b],R)-valued process X; induces a probability distribution @) on the
Borel space C([a;b],R). Furthermore, (X;(t;))1<jcm ~ X™ ~ fi(Y™ v1). By
(Kallenberg, Theorem 5.10), there exists a measurable function f, such that for
all uniform random variables v5 independent from Y™, vy, (Xi, (X1(¢j))1<j<m) ~

(f2(fr(Y™ 1), 13), 1(Y™,11)). Let X = fo(f1(Y™,11),13) and X™ = (X (;))1<j<m-

Almost surely,

Claim 5.5.11.1 1. X™ = (X(¢j))i<jem = 1Y, 11) p.s, s0
2. (XM, Y™) ~ ()?m, 57’"), in particular by equation ((5.80)),

E[|X™—Y™] <2myeVI? +e.

3. X ~ X' as a random continuous function, in particular by equation ([5.81)
withézgl andr =6,

V5 > 0,E sup X (1) — X (s)| g < V/h(b) — h(a)B(2,6)507.

(s,)€astl:|h(t)—h(s)|<s
(5.82)

By abuse of notation, denote X™ Y™ the random processes obtained by linear
interpolation between the points (t;, X7") and (¢;,Y;™), respectively. For all ¢ €
[a; b], there exists j € {1,...,m} such that t; <t < ;41, therefore |h(t) — h(t;)| <
h(tj11) — h(t;), since h is non-decreasing. By definition of ¢;,; (equation (5.79)),
h(tjt1) < h(a)+=L5 (h(b)—h(a)) and furthermore, there exists i € {1,..., M} such
that z; = t;. By equation (5.79) which defines ¢;, h(z;+1) > h(a)+L= (h(b)—h(a)),
which yields

|h(t) = h(t;)| < h(a) + L (h(5) — h(a)) — h(zis1) + h(xisr) — i)

m—1
< W + h(zip1) — h(x;).

By assumption, h(z;y1) — h(z;) < &, which yields

h(b
Vt € [a;b],3j(t) € {1,...,m}, t; <t <tjpq and |h(t) — h(tje)] < — +e.
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Since Y is piecewise linear on the partition ([x;; Zi+1[)1<i<car—1,

sup |X(t) =Y ()| < sup [X(#) = X ()| + max [X(t;) = V()|

a<t<b te[asb] Jje{l,...,m}
+ til[l% Y (t) = Y(tjw)]
< sup X (s) = X () + | D 1X(t;) = Y(t))
(,):|h(s) —h(t)|<e+ IR j=1

+ glax }maX{|Y(xi) —Y(t)| ie{l,..., M}ttt
J€el,..., m

Thus, by claim [5.5.11.1},

E | sup 1X() - V(0

a<t<b
m 1
<E| sup X(s) = X(0)I] + E[ Y - vy
(s,8):|h(s) —h(t)|<e+ MI=Ra) i=1
+E [ glax }max{|Y(xi) —Y(t;):ie{l,...,M}nN [tj;tﬂ_l]}}
Jell,..., m

< VA — h(a)B(3,6) <€+ M) . (Zm\/E\/LTraf

++/2logM ?1ax max{\/EHY(xi) —-Y(t)?ie{l,....M}n [tj;tj+1]} .

je{1,...m}

(5.84)

Furthermore, for any (,5) € [1; M]?,

E[(Y (2:) = Y (2))°] = Ky (2, 2:) + Ky (1), 25) — 2Ky (2, 25)
< Kx(l’i,ZEi) —|— Kx(xj,[)?j) — 2Kx(l’i,[)§j)

+4 K ryds _K rys
xRy, ) = Ky (o, 2.)

< Nh(x;) — h(zy)| + 4e.

Setting K = B (%, 6)%, it follows by equation (5.84]) and the non-decreasing nature
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of h that

E Lsigb | X, — YA] < V/h(b) = h(a) B(3,6)s <€ + M) i V2m(L + 1)et
+ V/2log My /h(tjr) — h(t;) + e
< k/h(b) — ha)et + KM +v2m(L + 1)ei

h(b) — h
+ +v/2log M\/M + 5e by equation ([5.83]).
m

e

Let now m = {M-‘ Since by assumption ¢ < 1, h(b) — h(a) > 1 it follows
3
finally, by keeping only the dominant powers of [h(b) — h(a)], e, L and log M, that

E [SUp | X, — Y}q < K/ h(b) — h(a)\/2(L + 1)logM5%.

a<t<b

for an absolute constant x. [ |






Chapter 6

A detailed analysis of Agghoo:
accurate oracle inequalities

6.1 Introduction

In this chapter, we investigate the performance of the hold-out and Agghoo in the
same setting as in the previous chapter, in the form of oracle inequalities.

General oracle inequalities for cross-validation in L? density estimation were
proved by Arlot and Lerasle [5]. In the specific case of orthogonal series estimators
on the cosine basis, Hall [50] proved that cross-validation is asymptotically equiva-
lent to the oracle in terms of risk. His result also applies to some other orthogonal
bases, as well as some families of weighted orthogonal series estimators. More re-
cently, Magalhaes in his thesis [71], Corollary 3.2| proved with an oracle inequality
that "cross-validation penalties" could be used to select the best estimator within
the family of weighted orthogonal series estimators with non-increasing weights. In
the setting of this chapter, the methods of Chapter [3|of this thesis can also be used
to derive an oracle inequality for Agghoo and the hold-out (Theorem . Under
stronger assumptions (Section , this upper bound achieves greater accuracy
than those mentioned above (indeed, it is optimal up to log terms), however this
comes at the cost of introducing the non-explicit quantity e (Definition and
losing control of the expectation (the bound holds with probability greater than
1-3).

The main focus in the literature has generally been on obtaining oracle in-
equalities with leading constant 1, to show that the proposed methods perform
as well as the oracle. These results typically do not attempt to identify the true
magnitude of the model selection error, their purpose is rather to show that it
is negligible relative to the oracle. For example, Hall’s results in [50] are asymp-
totic, while Magalhaes shows an oracle inequality with leading constant 1+ \/%gn’

217
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which is presumably not optimal. This is insufficient for fine comparisons between
methods such as the hold-out, cross-validation or Agghoo which all satisfy similar
inequalities. In the case of Agghoo, the risk-reducing effects of aggregation should
introduce negative terms in the oracle inequalities, the magnitude of which should
be compared to the excess risk of the hold-out in order to assess the overall per-
formance of the method. If the effect of aggregation outweighs the excess risk of
the hold-out, Agghoo could very well have a risk lower than that of the model
selection oracle, as shown in Figure [2.1] of the Introduction.

The purpose of this chapter is to carry out an analysis of Agghoo precise enough
to shed some light on this phenomenon. To this end, the asymptotic approxima-
tion of the hold-out risk estimator, developed in the previous chapter, plays a
crucial role. Under the same assumptions, we derive an asymptotic expression for
the excess risk of the hold-out relative to the oracle (Theorem , and an upper
bound for the risk of Agghoo (Theorem . These results are sufficiently accu-
rate to measure the effect of aggregation: compared to the asymptotic expression
for the hold-out’s risk, the oracle inequality for Agghoo contains two additional
negative terms, at the same order of approximation.

In the special case where the Fourier coefficients of the density s decrease poly-
nomially (in absolute value), it is possible to compare the various terms appearing
in these oracle inequalities (notably £ and e, which are defined in Chapter . As
a consequence, Corollary shows that for some values of its parameters, Ag-
ghoo’s risk can be smaller than the oracle risk by a constant factor. This behaviour
provides evidence of the advantages of Agghoo relative to model-selection proce-
dures such as cross-validation, which by definition cannot have a risk below that
of the oracle.

6.2 Setting and hypotheses

The setting and hypotheses are the same as in the previous chapter. This section
contains a brief summary. A more detailed discussion can be found in Chapter 5|

6.2.1 Setting

The setting is the same as in Chapter [5] Let us recall the main notations and
assumptions. The statistical problem is least-squares density estimation: given
an i.id sample D, = (Xi,...,X,) with common probability density function
s € L*([0;1]), assumed to be even, estimate s.

The collection of estimators considered for this purpose are the orthogonal
series estimators on the trigonometric basis of cosines:
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Definition 6.2.1 Forallk € N and allT C {1...n},
k
=Y Pl (),
=0

where Yy = 1, for all j € N*, ¢; : x — 2cos(2mjz) and for any measurable

function t,
P = 77 2 3ot

We assume that the Fourier coefficients of s, §; = (s,;), are non-increasing
in absolute value. Let (ny(n)),en be a sequence of integers such that for all n,
1 < ng(n) < n—1. ny(n) represents the amount of data used for computing the
density estimators, as opposed to estimator selection. The optimal choice of &
and the optimal achievable risk for 87, respectively, can be approximated by the
following quantities.

Definition 6.2.2 (Definition [5.5.9 of Chapter[3)

Uz

2
o 5&%{29 }

1
kv = ki(ny) :max{j eN: 67> —}

6.2.2 Hypotheses

The following assumptions are made on (6%) en and (7, )nen. They are identical to
the assumptions of Theorem [5.3.8| of the previous Chapter.

HO. The sequence (67);en is non-increasing.

Hl. Forallne N, n, € {1,...,n —1}.

H2. There exists constants ¢; > 0 and d; > 0 such that for all £ € N, Z] P J 2 <
H3. There exists constants co > 0, p; > 0 such that for all £k € N, J k+1 932 >

£2
krP1”

H4. There exists constants ¢35 > 0, d5 > 0 such that for all £ > 1

2 2
9k+k52 > Cgekik%.
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H5. There exists a constant d5 > 0 such that for all n € N, n —n, < n'=%.

H6. There exists a constant 6, > 0 such that foralln e Nyn—n; > n F+01

6.3 Hold-out and Agghoo

This chapter focuses on the performance of hold-out and aggregated hold-out when
applied to the hyperparameter k of Definition [6.2.1] Let us now define these
methods. Let n € N, n, € {1,...,n— 1} and n, = n —n;. The hold-out is defined
below.

Definition 6.3.1 Let T'C {1...n} be a subset of cardinality |T'| = n;. Let

kr = min argmin {Hsk H 2PI" (3 } ;
ke{l,...,n—ns}

which yields the non-parametric density estimator

In practice, it is natural to impose some restriction on k in order to compute
the estimator. It would be more natural to select kr from the interval {1,...,ns}
instead of {1,...,n—n;}, yet this restriction is useful in the proof of the theorems
of the next section (note that n — n; < n; by hypothesis . It will have no
negative impact on performance as long as /%:’; € {1,...,n—n;}, where

kT—mlnargmm{Hsk —SH }
keN

By hypothesis (H2)),

C1 k _2
< inf = ).
ontn) < juf { 7+ b = 000, )
1

Since or(n;) > %ﬁ”), this implies that k,(n;) = O(n}). By a concentration argu-
ment (Proposition , the same is true of , with high probability. Therefore,
by assumptions (H2)) and (H6|) of Section , n —n; > k% holds with high
probability, for all n large enough.

For a given size ny, the hold-out procedure has a free hyperparameter: the sub-
set T" which does not affect the distribution of $h°. This suggests that aggregating
several hold-out estimator s. sT with different subsets 7} might be a way to reduce
the variance of the hold-out estimator and i improve its performance. This general
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strategy, known as Aggregated hold-out, is defined in Chapter [3| of this thesis (Sec-
tion . There are several ways to generate subsets Tj for aggregation of the
Sho. In this chapter, I will focus on two particular algorithms, analogous to V-
fold CV and Monte-Carlo CV, respectively. First, consider the V' —fold procedure

defined below.

Definition 6.3.2 V-fold Agghoo Let n, € {1,....,n — 1}. Let (1})j=1,.v be a
potentially random collection of subsets of {1...n}, having the same cardinality
ng = ny, independent from the data Dy, and such that the sets T are pairwise
disjoint. Let then

T4
NJf o ~ho
Snt7V - V E STj
Jj=1
be the V-fold aggregated hold-out estimator.

The pointwise value of the estimator §:’L{ v depends on the exact choice of the
T;, but its distribution only depends on n; and V', hence the notation.

Here, the blocks T are not required to form a partition of {1...n}, but only
assumed to be pairwise disjoint: there are therefore two parameters, n, (size of
the training sample) and V' (size of the ensemble), which in the case of a complete
V-fold procedure would be linked by the equation (n —n;)V = n. By comparison,
the definition of §Z{ v only requires that V' < =

By uncoupling V' and n;, Definition makes it easier to understand their
respective influence on the procedure and its performance.

Instead of being pairwise disjoint, the test sets 7% can be randomly generated
in a Monte-Carlo procedure. This leads to the following variant of Agghoo.

Definition 6.3.3 Monte-Carlo Agghoo Let (T;),—1. v be i.i.d subsets of {1,...,n},
independent from the data D,, and drawn uniformly from the set

{T c{1...n},|T| =n:}.
Let then
a4
Spey = v Z /S\%O
j=1
be the Monte-Carlo aggregated hold-out estimator.

Thus, 577, is random even given a fixed dataset D,,; however, its distribution only

wvf
depends on n; and V, as for s, .
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6.4 Oracle inequalities

This section contains the main results of this chapter. We state oracle inequalities
which are sufficiently precise to allow a comparison between Agghoo, the hold-out
and the oracle. Subsection [6.4.2] contains oracle inequalities valid in the general
setting of section [6.2.1], under the hypotheses of section [6.2.2] Subsection
gives an example in which Agghoo can perform better than the oracle by a constant
factor in the asymptotic n — +oo.

6.4.1 Key quantities

Let us briefly recall the following definitions from Chapter [5| (Definition of
that Chapter).

Definition 6.4.1 For anyn € N, let

n—ng /1
1 2 Ty 1 1
Ay(s,n,n) =minq L€ {0,... k() } 1 0y = |1+ — W el
— 1Y

A(s,ng,n) = max (Ag(s,ne, n), Ag(s,ng, n))

1 1
Ay(s,ng,n) = max {l eN: 9’3‘*(nt)+l > {1 _ ng _} _}

A
£(s,mp,m) = D&
Uz
E(s,ng,n
e(s,nt,n) = EL—?;L)
— M

The quantities A, ¢ were used in Chapter [5] to rescale the hold-out risk estimator
in order to derive an asymptotic approximation for the rescaled process. It was
argued there that A is the order of magnitude of ky — k.(n;), where kr is the
parameter selected by the hold-out, as in Definition [6.3.1} Recall that by Lemma
of Chapter [p, £ and e satisfy the following inequalities.

1
> .
¢ > — o (6.1)
e < E (6.2)
1
< . .
E < 2or(ny) + p— (6.3)

Recall also the definition of the function f, that plays a key role in Chapter
(Definition of Chapter [3)).
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interpolation: Yx € Ry, R(z) = (1+ |z| —x)R(|z]) + (z — |z|)R(|z] + 1). Let
then f, : [_IC*T(M); +oo[ — R, be defined by

Definition 6.4.2 For allk € N, let R(k) = ;lozﬂ 07. Extend R to Ry by linear

VaeR,  fula)= % (R(k* +ad) - R(k) + %) . (6.4)

ny

Thus, for all k € N, k # k,,

kVky
h(55) - 2

j=kNky+1

1
2
—

Uz

. (6.5)

fn approximates a rescaled version of the excess risk ||5} — 8H2 —||8f. — SHQ. It is
a convex, piecewise linear function that satisfies certain bounds on its increments
(Lemma|5.3.7)). More discussion of f,, and of its properties can be found in Chapter

(Definition [5.3.6).

6.4.2 Main results

Theorem [5.3.8| of the previous chapter suggests that the excess risk of the hold-
out relative to the oracle, H?YIEO - 3H2 — or(ny), is of order ¢. Theorem [6.4.3| below
confirms this supposition, and gives an asymptotic expansion of the risk of the
hold-out at first order in ¢, as n — 4o0.

Theorem 6.4.3 Let

&= argmin {f,(a) = Wy, ()}

where g, 1s the same as in Theorem of the previous chapter and W is sym-
metrized Brownian motion (Wy)=o and (W_;)i=o are independent standard BMs).
Then, under the assumptions of Section as n — 400,

E U gho _ s}f] = or(n,) + E[f(&)]e + oe) (6.6)
< or(ng) + Kpot + 0(e), (6.7)
where Ky, depends on ||s||_, only.

Theorem [6.4.3] is proved in Section [6.7.3] using the results of Sections and
[6.7.2] Theorem [6.4.3] guarantees that the excess risk of the hold-out, relative to
the oracle, is at most of order e.
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Together with equation (/6.3]), Theorem implies that

B (I3t — o] < ont0 + (1 +o(1) |y 220 4

n—mng n—mny

In particular the expected risk of the hold-out is asymptotically equivalent to
or(n;) whenever n+nt = o(or(ng)). This is the same, up to log terms, as what
could be obtained using the general oracle inequalities of chapter [3| (Theorem
, optimized in #). However, the bound £ < 2or(n;) + n_lm (equation ([6.3))
may be far from optimal, since it amounts to the upper bounds A, < k,(n;) and
Ad < —+00.

In the other direction, there is no lower bound on E[f,(&)]; however, it can
be expected not to tend to 0 in general, given that the functions f,, g, are lower
and upper-bounded by Lemma and Theorem of Chapter [5] Assuming
that E[f,(&)] is lower bounded, equation and Theorem show that a

remainder term of order n%nt is unavoidable in general.

The rate of convergence implicit in the o is proportional to a power of %; the
constant and the exponent can be upper bounded entirely in term of the constants
featuring in Section [6.2.2] as will be apparent in the proof.

When several hold-out estimators are aggregated, as in Definitions [6.3.2] and
[6.3.3] performance improves significantly, and we have the following oracle inequal-
ity.

Theorem 6.4.4 Let

&= argmin {fn(a) = Wy, ()}
ae[_Tk*"Foo[

as in Theorem[6.4.3 Let F : R — [0;1] be the dzstmbutzon function of &. In the
limit n — +o00, under the assumptions of section |6

| A R e e k*f,;;ﬂ
e (o o miwies [0 - mie)) +oe)

(6.8)
A similar inequality holds for the Monte-Carlo aggregate 87 :

E ||l — sl <B {5 -

V-1 0 i
_—v—gx(/‘wu—mem+A F(1 - F)|(x)dz ) + of€).

- (6.9)

H} V—1n—mnsk.(ng)

Vv ny g

n—n02mmg

n ng

+ 1+ o(1)] (
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Furthermore, there exists a constant ra,(||s|l.., ||s|I°) > 0 such that, for all

n €N, fj;o[F(l — F)|(x)dx > Koy, and therefore:
B Aho_ o] V-Iln—mk(n) V-1
e (s o] < [l - o] - L) Ve s ooy
(6.10)
Similarly, for 5%,
2
< ~ho _ 2 _
E[ }\E[HST S| T +[1+o(1>](
-1
- VTKGQE—FO((C:).

In particular, if ¢ = o(E), then by Theorem

2 —1 — k* -1
E [ 1 Sorfny - Lo An k) VoL evoe) o)
and the same holds for 5™ Spyv-

%4 ng Tt %
Theorem [6.4.4] is proved in Section [6.7.4] using the results of Sections
and . Assume to simplify the discussion that % = ™, as in the classical
V-fold procedure. In particular, % — 1. In that case, Theorem shows that

compared to the hold-out, the risk of Agghoo is decreased by two terms: x,,& and

n—ng Ex (nt) n—ng ko (”t)
n

—of V —1n—nski(ng)

Sm,V — S

n— nt>2 k. (ny)

n U

uf
Snt7v — S

the term . These terms have distinct origins. The term corre-

sponds to a bagglng effect: for small values of j, the basis functions 1), are selected

in all the models Eino = ((10),<;<jno), and their coefficients are averaged, leading
j SUSK;

to a decreased risk, comparable to replacing P! (¢;) with P,(¢;) (i.e retraining
the estimator on the whole dataset).

The term proportional to £, on the other hand, arises from the aggregation of
the &7 for different values of the parameter k (rather than different values of T)).
The inequality € > ¢ from Lemma [5.3.4] ensures that the reduction in risk due to
aggregation is always significant relative to the excess risk of the hold-out, which
is of order ¢ by Theorem [6.4.3. The interest of Theorem lies in the fact that
& can be much bigger than e, leading the oracle inequality , in which Agghoo
performs asymptotically better than or(n;) by a factor proportional to €. Thus,
Agghoo’s performance depends on £ and % If f is sufficiently large, then Agghoo
performs better than the oracle (trained on a sample of size n;). When this occurs,
the amount by which the risk decreases is greater than &, for a constant x > 0.

By definition, both £ and % are increasing functions of A. By definition,
for fixed ny,m, A(s,nsn) is the larger the slower the sequence 9]2- decreases in
the neighbourhood of k.(n;). Therefore, one should expect Agghoo to perform
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better for sequences 8?- that decrease slowly as they reach the value nit (since
0z > n% > 07 ., by definition).

The oracle inequalities of Theorem also depend explicitly on V', the num-
ber of subsets used in the aggregation, which gives an indication of how this pa-
rameter influences Agghoo’s performance. Inequality implies that even for
V = 2, Agghoo performs better than the oracle when ¢ = o(£). The amount by
which the risk is shown to decrease depends on V' through the factor % Assum-
ing that this upper-bound on Agghoo’s risk reflects its actual performance, at least
qualitatively, this provides theoretical evidence for the claim (made in chapters
and 4] based on simulations) that small values of V' (V =5 or 10) are sufficient to

reap most of the benefits of aggregation.

6.4.3 Example

The theoretical results of section [6.4.2] are expressed in terms of the quantities
¢,€ and or(n;). In particular, as discussed previously, Agghoo’ performance im-

proves relative to the oracle when £ grows, as long as & is sufficiently large.

The general bounds of lemma only show that % < 61, which implies that

£
stant p < kKp,. To better compare the performance of Agghoo with the hold-out
and with the oracle, it is necessary to obtain bounds on % and & that are more
accurate than those of lemma [5.3.4, However, as discussed in Chapter [5, lemma
can be optimal for some sequences 0?-. In this section, we consider some
sequences 9? for which it is possible to obtain better bounds on £ and 5. We
consider densities s such that the squared Fourier coefficients 0]2 decrease like an
inverse power of j, that is, (#%);>1 is nonincreasing and there exist two constants

j
L > 0,8 > 1 such that

ovf
Snt’v — S

2
} < or(ng) + pe, just like the hold-out, although with a better con-

2 ._98-1
0% ~ Lj~2, (6.12)

The assumption S > 1 ensures that the hypotheses of section hold. More
precisely, they hold for all §; < 2(5 — 1), p1 > 20 and J < 1. Assumption
is sufficient to give an equivalent for or(n) and for k.(n). It is not quite enough
to obtain asymptotic expressions for A, & and e, however; the reason is that the
local fluctuations 6%, ; — 6% may be very much larger (or smaller) than they are for
the asymptotically equivalent sequence Lj~2’~!. Nonetheless, assumption (6.12)
implies several asymptotic relationships between the sequences A, £ and e. These

are stated in lemma [6.4.5 below.

Lemma 6.4.5 Assuming equation (6.12)) holds true, zf@ — 1 and n—ny(n) —
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400 as n — +00, then

ke (g) ~ (Lng) 771 (6.13)
1 LwT 1 k. (n)
or(n) ~ [% + 1] m [% + 1] . (6.14)

n—ng k.(n

_ ~ 6.15
or(n) — or(n) ~ "L (6.15)
For all ng > 0 and all sufficiently large integers n,
ng E(s,ne,m) (2770)_%

< Nk = > ) 6.16
n — ng ok (1) e(s,mg,n) 458 + 2 (6.16)

For all constants ey > 0 and all sufficiently large n,

Ny n—ngk, (nt)
> . ng,m) =1 —o(1 . 1

— eok«(n) = E(s,ny,n) = [1 —o(1)]eg o " (6.17)

Finally, for all constants n € [0;no] and all sufficiently large n,

T Qﬂ
o < Mok (n) = E(s,ny,n) > [1 — 0(1)]77% 1

Lemma is proved in Section It states three bounds and three asymp-

totic equivalents, which are all relevant to the performance of Agghoo. Equa-

tion ((6.15) shows that as V' — +o0 the term Vvlnn”t k() from Theorem [6.4.4

cancels or(n;) — or(n), at first order. Equation glves a sufficient condi-

tion for % to be arbitrarily large. For small enough Mo, this guarantees that

Khot — Kag Vlé’ < nag 18 , which implies by Theorems and that
[||sm v — 8|} < or(ny). Equation 7) gives a sufficient condition for £ to be

n—ny K« (")
n

nk.(n) <

or(ng). (6.18)

larger than or(n;) — or(n) ~ , which helps to prove that ]E[Hsnt v =5l <
or(n). Finally, equation glves a sufficient condition for £ to be of order
or(n;), which together With equation (6.16) allows to derive an oracle inequality
with leading constant smaller than 1. More precisely, Theorems and [6.4.4]
together with Lemma [6.4.5] yield the following corollary.

Corollary 6.4.6 Assume that the squared Fourier coefficients 9? of s are non-
increasing and satisfy equation for some B > 1 (they decrease at a fixed
polynomial rate). Then all assumptions of section are satisfied and moreover,
there exists a constant 1o(B, ||s]| . , ||s||°) such that the following equations hold.

o Let 03> 0. For allV > 2 and all sufficiently large n,

2
< or(ng).

(6.19)

Uz

n% < < noks(n) ~ Uo(Lnt)ﬁ — E [ js\:,{v -5

n —ng
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e For all eg > 0, there exists an integer ng such that for all n > ng and all

V}max(f 12 1,5),

Rag€0

L% ~vf

gok«(n) < Sy — 8

< noki(n) = E l

2
< : 6.20
e | <ort. (620
o Foralln >0 and allV =5, there exists an integer ng such that

Vi 2 ng, k.(n) < —— < nok.(n) —

n —ng
2 2
E[ ] <(1—g25i1ﬁa9>or(n),

where ray(||5]l. , I]17) > 0 is the same as in Theorem [6.4.4).

(6.21)
s
ng,V

The same results hold for s, instead of 59 .. Moreover, one can take
ne,V nt,V )

2\ 1 Rag ’
T]O(B? HSHoo ) HS“ ) - 250(4/8 + 2)3 </€ho 7

where Kqg, Kpo are the constants which appear in Theorems (6.4.5 and |6.4.4).

Corollary is proved in section It shows that, depending on the size
of 2 relative to k.(n), the risk of Agghoo E U

n—mng

2
§Z{7V — SH may be smaller than

or(n;), smaller than or(n) and even smaller than for(n), for some constant 6 < 1.
Interestingly, few constraints are imposed on V: at most, for equation @ V
is required to be larger than some constant depending on . For equations @
and , it is only necessary that V' > 2 (an obvious requirement) and V' > 5,
respectively. In particular, V' is never required to tend to +oo. This confirms the
claim, made in previous chapters on the basis of experimental evidence, that the
benefits of aggregation can be had for small values of V' (V' < 10).

Of the assumptions made on nfj%, the most important is the upper bound
S g nok«(n¢), which appears in all three equations of Corollary [6.4.6, This
assumption is not surprising, since

Ty 1 k*(7lt) 2%3

> > ~
n—n, > Uo/f*(”t) - n—n, =2 o Ty n02ﬁ+10r(nt)7

which means that the hold-out "model selection error", which is typically larger
than n+m, is becoming significant relative to the total risk. This is obviously bad

for the hold-out. For Agghoo, it implies, since by Lemma ¢ > —— and

ng
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£ < 2or(ny) + ——, that £ = O (

of Kpo and Kqg, the upper bound on Agghoo s risk in equation may be of order
or(n¢) + ke, like the hold-out, rather than or(n;) — £’€ as in equation (6.11]). This
suggests that Agghoo’s performance, like that of the hold-out, may deteriorate

().

> = O(e). Thus, depending on the values

Inequahty 1) suggests, on the contrary,
grows, when nﬁtn < nMok«(ny); thus, it is reasonable to conjecture that there is
an optimal value 79 > 0, at which the risk of Agghoo is lowest, and such that
the performance worsens for - > nok.(n;). For -— ~ nk.(ny), 0 < n < no,

Corollary [6.4.6] - shows that Agghoo 1mproves on the model selection oracle by a

in a dlstrlbutlon—dependent way, since ki(n;) ~ (Lnt)2ﬂ+1 However, k*(nt) can in
theory be estimated, for example by running a first round of the hold-out with a
n

training set of size |T'| = % and using the hold-out parameter, k , as a plug-in

estimator for k,(%). By lemma [6.4.5, k,(%) differs asymptotically from £, (n) by a

constant factor: hence, choosing - = 771%%" for a small enough constant n > 0
can be expected to yield an estimator which satisfies equation , at least for
all pdfs s such that no(||s|”, ||s H ) >

Less ambitiously, choosing - so as to satisfy the hypothesis of equatlon 6 20))

allows for more robustness Wlth respect to the parameters 3, L, ||s || As
k«(n) ~ (Ln)25+1 2T by Lemma 6.4.5] i p—
L < for equation (| - to be satlsﬁed for all n large

20+1
2041 equation ((6.20)) will

1
where B S 2,6’+1

enough. Conversely, if n;

hold eventually for all £ in the semi-open interval [ — 1; o[ Thus, a deterministic
choice of n; is possible if some information about 3 is available.
Finally, the weakest result, equation (6.19)) requires no lower bound on -

n—mt

other than the arbitrarily small polynomial lower bound n% required by the hy-
potheses of Section [6.2.2]

6.5 Conclusion

We have given an asymptotic expression for the risk of the hold-out estima-
tor, exhibiting the general order of magnitude of the "model selection error"

[ ‘Aho

ity (Theorem [6.4.4)), that Agghoo improves significantly on the performance of the
hold-out. In Corollary[6.4.6 we showed that if the Fourier coefficients of s decrease
polynomially, Agghoo can even satisfy an oracle inequality with leading constant
less than 1, if its parameter n; is well chosen.

— 3H2 — or(ng). Moreover, we have shown, through an oracle inequal-
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A natural question is whether these results can be generalized. A first remark,
as in Chapter [5] is that the proof strategy only involves the Fourier coefficients 60;

through sums on intervals of length of order A, hence assumptions bearing on 9]2-

could be replaced by versions bearing on local averages of the form ﬁ Zf:;i"mn JQ-,
for m,, = o(A). This applies in particular to the assumption that the (9]2 form a

non-increasing sequence.

It could also be interesting to consider relaxations of hypothesis to ob-
tain explicit results under weaker assumptions. A possible approach would be to
average the risk over several values of the sample size n, considering for example
the regret

2
~Mc
Sne(n),V SH )

1N
V&

instead of the risk for a single sample size N. Bounding the regret instead of
the risk may allow to relax assumption because this "averages" values of
n where 67 decreases rapidly around k,(n) and values of n for which 6% is flat
around k,(n). As discussed in Section the upper bounds on Agghoo’s risk
in Theorem depend on the speed at which 0]2» decreases around k,(n;). Thus,
Agghoo’s performance may be good on average, even if there are exceptions for
some values of k. (n).

Aside from relaxing assumptions on the pdf s, a different and more ambitious
generalization would be to other estimators. For the general approach to work,
these would need to be orthogonal series estimators associated with "nested mod-
els", ety = > ity Pu(9))¢;, where ry, is an increasing sequence and (¢;)1<;j<x is an
orthonormal family. Moreover, since the computation of the covariance between
two estimators iy, , %, involves products ¢;¢j, a very convenient property is that
the (¢;)1<j<r, form an algebra. This suggests that multidimensional Fourier series,
spherical harmonics, or orthogonal polynomials might also be suitable, though the
unboundedness of polynomial bases with respect to their argument z or to the
index k£ might prove to be a problem.

6.6 Preliminary resuts

Before the beginning of the proofs, let us recall here the definition of a,, b,., identical
to that given in Theorem of the previous chapter.
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Definition 6.6.1 For any x > 0, let

a, = min{% 2] € ZN [—ki(ny); 0], fr <%> < w}

bz:max{i:j€N7fn<£> g:v}.

Note that by convexity of f, [az;b,] C £, ([0;2]) C [az — x50, + %]

6.6.1 Results proved in Chapter

The following results are stated and proved in Chapter [5 but as they are of much
help in this chapter too, they are reproduced here.

Lemma 6.6.2 (Lemma m) For any density s such that the sequence 9J2- =
(s,1;)? is non-increasing,

Uz

Az (6.22)
n —nyg
g> ! (6.23)
n —nyg
1
> 6.24
o (6.24)
e <& (6.25)
1
E<2 : 6.26
or(ne) + - (6.26)

Lemma 6.6.3 (Lemmam For all oy, a9 € R such that ajag > 0 and |as| >
] > 1,

falaz) = fulan) = |ag| — |aa].
Furthermore,

o If A=Ay, then for all ay,as € [0;1] such that a; < o, fn(as) — fulan) <
Qo — (7.

o If A=Ay then for all ay,ay € [—1;0] such that oy < g, fnloq) — fu(az) <
Qg — (7.

Lemma 6.6.4 (Lemma Let a,, b, as in theorem[5.5.8, For all x > 0:

b, — a,] <2(1+2)
kstbz A
>0 <a(l+a)E.

k* +a(tA
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6.6.2 A first oracle inequality for the hold-out

We begin by showing that the for parameter selected by hold-out lies with high
probability in an interval [a,; b,], for z of the order of log” n. This result is required
to apply Theorem [5.3.8| of the previous chapter, which focuses on what happens
in these intervals [a,; b,].

Theorem 6.6.5 Let T C {1;n} be a set of cardinality |T| = ny = ns. Let

kr € argmm {HSkH PTCAT}.

There exists a constant ke = ka(||s||,) and an integer ng = ng(k1, (n:(n))nen) such
that for all n > ng, with probability greater than 1 — %,

HAho T

)~ 5H2 < Ko log2 ne,

2
_SH —

and on the same event,

kr — k.
fn< TA > < ko log®n.

&
Proof Let r, = si(4logn)?n~7, where s, is the same as in Proposition |6.9.2
In this proof, we will also use the notation n, = n — n; for the cardinality of the
. . . 2 . .
validation sample. By assumption , n, > n3 while by assumption (H2)),

c k 1
ky(ny) < mgor(ng) < ny mf {]{;2—i61 + —} =0 (nf) :

Uz
It follows that there exists a constant ng € N such that:

1
Vn = ng,r, < = and ki(ng) < n,. (6.27)

[\]

Let n > ng. Let E, be the DI'— mesurable event on which for all (a1, as) €
{5k € {o0,... ,nv}}2 such that oy < as,

< [ag — aq]rpe.

bl (67 —p))" - L2202
J

Uz

j:k‘* +Oé1 A

By proposition 6.9.2, P(D! € E,) > 1 — 2. Until further notice, let us fix a
training set DTZC € E,, and consider the collection (ég)lgkgnv of estimators, as well



6.6. PRELIMINARY RESUTS 233

as the loss function 7 : (¢, ) — ||t||* — 2¢(z) with domain {5711 <k <ny,}. The

corresponding "bayes estimator" is the oracle sf where
*

k

k. € argmin ||sk —5” = argmin Z 92—|—Z< ),

ke {0 ----- nv} ke {0 ----- nv}J k+1

2
o7
S —SH . Let k € {0,...,n,}.

and the excess risk is ¢ sk,) = ||s] — 5H2 -
If %("t) > 1, equation which defines ny,

e R T — s
k k
- Y e+ Y (-0
J=kx(ne)+1 J=ks(n)+1
k
k—k, k—k
2 * *
= — | Z 0; + R AL
J:k*(nt)+1
b l 1 k—k
= > = —9?] - s (6.28)
] n
J=k«(ne)+1 e A

Hence, by definition of f,, and lemma [6.6.3

k — k., k:—k:*
2 efn A - ery

Se Pk ke ] Ik k!
>k1— Ak qe

n)
>[gk;h|—qe. (6.29)

AT AT
sic* S

_ﬂf_
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By the same argument, if k& < k.(ny) — A,

ST — sl = |7 = s > [157 = slf” = 15T, — oI
K ks ) 9
=D -2 <93'T—9j>
j=k+1 j=k+1
k
N, ke—k |k —k
2‘2@— o N e
Jj=k+1
k
& [, 1] kK
— Z {ej_n_t} — e (6.30)
j=k+1

Hence, by definition of f,, and lemma [6.6.3]

k — k., k— k.
=cf, A i ery,

>e —‘k_k*‘ -1 ——lk_k*‘er
k — k.
> {( _Tn)%_l}e
1|k — k.|
> |- —1fe. 31
[2 A }e (6.31)

By changing variables to a = k_Ak*, this yields

T~ —2
o] >2 = (T3 0s) > 12 2elm) (632

Furthermore, for all z € R, (8], z) = ||§£||2 — 257 (z). For all (ky, k) € N2

let ciy ok, = |51, H2 — 1|57, H2 Then for any variable X independent from D,,, with
distribution P and pdf s,

B[00 = 1(6LX) = )] = [ (6L = Lt

< sl 155 = 32| (6.33)
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Furthermore, let (ky, k) € {0,...,n,}% and oy = Bk gy = k2he k* . Then

A
k1Vko 9
T
%H Z <9j>
j=k1Ak2+1
k1Vka k1Vko 9
2 T
<2 ), Gv2 ) <9j —9]-)
j=k1Aka+1 j=kiNka+1
k1Vko
ki —k
s2 > 4 ol hel lnt : +2]ag — anfrpe
Jj=k1Aka+1
<2 kilfl 92-+2 kilfz 02+2| k| | k*|—|—|a —a|e<r
X ‘ J . N ny 2 1 n
J=k«Ak1+1 j=k«Nka+1
k1Vks koVks
1 1 LA
<2 07 — —| +2 02— —|+4 4
= ) Z J Uz * . Z / Uz * Uz * Uz
Jj=k«Nk1+1 j=ki«Aka+1
+ [Jaa| + |aa]]€.

By deﬁmtlon kl k* =k Ak* né = o1&, the same holds for ks, therefore by equations

and ( and since 1, < 1 for all n > ny,
%H <t A;;F J8h,) + L8], 51,) 4 6as|€(n) + 6|ai |E(n)

< E(AZ ,§fl) + K(AZ ,’S\ZQ) +24E(n) + 6(Jas| — 2)+:E(n) + 6(|as] — 2)LE(n).
Finally, by equation (6 , it follows

6T 5 SUAN EM) [, SN
= LI < HGGE 5E) + A L)+ 246+ 125 [W65, L) + 46T L)

Let wi(u) = /[[s]loy/1 + 1280 + /12][s]| V€. By equation (6.33),

2
PIy(sE) = 1(5h ) = eusal” < (wn(JOGT S0 + i (JeGT5L)))

(6.34)
Furthermore, for all k1, ks € {0,...,n,},
k1Vko
sup "}/(§ZI,ZE) - '7(3:152,55) - ck1,k’2‘ < sSup Z 9]T7,ZJJ<ZU)
z€[0;1] 2€[01] | i) Ao t1
k1Vko R 2
k1 — kol Z <9]T>
Jj=ki1Nka+1

gm(wl( (BT 50) + wi( E@iﬁﬁ)))-

N | —
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U “”T(u) is non-increasing, therefore by Theorem of Chapter , with prob-
ability greater than 1 — e~V (still conditioning on D, € E,,), for all § € [0; 1],

T £ . 2(y + logn,
(1= 0)0G;,5,) < (1+0), _min L5 5 + 0w, /i)’ <0 1 Hytlogm) — ))
2
+ 6(y/nywy, ny)? (9 Lyl 1Zg o) ) :
(6.35)

Furthermore, by definition of 0 given in chapter |3, §(\/n,w1,n,) is non-negative
and solves the equation:

Vnpw (6) = n,0? <~ wy(0) = \/n_,,52.

Therefore, d(y/n,wi,n,) = 6(w1, /1), hence by equation (6.35) applied with y =
2logn and 0 = %

e(j{ ,g;—j ) < 4(1 + 3logn)?5(wy, \/11y)?, (6.36)

with probability greater than 1 — 2. It remains to bound 6(wy, \/n,). Since w; is
non-increasing, é(wy, /) solves the equation

wy(r) = n,x°

,/1+12 z+V12E "”

Solving this polynomial equation yields a unique posmve solution:

/ £ £ 12n,€
S(wr, i) = 1 | 1l H x |1 127 4 (1127 4 ||57|ly

1
12 4
o sl L. o 1 o (e [l
51 m

By definition of &, ¢ and lemma [6.6.2] it follows therefore that

N

(5<w17\/n_v) H H <1—|—12 )—1-8*/12 H‘;Hoo

H H £ /
+ 96 ||| +8 12]s|| e
<8||8Hoo€+96!|5||009+8\/12H8||oo¢
< (104”3“00 —1—8\/12H5HOO) ¢.
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Given DT € E,, by equation ([6.36]), there exists therefore a constant x such that,
with probability greater than 1 — n—lg,

i (/\T ~T

2
Sé*’Sch) < klog” ne,

for any n > ng. Since P(DI € E,) > 1— n—12, on the whole, with probability greater
than 1 — 2%,

2
AT AT 2 AT AT
Stp — S| — Sk*—S” < Sip — S| — |15k — 8
< klog® ne.
On the same event, by equations (6.29) and (6.31),
2 1|k — k.|
2 5T ol — g7 — )P > |2
klog®n x e > 8t SH 5, SH Z 15 A 1] e,

therefore “%TA;]C*‘ < 2 + 2k log? n. Furthermore, by equations (6.28)) and (6.30]),

T

SIACT—S

kr — k, kr — k, kr— k. \ 1lkp—k,
_§g*_SH2>efn<TA >_|TA |7”n€>9fn(TA )_§|TA |2.

Hence, on the same event,

" .
fn (kTAk ) <m10g2n+§(2+2m10g2n).

This proves theorem with ko = 3k. [ |

6.7 Proof of theorems 6.4.3 and [6.4.4]

As in chapter , we will call constant any quantity that only depends on ||, ||s||*
and the assumptions of section [6.2.2] A constant exponent will be denoted by the
letter u, with the understanding that u only depends on the constants 91, 0o, 03, d4, p1
of section[6.2.2] The letter x will denote any other constant. Moreover, for integers
a < b, we will denote by [|a; b|] the "integer interval" Z N [a; b].
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6.7.1 Approximation of l%éﬂ" by the argmin of the limit pro-
cess

In the previous chapter, the hold-out risk-estimator was approximated on the
interval [a,;b,]. On the other hand, to study sk and Sy ’sj;{ v it is the argmin
khe of this risk estimator that we are interested in. The following result shows
that l;:r_}ﬁ" can be approximated by the argmin of the process f,, — W, provided by

Theorem [5.3.8| of the previous chapter.

Claim 6.7.0.1 Let x > 0. Let T C {1...n} be a set of cardinality n, = n;. Let
W and g, be as given by Theorem[5.3.8 of Chapter[d. Let

ay" € argmin f, () — Wy, ()
ae[azﬂ)z}
As above, let

STIF - 2P (5T)

ke, e argmin
ke[ |ketazAsk,+bs Al

There exists a constant kg = 0 such that, with probability greater than 1 — ky(1 +

]%%?l"—k* A 0O, T
go | | = galai)

P,

In this section, we will prove claim [6.7.0.1] We wish to use the theorem of the
previous chapter giving an approximation of the hold-out risk-estimator, in order
to get an approximation of the argmin of this process. To control the difference
between the argmins of two functions Y and Z, it is sufficient to control |V — Z|
uniformly and to control the size of the intervals on which ¥ — minY < e. The
following proposition formalizes this reasoning in the case of stochastic processes.

< re(1+ x)%n_%.

Proposition 6.7.1 LetY be an almost surely continuous stochastic process which
reaches almost surely a unique minimum on the interval [a; b]. Let &y = argmin, e, Yo
be the point at which this minimum is reached. Assume that there exists constants

p > 0,c >0 such that for all e > 0:

< ce”. (6.37)

o’ €lasb]

E {sup{|oz —CAky|’Oé 1Y, — min Y, < 6}

Then for any other process Z such that B [sup,er |V — Zi|] <e,
P (\@y — Gy > czps%) < 2670,

where Gz € argmingcrg) Yo
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Proof For all € > 0, let

d(e) = sup{]a— dy|‘a 1Y, — min Yy < 5}.

o’ €la;b]
Remark that:

Yd — min Ya/ = Z@Z + (de - Z@ ) — min Za/ + (Ya/ - ZO/)

o’ €[asb] o’ €lasb]
< Zsy, — min Zy +2 sup |Yo — Zy|
o/ €lasb] o’ €la;b)
<2 sup Yo — Zo.
a’€la;b]

By definition of 0(¢), it follows that

|Gy — dz| <0 (2 sup Yo — Zu| |
o’ €la;b]
As a result, since § is non-decreasing by definition and by Markov’s inequality, for
all y > 0,

P (lay — z| > 27y tPe?) <P(0(2ye) > yxc2y’e’)+P ( sup Yo — Zo| > ye) <

o/ €la;b)

2
J
We get the stated result by setting y = £2049 in the above equation. [

Since g, (ay™) = argmin, e, o.).q. (b)) Jn © 9 ' (1) = Wiy, we will now show that
Y = f,o0g, ' — W satisfies equation [6.37, This is easier to do than for the hold-out
process. In order to control the diameter 8y (g) of the set {t : Y(t) —minVY < e},
we use the following lemma, adapted from the proof of Theorem 3.7 of [88] which
treats the case ¢ = 0 (uniqueness of minimum). This lemma shows that one can
bound the expectation of 5y(5) using the expectation of the minimum of small
perturbations of the process Y.

Lemma 6.7.2 Let G be a random continuous function on the interval [s;t]. For
all a € R, let:
M*® = max G(z) + ax.

zE€|[s;t]

Assume that the function: m : a — E[M®] exists and is differentiable on the
interval | — ag; ag|, where ag > 0. For all e > 0, let

Zy. =inf{z € [s;t],G(x) > M — e}, Zy. =sup{x € [s;t], G(z) > M — ¢}
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Then for all a € (0;ap),

2
E[Zy. — Z1.] < —+2 sup |m/(z) — m(0)].

a z€[—a;a)
Proof For both i € {1;2},
M —¢ —+ aZi,s < G(ZZﬁ) + ClZi’g § Me.

It follows that:

—e<M*"—M—-aZ,. (6.38)
Thus, for all a > 0,
=L MM g
a —a
T T
a a

therefore for all indices i € {1;2},

e M“*—-M M*— M ¢
——+ — < Z;, < —— + —.
a —a a a

In particular,

Z2,6 - Zl,s <

By taking expectations, it follows that

B2, - 2, < o o M= 0] mEa) = ml0)

a —a
Finally, by the mean value theorem, for all a €] — ag; ao|,
2e , , 2e , ,
ElZoe—Z1] < —+  sup [m(z) —m'(y)| < —+2 sup [m/(z) —m/'(0)].
(z,y)El—asal? a z€[—a;a)

For processes G = f — W on an interval [s;t], where W is a Wiener process
and f a continuous function, Pimentel [88] shows that m’(a) = Cov(W; — W, M)
for all @ > 0 (this is a consequence of Theorems 1 and 2 of [88]). With this result
and lemma [6.7.2) below, it is possible to prove the following claim.
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Claim 6.7.2.1 Let x > 0. Let g, satisfy the properties stated in Theorem|5.5.8 of
Chapter[5. For all u € [gn(az); gn(bs)], let Y : u s (f, 0 g7t)(u) — W, where W
is two-sided Brownian motion such that Wo = 0. Let Gy = argming, ey (4.):gn(b2)] Yu
and

5y(5):sup{|u—1ly| Y, — min \& gs}.

a’e[gn(az)an(bz)]
Then there exists an absolute constant k such that for all € > 0,

E[by (¢)] < k(1 + )7 /e
Proof Let ?u = =Y, — Wy, (as), SO that iy = argMaX, (g (as)ign (ba)] Yu and ffu =
fn(u) +Wu—Wy,(as) Where fo=—fno g, L. Since f, is continuous, piecewise linear
by definition and g, ! is Lipschitz continuous by Theorem of Chapter o} f, is

locally Lipschitz and so is the function x — f,(z) + ax, for any a € R.
For all a € R, let

M = max Y/u + au
u€lgn(az);gn (ba)]
Z, € argmax Y, + au (6.39)
ue[gn(az)?gn(bz)]
m(a) = E[M?].
By [88, Theorem 2|, Z, is uniquely defined and
E[Za] = gn(al,) + Cov (Wgn(bz) — Wgn(az)’ Ma) . (6.40)
By [88, Theorem 3.7],
m'(a) = E[Z,]

= gn(az) + Cov (Wy,,) — Wyn(an), M®) by equation (6.40).
Hence:
m’(a) —m'(0)] = |Cov (Wy,(ba) = Woa(an), M* = M)
< \/Var(ng) — Won(an)V/ Var(Me — M)
< V19n(be) = gulan) [/ Var(Me — M). (6.41)
Furthermore, by definition ,

Yy, 4+ aZy = M + aZ,
< M

= max f/u + au
u€E|[gn(az);gn(bs))

<M+ max au.
U€E|gn (az);gn (bs)]
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It follows that |M?® — M| < |a| max(|g,(az)|; |gn(bz)]), and therefore, by equation
(6.41),

|m/(a) - m’(O)\ < max(|gn(az)|; |gn(b) \/|gn o) = 9nlaz)llal. (6.42)
Since for all w' € [g,(az); gn(b2)] Yor = =Y — Wy (a0,
Y, — min Y, <e <= ffu — max ffu/ > —€.
' €[gn (az);gn (bz)] W €[gn(az);gn (bs)]

By lemma and equation (6.42)), it follows that for all a € R:

E[by(e)] =E [sup {Iu —ay|:Yy— omin Yy 5”
U €[gn (az);gn (be)]
=E {sup{lu—'&ﬂ Y, — max Yo > _EH
U €[gn (ae);gn (ba)]

2e
< ;+2amax(|gn(ax 15190 (02) )V | gn(az) — gnlaz)].

Setti = , it follows that
etring a \/maX(|gn(az)| lgn (bs) \/lgn ba)—gn(az)|’ W,

Al

E[oy (2)] < 4y/e max([gn(az)]; [9a(b2)]) (9n(ba) = gn(as))
Finally, by point 3] of Theorem of Chapter
max(|gn(az)|; [gn(bz)]) < 20s]l, (1 + ),
which yields the expected result with & = 4 x 21 (20 ||s||oo)%. |
We can now proceed to prove claim [6.7.0.1] In the following, the letter x will

denote constants — which depend only on the assumptions of section — the
value of which can change from line to line. Let

Yo = (fu 097" (w) = W

For all # > 0, ay* = argmin,e, 41 fa(@) — Wy, (), in other words g, (éy™) €
Argmin, (g, (a,):gn (b)) Yu- BY claim [6.7.2.1) for all € > 0,

E {sup {|u — gn(a3y")] - Yo — min ; Y < EH < k(14 x)%\/g (6.43)

u’'€ [.‘]n (‘%:);gn (be
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Furthermore, by Theorem of Chapter[5] there exists an event F of probability
P(E) > 1 — -5 such that for all DY € E,
DT]

(6.44)

DT

E sup R (g, (u)) — Y, =E

u€[gn(az);gn (b))

sup |R(@) = Yoo

a€lag;bs

< k(14 x)%n’ul,

where R" denotes the process:

~T 2
Skutj — SH

. ; 1
Rhozi»—>—<

R 2, e R R
N SL— ) = SR = P) (L - 51

extended by linear interpolation. By the definition of l%%"x stated in claim |6.7.0.1},

kg"ow_k* : AhO
—5— € argmin ¢, 4, £"°(a), therefore

. .
Gn (kT’IA k) € argmin  R"(g,"(u)).
w€E[gn (az)ign (be)]

By equations [6.43| and (6.44]), proposition can be applied conditionally, given

DT € E, with e = k(1 +z)2n™, ¢ = k(1 + )i and p = L. Therefore, for all

2
DI e E,

u

n~s. (6.45)

N

khe —k, O 9 _up
P (I (E5) - @51 > w1+ )b

D,{) < k(1+2)

By the law of total probability,

.ho __ w . ) 1
v ('g"(kT‘Z )~ galay) = K1+ x)gn“‘l) < k(143)in~® +P(E°) < /{(1+x)in‘%+ﬁ
This proves claim [6.7.0.1| with «; = min (ug, 12).

6.7.2 A bound on the distributional distance between the
argmins

As will be evident in the next section, the risk of the hold-out estimator involves

the distribution function of the selected parameter k2, while the risk of the fsf’l{ v

estimator involves the distribution functions of min(l%{}if, l%:}ﬁg) and max(l%:}ﬁf, l%:’ﬁ;’),
where 17,75 are as in Definition [6.3.2 Here, we will try to approximate these
distribution functions. This is the purpose of result [6.7.2.2] below.
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Claim 6.7.2.2 Let T1,Ty C {1...n} be two subsets such that |T1| = |Ta| = ny
and Tf NTs = 0. Let x > 0. Fori € {1;2}, let l%{,ﬂfx be the parameter chosen by
minimization of the hold-out risk estimator on the set [|k. + azA; ki + b, Al], more
precisely,

=2 (P = P) (57).

/\TZ
Sk

l%%ox = min argmin
’ k€ [|kxtaz Asky+bp Al]
Let W1, Wy be two independent Wiener processes satisfying equation (5.11) of
Theorem with T = Ty and T = Ty, respectively. For both i € {1;2}, let

Gy = argming, e, 1 fu(@) = Wy, (o). There exists a constant x5 > 0 such that:

E [sup [P (l%%fz < y|Dgl> —P (ke + a5 "A < y) ” < ks(1+ x)%n_% (6.46)
LyeR

E [sup [P (l%%’m A l%éﬁgm < y|DZmT2> — P (ke + (6" A ag)A < y)’ < k(1 + )3
LyeR

E |sup |P (k:’; vide | < y\D,{mTQ) —P (ke + (4527 V ATA < y)’ < k(14 7))
LyeR

I%;E‘l”x—k*(m)

In the previous section, an upper bound on the gap between and
&%x has been proven. Lemma below shows that any such relationship be-
tween two random variables implies a uniform upper bound on the distance be-
tween their distribution functions, provided that one of the distribution functions
has some Hélder regularity.

Lemma 6.7.3 Assume that for all (t;,1s) € R?,
IP(a < ty) —P(a < ty)| < Llta — t4]".
Then if & is another random variable such that P (& — &'| > ¢) <6,

sup [P(& < o) —P(&' < )] < Le” + 26.
acR

Proof For all x > 1, let E be the event:
E={la-d<¢e}.
By definition of E, for all t € R,

Iplave<t < Iplay< < Ipls—c<t.
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Taking expectations, it follows that for all ¢t € R:
Pla <t—¢) —2P(E°) < P(& <t) <P(a<t+e)+2P(E),
therefore by Hélder continuity of the function ¢ — P(& < t),
P(a <t)— Le" = 2P(E°) < P(& <t) < P(a <t)+ Le” + 2P(E°).
|

It must now be shown that the argmin distribution function has the Holder
regularity required by the above lemma. The following proposition shows that this
is the case for processes of the form f — W (where W is a Wiener process), under
some assumptions on f relevant to the present setting.

Proposition 6.7.4 Let a < 0 < 1 < b. Let f : [a;b] — R be a continuous
function which is non-increasing on [a; 0], non-decreasing on [0;b] and Lipschitz-
continuous with constant L on [0;1]. Let W be a two-sided Wiener process. Let
t= argminge . f(t) + Wi (the minimum is a.s. unique by [88, Theorem 2]). Then
for all (t;,t5) € R?,

. . 8§ 8L
IP(E<t)—P(E<t)| < { +—} Ity — 1|1 (6.49)
VT
Proof Let 6 € (0;1). Let z €]a;b[. Let Is = [x — &; 2 + &]. Let m € [2;1/(20)].
o If0 €[z — 32+ 30, let Js =[x + Fd;2 4+ md]. Then
P(t € Is) g]P’(mmf( )+Wt§rréijnf(u)+Wu)
u€Js

tely

<P f(0)+rtniInWt < f(mo) —i—mmW)
€ls

u€Js

Since x — 50 < 0, x +md < %md < %, fis L—Lip on [0; x + md|. Therefore

P(f els) <P (min Wy — Weys < Lmd +min W, — WH(;)

tels u€Js

o If 0 < z— %0, let Js = [v — F0;x — ). Since f is non-decreasing on
v — 50,2+ 6],

P(tcl;) <P (mlnf( )+ W, < IIélJIlf(u) +Wu>

tels

<P(f(x—5)—minI/Vt<f( 6)—|—m1nW)

tels u€Js

gP(minWt—Wxg min W,, — W,._ 5)

tels u€Js
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o If 2+%0 < 0, symmetrically, let J5s = [2+0; x4 3d]. Since f is non-increasing
n [z — ;7 + F],

P(tecl;) <P (mlnf( )+ Wi < rréljnf(u) +Wu)

tels

<P (f(x—i—é) —ItniInWt < f(z+9) —mian>
€ls

u€eJs

tels

<P (min Wi —Wiis < mln W, — Wz+5)

Let Y7, Y5 be two independent random variables with standard normal distribution
N(0,1). Since I; and Js are disjoint, of lengths 20 and (% — 1) 0 respectively, in
all cases, by the reflexion principle,

P(i e I;) <P (—\/%ym < /(2 —1)6|Ys| + Lm5)

1
P(ﬂﬁk&;¢E?mm+LT£)

/32
=P (IYll

vm = 2|Ys| — \/_>
P Vm4_2|Y2|>+P< i, o |Y5|)

l\')l»—l

=
vl > ok

vm —2
> >+P(!Y2|<

N

Y,

<p (|5

26— )
Y, vm—2/"
Y1 follows the standard Cauchy distribution, and Y5 ~ N(0, 1). Moreover, for

all = > 0, [, oo ﬂt?) < -, therefore:

8 4f Lm
\/7 VT Vm =2

Let m be such that m — 2 = \/Lg > /8> 2, then m < 2(m — 2), which yields
N 8 8L 1
P(tels) < |—+ —] 04.

(e 1) Lr i ﬁ}

Furthermore, m = 2 + \/Lg satisfies the assumption m < 2—6' indeed, since § <

assumption,
V38 \/5
X —= 2241/=2=>m.
20 5~

P (i€ ls) <

by

ool

1 vE 1 8
267 2/5° 27 2

DN | —
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On the other hand, P ({ € I;) = P(t < 2 +6) —P(f < « — §). Since no further
conditions were imposed on x € R, § € (0; %), we have thus proved that

1 - ~ 8 8L
V(t1,t2) ER? [ta —t1| < = = |PE <o) —P(E<ty)| < [— + —=
T T

8
To conclude, it is enough to remark that if |ty — 1| > %, then f—r\tg — tlﬁ >
1.5 > 1, hence equation ([6.49)) is still true.

] Ity — 1|7

Wl

8

™

=
|

The above proposition can now be used to prove that the distribution function
of

gn(637) = argmin  f, o0 (1) — Wi
u€[gn (az)ign (be)]

has some Hélder regularity. This is the purpose of the following claim.

Claim 6.7.4.1 For all x >0, let g™ = argming,c(,, 4.1 fu(@) = Wy, (o), where W
is a Wiener process such that Wy = 0. Let x > 1. For all (y1,y2) € R?,

P (gn (™) < w2) = P(gn(Gy™) < yo)| < 5lyr — 2]t (6.50)

Furthermore, there exists a constant k such that for all j € [|azA; b, A — 1]],

- . )
’P (OA@’% < i) —P (@33’”“" < i)‘ < w1+ an~ 54 (6.51)

A A

Proof Let x > 1. Proposition will be applied to the function f, o g *
(or to & — fn, 09, (—x)). Let us check that all hypotheses are satisfied. f, is
non-increasing on [a,;0] and non-decreasing on [0;b,] and g, is non-decreasing
on [a,; b,| therefore f, o g, ! is non-increasing on [g,(a,); 0] and non-decreasing on
[0; gn(bz)]. The same is true for the function x — f,0g, (—2) on [—g,(b.); —gn(as)].
It remains to show that these functions are Lipschitz-continuous on [0; 1]. By point

of Theorem for all (o, az) € [ag; bs?,

|gn(2) — gn(cr)] = 4 1s]* ez — ar| = 4az — ay],

therefore g, ! is $— Lipschitz on [a,;b,] (by lemma [6.9.7). As for f,, there are two
cases.

o If A = Ay, then f, is 1-Lipschitz on [0;1] and in particular f,(1) < 1,
therefore b, > 1 since we assumed z > 1. a, < 0 by definition. Thus f,og,; 1
is $—Lipschitz on [0;1] C [a,; b,]. Proposition applies to f, o g;! with
L = 1 which yields, for all (y1,y2) € R?,

P (gn (™) < w2) = P(gn(Gy”) <o)l < 5lyr — a4
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o If A=A, then f, is 1-Lipschitz on [—1;0] and in particular f,(—1) < 1,
therefore a, < —1 since we assumed z > 1. b, > 0 by definition. Hence
x — fno g, (=) is 1—Lipschitz on [0;1] C [~bs; —a,]. Proposition
applies to x — f,o0g,'(—x) (which reaches its minimum at —g,(ay")), with
L = 1. This yields, for all (y1,y2) € R?,

P (—gn(ay”) <o) — P(=gnlay™) < 1) <5lyr — ol
Thus, in all cases, for all (y1,72) € R?,

~ 00, T ~ 0O, 1
P (gn(a5y") < y2) — P (gn(a3") < y1)] < Blya — y2|1,

which proves that equation ([6.50]) holds true.
Let now j € [|a;A; b, A — 1]]. Since g, is increasing (hence injective),

P (ay" < ) -P (4" < &) = P (9u(ai") < ga (5) P (9a(a55") < 90 (%)) -
By equation ,
P (aw” < I50) =P (an” < 2)[ <590 ('57) — 9n (%)

By point [5] of Theorem [5.3.8]

=

(6.52)

|gn (55) — 90 (%)] <8Il [ fn (552) = fu (£) |+ 1215l

Thus, by claim [6.9.2.1] and lemma [6.6.2,

g0 (552) = gu (£)] < 8 sl ka1 4+ 2)207 + 12])s]) L 2=,

t

By hypothesis [H5] of section [6.2.2] there exists therefore a constant s such that

|g" (Hl) —Gn (%)‘ < k(14 x)2n7u2/\53.

Therefore, by equation (|6.52)),

P (ax” < 5 — P (a5 < 4)] < setvITan =,

wich proves equation (6.51]). [ |

We can now prove claim [6.7.2.2] Since Wi, W5 are two independent processes,
for all y € R,

P (gn(égy:" A dyy”) < y) = 1=P (gu(ayy") A gn(ay") > y) = 1=[1 =P (gu(ap") < y)] -
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By the same argument, for all y € R,

P (ga (G507 V a5e®) < y) = P (9a(6527) V gu(657) < y) = P (ga(a5e”) < y)°.

Since the functions  — 1 — (1 — z)? and = + 2% are 2—Lipschitz on the interval
[0; 1], it follows from equation (6.50) of claim [6.7.4.1} that for all (y;,42) € R?,

Vi € {12} [P (ga(G57) < w2) — P (ga(aiy™) < 1) <5lyn — |t (6.53)
2) — P (gn(amy” Ady") < wn)| < 10[ys — yoli  (6.54)
2) P (gn(awl Vagt) < yl)| 10Jyr — y2|i. (6.55)

INCININ

{IP) gn aW /\on2 )<
{]P) (gn aW vV éz%f) <

For all ¢ € {1;2}, let

Y
Y

7.ho
~ho __ kTiﬂC B k:*

Ore=—"x € argmin R™(«). (6.56)

OCE[aac;bac]
By claim [6.7.0.1],

P (|gn(a577) = 9al(@,)] > a1+ )

wlo
3I
NG
N———
A
—
+
8
~—
MH
@L
—~
D
t
~J
~—

Since

|gn (G377 A agys”) — gl o A Gl )| < max(|gn (G377) — gn (652 )|, gn (G527 —

|90 (63" V G02") = ga(657 , V 675 0) | < max(1ga(a") — 9a (677 )], gn (G

it follows that

P (|gn(@m;” A a5 = gn(ae, A dde,)| > ka1 + 2)fn ) <2ma(1+ 2)in

(6.60)
P (|a5" vy — o v al] > m(1 )3 ) <omi(l 4 a)inT®,
(6.61)

Let Trhaz = Tin = Th N1, and define the following events.

For any i € 1;2, A; = {‘gn Q") = gal(60 )| = ka(l+ z)8n

K
——

Apin = {9 (&35 A 6557) = a6l A 68| 2 a1+ )

A = {|0n 655V 6557) — 00(8, v 842, | > ma(1 + 2)Fn” %} |
62
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Then for all w € {0, 1, min, max},

V26i(1 4 2)5n TP (IP’ (Aw|DT) > V241 + x)5n **) <E[P(A,|D}")]
T

»Jk\»—‘

< 2k4(1+2)1n
It follows that, for all w € {0, 1, min, max},
P (]P’ (Au|DI) > v/2ra(1 + 2)fn" u> <VZrg(1+2)in 1,
By independence of a aW and DT for all y € R,
P (gu(Gw,") < ylDy') =P (ga(amy)”) <) (6.63)
P (gn(Gw;") A gn(ayy") < ylDR™2) = P (galayy’) A gulany’) <y)  (6.64)
P (9a(a32") V gu(Gny") < 91D ) =P (ga(dyy;") V gnl(apy’) <y) . (6.65)
By definition of A, (equation [6.62)), equations (6.53), (6.54), (6.55) and lemma
6.7.3| applied conditionally given Dlv, with v = 2‘1 and L = 5 or 10, there exists a
constant x such that
e For i € {1;2}, on the event P (A4;|DX) < /2k4(1 + 2)sn~ 1 of probability
greater than 1 — /2r4(1 4+ x)én’ﬁ

=

N

sup|P (g (&7 ,) < y|DyY)

yE€R

u

— P (gn(apy") <y)‘ < k(14 2)2n 1 4 2¢/2k,(1 + 2)sn 12
Hence by bijectivity of g, : [az;be] = [gn(az); gn(Da)],

B[ sup [P (af, <yID]) P (a5 < y)}]

ye[ax bac]

IE[ sup [P (ga(677,) < y|Dy

yE[gn (az); gn(bx)}
(1—|—:c)32n T —1—2\/2;@4(1—1—:15)é T2
+IP>(IP> (4:|DT) > VZra(1 + 2)Fn ﬁ)

T 4 3y 264 (1 + x)5n 1

33
'@
=
s
[oN
=8
3
/N
s

9

< k(14 z)2n”

e On the event P (A DE™) < /2r4(1 + x)én’% of probability greater
1 uq

than 1 — /2k4(1 + z)sn™ 12,

P (gn(aTl 2V OA"E:(:) y’ngTQ) —P (gn(O‘Wl v OA‘%;) < 3/) ‘

sup
yeR

k(1 +2)8n 1 + 2264 (1 + 2)5n 1.
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Hence by bijeCtiVity of gn : [aac; bz] — [gn(az); gn<bx)]a
E| sup |P(af, v als, <yIDI™) —P(af7 vayy <y)|
ye[az;bz]

= E[ sup [P (gn(a57, v &52,) < yIDETE) — P (ga(a57 V apsT) < ) \]
Y€[gn (az);gn (bz)]

< R(L+2)%n T + 22k (1 + 2)sn 1
+ P (P (Apas| D7) > V3 (1 + ) in~ )

nTT 4+ 32k (1 + x)%n_%.

9

< k(14 )32

e The same argument yields the corresponding result for min instead of max.

Claim [6.7.2.2] is obtained by changing variables from y to k, + Ay.

6.7.3 Proof of Theorem [6.4.3

We can now prove Theorem [6.4.3

Definition 6.7.5 For all z € Ry and for all t € L*([0;1]), let

kvtbg A

L= > (L),

j=k«tag A+1

For any random variable X, denote by Fx the distribution function of X. Let
W be a Wiener process independent from DI and satisfying equation (5.11]) of
Theorem [5.3.8] Let x > 0,

ay" = argmin f, (o) — Wy, (),

a€laz;ba]
k= k. + a5t A
and X
kho — k,
E,=<Xfn —x <zand ky + 0, A< n—n;p. (6.66)

Since {k,+a,A, ..., ko+b, A} € {0,.. . .n—n,}and ke € {k,(n))+a. A, ... ko(ng)+
b,A} on E, by definition of a,, b,, k2 = k::’}(’x on FE,. Thus, on E,,

k*+a.1cA —+o00

-y (éf—0j>2+ S+

Jj=1 J=ks«+by A+1

. 2 . 2
La(3h, = )| = |[L.(5F = )",
T

2 2

Lx(g,{%ox —5)

~ 2
o=+ |
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so, taking expectations, by lemma [6.9.1

ks
E[ Sino — 5 ] :Zvar + Z 62+E“ kho _3)H2HE1:|
j=1
—E [||L.GL. - )| HEZ] (6.67)
— or(ny) + E [( (6l =) = It - ) 1 | 2 1
t
(6.68)
Since
) kyxt+bz A . 9
o(Stg, — H “LGE -9’ < Y g+ (0 -0)
e j=k«tagz A+1
by claim [6.9.4.7] for all n > n,
9 kx+bz A 3
B (a6t~ o - I = ol ) 1| <PE) S 02+ SR -0
' j=kitaz A+l

< 7(1+ 2)P(ES) by lemma [6.6.4]
Thus,

[ (26, - - N6 = o ) 1] - |

< 7(1+ z)P(EY).

2
el Il LC
(6.69)

L.(5%,, —s)

We will now approximate Lho through the follow-
T,x

2
Lx(éggo - S) )

ing claim.

Claim 6.7.5.1 There exists two constants kg > 0,ug > 0 such that for all x > 0,

Proof

s)W}

AT 2 Bt 2 . 1 . 4l g
E m(Sl;;TL?x —3) — Z HijCgo(j —1)+ n—t[l — F,;go(j — D]| < re(1+x)32n""e.
j=k«tazA+1
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9 k’*—i-b‘LA ]Ikho - kho 1
AT } : 2 2] } : AT
( kho _S> - 0 ]Ikho <] + n BN <0.] _6]) - n_
j=ketaz A+l t j=ketaz A+1 t
b A . 2 1
< X #-e) o
j=kitaz A+l t

hence by proposition [6.9.2) and lemma [6.9.4 with Z =1, =0, 0 =1,

2 e 2 Hk’w =] 15
T D D R | A
j=kstazAt1 t

“+o0o
X / (y + logn)?e Ydy
0

< k(14 z)log?(n)n~ min(75, %),
(6.70)

for some constant x, by lemma|6.6.4, Furthermore, denote by 12 ko the conditional

distribution function y — PP (l%:}ﬁ"z < y|DE ) Since l%{;ow is an integer,

kxtbe A Tino kb A A 1
E| Y My +——|= > 03 Fige, (= 1) 1= Fipo (7= 1)),

ke ny .
=kit+azA+1 J=k«tazA+1
(6.71)
therefore by equation (|6.70)),
keutby A 1
2 . :
ElLh, -9l = > GReG-D+ - FeG-)
j=kstarz A+1
katbe A
k(14 z) log® nn~min(is: Pe+ ]EH Z [Figgo — Fi (U — 1)(9? - n%) ]
jmbetan A+l
K/(l + I‘) 10g2 nn_mln(% 73 ¢+ E [ Fk%o — F'I;OOH ] e[fn(@x) + fn(b’z)]

(6.72)

Furthermore, by claim [6.7.2.2]

vl

E[HFk%—ka oo] k(1 + ) 3n . (6.73)
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It follows from equation (6.72)) that
katba A

ElLh, -9lF] - Y GReU-D+ - Feli-1)

j=kstas A+1

k(1 +z)log® nn~ min(73.5) g 4 2r5(1 + x)%n_%e.
This proves claim [6.7.5.1 for all © < min (%, %3, 11‘—%) [ |

By lemma and definition [6.7.5|

. ks Var w kv+be A
el -9f]= > S
j=ks«tazA+1 ™ Jj=ks«+1
K ky«+bs A
x 9 L
_ Z _+ Z 02 + I Hz
j:k*+azA+1 j=kst1
it follows that
S 1 reuﬁ
> BFLG -0+ [ Fe( = D E [[|LGL - )]
j=kitaz A+1 t
k. 1 kye+bis A 1
= Y Bel-|gen|e Y u-mG-ne- o],
) Ny . v ny
j=kstazA+1 j=ke+1

Since k®° = k, + Gy A, Fioo(j — 1) = Fyoee (j_lA_k*). Changing variables from
7 = ki —z+1tozf0r] < k: and from j = k, + i+ 1 to ¢ for j > k,, it follows
therefore that:

kvtbg A 1
3 O3 Fie = 1) (1= B (= 1)] - [HL

j=kstarA+1

H } HGHEI

—az A by A—1 1
ZFC“ (%) {02 —i+1 _] - Z [1_F°” f)} |:913*+i+1_n_t:|'

" (6.74)
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Furthermore, since agy" € [az; b,

On the other hand, for all j € [|la,A;b,A — 1|} and for all & € [4;ZE2], by
Definition [6.4.2)

fi(0) = ARGk, ++ 1) — Rk + )] + =

Uz

where R(k) = Y., 62. It follows that

, 1
ef, () =A [_ - 91?:*+j+1} )

ny

therefore for all o € ]%; % [,

by A—1 itl
A~ 00,T E 1 A
EEFN = X |2 | A [T 1 gl
o R (6.76)
+ {Qi*_jﬂ }A/ Fion(ar)da
=1 =

Since for all j € [|a,A; b, A — 1|], by claim [6.7.4.1

%
A/. Faeon(a)da — Faer (%)] <

J

Foon (%) - Flaeo (%)’ <KRV1I+ e
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by equation (6.74f), equation (6.76)) and claim [6.7.5.1} it follows that for all =z > 0,

2
‘E[ (6, =) = oG - 9P| - eBLuta
4 _ u2/3 <2 2 HeHel
ke(l+x)2n e+ rkV1+an 4 Z Cevii — — |+ ——
j=azA+1 e i
n—n; 1

ko(1+ x)7n e + k1 + In_%e[fn(%) + fa(b)] + 0]

n — 1
< k(1L +2)In ",

where v = min (u6, Tz 4) By equation and equation (6.68)), it follows that
for all n > nq and all z > 0,

. 91,
‘IE {Hs;‘: - H ]IEZ} — or(ny) — ¢k [fn(mf'f)]‘ < 7(1+:v)]P’(E;)+/<a(1—|—a:)gn_“e—l——HnHZ .
T t
) (6.77)
Furthermore, since by definition k%° € {1,...,n —n;} and n — n; < ny,

o ol < S+ (570"

Hence by claim [6.9.4.1| applied with oy = _ﬁ* , Qg = ”tfk*, for all n > ny,

E {]IE;

st - ol | < et + Jreen) e

A
P(E;) [lIs]”+ 3] -

By equation ((6.77)), there exists therefore a constant x such that for all n > ny
and all z > 0,

S A 00, T . 3, ol .
‘IE {Hs{h() H 1 — or(ny) — eE [ fu(7y )]’ < K(1+2)P(ES)+r(142)2n eJanILe .
(6.78)
Since by definition,
Gy =  argmin {fn W (o )}
ae [_’“*T(”t);_;'_ [
d%w = argmin {fn(a) Wgn( )} :

ay > %= and fo(a) <z for all « € [ay; by,

E [fa(6% ) Lagelastal] < Efa(ay™)] < E[fu(65)] + 2P (65 € [a0500]) . (6.79)
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By claim [6.9.3.1] for all n > ny and all z > 2k7(1 + logn), P(&5) ¢ [a;b,]) < L.
Hence, by equation (|6.163)) of claim [6.9.3.1] lemma applies with e =0, 6 = %
and f: x +— r7(1 + x), which yields, for all n > ny and all > 2k;(1 + logn),
+oo
E [fn(d%)ﬂd%‘}ﬂaz,bzﬂ < / /437(1 + y)e‘ydy
logn
R +eo
< —+ [—li7y€_y]1 +/ kre Ydy
n oen logn
< /f7+/£7+2/f7logn‘ (6.80)
n
Thus, by equation (6.79)), for all n > max(2,ns) and all x > 2k,(1 + logn),
A 00,T ~ 00 logn X
|E [fulay )] = E[fulaW)]] < di7—— + —. (6.81)

n

Let © = z, = max(2r7(1 + logn), ko log? n). By claim [6.9.2.2 for all n >
max(nz, ko(l + ,)3), ke + 0, A < n —ng. As x, is of order log” n, there exists
ny such that for all n > nyg, n > max(ns, ke(1 + z,,)3), hence k, + b, A < n — ny.
Finally, it follows from Theorem that for all n > max(ng, ny), P(ES ) < 3.

In conclusion, by setting x = x,,, equations (6.78)) and (6.81) yield a constant &
such that for all n > max(2, ng, ny, n2,ny),

log? log?
ogn, . log (n)

0
o+ klog®(n)n e + M
n n n

B (st = o ] - vt - e 1sai| < o

Since n% = 1 <=9 this proves theorem W

ng n—ng

6.7.4 Proof of theorem [6.4.4]
For alli e {1,...,V} and all x > 0, let

2 _apli(sh)

. . ' _ T
ko = ké‘f =min argmin ||sk1
ke{l,...n—n;}

SE* = 2P) (5T).

ko — k;g,‘fm = min argmin
ke{k*+azA ----- k*+bzA}

Thus, 52 = &3 foralli € [|1;V]], and 50/ ,, = L 3°7 55 Let 2 > 0 and let

h = L.ho*
kio =1 kio

kho — k,
E, =0, {fn (ZT> <zand k., +b,A <n— nt} . (6.82)
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By definition of a, b,, on the event E,, {k.+a,A, ... k.+b,A} C{1,...,n—n;}

and for all ¢ € [|1; V], i _k*
all 7 < ki + a,A\, on Ex,

€ |ay; b], therefore k:fw = l%flg As a consequence, for

<mV71pJ VZH

and for all j > k, + b, A+ 1, (3% v ¥5) = 0. Therefore, on the event E,,

: HZ ( ZHT—9>

By linearity of L., L. (5, v) v Zi:l L,(57°). The random variables L, (51°)lg,
are exchangeable, therefore by lemma [6.9.5]

2

+ Y e

JjZkaetby A+1

svf

TLt V - S nt V CE(S)

9 kstaz A 1 A
E{ ?;{y—sH ]IEI} —F |Ip, Z ( ZeT —0) + Ells, || Z(3F - 9|
V- ~ho ~ho
+ TE [Le, (Lo (570 — 5), Lo(S7 — 5))] -
Furthermore, for all i € [|1; V], on E,,
k*+aacA N
[ =5l = > (67 - 9) +LGE) ~ L)+ Y 6
J=1 JZkiAbs A1

It follows that

E [HEJ ( s -

, hetasd [ V 2 R )
5 — s )] “E| Y (Vzgjn_@j> (-0

j=1 i=1
V-1 R N
+ TE [Lg, (Lo (57 — s), Lo (572 — 5))]
V1 (sto
— B L. | L.GE - 9] - (6:83)

By exchangeability of the collection ($p°Tge)1<i<v,

i
e( il =l = It =1 |

ity ol = st = o) | <8 e
(6.84)

For the first term on the right of equation (6.83)), the following upper bound can
be proven.

n{V - SH — |5k — 5H2)} < 0, therefore
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Claim 6.7.5.2 For alln > nq and all x > 0,

ketazA 2 9
- V—-—1n—nk
T; Ty t vk
B\l 2 ( 29 ) (0 -0) | <
+ k(1 +2)n _5“5+ || 1> P(ES).
(6.85)

Proof For all k € N,

_ nit D we(X) % > 0. (6.86)

By definition 2} the subsets (T )j=1,...,v are disjoint and have cardinality n —n;.

Let By = UJ_, TJC. If i € By, Zy: I[Tj( i) = V — 1 (there exists a unique index
j such that i € T5). If i ¢ By, then i is an element of all subsets T}, therefore

z;/:l Iz, (i) = V. Hence by equation ([6.86)), for all k € N,

Hence for all k£ € N, since the random variables X; are i.i.d,

1 & i V—1\° 1
v DO—0) | = (W) | By [Var(ve) + —5(n — | By|) Var(sy).
i=1 t t

By definition of By and since the subsets T} are disjoint and have cardinality
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n—ny, |By|=| U}/Zl T]C| = V(n — ny). Therefore,

V n? n? n?
nl.  n—n [(V-1)>2
o1 el |
_ny n—nt—2V+1}
n? | n V

nng n—ng n—mny
:n_f n on nV}
1 V—-1n—n
e Voon

It follows that

ketash [ Vo 2 A )
E| Y (VZQ}? —ej) . (ejTl —ej)
j=1 i=1

kitagzA
_ V—=1n—n Z’ Var(1);)

1% Ty - Uz
7=1
< — nomekta + " by lemma [6.9.1
V ng T ny
V—1n—n k. — — e |0
<— n — ng ki (ng) 4 2(1 —i—x)n ntg + nT H ||zl by lemma [6.6.4]
V ny T n g n—mng

Setting k = 2+ [|0||,1, it follows from hypothesis of section [6.2.2)) and lemma
[6.6.2] that

AT T - Tt Pux -6
2|5 (pTr o) (@ -o)| <P e

J=1
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Furthermore,
ks«taz A 2 2 kitaz A \4
T, ATy AT
2 3 (2 -0) - (5 -0)] < X e[ 2]
j=1 i=1
kitazA . )
- > E|(07-0)]
j=1
kitazA . 9
+E|Ig Y (9?-@) ]
j=1
(6.88)
thus by claim [6.9.4.1| and equation (6.87)), for all n > ny,
blad (1 & i 2 V—1n—n4 k.
NT; T — t -4
E s, ; (V;Hj _9j> - (63‘1 _9j> < BN VA — — + K1+ 2)n"%E
3 2 k*'+'ax13
hd P(EC) 2 e
+ 2 sl
V—1n—ns k. s
X T 5 - ]. 38
TR + k(1 +2)n
3 k.
—P(ES)—.
By comparison with k = 0,51 = 0, k*T(L?t) < or(n) < |s||”, which proves claim
0.7.0.2 |

By deﬁnitionA, on the event £, for all i € [[1;V]], kho e [|ky + agA; k, +
by Al], therefore k! = k'Y and

Ig, (Lo(377 = 8), Lo(375 = 5)) = Lp,(La(3}5, — 8), La(3}, — 9))

kho kgo
5 2
I, | La(3 = )" =T, || L(5T), — 9)
, T

Furthermore, by the Cauchy-Schwarz inequality and the fact that ]IEcskh and
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Ige §z§2 have the same probability distribution,
2
® 1 (G0, - 9.6y, - [t - )
2
> —2F |Ip Lx(éﬁz —5)
be A kutba A )
> 2P(ES) Y. 6, -2E |l Y (éjT—ej) ] .
j=azA+1 j=ketas A+l
By lemma and claim [6.9.4.1] for all n > n,
E |Ip. <<Lx<§;§;& =), Lu(335, —5)) = ‘ La(333, =) 2)]

> —8(1 + 2)P(E)E — 3(b, — a,)P(ES)E
> —14(1 + 2)P(EC)E.

Hence:
2
R =
2
<E (Lx({%& —5), LI(A;:S;; —5)) — ’ Lx(é;::%% —8)|| | + 141 4 2)P(ES)E.

(6.89)

To sum up, with the upper bounds obtained in equations ((6.84)), (6.89)) and claim
6.7.5.2) equation ((6.83)) yields, for all n > ny,

|52l — o | -2 [Isk - o]

<E [(Ly(58 —s), Ly(52 —s))—‘

ovf
Sm,V — S

2
L.( sh s)

~ S
ho ho ho
kl,z k2,z kl,z

SV dn o R a2 4 1414 ) ERES) + hn (1 + 2)e,

|4 g Tt ( )
6.90

We would now like to prove that 3,;T;1w and §,;T;2w can be replaced in equation
1,z 2,z

by §g¥o .87 up to negligible error, where the common subset T is such

L.ho ?
k2,x
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that DI is independent of Dy! and D}?. Let D), ~ P®0=m) be an i.i.d sample
of size n — n; independent from D,, and let Dy, —,, = (D,,D,,_,, ). For T ¢
{1...n}, PJ,_, and 8] are defined using the extended dataset Doy,_,,. Let T/ =
n+1;2n—nland T = (T NTy) UT" = (T1 N'Ty) U [|n + 1;2n — ny|]. By the

Cauchy-Schwarz inequality;,
B (L(60],) = La(o) La(6f3,) = Lu(o)
= B{La(%,) ~ Lals), L3y, — Lals)) + (LG, — 85, ), LalTy, ) — La(s))

(813,) — Lals). L35, — 85, ))]

e b, ~
= E|{Lu(5],) = Lu(s), La(3, ) = La(5))]
I 213 ¢ 27 3
£E ||| La(S, = S3.)| | B ’Lx(ggsz S)M
: S %
+E Lw(gggz — s:,{g;) E ‘Lm(gg%’% —5) ] : (6.91)

Since 17, Ty, T" are pairwise disjoint, T'= Ty NToUT" and |I7| = |T5| = |T"| =
n — Ny,

2 kx+bz A

. . 2
G ] D SN G A N
' ' j=kstazA+1
n—n 2 kitbA . 9
—n, ) .
= ( - ) > (PP, @)
t j=kstaz A+l
Hence:
2 2 kitbzA
_ AV (X
E ’Lx@;{io ) ] i (” ”) y.  Yalyd)
1,z 1,z ng i n—mng
Jj=kstasA+1
2
<2 () VAR el < V2
un n — ng
< 2\/§[bm —agl(n — nt)g

Uz
n — Ny

<4V2(1 + z) - € by lemma [6.6.4
t

< 4v2(1 + 2)n~%E by hypothesis [A5] of section [6.2.2]
(6.92)
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2
The terms Lx(%Tho —s)|| in equation (6.91)) can be bounded as follows.
) kxtby A )
AT o T R 2 R
‘ Lx(sk;u; - S)H - Z (9j - 9]’) ]Ij<k§f; + 99‘]13‘21«3,‘;“
' j=ketazA+1
katbe A )
< Y (0r-0) e
j=kstas A+1

Hence, by lemma

E ||

2
+ 6

LJI (§g;Lo - 8)
, T

ny

ky+bg A
2} < Z Var(1);(X1))
j=ketag A+l

ke tba A
2
S g
. Ty
j=ketaz At1
< V2(by — a2)€ +4(1 + 2)E
< (4+2V2)(1 +2)€. (6.93)
In conclusion, by equations ((6.91)), (6.93)) and (6.92)):

T T R R 33
‘IE [(Lx(s;{m — s),Lz(sgg; = 8)) = (La(8py = 8), La(S3y, — s)>] ' < 16(14z)n" 2 &,
(6.94)
Let (W;)jn.v) be independent Wiener processes, depending on Dy, _,, only through

Dy and satisfying equation (5.11) of Theorem For all ¢ € [|1;V]] and all
x>0, let

N

&; = argmin  f,(a) — Wi(gn()) (6.95)
ae[fﬁ* ;—i—oo[
655 = argmin f,(a) — Wi(ga(a) (6.96)
a€laz;bz)
k® = [k, + @A (6.97)
kS = [ke + 67" A. (6.98)

It follows that &y, 47", kS, kS are independent from Gy, &5, k5%, k5°. Further-
more,
kwtbe A )
T T _ AT o o o
(L3, =) Lellyy =N = D0 (07 =65) Ticigo e + B Toigo i o
j:k*+axA+1
AT
— b (‘93‘ - ‘9j> I[k{bz/\kg‘;-i-lgjgk{lf;vkg;?
(6.99)
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while by the same argument,

kitba A )
=T T _ T g o 21 ..
<L:v(8f€§f>x —s), Lm(sk?x —s)) = Z <9j 9]) ngk;ffzmgfz + Qjﬂj>kfzvkgfz+1
]:k*+axA+1

AT
—; (93' - 9]‘) Hl%f?zAl%g?ﬁngEfIV@?Z'
(6.100)

For any real random variable £, introduce the notation Fj(t) = P(f < ¢|DT1NT2)
and Fj(t) = P(t < t).

Recall that T = (T3 N T3) UT" where TN {1...n} = (), therefore the pair
(kho 12:5“;) is conditionally independent of DI _ =~ given Df*""2. Taking the condi-

1,2 2n—n
tional expectation of equation given D] _ . it follows that:
ks tba A
E[(La(8hy =), Lalilyy —MDE 0] = D0 (1= Fpo g G = 1] (0F -
J=k«tazA+1

9j>2

B [F'%’sz%’;; (7= 1) = Figovige (1 = 1)} 0; <9JT - 9j>

+ Fygoyino (7 = 1)65. (6.101)

J

By construction (equation (6.98))), the pair (l%fox,kgox) is independent from

(D3, D2Tq;_m) therefore from DJ,_ . Thus, taking the conditional expectation
of equation (|6.100]) given Dgn_nt yields
k*+ba:A R
J=k«tasA+1

g

_ |:Ff€ioz/\f€§,o$(] - 1) - Fl;lo?zv];?z(j - 1>i| 9]' <9AJT — 93)

+ Fleo yige (7 = 1)63. (6.102)

Therefore, by equations (6.101]) and (6.102)),

B [(Lo(5h, = ), Lalshy, = 9) = (Lol = ), Lal5E — s)IDS,, |

k«+bas A

A

F,

7.h .ho — FA 7.
ko Akbe, ke, Akse,

A

< Qmax{

Finoyjno — Froo i
o || kg VRS, ke, VESS, ||

j=ks«tas A+1

(6.103)

S (#-e) +e
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A OO, T A00T

Since by definition, I%f; = [k. +ay "], for all j € N, l%f‘;c SJ = kt+ay <,
therefore by claim [6.7.2.2]

9y -
\/I<L5(1+$)64n 32P(maX{HF];]1—L,Oz/\];£L,Oz_F];ioz/\];g,oz -

~

)

Ul

et i)

]

Fino o — Fieo ui
kl,‘:v\/kl(zv k??z\/kgoz

A

Fio vige = Iy

’

<E |max < || Eone ine — Fino o
= kPO NRRS, T T kTS ARSS,

00 \/ 00
1,ach2,x

< 25(1 + x)=n 1,

(6.104)
Hence by equation (6.103]) and claim [6.9.4.1} for all n > ng,
‘IE [(Lx(%{ﬁ —8), a3k, — ) = (Lol =), La(SL — s)>] ‘
ks+bz A
9 u 9 u
< (by — ag)[y/Rs(1+ 2) 0" 2 |E + 2k5(L + 2)m2n 16 Y 67
Jj=k«tazA+1

< (10y/F5 + 8k5)(1 + ) =n~ # € by lemma [6.6.4] (6.105)

By construction (equation (/6.98))), l%fox and /%Sox are i.i.d, in particular

2
VY € R, Fi i (1) = Fiox (y)* and [1 . kakw} (y) = [1 . ka] ().
It follows by equation (6.102)) and lemma that

E [(La(3f = 5), La(5T —9))]

= > [1 — Fiee (U = 1)} +)) + Fiee (7= %05
k«+bg A )
) 1 , 0
= 2 [1 — P U~ 1)} — 4 Fe (=107 £ ” n”él
Jj=k«tasA+1 ' t ’ t

By equation ([6.105) and claim [6.7.5.1] there exists therefore a constant x such
that, for all n > n; and all z > 0,

-
E [(Lo(8, — ), La(3]), —5)) - ‘ LB, —5)
1,x 2,z po
ST > [Fe (1= F)IG = 1) {n—t + 02| + k(1 4+ z)Bn—sg (6.106)
Jj=k«tazA+1 1

+ rig(1+ ) FEnuoe 4 00
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Let k= & + kg + [|0]|,n and v = min(3, ug, 03). For any j <0, 67 ; > nit while

for any j > 0, 65 > 0, thus for all n > n,,

2
E <Lx(§{{ui - 8)7 Lx(éggi - S>> - ‘ La:(‘é:ilu; - 8) ]
A1 o =4
< T A > [Frge (1 = Fie )] (R +5 = 1) = o Z[Fk?ﬁz(l = Fye I (ke +5 = 1)
j=azA+1 j=1

Remark also that for all j € Z,

j_k*
A

A 00,T

k<) = [h+a77"A1 < &= ko +aPTAL) = 677 <

It follows that for all n > nq,

Jj=az A
+ k(1 + x)%n_ug.

On the other hand by claim [6.7.4.1} for all j € [|a,A; b, A — 1]],

J+1
. A . .
Fapr(U = Fap ) (1) = A [ 7 [Fape(1 = Fip 0] < Far (182) = g (3)
x
<kV1I+an~ H2ged ,
therefore
2 0

]E <L$(§g§low - S)? L"E(S\)%éu; - 8)> - ‘ Lx(ggil“; - S) ] < _28 I:Fd(i)o’z(l - Fd‘;ovz):l (t)dt

e [ MR- B

+ 2k(by — a,)V1+ .

+ k(14 2)2n E.
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Since b, — a, < 2(1+ z) by lemma | setting u = min(u, %2, %), it follows that

for some constant k > 0 and all n > ny,
2 0
] <26 [ [Fap-(1 = Fap )0

—S/Obz[F e (1= Fyeeer)|(8)dt

+ k(14 2)2n "E.

Lo(f), =)

By equation , this yields

?|

uf
thv — S

0
S ~00,T 1—FAoo,z
i - L2 [ e Fapelt)a

+ /0 B (1= Fymo)(t)ct]

+ [2[Is[l + 14(1 + 2)E]P(ES) + sn~ (1 + )€ + k(1L + z) in"E.
(6.107)

2}<_V—1n—ntk V —

Furthermore, since 7% € [ay; b.],

+o00
/ | Faoe [l = Fage] = Fazour [l — Faoon]| ()dt
- m
g/ |Fage (t) — F, ]dt+/ Fag dt+/ J(t)dt
az bz
+oo
< (b | Fage = Fagor || _ + 0aP (65° > +/ J(t)dt
bz

< (bx - a:v)P(d(fo ¢ [am; bx]) +E [|a1 |I[ ¢ [az; bz]]

By lemma [6.6.3], for all z, f,(x) > |z| — 1, hence

—+o00
| Fapll = Fag] = Fapell = Faeol| ()

oo

< (be — a2)P(AT° € [ag;0.]) + E [(1 + fn(dclm))]ld‘fo%[az;bz]] :
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By claim [6.9.3.1] and lemma [6.9.4] for all n > ny and all © > 2k7(1 + logn),
P(65° ¢ [az; b)) < £ and

—+o00
| Fapll = Fag] = Fagelt = Faeel| ()

by —a, 1 Feo
< ¢ +—+ / k(1 + x)e *de
n n

ogn
1+0b, — oo
< Sl kL <[a:ex]fg‘g’°n + / e”%lx)
n n logn
3 2+ logn

S (A +2)~ 4k (6.108)

Set x = x, = max(?m(l + logn), kg log? n) By claim [6.9.2.2 there exists a
constant ny such that for all n > ny, k. + b, A < n —n;. It follows by Theorem
[6.6.5 that

= ko — k
P(E;,) < ;P fn(zT*> < kplog®n
o
n2
2

n

N

2 n—mn

N

n—mg Ny

<20 BE by lemma and section , hypothesis .

Thus, by equation (6.107) and equation (6.108]), there exists two constants x,u > 0
such that for all n > max(nq,ns),

?|

This proves equation of Theorem m
It remains to examine the case of 5]'%,. Let (T})i<j<v be the subsets which

appear in Definition W The ’5\1}1;’ estimators are then exchangeable, so by lemma

[6.9.5,
V-1

E (5, ] = & I8k sl + S (5 — 558 - 5)].

2 V—ln—mk V-1 0
~f < - t_*__gQ/ Fiaeo (1 — Fio0)](t)dt
eV SH :| V ng "Ny 4 |: —oo[ “ ( 4 )]( )

+[Tmu¢41—p@qxwﬁ]+ﬁnﬂa
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Since T}, T5 are i.i.d and independent of D,,,

E| |5y —s]*] = v* E [||5k — I’ +-—————51UUE[AhW17} -s[]. (6.109)

Moreover,

o 1 ~ho
E [31111 |Dn] = (n> Z S0,

TC{l..n},|T|=n¢
Let V'’ be an integer such that V' < nfn

and let (T})1<j<vr be a collection of
subsets satisfying the assumptions of Definition [6.3:2 Notice that

mE:wszw=—- > A =E[EID.].

Sho _
ceGy, ( ) ’

TCc{l..n},|T|=n¢
For any permutation o, the collection O'(TJ{ ) satisfies the same assumptions as the
original 77, hence by Jensen’s inequality,

E (e [s10.] - o] <[

Therefore, by equation (|6.109)),

~f _ 2
nt %4 S ‘

—~ho 2 V-1 ~ho 2
B sz — ol = st =l < 55 (= [t —of = st —oIF] )
(6.110)
By equation of theorem which we have already proved
o 2 o 2 Vi—1n—nikin) V' —1 0
R I ] R e e e

i /W[Fg - F)](t)dt}é’ +0(&).

(6.111)

Choosing V' = max{j € N : l > =) yields o > M
L~

v HJWWEHM%OHEMWHM

E[”f

ﬁ, in particular

Snt,V’ — S

"oty —of?] < T o (M) el

ng ¢ n Tt

—8[?KLWO—JM@M#+AH1FG—FM&M4.

(6.112)
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In conclusion, by equation (6.110]),

E |5 — sl = |55 = s|°]
< _V‘; 1n ;tnt k*y(:t) n V‘; 1[1 +o(1)] (n ;m) k*T(:t) (6.113)
_ %g {2 /_(;[F(l ~ P)(6)dt + /O+OO[F(1 _ F)](t)dt} +o(&).

6.7.5 A lower bound on [ [Fy (1 — Fy)|(t)dt

In this section, we will state and prove the following result, which, together with
equation of Theorem M(proved in the previous section), directly implies

equation (6.10) of Theorem [6.4.4]

Claim 6.7.5.3 Leta = argminae[ ke (), [{fn( a)=Wy.(a)}- There exist constants

e(lIsll. s Isl1?) > 0, 6(||s|l.) > 0, such that for alln € N, there exists (ay, aq) € R?
such that

g — Qg =0 (6.114)
Va € [ag; a4),e < Fa(a) <1 —c¢. (6.115)

As a result, equation (6.10) of Theorem follows from equation (6.8)), with
Kag = 0e(1 —¢).

We now prove claim [6.7.5.3] First, lemma [6.7.6] below implies that, for a two-sided
brownian motion W and a function f reaching a unique minimum at 0, a bound
on the distribution function of argmin f — W can be deduced from bounds on

[f (@) = fy)l.

Lemma 6.7.6 Let I C Iy be intervals of non-zero length containing 0. Let h, h_ :
Iy = R and hy : I — R be functions. Assume that h,h_,h, are non-increasing
on R_, non-decreasing on R, and that h,(0) = h_(0) = 0. Let Z be a continuous
stochastic process on Iy such that h_ — Z, hy — Z and h — Z almost surely reach
a unique minimum on Iy or I. Assume also that:

Vo,y € Ip,vy 20 = |h_(x) —h_(y)| < [h(z) — h(y)], (6.116)
> |

Vo,y € Ly 20 = |h(x) = h(y)| < |[hy(z) = hy(y)]- (6.117)
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Then the following bound holds

P ( argmin {hy(t)l;<co + h_(t)l;50 — Wi} < z) <P (argmin{h(t) - Wi} < z)

teIU(IoNR+) tely
(6.118)
P (argmin{h(t) - Wi} < z) <P ( argmin {h_(t)l<o + hy(t) =0 — Wi} < z) .
tely telU(IpNR_)
(6.119)
Proof For any function ¢ : Iy — RU{+o0}, let A;(¢) be the event {¢(t) — Z; <

o(t) — Zv}.

By abuse of notation, we will also denote by h, the function equal to h, on
the interval I and equal to +00 on R\/.

First, we will prove equation (6.118). For any function ¢ : Iy - R U {400}
and all intervals J, Jy such that J C Jy C Iy,

{argmin o(t) — Zy < z} = { min ¢(t) — Z; < min ¢(t') — Zt/}

tedy teJo,t<z t'eo,t>z

= N Lgﬁﬂ@—ﬁ<wﬂ—%}

t'edot! >z

= U N 4w (6.120)

teJot<zt/'€do>z

> U ) Awle). (6.121)

{teJ:it<z}t'edot>2
Let t € TU(IpNR,) and ¢’ € Iy N [t; +o00[. Three cases are possible.

o Ift <t <0, sincet €l and 0 € I by assumption, t' € I. Since h, h, are
non-increasing on R_ N I, by equation (6.117)),

h(t')) = h(t) = =|h(t") = h(t)] Z =[he(t') = hy ()] = Py () — Do (2).

It follows that

th() Zt th( ) Zt/ <~ Zt/—Zt < h+(t/)—h+(t) — Zt’_Zt < h(tl)—h(t),

which yields
At,t’ (h+I[R_ + h,]IR+) C Atﬂg/(h).

0<t, h(t) < h(t') and h(t) < hy(t), therefore h_(t') — ho(t) <
h(t), which yields

Zt/ - Zt < h,(tl) - h+<t) - Zt/ - Zt < h(t/) - h(t)
and At,t’ (thHR_ —+ h,]IR_F) C At,t/(h).

o [ft <

h(t')
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e If0 <t <, since h_,h are non-decreasing on R, equation (6.116]) implies
that

h_(t") — h_(t) < h(t') — h(t),
which yields
Zp—Zy <h_(t)—h_(t) = Zy — Z; < h(t') — h(t)
and finally A; 4 (h+HR7 + h_HR+) C Aiv(h).
We have proven that for all ¢,¢ such that t € TU (IoNRy), ¢’ € Iy and t < ¢/,
Avy (halp_ + h_Ig,) C A (h).

Hence by equation (|6.121)),

{argmin h(t) — Z; < z} D U ﬂ Ay (h+]IR_ + h_]IR+) )

telo {teTU(IoNR, ):t<z} t/€lo:t! 22

On the other hand, for all t € JU(IoNR,) and all ¢’ ¢ TU(IpNRy), Ay (hilp_ + h_lIg,)
is the certain event (since h(t') = 4+00), therefore

{argmin h(t) — Z; < z} ) U ﬂ Ay (h+]IR_ + h,]IRJr) )
{tely(

teR ToNR4):t<z} t/eTU(IoNRy )t >2

It follows from equation (6.120)) that

telp telU(IpNR4)

{argmin h(t) — Z; < z} D { argmin  hy (t)i<o + h_(t)l;=0 — Z; < z} )

This proves equation (6.118]).
We will now prove equation (6.119)). Let (¢,t') € I2 be two real numbers such
that ¢t < t'. Three cases are again possible.

o Ift <t/ <0, h(t)—h(t)=—|h(t)—h(t)| < —=|h_(t')—h_(t)]| = h_(t')—h_(t)
by equation (6.116)), since h_, h are non-increasing on R_. It follows that

Zt/—Zt < h(t/)—h(t) — Zt/—Zt < h,(t/)—h,(t) — h,(t)—Zt < h,(t/)—Zt/,

which yields
Ap(h) C Ay (}LHR_ + h+]IR+) :
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< ho(t) and h_(t) < h(t) < hy(t), therefore
h(t) < hy(t') — h_(t), which yields
Zt/ - Zt < h(t/) - h(t) - Zt' - Zt < h+(t/) - hf(t)
and At,t’<h) C At,t’ (h_H[Ri + h+HR+).

o If 0 <t <t assume that h(t) — Z; < h(t') — Zy, or equivalently Zy — Z; <
h(t") — h(t). Then:

—Ift' ¢ 1, hi(t') = +o0 therefore hy(t) — Zy < hy(t') — Zy.
— If ¢/ € I, since 0 € I by assumption, ¢t € I therefore by equation (6.117]),

Zp — Zy < h(t') — h(t) < hy(t') — hy(t).
This proves that h(t) — Z; < h(t') — Zy = hy(t) — Zy < hy (t') — Zy, so
Atﬂg/(h) C At,t’ (h_]IR7 + h+HR+) .

In all cases, we have proven that for all ¢+ < ¢
At7t/(h) C At,t/ (h_]IR_ + h+]IR+) .
By equation (6.120)), it follows that for all z € R,

{argmin h(t) — Z; < z} - {argmin h_(t)lico + hy ()0 — Z; < z} :

tely telpy

This proves equation ((6.119)). [ |

The idea is now to apply lemma to Z =W and h = f, og,'. To this
end, it is necessary to bound f,, 0 g (y2) — fn 0 g, ' (y1) for all y1, yo, uniformly in
n. This is the purpose of lemma [6.7.7] below.

Lemma 6.7.7 For all (a, ) € [gn (=2

) +oo[ with the same sign,

1 1
| fn0g, ' (@2) = faog, ()] = | 5oy (laz| = 20 [Is]| )+ — 5oy (leal — 20115l ‘
20 |Isll T20] s, ’
(6.122)
Furthermore,
o If A=Ay, then for all ay,as € [0;4 ||3||2},
oy —
007 (0n) — 0 g7 ()] < 12251 (6.12)
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o If A=Ay, then for all ar,as € [—4 Hs||2;0},

|042 —041|

| fu 0 gn Han) — fro gy (an)| < >
4|l

(6.124)

Proof Let (aj,a2) € [_ﬁ*;—l—oo[Q be such that ajae > 0 and oy < . If
0 < a1 < aw, since f, is non-decreasing on Ry, f,,(as) — fn.(aq) = 0, therefore by
point [5] of Theorem [5.3.8]

guls)—gn(en) < (8“3”°0

m[fn(a1)—fn(az)]+l2 5]l [ao—au] < 12| [oo—au).

Thus, by lemma [6.9.7] for all oy, ap € Ry such that a; < oo,
gn ' (2) — g, " (an) >

Let aq,as be two real numbers such that 0 < a; < as. Since a; > 0, by the
above equation, g, !(a;) < ﬁ Since f, is convex and non-decreasing on R, ,

by lemma [6.9.6]

o oo = e o) > £ (572 ) =+ (B )
By the properties of f,, (lemma ,

oy o) - o) > (55 =) - (=) 6129

[e.9]

[y — o]
12]s]|

2]
Now consider the case where gn( Ak) a; < ag < 0. For any ¢ > 0, let x, €
[ L ,0} be such that

A T — T
r<x, = fn(l’) — f"(%) = C.
T.— T

x. exists by convexity of f,.
If go(z:) <y < ay <0, let 21 = g, (1), 20 = g, (ay), then 7, < 71 < 29 <
0, therefore by point [5 of Theorem [5.3.8 and by convexity of f,,

o, )] + 121l o2 — 1]

<83l La(ra) — fu()] 12 sl e — 2] by lemma f52)
< 8ellsle o2 — 2] + 12 sl o2 — ]

< [8c+ 12] (5] [x2 — x1]. (6.126)

//\

gn(T2) — gn(z1)
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Let r(c) = [8c + 12] ||s|| .. By definition of z1, x5, equation (6.126) yields

1 1 Qo —
Q) — > .
9n ( 2) 9n (al) = T(C)

By the same argument, since a; < 0, g, (o) < 2. Since — f,, is non-decreasin
n r(e) &

and concave on [’K* ; 0}, by lemma ,
aq

Fulgr (o) — fulgr (@2)) > fo <ﬂ) — (%) .

In conclusion, by the properties of f,,, for all a1, g such that g, (z.) < oy < ay <0,

oo @)) = o on) > (54 1)+ - (55 1)+ S (e

Let now
B = —8 5]l fu + 12 51|, 1d (6.125)

(where all functions are restricted to [’K* : O] ). By definition of A,

L L2l
—faoh,t = [=8s]l oo S + 12 s]| o Id] 0 bt — *Id o h,
815l 815l
1 3
= Id— =p-t 6.129
S 2" (6:129)

By definition of z. and h,,, for any wu, us such that —%* <up < ug < Ty

ha(uz) = ha(u1) 2 8c||s|| o [uz — wa] + 12 [s]|  [uz — ua] = r(c)[uz — wal.

Hence by lemma[6.9.7, for any (vq,v2) € }hn(—kA—*); hn(xc)]z such that v; < vs,

Vo — U1

r(c)

Therefore, by equation (6.129)), for any (vy,vs) € ]hn(—%");hn(azzcﬂ2 such that
U1 < Uy,

h, ' (v2) = hy (o) <

_ _ 1 3
—fuohy (v2) + fuohy () 2 [8“3”00 - 27’(0)] [vg — v1].

If now (o, ) are such that gn(’Tk*) < ap < ay < gn(z.). Denote also y; =
g7 (a1) and y, = g, ' (ay). Since g, is non-decreasing and g,,(0) = 0, it is also the
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_k*

case that = <y < y2 < x., therefore

fn Oggl(al) - fn © 9;1(042) = fn(y1> - fn(y2)
=—fno hgl(hn(ﬁ%)) + fno hr_Ll(hn@l))

1 3
2 {8 . 2r<c>] o) = onlo)]

1 3
> |5~ e )~

by point 4. of Theorem [5.3.8], definition (6.128) of h,, and the inequality (n—n;)e <
1 (which follows from lemma [6.6.2]). By definition of yi, 3o, this yields

fao g, (1) = foog, (ao) = {8 |Ii||oo — 27“?20)] [y — ] (6.130)

To sum up, let ¢ = 1, then r(1) = 20 ||s||_ and the following holds for all oy, arp
such that gn(_Tk*) <ap <ay <0.

o If g,(z1) < a1 < ap < —20]s]|, by equation (6.127),

-1 - Gy —
fn(gn (al)) - fn(gnl(O@)) 2 m

o If oy < ay < gu(1), by equation (6.130)),

- B 5—3 Q2 —
Falg (@) = (g (02) 2 qrp—loa = el 2 5o

o If aq < gn(x1> < (6% < —20 ||S||oo7

falgn () = fulgn ' (a2)) = fulg, (1)) = fulgn (gn(z1))
+ fu(gn  (gn(21))) — fulgy (a2))

Qo —

> ;
20|l

by the two previous cases.
o If a; < —20]s||, < o, since f, 0g," is non-increasing on R_,

—20{|s]l —
20|l

Falgn (@)= fulgn ' (a2)) = fulgn' (1)) = falgn ' (=20 Is]l)) =
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Thus, equation (6.122)) holds for all (ay,as) such that gn(_Tk*) <o <ap 0.
By equation (6.125) and since 12||i\|0<, > 20”i”w, equation is also true if
0< o < as.

Let us now prove the upper bound (equations and ) By point
[] of Theorem [5.3.8]

2
vmb%)ejz%+x{,%wﬁ—gAm>>4mea—my

By lemma[6.9.7] this implies that

1

—F |Qg — (1. 6.131
el (613D

_k* ? — _
Har,an) € |40 g as) - g7 )] <
As for f,,, there are two cases.
o If A=Ay for all ay, @y such that 0 < ag < e < 1, by lemma[6.6.3]
| fala2) = fulon)| < ag — aa. (6.132)

By equation ([6.131]), since g, ! increases and g,(0) = 0, for all (a;, as) such
that 0 < ay < ap < 4|5,

0< gyt (o) < gp'(a2) < L.
Hence by equation (|6.132)), for all (a, o) such that 0 < oy < ay <4 ||s||2,

| fu 0 g, () = foo gy (1) < g (a2) — g, (cn)]

1
< ng — a1 by equation ((6.131]).
s

This proves equation (6.123)) of lemma |6.7.7}

o If A=A, then _Ak* < —1 and for all (ay, ) such that —1 < a; < ay <0,
by lemma [6.6.3],

| fula) = fular)| < a2 —ay. (6.133)

By equation ([6.131]), since g, ! is increasing and g¢,,(0) = 0, for all (o, az)
such that —4 ||s]|” < oy < ap <0, g, ! is defined and

—1< g, (1) < g, (e2) <0
Hence by equation (6.132)), for all (ay, as) such that —4 ||s||* < ay < as <0,

| fn 0 g, () = fro g, (1) < g, (a2) — g, ()]

1
< W\ag — aq| by equation (6.131]).
s

This proves equation ((6.124]) of lemma [6.7.7]
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|
We can now prove claim [6.7.5.3] Remark first that
gn(&) = argmin  f,(g; (u)) — W,..
ue {gn (=£=) ;+<><>[

There are two cases, both of which allow for the application of lemma [6.7.6|

o If A = Ad, by lemma [6.7.7 lemma applies to Z = W, h = fn og!
with h_ : 20” [ (|z] —20s H ) ] = [0;4]s H ], 1 [ n( ) +OO[

and hy 1 x — %= 4H i Tt follows that for all yeR:

P (argmin {W (u—201s]l ), — Wu} < y> <P(gn(a) <y)  (6.134)
u€[0;+o00[ >
u
(= 200sll), + A - | <),

20 ||| o T 4]
(6.135)

P (gn(a) <y) < P( argmin {
u€]gn (=32 )i4]s|*]

Let
(sl IIsl?) = min(]P’(ar[%min[{ﬁ (u—20]ls]| ), — Wu} <0,2),
ue|0;400

P( e?rgrgﬁn”]{m” = (u—20]s]l.), + 4% W}>08))
(6.136)

By lemma [6.9.8) (||s||., [|s]|*) > 0. By equations (6.135) and (6.134), for
all a € [g,1(0.2); g,1(0.8)]:

e < P(gn(@) < gn(a)) =Pla@<a)<1—c.

Set oy, = g,,(0,2) and oy = g,,*(0,8). Since f, is non-decreasing on R, by
point [5| of Theorem [5.3.8} for all (ay,as) € R2,

‘gTL(a?) - gn(al)‘ <12 HSHOO [Oég — 041].
Hence by lemma [6.9.7, for all (uq,us) € R%

— - [us — |
|gn1<u2) - gnl(ul)| >
12 ||
In particular :
0,6 0,05
—1 gt
ag—a,=g, (0,8)—g,(0,2) > > 0.
! 12[fso ~ Tsll

Moreover, by equation (6.131]), |ay,| < |ayg| < 4”i”2.
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Thus, in all cases, ag — oy > &?3 > (. This proves claim [6.7.5.3|
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o If A= Ag, by lemma [6.7.7] lemma apphes toZ=W,h= fnogn with

he: @ = gr— I (Jz| =201l ) [ 4|ls || 0], I [n( =); 00| and
h*””H T
P( argmin {#m—zonsnm) +&—WU}<y)<P<gn<@><y>
uel—4lsPs+oc) (20 [18]log TAs)?
(6.137)

P(gn(@) <y) <P( argmin {l (~u—20s]), = Wa} <),

ue]gn(7§* )?0] °

]

(6.138)
Let
ealllsllo s lIsl*) =
min(]P’( argmln {20” = (u—201s]l ), + (u)_2 - W.} <-0,8),

ue]—4]ls||%+oc] 4|s|
P(ar}gmig{m (—u—20]s]l); — W.} > —0.2)).
UE|—00;

(6.139)

By distributional symmetry of W with respect to the map x — —z, one can
see by comparison with (6.136) that e, = ¢ > 0. Therefore, by equations

(6.138) and ([6.137), for all a € [g;;}(—0.8); g, }(—0.2)]:
e < P(gn(d) < gn(e)) =P(a@<a)<1—c.

Let oy = g, '(—0,8) and ag = g,,'(—0,2). Since A = A, for all (o, 0) €
[—1; 0)% such that a; < ag, fular)— fu(ae) < ag—a;. Hence for all (o, ap) €
[—1;0]2, by point [5 I 5| of Theorem m,

|9n(a2) =gn(an)| < 8|5l [fn(ar) = fulaz)[+12 sl [z —aa] < 20|l [z —an],

therefore by lemma for all (ay, as) € [gn(—1);0]%,

— - oy —
190 (a2) = g7 ()| = 55—
20|l
Furthermore, by pomt Iof Theorem gn(—1) < —4||s||* < —1, therefore
in particular, ag — a, = g, (—0,2) — ( 0,8)] > QOmOO = II%I(I]SO'

oo
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6.8 Proof of the results of section [6.4.3

6.8.1 Proof of lemma [6.4.5]

07 ~ Lj=?~1 there exists therefore an integer ko such that for all k > ko,

400 400 400
1 dx L
2 2 :
§ : 03’ S 2L j25+1 S 2L/k 28+1 ﬁkwﬂ'

j=k+1 j=k+1

In particular, or(n) = infey Z] pi1 05 —|— — 0, which implies that k.(n) — +oc.
For all € > 0, let k;(¢) such that for all k> ki(e),

(1—e)Lk 71 <07 < (1+¢e)Lk 21

Let n1(¢) such that n > ni(e) == k.(n) > max(ki(€), 1). Let z,(n) = =0
(Ln)2F+1
where by definition, k,.(n) is the greatest integer such that:
1
6? —.
(K« (n n
Therefore, for all n > ny(e), (1+¢)Lki(n)">"" > 6 ) >, or in other words,

1 1 1
(1+e)z(n) = > = = z.(n) < (1+e)%.
n

3

Furthermore, by definition 67 ., < ;.. Since n; > 3, (k(n) +1) < (14 ¢)ki(n)
for all n > nq,

3=

1
n=mn(e) = (1—e)L[(1+e)k.(n)] " <O} ()4 < >
in other words,
1
1—¢ op11 1 (1 —g)2
(1+ 8)25“:6 (n) n o n () 1+¢

It follows that z.(n) — 1, or equivalently,

ko (n) ~ (Ln)71 (6.140)
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which proves equation (6.13]) of lemma m Furthermore, for all n > ny(g),

1—¢) L L
gk ) < (1= e )+ 117
too dx
=(1 5)L/k*(n)+1 226+1
“+o00
< Y (=o)Lt
j=k«(n)+1
“+o00
<>
j=k«(n)+1
+oo
< DY (4oL
J=k«(n)+1
oo dr
< (1+ e)L/k*(n) sy

<(1 +5)%k*(n)‘25.

As a consequence,

+o00 T
L L25+1
07 ~ 2—k*(n)_26 ~ (6.141)
j=k.(n)+1 p 208n 25
k 351
) L7 (6.142)
n n28+1
28 + 1 L7
or(n) ~ b+ —, (6.143)
2/6 n28+1

which proves equation (/6.14)) of lemma|6.4.5. We now turn our attention to or(n;)—
or(n). Since the sequence ¢7 is non-increasing, for all j > k.(n), 07 > 6¢ ., =
L > 1 therefore k.(n) > k.(n;). Hence

ny

n

or(ny) —or(n) = ku() + Z 9% — ka(n) _ Z 0
)

J=k«(ne)+1 J=kx«(n)+1
o [ L ] el — k) 2(:’ »
=ky(n)|———| — .
ng n Ny J
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By definition, for all j € [|k.(n) + 1; ko (n)]], + < 67 < nit, therefore there exists
n € [0; 1] such that:
kin)n—n;  kin) —ke(ng)  ki(n) — ko(ny)

or(n;) —or(n) = P o + nt

Tt n
k(n)n—mny nk*(n) — ko(ny) m—my

n ng n N

o) = k()] |- =

If @ — 1, then by equation ((6.140), k.(n) — k«(n;) = o(k«(n)), therefore

1
_ k* _ L2841
or(ng) — or(n) ~ n=nik.(n) ~ : (6.144)
n n n n2,81+1

which proves equation (6.15)) of lemma |6.4.5f We now prove equation ([6.16). Let
e > 0. Assume that

Ag(n) = eki(n). (6.145)
We now ShOW that for excessively large values of ¢, equation 6.145 is in contra-

«(n) (equation (6 of lemma [6.4.5)).
Indeed, if " < nok.(n), by equatlon |D

Mo
Vj;:;;; ,/ , therefore 67 ,),a, > P—«/}ekmwl (6.146)

Since k.«(n) > k.(n:) by definition, equation (6.145) implies that Ay(n) >
ek.(n;). Hence, by hypothesis (6.12) and equation ((6.145)), for all 6 > 0 and for
all sufficiently large n,

1+0

= 5(1+ e) P 16;, ke (ne)+1 = [1+0]L(1+e) ">k (ny)+1) 7271 > 9%(1%)16*(1“” > 91%*(nt)+Ad'

(6.147)
Let 0 be such that %g = 1+ e. By equations (6.146)) and (6.147)), there exists an
integer ny(¢), such that for all n > n4(e),

1
(equation(6.145])) A (n ﬁtnt < nok*(n)> = ——>1- o (6.148)

(14¢)% 5

The convexity of the function  — 7 )25 — on [0; 1] and the fact that 5 > 1 imply

that 5 . .
€
-1l —|e>—"
4 [ 228 } (1+¢)28
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hence by equation ((6.148)), for all n > ny(e),

(equation(6.145])) A ( Tt < ngk*(n)) —1-Cx1-,/D
n—n

t

In conclusion, by equation (6.145)) defining ¢,

A
& < noki(ne) = a(n)

< (Sn0)% =2 (6.149)

vn = m ((1,76770)%> ko(ng)

"n—ny
Let 6 > 0. Since k.(n;) — 400, for all n large enough,

2 2
ek* (ne)+Agq+1 > 9{(1+%)k*(nt)J +Aq°

ng(n)

Since ~£* — 1 by assumption, k.(n;) = k.(n;) ~ k.(n) by equation (§6.140).
Therefore, by equation (6.149), for n large enough, if - < nok.(n,),

n—ng >

2
Qk* (ne)

1-6
2 2 —28-1
Or.tno a1 Z Olase ki (ny) = (1 =9) (14 20,201 = (1+221) :

Ty

It follows by definition of A4 that

1 ny S 92 S 1—-96
TV A, ) TR 2 e

hence

Uz

1 /"t
(n—mny)Ayg

> (1—6)(1— 228+ 1)e1)

>1—-0—-2(26+ 1)
Uz

— ' < 2(2 1)ey.
CETHIY d+2(26+ 1)ey

1
Since g, = (181,)*, there exists an integer na (3, 19) such that for all n = ns(8, 1),
o Nl

Uz

W=

Ty
< - -
n—n; noke(ne) = (n —ny) Ay

<2028+ 1)(2m0),

hence:

n—n
< ok (ny) = :

> _—
Vn = n2(577]0>a n—n, ng d - 4(2/8 + 1)2
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To conclude, remark that

& n—ny
PR
=/ (n—ny)€
A
=4/(n— nt)n_t
n—mn
> o “Ag(n),

which yields the following by equation ({6.150)).

Uz

En) . (2m) "

Vn = ) < Mok — = . 6.151
n n2(770) n—ny Mo (nt) e(ﬂ) 2(26 + 1) ( )
This proves equation (6.16)) of lemma |6.4.5]
Now, for all g > 0,
— 2 _ 2
(n 2nt) < 1 . (n —mny) < "
n; ok« (ny) nn, eonk.(ng)
g (n — ny)* ku(n) < 1
nng un n
— ny ks 1
— gon e K (4) < < &(n) by lemma [6.6.2,
¢ Ny n—mng
Since by definition k.(n) > k.(n;), this yields
n—mg 1 n—nt\ 1 . g(n)/gon—ntk;*(nt)7
Uz goks(n) g gok«(ne) ng g
(6.152)

which proves equation (6.17)) of lemma |6.4.5]
Let now n > 0 be such that -2 > nk.(n) > nk.(n;). By definition of A,

(Definition [6.4.1)), o

therefore

It follows that
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hence by equations (6.142]) and ((6.143]),

t 2
Sk (n) = £(0) > (1= oVl

This proves equation (6.18)) of lemma |6.4.5]

or(ng). (6.153)

6.8.2 Proof of corollary
By theorem [6.4.4]

?|

%&—%1—mm<EU%Lﬂﬂ—mmwwmm—mm

V—1n—nikin) V-1
— — adC £).
V ng Ty V /{g +O()

It follows by Theorem that
2 —n—nk 1
‘ } —or(n) < Kpoe+or(ng)—or(n)— Voln—nkn) V Kag€+0(E).

E
|: % Ty ¢ Vv
(6.154)

Let ko4 be as in Theorem m By equation ((6.15]) of lemma [6.4.5 for all large
enough n,

wf
Spyv =S

n — ny ki (ng) o N — Ny

_ < =0
or(ny) —or(n) < - o W0

therefore

or(ny) — or(n) — )

V —1n—mngke(ny) o [ n %ageon} n — nyg ky(nyg)

\%4 ng g nV 12n, n T

hence for all V > [12-],

Kag€o

V—1n—n;k.(ng) o gomn — nyg ki(ny)

X Rag 7 .
76

or(n;) — or(n) — o "

V un n¢

It follows by equation (6.17)) of lemma[6.4.5|that for all V' > [#3501 and all n large
enough,

V—1n—n;k.(ng) < Hag

or(n;) — or(n) — 7 o <73 E.
Thus by equation (6.154]), for all V' > max ([R:g260-| , 5) and all n large enough,
~f 2 Kjag ’{ag
]E Snt,V - S - Or(n) < Rhot + ?g - K/agg -+ V 5 + 0(5)
2K,
< Kot — —29 (6.155)

5
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Let:

o)~ 3 .
Uozsup{n>0:(n) > 5 }

By equation (6.18)) of lemma|6.4.5} for all sufficiently large n, ;- < nok.(n) =
¢ < =22& therefore by equation (6.155)), for all sufficiently large n, if V >

S5Kho
max ((#9260},5), then
2
- ntn < noky(n) = E [ §ZJ:V — 5 } —or(n) < —F&;gc‘f < 0. (6.156)
— It

This proves equation (6.20) of corollary [6.4.61 Let n €]0;mo]. If nk.(n) < 2,
then a fortiori y/eok«(n) < -2 for all &g > 0 and all sufficiently large n. In

n—nt

conclusion, by equation ((6.156|) above and equation (6.18)) of lemma [6.4.5, for all
V' > 5 and all sufficiently large n (depending on 7, 7),

2 Kag 2
] < (1 - TT]MTf—l + 0(1)> or(n).

Tt ~f

nk* (n) g Snt,V - S

< noke(n) = E [

n — ng

This proves equation (6.21]) of corollary [6.4.6]

6.9 Appendix

6.9.1 Results proven in the previous chapter

Lemma 6.9.1 (Lemma Let X be a random variable belonging to [—1;1],
with pdf s. For all j € N, let 0; = (s,1;). Then

k +00
ko <k, Y [Var(yy) = 1 < [10lls = D [(s,9)]-
j=0

J=ko
Proposition 6.9.2 (Propositionm Under the hypotheses of section for
all integers ko < k, with probability greater than 1 —e™Y:

k
0 k—F k—k
Ml o /g [ VERL 1=k
t

A k—k

> (6] -6, - b~ o
Tt 1
1y

n
j=ko+1 t

In particular , there exists a constant k1 = ri(||s||.,,c1,]|0]|,1) such that for all
ay,an such that (a1 A, ) € N? and oy < ay, with probability greater than
1—e™Y,

kitasA

N k—k
> (QJ'T—QJ‘)Q—‘ o

n
j=keta1 A t

>

< ky(ag — ag)llogn +y* x n™ mi“(l%’g)e(n).
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Claim 6.9.2.1 (Claim |5.5.5.1) Let us = min (%,(53) Let x be a non-negative

real number. Let a,,b, be such that a, < 0 < b, and max(f,(as), fn(bs)) < z.
Assume also that az A — 1 > =K There exists a constant k3 > 0 such that for all

A
J € lazA; b, A+ 1],
[fa (£) = fo (5F1)| < m3(1 4 2)*n 7 (6.158)
O ; < ks(1+2)°n e (6.159)

6.9.2 Technical arguments
Claim 6.9.2.2 There exist constants nz, kg such that for all x > 0,

—ko(ng) +1 n—ng —ke(ng) — 1

n > max(ns, kg (1 —I—(E)%) — a, > A by < A
In particular,
. k. '
Vn > max(ns, ko(1 + 7)*), a, = inf {% tJEZN [ A(nt) ; —i—oo{,fn(%) < x}

bzzsup{% tJEZN [_k*A(nO;nLoo{,fn(%) <x}.

Proof By definition, or(n;) = %ﬁ”) + ;rjz*(m)ﬂ 07, therefore k., (n;) < nior(ny).

Moreover, by assumption,

k Cl<2—|—61

or(ng) < 11?611{]1 - 12 S T (6.160)
t

220 n—ng > ng, so It

(=)

1
thus k.(n;) < [2 + ¢1]n?. By hypothesis of section
follows that

1

Hence, there exists a constant ng(c;) such that for all n > ng,

Wi

1

Furthermore, by lemma and equation (|6.160)),

Uz

W=

1 1
A(n) = n&(n) < 2ngor(ny) + <22+ cinf +nf <[5+ 2¢ns.

n — 1ng



6.9. APPENDIX 289

1
It follows that for all n > n3(c;), ”_"Zk*_l > 1011@' As a result, for any n > ns
and any = > 0, by lemma [6.6.3|

W=

n

n—n—k,—1
10-'-401 .

A

>(1+2) = fo(225) >0 = b, <

Thus,

n > max(ng, [10 + 4e; 2 (1 + 2)%) = b, <

As for a,, by definition of f,,,

1
> (n—ny) [1 - —] by lemma [6.6.2
Uz

2 2
>ns {1 — —1 by assumptions (H6|)and(H5)).
n

It follows that for all n > max <4, (293)%> fa(—=%) > 2. Since Aa, € Z and

A
fn(az) < x, this implies that a, > %. This proves the first part of the claim.
The rest follows by definition of a,, b,. [ |

Proposition 6.9.3 Let I C R be a closed interval such that 0 € I. Let f be a
continuous function that is non-increasing on I NR_, non-decreasing on I N R,
g be a non-decreasing function on I, and suppose that f(0) = g(0) = 0. Assume
that there exists two non-negative constants a,b such that for all o € 1,

l9()] < max{af(a),b}.
Let & = argmin,¢; f(o) — Wy() Then for all x > 0,

1
es

]P’(f(d)}g—i-?)&x) <V2 —e "

1—e3
In particular |

b 3
E[f(a)] < - +3a+2+§log2+310g3.
a



290 CHAPTER 6. A DETAILED ANALYSIS OF AGGHOO II

Proof
P(f(éz) = §+3ax> :P((f(éz) > g+3ax) /\(34>0>+IP’ ((f(éz) > S—i—?nw) /\d<0)

Consider without loss of generality the event & € R,. Assume first that there
exists © € I,z > 0 such that f(z) > g + 3a. Let

b
iM:sup{iGN:ajLaié sup f(av)}

ZGIQRJ'_

(in particular, iy = 400 if f is unbounded). By assumptlon irg = 3. Foralli € N
s.t. @ <iy — 1, let a; > 0 be such that f(e;) = 2 + ai (o, exists by continuity of
f). Fix some integer i such that 2 <i < iy — 1. Then

P(& € [aj;a541]) < P ( min — Wya) < O)

a€lay; L+1]

flou) + mln —Wg(a)<0)

a€lai;ont1]

<P (f min W, < 0)
u€[g(e;);g(aitt)]

f(a min —-W, < O)

uG[O g(@it1)]

<P (f — Vlan)|Z| < 0)
P (yZ| > M) , (6.161)

g(iy1)

where Z ~ N(0,1). On the other hand, for all z > 0,

P(Z] > 2) = — /+m1xt—*2dt
/I' = — —_ [ 2
Vor ). 1

Ll ()

922 t2
27 T 2~ 7
\V2rx " v/ 2mt?

322

2e” 2

(6.162)
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Since f(a;) =2 +ai > 2, g(a;) < af(q;), therefore

fla) - byai
9(ir1) Vb + a?i+ a?
b oai
> a
3 (b+ a%)
2 b+
—\/ =+ ai
“V3aVa
21
>4/=.
3

Thus, by equations (6.161)) and (6.162)),

P(a € [ai; aiqa]) <

Now, if ip; < 400 (in other words if f is bounded on I NR,), then for all a > 0,
fla) < E+4a(iy + 1), hence g(a) < b+ a®(ips + 1). It follows that

P(d 2 ai}u) < P f(ai]\{) — Sup Wg(a) < 0)

Oé>OéiM

b
<P —+aiy < sup Wu>
a )

u<b+a2(ips+1

b .
-+ a1
<P |Z|>#)

“ b+ a%iy + a2
5 by the same arguments as above.

1
< —e”
~ \/§

Therefore in all cases, for all z > 2, using the convention «;,, = 400 if iy = 400,
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whenever i), > 3,

b in—1
P ((34 >0, f(a) > - + ax) < Z P (& € [au; aipa]) + P(a > ayy,)
i=|z|

1 +oo .
g JR— 3
Qz:LxJ
1 1 P
< - i 6_L J
21 —e¢e"3
1 es

If now sup,ejnr, f() < b4 3a, then trivially, for all z > 1, P (f(
0. Conclude by remarking that for any = < 2,

XS
WV
Qo
+
w
IS
E
I

1—x
1 e73

El—e*%

The same argument applies symmetrically to the case & < 0, hence the result. W

b
>1>P(f(d)>—+3ax).
a

Claim 6.9.3.1 Let & € argmin o [fn(a) — Wy, (a), where g, satisfies
a€ | — 1t +00

properties 1-5 of Theorem [5.3.8 There exists a constant ry = rr(||s]|,) such that
for all x > 0,

P (f.(4) > kr(1+2)) < e (6.163)

Furthermore, there exists a constant ny € N such that, for all n > ne and all
x> 2k7(1+logn),

P(a ¢ [as; bs]) <

S

Proof By pointof theorem [5.3.8) since (n —n;)e < 1, for all a € [_k*T(m); +00 [,

o If |a| <2,
|90 (@) < 8 lsllo frlar) +12 Is][o x 2 < max (16 [|s][o, fulcr), 48 [|s] o)

o If || > 2, % < |la] =1 < fu(a) by lemma , therefore

|9n ()] < 88l ful@) + 12l @ < 32 |5l fula).
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In all cases,
|gn(a)] < max (32 [s| . ful(e), 48 [s]l) -
By proposition applied to f = f,,, g = gn, for all y > 0,

2

3 e3
P (@) > 5+ 90lslev) < VBT e

2 es —1
This proves equation (6.163)). Let x > 0. Assume first that a,A > —k,, then by
claim [6.9.2.1]

fulaz) + (1 +2)"0 7" > fu(a, = %)
falba) + k(1 2)*n7" > fu(bs + %).

On the other hand, by Definition of a,,b, , necessarily

min (fn(ax — %), fulbe + %)) > 7.
It follows that
min (f(az), f(be)) = & — r3(1+x)*n7"2.

Since f,, is non-increasing on R_ and non-decreasing on R, for all z > 2kr,(1 +
log n),

min (f,(az), fo(be)) = 2k7(1 +logn) — k3(1 + 2k7)*(1 + logn)*n~"2.
There exists therefore a constant ns € N such that, for all n > ny, and all x >
2k7(1 4 logn),
min f,(a) = min (fp(az), fn(bz)) = k7(1 + logn).

aé[ax bx]

By equation ([6.163]) which we already proved, this implies that P (& ¢ [a,; b.]) < %
Now if a,A = —k,, obviously P(& < a,) = 0, and P(& > b,) < < by the same
argument as above. In conclusion,

1
Vn = no, Vo > 2r7(1 +logn), P (& ¢ [a,; b)) < e

This proves the result. |

Lemma 6.9.4 Let X be a continuous, non-negative random variable and let f €
L'(e~*dz) be a continuous, positive and non-decreasing function, such that for all
reR, P(X > f(z)) <e®. Let Z be a [0;1]—valued random variable, such that
P(Z <e) 21—, for two real numbers €,6 € (0;1). Then:

+o0o
E[ZX] < <E[X] + / f(x)e"da.

—log(9)
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Proof Let E be the event {Z > ¢}. By its definition,

E[ZX] < eE[XTg] + E[ZX1]
< eE[X] + E[X ).

Let a > 0 be a real number such that P(X > a) = P(E) (a exists since the
distribution of X is atomless). Let I, denote the event {X € [a;+o00[}. Then

E[X15] = E[XIgnr,] + E[XIgnr]
< E[XIpnr,] + aP[E N ]
< E[XIgar] +a(P(E) = P(EN 1))
— E[XIpng,] +a(P(L,) — P(EN L))
< E[XIgng ]| + E[ X, Ag]
= E[XIx>d]
+o0
:/ P(XIxs, > x)dx
0
= /+ min (P(X > a),P(X > 2))dx
0
+oo
< SNP(X > x)dx
/O+oo
< [ BARK> f@)) @)
+oo
< / (6 A e ] f'(z)dx since f > 0.
0

By integration by parts and since § < 1, it follows that

—+o00

—logé
E[XTg] < 6/ - f’(x)dx—l—/ e " f'(x)dx
0 —_

logé

<O og )~ SO+ [ @) Tyt [ i

log &

+o0
< / e “f(x)dx since f is non-negative.
—logd

Claim 6.9.4.1 Let Z be a [0;1]—valued random variable such that P(Z < ¢) >
1—46. There exists an integer ny = nq (||s||. , c1, 10,1, 03) such that for alln > ny
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and all (o, ) € {—%*; %rk*]g such that o < o,
ketaoA R 9
E(Z Y (ejT—ej) ] < 3oy — i) [+ 0] €.
j:k*+a1A+1

. 2
Proof By proposition [6.9.2] P (Z?*:ZfiﬁlAJrl (@T — 9j> > h(y)) <1 —eY,

where:

1 93

h(y) = (g — )& + k1(ag — o) (y + logn)n~ ™Gz 2,

o ng

R 2
Furthermore E [Zk*mzA <¢9JT — 9j> } < (an—o) 2+ 18 6 by lemma 6.9.4]

j:k’*-i-alA-i-l
GO 6l , [
Elz Y (ejT—ej) < (o —ap)€ +el e 4 / h(y)e Vdy. (6.164)
j=ketar At "t ~log

The integral can be calculated as follows.

+00 +oo
/ h(y)e Vdy = 6(ag — a1)€ + Kki(ag — al)n_léA(S?se/ (y + logn)*e vdy,

log § log
with
+00 +oo
/ (y +logn)e Ydy = n/ u?e "du
—logé —log d+logn
+oo
=6 (—logd +logn)® + Qn/ ue “du
—log d+logn
— 6 (—log d + logn)* + 26 (— log & + logn) +2n/ e "du
—log d+logn
= 6 (—logd +logn)® + 20 (—logd + logn) + 26
na 2
<solog ().
og { 5
Therefore:

+o00 B nA 2 RN
h(y)e ™Ydy < 6(ag — a1)€ + bri(ag — aq)d log (5) n-12"%e.
—logd

_L/\% L/\53

For any § > %, log (%)Qn 12 < 4log?nn =77 < 4log?nn~% and ¢ < € by
lemma therefore there exists a constant n} such that for all n > n/,

< O(ag — 041)§,

+oo
/ h(y)e Vdy < 6(ag — 7)€ + §(aa — ) 5

log 6

N
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thus by equation [6.164)
k*+a2A . 2 0 L 38
E|(Z E (9-T—6j> <5(&2—a1)5+5w+(5(a2—a1)—.
. J Tt 2
j=k«ta1 A+1

Since by lemma [6.6.2] and hypothesis of section [6.2.2) WOller - 1Oex nny <

ne n—m¢ ng

10| 2 En=%, there exists a constant n; such that for all n > ny,

ke+aoA

z Y (07-0)

j=k«ta1 A+1

E <%[€+5] (052—041)5.

Lemma 6.9.5 Let (Z;)1<i<v be a finite family of exchangeable random variables
taking values in a Hilbert space H. Assume that E [||Z1||2] < 4o00. Then for all
r e H,

1 1%
=N "7z -
V; .

2
V-1

E _ %E[HZl — 2] + SR Z - 2,2, - 1)

1 V-1
=|EZ;, — z|* + V]E |2, —EZy|° + T]E (2, —EZy,Zy —EZ,)].

Proof
1%

Z<Zi —x;Z; — 1)

i=1 j=1

|
5=

i=1
14 \%4

~EX =+ m Y Yz wZ—a),
i=1

i=1 j=1j#i

Since the variables Z; are exchangeable,

1 1%
Nz~
V; o

which yields the first equation. Moreover, for all random variables U,V € H which
have a finite second moment,
E[{(U -,V —x)] =E[(U — E[U] + E[U] — z,(V — E[V] + E[V] — )]
=E[U -E[UL,V -E[V])] + (E[U] — 2, E[V] - 2),

2
1 V-1
= —E[||Z — =|] t (Z) —x,Zy — )],

E ——
\%

which allows to derive the second equation. [ |
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Lemma 6.9.6 Let f be a non-decreasing function. If f is convex and (uq,us), (v, v2)
are such that vy < v; < us < o,

vy — v = up —uy = f(v2) — fv1) = flu) — f(w).

If now f is concave and vy < uqy, then
Vg —v1 Zup—up =0 = f(v2) — f(v1) = flua) — f(u).

Proof Assume first that u; < v; < us < vy and that f is convex. Then the
function h : x — f(z 4+ ve —v1) — f(z) is non-decreasing by convexity of f and
non-negativity of vy — vy. Therefore, h(vy) = h(uy), or equivalently:

f(ve) = f(v1) = fur +v2 —v1) — fw).

Since f is non-decreasing, if vy — v1 = ug — uy, then f(uy + vy — v1) = f(ua),
therefore

fv2) = f(v1) = fluz) — f(u).

If now f is concave non-decreasing and vy < ug, h:x — f(x +ve —vy) — f(x)
is non-increasing, therefore h(vy) > h(uy), that is

f(vz) = f(v1) = flur +v2 —v1) — flo).

Since f is non-decreasing, if vo —v1 > us — uq, then f(uy +ve —vy) > f(usz), hence

f(v2) = f(v1) = f(uz) — f(ur).

Lemma 6.9.7 Let g : [ — J be a bijection with domain an interval 1. If there
exists a constant p > 0 such that

V(z,y) € I%, |g(y) — g(z)| = ply — =,
then
Y(u,v) € J? |g7 (v) — g7 (u)| < ——

Conversely, if there exists a constant L > 0 such that:

V(z,y) € J* |g(y) — g(z)| < Lly — =,

then

W) € g7 w) g7 ()] > L0
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Proof Let (y1,y2) € J? and (21, 22) € I? be such that g(x1) = y1, g(z2) = y2. The
equation |g(z1) — g(ws)| = p|z1 — 22| can be rewritten as |y; — yo| = plg " (y2) —
g '(y1)|. By the same argument, equation |g(z1) — g(z2)| < L|z1 — x5] can be
rewritten as |y, — y2| < Llg7 (y2) — g7 (y1)]. |

Lemma 6.9.8 Let J C R be a non-empty interval and let f be a continuous
function on J. Let (W;)ier be a two-sided brownian motion such that Wy = 0.
Assume that the process f — W reaches almost surely a unique minimum on J,
and define:

t = argmin f(t) — W,.

teJ
Then for any a € R and any interval I = |a; +o00[NJ or I =]—o0;a]NJ of non-zero
length,
P(t € I)> 0.

Proof By distributional symmetry of W, assume without loss of generality that
I = [a;+00[NJ. Then by uniqueness of the minimum:

P(ie[):]P< inf f(t)—W,+ W, < inf f(t)—WtJrWa).

teJ;t>a teJt<a

Let b > a such that [a;b] C I, which exists since I has non-zero length by assump-
tion. Then

3 > i - < i - :
Ptel)>P (téﬁfb} ft) =W+ W, < tebl}tiaf(t) W, + Wa)

The continuous function f is bounded on the closed interval [a;b] by a constant
R, therefore

P(t € I) 21?( inf —W;+W,<—-R+ inf f(t)—Wt+Wa) )
t€(a;b] teJt<a

By the Markov property, both sides of the above inequality are independent. Fur-

thermore, by the reflexion principle, minsefq) =Wy + W, ~ —v/b — a|Zy|, where

Zy ~ N(0,1). Therefore,

Picl)>E [2@(% it f) - Wi Wa)] |

where ® : x + P(Z, > ). By assumption, inftej;t<a_f(t) — W+ W, = f(t)—W; +
W, > —oo almost surely, therefore by positivity of ®,

P(t € I) > 0.



Chapter 7

Conclusion and Perspectives

This thesis has proven that Agghoo and the hold-out satisfy a general oracle in-
equality (Theorem[3.7.3). This general theorem was applied in two settings, kernel
methods and sparse regression, where it yields novel bounds on the risk of the hold-
out (and Agghoo). Finally, a precise study of Agghoo was conducted in the case of
least-squares density estimation using Fourier series estimators. This study shows
that depending on the choice of its parameters, Agghoo can simply improve on
the remainder term in the oracle inequality for the hold-out, perform better than
the oracle trained on n; data and even beat the oracle trained on the full sample,
by as much as a constant factor.

7.1 Oracle inequalities for the hold-out

The first part of this thesis focused on improving theoretical guarantees for the
hold-out to allow for unbounded loss functions. A new oracle inequality was
proved, which allows for unbounded losses and more general margin hypothe-
ses (Theorem . This Theorem was applied to the cases of kernel methods
(Chapter [3) and sparse linear regression (Chapter [f). Theorem has as its

main assumption a margin hypothesis of the form

P (3(t) = 2{t) et )’ < (VI 0) + oV B)) . (1)

where t1,ts are any two of the given estimators (trained on a training sample),
Ct, 1, 18 @ constant and w is a subquadratic function, more precisely, a function such

that wg ) s non-increasing. Theorem also requires a similar inequality to
hold for the higher moments of y(¢;) — y(t2) — ¢4, +,, possibly involving a different
function w’. Two different strategies were used to derive the margin assumption

required by Theorem m The L* — L? norm inequalities of Chapter [4] are more

299
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natural for estimators 5, which belong to a finite-dimensional linear model m, as
equivalence of norms holds over finite dimensional linear spaces. Penalized em-
pirical risk minimizers which do not belong to a finite-dimensional model, such
as kernel methods, require different arguments. A lower bound on the regulariza-
tion parameter, as used in Chapter [3] is a much more natural and easily verified
assumption in this context. The methods developed in Chapters [3] and [4] to re-
lax boundedness assumptions for the hold-out are likely to be applicable in many
other settings involving empirical risk minimization. This applies both to the gen-
eral arguments used to prove Theorem [3.7.2| and to the hypotheses used to derive
margin assumptions, especially the L> — L? inequalities of chapter .

7.1.1 Norm inequalities

Theorem states an oracle inequality for the hold-out in sparse linear regres-
sion. The assumptions of Theorem |4.3.2] are exactly those required to prove that
the candidate estimators (8 : © +— G + (Ok, ) )1<k<n

e Satisfy a weak boundedness assumption of the form ||54|| < Ln®

e Satisfy an L — L? norm-inequality, ||3; — 8y [l < #(1,10) 185 — 8[| 12 x).

in the setting of Chapter[d] Those are virtually the only properties of the estimators
used in the proof. Thus, the L> — L? norm inequality of Chapter 4] seems to be a
general strategy to derive margin assumptions, which applies to any collection of
estimators. Moreover, the arguments of Chapter [4 are not specific to the Huber
loss function: they use only the Lipschitz-continuity of the Huber loss and the
fact that the associated risk ¢ — ((s,t) is locally strongly convexr in some L* ball
around its optimum s. This leads to the following conjecture.

Open Problem 7.1.1 For a loss function in regression which is Lipschitz con-
tinuous and locally strongly convex in the sense that for two constants r,u > 0,
and any predictor t,

Ht - SHoo ST o= g(S,t) > M Ht - 8“%?(X) )
the hold-out satisfies an oracle inequality under the two assumptions
o Vme M, |5, < Ln®

o V(m,m') € M? |3 — S|y < KRy IM) 18 = 30| 12 (x)

where K(nv, |M|) may grow as faSt as \/ log?lj\/l )°
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In least-squares regression, the risk is obviously strongly convex, but the loss-
function is no longer Lipschitz continuous, so a direct analogy with Chapter [] is
impossible. We nonetheless conjecture that L — L? norm inequalities are sufficient
conditions to prove oracle inequalities for the hold-out in this setting.

Open Problem 7.1.2 Under an L> — L? norm inequality of the form
V(m,m') € M, |5 — Sl < 5000, M) (1300 = S0l 12

similar to that of Chapter[f, Theorem[{.3.2, and a weak polynomial upper bound
on the estimators, of the form ||5,,]|., < Ln®, the hold-out and Agghoo satisfy an
oracle inequality in least-squares regression.

Motivation for this conjecture comes from the following calculation.

(Y(t1, (2,9)) = Y(ta, (2, 9)))* = ((y — ta(2))* — (y — t2(l"))2)2
= (ti(z) — t2(2))* 2y — ta(z) — t2(2))?
< 8(y — s(2))%(tr — t2)*(x) + 2[(ts — t2)*(25 — t1 — 12)*](2).

If lt1 = tall o < &t = t2l[12(x), and the noise Y — s(X) is such that E[(Y —
s(X))?X] < % as., then

2 2 2 2
P (y(t1) = (t2))” < 802 [[tr — tall () +26% [t1 — tall 72y [It1 = 8l 2y Fllt2 = sl 2]

This shows that hypothesis holds for a quadratic function w depending on
o? and k.

Least-squares density estimation is another setting where Theorem [3.7.3] can be
used to prove oracle inequalities under an L™ — L? norm-equivalence. In Chapter
[0, Theorem [3.7.3] was used to provide a first bound on the risk of the hold-out
for Fourier series estimators. It seems likely that more general oracle inequalities
are possible in least-squares density estimation. Justification for this claim comes
from the fact that, in least-squares density estimation,

V(tr, 2) = Y(ta, 2) = 2(ta(2) — t1(2)) + [ta])* = [IE2]|” -

As ||t;|| and ||t5]| are constants, setting c;, 4, = |[t1]|* — ||t2||” yields

P(2(t) = 2(t) — e) =4 [t~ s < sl 11~ ]
() = 9(6) = ol < 2l = el

Thus, provided that ||s|| ., < 400, a margin assumption (7.1)) is satisfied, and
under the norm-inequality ||t; —t2|| < &||t1 — t2||, an equation similar to (7.1))
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also holds for the higher moments of v(t1) — v(t2) — ¢4, +,- Moreover, under similar
assumptions, with a constant x of order y/n in the norm inequality, Arlot and
Lerasle [5] obtain oracle inequalities for cross-validation with leading constant C' >

1 and remainder term r, = O <w> This leads to the following conjecture.

Open Problem 7.1.3 Under an L>® — L? norm-inequality with constant xk =
k(ny) < /ny and for uniformly bounded densities (||s|,, < +oc), the hold-out
satisfies an oracle inequality in least-squares density estimation with remainder

term O (%), where n, denotes the size of the validation sample and |M| is

the number of estimators in the given collection.

7.1.2 Penalized empirical risk minimization

For penalized empirical risk minimization methods which do not belong to a fixed,
finite dimensional model, such as kernel methods, L> — L? norm inequalities may
not hold or may be inadequate to prove an optimal oracle inequality. In chapter
Bl an oracle inequality is proved for the hold-out applied to selecting the regu-
larization parameter of kernel methods, when the loss function is Lipschitz and
under the assumption of a lower bound on the regularization parameter. The key
properties of the kernel penalty Q(t) = ||t||§{ required for the proof to work are
the strong convexity of € on some Hilbert space (the RKHS #) and the fact that
the underlying norm on H dominates the supremum norm. These properties also
hold for the ridge or elastic net penalties of linear regression under appropriate
conditions on the covariate vector X, which leads to the following open problem.

Open Problem 7.1.4 Under appropriate moment conditions on the covariate
vector X and a lower bound on the ridge regqularization parameter \ (or the ridge
component of the elastic net penalty), prove an oracle inequality for the hold-out
applied to penalized empirical risk minimization with a Lipschitz loss and ridge or
elastic-net penalty.

7.1.3 Extension to empirical risk minimization

The study of the hold-out is essentially the study of empirical risk minimization
on the (random) set of functions (3,,(DX)),nerr, where DI is the training sam-
ple. Therefore, advances in the theoretical understanding of the hold-out should
have corresponding implications for empirical risk minimization. Theorem
of this thesis is essentially a general oracle inequality for empirical risk minimiza-
tion on a finite collection of functions (f,,)merm. Thus, it is reasonable to expect
that Theorem can be adapted for general empirical risk minimization, where
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it can help relax boundedness assumptions, as for the hold-out. The assump-
tion that M is finite, reasonable in the case of the hold-out, must be discarded
to study empirical risk minimization, as ERM estimators used in practice typi-
cally perform empirical risk minimization on infinite sets (called models), which
may be finite-dimensional vector spaces (as in least-squares regression) or finite-
dimensional convex sets ("constraint formulation" of the Lasso, for example). To
this end, Theorem can be applied to a discretization of an infinite class of
functions F using, for example, L™ balls or brackets |76, Section 6.1.3]. The
bounds will then involve the L* entropy or the "bracketing entropy" of the class
F, as is classical in the litterature. Alternatively, the proof of Theorem can
be modified to take into account the "complexity" of the infinite class F. In the
proof of Theorem [3.7.2] the probabilistic tools used to control the empirical process
are Bernstein’s inequality and a union bound over the finite set M. For an infinite
class F, control of the empirical process can instead be achieved using bracket-
ing entropy and chaining to control the expectation of suprema (as in lemma 6.5
of [76], for example) and Bousquet’s inequality [21] to control their deviations.
Carrying out one of these methods is the subject of the following open problem.

Open Problem 7.1.5 State an equivalent of Theorem[3.7.9 for general empirical
risk minimization over a class of functions F, under some standard assumption
limiting the "complezity” or "dimension" of the class F (such as L*°—entropy,
bracketing entropy, or linear dimension when F is a subset of a vector space).

7.2 Agghoo

The first main goal of this thesis was to prove oracle inequalities for the hold-out
and Agghoo. The second main goal was to understand more precisely the effect of
aggregation, to explain how and to which degree Agghoo improves on the hold-out.
By aggregating hold-out estimators corresponding to different ways of splitting the
data, Agghoo reduces the variability of the hold-out which is due to the arbitrary
choice of training subset T'. Thus, the greater the influence of T', the greater the
benefits of Agghoo relative to the hold-out. In general, there are three mechanisms
by which T' causes the hold-out 58 = 8, to vary.

1. 8,,(DI) varies with respect to T, especially if |T'| is small or the estimators
Sm are unstable. This is a "bagging effect": Agghoo reduces the variance of
the §,, with respect to the sample.

2. The hold-out parameter my may be unstable because the empirical measure

PT* used to estimate the risk, is unstable: this happens when T is small,

i.e when |T| = n.
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3. The hold-out parameter 7 may be unstable because the true risk ||3,,(DE) — 5H2
is itself unstable: this happens when T is small or the estimators §,, are un-
stable.

Chapters [o] and [6] focus mainly on the second of these mechanisms, which should
be dominant when |T'| = n; is close to n and the estimators §,, are stable. An-
other possibility, not explored in this thesis, is to choose n; much smaller than n:
although this obviously degrades the performance of the individual estimators §,,,
in special cases where the effect of aggregation is strong, it may nonetheless be
interesting. We discuss this possibility in section [7.2.2]

7.2.1 Agghoo for stable estimators with n; ~ n

In chapter 5] the asymptotic distribution of the hold-out was shown to be inde-
pendent of the training sample DI. Moreover, the proof showed that suitable
projections Px(§m(D,{j)) of the estimators can be approximated by P,(8,,(DZ1)),
for a common subset 7. This makes it possible to separate the effect of bagging
(mechanism from that of hyperparameter aggregation (mechanism . More
generally, the separate study of the three mechanisms listed above seems like a
good way to approach the study of Agghoo, and to make it more tractable. In the
case of mechanism [2| this leads to the following simplified model. Let (fi,)mem
be a finite family of deterministic functions. For a family (/;);<y of subsets of
{1,...,n}, let
1 = argmin Plivy(f,,)
me

and let

1 Y
f=5 ;fmj. (72)

In other words, Agghoo is modeled by subagging applied to empirical risk mini-
mization over some set of functions (f,)menm-

The results of Chapter [6] show that Agghoo performs best when the risk is
"flat" around the optimal parameter k,. Of course, the parametrization m — s,
may be arbitrary and it is unreasonable to expect a direct generalization of this
observation. As Agghoo aggregates estimators rather than hyperparameters, the
correct generalization of "flatness" should refer to some intrinsic geometry on the
space of estimators §,,, rather than the set of hyperparameters M. The simplified
model of equation provides some indications. Assume first that the excess
risk ((s,t) is quadratic, i.e £(s,t) = ||t — s|* for some Hilbert space norm |-||.
This is the case in least-squares density estimation and least-squares regression.
Moreover, it seems reasonable to expect many risk functions to be approximately
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quadratic in an L* neighbourhood of their optimum s, as taking expectations
smoothes the convex loss function y. Assume also to simplify that the (I;)1<j<v
are disjoint (as for V-fold Agghoo). Then f is an average of i.i.d functions, hence
its excess risk is reduced by an amount proportional to E[|| fin, — fi,||’] compared
to the excess risk of f;, (the hold-out). Oracle inequalities for the hold-out sug-
gest that m, is likely to take values which are close to optimal in the sense that
| finy = s|I* & mingen || fm — s||>. Thus, Agghoo is likely to perform well when
there are functions f,,,, fm, that are far apart in norm ||-|| and have nearly op-
timal risk, || fo, — S| & ||fms — S|I* & || fm. — s|°, & hypothesis which we call a
"flatness assumption".

A major difficulty in making this heuristic precise is that it requires knowl-
edge of just how far the risk of the hold-out, ||fm, — ||, is from the optimum
min,en || fro — SH22 in other words, not just an oracle inequality (an upper bound
on ||fm, —s|°), but also an "inverse oracle inequality", i.e a lower bound on

s — 811" = nfnent || frn — s]I*

Towards a rigorous "flatness assumption" in least-squares density es-
timation In Chapter 5] an "oracle equality" with exact remainder term was
established for the hold-out using an asymptotic approximation of the hold-out
risk estimator. This argument is specific to least-squares density estimation with
orthogonal series estimators (the setting of Chapter . More generally, in least-
squares density estimation, since

Pn’Y(fm) - Pnfy(fm*) = ||fm - 5||2 - ||fm* - SH2 - 2(Pn - P)(fm - fm*)7

a reasonable heuristic is that the hold-out selects f,, with non-negligible probabil-
ity whenever the variance of the empirical process (P, — P)(fm — fm,) outweighs
the excess risk || fm — 5| = || fm. — s/|>. This heuristic was stated and applied
successfully in Chapter p] It implies that, just as margin assumptions provide
upper bounds on the excess risk of the hold-out || f;, — SHQ, a reasonable way to
prove a lower bound for || f;, — s|° (an "inverse oracle inequality") is to assume
that Var [(fm — fm.)(X)] is larger than some function of || fn, — s||> = || f. — s||%, &
kind of "inverse margin hypothesis". More generally, one may hope to find inter-
esting risk bounds for Agghoo under assumptions that only involve the quantities
Var ((frm — for) (X)), | fon — for|l @and || fr — ||, which have a geometrical inter-
pretation. This leads to the following open problem.

Open Problem 7.2.1 In least-squares density estimation with bounded density
s, find (necessary and) sufficient conditions on Var ((fm — fur)(X)), | — forll,
| fmn — s|| and n so that

N 2
_ inf — |2
|F =3 < inf 15—l
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and so that )
- oy e
|F=s| <o it 10 s
for some 6 €]0; 1].

An argument in favour of this conjecture is that the empirical process \/n, (P, —
P)(fn) may often be approximated by a gaussian process G with the same variance-
covariance function, as was done in Chapter [5| using the theory of strong approz-
imation. The distribution of G only depends on its variance-covariance function,
that is to say, on Cov(f,(X), f (X)) for (m,m’) € M?, which is the "scalar
product" associated with the (pseudo-)norm /Var(t(X)).

As problem may be hard to solve in general, it is worthwhile to consider
some special cases where interesting results about the hold-out may be proved by
a more direct approach.

Smoothly parametrized estimators If a collection of estimators s, is twice
differentiable with respect to its parameter A, then it is possible to carry out a
Taylor expansion of the risk and of its hold-out estimator in the vicinity of A\, =
argmin, P~($,). This makes it possible to find asymptotic approximations for the
hold-out parameter )\, its risk, and that of aggregated hold-out, provided that the
estimators are stable, such that Agghoo may be approximated by bagged empirical
risk minimization, as in equation (7.2))). Thus, an approximate expression for the
hold-out parameter ) can be obtained. A simple geometric argument suggests that
local aggregation around A, outperforms the oracle if and only if the path A — s,
"curves around" the target s (as opposed to "curving away" from s), or in other
words, iff (s — §y,,0%5,]x,) > 0 (assuming that 935,|x, # 0). This leads to the
following conjecture.

Open Problem 7.2.2 Prove that if §) is a collection of estimators which is twice
differentiable with respect to the hyperparameter X\, the estimators are sufficiently
stable (in a sense to be made precise) and

(s = 8r., 038:|r.) > 0,

then Agghoo can outperform the oracle.

Regular histograms Regular histograms §; on [0; 1] with k pieces are unstable
with respect to the parameter k: since the edges of the intervals are shifted with
respect to each other, the squared distance |8, — 8||* between any two histograms
may be of the same order as the risk ||§, — s|° for parameters k, k" close to the
optimal one. This suggests that aggregated hold-out may outperform the oracle
by as much as a constant factor, in the limit n; ~ n. Results of Genuer [46]
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for regressograms support this claim: he shows that when the target regression
function s is Lipschitz, aggregating random regressograms asymptotically reduces
their variance by at least a factor 2 7, while the bias term does not increase. This
leads to the following conjecture

Open Problem 7.2.3 For a continuously differentiable pdf s, Monte-Carlo Ag-
ghoo applied to the reqular histograms Sy asymptotically satisfies an oracle inequal-
ity with leading constant C' < 1.

Analysis of Agghoo is facilitated by the fact that the process \/n,(P,, — P)(5k)
can be naturally expressed in terms of the "empirical brownian bridge" \/n,(F,
F) (where F,,, denotes the empirical distribution function), so methods of strong
approximation can be used to construct a Gaussian process which approximates
V1w (P, — P)(51). Moreover, the variance-covariance function of this process can
be explicitly computed in terms of the density s.

7.2.2 Aggregated hold-out with small training samples

The case of small training sample sizes n; was not explored in this thesis. When
ny << n, the validation samples are similar (they include almost the full dataset)
but the training samples may be very different. As a result, the estimators §m(ng)
cannot be treated like fixed, deterministic functions, in contrast to the previous sec-
tion, and bagging becomes a significant factor. This does not necessarily mean that
the effect of hyperparameter aggregation becomes negligible, since the hold- out risk

estimators, Py v(sm(DTj)), inherit the variability of the estimators §,,(Dx, ) As
a result, the selected parameters m; are also likely to be variable.

Choosing n; much smaller than n is not recommanded in general, as it is
likely to significantly degrade the performance of the estimators §m(DZj). The
simulations conducted during this thesis mostly support choosing n; = 0.8n or
n; = 0.9n for sample sizes n = 500 or n = 1000, which suggests that in the
asymptotic, one should have n, ~ n. However, there are special cases where it is
reasonable to choose n; << n. We discuss two examples below.

k-nearest neighbours Our simulations in classification (Figure , Chapter [3))
show that the risk of Agghoo can be relatively flat as a function of “* when applied
to k-nearest neighbours in classification. Moreover, in regression, the results of
Biau and Guyader [14] show that subagging the (inconsistent) 1—nearest neighbour
rule using subsamples of size n; << n can lead to estimators that converge at the
optimal rate. This justifies using Agghoo with n; << n for nearest neighbour
rules. Assuming that the parameter k chosen by the hold-out is equivalent to the
optimum deterministic choice, k,(n;) = argmin, E[{(s, §;(DI))], which is plausible
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when n; — +00, Agghoo should behave similarly to the (su)bagged k., (n;)—nearest
neighbour rule.

Open Problem 7.2.4 For the collection of k—nearest neighbour estimators in
regression, show that Agghoo can be approximated by a weighted nearest neighbour
rule, as in [13, [14], when ™ — 0 at the right rate. Show that Agghoo converges
at the optimal rate for a suitable choice of ny(n). Find the asymptotically optimal
sequence ny(n). Can Agghoo perform better than the oracle when %t — 07

Regular histograms and regressograms Results of Arlot and Genuer for
regressograms |4] show that aggregating piecewise constant estimators on "shifted"
regular partitions results in improved convergence rates for a sufficiently smooth
target s, in least-squares regression. One can reasonably expect analogous results
to hold true for histograms in density estimation. The "shifted" regular partitions
of [ consist of intervals of the form [u+ %; u+ ]%1}, where u is a random element
of [0; %] and k is fixed. For nearby, distinct values of k, regular intervals [%, J%l]
are shifted relative to each other in a similar way as by the construction of Arlot
and Genuer. Let §; denote the regular histogram on [0;1] with & pieces. Let

k.(ny) = argmin, ., E [
histograms §;, over different values of k close to the optimal k,(n;), may therefore be
conjectured to behave similarly to the aggregate defined in [4], for k = k.(n;). As
this aggregate converges faster than the individual estimators, the optimal value of
k for the aggregate is much smaller than for the regular histogram or regressogram.
For Agghoo, this justifies taking n; << n such that k,(n,) is sufficiently small.

5,(DT) — $||2]. Agghoo, which aggregates the regular

Open Problem 7.2.5 If s € L?([0;1]) is sufficiently smooth, show that Agghoo
converges faster than the regular histograms, for a properly chosen sequence ny(n)

such that # — 0.

Remark that in this scenario, hyperparameter aggregation plays a crucial role,
even though n; << n.
7.3 Local aggregation

Chapter [0] shows that Agghoo performs local aggregation of the Fourier series
estimators §; in some neighbourhood of the optimal parameter,

ki(n;) = argminE [||§k(DZ) - s||2] :
k

Theorem [6.4.4] shows that the size A of this neighbourhood adapts to some degree
to the density s. For example, if the squared Fourier coefficients 9]2 of s decrease
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very slowly around k,(n;), i.e if the risk is very "flat" around k.(n;), the size of A
will increase, which will reduce Agghoo’s risk (at least if n — n, is large enough).

However, the strongest results, in which Agghoo outperforms the oracle by
a constant factor, require Agghoo’s parameter n; to be chosen in a distribution-
dependent way. This is not just a limitation of the arguments of Chapter [0} it is
not hard to see that to gain a constant factor improvement in the oracle inequality
in the setting of Corollary [6.4.0], it is necessary to aggregate two estimators §j, Sy
that are sufficiently far apart, which here means that |k—&'| must be of order k. (n;).
This requires the hold-out to be sufficiently variable, which in turn requires n; to
be sufficiently close to n (but not too much). Thus, Agghoo does not fully adapt
the size of the neighbourhood in which it aggregates the §; to its (distribution
dependent) optimal value.

This is somewhat unsatisfactory, and it would be interesting to find methods
which solve this problem. Optimal aggregation is clearly too ambitious a goal
in general: results of Tsybakov [102] show that oracle inequalities for optimal
log | M|

aggregation have a remainder term of order — which is larger than the risk

of the oracle when s is sufficiently smooth. Instead, one would like an estimator §
that functions like an idealized version of Agghoo, i.e an estimator such that

e S satisfies a general oracle inequality, similar to the hold-out and Agghoo
e §is given by a black box method, which uses no special features of the 3,,.

e 5 makes the best possible use of local aggregation around the oracle, and in
particular takes advantage of any flatness condition when it holds.

To make this last requirement precise, consider a collection of estimators (8, )mem
and for any € > 0, define the sets

M, = {m €M :|[sm—s|I” < inf & — s|? —I—s}
m’'eM
and the aggregated estimators

1
3% — Z 5 .
° M "

meM;.

M. is a set of estimators "close" to the oracle in a sense relevant to risk minimiza-
tion, while 5%9 is the "local aggregate" around the oracle at the scale . The aim
is to construct an estimator § which performs as well as the best local aggregate

~

ag
5.7
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Open Problem 7.3.1 In the setting of least-squares density estimation, construct
an aggregation estimator § such that

15— s|I”

Y

inf_q ||$27 — s||2

given any sufficiently stable collection of estimators (Sy)mem (for example, em-
pirical risk minimizers on linear models).

A possible solution to this problem is the following. Given a cross-validation
estimator CV, estimate M, by

Mgz{mEM:CVT@m)g inf CVr(3, )+g},
m'e

and define the corresponding "local aggregates",

Aag —

E

meM.

The risk of the aggregate §‘7l—’i€ may be estimated by

~ 1
06 = g, 2 o =2 Ovrtew)

(m,m/)eM?2 me./\/l

Finally, choosing & = argmin_., C(¢) yields the estimator § = 87

Open Problem 7.3.2 Does § solve problem |7.53.17
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